
j

SCIENTIFIC DATA SYSTEMS

Reference Manual

TAP DIRECTIVES

[[$] label] ASC
I'text ' I
lexpressi on, text! [comment] @)

[[$]symbol] BES expression [comment] ~

[[$] symbol] BSS expression [comment] ~

[[$] label] COpy symbol 1 [, .•. , symbol n] [comment] ~

Dabel] CRPT expression[, (s=e
1
, [e

2
,]e

3
)[.. •]] [comment] ~

[[$] label] DATA expression
1
[, ... , expression

n
] [comment] @l

DEC [comment] ~

DELSYM [comment] @)

ELSE expression [comment] @

ELSF expression [comment] @l

END [expressi on] [comment] @)

ENDF [comment] @>

ENDM [comment] @)

ENDR [comment] ~

[$]symbol EQU expression [comment] @l

symbol EXT [express i on] [comment] @l

FREEZE [comn1ent] @)

FRGT symbol 1 [, ... , symbol n] [comment] @)

symbol IDENT [comment] @)

[label] IF expression [comment] @>

LIST symbol
1
[, .•. , symbol n] [comment] ~

name MACRO [Pl' P2' P3] [comment] @>

[$]symbol NARG [comment] @)
r <1"1 .. I I
L~jsymool NCHR character string [comment] @)

NOEXT [comment] @>

NOLIST symbol 1 [, ••. , symbol n] [comment] ~

OCT [comment] @)

symbol OPD expressi on, c1ass[, or] [, type] [, sb] [comment] @

ORG expression [comment] @>

PAGE [comment] @)

POPD expressi on, class [, or] [, type] [, sb] [comment] @)

RAD expression [comment] ~

RELORG expression [comment] @>

REM remark

RETREL [comment] @l

[label] RPT jexpresslon I
l(s=e

1
, [e

2
,] e

3
) ... (s=e

1
L, e

2
])! [comment] ~

[[S] label] TEXT
j Itext l I

r 'J " I expressi on, text! Lcommenr '(:.'J

At1

A',;{·".{

C V

-......
I ..

Price: $1.50

TAP REFERENCE MANUAL
for

SOS 940 TIME-SHARING COMPUTER SYSTEM

Preliminary Edition

90 11 17B

November 1968

SIDS __ 'J l_

SCIENTIFIC DATA SYSTEMS/701 South Aviation Blvd./EI Segundo, California 90245

©1967, 1968, Scientific Data Systems, Inc. Printed In U.S.A

REVISION

This publication, SDS 90 11 17B, is a revision of the SDS 940 TAP Reference Manual,
90 11 17A (dated October 1967). A change in the text from that of the previous manual
is indicated by a vertical line in the margin of the page.

RELATED PUBLICATIONS

Title

SDS 940 Computer Reference Manual

SDS 940 FORTRAN II Reference Manual

SDS 940 BASIC Reference Manual

SDS 940 QED Reference Manual

SDS 940 DDT Reference Manual

SDS 940 CAL Reference Manual

, SDS 940 F~~_RAN !?R~!~:_~_~~~~~~~.~
/SDS 940 Time-Sharing System Technical Manual

f SDS 940 Terminal User's Guide

NOTICE

I

Publication No.

90 06 40

90 11 10

90 11 11

90 11 12

90 11 13

90 11 14

90 11 15

90 11 16

90 11 18

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features may
depend on a specific configurotion of pquipment CjlJeh as add;t!ono' tope units C)f larger memory_ Customers should consult their SDS sales representativE fur detui Is.

ii

CONTENTS

1. INTRODUCTION NCHR Equate Symbol to Number of
Characters in Operand 13

Typographic Conventions 2 OPD Define Operation Code 13
Operating Procedures 2 POPD Define Program Operator 13

Log-In 3 Assembler Control Directives 13
Escape 3 BES Block Ending Symbol 13
Exit and Continue 3 BSS Block Starting Symbol 13

s:j0g-Out 3 ORG Absolute Program Origin 14
Sam Ie On-Line Session 3 EN D End of Assembly 14
--J DEC Interpret Integers as Decimal 14

2. ASSEMBLER CODING RULES 5 OCT Interpret Integers as Octal 14
RAD Set Special Relocation Radix 14

Language Elements 5 FRGT Forget Name of Symbol 14
Character Set 5 IDENT Identify Program 14
Symbols 5 DESLYM Delete Output of Symbol Table and
Constants 5 Defined Operation Codes 14
Express ions 5 RELORG Assemble Relative with Absolute

Operators and Expression Evaluation __ 5 Origin 15
Constraints on Relocatabil ity of Expressions_ 6 RETREL Return to Rei ocatabl e Assembl y 15
Special Relocation 6 FREEZE Preserve Symbols, Operation
Literals 7 Codes, and Macros 15

Syntax 7 NOEXT Do Not Create External Symbols-_ 15
Statements 7 Output and Listing Control Directives 16

Fields 8 LIST and NOLIST Turn Specified Listing
Comment Statements 8 Controls On or Off 16
Processing Symbols 8 PAGE Begin New Page of Assembly Listing __ 16
Defining Symbols 8 REM Type Out Remark During Pass 2 16

Local Symbols 8 Macro Generation Directives 16
Equated Symbols 8 Macro Definition 17
Current Location Counter Symbols 8 MACRO/ENDM Begin/End Macro
External Symbols 8 Definition 17

Programs 8 Macro Expansion 18
Subprograms 9 Macro Arguments 18

Basic Statement Assembl y Procedure 9 Dummy Arguments in Macro Definitions 19
Concatenation 20

3. INSTRUCTIONS 9 Generated Symbols 20
Conversion of a Value to a Digit String 20

Class 1 Instructions 9 NARG and NCHR Directives 21
Class 2 Instructions 10 Conditional Assembl y Di rectives 21
Instruction Field Processing 10 RPT/ENDR Begin/End Repeat Block 21

Label Field 10 CRPT /EN DR Begin/End Conditional
Operation Field 10 Repeat Block 23
Operand Field 10 IF Capabil ity 23
Comments Field 10 IF/ENDF Assemble if Expression is True 23

ELSE/ELSF Alternative IF Bodies 23
4. DIRECTIVES 10

Data Generation Directives 11 5. TAP COMMANDS 25

COpy Generate RCH (REGISTER
CHANGE) Instruction 11 6. ASSEMBLER ERROR MESSAGES 27

DATA Generate Data 11
TEXT Generate Text 11
ASC Generate Text with Three Characters

Error Messages 27
Interpretation of the Error Listing 28

per Word 12
Value Declaration Directives 12

EQU Set or Change Symbol Val ue 12 7. ASSEMBLER BINARY OUTPUT 29
EXT Define External Symbol 12
!'~ARG Equate Symbol to t'~umbei of Relocatable Binary Output 29

Arguments in Macro Call 12 Abso!ute Binary Output 31

iii

APPENDIXES 3. Information Flow During Macro Processing 17

,~.,; ,:t.RA0T£f2-.. ~S 4. TAP Commands and User Responses 25
A. TABtE SF 'RiiVilv,f-"B ASCII COQe,._ 32

B. 940 INSTRUCTIONS 33
5. Error Listing Line 28

C. MACRO EXAMPLE 35
6. Relocatable Binary Output Format 29

TABLES
ILLUSTRATIONS l. Standard Assignments for TAP Commands 26

l. SDS 940 Time-Sharing Assembly Structure 2 2. Error Messages 27

2. TAP Character Set 5 3. Control Words for Relocatable Binary Output __ 29

iv

1. INTRODUCTION

The SDS 940 Time-Sharing Assembly Program (TAP) includes
most features found in other assemblers. Input lines are
divided into label, operation, operand, and comments
fi elds. Instructi ons and addresses can be represented as
symbols and used in expressions to form values at assembly
time. In addition, other more powerful features help to
alleviate the tedi ous housekeeping chores usually consid­
ered a part of machine language programming.

While some assemblers have a fixed-field format, TAP al­
lows a free-form format in which the fields are delimited by
the appearance of one or more blanks. In the examples to
follow, blanks are represented by the symbol b. For ex­
ample, the following lines are identical:

LOCl15ot;oLDA1)1)o1)VALUE2 ALMOST ANY §
+THING GOES§(+Specifies continuation) @)

LOC1-oLDAoVALUE2t>ALMOST ANYTHING GOES ~

There must be at least one leading blank if no label appears.
For example, the following I ines are identical:

ooEo1)ST AoooTEM4 @)

oST At> TEMP4 @)

Symbols in most assemblers are used to represent memory ad­
dresses or to identify constants and are usually placed in a
symbol table as partial word entries. However, in TAP, the
values of symbols are held in the computerls full word length
(24 bits) as positive or negative values. The assembly-time
calculations that can be performed using symbolic expressions
are, therefore, more general and much more usefu I. As
examples, one can write:

ABC EQU -17 @>

DATA 2* ABC+15 @> (The integer -19 will
be formed)

New operation codes can be defined, and these, as well as
existing operation codes, can be redefined during assembly.
It is possible to specify whether (1) an operation code re­
quires an operand, (2) the operand is truncated to 9 or 14
bits, or (3) the instruction is a SYSPOP (system programmed
operator), requiring bit 0 to be set.

Expressi ons can be written as follows:

AB-BC+3,2 (The 11,2 11 is the tag for indexing)

A+C-C*37B/10 (Octal numbers are terminated with "B")

A(AND) (NOT)B(OR)CDEF (EOR)777000B

The following lines generate the value 0 or 1:

DATA XYZ=ABC ~

DATA AB*6<CD+2 @)

or al ternativel y (if keypunch characters are used):

DATA XYZ(EQU)ABC @)

DATA AB*6(LSS)CD+2 @)

Literals are provided so that constants can be referred to in
programs by value, rather than by location. This feature
makes a program easier to read and rei ieves the programmer
from remembering to include all the data.

LDA =5 @)

LDB =ABC+77770000B(AND)CD@)

LDX =AB=@l@)(The value of the literal is 1 or 0)

BRU* =DEF @)

Note that the literal can be any general expression.

The assembler's most powerful feature is its macro facility.
On the simplest level, a macro can be thought of as an ab­
breviation or shorthand notation for a body of code that is
used repetitively in a program. For example, the 940 has
an SKE (Skip if Equal) instruction but not an SKNE (Skip if
Not Equal) instruction. Frequently it is convenient to do
SKNE, but one has to write

START SKE ='ABC'@)(Skip if equal to 'ABC)

BRU *+2@)(This is necessary to invert SKE)

BRU EQULOC@l(In case (A)='ABC)

Accordingly, one can define the macro SKNE as follows:

SKNE MACRO DUMMy@l

SKE DUMMY (1) @)

BRU *+2 @)

ENDM @l

Then, by using the lines

SKNE =1 ABC @l

BRU EQULOC @)

the code shown at location START above will be generated.

A macro reference in a body of a program is a directive to
the assembler to insert a predefined block of in-put lan­
guage whi I e replacing dummy substrings with argument
substrings. The block can contain other macros.

The real power of the macro lies in its ability to substitute
character strings for values. Further, the macro offers a
genuine facility for doing calculations at assembly time,
thus providing for program parameterization. Data areas
can not only be redimensioned by changing parameter val­
ues, but different programs can also be produced. The IF,
ELSF, RPT (repeat), and CRPT (conditionai repeat)

Introduction

directives provide these calculation facilities. These di­
rectives function independently of macros, but their use
with the macros enables programmers to easily perform ex­
tremely complex operations.

TAP statements can be prepared in several ways. Cards may
be punched at any facility for entry into the system at the
computer site. Alternatively, the 940 text editor, QEDt,
provides another and much easier way of preparing the sym­
bolic input for the assembler on-line at the user's teletype.
The text editor is also used to modify existing source pro­
grams stored in the system.

'Nhen a source error appears during assembly or execution,
the user can revert to the text editor in a matter of seconds.
Laborious input/output operations are avoided because both
the symbolic and object code are kept in secondary, random­
access storage. Large programs can be edited on-line and
reassembled in a fraction of the time required at a key punch,
because they remain within the system on secondary storage.

The on-line debugging subsystem, DDTtt, allows the user
to insert breakpoint statements, execute single statements,
and examine and change variables symbolically. Signifi­
cantly, only a minute fraction of the computer's resources
is employed while the user is thinking on-line. The Ex­
ecutive dismisses programs awaiting input and moves them to
secondary storage. 'Nhen the user makes his next move, the
program resumes operation within a second or two.

To TAP users, the 940 time-sharing software system has the
structure shown in Figure 1. All symbolic files accessible
to the user can be accessed with the Executive system, the
command modes of the text editor (QED), the debugging
subsystem (DDT), and the assembler (TAP).

A user can have access to one subsystem (QED, TAP, DDT,
etc.) at a time; calling a second one releases the first. In
particular, the contents of the QED text buffers are lost

t
The text editor is described in the SDS 940 QED Reference
Manual.

tt
The on-line debugging system is described in the SDS 940
DDT Reference Manual.

when TAP is called. Therefore, files are used to communi­
cate data between subsystems. For a complete description
of the 940 files and their use, refer to the SDS 940 Terminal
User's Guide.

TYPOGRAPHIC CONVENTIONS

For clarity, several typographic conventions have been
used throughout this manual. These are explained below.

1. Underscored copy in an example represents copy pro­
duced by the subsystem in control of the computer.
Unless otherwise indicated, copy not underscored in an
example must be typed by the user.

2. The @) notation appearing atter some I ines in the
examples indicates a carriage return. The carriage re­
turn key is labeled RETURN on the teletype keyboard.
The user must depress the carriage return key after each
command to inform the computer that the current com­
mand is terminated and a new one will begin. The
computer then upspaces the paper automatically.

3. The ®notation indicates the LINE FEED key.

4. Non-printing control characters are represented in this
manual by an alphabetic character and a superscript c
(e. g., DC). The user depresses the alphabetic key and
the Control (CTRL) key simultaneously to obtain a non­
printing character. For editing purposes some control
characters wi II cause a symbol to be printed, but this
symbol does not appear in the final version of an edited
line.

OPERATING PROCEDURES

The standard procedure for gaining access to an SDS 940
time-sharing computer, from a teletype terminal, is de­
scribed in the SDS 940 Terminal User's Guide. The publica­
tion also includes information concerninq the Executive
system and the calling of various subsyst;ms available to the
terminal user. The foil owing paragraphs summarize the
standard procedures as they apply to TAP users.

Executive Command Language

Text Editor
(QED) command mode

~
text input mode
(append, insert,
and change)

line edit mode
(edit and modify)

Time-sharing Assembler
(TAP) command mode

assembly

On-line Debugging Sub"ystem
(DDn command mode

~
program execution debugging

Figure 1. SDS 940 Time-Sharing Assembly Structure

2 Typographic Conventions/Operating Procedures

other 940 subsystems

LOG-IN

To gain access to the computer, the following operating
sequence is performed:

1. If the FD-HD {Full Duplex-Half Duplex} switch is pres­
ent, turn the switch to FD. When the teletype is not
connected to the computer {sometimes called the Local
Mode}, this switch must be in the HD position.

2. Press the ORIG {originate} key, which is located at
the lower right corner of the console directly under the
telephone dial. This key is depressed to obtain a dial
tone before dialing the computer center.

3. Dial the computer center number. When the computer
accepts the call, the ringing wi II change to a high­
pitched tone. A request that the user log in will ap­
pear on the teletype:

PLEASE LOG IN:

4. The user must then type his account number, password,
name and, optionally a project code, in the following
format:

number passwordinameiproject code @

Only persons who know all three elements {the account
number, password, and name} may log in under that
parti cular combination. The following examples all
illustrate acceptable practice.

PLEASE LOG IN:

PLEASE LOG IN:

PLEASE LOG IN:

C2 PASSiJO NESiRE PUB @

D 1 WORDiBROWNiDEMO@

E1 PWiPSEUDOi@)

The optional 1-12 character project code is provided
for installations that have several programmers using
the same account number and user name. The project
code is not checked for validity.

If the user does not correctly type his account number,
password, and name within a minute and a half, a mes­
sage is transmitted instructing him to call the computer
center for assistance. The computer wi II then discon­
nect the user and the dial and log-in procedure will
have to be repeated.

5. If the account number, password {nonprinting}, and
name are accepted by the computer, it will print
READY, the date, and the time, on the next line.

READY date, time

6. In response to the dash, the user types

QED@

to call the text editor, or

TAP(§

to call the assembler, or

DDT@)

to call the on-line debugging subsystem.

ESCAPE

The ESCAPE @ke/ may be used at any time. It causes the
subsystem in control to abort the current operation and ask
for a new command. Striking the@key before terminating
a command with 0 aborts the command.

EXIT AND CONTINUE

Striking the@key several times in succession causes com­
puter control to return to the Executive. If the user wants
to re-enter a subsystem without losing his program and if he
has not subsequently called any other subsystem, he may
type CONTINUE in response to the dash. This will return
him to the previous subsystem so that he may resume his
work.

LOG-OUT

When the user wishes to be disconnected from the computer,
he types several @s {to return control to the Executive} and
then types

-LOGOUT@

TIME USED: hours :mi nutes :seconds

The computer wi II respond by printing the amount of hook­
up {I ine} time charged to the user's account since the pre­
vious log-in procedure was completed.

SAMPLE ON-LINE SESSION

The following is typical of a session at a teletype terminal.
The subsystem the user is communicating with usually iden­
tifies itself by typing a special character at the beginning
of the current line. The characters and the systems they
identify are:

- Executive
*QED

1. Log in, as described above.

2. Enter the text editor by typing its name following the
- symbol_

The dash indicates that the 940 Executive is ready to -QED @
accept a command. t

tIn some 940 time-sharing systems the commercial at sign,
@; is used to indicate that the 940 Executive is ready to
accept a command.

tIn some 940 time-sharing system configurations the RUBOUT
or AL T MODE key is used instead of the ESCAPE key. Where
0appecrs in this manual, RUBOUT or AL T tvA,ODE rna-y be
substituted.

Operating Procedures 3

You are now in QED, whi ch types an asterisk,
to indicate readiness for commands.

"*" ,

If you have a file of TAP statements from an earl ier
session, read it into the main QED text bufferj other­
wise, create a new program. The QED manual is ex­
plicit about the commands that are available.

3. When the program looks ready, write out the main QED
text buffer onto a symbol ic file, where the assembler
can read it. For example:

*WRITE/SOURCE 1/ @

NEW FILE @

4. Two @IS will return you to the Executive, where the
assembler is called with the command

- TAP @)

The assembler responds on the next line with

INPUT:

5. Specify a source language file, followed by a binary
output file, and (optionally) a listing file, error mes­
sage file, and listing mode. For example, if you wish to
assemble from file SOURCE1, place the binary output
in file BIN1, and output the listing at the teletype:

*INPUT: /SOURCE/ @)

+BINARY: /BIN1/@)

NEW FILE @@

+ TEXT OUTPUT: TELETYPE

+ASSEMBLE

4 Operati ng Procedures

Immediately after the carriage return is typed, assembly
takes place. At the conclusion of the assembly, TAP
prints

number CELLS USED BY PROGRAM

and other information, depending on the list options
specified by the LIST and NOLIST directives.

6. Return to the Executive with two @IS and call the on­
line debugging subsystem with the command

-DDT @)

7. Specify the file where the object code can be found.
For example:

iT/BIN 1/ @)

Loading begins with location 2408 in this sample.
After loading is completed, DDT responds on the next
line with the octal address of the first location following
the loaded program.

8. Your program is now ready for executi on, whi ch is
started with the command

240jG @) (begin execution at location 2408)

9. You may return to the Executive at any time by typing
several successive @IS, and then come back to your
program with the command

-CONTINUE @)

Then, continue execution with the command

iP @) (resume execution with the next instruc­
tion in I ine for execution)

10. When finished with this program, you may want to
call QED or TAP to release the debugging subsystem.

2. ASSEMBLER CODING RULES

LANGUAGE ELEMENTS

Input to the assembler consists of a sequence of characters
that are combined to form assembly language elements.
These language elements, which include symbols, constants,
expressions, and literals, comprise program statements which
in turn comprise a source program.

CHARACTER SET

The TAP character set is shown in Figure 2.

Alphabetic:

Numeric:

Special
Characters:

A through Z

o through 9

blank
+ plus sign
- minus sign
* asterisk
/ slash

comma
single quotation mark

(left parenthesis
) right parenthesis
= equals sign
. period or radix point
< less than symbol
> greater than symbol
$ currency symbol
-left arrow
: colon
; semicolon
? questi on mark
[left bracket
] right bracket
" double quotation mark

Figure 2. TAP Character Set

The following characters, normally on standard teletype
keyboards, are not recognized by the assembler:

% & @ \

These non-recognized characters will be replaced by blank
characters whenever they appear in a TAP statement.

SYMBOLS

Numbers may be symbolically represented in assembly lang­
uage by symbol s.

A symbol is any string of alphanumeric characters not form­
ing a constant. In particular, it is not necessary that a
symbol begin with an al phabeti c character. AI though sym­
bols may be of arbitrary length, only the first six characters

of a symbol are used to distinguish it from other symbols.
When a symbol is used to represent a memory address, it is
called a label. Examples of symbols are:

START SlC 3D12 CALCULATE 217AB

Special characters must not be used in forming symbols.

CONSTANTS

A constant is a self-defining language element. Its value is
inherent in the constant itsel f, and it is assembled as part of
the statement in which it appears.

Three types of constants are permitted in TAP:

1. decimal integers: one or more decimal digits optionally
terminated with the letter D.

2129, 600D, -217

2. octal integers: one or more octal digits optionally
terminated with the letter B and, optionally, a single­
digit octal scal ing factor.

217, 32B, 4B3

3. string: 11-4 characters (except I}I

(which is the same
as 40008)

All constants are absolute; i.e., their relocation value is O.

The assembler normally expects integers to be decimal.
This can be changed, however, by using a directive (OCT).
In any case, integers termi nated with B or D override the
normal interpretation of integers. String constants are nor­
mally not useful in the direct computation of memory add­
resses, but exist basically to be used in literals (literals are
described later in this chapter).

EXPRESSIONS

An expression is an assembly language element that repre­
sents a value. It consists of a single constant or symbol or
a combination of constants and symbols separated by binary
operators. Examples of expressions are:

100-2* ABE (0 R) DE F /27B

22

C12>D19

OPERATORS AND EXPRESSION EVALUATION

The operators recognized by the assembler (and their pretc~_
dence) are given below. Operators of highest precedence
are applied first in the evaluation of expressions.

Assembler Coding Rules 5

Operator Functiont Precedence

+ unary plus 4
unary negation 4

(NOT) unary logical inverse 4
(R) unary relocation 4
(lSS) or < less than 3
(GTR) or > greater than 3
(EQU) or = equal to 3

* multiplication 2

I division 2
(AND) logical product 2
+ addition 1

subtraction 1
(OR) logical inclusive sum 1
(EOR) I ogi cal excl usive sum 1

Note that some operators are more than one character long.
These are enclosed in parentheses to avoid conflict with
symbols that would otherwise look the same. Parentheses
are therefore not allowed in expressions to delineate terms
or to modify the order of evaluation.

The relational operators « > =) produce a value 1 if the re­
lation is true, or 0 if false. There can be only one relation­
al operator in an expression.

The assembler evaluates expressions as 24-bit, signed inte­
gers. Expressions are evaluated from left to right, using
operators of decreasing precedence. For example, if

A = 100, B = 200, and C = - 1, then

A+B*c/A = 98

Again, A = 54321 8, B = 444448, and C = 000778 ,

then

A(OR)B(AND)C = 543658

As an expression is evaluated; a parallel calculation of its
relocation value (R) is made. Only absolute expressions
(R = O) and relocatable expressions (R = 1) are legal.

CONSTRAINTS ON RELOCATABILITY OF EXPRESSIONS

The assembler forces the following constraints on the use of
expressions:

1. No relocatable term (R = 1) may occur in conjunction
with the arithmetic operators * or/. In other words, no
relocatable symbol may multiply, be multiplied by,
divide, or be divided by anything.

2. In the absence of the special relocation operator (see
below), the final relocation value of an expression may
be only 0 or 1.

t A" operators are binary (i .e., require a preceding and a
followi ng term) except for the four speci fi ca" y designated
as unary.

6 language Elements

3. If the special relocation operator (R) appears in an ex­
pression, the relocation value of the expression may be
either 0 or some relocation (such as the value K, where
K is the special relocation radix). DDT is informed by
the assembler that special relocation is being used in
this case. DDT will then multiply the base address by
K before adding it to the value of the expression.

SPECIAL RELOCATION

The special relocation feature permits the programmer limit­
ed use of expressions that are not absolute or singly reloca­
table. For example, consider the process of assembling and
loading a relocatable program. let the symbol A have value
3. If one writes

lDA A @)

the assembler produces the computer instruction

07600003B

and marks the instruction's address as being relocatable.
later, when told to load the program beginning at base add­
ress 10000B, DDT wi" form

07610003B

Thus, no matter where the program is loaded, the memory
reference will be to the third word from the base address.

Now, if the user writes

lDA 2*A (§

The assembler, of course, can form

07600006B

and presumably what DDT should form is

07620006B

To do this, DDT must be told that 10000B is to be mul­
tipl ied specifically by 2. However, only one bit is re­
served for such information in the assembler's binary
output; this fact accounts for the restriction that expres­
sions may have only the relocation values 0 and 1. This
restriction can be circumvented by the use of the special
relocation operator (R).

Programs may make use of the string-handl ing System Pro­
grammed Operators (SYSPOPs). These SYSPOPs use string
pointers, which contain character addresses (charact~
are packed three per word). A character address consists of
a memory address multipl ied by 3 (plus 0, 1, or 2, depend­
ing on the position of the character in the word). Thus, if a
character address is divided by 3, the quotient is the word
address and the remainder designates the character's
position in the word.

To form a character address at assembly time, one must be
able to multiply a word address (a relocatable item) by a

constant (in this case, 3). Thus, if A = 3, the statement

DATA (R)A+ 1 @)

wi" produce the va I ue

00000012B (3* A+ 1)

together with a notation to DDT that special relocation ap­
plies to that value. Later, when told to load the program
beginning at base (B) address 10000B, DDT will form the
value

00030012B (3* A+ 1)+3*B = 3* (A+B)+ 1

In this way, a symbol, representing a relocatable word ad­
dress, may be used to form character addresses in string
pointers.

It should be noted that 3 was the mul tipl icative constant
associated with (R) in the example above because of the
nature of string pointers. This constant is called the special
relocation radix. It need not always be 3. In fact, it may
be changed to any value by the RAD directive. Because of
the relative importance of string pointers, however, this
assembler is initialized with the value of (R) set to 3.
Therefore, it is unnecessary to use RAD to set (R) to 3 (un­
less it has been changed to some other value).

LITERALS

Often, data is placed in a program at assembly time. It is
frequently convenient to refer to constants by value rather
than label. A literal is a symbolic reference to a datum by
value. The assembler allows any expression to be used as a
literal, which has the form

= express i on

Some examples of literals are:

=5 =3*XYZ-2 ='END ' =EXTERN

Programmers frequently write such items as

LDA FIVE @)

where FIVE is the name of the location containing the value
5. The programmer must remember to define the symbol
FIVE somewhere in his program. This can be avoided by 'the
use of a literaJ. For example,

LDA =5 @)

wi" automatically produce a location containing the correct
constant in the program.

When a literal is encountered, the assembler first evaluates
the expression and looks up its value in a table of literals
(constructed for each subprogram). If the value is not found
in the table, it is placed there. In either case, the literal
is replaced by a reference to the location of its value in the
literal table. At the end of assembly the literal table is

included as a part of the object module for the program.

The following are examples of literals:

=10 =4B6 =ABC*20-DEF/12 ='HELP '

=2=AB (This is a conditional literal. Its value will
be 1 or 0 depending on whether 2=AB is true or
false at assembly time.)

It is important to note that the literal table immediately
foil ows the program when the program is loaded.

SYNTAX

Assembly language elements may be combined with machine
instructi ons and assembler directives to form statements.

STATEMENTS

Character input to the assembler is arranged into a sequence
of statements called instructions, directives, or comments.

Instructions are symbolic representations of computer instruc­
tions that are translated by the assembler into the computer1s
internal language. Directives, by contrast, are messages
that serve to control the assembly process or to create data.
Comments are ignored by the assembler but are included in
the program listing, serving only to document the meaning
of a program.

Statements are logical units of input. They may be delimited
either by being placed on separate lines (i .e., by being
separated with carriage returns) or by being separated with
semicolons. t

Examples of statements are:

START LDA DAT21 @)

MUL 21B @)

STA ANS @)

or

START LDA DAT21i MUL 21 Bi STA ANS@)

If a statement requires more than one line, it can be con­
tinued on the next line by typing a "+" as the first charac­
ter of the next line, as follows:

START LDA DAT21i MUL 21Bi STA ANS@)
+ THE COMMENT ON THIS LINE REQUIRES @)
+CONTINUATION @l

Consecutive continuation may occur for about five lines
(320 characters).

tSemicolons do not serve as statement delimiters when used
between single quotes (as in the TEXT directive) or inside of
matched parentheses (as in arguments of macro calls).

Syntax 7

FIELDS

Directive and instruction statements contain four functional
fields. The fields are, from left to right, the label field,
the operation field, the operand field, and the comments
field. The assembler accepts a free-form statement format;
the various fields of a statement are delimited by blanks
rather than by restricting them to fixed places in a line.
This is explained in more detail below.

The label field is used mainly for symbol definitions. It
begins with the first character in the statement and ends on
the first blank. Thus, in the following statements, the sym­
bol XYZ appears in two label fields.

XYZ LDA = 10 @

1 STA DEFjXYZ LDA = 10 @) t LDB* LMN

label is omitted label is omitted

The operation field contains a symbolic operation code, a
directive name, or a macro call. It begins with the first
nonblank character after the termination of the label field.
In the statements above, each operation field begins in a
different position, and it is terminated with a blank, asterisk,
semicolon, or carriage return.

The operand and comments fields each begin with the first
nonblank character after the termination of the preceding
field. The operand field terminates on the first blank or
semicolon that is not between matched single quotes or pa­
rentheses. The carriage return always terminates the field
(and the statement). The comments field terminates on a
semicolon or carriage return. like the comments statement,
the comments field is not used by the assembler. It may
contain any sequence of characters.

COMMENT STATEMENTS

An entire statement may be used as a comment by writing an
asterisk as the first character. Any character, except a
semicolon, may be used in a comment.

The assembler reproduces the comments on the assembly
listing and counts comment lines in making line number
assignments.

PROCESSING SYMBOLS

Symbols are used in the label field of a machine instruction
to represent the location of the instruction in the program.
In the operand field, a symbol identifies a data value or the
location of an instruction.

The treatment of symbols that appear in the label or operand
field of a directive varies.

DEFINING SYMBOLS

A symbol becomes "defined" by its appearance as a labet
field entry. "Defined" means that it is assigned a value.
The definition depends on assembly conditions when the

8 Syntax

symbol is encountered, the contents of the operand field,
and the current contents of the location counter.

Any instruction statement may be labeled; the label is
assigned the current value of the location counter; a word
within the assembler that contains the relative address of
the instruction.

The assembler recognizes the following types of symbols:

LOCAL SYMBOLS

Local symbols are defined by their use in the label field of
instructions and in some directives. Their value is that of
the location counter at their definition. They are, there­
fore, symbolic addresses of memory locations. These symbols
are relocatable (R = 1) if the assembly is relocatable; if the
assembly is absolute, they are absolute. Once defined, a
local symbol cannot be redefined. Attempts to do so are
considered errors, and result in the appropriate diagnostic
in the assembly listing.

EQUATED SYMBOLS

Equated symbols may be defined by equating them to an ex­
pression (using directives EQU, NARG, or NCHR). Their
relocation value will be the same as the relocation value of
the expression. Unlike local symbols, equated symbols may
be given new values at any point in the program.

CURRENT LOCATION COUNTER SYMBOL

The character * (if used in the operand field) is defined to
mean the current value of the location counter. This value
is relocatable or absolute, depending on the nature of the
assembly.

EXTERNAL SYMBOLS

External symbols are those that are used but not defined in a
given subprogram. No value can be assigned to them, and it
is not reasonable to regard them as either absolute or relo­
catable. An external symbol may be used only as a single term
and must not be used in an expression having any other terms.

PROGRAMS

A program consists of a sequence of statements terminated by
an END directive. Normally, programs are assembled in
relocatable form. A program is assembled in absolute self­
loading form if it begins with an ORG directive. It is pos­
sible (by using RELORG) to make an absolute assembly to
be loaded by DDT.

A relocatable program is one in which all memory addresses
have been computed relative to the first word (or origin) of
the program. A loader (for this assembler, DDT) can then
place the assembled program into memory, beginning at
whatever location may be specified at load time. Placement
of the program involves a small calculation. For example,
if a memory reference is to the nth word of a program and if
the program is loaded beginning at location k, the loader
must transform the reference n into absolute address n-l-k.

This calculation is not performed for each word of a program
since some computer instructions (shifts, for example) do not
refer to memory locations. Therefore, it is necessary to
inform the loader whether or not to relocate the value of
address field for each word of the program. Relocation
information is determined automatically by the assembler
and transmitted to the loader as a binary quantity called the
relocation (R) bit. If R 1 the address field of the word is
to be relocated; if R = 0 the address field of the word is
unchanged.

An expression value may similarly require relocation, the
difference being that the relocation calculation applies to
all 24 bits of the word, not just to the address field. The
assembler accounts for this difference automatically.

It is possible to disable relocation in the assembler and to
do absolute assembly. In this event TAP produces a paper
tape that can be loaded into core memory using the 940
FILL switch.

SUBPROGRAMS

Before executing a program that has been assembled as
a series of subprograms, it is necessary to load the subpro­
gram into memory and link them. The symbols used in a
given subprogram are generally local to that subprogram.

Subprograms do, however, need to refer to symbols that
are defined in other subprograms. Such symbols are called
external symbols. The loader's I inking process takes care
of such cross references.

BASIC STATEMENT ASSEMBLY PROCEDURE

During pass 1 of the 2-pass process, the operands of instruc­
tions and some directives are scanned for the presence of
symbols. If a symbol is present, a table of symbols is
searched. If the symbol is absent from the table, it is added
but marked as being undefined (i.e., as having no value).

Labels are placed into the symbol table during pass 1 in
similar fashion, except that they are assigned the current
value of the location counter. If a label has been previously
defined, it is marked as a duplicate (this is an error).

At the end of pass 1 the symbol tabl e is examined. All
undefined symbols are assumed to be external. These sym­
bols are then output by the assembler (as part of the object
module for the program) for later use by the loader. During
pass 2 the labels are not computed; rather, the operand
file of instructions and directives are evaluated, using the
defi ned symbol va lues.

In absolute assembl ies, the scan for symbols during pass 1
is disabl ed.

3. INSTRUCTIONS

All SDS 940 instructions may be represented symbolically
and combined with other assembly language elements to
form instruction statements. This allows the programmer to
write symbolic addresses, literals, mnemonic operation
codes, and asterisks to specify indirect addressing, expres­
sions to represent references to data, and so on.

There are two classes of 940 instructions. Class 1 instruc­
tions include all instructions that may invoke a memory ac­
cess for an operand. Class 2 instructions, on the other hand,
include all insiructions that normally do not invoke a memory
access for an operand. Appendix B contains a complete list
of 940 instructions.

CLASS 1 INSTRUCTIONS

Class 1 instructions generally use the statement operand field;
the absence thereof impl ies the val ue zero. It is possible
to spec ify, for each Class 1 instruction, whether or not the
operand field must be present. It is also possible to specify
that bit 0 of the instruction word is to be set to one (as in
SYSPOPs). There are two types of Class 1 instructions:

Type 0: The address is formed modulo 214. All in­
structions making memory references are of this
type.

Type 1: The operand is formed modulo 29. This type
is used for shift instructions. If indirect ad­
dressing is used with this type, the address is
formed modulo 214.

Class 1 instructions have the following form:

[[$J label] mnemonic [*J [operand[, tagJJ [commentJ

Indirect addressing is signified by an asterisk immediately
following the mnemonic. The use of the dollar sign is ex­
plained later in this chapter. The tag is used to specify bits
0, 1, and 2 of the 940 instruction word.

Instructi ons 9

CLASS 2 INSTRUCTIONS

Class 2 instructi ons have no operand field. Indirect ad­
dressing is signified by an asterisk immediately following
the mnemonic.

Class 2 instructions have the following form:

[[$] label] mnemonic [*] [comment]

INSTRUCTION FIELD PROCESSING

LABEL FIELD

A label identifies the instruction or data word being gener­
ated. The symbol used in the label field is given the cur­
rent value of the location counter. Generally, instructions
will have labels if they are referred to elsewhere in the pro­
gram, although it is not necessary that symbols defined in
this way be used in references. Symbols defined but not
referenced are called nulls; they are marked as such in the
assembly listing.

If the same symbol appears in the label field of more than
one instruction statement, it is marked as a dupl icate and
given the newer value.

A $ preceding a label defines an external symbol. (See the
description of the EXT directive in Chapter 4.)

OPERATION FIELD

The operation field generally contains a mnemonic operation
code {such as LDA, STA, etc.}. However, instruction oper­
ation codes may also be specified with decimal or octal num­
bers, as for example:

[[$ label] 76B [*] [operand[, tag]] [comment]

The assembler shifts the numeric operation code (modulo
1778) left to the correct position in the computer instruction
word. In such cases, the instruction is assumed to be Class
1, type 0, no operand required, and with bit 0 not set.

OPERAND FIELD

The operand field contains, at most, two arithmeti c expres­
sions {or a literal and one expression} used to determine the
address and tag fields of the computer 1nstruction word. The
tag, if present, is evaluated modulo 2 and must be absolute
(i.e., non-relocatable).

COMMENTS FIELD

The comments field is not processed by the assembler, but
is copied to the assembly listing.

4. DIRECTIVES

Commands to the assembler are called "directives". Direc­
tives may be combined with other language elements to form
directive statements. Directive statements, iike instruction
statements, have four fields: label, operation, operand,
and comments.

A label field entry is required for eight directives: EQU,
EXT, IDE NT, MACRO, NARG, NCHR, OPD, and POPD.

If any of the directives ASC, BES, BSS, COPY, CRPT,
DATA, IF, RPT, or TEXT are labeled, the label is defined
as the current value of the location counter and identifies
the first word of the area generated or specified by the
directive.

For other directives a label field entry is ignored; i.e., it
is not defined, entered in the symbol table, or assigned
memory locations. As the format of each directive is ex­
plained, a label field entry is shown for each that requires
or permits a label. For all other directives the label field
is blank.

The operation field entry is the directive itself. If this field

10 Directives

consists of more than one subfield, the directive must be in
the first subfield, followed by the other required entries.

Operand fi eld entries vary for the different directives.
These entries are defined in the discussion of each directive.
A directive format with a blank operand field implies that
arguments are ignored for that directive.

Comments field entries are always optional.

Although many of the directives are similar, each has a
specific syntax. Note the summary given below.

Class Directive Use

Data COpy Generate RCH instruction

Generation DATA Generate data

TEXT Generate text

ASC Generate text

Value EQU Set or change symbol val ue

Declaration EXT Define external symbol

Class

Value
Declarati on

Assembler
Control

Output and
Listing
Control

Macro
Generation

Conditional
Assembly

Directive

NARG

NCHR

OPD
POPD

BES
BSS
ORG

END
DEC
OCT
RAD
FRGT
IDENT
DELSYM
RELORG

RETREL
FREEZE

NOEXT

LIST
NOLIST
PAGE

REM

Use

Equate symbol to number of
arguments in macro call

Equate symbol to number of
characters in operand

Define operation code
Define programmed operator

Block ending symbol
Block starti ng symbol
Program origin: absolute

assembly
End of assembl y
Interpret integers as decimal
Interpret integers as octal
Set special rei ocation radix
Forget name of symbol
Identify name of program
Do not transmit symbols to loader
Assemble relative with absolute

origin
Return to relocatable assembly
Preserve symbols, operation

codes, and macros
Do not create external symbols

Turn on specified listing controls
Turn off specified listing controls
Begin new page of assembly

listing
Type out remarks in pass 2

MACRO Begin macro definition
ENDM End macro definition

RPT/ENDR Begin/end repeat block
CRPT/E NDR Begin/end conditional repeat

block
IF/ENDF Begin/end IF body
ELSF Alternative IF body
ELSE AI ternative IF body

In the individual directive descriptions, the name of the
directive is followed by its syntactical format and an ex­
planati on of its purpose and usage.

COpy

[[$]

where

S.
I

DATA GENERATION DIRECTIVES

Generate RCH (REGISTER CHAN GE) Instruction

label]

are special symbols for the functions of the
various bits. Moreover, these symbols have this
special meaning only when used with this directive;
there is no restriction on their use either as symbols
or as operation codes elsewhere in a program. The
symbois are:

Address
Symbol bi t set Function

A 23 Clear A
B 22 Clear B
AB 21 Copy (A) - B
BA 20 Copy (B) - A
BX 19 Copy (B) - X
XB 18 Copy (X) - B
E 17 Bi ts 15-23 (exponent part) only
XA 16 Copy (X) - A
AX 15 Copy (A)-X
N 14 Copy -(A)- A (negate A)
X 2 Clear X

The CO PY directive produces an RCH instruction. It takes
in its operand field a series of the special symbols written in
any sequence, with each symbol standing for a bit in the
address field of the instruction. The bits selected by a given
choice of symbols are merged together to form the address.
For example, instead of using the instruction CAB (04600004),
one could write COPY AB. The special symbol AB has the
value 00000004.

The advantage of the directive is that unusual combinations
of bits in the address field - those for which no operation
codes normally exist - may be created quite naturally.

To exchange the contents of the B and X regi sters and negate
A (only for bits 15-23 of all registers) write

CO Py BX, XB, N, E @J

This directive facilitates some special RCH functions that
might not otherwise be attempted. For example,

CO PY AX, BX @J

has the effect of loading into X the logical OR (merging) of
the A and B registers (refer to the SDS 940 Computer Refer­
ence Manual for more details of the RCH instruction).

DATA Generate Data

[[$] label] DATA eXP1 [, ... , eXPnJ [commenij €V

The DATA directive is used to produce data in programs.
Each expression (exPi) in the operand field is evaluated and
the resulting 24-bit values are assigned to ascending mem­
ory locations. One or more expressions may be present.
The label is assigned to the location of the first value. The
effect of this directive is to create a list of data, the first
word of which may be labeled.

Since the expressions are not restricted in any way, any type
of data can be created with this directive. For example:

DATA 100, -217B, START, AB*2/DEF, I NOTE 1,5 @l

TEXT Generate Text

[[$] label] TEXT 1 Ite.xt
l

I rcomment]@)
,expreSSIOn, text! r

Data Generation Directives 11

The TEXT directive is used to create a string of 6-bit trimmed
ASCII characters, packed four to a word and assigned to
ascending memory locations. The first word of the string
can be labeled. The string to be packed can be del ine-
ated by enclosing it in quotes (as in the first form). The sec­
ond form of the directive must be used if the string contains
one or more quotes.

Note: If a statement contains a single quote (or any
odd number of them), it will not terminate with
a semicolon; a carriage return must be used.
For example:

TEXT 4, THIS WON'T WORK; TEXT e
+4, DISASTER AHEAD @

In the line above, the semicolon will be part
of the text, and the second statement wi II be
interpreted as being in the comments field.
Legal examples are:

TEXT 4, THIS WILL I @)

TEXT 1, A-OK @)

In the first form of the directive, characters in the last word
are left- justified and remaining positions fi lied in by blanks
{octal OO}. In the second form, sufficient characters are
packed to satisfy the word count.

ASC Generate Text wi th Three Characters per Word

[[$' I b J1 ASC j Itext
l

)

~ a e ~ lexpression, textl [comment] e
This directive is identical in use to TEXT, except that 8-bit
characters are packed three per word. The 940 string pro­
cessing system normally deals with such text.

VALUE DECLARATION DIRECTIVES

EQU Set or Change Symbol Value

[$] symbol EQU expression [comment] e
The EQU directive causes the symbol in its label field to be
given the value of the expression. The expression must have
a value when EQU is first encountered; i.e., symbols present
in the operand field must have been previously defined. It
is permissible to redefine by EQU any symbol previously
defined by EQU (or NARG or NCHR, as described below).
This facility is particularly useful in macros and conditional
assemblies.

EXT Define External Symbol

$symbol
{directive operandi

[comment] @)
opcode I

symbol EXT (comment not permitted) €V

$symbol EQU expression [comment] @

symbol EXT expression [comment] @)

There are four ways to defi ne external symbol s. In method 1

12 Value Declaration Directives

the $ preceding the symbol in the label field causes the
symbol to be defined externally at the same time it is de­
fi ned locally.

In method 2 the symbol in the label field is defined exter­
nally. This symbol must have been defined previously in the
program. The operand and comment fields must be absent.

Methods 1 and 2 have the same effect; the name and value
of a local symbol is given to the loader for external pur­
poses. Occasionally it is desirable to define an external
symbol whose name is different from that of a local symbol.
An external symbol may be defined in terms of an expres­
sion involving local symbols. This is performed by utilizing
methods 3 and 4.

In method 3, the symbol is defined both locally and exter­
nally, at the same time.

Method 4 differs from method 3 in that the symbol in the
.Iabel field is defined externally only; its name and value
are completely unknown to the local program. Method 4 is
particularly useful in situations in which two or more subpro­
grams, loaded together, have name confl i cts.

For exampl e, assume programs A and B both make use of the
symbol START, and A not only refers to its own START but
B's as well. The latter references to START can be changed
to BEGIN. Then the line

BEGIN EXT START @

can be inserted into program B.

No other changes need be made either to A or B.

In summary, methods 1-3 define a symbol as both local and
external. Method 4 defines a symbol as external but not
local.

Occasionally, after having written a program, one would
like to make a list of local symbols to be externally defined.
A built-in TAP macro, ENTRY, serves the function. For
example:

ENTRY A, B, C, D, •.. 0.Y

is precisely equivalent to

A EXT e
B EXT @)
C EXT e
D EXT @)

NARG Equate Symbol to Number of Arguments in
Macro Call

[$] symbol NARG [comment] e
This directive may be used only in macro definitions. It is

mentioned here only for completeness. It operates exactly
as EQU except that, in place of an expression in the operand
field, the value of the symbol is set to the number of argu­
ments used in calling the macro currently being expanded
{see "Macro Generation Directives"}.

NCHR Equate Symbol to Number of Characters in
Operand

[$] symbol NCHR operand [comment] @

This directive is primarily intended for use in macro defini­
tions, but it may be used elsewhere. It operates exactly as
EQU except that, in place of an expression in the operand
field, the value of the symbol is set to the number of char­
acters in the operand field {see "Macro Generation Direc­
tives" for a further explanation of the utility of this
directive}.

OPD Define Operation Code

symbol OPD expression, class, Ear] [, type] [, sb] @
+ [comment] @)

where

class must be 1 or 2

ar {address required} may be ° or 1 }

type may be ° or 1 optional

sb {sign bit} may be ° or 1

The 0 PD directive gives the programmer the facil ity to add
new codes to the existing table of operation codes kept in
the assembler or to change the current ones.

Bi ts governed by the opti ona I items are set to zero if the
items are missing. As examples of how the directive is used,
some standard 940 instructions are defined as follows:

CLA OPD

LDA OPD

RCY OPD

04600001 B, 2 @)

76B5, 1, 1 @)

662B4, 1, 1, 1 @(Type 1 = SHIFT)

A hypothetical SYSPOP LLA might be defined by

LLA OPD 11OB5, 1,1,0, l@){class 1, address
required, type 0, sign bit set}.

In operation, the assembler simply adds new operation codes
defined by OPD to its operation code table. This table is
always searched backward, so the new codes are seen first.
At the beginning of the second pass the original table bound­
ary is reset; thus, if an operation code is redefined some­
where during assembly, it is treated identically in both
passes.

POPD Define Programmed Operator

symbol POPD expression, class, Car] [, type] L sbl@
+ [comment] @l - I

In programs containing POPs it is desirable to provide the
POPD directive.

This directive is similar to the OPD and is used in the
same way. It differs from OPD in that it automatically
places a branch instruction to the body of the POP routine
in the POP transfer vector {1008 - 177

8
}.

In order to do this, the assembler must know two things:

1. the location for the branch instruction in the transfer
vector.

2. the location of the POP routine (i. e., the address of
the branch instruction).

Item 1 is given by the POP code itself. Item 2 is provided
by the convention that the POPD must immediately precede
the body of the POP routine. The address of the branch in­
struction placed in the transfer vector is the current value
of the location counter.

ASSEMBlER CONTROL DIRECTIVES

BES Block Ending Symbol

[[$] symboO BES expression [comment] @)

BES reserves a block of storage for which the first loca­
tion after the block can be labeled (if a symbol is presen
in the label field). The block size is determined by the
value of the expression; therefore, the expression must be
absolute and it must have a value when BES is first en­
countered {symbols present in the operand field must have
been previously defined}. BES is most useful for labeling
a block that is to be referred to by indexing with the
BRX instruction {where the contents of X are usually neg­
ative}. For example, to form the sum of the contents of
an array, one might write

LDX =-100 ARRAY HAS 100 ENTRIES @)
CLA@)

LOOP ADD ARRAY,2 NEGATIVE INDEXING HERE@)
BRX *-1 @)
STA RESULT @)
HLT@)

ARRAY BES 100 @)

BSS Block Starting Symbol

[[$] symbol] BSS expression [comment] @)

BSS reserves a block of storage for wh i ch the fi rst word may
be labeled (if a symbol is present in the label field). The
block size is determined by the value of the expression;
therefore, the expression must be absolute and it must have
a value when BSS is first encountered. The difference be­
tween BSS and BES is ihai in the case of BSS, the first word
of the block is labeled; for BESt the first word after the

Assembler Control Directives 13

block is labeled by the associated symbol. BSS is most use-
ful for labeling a block that is referred to by positive indexing.

ORG Absolute Program Origin

ORG expression [comment] @)

The use of ORG forces an absolute assembly. The location
counter is initialized to the value of the expression. The
expressi on must therefore be absolute, and it must have a
value when ORG is first encountered. An ORG must pre­
cede the first instruction or data item in an absolute pro­
gram, although it does not have to be the first statement.
The output of the assembler will include a bootstrap loader
that is capable of loading the program after initiation by
the 940 FILL switch.

END End of Assembly

END expression [comment] @)

The END directive terminates the assembly. For relocatable
assemblies, no expression is used. For absolute assemblies,
the expression gives the starting location for the program.
When assembl ing in the absolute mode (i .e., under control
of the ORG directive), the assembler produces a paper tape
that allows for loading with the FILL switch (out of the time­
sharing mode). If the expression is not included with the
END directive, the bootstrap loader on this paper tape will
cause the computer to halt after the tape has been read in.
Otherwise, control will automatically transfer to the loca­
tion designated in the expression.

DEC Interpret Integers as Decimal

DEC [comment] @)

Integers terminated with a B or D are always interpreted, re­
spectively, as having either an octal or decimal base. On
the other hand, integers not terminated with these letters
may be interpreted either as decimal or octal, depending on
the setting of a mode switch within the assembler. The mode
switch is set to decimal by the DEC directive.

When a new assembly begins, the mode switch is initialized
to decimal. Thus, the DEC directive is not really necessary
unless the mode switch has been changed to octal (with the
OCT directive) and a return to decimal is desired.

OCT Interpret Integers as Octal

OCT [comment] @)

This directive sets a mode switch within the assembler to
interpret unterminated integers as octal. When a new assem­
bly begins, the mode switch is initialized to decimal. Thus,
the OCT directives must be used before unterminated octal
integers can be written.

RAD Set Special Relocation Radix

RAD expression [comment] @)

14 Assembler Control Directives

As explained in Chapter 2 (see IISpecial Relocation ll
), it is

possible in a limited way to have multiple relocation of sym­
bols. This action is performed when the special relocation
operator, (R), is used. The value of a symbol preceded by
(R) is multiplied by a constant (called the radix of the spe­
cial relocation). The loader is informed of this situation so
that it can multiply the base address by this same constant
before performing the relocation.

Because the special relocation was developed specifically
to facilitate the assembly of string pointers, this constant is
initialized to 3. If it is desired to change its value, how­
ever, the RAD directive must be used. The value of the
expression in the operand field sets the new value of the
radix. It must be absolute, and the expression must have a
value when it is first encountered.

FRGT Forget Name of Symbol

FRGT [comment] @)

where

s. are previously defined symbols.
I

The use of FRGT prevents the symbols named in its operand
field from being listed or delivered to DDT. FRGT is espe­
cially useful in situations in which symbols have been used
in macro expansions or conditional assemblies. Frequently
such symbols have meaning only at assembly time; they have
no connection whatever with the program being assembled.
Later, when DDT is used, however, memory locations some­
times are printed out in terms of these meaningless symbols.
It is desirable to keep these symbols from being delivered to
DDT.

IDENT Identify Program

symbol IDENT [commenO @)

IDENT causes the symbol in the label field to be del iVered to
DDT as a special identification record. DDT uses the IDENT
name in con junction with its treatment of local symbols. In
the event of a name confHct between local symbols in two
different subprograms, DDT resolves the ambiguity by link­
ing the preceding IDENT name to the symbol in question.

IDENT statements are otherwise useful for editing purposes.
They are always listed on pass 2, usually on the teletype.

DELSYM Delete Output of Symbol Table and Defined
Operation Codes

DELSYM [comment] @

DELSYM inhibits the symbol table and operation codes de­
fined in the course of assembly from being output for later
use by DDT. Its main purpose is to shorten the object code
output from the assembler. This might be especially desir­
able for an absolute assembly (that produces a paper tape
binary output).

RELORG Assemble Relative with Absolute Origin

RELORG expression [comment] <§

It is occasionally desirable to assemble a section of code (as
in the midst of an otherwise standard program) that will be
loaded into core in some position, but is destined to run from
another position in memory (it will first have to be moved
there in a block). This is particularly useful when preparing
program overlays.

RELORG, like ORG, takes an absolute expression denoting
some origin in memory. It has the following effects:

1. The current value of the location counter is saved and
the value of the expression is inserted in its place.
This fact is not revealed to DDT i however, during load­
ing' the next instruction assembled will be placed in
the next memory cell available as if nothing had
happened.

2. The mode of assembly is switched to absolute without
changing the object code format; it still resembles a
relocatable binary program to DDT. All symbols de­
fined in terms of the location counter will be absolute.

It is possible to restore normal relocatable assembly with the
RETREL directive (see below).

Some examples of the use of RELORG follow.

1. A program begins with RELORG 300B and ends with
EN D. The assembl er's output represents an absol ute
program whose origin is 003008 but it can be loaded
anywhere, using DDT in the usual fashion. However,
it is necessary to move the program to location 003008
before execution.

2. The program starts and continues normally as a reloca­
table program. Then there is a series of RELORGs and
some RETRELs. The effect is as shown below:

} Relocatable program

RELORG 1000

} Absol u te program ori g i ned to 100

RELORG 200 @)

} Absolute program origined to 200

RETREL 0

} Relocatable program

RELORG 300 @)

} Absolute program origined to 300

END

RETREL Return to Relocatable Assembly

RETREL [commenB @)

This directive is used when it is desired to return to reloca­
table assembly after a RELORG directive. The effects of
RETREL are:

1. To restore the location counter to what it would have
been had the RELORG{s) never been used.

2. To return the assembly to the relocatable mode.

FREEZE Preserve Symbols, Operation Codes, and Macros

FREEZE [comment] @)

Subprograms occasionally share definitions of symbols, oper­
ation codes, and macros. It is possible to cause the assem­
bler to take note of the current contents of its symbol and
operation code tables and the currently defined macros, and
to include them in future assembl ies. This el iminates the
need for including copies of this information in every sub­
program1s source code. This feature greatly facilitates the
editing of source code.

When the FREEZE directive is used, the current table bound­
aries for symbols and operation codes and the storage area
for macros is noted and saved for later use. These tables may
then continue to expand during the current assembly (a sep­
arate subprogram may be used to make these definitions; it
will end with FREEZE; END). An assembly will use the sym­
bols and macros that were defined in a previous assembly
that used the FREEZE directive if the FREEZE command (see
TAP Commands, Chapter 5) is issued before the ASSEMBLE
command

*FREEZE

If the FREEZE command is not issued, the symbol tabl e wi II
be lost and thus unavailable to this or future assemblies.

Note: When the assembler has been pre-loaded with symbols,
operation codes, and macros, it cannot be rei eased
(i. e., one cannot call another subsystem such as
DDT, QED, etc.) without the loss of this information.

Do Not Create External Symbols

NOEXT [comment] @)

Because 0 its subprogram capabi Ii ty, the assembl er automati­
cally assumes that symbols not defined in a given program
are external, and will be defined in another subprogram.
Thus, it does not list the use of such symbols as errors.

If a program is a free-standing program (i.e., it is complete),
undefined symbols are errors and should be so noted during
assembly. The NOEXT directive prevents external symbols
from being established; undefined symbols are noted as
errors. The directive must be used at the beginning of a
program {i.e. I before instructions or data have been assem­
bled}. Its use affects the entire program.

Assembler Control Directives 15

OUTPUT AND LISTING CONTROL DIRECTIVES

The assembler provides a means of listing a program during
assembly, by printing out such items as the location counter,
binary code being assembled, source program statements,
etc. The association of these items on one page is fre­
quently of great help to programmers. Two directives,
LIST and NOLIST, control this process.

LIST and MOLIST Turn Specified Listing Controls On
or Off

LIST
NOLIST

[lor 2], [ME] [comment] @
s, [, ••• ,sn] [comment] @

where

s·
I

Symbol

1

2.

LCT

BIN

are from a set of special symbols. A list of the
special mnemonic symbols used in conjunction with
these two directives is given below. The symbols
have special meaning only when used with LIST and
NOLIST. They may be used at any other time for
any purpose.

Meaning

Listduring pass 1. (Listing format is controlled by
other parameters.) The pass 1 listing is followed
by a pass 2 listing.

List during pass 2. The listing includes the loca­
tion counter (LCT), the binary object code (BIN),
the source language (SRC), the comments (COM),
and the macro calls (MC). The user can suppress
any of these options by using the NOLIST direc­
tive. The external symbols, duplicate symbols,
and null (non-referenced) symbols will be listed
at the end of the assembl y.

List location counter value

List binary object code or values

SRC List source language

COM

MC

ME

List comments

List macro calls

List certain directives during macro expansions
(EQU, NC HR, NARG, RPT, CRPT, ENDR, IF,
ELSF, ELSE, ENDF, ENDM)

As an example of the meanings of various symbols above,
the I ine of code

A21 STB OUTCHR SAVE POINTER

might be listed as

02157 03600217 A21 STB OUTCHR SAVE POINTER
~\, • '\ "'" I' or .I

LCT BIN SRC COM

It is not necessary to inciude each possibl e symboi, but
rather only those parameters for which changes are de­
sired. It is, in fact, not necessary to give any symbols.
For example:

LIST is equivalent to LIST 2

At the beginning of an assembly, the assembler initializes
itself to the following directives:

LIST 2

In addition, the complete symbol tabl e (including null and
dupl icate symbols) and the external symbols are listed at the
end of the assembly.

Following is an example of the interaction of the LIST and
NOLIST directives:

Directive

LIST 2,ME

LIST
NOLIST MC,ME

LIST
NOLIST LCT,SRC

Effect

Pass 2 listing including the macro call
and code generated by the macro
expansion

Pass 2 listing, but only the code gen­
erated by a macro call is listed.

Pass 2 listing but not the location
counter or the source language.

PAGE Begin New Page Of Assembly Listing

PAGE (comment] €V

This directive causes a page eject for the assembly list­
ing medium (unless an automatic page eject has just been
given). It is used to improve the appearance of the as­
sembly listing.

REM Type Out Remark During Pass 2

REM remark to be typed @)

This directive, when encountered during pass 2, causes
the remark to be typed -out either on the teletype or
whatever fil e has been designated as the output message
device. This typeout occurs regardless of specified listing
parameters. The directive may be used for a variety of pur­
poses: it may inform the user of the progress of assembly;
it may give him instructions on what to do next (this
might be especially useful for complicated assemblies); it
might announce the last date the source language was
updated; or, it might be used within complex macros to
show which argument substrings have been created during
expansion of a highly nested macro (this is useful for de­
bugging purposes).

MACRO GENERATION DIRECTIVES

On the simplest level, a macro name may be thought of
as an abbreviation or shorthand notation for one or more
assembly language statements. In this respect it is like
an operation code. The operation code is the name of

16 Output and Listing Control Directives/Macro Generation Directives

a machine instruction and the macro name is the name of a
sequence of assembl y language statements.

The sDs 940 computer has an instruction for skipping if the
contents of a specified location are negative, but has none
for testing the accumulator. sKA (skip if memory and accu­
mulator do not compare ones) will serve when used with a
cell whose contents are 40000000B. The meaning of sKA
used in this way is IIskip if A positive". Thus, a programmer
would write

sKA =4B7 @
BRU NEGCAsE NEGATNE CASE @>

However, a program may have a logical need for skipping
if the accumulator is negative. In such a situation, the
programmer must write

sKA =4B7@)
BRU *+2 @)
BRU POsCAsE POSITIVE CASE @)

Both of the above situations are awkward in terms of assem­
bly language programming. The macro facility allows for
performing the operations sKAP and sKAN {skip if accumu­
lator positive or negative} in a simple manner. For example,
if the programmer defines these operations as macros, with

sKAP MACRO@
sKA =4B7 @)
ENDM @)

sKAN MACRO @)
sKA =4B7@)
BRU *+2 @
ENDM @)

he may now write

A22 sKAN @)
BRU POsCAsE @)

The ability to use sKAP or sKAN reduces the amount of
code written in the course of a program. This in itself tends
to reduce errors. A greater advantage is that sKAP and
sKAN are more indicative of the action that the programmer
has in mind. Programs written in this way tend to be easier
to read. Also, a label may be used with a macro call.
Labels used in this way are usually treated like the labels
of instructions, they are assigned the current value of the
location counter {this will be discussed in more detail later}.

MACRO DEFINITION

Before d iscussi ng more compl icated use of macros, some ad­
ditional terminology should be established. A macro is an
arbitrary sequence of assembly language statements associ­
ated with a symbolic name. During assembly, the macro is
held in an area of memor,' cal led text stoicge. '~VA\acros rnay
be created or defined. To do this one must give the macro

a name and I ist the sequence of statements comprising the
macro. The name and the beginning of the sequence of
statements in a macro is designated by the use of the MACRO
directive. The end of the sequence of statements in a macro
is signaled by the ENDM directive.

MACRO/ENDM Begin/End Macro Definition

name

where

MACRO
ENDM

p(i} are parameters defined later in this section.

When the assembler encounters a MACRO directive, switch
B (see Figure 3) is set to position 1. The programmer's
source language is then copi ed into text storage. The as­
sembler does not do any processing during this operation.
When ENDM is encountered, switch B is put back to
position O.

Binary Machine Language

Assembler

0
1

B

A

0 r Source Text
Language Storage

~ ~ Effect

o 0 normal assembly
o 1 macro definition
1 0 macro expansion
1 1 macro definition during macro expansiorfto

be explained in more detail later) "r
Figure 3. Information Flow During Macro Processing

It is possible that other macro definitions may be embedded
within a given macro definition. The macro-defining pro­
cess counts the occurrences of the MACRO directive and
matches them against the occurrences of E NDM. Switch B
is placed back in position 0 only when the number of ENDM
directives equals the number of MACRO directives. Thus,
MACRO and ENDM constitute opening and closing brackets
around a segment of source ianguage. ;; Nested;; macro
structures like the follovving Cie possible.

Macro Generation Directives 17

NAME1 MACROe

NAME2 MACRO@)

NAME3 :ACR08J

ENDM§

NAME4 :ACR08]

ENDM@

ENDM@)

NAMES :ACR08]

ENDM@

ENDM@)

Use of embedded definitions should be kept to a minimum,
since large amounts of text storage are required. What is
important, however, is an understanding of when the various
macros are defined. In particular, when NAME 1 is defined,
NAME2, NAME3, etc., are not defined; they are copied
into text storage. NAME2 is not defined until NAME1 is
used in the operation field of a statement.

MACRO EXPANSION

The use of a macro name in the operation field of a state­
ment is referred to as a macro call. The assembler, upon
recognizing a macro call, moves switch A to position 1
(again see Figure 3). Input to the assembler from the origi­
nal source language ceases temporarily and, instead, input
is called from text storage. During this period, the macro is
said to be undergoing expansion. (A macro must first be
defined before it can be cal !ed.)

A macro expansion may include other macro calls, and
these, in turn, may call others. Macros may also call them­
selves, a process called recursion. 'vVhen a new macro ex­
pansion begins within a current macro expansion, informa­
tion about the progress of the current expansion is preserved
in the assembler's working storage. Successive macro calls
cause similar information to be preserved. At the end of
each nested macro expansion, the most recently initiated
expansion is resumed. When the initial expansion finally
terminates, switch A is placed back in position O. Input
then resumes from the source language program.

MACRO ARGUMENTS

It might be usefu I to write macros BR.A.P and BRA~! (branch
to specified location if contents of the accumulator are pos­
itive or negative, respectively), rather than SKAP and
SKAN. In such cases, the branch location is not known
when the macro is defined; different locations will be used
for each call.

18 Macro Generation Directives

The macro processor, therefore, allows the programmer to
provide some of the information for macro expansion at the
time the macro is called. This is done {in macro definitions}
by permitting dummy arguments to be replaced by arguments
suppl ied when the macro is called. Each dummy argument
is referred to in the macro definition by a subscripted sym­
bol. This symbol (dummy name) is defined in the operand
field of the MACRO directive.

For example, the macro BRAP could be defined as

BRAP MACRO DUM @
SKAN@
BRU DUM(l)@
ENDM@

When called by the statement

BRAP POSCASE @

the macro wi II expand to the statements

SKA =4B7@
BRU *+2 ®
BRU POSCASE @)

Note that BRAP is defined in terms of another macro SKAN
(a matter of choice in this example). Also, note that BRAP
is intended to take only one argument. Other macros may
use more than one argument; e.g., the macro CBE (compare
and branch if equal) takes two arguments. The first argu­
ment is the location of a cell to be compared for equality
with the accumulator; the second is a branch location in
case of equality. The definition of CBE is

CBE MACRO D@

SKE D(l) @)
BRU *+2 @)
BRU D(2} @)
ENDM §

When cal led by the statement

CBE =21 B, EQLOC @)

the statements generated will be

SKE =21 B@
BRU *+2 @)
BRU EQLOC@)

Arguments in a macro call are separated by commas. It is
possible to include both commas and spaces in a list of argu­
ments by enclosing some of them in parentheses; the macro
processor strips off the outermost parentheses of any sub-
stri ng used ina ca II. For exampl e, in the ca II for the
macro MUM

MUM A, (B, C), (D E) @)

the dummy arguments would be

D{l)
D(2)
D(3)

A
B, C
D E

DUMMY ARGUMENTS IN MACRO DEFINITIONS

Before giving further examples of the use of macros, the
various ways that dummy arguments may be used in macro
definitions will be discussed. In general, a dummy argument
may be referred to thusly:

dummy(express ion)

The only restriction on the expression is that it can not
contain other dummies or generated symbols (generated
symbols are discussed later in this chapter). Furthermore,
the expression must have a known value when the macro is
called. It should be noted that a macro call may del iver
more arguments than are referred to in its definition.
However, the situation wherein a dummy argument is missing
from an argument I ist when the macro call occurs is con­
sidered to be an error condition.

More than one dummy may be referred to, by the notation

dummy{expression, expression)

as in the case of the call

MUM A, B, C, D, E @

where

D{3,5)=C, D, E

This situation may lead to ambiguity, as in the case of the
call

MUM A, B, C, (D, E), F @)

where

D{3,5)= C, D, E, F

In this case, it is not clear which arguments correspond to
D(3), D(4), and D(5). To resolve this ambiguity, the
assembler produces the string

(C), (D, E), (F)

The notation

dummy()

produces all of the arguments supplied in a macro call, and
each argument is surrounded by parentheses, as in the
exampl e above.

The symbol ism

dummy(O)

refers to the label field of the macro call. Normally, the
current value of the location counter is assigned to the label
used with a macro call (as with any instruction). However,
explicit use of

dummy(O)

causes the label field to be used to transmit another argu­
ment. This situation is possible in three cases:

1. The macro contai ns no references to dummy(O). The
label field is treated normally in this case; i. e., as­
signed the current value of the execution location
counter.

2. The macro contains at I east one reference to dummy(O).
In this case, the label field merely transmits an argu­
ment that replaces dummy(O) in the expansion.

3. The macro contains no references to dummy(O) explicit­
Iy, but does contain

dummy (express ion)

where the value of the expression is zero when the
macro call occurs. In this case the label field is han­
dl ed as in case 1 above and is also used to transmit the
argument referred to by

dummy(expression)

as in case 2.

Thus, in a typical call, we have the following relationships:

M17 CALL ABC, DEF, 'GHI', JKL @
'--v--" J

...
dummy(O) dummy(1) dummy(3,4)

dummy{)

Sometimes in a macro definition, it is desirable to refer to
onl y a porti on of an argument (perhaps to a character or
a few characters). In the case of a single character this
may be done by writing

dummy(express ion $express ion)

The first expression designates which argument is being ref­
erenced; the second expression determines which character
of that argument is bei ng referenced. If reference to a
substring of an argument is desired, write

dummy(express i on $express ion, expressi on)

The second and third expressions determine the first and last
characters of the substring, respectively. For example, the
call

MUM A,BCDE,'FGHIJ' @)

Dummy Arguments in Macro Definitions 19

results in

D(2$3) D

D(3$4,7) HIJ'

Beginning with the ith character of a specified substring,
the remaining characters of an argument can be obtained by
specifying a terminal bound that is larger than the number
of characters remaining in the argument. Thus the
specification

D(3$4, 1000) HIJ '

would obtain the substring beginning with the fourth char­
acter (of argument 3) and ending with the last character of
the argument.

CONCATENATION

It is frequently useful to compose statements from macro ar­
guments (or parts of arguments) and other information given
in the macro definition. This is done by concatenating the
various objects; i. e., by having the assembler place them
next to each other in the I ink.

To avoid ambiguity, use the dot or period character as
a concatenati on operator. The assembl er uses the dot to
delineate the terms it must deal with; in producing out­
put, the macro-expansion processor ignores the dots after
it recognizes the associated terms. Therefore, the dot
character cannot be used in a macro definition for any
other purpose.

For example, the macro STORE stores information into three
storage cells that begin with the letters A, B, or X, depend­
ing on which 940 register is used as the source of informa­
tion. The definition is

STORE MACRO
ST.D(l)
ENDM

p@l
D(2) @)

If the macro is called with

or
STORE
STORE

B,DUM @l
A,ZAP @l

the macro wi II generate

STS DUM or STA ZAP

GENERATED SYMBOLS

Sometimes it is convenient to put a label on an instruction
within a macro. There are two methods (at least) of doing

20 Dummy Arguments in Macro Definitions

this. The first method involves transmitting the label as a
macro argument when the macro is called. This allows the
programmer to control the label being defined and refer to
it elsewhere in the program.

However, there are situations in which the label is used
purely for reasons local to the macro and it will not be ref­
erenced elsewhere. In cases like this it is desirable to allow
for the automatic creation of labels. This may be done by
means of the generated symbol.

A generated symbol name may be declared when a macro is
defined. To do this requires both the name and the maximum
number of generated symbols that wi II be encountered during
an expansion. These two items may follow the dummy sym­
bol name given in the MACRO directive. The actual for­
mat used is

name MACRO dummy name, generated name, expressi on

For example:

MUM MACRO D, G, 4 @)

ENDM@>

In the definition of this macro there might be references to
G{l), G(2), G(3), and G(4), these being individual gen­
erated symbols.

Regarding generated symbols, the macro expansion operates
in the following fashion. For each macro, a generated sym­
bol base value is initialized to zero at the beginning of as­
sembly. As each generated symbol is encountered, the
expression constituting its subscript is evaluated. This value
is added to the base value and the sum is produced as a
string of digits concatenated to the generated symbol name.
Enough digits are produced to make a resultant symbol of
six characters. Thus, the first time MUM is called, for
example, G(2) will be transformed into G00002, G(4) into
G00004, etc.

At the end of a macro expansion, the generated symbol base
value is incremented. The increment is designated by the
expression following the generated symbol name in the
MACRO directive (this was 4 in the definition of MUM
above). Thus, the second call of MUM will produce G00006
in place of G(2), the third call will produce G00010, etc.
A generated symbol name should be kept as short as possible;
it cannot be longer than 5 characters.

CONVERSION OF A VALUE TO A DIGIT STRING

As an adjunct to the automatic generation of symbols (or for
any other purposes for which it may be suitable), a facility
is provided in the assembler's macro expansion process for
conversion of the value of an expression at call time, to a
string of decimal digits. The construct

($expression)

will be replaced by a string of digits equal in value to the
expression. For example, if X = 5, then

AB. ($2*X-1)

will be transformed into

AB9

Further examples of the use of this facility appear below.

NARG AND NCHR DIRECTIVES

Macros can be more useful if the number of arguments sup­
plied at call time is not fixed. The precise meaning of a
macro (and the results of its expansion) may depend on the
number or the arrangement of its arguments. In order to
permit this, the macro undergoing expansi on must be able
to determine, at call time, the number of arguments sup­
pi ied. The NARG directive makes this possible.

NARG functions basically like EQU, except that it is used
without an expression. The basic form is

[$] symbol NARG [comment] @)

The function of the NARG directive is to equate the value
of the symbol to the number of arguments supplied to the
macro currently being expanded. The symbol can then be
used by itself or in expressions, for any required purpose.
Examples of the use of NARG appear later.

It is also useful to be able to determine at call time the
number of characters in an argument. The NCHR directive
equates the symbol in its label field to the number of char­
acters in its operand field. Its form is

[$] symbol NCHR character string [comment] @)

The operand field of a statement is normally terminated by
the first blank after the beginning of the field. This rule
is rescinded if a macro argument containing blanks appears
in the operand field. For example, in the statement

XYZ LDA VECTOR, 2 THIS IS A COMMENT @>

t t
the arrows delineate the operand field. Alternatively, if a
statement like

TEXT X, D(l). ERROR

is placed in a macro definition and the macro is called by

MUM (NON-FATAL)

then the TEXT statement will turn out to be

TEXT X, NON-FATAL ERROR

1 t
(Notice how the operand field terminates in this case.)

In the same example notice that the message produced by
the TEXT directive is of unspecified length at definition
time. Clearly, X must depend on the number of characters

in D(l). Accordingly, MUM might be defined as

MUM MACRO
X NCHR

D@>
D(l) @)

X EQU X+9 5 FOR IERRORI, 4 TO @)
+ROUND UP@)

TEXT X/4, D(l). ERROR @)
ENDM @)

CONDITIONAL ASSEMBLY DIRECTIVES

The programming power of the assembler1s macro capability
is considerably multiplied when it is combined with the
features explained in this section. These features - basical­
ly the .!.£ and repeat capabilities - are called conditional
assembly capabilities because they permit assembly-time
calculations to determine which elements of the source
language are actually assembled. They are, however, not
strictly a part of the macro capability and may be used
quite apart from macros.

RPT/ENDR Begin/End Repeat Block

The RPT directive is, like the MACRO directive, an open­
ing bracket for a segment of program called a repeat block.
The end of the sequence of statements is signal ed by the
ENDR directive.

Dabel] RPT expression [comment] @>

Dabel] RPT (s=el' [e2'] e3)[" .(s=e1 [, e2])] [comment] @)

ENDR [comment] @)

where

specifies symbol and e specifies expression.

Form 1 directs the assembler to repeat the following sequence
of statements down to the matching ENDR (end repeat) as
many times as given by the value of the expression. The
operations performed by form 2 are as follows:

1. Set the symbol s to the value of e 1•

2. Issue the sequence of statements down to the matching
ENDR.

3. Increment s by the value of e2 or by one (if e2 is not
present). If the new value of s has not passed the
limit (e3)' reissue the sequence of statements to the
matching ENDR (and increment s) until the value of s
passes the limit.

The first parenthesized group determines the number of times
the repeat is executed and controls the initial value and in­
crement of a symbol. Subsequent groups (there may be up to
ten of them) merely control the initial value and increments
of other symbols in the repeat operation.

For example, assume that it is desired to create an area of
storage that is cI eared to zeros. The BSS di rective cannot
be used for this purpose since its function (that of reserving
storage) is basically to advance the assembler1s location

Conditional Assembly Directives 21

counter. The problem is readily solved by

ABC RPT 100@
DATA O@)
ENDR @)

which is equivalent to

ABC DATA O@)
DATA O~
DATA 08
DATA O@

100 statements

DATA O@

Note that the label is applied effectively only to the first
statement.

As another example, consider the situation wherein it is
desired to fill an area of storage with data starting with 0
and increasing by 5 for each cell. To illustrate:

X EQU 09
RPT 20@
DATA x9

X EQU x+58
ENDR8

Alternatively (and more simply) one can write

RPT
DATA
ENDR 9

(X=0,5, 100) ®
X@

Note that in the latter form, the terminal value (i.e., e3)
does not have to be positive or greater than the initial value
of the symbol being incremented. Thus, both of the follow­
ing two sequences are permissible.

RPT (X=100, -5, 20) @

ENDR9

RPT (X =1 NIT, -5, -30) 9

ENDRe

A repeat block may be nested within other repeat blocks.
This is similar to the nesting of macro definitions within
other macro definitions; therefore, repeat structures similar
to that described under "Macro Definition" may be
constructed.

It may be desirable to create a pair of macros (SAVE and
RESTOR) for the purpose of saving active registers at the
beginning of a subroutine, and restoring the active registers
at the completion of the subroutine. The macros should
take a variable number of arguments so that, for example,
one can wri te

SAVE A, SUBRS 9

to generate the instruction

22 Conditional Assembly Directives

STA SUBRSA

and also write the macro call

RESTOR A, B, X, SUBRS @

to generate the instruction sequence

LDA SUBRSA
LDB SUBRSB
LDX SUBRSX

First define a generalized macro (MOVE) that is called by
the same arguments delivered to SAVE and RESTOR, plus
the strings ISTI and ILDI which determine whether to store
or load.

MOVE
X

MACRO
NARG@)
RPT
D(l). D(Y)
ENDR@)
ENDM@

D@)

(Y=2, X-l) @)
D(X). D(Y)@)

Then (in terms of MOVE) SAVE and RESTOR are readily de­
fined as

SAVE MACRO De
MOVE ST, DO 9
ENDM@

RESTOR MACRO D®
MOVE LD, DO e
ENDM @l

Many programs make use of flags (memory cells used as bi­
nary indicators). The SKN (skip if memory negative) in­
struction makes it easy to test these flags. Assume the con­
vention that a flag is set if it contains the value -1 and
reset if it contains the value zero; it is necessary to develop
the macros SET and RESET to manipulate flags. Addition­
ally, the name of the active register that wi II be used for
the action, together with a list of flag locations must be
del ivered at call time. Calls for these macros might have
the form

SET A, FLG 1, FLG2, FLG3 @)

or

RESET X, FLG37, FLG12 8

As in the previous example, an intermediate macro (STORE)
is used that is called with the same arguments delivered to
SE T and RESET.

STORE
X

MACRO
NARG9
RPT
5T. D(i)
ENDR@)
ENDMe

D@)

(Y=2, X)@
D(Y) @>

Now SET and RESET can be defined as

SET

RESET

MACRO
LD. D(l)
STORE
ENDM8

D@
=-1 @
DO@)

MACRO D@)
CL. D(l) @
STORE DO @)
ENDM8

CRPT/ENDR Begin/End Conditional Repeat Block

Occasionally it is necessary to perform an indefinite num­
ber of repeats, with termination of the repeat block being
determined during the course of the repeat operation. The
conditional repeat directive, CRPT, serves this function.
Its effect is like that of RPT and its repeat block, like RPT,
is terminated by a matching ENDR. However, instead of
specifying a set number of repeats in the directive itself,
the associated expression (exP1) is evaluated (in a Boolean
sense) to determine whether the repeat block should be
issued. Its form is

For example:

CRPT X>Y@)

ENDR @)

or

CRPT STO P, (X=l, 2), (Y=-3, 5)@

ENDR@

Note that the statement

CRPT 108

will cause an infinite number of repeats.

The termination of a CRPT operation is governed by the
value of eXP1. Zero or negative values of eXP1 signify that
the repeat operation is to occur. Values of one or greater
for eXP1 signify that the repeat operation is not to occur.

IF CAPABILITY

It is frequent~y desirable to permit the assembler either to
assemble or merely skip blocks of statements, depending on
the value of an expression at assembly time. This is pri­
marily what is meant by the term conditional assembly.
Conditi onal assembl y can be done with CRPT by letting the
condition be given by an expression. For example:

C

C

EQU @ condition
CRPT@ C

: arbitrary block of statements

EQU09 0
ENDR @)

Note that the line before ENDR is required to terminate the
CRPT. By using the structure above, conditional assembly
can be done; the arbitrary block of statements end osed in
the repeat body can be assembled on condition.

IF/ENDF Assemble if Expression is True

The same functi on, shown in the above example, can be
performed much more conveniently by the IF directive. Its
form is

OabeO IF expressi on

ENDF

[commen~ @)

[commenD @

As with RPT and CRPT, the IF directive defines the beginning
of a block of statements (called the IF body) that is termi­
nated by a matching ENDF directive~IF body may
contain other nested IF bodies in the manner described in
"Macro Definition".

For conditional assembly, there are often alternative IF
bodies to be assembled in case a certain IF body is not as­
sembled. This situation is most easily dealt with by the use
of the ELSF and ELSE directives.

ELSE/ELSF Alternative IF Bodies

ELSF expressi on

ELSE expression

[commenD@)

[comment] @)

These provide a termination for the IF body and also begin
another body to be assembled (again possibly on condition)
in case the first body is not assembled. For example, con­
sider the following structure.

IF l e1 @)
I bodY1

ELSF e 2 @

1 bodY2

ELSF e3 @
} bodY3

ELSE @

I bodY4

ENDF @

If e1 >0, bodY1 is assembled and bodies 2, 3, and 4 are
skipped (regardless of the values e2 and e3).

If er<O .and e2>O, body 2 is assembled and bodies 1, 3 and
4 are skipped.

If e1<0, e2<0, and e3>0, body 3 is assembled and bodies 1,
2, and 4 are skipped.

Finally, if e1 <0, e2<0, and e3<0, only body 4 is assembled.

An example of the use of IF (and other features) follows.
This example illustrates several of the preceding features
as well as the power of macros when used recursivel y.

Conditional Assembly Directives 23

The macro MOVE is intended to take any number of pairs of
arguments. The first argument of each pair is to be moved
to the second. Each argument, however, may itself be a
pair of arguments, which may themselves be pairs, etc. So,
basi cally, MOVE extracts pairs of argument structures and
transmits such a poi r to another macro, MOVE 1.

MOVE
X

MACRO
NARG(§
RPT
MOVEl
ENOR9
ENOME9

D@

(Y=l, 2, X)(Z= 2,2) <§
D(y), D(Z) 9

MOVEl calls itself recursively until it comes up with a
single pair of arguments. It then generates code.

MOVE 1
G(l)
G(2)

G(2)
U

MACRO
NARG
EQU
IF
LDA
STA
ELSE
RPT
EQU
EQU
MOVEl
ENDR
ENDF
ENDM

When called by the line

MOVE

the code generated wi II be

When called by

LDA
STA

MOVE

the code generated is

LDA
STA
LDA
STA

D, G, 2

o
G(l)=2
D(1)
D(2)

G(l)/2
G(2)+1
G(2)
D(V), D(V+U/2)

A,B 9

A
B

A, B, C, D@

A
B
C
D

24 Conditional Assembly Directives

When called by

MOVE (A, B), (C, D) 9

the code generated is

LDA
STA
LDA
STA

A
C
B
D

Finally, when called by

MOVE «A, B),(C,D)),«E,F),(G,H)) 9

the code generated is

LOA A
STA E
LDA B
STA F
LDA C
STA G
LDA D
STA H

In this case the main call results in the call

MOVEl (A, B), (C, D), (E, F), (G, H) @)

MOVEl calls itself by

MOVEl A, B, E, F

and (again)

MOVEl A, E

where the first code is generated. The result is

MOVEl S, F

Recursion then reverts to the call

MOVEl C, D, G, H

and so on.

Another macro example is given in Appendix C.

5. TAP COMMANDS

To call the assembl er the user types the system then waits for a confirming carriage return pre­
ceded by any optional parameters.

- TAP @l

All TAP commands areQntered by typi ng the fi rst character
of the command. The remaining characters of the command
are typed by the system and, except in the case of ASSEMBLE,

The start of a new sequence of control commands is queued
by an asterisk. Subsequent commands for the same assembly
are queued by a plus sign. Commands for any assembly ter­
minate with the ASSEMBLE command.

Figure 4 summarizes TAP commands and possible user re­
sponses. Standard assignments are given in Table 1.

TAP Command

FREEZE

INPUT: --

BINARY:

OLD FILE
or

NEW FILE

CREF -

TEXT OUTPUT:

OLD FILE
or

NEW FILE

LIST

NOLIST

User Response

Source fi I e, .•• €V

Object file €V

€V

@

Listing file @l

@

(See Table 1)

(See Table 1)

Comments

Preserves any symbol and macro definitions that were defined by using
the FREEZE directive in a previous assembly. If the FREEZE command
is not issued, the symbols will not be available for this assembly or any
subsequent assembl ies.

User types the input file name(s}. Up to ten file names may be speci­
fied for each assembly. Assembly terminates on an END statement.

User supplies the binary file name. The file name must be followed by
the OLD/NEW carriage return confirmation. The user may type II escape II
if he has provided an erroneous fi I e name. If no binary output is re­
quired, the NOTHING file must be specified for binary output. If
more than one binary file name is provided, the lastfile indicated will
be used.

A cross reference dictionary listing will be provided at the end of the
assembly.

Specifies the file for text output. The file name must be followed by
the OLD/NEW carriage return confirmation. If TEXT OUTPUT is not
specified, but the LIST directive or command is used, the teletype is
used as the output file. If TEXT OUTPUT is specified, but the LIST
directive or command is not used, the default options of the LIST di­
rective apply. If TEXT OUTPUT is not specified and the LIST com­
mand or directive is not used, errors, nulls, and externals are listed
on the tel etype.

The user may override standard listing parameters or override those he
had previously specified with the NOLIST directive.

The user may override standard listing parameters or those he had pre­
viously specified with the LIST directive.

ASSEMBLE All input files specified since the initiation of the current control
sequence will be assembled.

Figure 4. TAP Commands and User Responses

TAP Commands 25

The following examples illustrate typical uses of the TAP
commands.

Example 1. Using Standard Listing Assignments

-TAP
*INPUT: /SOURCE/

+BINARV: /BIN/
NEW FILE

+ TEXT OUTPUT: TEL

+ASSEMBLE

@)
@

@
@

@)

Source language resides on
file /SOURCE/.

An object code file must be
specified.

The text output wi II be listed
on the teletype subject to
the specified conditions of
the LI ST directive or the
default options of LIST.

The assembly process is
initiated.

The assembly process can be terminated by the user at any
time by typing two or more@'s in succession.

Example 2. Overriding Standard Listing Parameters

*INPUT: /DECK/ @)
+B"iNARV: /BDK/ @)

OLD FILE @)

+LIST 2 @)
+NOLIST MC,COM @)
+ASSEMBLE

A pass 2 listing that does
not include macro calls or
comments wi" be output to
the teletype.

Regardless of the listing control parameters that have been
given to the assembler, it can be made to begin listing at
any time, in either pass, by typing a single@. A listing
started in this way can be stopped by typing the letter "S".

Table 1. Standard Assignments for TAP Commands

Command Standard Assignment

INPUT: file name
Bi"N'A'RV: fi I e name
TEXT OUTPUT: file name

LIST } N'OLIST list of following parameters

1
2
LCT
BIN
SRC
COM
MC
ME

None; must be specified by user.
None; must be specified by user.
Teletype

Not listed
Listed
Listed
Listed
Listed
Listed
Listed
Not listed

See the LIST and NOLIST directives in Chapter 4 for an explanation of the parameters.

26 TAP Commands

6. ASSEMBLER ERROR MESSAGES

Upon discovering an error in the syntax of a program being
assembled, the assembler will list the statement in question
and information about the character of the error. The list­
ing of errors wi" occur regardless of whether or not regular
listing is being done.

Error

M
o
R
S
U

Meaning

Missing field in statement
Invalid or undefined operation code
Relocation error in expression
General syntax error

ERROR MESSAGES Undefined symbol

Error messages and their interpretations are given below. The
first group deals with difficulties found in a single statement.

If when call ing a macro the user fai Is to del iver an argument
required during expansion, the assembler will replace the
argument with the character II t II and will issue an undefined­
symbol message at that point. Error Meaning

Duplicate symbol D
L Error in label field; usually an invalid symbol

The second group of error messages, given in Table 2, deal
with more compl icated difficulties.

Error Message

SYMBOL TABLE FULL. ERROR CHECK
CONTINUES.

LITERAL TABLE FULL. FURTHE R LITERALS
IGNORED.

MUST ASSEMBLE ABSPGM ON PAPER TAPE.

INPUT STACK OVERFLOW

EOF- END CARD ASSUMED

ILLEGAL COMMAND

INPUT FILE NOT TEXT

BAD CHAR

EOF IN MACRO DEFINITION

Table 2. Error Messages

Meaning

Too many symbols and/or operation codes have been defined. As­
sembly will continue, but no new symbols or operation codes will
be recognized. Break the program into subprograms or otherwise
reduce the number of symbols present.

Simi lar to the case above. Reduce the number of literals present.

The bootstrap loader for self-filling absolute assemblies is intended
for paper tape only. Designating any other form of output fi Ie
(except NOTHING and TELETYPE, another form of paper tape)
results in this message. It is possible to assemble an absolute pro­
gram for loading by DDT (see the RELORG directive).

There are too many nested macro calls, repeats, and ifs in combina­
tion. The stack provided for storing the previous source of input is
full. This is a disaster. The program must be reorganized.

No EN D statement was found at the end of the program. The
assembler (except for typing his message) takes the same action
as it would if it found the EN D statement.

The assembler does not recognize a command typed in by a user
when entering TAP. A new command is required.

The input file described to the assembler is not a type 3 file (i.e.,
symbolic).

An unrecognizable character (or one otherwise out of place) is found
in the text. The character is typed out in octal following the mes­
sage, replaced by a blank in the text, and assembly continues.

The end of the program is reached, but the assembler is still defin­
ing a macro. Look for a missing ENDM.

Assembler Error Messages 27

Error Message

INPUT STACK UNDERFLOW.

INPUT BUFFER FULL.

TOO MUCH MACRO RECURSION.

TOO MUCH RPT RECURSION.

TOO MANY ARGS IN MACRO.

TOO MANY REPEAT ARGS.

STRING STORE EXCEEDED.

EOF IN TEXT.

Table 2. Error Messages {cont.}

Meaning

The opposite problem to the one above. Not too serious. Look
for the presence of an extra ENDM, ENDR, or ENDF in the program.

An input statement must be less than 320 characters long. This
message occurs when the rule is violated. It usually happens when
macros run wild. Look carefully at the program near where the
error occurred.

Too many nested macro calls have occurred, resulting in filling
available pushdown storage. Reorganize program.

Similar to above.

The macro is being call ed with more arguments than there is space
for. Reduce the number of arguments in the call.

In beginning a repeat block, too many requests for automatic in­
crementing of symbols have been made. Reorganize the block.

No space remains to store new macro definitions or to do repeats.
Caution: Old macro definitions are not thrown away. Do not re­
define macros indiscriminately. Reorganize program.

The end of the input file has occurred in the middle of a statement.

INTERPRETATION OF THE ERROR LISTING In the following line, in Figure 5, there are errors in both
the label and operand fields.

When an error is I isted on any fi I e other than TELETYPE,
the single-letter error message (first group above) is listed
in the I ine below at the point where the error was detected.

Along with each error, the value of the location counter is
printed out relative to the symbol most recently defined. If

Tag Field of Operation Operand
Locat i on Counter Instruction Field Field Source Language

00172 0 76 0000 FGH/ LOA 2*Z -

ICOr71 ~ ~~
Current value of Label cannot Relocation Expression cannot
location counter is terminate with / error terminate with -
7 cells past the
symbol COE

20117 0 35 10761 STA LOC,

IplAr+11 IINjcl lauTAcl I
Location counter Name of inner- Name of outer- Missing tag
value most macro in most mac ro in

wh i ch offense which offense
occurred occurred

Figure 5. Error Listing Line

28 Interpretation of the Error listing

the error occurs during macro expansion, the names of the
innermost and outermost macros are printed, to indicate
where to look for the error. If only one level of macro
expansion is involved, then only that name is listed.

In order to save time when error I istings are made on
the teletype, the single-letter error messages are typed
out at the left margin.

7. ASSEMBLER BINARY OUTPUT

There are two basic formats for assembler output. The selec­
tion depends on whether an assembly is relocatable or
absolute.

RELOCATABLE BINARY OUTPUT

Information in this type of output is divided into variable­
length logical records. Each record begins with a control
word that defines its type. The first nine bits (bits 0-8) of
each control word distinguish it from the others; the remain­
ing bits are used in various ways. The control words are
shown in Table 3.

Table 3. Control Words for Rei ocatable Binary Output

Control Word

1. 000 XXXXX

2. lXX 00000

3. 20000000

4. 201 XXXXX

5. 202 XXXXX

6. 30000000

7. 40000000

8. 50000000

9. 60000000

10. 700 00000

Meaning and Use

Binary program follows. Update
location counter by amount given
in address field of control word.

Programmed operator follows.
Place branch instruction in loca­
tion 1XX with address given by
current location counter.

End of program. Final record
of binary format.

Origin of literal table. The ori­
gin of the literal table is given
in the address field.

Change special relocation radix.
The new value is given in the
address field.

o PD follows. Revert to tri pi et
format (see below).

External symbol definition(s) fol­
lows. Revert to triplet format.

Identification record follows.
Revert to triplet format.

External symbol usage table fol­
lows. Revert to triplet format.

Symbol tabl e foil ows. Revert to
triplet format.

Control words 2, 3, 4, and 5 cause DDT to take various
actions. No additional information is required for these
controls; each is complete in itself. This is to be contrasted
to control words 6 through 10. Each of the latter prepares
DDT to accept a variable-length list of symbols or operation
codes. These lists are in so-called "triplet format" because
the vari ous symbols and codes are handled as three-word
objects. Each list is terminated with a word of all one's.

The contents of the address field of control word 1 are added
to DDT's location counter. This control word signals that a
bi nary program (i.e., i nformati on to be loaded) foil ows.
The format of a binary program consists of blocks of eight
words. Words in each block are either loadable information
or control words of types 1 through 5. Controls 6 through 10
also appear in binary programs; when this happens, however,
the format immediately reverts to the triplet mode. When
the I ist of triplets is terminated, a new block of eight words
is begun. The first word in this block is always a control
word of some type.

There are eight different ways in which DDT treats informa­
tion being loaded. Therefore, it is necessary that a three­
bit byte be associated with each word. Each eight-word
block of binary program format is preceded, then, by a
word of eight three-bit bytes. The association of bytes to
words is shown in Figure 6.

8-Word
Block

b:::'~ ~
11213/4/5/6/7/8 A3-BitJ Bytes

Word 1

Word 2

Word 3

Word 4

Word 5

Word 6
1-------

Word 7

Word 8

Figure 6. Relocatable Binary Output Format

Assembler Binary Output 29

Each 3-bit byte has one of the following values:

Byte Value

o

2

3

4

5

6

7

Meaning

Absolute address: load as is

Evaluate address (mod 214) from external
symbol usage table

Rei ocate address (mod 214)

Special relocation applies

Do not load: interpret word as a control

Derive entire word from external symbol
usage table

Relocate entire word (mod 224)

Literal reference in address field

For example, a portion of binary output might have the
following appearance.

I I I I I I I
Word 1
Word 2
Word 3
Word 4
Word 5
Word 6
Word 7
Word 8

3-Bit byte register I Information to be loaded

I I I I I I I
Word 1
Word 2
Word 3
Word 4
Word 5
Word 6
Word 7
Word 8

L
4111 I

Word 1
Word 2
Word 3

Control Word

:><
Start triplet format

------ -------~

>< 111111 ... 111

I I , , I t ,41

i
Word 1

End triplets: revert to blocked format

Word 2
Word 3
Word 4

L Word 5
Word 6

Control Word

:><
Start triplet format

>< ><
:=><===
111111 ... 111 End triplet format

i ! i ! i I

~

30 Relocatable Binary Output

The format of a triplet depends on whether it represents a
symbol or a user-defined operation code. For symbols, the
following format is used:

WD1 C
1

C
2 C

3
C

4

0 56 11 12 17 18 23

WD2 C
5 I C

6 I xxxxxx I zeros

0 56 11 12 17 18 23

WD3 Symbol Value

0 23

C 1 through C6 are the six significant characters of the sym­
bol, left-justified, with trailing blanks. Bits 12 through 17
of WD2 are flags having the following meanings.

Bit Meaning

12 Relocatable symbol

13 Duplicate symbol

14 External symbol

15 Null symbol

16 Generated symbol

17 Equated symbol

User-defined operation codes have the format

WD1

o 56 11 12 17 18 23

WD2 C
5

C
6

Zeros

o 5 6 11 12 23

The format of WD3 depends on the type of operati on code.
The various possibilities are shown below:

1. Class 1 instructions

WD3

o 1

op or pop
code

Bit Meaning

zeros

8 9

9 Set sign bit of instruction

19 Operand required

23 Type number (0 or 1)

zeros

19 23

APPENDIX B. 940 INSTRUCTIONS

Mnemonic Operation Code Function Mnemonic Operation Code Function

LOAD/STORE BRANCH

LDA 76 Load A BRU 01 Branch unconditional I y
STA 35 Store A BRX 41 Increment X and
LDB 75 Load B branch
STB 36 Store B BRM 43 Mark pi ace and branch
LDX 71 Load X BRR 51 Return branch
STX 37 Store X BRI 11 Branch and return
EAX 77 Copy effective ad- from interrupt

dress into X routine
XMA 62 Exchange M and A

TEST/SKIP

ARITHMETIC SKS 40 Skip if signal not set

ADD 55 Add M to A
SKE 50 Skip if A equals M

ADC 57 Add wi th carry
SKG 73 Sk i P if A greater than M

ADM 63 Add A to M
SKR 60 Reduce M, skip if

MIN 61 Memory increment
negative

SUB 54 Subtract M from A
SKM 70 Skip if A=M on B

SUC 56 Subtract with carry
mask

SKN 53 Skip if M negative
MUL 64 Multiply

SKA 72 Skip if M and A do not
DIV 65 Divide

compare one's
SKB 52 Skip if M and B do not

LOGICAL compare one's
SKD 74 Difference exponents

ETR 14 Extract (AND) and skip
MRG 16 Merge (OR)
EOR 17 Excl usi ve OR SHIFT

REGISTER CHANGE
RSH o 66 OOxxx Right shift AB
RCY o 66 20xxx Right cycle AB

RCH 46 Register change
LRSH o 66 24xxx Logical right shift
LSH o 67 OOxxx Left shift AB

CLA o 46 00001 Clear A
LCY o 67 20xxx Left cycle AB

CLB o 46 00002 Clear B
CLAB o 46 00003 Clear AB

NOD o 67 lOxxx Normalize and decre-

CLX 2 46 00000 Clear X
ment X

CLEAR 2 46 00003 Clear A, B and X
CAB o 46 00004 Copy A into B CONTROL
CBA o 46 00010 Copy B into A
XAB o 46 00014 Exchange A and B HLT, ZRO 00 Halt
BAC o 46 00012 Copy B into A, NOP 20 No operation

clearing B EXU 23 Execute
ABC o 46 00005 Copy A into B,

clearing A BREAKPOINT TESTS
CXA o 46 00200 Copy X into A
CAX o 46 00400 Copy A into X BPTx o 40 20xxO Breakpoint test
XXA o 46 00600 Exchange X and A
CBX o 46 00020 Copy B into X OVERFLOW
CXB o 46 00040 Copy X into B
XXB o 46 00060 Exchange X and B ROV o 22 00001 Reset overfl ow
STE o 46 00122 Store exponent REO o 22 00010 Record exponent
LDE o 46 00140 Load exponent overflow
XEE o 46 00160 Exchange exponents OVT o 22 00101 Overflow test and
CNA o 46 01000 Copy negative intoA reset
A ,\1~ o 46 0040i CopyAtoX, ciearA OTO a 22 00100 Overflow test only J-\AI...

Appendix B 33

Mnemonic Operation Code Function Mnemonic Operation Code Function

INTERRUPT FSTF 515 FORTRAN floating
store

EIR o 02 20002 Enable interrupts GCD 537 Get character and

DIR o 02 20004 Disable interrupts decrement

AIR o 02 20020 Arm/disarm interrupts GCI -565 Get character and

lET o 40 20002 Interrupt enabl ed test increment

IDT o 40 20004 Interrupt disabled test ISC 541 Internal to stri ng con-
version (floating

CHANNEL TESTS output)
1ST 550 Input from specified

CATW o 40 14000 Channel W active teletype

test LAS 546 Load from secondary

CETW o 40 11000 Channel W error test memory

CZTW o 40 12000 Channel W zero count LDP 566 Load pointer (AB)

test OST 551 Output to specified

CITW o 40 12000 Channel W inter- teletype
record test OUTF 517 Skip if no floating

overflow

INPUT /OUTPUT QFAD 500 Quick floating add
QFDI 505 Quick floating in-

EOD 06 Energize output to verted divide
direct access QFDV 504 Quick floating
channel divide

MIW 12 Minto W buffer when QFMP 503 Quick floating
empty multiply

WIM 32 W buffer into M when QFNA 520 Quick floating
full negate

PIN 33 Parallel input QFSB 501 Quick floating
POT 13 Parallel output subtract
EOM 02 Energize output M QFSI 502 Quick floating in-
BETW o 40 20010 W buffer error test verted subtract
BRTW o 40 21000 W buffer ready test QLDF 506 Quick floating load

QSTF 507 Quick floating store

SYSPOPS SAS 547 Store in secondary
memory

BIO 576 Block I/O SBRM 570 System BRM
BRS 573 Branch to system SBRR 571 System BRR
CIO 561 Character I/O SIC 540 String to internal
CTRL 572 Control conversion (float-
DBI 542 Drum block input ing input)
DBO 543 Drum block output SKNF 516 Skip if floating ac-
DBI 544 Drum word input cumulation neg-
DWO 545 Drum word output ative
EXS 552 Execute instruction SKSE 563 Skip on string equal

in system mode SKSG 562 Skip on string greater
FAD 556 Floating add STI 536 Simulate teletype input
FDV 553 Floating divide STP 567 Store pointer
FFAD 510 FORTRAN floating TCI 574 Tel etype character

add input
FFDV 513 FORTRAN floating TCO 575 Tel etype character

divide output
FFMP 512 FORTRAN floating WCD 535 Write character and

multiply decrement
FFSB 511 FORTRAN floating WCH 564 Write character

subtract WCI 557 Write character and
FLDF 514 FORTRAN floating increment

load WIO 560 Word I/O

34 Appendix B

APPENDIX C. MACRO EXAMPLE

The following example makes use of virtually every feature
in the macro and conditional assembly processes. It is pre­
sented as a demonstration of the power inherent in the use
of macros.

The macro COMPILE, when called with an arithmetic ex­
pression for its argument, produces assembly language code
that computes the val ue ofthe expressi on ina mi ni mum num­
ber of steps (subject to the left-to-right scan technique used).
COMPILE, in turn, calls a number of other macros. Their
functions are explained by comments in the text below.

The COMPILE macro initializes several variables and calls
EXPAND (where the more difficult work is done). J is the
total number of characters in the expression. K is used to
keep track of the recursion level on which the work is be­
ing done (EXPAND calls itself recursively when it en­
counters an opening bracket [). AVAIL is the counter for
available temporary storage. NPTR and PPTR are stack
pointers for the operand and operator stacks, respectivel y.

COMPILE MACRO D;J NCHR D(l);K EQU oE0
;AVAIL EQU l;NPTR EQU -l;PPTR EQU -lEV
EXPAND D (1); ENDM @)

EXPAND first initial izes I, the current character pointer.
It then places the value zero on the operator stack (marking
its begi nni ng on the current level) and fetches the first oper­
and. Then it sets a switch (G(l)) and goes into a cycle of
fetching operators (GETP) and operands (GETN). If the
precedence of new operators is less than or equal to that of
the previous operators, code is generated. Otherwise the
information is stacked and the scan continued.

EXPAND MACRO D,G,l;I EQU l;K EQU K+1~
STACK O,P; GETN D(l); SET G(l)~
CRPT G(1) @

IF I<J; GETP D(1$I)@
ELSE;OPTOR EQU 11; RESET G(l)~
ENDF@)
;PSTAK EQU PST. ($PPTR)EV
CRPT OPTOR/10<PSTAK/10+1; GEN D(l)@
ENDR@
IF OPTOR=ll;PPTR EQU PPTR-1; RESET G(l)@)
;K EQU K-1;I EQU I.($K)+I-1@)
ELSE; STACK OPTOR,P@

IF NPTR>oEV
IF NST. ($NPTR-1)<O @

IF NST.($NPTR-1)=-1@
STA TEMP. ($AVAIL)EV
ELSE; RSH 1; STB TEMP. ($AVAIL) ~
ENDF~
;NST. ($NPTR-1) EQU AVAILEV
;AVAIL EQU AVAIL+1 @)

ENDF @
ENDF~
GETN D (1$1 ,J) EV

ENDF@)
ENDR@)

ENDM @)

SET and RESET change the setting of flags. STACK is used
to put values and pointers on "stacks" (these are not physi­
cal stacks in memory but rather conceptual ones existing in
the assembler's symbol table). STACK functions by creating
an ordered progressi on of names and assigning val ues to the
names by means of the EQU directive.

SET MACRO D;D(l) EQU 1; ENDM @
RESET MACRO D;D (1) EQU 0; ENDM @
STACK MACRO D;TS EQU D(2) .PTR+1@)
D(2).PTR EQU TS;D(2).ST.($TS) EQU D(l)@

ENDM@)

GETN fetches the next operand. Its complexity is due to
the fact that it must recognize symbols (in this example,
using the assembler's symbol rules) and numbers. When this
recognition is complete it puts in the operand stack a pair
of pointers to the head and tail of the operand (i.e., char­
acter numbers in the string and a flag bit which denotes
whether the object is a symbol or a number). Note that if
an opening bracket is encountered, GETN calls EXPAND
recursivel y.

GETN MACRO D; TO EQU I; RESET ERROR @)
GETC D(1$I-T0+1)@)
IF CHAR='[';I.($K) EQU I; EXPAND D(1$2,J)@
ELSE@)

IF LETTER; RESET NUMBER E0
ELSE; SET NUMBER @
ENDF@)
IF DIGIT; SET SWITCH ~

CRPT SWITCH; GETC D(1$I-T0+1)@
IF DIGIT @)
ELSF LETTER; RESET SWITCH @)

IF CHAR='B'; GETC D(1$I-T0+1)~
IF LETTER; RESET-NUMBER@)
ELSF DIGIT; RESET NUMBER@)
ENDF@)

ELSE; RESET NUMBER @
ENDF@)

ELSE; RESET SWITCH @)
ENDF ~

ENDR @)
ELSF LETTER @l
ELSE; SET ERROR @l
ENDF@)
IF NUMbER €V
ELSE; SET SWITCH @)

CRPT SWITCH; GETC D(1$I-T0+1)@)
IF LETTER @l
ELSF DIGIT@
ELSE; RESET SWITCH @)
ENDF@)

ENDR @J
ENDF @)

IF ERROR' ERROR' STACK 0 N §
ELSE; STACK To*iB4+I-2+4~3*NUMBER,N@
ENDF@

;1 EQU 1-1 @)
ENDF@)
ENDM @)

Appendix C 35

GETC's main function is to determine whether a given char­
acter is a letter, digit, or other type of character. GETP
fetches the next operator. It checks the results, and if
valid, sets OPTOR to a value carrying both operator and
precedence information.

GETC MACRO D;CHAR EQU 'D(l)'~
;1 EQU 1+l;A EQU CHAR>'Z';B EQU CHAR<'A' ~
IF A(OR)B;A EQU CHAR>'9';B EQU CHAR<'O' ~

IF A(OR)B; RESET LETTER; RESET DIGIT ~
ELSE; SET DIGIT; RESET LETTER ~
ENDF@)

ELSE; SET LETTER; RESET DIGIT @
ENDF@

ENDM@

GETP MACRO D; GETC D(l)@)
IF LETTER (OR)DIG1T; ERROR ~
ELSE;A EQU CHAR>11B6;B EQU CHAR<20B6~

IF A (AND) B ;OPTOR EQU OPS. ($CHAR/lB6) e
ELSF CHAR='] ';OPTOR EQU ll~
ELSE;OPTOR EQU -Ie
ENDF ~
IF OPTOR=-l; ERROR; OPTOR EQU 40 ~
ENDF @)

ENDFe
ENDM @)

GE N and GENA serve to reconstruct the operands from
the string pointers and call generators that actuall y pro­
duce code.

GEN MACRO D;R EQU -1;PP2 EQU PST. ($PPTR)e
;PP3 EQU NST.($NPTR-l)e
;PP4 EQC PP3/lB4;PPS EQU PP3-PP4*lB4@)

IF PPS>4B3;PPS EQU PPS-4B3; SET LITle
RESET L1T2~
ELSE; RESET LIT 1; RESET LIT2 ~
ENDF @)
IF PP3>lB4; GENA D(1),D(1$PP4,PPS)@)

ELSF PP3>O; GENA D(1),TEMP.($PP3)@)
;AVAIL EQU PP3 @)

ELSF PP3=-1; GENA D(l),AREG@
ELSF PP3=-2; GENA D(l),BREG~
ENDF@

;NPTR EQU NPTR-2; STACK R,N@)
;PPTR EQU PPTR-l;PSTAK EQU PST.($PPTR)@

ENDM @>

GENA MACRO D;PPS EQU NST. ($NPTR)@)
;PP6 EQU PPS/lB4@)
;PP7 EQU PPS-PP6*lB4@
IF PP7>4B3;PP7 EQU PP7-4B3; SET LIT2e
ENDF @)

IF PP5>lB4; GEN.($PP2) D(2),D(1$PP6,PP7)~
ELSF PPS>O; GEN. ($PP2) D(2),TEMP.($PPS)@)

;AVAIL EQU PP5 @)
ELSF PPS=-l; GEN. ($PP2) D(2) ,AREG @)
ELSF PPS=-2; GEN. ($PP2) D(2),BREG@)
ENDF~

ENDM~

36 Appendix C

GEN20, 21, 30, 31, and 40 are the code producing macros.
They reference LIT 1 and LIT2 (flags set by GE Nand GE NA)
and call macros TEST, LA, LB, and ST. The purpose of the

latter macros is to interpret contents of the A and B registers
to prevent superfluous code.

GEN20 MACRO D; TEST D(1),D(2),X @)
LA D(X) ;LIT. ($X) @
IF X=l @>

IF LIT2; ADD =.D(2)@)
ELSE; ADD D(2) @)
ENDF ~

ELSE @)
IF LITl; ADD =.D(1)@)
ELSE; ADDD (1) @)
ENDF ~

ENDF @)
ENDM e

GEN2l MACRO D; TEST D(2),X e
IF X; LA D(2) ,LIT2 @

IF LITl; CNA; ADD =.D(l)e
ELSE; CNA; ADD D(l)@)
ENDF @)

ELSE; LA D(l) ,LITI @)
IF LIT2; SUB =.D(2)@)
ELSE; SUB D(2)@)
ENDF e

ENDFe
ENDM@)

GEN30 MACRO D; TEST D(l) ,D(2) ,Xe
LA D(X),LIT.($X)~
IF X=l ~

IF LIT2; MUL =.D(2)@)
ELSE; MUL D(2)@
ENDF~

ELSE~
IF LITl; MUL =.D(l)~
ELSE; MUL D(l) @)
ENDF~

ENDF@
;R EQU -2

ENDM

GEN3l MACRO D; TEST D(2) ,X @)
IF X; ST D(2$1); LB D(1) ,LITI @)
DIV TEMP. ($AVAIL) @)
ELSE; LB D(l),LI~le

IF LIT2; DIV =.D(2)@)
ELSE; DIV D (2) e
ENDFe

ENDF @
ENDMe

GEN40 MACRO D; NOP D (1); NOP D(2) @)
ENDM@

LA MACRO D @)
IF 'D(l) '='AREG' @
ELSF 'D(l) '='BREG'; LSH 23e
ELSE @)

IF D(2); LDA =.D(l)~
ELSE; LDA D (1).@)
ENDF~

ENDFe
ENDM§

LB MACRO D @)
IF 'D(l) '='BREG'~
ELSE~

IF 'D(l) '='AREG'~
ELSE@

IF D(2); LDA =.D(l)~
ELSE; LDA D(l)~
ENDF @)

ENDF@
RSH 23 ~
ENDF~

ENDM @)

ST MACRO D ~
IF 'D(l)'='BREG'; RSH I@)
ENDF@)

ST.D(I$I) TEMP.($AVAIL)~
ENDM@

TEST MACRO D;Y NARG;D(Y) EQU 0 @
RPT (Z=I,Y-l)@

IF 'D(Z$I,4) '='AREG' ;D(Y) EQU Z @)
ELSF 'D(Z$I,4) '='BREG' ;D(Y) EQU Z @
ENDF @)

ENDR@)
IF Y>2 @)

IF D (Y) =0; D(Y) EQU 1 @)
ENDF @)

ENDF @)
ENDM @

The following lines establ ish precedence information for the
arithmetic operators.

OPS10 EQU 30;OPSll EQU 20;OPS12 EQU -1

OPS13 EQU 21;OPS14 EQU -liOPS15 EQU 31

When called by the following lines, the macro generates
code as shown

Call: COMPILE X+200*Y @)

Result: LDA
MUL
ADD

Call: COMPILE

Result LDA
ADD
STA
LDA
ADD
STA
LDA
RSH
DIV
CNA
ADD

Call: COMPILE

Result LDA
MUL
LSH
ADD
STA
LDA
RSH
DIV
STA
LDA
MUL
LSH
ADD
MUL
DIV
CNA
ADD
SUB
RSH
DIV
CNA
ADD
SUB

=200
Y
X

AB- [C +D] / [E+F] @)

C
D
TEMP1
E
F
TEMP2
TEMP1
23
TEMP2

AB

A+200*34C21- [DEF /34B-HI* ~
+[J +20* K]/LM33B -N]/OPQ -22 ~

=200
34C21
23
A
TEMP1
DEF
23
=348
TEMP2
=20
K
23
J
HI
LM33B

TEMP2
N
23
OPQ

TEMP1
=22

Append i x C 37

	0001
	0002
	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	33
	34
	35
	36
	37

