
SOS 940 TIME-SHARING SYSTEM
(Version 2.0)

TECHNICAL MANUAL

SDS 90 11168 August 1968

50S

Price: $5.00

. SCIE NTIFIC DATA SYSTEMS/1649 Seventeenth Street/Santa Monica, Co I ifornia

©1967. 1968. Scientific Data Systems. Inc. Printed In USA.

REVISION

This publication, SOS 90 11 16B, is a major revision of the SOS 940 Time-Sharing
System Technical Manual, 90 11 16A (dated November, 1967). Although
the general organization of the manual remains the same, drawings have been cor­
rected, much new materia I has been added, and existing text has been rewritten.

RELATED PUBLICATIONS

Title

SOS 940 Computer Reference Manual

SOS 940 Terminal Users Guide

SDS 940 FORTRAN II Reference Manual

SOS 940 BASIC Reference Manual

SDS 940 TAP Reference Manual

50S 940 OOT Reference Manual

SDS 940 CAL Reference Manual

50S 940 QED Reference Manual

SOS 940 FORTRAN II Technical Notes

50S 940 FORTRAN IV Reference Manual

NOTICE

Publ ication No.

90 06 40

90 11 18

90 00 10

90 11 11

90 11 17

90 11 13

90 11 14

90 11 12

90 1142

90 11 15

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features may
depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their SOS sales representative for detai Is.

ii

CONTENTS

l. INTRODUCTION Devices 30

The Monitor 1
System Data on Outer Arm Position of Disc-- 30

BRSs for Direct Disc Access 30
The Executive 2
Subsystems 3

10. SEQUENTIAL FILES 32

2. SCHEDULER· 3 Fi Ie Nu mbers 32
File Control Blocks 32

Program Activation Tabl e 3 Opening and Closing Files 33
Time-51 icing 6 Accessing the Teletype as a File 33
Scheduled Queues 6 Permanently Open Files 33
Phantom User 7 Sequential Disc Files 33
Summary of Schedul er Functions 8 I/O SYSPOPS 34

Other Sequential Fi I es 35
3. FORKING STRUCTURE 11

Jobs 11
1l. SUBROUTINE FILES 37

PMT and SMT Tables 11
Pseudo-Relabel ing 11

12. EXECUTIVE TREATMENT OF FILES 37

Memory Acquisition 11 General Description 37
Changing Relabeling 13 Physical Devices 38
Creating a Lower Fork 13 String Pointers 38
Panic Conditions 14 Theory of Hash ing 38

940 Hashing Algorithm 39
The Hashing Tabl e 39

4. SWAPPER, MEMORY ALLOCATION AND
File Directory Hash Table 40

RAD ORGANIZATION 16 File Directory Corresponding Table 40
Swapper 16 BRS 5 and 6 40
Memory Allocation 17 Commands Hash Table 42
RAD Organization 17 Subsystem Hash and Corresponding Table 43

User BRSs for File Manipulation 44

5. SOFTWARE INTERRUPTS 18

Interrupts 5 through 10 18
13. EXECUTIVE COMMANDS RELATED TO FILES 45

System Interrupts 18 Magnetic Tape 45
Time-Out Interrupts 18 BCD Tape Files 45

Standard Magneti c Tape Fi I es 46
6. BRS LOGIC 19

7. INITIALIZA TION AND TERMINATION
14. EXECUTIVE COMMANDS 46

OF A USER 20 User Commands 47
Operator Status 48 Initial ization of a User 20

System Commands 49 T ermi nati on of a User 20
Subsystem Commands 50

8. TELETYPE INPUT/OUTPUT 21 15. REENTRANT SUBROUTINE CALLS 51

Teletype Buffer 21
16. MISCELLANEOUS FEATURES 51 Output Path 21

Echo Tables 21
940 Byte Addressing 24

17. UTILITY PROGRAMS 52

8-Level M,)de 24 DSWAP 52
Input Path 24 OPER Program 52
Mi scellaneous Tabl es 25 Control Commands ----- 52
Linking of Teletype 25 General Operating Instructions 52

Program Loading and Assembly Procedure-- 53

9. DEVICES AND TS PAGE BUFFERS 26
Operator Executive Routine 53
Output Descri ption 56

Fi!e Storage on Disc- ')1.. Disc Edit Program 63 LU

Fi Ie Buffers 26 Phase One 63

iii

Phase Two 63 File Directory Format on Disc or Tape 156
Phase Three' 64 User Account Directory on Disc 157
Phase Four 64
Phase Five 64
Phase Six 64

D. RESIDENT MONITOR FILES 1.?8

Phase Seven 64
Phase Eight 64 E. THE EXECUTIVE FILES 160
Phase Nine 64

Operating Instructions 64
F. INITIALIZA TION AND ASSIGNMENT OF

Commands to the Edit Program 64 THE PAC TABLES· 161
Error Messages 65
Messages Requiring Operator Action 65
Messages Requiring No Operator Action 66 G. INITIALIZATION OF SYSTEM AND
Map Program 66 ACTIVA TION OF FIRST USER 163

Opera ti ng Instructions 67
Error Messages and Action 67

H. THE PHANTOM USER LOGIC 164

18. STRING PROCESSING SYSTEM (SPS) 68
I. PHANTOM USER LOGIC TO PROCESS A

19. FLOATING POINT 69 TELETYPE ON INTERRUPT 165

Operating Characteristics 71
J. FLOW REQUIRED TO INITIALIZE THE

20. SCHEDULING, FORKS AND PROGRAM
EXECUTIVE WHEN A USER LOGS ON

INTERACTION 73
THE SYSTEM 166

2l. INPUT/OUTPUT 86
K. SUBROUTINE TRACE OF THE SWAPPER 167

22. TELETYPES 106 l. THE DISC LOGIC 169

23. MEMORY 115 M. BRS LOGIC FLOW 170

24. STRING PROCESSING 122 N. TRACE OF THE SUBROUTINES WHICH ARE
CALLED BY THE BRS 1 (MONOPN) IN
ORDER TO OPEN THE DISC 171

25. NUMBERS 131

O. SUBROUTINE TRACE FOR BIO FLOW WHEN
26. EXECUTIVE COMMAND OPERATIONS 138 THE DEVICE IS THE DISC ON INPUT 171

27. MISCELLANEOUS OPERATIONS 139 P. SUBROUTINE TRACE FOR THE LOGOUT
COMMAND 172

APPENDIXES
Q. SUBROUTINE FLOW FOR THE PHANTOM

A. GLOSSARY OF TERMS 145 USER TASK WHICH PROCESSES A TELE-

B. BRS AND SYSPOP INDEXES 149 TYPE OFF INTERRUPT 172

Index of BRSs and SYSPOPs By Number 149
ILLUSTRATIONS Index of BRSs and SYSPOPs By Type 151

Schedul ing, Forks and Program Interaction - 151
1. Typical Forking Structure Input/Output 152

Tel etype Opera t ions 153 2. Concept of Locked Pages 2
Memory Operations 154

3. PAC Table - One Per Fork 5 String Process 154
Number Operations 155 4. Clock Interrupt Routine 6
Executive Command Operations 155

5. Fork Searching Scheme 8 Miscellaneous Operations 155

C. GENERAL DESCRIPTION OF THE COMBINED 6. Phantom User Queue Entry 9

FILE DIRECTORY 156 7. Overview of Scheduler 10

File Directory Block 156 8. Job Tables 12

iv

9. Private Memory Table Entry or Shared 28. FILES Command Terminated by a Line Feed -- 57
Memory Table Entry 13

29. Garbage Collection 58
10. Format of Real Memory Table (RMT) 16

30. Example of SIZE ACCOUNT 62
1l. RAD Queue Entry 17

31. Example of TIME 62
12. Teletype Tables 22

32. Exampl es of User Output 63
13. Typical Disc Layout 27

33. Format Word for Floating Point 70
14. Disc Address Word 28

34. Memory Diagram for the Monitor 159
15. Flow Required to Access a Disc File 28

35. Memory Diagram for the Executive 160
16. Fi Ie Buffer 29

36. Initial ization of PAC Tables 161
17. Tables Indexed by Device Number 31

37. A Disc Queue Entry 169
18. Fi I e Control Block 32

38. The Disc Queue (DRQ) 169
19. Format for Magnetic Tape Files 36

20. Format of BCD Magnetic Tape 36

2l. Hash Table 39 TABLES
22. File Directory Hash Table 40

23. Hash Table Entry and Corresponding Table l. Panic Table 13
Entry for File Directory 41

2. Significance of Bits in A Register 14
24. Commands Hash T abl e Entry 42

3. Devi ce Numbers 30
25. Subsystem Hash Tabl e and Corresponding

4. File Control for Magnetic Tape 35 Table Entries 43

26. SUBIT Macro Data Words 44 5. Executive Commands 46

27. FILES Command Terminated by a Carriage
6. Control Commands 53

Return 56 7. Error Conditions 71

v

vi

PREFACE

This manual describes theSDS 940 Time-Sharing System (Version 2.0). The design and imple­
mentation of the system is explained, as well as certain of its operational features. The manual
covers this in three major parts: Monitor, Executive, and subsystems.

Chapters 2-11 deal with the Monitor, chapters 12-19 discuss the Executive, and chapters 20-
27 explain the various system programmed operators (SYSPOPS) and branch system routines
(BRS) that can be used with this system.

Illustrations and explanations are also given of important tables associated with the system,
such as the PAC Table, Phantom User Queue Entry, Job Table, Pseudo Memory Table, etc.

This publication is a reference guide for experienced programmers. It assumes that the reader
is familiar with the basic concepts of the SDS 940 Time-Sharing System. Additional informa­
tion about the system can be obtained from the related publications list.

1. INTRODUCTION

The SDS Time-Sharing System (TSS) links the 940 CPU with
up to 32 remote terminals. The system consists of three
main parts: Monitor, Executive, and subsystems. The mon­
itor executes in monitor mode while the Executive and the
subsystems execute in user mode.

Both RAD and disc storage are required, the RAD for storing
the subsystems and for swapping and the disc for user's files,
file directories, accounting information, and copies of the
Monitor and Executive

THE MONITOR

The Monitor is the portion of the system concerned with

• scheduling

• i nput/ output operations

• interrupt processing

• memory allocation

• swapping of programs and data from disc and RAD to
and from core memory

• control of active programs

Initially when the system is put into operation, the compu­
ter is operating in the 930 mode. The execution of an EOM
022000B puts the computer into the 940 Monitor mode.
When the Monitor executes a branch instruction with bit 0
of the branch instruction set, user hardware relabel ing is
invoked and a transfer is made to user mode. Once the
computer is in user mode, it will revert to Monitor mode
by the occurrence of an interrupt or trap, or the execution
of a SYSPOP (System Programmed Operator).

The basic program unit with which the 940 time-sharing
system is concerned is called a fork - a self-contained body
of code consisting of a main program and all subroutines
necessary to perform a particular process. A fork may have
a maximum of 16K memory active at any time. The "fork­
ing structure" concept is analogous to the "overlay struc­
ture" concept used by many batch monitors. An overlay
structure consists of segments of a program that, when
loaded, wi II reside in the same locations in memory at dif­
ferent times. At any given time only a part of an overlay
structure will be active. When this segment completes exe­
cution it can take action to bring in another segment of the
overlay structure.

Similarly, a user can have only ~ fork active at any given
time. While this fork is active it can take action to estab­
lish and transfer cont/ol to a lower fork. When the lowel
fork has finished executing, it can transfer control back to
the parent fork. The lower fork may share pages of memory
with any of the parent forks, and it may acquire more mem­
ory independently of the parent. While the lower fork is
executing, the pages of the parent fork that are not being
shared with the lower fork have most I ikely been swapped
out to the RAD. However, sufficient information has been

retained to establ ish the environment of the parent fork when
the lower fork terminates.

Figure 1 illustrates a forking structure for four users (the
Phantom User is discussed in Chapter 2). A user may have
a total of 32K in his forking structure. The user is not
charged for the memory requi red by the reentrant part (pro­
cedural part) of the reentrant subsystems. A maximum of 8
forks is allowed in the user's forking structure.

Figure 1. Typical Forking Structure

The most important aspects of the forking structure are that

1. The software deals with forks; the Schedul er activates
a fork, not a job or a user.

2. A user can have only one fork in his forking structure
currently active. This fork is either running or wait­
ing on one of the queues to be allotted a time sl ice.
The rest of the forks in the user's forking structure
have been dismissed and will be reactivated when the
lower fork terminates.

Figure 2 is a diagram of the Monitor showing its functional
parts, not the actual core layout. The Monitor pages are
"locked", that is, not available for swapping. The locking
is software-implemented. If a fork initiates an I/O opera­
tion, it will be dismissed to allow activation of another
fork while its I/O is in progress. Upon completion of the
I/O, the original fork is reactivated. The page where the
I/O is being performed will be locked until the operation
is completed, although the rest of the fork's memory may
be swapped.

The scheduler is the most important element of the 940
Monitor. It decides which fork to activate and it calls the
swopper which cnllect, from the RAD any pages the fork
requires. When the swapping has been completed, the

Introduction

I/O control section
and drivers

Uti I ity routines (such as
SYSPOPS and BRSs)

Teletype package

Scheduler and swapper

The currently running
fork

The resident user

I/O locked pages

Unlocked swappable
pages

~

~

~

The Man i tor 18K

All pages are locked

Maximum of 18K
(a 2K temporary
storage (TS) page + a
maximum of 16K)

Maximum of 18K

All pages are locked

Figure 2. Concept of Locked Pages

scheduler transfers control to the fork and, by so doing,
effects a transfer to the user mode. The fork wi II execute
until a specified quantum of time has elapsed, or until the
fork requests I/o and a call must be made to activate an
I/O device, or until the fork takes some action that dis­
misses itself. At this time, control is returned to the sched­
uler, which finds another fork to activate.

A 64K system utilizes the "compute while swap" option.
With this option, the memory a fork requires is allocated,
the necessary RAD I/o operations are initiated, and the
fork is placed on the swap wait queue (SWQ). This fork
will remain on SWQ unti I all of the pages the fork requires
have become core-resident.

After the fork has been placed on SWQ, the system then acti­
vates that fork on SWQ that has all of its memory core­
resident, or the resident user fork. The resident user fork is
the last fork that was dismi ssed for quantum ti me overflow. Since
such a fork is compute-bound, the system can be executing
this fork while the other fork is being swapped into core.

When a fork becomes the resident user, the pages it requires
are locked so that the system can immediately transfer to this
fork when a swap has been initiated. When the resident user
is activated, its pages are unlocked, and the f0rk loses its
identity as the resident user. The fork will execute until it
is dismissed for any of the usual reasons.

If there is no resident user (no forks have been dismissed for
quantum overflow) the system will wait until one of the

2 Moni tor/Executive

forks on SWQ has al. of its pages core-resident. There
can be a maximum of two forks on SWQ.

When the swapper activates a fork, all of the pages belong­
ing to the fork are marked "read-only". If the fork exe­
cutes any instruction that alters memory, a trap routine
wi II change the status of the page to "not read only". The
amount of RAD I/O required is significantly reduced in
this way. The swapper does not have to output a "read­
only" page since a copy already exists on the RAD. The
only pages in the system that are truly read-only, however,
are the reentrant Executive or subsystem pages. The trap
routine produces an error condition if a read-only trap
occurs in one of these reentrant pages.

THE EXECUTIVE

The Executive is the intermediary between the Monitor
and the user. It is concerned with

• the command language through which the user controls
the system from his teletype

• identification of the various users

• the specification of the limits of each user's access to
the system

• control of the directory of symbolic file names, and
backup storage for these files

• requests for a subsystem.

The Executive is a reentrant program that uses a Temporary
Storage (TS) page, 2048 words, to accampl ish reentrance.
Each user is assigned a TS page when he dia Is onto the sys­
tem. Therefore, each user actua lIy has a maximum of 30K
available memory (32K minus the TS page).

The TS page contains the I/o buffers, various constants
pertaining to the user, and reserved storage for the Band
X regi sters. Any request by the user for I/O involves a
transfer of data from the device to a TS page buffer.

The access a user has to the system is defined by his status.
The user's status determ ines what Executive commands are
available to him and what SYSPOPS he may execute. Four
levels of status are available:

1. Operator

2. System

3. Subsystem

4. User (the Executi ve commands avai lable to the user
are explained in the "Terminal Users Guide"
90-11-18A)

,b.. ny of the above may be granted peripheral status or sub­
system class status, or both. With peripheral status the
user may access certain peripheral devices through the
medium of the Executive command structure. Subsystem
class status permits the user the use of TAP and DDT.

SUBSYSTEMS

Subsystems are major processors such as FORTRAN II, CAL,
QED, etc. that perform special ized functions. These sub­
systems are programs that are permanently connected to the
main system. Each subsystem is called by name through the
Executive, and the Executive then establ ishes a lower fork
for the subsystem.

The processors implemented as 940 subsystems have such a
high rate or usage that they have been written as reentrant
programs, enabl ing many users to share the same processor
simul taneously.

Programming reference information on the major subsystems
is contained in individual manuals listed under related pub­
lications in front of this manual.

2. SCHEDULER

PROGRAM ACTIVATION TABLE

Since a time-sharing environment involves the dynamic
swapping in and out of user forks, tables must be maintained
that enable the system to establ ish the program environment
the fork had before it was dismissed. Each fork has a PAC
table (PACT) associated with it. The format of the PACT is
shown in Figure 3.

Note that the PACT contains locations for saving the pro­
gram counter, P, and the contents of the A register. The
B and X registers are saved in the TS block. The PACT also
contains two of the three pseudo-relabeling registers for the
fork. The third, which specifies the TS block, is kept in
one of the job tables (RL3). Pseudo-relabeling is discussed
in detai I later in this chapter. The word PTEST determines
the conditions under which the fork should be reactivated
if it is not currently running. The panic table address in
PTAB and the two pointers called PFORK and PDOWN are
discussed under "Panic Conditions".

Once the fork has become active, it can be in one of five
states

1. currently running;

2. on the scheduled queues awaiting allocation of a
time-sl ice;

3. on the swap wait queue

4. dismissed (in limbo); the fork executed a BRS 9 and
dismissed itself in order to activate a lower fork.
The fork can be reactivated because the linking is kept
intact in the PFORK and PDOWN entries in PACT.

5. terminated; e. g., the fork ran to completion, exe­
cuted on ellegal instruction, the user logged-off, etc.
Once terminated, the PACT is returned to the free
PACT list.

The function of the various PAC table entries is shown in
Figure 3. Detailed explanations for each word of the table
entri es ore as follows

PNEXT
(Word 0)

o

Next queue or next program on queue
<0 - next program >0 - next queue

Used in the queue chaining scheme. Three possibilities
exist:

a. If the fork defined by this PAC table is on a queue and
PNEXT is >0, this fork is the last on a particulor queue,
and PNEXT points to the next queue.

b. If the fork is on a queue and PNEXT is <0, it is a
pointer to the next PAC table on the queue.

c. If the fork is not on a queue, or this is a dead PAC
table, PNEXT is not meaningful.

PL
(Word 1)

Saved (P)

o 1 2 3 8 9 10

UM User Mode. This bit is set if the fork executes
in user mode.

OV stored overflow - status of the hardware over-
flow indicator is stored into this bit when the fork
is dismissed. The overflow status can then be
restored when the fork is activated.

Saved{P) the virtual (see chapter on "Mapping" in
940 Reference Manual) address of the cell to whi ch
control must be transferred when the fork is reac ti­
vated. The following coding is executed when a
fork is activated.

LDA PL,2

STA 0

BRU* o wi!! transfer to user mode if
UM=l

Schedu ler 3

PA
(Word 2)

o
Saved (A)

23

Saved (A) the contents of this cell wi II be placed

RL 1
(Word ~)

o

RL2
(Word Li.)

o

in A when the fork is reactivated. The cell is
initialized from the A register if the fork was dis­
missed or from the panic table if this is a new fork.
"PB" and "PX" are stored in the user TS page, and
are indexed by fork number (bits 18 through 20
of PIM).

First pseudo-relabeling register

23

Second pseudo-relabel ing register

23

RL1 and RL2 these are the pseudo-relabeling regis-
ters for this fork. Each six-bit byte points to an
entry in the SMT or user PMT which in turns points
to a real page or RAD address.

PPTR
(Word 5)

o
PDOWN

11 12

This word can have two configurations

PFORK

23

a. If PAC table is not in use, bits 10 through 23 contain
a pointer to the next free PAC table.

b. If PAC table is in use, PPTR links this fork within the
hierarchy of this user's forking structure.

1. PDOWN points to the next lower fork.

2. PFORK points to the parent fork.

PTEST
(Word 6)

Activation
condi tion

Acti vation condi tions are

(Bi ts 3-8)

o Word greater than 0

Test word addrs., or interrupt
number, or status of dead fork

10 23

Word I ess than or equa I to 0

4 Program Activation Table

(Bits 3-8)

2 Word greater than or equal to 0
3 Word less than or equal to teletype early

warning
4 Special test. The address points to a special

activation test routine. Applies to Phantom User.
5 Interrupt occurred. The address contai ns the

number of the interrupt which occurred.
6 Word less than or equal to real-time clock.

7 Special address ==

o dead
1 running
2 BRS 31 (see Chapter 6 re BRSs)
3 BRS 106
4 Executive BRS
5 BRS 109
6 BRS 9 (User Program)

10 Do not activate
11 Bit 1 of word = 0 (buffer ready)
12 Word less than 0

PQU

(Word 7)

o 1 2 3

o
8 9

Program Quantum Word:

11 12

EX fork has system status.

PPAR

EXB fork was created by an Executive BRS.

23

QR contains the long quantum remaining for the
fork (measured in 60 HZ clock ticks).

PPAR PACPTR of a paralle I fork. Parallel forks

PTAB
(Word 8)

I~I:I ~I
o 123

are not implemented.

Job No.lal Panic Table Address

8910 23

LM fork is local memory. This means, essentially,
that this fork wi II obtain memory independent of
its ancestors which means, in turn, that itsances­
tors are protected from this program. See Iltvem­
ory Acquisition. II

EX 1 fork has subSYSTem status.

TS a TS page has been assigned to ~he user in
whose forki ng structure thi s PAC table appears.

Job number has nomlng fO do wl~h user or II num-
ber but is assigned arbitrarily when user logs on.

Panic Table Address the virtual address of a 7-word
panic table to be filled inwhen this fork terminates,
usually wi thin memory lIowned" by the controll ing fork

PIM
(Word 9)

o 1 2 3 4

PNEXT

PL

PA

RL 1

RL2

PPTR

PTEST

PQU

PTAB

PIM

UM
OV
EX
EXB
QR

LfvI
EX 1
TS
t-i.T

Program Interrupt t-iask:

Next queue or next program on queue

<0 - next ro ram <0 - next ueue

0 10 23

I ~f I~I :~~:. ~~~ of 101 Saved (P) 1
o 1 2 3

0

0

0

PDOWN

0

0 3

I~I~ 10 1 QR

o 1 2 3

I~I: I~ JaI Job No.

= User mode (1)
= Overflow
=: System Status
= Exec BRS

o 1 2 3

1~1~1~loI1 2
o 1 2 3 4

'" Amount of long quantum left
= Local memory
= Subsystem status
=- TS block assigned
= Add no memory

3

8 9 10 23

Saved (A)
1

23

First pseudo-relabeling register

23

Second pseudo-rei abel i ng regi ster
1

23

PFORK or chain for free entries

11 12 23

T est word addrs" or into no. I or status
of dead fork

10 23

0 PPAR

8 9 11 12 23

H Panic Table Address

8 9 10 23

IEM

10 :11! 0 XPB TO
4:56789

14 15 17 18 20 21 23

TP
NT
IEM

:- Termination pending (checks for rubout)
Non -termi nabi I i ty

XPB
TO

=- Interrupt enable mask

1-4 = System interrupt
5-10 =: Program interrup~

11 =- Interrupt on disc errors

-:c Fork number

Number of time-out interrupts armed

Figure 3. PAC Table - One Per Fork

TP termination pending; set by the PhantomUserifan

14 15 17 18 20 21 23

MT fork may acquire no memory. Any attempt to do

escape occurs wh i Ie NT is set. If the fork executes a
BRS47(turnescapeon),both theTPandNTbits arere­
set. If the TP bit was set, the fork is dismissed onto
QQE. The task for processing the escapes is sti lion
the Phantom User and can now be processed. If TP bit
\NaS not set, then the fork continues execution.

so will result in the fork being terminated on mem- NT non-terminabi!itl'i set by the BRS 46 (turn escape
ory panic. See "/v\emory Acquisition". off). The escape task is still placed on the

Program Activation Table 5

Phantom User queue. However, Phantom User takes
no action regarding termination of this fork.

IEM software interrupt mask. See "Software
Interrupts".

x P B the fork number i used to index PB and PX in
the TS page. This number may range between 0
and 7.

TO count of the number of time-out interrupts that
the fork is currently using. A fork may have a
maximum of 3 time-out interrupts armed.

TIME·SlICING

In order to implement time-slicing, the system defines a
long and short quantum. These parameters are defined in
clock-ticks and can be easily modified at system-generation
time. All times in the discussion are measured in periods of
the 60-cycle computer clock. Both TIME (short quantum) and
TTIME (long quantum) are decremented at every clock tick.
The clock interrupt routine is shown graphically in Figure 4.

Once a fork is activated it will be allowed to execute until
its short quantum has expired. The fork may take action
that will cause itself to be dismissed (such as an I/O request)
before the short quantum has elapsed. However, if the fork
is compute bound, it will execute for at least one short
quantum.

When the short quantum has expired, a check is made to
see if any forks that were dismissed for I/o are ready to be
activated. If no I/O bound forks are ready, this current
fork is again assigned a short quantum. This process con­
tinues until the fork causes itself to be dismissed or the long
quantum has elapsed.

When the long quantum has elapsed, the fork is always dis­
missed. This allows another compute bound fork to have a
time sl ice.

When a fork is dismissed, the amount of long time quantum
remaining is always stored into the PAC table. If a fork is
dismissed for long-quantum overflow, it is assigned a new
long quantum and this is stored into PACT.

When a fork is activated, it is always assigned a full short
quantum and the long quantum is set from the value in PACT.

The clock interrupt routine determines if any I/O bound
forks are ready for activation by checking a word called
ACTR. ACTR is set to -1 when the schedule determines
that no I/O bound fork is ready for activation. ACTR is
incremented whenever any I/O bound fork is ready to be
activated.

Since the Monitor is not reentrant, no attempt to dismiss a
fork is made if the system is executing in the Monitor mode.
Therefore, no user fork is dismissed while executing a
SYSPOP. If either the long or short quantum has elapsed, the
clock interrupt routine arms the Moni tor-to user transi tion

6 Time-Slicing

Decrement
long and
short quantums.

Charge this
user for
compute time.

yes

The current
fork \Ni II
be dism issed.

Figure 4. Clock Interrupt Routine

trap. The trap occurs when the system transfers from the
Monitor-to-user mode. This trap routine then checks
whether the short quantum has expired while the system
was in Moni tor mode. If so, the fork is dismissed to the
appropriate queue. See the 940 reference manual for a
discussion of the Moni tor-to-user transi tion trap.

SCHEDULED QUEUES
When a fork has been dismissed or is awaiting activation,
its PACT table will be on one of the four scheduled queues.
The queues are listed in order of priority.

OTI

QIO

Forks dismissed for teietype input/output

Forks dismissed for other I/O, forks that have
just been initiated by a BRS 9, and forks ac­
vated by escapes, program panic, etc.

QSQ Forks dismissed for short-quantum overflow.

QQE Forks dismissed for long-quantum overflow.

The information in any PAC table can be retrieved by using
the PAC pointer associated with the PAC table. The PAC
pointer is a negative index that allows retrieval of any entry
in a fork's PAC table. Assume that PACPTR contains the
index to a particular PAC table in the array of PAC tables.
Then

LDX PACPTR

LDA PA,2 Fetches the PA word

LDA PQU,2 Fetches the PQU word

Location PACPTR always contains the PAC pointer of the
fork the system is currently running. PA, POU, PNEXT,
etc., are defined in relation to the end of the PAC table
array. Currently the system is dimensioned for 144 PAC
tables.

When a PAC table is on the scheduled queues, the PAC
pointer for this fork is in the PNEXT word of the PAC table.
immediately before it on the queue. The scheduled queues
are eoch 3 entries long and have the following format:

Word a

Word 1

PAC pointer to the first PAC table on this
ueue or the address of the next ueue

23

23

Word 2 Address of the next queue

a 23

The scheduler begins searching a queue by fetching Word a
of the queue. If this word contains a positive number, there
are no entries on this queue since a PAC pointer is always
negative. However, if word a does contain a PAC pointer,
it can easi Iy obtain the PTEST word associated with the
PAC table and determine if activation is possible. If acti­
vation is not possible, the PNEXT word can be retrieved
(since each PAC table on a queue points to the next one on
the queue) and the next P.A.C table can be checked for acti­
vation. If an entire queue has been searched and no acti­
vatible fork is found, the scheduler will then search the
next lower priority queue. If there are no forks to be acti­
vated, the scheduler simply continues searching the
queues.

For example, assume PAC tables numbered:

1, 3, 10
2, 8
15, 5
None

are on QTl
are on QIO
are on QSQ
are on QQE

The numbers are assigned for convenience in the following
diagram (Figure 5). Note that if a queue has no entries,
the first word contains a positive number which is the ad­
dress of the next qUeue.

PHANTOM USER

There are certain operations that the Monitor must perform
for the users on the system. Some of these tasks are

1. Processing of a teletype ON interrupt

2. Processing of escapes

3. Processing of the software time-out interrupts

4. Processing of teletype OFF interrupts

5. Typing of certain error messages

6. Testing of I/O devi ces for ready.

Consider the processing of a teletype ON interrupt. This
involves the assignement of a job number, initialization
of various tables, assignment and initialization of the PAC
table for the Executive fork, etc. It is not feasible to per­
form all of these functions in the teletype ON interrupt
routine. Therefore, the interrupt routine should simply
honor the interrupt and notify the Monitor to finish pro­
cessing the task.

Since many of the tasks are initiated by an interrupt, the
Monitor must have a task queue where a function that it
is to perform can be added. As the system performs a task
it can remove it from the queue. However, in order to
process these tasks, the Moni tor must be allotted a time
slice.

It is the scheduler that decides which fork on the system
to activate. What should be given priority - the process­
ing of a teletype OFF interrupt or the activation of a fork
on OTI that was dismissed for teletype input and is now
ready? The problem of priority assignment for all users on
the system is handled by establishing the scheduled queues.
Therefore, the Monitor can conveniently be assigned a
time slice if it has a fork on the scheduled queues. When
this fork is activated it could check the task queue and
perform the various functions. This fork is referred to as
the Phantom User. The Phantom User runs in Monitor mode
and requires no memory of its own. Its memory and relabel­
ing are those of the Monitor. The Monitor task queue is
called the PUCT table.

The PAC table for the Phantom User is set up and put on
OTI when the system is first initialized. The PTEST word
contains an immediate activation condi tion. When the
scheduler activates the Phantom User, it first checks a word
called PUCTR (Phantom User Counter). PUCTR is incremented
by every routi ne that adds a task to the PUCT queue (the
Phantom User Task Table). If PUCTR=O (no tasks), the
Phantom User dismisses itself onto QTl with a PTEST word
that has an activation condition of 4. The Phantom User
wi II be reactivated and again check the PUCT table when
at least three seconds have elapsed. If less than three sec­
onds have elapsed but PUCTR is greater than zero, the
Phantom User wi II be ac ti vated.

If PUCTR is grenter than OJ the Phantom User begins to
search the PUCT table for a task to perform. Each task

Phantom User 7

PAC ptr PACT 1 PACT 3 PACT 10

QTI PAC ptr 1 PNEXT PAC ptr 3

rAe Plr] I DATA QrOI
PACptr10

Addr Q10

PACT 2 PACT 8
PAC ptr 2 QIO

PAC ptr 8 PNEXT PAC£tr 8 DATAQSQ

Addr QSQ

QSQ PAC ptr 15

PAC ptr 4

Addr QQE PACT 15 PACT 4

QQE DATA QTI PN EXT PAC ptr 4 DATAQQE

QQEQ

DATA QTI

Figure 5. Fork Searching Scheme

the Phantom User can perform is given a code number.
(See bits 3-8 of the second word of a PUCT entry). Each
time an attempt is made to process a task the following
occurs:

1. A check is made to determine if the task is ready to
be processed. For instance, the Phantom User can do
nothing about a time-out interrupt until the appropriate
amount of time has elapsed. If the task cannot be pro­
cessed, the Phantom User continues to scan PUCT unti I
it reaches the end of the queue.

2. If the task can be processed, PUCTR is decremented.
It then branches to the appropriate routine for perfor­
ing the task. All of the routines return to where the
Phantom User can conti nue to scan the PUCT tabl e.

Location PUBPTR points to the first task, PUEPTR to the
last task on PUCT. When all the entries in PUCT have
been tested, Phantom User dismisses itself with an activa­
tion code of 4. If the Phantom User was unable to process
any of the tasks and no new tasks were added while it was
active, it is dismissed onto OQE. Otherwise, it is dis­
missed onto QT!.

Whenever the Phantom User is dismissed, location ACTPU
is set negative. Any routine that adds a task to PUCT will
increment ACTPU. The scheduler checks location ACTPU
before searching the scheduled queues. If ACTPU is not
negative, the Phantom User wi II be moved from CQE to
QT!.

Figure 6 shows the format for the PUCT table entries.
A routine nomed EPU odds on entry to the PUCT list.

8 Summary of Scheduler Functions

EPU accepts its input parameters through the A, B,
and X registers.

SUMMARY OF SCHEDULER FUNCTIONS

Figure 7 is a flow diagram showinr, the functions of the
scheduler. The scheduler searches the scheduled queues
for an activatable fork. When it finds one it calls the
swapper. The input to the swapper is the pseudo-relabeling
registers and a flag called MGTS5. MGTS5 is set to ° to
indicate that the swapper is to build up an appropriate list
of RAD commands and initiate the RAD I/O, but not wait
unti I the RAD I/O is completed. The swopper returns to
the scheduler the real (h.Jrdware) relabeling registers.
Since MGTS5=O, the swapper does not at this time set the
hardware relabel ing.

The scheduler then puts the fork onto the swap queue
(SWQ). SWC consists of five tables. These contain the
PAC pointer of the fork (SWQPAC), the number of pages
(minus 1) that still remain to be read from the RAD
(SWCPGC), and the three recl relabeling registers
(SWQRLl, SWCRL2, and SWCRL3). The RAD logic will
decrement the page count each time a page is brought in.
The schedule determines if a brk on SWC is ready to be
activated by checking the page count. When the count is
negative, the fork is in core and ready to be run.

The SWC is scanned at ACT for forks that are rerxJy to run.
If none is found, then the resident user (a user dismissed
for quantum overflow) is run. If there is no resident user
and no fork has yet compl eted its swao, then the system
continues to scan SVIO. If a fork has all the requ ired

o I Pointer in next entry in queue I
O~--~2~3

A 0 I PU test no.

0 23 8 9

B 2 I I N I
0 2 3 8 9

x 3 I I Data for routine

0 2 3

PU Test No. :

o Continue disc I/O

Escape or teletype off interrupt

2 Magneti c tape ready

3 BLK31=O

4 Card reader ready

5 Start PU fork

6 Data set time-out ("teletype on
interrupt")

Routine address

23

Data for the routine

23

TTY line no.

17 18 23

7 Program interrupt time-out

8 Line printer ready

9 Card punch ready

10 Dead entry (i gnore)

N is mean ingful for the following tasks:

N = 1 on interrupt

2 off interrupt

3 escape

Figure 6. Phantom User Queue Entry

pages, the entry is removed from SWQ and the swapper is
again called. This time tv'GTS5=-1. The swapper verifies
that all of the pages are in, i. e., no RAD errors have
occurred, and sets the hardware relabeling. The fork is
then activated.

If a RAD error did occur, the fork is dismissed on QCE with
an immediate activation in PTES T, and control passes to
PACG01.

At PACQE, any fork which is dismissed for quantum over­
flow will have its memory locked in core and its real rela­
beling saved in RURRL 1, RURRL2, and RURRL3. The mem­
ory of the previous resident user, if any, is released at this
time. Whenever there are no forks on SWC that are ready
to run, the resident user is acti voted! thus using CPU time
which would otherwise be wasted. Whenever the resident

user is activated, he loses his identity as the resident user
and will be the resident user again only if he is dismissed
for quantum overflow.

There can be a maximum of two forks on r:..WO. This is
accompl ished by the cod ing at PACGO 1. A fork wi II be
added to SWQ only if there is no resident user. If there
is no resident user, the coding at ACT will continue to
search SWQ unti lone of the forks can be activated and
thus removed from SWO. If the fork that was placed on
SWO first is sti II not finished swaoping, and the second
fork has all of its memory (often the case with the Phan­
tom User), then the second fork wi II be activated. Because
it is possible for a user to change his relabeling while he is
active and thus request the swapping of a :age from the
RAD: buffered swnpring in release 2.0 never attempts to
have three swaps in progress ot once.

Summary of Scheduler Functions 9

*One pass thru
sched Qs for
statistics.

Search scheduled
queues for an
activatable fork.

Put the fork
on SWQ.

RU Resident User (dismissed for quantum overflow).

SWQ Swap Queue.

This pass through the queues can easily be removed.
The system will take statistics at various points if the
variable CNTPKG is set to 1 when the Monitor is
assembled.

Take the fork

off of SWO.

Establish fork
environment from
PAC table.

Run this
fork unti I
dismissal.

Figure 7. Overview of Scheduler

10 Summary of Scheduler Functions

Take RU off
scheduled Os.
Unlock RU pages.

3. FORKING STRUCTURE

JOBS

The system refers to a currently active user as a "job". A
job number is associated with every forking structure. If
the system is dimensioned to handle 32 users, the job num­
bers range from 0 to 32, with the Phantom User always
assigned job number O. The job numbers are assigned in a
somewhat random fashion. As a user logs on the system, he
is assigned a job number that is currently not in use. When
he logs off, hi s job number is returned to the free job list.
The available lob numbers are chained in the TTNO array.

The job number is used to index several tables. These tables
contain information that pertains to the job, rather than an
individual fork, such as the teletype number associated with
the user, CPU time, etc. The job number is stored into the
PAC table for every fork in a user's structure. The job tables
are shown in Figure 8.

PMT AND SMT TABLES

The PMT (Private Memory Table) preserves the environment
of the user's memory. The table provides a real page num­
ber and a RAD address and indicates whether the page is in
core or on the RAD. Each user is assigned a PMT. The
table is 20B entries in length which represents the 16 pages
or 30 K and one TS page that a user can acquire. The PMT
table that a user is assigned is a function of his job
number.

There is one SMT (Shared Memorv Table) in the system.
The SMT is similar' in format to the PMT: The SMT provides
information about the Monitor, Executive, and reentrant
subsystem pages. This table contains 60B entries. Each
entry in the table is unique to a particular subsystem. The
entries are assigned when the system is assembled. (See
Figure 9.

PSEUDO-RELABELING
When a fork is dismissed, it would be meaningless to save
the contents of the hardware relabeling registers, since
memory is being changed dynami cally. Therefore, each
fork has a pair of "~seudo-relabel ing" registers associated
with it. Each pseudo-relabeling register consists of four
bytes. Each byte points to a PMT/SMT entry. Using the
PMT/SMT tables, any necessary swapping can be initiated
and the hardware relabeling can be constructed.

Psuedo-relabeling bytes with a value of 0 through 57B point
to SMT entries. Bytes having a value 60B through 77B point
to a PMT entry.

The Executive always uses PMT entry 60B for the TS page.
All of the reentrant subsystems use at least one page of the
user l s memory for scratch storage.

,A,S a fork acquires neVl memory (e.g., by executing a Ilstore

A" instruction referencing a page that the fork does not have)

a page is acquired and a RAD address is supplied. This
process can continue unti I the user has acquired all
32 K.

In this way, the PMT refl ects all the memory that a user
has acqui red. The pseudo-relabel ing registers i ndi cate
which PMT/SMT entri es (i. 'e., what memory) are neces­
sary in order to activate a particular fork.

MEMORY ACQUISITION

A fork may have a maximum of 16K. When the fork is
activated it may have less than 16K and then acquire
more memory as needed while it is executing. The follow­
ing is a partial list of how not to acquire more memory).

• By falling through a page (to a page which is not in
the pseudo-relabeling) to get the next instruction.

•

•

•

•

By going indirect via some address which is out of
bounds (i. e., LDA *100 where 100 is out of bounds).

By doing an EXU to an address which is out of bounds.

By doing a POP if page 0 is not in the fork's
relabeling.

By an unconditional branch to an out of bounds address.

• By doing a BRS 44 and requesting a byte that points to
a PMT entry that has not been acqu ired,

• By doing a BRS 9 and requesti ng pseudo-relabel ing
bytes that are not mean i ngfu I.

The correct way to acquire more memory is to execute any
instruction (such as LDA, STA, ADD, MIN, etc.) that
directly references a location in a page that has not been
acquired. This includes the initial loading of a program or
an I/O request into a page which has not been acquired.

If the fork addresses a block of memory that is not assigned
to it, (1 check is made to determine whether the machine
size specified by the user has been exceeded. If so, a mem­
ory panic is generated. If the fork is fixed memory, a mem­
ory panic is also generated. Otherwise, a new block is
assigned to the fork so that the illegal address becomes
legal. For a local memory fork, a new block is always
assigned. Otherwise, the following algorithm is used:

The number, n, of the relabel ing byte for the block addressed
by the instruction causing the memory trap is determined.
A scan is made upwards through the fork structure to (and
including) the first local memory fork. If all the forks
encountered during this scan have Rn (the nth relabeling
byte) equal to 0, a new entry is created in PMT for a new
block of user memory. The address of this entr}' is put into
Rn for all the forks encountered during the scan.

Forking Structure 11

PMT

TTNO

DB

PMTP o Starting Address of jobs PM T

o 9 10

PMA Blocks left

3 8

RL3 o
o

TTNO o
o 1 2 789

Blocks used

o

23

Length of PM T

17 18 23

Ipseudorelabeling I
for temp storage

17 18 23

~TY No. oravail-I
ble job number

17 18 23

ETTB Amount of CPU time (in clock) = ticks used by this job

o 23

AUNN Account and user number

o 1

CPARW

o 1 2 3 4 5 6 8 9 1112

Private Memory Table

Contains teletype associated with job if
the job number is assigned; otherwise,
contains a chained list of the free job
numbers

Disc busy for BRS BE+1 or BE+2

23

o
23

CPARW Status of user

S System

C Control

o Operator

SS Subsystem

CL2 Class 2 subsystem status (not used)
DS Disc error

CL 1 Class 1 subsystem sta tus:

LB User Receiving Broadcast Letter bit9=TAP, bit 10=DDT

Figure 8. Job Tables

12 Memory Acquisition

SPMMTT or I DR I XE I 0 I I I I R I I MORAD address 0 Page No.

o 1 2-4 5 6-9 10 17 18 19 23

RD On RAD

EX This page cannot be released by a user (e. g.,
the TS page has this bit set).

M Used by the memory acquisition routine to in­
form the swapper that a RAD read into th is
page is not required.

RO Read only. Set for SMT read only entry.

Figure 9. Private Memory Table Entry or
Shared Memory Table Entry

If a fork with nonzero Rn is encountered its Rn is transmitted
down to all the forks between it and the fork causing the
trap. If any fixed memory fork is encountered before a
nonzero Rn is found, a memory panic occurs.

This arrangement permits a fork to be started with less mem­
ory than its controlling fork in order to minimize the amount
of swapping required during its execution. If the fork later
proves to require more memory, it can be reassigned the
memory of the controlling fork in a natural way. If is, of
course, possible to use this machinery in other ways, for
instance, to permit the user to acquire more than 16K of
memory and to run different forks with nonoverlapping or
almost nonoverlapping memory.

The acquisition of memory is performed in a routine named
MGET. The RAD bit map is checked and an avai labl e page
is found. The RAD address is stored into the next available
PMT entry and the swapper is called. The swapper then
finds an available core page. MGET calls the swapper with
MGTS5=-1. The swapper waits until any necessary RAD
I/O has been completed and sets the new hardware relabel­
ing. See Chapter 4 for more information on memory
allocation.

CHANGING RELABELING

Several BRS s are avai lable to the user to allow him to manip­
ulate his pseudo-relabeling.

BRS 43

BRS 44

Returns the pseudo-relabeling of the calling
fork in A and B

Sets the pseudo-relabel ing with the contents
of A and B. There are several restrictions
associated with this BRS:

1. The user cannot relabel over a system
page unless he has the proper status.

2. The user cannot specify a pseudo­
relabeling byte that points to a PMT
entry that he has not acquired.

When a fork is activated, all the pseudo-relabeling bytes
are satisfied. Depending on the execution path, the fork
may not actua lIy need all of the pages. The fork can
release a page by replacing the desired byte with O. This
will reduce the amount of swapping necessary each time the
fork is activated. The BRS 44 does not remove the entry
from the PMT. Therefore, the page can be retrieved by exe­
cuting the BRS 44 and specifying the byte.

For example, assume a fork consists of five pages. All of
the error routines are in one page. This page can be rela­
beled out when the fork begins execution. When an error
occurs, the page can be relabeled in and a branch made to
the appropriate error routine.

It is possible for one fork to acquire all 30K of memory.
However, it must use the BRS 44 to rei abel some of the pages
out, since a fork can have only 16K of memory active at any
one time.

CREATING A LOWER FORK

The forking structure consists of up to 8 forks including the
Executive fork. The forking structure provides the follow­
ing advantages:

• Swapping time can be significantly reduced by seg­
menti ng a program.

• It permits centralized control. The user can activate
one of the subsystems, return to the Executi ve to have
various functions performed, return again to the sub­
system, call another subsystem, etc.

BRS 9 will initiate and activate a lower fork, taking its
argument from the A register. The first six bits of the A
register specify various attributes the lower fork should
have while the remaining bits specify the address of a
7-word panic table.

The panic table allows the parent fork to transfer various
parameters to the lower fork. When the lower fork termin­
ates, information is returned to the parent via this table.
A panic table must not overlap a page boundary or be used
for more than one dependent fork.

Table 1. Panic Table

Word Contents

o Program counter

A register

2 B register

3 X register

4 First relabel ing register

5 Second relabeling register

6 Status

Creating a Lower Fork 13

The status ward is set by the system and may be:

-2 Dismissed for input/output

-1 Running

o Dismissed on escape or BRS 10

Dismissed on illegal instruction panic

2 Dismissed on memory panic

Table 2. Significance of Bits in A Register

Bi t Significance

o Make fork system if current fork is system

1 Set fork relabeling from panic table. Otherwise,
use current relabel ing.

2 Propagate escape assi gnment to fork (see BRS90).

3 Make fork fixed memory. It is not allowed to
obtain any more memory than it is started with.

4 Make fork local memory. New memory wi II be
assigned to it independently of the control I ing
fork.

5 Make fork subsystem status if current fork is
subsystem.

BRS 9 causes the following to occur:

1. A PACT is obtained and initialized. The PA and PL
words are set from the panic table entries. Various
other bits in the PAC table are set from the informa­
tion supplied in A. RL 1 and RL2 are set up from the
contents of the panic table or from the relabeling
registers of the currently running fork. Linkage to the
porent fork is established by setting the PFORK and
panic table address entries. The PDOWN parameter is
set in the PAC table of the parent fork.

2. A fork number is obtained. A job may have a maximum
of 8 forks, including the Executive fork. The values
for B and X that are supplied in the panic table are
stored into the TS page indexed by fork number.

3. The suppl i ed pseudo-relabel ing is checked for val idi ty.
The bytes must point to PMT entries that have been
acquired, a user fark cannot relabel in system pages, etc.

4. A word call ed TTYASG (i ndexed by teletype number)
contains the PAC pointer of the fork that is to be ter­
minated when an escape occurs. The fork pointed to by
TTYASG and all lower forks will then be terminated.
BRS 9 will set TTYASG to the PACPTR of the fork it is
creating unless bit 2 of A is O.

5. The lower fork (the one being created by BRS 9) is put
on QIO with an immediate activation condition.

14 Panic Conditions

6. The parentfork is now dismissed (i. e., placed "in limbo"
which implies that the fork is not on a scheduled queue)
with an activation condition of 7 '(1} 6. If the parent
fork has Executive status it is not dismissed but contin­
ues execution at the instruction following BRS 9.

The parent fork will be reactivated when the lower fork
"panics". If the fork has Executive status it will continue
to run after the execution of BRS 9. The parent fork and
lower forks may interact in .the following 3 ways:

1. If the parent fork is not dismissed by BRS 9:

BRS 30 reads the current status of a lower fork into
the panic table. It does not influence the
operation of the fork in any way.

BRS 31 causes the controlling fork to be dismissed

unti I the lower fork causes a panic. When
it does, the controlling fork is reactivated
at the instruction following BRS 31, and the
panic table contains the status of the
fork on its dismissal. The status is also put
in X.

BRS 32 causes a lower fork to be unconditionally
terminated and its status to be read into the
pani c tabl e.

BRS 106 causes the controlling fork to be dismissed
unti I any subsidiary fork causes a pani c.
When it does, the controlling fork is reac­
tivated at the following instruction with
the panic table address in A, and the panic
table contains the status of the fork at its
dismissal.

BRS 107 causes BRS 30 to be executed for all subsid­
iary forks.

BRS 108 causes BRS 32 to be executed for all subsid­
iary forks.

2. If interrupt 3 is armed in the controlling fork, the ter­
mination of any subsidiary fork will cause that interrupt
to occur. The interrupt takes precedence over a BRS 31.
If the interrupt occurs and control is returned to BRS 31
after processing the interrupt, the fork will be dis­
missed until the subsidiary fork specified by the restored
(A) terminates.

3. The forks can share memory. The creati ng fork, can,
as al ready indi cated, set the memory of the subsidi ary
fork when the latter is started.

PANIC CONDITIONS
The three kinds of panic conditions that may cause a fork to
be terminated are listed in the description of the status
word. If the panic was caused by an escape, the follow­
ing occurs to the fork bei ng pointed to by TTYASG, and to
a II lower forks.

1. The page in the parent fork that contains the panic
table is brought into core if necessary. Data is inserted
into the panic table.

2. The B and X registers are stored into the Ts page ..

3. The PAC table is returned to the free PACT I ist. The
only exception is that the PAC table of the Executive
is not released by any panic condition. If the panic
was not caused by an escape, the above three steps wi II
affect the fork causing the panic.

The PAC tabl e of the control I ing fork (or the fork above the one
being pointed to by TTYAsG) is put onto QIO with an immedi­
ate activation condition. If TTYAsG contai ns the Executive
PACT pointer then the Executive fork is placed on Q 10. When
the control I ing fork is activated, execution wi II beg in at the
location indi cated by PL. For userforks th is wi II be one i nstruc­
tion after BRs 9. (BRss are explained in Chapter 6.)

The panic that returns a status word of ° is called a fork
panic and may be caused by either of two conditions:

1. The escape button on the control! ing teletype is
pushed, or an off interrupt occurs. This terminates a
fork with a fork panic. A fork may declare that it is
the one to be terminated by executing BRs 90. If a
user fork is terminated by escape, the teletype input
buffer is cleared. If the controlling fork of the ter­
minated fork is executive, the output buffer is also
cleared.

If a fork to be terminated by escape has armed inter­
rupt 1, the interruptwill occur instead of a termination.
The teletype buffers will not be affected.

If the Executive is activated, control goes to the loca­
tion EXECP in the Executive. Executive programs can
turn the escape button off with BRS 46 and turn it back
on with BRS 47. An escape occuring in the meantime
wi II be honored when BRS 47 is executed. A pro-
gram which is running with escape turned off is said
to be nonterminable. BRS 26 skips if there is an escape
Fending.

If two escapes occur within approximately 0.12 seconds,
the Executive fork wi II be activated. This has the
same effect as having TTYASG contain the Executive
PACT pointer. This device permits a user trapped in
two malfunctioning lower forks to escape. Closely
spaced escapes can be conveniently generated with
the repeat button on the teletype.

2. A BRS 10 can be executed in the lower fork. This
condition can be distinguished from a panic caused
by the escape button by the fact that, in the former
case, the program counter in the panic table points
to a word containing BRs 10.

An extension of this system provides a way in which sev­
eral forks may be terminated simultaneously by a lower
fork. BRS 73 provides a count in the A register. A scan
is made upward through the fork structure, decrementing
this count by one each time a fork is passed. When the
count goes to 0, the scan is term inated and a I! forks
counted are terminated. If an executive program is
reached before the count isO, then all the user programs
below it are terminated.

The panic which returns a status word of 1 is caused by the
execution of an illegal instruction in the fork. There are
two kinds of illegal instructions:

1. Privileged machine instructions.

2. sYSPOSs, either forbidden to the user, or provided with
unacceptable arguments.

A status word of 2 is returned by a memory panic. This
may be caused by an attempt to address more memory
than is permitted by the machine size the user has set,
or by an attempt to store into a read-only page. If inter­
rupt 2 is armed, it will occur instead of the memory
panic.

Note that no type of panic releases memory. The PMT
entries remain intact. Therefore, the forking structure
can be conveniently recreated after the panic.

Panic Conditions 15

4. SWAPPER, MEMORY ALLOCATION AND RAD ORGANIZATION

SWAPPER

The swapper accomplishes the allocation of memory. It is
called to activate a fork, change relabeling, or acquire a
page of memory. The input to the swapper is the pseudo­
relabe I ing. To determine the exact location of each of the
pages the fork requires, the pseudo-relabeling is decoded
and the SIVT and PMT tables are consulted. The swapper
can then determine how many pages need to be read in from
the RAD. This count in then compared with the Memory
Availability Count (MAC). MAC contains the number of
un locked pages (minus one).

The system keeps tables that define the status of real mem­
ory. These tables, both indexed by real page number, are
the Real Memory Table (RMT) and Real Memory lock Count
(RMC). The RMC entry indicates whether a page is locked
or unlocked. If RMC = -1, the page is unlocked and avail­
able for swapping. An RMC entry may be made non­
negative (the page can be locked) for any of the follow­
ing reasons:

1. Part of the Monitor is in the page.

2. The resident user occupies the page.

3. The page is I/O hound. This impl ies that the page
contains an I/O buffer that is currently active. Pages
which are being swapped are also I/O bound. Any rou­
tine that initiates an I/O operation will increment the
appropriate RMC entry. The I/O interrupt routi ne wi II
decrement the RMC entry when the operation has been
completed.

4. The scheduler locks the pages of a fork that is ')n SWQ
so that the memory wi II not be assigned to the second
fork that could be placed on SWQ. The memory is
un locked when the fork is activated.

If the number of pages a fork requ ires is greater than MAC,
the swapper is unable to allocate memory at this time and
exits with an abnormal return.

If sufficient memory is available, the pages to be swapped
are selected. The RMT table is scanned to determine the
optimum pages to be swapped. The format of RMT is shown
in Figure 10

At most, three passes are made through the RMT tables to
select the required number of pages. The following method
is used to determine which pages are to be released:

1. No locked page (see RMC) is released.

2. Pages that are not locked are selected in the following
manner:

a. User pages (PMT pages) marked as read -only
(RMT bit 1 = 1, bit 2 = 0). No RAD write is

16 Swapper, Memory Allocation and RAD Organization

U
S
E

o

R
0

USE

RO

S
Pntr to Address of SMT/PMT

M 0
T

SWQ responsible for this page

2 4 8 9 10 23

The page is i~ use. Th~ setting of this bit
indicates to the swapper that a RAD write must b
performed before this page can be allocated.

The page is marked as Read Only in the hard­
ware relabeling registers.

SMT This page is an SMT page.

SWQ This page is being brought off the RAD at
this instant in time by a fork which is on swap
queue.

4-8 Meaningful only if bit 3 is a 1. If so, this is
a pointer to the entry on the swap queue which
is responsible for this page.

10-23 Core address of the SMT/PMT entry which
is responsible for this page.

Figure 10. Format of Real Memory Table (RMT)

required in this case since there is a valid copy
of the page on the RAD.

b. User pages that are not read-on I y (RMT bi t 1 = 0,
bit 2 = 0). Requires RAD write-out.

c. SMT pages (RMT bit 2 = 1).

This scheme provides the SMT pages; which are the most
I ikely to be used within the next few activations, with the
best chance of remaining in core.

The system has two methods for distinguishing PMT entries
from SMT entries. The first is to use a system parameter
called NCMEM (which is currently 60B): pseudo-relabeling
bytes between 1 and NCMEM-l (57B) refer to the SMTj
bytes equal to or greater than NCMEM point to the user's
PMTj a relabeling byte of zero indicates that the page is
not in use. The second method is to inspect the RO bit
(bit 18). If the bit is one, the entry is SMT.

Memory is allocated and a I ist of RAD operations is con­
structed. After the required write commands have been
constructed, all the read and write commands are placed
on the RAD command I ist. When a RAD read is put on
the I ist, the actual (real) memory address of the page is
placed into the low arder five bits of the PMT or SMT
entry. Pages that have been selected to be released
are marked in the RMT entry as being on the RAD.
When a II the commands have been placed on the RAD

queue, the RAD driver is called. Figure 11 shows the
format of the RAD queue:

Word 0

I RAD address I
0 23

Word 1

I Low Order
Low Order Core Address

Word Count
0 9 10 23

Word 2

E High High
I 0 EOD 0 0 1 1 1 1 0 1 core Oraer

word
1 Add count

0 123 89 10 11 12 13 14 15 16 17 18 19 23

Word 3

I~I Check I Routine
0 23

EI1 11 (Zero Word Count) interrupt armed. Used
on I y for read commands

WR Write Commands.

EOD Operation code for EOD instruction (06B)

Word 2 See format for EOD instruction

Figure 11. RAD Queue Entry

If the swapper was called in the process of activating a
fork (MGTS5 = 0; see Function of the Scheduler), certain
parameters must be set to indicate that the fork is being
placed on swap queue. As each RAD read command is
added to the queue of RAD commands, a pointer to the swap
queue is inserted in bits 3 through 8 of the appropriate RMT
entry. Since MGTS5 = 0, the swapper does not wait for
the completion of the RAD I/O. Now, all the SMT or PMT
entries in the current pseudo-relabeling are examined and
a set of real relabeling registers is constructed. The real
relabel ing registers are saved in the current input position
of SWORL 1, SWORL2 i and SWORL3 and are used to lock
the forkls memory in core unti I it is activated.

Bit 1 of RMT indicates a read-only page. This bit is set for
all pages being read from the RAD. The bit is set in the
OMR routine which sets up the read commands. When the
userls real relabeling is constructed in PKRL, all pages are
marked as read-only. As the relabeling is being prepared
for output in LABEL, the TS page is marked as not-read­
only to facilitate the handling of the read-only trap.
As the user runs, any attempt to store into a user page
results in a read-only trap and the code at TRAPR de­
termines whether the page 'referenced is a true read-only

page or not. If the page is not a true read-only page,
then bit 1 of the RMT entry is cleared, and the userls rela­
beling is changed so that the page is no longer read-only.

If a running fork calls the swapper to change its relabeling
(or acquire more memory), a similar path is taken with the
following exceptions: the swapper waits until the RAD I/O
is completed; and the real relabeling registers are con­
structed and stored in the fixed Monitor locations RRL 1,
RRL2, and RRl3 and output to the hardware relabel ing
regi sters.

When the scheduler attempts to activate a fork that is on
the swap queue, it calls the swapper with MGTS5 = -1.
When the swapper examines the pseudo-relabeling, it
should find all of the required pages in core and set the
hardware relabel ing. If this is not the case, a RAD error
has occurred and the swapper wi II take an abnormal return.
The fork will be dismissed on QQE with an immediate acti­
vation condition.

MEMORY ALLOCATION

The method of memory acquisition is described in Chapter 3.
Pages can be completely released by use of BRS 4 or BRS
121. BRS 4 requires an address (virtual) in A, BRS 121
requires a relabeling byte. When the BRS is executed, the
PMT entry for the page is cleared, the pseudo-relabeling
bytes are zeroed for all forks in the structures, and the RAD
map is adjusted to indicate the availability of the page.
A page released in this manner is irrecoverable. A user
cannot use these BRSs to release an SMT page or his TS
page. (See EX bit in PMT/SMT).

BRSs that are restricted to Executive forks include:

116 Read relabel ing from user l s TS page

117 Set relabeling in userls TS page

120 Obtain a page

56 Make page Executive (see EX bit in the PMT)

104 Read page from the RAD

105 Write a page on the RAD.

RAD ORGANIZATION

RAD space is allocated at the rate of one page (2K words)
at a time when requested. A bit map, DRAT, with one bit
for each page on the RAD, is used to determine which

pages are avai lable. When a user requests a page of mem­
ory, the code at PMTA assi gns a space on the RAD for the
new page so that the userls pages will be rotationally con­
secutive in their order of occurrence in his PMT. This means
that, although two pages which are consecutive in the PMT
may be qu i te for apart on the RA D, they may be read in with
no rotational delay between them. The job number of the
user determines whether the first page of the userls memory
is assigned an even or an odd position on the RAD. When
a user releases a page of memory, the code at MPUT3
returns the appropriate bit to the bit mop. The first 64 pages
of the RAD contain the subsystems and Executive.

Memory Allocation/RAD Organization 17

5. SOFTWARE INTERRUPTS

A facility is provided in the Monitor to simulate hardware
interrupts. There are eleven possible interrupts, five are
reserved for special purposes and six are available to the
programmer for general use. A fork may arm the interrupts
by executing a BRS 78 with an 11-bit mask in the A register.
This causes the appropriate bits in PIM to be set or cleared
to correspond to the bits in the mask. Bit 4 of A corresponds
to interrupt number 1, etc. No other action is taken at this
time. When an interrupt occurs the execution of an +SBRM*
to location 200 plus the interrupt number is simu lated in the
fork that armed the interrupt.

Note: The program counter stored in this case is the loca­
tion of the instruction being executed by the inter­
rupted fork, not the location in the fork which
causes the interrupt. The proper return from an
interrupt is a BRU to the location from which the
interrupt occurred. This will cause the proper
return in all cases, including interrupts from input/
output instructions.

INTERRUPTS 5 THROUGH 10

A fork may generate an interrupt by executing a BRS79 with
the number of the desired interrupt in the A register. This
number may not be one, two, three, four, or eleven. The
fork that arms the interrupt should not be the one that trig­
gers it using the BRS 79 (i. e., a fork should not interrupt
itself using the BRS 79. The interrupt causes the fork struc­
ture to be scanned upward. The first fork with the appropri­
ate interrupt mask bit set is interrupted. The interrupted fork
is put on QIO with an activation condition of 5 « interrupt
number. Execution of the program in the fork causing the
interrupt continues without disturbance. If no interruptable
fork is found, the interrupt instruction is treated as a NOP.
If there is an interruptable fork, it skips on return.

SYSTEM INTERRUPTS

Interrupts 1, 2, 3, 4 and 11 are the system interrupts. They
can be caused by the same fork which has the interrupt
armed.

If the fork which is being pointed to by TTYASG also has
interrupt 1 armed, a program panic (BRS 10 or escape key)
that would normally terminate the forking structure, will
instead cause interrupt 1 to occur. The fork will be placed
on 010 and begins execution at the location indicated by

18 Software Interrupts

the contents of location 201 B. This permits the programmer
to control the action taken when the escape key is pushed
without establishing a fork, specifically for this purpose.
If depressing the escape key causes an interrupt to occur
rather than terminating a fork, the input buffer will not be
cleared.

If a memory panic occurs in a fork that has armed interrupt
2, it will cause interrupt 2 to occur rather than terminating
the fork. If an illegal instruction panic occurs in an exec­
utive fork that has armed interrupt 2, it wi II cause interrupt
2 to occur rather than terminating the fork.

Interrupt 3 is caused, if armed, when any lower fork ter­
m inates. Interrupt 4 is caused, if armed, when any input/
output condition occurs that sets a flag bit (e. g., end of
record, end of file and error conditions).

Interrupt 11 is caused, if armed, if a disc error is encoun­
tered during a BRS BE + 1 or BRS BE + 2. These BRSs require
system status. Consequently, interrupt 11 has no meaning
for user or subsystem forks.

Whenever any interrupt occurs, the corresponding bit in the
interrupt mask is cl eared and must be set expl icitly if it is
desired to keep the interrupt on. Note that there is no restric­
tion on the number of forks which may have an interrupt on.

To read the interrupt mask into A, the program may execute
a BRS 49.

TIME-OUT INTERRUPTS

A fork may be interrupted after a specified period of time
by issuing BRS BE + 12. It takes the interrupt mask in A,
the time (in msec) in B, and the interrupt number in X. If
the specified interrupt is orrned when the time runs out, the
fork wi II be interrupted.

The interrupt number whi ch is specified in X may be any of
the user interrupts (5 through 10). A fork may have a max­
imum of 3 time-out interrupts pending. The number of time­
out interrupts that are pending is noted in the TO entry of
the PAC table.

+SBRM* When a fork is being activated because of a
software interrupt, the scheduler simulates the execution of
a BRM* 200B+N where N is the interrupt number. See des­
cription of BRS 79.

6. BRS LOGIC

The BRSs are divided into classes 1, 2, and 3. The class of

each BRS is I isted in Appendix B. See Appendix K for flow
chart of BRS logic.

The class 3 BRSs (also called executive BRSs) all declare a
lower fork to execute. This fork runs in user mode. Many of the
BRSs that deal with file manipulatio:1 are in this category.

The Monitor provides a number of BRSs which provide ser­
vices for the user. Many of these are incorporated in the
string processing system or in the floating point package
and are described later. These are called class 2 BRSs.

When a BRS is executed, flow enters the BRS file at loca­
tion BS. Absolute location zero contains:

o LOC

o 1 2 3 8 9 10 23

U BRS executed in user mode

OV Status of overflow indicator

LOC Location of the BRS instruction. Th is wi II be
a virtual address if BRS was executed in the

user mode.

The contents of the central registers are stored into 5501,
SS02, and SS03.

The number of the BRS can be obtained by referencing loca­
tion O. The transfer vectors for the BRSs are stored at BST
through BSTU. Location BSX is set to contain the transfer
vector. The transfer vector will be:

fRU
ROUT1 for a Class 1 BRS

EAX ROUT2 for a Class 2 BRS

BSX = NOP N for a Class 3 BRS

BRM TRAPB for an unimplemented or
nonexistent BRS

Flow is transferred to a class 1 BRS when the system executes
an EXU BSX. Real location 0 wi II contain its initial setting
while the BRS is executing. A class 1 BRS returns to the
call ing program by branching to the PO PX routine. PO PX
will restore the central registers and execute a BRR O. If
the BRS gives a skipping (exception) return it will increment
location 0 before branching to POPX.

While a class 2 or 3 BRS is executing, location SBRSRT
contains the initial setting of location O. Flow is trans­
ferred to a class 2 BRS when the system executes a BRU* BSX.

The BRS returns to the calling program by branching to the
EPOPX routine. EPOPX executes a BRR SBRSRT.

The value N in the transfer vector of a class 3 BRS indicates
what pseudo-relabel ing the BRS fork should have and pro­
vides information for setting the fork's PL word. A PAC

table is obtai ned and initial ized. The pseudo-relabel ing
includes the TS page, the COMPG file, and either the
GSBR or the FLTIO file. The PL word is initialized to begin
execution at a jump table in either GSBR or FL no. The
contents of location 0 are stored into UPL. The BRS fork
is put on QIO. The parent fork is dismissed (put in limbo)
with an activation condition of 7 a 4.

The BRS fork wi II execute a BRS 111 when it has finished
executing. The BRS 111 wi II delete the BRS fork's PAC

table. The contents of location UPL are stored into location
O. The swapper is called to relabel in the parent fork. A
branch is then made to PO PX.

BRS Logic 19

7. INITIALIZATION AND TERMINATION OF A USER

INITIALIZATION OF A USER

When the user dials on the system, the "teletype on"
interrupt is generated. The interrupt routine places a task
on the phantom user. The phantom user will process the
task when four seconds (from the time the interrupt was
sensed) have elapsed. This delay in processing allows time
for the teletype carrier signal to become stable.

The major part of the coding for this phantom user task is
performed in a routine named TSON. TSON assignes a job
number to the user and acqui res a PAC table for the Execu­
tive fork provided there is a job number and a PAC table
available. The PAC table is initialized to contain the
pseudo-relabeling and status parameters applicable to an
Executive fork. The PL word is initialized to begin exe­
cution in the TSONI routine. (TSONI is a monitor rou­
tine.) The PMT table that corresponds to this job and the
WERIS entry for the teletype are zeroed, and TTYASG is
initialized to contain the PAC pointer of the Executive
fork. The PAC table is then added to the OTI queue.

When this fork is allotted a time slice, execution begins at
TSONI. A TS page is acquired and relabeled into logi­
cal page zero of the Executive relabeling and logical
page seven of the monitor relabeling. The Executive
subroutine transfer vectors and other constants in the TS
page are initialized. A branch is then taken to a location
in the Executive, causing a transfer to the user mode. The
Executive then attempts to log the user onto the system. If
the user does not successfully log on within 90 seconds, his
teletype is deactivated and the Executive fork is
terminated.

20 Initialization and Termination of a User

TERMINATION OF A USER

A user can indicate the termination of his job by giving the
LOGOUT or EXIT command, or by hanging up the teletype.
The LOGOUT command releases all the program memory (clears
PMT entries 61 B through 77B), writes the user's fi Ie directory,
outputs accounting informati"on the system requ ires for bi II i ng,
prints an elapsed time message to the user, closes all files,
and releases the TS page. The Executive then executes a BRS
112 which resets such tables as WERIS, TTYASG, LCW (used
for linking), releases the PAC table for the Executive fork,
removes any tasks from the phantom user that appl y to this
teletype, and deactivates the teletype if the operator has
issued the SHUT DOWN command. The BRS 112 then causes
the same task as that which results from a "teletype on" inter­
rupt to be added to the phantom user's task queue. This allows
another user on the same teletype to log onto the system pro­
vided that the first user did not hang up.

The EXIT command is similar to LOGOUT except that the
user's file directory is not written. Therefore, any user
files established during this session are not entered into his
di rectory.

The "teletype off" interrupt places on the phantom user a
task that is similar to the processing of a high speed escape.
With the exception of the Executive fork, the entire forking
structure is terminated. The teletype input and output buf­
fers are cleared and the Executive fork is placed on 010
with the PL word containing OFFINT (OFFINT is a location
in the Executive). At OFFINT a dump file of the user's
memory is ta ken if the user has establ i shed a /S/ fi I e and
has not logged off the system. The path taken now is the

same as if the user had given the LOGOUT command. That

is, the memory is released, file directory written, etc, and
finally the BRS 112 is executed ..

8. TELETYPEINPUTjOUTPPJ

TELETYPE BUFFER

Monitor file TTY contains the teletype buffers, pointers,
and tables. (See Figure 12.) Each teletype has one buffer
which is 30 words in length. The label on this buffer is
TTYBUF. TTYBUF is initialized in TTYSET.

TTYBUF

30 Words {
Buffer for
Teletype 0

-30 Dummy Word that indi­
cates end of Buffer

-30

Buffer for
Teletype 1

3uffer for
Teletype n

The teletype buffers are "ring buffers". Pointers indicate
where the next character is to be read into (or taken out of)
the buffer. Assume a character for TTY 0 has just been put
into TTYBUF + 29. When the next character comes in, the
dummy word will be detected, the input pointer will be
adjusted by the value of the dummy word (-30), and the
character wi II be placed into location TTYBUF.

The format for each word in TTYBUF is:

Input Char Output Char

o 78 1516

Echo Char
or Zero

23

When a character is typed on a teletype, it is converted to
940 internal code and added to the input buffer. The echo
character is in trimmed ASCII. The output character is
formed by adding 240B to the internal code.

Although the input and output buffers share the same loca­
tions, separate pointers allow the buffers to be manipulated
independently of each other. Teletype associated variables
are shown in Figure 12.

OUTPUT PATH

To output a character from location M, the SYSPOP

TCO M (te letype character output)

is used. This instruction outputs a character from the

rightmost eight bits of location M. Normally, the character
is in internal format.

If the user executes a TCO instruction, TOSS is incremented.
The character is placed in the location pointed to by TOSS.
If this is the first character that is being sent out (TOSS is
negative) the output interrupt must be initiated. This is
accomplished by "pottingll out 001400CN where CN is the
teletype number. The setting of bits 8 and 9 will trigger
the interrupt. The character count in TOS2 is also
incremented.

The interrupt routine will increment TOS4, decrement TOS2,
and output a character from the location pointed to by TOS4.

A fork will not be dismissed for teletype output unless the
buffer is fu II (i. e., TOS2 = 30). When the buffer is full,
the fork is dismissed with an activation condition of 3 (0)

TOS2 + CN. The fork will be reactivated when TOS2 is
less than or equal to the teletype early warning (TTYEWM)
-a system parameter with the value 6.

If a fork wishes to send out a multiple number of spaces, a
135B (the multiple blank character) is sent. The next char­
acter I·hat is sent represents the number of blanks to be out­
put. The TOS3 indicator keeps track of the detection of
the 135B and the outputting of the blanks.

The output interrupt wi II respond with both a carriage re­
turn and a I ine feed if either character is detected.

ECHO TABLES

The teletypes used are fully duplexed to allow simultaneous
keyboard transm iss ion and reception. That is, when the
user types a character, no printing occurs. As illustrated
below, the character is transmitted to the 940 and the
software echoes it back (prints the character). Four echo
tables are avai lable. Presently the system may choose to
print or not to print a character (echo or not).

Send Echo --
TTY

Keyboard Send Character ..
L-~ ____ r--- •

940

Look up
character in
echo tabl e

The way the echo table logic is implemented,it would be
possible to modify an echo table so that when an A is typed
a Z is echoed. The input character serves only as a pointer

. into the echo table. The corresponding table entry is then
output to the teletype.

In addition to specifying the echo character, the echo tables
also define the "break" characters. A fork will not be dis­
missed for teletype input unless the input buffer is empty.
However, once the fork is dismissed, it will be reactivated
agai n when a break character has been input or the buffer

Teletype Input/Output 21

T052

T054

T055

T053

TII55

ATI52

ATI55

ATI54

TI52

TI54

TI55

TTYTBL

Number of characters in output buffer; has the value -1 when output buffer is inactive.

Output readout pointer. The output interrupt routine outputs a character from the location indicated by
T054.

Output write-in pointer. Pointer to next available space in the output buffer, e. g. the TCO routine will
place a character in the location indicated by T055.

0- not in multiple blank mode; 20000000B - just received 135 (multiple blank character); other - number
of blanks to be output. This is used to simulate the tab settings on a typewriter.

o if last character output was not a carriage return (CR) or line feed (LF)

CR or LF character and bit 23 set when software has sent a CR

CR or LF character and bit 23 reset when software has sent an LF.

Number of IIpinned ll words in ATTBUF. This location is incremented by the input interrupt routine and
decremented by the 205 interrupt routi ne.

Write-in pointer. The input interrupt routine wi II put a word into the location pointed to by A TIS5.

Read-out pointer used by the 205 routine. A word is pulled out of ATTBUF from the location pointed to
by ATIS4.

Number of characters in the input buffer. This word is incremented by the 205 routine and decremented
by any routine requesting teletype input (such as TCI).

Write-in pointer used by the 205 routine. A character is pulled out of ATTBUF and put into TTYBUF in
the location pointed to by TIS4.

Read-out pointer used by any routine requesting teletype input (such as TCI). A character is read out of
TTYBUF from the location pointed to by TIS5.

ADDR or TC

o 1 2 3 4 5 6 7 8 9 10 23

N5 Not 8-level mode

BK Waiting for a break character

XO Paper tape reeder is to be turned off because input buffer is becoming full.

SI 8-level input

50 8-level output

XN Paper tape reader has been turned off and should be turned on again when there is room in the
buffer.

LI Input buffer full. IIDon't listen for input bit:'

P Output routine is in the process of turning on the paper tape reader.

AI Accept linked input bit. Currently not used.

AM Accept linked output. Teletype is willing to be linked.

ADDR Address of echo-table

Te Terminal character for 8-level output

NOTE: These tables are indexed by teletype channel number.

Figure 12. Teletype Tables

22 Tel etype Input/Output

LCW UNSUC CP o LTTY

o 7 8 9 10 17 18 23

NL Teletype not linked to another

UNSUC Number of teletype making unsuccessfu I I inking attempt. That is, teletype was a I ready I inked,
or in the 8-1 evel mode, or busy, etc.

CP Count of the number of control Ps that have been sent to start the paper. tape reader. CP is not used
in conjunction with linking.

L TTY Number of the I inking teletype

TTYASG
r PACPTR offork to terminate on escape or when TTY not in use I
I 37777]

o 23

TTYTIM I ES I Value of clock when lost oction occurred on this TTY]

o 23

ES Last action on this teletype was an escape.

WERIS -1, 0, or User Number

o 23

NOTE: These tables are indexed by teletype channel number.

Figure 12. Teletype Tables (cont.)

is almost full. Suppose a program requires an entire line of
text before it can do any processing. It could then define
the control characters as break characters. Once the pro­
gram has been dismissed, it will not be reactivated until
the entire line is available.

There are four standard echo tabl es in the system, referred
to by the numbers 0, 1, 2, and 3. Zero is a table in which
the echo for each character is the character itself, and all
characters are break characters. Table 1 has the same
echoes, but all characters except letters, digits and space
are break characters. Table 2 also has the same echoes,
but the only break characters are control characters (includ­
ing carriage return and line feed) and exclamation mark.
Table 3 speci fies no echo for any character, and all char­
acters are break characters. This table is useful for a pro­
gram that wishes to compute the echo itself.

Each echo table is 32 words (3 characters per word) in length.
The 8-bit characters are stored in trimmed ASCII code. The
total character set includes 96 characters. The input
character is converted to trimmed ASCII code. Therefore;

the table look-up is done with a character that has a value
between 0 and 137B.

The format of the echo table is:

Char Char IB IChor
o 1 789 151617 23

where

B is 1 if this is a break character.

Char is character to be echoed in trimmed ASCII
code. If the character is not to be echoed,
character is set to 1.

The echoes for characters having a trimmed ASCII value of
0, 1, or 2 are in word 0 of the echo tobie, 3, 4, or 5 are
in word 1; etc.

Teletype Input/Output 23

Consider echo table 0 which will echo everything and
break on everything. The echo for a B, C, or D (ASCII
102, 103, 104) wi II be in word ET0+26B and have the value:

6054 1 70 4B = 111000010 111000011 1110001001

302B 303B 304B

102B, 103B, 104B plus break char­
acter bit set

The echo table a fork wishes to use can be set by executing
a BRS 12 which causes TTYTBL {indexed by the teletype
number} to contain the address of the chosen echo table.

940 BYTE ADDRESSING

An echo table can be thought of as a table of 96 consecu­
tive bytes. For echo table 0, the byte addresses of the
entries in the table would have values between ETO and
ETO+137B.

ETO Word 0

ETO+3

ETO+6 2

ETO+ 135B 37B

Suppose an ASCII character has been input ond the trimmed
7 bits have been stored in CH.AR in bits 14-23.

LDA

MUL

CHAR

=12525253B Divide by three

A byte address can be converted to a word address by divid­
ing it by three. The remainder from the division represents
the byte position that the charocter has in the word. The
multiplication by 12525253B (this constant effects a divide
by three) wi II leave the word address in A, and bits 0 and
1 of B will contain 00, 01, or 10. We then:

ADD
CAX
LDX
LCY
ETR
COpy

LCY

TTYTBL,2

0,2
5
=30B
XB, AX
8,2

Get address of Echo Table

Load X with echo word
Ge t 5 bi ts of B
Extract 00, lOB or 20B
Echo word in B, Shift count in X

The proper character wi II now be in the last 8 bits of the A
register. For example, in trimmed ASCII:

B
C
D

102B
103B
104B

102B/3 = 26B
103B/3 = 26B
1 04B/3 ~ 26B

(Remainder = 0)
(Remainder = 1)
(Remainder:::: 2)

24 940 Byte Addressing/8-Level Mode/Input Table

Therefore, the echoes for B, C, and D are in word 26B of
the echo table in positions 0, 1, and 2, respectively.

8-LEVEL MODE

Special provision is made for reading 8-bit codes from the
teletype without sensing escape or doing the conversion from
ASCII to internal. To switch a teletype into this mode,

execute:

LDX teletype number

LDA terminal character + 40000000B

BRS12

This will cause each 8-bit character read from the teletype
to be transmitted unchanged to the user's program. The
teletype can be returned to normal operation by:

1. reading the terminal character specified in A,

2. setting the echo table with BRS 12

No echoes are generated while the teletype is in 8-level
mode. Teletype output is not affected.

A parallel operation, BRS 85, is provided for 8-level output.
BRS 86 re turns matters to the normal state, as does any set­
ting of the echo table.

INPUT PATH

To input a character from the controlling teletype (the tele­
type on which the user of the program is entered) into loca­
tion M in memory, the SYSPOP

TCI M (teletype character input)

is used. This SYSPOP reads the character from the teletype
input buffer and places it into the 8 rightmost bits of loca­
tion M. The remainder of location M is cleared. The char­
acter is also placed in the A register, which destroys the
former contents.

Two interrupts and an additional buffer are associated with
the input path. When the input interrupt occurs, the word
is "pinned" into a buffer called ATTBUF (which is 30 words
long). The input interrupt then arms the 205 interrupt. The
205 interrupt is always active and is the lowest priority
interrupt in the system; therefore it wi II be triggered as
soon as it is armed.

The 205 interrupt f')utine takes a word from ATTBUF, gets
the appropriate echo character, attempts to process the
echo, puts the input character into TTYBUF, and decides
if a break character has just been received.

ATTBUF (one per system) has the following format:

A ATTBUF Char
D

0 TTY
0

0 7 8 9 17 18-23

Char
D

0 TTY
0

ATTBUF+29

ATTBUT+30 -30

0 23

where

Char is ASCII character.

DO is Data Overrun.

TTY is Teletype Number

Suppose a fork executes a TCI. As long as TIS2 is greater
than 0 a character is extracted from TTYBUF using the
TIS5 pointer. When the 205 routine places this character
into TTYBUF, it sends the echo if one is required, and none
of the following conditions prevail: (1) output active, i.e.,
TOS2 is negative, (2) no previous echoes were deferred,
(3) teletype is not linked. If these conditions are absent,
the echo is sent and bits 16 through 23 of the word pointed
to by TIS5 are reset. The echo is sent by placing it into
the output position of TTYBUF.

If the echo is not sent immediately (205 routine), it wi II be
sent later by the TCI routine. The echo transmission is
accompl ished by movi ng the echo character to the output
position of the TTYBUF word pointed to by TOS5. If the
teletypes are linked, the echo wi II be placed into the
output buffer of the linked teletype as well.

If TIS2 is zero, the input buffer is empty, and the fork is
dismissed with an activation condition of 11 n TTYTBL. Bit
1 of TTYTBL is set to indicate that the fork is waiting for a
break character.

The 205 routine resets bit 1 of TTYTBL when a break char­
acter is detected and also increments ACTR so that the
schedu ler knows that a fork on OTI is ready. The routine
wi II take the same action whether a break character has
been detected or not, if the buffer is within 10 characters
(TTYEEW) of becoming full.

The buffer becoming full presents a problem when the input
is from paper tape. If the buffer is within 6 characters of
becoming fu II, bit 2 (XOFF) of TTYTBL is set and the dummy
output interrupt is sent. When the output interrupt routine
is entered and XOFF is set, the paper tape reader is turned
off. XOFF is then reset and XON (Bit 5 of TTYTBL) is set
to indicate that the reader must be turned back on. When

the input buffer becomes empty and XON is set, the dummy
output interrupt is generated. XON is reset and bit 7 of
TTYTBL is set to indicate that the output interrupt routine
should send out two interrupts and the XON ASCII char­
acter to reactivate the paper tape reader. Bits 8 and 9 of
LeW are set to keep track of the number of interrupts that
have been sent. The two interrupts are sent for timing
purposes. This guarantees that the teletype has finished
processing the XOFF request before turning it back on.

MISCELLANEOUS TABLES

Any time an action occurs at a teletype (either input or out­
put) the value of REAL is stored into TTYTIM. If a user hi ts
two high-speed escapes, this indicates he wishes to return
to the Executive fork. When a rub-out is processed, the
value in TTYTIM is compared with REAL to determine if this
was a high-speed escape. TTYTIM is set to -1 if high-speed
rubout was received. TTYTIM is a Iso set to -1 in TSOFF
when an off interrupt has been received.

TTYASG is initialized to 37777B when the teletype becomes
inactive. While the teletype is active TTYASG contains
the negative pointer to the PAC table of the fork to be ter­
minated when any panic occurs.

WERIS = -1 when teletype is inactive, 0 when the user is in
the process of logging on, and user number after the user has
logged on.

LINKING OF TELETYPE

It is possible for one teletype to accept I inkage to another,
break the linkage, or refuse to be linked. When the user
logs on the system, bit 9 of TTYTBL, the accept message
bit, is set.

LCW is initialized to 40000040B. Bit 0 indicates that
the teletype is not linked and 40B is a fictitious teletype
number since the legitimate numbers are 0 through 37B

Once a teletype is linked, the associated teletype numbers
are inserted into bits 18 through 23 of the LCW word of both
teletypes. The teletype output routine checks bit 0 to see
if NL is reset. If it is, the output character is placed into
the TTYBUF for both teletypes.

In order for one teletype to link to another, bit 9 of TTYTBL
(the accept message bit) must be set. Also, the teletype
must not be in the 8-level mode, be already linked, or
have just turned off the paper tape reader or be in the proc­
ess of turning it back on. All these conditions will cause
the link to be unsuccessful and the number of the teletype
that attempted to link will be placed in bits 1 through 7 of
LCW.

Miscellaneous Tables/Linking of Teletypes 25

9. DEVICES AND IS PAGE BUFFERS

FILE STORAGE ON DISC

The physical records for the storage of files are divided into
blocks of 256 words. The files use the disc in groups of 4
sectors of 64 words each.

The disc fi les used by this system consist of 8 to 32 physical
discs, with each disc having a movable arm. The arms have
64 positions numbered 0 to 63 and each arm position on a
disc can access 8, 192 words. Each arm position contains
four pages (a page is 1/4 of an arm position) and one page
contains 2,048 words. It is possible to access four pages
without moving an arm position (see Figure 13).

For example, if the total number of arm positions is multi­
plied by the number of words per arm position, the total
number of words per disc can be calculated (i.e., 8,192
words x 64 arm positions equals 524,288 words per disc).

The disc is divided into two major sections: system data
and file storage. The disc map in Figure 13 illustrates the
disc sections. Octal addresses 0, 40, 100, 140 are the
beginning addresses for the four pages in a specified arm
position. In this addressing scheme, each increment of one
represents a sector of 64 words. Therefore, four addresses
such as 0, 1, 2, and 3 would represent a physical record
containing 256 words.

"User 400 FD" in arm position 0 at disc 0 represents the file
directory of the individual's user number. "Acct (L 1 UAD"
(arm position 1 at disc 4) is the user's account directory for
for account Q 1.

The format for the disc address word is shown in Figure 14.

Figure 15 shows the flow necessary to retrieve a disc file.
When a user logs on the system, the account number is used
to calcu late the disc address of the User Account Directory
(UAD). The UAD contains a list of the user names associated
with this account. Associated with each user name is the
status of the user and his user number. The user number is
assigned to a user by the ope rator. It can be used to cal cu­
late the disc address of the file directory associated with
this user name.

A file directory (FD) is 128 words long and contains the
ASCII name of a file and four control words that specify
parameters peculiar to the file for all the files that pertain
to this user. The number of files that can be represented in
the file directory is a functi:m of the length of the file
names. If a user gives all of his fi les 3 character names,
there wou Id be room for about 24 fi les. One of the param­
eters that is associated with each file is the disc address of
the index block.

Every file is written on the disc in data blocks of 255 words.
The index block contains the disc address of the data blocks
for the file. Currently the index block contains pointers

26 Devices and TS Page Buffers

(disc addresses mod 4) for 76 data blocks. Therefore, a fi Ie
may be 255 x 76 or 19,380 words in length.

When a file is written, the system collects 255 words in a
buffer, searches a disc bit map for an avai lable area, and
writes the contents of the b.uffer on the disc. The disc
address is stored into the index block. When the fi Ie has
been completely written, the index block will then be
written on the disc.

The formats for the U,AD and the FD are shown in ftppendix
C. The layouts of the file buffer and of the index block
buffer are shown in Figure 16.

Avai lable storage in the fi Ie area of the disc is recorded in
a bit table. A bit indicates that the corresponding block
on the disc is free. The bit map is set every time the sys­
tem is updated to agree with the files in the file directories.
To set the bit map, BRS BE+5 is used, requiring index block
poi nter (mod 4) in A. When all fi les have been checked,
the BRS is called with A set to -1, the new overflow pointer
in B, and the accounting area address in X.

FILE BUFFERS

Every open file in the system with the exception of purely
character-oriented files, such as the teletype, has a file
buffer associated with it. The form of this buffer is shown
in Figure 16. The index block is used only by disc files
but is present in all cases. Each user has three buffers in
his TS page. Therefore, any user can have a maximum of
three files open. The Monitor always relabels the TS page
into logical page 7.

Note that the amount of buffer space actually used is a
function of the device attached to the fi Ie. In all cases,
the two pointer words at the head of the buffer indicate the
location of the data. The first word points to the beginning
of the relevant data and is incremented as data isread from
or inserted into the buffer. The second word points to the
end of the data. On the output path. the second poi nter is
set to the physical record size that pertains to the device.

On the input path, this pointer is set by the routine that
drives the device once it determines the number of words
read. When the buffer pointers are equal, the buffer is
either empty (input) or full (output).

The si ze of a TS page buffer is:

255 Data Words
2 Buffer pointers
6 Index Block parameters

@ Size of Index Block (only 76 words ore IJsed)

391 Words per buffer

Although only the disc files require an index block, every
device that requires a TS page buffer is assigned a 391
word buffer.

Disc

• o

2

3

4

5

6

7

10

17

20

27
30

37

s 0

FD user
number
400-477
F D user
number
500-577
FD user
number
600-677
FD user
number
700-777

FD user
number
1000-1071

FD
overflow
1100-1171

FD
overflow
1200-1277

FD
overflow
1300-1377

FD user

number

1400-

2377

FD user

number

2400-

3377

FD user

number

3400-

4377

Arm positions
1 2 11

FD user
number
1-77
FD user
number
100-177
FD user
number
200-277
FD user User
number fi Ie
300-377 _ storage .
UAD
(Acet.nos.
cu - 0)

UAD
(Acet.nos.
P - Z)

Account-
ing

Letters

I+-Disc bit map area for 8 or 16 discs-+

I+-Disc bit map area for--.l
I 24 or 32 discs I

12 122 411 51 52 61
I I I
I
I
I
I
I User

file

I
storage - . - .

I
I
1

1

I
I
I I

T

I I
I I
I I
I I

I
T

I
I
I

I I
I I

I I
I I
I I
I 1

Figure 13. Typical Disc Layout

System area

62 63

~ Saved CRASH -

Monitor 1

f-- -

Exec 1

Monitor 2

~ -

Exec 2

Monitor 3

f-- -
Exec 3

Reserved

for

systems

work

Reserved

for

systems

work

Reserved

for

systems

work

o

2

3

4

5

6

7

10

17
20

27
30

37

Fi Ie Buffers 27

Sector in one posi tion

r o]
Physical] Logickal 'I

. trae;
disc pair I

] Sector]

o 5 6 10 11 16 17 18 19 23

where

Physical disc Bits 6-10 specify one of the 32 possible discs in the file unit.

Logical track pair Bits 11-18 specify one of the 256 track pairs on the disc. A track pair consists of one outer and
one inner track.

Bits 11-16 specify one of the 64 positions of the access arm.

Bits 17-18 specify one of four logical pairs that can be accessed without moving the arm.

Sector Bits 19-23 specify one of the 32 sectors in each logical track pair. Two disc revolutions are required to
access the 32 sectors on one logical track pair.

Bits 17-23 specify the 128 sectors that can be accessed without moving the arm. Eight disc revolutions are required
to access the entire sector string from one arm position.

User Account
Directory

User name is asso­
ciated with a user
number Via

User
Num­
ber

Figure 14. Disc Address Word

File Directory

I AI versus Index
Block Pointer

/B/ versus Index
Block Pointer

Via
Index
Block
Pointer

Via
Index
Block
Pointer

-

Index Block
for File IAI

DA Data Block 1

DA Data Block 2

Index Block
for File IBI

DA Data Block 1

DA Data Block 2

DA = Disc Address

..

-

-

IAI, IBI represent the names
given to a user's files

Note: See Appendix C for format of UAD and FD. See Figure 16 for Index Block format.

Figure 15. Flow Required to Access a Disc File

28 File Buffers

Data Block 1
255 Words

Data Block 2
255 Words

Data Block 1
255 Words

Data Block 2
255 Words

Layout of Data Block and Pointers

BUFF Pointer to first relevant data word of buffer

0 I: I~I~I Pointer to last relevant data word of buffer

Fi rst data word

BUFF + 256 255th da ta word

o 56789 23
Layout of Index Block Buffer and Associated Pointers for a Disc Fi Ie

BUFF + 257 = BIN Number of words in the record

BIC I ndex changed flag

BDN Number of the data block in buffer

BDC Data changed flag

BIP Pointer to index block entry for current data block

BIA Disc address of current index block

BXO First index block word

OIOI~1 Disc address

121st index block word

Check sum

where o 1 2 3 23

Check sum Currently not used.

BIN When a disc data block is written, 256 words are output. The 256th word (contents of BIN) specify the
number of words in the record.

BIC Initialized to -1. Incremented by an output operation to indicate that the index block must be output
when the file is closed.

BDN Initialized to -1. Currently not used.

BDC Initial ized to -1. Incremented by an output operation to indicate that the data block must be output to
the disc.

BIP Contains BUFF + N where BUFF is the TS buffer address and N points to the entry in the index block that
is being used.

BIA Storage for the disc address of the index block that is currently being used.

ERR, EOF, EOR Flags that are set by the device drivers, indicating error, end-of-file, and end-of-record,
respectively. These flags are checked by the GPW (Get/Put Word) routine.

BXO Beginning of Index Block. All disc addresses are Mod 4.

Figure 16. Fi ie Buffer

F i I e Buffers 29

DEVICES

Every input/output device attached to the system has a
device number. The numbers assigned to specific devices
are given in Table 3. The various tables indexed by device
number are described in this section. See Figure 17. The
entries in these tables are specified by assembly parameters.

The maior parameters of a device are:

1. the opening routine, which is responsible for the opera­
tion needed to attach it to a fi Ie.

2. the GPW routine, which performs character and word

I/O.

3. the BIO routine, -M1 ich performs block I/O.

4. the SEL routines, which perform the physical device

I/O.

The minor parameters are:

1. maximum legal unit number.

2. physical record size (determining the proper setting of
buffer pointers and interface control words for the
channel), and the expected time for an operation.

Table 3. Devi ce Numbers

Device Number

Paper Tape Input 1

Paper Tape Output 2

BCD Tape Input 3

Magnetic Tape Input 4

Magnetic Tape Output 5

Hollerith Card Output 6

Binary Card Output 7

BCD Tape Output 10

High Speed Printer Output 11

Hollerith Card Input 12

Binary Card Input 13

When a file is opened, the device number is specified. The
device number is used to index into the device tables. The
device-dependent parameters are abstracted from the device

30 System Data on Outer Arm Position of Disc

tables and stored in the file control block (see Figure 18).
Every open file in the system has a file control block asso­
ciated with it.

Figure 17 shows tables indexed by device number. The DEV
table specifies various characteristics of the device and the
address of the entry point into the GPW (Get/Put Word)
routine. This routine is used by the CIO, WIO, and BIO
SYSPOPs. On the input path the GPW routine wi II take a
word from the buffer in the TS page and place it in the A
register. When the buffer becomes empty it wi II call the
device driver (whose address is specified in SEL) and read
the record size (specified in BUFS) into the TS page buffer.
The opposite flow is taken for the output path. Word 0 of
the DEV table contains the FD word (see Figure 18) of the
currently active fi Ie.

The DIU table will contain an entry of -1 if the device is
not in use. If the device is in use it will contain the file
number of the file using the device. The disc will never
have a meaningful entry in this table since it can be accessed
by more than one user at one time. For magnetic tape it is
not sufficient to indicate whether the "device" is busy since
there may be several magnetic tape units. Therefore, the
DIU entry for magnetic tape points to another array named
ADIU. ADIU is indexed by tape unit number and contains
the same information (-lor file number) for each tape unit.

The address portion of the OPNDEV table contains the
addresses of the routines that are called by BRS 1 to open a
particular device. Bits 3-8 of this table contain the maxi­
mum amount of time (in 60 HZ clock ticks) that should occur
once this device has started. Any routine that initiates
action at a device will extract these bits and store them
right justified into FTIME. The clock interrupt will decre­
ment FTIME; if it becomes negative, action is taken to try
to correct the fault. Once an interrupt from an I/O device
is received, FTIME is set positive (37777777B).

SYSTEM DATA ON OUTER ARM POSITION OF DISC

Arm positions 62 and 63 contain systems which are loaded
by a utility routine named DSWAP. This routine dumps the
first 32K of core on discs 0 and 1, then reads a nevI system
into the first 16K of core. The disc from 'llhich the new
system is read is determined by console switch settings.

Arm positions 0 and 1 contain the file directories, account­
ing information and data.

BRS'S FOR DIRECT DISC ACCESS

There are four BRSs available to system level forks to read
and write the system data on the disc. These are: BRS BE-1,
BRS BE+2, BRS BE+9, and BRS BE,10. They require the core
address in A and the disc address in B. In addition, BRS
BE+ 1 and BRS BE+2 require the word count in X. BRS BE-9
and BRS BE+10 alvv'oys read or \.vrite a page (2K) from or to

the disc.

DEV word

BUFS

Buffer size

BDEV

Block I/O
Routine

DIU
device in

use

OPNDEV
Opening
Routine

SEL

GPW routine

o 2 3 4 5 6 7 8 9 10 23

CH a character oriented device. The WIO and BIO POPs cannot be used to

access this device.

DSC indicates the device is the disc. This bit determines whether to relabel
in the WPAGE or DISC files into page 6 of the Monitor's relabeling.

BF device uses one of the buffers in the TS page. Presently all devices have

this bit set.

WD W buffer device. Presently this bit is not used.

OUT Output device.

o 0 N Max unit U Physical record size

C number

o 1 2 3 8 9 10 23

NC not common. Most devices can be accessed by only one file at a time.
This is not true of the disc. This bit is set for the disc.

Unit the maximum unit number. Applies to multi-unit devices (such as mag­
netic tape). Presently magnetic tape units 0 and 1 are used.

U indicates this is a multi-unit device such as magnetic tape.

H o Entry into BIO routine

0 9 10 23

File number using this device or -1 U o

Point to ADIU (has unit number added) if multi-unit device U
~------------~--------------~------~~~~~--~
o 23

Expected
o 0 E wait time 0 Opening subroutine

0 in cycles

o 1 2 3 8 9 10 23

EO Executive only allowed to open

Test Device driver address

o 1 2 3 8 9 10 23

CS check user's status

Figure 17. Tables Indexed by Device Number

System Data on Outer Arm Position of Disc 31

10. SEQUENTIAL FILES

FILE NUMBERS

The term II fi Ie II refers to:

1. Adisc file (i.e., a collection of data that has been
named and output to the disc in blocks of 255 words).

2. A magnetic tape fi Ie (i. e., a collection of sequential
blocked records that have been output to magnetic
tape).

3. A physical device.

When a file is opened, the system will return a file number.
The system may have up to 40 fi les opened. The user may
have a maximum of 3 files that require a buffer open, as he
is restricted by the number of available TS page buffers.

The file numbers range between 0 and 39 and are assigned
in a somewhat random manner. As a user opens a fi Ie, he
is assigned a free file number. When the file is closed, the
number is returned to the free file number list which is kept
in the FA table (see file control block).

Once the fi Ie number has been assigned, the user references
the file by that number. Note that the I/O SYSPOPS (CIO,
BIO, WIO) require the file number as an argument.

FILE CONTROL BLOCKS

Every open fi Ie in the system has a fi Ie control block asso­
ciated with it. This block consists of four words shown in
Figure 18.

FA 0 UO First index block address or 0 or subroutine
address or unit number

o 234

o 1 2 3 4 5 6 7 8 9 10

FC
Char.
count Job no. 0

023 8 9 10

FW C
1

o 7 8

U FA contains a free file number.

ERR Error occurred at the device.

BB When action at the device is initiated this

CH

bit is set. When the interrupt occurs this
bit is reset. If a fork is dismissed for I/O,
the PTEST word points to FD. This bit is
examined to determine when to reactivate
this fork.

Character oriented. See CH in DEV table.

Device
o

Disc buffer address or 0

15 16

23

23

23

23

DF Disc file. See DSC in DEV table.

RD Read only.

BP The file is using one of the buffers in the
TS page.

OUT Output file.

Char. count -1 to 2.

Word being packed or unpacked.

Figure 18. Fi Ie Control Block

32 Sequential Fi les

This block is initialized when the file is opened. The file

control block tables are indexed by file number. Note that

the FD entry contains the device nurrber of the physical
device that is attached to the file. The system can use this
number to reference the physical device tables. The entries
in these tables provide the information that is necessary to

completely define the fi Ie.

The FA array contains free fi Ie numbers. The word FF LsT
contains the next free file number. The corresponding entry
in FA wi II contain the next avai lable fi I e number or a if
there are no free files. The free file list is initialized in
TTysET. When a file is in use, FA will contain the disc
address of the index block for a disc file or the magnetic
tape logical unit number for a magnetic tape file. FA is
not used for any other device.

The FC array contains the address of the Ts page buffer
that is being used by this file and the job number of the
user. The job number is set to 77B for a permanently opened
file. The character count has significance if the CIO is
being used to access a word-oriented device. On the input
path, CIO wi II fetch a word from the buffer, store it into
the FW array, and return a character to the calling program.
Subsequent CIO calls will retrieve a character from FW.
When all of the characters in FW have been sent, the next
CIO call will again fetch a word from the buffer. The
opposite flow occurs on the output path. The character
count in the FC word has the following significance:

Bi t
Confi guration Input

111

001

000

010

001

000

111

There are no characters in FW.
Call GPW to get a word.

There are 2 characters in FW.

There is 1 character in FW.

Output

There are no characters in FW.

There is 1 character in FW.

There are 2 characters in FW.

There are 3 characters in FW.
Ca II GPW and place the FW word into the
buffer and place this character into FW.

OPENING AND CLOSING FILES

In order to manipulate a file, it must first be opened. The
BRs 1 is used to open files. If the file is opened successfully,
the BRs skips. Use of this BRs is restricted to users with
system status. User programs may access files only through
the Executive.

Opening a file accomplishes the following:

1. A file number is assigned.

2. An available Ts page buffer is dedicated to this file.

3. The buffer pointers are initialized.

4. Where applicable, a check is made to determine if the

device is already in use.

5. A call is made to the opening routine that is associated

with this device. See OPNDEV table.

6. The file control block is initialized.

The operations performed by 'the device opening routines
depend on the complexity of the device. For many devices,

the routine simply issues a device ready test. The disc open­
ing routine must obtain and initialize the index block for

the file.

A file must be closed when its processing has been com­

pleted. This is accomplished by executing a BRs 2 with the
file number in the A register. BRs 2 is available to both
user and Executive programs. To close all his open files,
the user may execute a BRs 17. Closing the file releases
it for other uses. The fi Ie number and the buffer are also

released.

ACCESSING THE TELETYPE AS A FILE

The teletype can be a accessed by using the CIO sysPOP.
However, the teletypes do not require a Ts page buffer.
Each teletype on the system has a dedicated buffer which
is core resident. Chapter 8 describes the teletype buffers.
When the teletype is accessed as a file, it does not have
to be opened since the teletype is a permanently opened
fi Ie.

PERMANENTLY OPEN FILES

The system has the following bui It-in sequential fi les with
fixed fi I e numbers:

a controlling teletype input

control I ing teletype output

2 nothing (discard all output)

1000+ n input from teletype n

2000 + n output to tel etype n

SEQUENTIAL DISC FILES

A sequential file has a structure very similar to that of an
ordinary magnetic-tape file. It consists of a sequence of
logical records of arbitrary length and number. Disc sequen­
tial files, are however, considerably more flexible than cor­
responding files on tape, because logical records may be

inserted and deleted in mbitrmj positions and incremed ar
decreased in length.

Opening and Closing Files/Character Buffers/Permanently Open Files/Sequential Disc Files 33

A sequential disc file may be opened by the following
sequence of instructions:

LDX device number, 8 (input) or 9 (output)

LDA Address of the index block (mod 4) t

BRS

If a new output file is being opened, the A register should
be 0 since an index block does not exist.

If BRS fails to skip, it returns in A the following:

-1 Device already in use. For the disc, produced by
an attempt to open a file for output twice.

-2 too many files open - no file control blocks or
no buffers available.

-3 no disc space left. This inhibits opening of output
files only.

BRS 1 returns the file number in the A register and the disc
accress (mod 4) of the index block in the X register.

A file that is open for output cannot be opened again for
either input or output and a file that is open for input can­
not be opened for output. However, a fi Ie may be opened
for input any number of times.

The disc opening routine will read the index block into the
buffer and initialize the index block pointers. If this is a
new fi Ie, the disc bi t map wi II be checked and an avai lable
space for the index block is obtained and the index block
area (BXO and follolNi ng) in the buffer wi II be reset to O.

When the first I/O SYSPOP is encountered on the input
path, the index block wi II be referenced and the data
block read. The 256th word read will cause the next data
block to be read. This process is continued until an index
block entry of 0 is obtained (i. e., all of the data blocks
have been read). The EOF or EOR flags will be set in the
second word of the buffer.

When a file that already exists is used for output, the first
attempt to write the data block wi II cause all of the old
data blocks, as specified in the index block, to be released
to the bit map. An available disc block will be obtained,
the data block written, and the address of the data block
will be stored into the first index block entry. Another
disc block is also obtained in preparation for the next data
block write. This disc address is stored into the next posi­
tion (obtained by incrementing BIP) of the index block.

Subsequent requests to write the data block will use the
disc address that is pointed to by BIP, increment BIP, and
obtain another available disc block. This process will con­
tinue until the index block is full or the file is closed.

tmod 4 means the lowest 4 bits are truncated, mod 5, the
lowest 5 bits, etc.

34 I/O SYSPOPS

If a new output file is being written the path is similar to
the one described above except that there is no need to

release the old data blocks.

When an output file is closed, the remaining words in the
buffer are written on the disc. The EOF flag is set in the
index block entry that points to the last data block. The
index block is then sent to the disc. The disc address of the
index block was stored in BIA when the fi Ie was opened.

I/O SYSPOPS

Three kinds of input/output may be done with sequential
fi les. They are: character input/output (CIO), word input/
output (WIO) and block input/output (BIO). Each of these
SYSPOPS can perform input or output since the fi Ie must be
specified as an input or an output file when it is opened.

To input a single character to the A register or output it
from the A register, the instruction

CIO file number

is executed. During input, an end of record will set bits 0
and 8; an end of file condition will set bits 0 and 7 in the
file number. These are called flag bits. An end of record
will return a 134B character; an end of file, a 137B char­
acter. If interrupt 4 is armed, it will occur. The end of
record condition occurs on the next input operation after
the last character has been input. The end of file condition
occurs on the next operation after the end of file, which
signals the last record of the file. The user may generate
an end of record while writing a file using the control oper­
ation to be described. An error condition sets bits 0 and 6
in the file number.

To input a word to the A register or output it from the A
reg ister,

WIO fi Ie number

is executed. An end of file condition returns a word of three
137 characters. Mixing word and character operations is not
recommended.

To input a block of words to memory or output them from
memory, the instructions

LDX fi rst word address

LDA number of words

BIO file number

should be executed. The contents of A, B and X will be
destroyed. The A register at the end of the operation con­
tains the first memory location not read into or out of.

If the operation causes any of the flag bits to be set, it is
terminated at that point and the instruction fails to skip. If
the operation is completed successfully it skips. Note that
o BIO cannot set both the EO R and the EOF bi ts.

The flag bi ts of the fi Ie number are set by the system
whenever end-of-record (0 and 8) or end-of-file (0 and 7)
is encountered and cleared on any input/output operation
in which neither of these conditions occurs. Bit 0 is set on
any unusual condition. In the case of a BIO the A register
at the end of the operation indicates the first memory loca­
tion not read into or out of. For any input operation, the
end of record bit (bit 8) of the file number may be set. An
output operation never sets either of these bits. Bits 0 and
6 of the file number may be set on an error condition.
Whenever any flag bit is set as a result of an input/output
operation in a fork, interrupt 4 will occur if armed.

A program may delete all the information in a disc fi Ie by
executing the instructions:

LDA fi Ie number

BRS 66

Putting the fi Ie number of a sequential fi Ie in A and exe­
cuting BRS 113 will cause the file to be scanned to find the
total number of data words. The number of data words is
added to X.

A new disc fi Ie with a new index block can be created by
BRS 1 with an index block number of 0 in A. The file num­
ber is returned in A and the index block number in X. The
read-only bit may be set (bit 0 of A) and

BRS 67

returns the index block with address to available storage in
A. An executive fork may read an index block into core
with

BRS 87

which obtains the address of the block from A, and X will
contain the address of the first word in core into which the
block is to be read.

OTHER SEQUENTIAL FILES

In addition to disc sequential fi les, the user has other kinds
of sequential files available to him. These are all opened
with BRS 1:

LDX dev i ce number

lDB RECl (BCD tape output only)

lDA unit number

BRS

RECl is positive for 80 characters and negative for 132
characters.

The device number is put into X. The unit number, if any,
is put into A. The file number for the resultinq open
file is returned in A. If BRS 1 fails, it return~ a~ error

condition in A. Three error conditions apply to magnetic
tape only:

o Tape not ready

Tape file protected (output only)

2 Tape reserved

BRS 1 is inverted by BRS 110, which takes a file number in
A and returns the corresponding device number in X and
unit number in A.

These files may also be closed and read or written in the
same manner as sequential disc files. The magnetic tape
is not available to the user as a physical device.

CTRL = 1 (end of record)

is avai lable for physical sequential fi les 2, 5 and 10 (paper
tape and magnetic tape output). Other controls available
for magnetic tape files only are listed in Table 4.

Table 4. File Control for Magnetic Tape

Operational
Control Magneti c Tape Fi Ie Control
No.

2 Backspace block

3 Forward space fi Ie

4 Backspace fi Ie

5 \/Ilrite three inches blank tape

6 Rewind

7 Write end of file

8 Erase long gap

These controls may be executed only by Executive tape
programs.

An Executive program may allocate a tape unit to itself by
putting the unit number in A and executing BRS 118, which
skips if the tape is not attached to some other job. BRS 119
releases such a tape.

The format for magnetic tape (devices 4 and 5) is shown in
Figure 19. Note that the records are 200 words in length.
For compatabi lity with earlier versions of the system, mag­

netic tapes (devices 4, 5) have three dummy records after
the load poi nt. The records are placed on the tape by the
operotor's NEWTAPE program.

The format for BCDTAPES (devices 3 and 10) is ~h()wn in
Figure 20.

Other Sequential Fi les 35

~ 200 words -.. ..-200 words ----I.~ End of Tape

F 1 1
P P (P

T 199 word dummy P N 199 word data
P E X word

3 feet E 199 word dummy E
E W E N data 3 3 E Filler -1

P data block block of gap 0 data word block 0
R R W block R

N 7 7 F F

FTPN Tape file position number (e. g., the fifth physical file on the tape will have FTPN=5). Note that the first
record of every fi Ie contains FTPN as the first word and 199 dummy words.

PER Physical end of record.

NW First word of a record contains the number of words in the record.

ENW Same format as NW only bit a is set to indicate this is the last record of the file. The last record contains
X words of data. The remainder of the record is padded with 137B characters.

PEOF Physical end of file.

Fill er A record (0.5% of the original file length) of 137B characters.

Allowance for expansion of the fi Ie. 3 Feet Gap

End of Tape The last fi Ie on the tape is followed by a dummy record with NW = -1.

Figure 19. Format for Magnetic Tape Files

P P
Record E Record E

R R

P
P P

Record E
E E
0 0

R
F F

PER Physical end of record.

PEOF Physi cal end of fi Ie. The last fi Ie on the tape is followed by two PEOFs.

Record Length 3 to 132 characters for input and 80 or 132 characters for output.

NOTE: 79, 80, or 81 character lengths will be assumed to be 80 character transformations (card images).

Figure 20. Format of BCD Magnetic Tape

It is possible for magnetic tape and card reader files to set
the error bit in the file number. The first I/O instruction
after an error condition will read the first word of the next
record; the remainder of the record causing the error is
ignored. The magnetic tape routines take the usual cor­
rective procedures (i. e., reread or rewrite) when they see
hardware error flags, and the routines signal errors to the
program only as a last resort.

In order to make the card reader and BCDTAPE look more
like other fi les in the system, the followi ng transformations
are made by the system on card input:

1
I. t·Aore than two blanks are converted to a 135 character

followed by a character giving the number of blanks.
The teletype output routines wi II decode this sequence
correctly.

2. Trailing blanks are not transmitted to the program.

36 Other Sequential Fi les

3. The character 155 (carriage return) is added to the end
of each transformation.

The result of this configuration is that the string of charac­
ters obtained by reading in a card deck or a BCDTAPE file
may be output without change to a teletype and will resu It
in a correct listing of the deck.

Whenever a card reader error (feed check or validity check)
occurs, the program is dismissed until the reader is ready.

The EOF light is sensed as an end of file at all times.

Because of critical timing requirements, the card punch
should be operated when there is but one user in the system,
i. e., the operator.

Because of the interactive nature of the system peripherals,
device speeds wi II decrease as the number of users in the
system increases.

11. SUBROUTINE FILES

In addition to the previously mentioned operations for
performing input-output through physical files, a facility is
provided within the system for making a subroutine call
appear to be an input-output request. This faci I ity makes
it possible to write a program which does input-output from
a file which causes further processing to be performed before

the actual input-output is done. This is accomplished by
simply changing the file from a physical to a subroutine
file. A subroutine file is opened by executing the
instructions:

LDX parameter word

BRS

The instruction never skips. The operation code fi eld of the
parameter word indicates the characteristics of the file. It
may be one of the following:

110 00000 (octal) Character input subroutine

111 00000 (octal) Character output subroutine

a 1 a 00000 (octa I) Word input subrouti ne

all 00000 (octal) Word output subroutine

I/O to the fi Ie may be done with cia or WIO, regard less
of whether it is a word-oriented or a character-oriented
subroutine. The system wi II take care of necessary pack­
ing and unpacking of characters. BIO is also acceptable.

The opening of a subroutine file simply creates a file
control block and returns a file number in the A register.

When an I/O operation on the fi Ie is performed, the sub-
routine is called. This is done by simulating an S B RM to
the location given in the word following the BRS 1 which
opened the fi Ie. The contents of the B and X registers

are transmitted from the I/OS Y S PO P to the subroutine
unchanged. The contents of the A register may be changed

by the packing and unpacking operations necessary to
convert from character - oriented to word - oriented opera­
tions or vice versa. The I/O subroutine may do an arbi­
trary amount of computation and may calion any number
of other I/O devices or other I/O subroutines. A sub-
routine file should not call itself recursively.

When the subroutine is ready to return, it executes BRS 41.
This operation replaces the SBRR which would normally be
used to return from a subroutine call. The contents of B
and X when the BRS 41 is executed are transmitted unchanged
back to the call ing program. The contents of A may be
altered by packing and unpacking operations. A subroutine
file is closed with a BRS 2.

In order to implement BRS 41, it is necessary to know which

I/O subroutine is open. This information is kept in 6 bits
of the PAC table. These 6 bits are transferred into the
operation code field of the return address when an I/O
subroutine is called, and are retrieved when the BRS 41 is
executed.

12. EXECUTIVE TREATMENT OF FILES

GENERAL DESCRIPTION

The user's sole access to files is through the Executive. The
Executive provides a connection between a symbol ic name
for a fi Ie created by the user, and the fi I e numbers the user
must have to execute input/output operations. This con­
nection is established through the file directory. Supple­
mentary to thi s function is the need to prevent the user from
damaging or destroying other users' files.

The first part of this section describes the file naming sys­
tem as it appears to the userj the second part describes the
Executive tables that implement various features.

A user may give his files arbitrary names containing any
characters other than' or /, because the names of disc files

must be surrounded by /, and the names of tape fi les by '.

When a user types a file name not enclosed within slashes or
quotes, he need only type enough characters of the name to
uniquely define it. If the user starts an output file nome with
a quote or slash, he must type the entire name. If it is an
output file name and not already in his file directory, a new
file will be created. In any other context, a name not in
the file directory is in error.

When an output file name is being typed, the system, after
determ i ni ng t he name, wi II type out either OLD FILE or
NEW FILE and await a confirmation that the name has been
given correctly. If the user types either a line feed or a
carriage return, the name wi II be regarded as correct. Any
other character will be regarded as an indication that the
name was incorrect. This procedure is designed to make it
more difficult for the user to destroy old files or create new
ones i nadvertentl y.

Subroutine Files/Executive Treatment of Files 37

When a user gives a new (slashed) output fi Ie name to the
system, this creates a new entry in the fi Ie directory and a
new index block on the disc.

The user is allowed to reference files belonging to other
users if the file name to be referenced contains at least one
control character or an (0). He does this by typing that user's
account number and name, enclosed in parentheses, before
the file name. Thus, to get at file/:a) PROGRAM/belong­
ing to user JONES, he types

(A 1JONES)/uPROGRAM/

In this way Jones can control the extent to which other
users access his files.

Files in a public file directory may be accessed by typing the
fi I e name in quotes

"PROGRAM".

It is possible for a user to rename his files by typing for
example

RENAME /PROGRAM/ AS /ROUTINE/

The rename logic protects the user against creating file names
that conflict with existing file names or with the file type.

PHYSICAL DEVICES

Some of the physical devices can be accessed as files. There
are six file names built into the system:

BDCTAPE }

~:;:RS TAPE

PRINTER

the user must have peripheral
status to use these files

Available to all users

These names may be used at any time. If the device
referred to is not available because it is attached to some
other user, a suitable error message will be generated.
Paper tape output fi I es opened by giv ing th is name to the
Executive will have the type of the file punched as the first
word. Similarly, paper tape input files opened by giving
this name to the Executive wi II read the first word as the
file type.

There are four standard fi I e types:

1. File written by Executive save command (sequential)

2. Generai binary file (sequential)

3. Symbol ic fi Ie (sequential)

4. Dump file (sequential)

38 Physical Devices/String Pointers/Theory of Hashing

STRING POINTERS

Many of the BRSs that deal with file manipulation require
string pointers as arguments. A string pointer is a character
address found by multiplying the word address by three and
adding 0, 1, or 2. The string pointer P1 points to the char­
acter before the beginning of the file name. The pointer
P2 points to the last character of the name.

TAP assembles string pointers as follows for string pointers

P1 and P2:

P1 DATA (R) Z-l

P2 DATA (R) Z+2

Z ASC '/T/'

Suppose that Z was at location 1000B. Then P1 wou Id have
the value 2777B and P2 would equal 3002B. See "Special
Relocation" section of TAP reference manual for discussion
of (R) in the DATA operators above.

THEORY OF HASHING

"Hashing" is a technique of having the system assigna ''num­
ber" to a character string to avoid the need for a character­
by-character search through an enti re I ist of character strings.
This number is calculated by adding the number of characters
in the string and the ASCII code for the first and last three
characters, and dividing the sum by a constant. This algor­
ithm associates a number with a character string, and the
information assoc iated with the string can now be fi led In

a table indexed by the" hash number".

The number wi II not be unique. There are three words of
data associated with each hash table entry. After a user's
file directory has been read from the disc, the pertinent
information can be abstracted from the file directory and
stored into the hash table. If two strings produce the same
hash number (HN), the second entry is placed in the first
avai lable space preceding the calculated hash number (lower
numbered core location). All unused hash tabl e locations
contain O.

Assume the following hash numbers for a user's files:

File Name Hash Number

SMITHJ M

SMITHM N

FILANAM p

FILBNAM p

If FILANAM is inserted before FILBNAM, the hash table will
have the format shown in Figure 21.

The first two of the three data words contain string pointers
to where the character string for the file name is stored.

TABLE

Unused

TABLE + N

~---------
SMITHM

I-- ---------

Unused

FILBNAM

TABLE+P

.. FILANAM

Unused

TABLE+M

SMITH

} Unused

Figure21. HashTable

The third is the "hash value word" which is a data word
pertaining to the particular entry. When the system wishes
to retrieve file information, it must be able to verify that it
has found the correct fi Ie.

The system can retrieve information about a specific fi Ie by:

I. calculating the hash numberi

2. verifying that the string names match, or if not, search­
ing the table backward and cycling around until all the
entries have been searched; and

3. returning, if successful, the \Nord address of T.A.BLE+Ht'J
in the B regi ster.

If the search is successful, the following coding will retrieve

the three data words associated with the fi Ie:

CBX

LDA 0,2 First Data Word

LDA 1,2 Second Data Word

LDA 2,2 Th.ird Data Word

940 HASHING ALGORITHM

WI -I c 1 c 2 c c 1- First 3 characters of the string

W2 - 0 -Last 3 characters of the string

N Number of characters in the string

L Length {number of words} in the hash tabl e

[] Integer divide (ignore remainder)

x = 8*N + Wl
0

_
l1

+ Wl
12

_
23

+ W2
0

_
l1

t W2
l1

_
23

y = [fJ = Quotient + R (remainder)

HN = ~ * 3
L

R is some value between 0 and L-l. HN is an even multiple
of 3 since the hash table is grouped by three.

If the character string contains 3 characters or less, the
algorithm is slightly different. The missing characters in WI
and W2 are effectively reset to O.

THE HASHING TABLE

There are three hashing tables used by the 940 software: the
fi Ie directory, the commands, and the subsystem-names hash
tables.

A hashing table consists of four distinct parts (see Figure 22,
hashing tables for the file directory):

l. Control table - contains pointers into the other parts of
the table.

2. Hash table - contains string pointer into the string stor­
age area and other information pertinent to the entry.

3. Corresponding table - indexed parallel to the hash table.
It contains three words of additional information per­
taining to the entry. The commands hashing does not
require a corresponding table.

4. String storage - stores the character string for each
entry. The hash table entry contains pointers into
this area.

940 Hashing Algorithm/The Hashing Table 39

The four parts of the table need not occupy contiguous core
locations.

FDCTl

FDCTll

FDCTl2

FDCTlC

FDCTlE

FDHT
~

SZH

,
FDHT
+ SZH

FDSS

Word Addr-Begin Hash
Table

Word Addr-End Hash Table

Working Cell
Control

Table

Char. Addr-Current Ptr.
into FDSS

Char. Addr-End of FDSS
storage

Hash Tabl e

48 Entries

3 words/entry

144 words

Corresponding Tabie

144 words

String Storage

120 words

Figure 22. File Directory Hash Table

FILE DIRECTORY HASH TABLE

When a user logs on, his file directory is read in from the
disc. This file directory is then stored in a hash table in
the user's TS page. Figure 23 shows the format for the
3-word hash-table entries for magnetic tape, physical device
and disc files. The three words consist of information
abstracted from the file directory and pointers (character
addresses) to the string storage table (FDSS). As an entry is
inserted into the hash table (into FDHT+HN, where HN is
the hash number), the character string (ASCII fi Ie name) is
stored into FDSS in the character address pointed to by
FDCTLC. Therefore, the file names are put into FDSS chron­
ologically. FDCTLC must then be updated by the number of
characters in the file name. Word 0 of the hash table entry
contains the pointer (character address) into FDSS to the
beginning of the character string. Word 1 contains the
pointer to the end of the string. Word 2 of the hash table
entry for ~ hash table is referred to as the" hash value
word". Note that for disc file the hash value is the index
block pointer.

When the user's file directory hash table is created, the
names of the physical devices that can be accessed as files
are always inserted into the table. Note the hash table
entry for a physical device.

FILE DIRECTORY CORRESPONDING TABLF

Three more data words, called the corresponding table entry
and also indexed by hash number, are associated with every
fi Ie. These three words consist of data abstracted from the
file directory for storage in FDHT+SZH+HN and following,
where SZH is the difference between the beginning of the
hash table and the beginning of the corresponding table.

The creation date of the file is set to the current data each
time IT IS opened as an oUtpuT Tile. The field "1'-l0. of
Accesses" is incremented each time the file is opened for
input or output.

BRS 5 AND 6

BRS 5 is used for two ope rat ions:

1. to look up an entry for a particu lar character string
already in the hash table.

2. to find where in the hash table a new character string
should be inserted.

The input for the first operation consists of pointers to the
character string and to the address of the control table of
the hash table that is to be searched. The output is the
address of FDHT+HN (where FDHT is the address of the hash
table) in B, and the value word (i.e., the 3rd word of the
hash table entry) in A.

40 File Directory Hash Table/File Directory Corresponding Table/BRS 5 and 6

Magnetic Tape

CB FT

LTP

HTP 0

o 23 56
Physi cal Device

1 0

0

1 2 3

o 23 56
Disc File

2 FT

0

o 23 56

Pointer

To Fi Ie name

(32K) FS (Value)

8 9

Pointer to

File name (in "FDSS" table)

4 0

8 9 11 12 19 20

Pointer

To File name

Index block pointer

23

DN

23

23

FT File type

L TP Low order tape pos iti on

HTP High order tape position

FS Tape file size

FL

C

File length for disc files

Change in file length

CB File control bits
o = Tape file
2 = Disc fiie

DN Executive device number for the six built­
in fi I es

Corresponding Table Entry

C 0 FL

Creation date
o Account No. No. of accesses

1 Month Day

CB FT LTP Future controls

o 23 56 8 9 11 12 14 15 17 18 23

Figure 23. Hash Table Entry and Corresponding Table Entry for File Directory

File Directory Hash Table/File Directory Corresponding Table/BRS 5 and 6 41

Example:

Get the index block pointer for a disc file named /JOHN/.
Also, increment the number of accesses which is stored in
the 3rd word of the corresponding table.

NAME ASC '/JOHN/ '

PTRB DATA (R) NAME-1

PTRE DATA (R) NAME+5

LDA PTRB
LDB PTRE
LDX =FDCTL Address of control

table for File Direc-
tory Hash table

BRS 5
BRU BAD String not in table
STA IBP Value word is index

block ptr.
CBX
LDA SZH+ 1,2 Get 2nd word of

corresponding table.
CLB
LRSH 9
ADD =1
LSH 9
STA SZH+ 1,2

For the second operation - to find where in the hash table
a new character string should be inserted - the BRS 5 will
perform the hashing algorithm on the string and get a hash
number. If the entry is already in use, the hash table will
be searched backward until an available slot is found. The
value FDHT+HN (address for insertion into the hash table)
wi II be stored into the thi rd word (worki ng ce II) of the hash
control table. If there are no available entries in the hash

I I 1.1 I· II -II I· , raOle, rne worKing cell Will conraln - I. 01\.) 0 IS usea ro
insert the string pointers into words 0 and 1 of the hash
table once BRS 5 has determined where the hash table
entry should be placed. The BRS 6 does not move the
string into FDSS.

Example:

Insert a new file name into a hash table. Refer to Figure 21.

NAME ASC '/NEW/ '
PTRB DATA (R) NEW-1
PTRE DATA (R) NEW+4

LDP PTRB
LDX =FDCTL
BRS 5
BRU 5+2
BRU BAD Name shou Id not be

in table.

42 Commands Hash Table

SKN
BRU
BRU
BRS
CBX
BRM

LDP
LDX

BRM

LDA
ADD

STA

FDCTL2

$+2
BAD

6

XPHT

PTRB
FDCTLC

INSERT

FDCTLC

=5
FDCTLC

Worki ng ce II :-: -1 ?

Hash table is full

Make entry

This routine inserts

words into the hash
and corresponding

tables.

FDCTLC poi nts to
next avai lable space

in FDSS
This subroutine wi II
insert the character

string into FDSS

Update pointer since

5 charac ters in

/NEW/

COMMANDS HASH TABLE

The entry for the Commands Hash Table is shown in Figure 24.

Word 0

Word 1

Word 2

o 1 2 3 4

A Command requires system status

B Command requ i res operator status or above

C Command requires subsystem status

D Command requires a carriage return confirmation

Address The virtual address of the routine that pro-
cesses this request (command)

Figure 24. Commands Hash Tobie Entry

The commands and subsystem hashing tables are initialized
after the Executive has been assembled. This is accompl ished
by loading the new version of the Executive and also load­
ing a file called INTLE. The INTLE file includes a routine
named SYSIN and two arrays named CIT and SIT which con­
tain the information necessary to form the commands and sub­
systems hashing tables. The SYSIN routine uses the BRS 5
and 6 to insert the information provided by the CIT and SIT
arrays into hashing tables which are in the Executive.

A macro named IT is used to generate the CIT array. A
macro named S USIT forms the S IT array.

IT forms the ASCII stri ng for each command, fo Ilowed by
several data words. The exact number of data words formed
depends on the number of parameters in the macro call.
Presently, there are at most 2 arguments which will produce
2 data words.

The IT macro provides the following data words for each
command:

Word 0 to The internal ASCII command name
Word N a/

HoJalclDI 1 st Data Address
Word

0 1 2 3 4 5 23

2nd Data 0
Word

0 23

See Figure 24 for descri ption of 1 st Data Word.

Note that bit 9 of the 2nd data word is O. This indicates
that there are no data words generated for the SYSIN rou­
tine to insert into the corresponding table.

SUBSYSTEM HASH AND CORRESPONDING TABLE

The Subsystem Hash Table and Corresponding Table entries
are shown in Figure 25.

Hash Table Entry:

Word 0 v I Begin String Pointer I
o 5 6 23

Word 1 LS End String Pointer

0 5 6 23

Word 2 IEIUIC CL RA HS

o 1 2 3 89 15 16 23

Corresponding Table Entry (Non-reentrant Subsystems)

Word 0 LOS

o 5 6 9 10 23

Finllrp?I) C;1,h<:\Idpm Hn<:h Tnhlp nnrl - -;;:J--- --. ----,-.- _- ... _-.- _ .. -
Corresponding Table Entries

Word 1 o

o

Word 2 RSW

o

Corresponding Table Entry (Reentrant Subsystems)

Word 0

o

Word 1

o

Word 2

T

V

o
test bit

version ID

R1

R2

RSW

LS low-order bits of the starting address

HS high-order bits of the starting address

E propagate Executive status

U cannot co-exist with user's memory

C comrnon (reentrant) subsystem

23

23

23

23

23

CL class (must agree with user's control parameters)

RA location on RAD for the subsystem. Appl ies

NP

only to the non-reentrant subsystems, since the
reentrant subsystems have SMT entries.

number of pages for a non-reentrant subsystem

LOS load starting address

RSW relabel ing status word

R 1 first pseudo-relabel ing word

R2 second pseudo-relabel ing word

Figure 25. Subsystem Hash Table and
Corresponding Table Entries (cont.)

The subsystem hash table is in page 1 of CMNDS and is
labe led SYS HT. The correspondi ng table is labe I ed SYSCT,

The SUBIT moc:ro fnrm<, the ASCII string for the name of the
subsystem followed by five data words. Subroutine SYSIN

Subsystem Hash and Corresponding Table 43

inserts the five data words into the hash and corresponding
tables.

The SUBIT macro produces the data words shown in Figure 26
for each subsystem.

USER BRSs FOR FILE MANIPULATION

A program may open a disc file and obtain a file number by
executing BRS 15 and BRS 16 (input) or BRS 18 and BRS 19
(output). BRS 15 and BRS 18 require the file name from the
teletype. If the name is known to the program, BRS 15 and
18 may be replaced by BRS 48. These BRSs are used in the
following way.

LDA fi Ie number

BRS 15 (or BRS 18)

EXCEPTION RETURN

NO RMAL RETURN

The normal return leaves a fi Ie directory pointer, i. e., the
location of the first word of the hash table entry (FDHT + HN)
in A, and BRS 18 leaves the character typed after OLD FILE
or NEW FILE in B. If no character was read, B contains a
-1. The X register is modified.

LDA fi Ie directory pointer

LDX file type (BRS 19 only)

BRS 16 (or BRS 19)

EXCEPTION RETURN

NORMAL RETURN

The normal return leaves a fi Ie number in A, and BRS 16
leaves the file type in B. X is modified.

BRS 48 or 60 may be substituted for BRS 15 or 18. BRS 48
is used if the name is in the file directory and BRS 60 will
create a new name if necessary.

LDP string pointers

BRS 48 or 60

EXCEPTION RETURN

NORMAL RETURN

44 User BRSs for File Manipulation

Word 0
The ASCII name terminated by a / to

Word N
0 23

1 st Data I Elulcl CL RA HS
Word

012 3 8 9 15 16 23

D(5) D(9) D(3) D(4)j 100B

2nd 0 I V III 0 LS

0 5 6 89 10 17 18 23

D(2) D(4)-HS

3rd RSW I
0 D(6) 23

*4th o NP LOS

o 56 910 23
D(8)

4th Rl

o D(7) 23

* 5th o
o 23

5th R2

o D(8) 23

* generated for non-reentrant subsystems

Figure 26. SUBIT Macro Data Words

13. EXECUTIVE COMMANDS RELATED TO FILES

When a user logs on the system, his complete file directory
is read from the disc and placed in the file directory hash
table along with the names of the physical devices. The
"LOGIN" procedure in described in the SDS Terminal Users
Guide.

The following executive commands are related to the user's
file directory and are also described in the SDS Terminal
Users Guide.

1. FILES

2. WRITE FD

3. FD

4. DELETE

5. RENAME

DELETE file is used to delete a file from the directory, and
RENAME is used to change the name of a file inthedirectory.

FILES causes the complete directory to be typed while FD
types only a single entry.

p, dt, s name

Key Tape Files Disc Files

p Tape position Not used
(octal)

d Blank 2

t Fi Ie type F i I e type (1 through 4)
(1 through 4) (1 through 4)

s File size Index block pointer

A colon typed after FD or FILES of the above commands,
will cause the length (in number of words) of a disc file to
be typed outi the format is as follows where I is the length

p, dt, s, I name

Example:

-FD:/DEMO/CR

23, 512/DEMO/

Another feature of the system status typeout is that any con­
trol characters in the file name will be typed out in two
characters; the fi rst character is the ampersand "8.:'. For
example, if the name of the file was /{bell)PROGRAM/,
it would type out the message

23, 12640/&GPROGRAM/

The command "DF" can only be used by users with a special
system status since it can create new file names while bypass­
ing all system protection. The complete file parameters must
be typed as fo" ows

DF file name AS p, dt, s

DF and AS are part of the command and are required for
defining files. The disc file would be written in the follow­

ing way.

DF /file name/ AS 23, 10240

An example of a tape file would be

DF 'fi Ie name' AS 7,3, 10240

The command "WRITE FD II causes the current fi I e di rectory
(as it appears in the file directory hash table) to be written
on the disc. A description of the disc format is given in
Figure 13.

MAGNETIC TAPE

It is possible to read and write files on magnetic tape. The
system will also read and write BCD tapes (with a defined
format). Only users with peripheral status can cause tape
commands to be executed. Normally only one user should
be accessing tapes at any given time and such use should be
restricted to periods of time in which there are not more than
two or three users on the system.

All tape operations use an implied tape drive number of O.
This can be changed to 1 by typing the executive command:

-STN 1 @)

Under no circumstances should the same physical tape reel
be used for recording both BCDTAPE fi les and standard 940
fi les.

BCD TAPE FILES

Each fi Ie is separated by an end of fi Ie (EOF) mark with two
consecutive EOFs as the last recorded data on the reel. Input
or output can begin at load point as file number 1.

For input the system will read multiples of 3 character/word
up to 132 characters. If a record is 79, 80, or 81 charac­
ters long, the system assumes an 80 character record is
desired (card image). If the record is not a multiple of 3
character/word, zeros are appended to the data.

For output! the records are written as either 80 m 132
character/word records.

Executive Commands Related to Fi les 45

The commands associated with BDCTAPE are:

-COpy BCDTAPE TO /FILE/ @)

START AT: N 8

-COpy /FILE/ TO BCDTAPE @)

BDCTAPE Input

N = fi Ie position
The default for
N is the current
tape pos i ti on

BCDT APE output

80 CHAR. REC? (YES/NO) @) Default = 132

START AT: N @) N = number
(Defaul t is cur­
posi tion)

-BCDREW @ Rewinds and positions

to fi Ie 2. This com­
mand shou Id be used
on lyon tapes whi ch
have at I east 2 EOFs

alread~ recorded.

File position is by EOF count only. For standard files, the
software outputs a position word at the beginning of the fi Ie
which indicates the position count. For more information
on BCDTAPE format see Figure 20.

STANDARD MAGNETIC TAPE FILES

To write files on magnetic tape the tape must first be initial­
ized. This is done with the operator's NEWTAPE program.

This program causes the tape on drive 0 to be rewound and

3 dummy fi les wi II be wri tten on the tape. Therefore, the
first meaningful file on the tape wi II have a file position

number of 4.

A disc fi Ie can be placed onto tape by:

-COpy /FILE/ TO 'FILE' €V

Note that the disc fi Ie /FILE/ is not affected by this opera­
tion. There is no confusion between the name /FILE/ and
'FILE' because the slash or prime characters are stored as
a part of the file name in the file directory. The copy oper­
ation will cause an entry to be made in the file directory
for the file 'FILE'.

To copy files from tape to disc, the tape file directory entry
must be in the file directory in use. If the tape file was not
created by the user who wishes to copy it to the disc, (as is
often the case) it wi II not be in the user's fi Ie directory.
Therefore, the operator wi II type:

-OF 'FILE' AS 4,3, 7640 (see p, t, s)

-COpy 'FILE' TO /FILE/

NEW FILE

The choice of names for tape files is completely arbitrary.
No file name identification is carried with the file on the
tape. See Chapter 9 for more information on the format of
magneti c tape fj I es.

14. EXECUTIVE COMMANDS

Table 5 gives a complete list of Executive Commands.

Table 5. Executive Commands

The following commands are accepted by the executive
for all users.

LOGOUT Allows user to log out

WRITE FD Write file director on disc

RENAME Renames a fi Ie

DA TE Types date and time

KILL PROGRAM Kills program relabeling only

RESET Clears all of user's memory

COpy

FILES

FD FOR

Copies fi Ie to fi Ie

Types file directory

Types selected file directory entry

46 Executive Commands

GO TO

PLACE

SAVE

BRANCH

DELETE

TIME

STATUS

MEMORY

DUMP

Table 5. Executive Commands (cant.)

Goes to a "GO TO" (type 1) file

Places a "SAVE" type program (type 1)
in core

Save program; creates GO TO or type
1 fi I e

Branches into a program

De lectes a fi Ie

Types real time used

Types user's relabeling status

Types user's unused memory

Causes typing to be ignored by EXEC
Allows user to type comments

Dumps all program, saves status

Table 5 .. Executive Commands (cont.)

RECOVER

CONTINUE

RELEASE

EXIT

ACCEPT
MESSAGES

REFUSE

LINK TO

Control D
(Joint pressing
of CONTROL
and II DII keys of

the keyboard)

Recovers from a DUMP file (type 4)

Returns to subsystem being used before
the return to Executive

Releases a subsystem

Allows a user to LOGOUT without
writing file directory

Ind icates the user is wi II i ng to be
linked

Indicates the user is not willing to be
linked

Allows a user to link to the operatoror
a particular account and user name

Cance Is the effect of II

BREAK LIN K Allows a user to discontinue linking

PMT Lists the PMT entries that a user has
acquired

The following commands are recognized by the Executive
for users with operator status.

SHUT DOWN

UP

HANG UP

ANSWER

Starts system shut down

Cance I s shu t down

II Hangs Upll selected teletype phone
lines (DSS)

Answers (or enables) data subset

WACCOUNTING Controls accounting to paper tape

LETTER

GFD

ENABLE

DISABLE

LOOK

SYSLD

Types broadcast letters

Gets another user's file directory

Enables a subsystem group

Disables a subsystem group

Looks at real core locations

Allows load from disc directly into
user's core

The following commands are recognized by the Executive
for users wi th system status.

USERS

WHERE IS

WHO IS ON

REWIND

RLT

STN

Types number of users on system

Give teletype number for a user

Types users on system by account and
name

Rewi nds tape, resets tape logic

Re I ease tape

Sets tape number

Table 5. Executive Commands (cont.)

PTN Types tape number

SETEXED Sets user status

POSITION TAPE Positions tape (not to be used on BCD
tapes)

MTP Types current tape position

DF Allows a fi Ie directory entry to be set
up (see Chapter 13)

REMOVE FILE Removes file from directory (without
deleting)

PSP Types error counters, etc.

BCD REW Rewi nds a BCD tape

DBITS Prints the number of 256 word data
blocks remaining in the disc bit map

SMT Lists the SMT table entries

The following commands are recognized by the Executive
for users with subsystem status.

RSMT

SYSDP

SSMT

Reads in from RAD a SMT Page

Allows core to be dumped directly on
disc

Sets the shared memory table

USER COMMANDS

LINK TO Account Number User Number or OPER

This command allows a user to link to another user that is
currently on the system or to the operator. If (II) is typed,
the Executive will ignore (not regard as a command) anything
that is input until a control D is typed. This allows a user to
converse wi th the user that he is I inked to. If the I ink cannot
be made at this time, the Executive will respond with one of
the following messages:

NOT ENTERED

BUSY

IN 8-LEVEL MODE

NOT ACCEPTING LINKS

Example: LINK TO F5103

LINK TO OPER

PMT

Types the user's current Program Memory Table in the follow­
ing format:

aa DRMPOS: bb, cc (PAGE dd)

User Commands 47

where

aa

bb

cc

is the pseudo relabeling byte number.

is the RAD address (shifted right three places).

will type: RO for read only
EX for Executive page
DR for RAD page

dd (if typed) wi II be the real page number in memory.

OPERATOR STATUS

SHUT DOWN (toggle switch 1 required)

After the operator toggles console switch 1, the command
will set a flag that initiates system shutdown. All lines
that are not currently being used will be made unavailable.
As soon as the users that are currently on the system ei ther
log off or hang-up, their teletype lines will be made
unavai lable.

UP (toggle switch 1 required)

After the qperator toggles console switch 1, the automatic
shut down flag described under SHUT DOWN is reset so
that teletype lines are now available. The operator must
re-answer (by using the ANSWER command) all lines that
have previously been made unavailable.

ANSWER (toggle switch 1 required)
k, m-n, .

This command enables selected teletype lines for users. The
operator may specify single numbers, indicated by "k",
separated by commas, or a range of numbers where the range
is separated by a dash, or any combination. Spaces are
ignored; the string is terminated by a carriage return. If
the line has already been enabled, the command will have
no effect. Note that after the SHUT DOWN command has
been issued, a line can be made available by this command
but it wi II become unavai lable after the user logs out.

HANG UP (toggle switch 1 required)
k, m-n, .

The command has two functions; it may be used to hang up
a user while he is logged in (in this case the line will go
ready again after the hangup operation has been completed
provided the SHUT DOWN corr.mand has been used), or it
may be used to make a line unavai lable if no one is cur­
rently using the line. The format is the same as ANSWER.

LETTER @J

LETTER OFF ION (Response from Executive)

LETTER n

This command has three functions and two formats. The
second format, where a number n is typed after the

48 Operator Status

command is used to type a braadcast letter, where n is the
letter number from one to six. The operator can then inspect
the text of any letter.

The first format is used to control the transmission of broad­
cast letters. If the letter switch is OFF no users will receive
broadcast letters. If the letter switch is ON all users will
receive the letters. The operator can add or delete letters
using commands in jOPER/ program.

While the operator is inserting a letter, the letter switch
must be OFF. If the operator uses the first format of this
command, the status of the letter switch will be reversed
and the new status wi II be printed.

Example: Assume the letter switch is on:

-LETTER @)

LETTER OFF

-LETTER @)

-LETTER ON

The switch is now off

This will set switch on

When the operator adds a new letter, each user will receive
the letter when he logs on. The users that are on the system
while the letter is being added will receive the letter when
they return to the Executive (escape to the part of the Exec­
utive that types the -).

WACCOUNTING n @l (Currently not implemented)

After the CR is typed, the following message wi II type:

TOGGLE SW.

The command wi II not be executed unti I console switch 1 is
toggled.

If n = 0, accounting information being punched on paper
tape when users log out will be stopped.

If n = -1, punching of the accounting information on paper
tape when users log ou t wi II be started.

GFD aa nnnn @l

The command is used by the operator to get a file directory
belonging to another user for special background or non­
timesharing processing. The operator's own file directory
and user number is replaced by those belonging to the account
number "aa" and user name "nnnn" although the operator's
account number and control parameters are retained. Sub­
sequent to issuing a GFD command, the operator must not
issue: RENAME, DELETE, WRITE FD, EXIT, or LOGOUT;
otherwise, accounting misinformation will result.

ENABLE @J

DISABLE @J

where

is the name of a subsystem in the group.

The subsystems are:

Group 1 - TAP, DDT

Group 2 - Currently not used.

LOOK

This command is typed in the following format:

LOOK a, n @)

a bbbbbbbb

a+l bbbbbbbb

etc.

This command allows an operator or system class user to
display real memory addresses where "a" is the first loca­
tion to be displayed (in octal) and "n" is the number of
locations (in decimal) to be displayed. The format of the
type out is as indicated in the example where "a" and "a+ I"
are the octal addresses and "b" represents the contents in

octal.

SYSLD

The command is typed in the format:

SYSLD a @)

TO b @)

LOC c @)

This command allows a user to load his program memory from
any location on the disc into any of his eight pages. "a"
and "b" refer to his page numbers (0 to 7) and "c" is either
a real disc address or a number from 0 to 7 referring to
discs 0 through 7, with the load starting at arm position
63 of the given disc. Also, "c" may be formatted lin. m"
where lin" is the disc number described above and "m" is
a number from 0 to 7 referring to a relative page number
of arm position 63.

Arm position 62 63

n.O n.S

n.1 n.S
Disc n

n.2 n.6

n.3 n.7

SYSTEM COMMANDS

USERS
nn

Types the number of users (nn) currently logged on the
system.

WHERE IS ,-,u nnnnnnn
xx

By typing the account number ("aa") and the user's name

("nnnnnnn ... "), this command will type the current tele­
type number ("XX") on the user.

WHO IS ON
xx aa nnnnnnn
xx ss

Thi s command causes a complete I ist of the current TSS users
to be typed where:

xx teletype number

aa user's account number

nnnn. user's name

ss status of line.

REWIND @l

This command releases and rewinds the tape regardless of

its current status. It is applied to the current tape num­
ber (0 or 1).

RLT 13

This command releases the tape making it available to other
users.

STN n @l

Allows a user to speci fy the tape un it number (0 or 1). BCD
TAPE operations will normally use tape unit 0 unless is
specified by issuing this command.

PTN €V
n @l

Types a user's current tape number (0 or 1).

POSITION TAPE @l

This command wi II cause the current tape to move to the
beginning of the next file.

MTP 8

Types the current tape positi8n as far as is known to the
Executive. This c:)mmand d:)es not check the actual position
by reading tape.

PSP 8

This command types out symbols of the current system ermr
counters.

PSP

TN

TU
Tf)
,1\

TIM , vv

o
{"\

v

o

Tape nOise errors

Unrecoverabl e read errors

Tape read errors

Tape wri te errors

Operator Status 49

PF 0 Power Fai lures

DC 0 Disc channel errors

D 0 Disc controller errors

DU 0 Unrecoverable disc errors

DF 0 Disc fai lures

RC 0 RAD channel errors

R 0 RAD controller errors

RU 0 Unrecoverable RAD errors

12 0 RAD 12 interrupt errors

CP 0 CPU memory pari ty count

IP 0 I/O parity errors

XB 0 Map index block error

FD 0 File directory errors

DO 0 Teletype data overrun

TD 12 Duplicate teletype on interrupts

IT 11 Illegal teletype off interrupts

SETEXEC nn 8

Sets one of the following classes of executivity if the user's
status parameters allow the use of this class. The class set
is then sent to any fork started by the system executive
with the "GO TO" command.

nn

-1 Sets system status

o Cance I s system status

REMOVE FI LE nn, @

This command allows a user with system or operator status to
remove an entry from a file directory without using the
DELETE command. Since it may not be possible to delete a
fi Ie if the name contains leading spaces or other spurious
characters, it may be required to use this command as a
last resort. The command removes a fi Ie from the "in-core"
directory by referring to the file name's position "nn" in
the printed file directory. Tht: FILES command must be
given just p~ior to using this command in order to find the

50 SUBSYSTEM COMMANDS

current relative position of the name. The file directory is
NOT rewritten on the disc by this command.

SMT

This command lists the SMT entries. The format is the same
as the PMT command.

SUBSYSTEM COMMANDS

SYSOP

The command is typed in the following format:

SYSDP a §

TO b @)

LOC c @)

This command allows a user to dump his program memory onto
any location on the disc from any selected pages of his
eight pages of program relabeling. The format is the same
as SYSLD.

RSMT €V N (N-SMT pseudo-relabeling byte)

Thi s command reads an SMT page from the RAD if the page
is currently in core. The purpose of this command is to
read in a new copy of an SMT page in case the copy that is
currently core-resident has been damaged or altered. The
new copy will reside in the same core occupied by the old
copy. This command is the same as the BRS BE+ 15.

SSMT @)

N DRMPOS: aaa, E, R

N SMT pseudo-relabeling byte

E Make page Executive (set bit 1 of SMT entry)

R Make page Read-Only(set bit 180f S"/T entry)

aaa RAD add ress truncated by 3 bi ts (see ou tpu t of
SMT command)

SSMT is used to set an SMT entry. E and R are optional.

15. REENTRANT SUBROUTINE CALLS

Since the Executive is reentrant, any instruction it executes
that will alter memory will always reference the TS page.
The TS page is in page 0 of the Executive's relabeling. The
BRM instruction must be used indirectly since it alters mem­
ory by storing the return linkage into the effective address
of the instruction.

Assume the following is avai lable to the Executive In the
user's temporary storage page:

LVL 1 ZRO
BRR* LVL 1

LVL2 ZRO
BRR* L VL2

The Executive wishes to call subroutine SUB 1 whi ch In turn
will call a subroutine SUB2.

EXC BRM* SUB 1

SUB1 ZRO LVL1

SUB 1 C BRM* SUB2

SUB1N BRR LVL 1

SUB2 ZRO LVL2

BRR LVL2

The instruction at EXC stores a markword at LVL 1. LVL 1+ 1
is executed as the next instruction. Since LVL 1 now con­
tains EXC (the markword), the BRR* transfers control to
SUB1+ 1:

((LVL1))+1 (EXC)+l -cSUB1 +1 - P

The BRR at SUB 1 N wi II transfer control to EXC+ 1:

(LVL1)+1 '-' EXC+ 1 - P

The call at SUB 1 C wi II store the markword (SUB 1 C) at L VL2
and the BRR* at LVL2+ 1 wi II transfer control to SUB2+ 1.

The word pairs (LVL1, LVLl+1, etc.) are in the TS page
from the CFl1 through RLV4+ 1. They are initialized for
each user when he is given his TS page. The coding which
does the initialization is at TSONI.

16. MISCELLANEOUS FEATURES

A user may dismiss his fork for a specified length of real
time by executing a BRS 81 with the dismissal time, in mil­
liseconds, in A. At the first available opportunity after
this time has been exhausted, his fork wi II be reactivated.
The contents of A are changed.

A user can read the real-time clock into A and the system
start-up date and time into B by executing a BRS 42. The
number obtained increments by one every l/60th of a sec­
ond. An Executive fork can read the elapsed time counter
for the user into A by executing a BRS 88. This number is
set to 0 when entering the system and increments by 1 at every
l/60th second clock interrupt while the fork is running.

To obtain the date and time, the user can execute a BRS 91.
This string pointers in the A and B registers. The string
contains in order, the month/day, hour (0-23) and minute
at which the instruction is executed.

. A, user may dismiss a fork unti! an interrupt occurs or the
fork is terminated by executing a BRS 109.

A fork tests whether it is Executive or not by executing a
BRS 71. The type of Executivity is returned in B. If B equals
1, the fork is subsystem. If B equals 0, the fork is user. If B
equals -1, the fork is system and subsystem. If B equals -2,
the fork is system. If B is negative, BRS skips on return.

An Executive fork can dismiss itself explicitly by executing
a BRS 72 (see Chapter 2).

There are two operations designed for Executive BRSs which
operate in the user mode with a map differing from the one
they are called from. BRS 111 returns hom one of these
BRSs, transmitting A, B, and X to the calling fork as it finds
them. BRS 122 simulates the addressing of memory at the
location specified in A. If new memory is assigned, it is put
into the relabeling of the calling fork. If memory panic
occurs, it appear's to the calling fork that it comes from the
BRS instluction .

An Executive fork con couse on insh-uction to be e""ecuteo

In the system mode by addressing it with EXS.

Reentrant Subrouti ne Co II s/ Mi sce II aneous Featules 51

There are switches in the Monitor that can be set by an
Executive fork with a BRS BE+ 13. It takes the new switch
value in A and the switch number in X. It returns the old
switch value in A.

An absolute location in the Monitor relabel ing can be read
or changed by an Executive with a BRS BE+4. The absolute
location is in X, the new value, if any, in A. The BRS
reads if B is positive and changes the word if B is negative.

An Executive fork can also force a new page to be read from
the RAD with a BRS BE+ 15. It requires an SMT pointer in A.

An Executive fork can test the state of any breakpoint switch
wi th a BRS BE+7. The swi tch number is in X. The BRS ski ps
if the switch is down.

An Executive fork can crash the system with BRS BE+8. A
fork can set Executive status with a BRS BE+ 16 and 7654321 OB
in the A register. System status is required.

17. UTILITY PROGRAMS

DSWAP

DSWAP is a self-loading utility program, usually stored on
magnetic tape, that initializes the TSS system. It performs
the followi ng functions:

1 . If breakpo i nt 1 is reset, the fi rst 32K of core is wri tten
onto discs 0 and 1 in arm positions 62 and 63. If break­
poi nt 1 is set, the current contents of core are not
wri tten onto disc.

2. The first 14K of the Monitor is loaded into core from
arm positions 62 and 63 of the disc selected by break­
poi nts 2 through 4.

Copies of the monitor can be stored on discs 2, 4,
and 6.

The three breakpoint switches are regarded as repre­
senting a binary number between 0 and 7. Therefore,
to load the system from disc 2, breakpoint 3 would be
set.

After the monitor is loaded, DSWAP halts at location 24B.
When the hal t is cleared, a branch occurs to a portion of
the Monitor which has just been loaded. The system exe­
cutes a transfer from 930 to 940 time-sharing mode and the
remaining 4K of the Monitor is read into core.

OPER PROGRAM

The general function of the OPER program is to provide the
operator with information or control of the following per­
manently assigned areas of the disc:

o File directories.

o User/Account di rectory.

o Accounting data storage area.

o Broadcast I eter area.

52 Utility Programs

The specific programs provided are not used as often as the
functions which are available through system Executive.
Therefore, the program is initiated with a GO TO type
statement and is normally the operator's file directory.

CONTROL COMMANDS

The program has a simple command dispatcher that indicates
it is ready to receive a command by typing an asterisk. In
order to reduce operator error, the commands must be typed
complete Iy. Each command is described in detai I in this
chapter and the commands are listed by category with a
brief description in Table 6.

GENERAL OPERATING INSTRUCTIONS

The operator calls the program by typing

GO /OPER/ @l
*

where

/OPER/ is the name of the program.

* which is typed by the program, indicates that the
program is ready to receive the first command.
The typed command is then foil owed by a carriage
return or a linefeed if appropriate.

@l Generally the carriage return confirmation
indicates to the program that the complete output
is desired. There is also a linefeed (0) command
which indicates that a selected output (for a par­
ticular user number in case of the file directories
or for a particular account number in case of the
user account directories) is desired and that a user
number or account number will be supplied as
appropriate to the command.

If an invalid command is typed, the program will respond
with a question mark and type the asterisk, indicating that
the program is ready for another command.

COMMAND

FILES

CLEAR FILE

TIME

RESET TIME

SET DAY

SET HOUR

LENGTH

SIZE ACCOUNT

GARBAGE

POINTER

UAD

ACCOUNT

NAME

CANCEL ACCOUNT

CANCEL NAME

COpy RECORDS

CLEAR RECORDS

COUNT LETTER

REMOVE LETTER

LETTER

HELP

Table 6. Control Commands

DESCRIPTION

Fi Ie Directories

Outputs all or selected file directories.

Clears a selected file directory.

Outputs the user's real and computer time as carried in the file directory.

Same as time but also clears the time words to zero.

Validates all or selected users for 24 hour/day.

Validates all or selected users for any selected time.

Computers length of all files by account number.

Uses length output to compute maximum storage used.

Removes unused areas from the overflow file directory area.

Indicates next available overflow storage area.

User Account Directory

Outputs all or selected user/account directories.

Creates a new account or changes an account password.

Creates a new user name or changes a user name.

Cancels an account directory.

Cancels a user name out of a user/account directory.

Accounting Storage

Copies accounting records to a file.

Copies accounting records to a file and then clears the accounting storage area.

Broadcast Letter

Counts the number of users who have not received each of the six broadcast letters.

All ows the operator to remove a broadcast letter.

Allows the operator to create a broadcast letter.

Miscellaneous

Lists all of the operator executive routine commands.

PROGRAM LOADING AND ASSEMBLY PROCEDURE OPERATOR EXECUTIVE ROUTINE

The program consists of two symbolic fi lest usually called
IOP1/ and IOP2/. The first file is assembled by TAP in
the usual manner while the second file is assembled using
the CON TI N UE command to the' Executive since it uses con­
stants contained in the first fi Ie. Both binary outputs are
loaded using the DDT command ;T, and the program is then
ready to run, starting at location 240B. Norma Ily a pro­
gram identifier is placed at location 237B so that the pro­
gram is saved from 237B to the final address (as typed by
DDT) with the starting address as 240B.

The following paragraphs describe all the commands con­
tained in the operator Executive routines program. The com­
mand is shown along with the appropriate terminatol.

where

only the carriage return is appropriate

':f~ only the linefeed is oppropriate

/ either carriage return or line feed is appropriate.

OPER Program 53

The function of the command is then described, followed by
the operating instructions; if any messages are typed by the
program, the messages are then shown along with the appro­
priate action to be taken by the operator. Actual example(s)
of the use of the command is then shown along with a typi­
cal output, if any. In the examples, underscored copy
represents copy produced by the system. Unless otherwise
indicated, copy that is not underscored in an example must
be typed by the user. Following the example an output des­
cription is supplied if appropriate.

Note: The outputs and inputs, if any, of all commands are
symbolic files except for the COpy RECORDS and

CLEAR RECORDS wh ich supply binary (type 2) out­
put fi les. This means that the comment OUTPUT
FILE includes the physical devices such as the
printer and teletype, except for the COpy REC­
ORDS and CLEAR RECORDS commands.

ACCOUNT

COMMAND: ACCOUNT @)

FUNCTION: Creates a new account or changes an account
password in the account user directory.

After giving the command the operator types the account
number and the password, terminated by a carriage return.
This wi II either create a new password or change an old one.
The operator types the account parameter words, separating
each parameter by a space, and terminating the list with a
carriage return.

Examples:

*ACCOUNT @)

B1XYZ

o 0 @/ 0)

where

"B 1" is the account number

"XY Z" is the password,

o o set the account parameters to zero. The
account parameters are currentl y not used by the
system. However, they must be suppl ied for the
command to work properly.

This command may be used to change more than one account.
Note that after the operator types the new account param­
eters he may respond with either a line feed or carriage
return. A carriage return indicates that the operator does
not wi sh to change more accounts. The line feed a II ows
another account to be changed.

*ACCOUNT @)

A 1 PASS @J

000)

54 OPER Program

A2PASS §

o 0 @)

*

CANCEL ACCOUNT

COMMAND: CANCEL ACCOUNT @l

FUNCTION: Cancels account password and user names from
an account directory.

After giving the command terminated by a carriage return,
the operator types the account number followed by a carriage
return. The program wi II then type the asterisk.

Examples:

*CANCEL ACCOUNT @)

B1 @) /8

Several accounts may be canceled by terminating the account
number with a I ine feed.

*CANCEL ACCOUNT

C5 (0

A8 (0

B7 @)

*

CANCEL NAME

COMMAND: CANCEL NAME @)

FUNCTION: Cancels a user name out of a user account
directory.

After giving the command terminated by a carriage return,
the operator types the account number and user name, fol­
lowed by a carriage return. If the name is located, the
program wi II type

OLD

completing the operation. If the name cannot be located,
the program wi II type

NEW

INVALID USER

and the operator may then correct the name.

Examples:

*CANCEL NAME @)

BlJONES @)

OLD

The command can be continued if the operator wishes to
cancel more than one name. Note that either a line feed
or carriage return can follow the account and user name.

* CAN CE L NAME @)

A2BET C0

OLD

A3CET @

OLD

*

CLEAR FILE

COMMAND: CLEAR FILE C0

FUNCTION: Clears a selected file directory.

The operator types the user numbers for the file directories
that are to be cl eared. The command must be terminated
by typing a user number that is greater than the last valid
user number. Normally the operator wi II terminate by
typing 7777 and the program will respond with the message

END OF JOB.

Examples:

*CLEAR FILE C0

234 @)

416 @)

7777 @)

END OF JOB

This command does not clear the bit map. The MAP pro­
gram must be run in order to update the bi t map.

CLEAR RECORDS

COMMAND: CLEAR RECORDS @)

FUNCTION: Copies accounting records to a file and then
clears the accounting storage area.

After the operator has given the command, the program wi II
ask for an output file; this file cannot be a physical device
such as the PRINTER or TELETYPE since the output is binary
(type 2 file). If a satisfactory file name is given, the pro­
gram will write the accounting records to the file and return
to the asterisk. If a bad fi Ie name is given, the program
will ask for the output file again.

Examples:

*CLEAR RECORDS 8

OUTPUT FILE: / ACCT/ @

NEW (OLD) FILE ~'0

COpy RECORDS

COMMAND: COpy RECORDS @

FUNCTION: Copies accounting records to a file.

After the operator has given the command, the program wi II
ask for an output filei this cannot be a physical device such
as the PRINTER or TELETYPE since the output is binary(type
2 file). If a satisfactory file name is given, the program will
write the accounting records to the file and return to the
asterisk. If a bad file name is given, the program will ask
for the output fi Ie again.

This command outputs the account number, user, name, con­
nect time, and CPU time. It then calculates the maximum
amount of disc storage used and prints it with the above
information.

Examples:

*COPY RECORDS @)

OUTPUT FILE: / ACCT/ @

NEW (OLD)FILE @

ACCOUNTING DATE (M-D): 5-27

COUNT LETTER

COMMAND: COUNT LETTER @>

FUNCTION: Counts the number of users who have not
received each of the six broadcast letters.

The operator merely gives the command terminated by a
carriage return; the program will then give the count in the
following format:

o
2 975

3 0

4 0

5 1024

6 0

where the number in the left column is the letter number and
the number in the right column is the number of users who
have not received the letter (0 indicates the letter is not
being used and 1024, as for letter number 5, indicates the
letter has not been released). The letter program is cur­
rently implemented for a maximum of 1024 users.

FILES

COMMAND: FILES @)/@

FUNCTION: Provides to an OUTPUT FILE the complete or
selected file directories.

OPER Program 55

If the command is followed by a carriage return (Figure 27)
the program wi II ask for the output fi Ie by typing OUTPUT
FILE:. The operator may then type any appropriate output
file name. If a wrong file name is supplied the program
will again type the message OUTPUT FILE:. The normal
output file will be the printer since the output may exceed
the capacity of disc files. The message END OF JOB will
be typed when the last file directory has been printed. The
output begins with user number 1 and continues for all the
valid user numbers on the system. If a particu lar user num­
ber has an overflow file directory associated with it, the
overflow directory will be listed immediately following the
user's first directory.

When the fi Ie directory for the last user number has been
printed, all of the overflow directories should have been
printed. If any overflow directories remain (were not ref­
erenced by a user number), they will be supplied at the end
of the listing under the title LOST OVERFLOWS.

If the command is followed by a line feed (Figure 28), the
program assumes the output file will be the teletype. The
operator must type the user numbers for the file directories
desired. When a user number is typed that is greater than
the last valid user number, the program will type END OF
JOB and terminate.

OUTPUT DESCRIPTION

Typical output has the following form:

211 0:00.51 0: 15 77777777
1500107 2 23000000 31176/CONVERT/

where

211 user number

0:00.51 hours, minutes, and seconds of com-
puter time.

0:15 hours and minutes of real time used (since
reset time).

77777777 Valid on-time where each bit represents
an hour of the day. The left-most bit represents
00:00 to 01 LOO.

15 Account number (where 15 would be account A5).

00 Number of times the file was access since last
disc re-ordering. Reaches a maximum of 778 and
stays th ere.

107 Creation date, where high order 4 bits is month
less one and low order 5 bits is day of month less
one. Example of 154 is Apri I 13 ..

60000000 (would appear instead of the 2)
indicating file was written on. t

Flog bits

tThese bits are used by the concurrent tape back-up routine
and the disc file re-ordering routine.

56 OPER Program

-GO /OPER/
·FILES
OUTPUT TO: TELETYPE
4/17 15:13

1 35:44.56 1365:59 77777777
125127 6 21000000 42423 M16
101140 60000000 24000000 41212 /1/
123451 42 21000000 35307 /TAP/
102000 0 3730000 7640 'B'
123113 2 21000000 1277 WSD
123124 22 21000000 2521 /F2C/
123047 12 21000000 15332 /CFTN3/
123046 12 21000000 15320 /FIO/
123451 21 21000000 41311 /QED/
123122 32 21000000 52464 /F2R/
123047 12 21000000 21304 /CFTN2/
123451 22 21000000 41332 /DDT/
123047 30 21000000 21316 /CFTN1/
144152 40000000 21000000 41471 0
125132 60000000 21000000 1324/CAL/
101147 60000000 21000000 630 /WSD/
·177130 40000000 21000000 31366 /REG 0/
.146451 2 21000000 55336 NEWTAPE
102134 60000000 23000000 1166 /W@/
100127 21 21000000 53200 /BACKUP 0/

OVERFLOW: 2232

2232 0:00.00 0:00 0
100454 12 21000000
124451 40000000 21000000
124047 32 21000000

OVERFLOW: 1

2 0:38.28 55:37 77777777
100113 2 22000000
100113 12 21000000
100050 12 21000000
100113 21 21000000
100050 31 23000000
100113 22 21000000
100013 3 23000000
100046 12 21000000
102010 40000000 21000000
100050 30 21000000
101132 60000000 41000000
101152 60000000 21000000
100113 52 24000000
100001
100113
100050
100050
100113
101001

OVERFLOW:

2 21000000
2 23000000

70 23000000
32 21000000
22 21000000

40000000 21000000

2304

2304 0:00.00 0:00 0
100113 42 21000000
100113 21 21000000
100113 32 21000000
100113 12 21000000
100050 12 21000000
100113 32 21000000

OVERFLOW: 2

3 0:25.43 33:07 77777777
106140 6oo:JGOOO 23000000
106152 6

13466 /XFI0/
45314 /BASIC/
25306 /CFTN4/

33302 /@/
37307 /CTRDF@/

7507 /@CFTN2/
33304 /QEOO/
77461 /@X/
33325 /DD'l@/

7274 /S'lIfj/
3665 /6FIO/

170 /@XWSD/
60246 /@CFTN1/
77556 /@CAL/
55365 /OPEX/
37321 /SS'l@/
73574 /NEWTAPm/
43333 /CONTRS@/

7664 /18@/
7521 /@CFTN4/

53305 /F2C@/
73576 /Ml6@/

47303 /TAF@/
53327 /PLOF@/
57322 /BAXIC@/
57310 /XFIOO/
13513 /@CFTN3/
73152 /@F2R/

55762 !DUMM!

Figure 27. FILES Command Terminated by a Carriage Return

-GO /OPER/
*FILES
4/17 15:09
426

426 3:12.36 333:12 77777777
304152 60000000 23000000
321151 60000000 23000000
302154 60000000 23000000
322143 60000000 22000000
356152 60000000 23000000
301142 60000000 23000000
313152 60000000 23000000
377152 60000000 23000000
302143 40000000 21000000
305143 60000000 23000000
302157 60000000 23000000
303157 60000000 23000000
300125 40000000 22000000
307143 60000000 22000000
3;:1152 60000000 23000000
302131 5 23000000
302123 4 23000000
304142 60000000 23000000
306057 40000000 21000000

OVERFLOW: 2213

2213 0:00.00 0:00 0
313152 60000000 23000000
310143 40000000 21000000
311142 40000000 21000000
302122 2 23000000
304131 27 23000000
301144 60000000 23000000
303152 60000000 23000000
300131 27 23000000
314143 60000000 23000000
314152 60000000 23000000
313152 60000000 23000000
303147 60000000 23000000
306155 60000000 23000000

OVERFLOVJ: 426

231

52765 /SDS/
56726 INV
23013 /ANN/
71222 2

1301 /UMASTER/
55147 /MASTER@/

6570 /DDTP/
21367 /MASTER/
22154 BB
55164 U

4777 /STOCK/
5104 /LIBRARY/
1141 /SORT/
521+1+ /BNUPD/

36473 /SCTP/
62710 /ACNG PRO/
41202 F
40347 /MASTER1@/
56472 AA

41206 /OOS/
22073 LIBUPDATE
35257 LIBSORT
21125 /TOP/
31261 /ZZ'lJ@/
72147 /AD/
53001 /FORT/
51136 /YYY/

5242 /NUPD/
11613 /TOT/
41210 /FLTP/
50751 /RESUME/
""C7(Y-' I I
<.U.:Juc. /./

231 0:00.31 0:11 77777777
2202140 60000000 23000000 25664 /USC1/
2202140 60000000 23000000 25671 /USC2/

'l'lTl
TOTAL: 3:12.68 333:23

END JOB

Figure 28. FILES Command Terminated by a Line Feed

GARBAGE

COMMAND: GARBAGE @

FUNCTION: Removes unused overflow areas from the
overflow directory area and makes the area
avai lable for use. See Figure 29.

The program first determines the current location of the
overflow pointer; in other words, it finds the next available
overflow area. This is typed ou t as follows where nnnn is
the pointer:

OVERFLOW POINTER AT: nnnn

The program next types the following message:

GARBAGE COLLECTION READY TO START.

ONLY 1 USER ALLOWED ON SYSTEM.

"ESCAPES" WILL BE INHIBITED.

TYPE @ TO CONTINUE.

The program pauses here until a confirming carriage return
is typed by the operator. Since this program cannot be run
if any users except the operator are logged on the system,
the program next checks the number of users on the system.
If more than one user is on the system the following message
is typed, followed by a return to the EXEC:

MORE THAN 1 USER ON.

If the operator is the only user, the following message is
typed:

GARBAGE COLLECTION STARTED,

The program wi II proceed wi th no further messages unti I the
garbage collection has been completed. At that time it will
again determine the location of the overflow pointer and
type the message:

OVE RFLOW POINTER AT: nnnn

The difference in the pointers will indicate the gain in over­
flow directory storage area due to the garbage collection.
The message END OF JOB will then type and the operator
wi II be forced to EXIT from the system so that his new fi I e
directory overflow pointer on the disc wi II not be destroyed.
The operator should then take the system down and take a
disc dump to save the new fi Ie directory arrangement.

2 File size where each bit represents one data block HELP
of 255 words

23000000 File type (23 means symbolic disc file)

31176 Index block pointer (or fi Ie size for magnetic
tape) .

/CONVERT/ Name of file (control characters are
preceded by on & on the teletype or by a 6 on the
printer).

COMMAND: HELP @

FUNCTION: Lists all of the commands the operator Execu­
tive routine will recognize.

LENGTH

COMMAND: LENGTH 9/ G

FU!'1CTIOf'1: Outputs the amount of disc storage used by
the account number.

OPER Program 57

Before GARBAGE After GARBAGE

(1100) SOV (1100) •

Empty

Empty

(1351) ~

(1352) Used

(1353) Used

(1354) Empty

(1355) Used 1-

(1356) Used
(1355)

"

r
(1356) u

Used

j
(1371) Used Used

(1372)
..

Empty --
(1373) Empty

... ---
(1374) Used -
(1375) Empty ---
(1376) Used -

I(1377) i (1377) Used LUNO

Note: Overflow file directory organization before and after running the GARBAGE command. The numbers in
parentheses represent the overflow file directory user number.

Figure 29. Garbage Collection

If command is terminated by carriage return, the program
:lsks for an output file by typing OUTPUT FILE:. The
:>perator should then type any appropriate output file
name. If a bad file name is supplied, the program will
type the message OUTPUT FILE: again. The message
END OF JOB wi II be typed when the last user's fi Ie
directory has been processed, and the output file has been
closed.

58 OPER Program

If command is terminated by I ine feed, the program asks for
an output file as described in the previous paragraph. The
operator must type a user number for each file directory (and
each overflow directory for which size he desires. The oper­
ator types a user number greater than the last valid user num­
ber (normally 7777), to terminate the I ist of user numbers.
The disc storage by account for the selected user numbers
wi II then be output as in paragraph 1.

LETTER

COMMAND: LETTER @)

FUNCTION: Allows the operator to create a broadcast

letter.

Before giving this command, the operator must first set the
EXEC letter switch to OFF. This is done by giving the

EXEC command LETTER §. The EXEC wi II respond wi th

LETTER OFF. Then the operator may GO TO the operator

program and give the LETTER command. The program will

respond with:

LETTER NO. :

and the operator must respond wi th a number from 1 to 6,

corresponding to the letter that he wishes to create. The

operator should then type a carriage return {after the letter

number} and normally should type another carriage return
so that the letter starts at the left edge of the paper. The

operator should then type the letter and terminate with a

control "D", the E. O. T. character. If the operator makes

a mistake and would like to delete the character just typed,

he may type a # sign; one character is deleted for each
pound sign typed. When the operator has typed the control

D, indicating end of letter, the program wi II respond with
the asterisk. The operator must then return to the EXEC

and type LETTER again. The EXEC will respond with LET­
TER ON and the new letter will be typed for the operator.

EXAMPLE: (starting from the EXEC)

-LETTER @J Giving the EXEC command to turn

the letter swi tch off.

LETTER OFF

-GO /OPER/ @J Calling the OPER program

*LETTER @J Giving the command

LETTER NO.: 2 €V
number

TEXT OF LETTER ~~ 0';)
size is 189 characters

The program asks for a letter

The letter; maximum

-LETTER 2 8 EXEC command to type a letter

TEXT OF LETTER EXEC types the letter

-LETTER 0~) Turning the letter switch on

-LETTER ON

TEX T OF LETTE R The operator and everyone cur-

rently on the system receives the letter when they
come back to the Exec.

NAME

COMMAND: NAME @J

FUNCTION: Creates a new user name, changes a user

name in an account/user directory, or
changes the parameters for a user.

After giving the command, terminated by a carriage return,

the operator types the account number and the user name,

followed by a carriage return. The program wi II respond
with one of the two following messages:

OLD

NEW

indicating that the user name is new {not presently in the
account user directory} or old (already in the account direc­

tory). If OLD is typed, the operator may continue if he

desires to change the parameters. The operator types the
parameter wcr d, terminated by a carriage return. Note that

the parameter word must contain the user number in the low
order 12 bi ts and the user's control status in the high order

12 bits. If the user account directory for the account indi­
cated already has 11 names assigned to it, the following

messages wi II type:

NEW

FULL

The operator must first cancel an old name before he can add
a new name if the directory is full (see CANCEL NAME).

EXAMPLES:

*NAME 8

BlJONES (8

OLD

60000023 /

This command can be continued for subsequent account and
user names. Note that the parameter word can be followed

by either a carriage return or line feed.

"NAME ,:; / ~.".

A1ABC / .1

00001025 / C~

A2BCA ~ /
00001026 /

POINTER

COMMAND: POINTER

FUNCTION: Determine the next available overflow filp

directory storage area.

OPER Program 59

After the command has been given, the program will respond
with the message:

OVERFLOW POINTER AT: nnnn

where nnnn is the current location of the overflow printer.

REMOVE LETTER

COMMAND: REMOVE LETTE R @)

FUNCTION: Allows the operator to remove a broadcast
letter from the letter bit map so that it is no
longer addressed to anyone. Note that thi s
makes the count (see COUNT LETTER) equal
to zero. The actual letter text is not changed.

REMOVE LETTER automatically resets the
letter switch to "ON". Therefore, the Exec­
utive wi II begi n typi ng letters to any users
which are on the system. The operator should
not attempt to add a letter after removing
one without first returning to the Executive
and executing the LETTER command.

After giving the command, the program wi II type:

LETTER NO. :

and the operator must respond wi th a letter number, whi ch
must be a number from 1 to 6. The program wi II then
remove the letter from the letter bit map.

EXAMPLE:

* REMOVE LETTER @J

LETTER NO.: 2 @)

*

RESET TIME

COMM.AND: RESET TIME 8/0)

FUNCTION: Provides to an OUTPUT FILE the real and
computer time for all users and clears the
computerand real times from the file direc­
tory storage area; the command may also be
used for sel ected users.

Same as for the command TIME.

For examples of output see TIME.

Note that this command actually clears the computer and
real time words from the file directories after outputting
the information.

SET DAY

COMMAND: SET DAY @) / 0)

FUNCTION: Validates all or selected users for 24-hour
usage of the time-sharing system.

60 OPER Program

If command is terminated by carriage return, no 'Jther action
is required by the operator. The routine will set the valid
time word in every file directory to 77777777 which validates
the users for 24-hour usage of the system. The program wi II
type END OF JOB when completed.

If command is terminated by line feed, operator must type
the user numbers for the users to be va I idated for 24 hou rs.
The command must be terminated by typing a user number
greater than the last val id ,:!ser number such as 7777; this
will cause the program to type the END OF JOB message.

EXAMPLES:

-GO lOPER/@)

*SET DAY @l

END OF JOB

-GO IOPERI @)

*SET DAY 0)

121 @l

23 @l

7777 @)

END OF JOB

SET HOUR

COMMAND: SET HOUR 0 / 0)

FUNCTION: Validates all or selected users for any selec­
ted time of the day.

If command is terminated by carriage return, the program
wi II type each user number, together wi th computer ti me,
real time, and valid on-time and will pause after typing out
the parameters for each user to allow the operator to change
the valid on-time. If the operator does not care to change
the valid on-time for a particular user, he merely types a
I ine feed. Otherwise, he types the val id on-time word ter­
mi nated by a carri age return. The program wi II then type
out the parameters for the next user. After the last user
parameters have been typed out, the program will type END
OF JOB.

If command is terminated by I ine feed, the operator must
type the user numbers of those users whose time parameter he
wishes to change. The program wi II respond by typing the
user number, computer time, real time and valid on-time.
The operator may then type the new on-ti me parameter and
terminate by typing a carriage return. (If a I ine feed is used
to terminate the val id time word, the program wi II not change
the valid time word.) The operator must terminate the com­
mand with a user number greater than the last valid user

number, normally 7777. The program will then write out
the last file directory and type the message, END OF JOB.

Note: The time parameter word consists of one bit for each
hour of the day where the left-most bit validates a
use r from 0000 to 0059, the second bit from 0100
to 0159 etc. To validate a user from noon to 1559,
the operator would type the following time
parameters:

7400@

EXAMPLES:

-GO /OPER/ €V
*SET HOUR @

1 0/03.41 1: 10 77777777 o (Does not desire
to change)

2 0:00.00 0:00 7777777 70 €V (Validates a user for
the hours 1800 to

3 etc. 2059 only)

-GO /OPER/ @

*SET HOUR G

240 €V

240 0:01.23 3:45 70000000 0 (No change)

137 @l

137 0:02.23 10.547777 17777 @) (Changes the valid

7777 @)

END OF JOB

SIZE ACCOUNT

COMMAND: SIZE ACCOUNT @)

hou rs from "1200
to 2359" to "1100
2359")

FUNCTION: Computes the maximum disc storage used by
account from LENGTH outputs and provides
this maximum as an input for the next SIZE
ACCO UNT run.

The routine requires two input fi les and two output fi les
which are requested by the program as needed. The con­
tents of these files are as follows and the file names must
be typed in the order indicated:

File 1 - INPUT FILE:

New input. Normally the output of a LENGTH run
for the cu rren t day.

File 2 - INPUT FILE:

Previous maximum. Normally the maximum output from
a previous SIZE ACCOUNT run which was produced as
output file 4 previously. This input may also be the
output of a LENGTH run if there has been no previous
SIZE ACCOUNT run.

File 3 - OUTPUT FILE:

The complete report of the current run. First column
is the same as input number 1, second column is the
maximum between input file 1 and 2 and is the same
as output fi Ie 4. The third column is the difference
between input file 1 (new input) and the input file 2
(previous maximum) anum ber preceded by a minus sign
indicates that the new SIZE is less than the previous
maximum and that output on fi Ie 4 will not change from
the previous maximum. If the third column is positive,
then the new si ze fi I e 1 was greater than the prev i ous
maxi mum so that the new maximum output wi II be equal
to the new input.

Fi Ie 4 - OUTPUT FILE:

New maximum. The format of this output is exactly the
same as the format of the LENGTH output. This will
normally be input file 2 for the next days run of SIZE
ACCOUNT.

The program will type END OF JOB when completed. Fig­
ure 30 shows an example of SIZE ACCOUNT.

TIME

COMMAND: TIME 8/0

FUNCTION: Provides to an OUTPUT FILE the real and
computer time for all users or types the real
and computer time for a selected user.

If command is terminated by a carriage return, the program
wi II ask for the output fj Ie by typing "OUTPUT FILEII. The
operator shou Id then type any appropriate output fi Ie name.
If a bad file name is supplied the program will type the
message "OUTPUT FILE:" again. The message END OF
JOB wi \I be typed when the last user's time has been output.

If command is terminated by a line feed, the program
assumes the output fi Ie wi II be the teletype. The ope rator
must type the user numbers for the time parameters to be
typed out. When a user number is typed that is greater
than the last val id user number (normally 7777), the pro­
gram will type out the total that has been typed and then
wi \I type END OF JO B. Figure 31 shows an example of
TIME.

UAD

COMMAND: UAD @ / e
FUNCTION: Outputs to a file all or selected user account

directories.

If command is terminated by carriage return, the program
will ask for the output file by typing OUTPUT FILE. The
::>perator should then type any appropriate output file name.
If a bad file name is supplied, the program will type the
message OUTPUT FILE:. The message END OF JOB
wi II be typed when the last user account directory has
been output.

OPER Program 61

7/1 0:31

ACT NEW INP. NEW MAX. - DIFF.

*1 797696 1330176 - 532480
*2 260352 574720 - 314368
i~3 445696 557056 - 111360
*4 721408 1173248 - 451840
~\'5 856832 1026816 - 169984
*6 88320 122624 - 34304
*7 317696 338432 - 20736
A8 12544 12544 512
A1 217088 217088 4608
A2 52736 52736 0
A4 182784 183552 - 768
A5 87040 133376 - 46336
A6 12800 13312 - 512
B8 27136 27136 0
B1 13824 22784 - 8960
B2 80384 85760 - 5376
B3 11008 11008 1024
B5 123904 124928 - 1024
B6 528640 539904 - 11264
C8 133888 136704 - 2816
C1 58880 72960 - 14080
C2 2560 2560 @

J1 2560 2560 0
J2 12288 13312 - 1024
J4 6912 8704 - 1792
K1 70400 100608 - 30208
K2 17 5872 177408 - 1536
L2 24064 46592 - 22528
L3 22784 27136 - 4352
M1 13824 28672 - 14848
N1 1536 10752 - 9216
N2 4352 9728 - 5376
N3 38656 44800 - 6144
N4 10240 10240 1792
N5 39936 39936 8960
N6 7936 7936 0
N7 0 10496 - 10496
08 0 35840 - 35840
07 0 5376 - 5376

TOT: 7373056 9600768 - 2200832

Figure 30. Example of SIZE ACCOUNT

If command is terminated by line feed, the program wiH
ask for an output fi Ie as above. After typing the output
fi I e name, the operator shou Id then type the account num­
ber of the user/account di rectories that he desires with
each account number except the last one terminated by a
line feed. The last one will be terminated by a carriage
return. The account numbers are typed by the opera­
tor in the usual letter/number format. Figure 32 shows
examples of users' output.

62 OPER Program

-GO IOPERI €V

*TIME @

OUTPUT TO: TEL @)

7/3 14:08
1 0:00.71 0:24 77777777
5 0:03.40 0:29 77777777
6 0:00.20 0:03 77777777

17 0:00.15 0:05 77777777
20 0:00.26 0:08 77777777
25 0:96.53 1:26 77777777
27 0:00.00 0:01 77777777
32 0:00.41 1:14 77777777
45 0:0 @

-GO IOPER/ @)

2:TIME (0

7/3 14:09
25 @
25 0:06.53
20 @)

1:26 77777777

20 0:00.26 0:08 77777777
5 @)

5 0:03.40 0:39 77777777
7777 @l

TOTAL: 0:10.20 2:03

END JOB

Figure 31. Example of TIME

USERS

COMMAND: USERS @)

FUNCTION: Provides the operator with a list of valid
users on the system, sorted by user number,
account number or user name.

The operator types the command USERS terminated by a
carriage return. The program wi II then request an out­
put file. After the operator types the file name, the
program will respond with:

SORT ON WHAT COL. (1,2, or 3):

The operator then types 1, 2, or 3 for output sorted by user
number, account number, or user name, respectively.

EXAMPLE: See user output on previous page.

DISC ZERO

COMMAND: DiSC ZERO 0)

<Password>

FUNCTION: This command will zero out all the discs on
the system.

-GO IOPER/ @)

*USERS

OUTPUT TO: TEL

7/3 14:13

SORT ON WHAT COL. ? (l,2,OR 3) : 3

12 *2 * 1 = User Number
1166 G1 0038 2 = Account number

522 G1 0035 3 = User Name
521 G1 0036

1171 G1 0500
525 E5 1
277 D5 1
536 E5 10
537 E5 11
654 G3 141
655 G3 142
656 G3 143
526 E5 2
301 D5 2
624 G7 200 WRIGHT
623 G7 200 SPEIR
622 G7 200 CHIOCHIO
621 G7 200 JOHNSON
711 G7 200 PATAPOFF

1170 G1 2000
626 G7 250 BRICK
625 G7 250 SNYDER
527 E5 3
302 D5 3

1167 G1 3000
657 G3 345
660 G3 349
530 E5 4
531 E5 5
630 G7 500 SCHWARTZ
627 G7 500 GUGGENHE
532 E5 6

1210 12 65S&C
1206 12 671&0
1207 12 674&N

533 E5 7
661 G3 7466
534 E5 8
662 G3 8466
602 E4 8803
604 E4 8811
603 E4 8810
357 E4 8812
535 E5 9

1172 G1 9000
663 G3 9466

1232 N8 @LMY&SK&C
6 *2 A

433 F3 A BROWN
171 B1 A. COX

1203 G4 A. BELL

Figure 32. Examples of User Output

The operator types the command DISC ZE RO, then a line
feed. After the line feed which terminates the command,
there will be no output on the teletype. However, the
program is waiting for the password to be typed. Suppose
the password is the word SDS and the control key must be
depressed whi Ie all of the letters are typed. The following
example applies:

*DISC ZERO. 0)

Control SDS

*

If NDISC (a system parameter) were equal to 8, then all 8
discs would be zeroed.

DISC EDIT PROGRAM

The purpose of the disc edit is to arrange the files on the
disc for optimum data access. This routine places the files
that are least often accessed farthest from the center arm
positions (outside the mapped area). The fi les most often
accessed are placed nearest the center, thus leaving all
available free space at the access center.

The I/O control section of the Monitor always writes fi les
within the mapped area of the disc. If the user opens for
output (rewrites) an old file that has been moved to the
outer arm positions by EDIT, the Monitor will rewrite the
file within the mapped area.

PHASE ONE

In Phase One, each file directory (FD) is read, the edit bit
set (bit 2 of word 1 of the file entry), the file length com­
puted and stored in the fi Ie entry, and the FDs rewri tten.
The index blocks, for fi les which have been updated since
the last time this program was run, are read, the user num­
ber stored in the last word, and the block written back.

An entry for every fi Ie on the disc is created in one of two
tables that are bui I t as the FDs are read. On table con­
tains a two word entry for each file which has been read or
written since the last time this program was run. (This is
called the AS table.) The two words contain the last
access data, access count, index block, disc address, and
the number of data blocks in the file (includes the index
block). The other table contains an entry for each file
which has not been accessed since the last time the pro­
gram was run. Each entry is one word containing the
index block blocks of the file. (This is called the
C table.)

PHASE TWO

The two tables (AS, C) are sorted. The AS table is sorted
by access count and access date. The C table is sorted by
index block disc address.

Disc Edit Program 63

PHASE THREE

The fi les in the AB table are read from the disc, new index
blocks created, and the files written on tape. A three­
word record for each file is created and written on the RAD.
The record contains the user number, the old index block
disc address and the new index block disc address.

PHASE FOUR

Reads files in the C table and either writes them at their
new location on the disc or writes them on tape until suffi­
cient space is available to start writing them on the disc.
This situation would occur if the total space required for
the fi les was reduced since the last time this program was
run and the free space exceeded 25 percent of the total
capacity. A three-word record is created for each file
and is written on the RAD. It contains the same informa­
tion as the records written for the AB type fi les.

PHASE FIVE

The AB type fi les are read from tape and written in their
assigned locations on the disc.

PHASE SIX

The C type fi les (if there are any on tape) are read from
tape and written in their assigned locations on the disc.

PHASE SEVEN

The FDs are updated using the records written on the RAD.
All records on the RAD are, so to speak, "passed" twice
against each block of 64 FDs. When a RAD record is found
to match a fi Ie entry for a particu lar user, it is marked and
written back to the RAD and the index block disc address
and access count is updated and the edit bit reset in the
file entry of the FD. On the second "pass", before the
block of FDs are written back to the disc, the edit bit is
checked in each file entry and if found still set, a message
is output to the typewriter with the user number and file
name of the entry. Any file lost because its index block or
data blocks were in error or couldn't be read or written,
would appear in this list. All the RAD records are read and
checked for mark bit set. If the mark bit is not set the user

number and the old and new index block disc addresses are
output to the typewriter. These should match with previous
typeouts from the edit bit check of the FDs.

PHASE EIGHT

The operator is allowed to correctly enter new index block
disc addresses for files which the program could not correctly
identify.

PHASE NINE

All the index blocks ore read and the lust word checked
against the user number to see that all fi les are properl y placed.
A message is outputforfileswhichdonotcheckandshould

match with messages from phase seven. This is a check ~
and is not really necessary. It can be aborted at any time.

64 Operating Instructions/Commands to the Edit Program

OPERATING INSTRUCTIONS

The operator .nay wish to take a disc dump to preserve the

old status of the disc before running the edit.

1. With the system in time sharing mode, the operator

should log in and t/pe:

2.

-PLACE /Name of disc edit/

-SYSDP o (.!i)

TO

LOC

This will put the edit program onto disc 1.

Take the system down by setting breakpoint 4. After
a few seconds, lower the run swi tch to "id Ie" and press
"start" .

3. Mount the utilities tape which contains the DSWAP
program. Also, mount a scratch tape on unit 6, set at
800 bpi. The edit routine uses this tape. After DSWAP
has been read in, mount a second scratch tape on unit
7, set at 800 bpi.

4. Insure that the console teletype is turned on. The edit
routine converses through this teletype.

5. Set break points 1 and 4 and load the DSWAP program.
DSWAP wi II bring in the edit program from disc 1.

COMMANDS TO THE EDIT PROGRAM

EDIT will begin to type the following commands. New unit
and old unit will be the same except when it is desired to
increase or decrease the number of discs being used by the
system. The part of the command typed by the operator is
underl ined.

FILE REORDER ROUTINE. READY MT 6, 7

TYPE DATA AS FOLLOWS: MM-DD-YR 12-06-68

TYPE LAST USER NUMBER-: 2377

TYPE NUMBER OF DISCS IN NEW UNIT AS :DD:

(Type :08:, : ~ or :32:)

TYPE NUMBER OF DISCS IN OLD UNIT AS :00:
(Type :08:, : ~ or :32:)

SET USE R N UMBER IN l. B. -: (Type YES r;~ or
NO @> €V) -

Used for initial edit or when user number has been
lost from the index block.

BEGINNING - 00146440 ENDING 00177374

At this point the system will type any error messages. The
error messages wi II be discussed later.

JOB FINISHED

ANY FILES TO CO RRECT: (The operator responds
YES or NO depending on whether or not there
were error dessages.)

CHECK STARTED

END CHECK

ERROR MESSAGES

The following procedure can be used to recover files which
the EDIT program could not identify. EDIT will first list
the files for which it has a name but has lost the new index
block pointer. Next it will list the files for which it has
a new index block pointer but has lost the user number and
file name. The operator can match up the two entries (if
possible) when the line "ANY FILES TO CORRECT" is
typed.

The format of the error messages is:

I. B. L: iiiiiiii USER uuuuuuuu FILE NAME ffffff

I. B. OLD iiiiiiii USER nnnnnnnn IB NEW iiiiiiii
LOST FILE

If the operator responds "YES" to the "ANY FILES TO
CORRECT" message, the following will be typed.

USER NUMBER: (Type the ~ digit user number)

OLD INDEX BLOCK ADDRESS: (Type the.§. digit
index block address)

NEW INDEX BLOCK ADDRESS: (Type the.§. digit
index block address)

OK: (Type YES @) if the information input is correct}
(Type NO 8 @) to start over}

IB OK: iiiiiiii USER uuuuuuuu FILE NAME ffffff

OK: (Type YES @)if this is the correct file and
NO@) @)if not correct file. It will allow you
to try again.}

ANY FILES TO CORRECT: (Type YES @Jif more
files to correct, otherwise type NO @) @l}

CHECK STARTED (This procedure may be aborted any
time.)

END CHECK

MESSAGES REQUIRING OPERATOR ACTION

FATAL ERROR, CAN'T R!W FDs AT (Disc Address)

Action: This message indicates a bad disc spot.

TAPE NOT READY - TOGGLE RUN SWITCH WHEN READY

Action: Put tape in ready and follow the instruction in the
message.

SET 800 BPI----TOGGLE RUN SWITCH WHEN READY

Action: Follow the instruction.

PUT RING IN----TOGGLE RUN SWITCH WHEN READY

Action: Follow the instruction.

BAD TAPE----TOGGLE RUN SWITCH WHEN READY

Action: Mount different tape.

BAD TAPE----RESTART THE JOB

Action: Restart the program from disc, wi II not be necessary
to restore the disc since nothing has been written yet.

FATAL ERROR WHILE WRITING ON TAPE--OK TO RESTART

Action: Restart the program from disc, will not be necessary
to restore the disc since nothing has been written.

RAD ERROR HAS DESTROYED DISC DATA
RECOVER DISC FROM PREVIOUS DUMP AND RESTART

Action: Total restart.

DISC ERROR HAS DESTROYED DISC DATA
RECOVER DISC FROM PREVIOUS DUMP AND RESTART

Action: Total restart.

TAPE ERROR HAS DESTROYED DISC DATA
RECOVER DISC FROM PREVIOUS DUMP AND RESTART

Action: Tota I restart.

IF CORRECT TAPE TOGGLE RUN TO TRY AGAIN

Action: Caused by a tape label error. If the correct tape
is mounted, follow instructions.

TAPE READ ERROR--
RECO RD NUMBER IS-: nnnnnnnn SIB nnnnnnnn TOGG LE

RUN TO START AGAIN

Action: Follow instructions. If it does not correct, the
record can be accepted as is by setting switch 4 before tog­
gling run, then resetting switch 4.

DISC WRITE PROTECT

Action: Set disc write pr')tect switches off and toggle run
swi tch.

IB RD: iiiiiiii USER uuuuuuuu FILE NAME ffffff

Action: Look in the listing of files under the user given the
message for a matching index blo::k disc address and fi Ie

Error Messages/Messages Requiring Operator Action 65

name. Recover this file from a previous disc dump. Files
indicated by this message cannot be recovered during file
recovery procedure.

DISC ERROR AT (disc address)

FILE BAD IB: iii iiii i

Action: The index block address will match with q and r
messages. This file can be recovered during the file recov­
ery procedure but will have errors in it.

IB L: iiiiiiii USER uuuuuuuu FILE NAME ffffff

Action: Match with r messages for recovery.

IB OLD iiiiiiii USER uuuuuuuu IB NEW iiiiiiii LOST FILE

MESSAGES REQUIRING NO OPERATOR ACTION

JOB FINISHED

CHECK STARTED

IB OLD 00055615 USER 01627460 IB NEW 0006571333
LOST FILE

IB OLD 00002231 USER 0000000 IB NEW 00045140
LOST FILE

JOB FINISHED

ANY FILES TO CO RRECT: YES @)

USER NUMBER: 0027
OLD INDEX BLOCK ADDRESS: 00075304
NEW INDEX BLOCK ADDRESS: 00025457
OK: YES @)

IB OK: 00075304 USER 00000027 FILE NAME /ER/

OK: YES @)

ANY FILES TO CORRECT: YES @)

(Repeat the above procedure for users 107, 414, 650 and 667)

ANY FILES TO CORRECT: NO @) @)

END CHECK CHECK STARTED

TAPE ERRORS--: nnnnnnnn

BEGINNING - nnnnnnnn ENDING - nnnnnnnn

EXAMPLE OF AN EDIT RUN

FILE REORDER ROUTINE. READY MT 6:7

TYPE DATA AS FOLLOWS: MM-DD-YR 07-05-67
TYPE NUMBER OF DISCS IN OLD UNIT AS :DD: :..!.Q;
TYPE NUMBEROF DISCS IN NEW UNIT AS :DD: :16:
SET USER NUMBER IN I. B. -: NO @) @)
BEGINNING - 00327454 ENDING - 00377374

DISC ERROR AT 00025362
DISC ERROR AT 00025365
FILE BAD IB: 00025361

IB L: 00075304 USER 00000027 FILE NAME /ER/

IB L: 00025361 USER 00000107 FILE NAME /EVEN/

IB L: 00025044 USER 00000414 FILE NAME /MOON/

IB L: 00005615 USER 00000650 FILE NAME /RAB/

IB L: 00002231 USER 00000667 FILE NAME /PAYROLL!

IB OLD 00075304 USER 03300200 IB NEW 00026457
LOST FILE

iB OLD 0002536i USER 40000107 is NEVI OO()62155
LOST FILE

IB OLD 00025044 USER 03027447 IB NEW 00051333
LOST FILE

66 Messages Requiring No Operator Action/Map Program

IB CH:00026457 USER 00000027 FILE NAME /ERI
IB CH:00062155 USER 00000107 FILE NAME /EVEN/
IB CH:00051333 USER 00000414 FILE NAME /MOON/
IB CH:00065713 USER 00000650 FILE NAME /RAB/
IB CH:00045140 USER 00000667 FILE NAME /PAYROLL!

END CHECK

MAP PROGRAM

The Monitor assigns disc space for files by utilizing a disc
bit map. Each bit in the map represents a 256 word block.
If the bit is set, the block is available. The bit map is in
the Monitor. The purpose of this program is to initialize the
bit map, release the disc space occupied by bad files (files
with invalid index block pointers, conflicting information,
etc), and indicate in the user1s file directory that the file
has been deleted.

Note that MAP does not attempt to ei ther re-allocate or
optimize the disc files. This function is performed by the
EDIT program. MAP simply reads each file directory in the
system and initial izes the bit map to reflect the current sta­
tus of the disc.

The MAP program is run if a new version of the Monitor has
been brought into core using the DSWAP program. When the
Monitor is assembled the bit map contains all ones. The
map must be changed to reflect the current disc environment.
The MAP program is a Iso run after the edi t program has
changed the posi tions of the fi les.

The disc map does not reflect all of the area of the disc.
On an 8 or 16 disc system the bit map only represents arm
positions 12 through 51. On a 24 or 32 disc system, arm
positions 22 through 41 are mapped.

It is not advisable to restart the MAP program if any errors
occur whi Ie it is running. The program wi II have partially
initialized the bit map at this point. To start the program
again would cause conflicts in the map. One should reload
the Moni tor system and then restart MAP.

In order to reduce disc arm movement the index block
pointers are first collected from the file directories and
sorted accordi ng to disc location. In the process of going
through the fi Ie directories, a message is typed if the end­
of-file directory flag is missing or if the index block
pointer (BP) is invalid. The sorting is accomplished by
first extracting off the high order sixbitsofthediscaddress
of the IBP and packing the remaining bits with the user
number into a single word (the user number occupies the
low-order 12 bits). The user number wou Id be used in case
of an error to remove the file from the file directory. The
high-order six bits are used as an index into 64 pockets,
two pockets for each disc. The packed IBP and user num­
ber is sorted into the appropriate pocket by using strings of
128 word packets as necessary. Since the storage area
consists of six pages, a total of 96 packets are available,
allowing the storage of well over 10,000 index block
pointers.

After the sort, the index block pointers are del ivered to
the Monitor using the BRS BE+5. If there is an error return,
the program stores the IBP and the user number in an error
I ist and sets an error flag. Also the program wi II type the
IBP, the word returned by the Monitor in the A register
(which is usually the disc address of the error), and the
user number and then wait until a carriage return is typed
by the operator before continuing.

After executing the BRS BE+5 for all IBPs, the error flag is
checked. If there has been an error, the program types a
message that the fi Ie deletion is about to start and waits
for a carriage return to be typed before continuing. After
receiving the carriage return, the program goes through the
list of errors and releases the disc space occupied by the
bad files. The MAP program does not delete the bad file
entry from the customers file directory (FD). However,
the file type (see bits 0 through 5 of word 2 of a FD entry)
is set to 40B. Since 40B is not a legitimate file type, the
fi Ie wi II be removed from the FD the next time the user's
file directory is written (by LOGOUT, WRITE FD, etc.).

If there are no errors or when the last bad entry has been
deleted, the program searches the accounting storage area
for the next available sector, indicated by the first word
of the sector being zero. The sector number of the account­
ing area is typed for the operator. The program then searches
the file directory overflow area and determines the location
of the next available overflow area and types it out. If
there are less than 40 overflow areas left, a special mes­
sage is typed giving the actual number of areas left.
The disc address of the next available accounting area
and the address of the next overflow area are de livered
to the Monitor using the BRS BE+5 along with a termi­
nation flag. This completes the operation of the MAP
program.

OPERATING INSTRUCTIONS

The program is a "GO TOil type program and the operator

starts the program by typing:

-GO /MAP/ @J

The program responds by typing the following message and
begins going through the file directories:

SYS. V MAP STARTED.

V is the MAP program version number.

No further action is required by the operator unless there
is an error message. The program will type the following
messages upon completion of building the map;

ACCOUNTING AT: 000

OVERFLOW POINTER AT: bbb

END JOB

where "000" is an octal number corresponding to the account­
ing area sector (64 words) area. If "aaa" is 0 there is no
accounting information stored. If it is 177 there is no
remaining accounting storage area and the area must be
cleared by using the CLEAR RECORDS command in the
/OPER/ program. Note that the system must be taken down
after clearing the accounting area so that the /MAP/ pro­
gram can be rerun. The number "bbb" is the next available
overflow area and normally varies from 1377 to 1100 on an
eight-disc system and from 2377 to 2000 on a 16- or 32-
disc system. Note that the first number (1377 and 2377)
shows that no overflow directories are being used while the
second number would show that no more overflow directories
are available. The /OPER/ command GARBAGE must be
executed before these second numbers are reached.

ERROR MESSAGES AND ACTION

FILE DIRECTORY END FLAG MISSING FOR USER: nnn

where "nnn" is the user number. The operator may:

1. Type a carriage return in which case the program will
continue and the bad file directory will remain on the
disc.

2. Stop the MAP program and use DDT to supply a valid
end pointer to the file directory. The system must then
be reloaded and MAP restarted.

CO NFLICT AT ppppp qqqqqq nnn 8

where "ppppp" is the index block pointer and "qqqqqq" is
the disc address of the data block that caused the conflict,
and "nnn'I is the user number (or overflow pointer) of the
file directory that contains the conflict. A conflict implies
that two or more files reference the same disc area. MAP
will always map the first file and regard the second file as
the conflict. The conflict is easily recognized because the

Map Program 67

BRS BE+5 will attempt to reset a bit that is already reset.
The operator may:

1. Type a carriage return in which case the program will
continue after storing the IBP and user number in an
error list.

2. Take the system down and reload the disc.

BAD INDEX BLK. PTR.: ppppp nnn 8

where" ppppp" is the bad index block pointer and "nnn IS

the user number. This message indicates that the number
"ppppp" is an illegal disc address. A disc address must be
greater than 0 and I ess than or equa I to L1BP :

L1BP: = 37777B 8 Disc

77777B 16 Disc

137777B 24 Disc

177777B 32 Disc

The operator may:

1. Type a carriage return in which case the program will
continue and the bad pointer will rem'Jin in the fi Ie
directory.

2. Stop the MAP program and use DDT to remove the file
directory entry from the disc. If the fi Ie type is changed
to 40B, the fi lew i \I be de I eted from the user I s d i rec tory
the next time his directory is written.

BAD FILE DELETION STARTING.

This message will only type if the error message "CONFLICT
AT" has previously been typed by the program. At this point
the bit map has been built and the program is ready to delete
the bad fi I es. The operator may:

1. Type a carriage return in which case the bad files will
be deleted.

2. Take the system down and either reload the disc or start
up again in the case of disc errors.

ONLY nn OVERFLOW F. D. AREAS LEFT

where nn is the actual number of overflow file directory
areas left. This message is only typed if there is less than
40 areas left. The operator may:

1. Run the "GARBAGE" routine in the "0PER" program
(see "OPER" instructions).

2. Ignore the message, hoping that the remaining areas
wi II be suffi ci ent unti I the GARBAGE routine can be
run at a later time.

18. STRING PROCESSING SYSTEM (SPS)

A resident part of the system is a package of string handl ing
outl ines. These are discussed in detai I in the second hal f
of this manual. They are:

GCI

WCI

WCH

SKSE

SKSG

GCD

Get character and increment

Write character onto string

Write character onto string storage

Skip on string equal

Skip on string greater

Get character and decrement

WCD Write character and decrement

BRS 5 Look up string in hash table

BRS 6 Insert string in hash table {must be preceded
by BRS 5}

BRS 33 Input string

BRS 34 Output string given word address

68 String Processing System (SPS)

BRS 35 Output string given string pointer

BRS 37 Genera I command lookup

SPS includes symbol table lookup faci I ities, and a string
storage data collector, avai lable as a I ibrary routine.
Strings are composed of 8-bit characters packed 3 per word
and are addressed by 2-word string pointers. Two SYSPOPs
formally part of S PS but useful in floating point operations
and in general programming are:

LDP

STP

Load pointer

Store pointer

These are doubleword operations which load A and B from
the effective address and the next location, or store A and
B into the effective address and the next location.

String pointers are discussed under "Executive Treatment of
Files", The general concept of manipulating characters
that are packed three per word is discussed under "Echo
Tables". String handling routines are discussed in detail
under "String Processing",

19. FLOATING POINT

Floating point arithmetic and input-output operations have
been incorporated into the 940 system through the use of
programmed operators. This allows the user to perform
arithmetic and I/O operations in a single instruction. A
bri ef summary of the most commonly used arithmetic and
I/O POPs is given in this chapter.

The floating point numbers referenced in this chapter are
normalized double word values. The first word is a sign
bit followed by the 23 high-order bits of the mantissa; the

Floating Point Load/Store Instructions

Example 1

NAME: LDP

FUNCTION: Load pointer

CALLING SEQUENCE: LDP Memory

DESCRIPTION: Loads A, B with MEMORY, MEMORY+ 1.

LDP is a single instruction that is equivalent to

LDA MEMORY

LDB MEMORY+ 1

NAME: STP

FUNCTION: Store pointer

CALLING SEQUENCE: STP MEMORY

second word consists of the 15 low-order bits of the mantissa
followed by a 9-bit exponent field that, like the mantissa,
is represented in two's complement form.

Unless otherwise specified, the POPs do not make a skip
re tu rn.

The remaining floating point SYSPOPs and BRSs use a format
word in register X that contains the information shown in
Figure 33.

DESCRIPTION: Replaces MEMORY, MEMORY+1 with the contents of A, B. STP MEMORY is a single instruction
that is equivalent to

STA MEMeJRY STB

Double Word Floating Point Arithmetic

Example 2

NAME: FAD

FUNCTION: Floating add

CALLING SEQUENCE: FAD MEMORY

,fl.t\EMORY+l

DESCRIPTION: The floating point value at MEtv.oRY, MEMORY+ 1 is added to the floating point value in A, B.
The sum replaces the value in A, B. fViemory is unaffected.

NAME: FSB

FUNCTION: Floating subtract

CALLING SEQUENCE: FSB MEMORY

DESCRIPTION: The floating point value at MEMORY, MEMORY+! is subtracted from the floating point value In
A, B. The difference replaces the value in A, B. Memory is unaffected,

NAME: FNA

FUNCTIO N: F loati ng negate

CALLING SEQUENCE: BRS 21

DESCRIPTIO~~: The floating point value in A, B is negated. The resuit is ieft in A, 8.

Floating Point 69

NAME: FMP

FUNCTION: Floating multiply

CALLING SEQUENCE: FMP MEMORY

DESCRIPTION: The floating point value at MEMORY, MEMORY+ 1 is multiplied by the floating point value In

A, B. The product replaces the value in A, B. Memory is unaffected.

NAME: FDV

FUNCTION: Floating divide

CALLING SEQUENCE: FDV MEMORY

DESCRIPTION: The floating point value in A, B is divided by the floating point value at MEMORY, MEMORY+ 1.
The quotient replaces the divident in A, B. Memory is unaffected. Divisionbyzerocausesanoverflow.

NAME: FIX

FUNCTION: Conversion from floating point to fixed point

CALLING SEQUENCE: BRS 50

DESCRIPTION: The floating point value in A, B is converted to fixed point.

the original value, the fractional part is left adjusted in B.

significant bits are lost.

A is repl aced by the integer port of
I f the integer is too lorge, the most

NAME: FLOAT

FUNCTION: Conversion from fixed point to floating point

CALLING SEQUENCE: BRS 51

DESCRIPTION: The integer in A is floated. The floating point result is left in A, B.

Bi ts

0-2

3-8

9-14

15

16

Field

Name

T

D

W

o

E

70 F looting Point

Significance

Format types:

o Octal

1 Integer

2 E format with the number right justified in the specified field on output.

3 F format with the number right justified in the specified field on output.

4 J format with the number left justified in the specified field on output.

S F format with the number left justified in the specified field on output.

6 Double precision format. Same as 2 on input. On output same as 2 except a

D wi II be output for the exponent if bit 16 is 1.

7 Free form (output left justified).

Number of digits following the decimal point.

Total field width. In J format that is the number of digits before the decimal p:::>int.

Overflow action. If the field width is too small on :::>utput and this bit is 1, the first

character of the output field will be a stor and characters to the right Nill be lost.

If this bit is zero and overflow occurs, characters on the right will be lost.

If this bit is 1, E format of :::>utput will be used to represent the exponent. If this bit

is a the symbol will be output. Either the E or is always acceptable on input.

Figure 33. Format Word for Floating Point

Bits
Field
Name

Significance

18 If this bit is ° on input the symbol 0) will be treated as a legal exponent identifier;
i. e., 1. 0(0) +2 will be legal input. If this bit is 1 the symbol (w will be treated as
an illegal character. This bit has no effect on output.

19 If this bit is 0, illegal characters in the input string will be ignored. The error flag
will be set when one is read. If this bit is 1 and an illegal character is read, the
scan will be terminated, the error flag will be set and the string pointer will be set
to the character read. The conversion will take place on the characters read to
that point. This bit has no effect on output.

20 If this bit is 0, the input string ±N±M is legal. N is treated as the mantissa and M
the exponent of a floating, real number. If this bit is 1, the second occurrence of
a sign will be treated as an illegal character. This bit has no effect on output.

21 Must be zero.

22 Must be zero.

23 If a 1, the double precision accumulator will be used for numeric input-output.
Significance is extended to 18+ digits. Appl ies to all format types.

Figure 33. Format Word for Floating Point (cont.)

OPERATING CHARACTERISTICS Error Conditions:

On input the D fi I e is overridden by the presence of a
decimal point. If a decimal point and/or E are present,
any form of the number is acceptable to any input format.
It is only in the absence of these characters that the format
specifications determine the interpretation of the field.
Illegal characters appearing anywhere in the field may be
ignored depending on bit 19 of the format word. Blanks
wi II be converted to zero.

The maximum allowable number of input digits is twelve.
If more than twelve digits are input the most significant
twelve will be used. If twelve digits are used, care must
be taken as overflow can occur during the conversion pro­
cess. Insignificant leading or trailing zeros will be ignored.

The maximum allowable integer on input is ±2
38

-lor
±274, 877, 906, 913. Floating point numbers must lie in
the range:

9. 9999999999E -78 ~ number ~ 5. 789604462SE+76

Free form output will be output using an F17ifthe exponent
lies in the range -1 ~ exponent ~ 10 (X = 10 -number of
digits to left of decimal point). If the number is outside
this range an E17. 11 will be used. Free form output always
assumes a floating point number. If an integer is input it
will be normalized prior to conversion.

For the E format on output, the E (C0 if bit 16 of the format
word is 0) is always followed by a + sign or - sign. On all
output the sign of the number is printed only if it is negative.

If an error is detected during the conversion process a posi­
tive integer indicating the error type will be returned in the
index register as given in Table 7.

T obi e 7. Error Conditions

Error I
No. , Error Type

X=O

X=-l

X=2

X=3

X=4

X-S

No error waS detected.

Number of decimal digits after the decimal point
exceeds 12for single precision and 18 for extended
precision on formatted input. Twelve and 18
used respectively.

Field too short for E format on output. Overflow
action wi II be taken depending on the va I ue of
bit 15 of the format word.

Input number exceeds the maximum allowable
bounds.

Field too short for F or I format on output.
Overflow action will be taken depending on
the value of bit 15 of the format word.

An E format was specified for input but the input
string does not contain an "E" or ".". The number
will be converted using an equivalent F format.

An illegal character was encountered in the
input scan. Character is ignored.

Operating Characteristics 71

String Conversion

Example 3

NAME: SIC

FU NCTION: String to internal conversion

CALLING SEQUENCE: LDX
SIC
BRU
BRU

FORMAT
POINTER
INTEGER
FLOATING

DESCRIPTION: FORMAT describes the type of conversion to be done (see the SDS 940 FORTRAN IV Manual,
Pub. No. 90 11 15, for the FORMAT word specifications). The string of input characters starts
at the character following the character pointed to by the character address in POINTER. The
character address in POINTER+ 1 points to the last character of the input string.

NAME: ISC

FUNCTION: Internal to String Conversion

CALLING SEQUENCE: LDP
LDX
ISC

VALUE
FORMAT
POINTER

DESCRIPTION: FORMAT describes the type of conversion to be done (see the S DS 940 FORTRAN IV Manual,
Pub. No. 90 11 16 for the FORMAT word specifications), POINTER+l contains the character
address of the character immediately preceding the position where the first character of output
is to go. POINTER+l is incremented by one for each character of output added to the character
string. VALUE is the double word floating point value to be converted.

NAME: FFI

FUNCTION: Formatted input

CALLING SEQUENCE: LDX FORMAT

BRS 52

DESCRIPTION: Characters are read for a file and converted to internal form. Either a floating point value is

NAME: FFO

left in A, B or an integer is left in A. A skip return is generated if a floating point value is read
a nd the input mode is free format.

FUNCTION: Formatted output

CALLING SEQUENCE: LDP VALUE

LDX FORMAT

BRS 53

DESCRIPTION: The floating point value in A, B or the integer in A is output to the file specified in FORMAT.

72 Operating Characteristics

20. SCHEDULING, FORKS AND PROGRAM INTERACTION

NUMBER: 78

NAME: SAIR

FUNCTION: Arm/Disarm Software Interrupts

STATUS: User

CALLING SEQUENCE: LDA M
BRS 78

M is the complete new interrupt mask.

DESCRIPTION: The new interrupt mask is substituted for the old one. A user may arm inter­
rupt 1-10. An exec fork may arm interrupt 11 also. Interrupt 1 is in bit 4 of the mask ward.
The interrupts are as follows:

1 Interrupt if Program Panic (BRS 10 or Escape)

2 Interrupt if Memory Panic

3 Interrupt if Lower Fork terminates

4 Interrupt if any I/O condition occurs which sets a flag bit (0, 7 ar 8 in file number
word)

5 through 10 interrupts on condition set by user

11 Interrupt if DSU error

Location 200B plus the interrupt number must be set to paint to a routine ta process the
interrupt. When the interrupt occurs,an SBRM* is executed to the location pointed to. If it
is desired to return to the point in the program interrupted, the user must BRR to the location
where the return was saved.

Example:

LDA
STA
LDA
BRS

=ESCAPE
201 B
2B6
78

Set interrupt and arm it

REGISTERS AFFECTED: None

73

NUMBER: 79

NAME: SIIR

FUNCTION: Cause Interrupt

STATUS: User

CALLING SEQUENCE: LOA
BRS

N
79

N Interrupt number. N has the range of 5 ta 10.

DESCRIPTION: Parallel forks in the structure are searched first and then higher forks. The
interrupt will be caused in the first fork found which has the interrupt armed. If no fork has
the interrupt armed, it is treated like a NOP. This would normally be used to cause inter­
rupts 5 through 10 to interrupt.

REGISTERS AFFECTED: None

NUMBER: 49

NAME: SRIR

FUNCTION: Read Interrupts Armed

STATUS: User

CALLING SEQUENCE: BRS 49

DESCRIPTION: Reads the interrupt mask into the A register. Bit 4 corresponds to interrupt
number 1, 5 to number 2 and etc. There are 11 programmable interrupts. See BRS 78.

REGISTER AFFECTED: A

74

NUMBER: BE+12

NAME: TIMINT

FUNCTION: Interrupts a Fork After 0 Specified Period of Time.

STATUS: U:;er

CALLING SEQUENCE: LDA
LDB
LDX
BRS
NORMAL

M t-Jew interrupt mask.

M
T
N
BE+ 12
RETURN

T Time in milliseconds after which the fork will be interrupted.
N Interrupt number.

DESCRIPTION: The fork issuing this BRS will be interrupted after the delay if the interrupt
specified by N is armed at that time. (Exception: The interrupt will he ignored if the fork
is dismissed on a BRS 9 at the time of the interrupt.) If a fork gives this BRS again with the
same N before the time has passed, the new time will be set. A fork may have a maximum of
three timing interrupts pending simultoneously. See BRS 8l.

REGISTERS .<\FFECTED: None

NUMBER: 90

NAME: DFR

FUNCTION: Declare a Fork for "Escape"

STATUS: User

CALLING SEQUENCE: BRS 90

DESCRIPTION: The PACT pointer of the fork thot executes this BRS will be placed into
location TTYASG (see Teletype Tables). If the user types "escape", this fork and all lower
forks wi II be terminated. The fOI k above TTYASG wi II be activated. However, the Exec­
utive fork will never be terminated, even if TTYASG has been assigned to it.

REGISTERS AFFECTED: None

75

NUMBER: 46

NAME: NROUT

FUNCTION: Turn Escape Off

STATUS: System

CALLING SEQUENCE: BRS 46

DESCRIPTION: This BRS causes the NT bit (see PIM word of PAC table) to be set. If an
escape occurs after this BRS has been executed, it will not be honored. However, the TP
bit will be set (see PIM). If the TP bit is set when the user executes the BRS 47, the escape
will then be honored. This scheme allows the first escape that occurs to be processed later
and ignores any subsequent escapes.

A program running with escape turned off cannat be terminated by a higher fork.

See also, BRS 26 and 47.

REGISTERS AFFECTED: None

NUMBER: 47

NAME: SROUT

FUNCTION: Turn Escape On

STATUS: System

CALLING SEQUENCE: BRS 47

DESCRIPTION: This BRS reverses BRS 46; that is, reactivates the escape interrupt. If an
escape occurred while in an Off condition, the escape will now be processed.

REGISTERS AFFECTED: None

76

NUMBER: 26

NAME: SKROUT

FUNCTION: Skip if Escape Waiting

STATUS: System

CALLING SEQUENCE: BRS 26

EXCEPTION RETURN
NORMAL RETURN

DESCRIPTION: Checks for a stacked escape for this program and if there is one, transfers
control to the "normal ,eturn" or, if not, to the "exception return". Significant only after
BRS 46.

REGISTERS AFFECTED: None

77

NUMBER: 9

NAME: FKST

FUNCTION: Open Fork

STA TUS: User

CALLING SEQUENCE: LOA T
BRS 9

T Address of a "Panic Table". (See format of Panic Table in Chapter 3).
Bits 0 through 5 of register A have the following significance:

o Make fork system if current fork is system.

Set fork relabeling from panic table. Otherwise use current relabeling.

Propagate escape assignment to fork (see BRS 9O).

Make fork fixed memory. It is not allowed any more memory than it started
with.

4 Make fork local memory. New memory will be assigned to it independent of
the controlling fork. (See section on "Memory Acquisition").

5 Make for.k subsystem status if current fork is subsystem.

DESCRIPTION: BRS 9 is used to create a lower fork. The panic table indicated by
register A must not be the same for two forks of the same fork or overlap a page boun-
dary; if it is, BRS 9 is illegal. BRS 9 creates a new fork as a fork of the fork
creating it, which is called the controlling fork. The fork is lower in hierarchy of forks than
the controlling fork. The controlling fork may itself be a fork of some still higher fork.

When BRS 9 is executed by a user fork, the user fork is dismissed until the lower fork termin­
ates. This has the same effect as issuing a BRS 31 immediately after a BRS 9. A user may
not have more than eight forks in his fork structure. This includes the system fork and one fork
for each system BRS that is active. Only one system BRS can be active.

REGISTERS AFFECTED: None.

78

NUMBER: 57

NAME: CQO

FUNCTION: Guarantee 16 msec Computing

STATUS: USN

CALLING SEQUENCE: BRS 57

DESCRIPTIOf\I: This BRS guarantees to the user upon return at least 16 msec. of uninterrupted
computation. This is done by dismissing the user if less than 16 msec. remain in his time
quantum.

This time will include some system overhead. Thus, if the time required is very close to
16 msec., a BRS 45 should be used. BRS 45 guorantees several times this amount.

REGISTERS A!=FECTED: None

NUMBER: 30

NAME: FKRD

FUNCTION: Read Fork

STATUS: User

CALLING SEQUENCE: LDA P
BRS 30

Panic: Table Address

DESCRIPTION: Reads the current status of a lower fork into the panic tClble indicated by
the A register. It does not influence the operation of the fork in any way.

REGISTERS AFFECTED: None

79

NUMBER: 107

NAME: FKRA

FUNCTION: Read All Fork Statuses

STATUS: User

CALLING SEQUENCE: BRS 107

DESCRIPTION: The status of all lower forks is recorded in the appropriate panic tables.

REGISTERS AFFECTED: None

NUMBER: 45

NAME: SQO

FUNCTION: Dismiss on Quantum Overflow

STATUS: User

CALLING SEQUENCE: BRS 45

DESCRIPTION: This BRS causes the user to be dismissed as though he had overflowed his long
quantum. It guarantees that the next time he is started he will have a complete short time
quantum. See BRS 57 to guarantee 16 msec.

REGISTERS AFFECTED: None

80

NUMBER: 72

NAME: EXDMS

FUNCTION: System Fork Dismissal

CALLING SEQUENCE: LDX N
BRS 72

N The number of the queue that the fork is to be put on.

DESCRIPTION: Dismisses a system fork and puts it on the specified queue. Returns to call

+1 when recalled. The reactivation condition must be in the Monitor. This BRS is used to
dismiss the Phantom User.

o Teletype queue

I/O queue

2 Short time quantum queue

Long time quantum queue

REGISTERS AFFECTED: None

NUMBER: 81

NAME: WREAL

FUNCTION: Dismiss for Specified Amount of Time

STATU S: User

CALLING SEQUENCE: LDA T
BRS 81

Dismissal time in milliseconds.

DESCRIPTION: The fork is dismissed for the number of milliseconds specified in A. See

BE+12

REGISTERS AFFECTED: A

81

NUMBER: 31

NAME: FKWT

FUNCTION: Wait for Fork to Cause a Panic

STATUS: User

CALLING SEQUENCE: LDA
BRS

Panic Table Address

P
31

DESCRIPTION: Causes the controlling fork to be dismissed until the lower fork, or forks,
causes a panic. When it does, the controlling fork is reactivated at the instruction follow­
ing this BRS, and the panic table contains the status of the fork on its dismissal. The status
is also put into the X register. The panic table address is put into the A register.

The cantrall i ng fork must have armed an interrupt or a lower fork must execute a BRS 10.

REGISTERS AFFECTED: X, A

NUMBER: 106

NAME: FKWA

FUNCTION: Wait for Any Fork to Terminate

STATUS: User

CALLING SEQUENCE: BRS 106

DESCRIPTION: Fork is dismissed until some lower fork terminates. When a lower fork ter­
minates, the panic table address will be left in A.

REGISTERS AFFECTED: None.

82

NUMBER: 109

NAME: DMS

FUNCTION: Dismiss

STATUS: User

CALLING SEQUENCE: BRS 109

DESCRIPTlOl'J: The fork is dismissed. It can only be activated again by a program inter­
rupt which has been armed by this fork or the termination of a lower fork..

REGISTERS AFfECTED: None.

NUMBER: 10

NAME: PPAN

FUNCTION: Programmed Panic. Terminates a Fork.

STATUS: User

CALLING SEQUENCE: BRS 10

DESCRIPTION: BRS 10 terminates the fork that issues it and returns control to the higher
fork. It is like typing "escape" on the teletype. This condition can be distinguished from
a panic caused by the escape key only by the fact that in the former case the program
counter in thE! panic table points to a word containing BRS 10. This BRS would normally be
used to terminate a fork when it is finished. The information in the panic table would,
therefore, only be useful to a higher fork or to this fork if interrupt 4 has been armed by
this fork.

REGISTERS AFFECTED: None

83

NUMBER: 32

NAME: FKTM

FUNCTION: Terminate a Fork

STATUS: User

CALLING SEQUENCE: LDA
BRS

Panic Table

P
32

DESCRIPTION: Causes a lower fork to be unconditionally terminated and its status to be
stored into the panic table. The X register contains the status word upon return.

REGISTERS AFFECTED: X

NUMBER: 73

NAME: EPPAN

FUNCTION: Economy Panic

STATUS: User

CALLING SEQUENCE: LOA N
BRS 73

N Number of forks to terminate.

DESCRIPTION: This is like doing a BRS 10 for each of the forks specified. Forks are ter­
minated going up until the Executive fork is reached or until N forks have been terminated.

REGISTERS AFFECTED: None.

84

NUMBER: 108

NAME: FKTA

FUNCTION: Terminates All Forks

STATUS: User

CALLING SEQUENCE: BRS 108

DESCRIPTION: All lower forks are terminated and their status read into the corresponding
panic tables.

REGISTERS AFFECTED: None

85

21. INPUT jOUTPUT

NUMBER: 1

NAME: MONOPN

FUNCTION: Open a File of a Specific Device

STATUS: System

CALLING SEQUENCE: LDA ±I

LDB ±L (BCDT APE autput only)

LDX D

BRS

EXCEPTION RETURN

NORMAL RETURN

File number will be in register A on Normal Return.

The relative address (DSU Address MOD 4) of the file's Index block for DSU files,
or unit number for magnetic tape, otherwise anything. (I = 0 for a new output file
si nce the Index Block address is unknown.)

Make the file read only.

+ Make the file read/write.

D Device number.

+ for 80 char. records, - for 132 char. records.

Available device numbers are as follows:

1. Paper tape input.

2. Paper tape output.

3. BCD tape input.

4. Magnetic tape input.

5. Magnetic tape output.

6. Card input BCD.

7. Card input BIN.

8. Sequential DSU input.

9. Sequential DSU output.

10. BCD tape output.

86

11. line printer.

12. Card punch BCD

13. Card punch BIN

DESCRIPTION: The "apen file" BRS is used to condition a file for input or output processing.
If the file is successfully opened, control is transferred to the normal return with A continu­
ing the file number; otherwise control is transferred to the exception return. Exception con­
ditions are as follows:

1. Device or file in use or not available.

2. Tao many files open.

3. No disc: space left.

A file may be opened for input any number of times for the purpose of multiple user access or
multiple processing by a single user. A file that is opened for output must be closed before
it is opened. See also, BRSs 2, 3, 20, 82.

REGISTERS AFFECTED: A, X

87

NUMBER: 110

NAME: RDU

FUNCTION: Read Device and Unit

STATUS: User

CALLING SEQUENCE: LOA FILE No.
BRS 110
NORMAL RETURN

DESCRIPTION: Output X device number.
A unit number.

See BRS 1 for device number description.

REGISTERS AFFECTED: A, X

NUMBER: 2

NAME: MONCLS

FUNCTION: Clase a File

STATUS: User

CALLING SEQUENCE: LOA N
BRS 2
NORMAL RETURN

N File number (obtained when file was opened).

DESCRIPTION: The "close file" BRS is used to indicate to the system all processing is com­
pleted on this file. All necessary termination processing will be completed and control will
be transferred to the normal return. See BRS 20.

REGISTERS AFFECTED: None

88

N JMBER: 20

N,<\ME: CFILE

FUNCTION: Close a Fill

STATUS: User

(,I,LUNG SEQUENCE: LDA
BRS

N Fi Ie Number

N
20

DESCRIPTION: The "clo,e file" BRS is used to indicate to the system ell processing is
completed on this file. If the file number indicates magnetic tape, the file will be termina­
ted and,if output, the End of File will be written; but in either case, the tape will be posi­
tioned at the start of the next file and the tape is de-allocated. All registers are changed.

REGISTERS AFFECTED: .All

NUMBER: 8

N<\ME: IOH

FUNCTION: Close all Files

STATUS: User

CMUNG SEQUENCE: BRS 8
NORMAL RETURN

DESCRIPTION: The "clo'.e all files" BRS is used to indicate the the system that all processing
is completed on all files. The system will complete all necessary termination processing on
all files :md transfer conhol to the normal return. BRS 8 is always executed when control
returns to the system. This BRS will not close magnetic tape files correctly. See BRS 1, 2,
8L, and 17.

REGISTERS AFFECTED: t'-lone

89

NUMBER: 66

NAME: DFDL

FUNCTION: Delete DSU File Data

STA TUS: User

CALLING SEQUENCE: LDA N
BRS 66
NORMAL RETURN

N File Number

DESCRIPTION: This BRS will return to available storage all DSU blocks which are assigned
to the indicated file and clear the index block of DSU addresses. This BRS does not release
the index block nordoes itdelete the file directory entry from the Customer File Directory.

REGISTERS AFFECTED: None

NUMBER: 67

NAME: DFER

FUNCTION: Delete a Specified Block of the DSU

STATUS: System

CALLING SEQUENCE: LDA D
BRS 67
NORMAL RETURN

D Address of the DSU block.

DESCRIPTION: This BRS will return the DSU block indicated by the address in register A to
available storage and transfers control to the normal return. This BRS should be used to de­
lete Index Blocks. The BRS does not clear the Index Block address from the Customer File
Directory, nor does it delete the file entry from the Customer File Directory.

REGISTERS AFFECTED: None

90

NUMBER: 87

NAME: DFRX

FUNCTION: Read DSU File Index Block

STATUS: System

CALLING SEQUENCE: lOA D
LDX W
BRS 87
NORMAL RETURN

D DSU address of the index block (MOD 4)
W Core address into which the block is to be read.

DESCRIPTION: Reads the specified block into the given core location and transfers control
to the normal return. The block read is the size of the currently defined index block. The
size of an index block varies with the assembly.

REGISTERS AFFECTED: None

NUMBER: 104

NAME: RSYB

FUNCTION: Read a Page from the RAD

STATUS: System

CALLING SEQUENCE: lOA C
LDB
BRS 104

C Core Address

RAD Address

DESCRIPTION: Reads one page from the RAD starting at the address R into a page in core.
C may be any location in that page. The data will start in the first word of the page.

Uncorrectable RAD errors result in an instruction trap or interrupt 11 if it i~; armed. Try com­
mand again.

REGISTERS AFFECTED: None

91

NUMBER: 105

NAME: WSYB

FUNCTION: Write a Page on the RAD

STATUS: System

CALLING SEQUENCE: lOA C
lOB R
BRS 105
NORMAL RETURN

DESCRIPTION: Writes one page on the RAD starting at the address R from a page in core.
C may be any locatian in that page. The data will start in the first ward of the page.

Uncorrectable RAD errors result in an instruction trap or interrupt 11, if it is armed. Try
command again.

REGISTERS AFFECTED: None

NUMBER: 113

NAME: DFCD

FUNCTION: Compute File Size of a DSU File

STATUS: User

CALLING SEQUENCE: lOA File Number
BRS 113
NORMAL RETURN

DESCRIPTION: Adds the number of data words (in multiples of 255) in the file to the num­
ber in the X register. Returns the result in X.

REGISTERS AFFECTED: X

92

NUMBER; 118

NAME: TGET

FUNCTION: Allocate Magnetic Tape Unit

STATUS: System

CALLING SEQUENCE: LDA Tape Number
BRS 118
EXCEPTION RETURN
NORMAL RETURN

DESCRIPTION: Assigns the tape requested to the user. If the tape is already busy with someone
else the exception return is executed.

REGISTERS AFFECTED: None

NUMBER: 119

NAME: TREL

FUNCTION: De-allocate Magnetic Tape Unit

ST A TLJ S: System

CALLING SEQUENCE: LDA Tape Number
BRS 119
NORMAL RETURN

DESCRIPTION: Releases the tape specified.

REGISTERS AFFECTED: None

93

NUMBER: BE+9

NAME: RDSYB

FUNCTION: Read DSU Page

STATUS: System

CALLING SEQUENCE: LDA C
LDB R
BRS BE+9

C Care Address
R Disc Address

DESCRIPTION: Use like 105. Can only be called by the Executive. BE+2 can be used to
perform this function if less than a page is to be written.

REGISTERS AFFECTED: None

NUMBER: BE+ 10

NAME: WDSYB

FUNCTION: Write DSU Page

STATUS: System

CALLING SEQUENCE: LDA C
LDB R
BRS BE+ 10

C Core Address
RAD Address

DESCRIPTION: Use like 104. Can only be called by the Executive. BE+l can be used to
perform this function if less than a page is to be read.

REGISTERS AFFECTED: None

94

NUMBER: BE+7

NAME: BPTE~.T

FUNCTION: Test a Breakpoint Switch

STATUS: System

CALLING SEQUENCE: LDX Switch Number
BRS BE+7
SWITCH UP RETURN
SWITCH DOWN RETURN

DESCRIPTION: Tests the breakpoint switch (1, 2, 3, 4) indicated in X. If the switch is
down, the BRS skips on return.

REGISTERS AFFECTED: None

NUMBER: BE+ 1

NAME: ARD

FUNCTION: Read DSU

STATUS: System

CALLING SEGUENCE: LDA Core Address
LDB Disc Address
LDX Number of Words
BRS BE+ 1
NORMAL RETURN

DESCRIPTION: Reads up to 2K words from the disc. Transfer must not cross a page boundary
and must be in multiples of 16 words. Errors result in an instruction trap or programmed inter­
rupt 11, if it i! armed. No two forks that are to run simultaneously should both use this BRS.

REGISTERS AFFECTED: None

95

NUMBER: BE+2

NAME: AWD

FUNCTION: Write DSU

STATUS: System

CALLING SEQUENCE: LDA
LDB
LOX
BRS

Core Address
Disc Address
Number af Words
BE+2

DE SCRIPTION: Like BRS BE+ 1. The number of words must be a multiple of 64.

REGISTERS AFFEC TED: None

NUMBER: BRS BE+ 15

NAME: RDPGE

FUNCTION: Read an SMT page from RAD

STATUS: SYSTEM

CALLING SEQUENCE: LDA
BRS

N SMT number

N
BE+15

DESCRIPTION: Reads an SMT page from the RAD. The page must already be in memory. It
returns the RAD address in B if a read occurs; otherwise there is no change. The purpose of
this BRS is to read in another copy of the page in the event that the copy of the page in core
has been altered.

REGISTER AFFECTED:

96

I'IUMBE~: BE+ 17

I'IAME: C K BUF

FUNCTION: Test for lost buffer free

STATUS: User

CALLING SEQUENCE: BRS BE+ 17

DESCRIPTION: If 0 buffer in the user's TS block is available, the program continues.
If nat, Cln instruction trap will occur.

R:GISTERS AFFECTED: None

I'-IUMBER: BRS BEt19

I'-IAME GTFDT

FJNCTION: Get creation date, access count for a file

STATUS: System

CALLING SEQUENCE: LDA
BRS BE+19

Address in file directory hash table that corresponds to this file. (See contents of
A register on normal return from BRS 37)

DESCRIPTION: Extracts the creation date and the access count for a file. A - creation date;
B - access count.

REGISTERS AFFECTED: A and B

97

NUMBER: 15

NAME: GFN

FUNCTION: Reads Input File Name from a Command File and Looks up the File Name in
the User's File Directory.

STA TUS: User

CALLING SEQUENCE: LDA N
BRS 15
EXCEPTION RETURN
NORMAL RETURN

N Cammand File Number

DESCRIPTION: The routine ignores leading spaces, leading multi-blanks, and leading car­
riage return characters. It then uses the BRS 37 to look up the file name in the user's file
directory hash table.! It returns in the registers for both returns exactl y what BRS 37
puts there, which is:

Exception Return:

Normal Return:

X
A &B
A

B
X

Pointer to the input file name string pointers
Input file name string pointers
Pointer to the string pointers of the desired file in the
file directory hash table
The value word of the hash table entry
Changed

Note: The information contained in the registers cannot be used directly by the user since
the addresses are in the TS Block; this BRS is normally followed by the BRS 16.

If the input file name string begins with a left parenthesis, or with the full quote,
the file name will be located in another user's file directory or in the public file
directory, respectively; in these cases, the input command file must be the teletype.
Since the BRS 37 is not used in this case, the information in the registers is of no
practical use to the user, and the BR 5 must be followed by the BRS 16 as indicated
under the BRS 16.

REGISTERS AFFECTED: None

tThe exception return is taken if the input file name string cannot be located in the file
directory.

98

NUMBER: 16

NAME: GIFNB

FUNCTION: Open Input File in File Directory.

STATUS: User

CALLING SEQUENCE: LDA N
BRS 15
BRU (Error)
BRS 16
EXCEPTION RETURN
NORMAL RETURN

N C:>mmand file number

DESCRIPTION: Opens an input file located in the user's file directory. BRS 16 requires
the location of the first word of the entry in the file directory hash t(lble. The exception
return is taken if the pointer in A is not pointing to a proper location in the hash table, or if
the file cannot be opened for any reason, such a physical device that ccmnot be an input file.
The file directory pointer may be obtained from a BRS 15 or a BRS 18.

Excepti (In Return:
Normal Return: A:

B:
X:

REGISTERS AFFECTED: All

NUMBER: 17

NAME: UABORT

All registers changed
File Number
File Type (0-4)
File Size

FUNCTION: Close all Files (Including magnetic tape)

STATUS: User

CALLING SEQUENCE: BRS 17

DESCRIPTION: If magnetic tape has been used, the last record will be terminated and if
output, the End of File will be written; in either case, the tape will be positioned at the
start of the next file. The tape is then closed and the unit is de-allocated. See BRS 8.
All registers are changed.

REGISTERS AFFECTED: All

99

NUMBER: 18

NAME: GOFNA

FUNCTION: Reads File Name from a Command File and Looks Up the File Name in the
User's File Directory. The Command File Must Be an Input File.

STATUS: User

CALLING SEQUENCE: LDA N
BRS 18
EXCEPTION RETURN
NORMAL RETURN

N ~ Command File Number
Bit 1 = 1 of A Register = Assume a file name is correct and does not type "OLD FILE" or
"NEW FILE".

DESCRIPTION: The routine ignores leading spaces, leading multiblanks, and leading carriage
return characters. If the string begins and ends with a single quote or a slash, the string is
terminated for look-up with this character and the string is looked up in the user's file di­
rectory using the BRS 5. A confirming carriage return must follow the quote or slash before
the string is looked up. The exception exit is taken if the character is not a carriage return.
If the string is found in the file directory hash table, the message "OLD FILE" is typed,
otherwise the message "NEW FILE" is typed. If a confirming line feed, carriage return, or
period is then next in' the input string, the normal return will be taken, otherwise the ex­
ception return. In the case of a new file, the file name is inserted canditionally into the
file directory.

If the string begins with a character other than a single quote or a slash, the string is loaked
up in the user's file directory using the BRS 37. If the string is not located, the error exit is
immediately taken causing the exception return. The exception return will also be caused
if the file is read only as indicated by the flag in the file directory.

Excepti on Return:
Normal Return: A:

B:

X:

REGISTERS AFFECTED: All

All registers changed.

Location of the file in the directory hash table.
Confirming character in case of a quote or slash file;
otherwise, the file directory hash table value word.
Changed.

100

NUMBER: 19

NAME: GOFNB

FUNCTION: Open Output File Located in File Directory

STATUS: User

CALLING SEQUENCE: LOA N 1
LDB N2 (For Tape Files Only)
LDX N3
BRS 19
EXCEPTION RETURN
NORMAL RETURN

Nl Information supplied in A by BRS 18 (location in the file directory).
N2 File Size (as supplied in X by BRS 16) for tape files only.
N3 File Type (as supplied in B by BRS 16).

DESCRIPTION: Opens an output file located in the user's file directory. The information
required in the register is indicated above. The word in A is checked for legality. If it is
not a valid pointer, the exception return is taken. The exception return is also taken if the
fi Ie cannot be opened for any reason, such as a physical device that cannot be used for out­
put. In the case of a new file, the file directory entry is completed. If the new file is a
DSU file and it cannot be opened, the message "NO ROOM" is typed. The message "FILE
TYPE WRONG" is typed as appropriate.

Exception Return: All changed.
Normal Return: A File Number.

B & X Changed.

REGISTERS AFFECTED: All

101

NUMBER: 48

NAME: GSFN

FUNCTION: Look up Input/Output File Name

STATUS: User

CALLING SEQUENCE: LDP N
BRS 48
EXCEPTION RETURN
NORMAL RETURN

N String pointers for the file name.

DESCRIPTION: The file name is looked up in the file directory hash table using the BRS 5.
If it is not there, the exception return is taken.

Exception Return: A & B:
X:

Normal Return: A & B:

No change.
Changed.
Location in file directory hash table. Can be used by
BRS 16 or BRS 19.

X: Changed.

REGISTERS AFFECTED: All

NUMBER: 60

NAME: GSFI

FUNCTION: Look Up Input/Output File Name and Insert if New.

STATUS: User

CALLING SEQUENCE: LDP N
BRS 60
EXCEPTION RETURN
NORMAL RETURN

N Stri ng poi nters for the fj I e name.

DESCRIPTION: The file name is looked up in the file directory hash table using the BRS 5.
If it is not there, it is inserted in the hash table. The exception return is taken if it cannot
be inserted in the case of a full directory.

Exception Return: A & B:
X:

Normal Return: A & B:
X:

No change.
Changed.
String pointer to location in file directory hash table.
Changed.

102

NAME: CIa

FUNCTION: Character Input/Output

STATUS: USE!r

CALLING SEQUENCE: LDA
CIa

C (Output only)
N

C 8 bit data character right justified.
N Address of word containing a file number.

DESCRIPTION: CIa is used to input or output a single character from, or to, a file from
the A register. On input an End of Record or End of File condition will set bits 0 and 8
or bits 0 and 7 in the file number and return a 1348 or 1378 character, respectively. If in­
terrupt 4 is armed (see BRS 78), it will occur. The End of Record occurs on the next input
operation after the last character of the record has been input and the E!,d of File condition
occurs on the next input operati on after the End of Record which signal s the last record of
the file. If an error occurs, bits 0 and 6 will be set in N and interrupt 4 will occur if it is
armed.

WIO and BIO should not be mixed with CIa to read or write a given fil,e.

REGISTERS AFFECTED: A

NAME: WIO

FUNCTION: Ward Input/Output

STATUS: User

CALLING SEQUENCE: LOA
WIO

o Data word to be written.

D (Output only)
N

N Address of word containing a file number.

DESCRIPTION: WIO is used to input or output a word of data to or from the A register. On
input an End of Record condition returns a word of three 134B characters and sets bits 0 and
8 in the file number word. If interrupt 4 is armed (see BRS 78), it will ()ccur. An End of
File condition returns a word of three 137B characters and sets bits 0 and 7 in the file num­
ber word. If interrupt 4 is armed, it will occur. If an End of Record or File condition oc­
curs with a partially filled out word, the word is completed with 134B or 137B characters.
If an error occurs, bits 0 and 6 are set in N. If interrupt 4 is armed it will occur.

CIa and WIO should not be mixed to read or write a given file.

REGISTERS AFFECTED: A

103

NAME: BIO

FUNCTION: Blocked Input/Output

STATUS: User

CALLING SEQUENCE: LDA W
LOX I
BIO N
EXCEPTION RETURN
NORMAL RETURN

I Starti ng memory address.
W Number of words to be read or written.
N Address of word containing a file number.

DESCRIPTION: BIO is used to input a block of words to memory or output a block of words
from memory. The A register will contain the first memory location unaffected at the end
of the operation. If the operation is completed successfully, control will be transferred
to the normal return, otherwise control will be transferred to the exception return.

On input an End of Record or End of File condition will set bits 0 and 8 or 0 and 7 respec­
tively in the fi Ie number. An error will set bits 0 and 6. Interrupt 4 wi II occur if armed,
when any ~f these bits are set. Exception conditions are end of record, end of file, and
bad record.

If bit 1 is set in the Data Block disc address in the Index Block of a DSU file, it indicates
the end of the data blocks and is the end of a logical record.

REGISTERS AFFECTED: A, X

104

NAME: CTRL

FUNCTION: Input/OutP'Jt Control (for paper tape and magnetic tape only)

STATUS: System

C6.LLING SEQUENCE: LDB
LDA
CTRL

C Control number
N File number

N1
C
N

N 1 Number for control 3 or 4

Di:SCRIPTION: CTRL provides the following control functions for tape fi les;

Control Description

1 Write end of record on output. Record count not used.
2 Backspace physical block.
3 Forward space (B) files.
4 Backspace (B) fi les.
5 Erase tape (output only) (3 inches).
6 Rewind.
7 Write EOF. Output only.
8 Long erase. Output only.

REGISTERS AFFECTED: None

105

22. TELETYPES

NUMBER: 23

NAME: LNKS

FUNCTION: Link Teletypes

STATUS: System

CALLING SEQUENCE: LDA T
BRS 23
EXCEPTION RETURN
NORMAL RETURN

T Teletype Number

DESCRIPTION: This BRS will link the controlling teletype with the teletype specified in the
A register. The exception return will occur if: the teletype specified by T is already linked;
is in the 8-level mode; does not have the accept message bit set; or has the XOFF, XON, or
P bits set in TTYBL. If the exception return occurs, the A register will contain either the
number of the teletype that is currently linking to the teletype specified by T or A will con­
tain the TTYBL word for teletype T for all other conditions. The controlling teletype number
will then be placed into bits 1 through 7 of the LCW word of teletype T.

If the normal return occurs, bit 0 of LCW of both teletypes will be reset and bits 18 through
23 will contain the linked teletype number.

REGISTER AFFECTED: A

NUMBER: 24

NAME: LNKC

FUNCTION: Break teletype link

STATUS: User

CALLING SEQUENCE: LDX T

BRS 24

T Teletype Number

The controlling teletype link with the teletype indicated by bits 18-23 of LCW is broken
(i.e., bit Oof the LCW word for both teletypes is set).

REGISTERS AFFECTED: None

106

NUMBER: 25

NAME: MSGS

FUNCTION: Accept/Refuse Messages (links)

STATUS: User

CALLING SEQUENCE: LDX
LOA I
BRS 25

T Any teletype number (-1 to indicate controlling teletype)
I Bit 22 set to accept messoges (links)

Bit 22 reset to refuse messages (links)
Bit 23 set to accept input
Bit 23 reset to refuse input

DESCRIPTION: This BRS will set or reset bit 8 (the accept input bit) ond/or bit 9 (the
accept message bit) of the TTYBL word for the teletype indicated by the X register.

REGISTERS AFFECTED: None

107

NUMBER: 27

NAME: ASH

FUNCTION: Attach TTY to this program

STATUS: System

CALLING SEQUENCE: LDA T
BRS 27
EXCEPTION RETURN
NORMAL RETURN

T Teletype Number

DESCRIPTION: To give total control over a teletype to the requesting program. If the
indicated type is free, it is attached to the requesting program and transfers control to the
"normal return". If it is not free, control is transferred to the "exception return".

REGISTERS AFFECTED: None

NUMBER: 28

NAME: RSTT

FUNCTION: Release TTY

STATUS: System

NOT IMPLEMENTED

CALLING SEQUENCE: LDA T
BRS 28

T Teletype Number

DESCRIPTION: Returns to a free status the teletype indicated by the A register. If the
teletype was not attached to the requesting program a "panic" will be executed.

Note: All attached teletypes are released when the user logs out.

REGISTERS AFFECTED: None

NOT IMPLEMENTED

108

NUMBER: 11

NAME: CIB

FUNCTION: Clear the Teletype Input Buffer

STATUS: User

CALLING SEQUENCE: LDX
BRS

T
11

Teletype number (-I is used ta indicate the controlling teletype).

DESCRIPTION: Sets the buffer pointers to indicate there are no characters in the teletype
input buffer.

REGISTERS AFFECTED: None

NUMBER: BE+6

NAME: TTYON

FUNCTION: Turns a Teletype Line On or Off.

STATUS: System

CALLING SEQUENCE: LDA =~TTY No.
LDB =,0 (off) or -1 (on)
BRS BE+6
NORMAL RETURN

DESCRIPTION: Issues the EOM and POT commands which cause the line to be turned off
(hung up) or made ready to accept an incoming call.

REGISTERS AFFECTED: None

109

NUMBER: 29

NAME: COB

FUNCTION: Clear the Output Buffer

STATUS: User

CALLING SEQUENCE: LDX
BRS

T
29

T Teletype Number (-1 indicates the controlling TTY).

DESCRIPTION: Sets the buffer pointers to indicate there are no characters in the teletype
output buffer.

REGISTERS AFFECTED: None

NUMBER: 12

NAME: CET

FUNCTION: Declare Echo Table

STATUS: User

CALLING SEQUENCE: LDX
lOA
BRS

T
R
12

T Teletype number (-1 is used to indicate the controlling TTY).

R ± 1, 2, or 3 to indicate the proper echo table. If the sign bit of R is set, each 8
bit character read from the teletype is transmitted unchanged to the user's program.
No echoes are generated while in this special 8-level mode. Teletype output is
not affected.

DESCRIPTION: BRS 12 sets the echo table for the TTY indicated by register X. Echo tables
are as follows:

o Echo each character just as it was received and break on all characters.
Same echo as 0 but all characters except letters, digits and spaces are break
characters.

2 Same echo as 0, but the only break characters are control characters (including
carriage return and I ine feed).

No echo for any character and break on all characters.

REGISTERS AFFECTED: None

110

NUMBER: 40

NAME: RDET

FUNCTION: Read Echo Table

STATUS: User

CALLING SEQUENCE: LOX
BRS

T Teletype number

T
40

DESCRIPTION: Reads the echo table number (0, 1, 2, 3) into the A register.

If the teletype is not in 8-level input mode, reads the echo table number (0, 1, 2, 3) into
the A registE,r. If the teletype is in 8-level input mode, the sign bit of A is set, the address
field contains the terminal character.

REGISTER AFFECTED: A

NUMBER: 13

NAME: SKI

FUNCTION: Test Input Buffer for Empty

STATUS: User

CALLING SEQUENCE: LDX
BRS 13
EXCEPTION RETURN
NORMAL RETURN

T Teletype number (-1 is used to indi(;ate the controlling TTY).

DESCRIPTION: This BRS tests for the presence of input characters in th,e buffer. If the buf­
fer is empty, control is transferred to the "normal return". If there are any characters in
the input buffer, control is transferred to the "exception return".

REGISTERS AFFECTED: None

111

NUMBER: 14

NAME: DOB

FUNCTION: Dismiss Until the Teletype Output Buffer is Empty.

STATUS: User

CALLING SEQUENCE: LDX
BRS

T
14

T Teletype number (-1 is used to indicate the controlling user TTY).

DESCRIPTION: Dismiss this fork until the teletype output buffer indicated is empty. It is
dismissed only until the last character is transmitted. Cautian should be exercised as this
fork might be restarted before the last character interrupt has occurred.

REGISTERS AFFECTED: None

NUMBER: 85

NAME: SET8P

FUNCTION: Set Special Teletype Input/Output

STATUS: User

CALLING SEQUENCE: LDX T
BRS 85

T Teletype number (-1 is used to indicate controlling user TTY).

DESCRIPTION: Sets teletype to 8-level input/output mode. The teletype specified must
either be the controlling teletype or an attached teletype. 8-level is transmitted to or
from the teletype exactly as it is received from the user program.

REGISTERS AFFECTED: None

112

NUMBER: 86

NAME: CLR8P

FUNCTION: Clear Special Teletype Input/Output

STATUS: User

CALLING SEQUENCE: LDX T
BRS 86

Teletype number (-1 is used to indicate controlling user TTY).

DESCRIPTION: Restores teletype output to normal mode.
either- be the controlling teletype or attached to it.

REGISTERS AFFECTED: None

NAME: TCI

FUNCTION: TeletypE' Character Input

STATUS: User

CALLING SEQUENCE: TCI M

M Memory odd ress

The teletype specified must

DESCRIPTION: This SYSPOP reads the character from the teletype input buffer and places
it into location /II right justified. The remainder of location M is cleared. The char-
acter is also placed in the A register right justified.

REGISTER AFFECTED: A

113

NAME: rco
FUNCTION: Teletype Character Output

STATUS: User

CALLING SEQUENCE: rco M

M Memory address

DESCRIPTION: This SYSPOP outputs the character from the right-most 8 bits of location M
to the controlling teletype. In addition to the ordinary ASCII characters, all teletype out­
put operations will accept 135B as a multiple blank character. The next character will be
taken as a blank count, and the indicated number of blanks will be typed.

REGISTERS AFFECTED: None

NAME: OST

FUNCTION: Output to Specified Teletype

STATUS: User

CALLING SEQUENCE: OST T

T Teletype number

DESCRIPTION: OST is used to output a character in the A register to a specified teletype.
This instruction is used for output to an attached teletype. Its accept message bit must be
set or an illegal instruction panic will be generated.

REGISTERS AFFECTED: None

NOT IMPLEMENTED

114

23. MEMORY

NUMBER: 4

NAME: MPT

FUNCTION: Release a Page of Memory

STATUS: User

CALLING SEQUENCE: LOA
BRS

N
4

N Contains any address in the page to be released.

DESCRIPTION: The PMT entry for the block is removed and the byte in any other fork
which has this PMT byte. in its relabeling is cleared.

REGISTERS AFFECTED: None

NUMBER: 121

NAME: DPMTE

FUNCTION: Release Specified PMT Entry

STATUS: User

CALLING SEQUENCE: LOA
BRS

R Relabel ing byte

R
121

DESCRIPTION: Releases the specified page from the PMT. It is similar to a BRS 4
except that it takes a byte number instead of an address.

Instruction Trap:

I. Byte n,:>t in PMT.
2. A user fork tried to release a system page.

REGISTERS AFFECTED: None

115

NUMBER: 120

NAME: APMTE

FUNCTION: Assign PMT Entry

STATUS: System

CALLING SEQUENCE: LOA R
BRS 120

R Relabel ing byte

DESCRIPTION: Obtains a new page for the relabeling byte specified. This BRS is used
only in the recover routine in the executive.

Instruction Trap:

1. PMT entry is already assigned.
2. The relabeling byte number was not in the PMT.

REGISTERS AFFECTED: None

NUMBER: 43

NAME: RDRL

FUNCTION: Read Pseudo-Relabeling

STATUS: User

CALLING SEQUENCE: BRS 43

DESCRIPTION: Reads the current pseudo-relabel ing registers into registers A and B.

REGISTERS AFFECTED: A, B

116

i

~~UMBER: 44

~~AME: STRL

FUNCTION: Set Pseudo-Relabeling

STATUS: User

CALLING SEQUENCE: LDA
LDB
BRS

R 1 & R2 Relabel ing factors

Rl
R2
44

DESCRIPTION: This BRS takes the contents of registers A and B and stores them into the
current pseudo-relabeling registers. It also causes the real relabeling to be reset to corre­
s:;)ond to the new pseudo-relabeling.

This BRS will result in an instruction trap for any of the following reasons:

1. Swapping in the new pages was not completed (usually because of a RADfailure).
2. The user tried to relabel over a system page.
3. The user tried to relabel over a page he did not have. (This is not the way to

obta i n more memory.)

REGISTERS AFFECTED: None

NUMBER: 116

NAME: RURL

FUNCTiON: Read User Relabeling

STATUS: System

CALLING SEQUENCE: BRS 116

DESCRIPTION: Puts the program relabeling into A and B. This is what the system Execu­
tive uses as program relabeling. It is kept in the TS block.

REGISTERS AFFECTED: A, B

117

NUMBER: 117

NAME: SURL

FUNCTION: Set User Relabeling

STATUS: System

CALLING SEQUENCE: LDA
LDB
BRS

RL 1
RL2
117

RL 1 and RL2 are the new values for the program relabel ing.

DESCRIPTION: Sets the program relabeling as specified. This BRS is used by the system.
User programs should use BRS 44 to set relabeling for a fork.

Instruction Trap:

1. A specified relabeling byte was not assigned.
2. A user fork tried to relabel a system byte.

REGISTERS AFFECTED: None

NUMBER: 122

NAME: MPAN

FUNCTION: Simulate Memory Panic

STATUS: System

CALLING SEQUENCE: LDA A
BRS 122

A Core address

DESCRIPTION: This BRS gets new memory for a class 3 BRS. If it succeeds the new memory
is put into the relabeling of the calling program. Can be issued from a class 3 BRS only.

If a memory trap occurs, it looks to the calling program as if it came from a BRS
instruction.

REGISTERS AFFECTED: None

118

NUMBER: 56

NAME: MBEX

FUNCTION: Make Page System

STATUS: System

CALLING SEQUENCE: LDA P
BRS 56

P Pseudo··Relabeling byte for page.
If bit 0 of A = 1, page will be made system.
If bit 0 of A = 0, page will be made not system.

DESCRIPTION: Sets the use mode of a page depending on the value of bit 0 in the A
register.

Bit 0 of A is set to 1 if page was formerly system or 0 if it was not.

REGISTER AFFECTED: A

NUMBER: 80

NAME: MBRO

FUNCTION: Make Page Read Only

STATUS: User

CALLING SEQUENCE: LDA
BRS

PMT/SMT number

P
80

If bit 0 of A = 1, make page read only.
If bit 0 of A = 0, make page read-write.

DESCRIPTION: Sets the read-write status of the entry according to the value of A. An
SMT entry can only be changed by a system fork. The former status of the entry is returned
in A.

Instruction Trap:

1. Specified entry is not in use.
2. The swap failed.

REGISTER AFFECTED: A

119

NUMBER: BE+4

NAME: PEBRS

FUNCTION: Reads or Sets One Word in the Monitor

STATUS: System

CALLING SEQUENCE: LDA
LDB
LDX
BRS
RETURN

v
o or -1
=Location in Monitor relabeling
BE+4

V New value for word if it is to be set.
The contents of the location are returned in the A register.
If B is positive, the word is read.
If B is negative, the word is changed and the old value returned in A.

DESCRIPTION: Allows a system program to read or set the contents of any location in the
monitor relabeling.

The original contents of the location are always returned in the A register.

REGISTER AFFECTED: A

NUMBER: 68

NAME: EBSM

FUNCTION: Enter Block in SMT

ST A TUS: System

CALLING SEQUENCE: LDA
BRS

B
68

Byte number in users pseudo-relabeling

DESCRIPTION: A free SMT entry is found and the PMT entry put into it. The SMT number
is returned in A.

REGISTER AFFECTED: A

NOT IMPLEMENTED

120

I'-IUMBER: 69

I'-IAME: GBSM

I:UNCTION: Get SMT Block to PMT

STATUS: Subsystem

CALLING SEQUENCE: LDA
BRS

SMT number

69

DESCRIPTION: Puts the SMT entry into the first free PMT entry. The PMT entry number is
returned in A.

Instruction Trap:

1. A user program tries to relabel a system SMT entry.
2. The SMT number is not valid.

Memory Trap:

There were no free PMT entries.

REGISTER AFFECTED: A

121

24. STRING PROCESSING

NUMBER: 33

NAME: GETSTR

FUNCTION: Read String

STATUS: User

CALLING SEQUENCE: LDA
LDB
LDX
BRS

A Address of string pointer
T Terminal character
F File number

A
T
T
33

Bit 0 of A set = The string is taken as null with the second pointer equal to the first.

DESCRIPTION: This BRS reads characters from the file and appends them to the string until
the terminal character is reached. The terminal character is not appended to the string.
It returns the updated string pointers in the A and B registers and updates the end string
pointer in memory.

REGISTERS AFFECTED: A, B

NUMBER: 34

NAME: OUTMSG

FUNCTION: Output Message

STATUS: User

CALLING SEQUENCE: LOX F
LOA W
LOB C
BRS 34

F File number
W Beginning word address
C Character count or -1

DESCRIPTION: This BRS outputs C consecutive characters starting with the first character
of the specified word. If B = -1, characters are output until a / is encountered; the char­
acter $ is interpreted as a carriage return and line feed.

REGISTERS AFFECTED: None

122

NUMBER: 35

NAME: OUTSTR

FUNCTION: Output String

STATUS: User

CALLING SEQUENCE: LDX
LDA
LDB
BRS

F File number

P+l
35

P, P+l A string pointer poir

DESCRIPTION: Outputs the string indicoted by the string pointers in registers A ond B to
the specified file.

REGISTERS AFFECTED: None

NUMBER: BE+14

NAME:

FUNCTION: Input String with Edit

STATUS: User

NOT IMPLEMENTED

123

NAME: CIT

FUNCTION: Character Input and Test

STATUS: User

CALLING SEQUENCE: LDA N
CIT F
EXCEPTION RETURN
NORMAL RETURN

N Character to be tested
F File Number (see CIO Input Only)

DESCRIPTION: The character in the A register is compared against the next character in
the input file. If it compares, the normal return is taken and the character is removed from
the input buffer. If it does not compare, the character is left in the input buffer and is
returned in A. If the input buffer is empty the user wi II be dismissed unti I the next break character.

Exception Return: A
B & X

N A

REGISTERS AFFECTED: A

NAME: SKSE

The next character in the input buffer
No change

The character suppl ied remains in A (the character is
removed from the input buffer).

FUNCTION: Skip String Equal

STATUS: User

CALLING SEQUENCE: LDA
LOB
SKSE A
EXCEPTION RETURN
NORMAL RETURN

A Address of a string pointer pair
B Beginning string pointer
E End string pointer

DESCRIPTION: If the string addressed by the pointers in the A and B registers is identical
with the string addressed by A of the calling sequence, control will be transferred to the
normal return. Otherwise, control will be transferred to the exception return. If the strings
are of different lengths or have different contents, control will be transferred to the exception
return.

REGISTERS AFFECTED: None

124

t'-IUMBER: 5

I'JAME: SSCH

FUNCTION: Look Up S'ring in Hash Table

STATUS: User

CALLING SEQUENCE: LDA
LOB P+ 1
LOX T
BRS 5
EXCEPTION RETURN
NORMAL RETURN

P a..,d P+ 1
T

String pointers for a string to be looked up
Address of a three-word table (see cantrol section FDCTL of a hash table)
with the format:

ZRO
ZRO
ZRO

Hash Table Beginning Address
Hash T obi e End Address
o (working cell)

DESCRIPTION: BRS 5 searches the hash table for a string to match the string indicated by
A and B registers. If successful, it returns in registerB the address of the hash table string
pointers (the location of the first entry of the three hash table entries), and in register A,
the "hash value" (the third word of the hash table entry) and executes the normal return.
Otherwise, it executes the "exception" return with registers A, B and X unchanged and the
address of the next free hash table entry in word 3 of the table. (Word 3 will be -1 if the
toble is full.)

See BRS 6.

REGISTERS AFFECTED: A, B

NAME: LDP

FUNCTION: Load Pointers

STATUS: User

CALLING SEQUENCE: LDP A

A Address of a string pointer pair.

DESCRIPTION: This SYSPOP loads the string pointers indicated in the calling sequence into
the A & B registers.

REGISTERS AFFECTED: A, B

125

NUMBER: 37

NAME: GSLOOK

FUNCTION: General String Lookup

STATUS: User

CALLING SEQUENCE: LDA F
LDB S
LDX T
BRS 37
EXCEPTION RETURN
NORMAL RETU RN

F Input file number
S Address of string pointer pair
T Address of the Hash Table Control Table

DESCRIPTION: The hash table is scanned for a string to match the given one. If none is
found but the given string matches the initial part of some hash table string characters from
the input file are appended until the string is long enough either to determine a unique hash
table string, with a matching initial part, or for no match to be possible. In the former
case, more characte~ are taken from input until an exact match is obtained or no match is
possible; in this latter case, the match is still valid, and the last character (which caused
the mismatch) is left in the input file.

Exits are as follows: (1) The exception return is taken of the no-match condition with a
string pointer in A, B to the string so for collected. X is undisturbed. (2) The normal return
is taken on a match with the address of a hash table string pointer in A and the "hash value"
in B. X is undisturbed.

The "hash value" is the third word of a hash table entry.

REGISTERS AFFECTED: None

126

NUMBER: 6

NAME: SSIN

FUNCTION: Insert String in Hash Table

STATUS: User

CALLING SEOUENCE: A, B, & X must have the output from BRS 5
BRS 6

DESCRIPTION: BRS 6 inserts the string pointer into the hash table at the point determined
by the last BRS 5 which did not find a match. If the hash table is full (word 3 of the table
pointed to by X is -1) an "Illegal Instruction" trap results. BRS 6 is intended for use in
conjunction with BRS 5. It should be used only after BRS 5 has failed to find a match.
Furthermore, :;tring pointers should not be placed in the hash table in any manner other than
with BRS 6 (otherwise the scanning algorithm used in BRS 5 may cause undesired results).

BRS 6 does not physically move the string to which registers A and B point. On return,
register B contains the address of the first word of the new hash table ent,-y and register A
contains the "value" word of the entry.

REGISTERS AFFECTED: A, B

NAME: STP

FUNCTION: Store Pointers

STATUS: User

CALLING SEGUENCE: STP A

A Addr,ess of a string pointer pair.

DESCRIPTIO!'I: This SYSPOP is generally used in conjunction with LDP. It stores the con­
tents of the A and B registers into the string pointers indicated in the calling sequence.

REGISTERS AFFECTED: None

127

NAME: SKSG

FUNCTION: Skip on String Greater

STATUS: User

CALLING SEQUENCE: LDA
lOB
SKSG A
EXCEPTION RETURN
NORMAL RETURN

Beginning string pointer
End string pointer

A Address of a string pointer pair

DESCRIPTION: The SYSPOP compares the string indicated by A and B registers with the
string indicated by A of the calling sequence, character by character and terminates with
the first unequal character. The numerical internal code representation of characters is
used to determine inequality. If the strings are unequal for the entire length of the shorter
one, the longer one is indicated as greater. If the contents of the string addressed by the A
and B registers is greater than the contents of the string addressed by A, control will be
transferred to the normal return. Otherwise, control is transferred to the exception return.

REGISTERS AFFECTED: None

NAME: GCI

FUNCTION: Get Character and Increment

STATUS: User
CALLING SEQUENCE: GCI A

EXCEPTION RETURN
NORMAL RETURN

A Address of a string pointer pair

DESCRIPTION: This SYSPOP reads into the A register, the first character from the string
indicated by the beginning string pointer given in the colling sequence. If the string is null
or empty, nothing is done and control is transferred to the exception return. If the string is
not null its first character is loaded into the A register right-justified, and the beginning
string pointer is incremented by one such that the beginning string pointer now points to the
string with the first character deleted. Control is ·transferred to the normal return. Unless a
copy of the original pointer is saved, the contents of the string are effectively destroyed.

REGISTER AFFECTED: A

128

NAME: WCI

FUNCTION: Write Ct)aracter and Increment

STATUS: User

CALLING SEQUENCE: WCI

Address of string pointer pair

DESCRIPTION: WCI writes the character in the A register on the end of the string addressed
by the end string pointer. The end string pointer is incremented by 1.

REGISTER AFFECTED: B

NAME: GCD

FUNCTION: Get Character and Decrement

STATUS: User

CALUNG SEQUENCE: GCD P
EXCEPTION RETURN
NORMAL RETURN

Address of a string pointer pair

DESCRIPTION: A GCD is, in every way, similar to GCI except that the character is taken
from the end of the specified string.

The last character on the string is loaded in the A register, and end string pointer is decre­
mented so that it points to the previous character in the string. Control is transferred to the
exception return if the end pointer is not greater than the beginning pointer before it is
decremented.

REGISTER AFFECTED: N

129

NAME; WCD

FUNCTION: Writes Character and Decrement

STATUS: User

CALLING SEQUENCE: WCD

Address of a string pointer pair

DESCRIPTION: This SYSPOP writes the character in the A register on the beginning of the
string and decrements the beginning string pointer.

REGISTERS AFFECTED: None

NAME: WCH

FUNCTION: Write Character

STATUS: User

CALLING SEQUENCE: LDA C
WCH T

C A character right-justified in the A register
T The address of a three word table. The table is as fallows:

Word 0 A character address
Word 1 A character address
Word 2 A transfer address

DESCRIPTION: This SYSPOP tries to write a character inta the area defined by the charac­
ter addresses in the table. Provided that the sec and address in the table is greater than the
first address, WCH will write the character in A register into the character position indi­
cated by the first character address plus one and will increment the first character address in
the table. If the first character address is equal to or greater than the second character in
the table the character is not written and control is transferred to the third word of the table
with A and X registers undisturbed and the address of the WCH in the B register. The address
in the third word of the table can be an exit to a routine which allocates more memory or
GARBAGE collects the remaining characters.

REGISTERS AFFECTED: None

130

NUMBER: :36

NAME: OUTNUM

FUNCTION: Output Number

STATUS: User

CALLING SEQUENCE: LDX
LDA
LOB
BRS

F File number
N Number to be output

Radix

25. tlJMBERS

N
R
36

DESCRIPTION: Outputs a number in the radix R. The number will be output as an unsigned
24-bit integer. If the radix is less than 2, an instruction trap will be 9iven.

REGISTERS AFFECTED: None

NUMBER: 38

NAME: GETNUM

FUNCTION: Read Number

STATUS: User

CALLING SEQUENCE: LDX
LDB
BRS

F File number
R Radix

F
R
38

DESCRIPTION: Inputs an integer to any radix. The number may be preceded by a plus or
minus sign. On exit the number will be in the A register. The conversion is terminated by
any non-numeric character which will be in the B register on exit. The number is computed
by multiplying the number obtained at each stage by the radix and adding the new digit.

REGISTERS AFFECTED: A, B

131

NUMBER: 52

NAME: FFI

FUNCTION: Formatted Input

STATUS: User

CALLING SEQUENCE: LDX
BRS
BRU

FORMAT
52
X

DESCRIPTION: This routine reads characters from a file specified in the format word,
FORMA T. FORMAT also specifies the format of the input. Free form input from the
teletype results when FORMAT == O. A skip return is generated if and only if (1) the
input is free form, and (2) the input is floating point. The internal translation of the
input file is stored in A, B.

REGISTERS AFFECTED: A, B, X

NUMBER: 53

NAME: FFO

FUNCTION: Formatted Output

STATUS: User

CALLING SEQUENCE: LDX
BRS

FORMAT
53

DESCRIPTION: The integer in A or the double word floating point value in A, B is output
to the file according to the file number and format specified in FORMAT.

REGISTERS AFFECTED: None

132

NAME: SIC

FUNCTION: String to Internal Conversion

STATUS: User

CALLING SEQUENCE: LDX
SIC
BRU
BRU

FORMAT
POINTER
INTEGER
FLOATING

DESCRIPTION: See String Processing System documents. FORMAT describes the type of
conversion to be done.

The contents of POINTER point to the character immediately preceding the character string.
POINTER+ 1 contains the character address of the last character of the string.

INTEGER and FLOATING are routines that handle the converted input. Error flags, if
applicable, are in the index register A, double word value corresponding to the string is
in A, B upon return.

REGISTERS AFFECTED: A, B, X

NAME: ISC

FU NCTION: Converts Internal N umbers to Formatted Output Strings

STATUS: User

CALLING SEQUENCE: LDP
LDX
ISC

M
FORMAT
POINTER

DESCRIPTION: See String Processing Documents. FORMAT describes the type of conver­
sion to be done. The contents of POINTER point to the character immediately preceding
the character string. POINTER+l contains the character address of the character immedi­
ately preceding the position where the first character of output is to go. M, M+l contain
the floating point word to be converted. Pointer+l is incremented once for each character
added to the string.

REGISTERS AFFECTED: A, B, X

133

NUMBER: 50

NAME: FFIX

FUNCTION: Conversion from Floating Point to Fixed Point

STATUS: User

CALLING SEQUENCE: BRS 50

DESCRIPTION: Fixes the double word floating point value in (A, B). The integer part is
left in A. The fractional part is left adjusted in B.

REGISTERS AFFECTED: A, B

NUMBER: 51

NAME: FFLT

FUNCTION: Conversion from Fixed Point to Floating Point

STATUS: User

CALLING SEQUENCE: BRS 51

DESCRIPTION: The integer in A is converted to a normalized flooting point value in A, B.

REGISTERS AFFECTED: A, B

134

NUMBER: 2'1

NAME: FNA

FUNCTION: Flooting Negate

STATUS: U!.er

CALLING SEQUENCE: BRS 21

DESCRIPTION: The double word floating point value in the A and B registers is negated.

REGISTERS AFFECTED: A, B

NAME: FAD

FUNCTION: Floating Point addition

STATUS: U!;er

CALLING SEQUENCE: FAD N

DESCRIPTION: SYSPOP FAD (A, B) + (M, M+l)
A floating addition is performed to the contents of memory location M (md M+ 1 and the A
and B registl~rs. The results are left in the A and B registers.

REGISTERS AFFECTED: A, B

135

NAME: FSB

FUNCTION: Floating Point Subtraction

STATUS: User

CALLING SEQUENCE: FSB N

DESCRIPTION: (A, B) - (M, M+1)
The contents of memory locations M and M+ 1 are subtracted (floating subtraction) from the
contents of the A and B registers. The results are left in the A and B registers.

REGISTERS AFFECTED: A, B

NAME: FMP

FUNCTION: Floating Point Multiplication

STATUS: User

CALLING SEQUENCE: FMP M

DESCRIPTION: (A, B) * (M, M+ 1)
The contents of memory locations M and M+1 are multiplied (floating multiplication) by the
A and B registers and the results left in the A and B registers.

REGISTERS AFFECTED: A, B

136

NAME: FDV

FUNCTION: Floating Point Divide

STATUS: User

CALLING SEQUENCE: FDV M

DESCRIPTION: (A, B)/(M,M+l)
The contents of the A and B registers are divided (floating divide) by the contents of memory
locations M and M+l with the quotient left in the A and B registers.

REGISTERS AFFECTED: A, B

137

26. EXECUTIVE COMMAND OPERATIONS

NUMBER: 95

NAME: ECDUMP

FUNCTION: Dump

STATUS: User

CALLING SEQUENCE: LDA
BRS

N File number

N
95

DESCRIPTION: This BRS writes the entire current state of the machine (user's program only)
on the specified file, which is made type 4. The status of the pseudo-relabeling registers
and all information necessary to restart the user from his current situation are written on the
dump file so it can be restored by a recovery procedure. The only information not preserved
are any shared memory entries which may be in the pseudo-relabeling.

Note: Dumps created by one system cannot be recovered by another.

REGISTERS AFFECTED: All

NUMBER: 96

NAME: ECRECV

FUNCTION: Recover

STATUS: User

CALLING SEQUENCE: LDA N
BRS 96

N File number

DESCRIPTION: This BRS reads the dump file written by a BRS 95 and recovers the machine
status as it appeared at the time the dump was taken.

REGISTERS AFFECTED: All

138

27. MISCELLANEOUS OPERATIONS

NUMBER: 42

NAME: RREAL

FUNCTION: Read Real-Time Clock

STATUS: User

CALLING SEQUENCE: BRS 42

DESCRIPTION: Read the real-time clock in the A register. Time is given as a 24-bit
binary number representing 60ths of a second. The clock is set to zero when the system is
started and it is incremented by one at every 1/60th second. A binary form of the month,
date and start-up time is put in B. From A and B the user can calculate the month, date
and time.

REGISTERS AFFECTED: A, B

NUMBER: 91

NAME: EXRTIM

FUNCTION: Read Data and Time into a String

STATUS: Use'r

CALLING SEQUENCE: LDA
LDB
BRS

5+1
91

Beginning string pointer
S+1 Ending string pointer

DESCRIPTIO~~: The current date and time are appended to the string provided in A and B
registers and the resulting string pointers are returned in the A and B regi'sters. The char­
acters appended to the string have the form:

MM/dd hh:mm

MM=Month
dd =Day
hh =Hours counted from 0 to 24
mm =Minutes

REGISTERS AFFECTED: None

139

NUMBER: 88

NAME: RTEX

FUNCTION: Read Execution Time

STATUS: System

CALLING SEQUENCE: BRS 88

DESCRIPTION: Returns the execution time in A in 60 cycle clock ticks accumulated
since lag in.

REGISTER AFFECTED: A

NUMBER: 41

NAME: IORET

FUNCTION: Return from I/O Subroutine

STATUS: User

CALLING SEQUENCE: BRS 41

DESCRIPTION: This is used by the author of an I/O subroutine to return to the calling
program.

REGISTER AFFECTED: A

140

NUMBER: 111

NAME: BRSRET

FUNCTION: Return from Closs 3 BRS

STATUS: System

CALLING SEQUENCE: BRS 111

DESCRIPTION: This BRS is used only by the author of class 3 BRS's. It is the only normal
termination of a closs 3 BRS. If corresponds to a BRS 10 for other forks.

Instruction Trap:

BRS issued by a fork which was not a closs 3 BRS.

REGISTERS AFFECTED: None

NUMBER: 112

NAME: TSOFF

FUNCTION: Turn Off Teletype Station

STATUS: System

CALLING SEQUENCE: LDX
BRS

Job Number
112

DESCRIPTION: This BRS is known as suicide. The job disappears completely from the
systern.

The teletype line associated with the job will be set ready for another job if he merely
logged out.

REGISTERS AFFECTED: All

141

NUMBER: 71

NAME: SKXEC

FUNCTION: Skip if System

STATUS: User

CALLING SEQUENCE: BRS 71

DESCRIPTION: The B register is set to the value of the use code which the user has set for
the job. These values are:

Value of B

1
o

-1
-2

Use Code

Subsystem User
User
Bath
System

The BRS skips if the B register is negative.

REGISTER AFFECTED: B

NUMBER: BE+5

NAME: SDBM

FUNCTION: Set Disc Bit Map

STATUS: System

CALLING SEQUENCE: LDA Address of X block Mod 4
BRS BE+5
EXCEPTION RETURN
NORMAL RETURN

Exception Return - A contains address that was in confl ict.

DESCRIPTION: Turns off bits in the disc bit map for the X block and each data block refer­
enced by the index block. If any conflicts occur (the bit is already off), the address is left
in the A register and the exception return is taken. A conflict also increments one of two
counters, XBERR or FDERR, for errors in the X block or the file directory respectively.

When the bit map has been set, one more call is made to this BRS with A negative. At that
time a switch is set allowing output files to be opened; the new overflow pointer is set from
B and the accounting area pointer is set from X.

REGISTER AFFECTED: A

142

NUMBER: BE+8

NAME: CRASH

FUNCTION: To Crash the System

STATUS: System

CALLING SEGlUENCE: BRS BE+8
NO RETURN

DESCRIPTION: Saves the registers in SSOI, SS02, SS03. Saves 0 in MCRO. Turns off the
clock and disables the interrupts. Moves the TS block into real page 7 Clnd the current
relabeled page into real page 6.

REGISTER AFFECTED: None

NUMBER: B[+13

NAME: SET~,W

FUNCTION: Sets System Exec Switches in COMPG fi Ie.

STATUS: System

CALLING SEQUENCE: LDA V
LDX N
BRS BE+13
NORMAL RETURN

V New switch value
N Switch number

DESCRIPTION: The switch is set to the new value and the old value is returned in A.

REGISTER AFFECTED: A

143

NUMBER: BRS BE+16

NAME: MFSYS

FUNCTION: Set Executive -1

STATUS: SYSTEM

CALLING SEQUENCE: LDA
BRS

=7654321OB
BE+16

DESCRIPTION: Simulates execution of the Executive command -SET EXEC -1. Executive
status (indicated by PAC table word PQU bit 0) is given to the fork that executes this BRS.
The user must have either operator or subsystem status assigned to him in order to execute
this BRS.

REGISTERS AFFECTED: NONE

NUMBER: 152

NAME: EXS

FUNCTION: Execute Instruction in System Mode

STATUS: System

CALLING SEQUENCE: EXS

Address of the instruction to be executed

DESCRIPTION: This SYSPOP will cause the instruction pointed to by I to be executed in
the system mode.

REGISTERS AFFECTED: Depends on instruction.

144

APPENDIX A. GLOSSARY OF TERMS

A
ACTPU: Phantom User Activation Counter. If positive

when schedu ler is entered, causes phantom user to be
moved from QQE to QTI.

ACTR: I/O Activation Counter. ACTR is incremented each
time a fork that is on OTI or QIO is ready. Set to -1
when the scheduler begins searching OSQ.

AUN N: Account And User Number. Indexed by job.
Inactive contai ns O.

B
BlK31: Flag used in W buffer interrupt routine.

=0 When W channel is not in use

=1 When disc is active

Address of the interrupt routine for the appro­
priate driver when any W buffer device
(except disc) is active

breakpoint switch: Refers to the four toggle switches phys­
ically located on the computer console.

c
command file: The particular file from which the commands

to the system Executive and subsystems are input. For
teletype input the command file number is zero.

corresponding table: Contains file directory information.
Each entry is 3 words. The relative position of the
entry corresponds to the position found in the file
directory hash table by the execution of a BRS 5. The
corresponding table contains data about the file, e. g.,
fj Ie size, type, creation date, etc.

customer file directory: The names of all files for a partic­
ular user name are recorded in this directory.

o
DSU block: Four consecutive sectors on the disc whose

beginning addresses are MOD 4. A block consists of
256 words.

DSU file: A file stored on the disc storage unit. Each file
consists of an index block, and if the fil e contains
data, then a sufficient number of DSU blocks to record
the data.

DRO: The disc queue. Each entry requires 3 locations.

DSWAP: Paper tape routine used at system initialization
to fi i i the first i 4K from disc to core.

DTXS 1: Contains the count (minus 1) of the number of
commands the disc driver wishes to add to disc queue.

DTXS2: Temporary location used by the disc software.

E

Points to the location in DRO where a command was
just added, i. e., the value of EDCl before it was
incremented by three. .

EDCl: Points to the location in DRQ where the disc driver
should add the next disc command. After a command
is added, EDCl is incremented by three and wrapped
around if necessary.

ETTB: Elapsed time table. One entry per job. TJOB
points to the ETTB for the running job. One of the
ETTB entries is incremented with each clock tick for
the purpose of charging compute time.

F
fi Ie number: A fi Ie number is assigned by the system to fi I es

as they are opened. Also, there are fixed fi I e numbers
for certain devices. These are as follows:

o Teletype Input

Teletype output

2 Nothing

file type: There are four standard file types.
follows:

They are as

1. File written by the system Executive as commanded
by the "SAVE" command.

2. General binary fi Ie created by a subsystem, i. e.,
a FORTRAN object program.

3. Symbolic file.

4. Dump fi Ie.

FPlST: One word pointer to next free PAC table. 0 indi­
cates all PAC tabl es in use.

FPlST: One word pointer to next free PUCT table entry in
Phantom user queue.

FUlST: One word pointer to next free job number.

!DCl: Points to the command in DRQ that the interrupt
routine will initiate when the interrupt for the !DCl1
command is received.

!DCl1: Pointer to the entry in DRO for which I/O trans­
mission is currently in progress.

Appendix A 145

IDMRET: Flag that =0 when the interrupt routine (IDM) is
entered as a resu I t of a subroutine ca II. =-1 when
entered as a response to an interrupt.

index block: A DSU block (256 words) which contains the
DSU addresses for all data blocks of a file.

INT31: Address of W buffer general interrupt routine. This
routine handles a II W buffer I/O except disc. This
routine branches indirectly to address specified in BLK31.

J
JOB: Contains the JOB number of the running fork.

M
MAC: Number of unlocked pages minus 1. Used by swapper.

N
NCMEM: Number of entries in SMT table. (60B.)

NDCL: Contains the count (minus 1) of the number of com­
mands that are on the disc queue and are ready for the
disc interrupt routine to process. The interrupt routine
will sequentially pull commands off DRQ and execute
them until NDCL has the value -1. At this point there
are no more commands on DRQ that are ready to be
executed.

NPPAR: Number of entries in a PAC table.

N PUQ: Number of tasks that can be put on the Phantom
User.

NTTY: Number of teletypes.

NUMEM: Number of entries in each PMT table. (20B.)

o
OVFP: Overflow fi Ie directory flag. -1 means that th is

user has not been assigned an overflow fi Ie directory.
When an overfiow fiie directory has been assigned,
OVFP contains a pointer to a disc overflow file directory.

p
PAC table: Each fork is defined by a program active table.

This table contains most of the information required to
control sGlection, execution and interruption of the fork
(additional information is stored in the user's TS page).

PACPTR: One word in Monitor that contains the PACT
pointer of the currently active fork.

page: A page can exist on RAD, DSU or in-core memory
but in a II cases refers to 2048 words.

panic: A panic is a signal to the system to terminate execu­
tion of a fork.

pan ic, instruction: A pan ic caused by attempting to execute
an instruction which cannot be executed in the user
mode, such as a halt or device I/O instruction or a
BRS which is not available to the user.

146 Appendix A

panic, memory: A pani c caused by a fork attempting to
address memory outside its range or write on memory
which is set to read only.

pan ic table:

PB:

Word

0 Program Counter

A Register

2 B Register

3 X Register

4 First Relabeling Register

5 Second Relabeling Register

6 Status

The status word may be:

-2 Dismissed for Input/Output

-1 Running

o Dismissed on Escape or BRS 10

Dismissed on Illegal Instruction Panic

2 Dismissed on Memory Panic

A panic table must not overlap a page boundary.

Table in TS page. 8 words long. Used for saving B
register for corresponding fork. Indexed by fork num­
ber (XPB).

PIM: Word in PAC table. Contains interrupt mask, fork
number, etc.

PL: Word in PACT where location counter is saved (P
register).

PMT: Pseudo Memory Table. One PMT table per job.
Pointed to by PMTP (which is indexed by job number).
Each PM T table is 16 words long. The 16 words cor-
respond to the users vi rtua I 32K of memory. The
pseudo-relabeling bytes have values 60B-77B.

PMT JOB: A location which contains the starting address of
the current users PM T table using SM T as a reference.
PM T JOB is used by the swapper (in can junction with the
pseudo-relabeling byte) to retrieve entries from PMT.

PMTP: One entry per job. Indexed by job number. Points
to users PMT table.

PNEXT: Word in PACT that is used to chain the PAC tables
when they are on the queues. If PNEXT is negative it
contains a PACT pointer to the next PAC table on the
queues. If PNEXT is positive it points to the next queue.

PPTR: Word in PAC tabie. Contains the up pointer{PFORK)
and down pointer (PDOWN) to other PAC tables in its
forking structure. If on free PACT list (PAC table not
in use) has the absolute address of the next free PAC
table.

PQU: Word in PAC table. Contains long quantum, Execu­
tive bits, etc.

PTAB: Word in PAC table. Contains job number, panic
table, address, etc.

PTEST: Word in PAC table. Contains activation condition.

PU BPTR: Pointer to first task on Phantom User queue.

PUCLST: Phantom User task activation test list. Indexed
by test number. Dispatches to where the decision is
made as to whether the Phantom User is ready to per­
form th is task.

PUCSET: Phantom User task activation list. Indexed by
test number. Represents a dispatch I ist for the various
tasks that the Phantom User performs.

PUCT: The Phantom User task queue. Each task queue entry
consists of four words.

PUCTR: Shows count of the number of tasks put on the
Phantom User queue. When PUCTR=O there are no
tasks on the Phantom User queue and he is dismissed to
either QTI or QQE.

PUCTR 1: When the system begins to search the PU task
queue, PUCTR 1 is set to PUCTR. If after the entire
PUCT table is scanned, PUCTR1 is still equal to PUCTR,
it indicates that the PU was not able to process any of
his tasks and no interrupts occurred that placed a new
task on PUCT. If this is the case, the PU is placed
on QQE.

PEUPTR: Pointer to the last task on the Phantom User queue.

PULIM: Phantom User Limit. Limits the number of tasks
that can be put on the PU queue. Th is parameter is
established when the Monitor is assembled. Causes a
crash if limit exceeded.

PX: Table in TS page. 8 words long. Used for saving X
register for corresponding fork. Indexed by fork
number (XPB).

o
QIO: Queue of programs dismissed for I/O other than TTY

I/O. Forks that are activated by an escape, software
interrupt, or panic are also on QIO.

QQE: Queue of programs dismissed for exceeding their long
quantum.

QSQ: Queue of programs dismissed when short quantum
has expired and other programs on OTI or OTO are
ready to run.

OTI: Queue of programs dismissed for TTY input/output.

quantum, long time: The maximum length of time a fork can
run before the scheduler checks for other forks to be run.

quantum, short time: The minimum length of time a fork
wi II run before the scheduler checks for other forks to
be run which were dismissed for I/O.

R
Real: Real-time counter. Incremented by clock interrupt

routine. Initialized when system is brought up.

Relabeling, pseudo: See format of relabeling registers. Each
byte points to an SM T or PM T entry.

relabeling registers: The relabeling registers are used to
indicate a page number which has been assigned to a
use for a particular logica I page. They are of the form:

First word

Second word

Page 0 Page 1 Page 2 Page 3

Page 4 Page 5 Page 6 Page 7

RLTS: Contains real page number of running forks temporary
storage (TS) page.

RL1: Word in PAC table. Contains the first pseudo relabel­
ing word for the fork.

RL2: Word in PAC table. Contains the second pseudo re­
labeling word for the fork.

RL3: Pseudo relabeling table for TS page. Indexed by job
number.

RMC: Real memory count table. Indexed by real page num­
ber. Contains a -1 if page is un locked. Contains a
va I ue greater then -1 if page is locked.

RMT: Real Memory Table. One entry for each page of
memory. Points to the PM T or SM T entry responsible
for having this page in core.

RRL 1: Contains the rea I relabeling for register 1. This word
is potted out to the hardware register.

RRL2: Applies to relabeling register 2. See RRL 1.

RRL3: Applies to Monitor relabeling register. See RRLl.

s
SMT: Shared Memory Table. Only one SMT in the system.

60B words long. Indexed by pseudo-relabeling values
0-57B. The reentrant programs have entries in SM T.

sSRL 1: Two words in Ts page that indicate the subsystem
used. The pseudo-relabeling for the system is fetched
from the subsystem corresponding table and loaded into
these two words.

string pointers: A pair of pointers which contain a character
address of the character before the first character of a
string and a character address of the last character
of the string.

Appendix A 147

SWOFF: Word in TS used by Executive. -1 means user
has logged on or is in the process of logging on. Used
by Executive to determine whether $ dump should be
effected.

SWTM: Word in TS used by Executive to determine log on
status of user.

=0 means time ran out whi Ie user is logging on
(1. 5 mins)

= - 1 user is in the process of logging on or has
logged on

SYSTL: Word in TS block wh ich contains the hash table ad­
dress of the subsystem in use.

T
TIIS5: Indexed by channel number. Used when software

is processing carriage returns and line feeds.

= 0 if last character output was not a CR or LF

Bit 23=1 when software has sent a CR

Bit 23=0 when software has sent a LF

TIME: Contains the short quantum for the running fork.

T JOB: Word wh ich points to job time counter table (ETTB).
Used to increment compute time for a job. When the
clock interrupt occurs. A MIN *T JOB is performed
and the running job is charged. See ETTB.

TTIME: Word where the tota I time (long time quantum) is
ma i nta i ned for the runn i ng fork.

148 Appendix A

TTNO: Contains TTY channel number. Indexed it by job
number. If active, TTNO contains channel number.
If inactive, contains the chain for the free job numbers.

TTYASG: TTY assigned table. Indexed it by channel num­
ber. If active, it contains the PACTPTR of the fork to
terminate in case of rubout. If inactive, contains
37777B.

u
UNO: Set to user number when a user has logged on the

system.

User Name: The alphanumeric characters the user inputs
after typing in the password and semicolon or CR. The
name can be a maximum of 12 characters and may con­
tain any character except semicolon, right paren, or
CR. A un ique user number is associated with each user
name. A user name must only be unique within an
account.

User Number: A 4-digit octal number which is unique to
each user name. The user number is assigned by the
operator. The user number is a pointer to the fi Ie
directory associated with a particular user name.

UTTY: One word in the system which contains the channel
number of the running fork.

w
WERIS: State of the teletype line. Indexed by channel

number.

-1 Line free
o User is in the process of logging on
> 0 User number for the user on this te letype

APPENDIX B. BRS AND SYSPOP INDEXES

INDEX OF BRS'S AND SYSPOP'S BY NUMBER

BRSs Function Page

1 Open a file of a specific device 86
2 Close a file 88
4 Release a page of memory 115
5 Look up string in hash table 125
6 Insert string in hash table 127
8 Close a II fi les 89
9 Open fork 78
10 Terminates the calling fork 83
11 Clear the teletype input buffer 109
12 Dec lare echo table 110
13 T est input buffer for empty 111
14 Delay unti I the TTY output buffer is empty 112
15t Read input fi Ie name 98
16t Open input fi Ie in fi Ie directory 99
17t Close a II fi I es 99
18t Read a fi Ie name and look it up in the fi Ie directory 100
19t Open output file located in file directory 101
20t Close a tape file 89
21 Floating point negate 135
23 Link/unlink specified TTY 106
24 Unlink all TTYs 106
25 Set teletype to accept/refuse links 107
26 Skip if escape waiting 77
29 Clear the output buffer 110
30 Read status of a lower fork 79
31 Wait for specific fork to cause a panic 82
32 Termi nates a specified lower fork 84
33 tt Read string 122
34tt Output message 122
35tt Output string 123
36tt Output number to specified radix 131
37tt Genera I string look up 126
38tt Input number to specified radix 131
40 Read echo table 111
41 Return from I/O subroutine 140
42 Read rea I-time clock 139
43 Read pseudo-relabeling 116
44 Set pseudo-relabeling 117
45 Dismiss on quantum overflow 80
46 T urn escape off 76
47 T urn escape on 76
48t Lock up input/output fi Ie name 102
49 Read interrupts armed 74
50 Conversion from floating point to fixed point 134
51 Conversion from fixed point to floating point 134
52t Formatted floating point input 132
53t Formatted floating point output 132
56 Make page system 119
57 Guarantee 16 ms computing 79
60t

Look up I/O fi Ie name and insert in fi Ie directory if not found 102

tClass 3 (Executive) BRS
tt ,..,

"" f"'\l""\""

"'~Iass L tjK)

Appendix B 149

BRSs Function Page

66 Delete DSU file data 90
67 Delete DSU file index block 90
69 Get SMT block to PMT 121
71 Skip if in system 142
72 System dismissa I 81
73 Terminates a specified number of lower forks 84
78 Arm/disarm software interrupts 73
79 Cause specified software interrupts 74
80 Make page read on Iy 119
81 Dismiss for specified amount of time 81
85 Set specia I TTY output 112
86 Clear specia I TTY output 113
87 Read DSU file index block 91
88 Read execution time 140
90 Declare a fork for escape 75
91 t Read date and time into a string 139
95 t Dump program and status on fi Ie 138
96 t Recover program and status from fi Ie 138
104 Read a page (2048 words) from RAD 91
105 Write a page (2048 words) to RAD 92
106 Wait for any fork to terminate 82
107 Read status of a II lower forks 80
108 Terminate all lower forks 85
109 Dismiss calling fork 83
110 Read device and unit 88
111 Return from exec BRS (exec on Iy) 141
112 Turn off teletype station (exec only) 141
113 Compute fi Ie size of a disc fi Ie 92
116 Read user relabeling 117
117 Set user relabel ing 118
118 Allocate magnetic tape unit 93
119 De-allocate magnetic tape unit 93
120 Assign PMT entry 116
121 Release specified page from PMT 115
122 Simulate memory panic 118
BE+l Read DSU 95
BE+2 Write DSU 96
BE+3 Test for carrier present (not implemented)
BE+4 Read/write one word in the Monitor 1,)"

ILV

BE+5 Set disc bit map 142
BE+6 Turn a teletype line on or off 109
BE+7 Test a breakpoint switch 95
BE+8 To crash the system for error diagnostic 143
BE+9 Read DSU page 94
BE+l0 Write DSU page 94
BE+l1 Ignore I ine feed or carriage return (not implemented)
BE+12 Arm timing interrupt 75
BE+13 Sets system Executive switches in COMPG 143
BE+15 Read SM T page from RAD 96
BE+16 Set EXEC =-1 144
BE+17 Test if last buffer used 97
BE+19t Get fi I e creation date and access count 97

tClass 3 (Executive) BRS

150 Appendix B

SYSPOPs Function Page

BIO Block input/output 104

CIO Character input/output 103

CIT Character input and test 124

CTRL Input/output control 105

EXS Execute instruction in system mode 140

FAD Floating point addition 125

FDV Floating point division 137

FMP Floating point multiplication 136

FSB Floating point subtract 136

GCD Get character from end of string and decrement end pointer 129

GCI Get character from beginning of string and increment beginning pointer 128

ISC Interna I to string conversion 133

LDP Load string pointer 125

OST Output to speci fie TTY 114

SKSE Skip if string equal 124

SKSG Skip if string greater 128

SIC String to interna I conversion 133

STP Store string pointer 127

TCI Teletype character input 113

TCO Teletype character output 114

WCD Put character on beginning of string and decrement beginning pointer 130

WCH Write character to memory by table 130

WCI Put character on end of string and increment end pointer 129

WIO Word input/output 103

INDEX OF BRS'S AND SYSPOP'S BY TYPE

SCHEDULING, FORKS AND PROGRAM INTERACTION

PROGRAM INTERRUPTS

BRSs or SYSPOPs Function Page

78 Arm/disarm software interrupts 73
79 Cause specified software interrupts 74
49 Determines which software interrupts are armed 74
BE+12 Arm timing interrupt 75

CONTROL OF THE ESCAPE KEY

BRSs or SYSPOPs Function Page

90 Dec lare a fork for escape 75
46 T urn escape off 76
47 T urn escape on 76
26 Skip if escape waiting 77

AcnVA nON OF FORKS

BRSs or SYSPOPs I Function I Page

9 Open fork 78
57 Guarantee 16 rm computing 79

Appendix B 151

INTERROGA nON OF A FORK

BRSs or SYSPOPs Function

30 Read status of a lower fork
107 Read status of all lower forks

TEMPORARY SUSPENSION OF FORKS

BRSs or SYSPOPs Function

45 Dismiss on quantum overflow
72 Executive dismissal
81 Dismiss for specified amount of time
31 Wait for specific fork to cause a panic
106 Wait for any fork to terminate
109 Dismiss calling fork

TERMINA nON OF A FORK

BRSs or SYSPOPs Function

10 Terminates the calling fork
32 Terminates a specified lower fork
73 Terminates a specified number of lower forks
108 Terminate a II lower forks

INPUT /OUTPUT

DIRECT CONTROL OF PERIPHERALS

BRSs or SYSPOPs

1
110
2
20
8
66
67
87
104
105
113
118
119
BE+l
BE+2
BE+7
BE+9
BE+l0
BE+15
BE+17

152 Appendix B

Function

Open a file of a specific device
Read device and unit
Close a file
C lose a tape fi Ie
Close a II fi I es
Delete DSU fi Ie data
Delete DSU file index block
Read DSU file index block
Read a page (2048 words) from RAD
Write a page (2048 words) to RAD
Compute fi Ie size of a disc fi Ie
Allocate magnetic tape unit
Deallocate magnetic tape unit
Read DSU
Write DSU
Test a breakpoi nt swi tch
Read DSU page
Write DSU page
Read SM T page from RAD
Test for last buffer used

Page

79
80

Page

80
81
81
82
82
83

Page

83
84
84
85

Page

86
88
88
89
89
90
90
91
91
92
92
93
93
95
96
95
94
94
96
97

CONTROL OF FILES VIA FILE NAMES

BRSs or SYSPOPs Function Page

15 Read input fi Ie name 98

16 Open input fi Ie in fi Ie di rectory 99

17 Close all files 99

18 Read a fi Ie name and look it up in the fi Ie directory 100

19 Open output fi Ie located in fi Ie directory 101

48 Look up input/output file name 102

60 Look up I/O file name and insert in file directory if not found 102

BE+19 Read fi Ie creation date and access count 97

I/O OPERATIONS

BRSs or SYSPOPs Function Page

BIO Block input/output 104
CIO Character input/output 103
CTRL Input/output control (tape) 105
WIO Word input/output 103

TELETYPE OPERATIONS

LINKING AND ATTACHING

BRSs or SYSPO Ps Function Page

23 Link/unlink specified TTY 106
24 Unlink all TTYs 106
25 Set teletype to accept/refuse links 107
BE+3 Test for carrier present (not implemented)
BE+6 Turn a teletype line on or off 109

INPUT/OUTPUT OPERATIONS

BRSs or SYSPOPs Function Page

11 Clear the teletype input buffer 109
12 Declare echo table 110
13 Test input buffer for empty 111
14 Delay unti I the TTY output buffer is empty 112
29 Clear the output buffer 110
40 Read echo table 111
85 Set spec ia I TTY output 112
86 I Clear special TTY output I 113
BE+ 11 I Ignore I ine feed or carriage return when followed by carriage return or line I I

I

feed respectively (not implemented)
I OST Output to specifi c TTY 114

TCI I Te I etype character input I 113
I

I
TCO

I
Teletype character output 114

Appendix B 153

MEMORY OPERATIONS

PRIVATE MEMORY

BRSs or SYSPOPs

4
43
44
56
80
116
117
120
121
122
BE+4

SHARED MEMORY

BRSs or SYSPOPs

69

STRING PROCESS

STRING I/O

BRSs or SYSPOPs

33
34
35
CIT

HASH TABLE SEARCH

BRSs or SYSPOPs

5
6
37

Function

Re I ease a page of memory
Read pseudo relabel ing
S.;t pseudo relabeling
Make page executive
Make page read only
Read user relabel ing
Set user relabeling
Acquire a new page
Release specified page from PMT
Simulate memory panic
Read/write one word in the Monitor

Function

Get SMT block to PMT

Function

Read string
Output message
Output string
Character input and test

Function

Look up string in hash table
General string look up
Insert string in hash table

STRING MANIPULATION

BRSs or SYSPOPs Function

LOP I Load string pointer
SKSE

I

Skip if string equal
SKSG

I

Skip if string greater
STP Store string pointer

154 Appendix B

Page

115
116
117
119
119
117
118
116
115
118
120

Page

121

Page

122
122
123
124

Page

125
127
126

Page

125
124
128
127

CHARACTER MANIPULATION

BRSs or SYSPOPs

GCI
GCD
WCD
WCH
WCI

NUMBER OPERATIONS

NUMBER I/O

BRSs or SYSPOPs

36
38
52
53
ISC
SIC

Function

Get character from beginning of string and increment beginning pointer
Get character from end of string and decrement end pointer
Put character on beginning of string and decrement beginning pointer
Write character to memory by table
Put character on end of string and increment end pointer

Function

Output number to specified radix
Input number to specified radix
Formatted floating point input
Formatted floating point output
Interna I to string conversion
String to interna I conversion

ARITHMETIC OPERATION S

BRSs or SYSPOPs Function

21 Floating point negate
50 Conversion from floating point to fixed point
51 Conversion from fixed point to floating point
FAD Floating point addition
FDV Floating point division
FMP Floating point multipl ication
FSB Floating point subtract

EXECUTIVE COMMAND OPERATIONS

BRSs or SYSPOPs Function

95 Dump program and status on fi Ie
96 Recover program and status from fi Ie

MISCELLANEOUS OPERATIONS

BRSs or SYSPOPs Function

41 Return from I/O subrouti ne
42 Read real-time clock
71 Skip if executive
88 Read execution time
91 Read date and time into a string
111 Return from
112 Turn off teletype station (Exec only)
BE+5 Set disc bit map
BE+8 To crash the system for error diagnostic
BE+13 Sets Exec switches in COMPG
BE+16

I
Set Executive status

eve L ___ , .L _ • __ _ L· __ _ L _ __ I-
L.A.) L.Xt::l;UIt:: III:.hul;IIUIl III :,y:'lt::rTl rnuut::

Page

128
129
130
130
129

Page

131
131
132
132
133
133

Page

135
134
134
135
137
136
136

Page

138
138

Page

140
139
142

I

140
139

I

141
141

! 142
I 143
I 143

I
144 . ,-
14U

Appendix B 155

APPENDIX C. GENERAL DESCRIPTION OF THE COMBINED FILE DIRECTORY

A user may have one or two fi Ie directory blocks on the disc;
the second block is an overflow block. Each block consists
of 128 words containing a variable number of fi Ie directory
entries. Each entry is in the format pictured below.

If the first word of the block is zero, the block is considered
to be empty. The last entry is followed by a -lor -2 word
where the -1 indicates additional entries in the overflow
block.

128
Words

-

FILE DIRECTORY BLOCK

4 Control words

Variable length name

End dir. flag -lor -2

Avai lable storage for unused
entries

Overflow block pointer

Accumulated real-time (con-
nect time)

Accumu lated computer time

Valid on time (1 bit per hour)

Number of
entries
depends on
length of
fi Ie name

Last -3

Last -2

Last -1

Last word

I n the case of an overflow block, the last three words are 0,
and the overflow block pointer is a backward pointer to the
first file directory block (i.e., UNO).

The user number (UNO) is a pointer to the disc address of
the user1s file directory. The available user numbers vary
with the number of discs. Suppose an installation has a disc
configuration to allow user numbers to range from 1 through
1377B. An arbitrary decision could be made to assign user
numbers 1 through 1077B, thus allowing number 1100B through
1377B for overflow file directories. The overflow file direc­
tory pointer is actua Ily a "fictitious user number".

The variable LUNa (Last User Number) designates the end
of the overflow file directory area. In the above example
LUNa would be set to 1377B and SOV (Start of Overflow
area) would equal 1100B. NOVP would be initialized to
LUNa and decremented each time an overflow fi Ie directory
is assigned.

156 Appendix C

FILE DIRECTORY FORMAT ON DISC OR TAPE

0 Account No. No. of accesses Creation date

0 89 14 15 23

ICCI 0 File length (FL)

012 11 12 23

2 LTP
Future controls (currently
not used)

11 12 23

3 I Index block pointer (disc file)

0 23

or

3 I HTP 0 FS (tape fi Ie)

0 56 89 23

4 Char of name

N Char of name Char or 136 (fill)

7 8

Account No. 41 wou Id be account D 1, 32 account
C2, etc.

No. of Accesses Number of times the file was ac-
cessed since last disc reordering. Reaches a maxi­
mum of 77B and remains there until next disc edit.

Creation Date Bits 15-18 are the month number less
one. Bits 19-23 are the day of the month less one;
for example, 154 is Apri I 13.

CC Indicate a change in file size (the file was writ-
ten on). These bits are used by the concurrent tape
back-up routine and the disc file edit routine.

I

I

FL Fi Ie length for disc fi les where each bit represents
one data block of 255 words.

CB Fi Ie control bits, 0 = Tape fi Ie
2 = Disc fi Ie

FT File type (1 through 4)

LTP Low order tape position; for example, if LTP = 5,
this is the fifth file on a multi -fi Ie tape.

F End of entry flag

HTP High order tape position

FS Tape fi Ie size

USER ACCOUNT DIRECTORY ON DISC

Words o 2 3 4 5 6 7

I Acct. password no no

8 User Name (N

13 User Name 2 (N

18 User Name 3 (N

23 User Name 4 (N

28 User Name 5 (N

33 User Name 6 (N

38 User Name 7 (N

43 User Name 8 (N

48 User Name 9 (N

53 User Name 10 (N

58 User Name 11 (N

63 p

o 11 12 23

where

(A This word could be used to contain status
parameters that apply to the entire account. (ur­
rently it is not used.

no is not assigned

(

N

p

is a control parameter

is a user number

is reserved for an overflow pointer and not pres­
ently used.

The control parameter bits are assigned as follows:

Bit Use

0 System status

1 (ontrol

2 Operator status

3 Subsystem status

4, 5 Not assigned

6, 11 Subsystem classes

Appendix (157

BRS

CNTRS

COMPG

DISC

INIT

lOP

MCONST

PMTS

RAD

SCHDR

STRNG

TTY

USERP

WPAGE

APPENDIX D. RESIDENT MONITOR FILES

Contains the BRS dispatcher and the routines associated with miscellaneous BRSs. The trap routines, the
memory allocation routine and the routines necessary to set up and maintain the forking structure are here.

All of the counters that are used for statistical purposes are here. If the assembly parameter called CNTPKG
is set to -1, th is fi Ie is not needed.

This file contains some of the constants that are used by the Executive and Monitor, the job indexed tables,
some of the teletype tables, and various error counters.

This file contains the opening and closing routines and the drivers for the disc. However, the disc queue and
interrupt routine are in the lOP fi Ie.

This file is used to initialize the system. The DSWAP routine reals the first 14K of the Monitor from the disc
and branches to SETSET wh ich reads the INIT fi Ie from the disc.

This file pertains to the I/O devices and file logic. The file control tables and device tables are here. The
131 and 133 interrupt routines and the opening and closing routines are here. lOP contains the general logic
for the devices that are on the W-buffer. The drivers for a particular device will be found in either DISC or
WPAGE.

This file contains the systems configuration dependent parameters, such as number of discs, RAD, description
of peripherals, size of buffers, etc. It also contains OPDs and macros. This file is nongenerative (contains
only assembly directives) and is used only when the Monitor is assembled.

This file contains the scheduled queues, the PMT and SMT tables, and the PAC tables.

Contains the RAD driver, interrupt routine, and RAD queue.

Contains the routines that are necessary to dismiss one user and activate another. The scheduler, the swapper,
the Phantom User, the clock interrupt routines, the software interrupt routine, and the crash routine are
here.

Contains the routines associated with string processing. The routines used for constructing and maintaining
the hash tables are here. The floating point POPs are also here.

This file contains the routines that are associated with the teletype, the five interrupt routines, the TCO and
TCI SYSPOPs, the majority of the tables indexed by teletype number, the teletype buffers and various routines
that the Phantom User performs that are associated with the teletype, such as rubouts and the initialization of
the Executive for a user, are here.

User page (TS page). This file provides a map of the symbols used mainly by the Executive. The TS page serves
to make the Executive reentrant. Each user has a TS page with the format shown by this file.

This file contains the drivers for all of the devices, except the disc, that are on the W-buffer.

158 Appendix D

LOGICAL REAL
MEMORY MEMORY

A A
Page Location I '\ I ,

0 lOP lOP 10 DISC

4140
I-------r- -------

COMPG COMPG 11 WPAGE
5001

1------ --- -- - ----------

2 TTY TTY 12 INIT

12535
1--------- -- --- ----

3 SCHDR SCHDR 13

17122
1----------1--1----------

BRS BRS
4 22760

1-------- f- 1--------- 14
RAD RAD

23704
1------- - - -- ---

STRNG STRNG
25503

f----- -------------
5 CNTRS CNTRS 15

25771
I-- - ----- 1----------

PATCH PATCH

PM TS or

6 DISC or PMTS 16

WPAGE

INIT or
7

USERP 17

Note: The Monitor relabeling register refers to pages 6 and 7. The locations that the Monitor
files occupy were obtained from a typical Monitor assembly. The lOP, PMTS, DISC,
WPAGE and INIT files are loaded on page boundaries.

Figure 34. Memory Diagram for the Monitor

Appendix D 159

EXCNS

GSBR

CMNDS

CMND2

INTLE

APPENDIX E. THE EXECUTIVE FILES

The file contains various parameters and MACROS that are used at system generation for the Executive. The file
consists of a II nongenerative assembler directives.

This file consists of a collection of genera I subroutines that are used by the Executive.

This file contains the command processor for the Executive. An escape to the Executive transfers control to this
file. The routines associated with the Executive commands or a transfer to the routines are in this file. The com­
mand and subsystem hash tables are here.

This file contains the logic necessary for logging a user on and off the system, plus the Executive commands that
are not in CMNDS.

This fi Ie is both assembled and executed when the Executive is generated. The routine that sets up the commands
and subsystem hash tables is here.

Logical
Page Location Memory SMT/PMT Byte

0 USERP 60B

4140 f--------- -
COMPG 01B

f--------- r-

2 GSBR lOB

13334 f------- --- -

3 CMNDS 11B

17710
f-- --- - - - - ----

4 CMND2 13B

23762
f------------

Note: The locations that the Executive files occupy were obtained
from a typical assembly.

Figure 35. Memory Diagram for the Executive

160 Appendix E

APPENDIX F. INITIALIZATION AND ASSIGNMENT OF THE PAC TABLES
Assume there are only five PAC tables in the system and the tables begin at location 100B. (Actually there are 144 tables that
are located in the PMT file.)

NPAC EQU 5
NPPAR EQU 10 (10 entri es per PACT)

100B PACT BSS NPAC * NPPAR
PEND EQU *
PNEXT EQU PEND + 0
PL EQU PEND + 1
PA EQU PEND -+- 2

PPTR EQU PEN D + 5

PIM EQU PEND + 9

When the program is assembled, the following values will be assigned:

Symbol Value

PACT 100B
PEND 162B
PNEXT 162B
PL 163B
PA 164B
PPTR 167B

When the system is initialized (in INIT), the following values are inserted into the PAC tables. See Figure 36.

Location

PACT 100B

PACT + 5(PPTR) 0 105B

PPTR (2nd table) 131B 117B

PPTR (3rd table) 143B 131B

PPTR (4th table) 155B 143B

PPTR (5th table) 0 155B

FPLST = 117B

Note: Only the PPTR word of each table is shown.

Figure 36. Initialization of PAC Tables

Appendix F 161

Note that the PPTR word of each table points to the loca­
tion of the PPTR word of the next available PAC table. The
PPTR word of the last PAC table contains a zero indicating
that there are no more available tables.

In order to retrieve entries from the PAC table, there is a
PACT pointer associated with each PAC table. The pointer
for the currently active fork in the system is always stored
into location PACPTR. The PACT pointer is a negative num­
ber that allows the PAC table entries to be addressed using
the end of the tables (see definition of PNEXT, PA, etc.)
as the point of reference.

When the system is initialized the Phantom User is assigned
the first PAC table. Location FPLST always contains the
address of the PPTR word of the next available table. If the
address of the PPTR word of an available table is known, the
PACT pointer can easily be ca Iculated.

Considering the above example, the following values would
be assigned at system initialization:

FPLST = 117B

PUPACP = -62B = PACT pointer of Phantom User

When the Phantom User is active, the following coding
would retrieve his PAC table entries:

LDX PUPACP

INST LDA PA,2 Fetch PA word

LDA PIM,2 Fetch PIM word

The effective address of the instruction at INST would be:

PA 164B

(X) -62B PACT pointer of Phantom User

Effective Address = 164 -62 = 102B = Address of PA
entry for Phantom User

When a user comes on the system or any fork is declared, a
PAC table must be assigned. Coding very similar to the fol­
lowing is executed in subroutine GFK:

162 Appendix F

LDA FPLST Get point to a free table.

SKG = 0 Are there any free tables.

BRU NOROOM

SUB =PPTR Calculate PACT pointer.

COpy AX,A Copy A to Xi clear A.

XMA PPTR,2 Get pointer to next free table.

STA FPLST FPLST updated.

STX TEMP Save PACT pointer

Once the PACT pointer is assigned, it is stored into the
PNEXT word of the fork previous to it on the scheduled
queues or it is avai lable in the PDOWN or PFORK entries
is the fork was dismissed to activate a lower fork.

When a fork is terminated, the PAC table associated with
the fork is returned to the free PACT list. Coding simi lar
to the following is performed:

LDX PACPTR Get pointer for this fork.

COpy XA

ADD = PPTR Get address of PPTR word of
this table.

XMA FPLST

STA PPTR,2

Note that FPLST is pointing to the table that has just been
released. PPTR of the table that has just been released is
pointing to another free PAC table (i. e., as a fork termi­
nates the PAC table is added to the top of the list of free
tables) .

The method that is used for the assignment of PAC tables is
similar to the method used for the assigning of the job and
fi I e numbers.

The TTNO table contains the chained list of free job num­
bers. Location FULST contains the next available job num­
ber. The FA table and location FFLST are used in conjunc­
tion with the file numbers.

APPENDIX G. INITIALIZATION OF SYSTEM AND ACTIVATION OF FIRST USER

The dashed I ine represents the tel etype
on interrupt

EPU puts task on Phantom User

!
PACSRT

Bring in first 14K of Monitor.

Read the INIT file. from disc.

Initial ize tables, arm teletype interrupts,
activate 2 phone I ines, arm clock, enable
interrupt system.

Charge time to system overhead.

Set a pointer to search QTI.

Begin searching a queue.

Find an activatable fork. If aliOs have
been searched, go to PACGO.

Initiate swap for this fork. Put fork on
swap Q.

Call swapper. Charge time to this user.

Get this fork off the scheduled queues.

Search swap Q for a fork whose memory is
core resident. PUwi11 always have his memory.

Take fork off swap Q.

Verify that this fork has all his memory.

Establish this fork1s environment. Activate

him by a BRU* on PL word.

Appendix G 163

164 Appendix H

APPENDIX H. THE PHANTOM USER LOGIC

Initialize pointer to search beginning of PUCT table.

PUDMS

Search PUCT tabl e for a task.

PUCLST contains addresses of routines that determine whether
PU can process a task; for example, it cannot process a rubout
if NT bit set.

If not at end of PUCT, go to PUSCN and continue searching.
GO to PUSCN if an interrupt added a new PUCT entry. Put
PU on QQE if nothing to do.

Flow enters at PUACTl or PUACT to process a task. Remove
task from PUC T.

PUCSET contains addresses of the routines that perform the
PU tasks.

All PU routines return to NPUGO. PMT page is relabeled in.
The task may have required the use of DISC or WPAGE.

Put PU on QTI.

Dismiss. Note that the PTEST word contains an activation
condition of 4.

APPENDIX I. PHANTOM USER LOGIC TO PROCESS A TELETYPE ON INTERRUPT

BRU*

PUCLST,2

BRU*
PUCLST,2

The activation code for the tt on interrupt = 6.

Make sure 4 sec have elapsed since interrupt occurred. 4 sec delay allows for TTY
carrier to become stable.

PUNXT
Attempt to process next PUCT entry if 4 sec
have not elapsed.

Remove task from PUCT tabl e. Decrement PUCTR.

Location PUTST contains TNI2 + 1.

Make sure data set is ready and carrier is stable.

TIP is a general despatcher for tt on, off, rubout, and BRS 112.

Get job number, get PAC table for Executive fork, set up PAC table parameters, zero
PMT table, set PL word to TSONI, put Executive PAC table on OTI.

Format for PUCT table entry for teletype on interrupt:

Word 0 Poi nter to next task on PUCT

6 cL TNI2+ 1

2 1 pJ CN

3 0 CL; CN

The 6 is the activation code used by PU logic. TNI2 + 1 is
address of routine to process task.

The 1 is used by the dispatcher at TIP.

Teletype channe I number.

Appendix I 165

APPENDIX J. FLOW REQUIRED TO INITIALIZE THE EXECUTIVE WHEN
A USER LOGS ON THE SYSTEM

When the Phantom User processes a "teletype on" interrupt, the PAC table for the Executive fork is initialized and put on QTI.
When the Executive fork is activated it begins execution at TSONI.

166 Appendix J

Get TS page for user, execute a BRU EXEC 1,4 to enter user mode.

Sets up various parameters, allows 1-1/2 minutes for log on time.
EXECI is the general entry point to the Executive from the Monitor.

This is the general entry point after rubout.

CR is general entry point to process Executive commands. The third page is re­
labeled out since it is used mainly during logging on and off. Since user has not
logged on a branch is taken to XENTER where the third page is relabeled in and a
branch to ENTER occurs.

Types "READY" and "PLEASE LOG IN". Reads AUD and file directory. Verifies
log in parameters.

This is the general entry point into CMNDS from CMND2. Third page relabeled
out.

Types the dash and begins to read the command.

Interprets the command and takes appropriate action.

CHRL

SWAP

SWP1
through
SWP41

SWP2

MA8
through
MA12

SWP10

SWP12
through
SWP36

SWP15
through
SWP23

or

DCRL

OMW

APPENDIX K. SUBROUTINE TRACE OF THE SWAPPER

UPRL

RTW
RTC

Load pseudo-relabeling into A, B, X.

Decode pseudo-relabeling into SRT table.

Pseudo Byte

o
SRT Entry

40B

Page in core Real page number including read-only
bit (bits 18-23 of PM T)

PM T entry on RAD

SM T entry on RAD

4 @ PM T address

5 @ SMT address

Lock page, reduce MAC for core resident pages. For pages that must be
read, bui Id the following tables:

SWT5 - RAD address of page

SWTl4 - SRT entry of page

SPT and SAT - These tables cross-reference each other. They allow
the commands to be later inserted onto the RAD queue in a manner
that is optimum for RAD access.

Check MAC to determine if there are enough unlocked pages to attempt to
bring in this fork.

Determine which pages will be swapped. The method for selection of
pages is described in Chapter 5. The write commands are added to the
SPT and SAT tables. SWT6 contains the first location in SWT5 that was
not used by the read commands.

SWT5 - Contains PMT/SMT entry of page to be swapped

SWTl4 - Conta ins RM T entry of page to be swapped

If a read-only (RO) page is released, the in-use bit (bit 0 of RMT) is reset
so that later the system knows that it can put a request on the RAD queue
to read into this page without waiting for the previous contents to be writ­
ten out. Bit 0 (on RAD) of the PMT entry that currently corresponds to this
page is set.

The current position of the RAD is obtained in order to pull commands from
SPT and SAT in an optimum manner.

The RAD requests are built from the information in the SPT, SAT, SWT14,
and SWT5 tables. A RAD read calls OMR while a RAD write calls OMW.
The system distinguishes reads from writes by the SWT6 pointer. If a read
and write command refer to the same page, the write command is entered
onto the RAD queue before the read command. This is accomplished by
examining bit 0 (in use) of RMT. This bit is reset after a write command
is added to read queue.

Add write command to RAD queue. Lock page whi Ie RAD I/O is active.

Adjust bits 0, 1, and 2 of RM T appropriate Iy. If ca" for activation, insert
swap queue (SWQ) pointer into RMT and adjust page count word of SWQ.
The real page number is inserted into PMT and bit 0 of PMT is reset. If the

Appendix K 167

RTC

RST
RTS

SWP3
PTRL

PKRL

CHRL+7

LABEL

168 Appendix K

RDR

ca II was from MGET (DROBIT of PMT set), RTC is not ca lied since no
read is required.

Add read command to RAD queue. Lock page while RAD I/O is active.

RST is called when all the commands are on RAD Q. Start the RAD. Do
not wait for I/O to complete if call was for activation. Otherwise wait
and exit skipping if error occurred.

PTRL calls PKRL to form the 3 hardware relabeling registers in A, B, and X.
The read-only bit is set for a II the bytes. .

SWAP exits skipping if successful.

The real relabel ing is stored into SRRL 1, SRRL2, and SRRL3. An exit is
taken if this was a ca II for activation. Otherwise the TS page is marked
as being not read-only. The Monitor accesses the TS page and Monitor
mapping does not include a read-on Iy bit. The hardware relabel ing is
then set.

APPENDIX L. THE DISC LOGIC

The software initiates disc I/O by first placing an entry on­
to the disc queue (DRQ). Each entry on the disc queue re­
quires three locations. The format of a disc queue entry is
shown in Figure 37.

The disc drivers wi II add an entry to DRQ at the location
indicated by EDCL. location NDCl contains the count
(minus one) of the number of commands that are on the disc
queue and are ready for the disc interrupt routine to process.
The disc driver wi II increment N DCl when it adds an entry
and the disc interrupt routine (IDM) wi II decrement N DCl
when it processes an entry. IDM will sequentially pull com­
mands off of DRQ and execute them unti I N DCl has the
value -1. At this point there are no more commands on
DRQ that are ready to be executed.

Word 0 Disc Address

0 718 23
1 FN Real Core Address

2 R IETIME[EN I Word Count

o 1 56 - 89 23

FN Fi Ie number

ETIME Estimate of the time (clock ticks) that
this operation should require

EN Index to the post-processing error routine
that this operation should use

R 1 for write, 0 for read command

Figure 37. A Disc Queue Entry

Since both the disc drivers and the disc interrupt routine
alter the contents of NDCl, the drivers must disable the
interrupts while NDCl is being adjusted. To make this pro­
cess more efficient, the variable DTXS 1 is implemented.
Suppose the driver wished to perform an operation that re­
quired the adding of two commands to DRQ. The driver
would add both commands to DRQ and increment DTXS 1
each time a command was added. Then the driver would
disable the interrupts, adjust NDCl by the value indicated
by DTXS 1, and restore DTXS 1 to a -1. Thus DTXS 1 con­
tains the number of commands (minus 1) that the driver has
added to DRQ for any given operation.

The disc interrupt routine is entered in two ways: (IDMRET
indicates how IDM was entered.)

1. as a response to an interrupt (IDMRET = -1)

2. as a subroutine called by a disc driver (IDMRET=O)

If the disc is inactive, the driver must not on Iy add an
entry to DRQ, but also initiate the disc I/O by calling
IDM.

DRQ

IDCll - The I/o
transmission for this
entry is currently
bei ng processed.

IDCl - The I/O for
th is entry wi II be
initiated when the
interrupt for IDCl 1
is received.

- EDCl - The disc
drivers wi II add an
entry at th is
location.

There are 3 words per entry.
DRQ is dimensioned for NDRQ entries.

Figure 38. The Disc Queue (DRQ)

When I DM is entered as a response to an interrupt, the fol­
lowing occurs:

1. The I/O for the next entry (if any) on DRQ will be
initiated. This entry is pointed to by IDCL.

2. The post-processing, i. e., error check, release locked
pages, etc., will be done on the entry for which the
interrupt was received. This entry is pointed to by
IDCl1.

When IDM is entered as a subroutine call, IDell will equal
-1. The I/O for the first entry will be initiated andIDCll
will point to this entry. The next entry (if any) will be
set up (the POT words will be contructed), and pointed
to by IDCl.

When IDM has finished executing all the requests on DRQ,
I DC l 1 wi II be set to -1 .

Appendix l 169

APPENDIX M. BRS lOGIC FLOW

yes

TRAPB

no yes

Dismiss until
PAC table
available

Store transfer
vector in BSX. Set PQU word

to full time
+ X6

yes
yes

Restore A
Set PACT Set PACT register.
pseudo rei pseudo rei
to 60011000,0 to 60011200,0

SYSPOP mark
word (MEM 0)

PACPTR to Set PACT PL to
to SBRSRT.

X register. 40010003+lower
9 bi ts of BST war

Execute
transfer
(EXU BSX).

Set PTAB to X5,
EXECL panic
address & job
number.

Set up PA, PB
& PX for new

Restore A & X fork.
registers.

Save old param-
eters UBRL I,

Execute UBRL2, UBA,
transfer UBB, UBL&UBX.
(BRU* BSX)

Restore SYSPOP
mark word
(MEM 0).

Set B to Exec
tSMT entry: 10 = FLTJO file

BRS activation
condo 12 = GSBR file

170 Appendix M

APPENDIX N. TRACE OF THE SUBROUTINES WHICH ARE CALLED BY
THE BRS 1 (MONOPN) IN ORDER TO· OPEN THE DISC

MONOPN

BIO

BIS

BIG

BGET

DRMOPN

BSET

DTe

DTF

DTS

DTA

DTZ

IDM

DTP

Get a TS page buffer.

Dispatch on OPN DEV table.

The following path is taken (in DRMOPN) to open an old file.

Get rea I address of buffer.

Put command to read index block on disc queue.

Set fi Ie number and index to error routine in disc queue entry.

Increment count of number of commands on disc queue.

This routine called only to start the disc if the disc is currently inactive.

Reset DTXS 1 variable.

The following path is taken (in DRMOPN) to open a new file.

Allocate a disc block for the Index Block.

Zero the area of TS buffer that the Index Block wi II occupy.

APPENDIX O. SUBROUTINE TRACE FOR B I 0 FLOW WHEN THE
DEVICE IS THE DISC ON INPUT

101

GPW

GPWD

ED

BSET

MPDSC

DRMSI

DTC

DRF

DTS

IDM

DTP

I
NIODMS

IODMS I

MPPACT

POPDMSI

Block input/output.

Return buffer address and FD word.

Transfer all available words.

BIG is entered when the data block in the buffer is empty.

Find out it is the disc.

Set up arguments for ED.

Get buffer poin ter and drive device.

Get buffer address.

Map in the disc page.

Compute disc address.

Put command on DRQ.

Set file number, interrupt index in DRQ.

Update DRQ command counts.

Start disc (if currently inactive).

Reset command count.

Calls:

Map in PM T page.

Make up PTEST word: 11 ~Q) FD+filenmbr.

Dismiss fork.

Appendix N/Appendix 0 171

APPENDIX P. SUBROUTINE TRACE FOR THE LOGOUT COMMAND

I
LOGOUT

TIP

OFFINT

LGOUT3

OFDUM

XDUMP

OFINT2

OFINTl

KILL 6

BRS 8

MKFD

WRACT

TIMER

BRS 14

BRS 4

BRS 112

Use BRS 121 to release memory of PMT entry 61 and following.

Close all files.

Output updated file directory to disc.

Write system accounting.

Print elapsed time message.

Wait until elapsed time message is printed.

Release TS page.

The BRS 112 releases the job number, resets TTYASG and WERIS, releases PAC table for the Executive,
removes any tasks that this teletype has on the PU queue, and finally puts a task on PU (the same as the
teletype ON interrupt) to set up an Executive for th is user. The system wi II set up an Executive fork
and allow the user to relog on provided that he has not hung up. Also, a check is made to see if the
operator has issued the SHUT DOWN command. If so, the teletype will be deactivated.

APPENDIX Q. SUBROUTINE FLOW FOR THE PHANTOM USER TASK
WHICH PROCESSES A TELETYPE OFF INTERRUPT

TFIP

BRS 14

BRS 4

BRS 112

KILL 6
BRS 8
MKFD
WRACT

HFK Get PACPTR of Executive fork.

RFK Set panic tables for entire forking structure.

TFK Release all PAC table in forking structure except Executive fork. The Executive fork is put
on 010.

CLIB

CLOB

C lea r input TTY buffer.

C I ear output TTY buffer.

TFIP gives the Executive fork an immediate activation condition and sets the PL word to loca­
tion OFFINT which is in the Executive.

Dec ide if user is sti II logged on system.

The following path is taken in OFFINT if the user is not logged on the system.

Re I ease TS page

See subroutine trace of LOGOUT command (Appendix 0).

The following path is taken in OFFINT if the user is logged on the system.

Clear SWOFF.

Initialize for using /$/ Dump file.

Check to see if user has a 1$/ file. If so, the dump is taken.

Go to LGOUT3

172 Appendix P/Appendix 0

	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	075
	077
	079
	081
	083
	085
	087
	089
	091
	093
	095
	097
	099
	101
	103
	105
	107
	109
	111
	113
	115
	117
	119
	121
	123
	125
	127
	129
	131
	133
	135
	137
	139
	141
	143
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172

