
SOS 940 FORTRAN II
TECHNICAL NOTES

90 11 42A Ma rch 1967

SDS 940 FORTRAN II
TECHNICAL NOTES

90 11 42A March 1967

SiCiS ~ ,-

Price: $.50

SCIENTIFIC DATA SYSTEMS/1649 Seventeenth Street/Santa Monica California

©1967. SCientific Data Systems. Inc Printed In US.A

ii

PREFACE

This manual contains technical information which a systems programmer may find useful when maintai ning or mod­
ifying the SDS 940 FORTRAN II Sub-System.

This supplement is intended to be a guide for experienced programmers, and familiarity with the following publications
wi II be he I pfu I to the reader.

SDS 940 Computer Reference Manual

SDS 940 Time Sharing System Reference Manual

SDS 940 FORTRAN II Reference Manual

SDS 940 TAP Reference Manual

SDS 940 DDT Reference Manual

90 0640

90 11 16

90 11 10

90 11 17

90 11 13

CONTENTS

l. FORTRAN COMPILER

Compi ler Structure 1
Control Structure 5
FTC System Make 6

2. FORTRAN OPERATING SYSTEM 7

Character Codes 7
Library File Maintenance Routine 7

Flow Outline 7
Loader 8

Compi led Subprograms 9
Text 10
Array Table 10
Fixed Special Table 10
Floating Special Tables 10
Ten Special Words 10
Names of Required Subprograms 11
Assembl ed Subprograms 11
Linking Symbols 12
Program Operator Linkages 12

Runtime 13
Files 13
OPEN Statement 13
CLOSE Statement 13
FORK Statement 13
Debugger 14

FOS System Make 14

iii

1. FORTRAN COMPILER

COMPILER STRUCTURE

The 940 FORTRAN II compiler uses a set of data structure conventions with interpretive operations for some of the
data manipulations it performs. According to the data structure conventions, there are a fixed set of 25 lists num­
bered 0-24. These lists can be used as a symbol table for fixed point scaler identifiers, floating, array, and dummy
variable identifiers. Other functions of the lists are to hold the stack of exits for recursive calls, hold generated
pieces of machine code awaiting rearrangement, and produce a work list that plays a special role as a push-down
accumulator.

Each I ist occupies a contiguous block of storage. (See Figure 1.)

a

Stacked
tables 1

High core
a

Empty
a

Current

BOTTOM
L

... Table

... Empty
BASE L+1

Low core

j

Figure 1.

Each push-down list of tables can be used as a last-in-first-out and as a first-in-first-out stack. For a list labeled
L, there are four pointers to its block of storage.

points to the word before the list. Thus the ith word of the list is in location BASEL + i.

START L points to the last word of the pushed-down tables, the word before the region available to the
current tabl e.

points to the word before the current table.

BOTTOM
L

points to the last word of the current table.

BASE L+1 serves as a limit on ListL' It is the word before the region allocated to the next list. Thus, the
following relationship is always true: BASEL S START L sTOP L S BOTTOM

L
S BASEL + l'

The following list describes some of the interpretive operations (POPs, or programmed operators) that use only the
current table of a list. In these descriptions, M is used as the effective memory address of an instruction after
indirect addressing and indexing, and m or [M] as the contents of that address. The work list is designated by W.

FET M Fetch m

BOTTOMW - BOTTOMW + 1, [BOTTOMW]- m. This stacks m on the bottom of the work list. This POP may be
thought of as an LOA to th e work list.

ADR M Address M

Stack M on the bottom of the work list. This POP corresponds to an immediate load to the work list.

2

SOB M Save on bottom of M

Stack the contents of the hardware accumulator on the bottom of List M.

MON M Move onto M

Unstack the bottom word of the work list and stack it as the bottom word of List
M

.

MOF M Move off M

Unstack the bottom word of List
M

, and stack it on the bottom of the work list.

LOA BOTTOM + L (A hardware i nstructi on)

Bring to the hardware accumulator the word from the bottom of List
L
• The asterisk signifies indirect addressing.

TOT M Take off top of M

Unstack the top word of the current table of ListM' and save it on the bottom of the work list.
TOP

L
--TOP

L
+ 1 ; BOTTOM

W
-- BOTTOM

W
+ 1 ; [BOTTOM

W
1 - [TOP

L
1.

SKR BOTTOM + L (A hardware instruction)

Unstack the bottom word of List L. BOTTOM
L
- BOTTOM

L
- 1.

MIN TOP + L (A hardware instruction)

Unstack the top word of the current tabl e of List L. TOP L - TOP + 1.

LCF M Load Central from M

Load words CTLl and CTL2 with the two words from the top of the current table of List
M

.

LCO M Load Central off M

Same as LCF, except that the two words are unstacked from List M.

MCO M Move Central onto M

Stack the two words CTLl and CTL2 on the bottom of List
M

•

Note that words are added to a list at the bottom, but may be taken off at-the bottom (last-in-first-out: a stack)
or the top (first-in-first-out: a queue). All operations that add words to a list use the SOB operation. SOB checks
whether the allocated space if full (BOTTOM

L
= BASEL + 1)' and if so, calls on a storage allocator to move the lists

and change the pointers.

It is possible to create a new current table T1 on a list without harming the previous current table TO, that will
again become the current table when T 1 is released. This is done by means of two operations:

RSV M Reserve M

Stack STARTM - BASEM and TOPM - BASEM on the current table of ListM, then STARTM -- BOTTOMM,
TOP

M
-- BOTTOM

M
, creating a new (empty) current table on List

M
.

Thus if the previous appearance of List
M

was as shown in Figure 2,

BASE
M

BOTTOM
M

______ 0'

0'+ 1

_____ • f3
f3+1

-----.Y
Y+1

_____ .. 6

6+ 1

Stacked
tables

Empty

Current
Table

Figure 2.

we would now have the situation shown in Figure 3.

START
M

TO PM

BOTTOM
M

_____ .. 0'

0'+ 1

f3
f3+1

Y
Y+1

6
6+1

----··6+2

Stacked
tables

Empty

TO

B-O'
Y-O'

Figure 3.

After several uses of SOBM and TOT M, and possibl e memory reallocations which move the entire I ist without
changing its contents, it is possible to have the situation shown in Figure 4 {r is a relocation constant}.

3

4

The second operation is

RLS M Release M

BOTTOM
M

- START M -2,

TOP M - [START M] + BASE
M

,

------- r+a
r+a+l

r+~

r+~+l

r+Y
r+Y+l

r+6
r+6+1

-----... r+6+2

-

START M - [START M - 1] + BASE
M

·

We now have BOTTOMM = r + 0,

TOP M = r + Y, START M = r + ~,

Stacked
tables

Empty

TO

~-a

Y-a

Empty

Tl

Figure 4.

BASE
M

= r + a, so that the original status of the list has been restored with To as the current table.

It is not useful to save absolute addresses of words stored on lists that are constantly subject to relocation. Instead,
one should store a pointer to a word that contains the number of the list and the location of the word relative to the
base of the list.

BOP M Bottom pointer of M

Saves a pointer on the work I ist that designates a bottom word on list M.

CNT M Count M

Saves the size of the current table on List
M

on the work list.

SAL M Save a list M

Saves START M - BASE
M

, TOP
M

= BASE
M

, and BOTTOM
M

- BASE
M

on the save list

REC M Recover M

Is inverse to SAL, and restores START
M

, TOP
M

, and BOTTOM
M

to their previous values.

Each list has a standard size of one to five words of item stored on it. For example, a list of floating point constants
might have two as its standard item length. In addition, lists such as symbol tables have items which begin with a
one- or two-word key, the symbol itself, followed by other information.

SER M Search M

Search the list M for an item that has a key equal to CTL2, or equal to the two-word pair (CTLl, CTL2), depending
on what the key-length of M is. The pointer to the matching item is saved on the work list.

CONTROL STRUCTURES

The program is organized as a set of recursive subroutines. Exits are saved on one of the lists, the exit list. The
programmed operators are impl emented by recursive subroutines so that they can use themsel ves and each other. Apart
from those subroutines accessed by the programmed operators, a recursive subroutine may be reached by

JRS M Jump to recursive subroutine M

At each level of subroutine nesting an answer bit is kept and used to record the results of tests.

JAT M Jump to M if answer is true

JAF M Jump to M if answer is false

Many of the operators described earlier set the answer true or false. For example the programmedoperators that
remove items from lists set the answer false if the source list is empty. The search instruction sets the answer false
if no match is found. We also have

CSA M Character scan or al ternative

If the next input character equals m, scan over it and set the answer true; otherwise do not scan, and set the answer
false.

SNE M Set nonempty

Set the answer true if the current table of List M is nonempty, otherwise false.

SOC M Set on character

Set the answer true if the next input character has, in its entry in a certain table, a flag bit set in the same position
as the bit set in M. This instruction can be used to ask if the next character is an alphanumeric.

SOF M Set on flag M

This operation is the same as SOC, except that it tests the bottom word on the work list, rather than the next input
character.

SOL M Set out of limit

Set the answer true if the absolute value of the double precision hardware accumulator is not greater than the double
precision limit M.

The following POP's may be used to do bac ktracking:

TRY M Enter the recursive subroutine M

If the subroutine is left normally by a transfer to EXIT, control returns to the instruction following the TRY, with the
answer set to TRUE. If an exit occurs by a transfer to FAIL, control returns with the answer set to FALSE, and with
the list pointers reset to their values at the time TRY was executed.

FEX M Fail exit M

After execution of this instruction, a transfer to FAIL will cause control to go to M, with lists restored to their state
when FEX was executed.

5

6

CSF M Character scan or fai I

If the next input character is M, scan it; otherwise go to FAIL.

QSF M Quote scan or fail

Scan on the input string the string stored at M, or go to FAIL.

FTC SYSTEM MAKE

A save file of the compiler is produced in the following manner.

Assemble the symbolic files 1C,2C, ••. ,6C producing the binary files 1B,2B, •.. ,6B. These files contain

temporary variabl es and compil er lists

FTC command processor: analyzers for 70% of the legal statements

30% of the statement anal yzers, statement element anal yzers, post-compilation pri ntout routines, and a mem­
ory allocator

el ement anal yzers

compi I er prog rammed operators

1-0 routi nes, read onl y storage

Next use DDT to load the binary files. Temporary storage is kept in block zero below and the read only compiler
code in blocks one and two.

200;T /1 B/.

4000;T /2B/.

;T /6B/.

temporary storage I code to be saved

Return to the EXEC and save two blocks.

SAVE CORE FROM 4000 to 13777 ON /FTC/,
STARTING LOCA nON 4000.

2. FORTRAN OPERATING SYSTEM

CHARACTER CODES

Trimmed ASCII character code is used throughout the FORTRAN II system. FTC packs four characters per word
internally. However, all output strings from FTC for FOS are composed of 8-bit characters packed three to a
word. FOS uses three characters per word with one exception in the loader. Since the assembler packs symbols
four characters per word, the loader expects this. When an assembled program is loaded, its name is converted
to the F OS standard of three charac ters per word.

LIBRARY FILE MAINTENANCE ROUTINE

The FORTRAN library file consists of a sequence of TAP and FTC binary programs. The library file maintenance
routine, LIBFLE, copies from this file to a second file. During this process, it deletes a specified program or inserts
the contents of a third file before the specified program in the original file.

The commands are:

Delete <library file>.
<new library file>.

D <program name>.

This operation produces a new copy of the library file with the specified program deleted.

Insert <library file>.
<new library fi Ie>.

I <program name>.

<file name of new programs>.

This operation produces a new copy of the library file with the contents of the third file inserted before the
specified program in the library file.

List (and copy)

<library file>.
<2nd fil e>.

L@
This operation lists the programs on the first file in order while copyi.ng the file. If a copy is unwanted, the
NOTHING file should be specified.

FLOW OUTLINE

1. Accept input file name.

2. Accept output fi I e name.

3. Accept command letter (D, I, or L).

4. Accept 1 to 6 alphanumeric characters

5. If this is an insert operation, accept the insert file name.

6. Open the fi I es.

7. Read the first five words of the next program from the old library file.

7

8

8. If this is a named program, insert the insert file or delete this program.

9. Copy or skip the rest of the program from the old library file.

10. Repeat the three previous steps until the end of the old library fil e is reached.

00000002 binary file identifier

D compiled subprogram

D assembled subprogram

27657537 end of file

Figure 5. Library File Format

LOADER

The FOS loader is two separate loaders in one since the compiler and assembler output is very different. FTC makes
a single pass over the source statements. The second pass is performed in the loader. The compiled binary file is
read into core followed by a number of tables generated during compilation. At this point the address fields of
instructions contain keys that reference entries in the tables. A pass over the code in core sets up addresses. The
tables are no longer needed and this space is released for use by the next program.

COMPLIED SUBPROGRAM

00000000
04000000
00000000
01002004
01002004
00600000

TEXT

011 NNNNN

Fixed
Constants

Floating
Constants

00600000

Array table

00600000

Fixed special
table

00600000

Floating
special table

00600000

10 special
words

Names of
required
subprograms

006NNNNN

Symbols

32465152

Block count (Block number)
02000000, if subprogram
Entry point

Subprogram name, if not main program
BLK LOP (Special Loader OP - "mark end of block")

ABS LOP

BLK LOP

BLK LOP

BLK LOP

BLK LOP

BLK LOP

NNNNN is number of words of fixed and floating constants
that follow in this block

NNNNN is the number of words of debugging symbol table whkh
follows. NNNNN may equal zero.

Three line-feed characters. Compiled subprogram end.

9

10

TEXT

The text is composed of absolute instructions, relocatable instructions, absolute data, and special loader OPS
(called LOPS). The different types of loader OPS are:

BLK
LBL
ABS
SYS
DEL

006xxxxx
003xxxxx
011xxxxx
005xxxxx
004xxxxx

Block end marker
Label LOP
Absol ute LOP i ndi cati ng x number of data words foil ow
System LOP that is converted to BRM* instruction at load time to branch to a routine
The address, xxxxx, is added to the following instruction's address at load time

The text also contains some programmed operators that are converted into machine code by the loader at load time.
They are:

POP Machine Code

124 LDA
130 ADD
134 SUB
106 STA
146 CNA

If the instruction is relocatable, the sign bit is a 1 and the 14-bit address field refers to one of nine different tables.

34340 - 37777
30704 - 34337
25250 - 30703
21614 - 25247
16160 - 21613
12524 - 16157
7070 - 12523
3434 - 7067

o - 3433

ARRAY TABLE

dummy
temp
link
array
fixed constant
floating constant
label key
fixed scalar
floating scalar

The array table contains one entry for each array referred to by the program. This word gives the location of the
array and, if the array is in COMMON, the word is negative.

FIXED SPECIAL TABLE

Each fixed scalar that appears in an EQUIVALENCE or COMMON statement produces a two-word entry in this
table. The first word is the scalar's identification number and the second word its address, similar to the addresses
that appear in the array table.

FLOATING SPECIAL TABLE

Each floating scalar that appears in an EQUIVALENCE or COMMON statement produces a two-word entry in this
table. The first word is the scalar's identification number and the second word is its address, similar to the addresses
that appear in the array tabl e.

TEN SPECIAL WORDS

Number of fixed constants
Number of words of floating constant
Beginning of link table
Beginning of dummy storage
Beginning of temporary storage
Beginning of array storage
Beginning of fixed scalar storage
Beginning of floating scalar storage
End of floating scalar storage + 1
Size of COMMON

NAMES OF REQUIRED SUBPROGRAMS

Each subprogram required by this program causes a two-word BCD entry in this table.

ASSEMBLED SU BPROGRAM

FOS loads standard 940 assembl er output. Binary output is divided into logical, variabl e I ength records. Each
record begins with a control word that defines its type. Bits 0, 1, and 2 normally signify the type. The first word
of the binary output is a 3-bit register (cf. 110 -Binary Program Follows ll below) whose single entry is an octal 4.

Bits 0, 1, and 2 (octal)

o

200
1

201 I Bits 0-8 are used

3

4

5

6

7

Meaning

Binary program follows

Programmed operator follows

End of program

Origin of literal table is in address field

OPD follows

External symbol definition (s) follows

Identification record follows

Externa I symbol usage tabl e foil ows

Symbol table follows

The remaining bits in the control word and the format of the record which follows are different for each type.

o - Binary Program Follows

Bits 10-23 of the control word are added to the current value of the location counter. A binary program consists of
groups of eight machine commands preceded by eight groups of three bits packed into a single word (the 3-bit reg­
ister). Each group of three bits is associated with a corresponding instruction or control word that follows and serves
as a loading indicator for that word. The following indicators are used:

3-Bits (octal)

o

2

3

4

5

6

7

- Programmed Operator Follows

Meaning

Absolute address
14

Evaluate address from external symbol table mod 2

Relocate address mod 214

Relocate word mod 224

Abandon binary program format - next word is a control word.
24

Evaluate word from external symbol table mod 2

unused

literal reference - relocate address mod 214

Bits 2-8 of the control word determine the position of a transfer command that is placed by the loader in the pro­
grammed operator transfer vector (100-1778), Bits 10-23 determine the address of the transfer command. The in­
formation following is a binary program that follows the previous program; i.e., the location counter is unaffected
by POPD.

200 - End of Program

No other bits in the control word are significant. The 200 record is a one-word record.

201 - Origin of Literal Table

The origin of the literal table is found in the address field.

11

J

12

3 - Defined Operation Follows

All OPDs are punched in a form of a standard symbol (cf. 114-External Symbol Definition{s) Follows ll below}.

4 - External Symbol Definition{s} Follows

Each definition consists of a block of three words. The first two words contain the six characters of the symbol in
ASCII code, left-justified with trailing blanks. The third word contains the symbol value. Bit 12 of the second
word signifies relocation of the external symbol value. Relocation of external symbols is performed modulo 224.
Each block of such definitions is terminated by a single word of all lis.

5 - Identification Record Follows

The identification record consists of one block of three words. The format of the block is identical to that for each
entry of type 201 records (see above), although only the six characters of the identification symbol are meaningful.

6 - External Symbol Usage Table Follows

Each entry of the usage table is a three-word block of the same format as type 4 records (see above).

7 - Symbol Table Follows

The format of the local symbol table is the same as for type 4 records {see above}. The order of records is as follows:

[ident record]
[external symbol usage tabl e]
[literal table origin]

binary program I
programmed operators
external symbol definitions
end of program

LINKING SYMBOLS

(if any)

in any arrangement

Undefined symbol names are entered in the LINKS vector, which works down from core during loading. A typical
entry is:

required flag

name 1

name 2

When the symbol is defined, the program required flag is replaced with a branch to the entry point.

A table of three-word entries works up in core from the end of temporary storage {block zero}. Undefined symbol
chains begin at this table.

name 1

name 2

-
Undefined symbols are linked in this manner until loading is completed.

PROGRAMMED OPERATOR LINKAGES

To load properly, compiled POpis must be between 1008 and 1678, In assembled programs, POpis between 1608
and 1778 as well as all 940 system POpis may be used.

RUNTIME

FILES

The file numbers table, FLNMT, consists of ten words laid out as follows:

Status/Number

o 1 2 23

where

T is a file type indicator specifying whether one file is used for input or output (0 means input file,
means output file).

Status/Number is a value indicating the status and identifying number of the file (a value of -1 means
the file is not opened; any other value means the file is opened and its identifying number is the value
given).

File unit numbers 2 through 9 may be assigned at will. Units zero and one are permanently assigned to teletype
input and output. Input or output to an unopened unit selects the controlling teletype by default. A bell sounds
whenever teletype is expected.

OPEN STATEMENT

Th IIOPEN « . n> f INPUT 1 /f·1 /)11 e statement expresslo '1 OUTPUT J' I e

generates

DI

SBRM*
NOP
BRU
/FI
LE/

CLOSE STATEMENT

DECFL
o
D1

normal fixed expression evaluation

declare file
or 1 if output
branch to next statement
ASCII character string

IICLOSE {<expression>}" generates the code

l normal fixed expression evaluation

SBRM* CLFLE close file

The expression may be a list of expressions separated by commas, in which case the above code is repeated for each
fi I e to be closed.

FORK STATEMENT

A subroutine that is normal I y entered with

CAL SUB (arg1, ... ,argN)

may be started up as a fork instead, with

FORK SUB (argl, ... ,argN)

13

14

The code generated for this is

LDA D4
STA Dl
LDA D5
BRS 9
BRU D3

D5 ZRO D1
D4 ZRO D2
Dl BSS 7

continue normal flow
address of fork tabl e
address of subroutine call
fork table

D2 {standard code for •..
CALL SUB ()

BRS 10 fork stop
D3 next statement in the main branch

Note that the subrouti ne is standard ina II respects.

When the RETURN statement is executed, a normal return is made from the subroutine. A BRS 10 is then executed
in the main code. Therefore, a single subroutine may be activated either as a fork or as a normal subroutine from
within the same program. The user must avoid doing both at once. To assist him, the WAIT statement generates a
BRS 31.

DEBUGGER

The debugger's context is always the main program or a particular subprogram. The main program is assumed initially
after the completion of loading. A line beginning with a legal FORTRAN name followed by a comma switches the
debugger to a new program. The name string is not saved for any length of time but is used in the search that fol­
lows immediately. A successful search results in the updating of three cells:

UPROGS

UDATAS

UPROGN

user program start

user data start

user program end

These three variabl es defi ne the current e nvi ronment for the debugger.

If debugging information is requested at compile time, the statement label POP (STL-156a) is inserted just before
each statement. This POP is produced for all statements including non-executable ones to insure accurate relative
addressing by the debugger. (100-3 = statement 100 minus 3 statements). The address field of STL holds the state­
ment label number or zero.

Settinq a breakpoint amounts to convertinq the STL to the breakpoint POP (BKP-152Q). When BKP is executed, con­
trol returns to the FOS command processor~ The statement label' is typed at this tim;:

Three cells within FOS hold pointers to the three current breakpointed statements. When breakpoints are not set,
these cells hold all ones. The three cells are BK1ADR, BK2ADR, BK3ADR.

Removing breakpoint n converts the BKP POP addressed by BknADR back to an STL POP and stores -1 in BKnADR.

FOS SYSTEM MAKE

A save file of the loader and run time is produced in the following manner:

Assemble the symbolic files 1L,2L, lR,2R,3R,4R producing the binary files B1L, B2L, B1R, B2R, B3R, B4R.

lL

2L

lR

temporary storage for the loader

loader

temporary storage for run time.

2R

3R

4R

run time POP's

format processor

debugger

Use DDT to load the assembled binary.

400;t/B 1 L/.
4000; T/B2 L/.

Determine the last location, a, used by the loader and the value of BRUNT, f3' the location where a branch to the
start of run time should be stored.

Delete the loader symbol table and load run time.

400;T /B1R/.

O'+l;T /B2R/.

;T /B3R/.

;T/B4R/.

f3/BRU PS {run time} program start

4001/ BRU RS {run time} program re-start

Return to the EXEC and save the code from 4000 to the last location, a, used by the run time system.

SAVE CORE FROM 4000 to a, starting location 4000.

UPROGS

UDATAS

UPROGN

I

,...-

'----

nexf

entry

program name

} data pointers

program

} read only data (FORTRAN constants)

variabl es

name
name
reI. loc.

symbol s (3 words/entry)

Figure 8. Men-lory Layout of Cornpi led Programs and Subprograms

15

	000
	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15

