Students? CAL Manual

by

John Po- Gilbert:

- Harvard Computing Center

June, 1967

“ohh Gilbert

CHAPTER 13-

CHAPTER 53

Student ‘CAL Manual- June, 1967
CONTENTS
LOGGING ; ON AHD OFFe T e . m o . o .o PS ol © 3
CHAPTER 20 . 0 o ;0 B - .) o O - ‘0 e B - E 3 B -3 - B < - .vo = o £ o o . O 9
2.1 The Command TYPE 6o oo 0 e o e e e o e.e o o . B
2.2 The: operations + - ¥, /. t, and
their precedence o o o« o o o o s 0.0 o .o o .o o o o 10
2.3 The command SET. o « .0 .o e 0.0 o .o 0.0 o .0 .o 11
2.4 CorrectionSe o o o o .o o .0 .0 .8 o .o o . o .0.0 «.o o 13
2‘5 COntrOl A © R - o o (-3] o :0 £ -] ;O © B B -3 o ;o ‘0 'o © o 13
2.6 Control w < B -] 0 R - o .] e - o B - <o = -1 D B - o ER -] :o .o o 1"‘
CEAPTER 3 © eoc Jo Tl e Le U e Lo o o .o © ©° © .o < © o .o o .o ° 16 “
3 1 Numberlng Stegs o o o "o .»o’ © o © .© ‘®& . © oo x EE - © 16
3 2 IF modlfler -3 o :n‘.e E- 8 bo’ n -3 ‘ o o N IR 3 ’o .vn‘ © .o .o 18 ’
CEA?TER uo o o‘vvo -] ‘»n - o .‘o . e bo - .o .o © .o o o E-3 o) .- © o . ° 2n
q‘.l Adding numberSo . - o o - “o -]] . o o - © = - a o .o 2“
4.2 SUM operation o o.c oo .o .0 .0 o o o s o o o 28"
4.3 DO commandsS . o . e o0 .0 .m @ .6 .o .6 e o .o = o 29
Q.u FORMS and TYPE IN FORM © .o o .o o © -3 o ° o 3 39 N
u.—ls . DEMAND IN FORM : ® 0. ® o .n o 3 o ia © o .o © o ° 32
4.6 TFloating point: numbers . o o o o o o o o o o o 33
1“07 BHILT‘-IN thchoNSo ;o o o .o e ©® .wu © © o © - .o © 31" .
4.8 Special: FunctionsS o« o o o .o o o .o o .s o a o o o.35
3.9 Mean, variance: or standard deviation36
MODIFIERS, LOGICAL EX?RESSIOXS AND

EDITING:@ COMMANDS

°

© ©

with To;

5.1 Modifiers: o o o

5.2 PFor Modifiers

5.3 WHERE Modifies.
5.4 .

5.5 Several Modifiers .
5.6 Logical Expressions:.
5.7 Logical Operators ..
5.8 RelationsS. . o

5.9 EBEditing Commands:
5.10 ' DELET: commands:.
5.11 COPY commandsS. .
5.12 SKIP commandse .
5.13 INSERTIONS. < =
5.18 ° RETYPING: o .0 .o .
5.15 EDIT STEP X.Y¥Y

e

o

.o

- IF and OUNLESS MOdlfleIS"

Lo e © .

UNTIL

. o -‘:. o .- “0 uo

WHILE . . 40

e o ee oo W1
o o s a = o B1
Lo ° o © vo © ul

o o .s e o o U2

e e e e e o H2

© o .® © ® . .o° L‘B

R NP P 1
o o e .o o .o 45
e o s o .a o U5
e o o o o o U5
e o o o = .o U6
e o o o o o U6

CONTENTS 1

Tohn Gilbert Student CAL Manual

June, 1967

CHAPTER 6: FUONCTIONS: o o o o .0 .0 .0 .0

6.1 DEFINING FUNCTIONS. .o .«

6.2 RECURSIVE FUNCTIONS .

CHAPTER 7: SAVING PROGRAMS AND DATA ON PFILES . . .

APPENDIX OF CAL. STATEMENTS .

y

ey

o

o .«

CONTENTS

48
48
50
53

56

2

John Gilbert: Student CAL ‘Manual: - June, 1967

- CHAPTER 13 LOGGING ON_AND_OFF

- In order - to- distinguish between what the user types and
what thetcomguter-typeerfshall?underliae'the output from the:
computer. . I shall: also need to:refer to three non-printing
keys on the teletype. They are the (escape), {(line feed), and

- the (return) keys. The {line: feed) and (return) keys are
located on the:right-hand side:of~thetkeyboard;. The {escape)

key is on the left side. .

Pressing the (return) key signals the computer that you are

- through with that line of «typing and want to start a new one;
" the print drum will return to the left margin and the paper
will space. (line feed) continues the statement you are
typing onto the next line.. tescape};is.used to say "forget

what ‘has been typed and start the line again.™

Now let us get on the machine... The first: step is to
connect the teletype'to:éfccmpater porxt. The steps for this
are: 1) Press the originate button, labeliled ORG, which is
: below the:dial and to the left--it:should light up. 2) After
~you hear the dial tone on the speaker under the buttons, use

the - dial ~on the teletype to dial the computer. Dial 2 on
. teletypes which are extensions of: the Harvard switch and

- 491-5900- on those connected to outside lines. A small knob

John Gilbert: Student ' CAL:Manual- . June, 1967

. controls the volume of the speaker but:normally it should not:
- need - adjustment. ! 3) You:should hear the teletype ringing the:
port and then a beep when the port:answers.. 4) The computer

- will then types

| BARVARD. TIME_SHARING SYSTEM(DOO-HOS5): 6-12-67 (return)

JUNE 28, 1967 3:58 ‘p.m. {(return) .

 BCCQUNT:
We must now .convince the computer that we are honest bill
paying customers. TG*dOfthiS'WGYmﬁSﬁ?haVE"aﬁ account number,
~a . password and a user name. For the purposes of illustration
- letus suppose that ‘our account ‘number is 123, our password is
' ABCDEF,; and our name is LEGION. ' The letters of the- password
- will: - not be printed. What: is shown below is what must be

- typed. = A correct :log in would go as ‘follows:

HAVARD_TIME SHARING SYSTEM (00-HOS53}: 6-12-67 {(return)

JUNE_28,:1967 3:58 P.M: _(return)

T T a— — ——. - 1>

. 7. o st v o o oo S

- Note that ‘the computer provided all the {returns). If you

make = a mistake in- this - process -the computer will type out

‘John Gilbert Student * CAL:Manual - June, 1967

"INVALID USER"™ and then start the process of & identification
all over again. When you have successfully entered the
computer will type a @ sign. . This character is the trademark
of the executive program. The EXEC has a number of subsys-
tems, that it can provide. . We wish the one called CAL so we
ask for it. CAL will want some information and the dialogue
should go like thiss-

aCAL. {return)

 CAL 1,69 Number OF .STATEMENTS NEEDED = _ 20{return)

DEMONSTRATION PROGRAM (return)

" DEMONSTRATION_PROGRAM PAGE 1 (return)

2

Note that when CAL:asks for the number of statements you must:
give a number and then provide the {(return) to tell CAL that
you are through typing. The same is true of the title. CAL
starts you off with a new page complete with title and page
number and then gives you a'. line starting with >. > is the
trademark of CAL. You can always tell who you are talking to
by the symbol starting each line. Do nct ask for toco many

statements or you will not have any xoom for data!l

John Gilbert: Student:CAL Manual - June, 1957

Let us assume that: you are tired of CAL, or have even
-finished a problem:and wantouts The procedure for 1logging
out properly is as follows: first get back to the EXEC; this
is done by pushing {escape) several:times. You can tell when
you have succeeded because the computer will type 3. Second
- you type LOG for LOGOUT LEGION and‘theﬁ-a pericd. It should

 look .1ike this:

={return) -
2{return)

- 9LOGOUT LEGION. _{return) .

"JUN .28, 1967. . 3:59 P.M. {return)

' TIME USED_{return)

PU: 00:00:01 (return)

CONNECT=-00:02 {return)

‘The_computer turns: off:the teletype. -

P S s W S S S S . S W

SUMMARY: ENTERING AND LOGGING QUT

Let us review this process by entering, doing nothing, and
logging out again.
You press {(originatel} to get:dial tone;

dial 2 or #91-5900 as appropriate.

HARVARD TIME SHARING SYSTEM (D00-HO05): 6-12-67 {return)

*JUN.28,.3:58 P.M.. . f{return).

: ACCOUNT: 123 {return)

John Gilbert - student CAL:Manual - June, 1967

' PASSWORD: ABCDEF_(return) .

S e o S o

NAME: :LEGICON.{return)

—— v———— o —— -

HEADING: PLEASE_{(return) .

© DEMONSTRATION-PROGRAM {return)

" DEMONSTRATION PROGRAM (return).

2{escape)

2{escape) -

- JUN.28,; 1967.3:59 . P.M. (return)

© TIME.USED. (return)

- CPU: 00:00:00. (return)

| CONNECT:.00:0L. (return) .

' The_computer turns_ off -the teletype.

You can tell:that:you have logged out successfully by the -
time used message which refers to the time used by the central
sprcceSScrr-an&~the.amount:of time you have been connected. If-
you have logged out correctly the computer will turn off your
teletype . for you.. If LOGOUT ‘does not-work try EXIT. If that

~does not-work call the Computing Center! ext. 3272 on a

John Gilbert- Student CAL Manual

telephones .

June, 1967

John-Gilbert: Student :CAL. Manual: June, 1967

I shall now assume that you have entered and got:tec CAL as
outlined in Chapter 1. In: particular I hope that you are

looking at:a greater—-than sign. .

CAL has two modes of operating. One of these, called the
: direct > mode, acts like ‘a.desk calculatoxr. The other, called
indirect, utilizes more of the computer's facilities. = Almost:

‘all CaL cowmands‘can-beﬁﬁseééisﬂeiﬁhez.mcde;except.fsr'a few

~direct; or»deskfcalcukatqg,:mbée;:bﬂteallnthe'cammands I will
- mention can-be used in either mode.. é.aaistéagtiﬁe:»chazac;v
’teiistic: of the: direct: mode is that as soon as you have-
- finished typing a command and type (return), the computer will
execute the command. When it:has finished. it ~will start a

fresh line with a:> sign.

2.1 The Command .TYPE.

which only make '‘sense in one.. = We shall start: out- in the
|

The ' first command you- will: need is the command TYPE
| . followed by whatever you would like typed and then a. (return). .

Here are some examples: :

John+Gilbert: Student CAL Manual- - June, 1967

- PTYPE 34/2 (return)

N — " o - oo w——m o

DTYPE 4*6, 3/4 {return)

o 4%6.=.. 24 {(return)

v ¢3;&3;-m,,;ggqggggggggigéggggz.

© 2.2_The operations #, =, %, ./, %, and their precedence

- The ‘arithmetic operators are +, -, *, /4 and t.. They stand

for addition, subtraction, multiplication, division, and

- exponentiation (raising to:a power) respectively. ' In evaluat-

- ing an arithmetic expression CAL will dc the exponentiations
first, then the multiplications and divisions (working from

- left-to right}, and:finally the: additions and subtractions.

- If: this = is not the order desired, or if -there is some doubt,

parentheses {) -should be used to make the expression unambig-

. uous. . The following examples illustrate some: of :these rules.

10

John Gilbert Student CALManual- June, 1967

These ‘examples -illustrate the precedence of operators:

> TYPE 4+34%2 exponentiation first:

L u$332 o= 13

> TYPE (4+3)42

C(4+3)42 =0 .. 49

" These 'illustrate that ¥ is done before:+ unless {) are used
1> - TYPE 4%3%2
4%332 = 35

- TYPE L#(3%2).

v

kY 4%(342). .= 36

= - TYPE (4#%3)12

C4%3)42 .. = .0 484

- These illustrate that:t is: done before *

2 TYPE 2%#3/4%5. - left to right-rule.

2%3/4%5_ = . .7.5000000"

> TYPE (2%3)/ (4%5)

T

v

- TYPE. (€2*¥3)/4)%5

402%3)/8)*5. = 7.5000000

2.3 _The command SET

- The SET command is used to store a number, or the result of

a .calculation, for future use. I will explain just what this

11

Jolin Gilbert: Student CAL Manual: June, 1967

means after giving some exampless -

- 2 8ET'A = 3 (returmn)
> SET B = 4 {return)
- > SET:C.:= A*B (return)

v

TYPE C-2 {(return)

C=2_= 10 :(return)

v

“ The value of ‘the number or{tbecexpxeSSion-on the right-hand
side ‘of the equal sign is stored for 1éter ‘reéference by the:
machine as the value of the wvariable on the left hHand side.

: Variables can-only have:Single:'lettefs' or a single letter
followed by a. siﬁéle;;digitz in:their names ‘but ‘they can be
subscripted with great abandon. = The subscripts are placed in
parentheses and separated with commas. .. A, A(0), Al, A(1), and
"A(B(C,;D),E, %Y are-all different and'aeaeptaﬁle variakles. The

*lastﬁwill~have;meaningfenly if «the variables C, D, B(C,D), and
E' have already been SET. . It'is important-to’ realize that the.
SET command does not :represent:an eguation. For example:

"> SET'A=A + 1.

. is a.perfectly good and legal statement meaning replace the
old value of A by a new value one greater. What a SET command
does is to: instruct the computer to first evaluate the

expression on the right of the egual sign and then toc store

12

JoHn:Gilbert: gtudent CAL Manual: - June, 1967

the result as the value of the variable on the left. The old
value of the variable is lost. . To the computer a variable is
the name of -a placde where a’ number can ke stored. The command
> BET A = B .+ C {return}

is a - way of saying “to the number stored in B add the number
- stored in:Ciand store the result in A", where A, B, and € are
names for actual storage locations:in t&efceggﬁfess.meﬁszy,_

WARNING:

- The ' command: SET 2#A'= B 4 .C has no meaning to CAL because:
it does not-have ‘a variable 2*A:in whiech to store the result:
of -adding the contents of B to that of C.

Spaces

fﬁil-the:cﬂﬁmaﬁﬁxﬁerdse,or reserved words; such as SET, need
to be separated from their suﬁfnun&ings.by a:space. The only
exception to this is:that ‘they don"t need as'sgaéa: at - the
*beginning?'of.a line when they are next to 2. Aside:-from this
' CAL isiquite indifferent to:spaces and they can be used as

- desired. .

The word SET can be leftout-of a SET command. Thus B = B

is identical to SET A = B. .

2.4 Corrections-

By now you may be wondering how to: correct: a mistake in

. typing a .. command. If you - push (escape) the computer will

13

Joln:Gilbert - Student CAL Manual June, 1967

ignore what 'you-have typed and start 'you out on a fresh 1line,
where - you can- try again. . If you push (retuin} the computer
will try to: execute what you have typed and if it doesn®t
succeed . it will type :a snide remark and start you out with a
fresh line. = In addition to theSe two courses of action CAL
provides a i whole: series of editing commands but, for the
moment, I ~will discuss only two of these.. All editing
commands are given by holding the (control) key down while
typing another key. The (control) keéy is located on the left-
side: of: the ' keyboard. = The two commands are {(control)A and

{control)W. .
2.5 _Control A

{control)A is given by holding the (control) key down while
typing A. . The-effécteofaphis~isato;ptint~%‘and to:delete the-
last character typed. @ This deleted character could of course
have - * been a. blank... To: dezeieﬂ‘sevaral characters - hold
{(control) down and- type:as many A"S as there are characters to’
be deleted; the computexr will print:a ¢+ for .each character
deleted: These 'S are only printed and they do noct become

part of ‘the statement being formed :in the computer.

e — o {— . - — —— — -, o

{(control)W acts like (control)A except that it deletes the

preceding word, and the: blank in front of its To indicate

14

JolinGilbert: Student :CAL Manual: ' June, 1967

rzthateiéwﬁasrdaaeftﬁis it prints\.

Escape

. One ‘word of: caution, * if: you- push (escape) twice in
succession you will find yourself talking to the EXEC (with a

- @ instead-0of a:>).. To get:back to CAL: without:losing what:you
haVe-déaek type CONTINUE CAL.; note that you type the period
to confirm that you wish to acﬁwhat“was typed. You can tell
if ‘this has succeeded by whether or not:- you get a. line

starting with a >.

15

! ; g
John-Gilbert: Student:CAL!Manual: ~June, 1967

* CHAPTER 3

o S e s e Yo, .

"In the:® indirect mode: a number of .commands are organized
into a 'program, which is then run as a- unit,; + rather than
having each command executed as it 'is typed. In-order to
write a program one must: notf only specify the individual
commands but also the order in which they are to be executed. .

- To make this possible esach command, or statement, is: given a
'STEP - number. - Indeed, ' CAL determines for every statement
whether it -is to be executed immediately (direct mode) or is
to" be incorporated into-arprogxam:(indirect:mﬂ&eizﬁy"ﬁhetﬁar

~or not - it begins with a STEP number. .

3.1 Numbering Steps.

To help in organizing the program, statements are numbered
on two 1levels by a pair ofsnumherS'separated,by a decimal
point. The integer {to the left of the point) is the = PART
number. Theufraction-{tO'the;right‘cfsthe'aeciﬁa&¥~sexVesatﬂ
order statements within each PART. . As ‘numbered statements are

- typed into the computer CAL orders them by their STEP numbers,
considered as decimal: numbers. . For example, STEP 1.2 is
before STEP 1.245: which 1is before STEP 2.001, no matter in

- what . order the.programmér~ty§e&'themaﬁ Ehesfirstitwa;wculd be

~in PART 1 while the third is in PART 2. This system of

16

John -Gilbert: Student':CAL Manual Jdune, 1967

- numbering 'allows you to:insert-a / command - between two which
have already - been typed. For example, if 1.3 and 1.4 are-

already used, you might insert 1.35. .

In the absence of any 'directions to the contrary the
computer will: execute the statements of a program in:their
numerical oxder. The programmer can, however, direct the

computer to deviate from:this order in:.a variety of ways.

" Let us look at:an example:
©21.1 SET J = 1 (return)
>1.2 TYPE Jt2 (return) .
21.3 SET J = J + 1 (return)

21.4 TO STEP 1.2 (return)

This example contains: two: new things. 1) the steps‘are
nuﬁbered and we see that ‘all four steps belong to PART 1... In
addition the computer will treat :them:as being ordered in the
order shown. 2) STEP 1.4 contains- the new command TO. This
has ' the effect of sending the program te the:step specified,
here 1.2, which it-will execute and then proceed to the steps
following. this new starting point. . The program akove will go
around and around forever, caught in an infinite loop,. because
every time ‘it ‘gets to STEP 1.4 it will be sent bkack to STEP

' 1.2. Suppose we had started this program running by typing

: the direct command "TO . STEP 1.1 {return)™. What could we do

17

John Gilbert Student CAL Manual June, 1967

to stop the unending segquence of squares which this program

D s e o 5o ints s sent, . ity s s el S s S St S . st S T s

would produce? The answer is that__any _program__can__be

interrupted by pushing_the_ (escape) key. It may take a second

for the machine to 3;09 in some programs but never disconnect
your teletype in this situation! If you hit (escape) too many
times the worst that can happen is that you will end up
talking to the EXEC and you can type CONTINUE CAL. to get

back to your program. Don®t forget the period.
3.2 IF modifier

Clearly: it would be convenient :if there were some ‘'way to
tell the program when: it should stop typing out more squares
and proceed to the next part of the program. ©One way to do

this is the IF modifier. I shall add it to the above example.

18

John Gilbert Student CAL Manual June, 1967

>21.1 SET J = 1 (return)

>1.2 TYPE Jt2

21.3 SET J = J.+ 1 (return)

>21.4 TO STEP 1.2 IF J < $ (return)
>1.5 TYPE "DONE" (return)

2TO STEP 1.1 (return)

312 =_ 1
J2 = 4
Jt2 =9
312 =16
DONE
X

The effect of the IF is to execute the command in front of
the IF if and only if the ‘condition:.after the IF is true. If
the condition is not :true the computer ignores the part before
the IF and goes on to the next statement of :the program. In
this example the computer jumps back to STEP 1.2 as long as J
is less then 5. When J becomes equal to 5 the;condition is no
longer true and the computer ignores the command "TO STEP 1.2"
and goes on to STEP 1.5, which is to type the literal DONE.
Note the use of "s". Since there are nc more commands to ke
executed after this one the computer stops, printing out > as

a sign that it is ready: for more input.

19

John Gilbert Student CAlL Manual June, 1967

This example illustrates a program loop or iteration.
Since much of the power of the computer comes from its ability
to perform many such iterations in a short time it is
important to understand clearly how these lcops work. Let us
.discuss the above example in detail. First notice the role
played by the variable J. Let us call it the variabkle of
iteration. Second, STEP: 1.1 is only executed once when it
initializes the variable of iteration i.e. starts it cff, with
the value 1. Third, STEP 1.3 increments J by a fixed amount,
1 in this case, every time around. Fourth, STEP 1.4 tests
whether J has gotten so big that the computer should go on to
the next part of the program. I have not said anything about
STEP 1.2 because it does not have anything to do with
determining the iteration. Any statement or statements could
have been put in its place and they would have been dcne for
J =1, 2, 3, and 4. The four gquantities which dete;mine this
type of iteration are the variable of iteration, its initial
value, the amount ‘it is incremented by, and the final value of

J for which the iteration should be done.

The form of iteration illustrated in the preceding example
occurs so often in writing: programs that CAL has a special
command for setting up this type of loop. I will do the same
problem using this special command, whieh like the IF acts by

modifying another command.

20

‘John Gilbert Student CAL Manual June, 1967

22.1 TYPE J+2 FOR J = 1 BY 1 TO & (return)
22.2 TYPE "DONE" (return)

2TO STEP 2.1 (return)

————gt2 =1
J42 =__ 4

————gtz =2
J12 =__16

DONE

>

When the computer comes to the word "FOR"™ it sets up a loop
to operate on the preceding part of the statement. To be able
to do this it must have the four things which specify an
iteration. These are given to it by what follows the FOR in
the form “"variable of itetation = initial value BY increment
TO fipal value®™. The last three quantities do not have to be
numbers; they can be variables, which have been previously
set, or even arithmetic expressions which the computer will
evaluate when it comes to them. Because 1 is so often used as
an increment the BY 1 may be omitted from a FOR clause and 1

will be assumed -as the increment by CAL.

21

John Gilbert: Student CAL Manual June, 1967

- Some ‘examples using FOR: -
| STYPE J FOR 3= 3 TO. 7
3 o= 3.

Jd

J 4
P TR . 5

J 6

J 7

" >TYPE J,K FOR J'= 1.BY 2 TO 4 FOR K= 10:T0 12

i

1 a

L= .30

!

|

3.

|

i

310

i
T

)

11

i
[
st

it
i

il
M
N

il
W

E (TR T (TR - PR | T P I
ool hoopn :
(V)

i

There are several ‘points to notice about ‘this last :example.

1) For each value of ‘K it went through the entire loop on J. .

22

John Gilbert: Student CAL Manual: -June, 1967

2) -0 .did not:take the value 4 'because it was told to: increase.
by twos from:one so that it went:1l, 3,35 but 5 was too laxge:

S0 it stopped. .

éhe following shows how this could- be: used to evaluate a

function of two variables, namely JtK. '

- 2TYPE J,K,J¢tK FOR J=1 BY 2 TO 4 FOR K=10 70 12.

=
1l
(=}

bt
]

Ros i, ... 11 .

K= 177147

Fo=0 . . 1.

[}
oot
=
I
[fomd

i
il
(5]

=
0
-
ino

_ J8R.= ... 531481

iv

John Gilbert: Student CAL Manual: June, 1967

© CHAPIER &

At this point we have the basic-tools necessary toc solve 'a
wiﬁeg?axiety of programming problems. W#We can enter data Ly
using - the 'SET command -in the direct mode. We can:compute the

" yalue of complicated -algebraic -expressions, and we are able to
do these calculations iteratively using the FOR construction.
- We can transfer control from one:part of a program to another,
using TO. The IF (condition) construction allows us to do
these things sometimes and to :skip them:at others. Finally we

can have the results of these computations typed out.

We do not,.as yet, have much éxperience in how to use these
tools to accomplish ocur aims, and until we do, we cannot:
appreciate how much can be accomplished with these commands.
For the most part the rest: of the commands in CAL simply
provide : easier or more elegant:ways to achieve results whiech
could have been obtained with the commands we have. In this
chapter I : shall:introduce some: of -these labor saving devices

and illustrate some common calculatiens. .

- 4.1 Adding numbers

Let us consider the problem: of adding up a series of
- numbers... - If: there were only a few we could write a program

which would SET A equal to:the first 'number, B equal to the

24

John Gilbert: Student CAL Manual CJune, 1967

- second, etec. - We'could then SET X = A+B+... and then TYPE X.
“It:is-clear that we would not want to do this for very many

. numbers. We need a better way to get data into the computer
and we need a better way to- handle: it" once it is in.. A
- solutioen- to: the first:. problem: is provided by the DEMAND
- command (we shall find an even better "way a. 1ittle laterd).
. The command DEMAND X' causes the computer to type out X = and
‘then'wait for youtostype a number . followed Ly a . (return)..
The computer will then SET X egual to the number and proceed
to the-next step of -the program.. One .can:put a list: of
variables - separated by commas, after DEMAND and the'compﬁter

~will ask for them one . at:a time. For exanple: -

- 25

- John-Gilbert: . Student: czil;»:;_ﬁanual- : June, 1967

i
©
*

>1.1 SET S

i
<D

>1.2 SET X~
>1.3 SET 8= S'+ X

.51 .4 DEMAND X

- >31.5 TO STEP 1.3 IF X < 9999
>1.6 TYPE S
- TO STEP 1.1

——oo_X_= 56.89 (return)

%= .33.65 (retuzn)

X = 18493 {return)d

oo s ot it e

X = 48.25 (return)

s o . -

o S o — —— -

“X .= 999999 {return) " large number to terminate-

reading
.S = . 157.72000 -

v

- In this example S-°is the cumulative sum. . Each new value of

X replaces: the: old one: which is then 1leost. This is‘an
advantage ‘if we are short of space in the computer and if we
~have no further need : for the:individual values. We use an
¢ abnormally large value"Q£~Xfﬁe:signa§;£§at~we~have entered all

the numbers we wish to'sums Suppose we had wished to save

*From now.on I will:-not indicate the non-printing characters
~such as - {return) and fescape} except in special cases and I
+ shallralsoonly underline the: computer output when it is
- necessary to:clarify a particular point.

26

John Gilbert Student :CAL Manual- June, 1967

these numbers - for some further calculation. The best- way to
do this is to put them into an array.

Here 'is one way this could be done. .

>1.1 DEMAND R

>1.2 DEMAND .D{(I) FOR I:= 1..TO N
>1.3.8ET S = 0-

>1. 4 SET ' S'= 8 '+ D{J) FOR J'= 1 . TO N

>1.5 TYPE S

>TO STEP 1.1

N =4
D) = 56.89"
D(2) = 33.65
DI(3) = 18.93
DU = 48,25
s = 157.72000
>

This program first asks-how many numbers it is to read and
then « proceeds to put:these numbers intc D(1), D(2),...D(N).
Step 1.2 clears ‘out any old wvalue-which might have been in S
and 1.3 . does the actual addition... If the: gxogram were
interrupted in the middle of this loop S would contain the sum

of the D(J)*'s which had been indexed before the interruption. .

27

Johln Gilbert Student CAL Manual ' June, 1967

- Note that - it makes no:diﬁferencé:which'letter"wehﬂseaaSathe
index variable. When J = 7, D{J) is exactly the same as D{I)
"when I = 7. This point often causes confusien and you should
- remember that it -is:the numeric: value of. the index which
determines which D in-the array is intended, not the letter

usedo.::

‘4.2 SUM operation

Adding.numhexSﬂisﬁsach‘a&éommonga¢ca§atien that ‘CAL has a.
special: command for it. The statement:
SET S'= sSOM{J = 1 TO N : DI} ¥}
has exactly the same: effect: as steps 1.3 and 1.4 in the:
preceding example. . There ‘are four functions of this type and

- I will discuss them:later in this chapter.

" We: will often find that*we"WOaié like to:include more than
one-program Step ‘in a FOR loops We might wish tO'sahxnet'oniy
the quantities D{I) in the example above but: alsoc their

- sguares. One : way to accomplish this is to put all the steps
: te%beriECIudeéain;tﬁe:iqopwiﬁﬁa'adsgecial PRRT and then use

the DO command. . I will illustrate assuming that the array
- D{I) -has already been entered and that N has been SET. . :1In

particular I use the values from the previous example..

28

John Gilbert Student:CAL Manual: June, 1967

P11 .SET 8= 8+ . DI)
>1.2 SET Q = Q.+ D{I¥32
>

>Z2.1 BET S -« Q i« {:

22,3 TYPE S/N, (N¥Q-S32)/N

- >T0 STEPR 201
sS/8 = 39.4300000 -

(N¥Q=S#2J/N = 836.30240

In step 2.1 I have introduced the replacement arrow -.
" This causes ‘the value 0f Q to be SET: to zero and then the:
value: of - S to be SET to zeros It 'can be used instead of :-the

egual ‘sign: in any SET command..

4.3 DO_commands

The effect of the DD is- like: that: of - the TO with one’
 important difference. - When the computer has finished the step
or PART specified it -does not:continue on-from that point but
rather it:goes back to the step which contained the DO and
=9roceeds."£;om.that point. . Thus STEP 2.2 causes the two steps
in PART*1<to:beidonetfor each value of :I and when the loop has

been satisfied the computer goes on to STEP 2.3. If I had

29

John Gilpert - Student :CAL Manual: | . June, 4967

~used TO instead of ‘the DO the computer would have done STEPs
2.1, 2.2, PART 1, 2.1 again, 2.2 again, PART 1 etc. In
: addiﬁion each time it came to STEP 2.2 it would have tried to
do it all over again from the beginning with I = 1. ©Note that
‘we started the program at STEP 2.1 not '1.1.. The DO makes it
possible . to write programs as a .series of PARTs and then to
have a master PART which controls the order and the number of
times .= these PARTs are to be done. . The DO does not have to be:-
used in .conjunction with a FOR clause; instead it can be used
alone or with any of «the other modifiers. You can DO a STEP
as well as a PART:and when you DO .a PART® the number of the

PART can be ‘specified by a variable or an expression.

4.4 FORMs and TYPE_IN_FORM:

In- order to - labkel® our output: and to put :more than one
number on a line we use FORMS. A FORM'allows:us to specify
just - what will occupy each space on a line when it:is typed
out. In orderkto-distinguish.between»differentvfﬂnﬁs in the

- same ' program each is given a unique nunber. The FORM is used
in conjunction with the TYPE IN-FORM command, which specifies
both which FORM'is to be used; by giving its number, and what-
guantities are to be typed.. The FORM specifies how these
guantities-are to:appear. I shall:give some examples and then

¢ discuss ‘them.

30

John Gilbert - Student:CAL Manual- June, 1967

SFORM 1 : :{1ine feed)

]
]

X IN FIXED FORM = %%%%.%% X IN FLOATING FORM = H##ys#ss

L]

>TYPE IN FORM 1.3 24.6, 24,6

1}

X IN:-FIXED FORM:

i

- 24.60 - - X IN FLOATING FORM 2.46 01
>

SFORM 2 3 -{iline feed)

RARRE BEEEH BERRE ARER%G

>TYPE IN FORM'2 3 I FOR I = 1 TO 10
> 1 2 3 4
5 6 7 8

9. 10 >

- Notice that the ': ‘is ‘followed by a line feed and not a'return.
The : computer provides a . new line so that:the FORM can be:
SQecifie&:exactly as it is-to: be typead. When —using % to

- define a field be sure to use an extra one for the sign of -the
number even :if. you know that the number will be:pcsitives
When using # to specify a field for numbers in floating point

“notation one must use: five more #s than significant digits
desired to provide rcom for sign, decimal peint, and exponént’
{which may be'negativeﬁo.uNumbersfﬁiliube*roundeawcnﬁthe;rights

- to fit ‘the space provided. If:-there is not enough room to the:

left - of the decimal: in the field defined by %s an error

31

John Gilpert: Student:CAL Manual: June, 1967

message will be printed when the program comes to that point.
If not :all the numbers which a FORM was expecting are provided
by the TYPE IN FORM command it will type what: it can and then
wait for the missing number. If & new TYPE.iN FORM' is then
-executed this new form will start where the other left off
-rather than:on:a new lime. . The number of the FORM in the TYPE
IN FORM cémman&w can"bé;“sgecifi&ﬁ by a wvariable or an

expression as' well as by a plain integer.

4.5 DEMAND: IN-FORM'

A :.special use of DEMAND uses a FORM to greatly simplify the
problem of -entering large amounts of data. Let me illustrate

- the way this works.

32

John Gilbert: Student:CAL Manual:K cJuane,; 1967

>1.1 DEMAND: IN -FORM 1 : X{I) FOR I =1 TO 6

>1.2 TYPE X{I} FOR I = 1. .TO &

o

DFORM 1
BB %

>

>TO STEP 1.1
123 234 38,56 45.67 42.35E3 42.35E-3

X{1) = 123

X€2) = 2314

X(3) = 34.560000 -
X) = 45.,670000
X(5) = 42350

X(6) = 4.2350000-02

Each number is terminated by a space except the last which

gets a {return), to start:a new line.

4.6 Floating point numbers'

- As this® example shows, we can input a number in any
combination -of ‘three formats--integerx, ' decimal, ' or - fleoating
point. For those not+ familiar with floating point: the
exponent which follows ‘the E indicates how many places the

decimal point: should be: moved toobtain the correct value. .

33

John Gilbert Student CAL Manual ‘ June, 1967

The decimal point-is moved -to the- ieﬁ@p;iﬁ»wtﬁew expcnent = 1is
~negative and to the right if .the decimal is positive. Thus
4.0E~10is a very small number while 4#.0810°'is a large number,

40,000,000,000 to beJexactg,

There are a .numbexr of mathematical functions 'which are
buiit into CAL. These functions c¢an-appear as part.of an
expression and their arguments can also ' ke expressicns. In

- addition a function can be used as an argument of a function.
When the argument-:of:a function is an expressicn it npust: be
enclosed in parenthesis. It-is probably just:as well to get
-iﬁto;thenhahitaoﬁ: always « using parenthesis. The built-in

- fanctions are:
4.7 _BUILT-IN FUNCTIONS

ABS ‘gives ‘the value of -the ‘argument taken as positive.
ABS{-98) = 98"
SIN: is the trigonometric: sine function, where the-
argament: is ‘the ‘angle measured in radians.¥*
Cesﬁis:the'cosinekwithfthe;aréﬁmentﬁiagraﬁians¢¥
TAN-is the tangent argument again in radians.*
EXZP- is the exponential function i.e. e raised to the

power .of the argument.

*Radian measure is a way of measuring angles in terms of the
- length of the arc:compared with the radius. 2{pi) radians =
- 360:. To convert:from degrees to radians multiply by pi- and

divide by 1800,

34

dohn Gilbert: Staudent CAL Manual- ~ June, 1967

LOG is the;natu:alslogarithquf%the arguments.
- LOG10 'is ‘the ‘logarithm:to the base ten. .
SQRT 'is ‘the squareroot of ‘the argument.
IP is the integer part of the arqument, i.e.
IP{34.56) = 34~
FP is the fractional part thus FP(34.56) = 0.56.
To facilitate:working with radians CAL has the special
constant

PI whose value: is pi to eight significant- figures. .

4.8 Special Functions

In addition: to the buiit-in functions, which have already
been mentioned :there are four rather unique functions in CAL;
these . are SUM,; PROD, MAX, and MIN. . The arguments of these
functions ‘contain a FOR clause, {the word FOR does not appear,

" however), and an expression. To:illustrate the form of these
funétions' suppose that' we already -~ have im the computer an
array of numbers D(I) where I runs from 1 %o N: and we

executed the following program: steps:

il

3.1. 8ET S = SUM{I= 1 TO N : D{I})

PROD(I = 1 TO N z-DETY)

il

3.2 SET T

il
i

3.3 SET U= MAX{(I = 1 TO N ::D{I})

1t

MIN (I 3 PO N-3:D{I})

- 344 SET W

- The result* would - be that S would egual the sum of the Ds, T

35

JQhﬁ“Gilbért‘ - 8tudent ‘CAL :Manual: . Juane, 1967

would equal:the:product:of all the Ds, U would equal the
largest of :the Ds ‘and V'would equal the smallest:of ‘them. The
clause before the: : has the same rules as that following a
FOR, in particular it:can be BY some increment other than one

if desired. = Any expression can follow the : .

4.9 Mean, variance or standard.deviation

To show off our new powers let us write a program to-find
the;meaﬁﬁ»vaziaﬁcegfana.the'staﬁﬁaxézdeviation of a set: of
numbers. Although we: don®t need to:for this program’letfus
save the data in-an array called D,»«fdr -data. Rather than
figuring out just:how we are going to-do:everything before we
write the program let us see if we can-organize things as we

go along. .

-

First' let us write a part to:read the Ith datum and add it
to the cumnlative sum and the cumulative sum of sguares. This
" whole part will be done over and over, once for each value of

Is

>1.1 DEMAND IN:“FORM 1 3 D(I)
21.2 SET'S = S + D(I)

P1.3.8ET T'= T:+ D{I):2

Now let wus write a part which will, assuming that we have

R4
k-4

the sum of N observation in § and of their sguares in T,

36

John -Gilbert: Student CAL: Manual - June, 1967

compute ' their : mean, - variance, and standard dJdeviation as
‘required. . We might:as well print these ocutswhile we are at:

ite’%

>2.%¥ SET M:= S/N

(T - M%*3)/N-

i

>2.2 SET V¢

It

>2.3 SET W = SQRT{V)

>2.4 TYPE IN-FORM 2 : M,V,¥H,N

Finally ‘we write a .part which sets up the initial values
and does the other parts in the correct seguence. |
3.1 DEMAND N
3.2 SET 8«T«0:
3.3 DO PART 1 FOR I = 1 TO N

" 3.4 DO PART :2

We must :not forget to specify the two forms!:
FORM 1 .=

8 B # # % 8

FORM 2 =

MEAN = %%%%.%%% VAR = %%%%%%-%% SIGMA = %%%.%%%% N = %%%%

37

John Gilbert: Student CAL:Manual’ -~ June, 1967

We ‘are 'now, I hope, ready to run the program.

>DO PART 3 -
N = 10- {Machine typed N=; you typed 10}
1234567 89 10: (You typed- -these nuxbers).

MEAN = 5.500 VAR = 8.25 SIGMA = 2.8723 . N = 10

Suppose ‘now that "we ‘are ‘reading an article in which the
sum, the sum:: of -squares, ‘and the number of observations are:
given and we wish to-check the later calculaticns.. We don’t:

‘want ‘to change what we have so we add an additional part.

>4.1 DEMAND N,S,T:

- >4.2 DO PART 2

>DO PART 4

i

No= 20

s

"

1234

]

T = 2345678
MEAN = 61.70: VAR = 113477.01 SIGMA = 336.8635. N = 20~

>

This 'is a modest 'example of -the :great flexikility which can
be gained by dividing a problem 'into separate tasks each of

which is done by a different part under the :direction of a

38

John Gilbert: Student :CAL: Manual: June, 1967

control: program. Indeed, breaking a large:problem down into
subproblems © is one: of the most: important techniques of

programming. .

: 39

Jobm ‘Gilbert: Student CAL Manual: June, 1967

' CHAPTER .5: MODIFIERS, LOGICAL EXPRESSIONS AND EDITING COMMANDS

5.1 Modifierss :

We have seen, ‘in the case of :the FOR and the IF mecdifiers
that ‘the .execution of a statement :can be made to depend upon a
modifying clause. I will now give'aﬁﬂ'then:éescribe:a:listrcf
examples which will:include all:the modifiers ' in CAL.. The
statement « numbers are: given~;for reference. This is not a
program. .

1.1 SET A{(I)=I FOR I=2 BY 2 TO 14
1.2 SET A(I)=I FOR I=2 BY 2 UNTIL I=14:
1.3 SET A(I)=I FOR I=2 BY 2 WHILE I<15

¥/{(N-1) WHERE N=16

1.4 SET X

1]

1.5 SET 'S = SQRT(X) IF X > 0~

1.6 SET S'= SQRT{X) UNLESS X < -0~

il

et

5.2 For Modifiers with TO, UNTIL and WHILE

Steps 1.1, 1.2, and 1.3 all have the same effect. In each,
the "BY™ part:can:be left outwhen TBY 1" is intended. The
terminal conditions in 1.2 and 1.3 {that 'is the I=14 and I<15)
can be: quite complicated logical expressions. . They need not:
involve the: variable of iteration (I in these: examples)
directly. A woxrd -of caution about ‘WHILE. Many right sounding

statements, meaningful in English, can be made which use the

4 -

John - Gilbert - Student:CAL:Manual: June, 1967 .

word WHILE. without using FOR. . CAL will::not dc these

statements! - Every WHILE must have a FOR part preceding it!.

5.3 _WHERE_Modifies -

Step 1.4 illuStrates the WHERE modifier. It allows :us to
make ' a SET type of statement as a modifier and is a handy way
of slipping in5a:variab1egvhere;§g Qsieh°¥efhaé.zfcrgotten to

define earlier in the program. .

5.4 IF and UNLESS Modifiers:

Step 1.5 is the already familiar IF modifier and 1.6 is
similar except ‘that the statement is executed only when the
condition:following the UNLESS is false; 'thus the two examples
will have the same effect except for the case when X is equal

£t0C zZexro. .

5.5 Several Modifiers

CAL has no fixed limit ‘to the number of modifiers that: can
follow a single statement, but the size of the input buffer,
which holds the statement - as you type it in, does set a 1limit:
of 3091charactets to the length of a CAL statement. ¥hen more
than one mcdifier. follows a statement these are interpreted
from right to left., For example:

1.7 SET A(1}=I:FQR I=1 TO N WHERE N=6

will SET the first six A{I)s, no matter what the previous

41

JoMn Gilbert . Student CAL Manual June, 1967

value of : N'was, as it will do the WHERE before the FOR. The
use of several modifiers makes it possible to:pack guite a lot
of program into a single statement. This is nct particularly
good programming practice, as it makes it harder to understand
the program. It is also harder to change. Commas:can be used
to separate the statement from its modifiers and the modifiers
-from each othexr. This may make the statement easier to read.
An example of a statement using several modifiers is:

2.1 SET A={A+N/A)/2, FOR 1I=1 UNTIL ABS {A-N/AY<D, WHERE
D=N/10E7,WHERE A=N/2

This will: compute - the square ryoot: c¢f N (by successive
approximations using N/2 as the initial estimate of -the square

root) and-call it A.

5.6 Logical ‘Expressions: -

50 far when we have referred to expressions "we have Leen
thinking about arithmetic expressions. . CAL also uses logical
expressions. ' CAL considers 0:to be false and any other value
to be true. . For example 2.3 TYPE A(I), IF A{I), FOR I=1 TO 10

will type only those A{(I)s which are not equal tc zerc.
' 5.7_Logical Operators

The logical operators are AND, OR, and NOT. . By using these
operators quite complicated logical expressions can ke built

up and used as-conditions aftexr UNTIL, WHILE, UNLESS, and 1IF.

L2

John Gilbert: Student :CAL Manual June, 1967

if A 4is false, that is to'say, has the value zero then NOT A

is true and will be given the value one.

5.8 Relations

o i S Ao S it P R i WSS i T

Usually logical variables are derived from relations. The
six relations used in CAL are =, # {(not equal), <, <=, >, and
>=, A simple example of how the relaticns and 1logical
operators can be used is: -

2.4 SET B =B + A{(I), FOR I = 1 UNTIL A{I) = 0 'OR I>20, WHERE
B=0:

The piog:am will continue to put the partial sum of -the A(I)s
into B until: one or the other of -these conditions is true--
then it 'will go on: to: the next: statement. CAL will ' not
complain if you wish to mix logical:and arithmetic operations
and variables in the same expression So you could have

2,5 SET A(I) = B{I) * (NOT (C(I) = D{(I)), FOR I =1 TO 20

The effect of this is to SET A{I) = B(I) when C{(I) was not
equal to- D{I) and zero when it was. The logical ocperators
have an order of precedence. just ‘as ‘the arithmetic. operators
do. . First: the OR énd the NOT are done and then the AND. In
an expression which contains arithmetic operators, compari-
sons, and logical operators they are done in that order. . One
must ‘be careful about this, for example, in the expression A
OR B = 4 CAL will first see if B eguals four and then OR the:

result of :this with A. Thus it will not be the same as A=4 OR

43

John Gilbert: Student CAL Manual June, 1967

B=4 even though we often say the first when we mean the-

seccndf'

5.9 Editing Commands: -

In order to: use the'editing commands of CAL we must know
how CAL handles the input :from our teletypewriter. CAL has a
temporary starage'area:where’the*charactézs from the teletype
are :Stored :as they come 'in. . {Such an area is : usumally called
an input buffer by programmers). When CAL receives a (return)
it then tries to interpret*the:string;ef@chaxacters,"whieh
came;before;the@(retuxn}s, If it succeeds it lets us know by
typing a >, if not:it 'gives a ? or an-error message. In any
case the line we have typed.stays in the input :buffer. If CAL
accepted the statement; a:copy of it will: alsc be in the
program storage: area. . As we type our next command, we will
replace .character by character our last: input with our new
inputs . The: (returm) at: the end:of -the new line causes any
remaining part of :the 0ld line 'to be thrown away 3in addition

to its effects mentioned above. .

All: the: editing commands are made by holding the control
key down while typing the specified command key. We shall
continue to indicate this by {c¢} in front of the command
letter. I now give a list of a11~the:e§itiag'cammanés with a

brief description of their action. .

44

Jonhn Gilbert Student CAL:Manual: June, 1967

5.10:DELET commands: -

{c)A This deleteswﬁhaxgrevieas character oxr égace
' and types a $. It can be used several times
to delete as many characters.

(o)W This deletes the preceding word, inclﬁding
the blank in in front of it, and types \o .
{c)Q This deletes everything up to the last line

feed and: prints =,

2011 COPY commands.

(c)C Copies the next character of :the o0id line to
the new line ‘and types it.
{c)zs This copies ~up to and including the first

time the letter following the {(¢)Z occurs in
the o0ld line. Here I have used &8 to stand
for any character. You do: not hold the
control key'ﬂewn when you type it.

{c)D This command copies the rest of -the 0ld line
into the new one inciuding the {return).
{c)F This ‘has exactly the same effect as (¢} D

except ' that the: text copied from the old
line to the new one is not ‘typed out on the
teletype. . Either of :these two commands can
be used to cause a direct: statement to ke
executed several times.

' 5.12_SKIP_commands

(c3s Skips over a character in the ¢ld 1line and
prints %. . This is ‘useful-when used with the.
repeat key. .

{c)Xs This acts 1like (c)Z& except: the characters
are skipped, including the one typed after -
the ()X It will print a % for every
character skipped. Both ({ciZ8 and (c)X§
will ring the bell:on the: teletype if- the
character indicated is not found in the o0ld
line. .

45

John Gilbert Student ‘CAL Manual June, 1967

5,13 INSERTIONS:

Al N

{c)E. -Prints and starts dnserting whatever - is
typed next. A second (cl}E stops the inser-
tion-and types >. .

' 5.18 RETYPING

()Y This types the rest -of the 0ld line and then
on a new line the new 1ine sco far. You can
then continue ‘editing the line. .

{(c)T This has much the same effect as {(c)¥ except
that ‘it ‘aiigns the two lines exactly. These
two commands are used when one is confused
about just what ‘has been dcne in the ‘editing
of.a line. .

This is a CAL statement:and it: will cause the statement
numbered X.Y to be typed out. This statement then becomes the
0old 1line for editing purposes. . This does not remove it from
the program:so that if it gets 'a new statement ‘number in the
edit - the- original step will remain as part of the prcgram as

well as the new step generated by the edit. .

The following example illustrates the use of these com-

mands.

46

Jolin Gilbert . Student "CAL :Manual- June, 1967

Suppose that we have a .statement

1.5 SET U = A + B®X*Y +C*Y?2

which we would like to change so:that it read
1.5 SET U = A*X$12 +B¥X*Y + C*¥t2

We can type-

> EDIT STEP 1.5 (return)

1.5 SET U = A#+DB*X*Y +C%*¥32

We next ‘type (c)ZA and the computer will type
1.5 SETU = A

(e)E will make the line look like-

1.5 SET U = A<

we now type *X12{c)E to obtain

1.5 SET U = AC¥X12>

{c)D will add on the rest-of ‘the line.

1.5 SET U = AC*¥X12> +B¥X#*Y +C¥¥12

To check we can type {c¢)D again to get:

1.5 SET U = A*X$2 +B*X*¥ +C%¥42

Note : that: the use of the (c)E to insert the extra characters
kept ‘the rest of the line from being changed so that we could

add it on:later with the (c)D. .

47

¢ Joh# ‘Gilbert

Student CAL Manual

6.1 DEFINING FUNCTIONS

We have already discussed
We will now explain: how a
functions.
is determined by one or more
moment I will discuss only this
example of 'such a function is::

fix,y) = 3x2 + 2xy - 5y3.

We define this function in CAL

DEFINE

F{X,¥Y1 3¥X$2 + 2%X*Y - 5%Y12.

For those without second sight :the
is an uppercase M on the teletype. .

these brackets on the keyboard. .

programmer

June, 1967

CHAPTER 63 FUNCTIONS

:the ‘built-in functions of CAL.

can define his own

In most - cases a function has a single value, which

‘arguments, or inputs. For the

‘type 0of functioen. A specific

by typing the direct statement

‘{is ‘an uppercase K and thel

There is no indication of

Now that'we have defined a . function here are some examples

illustrating its use: {In computer lingo these are known as

function callis.) -

48

Johti Gilbert Student :CAL ‘Manual June, 1967

>TYPE F 1,3}
F{1,31 = -36
S>TYPE 'F [34,243

FI34,24) = 2220

Once a .letter has been used to dencte a: function it cannot

be used as a variable: name. .

When a function is called, as in the first: . TYPE statement
above; CAL saves the wvalues of ‘the variables used as arguments
in the definition. In our example these are the variakles X
and Y. It then sets these variables to have the values of the
arguments in the function:call. In our example it 'will SET
X=1 and Y=3.. It will ' then find the value of -the function
according to the definition, and - finally it -will put the
original values of X and Y back as the value of these
variables. Thus the variables X and Y used in the: definition
are protected from being changed when: the function is called.
The only time:tﬁis arrangement ‘can: cause trouble‘ié when the
function 1is called with the same letters, used as arguments,
as were used in the definiticn but in a different order. Thus
in our example FIY¥,X]1 will: not-have the correct value when X

is different from Y.

\

Occasionally we will wish to define a function that is too

49

i Jomh Gilbert student ‘CAL Manual June, 1967

complicated to be defined in one statement.. CAL provides a
second way of defining functions to allow for this.

An example iss -

DEFINE G {X,¥] : TO 'STEP 1.1
1.1 SET B = 0.

1.2 SET B B+ X ¢t IFOR I =-=1BY -1 UNTIL X % I 0,000%

1.3 RETURN SQRT({B/YJ -

Note ragain the DEFINE statement:is direct, unnumbered.

When this @ function is called it will save X and Y and put
the values of ‘the arguments into X and Y exactly as outlined
above. CAL . will‘® then go to 'the step indicated, STEP 1.1 in
our example and:continue until, the program:comes to the word
RETURN. . CAL then assigns to the functiocn the value of ‘the:
expression following the word RETURN. It ~will then restore
the old wvalues to X' and ¥ and continue with the statement
which called the:. function. The statement following the
semicolon: in the ' define: statement dces not have to be a TC
STEP statement. If:-any other statement is . used CAL will

execute it ‘and RETURN O as ‘the value of ‘the function.

6.2 RECURSIVE_FUNCTIONS

CAL functions can be:defined recursively. This means that:
a function can be used as part of 3its own definition. The:

following. definition of N! (the product of the first N

50

Jolin Gilbert: Student CAL Manual: . June, 1967

integers) -illustrates this clearly, although it is not a. very

good way to calculate N!:@ in CAL.

DEFINE F ([N} : TO STEP 2.1

2.1 RETURN 1 IF (N<2)

2.2 RETURN N*F (N-11

Te see how this works let us go through the steps needed to
evaluate F [3]. Since the argument 'is not:less than two we
must evaluate 3*F[2], according to STEP 2.2. To do this we
must ‘evaluate Fi2]. Here again the argument 'is not less than
two so' again we go:to 'STEP: 2.2 and try to evaluate 2*%F[1]. .
{1l has an argument which is less than -two and so it RETURNs
the value 1, FI2] can now be evalauted, as 2, and finally we
see that FI3] = 3%2 or 6 and this will be the value returned
by the function. It is clear from this example that CAL must:
set up guite a: lot of: machinery +to handle this type of
function definition so that: a . direct definition is usally
superior. = Scme:functions are much easier to define using
recussion, however. The Fibonacci numbers are an example of:

this. .

Fibonacci -numbers have been investigated by mathematicians
for over 700: years. .They are defined by the rules F(1) =
1,F{(2) = 1. and F{n) = Fin-1) + F{n-2), when n>2.. . The:

following = CAL program:COmputes-theffirstrlﬁ of these numbers.

'

51

John Gilbert Student CAL Manual Jane, 1967

DEFINE FIN]l : TO STEP 20.1

20.1 RETURN 1 IF N<3
20.2 RETURN FIN-1]+F([N-2]
>

>TYPE F{I] FOR I = 1 TO 10

FI{I} = 1
FII] = 1
FII] = 2
FLI] = 3
FIlI] = 5
F{I] = 8
FIlI] = 13
FlI] = 21
FII) = 34
FII] = 5%

John Gilbert: Student CAL Manual ' June, 1967

CHAPTER_7: SAVING-PROGRAMS AND DATA ON FILES

The Harvard time :sharing system-has provision for saﬁing
both programs and data from:one login to the next. Tc¢ save a

program we use the DUMP command as follows:

>DOMP {return)

TQ_/NAME/ NEW_FILE -

The name of ‘the file (in this case NAME) can be any set of up
toc nine characters. . Some Of -these can be ncn-printing control
characters if desired. If you already have a file with the
name specified the program:will print OLD FILE to remind you
that - you will lose what: was on the: file if you put new
material into it. . DUMP:'will only save indirect prograr steps,
forms, and function definitions. If does not save: ' variables

or direct ‘statements.

To recover a . program Which has previcusly been saved on a
file named - /ABC/: by using the DUMP command we use the

following CAL command:

>LOAD (return)

FROM_/ABC/.

Hotice that . both the LOAD éna the ‘DOMP commands need a final

53

JoHn ‘Gilbert Student CAL Manual June, 1967

period. | The name:of :the file must:be enclosed by / marks..

Both of ‘these commands are used as direct commrands only.

In order to write data on a: file we must use three:

statements as follows: :

>0PEN /XYZ/ ‘FOR OUTPUT '‘AS FILE 3

DWRITE ON: 3 'IN-FORM 1 3 :«X{I), FOR I = 1 T0 10"

>CLOSE 3 |

These commands will write the ten values cof X{iI} onto a . file
names XY¥Z- in the.formatzspeciﬁieé-b? form 1. = If .the phrase
"IN FORM 1% is omitted the numbers will be put on the file in

the same format as the TYPE command uses.

To read. data from a file we 'use the processes:

54

John Gilbert Student :CAL Manual: June, 1967

>OPEN - /XY¥%Z/ FOR INPUT AS FILE 5
>READ FROM 5 : 'X{(I) FOR I = 1 TO 10°

>CLOSE 3

When CAL reads from-a file ‘all:alphabetic characters are
ignored and only the ‘numeric ones are picked up. If we write
an array without using a FORM the value of the index as well
as the value of the variable will ‘be on the file. When we ask
CAL to read this file it will take the value of the index as
the first number and the value of :the variakle as the second.

Thus if we write a file using

>WRITE ON 3 : X{I), FOR I = 1 TO 2
the record will be:
S X1 = 17
X{(2) = 88"
and so the record consists of the four numbers 1,17,2, and 88.

We can-avoid this problem by using a form for our output.

55

John Gilbert Student CAL Manual- June, 1967

' APPENDIX OF CAL STATEMENTS

This appendix lists all:the CAL statements known tc exist
on the Harvard system at the moment. When more are added this
list will :be updated and distributed. Throughout the discus-
sion e and e{i) -denote CAL expressions while v and v{(i) stand
for CAL variables.. Since an expression can:consist of a
single variable the class of e%s includes that of v’s but not

. vice-versa. CAL expressions include: logical as well as
algebraic expressions and they may invo1ve. both built-in

functuins ‘and functions ‘defined by the ‘programmer.

56

Jofn Gilbert: Student CAL Manual W - June, 1967

- Type_ Statements:

TYPE ei, €3, €3 ————

TYPE IN FORM e3_ej, €z, €3, T-==

This statement, with a null expression 1list, can be used
to print ‘headings and captions using suitakle forms.

TYPE STEP (Statement No.) -

TYPE PART e

TYPE ALL STEPS

TYPE ALL FORMS

TYPE ALL: VALUES

TYPE ALL

TYPE FORM e

TYPE "immediate 'string 'of comment™:
This statement 'can: be used to print headings and

captions.

Set Statements:
SET 'v=e -
SET vee

SET ‘vy+vz<C:

Delete Statements:

DELETE v

57

J5hn Gilbert Student CAL Manual June, 1967

DELETE ALL

DELETE FORM e

DELETE PART e

DELETE STEP (Stat. No.)

DELETE ALL VAILUES

To_Statements:

TO STEP (Stat. No.)

TO PART e

Do_Statements:

DO STEP (Stat. No.)

DO PART e

I/0 _of Data to _or from Files, Statements:

OPEN "filename®™ FOR INPUT AS FILE e
OPEN "filename®™ FOR OUTPUT AS FILE e
Filename 1is an arbitrary string of characters not

bracketed by slashes or single quotes.
READ FROM e: V3, V3, Va3, ———=

WRITE ON ey IN FORM ez ¢ €3, € , € =—==—-

WRITE ON 81 S eg,y e 0 e e« oo

58

Jo¥n Gilbart Student CAL: Manual June, 1967

CLOSE e
_To 1/0 data to and from files is necessary to use three
‘statements: -
Open Statement
1/0 Statement:

Close Statement:

£dit_Statements: -

EDIT STEP {Stat: No.J -

EDIT FORM e

pefinition of Functions_ Statements: -

DEFINE vivy, vy =---1=¢e
DEFINE vivy,va ---1: statement: (the statement is

usunally, TC STEP e)

Miscellaneous Statements: -

DEMAND 3IN: FORM e3 'Vy,;Vz, Vi, ———— works only with # type
forms

DEMAND Vip, V3 ocoo .

PAUSE .

GG

DUMP : {return) -

TO /filename/:

LOAD {(return)

59

‘3%in cilbert Student CAL Manual June, 1967

FROM /filename/ :
PAGE
" LINE .
 CANCEL
DONE
RETURN e

STEP

CAL Modifiers: -

Any number of modifiers can be attached to a CAL statement
‘according to:the formats: -

Statement, Modifier 1, Modifier 2---—-

Statement Modifier 1 Modifier 2----

WHERE v=e:

WHERE v=e

IF e {is non zero)

UNLESS e {is ‘equal to zero)

BY ez TO &3 -
"WHILE e3 is greater than zexo
FOR v=e; - 1 if empty UNTIL e3- as long as ea is
BY es TO &35 -
WHILE e3
FOR vwe, 1 if empty ONTIL e3

60

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60

