
THE SOC
TIME-SHARING
SYSTEM
by JULES I. SCHWARTZ

D
In spite of all the power available iIi present
day computers, a feeling of uneasiness, even
disappointment seems to prevail among those

concern~d with paying for and using computers. These
feelings stem primarily from the relative inaccessibility and
inflexibility of the computer. The ability of users to pro­
duce computer systems that can be readily modified is
frequently much less than supposed, and the ability of
computers to afford quick and accurate solutions to a
variety of even simple problems is surprisingly limited.
Part of the reason for this dilemma is the formidable ,wall
between users and computers in most installations. This
wall is faced not only by managers and customers, but
also by programmers~

One of the major reasons for the wall is the persistence
of traditional techniques for applying computers. These
techniques require that programs be prepared (in a
language that is not usually oriented to application), be
sent to the computer (where they are processed - and
executed with no intervention by the user), and, when
processed, be sent back hours (or days) later. Aside
from the fact that this approach can lead to numerous
delays and wasted computer runs, there are many appli~
cations for which this detached operation is completely
unsatisfactory. Thus the concept of continuous interac':'
tion by the user with his computer (on-line computer
operation) promises to become an essential part of cur-
rent techniques in computer application; -

On-line use of a computer is not a new concept, for
it has -appeared in a variety of situations in the past;
but these applications have been special- purpose (e.g.,
SAGE) or quite limited (e.g., use of small computers such
as the Bendix G-l5 or the Digital Equipment Corpora-"
tion's PDP-l). Complete user interaction may be avail­
able on small computers, but because of their properties,
many desirable features of large on-line systems cannot be
made available, such as access _ to many general- and
special-purpose languages. Therefore,it seems, use of a
large computer on-line would" be desirable. Unfortu­
nately, such use would introduce certain inefficiencies,
without major changes" in technique. For one person to
preempt the total capacity of a large machine for lOIig
periods of time would be highly uneconomical if he could
not keep "the computer occupied all the time it was
assigned to him. Time-sharing permits on-line use of the

28

facilities, services & potential

computer simultaneously by a large number of people by
giving each user time when he requires it. This kind of
system provides a direct and continuous working rela­
tionship between users and computer and keeps the com­
puter busy most of the time by limiting the amount of
idle time due to human thought or output from on-line
devices. "

In the Command Research Laboratory at SDC, a large
percentage of the problems run are of the on-line, man­
machine, interactive variety. Since these applications are
virtually impossible to run ina serial fashion" (one-at-a­
time), the requirement to produce a system that would
permit parallel running was a necessity. For this, and
for the sake of further study of the time-sharing process
itself, a time-sharing system was developed as the main
program vehicle with ~,hich to run the laboratory.

characteristics of time-sharing systems
Given the" general requirements for time-sharing sys­

tems, it may now be worthwhile to examine the proper­
ties (and hence the definition) of such systems. Four
characteristics of time-sharing' systems encompass most
of their distinctive features; such a system is:

" • Simultaneous-A number of people use the computer
at the same time.

• Instantan~ous-All users receive responses from their

Mr. Schwartz is head of the
time-sharing project at System
Development Corp., Santa
Monica, Celif., ~1I.:itf: 'wvhom he
has been associated since prior
to its" spin':'off from RAND. His
softw-are development projects
have included PACT, the lin­
coln utility system, and JOVIAL
(Jules' Own Version of the
International Algebraic Lan­
guage). He holds a as in math
from Rutgers C;;nd an MA in
mathematical statistics from
Columbia Univ.

DRTRMRTION

programs or the system within seconds-or fractions
of a second-of the completed computation.

• Independent-Different programs, services, and de­
vices can be in use separately or in combination
during any given period of time.

• General-purpose-No restriction is placed on the kind
of program or the application under the time-sharing
system.

Various on-line systems have some, but not all of the
properties just described. Others, such as the SDC sys­
tem, do have all of these characteristics.

equipment configuration of the SDC system
Since on-line operation of a computer requires the use

of input-output devices in addition to tapes, card-readers,
printers, etc., on-line devices available to users of the
system will be reviewed first. These devices include tele­
types, typewriters, and cathode-ray tube (CRT) display

Fig. 2

the AN/FSQ-32 in Santa Monica and a CDC 160-A com­
puter at the Stanford. Research Institute, Palo Alto, Calif.

The basic characteristics of the time-shared AN IFSQ-32
system are listed in Table 1. Assisting the Q-32 under
time-sharing is the PDP-I, which serves as the major
interface between the on-line devices and the Q-32. A
simplified diagram of the complex is shown in Fig. 2. The
local Q-32 configuration is shown in Fig. 3.

Fig. 3

Core
memory
bank 1. '-"--~

3·

4.

Low­
speed
control
unit

High­
speed
control
unit

Central
processing
unit

r/o

Auxiliary memory

~ PDP-l

Fig. 1 Characteristics of the AN/FSQ-32 Storage Devices

DEVICE SIZE WORD RATE AVERAGE ACCESS TIME

Core Memory
Input/Output
Core Memory
Magnetic Drums
Disc File
Magnetic Tapes

65K
16K

400K
4000K

16
Drives

consoles. The teletypes have been installed in various
locations within SDC and are also used from numerous
remote locations, as far away as Pittsburgh, Pa. Within
SDC, there are eight model 28 Teletypes, 16 model 33's
and three Soroban typewriters. There also exists capacity
for eight remote teletype stations operating simultaneously.
In addition to three types of keyboard devices, there are
six display consoles currently available. These are all lo­
cated within the Command Research Laboratory.

The SDC time-sharing system may also be used re­
motely via a 2kc line, the terminal to which may be a
computer. That computer may in turn service displays and
keyboards. This linkage permits the remote computer to
communicate with a program in the SDC computer, thus
permitting computer-computer-human interaction under
time-sharing. Currently one such line is operating between

November 1964

2.5 usec/wd.

2.5 usec/wd.

2.7 4 usec/wd.
11.75 usec/wd.
128 usec/wd.
(High density)

10 msec
225 msec
5 to 30 msec (no positioning), de­
pending on whether the tape is
at load point, and whether it is
being read or written.

the time-sharing system
To understand the services available to a user of the

time-sharing system, a review of the system itself would
be useful.· A simplified description of the system is as
follows:

All programs requested by users are stored on an as­
signed section of the drum until the user quits.
A program is given one "quantum" of time to operate,
which represents the maximum time for one operating
cycle. The program's turn ends when it requests an
input-output transfer, when the quantum of time ends,
or when an error condition arises. When the turn ends,
the executive system determines if another program is
ready to operate. If not, the program will reside in
core memory until another program is ready. When
another program is ready to operate (and it occupies
an area of core which overlaps that of the first), the

29

TIME-SHARING SYSTEM

executive writes the first back to its place on the drum,
and brings in the new program to core.
The process of exchanging programs from core to drum
is called swapping.
The basic cycle of an execution followed by a swap is
fundamental to the time-sharing technique of operation.
Controlling this process is a program called the execu­
tive system.

The executive system resides permanently in 16,000 regis­
ters of core. It has the following major functions:

• Responds to all computer interrupts and takes the
required action.

• Interprets inputs and commands from teletypes and
typewriters.

• Allocates both core and peripheral storage.
• Performs all input-output.
• Schedules the running of object programs (as in

the above example) .
• Performs a number of on-line debugging services.
Oh;ect programs, which can contain up to approxi­

mately 47,000 words of storage, are placed in core stor­
age only when they are active (ready to compute). When
they are not active (stopped or waiting for input or
output), they reside on the· drums, placed there by the
executive. As shown in Figs. 4 arid 5, they are put on
drums by the system when given the LOAD command
(see below - Basic Commands) via teletype.

The Fix Program, which occupies approximately 2,000
words of permanent storage, reacts to all computer er­
rors, logs the error on a typewriter at the maintenance
console, attempts to fix the error, then returns to the
executive system with a description of the error condi­
tion. The system then isolates the user (s) affected by
the error, notifies the affected user (s), concludes the
affected program (s) , and then continues the normal
cycle.

A major function of the executive system is to inter­
pret and respond to the various teletyped commands
made by a user. It is essential that most users know
these basic commands. They are used to sign in, load,
and run object programs, stop programs, and sign out.
These commands are:

• LOGIN: The user begins a run. With this command
he gives his identification and a "job number."

• LOAD: The user requests a program to be loaded
t(from either tape or disc). Once this command is
executed, the program is an object program to the
system.

• GO: The user starts the operation of an object pro­
gram or restarts the operation of an object program
that has been stopped. Once the user gives this com­
mand, he can send teletype messages to his object
program or the time-sharing system.

• STOP: The user stops the operation of an object
program.

• QUIT: The user finishes a particular job. Upon re­
ceipt of the command QUIT, the time-sharing sys­
tem punches accounting information into. a card and
removes the object program from the system.

Figs. 4 and 5 are examples of this sequence as it would
appear on a user's teletype. It will be noted that to each
command from a user there is a response on the teletype
from the system. Until this response is received, the user
cannot assume that the system has reacted to the com­
mand. Normally, this response is immediate.

In the brief description of the LOAD command above,
it was stated that the requested object program is loaded
from tape or from disc. It is assumed, of course, that the

30

program exists in binary form-expected by the execu­
tive to perform the LOAD function. There are a number
of ways in which a program can be put into this form.
Some of the more common will be explained in the sec­
tion on service routines.

The sequence of actions taken after the LOAD com­
mand is given is as follows:

The Executive examines the name of the program, which
follows immediately after the command LOAD. If it finds
that this program has been stored previously on the disc,
it brings it in from the disc, places it on the drum,
and responds with $LOAD OK as in Fig. 4. If the pro­
gram is not on the disc, it types out instructions at the
computer console for the computer operators to load this
program, or the specified tape reel (optional) for this
teletype. It also types $WAIT on the user's teletype. When

Fig. 4. Load From Disc
LOGIN 0050 JCX.25

$OK LOG ON 10
LOAD PRG2
$LOAD OK
GO

$MSG IN.
!STOP
$MSG IN.

QUIT
$MSG IN.

Object program on disc
Object program on drum and disc

Fig. 5. Loading a Program From Tape
LOGIN 1123 JBX.30
$OK LOG ON 10

LOAD TPRD 1852
$WAIT.
$LOAD OK
GO

$MSG IN.
!STOP
$MSG IN.
QUIT

$MSG IN.

Object program on tape
Object program on drum and disc

Fig. 6. User Talking to Object Program
LOGIN 0050 JDX.25 User to executive

$OK LOG ON 10 Executive response
LOAD CALC User to executive
$WAIT. Executive response
$LOAD OK Executive response
GO User to executive

$MSG IN. Executive response
CALC READY Object program response

+ 2,2 User to program
RESULT +4.00000000 Program response

* 3,3,3 User to program
RESULT +27.0000000 Program response

!STOP User to executive
$MSG IN. Executive response

QUIT User to executive
$MSG IN. Executive response

this operation is completed by the operator, the program
is stored on drum and disc (for subsequent loads), and
the response $LOAD OK is typed on the teletype. The
time between the $W AIT and $LOAD OK can be a mat­
ter of minutes.

"talking" on a teletype
It is quite clear that once the GO command is issued, it

is necessary for the user to communicate over the teletype
with the object program. Therefore, until otherwise noti-

J:)RTRMRTICN

fied, the executive assumes that any input on the teletype
is to the object program, not the executive, and therefore
simply passes the input to the program, which reacts in
some way, probably with an output on the teletype.
Fig. 6 shows a typical sequence of steps taken when a
user communicates with an object program.

There usually comes a time when the user must start
talking to the executive after he has communicated with
his object program-to give the STOP command, for
example. The user signals this intent by typing an excla­
mation point. This action and its consequences are dem­
onstrated in Fig. 6. Correspondingly, it is frequently
necessary to recommence talking to the object program,
having once used the exclamation point. This is done. by
typing quotation marks,as shown in Fig. 7.

Fig. 7. User Talking to Both Program and Executive
LOGIN 0050 JDX.25

$OK LOG ON 10
LOAD CALC
$LOAD OK
GO

$MSG IN.
CALC READY
+2,3,4

RESULT +9.00000000
*4,4

RESULT + 16.0000000
!DIAL 28 HELLO

$MSG IN.
"*3,3,3

RESULT +27.0000000
!STOP
$MSG IN.

GO
$MSG IN.

-4,2
RESULT +2.00000000

!STOP
$MSG IN.

QUIT
$MSG IN.

. other executive services

Program to user
User to program
Program to user

User to executive

User to program

User to executive

User to program

User to executive

User to executive

In addition to responses to basic commands, the execu­
tive performs a number of other services for ·users. In­
cluded among these is a set of functions necessary to
check out (debug) object programs on-line. The kinds
of debugging commands available through the executive
include the following:

• Open: Displays the contents of the given memory
or machine register and uses this as a base address
for other debugging commands.

• Modify Open-Register Address: Changes the address
of the opened register by the given increment or dec­
rement.

• Insert: Inserts the given values into the opened
register.

• Mask: Inserts values by the given mask.
• Mode: Displays values according to specified mode

(floating, decimal, octal, Hollerith, symbolic machine
language) .

• Search: Finds the register containing a specified
value. '

• Breakpoint: When a specified point in the program is
reached, notifies the user, (on options) displays reg­
isters, and stops or continues the' program. As
many as five breakpoints are allowed simultaneously.

• Dump: Dumps a given set of registers, either on tele­
type or tape (to be printed off-line).

November 1964

The actual commands to perform these functions usually
include a symbol or address with one or two unique
teletype characters.

Figs. 8 and 9 show examples of on-line debugging opera-
tions. .

Fig. 8. Examining and Changing Words
in Octal and Floating Point

40000'1
40000' == 0140000000040052'
DATAWORDI
DATAWORD == +4.56289757E+002
2.5 E-3 *
$IN

Fig. 9. Examining and Changing Words
in Hollerith and Integer

MESGWORD (5) I
MESGWORD == CONTINUE
BETAI
BETA == -197
-495 *
$IN

DBUG command
DBUG response
DBUG command
DBUG response
DBUG command
DBUG response

DBUG command
DBUG response
DBUG command
DBUG response
DBUG command
DBUG response

Several comm~nds are available to enable users to com­
municate with each other. These commands and their
functions include:

• DIAL: Permits sending messages to any other user
in the system.

• LINK: Initiates linkage of any two teletypes so that
they act as one. Both teletypes can input and output
to and from the same program or the systems. Also,
both teletypes can type all the information being
input or output on each other.

Commands to query the system about its status are
available through the executive. Examples of these are:

• USERS: The response to this command is the number
of currently active users in the system.

• TAPES: The response' to this command is the num­
ber of tapes available for use by object programs.

• DRUMS: The response to this command is the
amount of drum space available for object programs .

Quite clearly, object programs must have access to the
on-line input-output devices that are part of the system.
In addition to these, the system at SDC permits access to
disc files and tapes as completely as is possible with the
computer. Since a "traffic" problem exists with these
devices (as well as with the on-line devices), all input­
output units are assigned by the system. No object pro­
gram makes an absolute (machine) reference to an input­
output unit. In the object program, requests for input­
output "files" include arbitrary names, for which. assign­
ment of a particular unit is required. The executive then
assigns an actu.al (machine) unit or an area of a unit such
as disc (if one is available). For subsequent reads,
writes, or positionings of the unit, the object program
requests the executive to move the file by using the name
given in the initial request. Any attempt by an object
program (in machine language) to read or write a unit
directly will result in a computer interrupt that will stop
the program.

A mechanism has been provided to permit the multi­
ple use of one program by several users. An object pro­
gram may in its input-output file declarations request
more than one -teletype or display console (in this case,
specific units). Thus a single program can. act as a re­
corder, monitor, situation generator, or play some other
central role to a group of users in a game or other team
effort. (To be continued). •

31

