
CONVERSATIONAL FORTRAN
REFERENCE MANUAL

for

SOS 940 COMPUTERS

PRELIMINARY EDITION

90 15 79A

January 1969

Price: $2.50

SCIENTIFIC DATA SYSTEMS/701 South Aviation Boulevard/EI Segundo; California 90245

© 1969, SCientific Data Systems, Inc. Printed In U.S.A

RELATED PUBLICATIONS

Title Publication No.

SOS 940 Computer Reference Manua I 900640

SOS 940 Terminal User's Guide 90 11 18

SOS 940 Time-Sharing System Technical Manual 90 11 16

SOS 940 QEO Reference Manual 90 11 12

SOS 940 FORTRAN II Reference Manual 90 11 10

NOTICE

The specifications of the software system described inthis publication are subject to change without notice. The availability or performance of some features may
depend on a specific configuration of equipment such as additional tope units or larger memory. Customers should consult their SDS sales representative for details.

ii

CONTENTS

l. INTRODUCTION 7. CONTROL STATEMENTS 25

Typographic Conventions 1 GO TO Statements 25
Operating Procedures 1 Unconditional GO TO 25

Log-In 1 Assigned GO TO 25
Escape 2 Computed GO TO 26
Exit and Continue 2 IF Statements 26
Log-Out 3 Arithmeti c IF Statements 26

Logical IF Statements 27
DO Statement 27

2. CONVERSATIONAL FORTRAN SYNTAX 4 CONTINUE Statement _ 28

Character Set 4
PAUSE Statement 29
STOP Statement 29

Error Correcti on 4
Subprogram Control

Parentheses 4
29

CALL Statement 29
Statements 5

RETURN Statement 30
END Statement 5
Comments 5 8. INPUT/OUTPUT STATEMENTS
FORTRAN Statement Numbers 5

31

Sequence Numbers 5 Input/Output Lists 31
Simple List Items 31

Free Format I/O 32
3. PROGRAM COMPILATION AND EXECUTION 6 ACCEPT Statement 32

General Description
DISPLAY Statement 32

6
Formatted Input/Output 33

CF Commands 6
OPE N Statement 33

Statement Designators 6
C LOSE Statement 33

Compiler Diagnostics 8
READ Statement 34

Execution Diagnostics 9
WRITE Statement 34

Sampl e Program 12
FORMAT Statement 35
Fi eld Speci fi cations 35

4. DATA 14
F Conversion 36
E Conversion 36

Limits on Values of Quantities 14 J Conversion 37
Constants 14 D Conversion 38

Integer Constants 14 G Conversi on 38
Octal Constants 14 I Conversion 39
Real Constants 15 o Conversion 39
Compl ex Constants 15 L Conversion 40
Logical Constants 15 A Conversion 41
Holl erith Constants 15 H Conversion 41

Identifiers 16 $ Conversion 42
Variables 16 I_II Conversion 43

Scalar Variables 16 X Specifications 43
Arrays and Array Variables 16 / Specifications 43

Z Conversion 45
Repetition of Field Specifications 45

5. EXPRESSIONS 18 Numeric Input Strings 46

Arithmeti c Expressions 18 Termination of Input Strings 46
Editing of Input Strings 46

Precedence 18
FORMAT and List Interfacing 47

Mixed Expressions 19
Rei ational Expressions 20 Format Stored in Arrays (Not Implemented at the

Time of Publication) 47
Logical Expressions 21

Evaluation Hierarchy 22
9. DECLARATION STATEMENTS 49

6. ASSIGNMENT STATEMENTS
Classification of Identifiers 49

23
Implicit Declarations 49

Replacement Statement ')') Explicit Declarations An
.Lv '+7

Statement Number _-_ ______ 24 Array Ded arations 50

iii

Array Storage 50 Subroutine Subprograms 58
References to Array EI ements 51 Dummy Arguments 59

DIMENSION Statement 51
DA T A Statement 51 INDEX 64
Type Statements 53

10. SUBPROGRAMS 54 APPENDIXES

Function Subprograms 54 A. SUMMARY 61
Library Functions 54
Statement Functions 56 B. SDS 940 INTERNAL ASCII AND TELETYPE
FUNCTION Subprogram 57 CODES 63

iv

1. INTRODUCTION

This manual is intended as a reference/operations manual for the SDS 940 Conversational FORTRAN System and
assumes the reader is familiar with the general principles of FORTRAN programming and with the 940 Executive
System described in the SDS 940 Terminal User's Guide.

SDS Conversational FORTRAN (CF) allows a high degree of man-machine interaction since program compi lation,
debugging, modification, and execution are all controlled via commands issued by the user at a teletype console.

In additi on, CF permits incremental compi lation of source program statements; i. e., one or more program statements can
be compiled independently. To modify a compiled statement, the user recompiles only that statement. To add text
to a program, he issues a compi Ie command wh ich directs the system to insert new material at a specified location.

CF also provides a set of on-line debugging features. The user is allowed to set breakpoints, insert temporary state­
ments that execute but do not become compi led as a permanent part of the program, and then to resume executi on
at any specified point.

Other features of CF incl ude free-form entry of program statements and the abi I ity to save and restore symbol ic and
object code. An editing capability (subset of QED) is also provided.

Typographic Conventions

For clarity, several conventions have been used throughout this manual. These are explained below:

1. Underscored copy in an example represents copy generated -by the computer. Copy that is not underscored in
an example must be typed by the user.

2. The following notations have been used to represent special keys on the teletype:

@> represents the RETURN key.

t
@ represents the ESCAPE key.

(0 represents the LINE FEED key.

3. Nonprinting control characters are represented by an alphabetic character and a superscript c (e. g., DC).
The user depresses the alphabetic key and the Control (CTRL) key simultaneously to obtain a nonprinting
character.

Operating Procedures

The standard procedure for gaining access to an SDS 940 time-sharing computer center from a teletype terminal is
described in the SDS 940 Terminal User's Guide. The publ ication also incl udes information concerning the Executive
System and the call ing of various subsystems avai lable to the terminal user. The following paragraphs summarize the
standard procedures as they apply to CF users.

Log-In

To gain access to the computer, the following operating sequence is observed:

1. If the FD-HD (Full Duplex-Half Duplex) switch is present, turn the switch to the FD position. When the tele­
type is not connected to the computer (a condition sometimes called the Local Mode), this switch must be in the
HD position.

2. Press the ORIG (originate) key, which is located at the lower right corner of the console directly under the
dial. This key is depressed to obtain a dial tone before dial ing the computer.

tIn some 940 time-sharing systems the AL T MODE key is used instead of the ESCAPE key. Where @appears in this
manual, ALT MODE may be substituted.

Introduction

3. Dial the computer center number. When the computer accepts your call, the ringing will change to a high­
pitched tone. There will then appear on the teletype a request that the user log in:

PLEASE LOG IN:

4. The user must then type his account number, password, name and project code (if he has one) in the following
format:

PLEASE LOG IN: number password;name;project code @)

Only persons who know the account numb~r, password, and name, may log in under that particular combination.
The following examples all illustrate acceptable practice.

PLEASE LOG IN: A 1 PASS;JONES;REPUB @)

PLEASE LOG IN: B4WORD;BROWN;DEMO @)

PLEASE LOG IN: C6PW;SMITH; @)

The optional 1-12 character project code is provided for installations that have several programmers using the
same account number. The project code is not checked for val idity.

If the user does not correctly type his account number, password, and name within a minute and a half, a mes­
sage is transmitted instructing him to call the computer center for assistance. The computer will then disconnect
the user, and the dial and log-in procedure will have to be repeated. .

5. If the account number, password (nonprinting), and name are accepted by the computer it will print READY,
the date, and the time on one line, and prints a dash on the next line.

READY date, time

- (dash)

The dash indicates that the Executive is ready to accept a command.

6. Following the dash the user types FORTRAN, which produces the following:

-FORTRAN

+ (pi us sign)

The FORTRAN command calls CF (the command may be abbreviated to the first three letters, FOR).

CF responds with a + sign on the next lower line, indicating that it is awaiting a command.

Escape

The ESCAPE key can be used at any time to abort the current operation. Striking the ESCAPE key before terminating
a CF command aborts the command. The system then types a plus (+).

During compilation, escape is treated in a slightly different manner. The first escape received during compilation
merely causes the bell to ring and has no other effect on the system. If a second escape is received during the same
call to the COMPILE command, the program is returned to the state which existed prior to the COMPILE command.
The system then types a plus (+).

Exit and Continue

Depressing the 0 key several times in succession returns control to the Executive, which responds with a dash (-).
If the user wants to return to CF without losing his program, and if he has not subsequently ca lied another subsystem
(e. g., BASIC, QED, CAL), he may type CONTINUE. The computer will type FORTRAN and return to it without
any initialization. f'.Aeanwhile, nothing in core has been destroyed.

2 Operating Procedures

Log-Out

When the user wishes to be disconnected from the computer, he depresses @several times in succession to return to
the Executive (which types a dash (-)) and then types:

LOGOUT @)

or

EXIT @)

The computer will respond with the amount of hook-up (line) time charged to the user's account since the previous
log-in procedure was completed. The EXIT command does not update the user's file directory.

Operating Procedures 3

2. CONVERSATIONAL FORTRAN SYNTAX

An SDS 940 Conversational FORTRAN program is an ordered set of statements that describes a procedure to be fol­
lowed by the computer and data to be processed by the program. Statements belong to one of two general classes:

• executable statements that perform computation, input/output operations, and program flow control.

• nonexecutable statements that provide information to the processor about storage assignments, data types, and
program form and also provide information to the program during execution about input/output formats and data
initialization.

Statements are usually entered on-line at a teletype console in a manner to be described in detail in the following
chapter. The use and syntax of the various statements are explained in succeeding chapters.

Several conventions to be followed in writing programs differ from those used in card-oriented, batch processing
systems and provide the flexibility needed in a time-sharing system.

Character Set

The following characters may be used to form source statements:

Alphabetic:

Numeric:

A through Z

o through 9

Special Characters: + * t / @ $ % & ? []

The following control characters have special significance in CF:

@) Terminates CF commands and CF statements.

@ Allows statement to be continued to next line.

o Aborts the current operation. (See Chapter 1.)

Terminates CF statements. May be used in place of e.

II < > and blank

Hor A
C

Deletes the last character typed and may be used repeatedly to delete a corresponding number of
characters. Note that· H will not delete terminating semicolons.

QC or Deletes the entire statement currently being entered.

W
C

Deletes the last word that was typed. May be used repeatedly to delete a corresponding number of words.

Hollerith input and Hollerith format fields may contain any printing teletype character except the control characters
discussed above.

Error Correction
Editing can occur at three distinct levels:

1. A symbolic line can be edited while it is being input by using the H _ A
C

QC WC
characters.

2. A symbolic line can be edited by referencing it by sequence number and using the EDIT command (see
Chapter 3).

3. Data which is input at execution time can be edited by using the A
C

W
C

and QC characters.

Parentheses
Parentheses are used in the normal fashion for indicating the hierarchy of arithmetic operations, subscript notation,
and FORMAT statement delimiters. Brackets must be used for all function and subroutine calls. Either parentheses
or brackets may be used in I/O statements.

4 Conversational FORTRAN Syntax

Statements

Statements may be entered at the teletype in a free-form format. It is unnecessary to follow the usual convention of
beginning statements in column 7 of a line. Statements may begin anywhere on the line, including column one. A
statement is terminated by either a @>or a semicolon. If a statement is terminated by a semicolon, the next state­
ment may be typed immediately on the same line. A statement may then be continued from one line to the next by
depressing 0. Except for certain alphanumeric strings, blanks in a statement are ignored and may be used to aid
readabi I ity.

END Statement

A FORTRAN program must end with a statement comisting of the characters END. This statement indicates to the
compiler that there are no more statements in the program; it has no effect upon execution. Since it is nonexecut­
able, the END statement should not be referenced by another statement.

Comments

If the first nonblank characters of a COMMENT statement are C:, the following statement up to a semicolon or @>
is treated as a comment. Comments may appear anywhere in a program; they have no effect on execution.

Comments may be continued from I ine to I ine by depressing 0.

FORTRAN Statement Numbers

A statement may begin with a statement number consisting of any number of decimal digits. These numbers permit
cross-reference between statements in the program. Leading zeros and blanks are ignored.

The following examples are equivalent:

22

0022

2 2

Statement numbers are used for identification of statements and must therefore be unique. No execution sequence
is implied by the magnitudes of the statement numbers. Nonreferenced statements need not be numbered.

FORTRAN statement numbers should never be confused with sequence numbers.

Sequence Numbers

When a source program is entered from the teletype or from a previously prepared file, CF assigns each statement a
positive number in the range. 001 through 999.999.

Once a program has been entered, these statement numbers may be used for text manipulation. For example, a
user may modify or delete a statement by specifying its line number and taking the appropriate console action.

A single number refers to one particular program statement. Two numbers separated by a colon indicate a range of
statements. The range 22:30 specifies the statements from 22 through 30.

The assignment of CF sequence numbers is discussed in Chapter 3 in the COMPILE command section.

Statements/End Statement/Comments/F ORTRAN Statement Numbers/Sequence Numbers 5

3. PROGRAM COMPILATION AND EXECUTION

All communication from the programmer to the computer regarding text entry and compilation, program fi Ie manipula­
tion, and program execution is conducted via the set of CF system commands described in this chapter.

Programs are normally entered on-line at the teletype console. After logging in, the user calls Conversational
FORTRAN with the Executive command

-FORTRAN €V

Upon receipt of this command the system executive activates CF and prints a plus sign (+) to indicate readiness to
receive commands. The Executive command FORTRAN may be abbreviated to FOR.

General Description

The manner in which programs are entered and compiled differs greatly from procedures used in batch processing en­
vironments. In the latter, the programmer typically prepares a complete program on a card or tape file, compiles
this program file to obtain an object program, and then executes the object program. If modifications are necessary,
the entire program must be recompiled.

In CF, the user begins by issuing a COMPILE command, followed by the source language statements (one or more) to
be compiled. The FORTRAN statements may be entered one by one from the teletype keyboard or from a previously
prepared file. The statements entered need not comprise a complete program. Once the user has entered his initial
group of statements, he may add to the program, modify one or more statements, or delete code without recompiling
the entire program. To add statements, he issues another COMPILE command and uses assigned statements numbers to
indicate where the additional text is to be inserted. To modify existing statements, he merely recompiles the state­
ments in question or edits them by using the EDIT command. Other CF commands perform total or partial deletion of
program text.

The output from the compi lation phase is a threaded list of lIelements ll , each of which contains the encoded repre­
sentation of a source language statement and certain directive information for use in structuring statements into the
program.

Execution and program listing are controlled by appropriate CF commands. Special debugging features allow the pro­
grammer to interrupt execution, insert temporary, 1I0ne-time onlyll statements, and proceed from any point in the
program. At the end of a session at the teletype the user may save his entire program on file. This file may then be
read in at the next session and the user may resume where he left off.

CFCommands

All CF commands contain a one-word command identifier. Identifiers may be abbreviated to one, two, or three
characters, depending on how many characters are required to distinguish a particular command from the others in
the set.

Many commands may also include IIstatement designators" consisting of CF assigned sequence numbers that describe the
part of the program affected by the command.

All CF commands are term inated by a Carriage Return. (@).

Statement Designators

Statement designators in CF commands consist of either a single CF sequence number or two CF numbers separated
by a colon. They are used by the CF commands to indicate what part of the program is to be affected.

A single number refers to one particular program statement. For example:

25
39.60

Two numbers separated by a colon indicate a range of statements. For example:

22:30

6 Program Compi lation and Execution

This means: lIall the statements from numbers 22 through 30 11
•

The statement designator is separated from a CF command identifier by a comma or space. In the examples in this
chapter, statement designator is abbreviated as IIsd ll

•

Following is a functional description of the available Conversational FORTRAN commands:

Command Function

COMPILE To compile one or more statements

LIST To obtain a symbolic listing of a compiled program

DELETE To delete one or more statements

KILL To delete an entire program

EXECUTE To execute a previously compiled program

WHY To determine the cause of an execution error

BREAKPOINT To temporarily halt execution of a program in order to obtain debugging information

PERFORM To insert a statement into a program during execution. The statement wi II not be permanently
compiled into the program.

PROCEED To resume execution of a program after a breakpoint

NEXT To step through a program

CLEAR To clear one or more breakpoints

PRINT To print any symbolic CF program in a user's directory

SAVE To save a symbolic program

EDIT To edit a statement

COMPILE

Form Example

COMPILE,sd COMPILE, 1: 100

COMPILE,sd,file name COMPILE, 100:500, /PAYROLL/

This command causes control to be passed to the Conversational FORTRAN compiler when the confirming @) is read.
The first form above is used when the program is entered manually from the teletype or from paper tape. The second
form is used when a program has been prepared in QED and output to a disc file, in which case the file as a whole is
input to the compiler.

The compiler reads characters from the teletype (keyboard or tape), up to and including an exclamation point (I).
Control then returns to the CF command mode. The exclamation point is optional on disc files. During compilation,
program statements are automatically numbered within the range specified by the statement designator.

Consider the following example:

+COMPILE, 1 :20 @)
1 ACCEPT [AJ @
B=SQRT [AJ @>
DISPLAY [A, B] €V
END!

C F Commands 7

In this example, the source statements following the first @ are compiled and numbered in equal steps ranging from
one to a maximum of 20. (In general, the size of the steps assigned depends on the total number of statements com­
piled.) The source statements could have been del imited by semicolons rather than @, as discussed in Chapter 2.
The resulting I isting of compi led statements would be:

+ LIST

l. 1 ACCEPT [A]

7. B=SQRT[A]

13. DISPLAY [A, B]

19. END

The END statement must appear in the first group of statements compiled; subsequent insertions to the text should
then be positioned prior to the END statement.

Note that if only the lower limit of the statement range is given and more than one statement is to be compiled, the
number given may not be the first number actually assigned by CF. If both I imits of the range are given, the lower
limit will always be used as the first statement number, as in the above example.

The COMPILE statement is used to insert additional text and to modify previously compiled statements. For instance,
to insert a statement after statement 13 in the previous example, one could issue the command:

COMPILE, 14 €V
GOTO 11

To modify statement number 7 by replacing variable B by C, the user could type

COMPILE, 7 €V
C=SQRT [A] !

The original statement 7 would be replaced by the new version.

Compi ler Diagnostics

Whenever a syntax error is detected in a FORTRAN statement being entered from the teletype, a warning bell rings
and the statement in error is immediately printed out. An arrow (t) is printed beneath the statement at the point
beyond which compilation could not proceed. The user must take corrective action either by retyping the statement
correctly or by skipping the statement and proceeding to the next one.

Example:

COMPILE, 1 :500 €V
A=3.0 €V
DISPLAY A 9
DISPLAY Aj @)

t
DISPLAY [A] 9

END!

In this example an error occurred when the programmer omitted the brackets or parentheses required by the DISPLAY
statement. The computer immediately printed the statement below it and an arrow to indicate the point where the
statement fai led to conform to an acceptable format. The user took corrective action by retyping the statement cor­
rectly. Since all statements with eriOrs Oie discarded by the compiler, only the corrected version remains.

If the input to the compiler consists of a previously prepared disc file or paper tape, the computer will print each
statement in which there is an error and then discard it, but it will not pause to await corrective action. When
compilation is completed, the user may insert corrected statements with further COMPILE commands. Alternatively,
he may re-read the file into QED to make his corrections, then recompile the entire file.

8 C F Commands

Syntax errors only are detected by the compiler; other types of errors are diagnosed during execution.

LIST

Form Example

LIST LIST

LIST, sd LIST, 5:9

LIST, sd, fi Ie name LIST, 1:100,/FILEA/

The first two forms of the LIST command provide a I isting of program statements at the teletypei the first I ists all ex­
isting statements, while the second lists only those statements specified by the statement designator. Statements are
listed one per line. This command is typically used immediately after compilation to ascertain the numbers assigned
to program statements.

The third form of the statement may be used to place the listing on a user file.

DELETE

Form Example

DELETE, sd DELETE, 3

DELETE, 40:60

The DELETE command is used to delete those program statements indicated by the statement designator. The second
example above will delete statements 40 through 60.

KILL

Form Example

KILL KILL

The KILL command deletes all existing program statements.

EXECUTE

Form Example

EXECUTE EXECUTE

This command causes control to transfer to the execution mode. Execution begins with the first statement of the main
program.

Execution Diagnostics

If an error occurs during execution, execution is terminated and the system prints the statement that caused the error.
Control is then returned to the command mode. If the cause of the error is not apparent, the user may issue the WHY
command to request specific information.

WHY

Form

WHY

Example

\A/UV
VVII I

C F Commands 9

The WHY command is used after an execution error to request an explanation of the error. A diagnostic message
wi II be printed at the teletype. Corrective action may then be taken and execution restarted.

BREAKPOINT

Form Example

BREAKPOINT, sd BREAKPOINT, 103

BREAKPOINT, 200:410

The BREAKPOINT command allows a user to temporarily halt execution at specified points in a program and return
to the command mode. Used in conjunction with the PERFORM and PROCEED commands, it provides a powerful aid
to debugg i ng .

If the statement designator consists of a single CF number, a breakpoint will be set at the corresponding program
statement. If the statement designator specifies a range, a breakpoint will be set at each statement within the range.
When a breakpoint is reached, execution halts prior to execution of the breakpoint statement. The statement is
printed out and control transferred to the command mode so that the user can either take debugging action or proceed.

PERFORM

Form Example

PERFORM, fs PERFORM, A=100

PERFORM, ACCEPT (A(I),I=l, 10)

where fs is a FORTRAN statement.

The PERFORM command allows a user to execute a FORTRAN statement without having it permanently compiled into
the program. The command may only be given during a halt in execution caused by a breakpoint, Escape, or nor­
mal program termination. Use of the PERFORM command requires that the EXECUTE command was previously given
(i.e., it requires the existence of a program).

The statements used in conjunction with PERFORM may not contain a call to a function. Also, statements are re­
stricted to replacement and input/output statements. The statement may be terminated by a @, semicolon, or ex­
clamation point.

The PERFORM statement is used in conjunction with the BREAKPOINT command for debugging pusposes. For example,
the user can use a DISPLAY statement (Chapter 8) at various breakpoints to examine the changing values of variables
being manipulated by the program. If he discovers an error in the computation of a variable, he can perform a re­
placement statement which sets the variable to the expected value, and he can then proceed to check out the rest of
the program before following up on the previous error. Since FORTRAN statements inserted with the PERFORM com­
mand do not become a permanent part of the program, the user is not required to delete them.

A statement executed with a PERFORM affects only the storage in effect for the current program or subprogram. Thus,
to change the value of a variable in a subprogram, execution must have been halted while in the subprogram.

PROCEED
Form Example

PROCEED PROCEED

This command is used at a breakpoint to resume execution.

NEXT

Form Example

NEXT NEXT

10 CF Commands

The NEXT command is used at a breakpoint to resume execution and to set a new breakpoint at the next statement
in the program. In other words, the previous breakpoint statement will be executed and another halt will occur.

CLEAR

Form Example

CLEAR, sd CLEAR, 100

CLEAR, 250:360.5

The CLEAR command clears the indicated statements of breakpoints.

PRINT

Form Example

PRINT, file name PRINT, /PAYROLL/

The PRINT command allows the user to print on the teletype any symbol ic file in his fi Ie directory.

SAVE

Form Example

SAVE, sd, file name SAVE, 200:450, /FILE 1/

SAVE, 1 :500

The SAVE command allows the user to save all or a portion of the symbol i c code of his program on a specified fi Ie
for future compilation or manipulation with QED. If the user wishes to output the program to paper tape, he may
omit the file name and turn the teletype tape-punch unit on immediately after the confirming @) has been typed.
The statement designator is required when a disc file is named, but it is optional for the teletype.

When the SAVE command specifies a disc file, the message OLD FILE or NEW FILE is printed. This feature protects
the user from inadvertently writing on an old file which he wants to preserve. If the message OLD FILE is printed,
the user may choose to abort the command with the @) key and to assign a different file. A @) will confirm the file
assignment and complete the operation.

When the user wishes to compi Ie the saved program statements, he names the fi Ie in a COMPILE command. t

EDIT

Form Example

EDIT, sn EDIT, 5

The EDIT command prints the line addressed (sn) and allows it to be edited using the following commands.

A c (Prints t) Deletes preceding character.

Copies the next character from the line being edited.

tWhen a tape is generated by a SAVE, the readiness sign (+) which is output at completion of the operation may be
punched on the tape. Then, when the tape is input to the compiler, two plus signs (the punched one and the compiled
one) v/ill print at the end of compilation. This extra plus sign may be ignored.

C F Commands 11

Finishes a line edit by copying and printing the remainder of the line.

Allows characters to be inserted into a line. The first E
C

typed will print <. The user
types his insertions and denotes the end of the insertion by typing another EC. which
prints >.

Finishes a line edit by copying but not printing the remainder of the line.

Copies a I ine up to but not including the @).

SC (Prints %) Deletes the next character from the line being edited.

Copies all characters through x from the line being edited to the new line.

Similar to the @)key. It ends the edit mode.

Sample Program

The following exhibit illustrates a hypothetical session at the teletype. Text printed by the computer is underlined;
comments appear in parentheses. Spacing has been modified for the sake of clarity. Note that semicolons might
have been used as statement delimiters, in which case the statements would be contiguous.

PLEASE LOG IN lllDEMO j SMITH @)

READY 11/29 10:30

-FORT @>

+COMPILE, 1: 500 @)

C:SORT

DIMENSION A(50)

ACCEPI' [N,(A(I),I = 1,N)]

00lOJ#I = 1,N-l

IF(A) - 00lOJ = I+l,N

IF(A(I)-A(J))10, 10,5

5 TEMP = A(J)

A(J) - A(I)

A(J) - A(I) j

A(J) = A(I) t
A(I) = TEMP

10 CONI'INUE

END!

+ LIST @)

10. C:SORr

50. DIMENSION A (50) @)

90. ACCEPT N, (I~(I), I 1,ln @)

130. DO 10 I = 1,N-l @)

170. DO 10 J = I+l,N

210. IF (A(I) - A(J)) 10, 10, 5 @)

250. 5 TE!>1P = A(J) (§

290. A(J) = A(I) @)

330. A(I) = TEMP @)

370. 10 CONTI~lJE

410. END @)

12 Sample Program

(Programmer uses simplified I/O, Chapter 8)

(# deletes previous character)

(- deletes current statement)

(Compi ler detects syntax error)

(User re-enters statement correctly)

(! terminates compiler input)

+ COM, 390 e
DISPLAY [(A(I)., I 1, N)] (User inserts additional text)

+ EXECUTE @

5,5,3,1,2,1+, @) (User inputs values to the ACCEPT statement)

_1. ___ 2_. __ ~3_. __ 4_. __ ~5_. @) (Computer prints results impl icitly formatted, Chapter 8)

+@@ (User returns to Executive by striking the @ key twice)

- LOGOUT

Sample Program 13

4. DATA

A constant is a quantity whose value is explicitly stated. For example, the integer 5 is represented as 115 11 i the
number TT, to three decimal places, as 113.142". A variable is a numerical quantity which is referenced by a sym­
bol ic name rather than by its expl icit appearance in a program statement. During execution of the program, a vari­
able may take on many values rather than being restricted to one.

All data processed by a CF program can be classed into five groups: integer, real {single precision)t, complex,
logical, and Hollerith.

Limits on Values of Quantities

Both integer and real (or "floating point") data can be assigned any value in the approximate range 10-
77

to 10
76

.
Both kinds of dat;afe stored in floating point form, using two words (48 bits): a 38-bit mantissa, a 9-bit exponent,
and a sign bit. (The exponent constitutes the last 9 bits of the second word.) Both integer and real data have an
associated precision of 11+ significant digits. That is, numbers with 11 significant digits will be accurate, while
numbers with 12 significant digits will be accurate for val ues up to 238 -1, i. e., 274,877,906,943. Numbers greater
than this will lose accuracy in -the least significant position.

Complex data are approximations of complex numbers, taking the form of an ordered pair of real data. The first of
the two real data approximates the real part, while the second approximates the imaginary part of the complex num­
ber. The values each part may be assigned are identical to the set of values for floating point data.

Logical data can acquire only the values .TRUE. or .FALSE.

Hollerith data represent character string values. The set of values which each character in the string may assume
are given in Chapter 2, in the discussion on the FORTRAN character set. A Hollerith datum is stored in two com­
puter words in ASCII Code. Characters are stored left justified with trailing blanks.

Constants

Constants are data that do not vary in value. They are referenced by having their values named. Constants may be
any type of data. For constants with positive values the plus character (+) need not be present.

Integer Constants

Integer constants are represented by strings of decimal digits optionally preceded by a sign character.

Examples:

392 +997263

-13 1234567

Octal Constants

Octal constants are represented by a string of octal digits preceded by the character 0, and a character count. The
constant may be optionally preceded by a sign character.

Examples:

30372 60+77726

30-13 701234567

t Although in the mathematical sense rea I numbers include integers, in FORTRAN the term "rea I" is used to describe
only numbers that may have a fractional part, as opposed to integers, which may be whole numbers only.

14 Data

Rea I Constants

Real constants are represented by a string of digits containing a decimal point at either end of the string or between
2 digits. Plus sign characters are optional.

A real constant can be given a scale factor by appending an E, followed by an integer constant specifying the power
of 10 by wh ich the floating point constant is to be multipl ied. Thus, + O.234E +03 has the meaning 0.234 x 103 =
0.234 x 1000 = 234.0. The magnitude of the resulting number must be within the limits for real data. This method
provides a convenient way to express large numbers.

The scale factor constant may be preceded by a plus or minus sign; if omitted, the sign is considered positive.

The following forms are all equivalent:

+O.567E+05 .567E5 5.67E+4 56700.0

567000E-01 .5670E05 56700.EO 56700E-00

Since any real constant may be represented in a variety of ways, the user can choose the form most convenient for
h is purpose.

Examples:

-394.6238763 5.0 -7.6E+5

-3946 .238763E-5 0.5 .39653

+3847562910. 1E1 -1 E-1

Complex Constants

Complex constants are expressed as an ordered pair of constants in the format:

where c1 and c2 may be integer or real constants. Parentheses and comma are required. Integer constants are con­
verted to real-constant approximations of their values. The complex constant (c1, c2) is interpreted as meaning
c 1 +c2 i . The following complex constants have values as indicated:

(1.34,52.01)

(98344, .34452E+02)

(-1. , -1000)

(2.3,0)

(0,4.5)

(2.7E 1,0.8)

1.34+52.01 i

98344.0 + 34.452i

-1.0 - 1 000 .Oi

2.3+0i

0+4.5i

27.0+0.8i

Neither part of a complex constant may exceed the value limits established for real data.

Logical Constants

Logical constants may assume either one of two forms:

. TRUE. . FALSE.

where these forms have the values "true" and IIfalse".

Hollerith Constants

Hollerith constants are represented in the form

nHs

Constants 15

where

n is an unsigned integer constant of the set (0, 1,2,3,4,5,6).

is a string of characters whose length exactly corresponds to the value of n.

Each character in a Hollerith constant may be one of the set of characters discussed in Chapter 2.

Hollerith constants may be assigned to real variables only. Since Hollerith constants are stored 3 characters per
24-bit word, and real data use 2 words each (48 bits), a maximum of 6 characters is allowed in the Hollerith con­
stant. If less than 6 are used, the characters are stored left justified with trai I ing blanks.

If a variable to which a Hollerith constant is assigned is to be output, an A format specification should be used (see
Chapter 8). It is not possible to do arithmetic or logical comparisons with Hollerith constants (see Chapter 5).

Examples:

4HFOUR

6HOH BOY

Identifiers

3HYOU

3HOH?

2H$$

2HX=

1H+

1HH

Identifiers are symbolic names consisting of strings of letters and decimal digits. An identifier must begin with a
letter. Identifiers are used to name variables as well as subprograms and subprogram arguments. CF identifiers may
be of any length. Embedded blanks are ignored. Subscripted variables should not have identifiers that correspond
to FORTRAN statement types such as ACCEPT, DISPLAY, OPEN, CLOSE, READ, WRITE and FORMAT.

Examples:

x A345Q

ELEVATION

Variables

J3 QUANTITY

L987564

FIRST ONE

DIFFERENTIAL

Variables are data whose values may vary during program execution and are referenced with an identifier. Variables
may be any of the data types.

If a variable has not been explicitly assigned to a particular data type (Chapter 9), the following conventions are
assumed:

• Variables whose identifiers begin with the letters I, J, K, L, M, or N are integer data.

• Variables whose identifiers begin with any other letter are real data.

Consequently, complex and logical variables must be explicitly declared as such. The values assigned to variables
may not exceed the limits established for the applicable data types.

Scalar Variables

A scalar variable is a single datum entity; it is accessed via an identifier of the appropriate type.

Examples:

Il EXPONENT NAME XXX8

Arrays and Array Variables

An array is an ordered set of data that may be referenced and altered in a program. The set as a whole is named by
an array identifier according to the rules discussed above for variables. The elements of the array, called array

16 Identifiers/Variables

variables, are referenced by the array identifier followed by an expression, called a subscript, which describes the
element1s position with in the array.

For example, A(4) refers to the fourth element in a set of elements called A. This would be a one-dimensional array,
or vector. Atwo-dimensional array is thought of as arranged into columns and rows. An elementin a two-dimensional
array is referenced as A(I, J) where I refers to a row element and J refers to a col umn element. For example, con­
sider the set of numbers:

111

444

777

222

555

888

333

666

999

If the entire set is called B, then the element 666 is referenced as B(2, 3). B is called a 113 by 3 11 array or matrix.

SUBSCRIPTS

Subscripts may assume the following form:

where

s. are any expressions of integer or real mode.
I

n is the val ue of the number of dimensions associated with the array.

The parentheses and commas are required. Real expressions used as subscripts are truncated to integer values.

Examples:

Array Name Array Variable

MATRIX MATRIX(3,9)

CUBE CUBE(J*4, P, 3.6)

A A(Q/I+U-M)

J J(7.5 E +2)

Nested subscripts are permissible; that is, subscripts themselves may be subscripted. There is no limit on the level
of nesting.

Examples:

ALPHA (I(J))

MATRIX (I(J(K)))

Variables 17

5. EXPRESSIONS

Expressionsare strings of operands separated by operators. Operands may be constants, variables, or function refer­
ences. An expression may contain subexpressions, that is, expressions enclosed in parentheses. Operators may be
unary, i. e., they may operate on a single operand, or they may be binary, operating on pairs of operands.

Expressions may be classified as arithmetic, logical, or relational. All expressions yield a single, unique value
when evaluated.

Arithmetic Expressions

An arithmetic expression is a sequence of constant, variable, or function references connected by arithmetic
operators.

The arithmetic operators and their connotations are as follows:

Operator Operation

** or t Exponentiation

/ Division

* Multiplication

- Subtraction (binary) or negative sign (unary)

+ Addition (binary) or positive sign (unary)

Expressions may consist of a single basic element, i. e., a constant, variable, or function.

Examples:

3.1415

X{N)

SO RT [ALPHA]

Basic elements may be combined through use of the arithmetic operation symbols to form compound expressions.

Examples:

A+B

PI*RADIU S** 2

SORT [THETA* THETA]

Compound expressions may be enclosed in parentheses to form subexpressions.

Examples:

(A+B)/(C +D)

-((M-N)*(Z-O (J)))

Precedence

The expression A+B/X could be evaluated C's:

(A+B)/C

or as

A+(B/C)

18 Expressions

To avoid the possibility of such ambiguities, various rules governing precedence of evaluation have been estab­
lished. The evaluation hierarchy is as follows:

1. The innermost subexpression, followed by the next innermost subexpression, until all expressions have been
evaluated.

2. The arithmetic operations have the following order of precedence:

Operation Operator Order

Exponentiation ** or t 1 (highest)

Mul tipl ication and * 2
Division /
Addition and + 3
Subtrac ti on -

Several additional conventions are necessary:

1. At anyone level of evaluation, operations of the same order of precedence are evaluated from left to right.

2.

Consequently, I/J/K/L is equivalent to ((I/J)/K)/L.

As in algebraic notation, parentheses are used to define evaluation sequences explicitly.
as (A+B)/C.

Thus, A+B is written
C

3. The sequence "operator operator" is permissible if the expression can be evaluated when the second operator is
interpreted as unary. Thus A*-B is interpreted as A*(-B).

As an illustration of the above rules of precedence, the expression

A * (B+C* (D-E/(F+G) -H)+P(3))

is evaluated in the following sequence, where the r. are the various levels of evaluation:
I

r 1 F+G

r
2

E/r
1

r3 D-r -H
2

r
4

C*r
3

r5 B+r 4+P(3)

r6 A*r
5

Mixed Expressions

Arithmetic expressions may contain references to data or functions of the integer, real, or complex types. Refer­
ences to data, subexpressions, or functions of the logical type are excluded from arithmetic expressions, except when
they appear as function arguments. When arithmetic expressions contain references of more than one type, they are
called mixed expressions. Mixed expressions are evaluated in the mode of the highest order of reference:

Complex 1 (highest precedence)

Real 2

Integer 3

Arithmetic Expressions 19

The following rules also govern evaluation of mixed expressions:

1. Expressions appearing as subscripts or function arguments are evaluated separately in their own modes and have
no effect on the mode of the larger expression in which they are contained.

2. Exponents may be integer or real.

3. Values of expressions, subexpressions, and terms are restricted to those I imits associated with the mode of the
expression.

4. Values of real and integer modes which appear in complex-mode expressions are assumed to have imaginary
parts of zero value.

Relational Expressions

Relational expressions consist of arithmetic expressions separated by relational operators which cause the expressions
to be compared. Evaluation results in one of the two logical values, "true" or "false".

In general, the form of a relational expression may be written:

where

e. are arithmetic expressions.
I

is a relational operator.

The following table shows the relational operators and their meanings:

Operator Meaning

· LT. Less than

· LE. Less than or equal to

· EQ. Equal to

· NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to
I I

Relational expressions have the value "true" if and only if all comparisons in the expression are true. For example:

1 . LT. 6 true

o . GT. 8 false

o . LT. (2. **N) always true

o • LT. -(2**N) always false

Only real and integer comparisons are allowed. If one expression is integer and the other real, the two expressions
are first evaluated, each in its own mode; then the value of the integer expression is converted to real mode and a
real comparison is made.

It is not possible to nest relational expressions, as in the case

(L{X. GT. 0.2345E6))

where (X . GT. 0.2345E6) is a relational subexpression rather than an arithmetic expression, as the definition of
relational expression requires.

20 Relational Expressions

Logical Expressions

Logical expressions are expr~ssions of the form:

where

e. are logical elements.
I

c. are the logi cal operators.
I

Evaluations of logical expressions result in one of the two values, "true" or "false".

Logical elements are defined as one of the following entities:

1. A logical variable or function reference.

2. A logical constant.

3. A relational expression.

4. Any of the above enclosed in parentheses.

5. A logical expression enclosed in parentheses.

6. Any of the above preceded by the unary logical operator. NOT.

There are four logical operators:

Operator Type

. NOT. unary

.AND. binary

.OR. binary

. EOR. (exclusive OR) binary

Logical expressions are eval uated as follows (the letter lie II denoting a logical element):

• NOT. e

e
1

. AND. e
2

e
1

• OR. e
2

e
1

. EOR. e
2

true only when e is false

true only when both eland e
2

are true.

true when either or both eland e
2

are true.

true when either but not both eland e
2

are true.

These rules are illustrated in the following table:

Logical Operator

. NOT. e . AND . . OR •

e True False

e False True

e 1 False e
2

False False False

e
1

True e
2

False False False

e 1 False e
2

False I False I True

e 1 True e') True I I True I True

. EOR •

False

I
False

True

I True I

Logical Expressions 21

Consider the following examples of logical expressions:

A. AND. B

A and B must be logical variables

A. GT. B. AND. I. EQ. 3

The value of the expression depends on the values of the relational expressions

A.LT. B. OR. C. GT. 5. AND. T

Evaluation Hierarchy

In a manner similar to that discussed for arithmetic espressions, parentheses are used to define explicitly evaluation
sequences. Consequently,

A . AND. B . OR. Q(3) . NE. X

does not have the same meaning as:

A . AND. (B. OR. Q(3) . NE. X)

where (B. OR. Q3 . NE. X) may be called a logical subexpression.

The eval uation hierarchy for logical expressions is:

1. Arithmetic expressions.

2. Relational expressions. (The relational operators are all of equal precedence.)

3. The innermost logical subexpression, followed by the next innermost logical subexpression, etc.

4. The logical operations are in the following precedence:

Operator Order

.NOT. 1 (highest)

.AND . 2

. OR. 3

. EOR. 4

Note: Two contiguous logical operators are permissible only when the second operator is . NOT. For example:

e
l

• AND •• OR. e
2

e
l

. AND .. NOT. e
2

22 Logical Expressions

illegal

legal

6. ASSIGNMENT STATEMENTS

The CF language is comprised of five types of statements:

Assignment Statements

Control Statements

Input/Output Statements

Declaration Statements

Subprogram Statements

Each type of statement performs a specific function. Assignment statements are discussed in this chapter; subsequent
chapters are devoted to discussion of the other types of statements.

There are two types of assignment statements: replacement statements and statement number assignment statements.

Replacement Statement

A replacement statements specifies (1) an expression to be evaluated and (2) the variable, called the statement
variable, to which the expression value is to be assigned.

Form Example

v=e A=B

Q(I)=Z**2+N*(L-J)

L=B. OR .• NOT. C. AND. R. NE. 23.93

where

v is a variable name

e is an expressi on

Note that the equal sign denotes replacement rather than equality. Thus Y=Y+1 is a valid statement meaning "add
one to the value of Y and assign the resulting value to Y".

When the mode of the expression e is not the same as the variable type for v, the variable is assigned values as in­
dicated in the following table.

Rules for Assignments of e to v

If v Type is and e Type is Assignment Rule is

Integer Integer Assign
Integer Real Fix and Assign
Integer Complex Prohibited
Integer Logical Prohibited

Real Integer Float and Assign
Real Real Assign

Real Complex Prohibited
Real Logical Prohibited

Complex Integer Prohibited
Complex Real Prohibited
Complex Complex Assign
Complex Logical Prohibited

Logical Integer Prohibited
Logical

I
Real

I
Prohibited

Logical Complex Prohibited
Logical Logical I Assign

Assignment Statements 23

where

assign means transmit the resulting value, without change, to the variable.

fix means truncate any fractional part of the result and transform that val ue to the form of an integer datum.

float means transform the value to the form of a real datum.

Statement Number

Statement number assignment is used to assign to a variable the location of a statement.

Form Example

ASSIGN k TO v ASSIGN 153 to LABEL

ASSIGN 603 to FLAG 1

where

k is a statement number

v is a scalar variable reference, of integer or real mode.

Once a statement number has been assigned to a variable, the variable must not be referenced except as a statement
number. Thus, in the following sequence the value assigned to C will be indeterminate because the value of A is
undefined:

ASSIGN 101 1'0 A
C=A/B

Note that the statement M=5 cannot be substituted for ASSIGN 5 TO M, or vice versa.

The use of such assignment is discussed in Chapter 7, in the section on Assigned GO TO Statements.

24 Statement Number

7. CONTROL STATEMENTS

Each statement in a CF program is executed in the order of its appearance in the source program, unless this sequence
is interrupted or modified by a control statement. If program control is to be transferred to a particular statement,
that statement must be identified by a number (see Chapter 2).

In general, control statements may be used to:

• provide unconditional transfer of control to other statements in the program.

• test variables and provide conditional transfer of control to other statements in the program.

• execute a particular sequence of statements repeatedly a specified number of times.

• provide branching to and return from subprograms.

GO TO Statements

There are three forms of GO TO statements: unconditional, assigned, and computed.

Unconditional GO TO

The unconditional GO TO provides a means to unconditionally transfer control to another statement in the program.

Form Example

GO TO k GOT05

GO TO 800

where

k is a statement number of an executable statement

The resul t of executing this statement is that the next statement executed is the statement whose number is k.

Assigned GO TO

The Assigned GO TO statement transfers control to a statement referenced by a variable previously defined in an
ASSIGN statement.

Form Example

GO TO v GOTOG

GOTOv, (k
1
,k

2
,k

3
,· .. k

n
) GO TO G, (117,56,101)

where

v is a variable appearing in a previously executed ASSIGN
statement.

k. are statement number references.
I

Control is transferred to the statement whose location has been assigned to the variable v.

If the second form is used, each number in the list must be defined in the program or subprogram in which the GO
TO statement appears 0. e., must be the number of a program statement). This form serves no purpose other than
to provide compatibility with other processors. The comma and parentheses characters must appear as shown.

Control Statements 25

For example, the statements

ASSIGN 5371 TO G
GOTOG

will cause transfer of control to the statement labeled 5371. The optional form would be

ASSIGN 5371 TO G
GO TO G, (117,56,101,5371)

Computed GO TO

The Computed GO TO statement allows transfer of control to one of a group of statements, the particular statement
chosen depending on conditions at run time.

Form Example

GO TO (k 1,k2,k
3

,.· .,kn),e GO TO (98,65,405,3), R

GO TO (5,6,7), T**2-1

where

k. are statement numbers
I

e is an expression of integer or real mode.

Control is transferred to the statement whose number is kj , where j is the integer value of the expression e. The
value of the expression must be greater than zero and less than or equal to n, that is, 0 < j 5 n. Real mode ex­
pressions are evaluated and then truncated to integer value.

In the first example above, if the expression R has the value 3, control will be transferred to the statement labeled
405. If the expression (T**2-1) in the second statement has the value 1.56, control will be transferred to state­
ment 5.

The comma preceding e is optional

IF Statements

IF statements are conditional transfer statements that allow the programmer to change the logical flow of a program
on the basis of a test. There are two types of IF statement: arithmetic and logical.

Arithmetic IF Statements

Form Example

IF (e) k 1, k
2

, k3 IF(G+B(I)) 76,4,3

IF(X-Y) 100,250,3000

IF (I) 1,2,3

where

e is ar. expression of integer or real mode.

k. are statement numbers.
I

If the value of e is less than 0, transfer is to kp if the value of e is equal to 0, transfer is to k2i if the value of
e is greater than 0, transfer is to k3.

26 IF Statements

A comma may optionally precede k
1

.

Examples:

Statement

IF(I) 1,2,3

IF(C(J, 10)/4),23, 12,8

IF(A+B(I)44, 33, 22

Logical IF Statements

Form

IF (e) s

where

Expression Value

47802

-.098433

0.0

Transfer To

3

23

33

Example

IF (E. OR. D) GO TO 3135

IF (A. LT. B. AND. C. LT. D) K=22

IF (A. AND. G), IF(C. NE. K), ON=
• TRUE.

e is a logical mode expression.

is any executable statement.

The statement s is executed if the expression e has the value "true"; otherwise, the next executable statement
following the logical IF statement is executed. The statement following the logical IF will be executed in any
case after the statement s, unless the statement s causes a transfer to occur, as in the first example above.

Note that the entire statement IF (e) s, is treated as a single statement.

A comma may optionally precede the statement s.

DO Statement

The DO Statement is used to control repetitive execution of a group of statements.

Form Example

DOkv:-:ce1,e2,e3 DO 101=1, 10

DO 12 J=2, 98,2

DO 15 V=END, START, -. 05

where

k is a statement number.

v is a reference to a scalar variable of integer or real
mode.

e.
I

are expressions of integer or real mode.

An optional comma may be placed between k and v.

The DO statement causes repeated execution of all statements within its range. The range of a DO extends from the
first executable statement following the DO statement up to and including statement k.

The scalar variable v is called the index of the DO statement. It is used to identify the repetition currently being
performp.d, The value of el represents the initial value of the index, the value of e2 the limiting or tenninal value
of the index, and e3 the incrementing quantity. If e3 is omitted, the increment is assumed to be one,

DO Statement 27

The initial execution is always performed, regardless of the values of the limit and increment. After each execution
of the range, the increment value is added to the value of the indes, and the result is compared with the limit value.
If the value of the index is not greater than the limit, the range is executed again, using the new value of the index.
(In case the increment value is negative, another execution will be performed if the new value of the index is not
less than the I imit value.)

When the index value exceeds (or, if decrementing, is less than) the limit value, control passes to the statement imme­
diately following statement k. Exit may also be effected by a transfer from within the range of the DO statement.

Consider this example:

DO 999, 1=1,5,2,

The meaning is: execute all statements immediately following, up to and including statement number 999, first for
1=1, next for 1=3, and last for 1=5. Then transfer control to the statement following statement number 999. Thus,
the loop will be executed a total of 3 times.

The terminal statement of a DO range (k) may be any executable statement. However, the programmer should exercise
care if the terminal statement is a transfer; the consequences can be determined by inspection. Incrementing and
testing will not take place if k is a transfer statement.

If a transfer is made out of the range of a DO before all iterations have been completed, the value of v will be that
value current during the iteration during which the transfer occurred.

The value of the variable v may be modified by any form of assignment statement within the range of the DO. It
may also be modified by a subprogram called within the range of the DO.

A transfer into the range of a DO may only occur if there has been a prior transfer out of the range. In fact, the
statements executed "outside" the range will then be considered part of the DO range.

A DO loop may include other DO loops, provided that the range of each "inside" or "nested" DO statement is
contained completely within the range of an "outside" DO statement. In other words, the ranges of two DO state­
ments may not partially intersect one another. Only total intersection or no intersection is allowed. There is no
limit to the level of nesting. The same statement may be used as the terminal statement for any number of DO
statements.

If the programmer wishes to avoid terminating a loop with a transfer statement, he may use the CONTINUE state­
ment as a dummy end for the loop.

CONTINUE Statement

Th is statement is a dummy, a lido nothing II statement used primarily to serve as a target point for transfers, particu­
larly as the last statement in a DO loop. At the end of the range of a DO, the CONTINUE statement means, in
effect, lido nothing but proceed to modify and test the index".

For example, in the sequence:

DO 5 1=1, MAX

GO TO 5

X=SUM

5 CONTINUE

If the GO TO is intended to begin another execution of the DO loop, without performing the statement X=SUM,
the CONTINUE statement provides the necessary target address.

28 CONTINUE Statement

PAUSE Statement

The PAUSE statement provides a means of temporarily halting program execution

Form Example

PAUSE PAUSE

PAUSE c PAUSE 777

where c is any string of characters.

The word PAUSE will be displayed at the teletype, as will the string c if it is specified. The programmer can cause
execution to continue by typing any character.

STOP Statement

The STOP statement causes termination of the program and return of control to the CF command mode.

Form Example

STOP STOP

STOP c STOP 777

where c is any string of characters.

Subprogram Control

The CALL and RETURN statements, discussed below, provide transfer of control between subprograms and calling
programs (see Chapter 10 for a general description of subprograms).

CALL Statement

The CALL statement causes a transfer of control to a subroutine-type subprogram.

Form Example

CALL p CALL DUMP

CALL p [a l' a 2 · .. ,an] CALL FACTOR [A+1, BETA]

where

p is the identifier of the subroutine.

a. are arguments required by the subroutine.
I

If the subroutine being called does not require an argument list, the first form above is used.

Arguments in a CALL statement may be constants, scalar variable references, array element references, array identi­
fiers, expressions, or subprogram references.

If a subprogram identifier is used as an argument, the identifier is not followed by an argument list, since this argu­
ment form is only used to provide the called subroutine with a subprogram reference. In this sense, the subprogram
reference is merely a name and, as such, has novalue associated with it.

PAUSE/STOP Statements/Subprogram Control 29

For example, one might use

CALL CALC A, B, SQRT

to call

SUBROUTINE CALC X, Y, Z

C=Z X

END

At execution time, the dummy subprogram identifier Z will be replaced by SQRT.

The name of a subroutine has no bearing on the mode of its results.

RETURN Statement
The RETURN statement returns control from an external subprogram to the calling program. Thus, the last statement
executed in a subprogram will be a RETURN. It need not be physically the last statement but instead may appear at
any point in the subprogram where it is desired to terminate execution. Any number of RETURN statements can
be used.

I Example

RETURN

Within a function subprogram, the RETURN causes a return to the evaluation of the expression in which the function
reference appeared. In a subroutine subprogram, RETURN causes transfer to the first executable statement following
the CALL statement which passed control to the subroutine.

30 RETURN Statement

8. INPUT/OUTPUT STATEMENTS

Input and output statements provide the capability of communicating with devices external to the computer. Input
statements enable a program to receive information from external sources for storage in memory, while output state­
ments allow transmission of information from storage to external sources.

In the time-sharing environment, data files are normally created at the teletype (manually and from paper tape),
maintained on a large disc, and printed out at the teletype. If the use of other devices such as magnetic tape, card
reader, card punch, or printer is required, a special request should be made to the data center.

The number of statements in CF necessary to input and output data has been reduced to four. The ACCEPT and DIS­
PLAY statements are used for format-free I/O to and from the teletype. The READ and WRITE statements are used
for conventional formatted I/O to or from any user file. (In addition, the OPEN and CLOSE statements control
availability of files during program execution.

Input/Output Lists

All input/output statements include a list which defines what data are to be processed by the statement. Input lists
specify variables to which incoming data are to be assigned. Output lists specify expressions whose values are to be
transmitted to an external device.

Simple List Items

Simple list items appear in the forms

e l' e 2 , e 3 , ... , en

and

where

e. are expressions of any mode for output lists.
I

v. are variable references of any type for input lists.
I

The comma characters must be present. The items in the list must be given in the same order in which their corres­
ponding values actually exist on the input medium or will exist on the output medium.

On input, values of variables read early in a list may be used in subscript or control expressions for variables oc­
curing later in the list. For example, the list

K, A(K+1)

may be used to read in a value for K and then to have that value used in the subscript of variable A.

Examples:

Input Li sts

A

Q (25, L)

RY, Y(U, B), XYZ

Output Li sts

E

I(J(H), N)

753820,T**5,B/3.+Y

Note: ACCEPT, DISPLAY, READ, WRITE, OPEN, and CLOSE statements, discussed below, may use either brackets
or parentheses; i. e., all of the following are correct:

ACCE PT (A, B, C)
ACCEPT [A, B, C]
ACCEPT (A. B. c1
ACCE PT (A, S, C)

Input/Output Statements 31

Free Format I/O
The ACCEPT and DISPLAY statements are designed to rei ieve CF users of the burden of providing formats when ex­
plicit format control is not required. The device accessed is always theJeletype

ACCEPT Statement

The ACCEPT statement is used to read val ues from the teletype. When this statement is executed, the computer waits
for data to be input by the programmer and then assigns these values to variables in a list.

Form Example

ACCEPT [I ist] ACCEPT [A, (B(I), 1=1,3), CHECK]

ACCEPT (list) ACCEPT (X, Y)

The type of the list variable determines the form in which conversion from external to internal form takes place. The
rules governing storage are similar to those for assignment statements (see Chapter 6). For example, if the type of
the list variable is integer and a real number is input, the number will be truncated to an integer prior to storing.

If the type of the list variable is complex, two numbers will be demanded. The first number read will be assigned to
the real part, the second to the imaginary part. If the type of the list variable is logical, the first character read
must be a T for true or F for false, and any remaining characters up to the delimiter (see below) will be discarded.

Values input to the ACCEPT must be separated from each other by a space, comma, or @l. Values will be demanded
until the variable list is satisfied.

The input val ues may be edited by using A c, U
C

, or QC. See "Editing of Input Strings" later in this chapter.

Successive delimiters with no values typed in between them will cause zero values to be assigned to the appropriate
variables in the list.

In the example ACCEPT [A, (B(I), 1=1,3), CHECK], the user could input the following:

1@)
-3, 10E6,-16.6 ~
T@)

Assuming that the variable CHECK was data typed previously as LOGICAL in a type statement, these values would be
interpreted as 1., -3., 10 x 106, -16.6, and "true", respectively.

01 SPLA Y Statement

The DISPLAY statement is used to print data at the teletype. The data is transmitted as values of expression in a list.

Form Example

DISPLAY [list] DISPLAY [A, B+1]

DISPLAY {list) DISPLAY (' PRICE=$ ", X)

The mode of a list expression determines the manner in which its value is converted from internal to external form.
In general, values are output to maximum accuracy, with all leading spaces and trailing zeros suppressed. Values
are separated by three spaces and are output until the I ist is satisfied.

A real value is output with or without an exponent depending on the magnitude of the number, and according to the
same rules that govern G-type output (discussed under G-conversion, below).

The system automatically checks whether sufficient room is available on the current teletype line (72 positions) for
data. When sufficient room does not exist, a @lis issued and the next value is output at the beginning of the next
line. When the list has been satisfied, a @) is automatically issued.

32 Free Format I/O

Character strings may be output by enclosing the string within single and double primes. Thus, if X = 100, then

DISPLAY PPRICES=$II, X]

will produce the line

PRICE=$bbb 100.

wh ere b denotes blank.

Complex values will be output as two real variables separated by commas. For example,

1. 23, 5.65

If an expression is logical, the output will be a T for true or an F for false.

Formatted Input/Output

When the programmer wishes to have explicit control over the form in which data are transmitted, formatted input/
output statements are used. In general, formatted input/output follows conventional FORTRAN rules.

All data files (other than the teletype, which may also be referenced as a file) must be explicitly opened and closed
by the two statements discussed below.

OPEN Statement

The OPEN statement makes a data fi Ie avai lable for input or output. A program may have 3 fi les, in addition to
the teletype, opened at the same time. Any file to be opened must have been defined in the user's file directory
prior to execution of the OPEN statementt .

Form Examples

OPEN [file number,file [OPEN 2,/IN/, INPUT, BINARY]
name, use, type]

OPEN (fi Ie number, fj Ie OPEN (3, /FILE 1/, OUTPUT)
name, use, type)

A file number must be assigned between 0 and 4 inclusive. The numbers 2, 3, and 4 are used for disc files. The
numbers 0 and 1 are reserved for teletype input and output, respectively; however, since the teletype is always
open, an OPEN statement for the teletype is redundant. The file number may appear as an expression.

The fi Ie name is the name of the fi Ie as it appears in the user's fi Ie directory. Disc fi Ie names are enclosed in
slashes. (See Executive Manual for detai Is concerning creation of fi les.)

The use of the fi Ie is either INPUT or OUTPUT.

The type is either SYMBOLIC or BINARY. Type is optional; if not given, symbolic is assumed.

CLOSE Statement

As its name implies, the CLOSE statement closes the designated file, i.e., makes it unavailable for input or output
unti I reopened.

tAn output fi!e may be defined in the USei'S diiectoiY by wiiting anything on it with the Executive command COPY.
Data output to the file during program execution will write over the original contents.

Formatted Input/Output 33

Form Example

CLOSE [fi Ie numberJ CLOSE [3J

CLOSE (fi Ie number) CLOSE (2)

where the definition of a file number is the same as for the OPEN
statement.

When a file is closed and then reopened, the next I/O statement to reference it will access the beginning of the
file.

All files are automatically closed upon completion of program execution.

READ Statement

The READ statement is used to input data from a file and store the data as values of the variables in a list.

Form Example

READ [n,f]list READ [3,50] A, B, (C(I), 1=1, 10)

READ (n, f) list READ (4, II 10") N

READ En] list READ [4] X, Y, ZED

READ (n) list READ (3) Q, R

where

n is a fi Ie number.

is a FORMAT statement number or a string literal.

The fi Ie number n is assigned in the OPEN statement. Data is converted from external to internal form according
to format f, which may be (1) the number of a FORMAT statement, or (2) a format expressed as a character string
enclosed in single and double primes. The format reference is omitted for binary files, as in the second form given
above.

A READ accesses the teletype if n=O. The @ is ignored unti I the list is satisfied; thus the @may be used to continue
from one I ine to the next when entering data at a teletype. Once the I ist has been satisfiec;l, a @ is interpreted as
an II end of record II character.

WRITE Statement

The WRITE statement causes the values of expressions in a I ist to be written on a fi Ie.

Form Example

WRITE [n,f] list WRITE [3, 1] X, Y, Z

WRITE [n] list WRITE [4, IF 1 O. 2 J1 J A, B

WRITE (n, f) list WRITE (4,800) JACK

WRITE (n) list WRITE (3) C+1,D

where

n is a file number.

f is a FORMAT statement number or a string literal.

34 Formatted Input/Output

The file number n is assigned in an OPEN statement. Data is converted from internal to external format according
to format f, which may be (1) the number of a FORMAT statement or (2) a format expressed as a character string.
The format reference is omitted for binary fi les, as in the second form given above.

A WRITE accesses the te letype if n = 1. A (§ is automatically issued at the end of a I ine if the output string exceeds
72 characters.

FORMA T Statement

FORMAT statements specify the conversion to be performed on data being transmitted during a formatted input/
output operation. In general, conversion performed during output is the reverse of conversion performed in an
input operation.

where the fi are fi eld specifi cations (described in the following
pages) .

Each FORMAT statement must be numbered so that references may be made to it by formatted input/output state­
ments. In addition, an entire FORMAT (the parentheses and the items they enclose but not the word FORMAT) may
be stored in an array variable; in this case the array itself is referenced by the input/output statement. (See
"FORMATs Stored in Arrays" at the end of this chapter.)

Field Specifications

Field specifications describe the kind or type of conversion to be performed, specific data to be generated, scaling
of data values, and editing to be executed. Each integer, real, double precision, or logical datum appearing in
an input/output list is processed by a single field specification while complex data are operated on by two consecu­
tive field specifications.

Field specifications may be any of the following forms:

rFw.d rlw rJc. d rX

rEw.d rOw nHs r/

rDw.d rLw s Z

rGw.d rAw IS"

where the characters F,E,D,G,I,O,L,A,J,H,$, single prime (I) and double prime ("), X, slash (/), and Z define
the type of conversion, data generation, scaling, editing, and FORMAT control

is an optional, unsigned decimal integer which indicates that the specification is to be repeated r times.
Thus 316 is equivalent to 6,6,6.

c for the J specifiGation, is an unsigned decimal integer and specifies the number of digits appearing be-
fore the decimal point.

w is an unsigned decimal integer which defines width in characters (including digits, decimal points, and
algebraic signs) of the external representation of the data being processed.

d for F,E, D,J, and input G specification, is an unsigned decimal integer and specifies the number of
fractional digits appearing in the magnitude portion of the external field.

n for the H specification, is an unsigned decimal integer which defines the number of characters being
processed.

for the H specification, is a string of the characters acceptable to the processor.

Formatted Input/Output 35

These field specifications are discussed in the following sections.

F Conversion

F conversion takes the form

rFw.d

Integer, real, or either part of complex data may be processed by this form of conversion. The value of d allows
for the appropriate number of digits in the fractional portion of the field.

OUTPUT

Internal values are converted to real constants, truncated at d decimal places with an overall length of w. The
field is right justified with as many leading blank characters as necessary. Negative values are preceded with a
minus sign. Consequently, for the specification F11.4

273.4

7

-.003

-442.30416

is converted to

is converted to

is converted to

is converted to

273.4000

7.0000

-.0030

-442.3041

If a value requires more positions than are allowed by the magnitude of w, an asterisk (*) will be output, followed
by the sign and as many significant digits as possible. In order to insure that such a loss of digits does not occur,
the following relation must hold true:

w~d+2+n

where n is the number of digits to the left of the decimal point.

INPUT

Input strings may take any of the integer or real forms discussed under II Numeric Input String II later in this chapter.
Each string will be a length w with d characters in the fractional portion of the value. If a decimal point character
is present in the input string, the value of d is ignored, and the number of digits in the fractional portion of the
value will be explicitly defined by that decimal point character.

If a field is short-terminated (see IITermination of Input Stringsll later in this chapter), the input string is considered
to be left justified; and is filled with trailing zeros. Consequently, for the specification F10.3

33 is converted to 3300000.

802142 is converted to 8021420.

.34562 is converted to .34562

-7.001 is converted to -7.001

E Conversion

E conversion takes the form:

rEw.d

Integer, real, or either part of complex data may be processed by this form of conversion.

OUTPUT

Internal values are converted to real constants of the form

. ddd ... dE±ee

36 Formatted Input/Output

where ddd ... d represents d digits, while ±ee is interpreted as a multiplier of the form

10±ee

Internal values are truncated to d digits, and negative values are preceded by a minus sign. The external field is
right justHied and preceded by the appropriate number of blank characters. The following are examples for the spe­
cification E14. 8:

90.4450 is converted to .90445000E+02

-435739015. is converted to -. 43573901 E+09

.000375 is converted to . 37500000E-03

-1 is converted to -.10000000E+01

.2 is converted to . 20000000 E +00

0.0 is converted to . 00000000 E +00

The field width is counted from the right and includes the exponent digits, the sign (minus or blank), the letter E,
the magnitude digits, the decimal point, and the sign of the value (minus or blank). If a width specification is of
insufficient magnitude to allow expression of an entire value, an asterisk wi II be output, followed by the sign, dec­
imal point, E character, sign of the multiplier, and as many significant digits as possible. To prevent a loss of this
nature, it is necessary to insure that the relation

W?d+6

is present in the field specification.

INPUT

Input strings may take any of the integer or real forms discussed under "Numeric Input Strings" later in this chapter.

Examples:

Value Specification Converted to

10. 3456E03 ElO.2 10345.6

-113409E2 E11.6 -11.340900

-409385E-03 ElL 02 -4.09385

849935E-02 ElO.5 .0849935

First, the decimal point is positioned according to the specification. The value of the exponent is then applied to
determine the actual poisition of the decimal point. In the second example, -113409E2 with a specification of
E11.6 is interpreted as -.113409E02, which, when evaluated (i.e., -.113409 x 102), becomes -11.340900. A
decimal point in the input string overrides the specification, as in the first example.

J Conversion

J Conversion takes the form

rJc. d

Conversion of this type is simi lar to E conversion, except that c specifies the number of digits before the decimal point.

Field width is defined by the relation

w=d+c+6

Formatted Input/Output 37

OUTPUT

Internal values are truncated to d digits and negative values are preceded by a minus sign. The following are ex­
amples for the specification J3.4:

INPUT

123.0

9.64931

-.001

is converted to

is converted to

is converted to

On input, conversion is identical to E-type conversion.

o Conversion

D conversion takes the form

rDw.d

123.0000E+OO

964.9310E-02

-1 00. 0000E-05

Conversion of this type is similar to E conversion, with the exception that for output, the character D will be present
instead of the character E. For example,

for E 12. 6,

for D12. 6

G Conversion

-667.334

-667.334

G conversion takes the form

rGw.d

is conve rted to -.667334E+03

is converted to -.667334D+03

Integer, real, or either part of complex data may be processed by this form of conversion.

OUTPUT

The purpose of the G format for output is to express numbers in a form which is most natural; that is, they are ex­
pressed in the form which is normally used for values of the corresponding magnitude.

Internal values are converted to real constants. The form of the constants is dependent upon the magnitude of the
data, and conversion is either E or F-type, as indicated below, where M represents the magnitude of the data:

For 10 i - 1 s M < 10 i

conversion wi II be

Fn.m

when 0 s i < d (where n = w - 4 and m = d - i)

Otherwise, conversion wi II be

Ew.d

Values converted with the F specification are followed by four blank characters in the external character string.

The following are examples for the specification G9. 2:

38 Formatted Input/Output

-1. 773

.133

532.

is converted to

is converted to

is converted to

-1. Pbbbb

. 13bbbb

. 53E+03

-.'0947 is converted to -.94E-01

-.0996 is converted to -.99E-01

where -b represents a blank.

If the magnitude of width w is insufficient to allow representation of the data value, digits are lost, as in E and F
conversions.

INPUT

On input, processing is identical to F conversion.

I Conversion

I conversion takes the form

rIw

Integer, real, or either part of complex data may be processed by this form of conversion. If the width specification
w is of sufficient magnitude, real values are converted in full precision.

OUTPUT

Internal values are converted to integer constants. Real data are truncated to integer values; however, the integers
may contain as many digits as are specified by w.

Negative values are preceded by a minus sign, and the field will be right justified and preceded by the appropriate
number of blank characters. The specification 16 implies that

273.4

7

-.003

-44205.965

is converted to

is converted to

is converted to

is converted to

273

7

o
-44205

If the magnitude of data requires more positions than permitted by the val ue of the width w, an asterisk wi II be out­
put, followed by the sign and as many significant digits as possible.

INPUT

On input, conversion is identical to F-type processing except that fractional portions of a value are lost through
truncation.

o Conversion

o conversion takes the form

rOw

OUTPUT

Internal binary word values, with no regard to data type, are converted to their octal equivalences. In order to
fully represent each data type, real and integer data require 16 digits for the value of the width w.

Note that real data include either part of complex data and Hollerith information. Logical data cannot be output
with an 0 conversion.

Example:

Data Values Internal Binary rOw External Octal

1 nlnnnnnnnnnnnnnnnnnnnnnn ("qt.. 2nnnnnnnnnnnnnnl

000000000000000000000001

Formatted Input/Output 39

Example (cont.):

Data Values Internal Binary rOw Externa I Octa I

5.0 010100000000000000000000 016 2400000000000003
000000000000000000000011

HOl 001010000010111100101100 08 12027454

Whenever the magnitude of w is insufficient for the complete expression of a value, digits will be lost from the least
significant portion of the field.

If w is of a magnitude greater than that necessary to express the octal representation of the data, the field in the
external string will be right justified and preceded by the appropriate number of zero characters.

INPUT

External fields processed by 0 conversion may contain only strings of octal digits and blank characters. If a field
contains other than one of the above, an error occurs.

Conversion begins with the first character in the string, including blanks. Blank characters are treated as if they
were zero characters. Thus

1>35bb71b

is equivalent to

03500710

for the specification 08, where 1> represents a blank. Also, fields that contain nothing but blank characters are
assumed to have the value zero.

Fields which contain more significant digits than required by the corresponding list itmes lose digits from the least
significant portion of the field. For instance, if the list item is integer, and the input specification use is 016,
then

123456700765432112345670

is converted to

1234567007654321

L Conversion

l convers i on takes the form

rlw

Only logical data may be processed with this form of conversion; any other data type causes an error to occur.

OUTPUT

logical values are converted to either TRUE or FALSE for the values "true ll and IIfalse", respectively. If the field
width wi II not contain the full word, either a T or an F character is output. The T and F characters are preceded by
w-1 blank characters. For example, using the specification l4,

. TRUE. is converted to TRUE

. FALSE. is converted to

where b represents the character blank.

40 Formatted Input/Output

INPUT

The first nonblank character in the input string must be either a T or an F character; any other character appearing
as the first nonblank character causes an error to occur. The occurrence of a T or an F character causes the corre­
sponding list item to be assigned the values "true" or IIfalse", respectively.

Thus, the strings

TRUE

and

FALSE

are valid input strings. Characters falling between the Tor F character and the righ-hand boundary of the external
field are ignored. Fields consisting of only blank characters cause an error condition. A field cannot be terminated
prematurely by a comma (see "Termination of Input Strings" later in this chapter).

A Conversion

A conversion takes the form

rAw

OUTPUT

Internal binary values are converted to character values at the rate of eight binary digits per character. The most
significant digits are converted first, i. e., conversion is from left to right. Internal values are processed in the
following manner:

Data Type Internal Binary rAw External String

integer 001010010010111000110100 A3 INT
000000000000000000000000 A2 IN
(1222706400000000 octal)

real 001100100010010100100001 A6 REAL [8
001011000011101100011000 All bbbbbREAL [8
(14422441 1 3035430 oc ta I)

When the magnitude of w does not provide for enough positions to express the data value completely (6 for real or
integer) the external field is shortened from the right or least significant portion. When w has a value greater than
necessary, the external character string is preceded by the appropriate number of blank characters.

This type of conversion is normally used to output Hollerith information which has been placed in storage.

INPUT

Hollerith input may be stored in real variables only. When the value of w is less than 6, the list item is filled with
the w characters in the most significant positions, and the remainder of the positions are filled with blank charac­
ters. Consequently, if the field specification is A4,

UVWX is converted to UVWXb'b

where 1) represents the character blank.

When the width w is larger than 6, an error condition occurs.

A general rule for this type of conversion is that internal values are considered to be left justified, while external
fie Ids are considered to be right justified.

H Conversion

H conversion takes the form

nHs

Formatted Input/Output 41

OUTPUT

The n characters in the string s are transmitted to the external medium. For instance:

Specification

lHE

8HfmVALUE:

5H$3.95

9HX(2,5)'b=b

where 1) represents the character blank.

External String

E

'bbVALUE:

$3.95

X(2,5)'b4

Care should be taken that the character string s contains exactly n characters, so that the desired external field
will be created, and so that characters from other field specifications are not used as part of the string.

INPUT

The n characters in the string s are replaced by the next n characters from the input record. This replacement
occurs as shown in the following examples:

Specification Input String Resultant Specification

3H123 ABC 3HABC

1 OHNOWbISiJ THE -is TIMEbF ORb 1 OHb TIME(,FORf)

5HTRUE-b FALSE 5HFALSE

RANDOM 6HRANDOM

where b represents the character blank. This feature can be used to change titles, dates, column headings, etc.,
which are to appear on an output record generated by the H specification.

If n is not present or is equal to zero, an error condition occurs.

$ Conversion

$ Conversion takes the form

s

The string s may contain any character other than a dollar sign character ($) and the control characters given in
Chapter 2.

OUTPUT

The string s is transmitted to the external device in a manner similar to that for H conversion. Thus,

$DOLLAR SIGN$

is output as the stri ng

DOLLAR SIGN

INPUT

The characters appearing between the dollar sign characters are replaced by the same number of characters taken
sequentially from the input string. Therefore, for the input string

MATRIX

42 Formatted Input/Output

and the specification

$VECTOR$

the resultant specification is

$MATRIX$

Dollar sign characters may not appear in the input string.

, - " Conversion

This type of conversion takes the form

It is identical to $ conversion, with the exception that dollar sign characters may be present in the string s. The
prime and double prlme characters may be used within the string, but they must occur in pairs as they denote strings
within strings.

Examples:

'TWAS BRILLIG AND THE SLITHY TOVES ... II
'WHAT, 'ME WORRY?'"

Blank characters in FORMAT statements are significant only in H $ and I_II specifications.

X Specifications

X specifications take the form

iX

These specifications cause no conversion to occur. Instead, they cause positions of an external field to be
"skipped".

OUTPUT

The next i positions of the output record wi II be blank characters. In other words, a field of blank characters
will be created. The specifications

$WXYZ$, 4X, IIJKLII

cause the external string

WXYZ5bbbIJKL

to be generated, where 15 represents the character blank.

INPUT

The next characters from the input string are ignored. For example, with the specification

F5.3, 6X, 13

and the input string

76.42IGNORE597

the characters IGNORE will not be processed.

/ Specifications

Slash (j) specifications take the form

r/

Formatted Input/Output 43

Each slash specified causes another record to be processed. In the case of contiguous slash specifications (i. e.,
/ / / / ... / or r/), since no conversion occurs between each of the slash specifications, records are ignored during
input (scanned to a (§), and empty records are generated during output operations. The same condition can occur
when a slash specification and either of the parentheses characters surrounding the field specifications are contigous.

OUTPUT

When a slash specification is encountered, the current record being processed is output and another record is begun.
If no conversion has been performed when the slash is sensed, an empty record is created. (On the teletype, this
would be a blank line.) The statements

WRITE [4, 10] A, B

10 FORMAT (FS. 3,//, I 13)

are processed in the following manner:

1. A record is begun, and A is converted via the specification FS.3.

2. The first slash is encountered, the record containing the external representation of A is terminated, and
another record is begun.

3. The second slash causes termination of the second record, and a third record is started. Since no conversion
occurred between the terminations of the first and second records, the second record was empty.

4. The value of B is converted with the 113 specification, the closing right parenthesis character is encountered,
and the third record is terminated.

If a third item C were added to the output list, as in

WRITE [4, 10] A, B, C

the following additional steps would occur:

S. A fourth record is begun, and C is converted using the specification FS. 3.

6. The first slash is re-encountered, the fourth record is terminated, and a fifth record is begun.

7. Again, the second slash is processed; the fifth record, which is empty, is terminated; and the sixth record is
started.

8. Since there are no more I ist items, the specification 113 is not processed, a termination occurs, and the final
or sixth record, which is aiso empty, is output.

The original FORMAT statement could also have been written as

10 FORMAT (F5. 3, 2/113)

or

10 FORMAT (FS. 3, 2/,113)

with the identical effect.

The two statements

WRITE [3, 4] X

4 FORMAT (3/E6.4/)

cause the generation of three empty records, followed by a record containing the value of X, converted by the
specification E6. 4, followed by another empty record.

44 Formatted Input/Output

INPUT

The effect of slash specifications during input is similar to the effect for output, except that for input, records are
ignored where empty records would be created during output. For example, the statements

WRITE [3, 4] X

4 FORMAT (3/E6.4/)

cause three records to be bypassed (i. e., three @) to be read), a value from the fourth record to be converted with
the specification E6.4 and assigned to X, and a fifth record to be bypassed. This means that, as with the last ex­
ample for output, records created with a FORMAT statement containing slash specifications can be input by use of
the identical FORMAT statement.

Z Conversion

This specification takes the form

Z

OUTPUT

On output the Z specification causes the suppression of the terminal normally issued upon termination of output. This
feature is useful when outputting requests for input from the teletype. For example,

WRITE [1, 10]

10 FORMAT ($A=$, Z)

will cause

A=

to be printed at the teletype with the carriage positioned after the last character typed. If the next statement exe­
cuted is an ACCEPT, the user1s input will be typed on the same line.

INPUT

This specification is ignored on input.

Repetition Of Field Specifications

Within a FORMAT statement, any number of field specifications may be repeated by enclosing them within paren­
theses, preceded by a repeat count, in the following form:

where r is the repeat count and the f. are specifications. Thus the statement
I

3 FORMAT (3(A4, F4.2, 3X), 3I)

is equivalent to

3 FORMAT (A4, F4.2, 3X, A4, F4.2, 3X, A4, F4.2, 3X, 3I)

The repetition count may be any number up to 224_1 .

During input/output processing, each repetitive specification is exhausted in turn, as in each singular specification.

Additional examples:

34 FORMAT (4X, 2(A8, 11, 7G9.3), 14, 3(L5))

1125 FORMAT (/,A4, F9.7, 5(E14.8,2/), E14.8)

8 FORMAT (7(I8, 2(3X, F12.9),F12.9),A16)

In the last example above, repetitions have been nested. f'Jesting of this type is permissible to a depth of ten leve!s.

Formatted Input/Output 45

Numeric Input Strings

Input strings processed by F, E, D, J, G, and I conversions may take any of the following forms:

±n

±n.m

±n±e

±n. m±e

±nE±e

±n. mE±e

where n, m, and e are strings of decimal digits or blank characters; plus sign characters are optional except prior to
e when the character E is not present; and the decimal point and E characters must be present in that form. The
character D may be substituted for the E character with no change in meaning or values.

Blank characters in the strings n, m, and e are treated as zero characters, as are n, m, and e if they are empty
strings.

When conversion is via an I specification, fractional portions of a value are lost through truncation.

In all cases, conversion begins with the first nonblank character in the field, and blank characters falling between
the E (or D) character and the exponent field ±e are ignored.

Termination of Input Strings

Normally, a READ statement inputs the exact number of characters in the field specification. However, the occur­
rence of a comma within a numerical input field causes termination of the field. Consider the following example:

10. READ(0,1000) 1,A,B
40. WR1TE(1,1000) 1,A,B
70. 1000 FORMAT(15,F10.5,E12.4)

100. END!

+ EXECUTE

3,10.2, .32E+5, @)

3 10.20000 .3200E+05

An error will result if a @)is input before the input list has been satisfied or if any field was not terminated properly.
Consider the foi iowing program: '

10. READ(0,2000) 1,K,J
50. 2000FORMAT(315)
90. END!

+ EXECUTE

3,7,5 @l

10 OR DATA ST. ERR.
10. READ(0,2000) 1,K,J

Note that the last field did not have a width of 15 and was not terminated by a comma.

Editing of Input Strings
The following control characters allow an input string to be edited:

A c deiete the previous character.

W
C

delete the previous word; i. e., delete all previous characters until the first blank is encountered.

QC delete the entire line.

A I ine feed may be used to continue to the next I ine if the editing requires an additional line.

46 Numeric Input Strings/Termination of Input Strings/Editing of Input Strings

FORMAT and list Interfacing

Formatted input/output operations are controlled by the FORMAT requested by each READ or WRITE statement. Each
time a formatted READ or WRITE statement is executed, control is passed to the FORMAT processor, which operates
in the following manner:

1. When control is initially received, the processor prepares to read a new record or line, or construction of a new
output record or line is begun.

2. Subsequent records are started only after a slash specification has been processed (and the preceding record has
been terminated) or the final right parenthesis of the FORMAT has been sensed, or the maximum number of char­
acters for a teletype I ine has been output.

3. During an input operation, processing of an input record is terminated whenever a slash specification or the
final right parenthesis of the FORMAT is sensed, or when the FORMAT processor requests an item from the list
and no list items remain to be processed. Construction of an output record terminates, and the record is written
on occurrence of the same conditions.

4. Every time a conversion specification (i.e., F, E, J, D, G, I, 0, L, or A specification) is to be processed,
the FORMAT processor requests a list item. If one or more items remain in the list, the processor performs the
appropriate conversion and proceeds with the next field specification. (If conversion is not possible because of
a conflict between a specification and a data type, an error occurs.) If the next field specification is one
which does not require a list item (i.e., H, $, I_", Z, X, or /), it is processed whether or not another list
item exists. When there are no I ist items sti II to be processed the current record is terminated and control is
passed to the statement following the READ or WRITE statement which initiated the input/output operation.

5. When the final right parenthesis of a FORMAT statement is encountered by the FORMAT processor, a test is
made to determine if all I ist items have been processed. When the I ist has been exhausted, the current record
is terminated, and control is passed to the statement following the READ or WRITE which initiated the input/
output operation. However, if another list item is present, an additional record is begun, and the FORMAT
is re-scanned. The re-scan takes place as follows:

a. When the FORMAT statement contains one or more groups of specifications enclosed with repetition-type
parenthesization, the re-scan is started with the group whose right parenthesis character was the last one
encountered prior to the final right parenthesis of the FORMAT statement.

b. If no such group exists, the entire FORMAT is re-scanned.

6. Each list item to be converted is processed by one specification or one iteration of a repeated specifi cation,
with the exception of complex data, which are processed by two such specifications.

7. Each READ or WRITE statement containing a nonempty list must refer to a FORMAT statement which contains at
least one conversion specification (see Step 4 above). If this condition is not met, the FORMAT statement will
be processed, but an error wi II occur.

Formats Stored in Arrays (Not Implemented at the Time of Publication)

A FORMAT, including the beginning left parenthesis character, the final right parenthesis character, and the speci­
fications enclosed therein (but not the word FORMAT) may be stored in an array variable. The FORMAT must be
stored as a Hollerith constant (i. e., a string of characters) by use of either an input statement or an assignment
statement.

READ or WRITE statements which refer to a FORMAT stored in an array must reference only the identifier of the
array, with no subscription. For example

WRITE [4, R] E, F, G

refers to a FORMAT stored in an array R.

If the variable Z is a real array, and the string to be stored is (F8. 5, 4HNODE,I3), two methods may be used:

1. The string may be read in at execution time. For example

READ [M,90] (Z(I), 1=1; 3)

90 FORMAT (3A6)

FORMAT and List Interfacing/Formats Stored in Arrays 47

2. Assignment statements may be used to achieve the same effect. For example

Z(l) = 6H(F8.5,

Z(2) = 6H4HNODE

Z(3) = 6H, 13)

Care must be taken when storing into an array a FORMAT containing specifications of the nHs, s, and 'Sll forms.
In these cases, all characters in the string s, including blank characters, are significant. For example, if an A4
format had been used to read in the string in the example above, the following results would have occurred:

Element Storage after READ

Z(1) (F8.1St)

Z(2) 5,4Hl%

Z(3) NODEti6

Z(4) ,13)nb

which is not the desired result, since it is equivalent to the FORMAT

(F8. 5, 4HISt5NODE, 13)

where {) represents the character blank.

Even though a FORMAT may be quite short, it must be stored in an array rather than a scalar variable.

Using the teletype as the input file, this feature may be used to good advantage during on-line checkout. Programs
may be tested with minimal formats, but once a program is operational, the output may be dressed up to any desired
level. Or, during checkout, a part of the output may be suppressed altogether with FO.O, 10, or EO. 0 specifica­
tions. On the other hand, it is much easier to design, test, and modify complex formats while actually observing
program output on-I ine.

48 Formats Stored in Arrays

9. DECLARATION STATEMENTS

Declaration statements are used to define the data type of a variable or function subprogram, the dimensions of an
array variable, the initial values of variable data, and to provide other similar information to the processor. t

Classification of Identifiers

Identifiers may be defined as being in anyone of the following categories:

• scalar identifiers

• array identifiers

• subprogram identifiers

The category in which an identifier is placed, and the data type (if any) associated with it are dependent upon the
context in which the identifier is initially defined. This definition is a declaration, explicit or implicit, of the
way in which the identifier is to be categorized throughout the remainder of the program.

Implicit Declarations

Unless specificall y declared to be in a particular category or type, identifiers whi ch appear in executabl e or DATA
statements are implicitly classified according to the following set of rules:

1. Any identifier appearing in a CALL statement as the called subprogram is a subprogram identifier. For example,

CALL ERR or CALL NIX[R, V]

2. An identifier (other than defined in paragraph 1) which is followed by an argument list enclosed in brackets,
such as A[T,ALPHA,B+C] is

a. A statement function definition if it appears in the manner discussed under "Statement Functions" in Chap­
ter 10.

b. A function subprogram reference if it appears in an expression. This does not apply to identifiers appearing
to the I eft of a replacement operator (=).

c. .A.n error if it appears to the left of a replacement operator in any statement other than a statement function
definition.

3. An identifier which is not followed by an expression list enclosed in parentheses is defined as a scalar variable.

4. When applicable, the data type associated with an identifier is integer if the identifier begins with the letter
I, J, K, L, M, or N. If the identifier begins with any other letter, its type is real.

5. An identifier which appears in a non-executable statement (other than a DATA statement), but never in an ex­
ecutable or DATA statement, is implicitly classified after all statements have been processed. Classification is
in accordance with the previous set of rules and depends upon the classification defined by the non-executable
statement in which the identifier appears.

Explicit Declarations

All classifications of identifiers other than those discussed in the previous section require explicit definition. Ex­
pi icit definitions and declarations include:

• array declarations

• type statement declarations

• subprogram definitions

t The storage allocation statements COMMON and EQUIVALE NeE have not yet been impl emented.

Decl aration Statements 49

Array Declarations

Array declarations expl icitly define an identifier as the name of an array, and have the form:

where

v is the identifier.

n is the number of dimensions associated with the array.

d. define the range of the corresponding dimensions.
I

Each d. may take the forms:
I

or

r
u

r :r
o u

where

r is an integer which defines the upper bound of the dimension range.
u

r is an integer which defines the lower bound of the dimension range.
o

In the first form, the lower bound is assumed to be 1, and the upper bound must be positive. For example,

ARRAY{lO)

defines ARRAY to be a one-dimensional array, with a range which has 1 as its lower bound and 10 as its upper, for
a maximum of 10 el ements.

In the second form, both the upper and lower bounds may be positive, negative, or zero valued as long as the value
of the upper bound is greater than or equal to the value of the lower bound.

Examples:

ARRAY (4:9, 15,0:1, -20:20)

CUBE (-10:-1,5, 32)

PLANE (-999:0, 1 :450)

LINE (140)

X(l)

In the first example given above, ARRAY is defined as a 4-dimensional array. The first dimension has a range of 4
to 9, the second of 1 to 15, and so on.

Array Storage

Although an array may have several dimensions, it is placed in storage as a linear string. This string contains the
array elements in sequence {from low address storage toward high address storage} such that the leftmost dimension
varies with the highest frequency, the next leftmost dimension varies with the next highest frequency, and so forth.
Thus a two dimensional array would be stored "column-wise", i. e., with the row subscripts varying most
frequently.

The following figures contain pictorial examples of array storage.

50 Array Dec! arations

Array A(3, 3, 3) Array B(-3: 1,0:4)

Item Element Item Element

1 A(1, 1, 1) 1 B(-3,O)
2 A(2, 1, 1) 2 B(-2,0)
3 A(3, 1, 1) 3 B(- 1,0)
4 A(1,2, 1) 4 B(O, 0)
5 A(2, 2, 1) 5 B(1,0)
6 A(3, 2, 1) 6 B(-3, 1)
7 A(1, 3, 1) 7 B(-2, 1)
8 A(2, 3, 1) 8 B(- 1, 1)
9 A(3,3, 1) 9 B(O, 1)

10 A(1, 1, 2) 10 B(1, 1)
11 A(2, 1,2) 11 B(-3,2)
12 A(3, 1,2) 12 B(- 2,2)
13 A(1, 2, 2) 13 B(- 1,2)
14 A(2, 2, 2) 14 B(O, 2)
15 A(3, 2, 2) 15 B(1, 2)
16 A(1, 3, 2) 16 B(-3,3)
17 A(2, 3, 2) 17 B(-2,3)
18 A(3, 3, 2) 18 B(- 1, 3)
19 A(1, 1,3) 19 B(O, 3)
20 A(2, 1,3) 20 B(1, 3)
21 A(3, 1, 3) 21 B(-3,4)
22 A(1, 2, 3) 22 B(-2,4)
23 A(2, 2, 3) 23 B(-1,4)
24 A(3, 2, 3) 24 B(O, 4)
25 A(1, 3, 3) 25 B(1,4)
26 A(2, 3, 3)
27 A(3,3, 3)

References to Array EI ements

References to array elements must contain the number of subscripts which correspond to the number of dimensions
declared for the array. References which contain an incorrect number of subscripts are treated as errors.

Furthermore, the value of each subscript should be within the range of the corresponding dimension as specified in
the array declaration. Otherwise the references wi" be treated as errors.

DIMENSION Statement

DIMENSION statements are nonexecutable statements used to define the dimensions of an array. Every array vari­
able appearing in a source program must represent an element of an array declared in a DIMENsION statement.
Any number of arrays may be dimensioned in a single DIMENSION statement.

Form Example

DIMENSION s1,s2' ... ,sn DIMENSION D(45, -50:50, 4),
Y(5000), WHTAX(0:70)

DIMENSION F(2, 3,4, 5,6),G(3)

where the s. are array declarations.
I

Array declarations have been discussed in detail earlier in this chapter.

DATA Statement

DATA statements are used to initialize variables to declared values. If a DATA statement is unlabeled, the initial­
ization occurs during loading of an executable program and prior to execution of the program. If the DATA state­
ment has a statement label, it is treated as a normai program statement and is executed when reached in the course
of program execution.

DIMENSION/DATA Statements 51

DATA statements have the general form:

The d. take the following form:
I

where

k is a list which is similar to an input list (see Chapter 8).

c. are either constants or repeated groups of constants.
J

The purpose of the statement is to cause the variables in the list k to be assigned the values of the corresponding
constants in c .•

J

The following rules distinguish the list k from input lists:

1. No variables may be used in subscript expressions unless they are the control variable in an implied DO loop
(i. e., v in v = e l' e

2
, e

3
), or they appear earl ier in the DATA statement since otherwise they have no values

during initial ization. t

2. The expressions in an impl ied DO loop may contain variables only under the same condition as described in
Item One. t

3. All implied DO loops must be enclosed in parentheses.

The c., which are either constants or repeated groups of constants, may take any of the forms:
J

c

r*c

where

c may be a constant of any type.

is an unsigned decimal integer whose value is the number of repetitions of each group. In the third form,
r is optional, and if not present it has an assumed value of 1.

Example:

DATA X, ',,/n T_l c\ ~/')"l c c*"" ,/0 All t::t:') TOIl[: /
\ J \1), 1- I, J), L/ V,L.J, J V.V, -, I 1,\, ~I I • .JL..J,. II,\UL.. I

has the same effect as the stcstements

X=32.5

DO 1 1= 1,5

1 Y(O =0.0

Z=-7

R = 1.5E3

Q =.TRUE.

except that the DATA statement is effective prior to execution of the program, since it is unlabel ed. Note that the
expression 5 * 0.0 in the above exampl e does not mean 5 times 0, but rather five zeros.

If the data type of a constant is not the sur-fie as the data type of the vadable to v .. hich it is assigned, conversIon
occurs according to the rul es in Chapter 6.

t Appl ies only to unlabeled DATA statements

52 DATA Statement

The list k must specify at least as many items as are specified by the list of constants. If the list k specifies more
items than the I ist of constants, the I ist of constants is repeated unti I all the items in the list k have been assigned
values. For example, if there are 3 items in the list k, the DATA statement

DATA A, B, C/3 * 1.0/

is equivalent to

DA TA A, B, C/1.0/

and

DA TA A, B, C/l.0, 2.0/

is equivalent to

A= 1.0

B =2.0

C = 1.0

Variables of complex data type which appear in the list k require two constants per datum for initialization. The
first of the two constants initializes the real part, the second the imaginary part of the complex datum. Two con­
stants used for this purpose may be written as:

which is a repeated group of two constants with an implied repeat count of one (i. e., the same as 1(c
1
, ci)'

Consequently

COMPLEX T
REAL R, S, U
DATA R, S, T, U/5, - 48.3, (34,8), 111/

are equivalent to

COMPLEX T
REAL R, S, U
R =5
S =-48.3
T = (34,8)
U=111

Type Statements
Type Statements are used to explicitly define the data type of a variable or function subprogram.

Form Example

d
t
v

1
,v

2
, .. ·,v

n
INTEGER R, F, ~ E(-5: 10, 15)

REAL M, K ING(55, 55)

LOGICAL SEQ, BOOLE(5, 5, 5, 5)

where

d
t

is a data type.

v. are identifiers of variables or function subprograms, or they are array declarations.
I

The possibl e data types are:

INTEGER
REAL
COMPLEX
LOGICAL

Type statements may appear anywhere in a program.

Type Statements 53

10. SUBPROGRAMS t

A subprogram is one or more I ines of code executed when called upon by name by another program. The purpose of
a subprogram is to make it more convenient to perform frequently occurring operations.

There are two general categories of subprograms:

1. A function subprogram is called implicitly by using its name in an expression, and it returns a single result
through its identifier.

2. A subroutine subprogram is called expl icitly by a CALL statement, and may return more than one value through
argument~.

Each of these categories will now be discussed in detail.

Function Su~rograms

Function subprograms are programmed procedures which are often used to provide solutions to mathematical functions
and which are used in a manner similar to that of normal mathematical notation. For example, there is a library
cosine function whose identifier is COS, thus allowing

y =cos x

to be wri tten as

y=COS X

The appearance of the identifier COS constitutes a call to the standard library subprogram COS, which is available
to all FORTRAN users. Control transfers to the function, which, when executed, returns a value to the function
reference in the calling program. The calling program can then use this value as it would any other.

Thus, function references may be used in the same manner as variable references in any expression. For example,

X = (B+ SQRT B * * 2 - 4 * A * C) /2 * A

where

SQRT is the identifier of the square root function

B**2-4*A*C is the calling argument list.

There are three types of function subprograms:

Library Functions
Statement Functions t
FUNCTION Subprograms

library Functions

Library ("intrinsic") functions are subprograms which evaluate commonly used mathematical functions. They are
contained in the CF library. These functions have inherent data type classifications, as given in the table below.
In the table, C signifies a complex value; I, an integer value; L, a logical value; and R a real value. N means
number.

Library
Function Type of Number of Type of
Names Function Arguments Arguments Definition of Function

ABS R 1 I, R Absol ute val ue.

AiMAG R 1 i, R, C The imaginary part of the argument (zero if nOI complex)
expressed as a real value.

tWhere the word "function" is capitalized in this text, the reference is to the specific type of function subprogram
which begins with a FUNCTION statement (as discussed later in this chapter).

54 Subprograms

Library
Function Type of Number of Type of
Names Function Arguments Arguments Definition of Function

AINT R 1 I, R The integer part of the argument expressed as a real value.

ALOG R 1 I, R Natural logarithm (base e).

ALOGlO R 1 I, R Common I ogari thm (base 10).

AMAX1 R N 1 I, R Maximum value. All arguments are converted to and com-
pared as real values.

AMAXO R N 1 I, R Maximum value. All arguments are converted to and com-
pared as integer values.

AMIN1 R N 1 I, R Minimum value. All arguments are converted to and com-
pared as real values.

AMINO R N 1 I, R Minimum value. All arguments are converted to and com-
pared as integer values.

AMOD R 2 I, R Arg1 (mod arg2)' Evaluated as arg1- arg2*AINT [arg1/arg2)i
i. e., the sign is the same as arg1.

ATAN R 1,2 I, R Arctangent of argument. If two arguments, quadrant allo-
ATAN2 cated between -pi and +pi.

CABS R 1 I, R, C Complex absolute value; i. e., modulus.

CATAN C 1 I, R, C Campi ex arctangent.

CCOS C 1 I, R, C Complex cosine.

CCOSH C 1 I, R, C Complex hyperbolic cosine.

CEXP C 1 I, R, C Complex exponential. (e**arg)

CINT C 1 I, R, C Complex number formed by the integer values of the real
and i mag i nary parts of argument.

CLOG C 1 I, R, C Complex natural logarithm (base e). Allocated between
-pi and +pi.

CLOG 10 C 1 I, R, C Com'plex common logarithm (base 10). Allocated between
-pi and +pi.

CMPLX C 2 I, R Complex number where real part =arg 11 imaginary part
=arg2; i. e. I converts two real numbers to a complex
number.

CONJG C 1 I, R, C Complex conjugate. (Has no effect if argument is not
complex.)

COS R 1 I, R Cosine.

COSH R 1 I, R Hyperbolic cosine.

CSIN C 1 I, R, C Complex sine.

CSINH C 1 I, R, C Complex hyperbolic sine.

CSQRT C 1 I, R, C Complex square root. Allocated between -pi/2 and +pi/2;
i. e. I the real part is positive.

EXP R 1 I, R

I

Exponential. (e**arg)

FLOAT
SNGL

R 1 I, R Argument converted to a real value.

lABS I 1 I, R Integer absol ute val ue.

!DIM I 2 I, R Positive difference; i. e. I arg 1-MIN [arg 11 arg2]'

IFIX I 1 I I, R I Argument converted to an integer val ue.
,

Function Subprograms 55

Library
Function Type of Number of Type of
Names Function Arguments Arguments Definition of Function

ISIGN I 2 I, R Magnitude of arg 1 with sign of arg2. If arg2 is zero, the
sign is positive.

MAX I N 1 I, R Maximum value. All arguments are converted to and com-
MAXO pared as integer values.

MAX 1 I N 1 I, R Maximum value. All arguments are converted to and com-
pared as real values.

MIN I N 1 I, R Minimum value. All arguments are converted to and com-
MINO pared as integer values.

MIN1 I N 1 I, R Minimum value. All arguments are converted to and com-
pared as real values.

MOD I 2 I, R Arg 1(mod arg
2
). Evaluated as arg

1
-arg

2
*FIX[arg

1
/arg

2
}

i. e., the sign is the same as arg1'

REAL R 1 I, R Argument converted to a real value. Same as FLOAT and
SNGL except accepts complex arguments and returns the
real part.

SIGN R 2 I, R Magnitude of arg 1 with sign of arg2' If arg2 is zero, the
sign is positive.

SIN R 1 I, R Sine.

SINH R 1 If R Hyperbol i c sine.

SNGL R 1 I, R See FLOAT.

SQRT R 1 I, R Square root.

TANH R 1 I, R Hyperbolic tangent.

Statement Functions

Statement functions are function subprograms which can be defined in a single expression within the call ing program.
The definition holds only in the program or subprogram containing it.

Form Example

f [a l' a 2' a 3' ... , an] = e NUMBER[K] K*(K+ 1)/2

EI [THETA] =CMPLX[COS[THETA]]

QTH[OM] = NAME [OM]

+ADDR[OM]
SWITCH CK [A,B,C]=FLAG [A]

.AND.FLAG [B].AND.FLAG [C]

where

is the function identifier.

a.
I

are dummy function arguments. t

e is an expression.

t Dummy arguments serve as placeholders for the actual arguments provided by the call ing program at execution time.
Since the rules governing dummies apply to all subprograms, theyarediscussedseparately later in this chapter.

56 Function Subprograms

Once a statement function has been defined, the appearance of its name in an expression suffices to call the function
during the eval uation of the expression at run time. The function name is accompanied by the actual arguments to
be used in eval uating the expression. For example, if the function were defined as

F [X] =Z*X**2+B*X+C

it might be referenced in the program statement as

RESULT = F [V]

The current value of Vwould replace the dummy argument X in eval uation of the function. The val ue of the expression

A*V**2+B*V+C

would be returned to the calling program where it would be assigned to RESULT.

A statement function must have at least one argument. The expression e must be of a mode which may be assigned
to data of the type declared {implicitly or explicitly} for the function f (see Rules for Assignments of e to v, Chap­
ter 6). References in the expression are unrestricted with the exception that the identifier of the function f itself
may not appear; however, any other statement function may be referenced.

Since each ai is merely a dummy and as such does not actuall y exist in storage, the identifiers used to represent the
ai may be the same as any other identifier, except those referenced within the expression e, without conflict.

If it is implicitly typed, a statement function is considered integer type if its identifier begins with I, J, K, L, M, or
N; otherwise it is considered real type. If a statement function is to be typed explicitly, its identifier must appear
in a Type statement prior to the definition of the function.

As stated previously, a statement function may be referenced only within the program or subprogram in which it is
defined. Statement function definitions must precede all executable statements in the program or subprogram in
which they appear.

FUNCTION Subprogram

Functions which cannot be defined in a single statement may be defined external to the call ing program as FUNC­
TION programs. Like statement functions, the FUNCTION subprogram computes a value and returns that value
through the function identifer.

The FUNCTION subprogram must begin with a function statement:

Form Example

FUNCTION f [a
1
,a

2
,a

3
, ••• , an] FUNCTION DIFFEQ R, S, N

FUNCTION IOU W, X, V, Zl

FUNCTION ROUND OMEGA

where

f is the function identifier.

a. are dummy arguments
I

Each FUNCTION subprogram must have at least one argument. Values may be assigned to arguments within the
subprogram without restrictions.

A FUNCTION subprogram must contain at least one RETURN statement to transfer control back to the calling pro­
gram. A RETURN is the last statement executed in the function (see Chapter 7).

Within the subprogram, the identifier of the FUNCTION is treated as though it were a scalar variable, and it must
be assigned a value during each execution of the subprogram. The value returned for a FUNCTION is the last one
assigned to its identifier prior to the execution of a RETURN.

Function Subprograms 57

A FUNCTION su~program typed impl icitly is considered to be integer type if its identifier begins with the letters
I, J, K, L, M, or N: otherwise it is considered to be real.

The following example of a FUNCTION subprogram finds the product of two 1-dimentional arrays with 3 elements
each:

FUNCTION DOT V1, V2
DOT=O
DO 2 K= 1, 3

2 DOT=DOT + VI (K) * V2(K)
RETURN
END

If this function is called by the statement

PROD=DOT A,B

the dummies V1 and V2 will be replaced by A and B at execution time. The value of the function is the single
quantity DOT, which will be returned to the calling program and assigned to the variable PROD. Note that while
A and B must be dimensioned in the calling program, V1 and V2 need not be dimensioned in the function (see Dum­
my Arguments below).

Subroutine Subprograms

Subroutine subprograms, like function subprograms, are self-contained programmed procedures. However, unlike func­
tions, subroutines do not have values associated with their identifiers, and they may not be referenced in an expres­
sion. Instead, subroutines return values to the calling program by assigning values to arguments and ·are accessed
by CALL statements (see Chapter 7).

Subroutine subprograms always begin with a SUBROUTINE statement:

Form Example

SUBROUTINE p a 1,a2,a
3

, ••• , an SUBROUTINE CHECK

SUBROUTINE VI ROMAN

SUBROUTINE OUTPUT
ARRAYS A,FMT,I,J

where

P is the subroutine identifier.

a. are subroutine dummy arguments.
I

If no arguments are to be passed to the subroutine by the calling program or subprogram, the list of ai and the comma
and bracket characters would not be present; otherwise they are required.

A subroutine must contain at least one RETURN statement to transfer control back to the calling program; it should
be the last statement to be executed during a run.

The following is an example of a subroutine subprogram which finds the cross product of two 1-dimensional arrays
with 3 elements each:

SUBROUTINE CROSS A, B, C
C(1) = A(2) * B(3) - A(3) * B(2)
C(2) = A(1) * B(1) - A(1) * B(3)
C(3) = A(l) * B(2) - A(2) * B(1)
RETURN
END

58 Subroutine Subprograms

The call to this subroutine might be:

CALL CROSS X, V, Z

in which case the current values for array elements in X and V would be used during execution of the subprogram,
and the results would be assigned to elements in Z. Note that although X, V, and Z should be dimensioned in the
calling program, A, B, and C need not be dimensioned in the subroutine (see Dummy Arguments below).

Since the name of a subroutine plays no part in the result, it has no bearing on the mode of the result.

Dummy Arguments

Dummy arguments provide a means of passing information between a subprogram and the program which called it.
Both function and subroutine subprograms may have dummy arguments, but a subroutine need not have any, while a
function must have at least one. Dummies are merely II formal II arguments, used to indicate the numbe.r and sequence
of subprogram parameters. They do not actually exist in that no storage areas are used for them. t They serve as
place-holders for the calling arguments.

The calling arguments themselves may be scalar variables, array elements, array names, expressions, or subprogram
identifiers. However, the dummies corresponding to these are always written as unsubscripted identifiers. A dum­
my argument need not conform to the data type of the corresponding calling argument. It should not be defined in
a type statement within the subprogram. It need not be dimensioned in the subprogram unless, for example, the
programmer wishes to modify the dimensionality of the calling array or the ranges of its dimensions. However, ex­
cept when array declarations are modified, declarations in effect for calling arguments at execution time are those
which prevail during execution of the subprogram. When a dummy corresponds to a variable in the calling argument
list, a reference to the dummy is actually a reference to the calling argument variable. Not only will the dummy
initially have the value which the calling argument was assigned at the time of the call, but any value subsequently
assigned to the dummy will actually be assigned to the calling variable, thus effectively returning a result through
the argument list. For effectively returning a result through the argument list. For example, if the calling state­
ment for a function subprogram is

V=X**NI+SQRTDS Z,Q

and the function called is

FUNCTION SQRTDS A, B
C=AMAXl A, B
B=AMINl A,B
A=C
SQRTDS= SQRT A**2-B**2
RETURN
END

then the values of Z and Q will be reversed whenever the initial value of Q is greater than that of Z.

When a dummy corresponds to an expression other than a single variable, the expression serves to initialize the
value of the dummy. In this case storage is actually reserved for the dummy, whose value may be modified within
the subprogram. For example, if the constant 3 in the calling list corresponds to the dummy J in the subprogram
list, J will be initialized to 3 and may be modified in the subprogram. However, no result is returned through J
and the value of the constant in the calling program is not affected.

If a dummy array is dimensioned, it may not contain more elements that declared for the corresponding calling
array. In subprograms, a range specified in an array declaration may be indicated by a variable, providing the
variable is itself a dummy:

t More precisely, storage areas are associated with dummies but contain pointers back to the storage areas for the
calling arguments.

Dummy Arguments 59

Example:

DIMENSION A(100)

B = 10
CALL X [A, B]

END

SUBROUTINE X [5, C]
DIMENSION 5 [C, C]

5(2,3) = 156

RETURN
END

Note: Dummy variable values are lost after return to the calling program. Thus the user should not repeatedly
reference a subprogram expecting all values to be intact.

60 Dummy Arguments

Commands

COMPILE,sd
COMPILE,sd,file name

LIST
LIST, sd
LIST,sd,file name

DELETE, sd

KILL

EXECUTE

WHY

BREAKPOINT, sd

PERFORM, fs

PROCEED

NEXT

EDIT, sd

CLEAR, sd

PRINT,file name

SAVE, sd, fi Ie name

FORTRAN Statements

v = e (repl acement)

ASSIGN k TO v

GOTOk
GOTOv
GO TO v, (k 1, k2' k3' ... , kn
GO TO (kl,k2,k3, ... ,kn)

IF (e) kl' k2' k3

IF (e) fs

DO k v=e
1
, e

2
, e

3
CONTINUE

PAUSE
PAUSE c

STOP
STOP c

CALL p
CALL p [a 1, a2, a3, ... , an]

APPENDIX A. SUMMARY

Command Abbreviations

CO
CO

LI
LI
LI

DE

K

EK

W

B

PE

PRO

N

ED

CL

PRI

S

tAbbreviations used in this Summary are as follows, unless otherwise indicated:

sd statement designator
fs FORTRAN statement
v variable
k statement label

e expression
c character stri ng
p subroutine name
a argument

n fi Ie number (except where used as subscript
f format reference
s array declaration
d

t
data type

Appendix A 61

RETURN

ACCEPT [I ist]

DISPLAY [list]

OPEN [file number, fil.e name, use, type]

CLOSE [fi Ie number]

READ [n,f] list

READ [n] list

WRITE [n, f] list

WRITE en] list

FORMAT (f
1
,f

2
,f

3
,·· .,fn)

DIMENSION sl,s2'S3'" .sn

DATA d
1
d

2
d

3
,·· .,d

n

d tV 1 ' v 2' ... , v n

FUNCTION f [0
1

, O
2

, 0
3

, ... , an]

SUBROUTINE p [0
1
, O

2
, 0

3
, ... , an]

62 Appendix A

Where the f. are field specifications.
I

Where the di are lists of variables and constants (see text).

Type Statement - where the Vi are identifi ers of variables or
function subprograms, or they are array declarations.

Function Definition - where f is a function identifier.

Where f is a function identifier.

APPENDIX B. SDS 940 INTERNAL ASCII AND TELETYPE CODES

Internal Internal
ASCII TTY ASCII TTY

00 40 @

01 41 A

02 42 B

03 # 43 C

04 $ 44 D

05 % 45 E

06 & 46 F

07 47 G

10 50 H

11 51 I

12 * 52 J

13 + 53 K

14 54 L

15 55 M

16 56 N

17 / 57 0

20 0 60 P

21 1 61 Q

22 2 62 R

23 3 63 S

24 4 64 T

25 5 65 U

26 6 66 V

27 7 67 W

30 8 70 X

31 9 71 Y

32 72 Z

33 73 [
34 < 74 \
35 75]
36 > 76 t
37 ? 77

Appendix B 63

.AND.,21
· EOR. (exclusive or), 21
.FALSE., 15
.NOT.,21
· OR., 21
· TRUE., 21
() parentheses, 19, 22,31,44,45
+ (plus sign), 2
! (exclamation point) terminator, 7
$ conversion
* (asterisk) overflow indicator, 36
; (semicolon) terminator, 4
, (comma), 46,58
(pound) delete character, 4
I~J conversion, 43
[] (brackets), 4, 31,58
t (up arrow) error indicator, 8
- (left arrow) delete character, 4

A
A

C
(control A), 4,11,32,46

A conversion, 41
A format specification, 16
ACCEPT statement, 31,32,45
account number, 2
addition (binary), 18, 19
ALT MODE key, 1
arithmetic expressions, 18
arithmetic IF statements, 26
array declarations, 49,50,51
array elements, 59
array identifiers, 49
array names, 59
array storage, 50
array variables, 16
arrays, 16
ASCII code, 14
assigned GO TO, 25
assignment statements, 23,48

B
binary file, 33,35
binary operators/ 18
blank characters, 5, 16,43,46,48
breakpoint, 7
breakpoint command, 10

c
C

C
(control C) / 11

CALL statement, 29,49,54
call ing arguments, 59
calling program, 56
CF system commands, 6
character string, 34
character string values, 14
CLEAR command, 7, 11

64 Index

INDEX

CLOSE statement, 31,33
closed file, 34
column, 7,5
command mode, 9, 10
commands

BREAKPOINT, 10
CF system, 6
CLEAR, 7, 11
CLOSE, 31,33
COMPILE/ 6/7/8, 11
DELETE, 7,9
EDIT/ 11
EXIT/ 3/6
KILL, 7,9
LIST/ 7/9
NEXT/ 7, 10
PERFORM/ 7, 10
PRINT/ 7, 11
PROCEED/ 7/ 10
SAVE, 7, 11
WHY/ 7/9

comment statement/ 5
compilation/ 6
COMPILE command/ 6,7,8, 11
complex constants/ 15
complex data/ 14/36/38/39,53
complex data type/53
complex vari ables/ 16
compound expressions, 18
computed GO TO/ 26
constants/ 14
CONTINUE statement/ 2,28
control character/ 1,42
conversion, 46

o
DC (control D), 12
D conversion/ 38
data conversion/ 35
data fi les, 33
DA TA statement, 49,51,52/53
declaration statements/ 23/49
DELETE command/ 7/9
DIMENSION statement/51
DISPLAY statement, 10,31,32
division, 18, 19
DO statement/ 27
dummy arguments, 43/56
DUMMY statement/ 28
dummy variable values, 60

E
E

C
(control E), 12

E conversion, 36
EDIT command/ 11
editing of input strings, 46
empty records, 44

END statement, 5,8
error correction, 4
ESC (escape) key, 1,2,4
evaluation hierarchy, 19
EXECUTE command, 7,9, 10
execution diagnostics, 9
execution mode, 9
exit and continue, 2
EXIT command, 3,6
expl icit declarations, 49
exponentiation, 18, 19
expressions, 59

F
F

C
(control F), 12

F conversion, 36
FD-HD switch, 1
field specification, 35,46
file directory, 33
file format, 34
file manipulation, 6
fi Ie name, 33
file number, 33,34,35
fi Ie type, 33
file use, 33
floating point data, 14
format and I ist interfacing, 47
format reference, 35
FORMA T statement, 47,48
FORMA T statement number, 34, 35
formatted input/output, 33,47
FORTRAN executive command, 6
free format I/O, 32
free-form format, 5
function, 59
function name, 57
function references, 54
function subprogram, 49,54,56,57,58

G
G conversion, 38
GO TO statements, 25

H
c

H (control H), 12
H conversion, 41
halt execution, 10
hollerith constant, 15,47
hollerith data, 14,39

I conversion, 39
identifier, 6, 16,57
IF statements! 26
implicit declarations, 49
implied DO loops, 52
increment, 27
incremental compilation,
index, 27
index value, 28

initial value, 27
input fi Ie, 33
input/output list, 31,35
input/output statements, 23,31
integer constants, 14
integer data, 14, 16,36,38,39
integer data type, 53
internal binary values, 39,41

J
J convers ion, 37

K
KILL command, 7,9

L
L conversion, 40
LF (line feed) key, 1,4,5,46
I ibrary functions, 54
I imits on values of quantities, 14
LIST command, 7,9
log-in, 1
log-out, 2
logical constants, 15
logical data, 14,39
logical data type, 53
logical elements, 21
logical evaluation hierarchy, 22
logical expressions, 21
logical IF statements, 27
logical operators, 21
logical variables, 16
lower bound (array dimension), 50

M
M

C
(control M), 12

matrix, 17
mixed expressions, 19
multiplication, 18, 19

N
negative sign (unary), 18
nested DO statement, 28
nested subscripts, 17
nesting, 45
NEXT command, 7,10
numeri c input strings, 46

o
o conversion, 39
octal constants, 14
OPEN statement, 31,33,34,35
operands, 18
operator operator 1 19
operators, 18
ORIG key, 1
output fi Ie, 33
output program to paper tape, 11

Index 65

p
password, 2
PAUSE statement, 29
PERFORM command, 7, 10
positive sign (unary), 7,10, 18
PRINT command, 7, 11
PROCEED command, 7, 10
program execution, 6
project code, 2

o
QC (control Q), 4,32,46
QED, 8

R
range, 27
read file equals 0, 34
READ statement, 31,34,47
real constants, 15
real data, 14, 16,36,38,39
real data type, 53
records, 44
references to array elements, 51
relational expressions, 20
relational operators, 20
repeated execution, 27
repetition count, 45
repetition of field specifications, 45
replacement statement, 23
RET (return) key, 1,4,5
RETURN statement, 30,57,58

s
c

S (control S), 12
SAVE command, 7, 11
scalar identifiers, 49
scalar variable, 16,49,57,59
scale factor; 15
sd, 7
sequence numbers, 5
simple I ist items, 31
slash (/) specifications, 43, 47
statement designators, 6
statement function, 49,54,56,57
statement lobel, 51
statement numbers, 5, 24
statements

ACCEPT, 31,32,45
CALL, 29,49,59
CLOSE, 31,33
COMMENT, 5
CONTINUE, 28
DATA, 49,51,52,53
DIMENSION, 51
DISPLAY, 10,31,32
DO, 27
END, 5, 8
GO TO, 25
IF, 26

66 Index

OPEN, 31,33,34,35
PAUSE, 29
READ, 31,34,47
RETURN, 30,57,58
STOP, 29
WRITE, 31,47

STOP statement, 29
storing into on array, 48
string literal, 34
subexpressions, 18
subprogram, 54
subprogram control, 29
subprogram definitions, 49
subprogram identifiers, 49,59
subprogram statements, 23
subroutine subprogram, 54,58,59
subscript, 17
subscripted variables, 16
subscripts, 17
subtraction (binary), 18, 19
symbolic file, 33
syntax error, 8, 9

T
T character, 41
teletype, 34,48
terminal statement, 28
terminal value, 27
termination of input strings, 46
text entry, 6
transfer of control, 29
truncation of data, 36,37,38,39
type statement declarations, 49
type statements, 53

u
c

U (control U), 32
unary operators, 18
unconditional GO TO, 25
upper bound (array dimension), 50

v
variable, 14, 16
vector, 17

w
c

W (control W), 4,46
warning bell, 8
WHY command, 7,9
WRITE statement, 31,47

x
X specifi cations, 43

z
ZC (control Z)
Z conversion, 45

	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66

