
REFERENCE MANUAL

TJME- SHARING SYSTDi

L. Peter Deutsch

Larry Durham

Butler W. Lampson

t'fn1versity of California, Berkeley

Document No. R-2l

Revised October 22, 1968
Office of Secretary of Defense

Advanced Research Projects Agency

Washington, D. C. 20325

1.0 Introductory. .

2.0 The Scheduler. .

PAC TABLE ..

TABLE OF CONTENTS

. . . .

Phantom user queue entry ••

3.0 Forks and Jobs . •

3.1 Creation of Forks •

Hierarchy of Processes • •

3.2 Memory Acquisition. • •

3.3 Panic Conditions. •

.

3.4 Jobs ••.••••

Job Tables •

4.0 Program Interrupts • • . . .
5.0 The Swapper and Memory Allocation ••

6.0 Miscellaneous Featur~s .

7.0 Teletype Input-Output. • • ·

TELETYPE SYSTEM POINTERS

TElETYPE TABLE •

TELETYPE BUFFERS •

. . .

8.0 Drum and Buffer Organization; Devices.

8.1 File Storage on the Drum. • . • • •

8.2 File Buffers •.•.•.

8.3 Devices. • • • • •

Layout of a File Buffer.

Forma~ of an Index Block • .

Device Indexed Tables • • • • •
9.0 Sequential Files . . . • • .

9.1 Sequential Drum Files .

9.2 Other Sequential Files.

9.3 File Control Blocks .•

9.4 Permanently Open Files.

10.0 Random Drum Files •.••.

10.1 Direct Drum Access

11.0 Subroutine Files . • • •

. ".

1-1

2-1

2A

2B

3-1

3-1

3A
3-4

3-5
3-7
3B
4-1
5-1
6-1

7-1
7A
7B
7C
8-1

8-1

8-2
8-3
8A

8A

8B

9-1
9-1
9-7

9-11

9-11

10-1

10-3

11-1

12.0 File Naming System . . . • . • 12-1

13·0

14.0

12.1 File Naming. . . . • • • . 12-2

12.2 Accessing Other Users' Files, Special Groups 12-4

12.3 Pseudonyms. • • . • • 12-5

12.4 Doing I/O to Files, File Numbers 12-5

12.5 Opening Input Files •.

TAPE or PERMANENT FILES.

SCRATCH FII~S. .

BUILT-IN FILES .

SPECIAL GROUPS .

PSEUDONYMS. . .

FILE DIRECTORY DESCRIPTION

USER DIRECTORY DESCRIPTION .

. 12.6 Opening Output Files •

12-6

12A-l

12A-l

12A-1

12A-2

12A-2

l2A-3
l2A-4

12-8

12.7 Miscellaneous File Operations. . 12-10

12.8 Opening Scratch Files. . . . • . .• . . 12-12

12.9 Format of the File Directory, Some Implementation
Details . . . ~ • 12-13

12.10 Miscellaneous Services ...

Miscellaneous Executive Features .

StrinG Processing System .

14.1 Strine Pointer Load and Store Operations.

14.2 String Read and Write Operations •....•.

14.3 String Compare Operations

14.4 String Input/Output .••.•

14.5 Hash Table J~okup Instructions .

15.0 Floating Point Instructions ••••.••.

15.1 Floating Point Representation •.

15.2 Floating Point Arithmetic •.•

12-14

13-1

14-1

14-1

14-1

14-3

14-3

14-4

15-1

15-1

15-2

15-3
15-4

A-I

B-1

15.3 Input/Output Formats and Conventions

15.4 Input/Output Operations.. • ••.

BRS TABLE.

SYSTEM PROGRAMMED OPERATORS. .

1-1

1.0 Introductory

The Berkeley Time-Sharing System is divided into three major

parts: The monitor, the executive, and the subsystems. Only

the first two of these are discussed in detail in this manual.

The manual attempts to describe exhaustively all the features

of the monitor and in addition to give a number of implementation

details. It also describes those features of the executive which

can be invoked by a program.

We use the word monitor to refer to that portion of the system

which is concerned with scheduling, input-output, interrupt

processing, memory allocation and swapping, and the control of

active programs. The executive, on the other hand, is concerned

with the control of the directory of symbolic file names and

backup storage for these files, and various miscellaneous matters.

Other parts of the executive handle the command language by

which the user controls the system fram his teletype, the

identification of users and specification of the limits of

their access to the system. These subjects are discussed in

the executive reference manual, Document R-22.

The next ten sections of this manual discuss various features

of the monitor. The remaining sections deal with the executive.

2-1

2.0 The Scheduler

The primary entities with which the time-sharing system is

concerned are called active programs. Each active program is an

abstract object capable of executing machine instructions. At

least one active program is associated with each active user, but

a user may have many programs, each computing independently under

his control.

An active program is defined by its entry in the program

active table (PAC table or PACT). This table contains all of the

information required to specify the instantaneous state of the

extended computer which the user is programming, except for that

contained in the user's memory or in the system's permanent

tables. The structure of' a PACT entry is displayed on the

following page, together with brief notes about the significance

of the various items. These matters will be explained in more

detail in the following few sections. It will be observed that

PACT contains locations for saving the program counter and the

contents of the active A, B and X registers. It also contains

two pseudo-relabeling registers for the user. A third one, which

specifies the monitor map, is kept in the job tables. The matter

of pseudo-relabeling is discussed in detail in Section 5. There

is a word called PTEST which determines the conditions under

which the program should be reactivated if it is not currently

running. The panic table address in PTAB and the three pointers

called PFORK, PDOWN and PPAR are discussed in Section 3 on forks.

The word called PTAB contains in bits 2 through 8 the number

of the job to which this program belongs. The top of PQU contains

information about the amount of time for which the program is

allowed to compute before it is dismissed. A job table called QUR

counts the number of clock cycles remaining before the program is

dismissed, and three bits of QUTAB point to a table which specifies

the length of time which the program should be allowed to run

when it is activated. All times 1n the discussion are measured

in periods of the 60-cycle computer clock.

PNEXT

PL

PA

PB

PX

RLl

RL2

PPTR

prEST

PQU

PTAB

PIM

2A

PAC TABLE

next queue or next program in queue

U 0 ~ file if of 8
(p) M 0

V
subroutine 0 saved
file

saved (A)

saved (B)

saved (X)

l'i.rst pseudo-relabeling register

sec()nd pseudo-relabeling register

0 11 12
pj6w~r PF¢RK

13 . . 8
000 I ~ctl~a~lon 0

~o test word address, or other
~:ondltlon relevant parameter

E ~2 8 9 11 12

X B
Q,N GlJrAB PPAR

2 8 0-0 L
M

0 Job number 0 panic table address

~--

M T N

~I rEM
T w T

UM = user mode (l) or system

OV = overflow

pn¢WN = PACT address of lower fork (if any)

PFPRK = PACT address of upper fork (if any)

FPAR := PACT address of pa.rallel fork (ends with 0)

QUTAB = address of word in table indicating quantum lengths

EX = executive type program EB = exec BRS

I

I
j
1

I
r

I
I
I

I

23

I
231

I
231

23

23

Q~ = saved queue number i~ on QOV TW = waiting for termination

rEM = interrupt enabled mask

1M = local memory

MT = add no memory

NT = non-terminable

EM = destroy memory when fork
is terminated

2-2

A program is a.lloT..red to run for a fixed period of time, after

which it is dismissed if any other programs are ready to run. This

time is called a long quanttun. It may be different for different

programs. In fact, the size of the long quantum is determined by

the entry in QTAB which is pointed to by the program's QUTAB in PACT.

When a program is activated, it is first allowed to run for a

short quantum. During this time it cannot be dismissed except by its

own request. The length of the short quantum is tentatively going

to be the same for all users. It is put into a word called TlME;

the long quantum is also put into a word called TTlME at this time.

Both are decremented at every clock cycle.

When TIME goes negative, a word called ACTR is checked to

determine whether any program which is dismissed for I/O can be

run. If not, the program is allowed to continue. At each subsequent

clock cycle the program may be dismissed if any programs dismissed

for I/O are ready to run. It may also be dismissed when the long

quantum is exhausted if· any other programs are waiting to run. In

either case it is said to. be dismissed for quantum overflow. If

ACTR indicates that another program dismissed for I/O is ready to

run at the end of the short quantum, the program is also dismissed

for quantum overflow.

In order to allow an efficient ~plementation of this scheme,

ACTR is incremented by every interrupt routine which takes action

allowing a program which is waiting for I/O to run. ACTR is set

to -1 when a program is activated.

When a program is dismissed for I/O, TT:mE is put into QUR.

When the program is reactivated, TTIME is set from QUR. TIME is reset

to the full short quantum. That is, the long quantum is allowed to

run down while a program computes, regardless of whether it has to

wait for I/O between compute,tions. On the other hand, a program is

always given a full short quantum. If a program is dismissed for

quantum overflow, it is given a new long quantum when it is reactivated.

There are two operations available to the user which are

connected with the quantum overflow machinery. BRS 45 causes the

user to be dismissed as though he had overflowed his quantum.

BRS 57 guarantees to the user upon return at least 16 msec of

2-3

uninterr~pted computation. This feature is implemented by dismissing

the user if less tha.n 16 ;TI~;ec remain in his quantum.

Ordinarily, the code which is being executed at any particular

instant is that belonging to the program which is currently active.

This situation may be disturbed, however, by the occurrence of

interrupts from I/O devices. These interrupts cause the computer

to enter system mode and are processed entirely independently of the

currently running program. They never take direct action to disturb

the running of this program, although they may set up conditions

in memory which will cause some other program to be activated when

the presently running one is dismissed. Interrupt routines always

run in system mode. Other code which may be running which may not

belong to the program currently active is the code of system

programmed operators or BRS routines. These routines s.re not

re-entrant and therefore should not be dismissed by the clock. To

ensure that they will not be, the convention is established that

the clock will not dismiss a program running in system mode. In

order to ~larantee that a·user program will not monopolize the

machine by executing a large number of SYSPOPs, the user mode trap

is turned on when the clock indicates that a program is to be

dismissed. The trap will occur and cause dismissal as soon as the

program returns to user mode.

The PACT word called PTEST contains the activation condition

for a currently inactive program. The condition for activation

is contained in the 6 opcode bits of this word, while the address

field normally contains the absolute address of a word to be

tested for the ~pecified condition. (ThiS word is usually something

like TTYBRK for a user's teletype~ It is possible, however, for

the address to contain a time count, in the case where the activation

condition is that a certain amount of time should elapse. It is also

possible for the address to hold a mask indicating which program

interrupt has occurred. The following activation conditions are possible:

o Word greater than 0
I Word less than or equal to 0
2 Word greater than or equal to 0
3 Word less than or equal to teletype early warning
4 Special test. The address points to a special activation

test routine.
5 Interrupt occurred. The address contains the number of

the interrupt which occurred.

2-4

a dead

1 running

2 BRS 31
7 Special: address =

3 BRS 106

4 executive BRS

5 BRS 109

11 Bit 1 of word is 1 (buffer ready)

12 Word less than zero

An executive program can dismiss itself explicitly by putting a queue

number (0 to 3) in X and a dismissal condition in B and executing BRS 72. The

address of a dismissal condition must be absolute.

There is normally one running program in the system, i.e., a program which

is executing instructions, or will be executing instructions after the currently

pending interrupts have been processed. An active program (i.e. a PACT entry)

which is not running is said to be dismissed, and is kept track of in one of

two ways.

1) If it has dismissed itself with BRS 31, 106 or 109 (cf. section 5) it is

said to be in limbo and is pointed to only by the PFORK, PDOWN, and PPAR of the

neighboring programs in the fork structure.

2) If it has been dismissed for any other reason, it is on one of the

scheduler queues. There are four queues of dismissed programs. In order, they are:

QTI programs dismissed for teletype inp11t/output
QIO programs dismissed for other I/O
QSQ programs dismissed for exceeding their short quanta
QQE programs diSmissed for exceeding their quanta.

Programs within the queues are chained together in PNEXT, and PNEXT for the last

program in each queue points to the beginning of the next queue.

Whenever it is time to activate a new program, the old program is put on

the ~ of the appropriate queue. The scheduler then begins at QTI and

scans through the queue structure looking for a program whose activation

condition is satisfied. When one is found, it is removed from the queue

2-5

structure antI t;.~l";~C'(J (~"ICl' tc tJ}C s",rap:pcr to be read in and run. If there

are no prograr:_s ,'Thich ca.!, be act:i vated the scheduler simply cont inues

scanninG the queue strl._:t~ture.

Programs reactivated for various r.easons having to do with forks

(interrupts, rubouts, panics) are put onto QIO with an immediate

activation condition. They therefore take priority over all progrfu~s

dismissed for quantum overflow.

There is a permanent entry on the -teletype queue for an entity called

the phantom user. The activation condition for this entry is a type 4

condition which tests for two possibilities:

a) the cell PUCTR is non-zero

b) three seconds have elapsed since the last activation of the phantom
user for this condition.

\'lhen the phantom user is act i vated by (b) , it runs around the system checkinF~

that everything is functioning properly. In particular, it checks that the

W-buffer has not been waiting for an interrupt for an unusual length of time,

and that all teletype output is pItteeding normally. Details of this procedure

are described in sections 9 and 7.

If the phrultom user is activated by (a), it runs down the phantom user

queue looking for things to do. A phantom user queue entry is drawn on page

2B; it is essentially a very abbreviated PAC table entry. Such an entry is

made when the system has some activity which it wants to carry out more or

less independently of any user PAC table entry: testa for tape ready (on

rewind) and card reader ready, and processing of rubouts (an interrupt routine

kind of activity, but too time-consuming). The second word of the entry is the

activation condition. PUCTR contains the number of entries on the phantom

user queue.

2B

Pointer to next entry

p 5 9 23
test number routine address

p 11 12
for 23

PACPrR for user parameter
routine

Phantom user queue entry

3-1

3.0 Forks and Jobs

3.1 Creation of Forks

A program m~v create new, dependent, entries in the PAC table by

executing BRS 9· This BRS takes its argument in the A register, which

contains the address of a panic table, a 7-word table with the following

format:

Program COlmter

A register

B register

X register

First relabelin~ register

Second relabeling re~ister

status

The status word may be:

-2 dismissed for input-output

-1 running

0 dismissed on rub cut or BRS 10

1 dismissed on illegal instruction panic

2 dismissed on memory panic

The panic table -address must not be the same for two forks of the same program,

or overlap a pru~e boundary. If it is, BRS 9 is illegal. The first 7 bits of

the A register have the following significance:

o make fork executive if current program is executive

1 set fork relabeling from panic table. Otherwise use current
relabeling

2 propagate rubout assignment to fork (see ERS 90)

3 make fork fixed memor.l.. It is not allowed to obt~ ":.in any more
memory than it is started with.

.)
.J'

1. 0 UP
l-

I- DOHl'J·

~) ACROSS
-:--.

J
1- 1- I.~.,.... 1

t- O

1,
"r)

b ::-----------.---.. -... -.. --,
~

C)

o

8. ~

c

o

Hierarchy of Processes

5 .

6 .

10.

1

~
1 .-

6

0

I L

l
"...

') I-

10

0

t.

6 ~

r--­
o
!-

(j
~.

. ,
I

r~l
9· r' l) ~

o

f'
V

"----

3-2

4. make fork local memory. New memory will be assigned
to it independently of the controlling fork.

5. make fork ephemeral memory. Memory that it acquires
will be released when the fork terminates.

6. set interrupt mask from seventh word of panic table.

When BRS 9 is executed, a new entry in the PAC table is

created. This new program is said to be a fork of the program

creating it, which is called the controlling program. The fork

is said to be lower in the hierarchy of forks than the controlling

program. The latter may itself be a fork of some still higher

program. The A, B and X registers for the fork are set up from

the current contents of the p~~ic table. The address at which

execution of the fork is to be started is also taken from the

panic table. The relabeling registers are set up either from

the current contents of the panic table or from the relabeling

registers of the currently running program. An executive program

may change the relabeling as it pleases. A user program is

restricted to changing relabeling in the manner permitted by

BRS 44. The status word is set to -1 by BRS 9.
The fork structure is kept tract of by pointers in PACT.

For each program PFORK points to the controlling fork, PDOWN

to one of the subsidiary forks, and PPAR to a fork on the same

level. All the subsidiary forks of a single fork are chained

in a list. A complex situation is shown on the previous page.

The arrows indicate the various pointers.

The program executing a BRS 9 continues execution after the

instruction. The fork established by the BRS 9 begins execution

at the location specified in the panic table and continues

independently until it is terminated by a panic as described

below. It is connected to its controlling program in the

following three ways:

1) The controlling program may examine its state and

control its operation with the following six instructions:

BRS 30

BRS 31

BRS 32

read.s the current status of a subsidiary fork into

the panic table. It does not influence the operation

of the fork in any way.

causes the controlling program to be dismissed until

the subsidiary fork causes a panic. When it does, the

controlling program is reactivated at the instruction

following the BRS 31, and the panic table contains the

status of the fork on its dismissal. The status is also

put into x.

causes a subsidiary fork to be unGondi tionally terminated

and its status to be read into the panic table.

All of these instructions require the panic table address of the fork in A.

They are illegal if this address is not that of a panic table for some fork.

ERS 31 and BRS 32 return the status word in the X register, as well as

leaving it in the panic table. This makes it convenient to do an indexed

,jump ,.,i th the contents of the status word. BRS 31 returns the paniC table

address in A.

BRS 106

BRS 107

BRS loB

causes the controlling program to be dismissed until any

subsidiary fork causes a panic. When it does, the

controlling program is reactivated at the following

instruction with the panic table address in A, and the

panic table contains the status of the fork at its dismissal.

causes ERS 30 to be executed for all subsidiary forks.

causes BRS 32 to be executed for all subsidiary forks.

3-4

2) If interrupt 3 is armed in the controlling fork, the termination

of any subsidiary fork will cause that interrupt to occur. The interrupt

takes precedence over a BRS 31. If the interrupt occurs and control is

returned to a BRS 31 after processing the interrupt, the fork will be

dismissed until the subsidiary fork specified by the restored (A) terminates.

3) The forks can share memory. The creating fork can, as already

indicated, set the memory of the subsidiary fork when the latter is started.

In addition, there is some interaction when the subsidiary fork attempts

to acquire memory.

3.2 Memory Acquisition

If the fork addresses a block of memory which is not aSSigned to it,

the following action is taken: a check is made to determine whether the machine

size specified by the user (cf .. Document R-22) has been exceeded. If so, a

memory panic (see below) is generated. If the fork is fixed memory, a memory

panic is also generated. Otherwise a new block is assigned to the fork so

that the illegal address becomes legal. For a local memory fork, a new

block is always assigned. Otherwise, the following algorithm is used.

The number, n, of the relabeling byte for the block addressed by the

instruction causing the memory trap is determined. A scan is made upwards

through the fork structure to (and including) the first local memory fork.

If all the forks encountered during this scan have Rn (the Nth relabeling

byte) equal to 0, a new entry is created in PMT for a new block of user

memory. The address of this entry is put into Rn for all the forks

encountered during the scan.

If a fork with non-zero Fin is encountered, its Rn is propagated

downward to all the forks between it and the fork causing the trap. If

any fixed memory fork is encolJ.ntered before a non-zero Rn is found, a

memory panic occurs.

This arr&"1gement permits a fork to be started with less memor;! than

its controlling fork in order to minimize the amount or drum swapping

required during its execution. If the fork later proves to require more

memory, it can be reassi[~ed the memory of the controlling fork in a

natural way. It is, of course, possible to use this machinery in other

ways, for instance to permit the user to acqutre more than 16K of memory,

and to run different forks with non-overlapping or almost non-overlapping

memory.

3.3 Panic Conditions

The three kinds of panic condition which may ca.use a fork to be

terminated are listed in the description of the status word above. When e~y

of these conditions occurs, the PACT entry for the fork being terminated is returned

to the free program list. The status of the fork is read into its panic table

in the control1int~ fork. If the fork being terminated has a subsidiary fork,

it too is terminated. This process will of course cause the termination of

all the lower forks in the hierarchy.

The pRnic which returns a status word of zero is called a program panic

and may be caused by either of two conditions:

A) the rubout button on the controlling teletype is pushed. This

terminates some fork with a program panic. A fork may declare that it is

3-6

the one to be terminated by executing BRS 90. In the absence of such a

declaration the highest user fork is terminated .. ~~en a fork is terminated

in this way its controlling fork becomes the one to be terminated. If a user­

fork is terminated by rubout the teletype input huffer is cleared. If the

controlling fork of the one terminated is executive, the output buffer is f.tlso cleared..

If the fork which sl1ou1d be terminated by rubout has armed interrupt 1,

this interrupt will occur instead of a termination. The teletype buffers will

not be af'fected. If there is only one fork active, control goes to the

location EXECP in the executive. This consideration is of no concern to the

user. Executive programs can turn the rubout button off with BRS 46 and turn

it back on with BRS 4'7. A rubout occurring in the meantime will be stacked.

A second one will be ignored. A program which is running with rubout turned off

is said to be non-terminable and cannot be terminated by a higher fork. BRS 26

skips if there is a rubout pending.

If two rubouts occur within about .12 second.s, the entire fork structure

will be cleared and the job left executing the top level executive fork. This

device permits a user trapped in a malfunctioning lower fork to escape. Closely

spaced rubouts can be conveniently generated with the repeat button on the teletype.

B) A BRS 10 may be executed in the lower fork. This condition can be

distinguished from a paniC caused by the rubout button only by the fact that

in the former case the program counter in the panic table points to a word

containing BRS 10.

As an extension of this machinery, there is one way in which several forks

may be terminated at once by a lower fork. This may be done by BRS 73, which

provides a count in the A register. A scan is made upward through the fork

structure, decrementing this count by one each time a fork is passed. When

the count goes to 0, the scan is terminated and all forks passed by are

3-7

terminated. If an executive program is reached before the count

is 0, then all the user programs below it are terminated.

An executive program can clear the fork structure of a job

by putting the job number in A and executing BRS 22. The effect

is as though enough rubouts had occurred to send the job back

to the top-level executive fork.

The panic Which returns a status word of 1 is caused by the

execution of an illegal instruction in the fork. Illegal instructions

are of two kinds:

1) Machine instructions which are privileged

2) SYSPOPs which are forbidden to the user or which have been

provided with unacceptable arguments.

If interrupt 2 is armed and the fork is executive, interrupt 2 will

occur instead of an illegal instruction panic.

A status word of 2 is returned by a memory panic. This may be

caused by an attempt to address more memory than is permitted by

the machine size which the user has set, or by an attempt to store

into a read-only block. If interrupt 2 is armed, it will occur

instead of the memory panic.

Every complete fork structure is associated with a job, which

is the fundamental entity thought of as a user of the system, from

the system's own point of view. The job number appears in the PAC

table entry for every fork in the job's fork structure. In addition

there are several tables indexed by job number. These are shown

on page 3B, and indicate more or less what it is that is specifically

associated with each job.

3B

TSDA drum address of TS block

TTNO teletype associated with this job

ETI'B amount of CPU time used

DBA drum blocks available

QUR time left in long quantum

Job Tables

4-1

4.0 Program Interrupts

A facility isprovideci in the monitor to simulate the

existence of hardware interrupts. There are 20 possible interrupts;

four are reserved for special purposes and 16 are available to

the programmer for general use. A ,fork may arm the interrupts

by executing BRS 78 with a 2O-bit mask in the A register. This

causes the appropriate bits in PTh1 to be set or cleared according

to whether the corresponding bit in the mask is 1 or O. Bit 4

of A corresponds to interrupt. number 1, etc. No other action is

taken at this time. When an interrupt occurs (in a manner to

be described) the execution of an SBRM* to location 200 plus the

interrupt number is simulated in the fork which armed the interrupt.

Note that the program counter which is stored in the case is

the location of the instruction being executed by the fork

which is interrupted, not the location in the fork which causes

the interrupt. The proper return from an interrupt is a BRU

to the location from which the interrupt occurred. This will do

the right thing in all cases including interrupts out of input­

output instructions.

A fork rnay generate an interrupt by executing ERS 79 with

the number of the desired interrupt in the A register. This

number may not be one, two, three or four. The effect is that

the fork structure is scanned, starting with the forks parallel

to the one causing the interrupt and proceeding to those above

it in the hierarchy (i.e., to its ancestors) . The first fork

encountered during this scan vlith the appropriate interrupt mask

bit set is interrupted. Execution of the program in the fork

causing the interrupt continues without disturbance. If no

interruptable fork is found, the interrupt instruction is treated

as a NOP; otherwise, it skips on return.

Interrupts 1 and 2 are handled in a special way. If a fork

arms interrupt 1, a program panic (ERS 10 or rubout button) which

would normally terminate the fork which has armed interrupt 1,

will instead cause interrupt 1 to occur, that is, will cause

4-2

the execution of an SBRM* to location 201. This permits the

programmer to control the action taken when the rub out button

is pushed without establishing a fork specifically for this

purpose. If pushinG the rubout button causes an interrupt to

occur rather than terminating a fork, the input buffer will not

be cleared.

If a memory panic occurs in a fork which has anned interrupt

2, it will cause interrupt 2 to occur rather tha.n terminatin;;

the fork. If an illeF.'-al instruction panic occurs in an executive

fork which has armed interrupt 2, it will cause interrupt 2

to occur rather than terminating the fork.

Interrupt 3 is caused, if armed, \·,hen any subsidiary fork

terr:1inates. Interrupt 4 is caused, if armed, \{hen any input­

output condition occurs 1<[hich sets a flag bit (end of record,

end of file and error conditions can do this).

vfuenever any interrupt occurs, the corresponding bit in

the interrupt mask is cleared and must be reset explicitly if

it is desired to keep the interrupt on. Note that there is no

restriction on the number of forks which may have an interrupt

on.

To read the interrupt mask into A, the proGram may execute

BRG 49.

5.0 The Swapner arid Memory Allocation

Pseudo-re~abeling

The 940 hardware allows the user's address space to be

fragmented into eight pages of 2048 words each. This means

that the monitor must keep track of eight drum addresses for

each process. This is done by means of eight six-bit pseudo­

relabeling registers. Each of these registers is an index to

a table which contains the drum address of the user's page.

This table is called the Private Memory Table (PMT) and

is held in the job's TS block. Each of the 64 entries in RvlT

has the following format:

¢ s I E I R IE I
H I X ! 0 P I

I j 1 .
drum address ¢

o 1 2 3·4 17 23

EX - Process must be executi.ve to reference the page.

RO - Read only (attempt to store will generate a trap).

SH - Shared.

EP - Will be d.estroyed when not in any map.

During the startup for each user, the system copies the

first NCMEM (currently 35) entries out of a resident table

called the Shared Memory Table (SMT) into the new PMT. These

entries describe memory that most processes will need, such

as the monitor, the exec, and some of the subsystems. ThUS,

a program has a max:im.um of (64 - NCMEM) private pages.

When a program is run, his TS block is swapped and its

pseudo-relabeling registers (in the PACT table) are used to

read out the proper bytes from PMT and construct a list of

5-1

drum pages that may need to be read from drum. When this list

has been constructed, the current state of core is examined to

determine whether any blocks need to be written out to make

room for these which must be read in. If so, a list of blocks

to be written out is constructed. The drum command list is then

5-2

set up with the appropriate commands to write out and read in

the necessary blocl\:s. In the course of optimizing the drum

commands, the swapper may skip a sector. If this is the case,

it searches through the ~mory tables and writes out a dirty

page in that sector. The scheduler then simply hangs up until

the swapping is complete. In the scan which sets up the drum

read commands, the swapper collects from DHT the actual

absolute memory addresses of the page called for by the pseudo­

relabeling and constructs a set of real relabeling registers

which it puts in two fixed locations in the monitor. It then

outputs these relabeling registers to the hardware and activates

the program.

There are two BRS's which permit the user to read and

write his pseudo-relabeling. BRS 43 reads the current pseudo­

relabelin(~ registers into A and B. BRS 44 takes the contents

of A and B and puts then: into the current pseudo-relabeling

registers. An executive program may set the relabeling registers

in arbitra.ry fashion b~{ using this instruction. A user program,

however, may add or delete only blocks which do not have the

executive bit set tn FMT. This prevents the user from gaining

access to executive blocks whose destruction may cause damage

to the system. Note that the user is doubly restricted in his

access to real memory, firstly, because he can only access real

memory which is pointed to by his pseudo-relabeling, and secondly,

because he is only nllo ,ed to adjust those portions of his pseudo­

relabeling which are not executive type.

The user can also set the relabeling of a fork when he

creates it. See Section 3. The same restrictions on manipulation

of executive blocks of course apply.

The system maintains a pair of relabeling registers which

the executive and various subsystems think of as the user's

program relabeling. For the convenience of subsystems, any

program can read these registers with BRS 116 and set them with

BRS 117.

5-3

The memory allocation a.lgorithm is described on page 3-2.
A user can release a block which is in his current relabeling

by putting any address in that block into A and executing BRS !t.

The PMT entry for the block is removed and in any other fork

which has this PMT byte in its relabeling, the byte is cleared

to o.
Equivalent to BRS 4 is BRS 121, which takes a pseudo­

relabeling byte in A rather than an address. An inverse operation

is BRS 120, which takes a pseudo-relabeling byte in A, generates

an illegal instruction trap if the corresponding PMT entry is

occupied, and otherwise obtains a new page and puts it in that

entry. This is an exec-only operation and is implemented parti­

cularly for the Exec 'RECOVER FROM FILE' operation. If A is 0,

BRS 120 assigns a 2K page and skips; this operation is not exec­

only.

Shared Memory. The system maintains a table called the shared

memory table (SMT) which describes all the memory which can be

shared between jobs in the system. All the cornmon subsystems

occupy positions in SMT, and some part of SMT is copied into

each job's FMT permanently. To run a subsystem, the exec must

determine if the subsystem map is already in PMT (which it will

be if all the bytes are below NCMEM) and, if not, arrange for

the bytes to be put into PMT.

The exec makes an entry in SMT by executing BRS 68 with a

byte ntunber in A. The block addressed by the specified byte in

the pseudo-relabeling registers is put into SMT and the pointer

in SMT of this byte is returned. By putting an index in SMT in

A and executing BRS 69, the SMT entry is copied into the first

free byte of a userts PMT and the byte number is returned in A.

The read-only bit in the SMT entry is propagated to the PMT

entry thus created. To delete an entry in SMT, the exec may

deliver its index in A and execute BRS 70.
The user may declare a block read-only by executing BRS 80

with the pseudo-relabeling byte number of the block in A and

with bit 0 of A set. To make a block read-write, bit ° of A

5-4

should be clear. Bit 0 of A will be reset if the block was

formerly read-write or set if it was formerly read-only. If

the program doing this is not an executive program, then the

block must not be an executive block. Only executive programs

may make a shared page read-write.

The drum is divided into 84 bands, each containing 16,000

words arranged in 8 blocks of 2K each. Up to '72 of these bands

may be used by the swapper for program storage. A bit table is

maintained to indicate the availability of 2K blocks in these

bands. The table consists of 8 words, each containing 24 bits,

one for each band. If a bit is zero, it indicates that the

block is in use. If it is set, the block is available. wllen

the user's memory is acquired, it is written as nearly as possible

in adjacent blocks, so that it rnay be read in without undue drum

latency time. Rotational positions are chosen by adding, mod 8,
the user's job number to the PMT byte number of the new block.

It should be noted that whenever a user is activated, all

of the memory in his current relabeling registers is brought in.

The user does, however, have considerable control over precisely

what memory will be brought in, because he can read and set his

own relabeling registers. He may therefore establish a fork with

a minimal amount of memory in order to speed up the swapping

process if this is convenient.

To make a block executive, execute BRS 56 with the same

argument as for BRS 80, make block read-only. This instruction

is legal only for executive type programs.

Real memory is housekept by means of several tables. The

most important of these is a table (hash)-indexed by drum address

which describes all those drum pages which are currently in

core. The Drum Hash Table (DHT) has more entries than core

pages. An entry has the following format:

IF Drum Core
Address Address

¢ 18 27

F == Free entry

5-5

The core address field of DHT indexes two tables called the

real memory table (RMT) and the real memory use count table (RMe).
An RMC entry is -1 if a page is not in use; otherwise, it is one

less than the number of reasons why it is in use. Every occurrence

of the page in the relabeling of a process which is running or

about to be run counts as such a reason. In addition, other

parts of the system can increment an RMC word to lock a block in

core. No block with non-negative RMC will be used by the swapper.

The format of an RMT entry (one per real page) is

4 5 6
2 D E 9 0-0 23

0 I R 0
R R W R address of DHT entry

¢ ¢ T I I ~ responsible
y p P T

RIP - drum read in progress
DIRTY - Page has been modified WIP - drum write in progress

ERRBIT - drum read error

There is one more table indexed by real memory, called the

real memory aging table. Whenever the swapper is entered, every

word in this table is shifted right one bit. All blocks which

show up in the real relabeling computed from the pseudo-relabeling

with which the swapper was entered then have bit I turned on.

The blocks with lowest RMA are selected for swapping out; of

course, their RMC entries must be negative.

BRS 140 scans through the real memory tables and for each

page with a negative RMC takes one of two actions: If the page

is not dirty, the PMT/SMT entry is marked as on drum and RMT is

emptied. If the page is dirty, a write is started. This has the

affect of forcing core and drum copies of most pages to correspond.

6-1

6.0 Miscellaneous Features

A user may dismiss his program for a specified length of

real time by executing BRS 81 with the number of milliseconds

for which he wishes to be dismissed in A. At the first

available opportunity after this time has been exhausted, his

program will be reactivated. This feature is implemented with

a special activation condition and the value of the clock at

the time when a user is to be reactivated is kept in PA. The

activation condition causes the current value of the clock to

be compared with this value. When the clock becomes greater,

it is time to reactivate the program.

He can read the real-time clock into A by executing BRS 42.

The number obtained increments by one every 1/6Oth of a second.

Its absolute magnitude is not significant. He can read the

elapsed time counter in A by executing BRS 88. This number

is set to 0 when he enters the system and increments by I at

every 1/60th second clock interrupt at which his program is

running.

To obtain the da,ta and time, he can execute BRS 39. This

puts six 8-bit characters into AB. These characters contain,

in order, the year, month, day, hour (0-23), minute and second

at which the instruction is executed.

A user may dismiss his program until an interrupt occurs

or the fork in question is terminated by executing BRS 109.

A program can test whether it is executive or not by

executing BRS 71, which skips in the former case.

An executive program can dismiss itself explicitly. See

Section 2.

There are some operations designed for so-called executive

BRSs, which operate in user mode with a map different from the

one they are called from. BRS 111 returns from one of these

BRSs, transmitting A, B and X to the calling program as it finds

them. BRS 122 simulates the addreSSing of memory at the location

specified in A. If new memory is assigned, it is put into the

relabeling of the calling program. A memory panic can occur,

in which case it appears to the calling program that it comes

from the BRS instruction.

BRS 141 reads the panic table of the caller, and BRS 142

sets the state from a table specified by X.

6-2

An executive program can cause an instruction to be executed

in system mode by addressing it with EXS.

7-1

7.0 Teletype Input-Output

We begin with an outline of the implementation of the

teletype operations. This may serve to clarify the exact disposal

of the characters which are being read and written. Every

teletype has attached to it a table which is shown in Figures

7A and 7B. No buffers are attached to the teletype unless

input from or output to the teletype is taking place. As

characters are output by the program, buffers are attached to

the teletype. These buffers are released as soon as they are

emptied by the teletype interface. On input buffers are attached

to the teletype as characters are received from the teletype,

and they are released as soon as the program empties them.

Input and output buffers are logically and physically

independent, although they come out of the same buffer pool.

When a character is typed in on a teletype) it is converted

to internal form and added to the input buffer unless it is

rubout on a controlling teletype. The treatment of rubouts

is discussed in Section 3. The echo routine address is then

obtained from TTYTBL and called. It figures out what to echo

and whether or not the character is a break character. The

available choices of echos and break characters are listed

below. If the character is a break character, and if a user's

program has been dismissed for teletype input, it will be

reactivated regardless of the number of words in the input

buffer. In the absence of a break character, the user's program

is reactivated only when the input buffer is nearly full.

If the teletype is in the process of outputting (TOS2 > -1)

then the character to be echoed is put into the last byte of

the buffer word which contains the input character. When the

character is read from the buffer by the program, the echo,

if any, will be generated. This mechanism, called deferred

echoing, permits the· user to type in while the teletype is

outputting without having his input mixed with the teletype

output.

7-2

There are four standard echo routines in the system, referred

to by the numbers 0, 1, 2 and 3. a is a routine in which the

echo for each character is the character itself, and all cha.racters

are break characters. Routine 1 has the same echoes, but all

characters except letters, digits, and space are break characters.

Routine 2 again has the same echoes, but the only break characters

are control characters (including carriage return and line feed).

Routine 3 specifies no echo for any character, and all characters

are break characters. This routine is useful for a program

which wishes to compute the echo itself.

To set the echo routine, put the teletype number in X and

the echo routine number in A and execute BRS 12. Note that

BRS 12 is also used to turn on 8-level mode (see below). To

read the echo routine number into A, put the teletype number

in X and execute BRS 40. This operation returns in A the word

listed as TTYTBL on page 7A.

To input a character from the controlling teletype (the

teletype on which the user of the program is entered) into

location M in memory the SYSPOP

Tel M (teletype character input)

is used. This SYSPOP reads the character from the teletype

input buffer and places it into the 8 rightmost bits of location

M. The remainder of location M is cleared. The character is

also placed in the A register, whose former contents are destroyed.

The contents of the other internal registers are preserved by

this and all the other teletype SYSPOPs and BRS's.

To output a character from location M, the SYSPOP

TCO M (teletype character output)

is used. This instruction outputs a character from the rightmost

8 bits of location M. In addition to the ordinary ASCII characters,

7-3

all teletype output operations will accept 135 (octal) as a

multiple blank character. The next character will be taken as

a blank count, and that many blanks will be typed.

The TTYTIM cell in the teletype table is set to the current

value of the clock whenever any teletype activity (interrupt

or output SYSPOP) occurs. The top bit is left clear unless the

activity is a rubout input. This cell is checked by the

rubout processor to determine whether the rubout should reset

the job to the exec. See p. 3-6.
Every teletype in the system is at all times in one of

three states:

a) It may be the controlling teletype of some user's program.

It gets into this state when a user enters on it.

b) It may be attached to some user in a manner about to be

described.

c) It may be completely free.

The status of the teletype is reflected by the contents of TTYASG.

There are mechanisms to be described by which the user may direct

output to any teletype in the system which is willing to a.ccept

it and receive input from any teletype which is not free. If,

however, he wishes to have better control over a teletype (for

instance, to prevent other users from accessing it) he may attach

it by executing the instructions

LDA =teletype number

BRS 27

If the indicated teletype is free, it is attached to the user whose

program executes the instruction, and the BRS will skip. Otherwise

the teletype status is not affected, and the BRS does not skip.

In the following discussion we will say that a teletype is attached

to a user even if it is the controlling teletype.

To release an already attached teletype, execute the

instructions

LDA =teletype number

BRS 26
If the specified teletype is not already attached to the user, this

is an illegal instruction and causes a panic. All attached teletypes

are, of course, released when the user logs out.

7-4

A teletype becomes a controlling teletype if it is dormant

and rubout is pushed on it. It can be returned to its dormant

state by BRS 112, which takes the job number of the job associated

with the teletype in X. A job may terminate itself. This

operation also releases all teletypes attached to the job.

The user may specify for his controlling teletype or for one

which he has attached, whether or not messages from outside will

be accepted, and whether or not input from outside will be

accepted. The former condition is governed by the accept

messages bit, the latter by the accept input bit. The accept

message bit controls execution of OST instructions and the setting

of teletype output links. The accept input bit controls execution

of STI instructions and the setting of teletype input links.

To set these bits, the user may execute

LDA =teletype number

LDA BrrS

BRS 25

The last bit of BITS will set the accept input bit, the next to

last the accept messages bit. Setting or clearing these bits

will not affect any teletype links currently active.

To do input and output to specified teletypes (rather than

implicitly to a controlling teletype as in TCI and TCO) the

SYSPOPs 1ST and OST are available. To input a character from

a specified teletype, execute the instruction

IST =teletype number (input from specified teletype)

which brings the character into the A register. This instruction

is illegal unless the teletype is attached to the user. To

output a character to a specified teletype, execute the instructions

LDA =cha.racter

OST =teletype number (output to specified teletype)

This instruction is illegal if the following three conditions

are satisfied:

(1) The spec ified te letype is not atta.ched to the user,

(2) The specified teletype does not have its accept messa.ges

bit set,

(3) The program executing an instruction is a user rather

than an executive program. If these conditions are

7-5

satisfied, an illegal instruction panic will be generated.

Note that attached teletypes do not have the same status as

the controlling teletype for a user. In particular, pushing the

rub out button on an attached teletype will have no effect.

The instruction

eIO =teletype number + 1000

is exactly equivalent to

IST =teletype number.

The instruction

eIO =teletype number + 2000

is exactly equivalent to

OST =teletype number.

This mechanism permits the user to do Ilo to specified teletypes

within the frrumework of the sequential file machinery.

The user has considerable control over the state of the

teletype buffers for the teletypes attached to him. In particular,

he may execute the following BRS's. All these take the teletype

number in X. Recall that ·-1 may be used for the controlling

teletype.

BRS 11

BRS 29
BRS 13

BRS 14

BRS 138

clears the teletype input buffer.

clears the teletype output buffer.

skips if the teletype input buffer is empty.

waits until the teletype output bu~fer is empty.

waits until a process gets dismissed because

the input buffer is empty.

There is one additional piece of machinery which permits output

to go to a teletype other than the controlling teletype. This

machinery is ~plied by the top bits of TTYTBL, which specify

whether any link bits are set. Associated with each teletype are

two words called the absolute input link control word (LeW) and the

absolute output LCW. Each of these words contains one bit for

each teletype in the system. If the bit for teletype m is set in

the input LCW for teletype n, every chs.racter which goes into n' s

input buffer will also go into m's input buffer. If the bit is

set in the output LCW, every character which is output to n,

including echoes, will also be output to m.

7-6

Also associated with each teletype are relative LCW's for

input and output. The bits in these LCW's are set by BRS 23. Each

time any relative WW is changed, the absolute LCW' s are all

recomputed. The Boolean matrix formed by the absolute input

(output) LeW's is the infinite product of the matrix of the relative

input (output) LCW's.

The instructions

LDX =teletype number

LDA =TABLE

LDB CTL

BRS 23

will set one of the relative LCW' s for the indicated teletype.

TABLE is the address of a list of teletype numbers terminated

with -2. The bits of CTL are interpreted as follows:

o O=output LCW

l=input ICW

1

2

O=clear all links first

l=do not clear links first

O=set link bits for teletypes whose numbers

are in the table.

l=clear link bits for teletypes whose numbers

are in the table.

Fran the old relative LCW and the information supplied by BRS 23

a new relative LCW is created. New absolute LCW's for all

teletypes are then computed.

An output link can be set up between two teletypes only if

each of the teletypes satisfies at least one of the following

conditions:

a) It is the controlling teletype of the program executing

BRS 23

b) It is attached to the program

c) Its accept messages bit is on (destination only)

d) The fork executing the ERS is executive.

An input link can be set only if the same conditions are satisfied

for the accept input bit.

7-7

To clear all liIL~S} input and output, to or from a teletype,

execute

LDX =teletype number

BRS 24

Special provision is made for reading 8-bit codes from the

teletype without sensing rub out or doing the conversion from

ASCII to internal which is done by TCI. To switch a teletype

into this mode, execute

LDX =teletype number

LDA =terminal character + 40000000B

BRS 12

This will cause each 8-bit character read from the teletype

to be transmitted lli~changed to the user's program. The teletype

can be returned to normal operation by

1. Reading the terminal character specified in A, or

2. Setting the echo table with BRS 12.

No echoes are generated while the teletype is in 8-level mode.

Teletype output is not affected.

A parallel operation, BRS 85, is provided for 8-level

output. BRS 86 returns matters to the normal state, as does

any setting of the echo table.

To simulate teletype input, the operation

STr =teletype number

is available. STI puts the character in A into the input buffer

of the specified teletype. It is legal if the accept input bit

is on.

To steal teletype output, the operation

STO =teletype number

takes a character from the teletype's output buffer and returns

it in A. STO is legal only if the accept input bit is on.

To disable output from a buffer to a teletype, execute

BRS 139 with the teletype number in X. If bit ¢ of A is 1,

the NO bit will be set; otherwise, the NO bit will be cleared.

TTYOB

TTYOBC

TELETYPE SYSTEM POINTERS

Pointer to next available buffer in buffer pool

Count of available buffers in buffer pool

7A

TTYTBL N N A S S I 0 A A A 10
address of echo routine 23 S 0 P I 0 L L K I M

TTYBRK

TTYASG

ROLCW

RILCW

Waiting for break character when -1

PACPl'R of fork to terminate on rub out

3 7 7 7 7

1
18

controlling

Relative output link control word

Relative input link control word

TTY Status

active

inactive

. b 23 JO attached

TTYTIM
R
B

value of clock when last action occurred on this tty

TTYDEV device (normally physical teletype) using this buffer.

NS = not linked or 8-level

AM = accept message

IL = input linked

OL = output linked

NO = don't output to TTY interface

AK = accept input links

AI = accept input

8I = 8-level input

SO = 8-level output

RB = last action was input of rubout

AP = accept output links

7B

TELETYPE TABLE

TIS2 number of characters in input buffer

TIS4 next available space in input buffer (pointer)

7 8

bits '7 and 8:

o 1

1 0

1 1

10

I WORD ADDRESS

byte 1

byte 2

byte 3

23

TIS5 next filled space in input buffer (pointer with same format

as TIS4)

TIS6 deferred echo byte count. Input characters are echoed when

the NO bit is set in TTYTBL and this count goes negative. It

TIBBl

TIBB2

TIBLC

TOS2

TOS3

TOs4

TOS5

Tos6

TOBBl

TOBB2

TOBIC

TTYPN

TTYLN

is decremented when a character is taken out of the input buffer.

word pointer to the oldest acquired input buffer: =0 no buffer

attached

word pointer to the last acquired input buffer

count of input buffer that can be acquired

number of characters in output buffer: -1 = inactive

< 0 = not in mult iple blank mode; 400 = just saw 135

(multiple blank character); other = number of blanks

next filled space in output buffer (pointer same as TIS4)

next available space in output buffer (pointer same as TIS4)

< 0 = not terminated during output to links; > 0 = next

link that output has to be sent to.

word pointer to oldest acquired output buffer; = 0 no buffer

attached

word pointer to last acquired output buffer

count of output buffers that can be acquired

contains physical teletype number associated with this buffer,

or 4B7 if no physical teletype attached

contains logical teletype buffer associated with this physical

teletype or zero (¢) if no buffer is attached.

7C

TELETYPE BUFFERS

TTYOC 1 1.
2 3 2.

1-----0004
N 1-----....

BUFFER POOL POINTERS

TOBBl 1 TOBB2IL--_3_~ TOS41 lX1 1. +N I

1.
2

1-----.... 2. 3 3·

lXl= byte count in word

N = word displacement in buffer.

PROGRAM OUTPUT BUFFER PO:rnTERS

8-1

8.0 Drum and Buffer Organization; Devices

8.1 File Storage on the Drum

The drum is divided into two major sections, program swapping

and file storage. The organization of the program swapping area

is discussed in Section 5. The file storage area is divided

into 256 word blocks which form the physical records for storage

of files.

Every file has one or more index blocks which contain

pointers to the data blocks for the file. An index block is a

256 word block, as are all other physical blocks in the file

area. Only the first 141 words of the index block are used,

however, for data storage. A couple of additional words are

used to chain the index blocks for any particular file, both

forward and backward. The index blocks for a file contain the

addresses for all the physical blocks used to hold information

for the file.

Available storage in the file area of the drum is kept

track of with a bit table similar to the table used to keep

track of program swapping storage. Since there are sixty-four

256-word blocks around the circumference of the drum and a

maximum of 72 drum bands (out of the 84 available) may be used

for file storage, a 192-word bit table which contains 3 words

of 72 bits for each row of physical blocks suffices. If a

bit in this table is set, it indicates that the corresponding

block on the drum is in use. Again, as with program swapping

storage, the organization of this table makes it easy to

optimize the writing of files. This is done by putting consecutive

physical blocks in the file in alternating rows on the drum.

The intervening row between each two physical blocks provides

the time for the channel to fetch a new command and the heads

to switch. The result of this organization is that information

may be transferred from a file on the drum into core at one-

half core memory speed if conditions are right.

8-2

8.2 File Buffers

Every open file in the system with the exception of purely

character-oriented files such as the teletype has a file buffer

associated with it. The form of this buffer is shown on page BA.
Part (a) of this figure shows the buffer proper, and part (b)

shows the index block buffer and pointers associated with it.

Part (b) is not used only by drum files, but is present in all

cases.

Each job has associated with it a temporary storage block,

which is always the first entry in the job's FMT. This block is

used to hold information about the user and for the system's

temporary storage. It also has room for three buffers. An

additional block may be assigned with room for five more buffers

if more than three file s are open at one time. The pseudo­

relabeling for the extra buffer block and the TS block is held

in a table called RL3 which is indexed by job number, and is

put into the monitor map whenever any fork belonging to that

job is run.

Note that the amount of buffer space actually used is a

fuu~ction of the device attached to the file. In all cases the

two pointer words at the head of the buffer indicate the location

of the data. The first word points to the beginning of the

relevant data and is incremented as data are read from an input

buffer. The second word points to the end of the data on input

or end of the buffer on output or written in an output buffer.

When the buffer is in its dormant state, both words point to

the first data word of the buffer. Whenever any physical I/O

operation is completed, the first pointer contains the address

of this word.

B-3

8.3 Devices

Every different kind of input-output device attached to the

system has a device number. The numbers applicable to specific

devices are given in Section 9; here the various tables indexed

by device number are described. The entries in these tables

addressed by a specific device number together with the unit

number (if any) and the buffer address, completely define the

file. All this information is kept in the file control block

(Section 4.3) which is addressed by the file number.

Page 8B shows the tables indexed by device number. Note

the multiplicity of bits which specify the characteristics of

the device. Some of these call for comment. A device may be

common (shared by users, who must not access it simultaneously;

e.g., tape or cards) or not common (e.g., drum); this characteristic

is defined by NC. It may have units; e.g., there may be multiple

magtapes. The U bit specifies this. The DIU word indicates

which file is currentLy monopolizing the device; in the case of

a device with multiple units, DIU points to a table called ADIU

which contains one word for each unit.

The major parameters of a device are:

- the opening routine, which is responsible for the operation

necessary to attach it to a file.

- the GPW routine, which performs character and word I/O.

- the BIO routine, which performs block I/O.

Minor parameters are:

- physical record size (determining the proper setting of

buffer pointers and interlace control words for the channel).

- the expected t~e for an operation; the swapper uses this

number to decide whether it is worthwhile to swap the

user out while it is taking place.

8A

pointer to first data word in buffer

pointer to last data word

1st data word

·
· ·

data block
·

256th data word

a) layout of a file buffer

drum address of data block, or ¢

·
·
·
·

drum address of data block, or '/J

'Z..O) BFP pointer to next index block

1- () G BBP pointer to previous index block

1 ,,7 BDS log 2 (data block size!256)

L'v BLX file length

?- I I BCK check sum

b) format of an index block

DEV word or
character I/O
routine

BUFS
buffer size

BDEV

block r/o routine

DID
device in use

OPNDEV
opening routine

¢ 1

~ 1 ¢

0

I¢

t/J

t/J 1

(/) (/)

GPW routine

CH char oriented
DRM dru.rn

RX random access
BF requires buffer

WB W buffer
OUT output

2 ' 3 8 9 l¢

~ I max. unit number U I physical record size

U check unit number NC not common (i.e. don't set DID)

9
BIO routine

file number using this device or -1

points to ADN (has unit number added)

2 3 8 9 l~

\ ~ expected wait time 0 opening subroutine in clock C:lC Ie s

EO exec only allowed to open

•

DEVICE INDEXED TABLES

23

23

23

U = 0

u = 1

23

9-1

9.0 Sequential Files

9.1 Sequential Drum Files

1.94 includes a major revision to the drum file system.

Basically, a file appears as an address space with an arbitrary

upper bound called its "length." The maximum possible length

is around four million words (22 bits). The file is internally

paged into an arbitrary number of data blocks whose size may be

any power of two larger than 256 words.

The following discussion will be of interest to those who

need to make efficient use of large, randomly accessed files:

1. The data blocks are kept track of by the use of index blocks

chained together. Each index block can describe about 14¢
data blocks. Random access will be slow if there are several

index blocks to chain through. A large data block size will

minimize this source of inefficiency.

2. Block transfers are implemented in the most efficient manner,

with as much as possible of the data requested transferred

directly into the user's memory. The slop on either end is

buffered in 256-word blocks. Programs cognizant of the

structure of their files can avoid all buffering. All word

operations use the 256-word buffer.

The user's access to an open file is housekept by means of

a position pointer to the file. This pointer may be moved

explicit~ by the user or implicitly by any of the I/O operations.

The I/O operations always leave the pointer pointing at the word

following the last transfer. eIO is a confusion factor.

When a file is opened, any of three types of access to that

file may be given to the user: read, write, or position. Position

ac~ess is intended to implement append-only files. You may not

move the pointer or perform random operations unless you have

position access to the file.

file o12ened as access given

sequential input r p

sequential output w

random re ad-only r p

random read-write r w p

The mechanisms for setting the length, data block size,

or for moving-----ene-po~nter_are described undeI BRS 143-144.

9-2

BRS 66 deletes the contents of an open drum file. In the

case of a sequential output file, it sets its length to zero.

You must have write access to the file to use BRS 66.

BRS 67 takes a file number in A and deletes all trace of

the file. Use of this BRS is limited to the EXEC.

ERS 143, 144 have been implemented as general read and

set status of a thingy. The calling sequence is:

A: table address or data (depends on B¢)

If a table address, A is incremented to point to one

past the last word transferred.

X: thingy number

B: decodes as follows

bit ¢: ~ if A has data, 1 if A points to a table

bits 1-11: "type" of thingy

bits 12-23: "attribute"

"type" is I for a drum file, 2 for a job. No other thingies

have been implemented as yet.

For drum files, the attribute field specifies the following:

1. (Position) One may read or set the sequential I/O pointer.

The bottom 22 bits are the current word pointer, the top

two the character offset. ('/IIJ means a word boundary.)

The offset must be ¢ if the pointer is set.

2. (Length) Reads or sets the length of a file.

3. (Sequential I/O mode) The sequential I/O operations (CIO,

WIO,BIO) are interpreted as input if the sequential mode is

¢, output if the mode is 4B7.

9-3

4. (Capabilities) Opening a file may give read/write/position

access to the file. These bits may be read in bits 21-23.

If you try to set them, they are ~d with the existing

capabilities.

5. (Data Block Size) Returns n where 2n+8 is the number of

words in a data block. May be set only if the file length

is (1.

6. (User words) Each file in the system has five arbitrary

words associated with it. Anyone may read them but only

the. exec may set them.

7 . ("structure") A file may have voids in it. If you are

interested, you can find out where these are. BRS 143

returns the number of words from the current sequential

pointer to the next transition. It also moves the pointer.

If you are crossing a void part of the file with this

operation, the sign bit of the number is turned on. Setting

this state with BRS 144 is interpreted by releasing this

many words beyond the pointer. This also moves the pointer.

8. (count data) Can only be read. Sets the pointer to the

beginning of the file.

9. (copy the index block) Can only be read. Gives a copy of

the entire index block.

For jobs (type = 2) BRS 143 and 144 interpret the attribute field

thusly:

1. (files) Returns a bit word telling which files are open.

This word may not be set.

2. (mT) Reads the private part of Ht1T.

The Exec opens a sequential drum file by the following

sequence of instructions:

LDX =device number, 8 (input) or 9 (output)

LDA =unit number, address of first index block

BRS I

If the file is opened successfully, the BRS skips; otherwise,

9-4

it returns without skipping. Use of this BRS is restricted to

executive type programs. User programs may access drum files

only through the executive file handling machinery. BRS I can

also be used to open other kinds of files. The device and unit

numbers are used to determine the physical location of the file.

See Section 9.2.
If BRS I fails to skip, it returns in the A register an

indication of the reason:

-2 too many files open -- no file control blocks or no

buffers available.

-1 device already' in use. For the drum, produced by an

attempt to open a file for input if already open for

output or for output if already open at all.

o no drum space left. This inhibi ts opening of output

files only.

See Section 9.2 for other error conditions.

BRS I returns in the A register a file number for the file.

This file number is the handle which the user has on the file.

He may use it to close the file when he is done with it by putting

it in the A register and executing BRS 2. This severs his

connection with the file. BRS 2 is available only to

executive progrwms, user programs should use BRS 20 instead.

To close all his open files an executive program may execute

BRS 8. The corresponding operation for nor.mal user programs is

BRS 17.

Three kinds of input-output may be done with sequential

files. Each of these is specified by one SYSPOP. Each of these

SYSPOPs handles input and output indifferently, since the file

9-5

must be specified as an input or an output file when it is opened.

It is not possible to have a file open for both input and output

at the same time: this may be circumvented by using random

:tiles.

To input a single character to the A register or output it

from the A register, the instruction

CIO =file number

is executed. On input an end-of-record or end-of-file condition

will set bits .Q. and Q ~ I in the file number (these are called

~ bits) and return a 134 or 137 character, respectively. If

interrupt 4 is armed, it will occur. The end-of-record condition

occurs on the next input operation after the last character of

the record has been input. Note that an end-of-record condition

only occurs for type files and is of concern only to the Exec.
~

The end-of-file condition occurs on the next input operation

after the end of record, which signals the last record of the file.

The user may generate an end of record while writing a file by

using the control operation to be described.

To input a word to the A register or output it from the A

register,

WIO =file number

is executed. An end-of-record condition returns a word of three

134 characters as well as setting the flag bit, and an end of

file returns a word of three 137 characters. If the condition

occurs when a partially filled-out word is present, the word

is filled out with one of these characters.

Mixing word and character operations will lead to peculiarities

and is not recommended.

To input a block of words to memory or output them from

memory, the instructions

LOX =first word address

LDA =number of words

BIO =file number

should be executed. The contents of A and X will be destroyed.

The A register at the end of the operation contains the first

memory location not read into or out of.

9-6

If the operation causes any of the flag bits to be set, it

is terminated at that point and the instruction fails to skip.

If the operation is completed successfully, it does skip. Note

that a BIO cannot set both the EOR and the EOF bits.

BIO is implemented with considerable efficiency and is

capable of reading a file at one-half the maximum drum transfer

rate.

The flag bits (0 and 7) of the file number are set by the

system whenever end of file is encountered and cleared on any

input-output operation in which this condition does not occur.

Bit 0 is set on any unusual condition. In the case of a BIO

the A register at the end of the operation indicates the first

memory location not read into or out of. Bit 6 of the file

number may be set on an error condition. Whenever any flag bit

is set as a result of an input-output operation in a fork,

interrupt 4 will occur in that fork if it is armed.

The user may delete all the information in a drum file by

executing the instructions

LDA =file number

BRS 66

He may also eliminate the file entirely by giving an executive

command described in Document R-22, or via ERS 63 (vide infra).

The index block for a sequential drum file contains one

word for each physical record in the file. This word contains

the address on the drum of the physical record in the bottom

bits.

Three operations are available to executive programs only.

They are intended for use by the system in dealing with file

names and executive commands.

A new drum file with a new index block can be created by

BRS 1 with an index block number of 0 in A. The file number is

returned in A as usual and the index block number in X. The

initial settings of the r, w, and p capabi~ities, and the

sequential I/O mode flag, should be given in B.

To read an index block into core

BRS 87

ma.y be used. It takes the address of the block in A and in X

the first word in core into which the block is to be read.

9.2 other Sequential Files

9-7

In addition to drum sequential files, the user has some

other kinds of sequential files available to him. These are all

opened with the same ERS 1, except for the device number.

Available device numbers are

Paper tape input 1

Magtape input 4
Magtape output 5
PDP-5 link input 6

PDP-5 link output 7

The device number is put into X. The unit number, if any, is

put into A. The file number for the resulting open file is

returned in A. If BRS 1 fails, it returns an error condition

in A as described in Section 9.1. Three error conditions apply

to magtape only:

o Tape not ready

1 Tape file protected (output only)

2 Tape reserved (see p. 9-8).
ERS 1 also accepts the following three character mnemonics

instead of the device numbers. Either the name or the number

goes in X for the call.

1 PrI

2 PrO

3 eDI

4 MrI

5 MfO

6 PDI

7 PDQ

8 FSI

9 FSO

10 FIL

11 LPO

12 MDI

13 MOO

14 eSI

15 eso
16 TTl

17 TTO

18 NON

19 lOS

20 SNP

paper tape input

paper tape output (not available)

card input (not available)*

mag tape input*

mag tape output*

PDl:5 input

PDl:5 output

drum input*

drum output*

drum input and output*

line printer out (not available)*

direct mag tape input*

direct mag tape output*

controlling teletype input

controlling teletype output

specified teletype input

specified teletype output

nothing

subroutine file

snooper counters (Berkeley only)

* requires executive status

9-8

ERS 1 is inverted by ERS 110, which takes a file number in

A and returns the corresponding device name in X and unit number

in A.

These files may also be closed and read or written in the

same manner as sequential drum files. The magtape is only

available to executive·type programs.

LDA =1 (end of record)

eTRL =file number

is available for physical sequential file 5 (magtape output).

Several other controls are also available for maptape files only.

These are:

2 backspace record

3 forward space file

4 backspace file

5 write three inches blank tape

6 rewind

7 write end of file

8 write 15 inches blank tape

These controls may be executed only by executive type programs.

I/O operations to the magtape may, of course, be executed by

user programs if they have the correct file number.

An executive program may arrogate a tape unit to itself by

putting the unit number in A and executing BRS 118, which skips

if the tape is not already attached to some other job. BRS 119

releases a tape so attached.

It is possible for magtape and card reader files to set

9-9

the error bit in the file number. The first I/O instruction

after an error condition will read the first word of the next

record--the remainder of the record causing the error is ignored.

The magtape routines take the usual corrective procedures when

they see hardware error flags, and Signal errors to the program

only as a last resort.

The phantom user's three second routine checks to see

whether a W-buffer interrupt has been pending for more than

three seconds. If so, it takes drastic and ill-defined action

to clear the W-buffer. BRS 114 also takes this drastic action;

it can be used if a program is aware that the W-buffer is

malfunctioning.

Direct tape I/O pa.ckage. A mechanism for accessing arbitrarily

formatted mag tape is available. ~he appropriate operations are:

~Sl ~n

BRS 2 (or 17 or 2p) close

BrO block input/output

CTRL control

9-10

BIO is used in the normal way, with a word count in A and core

address in X. BIO will not give you more data than specified

by A. In no case may the block requested cross a page boundary.

On input, BIO will skip if the word count presented is exactly

right; otherwise, it will not skip, and will leave the number

of words actually transferred in A and the next core address in

X. The flag bits (EOR and EOF) in the user's file number are

set as with the normal BIO for tapes.

In addition to controls 3-8 for tape in the CTRL operation,

CTRL 9 has been ~plemented to allow the user to set the mode

for the tape. This operation takes a ¢ or 1 in B2l for setting

the tape in odd or even parity. (TSS tapes use odd parity.)

B22 and B23 contain the "frame count," a mysterious. feature of

the W-buffer. Use one less than the number of 6-bit characters

per word to be shipped. On reading the characters are stored

right-justified in memory. On writing they are taken out left­

justified. The word count for transfers covers the numbers of

words in core actually used. When the tape 1s opened, the mode

is set to odd parity, four characters per word.

Snooper Counters. The Berkeley system has a collection of

hardware counters which monitor external signals. These may

be opened as a file with ERS 1. In addition, two operations

are provided.

CTRL fn

requires a 1 in A, and 1/32 of the number of machine cycles

to be monitored in B.

BIO fn

reads in the counters.

9-11

9.3 File Control Blocks

Every open file in the system has associated with it a file control

block. This block consists of four words in the following format:

FA

FW

FD

Fe

FB

Drum
files
only

0 2 first index block address or 0
0

subroutine address
0 Cl

7 i5 C2
15 16 C

3
c D R R 0
H F X D U 0 device

0
T

0 0 0 0 0 0
0 2 9
char

3 job 8
number drum buffer address or 0

count 0 0

busy count (-1 if file not busy)

Cn = word being packed or unpacked

char count = -1 to 2

CH = character oriented

OUT = output

DF = drum file

{

RX = random access

RD = read only

ERR ::: error

23

normal file

subr. files

normal file

subr. file

9.4 PermanentlY Open Files

There are a few built-in sequential files with fixed file numbers:

o controlling teletype input

1

2

looo+n

2000-+n

controlling teletype output

nothing (discard all output)

input from teletype n

output to teletype n

These files cannot be opened and need not be closed.

10-1

10.0 Random Drum Files

A random drum file is identical in physical structure on

the drum to a sequential drum file. The only major difference

is that the non-zero words of the index block are not necessarily

compact. Th~ reason for this is that information is extracted

from or written into a random file by addressing the specific

word or block of words which is desired. From the address which

the user supplies, the system extracts a physical block number

by dividing by the data block size and a location of the word

within the block which is the remainder of this diviSion.

Further division by 144 yields the appropriate index block. A

file may have any number of index blocks.

A random file may be opened by using BRS 1 with a device

number of 10. No distinction is made between input and output

to a random drum file. A random file may also be closed by

BRS 2, like any sequential file, and CIO, WIO, and BIO may be

used for input-output to random files. The sequential Ilo
mode (input or output) is controlled with BRS 143 and 144.

The following additional operations are available:

To read a word from a random file, execute the instructions

LDB =address

DWI =file number

The word is returned in A.

To write a word on a random file, put the word in A and

execute the instructions:

LDB =address

DWO =file number

Block input-output to random files is also possible. To

input a block, execute the instructions:

LDX =first word address

LOA =number of words

LDB =first address in file

DBI =file number

To output a block of words to a random file, execute the instruction

DBO =file number

10-2

with the same parameters in the central registers. These block

input-output operations are done directly to and from the user's

memory, as is BIO. Drum buffers are not involved and the

operation can go very quickly.

It is possible to define a random file which has been

previously opened as the secondary memory file. To do this,

execute the instructions

LilA =file number

BRS 58
The specified file remains the secondary file until another

secondary memory file is defined or until the file is closed.

To access information in the secondary memory, two SYSPOPs are

provided. These POPs work exactly like DWI and DWO except that

they take the drum address from memory instead of requiring it

to be in B. To read a word of secondary memory into the A

register, the instruction

LAS address

should be executed. To store a word from A into the secondary

memory, the instruction

SAS address

should be executed. The word addressed by either one of these

SYSPOPs should contain the drum address which is to be referenced.

This word may also have the index bit set, in which case the

contents of the index register will be added to the contents

of the word to form the effective address which is actually

used to perform the input-output operation.

The mechanism for acquiring and releasing random drum file

space is very s~ilar to the mechanism for allocation of core

memory. Whenever the user addresses a section of a random

drum file which he has not previously used, the necessary blocks

are created and cleared to O. Note that the user should avoid

unnecessarily large random drum addresses, since they may result

in the creation of an unnecessary number of index blocks. To

release random drum memory, use BRS 144.

10-3

10.1 Direct Drum Access

An even more efficient method of acceSSing information on the

drum is provided by an interface Which alloys the user to acquire

2K pages on the drum and read or write on them directly. This

space is ass igned fran the swapping area on the drum and referred

to directly by its drum address; a bit table private to the user

is used for validity checking.

To acquire a 2K page, execute

BRS 126

with the desired angular position on the drum of the page to be

assigned in the bottom bits of A. If no more space is available,

BRS 126 returns without skipping. otherwise, BRS 126 skips and

returns, in A, the drum address of a 2K page as a word address

(i.e., with the bottom 11 bits zero). A page may be released by

putting this address in A and performing

BRS 1~.

To release ~ pages acquired in this manner, execute

CLA

BRS 7.

This is done automatically by the RESET cClllllland in the executive,

as well as by RECOVER and by a call for a new subsystem. It

should be noted that DUMP does ~ preserve pages acquired by ,BRS 126.

To read or write on a page acquired with BRS 126, use

LDA =core address

LDB =drum address

LDX =word count

b S 124 to readJ-
BRS 125 to write

10.4

These BRS's preserve all the central registers and normally skip.

A no-skip return indicates an uncorrectable transmission error.

The following restrictions are checked by the monitor and

will result in an illegal instruction trap if violated:

1) The drum address must be a multiple of 256 (decimal)

and lie within some page assigned to the user via BRS 126.

(The latter restriction does not apply to executive programs.)

2) The transfer must not cross a 2K page boundary either

in core or on the drum.

3) It is illegal to attempt to read into a read-only page

with BRS 124 (this produces a memory trap if violated).

11-1

11.0 Subroutine Files

An addition to the above-mentioned machinery for performing

input-output through physical files, a facility is provided in

the system for making a subroutine call appear to be an input­

output request. This facility makes it possible to write a

program which does input-output from a file and later to cause

further processing to be performed before the actual input­

output is done, simply by changing the file from a physical to

a subroutine file. A subroutine file is opened by executing the

instructions

LOX parameter word + subroutine address

BRS 1

This instruction skips or returns an error code, as for sequential

files. The opcode field of the parameter word indicates the

characteristics of the file. It may be one of the following

combinations:

11000000

1ll0ooo0

01000000

01100000

CharOacter input subroutine

Character output subroutine

Word input subroutine

Word output subroutine

I/O to the file may be done with CIO or WIO, regardless of

whether it is a word or a character-oriented subroutine. The

system will take care of the necessary packing and unpacking

of characters. BIO is also acceptable.

The opening of a subroutine file does nothing except to

create a file control block and return a file number in the A

register. When an I/O operation on the file is performed, the

subroutine will be called. This is done by s~ulating run SBRM

to the location given in the address field of the X register

given to the BRS 1 which opened the file. The contents of the

B and X registers are transmitted from the I/O Syspop to the

subroutine unchanged. The contents of the A register may be

changed by the packing and unpacking operations necessary to

convert from character-oriented to word-oriented operations or

vice versa. The I/O subroutine may do an arbitrary amount of

11-2

computation any may calIon any number of other I/O devices or

other I/O subroutines. A subroutine file should not call itself

recursively.

When the subroutine is ready to return, it should execute

BRS 41. This operation replaces the SBRR which would normally

be used to return from a subroutine call. The contents of B

and X when the BRS 41 is executed are transmitted unchanged buck

to the calling program. The contents of A may be altered by

packing and unpacking operations. A subroutine file is closed

with BRS 2 like any other file.

In order to implement BRS 41, it is necessary to keep track

of which I/O subroutine is open. This information is kept in

six bits of the PAC table. The contents of these six bits is

transferred into the opcode field of the return address when an

I/O subroutine is called, and is recovered from there when the

BRS 41 is executed.

The user should be warned that a subroutine file should

not be used by a progrrum in a different address space from the

subroutine itself. In particular, subroutine files may not be

given to the BRSs which involve acccess to nwned files (described

in the next section).

12-1

12.0 File Naming System

Because of the possible conrlicts which may arise when

several users are s~ultaneously trying to access the same

peripheral device, such devices cannot be handled directly by

users at the level offered by BRS 1 -- which is available only

to programs with executive status. At the user level, storage

devices can only be referenced in an indirect manner, by writing

or reading a "file."

Files are the primary means by which the user establishes

continuity between one computer run and the next. A file is

any named block of information which the user finds it convenient

to regard as a single entity; the commonest example of a file

is a program. To provide a check against inappropriate use,

files created by the Exec and TSS subsystems are classified,

according to the nature of the information in them, into one

of four types, numbered I to 4. This type number is carried

along with the information content and may be checked whenever

the file is referenced.

The file types are:

1. Core Image - The information in this originates from

specified segments of core memory.

2. Binary

3. Symbolic

4. Dump

- The information has the form of an assembled,

but unloaded program.

- The informa.t ion is of a form. which can be

readily listed on some printing device.

- Comprises all the information in memory

necessary to restart the user from his

current situation, i.e., the situation at

the time of creation of the dump file.

Symbolic information may come directly from paper tape or

teletype. These devices may be referenced as type 3 files by

using the name of the corresponding physical medium, viz. -

PAPER TAPE

TELETYPE

12-2

These names are built into the system and are always appropriately

recognized. Another built-in file name is

NOTHING

which always contains precisely nothing and whose function is to

act as an infinite sink in which limitless unwanted output can

be lost.

A commoner source for symbolic files is the output from

some subsystems, notably the text editor, QED.

Type 2, binary files normal~y arise as the output from the

machine-language a,ssembler ARPAS.

Until the actual process of output from the subsystem occurs,

identification of the information is handled by the subsystem

and is usually implicit since the subsystems can handle only

one file at a time. However, when the information is ejected

into a context involving many other blocks of information of a

similar kind, some explicit identification must be attached to it.

12.1 File Naming

The names which the user is free to invent and assign to

files are of two types:

1. Permanent name s

2. Scratch names

Scratch names differ from permanent names in that they and

the files associated with them are lost when the user leaves the

system, USing the LOGOUT command; they are otherwise treated

identically.

A permanent name is an arbitrary string of characters not

beginning with / or:. A scratch name is an arbitrary string of

characters beginning with / or:. To those users who have drum

file privileges, a / identifies a drum file, : a disk file.

As permanent names we have -

ABC

PROGRAM 1

124

while as scratch names we have -

/ABC
:421/

12-3

Any permanent or scratch file name may be quoted by surrounding

it with single quote marks. Thus, 'ABC' and '/001/' are quoted

file names. The quoted name refers to exactly the same file as

the unquoted one; it differs only in the way it is recognized by

the exec. Control A (backspace) is legal on any name being typed

to the file system unless command recognition is taking place.

When reference is made to an unquoted name, the exec will

anticipate the user and consider the name to be fully delivered

as soon as it has received sufficient characters to distinguish

the name from all others currently defined by the user. This

means that a new name can ~ be introduced in its unquoted

form. A quoted name, on the other hand, is always accepted in its

entirety from the user. The initial and terminal quotes are

then removed and the name compared with the directory of nwmes

currently defined by the user. If it matches one of them, it is

taken to refer to that file, just as though it had been presented

in unquoted form. If it is new, however, it will normally give

rise to an error message unless it appears in one of the

following contexts:

a) In the DEFINE NAME command (c.f. Doc. R-22, Section 5.5)
b) As an output file name, in which case a new file with

the specified name will be created to hold the output.

For example, let XYZ be the name of an existing file and

/123 be a new unattached file name. Then the exec command

~Opy XYZ TO '/123'.

has the effect of creating a new scratch file, called /123, having

the same information content as XYZ. If /123 is, however,

already attached to some existing file, then the information

content of that file is replaced by that of XYZ.

In summary, it will be seen that the exec's file name

recognition apparatus works in two ways, depending essentially

on whether the name is quoted or not. Quoted names must always

be given in entirety; the exec waits for the terminating quote

before attempting to recognize the name. Unquoted names are

anticipated; the exec recognizes or rejects them as soon as it

can, inSisting that they match some name already in the user's

directory of file names. Note tha.t the BEGINNER, NOVICE and

EXPERT commands apply to file name recognition (see R-22,Section 5.7).

12-4

12.2 Accessing Other Users' Files, Special Groups

The naming system described is adequate to reference all

the files belonging to the current user, in whose name the exec

was entered. However, to refer to files belonging to another

user, it is possible to augment the file name by that user's

name together with, optionally, a special accessing code called

the~~.

or

To do this the basic file name must be prefixed by one of:

(< user name >)

(< user name >, < group name >)

Thus for example:

(JONES) 'FIIEl'

or (JONES,GROUP1) 'FILE1'

When such a string as the last is collected from a teletype

by BRS 15 or 16, the characters II, GROUPl" are not echoed to the

teletype so that the secrecy of the special group name is preserved.

The access that any other user may have to each of Jones' files

is in the hands of Jones .himself. Jones may declare that a

member of the public at large who tries to access his 'FILEl'

using (JONES)'FII£l' has entire (read-write) access, read-only

access, or no access at all. It is also open to Jones to

define independently a greater degree of accessibility to a

user who supplies the group name.

Special groups can be created by BRS 61 and the command

SET MODES FOR FILE (R-22, Section 5.5) or deleted by BRS 62 and

the same command.

ERS 61 - Define Special Group

Takes a string pointer in AB.

The string is an arbitrary string of characters and is taken to

define a new special-group name. The BRS assoctates with it a

number, n, in the range IS ~ 15, which it skip returns in A.

A file may then be placed in that special group by setting this

number in the appropriate bits of the file mode word (see BRS 48).
A user may have up to 15 currently defined, distinct special

groups; an attempt to define more results in a no skip return with

A=O. An attempt to define an already existing special group

name also results in a no skip return, but with the group number

in A.

12-5

BRS 62 - Delete Special Group

Takes a special group number in A.

The associated special group name is deleted and the number made

available for reassignment to a new name. All files belonging

to the special group are released from it. If no name is

attached to the number, the BRS has no effect.

12 . 3 Pseudonyms

By means of the command USE NAME it is possible for a user

to insert in his file directory a pseudonym, that is, a name

which, instead of being a tag for a real file, is a tag for

another name possibly including a user name and group name. If

he later uses the pseudonym, the action taken is exactly the

same as if he had typed the entire name for which the pseudonym

stands.

12. t~ Doing r/o to Files, File Numbers

The file name is an unwieldy and inconvenient handle for

the I/O routines to use in transferring data. These routines

instead reference the file by a compact, I-word file number

which is more closely related to the file's whereabouts. Thus

system subroutines. are provided to assign to a given file name

some temporary file number.

The user may find it useful to remember that the system

subroutines which perform information transfers to and from

sequential files are the same for input as for output. The

distinction is carried by the file number with which they are

used--whose character is in turn determined by whether it was

returned by BRS 15 (input) or BRS 16 (output). Hence a program

which was designed to output information can, without ill-effect,

be delivered an input file number. The effect will be to lose

the characters \'Thich the program would be trying to output, while

taking in characters in their place--these too, due to the nature

of the program, will in general be ignored and lost.

Names are recognized and a file number provided, if required,

by the system subroutines BRS 15, 16; they may be deleted by

12-6.

ERS 63. The preceding description of the manner in which file

names are recognized largely assumes that they are being typed

in on a teletype. They may, however, be presented to the BRS' s

as a ready-made string of characters in core. Entry parameters

for the BRSs include a string pointer to a string in core

together with an input-file number (most commonly teletype). The

character, string may be null or an initial part of a file name

or an entire file name. In the first two cases sufficient

characters are appended from the input file to ensure recognition

or rejection of the name.

[A Remark on "Random" Files on Tape

Random and sequential files may be stored and accessed with

equal facility on "random" storage devices, such as the drum

and disk. On the other hand sequential devices, such as magnetic

or paper tape, cannot be conveniently or efficiently accessed

in the manner of random files and are restricted to holding only

sequential files. However, the command 'COPY FILE' will allow a

user to copy information from an existing random file, say on

the drum, to a sequential but has a special format which does

not allow it a sensible interpretation as a sequential file but

permits the original random format to be restored when it is

copied back to a random device. Such a "random tf file on a

sequential medium will result in the return of the apparently

paradoxical information, 1-0 in bits 0,1 of X when the file is

opened by BRS 15, 16. Before accessing information in such a

file the user should copy it (using the Exec command or BRS 92)

to a non-sequential medium.]

12.5 Qpening Input Files

BRS 15 - Open named file for input:

Takes in A a control word

in B the address of a string pointer, or ~

in X a dual file number.

The function of this BRS is to recognize an existing file name,

optionally, open the file for input and return a file number for

use with subsequent data-input commands.

12-7

Designation of the File

The string addressed by B must be the complete or incomplete

name of a predefined file. If the name is incomplete, characters

will be appended from the input file whose number is given in

the least significant 12 bits of X -- until sufficient characters

are available to detennine uniquely a file name (or no such name).

If the file name is unquoted so that prerecognition occurs, the

"tail" of the name is echoed back to the output file whose number

is given in the most significant 12 bits of X.

If B=O on entry a null string is assumed and characters

collected from the input file are not transmitted to the caller's

memory. If bit a of B is set, the string delivered is considered

null--its position being defined by the first word of the string

pointer. Unless B=O on entry the completed or, in the case of

non-recognition, partially completed file name will be transmitted

to the caller's memory. If a pseudonym was delivered, it will

be replaced by the string for which it stands.

Unless the file name ·was complete on entry (i.e., no charac­

ters need be taken from the input file), a tenninating character

must be delivered to confirm or abort the file name. Confirming

characters are those with an internal code representation 0 to

168, also semicolon, tab, line feed and carriage return; the

aborting character is 7. All other characters cause 7 to be

output and are other\vise ignored.

Action:

This is dependent on options which are specified by bits 1

and 2 of A on entry. These are:

Bit 1, if set, $uppresses opening the file (no file number
is returned)

Bit 2, if set, suppresses the need for a terminating
character; when these bits are not set, the action is as
follows:

If the name is recognized and a valid terminating character
is received, the file is opened for input. There is a skip
return with

In A, a file number
In B, the terminating character
In X, is a composite word comprising

1. TAPE or PERMANENT FILES

WORD a

WORD 1

WORD 2

WORD 3

Mask for
BRS 48

SR = sequential or random

W?1

PRA = private accessibility

PUA = public accessibility

1 = random

1 = read only

o = denied to public

1 = public read only

2 = public read and write

SGA = special group accessibility a = read and write

SGN = special group number

1 = read only

o = none

S = status

U = unused

o = file permanently on drum

1 = file on drum

2 = file on system tape

3 = file on private tape

2. SCRATCH FILES

WORD 1 = -1

WORD 0 = 0, WORDS 2,3 as for TAPE FILES

3. BUILT-IN FILES

WORD 3 = -2; WORD 2 = 0

a. Device WORD 0 = 0
WORD 1 (9 to 11] = no. of tape unit
WORD 1 [12 to 17] = device no (O/p)
WORD 1 [18 to 23] = device no. (lip)

12A-l

b. Permanent file no. WORD 0 f 0

4. SPECIAL GROUPS

WORD 2 = -1

WORn 1 (6 to 11] = file no. (O/P)
WORn 1 [18 to 23] = file no. (rip)

12A-2

WORD 0 = 0 WORD 1 = creation date WORD 3 [20 to 23] --

5 . PSEUDONYMS

WORD 3 = -1

group no.

WORDS 0,1 = string pointer to real string WORD 2 = 0

Description Block Format

(A)

12A-3

FILE DIRECTORY DESCRIPTION

PREAMBLE AND STORAGE ARRANGEMENTS

0 FLTH ZRO File directory length

1 eFTA ZRO Address of compressed file input table (eFIT)

2 SGUS ZRO (Bits set to indicate special group numbers

in use)

3 FDIX SRO Drum index block address for this file directory

4 FUNO ZRO User number

5 BSS ZRO Address of beginning of description block

storage

6 HTL ZRO Beginning of hash table (BRS 5,6 table)

II, EHTL ZRO End of hash table
On.S r, IoVQItt)

1, FDSS ZRO Character address of beginning of string

storage (WCH table)

12 EFDSS ZRO End of string storage

13 ZRO Garbage collection option

The remaining parts of the file directory appear in the

following order:

Hash table (HTL, EHTL)

String storage (EHTL, BSS)

File description block storage (BSS, eFTA)

l2A-4

USER DIRECTORY DESCRIPTION

(A) PREAMBLE AND STORAGE ARRANGEMENTS

0 BURT ZRO Beginning of hash table (BRS 5,6 table)

1 EUHT ZRO End of hash table

2 ZRO BRS 5,6 link

3 BUDSS ZRO Character address of beginning of string

storage (WCH table)

4 EUDSS ZRO End of string storage

5 ZRO Garbage collection option

6 BUDBT ZRO Address of beginning of description block

table

7 BUDB ZRO Length of each user description block

The remainder of the directory appears in the following order:

Hash table (BUHl',· EUHT)

String storage (EUHT, BUDBT)

User description blocks (BUDBT, end of directory)

(B) TYPICAL HASH TABLE ENTRY

~2~ ______________________ S_TR __ IN_G __ ~_S_~ __ ~ ___ TO ____________ ~
. USER NUMBER

(c) TYPICAL DESCRIPI'ION BLOCK ENTRY

0 HTA ZRO Address of hash table entry

1 FDL ZRO File directory drum address

2 DA ZRO Maximum. drum block allowance

3 AW ZRO Access word

4 PW ZRO Password hash code

5 CTW ZRO CPU time word (6oths of a second)

6 LTW ZRO LOGIN time word (seconds)

l2A-5

ACCESS BITS ARE

0 WAr!' }
1 IDIOT BRS 37 mode

2 PRFFLG permanent file flag

3 XMOK exec mode OK

4 NTFFLG new tape file flag

5 UTTFLG new files to user tape

6 OPI'FLG operator flag

In bits 6 to 23, the file length
In bits 3 to 5, the file type
Bit 0 is set if the file is random
Bit 1 is set if the file is not stored on a

sequential medium.

Error Conditions

12-8

All error conditions are followed by a no-skip return with an

indicator in X; A and B are undisturbed.

-5~~-1 shows that the file could not be opened. The possible

reasons correspond one-one with those associated with a

no-skip return from BRS 1 with -2~~2 (see pp. 9-1, 9-7).
X=l This exit occurs if the name given is not a predefined

name in the specified user's file directory.

X=2 Indicates that the file name was aborted by delivering

? as a terminating character.

X=O Any such error is accompanied by one of the following

'error messages' being sent to the command output file

(normally the teletype).

?

ILLEGAL USE OF PSEUDONYM

-NOT PUBLIC

-NO GROUP NAHE ATTACHED

-VlRONG GROUP NAME

When the requested file exists on magnetic tape it is possible

to receive about 20 different error messages, most of which are

self explanatory. The pcs ition check message, "(~: n)" means

only that the tape has reset its position after becoming "lost"

and should be of no concern.

12.6 Opening Output Files

BRS 16 - Open named file for output

Takes in A a control word

In B the address of a string pointer, or ~

In X a dual file number.

This BRS is provided to read an existing or new file name and,

optionally, open the file for output and return a file number for

use with subsequent data-output instructions.

Designation of the File

The file name is obtained from B and X in exactly the

manner of BRS 15 (q.v.) except that if the name is enclosed

between quotes and is not delivered in association with some

other user's name, then it may be new.

Action

12-9

This is again dependent on the control word in A, on entry.

Bit 0, according as it is ° or 1, specifies that the file

to be created is sequential or random.

Bit 1 is normally zero, to indicate that the specified file

should be opened and a file number returned in A. If the user

does not wish to open the file this bit should be set.

Bit 2 if set suppresses the need for a terminating character.

It also suppresses output of the message OLD FILE or NEW FILE,

which is normally produced after identification of a quoted

file name.

Bits 3 to 5 = t, indicate the file type.

The type of a new file is always set to be t.

The type of an old file is changed to t unless t=O, when the

old file type is retained. An attempt to open the teletype as

anything but a type 3 file is an error.

Bits 6 to 23 = S, significant only for tape files.

S is taken to be the number of words of information about to be

written. If a new tape file is specified, a space of 3/2 S

words is reserved after the current last file on tape. For an

old tape file, S is compared with the amount of tape space

currently reserved for the file. If it is greater, an error

message - TOO SHORT is produced, followed by a no-skip exit;

the file is not opened.

The normal return from the BRS is with a skip, the same

parameters being returned in A, B and X as for BRS 15 viz.

in A a file number number (if opened)

in B the terminating character (if delivered)

in X a composite word comprising the file length, type

and logical structure (random or sequential)--See

BRS 15.

Error Conditions

R-21
12-10

All error conditions are followed by a no-skip return with

an indicator in X; A and B are undisturbed.

-5~~-1 shows that the specified file could not be opened.

The possible reasons correspond one-one with those

associated with a no-skip return from BRS I with

-~~2 (see pp.9-1, 9-7).

X=O This exit follows the printing of one of the following

error messages on the command output file (in addition

to the possible messages given for BRS 15):
READ ONLY
WRONG TYPE
FILE TOO SHORT
FILE DIRECTORY FULL

X=l if the file name is new and either unquoted or is

delivered in association with the name of another user.

X=2 if the abort terminator (?) is delivered.

Notes:

1) Although new tape files for the ordinary user will be created

on the standard user's tape, same users can specify the

tape on which a new file is to be created. For such users

a message

TAPE SYS. NO. =

is printed and a decimal number must here be delivered

through the command-input medium.

2) If the file name is quoted and not built in, one of the

messages OLD FILE or NEW FILE is sent to the command output

medium. As described above, this message may be suppressed

by setting bit 2 of A on entry.

3) An attempt to change the logical structure of an old file

(from random to sequential or vice versa) will elicit a

message to notify the user before the name terminator is

delivered.

12.7 Miscellaneous File Operations

ERS 63 - Delete name from file dire~tory

Takes in B a string pointer

in X a dual file number

12-11

The entry parameters are used to designate a name in the

file directory in the manner of BRS 15. The name is removed

from the directory subject to the following conditions:

A built-in file cannot be deleted. The BRS will, however,

allow the user to delete all its names except the last.

When a pseudonym is delivered to the BRS the pseudonym

itself is lost. When the last name of a file is deleted,

the file's contents are also lost.

A successful deletion is followed by a skip return.

A no-skip return indicates that the attempt to delete

failed. The contents of X will indicate the reason for failure

as follows:

X=3,-2,-1 correspond to no-skip returns from BRS 1 with

A=-2, -1,0 re spect i ve ly . Such an exit results

only from an attempt to delete a drum :file.

X=O indicates an attempt to delete the last name

a built-in file.

X=l if the name is not in the file directory.

BRS 60 - Interrogate file description block

Takes in B the address of a string pointer

in X a dual file number

of

The entry data are used, in the manner of BRS 15, to determine

a file. The first three words of the description block for that

file (see p. l2A) are Skip-returned in A, B and X respectively.

BRS 48 - Set file modes

Takes in A a file mode word

in B a string pointer address

in X a dual file number.

B and X are used, in the manner of BRS 15, to determine a file

name. BRS 48 will then use the information in A to set or change

the special group membership, type and accessibility of the

specified file (which must belong to the caller).

All of these characteristics are determined by bits 1 to 4, and

6 to 16 of the third, "mode", word of the description block

12-12

associated with the file (see p. l2A). BRS 48 directly replaces

these bits by the corresponding bits of A after checking A for

consistency and existence of the specified special group.

A successful mode change is denoted by & skip return,

failure by a return without skipping.

12.8 Opening Scratch Files

Scratch files are all kept on the drum. They differ from

ordinary files in that they disappear completely when the user who

created them logs out. A fixed amount of drum space is available

to each user for scratch files, which he may allocate as he sees

fit. If he attempts to exceed the allocation a message will be

given.

A scratch file may be created by BRS 16 or any of the commands

which create a new file, by delivering to them a new scratch

name (see 12.1). Alternatively, for a scratch file with a name

of the form /ddd/ where d is any decimal digit, the elaborate

string delivery and recognition procedure of BRS's 15,16,63
can be bypassed by using BRS's 18,19,65 respectively. Instead

of a string ~ointer and dual file number, these three BRSs take,

for file identification, an integer in X. The decimal equivalent

of this number is a string of three digits enclosed between

slashes is then used as a file name to refer to the file in the

conventional way.

BRS 18
Takes in A a code word

in X an integer

This provides an alternative way of referencing and opening for

input scratch files whose names are decimal integers.

The number in X is transformed into its equivalent string

of three decimal digits enclosed between slashes, 5 characters

in all, (a number which exceeds 999 is taken to de$ignate the

string /999/). This string should be a predefined name in the

caller's file directory. The subsequent action of this BRS is

to open the file for input in exactly the manner of BRS 15,
i.e., dependent on bits 1 and 2 of A; the return conditions are

the same as for BRS 15.

BRS 19

Takes in A a code word

in X an integer

12-13

By means of this BRS a scratch file with a decimal-integer name

can be opened for output. As for BRS 18, the number in X is

first transformed to a string of three decimal digits enclosed

between slashes. The name is then treated as a possibly new

name for a scratch file, belonging to the caller, in exactly

the manner of BBS 16 . Hits 0 to 5 of A also have the same

Significance as for BRS 16.

BRS &5
Takes in X an integer

The integer is converted into a string of three decimal digits,

as in BRS 18, 19. The action thereafter is exactly as for

BRS 63, successfUl deletion being indicated by a skip return.

12.9 Format of the File Directory, Some Implementation Details

File names, group names and pseudonyms are contained in 8.

hash structure of the type described in the Section 14 of this

manual. The first two words of each hash table entry are the

conventional string pointers to the file name. The third word

(the string "value") is a pointer to a 4-word "description

block." In these four words is held all the information

necessary to characterize the name, whether it be the name of

a drmn file, tape file, special group, pseudonym, etc. Notice

that several entries in the hash table may point to a Single

description block; the associated names are then synonyms for

the same object, which can be referenced by anyone of them.

The conunand DEFINE NAME creates a new name to point to an

existing description block; conversely DELETE NAME detaches the

name from its description block, the description block itself

is lost only if this was the only name pointing to it.

The format of a single hash table entry with attached file

description block is sketched on page 12 A.

12-14

Executive commands and BRSs are available for interrogating

and changing parts of the user's file directory. The commands

FILE DIRECTORY and SET MODES FOR FILE are described in the

manual for the TSS Executive (Document R-22). The corresponding

BRSs are BRS 60 and 48.

12.10 Miscellaneous Services

BRS 92 - Copy file to file

By means of this BRS infor.mation can be copied from one file

to another. The entry parameters consist of an input file number,

an output file number and some bits to determine the nature of

the files. If the information transfer is successfUl,there is a

skip-return; if unsuccessful, a no-skip return, possibly preceded

by a message.

On entry, the contents of A are taken to refer to the input

fi Ie as fo llows :

give the input file number

give the file type

bits 15 to 23

bits 3 to 5

bit 1 is 0 for a sequential device (tape, teletype)

or 1 for a random device (drum, disk)

bit 0 is 0 for a. sequential file, 1 for a random file

The contents of B refer to the output files. Only bits 0,

1, and 15 to 23 are significant and have a similar interpretation

to the corresponding bits of A. The necessary information for

setting bits 0 and 1 correctly is returned by BRS's 15, 16 as

bits '/J, 1 of X.

The copy will be successfully terminated when any of the

following terminators is read from the input file.

1) Input file sequential

a) An EOT (1448) character, if and only if the input file

is a teletype.

b) An EOF (1378) character for other type 3 files.

c) 2 consecutive termwords (276575378) for all other

sequential files.

12-15

2) Input file random

a) 1 termword if the file is stored on a sequential device.

b) Otherwise the copy terminates when the end of the

index-block chain is reached.

The return after a successful copy is with a skip.

Errors

Errors may be

a) Calling BRS 92 with inadmissible parameters.

b) Unusual conditions detected during a data transfer.

Errors of type (a) may be anyone of the following:

Attempt to copy a sequential file to a random file.

Attempt to copy a "random" file on tape to a sequential file.

Attempt to copy a non-symbolic file to teletype.

Attempt to copy directly from magnetic tape to a teletype

or vice-versa.

They are all followed by a no-skip return.

Errors of type (b) are all signalled by a message, which is

sent to the command output medium. The messages may be any of:

-END OF TAPE

UNTIMELY EOF IN INPUT

UNT:wELY EOR IN INPUT

RANDOM FILE TOO BIG, TRANSFER TERMINATED AT ADDRESS <n>

FAILED TO READ INDEX BLOCK

INPUT ERROR

OUTPUT ERROR

All but the last two are followed by a no-skip return. In the

case of the last two the transfer continues from the point at

which the transfer error was detected until the entire file is

copied.

BRS 93 - Make a "save" file

Takes in A the address of a core-bounds list

in B the address of a 2-word map

in X a sequential output file number

12-16

This BRS may be used to preserve the contents of specified

ranges of core (in the map given by B) to the output file given

by X; note that this file must be sequential.

The core bounds list addressed by A, is a contiguous li.t

of positive numbers terminated by any negative number. The first

entry of the list is ta.ken as a "starting address" - and is the

address to which a transfer of control will be made when the da.ta

preserved by this BRS is read back into core by the GO TO command.

Subsequent entries in the list are taken in pairs--each pair

defining a range of memory from which information is to be saved.

The two addresses in each pair may be given in either order.

All addresses are taken with the map whose core address is given

in B--if B is zero, it will be assumed that the user's current

program memory is to be saved.

If the information is successfully transferred to the file,

there is a skip return. Any failure in the data transfer results

in an ~ediate no-skip return.

The formats of the core bounds list and the resultant save

file are:

Format of Core Bounds List . Format of save File
i

Starting Address 11 = min (m1,nl)

ml u =max
1 (~,nl)

nl Starting Address

· m2 · data from n2 core range 11 to ul .
. 12

~ u2

~ data from core 12 to u2 · negative number · · · data from core ~ to '1t
term word

term word

12-17

BRS 94 - Restore a save file to core

Entry A,B = relabeling

X = file no. of sequential save (type 1) file

The save file, which should have the format described in

BRS 93, is transferred to the memory given by the map in A,B.

If the transfer is successful, there is a skip return with the

starting address (see BRS 93) in A and the file number in X.

An unsuccessful data transfer results in a nO-Skip return.

BRS 131/132 - (open tape for input/output) [privileged]

Given in: A = the desired tape position (0<A<256)

B = the user number of the file o~mer (BRS 132
only)

X = the tape system number or the tape unit

number with bit 0 set.

Return No Skip: A = error flag (-2<A<18)

All errors result in a typed message

Skip: A = file number

B = user number of file owner

X = tape unit number

The tape can be open for input (BRS 131) without executivity

being set. In fact, BRS 131 can be executed by users with

operator privileges even if they do not have executive privileges.

If the desired tape is not logically mounted, it can still be

accessed by loading the unit number in X and setting XO. This

will cause the tape status vector to record the tape system

and reel numbers. No new files can be created with BRS 132.

A more complete description can be found in M-l7.

13-1

13.0 Miscellaneous Executi-..rc Features

The executive provides a number of BRS's which are services

for the user. Many of these are incorporated in the string

processing system or in the floating point package and are

described in the next t"TO sections.

To input an integer to any radix the instructions

LDB = radix

LDX == file

BRS 38

may be executed. The number, which may be preceded by a plus

or minus sign, is returned in the A register and the non-numeric

character which terminated the number in the B register. The

number is computed by multiplying the number obtained at each

stage by the radix and adding the new digit. It is therefore

unlikely that the right thing will happen if the number of digits

is too large. If no digits are typed, the Sign bit of B is set.

To output a number to arbitrary radix the instructions

LDB -= radix

LDX - file

LDA number

BRS 36

may be executed. The number will be output as an unsigned 24-bit

integer unless the sign bit of B is set, in which case it will be

signed. If the magnitude of the radix is less than 2, an error

will be indicated.

To get the date and time into a string, the operations

LDP PTR

BRS 91
may be executed. The current date and time are appended to the

string provided in AB and the resulting string is returned. The

characters appended have the form:

rnm/dd/YY hhmm:ss

Hours are counted from 0 to 23.

BRS 39 returns the date and time in AB as six 8-bit bytes

giving year, month, day, hour, minute, second, respectively.

BRS 123 Read teletype and user number

Entry X = -lor teletype number

Exit A = user number or O.
B = job number or O.
X ~ teletype number

BRS 97 Find user's teletype

Entry A = -lor teletype number

X == user number

Exit No skip: user not entered; A,B,X undefined

Skip:

A teletype number

X user number

This BRS may be used to find on which teletypes a user is

entered. A search is made to see if the user whose user number

is given in X is entered on any teletype with a number higher

than that given in A. If no such teletype is found, the BRS

does not skip on return. Otherwise, there is a skip return

with the next higher such teletype number in A.

BRS 10!} Find user number from user name

Entry B

X

string pointer address

dual file number

Exit No skip: A,B,X undefined, illegal user name

S](ip: A:-.: X = user number

BRS 104 uses B and X to collect a user name in the same

manner as BRS 15. If an illegal name is typed, there is a no­

skip return from the BRS. The characters typed are appended to

the string (if any) given on entry. Otherwise, there is a skip

return with the required user number in both A and X.

13-2

BRS 195 Find user name from user number

Entry A,B ~ string pointer

X = user number

This BRS reverses th~ action of BRS 104. If the user number

is valid, it appends to the string addressed by A,B the users name

corresponding to the given number and returns with a skip.

If the user number is not valid the BRS does not skip and

A,B,X are unchanged.

BRS 100 Read subsystem relabeling

13-3

Requires in B the address of a string pointer to the subsystem name

in X a dual file number or -1.

Returns skipping with the subsystem relabeling in A,B and

the starting address in X.

14-1

14.0 String Processing System

The string processing system (Sps) consists of eight SYSPOPs

and six BRSs. SPS strings are stored three 8-bit characters per

word. Strings are addressed by two-word pointers. The first

word contains the character address of the character before the

first character of the string. The second word contains the

character address of the last character of the string. The

character address of a character is obtained by multiplying by

3 the address of the word containing it and adding 0, 1 or 2

depending on its position in the word. All string pointers

contain character addresses. The character pointers used by

GCI, GCD, WCI and WCH must have the first 8 bits cleared.

The following SYSPOPs are independent of the hash table

mechanism which is described later. Any of them may be indexed

or indirectly addressed (as may most other SYSPOPs).

14.1 String Pointer Load and Store Qperations

LDP ADDR loads the A and B registers with the contents of

ADDR and ADDR+l. X is undist~bed. STP ADDR stores the contents

of the A and B registers in locations ADDR and ADDR+l. A, B,

and X are undisturbed.

14.2 String Read and Write Operations

GCI ADDR tries to load the A register with the first character

of the string addressed by the pointer pair in ADDR and ADDR+l.

If the string is null or empty (i.e., if the contents of ADDR

is greater than or equal to the contents of ADDR+l), then

nothing is done and the next instruction in sequence is executed.

If the string is not null, its first character is loaded into A

right-justified and the contents of ADDR are incremented by 1,

so that the string pointer now points to the string with the

first character deleted. The top 16 bits of A are cleared, and

the next instruction in sequence is skipped. Unless a copy of

the original pointer is saved, the contents of the string are

effectively destroyed by GCT. For example, the code:

GCl STRrnG
BRU ¢UT
BRM PR¢CESS
BRU * - 3

~ur

14-2

will call the subroutine PR¢CESS with each character of the

string addressed by STRING and go to ¢UT after the last character

is processed. To save the contents of STRING, the following

comma~ds could have been executed first:

LDP STR:mG
STP SAVE
etc.

The X register is not disturbed by Gel. The B register is

destroyed. Timing: 43 cycles. GCD is in every way similar

to GCl except that the character is taken from the end of the

specified string and the second string pointer is decremented.

WeI ADDR ~~ites the character in the last 8 bits of A on the

end of the string addressed by ADDR. The contents of ADDR+l

are incremented by 1. A and X are not changed. B is destroyed.

To use a WeI in constructing a string, it is necessary to

start with a null string. Suppose the string is to be put into

a buffer called LINE and defined by

LINE BSS 20

The instructions

LDA =LINE
MUL =3
LSH 23
STA PI'R
STA PTR+l

will make PTR a pointer to a null string beginning (and ending)

with the first character (not the oth) in LINE. To start with

the oth character a SUB=l could be inserted after the LSH. LINE

can now be filled, say from the teletype by

CIO r:: 0
WeI Pm
BRU * - 2

weD is the same except that it writes the character on the front

of the string and decrements the first pointer.

WCH takes a character in A and a table address in the operand

field. The ta.ble comprises three words:

ZRO CLB
ZRO CUB

OP ADDR

14-3

WCH tries to write a character into the area defined by the

character addresses CLB, CUB. Provided that CUB>CLB, WCH will

write the character in A into character position CLB+l and

increment CLB. If CLB>CUB the character is not written and

control is transferred to the third word of the table with A and

X undisturbed and the address of the offending WCH in B. This

can be an error trap or an exit to a routine which allocates

more memory, by garbage collection or otherwise, for further WCH's.

14.3 String Compare Operations

SKSE ADDR skips if the string addressed by the pointer in

AB is identical with the string addressed by AnDR. If the strings

are of different lengths or have different contents, SKSE does

not skip. This instruction is essentially identical to SKE,

except that it acts on strings rather than numbers. A, B, X

are not disturbed by SKSE.

SKSG ADDR skips if the contents of the string addressed by

AB is greater than the contents of the string addressed by ADDR

and ADDR+l. Comparison is made character by character, and

terminates with the first unequal characters; the numerical,

internal code representation of characters is used to determine

inequality. If the strings are equal for the entire length of

the shorter one, the longer one is indicated as the greater. A,

B and X are not disturbed by SKSG.

14.4 String Input/Output

BRS 33 accepts a string pointer address in A, a file

number in X and a "terminal character" in B. It collects

characters from the file and appends them to the string until

the terminal character is seen; this is not added to the string.

It then returns the updated st.ring pointer in AB; the string

14-4

pointer in core is also updated. If bit 0 of A is set on entry

the string is taken as null with the second pointer equal to the

first.

BRS 34 accepts a file number in X, a word address in A and

a count in B. It outputs B consecutive characters starting with

the first character of the specified word. If B=-l on entry

characters are output until I is encountered and the character

$ is interpreted as carriage return, line feed.

ERS 35 accepts a fi~e number in X and a string pointer in

AB. It outputs the string to the fi1e.

14.5 Hash Table Lookup Instructions

The hash table is a structure for minimizing the effort

required to perform certain scan-and-compare operations when the

operands are strings.

A hash table is a contiguous set of 3-word "augmented string

pointers." The addresses of the first and last-pIus-one locations

of the hash table we shall denote by HT, EHT respectively. Each

augmented string pointer occupies three consecutive locations

of the hash table. Bits 8 to"23 of each of the first two

locations hold the actual string pointer; bits 0 to 7 of these

two words, as well as the entire third word (the so-called string

"value") may hold arbitrary information. Note, however, that

bits 0 to 7 of the string pointer words ~ be zero if used with

GCI or WeI.

There are three BRSs to perform operations on a hash table:

they are BRS 5, BRS 6, BRS 37. BRS 6 is used to introduce new

strings into the table. BRS 5 and BRS 37 each perform a scan of

the hash table for a string to match a given string.

Before using BRS 5 and BRS 6 to insert string pointers into

an initially empty hash table, the hash table area must be cleared

to zeros.

BRS ; takes a string pointer in A, B, a table address in X.

The table comprises 3 words:

ZRO HT
ZRO EHT
ZRO 0

14-5

The first two define the hash table bounds, the third is used

for communication with BRS 6.
BRS 5 searches the hash table for a string to match the

given one. If successful it returns in B the address of the hash

table string pointer (the string "indextl)--and in A the string

"value"; it skips on return. If the search is unsuccessf'ul,

BRS 5 returns with A, B unchanged and the addre s s of the next

free table entry in word 3 of the table (this will be -1 if the

table is full). X is not disturbed.

BRS 6 takes a string pointer in A, B and a table address

in X. The table is as for BRS 5. This operation inserts the

string pointer into the hash table at the point determined by

the last BRS 5 which failed (i.e., at the location specified by

the third word of the table). If this word is -1, there is an

illegal instruction trap. BRS 6 is intended for use only in

inserting into the hash table a string pointer for which BRS 5

failed to find a match and should not be used except after a

failing BRS 5. Furthermore, string pointers should not be

placed in the hash table except with BRS 6 (otherwise the scanning

algorithm used in ERS 5 will not work). Note that BRS 6 does not

physically move the characters to which (AB) points.

On exit, BRS 6 returns in B the address of the first word

of the new hash table entry and in A, the "value" word of the

entry; X is not disturbed. To delete a hash table entry, put

-1 (not 0) in the first word.

BRS 37 takes a dual file number in A, a string pointer

address in B and, in X, the address of two words conta.ining

table bounds HT, EHT. A dual file number is a single word

holding an output file number in the first 12 bits and an input

file number in the second. If the output file number is zero,

the user's teletype will be used. The table has the same form

as a hash table, but the string pointers may be put into it in

arbitrary order; it is ~ necessary to use ERS 5 and BRS 6.
The behavior of BRS 37 depends on the command recognition

mode currently set in the exec (see R-22, Section 5.5). If the

14-6

mode is BEGINNER, the hash table is scanned for a string to

match exactly the given one. If none is round but the given

string matches the initial part of some hash table string,

characters from the input file are appe~ded to it until either

an exact match is obtained or a match becomes impossible. The

exit is described below.

If the mode is NOVICE, the hash table is scanned for a

string to match the given one. If none is found but the given

string matches the initial part of some hash table string,

characters from the input file are appended until the string is

long enough either to determine a unique hash table string, with

a matching initial part, or for no match to be possible. In

the former case, if the hash tabl~ string now contains three or

less as-yet-unmatched characters, more characters are taken from

input until an exact match is obtained or no match is possible;

if the hash table string contains four or more as-yet-unmatched

characters these unmatched characters are sent to the output

file. If the input file is the teletype, BRS 37 waits until

all the characters have been output, and the input file buf"fer

is cleared before exit.

If the .mode is EXPERT the hash table is scanned for a string

to match the given one. If none is found but the given string

matches the initial part of some hash table string, characters

from the input file are appended until the string is long enough

either to determine a unique hash table string, with a matching

initial part, ££ for no match to be possible. In the former case

the rema.ining characters of the hash table string are sent to

the output file.

Exits are as follows:

The no-match condition causes a no-skip exit with a string

pointer in AB to the string so far collected; X is undisturbed.

If a match is found there is a skip exit with the address of the

matching table entry in A and the string value in B, X is undisturbed.

The following subroutine illustrates a use of the hash

table facility. A string is input from the teletype and appended

to WCH string storage until a carriage return is encountered;

14-7

it is assumed that string storage does not overflow in the process.

The hash table is then searched for the string; if it is not

already there it is inserted. In any case, an exit is made with

the value of the string in A and the address of the string

pointer in B. On entry X contains the address of the table for

BRS 5, 6. CTL is the address of a table for WCH.

INPUT

LOOP

WRITE

ZRO
LDA
STA
TCl
SKE
BRU
LDA
LDB
BRS
BRS
SBRR
WCH
BRU

INPL
CTL remember beginning of string
TEMP
CHAR
=l55B terminator?
WRITE
TEMP yes
CTL
5
6
INPUT
CTL
LOOP

15-1

15.0 Floating Point Instructions

This section describes the floating point operations which

are available in the system. SYSPOPs are provided to do floating

addition, subtraction, multiplication and division and to convert

under format control between the internal floating point repre­

sentation and an external representation as a string of digits,

decimal points and E (for exponent). BRS's exist which perform

input-output and conversion automatically without involving the

user with the external string representation. All these operations

preserve the X register, except input routines which return the

terminal character in X. Most destroy AB by leaving a result

there.

15.1 Floating Point Representation

A floating point number is held internally as two 24-bit

machine words. The format is

MANTISSA
3813_:140 471

_ _ EXPONENT

o 1

The number is always normalized: i.e., the most significant

bit of the mantissa differs from the sign bit. All floating

point operations expect normalized operands and produce normalized

results. Both mantissa and exponent are treated as two_complement

numbers. The two words of the floating point number appear in

the AB register or in memory in the order indicated.

A floating point number is represented externa~ as a

string of characters. This string has the following form:

[!] [string of digits] [.[string of digits]] [E[~]string of digits)

The brackets .indicate optional constituents. At least one digit

must appear. Imbedded blanks are not allowed. The E indicates

that the preceding number is to be multiplied by the power of

10 specified after the E. In general a floating point number

being input may take any form which matches the template above.

On output the form produced will be determined by the format specified.

15-2

15.2 Floating Fbint Arithmetic

There are four SYSPOPs to perform floating point arithmetic.

Each of these takes one operand from AB and the other from M and

M+l where M is the effective address of the instruction. The

result is left in AB in normalized form. If its magnitude is

greater than 5.7896044E+76, the overflow indicator will be

turned on and this value will be returned. The overflow indicator

is not cleared by any of these instructions. In this respect the

floating point POPs behave exactly like the integer machine

instructions: a sequence of operations can be performed before

the overflow bit is tested. The bit will be on if any operation

caused an overflow. If the r.esult is less than O.8036l6E-77, it

will be set to O. No indication will be given.

The four operations are:

FAD Floating add
FSB Floating subtract
FMP Floating multiply
FDV Floating divide

An attempt to divide by 0 will produce an overflow.

Two SYSPOPs are provided for loading and storing double

words. The words involved need not be floating point numbers,

of course.

wad pbinter: LDP M puts the contents of M and M+ 1 into AB.

Store pointer: STP M puts the contents of AB into M and M+l.

Three BRS's provide for unary operations involving floating

point numbers.

Floating negate: BRS 21 returns in AB the negative of the

floating point number supplied in AB.

Fix: BRS 50 converts into a double precision fixed point

number. The integer part appears in A.

The fraction part appears, left justified,

in B. If the integer is too large, the

most significant bits will be lost. The

integer part is the next smaller integer.

I.e., IP(-1.2)=-2.

Float. BRS 51 converts the integer in A to a normalized

floating point number in AB.

15-3

15.3 Input/Output Formats and Conventions

Every 1/0 operation allows the user to specify a format in

the X register. Format specifications are based on Fortran

conventions, and are specified as follows:

Bit of X Field Name

0-2 T

3-8 D

9-14 w

15 0

16-23 N

Examples:

F6.3
E17·9
15

Significance

Format types:

1 integer.
2 E format with the number right

justified within the specified field.
3 F format with the number right

justified within the specified field.
4 E format with the number left

justified within the specified field.
5 F format with the number left

justified within the specified field.

Number of digits following the decimal
point.

Total field width
If the field width is 0, the 1/0 will
be done in free format.

Overflow action.

1/0 file number. 0 always refers to
the teletype. ISC and SIC ignore
this field.

30306000
21121000
1000)000

On input only the Wand N fields are significant. Note that

exactly W characters w111 be read on input (unless W=O). Leading

blanks and any trailing characters are ignored. Free format

input will accept as many characters as it can in constructing a

number which fits the external representation described above.

The input operations always return a floating point result.

They skip unless overflow occurs, in which case they return the

largest possible nwnber and do not skip. Any number of digits

may be provided: the first 11 digits after any leading zeros will

be the ones used.

On output the W field should be made large enough to

accommodate Sign, dec~al point, E, sign of exponent and exponent

(if the format type requires any of these elements) as well as

the digits of the number it.self. Sec the discussion 01 error

conditions belOi'T. Tht: sign is printed only if the number is

negative.

There are two ways to output an integer: (1) integer

format, or (2) F format with 0 in the D field. The former

requires that the number in the A register be in integer form;

the latter expects a floating point number in AB.

Free format output generates between 11 and 16 chara.cters.

If the magnitude of the number is between lEO and lE9, ten digits

are output with the decimal point properly placed. Otherwise,

exponential format is used; in particular, the format E15.9. For

example, the following numbers might be generated by the free

format output.

5.379605400 -145362.59h7 5.789604462E+76

15.4 Input/Output Operations

Two SYSPOPs are available to convert between the internal

binary representation of a floating point n1h~ber and its

external decimal representation as s. string of characters. The

string is stored nnd addressed according to the standard system

conventions.

String to internal conversion (SIC): Characters are read from

the string pointer addressed by the pop under control of the

format in X. The internal representation of the number is

returned in AB. The first character after the number is returned

in X if free format was specified.

Internal to string conversion (ISC): The number in AB is converted

according to the format in X and the resulting external represen­

tation is written onto the end of the string addressed by the POP.

The string pointer is updated.

Two BRS's are available to do input/output and conversion

at the same time:

Floating input: BRS 52. Input takes ple.ce according to the

format word in X. The operation of this BRS is identical

to that of SIC.

15-5
Floating output: "BRS 53. Output takes place according to the

format word in X. The operation of this BRS is identical to

that of ISC.

15.5 Output Error Conditions

There are four possible error conditions. ~Vhen one of these

conditions occurs the following action is taken:

Code

1

2

3

4

a) Interrupt 5 is generated

b) An error code is put into location 200B

c) The indicated corrective action is taken and execution

continues.

Condition

T field is not 1,2,3,4 or 5
Exponent field is too small

Integer exceeds 8388607
in magnitude

Field for F-conversion
too small

Action

Assume 2(E format)

Discard characters from the
left or take overflow action.

Use 8388607

Discard characters from the
left or take overflow action.

If either of error types 2 or 4 occurs and bit 0 in the format

word is set, then the output field will be filled with *'s.

A-I

BRS TABLE

NAME NUMBER FUNCTION ---
MONOPN I Open file 9-4, 9-8
MONCLS 2 Close file 9-4

---7 {<.svD5Jf 3 (IJ c.- Iy-. O~fA"1 t.r IJ '}~e ~S

MPl' 4 Release memory 5-3
SSCH 5 SPS search 14-5
SSIN 6 SPS insert 14-5
DCLR 7 Release all space acquired 10-3

via BRS 126

IOH 8 Close all files 9-4
FKST 9 Open fork 3-1
PPAN 10 Progrwmmed panic 3-6
CIB 11 Clear input buffer 7-5
CET 12 Declare echo table 7-2
SKI 13 Skip if input buffer empty 7-5
OOB 14 Wait for output buffer empty 7-5
EXGIFN 15 Symbolic input file name 12-6
EXGOFN 16 Symbolic output file name 12-8
UABORT 17 Close all file s 9-2
EXSIFN 18 Scratch input file 12-12
EXSOFN 19 Scratch o~tput file 12-12
CFILE 20 Close file 9-2
FNA 21 Floating negate 15-2
LNKS 23 Link TTY 7-6
LNKC 24 Unlink 7-7
MSGS 25 Set AM and AI bits 7-4
SKROUT 26 Skip if rubout waiting (exec) 3-6
ASTT 'Z7 Attach TTY 7-3
RSTT 28 Release TTY 7-3
C~B 29 Clear output buffer 7-5

A-2

NAME NUMBER FUNCTION

FKRD 30 Read fork 3-3
FKWT 31 Wait for fork 3-3
FK'lM 32 Terminate fork 3-3
GETSTR 33 Collect string 14-3
~t11'MSG 34 Output message 14-4
¢urSTR 35 Output string 14-4
¢UTNUM 36 . Output number 13-1
GSI.¢¢K 37 General string lookup 14-5
GETNUM 38 Read number 13-1

RMDY 39 Read date and time 6-1
RDET 40 Read echo table 7-2
I¢RET 41 Return from I/O subroutine· 11-2

RREAL 42 Read clock 6-1
RDRL 43 Read relabeling 5-2
STRL 44 Set relabeling 5-2
SQ~ 45 Dismiss on quantum overflow 2-3
NR~UT 46 Turn rubout off (exec) 3-6
SR~UT 47 Turn rubout on (exec) 3-6
SETFDC 48 Set fd control word 12-11
SRIR 49 Read interrupts armed 4-2
FFIX 50 Fix 15-2
FFLT 51 Float 15-2
FFI 52 Formatted floating input 15-4
FF¢ 53 Formatted floating output 15-5

((I(S B (~P)54

MRSB 55 Make or release resider.t block

MBEX 56 Make block executive 5-4
C~ 57 Guarantee 16ms computing 2-3
SSMF 58 Define secondary memory 10-2

f'..pA 1 59 Read mT

RFDC 60 Read file directory entry 12-11
SGDEF 61 Define special group 12-4
SGDEL 62 Delete special group 12-5

NAME NUMBER

EXDEL 63
64

EXSFDL 65
DFDL 66

67
EBSM 68
GBSM 69

/::;c S "" A 70
SKXEC 71
EXDMS 72

*EPPAN 73
~ t:-s Lvi 74
S/J:J I~ -

f"S fr-~ 75

f-'5 "" -, 76

f:.sl~ 77
SAIR 78
SIm 79
MBRO 80
WHEAL 81

82
'f.0~/AAr 83

., 84

SET8p 85
CLR8p 86

A-3

FUNCTION

Delete named file 12-10

Delete scratch file 12-13
Delete drum file (contents only) 9-4
~ V'l/d ;C~ of ~ q - tj'

Enter block in SMT (exec only) 5-3
Get SMT block to PMT 5-3
(exec only)

Skip if executive 6-1
Exec dismissal (exec only) 2-5
Economy panic 3-4

'Ai] OP
'/...J~JP()~)

"" r:r P

't 1) ': fl/)- f

Arm interrupts

Cause interrupt

Make block RO

Dismiss for specified time

Sys go

Set special teletype output

Clear special teletype output

4-1
4-1

5-3
6-1

RTEX

FS uf
DFR

88 Read execution time

7-7
7-7
6-1

EXRTIM

ECCOPY

ECSAVE

ECPIAC

ECDUMP

ECRECV

89 ;4?) -;r f~
90 Declare fork for rubout

91
92
93
94
95
96

Time to string

Copy

Save

Place

Dump

Recover

3-5
13-1

12-14
12-15

12-17

NAME

I J

KB1¢¢

EXCNUN

EXCUNN

FKWA

FKRA

FKTA

DMS

RDU

BRSRET

TSOFF

MTDI

CKDOPN

RURL

SURL

TGET

TREL

AIMTE

DmTE

MPAN

RTUN

RDRM

WDRM

DGET

DREL

)

~/

f«.~f)

NUMBER

97
98
99

100

102

103

104
105

106

107

loB
109

110

III

112

113

114

115
116
117

118

119

120

121

122

123

124

125
126
1'Zl

128

A-4

FUNCTION

Find user 13-2

Read subsystem relabeling

Convert name to user number

Convert user number to n~e

Wait for any fork to terminate

Read all fork statuses

Terminate all forks

13-3

13-2

13-2

3-3

3-3

3-3

Dismiss 5-1

Read device and unit 9-5

Return from exec BRS (exec only) 6-2

Turn off teletype station 7-4
(exec only)

Disco"nnect W-buffer (exec only) 9-6
Skip if no drum files open

Read user relabeling 5-3

Set user relabeling 5-3

Reserve tape unit (exec only) 9-6

Release tape unit (exec only) 9-6

Assign PMT entry (exec only) 5-3

Release specified PMT entry 5-3

S~ulate memory panic {exec only)6-2

Read teletype and user number 13-2

Read 2K block 10-3

Write 2K block

Assign 2K page

Release 2K page

10-3

10-3

10-3

A-5

NAME NUMBER FUNCTION

,RQ-- fl5 129
RDBA 130 Read drum assignment

Pm 131 Position tape to read file 12-17
PTW 132 Position tape to write file 12-17

(exec only)

LfV e: [) 133 jJ1-1 i\P f
SKUEX 134- Skip if caller executive

fr PlcJ/
fl

135 'i !1:,1 "R- P
/(--TY

I . ~~I

F, /' I. 136 fl

Celli 137 'l 'J

WIR 138 Wait for input request 7-5
NTOS 139 Suppress or allow output 7-7
MFLSH 140 Force drum/core correspondence 5-5
RSCP 141 Read status of caller 6-2
SSCP 142 Set status of caller 6-2

RDSS 143 Read status 9-1
STST 144 Set status 9-1

BIO

TCO

TCI

BRS

CTRL

SBRR

SBRM

STP

LDP

GCl

WCH

SKSE

SKSG

CIO

WIO

WCI

FAD

FSB

FMP

FDV

EXS

~ST

1ST

SAS

LAS
DW¢

DWI

DBC

DBI

ISC

SIC

116
175
114
173
172

171
170

167
166

165
164
163
162

161
160

157
156

155

154
153

152

151

150

147

146

145
144

143
142
141

140

SYSTEM PROGRAMMED OPERATORS

Block input-output

Teletype character output

Teletype character input

Branch to system

Input-output control

System branch and return

System subroutine call

Store pointer

Load pointer

Get character and increment

Write character

Skip on string equal

Skip on string greater

Character input-output

Word input-output

Write character and increment

Floating add

Floating subtract

Floating multiply

Floating divide

Execute instruction in system
mode

Output to specified teletype

Input from specified teletype

Store in secondary memory

Load from secondary memory

Drum word output

Drum Word input

Drum block output

Drum block input

Internal to string conversion
(floating output)

String to internal conversion
(floating input)

B-1

9-3

7-2

7-2

Appendix 1

9-4, 9-6

14-1

14-1

14-1

14-3

14-3

14-3

9-2

9-3

14-2

15-2

15-2

15-2

15-2

6-2

7-4
7-4

10-3

10-3

10-1

10-1

lO-2

10-2

15-4

15-4

B-2

GCD 137 Get character and decrement 14-2

STr 136 S~ulate teletype input 7-7
weD 135 \'lri te character and decrement 14-2

STO 134 Steal teletype output 7-7
BPI' 135 Breakpoint (BRS 10)

