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SUMMARY 

This paper reports on a proposed schema and gives some detailed speci­

fications for constructing a learning system by means of programming a com­

puter. We have tried to separate learning processes and problem-solving 

techniques from specific problem content in order to achieve generality, 

i.e., in order to achieve a system capable of performing in a wide variety 

of learning and problem-solving situations. 

Programs in·the system are given by the programmer either directly or 

indirectly. Indirectly given programs are those which are constructed in­

side the system (by a set of programs constituting a program-providing 

mechanism) from an existing supply of basic instructions and component 

programs, some of which have been directly given and some of which may 

have been previously constructed by the system itself. The primary pur­

pose of indirect programming is to assist higher-level programs in perform­

ing tasks for which detailed preplanning by· an external programmer is 

either impossible or impractical. 

Most of the indirect programming is performed by a mechanism called 

the community unit. It is presented in a schematized framework as a team 

of routines connected by first and second-order feedback loops. Analogies 

are drawn and an illustration of community unit operation is given. Some 

heuristics are suggested for enabling the community unit to search for a 

usable sequence of operations more efficiently than if it were to search 

simply by exhaustive or random trial and error. 

of a step-by-step nature. 

These heuristics are 
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For complex problems, however, such step-by-step heuristics alone will 

fail unless. there is also a mechanism for analyzing problem structure and 

placing guideposts on the road to the goal. A planning mechanism capable of 

doing this is proposed. Under the control of a higher-level program which 

specifies the level of detail required in a plan being . developed, this plan­

ning mechanism is to break up problems into a hierarchy of subproblems each 

by itself presumably easier to solve than the original problem. 

To manage classes of problems and to make efficient use of past experi­

ence, an induction mechanism is proposed. An illustration is given of the 

induction mechanism solving a specific sequence of tasks. 

Parts of the ·system are currently being programmed and tested in IPL-V 

on the Philco 2000 computer. Illustrations given in connection with the 

community unit and the induction mechanism show the results of hand-simula­

tion based on the p~ogra.mming specificiations. 

\ 
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INTRODUCTION 

Our aim is to increase the ffintellectual" capacities of machines by 

directly programming on a computer and, ultimately, to construct what might 

reasonably be called an intelligent learning system. Consideration of human 

problem-solving and learning activities permits analogies to be drawn and 

suggests the use of certain heuristic processes for the machine. The re­

sulting system of programs, however, is not meant to be a model of human 

thought processes. We hope to find heuristic programs which do not delib­

erately imitate human characteristics. 

We are motivated by the belief that the capacity of a machine might 

be expanded by means of a learning mechanism to handle increasingly complex 

and varied tasks. The solution of even well-defined problems for which the 

mathematical or physical rules are known can be extremely difficult to pro­

gram. A practical approach might be "'preprogramming" to the limits of 

human ability, then letting the system learn the rest of the techniques 

required for problem solution. In addition, some ill-defined problems, 

such as many socioeconomic problems, might be handled effectively and eco-. 

nomically by a good learning system. 

FEATURES OF THE MECHANISMS: HELPFUL .ANALOGIES 

The proposed system contains, as its essential components, several 

mechanisms each having the same general structure. 

we call the community unit, is basic to the others. 

it first. 

One mechanism, which 

We shall talk about 

The function of the community unit is either to provide its customers 
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(higher-level programs} with a program capable of performing a requested 

task or to perform a customer-stipulated task by executing a program. If 

the mechanism does not have a ready-made program in stock to fill a particu­

lar request, it will have to .construct a program and 1111 depug• it before 

outputting or executing it. The process of constructing a tentative pro­

gram, testing, modifying, testing again may have to be repeated many times. 

Machine shop analogy 

The structure and function of the community unit can best be intro­

duced by means of an analogy. Let us consider a machine shop with general­

purpose assembly machinery and a good supply of basic par:ts, partially 

assembled parts, and products which can be used either by themselves or 

as parts. The corresponding community unit supply consists of basic ~n­

structions, sequences of instructions or open subroutines, and closed 

subroutines. The supply in either case is classified into categories 

which correspond to the job categories into which incoming requests are 

classified. Machine shop customers may wf,mt either a machine,. e •. g., a 

grinding machine, or the service of a machine, e.g., grinding a cam shaft. 

The chief engineer receives a request from a customer, studies it, 

identifies t~ characteristic features of the request, and decides the 

category. If the customer's request can be satisfied with an •off-the­

shelf" item, the chief engineer can fill the request immediately. If the 

service of an available machine is wanted, the request goes to the design 

engineer, who sets up the machine; the test-and-service engineer then su­

pervises the machine's performance. 
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However, we are more interested in the case where the request cannot 

be filled with machines existing in the shop. The chief engineer passes 

the request and his categorization of it along to the design engineer. The 

design engineer designs and constructs a pilot machine from materials avail­

able to him. He may modify an "off-the-shelflt item which is finished or 

partially assembled. He may combine such items, modified or unmodified. 

He may construct his machine from basic parts only. It is possible that 

the request cannot be filled because of an inadequate supply of parts or 

because of insufficient technical know-how, but if the design engineer is 

able to construct a pilot machine, it is channeled to the test-and-service 

engineer. 

The test-and-service engineer activates the machine step-by-step and 

at the end of each step reports to the chief engineer (see Figure 1). The 

chief engineer considers the performance of the pilot machine in the light 

of his analysis of the customer's request and does one of the following 

three things. He may inform the test-and-service engineer that the function 

of the machine is in agreement with the customer's requirements so far and 

tells him to proceed with further testing. If there is nothing more to 

test, the chief engineer outputs the machine to the customer who, in turn, 

either accepts or feeds back information about necessary changes. However 

the chief engineer may detect some undesirable feature of the machine, in 

which case he tells the design engineer to modify the machine or construct 

a new one. Finally the chief engineer may find it necessary to ask the 

customer for additional information. After the customer examines the 
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CUSTOMERS 

I I 

Test-and-Service 

Engineer 

Design 

Engineer 

Figure 1. 

Machine Shop Example 
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performance of the pilot machine as reported by the chief engineer, he may 

get a clearer idea of what he really needs. The customer may be able then 

to provide more details about what he wants his machine to do; he may even 

be able to suggest specific modifications of the proposed machine. 

The entire process will be repeated until the customer is satisfied 

or places a stop order. A hierarchical structure results if some customers 

are themselves engineers in machine shops constructing machines for their 

own customers. The original machine shop of our illustration can also 

ft''subcontract'~' with another machine shop, requesting parts for the machine 

under construction. Subcontracting is to be realized in the proposed system 

by recursive use of the community unit. 

It has been pointed out that the customer may request either a machine 

or the service of a machine. In both cases, we suppose that requests are 

expressed in a functional sense, rather than in a material sense; i.e., the 

customer says either, nnI want a machine which does so and so, 11 or "I want 

so and so done. nt For example, the customer says, 11 I want this nail to be 

flush with this board." He does not stipulate that the hammering be done 

with a light claw hammer or with a sledge hannner or with a rock. The amount 

of experience and the level of sophistication of the shop determines the 

means by which the customer's request is met. The essential nature of the 

shop's operation, however, is the same in every case: first, to convert the 

functional description of the task into a machine or a program or a system 

of some kind, i.e., into something that can be described in material terms; 

and then, in contrast to the first stage, to proceed from the product or a 
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material description of it, to a functional description which can be direct­

ly compared with the original request. Good techniques in both conversions 

are extremely important to the shop, and engineers must learn to find clever 

conversion techniques. In addition, engineers must also learn to arrange a 

good assortment of supplies using past experience in fulfilling a variety 

of requests. For example, if some frequently requested machines have the 

same structure and use similar parts~ it will be more efficient and economi­

cal to keep in stock a ~ready-made framework't for such construction and only 

modify minor parts when a particular machine1 is requested. 

Request forms 

The choice of a form for expressing request depends on the subject's 

past experience. In the machine shop analogy, the customer may know by 

name a particular product which will meet his needs. If the chief engineer 

knows the product by the same name and it is an woff...,the-s'helf". item, the 

request can be made simply by using the name. However, if the customer 

does not know a name of an item which will meet his needs or if there is no 

such item on the shelf, he must make his request in a different form. 

The three alternative forms proposed for requests made by or of a 

community unit can be clarified by another analogy, a hammering task, as 

shown in Figure 2. We might say to someone, ""Hammer this nail." If the 

person has previous hammering experience or if he has previously watched 

someone hammering and associated that action with the command, "Hammer,n he 

can carry out the task even though he may hammer somewhat clumsily. On the 

other hand, he may have no id.ea what nHammer•t means. In that case, we may 
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Community Unit Task 

to 'exchange 1 

Na.me 
--command 'exchange 1 followed by 

AB, as a list. (Unless there 
is the required routine, named 
1 exchange, ' there will be no 
response.) 

Describe 
-- i) Current State: AB 

2) Desired State: BA 

3) Information on the task: 
a code to indicate the desired 
state is to be stored on top of 
the Current State. 

Input (from outside the system) 

Desired program for the task. 

Figure 2. 

Forms ot expressing requests depending 
on the subject's past experience. 
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place the nail upright on the board, ~ a picture of a nail which is 

flush with the board as the desired state, and then demonstrate with an up­

and-down motion of the hammer. The third alternative is to instruct him in 

the desired action by hammering the nail ourselves or by taking his hand 

and making the motion of hammering with him. 

Now consider a simple ~xchange as a specific example of a task to be 

performed by a community unit. Two symbols, A and B, are currently stored 

in location L:J_ and L2, respectively. A is to be inoved to L2 and B is to be 

moved to L:i_. The customer, i.e. , the controlling program, may reqµest that 

the community unit perform this task by naming the command "Exchange"" fol­

lowed by its operand A and B. Perhaps the task can be carried out directly, 

but if an exchange routine has not been generated previously or prestored, 

there will be no name ""Exchange" among the names of available routines. In 

other words, the request will not be understood. Then the controlling pro­

gram may input the request in a In0re descriptive form. This is to be done 

by giving a list. The first item on ,the list represents the current state 

AB, the second item. represents. the desired state BA, and the third item 

gives information about the task, i.e., that the state represented by the 

second item is to replace the state represented by the first item. Notice 

that each item itself may be a list or a list-structure (7). The informa­

tion in the ~hird item may be a set of restrictions or conditions and may 

also include additional· information which the controlling program is able 

to supply about the task. This information may be in the form of programs 

or in the form of data. If the task cannot be performed as presented in 



!>:By 29, 1962 17 TM-669/000/01 

either of the preceding forms, a third alternative is for the controlling 

program to output the request in the descriptive form to a human teacher, 

asking the teacher to input the necessary program. The system then takes 

the program, assigns a name to it, and stores these with the descriptive 

form of the request. Thus the correspondence between the appellative and 

descriptive request forms is established for future use. 

TEE COMMUNITY UNIT AND ITS MEMBERS 

We now describe the community unit (Figure 3) in programming terms·. 

Analogies used in the previous section are referred to when useful. The 

hammering example is used again to describe a kind of feedback loop called 

a TOTE (Test-Operate-Test-Exit) unit by Miller, Galanter, and Pribram (4}. 

The function of a TOTE unit is illustrated schematically by a man using 

sensory feedback as he moves his arm in the hammering task (Figure 4}. 

Similarity and the correspondence between the TOTE and the community unit 

will be discussed later. 

The task analyzer 

The task analyzer corresponds to the chief engineer in the machine 

shop analogy. The task analyzer receives irreoming requests either in 

appellative or descriptive form. We shall consider a request in the 

latter form, with the unit having no previous experience relevant to 

the assumed task. .Also we shall assume, for simplicity, that the task 

analyzer has a built-in ability to find characteristic features of the 
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{ 
Current State 
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Information a.bout the task 
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Executor 
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Program 
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Output one of 
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'.lask not understood 
Need help 
'.lask accomplished 

(name of the program 
if constructed) 

Figure 3. Comm.unity Unit 

Head Flush 

(head sticks up) 

Ha.mm er 
(Operate phase) 

Figure 4. Hammering as a TCY.rE Unit 
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. 1 
task and to determine the proper problem category. 

The program provider 

The program provider corresponds to the design engineer. The program 

provider has a collection of available instructions and programs which is 

divided into two parts: one is a permanent set, a standard repertory, which 

contains basic instructions, sequences of instructions or open subroutines, 

and closed subroutines, each represented by a single name; the other is a 

temporary set consisting of records of previously constructed programs. The 

manner in which members of the temporary set are abstracted and generalized 

to become members of the repertory represents an important kind of learning 

which will be discussed later. 

Using the information received from the task analyzer, the program 

provider constructs a tentative program by modifying a previously stored 

program, by constructing a program from basic instructions, or by assembling 

a new program from previously constructed programs, modified or unmodified. 

In modifying a previously stored program, a similarity test may reveal 

that a previously solved task matches the present one closely and the solu-

tion developed then may, with modification, work in the present case. In 

the hammering analogy, a similar task may .have been solved with up-and-down 

arm movements. An attempt may be made to adapt the sequence then developed 

1 The ability to learn to classify problem situations into effective cate­
gories is one of the most important capabilities any ttintelligent learning 
machine" mU.St have if it is to use its past experience effectively. Useful 
suggestions on how such learning might be realized have been made by Minsky 
(4, ,5. a.nd 6) Newell, Shaw and Simon (8 and 9) and Solomonoff (10). 
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to the task of hammering. So in programming, an old routine can often be 

modified to suit a new purpose, perhaps simply by changing addresses, loop 

parameters, branching criteria, etc. 

If the simple modification technique is not applicable, it may be nec­

essary to construct a program from basic instructions. In the hammering 

analogy, "move the arm upward" and "move the arm dmvnwa1~d" may have to be 

f'urther broken down into sequences of contractions and relaxations of par­

ticular muscle groups. 

Several considerations must be taken into account when a new program 

.is assembled from prevJously constructed progra.'1ls as building blocks. If 

the task can be divided into subtasks, all of which can be recognized as 

identical to previously solved tasks, then organizing them in a proper se­

quence is all that is required--though doing this may be no simple task. 

In the ham.tner:tnc; analogy, the motion of the arm can be built up as a se­

quence of upward and downward motions. It is likely, however, that some of 

the subtasks will require modifications of previously constructed programs, 

and for some others, it may be necessary to construct programs from basic 

instructions. 'l'hese subtasks, except the ones which have been recognized as 

identical to r>reviously solved tasks, will be represented by descriptive 

request forms wh1.ch will then be input to the community unit one level 

lower. 'l'his corresponds to subcontracting in the machine shop analogy. 

What happens then :i.s treated below in the section on the executor-monitor. 

If the unit is mature, i.e., if' it already has had much experience, 

many requests will be satisfiable by modification and subdivision, and the 

rest may be simple enough to permit construction from the basic instructions. 
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In order to avoid having complex requests which cannot be handled by any of 

the preceding methods, the training sequence has to be selected carefully. 

If there is a big change in the current request from the previous ones, either 

in complexity or in the degree to which it or its subproblems are similar to 

previously satisfied requests, attempts at solution will involve a great deal 

of trial and error, probably ending in failure. 

Whatever the means by which an item is entered. in the repertory, 

associated with it is a separate utility value for each of the problem 

categories. Thus if there are n categories, each item has n values since 

the utility value of an item is expected to be different for different 

categories. In addition, attached to each item in the repertory is a 

description of the results of each action of that item. Similarly, when a 

hwnan programmer decides to use a particular instruction or a subroutine in 

his program, it is usually because he has a clear picture of the before and 

after states and not necessarily only because the chosen item has a higher 

utility value than others in a particular category. 

Items in the initially given repertory have their descriptions pre­

stored, but the repertory changes as the community unit learns; some members 

of the repertory are combined ~o become one item, and some members of the 

temporary set are abstracted and generalized to be added to the repertory. 

Each time such a change takes place and each time the task analyzer records 

a change in current state as the result of its interaction with 

the executor-monitor discussed below, the description of the item 
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involved must be reviewed and updated. 

The act of providing functional descriptions and improving them in the 

light of experience is an important kind of learning which might be described 

1 as constructing and modifying a ''tcognitive map."' It is the utilization of 

such a cognitive map which enables one to internalize overt action, e.g., 

considering possible chess moves and, on the basis of information in the 

cognitive map, internally determining what their consequences would be were 

they actually to be made. 

The term cognitive map is used in a relative sense; the system as a 

whole, or a part of the system, can develop its cognitive map as it experi-

ences a variety of tasks. The term "'environment't will also be used in a 

relative sense. When only a part of a system is considered, its environ-

ment includes the rest of the system. 

The cognitive map of the program provider contains functional descrip-

tions of items in the repertory; improvements of its cognitive map mean 

improvement of its ability to select proper instructions and routines to 

construct a required program. 

There are, however, considerable difficulties in describing the func-

tion of every item in the repertory. In order to make the utilization of 

the cognitive map effective, there must be an efficient system for internal 

coding with reasonably uniform format. Our current attention is restricted 

1 ttcognitive mapu is a term of Tolman (12); a similar notion is called 
ttimage" by Miller et al (4). 
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to the type of description which can be put in the descriptive request 

form. This is a strong restriction, but it~ untform format offers two 

major advantages. First, when a new program has been constructed to fill 

a request expressed in descriptive form, the same form can be stored (along 

with its given name) to serve as the description of the program. Second, 

when a number of similar programs are abstracted by parameterization, 

corresponding parameterization of the descriptive form will :immediately 

serve as the description of all of them. 

A generalized version of the descriptive request form is introduced 

later but corresponding generalizations of the community unit function and 
I 

its cognitive map construction have not yet been determined. 

Executor-monitor 

Upon receiving the tentative program constructed by the program 

provider, the executor-monitor begins executing the given program in one 

or a combination of the following two modes. In normal, high-speed execu-

tion of a sequence of instruction, the executor-monitor transfers control 

to the address of the first instruction of the sequence. All instructions 

in the sequence will be executed in high-speed1 and control will not be 

returned to the executor-monitor until the end o:f' the sequence is reached. 

This mode of execution i:s' identical;.,to: that of;,.the ccnventional .computer. 

1 Since the computer plus IPL-V is considered as another computer 1 the mode 
of operation of IPL-V is considered as normal high-speed execution even 
though its speed is not the speed of machine-code execution. 
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The second mode is monitored execution. Instead of transferring control to the 

program location the executor-monitor interprets the execution of each in­

struction. This mode of execution not only permits the executor-monitor to 

retain complete control during execution but also to use information on the 

action and the results of each instruction. Thus it can detect a danger 

before any destructive action takes place. For example, a transfer instruc­

tion may go to a data location or some reserved program location or an in­

struction to store data may refer to a location tagged as containing data 

required later in the program. While these operations may be correct for 

this application, they also may not be. In the event a danger is detected, 

the executor-monitor will record the place of interruption in the program, 

and transfer control to the task analyzer, outputting a danger signal and 

the address of the particular operation at which the danger was detected. 

The mode of execution depends on the following rules, chosen to en­

sure that programs are monitored until they have been 1111 debugged."' (1). Each 

of the basic instructions occurring alone in the repertory is always moni­

tored. (2) A sequence of instructions represented by a single name in the 

repertory, if not modified by a proccess of the program provider, will be 

executed in high speed. If it has been modified, every instruction in the 

sequence will be monitored. (3) Subroutines in the repertory, if not modi­

fied by a process of the program provider, will be executed in high-speed, 

and if modified will be monitored. It should be noted that if there are 

standard input preparations prior to entering the subroutine, instructions 

affecting them will be attached to the subroutine in the repertory, but 
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their execution will always be monitored even though the subroutine may not 

be. (4) As long as routines and subroutines are in the temporary set, they 

are always monitored. 

Subtasks which are in descriptive form cannot be executed; therefore, 

these are input to the task analyzer as new requests and the entire communi­

ty unit becomes involved again. Such recursive use of the community unit 

is made possible by a push-down list (7) used by the task analyzer; the 

second entrance to the task analyzer, before exit is made from the first 

task, does not destroy the information needed for exit from the original 

task. 

Figure 5 illustrates a mixture of the two execution modes. Horizon­

tal lines indicate monitored instructions, and vertical lines indicate 

high-speed execution. · In this example, subroutines A and C are taken to be 

in the repertory. Subroutines B can be either in the tempo:rary set or in 

the repertory, but are modified for the given task. A sequence of instruc­

tions in the repertory will always be copied in the constructed program 

since such a sequence will.l have no entrance and exit provisions of the type 

used with closed subroutines. Provision must be made, however, for return­

ing to the executor-monitor at the end of the sequence. 

Interaction between the executor-monitor and the task analyzer 

The executor-m,onitor and the task analyzer are the only two parts of 

the community unit with direct two-way communication (see Figure 3). As 

the executor-monitor executes instructions, the picture of the current 

state changes. Since the executor-monitor's function is essentially execu­

tion, however, and its immediate attention is given only to the current 
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instruction, it has no sense of direction toward the goal. This must be 

provided by feedback from the task analyzer. 

Let us review the original request provided in descriptive form. It 

is comprised of the original state, the desired state, and information on 

the task. The task analyzer stores all three as the record of the initial 

task, but it also stores the current state, which is constantly being 

changed by the executor-monitor. The task analyzer, with the changed 

picture of the current state will go through the analysis of the changed 

task for each monitored operation. If the analysis shows the category of 

the changed task is the same as before, the task analyzer will feedback to 

the executor-monitor a go-ahead signal so that the executor-monitor will 

proceed to execute the next operation. If the analysis of the current 

state changes the category, the task analyzer will feedback to the executor­

monitor an interruption signal and then transfer control to the program 

provider with information about the new problem category. Finally, if the 

task analyzer is informed of a destructive operation which has been detect­

ed by the executor-monitor, an analysis of the error will be made. The in­

formation will then be given to the program provider ·which will make an 

appropriate modification. In all three cases, the task analyzer keeps the 

record of changes in the current state and associates the record with the 

executed instruction. Such records are necessary even for the relatively 

simple applications described above. In addition it is planned that they 

will be used by the task analyzer to improve categorization and by the pro­

gram provider to improve its selection of instructions and programs. Simi­

lar changes might be grouped together, abstracted, and generalized. The 
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resulting summary might be used as a basis for tentatively revising categor­

ies and utilty values. The tentatively revised categories and values would 

be tested and if successful, they would be permanently substituted for the 

original categories and values. 

We have made a number of assumptions about the task analyzer's capa­

bilities and used these assumptions in discussing the ideal functioning of 

the community unit. Much more research is required before such assumptions 

can be used with confidence. For example, the learning of good classifica­

tion teclmiques is extremely important to a learning system. We can assume 

that a reasonably rich repertory with good categorization is prestored for 

the community unit. However, recognizing that new problem situations belong 

to particular categories in terms of suitable methods requires that pattern­

recognition methods of some inductive ability be developed because prepro­

gramming for all conceivable task situations is not feasible. Important 

research is being done in this area by Minsky (5 and 6), Newell, Shaw and 

Simon (8 and 9), and Solomonoff (10) among others. 

Another serious problem is to provide the mechanism with judgment 

capabilities comparable to ttwa.rmer" and 11 cooler0 feelings of humans. Par­

tial solution to this problem may be possible with a combination of good 

planning teclmiques, recognition of partial success, and good credit assign­

ing methods for reinforcement. However, they themselves have many difficul­

ties to be overcome. Discussions of these problems and some suggested 

solutions are found in (6), (81 and (9). 
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CHARACTERISTICS .AND DETAILS OF THE COMMUNITY UNrr 

General features 

The structure of the community unit and the function of its members, 

as discussed in the last section, indicate the extent to which the unit can 

be preprogrammed. The specification is intended to give the community unit 

a basic framework with a self-modifying ability which would provide poten­

tial capabilities for a variety of tasks. The behavior of the unit at any 

particular instant, however, is not determined in detail independently of 

contacts with its environment; its actions are closely guided by feedback 

from the environment. 

The structure presented in the schematic diagram of Figure 3, is a 

~uilding-block" structl+re to be found in several other parts of the system, 

e.g., in the planning mechanism and in the induction mechanism. The inter­

actions between the executor-monitor and the task analyzer represented by 

opposing arrows in Figure 3, form what we call a first-order feed.back loop; 

its primary function is performance and error detection. This loop resembles 

the TOTE unit in Figure 4, with the executor-monitor corresponding to the 

operate phase of the TOTE unit and the task analyzer corresponding to the 

test phase. 

The outer loop which connect s . all three members of the community unit 

may be called a second-order feed.back loop; its primary function is the se­

lection of operations and error correction on the basis of the information 

from the first-order feed.back. For example, in connection with the hammer­

ing task represented by the TOTE unit, what happens if the hammerer hits his 

thumb instead of the nail? Something must be changed to correct the situation 
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so that the nwrong" action will be prevented from recurring and a correct 

action substituted for it. This correcting process, after a unit of action 

has taken place, is accomplished by the second-order feedback, with or with­

out additional feedback from the environment. 

In order to compare the structure of the community unit with that of 

the TOTE unit, the selection of operations ~be considered as a part of 

an operation phase, as when Miller~~· talk about »metaplanning~--about 

TOTE units which construct other TOTE units--but for our purposes it is con­

venient to schematize selection of operations as separate from performance 

of operations. 

Hierarchical structure and evaluation of accomElished tasks 

Whenever a reques~ is made of the community unit, the only criteria 

which the unit can use in determining acceptability of a response are those 

determining whether the response satisfies the request. However, the re­

quest itself, dependent as it is on heuristics used by a higher-level pro­

gram which generated it, may have been inadequate. Depending on an evalua­

tion made at the higher level, the particular program produced by the 

program provider may have to be modified. Such a requirement will be fed 

back to the unit. The task analyzer then may decide to adjust the categori­

zation, and subsequent adjustment of the utility values may have to be made 

by the program provider. Full control must not be passed down. The request 

must be associated with some ttresource allotment~ or other constraint to 

help it recognize when help is needed. 
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Abstraction and generalization 

Much more thought is necessary to decide how to equip our system with 

abstraction and generalization capabilities. This section supplies some pre-

liminary suggestions, referring first to data, then to programs. Uses to 

which the abstracts may be put will be discussed later. 

Given a list of lists, the abstraction routine prepares three kinds of 

data abstracts. The simplest is obtained by counting the elements in each 

list. Another type, taking order of occurrence into account, itemizes what 

elements the lists in the list have in common, and replaces the unmatched 

elements by a sublist which indicates how the para.meter is specified in each 

of the original lists. The third type of data abstract, without taking order 

of occurrence into account, itemizes the distinct elements which appear in 

common among the lists, then itemizes the unmatched elements together with 

names of the original lists to which they belong. 

For an example of the three types, let two lists X and Y, be given to 

the abstraction routine. List X contains elements AB C D E and list Y con-

tains elements F B D D E C. The abstract which counts data elements has as 

entries 5 ; 6 • Subscripts x and y are used to indicate names of the origi­x y 

nal. The abstract taking order into account may be represented as 

where P1, P2, and P3 are para.meters, each pointing to a specification sub­

list. Letting "/" symbolize a marker separating shared elements from 
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unshared one~; the third type of abstract is represented as B C D E / A F • 
x y 

Another abstraction routine, called a "replace routine", replaces one 

or more specified elements in a given list by a single element, using either 

a parameter supplied by the routine or a particular name given by the con-

trolling program. The original element(s) then form a sublist which is 

named by the new element. For example, suppose the higher-level program 

enters the routine with the information that in the list z, which contains 

elements A B C D A B E, elements A and B together are to be replaced by a 

parameter. The resulting list is P C D P E, so that A and B are treated as 

~ 
a single element at the level of list Z, but become individual entities 

again at the next lower level. 

Programs may also be abstracted and generalized. A subroutine, when 

first constructed or when prestored in the community unit, may not be in a 

form suitable for general use. After a suitable training sequence, the unit 

can be made to discover that some subroutines have many common instructions 

and only a few differences. It then replaces these subroutines by one sub-

routine which contains parameters at places where differences appear. Dif-

ferences may be in operators (instructions), in operands (addresses), or 

both. This recognition of common features is a form of both abstraction and 

generalization. For the former, when the program provider decides to use an 

abstracted subroutine, it will have to copy the subroutine and specify val-

ues of parameters before the subroutine can be given to the executor-monitor. 

When an abstracted routine has proved its power by frequent use, it may be 
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generalized as a closed subroutine. Generalization is then said to occur. 

The name of the subroutine is stored together with the necessary format for 

the calling sequence, and the program. provider utilizes the generalized 

subroutine by putting in its generated programs instructions which specify 

values of the calling parameters and which then transfer control directly 

to the stored subroutines. Abstraction and generalization can happen to 

routines and subroutines in both the temporary set and the standard reper­

tory but they are more likely to happen to those in the temporary set. 

Transfer of subroutines from the temporary set to the repertory 

If a subroutine in the temporary set is used successfully some preset 

number of times without modification, the program will be made into a closed 

subroutine and its name will be stored in the standard repertory. This 

enables well-tested and often-used programs to be executed in unmonitored 

high-speed by the executor-~onitor. 

Analogies between a human and the comm.unity unit 

Some interesting analogies can be drawn between learning processes of 

the human and those of the community unit. One is the development of high­

speed performance following sufficient monitored experience. When a sequence 

of actions with which we are unfamiliar is first proposed (either by our 

teacher or by ourselves) we consciously attend to each step of the sequence. 

However, once we gain familiarity and confidence, we run through a sequence 

of actions without being consciously aware of each of its parts. The dif­

ference can be seen in the rapid and precise finger movements of a skilled 

piano player compared with the slow trial-and-error movements of a beginner. 
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This corresponds to monitoring a program step-by-step when the community 

unit is unsure of workability of the program, but changing to high-speed, 

unmonitored execution once the effects of a program have been thoroughly 

tested. 

Another similarity occurs in the progressive grouping of different .. 

elements into larger and larger complexes. Suppose we have acquired skills 

in a number of simple tasks (e.g., some sequences of finger movements on a 

piano). When we attempt a more complex task which is an integrated sequence 

of those simpler skills, we have to attend to each step of the sequence al-

though we need not attend to the full detail of each of the basic skills. 

Some parts of a basic skill may have to be modified to fit it into the 

larger sequence, and we are not sure of the effects of the basic skills on 

each other when they are combined. But with practice these questions are 

settled, and the basic, simpler skills drop out of our attention as indi-

vid.ual units, forming a fused integrated whole. The process can be repeated 

I 

any number of times, forming larger and larger units of behavior, the ulti-

mate size of units depending on the proficiency we acquire in a particular 

field of skills. The community unit functions in the same way, forming 

larger and more complex routines out of simpler subroutines. 

Still another similarity between human and community unit experience 

is a tendency toward abstraction as experience builds up. In many motor 

skills, we observe that some component skills are very specialized and fit 

rigidly into a larger pattern. Some component skills, however, when used 

in a situation calling for variations, can quickly be adapted. Of course, 
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the opposite effect may be evidenced, i.e., previous acquisition of a skill 

may interfere with the learning of a new task. After we experience a number 

of variations of the same basic skill, we generally find it easier and easi­

er to adapt the skill to still different situations. An analogous behavior 

in the community unit results from abstraction and generalization of sub­

routines . A subroutine can be made to handle a variety of tasks by means 

of parameterization; it is adapted to a new situation by determining new 

values for its parameters. 

Generalized request form 

Descriptive request forms used thus far are.rather limited in their 

capability to express a wide variety of problems. In order to red,uce the 

limitation, we consider a more general form which includes the previous form 

as a special case. This general form is represented by three lists of in­

formation: 

(1) given: facts and conditions concerning initial situation. 

(2) desired: end results to be obtained. 

(3) information on the task: restrictions and suggestions. 

Corresponding generalizations of the community unit function and its cogni­

tive map construction have not been fully investigated. 

Category changes during execution of the program 

As the task analyzer receives executed results from the executor­

monitor the current state becomes altered from the original state, although 

the desired state is the same. Some changes in the current state may be 

very small or very large; if the nonmonitored part of the program is a large 
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routine in the repertory, changes noticed by the task analyzer in the current 

state are likely to be large since the executor-monitor cannot regain its 

control until that portion of the program is executed. In such case, the 

task analyzer may find the new current state to be in a different category. 

On the other hand, if individual instructions are monitored, the resulting 

change in the current state will be small. 

It has been found that looking at the current task as ever changing, 

in the fashion described in the preceding paragraph, has a great advantage. 

However, it has its pitfalls. If the categorization is poor, and if the 

program provider has to construct a complex program from the basic instruc-

tions, it may never find a fruitful path since the task analyzer may stick 

to the wrong category because of small changes reported by the executor-

monitor. 

In order to remedy this situation, planning is needed to guide the 

course of action, i.e., to place guideposts on the road to the goal. The 

next section discusses such possibility. 

PLANNING: GUIDEPOSTS ON THE ROAD TO THE GO.AL 

Minsky (6) points out, ''practically any ability at all to 'plan,' or 

1 analyze,' a problem will be profitable, if the problem is difficult. t• To 

illustrate the point, he says, ~Generally speaking, a successful division 

[of a complicated problem into a number of subproblems] will reduce the 

search time not by a mere fraction, but by a fractional exponent. In a 

graph with 10 branches descending from each node, a 20-step search might 

20 involve 10 trials, which is out of the question, while the insertion of 
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just four lemmas or sequential subgoals might reduce the search to· only 5.104 

trials, which is within reason for machine exploration •••• Note that even if one 

6 encountered, say, 10 failures of such procedures before success, one would 

10 still have gained a factor of perhaps 10 in over-all trial reduction?~ Addi-

tional discussions and useful suggestions in this area are found in the refer-

ences ( 5), (6), (8), and (9). 

Proposed mechanism 

The procedures described below have many resemblances to the procedures 

proposed by Newell, Shaw, and Simon for their General Problem Solver. See (8}. 

Our planning mechanism (Figure 6) is similar in structure to the community unit. 

In fact, the planning mechanism uses, in addition to its own records, the same 

record in the memory which the community unit uses. We again assume that re-

quested tasks are in descriptive form. 

We propose to use a set of characterizing expressions such that a particu-

lar subset of this set serves to define a task category. Categorization of a 

task for the planning mechanism may be fine or coarse depending on the amount 

of detail, i.e., on the size of the subset of cha.racterizing expressions. 

Associated with each category, fine or coarse, are names of methods or operat-

tions which will probably help perform a task belonging to a category. For 

each associated method or operation there is listed a probable utility value 

and a description of the method expressed in descriptive request form. That 

description shows the input (current state) and output (desired state) of the 

method or operation. The coarser the task category, the more abstract and 

. general. the corresponding set of methods or operations will be; descriptions 
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of input and output will be only in general terms and will indicate only what 

is likely to happen when a method or operation is applied to a task belonging 

to the category. 

Following task analysis and categorization by the task analyzer, the sub-

task provider proposes' to the current-state producer·, another part of the plan-

ningmechanism, a set of subtasks in the form of methods or operations with 

input and output expressed in descriptive form. The input of a proposed method 

or operation must sain,ehow be similar to the current state of the given task. 

Criteria for similarity are relaxed or tightened depending on the coarseness of 

task categorization being used. The current~state producer uses the output 

descriptions of the pro)osed subtasks to determine current states of new tasks 

and lists possible values for each parameter if there are any. The task analyz-, 

er records the output of the current•state producer as branches of the state 

graph as shown below and chooses one of them as defining the next task to be 

analyze Qt. 

current desired 
state state 

The choice is made on the basis of externally provided criteria. For instance, 

the choice might be made on the basis of some rough measure of '"how far"' each 

proposed current state is from the desired state of the original task. (Cf. 

Newell, Shaw, and Simon's GPS.) Given the ~w task, defined by the chosen new 

current state and the originally given desired state, the same sequence of 
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steps is repeated. 

Shaded nodes of the graph indicate grouping of 11'similar"" states using 

coarse task categorization during the early planning stages. A rough plan is 

developed using a small set of coarse categories; then subplans connecting the 

guideposts (nodes on the graph) and using finer categories are developed; then 

subsubplans are developed using still finer categories, etc. Matching current 

states of proposed subtasks with the desired state of a previously chosen sub­

task is done only roughly in the early planning stages. However, as the plan­

ning progresses and subtasks are in their turn divided into smaller subtasks by 

the same mechanism, similarity criteria are tightened and there must be a more 

and more exact matc.h~ of states. 

It should not be overlooked that although the process of performing the 

task eventually has to be discovered in detail, in executable form, fine details 

and exact matches need not be sought until a reasonably good plan is obtained. 

It should also be observed that the system may propose many plans. One plan, 

which seemed plausible at its early planning stage, may be found to be unwork­

able as finer and finer details are supplied later at a more concrete level. 

Then the categories will be coarsened and the criteria relaxed again, and a new 

plan will be formulated either by modifying the old one or beginning again. 

An illustration 

Part of the general strategy used for the ~Tower of Hanoi~ puzzle is 

illustrated in Figures 7 and 8. A de~cription of the puzzle is provided later, 

but it is not necessary at this point to understand the puzzle. It is necessary 

only to follow the diagrammatic representation of tasks and subtasks in the 

figures. 
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Figure 7 is a schematic representation of a task given in descriptive 

form. The task analyzer uses the information given about the previously accom-

plished task in the following way: it uses its abstraction routine to find 

that the given task has one more element Q0 than the previously accomplished 

task, &nd it uses its replace routine to combine @, ®~ and (D into one 

element. 

The subtask provider, using a legal move generator, produces both M1 and 

~ as two possible legal moves. Each Mi is stored by the program in descrip­

tive request forms. From these the current-state producer finds and outputs 

the desired states to the task analyzer as current states of new subtasks. The 

task analyzer chooses M1 instead of M2 because of the information on the previ­

ous task. But this choice, leading through M3 and M4, does not work out because 

it does not lead to the right end state. The planning mechanism returns to M2 

and thus finds its way to M5 and M6' 

The final sequence of subtasks is presented schematically below. 

ftile current state I 

- - -
the original 

M2~ 
M3 

task M5 / - - ----
--- M6 - --- --

. I the desired stat~ 
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The original task is represented by the space from the top to the bottom 

rectangles, and the gaps, indicated by ~' M5, and M6, are subtasks created by 

the planning mechanism. The broken horizontal lines indicate steps yet to be 

filled in. The current and the desired states for both~ and M6 do not match 

those of the task previously accomplished; the operation which worked before is 

for three disks starting at column A as the current state and ending at column 

B as the desired state. These ""before'"' and '"after"" states of the known opera.:.· 

tion are then abstracted so that column names can be unspecified. At this level 

of abstraction, even though only one variation is known, all six variations1 of 

the three-disk puzzle are treated the same and are solved, and are represented 

by an abstracted form we will call M3. Successful accomplishment of M2 andM6 

now requires instantiating on the abstract form;.· the instantiation is not a 

matter of trial and error but is directed by the requirement of exactly match-

ing current and desired states of the sequentially ordered subtasks. For our 

example, the actions necessary for accomplishment of ~ and M6 are significant­

ly fewer (in number of operations and execution time) than if they were per-

formed without using the system's past experience in one of the six variations. 

In the example, the planning mechanism has to examine all possible 

1 
For each n-disk case, there are six var,iations; for the current state, there 

are three possible column positions and for each of these, the desired state 
may take one of the two remaining column positions. 
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1 subtasks before it finds the right sequence. This is an exhaustive search. 

Planning of this kind is relatively cheap--it takes six times around the loop 

to find the path. But if we were to consider individual moves instead of the 

larger steps we know how to make on the basis of past experience, an exhaustive 

search for the correct path would take 65,534 examinations. 

We have not considered here the "'difficulty estimate'~ of each proposed 

subtask (see Minsky (5)). However, such information, both given and based on 

experience, must be incorporated in the decision-making criteria used by the 

task analyzer. 

AN ILLUSTRATION OF COMMUNITY UNIT OPERATION 

Consider a fairly simple programming task, to exchange two symbols A and 

B, currently stored in locations Li and L2 respectively, so that A is moved 

to~ and B to L1 • The task is given to the community unit as a descriptive 

request form expressed as a list with current state: AB ; desired state: BA; 

and information on the task: a code indicating that the desired state is to 

replacethe current state. 

Task analyzer's work 

The task analyzer, in an attempt to find a suitable category for this 

task uses the ~bstraction routine discussed previously to compare the current 

and the desired states. The following three abstracts result: 

1 There are two legal moves generated by the legal move generator at each node, 
but. the ot. her moves possible instead of M3 and M5 inv.olve moving of the group 
@©G) just moved (see Figure 8). We ass.ume here, for simplicity, that the 
system has learned or has been told that moving of the same item twice in suc­
cession is wasteful because a single move can obtain the same result. 
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(meaning both the current and desired state lists contain 
two elements) • 

(Pc, Pd) (meaning there is no common element when order rnmf occurrence is taken into account). 

(A, B) (meaning exact match in content when the order is ·immateriB.1). 

The third abstract indicates that no element is added or deleted, while 

the second and third indicate that the required operation involves moving con-

tents of cells without changing the contents. From these conditions, the task 

~alyzer determines an appropriate problem category. 

The program provider's work 

Let us assume that the category determined by the task analyzer a1re~dy 

has associated with it a set of instructions and sequences of instructions •. ¥e 

also assume, for simplicity, that the instruction pair CAD and STO has the 

highest utility value of the pairs whose description matches the informatio~ 

deduced from the second and third abstracts. Instruction ".CAD L" means 11·c1ear 

and add (load) into the accumulator (ACC) the content of memory register L,'t 

and instruction 11·sTo L"' means "'store the content of ACC. in the memory register 

L. 't 

The program provider might produce CAD L1, STO L2 as a tentative sequence 

of operations, simply because L1 and L2 are the only locations involyed in ~he 

request. This sequence is given to the executor-monitor, with a flag indicat-

ing it is to be monitored rather than executed at high speed. 
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Interactions of members 

Figure 9 shows in tabular fonn the action of each member of the community 

unit. .Arrows indicate the sequence of control. From the program provider on 

one line, control always goes to the executor-monitor on the next line. Inter­

action between the executor-monitor and task analyzer is indicated by opposed 

arrows. When no entry is indicated on a line for the ~current Program in 

Storage"' column, the entry is assumed to be the same as for the previous line. 

The column on the extreme left indicates the current operation under considera­

tion by the executor-monitor. Some trial and error actions are not explicitly 

indicated here but are to be understood whenever the program provider modifies 

or adds instructions. Many modifications of the initial modification may be 

necessary. 

Ourattent:Ion is now on the ex;ecut9r•monitor. Upon r~ceiv:ing tw() infitructio11s 

with a monitor flag, the executor-monitor places danger tags on all addresses 

involved. When CAD Li is considered, it detects no danger since ACC, in this 

case a particular cell which is set aside to serve as a mock accumulator, has 

no tag at>tached. The information (ACC) = A, where "'(ACc)• designates the con­

tent of ACC, is given to the task analyzer, which modifies the current state 

and returns control to the executor-monitor with a go-ahead signal. The execu­

tor-monitor now places a d.anger tag on ACC and executes CAD L1 interpretively 

by storing the content of Li and ACC. 

The next instruction to be considered is STO ~. Since ~ had a tag, the 

interruption is recorded and the executor-monitor outputs a danger signal to 

the task analyzer. The task analyzer detennines that the content of ~ in the 
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STO L2 STO L2 

no danger--ACC not tagged (ACCj =A= (Li_) Current State 
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'.lag ACC - l'Ll):A, (L2 ):B 

Execute CAD L1 (ACC) =A = (L1) 
go ahead signal 

L2 has a tag (danger signal) analyze the error replace CAD Li_ 
STO L2 

(record interruption) 
STO L2 STO t 

by STO t 

no tag (no danger )on t (t) :A = (Li_) Current State 
STO t becomes 

c- ) l'L1 ) =A, (L2 ) = B 

temporary Erase tag on ACC (ACC) = A 

storage Erase tag on Li_ (t)=A= (L1 ) 

cell lL '.lag t 
Go ahead signal 

Execute STO t 

No more I~ No more Compare· the Current State Provide CAD 1i 
operation operation with the Desired State/ ~CAD L2 STO t 

STO L1 -cADL;-
same category 

STO 1i 

No tag on ACC (no danger) (ACC)::. B = (L2) Current State 
CAD L2 becomes {iLi) =A, (L~) =B 

(t)=A =(Li_ ,(ACC): B=(L2 ) 

'.lag ACC 
l~xecute CAD L2 

go a~ad signal 

lNo tag on Li (no danger) (Li) =B = (ACC) Current State 
STO 1i_ becomes 

Erase tag on L2 { (Ll) = B, (L2 ) = B 

~Erase tag on ACC (t) = A, (ACC): B 

Execute STC L1 Go ahead 

No more w No more Compare the Current and Provide CAD Ll 
operation operation Desired State CAD t STC t 

Same Category STC L2 CAD L2 
STC 1i 1------CAD t 
STC L2 

CAD t No tag on ACC(no danger )(ACC ):: A= (t) Current State 
becomes 

{(L}):B, (L~)= B 
(t =A, ACC)= A = (t) 

l '.lll.g ACC Go ahead 
Execute CAD t 

STC L2 t No tag on L2 (no danger) Current State matches the 

t1i)=B,~L2)=A~desired 
Erase tag on t 

(_~'=A, (ACC):A state 

[ Erase tag on ACC Go ahead 

Execute 
-Nb more ~No more o:per~ion Assign a name 
operation for the program 

and store 

I 
exit 
with "task accomplished 11 

signal and name of the 
routine. 

Figure 9. Actions of Members of the Community Unit 
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current state is not to be destroyed and gives the category of the particular 

error to the program provider. The program provider replaces the STO ~ by 

STO t (t being any temporary storage location) and transfers control to the 

executor-monitor. 

The executor-monitor now considers STO t, detects no danger, and outputs 

the information (t) = A = (L1) to the task analyzer. Similar processes occur, 

as indicated in Figure 9, until the task analyzer finds the current state to be 

the same as the desired state. It then assigns a name to the produced routine, 

stores name and routine, and exits to the higher-level program with a •task 

accomplished~ signal and the name of the routine. 

When the same request is made again, the request in either appellative 

form or descriptive form will cause the program provider to output the same 

routine to the executor-monitor. However, the routine will continue to be 

monitored until a preset number of' successful executions of the routine have 

been recorded. 

When the ·~ommunity unit has experienced similar requests, such as 

C D in L3 L4 location 

DC 

same as before 

E F in L5 L6 location 

FE 

same as before 

the abstraction routine for programs can produce a routine like this: 

CAD P 1 
STb t-

CAD P2 

STO P1 
CAD t 
STO P2 
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together with an abstracted request form (Pl)' (P2} 

(P2), (Pl) 

TM-669/000/01 

name of abstracted routine 

where i"'pi'"' and ''l>2t" indicate parameterized addresses and "'(P1)"' and "'(P2)"' 

indicate contents of these addresses. This permits the community unit to 

handle binary exchange requests using any addresses. 

TOWER OF HANOI PUZZLE 

The "Tower of Hanoi,~1 illustrated in Figure 10, was invented by a French 

mathematician and sold as a toy in 1833. The problem is to transfer the tower 

of disks from one peg to either of two empty pegs in the fewest possible moves, 

moving one disk at a time and never placing a disk on top of a smaller one. It 

has been proved that the fewest possible moves for n disks is 2n - 1. Thus 

three disks can be transferred in seven moves, four in 15, five in 31 and so 

on. For eight disks, the usual number considered for the toy, 255 moves are 

required. 

In the original description, the toy is described as a simplified version 

of a mythical •tTower of Brahman· in a temple in the Indian city of Benares. 

This tower, the description reads, consists of 64 disks of gold in the process 

of being transferred to another needle, by the temple priests. When the trans­

fer is completed, the temple is expected to crumble into dust and the world to 

1 Gardner, Martin, Mathematical Puzzles & Diversions, pp. 57-59· 
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Figure 10. 

~e Tower of' H.a.noi Puzzle 
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vanish in a clap of thunder. The disappearance of the world may be questioned, 

but there is little doubt about the crumbling of the temple. 264 - 1 is the 

20-digit number 18,466,744,073,709,551,615. Assuming that the priests work 

night and day, moving one disk every second, and assuming that the priests 

know the shortest sequence of moves, it will take them about 585 billion years 

to finish the job. 

This puzzle was chosen as the first testing vehicle for our system for 

several reasons. Its solution is relatively simple but not trivial. Results 

with human subjects cover a wide range; when the task was stated as "Find the 

shortest sequence of moves for eight disks and find a general principle which 

uniquely determines this sequence, •1' the time required for Solution ranged from 

minutes to days. For some it was unsolvable. Another reason is that the 

solution is known to the experimenter, so that evaluation of performance is 

easier. In addition, the puzzle can be varied by altering the number of disks 

and pegs (currently we use only three pegs) thus allowing a training sequence 

from the simple to the more difficult within the same class of tasks. The 

puzzle also has the important property that the methods for simple cases, with 

suitable abstraction, do provide some help in solving harder cases in a fairly 

non-trivial way. 

The puzzle was given to the system in the descriptive request form. The 

following illustration: shows:· thee task'.: fbrr:·the1 '.three,.,disk case. 
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A B C 

Current state: 

A B c A B c 
Desired state: ¢ ¢ ¢ ¢~ or 

2· 

cb 
Infonnation on the task: Rules of the game were presented in the form of a 

program which generates legal moves when the current state is given, It is 

possible, however, to present the rules of the puzzle in a descriptive form 

and to let the system produce its own program for legal move generation pro-

vided that such a description uses terms and f onnats interpretable by the 

system. 

Collimns A, B, and C in the request form diagrams above represent the 

three pegs in the puzzle and circled (D, ®' and @ are numbered disks 

from the smallest to the largest. The sYm.bol '/J indicates the column is empty. 

Both states are stored as list structures, i.e., the current state is. a list 

whose elements are A, B, and C; A itself is a list made up of the elements 

~' <'.§), and (]}; and B and C are empty lists prior to the first move. 

If there are more alternatives than one for the desired state as shown 

above, this is internally indicated by a code and by havin·g two or more ele-

ments in a list named ndesired states.~ Each element is then expanded as a 
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list. For the Tower of Hanoi experiment, we varied the· problem either by 

giving two alternatives for the desired state or by making the desired state 

unique. 

Figure 11 depicts the list structure (move tree) for some of the legal 

moves generated by the program. There are always three legal moves at each 

node o,f the move tree but only two are indicated because the third one just 

reverses the move which leads into the node. The top line of each box shows 

the symbol~c representation of the particular move; for example, lB means 

"Move disk G) to column B. '" The bottom of the box shows the current state 

of the puzzle after the move is made. Heavy lines indicate a minimal path; 

for the three-disk puzzle as stated, there are two minimal paths, one ending 

with three disks in column B, the other in column C (not shown in Figure 11}. 

How many such nod.es (moves and current-state configurations) exist for · 

an exhaustive search? Since there are two branches from every node; ·there 

are 2m possibilities !:! the mth ·revel (,~ounting from the top in descending the 

tree). th In order to reach from the top to the m level by the exhaustive 

m 
method, there are E 2i current states to be examined. Since the smallest 

i = 1 

number of moves for n disks is known to be 2n - 1, there are 2n - 1 lev~ls to 

consider before the pµzzle solver arrives at the desired state. Therefore, 

2n - 1 n 
the total number of nodes in the complete tree for n disks is E 21 = 22 - 2. 

i = 1 

This gives us 254 for the three-disk case, 65,534 for the four-disk case, 

4,294,967,294 for five disks, and 18,446,744,073,709,551,614 for six. 
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Figure 11. Part of Move Tree for the 3-Disk Puzzle 
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To calculate for the 

26 
which is 2 , square it to 

seven-disk case, take the last number plus 2, 

27 
obtain 2 and then subs tract 2 from it. The 

result will .. be a '39 digit number. A 78 digit number will result for the 

eight-disk case. 

A CASE OF MECHANICAL INDUCTION 

Induction may be defined as the formulation of general rules about ob-

served cases of a phenomenon and the application of these ruies to the making 

of predictions. There are a number of useful articles discussing inductive 

inference from the standpoint of artificial intelligence, e.g., Kochen (2), 

Solomonoff (10 and 11), and Watanabe (13). 

The inductive procedure observed in humans may be typified and described 

in general terms: when we want to formulate general rules about a class of 

phenomena, we first make a guess to form a hypothesis; next we deduce certain 

consequences of the hypothesis and test them against new evidence and old; and 

then we increase our confidence in the hypothesis, modify the hypothesis, or 

form a new hypothesis and repeat the procedure. 

For our experiment, ... we give to the proposed system, as a training se-

quence, inductive tasks of a simple form. A set of general rules to be formu-

lated by the system is unique and known to the trainer so that he can provide 

the system with information about the degree of its success and can suggest 

lines of investigation which may result in the modification of previously 

formed hypothesis or the forming of a new hypothesis by the system. 

The mechanism proposed has a structure similar to that of the community 

unit. Here we shall present it in the context of solving one pa.rticular_·task, 



M:ly 29, 1962 57 TM-669/000/01 

but it is to be hoped that at least some useful generalization beyond this 

particular task is possible. We say this despite the claims by some, that the 

main difficulty with artificial intelligence research is that it cannot gener-

alize beyond the very specific tasks for which programs are written and systems 

designed. See Kelly and Selfridge (1). 

The inductive task we examine is that in connection with the Tower of 

Hanoi puzzle discussed previously. The system is given a sequence of tasks 

in increasing difficulty and is asked to discover how to solve the puzzle for 

n disks when methods of solving the puzzle for 3, 4, ••• , n - 1 disks are 

known. 

Suppose the system has found the· successful sequence of moves for the 

three-disk case, i.e., 1 2 1 3 1 2 1, where the top line shows particular 
BCCBABB 

disks moved and the bottom line shows the names of columns to which these 

disks are moved. For instance, 1 IJleans that the disk ~ was moved to 
B 

column B~ 

The four-disk case is now given, and the system is asked to find the 

successful sequence for the new case. The subsystem, which we call the in-

duction mechanism, then goes to work (see Figure 12). 

Observation and analysis 

The first phase of the inductive process is performed by the task analy-

zer. For the Tower of Hanoi puzzle, the task analyzer begins by comparing 

the descriptive request form of the three-disk and four-disk cases by means 

of the abstraction routine (see Figure 13). The conclusion is that both cases 

are identical except that the four-disk case contains an additional disk, 
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disk G), in both the current and desired states. For the next step the sue-

cessful sequence of moves for the three-disk case and the elements appearing 

in the description of the case are compared with the abstraction routine. The 

conclusion is that the elements are the same, i.e., that both contain A, B, C, 

G), @, and Q and nothing else. The conjecture is made that if the four-

disk case is to follow the same pattern, the sequence of moves must contain 

the additional element@. Then within the three-disk sequence, it is dis-

covered that some elements are repeated. The task analyzer now outputs the 

results of its analysis and a problem category, '~cyclic/" to the conjecture 

generator. 

Conjecture gene~ation 

Using the information from the task analyzer, the conjecture generator, 

with the aid of its own subunit, produces programs which represent conjectures 

{see Figure 12). The requests, which the conjecture generator constructs and 

gives to its program-generating subunit, constitute a special case of the 

generalized request form different from the special case given as the descrip~ 

tive request form. Each request is represented by three lists of information: 

(1) given: a sequence 

(2) desired: a program to regenerate the sequence 

(3) information on the task: restrictions and suggestions 
(characterization of the sequence from the task analyzer 
of the induction mechanism). 

In our example, the conjecture generator receives 11cyclic" as the prob-

lem category together with the sequence of successful moves for the three-disk 

case, i.e., 1 2 1 3 l 2 1. The conjecture generator separates the top·from the 
BCCBABB 
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bottom line and makes two requests of its subunit. In each of the requests, 

the information on the task stipulates that the sequences produced by the 

generated progr~ are to have a cyclic pattern. 

Performance of the subunit 

We now examine what the subunit does in the case of the top line. Since 

a cyclic pattern is requested, the task analyzer of the subunit looks for the 

first recurrent position of the first item on the list '"l 2 1 3 1 2 l'• and 

finds it to be the third item. It now takes the first two items ~l 2"' as 

defining a cycle phase and asks the program provider to construct a program 

which will generate ~1 2 1 2 1 2 , ..•. "' 
1 

The program provider :now: construct,s,:a:.sequence:.o~ :·irits:tI(Ucticms · · • '· 

and gives it to the executor-monitor: 

L CAD L1 x 
TR Ly 

CAD 1'2 
TR Ly 

TR Lx 

"'Li'" is the address of where the symbol {b) is stored 

"TR"" is an abbreviation for b•transfer control to"' 

1111'2"' is t:qe address of where the symbol ® is stored 

""L "' is the address where the first instruction of the x sequence is stored. 

"'L "" is the entering address of a special program in the 
Y consequence generator which manipulates, examines and 

uses the content of the accumulator each time the 
entrance is made, and returns control to the next 
instruction in the proposed sequence. However, while 
the proposed program is being monitored, ~ ~· will 
not cause an actual transfer to ~; instead the task 
analyzer will note the location ~ and instruct the 
executor-monitor to proceed to the next instruction. 

1 The program is written in IPL-V langu.age 1 but is translated into CAD' s and 
TR's here for mnemonic purposes. 
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Let us examine the interaction between the executor-monitor and the task 

analyzer when these instructions are monitored. The proposed program brings 

the syrabol Q) and the symbol @ to the accumulator alternately. When the 

task analyzer receives information on the content of the accumulator from the 

executor-monitor, it compares the cont;;nt with the appropriate element in the 

Given sequence. The first three eler;1ents, Q), @, and G), presented by the 

progran agree with the given oeq_uence, but the fourth one, @, does not. 

Upon detecting this discrepancy, the tasl\: analyzer of' the subunit looks 

fo::i.~ the second recurrence of the fi::cst item. This turns out to be the fifth 

iter:i. It then uses the first four item "l 2 1 311 as defining a cycle phase. 

This time the program provider constructs a progra~ (the location L3 contains 

the symbol (D): 
L CAD L1 x 

TR Ly 

CAD L2 

TR L 
y 

CAD L1 

TR L 
y 

CAD L3 

TH 

TR L x 

Interaction between the executor-monitor and the task analyzer this 

time shows that results agree with the given seq_uence "l 2 1 3 1 2 1." The 

task analyzer now outputs the program to its higher-level program, the con-

jecture generator (see Figure 12). 
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Notice that in this method of generating a cycle producing program, the 

subunit will always find a program which fits the given sequence; it is sure 

to succeed when it takes the entire given sequence as defining a cycle phase. 

When the same procedure is used for the bottom line of the original in­

formation, "'B C c~ is the first cycle phase tried, ~B C C B A~ is the second, 

and the final accepted one is '*'BC CB AB.~ The conjecture generator now 

combines these two programs so that they will produce together a sequence of 

pairs of the desired form and outputs the result to the consequence generator. 

The consequence generator and its interaction with the task analyzer 

The consequence generator, together with the task analyzer, step-by­

step examines programs supplied by the conjecture generator. The examination 

consists of monitored execution. Each item proposed as a member of the solu­

tion sequence is in turn proposed to the environment by the task analyzer as 

a prediction of the next move needed to solve the four-disk case. 

The human being or the higher-level pr9grams serving as the environment 

of the mechanism determine the success of the predictions and can either give 

to the mechanism some additional information on the task or indicate to the 

mechanism whether its prediction was successful or not. The additional in­

formation might be a particular hypothesis (in program form) to be tried out, 

or it might be an itt,dic?a.tion of .what,i.a prediction( shduld\. have .·beenr.· 1 :The: task 

analyzer uses such feedback from the environment, in addition to what was pre­

viously given, as a basis for a new analysis, and the entire process is 

repeated. 

Let us return to our specific example. The two programs which have 
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been constructed by the conjecture generator are executed by the consequence 

generator to produce suggested moves for the four-disk case. The task analyz-

er proposes these to its higher-level program. The higher-level program 

checks the legality of a suggested move by means of the legal move generator. 

If illegal, the information is fed back to the task analyzer. If legal, it 

is output to a human teacher who examines it and feeds back whether the move 

is right or wrong. Such feedback is relayed to the task analyzer. 

In our example the first seven, the. ninth and the eleventh suggested 

moves turn out to be right but the eighth, tenth and twelfth moves are wrong. 

A comparison of the suggested and correct moves is: 

{
l 2 l 3 l 2 i@1 2 1 3 1 2 1 

suggested moves: 
B C C B A B B C C {filA [fil B C C 

{
121312141213121 

correct moves: 
B C C B A B B C C A A C B C C 

Squared items indicate where the task analyzer is informed of illegal or 

wrong moves. 

Suppose the higher-level program finds correct moves, by some trial 

and error method or by asking the teacher, and informs the task anlyzer. The 

task analyzer now determines the unmatched elements in the suggested sequence 

and the correct-move sequence and informs the conjecture generator. The con-

jecture generator modifies previously constructed programs so that they will 

replace unmatched places with parameters. The resulting programs, when exe-

cuted would produce a sequence like this: 
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{ 
1 2 1 pl 1 2 l pl 1 2 - - - -

B C C P2 A P3 B C C P2 -

Underlined parts represent cycle phases. P1, P2, and P3 are names of sublists. 

P1 contains @ and G), P2 contains A and B, and Pj contains B and C. The 

fact that,@ is used for the four-disk puzzle is consistent with the conjec-

ture made earlier that_ successful moves for the four-disk case must contain 

the element~· Up to this point, however, this conjecture has not been 

implemented. Our system learns t Next time it imiiiediately makes .use of the 

corresponding conjecture. When the five-disk case is presented, the task 

analyzer tentatively includes @ ~s one of the possible values of P1 • Com­

parison of suggested and correct moves for the five-disk case is: 

suggested moves: 

{ 1 2 1 pl 1 2 1 pl 1 2 1 pl 1 2 1 pl 1 2\ 1 pl 1 2 1 pl 1 2 1 pl l 2 1 

B C C P2 A P3 B C C~A~BCC~A~B~C~A~BCC~A~B 
correct moves: 

{ 1 2 1 3 1 2 1 4 1 2 1 3 l 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 

BC CB AB B C C A AC BC CB AB BA CA AB B C C B AB B 

When the task analyzer specifies the possible values for the parameters, 

in every case only one of the poss~ble moves is legal so the correct move is 

automatically determined without trial and error. for each of the parameter 

positions. This is, of course, a singular feature of the Tower of Hanoi 

puzzle. Among the suggested moves, there is only one move which is wrong, 

a move at a nonparameter position, position 20. The task analyzer gives this' 

information to the conjecture generator which modifies the existing programs 
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so that they will use an additional parameter. The resulting sequence of 

moves looks like this: 

1 p 1 -1 
{ 

1 2 

B P4 C P 2 A P3 B P4 C -

where P4 contains A and C and underlined elements indicate cycle phases. 

When the new programs are used to predict moves for the six-disk case, 

all turn out to be correct. In fact the parameterized program which has now 

been constructed will solve any n-disk case for three pegs, as long as the 

current state has n disks in column A and the desired state is disjunctive, 

i. e,., either n disks in column B or in column C. Of course, the system it-

self will never know the fact unless told by the trainer. However, as the 

system gets more and more experience with the puzzle, and the conjecture (the 

program) is used successfully more and more times, utility values of the con-

jecture increase so that the task analyzer will tend toward directing a 

straightforward use of the program. 

However, when the four-disk case is given with the desired state (in a non-

disjunctive form) which has not been attained before, the situation changes. 

The task analyzer must undergo more analyses and formulate a new conjecture, 

although it can make use of the previously formulated, already successful 

conjecture. 

Comparison of the previously attained state and the newly requested 

state is given below, 
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A B c 
¢ ¢ 

/ 
desired state previously 

A B c attained, 61 

¢ ¢ 

~ A c 
~ ¢ 

current state desired state requested, 62 

Let us call the previously attained desired state 61 and the newly re­

quested desired state 62 • 61 and 62 are compared by the abstraction routine 

as follows: when elements AB C in s1 are compare4 with elements AB C in s2, 

s1 and s2 are found to be identical. . Next, each element in 61 which is itself 

a list is compared with the corresponding element in s2• List A in s1 and 

list A in s2 are identical in content (both empty). For list B, the resulting 

abstractions are as follows: o1, 42 

Similarly for list C: 

¢ indicates no common element. 

~;2©1~:3(3]~ 
<;/'~ 

all from S 
2 
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'l'he task anal;yaer C<lllp&l'e& B and C by using the abstraction routine 

again, this time on the previously produced abstracts. Each of the three 

abstracts of B is paired with the corresponding abstact of C. The task 

analyzer then determines that the category of the change from s1 to s2 .(or 

vice versa) is "'interchange• ot B and C. A similar analysis was made tor 

the "'exchange"' routine,. cliacussed under community unit operation. 

Suppose, tor aiaplicity, that such a program is already available in 

the conjecture generator so that the direction ~interchange B and cw given 

by the task analyzer is understood. The conJecture generator then constructs 

two programs, this time Without using its program .. generating subunit; it 

copies the previously conatructed conjecture programs (already parameterized) 

but llOdities the aecon4 one by letting the "interchange• routine work on 

SJllbols B ancl C, 1.e., vllenever B appears, C is substituted and vice versa. 

When the progra1 are executed by the consequence generator, the resulting 

sequence of moves lookl like tbia: 

~ 2 l '1 l 2 l '1 -

C t 5 B P6 A Pl C P5 -

Wbin.tbla• auaaiate4 mowa an output to the higher-level program and from 

tbere to the trainer, all of them turn out to be correct.1 
. . 

Attaintn1· the pnel!&l rvle.·. . ·.: 

'l'he principle• involved in solving the puzzle can be stated by 

l ror 'be purpoae of illustration, we neglected possible assistance from the 
planning mecbafti• 4i1cuatecl tar lier. 
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considering columns A, ~ and C to form a triangle, A, B, and C being its 

vertices. If' the puzzle is given with a disjunctive desired state, transfer 

the smallest disk (di;;k (1)) on every other move, always moving it around the 

triangle in the same direction. On the remaining moves, make the only trans-

fer possible that does not involve the smallest disk. However, if' the puzzle 

is given in such a way that n disks must be transferred to a particular 

column, the first move is dictated by another rule. If' the number of' disks 

is odd, move first to the column to which the disks are to be moved, and if' 

even, move first away from this column. The rest of the moves follow the 

preceding rule. 

In our experiment, patterns generated by those programs which represent 

conjectures resemble the patterns described by the above statements, but some 

refinements are necessary in order to make them correspond exactly. The fol-

lowing might be given to the system at this point: The first cycle phase 

"'l 2 l p5 n can be transformed into ""l I". The notation ttl"" means anything 

other than (D . Then for the second sequence, ""B P4 C ~2 A P3 •• or 

"C P5 B P6 A P7~, the system can be made to notice the correspondence between 

occurrences of' 1 in the first sequence and the occurrences of' ""A~, ''B"" and 

""C"" in the second sequence. Similar correspondence can be established be-

tween land parameters so that the parameter P can replace all the Pi's in. 

the second sequence. The move I ; j, which now occurs as every other move, is 

to mean any legal move which does not involve disk '(,@) •. 
The rule when even and odd numbers of disks are involved will require a 

more sophisticated notion of' evenness and oddness, a notion which will have to 
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be learned through experience or preprogrammed. 

Summary on the induction mechanism 
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A few important features of the induction mechanism deserve emphasis: 

1) Parameterization in the abstraction process is one way to separate more 

relevant from less relevant information without ignoring the latter. In our 

example, the second pattern was first suggested as B C C B A BJ next it was 

parameterized to B C C P2 A P3, and finally to B P4 C P2 A P3, At each stage, 

constants indicate items which are unaffected by the change of task. Finally 

an unchanging pattern is revealed. 

2) Two-level usage of the feedback structure permits the initial ad hoc 

manner of generating conjectures to become less arbitrary each time the mecha­

nism is given more information. Note that the program-generating subunit is 

requested to regenerate a given sequence under conditions imposed by the con= 

jecture generator; the subunit simply obeys. The given sequence and conditions 

may change each time the subunit is used, but such changes are decided by the 

conjecture generator, not by the subunit. Decisions made by the conjecture 

generator are influenced by analyses made by the task analyzer which, in turnJ 

are influenced by higher-level programs. 

3) Conjectures are represented by executable programs. The conjecture 

program is executed and tested directly while it is being formed by the sub­

unit and also while it is being used to generate consequences. A program 

which embodies a generating principle provides a compact and direct means of 

representing the inductive process of extrapolating beyond recorded instances. 
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4) What about problems whose complexity is beyond the direct reach of such 

a me.chanism? Suppose at the higher-level, the system can observe the function 

of the induction mechanism and the way in which puzzles have been presented 

from the simpler to the more complex, ultimately resulting in a general work­

able strategy for n-disk puzzles. It is extremely important that the system 

be able to imitate the over-all process in the future. 

Students in natural sciences often learn by imitation clever heuristics 

for finding suitable simplication. They observe scientists ~eking deliberate 

over-simpli.fications of a situation by considering only a few variables and 

by restricting the behavior of these variables to simple known functions. 

Scientists usually study simple cases first and then vary· them to more com­

plex cases, study the effects of changes, make conjectures, and repeat the 

process. If our system had learned these processes, and if the 8-disk case· 

of the Tower of Hanoi puzzle were given at the outset, it might have tried 

out the 2-disk or 3-disk puzzle of its own accord. Note that at this stage, 

solving the puzzle even by the exhaustive method is feasible. For the 3-disk 

puzzle, the exhaustive method would require 254 examinations of the current 

state configuration whereas such a method for the 8-disk case would be out of 

the question. 

In order for the system to be able to learn from a carefully selected 

training sequence and use the experience toward creating its own trial se­

quence of simplified tasks, the system must be able to construct and modify 

its ~cognitive map~ with temporal sense. In addition, effective utilization 

of the cognitive map is necessary; this may be realized by a special higher­

level program, i..master monitor,d> which ruminates periodically and takes a 
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bigger view of the tasks given in the past. rather than focusing on one task 

at any given moment. 

CONCLUSION 

Main theme of our research 

A system of programs with three mechanisms has been proposed. To dis­

cover capabilities and limitations of such a system, a study is being made to 

see how it works in specific, relatively simple situations. We shall try 

several experiments in order to see in what ways the system falls short of 

the intended •''learning system."" There can be no doubt that before we can 

achieve such a system there is a great deal of learning ~must do. 

We begin with a simple system and give it simple tasks. It is our hope 

that we shall discover principles applicable to a complex system which can 

work at different levels of abst~action as well as in different problem situ­

ations. We are aware, however, that methods which work on simple cases may 

not necessarily work on more complex ones. 

We are interested in discovering ~ higher-order composiiE capabilities 

might evolve from a given set of a priori capabilities. Our interest, however, 

is ~ in discovering what can be made to evolve from a minimum endowment. 

If a powerful learning mechanism becomes available, we shall probably want to 

preprogram the system to the limit of our capabilities before we turn it loose. 

External feedback: communication between the system and its trainer 

Most of our discussion of feedback has been in terms of internal com­

munication among units and subsystems. We assumed only a limited amount and 

a very restricted form of feedback from outside the system. Ultimately, 
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however, we wish to give the system lessons, exercises, and hints in much the 

same way as we do for human learners. McCarthy (3) points out, "In order for 

a program to be capable of learning something it must first be capable of 

being told it." 
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