Septemuer 30, 19

-1

1.0 Introductory

Tne Berkeley Time-Sharing System 1s divided into three major nartc:
the menitor, the executive, and the subsystems. Only the first two of
these are discussed in detail in this manual. The manual atteﬁpts to
describe erhaustively all the features of the monitor and the cxecutive,
and in addition to give a number »f implementation details.

vle uze the wn;d monitor to refer to tﬁat nortion of the systen which
;s concerned with scheduling, input-output, interrupt processing, memery
vallocation and‘swgpping, and the control of active programs. The cxece,
cn the other hand, is concerned with ‘the command languagce by which the
iser controls the system from his teletype, the identificaticon of users
and Specification of the limits of their access Lo the system, the control
of the direct-ry of symbolic file names and backup sﬁorage fer these [iles,
and other miscellaneous matters.

The next ten sections of this manual discuss variovs features of the

ronitor, The remaining sections deal with the oxecutive.

August 8, 19566
2-1

2.0 The Scheduler
The piimary entities with which the time-sharing system is concerned are

| .
called active programs. Each actlve progrem is an abstract object capeble of

executingvmachine instructiona. At least one esctive program 18 esaocisted with
each act1¢e user, but a user may havé many programs, each computing independéntly
under his control.

An active program is defined by its entry‘in the program active table (EAC table
or PACT). This table contains all of the information }equired to specify the
instantaneous state of the extended compuﬁer which the user is programming,
except for that contgined'in thé user's memory or in the system's permanent
tables. The structure of a fACT eﬁtry is displayed on the follcying page,
together with brief notes about the significance of the various items. Thése
matters will be explained in more detail in thé following few sections. It will
be observed that PACT containa locetions for ssving the program counter and the
contents of the active A, B and X registers. It also contsains two pseudo-
relabeling registers for the user. A third one, which specifies the monitor map,
is kept in the job tables. " The matter of pseudo-relabeling is discussed in detail
in section 5. There is a word called PTEST which determines the conditions under
whiéh the program should be reactivated if it is not currentix running. The
panic table addrezs in PTAB and the three pointers called PFOﬁK, PDOWN and PPAR

B
are discussed in sgctioﬁ 3 on forks. . ‘ ‘

The word called PTAB contpina in bits 2 through 8 the number of thé Jjob to
which this program belongs. The top of PQU COnﬁains 1nformétion about the.
amount of time for which the progrem is allowéd to compﬁte beéore it is dismisse=d.
Seven bits of QR count the number oé clock cycles reﬁaining before the program is
dismissed, and three bits of QUTAB point to a table which specifies the length

of time which the program should be allowed to run when it is activated. All

times in the diséussion are measured in pericds of the 60-cycle computer clock.

™~
<

‘4

5 . ; ~
RE S IniTov {awu, e

November 4, 196
P2

A program is sllowed to run for a fixed period of time, after which
it is dismissed 1f any other programs are ready to run. This time is

called a long quantum. It may be different for different programs. In

fact, the size of the long quantum is determined by the entry in QTAB
which is péinted to by the prograﬁ's QUTAB bits in PACT. -

When u program is activeted, it 15 first allowed to run for s short

uantun. During this time‘it cennot be dismigsed except by its own -
ré@uest. fﬁe leng&h of the short quantum is tentatively going to he the
same for all users. It is put into a word called TIME; the long quantum
is also put into a word celled TTIME at this time. Both are decremented
at every clock cyclé.

When TIME goes negative, a word called ACTR is checked to determine
whether any program which is dismissed for I/C can be run. TIf not, the
program is allowed to continue. At each subsequent clock cycle the
program may be dismissed 1f any progreams dismissed for I/0 are ready
to run. It may also be dismissed when th: long quantum is exhausted if
any other programs are waiting to run. In either cease it is said to be

dismissed for quantum overflow. If ACTR indicetes that another program

dismissed for I/0 is ready tc run at the end of the short quantum, the
program is also dismisged for quantum overflow.

In order to allow an efficient implementationlof this scheme, ACTR is
incremented by every interrupt routine which tekes éction allowing a program

which is waiting for I/0 to run.

August 8, 1966
-3

Since ACTR is set to -1 when a program is activated, this meens that

the clockjinterrupt needs only to do

|

SKR TIME

}BRU *43

'SKN ACTR

ERU 43 ready to dismliss
SKR TTIME

BRI return to progrem

~

in order to check hoth thp conditions whiéh may require further action. If
ACTR is positive or the éhort quantum hes not run out, it is of course ignored,
in accordance wiih the above diécusaion. |

When & pr&gram is dismissed for I/0, TTIME is put into QR. When the program
is reactiVated,‘TTIME is set from QR. TIME is reset to the full short quantum.
That is, the long quantum is allowed to run down while a program computes,
regardless of whether it has to wait for I/O between computations. On the other
hand, a program is always given a full short quantum. If a program is dismissed
for quantum overflow, it 18 given a new lomg quantum vhen it is reactivated.

There are two operaﬁions available to the user which are connected with the
quantum overflow machinery. BRS L5 causes the user to be dismissged as though he
had overflowed his quantum. BRS 57 guaraniees to the uzer ﬁpon return ét lerst
16 msec of uninterrupted computation. This feature is implemented by dismiﬂsing
the usér if less than 16 msec remain in his quantum.

Ordinarily, the code which is being executed at any paiticulér insﬁant
<1s that belonging to the program which is currenfly active. This situation
may be disturbed, however, by the occurrence of interrupts from I/0 devices.
These interrupts cause the computer to enter syitem mode and are processed

entirely independently of the currently ruhning program. They never take

August 8, 1966
-l
direct action to disturb the running of this'program, although they mey get ub

-,

cdnditioﬁs in memory which will cause some other proérum to he activated when
the pres;ntly running one is dismissed. Interrupt routines alweys run in system
mode. Oﬁher code which may be runniné vhich may not belong to the program
currentl& active is the code of syatem programmed operators or ERS routines.
Thege routines are not re-entrant and therefore should not be dismiesed by the
~clock. To ensure that they- will not be, the convention is established that the
clock will not dismiss a program running in systenm mode. In order to puaruntee
that s user program will not monopolize the machine by executing a lurge number
of SYSPOPs, the user mode trap 18 turned on when the clock indicates that a
progrem ias to be diamisaedgr The traep will occur and cause dismissal as soon a8
the program returns to user mode.

The PACT word called PTEST contains the activation condition for a currently
inactive program. - The condition for activation is contained in the 6 opcode bits
of this word, vhile the address field normally contains the absolute address ofw
a word to be tested for the specified condition. It is possible, however, for
the address to contain a time count, in the case where the activation condition
is that a certain amount of time should elapse. Tt is also possible for the

address to hold a mask indicating which progrem interrupt has occurred.

The following activation conditions are possible:

0 Word greater than O)

1 Word less than or equal to O

2 Word greater than or equal to O

3 Word less than or equal to teletype early warning

L Special test. The address points to a special activation

test routine.

5 Interrupt occurred. The address contains the number of

the interrupt which occurred.
o £

Auguet 8, 1966
2-5

0 dead

1 running
, 2 BRS 31
,7 Special: address = 3 ERS 106
| 4 ERS 109

'

-5 executive BRS
11 Word 20000000= O (buffer reedy)

12 Word less than zero

An executive program can dismiss itself explicitly by putting a quecue
number (O to 3) in X and a dismissal condition in B and executing ERS 72. The

eddress of a dismissal condition must be absolute.

There 1s riormally one running progrem in the ayatem, i.e., a program which
is executing instructions, or will be executing instructions after the currently
pending interrupts have been processed. An sctive program (i.e. a PACT entry)
which 18 not running is said to be dismissed, and is kept track of in one of
two ways. |

l) If it\has dismissed itself with BRS 31, 106 or 109 (cf. seétion 5) it is
said to be in limbo and is pointed to only by the PFORK, PDOWN, ané PPAR of tha
neighﬁoring programs in the fork structure.

’ 2) If it hes been disminsed for any other reason, it is on one of the
8scheduler queuea. There are four qQueues of dismissed programs. In.order, they are:
QTI prbgrams dismisced for teletype input/output
QI0 programs dismiseed for other I/O ‘
QsQ programs dismissed for exceeding their short quenta
QQE programs dismissed for exceeding their quanta.
Programs within the queues are chained toggther in PREXT, and PREXT for thexlazt
program in each queue points to the beginning of the next queﬁe.

Whene;é;gifqis_time to activate a new program, the old program is put on
the end of the appropriate queue. The scheduler then begina at QTI and
scang through the queue structure looking for a program whose aétivation

condition ie satipfied. When one iz found, it is removed from the queue

August 8, 1966
2-6

/

stfucture and turncd over to the swapper to be read in and run. If there
e no programs which can be activated the scheduler simply continues
spanning the queue structure.
?rograms reactivated for various reasons having to do with forks
(;ntérrupté, rubouts, panics) are put onto QIO with an immediate

Co
act;vation condition. They therefore teke priority over all programs

dis;iasgd for quantum overflow.

There is a permanent entry on the teletype queue for an entity called
the phantom user. Thg activation condition for this entry is a type 4
condition which teats;for two posgibilities:

a) the cell PUCTR is non-zero

-~

b) ten seconds have elapsed since the last activation of the phantom
user for this condition.

When the phantom user is activated by (b), it runs around the system checking
that‘everything is functioning properly. In particular, it checks that the
W-buffer has not been wailting for an interrupt for an unusual length of time,
énd that all teletype output 18 proceeding normelly. Details of this procedure
are described in sections 9 and 7.

If the phantom user is activated by (a), it runs down the phantom user
queue looking for things to do. A phantom user queue entry is drawn on puge
EB; it}ia essentially a very abbreviated PAC table entry. Such an éntry is
made when the system has some activity which it wants to carry out more or
less independently of any user PAC table entry: tests for tepe ready (on
rewind) and card reader ready, and processing of rubouts (an interrupt routine
kind of activity, but too time-consuming). The second word of the entry is the

activation condition. PUCTR contains the number of entries on the phentom

uger queue.

RL1

RL2

PPTR

PTEST

PQu

PTAB

PIM

August B, 1966

2A
PAC TABLE
next queue or next program in queue
U ol 3 8
ul ° v file # of 0 saved (P)
subroutine file
saved (A)
saved (B)
saved (X)
first pseudo-relabeling register
second pseudo-relabeling register
0 1112 23
PDPWN : PFPRK
000 3activation ¢ 0 10 test word address, 3
condition or other relevant
parameter
E[E[2 8] g 11]12 23
x| B} R QUTAB PPAR
L e ol 110 23
M 0 job number 0 penic table address
MiT [N |3 <3
Tiw|T IEM
UM = user mode (1) or system
OV = overflow

PDOWN = PACT eddress of lower fork {if any)

PFORK = PACT eddress of upper fork (if any)

PPAR = PACT address of parallel fork (ends with 0)‘

QUTAB = address of word in tsble indicating quantum lengths
EX = executive type program . ER = exec BRS

QR = gmount of gquantum remainingz * TW = waiting for termination

IEM = interrupt enabled mask NT = non-terminsble

IM = local memory

MT = add no memorv

Pointer to next entry

o 819 23

test number routine sddress

o 1112 23
parameter for ™~

PACPTR for user
, routine

Pnantom user queue entry

August 8, 1966
B

August B, 1966
3-1

3.0. Forks and Jobs
3.1 Creation of Forks
A p¥ogram may create new, dependent, entries in the PAC table by
executiﬁg BRS 9. This ERS takes its argument in the A register, which
contains the address éf a panic teble, a 7-word table with the following
format:
Program counter
A register
B register
X register
First relabeling register
Second relabeling register
Status
The statug word may be:
-2 dismissed for input-output
-1 running
O dismissed on rubout or BRS 10
1l dismissed on illegal instruection panic
2 dismigsed on memory panic
The panic table address must not be the same for two forks of the same program,
or overlap a page boundary. If it is, BRS 9 is fllegsal. The first 5 bits of
the A registeé have the following éignificance: ”
0 make fork executive if current program is executive

1 set fork relabeling from panic tabie. Otherwise use current
relebeling '

2. propegate rubout asgignment to fork (see BRS 90)

3 make fork fixed memory. It is not allowed to obtain any more
memory than it is started with.

August 8, 1966
3-2

make fork local memory. New memory will be assigned to. it -
independently of the controlling fork.

i

When BRé 9 is executed, a new entry in the PAC table is created. This
new program?issmdd to be a fork of the program creating it, which is calied
the controlling propram. The fork 18 sald to be lower in the hierarchy of
forks than the controlling program. The latter may itaself be a fork of some
stiil higher program. The A, B and X registerg for the fork are set up from
the current contenté of the panic table. The address at which execution of
the fork 1s to bve stafted is also taken from the panic table. The relabeling
registers are set up either‘frOm the current contents of the panic table
or from the relabeling registers of the currently running program. An
executive program may change the relabeling as it pleases. A user program
is restrictedrto changing relabeling in the manner permitted by ERS 4k. The
status word 1s set to -1 by BRS 9.

The fork structure is kept track of by pointers in PACT. For each
program PFORK points to the controlling fork, PDOWN to one of the subsidiary
forks, and PPAR to a fork on the same level. All the subsidiary forks of a
single fork are chained in a list. A complex situation is shown on the previous
page. The arrows indicate the various pointers. |

The progrem executing a BRS 9 continues execution after the instruction.
The fork established by the BRS 9 begins executién at‘the lécgtion 3pe¢ified.
in the panic table and continues independently until it is terminated by a
panic as described below. It is connected to its controlling program in the

following three wsys:

1) The controlling program may examine its state and control its operation
T . €
with the following six instructions:

August 8, 1966
3-3

| BﬁSFBO' reads ﬁﬁé current status of a subsldiary fork into

the panic table. It does not influence the operation
of the fork in an& way.

BRS 31 causes the controlling program to be dismissed until
the subeidiary fork causes e panic. When it does, the
controlling prograﬁ is reaciivated at the instruction
following the BRS 31, and the panic table containg the
status of the fork on its dismissal. The status is alado
put;into X.

BRS 32 cauges a subsidiary fork to be unconditionally terminated
and its status to be read into the panic table.

All of these inatructions require the panic teble address of the fork in A.

They are illegal if this address is not that of a panic table for some fork.

BRS 31 and BRS 32 return the status word in the X registér, as well as
lea;ing it in the panic table. This makes it convenient to do an indexed
Jump with the contents of the status word. BRS 31 returns the panic table
address in A.

BRS 106 causes the controlling progrom to be dismissed until any
subsidiary fork causes & panic. When it does, the
controlling program is reactivated at the followin@
instruction with the panic table address in A, aﬁd the
panic table contains the status of the fork at its dismissal.

BRS 107 causes BRS 30 to be executed for all subhsidiary forks.

BRS 108 causes BRS 32 to be executed for all subsidiary forks.

August 8, 1966
3-4

2) 1If interrupt 3 is armed in the controlling fork, the termination
of any subsidiary fork will cause tha@ interrupt to occur. The interrupt
takes precedence over a BRS 31. If the interrupt occurs and control is
returned to a BRS 31 éfter processing the interrupt, the fork will be
dismigsed until the subsidiary fork specified by the restored (A) terminates.

3) The forks can share memory. The creating fork can, a8 already
indicated, set the’memory of the subsidiary fork when the latter is started.
In addition, there is some interaction when the subsidiary fork attempts
to acquire memory.

- 3.2 Memory Acquisitioﬁ

” If fhe fork addresses a block of memory which is not assipgned to it,
the following action is taken: a check is made to determine whether the machine
size specified by the user (cf. section 14) has been exceeded. If so, a
memory panic (see below) is generated. If the fork is fixed memory, a memory
panic is also generated. Otherwise a new block is ssgigned to the fork so
that the illegal address becomes legal. For a local memory fork, a new .
block is aiways assigned. Otherwise, the following algorithm is used.

The number, n, of the relabeling byte for the block addressed by the
ingtruction causing the memory trap is determined. A scan is made upwards
through the fork structu;e to (and including) the first local memory fork.

If a1l the forks encountered during this scan have Rn (the Nth felabeling
byte) equal to 0, a new entry is created in PMT for a new block of user

memory. The address of this entry is put into Rn for all the forks

encountered during the scan. _ ?

August 8, 1966
3-5

If a fork with non-zero Rn is encountered, its Rn is projagated
ownward to all the forks between it and the fork causing the trap. If
any fﬁxed memory fork is encountered before a non-zero Rn is found, a
mgmo}y panic occurs.
f This arrangement permits a fork to be started with leés memory than
its‘controlling fork in order to minimize the amount of drum swapping
required during its execution. If the fork later proves to require more
memory, it can be reagsigned the memory of the controlling fork in a ‘
natural way. It is, ;f course, possible to use this machinery in other
ways, for instance to permit the user to acquire mofe than 16K of memory,
and to run different forks with non-overlapping or almost non;overlapping
memory .
3.3 Panic Conditions
The three kinds of panic condition which may cause a fork to be
terminated are listed in the description of the steatus word above. When any
of these conditions occurs, the PACT entry for the fork being terminated is returned
to tﬁe free program list. The status of the fork is read into itg panic table
in the contrelling fork. If the fork being terminated has a subsidiary fork,
it too is terminated. This process will of course cause the termination of
all the lower forks in the hierarchy.
The panic which returns a status word of zero is called a program panic
and maey be caused by either of two conditions:
A) the rubout button on the controlling teletype is pushed. This

<

terminates some fork with a program panic. A fork may declare that it is

August 8, 1966
3-6

the Lﬁe to be terminated by executing BRS 90. 1In the ebsence of such a

decﬂaration the highest user fork is terminated. When a fork is terminated

in thia;;ay its controlling fork becomes the one to be terminated. If e user

fork ig/terminated by rubout the teletype input buffer is cleared. If the

contro}ling fork of the one terminated is executive, the output buffer is also cleared.
If the fork which should be terminated by rubout has armed interrupt 1,

this‘interrupt will occur instead of a termination. The teletype buffers will

not be affected. If the?e is only one fork active, control goes to the

1ocatio§ EXECP in the executive. This consideration is of no concern to the

user. Executive programs can turn the rubout button off with BRS 46 end turn

it back on with BRS L47. A.rubout occurring in the meantime will be stacked.

A second one will be ignored. A program which ié running with rubout turned off

is said to be non-terminable and cannot be terminated by a higher fork. BRS 26

skips ifithere is a rubout pending.

If two rubouts occur within about .12 seconds, the entire fork structure
will be cleared and the job left executing the top level executive fork... This
device permits a user trapped in a mselfunctioning lower fork to escape. Closely
spaced rubouts can be conveniently generated with the repeat button on the teletype.

. B) A BRS 10 may be executed in the lower fork. This condition can be
distinguished from a panic caused by the rubout button only by the fact that
in the former case the progrem counter in the panic table points to a word
containing BRS 10.

As an extension of this mechinery, there is one way in which several forks
mey be terminated at once by a lower fork. This ﬁay be done by BRS 73, which
provides a count in the A register. A scan is made upwafd through the fork
structure, decrementing this count by one each time a fork is passed. When

the count goes to O, the scan is terminated and all forks passed by are

Auguat 8, 1966
3-7

terminaiéd. If an executive program is reached before the count is O, then
all the user programs below it are terminated.

An ex?CUtivé program can clear the fork structure of a job by putting the
Job numbeﬁfin A and executing BRS 22. The effect is ag though enocugh rubouts
had occur%ed to send the job back to the top-level executive fork.

The fanic which returna a status word of 1 is caused by the execution of
an illegal instruction in the fork. Tllegal instructions are of two kinds:

1) Machine instructions which are privileged

2) s¥spops which are forbidden to the user or which have been
provided with unacceptable arguments.

If interrupt 2 is armed and the fork is executive, interrupt 2 will occur
instead ;f an illegal instruction panic.

A status word of 2 is returned by e memory penic. This may be caused by
an attempt to address more memory then is permitted by the machine 8ize which the
user has set, or by an attempt to store into a reed-only block. If interrupt 2
'is armed, it wi;l occur instead of the memory panic.

3.4 Debugging Fork Structure

Some special machinery existes in the monitor to aasis£ in the debugging

of programs with complex fork structure, The use of thig machinery is restricted
to executive type progrems. The idea behind it is that it ig possible to detach
a section of a user's fork structure and leave it hanging, and later to re-attach

it and continue execution.

An executive type program may give a so-called wait command, BRS 7k, which

sets up a special activation condition for the fork. This instruction i1s other-
wise equivalent to BRS 31. Any program may give a freeze command, BRS 75, which

causes the fork structure to be scanned upward for a program with this activation

Aupust 8, 1966
3-8. -
‘condition. If such e program 18 not found, an illegal instruction trap is
generated. Otherwise, all the forks below the one found are removed from
the ueue structure. The status of each fork is read into the panic table of
the immgéiately higher fork as though each fork hed been terminated. The fork
founé ié restarted and it i1s given the PACT address of the next lower fork in A,
the 1olation of the freeze commend in X, and the depth of the fork containing
the freeze command in the fork structure in B. All the forks below the one
being reactivated are entirely disconnected from the rest of the fork structure.
The onl%;handle on these’forks is the PACT address which i8 returned to A.
After the waiting progrém has been reactivated, it may proceed to generate
a nev fork str&cture. Eventualiy, however, it will wish to do abmething with
the férk structure which hes been frozen. Tt may do one of two things: the
melt command, BRS 76, takes in A the PACT address which was returned by the
freeze command, and re-establishes the fork structure as it was when the freeze
command was given. It does not, however, activate any of the forks, since
this will be done by the scheduler in the normal course of events.
If the fork which did the wait does not wish to reactivate the frozen
fork structure, it may simply destroy it by putting the PACT address which it
received froﬁ the freeze command into A and executing BRS 77. This causes all
the PAC table entries in this structure to be returned to the free program list.
No other action is taken. “
A variant of freeze is provided by BRS 89, which takes a panic table
address and freezes the fork structure beginning with the subsidiary fork
vhich has the specified panic tabie and continuing to all its subsidiary
structure. The action taken is gimilar to that taken in a freeze, and the

PACT address of the disconnected fork structure is returned in_A.

August 8, 19664

3-9

3.5 Jobs

Every complete ferk structure is associated with a job, which is
the fundamental entity thought of as s user of the system, from the system's
own point of view. The job numher appears in the PAC table entry for every
fork in the job's fork structure. In addition there are several tables
indexedv by Jjob number. These are shown on page 3B, and indicate more or less

what it is that is specifically asgociated with each job.

N

(v

November W, 191

1. 0 up
bk DoWN
0 ACROSS
4
(T J
1 L. 1 5. 1
20 0 6
L 5 0
N
2 J g 2 | 6. 5
0 g 10
T 0 0
(R
8. (10. 6
0 0
0 Y

Hierarchy of Processes

3N

()'

-

RL3

DBA

August 8, 1966

10 23]
0 start of job's PMT
0| ¥lo[brocks® 7 o M vrocka M|H 1engtn 23
_ left used of PMT
0 1 l2drum buffe}7 18temp. 23
© block Storege
¢
relabeling relabeling

teletype associated with this job

amount of CPU time used

drum blocks available

NP= don't cherge memory againgt machine size.

Job Tebles

3B

August 8, 1906
b1

4.0 Program Interrﬁpts

A facility is provided in the monitor to simulate the existence of
hardware interruptsg. There are 20 possible interrupts; four are reserved
for special purposes and 16 are available to the programmer for pgeneral usc.
A fork may arm the interrupts by executing BRS 78 with a 20-bit mask in the
A register. This causes the appropriate bits in PIM to be get or cleared
according to wheﬁher the corresponding bit in the mask is8 1 or 0. Bit 4)
of A corresponds to intefrupt nunber 1, etc. No other action is taken at
this time. When an interrupf occurs (in a manner to be described) the
execution of aﬁ SBRM¥* to location 200 plus the interrupt number is simulated
in the fork which armed the interrupt. Note that the propram counter which
is stored in the case is the location of the instruction being executed by
the fork which is interrupted, not the location in the fork which causes
the interrupt. The proper return from an interfupt is a 'BRU to the location
from which the interrupt occurred. This will do the right thing in all cases
including interrupts out of input-output instructions.

A fork may generate an Interrupt by executing BRS 79 with the numbe:r
of the desired interrupt in the A repgister. This number may not he one, two,
three or four. The effect 1s that the fork structure is scanned, starting
with the forks parallel to the one éausing the interrupt aﬁd proceeding Lo
those above it in the hierarchy (i.e., to its ancestors).. The first fork
encountered during this scan with the eppropriaste interrupt mask bit set
is interrupted. Execution of the program in the fork c%using the interrupt
continues without disturbance. If no interruptable fork is found, the

interrupt instruction is treated as a NOP; otherwise, it skips on return.

November 4, 1965

h-o

Interrupts 1 end 2 are handled in a speciel way. If a fork arms
interruét 1, a program panic (BRS'10 or rubout hutton) which would
normaliy terminate the fork which has armed interrupt 1, will instead
cause gnterrupt 1 to occur, that is, will cause the execution of an SBRM¥
to location 201. This permits the programmer to control the ection taken
when the rubout button is pushed without establishing a fork specifically -
for this purpose. If puéhing the rubout button causes an interrupt to
occur r:ther than terminatiﬁg a fork, the input buffer will not be cleared.

'If a memoiy penic occurs in a fork which has armed interrupt 2, it
will éause interrupt 2 to occur rather than terminating the fork. If an
illegal instruction panic occurs in an executive fork which has armed
interrupt 2, it will cause interrupt 2 to occur rather than terminating the
fork.

Interrupt 3 is caused, if armed, when any subsidiary fork terminates.
Interrupt 4 is caused, if armed,-when any input-output condition occurs
which sets a flag bit (end of record, end of file and error conditions can
do this).

Whenever any interrupt occurs, the corresponding bit in the interrupt
mask is cleared and must be reset explicitly if it is desired to keep the
interrupt on. Note that there is no restriction on the number of fofks

which may have an interrupt on.

To read the interrupt mask into A, the program may execute BRS Lg.

August 8, 1966
9=l

5.0 TheﬁSwapper and Memory Allocation
|

Becéuse of the necessity in various parta of the system for relsbeling
registerg which do not égange with time, the user has been denied any access
to ordiﬂary relabeling. In place, he is given access to so-called pseudo-
relebeling. His pseudo-relebeling registers consists, as do the ordinary
‘relabeling registers, of 8 six-bit bytes. Eacb one of these bytes points,
however, not to a real block of memory, but to an entry in the user's pseudo-
memory table, PMT (but see below). This table may contain up to 64 words,
each one specifying a cértgin 2K block of memory. The first version of the
system, however, will allowAaccess to only 14 bytes. The poésible forms of
an enﬁry in tﬁe pseudo- memory table are shown on page 5A. Allhof the
entries are more or less self-explanatory, except the second, which will be
discussed in considerable detail later,

When it is necessary to activate a user, his pseudo-relabeling registers
are used to read out the proper bytes from PMT and construct a list of blocks
which need to be read in from the drum. When thié 1list has been constructed,
the current state of core is exsmined to determine whether any blocks need to
be written out to meke room for these which must be read in. If so, a list of
blocks to be written out is constructed. The drum command list is then set up
with the appropriate commands to write out and read in the necessary blocks.
The scheduler then passes on in an attempt to activate another propgrem while
the drum operations are being performed. If\it is not successful in doiny so,
it simply hangs up until the swapping is complete. In the scan which sets up the
drum read commands, thé swapper collects from PMT or SMT the‘actual abgsolute
memory addresses of the page called for by the'pseudo-relabeling and constructs
a gset of real relabeling registers which 1t puts in two fixed locations in the

monitor. It then outputs these relabeling registers to the hardware and activates

the program.

August 8, 1966
Hao

Matters are slightly complicated by the existence of a system parameter
called NCMEM. Pseudo-relsbeling bytes with values from 1 to NCMEM-1 (O means
an unassigned page) actually refer directiy to the first NCMEM-1 pages of SMT, the
shared memory table and the user's own PMT is addressed beginning at NCMEM. The
"common” portion of SMT' is used to hold the most common subsystems.

There are two BRS's which permit the user to read and write his pseudo-
relabeling. BRS h3.reads the current pseudo-relabeling registers into A and B.
BRS Uk takes the contents of A and B and puts them into the current pseudo- .
relabéling registers. An eiecutive program may set the relabeling registers in
arbitrary fashion by using thié-instruction. A user program, however, may add
or delete only blocks which do not have the executive bit set in PMT. This
prevents the usef from gaining access to executive blocks whose destruction may
cause damage to the system. Note that the user is doubly restricted in his
access to real memory, firstly because he cen only access real memory which is
pointed to by his pseudo-relabeling, and secondly becguse he 18 only allowed to
adjust those portions of his pseudo-relabeling which are not executive type.

The user can also set the relabeling of a forkkwhen he creates it. See
section 3. The same restrictions on manipulation of executive blocks of course
apply. |

The system maintains a pair of relabeling registers whiéh the executive and
various subsystems think of as the user's program relabeling. For the convenience
of subsystems, an executive program can read these registers with BRS 116 and set
them with BRS 117. »

The memory allocation algorithm is described on page 3-2. A user can
release a block which is in his current relabeling by putting any addressg in
that blopk into A and executing BRS 4. The PMT entry for the block is removed

and in any other fork which has this PMT byte in its relabeling, the byte is

cleared to O.

August t, 196€
9-3

Equivalent to BRS 4 is BRS 121, which takes a pseudo-relabelins byte In A '
rather than an address. An inverse operation is BRS 120, which takes a'pseudo-
relgbeling b&te in A, generates an illegal instruction trap if the corresponding
PMT entry isﬁoccupied, and otherwise obtains a new page and puts it in that éntry.
This is an e;ec-only operation, of course.

A word‘of PMT whose first two bits are 0l contains a pointer to the shared
memory toble, SMT. An entry in SMT looks exactly like an unused or private entry
in iMT. The read-only bit is not used by the swappef, however, since the read-
only stutus of the papre is taken from the PMT word which points to it. It refere
to a block of memory which has a fixed location on the drum and may be referred
to by more than one program: Ehfries in SMT may be made by the exec or by a user.

The exec makes an entry in SMI by executing BRS 68 with a byte number in A.
The block address by the specified byte in the pseudo-relabeling registers is put
into SMT and the pointer in SMT of this byte is returned. If bit O of A is set,
the byte is made read-only. By putting an index in SMT in A and executing BRS 69,
a pointer to the specified location in SMT 18 put into the first free byﬁe of a
user's PMT and the byte number is returned in A. The read-only bit in the SMT
entry is propasated to the PMT entry thus created. To delete an entry in SMT, the
exec may dellver ite index in A and execute BRS 70. The detailed use of this
machinery is discussed in section 16.

The user may declare a block read-only by executing BRS 80 with the pseudo-
relabeling byte number of the block in A and with bit O of A set. To make a block -
read-write, bit O of A should be clear. Bit O-of A will bve reset if the block was
formerly read-write or set if it was formerly read-only. If the program doing this

is not an executive program, then the block must not be an executive block. Only

an executive program can make a read-only PMT entry which points to SMT into a

£

read-write entry, for obvious reamsons. The significance of a read-only block to
the swapper, of course, is that it need not be rewritten on the drum when it is

removed from memory.

August 8, 1966
5l

The drum is divided into 84 bands;'each containing 16,000 words arrenged
in 8 blocks of 2K each. Up to 48 of these bands may be used by the swapper
for program storage. A bit table is maintained to indicate the availsbility
of 2K blocks in these bands. The table consists of 8 words, eacﬂ containing
24 bits, one for each band. If a bit iszero, it indicates that the block is
in use. If it 18 set , the block 1is svailable. When.the user's memory is
written out onto the'drum, it is written as nearly as possible in adjacent
blocks, so that it may be read in without undue drum latency time. This method _
for keeping track of available blogks facilitates optimum output of the user's
program. I
It should be noted that whenever a user is activated, all of the memory
in his current relabeling registers is brought in. The user does, however, have
‘ considefable control over preclsely what memory will be brought in, because he
can read and set his own relabeling registers. He may therefore establish a
fork with a minimal amount of memory in order to speed up the swepping process
if this is convenient,. |
For a user with an especially great need for raﬁid response, an Iinstruction
is provided to make a block permanently resident in core. Use of this instruction
is restricted to users with the appropriate bit of the user directory set. To
make a block permanently resident, execute BRS 55 with the pseudo-relebeling byte
number of the block in A. To mske the block swappsble again, execute BRS 55 with
O in A. To reserve a block of core memory for the use of BRS 55 instructions,
execute BRS 54 with O in A. To release this block, execute BRS 5k with -1 in A.
To make a block executive, execute BRS 56 with thg Same\érgument as for BRS 80,
make block read-only. This instruction is legal only for executive type programs.
The system keeps track of the state of real core with two tables called the real B
memory table (RMT) and the real memory use count table (RMC). An RMC entry is -1

if a page is not in use; otherwise it is one less than the number of reasons why

August 8, 1966
5=5

'it id in usei Evéry>occurrence of the page iﬁ'the relabeling of & pfééess which
is runn;ng or about to he run counts &8 such a reason. In eddition, other parts
of the syst?m can increment en RMC word to lock e block in core. BRS 55 also does
this. No biock with non-negative RMC can be released by the Bwapper.

The format of an RMT entry (one per real page) is

R 2 ~ 9110 23
g ol ©] address of PMI' or SMT entry
responsible
USE = in use B RO = read-only

There is one more table indexed by real memory, celled the real memory aging
table. Whenever the swapper is entered, every word in this table is shifted right
one bit. All blocks which show up in the real relabeling computed from the pseudo-
relabeling with which the swapper was entered then have bit 1 turned on. The
blocks with lowest RMA are selected for swapping out; of course their RMC entries

must be negative.

The swepper also contains a device called the simuleted associative memory

or SAM, which contains pseudo-relabeling and real relabeling for the most recently
used maps. Tt serves to reducF the amount of time needed for map-changing when
little swapping is teking place. It is cleared whenever a drum read takes place,
gince this chénges the contents of realvmemory énd potentiaily invaiidates all
real relabeling registers.

Two BRS's exist for reading and writing 2K blocks at specified places on
the drum. They are of course restricted to executive programs. To read a block, put
the drum address.into B and the core address in A gnd execute BRS 10k. To write

a block use BRS 105. Drum errors cause these instructions to generate illegal

instruction panics.

August 8, 1966

0
(a) Unused
14 R 16 23
Olo SMT entry number
(b) Shared
71E|9 17 R 19 2
0 X drgm location 0
(¢) Private

DM = on drunm
EX = executive
RO = read only

Possible Formats for PMT Entries

5A

August 8, 1966
=1

6.0 Miscellanecus Features

A user may dismiss his program for & specified length of real time
by cxceuting BRS %1 with the number of milliseconds for which he wishes to he
dismissed in A. it the first available opportunity after thic time has
been eyhausted, his progran wi1ll be reactivated., Thic feature is irple-
mented with a special activation condition and the value of the clocl
at the time when a user is to be rcactivated is kept in the address f

~

PIEST. The activation;condition causcs the current valuc of the cloclk,
riodulo 21h, to be compared with this value. Vhen the clock becmes
greater, it is time to reactivate the program.

He can read the real-time clock into A by executing BRS L2. The
number obtained increments by one every 1/60th of a second. Its absolute
magnitude is not significant. He can read the elapsed time counter in A
by executing BRS 88. This number is set to G whea he.enters the system
and increments by 1 at every 1/60th second clock interrupt at which his
program is running.

To obtain the date and time, he can execute BRS 20. This puts six
8-bit characters into AB. These characters contain, in order, the year,
month, day,yhour (0-23), minute and second at which the instruction is
executed. |

A user may dismiss hls program until an interrupt occurs or the fork

in question is terminsated by executing BRS 109.

A program can test whether it is executive or not\by executing BRS 71,

which skips in the former case.

August 8, 1966
6-2

An executive program can diemiss itself explicitly. See section 2.

There are two operationg designed for so-called execuﬁive BRSs, which
op#rate in user mode with a map diffe;ent from the one they are called from.
BRS lli returns from one of these BRSs, transmitting A, B and X to the calling
prdgrém a8 it finde them. BRS 122 gimulates the addressing of memory at the
locatgon gpecified in A. If new memdry is essigned, it is put into the
relabeling of the calling program. A memory panic can occur, in which case
it eppears to the celling progrem that it comes from the BRS instruction.

An executive progrém can cause an instruction to be executed in aystgm

+ -
mode by addressing it with EXS.

August 8, 1966
-1

i
i

|
7.0 Telétype Input-Output

We 5egin with an outline of the implementastion of the teletype operations.
| ,
This may serve to clarify the exact disposal of the characters which are bein;

read and written. Every teletype has attached to it a table which is given on
the following page. Also attached to the teletype is a buffer which contains

input and output characters in the following format:

0 718 15116 23
input character output character c??§a§£§§ to-echo

As characters are output by the progrem, they are added to the output buffer,
whiéﬁjﬁay be ;egarded as logically independent from the input bwuffer in spite
of the fact that it resldes in the same words. The characters sre then output
by the teletype interrupt routine as repidly as the teletype will accept them.

These buffers are called character ring buffers (CRBs), and they are not

necessarily attached to teletypea. This question is discussed in detail in
section 9.5.

When a character is typed in on a teletype, it is converted to internal form
and addedhto the input buffer unless 1t is rubout on a controlling teletype. The
treatment of rubouts is discussed in section 3. The echo routine address is then
obtained from TTYTBL and called. It fipures out what to echo and whether or not

the character is a break character. The available choices of echos and break

characters are listed below. If the character 18 & bresk character, and if a
user's program hag been dismissed for teletype input, it will be reactivated
regardless of the number of words in the input buffer. In the absence of a hreak

character, the user's program is reactiveted dnly when the input buffer is nearly

full.

August 8, 1966
1-2,

If the teletype 18 in the process of outbutting (Tgs2 > -1) then the
character to be echoéd is put into the last byte of the buffer word which
confains the input character. When thé’character ig read from the buffer by
the propsram, the echo, if any, will be generated. This mechanism, called

deferred echoing, permits the user to type in while the teletype is outputting

without having his input mixed with the teletype output.

There are fouf standard echo routines in the system, referred to by the
numbers O, 1, 2 and 3. O is a routine in which the echo for each character "is
the character itself, and all characters are hreak characters. Routine 1 has
the same echos, but all characters except letters, dipgits and space are break
characférs. Réutine 2 agein has the same echos, but the only break charactérs
are control charscters (including carriage return and line feed). Routine 3
specifies no echo for any character, and all characters are break characters.
This routine is useful for a program which wishes to compute the echo itself.

To set the echo routine, put the teletype number in X and the echo routine
number in A and execute BRS 12. Note that BRS 12 is also used to turn on 8-level
mode (see below). To read the echo routine number 1ﬁto A, put the teletype numberA

in X and eiécute BRS hO. This operation returns in A the following word:

) 2 s|s 5 i ala 10 ; 23
Tip M echo table number

To input a character from the controlling teletype (the teletype on which
the user of the program is entered) into location M in memory the SYSPOP
TCI M (teletype character input) \
is used. This SYSPOP reads the character from the teletype input buffer and places
it into the é rightmost bits of location M. The remainder of location M is clearea

The character is also placed in the A register, whose former contents are destroyed.

August 8, 1966
: 7-3

The cgntents of the other 1ntérnal registera are preserved by this and all
the other teletype SYSFOPs and BRS's.
To output a character from location M, the SYSPOP
’! TCO M (teletype character output)
is uaed; This instruction outputs & character frem the rightmost 8 bite of
locatign M. In addition to the ordinary ASCII characters, all teletype output
operations will accept 135 (octal) as a multiple blank character. The next
character will be teken as a blank count, and that many blenks will be typed.
The TTYTIM cell in ﬁhe teletype table is set to the current value of the
clock wg;never eny teletype activity (interrupt on output SYSPOP) occurs. The top
bit is left clear unless the activity is a rubout input. This éell 18 checked
;) by the rubout processor to determine whether the rubout should
reset the job to the exec. See p3-6
b) by the phantom user's ten-second routine to check that no output
interrupt hes been dropped by the teletype interface. If no activity
has occurred for 2 seconds and characters are weiting tc be oubtput,
the interface is awakened.
c¢) by the phantom user's ten-second routine to check whether eny activity'
has teken place in the last 30 seconds. If not, a control character
is output to reassure the user that the system 18 alive.
Every teletype in the system is at all times in one of three states:
a) It may be the controlling teletype of some user's progranm.
It gets into thip state when a user enters on it.
b) It may be attached to some user in a manner sbout to be described.
¢) It may be completely free.
The status of the teletype is reflected by the contents of TTYASG. There are

mechaniems to be described by which the user may direct output to any teletype

August 8, 1966
7=k

in the syastem which is willing to accept it and receive input from any teletype
which is not freer If, however, he wishes to have better control over a
teletype (for instance, to prevent other users from accessing it) he may attach
it by executing the instructions

LDA =teletype number

BRS 27
If the indicated telefype is free, it is attached to the user whose program
executes the instruction, and the BRS will skip. Otherwise the teletype statug
is not affected, and the BRS does not skip. In the following discussion we
will say that a teletype is;attﬁched to a user even if it is the controlling
teletypeT

To release an alreédy attached teletype, execute the instructions

LDA =teletype number

BRS 28
If the specified teletype is not already attached to the user, this is an
illegal instruction and causes a panic. A1l attached teletypes are, of course,
released when the user logs out.

A teletype becomes é controlling teletype if it is dormant and rubout is
psuhed on it. It can be returned to its dormant state by BRS 112, which takes
the job number of the joﬁ asgociated with the teletype in X. A job may-tefminate
itself. This operation also releases all teletypes attached to the job.

The user may specify for his controlling teletype or for one which he has
attached, whether or not messages from outside will be accepted, and whether or
not input from outside will be accepted. The former cond%tion is governed by
the accept messages bit, the latter by the accept input bit. The accept message
bit controls exécution of OST instructions and the setting of teletype output
links. The accept input bi£ controls execution of STI instructions and the

setting of teletype input links.

August 8, 1966
15 .

To set these bits, the user may execute
LDX =teletype number

LDA BITS
BRS >

The last bit of BITS will set the accept input bit, the next to last the accept
messages bit. Setting or clearing theée bits will not affect any teletype
links currently active.

To do input and output to specified teletypes (rather than implicitly to

& controlling teletype as in TCI and TCO) the SYSPOPs IST and OST are availal;le.
To input a character from a specified teletype, execute the instrucfion

IST =teletype number (input from specified teletype)
which B;ings the character intc the A register. This instruction is illepal
unless the teletype is attached to the user. To output a character to a
specified teletype, execute the instructions

LDA =character

0ST ateletype number (output to specified teletype)
This instruction is illegal if the following three conditions are satisfied:

(1) the specified teletype is not attached to the user,

(2) ;ge gpecified teletype does not have its accept messages hit set,

(3) the program executiﬁg an instruction 1s a user rather than an
executive program. If these conditions are satiasfied, an illegal
ingtruction panic will be genersated.

Note that attached teletypes do not have the same status as the controlling

teletype for a user. In particular, puahing the rubout button on an attached
teletype will have no effect. %

The instruction

CI0 =teletype number + 1000

August 8, 1966
7-6

is exactlxtequivalent to

%IST =teletype number.
The instrﬁction

[

CI0 =teletype number + 2000
is exactly equivalent to

0sT =teletype number.
Thig mechanism permits the user to do I/O to specified teletypes within the
framework of the sequential file machinery. :

The user has considefab;e control over the state of the teletype buffers

for the teletypes attached to>him.. In particular, he may execute the following
BRS's. All these take the teletype number in X. Recall that -1 may be used

for the controlling teletype.

BRS 11 clears the teletype inﬁut buffer.

BRS 29 clears the teletype output buffer.

BRS 13 skips if the teletype input buffer is empty.

BRS Lt walts until the teletype output buffer is empty.

There ié one additional piece of machinery which permits output to go to
a teletype other than the controlling teletype. This machinery is implied by
the top bits of TTYTBL, which specify whether eny link bits are set. Associated
with each teletype are two words called the absolute input link control word
(1cwW) and the absolute output ICW. Each of these words contains one bit for
each teletype in the system. If the bit for teletype m is set in therinput ICW,
for teletype n every character which goes into n's input buffer will élso go into
m's input buffer. If the bit is set in the output ICW, every éharacter which 1s
output to n, including echoes, will also be output to m.

Also associated with each teletype are relative ICW's for. input and output.
The bits in these ICW's are set by BRS 23. Each time any relative ICW is changed,

th~ obsolute ICW's are all recomputed. The Boolean natrix formed by the absolute

August 8, 1966
r’-tz

input (output) LCW's is the infinite product of the matrix of the relative
input (output) ICW's.
The instructions
LDX =teletype number
TDA =TABLE
LDB CTL
BRS ?3
will set one of the relat;ve ICW's for the indicated teletype. TABLE is the

address of a list of teletype numbers terminated with -2. The bits of CTL are

interpreted as follows:

0 O=output ICW
l=input ILW
1 O=clear all links first

l=do not clear links first
2 O=get link bits for teletypes whose numbers are in the table
l=clear link bits for teletypes whose numbers are in the teble
From the old relative ICW and the information supplied by BRS 23 a new relative
ICW is created. New absolute ICW's for all teletypes are then-computed.
An output link can be set up between twe téletypea only if each of the
teletypes satisfies at least one of the followipg conditions:
a) it is the controlling teletype of the prbgrmn executing BRS 23
b) it is attached to the program _
c) its accept messages bit is on (destination onlx)
d) the fork executing the BRS is executive.

An input link can be set up only if the same conditions are satisfied for the

accept input bit.

August 8, 1966
7-8

To clear all links, input and output, to or from a teletype, execute

|
 LDX =teletype number

i

BRS oL
|

Speéial provision is made for reading 8-bit codes from the teletype
without sensing rubout or doing the conversion from ASCII to internal which
is done by TCI. To switch a teletype into this mode, execute
DX =teletype number
LDA =terminal character + LOOOOOOOB .
BRS 12 |
This will cause each 8-bit‘éﬁaracter read from tﬁe teletype to be transmitted
unchanged to the user's program. The teletype can be returned to normal
operstion by
(1) reading the terminal character specified in A, or
(2) setting the echo table with BRS 12. |
No echoes are generated while the:teletype is in 8-level mode. Teletype output
is not affected.
A parallel operation, BRS &, is provided for 8-level output. BRS B6
returns matters to the normal state, as does any setting of the echo fable.
To simulate teletype input, the operation
STI =teletype number
is availsble. STI puts the character in A into phe input buffer of the gpecified

teletype. Tt is legal only if the accept input bit is on.

August 8, 1966

TA
TELETYPE TABLE

TI?E number of characters in input buffer
TISE next aveilable space in input buffer (pointer)
TISS f next filled space in input buffer (pointer)
TOS2 | number of characters in output buffer; -1 = inactive
TOS3 < 0 = not in multiple blank mode; 40O = just saw 135

(multiple blank character); other = number of blanks
TOSk next filled space in output buffer (pointer)
TOSS next availeble space in output buffer

BT 10 23
: N S|8|1I)0 AlA

TTYTBL g 0 0 1 lolnly 0 1M addrese of echo routine
TTYFLG don't listen for input (except rubout) when O. Set when input

buffer is full.
TTYBRK waiting for break charscter when -1

TTY Stetus
PACPIR of fork to terminate on rubout active
TTYASG 37T 7T 7T 7 inactive
lscontrolling Job 23 attached

ROICW relative output link control word
RIICW relative input link control word
TTYTIM E value of clock when last action occurred on this tty
TTYDEV device (normally physical telétype) using this buffer.
KS = not linked or 8-level AI = accept input
AM = accept message SI = 8-level input
IL = input linked | SO = 8-level output

0L = output linked RB = last action was input of rubout

August 8, 1966
6-1.

8.0 Drum and Buffer Organization; Devices

8.1 File Storage on the Drum

The drum is divided into two major sections, program swapping and

file storage. The orgenization of the program swapping eres 1s discussed in
gection 5. The file etorege sares is divided into &6 word blocks which form
the physical records for etorage of files.

Every file has one or more index blocks which contain pointers to the
data blocks for the file. An index block is e %56 word block, es are all other
physical blocks in the file‘storage area. Only the first 144 words of the index
block are used, however, for data storage. A couple of additional words are
used to chain ’;:he index blocks for any particular file, both forward end backward.
The index blocke for & file contain the addressez for all the physical blocké
used to hold information for the file.

Available storage in the file area of the drum is kept track of with a
. bit table similar to the table used to keep track of program swapping storage.
Since there are sixty-four &6-word blocks around the circumference of the
drun and a maximum of 72 drum bands {out of the 84 avalleble) may be used for
file storage, & 192-word bit teble which contains 3 words or 72 bits for each
row of physical blocks suffices, If a bit in this table is set, it indicates
that the corresponding block on the drum is in use. Agein, as with program
swapping atorage, the orgenization of this table makes it easy to optimize
the writing of files. This iz done by putting consecutive physical blocks in
the file in alternating rows on the drum. The intervening row between each two
phyeical blocks provides the time for the channel‘to fei;h g new cozmand and
the heads to switch. The'reault of this orgenization 18 that information may

be transferred from a file on the drum into core at one-helf core memory speed

if conditions are right.

August 8, 1966
8-2

8.2 File Buffers

“Every open file in the system with the exception of purely charucter-
|

orientedffiles such as the teietype hags &« file buffer assoclated with it. Thé
form of éhia buffer is shown on page 8A. Purt (u) of this figure shows the
buffer proper, and part (b) shows the index block buffer and pointers ussocinted
with it.} Purt (b) 18 not used only by drum files, but is present in all cases.

Each job has associuted with it a temporary storuge block, which is alwuys

‘the first entry in the job's PMT. Thie block 18 used to hold information zbout
the user and for the system's temporary storage. It also has rocom for 3 buffers.
An a2dditional block may be assigned with room for 5 more buffers if more than 3
files are open at one time.x The pseudo-relasbeling for the extra buffer block und
"the TS block is held in a table called RL3 which 1; indexed by job number, and is
put iﬁto the monitor map whenever any fork belonging to that job is run.

Note that the amount of buffer space actually used i8 a function of the device
attached to the file. 1In all cases the two pointer words at the head of the buffer
indicate the location of the data. The first word points to the beginning of the
relevant data and is incremented as data are read from an input buffer. The
second word points to the end of the data and is incremented as déta are written into
an output buffer. When the buffer is in its dormant state, both words point to the
first data word of the buffer. Whenever any physical I/O operation is completed
the first pointer contains the address of this word. |

8.3 Devices

Every different kind of input-output device attiched to the system hes

a device number. The numbers applicable to épecific devicen.are given in section
9; here the various tables indexed by device number are described. The entries

in these tables addressed by a specific device number together with the unit number
(if any) and the buffer address, completeiy deTine the file. All this information

is kept in the file control block (section L4.3) which is addressed by the file

number.

August 8, 1966
A-3

Page BB shows the tables indexed by device number. Note the multiplicity
of hits which specify the characteristics of the devige. Some of thesge call
for comment. A device may be common (8hared by ﬁsers, who musﬁ not access it
simultaneotsly; e.r. tape or cards) or not common (e.g. drum); this characteristic
is defined by NC. It may have unite; e.g. there may be multiple mastapes. The
U bit specifies this. The DIU word indicates which file is currently monopolizing
tﬁe device; in the case of a device with multiple units, DIU points to a table
called ADIU which contains one word for each unit.
The major parameters of a device are
- the opening routine, which is responsible for the operation necéssary
_to attach it to a file |
- the GPW routine, which performs character and word I/0

- the BIO routine, which performs block I/0

Minor parameters are
- maximum legal unit number
- physical record size (determining the proper setting of bufferybointers
and interlace control words for the channel)
- the expected time for an operation; the swapper uses this number to

decide whether it is worthwhile to swep the user out while it is

taking place.

BIA
BIP
BIN
BDN

BIC
BDC

BBP
BFP

(b) Layout of index block huffe

August 8, 1966
?
A

pointer to first relevant date word of buffer

pointer to lest relevant data word of buffer

1st data word

>S6th date word

(a) ILayout of a file buffer

drum address of current index block

pointer to indgy block entry for current

number of index blocks in buffer

number of detsa blocks in buffer

Erandom files only

index changed flag

data chenged flag

first index block word

ololE[3 15116
drun eddress for dete word count

JO

23

index block word format
EOR=end of record flag

1% th index block word

pointer to previous index block {or 0)

pointer to next index block (or O)

always O for

sequential files

nd, sageeieted pointers for a dmmy file.

15333

August 8, 1966

* © DEV word or

character I/0
routine

BUFS

-~ pbuffer size

'BIEV

tlock I/0 routine

DIU .
device in use

OPNDEV
opening routine

6 1 = 3 4 5 6 7 8 95 1P 23
56 ¢ | cH|DRM ; r<| ¢ | aF| welovr| ¢ GPW routine
CH char oriented RX random access WB W buffer
DRM drum BF requires ouffer CUT output
6 1 2 3 8 9 18 ' 23
% $ | N ‘ max. unit number l 3] l physical record size
C |
U check unit number NC not common (i.e. don't set DIU)
¢ 9 __1p 23
8 4 BIO routine
@ 23
file number using this device or -1 U=0
points to ADIU (has unit number added) U=1
¢ 1 2 3 8 9 19 23
E expected wait time
8190 0] in clock cycles opening subroutine

E0 exec only allowed to open

August 8, 1966
9-1 .

9.0 Sequential Files
9.1 Sequentieal Drum Files

There are two bagically different kinde of files which the user :iay
write on the drum: sequential end random. A sequential file has a atructur;
very similar to that of an ordinary magtape file. It consists of a sequence
of logical records of arbitrary length and number. Drum sequential files are
however, considerably more flexible than corresponding files on tape, hecause
lozical records may be inserted and deleted in erbitrary positions and.increusedﬁ

~

or decreased in length. Furthermore, the file may be instantaneously positioned
to any specified logical:recofd.

A sequentisl drum file may be opened by the following sequence of

instrﬁctions:

1DX =device number, 8 (input) or 9 (output)
LDA =unit number, address of first index block
BRS l

If the file is opened successfully, the BRS skips; oiherwise it returns without
skipping. Use of this BRS i8 restricted to executive type programs. User
programs may access drum files only through the executive file handling machinery.
BRS 1 can also be used to open other kinds of files. The device and unit numbers
are used to determine the physical location of the file. See section 9.2.

If BRS 1 fails to skip, it returns in the A register an indication of the
reason:

-2 too many files open -~ no file control blocks or no buffers available.

-1 device already in use. For the drum, produced by an attempt to open
a file for output twice ‘

\

0 no drum space left. This inhibits opening of output files only.

See section 9.2 for other error conditions.

August 8, 1966
9-2

S 1 returns in the A register a file number for the file. This file
number is the handle which the user has on the file. He may use it to close the
file| when he is done with it by putting 1t in the A register and executing BRS 2.

Thia'seyérs his connection with the file. BRS 2 is8 avalleble to both user and
execﬁtiée programs. |

TJ close all his open files the user may execute BRS 8.

If the siyn bit of A is set when the BRS 1 is executed, the file is made read-
only. This means that it cannot be switched from Input to output. If this bit

is not set, then the instructions

LDA =file number
DB =1
RS 82

will éhange the file to an cutput file regardless of its initial character. The

instructions
LDA =file number
1DB =0
BRS 82

are always legal and make the file an input file‘regardless of its initial character.
Three kinds of input-output may be done with sequential files. Each of these

is specified by one SYSPOP. Each of theze SYSPOPs handles input and output in-

differently, since the file must be specified a8 an input or an output file when it

is opened. If the user desires to read and write on the saﬁe file at the same time,

he should open it twice, once as an input file and once as an output fiie.

To input a single character to the A register or output it from the A register,

the iInstruction
CIQ =file number

is executed. On input an end of record or end of file condition will set bits 0

— ——— -

character, respectively. If interrupt 4 is armed, it will occur. The end of record

condition occurs on the next input operation after the last character of the record

August 8, 1966
9-3

has been input. The end of file condition occurs un the next input éperation
after the end of record, which signals the last record of the file. The user
may penerate an end of record while writing a file by using the control opération
to be’ described.

To input a word to the A registef or output it from the A register,

WIO ~file nurnber

is executed. AnAend of record condition returns a word of three 134
character§ as well as setting the flag bit, and an end ofkfile returns
a word of three 137 chargcters. If the condition occurs vhen a partially
filledfcut word is present, the word is filled ocut with -ne of theseb
.charééters.'

liixing word and character operations will lead to peculiaritiec and
is net recommended.

T input a block of words to memory or output them from mermory, the

instructions

LDX =first word address
LDA =nurber of words
BIO =file nurber

should be executed. The contents of A, B and X will be destroyed. The
A register at the end of the operation contains the‘first.memory location
not read into or out of.
If the operation causes any of the flag bits to be set, it in terminated
at that point and the instruction fails £o skip. If the operation is conpleted

\
successfully, it does skip. Note that a BIO cannot set both the EOR and the

- EOF bits.

August 8, 1966
9-4

; o
ﬁIO isfimplemented with considerable efficiency and is capahle of reading

a properly written file (or writing any file) at one-half the haximum drum

trangfer rate.

The'flaz bits (O and 7 or 8) of thé file number are set by the system
whenevetfend-of-record or end-of-file is encoﬁntered und cleared on any input-
outpﬁt éperation in which neither of these conditions occurs. Bit O is set on
any unugual condition. In the case of a BIO the A register at the end of the
operation indicates the first memory location not read into’or out of. For any
input operation, the end of record bit (bit 7) of the file number may be set:

An outpq% operation neverfseﬁs either one of these bits. Bit 6 of the file

number may be set on an errof condition (which can occur only on devices other than
the drpm)(Whehever any flag bit is set ag & result of an input-output operation
in a éork, interrupt 4 will occur in that fork if it is armed.

The CTRL SYSPOP providea various control functions for sequential drum

files. To use this operation, execute the instructions

LDA =control number
(LbB =record count, if required)
CTRL =file number

The availsble control nurbers are

1l write end of record on output or skip the remaining part of
the logical record on input. This control does not take a
record count.

2 Backspace (B) records.

3 Forward space (B) records.

L Delete (B) records (legal on output only).

5‘* Space to end of file énd backspace (B) records.

6 Space to beginning of file and forward space (B) records.

7 Insert logical record (legal on output file only). This
control does not require record count.

8 Write end of file (output only).

August 8, 1966
9-5

(=

‘THe'uﬁerAmayndelete all\the.informafion in & drum fiié by executing the

instructions
LDA =f'ile number
BRS 66

He may also eliminate the file entirely by giving an executive command deseribed
in section 1k,

The index block for a sequential drum file contains one word for each
phyeical‘record in the file. This word containg the address on the drum ofs the
physical record in the bbttom 12 bits. The top bit is set if the physical record
is the last record of a 1ogical record. The intervening hits indicate the number
of data wordé’in the bhysical record. A éeqpenfial file may have only one index
block, or a maximum of 146 X 56 = 37376 worda of data.

Putting the file number of a sequentisl file in A and executing BRS 113
will cause the file to be rewound, scanned to find the total number of data
words, and rewound again. The number of data words is added to X. This also
works for random files.

Three operations are avallable to executive programs only. They are intended
for use by the system in dealing with file names and executive commands.

A new drum file with a new index block can be created by BRS 1 with an index

block number of O in A. The file number is returned in A as usual and the index
bléck numﬁer in X. The read-only ﬁit may be set (bit O of A) as usual.
BRS 67
returns the drum block with esddress in A to availabie storage. To read an index
block into core
BRS 87
maj be used. It takes the address of the block in A and in X the first word in

core into which the block i8 to be resad.

August 8, 1966
T9-6

A single word of a sequentisl file may be directly addressed by speci-
fy!ng the logical record number and word number within the logical record.
A1l the operations legal for rendom files (see section 10) can also be used

for seﬁuential files with this convention. The format of the address is
I

APRE | 718 73
record number word addrdss .
(6 bits) , (16 vits)

August 8, 1966
9-7

i
9.? Other Sequential Files
|
In addition to drum sequential files, the user has some other kinds of
sequential files available to him. These are all opened with the séme BRS 1,

except for the device number. Available device numbers are

Paper tepe input 1l
Paper tape output 2
Card input 3
Magtape input L
Magtape outpﬁt 5
PDP-5 link input 6
PDP-5 link output 7

The device number is put into X. The unit number, if any, is put into A. The
file number for the resulting open file is returned in A. If BRS 1 fails it
returns an error condition in A a8 described in section 9.1. Three error conditions

apply to magtaepe only:

0 Tape not ready
1 Tape file protected (output only)
2 Tape reserved (see p. 9-8).

BRS 1 is inverted by BRS 110, which takes a file number in A and returns
the corresponding device number in X and unit number in A.

These files may also be closed and read or written in the same manner as
éequential drum files. The magtape 18 not avsilable to the user as a physaical
device. | |

CTRL =1 (end of record)

is available for physical sequential files 2 and 5 (paper tape and magtape output).

Several other controls are also available for\magtape files only. These are
2 backspace record

3 forward space file

L backspace file

Auzust B, 1966

9-8
5 write three inches blank tape
56 rewind |
|
7 write end of file

These con;rols may be executed only by executive type programs. I/0 operations
to the magtape may, of course, be executed by user programs if they have the
correct file number,

| An executive program may arrogate a tape unit to itself by putting the
unit number in A ana executing BRS 118, which skips if the tape is not already
attached to some other job. BRS 119 releases = tape so attached.

It is possible for magtépe and card reader files to set the error bit in
the file number. The first I/0 instruétion after an error condition will read
the first word of the next record -- the reﬁainder of the record causing the
error is ignored. The magtape routines take the usual corrective procedures when
they see hardware error flags, and signal errors to the program only as a last
resort.

In order to make the card reader look more like other files in the syétem,
the following transformations are made by the system on card input:

1) All non-trailing strings of more than 2 blanks are converted
to a 13 character followed by a character glving the number of
blanks. The teletype Qutput routines will decode this gequence
correctly. . 7 7
2) Trailing blanks on the card are not tranémitted to the program.
3) The card is not regarded as a logical record. However, the
system generates the characters 155 énd 152 (carriage return and

line feed) at the end of each card.

£
£

The result of all this machinery is that the string of characters obtained

by reading in a card deck may he output without chanpe to a teletype and will

result in a correct listing of the deck.

August 8, 1966
. 9-9

| . S
AJ’ﬁhenever a cardvreader‘error (feed éheék”of”validity check) occurs, the

prog;am 1s dismissged until the reader becomes not ready.
| ;The EOF light is sensed as an end of file at all times.

'The phantom user's 10 gecond routine checks to see whether a W-buffer
interrupt has been pending for more than 10 seconds. If 8o it takes drastice
and ill-defined action to clear the W-buffer. BRS 114 also takes this drastic
action; it can be used if a progrem is aware that the W-buffer is malfunctiopinm.

9.3 File Control Blocks

Every open‘filé in the system has associated with 1t a file control

block. This block consists of four words in the following format:

FA 0 o (3 job 519 first index block address or O normal file

number 0 subroutine address subr. files
® 7 5116 53
€3

u|° device . normal file
l T subr. file

£
Q
e
(o0
«Q
N

FD

O <=
O jux

(@28 Revie)

| o

3 unit 9 - g
char number drum buffer address or O normal file

FC

count (0] 0

gt
nj o | o
o o¥ @
=

subr. file

Cn = word being packed or unpacked

char count = -1 to 2

CH = character oriented

#UT = output

BB

DF
Drum gﬁx
files
only \BD

buffer busy
drum file

random access

read only

BP = buffer in use and protected
ERR = error

August 8,.1966
9-10

/

9};./h Permanently Open Files

There are a few built-in sequential files with fixed file numbers:
O controlling teletype input
1 controlling teletype output
2 nothing (discard all output)

1000+n input from teletype n

2000+n output to teletype n

These files need not be opened and cannot he closed.

9.5 ,Character Buffers
Section 7 describes the format of a teletype buffer. Such an obieul
is capabie of deéling with any chéracter-oriented device, not merely with &
teletyp;. For this reason the cheracter ring buffers are not directly indexed
by thé physical number of the teletypes to which they are attached. Instead,
a table indexed by physical teletype number is used to obtain the buffer number.
It is possible for other devices to obtain buffers; the mechanism for doing this

is not spelled out in detail at the moment.

August 8, 1966/
10-1

10.0 Random Drum Files

A randor. drwe file is very similer in physical structure ~n the drur
tn a sequential drum file, The nnly wajor difference is that there are nn
logical recurds and that the bits in the index block which keep track of
Ingical record structure are always (0. Furthermore, the non-zcro words
of the index biock are not nccessarily crmpact. The reasun for this is
that infTormation is extracted from or written into a randum file by
addressing the specific word or block of words which is desired. From the
address which the user supplies, tﬂe system extracts a physical block number
bj dividing by 256 and a location of the word within the block vhich is the
remainder of this division. Further division by ¥ yields the appropriate
inde: hlock. A random file may have any number of index blocks.

A random file may be opened by using BRS 1 with a device number 11,

Mo distinction is made between input and output to a random drum fTile.
A random file may also be closed by BRS 2, likec any sequentiel Tile.
Hovrever, CIO, WIO and BIO are not uscd for input-output to random files,

Ihstead, the following operations are available:

T read a word from a random file, execute the instructions
LDB ~address
O :file number

The word is rcturned in A,

To write a word on a random file, put the word\in A and exccute the
A
instructions:

LDB =address

o =file number

Scptember 30, 1965
10~-2

Block input-output to random files is also possible. To input &
‘ .

block, execute the instructions

LIX =first word address
LDA =number of words

LDB =first address in file
DBI ‘ =file number

To output a block of words to a random file, execute the instruction

DBO =file number
with the same parameteis in the central registers. These block input-output
operations are done directly to and from the user's memory, &s is BIO. Drum
buffers are not involved and the operation can go very quickly.

If the sign bit of A was set when BRS 1 was executed to open the file,
then output to it is not allowed and the file 1s sald to have been made
read-only. This is a natural extension of the treatment of read-only
sequential files,

It is possible to define & random file which has been previously
opened as the secondary memory file. To do this, execute the instructions

LDA =file nuﬁber

BRS 58
The specified file remains the secondary file until another secondary memor&
file is defined or until th% file is closed. To access information in the
secondary memory, two SYSPOPs are provided. These POPs work exactly like

IWI and IWO except that thcy take the drum address from memory instead of

- Beptember 30, 1905
10-3

requiring it to ne in B, T read a word of secondary memory into the A

register, the inctruction
/

; LA address
s&uuld be cxccuted. To store a word froum A into the sce ndary wenory, the
énstruction

BAS address
should be exccuted. The word addressed by elther cne of these SYSPOP3
sﬁould contain tho'drum address which is to be referonced. This word mey
also have the index bit set, in which caseAthe contents .f the index
ffcgistcr will be added to the conltents «f the werd to formm the efTective.
‘addrcss which is actvally used to perform the input--utput -peration.

The mechanism for acquiring and releasing randqor drum file apace is
very similar to the mechanism [for allocation of corce memory. Vhencver the
user addresscs a scction of a random drun file which he has not nreviously
used, the ncecessary blocks are created and cleared to O, HNote that the
user should avoild unnecessarily large random drum addresses, since they

nay resylt in the crecation of an unnecessary rumber of index blocks. T,

release randon drum nemory, exccute the instructions

LDA =nunber of words to be zerced
LDB =initial word to be zerced
LXK ¥file nwrber

BRS 59

The specificd section of the file is cleared to zero. Physical blocks which
are crntirely zero will be released. A more drastic clearing operatlon may be

cbtained with BRS 66, which deletes the entire infurmation content «f the file.

August 8, 1966
11-1

!

|

11.0 Sug}outine Files
In édditidn to the above-mentiocned machincery for performing input-

outpﬁt tﬂrough physical files, a facility is provided in the gysten fbr
making a'subroutine call appear to be an input-cutput request. Thisc facillty
nmakes it vposaible to write a program which does 1nput—outpﬁt from & Tile
'and later to cause further processing to be performed before the actual
input-output is done, simply by changing the file frum a physical to a .
subroutine file. A subrputine file is opened by executing the instructlons

LDX paraﬁeter word

BRS . 1

Jhis instruction never skips. The opcode field of the parameter word

indicates the characteristics of the file. It mey be one of the following

combinations:
11600000 Character input subroutine
11100000 Character output subroutine
01.000000 - Word input subroutine
01100000 Word output subroutine

I/0 to the file may be done with CIO or WIO, regardless of whether it is a
word or a character oriented subroutine. The system will teke care of the
necessary packing and unpacking of characters. BIO is elso accepteble.

The opening of & subroutine file does nothing except to create a file
control block and return a file number in the A register. When an I/0
operation on the file is performed, the subroutine will be called. This is

done by simulating an 3BRM to the location given in the word following the

£

EN
BRS 1 which opened the file, The contents of the B and X reglsters are

transmitted from the I/0 SYSPOP to the subroutine unchanged. The contents

A3

Aupust B, 196F
11-2

|
of the:A regiﬂter may be chenped by the pucking and unpeacking operntions
neccsgary to convert from charanterforlented to word-oriented operuations or
vice Yersa. The I/0 subroutine may do an arbitrary amount of computation
any m&y c21l on any number of other I/O devices or other I/0 subroutines.
A subroutine file should not call itself recursively.

When the subroutine is ready to return, it should execute BRS L1l. This
operation replaces the SBRR which would normally be used to return from =
subroutine call. The‘contents of B and X when the BRS Ul is executed nre
transmitted unchanged:baqk to the callinm proyram. The contents of A mny he
altered by packing and unpecking operations. A subroutine file is closed
with BRS 2 like any other file. '

In order to implement BRS 41, it is necessary to keep track of which 1/C
subroutine is open. This information is kept in 6 bits of the PAC table. The
contents of these 6 bits is transferred into the opcode field of the return
address when an I/0 subroutine is called, and is recovered from there when

the BRS L4l is executed.

, R-21
March 8, 1967
12-1

12.0 The Exec. Treatment of Files

Because of the possible conflicts which may arise when several users are
simultaneously trying to accéss’the same peripheral device, such devices
cannot be handled directly by users at the level offered by BRS 1 -- which is
available only to programs with executive status. At the user level, storage
devices can only be referenced in an indirect manner, by writing of reading
a "file".

Files are the primary means by which the user establishes continuity
between one computer run end the next fa "run" being that sequence of .
activities, mutual té the computer and a user, between the ENTER command and
the next LOGOUT command). A file is any named block of information which the
user finds it convenient to regard es a single entity; the commonest example
of a file is just a program. To provide a check against inappro?riate ude,
files created by the Exec and TSS subsystems are classified, according to the
nature of the information in them, into one of five types -~ with each of
which is associated a type number. This type number is carried along with
the information content end is checked whenever the file is referepced by
an Exec command (or any other of the TSS facilities which reference files).

If the file is found to be of a type inabpropriate to the context the command
is not implemented and an error is indicated. |

The file types are:

1. Core Image - The information in this originates from gpecified

segments of core memory.

2. Binary -~ The information has the form of an assembled, but

unloaded program.

3. Symbolic - The information is of a form ﬁhich can be readily listed

on some printing device.

R-21
March 8, 1967
12-2

L. Dump - Comprises ali the information in memory necessary t&u‘
restart the user from his current situation, i.e. the
situation at the time of creation of the dump file,

5. Subsystem - Comprises up'to eight 2K blocks which can be read into
ghared memory. The information originstes from core
memory and iz normally executable as an assembled and
loaded program.

Files of types 1, It and 5 originate from information in core. Before names
have been explicitly assigned to them, type 1, *Core Image" files are referred to
by their bounding cote addresses; the whereabouts of a type h,‘"Dump" file, is
imﬁ%icit in its nature,'while type 5, "Subsystem," filez are specified by
delivering the pseudo-relabeling of the pages containing the information to the
cémmand which attaches a name to thenm.

The information in type 3, "Symbolic,' files mey come directly from paper
tape or teletype and in such a case is referred to by using the name of the
corresponding physical medium, viz. -

PAPER TAPE
TELETYPE

These names are built into the system and ere always appropriate recognized.
Another built-in "file" name is
NOTHING

vhich always contains precisely nothing and whose function is to act as an
infinite sink in which limitless unwanted output can be lost.

A commoner sgource for symbolic files is the output from some subsystems,
notably{the text editor, QED and publication preperer, AUTO-SEC.

Tyﬁe 2, "binary" files may originate froﬁ paper tape, but, more commonly,
ar@se as the output from the machine-language assembly subsystem, Arpas.

Until the actuai process of output from the subsystem occurs, identification

R-21
March 8, 1967
12-3
of the information is handled By the said subsystem and is usually implicit'
since‘the subsystems can handle oply one file at a time. However, when the
infor%ation is ejected into a context involving many other blocks of information .
of a ;imilar kind some explicit identification must be attached to it.
12.1 File Naming
| The names which the user is free to invent and assign to files are
of two types:

1. unquoted names

2. scratch names .

Scratch names differ from unquoted names in that they and the filee
associated withvthém are lost when the user leaves the system, using the
LOGOUT command; they are otherwise treated identically.

An unguoted name is an arbitrary string of characters not beginning
with ' or /. A scratch name is of the form / < arbitrary character string >.

As unquoted names we have -

ABC
PROGRAM 1
12k

while as scratch names we have -

/ABC
/ue1/

bAny unquoted or scratch file name may be quoted by surréunding it
with single quote marks. Thus 'ABC' and '/001/' are quoted file names.
The quoted name refers to exactly the same file as the unquoted one; it
differs only in the way it is recognized by the Exec.

When reference is made to an unqﬁoted or scratch file name, the Exec

will-anticipate the uaser and consider the name to be fully delivered as

‘R-21
March 8, 1967
' 12-1

.
e

! . ‘ . -
'soon as it has received sufficient characters to distinguish the name

|
jfrom all others currently defined by the user. This means that a new

name can never be introduced.in its unquoted form. A quoted name, on
f the other hand, is always accepted in its eﬁtirety from the user. The
initial and terminal quotes are then removed and the name compared
with the directory of namesrcurrently defined‘by the user. If it matches
~one of them, it is taken to refer to that file, just as though it had
been presented in unquoted form. If it is new, however, it will nprﬁally
give rise to aﬁ error message unless 1t appears in one of the following
contexts: |

‘a) In the DEFINE NAME command (cf. section 5.5)

b) As an output file name, in which case a new file with the
séecified name will be created to hold the output. |

For example, let 'XYZ' be the name of an existing file and /123
be a new unattached file name. Then - |

COPY 'XYz' TO '/123'.
has the effect of creating‘a new scratch file, called /123, having the
same information content as XY72. If /lé3 is, however, already attached
fo some exigsting file, then the Information content of that file is
replaced by that of XYZ.

In summary, it will be seen that the Exec's file name recognitién
apparatus works in.two ways, depending essentially on whether the name
is quoted or not. Quoted names must always be given in entirety; the
Exec waits for the terminating quote>before abttempting to recogﬁize
the-name. Unquoted names are anticiggted; the Exec recognizes or

rejects them as soon as it can, insisting that they match some name

R-21
March 8, 1967
1205

already in the user's directory of file names. Note that the BEGINNﬁR,
NOVICE and EXPERT commends apply to file mame recognition (see section

5.7 of Document R-22.

12.2 Accessing Other User's files, Spacial Groups

The naming system described is adequate to reference all the files
belonging to the current user, in whose name the Exec was entered.
However, to refer to files belonging to another uﬁer, it is possible to
augment the file name by that user's name together with, optionally,

a special accessing code called the "Group" name. N

To do this;the basic file name must be prefixed by one of:

(< user name >)
or (< user name >, < group name >)
Thus for exampie:

(JONES) 'FILEL"
or (JONES, GROUPL)'FILEL"

When such a string as the iast ig collected from =z teletype by
BRS 15, 16 or an Exec. command the characters ",GROUP1" ire not echoed
to the teletype so that the secrecy of the special group name is preserved.
The access that any other user may have to each of Jones' files is in
the hands of Jones himself. Jones may declare that a member of the public
at large who tries to access his 'FILE1l' using (JONES)'FILE1l' has entire
(read-write) access, read-only access, or no access at all. It is also
open to Jones to define independently a greater degree of accessibility
to a user who guotes the group name.

Special groups can be created by BRS 61 and the command SET MODES

FOR FILE (5.5 of R-22) or deleted by BRS 62 and the same command.

R-21
March 8, 1967
12-6

BRS 61 - Define Special Group

Takes a string pointer in AB.
i .
:

?he 8tring is an arbitrary string of cheracters and is taken to define a
;ew special-group name. The BRS associates with it a number, n, in the
;range 1< n< 15, which it skip returns in A. A file may then‘be pi'ced
in that special group by setting this nﬁmber in the appropriate bits of
the file mode word (see BRS 48).

A user may have up to 15 currently defined, distinct special groups;
an attempt to define more results in & no skip return with A=0. An

attempt to define an already existing special group name also results

in a no skip refurn,‘but with the group number in A.

BRS 62 - Delete Special Group

Takes a special group number in A.
The associated special group name is deleted and the number made available
for reassignment to a new name. A1l files belonging to the special group
are relessed from it. If no name is attached to the number the BRXS has

no effect.

12.3 Pseudonyms

By means of the command USE NAME it is possible for a user to insert
in his file directory a pseudonym, that is, a name which, instead of being
a tag for a real file, is a tag for another neme possibly incéluding a user
name and group name. If hé later uses the pseudonym, the action taken is
exactly the same as if he had typed the entire name for which the pseudonym

stands.

R-21
March 8, 1967
12-7

12.4 Doing I/0 to Files, File Numbers

| The file name is an unwieldy and inconvenient handle for the I/0
;outines to use in transferring data. These routines instead reference
the file by a compact, l-word file number which is more closely related
;to the file's whereabouts. Thus system subroutines are provided to assign
to a given file name some temporary file number.

The user may find it useful to remember that the system subroutines
which perform information transferé to and from sequential files are the
same for input as for output. The distinction is carried by the file
number with which they are used -- whose character is in turn detegﬁined
by whether it wés returned by BRS 15 (input) or BRS 16 (output). Hence
a program which was designed to output information can, without ill-effect,
be delivered an input file number. The effect will be to lose the
characters which the program would be trying to output, while taking in
characters in their place -- these too, due to the nature of the program,
will in general be ignored and lost.

Names are recognized and a file number provided, if required, by the
system subroutines BRS 15, 16; they may be deleted by BRS 63. The
preceding description of the manner in which file names are recognized
largely assumes that they are being typed in on a teletype. They may,
however, be presented to the BRS's as a ready-made string of characters
in core. Entry parameters for the BRSs include a string pointer to a
“string in core together with an input~file number. The character string
may be null or an initial part of a file name or an entire file name.

In the first two cases sufficient characters are appended from the input

file to ensure recognition or rejection of the name.

<«
i

[A Remark on "Random" files on Tape

Random and sequential files may be stored and accessed with equal

R-21
March 8, 1967
12-8

fécility on "random" storsge devices, such as the drum and disk. On "~
?he other hand sequential devices, such as magnetic or paper tape,
#annot be conveniently or efficiently accesgsed in the manner of random
%iles and are restricted to holding'only sequential files. However, the
fcommand 'COPY FIIE' will allow a user to copy information from an existing
Irandom file, say on the drum, to a sequential medium, such ag magnetic
tape. The file created is, of necessity, sequential but has a special
format which does not allow it a sensible interpretation as é segquential
file but permits the original random formét to be restored when it‘is
copied back to a random device. Such a "random" file on a sequential
medium will res< ih the return of the apparently parsdoxical infor-
mation, 1-0 in bits 0,1 of X when the file is oéened by BRS 15, 16.

Before accessing information in such a file the user should copy it

(using the Exec. command or BRS 92) to a non-sequential medium.]

BRS 15 - éﬁen named f;ie.f;r inpﬁt:
Takes in A a control word
in B the address of a string pointer
in X é dual file number.
The function of this BRS is to recognize.an existing file name, optionally,
open the file for input and re?urn a file number for use with subsequent
data~input commands.

Designation of the File

The string addressed by B must be the complete or incomplete name of a
predefined file. If the name is incomplete, characters will be appended from
the input file whose number is given in the least gignificant 12 bits of X --

until sufficient characters are available to determine uniquely a file name

R-21
March 8, 1967
12-9

(or no such name). If the file name is unquoted so that prerecognition
occurs, the "tail" of the name is echoed back to the output file whose
i)

%umber is given in the most significant 12 bits of X.
3 . If B=0 on entry a null string'is assumed and characters collected
;from the input file aré not transmitted to the caller's memoéy. if'bit
50 of B is set, the string delivered is considered null -- its position A
being defined by the first word of the string pointer. Unless B=0 on
entry the completed or, in the case of non-recognitioﬁ, partially
completed file name will be transmitted to the caller's memory. If
a pseudonym was delivered, it will be replaced by the string for wﬁich
it stands.

iness the file name was complete on entry (i.e. no characters
need be taken from the input file), a terminating character must be
delivered to confirm or abort the file name. Confirming characters
are those with an internal code representation O to 168, also semicolon,

tab, line feed and carriage return; the aborting character is 7. All

other characters cause ? to be output and are otherwise ignored.

Action:
This is dependent on optioﬁs which are specified by bits 1 and 2 ‘
of A on entry. Tﬁese are:
bit 1, if set, suppresses opening the file (no filé number

is returned)

bit 2, if set, suppresses the need for a terminating
character; when these bits are not set, the action is as
follows:

If the name is recognized and a valid terminating character
is received, the file is opened for input. There is a skip
return with

-~ 1in A, a file number "
in B, the terminating character

in X, is a composite word comprising --

R-21
March 8, 1967
12-10

in bits 6 to 23, the file length

in bits 3 to 5, the file type

bit O is set if the file is random

bit 1 is set if the file is not stored on a
sequential medium.

Error Conditions

All error conditions are followed by a no-skip return with aﬁ
indicator in X; A and B are undisturbed.
-5<X<-1 shows that the file could not be opened. The possible
 reasons correspond one-one with those associated with a
no-skip return from BRS 1 with -2<A<? (see pp. 9-1, 9-7).°
‘X=l This éxit occurs if the name given is not a predefined name
in the specified user's file directory.
i=2 indicates that the file name was aborted by delivering ? as
a terminating charactér.
X=0 Any such error is accompaniled by one of the following
'error messages' being sent to the command output file
 (normally the teletype).
?

ILLEGAL USE OF PSEUDONYM
-NOT PUBLIC

R-21

March 8, 1967

BRS 16 - Open naméd file for output

Takes in A & control word

in B the address of a string pointer

in X a dual file number.
This BRS is provided to reéd an existing or new file name and,
optionally, open the file for output and return a file number for use

with subsequent data-output commands.

Designation of the File

The file name is obtained from B énd X in exactiy the manner of
BRS 15 (q.v.) e#cept that if the name is enclosed between quotes and is
 not delivered in aésociation with some other user's name, then it may
be new. |
Action

This is again dependent on the control word in A, on entry.

Bit O, according as it is O or 1, specifies that the file to be
created is sequential or random. ‘

Bit 1 is normally zero, to indicate that the specified file should
be opened and a file numbef returned in A. If the user does not wish to

open the file this bit should be set.

Bit 2 if set suppresses the need for a terminating character. It

also suppresses output of the message OLD FILE or NEW FILE, which is
normally prodﬁced after identification of a quoted file name.

Bits 3 to 5 =t, indicate the file type.

The type of & new file is always set to be t.

The type of an old file is changed to t unless t=0, when the old

- file type is retained. An attempt to open the teletype as anything

but a type 3 file is an error.

12-11

R-21
March 8, 1967
12-12

Bits 6 to 23 = S, significant only for tape files.

S is taken to be the number of words of information about to be written.
If a new tepe file is specified, a space of 3/2 S words is reserved
after the current last file on tape. For én old teape file, S is compared
with the amount of tape space currently reserved for the file. If it is
greater, an error message -~ TOO SHORT is broduced, followed by a no-skip
exit; the file is not opened.

The normal return from the BRS is with a skip, the same parameters
being returned in A, B and X as for BRS 15 viz.

in A a file number (if bpened)

in B ;fhé tefﬁinating character (if delivered)

in X a composite word comprising the file length, type and logical

structure (random or sequential) -- see BRS 15.

Error Conditions

All error conditions are followed by a no-skip return with an
indicator in X; A and B are undisturbed.
k-5§ﬁ§-l shows that the specifiedvfile could not be opened. The
possible reasons correspond one-one with those associated
with a no-skip return from BRS 1 with -2<A<2 (see pp. 9-1,
9-7).
X= This exit follows the printing of one of the following
error messages on the command output file.
NOT PUBLIC
READ ONLY
WRONG TYPE
FILE TOO SHORT
FILE DIRECTORY FULL

S X= if the file name is new and either unquoted or is delivered

in association with the name of another user.

R-21
March 8, 1967
12-13

X=2 if the abort terminator (?) is delivered.

Notes:
f

i
1) Although new tape files for the ordinary user will be created on

3)

the standard user's tape, some ﬁsers can specify the tape on which
a new file is to be created. For such users a message
TAPE SYS. NO. =

is printed and a decimal number must here be delivered through the

.

‘command-input medium.

If the.file name 1is quoted and not built in, one of the messages OLD
FILE or NEW FILE is sent to the command output medium. As deséribed
above, this;message may be suppressed by setting bit 2 of A on entry.
Ap attempt to change the logical structure of an old file (from
random to sequential or vice versa) will elicit a message to notify

the user before the name terminator is delivered.

BRS 63 - Delete name from file directory

Takes in B a string pointer
in X a dual file number

The entry parameters are used to designate a name in the file

directory in the mamner of BRS 15. The name is removed from the directory

subject to the following conditions:

A tape file or built-in file cannot be deleted in this way. The

BRS will in this case allow the user to delete all its names

except the last.

When a pseudonym is delivered to the BRS the pseudonym itself is lost.

When the last name of a scratch file is deleted, the file's contents

T <

is also lost.

A successful deletion is followed by a skip return.

R-21
March 8, 1967
: 1214
A no-gkip return indicates that the attempt to delete failed. The
contents of X will indicate the reason for failure as‘follows:
X=-3,-2,-1 correspond to no-skip returns from BRS 1 with
| A=-2,-1,0 respectively. Such an exit results only
from an sttempt to delete a drum file.
X= indicates an sttempt to delete the last name of a
tape or built-in file.

=1 if the name is not in the file directory.

12.5 Opening Scratch Files

Scratch fiies are all kept on the drum. They.differ from ordinar&
files.in that they disappear completely when the user who created them
logs out. A fixed amount of drum space is available to each user for
scratch files, which he may allocate as he sees fit. If ever he attempts
_to exceed the allocation a message will be given.

A scratch file may be created by BRS 16 or any of the commands which
create a new file, by delivering to them a new scratch name (see 12.1).
Alternatively, for a scratch file with a name of the form /ddd/ where a
is any décimal digit, the elaborate string delivery and recognition
procedure of BRS's 15, 16, 63 can be bypassed by using BRS's 18, 19, 65
respectively. Instead of a string pointer and dual file number, these
three BRSs take, for file identification, an integer in X. The decimal
equivalent of this number as a string of three digits enclosed between
slashes is then used as a file name to refer to the file in the conven-

tional way.

R-21
March 8, 1967
12-15

BRS 18

Takes in A a code word
in X an integer
This provides an alternative way of réferencing and opening for input,

/

l‘.
- scrateh files whose names are decimal integers.

/

/ The number in X is transformed into itB equivalent string of three

decimal digits enclosed between slashes, 5 characters in sll, (a number
 which exceeds 999 is taken to designate the string /999/). This string

should be a predefined name in the caller'é file directory. The sub- |

sequent action §f this BRS is to open the file for input in exactly
<tthe manner of BRS 15, i.e. dependent on bits 1 and 2 of A; the return

conditions are the_samé as for BRS 15.

ERS 19

Takes in A a code word

in X an integer
By means of this BRS é scratch file with a decimal-integer name can be
opened for output. As for BRS 18, the number in X is first transformed
to a string of three decimal digits enclosed between slashes. The name
is then treated as a possibly new name for a 8c;atch file, belonging to
the caller, in exactly the manner of BRS 16. Bits O to 5 of A also have

the same significance as for BRS 16.

BRS 65

Takes in X an integer
The -integer is converted into a string of three decimal digits, as in
BRS 18, 19. The action thereafter is exactly as for BRS 63, successful

deletion being indicated by a skip return.

R-21
March 8, 1967
T 12-16

12.6 TFormat of the File Directory, some Implementation Details

File names, group names and pseudonyms are contained in a hésh
structure of the type described in the SPS Manual (Document R-17). The
first two words of each hash table entry are the conventional string
pointers to the file name. The third word (the string "value") is a
pointer to a L-word "description block". In these four words is held
511 the information necessary to characterize the name, whether it be
the name of a drum file, tape file, special group, pseudonym, etc.
Notice that several entries in the hash table may point to a single
description blo¢k; the associated names are then synonyms for the same
object, which canrbé referenced by any one of them.

The command DEFINE NAME creates a new name to point to an existing
description block; coﬁversely DELEfE NAME detaches the name from its
| descriptién'block, the &escription block itself is lost only if this
was ﬁhe only name pointing to it.

Certain parameters associated with each file director& are listed
on page 12A. The format of a single hash table entry with attached file
description block is sketched on page 12B. |

Executive commands and BRSs are available for interrogating and

changing parts of theAuser’s file directory. The commands FILE DIRECTORY
| and SET MODES FOR FILE are described in the manual for the TSS Executive

(Document R-22). The corresponding BRSs are BRS 60, 48.

BRS 60 - Interrogate file Description Block

1

_Takes in B the address of a string pointer

\
\

in X a dual file number
Theyentry data are used, in the manner of BRS 15, to determine a file. The

first three words of the description block for that file (see p. 12B)

R-21
March 8, 1967
12-17
are skip-returned in A, B and X respectively.

I
BRS 48 - Set File Mode
!

: Takes in A a file mode word
~in B a string pointer address

in X a dual file number.
B and X are used, in the mamner of BRS 15, to determine a file name.
BRS 48 will then use the information in A to set or change the special
group membership, type and.accessibility of the specified file (which
must belong to the caller). | s

A1l of theée characteristics are determined by bits 1 to 4, and 6 to 16

of the third, "modéﬁ, vword of the description block associated with the
file (see p. 12B). BRS 48 directly replaces these bits by the corres-
ponding bits of A after‘checkiﬁg A for consistency and existence of the
specified special grouﬁ.

A successful mode change is denoted by a skip return, failure by a

return without skipping.

R-21
March 8, 1967
12A

FILE DIRECTORY DESCRIPTION

/(A) PREFIX AND STORAGE ARRANGEMENTS

N ANV W

o

9

10

11
12

13

1L
5

FLENGT
CFTADD

SGNUSD

STRN

PTRN
FIDIC

 TAPPAM

BSS

FDSS

EFDSS

ZRO
ZRO

7RO

ZRO
ZRO
ZRO

ZRO

ZRO
ZRO
ZRO
7RO
ZRO

ZRO
ZRO

File directory length

Address of end of file directory

Unused

(Bits set to indicate special group numbers in use)
Unused

System tape number

Private tape reél number

Drum index block address for this file alrectory,
user number in opcode bits

System tape parameters: number of first tape file
(vits 0-11), number of tape files allowed (bits 12-23)

Address of beginning of description block storage
Beginning of hash table (BRS 5,6 table)

End of hash teable

BRS 5,6 link

Character address of beginning of string storage
(WCH table)

End of string storage
Exit to garbage collector

The remainihg parts of the file directory appear in the following order:
Hash table (HTL, EHTL) ‘

String storage (EHTL, BSS)

File description block storage (BSS, CFTADD)

Avgust 8, 1966

12B
. FIIE DIRECTORY DESCRIPTION
(B) TYPICAL HASH TABLE ENTRY
POINIER TO
1 NAME
2 DESCRIPTION BLOCK ADDRESS
The name may be a file name, special group name, read-in
group name, or & pseudonym.
(C) TYPICAL DESCRIPTION BLOéK ENTRY
0 1. | FILE LE?GTH IN W?RDS \ \ .
1 | TAPE FILE NUMBER DATB LAST WRITTEN
2 [%p|RalPUA P,/ %p| Tree RGN san S| s [%l| owr
3 | TAPE WQRD ADDRESS /2 | DRUM APDRESS |
0 6) 12 15 18 21
(bits)
01 l‘ 11 6111111111 110000 000
Mask for BRS 48
SR = sequential or random 1 = random TAPE O file came from system
~ tape
PRA = private accesgibility 1 = read only 1 file came from private
PUA = public accessibility O = denied to public tape
1 = public reed only
2 = public reead and write
SGA = special group accessibility O = read and write

1l = read only
RGN = read-in group number O = none)

SGN = special group number O = none Cé = called by owner
CF = change flag CHT = number of people who have
S = status O = file permanently on drum igllzg 22: file and not
‘1= file on drum Eg ’
2 = file on system tape
3 = file on private tape

R-21
March 8, 1967
l?p“l

POSSIBLE FORMATS FOR A FILE DIRECTORY ENTRY

(A) THREE-WORD HASH TABLE ENTRY

WORDS 0,1 [Bits 8 to 23] - String pointer to name in F.D. string storege
WORD 2 ‘ - Pointer to 4-word description block
or -1 (unattached name)
Unattached names may be created by commands which are not completed. If
not deleted explicitly, they will be so automatically, when next encountered

in a command or BRS.

(B) FOUR-WORD DESCRIPTION BLOCK
1. TAPE or PERMANENT FILES

WORD 0 Y FILE LENGTH IN WORDS
WORD 1 TAPE FILE POSN DATE LAST WRITTEN
WORD 2 s fpus [5] [rvee | v SoN [u(s | U
WORD 3 TAPE SYSTEM NUMBER DRUM ADDRESS
o % P2 Hs
- -
Mask for BRS h8 T ,

SR = sequential or random

1 = random
PRA = private accessibility 1 = read only
PUA = public accessibility O = denied to
public
1 = public read only
2 = public read and write
SGA = special group accessibility O = read and write
-1 = read only
SGN = spécial group number O = none
S = status file permanently on drum

file on drum
file on system tape

0
1l
2
3 = file on private tape

o oun

U = unused

2.

R-21
March 8, 1967
12B-2

SCRATCH FILES
WORD 1 = -1
WORD O = O, WORDS 2,3 as for TAPE FILES

BUILT-IN FILES

WORD 3 = -2 ; WORD 2

]

0

a. Device WORD 0 = O
WORD 1 [9 to 11] = no. of tape unit
WORD 1 [12 to 17] = device no. éO-Pg
WORD 1 [18 to 23] = device no. (1-p

~.b. Permanent file no. WORD O # O

WORD 1 [6 to 11] = file no. (0-P)
WORD 1 [18 to 23] = file no. (1-P)

SPECIAL GROUPS

WORD 2 = ~1

WORD O = O WORD 1 = creation date WORD 3 [20 to 23] = group no.
PSEUDONYMS

WORD 3 = -1

WORDS 0,1 = string pointer to real string WORD 2 = O

R-21
March 8, 1967
.12C

FORMAT FOR USER DIRECTORY ENTRY

(A) PREFIX AND STORAGE ARRANGEMENTS

0 BUHT ZRO Beginning of hash table (BRS 5,6 table)

1 EUHT 7RO End of hash table

2 - 7RO BRS 5,6 link

3 BUDSS ZRO Character address of beginning of string storage
(WCH table) |

L EUDSS ZRO End of string storage

5 7RO Garbage collection option

6 BUDBT ZRO' Address of beginning of description block table)

7

LUDB 7RO Iength of each user description block

The remainder of the directory appears in the following order:
Hash table (BUHT, EUHT)
String storage (EUHT, BUDBT)
User description blocks (BUDBT, end of directory)

(B) THREE-VORD HASH TABLE ENTRY

WORDS 0,1 [Bits 8 to 23] - String pointer to user name in U.D. string étorage
WORD 2 {15 to 23] - User number

(C) SEVEN-WORD DESCRIPTION BLOCK ENTRY

0 HTA 7RO Address of hash teble entry (backward pointer)

1 FDL ZRO Drum address of file directory

2 DA 7RO Maximum drum block allowance

3 AW ZRO Access word (determines user's status)

4 Pd ZRO Password hash code ,

5 CTW ZRO Total computation time (invreal—time-clock cycles)
6 LTW 7RO Total time logged in (in seconds)

R-21
March 8, 1967
S 13-1

13.0 Executive Commands Related to Files
. |

Executive commands related to files are described in detail in
|
Documgnt R-22, the TSS Reference Manual.

|
'

R-21
March 8, 1967
14-1

ik.0 Executive Commands
; The commnands vhich are accepted by the executive are described in
! . :

detail in Document R-22, the TSS Reference Manual.

December 20, 194
in-1

-

15/.,0 Subsystems

The time sharing system is orgenized into a central executive, whicu

i

perfo#ms a miniraum number of functions, and a considerab;e nunber of sub-
syétg%s vhich perform more speclalized functions. Each of these subasystens
is célled by giving'its name to the executive ags & commend. The result of
thiz operstion is to bring the subsystem off the drum with the shared mearory
lopic doscribed.in Section 16 and to transfer to its starti@g point. The -
systeﬁ'will thereafter.remember the subsystem which is iﬁ use and will
accept the CONTINUE command as an instruction to re-enter the subsystem
withdut any initialization. Thus, for example, the line

(@ opT.
would call the debugging system. The line

(®CONTINUE DDT.
would re-enter DDT without initializing. Most of the subsysﬁems are
permanently present in the shared memory table which is discussed in
Section 16, and may therefore be called on by e user propram.

Subsystems presently availsble in ﬁhe timé-sharing éystem ares

ARPAS: A symbolic macro assembler

DDT: The dehugging system

QED: The symbolic text editor

FIC: Fortran compiler

FOS: The Foftran loazder and operating system
AIC: The Algol comﬁiler

AOS: The‘Algol loader and operating system
CAL: Convérsatioﬁal algebraic language

LISP: The list processing language

December 30, 1945

-2
SNOBOL: A string processing language
TRAC: Another string procéssing language
np: An integrated machine language programming system

QAS: A question answering system
All subsystems and the executive itself will accept the command HELP,
which will call in the question answering subsystem and the wupproprisate daté
base which will Se éble to =nswer questions about'the aystem involved. The.

QAS subsystem is used to<prepare date bages for commands.

December 30, 1965
16-1

|
160 Shared Memory Lojic

|

The:monitor mechanisms for controlling memory confipuration end ﬁor

putting hemory Llocks into the shared memory table have been describved in

{ .
Sectioniﬁ. This section is concerned with the means hy vhich a prosram cun
ehtach nanes to certoin Llocks of memory and obt:in blocks which have teon
naned hy other users.

There is s global table called the named memory table (NMT). Its
conatruction is very similer to thet of the file directory but 1t points
to chunks of shared mcméry rather than to files. The format of an NMT
entry is indicated on the féllowinﬁ page.

‘An NMT eﬁtry is referenced exa&tly like s file“directory, i.e., with

NAME
or
(passvord) HAME
using |
BRS 100

BRS 100 takes the same arguments as BRS 15 in B snd X. It takes no
arguments in A. If it is successful, it returns in AB the relabelling
registers defined by the NMT entry and skips; otherwise it fails to skip.
Whether the password is required is determined by the aufhor of the entry
when he inserts it into the table. Tﬁe starting addrésé_aésociated withﬂ-A

the entry is returned in X.

To meke an entry in NMT, uvse the following instructions:

" LDA =NPTR
“IDB— — =PPTR
1DX =RIW

BRS 99

December 30, 196
16-2

NPTR is the address of the neme of tﬁe eﬁtfy. If theré is anothe}
entry with the same name belonging to the same user, it is removed. If
there is another entry with the same name belonging to another user, the
BRS 99 fails and returns without skipping. PPTR is the eddress of a string
vhich serves as the pussword for this entry. This string is encoded into
24 bits in some uniform fashion, and the same encoding is used to determine
whether a password supplied with BRS 100 is correct. If the B register is
0, no password will be required for the entry. RIW is the address of the
first of two relabelling régiaters. The word following the second re-
labelling register is taken as the starting addreas for the entry. The
PMT entfies indicated by these regist;rs-will be transferred to SMT and
the eppropriate specification will be constructed in NMT'. Whenever this
entry is extracted from NMT by a BRS 100, each byte‘of the relabelling
registers réturned will point to exactly the same memory block as the one
addressed by the corresponding byte in the relabelling registers delivered
to BRS 99. The actual bits in the byte may, of course, be different,
gince the pointing is done indirect through a given user's PMT.

An entry may be deleted from NMT with BRS 101, which takes the same
arguments as BRS 100. Only the owner may delete an entry. All entries
belonging to a given owner are deleted when he logs out. When an NMT
entry is deleted, or 'when any PMT entry which points to SMT is deleted,

a check is made to see whether there remainﬁany entries in any user's PMT
or in NMT which point to the SMT entry involved. If not, the entry is
deleted from.SMT. %

Subsystemshare perﬁanent entries in NMI'. Any user may therefore call

on a subsystem simply by executing BRS 99 with a subsystem name. The result

December 20, 195(%
16-7

will be, of course, to deliver the subsystem relabelling to him. He may
then do vhatever he wants with it. Since subsystems are alwsys read only,
tnere is no way for him to damage the subsystem.

Another ¥ind of shared memory 1s provided In connection with fhe
input-output mauchinery. It is poscivle for n uscr to creote s 8ubsyshen
file, = file with type 5. 0uch o file is in a sense equivulent to =n NMT
entry. It‘contains the contents of o number of hlocks of memory to:ether
with the same information contained in sn NMT specification. A subsysten;
file may also containfany number of starting addresses. Such a filc nmey be
creested with BRS 102, which takes.the arguments of BRS 16 and also tskes
in4£he following three words:

1) The address of the relsbelling words

2) The address of a starting address table

3) The length of the startin;; address table

To read from such a file, execute BRS 103 with the arguments of BES 1.
The effect is to convert the contents of the file into an NMT entry and to
set up the first slarting address in the starting address teble as the
NMMT starting address. The two words following the BRS 103 specifly the
location at which the staerting; eddress will be copied ans the number of
words on the table which can be accepted. The relabellins; associated with
the RMT entry is retuwrned in A and B as it is by BRS 100.

.This mechanism provides a way for‘a user fo create a file which he
and other users can regard as a subsystem. Such e ﬁseudo~subsystem corn be
cormon aﬁd con have a number of starting eddresses. 1In fact, it has ail of
the charaéteristics of a built-in subsystem except thét it is not quite 5o
convenient to get at. The executivre GO TO éoﬁmand will, however, zccept &

subsystem filekas well as a save file and will do the reasonable thing in

the former case. The nemed memory logic is not implemented at the moment.

December 30, 1965
17-1

|
170 Miscellaneous xecutive Features

The executive provides s number of BR3's which ere services for the

;‘
user. WMuny of these wre incorporzted in the etring processing aystem or
in the floating point puckasge and are described in the next two scetlions.

To input an interer to any redix the instructions

I.DB =radix
IDX =file
BRS 383

mey he executed. The number; which mny he preceded by a plus or minus sirn,
is returned in the A register and the non-numeric character which terminsted
the number in the B repister. The number 1s computed by mulﬁiplying the
nurnber obtained at each staze by the radix and adding thcrﬁew dizit. It

is therefore unlikely that the right thing will happen if the number ol
digits is too large.

To output & number to arvitrary radix the instructions

1DB =radix
1.DX =file
LDA number
BRS 36

may be executed. The number wiil he 6utput a8 an unsigned éh bit inteper.
If the radix is less than 2, an error will be indicated.
To zet the date and time into e string, the operations
IDP PIR '

BRS 91

s

b8 A
may be executed. The current date and time are appended to the string

provided in AB end the resulting string is returned. The characters

December 30, 195
Yy-o

appended have the form:
mm/dd/yy hhram:ss

Hours ere counted from O to 2k,

August 8, 1966
18-,

-

18.0 String Processing System
A resident part of the system is e packare of string hendling routincs.

These are discussed in detail in their own manual, document 30.10.70, and

will only we listed here.

GCI Get character snd increment

WCI Write character onto string

WICH Write charecter onto string storapge
SKSE‘ §kip on string equael

3KS5G fSkip’on string greater

GCD Get character and decrement

WCD Write churacter and decrement
BRS 5 Look up string in hash table

BRS 6 Insert string in hash table

BR3 332 Input string

BRS 3h Output string given word sddress

BRS 3 Output string r;iven strinm pointer

BRS 37 Genersl command lookup

SPS includes symbol table lookup feacilities, and 8 string storegse
garbage collector is available as a librery subroutine. Strings are com-
posed of 8 bit characters packed 3 per word and are addressed by 2 word
sfring pointers; Two JYSPOPs which are formally pert of 3PS but which arc
useful in floating point operations and in general Promramminu ares

1DP Ioad pointer
STP ‘ Store pointer
These are double word operations which lsal A and B from the effcctive

address and the next location or store A and B into the c¢ffective addreys

and the next 1océtion, respectively.

December 20, 167

16-1

I
‘1943 Floating Point

Floatihg point arithmetic and input/output operations are bullt intu
I
the system. The user may therefore think of 930 as a machine which has

both in its hardware. The floating point system is described in its own
manual, document 30.10.40. A brief sumnary of the availsble operations

is inecluded here.

IDP Losd pointer (two-word load)
STP Store pﬁinter (two-word store)
FAD Floating aad

"FSB " Floating subtract

FMP Floating multiply

FDV Floeting divide

BRS 21 FNA or floatinpg negeate
BRS 50 Fix
: BRS 51 Float

SIc String to internal conversion

ISC Internal to string conversion

BRS 52 Formatted floabing input

BRS 53 Formatted floating output

The floating point format is similer to the SDS stondard: two words

are used for each number and the exponent is housed in>the bottom 9 bits
of the second word. Conversions between this internal bhinary format and
a string of decimal digité, decimal points end exponeﬁts cun be: cerricd
out with ISC and SIC. These mey be regarded as cznversiqn rether thun
input-output operations. To perform the input-output and conversior

simultaneously BRS's 52 and 53 are available,

Angust 8, 1966
A-1 .

BRS TABLE

J

NA NUMBER FUNCTION

Aster/isk indicates that the BRS 18 not implemented on 9/1/66

MONO 1 Open file 9-1, 9-5
MONCLS 2 Close file 9-1
MPT 3 Release memor& 5-3
SSCH | 5 SPS search 18-1
SSIN 6 SPS insert 18-1
JOH 8] Close all files 9-1
FKST 9 Open fork 3-1
PPAN 10 Programmed panic | 3-6
CIB A 1 Clear input buffer T-5
CET 12 Declare echo table 7-2
SKI 13 Skip if input buffer empty -5
DOB L Wait for output buffer empty 7-5
 EXGIFN 15 Symbolic input file neme 12-3
EXGOFN 16 Symbolic output file name 12-3
EXSIFN 17 Scratch input file 12-8
EXSOFN 18 Scratch output file 12-8
EXSFDL 19 Delete scratch file: 12-8
RMDY 20 Read month, day, year 6-1
FNA 21 Floating negate 19-1
TPPAN 22 Send user back to exec 3=7
LNKS 23 Link TTY 7-7
LNKC) 2L Unlink -7
MSGS S Set AM and AI bits ; 7-4
SKROUT 26 Skip if rubout waiting (exec) 3-6
ASTT 27 | Attach TTY , 7—&

]RSTT 28 Release TTY ‘ 7-4

Aurust 8, 1966

NAME NUMBER FUNCTION E A-7
cgB 29 Clear output buffer 7-6
FKRD j ~.30 : Rewa fork : : 3-3°
FKWT f 31 Wait for fork 3-3
FKTM , 32 Terminate for;k 3-3
gErsIR 33 Collect string 18-1
PUTMSG 34 Outpu£ message 151,
PUTSTR H Output string 16-1
PUTNUM 36 . Output number 17-1
GSTAPK 37 General string lookup 151,
GETNUM 38 _ Read number 17-1

39 |
RDET : 4o Read echc table 7-3
IPRET 4] Return from I/O subroutine 11-2
RREAL 42 Read clock 6-1
RDRL 43 Read relabeling 5.2
STRL b Set relabeling 5.2
sQd) Dismiss on quantum overflow 2-3
NRUT 46 Turn rubout off 3-6
SRAUT h% Turn rubout on 3-6
SETFIDC 48 Set fd control word 12-7
SRIR Ly Read interrupts armed -2
FFIX 50 Fix T 1941
FFLT 51 Float | 19-1
FFI 52 Formatted floating input 19-1
FFY : 53 Formatted floating output . 19-1
RRSB 54 Reserve resident block 5-5
MRSB : 55 Make or release resident block 5-4
MBEX 56 - Make block executive 5-5

cQp 57 Guarantee 16ms computing 2-3

SSMF

CBRF

RFDC

SGDEF

SGDEL

RGDEF
RGDEL
DFDL

DFER

EBSM

GBSM

SKXEC

" EXDMS

EPPAN
¥FSWT
¥FSFZ
*FSMT
*¥FSTM

SAIR

SIIR

MBRO

WREAL

SWSF

*HELPS
*HELPM

SET8P

NUMBER

29
60
61
62
63

66
67

69
70
71
72
73
T
75
76
77
78
8
81

82

$ &

FUNCTION

Define secondary memory

Clear block in random drum file
Read file directory entry
Define speclel group

Delete special group

Define read-in group

Delete reed-in group
Delete drum file (contents only)

Delete specified file block
(exec only)

Enter block in SMT

Get SMT block to PMT

Skip if executive
Exec dismissal
Economy panic
Wait

Freeze

Melt

Destroy

Arm interrupte
Cause interrupt

Make block RO

Dismiss for specified time

"Switch sequential file to

input or output
Call Help system

Cell Help maintenance

Set special teletype output

Avgust 8, 196A

10-2
10-3
12-6
12-7
1e-7
12-2
12-7

9-5

5-3
5-3

k-1

A-3

CIR8P
DFRX
RTEX
FSCF
DFR
EXRTTM
ECCOPY
ECSAVE
ECPLAC
ECDUMP
ECRECV
ECFNDU
ECCSLT
*ENSM
*GNSM
*DNSM
*ESSF
*GSSF
RSYB
WSYB
FKWA
FKRA
FKTA
DMS
RDU
BRSRET

TSOFF

NUMBER
86
87
88
89

91
9
93
gk

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110

111

FUNCTION

Clear special teletype output
Reead drum block

Read execution time

Cause freeze

Declare fork for rubout

- Time to string

Copy

Save

- Place

Dump

Recover

Find user

Consult with user

Make NMT entry

Read NMT entry

Remove NMT entry

Meke subsystem-type file
Get subsystem-type file
Read 2K block

Write 2K block

Wait for anyAfork to terminate
Read all fork statuses
Tenﬁinate all forks
Dismiss

Read device and unit

Return from exec BRS (exec only)

Turn off teletype station
(exec only)

August £, 196F

16-1
16-1
16-2
16-3
16-3
5-5
5-5
3-3
3-3
3-3
5-1

9-6

7-4

A-l

August &, 196F
A-5

s

NAME NUMBER FUNCTION
DFCD 113 Count date in drum file | 9-5
MTDI 11k Disconnect W-buffer (exec only) 9-7
115
RURL 116 Read user relsbeling -3
SURL 117 Set use relabeling 5«3
TGET 118 Inck up tepe unit 9-8
TREL 119 Unlock tape unit 9-8
APMTE 120 : Assign PMT entry 5-3
DPMTE 121 Release qpecified PMT entry 5-3

MPAN o 122 Simulate memory panic (exe'c only) 6-2

BIO
TCO
TCI
BﬁS
CTRL
SBRR

SBRM

STP

LDP

WCH
SKSE
SKSG
c10
WIO
Wl
FAD

FSB

176

157
156
155

154

153
152
151
150
147

-

August 8, 1965

SYSTEM PROGRAMMED OPERATORS

Block inputfoutput

Teletype character output
Teletype character input
Branch to system

Input-output control

System branch and return
System subroutine call
~Store pointer

ﬁoad pointer

Get character and increment
Write character

Skip on string equal

Skip on string greater
Chaeracter input-output

Word input-output

Wriﬁe character and increment
Floating edd

Floating subtract

Floating multiply
Flbating'divide

‘Execute instruction in zystem mode
Output to specified teletype
Input from specified teletype

Store in secondary memory

B-1

Appendix o

9‘u1 9’{1

12-1,19-1
15-1,19-1
16=1
16-1
18-1

18-1

19-1
6-2
7-b
7-k

10-3

	01-01
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-a
	02-b
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-3a
	03-3b
	04-01
	04-02
	05-01
	05-02
	05-03
	05-04
	05-05
	05-5a
	06-01
	06-02
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-7a
	08-01
	08-02
	08-03
	08-8a
	08-8b
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	10-01
	10-02
	10-03
	11-01
	11-02
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-_12a
	12-_12b-0
	12-_12b-1
	12-_12b-2
	12-_12c
	13-01
	14-01
	15-01
	15-02
	16-1
	16-2
	16-3
	17-1
	17-2
	18-1
	19-1
	a-1
	a-2
	a-3
	a-4
	a-5
	b-1

