ARPAS
REFERENCE MANUAL FOR TIME SHARING

ASSEMBLER FOR SDS 930

Document No. R-26
Revised February 2h? 1967v
Contract SD;-185
Office of Secretary of Dei‘fenée ‘.
Advanced' Research Projecté Agency

Washington 25, D.C.

2.0

3.0

TABLE OF CONTENTS

]-Iltroduction s o o e e o o o o .' 0 e o c’:oA’

1.1
1.2

1.3

1.k

1.5

1.6

L7

1.8
The
2.1
2.2
2.3
The

3.1

3.2

4.0

3.3
3.h

35

Basic Descriptioh of the Assembler .

Sy'mbOlS e s o l‘ e o o ; .o & e o . e o

Instructions, Directives, and Comments

S]lbprogralns e« . . '. e o o o .. . 0
Literals |

Relocation

e © e. 06 o © o6 o o & o o o o

Basic Assembly Procedure

Notation e o' s o o o‘vf,o . 'oj oo ,-cv 0 :

Assembly Language . . ;,?"? . }i;, o
Charécter Set« e .‘;S._i,}}.';“
.Statements e e e e e ;»; —

Programs . . [e e e e eieeiee

Syntax of Instructions ; . {‘.:;;{v} .

Their Classification . « . « i . . .

Use of the Label‘Field:,. . ;j.“.". N

Operand Field . ‘:. L] 0/ L 4 ;. 0 . ;' _i‘ 0 o

Alternate Conventions for Expressing
Indexed and Indirect Addresses . e .

coment Fleld . L .-a L] s o o o 'o_ o -0 o

Eb(preSSZLOD Syn‘ta.x . "::- . >- .. c e . ‘o“a . o
.2

4.3

B

5.0
6.0

b5
1.6

7

therals o e o s o o o o e e & e o o on‘. « o o

‘Operators

. Constants v e eo. ¢ o o o ! e o e o o e e
Cla331f1cat10n of Symbols e e e e .
Terms » ~

e & o o o o 0 o o .0 o o ¢ . .

E){pressions e e o o e ..‘J.. o"- 00 a“ 9_ "OV . oo

Constraints of Rélocatability of ExﬁressionS'

e & 06 e & o .0 o 0 o 0 e o

o

Special Relocation . .k. O !

Dlrectlves e e o @ s o o o o ’ . ‘. - .- . e o s o

6.1

6.2

6.3
6.1k

.6.5

COPY Generalized Register Change Command

DATA Generate Data e o o o ‘.‘-'7. L0 e o e e

T.EXT Generate Text ¢ e e s o c. .l o o o'.o o o .'

.

.

‘o

ASC Generate Text with Three Characters per Word

EQU Equals o e o e o o o & o @ . .. s o o o o . .

1-1

1-1
1-1

1-2
1-2
1-2
1-2

’1~3;.
-k
2-1

2-1
2-1
2-3
3-1
3-1
3-2
3-2

3;2.,

3-3
Y
b1
b2
h-2

6-4
6-1

" R-26

6.6
6.7

6.8

6.9

. 6.10

6.1

6.12

: 5.13

C 6.k

.. 6.15

. 6.16

6.7
. 6.18

620

6.1
‘16 22 RETREL Return to Relocatable Assembly
6.23
6.2
X

46.26

7.0

6.28

EXT Define External Symbol . . o » o « « o

NARG Equate Symbol to Number of Arguments
in Macro Call . .

NCHR Equate Syﬂbol to the Number of
Characters in Cperand

* o e e o o

OPD Operation Code Definition . .

POPD Programmed Operator Definition
.Block Ending SyMbol‘
Block Starting Symbol .'. R

BES
BSS

ORG

END
DEC

ocT |

RAD

FRGT Forget Name of Symbol
IDENT Program Identification .

DELSYM Delete Output of Symbol Table and
Defined Op-codes

Program Or1g1n
End of Assembly ,'.'.

Interpret Integers as Deéimal .

Interpret Integers as Octal
Set Special Relocation Radix

® o o o

.

.

‘e

.
.
3

e o .o . o o_nc . . 00 e o

RELORG Assemble Relatlve w1th Absolute Orlgln

FREEZE Preserve Symbols, Op—codes, and Macros

NOEXT Do Not Create External Symbols-
LIST Turn Spec1f1ed Llstlng Controls On . .V“
NOLIST Turn Spec1 1ed Llstlng Controls Off)

.

REM

Type Out Remarks in Pass 2

o e .o o

- Macros and Condltlonal Assembly . . .‘.‘;'.
7.1 Introduction to Macros .
7.2 Macro Definition

PAGE Begin ‘New Page on ‘Assembly’ Llstlng '

FIGURE l: Information.Flow During Macro Processing

7.3
7.4

75

7.6

7T

- 7.8

7.9

Macro EXpanSion . « ¢ « o o o o o o o 6 o 0.

‘Macro Arguments . . 4 4 4 4 4 4 o 4 s e o e o o

The Use of Dummy Arguments in Macro Deflnltlons

Concatenabtion . « o o« ¢ o o« ¢ o o o o o o o o o
Generated Symbols . SRR e e e e e e e
Conversion of a Value to 2
The NARG and NCHR Directives

Digit Strlng . .»; .

® o o e o o o o

- 65

. 6-6
e
67
. 6-8
W 6-9
. 69
. 6-9
. 6-10
. 6-10
. 6-10
" 6-11
L 61
. 6-12
6-13
61k
_‘6-15,V
jﬁe_ls -
‘e
616
6-17
7-1

7-1

- 7-2
Y

7-6

7-8

7-11
7-12
7-13

o 7-1b

7.0 Conditional Assembly . .
7.1l The RPT Directive . «
WIE7"6 to-.-ooo.‘o

EXAMPIE 7-7 o o o o ¢ o o o ¢
MIE 7"8 o ¢ o o & o o o o
EXAME 7"‘9 e & o o o 0 o o o

7.12 CRPT, Conditional Repeat
7.13 IF Capability

e o o o o

L

7.1 IF, Assemble if Expression

8.0
8.1 Error Messages .

8.2 Interpretation of the Error Listing
Assembler Operating Instructions

- 9.0

9.1 Assembler Parameters

True (i e., >
EXAMPIE 7-10 ¢ ¢ o o o o o o o o o o o o'o @ ; ..
EXAMPIE 7-11 o o o o v o o on om e oo i o

©7.15 Special Symbols in Cdndltlonal Assenbly -
Assembler Error Messeges « « « o « oo o o o o o

9.2 Termination of‘ the Assembly

10.0 Assembler Binary Output
110.1 Relocatsble Binary Output

~ 10.2 Absolute Assembly (Self-fllling) Output

s o o e o

L L] L L] L] L

APPENDIX A: Extended List of Instructlons

APPENDIX B: Table of Trimmed ASCII Code for the SDS 930

.

L

.

L] . ‘ ¢ - L] . L] L] . ® ‘e L] e e e 0

e & o o s s o

7-15
7-16
7-17
7-18
7-19’
7-20
7-21
7-21
7-22

S -2

7-26
7-3%
8-1

8-1
8-3
9-1

9-1
9-h
10-1
10-1

10-6

A1

B;i

. K-co
A-1

APPENDIX A

EXTENDED LIST OF INSTRUCTIONS

Mnemonic Operation Code Function
Ioad/Store |

I.DA 76 Toad A
STA 3» ‘Store A
IDB - Ioad B
STB 36 . Store B
IDX , 71 . Ioad X
STX 37 - Store index
EAX . : 77 | . Copy effective address into index
XMA 62 l s Exchange M and A |

Arithmetic : o

ADD | © 55 T AMd Mto A
ADC - 57 ' Add with carry
ADM : 63 ‘ . Ad A toM
MIN - :61 . " Memory increment
SUB 54 ' Subtract M from A
suc .. 56 Subtract with carry

- MUL 6 Multiply
DIV 6 Divide ;

© logical .
. EM 1 o Extract (AND)
MRG 16 Merge‘ (0R)
EOR 17 Exclusive or
Register Change - !

.RCH 6 - - Register change ‘
cra 0 46 00001 Clear A |
CIB 0 16 00002 Clear B
CIAB 0 k6 00003 Clear AB
CIX 2 46 00000 - " Clear X
CLEAR 2 46 00003 Clear A, B and X

CAB | 0 46 0000t Copy A into B

. Mnemonic

CBA
XAB
BAC
ABC
CXA -
CAX
XXA
CBX
CXB
XXB
STE

" LDE
XEE
CNA
AXC

Branch
BRU
BRX
BRM
BRR
BRI

Test/Skip
' SKS
SKE
SKG
SKR
SKM
SKN
SKA
SKB
SKD

Operation Code

0 46 00010
0 46 00014
0 L6 00012
0 L6 00005
0 46 00200
0 46 00400
0 L6 00600
0 46 00020

0 46 000k0

0 46 00060

0 46 00122
0 46 00140

0 46 00160

‘0 46 01000

0 k6 o0LkOL

o1
L3
L3
51

Lo
50
.73
-60
70
53
7o
52
Th

=

A-2

Function

Copy B into A

Exchange A into B

Copy B into A, Clearing B
Copy A into B, Clearing A
Copy X into A

Copy A into X

Exchange X and A

" Copy B into X

Copy X into B

“Exchange X and B
‘Store Exponent
- Load Exponent

Ekchange Expoqenﬁs

- Copy negative into A

Copy A to X, clear A

Branch unconditionally
 Increment index and branch

‘Mark place and branch

Return branch

Branch and return‘from interrupt'

| Skip if signal not set
- Skip if A equals M

Skip if A greater than M
Reduce M, skip if negative

~Skip if A= Mon B mask,

Skip if M negative
Skip if M and A do not compare ones
Skip if M and B do not compare ones

Difference exponents and skip

Mnemonic
Shift
RSH
RCY
IRSH
ISH
ICY
' NOD

Control
HLT, ZRO
NOP
EXU
Breakpoint Tests
BPTx ’

;:0verflow'
ROV
REO
ovr
oTo

Interrupt
EIR
DIR

AR
IET
T

Channel Tests
CATW
CETW
CZT™
CITW

Input/Output
-EOD

Operation Code

0 66 00xxx

"0 66

0 66
.0 67
0 67
0 67

00

20xxx
2hxxx
00xxx
20
10xxx

20

23

0 ko

-0 22

0 22

0 22

0 22

0 02
0 02
0 02

0ko

o Lo

0 Lo
o ko
0 Lo
0 Lo

06

20xx0

00001

00010

00101
00100

20002

20004
20020
20002
2000k

14000
11000
12000

10000

R-2(
A-

" Function

Right shift AB

Right cycle AB
Iogical right shift .
Ieft shift AB
left cycle AB

Nbrmalize and decrement X

 Halt

No operation

Exeguté

Breakpoint test .

Reset overflow
Record exponent overflow

Overflow test andvreset o

" Overflow test only

-~

Enable interrupts

Disable interrupts
Arm/disarm interrupts
Interrupf enabled test
Interrupt disabled test -

Channel W active test
Channel W error test
Channel W zero count test

Channel W inter-reéord test

Energize output D

Mnemonic

Operation Code

Input/Outﬁut (920 Compétiblé)

MIW
WIM
PIN
POT
EOM
BETW
BRTW

Syspops
BIO
ERS
C10
CTRL
DBI
DBO
DT
DWO
EXS
FAD

~ FDV
FMP
FSB
GCD
GCI
1SC
IST
1AS

" LDP
LIO
0ST
SAS
- SBRM
SERR
SIC
SKSE

SKSG

12

32

33

13

02
0 40 20010
0 40 21000

576
573
561 .
. 572
542
543
5hk
545
552
556
553
55U
555
537
565
541
550
546
566
552
551
547
570
S51*
540
563
562"

» Input from specified teletype

R-26,
A-h

Function

M. into W buffer when empty
W buffer into M when full
Parallel input

F:?arallel output

Energize output M
W buffer error test
W buffer ready test

- Block I/0

Branch to system

_Character I/0

Control
Drum block input
Drum block oﬁtput

Drum word input

Drum word output

_Execute instruction in system mode
- Floating add

Floating divide

Floating multiply -
Floating subtract

Get character and decrement
Get character and increment

Intelnal to string conversion (floatln%
" “output)

‘Load from secondary memory

Load pointer (AB)

. Link I/0

Output to specified teletype

Store in secondary memory

System BRM

System BRR (prestored macro)

String to internal conversion (floatin
1nput§

Skip on string equal .

Skip on string greater

Mnemonic

STI
STP
TCI
7¢O
WeD

- WCH

WeI

- WIO

Operation Code

536
567
574
575
5%
564
557
560

D acu

A-5

Function

Simulate teletype input

Store pointer
Teletype character input
Teletype character output

' Write character and decrement

Write character _
Write character and increment‘
Word I/0 - '

R-26
1-1

1.0 Introduction

An assembler is a translator whose source 1anguage is assembly language

and whose obJect code is actual machine language. Assembly 1anguage is mostly
a one-for-one representation of machine language written 1n a symbollc form.

Tts value comes from being easier to read and from the fa0111t1es prov1ded by

the assembler for d01ng calculations at assembly time. These range from simple
address calculations to complex condltlonalbassemblies ihjwhiCH‘tetallYe
different objeet'programs may be generated, with the_choiee aﬁong the@t
“depending on the values of a few ﬁarameters; | s

This section serves to define’the terminelbgy used. ;It ieTassumed'that)

- ‘, : . B - L *
the programmer is familiar with the basic eharacteristics of the SDS 9Lko .

grs

1.1 Basic Description of the Assembler ;i
The eéeembler is e two-paéeiaséembier>with eubpregrem, literal;
. macro, and conditional aSSerbly capabilities.. o '
1. 2 Symbols :

Numbers may be represented symbollcally in assembly language by
rsymbols. A symbol is any strlngiof letters_and diglts‘not forming a -
constant. (Constante are defined ih'éectien h.25. -Ih particular,vit
is not necessary that 2 syMbol begln W1th a 1etter.. Although symbols
as written may be arbitrarily long, only the first S1x characters of a
symbol are used to distinguish it from others. When a symbpl is‘used.to
represent a memory aiiress,‘it is_ealled a‘EEEEl', Exemples‘of‘symtois :

are: | |

START ZIC Al2 CALCULATE

% Ref. to SDS 940 Computer Reference“Manual, No. 90 06 LOA, August, 1966.

R-20
1-2

1.3 Instructions, Directives, and Comments

Input to the assembler takes the form of a sequence of statements

called instructions, directives; or comments. 'Instructions are symbolic
‘;epresenﬁations ofvmachine commands énd are’£ranslatéd by the assembler
~into machihe language. Directives, by cdntrast? are messages'which serve
to control the assembly process or créafe data. 'Ihey may or ma& not
generate output. Comments are ignored by the assemblef, and serve only
to ciarify the meaning of a program. |
1.4 Subprograms

Programs often become quite large or fall‘iﬁtp logical difisions A
which are almost independent. . In:either case it'is ¢onvenient to break .
them into pieces and assemble (and evén debug) them separatel&; Separately
assémbled partshof the éame progfam:arevcalléd subprograms.

: Before a program assehbied in ﬁiéceévaéAsubprograms:can be run it is
neéessary tovléad the pieces into’memqry énd léggythem. The.symﬁols uséd
in a giveh subprogram are generaiiy local to‘thatvsubprogram. Subprograms
do, however, need to refer to symbbls defiﬁed-in bthgr subpfograhs. The
linking pfocess takes care of sﬁch'éross references. Symb51s used fbr it

are called external symbols.

1.5 Literals

Often data is placed in programé,aﬁ éssemﬁly.time. It is frequently
convenieﬁt £o refer to COhstants BZ.XEEES than by labei} A iiteral is a o
symbolic referehce to a datum by value. ‘The'asséﬁbler'allOWS any t&pé of
expression to be used as a litersl. Some examples of litérals are:

=5 =3¥XYZ-2 ='ENﬁ' =EXTERN

1.6 Relocation '

A relocatable program is one in wﬁich memory loéations have been

computed relativé to the first word or origin of the program. A loader

R-2
1-

((for this assembler, DDT) caﬁ then place the assembled program into

. core beginning at whafever ibcaﬁion may‘be specified at EQéé,EiES;
Placeﬁent‘of the program involves a.émall caicuiation. For example,v

. if a memory feferencé is to the nth ﬁord of a program, and if the program
is 1oadea beginning at location k,.the loader must transform the reference
into absolute location n+k.

"This calculation shbuld not be done té.each wofd of a program since
some machine instruétions-(shifts, for exémple) do not refér to memory
16cations. It is therefore necessary to inférm thevloader whether or not_:
‘to relocate the address for each wé:ﬁ of the program. Relocation infor-

metion is determined automatically by the asgemblef and transmitted to

the loader as a binary quantiﬁy called the relocation valﬁe. IfR=1
the operand is to be reioéated; ifR=0 the operand is absolute.

Constants or data may simiiarly require relocation, the éifference
here being that the relocation cqlcplétion should apply to all 2L bits of the>
940 word, not just to the address figld. The assembler acéount;_fofvthiév
difference automatically.~'. | | |

Tt is possible to disable relocation inkthe-assembler and to do

absolutevasseﬁbly. In this event the}e.is an option which'produces a

paper tape which can be loaded using the 940 fill switch. T

1.7 Basic Assembly Procedure

ﬁuring pass 1 of the two-pass procesé the‘operénds of:ihsﬁrﬁétibhé;;;dr
some directives are scanned fof the presence. of singlé symbols. If a Sinéié
sjmbol is present, a table of symbols is searched. If absent, the éymﬁol‘is
aaded to thé table but marked as nof yet defined, i.e., having nOTVélﬁé:?if>
.Labels are placed into the symbol iable in similar fashion, except that ‘7

they are assigned the current value of the location counter, a word within

the assembler which contains the relative address of the inétruction, If

a label has been previously defined, it is marked as a duplicate symbol _:

R-26
1-4

(this is taken to be an error). .

_At the end of pass 1 the symbol table is sorted. All symbolg.present
having no value are assumed to be external. These symbols are then output
by'the assembler for later usé by the loader.. During pass 2 the labels
are not coméuted; ratﬁer, the operand fields of instructions and directives
are evaluated using the now known symbol‘values."'.

In absolute assemblies the scan forOSingle symbols in pass 1 is
disabled. This has the effect of doing away with éxternal symbols;'
V°1.8 Notétion

In the following pages, squére brackets [] are used to indicate the

presence of optional quantities.

2.0 The Assembly Language

2.1 Character Set

The,classes of charactersvrecognized by the essembler erevas follows:
A(a) digits | -
4 (l)‘ octal 0-7
(2) decimal 0-9
(b) letters A-7

(¢) alrhanumerics 0-9 and A-Z

(a) delimiters + - % /' () . $'blank -
“(e) special characters : ; <> ? [1" - |
Note that the characters ' # ¢ & € \ ? whlch are normally found on standard
»Teletypes are not recognized by the assembler Use of them in a program
‘will result in their being replaced by blanks. |
2;2 Statements)
- Statements are logical units>of input. They may be delimited elthev'
‘by belng placed on separate lines- or by belng separated w1th semi~- colons
Seml—colons do not serve as statement dellmlters when used bet#een 51ngle

quotes (as in the TEXT dlrectlve) or inside of matched parentheses (as 1n-

arguments of macro calls) Examples of statements are

START IDA DAT21.
MUL 21B
STA ANSWER
. or ' L

START IDA DAT21; MUL -21B; STA ANSWEh
If a statement requires more than one line for any feason, iﬁ ean be
continued on the nexf line by typing a + in the first coiumh of the nexé 1i£
Thus @

START IDA DAT21l; MUL 21B; STA ANSWER THE OOM
4MENT ON THIS LINE REQUIRES A CONTINUATION

This kind of continuation may be done for about five lines (320 characters%

R-26
2.2

Each non-blank statement is an instruction, 2 directive, or a-:

comment. Blank statements are ignored. Comments begin with an asterisk; -
they have absolutely no effect on the program being asseﬁbled and serve
only as annotations to clarify the meaning of the assembly language;

Directives and instructions are divided into four fields. Ther
fields are, from left to right, the'label field,ithe opefation field, the
operand field, and the comment field. Tﬁe assembler is a free-form
assembier;'its various fields are delimited by bianks“rather than
restricting them to fixed places-iﬂ a line. This is explained in more
detail below.

The'label field is used mostly for symbol définitions. It begins
with the first character in the sﬁatement and endé on the first non-
alphanumeric character. (The blank isrusuall& the onlj legal terminator.)
Thus,. in t?e’following statementstthe symbol XYZ appear; in.label fields.

XYZ IDA =10 ‘ .
STA DEF;XYZ LDA =10; LDB* IMN

The operaiion field\contains (usually) a syﬁbolic operation codéAor
dirgctive namez It begins witﬁ theefirst non;blank'charqpter after the
termination of the laﬁel field; In»the statements above, eéch operéfion
field begins in a different position. Like the label field, the.operation
field ﬁerminates on the first non-alphanﬁmgfic chargcter. Legal
terminators are the blank,‘asterisk, semi-colon; and(éarfiége retﬁrn.

Thé operand and comment fields each begin with>fhe first non-blank
character after the terminatioﬁ of the pregédingvfield. The opefand
field terminates on the first blank or semi-colon not bétween matchedv
single quotes or parentheses. The carriage return always terminates the

field (and the statement). The comment field terminates on a semi-colon

‘R-2¢
2.

or carriage retu?n.' This field, like the comment statemeht; is not used
by the assemblef; it may contain‘anything.
2.3 ‘Préggams

A program consists of alsequence of staféments termgn%ted by aﬁ END
directive. Normally programs are assembled in relocateble form. AA
program is éséembled‘in abéoluté self—ldadingfform>if it beginé with an
ORG directive. It is possible (by ﬁsiﬁg RELORG) to make éﬁ absolute

assembly to be loaded by DDT.

3.0 The Syntax of Instructions

3.1 Their Classification

(a)‘ Class 1 (normal instructions).

Claés 1 instructions in general use the operand field. ItS

absence implies the value zero. It is possible to specify for each

Class 1 instruction whether or not'the 0peraﬁd field must be present.i

It is also possible to specify that bit O of the instrﬁction word 1is

to be set to one (as in SYSPOPs). There are two types of Class i

instructions:

(o)

(1) type O
The address is formed mod th. All instructions

making memory references are of this type. -

(2) type 1 :
The operand is formed mod 29. Thié type is used for
shift instructions. If indirect addresSing is used_with o
vthis type,,the addreés is formed mod 215.
Class 1 instructions have the following form:
[{$]11abel] opcodel*] [operénd[,tag]]“[commehf]
Indiréct sddressing is signified'by.an asterisk immediately
following the operation code or.bé_preceding.the oﬁérand witﬁ é-.
The use of the dollar sign is explained in 3.2 The tag is used ;
to specify bits 0, 1 and 2 of the 940 instrﬁgtion word.

.

Class 2 (complete or full word instructions).
Class 2 instructions have no operand field. Iﬁdirect addreésing
is signified by an asterisk immediately following the operation

code. Class 2 instructions have the following form:

[[$]labéi] opcode[*] [comment]

R-26
3-2
(c)v Numeric op codes.
Operation codes may be specified asndecimal or octal numbers,
| és for example:
[[$Ilabel] 76B[*] [opgran@[,tég]] [comment]
‘The assembler shifts the numeric op code (modulo’l778) left’to
the correct position in the instrﬁctiéh'word.- In such cases, the
op code is assumed to be Class 1, type 0, no operaﬁd required, |

and with bit 0 not set.

3.2 Use of the Label Field

A label identifies the instruéfidn ofrdata(§ord being genefated. The
symbol usea in fhé label field is given'the current value of the 1ocation
counter. Instructibns will have laﬁelé normally if they arevieferred to :
elsevhere in the jrogram, although'it is not necessary that'syﬁbols defined
in this way be used in references; Symbols.defined but not used are called
nulls; they are marked as such in the asSeMbly listing and explicitly
typed out at the end of an assembly; A

. If the same symbol appears in the label fiéld 6f ﬁore than one

instructlon, it is marked as a duBllcate and given the newer value.

A $ preceding a label causes an external syﬂbol definition (ef. 6 6)

3.3 Operand Field

- The operand fleld contains at mﬁst two arlthmetlé'expreSS1ons (or a
literal and one expression) used to determine the operand and tag of the,'
'-machine command. The tag, if present, is evaluated mod 23 and ﬁust be
ebsolute (i.e. non-relocatable). |

3.4 Alternate Conventions for Expressing Indexed & Indirect Addresses

It is possible to express both the use of indexing and indirect

addressing in an alternative manner. 1In each case a special character

"R-2¢

3-:

is placed at the beginning of the operaﬁd field. These chéractérs.are /
for indexiﬁg and « for indirect addreséiﬁg. Th\’ls, for eiample) 'V

ﬁDA VECTOR,2 is the seme as LDA /VECTOR
and | | |

| STAX POINTR is the seme as STA <POTNTR o S

Similarly, - R N R

IDA¥ COMPLX,E‘ may‘be written eitﬂer as

_IDA /<COMPLX P

or IDA «/COMPIX

Anything normally useful may follow the initial < or /, for example
IDA«=CHAIN (IDA* =CHAIN) ‘
This alternate way of expressing indexing and indirect addressing
méy be used by programmers as‘they choose. It was devised to Simplify

the indication of these operations in the use of macros (see chapter 7).

3.5 Comment Field

The comment field is not processed by the assembler, but is copie& :

~to the assemblj listing.'A

'Re2€
R I |

4.0 Expression Syntéx

~

The assembler evaluates expressions as 2h-bit, signed integers. Expressions
consist of constants and symbols connected by operafors. ‘Examples’of expressibns
are:

100-2¥ABC (OR)DEF/27B
22 e '
C12>D19

Expressions are evaluated from 1ef£ to right;ﬂsome opérafors taking'preéédence '

over others. .As an-expressioh is eVéluated, a pafallellcaipulation df iﬁs.

reiocationlvalue R is made. Oﬂly absolute expreséibns (RV; 0) and reiocétéblék

expressions (R = 1) are legal (cf.»h;75, o | . __A ,:bl_' -
4.1 oOperators = , ,-“. ff;; E ‘ ;' B | SRS

| The operators recégnized:by thevéssemﬁlér.and theirvprecedende éfe

given below. Opérétoré of highest precedence are appiied first in‘ h
évaluation‘of expréssibﬁs. '

Operator " Precedence

(2) wunary :
| s)
- Y
(wot) b S
. “(R) b (ef. bu7)

(b) relational

~~
7]
(2L
V,
o -
o
A
w

(GRT) or > 3
(EQU) or = 3
(c) binary ' :

- - % 2

/ .2

(2wD) 2

+ 1

- 1

(or) o

(EOR) 1

R-26
h-2
Note that some operatoré afe more than one charactef long. - Tﬁese
are enclosed in parentheses to avoid confusioﬁ with symbols which would
otherwise look the same. Parentheses are therefore not allowed in
expressions to delineate terms and modify the order of evaluation.
The relational operators give rise to a Valﬁe'l if the relation is

true and O if false. There may be oniy one relational operator in an

expression.
.h;e Constants
Constants are of three typeé:
(a) decimal integers: one or more.decimal characters possibly
terminated with the letterin.v
'2129 , 600D, -217
- (b) octal integers: one or more oétai charactéré possibly terminatéd
with the letter B and optionally a‘single-digit octal scaling
factor. '
| 217, 328, bLB3 (wﬁich is the same as hQOOs)
(c) string:v'l-h characters (except ')' o
All constants are absolute, i;é., their relocétion value is C;
The assembler normally expects integers to be decimalf This can.
- be changed, however, by using a directive (OCT or DEC). Infany>éase,
integers may be terminated with B or D, overriding the normal inter-
pretation,of:integers. Striﬁg constants are not normally useful in the
direct compgtétion of memory addresses, but exiSt bésically to be used
in iiterals.(cf. 5.0). |

k.3 Classification of Symbols

The assembler recognizes the following types of symbdls:
(a) 1local symbols: These symbols are defined by their use in the

1abel field of instructions and in some directives. Their

R-26
4-3
value is that of the location éounter at their definition. They
are thus symbolic addfesses’of memory cells. These symbols are
reloéatable (R = 1) if the éSsembly is relocatable;:if the
assembly is absolute, they are absolute. ane ha#iﬁg been ‘
-def@ned, a local symbol may not be redefined. Attempts to do so
are considered errors, and di;gnosfﬁcs resuit. | -
(b) equated symbols: Equated symbols may be defined by equating
*“them to an expression (ﬁsing direétivesAEQU, NARG, or NCHR).
Their relocation value will be that of thé eipression. Unlike
local symbols, quated éymbbls may be given newvvalueé'at anyi
point in.the program. 0 -
g (g) current location counter symbol (¥): The character ¥, if used ;
“ in the proper context, is understood to mean the éurfent value
of the location counter. It is relocatable or absolute
depending on the nature of the assembly;
(@) external symbols: .External symbols are those which are used.
but not defined in a given subprogram. They can be éssigned
_no value, and it is not.reasonabie fon;egard tﬁem'éither‘as
absolute or relocatable. 'External.symbols may be used only as ‘
the §ole object in an expressionj; other than its apﬁearance és
a sole objeéﬁ, the external symboi may ngt be ﬁéed in an
expreséion.' |
4.4 Terms

Terms are either constants or symbols, optionally preceded by a unary

opérator. The unary operator serves to modify both the-value of the térﬁ'

R-26
L)y e

and its relocation value. One unary operator -- special relocation, (R) --
may.set the relocation value of a term to aﬁy value. This feéture-is
explained in much ﬁore detail in L4.7. , A , o
L.5 Expressions
Expressions may consist of one or more terms connected by binary operators,
or they may be just a single externél‘symbol. Théir eyaiuation(proceéds
‘from left to right using bperators of‘decreasing precedence. For‘example,
let A = 100, B = 200, and C = -1. Then ,' “ e
| A+B¥C/A = 9B '_ ',' | |
Again, letting A = 5&3218,_3 = uuuuu8, gné C =_600778, then
A(OR)B(AND)C = 5&3658 ,, | 4

.6 Constraints of Relocatability of Expressions

B}

The implemgntation.of the aésembler_forces fhe‘following constrainﬁs’
on the use of expreséions: |
| (2) No relocatable term (R = 1) may occur in conjunction with the
dperators ¥ or /f In other words, no relocétable symbol may
multiply, be multiplied by, divide, of ﬁe diviﬁed by anyfhing:A.
(b) In the absence of tﬁe special relocation operator (R) the B
_ finalbrelocation Qaluerf an expression méy be-only 0 of 1.
It is possible that the relocation value may attain other
values in the course of evaluation.
- (c) If the special relocation opefatof‘(R) appeafs in an expression,

- then the relocation value of_thé exﬁressibn may Be either O or
some other value K, where K ié the special relocqtion radix. DDT
is informed by the assembler that speciél relocation is being used

- in this case. DDT will then mﬁltipiy the base address by K

before adding it to the value of the expression (see next section).

R-2¢
b5

.7 Special'Relocation
..The special relocation feature has been provided to ﬁefmit the
programmer limited use of expressions;which.aré not absolutevéf singly
relocat&ble. To see why this‘is desirable, énd how it %6%ks, éqnsider
.the process of aésembling and loading a relbcatable progrdm. Iet the _;
symbol A_havé value a. If one writes A | | o |
| oA A B
the assehbler produces
076 a
and marks the'instruction'siaddress as beipg relocatable. ILater when >
told to load the p?ogram beginning at ae addréss b; DDT wiil form’
076 e R E
Thus no matter where the prqgram'is 1oaded, the memory refefenée will’be to
the ath word from the base addréss. .) |
| » Now suppose 9ne»writes
IDA E*A o
The asseMbler; of course, can form
076 2%a
~and presumably what DDT should form is
| 076 2*a+2¥p = 076 2¥(a+db) . . -
To do_ﬁhis, it must be téld that b is to be muitipiied épééificall& b& 2.
Only one bit is reserved,rhowevef;.for»such information in the assemblér;s
‘binary output; it is this'fac£’which.causes tﬁe restriction tﬁat' |
expréssions may have only‘the relocation values Q and l. Apd thisv
restriction can be gotten around (inelegantly) by the use of R).
Tﬂé following example gives one of the main reasons for wﬁiéh (R) was.

put into the assembler.

R—261
L4 6

Programs mey make use of the string-handling SYSPOPs of the 94O.

These instructions use string pointers, two-word objects containing .

startingrand ending character addresses. Now characters are packed

thrée per word. A charactér address therefore consists of the‘meﬁofy'
‘address containing the character multiplied by 3 plus o, 1,.or 2 M
depending on the'positibn of the character‘in the'word. if ; characfer
aédress is divided by 3, the éuotiént givés the word addresé and the
remainder the character position in the wérd; o
To form a character addresé at assembly %iﬁe, oné musf be able to
mult1ply a word address (a relocatable 1tem) by a constant (1n this ;
case, 3). This is the reason for sPec1al relocatlon. The statement A
DATA (R)A+1 | |
4will produce"thé:Qalﬁé-
3¥a+l
.together ﬁith a notation to DDT that special éelocaéion applies to that
value. |
DDT will then form the value
(3%a+1)+3%b = 3%(a+b)+1
symbol, fepresenting a relocatéble ;ord éddress;ﬂmaybthus’be used to form
character addresses in string pointefs; There afejother éxamples for the
need fdr special relocation, but they will potﬁﬁe mentioned here. Iet it
suffice to say that special reloéation is_merely a device,tormake upv
partially for the rather severe relocééion'constfaints'the assembler
imposes upon programmers
It should be pointed out that the multlpllcatlve constant associated
with (R) in the example above was 3 because of the nature of string

pointers. This constant is called the special relocation radix. Tt need

‘not be 3 always. In fact, it may be changed to any value by the directive

RAD. Because of the relative importance of string pointers, however,

the assembler is initialized withAthis value set to 3; it is hence

unnecessary to use RAD to set it to.3 unless it has been changed for

some reason.

R-26
5-1

5.0 Literals
Programmers frequenéiy write such things as
IDA FIVE
where FiVE is the name of a‘cell containingfthe bonstant 5. Thé programmer

~

musf remember to include the datum FIVE in his program somewhere. This can
be avoided by the use of a literal. |
| DA 5 |
will produce automatically a 1ocdtion coﬁtaiﬁing the correcf,constant in the
program. Such a2 construct is called‘a iiterél.
o Literals are of the.form |
=expreséion
When encountering a literal, the assembler first evaluates the expression and
léoks up its value in a table of literals constructed for eaéh subprogram.
-If it is not found in the table, the value ié piaced thére. In any case the
literal itself if replaced by tﬁe locaﬁion of its vaiué in the literal table.
At the end of aséembly the.litgial table is placed after the sub-progranm. \"
The following are exampleg of literals: | |
10 =B6 =ABC*2Q—DEF/12 ' =;HELP'°

=2=AB (This is & conditional literal. Tts value will be 1 or O -
depending on whether 2=AB at assembly time.)

Some programmers tend to forget that thé literal table follows the
7 sﬁbprogram. This could be harmful if the program endéd with tﬁe declaration
of a large array using the statement |
ARRAY BSS 1
It is not strictly correéf to do this, but.somé programmers attempt it anyway
~ on the theory that all they want to do is to name the first éeli'of the afréy.
The zbove statement wil} do that; of course, but only one cell will be resérvéd

for the array. If any literals were used in the subprogram, they would be

R-2o

‘placed in the foiiowing cells which now fall into the array. This is,Aof
course, an error. Other than the above exception, the programmer need not

concern himself with the locations of the liferal values.

6.0 Directives

There is a large'number of directives associated with this assembler.

Although many of the directives are similar, each in general hés its own

syntax. A concise summary is given below:

Class

Data‘Generation:

-

Value Declaration:

Assembler Control:

Output & Listing

Control:

Macro Generation
" & Conditional
Assembly:

Directive A Use/Function
COPY . Facilitates use of RCH command
DATA : Generation of data
TEXT Generation of text
ASC Generation of text
FQU Setting or changing symbol values
EXT - Defining external symbols .
NARG See
NCHR ’ See . '
orD : Defining new op codes
POPD ‘ Defining pon codes
BES Block ending syiuibol
BSS - "~ - Block starting symbol = .
ORG ' Origin: absolute assembly
END ' End of program ,
DEC Interpret integers as decimal

. OCT . Interpret integers as octal

- RAD ' Set special relocation radix
FRGT . Forget name of symbol
IDENT Identify name of program
DELSYM Do not transmit symbols to loader
RELORG ~ See-6.21 Lo .
RETREL : See 6.22
FREEZE Preserve symbols and macros _
NOEXT Do not create external symbols
LIST Set listing flags
NOLIST Reset listing flags

~ PAGE Skip to new page on listing
REM Type out remarks in pass 2
MACRO : Head of macro body -
ENDM ’ -+ End of macro bedy
RPT : Begin repeat body
CRPT Begin conditional repeat body
ENDR - End repeat body
Ir Begin if body
ELSF Alternative if body
ELSE . Alternative if body

ENDF End of if body

aAvT BN

6-2

6.1 COPY Generalized Register Change Command

[{$]1avel] copry 51’52’83";' {comment]

vwhere s, are symbols from a special
set assGciated with the COPY directive

The COPY directive produces an RCH insfructipn. It takes in its operahd
- field a series of special symbols, each standing for a bit in the address
field of the insﬁruct;on. The bité selected by é given choiéé of symbols
are merged together to fora the address. :For‘examplé,'instead of using |
the instruction CAB (0460000L4), one could write COPY AB. The special
symbol AB has the value O000000L. |

The advantage of the directive ié that unusuai combinations of bits
in the address field -- those for which thére gxist normaliy no operation
codes -- may be created qulte naturally The special symbols are mne$on{¢s
Tor the funct;ons of the various bits. Moreover, these symbols ha&e this
speclal meaning only when used with this directive; there is no res£ricfion
6n,their use either as symbols or op cddes elsewhere in_a prégram. The

symbols are:

2 Clear X

Symbol Bit Function
A 23 Clear A
B 22 " Clear B
AB 21 Copy (A) -»B
BA 20 Copy (B) - A
BX 19 Copy (B) - X
XB 18 "~ Copy (X) - B
E 17 Bits 15-23 (exponent part) only
XA 16 Copy (X) - A
AX 15 Copy (A) -»X
N 1k Copy -(A) — A (negate A)
X

To exchange the contents of the B and X regisfers, negate A, and only
for bits 15-23 of all registers, one would write

COPY BX,XB,N,E

R-26
6-3

Of.course,.thé symbols may be written in any order.

'Clever programmers please'note: This direétive facilitates nicely
"~ some special RCH functions which might not otherwise be attempted (it
is usually too much trouble). TFor example, |

- COPY AX,BX .

has the effect of loading into X the logical OR (merging) of the A and B
registers. Tnterested readers are reférred to the SDS 940 manual for more '

details of the RCH instruction.

6.2 DATA (enerate Data

{[$]12bel] DATA el,eg;eéf... [cbmmént]

The DATA directive is used to produce ﬁata in @rerams, Each.expression
in the opeiand field‘is evaluated and the 2h-bit values assigngd-to R
inéreasing'mémory locatiéné; .One or more expré?sions may be present.
ﬁhe label is assignedAto the location of the firsﬁ expression; The effect
of this directive is'td créate a list of'data, the first word of which may .
be labeled. | | | |

Since the expressions are not restriéted iﬁ any way,.anj type.df'

data can be created with this directive. For example:

DATA 100, -217B, START, AB%2/DEF, 'NUTS' ,5

7 6.3 TEXT Generate Text

[($]1abel] TEXT ,'te££' [commeﬁti:'_

. or, | | . - T :
[[$]1abél] YTEXT ‘expression,text [comment} A

The TEXT difecﬁive is used torcreate a'sffing‘of 6-bit trimmed ASCIT B

cHaracters, packed four to a word and assigned to iﬁcreésing!memory

locatiéns,' The first word of the string may be 1ébeled. The string to bve

packed may be delineated either by enclosing it in quotes (as in the first

R-26"
6-4

case above) or by prééeding_it Qith 2 word céunt (as in the second case). .
The second form of the directive must be used, of course, if the string
contains one or more quotes. A potential hazard arising here should be
pdinted out. If a statement contains a single quote (or any odd nuéber
of them), it will not terminate with a semi-colon; é carriage return must
be used..

TEXT 4, THIS WON'T WORK; TEXT h,DiSASTER AHEAD
In the line above ?he semi-~colon will be part of the text, and the second

statement will be interpreted as being in the comment field,

TEXT b4, THYS WILTL '
TEXT 1,A-OK

In the first form of the directive, characters in the last word are
left-justified and remaining positions filled in by blanks (octal 00).
In the second form, sufficient characters are packed to satisfy the word

count.

6.4 ASC Cenerate Text with Three Characters per Word

This directive is identical in form and use to TEXT, except that

8-bit characters are packed three per word. The 940 string processing

system normally deals with such text.

6.5 FQU Equals
[$)symbol EQU expression [comment]

The EQU directive causes the symbol in its label field to be defined
and/or given the value of the expression. The‘expression muét have a.
value when EQU is first éncpuntered; i.e., sywbols present in it must_have
been previously defined. It is permissible to_redefine by EQU any symbol
previously defined by EQU (or NARG or NCHR, cf. below). Tﬂis>ability‘is

particularly useful in macros and conditional assembly.

- R-2¢
6-=

6.6 EXT Define External Symbol

There are four ways which may be used ﬁo define external symbols.
i(a) $label opcode or directive operand, etc. |
~ The $ preceding the label causes the symbol in the label field
to be defined externally at the same tlme 1t is deflned 1ocally
(b) symbol EXT (comment not permltted)
| The symbol given in the 1abe1 fleld is defined externally.
This symbol must have been defined prev1ously in the program.
The operand and coﬁmeﬁt fields'must beAabsent - |
Both of the above forms have the same effect the name and value of a local
‘symbol is given to the loader for external purposes.

Occa31onally 1t is de31rable to deflne an external symbol whose name
is different from that of a local symbol or an external symbol may be
defined in terms of an expres31on 1nvolv1ng local symbols There are
~two ways»of dolng this.
| (c) $$ymbol EQU expression 4[eomment] ‘

: (d) symbol EXT expression [comment]. . |
In (c) above the symbol is defined both 1ocally and externally at the ‘same |
time. (d) differs subtly in that the symbol in the label 'f’leld is defmed
’only externally, 1ts name and value are completely unknown to the Jocal
program. |

The feeture () above is particularly-useful in situations where two or
" more subprograms loaded together have name conflicts. For example, euppose
programs A and B both make useuof~the symbol START, and A not only'refers,
to its own START but B's es well, The‘leéter references cen.be chaﬁged:to
- BEGIN.‘ Then into orogram B can be inserfed the liﬁe .

BEGIN EXT START |

No other changes need be made either to A or B.

S n~cu
€-6
Occasionally, aftér having'written‘a prﬁgram, one would like‘to make
a list of local symbols to be externully'defined; A Euiltfin macro ENTRY
serves this function. That it ié a built-in macro is irrelevantj'the'i_
programmer may think of it as a related directive. Thﬁs |
 ENTRY A,B,C,D,...

is precisely equivalent to

A EXT
B. EXT
C EXT .
D EXT

6.7 NA&G Equate Symbol_to-NUmber of'ﬁfgumenté in Macrd Caiiv

[$]symBQl NARG [commént] ”» ‘
This directive may be used only iﬁ magio'aefihiiions. It is mentioned
here only for cbmpleteness, It‘operates exactly-as EQU exéept that;iﬁ
-ﬁlace of an expression in ﬁhe operand field,.the value of the symbol’is
set to the number of arguments used én caliihg the mach currently:béing'

expanded. Cf. 7.9 below.

6.8 NCHR Equate Symbol to the Number of Characters in Operand

{$]symbol NCHR operand ' [comment]
This directive is inténdéd for use mostly in macro definitioﬁs; but iﬁ
bmay be used elsewhere. It‘operates exacfly és EQU exéept ﬁhét in plécev
of an ekpression in the operand field, the value of the symbol is set to
the number of characters included iﬁ'the operand field. A further

explanation of the utility of this directive is deferred to section 7.

R-26
6-7

6.9 OPD Operation Code Deflnltlon

The OPD directive gives the programmer the facility to add to the
existing table of operation codes kept in the assembler new codes or to
ehange tﬁe equivalences of current ones. ‘The form of OPb is: <

~opcode OFD expression,class[,ar[,type[,sb]]j‘ [comment]

>where; 1) class must be 1 or 2 (cf. Section‘3Ql);
| 2) ar (address required) may be O or.l' |
3) type may be 0 or 1 (cf. Sectlon 3. 1) , | o : v
L) sb (31gn blt) may be O or 1 |
Quantltles governed by the optlonal terms above (2, 3 and h) are set tob
zero if the terms are mlsS1ng As examples of how the dlrectlve is used,
some standard machine 1nstruct10ns are deflned as follow3°

CLA OFD Qh6ooooxs, | k

DA oD 7685,1,1 | |

RCY 'OPQ_ 6623& 1,3,1 (TYPE 1 = SHIFT)

A hypothetlcal SYSPOP LLA mlght be defined by
o LLA pPD 11035 1,1,0,1 4 3
(class 1 address requlred type O 51gn bit set)

In operatlon, the assembler s1mply adds new op codes deflned by OPD
to its opcode table. Th1s table is always searched backward, so the new
codes are seen first. . At the beglnnlng of the second pass the or1g1na1
table boundary‘is reset; thus if an opcode 1s_redef1ned somewhere durang

‘assembly, it is treated identically in both passes.

6.10- POPD Programmed Operator Definition

In programs containiné POPs it is deSirable~to provide the POPD -
directive. ThlS dlrectlve works exactly like OPD and is used 1n the same

way. Its essential difference from OFD is that it places automatlcally

R-26
6-8
in the POP'transfer vector-(1008 - 1778) & branch instruction to the body
of the POP routine. | | . t
In order to do this the assembler must know two things:
(1) the location for the branch instruction in the,tranefer vector and
(2) the.location of the POP routine (i.e. the address ef the branch
| 'ﬁmtmmtkm).A | |
- Item (1) is given by the POP code jtself. Ttem (2) is provided by the
.convention that tﬁe POPD‘must immediateiy precede the bedy"of‘thé POP _
routine. The address of the bfench.inStructien placed in the transfer
vector is the current Qalue of the location couhter. |
If the automatic insertion of a wefd in the POP tranéferfvector is
net desired,.theh OPD should be used inSiead. An example-ef this easeb'b
would occur in a subprogram containing-a PbP Wﬁese ioufine is found in
gnother Subproéram. |

6.11 BES Block Ending Symbol

[f$]label] BES expression ; [comment]
The use of BES reserves a block’of storage foe which‘the first loeation.
after the block may be labeled’(i.e.lif the lsbel is giien)."The_block R
size is determined by the velue'ef ﬁheAexpressien; it must tﬁerefore be
-absolute, and it must have a vaiue when BES isbfirst eneountered,‘(symbols
present must have been previously defined). BES is mest'useful for
labeling a bdblock which is to be referred to by indexing using the BRS
instruction (where the contents of X are usually negative); For example,
to add together the contents of an array one might WTite:

IDX =-100 ARRAf HAS 100 ENTIRIES |

1.0OP gﬁg ARRAY,2 NEGATIVE INDEXING HERE
BRX *-1
STA RESULT

, HLT
_ARRAY BES 100

o-y

6.12 BSS Block Starting Symbol

[[$]1abel] BSS expression [comment]

The use of BSS reserves a block of storage for which the first word may

be labeled (if the label is given). The bloek size is determined by the
value of the expression; it must therefore be absolute, and it must have ‘
‘a value when BSS is first encountered.,:The Qiffereece between BSS and BES
is that in the case of BSS'theAfirst‘Qbrd of the block iS>1abeled whereaéi'
for BES the flrst word after the block is labeled by the assoc1ated symbol{
BSS is most useful for labellng a block Wthh is referred to by p031t1ve

1ndex1ng (cf 6 11 above)

6.13 ORG Program Origin

ORG expression [comments]
The use'of ORG forces an absolute assembly 'The location counter is
1n1t1a117ed to the value of the expres51on.‘ The éiﬁression'mest therefofe :
, be absolute, and it must have a value when ORG is firsﬁ encountered.
An ORG must ﬁrecede the_firét instiectioﬁ or data iﬁem in en absdlute
ﬁrogram, although ii does nei neceseéfily,héve to be tﬁe.first statemenp:
The output Of.thevesseﬁbler will ia&ereﬂboetstrep loader at the front.
which is capable of lbéding the program aftervinitiaeion byitﬁe 9&0 "

FILL switch.

| G.lﬁ END End of Assemeiy

| END [ekpressiqn] -
The EﬁD directive termina?es the assembly.1>F6r‘¥elocatable aeeembiies,v_
no expre331on 1s used | For absolute asseﬁblies the expressien gives the
starting locatlon for the program. When assembling in absoiute mode, |
the assembler produces a'paper tape.which can be read into the mechiﬁe
with the FILL SWifch,‘i. e., out of the fime—sharing mode.. If the

expression is not included with the END directive, the bootstrap loader

n=cO

6-10

‘on this papef tape wiil(halt'after the tape has read in. Otherwise, control

will automatically transfer to the location designated in the expression.

6.15 DEC Interpret Integers as Decimal

DEC [comments]

Integers terminated with B or D'aré éiways interfréted fespectivély és‘
being octzl or decimal. On the other hand, integeié not terminéted witht'
théSeAletters may be interprétéd either as decimal orloétai dePending én
tﬁe setting of a sﬁitch inside tﬁe éésembler, The mode‘controlléd by £his
 switch is set fo deciméi ﬁy the aﬁcve direétivé. | 7

~ When the assembler is started this mode is iﬁitialized to decimél{,l
Thus, the Dﬁc directive is not real;y neéeséary unless the mode_hasbﬁéeﬁ .

changed to octal and it is desired to return it to decimal.

6.16 OCT Interpret Integers as Octal

0CT [comments]
As noted in 6.15 above, this_directive séts é moée witﬁin the'éssembler‘
to interﬁret uﬁterminated integers as ocial. Whenrthebaséeﬁbler is |
started this mode is initialized to dec.imal'. Thus , the bCT d_ir'éctivé

must be used before unterminated'octal‘integers can be written.

6.i7 RAD SetVSpecial Relocation RadixA

. RAD expression [comment]h
As exﬁlained in 4.7 it is possible in a limited way fo”haQe.ﬁultipie-
relocated éymbols. This action is performed when the special rélocation'
operator (R) is used. The value of a symbol preceded by (R) is multiplied
by aAconstant called the radix 6f the spegiél relocation. The loader is
informed of this situation so that it can multiély the Bése address By this

- same constant before performing the relocation. Because the special

relocation was developed specifically to facilitate the assembly'of string
pointers (ef. 4.7), this constant is initialized~to 3. If it is desired
to change its value, hovever, tbe RAD dlfective.must be gsed.ikThe value
of the expression ln the operend field sets tbe‘new value of the radix.

It must be absolgte, and the expresSionomest have a value when it is.

first encountered.

6.18 FRCGT Forget Name of Symbol

fFRGT'»sl,s2,s3,.. {comment] |

where si are previously defined symbols

The use of FRGT prevents the symbol(s) named 1n its operand fleld from .
being llsted or dellvered to DDT. FRGT is espe01ally useful in 51tuat10ns
for example, vhere symbols have been used 1n macro expan31ons or‘condltlonal
assemblies. Frequently such symbols have meanlng only at assembly tlme;
they have no connection whatever with the program belng assembled. When

DDT is later used, however, memory locatlons sometlmes are prlnted out

in terms of these meanlngless symbols. It is de51rable to be able to-:

. keep these symbols from being dellvered to DDT

. 6.19- IDENT Program Tdentification

symbol IDENT [comment] .

IﬁENT caﬁses tbe symbol,found'in its_lebel field to be delivered to DDT
as a special identification reeord.reDDT uses the lDENT name in conjunction _
with its treatment of local symbols: in the event of a naﬁe conflict
between locel symbols in two differentisubprogrems, DDT resolves the'
anmbiguity by allowing the user to coneateeate the preoeding IDENT name
to the symbol ih Question.

IDENT statements are otberwise useful for editing purposes. They

are always listed on pass 2, usually on the teletype.

R-26
6-12

6.20 DELSYM Delete Output of Symbol Table and Defined Op-codes

DELSYM [comment]
DELSYM inhibits the symbol table and opcodes defined in the course of
aesembly from being Qutput for later ese by DDT. TIts main pﬁrpose is to
shorten:the object code output froﬁ the assembler. This might be
especially desirable for anvabsolute assembly whicﬁ.produces a paper tape

which is to-be filled into the machine.

6.21 RELORG Assemble Relative with Absolute Origin

REIORG expression [comment]
On occasion it is desirable to essemble in the midst of otherwise normal
,pregram a baﬁch of code which, althoughlloaded into corerip'sbme position,
is desfined to run from enother poeition in memory. .(If willAfirsti |
have to be moved there in a block,). This is particularly useful when
prepafing pregram overlays.. | | |
RELORG, like ORG, takes an absolute'expression deﬁoting eOme‘origin
in memory; It has the fellowing effects: |
(2) The current value of the iocation counter is-saved,’i.e.‘the
value of the expression and in its ﬁlaceﬁieApgﬁ.thekabsolute
origin. This fae£ is not revealed to DDT, however; during
loading the next instruction assembledeill be plaeed in the
.next memory cell available as if nothing had happened.
(b) The mode of dssembly is switched to absolute w1thout changlng.
the object code format; it stlll looks llke relocatable binary
. program to DDT. All symbols defined in terms ef,the location
counter wiil be absolute. Rules‘for computing theirelocétion
value of expressions are those for absolute assembliese

It is possible to restore normal relocatable assembly (cf. 6.22, RETREL).

Some examplés of thé use'of RELdRG follow: - » o

(1) A program begins with RELORG 300B and ends with END. The
assemble?'s output represents an abéolute program whose origin is 003008
but wﬁich can be loaded anywhere using DDT in the usual fashion. (It
is, of course, necessary to move the prqgfam to location 003008'before'
executing it.) | 4 | N

(2) A prégram starts and coﬁtinués norﬁally as a relocatable program{.
| Then‘there isra>series of RELORGs énd somé RETRELs. The effect is as '

shown below:

jL Normal relocatable program.
REIORG 100 | .
: Absolute program origined to 100
RELORG .200

;}r | Absolute program origined to 200
RETREL | -

;%- Normal relocatable program -
RELORG 300

N} Absolute program;origined to 300
END

6.22 RETREL Return to Relocatoble Assembly

RETREL [comment]
This directive is used when it is desired to return to rélocatable assembly
after having done a RELORG. It is not necessary to use RETREL unless one

desires more relocétable program. The use of RETREL is shown in 6.21.

R-26
6-1L-
The effects of RETREL are
() to restore the location counter to what it would have been
had the RELORG(s) never been used, and

(b)_ to'return the assembly to relocatable mode.

6.23 FREEZE Preserve Symbolsé Op-codes, and Macros
FREEZE [comment] |

,It is sometimes true when assembllng various sub—programs that they share
deflnltlons of symbols, op-codes, and macros It is p0331b1e to cause the
assembler to take note of the current contents of 1ts symbol and opcode
tables and the currentl& defined»macros.and inelude them in fgture
assemblies, eliminating theAneeé for including ceﬁies of this informationA_
inbe;ery,subpfogrem's source language. This greatiy facilitates the
editing of this informatioﬁ. ' | | .

When the FREEZE directive is used, the cuffest fable boundafies-fer
symbols and opcodes and the Storage area for mscros is notedrénd saved awsy
for later use. These tables may then continue to expand durlng the current
assembly. (A separate sub-program may be used to make these def1n1tlons
It Wlll then end w1th FREEZE; END.) The next assembly may then be started
with the table boundaries returned to what they were when FREEZE was last
executed. This is done by entering the assembler atAits continue entry
foint, i.e. one types

'@ CONTINUE ARPAS.
Note that when the assembier has.been pfe—loaded with sfmbols, opcedes
and macros, it cannot be released (i.e. oﬁe cannot use another sub-system

like DDT, QED, etc.) without the loss of this information.

R-26
6-15

6.24 NOEXT Do Not Create External Symbols

Because of its subprogram capability, the assembler assumes auto-

' matically that symbols which are not defined in a given program afe external
and wiil be defined in another subprogram. Tt does not therefore list out
the uée of. such symbols as errors.

If a program is in fact a.free-staﬁding prbgram, i.e, if it is
supposed to be complete, then clearly symbols-which are‘ndt defined aré ‘
errors and should be so noted in assembly. The NOEXT directive simply .
prevents external symbols from being establishéd; thus undefined symbols :
are noted as efrors, The directive must be used at-the beginning of avv’
program before instructions or data have been assembled. 'Its use affects-
the entire program. TIts form is |

NOEXT {comment]

6.2 ILIST Turn Specified Listing Controls Od

6.26 NOLIST Turn Specified Listing Controls Off

Most assemblers provide‘a means of listing a pfogram during assemply;
i.e. printing out such items as the location counter, binary ccde béing
assembled, source program sta£ement; etec. The association of thesé iﬁemsA
6n one pége is ffequently of great'help to progfammers.. Two directives;
LIST and NOLIéT, control thisgprbéess.v Tﬁéir form'ié as follows:

LIST '
NOLIST { S12522537°-*

[comment]
where the s, are from a set of special symbols having
‘meaning only when used Qith these directives.

There are many listing options for this assembler. A list of special

mnemonic symbols used in conjunction with these two directives is given

below. The symbols have s?ecial meaning only when used with LIST and

R-26
6-16

NOLIST. They may be used at any other time for any particular purpose.

The special symbols are:

Symbol Meaning
1 Listing during pass 1. Listing format will be

controlled by other parameters.

-2 Listing during pass 2. . Listing format will be

controlled by other parameters.

VLCT Listing of location,éounter vélue (see below)

BIN - Iisting of binary objecf code or Qalqes (see below)
SRC Listing of source language (see below)

coM Listing of comments (see below)

MC ‘ Lisfing'of macro calls (see below)

ME Listing of certain directives during macro

expansions (EQU NCHR, NARG, RPT, CRP‘I‘, ENDR, IF,
ELSF, ELSE, ENDF, ENDM).

EXT Llstlng of external symbols at end of assembly
NUL . Listing of null & auplicate symbols at end of

assembly.

As an example of the meanings of various symbols abéve, con;ider fﬁé.line
of code A2l STB OUTCHR SAVE POTNTER. .

It might list as |

0\2123 &;6\(032_13 A2L STB OUTCHR SAVE POTNTER

N~ \\hﬁ*\,~‘-//

ICT BIN SRC ; COM

It is not necessary to include each symbol possible, but rather 6nly those‘
parameters for which changes are desired. It is, in fact, not necessary
to give any symbols.

LIST is equivalent to LIST 2

R-26
6-17
- When the assembler is star£ed, it.initializes itself in the following
way: |
. LIST LCT,BIN;SRC,COM,MCQEXT,NUL
NOLIST 1,2,ME,SYT.
The actual format of ﬁhe’assembly listing is controlled by the current
~ combination of parameter values. The pafametérsAare‘independent itemé

except for the parameters MC and ME. In this case it is more reasonable

to think of their combination. Thus:

MC ME Effect
0] 0 . List outer level macro calls only
1 0 - List all macro calls and code generated, but

suppress listing of certain directives (seerNE

in table above).

0 1 List no macro calls, but rather all code generated

except for certain directives.

1 1l List everything involved in macro expansions.

- Regardless of the list control paramgteré which have been givgn fo o
the assembler, if can be made to begin ;isting‘at‘any timé in either pass
simply by typing a single rubout (typing a second rubout in succession will
abort the assembly). Listihg ﬁaving beenkstarted in‘this mapnér can be

stopped by typing the letter S.

6.27 PAGE ‘Begin New Page on Assembly Listing
PAGE [éommentj |
This directive cause#va page eject on the assembly listing medium
unless a paée eject has Just béeﬁ givén. ItAis used to improve the |
appearance of the assembly listing. |

- 6.28 REM Type Out Remarks in Pass 2

REM remark to be typed

This directive, when encountered in pass 2, causes the contents of

R-26

6-18
its operand‘aﬁd commeh£s fie}ds to be typed out either on the Telet&pe
_or whaﬁever'file has been’designéted asbthe output message device. This
gy%é%ﬁt occurs regardleés of what listing modes are sét. The directive
may bé used for.a variety of purposes. It may inform the user of the
progress of assémbly. It may éive him instrucfions on what to do nexf‘
(this'might be especially nice for complicated aésemblies). It ﬁight
amounce the last date the soﬁrce lahguage was updated. 6?; it migﬁt be
ﬁsed within complex macros to show whiéh argument substrings héve been |

created during expansion of a highly nested‘maéro (this for debugging

‘purposes).

R-26
- T=1

© 7.0 Macros and Conditional Assenbly

Assemblers with good macro and conditional assembl& cepability can have
surpiising power. This assembler features such capability. Ih this seetion
the facilities for dealing w1th macros and condltlonal assembly will be
discussed. Many examples will be given.

7.1 Introduction to Macros

R

On the simplest level a macro name mé& be thought of as an abbreviation
or shorthand notation for one or more assembly language statemenﬁs. In
this respect it is like an opcode. The opcodevis the neme of a binary ¥
machine command, and'the'ﬁacro name is the oéme of a sequence of.assembl§
language statements. | | |

| EXAMPLE 7-1.
- The gko has an instruction for ekipping if the contents of a specified
‘locatlon are negatlve, but none for testlng the accumulator. SKA (sklp
1f memory and. accumulator do not compare ones) w1ll serve when used W1th ;
. a cell whose contents mask all but the sign blt The meanlng of SKA used
;n}th;s way is "skip if A p081t1ve. - Thus a‘prog{ammer will wrife -

SKA =BT , S _
BRU NEGCAS NEGATIVE CASE . - 7

Programs, however, are more than likely to have a logical need for
skipﬁing if the accumulator is negati#é. Inffhese'situations the programnmer

must write -
SKA - =4B7

BRU *+42 S :
BRU POSCAS POSITIVE CASE

.
.
.

Both of these situations are awkward in terms of assembly-language

programming.

R-26
7-2

-

But we have, in effect, just developed simple conventions for doing
the operations SKAP and SKAN (skip if accumulator positive or hégative).
Iet these operations be defined as maéros. |

SKAP MACRO
© SKA =hB7
ENDM
SKAN MACRO
SKA =h4B7
BRU *42
ENDM
Now -~ more in keeping with the operations the programmer has in mind -—
he may write

K22 SKAN
BRU POSCAS

The édvantages of being able to use SKAP bf SKAN Should‘be appafent.
The amount of code written in the courée of a program is reducéd.. This
in' itself tends to reducé‘errors.‘ A gfeater advantage is that SKAP and
SKAN are more indicative of the action that the progfémmer has in miﬁd.
Programs written in this way tend to be‘eaSier ﬁo read. Note,‘incidentally,.
as shown above that a labél may be~uéed in conJunction with a‘ﬁacro.' Labels
used in this ﬁay are usually treatedblike labels on‘instructions; they are
assigned the current value of the location counter. This will be diséussed
iﬁ more detail later. - o

7.2 Macro Definition

Before discussing more complicated use of macros, some additional
vocabulary should be established. A macro is an arbitrary sequence of

assembly-language stdatements together with a symbolic name. During

assembly it is held in an area of memory called text storage. Macros
may be created or defined. To do this one must give (1) a name and

(2) the sequence of statements comprising the macro. The name and the

R-26
7-3

beginning of the sequence of statements in a macro are designated by
the use of the MACRO directive (see ex. 7-1 above).

name MACRO

The end.of the sequence of statements in évmééro is signalled by the
ENDM directive. - - |
The reader should now refer to Figure 1. When'thevassembler en-
" counters a macro definition (i.e., when it sees a MACRO directive), switch‘/

B is‘thfown'to position 1. The prbgrammer's source language is merely»

ES

copied into text storage; note in particular that the assembler does not

do any processing during the'definitign of a macro. Switch B is‘put back

to p031t10n O when ENDM is encountered.

It is possible that within a macro deflnltlon other def1n1t10ns~may
be 1mbedded. The macro deflnlng machlnery counts the occurrences of the
MACRO directive and natches them against the occurrences ~of ENDM. Sv1tch
B is- placed back in p031t10n 0 actually only when the ENDM matchlng the
last MACRO is sgen.' Thus MACRO and ENDM constltute openlng and c1031ng
brackets.around a segment of source language. Structures llke the

following are possible:

Binary Machine

Language -
ASSEMBLER
/
SYMBOLIC
ol AssEMBLY
A LANGUAGE
‘ % | .il'
A F
» ’ l R
SOURCE - ! | TEXT
LANGUAGE - h _| STORAGE
A B Effect
0 0 " normal assembly)
o 1 .macro definition
1 0 macro ekpansion
i B macro definition during macro expension

(to be explained in more detail later);

Figure 1: Information Flow During Macro Proceséiné

3-26

A

[

namel MACRO =
hame2 MACRO 1

name3 'MACRO -

namelt MACRO -

name5 MACRO N

ENDM .

ENDM -
The utility of th&s struéture‘will not>5e.discussed here. Use of‘thisAi
feature of imbedded definitions shoﬁld in fact be kgpt to a miﬁimumlsince
the implementation of this assembler is such.that it uses large amoﬁntsv
- of text storage in this case. What is importaht, ﬁoweyer, is an undef5>
Stgnding of when the #arious mécios aretdefined.‘ In particuiar, whéhf'
namel is being defined, name2,3, etc. will not be dgfiﬁed; the"y are
mereiy copied unchanged into texﬁ Stdragé. Name?2 viiiaﬁot 5é definéd "
until namel is used . 3 SR PRI - |

7.3 Macro Expansion

The use of a macro neme in the opcode fieid of a statement'ié,refeifed
to as a call. The‘éssembler, upon recdgﬁizing a macro éali,’moves s#itch A
to position 1 (again see Figﬁre 1). Input tb’thé assenbler fiom>the | |
original source language ceases temporarily and comes instead fromvtexf

storage. During this period the macro is said to be undergoing expansion.

* It should be noted that macros -- like opcodes -- may be redefined.

R-26
7-6

It is clear that a macro muéf first be defined before it is called.

Anvexpanding macro may include other macro calls; and theee, in
turn, may call still others. In fact,'macres may even call themselves
(whenvthis makes sense). This is called recursion. Examples of the
vrecursive use of macros are given later. :When ﬁithin a macro expansion
a new macro expahsion begins, information about tﬁé progress of the current
expansion is put away. Successivevmacre‘calls‘cause similar information
to be saved. At the end of each expansion the.information abouﬁ each
yrevious expansion is restored in inverse fashion;' ¥hen the final '
expansion terminates, switch A is placed:back in position 0. Input then
resumes from the source langﬁage program.

7. h Macro Arguments

Now let us carry example 7- 1 one step further. Oﬁe might argue that
the action of skipping is itself awkward. It might be preferable to-write
macros BRAP and BRAN (branch to spec1f1ed location if contents of accumulator
are p031t1ve or negatlve). How is one to do this? The location to whlch
the branch should go is not known when the macro is defined; in fact,
different locations will be used_froh cail‘to call. The.ﬁeero processor,
therefore, must enable the pfogrammer-to provide seme of the information
for the macro expansion at call time. This is done by permlttlng Gunmy

arguments in macro definitions to be replaced by arguments (i.e., arbltrary

substrings) supplied at call time. Each dummy argument is referred to in

the macro definition by a subscripted symbol. This eymbol or dummz nane

- is given in the operand field of the MACRO directive.

R-26
-7

EXAMPLE 7-2

Iet us define the macro BRAP.
BRAP MACRO DUM
SKAN
BRU puM(1)
ENDM ‘
When called by the statement BRAP POSCAS
the macro will expand to give‘the statements
SKA =hp7
BRU *+2
BRU POSCAS
Note that BRAP was defined in terms of another macro SKAN (a matter

of choice in this example). Also note that as defined, BRAP was intended-

to take only one argument. Other macros may use more than one argument.

EXAMLE 7-3 |
.The macro CBE (compare and branch if equal) takes tﬁo afguments. ;
The first érgument is the location of a cell éb be compared for équalityf
with the accunmulator; the_seqond»is a branch lécéfion in case of eqﬁality.
The definition is

-CBE MACRO D

SKE p(1)
BRU =~ *+2
BRU D(2)
ENDM

When called by the statemént
CBE =21B,EQLOC
the statements generated will be

SKE =21B
BRU %42
BRU EQLOC

R-26
7-8

 Note that arguments furﬁished at call ﬁime are separated by commas.
It is ﬁossible to incluae both commas and‘spéces in arguments.by enclosing
the argumenfs in paréntheses; the macro processor étrips»off the outermost
parentheses of any Sﬁbstring used in a call.' For example in the'call of
the macio MUMBLE

MUMBLE A, (8,¢),(d E)

we have
Dél;= A
p(2) = B,C
p(3) = D E

-~

7.5 The Use of Dummy Arguments in Macro Definitiéﬂ;

Beforé giVihgvfurther examples of the use 6f mécros, the variousv
wéyé that dummy arguments may be used in maéro definitions will be.
discussed. InAgeneral a dﬁmmy may'be_réfefréd to by thergymbolism

| dummy(expression) - |
“The only rqstriction on the expression above is ﬁhat it mﬁst not contain.
other dummies or generated symbols (see 7.7). Furthérmdre,'for‘obvious

 reasons.it must have a known value when the mac;Q is calléd*. |

More than one dﬁmmy ma&'be feferred'to by tﬁe notation

‘ . dummy(ékpression,expression) o

Ihithe case of the call - .
MUMBLE A,B,C,D,E

then : 8 P
D(3,5)= C,D,E.

But it is possible to have confﬁsion in this situation. If we have the call

MUMBIE A,B,C, (1,E),F .

%It should be noted that a macro call may deliver more arguments than are referred
to in its definition, but the converse is not true. A dummy argument not supplied
with an argument at call time is considered an error. '

R-26
7-9

then
DUM(3,5)= ‘ C,D,E,F
But whiéh are DUM(3), DUM(L), and pM(5)? To resolée this ambiguity, the
éssembler produces in place of DUM(3,5) the string -
- (c), (®,E), ()
The notation
- dummy() |
produces all of the arguments supplied in a macro call. _Each is surrounded
by parentheses as in the example above. \ ‘ |

The symbolism

 qumy(0)
is legal and meaningful. Tt reférs to the label fiéld 6f the macfo call.
Normally a iébei used with a macro cail is assigﬁed the‘current value of
the location counter (as with any 1nstructlon) Exp11c1t use of dummy(o),
i.e., 11teral zero in parentheses, causes the label field not to be
handled in the normal way. It serves merely to transmlt another argumen£.
There are three possible cases. | |

(l) Macro contains no references to dummy(o) Labéi field‘is ‘
‘treated normally | DR v-

(2) Macro contalns at 1eést'oneffeferenée to dﬁﬁmy(b). rLébelgfield
merely transmits an argument which feplaces dummy(O).in thej
expansion. | . |

(3) Macro contains no references to dummy(o) expllcltly but does
contain dummy(expres51on) where, at call time, the value of the

expression is zero. In this case the label field is handled as
in case (1) and alsé used to transmit the argument referred to by

dummy (expression) as in case (2).

. R-26
' 7-10

The symbolism _
dumny (1)
is used to represent the terminal character of the opcode field, i. e., to
déterminé whether thé macro name ﬁerminated with a blank orva'¥ (inAcase A
of indirect address). It allows macros £§ be qalledAwith or without
"indiiect addressing"” specified. Thus in a typicai call we héve_the

following relationships:

M7, CALL¥ ABC,DEF,'GHI;,JKL
aumny (0) dummy () 'dmﬁﬁ}w’(ju)
: _ © . dummy() . f

Note that dummy(-1) is always one character long.

Sometimes in a macro definition it‘is desirable to refer only to a
portion of an argpment, perhaps to a character or a féw'charaétérs. ‘In the
case‘of a single character this may‘be done by writing

dummy (expression$expression) | -
The first expression designéfes»which afgumentg‘the sécond determines
which character of that argument. If a substring of an afgument is
desired, one writes |
dummy(expressioﬁ$expression;e#pression)i
The second and third expressions determine the first and iastvchéractefs'
-of the substring. For example, if we have the call - |

| - MUMBLE A,BCDE, 'FGHIJ"

then
DUM(2 $3) = D

puM(3 $4,7) = HIJI'

R-26
7-11
Beginning with the ith character the latter part of an argﬁment can be
obtained by specifying an overlarge terminal bound. . Thus
puM(2$k,1000) = HIJ'

7.6 Concatenation

It is frequently useful to compose statements‘out of mécro argumentsw
(or parts of them) end other information given in the macro definition. |
This is done by concatenating the.various‘objects‘togethef, i.e. simply

w

writing them next to each other. It is possible to confuse the assembler

vhen d@ing this, howéver. For example, let fhe dummy ﬁame in a definition -
be C, and suppose we wish to concatenate the'Strings AB and 0(3). >If wé
write ABC(3), then do we mean AB concatengtedeith C(3),'Avconcatenétéd
with BC(3) (whatever that is), ABG(3), or what? |

To avoid ambiguity we use the character "." (dot or period) as a
concatenation delimiter. For. the examplé just above we would write '
AB.C(3), and no ambiguity then exists. The assembler uses the dot to
'delineate‘objects it must deal with; in producing output the macrb‘expgnsicn
machiﬁery after having'recoghizedAthe various objécts simply skips o&ér

the dots. The dot character cannot therefore be used literally in a macro

definition.

Iet us define a mécro STORE.’vSuppose ﬁe hévé-establisﬁedrthé: "
convention that certain tempbrary storage cé}is bgginrwith the lettersr
A,B;Jo? X, depending on from what 9&0 ;egister information is tq be étored.
there. The definition is N | c

STORE MACRO D : .
ST.D(1$1).p(-1) »(1)
A ENDM ;
If called by the statements

STORE B17
STOREX Xl

R-26
7-12

the macro will expand as .
STB Bl7 or STX% XLk
The dot is not actually needed in evefy incidence of concatenation.
Soﬁe programmers may readily determine for themselves wheh it i§ actually .
needed. As a matter of gooq praétice, however, when in doﬁbt, ﬁse ittt

7.7 Generated Symbols

A macro should not, of course, have in itsvdefﬁnition an instruction
having a label. Successive calls of thebmacro,wbuid produée'a ﬁultiply_
defined symbol. Somebimes, however, it is convenient to put a'iabel'on
an instruction within a macro. Thére are aﬁ least two ways of doing this.
The first involves transmitting ﬁhe laBel as é_macfo érgument wﬁen it is
called. This is most reasonable in many casés;iit is in fact often.
desirable so that the programmer céniéontrol the label being definéd.
and can refer.to it elsevhere in;the ?rogfam.

However, situationsvdo arise in whiéh the label is‘used purely for
reasons local to the macro and will not be referred td elsevwhere. In
cases like‘this it is desirable to allow for the automatig cfeation of a-

P

lahels so that the programmer is freed from worrying about this task.

This may be done by means of the generated symbol;

A generated symbol name may be decléred'whén a maéro is defined. To

do this requires two things; (l) thé‘name and (2j the ﬁaximﬁm ﬁumber'of
rgenerated'symbols which will be encountered.during_an expansion. These‘.
~two items may follow thé dummy symbol name given in the MACBO directive.
The actual format used is | | | |

name MACRO dummyname,generatedname,expression
For example, we mighﬁ have

MUMBLE MACRO D,G,4

ENDM

‘R-26
7-13
In the definition of this macro there might'be references to
a(1), a(2), 6(3), and G(4), these being individual generated symbols,
With regard to generated symbols the macro expansion machinery
operates in the following fashion. A geﬁerated symbol base value for each
macro is initialized to zero at the begianing of asseﬁbly. As each o
generated symbol is encountered, the expréssion'constituting its subscriﬁt'
is evafhated. This value is addea to tﬁe base value, and the sum is pro-
dused as a string of digits csncatenated td the generated'Symbol name.
Enough digits are produced to make the resultant symbol six characters
long. Thus, the first time MUMBLE is called, for example, G(2) will sé
transformed into 00002, G(4) into GOOOOL, ete. |
| At the end of a macro expansion, the generated symbol base value is
incremented by the amount designated b& the exp:ession following the
geﬁerated Symbol neme in the MACRO directive. ‘(Tﬁis was 4 in ‘the
definition of MUMBLE above.) Thus the second call of MUMBLE Wlll produce
in place of G(2), G00006, the third call will produce G00010, etc. It
should be clear that a generated symbolﬁname should be kept as short’as
possible. 1t cannot,be longer than‘5 sharactersi

7.8 Conversion of a Value to a Digih Strlng

As an adjunct to the automatic generatlon of symbols or for any other
,purposes for which it may be suitable a capability is provided in the
assembler's macro expansion méchinef& for conversion of the yalue of an -
expression at cali time to a string of decimal digits. The_sonstrqcﬁ'

($expression)

will be replaced by a strihg of digits equal in value to the expression.

R-26
7-1h

For example, let X_= 5.4 Then
| AB. ($2¥x-1) L , o -
will be transformed into |
. 259
Further éxamples of the use of this facility appear below.

7.9 The NARG and NCHR Directives

Macros can bé more usefg} if thé number of arguméntsasupplied-at
éall time is not fixed. The precise meaning of a macfo (énd‘indeed, the
- results of its expansion) may dependbon the number or the arrangémént of
its arguments. In order‘to permit this thg macro undergoing expénsion ﬁust'
be able to determine.at cﬁll,time the:number of argumentslsuppiied. Tﬁe L
' NARG directive makes this possible. - | i |
NARG functions basically ;ike'EQU, éxceét that.no exﬁreésion is ﬁsedr‘
with it. Its basic form is |
| symbol NARG [comment]
The function of the directive is to equate the value of the symbol to the
number of arguménts supplied to the macro currently undergoing expansion.»
The symboi can then be used byAitself>or in expfeésioﬁs f&r any required
purpose. Examples of the use of NARG aﬁpear later. | | |
Tt is also useful to be able to detefmine at call time the numbéf of
.characters;in an argument. NCHR functions by equatiné'the,symbol in'its.
lebel field to the number of characters-in its operand fieid. Its férm is
symbol NCHR characterstring. [comment]

The notion of "operand field" must be eleborated on here. The operand field

normally terminates on the first blank after the beginning of the field.

This rule is rescinded if a macro argument containing blanks appears in

the operand field. For example, in the staﬁement ,

XYZ IDA VECTOR,2 THIS IS A COMMENT .
1 1 |

the arfows delineaté the operand field; Alternatively, if a étatement like
TEXT X,D(l);ERROI'{ | |

"~ is placed in a macro definition and the macro is called by
MUMBLE (NON-FATAL) ”

then the abéve statement will turn out to be

TEXT X,NON-FATAL ERROR -
o +

Notice how the operand field terminafes in this case.:
In thé same example notice that the meésége.producedAbyvéhe text

directive is of uﬁspecified léngth at_definition tiﬁe. Clearl&, X must

depend on the number of characters in D(l). Accordingly; MﬁMBLE‘hight bé'

defined as

EXAMPLE 7-5

MUMBLE MACRO D
X NCHR D(1) S
X EQU X+9 5 FOR 'ERROR',L4 TO ROUND UP
~ TEXT X/4,D(1).ERROR
ENDM ~

7.10 Conditional Ass-er:nbly o R

| The reader should see by now that the macro is a powerful tpol.

Its powef, however, is consideTably'multiplied Qhen cémbined with the
features expiained in this aﬁd the followingAsectioné. Thése featufes -
basically the if aﬁd repeét caﬁab{iities - are calléd conditidnai -
assembiy capabilities becéuse they pefmitiaééembly;timé calculationS, ‘
to'détérmihe £he source language actually assémbled.erhey are, howeve},
not sﬁ?ictlj a part of the macro.faciiities and may be used quite aparﬁ,

from macros.

- R-26 -
7-16

7.11 The RPT Directive

Thé RPT (repeat) directive is, like the MACRO directive, én'opening
bracket for a segment of progrém; ‘Its'formAis » |

(1) ‘[labei] RfT expression [comment]
or, usiné s‘for symbol, e for expresSion,‘and ¢ for ¢omment

(2) [label]l RPT (s:el,[e2,1e3)i le] | |

(3) [labell RPT (s=e, [epy Jes) (s=ey [ep)) (s=e; [hep) o Le]
Form (1) says to repeat the following sequence of statements down to the
" matching ENDR (epd repeat) as many times as given by the value»df the

expresSion.' Forﬁs (2) and (3) are really the saﬁe'form; £hey afe showm

separately to emphasize thét only the first paienthésizedbgroup in the
‘operand:fieid must fe.present.v Théir megﬁing'is aS’follows: |

(1) Set the s&mbol s to the‘falue of e;. \
(2) 1Issue the sequence of statements down to the météhing ENDR.‘
(3) Increment s by‘thé value of e, or by one (if e

is not present).

2 2

If the new value of s has not passed the limit, go back

to (2). When the limit is passed, quit.

In other words, for syrhnbolzellstege2 until e, do eee '

3

or for symbol=el EEEE£_63 do ... | '
The first parenthesized group (1) determines the nurber of times the
repeat is executed and (2) controls the initial value and increment of a
symbol. Subsequent groups (there may be up to ten of thém) merely control

the initial value and increments of other symbols carried along in the

recent operation.

R-26
7-17

EXAMPLE 7-6

It is desired to create an area of storage which is cleared to zero.
The BSS directive cannot be used for this pur?ose since its function (that
of reserving storage) is basically to advance the assembler's location

counter. The problem is readiiy solved by

ABC RPT 100
: DATA 0
ENDR

which is equivalent to

ABC DATA
© DATA
DATA

DATA

(el eNoNe!

100 statements

DATA O : l’ o

Note thét the label is applied effectively only‘to the first statement.

R~26
7-18

EXAMPLE 7-7

It is desired to fill an area of stofage with data starting with O.
and‘inéreasing by 5 for each cell. We may write

X EQU 0o

RPT 20
DATA X

X EQU X5
ENDR

Alternatively (and more simply) one can write-

RPT (X=0,5,100)
DATA X
ENDR

Note that in the latter form the'terﬁinal value (i.e;, e3) does not have
- %o be‘poéitive or greater than the initial value of the symbol being
incremented.

"RPT - (X=100,-5,20)

and k RPT (X=INIT,-5,-30)

3
.

are both permissible. ’ | - R

Also note that a repeét directive»followed‘by 6ther statements and

an associated ENDR (referred to as a repeat block) may be imbedded in other
repeat blocks. This is similar to the imbedding of macro definitions in
other macro definitions,'and repeat structures similar to that>shown in

section 7.2 may be used.

R-26
- 7-19

EXAMPLE 7-j8

Tt is desired to have a pair of macros SAVE and RES':PO_R for pu:f‘poses-
‘of saving and réstoring active registers at tﬁe .’begihning ‘an.d e;xd of
subroutines. These macros should take a variable nizvmberbof arguments
8o that one can write, for exén’ple , "
| SAVE . A, SUBRS
- or perhaps
| RESTOR A,B,X, SUBRS
These calls are intended to generate the code
STA | SUBRSA
and
1IDA SUBRSA
LDB SUBRSB
DX SUBRSX
We first define a generalized macro MOVE which is cal}ed by the same
arguments éelivered'-to SAVE énd RESTOR plus the strings 'ST'»land' 'I_;D" ‘

vhich determine whether one 'wishes tb‘ store or load.

MOVE MACRO D

X NARG "
" RPT (Y=2,%X-1)
p(1).p(Y) p(x).p(Y)
ENDR
ENDM

Then, in terms of MOVE, SAVE and RESTOR are readily defined as

SAVE MACRO D
MOVE sT,p()
ENDM

RESTOR MACRO D A
MOVE LD, D()
ENDM

R-26"°
7-20

EXAMPLE 7-9

Many programs make use of flags, memérj cells which are used és
;binary indicators. The _SKN (skip if memory neg?tlve) makes it easy to
teét these flags. Let us adopt the conventlon that a flag is set if 1t
contains the value -1 and reset if it contains zero. We want to develop

the maéqu SET and RESET to manipulate flags. It is fufther desirable
‘to deiivef af call time the name of an acﬁive register‘which will be used
for the actlon, together w1th a varlable 1ength list of flag locatlons.“'
Calls of these macros will look Like | |
SET A,FLGl,FLGe;FLG3,
or ' | . |
RESET x;FLq37,FLG12

As in example 7-8 we make use of anrintermediate‘maéro STORE wﬁich

tekes the same argumenté.

'STORE ~ MACRO D

X NARG
' RPT (Y=2,X)
sT.p(1) D(Y) _ £
ENDR ‘ T
- ENDM - '

Thus SET and RESET are defined as.

SET MACRO D

ID.D(1) =-
STORE D()
ENDM

RESET MACRO D
CL.D(1)
STORE ()

ENDM

-~

7.12 CRPT, Conditional Repeat

Occasionally one wishes tonperfofmraﬁ indefini%e number‘of repeats,
termination coming on an obscure condition determined~in the ceurse of the
repeat operation. The condltlonal repeat dlrectlve, CRPT, serves this
function. Its effect is like that of RPT (and its repeat block - Jlke
RPT -~ is closed off by a matching ENDR) except that instead of giving
a number of repeats its associated expreéssion is:evaluated eachAtime iﬁ
é Boolean senSe to determine whether the repeaf should occur agéin. Its
form is | | » | ‘ -
| ‘[label] CRPT expre331on[(s=e [e]) (s=e [e })

[comment]

One may write, for example,.

| CRPT X>¥
or ; - CRPT _,STOP,(x=1,2)(Y=-3)
Note that the statement |
CRPT 10
will cause an 1nf1n1te number of repeats.
The termlnatlon of a CRPT operatlon 1s go&erned by whether the value

of the expression is one or greater. Zero or negatlve quantltles are

taken to mean don't repeat (Boolean 0 or false). VelueS'of oﬁe or greater :

mean do repeat (Boolean 1 or true).

An example of the use of CRPT is shown in eXample T7-11.

7.13 IF Capability

It is frequently desirable to permit’the assembler either to assemble

or merel ly skip blocks of statements depend1nn on the value of an expresswon

at assembly time. This is primarily what is meant by the term conditional

assembly. Conditional assembly can be done (inelegantly) with CRPT.

NAY DY

R-26
7-22

Iet the condition be given by an expressioh. (Oncé again a Boolean

value is ascribed to an expression in the manner

0 if e<0
1 if e0.)
Then one may writé
EXAMPLE 7-10
Cc EQU condition
CRPT C

. arbitrary block of statements
c EQU 0 ‘
ENDR
Note that the line before ENDR is required to prevent the CRPT from going
_forever. By using the structure above, ho#eVer, conditional assembiy may

be done; the arbitrary block of statements enclosed in the repeat body

may be assembled on condition.

7.14 1P, Assemble if Expression True(i.e., > 0)

The same function shown in example 7-10 is perfbrmed mﬁch more
conveniently by the IF directive. Its form is

[label] IF expression [comment]

ENDF
As with RPT and CRPT, the IF directive defines the beginning of a block
of statements (called the EE.EEQX) terminated by a matching ENDF. The
if body may contain other if bodies. .
When doing éonditional assembly there are oftén alternative if bodies
té»be assembled in case a certain if body does not aséemble. ‘This situation
is most easily dealt with by the use of the ELSF and ELSE directives.

These provide an end to the if body and also begin another body which is

to be assembled (again possibly on condition).in case the first body did

R-26
7-23

not. For exainple , consider the following structure:
T e

} bodyl

ELSF e,

}"body2 I : -

ELSF
3

} body3

ELSE

Ié?bodyh

If e are skipped (regardless of

1

Finally if e

1>C5, bodyl is assembled and bodiesg, 3;1‘
e, and e3. '
if elg_O and e2>0, body2 is assembled and bOdieSl’3,u are skipped.
and e2§_O and e3>0, body3 is assémbled and bodiesl’e’bf are s}:ipped...

CIf e

, and e_<0, bodyy, is assémbled.

v %2 3 I
An example of the use of IF (and other features) follows.

‘R-26
7-2h

EXAMPLE 7-10

This example serves to illustrate_sevefal of the preceding featﬁres
gnd also the power of macros used recursively. The macro MOVE.is intended
to take any number of pairs of arguments. The fi?st argumenf of each pair
is to be moved to the second. Each argument, ﬁowever, mey itself be a
pair of arguments, which ﬁéy themselves be péirs,'etc. o |

We first define MOVE. Basically it éxtracts pairs of argument
structures and transmits such a pair to another macro MOVEl.A

MOVE MACRO D

X NARG - T
. RPT (Y=1: 2:X)(Z=2: 2)
MOVEL D(Y),p(z)

ENDR - -

ENDM
" We now define MOVEL. Tt calls itself recursively until it comes up
with a single pair of arguments. Then it generétes code.

' MOVEL -~ MACRO D,G,2

G(1) NARG
G(2) EQU -
IFr G§1g=e
A p(1 ,
STA p(2) AR
ELSE S
RPT c¢(1)/2
a(2) EQU a(2)+
U EQU c(1
v EQU a(2
MOVEL D(V),D(v+U/2)
ENDR
- ENDF
ENDM
Thus when called by the line ,
- MOVE A,B
the code generated will be
‘ : 1DA A

STA B

When called by

the code generatéd is

When called by

the code generated is

Finally when called by

the code generated is

MOVE

DA
STA
LDA
STA

 MOVE

LDA
STA
IDA
STA

MOVE

IDA

STA
LDA
STA
LDA
STA
LDA
STA

o Q=

(4,3), (¢,D)

gwax

((2,B), (6,D)), ((&,), (c,H))

nTUQQmwE >

In this case the main call results in the call -

MOVEL calls itself by

and again:

where the first code is generated.

Recursion then pops up to the call

and so on.

MOVEL
MOVEL

MOVEL
MOVEL

MOVEL

’ (A;B)J(C)D)J(E)F))(G;H)
A,B,E,F
AE

Then we get

¢,D,G,H

n=cw

T-25°

EXAMPIE 7-11

The following exeample makes use of virtua1ly every.feeture in the maero
and cqnditional aesembiy nachinery. It is preseﬁted as a deﬁonstra£ionvof
the power inherent in the use of macros but not as aipractical tool (critice’
have juetiy termed it the world's slowest compiler)} The macro COMPILE when
called with an‘arithmetic expressioh for its argumenﬂ produces assemeiy
language which computes the value of the express1on in a mlnlmum number of
steps (subject to the left-to-right scan technlque used) COMPILE in turn
calls & large number of other‘macros. Thelr functlons are explalned by comments
in the text below:_ |

The COMPIEE macro itself merely'iﬁitieiieee some rariebies and calls
EXPAND where the more difficult work is done. J ie the total number of ,"'
characters in the expre331on . K is used to keep track of the recursion level
on which the work is belng done (EXPAND calls 1tself recur51ve1y when it seds
en openlng bracket [) ‘AVATIL is the.counter for available temporary storage.

NPTR and PPIR are stack pointere for the eperand and operator stacks respectively._*

Ry

COMPILE MACRO D3J NCHR D(1)3K EQU o AVAIL EQU 13 NPTR EOU -1 PPTR EQU -1’
EXPAND D(1); ENDM

EXPAND initializes I, the current character p01n£er ' it>places'
the value zero on the operator stack (marklng its beginning on the current
level) and fetches the first operand. It then sets a switch (a(1)) and goes
into a cycle of fetching operators (GET?) and operands (GETN). If the
precedence of new operators is less than or equal eo that of the previous
operators, code is generated. Otherwise the information is stacked and tﬂe

scan continued.

K~cO.

EYPAND MACRC D,G,1;1 EQU 13K EGU K+1; STACK 0,P; GETN DCI)3 SET GC1)
CRPT GC1) .
IF 1<J; GETP DCISD)
FLSE; OPTOR EQU 113
ENDF v
sPSTAK ¥0U PST,.($PPTR) ,
CRPT OPTOR/10<PSTAK/10+1; GEN D(l) |
n .
f? %PTOR_II :PPTR FQU PPTR- 1- RESET G(l) X EOU K=13 1 EQU I1.($K)+I-1"
ELSE; STACK CPTCR,P
IF NP TR>0
IF NST.(SNPTR-1)<0
IF NST.C(ENPTR-1)=-13 STp TEMP. (mAVAIL)
'ELSE; RSH 13 STB TEFP ($AVAIL)
ENDF
sNST. ($NPTR-1) EGU AVAIL AVAIL EQU AVAIL+1
ENDF
ENDF
GETM DC1$I,d)

RESET G(1)

ENDF
ENDR
ENDM

SET and RESET change the settlng of flags STACK 1s used to put values
and po1nters on "stacks.' (These are not, of course, phy31cal stacks 1n
memory'but rather conceptual ones eX1st1ng in the assembler s symbol table\
STACK functlons by creatlng an ordered progreSS1on of names and as31gn1ng

values to the names by means of the EQU dlrectlverx‘

SET MACRO D3D(1) EOU 13 ENDM

RESET MACRO D;D(1) EQU O3 ENDM

el

STACK MACRO D; TS EOU DC2) ., PTR+1'D(2) PTR EQU TS3 D(2) T.($TS) EQU D(i)
ENDM : '

R-20
7-26

GETN.fetches the next operand. Its complexity is dué to the fact that
it must recognize symbols (in this exaﬁple usiﬁg the assembler's syﬁbol rules)
and numbers. .Wheﬁ this recognition is complete it puts in the operand stack
a pair of pointers to the head and tail of the operand (i;é.,.characﬁer'numbers
iﬁ the string and a flag bit which denotes whether the object.is a symbol 6;

a number. Note that if an opening bracket is éeen, GETN calls EXPAND recursively{-'

GETN MACRC D; TG EQU I; RESET TRROR; GETC DC(1$I-TO+1)
IF CHAR="["31.,(%K) EQU I; FEXPAND D(1%2,J)
ELSE - L '
= IF LETTER; RESET NUMEBER

ELSE; SET NUMRER
ENDF : ‘ R -
IF DIGIT; SET SWITCH _ :
CRPT SWLTCH; GETC D(1$I-TO+1)
IF DIGIT ,
SELSF LETTER; RESET SWITCH :
1F CHAR="B"; GETC DCI1$I-TO+1)
IF LETTER; RESET NUMBER
ELSF DIGIT; RESET NUMBRER
ENDF -
ELSFE; RESET NUMBER
ENDF
ELSE; RESET SWITCH
ENDF ‘ .
- EMDR
ELSF LETTER
ELSE; SET ERRCR
- ENDF ' . o
IF NUMBER ' '
ELSE; SET SWITCH
CRPT SWITCH; GETC D(1SI-TC+1)
IF LETTER
ELSF DIGIT :
ELSE; RESET SWITCH
ENDF
ENDR
ENDF -
IF ERRCR; ERROR; STACK O,N)
ELSE; STACK TOx1B4+1-2+4E3%NUMPER, N~
: ENDF '
s ECGU I-1
ENDF
ENDM

n-cyu

7-29

GETC's main function is to determine whether a given character is a
letter, digit, or other type of character. GETP fetches the next bperator.'
It does some checking of the results and if valid sets OPTOR to a value

carrying both operator and precedence information.

GETC MACRC DjCHAR EQU "DC1)'31 EQU 14134 EQU CHAP> Z';B EQU CHAR<'A'
1F ACORIE;A EQU CHAR>'S";B FQU CHAR<'G' o E
1F £CCE)E; RESET LETTER; RESET DIGIT
FLSF; SET DIGIT; RESET LETTER
CNDF | |
ELSE; SET LETTER; RESET DIGIT
ENDF |
ENDM

GETP MACRG D; GETC DC(1)
IF LETTER(OR)DIGIT; FRROR R
ELSE; A ECU CHAR>11EG;E FQU CHAR<20BG
IF ACAND)E; CPTOR ECU OPS. (SCHAR/IE6)’
ELSF CHAR="1"; OPTCR FGU I1
ELSE; OPTCR ECU -1 '
ENDF , |
IF OPTCR=-1; ERROCR;OPTOR EQU 40
ENDF . .
ENDF
ENDM

GEN and GENA serve to feconstruct the operands from-the string"pointers

t

and call generators which actually produce code.’

GEN MACRG D3R EQU -13PP2 EQU'PST. ($PPTR) PP3 EOU NQT ($NPTR 1)
sPP4 EQU PP3/1E4;PP5 EQU PP3-PP4x*1EA4 S
1F PP5>4E3; PPS EQU PP5-4R3; SET LITI; RESET L1T2
ELSE; RESET LITI; RESET LITZ
- ENDF :
IF PP3>1R4; GENMA D(1),DC(1%$PP4, PP5)
ELSF PP3>0C; GENA DC1), TEFP ($PP3) AVAIL. EGU PP3
ELSF PP3=z=-1; GEN# D(l) AREG
ELSF PP3:=-2;5; GENA D(I),ERFG
ENDF : :
s WPTR EQU NPTR-2; STACK R,M;PPTR EQU PPTR-1;PSTAK ECU PST.(3PPTR)
ENDM : :

GENA MACRO D;PP5 EQU NST.($NPTR);PP6 EQU PPS5/1P4
sPP7 EQU PP5-PP6%1E4 ‘
IF PP7>4E33PP7 EQU PP7-4B3; SET LIT2

ENDF ,
IF PP5>1E4; GEN, (5PP2) D(2),DC1$PPG,PPT)
ELSF PP5>03 GEN,($PP2) D(2),TENP.(SPP5); AVAIL EQU PP5

ELSF PP5z-13 GFN (SPP2) D(2) AREG

ELSF PP5z-2; GEN,($PP2) D(2) PREG

ENDF S e T
- KNDM

.

GEN20, 21, 30, 31 and L0 are the code producing_macrqs. Theyvmake, |
reference to LIT1 and LiTQ (f1ags seﬁ by GEN:and GENA) and call macros
TEST, "14, LB, and ST. The purpose of the latter macros is to worry about '
‘the meaning of the contents of the A and B reglsters so as not to inject

superfluous code.

GEN2O MACRO D3 TEST D(1),D(2),Xs LA D(X),LIT.($X)
“IF X=1 h :
IF LIT2; ADD =.D(2)
ELSE; ADD D(2)
ENDF |
FLSE
IF LITI; ADD =.DCI)
- _ELSE; ADD D(1)
ENDF
ENDF
ENDM

GEN2! MACRGC D; TEST D(2),X

IF X5 LA D(2),LIT2 :
IF LITI; C“ﬁ' EDD =.,D(1)
ELSE; CNpj; ADD DC(D)
ENDF

ELSE; LA DC1),LITH
IF L1723 SUU =.D(2)
ELSE; SUB D(2)
ENDF

"ENDF

ENDM

K-cO -

7-31

GEN30 MACRO D; TEST D(1),D(2),X; LA D(X),LIT,($X)
IF x=1 : - -
IF LIT2; MUL =,D(2)
ELSE; MUL D(2)
ENDF o | | .
ELSE ; 7 ' ‘ '
IF LITl; MUL =.DCD) ' L - - ‘
ELSE; MUL DC1)
ENDF
ENDF
;R EQU -2
ENDM

GEN31 MACRO D; TEST D(2),X | :
IF X3 ST D(2%1>; LR D(1),LITI; DIV TEMP.($AVAIL)
© ELSE; LB D(1),LITI | o | -
IF LIT2; DIV =,D(2)
ELSE; DIV D(2)
ENDF -
~ ENDF . . |
ENDM. o T

GEN4O MACRO D; NOP DC1); NOP D(2) *
ENDM R R SRR

LA MACRG D
~ IF 'D(1)"='AREG" s
ELSF 'D(1)'='BREG'; LSH 23
ELSE o
IF D(2); LDA =.DC1)
ELSE; LDA DC1)
ENDF |
ENDF
ENDM -

LB MACRO D B _
IF 'D(1)'="BREG" R e
ELSE SECIER

IF 'D(1) "="AREG®
ELSE o

IF D(2); LDA =.DCD)

ELSE; LDA D(1)

ENDF - S

o ENDF

RSH 23
ENDF
ENDM

ST MACRGC D | - -
IF "D(1)"='BREG'; RSH 1
ENDF '

ST.D(1$1) TEMP.C$SAVAIL)"
~ ENDN

TEST MACRC D;Y NARG;D(Y) EQU 0

RPT (Z:=1

Y"I)

IF D(Z$l,4)': AREG"D(Y) EQU 2

ELSF 'D(z$1,4)"

ENDF
ENDR
IF Y>2

ENDF
ENDF
ENDM

The following lines establish precedence information for the &fitﬁﬁetic‘

operators.

 OPSIO0 EQU 303 0PSI1 EQU 20; OPSIZ EQU -1 GPSIS EQU 21'CPSI4 EQU -l

OPS15 EQU 31

¥When called by the following.lines, the ﬁacro generates code as shown:

 Call:

‘Result:

_Call:

Result:

ADD

X4200%Y

= bREG'

IF D(Y)=z0; D(Y) EQU 3

DCY) EQU Z

AB-[c4D)/[E+F]

COMPILE
IDA =200
MUL Y
ADD X

~ COMPILE
IDA C
ADD D
STA TEMPL
IDA E
ADD F
STA TEMP2
IDA TEMPL
RSH 23
DIV TEMP2
CNA

AB

R-26

g3

Call:

Result:

COMPIIE A+2oo+3uc21-[DEF/3MB-HI*[ero%K]/Lm33B - N]/om-22

LDA
MUL
LSH
ADD
STA

- LDA

RSH
DIV
STA

. ILDA

MUL
LSH
ADD
MUL
DIV
CNA
ADD

SUB

 RSH
DIV
CNA -

ADD

SUB

=200
321

23 -
A

TEMP1
DEF
23

TEMP2
=20
X

23

J

HI

IM33B.

TEMP2
N

23
om
TEMPL
=22

-4

R-26
7-33

R-26
7-34

7.15 Special Symbols in Conditional Assembly

"~ Although in the introdﬁcf;on it is stated that‘symbols é6nif
qnly of letters and.digits, it is possible to include the colon in
symbols. DDT, howevéf, éoeg'ﬁot regard the cqloﬁ as part §£ a symbol. |
The meaning of this is that DDT‘will tyﬁevout such symbols but they
cannot be typed in. In effect this mgkes them useléss, and it ié fof

(this reason that the‘legalitfvof colons in symbols has,jﬁsé now béeﬁ
'Vﬁéhtioned. | | ‘ |
Yet by judigiously_choosing when to use éhe.colon-in a syébol
the feature can become worthwhile. }Innéarticulgr it'caﬁ Ee‘used'iﬂ
macros and other-oﬁséure plaées in the brogrém'to»avoid possibie ‘
éonfiicts with other names.v This might be pérticﬁlarly uséful to:‘
;distinguish between symbols_uééd in asseﬁbl&htime calculatiohs.and;

those used aﬁ run-time.

R-26
8-1

8.0 Assembler Error Messages

Upon diseevering an error in tﬁe Syﬁtax of a'pregram being assembled, the
assembler will list the statementvin question and information about the
character of the errer. The listigg of errors willeecur regardless of.whether
regular listing is being dene. #

8.1 Error Messages - o o : ' , A

S

Error messages and their interpretatiohs are given below. The first

group deals with difficulties found in a single statement.v

Error Meaning

' D | Duplicate symbol.
L - Error in label field; most likely not a valid symbol.'
M Missing field in statement
‘0 ‘ Invalid or undefined Qpcode._;

'R Relocatiqh'errér in expression. ‘
s Generel syntax erref. N
U ' Uhdefined symbol. :

If when calling a macro the user fails to deliver an argument required
durlng expan51on, the assembler Wlll replace ‘the argument with the character T
and issue an undefined symbol message at that p01nt.

The second group of error messages deai with more complicated difficulties

Error Message '.b_‘ ‘ ;'; ~ Meaning -
SYMBOL, TABLE FULL. ERROR . Too many symbols and/or opcodes have -

CHECK CONTINUES. . - - been defined. Assembly will continue, -
: but no new symbols or opcodes will be
 recognized. Break the program into.-
sub-prograns or otherwise reduce the
number of symbols present.

Error Message

LITERAL TABLE FULL. FUR-

THER LITERALS IGNORED.

‘MUST ASSEMBLE ABSPGM ON
PAPER TAPE -

INPUT STACK OVERFLOW

EOF -- END CARD ASSUMED

JLLEGAL COMMAND

. INPUT FILE NOT TEXT

BAD CHAR

"EOF IN MACRO DEFINITION
INPUT STACK UNDERFLOW.

© INPUT BUFFER FULL.

- makes him start again.

R-26
8-2

Meaning

‘Similar to the case above. Reduce the
- number of literals present. '

" The bootstrap loader for self-filling,
- absolute assemblies is intended for paper

tape only. Designating any other form on
output file (except NOTHING and TELETYFE
(another form of paper tape)) results in
this message. It is possible to assemble
an absolute program for loading by DDT.
See 6.21 REIORG. ’

There are too many nested macro calls,
repeats, and ifs in combination. The stack
provided for storing the previous source
of input is full. This is a disaster.

The progrem must be reorganized.

- No-END statement was found at the end'df S

the program. The assembler (except for -
typing this message) takes the same action

~as if it found the END statement.

The assembler does not recognize'é command
typed in by a user upon start-up. It =

The ihput file described to the assembler

is not a type 3 file (i.e., text).

 An unrecognizable character (or one

otherwise out of place) is found in the
text. The character is typed out in octal

- .following the message, replaced by a blank
" in the text, and assembly continues.

The end of the brogram is reached, but the

- assembler is still defining a macro. Look

for a missing ENDM.

N The opposite problem to the one above. Not -

terribly serious. ILook for the presence of
an extra ENDM, ENDR, or ENDF in the program.

An input statement must be less than 320 °
characters long. This message occurs when
the rule is violated. It usually happens
when macros run wild. Iook carefully at
the program near where the error occurred.

Error Message) ' o : Meaning

TOO MUCH MACRO RECURSION. ' Too many nested macro calls have occurred,

resulting in filling available pushdown
- storage. Reorganize program.

TOO MUCH RPT RECURSION. Similar to above.

~ TOO MANY ARGS IN MACRO. | The macro is being called with more
' . arguments .than there is space for. :
Reduce the number of arguments in the call.

~TOO MANY REPEAT ARGS. In beginning a repeat block, too many
' ‘ : - requests for automatic incrementing of
symbols have been made. Reorganize the
block. S

STRING STORE EXCEEDED. No space remains to store new macro -
definitions or to do repeats. Caution:
old macro definitions are not thrown away.
Do not redefine macros indiscriminately.
Reorganize program.

EOF IN TEXT. | . The end of the input file has occurred
S ' : o " in the middle of a statement.

8.2 Interpretatlon of the Error Listing

¥When an error is llsted on any file other than TELETYPE, the s1ngle- :
letter error message (flrst.group above) is 1;sted in the line below.at -
the point where tﬂe error wés detected. Oﬁhervinformétion is’givénf .
This is all depicted in thé éxamplesxbelow.

In the folloﬁing line there are errors in the label and operand fields.

00172 0 76 00000 UGH/\ IDA Q*ZQ

‘ o R _ R

EEKF/
Current value of o Lebel cannot Relocation Expression
location counter is = terminate with error. " cannot termlnate

7 cells past the /. - R with - .
Symbol EEK. | N : ' .

R-26
8-4

20117 O 3 10761 STA ’ZOT'
| o i M Missing tag

[Yixes+1] |muMBIE| |DOL

Location Name of N Name of outermost
~ counter innermost macro macro in which)
" value. in which offense .offense occurred.

' occurred. ' :

T
Thus along with each error thé location céﬁnter is printed Guf.ielative
to the symbol most recently defined. In additionl if fhe eyior.occurs ”v
during mééro expansion the nemes éf thé innermést aﬁd Qutermost macros
are printed to give a clue on where toylook’fér theﬁerror. ‘if only
one level of ﬁacfﬁ ekpénsion is involved, then on}ylﬁhat name is 1isﬁed.

In order to save time whenlérrof iistings are made On fhe teletype, '-

the single-letter error messages are typed out at the left margin.

- | R-26
9-1

9.0 Assembler Operating Instructions

When the assembler is entered it asks first for the name of the binary
output file (characters typed by the user are underlined).

@ ARPAS..
BINARY:

The user types the name of the biniry file and confirms this name either with
a comma or a period (a2 comma seems to the suthor to be preferable;'both will
work). The assembler then asks for the name of the source languége file.

@ARPAS.. g
BINARY: 'BIN', INPUT:

The user types the input file name and confirms it either with a comma or period.
Differént things happen in this case. If a period is typed assembly begins
immediétely with the vaiious assembier paraﬁeters pteset to a set of standard
initial values. If a comma is typed the ‘assembler expects to see one or more

of a number of commands which set its parameters to values other than standard
initial values. Each,suqh command is‘terminated either by a comma (in some

cases a seﬁi-coldn) ér a period. Assembly élways begins &hen“a peiiod is

typed; a comma signifies yet another parameter change. |

9.1 Assembler Parameters

The assembler makes usé 6f the parameter%riisted Sélow. Parameters
(2) and (b) must bve Sup‘plied'. If after this a périod i_s: supp_iied, défault
or standard values are given to the othér paréﬁeters. AThes¢ values are
noted in parentheses. | A |

(2) binary output file (spec1f1ed by user)

(b) source input file (specified by user)

(c) 1list (text output) file (use; teiétype)

(d),verror message file (user teletype)

(é)‘ listing paremeteré |

(1) 1ist on pass 1 (no, except for di§aétfous erro?s)-

(2) 1list on pass 2 (no, except for errors)

e 26

‘\3
!\)

(3) 1ist symbol table (no)

(4) list null symbols (yes)

(5) list external symbols'(yeé)

(6) 1ist location counter valueq(yes)'

(7) 1ist binary (octal) equivalent (yes)

(8) 1list source language (yes)

(9) 1list comments (yes)

(10) 1ist progfam‘and_outef level macronéalls (ﬁos
(il) ‘listAprqgram:and all macro éalls‘(yes) -

_ (12) list programrand no macro calls (no) :

(13) 1list program and details of macro expansions (no)

Parameter (c) may be:changed from jts default value by the command
"TEXT GUTPUT:". Thus:

@ARPAS. - | . |
BINARY: BIN, INPUT: SIN, TEXT OUTPUT: L.

Normally, mbst error messages ‘are output on the iistiﬁg file. ‘Some:
particularly disastrous errors are always typed out on the teletype.
It is pos31ble, however, to specify the teletype as a binary output file
in which case it is used to punch a blnary paper tape. It is necessary
infsuch cases to designate some file --parameter(d)-- to receive those
error messages which would normally appear'én the télétype: Thisvis.done
with the command "ITY MSG OUTPUT:". - -

@MRPAS.
MMPHWM%DWTMMHHMQMWE

Binary paper tapes punched on the teletype‘may be read with the 940 papex
tape reader. The assembler pauses for a few seéonds after the final period .
is typed to allow the user to turn on the teletype paper tape punch and

“turn off the printing mechanism.

’

- R-26
9-3

The variqusnparameters noted under (e) are the same parameters set
or reset by the LIST and NOLIST'diréctives.f They may be changed from
their default values by the siﬁilar commands "LIST:" and "NOLIST:". Either
command expeéts to sée one or‘more symbolic arguments (the‘samé arguments
used with the corfesponding directives). Beéause ﬁhese arguments are
separated by commas, it is héce;safyto términate the list either by a
period (starting assembly) or a semi-colon (if other parameters are yet
to be sét). | | |

| @ARPAS.

BINARY: NOTHING, INPUT' SIN, LIST: ME;

NOLIST: BIN,NUL,EXT;
TEXT OUTTUT ¢ .

The following table summarizes the above information.

Parameter Command to Set or Change Default value
binary output BINARY:<file name> ' ‘; none: must be specified
file o . by user.
source input INPUT: <file name> _ A i none: must be specified .
file : - - , by user.
listing file | TEXT OUTPUT: <file name> - teletype
error ﬁessage TTY MSG OUTPUT: <file name> ~ teletype
file : L - o R
listing =~ LIST: \<list of following
controls NOLIST: » parameters>
2 ' o - ~ ho
SYT o : , no
- NUL . "~ yes
. EXT R yes
LT o yes
BIN o . . yes .
SRC yes .
coM . : o “yes -
MC ' .. . yes

- ME L ‘ no -

R-26
ok

9.2 Termination of the Assembly
The assembly process can be térmi_néted by the user at any time
merely by typing two or more rubouts in succession. The first rubout

_causes the assembler to start listing (cf. 6.26).

R-26
10-1

10.0 Assembler Binary Output*

There are two basic formats for the assembler'output; These are selected

depending on whether ielocatéble or absolute assembly is being done.

10.1 Relocatable Binary Output

Information in this type of output is divided 1nto varlable length

logical records.

Each record beglns with a ¢ontrol w0rd which defines

 its type. The first nine bits (blts 0-8) of each control word distin-

‘guish 1t from the others; the remalnlng bits are used in various ways.

Control Word

(a) 000 300X
(v) 1XX 00000
(¢) 200 00000
(a) 201 xoaxx
(e) 202 xOXXX
(£) 300 00000
(g) 400 00000
(n) 560 00000
(i) 600 00000

(3) 700 00000

Meaning and Use

Binary program folloﬁs Update location
counter by amount given in address field of

" control word.

Programmed operator follows. Place branch
instruction in location 1XX with address
given by current location counter.

End of program. Finel record of binary format..

" Origin of literal table. The origin of the

literal table is given in the address field.

: Change special relocation radix. The new

value is given in the address field.

OPD follows. Revert to;triplet format
(see below). : . '

External symbol definition(s) follows Revert

to triplet format.

‘Tdentification record follows. Revert to triplet

format.

External symbol usage table follows. Revert to
triplet format. .

Symbol table follows. Revert to triplet format.

Control words b, c, 4 and e cause DDT to teke various actions. No

edditional information is required for these controls, however; each is complete

in itself. This is to be contrasted to controls f through j. Each of the

.1atter prepares DDT to accept a variable-length list of symbols or opcodes.

¥Taw o mAna ~ramnlete description of binary input to DDT see Project Genie

R-26

10-2 -

' These lists are ‘in so-called "triple£ format" because the various symbols and
"_opcodes are hendled as three-word objects. .Each list is terminated with a
- word of all ones. | |

The contents of the address field of control word a are.added to DDT's
location coﬁnter, This control ‘signals that blnary program (1 e.llnformatlon
fo be loaded) follows. The format of blnary program con51sts of blocks of
eight words. Words in each block»are elther loadable information or oontrols
of type a through e. éontrols f through j also appear in Biﬁary.program;
.when one of them does, however, format 1mmed1ately reverts to trlplet mode

When the list of trlples is termlnated a new block of elght words is begun
: The first word 1n this block is always & control of some type.

There are seven different ways in whlch DDT treats information being‘
loaded. It is necessary, therefbre; that a three-bif‘byte be associaﬂed with
{each such word. .Each'eight-word block of binery'program format is pfeceded,’
then, by a word of eight thrée-bit bytes. The_assoeiation of bytes to words

. is shown below.

Byte Value

0

1

voE oW

o)

Meaning

Absolute addreés: load as is

- Evaluate address (mod 21h) from external symbol

usage table
. 1L
Relocate address (mod 27 ')
épecial relocation applies
Do not load: interpret word as a control

Derive entire word from external symbol usage
table - ,

Relocate entire word (mod Q?h)

Literai reference in address field

.

A portion of binary oubput ﬁight, for example, have the following

appearance:

R-20
10-3

R-26
10-L

| ”4 i) —=—— < - v'3-bit' b.yté register

i

TTTTTT] ’ 1 information to be loaded

/‘ and,contrgls a through e.

[Tl

7. start triplet format

Mueoarnes o= end triples: reverﬁ to blocked

| <— ___ start triplét format

Tiprreite vy “5‘-7____’_ ‘ end triplet format
RN ‘ v ,

R-26
110-5

Finally, the format of a triple depends,gn whether it represents

a. syrﬂbol or op code. For symbols the following holds :

0 56 1112 17 18 23
Wbl | (:l A (v T C 3 Cl_;
1
WD2 C5 ' C6 KXXXKK zeros
WD3 ' - Symbol Value

c, through Cg ere the six significant characters of the symbol, left-
Justified with trailing blanks. Bits 12 through 17 of WD2 are flags

having the following meanings:

Bit Meaning

12 . ‘ Relocatable Symbol

13 ‘ B Duplic;te Symbol

i . - :Exterhal Symbol

15 © Null Symbol | -
»l6 | | Generated Symbol

17 A ‘ Equated Symbol

"Operation codes have the following format:

0 5 6 11 12 1718 23
WDl ¢, - c, - C; Y
WD2 i 05 C6 , Zeros

R-26
10-6

The for;nat of WD3 depends on the type of op code. The various poSsi—

bilities are:

(a) Class 1 instructioﬁs

'89

01 23
Wp3 0 OPCSEePOP X| =zeros Zeros X
. »v t
Bit Meaning
9 Set sign bit of instruction.
19 Operand required
23 " Type number (0 or 1)
(b) Class 2 instructions . | .
- 01 '8 9 10 23
op or pop . ‘
wp3 code X . remainder of code
Bit Meaning
9 Set sign bit of instruction

10.2 Absolute Assembly (Self-filling) Output

For absolute programs, the assembler first punches a bootstrap loader

and then program in‘variable«length blocks. A new block is begun ﬁhenever

it is neceésary to jump the location counter ahead by more than one-of

when certain directives are encountered. The bootstrap loader is quite a

‘primitive one. Basically it executes repeétedly the first instruction. it

sees in each block of code while incrémenting the X regisﬁer. For program

blocks the first instruction in each bﬁock is an indexe@ store.

For other types of blocks (as, for exemple IDENT records, OPD's,

~or the entire'symbol table) the first word of each block is a NOP. END

with a “lank operand produces a new block beginning with HLT. In case

the operand is not blank, the last record begins .with a transfer to

the location indicated.. When this instruction is read by the loader
and executed, the loa'd:ed program is started. The loader uses locatioﬁ 1
for this puxvpoée. so that the program may be easiiy restarted by pressing
the‘machi‘nes' Start button vand phrovring the Run-:sf;ep switch to Run.

!

_ ~ APPENDIX B .
 TABLE OF TRIMMED ASCII CODE FOR THE SDS 930%
(NUMERIC ORDER) ' '

6o

0 SPACE 31 9 R
1 E:] 32 : 63 S
2 " | 33 . ; 64 T
3 # 3L < €5 U
L 8 35 = 66 v
5 36 > 67 W
6 | I—_{ : 37 2 70 X
T ‘ ko @ o y
10 (- b1 A 72 z
11 D) L2 B 73 [
12 * 3 c h \
13 + Ll D 5]
1k , b5 E 76 7
15 - L6 F 7 &
16 . g G 14k EOT
17 / 50 H Calbs WRU
20 0 51 I 146 RU
21 1 52 3 1k | BELL)
22 2 53 K 152 IR
23 3 5 L 155 "CR
2l b .55 M | |
25 5 56 N
26 6 5T 0
27 T 60 - S J
30 8 61 Q

*The Teletype characters enclosed in boxes cannot be handled '5y
ARPAS and are converted to blanks when present.

