
Price: $1. 00

DDT

REFERENCE MANUAL

for

SOS 940 TIME-SHARING COMPUTER SYSTEMS

May 1967

90 11 13A

SCIENTIFIC DATA SYSTEMS/1649 Seventeenth Street/Santa Monica, California

91967, SCientific D,Jta Systems, Inc Printed In U.S.A.

RELATED PUBLICATIONS

Titl e

SOS 940 Computer Reference Manual

SOS 940 Time-Sharing System Reference Manual

SOS 940 Terminal User's Guide

NOTICE

Publication Number

9006 40

90 11 16

90 11 18

The specifications of the software system described in this publication are subj ect to change without notice. The avai labi Ii ty or performance of some features ma
depend on a specific configuration of equipment such as additiona I tape units or larger memory. Customers shou Id consu It thei r SDS sales representative for detai Is

ii

CONTENTS

l. INTRODUCTION 12. BLOCK STRUCTURE 9

Operating Procedures 1 13. WORD SEARCH 10
Log In 1
Escape 2 14. PROGRAM ALTERATION 11
Exit and Continue 2
Log Out 2 Insertions 11

Literals 11
2. DDTls LANGUAGE 2 Deletions 11

Pseudo Relabeling 11
Constants 2
Symbols 2 15. PROGRAM EXECUTION 12
Express ions 2
Commands 3 Breakpoints 12

Execution Commands 12
3. COMMANDS CONCERNING THE RADIX 3 Additional Executi on Commands 13

4. COMMANDS TO EVALUATE EXPRESSIONS 4 16. PANICS 14

5. MEMORY ALLOCATION 4 17. INPUT 14

6. OPENING REGISTERS 5 18. OUTPUT 15

7. COMMANDS CONCERNING MODES 6 APPENDIXES

8. INDIRECT ADDRESSING 7 A. CHARACTER CODES 16

9. CENTRAL REGISTERS 7 B. SDS 940 INSTRUCTIONS 17

10. SYMBOL DEFINITION 8 C. S YST EM PROGRAMMED OPERATORS 18

11. ERASING SYMBOLS 8 D. DDT SUMMARY 19

iii

1. INTRODUCTION

The SDS 940 Dynamic Digital Debugging Tool (DDT) gives
the user the capability of investigating a program's opera­
tion in terms of its original symbols. Because of the high
degree of man-machine interaction permitted and the avai l­
ability of the DDT subsystem, it allows the user to maintain
vigilance over his program as it is executing. It also allows
him to execute one, part, or all of his program's instruc­
tions and to investigate, between executions, the contents
of any or all variab les or locations.

A "patching" mechanism is provided for modifying programs
and then continuing execution with negligible turn-around
time. Other features of DDT include word pattern searches
and execution halts at specified breakpoints.

Significantly, only a small fraction of the computer's time
is actually employed during on-line debugging. The 940
Executive dismisses programs that are awaiting input and
moves them to secondary storage. When the user makes his
next move, the program resumes operation, usually within
a second or two.

In addition to its on-line debugging capabilities, DDT
allows the user to write machine-language programs di­
rectly. A Ithough DDT does not save symbol ics, dump
fi les of programs can be created, so that many sessions
of debugging can take place without the symbolics ever
being reassembled.

This manual is intended to serve as a tutorial guide for the
new DDT user and as a reference source for the experienced
user. For clarity, severa I typographic conventions are used
throughout the manual. These are explained below.

1. Underscored copy in an example represents that produced
by the system in control of the computer. Unless other­
wise indicated, nonunderscored copy in an example is
that typed by the user.

2. The notation @) signifies a carriage return and e
signifies a line feed. The user signals the end of a
DDT command by striking the RETURN key, and the
system confirms the command with an automatic line
feed. If either or both of these functions are initiated
by the system, no notation is used.

3. Where the symbo I "0" appears in a DDT command, it
represents a "b Ian k" charac ter.

OPERATING PROCEDURES

The standard procedure for gai n i ng access to an SDS 940 ti me­
sharing computer center from a remote Teletype terminal is
described in the SDS 940 Terminal User's Guide, Publica­
tion No. 90 11 18. The user should also have a general
understanding of the TAP macro assembler described in the
SDS TAP Reference Manual, Publication No. 90 11 17. The
following paragraphs summarize the standard procedures as
they apply to DDT users.

LOGIN

Toga in access to the computer, the fo Ilowi ng operati ng
sequence is performed:

1. If the FD-HD (Full Duplex-Half Duplex) switch is pres­
ent, turn the switch to FD. Thisisatoggle switch with
two locking positions. When the Teletype is not con­
nected to the computer (sometimes called the Local Mode),
this switch must be in the HD position. Whenever the
Teletype is connected to the computer, this switch must
be in the FD position.

2. Press the ORIG (originate) key, which is usually lo­
cated at the lower right corner of the console directly
under the telephone dial. This key is depressed to ob­
tain a dial tone before dialing the computer center.

3. Dia I the computer center number. When the computer
accepts your call, the ringing will change to a high­
pitched tone. There will then appear on the Teletype
a request that the user log in:

4.

PLEASE LOG IN!

The user must then type his account number, password,
and name in the fo Ilowing format:

number passwordiname @)

On Iy persons who know a II three elements (the account
number, password, and name) may log in under that
particular combination. The following examples all
ill ustrate acceptab Ie practice.

PLEASE LOGIN!
PLEASE LOG IN!
PLEASE LOG IN!

123PASS iJONES @)
151WORDiBROWN @)
175PWiPSEUDO @)

If the account number, password, and name are not
recognized by the computer, it will print INVALID
USE R. The log- in procedure must then be repeated.
If the user does not type his account number, password,
and name within a minute and a half, a message is
transmitted instructing him to call the computer center
for assistance. The computer will then disconnect the
user, and the dial and log-in procedure wi II have to be
repeated.

5. If the account number, password, and name are ac­
cepted by the computer, it will print READY, the date,
and the time on the next line, and a dash at the begin­
ning of the following line:

READY date, time

The dash indicates that the 940 Executive is ready to
accept a command. t

tIn some 940 time-sharing systems the commercial II at" sign,
@, is used to indicate that the 940 Executive is ready to
accept a command.

Introduction

6. In response to the dash, the user types

DDT

When ready to accept commands, DDT responds with
a carriage return and line feed, but does not print a
confi rmi ng symbo I.

ESCAPE

The ESCAPE €> ke/ may be used at a Imost any time. It
causes the DDT subsystem to abort the current operation and
ask for a new command. Striking the @ key before termin­
ating a command with @ aborts the command.

t In some 940 time-sharing system configurations the RUB­
OUT or ALT MODE key is used inst~ad of the ESCAPE key.
Where @ appears in this manual, RUBOUT or ALT MODE
may be substituted.

EXIT AND CONTINUE

Striking the § key twice in succession causes computer con­
trol to return to the Executive. The user may reenter DDT
with program and execution status intact by typing

-CONTINUE @)

The system then prints a "DDT", to confirm the action, and
returns contro I to DDT.

LOG OUT

When the user wishes to be disconnected from the computer,
he types two consecutive escapes (to return control to the
Executive) and then types

LOGOUT

The computer wi II respond by printing the amount of com­
puter time and hook-up (line) time charged to the user's
account since the previous log-in procedure was completed.

2. DDT'S LANGUAGE

The language available to DDT users consists of constants,
symbo Is, expressions, and commands.

CONSTANTS

A constant is any string of digits which may be followed by
a B or 0 to signify an octal or decimal number, respectively.
The number represented by the constant is evaluated and
truncated to 24 bits. The base or radix for numbers is nor­
mally eight (octal), but the base may be changed by a DDT
command. Constants are always accepted and printed by
DDT in the current radix. However, if a constant is termi­
nated by B or D, it is interpreted as octal or decimal re­
gard less of the current radix.

Octa I Constants Decimal Constants

105B 9820
77777777 (where radix is 8) 46890 (where radix is 10)

SYMBOLS

A symbol is any legal string of letters and numerals con­
taining at least one letter. In symbols of more than six
characters only the first six are significant; thus, IIALPHA­
BETII is equivalent to II ALPHAB". TAP instruction mne­
monics are legal DDT symbols.

Lega I Symbols I "ega I Symbo Is

ABC 135B
AB124 AB*CD
12XYZ

2 DDT's Language

Note that II 135B" is not a legal symbol but rather an octal
constant; II AB*CDII is not a lega I symbol because II *" is
neither a letter nor a numeral.

EXPRESSIONS

A DDT expression is a string of numbers or symbols connected
with blanks or any of the operators shown below. These op­
erators have the following significance:

+ addition

subtraction

.* (integer) multiplication ,

;/ (integer) division

;& logical AND

;< less than

;= equa Is

;> greater than

Expressions are a Iways eva luated from left to right. A"
operators have the same precedence and parentheses are not
allowed. The first symbol or number may be preceded by a
minus sign. A blank is equivalent to a plus sign, except
that the operand that follows is truncated to 14 bits be­
fore being added to the accumulated value of the ex­
pression.

The value of an expression is an 8-digit octal integer. An
expression may be a sing Ie symbo I or a constant.

Examples:

Expressions

10D+20D
5-2
LDA
LDA+lO
LDA 10
SYM
SYM 10
LDA SYM

Octal Value

00000036
00000003
07600000
07600010
07600010
00001212 (previously defined)
00001222
07601212

COMMANDS

A command is an order typed by the user instructing
DDT to perform a function. Commands in DDT generally
take the form

eic

where e is an expression and c is a character.

A question mark (?) may be typed at any time to abort the
current command.

3. COMMANDS CONCERNING THE RADIX

As mentioned previously, all expressions are evaluated ac­
cording to the current base or radix. DDT normally calcu­
lates expression values using base 8. To alter the current
radix the user may type one of the commands listed below.

Command Purpose

e;R Sets the radix to 3, where e must
be greater than 1.

;D Sets radix to 10. All expressions
will be calculated and printed in
base 10.

;0 Sets radix to 8. A II expressions
wi" be calculated in base 8.

Unti I the radix is changed, a" subsequent expressions are
evaluated in the specified radix.

Example:

-DDT
2;R
111 + 101 = 1100
1 1 11 1 + 1 = 1 00000
5;R
1234 + 1 = 1240

Note that an equa Is sign followi ng an expression causes
DDT to evaluate the expression and print the answer in a
constant form.

The following is an example of expression evaluation using
octa I and deci ma I radixes.

Example:

;0
56+44
32-11
34;*56
12;/2
=.2,

;D
56+44
32-11
34;*56
12;/2
=Q.

= 122 @
=n@)
= 2410@)

= ~ @)

= 100@
= 21@)
= 1904@)
=Q.@)

Note that if only the equals sign is typed, the value of the
last expression typed is pri nted. The last expression typed
may be referred to as ; Q.

Example:

;D
1000+986
iQ
iQ+4

1986@)
1986@)
1990 @)

Commands Concerning the Radix 3

4. COMMANDS TO EVALUATE EXPRESSIONS

In addition to the equa Is sign, there are other commands
that cause DDT to evaluate and print the value of an ex­
pression. These commands are I isted below.

Command Purpose

Types the value of iQ as a signed
integer.

- Types the value of iQ in symbolic
form.

I Types the value of iQ as text.

cg. Types the address part of iQ in
symbolic form.

7j)= Types the value of iQ as a numeric
operation code.

Examples:

77777777# -=-l.8

12345670# 123456708

40000000# 40000000 @)

76000000- WIO 0,2 @

07600000- LDA 0 @)

07500010-- LDB 108

411 .6@)

102200431 ACcQC@)

144(a;= 144000008

5. MEMORY ALLOCATION

Upon entering DDT, the user does not have memory auto­
matically allocated to him. DDT obtains program memory
only when (1) it is required for loadi ng a binary fi Ie, (2)
the execute command (iU) is given and a new page is
needed to hold the instruction to be executed, and (3) a
reference is made to a memory location that is not in a
page previously obtained.

If another subsystem was being used prior to entering DDT,
the user may sti II have some pages of memory assigned to
him. In this case, he should release all previous memory
by issuing the Executive command, CLEAR. t

Examples:

(1) -DDT @
CAXi U

(2) -DDT@
LDA 4OOO;U

In example 1, the command iU causes the instruction
CAX (04600400) to be loaded in location 2408i DDT obtains
the core page containing this location, which is page zero
(all locations between 2408 and 37778),

t RESET in 940 RAD/Tape Systems

4 Commands to Evaluate Expressions/Memory Allocation

In example 2, the iU command used in conjunction with
LDA 4000 will cause DDT to obtain two pages of memorYi
the first to hold the instruction and the second because it
contains the location 40008 referred to by the command.

Note that if DDT has already obtained some memory when
the iU command is issued, the instruction to be executed is
loaded into the first unused memory location. "Unused
memory" refers to memory that has been defined. The first
unused memory location is usually referred to as iF. Only
if there is no unused memory beyond iF wi II a new page be
obtained. DDT always loads two BRS 10 instructions follow­
ing the instruction to be executed.

The user may also use the backward slash \ (shift L) to ob­
tain memory and enter data.

Example:

-DDT @
240\ LDA 4000

This sequence causes only one page of memory to be ob­
tained (i. e., page zero, which holds the instruction). Note
that the page containing location 4000 is not obtained until
the instruction is executed.

6. OPENING REGISTERS

A major feature in the DDT language is the "opened regis­
ter". A register (core location) may be opened at any time
and its contents printed for examination and possible alter­
ation. However, the page in which the location exists
must have been obtained by DDT prior to opening the
reg ister.

To open a register, the user types the address and a slash.
DDT responds by pri nti ng the contents of the location and
issuing a tab. At this point the user may close the register
without disturbing its contents, by striking a carriage re­
turn. However, if he wants to change the contents, he may
type whatever he wishes at the tab stop, followed by a
carriage return. The new information wi II then be stored
in the opened register.

Example:

-DDT@)
NOP;U @)
240/ NOP 8
241/ BRS 12 CLA 8
242/ BRS 12 8
243/ 0 @)
244/ Q@l
4000/ 1.8

The slash can be used repeatedly to examine the contents
of.the contents of the contents, ad infinitum, of the opened
register. If at any time during this procedure an expression
is typed, that expression is stored in the original opened
reg ister.

Example:

-DDT8
NOP;U@)
240/ NOP
300/ Q
240/ 300

3008
4008

/ /

The other methods of opening a register are the line feed
and the upward arrow. The line feed wi II open the regis­
ter that follows the last one opened. A dot (typed as a
period) always refers to the currently open register. There­
fore, the line feed opens the .+1 register. Similarly, the
upward arrow will open the register immediately preceding
the last one opened; i. e., .-1.

Example:

-DDT
240
241/
. =241
242/
241/
240/
100+60=
@

241/

Nop8
BRS 12 @

BRS 12 @

Note that the request for the value of the expression 100+60
does not make DDT" forget" which location was inspected
last.

Another command avai lable is semicolon blank (;0). This
is equivalent to a line feed except that nothing is printed.
Its main use is in entering programs or data.

Example:

1000\

is equiva lent to

1;0 2;0 3 @l

1000\ @)
1001\ 2 @l
1002\ 3 @l

Using the information covered so far, the user can enter a
program and data into DDT by (l) instructing DDT to obtain
memory and (2) opening the registers needed and altering
thei r contents

Example:

-DDT @)
CLA;U
300;F
240/
241/
242/
243/

LOX
LOA
ADD
STA

=1000 @)
0, 2@)
1,28
2, 2 @)

Note that literals and tag references are recognized by DDT
just as they are by TAP. This is a Iso true for "*", which
indicates indirect addressing.

Opening Registers 5

7. COMMANDS CONCERNING MODES

When the user enters DDT, the general mode is symbolic.
Thus, if a register is opened with the slash, the contents
will be printed in symbolic form. However, the user can
change the current mode by issuing one of the commands
listed in the table below. DDT will then print the contents
of a register in the mode most recently set.

Command

;]

;[

;$

; "

Example:

240/
; [
240/
;]

240/
;$
240/
.11 ,

Purpose

Sets the current mode to "symbolic".

Sets the current mode to "constant" .

Sets the current mode to "signed
integer" .

Sets the current mode to "ASCII" .

LDA SYM @)

7600456 @)

LDA SYM @)

7600456 @l

240/ ?1 N @l

Although a mode is established by one of the above com­
mands, the contents of a particular location may be printed
in another mode by using one of the following commands:

Command Purpose

e] Opens location e and prints contents
in symbolic form.

e[Opens location e and prints contents
as a constant.

e$ Opens location e and prints contents
as a signed integer.

e" Opens location e and prints contents
in ASCII (control characters are
preceded by &).

e\ Opens location e and does not print
the contents.

6 Commands Concerning Modes

Examples:

-DDT @)
NOP;U
240/
240]
24O[
240$
240"
240\

NOP ADM
ADM SYM@)
6300456@l
6300456@)
9!N @l

SYM@)

If a location is opened by using one of these five commands,
a subsequent line feed or upward arrow wi II cause the con­
tents of the register thus opened to be printed in the specified
mode rather than in the genera I mode.

Example:

i[

240"
241"
24211

ABC 0
DEF 0
GHI

!n this example, the genera I mode is the II constant" mode,
but the contents of locations 240, 241, and 242 are printed
in ASCII.

The user can also control the form in which the address of a
location is printed when it is generated by an expression,
line feed, or upward arrow. The commands are as follows:

Command

;R

iV

Examples:

i R
240/
MS1/
MS1+1/
MS 1 +2/
MS 1 +3/

;V
240/
241/
242/
243/
244/
245/
246/

Purpose

Address will be printed in the rela-
tive mode.

Address will be printed in the abso-
lute mode.

LDX ADR+5 <0
LDB 0,2 (0
LSH 10 G
STA X G
SKE .COLON @)

LDX 304 0
LDB 0,2 0
LSH 10 0)
STA 273 (0
SKE 2740
BRU 2470
Q..@)

8. INDIRECT ADDRESSING

DDT provides a command for addressing a location indi­
rectly. To open the location whose address is the last
14 bits of the value of the last expression typed, the
user types a left parenthesis.

Example:

-DDT @)
·D
240\
400\

LDA
1234

240/
(
400/
400/

LDA

1234
5678

5678 €V

If another slash had been typed following the 5678 typed
by the user, any expression fo IIowi ng the slash wou Id have
been stored in the location that was opened first (in this
case, location 400).

9. CENTRAL REGISTERS

Because time-sharing requires that several simultaneous
users share the computer1s central registers, the contents
of the central registers are assigned as the values of
special symbols. Thus, to interrogate the contents of
the central registers, the user has available the follow­
i ng commands:

Command Purpose

;A= Prints the contents of the A regi ster

;B= Prints the contents of the B register

;X= Prints the contents of the X register

;L= Prints the contents of the location
counter

Other appropriate commands (see IICommands to Evaluate
Expressions··, above) may be used with these symbols in­
stead of the equals sign.

Example:

;A= ~
;B= 1
;XII ABC
; L= 280

The following commands are available to alter the contents
of the central registers.

Command

e;A

e;B

e;X

e;L

Example:

5;A
;A=5 €V

Purpose

Stores the value of e in the A register

Stores the value of e in the B register

Stores the value of e in the X register

Stores the value of e in the location
counter

Indirect Addressing/Centra I Registers 7

10. SYMBOL DEFINITION

A symbol may be defined by using a DDT command, or it
may enter DDT predefined (via the symbol table that ac­
companies an object program).

To define a symbol by using a DDT command, the user may
type

e<s>

where e is any expression and s is any legal symbol. This
wi II cause DDT to assign the va lue of the expression to the
symbol.

Example:

400 <DATA 1>
DATA1/ 0 18
DATA1/ 18

The first I ine of the example assigns DATA 1 to location
400. The second line puts a 11111 in location 400.

Similarly, typing a symbol followed by a colon will assign
the current location (the address of the opened register) as
the value of the symbol.

Example:

-DDT
240\ START: LDA 5008
START=240 8
START/- LDA

The use of the "@I sign following a symbol wi II cause the
last expression printed by DDT or typed by the user to be
assigned as the va lue of that symbol.

Example:

-DDT
400\

400/
BEGN=
777/

7778

777 BEGN@ CAX @)
777@
CAX8

11. ERASING SYMBOLS

The user can II undefine" a symbol by using the kill (i K)
command. If the II iKII is preceded by a symbol, just
that symbol is II kiIled"; lIiKII alone will kill all .defined
symbols. The use of "iK" causes the computer to print
II OK" and wait for a carriage return. This prevents in­
advertent erasures.

The command " i U" will cause all undefined symbols to be
I isted on the Teletype.

The following example illustrates the use of the kill
command.

8 Symbol Definition/Erasing Symbols

Example:

-DDT
NOPi U
240/ Q.
500/ Q.
START=240 @)
ITE MN 0=500 e
STARTiK
ITEMN0=500 @)
START=? @)
iK - - OK ~
ITEMNO= ?@)
START=l

START: @)
ITEMNO:@)

12. BLOCK STRUCTURE

A limited facility called the IIblock structurell is provided
to simplify referencing local symbols that are defined in
more than one program. The block structure of a program
is organized in the following manner: Every binary program
file loaded by DDT constitutes a separate block. Also,
there is an intrinsic block calledllblock zeroll. Anysymbol
input to DDT has a block number associated with it. It also
has a type: (1) external (global) or (2) local.

All instruction mnemonics are associated with block zero
and are external. When a binary file written by TAP is
loaded by DDT, it defines (J new block; all symbols defined
during the assembly and written on the binary fi Ie are asso­
ciated with that block. Any symbols that were declared by
TAP to be external are externa I symbo Is. A II other symbols
are local symbols.

External symbols must be unique within an entire program,
since they are recognized at all times. Local symbols are
recogniz,ed according to the following rules:

1. At any given time, there is one block that is called
the primary block. A b lock becomes the primary block
when one of its registers is opened. A II other blocks

are secondary. All symbo Is associated with the primary
block will be recognized.

2. If a symbol is used which is neither external nor in the
primary block, the entire symbol table is scanned for it.
If it occurs in only one block, that block becomes pri­
mary and the symbol is recognized properly. If it occurs
in more than one block, an error is indicated.

3. A symbol may be explicitly qualified by

sl & s2

where sl is the name of the block (the name appearing
in the label field of the IDENT statement in TAP) and
s2 is the symbol in question.

Symbols defined by the II @II or 11:11 commands are loca I to the
block that is primary when the command is given. Symbols
defined by 11<>11 are external and not local to any block.
Not all symbols appearing in a block wi II necessarily be
loca I to that block.

To obtain C1 listing of all block names, the user may type
110/0&11 •

Block Structure 9

13. WORD SEARCH

DDT gives the user the capability of searching memory, be­
tween any given limits, for a specified word. A Iso, a mask
may be specified to determine which bits of the word are to
be compared. The commands used are listed below.

Command Purpose

ei M Mask - sets the mask to the value of e. --
e;l Lower bound - sets the lower bound to

the va lue of e.

ei 2 Upper bound - sets the upper bound to
the va lue of e.

e
1
,e

2
;L An alternative command to set lower

(e
1
) and upper (e

2
) bounds.

eiW Word search - searches memory between
limits i1 and ;2 for locations which
match e when both are masked by the
value of ;M. A II matc hi ng words are
printed.

ei E Effective word search - searches mem-
ory between limits i 1 and i2 for effec-
t i ve address equa I to e.

e;# Not-word search - same as eiW except
that a II words not matc hi ng e are pri nted.

The following two examples illustrate the word search com­
mands. In both examples the information in Part I repre­
sents a DDT listing of a program segmenti the information in
Part II illustrates various word search operations by the user.

Example A

Part I

240/ LDX 3040
241/ LDB 0,2@
242/ LSH 10(0

~ STA 273(0
244/ SKE 274@
245/ BRU 2470
246/ BRU 2700
247/ TCO 2730
250/ CLA@
251/ LSH 100
252/ STA 2730
253/ SKE 274@
254/ BRU 256C0
255/ BRU 270@
256/ TCO 273@
257/ CLA @
260/ LSH 10 @)

10 Word Search

Part II

Example B

Part I

Part II

240,255i L

CLAiW
250/ CLA

777i M

273iW
243/ STA 273
247/ TCO 273
2527 STA 273

MSG/ LDX ADR+5 <0 @)
MS1/ LDB 0,2 @
MS1+1/ LSH 10@
,MS1+2/ STA X C0
MS1+3/ SKE COLON C0
MS1+4/ BRU MS1+6 C0
MS1+5/ BRU MS2@
MS1+6/ TCO X 0
MS1+7/ CLA@
MS1+10/ LSH 100
MS1+11/ STA X0
MS1+12/ SKE COLON @
MS1+13/ BRU MS1+15 C0
MS1+14/ BRU MS2@
MS1+15/ TCO X @
MS1+16! CLA (0
MS1+17/ LSH 10@
MS1+20/ STA X®
MS1+21/ SKE COLON 0
MS1+22/ BRU MS1+24 @
MS1+23/ BRU MS2@
MS1+24/ TCO X C0
MS1+25/ EAX 1,20
MS1+26/ BRU MS1@
MS2/ TCO LF@
MS2+1/ TCO CR@
MS2+2/ BRS 120
x;- 00)
COLON! 320
LF/ 1520
CR/ 155 (§)

MSGi 1
X;2
COLONiE
MS1+3/ SKE COLON
MS1+12/ SKE COLON
MS1+21/ SKE COLON

14. PROGRAM ALTERATION

In debugging a program, it is often necessary to insert or
delete instructions. In DDT this can be done easi Iy with­
out reassembling the program.

INSERTIONS

To insert instructions (a procedure often referred to as patch­
ing), the user issues one of the commands listed in the table
below. In response, DDT issues a carriage return and line
feed, prints a right parenthesis, and waits for the user to
type the insertion.

Command Purpose

ei I Causes instructions to be inserted after lo-
--

cation e.

e} Causes instructions to be inserted before lo----
cation e.

After one of the patch commands has been issued, legal in­
put consists of a series of expressions whose values are
inserted in successive locations in memory. Each of these
expressions should be terminated by a line feed or i 0,

exactlyas though the programwere being typed in with the
"\" command instead of as a patch. Two other commands
are legal in the patch mode:

1. The colon, which may be used to define a loca I symbol
with a value equal to the current location.

2. The carriage return, which terminates the patch.

The e} patch command followed by the instructions to be
inserted will cause the following sequence to occur.

1. The instructions to be inserted are loaded sequentia Ily
beginning with iF (iF being the first unused memory
location).

2. Location iF is updated.

3. The instruction at the point of insertion is then copied
into location iF.

4. Location iF is updated.

5. Two return branches are loaded into the new iF and
;F+l so that, if the patch is a skip instruction, the
program wi II operate correctly.

6. Location iF is updated.

Example:

Before

250/
251/

LDA
STA

Al
A2

After

250/
251/

LDA
BRU

Al
1000

;F=1000

251)
)ETR =77

1000/
1001/
1002/
1003/

ETR
STA
BRU
BRU

=77
A2
252
253

The command II iI" wou Id cause the new instructions (see ex­
ample above) to be inserted also, but STA A2 wou Id appear
in location 1000 rather than 1001.

LITERALS

As mentioned previously, literals have the same format and
meaning in DDT as in the assembler; i. e., an equals sign
following a blank signals the beginning of a litera I that is
terminated by any of the characters which ordinari Iy termi­
nate an expression. In contrast to the syntax of the assem­
bler, the expression in a DDT literal must be defined.

The literal is looked up in the literal table. If it does not
appear in the table, it is stored in the current ;F location
and;F is increased by 1. For example, if the literal -1 does
not already exist in the literal table and iF is 1000B,
then II LDA = -1" causes a -1 to be stored at 1000B. Then,
the instruction is equivalent to II LDA 1000B II

, and the
new value of ;F is 1001Bi however, in the patch mode,
I itera Is are saved and are not stored unti I the patch is
completed. Otherwise, they wou Id interfere with the patch.

DELETIONS

To delete instructions, using DDT, the user may open a reg­
ister and replace its contents by a NOP instruction.

Example:

240/ LDA
241/ CLB
242/ LSH
243/ STA

Command

Z @
NOP G

6 NOP 0)
Z+l (0

PSEUDO RELABELING t

Purpose

Sets pseudo relabeling for a program
accordi ng to the va lue of e

1
and e

2
.

t See SDS 940 Time-Sharing System Reference Manua I.

Program Alteration 11

15. PROGRAM EXECUTION

Program execution is of primary importance to the DDT
user. Therefore, DDT provides the user with sophisticated
execution capabilities. For example, the user may start
and stop program execution at any given address. Also,
he may execute one instruction at a time or N instruc­
tions at a time. He can list up to four breakpoints, or
he can specify how many times to pass a breakpoint be­
fore stopp i ng.

BREAKPOINTS

The term II breakpoi nt ll si mply means II the address at whic h
program execution is to stopll. The break always occurs
before the execution of the instruction at the breakpoint
location. DDT then prints this address and the contents of
the central registers A, B, and X. DDT has four break­
points which can be set simultaneously. They are numbered
0-3. The commands to specify, set, clear, or list break­
points are listed below.

Command Purpose

e! Sets brea kpoi nt 0 at the address e.

n;e! Sets breakpoint n (where 0 ::s: n ::s: 3) at the
address e.

! Clears a II breakpoints.

• 1 Lists all breakpoints . , .

n· 1 ,. Clears breakpoint n.

EXECUTION COMMANDS

To contro I execution, the following commands are avai lab Ie:

Command Purpose

e;G Starts execution at location e.

;P Restarts execution at the va lue of the lo-
cation counter (; L).

e;P (when Restarts execution at ;L and breaks after
e is an e breakpoints have been reached.
integer)

;N Executes the next instruction and then
breaks.

e;N (when Executes e instructions and breaks.
e is an
integer)

e;S Executes the next instruction, breaks, and
repeats this sequence e times.

12 Program Execution

The following example demonstrates the use of the above
commands in a typical debugging session. The program to
be debugged is a message printer.

Part I is a DDT listing of the program. Part II is the debug­
ging and execution of the program.

Note that in Part II the first three characters of the message
appear on lines labeled 1,2, and 3. The remaining charac­
ters of the message, plus some extraneous characters, appear
on line 4.

By reexecuting the program, it is discovered that a CLA in­
struction is missing at the beginning of the program. Line 5
inserts the missing instruction and line 6 changes the address
of the BRU in MSG+26 so that theCLA instruction is included
in the loop.

Example:

Part I

MSG/
MS1/
MS1+1/
MS1+2/
MS1+3/
MS1+4/
MS1+5/
MS1+6/
MS1+7/
MiliTo/
MS1+11/
MS1+12/
MS1+13/
MS1+14/
MS1+15/
MS1+16/
MS1+17/
MS1+20/
MS1+21/
MS1+22/
MS1+23/
MS1+24/
MS1+25/
MS1+26/
MS2/
MS2+1/
MS2+2/
X/
COLON/
LF/
CR/
ADR/
ADR+1/
ADR+2/
A5R+3"/
ADR+4/
ADR+5/

ADR+61

LDX ADR+50
LDB 0,2 0
LSH 100
STA X0)
SKE COLON 0
BRU MS1+60
BRU MS20
TCO X G
CLAG
ISH 100
STA X 0
SKE COLON 0
BRU MS1+150)
BRU MS20
TCO X(0
CLAG
[Sri lOG
STA X G
SKE COLON 0
BRU MS1+240
BRU MS20
TCO XG
EAX 1,2 (0
BRU MS10
TCO LF0
TCO CR (0
BRS 12 G
00
320
1520
1550
102@21043 I

11O(cV 22446 I

116@J24051
124@l25454 I

MUL 0 I ~ 0
ADR 0

~@)

AB~0
DEF 0
GHI G
JKL (0

Example:

Part II

;[
MS1+1 !
MSG;G
MS1+1 11223000
;N
MS1+2 11400041
;N
MS1+3 11400041
x;- 11400041
MS1+6!
;P
MS1+6 11400041
·N

CD-AMS1+7 11400041
MS1+15!

i P
MS1+15 42
·N

@-BMS1+16 42
MS1+24!
;P
MS1+24 43
;N

@-CMS1+25 43
!
.p

@-DEFGHIJKL: @
MS2!
MSG;G
ABCDEFGHIJ KL: @
MS1+25!
MSG;G
ABCMS 1+25 43
;P
DEFMS1+25
;P
GHIMS1+25

46

51

10221043 277

10421400 277

10421400 277

10421400 277

10421400 277

10600000 277

10600000 277

0 277

0 277

o 412

o 413

o 414

;P
JKLMS1+25 54 0 415
;N
MS1+26 54 0 416
;N
MS1 54 0 416
;N
MS1+1 54 6400000 416
;N
MS1+2 26032 0 416
X/ 54
;J

@- MSG;I
) CLA
ADR+5/ ADR (0
ADR+6/ LDX ADR+5 (0
ADR+7/ CLA 0})
MS1/ LDB 0,2 t
MSG/ BRU ADR+6 @

@- MS1+26/ BRU MS1 BRU ADR+7

MSGi G
ABCDEFGHIJ KL

ADDITIONAL EXECUTION COMMANDS

Four other commands are provided, to make the debugging
process as simple as possible. These are listed below.

Command Purpose

e;O (when e = 1) Causes POP's to be treated as one
instruction for :N and :S.

e;O (when e = 0) Causes POP's to be treated as part
of user's code.

e;U (when e = 1) Causes subroutines to be treated as
one instruction.

e;U (when e = 0) Causes subrouti nes to be treated
explicitly.

Additional Execution Commands 13

16. PANICS

In conjunction with program execution, DDT recognizes
four kinds of IIpanic ll conditions.

1. Illegal-instruction panics from the user's program.

2. Memory-allocation-exceeded panics from the user's
program.

3. Panics generated by pushing the ESCAPE button.

4. Panics generated by the execution of BRS lOin the
user's program.

For the first two conditions, DDT prints out a message, the
location of the instruction at wh ich the pan ic occurred,
and the contents of this location. These messages are as
follows:

1. 1» (Illegal instruction panic).

2. M > > (Memory allocation exceeded).

The other two types of panics cause DDT to ring the bell
and issue a carriage return. Both II ;lll and II. II wi II be equal
to the location at which the panic occurred.

If a memory-allocation-exceeded panic is caused by a
transfer to an illegal location, the contents of the location
causing the panic are not avai lable. Therefore, DDT types
a II?".

Two other panic conditions are possible in DDT.

1. If the ESCAPE button is pushed twice with no interven­
ing typing by the user, control returns to the Executive.

2. If the ESCAPE button is pushed while DDT is executing
a command, execution and typeout are terminated.
DDT issues a carriage return, rings the bell, and then
awaits further commands.

Moreover, attempts to proceed through certain instructions
having to do with forks wi II produce erroneous results, and
breakpoints encountered when the program is running in a
fork wi II not perform properly. Attempts to proceed through
unreasonab Ie instructions wi II cause the error comment

S»

to be typed.

17. INPUT

To execute and debug a program, using DDT, the object
code of the program is usually located on a disc fi Ie pre­
pared by TAP. TAP automatically writes a list of symbols
along with binary object code that DDT can access.

To instruct DDT to read and load the file containing the
object code and symbol table, the user types

;T /file/ @

This wi II cause the re locatab Ie program to be loaded, be­
ginning at location 2408' After input has been completed,
the first location not used by the program (;F) is printed on
the Teletype. A subsequent lI;r' command would cause load­
ing to begin at this location.

In the event that an alternative loading position is desired,
the user may type

e;T /file/@

where e is any expression (evaluated in octal). The block
is then loaded beginning with location e.

In addition to the loading procedure, lIiTII causes DDT to
read the list of symbols prepared by TAP and to append this

14 Panics/Input

list to its own (which simply consists of the instruction mne­
monics recognized by TAP).

If the user wishes to have a program loaded by DDT but does
not want the local symbols on the binary fi Ie added to the
symbol table, he may use the command

eiY /file/ @

As before, if e is omitted, loading wi II begin with location
2408 or the first location avai lable.

Example:

-TAP
BINARY
OLD FILE
INPUT

45

-DDT
;T

305
·F = 305 , -

/BIN/@

/TEST/ @l

CEllS USED BY PROGRAM

/BIN/ @)

18. OUTPUT

Commands are avai lab Ie that wi II cause symbols to be
written on a specified file for permanent storage. These
commands are listed below.

Note that lI i WIl will also cause all IDENT labels to be
printed.

Command

iW /file/

;C /file/

Purpose

Causes all g loba I symbols to be
written on the specified file, in a
format that can be read with II;Tll.

Causes all symbols to be written
on the specified fi Ie.

Output 15

APPENDIX A. CHARACTER CODES
SDS 940 INTERNAL, ASCII, TELETYPE, LINE PRINTER, AND CARD CODES

INT ASCII TTY LP CARDS INT ASCII TTY LP CARDS

00 40 40 100 @ V 78
01 41 ! ! -0 41 101 A A +1
02 42 II I 84 42 102 B B +2
03 43 # =!= +78 43 103 C C +3
04 44 $ $ -38 44 104 D D +4
05 45 % -- 085 45 105 E E +5
06 46 & 6 -78 46 106 F F +6
07 47 I I 84 47 107 G G +7
10 50 ((048 50 110 H H +8
11 51)) +48 51 111 I I +9
12 52 * * -48 52 112 J J -1
13 53 + + + 53 113 K K -2
14 54 , , 038 54 114 L L -3
15 55 - - - 55 115 M M -4
16 56 +38 56 116 N N -5
17 57 / / 01 57 117 0 0 -6
20 60 0 0 0 60 120 P P -7
21 61 1 1 1 61 121 Q Q -8
22 62 2 2 2 62 122 R R -9
23 63 3 3 3 63 123 S S 02
24 64 4 4 4 64 124 T T 03
25 65 5 5 5 65 125 U U 04
26 66 6 6 6 66 126 V V 05
27 67 7 7 7 67 127 W W 06
30 70 8 8 8 70 130 X X 07
31 71 9 9 9 71 131 Y Y 08
32 72 : : 58 72 132 Z Z 09
33 73 ; ; -68 73 133 [[+58
34 74 < < +68 74 134 \ \ 068
35 75 = = 38 75 135]] -58
36 76 > > 68 76 136 t * 082
37 77 ? ? +0 77 137 - -ttt- 087

SPEC IAL CODES
INTERNAL ASCII CONTROL FUNCTION

141 1 A SaM
142 2 B EOA
143 3 C EOM
144 4 D EaT
145 5 E WRU
146 6 F RU
147 7 G BELL
151 11 I TAB
152 12 J LINE FEED
153 13 K VT
154 14 L FORM
155 15 M RETURN
161 21 Q X - ON
162 22 R TAPE
163 23 S X - OFF
164 24 T TAPE
165 25 U ESCAPE
166 26 V SPACE
167 27 W
170 30 X
171 31 Y
172 32 Z

16 Appendix A

APPENDIX B. SDS 940 INSTRUCTIONS

MNEMONIC CODE NAME

LOAD/STORE
LDA 76 Load A
STA 35 Store A
LDB 75 Load B
STB 36 Store B
LDX 71 Load Index
STX 37 Store Index
EAX 77 Copy Effective Address into Index
XMA 62 Exchange Memory and A
ARITHMETIC
ADD 55 Add
ADC 57 Add with Carry
ADM 63 Add to Memory
MIN 61 Memory Increment
SUB 54 Subtract
SUC 56 Subtract with Carry
MUL 64 Multiply
DIV 65 Divide
LOGICAL
ETR 14 Extract (AN D)
MRG 16 Merge (OR)
EOR 17 Exclusive OR
REGISTER CHANGE
CLA 04600001 Clear A
CLB 04600002 Clear B
CLAB 04600003 Clear AB
CLX 24600000 Clear Index
CLEAR 24600003 C lear A, B, and Index
CAB 04600004 Copy A into B
CBA 04600010 Copy B into A
XAB 04600014 Exchange A and B
ABC 04600005 Copy A into B, Clear A
BAC 04600012 Copy B into A, Clear B
CAX 04600400 Copy A into Index
CXA 04600200 Copy Index into A
XXA 04600600 Exchange Index and A
CBX 04600020 Copy B into Index
CXB 04600040 Copy Index into B
XXB 04600060 Exchange Index and B
CNA o 4601000 Copy Negative into A
BRANCH
BRU 01 Branch Unconditiona I'y
BRX 41 Increment Index and Branch
BRM 43 Mark Place and Branch
BRR 51 Return Branch
TEST/SKIP
SKE 50 Skip if A Equals Memory
SKG 73 Skip if A Greater Than Memory
SKM 70 Skip if A Equals Memory on B Mask
SKA 72 Skip if A and Memory do not Compare Ones
SKB 52 Skip if B and Memory do not Compare Ones
SKN 53 Skip if Memory Negative
SKR 60 Reduce Memory; Skip if Negative
SKD 74 Difference Exponents and Skip

Appendix B 17

MNEMONIC CODE NAME

SHIFT
RSH 06600xxx Right Shift AB
LRSH 06624xxx Logical Right Shift AB
RCY 06620xxx Right Cycle AB
LSH 06700xxx Left Shift AB
LCY 06720xxx Left Cyc Ie AB
NOD 06710xxx Normalize and Decrement X
CONTROL
NOP 20 No Operation
EXU 23 Execute
INPUT /OUTPUT
EOM 02 E nerg ize Output M
SKS 40 Skip if Signal Not Set
PIN 33 Para lIel Input
POT 13 Para lIel Output
OVERFLOW
OTO 02200100 Overflow Indi cator Test On Iy
REO o 22 0001 0 Record Exponent Overflow
ROV 02200001 Reset Overflow Indicator
OVT o 22 00101 Overflow Indicator Test and Reset

APPENDIX C. SYSTEM PROGRAMMED OPERATORS

MNEMONIC

BIO
TCO
TCI
BRS
CTRL
SBRR
SBRM
STP
LDP
GCI
WCH
SKSE
SKSG
CIO
WIO
WCI
FAD
FSB
FMP
FDV
EXS
OST
1ST
DWO
DWI
DBO
DBI
ISC
SIC
GCD
STI
WCD

18 Appendix C

NUMBER

176
175
174
173
172
171
170
167
166
165
164
163
162
161
160
157
156
155
154
153
152
151
150
145
144
143
142
141
140
137
136
135

FUNCTION

Block input/output
Teletype character output
Teletype character input
Branch to system
Input/output control
System branch and return
System subrouti ne ca II
Store pointer
Load pointer
Get character and increment
Write character
Skip on stri ng equal
Skip on string greater
Character i nput/ output
Word input/output
Write character and increment
Floating add
Floating subtract
Floating multiply
F loati ng di vide
Execute instruction in the system mode
Output to specified Teletype
Input from specified Teletype
Disc word output (random)
Disc word input (random)
Disc block output (random)
Disc block input (random)
Internal to string conversion (floating output)
String to internal conversion (floating input)
Get character and decrement
Simulate Teletype input
Write character and decrement

APPENDIX D. DDT SUMMARY

COMMANDS CONCERNING THE RADIX

e;R
;D
;0

Sets radix to e
Sets radix to 10
Sets radix to 8

COMMANDS TO EVALUATE EXPRESSIONS

@
@=

OPENING REGISTERS

e/
t

Line Feed
;0

Types va lue of ;Q (where ;Q is the last expression typed)
Types value of ;Q as a signed integer
Types value of ;Q in symbolic
Types value of ;Q as text
Types the address part of ;Q in symbolic
Types the value of ;Q as a numeric op code

Opens location e and prints its contents in the current mode
Opens preceding location and prints its contents
Opens next location and prints contents
Opens next location but does not print contents

COMMANDS CONCERN ING MODES

;J
;C
;$
.11 ,
eJ

eC
e$
e\
;R
;V

INDIRECT ADDRESSING

Sets current mode to "symbolic"
Sets the current mode to II constant"
Sets current mode to IIsigned integerll
Sets current mode to IIASCIIII
Opens location e and prints contents in symbolic
Opens location e and prints contents as a constant
Opens location e and prints contents in ASCII
Opens location e and does not print contents
Prints address in relative mode
Prints address in absolute mode

Opens location whose address is the last 14 bits of the value of the last expression typed

CENTRAL REGISTERS

;A=
;B=
;X =
;L=
ei A
e;B
eiX
e;L

SYMBOLIC DEFINITION

e <s>
s:
s@

Prints the contents of the A register
Prints the contents of the B register
Prints the contents of the X register
Pri nts the contents of the Location Counter
Stores the value of e in the A register
Stores the value of e in the B register
Stores the value of e in the X register
Stores the value of e in the Location Counter

Assigns the value of e as the value of the symbol
Assigns the current location as the value of the symbol
Assigns the value of iQ as the value of the symbol

Appendix D 19

ERASING SYMBOLS

Si K
i K
i U

WORD SEARCH

ei M

ei 1
ei2
e1,e2jL
eiW

ei E
ej#

PROGRAM ALTERATION

PROGRAM EXECUTION

e!
ni e !
!
.f , .
ni!
ei G
jP
e;P
iN
ei N
ei S
e;O (when e= 1)
e;O (when e= 0)
e;U (when e= 1)
e;U (when e= 0)

INPUT /OUTPUT

; T /file/
ei T /fi le/
;Y /file/
eiY /file/
j'V.' /file/
;C /file/

20 Appendix D

Kills symbollls ll

Kills all symbo Is
Lists all undefined symbols

Sets the mask to the value of e
Sets the lower bound to the value of e
Sets the upper bound to the va lue of e
Sets the lower bound to the va lue of el and the upper bound to the va lue of e2.
Searches memory between lower and upper bounds for locations whi ch match e when both

are masked by the value of iM
Searches memory between lower and upper bounds for effective address equal to e
Some as e;W except that all words not matching e are printed

Causes instructions to be inserted after location e
Causes instructions to be inserted before location e
Relabeling

Sets brea kpoi nt 0 to the address e
Sets breakpoint n (where n can be 0-3) to the address e
Clears a II breakpoints
Lists all breakpoints
Clears breakpoint n
Storts execution at location e
Restarts execution at the va lue of the location counter
Restarts execution at iL and breaks after e breakpoints have been reached
Executes the next instruction and then breaks
Executes e instructions and breaks
Executes the next instruction, breaks, and repeats this sequence e times
Causes POP's to be treated as one instruction for ;N and is
Causes POP's to be treated as port of user's code
Causes subroutines to be treated as one instruction
Causes subroutines to be treated explicitly

Loads binary fi Ie and symbol table beginning with location iF
Loads binary file and symbol table beginning with location e
Loads binary file and external symbols beginning with location ;F
Loads binary fi Ie and externa I symbols beginning with location e
Causes a II global symbols to be written on the specified fi Ie
Causes a II symbols to be written on the specified fi Ie

	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20

