REFERENCE MANUAL FOR
NARP, AN ASSEMBLER FOR THE SDS 9LO

Roger House
Dana Angluin

Laurence P. Baker

Document No. R-32
Issued January 5, 1968
Revised November 21, 1968
Office of Secretary of Defense
Advanced Research Projects Agency
Washington, D. C. 20325

TABLE OF CONTENTS

1.0 Introduction . . « « « « o o o o o o .

2.0

3.0
4.0

1.1
1.2

Pseudo-history of assembly languages. . .

Assembly languages: Some basic constituents and

concepts.

Basic constituents of NARP

2.1 Character set
2.2 Statements and format
2.3 Symbols, numbers, and string constants. .
2.4 Symbol definitions.
2.5 Expressions and literals.
2.6 Opcode classification
Ingtructions 0.
Directives. o o0 000 0. .
4.1 ASC Generate text (3 characters per word). . .
4.2 BES Block ending symbol. « ¢ + o « . .
4.3 BSS Block starting symbol. e
4.4 COPY Mnemonic for RCH. « + « . .
4.5 DATA Generate data . . . + « . . « « « o o . .
4.6 DEC Interpret integers as decimal.
4.7 DELSYM Do not output any symbols
4.8 END End of assembly. « « « « « .
4.9 EQU Equate a symbol to a value
4.10 EXT Define a symbol as external
4.11 FREEZE Preserve symbols, opcodes, and macros.
4.12 FRGT Do not output a specific symbol.
4.125 FRGTOP Forget selected opcodes . .
4.13 IDENT Identification of a package. . .
4.135 LIBEXT Specify library symbol.
L.14 LIST Set listing controls . . .
4,15 NOLIST Reset listing controls
4.16 OCT Interpret integers as octal
k.17 OPD Define an opcode. e e e e e e .
4.19 POPD Define a programmed operator

k.20

REIORG Assemble relative with absolute origin .

1-1
1-1

1-4
2-1
2-1
2-1
2.3
2.4
2-7
2-11
3-1
ho1

b3

Tt

4-5

-6

L7

4-8

4-9

4-10
h-o11
412
4-13
4-15
4-16
h-17
4-18
4-20
4-20
L.22
4-23
L2k
4-25

hL.,21 REM Type out remark
4.22 RETREL Return to relocatable assembly .
4.23 TEXT Generate text (4 character per word) .

-

5.0 Conditional assemblies and macros. « » . .

5.1 IF, ELSF, ELSE, and ENDF If statements . .
5.2 RPT, CRPI, and ENDR Repeat statements. . . .

5.3 Introduction tomacros.

.

Figure 1 Information Flow During Macro Processing .

5.4 MACRO, IMACRO, and ENDM Macro definition .
5.4.1 Dummy arguments
5.4.2 Generated symbols. . .

5.4.3 Concatenation.
5.4.4 Conversion of a value to a digit string

5.4.5 A note on subscripts
5.5 NARG and NCHR Number of arguments and number
of characters.« .« .+ . ..
5.6 Macro calls. . « .« v v v v v o o o o « .
5.7 Examples of conditional assembly and macros .
6.0 Operating NARP . . . « . . ¢ v v o o o o o o o o
6.1 Error comments on statements.
6.2 Other error commentS. . . . +« « « « + « « « .
6.3 Starting an assembly.
Appendix A: List of all pre-defined opcodes and pre-
defined symbols

.

Appendix B: Table of ASCII character set for the SDS 94O

5-11
5-15
>-17
5-20
5-22
5-23
5-24

5-5
5-26
5-28
6-1
6-1
6-1
6-3

A-1
A-2

Prefatory Note

Certain sections of the following reference manual are
written in a primer-like style, especially parts of the
introduction and the discussion of macros. However, it is
assumed that the reader is familiar with the logical operation
of general-purpose digital computers, and, in particular, is
acquainted with the SDS 940 instruction set (see the SDS
publication, SDS 940 Computer Reference Manual, No. 90 06 LOA,
August, 1966, or the Project GENIE document, SDS 930 Instructions,
Document R-27, October 11, 1966).

Acknowledgment

Much of this manual is similar to the ARPAS manual (ARPAS,
Reference Manual for Time-Sharing Assembler for the SDS 930,
Document R-26, February 24, 1967), written by Wayne Lichtenberger,

and some paragraphs are taken verbatim from the ARPAS manual.

Related Documents

1) For a precise description of the binary program output
by NARP, see Project GENIE document, Format of Binary Program
Input to DDT, Document R-25, January 26, 1967.

2) For a description of the implementation of NARP see
Project GENIE document, Implementation of NARP, Document M-16,

January 25, 1968.

1-1

1.0 Introduction

NARP (new ARPAS) is a one-pass assembler for the SDS 94O
with literal, subprogram, conditional assembly, and macro
facilities. The source language for NARP, primafily a one-for-
one representation of machine language written in symbolic form,
is very similar to that for ARPAS (another assembler for the 940),
but there are notable exceptions making it necessary tb do a |
certain amount of transliteration to convert an ARPAS program to
a NARP program. No further mention will be made of ARPAS
in this manual; for more details see ARPAS, Reference Manual for
Time-Sharing Assembler for the SDS 930, Doc. No. R-26,

February 24, 1967.
To motivate the various facilities of the assembler, the

following pseudo-historical development of assembly languages

is presented.

1.1 Pseudo-hiétory of assembly languages

A program stored in the main memory of a modern computer
consgists of an array of tiny circular magnetic fields, some
oriented clockwise, others oriented counterclockwise. Obviously,
if a programmer had to think in these terms when he saf,down
to write a program, few problems of any complexity #ould be
solved by computers, and the cost of keeping progrémmefs sane would
be prohibitive. To remedy this situation, utility programs
called assemblers héve been developed to translate programs
from a symbolic form convenient for human use to the rather
tedious bit patterns that the computer handles. At first these
assemblers were quite primitive, little more than number converters,

in fact. Thus, for example:

Tag Opcode Address

g 76 opupp
55 ¢pugl
g 3B opuge

1-2

would be converted into three computer instructions which would
add together the contents of cells 4@@ and UP1l and place the
result in cell 4f2. An assembler for doing this type of conver-
sion is trivial to construct.

After a time, some irritated programmer who could never
remember the numerical value of the operation "load the A register
with the contents of a cell of memory" decided that it would not
be too difficult to write a more sophisticated assembler which
would allow him to write a short mnemonic word in place of the
number representing the hardware operation. Thus, the sequence
of instructions shown above became:

b o0 s

p STA ppige
This innovation cost something, however, namely the assembler
had to be more clever. But not much more clever. The programmer
in charge of the assembler simply added a table to the assembler
which consisted of all the mnemonic operation names (ogcbdes)
and an associated number, namely the numerical value of the
opcode. When a mnemonic name, say 'ADD', was encountered by the
assembler during the conversion of a program, the opcode table
was scanned until the mnemonic name was found; then the associated
numerical value (in this case, 55) was used to form the instruc-
tion. Within a month, no programmer could tell you the numerical
value of XMA.

In a more established field, the innovation of these mmemonic
names would have been quite enough for many years and many
theoretical papers. However, programmers are an irritable lot,
and furthermore, are noted for their ability to get rid of sources
of irritation, either by writing more clever programs or by
asking the engineers to refrain from making such awkward machines.
And the use of numbers to represent addresses in memory was a
large source of irritation. To see this we need another example:

P C1A

g 1Dx pdugp
2 STA @597
@ BRX $¢300

1-3

Assuming cell 40P contains -7, this sequence stores zeroes in
cells 509 through 506 provided that the sequence is loaded in
memory so that the STA instruction is in cell 3¢¢ (otherwise,
the BRX instruction would have to be modified). This was the
crux of the problem: Once a program was written, it could only
run from a fixed place in memory and could only operate on fixed
cells in memory. This was especially awkward when a progrem was
changed, since inserting an instruction anywhere in a program would
generally require changes in many, many addresses. One day a
clever programmer saw that this problem could be handled by a
generalization of the scheme used to handle opcodes, namely,

let the programmer use symbolic names (symbols) for addresses
and have the assembler build a table of these symbols as they
are defined and then later distribute the numerical values
associated with the symbols as they are used. Thus the example
becomes: '

CIA

ILDX TABLEN
IOOP STA TABEND,?2

BRX LOOP

(Note that at the same time the programmer decided to move

the tag field to after the address field (simply for the sake
of readability)‘and to even dispense with it entirely in case

it was zero,) The assembler now has two tables, the fixed opcode
table with predefined names in it, and a symbol table which is
initially empty. There is also a special cell in the assembler
called the location counter (IC) which keeps track of how many
cells of program have been assembled; IC is initially zero.
There iS another complication: In the above example, when the
symbol TABLEN is encountered, it may not be defined yet, so the
assembler doesn't know what numerical value to replace it with.
There are several clever ways to get around this problem, but
the most obvious is to have the assembler process the program
to be assembled twice. Thus, the first time the assembler scans
the program it is mainly interested in the symbol definitions

in the left margin (a symbol used to represent a memory address
is called a label). In our example, when LOOP is encountered,

it is stored in the symbol table and given the value 2 (because

1-4

it is preceded by two cells; remember that IC keeps track of
this). At the end of pass 1, all symbols defined in the program
are in the symbol table with numerical values corresponding to
their addresses in the memory. So when pass 2 begins, the symbol
table is used exactly gs the opcode table is used, namely, when,
for example, LOOP is encountered in the BRX instruétion ébove,

it is looked up‘in the symbol table and replaced by the value 2.
If the program should later be changed, for example to

CLA
LDB EIGHT
LDX TABLEN

LOOP STP TABEND, 2
EAX 1,2
BRX LOOP

then the assembler will automatically fix up LOOP to have the
velue 3 (because of the inserted IDB instruction) and will
convert BRX LOOP to BRX 3 instead of to BRX 2 as before. Thus,
the programmer can forget about adjusting a lot of numerical
addresses and let the assembler do the work of assigning new
values to the symbols and distributing them to the points where
the symbols are used. In addition to the greater flexibility
achieved, symbols with mnemonic value can be used to make the
program more readable.

The use of symbols to stand for numerical values which
are computed by the assembler and not the programmer is the basic
characteristic of all assembly languages. Its inception was
a fundamental breakthrough in machine language programming,dispensing
with much dullness and tedium. And a new breed of programmer
was born: the assembler-writer. To justify his existence, the
assembler-writer began to add all sorts of bells and whistles
to his produéts; the primary ones are discussed in the next
section (with reference to NARP).

1.2 Assembly languages: some basic constituents and concepts

Times: assembly time: when a program in symbolic form is
converted by an assembler to binary

(relocatable) program form.

1-5

load time: when a binary program is converted by a loader to
actual machine language in the main memofy of

the computer.

rwt time: when the loaded program is executed.
4 assembler load
source program > binary program-——-g—-gz——a object program

Expressions: The idea of using & symbol to stand for an address

is generalized to allow &n arithmetic expression (possibly
containing symbols) to stand for an address. Thus, some calcu-
lations can be performed at assembly time rather than at run

time, making programs more efficient.

.Literals: Rather than writing LDA Ml and somewhere else defining
ML to be a cell containing -1, the literal capability allows the
programmer to write the contents of a cell in the address field
instead of the address of a cell. To indicate this, the expression
is preceded by '='. The assembler automatically aséigns a cell

for the value of the expression (at the end of the program):'

CLA
LB =8
LDX =-16%2
LOOP STP TABBEG+16%*2,2
FAX 1,2
BRX 1.0OP

Relocation: A relocatable program is one in which memory locations

have been computed relative to the first word or origin of the
program. A loader (for this assembler, DDT) can then place the
assembled program into core beginning at whatever location may be
specified at load time. Placement of the program involves a
small calculation. For example, if a memory reference is to the
nth word of a program, and if the program is loaded beginning
at location k, the loader must transform the reference into
absolute location n+k. This calculation should not be done to
each word of a program since some machine instructions (shifts,
for example) do not refer to memory locations. It is therefore
necessary to inform the loader whether or not to relocate the
address for each word of the program. Relocation information is
determined automatically by the assembler and transmitted as a

relocation factor (rfactor). Constants or data may similarly

- 1-6

require relocation, the difference here being that the relocation
calculation should epply to all 24 bits of the 940 word, not just
to the address field. The assembler accounts for this difference
automatically.

Subprograms and external symbols: Programs often become quite
large or fall into logical divisions which are almost independent.

In either case it is convenient to break them into pieces and

assemble (and even debug) them separately. Separately assembled

parts of the same program are called subprograms (or packages).

Before a program assembled in pieces as subprograms can be run it
is necessary to load the pieces into memory and link them. The
symbols used in a given subprogram are generally local to that
subprogram. Subprograms do, however, need to refer to symbols
defined in other subprograms. The linking process takes care of
such cross-references. Symbols used for it are called external
symbols.

Directives: A directive (pseudo-opcode is a message to the
assembler serving to change the assembly process in some way.

Directives are also used to create data:

LIST
MESSAGE TEXT 'THIS IS A PIECE OF TEXT'
START LDA ALPHA

The LIST &irective will cause the program to be listed during

' assembly, while the TEXT directive will cause the following text
to be stored in memory, four characters to a word.

Conditional assembly: It is frequently desirable to permit the
assembler to either assemble or skip a block of statements

depending on the value of an expression at assembly time; this
is called conditional assembly. With this facility, totally
different object programs can be generated, depending on the values

of a few parameters.

Macros: A macro is a block of text defined somewhere in the
program and given a name. Later references to this name cause
the reference to be replaced by the block of text. Thus, the
macro facility can be thought of as an abbreviation or shorthand

notation for one or more assembly language statements. The macro

1-7

facility is more powerful than this, however, since a macro may
have formal arguments which are replaced by actual arguments when
the macro is called.

One-pass assembly: Instead of processing a source programktwicé

as was described above (section 1.1), NARP accomplishes the same
task in one scan over the source program. The method used is
rather complex and is described elsewhere. (Implementation of
NARP, Doc. M-16) "

2.0 Basic constituents of NARP

2.1 Character set

All the characters listed in Appendix B have meaning in
NARP except for '?' and '\'. The following classification of

the character set is useful:

letter: ' A-Z

octal digit: 0-7

digit: 0-9

alphanumeric character: letter or digit or colon

terminator: , 3 blank CR (denotes carriage return)
operator: 'F G e+ [<=>@ 1

delimiter: "$r()[] . e«

The multiple-blank character (1358) may appear anywhere that a
blank is allowed. All characters with values greater than 778 are
ignored except for multiple-blank character (1358) and carriage
return 0558L -

2.2 Statements and format

The logical unit of input to NARP is the statement,a sequence
of characters terminated by a semi-colon or a carriage return.
There are five kinds of statements:

1. empty: A statement may consist of no characters at all, or only

of blank characters.

2. comment: If the very first character of a statement is an
asterisk, then the entire statement is treated as a
comment éontaining information for s human reader.

Such statements generate no output.
The format for the next three kinds of statements is split into
four fields:
label field: This field is used primarily for symbol definition;
it begins with the first character of the statement and
ends on the first non-alphanumeric character (usually a

blank).

2-2

opcode field: This field contains a directive name,’a macro

name, or an instruction (i.e., any opcode other than s
directive or macro). The field begins with the first
non-blank character after the label field and terminates
on the first non-alphanumeric character; legal terminators
for this field are blank, asterisk, semi-colon, and
carriage return.

operand field: The operand for an instruction, macro, or

directive appears in this field, it begins with the first

non-blank character following the opcode field and terminates

on the first blank, semi-colon, or carriage return. MNote
that a statement may terminate before the operand field.

comment field: This field contains no informstion for WNARP but

may be used to help clarify a program for a human reader.
The field starts with the first non-blank character after

the operand field (or after the opcode field if the opcode

takes no operand) and ends on a semi-colon or carriage return.

Now we continue describing the kinds of statements:

instruction: If the opcode field of a statement does not contain
a directive name or a macro name, then the statement is
an instruction. An instruction usﬁally has an expression
as an operand and generates a single machine word of
program. See section 3 for a detailed description of
instructions.

directive: If a directive name appears in the opcodé~field, then
it is a directive statement. The action of each direétive
is unique and thus each one is described separately (in
section U4).

macro: A macro name in the opcode field of a statemenf'indicates
that the body of text associnted with the macrovname should
be processed (see section 5).

Example of various kinds of statements:

* FOLLOWING ARE TWO DIRECTIVES (MACRO,FNDM) WHICH DEFINE
#® THE MACRO SKAP
SKAP MACRO; SKA =4B7; ENDM

2-3

* NOW SKAP IS CALLED:
LDA ALPHA ,
SKAP; BRU BAD IF NEGATIVE THEN ERROR
OKAY ADD BETA NOW A=ALPHA+BETA; BRU GOOD

In subsequent sections the details of instructions, directives,
and macros will be explained, but first some basic constituents

and concepts common to all of these statements will be discussed.

2.3 Symbols, numbers, and string constants

Any string of alphanumeric characters not forming a number
is a symbol, but only the first six characters distinguish the
symbol (thus Q12345 is the same symbol as Q123456). Note that
a symbol may begin with a digit, and that a colon is treated sas
a letter (as a matter of good programming practice, colons should
be used rarely in symbols, although they are often useful in '
macros and other obscure places to avoid conflicts with other
names). In the next section the definition and the rfactors
of symbols are discussed.

A number is any one of the following:

a) A string of digits

b) A string of digits followed by the letter 'D’

c¢) A string of octal digits followed by the letter 'B’

d) A string of octal digits followed by the letter 'B'

followed by a single digit.

A D-suffix indicates the number is decimal, whereas a B-suffix
indicates an octal number. If there is no suffix, then the
current radix is used to interpret the number (the current
radix is initially 10 but it may be changed by the OCT and DEC
directives). If the digit 8 or 9 is encountered in an octal
number, then an error message is typed. If the value of a
number exceeds 223-1 overflow results; NARP does not check for
this condition, and in general it should be avoided. A B-suffix
followed by a digit indicates an octal scaling; thus, 74B3=Thip@¢B.

Examples:

symbols: START 1M CALCULATE 14D2 14BlO
numbers: 14 18D 773B 7778 13B9

2-h

A string constant is one of the following:
a) A string of 1 to 3 characters enclosed in double
quotes (").
b) A string of 1 to L4 characters enclosed in single
quotes (').
In the first case the characters are considered to be 8 bits
each (thus only 3 can be stored in one machine word), while in
the second case they are considered to be 6 bits each. In both
cases, strings of less than the maximum length (3 or 4, as the
case may be) are right-justified. Thus
A =ty AT = AT = T, AT
where , denotes a blank. If a string constant is too long, then
an error message is typed and only the first 3 (or 4) characters
are taken. Normally string constants are not very useful in

address computation, but are most often used as literals:

ILDA WORD
SKE ='GO’'
BRU STOP

th numbers and string constants are absolute, i.e., their

rfactor is zero.

2.4 Symbol definitions

Since NARP is a one-pass assembler, the statement that a
symbol or expression is "defined" usually means that it is defined
at that instant and not somewhere later in the program. Thus,
assuming ALPHA is defined nowhere else, the following

BETA EQU ALPHA
ALPHA BSS 3

is an error because the EQU directive demands a defined opersnd
and ALPHA is not defined until the next statement. This convention
is not strictly adhered to, however, since sometimes the state-
ment "XYZ is not defined" will mean that XYZ is defined nowhere
in the program.

A symbol is defined in one of two ways: by appearing as a
label or by being assigned a value with an EQU directive (or

25

equivalently, by being assigned a value by NARG, NCHR, EXT
(see below), or by being used in the increment list of a RPT
or CRPT statement). This latter sort of symbol is called

eguated.

Labels: If a symbol appears in the label field of an
instruction (or in the label field of some directives)
then it is defined with the current value of the location
counter (rfactor=1l). If the symbol is already defined,
either as a label or as an equated symbol, the errbr
message '(Symbol) REDEFINED' is typed and the old
definition is completely replaced by the new one.

Equated symbols: These symbols are usually defined by EQU,
getting the value of the expression in the operand field
of the EQU directive. This expression must be defined
and have an rfactor in the range (-15,15]. If the symbol
has been previously defined as a label, then the error
message '(Symbol) REDEFINED' is typed and the old definition
is completely replaced by the new one; if the éymbol has
already been defined as an equated symbol, then no error
message is given, and the old value and rfactor are
replaced by the new ones. Thus, an equated symbol can be
defined over and over again, getting a new value each time.

A defined symbol is always local, and may also be external.
If a symbol in package A is to be referred to from package B,
it must be declared external in package A. This is done in
one of the following ways:

Declared external by $: If a label or equated symbol is
preceded by & $ when it is defined, then it is declared external.

$LABELL LDA ALPHA
LABEL2 STA BETA IABEL2 IS LOCAL ONLY

$GAMMA EQU DELTA

2-6

Declared external by the EXT directive: Therevare two cases:
i) EXT has no operand: The symbol in the label field is declared
external; it may have already been declared external or may
even have a.$ preceding it.
ii) EXT has an operand: This case is treated exactly like the
case: $label EQU operand.
Certain symbols are pre-defined in NARP, i.e., they already
have values whén an assembly begins and need not be defined by
the programmer: |
:ZERO: This is a relocatable zero (i.e., value = O, rfactor = 1).
:1C: This symbol is initially zero (rfactor=1) and remains
so until the END directive is encountered and all literals
are output, at which time it gets the value of the location
counter. See the description of FREEZE for a discussion
of the use of this symbol.
* Syntactically this is not a symbol, but semantically
it acts like one. At any given moment, * has the value
of the location counter (rfactor=1), and can thus be used
to avoid creating a lot of local labels.

Thus CLA; LDX LENGTH
LOOP STA TABLE,2; BRX LOOP

can be written as ‘ »
CIA; LDX LENGTH; STA TABLE, 2; BRX *-1

If a given symbol is referred to in a program, but is not
defined when the END directive is encountered then it is assumed
that this symbol is defined as external in some other péckage.
Whether this is the case cannot be determined until the various
packages have been loaded by DDT. Such symbols are called
"undefined symbols" or "external symbol references." It is
possible to perform arithmetic upon them (e.g., LDA UNDEF+l1);
an expression in post-fix Polish form will be transmitted to DDT.

2.5 Expressions and literals

Loosely speaking, an expression is a sequence of constants
and symbols connected by 0perators. Examples:
100-2*ABC/ [ALPHA+BETA]
GAMMA
P>=Q

Following is the formal description (in Backus normal form)
of a NARP expression: '

<primary>::=number>|<string constant>|<symbol>|*|[<expr>]
<expr>::=<primary>|<unary operator> <expr>|<expr> <binary operator> <expr>
<expression>::=expr>|<literal operator> <expr> o

<vinary operstor>::=t|¥|/|+|-|<|<=|=l# >=|>|&|! |%
<unary operator>::=+ | - |Q :

<literal operator>::= =

Notice that the literal operator is rather special, only
being allowed to appear once in a given expression, and only
as the first character of the expression. Literals are
discussed in greater detail below.

The value of an expression is obtained by applying the
operators to the values of the constants and symbols, evaluating
from left to right except when this order is interrupted by the
precedence of the operators or by square brackets* ([,]); the
result is interpreted as a 24-bit signed integer. The following
table describes the various operators and lists their precedences
(the higher the precedence, the tighter the operator binds its
operands):

*
not parentheses!

Operator

Precedence

Comment

2-8

4+ N %k

(u)

+
1]

V V3 AN

W 2R
)
S

COoOHMNWWWWWW F £ & VU

than or equal to

exponentiation; exponent must be > O
multiplication
integer division
unary plus

negation (arithmetic)
addition

subtraction

less than

less than or equal to
equal to

not equal to

greater
greater than
logical not

logical and

logical or

logical exclusive or

result of operation is
0 if relation is false,
otherwise 1

logical operation
applied to all
2 bits

The rfactor of an expression is computed at the same time

the value is computed.

There are constraints, however, on the

rfactors of the operands of certain operators, as shown in the

table

below: (Note:

is a symbol with an rfactor of 2).

Rl is a symbol with an rfactor of 1, R2

relocation factor(s)

relocation factor

operator of operand(s) of result examples
) 2th=16,
R1t1l{error)
& ! all operands absolute absolute 7&3=3,
6&R1(error)
/ u/2=2’
R1/1(error)
* at least one rfactor found by multi- 3*¥R2 has
must be absolute, the | plying the value rfactor of 6,
other is arbitrary of the absolute " R1*R1(error)
operand times the
rfactor of the
other operand :
< <= = arbitrary relocation R1=R1l is true
#>=> factors, but must be absolute R2>R1l(error)
equal
+ - ‘ found by applying R1+R2 has
(unary and|arbitrary rfactors operator to the relocation
binary) relocation factors factor of 3

of the operands

The final rfactor of an expression must be in the range
[-8191, 8191].

If an expression contains an undefined symbol or if it is a
literal, then the entire expression is undefined.

Although a literal is & special kind of expression, it is
often convenient to think of it as a quite separate entity. The

use of literals is discussed below.

2-10

Programmers frequently write such things as
LDA FIVE

where FIVE is the name of a cell containing the constant 5. The
programmer must remember to include the datum FIVE in his program
somewhere. This can be avoided by the use of a literal. ‘

A =5

will automatically produce a location containing the correct
constant in the program. Such a construct is called a literal.
When a literal is encountered, the assembler first evaluates the
expression and looks up its value in a table of literals constructed
for each subprogram. If it is not found in the table, the value
is placed there. In any case the literal itself is replaced by
the location of its value in the literal table. At the end of
assembly the literal table is placed after the sub-program.

The following are examples of literals:

=10 =4B6 =ABC*20-DEF/12 ='HELP'

=2>AB (This is a conditional literal. Its value will
be 1 or O depending on whether 2>AB at assembly
time.)

Some programmers tend to forget that the literal table
follows the subprogram. This could be harmful if the program
ended with the declaration of a large array using the statement

ARRAY BSS 1

It is not strictly correct to do this, but some programmers
attempt it anyway on the theory that all they want to do is to
name the first cell of the array. The above statement will do
that, of course, but only one cell will be reserved for the
array. If any literals were used in the subprogram, they would
be placed in the following cells which now fall into the array.
This is, of course, an error. Other than this exception, the

programmers need not concern himself with the locations of the

literals.

3.0 Instructions

There are three different syntactical forms of instruction
statements, depending on the class of the instruction in the
opcode field: (In the following, syntactical elements enclosed
in square brackets are optibnal; they may or may not be present.)

class @: [[$)1abel]l opcode(*] [operand[,tag] [comment]]
class 1: [[$)1avel]l opcode(*] [comment]
class 2: [[$]1abel]l opcode(*] operand[,tag] [comment]

Each of the syntactical elements is discussed below:
$ ¢ A label preceded by a dollar sign is declared external
(see section 2.4).

label : The label is defined with the current value of the
location counter (rfactor=1). '
opcode : The opcode must be either an instruction which is

already defined or a number. If it is a number, then
the value (mod 29) of the number is placed in b@-b8
(bit @ through bit 8) of the instruction, and it is
treated as a class @ opcode (i.e., operand optional).
* s If an asterisk follows immediately after the opcode
then b9 (the indirect bit) of the instruction is set.
operand: The operand is an expression which may or may not be
defined and which has any rfactor. The expression may
be preceded by '/' or '« (or both in any order);
these characters cause the following bits to be set:
/ bl (index bit)
« b9 (indirect bit)
Thus:

IDA /VECTOR is the same as LDA VECTOR,2
STA «POINTER is the same as STA* POINTER
IDA «/COMPLX is the same as LDA* COMPLX,?2

The tag is an expression which must be defined and
absolute. Tts value (mod 23) is placed in b@P-b2 of
the instruction. ,

comment: The comment does not affect the instruction generated;
it may be listed.

tag

In addition to its class, & given opcode is designated as
being either a shift instruction or a non-shift instruction.
This has nothing to do with whether the action of the instruction
involves shifting, but is simply a way of distinguishing between
two kinds of instructions. For non-shift instructions, operands
are computed mod 2lh, while for shift instructions there are two
possibilities:

a) If the indirect bit is set by '*' or '«<', then the value
of the opcode is trimmed so that b10-b23 are zero, and
then the instruction is treated as if it were a non-
shift instruction. ‘

b) If the indirect bit is not set as above, then the
operand is computed mod 29; it must be defined and

absolute.

4.0 Directives

There are many directives in NARP; although some of them are
similar, each in general has its own syntax. Following is a
concise summary:

Class Directive Use or Function Section
Mnemonic for instructions: COPY Mnemonic for RCH L.y
Data generation + DATA Generate data L5
ASC Generate text
(3 charactersper word) 4.1
TEXT Generate text (4

characters per word) .23

EQU Equate a symbol to

Value declaration :

a value) k.9
EXT Define a symbol as

external k.10
NARG Number of arguments 5.5
NCHR Number of characters 5.5
OPD Define an opcode h.17
POPD Define a programmedv

operator h.19

Assembler control + BES . Block ending syﬁbol k.2

BSS Block starting symbol 4.3
END End of assembly 4.8
DEC Interpret integers

as decimal _ 4.6
OCT Interpret integers

as octal 4.16
FRGT Do not output a

specific symbol .12
FRGTOP Suppress output

of opcode 4.125
IDENT Identification of

-a package _ h.13-

Class Directive Use or Function: Section
DELSYM Do not output any
symbols h.7
RELORG Assemble relative
with absolute origin 4.20
RETREL Return to relocatable
assembly _ 4.22
FREEZE Preserve symbols,
opcodes, and macros .11
Output and listing
control + LIST Set listing controls bk
NOLIST Reset listing controls 4.15
PAGE Begin a new page on
the listing 4.18
REM Type out remark h.21
Conditional assembly
and macros s IF Begin if body 5.1
’ ELSF Alternative if body 5.1
ELSE Alternative if body 5.1
ENDF End if body 5.1
RPT Begin repeat body 5.2
CRPT Begin conditional
repeat body 5.2
ENDR End repeat body 5.2
MACRO Begin macro body 5.4
IMACRO Alternative to MACRO 5.4
ENDM End macro body 5.4

In the remainder of this section, all directives listed
above except for those associated with conditional assembly and

macros are described.

k-3

4.1 ASC Generate text (3 characters per word)

({$)1abel] ASC string [comment]

This directive creates a string of 8-bit characters stored
3 to a word. The string starts in the leftmost character of a
word and takes up as many words as needed; if the last word is
not filled up completely with characters from the string, then
the right end of the word is filled out with blanks. If a label
appears, its value is the address of the first word of the
string. The syntactical element "string" is usually any
sequence of characters (not containing a singlekquote) surrounded
by single quotes. However, the first character encountered
after 'ASC' is used as the string delimiter (of course, blanks
and semi-colons cannot be used as string delimiters).

Examples:

ASC 'NO SINGLE QUOTES, HERE IS A SEMI-COLON:;'
$ALPHA ASC $HERE IS A SINGLE QUOTE: '$

4.2 BES Block ending symbol

({$]1abel] BES expression [comment]

The location counter is incremented by the value of the
expression in the operand field and then the label (if present)
is given the new value of the location counter. Thus, in
effect, a block of words is reserved and the label addresses
the first word after the block. The expression must be defined
and absolute. This directive is most often used in conjunction
with the BRX instruction, as in the following loop for adding
together the elements of an array:

IDX =-LENGTH; CLA3; ADD ARRAY,2

BRX *-1; STA RESULT; HLT
ARRAY BES LENGTH

4,3 BSS Block starting symbol

[[$]1abel] BSS expression [comment]

This directive does exactly the same thing as BES except that
the label (if present) is defined before the location counter
is changed. Thus, the label addresses the first word of the
reserved block. It should be noted that the expression for both
BES and BSS may have a negative value, in which case the iocation

counter is decremented.

4-6

4.4 COPY Mnemonic for RCH

[[$]1abel] cCOPY 8198983y [comment]

(where si are symbols from a special set associated with the

COPY directive)

The COPY directive produces an RCH instruction. It takes.
in its operand field a series of special symbols, each standing
for a bit in the address field of the instruction. The bits
selected by a given choice of symbols are merged together to
form the address. For example, instead of using the instruction
CAB (O4600004), one could write COPY AB. The special symbol
AB has the value OOO00QOk.

The advantage of the directive is that unusual combinations
of bits in the address field--those for which there exist
normally no operation codes--may be created quite naturally.

The special symbols are mnemonics for the functions of the
various bits. Moreover, these symbols have this special meaning
only when used with this directive; there is no restriction on
their use either as symbols or opcodes elsewhere in a program.

The symbols are:

Symbol Bit Function

A 23 Clear A

B 22 Clear B

AB 21 Copy (A) -» B

BA 20 Copy (B) »A

BX 19 Copy (B) =X

XB 18 Copy (X) »B

E 17 Bits 15-23 (exponent part) only
XA 16 Copy (X) »A

AX 15 Copy (A) »X

N 1 Copy -(A) -» A (negate A)
X 1 Clear X

To exchange the contents of the B and X registers, negate A,
and only for bits 15-23 of all registers, one would write
cory BX,XB,N,E

4.5 DATA Generate data

[($]1abel] DATA ej,ep,e;,... [comment]

The DATA directive is used to produce data in programs.
Each expression in the operand field is evaluated and the 2L-bit
values assigned to increasing memory locations. One or more
expressions may be present. The label is assigned to the
location of the first expression. The effect of this directive
is to create a list of data, the first word of which may be
labeled.

 Since the expressions are not restricted in any way, any
type of data can be created with this directive. For example:
DATA 100,-217B,START,AB¥2/IEF, 'NUTS',5

creates six words.

L.6 IEC Interpret integers as decimal

DEC [comment]

The radix for integers is set to ten so that all followins
integers (exceot those with a B-suffix) are interpreted as
decimal. When an assembly begins the radix is initialized to

ten, so IJEC need never be used unless the OCT directive is used.

4.7 DELSYM Do not output any symbols

DELSYM [comment]

_ If DELSYM appears anywhere in a program being assembled,
the symbol table and opcode definitions will not be output

by NARP when the END directive is encountered. The main purpose
of this directive is to shorten the object code generated by
the assembler, especially when the symbols are not going to

be needed later by DDT.

L-10
4.8 END End of assembly

END [comment]

When this directive is encountered the assembly terminstes.
If the LIST directive has been used then various information may
be listed, for example undefined symbols.

4.9 EQU Equate a symbol to a value

[$)symbol EQU expression [comment]

The symbol is defined with the value of the expression; if
the symbol is'alreﬁdy defined, its value and rfactor are changed.
The expression must be defined and must have an rfactor in the
range [-15,15]. If the symbol has been declared external before
or if it has been forgotten (using FRGT) then EQU preserves this
information. Thus

$ALPHA EQU L
ALPHA EQU 3

will cause ALFHA to be declared external but with a value of
three at the end of the assembly (provided ALPHA is not changed
again before the END directive). See section 2.4 for more

discussion of EQU.

4,10 EXT Define a synmbol as external

[$)symbol EXT [expression [comment]]

This directive is used to declare symbols as external.

section 2.4 for a discussion of the various cases.

See

1-13

4.11 FREEZE Preserve symbols, opcodes, and macros

FREEZE [comment]

Sometimes subprégrams share definitions of symbols, opcodes,
and macros. It is possible to cause the assembler to take note
of the current contents of its symbol and opcode tables and the
currently defined macros and include them in future assemblies,
elimihating the need for including copies of this information
in every subprogram's source language.

When the FREEZE directive is used, the current table
boundaries for symbols and opcodes and the storage area for macros
is noted and saved away for later use. These tables may then
continue to expand during the current assembly. (A separate
subprogram may be used to make these definitions; it will then
end with FREEZE; END.) The next assembly may then be started
with the table boundaries returned to what they were when FREEZE
was last executed. This is done by entering the assembler
at its "continue" entry point, i.e., by typing

@ CONTINUE NARP. ;
Note that the assembler cannot be released (i.e., another
subsystem like QED or DDT cannot be used) without losing the
frozen information.

In conjunction with the FREEZE directive, the predefined
symbol :IC: is useful, especially when writing large
re-entrant programs. Following is a three-package program
using FREEZE and :IC:.

Pl IDENT
<definitions of macros, opcodes, and global equated
symbols> ,
<definition of working storage (i.e., read-writ
memory >
FREEZE
END

P2 IDENT
BSS :IC:-:ZERO:
<read-only code>
END

L-1h

Pl IDENT
"~ BSS :I1C :~:ZERO:
<read-only code>
END

The FREEZE directive at the end of Pl preserves all the
definitions in this package so they can be referenced in packages
P2 amd P3. By including the definitions of all the working storage
cells in the preserved definitions, these symbols need not be
declared as external. Also, it makes "external" arithmetic on these
symbols possible in P2 and P3, and it reduces the number of
undefined symbols printed at the end of an assembly. Packages
P2 and P3 start with the rather peculiar looking BSS in order
to set the location counter so that references between the
packages will be correct. This is the main purvose of :IC:,
it saves the final value of the location counter from the
previous pa.ckége for use by the current package. In order for
this scheme to work, all three packages must be loaded at the
same location, usually O for large re-entrant programs.

Assume ALPHA is a symbol defined in Pl. Unless some
special action is taken, ALPHA will be output to DDT three times,
once at the end of P1l, once at the end of P2, and once at the end
of P3. To avoid this, all symbol and opcoéde definitions are
marked after they have been output once so that they won't be

output again.

4-15

4.12 FRGT Do not oﬁtput a specific symbol

FRGT §,,S,,--- [comment]

The symbols s, (which must have been previously defined)
are not output to DDT. FRGT is especially useful in situations
where symbols have been used in macro expansions or conditional
‘assemblies, and have meaning only at assembly time. When DDT
is later used, memory locations are sometimes printed oﬁt in
terms of thesé meahingless symbols. It is desirable to be
able to keep these symbols from being delivered to DDT, hence
the FRGT directive.

4-16

4.125 FRGTOP Forget selected opcodes

FRGTOP ... [comment]

§1780

The 8, must be opcodes. The specified opcodes are marked
as forgotten and will not be output to DDT. Since DDT knows
in advance about the standard instruction set (e.g., LDA, BRS,
CIO), FRGTOP or such opcodes has no effect. It follows that
the chief use of FRGTOP will be to suppress output of opcodes
generated by OPD and POFD.

FRGTOP does not take a label.

L-17

L.13 IDENT Identification of a package

symbol IDENT [comment]

The symbcl in the label field is delivered to DIT as a
special identification record. DIT uses the IDENT name in con-
Junction with its treatment of local symbols: in the event of
a name conflict between local symbols in two different subprograms,
DDT resolves the ambiguity by allowing the user to concatenate
the preceding IDENT name with the symbol in question. Also,
during an assembly the first six characters of the symbol followed
by the word '"IDENT' are typed on the teletype to show the user
what package is being assembled. The progress of an assembly
can be followed by placing IDENT's at various points in the

package.

4-18

L4.135 LIBEXT Specify library symbol

Symbol LIBEXT [comment]

This directive causes '"symbol" to be output to the binary
file, marked as a special "library-symbol." The resulting
binary file must then be mauled by a library-making program
before it will be intelligible to the loader in DDT.

The library-maker takes a binary file and moves all of the
library-symbols to the beginning of the program, and puts the
result on a file as a "library-program.” When a "library-file"
(which contains one or more‘library-programs) is loaded into
DDT, the loader scans the list of library symbols before each
library-program. If any of them is currently undefined (i.e.,
referenced but notdefined in previously loaded programs), the
associated library-program is loaded normally; otherwise, it
is not loaded.

For example, one could write a sine and cosine library program:
SIN LIBEXT
*SINE ROUTINE: ANGLE IN RADTANS

$SIN ZRO SINX
(sine routine code)

CcoS LIBEXT

*COSINE ROUTINE: ANGLE IN RADIANS
$cos ZRO COSX
(cosine routine code)

END

Assemble it with NARP and use the library-maker to put it on

a library-file as a library-program. Then, if either "SIN"

or "COS" is undefined when the library-file is loaded,‘both

the sine and cosine subroutines will be loaded, and the symbols
"SIN" and "COS" defined as the entry points of the routines
(respectively). (If one desired to have them load independently,

each subroutine could be made into a separate library-program.)

4-19

(Note: The library-program is loaded normally once the decision
to load it has been made; thus, undefined library-symbols will
only be defined and linked in previously-loaded programs if they
are defined and made external in the library-program in the

usual fashion (as in the example).)

4-20

4.14 LIST Set listing controls

4.15 NOLIST Reset listing controls

{ LIST } (s, .. [comnent 1]
NOLIST

There are various booleans which control the format in

which statements are listed (certain fields and/or certain
kinds of statements may be suppressed, or listed selectively).
The user is allowed to set (or reset) these booleans via the
LIST (or NOLIST) command. Each of the s.l may be one of the
following special symbols:

s, Set (or reset) What is (or is not) listed

ICT the current value of the location
counter, in octal

SICT the symbolic address of the current
value of the location counter

the value of the statement, if it is

VAL one of the directives: EQU, NCHR,
NARG, IF, ELSF. (in octal)

SRC the symbolic source code

“COM the comment field of a statement, a
comment statement

CALL macro and RPT calls

DEF MACRO and RPT definitions

EXP macro and RPT expansions

SKIF the skipped parts of an IF statement

EXT external symbol references (at the

end of the assembly

L2y

In addition, s, may be "ALL", which will cause all of the
booleans in the table to be set (or reset). ,

If a LIST (or NOLIST) directive is encountered for which
no arguments (s;) have been specified, NARP will begin (or
cease) listing statements on the LISTING FILE (the teletype,
in case no other listing file is specified when the assembly
is begun) according to the current settings of the listing
booleans. Including "GO" among the arguments for a LIST
(or NOLIST) will have the same effect.

When NARP is called, the listing booleans are initialized

as follows:

Set: ICT, VAL, SRC, COM, CALL, DEF, EXP, EXT
RESET: SICT, SKIF

and NARP is in its "no list" state, i.e., listing will not
be started unless (and until) the program initiates it with e
LIST directive.
Examples of the LIST directive:

NOLIST ALL Resets all format booleans
LIST SRC, GO Sets SRC boolean and starts listing.

(only the source code will be listed)
Examples of listing format:

ICT SICT VAL SRC coM.
F_"k"' r__A._., (M —d — =
00117 (A) 3 “a EQU 6/2 (SET A)
00117 (HERE) HERE 1DA A*B,2

00120 (HERE+1) CLB

4 .22

4,16 OCT Interpret integers as octal

oCT [comment]

The radix for integers is set to eight so that all following
integers (except those with a D-suffix) are interpreted as octal.

Lh_23
4,17 OPD Define an opcode

symbol OPD value[,class[,shift kludge]]

The symbol in the label field is defined as an opcode with
a value equal to the first expression in the operand field. All
expressions in the operand field must be defined and absolute; if
an optional expression does not appear the