
, ,

,

SCIENTIF IC DATA SYSTEMS

Reference Manual

SUMMARY OF BASIC COMMANDS

Command Syntax

step DATA constant- 1 [, constant-2] ... €V

step DEF FNletter-1 (letter-2) :::: expression €V

*

ALL

{ {
[-step-2] }J DE L step- 1 [_] €V
, step 2 ...

step DIM I etter- 1 (expression- 1 ['expression-2J) [, I etter-2 (expression-3 ~expressi on-4])] ... €V

* DUMP ~tep- 1 {[C-step
=22]] JJ § L ' step ...

step END €V

step FOR variable:::: expression-1 TO expression-2 [STEP expression-3] €V

step-1 GOSUB step-2 €V

** [step-1] GO TO step-2 §

step-1 IF relational-expression THE N step-2 €V

step INPUT [FILE] variable-1 ['variable-2] .•. §

** [step] LET variable:::: expression €V

*

*

LIST [step-l {~:::~=~t J] @

LOAD {TE.LETYPE } @
/fll e-name/

step NEXT variable §

{
INPUT }

step OPE N /fi le-name/, OUTPUT @)

** [step] PRINT {eX
p

reSsion-1 J fJf~1{expression-2 JJ ... @)

"character-stri ng-1" ~ J I character-string-2"

step PRINT FILE expression-1 [,expression-2] .•• @)

step READ variable-1Lvariable-2] ... @)

step REM character-string @

step RETURN @

* RUN @)

step STOP@

*System Directives
**Optionally, Statements or System Directives

9

14

17

11

17

16

10

15

8

8

9,12

7

17

10

10

12

7,12

12

9

16

15

16

16

BASIC

REFERENCE MANUAL

for

SOS 940 TIME-SHARING

COMPUTER SYSTEMS

901111B

January 1968

5JClS

Price: $1.00

SCIENTIFIC DATA SYSTEMS/1649 Seventeenth Street/Santa Monica, California

©1967. 1968. Scientific Data Systems. Inc. Printed in U.S.A.

REVISION

This publ ication, SDS No. 90 11 11 B, is a minor revision of the SDS BASIC Reference Man­
ual (dated March 1967). A change in the text is indicated by a vertical line in the margin
of the page.

RELATED PUBLICATIONS

Title

SDS 940 Computer Reference Manual

SDS 940 Time-Sharing System Reference Manual

SDS 940 Terminal User's Guide

NOTICE

Publ i cation No.

900640

90 11 16

90 11 18

The specifications of the software system described inthis publication are subject to change without notice. The availability or performance of some features may
depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their 50S sales representative for detai Is.

ii

CONTENTS

l. INTRODUCTION Input/Output Commands 12
OPEN 12

Operating Procedures 1 INPUT FILE 12
Log In 1 PRINT FILE 12
Error Correction 2 PRINT 12
Escape 2 3. FUNCTIONS AND SUBPROGRAMS 14
Exit and Continue 2
Log Out 2 Functions 14

BASIC Arithmetic Components 2 INT 14
Constants 2 RND 14
Variables 3 DEF 14
Expressions 3 Subprograms 15

BASIC Syntax Notation 4 4. PROGRAM PREPARATION AND EXECUTION 16
BASIC Notation Variables 5
BASIC Notation Constants 5 Program Input from the Teletype 16

Program Input from Paper Tape 16
2. BASIC COMMANDS 7 Program on File 16

Miscellaneous BASIC Commands 16
Single Commands in BASIC 7 REM 16

PRINT 7 END 16
LET or Replacement 7 RUN 16

Writing Programs in BASIC 7 STOP 16
GO TO 8 LIST 17
IF. 8 DEL 17
DATA/READ 8 DUMP 17
INPUT 8

INDEX 18
Writing Program Loops 9

FOR/NEXT 10 ILLUSTRA TlONS
Use of Subscripts 11

DIM 11 1. Example of BASIC Packed Format 13

iii

1. INTRODUCTION

The BASIC
t

language and compi ler were origina "y developed
at Dartmouth College for ti me-sharing computer users with no
previous knowledge of computers, as well as for users with con­
siderable programming experience. Thus, BASIC isas useful to
the businessman as i tis to the sci entist or engi neer. A simp Ie,
straightforward language, BASIC closely resembles standard
mathematical notation. In addition to its powerful arithmetic
capability, italsocontainsediting features, simple input and
output procedures, and complete language diagnostics.

This manual is intended to serve as a tutorial guide for the
new BASIC user and as a reference source for the experi­
enced. Material is presented in a sequence that wi" en­
able the reader to immediately use the SDS 940 time­
sharing computer terminal to write simple programs, to gain
confidence in the system, and then to progress to more dif­
fi cu It programs.

For clarity, severa I typographic conventions have been used
throughout this manual. These are explained below.

1. Underscored copy in an example represents copy pro­
duced by the system in control of the computer. Unless
otherwise indicated, copy that is not underscored in an
example must be typed by the user.

2. The @lnotation appearing after some lines in the ex­
amples indicates a carriage return. The carriage re­
turn key is labeled RETURN on the Teletype keyboard.
The user must depress the carriage return key after each
command to inform the computer that the current com­
mand is terminated and a new one is to begin. The
computer then upspaces the paper automatica Ily.

3. Non-printing control characters are represented in this
manual by an alphabetic character and a superscript c
(e. g., DC). The user depresses the alphabetic key and
the Control (CTRL) key simultaneously to obtain a non­
printing character. For editing purposes some control
characters wi" cause a symbol to be printed, but this
symbol does not appear in the final version of an edited
line.

4. Other typographic conventions pertain to the method
used in this manual to define the syntax of BASIC com­
mands. These conventions are described in the para­
graph titled II Basic Syntax Notation" later in this chapter.

OPERATING PROCEDURES

The standard procedure for gaining access to an SDS 940
time-sharing computer center from a Teletype terminal is
described in the SDS 940 Terminal User's Guide. This
publ ication also includes information concerning the 940
Executive System and the calling of the various subsystems
available to the terminal user. The following paragraphs
summarize the standard procedures as they apply to BASIC
users.

tThe word II BASIC' is an acronym for II Beginner's A II-purpose
Symbolic Instruction Code".

LOGIN

To gain access to the computer, the following operating se­
quence is performed:

1. If the FD-HD (Full Duplex-Half Duplex) switch is pres­
ent, turn the switch to FD. This is a toggle switch with
two locking positions. When the Teletype is not con­
nected to the computer(sometimesca lied the Loca I Mode),
this switch must be in the HD position. Whenever the
Teletype is connected to the computer, this switch must
be in the FD position.

2. Press the ORIG (originate) key, located at the lower
right corner of the console directly under the telephone
dial. This key is depressed to obtain a dial tone before
dialing the computer center.

3. Dial the computer center number. When the computer
accepts your call, the ringing wi II change to a high­
pitched tone. There wi II then appear on the teletype
a request that the user log in:

PLEASE LOG IN:

4. The user must then type his account number, password,
and project code (if he has one) in the following format:

PLEASE LOG IN: number passwordinameiproject code

Only persons who know the account number, password,
and name, may loginunderthatparticularcombination.
The following exampl es all illustrate acceptabl e practi ceo

PLEASE LOG IN: A 1 PASSiJONESiREPUB §
PLEASE LOG IN: B4WORDiBROWNiDEMO@)
PLEASE LOG IN: C6PWiSMITH @)

The optional 1-12 character project code is provided
for installations that have several programmers using
the same account number. The project code is not
checked for val idity.

If the user does not correctly type his account number,
. password, and name with in a minute and a ha I f, a mes­
sage is transmitted instructing him to call the computer
center for assistance. The computer wi II then discon­
nect the user, and the dial and log-in procedure wi II
have to be repeated.

5. If the account number, password (nonprinting), and
name are accepted by the computer, it wi II print READY,
the date, and the ti me on one line and a dash at the
beginning of the following line.

READY date, time

The dash indicates that the Executive is ready to accept
a command. I

Introduction

6. In response to the dash, the user types

BASIC \~

The Executive wi II respond with the symbol>, at the
beginning of the next line, which means that the BASIC
subsystem is in control and waiting for a command.

ERROR CORRECTION

If the user makes a mistake whi Ie typing and notices it i m­
mediately, he can correct the error at once. The BASIC
language wi II accept the following edit characters:

Character Function

The left arrow (located on the letter 110 11 while
the shift key is depressed) is used to delete the
most recent character typed. If the user noti ces
that he has just mistyped a letter or a symbol,
he strikes the -- key, which tells BASIC to ig­
nore the previous character. Striking this key
repeatedly will delete a corresponding number
of characters, but only to the start of the cur­
rent line.

For example, the command

PRE - INT A+C- B €V
wi II appear to BASIC as

PRINT A+B €V
while

PRINT- - - -- - - -LET X=Y@

will appear to BASIC as

LET X=Y @

A command preceded by a step number (see IIWriting Pro­
grams in BASIC") may be deleted by retyping the step num­
ber immediately followed by a carriage return. A command
preceded by a step number may be changed by retyping the
step number and the new command, followed by a carriage
return.

ESCAPE

The ESCAPE 0 ke/ may be used at almost any time. It
causes the subsystem in control to abort the current opera­
tion and ask for a new command. Striking the 0 key before
terminating a command with @)aborts the command. BASIC
responds by printing a > at the beginning of the next line.

EXIT AND CONTINUE

Striking the @l key twi ce in succession causes computer con­
trol to return to the Executive. If the user wants to reenter

tIn some 940 time-sharing system configurations the AL T
MODE key is used instead of the ESCAPE key. Where@}
appears in this manual, AL T MODE may be substituted.

2 Operating Procedures/BASIC Arithmetic Components

BASIC without losing his program and if he has not called
any other subsystem since leaving BASIC, he can type
CONTINUE in response to the dash. This wi II return him
to BASIC so that he can resume his work.

LOG OUT

When the user wishes to be disconnected from the computer,
he types two consecutive escapes (to return control to the
Executive) and then types

LOGOUT 8

The computer will respond by printing the amount of com­
puter time and hook-up (line) time charged to the user's ac­
count since the previous log-in procedure was completed.

BASIC ARITHMETIC COMPONENTS

The arithmetic components of the BASIC language are con­
stants, variables and expressions. These components are
descri bed in the followi ng paragraphs.

CONSTANTS

Constants may be expressed in BASIC in three ways. First,
they may be expressed as integers (whole numbers, e. g.,
1,7, 130,256). Constants may also be expressed in floati ng­
point form; that is, as numbers with a decima I point (e. g. ,
1.5,10.0,155.55). Finally, constants may be written in
scientific notation, which makes large numbers easier to
express. For example, the number 53,000,000,000 may be
written as 53E9. The letter E stands for II times ten to the
power or'; thus, 53E9 means 53 x 109 .

In all cases, constants in BASIC may be thoughtof as being in
floating-point form. This a 1I0ws the computer to perform
addition, subtraction, multiplication and division automat­
ically and makes it unnecessary for the user to worry about
positioning the decimal point.

BASIC will accept and print a constant in integer form if
the constant has 6 or fewer significant digits and if it has
no fractional part. Otherwise, BASIC will round off the
constant to the first seven significant digits and the con­
stant will be expressed in scientific notation. The follow­
ing examples illustrate these rules:

>PRINT 12345678912 @
1 .234568E+ 1 °

>PRINT 123456789.0@)
1.234568E+08

>PRINT 123456789.23 @)
1.234568E+08

-1.23451 E+06

>PRINT 23456E 10@)
2.3456E+ 14

VARIABLES

The numeri ca I va I ue of a constant is a Iways the number i tse I f.
BASIC also permits the user to use a symbol to represent a
number. Such symbols are called variables because the
value of the symbol may be changed. Associated with each
variable is a place in computer memory where the defined
value of the variable is stored. In BASIC, a variable may
be a single letter or a letter followed by a number. For
examp Ie, same lega I variab les are

B
C
A1
Z5

and some i II ega I variables are

1 B (first character is not a letter)
BA (second character is not a digit)
A35 (too many characters)

It is often convenient to keep data in a list. Such a list is
called an array. The individual values in the list are called
array elem-entS: We refer to an array element by using the
name of the array and the position of the element in the
array. For example, we can refer to the fourth element in
array A by writing A(4). In this example, the 4 is called
the subscript.

When the array has only one IIdimension", it is often called
a vector or a I inear array. However, arrays may have more
than one dimension. A two-dimensional array, often called
a matrix, may be thought of as having columns and rows.
There is always one subscript for each dimension; thus, a
two-dimensional array is written as A(X, Y)= where X rep­
resents a row number and Y represents the column number.

Note that the na me of an array must be on Iy one letter,
whi Ie a subscript may be any evaluatable expression, which
may also include an array element. (Expressions are dis­
cussed be low.)

As a further example of matrix notation, consider thefo Ilow­
ing chart, which lists the expenses for a four-day car trip:

Row

2

3

4

5

Column

~ Item

Gasoline,
oil

Tolls

Food

Lodging

Misc.

June 5

21.29

1.32

11.18

10.05

1.35

2 3 4

June 6 June 7 June 8

20.84 19.42 6.08

.86 .40 .07

12.82 14.39 5.06

12]9 10.35 .00

.90 .44 .10

If we consider the chart to be a two-dimensiona I array ca lied
P, the amount spent on June 5 for lodgi ng wou Id be repre­
sented by P(4,1). The first subscript always represents the
rovv number, 'vvhi Ie the second subscript represents the column.

Thus, the amount spent for food on June 8 would be repre­
sented by P(3,4).

EXPRESSIONS

Arithmetic Expressions

Arithmetic expressions are formed by combining variables
and/or numbers with arithmetic operators, as in mathematical
formulas. There are six arithmetic operators in BASIC:

- Negation (a unary operator)

t Exponentiation 1
* Multiplication
/ Division binary operators
+ Addition
- Subtraction

The following are examples of legal arithmetic expressions:

Expression

F + H
D+A+X
C - A(3)
Q *-5
X!Y
Q + 2
P t R
X!y + 6

Meaning

F plus H
D plus A plus X
C minus the third element of A
Q times minus 5
X divided by V 2
Q to the power of 2 (or Q)
P to the power of R (or pR)
X divided by V, plus 6

In the last example in the preceding table, the order of
computation is not clear, i.e., the expressioncould have
been interpreted as

X divided by the quantity V + 6

or

the quantity X!y plus 6

To make sure that the computer evaluates the expression
the way the user meant it to be evaluated, there is an
established rule of precedence:

Exponentiation is always performed before negation
and functions, which are always calculated before
mu Itiplication and division, which are always ca Icu­
lated before addition and subtraction. The computer
calculates from left to right if operators of the same
precedence (e. g., multiplication and division) appear
in the same line.

To alter this order, parentheses must be used. Thus, to
represent

X divided by the quantity V + 6

we must wri te

X/(V + 6}

Otherwise, according to the precedence rules it would be
interpreted as lithe quantity X/y plus 6" because division
is cal culated before addition.

BASIC Arithmetic Components 3

The following are examples of precedence in expressions:

Expression

A+B*C

(A+B)*C

Z-Y/X+W

(Z-Y)/(X+W)

X t 2+Y

X t -(2+Y)

Interpretation

A plus the quantity B times C.

C times the quantity A plus B.

Z minus the quantity Y divided by X,
plus W.

the quantity Z minus Y divided by the
quantity X plus W.

X to the power of 2, plus Y

X to the negative power of the quantity 2
plus Y.

Mathematica I Functions

The mathematical functions available in BASIC are:

SIN(expression) sine of expression in radians

COS(expression) cosine of expression in radians

TAN(expression) tangent of expression in radians

ATN(expression) arc tan of expression in radians

EXP(expression) natural exponent of expression

ABS(expression) absolute value of expression

LOG(expression) natura I log of expression

SQR(expression) square root of expression

LGT(expression) log base 10 of expression

I NT (expression) integer part of expression

RND random number

The expression enclosed in parentheses is ca lied the argument.
It may be any arithmetic expression, e. g., SQR (A*B). The
arithmetic expression may include a function also, e. g.,
COS(N*X + SIN (T») (a more complete discussion of func­
tions is contained in Chapter 3).

Relationa I Expressions

A re lationa I expression consi sts of two ari thmetic expressions
separated by one of the relational operators. The relational
operators avai lable in BASIC are

Operator

>
>=
<
<=
<>

Relation

equal to
greater than
greater than or equa I to
less than
less than or equal to
not equal to

In BASIC, a relational expression is either II true" or"false",
depending on whether the answer to the question implied
by the relational expression is"yes" or"no", respectively.

4 BASIC Arithmetic Components/Syntax Notation

For example, each of the following relational expressions
imply a different question:

Relational expression

X>5

A<>B

Z<=YtK

Question

Is the value of the variable X
greater than the constant 5?

Are the va lues of the vari ab les
A and B unequa I?

Is the value of the variable Z
eithe(less than or equal to the
value of the variable Y raised
to the power of K?

I f the answer to the question is II yes", the re lati ona I expres­
sion is II truell ; if the answer is II noll, the relationa I expres­
sion is II false" .

Evaluatable Expressions

An evaluatable expression is an arithmetic expression or a
relational expression for which the values of all variables
contained within the expression are known to BASIC at the
time the command in which the expression appears is exe­
cuted. In order for the va lue of a variable to be known, the
variable must be defined (or"dec laredll). Variables may be
declared by the execution of the following BASIC commands:

LET
READ and DATA (used together)
INPUT

These commands are described in Chapter 2.

BASIC SYNTAX NOTATION

The following paragraphs describe the notation used in this
manual to define the syntax of the BASIC language.

1. A II notation variable" is used to represent a variable
element of the BASIC language. A notation variable
consists of lower-case letters, lower-case letters in
combination with hyphens, or lower-case letters in
combination with hyphens and digits{of which the first
character is a letter). For example,

variable

denotes the occurrence of a BASIC variable.

2. A "notation constant" denotes the literal occurrence of
the characters represented. A notation constant con­
sists either of all capital letters or of a special charac­
ter or symbol. For example,

LET variable = expression @J

denotes the I itera I occu rrence of the word LE T, fol­
lowed by a BASIC variable, the literal occurrence of
an equals sign, a BASIC arithmetic expression, and
the I iteral occurrence of a carriage return.

3. The term "syntactical unit" (used in subsequent rules)
is defined as a single notation variable or constant, or
as any collection of notation variables, notation con­
stants, BASIC language symbols, and reserved words
surrounded by braces or brackets.

4. Braces{ }are used to denote a grouping. For example,

LOAD {TE.LETYPE I)
/flle-name;

The vertical stacking of syntactic a I units indicates that
a choice is to be made. The above example indicates
that the word LOAD must be followed by either the
word TELETYPE ora slash character followed by a
file name, followed by a second slash character.

5. Brackets [] denote options. Anything enclosed in
brackets may appear one time or may not appear at all.
For example,

[step-l] GO TO step-2 @

denotes that the words GO TO mayor may not be
preceded by a step number; however, the words GO
TO must be fo I lowed by a step number and a carriage
return.

6. Elipsis marks ... denote the occurrence of the imme­
diately preceding syntactical unit one or more time in
succession. For example,

expression-l [, expression-2J. . . @)

denotes that the variable II expression-l" must occur;
however, the variable II expression-2" mayor may not
occur since it is surrounded by brackets. If expres­
sion-2 does occur, it may be repeated one or more
times (with a comma preceding each occurrence),
each occurrence may have a unique form, and the
last occurrence must be followed by a carriage return.

7. The character II i" is used as a collective reference
designator when a syntactical unit may appear any
number of times in succession. For example,

expression-i

denotes any of the expressions in the sample given
above for ru Ie 6.

BASIC NOTATION VARIABLES

The common variables used in this manual to define the
syntax of the BASIC language are described in the following
table.

Notation variable

constant

variable

element

Meaning

a BASIC constant (see "Constants")

a BASIC variable (see "Variables")

an element of an array (see II Vari­
ables") identified by its position in
the array as in
letter (expression-l [, expression-2])

Notation Variable Meaning

function

expression

a mathematical function (see II Math­
ematical Functions") of the general
form

SIN
COS
TAN
ATN
EXP
ABS
LOG
SQR
LGT
INT
RND

{expression}

an arithmetic expression (see II Ari th­
meti c Expressi ons") of the genera I
form

{

con.stant_l} [{+}{con.stant_2 J] vanable-l ~ - vanable-2
element-l * element-2 ...
function-l / function-2

t

re I at i ona I-express i on a relational expression (see II Rela­
tional Expressions"}of the general
form

>
expression-l >= expression-2

<
<=
<>

BASIC NOTATION CONSTANTS

The notation constants of the BASIC language consist of
command keywords, function identifiers, operators, and
delimiters.

Command Keywords

The command keywords in the BASIC language are

Keyword Use

DATA
DEF
DEL
DIM
DUMP
END
FILE
FN
FOR
GO
GOSUB
IF
INPUT
LET

defines data for a READ command
defines a nonstandard function
deletes a portion of a program
defines the dimensions of an array
designates portion of a program to be saved
identifies the end of a program
specifies a system fi Ie
used with DEF
part of FOR command
part of GO TO command
calls a subroutine
conditional GO TO command
specifies Teletype or input file with OPEN
arithmetic assignment

BASIC Syntax Notation 5

Keyword

LIST
LOAD
NEXT
OPEN
OUTPUT
PRINT
READ
REM
RETURN
RUN
STEP
STOP
TELETYPE
THEN
TO

Use

I ists portion of program
specifies program loading
terminates FOR command group
opens fi Ie for input or output
specifies output file with OPEN command
prints data on teletype or on file
accepts data from DATA command
inserts documentary comments
terminates subprogram
begins execution
part of FOR command
terminates program execution
designates remote terminal
part of IF command
part of FOR and GO TO commands

Function Identifiers

The following function identifiers are a standard part of
the BASIC language.

ABS
LGT

ATN
LOG

COS
RND

EXP
SIN

INT
SQR TAN

Other function identifiers may be dec lared by the program­
mer, as described in Chapter 3.

Operators

The operators included in the BASIC language are the arith­
metic and relational operators. (See "Arithmetic Expressions"
and II Relational Expressions".) Note that the equa I to (=)
operator is a rep lacement operator (i nstead of a re lati ona I
operator) in the LET, FOR, and DEF commands.

6 BASIC Syntax Notation

De limiters

Certain specia I characters are used as separators and as other
types of delimiters. The BASIC delimiters are

Character Use

()

"

separates elements of a list

separates elements of a formatted line

enc loses array subscripts and contro Is the
eva luation of expressions

terminates a command

denotes the beginning or the end of a text
character string

blank ignored (except in text)

It is important to note that blanks are ignored when they
appear within a keyword, a constant, or a variable name.
(For the purpose of this discussion, the symbol for a blank
is 0). The following example demonstrates the general rules.

35050PRoINToloSAMPLEoTEXTo"oBo8

tt t tt t ttt
'---"

ignored
blanks

~----~----~~

these blanks are ignored
part of text blanks

In the above example, II B" and II 8" are interpreted as the
variable II B8" •

Note that blanks may be eliminated entirely if the program­
mer is not concerned with the readabi lity of the printed
copy. Furthermore, since each BASIC command is limited
to a single line of 80 characters, the completion of a com­
plex command may be more important than its readability.

2. BASIC COMMANDS

SINGLE COMMANDS IN BASIC

The BASIC language allows the remote Teletype terminal to
be used as an extremely powerful desk calculator to evalu­
ate compl icated mathematical expressions and to reduce
data that requi res invol ved calculations. Two commands
enable the user to express almost any mathematical expres­
sion - PRINT and LET.

PRINT

The PRINT command causes BASIC to print the value of an
expression. The user types the word PRINT and the expres­
sion he wishes to evaluate (followed by a carriage return).
The computer will then issue a line feed and print the value
of the expression. The format of the PRINT command used
for this operation is

PRINT expression @)

Example:

>PRINT 7.56* 8.73 @
65.9988

Note that underlined copy is that which is generated by the
computer. Several expressions can be evaluated with one
PRINT command by separating the expression with commas.
The format of the PRINT command used for successive evalu­

ation and printing is

PRINT expression-1 [, expression-2] ... @)

Example:

>PRINT 5*6, 7+8+40,45/9 @)
30 55 i

T ext can a Iso be printed by enclosing the characters to be
printed in quotation marks according to the format

PRINT "character-string" @)

BASIC will cause the computer to print exactly what appears
between the quotation marks, e. g.,

>PRINT "THIS MESSAGE INCLUDES BLANKS" @)
THIS MESSAGE INCLUDES BLANKS

the PRINT command can also be used to type text and
values of expressions, e.g.,

>PRINT "A =" 5+6 8
A = 11

More elaborate output formats can be constructed as de­
scribed in Chapter 4.

LET or REPLACEMENT

If a variable is used as part of an expression in the PRINT
command, the user must first assign a value to the variable.
The LET command is used in other BASIC systems (notably,
the Dartmouth BASIC compiier) to assign the value of an
expression to a variable. In 940 BASIC, LET is not required
but is accepted to preserve compatibi I i ty wi th these systems.

The format of the replacement statement which assigns the
value of an expression to a variable, is

variable = expression §

or

LET variable = expression @;

For example, the command

X = 2+3 @)

assigns the value 5 to the variable X; the command

Y = 100

assigns the value 10 to the variabl e Y; and the command

A(5) = 9 @)

assigns the value 9 to the fifth element of array A.

Once the variable has a val ue, it may be used in a PRINT
command, e.g.,

>A = 5 @)
>PRINT A @)
5

>B = -4 @)
>PRINT B @)
-4

>PRINT "A + B =" A + B @)
A + B = 1

A replacement statement can be used to change the value
of a variable at any time, e. g.,

>A = 5 @)
>PRINT "A =" A @)
A = 5

>A :- A + 1 @)
>PRINT "NOW A =" A @)
NOW A = 6

WRITING PROGRAMS IN BASIC

The foregoing concerns some of the things BASIC can do

when commands are entered and executed one at a time.
This discussion of BASIC continues by introducing a second

way of using it, that is, as a means for writing and storing
computer programs for future execution.

A program is composed of commands (steps) that are to be
used in solving a problem. For example, consider the fol­
lowing steps of a program that cakulates the hypotenuse of
a right triangle according to the formula:

HYPOTENUSE ~ J(side 1)2 + (side 2)2

>100 A = 4 f:il
/11OB-3
>120 C = SQR(A t 2 -i- B t 2) @I
>130 PRINT "A=" A, "B=" B, "C=" C 8
>RUN 0V

BASIC Commands 7

Note that each step has a unique step number (which may
be any integer in the range 1 through 99999). The presence
of the step numbers tells BASIC that these steps are not to
be immediately executed, but are to make up a program.
When the RUN command is given, te Iling the computer to
execute the program, the steps are executed one at a time
in ascendi ng numeri ca I sequence by step number. The re­
sult printed by the computer would be:

A= 4

Remember that the = sign in the program means replacement,
not equality. Thus, step 100 means "assign the value 4
to All.

The following program calculates and prints the area and
volume of a sphere:

>200 P = 3.14 @)
>300 R = 2 8
>400 A = 4 * P * R t 2 @)
>500 V = (4/3) * P * R t 3 €V
>600 PRINT R, A, V@)
:-'RUN e

When the RUN command is given, BASIC wi II print:

2 50.24 33.49333

Although BASIC executes commands according to the nu­
merica I sequence of step numbers, the steps of a BASIC
program need not be prepared in numerical sequence. For
example, the above program could have been prepared as

>200 P = 3. 14 e
>300 A = 4 * P * R t 2 @)
>400 V = (4/3) * P * R t 38
>500 PRINT R, A, V @
>250 R = 2 @)
>RUNe

and the results will be identical.

GO TO

As we have seen, BASiC executes the steps of a program in
ascending numerical sequence by step number. However,
in writing programs it is sometimes necessary to change the
normal sequence of execution. This can be accomplished
by using the GO TO command, which has the format

[step-l] GO TO step-2 8

where

step-l is the optional step number of the GO TO
command. If step-l is not specified, BASIC be­
gins executing commands (beginning with step-2)
immediately after the carriage return.

step-2 is the step number of the command that is
to be executed next (instead of the command
with the next step number that is numerica Ily
higher than step-I).

Examples:

GO TO 1008
385 GO TO 2158

8 Writing Programs in BASIC

IF

It is often convenient to GO TO a step only under certain
conditions. This type of statement is called the IF (or
conditional GO TO) command, which has the format

step-l IF re lational-expression THEN step-2 8

This command means, "If the relational expression is true,
go to step-2 for the next command; otherwise (i.e., if the
relational expression is false) go to the next step number in
numerical sequence after step-l". For example, if we want
to say, "If X is greater than 5, go to Step 1 00", we would
write

70 IF X> 5 THEN 100 @

Some other examples are

100 IF A = 10 THEN 500 @)
500 IF C(5) > 10 THEN 2300 @
2300 IF D < = E THEN 100 @)

The following program solves a quadratic equation of the
form ax2 + bx + c = 0, by usi ng the formu las:

X = -b + V b
2

- 4ac
1 2a

>100 A = 5@)
>200 B = 6 @>
>300 C = 7 e
>350 D = B t 2 - 4 * A * C @>
>400 IF D < a then 700 @)
>450 Xl = (-B + SQR(D» / (2 * A)@)
>500 X2 = (-B - SQR(D» / (2 * A) @
>550 PRINT Xl, X2 @)
>600 GO TO 750 @
>700 PRINT" NO REAL ROOTS" @
>750 STOP @l
>GO TO 100 9

Execution of the above program begins immediate Iy after
the carriage return following the second GO TO command.
Note that in the example, the second GO TO command
could have been used to start execution at any step, where­
as the RUN command always causes execution to begin with
the lowest-numbered step. Note also that step 400 is a
conditional GO TO command. It tells BASIC to skip the
intervening steps and execute ·step 700 only if the discrimi­
nant (D) is less than zero. If the discriminant is not less
than zero the next command (step 450) is executed after
step 400.

DATA/READ

Values can be assigned to variables in several ways. The
LET statement is one method. Another method involves
the combined use of the DATA and READ commands.

A II the constants that are to be assigned to variab les through­
out the program are written together in a DATA command,
which has the format

step DATA constant- 1 [, constant-2]. f'RET\ . . v

Examples:

125 DATA 5, 10, 15 @)
150 DATA 100,0, 4E2, 4.2 @)
345 DATA 1.1,1.7, 34902,33.367E-15 @)

Similarly, the READ command has the format

step READ variab le- 1 [, variab le-2] . G . ·v

Examples:

40 READ D @)
50 READ A 1 ,A2 @)
60 READ X(l),X(2),X(3)@)

Each time a READ statement appears, the computer auto­
matically assigns each constant-i in the DATA list to the
corresponding variable-i in that READ statement. For ex­
ample, the commands

100 READ A, B,C @)
200 DATA 1, 2, 3 @l

would be equivalent to the commands

100 A = 1 @)
150 B = 2 @
200 C = 3 §

Generally a program uses more than one value for a vari­
able in order to prevent excessive use of constants and as­
signments. For example, consider the program

>10 G = 100@
>20 P = 20 @
>30 D = G * P * .01 @
>40 A = G - D I§
>50 PRINT D, A @
>55G=150@
>60 P =- 5 @)
>70 D = G * P * .01@)
>80 A = G - D@)
>90 PRINT D, A @l

Another way of writing this program using the READ and
DATA commands is

> lOR EA D G, P @l
> 30 D = G * P * .01 @l
> 40 A = G - D@)
> 50 PRINT D, A@l
> 60 READ G, P @)
> 70 D = G * P * .018
> 80 A = G - DI§
> 90 PRINT D, A @)
>100 DATA 100,20,150,5@l

Note that all the data that is to be assigned to G and P is
now located in step 100.

INPUT

There is a third method of assigning values to variableswhich
may be done at execution time, contrary to the other meth­
ods mentioned. To use the READ and DATA commands or the
LET command, the user must assign values to all variables
when the program is written. To assign values to variables
at execution time the user may use the INPUT command,
which has the format

step INPUT variable-l [, variable-2]' .. @l

Examples:

400 INPUT A, B, C, D, E @)
500 INPUT X, Y,- Zl, Z2 @)

Each time the input command is encountered during exe­
cution, the program is halted and a ? is output to the ter­
minal. At that time, numbers corresponding to the variable
list, separated by commas, must be typed in, terminating
with a carriage return. The values are automatically
assigned to the respective variables and execution is
continued.

Now the sample program given for the READ and DATA
commands could be written as:

>10 INPUT G, P @l
>20 D = G * P * .01 @)
>30 A = G - D @)
>40 PRINT D, A @)
>50 INPUT G, P @)
>60 D = G * P * .01 @
>70 A = G - D@)
>80 PRINT D, A@)
>RUN@

When the RUN command is given, BASIC executes the first
IN PU T command and wa i ts for the va I ues of G and P, and
a carriage return. Upon receiving these, execution con­
tinues until the next input command. Output would appear
as

? 100,20 @)
20

? 150,5@)
7.5

80

142.5

WRITING PROGRAM lOOPS

Note that the first four steps of the sample program for the
INPUT command are exactly like the second four steps. This
makes it possible to represent the program in the following
way:

>10READG,P
>20 D = G * P * .01 @)
>30 A = G - D @l
>40 PRINT D,A @
>50 GO TO 10 ~(~
>60 DATA 100,20,150,501)
>RUN@

Writing Programs in BASIC 9

The computer will perform steps 10 through 50 in the normal
fashion, but after completing step 50 it wi II go back to
step 10 and repeat steps 10 through 50. When the computer
comes to step 50 once more, step 50 sends it back to step 10
again. This process is repeated over and over until all data
defined in the DATA command (or any higher numbered
DATA command) has been used. At this time, the message
"OUT OF DATA 10" would be typed. This technique (often
called a loop) is perhaps the single most important feature
in programming. The following example shows all the steps
that are necessary to set up a controlled loop to print all the
numbers between 1 and 100.

>101=1@J
>15 IF I < 100 THEN 60 €V
>20 PRINT I@)
>45 I = I + 1 €V
>50 GO TO 158
>60 PRINT IJFINISHED IJ @)
>RUN@

First, a variable was selected to be the counter (I). Second,
an initial value was assigned to the counter variable (1).
Third, the value of the counter variable was tested to see if
it was finished (I > 100). Fourth, the value of the counter
variable was increased each time the loop was repeated
(1=1+1).

FOR/NEXT

A second (and briefer) method of constructing program loops
is to use the FOR and NEXT commands. The FOR command,
which has the format

step FOR variable = expression-l TO expression-2 €V

assigns the value of expression-l to the variable and uses
expression-2 as an upper limit for the value of the variable.
The NEXT command, which has the format

step NEXT variable@)

must appear somewhere after the FOR command. The vari­
able must be the same variable given in the FOR command.
The purpose of NEXT is to increment the value of the variable
(by 1) and compare its incremented value with the value of
expression-2 given in the previous FOR command. If the
incremented variable is less than or equal to expression-2,
BASIC interprets the NEXT command as, "GO TO the pre­
vious FOR command lJ

• However, if the incremented value
of the variable is greater than the value of expression-2
given in the FOR command, BASIC interprets the NEXT
command as, "GO TO the next step in numerical sequence
after the NEXT command lJ

•

The FOR loop is always executed at least once, even when
expression-l is initially greater than expression-2.

Thus, using the FOR and NEXT commands, the program
given above could also be written as:

>iO FOR i = i TO iOOS
>20 PRINT I
>30 NEXT I @J
>40 PRINT "FINISHED"
>RUN 8

10 Writing Program LOOPS

Exactly the same looping procedure is followed; however,
it happens automatically by using the FOR command,
where

I is the counter variab Ie
1 is the initial value of I
I> 100 is the test for completion
1 is the increment to be added to I.

In this sample program the "bodl' of the loop consists of
one step (step 20). The body of the loop may be any num­
ber of steps, but it is always terminated by the NEXT com­
mand. When the loop is finished the next step executed is
the step following the NEXT command.

In some program loops it is necessary to increment the
counter variab Ie by a va lue greater than 1. Thi s can be ac­
complished by inserting a LET command immediately before
the NEXT command. For example, to find and print all even
numbers in the range 50 through 76, the following program
could be used:

> 10 FOR X = 50 TO 76 €V
>20 PRI NT X @J
>25 X = X + 1 @)
>30 NEXT X @J
>40 PRINT "FINISHED" €V
>RUN@

A simpler way of doing this is to use a STEP clause in the
FOR command, as in the format

step FOR variable = expression -1 TO expression-2
[STEP expression-3] €V

where expression-3 is the increment to be added to the
variable when the NEXT command is executed. Thus, the
above program can a Iso be written as

> 10 F OR X = 50 TO 76 STEP 2 €V
>20 PRINT X 8
>30 NEXT X @)
>40 PRINT "FINISHED" @J
>RUN@

According to the looping procedure

X is the counter variable
50 is the initial value of X
X > 76 is the test for completion
2 is the increment to be added to X.

Note that the increment is assumed to be 1 unless a STEP
clause is added to the FOR command.

It is often useful to have loops within loops. These II nested"
loops can be expressed with FOR and N EXT commands. In
the following skeleton examples, the enlarged brackets mark
the body of the loop.

Legal Illegal

[For X [For X
For Y For Y

[NEXT Y [NEXT X

NEXT X NEXT Y

FOR X
[FOR Z

FORY FOR Z

[FOR Z [NEXT Z

NEXT Z NEXT Z

[FOR W FORX

NEXT W
[FORY

NEXT Y FOR X

[FOR Z [NEXT X

NEXT Z NEXTY

NEXT X NEXT X

USE OF SUBSCRIPTS

The concept of subscripting and arrays becomes extremely
useful in relation to programming loops. Consider the fol­
lowing table, which lists the quantity of each type of item
sold by each of five salesmen in one week.

Jones Smith

Item 1 40

Item 2 10

Item 3 35

20

16

47

Salesman

Brown Doe

37

3

29

29

21

16

White

42

8

33

The price of each item is listed in the following table:

Item

1
2
3

Price

$1.25
$4.30
$2.50

In the following discussion, the quantities of items in the
first table are regarded as the two-dimensiona I array Q(I, S)
where I is the item number (row reference) and S is the
salesman (column reference). The prices of the items are
regarded as the one-dimensiona I array P(I) where I is the
item number.

The following program calculates the total sales in dollars
for each salesman using data from the preceding tables:

> 10 F OR I = 1 TO 3 @)
>20 READ P(I) @)
>30 NEXT I @l
>40 FOR I = 1 TO 3 @l
> 50 FOR 5 = 1 TO 5 @)

>60 READ Q(I, S) 8
>70 NEXT S 8
>80 NEXT I @)
>90 FOR S = 1 TO 5 @)
>100 T = 0 8
>110 FOR I = 1 TO 3 @)
>120 T = T + P(I) * Q(I,S)8
>130 NEXT I @l
>140 PRINT"TOTAL SALES FOR SALESMAN" S,"$"T@l
>150 NEXT S 8
>200 DATA 1.25,4.30,2.50 @)
>210 DATA 40,20,37,29,42 @)
>220 DATA 10,16,3,21,88
>230 DATA 35,47,29, 16,33 @)
>RUN @)

Steps 10 through 30 read in the values of the list P. Steps
40 through 80 read in the values the table Q. Steps 90
through 150 compute T (the total sales for each of the five
sa lesmen) and print each answer as it is computed. The
calculation for a single salesman takes place in steps 100
through 130. In steps 90 through 150, the letter I stands
for the item and the letter S stands for the salesman.

DIM

BASIC automatica Ily provides 11 elements (locations in
memory) for a one-dimensional array, so that the subscript
may vary from 0 to 10. If the user wants to allow for a longer
array, he may specify its subscript range with the DIM (di­
mension) command, which has the format

step DIM array-1 [, array-2] ... @l

where each array-i has the form

letter-i (expression-i)

Each expression-i must evaluate as zero or a positive inte­
ger value, which specifies the upper subscript limit of the
array-i as the value of the expression-i. (The lower sub­
script limit is 0).

Examples:

10 DIM Q(59) @l dec lares an array of 60 elements
20 DIM B(A + X), Z(A(X)) @l

Similarly, the subscripts of a two-dimensional array may
each vary from 0 to 10. This allows for 11 x 11 or 121 ele­
ments. If a larger table is desired, the user may use the
DIM command with each array-i having the form

letter-i (expression-1, expression-2)

Each expression-i must evaluate as zero or a positive inte­
ger, which specifies the upper subscript limit for the corre­
sponding dimension of the array-i.

Examples:

1 DIM Y(40,50)@ldeclares an array of 41 x51 elements
2 DI M X (Y I Z), A {l, 1) @l
3 DIM A(X(l), X(2))@)
4 DIM L(M + N * N) @;

Use of Subscripts 11

INPUT /OUTPUT COMMANDS

All data permanently stored at the computer installation is
kept in fi les on a large disc memory system. Each user has
his own files and file directory {for further description of
files see the SDS 940 Terminal User's Guide}.

OPEN

Often the va lues to be assigned to program variables are lo­
cated in a permanent file. To read a permanent file, it must
be in the user's file directory and itmust be opened using
the OPEN command. Similarly, program output may be writ­
tenonafileratherthanontheTeletype. Again, the file must
appear in the user's file directory and must be opened using
the OPEN command. The OPEN command has the format

. 1 INPUT l
step OPE N/flle-name/, OUTPUT ~ @l

where fi Ie-name is the name ofa file in the user's fi Ie directory.

Examples:

10 OPEN/DATA1/,INPUT @)
20 OPEN/XYZ/, INPUT @l
30 OPEN/MASTER/, OUTPUT @)
40 OPEN/Fl/, OUTPUT @)

The OPEN command resets the file's location counter to its
beginning so that the first value subsequently input from or
output to the file will be the first value of the file. A file
cannot be open for input and output simultaneously.

INPUT FILE

Once the fi Ie is opened for input, the user may read it by
using the INPUT FILE command, which has the format

step INPUT FILE variable-l [, variable-2]' .. §

Each time the INPUT FILE command is encountered during
execution, the next va lue-i appearing on the fi Ie most re­
cently opened for input is read and assigned to the next
variable-i in the list of variables.

Examples:

50 INPUT FILE X @)
60 INPUT FILE A 1, B, Z @)

The following technique can be used to open a file forINPUT
(OUTPUT) which had been opened for OUTPUT (INPUT).

5 OPEN /A/, INPUT 9 Opens /A/ for input

10 INPUT FILE X, Y, Z 9 Inputs data from /A/

15 OPEN /B/, INPUT @) Closes /A/, Open /B/
for input

20 INPUT FILE Q, R, S @l Inputs data from /B/

25 OPEN /C/, INPUT 9 Closes /B/, Open /C/
(a dummy) for input

30 OPEN /B/, OUTPUT 9
35 PRINT FILE G, H, I, J (§ Outputs data to file /B/

12 Input/Output Commands

PRINT FILE

Once the file is opened for output, the user may write on
it using the PRINT FILE command, which has the format

step PRINT FILE expression-l [, expression-2] ..• @l

Each time the PRINT FILE command is encountered during
execution, the value of each expression-i appearing in the
list of expressions is appended to the file most recently
opened for output in the same order as given in the expression
list.

Examples:

70 PRINT FILE X, Y @)
80 PRINT FILE X + Z/100, I @l

The following small programs illustrate one method of uti­
lizing data files. Briefly, the first program creates a master
file consisting of an employee number, hourly rate, and the
number of hours worked for each company employee.

The second program reads the master file, calculates and
prints the weekly salary for each employee (time and a hal f
for overtime), and calculates total payroll.

The third program reads the master file and calculates com­
pany overtime.

>110 OPEN/MASTER/, OUTPUT @l
>111 INPUT E, R, H @l
> 112 PRINT FILE E, R, H @l
>113 IF E=OTHEN 110@
>114 END @l

>209 S == 0 @l
>210 OPEN/MASTER/, INPUT @)
>211 INPUT FILE E, R, H §
> 21 2 IF E = 0 THE N 220 @l
>213 IF H > 40 THEN 218 @)
>214 P == R * H €V
>215 PRINT E, P @)
>216 S == S + P 0
>217 GO TO 2110
>218 P = 40 * R + (H-40) * R * 1.5 0
>219 GO TO 215 @)
>220 PRINT "TOTAL PAYROLL", S 0
>221 END@)

>309 S == O@)
>310 OPEN/MASTER/, INPUT 0
>311 INPUT FILE E, R, H @)
>312 IF E = 0 THEN 315@)
>313 IF H < 40 THEN 311 @
>314 S = S + (H-40) @)
>315 GO TO 311 0
>316 PRINT II COMPANY OVERTIME", S 0
>317 END0

PRINT

The PRINT command may be used simply and directly, as
previously described, or it may be used in conjunction with
output format options for the programmer who wants format­
ted output. For this purpose, there are three format types:
zoned, packed, and compressed.

Zoned Format

The Teletype line is divided by BASIC into five zones of
fifteen spaces each, which allows for the printing of up to
five items per line. A comma is a signal to BASIC to move
to the next print zone, or to the first print zone of the next
I ine if it has just filled the fifth print zone. The termina­
tion of a PRINT statement signals a new line (unless a
comma is the last symbol). Each number occupies one zone,
whereas text occupies an integer number of zones i i. e., if
text occupies part of a zone, the rest of the zone is filled
with blanks. If text runs through the fifth zone, part of it
may be lost.

separating spaces. Also, if two parts of text are separated
only by the usual quotes, they will be printed without
spaces. Similarly, if text is followed by an expression,
without a comma or semicolon, the value will be printed
immediately following the text (a blank replaces the pi us
sign for non-negative numbers).

Packed Format

The user may specify that output is to be printed in packed
format by separating the expressions with the semicolon
instead of the comma. Whereas the comma causes BASIC
to move to the next zone to print the next item, the semi­
colon causes BASIC to move to the beg inn ing of the next
multiple of three characters to print the next answer. Thus,
with packed output, the user can print eleven, three-digit
numbers per I ine, eight, six-digit numbers per I ine or six,
nine-digit numbers per line.

Compressed Format

Examples:

>1 FOR X = 1 TO 3 @)
>2 PRINT IIX =11 X @)
>3 NEXT X @) ,

>4 END @)
>RUN~
X= 1 X=2

>2 PRINT IIX =11 Xi @)
>RUN@)
X=l X=2

>2 PRINT IIX =" X @
>RUN@)
X = 1

X=2

X=3

(zoned format)

X=3

(packed format)

X=3

(compressed format)

If neither a comma nor a semicolon appears between expres­
sions to be printed r the values will be printed without any

A more extensive demonstration of packed format is shown
in Figure 1.

>100 FOR X = 100 TO 125 @)
>110 PRINT Xi@)
>120 NEXT X@
>130 END@
>RUN @)

1 00 10 1 102 1 03 1 04 105 106 1 07 1 OB 109 11 0
111 11 2 11 3 11 4 1 15 11 6 11 7 11 B 119 120 121
122 123 124 125

>100 FOR X = 100000 TO 100025 @)
> 110 PRINT Xi @
>120 NEXT X @)
>130 END 8
>RUN@)

100000 100001 100002 100003 100004 100005 100006 100007
10000B 100009 100010 100011 100012 100013 100014 100015
100016 100017 10001B 100019 100020 100021 100022 100023
1 00024 100025

>100 FOR X = 1000000 TO 10000138
>110 PRINT Xi 8
>120 NEXTX@
>130 END@)
>RUN@)

1.E+06 1.000001E+06 1.000002E+06 1.000003E+06 1.000004E+06
1.000005E+06 1.000006E+06 1.000007E+06 1.00000BE+06 1.000009E+06
1.00001E+06 1.000011E+06 1.000012E+06 1.000013E+06

>

Figure 1. Example of BASIC Packed Format

Input/Output Commands 13

3. FUNCTIONS AND SUBROUTINES

FUNCTIONS

The standard functions that BASIC provides are listed under
"Mathematical Functions" in Chapter 1. The manner in
which they are used is very simple. To compute y= /1 +x2

the programmer would write

Y = SQR (1 + X t 2) @)

The expression enclosed in parentheses is called the argu­
ment. The other standard functions are used in this same
way; that is, the function name is followed by the argu­
ment enclosed in parentheses, as shown by the format

functi on-name (expressi on)

Examples:

LOG(Y)
SIN(X t 2)
ABS(X + Y + Z)

Two additional functions that are in the BASIC repertory
but which have not been described, are INT and RND

INT

The INT (integer) function is used to determine the integer
part of a number that might not be a whol e number. Thus
INT (7.8) is equal to 7. As with the other functions, the
argument of INT may be any expression. INT always op­
erates by truncating the fractional part, whether the num­
ber is positive or negative.

One use of INT is to round numbers to the nearest integer.
If the value of X, for example, is positive, it may be rounded
by using the statement INT(X + .5). If the value of X is neg­
ative, however, the statement INT(X - .5) must be used, the
reason being that a number I ike -7.8 rounded is -8 not -7.
INT can be used to round to any number of decimal places.
For positive values of X, for example, the statement
INT(100*X + .5)/100 will round X to two decimal places.

RNO

The RND function is a pseudo-random number generator.
When called, it will produce a floating-point number with
a value between zero and one. For example, the command

PRINT RND.@>

would cause BASIC to print

.502793

When the function is called repeatedly, it will produce a
sequence of pseudo-random numbers. For exampl e, the
command

PRINT RND., RND., RND. @

would cause BASIC to print

.502793 .2311643 .3898417

14 Functions and Subprograms

The same sequence of psuedo-random numbers will occur in
every program that uses the RN D function, which is useful
for debugging.

OEF

The DEF command permits the user to define a function so
he will not have to repeat a formula each time he uses it
in his program. The name of a defined function must be
three letters, the first two of which are FN. Thus the user
may define up to 26 functions with DEF commands, that
have the format

step DEF

where

letter-1

FN letter-1{1etter-2) = expression@)

is the third letter of the user-defi ned
func Hon name.

letter-2 denotes an unsubscripted variable that is
initially set to the value of the argument used in
the call for the user-defined function. letter-2
is set equal to the value of the expression and is
also returned as the result of the call for the user­
defined function.

expression may be any expression that can fit into
one line. It may not include another user-defined
function, but may include standard functions (like
SIN and SQR) and may involve other variables
besides the one denoting the argument of the func­
tion. However, the variables used in the expres­
sion must not be subscripted.

Examples:

25 DEF FNF(Z) = (Z*3. 14159265/180) @)

40 DEF FNL(X) = LOG (X) / LOG (10) @)

Thus, step 25 defines FNF as the function "sine of Z de­
grees" and step 40 defines FNL as the function "Iog-to-the­
base-ten of X".

The DEF command may occur anywhere in the program. In
a program containing FNF as defined above, the variable
Z takes on a new value each time the function FNF is
called. The safest practice is to avoid using elsewhere in
a program the same variable used in a DEF command to de­
fine a function.

As another exampl e:

60 DEF FNX(X) = SQR (X*X + y*y) @)

may be used to set up a function that computes the square
root of the sum of the squares of X and Y. To use FNX,
one might write the following:

>10 Y = 30 09
>20 S 1 = FNX(40) €V

In this case, Sl is set to the value 50 as the result of
step 20.

It should be noted that one does not need DEF unless the
defi ned functi on must appear at two or more I ocati ons in
the program. Thus,

> 10 DEF FNF(Z) = SIN(Z*P) @)
>20 P = 3. 14159265/180 @)
>30 FOR X = 0 TO 90 @
>40 PRINT X, FNF(X)@)
>50 NEXT X@)
>60 END @)

might be more efficiently written as

>20 P = 3. 14159265/180 @)
>30 FOR X = 0 TO 90 8
>40 PRINT X, SIN(X*P) @)
>50 NEXT X@)
>60 END@

to compute a tabl e of values of the sine function in degrees.

SUBPROGRAMS

The use of DEF is limited to those cases where the value of
the function can be computed within a single BASIC state­
ment. Often much more compl i cated func ti ons, or per­
haps even sections of a program that are not functions,
must be calculated at several places within the program.
For this, the GOSUB command may be useful, which has
the format

step-1 GOSUB step-2

Example:

200 GOSUB 4008

The effect of the GOSUB command is exactly the same as a
GOTO command except that BASIC notes where the GOSU B
command is in the program. As soon as a RETURN command
is encountered, the computer automatically goes back to
the command immediatel y following the most recentl y exe­
cuted GOSUB command. As a skeleton example:

>100 X = 3 @)
>110 GOSUB 400 8
>120 PRINT U, V, w8
>200 X = 58
>210 GOSUB 400 @>
>220 Z = U + 2*V + 3*W@>
>230 GO TO 440 @
>400 U = X*X @>
>410 V = x*x*x8
>420 W = X*X*X*X+X*X*X+X*X+X@
>430 RETURN 8
>440 END@>

When step 400 is entered by the GOSUB 400 in step 110,
the computations in steps 400, 410, and 420 are performed,
after which the computer goes back to step 120. When the
subprogram is entered from step 210, the computer goes
bac k to step 220 after step 430 is exec uted the second
time.

Subprograms 15

4. PROGRAM PREPARATION AND EXECUTION

PROGRAM INPUT FROM THE TELETYPE

There are several methods for preparing a BASIC program
for execution. The first method is to type the program di­
rect�y into BASIC. This is usually the procedure used for
small and medium sized programs. For exampl e:

-BASIC C§
> 100 PRINT "THIS IS A SORTING PROGRAM"!§
> 110 IN PUT N @)

PROGRAM INPUT FROM PAPER TAPE

It is often conveni ent as well as economical to type longer
programs on paper tape while off line. To do this, the
teletype is placed in (1) LOCAL MODE, (2) HALF DU­
PLEX MODE, and (3) PAPER TAPE PUNCH ON. The
statements are typed just as though the user were connected
to the computer, with one exception. Following each line,
the user must type a carriage return and a I ine feed. When
connected to the computer, the user types only a carriage
return and the computer performs the line feed.

If the user has punched his program on a paper tape, he
can enter the text into BASIC with the following procedure:

-BASIC @)
>LOAD TELETYPE @)

After this, BASIC is waiting for the program; when the user
turns on the paper tape reader, the program reads in.

BASIC is unable to distinguish typed characters from those
that are read from the paper tape reader. Therefore, an
alternate way of entering a paper tape is to turn on the
paper tape reader without using the LOAD command:

-BASIC @)
(turn on reader)
> 100 PRINT "THIS IS A SORTING PROGRAM"
>110 INPUT N

PROGRAM ON FILE

If the program to be run has been previousl y prepared and
is now located in a file on the disc, the user may type the
command LOAD to bring his program into memory. The
format of the LOAD command is

LOAD Ifi I e-name/0

Examples:

LOAD/pA YROLL/0
LOAD ISORT I@)

16 Program Preparation and Execution

MISCELLANEOUS BASIC COMMANDS

REM

An importantpartofany computer program isthe description
of what it does, and what data should be supplied. One of
the ways a program can be "documented" is by supplying
remarks along with the program itself. BASIC provides this
capability with the REM (remark) command. For example,
consider a program that calculates mean and standard de­
viation according to the formula

:6x.
I

Mean =I'j SD =
2 2

:6(x.) - (:6x.)
I __ I_

N
N-l

>100 REM MEAN AND STANDARD DEVIATION@)
>llOS=O@
>120 Q = O@)
>125 INPUT N @)
> 130 FOR I = 1 TO N 0
> 140 IN PUT A (I) §
> 150 X = X + A(I)@)
> 160 Q = Q + A(I) * A (I) @
>170 NEXT 10
> 180 PRINT "MEAN=" SiN €V
> 190 D = SQR(((Q-(S * 5) / N)) / (N- 1)) (§
>200 PRINT "SD=" D@)
>210 ENDC§

END

An END command indicates the termination point of a pro­
gram. When the END command is encountered, it causes
BASIC to stop executing the program and to await further
commands.

RUN

The user types RUN to begin execution. The program al ways
begins with the smallest step numberand executes according
to ascending step numbers. To begin execution in the
middle of the program, the user ccn use the GO TO com­
mand as a direct command.

STOP

The STOP command is used to stop program execution.
When the program executi on hal ts at the STOP command,
the user may examine ie! evant vOiiabl eS. He rnay then, if
he so desires, issue a command GO TO s, where s is the
step number following the STOP command. The GO TO
command will then cause execution to continue at step
number s.

LIST

To list all or some of the steps of a program, the user types
a LIST command, which has the format

LIST f.tep-l {E-step-2] }] @) L ~ step-2] •••

Examples:

LIST @)
LIST 100 @
LIST 100-500 @

LIST 100, 200, 300 @

DEL

(list entire program)
(I i st step 100)
(I i st steps 100 through

500)
Li st steps 100, 200,

and 300)

To delete one or more steps of a program, the user types a
DEL command, which has the format

DEL

{

ALL }

.

step- 1 {[-step-2] } @
~ step-2] •••

Examples:

DEL ALL@
DEL 1008
DEL 100-500@)

DEL 100, 200, 300 @)

(del ete enti re program)
(del ete step 100)
(del ete steps 100

through 500)
(del ete steps 100, 200,

and 300)

To delete one step, the user may simply type the step num­
ber followed by a carriage return, e.g.,

> 1258

DUMP

To save a program on a permanent file, the user types a
DUMP command, which has the format

DUMP I,tep-l {[-step-2] }~ @ L G step-2] ••• rJ
Examples:

DUMP@
DUMP 100-210@

DUMP 100, 200, 221 @

(dump entire program)
(dump steps 100

through 210)
(dump steps 100, 200

and 221)

In response to the DUMP command, BASIC will print

ON:

on the I ine foil owing the DUMP command. The user then
types the name of the fil e on which he wishes to dump the
desired portion of the program. The appropriate file name
must appear between slashes, as follows:

/file-name/@

In response to the user's designation of the file, BASIC de­
termines whether the file name currently exists in the user's
file directory. If the name does exist, BASIC will print

OLD FILE

on the following line; however, if the name does not exist,
BASIC will addthenametothe user'sfiledirector and print

NEW FILE

on the following line:

Examples:

>DUMP @
ON:/SAVE/e
OLD FILE

>DUMP 100-120 e
Clli :/PGM/@
NEW FILE

>DUMP 100, 200, 221 @
ON:/Pl/8
OLD FILE

Miscellaneous BASIC commands 17

A
arithmetic

components, 2, 3
expressi ons, 3, 5
opera tors, 3

arrays, 3

B
blanks

c
in commands, 6
in messages, 7

character set, BASIC,
commands

input/output, 12
miscellaneous, 16, 17
single, 7

constants
arithmetic, 2
syntactical, 5

CONTINUE, 2
correction, error, 2, 17

o
DA T A comma nd, 8
DEF {defi ne function} command, 14
DEL {delete} command, 17
DIM {dimension} command, 11
DUMP command, 17

E
elements of arrays, 3
END command, 16
error corrections, 2
ESC {escape} key, 2
evaluatable expressions, 4
execution of programs, 16
exit from BASIC, 2
expressions, 3, 5

F
files

input from, 12
outpu t to, 12
prog ra ms on, 16
readi ng from, 12
writing on, 12

FOR command, 10
format, Teletype output, 12, 13
functions, 14,4

G
GO TO command, 8
GOSUB command, 15

18 Index

INDEX

identi fiers, 6
IF command, 8
INPUT command, 8
INPUT FILE command, 12
input

of data, 8
of information from files, 12
of programs from paper tape, 16
of programs from the Teletype, 16

INT {integer} function, 14

K
keywords, 5

L
LET or Replacement command, 7
LIST command, 17
LOAD command, 16
log-in procedure, 1
log-out procedure, 2

N
NEXT command, 10
notation, BASIC syntax, 4
notation constants, BASIC, 5
notation variables, BASIC, 5

o
OPEN command, 12
operating procedures, 1, 16
operators, 6
output

p

formats, 12, 13
of data, 7

paper tape, program input from, 16
PRINT command, 7, 12
PRINT FILE command, 12
program

execution, 16
input from paper tape, 16
input from the Tel etype, 16
loops, 9
preparation, 16
termination, 16

Programs
BASIC, 7
on fi les, 16

R
READ command, 8
relational expressions, 4
REM command, 16

RET {carriage return} key, 1
RETURN command, 15
RND {pseudo-random number} function, 14
RU N command, 16

s
single commands, 7
STEP clause, 10
step numbers, 8
STOP command, 16
subprograms, 15
su bsc ri pts, 11

T
THE N clause, 8

V
variables, arithmetic, 3
variabl es, syntactica I, 5

W
writing

on fi les, 12
on the Teletype, 7, 12,13
prog ra m loops, 9
programs in BASIC, 7

Index 19

50S SCIENTIFIC DATA SYSTEMS · 1649 'Seventeenth Street · Santa Monica. California 90404

1
J
q
Ul

	0001
	0002
	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	xBack

