
o

o

part two: service routines & applications THE SOC
TIME-SHARING
SYSTEM
by JULES I. SCHWARTZ

With the commands and functions discussed so far, a
user can load, run, and debug programs, as well as have
other miscellaneous services performed. It is, of course,
necessary that numerous other services also be pro­
vided. The functions described so far were performed
entirely by the executive system. The object programs
were considered to be just code running in response to
basic commands. However, the techniques for providing
additional services are actually accomplished through the
use of object programs. Object programs can be written
to provide other necessary services; such programs are
called service routines. Since service routines are object
programs-and there is no limit to the number or kind of
object programs that can be used-there is in effect no
limit to the number of services that can be provided.

Service Routines for Producing Object Programs. In
some respects, the most common technique for producing
object programs is similar to that used in standard com­
puting installations. The program is written in a symbolic
language, stored on a magnetic tape (or disc), and then
compiled. The output of the compilation is a binary
program-in this case compatible with the executive
LOAD command-and a listing. When the symbolic pro­
grams require modification, the necessary changes, dele­
tions, and insertions are made by using the tape (or disc
file) that contains the program, and a new tape (or disc
file) is prepared.

File Maintenance
The preparation and maintenance of symbolic tapes and
disc files is done with the service routine called FILE.
The functions of the routine FILE are:
• Generate Symbolic Files. Symbolic files may be stored

on tape or disc from teletype inputs or through the
card-reader.

• Update Symbolic Tape Files. Symbolic files may be
updated on-line without destroying the original file.
Using the update feature, lines may be inserted,
deleted, or replaced via the teletype.

• Merge Symbolic Tape Files. An additional feature
of the tape update portion of FILE allows files
from a second tape to be merged with files of a first,
base tape. The file to be merged may be inserted
at any point within a file on the first tape.

• Print Symbolic Tape Files. Symbolic files or parts
thereof may be listed either on the user's teletype
or on an output tape for later printing off-line. This
feature may also be used to make extracts or dupli­
cates of symbolic tapes.

.Survey Symbolic Tapes. To review the contents of a
symbolic tape that contains a number of" files, the
'user may wish to survey the tape. A request for this
operation will cause FILE to search the tape and to
print the first "n" lines of each file on the user's tele­
type.

Compilers
There are several compilers available in this system. The

December 1964

JTS compiler was designed to provide JOVIAL and
SCAMP (machine language) compilations under the time­
sharing system. JTS accommodates a subset of the JO­
VIAL J-2 and J-3 languages as well as a subset of
SCAMP: The compiling function of JTS can be performed
on-line, in a sense, if the user wishes to wait at his tele­
type and review any coding errors that JTS outputs
on the teletype. In addition, the user can operate his
object program immediately after successful compilation.
The binary object program produced by JTS is on a tape
that conforms to the format requirements for system load­
ing. The user can specify the type of program listing to
"be output on his listing tape.

A second compiler available to users is called SCMP.
It has the same operating characteristics as JTS; however,
the language it compiles is the complete SCAMP.
Other compilers, including SLIP and LISP, are either
available or are being implemented.
IPL-TS

A somewhat different scheme is provided by the serv­
ice routine IPL-TS. In this case, the object program
(coded in IPL-V), prepared through use of FILE, is
assembled by this service routine. The assembled pro­
gram is then made part of the IPL-TS system, which can
be saved (on option) and later reloaded with the LOAD
command. When it has been loaded, the program may
be executed interpretively by the IPL-TS service routine.
This routine also provides a great number of on-line
checkout aids to the user during execution of his pro­
gram.

The service routines and techniques discussed so far
permit users to produce and modify both small and large
programs in a manner analogous to other kinds of com­
puter systems although they are generally controlled on­
line. Techniques more appropriate to time-sharing sys­
tems are also available for producing, checking out, and
running programs. These techniques provide the capability
for coding and executing programs on-line (at the tele­
type) without going through the various independent steps
necessary in the file and compile process. The service
routines now available for this purpose are called TINT
and LIPL.

With TINT, one may program in the JOVIAL lan­
guage; LIPL provides the ability to program in the IPL-V
language. In both routines, execution is done interpretive­
ly, providing many on-line debugging and communication
aids that are not available when executing a binary pro­
gram in the normal fashion. The general description of
these programs is as follows:

TINT was developed to provide a vehicle for on-line
coding and execution of JOVIAL programs. The applica­
tions of the on-line interpreter are:

• Program composition
• Debugging and editing
• Rapid formulation and computation

Functions
• To accept, perform legality (grammar) checks on,

51

SOC TIME-SHARING . ..

and interpret statements to a given subset of the
JOVIAL language.

• To permit execution of all or part of small JOVIAL
programs.

• To permit dynamic input of variables to a JOVIAL
program that is to be executed.

• To permit dynamic output of results obtained
through execution of a program.

• To permit on-line symbolic corrections to be made
to existing code.

• To permit storage of symbolic code composed with
TINT and then transferred to tape so that it may
later be compiled or re-executed interpretively.

Fig. 10 shows an example of a small TINT program as
coded and executed on-line.

The IPL-TS interpreter described earlier also permits
the programming and execution of on-line coded pro-

Fig. 10. Example of a TINT Program

$ 1 "THE EUCLIDEAN ALGORITHM"
$ 2 "GIVEN TWO POSITIVE INTEGERS A AND ~".
$ 3 "FIND THE GREATEST COMMON DLVISOR"
$ 4 51. READ A,B;
$ 5 X == A; Y ==B;
$ 6 52. IF X EQ Y;
$ 7 BEGIN PRINT 30H(THE GREATEST COMMON

DIVISOR OF),
$ 8 A,3H(AND),B,2H(lS),X;
$ 9 GOTO 51; END
$ 10 IF X LS Y;
$ 11 BEGIN Y == V-X; GOTO 52; END
$ 12 X == X-V; GOTO 52;
$PRI NT COMPLETE
$ENTER COMMAND
?EX

A ==? 1024
B ==? 512

THE GREATEST COMMON DIVISOR OF 1024 AND
512 IS 512

A ==? 234
B == ? 86

THE GREATEST COMMON DIVISOR OF 234 AND
86 IS 2

A ==? 234
B ==? 84

THE GREATEST COMMON DIVISOR OF 234 AND
84 IS 6

A == ? 234
B == ? 82

THE GREATEST COMMON DIVISOR OF 234 AND
82 IS 2

A == ? 234
B == ? 80

THE GREATEST COMMON DIVISOR OF 234 AND
80 IS 2

A == ? 234
B ==? 78

THE GREATEST COMMON DIVISOR OF 234 AND
78 IS 78

grams. In this case, the technique is analogous to that
used in programming off-line (using tape input) except
that the code is assembled from teletype input. Also, with
this routine, programs prepared with the FILE program
and assembled from tape can be modified by program
input on a teletype. A brief example of a LIPL pro­
gram is given in Fig. 11.

A number of other routines exist and are being written
for use in the SDC time-sharing system. These include

54

routines whose functions range from information retrieval
to tape copying.

applications
Thus far this article has described the characteristics

and capabilities of the time-sharing system in use in the
Command Research Laboratory. The system has been in

Fig. 11. Example of a lIPL Program

lIPL-READY

RT SO = (AO lOMO 109-3 nOD) 9-3 = (40HO J75 J71,J15l)
AO = (l1MO J50l0MO J68 10PO 709-5,9-1 J60 709-6 l2HO 6lMO
5lMO,9-2 J60 709-3 l2HO 52HO l2MO J2 709-2 30HO,9-l)
9-3 = (30HO AO 70 (108.0 2lMO,9·l3,9-4)
9-4 = (40MO 5lWO 20MO,J3D) 9-5 = (J4,9-4) 9-6 = (108.0 2lMO,9-4)
DT PO = (Q RED $WHITE$ $BLUE$ $GREEN$) MO = (Q Cl C2 C3 C4 C5 C6)
C4 = (0 Cl C3 C5 C6) C5 = (Q
Cl C4 C6)
C6 = (Q Cl C2 C3 C4 C5) NL GT SO

Cl 0232254 21 RED
C2 0236814 21 WHITE
C3 0236869 ' 21 BLUE
C4 0236814 21 WHITE
C5 0236869 21 BLUE
C6 0236848 21 GREEN

An IPL-V "map-coloring" program, written and executed on-line
under time-sharing in linear IPL (lIPL). * This program deter­
mines the colors of all countries (symbols C 1 to C6) on a map
(list MO) such that no adjacent countries are colored alike.
The six-country map for this example is configured as follows:

C 1 C2 C3 C4 C5 C6
*lIPL was written by Robert Dupchak of the RAND Corporation.

operation since June 1963, after an initial development
of approximately five months. Currently it is operating
eight hours a day and is virtually the only means for
using the computer during the day in the Command Re­
search Laboratory.

Of some interest are the numerous and diverse applica­
tions of the system. These serve to show the possibilities
offered by the present and relatively young system as
well as to point out the large range of applications and
services that a powerful concept such as time-sharing can
provide. A list of some of the current applications in the
Command Research Laboratory follows:

• Natural Language Processors-used for parsing Eng­
lish sentences, answering questions, and interpreting
sentence-structured commands.

• Group Interaction Studies-:-in which teams of players
are matched against each other, and in which the
computer is used to measure individual and team
performance.

• General Display Programming-in which the pro­
grams are used as vehicles for generating and modi­
fying visual displays according to the user's keyboard
inputs.

• Simulated Command Post-a realistic simulation of
a command post has been produced, and such prob­
lems as the display requirements for this organization
are studied within this framework.

• Hospital Control-the data for a ward of hospital
patients is maintained and retrieved through the
system, with access from stations in the hospital.

• Text-Manipulation-a sophisticated text-manipulation
program has been developed.

• Police Department Crime Analysis-using some of the
techniques found .in the studies of natural-language

DRTRMRTION

/

;­
(

t,

, C\
.~/

comprehension, reports of crimes are compared with
a complete history of criminal reports to establish
patterns and isolate suspects.

• Personnel File Maintenance-personnel records of
SDC are maintained and accessed during the time­
sharing period.

comments and prospects
The results of the first year's use of the SDC time­

sharing system have been encouraging. A considerable
amount of work has been accomplished using it, a great
deal has been learned about the problems of time-sharing,
and a number of applications have had a great deal of
exercise which could not have been attempted with more
traditional computing center techniques.

The actual development of the system has been in
roughly four stages, the first three of which lasted about
six months each. These stages are:

• Design and Checkout of the Initial System-During
this period the emphasis was on the executive sys­
tem, with only a slight effort in designing service
routines.

• Initial Use of the System-The main concern during
this period was making the system "stay alive." (It
frequently didn't, causing numerous frustrations and
feelings of ill will toward time-sharing). The majority
of users during this period were members of the
Time-Sharing Project who were writing and check­
ing out service routines. A few of the applications
systems were begun during this period. The number
of services and conveniences for the user were min­
imal. The system was in operation between two and
four hours a day.

• Full-Scale Use of the System-During this period, the
time-sharing period operated eight hours a day. A
large number of applications were programmed,
checked out, and used. The set of service routines was
expanded, and the ones that existed were sharpened
considerably. A number of the "little annoyances" of
the system were eliminated, and in general the sys­
tem was made much more reliable and easier to use.
During these three periods, a large number of changes
to the equipment was made. Probably a significant
change was made on the average of once every six
weeks. This, of course, did not aid the reliability of
software or hardware.

• The Future-We are currently in the fourth phase of
this system. Changes to hardware should be relatively
few now, so that the software emphasis can be on
improvements; there are seemingly an infinite num­
ber of improvements possible. They range from s.uch
ideas as telling the user his program's status and
the time of day when he asks for them to improved
executive input-output buffering schemes and tech­
niques which permit a user instantaneous access to
a network of programs on other computers as well
as the Q-32. (There is currently a list of over 50 such
items waiting for implementation).

The fact tnat so much remains to be done might lead one
to the conclusion that the concept has not been very sat­
isfactory. On the contrary, we can probably say that our
experience so far with time-sharing has proven quite sat­
isfactory, and the true potentials of such a system are
now becoming clear and realizable.

When "discussions" of time-sharing (and on-line com­
puter usage) are conducted_ there is generally agreement
on the use of the concept for a number of applications,
but there is considerable debate concerning the "econom­
ics" of it-whether more traditional computer systems
make more efficient use of the computer. Like many such
questions, the answers cannot be found easily. Time-shar-

December 1964

ing permits many runs on a computer and instantaneous
response to all users. It also encourages techniques which
are quite valuable but not practical otherwise (e.g., solu­
tions by trial and error, use of displays, on-line debugging,
single-shot retrieval of information, etc.). In some re­
spects, it makes excellent use of a computer. For ex­
ample, since there is almost always "something" going
on, time to mount and demount tapes is never wasted
time.

On the other hand, it can be pointed out that in the
"worst case" of time-sharing today-where big programs
must be swapped frequently-the efficiency of time-sharing
is low. (This applies primarily to efficiency of throughput,
not response time, which is another measure of time­
sharing efficiency). For certain kinds of programs-tl~ose
which require long periods of compute time and where
human interaction cannot help the process-time-sharing
is of no direct value. ~ Time-sharing and on-line computer
use tends to . discourage or make difficult retrieval of
large quantities of printed output. Although time-sharing
assists man-machine interaction by letting users use the
computer on-line, it also frequently requires humans to
be present at jobs they would be quite happy to let run
without them.

In the system at SDC, certain of these arguments are
recognized. However, at the present time, they do not
represent serious difficulties. The throughput and response
time for the system are quite adequate for a reasonably
heavy load. If the capacity of the system were to be in­
creased (primarily by increasing the size of the drums),
there seems little question that, without considerable im­
provements in the system, the economic. factors would be
more serious. Thus, although we have been able to tolerate
a close to "worst case" scheduling mechanism in the early
phases, areas of unoverlapped swap and input-output will
have to be eliminated with a larger average load. Also,
the running of programs in a "background" fashion, so
that humans aren't required and long computations don't
unnecessarily degrade the system, is an item of high pri­
ority in the future.

In conclusion, one can view the present system and the
experience so far and have a great feeling of optimism
for the future. Emphasis from now on will be in areas
that will stress significant improvement in the techniques
and tools available to the user. The problems of hardware
modification, hardware and software reliability, and others
due to lack of experience or haste in production are
diminishing. Even with these various areas of growing
pains, a surprising amount has been accomplished.

Time-sharing seems to hold a key to much that has
been bothering the computer using community. The com­
puter can be brought close to the user. Problems not
heretofore solvable can be pursued. The problems of
economy in some areas are better now with time-sharing,
and in others no impossible problems seem to exist. Large­
scale use of computers on-line-seems to be with us to stay.

BIBLIOGRAPHY
This Bibliography contains additional information about the System
Development Corporation Time-Sharing System.
1. Rosenberg, A. M. (ed.) Command Research Laboratory User's Guide.

SDC TM-1354 Series, November 1963.
2. Schwartz, J_ I., E. G. Coffman, Jr., and C. Weissman. A General­

Purpose Time-Sharing System. SDC SP-1499, 29 April 1964.
3. Schwartz, J. I., E. G. Coffman, Jr., and C. Weissman. Potentials of

a Large-Scale Time-Sharing System. To be published in the Proceedings
of the Second Congress of Information System Sciences, November
1964. (Also available as SDC SP-1723.)

*There is the possibility that the compute time can be cheaper when
shared than when alone.

55

