
Sil 1 lSi

SCIENTIFIC DATA SYS'rEMS

Reference Manual

DES·l DIFFERENTIAL EQUATION SOLVER

REFERENCE MANUAL

98 0065A

October 1965

.. 1'·1&1
SCIENTIFIC DATA SYSTEMS/1649 Seventeenth Street/Santa Monica, California/UP 1-0960

© 1964,1965 Scientific Data Systems, Inc. Printed in U.S.A.

Section

2

3

4

5

CONTENTS

GENERAL DESCRIPTION .

DES Computer Equipment Configurations •

DES Programming System .

General Operation. •

Time in the DES-1 System .

DES-1 PROGRAMMING LANGUAGE.

The DES-1 Operator

Elements of DES-1 Operator Statements

Arithmeti c Equations

Block Operator Statements

Integration Operators .

Elementary Function Operators .

Resol ution Operators

Function Generation Operator

Special Function Operators

Noise Operators.

Logi cal Control Operators·

System Control Statement .

Special Operators

Input/Output Operators

DES-1 CODING FORMS .

Standard Form

Free Form .

INTEGRATION .

Initia I izing Integrator Operations

AMC Adams-Moulton Check Integration Operator

Error Message

FUNCTION GENERATION .

Input Cards

Data Input Format

1-1

1-1

1-3

1-3

1-4

2-1

2-1

2-1

2-2

2-2

2-4

2-5

2-5

2-6

2-6

2-7

2-8

2-9

2-9

2-11

3-1

3-1

3-1

4-1

4-2

4-3

4-4

5-1

5-1

5-2

Section

6

7

8

ii

CONTENTS (Continued)

DES-1 CONTROL CONSOLE

Operating Modes. .

Frame Time. .

Digital Display.

Display Select .

Idle Time

Potentiometer .

Sense Switches. •

Overflow

OPERATOR CONTROL CODES

Control Codes .' •

Mode Control Codes •

OPERATING THE DES-1

To Start • • • •

. . .",. .

To Compi Ie a Program • • • • • •

To Load a Compiled Program . • • • •

Continuation of Previous Execution .

Dumping a Restartable Program. • •

To Update a Program. • • • • •

General Tape Reading and Writing Errors

Input or Output of Numerical Variables.

Breakpoint Switch 32 (Panic Button) . •

APPENDIXES
A. DES-1 OPERATOR SYNTAX

B. THE CALL OPERATOR

C. CALL SUBROUTINE LOADING

6-1

· 6-1

· 6-3

. . 6-3

· 6-3

• 6-3

· 6-4

· 6-4

· 6-4

. . 7-1

• 7-1

. . • 7-3

• 8-1

· 8-1

• 8-1

· 8-2

· 8-2

· 8-3

. . . . 8-3

· 8-3

· 8-4

· 8-4

D. MATHEMATICAL FORMULATION OF THE DES-1 INTEGRATION OPERATORS

E. DES-1 OPERATOR EXECUTION TIMES

F. DES-1 SAMPLE PROGRAM

G. DES"; 1 HYBRID CALL LIBRARY

1. GENERAL DESCRIPTION

The DES-1 Differential Equation Solver is a computing system that combines a very-high-speed digital computer, the
SDS 9300, with a mathematical-operator language, an operator-processing program package, and a special control
console to parallel the use and operations of an analog computer. The DES-1 operator language permits the user to
program either directly from differential equations or from an analog block diagram describing the physical system that
is being studied. This language system, coupled with the DES-1 Console, offers the same problem-solving versatil ity
that makes the analog computer a powerful simulation tool. In performing all computations, the DES-1 offers the
reliability, computational accuracy, and mathematical versatility of the general-purpose digital computer, and the
use of floating-point arithmetic throughout eliminates the need for amplitude scaling.

The following features of the DES-1 system are particularly notable:

• The mixture of operators is not fixed by the hardware configuration.

• The system utilizes seven different integration schemes, providing a wide latitude in optimizing problem
computation speed and accuracy - any set of schemes for different variables can be intermixed in the
same program.

• Numerical integration inputs can consist of sums of products of terms, with no fixed limit to the number
of terms.

• The system permits arbitrary function generation of one, two, and three variables, linearly interpolated
from user-suppl i ed data.

• The real-time operating mode permits synchronization with analog equipment for hybrid operation.

• The special control console allows the user to explore his problem while it is running, thus maximizing
his control over the problem solution.

• The input/output devices provide alphanumeric or graphic (continuous) information.

• ,The system permits on-I ine problem structure modification.

DES-l COMPUTER EQUIPMENT CONFIGURATIONS

The basic DES-1 equipment configuration and its modifications are described in the following paragraphs.

THE STANDARD DES-1 SYSTEM

The basic DES-1 system consists of a special control console and an SDS 9300 Digital Computer with a minimum of
8, 192 words of core memory. Floating-point hardware is requ ired as part of the basi c system. Standard peri pheral
equipment (see Figure 1) consists of:

• an input/output typewriter,

• two Magpak magnetic tape units,

• a card reader, and

a line printer.

With the addition of another 8, 192 words of core memory, the above equipment configuration comprises a standard
9300 General-Purpose Computing System, for which SDS offers a complete complement of programming systems with
executive monitoring.

DES-1 OPTIONS

The following additional equipment enhances the use of the DES-1 by providing continuous plots of proble'm variables:

• a strip chart recorder,

• an X-V plotter, and

~ a display osci Iloscope.

1-1

SDS Magpak

T ra ck 0 I T ra ck 1

SDS Magpak

Track 2 I Track 3

"

Card Reader Line Printer

r-.~~ _____ ~~ ________ ~~L-____ ~~~ ____________ ~V ________________ ~ ~

SDS 9300 ~

Console ,..
~

Input/Output
Typewriter IC;; >

DES-1 Console "-=C:=:::::~~

SPECIAL DES-1 CONSOLE

SDS 9300
Computer

with
Floating Point

Capabil ity
and 2
Priority

I< :> Interrupts

8, 192 Words
of Memory

Expansible to
32,768 Words

Figure 1. SDS DES-1 Configuration

~

(optional) .
r----,

1 ----.... ~...J! Osci II os cope I
L ___ ...J

(optional) r-----,
'-----.". : X-Y Plotter I

L ___ ...J

(optional) r----,
'----.... ~..JI Strip Chart I u I Recorder

'- ___ ...I

The special DES-l Console gives the user direct control of computation. In a fashion simi lar to that of an analog com­
puter, the user selects (via console buttons) the DES-l operating modes such as RESET, OPERATE, and HOLD. Control
buttons, numerical displays, and overflow indicators enable problems to be monitored from the Console. The four
potentiometers on the Console, used I ike parameter-setting potentiometers on an analog computer, are accurate to
four significant decimal digits. A set of pushbutton selectors, in con junction with a digital readout display, permits
rapid mon itoring of problem variables.

Mode control buttons with self-contained back lights provide fast mode changes with easy-to-see monitoring. The
input/output typewriter, line printer, and card reader, with the optional strip chart recorder, X-Yplotter, andoscillo­
scope, complement the console to provide additional means for manual and automatic read-in and read-out of con­
stants, data, and program changes.

1-2

DES-l PROGRAMMING SYSTEM

The set of analog-oriented operators used to program a problem in the DES-1 consists of instructions that the DES-1
Compiler (a digital computer program) processes and translates into a program which the SDS 9300 can execute. The
program that consists of the set of operators is called the IIsource ll program; the program that resu Its from campi ling
a source program is called the IIcompiled ll or lIobject ll program. During compilation, the Compiler IIreads ll each
operator from the source program, translates it into a small set of machine language instructions, and places this
instruction set into the object program that it is producing. When an operator requires a complicated set of instruc­
tions to be produced, the compiler generates a short set of instructions that IIcalls ll or links to a precoded digital
program called a IIsubroutine ll • These subroutines required for certain operators are available to the Compi ler to
save time during compi lation and memory space during program execution.

When the Compi ler has finished processing a program, the compi led program is read into the computer. The user is
then ready to execute the program and solve his problem. The DES-1 Executive Program, also in memory, controls
both the internal operation of the SDS 9300 and the interface between the SDS 9300 and the DES-1 user. A.s the user
performs various console functions, the Executive Program causes the DES-1 to react to these contro Is and to perform
all tasks indicated.

The DES-1 programming system essentially consists of:

• an Executive Program that controls the physical equipment and interfaces with the user. It is always
the first program that is entered into the computer, and it or part of it always stays in the computer to
control and monitor compi lation, program execution, and recompilations.

• a Compiler that compiles object programs from source programs, taking each operator in turn and trans­
lating it into a set of instructions. This set of instructions may, in turn, call upon a subroutine to
perform the operator function. This is a one-pass compi ler.

• a collection or II library" of subroutines that is used by the Compiler.

The Executive Program, Compi ler, and II Subroutine Libraryll are contained on one magnetic tape called the DES-1
System Tape. Complete DES-1 operating instructions are given in Section 5 of this manual.

GENERAL OPERATION

The DES-1 operates in modes similar to those of an analog computer: SET UP, RESET, READY, OPERATE, HOLD,
and SINGLE FRAME. The user can activate any of these modes, except READY, by pressing the associated button on
the Console; he may also use program statements to enter these modes (see Section 3 for detai Is). The READY mode
is automatically entered by the computer from RESET when all initial conditions have been computed, and is not
directly selectable. During operation (i.e., under Executive Program control), pressing a mode button directs the
DES-1 to a preselected part of its Executive Program to await further user intervention or to perform the specified task.

To operate the DES-1, the user loads the DES-1 basic Executive Program; the SET UP mode is then activated, and the
system waits for a Control Code from the typewriter or from a punched card. A Control Code consists of an instruc­
tion that causes the DES-1 to perform a task such as reading in the source program from cards and compi I ing it. If
an incorrectly written source program statement is detected during compilation, the DES-1 prints an error message.
By means of the update feature of the DES-l, the user can make corrections in the source program, enteri ng the
corrected statements via cards or typewriter. After the corrections are entered, the DES-1 recompi les the source
program and waits in the SET UP mode for further direction.

The user can then press the RESET button, putting the DES-1 into the RESET mode. In this mode, the initial conditions
specified by the program are determined. Initial-condition computation is typically required to set up constants or
algebraic equation solutions (e.g., aerodynamic vehicle trim conditions). Initial izing data can be entered into the
computer via the potentiometers on the Console at this time. When all initial-condition computation is complete, the
DES-1 enters the READY mode automaticallyand lights the READY mode light.

At this point, the user can proceed to the solving of his problem by pressing OPERATE, putting the DES-l in the
OPERATE mode. The computer then begins to execute those programmed calculations which solve the problem. The
operator may press the HOLD button at any time during the OPERATE mode. The HOLD mode is normally used for
parameter and variable inspection by means of the typewriter and Console, for parameter and variable changes via
the potentiometers and typewriter, or for sense switch repositioning. Pressing OPERATE after HOLD causes the pro­
gram to continue.

1-3

The SINGLE FRAME mode, used primari Iy for problem checking, causes the DES-1 to perform a single frame of calcu­
lations prior to going to the HOLD mode for subsequent inspection of data. If such acti on is appropriate, the user
als.) makes manual changes in program values.

TIME IN THE DES-l SYSTEM

The DES-1 has means for selection of frame time, and selection between real-time and non-real-time modes of opera­
tion. The various operational aspects are described in the following paragraphs.

FRAME TIME

Frame time, defined as the interval between successive, equally-spaced values of the dependent variable, is set by
console thumbwheel switches on the Console. These switches allow the operator to adjust the basic frame time, L::,. T,
easily and quickly. The value set on the FRAME TIME indicators is read in by the DES-1 Executive Program and is
used in the evaluation of the time-dependent operators (e.g., integration). The switch settings also are used to
generate accurate timing pulses that synchronize the OES-l with real time.

REAL AND NON-REAL TIME

The DES-1 can operate in real-time or non-real-time modes (selectable by a console switch). In real time, the
DES-1 synchronizes the frame-time calculations with a real-time clock. This mode approximates very closely the
operations of an analog system, in that problem calculations are synchronized with real time and actual hardware can
be tied into the system via analog-to-digital and digital-to-analog operations.

The DES-1, a digital device, calculates the values of problem variables only at discrete points in time. In order that
a set of differential equations may be solved, the solution must go from time T to· time T + L::,. T in a stepwise manner.
If the calculations to be performed can be completed in the time L::,.T,. and if the start of each new set of calculations
is controlled by a timer with period L::,. T, then the solution is progressing in real time.

For real-time operation, the user can select and adjust L::,. T to the desired value with the FRAME TIME thumbwheel
switches. If the calcu lations cannot be performed in the allotted frame time, the frame -time overflow alarm sounds,
and the FRAME OVERFLOW indicator is lighted.

In non-real-time, and accordingly with no hardware in synchronous operation, the DES-1 performs its calculations as
rapidly as possible, maintaining no reference between real time and the frame time L::,. T set into the Console.

PRIMARY/SECONDARY TIME RATES

The DES-1 allows the user to specify that two portions of a program have different frame times (i.e., different solution
rates). This facility is especially useful for problems with a subsystem containing variables that change at a slower
rate than those in the rest of the system. Rate operators (defined in Section 2 of this manual) set apart those portions
of the problem. RATE2 portions of the program function as shown in Figure 2. A secondary frame time is specified by
the two-digit MULTIPLE switch on the Console. If MULTIPLE is set to N and the primary period is L::,. T, the secondary
period is NL::,.T. Primary and secondary period calculations are designated by the use of RATE 1 and RATE2 directives.

In the real-time operating mode, the RATE 1 and RATE2 portions of the program function as shown in Fi gure 2a. In
this example, L::,.T is one second, N is 5, the RATE 1 calculations require 7/8 of a second, and the RATE2 calculations
require 9/16 of a second. Therefore, in calcu lating this problem in real time, the DES-1 performs the RATE 1 calcu­
lations, and during the remaining portion of the frame time performs part of the RATE2 calculations. This continues
until a complete set of RATE2 calculations is finished; then the cycle repeats. If the RATE2 computations cannot be
completed in the allotted time (NL::,. T), the frame-time overflow alarm sounds and the FRAME OVERFLOW indicator
is lighted.

In the non-real-time operating mode, RATE 1 and RATE2 calculations function as shown in Figure 2b. In this example,
N sets of RATE 1 calculations, followed by one RATE2 set, are performed in repeating cycles.

i-4

RATEl ~7/8"""
-

1

1 2 3 4 5 6

TIME (Seconds)

RATE2
1/8

1/16

2 3 4 5 6

(a) Real- Time Division of RA TEl and RA TE2 Computation

4-3/8 -I

RA TEl ~7/8~

,
2'

, , I ,
1 3 4 5 6

TIME (Seconds)

RATE2

9/16

2 3 4 5 6

TIME (Seconds)

(b) Non- Real- Time Division of RATE 1 and RA TE2 Computation

Figure 2. Time Division of RATE 1 and RATE2 Computation

1-5

2. DES-l PROGRAMMING LANGUAGE

This section describes the programming language used in solving problems with the DES-l. The major feature of this
language is the DES-l operator notation. The operators can be related directly (and easi Iy) to the analog user's
problem block diagram. Through the use of these operators, programs can be prepared directly either from (l) an
analog computer block diagram, (2) a DES-l block diagram, or (3) the physical equations that describe the system or
problem.

THE DES-1 OPERATOR

The principle element of the DES-l language is the mathematical operator characterized by an output that is func­
tionally related to one or more inputs. For example, if

z = COS W

Z is the output, W is the input, and the operator is cosine. If W is an output from another operator and this cosine
operator is assigned the identifying number 1, the operator is written

Block Number Operator

COS

Block Input

W

There can be more than one input. For example, in an addition,

W = X + y

the operator statement with identifying number 5 is

5 SUM X, Y

or equivalently,

5 SUM X,I71

Block Output

Z

w

W

if 7 is the identification number (" block number") of the operator whose output is Y.

Inputs and outputs of operators can be designated by name or by equivalent block numbers, at the user's discretion.
To specify operators in this form is equivalent to a block diagram that shows the connections in an analog computer,
as indicated below:

X
Sum Cosine - W Z Element Generator

.:L Number 5 Number 1

ELEMENTS OF DES-1 OPERATOR STATEMENTS

DES-l operator statements contain the following elements:

• Block Inputs - the inputs to an operator. The inputs may consist of decimal constants or variables
from other block outputs, designated by name or block number

• Block Output - the output of an operator. The output may be given a name in the operator I ine and
referred to by that name. The name can consist of any number of al phanumeric characters, the first
of which must be alphabetic, with only the first seven used to distinguish between variables. If no
name is written in the operator line, the block output must be referred to by the block number of the
line written in block number notation In]. If a block output is named, only this name (not the block
number) can be used for block output references. However, the block number must always be referred
to in program control, logical operator statements.

The names of two internal variables are reserved in the DES-l. These are TIME and DELTA, which
refer to accumulated time and primary frame time {both in seconds}, respectively. A program may
refer to either of these variables in the same manner as any problem-defined variabl,e.

2-1

•
•

Block Number - an arbitrary decimal integer of five or fewer digits •

Decimal Constant - a number actually written in an operator line or statement line, containing either
the first or both of the following:

signed or unsigned mantissa of 11 or fewer digits;

signed or unsigned exponent of one or two digits, no decimal point allowed.

A decimal point may be included in the mantissa as desired. If no point is written, the mantissa is
assumed to be an integer. In floating-point format, the exponent is written in the form E ± NN,
with NN denoting "exponent to the base 10". Some examples of decimal constants are shown below.

3.14 314E-2 1000 1E3 -2. 17E56

The result of any arithmetic operation consists of an 11-digit, decimal, floating-point number.

ARITHMETIC EOUATIONS

In addition to the block operator statements that have a one-to-one correspondence with analog block operators, the
DES-1 allows use of arithmetic equations written in the general form:

where

X

X = expression

is any program-defined name, block output name, or bracketed block number
written between columns 7 and 14 on the coding sheet;

is always written in column 15 of the coding sheet; and

"expression ll is a collection of hames and constants. connected by arithmetic symbols and
. parentheses.

An expression has a form simi lar to an arithmetic expression, and produces a single numerical value when evaluated
in the program. This value is always assigned to II X" , the name on the left of the "=" .

The arithmetic operations are:

/
*
+

divide

multiply

add

subtract

Parentheses must be used to clarify possible ambiguities that appear in an expression. For example, in writing the
equation,

the DES- 1 statement shou Id be

The following items shou Id be noted:

A
X = DC

X A/(D*C)

1. No functions or operators other than +, -, *, and / can be used in an expression.

2. Column 15 must be "=" .

BLOCK OPERATOR STATEMENTS

The following paragraphs describe the individual DES-1 operators. The DES-1 block diagram symbol is shown with
each operator description.

2-2

SUM

[[>Y N

V1 L: VI
V2 1=1·

VN

n SUM V1, V2, . . • , VN Y

in which Y is the block output, and each VI is of the form

VI = X 1 * X2 * . . . * XJ

For example, the algebraic expression

F 3B + 4CD + 2. 5E

in the operator form is written

5 SUM 3 * B, 4 * C * D, 2.5 * E

in which 5 is the block number of the SUM operator.

MULTIPLY

n

Xl----t

X2-~-""

XN-......... -----tl

Y
N .

1T' XI
1=1

MUL Xl, X2,, XN = Y

F

in which the XI are block inputs and Y is the block output. For example, the algebraic expression

W = 2(B) (C)4

in the operator form is written

4

DIVIDE

n

MUL 2, B, C, 4

X-----t

W------'

DIV X, W = Y

W

X
Y =\jj

in which Y is the block output, and X and Ware of the form

For example, the algebraic expression

in the operator form is written

5 DIV

X = Xl * X2 *

W = Wl * W2 *

M 2AB/13Q

2 * A * B, 13 * Q

* XN

* WJ

M
2-3

ABSOLUTE

x ---11.11 [>_Y = IXI
n ASS x = Y

ABS takes the absolute value of X and assigns it toY.

MAXIMUM

Xl l<tf> X2 y

XN

n MAX Xl, X2, . ., XN Y

MAX determines the algebraically largest XI and assigns it to Y.

MINIMUM

: ---a.---tl,:t> C>-' -y-

n MIN Xl, X2, • • ., XN y

MIN determines the algebraically smallest XI and assigns it to Y.

INTEGRATION OPERATORS

The following integration operators are implemented in the DES-l:

INTl Euler (Rectangu lar)

INT2 Trapezoidal

INT4 4-Point Predictor

INT4C 4-Point Corrector

RKG Runge-Kutta-Gi II

AM Adams-Moul ton

AMC Adams-Moulton Check

Vl---....
V2 ---r--1 y = /[,t VI] dt

o 1=1

VN-...... -

2-4

The operator form is

n OP Vl, V2, .•• , VN = Y

in which OP is the particular integration operator {e.g., INT2}, Y is the block output, and each VI is of the form

VI = Xl * X2 * . . . * XJ

A further explanation of the use of the integrator operators is given in Section 4 of this manual.

ELEMENTARY FUNCTION OPERATIONS

OP CODE

SIN

COS

ACOS

ASIN

SQRT

LOG1O

LOGE

EXP10

EXPE

ATAN

The general operator form is

n

The form of AT AN is

n

RESOLUTION OPERATIONS

-_X_ __ O_P_J>n __ Y __ F{X)
NAME _

FUNCTION RESULT

Sine {radians} Y = sin X

Cosine {radians} Y = cos X

Arc-cosine Y = cos- 1 X

Arc-sine Y
-1 = sin X

Square Root Y =VX
Log Base 10 Y = 10910 X

Log Base e Y = log X
e

Exponentiation Power 10 Y = lOX

Exponentiation Power e Y
X = e

Arc-tangent Y tan
-1 Xl

=
X

2

OPCODE X Y

ATAN Xl, X2 Y

COMMENTS

o ~ Y ~ 71,
Y in radians,
overflow if X > 1

7T TT
-"2 ~ Y ~ "2 '
Y in radians,
overflow if X > 1

overflow if X < 0

overflow if X ~ 0

overflow if X ~ 0

-Tf ~ Y ~ TT,
Y in radians,
overflow if Xl = X

2
= 0

The operator forms for polar-to-rectangular and rectangular-to-polar transformation are described in the following
paragraphs.

2-5

POLAR-TO-RECTANGULAR TRANSFORMATION

Xl
~-.... Yl X1COSX2 ------

X2

The operator form is
(Radians)

~-~Y2 Xl SIN X2

n PRT Xl, X2 Yl, Y2

PRT performs a polar-to-rectangular transformation.

RECTANGULAR-TO-POLAR TRANSFORMATION

Xl
Yl ...lX12 +)(22

X2 :m: ~·Y2 ~ 1 Xl
.-.;;.;.-"'" '--..... - ARCTAN X2 {Radians}

The operator form is -1f ~ Y2 < 1f

n RTP Xl, X2 = Yl, Y2

RTP performs a rectangular-to-polar transformation.

FUNCT.ION GENERATION OPERATOR

The function generation operator is used to generate data-defined functions of one, two, and three independent
variables. The operator forms are

n

n

n

FUN

FUN

FUN

X

X, Y

X, Y, Z

NAME (function of one variable)

NAME (function of two variables)

NAME (function of three variables)

in which X, Y, and Z are the independent variables, and NAME is the function name. The independent variables
and the function are named during input of the data from which FUN interpolates the result. See II Function Genera­
tion" in Section 5 of this manual for details.

SPECIAL FUNCTION OPERATORS

The special function operators perform the dead-band, limit, step, and delay functions as described below.

DEAD-BAND

-X----f171-£[?- Y

n DEAD

DEAD performs the dead-band function:

if K 1 < K2, then Y X - K 1

2-6

Y

Y

o

X - K2

K 1, K2, X Y

for X < Kl

for Kl ~ X ~ K2

for X > K2

if K 1 ~ K2, then Y x - Kl

LIMIT

n LIMIT

LIMIT performs the limiter function:

if K 1 < K2, then

if K 1 ?- K2, then

Y

Y

Kl

X

Y K2

Y Kl

Y K2

x

for all X

1*[>
K 1, K2, X Y

for X < K 1

for Kl ~ X ~ K2

for X > K2

for X ~ Kl

for X > Kl

The same symbol may not be used for both input and output of the limiter.

STEP

STE P performs the function:

DELAY

Y

Y

X3-----t

~~==EJ I-----Y

X4----...

n

X3

X4

STEP

x

n DELAY

Xl, X2, X3, X4

for X 1 ~ X2

for Xl > X2

Z
-i l>

X, = Y

Y

DELAY performs the function:

Y (T) = X (T - i~ T)

Y

Y

in which i, the number of frames of delay desired, is an integer constant and ~T is the frame time.

NOISE OPERATORS

The noise operators, symbolized UNIF and GAUSS, are described in the following paragraphs.

2-7

UNIFORM PROBABILITY DENSITY

UNIF [> -A, A ----V

n UNIF A = Y

UNIF selects a number using the probabi I ity density function

p (Y)

P (Y)

1
2A

o

GAUSSIAN PROBABILITY DE NSITY

n GAUSS

for -A ~ Y ~ A

for Y elsewhere

I ... G_;_~_S_!....r[>--- Y

A = Y

GAUSS selects a number with the probabi lity density function

p (Y)

For both UNIF and GAUSS noise operators, a pseudo-random sequence of digits is generated by an internal subroutine.
Although this sequence is deterministic, these numbers exhibit a uniform probabil ity distribution as well as approxi­
mate stdtistical independence between samples. All noise operators in RATE 1 use the same random-number generator,
but translate and scale the magnitude for UNIF and perform a non-linear functional transformation to obtain GAUSS.
The random-number generator in RATE2 is independent of the generator in RATE 1. The deterministic sequence is
establ ished by the i ni ti al states of the random number generators in both RATE 1 and RATE2.

The internal state variable for RATE 1 is designated as * 1 and is initialized to an eight-digit octal number 00000000
when the compiled program is loaded into the computer. In a similar manner, the internal state, *2, in RATE2 is
initialized to 13722021 when the compiled program is loaded into the computer. As random numbers are generated,
these internal state variables deterministically sequence t~rough 224 numbers before returning to the starting number.

When a problem is reloaded into the computer, both random generators in RATE 1 and RATE2 generate a sequence
identical to that of the previous run, unless these variables are set to new values before the problem is rerun. This
can be done by setting both * 1 and *2 with a TI control code (see Section 7). If a series of runs is to be continued
when a program is reloaded into the computer, the operator can type out via the TO control code (see Section 7)
the value of * 1 and *2 at the end of his last runs. Then when he continues he inputs these same values via the TI
code. Naturally, when repeated runs are made without reloading the compiled program, the noise generators con­
tinue sequencing to new values.

LOGICAL CONTROL OPERATORS

With logical control operators, the user can conditionally control the flow of his program. A block number, or one
of the modes (HOLD, RESET, SET UP, or OPERATE) is used as the destination of a control operator; the letter n
given below in the descriptions can be one of these five items:

GOTO n

unconditionally transfers program control to n.

2-8

EQUAL Xl, X2, n

transfers control to n if Xl X2; continues if Xl t X2.

GRTR Xl, X2, n

transfers control to n if X 1 is greater than X2; continues if X 1 is less than or equal to X2.

LESS Xl, X2, n

transfers control to n if X 1 is less than X2; continues if X 1 is greater than or equal to X2.

SWITCH i, n

transfers to n if Sense Switch i is ON; continues if Sense Switch i is OFF.

SYSTEM CONTROL STATEMENTS

System control statements are written like operator statements, but provide information only to the DES-1Compiler.
These statements are described in the following paragraphs.

INITIAL

The user writes INITIAL to denote the beginning of the initial condition calcu lations. This part of the program is
entered from the RESET mode.

RATE 1

The user writes RATE 1 to terminate the initial condition portion of his program. This statement also designates the
start of the RATE 1 computations. After the initial condition part of the program has been executed, all derivative
subroutines are executed to obtain initial values of derivative variables (see Section 4). When these calculations
are completed, the READY mode is entered. However, if a GOTO OPERATE statement appears either among or at
the end of the INITIAL statements, the derivative calculations are omitted, and control is transferred directly to the
OPERATE mode.

RATE2

The user writes RATE2 to denote the end of the primary frame calculations and the beginning of secondary frame
calculations.

END

The user must write END as the last statement of a program, to terminate compilation.

CONT

The user writes CONT statements to give the DES-l Compiler information about the grouping of the integration opera­
tors in his problem. The paragraph on IIIntegration ll in Section 4 contains specific information about the CO NT
statements.

DATA

The user writes DATA before the tabular data that he inputs to the DES-l for the generation of interpolated functions.
11 Function Generation, Section 5 of this manual, clarifies this statement. An asterisk must always ·be placed in
column 1 on a single card to terminate the insertion of data into the program. Otherwise, the computer searches
through the remainder of the program for data.

SPECIAL OPERATORS

The special operators are termed ARRAY, STORE, INTVAR, LOADI, and LOADD. These are described in the
following paragraphs.

2-9

ARRAY

ARRAY Xl (M), X2 (N), •••

The integers M and N indicate the number of floating-point locations* that are reserved for X 1 and X2, respectively.
The locations are cleared when the statement is executed.

Any number of reservations of any length can be made with one ARRAY statement. It must appear in the program
prior to a STORE operator and after the INITIAL control statement. For example:

ARRAY X (10), Y (6)

This reserves ten locations assigned to the name X and six assigned to the name Y.

STORE

STORE

X (I) = Y

Y = X (I)

first form,

second form,

in which X and Yare variable names, and I may be a positive constant or variable. If I is not an integer, it wi II be
truncated, i.e., X (10.25) = X (10). The X (I) must be previously defined in an ARRAY or LOADI statement.

This sfatement stores the value on the left in the location on the right.

INTVAR

INTVAR

X (I) in Y

Y in X (I)

Xl, X2,

in whrch the XI are variables subsequently used as integratio'n inputs.

first form,

second form.

The DES-l Compiler requires the names of all inputs to integration operators within a program. These names are
needed so that the Compiler can reserve space in computer memory for intermediate numerical values, generated
during the process of numerical integration.

The user writes one or more INTVAR statements in his program, thereby listing those variables to be used as integrator
inputs. It is a good programming convention to write the INTVAR statements first in the program, immediate Iy fol­
lowing INITIAL; the statements must always be written prior to the use of inputs I isted in the INTVAR statements in
question. INITIAL must precede INTVAR statements.

The inputs so named in INTVAR are initialized to zero the first time, as well as each succeeding time,' when the com­
puter executes this statement. INTVAR statements can appear anywhere in a DES-l program. Non-zero initial
conditions can be given with the following statement.

LOADI

LOADI X, Xl, X2,

The user writes LOADI to initialize a multidimensional or integration variable, X, used in his program. The only
operators that employ multidimensional variables are STORE and integration. During compilation, six floating-point
locations are reserved when LOADI is processed; these cells are not initial ized to zero as they are in INTVAR.
Instead, machine language code is generated which sets successive cells, starting with the first, to the values of the
numbers or mnemonics in the list. Treating integration first, LOADI is used (if desired) to initialize derivative
values as required by the particular integration formula. For example, let XDOT be a single input to an INT4 inte­
grator; the source statement

LOADI XDOT, 1, 2, 3, 4

*Floating-point locations are two words of computer memory, and are frequently referred to as a "cell" in this"manual.

2-10

sets

XDOT (t .) = 1
0

XDOT (t - .6. T) = 2
0

XDOT (t 2.6. T) 3
0

XDOT (t
0

3.6. T) 4

in which to = initial value of the independent variable 0 The remaining two cells that are reserved by this LOADI
operator are not affected 0

The LOADI operator can also be used to initialize more than six consecutive cells, provided that the required num­
ber of cells is previously reserved by ARRAY. For example, let the first operator after INITIAL be

ARRAY x (10)

Then, the operator

LOADI X, 0, 1, 2, 3, 4, 5, 6, 7, 8; 9

initializes X (0) through X (9) to the ten elements in the list.

LOADD

LOADD X, Xl, X2, . 0 0, XN

This statement initializes variables used in the DELAY operator, and must appear prior to the occurrence of this
operator in the program 0 LOADD defines and reserves one cell for each element in the list after X. The number of
initial values, however, must be equal to the number of frame times specified in the DELAY statement 0 As an
example, for the source statement

DELAY X, 3 = Y

the proper initialization of X is

LOADD X, Yl, Y2, Y3

This sets X as follows

X (t - .6.T) = Yl
0

X (t
0

X (t
0

when t is the initial value of the independent variable 0

o

INPUT/OUTPUT OPERATORS

2.6. T) Y2

3.6. T) Y3

The input/output operators initiate read operations from such devices as: the card reader, the typewriter, and
console potentiometers; they also initiate write operations for such devices as: the typewriter, the line printer,
and the strip chart recorder 0 There are two operators: IN for input and OUT for output 0 The operator form is

OP UNIT, LIST

in which OP is IN or OUT, UNIT is the peripheral device name, and LIST is a specification peculiar to the device.
Entries in LIST can be block outputs or constants 0 For ease of description, these items are called list "elements" 0

INPUT DEVICES

Input devices consist of the card reader, the typewriter, the magnetic tape unit, and the potentiometer 0 Input
operator format for each is described in the following paragraphs 0

2-11

Card Reader

IN CARD, Xl, X2, • • •

Numeric data in standard format is read from the card reader into the named variable locations. Data is read until
the list is exhausted. Data can be packed on cards as desired.· Further details are given in Section 5, in the para­
graph entitled" Input Data Cards" •

Typewriter

IN TYPE, Xl, X2, •••

Numeric data in standard format is read from the keyboard into the named variable locations until the list (the Xi)
is exhausted. Commas terminate individual numbers. The program waits until enough numbers have been input to
exhaust the list.

Magnetic Tape

Magnetic tape unit 3 is avai lable for use with a DES-l program. One standard input/output format is avai lab Ie.

OUT

IN

TAPE,

TAPE,

Xl, X2,

Yl, Y2,

. . .,

. . .,

XN

YN

in which N is the number of variables written on the record.

OUT TAPE writes one record, 2N words in length, with two words per variable listed. The variables are taped in
the order given.

IN TAPE reads one record from tape and assigns the read-in va.lues to the I isted variables (two words per variable
name), in the order I is ted.

The DES-l Executive Program rewinds the magnetic tape only at the beginning of the RESET and OPERATE modes.
It is therefore impossible to write and read a tape during the same mode. It is also impossible to use tape during
real-time operation in RA TE2. No end-of-fi Ie is written on the tape; therefore, when tape is read, care must be
taken not to request more tape than is written.

Potentiometer

IN POTi, X, XMIN, XMAX

in which i must be 1, 2, 3, or 4 with respect to the four console potentiometers and XMIN < XMAX. Both positive
and negative numbers may be used for XMIN and XMAX. The number stored in location X is

X = XMIN + (XMAX - XMIN) N/l0, 000

in which N is an integer between 0000 and 9999 which corresponds to the potentiometer setting.

OUTPUT DEVICES

The output devices consist of the typewriter, the printer, the strip chart recorder, the osci lIoscope display, and the
decimal display. Output operator format for each is described in the following paragraphs.

Typewriter

OUT TYPE, LIST

in which the comma terminates the device name, and LIST may contain:

•
•
•
•

2-12

elements,

commas which separate elements,

semicolons, each of which causes a carriage return, or

pairs of single quotation marks that cause symbols between the marks to be typed as they appear
(i ncl udi ng spaces).

The standard floating-point output form is ± .XXXXXXXXXXX±XX followed by four spaces. Several examples are
given below.

•

•

•

•

OUT TYPE, X, Yi

The values of both X and Yare typed in standard floating-point form, followed by a carriage return.

OUT TYPE, IH MAN CNAl i

The heading

H MAN CNA

is typed with the same spacing as written in the au T statement, followed by a carriage return.

yields

yields

OUT TYPE, i ITIME = IX, IC = IYi

carriage return

TIME = ±.XXXXXXXXXXX±XX/\I\I\A C

carri age return

± • YYYYYYYYYYY ±YY

OUT

T C M

carriage return

carriage return

TYPE, 'T C MliiX, Y, Zi

±.XXXXXXXXXXX±XX/\/\/\/\±.yyyyyyyyyyy±yy/\/\/\/\±.zzzzzzzzzzz±zz

carriage return

OUT PRINT, LIST

in which the comma terminates the device name, and LIST may contain:

•
•
•
•
•

elements,

commas which separate elements,

semicolons, each of which designates an upspace,

colons, each of which specifies space to top of page, or

pairs of single quotation marks that cause symbols between the marks to be winted as they appear -
the second mark of a pair causes an upspace.

Up to six variables can appear on one line. A print line is 132 characters wide. For example,

yields

top of page

T C M

blank line

blank line

OUT PRINT, : IT C MI ; i X, Y, Z i , , IDES-11

± .XXXXXXXXXXX±XX /\ /\ /\./\ ±. YYYYYYYYYYY±YY /\ /\ /\ /\ ±. ZZZZZZZZZZZ±ZZ

blank line

A· ,

2-13

blank line

DES-1

blank line

±. AAAAAAAAAAA±AA

blank line

Strip Chart Recorder

OUT RECORDi, X, XMIN, XMAX

The term i must be 1 ~ i ~ 8, corresponding to one of the eight recorder channels. The term X is the variable to
be recorded on channel i. Terms XMIN and XMAX are constants which correspond to the plus and minus full-scale
excursions of the pen. The recorder output is scaled at ± 10 volts full scale. The output voltage that drives the
recorder is determined by the equation

[X - XMIN] [] X (Recorder) = [XMAX _ XMIN (20) - 10 Modulo XMAX - XMIN

Oscilloscope Display

OUT SCOPE, X, XMIN, XMAX, Y, YMIN, YMAX

The first variable X corresponds to the horizontal axis; the second variable Y corresponds to the vertical axis. The
coordinate (XMIN, YMIN) is in the lower left corner and (XMAX, YMAX) is in the upper right corner of the display
tube. The X and Y presented to the oscilloscope are limited to .

XMIN ~ X < XMAX

YMIN ~ Y < YMAX

in which XMIN, XMAX, YMIN, and YMAX must be constants.

OUT SCOPE, Y, YMIN, YMAX

This statement is analogous to the previous OUT SCOPE, except that the horizontal axis is driven by time, incremented
once each frame time. One sweep from left to right across the display tube is repeated for each 1,024 frame times.
It should be noted that the scaling of both X and Y corresponds to the maximum and minimum designations, as indi­
cated in the strip chart recorder discussion above.

Decimal Display

OUT DISPLAY, i, X

Term i must be 1 ~ i ~ 7, corresponding to one of the seven display register switches. If display switch i is set,
X will be displayed. The variable X is displayed in the form

± X.XXX±EE

in which the displayed ±EE is limited to ±39.

2-14

3. DES-l CODING FORMS

STANDARD FORM

A DES-1 program is written as a series of statements on coding sheets, and is punched on cards for entry to the com­
puter. The coding sheet on which the statements are written provides a standard format for punching input cards.
A sample DES coding form is shown in Figure 3 on the following page.

The operator statement composes the main element of a DES-l program; the statement has the form:

Block Number

n

Operator

OP

Block Input and Output

X, Z, . . • = y

in which n is the block number (a decimal integer of five or fewer digits) referring to blocks in the problem block
diagram. The block number, n, is written in columns 1 through 6 of the coding form. The operator, OP, written
in columns 8 through 14, is the block operator mnemonic. Terms X, Z, . . . compose the collection of block
inputs to the DES operator. The inputs are separated by commas and are written in columns 16 through 72 of the
form.

The symbol "=" separates the block inputs from the block output.

The term "Y" written after the "=" is the block output.

If so desired, the block output name (and 11=11) maybe omitted. In that case, any reference made to the output of
the operator must be written as [n1, in which n is the block number.

Any non-blank character written in column 7 denotes the continuation of the statement from the previous line. Con­
tinued information begins in column 16.

Comments may be inserted into DES-1 programs to describe the problem and the coded solution. Column 1 of each
comment line must contain an asterisk (*). Comments are printed in conjunction with DES-1 language listings, but
generate no internal instructions.

Alphanumeric identification tags can be inserted in columns 73 through 80.

FREE FORM

When the specified column restrictions are complied with, writing on the DES-1 coding form is free form with
reference to inserted blanks 0 For example, the name XDOT can be written equivalently as:

X DOT

XD OT

XDO T

With this free form, such names as JET CONTROL are a convenience 0 Since only the first seven non-blank charac­
ters distinguish names, the DES-1 Compiler uses the name JETCONT in its internal name lists 0 For example, AIR­
CRAFT POSITION and AIRCRAFT ALTITUDE are compiled as the same name (i .e 0, AIRCRAFT).

3-1

W
I

"-> PROBLEM - ________ _

PROGRAMMER ---------

BLOCK
OPERATOR NUMBER , J 10 20 2J

I I

I I ,
I ,

I 1 I

I I ,
I I I

I I I

I I ,
, I I

I r

I I ,
I

I I I

I I

I ,
I

I I

I I

I I

I ,
I I

...

r I { I
...

.::.
r :'T I

'i.·, I

r T I

1S1'·lss
SCIENTIFIC DATA SYSTEMS-

DES CODING FORM
n Identification 10
, t i , , , , • ,

INPUTS AND OUTPUTS
• II 40 45 , , I I I

I I I I I

I I I I I

I I I I 1 I

, I r I ,
I I I I I

, I I I I

I , I I I

I I 1 , I

, I , I I I

I , , , I

I I I. I I

, I I I' I

I I I I I

I I I I I

I I I , I.

, , I ,
I I I I I

I I I I I

1 1 I I I

I t I t I

1 I I I I

1 I I I I

I 1 , I I

'.
1 1 I 1 I

Figure 3. DES Coding Form

PAGE ___ _ OF ___ _

DATE

50 55 60 .. 70 n , I I 1

T I I I I

I 1 I I

I I I , I

I I I , T

I , I I I

, , I I I

T I I r I

, , I I I

I I I I I

I I I I

I I I I I

I -, 1 I I

I I I T ,
, I I I ,
T I I ,
I I. , ,

I

-r -, I I I

I I I T I

I I I T I

I I I r I

1 I I T I

1 I I I 1

1 I r I I

I -I I T r

SDS-E-356~

4. INTEGRATION

The electronic integrators of an analog computer perform Riemann integration, subject to inherent equi pment errors.
The integral is generated as a continuous function of time. By contrast, a digital computer like the DES-1 does not
perform continuous integration. Integration, as well as other operations, is calcu lated at discrete values of time.
The interval between successive discrete values is termed "frame time". *

The integration process can be represented by anyone of several formulas. The formulas calculate the integral at
the next value of time, based on a weighted sum of past values of the integral, and some of its derivatives at present
and past values of time. Thus, numerical integration formulas predict the integral value ahead one frame time, each
time the values are processed. This prediction becomes more accurate as the frame time interval, .6T, decreases.

The smaller .6 T becomes, however, the larger becomes the number of frames per unit of time and the longer the time
required to solve the problem. Generally, the user wishes to maximize ..6T, consistent with problem accuracy require­
ments.

Two basic types of integration formula are used in the DES-1. The first type is a single-pass formula that updates the
integral based on present and past values of the derivatives. This type consists of INTl(Euler}, INT2 (trapezoidal),
INT4 (four-point predictor) and INT4C (four-point corrector). The second is a two-pass (or more) formula in which
the derivatives are evaluated more than once each frame time. This type comprises AM (Adams-Moulton) and RKG
(Runge-Kutta-Gill). A third multi-pass system, called AMC (Adams-Moulton Checking), combines AM arid RKG
with ad justable time increments based upon local error estimates.

Multi-pass integration methods require the Compiler to treat all integration operators of a given kind as a simultaneous
set of equations. This system of equations, together with derivative calculations, is then treated in a simu Itaneous
manner. The first integrator statement of the system designates the start of the system, and the CaNT statement
designates the end of the system to the Compi ler. Other methods of indi eating the end of a system of equations are
the statements END, RATE 1, RATE 2, and use of a different integration operator.

For example, consider the first order system of differential equations:

which can be written in DES-l code as

AM

SUM

AM

SUM

CaNT

X Y+A .
Y -X - Y

XDOT

Y, A

X

XDOT

YDOT = Y

-X, -Y = YDOT

This system of equations is initiated by the first integrator operator and is terminated by the statement, CaNT. The
Compiler places the equations of the second and fourth lines into a derivative subroutine, solved .twice during each
frame time for Adams-Moulton integration. The second integrator statement could appear anywhere between the
first integrator statement and CaNT, or it cou Id appear first.

Integrator outputs are updated each time the computer executes the system of equations. The new integrator outputs
are first updated using initial derivative values in the system, and then the derivative subroutines are solved to update
derivative variables. This requires that derivatives are defined before the system is executed. The initial values of
the derivatives are automatically computed in the RESET mode by solving all derivative subroutines before going to
the READY mode. It should be noted that a GOTO OPERATE or GOTO HOLD statement bypasses the initial deriva­
tive computations if either of these statements appears in the program before the RATE 1 statement.

*In the I iterature, the common notation for frame time is h or .6 T •

4-1

INITIALIZING INTEGRATOR OPERATORS

Digital integration requires initialization of not only the output variables but also present and past values of the deri­
vative. Euler and Runge-Kutta-Gill integration require only the present derivative. Four-point predictor, four-point
corrector, and Adams-Moulton integration require, in addition, three past values of the derivative.

Besides reserving six locations during compilation for every variable appearing in the INTVAR list, all present and
past values of the derivatives are initialized to zero every time the statement is encountered in the program. The
INTVAR statement is usually placed after INITIAL in a DES-1 program.

As previously indicated, the present values of the derivatives are obtained in RESET when all of the derivative sub­
routines are solved. Past values of the derivatives may be set by the LOADI statement. For example, YDOT in the
previous example can be initialized by the statement

LOADI YDOT, A 1, A2, A3, A4

which is equivalent to

Y (t) = A1
o

Y (t - 6 T) = A2
o

Y (t 26T) A3
o

Y (t 36T) A4
o

Two additional cells are reserved by the LOADI operator but are not initialized to zero. If YDOT is included in the
INTVAR list, then all cells are initialized to zero before the LOADI operCitor is executed.

When the computer goes to the READY mode, the initial value of YDOT is changed according to the YDOT equation
in the derivative subroutine. For the above example, XDOT is set equal to Y + A.

All integrator output variables must be initialized before they are used in the integration system of equations. For
most programs, this is done in RESET.

The entire program for the above example is restated for the fo Ilowing initial conditions:

A = 0 X (-26 T) 0 Y (-6T) = -1

X (0) 1 X (-36T) 0 Y (-26T) -1

X (0) 0 Y (0) 0- Y (-36T) -1

X (-6T) 0 Y (0) -1

Adams-Moulton integration is again used and 6T is set from the Console.

INITIAL

INTVAR XDOT, YDOT

LOADI YDOT, 0, -1, -1, -1

A 0

X

Y 0

RATE 1

AM XDOT X

AM YDOT Y

SUM Y, A = XDOT

SUM -X, -Y = YDOT

END

4-2

To review the operation of integration in connection with this example:

• INTVAR reserves six locations each for XDOT and YDOT. It also sets these locations to zero.

•

•
•

•

YDOT is initialized by LOAD!. No LOADI is needed for XDOT, since the initial conditions are
zero in this example.

Both X and Yare set to the proper initial values in RESET.

Before the READY mode is entered, the initial values of XDOT and YDOT are computed (e.g.,
Y (0) is set to - 1) •

The integration system of equations is terminated by END.

When multiple inputs to one of the integration operators INT2, INT4, INT4C, or AM are used, a special method must
be used if the user desires to initialize integration input variables in the RESET mode.

In the integration operator

Xl---ooot

X2---..-t
Y = f (Xl + X2+ X3)dt

X3---000t

the accumulation of inputs is performed in some area of memory not named by the user. Therefore, the user cannot
initial ize this area. To avoid this problem, the user writes the integration as

Xl---ooot
YDOT y = f (YDOT~ dt

X2---..-t

X3---..-t

so he can directly initialize the accumulated sum, YDOT, which is the actual integration input, as discussed in the
prev ious paragraphs.

AMC ADAMS-MOULTON CHECK INTEGRATION OPERATOR

Of the seven available integration schemes, the AMC integration operator is unique in that the solution error is con­
trolled and held within specified bounds. During its use, REAL TIME, FRAME TIME, and MULTIPLE on the Console
cease to function. Each time that an integration is performed, an approximate error term is evaluated and checked
against the specified boundary. If the error term exceeds its limits, the D.T used in the integration formula is changed,
and that integration step is repeated. Since D. T is varied from frame to frame during computation, AMC uses the D. T
supplied with the integration operator, and not the console FRAME TIME. AMC is not a real-time integration for­
mula, and the RATE2 capability of the DES-l is not allowed.

AMC must be initialized during RESET by inclusion of all integration input and output variables in the INTVAR state­
ment. AMC uses the Adams-Moulton integration method with Runge-Kutta-Gill calculations to determine the initial
conditions (i.e., when OPERATE is entered, four successive variable and derivative values are calculated for each
integration variable for the first four frame times, using Runge-Kutta-Gi II). AM with error checking is used from
this point.

The AMC operator form is

AMC YDOT = Y, EMIN, EMAX, K, HMIN, HMAX

where YDOT is the integrator input, Y is the integrator output, EMIN is the smallest allowable error, EMAX is the
largest allowable error, K is an error control constant, HMIN is the smallest D.T allowed, and HMAX is the largest
D.T allowed

4-3

When AMC integration is used, no other integration method can be used in the problem. The first AMC operator of
a system must be of the form given in the preceding paragraph. Subsequent AMC operators need only supply the
bou;)ds (for EMIN, EMAX, and K) if the user desires a change. HMIN and HMAX cannot be altered after they are
once defined in the first AMC statement.

A combination of error criteria is used in AMC: absolute and relative. The criteria are defined by

Absolute Error Output.
I

Relative Error Output. =
I

Y. (c) _ Y. (p)
I I

K.
I

AE.
I

= RE.
I

The error control constant, K, specifies which of the types of error, absolute or relative, is used in a given situation.
If

absolute error is used, and if

relative error is used. The error check is made in the following manner:

1. Is E. ~ EMAX for any i at this integration?
I

Yes.· Halve the integration interval (.6.T) and check if the new.6.T ~HMIN; if so, re-execute
the current integration. If the new .6. T < HMIN, see "Error Message ll below.

No. .6. T remains unchanged and the routine goes to the next iteration.

2 •. Is E. < EMIN. for all i?
I I

Yes. Double the interval size and if the new.6.T ~ HMAX, re-execute the current integration;
if the new .6. T > HMAX, re-execute the integration using .6. T = HMAX.

No. .6. T remains the same and the routine goes to the next iteration.

ERROR MESSAGE

If the new .6. T is less than HMIN, an error message

REQUIRED STEP SIZE BELOW HMIN

combined with the current time accumulated, is typed out. A buzzer is sounded and sense switch 8 on the DES-l
Console is tested. If sense switch 8 is set, the DES-l enters the HOLD mode at the completion of the current frame.
If sense switch 8 is not set, the problem proceeds with .6. T = HMIN, regard less of the error. When the error recovers
to within the specified limits, a message

ERROR HAS RECOVERED

and the current accumulated time, are typed out. The procedure repeats only if .6. T again becomes less than HMIN
after the error recovery.

4-4

5. FUNCTION GENERATION.

The user can define functions of one, two, and three variables at discrete, arbitrari Iy placed values of the independent
variable. When a function is called in a program, it is evaluated by means of I inear interpolation of the user-suppl ied
tabu lar data. All such user-defined functions are evaluated in fixed-point arithmetic.

Data for function generation is loaded prior to the program that uses it. The first card of the input is a Data Card. It
is followed by the Name Card of the first function and the tabular data defining the function. Succeeding functions
are loaded in an identical manner. The laSt Input Data Card hCl£ an asterisk in column 1, terminating the loading of
function data. An End Data Card can also be used.

INPUT CARDS

The table below shows the data entry for each type of input card, in the order of loading.

CARD TYPE EXAMPLE

Data Card 8

DATA

Name Card

*2 MOON, VARX, 30, VARY, 26

Input Data Cards

DISCRETE DATA POINTS. • •

Data End Card

*

COMMENTS

The II DATA" must be punched as four contiguous
characters starting in column 8.

Column 1 contains an asterisk (*). COIUIiIl. L con­
tains the number of variables (1, 2, or 3). The '
name of the function is next, followed by the names
of each variable and the number of their discrete
points. The names can be any length, but only the
first seven characters are significant. The first ~,'::;
character of the name must be alphabetic. Commas"
are separators. Blanks are ignored after co lumn 2.

These cards contain all of the discrete data points
of the independent variables, followed by the dis­
crete data points of the functions. Numbers are
separated by commas. Each card can contain as
many numbers as desired, placed between columns
1 and 72. Numbers can be: signed or unsigned inte­
gers, 11 digits or less; signed or unsigned numbers
with power-of-10 exponent (using E notation); or
signed or unsigned fractions.

The Data End Card must have an asterisk (*) in
column 1. The asterisk can be followed by com­
ments if the user desires.

5-1

DATA INPUT FORMAT

The data format for one, two, and three independent variables is described in the following paragraphs.

FUNCTION OF ONE INDEPENDENT VARIABLE

The data for a function of one variable (X) named BARD would be set up as indicated in Figure 4 (the initial DATA
card is assumed.

••• I BARD l' BARD n- n

X
n

, BARD
1
, BARD

2
, •..

Figure 4. Data Setup for One Independent Variable

In the figure, n is the nu~ber of data points, the Xi are the discrete. independent variable data points, and the BARD.
are the corresponding dependent variable data points. I

For example, the card setup for inputting CNA (MACH) with three data points

CNA (1) 0.025

CNA (2) 0.05

CNA (3) 0.075

could be

*1 CNA, MACH, 3

1, 2, 3, . .025, .05, .075

5-2

FUNCTION OF TWO INDEPENDENT VARIABLES

The data for a function of two variables named B (X, Y) for example is set up in the manner indicated in Figure 5 •

• " B l' B n- m nm

B32, ' . ,

Figure 5. Dato Setup for Two Independent Variables

For example, the card setup for inputting CNA (MACH, ALPHA) with n = 2, m = 3,

CNA (1, 0) 1.2

CNA (2, 0) 1.3

CNA (1, .05) 1.4

CNA (2, .05) 1.5

CNA (1, .1) 1.6

CNA (2, .1) 1.7

could be

*2 CNA, MACH, 2, ALPHA, 3

1, 2, 0, .05, • 1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7

5-3

FUNCTION OF THREE INDEPENDENT VARIABLES

The data for a function of three variables, say B (X, Y, Z), is set up as indicated in Figure 6 •

• • • , B
nme

B2 , ••• me

B212, ...

. . . , B n 11 ' B 12 P B221 , . . .

n, Y, m, Z, e

Figure 6. Data Setup for Three Independent Variables

For example, the card setup for inputting CNA (MACH, ALPHA, BETA) with n = 2, m 2, e

could be

5-4

CNA (1, 0, 1.5) a
CNA (2, 0, 1.5) -5.6

CNA (1, .1, 1.5) .02

CNA (2, · 1, 1.5) 10

CNA (1, 0, 1.6) -2.6

CNA (2, 0, 1.6) 3. 14

CNA (1, .1, 1.6) 7.5

CNA (2, • 1, 1.6) 1000

CNA (1, 0, 1.7) -5

CNA (2, 0, 1.7) a
CNA (1, • 1, 1.7)

CNA (2, .1, 1.7) a

*3 CNA, MACH, 2, ALPHA, 2, BETA, 3

1, 2, 0, .1, 1.5, 1.6, 1.7, 0, -5,.6, .02, 10,

-2.6, 3.14, 7.5, 1000, -5, 0, 1, a

3

,\

I

6. DES -1 CONTROL CONSOLE

The DES-l Console, shown in Figure 7 on the following page, provides a rapid and easy means for on-line monitoring
and control of problem solutions.

OPERATING MODES

The DES-l operating modes, as indicated on the front panel of the Console, are:

SET UP

RESET

READY

HOLD

SINGLE FRAME

OPERATE

With the exception of the READY mode, these modes can be controlled from backlighted pushbuttons located on the
Console. The diagram below shows what transitions are typical from one mode to another. For example, from the
OPERATE mode, the typical transitions are to SET UP, to RESET, and to HOLD.

Type I/O

• .. 0 SET UP:J

0 RESET

Type I/O

• .. 0 READY

0 OPERATE{

Type I/O

{ • -0 HOLD

0 SINGLE
FRAME

SET UP

In the SET UP mode, the DES"-l program is read into the computer, compiled, and loaded under control of the DES-l
Executive Program. After initial problem setup, the operator returns to this mode only to make major changes in the
program or to start another problem.

The RESET mode is used to set problem initial conditions. The initial conditions can be either constants or programmed
solutions to equations, read-in as part of the problem. When all initial conditions have been established, the program
transfers automatically to the READY mode.

READY

The READY mode is entered only via the RESET mode, and is not controllable from the Console • The READY mode
I ight informs the operator that all RESET operations have been completed and that the DES-l can be placed in a
different mode.

6-1

- 2.4 3 5 + 0 4·
_------- DISPLAY SELECTOR --------

00000000
_---------- SENSE -------------

mmmGGGrnrrJ
POTENTIOMETER 3

POTENlIOMETER 2

~\
T

POTENlIOMETER 1

Figure 7. DES-l Co I nso e

_FRAME-

[t~"fLJ HOlD

n=:::i
tt=:::J

___ ARITHMElIC---

~
~

POTENTIOMETER 4

2:»£&-1

&I'·IS
SCIENTIFIC DATA SYSTEMS

OPERATE

OPERATE is the mode in which the problem is solved. It can be entered manually from either the READY mode or
the H OLD mode.

HOLD

The HOLD mode can be entered manually from the OPERATE mode. It is entered automatically from the SINGLE
FRAME mode, discussed below. After the HOLD button is pressed, the computer completes the current frame compu­
tation before transferring to the HOLD mode. All computation then halts and each variable retains its value, unless
changed by the operator. Typical operations in the HOLD mode are readout of variables or typed-in changes to
variables via the typewriter, manual resetting of potentiometers for alteration of parameter coefficients, and posi­
tioning of sense switches.

The SINGLE FRAME mode is used primarily for problem checking. It is entered from the READY mode or the HOLD
mode. When the SINGLE FRAME button is pressed, computations are performed only for one complete frame of the
problem. If the multiple-rate feature is used, N RATE 1 frames and one RATE2 frame are performed. Upon completion
of these calculations, the computer returns automatically to the HOLD mode •

. FRAME TIME

Frame-time control allows the user to specify the value of the time increment, .6.T, in the integration equations and
delay operator. A set of thumbwheel switches allows a frame-time setting from 100 microseconds to 99.9999 seconds
in intervals of 100 microseconds. The numerical value of each switch position appears on the thumbwheel. The
programmer designates the time interval (N.6. T) for the RATE2 calculations, by setting the MULTIPLE thumbwheel
swi tches in the range from 1 to 99.

When the computer operates in a real-time environment, the time-dependent operations are synchronized by a real­
time clock contained within the DES-l Console. The period of the clock is controlled by the frame-time setting.
For this operating mode, the REAL TIME pushbutton switch is set to ON, indicated by a backlight. The real-time
clock controls the start of each frame of computation.

When the REAL TIME pushbutton switch is set to OFF, the computer performs its frame calculations without control
from the clock.

DIGITAL DISPLAY

The DIGITAL DISPLAY shows numbers as four decimal digits plus sign, and a two-digit decimal exponent plus sign.
The range of numbers displayed is ±9. 999 x 1 o±39.

DISPLAY SELECT

DISPLAY SELECT consists of a set of eight pushbutton switches. Seven of the eight positions are program-assignable
to problem variables. When one of these seven buttons is pressed, the variable assigned to that position is displayed
on the digital display. The remaining position, IDLE TIME, indicates to the programmer the fraction of time in each
frame that the computer is idle during real-time operation.

IDLE TIME

IDLE TIME is displayed only at the end of a SINGLE FRAME cycle. In real-time operation, and with no RATE2
calculations taking place, the operator uses the IDLE TIME feature in the following way:

1 • He presses the IDLE TIME button.

2. He presses the SINGLE FRAME button.

The DES-l goes through the frame calculations one time, and then displays on the DIGITAL DISPLAY the ratio of idle
time during one frame.

6-3

This is determined by

IDLE TIME = Time computer is idle
.6.T

When the DES-l system is operating in real time with RATEl and RATE2 calculations, the IDLE TIME feature is used
in the following manner by the operator:

1 • He presses the IDLE TIME button.

2. He presses the SINGLE FRAME button.

The DES-l goes through the RATE 1 calcu lations N times (in which N is the value set in MULTIPLE), and the RATE2
calculations once. Then it displays the average id Ie time for one frame time, determined by

IDLE TIME = Time computer is idle over N frame times
N.6.T

POTENTIOMETERS

There are four potentiometers that can be used to set coefficients or initial conditions. If an IN POT operator is inclu­
ded within the RATE 1 or RATE2 part of the program, the computer samples the potentiometer setting once during each
primary or secondary frame. If the potentiometer is in an ambiguous position, the last value read is used unti I a new
setting can be read. Potentiometer values can also be read in during the INITIAL part of the problem. The poten­
tiometer setting can be observed on the potentiometer dial.

SEIISE SWITCHES
There are eight sense switches on the CONSOLE, each program-assignable via the SWITCH statement. These switches
permit the user to select program alternatives. They can be placed in either position during any mode.

OYER FLOW

Two types of overflow, arithmetic and frame time, are displayed on the console.

ARITHMETIC OVERFLOW

When the ARITHMETIC HOLD button is on and an arithmetic overflow occurs, the DES-l enters the HOLD mode, turns
on the ARITHMETIC OVERFLOW light, an~ sounds a buzzer. Pressing the ARITHMETIC OVERFLOW light turns off the
buzzer. Pressing any mode button turns both the light and buzzer off.

When the ARITHMETIC HOLD button is off and an arithmetic overflow occurs, the DES-l sounds the buzzer, blinks
the light, and unconditionally executes the next instruction in the program. If the overflow occurs due to a subroutine
error exit, the DES-l buzzes, blinks, and continues computation, using the previous value obtained from the subroutine
calculation.

FRAME TIME OVERFLOW

Frame time overflow can occur only if the REAL TIME switch is on. Should an overflow occur , the problem either stops
or continues, depending on the position of the OVERFLOW HOLD console switch. If the OVERFLOW HOLD switch is
off, the computer completes the current frame computations and immediately proceeds to the next frame computation.
From that time on, the problem is no longer synchronized. If HOLD is on, the computer finishes the current frame
calculations and enters the HOLD mode. In either case, the FRAME OVERFLOW light is turned on and the buzzer
sounds. If the system is in HOLD, the I ight stays on. Press ing any mode button turns the I ight and buzzer off. Pres­
sing the FRAME OVERFLOW light turns the buzzer off.

CARD INPUT

Pressing the CARD INPUT button turns the backlight on and causes cards to be selected as the control code input source.
After the CARD INPUT button is reset, control can be returned to the typewriter by reading a dummy card. The pri­
mary purpose of the CARD INPUT button is to allow all control information to be entered via cards. This permits
batch processing of several programs without operator intervention. It should be noted that the status of CARD INPUT
refers only to control codes, and has no effect on the reading of data or program cards. .

6-4

7. OPERATOR CONTROL CODES

Control codes allow the user to direct the DES-1 Executive Program in the compilation and manipulation of his pro­
gram. The codes can be input to the DES-l Executive via the card reader or typewriter. To select the card reader,
the operator sets the CARD INPUT button to the lighted, ON position. To select the typewriter, he sets this button
to OFF. The control codes and their functions are listed in the following table.

Control Code Function

SC Compile source language from cards

SM Compile source language from magnetic tape

RT Read the translated (compi led) language from
tape to memory

DB Write binary dump of memory onto tape

RB Read binary dump from tape to memory

UC Update source language from cards

UT Update source language from typewriter

TI Variable Input

TO Variable Output

R Branch to Reset Mode

0 Branch to Operate

F Branch to Single-Frame

H Branch to HOLD

S Branch to SET UP

If an inval id control code, for example XX, is input, the following message is typed:

XX IS AN IMPROPER CONTROL CODE

CONTROL CODES

The following paragraphs describe the use of control codes in directing the program.

SC

The Executive Program reads the Compiler from the System tape (tape 0) and instructs the Compiler to read the DES-1
source language program from the cards. Control is then transferred to the Compiler. After the Compiler has written
the source language on tape 2, and the compi led language on tape 1, control is returned to the Executive Program
which loads the compiled program into memory.

SM

The Executive Program reads the Compiler from the System tape and instructs the Compiler to read the DES-1 source
language program from tape 2. Control is then transferred to the Compiler. After the Compiler has written the com­
piled language on tape 1, it returns control to the Executive Program which loads the compiled program into memory.

7-1

RT

.The compiled program on tape 1 is read into memory. Both the mathematical subroutines used by this program, and
the "run-time" part of the DES Executive Program, are read into memory from the system tape. Run time refers to
the part of the Executive that is resident during execution of the DES-l programs.

DB

A binary dump of memory is written on tape 1. Both the entire DES-1 program, and that part of the Executive Pro­
gram containing information of the current DES-l program in memory, are dumped on tape 1 after the binary com­
piled program. Thus, tape 1 contains both the binary object program and the core dump.

RB

The binary memory dump on tape 1 is loaded into memory. Control codes DB and RB make it possible to stop a pro­
gram in the middle, save it on tape, and at a later time reload and continue as if there had been no interruption.

UC and UT

The UC and UT update functions perform in exactly the same manner except that UC modifications are read from
cards, and UT modifications are read from the typewriter. The CARD INPUT button has no effect on either of these
two control functions.

The source program, tape 2, and tape 1 are used in the update or edit phase of the Executive routine. The first card
(typed I ine) after UC (UT) identifies the sequence number in the program where a change is to be made. The sequence
number is not the block number in the source code. It is the serial number assigned by the Compiler and printed in
the for left column of the program listing. The format of the identifier is:

A n
1

or

where

A is in column 1 (first character typed on a I ine), a blank is in column 2 and is followed by ei ther one program
sequence number or two program sequence numbers separated by a dash.

If the identifier card is of the form A n
1
, then the first n 1 statements are copied from tape 2 to tape 1. However,

if the identifier card is of the form A n - n2' then the first n1 - 1 statements are copied from tape 2 onto tape 1
and statements n

1
to n

2
inclusive are de1eted. At this point, either another identifier can be given to the Executive

Program or new program statements can be input to the source program and copied onto tape 1, following the unaltered
part of the program.

The second identifier card read by the Executive Program causes an additional part of the original source program to
be copied onto tape 1. Other additions or deletions can be added to tape 1 in this way.

Termination of the updated phase is accomplished by reading a card with Z in column 1 for UC, or by typing a Z for
UT. This instructs the Executive routine to copy the remaining part of tape 2 onto tape 1. The updated program now
on tape 1 is copied back onto tape 2, thus replacing the old source program. If no errors are introduced in the
update phase, the SM procedure is followed.

7-2

The following example illustrates the update procedure.

UC

A 10 - 12

A 14 - 14

x

A 16

SUM X, 1 X

z

This sequence deletes statements 10, 11, 12 and 14, inserts X
after line 16. The character Z terminates the update routine.

1 in place of line 14, and inserts SUM X, 1

A 'program I isting showing the new assignment of sequence numbers to each I ine of the source program shou Id be
printed. This I isting is necessary if further corrections are to be made.

I!.

x

The function of this code is to set internal variables to specified values. The format for the variables and values is as
follows:

NAME1 = .xxxExx, NAME2 = xx.xxxx, • •• NAMEn = xxxxx, /

Variable names and numerical values are of standard DES-1 format. Variable names are terminated by an equal sign,
and numerical values are terminated by a comma. Termination of inputs is specified by a slash (I) for cards or by a
carriage return for the typewriter. All blanks are ignored on both the typewriter and cards. If a typing error occurs,
a typed dollar sign ($) deletes the entry back to the last comma typed. There is no need to recompile after enteri ng
numbers with TI.

TO

The function of this code is to type out the value of spec ified variables. A variable name is terminated by a comma.
The end of variable output is specified by a slash (I) for cards or a carriage return for the typewriter. All blanks are
ignored, and a dollar sign ($) deletes all typed characters on a line.

MODE CONTROL CODES

The control codes, R, 5, F, 0, and H, are mode control codes. They enable the operator to change mode via the
typewriter or card reader as well as via the Console buttons. In both the READY and HOLD modes, control codes are
read and the desired function or transfers performed.

R

An R causes a branch to the RESET mode.

o

An 0 causes a branch to the OPERATE mode.

F

An F causes a branch to the SINGLE FRAME mode.

7-3

S

Ar. S causes a branch to the SET UP mode.

H

An H causes a branch to the HOLD mode.

CONTROL CODE FORMAT

The format for the control code consists of one or two characters followed by a carriage return for the typewriter, or
a slash V) for cards. All blanks are ignored. If an error is made when a control code is typed, a typed dollar sign
($) clears all preceeding characters. Only one code and a slash are read from each card. All blank columns are
ignored.

7-4

8. OPERATING THE DES-l

This section presents detai led instructions for operating the DES-l. Error messages given by the DES-l are also speci­
fied.

TO START

Place the system tape on tape unit O. Tapes must also be mounted on units 1 and 2. From the SDS 9300 Console, the
following functions are performed:

1. With the computer in IDLE, RESET is pressed. This clears the instruction register and program counter.

2. RUN is pressed.

3. The magnetic tape LOAD switch is pressed. Magnetic tape 0, on channel A, is activated.

The foregoing procedure loads the basic DES-l Executive Program, and the DES-l goes to the SET UP mode. At this
time, one of the codes - RT, RB, SC, SM, UT, or UC - can be input from cards or typewriter, depending on
the setting of the CARD IN PUT button. Inputting any other control code causes the error note

XX IS AN IMPROPER CONTROL CODE

TO COMPILE A PROGRAM

For program compi lation the SC control code must be entered for a source program on cards, or SM must be entered for
a source program on magnetic tape unit 2. The Compiler reads the source language, places it on tape unit 2 for the SC
code, compiles the object program, and writes the compiled program on tape unit 1. If no errors occur, the Executive
loads the compi led program.

If the message

EOM READ ON SYSTEM TAPE (UNIT 0)

occurs, an error has been made in loading the Compi ler from the system tape into memory. The DES-1 rewinds the sys­
tem tape, returns to the beginning of the SET UP mode, and waits for a control code input from the typewriter. If a
compiling error occurs, one of the following error indicators is output concurrently with the corresponding statement
in the DES-1 program.

ER01 More data is present than has been specified by the dimensions of the function name card.

ER02 Not enough data is given as specified by the dimensions of the function name card.

ER03 Constants appear in INTV AR statement.

ER04 The function name and its data are not given prior to the FUN statement.

ER05 The statement is not complete.

ER06 Unnecessary continuation cards are given.

ER07 The block number contains non-digit characters.

ERoa This is a doubly defined block number.

ER09 This is a GOTO non-block number and not one of the modes.

ER 1 0 The DES operator is not found.

ER 11 There are construction errors such as undefined operators, operators in an algebra,ic
equation, or operators in the variable field of a DES-1 statement.

ER12 An unnecessary CaNT statement is included.

ER 13 Not enough storage exists for the problem.

ER 14 The input/output device is not found.

8-1

If any of these errors are detected, the corresponding error indicator ERXX is printed out, and the machine language
printout is suppressed, regardless of sense switch control (see the following paragraph). If error 13 is detected, an
error message is typed out, compiling is terminated, and control passes to the Executive Program as in the preceding
paragraph. If any other error is detected, the statement containing the error is skipped and compilation continues.
When compi lation is completed, the binary program is not loaded into memory, and the DES-l returns to the SET UP
mode.

During compilation, any combination o(the source language, object code, and function data can be listed on the line
printer for a hard-copy record of the program. These options are controlled by sense switches on the 9300 Console, as
shown in the table below.

Sense Switch ON OFF

1 Source language is listed No listing

2 Compiled 9300 machine language is listed No listing

3 Function generation data is listed No listing

: TO LO,AD A COMPILED PROGRAM
A program is loaded automatically after compilation if no errors are made in the source program. To load a previously
compiled program from tape 1, an RT code can be used.

The basic DES-l Executive Program performs the following functions:

• It loads a compiled DES-l program from tape unit 1.

• It loads the subroutine loader from the system tape, which in turn loads the mathematical subroutines
needed for this DES- 1 program.

• It loads the run-time part of the DES-1 Executive Program, which controls the execution of a DES-1
program.

If no errors are detected during loading, any control code may now be input. Since the DES-l program has been
loaded and the Executive Program is in memory, the computer may be placed in the RESET mode by the console button.

Any of the following errors produce the corresponding error typeout:

1. ERROR LOADING DES PROGRAM FROM TAPE 1

2. DES-l PROGRAM TOO LARGE FOR MEMORY

3. BAD TAPE-N

4. EOF READ ON SYSTEM TAPE (UNIT 0)

5. MISSING DEFINITIONS

Three of these errors indicate either bad magnetic tapes or malfunctioning tape units. Error 1 refers to tape unit 1,
error 4 refers to tape unit 0, and error 3 indicates a bad tape unit. Error 2 means that there were not enough cells
left in memory to load the needed subroutines. Error 5 indicates missing subroutines called in the source language.

Detection of any of the above errors returns the DES-1 to the SET UP mode.

CONTINUATION OF PREVIOUS EXECUTION

Condition: The DES-1 is in SET UP, with a binary, memory-dumped program on magnetic tape unit 1.

To continue a previous execution, RB is input. The Executive Program loads the program from tape unit 1. If no
errors occur during loading, any control code can then be input.

8-2

If the error message

EOF READ ON TAPE 1 (BINARY MEMORY DUMP)

occurs, a tape reading error on unit 1 is indicated. The DES-1 then returns to the SET UP mode.

DUMPING A RESTARTABLE DES-l PROGRAM

Condition: The DES-1 is in SET UP.

To dump a restartable program, DB is input. If there is no file protect ring on tape unit 1, the following message is
typed out:

PUT FILE PROTECT RING IN TAPE 1

After the tape is written, the DES-1 returns to the SET UP mode.

TO UPDATE A PROGRAM

Condition: The DES-l is in SET UP.

Codes UT and UC are input for updating from the typewriter and for updating from cards, respectively. Following
input of the control code, the Executive Program loads the DES-l Update program from the system tape. Update reads
the new inputs from cards or from the typewriter I updates the source program, and writes the updated source program
on tape unit 2. If there are no errors, Update then transfers to the SM function. Update uses tape unit 1 as a tempo­
rary storage medium and destroys the previously compiled machine language program. Tape units 1 and 2, before
com pi lation begins, contain duplicate copies of the source program.

Possible errors are:

•

•

•

•

PUT FILE PROTECT RING IN TAPE 1

The DES-1 returns to the SET UP mode after this error.

ALTER NUMBER TOO LARGE

This means that a statement number has been referred to that is greater than the number of source
language statements on tape.

MODIFICATIONS OUT OF ORDER

Statement numbers must be referred to in strictly increasing order.

CARD NO. ERROR

This means that a statement number contained a non-numeric character.

After any of the last three errors, updating continues, but with the erroneous card omitted. Upon completion of the
update in which errors are detected, the same procedure is followed as for errors in RT.

GENERAL TAPE READING AND WRITING ERRORS

Three errors, which may occur at any time on any tape unit during reading or writing, are detected by tape writing
and tape reading routines. These errors are:

•

•

INSERT FILE PROTECT RING - UNIT N

N is the number of the unit on which writing is being attempted. A halt occurs after this error.
Inserting the ring and pressing IDLE and RUN on the 9300 Console causes writing to continue.

BAD TAPE ON UNIT N

N is the number of the unit on which writing is being attempted. A halt also occurs after this
error. Pressing IDLE and RUN causes control to be transferred to the SET UP mode if the DES-l
program has not been loaded, or to the HOLD mode if the program has been loaded.

8-3

• TAPE READING ERROR ON UNIT N

N is th~ unit on which the reading is being attempted. A halt also occurs after this error. Pressing
IDLE and RUN causes control tv be transferred, as with the bad tape error.

INPUT OR OUTPUT OF NUMERICAL VARIABLES

Condition: The DES-1 is in the SET UP, READY, or HOLD mode, and the compiled program has been loaded.

Control code TI is used to input numerical values, and TO is used to type out numerical values of block outputs and
symbol ic problem variables. Variables not given symbolic names may be referred to by their block numbers. For exam­
ple, the output of block number 137 wou Id be referred to as [137].

The following message is typed if ABCDEFG is not defined as a program variable:

VARIABLE ABCDEFG IS UNDEFINED

This error does not cause any halt or transfer.

A carriage return is required on the typewriter before a new control code can be typed. A slash is required for card
input of control codes.

Four internal variables can also be reached with TI or TO:

1. Frame Time, DELTA. If a value of DELTA is input with TI, then that value is used for all calculations
in a DES-1 program, rather than the frame time that is set on the DES-1 Console. In addition, it may
only be changed via the FRAME TIME switches after the compiled ob ject program is reloaded. If DELTA
is input via TI and the DES-1 is operating in the real-time mode, the real-time clock still generates
timing pulses to synchronize the frame rate, using the frame time set on the DES-1 Console.

2. Internal Clock Time, TIME.

3. RATE 1 Random Noise Generator, *1. This variable is the state of the UNIF and GAUSS random noise
generator located in the RATE 1 part of the problem. It is an 8-digit number that normally is set equal
to 00000000 but may be set via TI to any value, or typed out, to indicate the terminal condition of
the random generator. For example, assume the terminal condition of the random generator in RATE1
was read via TO as

TO

*1,

*1 = 0132160

and it is desired to start the noise generator at the same point when the problem is reloaded. The operator
then types

TI

*1 = 0132160

which sets the state of the generator at the same point as when the problem was terminated previously.
This is described in the discussion of UNIF and GAUSS operators in Section 2 of this manual.

4. RATE2 Random Noise Generator, *2. The use of this variable is similar to the RATE 1 variable, except
that the number is normally initialized to 13722021 and is the condition of UNIF and GAUSS in RATE2.

BREAKPOINT SWITCH 32 (PANIC BUTTON)

Breakpoint Switch 32 on the SDS 9300 Console is used as an unconditional return to the start of the SET UP mode.
Regardless of condition, during compilation, loading, or execution, Breakpoint Switch 32 causes an interrupt and
return to SET UP.

8-4

APPENDIX A
DES-l OPERATOR SYNTAX

LINE OPERATOR FUNCTION PERFORMED INPUT/OUTPUT RELATION

1 INITIAL First statement in Initial Program None

2 RATE 1 Last statement in Initial and first None
statement in RATE 1 Program

3 RATE2 First statement in RATE 2 and last None
statement in RATE 1

4 END Last statement in program None

5 CONT Terminates integration system of None
equations

6 INTVAR Xl ,X2, .•• XN Reserves six cells for Xl, X2, ••• XN ·None
and zeros cells when executed

7 LOADI X, N 1, N2 ..• NJ Reserves six cells for X and loads None
N 1, N2, ... NJ in cells when executed

8 LOADD X,Xl,X2, .•• XJ Simi lar to LOADI except used with None
DELAY operator

9 ARRA Y X(N), Y(M), . . . Reserves N cells for X and M cells for Y, None
clears cells when executed. - ..

10 SUM e l' e2,· .. e k = y Summation of K terms, e. a product* k
I Y = L: e.

i=l I

11 MUL e
l
, e

2
,· .. e

k
= y Product of k terms, e. k

a product* I
=TI y e.

i=l I

12 DIV e
1
, e

2
= y Division of e l by e2, lei a product* y =e

l
/e

2

13 INTl e l ,·· .en
= y Euler integration

14 IN T2 e 1 ,. • • en = y Trapezoidal integration

it n
15 INT4 e l ,· •• en = y Adams-Bashforth integration y = L: e. dt + Y

o i=l I
0

16 INT4C e l ,· .. en = y Interpolative Adams-Bashforth

17 AM e l ,· .• en = y Adams-Moulton Yo initialized in RESET*

18 RKG e l ,··· en = y Runge-Kutta-Gi II

19 AMC e 1 , •.. en = y Adams-Moulton self checking,
Runge-Kutta starting

20 RTP X1,X2 = Yl, Y2 Rectangu lar-to-po lar transformation Yl = V Xl *Xl + X2*X2
Y2 = ARC TAN Xl,IX2

21 PR T Xl, X2 = Y 1 , Y2 Polar-to-rectangular transformation Yl = Xl *COS X2
Y2 = Xl *SIN X2

*Symbol e. denotes a product expression Xl *X2*X2 •.. XN.
I I •

A-l

DES-l OPERATORSYNTAX (Continued)

LINE OPERATOR FUNCTION PERFORMED INPUT/OUTPUT RELATION

. 22 DELAY X,K = Y Delay of X by K samples Y(nT) = X(nT - KT)

23 ABS X = Y Absolute value Y =Ixl

24 DEAD Kl, K2, X = Y Dead Zone {X-Kl, X< Kl
Y= o , Kl ~ X ~ K2

X-K2, K2 < X

25 LIMIT K 1, K2, X = Y Limiter {Kl'X < Kl
Y= X ,Kl ~ X ~ K2

K2, K2 < X

26 STEP Xl,X2,X3,X4 = Y Bang-Bang Y= I X3,Xl (: X2
X4,X2 < Xl

27 MAX Xl,X2, ... XN = Y Store maximum XI in Y Y = MAX {Xl,X2, ••• XN}

28 MIN Xl,X2, ... XN = Y Store minimum XI in Y Y = MI N {X 1, X2, ... X N }

29 FUN Xl, ... XN = Y Arbitrary function operator, N~3 Linearly interpolate a table
of one to three arguments.
Store result in Y.

30 GAUSS A= Y Generate independent Gaussian
samples with a standard devi,ation
of A

NOISE

31 UNIF A = Y Generate independent samples
uniform Iy distributed between
-A and A.

32 SIN X=Y Y = SIN X
ASIN X=Y Y = ARC SIN X
COS X=Y Y = COS X
ACOS X=Y Y = ARC COS X
ATAN X=Y Analytical Functions Y = ARCTAN X
LOGE X=Y Y = LOGe X
LOG1O X=Y Y = LOG10 X
SQRT X=Y Y = VX
EXP10 X=Y Y = loX
EXPE X=Y Y=e X

33 DATA Compiler directive to store function tables which follow

34 *KNAME,Xl,Ml, Function definition statement following data to indicate K arguments,
•.• XK,MK Ml data points for Xl (first argument), M2 data points for X2, etc.,

data list follows -

35 GOTO N Branches to source statement labeled N**

36 EQUAL Xl,X2, N If Xl = X2 branch to N, otherwise continue**

37 LESS Xl, X2, N If Xl < X2 branch to N, otherwise continue**

38 GRTR Xl,X2, N If Xl > X2 branch to N, otherwise continue**

**The destination N may also be a mode such as SET UP, RESET, etc.

A-2

APPENDIX B
THE CALL OPERATOR

CALL provides a link between FORTRAN or META-SYMBOL subroutines generated for use with the DES-l. The form
of CALL is

in which

n is the block number,

CALL is the operator name,

n

NAME is the subroutine name, and

CALL NAME (List)

II List", enclosed in parentheses, is the sequence of block inputs, constants, and special parameter
entries associated with NAME.

CALL is, in fact, a subroutine call and NAME is an "external reference". The calling .sequence that is generated for

CALL NAME (Xl, X2, . • ., XN)

is

BRM NAME

DATA N

REAL Xl

REAL X2

REAL XN

B-1

APPENDIX C
CALL SUBROUTINE LOADING

INTRODUCTION

A subroutine used with the call statement is placed in one of the categories: user subroutine or user-programmed
subroutine. User subroutines are standard subroutines required by a given user, contained in. the user subroutine
library on the DES-1 system tape. User-programmed subroutines are special subroutines written to be used with a
given program, and normally useful only to that program. These subroutines are entered via cards during initial
program loading and are automatically placed on the source program tape (unit 2), following the source program.
On subsequent updating or compiling from tape, the user-programmed subroutines are taken from the source tape as
needed, and additional requested subroutines may be loaded from cards. This latter action causes the newly input
set of user-programmed subroutines to be written after the previous set on the source tape. To change a previously
written subroutine, the user must recompile his program from cards and Ore-enter all user-programmed subroutines.

The program card deck is put together by the user as follows:

,,/ ((First user program subroutine card)

/~(END

,../((First source card)

,,"(-END DATA

DATA

~~------------------------------~

All user-programmed subroutines must be in standard SDS binary format. They are placed together between the
source program END card and must be followed by an end-of-fi Ie card (EOF). (The EOF button on the card reader
suffices as an end-of-file; however, the EOF button is ineffective as long as there are cards in the card hopper.)

An end-of-file must be used if, and only if, a CALL statement is used in the source program. This is true even though
there are no user-programmed subroutines in the program deck between END and EOF. This latter condition occurs
when only user subroutines on the system tape are used via the CALL statement.

C-1

The system tape with a user-subroutine library has the following form:

/ Executive Program Compiler

/ t----J System Subroutin~ Library User Subroutine Library

Such a library can be included on a DES-l System tape only during the generation of a new system tape. A typical
user-subroutine library might be a complete set of hybrid CALL subroutines.

A source-program tape with a set of user-programmed subroutines is formed:

/ Source Program

/ I User-Programmed Subroutines
(

When presented on cards during initial loading, these subroutines are added to the tape by the loader. During sub­
sequent program loadings, user-programmed subroutines are taken directly from the source tape by the loaderas needed.

FUNCTIONS OF THE LOADER WITH RESPECT TO CALL

The following outl ines the operation of the loader with respect to CALL statements:

C-2

• When a CALL statement is encountered, the subroutine name is placed in a table in memory
(external reference list).

• After the ob ject program is loaded, the loader checks for an ~ntry in the external reference list.
If there is at least one, the loader tries to read subroutines from the card reader. If there is no
entry in the table, no EOF is needed in the card reader.

• If there is an entry in the external reference I ist, cards are read up to the EOF card; these sub­
routines are placed on tape 2 following the source statements.

• After the EOF card is read, the user1s library is searched to find external references not satisfied
by subroutines from the card reader.

• If external references are not satisfied, the following error message is typed out:

MISSING DEFINITIONS

Subrou tine Name

Subrou tine Name

Operator

INTl

INT2

INT4

INT4C

AM

RKG

APPENDIX D
MATHEMATICAL FORMULATION OF THE DES-l INTEGRATION OPERATIONS

Type

Rectangular Equation

Trapezoidal Equation

Four-Point Predictor

Four-Point Corrector

Adams-Mou I ton

Runge-Kutta-Gi II

Mathematical Formulation

Y n + 1 = Y (t n + 1); h = /:::, T

- y + h I Yn+ 1 - n Yn

Truncation Error: (h
2
/2) y~1 (e)

I

where x < e < x 1 n n+

(5h
3
) Truncation Error: 1"2 yi' (e)

where x 1 < e < x 1 n- n+

- y + (h/24) (55y' - 59y' + 37y' - 9y') Yn+1 - n n n-1 n-2 n-3

h51h
5
) (d

5y
. (e~

Truncation Error: ~ dt~)

where xn - 3 < e < xn+ 1

. (19h5) (d5Yi (e~
TruncatIon Error: \"'7'2'0" \: dt5)

where x n _ 3 < e < x n + 1

Predict: = y + (h/24) (55y' - 59y' + 37y' - 9y')
Pn+1 n n n-1 n-2 n-3

Modify: - p + 251 I _ P)
mn+ 1 - n+ 1 270 \cn n

Correct: c n+ 1 = Y n + (h/24) (9m~+ 1 + 19y~ -

Final:

Truncation Error: ~ (1/140) (pn+ 1 - cn + 1)

For k = 1 and i = 1, 2, ..., n

compute (from DERIV subroutine): y!
I, k - 1

then for q. = 0
I, 0

5y' + y')
n-1 n-2

D-1

Operator

RKG
(cont)

MATHEMATICAL FORMULATION OF THE DES-1 INTEGRATION OPERATIONS {continued}

Type Mathematical Formulation

Runge-Kutta-Gi II Repeat for k = 2, 3, 4

All computed values of y., y, and q replace the previous values:

a
1 = 1/2

a
2 = 1 - V172

a
3

= 1 + {l72

a
4 = 1/6

b
1 = 2

b
2 = 1

b
3 = 1

b
4 = 2

c
1 = 1/2

c
2 = 1 - {l72

c
3 = 1 + ff2

c
4 = 1/4

ADAMS-MOULTON CHECK

The AMC routine combines the fourth order Adams-Moulton method {without the modify step} with the fourth order
Runge-Kutta-Gi II method. The latter is used to obtain starting values.

THE HALVING AND DOUBLING FORMULAS

Assume that the computation has proceeded to the point n, and that the convergence test at the point n+ 1 calls for
halving the interval. Letting Yn - 3' Yn _ 2' Yn _ l' Yn represent the function values at n - 3, n - 2, n -1, n, the
formulas to obtain interpolative values are:

Y {n - 3/2}

After computing the derivatives at Y {n _ 3/2} and Y (n _ 1/2), computation is then continued, using an interval size of h/2.

To double the interval, it is assumed that y~ _ 2' y~ _ l' y~, y~ + 1 exists, since the test has been applied at the
point n + 1. The extrapolated value is obtained using the following formula:

P 3 = -34Oy 1 - 80y + 405y 1 + 16y 2 + h {12Oy· + 1 + 48Oy· + 18Oy· 1} n+ n+ n n - n - n n n-

D-2

After the derivative at p 3 is computed, the correction formula is used to obtain y 3.
n+ n+

The Adams-Moulton equations used in AMC are:

D-3

APPENDIX E
DES-1 OPERATOR EXECUTION TIMES

DES-1 operator execution times rounded (up) to the nearest microsecond are listed below:

OPERATION EXECUTION TIME COMMENTS

n
l. Sum 12 L (M.-1) + 9n M. = number of product terms

i = 1
I I

in the i-th sum

n = number of sum terms

2. Multiply 9 +12 M M = number of terms

3. Integrate Only

a) Euler 26 + 67n n = number of equations in system

b) Trapezoidal 26 + 128n

c) Four-Point Predictor 26 + 221n

d) Predi ctor - Corrector 26 + 483n

e) Runge- Kutta- Gi II 176 + 767n

4. Divide

Two-Term Numerator and Denominator 53

General 46 + 7 (L-l) (M-l) L = number of terms in numerator -

M = number of terms in denominator

5. Resolution

a) Rectangular-to- Polar 467-782

b) Polar-to- Rectangular 557-800

6. Delay 23-47

7. Absolute Value 12-26

8. Special

a) Sine 304-397

b) Cos 304-397

c) Arc-sine 656 (max)

d) Arc-tan 266-590

e) Square Root 175

f) Log e 280-324

g) Log 10 312-355

h) exp (e) 350-413

i) exp (10) 369-432

j) Arc-cos 385

E-1

OPERATION EXECUTION TIME COMMENTS

9. Function Generator

a) One-Variable 100 + 7i

b) Two-Variable 249 + 7(i+k)"

c) Three-Variable 473 + 7 (i + k + n) i, k, n = number of intervals sampled
in each variable to find
I ocati on of data po i nt

10. Special Function Operators

a) Dead space 27-47

b) Limiter 27-61

c) Bang-Bang (Comparator) 30-32

1l. Algebraic Statements

a) Maximum 21n+18 n = number of terms

b) Minimum 21 n + 18

12. Noise Generation

a) Uniform 37

b) Gaussian 137

13. - ~ogical Control Statements

a) GOTO 2

b) EQUAL 21

c) GRTR 21

d) LESS 21

e) SWITCH 5

E-2

APPENDIX F
DES-l SAMPLE PROBLEM

A simple, linear, second-order differential equation representing a mass-spring system is presented to illustrate the
DES-l coding format. The equation of this system is:

d
2

y d
= -(eM) dr - (KM) y + FORM,

dt
2

dy
0; dt y o.

For this problem it is desired that eM, KM, and FORM be input from the console pots. The variables y, dy/dt,

and d2y / dt2 , are displayed on both the strip chart recorder and the digital display. In addition, a phase plot of

y versus dy /dt is output to the scope display.

Figure F-l presents the block diagram of the problem.

POT 1

POT 2

POT 3

Record 3
Display 3

YDOT

Record 2
Display 2
Scope

Figure F-l. Diagrammatic Problem Presentation

Note that:

y

dy
dt

Y

YDOT

YDDOT

y

Record 1
Display 1
Scope

The DES-l coding format for th is problem is shown on the following pages. Comment is added only for clarity and
,S not part of the actual code.

F-l

."
I

'" ""'·'ss SCIENTIFIC DATA SYSTEMS-

DES CODING FORM
PAGE ___ 1 ___ OF __ 2-__ __

PROGRAMMER ---------
7a Identification 10
, iii' , iii

DATE ____________ __

BLOCK,
NUMBER .'.

OPERATOR INPUTS AND OUTPUTS
1 I 10 20 2S 10 II 40

~
'Fi SA t1 P. E P'~CT & &.IH

I I I , I

I

I

I

I

I

I

I

:!N Ilr I A l- ~;;I I , I I I

I

ill.IN,VAR
I

Y
I

YOoT
I

i]: tf
I

~~N
'/::CH

I

...... I

i;iS~M
• I

i&VI
I

.OuT
I

cO'V"T

t!J Ui'
I

.OuT
"'i I

!:ruT
iRA r'-E 1
·····.···.··12 K~'
i R. K6

1

I

SuM
C. ~~T

I

t:fVI

9uT
(!J' ..,T . I

O'uT . I

UuT

I I I I I

YDOe-l l '(00,.
I I I , I

0
I I I , I

0

'?e-T1 'Fer~H .'0, 9'\Q Iq

I ", I

~lIjp9T 2", C M Iq q qq I I I

0

P-err3 JI KM ~ o,lqq 99
I I I

'F e-eM
.' I I I

-CH"'YO&T - KM ~ y: '(,,1> cf'r
I~e c. eJRD i y 1- 'l.

,
I I I

"l..
,;; . I " I I I I

i;iRe. c ty e. \) "2.. • Y{)fJi, - 'Z.OJl- o

lIfJec I I I I

c.,9"~D3 YOD8'T.- %.00,].00
I 'y I I I

it> I Sf LA '< \

~\ S? L 'A Y 1'1 0 tfl
I I I

2.

~ P L..'A Y Iy~ t> d~
I ,

~ I '$
1 I , 1 I

I

',(~6' T = Y
I 1 I

1 I I

'Y''''O~T: Y'09'T
I I ,

\'F O'"RM I_C M * -(Df}' T _If(M 1\ Y: 'Y DO D"T'
.. /' " 1 1 , 1 I

'R e. c.. 8' gl P , I , I , . Y.-L,Z-
".' I " 1 I

R t. C 9' R I> l. 1 Y ,ie T • - 2- c.)) Z u
1 I

J~ e <. e-e. t:> ~) Y'plpe- T

'V\ S p\. lAY I

I, Y
'D', I " I

SfL.AYJ'l.JYDO'T

I I I

-z,oo .1 2.0 v
I

,
I .1

I 1

Sample Problem
DES Cod i ng Form

45 so 15 60 .. 70 7a , I I I I ,
"

I , , I I

I ~ >:rWl "'t\~\. Co~~~t~ :r~~
I I

I,
I I I I I

I J I I I I 1
~ I I I I 1

I I I I I I . I
It ~r~Q~Jt Z~~ 'Y1)OoT' I

1- I I I I I

~ I I I I

I I I I I I

I~ Ov..t~~
I I I I

I
I I I I . ,
I I . I I t

I I 1 , ,
..,oj

.~ I I I ,
I

I
1 I I I·

/' .. ~j\.~~ ~.A.lg,..LL~~.$ I I

I I I I I I

I I I I I ,
...; t' I , I I I

I I I I , I

"

~ OJtp~
I I I I

I , I I C I

I I I I I

SDS-E-356,6

-n
1

W

PROBLE/I/\ SA I\p/e Bco hie tn
I ;1' jl'l
SCIENTIFIC DATA SYSTEMS-

DES CODING FORM
PROGRAMMER ---------

n Identification 10
, i , , i , , , i

BLOCK
OPERATOR NUMBER

1 I 10 .
,q..l)T' . I

l:Yv-t
;'iIIE N ')

I

I I

I

I

I ,
I ,

I

I

I

I

,
I

,
. ,

,

,
I

I

I

INPUTS AND OUTPUTS
20 21 10 IS 40 45

I~\D ,S p L!4 Y . 3 \ 'y DDe-r I 1 1

I " ',1
[S C. 9'P E • Y , - "2- 2.1'(t>~'T

I I I
-2.. o J 2.-0

I' I I

• I 1 I

I I 1

I I ,
I I I

1 I 1

I I I

I ,
I , I

I I

I , I

I 1 I

I I I

I I 1

I I 1

I I I

, I I

, I 1

I 1 I

I 1 I

I I

I 1 I

•••••

~ .•. J , 1 1
.. >

1 I

1 I

I I

I ,
I I

1 1

I I

I ,
I I

I I

I I

, I

, I

I 1

I I

I 1

, I

I I

I I

I I

I I

, I

I I

Sample Problem
DES Coding Form

I

I

I

I

I

I

I

,

I

1

I

I

,
I

I

I

I

I

T

PAGE_'2-__ 2-OF ___ _

DATE

50 55 60 .. 70 7t

I I I , I

J I I 1 I 1

I I T I 1

I I I I I

, T I I I

, I 1 I I

I I T I

I I T I T

I , , I I

I , I T I

1 I I T I

I I I I I

I I , , I

1 I I T I

T T 1 I . I

1 I T I

T I T , I

I I I T I

T T T I I

I I T I I

T T I I I

I I I I 1

r 1 I I I

I T I I 1

r T I I

SDS-E-356~

APPENDIX G
DES-l HYBRID CALL LIBRARY

Use of the DES-l in a hybrid environment requires a special library. This appendix describes the Hybrid Call Library,
functions that it can perform, and the method of call ing it in a DES-l program.

DES-l subroutines transmit only floating-point arguments and, where appl i cable, allow one level of recursion. Since
two computation rates are possible with DES-l, recursion is possible because RA TEl is initiated by an interrupt.

If external patchable interrupts are available, care must be exercised when using these interrupts. Since DES-l is
protected from the timing interrupt only, user interrupt initiated subroutines must restore any registers which are used
and protect themselves from recursion.

A. NON-RECURSIVE HYBRID LIBRARY

1. CALL HYBRID Statement

This statement must be the first statement after the INITIAL directive and sets up the analog mode control.
After DES-l has executed the reset cal culations, mode control may originate either at the DES-l console
or the master analog console. This assumes that the mode control interrupts have been patched.

2. Analog Mode Control Subroutines

The selection of the IC, Potset or Standby analog modes on analog console will put DES-l into the Reset
mode. Selection of the Reset mode at the DES-l console wi II put the analog into IC.

DES-l and analog modes may be mixed by using analog mode control routines. These routines disarm the
mode control interrupts when a DES user is changing analog modes to avoid changing DES modes.

a. CALL OPERATE

The mode control interrupts are disarmed and an output pulse is initiated on the compute analog
mode control I ine. The mode interrupts are rearmed.

b. CALL HOLD

The mode control interrupts are disarmed and an output pulse is initiated on the hold analog mode
control I ine. The mode interrupts are rearmed.

c. CALL POTSET

The mode control interrupts are disarmed and an output pulse is initiated on the potset analog mode
control I ine. The mode interrupts are rearmed.

d. CALL STANDBY

The mode control interrupts are disarmed and an output pulse is initiated on the standby analog mode
control I ine. The mode interrupts are rearmed.

e. CALL IC

The mode control interrupts are disarmed and an output pulse is initiated on the initial condition
mode control I ine. The mode interrupts are rearmed.

G-l

3. Analog Computer Pot Setting and Scan Subroutines

An output pulse is initiated on the potset analog mode control I ine. Pots M i' M k' etc., on
section N are set to the val ues Vi' Vk', etc. If any of the suppl ied val ues are greater than one
in magnitude, no attempt will be made to set the pot and a printout will occur. If the pot does not
set to within ±0.0003 of the requested value, an additional attempt will be made to set the pot.
If th is fai Is, a printout occurs.

b. CALL SCAN (N, Mi' Vi' M k , V k , .••)

The specified analog elements of section N are read and the values are assigned to the associated
variables in floating point. In the argument list, MiS are three-digit integers made up of first the
category and second the unit address.

First Digit

o
1
2
3
4
5
6
7
8
9

Category

Amplifiers
Function Generators
Multipl iers
Pots 0-99
Pots 1 00- 1 99
Resolvers
Trunks
Derivative Check
Power Supplies
Unassigned

Errors in section, category or unit addresses result in error printouts.

B. RECURSIVE HYBRID LIBRARY

G-2

1. Data Conversion Subroutines

a. CALL SAMPLEn (M)

All track-and-hold amplifiers in the analog-to-digital conversion system are put into the hold mode.
Converter channels 1 through M are converted and stored in a table for later conversion to floating
point. The number after SAMPLE (n = 1 or 2) indi cates the computation rate (RA TEl or 2).

The converted val ues for lines L i' L k' etc., are assigned as floating-point numbers .in the ranges

Si > Vi> -Si' Sk > V k > -Sk' etc. The line numbers Li' Lk, etc., are integers 1, ... , N,

where N is the total number of analog-to-digital conversion channels. If an improper I ine request is

made, an error message is printed. The number after ADC (n = 1 or 2) indi cates the computation

rate (RA TEl or 2).

The values Vi' Vk' etc., are output as analog voltages on lines Li , Lk' etc. The values to be

output must be in the ranges Si > Vi> -Si' Sk > Vk > -Sk' etc. The line numbers Li , Lk'
etc., are integers 1, ••• , N, where N is the total number of digital-to-analog conversion channels.
Simultaneous conversion occurs after the last value is output. If an improper I ine request is made,

an error message will be printed. The number after DAC (n = 1 or 2) indicates the computation

rate (RATEI or 2).

2. Interface Linkage Instructions

a. CA L LSI G NALn (L i' L k ' L n ' . • .)

Pulse outputs are initiated on lines Li , Lk' Ln , etc., of the available EOM lines. The number
after SIGNAL (n = 1 or 2) denotes the computation rate (1 or 2).

b. CALL TESTn (V, L., L k' L , • • .)
I n

Sense lines L i' L k' L n' etc., are tested. If any of the I ines are in the ON state, a floating
point 1.0 is assigned to V. If all sense I ines are found to be OFF, a floating point -1.0 is assigned
to V. The number after TEST (n = 1 or 2) denotes the computation rate (lor 2).

c. CALLSETn (L., Lk , L , •••)
I n

Output level lines L i' L k' L n' etc., are put in the ON state. Should any of the I ines share an

interlock, the last interlocked line in the argument list is left in the ON state. The number after

SET (n = 1 or 2) denotes the computation rate.

d. CALLCLEARn (L., L
k

, L , •••)
I n

Output level lines L i' L k' L n' etc., are put into the OFF state. The number following CLEAR
denotes the computation rate.

G-3

SCIENTIFIC DATA SYSTEMS 1649 Seventeenth Street · Santa Monica. California · Phone (213) 871-0960

