
.. ,.

CIENTIFIC DATA Y TEM

Reference Manllal
.
:1

.... ,

FORTRAN IV COMMAND LANGUAGE

>IENTERI statement number I: statement number FORTRAN statement(s} @)

>copy statement number : statement number /file name/ @)

>DELETE I statement number I : statement number II @)

>LIST I statement numberl : statement number II @)

>RESEQUENCE lold statement number range new statement number range I §

>REFERE NCES identifier I statement number: statement number I @)

>DEFINITIONS identifier I statement number: statement number I §

>EXECUTE

>SAVE . {SYMBOLIC}
/flle name/ EDIT

>LOAD /file name/ @)

Price: $2.75

FORTRAN IV REFERENCE MANUAL
for

SOS 940 TIME-SHARING COMPUTER ·SYSTEM

90 11 15A

September 1967

SCIE f'~TIFIC DATA SYS TEtv1S/1649 Seventeenth Street/Santa Moni co, Cal ifornia

©1967. SCientific Data Systems, Inc. Printed in U.S.A.

RELATED PUBLICATIONS

Title Publication No.

SDS 940 Computer Reference Manual 900640

SDS 940 Terminal User's Guide 90 11 18

SDS 940 Time-Sharing System Technical Manual 90 11 16

SDS 940 QED Reference Manual 90 11 12

NOTICE

The specifications of the software system described in this publication are subject to change without notice. The availabi lity or performance of some features may
depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their SOS sales representative for details.

ii

CONTENTS

1. INTRODUCTIO N Relational Expressions 22
Logical Expressions 23

Typographi c Conventions 1 Evaluati on Hi erarchy 24
Operating Procedures 1

Log-In 2 n. A<;<;l(;NMF NT STATEME NTS ?S
Escape 2
Exit and Continue 3 Replacement Statement 25
Log-Out 3 Label Assignment Statement 27

2. FORTRAN IV PROGRAMS 3 7. CONTROL STATEMENTS 27

Character Set 3 GO TO Statements 27
Statements 4 Unconditional GO TO Statement 27
END Statement 4 Assigned GO TO Statement 28
Comments 4 Computed GO TO Statement 28
FORTRAN Statement Labels 4 IF Statements 29
Statement Numbers 4 Ari thmeti c IF Statement 29

Logical IF Statement 29
3. PROGRAM COMPILATION AND EXECUTION 5 DO Statement 29

CONTINUE Statement 30
General Description 5 PAUSE Statement 31
FORTRAN IV Command Language 6 STO P Statement 31

ENTER Command 6 Subprogram Control 31
CO PY Command 8 CALL Statement 31
DE LE TE Command 8 RETURN Statement 32
LIST Command 8 END Statement 32
RESEQUENCE Command 9
DEFINITIONS Command 9 8. INPUT/OUTPUT STATEMENTS 33
REFERENCES Command 9
EXECUTE Command 10 Input/Output Lists 33
SAVE Command 10 Simple List Items 33
LOAD Command 11 Do-Impl ied List Items 33

Compilation Diagnostics 12 Free Format I/O 34
Execution Diagnostics 12 ACCEPT Statement 34
Sample Program 12 DISPLAY Statement 35

Formatted Input/Output 35

4. DATA 16 OPEN Statement 36
CLOSE Statement 36

Limits on Data Values 16 READ Statement 36

Constants 16 WRITE Statement 37

Integer Constants 16 FORMAT Statement 37
Numeric Input Strings 49 Rea I Constants 16

Double Precision Constants 17 Termination of Input Strings 49

Compl ex Constants 17 Format and List Interfacing 50
FORMATs Stored in Arrays 51

Logical Constants 18
Hollerith Constants 18

9. DECLARA nON STATEMENTS 52
Identifi ers 18
Variables 18

Classification of Identifiers 52
Scalar Variables 19

Implicit Declarations 52
Arrays and Array Variables 19

Expl icit Declarations 53
Functions 20

Array Declarations 53
Array Storage 54

5. EXPRESSIONS 20 References to Array Elements 55
DIMENSION Statement 55

Arithmetic Expressions 20 COMMON Statement 55
Evaluation Hieiaichy 21 D,A,T,A, Statement 56
Mixed Expressions 22 Type Statement 57

iii

10. SUBPROGRAMS 58 APPENDIX

Functi on Subprograms 58 EXECUTION DIAGNOSTIC MESSAGES 66
Library Functions 58
Statement Functions 62
FU NCTIO N Subprograms 62

SUBROUTI NE Subprograms 63 TABLES
Dummy Arguments 64

l. Evaluation of Logical Expressions 24
2. Mixed Variable Types and Expression Modes--- 26

INDEX 69 3. Library Functions 59

iv

1. INTRODUCTION

This manual is intended as a reference/operations manual for the 505 940 Time-Sharing FORTRAN IV System and as
sumes the reader is familiar with the general principles of FORTRAN programming and with the 940 Executive System
described in the 505 940 Terminal User's Guide.

505 940 FORTRAN IV has been implemented as a group of programs operating as a subsystem to the time-sharing sys
tem. I his impiementation leads to a high degree of rnun-rnud,ir,t ir,tt,uctiun 5;;-.C':; prograiii cviiipik;tivri, :i:cdlflcc
tion, and execution are all controlled via a set of easily learned commands issued by the user at a teletype console.

In addition, FORTRAN IV permits incremental compilation of source program statements, which means that one or
more program statements can be compi I ed independently. To modify a compi led statement, the user recompiles only
that statement. To add text to a program, the user issues a command that directs the system to insert new material
at a specified location. The results are very fast turnaround time for the programmer and minimal work for the sys
tem in keeping up with the program changes.

The present version of FORTRAN IV contains such extended features as mixed mode expressions, general ized sub
scripts, N-dimensional arrays, and identifiers of unlimited length. A flexible and easy to use input/output package
is available to FORTRAN IV users. Implicitly formatted I/O offers easy data transfer to and from a character
oriented remote terminal. This feature can be of great value both to novices and to experienced programmers work
ing with applications that do not require elaborate formatting. However, the full range of standard FORTRAN IV
formatting features is also available.

Other capabilities of FORTRAN IV include free form entry of program statements and the ability to save and restore
symbolic and obiect code.

TYPOGRAPHIC CONVENTIONS

For clarity, several conventions have been used throughout this manual. These are explained below:

1. Underscored copy in an example represents copy generated by the computer. Copy that is not underscored in
an example must be typed by the user.

2. The following notations have been used to represent special keys on the teletype:

e represents the RETURN key.
t o represents the ESCAPE key.

@ represents the LINE FEED key.

3. Non-printing control characters are represented by an alphabetic character and a superscript c (e. g., DC).
The user depresses the alphabetic key and the Control (CTRL) key simultaneously to obtain a non-printing
character.

OPERATING PROCEDURES

The standard procedure for gaining access to an SDS 940 time-sharing computer center from a teletype terminal is
described in the SDS publication: SDS 940 Terminal User's Guide. The publication also includes information con
cerning the Executive System and the calling of various subsystems available to the terminal user. The following
paragraphs summarize the standard procedures as they apply to FORTRAN IV users.

t
In some 940 time-sharing systems the AL T MODE key is used instead of the ESCAPE key. Where@appears in

this manual, AL T MODE may be substituted.

Introducti on

Log-In

To gain access to the computer, the following operating sequence is observed:

1. If the FD-HD (Full Duplex-Half Duplex) switch is present, turn the switch to the FD position. When the tele
type is not connected to the computer (a condition sometimes called the Local Mode), this switch must be in the
HD position.

2. Press the ORIG (originate) key, which is located at the lower right corner of the console directly under the
dial. This key is depressed to obtain a dial tone before dial ing the computer.

3. Dial the computer center number. When the computer accepts your call, the ringing will change to a high
pitched tone. There will then appear on the teletype a request that the user log in:

PLEASE LOG IN:

4. The user must then type his account number, password, name and project code (if he has one) in the following
format:

PLEASE LOG IN: number passwordinameiproject code C§

Only persons who know the account number, password, and name, may log in under that particular combination.
The following examples all illustrate acceptable practice.

PLEASE LOG IN: A1 PASSiJONESiREPUB @)

PLEASE LOG IN: B4WORD;BROWN;DEMO 8

PLEASE LOG IN: C6PWiSMITHi @)

The optional 1-12 character project code is provided for installations that have several programmers using the
same account number. The project code is not checked for validity.

If the user does not correctly type his account number, password, and name within a minute and a half, a mes
sage is transmitted instructing him to call the computer center for assistance. The computer will then disconnect
the user, and the dial and log-in procedure wi II have to be repeated.

5. If the account number, password (nonprinting), and name are accepted by the computer it will print READY,
the date, and the time on one line.

READY date, time

The dash indicates that the Executive is ready to accept a command.

6. In response to the dash the user types

-FORTRAN

>

to call the FORTRAN IV compiler (the command may be abbreviated to the first three letters, FOR).

FORTRAN IV will respond with a >, which means that it is awaiting a command.

Escape

The ESCAPE key can be used at any time to abort the current operation. If the FORTRAN compiler is in control at
the time the key is depressed, contra! returns to the FORTRAI'J IV command language mode. Striking the ESCAPE
key before terminating a FORTRAN IV command aborts the command. The system returns with >.

2 Operating Procedures

Exit and Continue

Depressing the§key several times in succession returns control to the Executive, which responds with a dash (-).
If the user wants to return to FORTRAN IV without losing his program, and if he has not subsequently called another
subsystem (e. g., BASIC, QED, CAL), he may type CONTINUE. The computer will type FORTRAN and return to
it without any initialization. Meanwhile, nothing in core is destroyed.

Log-Out

When the user wishes to be disconnected from the computer, he depresses §several times in :.uccession TO reTUrrt

to the Executive and then types:

-LOGOUT @)

or

-EXIT @l

The computer wi II respond with the amount of hook-up (I ine) time charged to the user's account since the previous
log-in procedure was completed.

2. FORTRAN IV PROGRAMS

An SDS 940 FORTRAN IV program is an ordered set of statements that describes a procedure to be followed by the
computer and data to be processed by the program. Statements belong to one of two general classes:

• executable statements that perform computation, input/output operations, and program flow control.

• nonexecutable statements that provide information to the processor about storage assignments, data types, and
program form and also provide information to the program during execution about input/output formats and data
in i tia Ii zati on.

Statements are usually entered on-line at a teletype console in a manner to be described in detail in the following
chapter. The use and syntax of the various statements are explained in succeeding chapters.

Several conventions to be followed in writing programs differ from those used in card-oriented, batch processing
systems and give to FORTRAN IV the flexibility necessary in a time-sharing system.

CHARACTER SET

The following characters may be used to form source statements:

Alphabetic: A through Z

Numeric: 0 through 9

Special Characters: + - * t / () @ $ % & ? [] I II • , : = < > and blank

The following control characters have special significance in FORTRAN IV:

@ Terminates FORTRAN IV commands and FORTRAN IV statements.

G Allows statement to be continued to next line.

@ Aborts the current operation.

Terminates FORTRAN IV statements. May be used in place of §.

FORTRAN IV Programs 3

Deletes the last character typed and may be used repetitively to delete more than one character. Note
that # will not delete terminating semicolons.

Deletes the entire statement currently being entered.

Hollerith input and Hollerith format fields may contain any printing teletype character except the control characters
discussed above.

STATEMENTS

Statements may be entered at the teletype in a form-free format. It is unnecessary to follow the usual convention of
beginning statements in column 7 of a line. Statements may begin anywhere on the line, including column one. A
statement is terminated by either a§or a semicolon. If a statement is terminated by a semicolon, the next state
ment may be typed immediately on the same line. A statement may then be continued from one line to the next by
depressing G. Except for certain alphanumeric strings, blanks in a statement are ignored and may be used to aid
readabi I ity.

END STATEMENT

A FORTRAN program must end with a statement consisting of the characters END. This statement indicates to the
compiler that there are no more statements in the program; it has no effect upon execution. Since it is nonexecut
able, the END statement should not be referenced by another statement.

COMMENTS

If the first nonblank characters of a statement are C: or *, the statement up to a semicolon or(§is treated as com
ments. Comments may appear anywhere in a program; they have no effect on execution.

Comments may be continued from I ine to I ine by depressing G.

FORTRAN STATEMENT LABELS

Any FORTRAN IV statement but COMMON, DIMENSION, and Type, may begin with a label consisting of any
number of decimal digits. These numbers permi t cross-reference between statements in the program. Leading zeros
and blanks are ignored.

The following examples are equivalent:

22

0022

2 2

Labels are used for identification of addresses and must therefore be unique; i. e., no two statements may have the
same number. No order of sequence is implied by the magnitudes of the statement labels. Nonreferenced state
ments need not be labeled.

FORTRAN statement labels should never be confused with statement numbers.

STATEMENT NUMBERS

When a source program is entered from the teletype or from a previously prepared file, FORTRAN IV assigns each
statement a positive number in the range. 001 through 999.999.

Once a program has been entered, these statement numbers may be used for text manipulation. For example, a
user may modify or delete a statement by specifying its line number in the appropriate command.

A single number refers to one particular program statement. Two numbers separated by a colon indicate a range of
statements. The range 22:30 specifies the statements from number 22 through 30, inclusive.

4 Statements

FORTRAN IV uses the following formula to calculate statement numbers:

R
5 = I

where

R is the difference in the I imits of the range.

5 is the number of statements in the program minus 1.

is the numericai difference (increment) between statement numbers.

If R < 5, I is truncated after the first significant digit. If R ~ 5, I is the integer portion of the result. For example,
assume that the range is 1:4 and the number of statements is 5, then using the above formula

4-1
5-T=.75

The first statement would be statement number 1; the second statement would be statement number 1. 7; etc.

3. PROGRAM COMPILATION AND EXECUTION

All communication from the programmer to the computer regarding text entry and compilation, program file manipu
lation, and program execution is conducted via the set of FORTRAN IV commands described in this chapter.

Programs are normally entered on-line at the teletype console. After logging in, the user calls FORTRAN IV with
the Executive command

-FORTRAN

Upon receipt of this command, the Executive activates FORTRAN IV which prints a > to indicate readiness to re
ceive commands.

GENERAL DESCRIPTION

The manner in which FORTRAN IV programs are entered into the compiler and compiled differs greatly from pro
cedures used in batch processing environments. In the latter, the programmer typically prepares a complete program
on a card or tape file, compiles this program file to obtain an object program, and then executes the object program.
If modifications are necessary, the entire program must be recompiled.

In the SDS 940 FORTRAN IV environment, the user begins by issuing an ENTER command, followed by the source
language statements {one or more} to be compiled. The FORTRAN statements may be entered one by one from the
teletype keyboard or from a previously prepared file, using the COpy or LOAD command. The statements entered
need not comprise a complete program. Once the user has entered his initial group of statements, he may add to
the program, modify one or more statements, and delete code without recompiling the entire program. To add
statements, he issues another ENTER command and uses statement numbers to indicate where the additional text is
to be inserted. To modify existing statements, he merely recompiles the desired statements. The DELETE command
performs total or partial deletion of program text.

The output from the compilation phase is a threaded list of "elements", each of which contains the encoded represen
tation of a source language statement and certain directive information for use in structuring statements into the
program.

Execution and program listing are controlled by appropriate FORTRAN IV commands. At the end of a session at the
teletype the user may save his entire program, in either its symbolic or encoded forms, on a system file. This file
may then be read in at the next session and the user may resume where he left off.

Program Compi lati on and Execution 5

FORTRAN IV COMMAND LANGUAGE

All FORTRAN IV commands contain a one-word command identifier. Identifiers may be abbreviated to one, two, or
three characters, depending on how many characters are required to distinguish a particular command from the others
in the set. All characters typed by the user are checked for accuracy. The message

INVALID COMMAND IDENTIFIER

is printed if the system does not recognize the command.

Many commands may also include statement numbers that identify the program statements affected by the command.

The command identifier must be separated from successive fields by a space. If the user omits a required field, a
message that describes the missing field is printed.

At any point during the entering of a command, the user may type in a question mark. A model of the command is
then typed out. When a question mark is typed in as the first character of a statement, command models for all
FORTRAN IV commands will be typed out.

All FORTRAN IV commands (except ENTER) must be terminated by a carriage return.

FORTRAN IV commands are grouped into eight functional categories:

Function

1. Entering statements from the terminal

2. Entering statements from a previously prepared symbolic file

3. Deleting statements from programs

4. Listing programs

5. Resequencing programs

6. Locating variable and label definitions and references

7. Executing programs

8. Maintaining and using program files

Command

ENTER

COpy

DELETE

LIST

RESEQUENCE

DEFINITIONS and
REFERENCES

EXECUTE

SAVE and LOAD

In the examples in this chapter, the abbreviation "sn" is used to specify a statement number.

ENTER Command

The ENTER command allows the user to enter original source statements or to modify previously prepared statements
at the teletype.

Forms Examples

> ENTER sn : sn FORTRAN statements >ENTER 1 :4 ACCEPT [A] i B=SQRT [A] i DISPLAY [A, B]i(0
ENDDc - ------

>ENTER 2 B = COS [A] l~c! >ENTER sn FORTRAN statement

The ENTER command causes control to pass from the FORTRAN IV command mode to the FORTRAN IV compiler
when the confirming DC or @)is read.

The first form is used to create programs at the teletype. The compiler reads and compiles statements until a DC is
read. Statements may be separated by either @)or a semicolon and continued to another line by (0. Line numbers
are assigned according to the specified range.

6 FORTRAN IV Command Language

The second form allows the user to enter a single FORTRAN statement into a program and is used typically to modify
a previously entered statement or to insert an additional statement. If the number specified in the command has
already been assigned to a statement in the program, the new statement replaces the old statement. If the number
has not been assigned, it is inserted into the program according to numerical order.

Example

For the program

10. DIME NSION X(10), Y(lO);
20. INTEGER Z;
30. Z(I) = X(I) + Y (I);
40. END;

the commands

>ENTER 25 DO 10 1=1, 10 e
>ENTER 35 10 CONTINUE e
>ENTER 20 INTEGER Z (10) e

produce the program

10. DIMENSION X(10), Y(10);
20. INTEGER Z(10);
25. DO 10 1=1, 10;
30. Z(I) = X(I) + Y(I);
35. 10 CONTINUE;
40. END;

Note that the statements to be inserted may be entered in any order; FORTRAN IV automatically inserts them
into the program in numerical order.

The first form may also be used to modify or insert statements into an existing program. Statements associated with
numbers within the specified range are replaced by the statements just entered. Statement numbers are evenly dis
tributed within the range.

Example

>ENTER 10:40 DIMENSION X(10), Y(10) @)
INTEGER Z @>
Z(I) = X(I) @>
END DC

The command

>ENTER 20 : 30 @l
INTEGER Z(lO) @)
DO 10 I = 1, 10 @)
Z(I) = X(I) + Y(I); 10 CONTINUE

produces the program

10. DIMENSION X(10), Y(10)i
20. INTEGER Z(10)i
23. DO 10 I = 1, 10i
26. Z(I) = X(I) + Y(I)i
29. 10 CONTINUE;
40. ENDi

If carriage returns are used to separate statements, semicolons will be inserted automatically and will
appear on the program listing.

FORTRAN IV Command Language 7

In both forms the word ENTER is optional.

COpy Command

The COpy command causes a saved symbolic file to be compiled as it is loaded into memory. The compiled state
ments are assigned statement numbers according to the specified range.

Form Example

>COPY sn: sn /fi I e name/ @) >COPY 1 : 100 /F1LE/ @)

The name of the file must be enclosed in slash marks.

Statements that contain errOrs are printed on the teletype and are then discarded. These statements may be corrected
when the> character informs the user that compi lation is completed.

Note that the FORTRAN IV COPY command differs from the Executive COpy command. The latter is used to create
new files at the Executive level, whereas the FORTRAN IV COpy command loads into memory a previously created
file.

DELETE Command

The DELETE command is used to delete the specified program statements.

Forms Examples

>DELETE @) >DELETE @)
>DELETE sn @ >DELETE 3@)
>DELETE sn: sn @) >DELETE 40: 60@)

The first form deletes all statements in the current program. When this form is used, FORTRAN IV responds with

CLEAR PROGRAM?

The user must then type YES to have the entire program deleted or NO or@to abort the command.

The second and third forms delete only the specified statements.

Note that the DELETE command in FORTRAN IV differs from the Executive DELETE command. In the FORTRAN IV
command mode, indicated by>, DE LE TE deletes the program or program statements that are currently in memory.
At the Executive level, indicated by -, the DELETE command deletes a file from the user's file directory.

LIST Command

The LIST command lists the specified program statements on the teletype.

Forms Examples

>LIST @ >LIST @)
>LIST sn @) >LIST 5 @)
>LIST sn : sn @) >LIST 16 : 24@)

The first form lists all statements in the current program, while the second and third forms list only the specified
statements.

Statements are listed one per line. This command is typically used immediately after compilation to ascertain the
statement numbers assigned to program statements.

8 FORTRAN IV Command Language

RESEQUENCE Command

The RESE QUE NCE command reassigns statement numbers to program statements.

Forms Examples

>RESEQUENCE @) >RESEQUENCE @)
>RESEQUENCE old range new range @) >RESEQUENCE 30 : 60 1 : 30 @)

The first form reassigns statement numbers to all statements in the current program within the range 10: 100. The
second form reassigns new statement numbers to all statements within the old I ine number range.

DEFINITIONS Command

The DEFINITIONS command types out the statement, together with its statement number, that defines the speci fied
variable or statement label.

Forms Examples

>DEFINITIONS identifier @) >DEFINITIONS X @)

>DEFINITIONS identifier sn : sn @) >DEFINITIONS 7 30: 50 @)

In the first form the definition of the specified identifier will be printed regardless of its position within the program.
In the second form, the statement that defines the identifier will be printed only if it falls within the specified
range.

Nondeclarative occurrences of the identifier are ignored.

Example

For the program

10. DIMENSION X(10), Y(10);
20. INTEGER Z(10);
30. DO 10 I = 1, 10;
40. Z(I) = X(I) + Y(I);
50. 10 CONTINUE;
60. END;

The command

>DEFINITIONS Z @)

types out

20. INTEGER Z(10);

and the command

DEFINITIONS 10 @)

types out

50. 10 CONTINUE;

REFERENCES Command

The REFERENCES command types out all statements, together with their statement numbers, that reference the
specified variable! name, statement labels, or function references.

FORTRAN IV Command Language 9

Forms Examples

>REFERENCES identifier § >RE FE RE NCE S Ie
>REFERENCES identifier sn : sn § >REFERE NCES 28 10 : 20 @)

In the first form all references to the specified identifier are printed on the teletype; in the second form references
to the identifier within the specified range are printed.

Declarative occurrences of the identifier are ignored.

Example

For the program

10. DIMENSION X(lO), Y(10)i
20. INTEGER Z(10)i
30. DO 10 I = 1, 10;
40. Z(I) = X(I) + Y (I)i
50. 10 CONTINUEi
60. END

The command

>REFERENCES Z @)

types out

40. Z(I) = X (I) + Y(I);

and the command

>REFERENCES 10 @)

types out

30. DOlO I = 1, 10;

EXECUTE Command

The EXECUTE command causes control to transfer to the execution mode.

Form Example

>EXECUTE @) >EXECUTE @)

Execution begins with the first statement of the main program and terminates with the END statement. Control is
then returned to the FORTRAN IV command mode.

SA VE Command

The SAVE command saves the specified program file in symbolic or edited form.

Forms Examples

>SAVE /file name/ SYMBOLIC @) >SAVE /FILE2/ SYMBOLIC e
>SAVE /file name/ EDIT @) >SAVE /FILE3/ EDIT §

The name of the file must be enclosed in slash marks.

10 FORTRAN IV Command Language

The SAVE command causes the user1s file directory to be scanned. If the specified file name is found, FORTRAN IV
responds with

OLD FILE

and replaces the program file in storage with the current version when the confirming@)is read. This feature is in
tended to protect the user from inadvertently writing on an old program fi Ie that he wants to preserve. The user
may abort the command with§and assign a different name.

if the Hie name is not in the directory, FORTRAi-...j iV responds with

NEW FILE

associates the specified name with the program that precedes the SAVE command, and saves it as a program file
when the confirming@) is read. If the SAVE command is aborted while FORTRAN IV is writing the file to disc, un
predictable results will occur.

When SYMBOLIC is specified, only the source language is saved; no statement numbers or other information is in
cluded. A saved symbolic file is saved in a form acceptable to QED. Note that SAVE TELETYPE SYMBOLIC lists
the program on the tel etype.

If EDIT is specified, the compiler writes the compiled program, together with source language and statement num
bers, onto the indicated file.

Since SAVE SYMBOLIC requires less disc space, it should be used in preference to SAVE EDIT, unless preservation
of line numbers is essential. Recompilation time is generally negligible compared to disc reading time.

LOAD Command

The LOAD command loads a previously saved program file so that the user may resume working with it.

Form Example

>LOAD /fi I e name/ §) >LOAD /FILE3/@)

The name of the file must be enclosed in slash marks.

This command causes the compiler to scan the user1s file directory. If the specified file name is found, it types
either

SYMBOLIC FILE

or

EDIT FILE

indicating the file type. @) causes the file to be loaded in the indicated form, while@ aborts the command.
Statement numbers are assigned in the range 10 : 100 to a symbol ic file. Statement numbers for an EDIT file are
the same as those that were saved. The > character informs the user that the load process is completed.

If the file name is not in the user1s directory, the system responds with

ERROR IN OPENING FILE

and returns control to the FORTRAN IV command mode. The user should then return to the Executive and enter the
FILES command to ascertain the file names associated with his name and account number.

FORTRAN IV Command Language 11

COMPILATION DIAGNOSTICS

Whenever a syntactical error is detected in a FORTRAN IV statement entered from the teletype, a warning bell
rings and the statement in error is printed. An arrow (t) is printed beneath the statement at the point beyond which
compilation could not proceed. The user must take corrective action by either retyping the statement correctly or
by skipping the statement and proceeding to the next one.

>ENTER 1 : 50 @)
A = 3.0 @
X = Y*(Z-5 @

X = Y*(Z-5
f

X = Y*(Z-5) @)

In this example an error occurred when the programmer omitted the right parenthesis. The computer im
mediately printed the statement and an arrow to indicate the point at which the statement failed to conform
to an acceptable format. The user took corrective action by retyping the statement correctly. All statements
with errors are discarded by the compiler, so that only the corrected version remains.

If the input to the compiler consists of a previously prepared file, the computer prints each statement in which there
is an error and then discards it. It will not pause to await corrective action. When compilation is completed, the
user may insert corrected statements, using the ENTER command. Alternatively, he may reread the file into QED to
make his corrections.

The following messages are also printed by the compiler:

FUNCTION NOT IMPLEMENTED
PROGRAM REQUIRES END CARD
PROGRAM TOO LARGE

The compiler detects only syntactical errors; other types of errors are diagnosed during execution.

EXECUTION DIAGNOSTICS

If an error occurs during execution, the program is terminated and the statement that contains the error is printed at
the teletype. See Appendix A for a I ist of these messages.

SAMPLE PROGRAM

The following program is designed to illustrate the use of the various FORTRAN IV commands and is not intended to
be used as a guide in creating FORTRAN IV programs. Specifically, it is not necessary to use all the commands
when composing FORTRAN IV programs.

PLEASE LOG IN: C8;W1 B;DEMO @)

READY 6/30 10: 21

-FORTRAN @

>ENTER 1 :10 @

INTEGER NEWER C @
OPE N(4, /SDS/, OUTPUT) @)

12 Compilation/Execution Diagnosti cs/Sample Program

The user is requested to begi n.

FORTRAN IV is called.

FORTRAN IV responds with >.

l

DISPLAY ['PLEASE TYPE THE VALUES OF A, BAND C. "J @

ACCE PT [A, B, C] @)

DISPLAY rTHANK YOU! ! ! ! I~ @)

NEW A = A**2 @)

NEW B = B**3 @

NEW C = C**4 @)

DISPLAY l'NEW A = ", NEW A, I NEW B = ", NEW B, I NEW C = ", NEW C](0)

NEWER A = SQRT [NEW A] @)

Source program is entered.

NEWER B = NEW B**(1./3) @

NEWER C = SQRT [SQRT [NEW C]J @)

WRITE (4, 10) NEWER A, NEWER B, NEWER C @)

10FORMAT(/$NEWER A = $E10.4/$NEWER B = $F10.4/$NEWER C = $15) @)

PAUSE--RETURN TO THE EXEC & COPY FILE /SDS/ TO THE TELETYPE @

END DC

>SAVE /FORT/ SYMBOLIC @

NEW FILE @

>DELETE @

CLEAR PROGRAM? YES @

>COPY 1 : 10 /FORT/ @

>LIST @)

1. INTEGER NEWER C ;

1.6 OPEN(4, /505/, OUTPUT);

2.2 DISPLAY ~PLEASE TYPE THE VALUES OF A, Band C. II];

2.8 ACCE PT [A, B, C] ;

3.4 DISPLAY rTHANK YOU!! ! ! II] ;

4. NEW A = A**2 ;

4.6 NEW B = B**3 ;

5.2 NEW C = C**4 ;

Multiple statement entry
must be terminated by DC.

Program is saved on disc in
symbol ic form and is assigned
the name FORT.

Fi Ie assignment is confirmed.

Program is deleted from user's
memory.

FORT program file is compiled as
it is loaded back into user's
memory.

5.8 DISPLAY rNEW A =", NEW A, I NEW B = II NEW B I NEW C = II NEW C] . " , ,
6.4 NEWER A = SQRT [NEW A] ;

7. NEWER B = NEW B**(1./3) i

7.6 NEWER C = SQRT [SQRT [NEW C]];

8.2 WRITE(4, 10) NEWER A, NEWER B, NEWER C ;

8.8 10FORMAT(/$NEWER A = $E10.4/$NEWER B = $FlO.4 /$NEWER C = $15) ;

9.4 PAUSE--RETURN TO THE EXEC & COpy FILE /SDS/ TO THE TELETYPE

10. END i

Sample Program 13

>RESEQUENCE 1:10 2:5 @>

>LIST @>

2. INTEGER NEWER C ;

2.2 OPEN(4, /SDS/, OUTPUT) ;

2.4 DISPLAyrPLEASE TYPE THE VALUES OF A, BAND C"];

2. 6 ACCE PT [A, B, C] ;

2.8 DISPLAyr THANK YOU!!! ! II] ;

3. NEW A = A**2 ;

3.2 NEW B = B**3 ;

3.4 NEW C = C**4 ;

Statement numbers are reassigned.

3.6 DISPLAY [I NEW A =11, NEW A, I NEW B =11, NEW B, I NEW C =", NEW C];

3.8 NEWER A = SQRT [NEW A];

4. NEWER B = NEW B**(1./3) ;

4.2 NEWER C = SQRT [SQRT [NEW c]];
4.4 WRITE(4, 10)NEWER A, NEWER B, NEWER C ;

4.6 10FORMAT(/$NEWER A = $El0.4/$NEWER B = $Fl0.4 /$NEWER C = $15) ;

4.8 PAUSE--RETURN TO THE EXEC & COpy FILE/SDS/TO THE TELETYPE;

5. END;

>REFERENCES NEWERC @

4.2 NEWER C = SQRT [SQRT [NEW c]];
4.4 WRITE(4, 10) NEWER A, NEWER B, NEWER C ;

]

FORTRAN IV prints statements
that contain specified
references.

>DEFINITIONS 10@>] FORTRAN IV prints statement

4.6 10FORMAT(/$NEWER A = $El0.4/$NEWER B = $Fl0.4/$NEWER C = $15) ; that defines label 10.

>EXECUTE @)

2.2 OPEN(4, /SDS/, OUTPUT);

FILE NAME NOT IN DIRECTORY

>@

>.@

>@

-COpy TELETYPE TO /SDS/ @)

NEW FILE @>

THIS IS A DUMMY FILE DC

-CONTINUE @

FORTRAN

>EXECUTE

PLEASE TYPE THE VALUES OF A, BAND C.

2,4,6 @)

THANK YOU!!!!

14 Sample Program

]

Program cannot be executed
because output file is not in
the user's file directory.

l Control is returned to the
Executive.

J

Control is returned to
FORTRAN IV.

NEW A = 4 NEW B = 64 NEW C = 1296

PAUSE--RETURN TO THE EXEC & COPY FILE/SDS/TO THE TELETYPE

-COpy /SDS/TO TELETYPE (§)

NtwER A = .2000E + Oi

NEWER B = 4.0000

NEWER C = 6

-CON e

FORTRAN

>LIST @)

2. INTEGER NEWER C ;

2.2 OPE N(4, /5 DS/, OUTPUT) ;

2.4 DISPLAY PPLEASE TYPE THE VALUES OF A, BAND C. "J i

2.6 ACCEPT [A, B, C] i

2.8 DISPLAY [ITHANK YOU!! ! ! II] i

3. NEW A = A**2

IJ Contents of output fi le/SDS/is
printed.

The Executive command CONTINUE
may be abbreviated to the first three
letters.

@ List process is aborted.

>DELETE 2.4 @

>LIST (§)

2. INTEGER NEWER C i

2.2 OPEN(4, /SD5/, OUTPUT) ;

2.6 ACCEPT [A, B, C] i

2.8 DISPLAY rTHANK YOU!! !! II];
3. NEW A = A**2 ;

3.2

>@

>@

>@

-LOGOUT @>

TIME USED 0: 10: 23

Statement 2.4 is deleted.

List process is aborted and control
is returned to the Executive.

User requests to I ogou t.

Ten minutes and 23 seconds have
elapsed since user logged in.

Sample Program 15

4. DATA

Numerical quantities -constants and variables - in FORTRAN IV are a means of identifying the nature of the
numerical values encountered in a program. A constant is a quantity whose value is explicitly stated. For example,
the integer 5 is represented as "5"; the number 1T, to three decimal places, as "3.142". A variable is a numerical
quantity that is referenced by a symbolic name rather than by its explicit appearance in a program statement. During
execution of the program, a variable may take on many values rather than being restricted to one.

All data processed by a FORTRAN IV program can be classed into six groups: integer, real, double precision, com
plex, logical, and Hollerith.

LIMITS ON DATA VALUES

Both integer and real (or "floating point") data can be assigned any value in the approximate range 10-
77

to 10
76

.
Both kinds of dat~e stored in floating point form, using two words or 48 bits: a 38-bit mantissa, 9-bit exponent,
and a sign bit. Both integer and real data have an associated precision of 11+ significant digits. That is, numbers
with 11 significant digits will be accurate, while numbers with 12 significant digits will be accurate for values up
to 2 38 -1. Numbers greater than this will lose accuracy in the least significant position.

Double precision data may approximate the identical set of values as single precision floating point data, but have
an associated precision of 18+ significant digits.

Complex data are approximations of complex numbers, taking the form of an ordered pair of real data. The first of
the two real data approximates the real part, and the second real datum approximates the imaginary part of the com
plex number. The values each part may be assigned are identical to the set of values for real data.

Logical data can acquire only the values "true ll or IIfalse li
•

Hollerith data represent character string values. The set of values that each character in the string may assume are
given in Chapter 2, in the discussion on the FORTRAN character set. A Hollerith datum is stored in two computer
words in ASCnt code. Characters are stored left-justified with trailing blanks.

CONSTANTS

Constants are data that do not vary in value and are referenced by naming their values. Constants may be any type
of data. For constants .with positive values the plus character (+) need not be present.

Integer Constants

Integer constants are represented by strings of decimal digits optionally preceded by a sign character.

Form Examples

±n 392 +997263
-13 1234567

where n is a string of digits, and the plus sign is optional.

Real Constants

Real constants are represented by strings of digits with a decimal point and/or an exponent. The exponent follows
the numeric value and consists of the letter E followed by a signed or unsigned integer that represents the power of
ten by which the numeric value is to be multiplied. Thus, the following forms are permissible:

t Ameri can Standard Code for Informati on Interchange.

16 Data

Forms Examples

±n.m ±n. ±.m -394.6238763 5.

±n.mE±e ±n.E±e ±.mE±e ±nE±e -3946.238763E-5 1. E 1

where n, m, and e are strings of digits, and the plus sign preceding e is optional.

+0. 567E+05

567000E-Ol

.567E5

.567E05

5.67E+4

56700. EO

56700.0

56700E-00

.39653

.5E-2 -lE-l

Since any real constant may be represented in a variety of ways, the user can choose the form most convenient for
his purpose.

Double Precision Constants

Double precision constants are formed exactly like real constants, except that the letter D is used as the exponent
instead of E. To denote a constant specifically as double precision, the exponent must be present. Thus, a double
precision constant may be written in any of the following four forms:

Forms Examples

n. mD±e n.D±e .mD±e nD±e 6.88D22 763.Dl -.098734D+5 763D1

where n, m, and e are strings of digits, the plus sign preceding e is optional, and D signifies a double precision
constant.

Generally, it is unnecessary to form a double precision constant, even when precision greater than 11+ digits is de
sired. Any constant that appears in a double precision expression will become a double precision constant (with 18+
digits of accuracy) even if it is written as a real constant. The only effect a double precision constant can have is
to cause an expression which would otherwise be real or integer to be computed in double precision mode, as in the
case:

x = A*B/Y + O.DO

The value of a double precision constant may not exceed the limits for double precision data. Double precision con
stants specified with more significance than precision allows are truncated to the 18+ most significant digits.

Complex Constants

Complex constants are expressed as an ordered pair of constants in the format:

Form Example

(98.7, 25.05)

where c
1

and c
2

may be integer or real constants. The parentheses and comma characters are required. Integer
constants are converted to real constant approximations of their values. The complex constant (cl' c2) is interpreted
as meaning cl + c2i. The following complex constants have values as indicated:

(1.34,52.01
(98344,.34452E + 02)
(- 1., -1000)
(2.3,0)
(0,4.5)
(2.7E 1,0.8)

1.34+52.01 i
98344.0+ 34.45 2i
- 1. 0 - 1 000. 0 i
2.3+0i
0+4.5i
27.0+0.8i

Neither part ot a complex constant may exceed the value limits established for real data.

Constants 17

Logical Constants

Logical constants may assume either of two forms:

. TRUE. . FALSE.

where these forms have the values "true" and "false" respectively.

Hollerith Constants

Hollerith constants are represented in the form

Form Examples

nHs 4HFOUR 3HYOU 2H$$ 1H+

6HOH BOY 3HOH? 2HX= 1HH

where n is an unsigned integer constant of the set (0, 1, 2, 3, 4, 5, 6) and s is a string of characters whose length
exactly corresponds to the value of n. The character H appears in that form. Each character in a Hollerith constant
may be one of the set of characters discussed in Chapter 2.

Hollerith constants may be assigned to real variables only. Since Hollerith constants are stored 3 characters per 24-
bit word, and real data use 2 words each (48 bits), a maximum of 6 characters is allowed in the Ho"erith constant.
If less than 6 are used, the characters are stored left-justified with trailing blanks.

If a variable to which a Ho"erith constant is assigned is to be output, an A format specification should be used (see
Chapter 8).

IDENTIFIERS

Identifiers are strings of letters and decimal digits, the first of which must be a letter. Identifiers are used to name
variables as we" as subprograms and subprogram arguments. Identifiers in FORTRAN IV ,may be of any length. Em
bedded blanks are ignored.

There are no restricted identifiers, but for clarity, it is not advisable to use identifiers which correspond to SDS 940
FORTRAN statement types.

Examples:

X A345Q

ELEVATION

VARIABLES

J3 QUANTITY

L987564

FIRST ONE

DIFFERE NTIAL

Variables are data whose values may vary during program execution and which are referenced with an identifier.
Variabl es may be any of the data types.

If a variable has not been expl icitly assigned to a particular data type (Chapter 9), the following conventions are
assumed:

• Variables whose identifiers begin with the letters I, J, K, L, M, N are integer data.

• Variables whose identifiers begin with any other letter are real data.

Consequently, double precision, complex, and logical variables must be explicitly declared as such. The values
assigned to variables may not exceed the limits established for the applicable data types.

18 Identifiers/Variables

t

Scalar Variables

A scalar variable is a single datum entity and is accessed via an identifier of the appropriate type.

Examples:

Il
EXPONENT
NAME
XXX8

Arrays and Array Variables

An array is an ordered set of data that may be referenced and al tered in a program. The set as a whole is named
by an array identifier according to the rules discussed above for variables. The elements of the array, called array
variables, are referenced by the array identifier followed by an expression, called a subscript, which describes the
element1s position within the array.

For example, A(4) refers to the fourth element in a set of elements called A. This would be a one-dimensional array,
or vector. A two-dimensional array is considered arranged into columns and rows. An element in a two-dimensional
array is referenced as A(I, J) where I refers to a row element and J refers to a column element. For example, in the
set of numbers

111
444
777

222
555
888

333
666
999

if the entire set is called B, then the element 666 is referenced as B(2, 3). B is called a 113 by 3 11 array or matrix.

Subscripts. Subscripts may assume the following form:

Form Example

(2,6.5,5.3)

where the si are any expressions of integer or real mode, and n is the value of the number of dimensions associated
with the array. The parentheses and comma characters are required. t Real expressions used as subscripts are trun
cated to integer values.

Examples:

Array Name

MATRIX
CUBE
A
J

Array Variable

MA TRIX (3,9)
CUBE (J*4,P,3.6)
A (Q/I+U-M)
J(7.5E +2)

Nested subscripting is permissible; that is, subscripts themselves may be subscripted. There is no limit on the level
of nesting.

Examples:

ALPHA(I(J))
MATRIX (I(J (K»)

In all examples given in this format, unless otherwise stated, multiple period characters signify possible additional
specifi cations and are not actually present in the FORTRAN code.

Variables 19

FUNCTIONS

Functions are subprograms that are referenced as basic elements in expressions. A function acts upon one or more
quantities, called its arguments, and produces a single quantity, called the function value. The appearance of a
function reference constitutes a reference to the value produced by the function, when operating on the given
arguments.

A function reference is denoted by the identifier that names the function, followed by a list of arguments enclosed
in brackets.

where

a.
I

Form Examples

f[a l' a 2,···, an] SIN [A+B]

KOST OTEMNUM]

is the"name of the function, and

are arguments. Arguments may be constants, scalar variable references, array element references, array
names (no subscripts), expressions, or subprogram identifiers.

Functions are classified in the same way as variables; that is, unless the type is specifically declared, the IJKLMN
rule applies. The type of a function is not affected by the type of its arguments.

5. EXPRESSIONS

Expressions are strings of operands separated by operators. Operands may be constants, variables, or function refer
ences. An expression may contain subexpressions; i.e., expressions enclosed in parentheses. Operators may be
unary, operating on a single operand, or they may be binary, operating on pairs of operands.

Expressions may be classified as arithmetic, relational, or logical. All expressions yield a single, unique value
when eval uated.

ARITHMETIC EXPRESSIONS

An arithmetic expression is a sequence of constants, variables, or function references connected by arithmetic
operators.

The arithmetic operators and their associated connotations are as follows:

Operator Operation

+ Additi on (bi nary) or Positive (unary)

- Subtracti on (binary) or Negative (unary)

* Multiplication

/ Division

** or t Exponentiati on

20 Expressions

Expressions may consist of a single basic element; i.e., a constant, variable, or function. For example:

3.1415
X(N)
SORT [ALPHA]

Basic elements may be combined through use of the arithmetic operators to form compound expressions. For example,

A+B
PI*RADIUS**2
SORT THETA*[THET A]

Compound expressions may be enclosed in parentheses to form subexpressions. For example,

(A + B)/(C + E)
-((M - N)*(Z - O(J)))

Evaluation Hierarchy

The expression A+B/C could be evaluated as

(A+B)/C

or as

A+(B/C)

To avoid the possibility of such ambiguities, various rules governing precedence of evaluation have been formulated.
The evaluation hierarchy is as follows:

1. The innermost subexpression, followed by the next innermost subexpression, until all expressions have been
evaluated.

2. The arithmetic operations in the following order of precedence:

Operation Operator Order

Exponentiati on ** or t 1 (highest)

Multipl i cation * 2
and Division /
Addition and +
Subtraction - 3

Several additional conventions are necessary:

1. At anyone level of evaluation, operations of the same order of precedence are evaluated from left to right.

2.

Consequently, I/J/K/L is equivalent to ((I/J)/K)/L.

As in algebraic notation, parentheses are used to define evaluation sequences explicitly.
written as (A+B)/C.

is

3. The sequence "operator operator" is permissible if the expression can be evaluated when the second opera
tor is interpreted as unary. Thus A*-B is interpreted as A*(-B).

As an illustration of the above rules of precedence, the expression

A*(B + C*(D-E/(F + G)-H) + P(3))

Arithmetic Expressions 21

is evaluated in the following equivalent sequence:

r
1

F + G

r 2 E/r1

r3 D - r - H
2

r
4

C*r
3

r5 B + r 4 + P(3)

r6 A*r
5

where the r. are the various levels of evaluation.
I

Mixed Expressions

Arithmetic expressions may contain references to data or functions of the integer, real, double precision, or com
plex types. References to data, subexpressions, or functions of the logical type are excluded from arithmetic ex
pressions, except when they appear as function arguments. When arithmetic expressions contain references of more
than one type, they are called mixed expressions.

Mixed expressions are evaluated in the mode of the highest order of reference:

Type Precedence

Complex 1 (highest)

Double precision 2

Real 3

Integer 4

The following rules also govern evaluation of mixed expressions:

1. Expressions appearing as subscripts or function arguments are evaluated separately in their own modes and have
no effect on the mode of the expression in which they are contained.

2. Exponents may be integer or real.

3. Double precision values are truncated to real value precision when they appear in complex mode expressions.

4. Values of expressions, subexpressions, and terms are restricted to those limits associated with the mode of the
expressi on.

5. Values of double precision, real, or integer mode that appear in complex mode expressions are assumed to have
imaginary parts of zero value.

RELATIONAL EXPRESSIONS

A relational expression consists of arithmetic expressions of inteGer or real mode, separated by relational operators
that cause the expressions to be compared. Evaluation results in one of the two logical values "true" or "false".

In general, the form of a relational expression may be written

Form Example

e
1

r
1

e
2

• AND. e
2

r
2

e
3
..•. AND • e n- 1 r n- 1 en A. LT . B • AND. B • GT. C

where the e. are arithmetic expressions and the r. are relational operators.
I I

22 Relational Expressions

The following table shows the relational operators and their meanings:

Operator Meaning

· LT. Less than

• LE. Less than or equal to

.EQ. Equal to

• NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to

A relational expression has the value II true II only if all comparisons in the expression are true. For example,

• LT. 6

o . GT. 8

7 . GT. 2
. AND. 2 EQ.5

o . L T. (2. * * N)

o . L T. -(2. **N)

X • GT. 5 • AND.
5 NE. I

is true.

is false.

is false, because 2 • EQ. 5
is false •

is always true, but

is always false, while

will be true or false depend
ing upon the values of X and
I.

If one expression is integer and the other real, the two expressions are first evaluated, each in its own mode; then
the value of the integer expression is converted to real mode and a real comparison made.

It is not permissible to nest relational expressions as in the case

(L • GE. (X • GT. O.2345E6))

where X .GT. O.2345E6) is a relational subexpression rather than an arithmetic expression, as the definition of
relational expressions requires. Also,

N .GE. Y * (T *«0 + P) .NE. C) - Q) .LT. Z

is meaningless since «0 + P) • NE. C) is a relational subexpression which is not allowable in the otherwise arith
metic expression following the .GE. operator.

LOGICAL EXPRESSIONS

A logical expression is an expression of the form:

Fonn Example

C .OR. B .AND. X

where the e. are logical elements, and the c. are the binary logicai operators.
I I

Evaluations of logical expressions result in one of the two values "true" or IIfalse".

Logical elements are defined as one of the following entitjes:

1. A logical variable or function reference

2. A logical constant

Logi~al Expressions 23

3. A relational expression

4. Any of the above enclosed in parentheses

5. A I ogi cal expression enclosed in parentheses

6. Any of the above preceded by the unary logical operator. NOT.

There are four logical operators:

Operator Type

. NOT. unary

.AND. binary

.OR. binary

.EOR. (ex- binary
clusive OR)

Logical expressions are evaluated as follows (the letter "e" denoting a logical element):

l. • NOT. e true only when e is false •

2. e1 • AND. e
2

true only when both e
1

and e
2

are true.

3. e
1

• OR. e
2

true when either or both e
1

and e
2

are true.

4. e
1

• EaR. e
2

true when either but not both e
1

and e
2

are true.

These rules are illustrated in the following table:

Table 1. Evaluation of Logical Expressions

Logical Operator

Expression Values
• NOT. e • AND. .OR • .EOR •

e True -- False - - -
e False -- True - - -
e

1
False e

2
False - False False False

e
1

True e
2

False - False True True

e
1

False e
2

True - False True True

e
1

True e
2

True - True True False

Evaluation Hierarchy

In a manner similar to that discussed for arithmetic expressions, parentheses are used to define explicit evaluation
sequences. Consequently,

A • AND. B . OR. Q(3) . NE. X

does not have the same meaning as

A . AND. (B. OR. Q(3) . NE. X)

where (B • OR. Q(3) . NE. X) may be called a logical subexpression.

The evaluation hierarchy of logical expressions is:

1. Arithmetic expressions

2. Relational expressions (the relational operators are all of equal precedence)

24 Logical Expressions

3. The innermost logical subexpression, followed by the next innermost logical subexpression, etc.

4. The logical operations in the following precedence:

Operator Order

• NOT. 1 (highest)

.AND. 2

• OR. 3

.EOR. 4

Note: It is permissible to have two continguous logical operators only when the second operator is • NOT.. In
other words,

e
1

• AND •• OR. e
2

is ill ega I, wh iI e

e
1

• AND •• NOT. e
2

is legal.

6. ASSIGNMENT STATEMENTS

The SDS 940 FORTRAN IV language is comprised of five types of statements:

• Assignment Statements

• Control Statements

• Input/Output Statements

• Declaration Statements

• Subprogram Statements

Each type of statement performs a specific function. Assignment statements are discussed in this chapter; subsequent
chapters are devoted to discussion of the other statements.

REPLACEMENT STATEMENT

The Replacement statement specifies 1) an expression to be evaluated and 2) a variable, called the statement variable,
to which the expression value is to be assigned.

Form Examples

v = e A=B

Q(I) = Z**2 + N* (L-J)

L = B • OR •. NOT. C. AND. R. NE. 23. 93

where v is a variable name and e is an expression. Note that the sign (=) denotes replacement rather than equality.
Thus Y =Y + 1 is a vai id statement meaning !!add one to the value of Y and assign the resulting value to YII.

Assignment Statements 25

When the mode of the expression e is not the same as the variable type for v, the variable is assigned values as
indicated in the following table.

Table 2. Mixed Variable Types and Expression Modes

If v type is

Integer

Real

Double Precision

Complex

Logical

Notes:

Rules for Assignments of e to v

and e type is

Integer

Real

Double Precision

Complex

Logi cal

Integer

Real

Double Precision

Complex

Logical

Integer

Real

Double Precision

Complex

Logical

Integer

Real

Double Precision

Complex

Logical

Integer

Real

Double Precision

Complex

Logical

assignment rule is

Assign

Fix and Assign

Fix and Assign

Illegal

Illegal

Float and Assign

Assign

DP Evaluate and Real Assign

III egal

Illegal

D P Float and Assign

DP Evaluate and Assign

Assign

Illegal

Illegal

Illegal

Illegal

III egal

Assign

Illegal

I1!ega!

Illegal

Illegal

Illegal

Assign

1. Assign means transmit the resulting value, without change, to the variable.

2. Fix means truncate any fractional part of the result and transform that value to the form of an integer
datum.

3. Float means transform the value to the form of a real datum.

4. DP Evaluate means evaluate the expression double precision according to the usual rules of evaluation.

5. Real Assign means transmit as much precision of the most significant part of the resulting value as a
real datum can contain.

6. DP Float means transform the value to the form of a double precision datum, retaining in the process
as much of the precision of the value as a double precision datum can contain.

26 Assignment Statements

LABEL ASSIGNMENT STATEMENT

Label Assignment statements are used to assign to a variable the location of a statement.

Form Examples

ASSIGN k TO v ASSIGN 153 TO LABEL

ASSIGN 603 TO FLAG 1

where k is a statement label and v is a scalar variable reference of any data type.

Once a statement label has been assigned to a variable, the variable must not be referenced except as a statement
label. Thus in the sequence

ASSIGN 101 TO A
C = A/B

will cause an execution time diagnostic because the val ue of A is undefined.

Note that the statement M = 5 cannot be substi tuted for ASSI GN 5 to M and vi ce versa because the integer "5" is
impl ied in the first case, and the label "5" in the second.

The use of such assignments is discussed in the next chapter, in the section on Assigned GO TO Statements.

7. CONTROL STATEMENTS

Each statement in a FORTRAN IV program is processed in the order of its appearance in the source program unless
this sequence is interrupted or modified by a control statement. If program control is to be transferred to a particular
statement, that statement must be identified by a label (see Chapter 2).

In general control statements may be used to:

• Provide unconditional transfer of control to other statements in the program

• Test variables and provide conditional transfer of control to other statements in the program

• Execute a particular sequence of statements repeatedly a specified number of times

• Provide branching to and return from subprograms

The program control statements available in SDS 940 FORTRAN IV include GO TO, IF, DO, CONTINUE, PAUSE,
STOP, CALL, RETURN, and END.

GO TO STATEMENTS

There are three forms of GO TO statements: unconditional, assigned, and computed.

Unconditional GO TO Statement

The Unconditional GO TO statement provides a means to unconditionally transfer control to another statement in the
program.

Control Statements 27

Form Examples

GO TO k GO TO 5
GO TO 800

where k is the statement label of an executable statement.

The result of execution of this statement is that the next statement executed is the statement whose label is k.

Assigned GO TO Statement

The Assigned GO TO statement transfers control to a statement referenced by a variable label defined previously in
an ASSIGN statement (see Chapter 6).

Forms Examples

GO TO v GO TO G

GO TO v, (k 1, k2' k3' ••• , kn) GO TO G, (117,56" 101)

where v is a variable appearing in a previously executed ASSIGN statement and the k. are statement label
I

references.

Control is transferred to the statement whose location has been assigned to the variable v.

If the second form is used, each label in the list must be defined in the program or subprogram segment in which the
GO TO statement appears (i.e., must be the label of a program statement). This form serves no purpose other than
to provide compatibility with other processors. The comma and parentheses characters must appear as shown.

For example, the statements

ASSIGN 5371 to G
GO TO G

will cause transfer of control to the statement labeled 5371. The optional form would be

ASSIGN 5371 TO GO
GO TO G, (117,56, 101,5371)

Computed GO TO Statement

The Computed GO TO statement allows transfer of control to one of a group of statements, the particular statement
chosen depending on conditions at run time.

Form Examples

GO TO (98,65,405, 3), R
GO TO (5,6, 7), T**2 - 1

where the k. are statement labels and e is an expression of integer or real mode.
I

The comma character preceding e is optional.

Control is transferred to the statement whose label is kj . where j is the integer value of the expression e. The
value of the expression must be greater than zero and leSS than or equal to n; that is, 0 > j ~ n. Reol rTiode expres
sions are evaluated and than truncated to integer value.

28 GO TO Statements

In the first example above, if the expression R has the value 3, then control will be transferred to the statement
labeled 405. If the expression (T**2 - 1) in the second statement has the value 1.56 control will be transferred to
the statement labeled 5.

IF STATEMENTS

IF statements are conditional transfer statements that allow the programmer to change the logical flow of a program
on the basis of a test. There are two types of IF statements: arithmetic and logical.

Arithmetic IF Statement

The form for the Arithmetic IF statement is

Form Examples

IF (e) k
1
, k

2
, k3 IF (G + B(I)) 76,4, 3

IF (X - Y) 100, 250, 3000
IF(I) 1,2,3

where e is an expression of integer or reai mode and k 1, k2, and k3 are statement labels. If the val ue of e is less
than 0, transfer is to k1 i if the value of e is equal to 0, transfer is to k2i if the value of e is greater than 0,
transfer if to k3-

A comma character may optionally precede k
1

•

Examples

Statement
Expression Transfer

Value To

IF (I) 1,2, 3 47802 3

IF(C(J, 10)/4),23, 12,8 -.098433 23

IF (A + B(I))44, 33, 22 0.0 33

Logical IF Statement

The Logical IF statement is represented as

Form Examples

IF (e) s IF(E • OR. D) GO TO 3135

IF (A • AND. G), IF (C. NE. K), ON = • TRUE.

where e is a logical mode expression and s is any executable statement.

A comma may optionally precede the statement s.

The statement s is executed if the expression e has the value "true"; otherwise, the next executable statement
following the Logical IF statement is executed. The statement following the Logical IF will be executed in any
case after the statement s, unless the statement s causes a transfer to occur, as in the first example above.

Note that the entire construct IF (e) s is treated as a single statement, which allows a Logical IF to control another
Logical IF. This is illustrated in the second example.

DO STATEMENT

The DO Statement is used to control repetitive execution of a group of statements.

IF/DO Statements 29

Form Examples

DO k v = e l' e 2' e 3 DO 10 I = 1, 10

DO 12 J = 2, 98, 2

DO 15 V = END, START, -.05

where k is a statement label, v is a reference to a scalar variable of integer or real mode, and e 1, e 2, and e 3 are
expressions of integer or real mode.

An optional comma character may be placed between k and v.

The DO statement causes repeated execution of all statements within its range. The range of a DO extends from the
first executable statement following the DO statement up to and including statement k.

The scalar variable v is called the index of the DO statement. It is used to identify the repetition currently being
performed. The value of e

1
represents the initial value of the index; the value of e

2
represents the limiting or

terminal value of the index; and e
3

the incrementing quantity. If e
3

is omitted, it IS assumed to be 1.

The initial execution is always performed, regardless of the values of the limit and increment. After each execution
of the range, the increment value is added to the value of the index, and the result is compared with the limit value.
If the value of the index is not greater than the limit, the range is executed again, using the new value of the index.
(In case the increment value is negative, another execution will be performed if the new value of the index is not
less than the limit value.)

When the index value exceeds (or if decrementing is less than) the limit value, control passes to the statement im
mediately following statement k. Exit may also be effected by a transfer from within the range of the DO statement.

Consider this example:

DO 999, I = 1, 5,2,

MEANING: Execute all statements immediately following, up to and including statement number 999, first for
I = 1, next for I = 3, and last for I = 5. Then transfer control to the statement following statement number 999.
Thus, the loop will be executed a total of 3 times.

The terminal statement of a DO range (k) may be any executable statement. However, the programmer should
exercise care if the terminal statement is a transfer (GO TO, IF); the consequences can be determined by inspec
tion. Incrementing and testing will not take place if k is a transfer statement.

If a transfer is made out of the range of a DO before all iterations have been completed, the value of v will be
that during which the transfer occurred.

The value of the variable v may be modified by any form of assignment statement within the range of the DO, and
may also be modified by a subprogram called within the range of the DO.

A transfer into the range of a DO may onl y occur if there has been a prior transfer out of the range. In fact, the
statements executed "outside" the range will then be considered part of the DO range.

A DO-loop may include other DO-loops, provided that the range of each "inside" or "nested" DO statement is
contained completely within the range of an "outside" DO statement. In other words, the ranges of two DO
statements may not partially overlap one another. There is no limit to the level of nesting. The same statement
may be used as the terminal statement for any number of DO statements.

If the programmer wishes to avoid terminating a loop with a transfer statement, he may use the CONTINUE state
ment as a dummy end for the loop.

CONTINUE STATEMENT
The CONTINUE statement is a dummy statement used primarily to serve as a target point for transfers, particularly
as the last statement in a DO loop. At the end of the range of a DO, the CONTINUE statement in effect means lido
nothing but proceed to modify and test the index".

30 CONTINUE Statement

For example, in the sequence

DO 5 1=1, MAX

GO TO 5

x = SUM

5 CONTINUE

if the GO TO is intended to begin another execution of the DO loop, without performing the statement X = SUM,
the CO NTINUE statement provides the necessary target address.

PAUSE STATEMENT

The PAUSE statement temporarily halts execution of a program.

Forms Examples

PAUSE PAUSE

PAUSE c PAUSE 777

where c is any string of characters.

The word PAUSE will be displayed at the teletype, as will the string c if it is specified. By typing any charact~r,
the programmer can cause execution to continue with the statement immediately folJowing PAUSE.

STOP STATEMENT

The STOP statement terminates the program and returns control to the FORTRAN IV command mode.

Forms Examples

STOP STOP

STOP c STOP 777

The character c has the same meaning as for tne PAUSE statement.

SUBPROGRAM CONTROL

The two statements discussed below provide transfer of control between subprograms and calling programs (see
Chapter 10 for a general description of subprograms).

CALL Statement

The CALL statement causes a transfer of control to a SUBROUTINE subprogram.

PAUSE/STOP Statements/Subprogram Control 31

Forms Examples

CALL p CALL DUMP

CALL p [a1,a2,·· .,an] CALL FACTOR [A + l,2*A]

where p is the identifier of the subroutine, and the a i are arguments required by the subroutine.

If the called subroutine does not require an argument list, the first form above is used.

Arguments appearing in a CALL may be constants, scalar variable references, array element references, array
names (no subscripts), expressions, or subprogram references.

If a subprogram identifier is used as an argument, the identifier is not followed by an argument string, since this
argument form is only used to provide the called subroutine with a subprogram reference. In this sense, the sub
program reference is merely a name, and as such has no value associated with it.

:rhe name of a subroutine has no bearing on the mode of its resul ts.

RETURN Statement

The RETURN statement returns control from an external subprogram to the calling program. Thus, the last state
ment executed in a subprogram will be a RETURN. It need not be physically the last statement, but may appear at
any point in the subprogram where it is desired to terminate execution. Any number of RETURN statements can be
used.

Form Example

RETURN RETURN

Within a Function subprogram, the RETURN statement causes the latest value assigned to the function name to be re
turned, as the function value, to the expression in which the function reference appeared. In a SUBROUTINE sub
program, RETURN causes transfer to the first executable statement following the CALL statement which passed con
trol to the subroutine.

END STATEMENT

An END statement is required in a FORTRAN program to inform the compiler that it has reached the physical end of
a program.

Form Example

END END

If the END statement is omitted, the compiler prints the following message

PROGRAM REQUIRES AN END CARD

32 Subprogram Control

8. INPUT jOUTPUT STATEMENTS

Input and output statements provide the capability of communicating with devices external to the computer. Input
statements enable a program to receive information from external sources for storage in memory, while output state
ments allow transmission of information from storage to external sources.

In the time-sharing environment, data files are normally created at the teletype (manually and from paper tape),
maintained on a large disc, and printed out at the teletype. If the use of other devices, such as the printer, is
required, special request should be made to the computer center.

The number of statements in SDS 940 FORTRAN IV necessary to input and output data has been reduced to four. The
ACCEPT and DISPLAY statements are used for format-free I/O to and from the teletype. The READ and WRITE state
ments are used for conventional formatted I/o to or from any user file. (In addition, the OPEN and CLOSE state
ments control availability of files during program execution.)

INPUT jOUTPUT LISTS

All input/output statements include a list that defines data to be processed by the statement. Input lists specify
variables to which incoming data are to be assigned. Output lists specify expressions whose values are to be trans
mitted to an external device.

Simple List Items

Simple I ist items appear in the form

Form Examples

Input Lists Output Lists

e l' e 2' e 3' . . . , en A E

Q(25, L) I(J(H), N)

RY, Y(U, B), XYZ 753820, T** 5, B/3. +Y

where the e. are expressions of any mode for output I ists and variabl e references of any type for input I ists. The
comma char6cters must be present. The items in the list must be given in the same order as their corresponding
values actually exist on the input medium or will exist on the output medium.

On input, values of variables read early in a list may be used in subscript or control expressions for variables occur
ring later in the list. For example, the list

K, A(K + 1)

may be used to read in a value for K and then to use that value in the subscript of variable A.

Do-Implied List Items

Indexing similar to that used in DO statements is allowed in input/output lists for handling array variables. This
technique is often referred to as IIself-indexing ll or an lIimplied DO-Ioopll. The variables to be transmitted are
listed, followed by a control expression, and the whole is enclosed in parentheses to act as a single item of the list.
The general form of the control expression is

where

v is the index variable.

is the initial value of the index variabie.

Input/Output Statements 33

e
2

is the upper limit value of the index variable.

e
3

is the increment size; it is optional and is assumed to be 1 if not given explicitly.

The range of the implied DO includes all list items within the parentheses which physically precede the control
expression. A comma must separate the last variable from the control expression.

The rules of repetition are the same as for the DO statement, as illustrated in the following examples.

Examples

List Items

(X (I), I = 1,4)

(X (D), Y(D), D = 1,2)

(G(2* N), N = 4,0, -2)

T, (C(P), P = 3,5), E, L

«A(I, J), I = 7,9),
J = 1, 3)

(Z (I), I = 1, N)

(R, T (I), I = 1, 2)

Equivalent To

X(l), X(2), X(3), X (4)

X(l), Y(l), X(2), Y(2)

G(8), G(4), G(O)

T, C(3), C(4), C(5), E, L

A(7,l), A(8,l), A(9,1), A(7,2), A(8,2), A(9,2),
A(7, 3), A(8, 3), A(9, 3)

A(l), Z(2), ••• , Z(N-1), Z(N)

R, T(l), R, T (2)

Since the variable v in a DO-loop expression exists as a regular program variable (see Chapter 7) the list:

(A(K), K = 1,5), G(K), H(L, K, 22)

is equivalent to the list:

A(l), A(2), A(3), A(4), A(5), G(6), H(L, 6, 22)

Lists may be omitted when the I/o statement refers to a FORMAT statement that contains only Hollerith specifi cations.

FREE FORMAT I/O

The ACCEPT and DISPLAY statements are designed to relieve users of the burden of providing formats when explicit
format control is not required. The device accessed is always the teletype.

ACCEPT Statement

The ACCEPT statement is used to read values from the teletype. When this statement is executed, the computer
wa"its for data to be input by the programmer, and assigns these values to variables in a list.

Form Example

ACCEPT list ACCEPT A, (B(I), I = 1, 3), CHECK

Brackets are optional.

The type of the I ist variable determines the form in which conversion from external to internal form takes place.
The rules governing storage are similar to those for assignment statements (see Chapter 6). For example, if the type
of the list variable is integer and a floating point number is input, the number will be truncated to an integer prior
to storing.

If the type of the I ist variable is complex, two numbers will be demanded. The first number read will be assigned
to the ieal PCHt, the second to ihe imaginary part. If the type of the list variable is logical, the first character
read must be a T for true or F for false, and any remaining characters up to the delimiter (see below) will be
discarded.

34 Free Format I/o

Values input to the ACCEPT must be separated from each other by a space, comma, line feed or carriage return.
Values will be demanded until the variable list is satisfied. Then either a carriage return or line feed may be given
to cause control to return to the program.

Successive delimiters with no values typed in between them will cause zero values to be assigned to the appropriate
variables in the list.

In the example above, the user could input the following:

10
-3, 10E6, -16.6 @

T@)

Assuming that the variable CHECK was data typed previously as LOGICAL in a Type statement, these values would
be interpreted as 1., -3., 10 x 106, -16.6, and IItrue ll

, respectively.

DISPLAY Statement

The DISPLAY statement is used to print data at the teletype. The data is transmitted as values of expressions in a
list.

Form Examples

DISPLAY list DISPLAY [A, B+1]

DISPLAY I PRICE = $11, X

Brackets are optional.

The mode of a list expression determines the manner in which its value is converted from internal to external form.
In general, values are output to maximum accuracy, with all leading spaces and trailing zeros suppressed. Values
are separated by three spaces and are output until the list is satisfied.

A real value is output with or without an exponent depending on the magnitude of the number, and according to
the same rules as govern G-type output.

Complex values will be output as two real variables separated by commas. For example,

1. 23,5.65

If an expression is logical, the output will be a T for true or an F for false.

Character strings may be output by enclosing the string within single and double primes. Thus, if X = 100, then

DISPLAY I PRICES = $11, X

will produce the line

PRICES = $bbb 100.

where b denotes blank.

The system automatically checks to see if sufficient room is available on the current teletype line (72 positions)
for data. When sufficient room does not exist, a carriage return is issued, and the next value is output at the
beginning of the next line. When the list has been satisfied, a carriage return is automatically issued.

FORMATTED INPUT/OUTPUT

When the programmer wishes to have explicit control over the form in which data are transmitted, formatted input/
output statements are used. In general, SDS 940 FORTRAN IV formatted input/output follows conventjonal
FORTRAN rules (see FORMAT Statement later in this chapter).

Formatted Input/Output 35

All data files (other than the teletype, which may also be referenced as a file) must be explicitly opened and
closed by the two statements discussed below.

OPEN Statement

The OPEN statement makes a data file available for input or output. A program may have 3 files, in addition to
the teletype, open at the same time. Any file that is to be opened must have been defined in the user's file
directory prior to execution of the OPEN statement. t

Form Examples

OPE N (number, /name/, use, type) OPEN (2,/IN/, INPUT, BINARY)

OPEN (3,/FILE1/, OUTPUT)

where

number is a file number that must be assigned a value between 0 and 4 inclusive. The numbers 2, 3, and 4
are used for disc files. The numbers 0 and 1 are reserved for teletype input and output respectively; how
ever, since the teletype is always open, an OPEN statement for the teletype is redundant. The file number
may appear as an expression.

name is the file name as it appears in the user's file directory. Disc file names must be enclosed in
slashes. (See SDS 940 Terminal User's Guide for details concerning creation of files.)

use is either INPUT or OUTPUT.

type is either SYMBOLIC or BINARY. Type is optional; if not given, SYMBOLIC is assumed.
Parentheses are required.

CLOSE Statement

The CLOSE statement closes the designated file, making it unavailable for input or output until reopened.

Form Example

CLOSE (file number) CLOSE (3)

where the definition of a file number is the same as for the OPEN statement. Parentheses are required.

When a file is closed and then reopened, the next I/o statement to reference it will access the beginning of the
file.

All files are automatically closed upon completion of program execution.

READ Statement

The READ statement is used to input data from a file and store the data as values of the variables in a list.

Form Examples

READ (n, f) Jist READ (3, 50) A, B, (C(I), 1=1, 10)

READ (4, '110")N

READ En] list READ [4] X, Y, ZED

where n is a fiie number and f is a format statement iabei or a character string enclosed in single and double primes.

tAn output file may be defined in the user's directory by writing anything on it with the Executive command COPY.
Data output to the file during program execution will write over the original contents.

36 Formatted Input/Output

The file number n is assigned in the OPEN statement. Data is converted from external to internal from according
to format f, which may be either the label of a format statement or a format expressed as a character string. The
format reference is omitted for binary files, as in the second form given above. Note that parentheses are required
for formatted symbolic files and brackets are required for binary files.

A READ statement accesses the teletype if n = O. A physical record terminates with a carriage return. When the
list is satisfied, the data is scanned until a carriage return is read.

WRITE Statement

Forms Examples

WRITE (n, f) list WRITE (3, 1) X, Y, Z

WRITE (4, IF10.211) A,B

WRITE [n] list WRITE [2] (C(J), J = 1, 100)

where n is a file number and f is a format statement label or a character string enclosed in single and double primes.

The file number n is assigned in an OPEN statement. Data is converted from internal to external format according to
format f, which may be either the label of-a format statement or a format expressed as a character string. The for
mat reference is omitted for binary files, as in the second form given above. Note that parentheses are required
for formatted symbolic files, and brackets are required for binary files.

A WRITE accesses the teletype if n = 1. A carriage return is output after 72 characters have been typed and/or up
on satisfaction of the list.

FORMA T Statement

FORMAT statements specify the conversion to be performed on data being transmitted during a formatted input/
output operation. In general, conversion performed during output is the reverse of conversion performed in an in
put operation. FORMAT statements are expressed as

Form Example

FORMAT (F6. 1, E13. 1)

where the f. are field specifications to be described in the following pages.
I

Each FORMAT statement must be labeled so that references may be made to it by formatted input/output statements.
In addi tion, an entire FORMAT (the parentheses characters and the items they enclose but not the word FORMAT)
may be stored in an array variabl ei in this case the array itsel f is referenced by the input/output statement. (See
IIFORMATs Stored in Arrays".)

FIE LD SPECIFICA no NS

Field specifications describe the kind or type of conversion to be performed, specific data to be generated, scaling
of data values, and editing to be executed. Each integer, real, double precision, or logical datum appearing in
an input/output list is processed by a single field specification while complex data are operated on by two consecu
tive field specifications.

Field specifications may be any of the following forms:

rFw. d rGw.d rAw rX

rEw. d rIw nHs iP

rJc. d rOw s r/

rDw. d rLw IS" Z

Formatted Input/OCJtput 37

where:

1. The characters F, E, J, D, G, I, 0, L, A, H, $, single prime C) and double prime ("), X, P, slash (/) and
Z define the type of conversion, data generation, scal ing, editing, and FORMAT control.

2. r is an optional, unsigned decimal integer that indicates that the specification is to be repeated r times;
thus 316 is equivalent to 16, 16, 16.

3. c, for the J specification, is an unsigned decimal integer and specifies the number of digits appearing be
fore the decimal point.

4. w is an unsigned decimal integer that defines width in characters (including digits, decimal points, and
algebraic signs) of the external representation of the data being processed.

5. d, for F, E, 0, and input G specifications, is an unsigned decimal integer and specifies the number of frac
tional digits appearing in the magnitude portion of the external field.

6. n is an unsigned decimal integer that defines the number of characters being processed.

7. s is a string of the characters acceptable to the FORTRAN IV processor.

8. i is a signed, decimal integer. The function of i is described under the P specification.

F Conversion. Integer, real, double precision, or either part of complex data may be processed by this form of con
version. Double precision values are converted with full precision if sufficient width is specified by w, and the
value of d' allows for the appropriate number of digits in the fractional portion of the field.

Forms Examples

Fw.d F6. 1

rFw. d 2F10.4

Output. Internal values are converted to real constants, truncated at d decimal places with an overall length of w.
The field is right justified with as many leading blank characters as necessary. Negative values are preceded with
a minus sign. Consequently, for the specification Fll. 4

273.4 is converted to 273.4000

7 is converted to 7.0000

-.003 is converted to -.0030

-442.30416 is converted to -442.3041

If a value requires more positions than are allowed by the magnitude of w, an asterisk will be output, followed by
the sign and as many significant digits as possible. In order to insure that such a loss of digits does not occur, the
following relation must hold true:

w~d+2+n

wher@. n is the number of digits to the left of the decimal point.

Input. Input strings may take any of the integer, real, or double precision forms discussed under "Numeric Input
Strings". Each string will be a length w with d characters in the fractional portion of the value. If a decimal
point character is present in the input string, the value of d is ignored, and the number of digits in the fractional
portion of the value will be explicitly defined by that decimal point character.

For the specification FlO. 3

33

802142

is converted to

is converted to

38 Formatted Input/Output

.033

802. 142

.34562

-7.001

is converted to

is converted to

.34562

-7.001

E Conversion. Integer, real, double precision, or either part of complex data may be processed by this form of
conversion. Double precision values are converted with full precision if sufficient width is specified by wand
the value of d allows for the appropriate number of digits in the fractional portion of the field.

Forms Examples

Ew.d E 13. 1

rEw.d 10E9.6

Output. Internal values are converted to real constants of the form

.ddd ••• dE±ee

where ddd ••• d represents d digits, while ±ee is interpreted as a multiplier of the form

10+ee

Internal values are truncated to d digits, and negative values are preceded by a minus sign. The external field is
right justified and preceded by the appropriate number of blank characters. The following are examples for the
specification E14. 8:

90.4450 is converted to • 90445000E. 02

-435739015. is converted to -.43573901E+09

.000375 is converted to .37500000E-03

-1 is converted to -.10000000E+Ol

.2 is converted to .20000000E+00

0.0 is converted to • OOOOOOOOE+O 1

The field width is counted from the right and includes the exponent digits, the sign (minus or space), the letter E,
the magnitude digits, the decimal point, and the sign of the value (minus or space). If a width specification is of
insufficient magnitude to allow expression of an entire value, an asterisk will be output, followed by the sign,
decimal point, E character, sign of the multiplier, and as many significant digits as possible. To prevent a loss of
this nature, it is necessary to insure that the relation

w~d + 6

is present in the field specification.

Input. Input strings may take any of the integer, real, or double precision forms discussed under "Numeric Input
Strings".

Examples:

Value Specification Converted to

10. 3456E03 E10.2 10345.6

-113409E2 Ell. 6 -11.340900

-409385E-03 Ell. 2 -4.09

849935E-02 E10.5 .08499

First, the decimal point is positioned according to the specification; then, the value of the exponent is applied to
determine the actual position of the decimal point. In the second example, -113409E2 with a specification of
Ell. 6 is interpreted as -. 113409E02 wh i ch, when eva I uated (i. e., -. 113409 x 102), becomes - 11. 340900.

Formatted Input/Output 39

J Conversion. Conversion of this type is similar to E conversion, except that c specifies the number of digits before
the decimal point.

Forms Examples

Jc.d Jl. 2

rJc. d 6J8. 1

Field width is defined by the relation

w=d+c+6

Output. Internal values are truncated to d digits and negative values are preceded by a minus sign. The following
are examples for the specification J3. 4:

123.0

9.64931

-.001

is converted to

is converted to

is converted to

123.0000E+00

964. 9310E-02

-100.0000E-05

Input. On input, conversion is identical to E-type conversion.

D Conversion. Conversion of this type is similar to E conversion, with the exception that for output, the character
D wi II be present instead of the character E.

Forms Examples

Dw.d D11. 2

rDw.d 3D6.4

For example,

for E12. 6, -667.334 is converted to -.667334E+03

and

for D12. 6, -667.334 is converted to -. 667334D+03

G Conversion. Integer, real, double precision, or either part of complex data may be processed by this form of
conversion. Double precision values are converted with ful! precision if the magnitude of w is adequate, and the
number of significant digits defined by the value of d is sufficient to allow complete expression of the data value.

Forms Examples

Gw.d G2.3

rGW.d 3G4.5

Output. The purpose of the G format for output is to express numbers in a form which is most natural; that is, they
are expressed in the form that is normally used for values of the corresponding magnitude.

Internal values are converted to real constants. The form of the constants is dependent upon the magnitude of the
data, and conversion is either E- or F-type as indicated below, where M represents the magnitude of the data:

For 10 i - 1 ~ M < H)i

conversion wi II be

Fn.m

40 Formatted Input/Output

when O:s i < d and otherwise wi II be

Ew.d

where n = w - 4 and m = d - i.

Values converted with the F specification are followed by four blank characters in the external character string, and
any non-zero scale factor in effect (see lip Specification ll

) during F conversion is ignored. Non-zero scale factors
in effect during E conversion are utilized.

The following are examples for the specification G9.2:

-1. 773 is converted to - 1 • 7151)1)1)

• 133 is converted to • 1351)1)1)

532. is converted to 532.00

-.0947 is converted to -9. 47E-02

-.0996 is converted to -.99E-01

where 15 represents the character blank.

If the magnitude of the width w is insufficient to allow representation of the data value, digits are I isted as in E and F
conversion.

Input. On input, processing is identical to F conversi on.

I Conversion. Integer, real, double precision, or either part of complex data may be processed by this form of con
version. If the width specification w is of sufficient magnitude, real and double precision values are converted in
full precision.

Forms Examples

Iw 15

r1w 716

Output. Internal values are converted to integer constants. Real and double precision data are truncated to
integer values; however, the integers may contain as many digits as are specified by w.

Negative values are preceded by a minus sign, and the field wi II be right justified and preceded by the appropriate
number of blank characters. The specification 16 implies that

273.4 is converted to 273

7 is converted to 7

-.003 is converted to 0

-44205.965 is converted to -44205

If the magnitude of data requires more positions than permitted by the value of the width w, an asterisk will be
output, followed by the sign and as many signifi cant digits as possible.

Input. On input, conversion is identical to F-type processing except that fractional portions of a value are lost
through truncati on.

o Conversion. 0 conversion is used to process octal values.

Forms I Examples

Ow
I

08

rOw I 308

Formatted Input/Output 41

Output. Internal binary word values, with no regard to data type, are converted to their octal equivalents. In
order to fully represent each data type, the following requirements are placed on the value of the width w:

1. Double precision data require 24 digits

2. Real and integer data require 16 digits

Note that real data include either part of complex data and Hollerith information. logical data cannot be out
put with an 0 conversion.

Example

Data Values Internal Binary rOw External Octal

1 010000000000000000000000 016 2000000000000001
000000000000000000000001

5.0 010100000000000000000000 016 2400000000000003
000000000000000000000011

1DO 011001100110011001100110 024 31463146
011001100110011001100110 31463146
011001100110011111111101 31463775

HOl 001010000010111100101100 08 12027454

Whenever the magnitude of w is insufficient for the complete expression of a value, digits will be lost from the
least signifi cant portion of the fi eld.

If w is of a magnitude greater than that necessary to express the octal representation of the data, the field in the
external string wi II be right justified and preceded by the appropriate number of zero characters.

Input. External fields processed by 0 conversion may contain only strings of octal digits and blank characters. If
a field contains other than one of the above, an error occurs.

Conversion begins with the first character in the string, incl uding blanks. Blank characters are treated as if they were
zero characters. Thus

is equivalent to

03500710

for the specification 08, where -0 represents the character blank. Also, fields that contain nothing but blank
characters are assumed to have the value zero.

Fields that contain more significant digits than required by the corresponding list items lose digits from the least
significant portion of the field. For instance, if the list item is integer, and the input specification used is
024 then

123456700765432112345670

is converted to

1234567007654321

L Conversion. Only logical data may be processed with this form of conversion; any other data type causes an
error to occur.

42 Formatted Input/Output

Forms Examples

Lw L1

rLw 5L4

Output. Logical values are converted to either TRUE or FALSE for the values "true" and "false" respectively. If
the field width will not contain the full word, either a T or an F character is output. The T and F characters are
preceded by w-1 blank characters. For example, using the specification L4.

• TRUE.

. FALSE.

is converted to

is converted to

TRUE

15i:>£F

where b represents the character blank.

Input. The first non-blank character in the input string must be either a T or an F character; any other character
appearing at the first non-blank character causes an error to occur. The occurrence of a T or an F character causes
the corresponding list item to be assigned the values "true" or "false", respectively.

Thus,

TRUE and FALSE

are valid input strings. Characters falling between the T and F characters and the right-hand boundary of the ex
ternal field are ignored. Fields consisting of only blank characters cause an error condition.

A Conversion. A conversion is used to process character strings.

Forms Examples

Aw A6

rAw 4A3

Output. Internal binary values are converted to character values at the rate of eight binary digits per character.
The most significant digits are converted first; i. e., conversion is from left to right. Internal values are processed
in the following manner:

Data Type Internal Binary rAw External String

integer 001010010010111000110100 A3 INT
000000000000000000000000 A2 IN
(1222706400000000 octal)

real 001100100010010100100001 A6 REAL 8
001011000011101100011000 All 1)bbbbREAL [8
(1442244113035430 octa I)

double 001001000010111100110101 A9 DOUBLE't)<>
precision 001000100010110000100101 A12 1)bbDOU BLEb<>

000000000001110000011110
(110274651042604500016036

octal)

When the magnitude of w does not provide for enough positions to express the data value completely (6 for real or
integer, 9 for double precision data), the external field is shortened from the right or least significant portion.
When w has a value greater than necessary, the external character string is preceded by the appropriate number
of blank characters.

This type of conversion is normally used to output Hollerith information which has been placed in storage.

Formatted Input/Output 43

Input. Hollerith input may be stored in real variables only. 'Nhen the value of w is less than 6, the list item is
filled with the w characters in the most significant positions, and the remainder of the positions are filled with
blank characters. Consequently, if the field specification is M,

UVWX is converted to uvwxt>1)

where 1) represents the character blank.

When the width w is larger than 6 an error condition occurs.

A general rule for this type of conversion is that internal values are considered to be left justified, while external
fields are considered to be right justified.

H Conversion. H conversion takes the form

Form Example

nHs 5HTOTAL

Output. The n characters in the string s are transmitted to the external medium. For instance:

Speci fi cati on

lHE

8 H1>1) VALUE:

5H$3.95

9HX{2, 5)1) =-0

External String

E

1)"DVALUE:

$3.95

X (2, 5) 1S = 1)

where 1J represents the character blank.

Care should be taken that the character string s contains exactly n characters, so that the desired external field
will be created, and so that characters from other field specifications are not used as part of the string.

Input. The n characters in the string s are replaced by the next n characters from the input record. This replace
ment occurs as shown in the following examples:

Specification Input String Resultant Specification

3H123 ABC 3HABC

lOH NOW1)IS-tsTHE t> TIME1JFORb 1 OH1) TIME1SFORO

5HTRUE1J FALSE 5HFALSE

6 H1>"b1J1J-oo RANDOM 6HRANDOM

where -0 represents the character blank. This feature can be used to change titles, dates, column headings, etc.,
that are to appear on an output record generated by the H specification.

If n is not present or is equal to zero, an error condition occurs.

S Conversion. $ conversion is similar to H conversion, except that a character count is not required.

Form Example

s $TEXT$

The string s may contain any character other than a dollar sign character ($) and the control characters given in
Chapter 2.

44 Formatted Input/Output

Output. The string s is transmitted to the external device in a manner similar to that for H conversion. Thus,

$DOLLAR SIGN$

is output as the string

DOLLAR SIGN

Input. The characters appearing between the dollar sign characters are replaced by the same number of characters
taken sequentially from the input string. Therefore, for the input string

MATRIX

and the specification

$VECTOR$

the resultant specification is

$MATRIX$

I_" Conversion. This I_" conversion is identical to $ conversion, with the exception that dollar sign characters may
be present in the string s.

Form Examples

IS" ITWAS BRILLIG AND THE SLITHY TOVES .•• II

'WHAT, IME WORRY?""

The prime and double prime characters may be used within the string, but they must occur in pairs as they denote
strings within strings.

Blank characters in FORMAT statements are significant only in H, $, and I_" specifications.

X Specifications. The X specification causes no conversion to occur. Instead, it causes i positions of an external
field to be "skipped". i must be positive.

Form Example

iX 3X

Output. The next i positions of the output record wi II be blank characters. In other words, a field of i blank
characters will be created. The specifications

$WXYZ$, 4X, IUKL"

cause the external string

to be generated, where b represents the character blank.

Input. The next characters from the input string are ignored. For example, with the specifications

F5.3, 6X, 13

and the input string

76. 42IGNORE597

the characters IGNORE will not be processed.

Formatted Input/Output 45

P Specifi cations. P specifications cause the value of the scale factor to be set to i.

Form Examples

iP 2P
-6P

where the scale factor is treated as a multiplier, of the forms

10i for output

and

lO-i for input

At the beginning of each formatted input/output operation, before any processing occurs, the scale factor is assigned
a value of zero. Any number of P specifications may be present in a FORMAT statement, thereby causing the value
of the scale factor to be changed several times during a formatted input/output operation. If a FORMAT is restarted
within a single operation due to the number of items in a list, the value of the scale factor is not reset to zero.

Scale factors are effective only with F, E, and D conversions, input G conversions, and E-type output for G
conversi ons.

Output. The value of a list item is scaled by the multiplier 10i. This scaling causes the decimal point character
which appears in the output string to be shifted i places. For E- and D-type conversions, the exponent fields are
reduced by the value of i.

Thus, for the value. 234, various specifications and their results are:

Speci fi cati on Output

F5.3 .234

2P, F6. 3 23.400

-2P, F5. 3 .002

E9.3 .234E+00

2P, ElL 3 23.400E-02

-2P, E9. 3 .002E+02

The resuits for D conversion and E-type output for output G conversions would be similar to those for E conversion.

Input. During F, E, D, and G input conversions, if the input string contains an exponent field, the scale factor
has no effect. I:fowever, when the input string does not contain an exponent field, the value of the external field
is scaled by 10-'. The following examples indicate the effect of scaling during an input operation:

External Field Scale Factor Effective Value

-71. 436 OP -71. 436

3P -.071436

-lP -714.36

-71. 436E+OO 3P -71. 436

IP -71. 436

46 Formatted Input/Output

Once a scale factor has been established during an input/output operation, it remains in effect throughout the opera
tion unless redefined by an additional P specification. Thus for the list

A, B, C, D, E, F, G, H, I, J, K, L, M, N,O

and the FORMAT

FORMAT (F4.3, 2P, 12, ES.2)

A is converted with a zero scale factor and the specification F4.3; B is converted with the specification 12; C
is converted with a scale factor of 2 and the specification ES.2. Since there are no more specifications and yet
the I ist is not exhausted, the FORMAT is re-scanned for the next set of three I ist items (see "FORMAT and List
Interfacing"). Thus, while A is processed with a zero scale factor, D, G, J, and M are processed with a scale
factor of 2, although they are all converted with the specification F4.3.

When i is not specified, its value is assumed to be zero. Thus P is equivalent to oP.

/Specifications. Slash (/) specifications cause another record to be processed.

Forms Examples

I I
rl 21

In the case of contiguous slash specifications (i. e., I I I 1 ... 1 or r/), since no conversion occurs between each of
the slash specifications, records are ignored during input (scanned to a carriage return), and empty records are
generated during output operations. The same condition can occur when a slash specification and either of the
parenthesis characters surrounding the field specifications are contiguous.

Output. When a slash specification is encountered, the current record being processed is output and another record
is begun. If no conversion has been performed when the slash is sensed, an empty record is created. (On the
teletype, this would be a blank line.) The statements

WRITE (4, 10) A, B

10 FORMATS (FS. 3, / /, 113)

are processed in the foil owi ng manner:

1. A record is begun, and A is converted via the specification FS. 3.

2. The first slash is encountered, the record containing the external representation of A is terminated, and
another record is begun.

3. The second slash causes termination of the second record, and a third record is started. Since no conver
sion occurred between the terminations of the first and second records, the second record was empty.

4. The value B is converted with the 113 specificati on, the closing right parenthesis character is encountered,
and the third record is terminated.

If a third item C were added to the output list, as in

WRITE (4, 10) A, B, C

the following additional steps would occur:

5. A fourth record is begun, and C is converted using the specification FS. 3.

6. The first slash is re-encountered, the fourth record is terminated, and a fifth record is begun.

7. .A.gain, the second slash is processedi the fifth record; which is empty: is terminated; and the sixth r~rd
is started.

Formatted Input/Output 47

8. Since there are no more list items, the specification 113 is not processed, a termination occurs, and the
final or sixth record, which is also empty, is output.

The original FORMAT statement could also have been written as

10 FORMAT (F5. 3, 2/113)

or

10 FORMAT (F.3, 2/, 113)

with the identical effect.

The two statements

WRITE (3,4) X

4 FORMAT (3/E6. 4/)

cause the generation of three empty records, followed by a record containing the value of X, converted by the
specification E6.4, followed by another empty record.

Input. The effect of slash specifications during input is similar to the effect for output, except that for input,
records are ignored where empty records would be created during output. For example, the statements

WRITE (3, 4) X

4 FORMAT (3/E6.4)

cause three records to be bypassed (i. e., 3 carriage returns to be read), a value from the fourth record to be con
verted with the specification E6.4 and assigned to X, and a fifth record to be bypassed. This means that, as with
the last example for output, records created with a FORMAT statement containing slash specifications can be input
by use of the identical FORMAT statement.

Z Specifications. The Z specification takes the form

Form Exam pi e

Z Z

Output. On output, the Z specification causes the suppression of the terminal carriage return normally issued upon
termination of output. This feature is useful when outputting requests for input from the teletype. For examplet

WRITE (1, 10)

10 FORMAT ($A=$Z)

will cause

A=

to be printed at the teletype with the carriage positioned after the last character typed. If the next statement exe
cuted is an ACCEPT, the user's input will be typed on the same line.

Input. This specification is ignored on input.

Repetition of Field Specifications. Within a FORMAT statement, any number of field specifications may be repeated
by enclosing them within parentheses, preceded by a repeat count, in the following form:

Form Example

(3(A4, F4. 2, 3X), 31)

48 Formatted Input/Output

where r is the repeat count and the f. are specifications. Thus the statement
I

5 FORMAT (3(A4, F4.2, 3X), 31)

is equivalent to

5 FORMAT (A4, F4.2, 3X, A4, F4.2, 3X, A4, F4.2, 3X, 31)

The repetition count may be any number up to 2
24

_1.

During input/output processing, each repetitive specification is exhausted in turn, as is each singular specification.

Examples:

34 FORMAT (4X, 2(A8, 11, 7G9.3), 14, 3(L5))

1125 FORMAT (/,A4, F9.7, 5(E14.8,2/), E14.8)

8 FORMAT (7(18, 2(3X, F12.9), F12.9), A16)

In the last example above, repetitions have been nested. Nesting of this type is permissible to a depth of ten levels.

NUMERIC INPUT STRINGS

Input strings processed by F, E, D, J, G, and I conversions may take any of the following forms:

Forms Examples

±n 2500

±n.m 2500.0

±n±e 25 + 02

±n. m±e 25.0 + 02

+nE+e 25E + 02

±n.mE±e 25.0E + 02

where n, m, and e are strings of decimal digits or blank characters; plus sign characters are optional except prior to
e when the character E is not present; and the decimal point and E characters must be present in that form. The
character D may be substituted for the E character with no change in meaning or value.

Blank characters in the strings n, m, and e are treated as zero characters, as are n, m, and e if they are empty
stri ngs.

When conversion is via an I specification, fractional portions of a value are lost through tr~ncation.

In all cases, conversion begins with the first non-blank character in the field, and blank characters falling between
the E (or D) character and the exponent field are ignored.

TERMINATION OF INPUT STRINGS

Normally a READ statement inputs the exact number of characters specified in the field specification. However, a
field may be terminated short by an I

C
• Note that the input string will be considered left justified and the field will

be zero filled. The next field begins with the character following the line feed. @ will fill the same purpose,
except that if the input media is the teletype, spaces equal to the number of characters needed to satisfy the format
will be echoed to the teletype.

For example, using the specification 3F7.3, the input string

3450@88412@33. 210

Numeric Input Strings/Termination of Input Strings 49

is equival ent to

3.4588.412 33.21

If { is substituted for @, the input string is equivalent to

3450000884120033.2100

@) in a field will be ignored until the list is satisfied, providing a means of automatic continuation from one
physical I ine to the next on the teletype.

If a colon is used to terminate an input string, enough blanks will be appended to the current input line to give it a
total length of 80 characters. If more than 80 characters have been read then the colon is read as any other char
acter. This feature is provided for users with decks of data cards which have been converted to disc files at the
computer center. The card-to-disc file routine places a colon after the last significant character followed by a
carriage return unless the last significant character is in column 80. When column 80 is non-blank, the colon is
omitted. This feature allows input data to be easily edited in QED.

FORMAT AND LIST INTERFACING

Formatted input/output operations are controlled by the FORMAT requested by each READ or WRITE statement. Each
time a formatted READ or WRITE statement is executed, control is passed to the FORMAT processor, which operates
in the following manner:

1. When control is initially received, the processor prepares to read a new record or line, or to construct
a new output record or line.

2. Subsequent records are started only after a slash specification has been processed {and the preceding record
has been terminated} or the final right parenthesis of the FORMAT has been sensed, or the maximum number
of characters for a teletype I ine has been output.

3. During an input operation, processing of an input record is terminated whenever a slash specification or the
final right parenthesis of the FORMAT is sensed, or when the FORMAT processor requests an item from the
list and no list items remain to be processed. Construction of an output record terminates, and the record
is written on occurrence of the same conditions.

4. Every time a conversion specification (i. e., F, E, J, D, G, I, 0, L, or A specification) is to be processed,
the FORMAT processor requests a list item. If one or more items remain in the list, the processor performs
the appropriate conversion and proceeds with the next field specification. (If conversion is not possible
because of a conflict between a specification and a data type, an error occurs.) If the next field specifi
cation is one which does not require a list item (i. e., H, $, 1_", Z, X, P, or /), it is processed whether
or not another list item exists. When there are no list items to be processed, the current record is terminated
and control is passed to the statement following the READ or WRITE statement that initiated the input/output
operation.

5. When the final right parenthesis of a FORMAT statement is encountered by the FORMAT processor, a test is
made to determine if all list items have been processed. If the list has been exhausted, the current record
is terminated, and control is passed to the statement following the READ or WRITE statement that initiated
the input/output operation. However, if another list item is present, an additional record is begun, and
the FORMAT statement is rescanned. The rescan takes place as follows:

a. If there are no parenthesized groups of specifications within the FORMAT statement, the entire
FORMAT is rescanned.

b. If, however, one or more parenthesized groups do appear, the rescan is started with the group whose
right parenthesis was the last one encountered prior to the final right parenthesis of the FORMAT
statement. In the following example, the rescan begins at the point indicated:

50 Format and List Interfacing

I I
FORMAT(3X, (F7.2,A5), (XI ABC I{314, (G 15.71/), R3)), E20. 12, 3HXYZ)

rescan
begins
here

last closing
parenthesis of
internal group

final right
parenthesis
of FORMAT

c. If the group at which the rescan begins has a repeat count (r) in front of it, this value is used again
for each rescan.

6. Each list item to be converted is processed by one specification or one iteration of a repeated specifica
tion, with the exception of complex data which are processed by two such specifications.

7. Each READ or WRITE statement containing a non-empty list must refer to a FORMAT statement that
contains at least one conversion specification (see Step 4 above). If this condition is not met, the
FORMAT statement will be processed, but an error will occur.

FORMATS STORED IN ARRAYS

A FORMAT, including the beginning left parenthesis character, the final right parenthesis character, and the
specifications enclosed therein, (but not the word FORMAT), may be stored in an array variable. The FORMAT
must be stored as a Hollerith constant (i.e., a string of characters) by use of either an input statement or an
assignment statement.

READ or WRITE statements that refer to a FORMAT stored in an array must reference only the identifier of the array,
with no subscription. Forexample

WRITE (4, R) E, F, G

refers to a FORMAT stored in array R.

If the variable Z is a REAL array, and the string to be stored is (F8.5, 4HNODE, 13), two methods may be used:

1. The string may be read in at execution time. For example

READ (M,90) (Z (I), 1=1, 3)

90 FORMAT (3A6)

2. Assignment statements may be used to achieve the same effect. For example

Z{l) 6H{F8.5,

Z(2) 6H4HNODE

Z(3) 6H,13)1)1)

Care must be taken when storing into an array a FORMAT containing specification of the nHs, s, and IS" forms.
In these cases, all characters in the string s, including blank characters, are significant. For example, if an A4
format had been used to read in the string in the example above, the following results would have occurred:

Element

Z(l)

Z(2)

Storage after READ

{F8.'f>'f>

5,4HO'f>

FORMATs Stored in Arrays 51

Element Storage after READ

Z(3)

Z(4)

NODE1S1S

, 13)1:>-0

which is not the desired result, since it is equivalent to the FORMAT:

(F8.5, 4HbbNODE, 13)

where b represents the character blank.

Even though a FORMAT may be quite short, it must be stored in an array rather than a scalar variable.

Using the teletype as the input file, this feature may be used to good advantage during on-line checkout.
Programs may be tested with minimal formats~ but once a program is operational, the output format may be
expanded to any desired level. Or, during checkout, a part of the output may be suppressed altogether with
FO.O, 10, or EO.O specifications. On the other hand, it is much easier to design, test, and modify complex
formats while actually observing program output on-line.

9. DECLARATION STATEMENTS

Declaration statements are used to define the data type of a variable or function subprogram, the dimensions of
an array variable, and the initial values of variable data, and to provide other similar information to the processor.
Several FORTRAN IV statements are used solely for the purpose of supplying the system with declarative informa
tion. These statements are primarily concerned with the interpretation of identifiers occurring in the source program.

CLASSIFICATION OF IDENTIFIERS

Each identifier appearing in a source program is classified as the language element it identifies. Three main
classes are recognized:

scalar identifiers

array identifiers

subprogram identifiers.

The category in which an identifier is placed, and the data type (if any) associated with it are dependent upon the
context in which the identifier is initially defined. This definition is a declaration, explicit or implicit, of the
way in which the identifier is to be categorized throughout the remainder of the program.

Implicit Declarations

Unl ess speci fi cally declared to be in a parti cular category or type, identifiers wh ich appear in executable or DATA
statements are implicitly classified according to the following set of rules:

1. Any identifier appearing in a CALL statement as the call subprogram is a subprogram identifier. For
example,

CALL ERR or CALL NIX [R, V]

2. An identifier (other than defined in paragraph 1) that is followed by an argument list enclosed in brackets,
such as A [T, ALPHA, B+C] is

a. A statement function definition if it appears in the manner discussed under "Statement Functions" in
Chapter 10.

52 Declaration Statements

b. A function subprogram reference if it appears in an expression. This does not apply to identifiers
appearing to the left of a replacement operator (=).

c. An error if it appears to the left of a replacement operator in any statement other than a statement
function definition.

3. An identifier that is not followed by an expression list enclosed in parentheses is defined as a scalar
variable.

4. When applicable, the data type associated with an identifier is integer if the identifier begins with the
letter I, J, K, L, M, or N. If the identifier begins with any other letter, its type is real.

5. An identifier that appears in a non-executable statement, but never in an executable or DATA statement,
is implicitly classified after all statements have been processed. Classification is in accordance with
the previous set of rules and depends upon the classification defined by the non-executable statement
in which the identifier appears.

Explicit Declarations

All classifications of identifiers other than those discussed in the previous section require explicit definition.
Explicit definitions and declarations include:

• array declarations

• type statement declarations

• subprogram definitions

ARRAY DECLARATIONS

Array declarations expl icitly define an identifier as the name of an array.

Form Examples

v(d
l
, d

2
, d y ... , d n

) ARRAY (4:9, 15, 0:1, -20:20)

CUBE (-10:-1,5,32)

PLANE (-999:0, 1 :450)

LINE (140)

X(l)

where v is the identifier, n is the number of dimensions associated with the array, and the d. define the range of the
corresponding dimensions. I

Each d. may take the forms:
I

or

r
u

r :r
o u

where r is an integer that defines the upper bound of the dimension range, and r is an integer that defines the
lower bgund of the dimension range. a

In the first form, the lower bound is assumed to be 1, and the upper bound must be positive. For example,

ARRAY(lO)

defines ARRAY to be a one-dimensional array, with a range vvhich has as its !o\over bound and 10 as its upper,
for a maximum of 10 elements.

Array Declarations 53

In the second form, both the upper and lower bounds may be positive, negative, or zero valued as long as the value
of the upper bound is greater than or equal to the value of the lower bound.

In the first example given above, ARRAY is defined as a 4-dimensional array. The first dimension has a range of
4 to 9, the second of 1 to 15, and so on.

Array Storage

Although an array may have several dimensions, it is placed in storage as a linear string. This string contains the
array elements in sequence (from low address storage toward high address storage) so that the leftmost dimension
varies with the highest frequency, the next leftmost dimension varies with next highest frequency, and so forth.
Thus, a two dimensional array would be stored "column-wise", i.e., with the row subscripts varying most frequently.

Example

array A(3, 3, 3) array B(-3: 1, 0:4}

Item Element Item Element

1 A(l, 1, 1) 1 B(-3,0}

2 A(2, 1, 1) 2 B(-2,0)

3 A(3, 1, 1) 3 B(-l,0)

4 A(l, 2, 1) 4 B(O, 0)

5 A(2, 2, 1) 5 B(l,O)

6 A(3, 2, 1) 6 B(-3,1)

7 A(l, 3, 1) 7 B(-2, 1)

8 A(2,3, 1) 8 B(-l,1)

9 A(3, 3, 1) 9 B(O, 1)

10 A(l, 1,2) 10 B(l, 1)

11 A(2, 1,2) 11 V(-3,2)

12 A(3, 1,2) 12 B(-2,2)

13 A(l, 2, 2) 13 B(-1,2)

14 A(2, 2, 2) 14 B(0,2)

15 A(3, 2, 2) 15 B(1,2)

16 A(l, 3, 2) i6 B{-3,3)

17 A(2, 3,2) 17 B(~2, 3)

18 A(3, 3,2) 18 B(-1,3)

19 A(l, 1,3) 19 B(0,3)

20 A(2, 1,3) 20 B(l, 3)

21 A(3, 1,3) 21 B(-3,4)

22 A(l; 2, 3) 22 B(-2, 4)

23 A(2, 2, 3) 23 B(-l,4)

24 A(3, 2, 3) 24 B(O, 4)

25 A(l, 3, 3) 25 B(1,4)

26 A(2, 3, 3)

27 A(3, 3, 3)

54 Array Declarati ons

References to Array Elements

References to array elements must contain the number of subscripts that correspond to the number of dimensions
declared for the array. References which contain an incorrect number of subscripts are treated as errors.

Furthermore, the value of each subscript should be within the range of the corresponding dimensions as specified
in the array declaration. Otherwise the references will be treated as errors.

DIMENSION Statement

DIMENSION statements are nonexecutable statements used to define the dimensions of an array. Every array
variable appearing in a source program must represent an element of an array declared in a DIME NSION statement.
Any number of arrays may be dimensioned in a single DIMENSION statement.

Form Examples

DIMENSION sl' s2"'" sn DIMENSION D(45, -50:50, 4), Y(5000), WHT AX (0:70)

where the s. are array declarati ons
I

DIMENSION F(2, 3,4,5,6), G(3)

Array declarations are discussed in detail in the previous section.

COMMON Statement

The COMMO N statement is used to assign variables to a region of storage called COMMO N.

Form Example

COMMON sl s2"'" sn COMMON E, D(lO)

where the s. are scalar or array identifiers.
I

The COMMON statement specifies that the scalar and arrays indicated are to be stored in an area also available
to other programs. By use of COMMO N statements, a common storage area may be shared by a program and its
subprograms.

Each array name that appears in a COMMON statement must also appear in a DIMENSION statement in the same
program.

Quantities whose identifiers appear in COMMON statements are allocated storage in the same sequence that their
identifiers appear in the COMMO N statements, beginning with the first COMMO N statement in the program.

Storage allocation for common quantities begins at the same location for all programs. Thus, the programmer can
establish a one-to-one correspondence between the quantities of several programs even when the same quantities
have different identifiers in different programs. For example, if a program contains

COMMON A, B, C

as its first COMMO N statement, and the subprogram has

COMMO N X, Y, Z

as its first COMMON statement, then A and X will refer to the same storage location. A similar correspondence
exists for the pairs Band Y, C and Z.

Identifiers that correspond in this way must agree in mode for meaningful results.

Array Declarati ons 55

DATA STATEMENT

A DATA statement is used to initiate variables to declared values. If a DATA statement is unlabeled, the initial
ization occurs during loading of an executable program and prior to execution of the program. If the DATA statement
has a statement label,· it is treated as a normal program statement and is executed when reached in the course of
program execution.

Form Example

DATA d 1d2d3···dn
DATA X, Y, l/l, 2, 3/

The d. take the following form:
I

where k is a I ist that is similar to an input I ist (see Chapter 8) and the C· are either constants or repeated groups of
constants. The purpose of the statement is to cause the variables in Jthe list k to be assigned the value of the
correspondi ng constants inC .•

J

The following rules distinguish the list k from input lists:

1. No variables may be used in subscript expressions unless they are the control variable in an implied
DO-loop (i.e., v in v=e

1
, e

Z
e-y) or unless they appear earlier in the DATA statement since otherwise

they have no values during inltianzation. t

2. The expressions in an implied DO-loop may contain variables only under the same condition as described
in paragraph 1. t

3. All implied DO-loops must be enclosed in parentheses.

The c., which are either constants or repeated groups of constants, may take any of the forms:
J

c
o

r*c
o

where each c may be a constant of any type and r is an unsigned decimal integer whose value is the number of
repetitions of each group. In the third form, r is optional, and if not present it has an assumed value of 1.

For example:

DATA X, (Y{I), 1=1, 5), l/32.5, 5*0.0, -7/R, 0/1. 5E3, 123.45/

has the same effect as the statements

X=32.5

DO 11=1,5

1 Y{I)=O.O

Z=-7

R=l. 5E3

Q=123.45

except that the DATA statement is effective prior to execution of the program, since It IS unlabeled. Note that the
expression 5*0.0 in the above example does not mean 5 times 0, but rather five zeros.

t Applies only to unlabeled DATA statements.

56 Data Statement

If the data type of a constant is not the same as the data type of the variable to which it is assigned, conversion
occurs according to the rules in Table 2.

The list k must specify at least as many items as are specified by the list of constants. If the list k specifies more
items than the list of constants, the list of constants is repeated until all the items in the list k have been
assigned values. For example, if there are 3 items in the list k, the DATA statement

DATA A, B, C/3*1. 0/

is equivalent to

DATA A, B, C/1.0/

and

DATA.A, B, C/1.0,2.0/

is equivalent to

A=1.0

B=2.0

C=1.0

Variables of complex data type that appear in the list k require two constants per datum for initialization. The first
of the two constants initializes the real part, the second and imaginary part of the complex datum. Two constants
used for this purpose may be written as:

which is a repeated group of two constants with an implied repeat count of 1 (i.e., the same as 1 (c
l
, c

2
)).

Consequently,

COMPLEX T

REAL R,5

DAT A R, 5, T, /5, -48.3, (34,8)

are equivalent to

COMPLEX T

REAL R, 5, U

R=5

5 = 48.3

T = (34,8)

TYPE STATEMENT

A Type statement is used to explicitly define the data type of a variable or function subprogram.

Form Examples

d tv 1,v2,···,vn
INTEGER R, F, I, E(-5: 10,15)

REAL M, KING(55,55)

LOGICAL SEQ, BOOLE(5, 5, 5, 5)

where d. is a data type and the v: are identifiers of variables or function subprograms, or are array declarations.
I I

Type Statement 57

The possible data types are: INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL.

Type statements may appear anywhere in a program.

10. SUBPROGRAMS

A subprogram consists of one or more lines of code executed when called upon by name by another program. The
purpose of a subprogram is to make it more convenient to perform frequently occuring operations.

There are two general categories of subprograms:

1. A function subprogram is called implicitly by using its name in an expression, and it returns a single result
through its identifier.

2. A subroutine subprogram is called explicitly by a CALL statement, and may return more than one value
through arguments.

FUNCTION SUBPROGRAMS

Function subprograms are programmed procedures that are often used to provide solutions to mathematical functions.
These subprograms are used in a manner similar to that of normal mathematical notation. For example, there is a
library cosine function whose identifier is COS, thus allowing

y=cos x

to be written as

Y=COs [X]

The appearance of the identifier COS constitutes a call to the standard library subprogram COS, which is available
to all sDs 940 FORTRAN IV users. Control transfers to the function, which when executed, returns a value to the
function reference in the calling program. The calling program can then use this value as it would any other.

Thus function references may be used in the same manner as variable references in any expression. For example,

X=(-B+sQRT [B**2-4* A*C])/2* A

sQRT is the identifier of the square root function and [B**2-4*A*C] is the calling argument list.

There are three types of functi on subprograms:

Library Functions

Statement Functi ons
t

FUNCTION Subprograms

Library Functions

Library ("intrinsic ll
) functions are subprograms that evaluate commonly used mathematical functions. They are

contained in the FORTRAN IV library. These functions have inherent data type classifications, as given in the
table below. In the table, C signifies a complex mode; D, a double precision mode; I, an integer mode; L, a
logical mode; and R, a real mode. N means number.

t
Where the word "function" is capitalized in this test, the reference is to the specific type of function subprogram
that begins with a FUNCTION statement.

58 Subprograms

Table 3. Library Functions

Library
Function Type of Number of Type of
Names Function Arguments Arguments Definition of Function

ABS R 1 I, R, D Absolute value.

AIMAG R 1 I, R,C Imaginary part of argument (zero
if not complex) expressed as real
value.

AINT R 1 I, R, D Integer part of argument expressed
as a real value.

ALOG R 1 I, R, D Natural logarithm (base e).

ALOG10 R 1 I, R, D Common logarithm (base 10).

rMAX} R N ? 1 I, R, D Maximum value. All arguments

AMAXl
are converted to and compared
as real values.

AMAXO R N ? 1 I, R, D Maximum value. All arguments
are converted to and compared as
integer val ues.

{AMIN} R N ? 1 I, R, D Minimum value. All arguments

AMINl
are converted to and compared as
real val ues.

AMINO R N ? 1 I, R, D Minimum value. All arguments
are converted to and compared as
integer values.

AMOD R 2 I, R, D Arg1 (mod arg2). Evaluated as
arg 1 -arg2* AINT [arg 1/arg2];
i. e., the sign is the same as arg 1.

{AlAN} R 1,2 I, R, D Arctangent of argument. If two

ATAN2 arguments, quadrant allocated
between -pi and +pi.

CABS R 1 I, R, C Complex absolute value; i.e.,
modulus.

CATAN C 1 I, R,C Complex arctangent.

CCOS C 1 I, R,C Complex cosine.

CCOSH C 1 I, R,C Complex hyperbolic cosine.

CEXP C 1 I, R, C Complex exponential {e**arg}.

CINT C 1 I, R, C Complex number formed by the
integer values of the real and
imaginary parts of argument.

CLOG C 1 I, R,C Complex natural logarithm
(base e). Allocated between
-pi and +pi.

CLOG10 C 1 I, R,C Complex common logarithm
(base 10). Allocated between
-pi and +pi.

CMPLX C 2 I, R, D Complex number where real part

I I

= arg 1, imaginary part = arg2;

I
i. e., converts two real numbers
to a complex number.

Function Subprograms 59

Table 3. Library Functions {continued}

Library
Function Type of Number of Type of
Name Function Arguments Arguments Definition of Function

CONJG C 1 I, R, C Complex conjugate. {Has no
effect if argument is not
complex. }

COS R 1 I, R, D Cosine.

COSH R 1 I, R, D Hyperbolic cosine.

CSIN C 1 I, R, C Complex sine.

CSINH C 1 I, R, C Complex hyperbolic sine.

CSQRT C 1 I, R, C Compl ex square root. Allocated
between -pi/2 and +pi/2, i.e.,
the real part is positive.

DABS D 1 I, R, D Double precision absolute value.

{OATAN } D 1,2 I, R, D Double precision arctangent. If

DATAN2 two arguments, arctangent of
argl/arg2, quadrant allocated
between -pi and +pi.

DBlE D 1 I, R, D Argument converted to double
precision.

DCOS D 1 I, R, D Double precision cosine.

DEXP D 1 I, R, D Double precision exponential.
(e**arg)

DIM R 2 I, R, D Positive di fference; i.e.,
arg1-AMIN [arg 1' arg2]·

DINT D 1 I, R, D The integer part of the argument
expressed in double precision.

DlOG D 1 I, R, D Double precision natural
logarithm (base e).

DlOG10 D 1 I, R, D Double precision common
I ogari thm (base 10).

{OMAX }
D N ~ 1 I, R, D Double precision maximum value.

DMAX1 All arguments are converted to
and compared as double preci-
sion values.

f
OM1N

J
D N ~ 1 I, R, D Double precision minimum value.

DMIN1 All arguments are converted to
and compared as double preci-
sion values.

DMOD D 2 I, R, D Arg 1 (mod arg~). Evaluated as
arg1-arg2*DI T [arg1/arg2J;
i.e., the sign is the same as
arg1·

DSIGN D 2 I, R, D Magnitude of arg 1 with sign of
arg2. If arg2 is zero, the sign
is positi\!e.

DSIN D 1 I, R, D Double precision sine.

DSQRT D 1 I, R, D Double precision square root.

60 Function Subprograms

Table 3. Library Functions (continued)

Li brary
Function Type of Number of Type of
Name Function Arguments Arguments Definition of Function

EXP R 1 I, R, D Exponential. (e**arg)

rLOAT

}

R 1 I, R, D Argument converted to a real

SNGL value.

lABS I 1 I, R, D Integer absolute value.

IDIM I 2 I, R, D Positive difference; i.e. I
arg1-MIN [arg11 arg2]·

rT

}

I 1 I, R, D Argument converted to an

IFIX integer value.

IDINT

ISIGN I 2 I, R, D Magnitude of arg 1 with sign of
arg2. If arg2 is zero, the sign
is positive.

{MAX J I N 21 I, R, D Maximum value. All arguments

MAXO are converted to and compared as
integer values.

MAX1 I N 2 1 I, R, D Maximum value. All arguments
are converted to and compared as
real values.

{MIN J I N 21 I, R, D Minimum value. All arguments

MINO are converted to and compared
as integer va lues.

MIN1 I N 21 I, R, D Minimum value. All arguments
are converted to and compared
as real values.

MOD I 2 I, R, D Arg1 (mod arg). Evaluated as
arg1 -arg2*I~T[arg/arg2]; i.e. I

the sign is the same as arg1.

REAL R 1 I, R, C Argument converted to a real
value. Same as FLOAT and
SNGL except accepts complex
arguments and returns the real
part.

SIGN R 2 I, R, D Magnitude of arg1 with sign of
arg2. If arg2 is zero, the sign is
positive.

SIN R 1 I, R, D Sine.

SINH R 1 I, R, D Hyperbolic sine.

SNGL R 1 I, R, D See FLOAT.

SQRT R 1 I, R, D Square root.

TANH R 1 I, R, D Hyperbolic tangent.

Function Subprograms 61

Statement Functions

Statement functions are function subprograms that can be defined in a single expression within the calling program.
The definition is valid only in the program or subprogram containing it.

Form Examples

f[a
1
,a

2
,a

3
, ••• ,a

n
]= e NUMBER [K] =K*K(K+ 1)/2

EI [THETA]=COMPLEX [COS [THETA]]

OTH [OM] =NAME [OM] +ADDR [OM]

SWITCH CK [A, B, C] =FLAG [A] .AND. FLAG [8] .AND. FLAG [C]

where f is the function identifier, the a. are dummy function arguments
t
, and e is an expression.

I

Once a statement function has been defined, the appearance of its name in an expression is sufficient to call
the function during the evaluation of the expression at run time. The function name is accompanied by the
actual arguments to be used in evaluating the expression. For example, if the function were defined as

F X =A*X**2+B*X+C

it might be referenced in the program statement

RESUL T = F [yJ

The current value of Y would replace the dummy argument X in evaluation of the function. The value of the
expression

A*Y**2+B*Y+C

would be returned to the calling program where it would be assigned to RESULT.

A statement function must have at least one argument. The expression e must be of a mode that may be assigned
to data of the type declared (implicitly or explicitly) for the function f. References in the expression are unre-
stri cted with the exception that the identifier of the function f itself may not appear; however, any other statement
function may be referenced.

Since each ai is merely a dummy and as such does not actually exist in storage, the identifiers used to represent the
ai may be the same as any other identifier; except those referenced within the expression e; without conflict.

If it is implicitly typed, a statement function is considered integer type if its identifier begins with I, J, K, L,
M, or N; otherwise it is considered real type. If a statement function is to be typed explicitly, its identifier
must appear in a Type statement prior to the definition of the function.

As stated previously, a statement function may be referenced only within the program or subprogram in which it
is defined. Statement function definitions must precede all executable statements in the program or subprogram
in which they appear.

FUNCTION Subprograms

Functions that cannot be defined in a single statement may be defined external to the calling program as FUNCTION
subprograms. Like statement functions, the FUNCTION subprogram computes a value and returns that value through
the function identifier.

The FUNCTION subprogram must begin with a function statement.

t
Dummy arguments serve as placeholders for the actual arguments provided by the calling program at execution time.
Since the rules governing dummies apply to al I subprograms, they are discussed separately under IIDummy Arguments ll

•

62 Functi on Subprograms

Form Examples

FUNCTION f [a l' a 2, a
3

, ••• , aJ FUNCTION DIFFEQ [R, S, N]

FUNCTION IOU [W, X, Y, Zl, Z2J

FUNCTION ROUND [OMEGA]

where f is the function identifier, and the a. are dummy arguments.
I

Each FUNCTION subprogram must have at least one argument. Values may be assigned to arguments within the
subprogram without restrictions.

A FUNCTION subprogram must contain at least one RETURN statement to transfer control back to the calling
program. A return is the last statement executed in the function (see Chapter 7).

Within the subprogram, the identifier of the FUNCTION is treated as though it were a scalar variable, and must be
assigned a value during each execution of the subprogram. The value returned for a FUNCTION is the last one
assigned to its identifier prior to the execution of a RETURN.

A FUNCTION subprogram typed implicitly is considered to be integer type if its identifier begins with the letters
I, J, K, L, M, or N; otherwise it is considered to be real.

An example of a FUNCTION subprogram to find the product of two l-dimensional arrays with 3 elements each:

FUNCTION DOT [Vl, V2]

DOT=O

DO 2 K=l, 3

2 DOT= DOT + Vl (K) * V2(K)

RETURN

END

If this function is called by the statement

PROD=DOT [A, B]

The dummies Vl and V2 will be replaced by A and B at execution time. The value of the function is the single
quantity DOT, which will be returned to the calling program and assigned to the variable PROD. Note that while
A and B must be dimensioned in the calling program, Vl and V2 should not be dimensioned in the function (see
IIDummy Arguments ll

).

SUBROUTINE SUBPROGRAMS

SUBROUTINE subprograms, like function subprograms, are self-contained programmed procedures. However,
unlike functions, SUBROUTINEs do not have values associated with their identifiers, and may not be referenced
in an expression. Instead, SUBROUTINEs return values to the calling program by assigning values to arguments,
and are accessed by CA LL statements (see Chapter 7).

Subroutine subprograms always begin with a SUBROUTINE statement.

Form Examples

SUBROUTINE p [a l' a
2

, a
3

, •.• , an] SUBROUTINE CHECK

SUBROUTINE Vll[ROMAN]

SUBROUTINE OUTPUT ARRAYS [A, FMT, I, J]

where p is the SUBROUTIt'~E identifier, and the a. are SUBROUTIt'~E dummy arguments. (See IIDummy Arguments ll
.)

I

SUBROUTINE Subprograms 63

If no arguments are to be passed to the subroutine by the calling program or subprogram, the list of ai and the
comma and bracket characters would not be present; otherwise they are required.

A subroutine must contain at least one RETURN statement to transfer control back to the calling program; it must
le the last statement to be executed during a run.

The following is an example of a SUBROUTINE subprogram which finds the cross product of two l-dimensional
arrays with 3 elements each:

SUBROUTINE CROSS [A, B, C]

C(l) = A(2) * B(3) - A(3) * B(2)

C(2) = A(l) * B(l) - A(l) * B(3)

C(3) = A(l) * B(2) - A(2) * B(l)

RETURN

END

The call to this subroutine might be:

CALL CROSS [X, Y, z]

in which case the current values for array elements in X and Y would be used during execution of the subprogram,
and the results would be assigned to elements in Z. Note that although X, Y, and Z should be dimensioned in the
calling program, A, B, and C should not be dimensioned in the subroutine (see "Dummy Arguments").

Since the name of a SUBROUTINE plays no part in the result, it has no bearing on the mode of the result.

DUMMY ARGUMENTS
Dummy arguments provide a means of passing information between a subprogram and the program that called it.
Both Function and SUBROUTINE subprograms may have dummy arguments, but a SUBROUTINE need not have
any, while a Function must have at least one. Dummies are merely "formal" arguments, used to indicate the
number and sequence of subprogram parameters. They do not actually exist in that no storage areas are used for
them. t They serve as placeholders for the calling arguments.

The calling arguments may be scalar variables, array elements, array names, expressions, or subprogram identifiers.
However, the dummies corresponding to these are always written as unsubscripted identifiers.

A dummy argument need not conform to the data type of the corresponding calling argument, should not be defined
in a Type statement within the subprogram; and should not be dimensioned in the subprogram. In other words;
declarations in effect for calling arguments at execution time are those which prevail during execution of the
subprogram.

When a dummy corresponds to a variable in the calling argument list, a reference to the dummy is actually a refer
ence to the calling argument variable. Not only will the dummy initially have the value to which the calling
argument was assigned at the time of the call, but any value subsequently assigned to the dummy will actually be
assigned to the calling variable, thus effectively returning a result through the argument list. For example; if
the calling statement for a function subprogram is

Y=X** NI+SQRTDS[Z, Q]

and the function called is

FUNCTION SQRTDS[A, B]

C=AMAX 1 [A, B]

B=AMI N 1 [A, B)

t I . More precise y, storage areas are associated with dummies but contain pointers back to the storage area for the
calling arguments.

64 Dummy Arguments

A=C

SQRTDS=SQRT [A**2-B**2]

RETURN

END

then the values of Z and Q will be reversed whenever the initial value of Q is greater than that of Z.

When a dummy corresponds to an expression other than a single variable, the expression serves to initialize the
value of the dummy. In this case storage is actually reserved for the dummy, whose value may be modified within
the subprogram. For example, if the constant 3 in the calling list corresponds to the dummy J in the subprogram list,
J will be initialized to 3 and may be modified in the subprogram. However, no result is returned through J and the
value of the constant in the calling program is not affected.

Dummy Arguments 65

APPENDIX. EXECUTION DIAGNOSTIC MESSAGES

If an error occurs during execution, the program is terminated, and the statement in error and one of the
following messages is printed on the teletype listing.

ERRORS IN LIBRARY ROUTINES

1. ARGUMENT IN COMPLEX LIBRARY FUNCTION IS NOT REAL, INTEGER OR COMPLEX.

2. ARGUMENT IN EXTENDED PRECISION LIBRARY FUNCTION IS NOT REAL, INTEGER OR EXTENDED
PRECISION.

3. ARGUMENT IN REAL LIBRARY FUNCTION IS NOT REAL, INTEGER OR EXTENDED PRECISION.

4. ERROR IN COMPLEX ARCTANGENT.

5. ERROR IN HYPERBOLIC FUNCTION.

6. EXPONENT TOO LARGE IN EXPF FUNCTION.

7. MORE THAN ONE ARGUMENT IN A LIBRARY FUNCTION REQUIRING ONLY ONE.

8. NEGATIVE ARGUMENT IN SQUARE ROOT.

9. NEGATIVE OR ZERO LOGARITHM.

10. NOT TWO ARGUMENTS IN A TWO ARGUMENT LIBRARY FUNCTION.

11. NUMBER TOO LARGE TO BE INTEGERIZED.

ERRORS IN I/O AND DATA STATEMENTS

1. A FORMATTED OPERATION TO A BINARY FILE OR A BINARY OPERATION TO A SYMBOLIC FILE.

2. ALPHABETIC DATA CAN ONLY BE STORED IN A REAL VARIABLE.

3. AN ATTEMPT HAS BEEN MADE TO OUTPUT A VARIABLE WHICH HAS NEVER BEEN STORED INTO.

4. BOOLEAN VARIABLES CAN BE OUTPUT ONLY WITH AN "A" FORMAT.

5. FIELD WIDTH GREATER THAN 63.

6. FIELD WIDTH LESS THAN NUMBER OF DIGITS AFTER DECIMAL POINT.

7. FILE CAN NOT BE OPENED - MAY ALREADY BE OPEN.

8. FILE DESIGNATOR IS NOT IN RANGE 0-4.

9. FILE HAS NEVER BEEN OPENED.

10. FILE NAME NOT IN DIRECTORY.

11. FORMAT CONTAINS A STRING HAVING AN ILLEGAL PRIME QUOTE COUNT.

12. FORMAT PART EXCEEDS I/o BUFFER SIZE.

13. FORMAT NOT A STRING VARIABLE.

14. ILLEGAL CHARACTER IN FORMAT.

15. ILLEGAL CHARACTER IN INPUT FIELD.

16. ILLEGAL FORM OF SCALE FACTOR.

17. ILLEGAL HOLLERITH COUNT IN DATA STATEMENT.

18. ILLEGAL REPETITION NUMBER.

19. ILLEGAL RIGHT PARENTHESIS IN DATA STATEMENT.

20. ILLEGAL RIGHT PARENTHESIS IN FORMAT NEST.

21. INPUT FORM BINARY FILE TO A STRING OR TEXT VARIABLE NOT ALLOWED.

22. INPUT NUMBER IS TOO LARGE OR TOO SMALL.

66 Appendix

23. INPUT STRING HAS AN ILLEGAL PRIME-QUOTE COU NT.

24. LOGICAL VARIABLE BEING INPUT WAS ALL BLANK.

25. LOGICAL VARIABLE DOES NOT START WITH T OR F.

26. NUMBER OF DIGITS AFTER DECIMAL POINT GREATER THAN 63.

27. ONLY AN INTEGER CAN BE USED FOR A SCALE FACTOR.

2S. ONLY THE CHARACTER IIAII IS ALLOWED IN II All FORMAT PART.

29. ONLY THE CHARACTER 110 11 IS ALLOWED IN 110 11 FORMAT PART.

30. OUTPUT OF A STRING OR TEXT VARIABLE TO A BINARY FILE NOT ALLOWED.

31. OVERFLOW OF DATA ST ATEME NT NESTI NG STACK.

32. OVERFLOW OF FORMAT NESTING STACK.

33. READ FROM A FILE OPENED FOR OUTPUT OR OUTPUT TO A FILE OPENED FOR INPUT.

34. SCALE FACTOR TOO LARGE.

35. STRING VARIABLES CAN BE OUTPUT ONLY WITH AN IIAII FORMAT OR WITH FREE FORM OUTPUT.

36. TERMINAL DOLLAR SIGN IS MISSING FROM TEXT IN FORMAT.

37. UNEXPECTED END-OF-FILE.

3S. ZERO COUNT FOR HOLLERITH FORMAT PART.

MISCELLANEOUS ERRORS

1. A=O AND B NON-POSITIVE IN A**B.

2. A IN A**B NOT TYPED REAL OR INTEGER.

3. A IS NEGATIVE AND B IS TYPED REAL IN A**B.

4. ATTEMPT TO DIVIDE BY ZERO.

5. ATTEMPTED ARITHMETIC WITH LOGICAL VALUE.

6. B IN A**B NOT TYPED REAL OR INTEGER.

7. CALL TO UNDEFINED EXTERNAL ROUTINE.

S. COMMON ILLEGALLY LENGTHENED BY II/,

9. DIMENSIONED VARIABLE HAS NO SUBSCRIPT.

10. DO INCREMENT APPEAKS IN A DECLARATIVE STATEMENT.

11. DO MAXIMUM APPEARS IN A DECLARATIVE STATEMENT.

12. DO MINIMUM APPEARS IN A DECLARATIVE STATEMENT.

13. DO VARIABLE APPEARS IN A DECLARATIVE STATEMENT.

14. EXTERNAL ROUTINE NAME USED AS VARIABLE.

15. GO TO VARIABLE HAS NOT BEEN ASSIGNED TO A STATEMENT LABEL.

16. LABEL MISSING.

17. LOGICAL OPERATOR REQUIRES REAL OR INTEGER OPERANDS.

lS. MULTIPLE DECLARATION OF II/I

19. NUMBER OF SUBSCRIPTS INCORRECT.

20. STORAGE CAPACITY EXCEEDED BY II/I

21. STORING LOGICAL VALUE INTO NON-LOGICAL VARIABLE.

22. STORING NON-LOGICAL VALUE INTO LOGICAL VARIABLE.

23. STRING AND TEXT FUNCTIONS NOT IMPLEMENTED.

24. SUBSCRIPT ~"JOT TYPED REAL 9R I~"JTEGER.

Appendix 67

25. SUBSCRIPT VALUE TOO LARGE.

26. SUBSCRIPT VALUE TOO SMALL.

27. SUBSCRIPTED VARIABLE NOT DIMENSIONED.

23. VALUE OF GO TO VARIABLE TOO LARGE.

29. VARIABLE HAS NOT BEEN ASSIGNED A VALUE OR STATEMENT.

30. $ LABEL IS MISSING.

68 Appendix

A
A format, 43
ACCEPT statement, 34
account number, 2
AL T MODE key, 1
arguments to subprograms, 64, 65
arithmetic

express ions, 20
IF statement, 29
operators, 20, 21

array
declarations, 53
elements, 19, 55
identifiers, 19, 52
storage, 54
subscripts, 19, 54
variabl es, 19

arrow
backward (-), 13
upward (t), 12, 20

ASCII, 16
ASSIGN statement, 27
Assigned GO TO statement, 28
assignment statements, 25

label, (see ASSIGN statement)
replacement, 25

asterisk (*)

B

double, operator (exponentiation), 20, 21
in column 1, 4
operator (mul tipl i cation), 20

BASIC, 3
blank (t»)

c

in FORMATs, 51
in input strings, 49
in statements, 4

C in column 1, 4
CAL, 3
CALL statement, 31, 52, 58
character

non-printing control, 1
set, 3
strings, 16, 35, 43, 45

classification
of data types, 16
of identifiers, 52

CLOSE statement, 36
colon (:), 4
command language, 2, 6
comments, 4
COMMON statement, 4, 55

INDEX

COMPLEX
data, 16
statement, 58
type declaration, 58

Computed GO TO, 28
cons tan ts, 16- 18
continuation line, 3
CONTINUE command, 3
CONTINUE statement, 30
Control (CTRL) key, 1
conversion

format, (see format specifications)
in assignment statements, 26
input/output, (see format specifications)

control statements, 27-32
CALL, 31
CONTINUE, 30

o

DO, 29
END, 32
GO TO, 27, 28
IF, 29
PAUSE, 31
RETURN, 32
STOP, 31
COpy command, 5, 6, 8

D format, 40
DATA statement, 56
dash (-), 2
data types

complex, 16
double precision, 16
Hollerith, 16
integer, 16
logical, 16
real, 16

declaration statements, 52-58
array, 53
COMMON, 55
DATA, 56
DIMENSION, 55
expl icit, 53
impl icit, 18, 52

DEFINITIONS command, 6, 9
DELETE command, 5, 6, 8
diagnostics, 12, 66-68
digits, 3
DIMENSION statement, 4, 55
dimensions of arrays, 53
DISPLAY statements, 35
DO statement, 29, 30
DO-implications

in DATA statements, 56
in I/O lists, 33

dollar 5 ign ($) format, 44
DO loops, 30

Index 69

DOUBLE PRECISION
data, 16
statement, 58
type declaration, 58

dummy arguments, 64, 65
dummy identifiers, 64

E
E format, 39
END statement, 4, 32
ENTER command, 5, 6
ESCAPE key, 1, 2, 3
evaluation hierarchy

arithmetic, 21
logical, 24

executable statements, 3
EXECUTE command, 6, 10
executive system, 1, 2, 3
EXIT command, 3
expl icit declarations, 53
exponentiation, 20, 21
expressions, 20-25

F

arithmetic, 20
evaluation hierarchy, 21, 24
logical, 23
mixed, 22
relational, 22

F format, 38
FALSE, 18, 42, 43
field specifications, 37
field termination, 49
file directory, 11, 36
files, 5, 6, 10, 11, 36, 37
fixed-point data, (see Integer data)
floating-point data, (see Real data and Double-precision

data)
FORMAT statement, 37
FORMAT and list interfacing, 50
format specifications (input/output),

A, 43
D, 40, 49
dollar sign ($), 44
E, 39, 49
F, 38, 49
G, 40, 49
H, 44
I, 41, 49
J, 40, 49
L, 42
P, 46
parenthesized, 48, 51
quote mark (I), 45
slash V), 47
X, 45
Z, 48

FORMAT statement, 37
FORMATs stored in arrays, 51

70 Index

formatted input/output, 35
FORTRAN program, 3
FUNCTION statement, 63
function references, 20, 58
functions, 20

intrinsic, 58
library, 58-61
statement, 62

FUNC"TION subprograms, 62

G
G format, 40
GO TO statements, 27, 28

ass igned, 28

H
H

computed, 28
unconditional, 27

format, 44
in Hollerith constants, 18

hierarchy, (see Evaluation hierarchy)
hollerith constants, 18, 43-45

I format, 41
identifiers, 18

classification, 52
command, 6

IF statements, 29
arithmetic, 29
logical, 29

IJ KLMN rule of typing, 18, 20, 53
implicit declarations, 52
impl icit type, 52, 53, 62, 63
implied DO loops, (see DO-implications)
incremental compilation, 1
initial ization of variables, 56
input/output conversion (see format specifications)
input/output lists, 33

DO-impl ied lists, 33
simple lists, 33

input/output statements, 33-52
FORMAT, 37
forma tted, 35
free format, 34
READ, 36
WRITE, 37

INTEGER

J

data, 16
statement, 58
type declaration, 58

J format, 40

L
L format, 42
label assignment statements, (see ASSIGN statement)
labels, 4, 27
letters, 3, 18
I ibrary subprograms, 58-61
I imits on data values, 16
LINE FEED key, 1, 3
LIST command, 6, 8
lists

Do-implied, 33
simple, 33

LOAD command, 6, 11
local mode, 2
LOGICAL

data, 16, 42
expressions, 23
IF statement, 29
operators, 24
statement, 58

log-in procedure, 2
LOGOUT command, 3
log-out procedure, 3

M
mixed expressions, 22

N
names, (see Identifiers)
nested DO loops, 30
nested repetitions in FORMATs, 48, 51
nonexecutable statements, 3
nonprinting control characters,
numeric input strings, 49

o
o format, 41
on-I ine, 3, 5
OPEN statement, 36
operators

ari thmetic, 20, 21
logical, 24
relational, 23

Originate (ORIG) key, 2
output I ists, (see Input/Output lists)

p
P specification (scale factor), 46
parenthesized format specifications, 48, 51
password, 2
PAUSE statement, 31
pound sign (#), 4
precedence of operations, (see Evaluation hierarchy)
precision of data, 16

program fi Ie, 3, 5, 6, 10, 11
project code, 2

o
QED, 3, 11, 12
quotation mark (') format, 45
question mark (?), 6

R
range

of a DO, 29, 30
of statements, 4, 5

READ
forma tted, 36
statement, 36

REAL
data, 16
type declaration, 58

REFERENCES command, 6, 9
references to array elements, 55
relational expressions, 22
relational operators, 23
replacement statement, 25
RESEQUENCE command, 6, 9
RETURN key, 1, 3
RETURN statement, 32

s
sample program, 12-15
SA VE command, 6, 10
scalar variables, 19
scale factor (P specification), 46
semicolon (i), 3
slash (/)

FORMAT specification, 47
in DATA statement, 56
in file name, 10
operator (division), 20, 21
specification, 47

special characters, 3
statement functions, 62
statement labels, (see Labels)
statement numbers, 4
statements, 4

executable, 3
nonexecutable, 3
termination of, 4

STOP statement, 31
storage allocation declarations

COMMON statement, 4, 55
subexpressions, 21-25
subprogram control, 31
subprogram definitions, 58
subprogram identifiers, 58
subprograms, 58-65
SUBROUTINE statement, 63
subroutine subprograms, 63
subscripts, 19

Index 71

T
term ination of input strings, 49
. TRUE., 18, 42, 43
truncation, 26, 34
type declarations, 57
type statement, 4, 57

COMPLEX, 58
DOUBLE PRECISION, 58
INTEGER, 58
LOGICAL, 58
REAL, 58

types of data, (see Data types)
typographic conventions, 1

u
Unconditional GO TO statement, 27

v
variabl es, 16, 18

72 Index

variables (cont.)
array, 19
scal ar, 19

w
WRITE

x

formatted, 37
statement, 37

X format specification, 45

z
Z specification, 48
zero

tests for, 29

(J)

o
(J)

<D
~ o
"Tl
o
:::0
-i
:::0 »
2

<

	0001
	0002
	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	xBack

