
SOS 940 TIME-SHARING SYSTEM

TECHNICAL MANUAL

SDS 90 11 16A November 1967

Price: $3.50

SCIE NTIFIC DATA SYSTEMS/1649 Seventeenth Street/Santa Moni co, Cal iforn ia

©1967. Scientific Data Systems. Inc Pnnted In USA.

PREFACE

This preliminary manual describes the Berkeley Time-Sharing System as modified for the
SDS 940 Computer. The design and implementation of the system is explained, as well
as certain of its operational features. The manual covers this in three major parts: Mon­
itor, Executive, and subsystems.

Chapters 2-11 deal with the Monitor, chapters 12-19 discuss the Executive, and chapters
20-28 explain the various system programmed operators (SYSPOPS) and branch system
routines (BRS) that can be used with this system.

Illustrations and explanations are also given of important tables associated with the sys­
tem, such as the PAC Table, Phantom User Queue Entry, Job Table, Pseudo Memory
Table, etc.

This publication is a reference guide for experienced programmers rather than a primerfor
beginners. It assumes that the reader is fami I iar with the basi c concepts of the SDS 940
Time-Sharing System. Additional information about the system can be obtained from the
related publications listed below.

RELATED PUBLICATIONS

Title

SDS 940 Computer Reference Manual

SDS 940 Terminal Users Guide

SDS 940 FORTRAN II Reference Manual

SDS 940 BASIC Reference Manual

SDS 940 TAP Reference Manual

SDS 940 DDT Reference Manual

SDS 940 CAL Reference Manuai

SDS 940 QED Reference Manual

SDS 940 FORTRAN II Technical Notes

SDS 940 FORTRAN IV Reference Manual

NOTICE

Publication No.

900640

90 11 18

90 00 10

90 11 11

90 11 17

90 11 13

90 Ii 14

90 11 12

90 11 42

90 11 15

The specifications of the software system described inthis publication are subject to change without notice. The availability or performance of some features may
depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult thei r SDS sales representative for details.

ii

CONTENTS

l. INTRODUCTION 15. SUBSYSTEMS 38

2. THE SCHEDU LER 16. MISCELLANEOUS EXECUTIVE FEATURES 39

Forks 1 17. MISCELLANEOUS MONITOR BRSs 39
The Program Active Table 1
The Phantom User 4 18. STRING PROCESSING SYSTEM 40

3. FORKS AND JOBS 5 19. FLOA TING POINT 40

Creation of Forks 5 Operating Characteristics 43
Memory Acquisition 6
Panic Conditions 6 20. BRS AND SYSPOP INDEXES 45
Jobs 7

Index of BRSs and System Operators
4. PROGRAM INTERRU PTS 8 by Number 45

Index of BRSs and SYSPOPs by Type 47
5. THE SWAPPER, MEMORY ALLOCATION AND

RAD ORGANIZATION 9 2l. SCHEDULING, FORKS AND PROGRAM
INTERACTION 52

Relabeling 9
22. INPUT/OUTPUT 65

6. MISCELLANEOUS FEATURES 11
23 .. TELETYPES 84

7. TELETYPE INPUT/OUTPUT 12
24. MEMORY 96

8. ORGANIZATION OF DISC AND BUFFER
DEVICES 15 25. STRING PROCESSING 103

File Storage on Disc 15 26. NUMBERS 113
File Buffers 15
Devices 18 27. EXECUTIVE COMMAND OPERATIONS 120
System Data on Outer Arm Positions of Disc_ 19

28. MISCELLANEOUS 121
9. SEQUENTIAL FILES 19

Sequential Disc Files 19
Other Sequential Files 21
File Control Blocks 22 APPENDIXES
Character Buffers 22
Permanently Open Files 22

A. GLOSSARY OF TERMS 127

10. SUBROUTINE FILES 23
B. GENERAL DESCRIPTION OF THE

1l. EXECUTIVE TREATMENT OF FILES 23 COMBINED FILE DIRECTORY 129

12. EXECUTIVE COMMANDS RELATED TO FILES 27

13. EXECUTIVE COMMANDS 28

OPERATOR EXECUTIVE ROUTINES
ILLUSTRATIONS

14. 29

Function 29 l. PAC Tabl e - One Per Fork 2
Description of Control Commands 29

Phantom User Queue Entry 4 2. Operating Procedures 30
General Operating Instructions 30 3. Significance of Bits in A Register 5
Program Loading and Assembly Procedure __ 30

4. Job Tables 7 Description of Operator Executive
Routines 30 5. Pseudo Memory Table PMT Entries 9

iii

6. Disc Map 16 TABLES
7. Buffers 17

8. Device Tables 18 1. Activation Conditions for Currently
Inactive Fork 3

9. File Control Block 22 2. Panic Table 5

10. Fixed File Numbers 22 3. Teletype Table 12
4. Control Numbers 20

11. File Directory Arrangement 25 5. Device Numbers 21

12. Hash Table Entry 26 6. File Control for Mag-tape 21
7. Control Commands 29

13. Format Word for Floating Point 42 8. Error Conditions 43

iv

1. INTRODUCTION

The SDS 940 Time-Sharing System consists of three main
parts: Monitor, Executive, and subsystems.

The Monitor is the portion of the system concerned with

• scheduling

• input/output operati ons

• interrupt processing

• memory allocation

• swapping of programs and data from disc to core memory

• control of active programs

The Executive is concerned with

• the command language through which the user controls
the system from his teletype

•
•

•

identi fi cati on of the vari ous users

the specification of the limits of each user's access to
the system

control of the directory of symbol i c fi I e names, and
backup storage for these fi I es

Since the user cannot address the computer directly, the res­
ident SYSPOP and BRS utility routines have been provided
to allow him to perform I/o functions and control other sys­
tem operati ons. When accessed, these routi nes cause a
transfer to monitor mode of operati on and a branch to a pro­
cessing routine. The BRS instruction requires an integer in
its address field that specifies the function to be performed.
SYSPOP instructions require no such integer. Each SYSPOP
name is unique and specifies, by itself, the function desired.
Not all of these routines are accessible to every user; special
user status is required to access some of the routines.

Subsystems are maj or processors such as FORTRA N II, CAL,
QED, etc. These subsystems are programs that are permanent­
ly connected to the main system. Each subsystem is called
by name through the Executive. Tables in the Executive in­
dicate how the subsystem is to be started and where its en­
tries are in the shared memory table.

The processors implemented as 940 subsystems have such a high
rate of usage that they have been written as reentrant programs,
enabl i ng many users to share the same processor si mu I taneousl y.

Programming reference information on the major subsystems
is contained in individual manuals listed under related pub­
lications in front of this manual.

2. THE SCHEDULER

FORKS
The 940 Ti me- Shari ng System is pri mari I y concerned wi th
program entities called forks. A fork is a self-contained
body of code for performing some process. At any point
during this process it is possible to activate another fork.
Forks are similar to programs and subprograms in other sys­
tems, but they differ from their non-time-sharing-system
counterparts in a number of important respects.

A fork can be all or part of a program. It can have one or
more forks or subprograms running concurrently under its
fu II control.

A fork can share all, part, or none of its allocated memory
with the controlling program.

Forks are similar to subroutines, except that, theoretically,
all forks making up a program could be executing simulta­
neousl yin the ti me-shari ng mode. However, forks can, and
frequently do, exist in a hierarchical relationship with one
another.

There is at least one fork associated with each active user
in the system, but a user can have many forks under his

control, each operating independently. There is also a tem­
porary storage area called a TS block that is shared with
each active fork associated with a user.

THE PROGRAM ACTIVE TABLE

A fork is defined by its entry in the program active table
(PAC table or PACT). This table contains all the informa­
ti on requi red to speci fy the state of the computer that the
user is programming, except for that contained in the user's
memory or in the system's permanent tabl es. Each PACT
entry has the format shown in Figure 1.

Note that the PACT contains locations for saving the pro­
gram counter, P, and the contents of the A register. The B
and X registers are saved in the TS block. The PACT 01 so
contains two pseudo-relabel ing registers for the user. A
third one, that specifies the monitor map, is kept in the job
tables. Pseudo-relabeling is discussed in detail in Chapter
5. The word PTEST determines the conditions under which
the fork should be reactivated if it is not currently running.
The panic table address in PTAB and the three pointers called
PFORK, PDO'vVN and PPAR are discussed in Chapter 3.

Introduction/The Scheduler

PNEXT
Next queue or next program on queue
<0 - next ro ram <0 - next ueue

o 10 23

PL Saved (P)

o 1 2 3 8 9 10 23

PA Saved (A)

o 23

Rll First pseudo-relabel ing register

o 23

RL2 Second pseudo-relabeling register

o 23

PPTR PDOWN PFORK or chain for free entries

0 11 12 23

T est word addrs., or into no., or status
of dead fork

PTEST

23

PQU I~I~ 10 1 QR 1 QTAB PPAR

o 1 2 3 8 9 11 12 23

PTAB IWI~ IIJOb No. H Panic Table Address I
o 1 2 3 8 9 10 23

IEM
PIM I~I~ 1~1oI1 2 3 4:56789 10 :111 0 XPB TO

UM
OV
EX
EXB
QR
QTAB
LM
EX1
TS

o 1 2 3 4

USei mode (1)
Overflow
Executive program
Exec BRS
Amount of long quantum left
Index for long quantum
Local memory
Subsystem status
TS block assigned

TP
NT
IEM

XPB
TO

14 15 17 18 20 21 23

Add no memory
Termination pending (checks for rubout)
Non-terminabi I ity
Interrupt enable mask
1-4 System interrupt
5- 1 0 = Program interrupt
11 = Interrupt on di sc errors
Index to PB in TS block
Ti me out interrupt armed

Figure 1. PAC Table - One Per Fork

The word PTAB contains the number of the job to which the
fork belongs in bits 3 through 8. The top of PQU contains
information about the amount of time that the fork is allowed
to compute before it is dismissed. Six bits of QR count the
number of clock cycles remaining before the fork is dis­
missed, and three bits of QTAB point to a table specifying
the length of time that the fork should be allowed to run
when it is activated. All times in the discussion are mea­
sured in periods of the 60-cycle computer clock.

2 The Program Active Table

When a fork is activated, the number in QR is put into
TTIME. This number is the unused portion of the fork's long
time quantum. The long time quantum is the maximum length
of time a fork can run before the scheduler checks for other
forks to be run. This checking is necessary because of the
possibility that some other routine is in a condition to be
activated. The length of a long quantum is the same for all
users. Simultaneously, with the assignment of a new long
quantum, the user is assigned a new short time quantum.

The short time quantum is the minimum length of time a fork
will run before the scheduler checks for other forks to be
run that were dismissed for I/o operati ons. Both TIME
(short quantum) and TTIME (long quantum) are decremented
at every clock cycle.

When a fork is activated, it is first allowed to run for a
short quantum. During this time it cannot be dismissed ex­
cept by its own request.

When TIME goes negative, a short quantum has expired, and
a word call ed ACTR is checked to determine whether any
fork that is dismissed for I/o can be run. If ACTR is still
negative the fork is allowed to continue. At each subse­
quent clock cycle the fork may be dismissed if any fork dis­
missed for I/o is ready to run. It may also be dismissed
when the long quantum is exhausted if any other forks are
waiting to run. In this case, it is said to be dismissed for
long quantum overflow. If ACTR indicates that another
fork dismissed for I/o is ready to run at the end of the short
quantum, the fork is dismissed for short quantum overflow.

To allow an efficient implementation of this scheme ACTR
is incremented by every routine that takes any action that
will allow a fork that was previously waiting for I/o to run.

Si nce ACTR is set to -1 when a fork is activated, this means
that the clock interrupt can execute the following code in
order to check both the conditions which may require fur­
ther action.

SKR TIME

BRU *+3

SKN ACTR

BRU *+3 Ready to di smi ss

SKR TTIME

BRI Return to program

If ACTR is positive or the short quantum has not run out, it
is of course ignored, as noted in the above example.

When a fork is dismissed for I/o, TTIME is put into OR.
When the fork is reactivated, TTIME is set from OR. TIME
is reset to the full short quantum. That is, the long quantum
is allowed to run down while a program computes, regard­
less of whether it has to wait for I/o between computations.
However, a fork is always given a full short quantum. If a
fork is dismissed for quantum overflow, it is given a new
long quantum when it is reactivated.

There are two operati ons avai lable to the user that are con­
nected with the quantum overflow mechanism. BRS 45 causes
the user to be dismissed as though he had overflowed his
quantum. BRS 57 guarantees to the user upon return at least
16 msec of uninterrupted computation. This feature is im­
plemented by dismissing the user if less than 16 msec remain
in his quantum.

Ordinarily, the code that is being executed at any partic­
u I ar instant is that belonging to the currently active fork.
This situation may be disturbed, however, by the occurrence

of interrupts from I/o devices. These interrupts cause the
computer to enter system mode and are processed i ndepen­
dently of the currently runni ng program. The interrupts
never take direct action to disturb the running of the active
fork, although they may set up conditions in memory that
wi II cause some other fork to be activated when the presently
running one is dismissed. Interrupt routines always run in
system mode.

Other codes that may be running but not belonging to the
currently active fork are the system programmed operators
(SYSPOPS) or branch system routines (BRS). These routines
are not reentrant and, therefore, can not be dismissed by
the cI ock. To ensure that they wi II not be, the conventi on
is establ ished that the cI ock wi II not dismiss a program run­
ning in system mode. To guarantee that a user will not mo­
nopolize the machine by executing a large number of
SYSPOPS, the user mode trap is turned on when the clock
indicates that a fork is to be dismissed. The trap will occur
and cause dismissal as soon as the fork returns to user mode.

The PACT word called PTEST contains the activation con­
dition for a currently inactive fork. The condition for acti­
vation is contained in the six opcode bits of this word, while
the address field normally contains the absolute address of a
word to be tested for the specified condition. It is possible,
however, for the address to hold a number indi cating wh ich
program interrupt has occurred. Note that the value 7 given
in Table 1 can be used for forks, and not all conditions per­
tain to activation. For example, value 71 implies that the
fork is already in operation.

The following conditions are possible in PTEST.

Table 1. Activation Conditions for Currently Inactive Fork

Bits 3-8

o

2

3

4

5

6

7

10

11

12

Activati on Condi tions

Word greater than 0

Word less than or equal to 0

Word greater than or equal to 0

Word less than or equal to teletype early
warning

Special test. The address points to a special
activation test routine.

Interrupt occurred. The address contains the
number of the interrupt whi ch occurred.

Word less than or equal to Real- Time.

Special address =
o dead
1 runni ng
2 BRS 31
3 BRS 106
4 Executive BRS
5 BRS 109
6 BRS 9 (User Program)

Do not activate

Vvord 20000000 '- 0 (buffer ready)

Worn I es<; them 0

The Program Active Table 3

An Executive program can dismiss itself explicitly by putting
a queue number (O to 3) in X, a dismissal condition in Band
executing BRS 72. The address of a dismissal condition must
be absolute.

There is normally one running fork in the system, i. e., a
fork that is executing instructions, or will be executing in­
structions after the currently pending interrupts have been
processed. An active fork (i. e., a PACT entry) that is not
running is said to be dismissed, and is kept track of in one
or two ways.

If it is dismissed with BRS 9, 31, 106 or 109 (see Chapter 3)
it is said to be in "Iimbo" and is pointed to only by the
PFORK, PDOWN, and PPAR of the neighboring forks in the
fork structure.

If it has been dismissed for any other reason, it is on one of
the schedule queues. Thereare fourqueuesof dismissed pro­
grams. In order, they are

QTI Programs dismissed for teletype input/output

QIO Programs dismissed for other I/O

QSQ Programs dismissed for exceeding their short
quantum

QQE Programs dismissed for exceeding their long
quantum.

Programs within the queues are chained together in PNEXT,
and the last program in each queue points to the beginning
of the next queue.

When it is time to activate a new program, the old program
is put on the end of the appropriate queue. The schedule
then begins at QTI and scans through the queue structure
looking for a program whose activation condition is satisfied.
When one is found, it is removed from the queue structure
and turned over to the swapper to be read in and run. If
there are no programs that can be activated, the scheduler
simply continues scanning the queue structure.

Programs reactivated for various reasons having to do with
forks (interrupts, escapes, panics) are put onto QIO with an
immediate activation condition. They take priority over all
programs dismissed for quantum overflow.

THE PHANTOM USER

There is a permanent entry on the teletypequeue for an entity
called the phantom user. The activation condition for this
entry is a type 4 condition that tests for two possibilities:

1. The cell PUCTR is nonzero.

2. Three seconds have elapsed since the last activation of
the phantom user for this condition.

When the phantom user is activated by (2.) it scans the sys­
tem checking that everything is functioning properly. In
particular, it checks that the W-buffer has not been waiting
for an interrupt for an unusual I ength of ti me, and that all
teletype output is proceeding normally. If the phantom user
is activated by (1.), it scans the phantom user queue looking
for tasks to do. A phantom user queue entry is displayed in
Figure 2. It is essentially an abbreviated PAC table entry.

Pointer to next entry in queue

0 23

0 I PU Test No·1 Routi ne Address

0 2 3 n f'I ")') o 7 Lo,J

I I
0

Data for
TTY Line No.

Routine

0 2 3 8 9 23

I I 0
Data for

TTY Line No.
Routine

0 2 3 8 9 23

Data for Routine Data set on interrupt

2 Data set off interrupt

3 Escape key

Figure 2. Phantom User Queue Entry

4 The Program Active Table

Such an entry is made when the system has some activity
that it wants to carry out independently of any user PAC
tabl e entry, test for tape ready {on rewi nd}, or card reader
ready, and processing of escapes {an interrupt routine type
of activity, but too time-consuming}. The second word of
the entry is the activation condition. PUCTR contains the
number of entri es on the phantom user queue.

The pointers or counters listed below are utilized by the
phantom user to perform its tasks.

PUCT

FPULST

Beginning of phantom user queue.

First free entry in PU queue.

PUBPTR

PUCTR

PUEPTR

PUCTRl

PUCPTR

PUPAC

Poi nter to fi rst active entry. Last entry
points to PUBPTR.

Number of PU entri es.

Last PU entry.

Entry counter during PU processing.

Pointer to active entry during PU pro­
cessing.

PACPTR of task being processed by PU.

3. FORKS AND JOBS

CREATION OF FORKS

A fork may create new, dependent, entri es in the PAC tabl e
by executing BRS 9. This BRS takes its argument in the A
register, which contains the address of a seven-word panic
table with the format given in Table 2.

Table 2. Panic Table

Word Contents

0 Program counter

1 A register

2 B register

3 X register

4 First relabeling register

5 Second relabeling register

6 Status

The status word may be

-2 Dismissed for i nput/ output

-1 Running

o Dismissed on escape or BRS 10

Dismissed on illegal instruction panic

2 Dismissed on memory panic

The panic table address must not be the same for two de­
pendent forks of the same fork, or overlap a page boundary.
If it is, BRS 9 is illegal. The first six bits of the A'register
have the following significance as shown in Figure 3.

Bit

o

Signifi cance

Make fork Executive if current fork is Executive.

Set fork relabel ing from panic table. Otherwise,
use current relabel ing.

2 Propagate escape assignment to fork {see BRS 90}.

3 Make fork fi xed memory. It is not allowed to
obtain any more memory than it is started with.

4 Make fork local memory. New memory wi II be
assigned to it independently of the controlling
fork.

5 Make fork Exec type 1 if cu rrent fork is Exec.

Figure 3. Significance of Bits in A Register

When BRS 9 is executed, a new entry in the PAC table is
created. This new fork is said to be a fork of the fork cre­
ating it. Thisiscalled the controlling fork. The fork is said
to be lower in the hierarchy of forks'than the controlling
fork. The latter may itself be a fork of some still higher
fork. A job may have a maximum of eight forks including
the executive. The A, B and X registers for the fork are set
up from the current contents of the panic table. The address
at which execution of the fork is to be started is also taken
from the panic table. The relabeling registers are set up
either from the current contents of the panic table or from
the relabeling registers of the currently running program.
An executive fork may change the relabeling. A user fork
is restricted to changing relabeling in the manner permitted
by BRS 44. The status word is set to -1 by BRS 9. The fork
number that is assigned is kept in PIM. This number is an
index to the fork parameters kept in the TS block.

The fork structure is kept track of by pointers in PACT. For each
fork PFORK points to the control I ing fork, PDOWN to one of the
subsidiary forks, and PPAR to a fork on the same I evel. All the
subsidiary forks of a single fork are chained in a list.

Forks and Jobs 5

If the fork executing a BRS 9 is a user fork, it is dismissed
until the lower fork terminates. If it has Exec status, it
continues execution at the instruction after the BRS 9. The
fork established by the BRS 9 begins execution at the loca­
tion specified in the panic table and continues independently
until it is terminated by a panic, which is a signal to the
system to break execution of a fork. The panic is connected
to its controlling fork in three ways:

1. The control Ii ng fork may exami ne its state and control
its operation with the following six instructions:

BRS 30 reads the current status of a lower fork into
the panic table. It does not influence the
operation of the fork in any way.

BRS 31 causes the control I ing fork to be dismissed
until the lower fork causes a panic. When it
does, th e control I i ng fork is reacti vated at
the instruction following the BRS 31, and the
panic table contains the status of the fork on
its dismissal. The status is also put in X.

BRS 32 causes a lower fork to be unconditionally ter­
minated and its status to be read into the
pani c table.

All of these instructions require the panic table address
of the fork in A. They are illegal if this address is not
that of a pani c table for some fork.

BRS 31 and BRS 32 return the status word in the X reg­
ister, as well as leaving it in the panic table. This
makes it convenient to do an indexed jump with the
contents of the status word. BRS 31 returns the pani c
table address in A.

BRS 106 causes the control I ing fork to be dismissed un­
til any subsidiary fork causes a panic. When
it does, the controlling fork is reactivated at
the following instruction with the panic table
address in A, and the panic table contains the
status of the fork at its dismissal.

BRS 107 causes BRS 30 to be executed for all subsidiary
forks.

BRS 108 causes BRS 32 to be executed for all subsidiary
forks.

2. If interrupt 3 is armed in the controlling fork, the ter­
mination of any subsidiary fork will cause that interrupt
to occur. The interrupt takes precedence over a BRS 31.
If the interrupt occurs and control is returned to a
BRS 31 after processing the interrupt, the fork will be
dismissed until the subsidiary fork specified by the re­
stored (A) term i nates.

3. The forks can share memory. The creating fork can, as
already indicated, set the memory of the subsidiary
fork when the latter is started. In addition, there is
some interaction when the subsidiary fork attempts to
acquire memory.

6 Creati on of Forks

MEMORY ACQUISITION

If the fork addresses a block of memory that is not assigned
to it, a check is made to determine whether the machine
size specified by the user has been exceeded. If so, a mem­
ory panic is generated. If the fork is fixed memory, a mem­
ory panic is also generated. Otherwise, a new block is as­
signed to the fork so that the illegal address becomes legal.
For a local memory fork, a new block is always assigned.
Otherwise, the following algorithm is used.

The number, n, oftherelabeling byte for the block addressed
by the instruction causing the memory trap is determined. A
scan is made upwards through the fork structure to (and in­
cluding) the first local memory fork. If all the forks encoun­
tered during this scan have Rn {the nth relabeling byte} equal
to 0, a new entry is created in PMT for a new block of user
memory. The address of this entry is put into Rn for all the
forks encountered during the scan.

If a fork with nonzero Rn is encountered, its Rn is propagated
downward to all the forks between it and the fork causing
the trap. If any fixed memory fork is encountered before a
nonzero Rn is found, a memory panic occurs.

This arrangement permits a fork to be started with less mem­
ory than its controlling fork in order to minimize the amount
of swapping required during its execution. If the fork later
proves to require more memory, it can be reassigned the
memory of the controlling fork in a natural way. It is, of
course, possible to use this machinery in other ways, for in­
stance, to permit the user to acquire more than 16K of mem­
ory and to run different forks with nonoverlapping or almost
nonoverlapping memory.

PANIC CONDITIONS

The three kinds of panic conditions that may cause a fork to
be terminated are listed in the description of the status word
above. When any of these conditions occur, the PACT entry
for the fork being terminated is returned to the free program
list. The status of the fOik is read into its panic table in the
controlling fork. If the fork being terminated has a subsid­
iary fork, it too is terminated. This process will cause the
termination of all the lower forks in the hierarchy.

The panic that returns a status word of zero is called a fork
panic and may be caused by either of two conditions:

1. The escape button on the controlling teletype is pushed
or an off interrupt occurs. This terminates a fork with a
fork panic. A fork may declare that it is the one to be
terminated by executing BRS 90. In the absence of
such a declaration the highest user fork is terminated.
When a fork is terminated in this way its controlling
fork becomes the one to be terminated. If a user fork
is terminated by escape, the teletype input buffer is
cleared. If the controlling fork of the one terminated
is executive, the output buffer is aiso cleared.

If the fork which can be terminated by escape has armed
interrupt 1, this interrupt will occur instead of a ter­
mination. The tel etype buffers wi II not be affected.

If there is only one fork active, control goes to the lo­
cation EXECP in the Executive. Executive programs
can turn the escape button off with BRS 46 and turn it
back on with BRS 47. An escape occurring in the mean­
time wi II be stacked. A second one wi II be ignored.
A program which is running with escape turned off is
said to be nonterminable and cannot be terminated by
a higher fork. BRS 26 skips if there is an escape pending.

If two escapes occur within about .12 seconds, the en­
tire fork structure wi II be cleared and the job left exe­
cuting wi II be the top level Executive fork. This de­
vice permits a user trapped in a malfunctioning lower
fork to escape. Closely spaced escapes can be conven­
iently generated with the repeat button on the teletype.
Th is type of escape wi II cause a user to I ose memory,
and should be followed by a RESET. An off interrupt
from the teletype is treated like a high-speed escape.

2. A BRS 10 can be executed in the lower fork. This con­
dition can be distinguished from a panic caused by the
escape button by the fact that in the former case, the
program counter in the panic table points to a word
containing BRS 10.

As an extension of this system there is one way in which
several forks may be terminated at once by a lower
fork. This may be done by BRS 73, which provides a
count in the A register. A scan is made upward through
the fork structure, decrementing this count by one each
time a fork is passed. When the count goes to 0, the

PMTP o
o 9 10

PMA Blocks left

RL3 o

scan is terminated and all forks passed by are termin­
ated. If an executive program is reached before the
count is 0, then all the user programs below it are
term i nated.

The panic which returns a status word of 1 is caused by
the execution of an illegal instruction in the fork.
There are two kinds of illegal instructions.

a. Machine instructions that are privileged.

b. SYSPOPs that are forbidden to the user or that
have been provided with unacceptable arguments.

A status word of 2 is returned by a memory panic. Th is
may be caused by an attempt to address more memory
than is permitted by the machine size that the user has
set, or by an attempt to store into a read-only page.
If interrupt 2 is armed, it wi II occur instead of the
memory panic.

JOBS

Every complete fork structure is associated with a job. The
job is the fundamental entity thought of as a user of the sys­
tem, from the system's own point of view. The job number
appears in the PAC table entry for every fork in the job's
fork structure.

In addition, there are several tables indexed by job num­
bers. These are displayed in Figure 4 and indicate what is
specifically associated with each job.

Start of jobs PM T

Blocks used

o

23

Length of PM T

17 18 23

Temporary storage I
block relabeling

o 11 12 17 18 23

TTNO. Tele­
type associated
with this job o 1 2 3

I ~ I o
789

ETTB Amount of CPU time used when not actively servicing a user.
NP Do not charge memory against machine size.
DB Disc busy bit for BRS BE+l,2
DS Disc status bit for BRS 1 and 2

Figure 4. Job Tables

TTY No.

17 18 23

Creation of Forks 7

4. PROGRAM INTERRUPTS

A facility is provided in the Monitor to simulate the exis­
tence of hardware interrupts. There are eleven possible
interrupts; five are reserved for special purposes and six
are avai lable to the programmer for general use. A fork
may arm the interrupts by executing BRS 78 with an 11-bit
mask in the A register. This causes the appropriate bits in
PIM to be set or cleared according to whether the corre­
sponding bit in the mask is 1 or O. Bit 4 of A corresponds
to interrupt number 1, etc. No other action is taken at
this time. When an interrupt occurs (in a manner to be
described) the execution of an SBRM* to location 200 plus
interrupt number is simulated in the fork which armed the
interrupt.

Note: The program counter which is stored in this case is
the location of the instruction being executed by
the fork which is interrupted, not the location in
the fork which causes the interrupt. The proper
return from an interrupt is a BRU to the location
from which the interrupt occurred. This will cause
the proper return in all cases including interrupts
out of input/output instructions.

A fork may generate an interrupt by executing BRS 79 with
the number of the desired interrupt in the A register. This
number may not be one, two, three, four, or el even. The
effect is that the fork structure is scanned, starting with
the forks parallel to the one causing the interrupt and pro­
ceeding to those above it in the hierarchy {i. e., to its an­
cestors}. The first fork encountered during this scan with
the appropriate interrupt mask bit set is interrupted. Exe­
cution of the program in the fork causing the interrupt con­
tinues without disturbance. If no interruptable fork is found,
the interrupt instruction is treated as a NOP. If there is an
interruptable fork, it skips on return.

Interrupts 1 and 2 are handled in a special way. If a fork
arms interrupt 1, a program panic {BRS 10 or escape key}

8 Program Interrupts

that would normally terminate the fork which has armed in­
terrupt 1, will instead cause interrupt 1 to occur, that is,
will cause the execution of an SBRM* to location 2018' This
permits the programmer to control the action taken when the
escape key is pushed without establishing a fork specifically
for this purpose. If depressing the escape key causes an in­
terrupt to occur rather than terminating a fork, the input
buffer will not be cleared.

If a memory panic occurs in a fork which has armed interrupt
2, it will cause interrupt 2 to occur rather than terminating
the fork. If an illegal instruction panic occurs in an exec­
utive fork that has armed interrupt 2, it will cause interrupt
2 to occur rather than terminati ng the fork.

Interrupt 3 is caused, if armed, when any lower fork ter­
minates. Interrupt 4 is caused, if armed, when any input/
output condition occurs that sets a flag bit {end of record,
end of file and error conditions can do this}.

Interrupt 11 is caused, if armed, if a disc error is encoun­
tered duri ng a BRS BE + 1 or BRS BE + 2. These BRSs requ i re
system status. Consequently, interrupt 11 has no meaning
for user or subsystem forks.

Whenever any interrupt occurs, the corresponding bit in the in­
terrupt mask is cleared and must be reset ex pi icitly if it is desired
to keep the interrupt on. Note that there is no restriction
on the number of forks wh i ch may have an interrupt on.

A fork may be interrupted after a specified period of time
by issuing BRS BE + 12. It takes the interrupt mask in A,
the time in msec in B, and the interrupt number in X. If
the specified interrupt is armed when the time is up, the
fork will be interrupted.

To read the interrupt mask into A, the program may execute
BRS 49.

5. THE SWAPPER, MEMORY ALLOCATION AND RAD ORGANIZATION

RELABELING

Because of the necessi ty in vari ous parts of the system for
relabeling registers which do not change with time, the user
has been denied any access to ordinary relabeling. How­
ever, he is given access to pseudo-relabeling. His pseudo­
relabeling registers consist, as do the ordinary relabeling
registers, of eight six-bit bytes. Each one of these bytes
points to an entry in the user's pseudo-memory table (PMT)
and not to a real page of memory. This table may contain
up to 64 words, each one specifying a certain 2K block of
memory, herein referred to as a page. The first version of
the system, however, will allow access to only 14 words.
The possible forms of an entry in the pseudo-memory table
are shown in Figure 5.

When it is necessary to activate a user, his pseudo-relabeling
registers are used to read out the proper bytes from PMT and
construct a list of pages that need to be read in from the
RAD. When this list is constructed, the current state of

Unused

Shared
entry

o

o

core is examined to determine whether any pages need to be
written out to make room for those which must be read in.
If so, a I ist of pages to be written out is constructed. The
RAD command list is then set up with the appropriate com­
mands to wri te ou t and read in the necessary pages. In the
scan which sets up the RAD read commands, the swapper
collects from PMT or SMT the actual absolute memory ad­
dresses of the page called for by the pseudo-relabeling and
constructs a set of real relabeling registers which it puts in
two fixed locations in the monitor (RRLl and RRL2). It then
outputs these relabeling registers to the hardware and acti­
vates the program.

There is also a system parameter called NCMEM. Pseudo­
relabeling bytes with values from 1 to NCMEM-1 (0 means
an unassigned page) actually refer directly to the first
NCMEM-1 pages of SMT, the shared memory table, and the
user's own PMT is addressed beginning at NCMEM. The
"common" portion of SMT is used to hold the most common
subsystems.

o
23

SMT No.

o 1 2 3 9 10 23

Private
entry

RD On RAD
EX Exec
S Shared

o RAD address

012 9 10

I~~ I No. of users I
01289

SMT Entry
(Shared Memory Table)

RAD address

I OR I . . Page No.

17 18 19 23

I OR I . . Page No.

17 18 19 23

RO Read only

Shared entry

Private entry

SMT

The subsystem must occupy space in the user's memory
{e. g., CAL, FTC, etc.}

Users actual program

The same as private entry

Figure 5. Pseudo Memory Table PMT Entries

The Swapper, Memory Allocation and RAD Organization 9

There are two BRSs that permit the user to read and write
his pseudo-relabeling. BRS 43 reads the current pseudo­
relabel ing registers into A and B. BRS 44 takes the contents
of A and B and puts them into the current pseudo-relabeling
registers. An executive program may set the relabel ing reg­
isters in arbitrary fashion by using this instruction. A user
program, however, may add or only delete pages that do
not have the executive bit set in PMT. This prevents the
user from gaining access to Executive pages whose destruc­
tion may cause damage to the system. Note that the user
is doubly restricted in his access to real memory, because
he can only access real memory that is pointed to by his
pseudo-relabeling, and because he is only allowed to ad­
just those portions of his pseudo-relabeling that are not
Executive type.

The user can also set the relabeling of a fork when he creates
it (see Chapter 3). The same restrictions on manipulation of
Executive pages also apply.

The system maintains a pair of relabeling registers that the
Executive and vari ous subsystems consider as the user's pro­
gram relabeling. For the convenience of subsystems, an
Executive program can read these registers with BRS 116
and set them wi th BRS 117.

The memory allocation algorithm is described in Chapter 3.
A user can release a page that is in his current relabeling
by putting any address in that page into A and executing
BRS 4. The PMT entry for the page is removed and in any
other fork which has this PMT byte in its relabeling, the
byte is cleared to O.

EquivalenttoBRS 4isBRS 121, that takesapseudo-relabeling
byte in A rather than an address. An inverse operation is
BRS 120, which takes a pseudo-relabeling byte in A, gen­
erates an illegal instruction trap if the corresponding PMT
entry is occupied, and otherwise obtains a new page and
puts it in that entry. This is an exec-only operation.

A word of PMT whose first three bits are 001 contains a
pointer to the shared memory table, SMT. An entry in SMT
looks exactly like an unused or private entry in PMT. It
refers to a page of memory wh i ch has a fi xed I ocati on on
the RAD and may be referred to by more than one program.

By putting an index in SMT in A and executing BRS 69, a
poi nter to the speci fi ed I ocati on in SMT is put into the fi rst free
byte of a user's PMT and the byte number is returned in A.

The user may declare a page read-only by executing BRS 80
with the pseudo-relabel ing byte number of the page in A
and with bit 0 of A set. To make a page read-write, bit 0
of A should be clear. Bit 0 of A will be reset if the page
was formerly read-write or set if it was formerly read-only.
If the program doing this is not an Executive program, then
the page must not be an Executive page. Only an Executive
can make a read-only PMT entry which points to SMT into
a read-write entry, for obvious reasons. The significance
of a read-only page to the swapper is that it need not be
rewritten on the RAD when it is removed from memory.

A RAD is divided into blocks of 32K. Each user is assigned
a block depending on his job number. The first page in
each block is always the user's TS page. Each block of 32K

10 Relabeling

consists of eight bands with two pages per band. The list of
swapping commands alternates pages whenever possible to
minimize swap time. A bit map is kept in the TS page which
maps the user's 32K. When the user requires more memory,
the free page nearest the beginning of his block is taken.
The first several blocks on the first RAD contain the subsys­
tem, Exec and swappable Monitor pages.

It should be noted that whenever a user is reactivated, all
of the memory in his current relabeling registers is brought
in. The user does, however, have considerable control over
precisely what memory will be brought in because he can
read and set his own relabeling registers. Therefore, he may
establish a fork with a minimal amount of memory in order
to speed up the swapping process if this is convenient.

To make a page executive, execute BRS 56 with the same
argument as for BRS 80, Make Page Read Only. This in­
struction is legal only for executive type programs.

The system keeps track of the stateof real core with two tables
called the real memory table (RMT) and the real memory use
count table (RMC). An RMC entry is -1 if a page is not in
use; otherwise, it is one less than the number of reasons why
it is in use. Every occurrence of this page in the relabeling
of a process which is running or about to be run counts as
such a reason. In addition, other parts of the system can
increment an RMC word to lock a page in core. No page
with non-negative BRM can be released by the swapper.

The format of an RM T entry (one per real page) is

USE
RO

o

in use
read only

23

There is one other table indexed by real memory, called
the real memory aging table. It is used by the swapper to
decide what pages are to be swapped out. It does this first
by right shifting one bit for every entry in the RMA. Then
it sets bit one for every real page that was computed from
the pseudo-relabel ing from whi ch the swapper was entered.
The RMA entries with the lowest values are the ones se­
lected for swapout.

The swapper also contains a device called the simulated as­
sociative memory or SAM, which contains pseudo-relabeling
and real relabeling for the most recently used maps. It
serves to reduce the amount of time needed for map changing
when little swapping is taking place. It is cleared when­
ever a RAD read takes place, since this changes the con­
tents of real memory and potentially inval idates all real re­
labeling registers.

Two BRSs exist for reading and writing pages at specified
places on the RAD. They are, of course, restricted to ex­
ecutive programs. To read a page, put the RAD address into
B and the core address inA and execute BRS 104. Use BRS
105 to write a page. RAD errors cause these instructions to
generate illegal instruction panics.

6. MISCELLANEOUS FEATURES

A user may dismiss his fork for a specified length of real
time by executing BRS 81 with the number of milliseconds
for which he wishes to be dismissed in A. At the first avail­
able opportunity after this time has been exhausted, his fork
will be reactivated. The contents of A are lost by this BRS.

He can read the real-time clock into A and the system
start-up date and time into B by executing BRS 42. The
number obtained increments by one every 1/60th of a sec­
ond. Its absolute magnitude is not significant. An Exec
fork can read the elapsed time counter for the user into A
by executing a BRS 88. This number is set to 0 when he
enters the system and increments by 1 at every 1/60th sec­
ond clock interrupt at which his fork is running.

To obtain the date and time, he can execute BRS 91. This
puts string pointers into the A and B registers. The string
contains in order, the month/day, hour (0-23) and minute
at which the instruction is executed.

A user may dismiss a fork unti I an interrupt occurs or the
fork in question is terminated by executing BRS 109.

A fork can test whether it is executive or not by executing
BRS 71. The type of executivity is returned in B. If B
equals 1, the fork is subsystem. If B equals 0, the fork is
user. If B equals -1, the fork is system and subsystem. If
B equals -2, the fork is system. If B is negative the BRS
skips on return.

An Executive fork can dismiss itself expl icitly (see Chapter 2).

There are two operations designed for Executive BRSs which
operate in user mode with a map different from the one they
are called from. BRS 111 returns from one of these BRSs,
transmitting A, B and X to the calling fork as it finds them.
BRS 122 simulates the addressing of memory at the location
specified in A. If new memory is assigned, it is put into
the relabel ing of the call ing fork. A memory panic can
occur, in which case it appears to the call ing fork that it
comes from the BRS instruction.

An Executive fork can cause an instruction to be executed
in system mode by addressing it with EXS.

There are switches in the monitor which can be set by an
Exec fork with a BRS BE+13. It takes the new switch value
in A and the switch number in X. It returns the old switch
value in A.

An absolute location in the Monitor relabel ing can be read
or changed by an Exec fork with BRS BE+4. The absolute
location is in X, the new value, if any, in A. The BRS
reads if B is positive and changes the word if B is negative.

An Exec fork can also force a new page to be read from the
RAD with BRS BE+ 15. It takes an SMT pointer in A.

An Exec fork can test the state of any breakpoint switch
with BRS BE+7. The switch number is in X. The BRS skips
if the switch is down.

An Exec fork can crash the system with BRS BE+8.

Miscellaneous Features 11

7. TEUETYPEINPUT/OUTPUT

An outline of the implementation of the teletype operations
should clarify the exact disposal of the characters that are
being read and written. Every teletype has attached to it
information that is given below in Table 3.

the teletype interrupt routine as rapidly as the teletype will
accept them.

Also associated with the teletype is a buffer that contains
input and output characters in the following format

As characters are output by the program, they are added to
the output buffer, that can be regarded as logically inde­
pendent from the input buffer in spite of the fact that it re­
sides in the same words. The characters are then output by

Input character Output character Character to
echo (if any)

TI52

TI54

TI55

T052

T053

T054

T055

TTYTBL

o 7 8

Table 3. Teletype Table

Number of characters in input buffer

Next available space in input buffer (pointer)

Next fi lied space in input buffer (pointer)

Number of characters in output buffer; -1 = inactive

<0 = Not in multiple blank mode; 400 = just saw 135 (multiple blank
character); other = number of blanks

Next filled space in output buffer (pointer)

Next available space in output buffer

N
00

S S o 0 001 Address of echo table or terminal character
S 10 for 8-level input

o 1 2 3 4 5 6 7 8 9 10 23

TTYFLG Don't listen for input (except escape) when O. Set when input buffer
is full.

TTYBRK Waiting for break character when -1
Waiting for any character when 37777777

PACPTR of fork to terminate on escape
TTYA5G~--~

3 7 7 7 7

o 23

TTYTIM ~ Value of clock when last action occurred on this TTY
L-~ __ ~

o 23

N5 = not 8-level
51 8-level input
SO 8-level output
ES last action was input of escape

12 Teletype Input/Output

15 16 23

TTY Status
active

inactive

These buffers are called character ring buffers (CRBs) and
they are not necessarily associated with teletypes.

When a character is typed in on a teletype, it is converted
to internal form and added to the input buffer unless it is an
escape on a controll ing teletype. The treatment of escapes
is discussed in Chapter 3. The echo table address is then
obtained from TTYTBL. The echo table determines what to
echo and whether or not the character is a break character.
The avai lable choices of echos and break characters are
discussed later in this section. If the character is a break
character, and if a user's program has been dismissed for
teletype input, it will be reactivated regardless of the num­
ber of words in the input buffer. In the absence of a break
character, the user's program is reactivated only when the
input buffer is nearly full.

If the teletype is in the process of outputting (TOS2>-1),
then the character to be echoed is put into the last byte of
the buffer word that contains the input character. When
the character is read from the buffer by the program, the
echo, if any, wi II be generated. This mechanism, called
deferred echoing, permits the user to type in while the tele­
type is outputting without having his input mixed with the
teletype output.

There are four standard echo tables in the system, referred
to by the numbers 0, 1, 2, and 3. Zero is a table in which
the echo for each character is the character itsel f, and all
characters are break characters. Table 1 has the same
echoes, but all characters except letters, digits and space
are break characters. Tabl e 2 a Iso has the same echoes, but
the only break characters are control characters (including
carriage return and I ine feed) and exclamation mark. Table
3 specifies no echo for any character, and all characters
are break characters. This table is useful for a program
that wishes to compute the echo itsel f.

Normally a carriage return and line feed are both echoed if
either is received from a teletype. However, only the first
one received is sent to the program and if the other one is a
also received it is ignored. A program can receive both by
issuing BRS BE+ 11. If A is negative, both characters wi II
be sent to the program. If A is positive, only the first char­
acter wi II be sent to the program.

If either I ine feed or carriage return is output by a program
both are sent to the teletype unless the carriage is at the
left margin. In this case, only a line feed is output for
either a carriage return or a line feed. If a program wishes
to send only one character, it should output 102B for line
feed or 105B for carriage return.

To set the echo table, put the teletype number, or -1, in X
and the echo table number in A and execute BRS 12. Note
that BRS 12 is also used to turn on 8-level mode (see below).
To read the echo table number into A, put the teletype num­
ber, or -1, in X and execute BRS 40. This operation returns
the echo table number in A. If the teletype is in 8-level
input mode, the sign bit of A is set and the terminal charac­
ter is in A.

To input a character from the controlling teletype (the tele-

type on which the user of the program is entered) into loca­
tion M in memory, the SYSPOP

TCI M (teletype character input)

is used. This SYSPOP reads the character from the teletype
input buffer and places it into the 8 rightmost bits of loca­
tion M. The remainder of location M is cleared. The
character is also placed in the A register, whi ch destroys
the former contents.

The contents of the other internal registers are preserved by
this and all the other teletype SYSPOPS and BRSs.

To output a character from location M, the SYSPOP

TCO M (teletype character output)

is used. This instruction outputs a character from the right­
most eight bits of location M. In addition to the ordinary
ASCII characters, all teletype output (other than 8-level)
operations will accept 135 (octal) as a multiple blank char­
acter. The next character will be taken as a blank count,
and that many blanks will be typed.

The TTYTIM cell in the teletype table is set to the current
value of the clock whenever any teletype activity (interrupt
or output SYSPOP) occurs. The top bit is left clear unless
the activity is an escape input. This cell is checked by
the escape processor to determine whether the escape should
reset the job to the system exec (see Chapter 3).

Every teletype in the system is in one of two states:

1. It may be the controll ing tel etype of some user's pro­
gram. It gets into this state when a user logs in on it.
Control I ing tel etypes are also known as attached
teletypes.

2. It may be completely free.

The status of the teletype is reflected by the contents of
TTYASG. If the teletype is free, TTYASG contains 3777B.
If it is a controlling teletype, TTYASG contains the PACPTR
of the fork to terminate on escape.

A teletype becomes a controlling teletype when an "ON"
interrupt (from that line) is received by the computer. This
indicates that someone has called that I ine. The user then
has one-and-a-half minutes to log in before the system hangs
up the I ine again. The system checks for carrier presence
on a line before sending out any characters. To do this a
system fork may issue BRS BE+3 with the line number to check
in A.

The user may disconnect the I ine by hanging up the phone.
BRS 112 is executed when an "OFF" interrupt is received by
the system or when a user logs out. If an "OFF" interrupt
has been received, BRS 112 merely makes the line available
again. However, if a user has logged out without hanging
up the phone, BRS 112 makes the teletype the controll ing
teletype for another job immediately and the next uSer can

log in without dialing the system again, BRS 112 tokes the

Teletype Input/Output 13

job number associated with the teletype in X. A job may
terminate itself. This operation also releases all teletypes
attached to the job. BRS 112 requires system status.

An exec fork can turn a line on or off by issuing BRS BE+6.
It takes the line number in A and turns it on if B is negative
or off if B is positive.

The user has considerable control over the state of the tele­
type buffers for the control I ing teletype. In particular, he
may execute the following BRSs. All these take the tele­
type number in X. Recall that -1 may be used for the con­
trolling teletype.

BRS 11

BRS 29

BRS 13

BRS 14

clears the teletype input buffer.

clears the teletype output buffer.

skips if the teletype input buffer is empty.

waits until the teletype output buffer is
empty, but not unti I the interrupt has been
received for the last character.

Special provision is made for reading 8-bit codes from the
teletype without sensing escape or doing the conversion from
ASCII to internal which is done by TCI. To switch a tele­
type into this mode, execute

14 Teletype Input/Output

LOX

LOA

BRS 12

teletype number

terminal character + 40000000B

This will cause each 8-bit character read from the teletype
to be transmitted unchanged to the user's program. The
teletype can be returned to normal operation by

1. reading the terminal character specified in A,

2. setting the echo table with BRS 12

No echoes are generated while the teletype is in 8-level
mode. Teletype output is not affected.

A parallel operation, BRS 85, is provided for 8-level output.
BRS 86 returns matters to the normal state, as does any set­
ting of the echo table.

To simulate teletype input, the operation

STI =teletype number or =-1

is available. STI puts the character in A into the input
buffer of the specified teletype. Either the teletype number
must be the controlling teletype or the fork issuing STI must
be a system fork.

8. ORGANIZATION OF DISC AND BUFFER DEVICES

FILE STORAGE ON DISC

The physical records for the storage of files are divided in­
to blocks of 256 words. The files use the disc in groups of
4 sectors with 64 words per sector.

The disc files used by this system consist of 8 to 32 physical
discs, with each disc having movable arms. The arms have
64 positions numbered 0 to 63 and each arm position on a
disc can access 8, 192 words. Each arm position contains
four pages (a page is 1/4 of an arm position) and one page
contains 2,048 words. It is possible to access four pages
without moving an arm position.

For example, if the total number of arm positions are multi­
pi ied times the words per arm positions, the total number of
words per disc can be calculated (e.g., 8, 192 words x 64
arm positions equals 524,288 words per disc).

The disc is divided into two major sections: system data
and file storage. The disc map given in Figure 6 illustrates
the disc layout. Note that the octal addresses (0 40 100
140) are the beginning addresses for the four pag:s in 'a spe~
cified arm position. In this addressing scheme, each incre­
ment of one represents one sector of 64 words. Therefore,
four addresses such as 0, 1, 2, and 3 would represent a
physical record containing 256 words.

II User 400 FD" in an arm position 0 at disc 0 represents the
file directory or the individual's user number. II Acct 1 UAD"
(arm position 1 at disc 4) is the user's account directory that
the system accesses for the user.

The format for the disc address word is as follows.

o 5 6

Physical
disc

10 11

Sector in one position

Logical
track
pair

~

Sector

16 17 18 19 23

where

Phys ical Disc

Bits 6-10 specify one of the 32 possible discs in
the fi Ie unit.

Logical Track Pair

Bits 11-18 specify one of the 256 track pairs on
the disc. A track pair consists of one outer and
one inner track ..

Bits 11-16 actually specify one of the 64 positions
of the access arm.

Bits 17-18 actucllyspecifyoneoffourlogical pairs
that can be accessed wi thout movi n9 the arm.

Sector

Bits 19-23 specify one of the 32 sectors in each
logical track pair. Two disc revolutions are re­
quired to access the 32 sectors on one logical
track pair.

Bits 17-23 specify the 128 sectors that can be ac­
cessed without moving the arm. Eight disc revolu­
tions are required to access the entire sector string
from one arm position.

Every file has one or more index blocks that contain pointers
to the data blocks for the file. An index block is a 256
word block, as are all other physical blocks in the file stor­
age area. Only the first 128 words of the index block are
used. A couple of additional words are used to chain the
index blocks for any particular file, both forward and back­
ward. The index blocks for a fi Ie contain the addresses for
all the physical blocks used to hold information for the file.

Available storage in the file area of the disc is kept track
of with a bit table. If a bit in this table is set, it indicates
that the corresponding block on the disc is free. The bit
map is set every time the system is brought up to agree with
the files in the file directories. To set the bit map, BRS
BE+5 is used. It requires an index block pointer (MOD4) in
A. When all files have been checked, the BRS is called
with a -1 in A, the new overflow pointer in B, and the
accounting area address in X.

FILE BUFFERS

Every open file in the system with the exception of purely
character-oriented files such as the teletype has a file buf­
fer associated with it. The form of this buffer is shown in
Figure 7.

The layout of a fi Ie buffer shows the buffer proper, and the
layout of the index block buffer. The pointers associated
with it are used only by disc files and are present in all cases.

The temporary storage page that is associated with each job
is always the first entry in the job's PMT. This page is used
to hold information about the user and for the system's temp­
orary storage for that user. It also has room for three buf­
fers. The pseudo-relabel ing for this TS page is held in a
table called RL3 which is indexed by job number, and is put
into the monitor map whenever any fork belonging to that
job is run. This TS page is always relabeled into page 7.

Note that the amount of buffer space actually used is a
function of the device attached to the file. In all cases,
the two pointer words at the head of the buffer indicate the
location of the data. The first word points to the beginning
of the relevant data and is incremented as data is read from
an input buffer. The second word points to the end of the
data and is incremented as data is written into an output
buffer. \"Ihen the buffer is in a dormant state, both words
point to the first word of the buffer. Whenever any physical

Organization of Disc and Buffer Devices 15

0 1 2

1 page 0 User Date
400 user 1

40 FD FD
100 user
140 77

0 User User 2048 ...
500 100

40 FD FD 2048
100 2048
140 2048

0

40
100
140

User User

} 600 200
FD FD

8K

{ a words
per 40
arm 100
position 140

User User
700 300
FD FD

0 User Acct
1000 1

40 FD UAD
100 Acct
140 127

0 User
1100

40 FD
100
140

0 User
1200

40 FD Acct
100
140

0 User
1300

40 FD Letter
100
140

OOXX 02XX 04XX

16 Fi Ie Storage on Disc

Arm Positions

31 32 33 34

One arm position allows access to
8, 192 words or four pages of 2, 048 words

One arm position allows access to
32 blocks of 256 words each

76XX 100XX 102XX 104XX

Figure 6. Disc Map

61 62 63

LOC 0 LOC 0

LOC 1 LOC 1

LOC 2 LOC 2

LOC 3 LOC 3

LOC 4 LOC 4

LOC 5 LOC 5

LOC 6 LOC 6

LOC 7 LOC 7

172XX 174XX 176XX

Disc 0
(OXXXX)

Disc 1
(2XXXX)

Disc 2
(4XXXX)

Disc 3
(6XXXX)

Disc 4
(10 XXXX)

Disc 5
(12XXXX)

Disc 6
(14XXXX)

Disc 7
(160000-
177740)

Layout of a Fi Ie Buffer

Pointer to first relevant data word of buffer

Pointer to last relevant data word of buffer

first data word

255th data word

Layout of Index Block Buffer and Associated Pointers for a Disc File

BIN Number of the index block in buffer

BIC Index changed flag

BDN Number of the data block in buffer

BDC Data changed flag

BIP Pointer to index block entry for current data block

BIA Disc address of current index block

first index block word

.

0101 ~I Disc address tt

a 1 2 3 23

121st index block word

Check word

tRandom files only

ttlndex block word format. EOR end of record flag.

Figure 7. Buffers

File Storage on Disc 17

I/O operation is completed, the first point contains the ad­
dress of this word.

DEVICES

Every different kind of input/output device attached to the
system has a device number. The numbers assigned to speci­
fic devices are given in Chapter 9. The various tables in­
dexed by device numbers are described here. The entries
in these tables addressed by a specific device number to­
gether with the unit number (if any) and the buffer address,
completely define the fi Ie. All this information is kept in
the file control block which is addressed by the file number.

The table indexed by device number are shown in Figure 8.

Note that multiplicity of bits which specify the character­
istics of the device. A device may be common (shared by
users, who must not access it simul taneously; e.g., tape or
cards) or not common (e.g., disc); this characteristic is de­
fined by NC (not common). It may have units; e.g., there

DEV word or
character I/O
routine

o 1 2 3 4 5 6 7 8 9 10

may be multiple mag tapes. The U bit specifies this. The
DIU word indicates which file is currently monopolizing the
device; in the case of a device with multiple units, DIU
points to a table called ADIU which contains one word for
each unit.

The major parameters of a device are

the opening routine, that is responsible for the opera­
tion necessary to attach it to a file.

the GPW routine, that performs character and word I/O,

the BIO routine, that performs block I/O.

The minor parameters are

maximum legal unit number,

physical record size (determining the proper setting of buf­
fer pointers and interlace control words for the channel),

GPW routine

23

CH
DSC

Char oriented
Disc

RX = Random Access
BF = Requires Buffer

WD = W Buffer
OUT = Output

BUFS
Buffer size

o 0 N
C

o 1 2 3

Max unit U Physical record size
number

8 9 10

U = Check unit number NC = Not common (i.e., don't set DIU)

BDEV
Block I/o
Routine

DIV
device in
user

OPNDEV
Opening
Routine

18 Fi Ie Storage on Disc

II
1

0

1

BIO routine

0 9 10

Fi Ie number using this device or -1

Point to ADIU (has unit number added)

0

Expected
K> 0 E wait time 0 Opening subroutine

0 in cycles

o 1 2 3 8 9 10

EO = Exec only allowed to open

Figure 8. Device Tables

23

23

U 0

U

23

23

the expected time for an operation; the swapper uses
this number to decide whether it is worthwhile to swap
the user out while it is taking place.

SYSTEM DATA ON OUTER ARM POSITION OF DISC

Arm positions 62 and 63 contain systems which are loaded
by a special routine that is kept on paper tape. This routine
dumps the first 32K of core on discs 0 and 1, then reads a
new system into the first 16K of core. The disc from which

the new system is read is determined by console switch settings.

Arm positions 0 and 1 contain the file directories, account­
ing information, and data.

There are four BRSs avai lable to system level forks to read
and write the system data on the disc. These are BRS BE+ 1,
BRS BE+2, BRS BE+9 and BRS BE+10. They require the core
address in A and the disc address in B. In addition BRS BE+ 1
and BRS BE+2 take the word count in X. BRS BE+9 and BRS
BE+ 10 always read or write a page (2K) from or to the disc.

9. SEQUENTIAL FILES

SEQUENTIAL DISC FILES

There are two basically different kinds of files that the user
may write on the disc: sequential and random. A sequential
file has a structure very similar to that of an ordinary mag­
tape file. It consists of a sequence of logical records of
arbitrary length and number. Disc sequential files are,
however, considerably more flexible than corresponding
files on tape, because logical records may be inserted and
deleted in arbitrary positions and increased or decreased in
length. Furthermore, the file may be instantaneously posi­
tioned to any specified logical record.

A sequential disc file may be opened by the following se­
quence of instructions:

LDX =device number, 8 (input) or 9 (output)

LDA Address of first index block

BRS 1

If the file is opened successfully, the BRS skips; otherwise
it returns without skipping. Use of this BRS is restricted to
users with system status. User programs may access disc
files only through the Executive fi Ie handl ing machinery.
BRS 1 can also be used to open other kinds of files which
will be discussed later in this chapter.

If BRS 1 fails to skip, it returns in the A register for the fol­
lowing reasons:

-2 too many files open - no file control blocks or no
buffers avai lable.

-1 device already in use. For the disc, produced by
an attempt to open a fi I e for output twi ceo

o no disc space left. This inhibits opening of output
fi les only.

BRS 1 returns a file number for the file to the A register.
This file number is a useful identification that the user has
for the file. He may use it to close the file \A/hen he is done
with it by putting it in the A register and executing BRS 2.

This releases the file for other uses. BRS 2 is available to
both user and Executive programs.

To close all his open files the user may execute BRS 8.

If the sign bit of A is set when the BRS 1 is executed, the
file is made read-only. This means that it cannot be
switched from input to output. If this bit is not set, then
the instruction:

LDA =file number

LDB =1

BRS 82

will change the file to an output file regardless of its initial
character. The instructions:

LDA =fi Ie number

LDB =1

BRS 82

are always legal and make the file an input file regardless
of its initial character.

Three kinds of input/output may be done with sequential
files. They are character input/output (CIO), word input/
output (WIO) and block input/output (BIO). Each of these
is specified by one SYSPOP. Each of these SYSPOPS can
perform input or output since the file must be specified as
an input or an output file when it is opened.

A file that is open for output cannot be opened again for
either input or output and a fi Ie that is open for input can­
not be opened for output. However, a fi Ie may be opened
for input any number of times.

To input a single character to the A register or output it
from the A register, the instruction

CIO =file number

is executed. During input, an end of record or end of file

Sequential Files 19

condition will set bits 0 and 8 or bits 0 and 7 in the file
number (these are called flag bits) and return a 1348 or
137

8
character, respectively. If interrupt 4 is armed, it

will occur. The end of record condition occurs on the next
input operation after the last character has been input. The
end of file condition occurs on the next input operation
after the end of record, whi ch signals the last record of the
file. The user may generate an end of record while writing
a file by using the control operation to be described. An
error condition sets bits 0 and 6 in the file number.

To input a word to the A register or output it from the A
register,

WIO =fi I e number

is executed. An end of fi Ie condition returns a word of
three 1378 characters.

Mixing word and character operations will lead to pecul­
iarities and is not recommended.

To input a block of words to memory or output them from
memory, the instructions:

LDX =first word address

LDA =number of words

BIO =file number

should be executed. The contents of A, B and X will be
destroyed. The A register at the end of the operation con­
tains the first memory location not read into or out of.

If the operation causes any of the flag bits to be set, it is
terminated at that point and the instruction fails to skip. If
the operation is completed successfully, it does skip. Note
that a BIO cannot set both the EOR and the EOF bits, how­
ever, BIO is still implemented with considerable efficiency.

The flag bits of the file number are set by the system when­
ever end-of-record (0 and 8) or end-of-file (0 and 7) is en­
countered and cleared on any input/output operation in
which neither of these conditions occurs. Bit 0 is set on
any unusual condition. In the case of a BIO the A register
at the end of the operation indicates the first memory loca­
tion not read into or out of. For any input operation, the
end of record bit (bit 8) of the fi Ie number may be set. An
output operation never sets either one of these bits. Bits 0
and 6 of the file number may be set on an error condition.
Whenever any flag bit is set as a result of an input/output
operation in a fork, interrupt 4 wi II occur in that fork if it
is armed.

The CTRL SYSPOP provides various control functions for
sequential disc files. To use this operation execute the
instructions:

LDA =control number

LDB =count, (if required)

CTRL =file number

20 Sequential Disc Fi les

Table 4 gives the available control numbers.

Table 4. Control Numbers

Control
Number Description

1 Write end of record on output or skip the
remaining part of the logical record on in-
put. This control does not take a record count.

2 Backspace (B) physical tape blocks.

3 Forward space (B) physical tape blocks.

4 Delete (B) tape blocks (legal on output only).

5 Space to end oHile and backspace(B} physi-
cal tape blocks.

6 Space to beginning of file and forward space
(B) physical tape blocks.

7 Insert logical record (legal on output fi Ie
only). This control does not require record
count.

8 Write end of file (output only).

A program may delete all the information in a disc file by
executing the instructions:

LDA =file number

BRS 66

The index block for a sequential disc file contains one word
for each physical record in the file. This word contains the
address on the disc of the physical record in the bottom 21
bits. Bit 2 is set if the physical record is the last record of
a logical record. A sequential file may have only one in­
dex block, or a maximum of 121 x 255 = 30,855 words of data.

Putting the file number of a sequential file in A and execu­
ting BRS 113 will cause the file to be scanned to find the
total number of data words. The number of data words is
added to X. This also works for random files.

Three operations are available to executive programs only.
They are intended for use by the system in dealing with file
names and Executive commands.

A new disc file with a new index block can be created by
BRS 1 with an index block number of 0 in A. The file num­
ber is returned in A as usual and the index block number in
X. The read-only bi t may be set (bit 0 of A) as usual and

BRS 67

returns the index block with address in A to avai lable stor­
age. An Exec fork may read an index block into core with

BRS 87

which obtains the address of the block from A, and from X,
the address of the first word in core into which the block is
to be read.

A single word of a sequential fi Ie may be directly addressed
by specifying the logical record number and word number
within the logical record. All the operations legal for ran­
dom files (see Chapter 10) can also be used for sequential
files with this convention. The format of the address is

o 0

012

record number
(6 bits)

7 8

word address
(16 bits)

OTHER SEQUENTIAL FILES

23

In addition to disc sequential files, the user has some other
kinds of sequential files avai lable to him. These are all
opened with the same BRS 1:

LDX =device number

LDA =unit number

BRS

Available device numbers are given in Table 5.

Table 5. Device Numbers

Device Device No.

Paper tape input 1

Paper tape output 2

Mag-tape input 4

Mag-tape output 5

Card punch Hollerith 6

Card punch binary 7

Line printer output 11

Card input Hollerith 12

Card input binary 13

The device number is put into X. The unit number, if any,
is put into A. The file number for the resulting open file is
returned in A. If BRS 1 fails it returns an error condition
in A as described in Chapter 9. Three error conditions
apply to mag-tape only:

o Tape not ready

Tape file protected (output only)

2 Tape reserved

BRS 1 is inverted by BRS 110, which takes a file number in
A and returns the corresponding device number in X and
unit number in A.

These files may also be closed and read or written in the
same manner as sequential disc fi les. The mag-tape is not
available to the user as a physical device.

CTR L = 1 (end of re cord)

is available for physical sequential files 3 and 5 (paper
tape and mag-tape output). Several other controls are also
available for mag-tape files only. These are given in
Table 6 ••

Table 6. File Control for Mag-tape

Operational
Control Mag-tape File Control
No.

2 Backspace block

3 Forward space fi Ie

4 Backspace fi I e

5 Write three inches blank tape

6 Rewind

7 Write end of file

8 Erase long gap

These controls may be executed only by executive type pro­
grams. I/o operations to the mag-tape may, of course, be
executed by user programs if they have the correct file number.

An Executive program may allocate a tape unit to itself by
putting the un it number in A and executing BRS 118, whi ch
skips if the tape is not already attached to some other job.
BRS 119 releases a tape so attached.

It is possible for mag-tape and card reader files to set the
error bit in the file number. The first I/o instruction after
anerrorconditionwill read the first word of the next record;
the remainder of the record causing the error is ignored.
The mag-tape routines take the usual corrective procedures
(i.e., reread or rewrite) when they see hardware error flags,
and the routines signal errors to the program only as a last resort.

In order to make the card reader look more I ike other fi les
in the system, the following transformations are made by the
system on card input:

1. All non-trai I ing strings of more than two blanks are
converted to a 135 character followed by a character
giving the number of blanks. The teletype output
routines will decode this sequence correctly.

2. Trailing blanks on the card are not transmitted to the
program.

3. The card is not regarded as a logical record. However,
the system generates the character 155 (carriage return)
at the end of each card.

The result of this configuration is that the string of charac­
ters obtained by reading in a card deck may be output with­
out change to a teletype and wi II resul t in a correct listing
of the deck.

Whenever a card reader error (feed check or val idity check)
occurs, the program is dismissed unti I the reader becomes
not ready.

Sequential Disc Fi les 21

The EOF light is sensed as an end of file at all times.

The phantom user's ten second routine checks tosee whether
a W-buffer interrupt has been pending for more than ten
seconds. If so it takes drastic and i II -defined action to
clear the W-buffer. SRS 114 also takes this drastic action;
it can be used if a program is aware that the W-buffer is
malfunctioning.

FILE CONTROL BLOCKS

Every open file in the system has a file control block asso­
ciated with it. This block consists of four words shown in
Figure 9.

CHARACTER BUFFERS

Chapter 7 describes the format of a teletype buffer. These

dealing with any character-oriented device. For this reason
the character ring buffers are not directly indexed by the
physical number of the teletypes to which they are associ­
ated. Instead, a table indexed by physical teletype number
is used to obtain the buffer number.

PERMANENTLY OPEN FILES

There are a few buil t-in sequential files with fixed fi Ie numbers.

o con troll ing teletype input

control I ing teletype output

2 nothing (discard all output)

1000+n input from teletype n

2000+n output to teletype n

buffers not only deal with the teletype but are capable of Figure 10. Fixed Fi Ie Numbers

FA 0 UO First index block address or 0 or subroutine

o 234

address or unit number

Device
o

o 1 2 3 4 5 6 7 8 9 10

Char.

23

23

FC
count Job no. 0 Disc buffer address or 0

023 8 9 10

FW C
1

o 7 8

C = Word being packed or unpacked
n

Char. count -1 to 2

CH Character oriented

OUT Output

BS Buffer busy. If BS = 1 I/O is in progress

DF Disc file on = disc file

tDisc files only

15 16

Rxt

RDt

BP

ERR

U

00

Figure 9. File Control Block

22 Sequential Disc Files

23

23

Random access

Read only

= Buffer in use and protected

= Error

= Unused

= Old output fi Ie

10. SUBROUTINE FILES

In addition to the previously mentioned operations for per­
forming input-output through physical files, a faci I ity is
provided in the system for making a subroutine call appear
to be an input-output request. This facility makes it possi­
ble to write a program which does input-output from a file
which causes further processing to be performed before the
actual input-output is done, simply by changing the fi Ie
from a physical to a subroutine fi Ie. A subroutine fi Ie is
opened by executing the instructions

LDX parameter word

BRS

The instruction never skips. The opcode field of the param­
eter word indicates the characteristics of the file. It may
be one of the following combinations:

110 OOOOO(octal)

111 OOOOO(octal)

010 OOOOO(octal)

011 OOOOO(octa I)

Character input subroutine

Character output subroutine

Word input subroutine

Word output subroutine

I/o to the file may be done with CIO or WIO, regardless
of whether it is a word or a character oriented subroutine.
The system will take care of the necessary packing and un­
packing of characters. BIO is also acceptable.

The opening of a subroutine fi Ie does nothing except to
create a fi Ie control block and return a file number in the
A register. When an I/o operation on the file is performed,
the subroutine will be called. This is done by simulating an
SBRM to the location given in the word following the BRS 1
which opened the file. The contents of the B and X regis­
ters are transmitted from the I/O SYSPOP to the subroutine
unchanged. The contents of the A register may be changed
by the packing and unpacking operations necessary to con­
vert from character-oriented to word-oriented operations or
vice versa. The I/o subroutine may do an arbitrary amount
of computation and may calion any number of other I/o
devices or other I/o subroutines. A subroutine file should
not call itself recursively.

When the subroutine is ready to return, it should execute
BRS 41. This operation replaces the SBRR which would nor­
mally be used to return from a subroutine call. The contents
of B and X when the BRS 41 is executed are transmitted un­
changed back to the call ing program. The contents of A
may be altered by packing and unpacking operations. A
subroutine file is closed with BRS 2 like any other file.

In order to implement BRS 41, it is necessary to keep track
of which I/o subroutine is open. This information is kept
in 6 bits of the PAC table. The contents of these 6 bits is
transferred into the opcode field of the return address when
an I/O subroutine is called, and is recovered from there
when the BRS 41 is executed.

11. EXECUTNE TREATMENT OF FILES

The user's only access to files is through the Executive. The
Executive provides a connection between a symbol ic name
for a file, that is created by the user, and the file numbers
that the user must have in order to execute input/output op­
erations. This construction is establ ished through the fi Ie
directory. Supplementary to this function is the need to
prevent the user from destroying other people's files.

The first part of this chapter contains a description of the
file naming system as it appears to the user, and continues
with a description of the Executive tables that implement
the various features.

A user may give his files arbitrary names containing any
characters other than' or /. The names of new disc fi les
may be surrounded by /, and the names of new tapes fi les
must be surrounded by '. When a fi Ie is created it's name
must be enclosed within one or the other of these characters.

When a user types a file name not enclosed within slashes
or quotes, he need only type enough characters of the name

to determine it uniquely. If the user starts an output file
name with a quote or slash, he must type the entire name.
If it is an output file name and not already in his file direc­
tory, a new fi Ie wi II be created. In any other context, a
name not in the file directory is in error.

When an output fi Ie name is being typed, the system, after
determ in ing the name, wi II type out ei ther OLD FILE or
NEW FILE and await a confirmation that the name has been
given correctly. If the user types either of the characters,
I ine feed or carriage return, the name wi II be regarded as
correct. Any other character will be regarded as an indi­
cation that the name was incorrect. This machinery is in­
tended to make it more difficult for the user to destroy old
files or create new ones inadvertently.

When a new slashed output file name is given to the system,
a new entry in the file directory and a new index block on
the disc are created for it. If the name is being given to an
executive command, it will be assumed that the file is a
sequential one.

Subroutine Files/Executive Treatment of Files 23

It is possible for the user to reference fi les belonging to
users other than himself if the fi Ie name contains at least
one control character or an @. He does this by preceding
the file name with the account number and user name en­
closed in parentheses. Thus, to get at file /@PROGRAM/
belonging to user JONES, he might type

(A 1 JONES)/@PROGRAM/

In this way Jones may control the extent to which other
users can access his fi les.

Files in a public file directory may be accessed by typing
the file name in quotes

"PROGRAM".

The previous paragraphs have described the behavior of the
systemls file naming logic when it is recognizing names
typed in on a teletype. The BRSs that recognize file names
are capable, however, of accepting them in many other
ways. Essentially, they accept a string pointer to the por­
tion of the name already known (which may be null) and
file numbers for the input fi Ie to be used in obtaining the
rest of the name, and the output fi Ie on which the name
should be completed. In most cases the first or the second
of these items will be irrelevant.

A program may open a disc file and obtain a file number by
executi ng BRS 15 and BRS 16 (i nput) or BRS 18 and BRS 19
(output). BRS 15 and BRS 18 expect to get the file name
from the teletype. If the name is known to the program,
they may be replaced by BRS 48. These BRSs are used in
the following way.

LOA =fi Ie number

BRS 15 (or BRS 18)

EXCEPTION RETURN

NORMAL RETURN

The normal return leaves a file directory pointer in A, and
BRS 18 leaves the character typed after" OLD FILE/NEW
FILE in B. If no character was read, B contains a -1. The
X register is modified.

LOA =file directory pointer

LOX =File type (BRS 19 only)

BRS 16 (or BRS 19)

EXCEPTION RETURN

NORMAL RETURN

The normal return leaves a file number in A, and BRS 16
leaves the file type in B. X is modified.

There are four standard file types:

1. File written by executive save command
(sequential)

2. General binary file (sequential)

24 Executive Treatment of Files

3. Symbol ic fi Ie (sequential)

4. Dump file (sequential)

BRS 48 or 60 may be substituted for BRS 15 or 18. BRS 48
is used if the name is in the fi Ie directory and BRS 60 wi II
create a new name if necessary.

LOP =string pointers

BRS 48 or 60

EXCEPTION RETURN

NORMAL RETURN

A string pointer is a character address found by mul tiplying
the word address by three and adding 0, 1 or 2. The string
pointer in A points to the character before the beginning of
the file name. The pointer in B points to the last character
of the name.

ARPAS assembles string pointers as follows for string pointers
P1 and P2:

P1

P2

Z

DATA

DATA

ASC

(R) Z-l

(R) Z+2

I/T/'

The string pointers point to the file name to be looked up in
the file directory. The normal return leaves a file directory
pointer in A. All other registers are modified. If the fi Ie
name cannot be located in the fi Ie directory, the BRS 48
takes the exception return, while the BRS 60 will attempt
to place the new name in the file directory; if it is unable
to do so because the fi Ie directory is full, it wi II take the
exception return.

It is possible for a user to rename his fi les by typing

RENAME /PROGRAM/ as ROUTINE

The rename logic protects the user against creating filenames
that confl ict with existing file names or with the fi Ie type.

The file directory consists of an SPS hash table together with
a table of equal length, called the description table (DBT),
which has a three-word entry corresponding to each three­
word entry in the hash table. In addition, there is a string
storage area for storing file names and a few words of mis­
cellaneous information. The parameters of a file directory
are shown in Figure 11, and the format of a single hash table
entry and matching DBT entry are shown in Figure 12.
Executive commands for examining the file directory and
setting various bits are described in Chapter 12. In addi­
tion, a number of BRSs are provided which permit the user IS

program to affect the contents of the file directory.

The creation date of file is set to the current date each
time it is opened as an output file. The field "No. of
Accesses" is incremented each time the file is opened for
input or output. There are five file names buil t into the
system. They are:

PAPER TAPE}

PRINTER

TELETYPE }

NOTHING

the user must have peripheral status
to use these files

Avai lable to all users

These names may be used at any time and have the obvious

significance. If the device referred to is not available be­
cause it is attached to some other user, a suitable error mes­
sage will be generated. Paper tape output files opened by
giving this name to the Executive will have the type of the
file punched as the first word. Similarly, paper tape input
files opened by giving this name to the Executive will read
the first word from the paper tape and del iver it as the type.

Symbol

FDCTl

FDCTl1

FDCTl2

FDCTlC

FDCTlE

FDHT

EFDHT

DUMHT

FDSS

I
144

words

1

T
148

words

J.-

T
120

words

1

Hash Table Control Words

location of Hash Table

location of end of Hash Table

Working

Character addresses of string storage

End string storage

0

Hash Table Entry, (see Figure 12) 3 words

Reserved end

Dummy Hash Table Entry, 3 words

Corresponding table, 3 words

String storage

48
entries

1

Figure 11. File Directory Arrangement

Executive Treatment of Files 25

CB FT Pointer

LTP To File name

HTP 0 (32K) FS (Value)

o 5 6 8 9 23

Physical Device

1 0 Pointer to

0 File name (In "PFDSS II table)

FT Fi Ie type
1 2 3 4 0 DN

LTP Low order tape position

0235689 11 12 19 20 23
HTP High order tape position

Disc File FS Tape file size

FL File length for disc files

2 FT Pointer C Change in fi Ie length

0 To File name
CB File control bits - 0 = Tape file

2 = Disc file

F End of entry flag (1)
Index block pointer

o 2 3 5 6 23

Corresponding Table Entry

C 0 FL

Creation date
o Account No. No. of accesses

Month I Day

CB FT LTP Future controls

0235689 11 12 14 15 17 18 23

Figure 12. Hash Table Entry

26 Executive Treatment of Files

12. EXECUTIVE COMMANDS RELATED TO FILES

When a user logs in to the system, his complete file direc­
tory is read in from the disc and placed in the file directory
hash table along with the name of the physical devices.
The "LOGIN" procedure is described in the SOS Terminal
Users Guide, Pub I ication No. 90 11 18A.

The following executive commands are related to the users
file directory and are also described in the SOS Terminal
Users Guide.

1. FILES

2. WRITE FO

3. FO

4. DELETE

5. RENAME

DELETE file is used to delete a file from the directory, and
RENAME is used to change the name of a file in the direc­
tory. FILES cause the complete directory to be typed while
FO types only a single entry. Executive class users who
have system status will receive the following special output:

p, dt, s name

Key Tape Files Disc Files

p Tape position 0
(octal)

d Blank 2

t File type Fi Ie type (1 through 4)
(1 through 4) (see Chapter 11)

s Fi Ie size Index block pointer

A colon typed after either of the above commands, wi II
cause the length (in numbers of words) of a disc file to be
typed out; the format is as follows where I is the length

p, dt, s, I name

Another feature of the system status typeout is that any con­
trol characters in the file name will be typed out in two
characters; the first character is the ampersand "8:. 1

• For
example, if the name of the file was /(bell)PROGRAM/, it
would type out the message

0, 23, 12640/8G PR OGRAM/

The command II OF" can only be used by users wi th a special
system status since it can create new file names while by­
passing all system protection. The complete file parameters
must be typed as follows

OF file name AS p, dt, s

where the key to the parameters is the same as described
above. OF and AS are part of the command and are required
for defining files. The disc file would be written in the
following way.

OF /file name/ AS 0,23, 10240

An example of a tape file would be

OF Ifile name l AS 7,3, 10240

The command "WRITE FOil causes the current fi Ie directory
(as it appears in the file directory hash table) to be written
on the disc. A description of the disc format is given in
Appendix A.

Executive Commands Related to Fi les 27

13.' EXECUTIVE COMMANDS

The following commands are accepted by the Executive and
are explained in detail in the SDS Terminal Users Guide,
Publication No. 90 11 18A. The commands listed below
would be applicable for all users.

LOGOUT Allows user to logout

WRITEFD Writes fi Ie directory on disc

RENAME Renames a file

DATE Types date and time

KILL PROGRAM Ki lis program relabell ing only

RESET Clears all of user's memory

COPY Copies file to file

FILES Types file directory

FD FOR Types selected file directory entry

GOTO Goes to a "GO TOil (type 1) file

PLACE Places a "SAVE" type program (type 1)
in core

SAVE Save program; creates GO TO or type 1
file

BRANCH Branches into a program

DELETE Deletes a file

TIME Types real time used

STATUS Types user's relabelling status

MEMORY Types user's unused memory

Causes typing to be ignored by EXEC

DUMP Dumps all program, saves status

RECOVER Recovers from a DUMP file (type 4)

CONTINUE Returns to subsystem being used before
the return to Exec

RELEASE Releases a subsystem

EXIT Allows a user to LOGOUT without
writing file directory

The following commands are also accepted by the Executive
but are for users with operator or system status only.

SHUT DOWN Starts system shut down

UP Cancels shut down

HANG UP II Hangs Up" selected teletype phone
lines (DSS)

ANSWER Answers (or enables) dato subset

ACCOUNTING Controls accounting to paper tape

LETTER Types broadcast letters

ABT Aborts tape operation (hal ts runaway)

28 Executive Commands

GFD

ENABLE

DISABLE

LOOK

SYSLD

Gets another user's fi Ie directory

Enables a subsystem group

Disables a subsystem group

Looks at real core locations

Allows load from disc directly into
user's core

The following commands are available only for users with
system status and are accepted by the Executive.

RSMT

SYSDP

SIZE

MAIL

SEND TO

Reads in from RAD a SMT Page

Allows core to be dumped directly on
disc

Sets user's machine size

Types all mail in user's mail box

Allows user to put letter in mail box

The following commands are accepted by the Executive for
users with system status or operator status.

USERS

WHERE IS

WHO IS ON

Types number of users on system

Gives teletype number for a user

Types users on system by account and
name

REWIND Rewinds tape, resets tape logic

RL T Releases tape

STN Sets tape number

PTN Types tape number

SETEXEC Sets user status

POSITION TAPE Positions tape

TAPE POSITION Types current tape position

DF

REMOVE FILE

PSP

CREATION

LFCRE

STORE

RETRIEVE

DIRECTORY

Allows a fi Ie directory entry to be set up

Removes file from directory (without
deleting)

Types error counters, etc.

Types file directory with creation date
and access count

Types creation date and access count of
selected file

Stores a file on magnetic tape (in back­
up format)

Retrieves a file from magnetic tape

Types file directory for files in backup
format

14. OPERATOR EXECUTIVE ROUTINES

FUNCTION

The general function of the operator Executive program is
to provide the operator with information or control of the
following permanently assigned areas of the disc:

The specific programs provided are not used as often as the
functions which are avai lable through system Executive.
Therefore, the program is initiated with a GO TO type
statement and is normally the operator1s file directory.

DESCRIPTION OF CONTROL COMMANDS
• File directories.

• User/account directory.

• Accounting data storage area.

The program has a simple command dispatcher that indicates
it is ready to receive a command by typing an asterisk. In
order to reduce operator error, the commands must be typed
completely. Each command is described in detail in this
chapter and the commands are I isted by category with a
brief description in Table 7. • Broadcast letter area.

COMMAND

FILES

CLEAR FILE

TIME

RESET TIME

SET DAY

SET HOUR

LENGTH

SIZE ACC OU NT

GARBAGE

POINTER

UAD

ACCOUNT

NAME

CANCEL ACCOUNT

CANCEL NAME

COpy RECORDS

CLEAR RECORDS

COUNT LETTER

REMOVE LETTER

LETTER

HELP

Table 7. Control Commands

DESCRIPTION

Fi Ie Directories

Outputs all or selected fi I e directories.

Clears a selected file directory.

Outputs the user's real and computer time as carried in the file directory.

Same as ti me but a I so cI ears the ti me words to zero.

Validates all or selected users for 24 hour/day.

Validates all or selected users for any selected time.

Computers length of all files by account number.

Uses length output to compute maximum storage used.

Removes unused areas from the overflow file directory area.

Indicates next avai lable overflow storage area.

User Account Directory

Outputs all or selected user/account directories.

Creates a new account or changes an account password.

Creates a new user name or changes a user name.

Cancels an account directory.

Cancels a user name out of a user/account directory.

Accounting Storage

Copies accounti ng records to a fi I e.

Copies accounting records to a file and then clears the accounting storage area.

Broadcast Letter

Counts the number of users who have not received each of the six broadcast letters.

Allows the operator to remove a broadcast letter.

Allows the operator to create a broadcast letter.

Miscellaneous

Lists all of the operator executive routine commands.

Operator Executive Routines 29

OPERATING PROCEDURES

This section describes the general operating instructions,
program loading, assembly and a description of the opera­
tor executive routines given in Table 7.

GENERAL OPERATING INSTRUCTIONS

The operator calls the program by typing

GO /OPER/ @

*

where

/OPER/ is the name of the program.

* which is typed by the program, indicates that the
program is ready to receive the first command.
The typed command is then followed by a carriage
return or a I inefeed if appropriate.

~ Generally the carriage return confirmation
indicates to the program that the complete output
is desired. There is also a linefeed (6) command
which indicates that a selected output (for a par­
ticular user number in case of the file directories
or for a particular account number in case of the
user account directories) is desired and that a user
number or account number wi II be suppl i ed as
appropriate to the command.

If an inval id command is typed, the program wi II respond
with a question mark and type the asterisk, indicating that
the program is ready for another command.

PROGRAM LOADING AND ASSEMBLY PROCEDURE

The program consists of two symbolic files, usually called
/OP1/ and /OP2/. The first file is assembled by TAP in
the usual manner while the second file is assembled using
the CONTINUE command to the exec since it uses constants
contained in the first file. Both binary outputs are loaded
using the DDT command, :T and the program is then ready
to run, starting at location 240. Normally a program iden­
tifier is placed at location 237 so that the program is saved
from 237 to the final address (as typed by DDT) with the
starting address as 240.

DESCRIPTION OF OPERATOR EXECUTIVE ROUTINES

The following paragraphs describe all the commands con­
tained in the operator Executive routines program. The
command is shown along with the appropriate terminator.

where

~ only the carriage return is appropriate.

(0 only the I inefeed is appropriate.

GW / (0 either carriage return or I inefeed is appropriate.

30 Operating Procedures

The function of the command is then described followed by
the operating instructions; if any messages are typed by the
program, the messages are then shown along with the appro­
priate action to be taken by the operator. Actual example(s)
of the use of the command is then shown along with a typical
output, if any. In the examples, underscored copy repre­
sents copy produced by the system. Unless otherwise indi­
cated, copy that is not underscored in an example must be
typed by the user. Following the example an output descrip­
tion is suppl ied if appropriate.

Note: The outputs and inputs, if any, of all commands are
symbol ic files except for the COpy RECORDS and
CLEAR RECORDS which supply binary (type 2) out­
put file. This means that the comment OUTPUT FILE
includes the physical devices such as the printer and
teletype, except for the COpy RECORDS and CLEAR
RECORDS commands.

ACCOUNT

COMMAND: ACCOUNT ~

FUNCTION: Creates a new account or changes an account
password in the account user directory.

Operating Instructions. After giving the command the oper­
ator types the account number and the password, terminated
by a carriage return. The operator types the account param­
eter words, separating each parameter by a space, and ter­
minating the list with a carriage return. This will either
create a new password or change an old one.

EXAMPLES:

*ACCOUNT @)

B1XYZ @

o 0 @)

*

where

IB1"

"XYZ"

o 0

is the account number,

is the password,

set the account parameters to zero.

CANCEL ACCOUNT

COMMAND: CANCEL ACCOUNT @)

FUNCTION: Cancels account password and user names from
an account di rectory.

Operating Instructions. After giving the command termi­
nated by a carriage return, the operator types the account
number followed by a carriage return. The program will
then type the asterisk.

EXAMPLE:

*CANCEL ACCOUNT @)

B1 @

*

CANCEL NAME

COMMAN D: CANCEL NAME @)

FUNCTION: Cancels a user name out of a user account
directory.

Operating Instructions. After giving the command termi­
nated by a carriage return, the operator types the account
number and user name, followed by a carriage return. If
the name is located, the program will type

*

completing the operation. If the name cannot be located,
the program wi II type

NEW

INVALID USER

*

and the operator may then correct the name.

EXAMPLES:

*CANCEL NAME @)

B lJONES @)

OLD

*CANCEL NAME @)

B lJONES @l

NEW

INVALID USER

*

CLEAR FILE

COMMAND: CLEAR FILE @

FUNCTION: Clears a selected file directory.

Operating Instructions. The operator types the user numbers
for the file directories that are to be cleared. The command
must be terminated by typing a user number that is greater
than the last valid user number. Normally the operator will
terminate by typing 7777 and the program will respond with
the message

END OF JOB.

EXAMPLE:

*CLEAR FILE 0
234 @J

416 @)

7777 @J

END OF JOB

CLEAR RECORDS

COMMAND: CLEAR RECORDS @

FUNCTION: Copies accounting records to a file and then
clears the accounting storage area.

Operating Instructions. After the operator has given the
command, the program will ask for an output file; this file
cannot be a physical device such as the PRINTER or TELE­
TYPE since the output is binary (type 2 file). If a satisfac­
tory file name is given, the program will write the accounting
records to the file and return to the asterisk. If a bad file
name is given, the program will ask for the output file again.

EXAMPLES:

*CLEAR RECORDS @)

OUTPUT FILE: /ACCT/ @)

NEW (OLD) FILE @

COPY RECORDS

COMMAND: COpy RECORDS @)

FUNCTION: Copies accounting records to a file.

Operating Instructions. After the operator has given the
command, the program will ask for an output file; this can­
not be a physical device such as the PRINTER or TELETYPE
since the output is binary (type 2 file). If a satisfactory
file name is given, the program will write the accounting
records to the fi I e and return to the asterisk. If a bad fi I e
nameisgiven, the program will ask for the outputfile again.

EXAMPLES:

*COPY RECORDS @l

OUTPUT FILE: /ACCT/ @l

NEW (OLD) FILE @)

COUNT LETTER

COMMAN D: COUNT LETTER @)

FUNCTION: Counts the number of users who have not
received each of the six broadcast letters.

Operating Instructions. The operator merely gives the com­
mand terminated by a carriage return; the program will then
give the count in the following format:

0

2 975

3 0

4 0

5 1024

6 0

Operating Procedure 31

where the number in the left column is the letter number and
the number in the right column is the number of users who
have not received the letter (0 indicates the letter is not
being used and 1024, as for letter number 5, indicates the
letter has not been released). The letter program is cur­
rently implemented for a maximum of 1024 users.

FILES

COMMAN D: FILES @)/0

FUNCTION: Provides to an OUTPUT FILE the complete
or selected file directories.

Operating Instructions:

1. Command followed by a carriage return

The program will ask for the output file by typing
OUTPUT FILE:. The operator may then type any
appropriate output file name. If a wrong file name is
supplied the program will again type the message OUT­
PUT FILE:. The normal output file will be the printer
since the output may exceed the capacity of disc fi les.
The message EN D OF JOB wi II be typed when the last
file directory has been printed.

2. Command followed by a I ine feed

The program assumes the output file will be the tele­
type. The operator must type the user numbers for the
file directories desired. When a user number is typed
that is greater than the last val id user number the pro­
gram will type END OF JOB and terminate.

OUTPUT DESCRIPTION

Typical output with key to fields:

1. 116 7. 154

2. 0:03.41 8. 600000

') ".1::0 0 ')1 v. V;.J , 7. LI

4. 77777777 10. 23000000

5. 41 11. 25020

6. 65 12. /NAME OF FILE/

Key Breakdown:

1. User number.

2. Hours, minutes, and 1/100 minutes of computer time.

3. Hours and minutes of real time used (since reset time).

4. Valid on-time where each bit represents an hour of the
day. The left-most bit represents 00:00 to 01 :00.

5. Account number (where 41 woul d be account D 1).

6. Number of times the fi Ie was accessed since last disc
re-ordering. Reaches a maximum of 778 and stays there.

7. Creation date, where high order 4 bits is month less one
and low order 5 bits is day of month less one. Example
of 154 is April 13.

32 Operati ng Procedure

8. Flag bits indicating file was written on. t

9. File size where each bit represents one data block of
255 words.

10. File type (23 means symbolic disc file).

11. Index block poi nter.

12. Name of fi Ie (control characters are preceded by an
& on the teletype or by a f:::. on the printer).

EXAMPLES OF FILES

-GO /OPER/

*FILE8 @

7/3 13:39
300
300 0:00.01 0:03 77777777

314301 60000000 24000000 62250 /D/
310301 60000000 22000000 15562 /B8/
300233 17 23000000 12550 /MAP3/
300233 6 21000000 501 /OMAP/
305301 60000000 23000000 46547 /MAPC/
302301 60000000 21000000 46571 /OMAPC/
342301 60000000 23000000 25571 /8YM3/
301155 13 23000000 75102 /DD1/
305301 60000000 21000000 32156 /08YMA/
321301 60000000 23000000 74753 /MAPB/
303301 60000000 21000000 41572 /OMAPB/
340301 60000000 23000000 72250 /8YM2/
320301 60000000 23000000 15147 /DDUMP2/
313301 60000000 23000000 42073 /TCOP19/
300155 62 22000000 75115 /DDT/
301205 2 22000000 30625 /OBCRDUM/
303160 10 23000000 67306 /DDUMP/
314301 60000000 22000000 41563 /B/
300171 6 23000000 73303 /CRDTP /

OVERFLOW: 2140

2
2 0:00.00 0:00 77777777

700107 2 23000000 34223 /PRIMES/
700564 2 23000000 57645 /DATA LA/
700570 36 23000000 67672 /A1/
700545 6 23000000 33672 /PROPOST/
700562 3 23000000 53666 /COMSW 2/
700557 3 23000000 53657 /COMSW 1/
700564 4 23000000 57647 /DATA SF/

7777

TOTAL: 0:00.01 0:03

END JOB

tThese bits are used by the concurrent tape back-up routine
and the disc file re-ordering routine.

EXAMPLES OF FILES (Cont.)

-GO /OPER/

*FILES @J

OUTPUT TO: TELETYPE

7/3 13:34
1 0:00.00 0:00 77777777

300251 14 21000000 50512 /(l(JP8/
304301 60000000 22000000 52606 /A/
311301 60000000 23000000 55701 /OP1/
300243 2 21000000 47121 /@HEAD/
300152 4 21000000 23613 /@SYSD/
300235 3 23000000 50715 /DSWAP/
300232 14 21000000 1071 /@OPB/
300216 40 23000000 37205 /NOP1/
300243 4 23000000 31061 /HEAD/
300220 2 21000000 35603 /TlliE/
300264 3 21000000 46154 /eBI/
300243 4 23000000 34652 /HEAD1/
300220 46 23000000 54440 /eOP1A/
300174 2 21000000 23436 /@NT/
300251 5 23000000 51073 /ZD/
300233 50 23000000 5077 /OP1B/
304301 60000000 21000000 66264 /OP-SDS/
306301 60000000 21000000 35414 /(l(JP /
300232 23 23000000 63064 /OP2B/

OVERFLOW: 2123

2 0:00.00 0:00 77777777
700107 2 23000000 34223 /PRIMES/
700564 2 23000000 57645 /DATA LA/
700570 36 23000000 67672 /A1/
700545 6 23000000 33672 /PROPOST/
700562 3 23000000 53666 /eOMSW 2/
700557 3 23000000 53657 /eOMSW 1/
700564 4 23000000 57647 /DATA SF/

5 0:03.40 0:29 77777777
300174 6 23000000 27362 /NMPL/
304302 60000000 22000000 71140 /B/
300173 32 24000000 73334 /DEBIT1/
303302 60000000 23000000 65030 /GOM/
300267 32 24000000 16767 /6-23/
300171 32 24000000 54313 /DEBIT/
303212 20 23000000 17362 /MOK/
304302 60000000 21000000 55625 /@GO/
300167 4 23000000 54303 /FT/
300231 32 24000000 74423 /DEB 5-26/
300171 5 23000000 44132 /F2/
300267 6 23000000 5363 /S7/
300231 32 24000000 72646 /5-26/
300242 6 23000000 31046 /S6/
300205 4 23000000 20341 /OMPLOT/

6 0:00.20 0:03 77777777
202274 60000000 23000000 75671 /INV2/
201273

GARBAGE

COMMAND: GARBAGE @

FUNCTION: Removes unused overflow areas from the
overflow directory mea and makes the area
available for use.

Operating Instructions. The program first determines the
current location of the overflow pointer; in other words, it
finds the next available overflow area. This is typed out as
follows where nnnn is the pointer:

OVERFLOW POINTER AT: nnnn

The program next types the following message:

GARBAGE COLLECTION READY TO START.

ONLY 1 USER ALLOWED ON SYSTEM.

"ESCAPES II WILL BE IN HIBITED.

TYPE @JTO CONTINUE.

The program pauses here until a confirming carriage return
is typed by the operator. Since this program cannot be run
if any users except the operator are logged on the system,
the program next checks the number of users on the system.
If more than one user is on the system the following message
is typed, foil owed by a return to the EXEC:

MORE THAN 1 USER ON.

If the operator is the only user, the following message is
typed:

GARBAGE COLLECTION STARTED.

The program will proceed with no further messages until the
garbage collection has been completed. At that time it will
again determine the location of the overflow pointer and
type the message:

OVERFLOW POINTER AT: nnnn

The difference in the pointers will indicate the gain in over­
flow directory storage area due to the garbage collection.
The message EN D OF JOB will then type and the operator
will be forced to EXIT from the system so that his new file
directory overflow pointer on the disc will not be destroyed.
The operator should then take the system down and take a
disc dump to save the new file directory arrangement.

HELP

COMMAND: HELP §

FUNCTION: Lists all of the commands the operator exec
routine will recognize.

LENGTH

COMMAND: LENGTH @JIG

FUNCTION: Outputs the amount of disc storage used by
the account number.

Operating Instructions:

1. Command terminated by carriage return

The program asks for an output file by typing OUTPUT
FILE:. The operator should then type any appropriate
output file name. If a bad file name is supplied, the
program wi II type the message OUTPUT FILE: again.
The message EN D OF JOB will be typed when the last

Operating Procedure 33

userls file directory has been gone through, and the
output file has been closed.

2. Command terminated by I ine feed

The program asks for an output fi I e as described in the
previous paragraph. The operator must type a user num­
ber for each file directory (and each overflow directory)
for which size he desires. The operator types a user
number greater than the last val id user number (normally
7777), to terminate the I ist of user numbers. The disc
storage by account for the selected user numbers will
then be output as in paragraph 1.

LETTER

COMMAND: LETTER @)

FUNCTION: Allows the operator to create a broadcast
letter.

Operating Instructions. Before giving this command, the
operator must first set the EXEC letter switch to OFF. This
is done by giving the EXEC command LETTER @). The EXEC
wi \I respond with LETTER OFF. Then the operator may GO
TO the operator program and give the LETTER command.
The program will respond with:

LETTER NO.:

and the operator must respond with a number from 1 to 6,
corresponding to the letter that he wishes to create. The
operator should then type a carriage return (after the letter
number) and normally should type another carriage return
so that the I etter starts at the I eft edge of the paper. The
operator should then type the letter and terminate with a
control IID II

, the E.O. T. character. If the operator makes
a mistake and would I ike to delete the character just typed,
he may type a # sign; one character is deleted for each
pound sign typed. When the operator has typed the control
D, indicating end of letter, the program will respond with
the asterisk. The operator must then return to the EXEC and
type LETTER again. The EXEC will respond with LETTER
ON and the new letter will be typed for the operator.

EXAMPLE: (starting from the EXEC)

-LETTER @)

LETTER OFF

-GO /OPER/ @)

*LETTER @)

LETTER NO.: 2 @)

TEXT OF LETTER @)§

*
-LETTER 2 @l

TEXT OF LETTER

34 Operating Procedure

Giving the EXEC command
to turn the letter switch off.

Calling the OPER program

Giving the command

The program asks for a letter
number

The letter; maximum size is
189 characters

EXEC command to type a
letter

EXEC types the letter

-LETTER @)

-LETTER ON

TEXT OF LETTER

NAME

COMMAND: NAME @)

Turning the letter switch on.

The operator and everyone
currently on the system
receives the letter when they
come back to the Exec.

FUNCTION: Creates a new user name, changes a user name
in an account/user director, or changes the
parameters for a user.

Operating Instructions. After giving the command, termi­
nated by a carriage return, the operator types the account
number and the user name, followed by a carriage return.
The program will respond with one of the two following
messages:

OLD

NEW

indicating that the user name is new (not presently in the
account user directory) or old (already in the account direc­
tory). If OLD is typed, the operator may continue if he
desires to change the parameters. The operator types the
parameter word, terminated by a carriage return. Note
that the parameter word must contain the user number in the
low order 12 bits and the user IS control status in the high
order 12 bits. If the user account directory for the account
indicated already has 11 names assigned to it, the following
messages wi II type:

NEW

FULL

The operator must first cancel an old name before he can add
a new name if the directory is full (see CANCEL NAME).

EXAt-APLES:

*NAME @

B lJONES @l

OLD

60000023 @)

POINTER

COMMAN D: POINTER @

FUNCTION: Determine the next available overflow file
directory storage area.

Operating Instructions. After the command has been given,
the program will respond with the message:

OVERFLOW POINTER AT: nnnn

where nnnn is the current location of the overfl ow poi nter.

REMOVE LETTER

COMMAN D: REMOVE LETTER @)

FUNCTION: Allows the operator to remove a broadcast
letter from the letter bit map so that it is no
longer addressed to anyone. Note that this
makes the count (see COUNT LETTER) equal
to zero.

Operating Instructions. After giving the command, the
program wi II type:

LETTER NO.:

and the operator must respond with a letter number, which
must be a number from 1 to 6. The program wi II then remove
the letter from the letter bit map.

EXAMPLE:

*REMOVE LETTER @)

LETTER NO.: 2 @)

*

RESET TIME

COMMAND: RESET TIME G!¥G

FUNCTION: Provides to an OUTPUT FILE the real and
computer time for all users and clears the
computer and real times from the file direc­
tory storage areaj the command may also be
used for selected users.

Operating Instructions. Same as for the command TIME.

For exampl es of output see TIME.

Note that this command actually clears the computer and
real time words from the file directories after outputting
the information.

SET DAY

COMMAND: SET DAY @/G

FUNCTION: Validates all or selected users for 24-hour
usage of the time-sharing system.

Operating Instructions

1. Command terminated by carriage return

No other action is required by the operator. The rou­
tine will set the valid time word in every file directory
to 77777777 which validates the users for 24-hour usage
of the system. The program wi II type END OF JOB
when completed.

2. Command terminated by line feed

The operator must type the user numbers for the users
to be val idated for 24 hours. The command must be

terminated by typing a user number greater than the last
val id user number such as 7777j this wi II cause the pro­
gram to type the EN D OF JOB message.

EXAMPLES:

-GO /0 PER/ @)

*SET DAY @

END OF JOB

-GO /OPER/ @)

*SET DAY G
121 @)

23 @

7777 @

END OF JOB

SET HOUR

COMMAND: SET HOUR @/G

FU NCTION: Val idates all or selected users for any selec­
ted time of the day.

Operating Instructions

1. Command terminated by carriage return

The program will type each user number, together with
computer time, real time, and valid on-time and will
pause after typing out the parameters for each user to
allow the operator to change the val id on-time. If the
operator does not care to change the val id on-time for
a particular user, he merely types a line feed. Other­
wise, he types the val id on-time word terminated by a
carriage return. The program will then type out the
parameters for the next user. After the last user param­
eters have been typed out, the program wi II type EN D
OF JOB.

2. Comma nd term ina ted by line feed

The operator must type the user numbers of those users
whose time parameter he wishes to change. The pro­
gram will respond by typing the user number, computer
time, real time, and valid on-time. The operator may
then type the new on-time parameter and terminate by
typing a carriage return. (If a I ine feed is used to ter­
minate the val id time word, the program will not change
the valid time word.) The operator must terminate the
command with a user number greater than the last val id
user number, normally 7777. The program will then
write out the last file directory and type the message,
END OF JOB.

Note; The time parameter word consists of one bit for
each hour of the day where the left-most bit
val idates a user from 0000 to 0059, the second

Operating Procedure 35

bit from 0100 to 0159, etc. To validate a user
from noon to 1559, the operator would type the
following time parameter:

7400 @)

EXAMPLES:

-GO /OPER/ @>

* SET HOUR @>

0/03.41 1: 10 77777777 (0

2 0:00.00 0:00 77777777 70

3 etc.

-GO /OPER/ @>

* SET HOUR (0

240 @)

240 0:01. 23 3:45 70000000 (0

137 @>

(Does not desire
to change)

@) (Validates a user
for the hours 1800
to 2059 only)

(No change)

137 0:02.34 10.54 7777 17777 @)(Changes the
val id hours from

7777 @> II 1200 to 235911 to

II 11 00 to 2359")

END OF JOB

SIZE ACCOUNT

COMMAND: SIZE ACCOUNT @)

FUNCTION: Computes the maximum disc storage used by
account from LEN GTH outputs and provides
this maximum as an input for the next SIZE
ACCOUNT run.

Operating Instructions. The routine requires two input files
and two output files which are requested by the program as
needed. The contents of these files are as follows and the
fi Ie names must be typed in the order indicated:

File # 1 -INPUT FILE:

New input. Normally the output of a LENGTH run
for the current day.

File #2 - INPUT FILE:

Previous maximum. Normally the maximum output from
a previous SIZE ACCOUNT run which was produced as
output file #4 previously. This input may also be the
output of a LENGTH run if there has been no previous
SIZE ACCOUNT run.

File #3 - OUTPUT FILE:

The complete report of the current run. First column
is the same as input number 1, second col umn is the
maximum between input file # 1 and #2 and is the same
as output file #4. The third column is the difference
between input file #1 (New input) and the input file #2

36 Operating Procedure

(previous maximum) a number preceded by a minus sign
indicates that the new SIZE is less than the previous
maximum and that output on file #4 will not change
from the previous maximum. If the third column is
positive, then the new size file # 1 was greater than the
previous maximum so that the new maximum output will
be equal to the new input.

File #4 - OUTPUT FILE:

New maximum. The format of this output is exactly the
same as the format of the LENGTH output. This will
normally be input file #2 for the next days run of SIZE
ACCOUNT.

The program will type END OF JOB when completed.

EXAMPLE OF SIZE ACCOUNT

7/1 0:31

ACT NEW INP. NEW MAX. - DIFF.

~\"1 797696 1330176 - 532480
*2 260352 574720 - 314368
~\-3 445696 557056 - 111360
*4 721408 1173248 - 451840
*5 856832 1026816 - 169984
~~6 88320 122624 - 34304
~\-7 317696 338432 - 20736
A8 12544 12544 512
A1 217088 217088 4608
A2 52736 52736 0
A4 182784 183552 - 768
AS 87040 133376 - 46336
A6 12800 13312 - 512
B8 27136 27136 0
B1 13824 22784 - 8960
B2 80384 85760 - 5376
B3 11008 11008 1024
B5 123904 124928 - 1024
B6 528640 539904 - 11264
C8 133888 136704 - 2816
C1 58880 72960 - 14080
C2 2560 2560 @

J1 2560 2560 0
J2 12288 13312 - 1024
J4 6912 8704 - 1792
K1 70400 100608 - 30208
K2 175872 177408 - 1536
L2 24064 46592 - 22528
L3 22784 27136 - 4352
M1 13824 28672 - 14848
N1 1536 10752 - 9216
N2 4352 9728 - 5376
N3 38656 44800 - 6144
N4 10240 10240 1792
N5 39936 39936 8960
N6 7936 7936 0
N7 0 10496 - 10496
08 0 35840 - 35840
07 0 5376 - 5376

TOT: 7373056 9600768 - 2200832

TIME

COMMAND: TIME @;I@

FU NCTION: Provides to an OUTPUT FILE the real and
computer time for all users or types the real
and computer time for a selected user.

Operating Instructions

1. Command terminated by a carriage return

The program will ask for the output file by typing
"OUTPUT FILE ". The operator should then type any
appropriate output file name. If a bad file name is
suppl ied the program will type the message "OUTPUT
FILE:" again. The message END OF JOB will be typed
when the last user's time has been output.

2. Command terminated by a line feed

The program assumes the output file will betheteletype.
The operator must type the user numbers for the time
parameters to be typed out. When a user number is
typed that is greater than the last val id user number
(normally 7777), the program will type out the total
that has been typed and then wi II type END OF JOB.

EXAMPLE OF TIME

- GO IOPERI @)

~TIME §

OUTPUT TO: TEL €V

7/3 14:08
1 0:00.71 0:24 77777777
5 0:03.40 0:29 77777777
6 0:00.20 0:03 77777777

17 0:00.15 0:05 77777777
20 0:00.26 0:08 77777777
25 0:96.53 1:26 77777777
27 0:00.00 0:01 77777777
32 0:00.41 1:14 77777777
45 0:0 @

-GO IOPER/ €V

~"TIME G

7/3 14:09
25 @
25 0:06.53 1:26 77777777
20 @)
20 0:00.26 0:08 77777777
5 8

5 0:03.40 0:39 77777777
7777 8

TOTAL: 0:10.20 2:03

END JOB J

UAD

COMMAND: UAD 810

FUNCTION: Outputs to a file all or selected user account
d i rec tori es.

Operating Instructions

1. Command terminated by carriage return.

The program will ask for the output file by typing OUT­
PUT FILE. The operator should then type any appropri­
ate output file name. If a bad file name is supplied,
the program wi II type the message OUTPUT FILE:. The
message EN D OF JOB wi II be typed when the I ast user
account directory has been output.

2. Command terminated by I ine feed

The program will ask for an output file as above. After
typing the output file name, the operator should then
type the account number of the user/account directo­
ries that he desires with each account number except
the last one terminated by a line feed. The last one
will be terminated by a carriage return. The account
numbers are typed by the operator in the usual letter/
number format.

EXAMPLES OF USER OUTPUT

-GO IOPER/ €V

~"USERS

OUTPUT TO: TEL

7/3 14: 13

SORT ON WHAT COL. ? (l,2,OR 3) : 3

12 ~"2 ~" 1 = User Number
1166 Gl 0038 2 = Account number

522 Gl 0035 3 = User Name
521 Gl 0036

1171 Gl 0500
525 E5 1
277 D5 1
536 E5 10
537 E5 11
654 G3 141
655 G3 142
656 G3 143
526 E5 2
301 D5 2
624 G7 200 WRIGHT
623 G7 200 SPEIR
622 G7 200 CHIOCHIO
621 G7 200 JOHNSON
711 G7 200 PATAPOFF

1170 Gl 2000
626 G7 250 BRICK
625 G7 250 SNYDER
527 E5 3
302 D5 3

1167 Gl 3000
657 G3 345
660 G3 349
530 E5 4

Operating Procedure 37

531 E5
630 G7
627 G7
532 E5

1210 12
1206 12
1207 12

533 E5
661 G3
534 E5
662 G3
602 E4
604 E4
603 E4
357 E4
535 E5

1172 G1
663 G3

1232 N8
6 ~"'2

433 F3
171 B1

1203 G4

5
500 SCHWARTZ
500 GUGGENHE
6
65S&C
671&0
674&N
7
7466
8
8466
8803
8811
8810
8812
9
9000
9466
@LMY&SK&C
A
A BROWN
A. COX
A. BELL

USERS

COMMAND: USERS @)

FUNCTION: Provides the operator with a I ist of val id
users on the system, sorted by user number,
account number or user name.

Operating Instructions. The operator types the command
USERS terminated by a carriage return. The program will
then request an output fi Ie. After the operator types the
file name, the program will respond with:

SORT ON WHAT COL. (1, 2, or 3):

The operator then types 1, 2, or 3 for output sorted by user
number, account number, or user name, respectively.

EXAMPLE: See user output on previous page.

15. SUBSYSTEMS

The Time-Shari ng System software is organized into a monitor,
a system executive, and a number of subsystems which perform
specialized functions. Each of these subsystems is called by
giving its name to the executive as a command. The resul t
of this operation is to bring the subsystem off the RAD and to
to transfer to its starting point. The system will thereafter
remember the subsystem which is in use and will cccept the
CONTINUE command as an instruction to re-enter the sub­
system without any initialization. Thus, for example, the
command

-DDT

would call the debugging subsystem. The line

-CONTINUE @)

DDT

38 Subsystem

would re-enter DDT without initializing. Most of the sub­
systems are permanently present in the shared memory table,
and may be called on by a user program.

Subsystems presently available in the Time-Sharing System
are:

TAP: Symbolic macro-assembler

DDT:

QED:

FTC:

FOS:

Debugging system

Symbolic text editor

FORTRAN II compiler

FORTRAN II loader and operating system

FORTRAN: FORTRAN IV system

CAL: Conversational Algebraic Language

BASIC: Conversational Algebraic Language

16. MISCELLANEOUS EXECUTIVE FEATURES

The Executive provides a number of BRSs that are services
for the user. The BRSs all declare a fork to execute. This
group of BRSs are run in user mode and are called class 3
BRSs in the Monitor.

To get the date and time into a string, the operations

LDP

BRS

PTR

91

may be executed. The current date and time are appended
to the string provided in A and B and the resulting string is
returned. The characters appended are

mm/dd hh:mm

where

lstmm month (2 digits)

dd day or month (2 digits)

hh hour of day (24 hour clock)

2nd mm minutes

Hours are counted from 0 to 23.

All other system Executive BRSs have been described in
previous chapters.

17. MISCELLANEOUS MONITOR BRS'S

The Monitor provides a number of BRSs which are services
for the user. Many of these are incorporated in the string
processing system or in the floating point package and are
described in the next two chapters. These are called class 2
BRSs in the Monitor.

To put an integer to any radix the instructions

LDB

LDX

=radix

=file

BRS 38

may be executed. The number that may be preceded by a
plus or minus sign, is returned in the A register and the non­
numeric character which terminated the number in the B
register. The number is computed by mul tiplying the number

obtained at each stage by the radix and adding the new
digit. It is, therefore, unlikely that the return value will
be correct if the number of digits is too large.

To output a number to arbitrary radix the instructions

LDB =radix

LDX =file

LDA number

BRS 36

may be executed. The number wi II be output as an unsigned
24-bit integer. If the radix is less than 2, an error will
be indicated.

Miscellaneous Executive Features/Miscellaneous Monitor BRSs 39

18. STRING PROCESSING SYSTEM

A resident part of the system is a package of string handl ing
routines. These are discussed in detail in the second half
of this manual and will only be I isted here.

GCI

WCI

WCH

SKSE

SKSG

GCD

WCD

BRS 5

BRS 6

Get character and increment

Write character onto string

Write character onto string storage

Skip on string equal

Skip on string greater

Get character and decrement

Write character and decrement

Look up string in hash table

Insert string in hash table (must be preceded
by BRS 5)

BRS 33

BRS 34

BRS 35

Input string

Output string given word address

Output string given string pointer

BRS 37 General command lookup

SPS includes symbol table lookup facilities, and a string
storage data collector is available as a I ibrary "routine.
Strings are composed of 8-bit characters packed 3 per word
and are addressed by 2-word string pointers. Two SYSPOP's
which are formally part of SPS but which are useful in float­
ing point operations and in general programming are:

LDP

STP

Load pointer

S tore poi nter

These are double word operations which load A and B from
the effective address and the next location or store A and B
into the effective address and the next location, respectively.

19. FLOATING POINT

Floating point arithmetic and input-output operations have
been incorporated into the 940 system through the use of
programmed operators. This allows the user to perform use­
ful arithmetic and I/O operations in a single instruction.
A brief summary of the most commonly used arithmetic and
I/O POPs is outl ined in this chapter.

The floating point numbers referenced in this chapter are
normalized double word values. The first word is a sign
bit followed by the high order 23 bits of the mantissa bits

Fioating Point Load/Store instructions

Example 1

NAME: LDP

FUNCTION: Load pointer

CALLING SEQUENCE: LDP Memory

DESCRIPTION: Loads A, B with MEMORY, MEMORY+ 1.

LDP is a single instruction that is equivalent to

LOA MEMORY

LDB MEMORY+1

NAME: STP

FUNCTION: Store pointer

CALLING SEQUENCE: STP MEMORY

followed by a 9-bit exponent field which, I ike the mantissa,
is always represented in two's complement form.

Unless otherwise specified, the POPs do not make a skip
return.

The remaining floating point SYSPOPs and BRSs use a for­
mat word in register X which contains the information shown
in Figure 13.

DESCRIPTION: Replaces MEMORY, MEMORY+1 with the contents of A, B. STP MEMORY is a single instruction
that is equivalent to

STA MEMORY, STB MEMORY+1

40 String Processing System/Floating Point

Double Word Floating Point Arithmetic

Example 2

NAME: FAD

FUNCTION: Floating add

CALLING SEQUENCE: FAD MEMORY

DESCRIPTION: The floating point value at MEMORY, MEMORY+l is added to the floating point value in A, B.
The sum replaces the value in A, B. Memory is unaffected.

NAME: FSB

FUNCTION: Floating subtract

CALLING SEQUENCE: MEMORY

DESCRIPTION: The floating point value at MEMORY, MEMORY+l is subtracted from the floating point value in
A, B. The difference replaces the value in A, B. Memory is unaffected.

NAME: FNA

FUNCTION: Floating negate

CALLING SEQUENCE: BRS 21

DESCRIPTION: The floating point value in A, B is negated. The result is left in A, B.

NAME: FMP

FUNCTION: Floating mul tiply

CALLING SEQUENCE: FMP MEMORY

DESCRIPTION: The floating point value at MEMORY, MEMORY+1 is multiplied by the floating point value in
A, B. The product replaces the value in A, B. Memory is unaffected.

NAME: FDV

FUNCTION: Floating divide

CALLING SEQUENCE: FDV MEMORY

DESCRIPTION: The floating point value in A, B is divided by the floating point value at MEMORY,
MEMORY+ 1. The quotient replaces the dividend in A, B. Memory is unaffected. Division
by zero causes an overflow.

NAME: FIX

FUNCTION: Conversion from floating point to fixed point

CALLING SEQUENCE: BRS 50

DESCRIPTION: The floating point value in A, B is converted to fixed point. A is replaced by the integer part
of the original value, the fractional part is left adjusted in B. If the integer is too large, the
most significant bits are lost.

NAME: FLOAT

FUNCTION: Conversion from fixed point to floating point

CALLING SEQUENCE: BRS 51

DESCRIPTION:

Floating Point 41

Bits

0-2

3-8

9-14

15

16

18

19

20

21

22

23

Field
Name

T

D

W

o

E

42 Floating Point

Significance

Format types:

0 - Octal

1 - Integer

2 - E format with the number right justified in the specified field on output.

3 - F format with the number right justified in the specified field on output.

4 - J format with the number left justified in the specified field on output.

5 - F format with the number left justified in the specified field on output.

6 - Double precision format. Same as 2 on input. On output same as 2 except a
D will be output for the exponent if bit 16 is 1.

7 - Free form (output left justified).

Number of digits following the decimal point.

Total field width. In J format that is the number of digits before the decimal point.

Overflow action. If the field width is too small on output and this bit is 1, the first
character of the output field will be a star and characters to the right will be lost.
If this bit is zero and overflow occurs, characters on the right will be lost.

If this bit is 1, E format of output wi II be used to represent the exponent. If this bit
is 0 the (0 symbol will be output. Either the E or @ is always acceptable on input.

If this bit is ° on input the symbol @ will be treated as a legal exponent identifier;
i. e., 1. 0@+2 will be legal input. If this bit is 1 the symbol @ will be treated as
an illegal character. This bit has no effect on output.

If this bit is 0, illegal characters in the input string will be ignored. The error flag
will be set when one is ieed. If this bit is 1 and an illegal character is reed, the
scan wi II be terminated, the error flag will be set and the string pointer will be set
to the character read. The conversion wi II take palce on the characters read to
that point. This bit has no effect on output.

If this bit is 0, the input string ±N±M is legal. N is treated as the mantissa and M
the exponent of a floating, real number. If this bit is 1, the second occurrence of
a sign will be treated as an illegal character. This bit has no effect on output.

Must be zero.

Must be zero.

If a 1, the double precision accumulator will be used for numeric input-output.
Significance is extended to 18+ digits. Appl ies to all format types.

Figure 13. Format Word for Floating Point

OPERATING CHARACTERISTICS

On input the D file is overridden by the presence of a
decimal point. If a decimal point and/or E are present,
any form of the number is acceptable to any input format.
It is only in the absence of these characters that the format
specifications determine the interpretation of the field.
Illegal characters appearing anywhere in the field may be
ignored depending on bit 19 of the format word. Blanks
wi II be converted to zero.

The maximum allowable number of input digits is twelve.
If more than twelve digits are input the most significant
twelve will be used. If twelve digits are used, care must
be taken as overflow can occur during the conversion pro­
cess. Insignificant leading or trailing zeros will be ignored.

The maximum allowable integer on input is ±2
38

-lor
±274, 877, 906, 913. Floating point numbers must I ie in
the range:

9. 9999999999E -78 ~ number ~ 5. 7896044625E+76

Free form output will be output using an F 17 if the exponent
lies in the range -1 ~ exponent ~ 10 (X = 10 -number of
digits to left of decimal point). If the number is outside
this range an E17. 11 will be used. Free form output always
assumes a floating point number. If an integer is input it
will be normal ized prior to conversion._

For the E format on output, the E (@ if bit 16 of the format
word is 0) is always followed by a + sign or - sign. On all
output the sign of the number is printed only if it is negative.

String Conversion

Example 3

NAME: SIC

FU NCTION: String to internal conversion

CALLING SEQUENCE: LDX
SIC
BRU
BRU

FORMAT
POINTER
INTEGER
FLOATING

Error Conditions:

If an error is detected during the conversion process a posi­
tive integer indicating the error type will be returned in the
index register as given in Table 8.

Error
No.

Table 8. Error Conditions

Error Type

X=O No error was detected.

X=l Number of decimal digits after the decimal point
exceeds 12for single precision and 18 for extended
precision on formatted input. Twelve and 18
used respectively.

X=2 Field too short for E format on output. Overflow
action will be taken depending on the value of
bit 15 of the format word.

X=3 Input number exceeds the maximum allowable
bounds.

X=4 Field too short for F or I format on output.
Overflow action will be taken depending on
the value of bit 15 of the format word.

X=5 An E format was specified for input but the input
string doesnotcontain an "E" or ".". The number
will be converted using an equivalent F format.

X=6 An illegal character was encountered in the
input scan. Character is ignored.

DESCRIPTION: FORMAT describes the type of conversion to be done (see the SDS 940 FORTRAN IV Manual,
Pub. No. 90 11 15, for the FORMAT word specifications). The string of input characters starts
at the character following the character pointed to by the character address in POINTER. The
character address in POINTER+ 1 points to the last character of the input string.

NAME: ISC

FUNCTION: Internal to String Conversion

CALLING SEQUENCE: LDP
LDX
ISC

VALUE
FORMAT
POINTER

DESCRIPTION: FORMAT describes the type of conversion to be done (see the SDS 940 FORTRAN IV Manual,
Pub. No. 90 11 16 for the FORMAT word specifications). POINTER+1 contains the character
address of the character immediately preceding the position where the first character of output
is to go. POINTER+ 1 is incremented by one for each character of output added to the character
string. VALUE is the double word floating point value to be converted.

Operating Characteristics 43

NAME: FFI

FUNCTION: Formatted input

CALLING SEQUENCE: LDX FORMAT

BRS 52

DESCRIPTION: Characters are read for a file and converted to internal form. Either a floating point value is

NAME: FFO

left in A, B or an integer is left in A. A skip return is generated if a floating point value is read
and the input mode is free format.

FUNCTION: Formatted output

CALLING SEQUENCE: LDP VALUE

LDX FORMAT

BRS 53

DESCRIPTION: The flooting point value in A, B or the integer in A is output to the file specified in FORMAT.

44 Operating Characteristics

20. BRS AND SYSPOpl INDEXES

INDEX OF BRS'S AND SYSPOP'S BY NUMBER

BRSs Function Page

1 Open a file of a specific device 65
2 Close a file 66
4 Rei ease a page of memory 96
5 look up string in hash table 106
6 Insert stri ng in hash table 108
8 C lose all fi I es 67
9 Open fork 57

10 Term i nates the call i ng fork 62
11 Clear the teletype input buffer 88
12 Declare echo table 89
13 Test input buffer for empty 90
14 Delay unti I the TTY output buffer is empty 91

*15 Read input file name 76
*16 Open input file in file directory 77
*17 Close all fi les 77
*18 Read a file name and look it up in the file directory 78 ,
*19 Open output file located in file directory 79
*20 Close a tape file 67

21 Floating point negate 117
23 Link/unlink specified TTY 84
24 Unl ink all TTYs 85
25 Set tel etype to accept/refuse links 85
26 Skip if escape waiting 56
27 A ttach TTY to call i ng program 86
28 Release attached TTY 86
29 Clear the output buffer 88
30 Read status of a lower fork 85
31 Wait for specific fork to cause a panic 61
32 Terminates a specified lower fork 63
33 Read string 103
34 Output message 103
35 Output stri ng 104
36 Output number to specified radix 113
37 General string look up 107
38 Input number to specified radix 113
40 Read echo tabl e 90
41 Return from I/O subroutine 122
42 Read real-time clock 121
43 Read pseudo-relabel ing 97
44 Set pseudo-relabeling 98
45 Dismiss on quantum overflow 59
46 Turn escape off 55
47 Turn escape on 55

*48 look up input/output file name 80
49 Read interrupts armed 53
50 Conversion from floating point to fixed point 116
51 Conversion from fixed point to floating point 116
52 Formatted floating point input 114
53 Formatted floating point output 114
56 Make page system 100
57 Guarantee 16 ms computi ng 58

*60 Look up I/o file name and insert in file directory if not found 80

*BRSs marked with an asterisk are executive BRSs, and all others are monitor BRSs.

BRS and SYSPOP Indexes 45

BRSs Function Page

66 Delete DSU file data 68
67 Delete DSU file index block 68
68 Make pseudo-page shareabl e 101
69 Get SMT block to PMT 102
71 Skip if in system 122
72 System dismissal 60
73 Terminates a specified number of lower forks 63
78 Arm/disarm software interrupts 52
79 Cause specified software interrupts 53
80 Make page read only 100
81 Dismiss for specified amount of time 60
82 Switch sequential fi Ie type 70
85 Set special TTY output 91
86 Clear special TTY output 92
87 Read DSU file index block 69
88 Read execution time 122
90 Ded are a fork for escape 54
91 Read date and time into a string 121

*95 Dump program and status on fi I e 120
*96 Recover program and status from fi I e 120
104 Read a page {2048 words} from RAD 70
105 Write a page {2048 words} to RAD 70
106 Wait for any fork to terminate 61
107 Read status of all lower forks 59
108 Terminate all lower forks 64
109 Dismiss call ing fork 62
110 Read device and unit 66
111 Return from exec BRS {exec only} 123
112 Turn off teletype station {exec only} 123
113 Compute file size of a disc file 71
114 Turn off run-away magnetic tape 71
116 Read user relabel ing 98
117 Set user rei abel i ng 99
118 Allocate magnetic tape unit 72
119 De-allocate magnetic tape unit 72
120 Acquire a new page 97
121 Release specified page from PMT 96
122 Simulate memory panic 99
152 Execute i nstructi ons in system mode 126
BE+1 Read DSU 74
BE+2 Write DSU 75
BE+3 T est for carri er present 87
BE+4 Read/write one word in the monitor 101
BE+5 Set disc bit map 124
BE+6 Turn a teletype line on or off 87
BE+7 Test a breakpoint switch 74
BE+8 To crash the system for error diagnostic 125
BE+9 Read DSU page 73
BE+10 Write DSU page 73
BE+11 Ignore line feed or carriage return when followed by carriage return or line feed

respectively 92
BE+12 Arm timing interrupt 54
BE+13 Sets system exec swi tches in SY MS 125
BE+14 Input string with edit 104

*BRSs marked with an asterisk are executive BRSs, and all others are monitor BRSs.

46 Index of BRSs and SYSPOP's by Number

SYSPOPs Function Page

BIO Block input/output 82
CIO Character i nput/ output 81
CIT Character input and test 105
CTRL Input/output control 83
EXS Execute instructi on in system mode 126
FAD Floating point addition 117
FDV Floating point division 119
FMP Floating point multipl i cation 118
FSB Floating point subtract 118
GCD Get character from end of stri ng and decrement end poi nter 111
GCI Get character from beginning of string and increment beginning pointer 110
ISC Internal to stri ng conversi on 115
1ST Input from specific TTY 94
LDP Load string pointer 109
OST Output to specific TTY 94
SKSE Skip if string equal 109
SKSG Skip if string greater 110
SIC String to internal conversion 115
STI Simulate TTY input 95
STP Store stri ng poi nter 108
TCI Teletype character input 93
TCO Teletype character output 93
WCD Put character on beginning of string and decrement beginning pointer 112
WCH Write character to memory by table 112
WCI Put character on end of string and increment end pointer 111
WIO Word i nput/ output 81

INDEX OF BRS'S AND SYSPOP'S BY TYPE

21. SCHEDULING, FORKS AND PROGRAM INTERACTION

Program Interrupts

BRSs or SYS PO Ps Function Page

78 Arm/ di sarm software i nterru pts 52
79 Cause spec i fi ed software i nterru pts 53
49 Determines which software interrupts are armed 53
BE+12 Arm timing interrupt 54

Control of the Escape Key

BRSs or SYS PO Ps Function Page

90 Declare a fork for escape 54
46 T urn escape off 55
47 Turn escape on 55
26 Skip if escape waiting 56

Activation of Forks

BRSs or SYSPOPs Function Page

9 Open fork 57
57 Guarantee 16ms computing 58

Interrogati on of a Fork

BRSs or SYSPOPs Functi on Page

30 Read status of a lower fork 58
107 D __ -I _"_,, .. __ £ _II 1_ ... _._ £ _ . .1._ en

"I::UU ;)IUIU;) UI UII IUWI::I lUll<.)

I
J7

Index of BRSs and SYSPOPs by Type 47

Temporary Suspension of Forks

BRSs or SYSPOPs Function

45 Dismiss on quantum overflow
72 Executive dismissal
81 Dismiss for specified amount of time
31 Wait for specific fork to cause a panic
106 Wait for any fork to terminate
109 Dismiss call ing fork

Termination of a Fork

BRSs or SYSPOPs Function

10 Terminates the calling fork
32 Term i nates a spec i fi ed lower fork
73 Terminates a specified number of lower forks
108 Terminate all lower forks

22. INPUT/OUTPUT

Direct Control of Peripherals

BRSs or SYSPO Ps

1
110
2
20
8
66
67
82
87
104
105
113
114
118
119
BE+9
BE+lO
BE+7
BE+1
BE+2

Function

Open a file of a specific device
Read device and unit
Close a file
Close a tape file
Close all files
Delete DSU file data
Delete DSU file index block
Switch sequential file type
Read DSU file index block
Read a page (2048 words) from RAD
Write a page (2048 words) to RAD
Compute fil e si ze of a di sc fi I e
Turn off run-away magnetic tape
Allocate magnetic tape unit
Deallocate magnetic tape unit
Read DSU page
Wri te DSU page
Test a breakpoint switch
Read DSU
Write DSU

Control of Files Via File Names

BRSs or SYSPO Ps Functi on

15 Read input fi I e name
16 Open input file in file directory
17 Close all fi I es
18 Read a file name and look it up in the file directory
19 Open output file located in file directory
48 Look up input/output file name
60 Look up I/o file name and insert in file directory if not found

I/O Operations

BRSs or SYS PO Ps Function

CIO Character i nput/ output
WIO Word input/output
BIO Block input/output
CTRL Inp_ut/ output control (tape)

48 Index of BRSs and SYSPOPs by Type

Page

59
60
60
61
61
62

Page

62
63
63
64

Page

65
66
66
67
67
68
68
69
69
70
70
71
71
72
72
73
73
74
74
75

Page

76
77
77
78
79
80
80

Page

81
81
82
83

23. TELETYPE OPERA nONS

Li nk i ng and Attach i ng

BRSs or SYS PO Ps Function Page

23 Link/unlink specified TTY 84
24 Unl ink all TTYs 85
25 Set teletype to accept/refuse I inks 85
27 Attach TTY to calling program 86
28 Rei ease attached TTY 86
BE+3 T est for carri er present 87
BE+6 Turn a teletype I ine on or off 87

Input/Output Operations

BRSs or SYSPOPs FunCtion Page

11 Clear the teletype input buffer 88
29 Clear the output buffer 88
12 Declare echo table 89
40 Read echo table 90
13 Test input buffer for empty 90
14 Delay until the TTY output buffer is empty 91
85 Set special TTY output 91
86 Clear special TTY output 92
BE+ 11 Ignore line feed or carriage return when followed by carriage return or

I ine feed respectively 92
TCI Tel etype character input 93
TCO Teletype character output 93
1ST Input from speci fi c TTY 94
OST Ou tpu t to spec i fi c TTY 94
sn Simulate TTY input 95

24. MEMORY OPERA nONS

Private Memory

BRSs or SYSPOPs Function Page

4 Release a page of memory 96
121 Release specified page from PMT 96

120 Acquire a new page 97

43 Read pseud 0 re I abe ling 97

44 Set pseudo relabeling 98

116 Read user relabel ing 98

117 Set user relabel ing 99

122 Simulate memory panic 99

56 Make page executive 100

80 Make page read only 100

BE+4 Read/write one word in the monitor 101

Shared Memory

BRSs or SYSPOPs Function Page

68 Make pseudo page shareabl e 101
69 Get SMT block to PMT 102

25. STRING PROCESS

String I/o
BRSs or SYSPOPs Function Page

33 Read string 103
34 I Output message I i03
~t:; ~"j.~"j. ~j.~:~~ If''1A

'-'U '!-'U I ~II III~

Index of BRSs and SYSPOPs by Type 49

Stri ng I/o (cont.)

BRSs or SYSPOPs Function Page

BE+14 Input string with edit 104

CIT Character input and test 105

Hash T abl e Search

BRSs or SYSPOPs Function Page

5 look up string in hash table 106
37 General stri ng look up 107

6 Insert stri ng in hash tabl e 108

String Manipulation

BRSs or SYSPOPs Function Page

STP Store string pointer 108
LDP Load stri ng poi nter 109
SKSE Skip if string equal 110
SKSG Sk i P if stri ng greater 110

Character Manipulation

BRSs or SYS PO Ps Function Page

GCI Get character from beginning of string and increment beginning pointer 110
WCI Put character on end of string and increment end pointer 111
GCD Get character from end of stri ng and decrement end poi nter 111
WCD Put character on beginning of string and decrement beginning pointer 112
WCH Write character to memory by table 112

26. NUMBER OPERATION

Number I/o
BRSs or SYSPOPs Function Page

36 Output number to specified radix 113
38 Input number to specified radix 113
52 Formatted floating point input 114
53 Formatted floating point output 114
SIC String to internal conversion 115
ISC Internal to string conversion 115

Arithmeti c Operations

BRSs or SYSPOPs Function Page

50 Conversion from floating point to fixed point 116
51 Conversion from fixed point to floating point 116
21 Floating point negate 117
FAD Floating point addition 117
FSB Floating point subtract 118
FMP Floating point multiplication 118
FDV Floating point division 119

27. EXECUTIVE COMMAND OPERATIONS

BRSs or SYS PO Ps Function Page

95 Dump program and status on fi Ie 120
96 Recover program and status from fi Ie 120

50 Index of BRSs and SYSPOPs by Type

28. MISCELLANEOUS OPERA nONS

BRSs or SYSPOPs Function Page

42 Read real-time clock 121
91 Read date and time into a string 121
88 Read execution time 122
41 Return from I/O subroutine 122
111 Return from exec BRS {exec only} 123
112 Turn off teletype station {exec only} 123
152 Execute instructions in system mode 126
71 Skip if executive 122
BE+5 Set disc bit map 124
BE+8 To crash the system for error diagnostic 125
BE+13 Sets exec switches in SYMS 125
EXS Execute instruction in system mode 126

Index of BRSs and SYSPOPs by Type 51

21. SCHEOOLING, FORKS AND PROGRAM INTEIRACTI,*

NUMBER: 78

NAME: SAIR

FUNCTION: Arm/Disarm Software Interrupts

STATUS: User

CALLING SEQUENCE: LDA MD
BRS 78

M is the complete new interrupt mask.

DESCRIPTION: The new interrupt mask is substituted for the old one. A user may arm inter­
rupt 1-10. An exec fork may arm interrupt 11 also. Interrupt 1 is in bit 4 of the mask word.
The interrupts are as follows:

1 Interrupt if Program Pani c (BRS 10 or Escape)

2 Interrupt if Memory Panic

3 Interrupt if Lower Fork terminates

4 Interrupt if any I/o condition occurs which sets a flag bit (0, 7 or 8 in file number
word)

11 Interrupt if DSU error

5 through 10 interrupts on condition set by user

Location 200 octal plus the interrupt number must be set to point to a routine to process the
interrupt. When the interrupt occurs an SBRM* is executed to the 10caHon pointed to. If it
is desired to return to the point in the program interrupted, the user mu~;t BRR to the location
where the return was saved.

Example:

SET
lOA = ESCAPE
STA 201B

INTERRUPT ROUTINE
ESCAPE ZRO ESCRTN

REGISTERS AFFECTED: None

52 Schedul ing, Forks and Program Interaction

RETURN
BRR ESC RTN

NUMBER: 79

NAME: SIIR

FUNCTION: Cause Interrupt

STATUS: User

CALLING SEQUENCE: LDA
BRS

N
79

N = Interrupt number. N has the range of 5 to 10.

DESCRIPTION: Parallel forks in the structure are searched first and then higher forks. The
interrupt will be caused in the first fork found which has the interrupt armed. If no fork has
the interrupt armed, it is treated like a NOP. This would normally be used to cause inter­
rupts 5 through 10 to interrupt.

REGISTERS AFFECTED: None

NUMBER: 49

NAME: SRIR

FUNCTION: Read Interrupts Armed

STATUS: User

CALLING SEQUENCE: BRS 49

DESCRIPTION: Reads the interrupt mask into the A register. Bit 4 corresponds to interrupt
number I, 5 to number 2 and etc. There are 11 programmable interrupts. See also, BRS 78.

REGISTERS AFFECTED: A

Scheduling, Forks and Program Interaction 53

NUMBER: BE-t12

NAME: TIMINT

FUNCTION: Interrupts a Fork After a Specified Period of Time.

STATUS: User

CALLING SEQUENCE: LDA
LDB
LDX
BRS
NORMAL

M is the new intel'rupt mask.

M
T
N
BE+ 12
RETURN

T is the time in milliseconds after which the fork will be interrupted.
t,,, is the interrupt number.

DES~~IPTION: . The fork issuing .this BRS will be interrupted after the delay if the interrupt
~pe~"I~d by N IS armed at that time. (Exception: The interrupt will be ignored if the fork
IS dismissed on a BRS 9 at the time of the interrupt.) If a fork gives this BRS again with the
some N before the time has passed, the new time will be set. A fork may have a maximum of
three timing interrupts pending simultaneously. See also, BRS 81.

REGISTERS AFFECTED None

NUMBER: 46

NAME: NROUT

FUNCTION: Turn Escape Off

STATUS: System

CALLING SEQUENCE: BRS 46

DESCRIPTION: This BRS will set up to remember on escape interrupt, but not allow the pro­
gram to be interrupted. It will stock the first escape occurring and ignore any subsequent
ones.

A program running with escape turned off cannot be terminated by a higher fork.

See also, BRS 26 and 47.

REGISTERS AFFECTED: None

NUMBER: 90 NUMBER: 47

NAME: DFR NAME: SROUT

FUNCTION: Declare a Fork for "Escape"

STATUS: User

CALLING SEQUENCE: BRS 90

DESCRIPTION: In case the user types "Escape" or a fork ponies, this fork will be activated.
A fork panic is a fork status of 0, 1, or 2. See also, BRS 10.

REGISTERS AFFECTED: None

54 Schedul i ng, Forks and Program Interaction

FUNCTION: Turn Escape On

STATUS: System

CALLING SEQUENCE: BRS 47

DESCRIPTION: This BRS reverses BRS 46; that is, reactivates the escape interrupt. If on
escape interrupt was stocked (remembered) while in on Off condition, the interrupt will
occur.

REGISTERS AFFECTED: None

Schedul i ng, Forks and Program Interacti ons 55

NUMBER: :26

NAME: SKROUT

FUNCTIO"I: Skip if Escape Waiting

STATUS: System

CALLING SEQUENCE: BRS 26
EXCEPTION RETURN
NORMAL RETURN

DESCRIPTION: Checks for a stacked escape for this program and if There is one, transfers
control to the "normal return" or to the "exception return" if there is not an escape stacked.
Signifi cant onl y after BRS 46.

REGISTERS AFFECTED: None

56 Scheduling, Forks and Program Interaction

NUMBER: 9

NAME: FKST

FUNCTION: Open Fork

STATUS: User

CALLING SEQUENCE: LDA T
BRS 9

T = Address of a "Panic Table".
Bits 0 through 5 of register A have the following significance:

o = Make fork system if current fork is system.

1 = Set fork relabeling from panic table. Otherwise use current relabeling.

2 = Propagate escape assignment to fork (see BRS 90).

3 = Make fork fixed memory. It is not allowed any more memory than it started
with.

4 = Make fork local memory. New memory will be assigned to it independent of
the controlling fork.

5 = Make fork privileged if current fork is privileged.

DESCRIPTION: BRS 9 is used to create dependent entries in the PAC table. The panic
table indicated by register A must not be the same for two forks of the same fork or overlap
a page boundary; if it is, BRS 9 is illegal. BRS 9 creates a new fork as a fork of the fork
creating it, which is called the controlling fork. The fork is lower in hierarchy of focks than
the controlling fork. The controlling fork may itself be a fork of some still higher fork.

When BRS 9 is executed by a user fork, the user fork is dismissed until the lower fork termin­
ates. This has the same effect as issuing a BRS 31 immediately after a BRS 9. A user may
not have more than eight forks in his fork structure. This incl udes the system fork and one fork
for each system BRS that is active. Only one system BRS can be active.

REGISTERS AFFECTED: None.

Scheduling, Forks and Program Interaction 57

NUMBER: 57

NAME: CQO

FUNCTION: Guarantee 16ms Computing

STATUS: User

CALLING SEQUENCE: BRS 57

DESCRIPTION: This BRS guarantees to the user upon return at least 16 msec. of uninterrupted
computation. This is done by dismissing the user if less than 16 msec. remain in his time
quantum.

This time will include some system overhead. Thus, if the time required is very close to
16 msec., a BRS 45 should be used. BRS 45 guarantees several times this amount.

REGISTERS AFFECTED: None

NUMBER: 30

NAME: FKRD

FUNCTION: Read ForK

STATUS: User

CALLING SEQUENCE: LDA P
BRS 30

P c Pani c T abl e Address

DESCRIPTION: Reads -he current status of a lower fork into the pani'c table indicated by
the A register. It does not influence the operation of the fork in an)' way.

REGISTERS AFFECTED: None

58 Scheduling, Forks and Program Interaction

NUMBER: 107

NAME: FKRA

FUNCTION: Read All Fork Statuses

STATUS: User

CALLING SEQUENCE: BRS 107

DESCRIPTION: The status of all lower forks is recorded in the appropriate panic tables.

REGISTERS AFFECTED: None

NUMBER: 45

NAME: SQO

FUNCTION: Dismiss on Quantum Overflow

STATUS: User

CALLING SEQUENCE: BRS 45

DESCRIPTION: This BRS causes the user to be dismissed as though he had overflowed his
quantum. It guarantees that the next time he is started he will have a complete short time
quantum. See BRS 57 to guarantee 16 msec.

REGISTERS AFFECTED: None

Schedul i ng, Forks and Program Interacti on 59

NUMBER: 72

NAME: EXDMS

FUNCTION: System Fork Dismissal

CALLING SEQUENCE: LOX N
BRS 72

N = The number of the queue that the fork is to be put on.

DESCRIPTION: Dismisses a system fork and puts it on the specified queue. Returns to call
+ 1 when recalled.

0= Teletype queue
1 = I/o queue
2 = Short time quantum queue
3 = Long time quantum queue

REGISTERS AFFECTED: None

NUMBER: 131

NAME: WREAL

FUNCTION: Dismiss for Specified Amount of Time

STATUS: User

CALLING SEQUENCE: LOA T
BRS 81

T = Dil.missal time in milliseconds.

DESCRIPTION: The fork is dismissed for the number of milliseconds sfJt!cified in A. See
also, BE+l~'

REGISTERS AFFECTED: A

60 Scheduling, Forks and Program Interaction

NUMBER: 31

NAME: FKWT

FUNCTION: Wait for Fork to Cause a Panic

STATUS: User

CALLING SEQUENCE: LOA
BRS

P =, Panic Table Address

P
31

DESCRIPTION: Causes the controlling fork to be dismissed until the lower fork, or forks,
causes a panic. When it does, the controlling fork is reactivated at the instruction follow­
ing this BRS, and the panic table contains the status of the fork on its dismissal. The status
is also put into the X register. The panic table address is put into the A register.

The controlling fork must have armed an interrupt or a lower fork must execute a BRS 10.

REGISTERS AFFECTED: X, A

NUMBER: 106

NAME: FKWA

FUNCTION: Wait for Any Fork to Terminate

STATUS: User

CALLING SEQUENCE: BRS 106

DESCRIPTION: Fork is dismissed until some lower fork terminates. When a lower fork ter­
minates, the panic table address will be left in A.

REGISTERS AFFECTED: None.

Scheduling, Forks and Program Interaction 61

NUMBER: 109

NAME: DMS

FUNCTION: Dismiss

STATUS: User

CALLING SEQUENCE: BRS 109

DESCRIPTION: The fork is dismissed. It can only be activated again by a pragram inter­
rupt which has been armed by this fork or the termination of a lower fork.

REGISTERS AFFECTED: None.

NUMBER: 10

NAME: PPAN

FUNCTION: Programmed Panic. Terminates a Fork.

STATUS: User

CALLING SEQUENCE: BRS 10

BRS 10 terminates the fork that issues it and returns control to the higher fork.
like typing "escape" on the teletype.

It is just

DESCRIPTION: Terminates a lower fork. This condition can be distinguished from a panic
caused by the escape key only by the fact that in the former case the> program counter in
the panic table points to a word containing BRS 10. This BRS would normally be used to ter­
minate a fork when it i, finished. The information in the panic table would, therefore, only
be useful to a higher fork or to this fork only if interrupt 4 has been armed by this fork.

REGISTERS AFFECTED: None

62 Schedul ing, Forl(S and Program Interaction

NUMBER: 32

NAME: FKTM

FUNCTION: Terminate a Fork

STATUS: User

CALLING SEQUENCE: LDA
BRS

P = Panic Table

P
32

DESCRIPTION: Causes a lower fork ta be unconditionally terminated and its status to be
stored into the panic table. The X register contains the status word upon return.

REGISTERS AFFECTED: X

NUMBER: 73

NAME: EPPAN

FUNCTION: Economy Panic

STATUS: User

CALLING SEQUENCE: LDA N
BRS 73

N = Number of forks to terminate.

DESCRIPTION: This is like doing a BRS 10 for each of the forks specified. Forks are ter­
minated going up until the system fork is reached or until N forks have been terminated.

REGISTERS AFFECTED: None.

Schedul ing, Forks and Program Interaction 63

NUMBER: loa
NAME: FKTA

FUNCTION: Terminates All Forks

STATUS: User

CALLING SEQUENCE: BRS 108

DESCRIPTION: All lower forks ore terminated and their status read into the corresponding
ponic tables.

REGISTERS AFFECTED: None

64 Scheduling, Forks and Program Interaction

22. INPUT/OUTPUT

NUMBER: I

NAME: MONOPN

FUNCTION: Open a File of a Specific Device

STATUS: System

CALLING SEQUENCE: LOA ±I
LOX D
BRS 1
EXCEPTION RETURN
NORMAL RETURN

File number will be in register A on Narmal Return.
I = The relative address (DSU Address MOD 4) of the file's Index Block for DSU files,

or unit number for magnetic tape, otherwise anything.
- = Make the file read only.
+ = Make the file read/write.
D = Devi ce number.

Available device numbers are as follows:

1. Paper tape input.
2. Paper tape output.
3. Card input.
4. Magnetic tape input.
5. Magnetic tape output.
7. Printer.
a. Sequential DSU input.
9. Sequential DSU output.

10. Random DSU

DESCRIPTION: The "open file" BRS is used to condition a file for input or output processing.
If the file is successfully opened, control is transferred to the normal return; otherwise con­
trol is transferred to the exception return. Exception conditions are as follows:

1. Device in use or not available.
2. File in use.

A file may be opened for input any number of times for the purpose of multiple user access or
multiple processing by a single user. A file that is opened for output cannot be opened again
until it is closed. See also, BRSs 2, 3, 20, 82.

REGISTERS AFFECTED: A, X

Input/Output 65

NUMBER: 110

NAME: RDU

FUNCTION: Read Device and Unit

STATUS: User

CALLING SEQUENCE, lOA =FILE Na.
BRS 110
NORMAL RETURN

DESCRIPTION: Output X = device number.
A = unit number.

See BRS 1 for device number description.

REGISTERS AFFECTED: A, X

NUMBER: 2

NAME: MONCLS

FUNCTION: Close a File

STATUS: User

CALLING SEQUENCE: lOA N
BRS 2
NORMAL RETURN

N = File number (obtained when file was opened).

DESCRIPTION: The "close file" BRS is used to indicate to the system all processing is com­
pleted on this file. All necessary termination processing will be completed and control will
be transferred to the normal return. See also BRSs 1, 8, and 82.

REGISTERS AFFECTED: None

66 Input/Output

NUMBER: 20

NAME: CFlLE

FUNCTION: Close a File

STATUS: User

CALLING SEQUENCE: LDA
BRS

N = File Number

N
20

DESCRIPTION: The "close file" BRS is used to indicate to the system all processing is
completed on this file. If the file number indicates Mag Tape, the file will be terminated
and if output, the End of File will be written; but in either case, the tape will be positioned
at the start of the next file and the tape is de-allocated. All registers are clobbered.

REGISTERS AFFECTED: All

NUMBER: 8

NAME: IOH

FUNCTION: Close all Files

STATUS: User

CALLING SEQUENCE: BRS 8
NORMAL RETURN

DESCRIPTION: The "close all files" BRS is used to indicate to the system all processing is
completed on all files. The system will complete all necessary termination processing on all
files and transfer control to the normal return. BRS 8 is always executed when control return;
to the system. This BRS will not close magnetic tape files correctly. See also, BRS 1, 2, 82,
and 17.

REGISTERS AFFECTED: None

Input/Output 67

NUMBER: 66

NAME: DFDL

FUNCTION: Delete DSU File Data

STATUS: User

CALLING SEQUENCE: LOA N
BRS 66
NORMAL RETURN

N = File Number

DESCRIPTION: This BRS will return ta available starage all DSU blocks which are assigned
to the indicated file and clear the index block of DSU addresses.

REGISTERS AFFECTED: None

NUMBER: 67

NAME: DFER

FUNCTION: Delete a Specified Block of the DSU

STATUS: System

CALLING SEQUENCE: LOA D
BRS 67
NORMAL RETURN

D = Address of the DSU block.

DESCRIPTION: This BRS will return the DSU block indicated by the address in register A to
available storage and transfers control to the normal return. This BRS should be used to de­
lete Index Blocks. The BRS does not clear the Index Block address from the Customer File
Directory.

REGISTERS AFFECTED: None

68 Input/Output

NUMBER: 82

NAME: SWSF

FUNCTION: Switch Sequential File Type

STATUS: User

CALLING SEQUENCE: LOA
LOB
BRS

N = File number

N
C
82

C = 0 will make the file an input file.
C = 1 will make the file an output file.

DESCRIPTION: This BRS sets the file type to input or output depending on the contents of
register B regardless of its current file type and transfers control to the normal return.

RESTRICTION: If the sign bit of register A was set when the BRS 1 was executed to open the
file, it cannot be switched from input to output. A violation results in an instruction trap.

REGISTERS AFFECTED: None

NUMBER: 87

NAME: DFRX

FUNCTION: Read DSU File Index Block

STATUS: System

CALLING SEQUENCE: LDA D
LOX W
BRS 87
NORMAL RETURN

D = DSU address of the index block (MOD 4)
W = Core address into which the block is to be read.

DESCRIPTION: Reads the specified block into the given core location and transfers control
to the normal return. The block read is the size of the currently defined index block. The
size of an index block varies with the assembly.

REGISTERS AFFECTED: None

Input/Output 69

NUMBER: 104

NAME: RSYB

FUNCTION: Read a Page from the RAD

STATUS: System

CALLING SEQUENCE· LDA
lOB
BRS

C = Core Address

R = RAD Address

C
R
104

DESCRIPTION: Reads ;:>ne page from the RAD starting at the address R into a page in core.
C may be any location in that page. The data will start in the first word of the page.

Uncorrectable RAD errors result in an instruction trap or interrupt 11 if it is armed. Try com­
mand ogain.

REGISTERS AFFECTED: None

NUMBER: 105

NAME: WSYB

FUNCTION: Write a Page on the RAD

STATUS: System

CALLI!'-lG SEQUENCE: LDA
lOB

C

BRS 105
NORMAL RETURN

DESCRIPTION: Writes :)ne page on the RAD starting at the address R from a page in core.
e may be any locatiof'l in that page. The data will start in the first word of the page.

Uncorrectoble RAD errors result in an instruction trap or interrupt 11 if it is armed. Try
·:ommand ogain.

REGISTERS AFFECTED: None

70 Input/Output

NUMBER: 113

NAME: DFCD

FUNCTION: Compute File Size of a DSLJ File

STATUS: User

CALLING SEQUENCE: LDA =File Number
BRS DFCD
NORMAL RETURN

DESCRIPTION: Adds the number of data words (in multiples of 255) in the file to the num­
ber in the X register. Returns the result in X.

REGISTERS AFFECTED: X

NUMBER: 114

NAME: MTDI

FUNCTION: Turn Off Run-away Magnetic Tape

STATUS: System

CALLING SEQUENCE: BRS MIDI
NORMAL RETURN

DESCRIPTION: Issues commands to try to stop the tape.

REGISTERS AFFECTED: None

Input/Output 71

NUMBER; 118

NAME: TGET

FUNCTION: Allocate Magnetic Tape Unit

STATUS: System

CALLING SEQUENCE: LOA =Tape Number
BRS 118
EXCEPTION RETURN
NORMAL RETURN

DESCRIPTION: Assigns tape requested to the user. If tape is already busy with someone
else the exception return is executed.

REGISTERS AFFECTED: None

NUMBER: 119

NAME: TREL.

FUNCTION: De-allocate Magnetic Tape Unit

STATUS: System

CALLING SEQUENCE: LOA =Tape Number
BRS 119
NORMAL RETURN

DESCRIPTION: Releases the tape specified. Releases regardless of who had it.

REGISTERS AFFECTED: None

72 Input/Output

NUMBER: BE+9

NAME: RDSYB

FUNCTION: Read DSU Page

STATUS: System

CALLING SEQUENCE: LOA
LOB
BRS

C =, Core Address
R = Disc Address

C
R
BE+9

DESCRIPTION: Use like 104. Can only be called by the system exec. BE+l can be used
to perform this function.

REGISTERS AFFECTED: None

NUMBER: BE+lO

NAME: WDSYB

FUNCTION: Write DSU Page

STATUS: System

CALLING SEQUENCE: LOA C

C = Core Address
R = RAD Address

LOB R
BRS BE+lO

DESCRIPTION: Use like 105. Can only be called by the system exec. BE+2 should be used
to perform this function.

REGISTERS AFFECTED: None

Input/Output 73

NUMBER: BE+7

NAME: BPTEST

FUNCTION: Test a Breakpoint Switch

STATUS: System

CALLING SEQUENCE· LDX =Switch Number
BRS BE+7
SWITCH UP RETURN
SWITCH DOWN RETURN

DESCRIPTION: Tests the breakpoint switch (1, 2, 3, 4) indicated in X. If the switch is
down, the BRS skips on return.

REGISTERS AFFECTED: None

NUMBER: BEi 1

NAME: ARD

FUNCTION: Read DSU

CALLING SEQUENCE: LDA =Core Address
LDB =Disc Address
LDX =Number of Words
BRS BE+ 1
NORMAL RETURN

DESCRIPTION: Reads up to 2K words from disc. Transfer must not cross a page boundary
Jnd must be in multiples of 64 words. Errors result in an instruction trap or programmed
interrupt 11 if it is armed. No two forks that are to run simultaneously should both use
this BRS.

REGISTERS AFFECTED: None

74 Input/Output

NUMBER: BE+2

NAME: AWD

FUNCTION: Write DSU

STATUS: System

CALLING SEQUENCE: LOA
LDB
LOX
BRS

=Core Address
=Disc Address
=Number of Words
BE+2

DESCRIPTION: Like BE+1. The number of words must be a multiple of 64 and greater than O.

REGISTERS AFFECTED: None

Input/Output 75

NUMBER: 15

NAME: GFt-J

FUNCTION: Reads Input File Name from a Command File and Looks up the File Name in
the User's File Directory.

STATUS: User

CALLING SEQUENCE: LDA N
BRS 15
EXCEPTION RETURN
NORMAL RETURN

N = Command File Number

DESCRIPTION: The routine ignores leading spaces, leading multi-blanks, and leading car­
riage return c.haracters. It then uses the BRS 37 to laok up the file name in the user's file
directory hash table.t It returns in the regi sters for both returns exactl y what the BRS 37
puts there, which is:

Excepti on Return: X:
A & B:

Normal Return: A:

B:
X:

Pointer to the input file name string pointers.
Input file name string pointers.
Pointer to the string pointers of the desired file in the
file directory hash table.
The value word of the hash table entry.
Clobbered.

Note: The information contained in the registers cannot be used directl 'I by the user since
the addresses are in the T. S. Block; this BRS is normally follwed by the BRS 16.

If the input file name string begins with a left parenthesis, or wHh the full quote,
the file name will be located in another user's file directory or ill the public file
direc+ory, respectively; in these cases, the input command file must be the teletype.
Since the BRS 37 is not used in this case, the information in the registers is of no
practical use to the user, and the BRS MUST be followed by the BRS 16 as indicated
under the BRS 16.

REGISTERS AFFECTED: None

tThe exception return is taken if the input file name string cannot be located in the file
directory.

76 Input/Output

NUMBER: 16

NAME: GIFNB

FUNCTION: Open Input File in File Directory.

STATUS: User

CALLING SEQUENCE: LDA N
BRS 15
BRU (Error)
BR5 16
EXCEPTION RETURN
NORMAL RETURN

N =, File Directory Pointer Address

DESCRIPTION: Opens an input file located in the user's file directory. The BRS requires in
A, the location of the first word of the entry in the file directory hash table. The exception
return is taken if the pointer in A is not pointing to a proper location in the hash table, or if
the file cannot be opened for any reason, such a physical device that cannot be an input file.
The file directory pointer may be obtained from a BRS 15 or a BRS 18.

Exception Return:
Normal Return: A:

B:
X:

REGISTERS AFFECTED: All

NUMBER: 17

NAME: UABORT

All registers clobbered.
File Number
File Type (0-4)
File Size

FUNCTION: Close all Files (Including Mag Tape)

STATUS: User

CALLING SEQUENCE: BRS 17

DESCRIPTION: If mag tape has been used, the last record will be terminated and if output,
the End of File will be written; in either case the tape will be positioned at the start of the
next file. The tape is then closed and the unit is de-allocated. See also, BRS 8. All reg­
isters are clobbered.

REGISTERS AFFECTED: All

Input/Output 77

NUMBER: 18

NAME: GOFNA

FUNCTION: Reads File Name fram a Cammand File and Looks Up the File Name in the
User's File Directory. The Command File Must Be an Input File.

STATUS: User

CALLING SEQUENCE: LDA N
BRS 18
EXCEPTION RETURN
NORMAL RETURN

N - Command File Number

Bit 1 ~ 1 of A Register ~ Assume a file name is correct and does not type "OLD FILE" or
"r'-lEW FILE".

DESCRIPTION: The routine ignores leading spaces, leading multiblanks, and leading carriage
return characters. If the string begins and ends with a single quote ar a slash, the string is
terminated for look-up with this character and the string is laoked up in the user's file di­
rectory using the BRS 5 A confirming carriage return must follow the quote or slash before
the string is looked up. The exception exit is taken if the character is not a carriage return.
If the string is found in the file directory hash table, the message "OLD FILE" is typed,
otherwise the message 'NEW FILE" is typed. If a confirming line feed, carriage return, or
period is then next in the input string, the normal return will be taken, otherwise the ex­
ception return. In the case of a new file, the file name is inserted conditionally into the
file directory.

If the string begins with a character other than a single quote or a slash, the string is looked
up in the user's file directory using the BRS 37. If the string is not located, the error exit is
immediately taken causing the exception return. The exception return will also be caused
if the file is read only as indicated by the flag in the file directory.

Exception Return:
Normal Return: A:

B:

X:

REGISTERS AFFECTED: All

78 Input/Output

All clobbered.
Location of the file in the directory hash table.
Confirming character in case of a quote or slash file;
otherwise, the file directory hash table value word.
Clobbered.

NUMBER: 19

NAME: GOFNB

FUNCTION: Open Output File Located in File Directory

STATUS: User

CALLING SEQUENCE: LDA N 1
LDB N2 (For Tape Files Only)
LOX N3
BRS 19
EXCEPTiON RETURN
NORMAL RETURN

N 1 -Information supplied in A by BRS 18 (location in the file directory).
N2 - File Size (as supplied in X by BRS 16) for tape files only.
N3 -File Type (as supplied in B by BRS 16).

DESCRIPTION: Opens an output file located in the user's file directory. The information
required in the register is indicated above. The word in A is checked for legality. If it is
not a valid pointer, the exception return is taken. The exception return is also taken if the
fi Ie cannot be opened for any reason, such as a physical device that cannot be used for out­
put. In the case of a new file, the file directory entry is completed. If the new file is a
DSU file and it cannot be opened, the message "NO ROOM" is typed. The message "FILE
TYPE WRONG" is typed as appropriate.

Exception Return: All clobbered.
Normal Return: A - File Number.

B & X - clobbered.

REGISTERS AFFECTED: All

Input/Output 79

NUMBER: 48

NAME: GSFN

FUNCTION: Look up Input/Output File Name

STATUS: User

CALLING SEQUENCE: LDP N
BRS 48
EXCEPTION RETURN
NORMAL RETURN

N '" String pointers for the file narT'e.

DESCRIPTION: The file name is looked up in the file directory hash table using the BRS 5.
If it is not tf'-ere, the exception return is taken.

Exception Return: A & B:
X:

Normal Return: A & B:

X:

REGISTERS AFFECTED: All

NUMBER: 60

NAME: GSFI

No change.
Clobbered.
Location in file directory hash table. Can be used by
BRS 16 or BRS 19.
Clobbered.

FUNCTION: Look Up Input/Output File Name and Insert if New.

STA TUS: User

CALlING SEQUENCE: LDP N
BRS 60
EXCEPTION RETURN
NORMAL RETURN

N = String pointers for the file name.

DESCRIPTION: The file name is looked up in the file directory hash table using the BRS 5.
If it is not there, it is inserted in the hash table. The exception return is taken if it cannot
be inserted in the case of a full directory.

Excepti on Return: A & B:
X:

Normal Return: A & B:
X:

80 Input/Output

No change.
Clobbered.
String pointer to location in file directory hash table.
Clobbered.

NAME: CIO

FUNCTION: Character Input/Output

STATUS: User

CALLING SEQUENCE: LDA
CIO

C (Output only)
N

C '" 8 bit data character right justified.
N '" Address of word containing a file number.

DESCRIPTION: CIO is used to input or output a single character from, or to, a file from
the A register. On input an End of Record or End of File condition will set bits a and 8
or bits 0 and 7 in the file number and return a 1348 or 1378 character, respectively. If in­
terrupt 4 is armed (see BRS 78), it will occur. The End of Record occurs on the next input
operation after the last character of the record has been input and the End of File condition
occurs on the next input operation after the End of Record which signals the last record of
the file. If an error occurs, bits a and 6 will be set in N and interrupt 4 will occur if it is
armed.

WIO and BIO should not be mixed with CIO to read or write a given file.

REGISTERS AFFECTED: A

NAME: WIO

FUNCTION: Word Input/Output

STATUS: User

CALLING SEQUENCE: LDA
WIO

D = Data word to be written.

D (Output only)
N

N = Address of word containing a file number.

DESCRIPTION: WIO is used to input or output a word of data to or from the A register. On
input an End of Record conditi on returns a word of three 1348 characters and sets bi ts 0 and.
8 in the file number word. If interrupt 4 is armed (see BRS 78), it will occur. An End of
File condition returns a word of three 1378 characters and sets bits 0 and 7 in the file num­
ber word. If interrupt 4 is armed, it will occur. If an End of Record or File condition oc­
curs with a partially filled out word, the word is completed with 1348 or 1378 characters.
If an error occurs, bits 0 and 6 are set in N. If interrupt 4 is armed it will occur.

CIO and WIO should not be mixed to read or write a given file.

REGISTERS AFFECTED: A

Input/Output 81

t'~AME: BIO

FUNCTION: Blocked Input/Output

STATUS: User

CALLING SEQUENCE: LDA W
LDX I
BIO N
EXCEPTION RETURN
NORMAL RETURN

"' Starting memory address.
W ' Number of words to be read or written.
N - Address of worrl contoining C1 file number.

DESCRIPTION: BIO is used to input a block of words to memory or output a block of words
from memory. The A register will contain the first memory location not read into or out of
at the end of the operatkm. If the operation is completed successfully, control will be
tr-ansferred to the normal return, otherwise control will be transferred to the exception return.

On input an End of Record or End of File condition will set bits 0 and 8 or 0 and 7 in the
f Ie number. An error wd I set bits 0 and 6. Interrupt 4 wi II occur if armed when any of
these bits are set.

Exception conditions are

1. End of Record
2. End of File
3. Bad Record

F bit 1 is on in the Data Block disc address in the Index Block of a DSU file, it indicates
the end of the data blocks and is the end of a logical record.

REGISTERS AFFECTED: A, X

82 Input/Output

NAME: CTRL

FUNCTION: Input/Output Control (only tape is implemented)

STATUS: System

CALLING SEQUENCE: LDA C

C = Control number
N = File number

CTRL N

DESCRIPTION: CTRL provides the following control functions for tape files:

Control

1
2
3
4
5
6
7
8

Description

Write end of record on output. Record count not used.
Backspace physical block.
Forward space physical block.
Backspace file.
Erase tape (output only) (3 inches).
Rewind.
Write EOF. Output only.
Long erase. Output onl y.

REGISTERS AFFECTED: None

Input/Output 83

NUMBER: 23

NAME: LNKS

23. TELETYPES

FUNCTION: Link/Unlink TTY - Not implemented

STATUS: User

CALLING SEGlUENCE: LDX
LDA
LDB
BRS

T
A
C
23

T 0= Teletype number
A 0= Addre'ss of a list of teletype numbers terminated with -2.
C 0= Control word. The bits of this word are as follows:

Bit 0 0= 0 Output LCW, 1 0= Input LCW.
Bit 1 0= 0 = Clear all links first, 1 0= Do not clear links first.
Bit 20=0 Set link bits for TTY whose numbers are in the table.
Bit 20= 1 , Clear link bits for TTY whose numbers are in the tabl.~.

DESCRIPTION: This BRS is used to set the link bit for TTY T in the LCW. Associated with
each TTY are two words called the absolute input and absolute output link control words
(LCW's). Each of these words contains one bit for each TTY in the system (maximum of 24).
Also associated with each TTY are relative LCW's for input and output. The bits in these
LCW's are set by this BRS. From the old relative LCW and the information supplied in the
call ing sequence a new relative LCW is created. Each time any relative LCW is changed,
the absolute LeW's are all recomputed.

Link bits set in the input LCW cause input characters to be stored in the buffer of all TTY's
linked to the controlling TTY. Link bits set in the output LCW cause output characters,
including echoes, to be output to all TTY's linked to the controlling TTY.

REGISTERS AFFECTED: None

84

NUMBER: 24

NAME: LNKC

FUNCTION: Unlink - not implemented

STATUS: System

CALLING SEQUENCE: LDX
BRS

T 0= Teletype Number

T
24

DESCRIPTION: This BRS is used to clear all links, input and output, to or from TTY T.

REGISTERS AFFECTED: None

NUMBER: 25

NAME: MSGS - not implemented

FUNCTION: Set Accept Messages and Set Accept Input Indicators.

STATUS: System

CALLING SEQUENCE: LDX
LDA
BRS

T
I
25

T 0= Teletype number (must be controlling TTY or an attached ITY).
I 0= Bit 23 on to set "Accept Messages" Indicator.
I 0= Bit 24 on to set "Accept Input" Indicator.

DESCRIPTION: This BRS allows the user to specify whether or not messages from outside will
be accepted, and whether or not input from outside will be accepted from his controlling tele­
type or for one which he has attached. The accept message indicator controls execution of
OST instructions and the setting of teletype output links. The accept input indicator controls
execution of STI instructions and the setting of teletype input links. Setting or clearing of
these indicators will not affect any TTY links currently set.

REGISTERS AFFECTED: None

Teletypes 85

NUMBER: 27

NAME: ASTT - not implemented

FUNCTION: Attach TTY to this program

STA TUS: System

CALLING SEQUENCE: LDA T
BRS 27
EXCEPTION RETURN
NORMAL RETURN

T = Teletype Number

DESCRIPTION: To give total control over a TTY to the requesting program. If the indicated
TTY is free, it is attached to the requesting program and transfers control to the "normal re­
turn", If it is not free, control is transferred to the "exception return".

REGISTERS AFFECTED: None

NUMBER: 28

NAME: RSTT - not implemented

FUNCTION: Release TTY

STATUS: System

CALLING SEQUENCE: LDA
BRS

T = Teletype Number

T
28

DESCRIPTION: Returns to a free status the TTY indicated by the A register. If the TTY was
not attached to the requesting program a "panic" will be executed.

Note:_ All attached tel etypes are rei eased when the user logs out.

REGISTERS AFFECTED: None

86 Teletypes

NUMBER: BE+3

NAME: CARRY

FUNCTION: Test for Carrier Presence

STATUS: System

CALLING SEQUENCE: LDA
BRS

=L1NE#
BE+3

EXCEPTION RETURN - No Carrier
NORMAL RETURN - Carrier Present

DESCRIPTION: This BRS gives a skip return, if the carrier signal is present on the line
identical in A. No carrier signal - no skip.

REGISTERS AFFECTED: None

NUMBER: BE+6

NAME: TTYON

FUNCTION: Turns a Teletype Line On or Off.

STATUS: System

CALLING SEQUENCE: LDA =TTY #
LDB =0 (off) or -1 (on)
BRS BE+6
NORMAL RETURN

DESCRIPTION: Issues the EOM and POT commands which cause the line to be turned off
(hung up) or made ready to accept an incoming call.

REGISTERS AFFECTED: None

Teletypes 87

NUMBER: 11

NAME: CIB

FUNCTION: Clear the Teletype Input Buffer

STATUS: User

CALLING SEGlUENCE: LOX
BRS

T
11

T = Teletype number (-1 is used to indicate the controlling teletype).

DESCRIPTION: Sets the buffer pointers to indicate there ore no characte,rs in the TTY input
buffer.

REGISTERS AFFECTED: None

NUMBER: 29

NAME: COB

FUNCTION: Clear the Output Buffer

STATUS: User

CALLING SEGlUENCE: LDX T
BRS 29

T = Teletype Number (-1 indicates the controlling TTY).

DESCRIPTION: Sets the buffer pointers to indicate there are no characte,rs in the TTY out­
put buffer.

REGISTERS AFFECTED: None

88 Teletypes

NUMBER: 12

NAME: CET

FUNCTION: Declare Echo Table

STATUS: User

CALLING SEQUENCE: LDX
LDA
BRS

T
R
12

T = Teletype number (-1 is used to indicate the controlling TTY).
R = ± I, 2, or 3 to indicate the proper echo table. If the sign bit of R is set, each 8

bit character read from the teletype is transmitted unchanged to the user's program.
No echoes are generated while in this special 8-level mode. Teletype output is
not affected.

DESCRIPTION: BRS 12 sets the echo table for the TTY indicated by Register X. Echo tables
are as follows:

0= Echa each character just as it was received and break on all characters.
1 = Same echo as 0 but all characters except letters, digits and spaces are break

characters.
2 = Same echo as 0, but the only break characters are control characters (including

carriage return and line feed).
3 = No echo for any character and break on all characters.

REGISTERS AFFECTED: None

Teletypes 89

NUMBER: 40

NAME: RDET

FUNCTION: Read Echa Table

STATUS: User

CALLING SEQUENCE: LDX
BRS

T ~ Teletype number

T
40

DESCRIPTION: Reads the echo table number (0, 1, 2, 3) into the A, register.

If the teletype is not in 8-level input mode, reads the echo table number (0, 1, 2, 3) into
the A register. If the teletype is in 8-level input mode, the sign bit of A is set, the address
field contains the terminal character.

REGISTERS AFFECTED: A

NUMBER: 13

NAME: SKI

FUNCTION : Test Input Buffer for Empty

STATUS: User

CALLING SEQUENCE: LDX
BRS 13
EXCEPTION RETURN
NORMAL RETURN

T = Teletype number (-1 is used to indicate the controlling TTY).

DESCRIPTION: This BRS tests for the presence of input characters in the buffer. If the buf­
fer is empty, control is transferred to the "normal return". If there are any characters in
the input buffer, control is transferred to the "exception return".

REGISTERS AFFECTED: None

90 Teletypes

NUMBER: 14

NAME: DOB

FUNCTION: Dismiss Until the Teletype Output Buffer is Empty.

STATUS: User

CALLING SEQUENCE: LDX
BRS

T
14

T = Teletype number (-1 is used to indicate the controlling TTY).

DESCRIPTION: Dismiss this fork until the teletype output buffer indicated is empty. It is
dismissed only until the last character is transmitted. This fork might be restarted before the
last character interrupt has occurred, therefore, caution should be exercised.

REGISTERS AFFECTED: None

NUMBER: 85

NAME: SET8P

FUNCTION: Set Special Teletype Output

STATUS: User

CALLING SEQUENCE: LDX T
BRS 85

T = Teletype number (-1 is used to indicate controlling TTY).

DESCRIPTION: Sets teletype to 8-level output mode. The teletype specified must either
be the controlling teletype or an attached teletype. 8-level is transmitted to the teletype
exactily as it is received from the user program.

REGISTERS AFFECTED: None

Teletypes 91

NUMBER: 86

NAME: CLR8P

FUNCTION: Clear Special Teletype Output

STA TUS: User

CALLING SEQUENCE: LDX T
BRS 86

T = Teletype number (-I is used to indicate controlling TTY).

DESCRIPTION: Puts the teletype output bock into normal mode. The teletype specified must
either be the controlling teletype or attached.

REGISTERS AFFECTED: None

NUMBER: BE+ 11

NAME: CRSW

FUNCTION: To Allow the User to Ignore Line Feed or Carriage Return when it Follows a
Carriage Return or Line Feed.

STATUS: User

CALLING SEQUENCE: LOA =0 (ignore) = -1 (do not ignore)
BRS BE+ll
NORMAL RETURN

DESCRIPTION: The contents of the A register will give the following results. If A is neg­
ative, all line feeds and carriage returns received from the TTY will bt~ sent to the program
and echoed. If A is positive, a line feed after a carriage return received from the TTY will
be ignored (not sent to the program and not echoed) and a carriage return after a line feed
will also bE' ignored (not sent to the program and not echoed). In all Gases the first line feed
or carriage return received will be sent to the program and echoed plus echo its complement.

REGISTERS AFFECTED: None

92 Teletypes

NAME: TCI

FUNCTION: Teletype Character Input

STATUS: User

CALLING SEQUENCE: TCI M

M = Memory address

DESCRIPTION: This SYSPOP reads the character from the teletype input buffer and places
it into the location M right justified. The remainder of location M is cleared. The char­
acter is also placed in the A register right justified.

REGISTERS AFFECTED: A

NAME: TCO

FUNCTION: Teletype Character Output

STATUS: User

CALLING SEQUENCE: TCO M

M = Memory address

DESCRIPTION: This SYSPOP outputs the character from the right-most 8 bits of location M
to the controlling teletype. In addition to the ordinary ASCII characters, al/ teletype out­
put operations will accept 1358 as a multiple blank character. The next character will be
taken as a blank count, and the indicated number of blanks will be typed.

REGISTERS AFFECTED: None

Teletypes 93

NAME: 1ST - not implemented

FUNCTION: Input from Specified Teletype

STATUS: User

CALLING SEQUENCE: 1ST

T = Tel etype number

DESCRIPTION: 1ST is used to input a character from an attached teletype. The character
will be right justified in the A register upon return.

REGISTERS AFFECTED: None

NAME: OST - not implemented

FUNCTION: Output to Specified Teletype

STATUS: User

CALLING SEQUENCE:: O5T T

T = Teletype number

DESCRIPTION: OST is used to output a character in the A register to a specified teletype.
This instruction is used for output to an attached teletype. Its accept message bit must be
set or an illegal instruction panic will be generated.

REGISTERS AFFECTED: None

94 Teletypes

NAME: STI

FUNCTION: Simulate Teletype Input

STATUS: User

CALLING SEQUENCE: STI T

T = Teletype number

DESCRIPTION: This BRS is used to simulate teletype input. It puts the character in the A
register into the input buffer of the specified teletype. It is legal for a user fork only if T
equal s the control I i ng TTY or -1.

REGISTERS AFFECTED: None

Teletypes 95

NUMBER: 4

NAME: MPT

24. MEMORY

FUNCTION: Rf~lease a Page of Memory

STATUS: User

CALLING SEQUENCE: LOA
BRS

N
4

N = Contains any address in the page to be released.

DESCRIPTION: The PMT entry for the block is removed and in any other fork which has
this PMT byte in its relabel ing, the byte is cleared to O.

REGISTERS AFFECTED: None

NUMBER: 121

NAME: DPMTE

FUNCTION: Release Specified PMT Entry

STATUS: User

CALLING SEQUENCE: LOA
BRS

R = Relabel ing byte

R
121

DESCRIPTION: Releases the specified page from the PMT. It is exactly like a BRS 4
except that it tClkes a byte number instead of an address.

Instruction Trap:

I. Byte no:>t in PMT.
2. A user fork tried to release a system page.

REGISTERS AFFECTED: None

96 Memory

I

NUMBER: 120

NAME: APMTE

FUNCTION: Assign PMT Entry

STATUS: System

CALLING SEQUENCE: LOA
BRS

R = Relabeling byte

R
120

DESCRIPTION: Obtains a new page for the relabeling byte specified. This BRS is used
only in the recover routine in the EXEC.

Instruction Trap:

1. PMT entry is already assigned.
2. The relabeling byte number was not in the PMT.

REGISTERS AFFECTED: None

NUMBER: 43

NAME: RDRL

FUNCTION: Read Pseudo-Relabeling

STATUS: User

CALLING SEQUENCE: BRS 43

DESCRIPTION: Reads the current pseudo-relabeling registers into registers A and B.

REGISTERS AFFECTED: A, B

Memory 97

l'lUMBER: 44

l'lAME: STRL

FUNCTION: Set Pseudo-Relabeling

5TATUS: User

CALLING SEQUENCE: LDA
LDB
BRS

R 1 & R2 = Relabeling factors

Rl
R2
44

DESCRIPTION: This BRS takes the cantents of registers A and B and stores them into the
current pseudo-relabeling registers. It also causes the real relabeling to be reset to corre­
spond to the new pseudo-relabeling.

This BRS will result in an instruction trap for ony of the following reasons:

1. Swapping in the new pages was not completed. (usually because of a RAD failure.)
2. The user tried to relabel over a system page.
3. The user tried to relabel over a page he did not have. (This is not the way to

obtain more memory.)

F:EGISTERS AFFECTED: None

NUMBER: 116

NAME: RURL

FUNCTION: Read User Relabeling

STATUS: System

CALLING SEQUENCE: BRS 116

DESCRIPTION: Puts the program relabeling into A and B. This is what the system execu­
tive uses as program relabeling. It is kept in the TS block.

REGISTERS AFFECTED: A, B

98 Memory

NUMBER: 117

NAME: SURL

FUNCTION: Set User Relabeling

STATUS: System

CALLING SEQUENCE: LDA
LDB
BRS

RLI
RL2
117

RLl and RL2 are the new val ues for the program relabel ing.

DESCRIPTION: Sets the program relabeling as specified. This BRS is used by the system.
User programs should use BRS 44 to set relabeling for a fork.

Instruction Trap:

1. A specified relabeling byte was not assigned.
2. A user fork tried to relabel a system byte.

REGISTERS AFFECTED: None

NUMBER: 122

NAME: MPAN

FUNCTION: Simulate Memory Panic

STATUS: System

CALLING SEQUENCE: LDA
BRS

A = Core address

A
122

DESCRIPTION: This BRS gets new memory for a class 3 BRS. If it succeeds the new memory
is put into the relabeling of the calling program. Can be issued from a class 3 BRS only.

If a memory trap occurs, it looks to the calling program like it came from the BRS
instruction.

REGISTERS AFFECTED: None

Memory 99

NUMBER: 56

NAME: MBEX

FUNCTION: Make Page System

STATUS: System

CALLING SEQUENCE: LDA P
BRS 56

P = Pseudo-Relabeling byte for page.
If bit 0 of A = I, page will be made system.
If bit 0 of A = 0, page will be made not system.

DESCRIPTION: Sets the use mode of a page depending on the value of bit 0 in the A
register.

Bit 0 of A is set to 1 if page was formerly system or 0 if it was not.

REGISTERS AFFECTED: A

NUMBER: 80

NAME: MBRO

FUNCTION: Make Page Read Only

STATUS: User

CALLING SEGIUENCE: LDA P
BRS 80

P = PMT /SMT number
If bit 0 of A = I, make page read only.
If bit 0 of A = 0, make page read-write.

DESCRIPTION: Sets the read-write status of the entry according to the value of A. An
SMT entry can only be changed by a system fork. The former status of thE! entry is returned
in A.

Instruction Trap:

1. Specified entry is not in use.
2. The swap failed.

REGISTERS AFFECTED: A

100 Memory

NUMBER: BE+4

NAME: PEBRS

FUNCTION: Reads or Sets One Word in the Monitor

STATUS: System

CALLING SEQUENCE: LDA
LDB
LDX
BRS
RETURN

v
o or -1
=Location in Monitor Relabeling
BE+4

v = New value for word if it is to be set.
The contents of the location are returned in the A register.
If B is positive, the word is read.
If B is negative, the word is changed and the old value returned in A.

DESCRIPTION: Allows a system program to read or set the contents of any location in
monitor relabeling.

The original contents of the location are always returned in the A register.

REGISTERS AFFECTED: A

NUMBER: 68

NAME: EBSM

FUNCTION: Enter Block in SMT - Not implemented.

STATUS: System

CALLING SEQUENCE: LDA B
BRS 68

B = Byte number in users pseudo-relabel ing

the

DESCRIPTION: A free SMT entry is found and the PMT entry put into it. The SMT number
is returned in A.

REGISTERS AFFECTED: A

Memory 101

!'-lUMBER: 69

!'-lAME: GBSM

FUNCTION: Get SMT Block to PMT

STATUS: Subsystem

CALLING SEQUENCE: lDA
BRS 69

S = SMT number

DESCRIPTION: Puts the SMT entry into the first free PMT entry. The PMT entry number is
returned in A.

Instructi on Trap:

1. A user program tries to relabel a system SMT entry.
2. The SMT number is not valid.

Memory Trap:

There were no free PMT entries.

REGISTERS AFFECTED: A

102 Memory

25. STRING PROCESSING

NUMBER: 33

NAME: GETSTR

FUNCTION: Read String

STATUS: User

CALLING SEQUENCE: LDA
LDB
LDX
BRS

A = Address of string pointer
T = Terminal character
F = File number

A
T
T
33

Bit 0 of A on = The string is taken as null with the second pointer equal to the first.

DESCRIPTION: This BRS reads characters from the file and appends them to the string until
the terminal character is reached. The terminal character is not appended to the string.
It returns the updated string pointers in the A and B registers and updates the end string
pointer in memory.

REGISTERS AFFECTED: A, B

NUMBER: 34

NAME: OUTMSG

FUNCTION: Output Message

STATUS: User

CALLING SEQUENCE: LDX F
LDA W
LDB C
BRS 34

F = File number
W = Beginning word address
C = Character count or -1

DESCRIPTION: ThisBRS outputs C consecutive characters starting with the first character
of the specified word. If B = -I, characters are output until a / is encQuntered; the char­
acter $ is interpreted as a carriage return and line feed.

REGISTERS AFFECTED: None

String Processing 103

NUMBER: 35

NAME: OUTSTR

FUNCTION: Output String

STATUS: User

CALLING SEQUENCE: LDX
LDA
LDB
BRS

F = File number

P+l
35

P, P+l = A string pointer pair

DESCRIPTION: Outputs the string indicated by the string pointers in regisl~ers A and B to
the specified file.

REGISTERS AFFECTED: None

NUMBER: BE+14

NAME:

FUNCTION: Input String with Edit

STATUS: User

NOT IMPLEMENTED

104 String Processing

NAME: CIT

FUNCTION: Character Input and Test

STATUS: User

CALLING SEQUENCE: LDA N
CIT F
EXCEPTION RETURN
NORMAL RETURN

N = Character to be tested
F = File Number (see CIO) (Input Only)

DESCRIPTION: The character in the A register is compared against the next character in
the input file. If it compares, the normal return is taken and the character is removed from
the input buffer. If it does not compare, the character is left in the input buffer and is
returned in A.

Exception Return: A - The next character in the input buffer
B & X - No change

Normal Return:

REGISTERS AFFECTED: A

A - The character supplied remains in A (the character is
removed from the input buffer).

String Processing 105

t-JUMBER: 5

NAME: SSCH

FUNCTION: Look Up String in Hash Table

~,TATUS: User

CALLING SEQUENCE: LDA
LDB P+l
LDX T
BRS 5
EXCEPTION RETURN
NORMAL RETURN

P and P+l ~ String pointers for a string to be looked up
T ' Address of a three word table of the form:

ZRO Hash Table Beginning Address
ZRO Hash Table End Address
ZRO 0

DESCRIPTION: BRS 5 searches the hash table for a string to match the string indicated by
f~ and B registers. If successful it returns in register B the address of the hash table string
pointers, and in register A, the string "value" and executes the "normal" return. Otherwise,
it executes the "exception" return with registers A, B and X unchanged and the address of
the next free hash table entry in word 3 of the table is pointed to by register X. (Word 3
wi II be -1 if the table i, full.) The "val ue" is the hash image for thi~ string.

~;ee BRS 6

F~EGISTERS AFFECTED: A, B

~ 06 String Processing

NUMBER: 37

NAME: GSLOOK

FUNCTION: General String Lookup

STATUS: User

CALLING SEQUENCE: LDA F
LDB S
LDX T
BRS 37
EXCEPTION RETURN
NORMAL RETURN

F = Input file number
S = Address of string pointer pair
T = Address of the Hash Table Control Table

DESCRIPTION: The hash table is scanned for a string to match the given one. If none is
found but the given string matches the initial part of some hash table string characters from
the input file are appended until the string is long enough either to determine a unique hash
table string, with a matching initial part, or for no match to be possible. In the former
case, more characters are taken from input until an exact match is obtained or no match is
possiblei in this latter case, the match is still valid, and the last character (which caused
the mis-match) is left in the input file.

Exits are as follows: (1) The exception return is taken of the no-match condition with a
string pointer in A, B to the string so far collected. X is undisturbed. (2) The normal return
is taken on a match with the address of a hash table string pointer in A and the string "val ue"
in B. X is undisturbed. •

The "value" is the hash image for the string.

REGISTERS AFFECTED: None

String Processing 107

NUMBER: 6

NAME: SSIN

FUNCTION: Insert String in Hash Table

STATUS: User

CALLING SEQUENCE: A, B, & X must have the output from BRS 5
BRS 6

DESCRIPTIOI'-J: BRS 6 inserts the string pointer into the hash table at the point determined
by the last BRS 5 which did not find a match. If the hash table is full (word 3 of the table
pointed to by X is -1) an "Illegal Instruction" trap results. BRS 6 is intended for use in
conjunction with BRS 5. It should be used only after BRS 5 has failed to find a match.
Furthermore, string pointers should not be placed in the hash table in any manner other than
with BRS 6 (otherwise the scanning algorithm used in BRS 5 may cause undesired results).

BRS 6 does not physically move the string to which registers A and B point. On return,
register B contains the address of the first word of the new hash table en'try and register A
contains the "value" word of the entry.

REGISTERS /lHECTED: A, B

NAME: STP

FUNCTION: Store Pointers

STATUS: USI~r

CALLING SEQUENCE: STP A

A = Address of a string pointer pair.

DESCRIPTION: This SYSPOP is generally used in conjunction with LDP. It stores the con­
tents of the A and B registers into the string pointers indicated in the calling sequence.

REGISTERS AFFECTED: None

108 String Processing

NAME: LDP

FUNCTION: Load Pointers

STATUS: User

CALLING SEQUENCE: LDP A

A = Address of a string pointer pair.

DESCRIPTION: This SYSPOP loads the string pointers indicated in the calling sequence into

the A & B registers.

REGISTERS AFFECTED: None

NAME: SKSE

FUNCTION: Skip

STATUS: User

String Equal

CALLING SEQUENCE: LDA
LDB
SKSE A
EXCEPTION RETURN
NORMAL RETURN

A ,= Address of a string pointer pair
B = Beginning string pointer
E = End string pointer

DESCRIPTION: If the string addressed by the pointers in the A and B registers is identical
with the string addressed by A of the call ing sequence, control will be transferred to the
normal return. Otherwise, control will be transferred to the exception return. If the strings
are of different lengths or have different contents, control will be transferred to the exception
return.

REGISTERS AFFECTED: None

String Processing 109

NAME: SKSG

FUNCTION: Skip on String Greater

STATUS: User

CALLING SEQUENCE: LOA B
LDB E
SKSG A
EXCEPTION RETURN
NORMAL RETURN

B = Beginning string pointer
E = End string pointer
A = Address of a string pointer pair

DESCRIPTION: The SYSPOP campares the string indicated by A and B registers with the
string indicated by A of the calling sequence, character by character and terminates with
the first unequal character. The numerical internal code representation of characters is
used to determine inequality. If the strings are unequal for the entire length of the shorter
one, the longer one is indicated as greater. If the contents of the string addressed by the A
and B registers is greater than the contents of the string addressed by A, control will be
transferred to the normal return. Otherwise, control is transferred to the exception return.

REGISTERS AFFECTED: None

NAME: GCI

FUNCTION: Get Character and Increment

STATUS: User
CALLING SEQUENCE: GCI A

EXCEPTION RETURN
NORMAL RETURN

A = Address of a string pointer pair

DESCRIPTION: This SYSPOP reads into the A register, the first character from the string
indicated by the beginning string pointer given in the calling sequence. If the string is null
or empty, nothing is done and control is transferred to the exception return. If the string is
not null its first character is loaded into the A register right-justified, and the beginning
;tring pointer is incremented by one such that the beginning string pointer now points to the
;tring with the first character deleted. Control is transferred to the normal return. Unless a
:opy of the original pointer is saved, the contents of the string are effectively destroyed.

~EGISTERS AFFECTED: A

110 String Processing

NAME: WCI

FUNCTION: Write Character and Increment

STATUS: User

CALLING SEQUENCE: WCI

P = Address of string pointer pair

DESCRIPTION: WCI writes the character in the A register on the end of the string addressed
by the end string pointer. The end string pointer is incremented by 1.

REGISTERS AFFECTED: B

NAME: GCD

FUNCTION: Get Character and Decrement

STATUS: User

CALLING SEQUENCE: GCD P
EXCEPTiON RETURN
NORMAL RETURN

P = Address of a string pointer pair

DESCRIPTION: A GCD is, in every way, similar to GCI except that the character is taken
from the end of the specified string.

The last character on the string is loaded in the A register, and end string pointer is decre­
mented so that it points to the previous character in the string. Control is transferred to the
exception return if the end pointer is not greater than the beginning pointerbefore it is
decremented.

REGISTERS AFFECTED: N

String Processing 111

NAME: WCD

FUNCTION: Writes Character and Decrement

STATUS: User

CALLING SEQUENCE: WCD

P == Address of a string pointer pair

DESCRIPTION: This SYSPOP writes the character in the A register on the beginning of the
string and decrements the beginning string pointer.

REGISTERS AFFECTED: None

NAME: WCH

FUNCTION: Write Character

STATUS: User

CALLING SEQUENCE: LDA
WCH

C
T

C == A character right-justified in the A register
T == The address of a three word table. The table is as follows:

Word 0 == A character address
Word 1 == A character address
Word 2 == A transfer address

DESCRIPTION: This SYSPOP tries to write a character into the area defined by the charac­
ter addresses in the table. Provided that the second address in the table is greater than the
first address, WCH will write the character in A register into the character position indi­
cated by the first character address plus one and will increment the first character address in
the table. If the first character address is equal to or greater than the s«~cond character in
the table the character is not written and control is transferred to the third word of the table
with A and X registers undisturbed and the address of the WCH in the B register. The address
in the third word of the table can be an exit to a routine which allocates more memory or
garbage collE!cts the remaining characters.

REGISTERS AFFECTED: None

112 String Processing

NUMBER: 36

NAME: OUTNUM

FUNCTION: Output Number

STATUS: User

CALLING SEQUENCE: LDX
LDA
LDB
BRS

F == File number
N == Number to be output
R == Radix

26. tlJftIIERS

F
N
R
36

DESCRIPTION: Outputs a number in the radix R. The number will be output as an unsigned
24-bit integer. If the radix is less than 2, an instruction trap will be given.

REGISTERS AFFECTED: None

NUMBER: 38

NAME: GETNUM

FUNCTION: Read Number

STATUS: User

CALLING SEQUENCE: LDX

F == File number
R == Radix

LDB R
BRS 38

DESCRIPTION: Inputs an integer to any radix. The number may be preceded by a plus or
minus sign. On exit the number will be in the A register. The conversion is terminated by
any non-numeric character which will be in the B register on exit. The number is computed
by multiplying the number obtained at each stage by the radix and adding the new digit.

REGISTERS AFFECTED: A, B

Numbers 113

NUMBER: 52

NAME: FFI

FUNCTION: Formatted Input

STATUS: User

CALLING SEQUENCE: LDX
BRS
BRU

FORMAT
52
X

DESCRIPTION: This routine reads characters from a file specified in the format word,
FORMAT. FORMAT olso specifies the format of the input. Free form input from the
teletype results when FORMAT = O. A skip return is generated if and only if (1) the
input is free form, and (2) the input is floating point. The internal translation of the
input file is stored in A, B.

REGISTERS AFFECTED: A, B, X

NUMBER: 53

NAME: FFO

FUNCTION: Formatted Output

STATUS: User

CALLING SEQUENCE: LDX
BRS

FORMAT
53

DESCRIPTION: The integer in A or the double word floating point value in A, B is output
to the file according to the file number and format specified in FORMAT.

REGISTERS AFFECTED: None

114 Numbers

NAME: SIC

FUNCTION: String to Internal Conver.;ion

STATUS: User

CALLING SEQUENCE: LDX
SIC
BRU
BRU

FORMAT
POINTER
INTEGER
FLOATING

DESCRIPTION: See String Processing System documents. FORMAT describes the type of
conversion to be done.

The contents of POINTER point to the character immediately preceding the character string.
POINTER+ 1 contains the character oddress of the last character of the string.

INTEGER and FLOATING are routines that handle the converted input. Error flags, if
applicable, are in the index register A, double word value corresponding to the string is
in A, B upon return.

REGISTERS AFFECTED: A, S, X

NAME: ISC

FUNCTION: Converts Internal Number.; to Formatted Output Strings

STATUS: User

CALLING SEQUENCE: LDP
LDX
ISC

M
FORMAT
POINTER

DESCRIPTION: See String Processing Documents. FORMAT describes the type of conver­
sion to be done. The contents of POINTER point to the character immediately preceding
the character string. POINTER+l contains the character address of the character immedi­
ately preceding the position where the first character of output is to go. M, M+l contain
the floating point word to be converted. Pointer+ 1 is incremented once for each character
added to the string.

REGISTERS AFFECTED: A, S, X

Number.; 115

NUMBER: 50

NAME: FFIX

FUNCTION: Conversion from Flooting Point to Fixed Point

STATUS: User

CALLING SEQUENCE: BRS 50

DESCRIPTION: Fixes the double word floating point value in (A, B). The integer part is
left in A. The fractional part is left adjusted in B.

REGISTERS AFFECTED: A, B

NUMBER: 51

NAME: FFLT

FUNCTION: Conversion from Fixed Point to Floating Point

STATUS: User

CALLING SEQUENCE: BRS 51

DESCRIPTION: The integer in A is converted to a normalized floating point value in A, B.

REGISTERS AFFECTED: A, B

116 Numbers

NUMBER: 21

NAME: FNA

FUNCTION: Floating Negate

STATUS: User

CALLING SEQUENCE: BRS 21

DESCRIPTION: The double word floating point value in the A and B registers is negated.

REGISTERS AFFECTED: A, B

NAME: FAD

FUNCTION: Floating Point addition

STATUS: User

CALLING SEQUENCE: FAD N

DESCRIPTION: SYSPOP FAD (A, B) + (M, M+l)
A floating addition is performed to the contents of memory location M and M+ 1 and the A
and B registers. The results are left in the A and B registers.

REGISTERS AFFECTED: A, B

Numbers 117

NAME: FSB

FUNCTION: Floating Point Subtraction

STATUS: User

CALLlN G SEQU ENCE: FSB N

DESC RIPTION: (A, B) - (M, M+ I)
The contents of memory locations M and M+I are subtracted (floating subtraction) from the
contents of the A and B registers. The results are left in the A and B registers.

REGISTERS AFFECTED: A, B

NAME: FMP

FUNCTION: Floating Point Multiplication

STATUS: User

CALLING SEQUENCE: FMP M

DESCRIPTION: (A, B) * (M, M+l)
The contents of memory locations M and M+I are multiplied (floating multiplication) by the
A and B registers and the results left in the A and B registers.

REGISTERS AFFECTED: A, B

118 Numbers

NAME: FDV

FUNCTION: Floating Point Divide

STATUS: User

CALLING SEQUENCE: FDV M

DESCRIPTION: (A, B}/(M, M+I)
The contents of the A and B registers are divided (floating divide) by the contents of memory
locations M and M+I with the quotient left in the A and B registers.

REGISTERS AFFECTED: A, B

Numbers 119

27. EXECUTIVE COMMAND OPERATIONS

NUMBER: 95

NAME: EC[)UMP

FUNCTION: Dump

STATUS: User

CALLING SEQUENCE: LDA N
BRS 95

N = File number

DESCRIPTION: This BRS writes the entire current state of the machine (user's program only)
on the specified file, which is made type 4. The status of the pseudo-relabeling registers
and all information necessary to restart the user from his current situation are written on the
dump file so it can be restored by a recovery procedure. The only information not preserved
are any shared memory entries which may be in the pseudo-relabeling.

Note: Dumps created by one system cannot be recovered by another.

REGISTERS AFFECTED: All

NUMBER: 96

NAME: ECRECY

FUNCTION: Recover

STATUS: U!,er

CALLING SEQUENCE: LDA
BRS

N = File number

N
96

DESCRIPTION: This BRS reads the dump file written by a BRS 95 and recovers the machine
status as it appeared at the time the dump was taken.

REGISTERS AFFECTED: All

120 Exe,:utive Command Operations

28. MISCELLANEOUS OPERATIONS

NUMBER: 42

NAME: RREAL

FUNCTION: Read Real-Time Clock

STATUS: User

CALLING SEQUENCE: BRS 42

DESCRIPTION: Read the real-time clock in the A register. Time is given as a 24-bit
binary number representing 60ths of a second. The clock is set to zero when the system is
started and it is incremented by one at every 1/60th second. A binary form of the month,
date and start-up time is put in B. From A and B the user can calculate the month, date
and time.

REGISTERS AFFECTED: A, B

NUMBER: 91

NAME: EXRTIM

FUNCTION: Read Data and Time into a String

STATUS: User

CALLING SEQUENCE: LDA
LDB
BRS

S+1
91

= Beginning string pointer
S+ 1 = Ending string pointer

DESCRIPTION: The current date and time are appended to the string provided in A and B
registers and the resulting string pointers are returned in the A and B registers. The char­
acters appended to the string have the form:

MM/dd hh:mm

MM=Month
dd =Day
hh =Hours counted from 0 to 24
mm =Minutes

REGISTERS AFFECTED: None

Miscellaneous Operations 121

NUMBER: 88

NAME: RTEX

FUNCTION: Read Execution Time

STATUS: System

CALLING SEQUENCE: BRS 88

DESCRIPTION: Returns the execution time for the job in A.

REGISTERS AFFECTED: A

NUMBER: 41

NAME: 10RET

FUNCTION: Return from I/O Subroutine

STATUS: User

CALLING SEQUENCE: BRS 41

DESCRIPTION: This is used by the author of an I/O subroutine to return to the calling
progrom.

REGISTERS AFFECTED: A

122 Miscellaneous Operotions

NUMBER: III

NAME: BRSRET

FUNCTION: Return from Class 3 BRS

STATUS: System

CALLING SEQUENCE: BRS III

DESCRIPTION: This BRS is used only by the author of class 3 BRS's. It is the only normal
termination of a class 3 BRS. If corresponds to a BRS 10 for other forks.

Instruction Trap:

BRS issued by a fork which was not a class 3 BRS.

REGISTERS AFFECTED: None

NUMBER: 112

NAME: TSOFF

FUNCTION: Turn Off Teletype Station

STATUS: System

CALLING SEQUENCE: LDA
BRS

Job Number
112

DESCRIPTION: This BRS is known as suicide. The job disappears completely from the
system.

The teletype line associated with the job will be set ready for another job if he merely
logged out.

REGISTERS AFFECTED: All

Miscellaneous Operations 123

NUMBER: 71

NAME: SKXEC

FUNCTION:. Skip if System

STATUS: User

CALLING SEQUENCE: BRS 71

DESCRIPTION: The B register is set to the value of the use code which the user has set for
the jab. Thl!se values are:

Value of B Use Code

1
o

-1
-2

Subsystem User
User
Both
System

The BRS skip:; if the B register is negative.

REGISTERS AFFECTED: B

NUMBER: BE+5

NAME: SDBM

FUNCTION: Set Disc Bit Map

ST ATUS: Sy~;tem

CALLING SEQUENCE: LDA =Address of X block Mod 4
BRS BE+5
EXCEPTION RETURN
NORMAL RETURN

Exception Return - A contains address that was in conflict.

DESCRIPTIOI'l: Turns off bits in the disc bit map for the X block and each data block refer­
enced by the index block. If any conflicts occur (the bit is already off), the address is left
in the A register and the exception return is taken. A conflict also increments one of two
counters, XBERR or FDERR, for errors in the X block or the file director)' respectively.

When the bit map has been set, one more call is made to this BRS with A negative. At that
time a switch is set allowing output files to be opened; the new overflow pointer is set from
B and the ac.:ounting area pointer is set from X.

REGISTERS AFFECTED: A

124 Misc,ellaneous Operations

NUMBER: BE+8

NAME: CRASH

FUNCTION: To Crash the System

STATUS: System

CALLING SEQUENCE: BRS BE+8
NO RETURN

DESCRIPTION: Saves the registers in SSOI, SS02, SS03. Saves 0 in MCRO. Turns off the
clock and disables the interrupts. Moves the TS block into real page 7 and the current
relabeled page into real page 6.

REGISTERS AFFECTED: None

NUMBER: BE+13

NAME: SETSW

FUNCTION: Sets System Exec Switches in SYMS

STATUS: System

CALLING SEQUENCE: LDA V
LDX N
BRS BE+13
NORMAL RETURN

V = New switch value
N = Switch number

DESCRIPTION: The switch is set to the new value and the old value is returned in A.

REGISTERS AFFECTED: A

Miscellaneous Operations 125

NUMBER: 152

NAME: EXS

FUNCTION: Execute Instruction in System Mode

STATUS: System

CALLING SEQUENCE: EXS

I = Address of the instruction to be executed

DESCRIPTION: This SYSPOP will cause the instruction pointed to by I to be executed in
the system mode.

REGISTERS AFFECTED: Depends on instruction

126 Miscellaneous Operations

APPENDIX A. GLOSSARY OF TERMS

B

breakpoint switch: Refers to the four toggle switches physi­
cally located on the computer console.

command file: The particular file from which the commands
to the system Executive and subsystems are input. For
teletype input the command file number is zero.

customer file directory: The names of all files for a partic­
ular user are recorded in this directory.

D

device table:

Devi ce Number

Paper Tape Input 1
Paper Tape Output 2
Magnetic Tape Input 4
Magnetic Tape Output 5
Hollerith Card Output 6
Binary Card Output 7
High Speed Printer Output 11
Hollerith Card Input 12
Binary Card Input 13

DSU block: Four consecutive sectors on the disc whose begin­
ning addresses are MOD 4. A block consists of 256 words.

DSU data block: A DSU block with pointers in the first and
second words. The first word points to the first relevant
data word. The second word points to the last relevant
data word.

DSU file: A file stored on the disc storage unit. Each file
consists of at least an index block, and if the file con­
tains data, then a sufficient number of DSU blocks to
record the data.

F

file number: Afilenumber is assigned by the system to files
as they are opened. Also, there are fixed file numbers
for certain devices. These are as follows:

o
1
2

Teletype Input
Teletype Output
No,thing

fi Ie type: There are four standard fi I e types. They are as
follows:

1. Fi I e written by the system Executive as commanded
by the "SAVE II command.

2. General binary file created by a subsystem, i.e., a
FORTRAN object program.

3. Symbolic file.

4. Dump fi I e.

fork: A fork is all or part of a program. A program may con­
sist of many forks and these forks may be in a heirarchy
one to another. Forks are different from subroutines in
that all forks making up a program could be theoretically
executing simultaneously. At least one fork is associated
with each active user in the system.

fork states:

-2
-1
o
1
2

Dismissed for I/O.
Running.
Dismissed on escape key or programmed panic
Dismissed on illegal instruction pani c.
Dismissed on memory pani c.

index block: A DSU block (256 words) whi ch contains the
DSU addresses for all data blocks of a fi I e. Words 0
through 120 contain a DSU address which is MOD 4 in
bits 6 to 23. Bits 0 and 5 of these words are unused. Bit
2 indicates an end of record data block. Words 121 and
122 are link pointers, and 123 is a hash total. Words 124
through 130 contain the file name, and word 131 con­
tains user numbers.

p

PAC table: Each fork is defined by a program active tabl e.
This table contains most of the information required to
control selection, execution and interruption of the fork
(additional information is stored in the user's TS page).

page: A page can exist on RAD, DSU or in-core memory but
in all cases refers to 2048 words.

panic: A panic is a signal to the system to break execution
of a fork.

panic, instruction: A panic caused by attempting to execute
an instruction which cannot be executed in the user mode,
such as a halt or device I/o instruction or a BRS which is
not available to the user.

panic, memory: A panic caused by a fork attempting to ad­
dress memory outside its range or wri te on memory wh i ch
is set to read only.

pani c table:

Word

o
1
2
3
4
5
6

Program Counter
A Register
B Register
X Register
First Relabeling Register
Second Relabel ing Re~ister
Status

Appendix A 127

panic table (cant.):

The status word may be:

-2 Dismissed for Input/Output
-1 Running
o Dismissed on Escape or BRS 10
1 Dismissed on Illegal Instruction Panic
2 Dismissed on Memory Panic

A panic table must not overlap a page boundary.

Q

quantum, long time: The maximum length of time a fork can
run before the schedule checks for other forks to be run.

quantum, short time: The minimum length of time a fork
wi II run before the schedul er checks for other forks to be
run which were dismissed for I/O.

128 Appendix A

R

Relabeling, pseudo: See relabeling registers.

relabeling registers: The relabel i ng registers are used to in­
dicate a page number which has been assigned to a user
for a parti cular logical page. They are of the form:

First word Page 0 Page 1 Page 2 Page 3

Second word Page 4 Page 5 Page 6 Page 7

s
string pointers: A pair of pointers which contain a character

address of the character before the first character of a
stri ng and a character address of the last character of
the string.

string, null: A pair of string pointers whose character ad­
dresses are the same.

APPENDIX B. GENERAL DESCRIPTION OF THE COMBINED FILE DIRECTORY

A user may have one or two file directory blocks on the
disc; the second block is an overflow block. Each block
consists of 128 words containing a variable number of
file directory entries. Each entry is in the format pic­
tured below.

If the first word of the block is zero, the block is consid­
ered to be empty. The last entry is followed by a -lor -2
word where the -2 indicates that there are additional en­
tries in the overflow block.

The last four words of the file directory block contain the
following information:

Last word Val id on-time for this user (1 bit per
hour of the day).

Last word -1 Accumulated computer time used.

Last word -2 Accumulated real-time used.

Last word -3 Overflow block pointer

In the case of an overflow block, the last three words are
zero, and the overflow block pointer is a backward pointer
to the first file directory block.

FILE DIRECTORY FORMAT ON DISC, 1 ENTRY (DISC FILE)

a Account no. No. of accesses Creation date

a 8 9

ICI Change in file size I

a 1 1112

2 I CB I FT I
a 23 56

LTP I
1112

1415

File length (FL)

Future controls

23

23

I
23

3 ! Index block pointer !
~0------------------------------------~23

4!Dlcharofnamel01
1

0
1 I

a 1 789 1516 17 23

N F Charofname Charor136{fill) Charor136{fill)

78 1516

FT File type

LTP Low order tape position

HTP High order tape position

FS Tape file size

FL File length for disc files

C Change in file length (file length no longer
valid)

CB

F

File control bits, a = Tape file
2 = Disc file

End of Entry Flag (1)

If Tape File, word #3 =

3 I HTP I a I FS

a 56 89

FILE DIRECTORY BLOCK

128
Words

I

4 Control words

Variable length name

End dire flag -lor -2

Available storage for unused
entri es

Overflow block pointer

Accumu lated real-time

Accumulated computer time

~ __ I Valid on time

. 23

Up to 24
entri es

1

Last -3

Last -2

Last -1

Last word

Appendix B 129

USER ACCOUNT DIRECTORY ON DISC

Words o 2 3 4 5 6 7

L..-A_c_c_t_o..:.p_a_ss_w_o_rd_---II I no no no no

8 User Name

13 User Name 2

18 User Name 3

23 User Name 4

28 User Name 5

33 User Name 6

38 User Name 7

43 User Name 8

48 User Name 9

53 User Name 10

58 User Name 11

63 p

o

where

na is not assigned

C

N

is a control parameter

is a user number

C N

C N

C N

C N

C N

C N

C N

C N

C N

C N

C N

11 12

p is reserved for an overflow pointer and not
presently used.

The controi parameter bits are assigned as foi iows:

Bit Use

0 System status

1 Control

2 Operator status

3 Subsystem status

4,5 Not assigned

6,11 Subsystem cI asses

130 Appendix B

23

SUBSYSTEM TABLE

HASH TABLE ENTRY

10 1
V

o 1 56 23

~Iuld CL FN HS

o 1 2 3 89 1516 23

CORRESPONDING TABLE (NOT COMMON SUBSYSTEM)

0 I NP I 0 I LS

0

RSW

o 56 910 1516 23

CORRESPONDING TABLE (COMMON SUBSYSTEM)

o

R1

R2

RSW

Subsystem veri fy number

Low-order starti ng address

Propogate exec status

23

V

LS

E

U

C

Co-exist with users memory (cannot if on)

Common subsystem

CL Class (must agree with user's control
parameters)

FN Fi Ie number (location on RAD for non common
subsystem)

HS High-order starting address

N P Number of pages for non common subsystem

R1 First-half SMT relabeling (4 bytes)

R2 Second-hal f SMT relabel ing (4 bytes)

RSW Relabel i ng status word (8 bytes)

	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	054
	056
	058
	060
	062
	064
	066
	068
	070
	072
	074
	076
	078
	080
	082
	084
	086
	088
	090
	092
	094
	096
	098
	100
	102
	104
	106
	108
	110
	112
	114
	116
	118
	120
	122
	124
	126
	127
	128
	129
	130

