DpT
INTERACTIVE MACHINE LANGUAGE DEBUGGING SYSTEM

REFERENCE MANUAL

Mark L. Greenberg

University of California, Berkeley

Document No. R-39
June 15, 1969
Contract SD-185
Office of Secretary of Defense
Advanced Research Projects Agency
Washington 25, D. C.

Page 2

1.0 _General

PPT is the debugging systea for the SDS 93n

Time-Sharing Systen. It has facilities for symbolic
reference to and typeout of memory cells and central
registers. Futhermore, it permits the use of literals in

the same manner as in the assembler. Tt can also insert
breakpoints into prograams, perform a trace, and search
programs for specified words and specifieqd effective’
addresses. In addition, their 1is a poverful conditional
breaking facility that will allow the user to specify the
exact condition under vwhich he vants the program to break.
Finally, DDT can load both absolute and relocatable files in
the format produced by the assembler.

The system has a langunage for communication between DDT
and its users. The basic components of this language are
symbols, constants, and commands.

1.1 _Symbols

A symbol is any string of letters, diaits, and Adots{(.)
containing at least one letter. {Rovever, a digit strina
folloved by B or D and possibly another digit is interpreted
as an octal or decimal number respectively). Tn symbols of
more than six characters, only the first six are
significant: thus, ALPHABET is equivalent to ALPRAR., 1Al1l
opcodes recognized by the assembler are built-in svmbols,
except for some I/0 instructions. Dot (.) is a bhuilt-in
syashol with a special meaning explained in a later section.
There are also some constructs 1like ;A (the A-register)
wvhich under most circumstances act exactly 1like symbols.
See the section on special symbols.

Every sysbol may have a value. This value is a 28-bit
integer; for most symhols it will be either an address in
memory or the octal encoding of an operation code.
Fxanples: '

ABC

AB128

12YYZ

The folloving are not symbols:

1358

AB*CD

Syebols may be introduced to DDT in tvo Dbasically
different ways:

{A) They may be written out by the assembler and read
in from the binary file by DDT.

Page 1}

(B) They may be typed in and assigned values Aduring
debugging.

Tt is possible for a symbol to be undefined. This may
occur 1if a program is loaded which references an external
symbol not defined in a previously loaded program. It may
also occur if an undefined symbol is typed in an expression.
In general, undefined syrbols are legal input to DDT excepnt
vhen their values would be required immediately for the
executuion of a command, Thus, for exaaple, the ;G (GO T0)
command would give an error if its argument is an undefineAd
symbhol.

Tndefined symbols may become Aefined in several ways.
They may bhe defined as external in the assembler (i.e., with
FXT, or $) and read by DDT as part of a binpary program.
Alternatively, they may be defined by one of the symbol
defintion commands available in DDT. When the definition
occurs, the value of the symbol will be substituted in all
the expressions in which the symbol has appeared.

Tf DDT types {U] after typing out the contents of a
cell symbolically, it means that the cell contains an
undefined symbol. The cell is closed at once so that its
contents cannot be erroneously changed.

The only restriction on this facility is that, as for
NARP, +the undefined symbol nmrust be the only thing in tte
address field of the word in which it appears. Tncorrect
uses of undefined symbols will be detected by DD™ and will
result in the error comment (U).

NDNT keeps track of references to undefined symbols by
building pointer chains through the address fields of the
words referring to the svmbol. ¥or each umdefined symbol,
DDT will construct a Aifferent pointer chain for each 2K
pade in the users map which contains a reference to the
symbol, The pointers to the heginnings of these chains are
nmaintained in a 2X page acquired by DDT and not accessable
by the user. A chain pointer is stored in the richt eleven
bits of the address field. Bit 10 marks the endi of a chain
and bit 11 indicates whether the symbol should be patched up
on 14 bits or 28 bits when the symhol is defined.

Prom this description is should be obvious wvwhat will

happen if the pointer chain 1is destrovyeAd. A probable
consequence is that a search down the pointer chain will not
terminate. DDT will often do such searches whenever it

prints an address. If the chain it is searchina has more
than 256 links, it will print the symbol followed by (u) anAi
continune. A chain may be destroyed by clobbering a worl1 in

Page

the chain or by removing a page containing undefined
references from the user map. A word of warning, DNDDT's
loader may become confused or go into a loop if a binarvy
program is loaded which attempts to define an undefined
synbol vhose reference chains are not all in the map.
Pixing up an undefined syabhol pointer chain which has been
clohbered is an exercise vhich we leave to the reader.

1.2 rlock _Structure

A limited facility called the block structure facilitv
is provided to simplify the referencing of local syambols
which are Adefined in more than one separately loaded
program. Note that DDT's block structure has only a tenuous
connection with the block structure of ALGOL. The block
structure of a program is organized in the following manner:
every IDENT read by DDT as part of a binary file begins a
nev block. Any local symbol known to DDT has a block numher
associated with it; global symbols A0 not have a hlock
number. T"ndefined symbols are alvays treated as global.

The name of a block is the symbol in the 1label fielAd
of the IDENT. If tvo IDENTs with the same symbol are reaqd,
the message (ALREADY LOADED) is printed, and the 1local
syebol tables for the twvo TDENTs will be merged.
Conflicting symbol definitions will be overwritten.

Tf local syabols are defined in a binary program file,
vith no preceeding IDENT, then DDT will assign an IDENT name
such as 03X. Global syahols must be unique within an entire
program amd are recognized at all times. Tf a multiple
definition is encountered, the latest one takes precedence.
Local symbols are recognized according to the following
rales:

(1) At any given time one block is called the primary
block. All 1local symbols associated with the
primary block ¥will be recoqnized.

(2) Tf a symbol is used which is neither globhal nor in
the primary block, the entrire table is scanneAd
for it. If it occurs in only one block, the
syabol 1is recognized properlv. TIf it occurs in
more than one block, the error message (A) |is
printed.

{(3) A symbol may bde explicitly qualified by writing:
SYMAESYMB. SYMA must be the name of a block.
SYMB is then referenced as though the block whose
name is SYMA vwere primary.

4

Page 5

(3) When a cell is opened (see section 2.1), the block
to vhich the symbolic part of its location helongs
becomes primary. Thus, NNEXYZ/ causes block NN to
become primary; if ABC is a unique local symhol in
block PQ, then ABC/ causes PQ to becore primay.

1.3 literals

literals have the same format and meaning in DD™ as in
the assembler, 3i.e., the ¢tvo characters ' =' siagnal the
beginning of a literal, vhich is terminated by any of the
characters which ordinarly terminate an expression. 1Tn
contrast to the assembler, the expression in a DDT 1literal
must be defined.

The literal is looked up in the literal table. TF it
is found, the address which has been assigned to it is the
value of the symbol. 7Y€ it does not appear in the literal
table, it 1is stored at the address which is the current
value of the "special symbol"™ ;P, and this address is taken
as the value of the literal. ;P is increased by 1. For
example, if the literal -1 Aoes not already exist 1in the
literal table and ;F is 1000B, then typing LDA =-1 causes -1
to be stored at 1000B, and is equivalent to LDA 1000%; the
nev value of ;F is 10001B. PFxception: Tn patch mode (see
section 2.8), literals are saved and not stored until the
patch is completed since otherwise they would interfere vwith
the patch.

¥hen DDT types out a symbol whose value is an address
in the literal table, it will type it out in the same format
in which it would be input; that is, as = €ollowed by the
numeric value of the 1literal. It should he noted that
addresses specified as literals in a binary program file
loaded by DDT will be printed as literals, hovever no entry
into DDT's literal table is made for these addresses.

1.4 Constants

A constant is any string of digits, possibly followveAd
by a B or D, in turn possibly followved by another Aigit.
The number represented by the string is evaluated, truncateqd
to 24 bits and then used dJust 1like the value of the a
symbol. The radix for numbers is normally 8 ({octal), hat
may be changed arbitrarily by the commands descrihed in
Section 2.4 below. If a number is terminated by B or n, it
is interpreted as octal or decimal respectively regardless
of the current radix. A digit following a B or " is
interpreted as a power of 8 or 10 respectively by which the
numbher is to be multiplied. Thus 1750R=175b1=10004=1413.
Constants are alwvays printed by DD™ in the current radirx.

Page

1.5 Commands

A compand is an order typed to DDT wvwhich instructs it
to do something. The commands are 1listed and their
functions explained in Section 2 below.

1.6 _Fxpressions

An expression is a string of nambers or syabols
connected by any of a 1large namber of operators. These
operators have the following significance:

+ addition
subtraction
{integer) multiplication
(integer) Adivision
logical AND
less than
equal to
greater than
logical OR
X;+y means x;*3+y
X3-Y means x;*3-y
remainder on (integer) Adivision
logical exclusive OR

®0 9o 6 s we WS B9 8w W6 we |

W e RV IEATIN »

Expressions are evaluated strictly 1left to right. A1l
operators have the same precedence., Parentheses are not
alloved. The first symhol or number may be preceded by a
ainus sign. Blank acts 1like plus, except ¢that all
subsequent operands are truncated to 14 bits before being
operated on the accuamunlated value of the expression. This
allows one to coampute a value which is loaded only into the
address field of an instruction. The value of an expression
is a 28 bit integer. An expression may be a single symbol
or constant. The value of an expression after a relational
operation is either 1 or 0 if the relation is true or false
respectively.
Examples: LDA has the value 7600000
LDA 10 has the value 7600010
if the radix is octal
LDA 10D has the value 7600012
If SYNM is a symbol iwth the value 1212, then

sYyn has the value 1212

SsY® 10 has the value 1222

LDR SYHN has the valune 07601212

Tf this last expression were put into a cell and later
executed by the program the effect would be to load the
contents of SYM, register 1212, into the A register.

6

Page 7

When DDT types out expressioms, two wmode switches
control the format of the output. Commands for setting
these modes are described in Section 2.4 below. The word
printout amode determines whether guantities will be printed
as constants or as symbolic expressions. In the Jlatter
case, the opcode (if any) and the address will be put into
syeabolic form. 1If the first nine bits of the value are all
zeros or all ones, no opcode will be printed; in the latter
case a negative integer will be printed. TIf the opcode is
not recognizable as a symbol, it will be typed as a numbher
followed by 'BS?',

The address printout mode controls the format in which
addresses are typed. DDT types addresses when asked to open
the previous or the next cell, when it reports the results
of word and address searches, and on breakpoints. In
relative mode, addresses are typed in symabolic form, i.e.,
as the largest defined symbol smaller than the address plus
a constant if necessary. TYf the constant is bigger than 200
octal, or if the value of the symbol is less than or equal
to some minimum value (settable by the user, but normally
the 1lowest 1location of the program) the entire address is
typed as a constant. Tn absolute mode, adiresses are always
typed as constants.

1.7_The Open Cell

One other major ingredient of the DDT lanquage 1is the
open cell. Certain commands cause a cell to bhe "openeAdY,
This means that its contents are typed out (except in enter
mode, for vwhich see the # command), followed by a tab. Tf
the user types an expression followed by a carriage return,
it will be inserted into the cell in place of the current
contents, and the cell vill then be closed. The current
location is given by the symbol "." (dot) which alwvays has
as its value the address of the last cell opened, whether or
not it is still open.

Note

foo

(1) Comma and star (for indexing and indirect address)
may be used in expressions as they are used in the
assembler: e.qg. LDA* 0,2 has the value 27640000,

(2) DDT will respond to any illegal input with the
character ? followed by a tab (if a cell is open)
or carriage return (othervise), after wvwhich it
vill behave as if nothing had been typed since the
last tab or carriage return. The command ? also
erases everything ¢typed since ¢the last tadb or
carriage return.,

Page 9%

1.8 Memory Allocation and DDT

DDT may cause the time-sharing system to assign memory
for use either by DDT itself or by the user's progranm.
DDT's memory is used to hold the syabol table, which starts
in page 0 and grows upward in memory. The symbol table
contracts at the end of each load of a binary file and when
syabols are killed; this contraction may cause memeory to be
released.

DDT™ acquires program memory vhen it is required for
loading a binary file or vhen a ;U (execute) command is
given and the value of ;F is such that a new block is needeAd
to hold the instruction to be executed. For executing an
instruction, DDT requires location ;F, ;P+1,:P+2. Memory is
never grabbed for examination of a register; hovever,
entering information in cells vhich are in pages not in the
map will cause a block of memory to he assigned for that
rage., TIf a cell is opened which is not assigned then DDT
vill ¢type a ? and a tab, but the cell will remain open.
Information may be filled into such a cell.

TIf an attempt to acquire or reference memory leads to a
trap, DDT types (M) and abandons whatever it is doing. This
can happen if the machine size is exceeded, or if an attempt
is made to change read-only memory.

Page

2.0 DDT Commands

Tn the followving description of DDT commands, <S> will
be used to denote an arbitrary symbol. <®> or <®¥> will bhe
used to denote an arbitrary expression which may be typed by
the nuser: will be used wvhen the value of this
expression is truncated to 18 hits hefore it is used by DDT,
vhile <¥> will denote a full 2% bit expression. <A> will be
used to denote an optional 14 bit expression. Yf none is
typed, the last expression printed out will usually be useA;
deviations from this rule will be Adescribed under the
individual commands. <P> will denote a file name followeA
by a dot: DDT will type a tadb vhenever it expects a file
nape.

2.1 Cell Opening_Commands

<>/ This opens the cell addressed by the value of <A>.
DDT will give a tadb, type an expression whose value is
equal to the contents of the register, give another tab
and awvait futher coamands. The precise form of the
expression typed is dependent on the setting of the
word and address printout modes. Tf the user types in
an expression, DDT will insert its value into the cell.
Typing another command closes the cell, unless it is a
type value or symbol definition command. TIf another /
is given as the next command wvith no preceding
expression, the contents of the cell addressed by the
expression typed by DDT are typed out. A further /
repeats this process. WNote, however, that the original
cell opened remains the open cell; any changes made
will go into that cell. 1 floating point number may he
inseted in ¢the open cell and the following cell by
typing a '%' followed by a floating point number and
then closing the cell.

Carriage Return This coamand does not necessarily have any
effect. Tf the specified conditions are present,
however, any of the following actioms may occur:

(1) If there is an open cell, the cell is closeA.

t.

[l

(2) If DDT is in enter mode, it leaves

(3) If pDT is in patch wmode, the patch is
terminated (for a fuller description of this
effect, see the patch command in Section 2.8)

9

Page 10

<A>) This command has the same effect as /, except that
the contents of ¢the cell opened are always typed in
symholic forn.

<[This coamand has the same effect as /, except that
the contents of the cell opened are typed in constant
fornm.

<AD>S This coamand has the same effect as /, except that
the contents of the cell opened are typed as a signeAqd
integer.

<PHn This comamand acts 1like /, except that the cell
contents are typed an ASCIY. UOnprintable characters,
as in QBD, are preceded by £, e.qgq. 141 (control-i)
prints out as &A..

<E>? This command has the same effect as /, except that
the contents of the cell opened are printed in
formatted form. The format which is used is determineqd
by the values of the two special symhols %M and %N. %M
is a mask of bits to be included in fields. A hit
turned on in %N indicates the right-most bit of a
field. The formatting commands will act as though the
right-most bit of %N is turned on whether it is or not.
Por example, if cell 400 contains 543563218 and
¥N=10101B and X¥=777707778B, then we aet

4002 5435 3 21

Successive fields in the open cell and following
cells may be changed by typing expressions for the new
field values separated by :, .

<E>3 ! The contents of locations and <E>+1 are treated
as an SPS string pointer, and the string is printed.
Cell is opened.

<EO>%E The contents of locations <¥> and <(B>+1 are ¢treateAd
as a floating point number which is printed. Cell <E>
is opened.

Line Feed This cormand opens the cell whose address is the
carrent location plus one, i.e. the cell after the one
just opened. The output of DDNT on this command 1is
carriage return, 1location (format controlled by the
address printout mode), /, tab, value of the contents,
tab.

Page 11

s (= space) This is equivalent to line feed except that
nothing is printed. Yts main use is in entering
programs or data, e.g.

1000 1; 2; 3 {carriage return)

is equivalent to

1000/ 1 = {(carriage return)
1001# 2 (carriaqge return)
10027 3 (carriage return)

4 This command opens the cell whose address is the current
location minus one, i.e. the previous cell. The outout
is the same as for the line feed command.

Fxanple:
ABC/ LDA ALPHA {line feed)
ABC+1/ STA BETA STA GAMHEA (line feed)

RBC+2/ LDB DELTA ¢
ABC+1/ STA GAMMA

{ This command opens the cell whose address is the last 14
hits of the value of the last expression typed. The
output is the same as for line feed.

7 This command is the same as /, except that the contents
of the cell are not typed. DDT goes into enter mode,
in wvhich the contents of cells opened by line feed, ¢,
or (are not typed. Most other commands cause DDT to
qgo out of enter mode. In particular, carriage return
has this effect. When a cell has been opened with #,
DDT thinks that it has typed out the contents. The
type value commands wvwill, therefore, wvwork on the
contents of the cell.

The type register in special mode characters [, 1, §, ", are
also preserved by line feed, up arrow and (.

7 This command supresses typeout of cell addresses during

line feed, up arrow and (chains. Carriage return
cancels the coamand.

2.2 Type Value Commapds

Page 12

= This command types the value of the last expression
typed (:;0) in constant form. It may appear in the form
<W¥»=, in wvwhich case the value of <W> is ¢typed.
Othervise, the expression referred to is the one most
recently typed, either by DDT or by the user.

This command types the valune of ;0 as a signed integer.
<€ This command types the value of ;0 in symbolic form.

' This command types the value of ;0 typed as a word of
text (see " command on previous page).

> This command types the value of ;0 in formatted forn.
(see the <1>2 command).

Example:

LDA= 7600000
LDA 10= 7600010
LDA€ LDA
7600000€ LDRA

-1= 771777777
-1¢ -1
10221043 ABC

1€ This command types ;0 as a character address, e.q. 1if
the value of the symbol Y is 1000, then 3002;<€ yields
X;42. Also, the current location is set to the worAd
address of the character.

HA This command types the string pointed ¢to by the
contents of the current location and the following
cell, consided as an SPS string pointer.

<E>, B> This command types the string pointed to by the
pair of expressions considered as an SPS string
pointer.

11 This coamand types the contents of the current location
and the followving cell considered as a floating point
number.

<E>,%} This command types the pair of expressions
considered as a floating point number.

Page 13

2.3 Symbol Defipitiop and Killing Commands

These commands all define the symbol as global.

<S>: This command defines the value of the symbol <S> to
be the current location.

<> < <S>: This defines <S> to have the value of <wW>.
<W> < <S$>30 This defines <S> as an opcode with value <W>.

:K (XTLL) This command resets DDT's symbol table ¢to its
initial state. DDT will type back --0K and wait for a
confirming dot. 1Any other character will abort the
command.

<S>3K (KILL) This coamand removes only the symbol <S> fronm
the symbol table.

<S>E3X (KILL) This coamand removes all symbols local ¢to
the block named <S> from the symbol table, as well as
remsoving the block name itself. This command will type
back --0K and expect a confirming dot.

X This command will remove all undefined symbols fronm
DDT's symbol table. This implies that all references
to undefined symabols will be lost. DNT will type --0OK
and expect a confirming dot.

2.8 Mode Changing Coamands

" This comrand is followed by a string of arbitrary
characters terminated by control-bD. TIf a cell is open,
the string will be inserted into successive 1locations
packed 3 characters per vword; otherwise, characters
beyond the third will be thrown awvay and the result
treated as a constant. Por example, if no register is
open, "ABCDEcontrol-D= vields 10221043,

D (DECINAL) This command changes the current radix to
decimal (see section 1.4).

:0 (OCTAL) This command changes ¢the current radix to
octal.

<E>:R {RADIX) This command sets the current radix to the
value of the expression, which must be greater than or
equal to 2.

of (CORSTANT) This command changes the word pnrintout made
to constant, i.e. makes / equivalent$to [.

Page 14
- | (SYNBOLIC) This coamand changes the word printout mode
to symbolic, i.e. makes / egivalent to 1.
Ha (ASCII) This cosmand makes / equivalent to ".
:$ (SIGNED INTEGER) This command makes / equivalent to $.
s {PORNATTED) This command makes / equivalent to 2.
sR {RELATIVE) This coarmand changes the address printout
mode to relative (symbolic). This Adetermines the
format for the output of addresses, both in svmbolic

expressions and vhen generated by 1line feed and up
arrov.

H (ARSOLUTE) This command changes the address printout
mnode to absolute.

:3 {3 CHARS/WORD) This sets the " and ' commands to act on
8 bit characters packed 3 per worad.

H] (&8 CHARS/WORD) This command sets "™ and ' commands to
operate on 6 bit characters packed 4 per wvord.

2.5 Breakpoint Commapds

There are four breakpoints in DDT. The €first
one is called thke special breakpoint. The remaining 3
are called regular breakpoints. TIf a program atteapts
to execute the instruction at an address at which a
breakpoint is set, control retaurns to DDT which will
print a break message and avait further commands. The
break occurs before execution of the instruction in the
breakpoint 1location. sL. is set to the location at
vhich the break occured. The break message wvwill
normally print the address of the break followed by the
contents of any of the central registers vhich have
changed since the last break. If it is the first break
after a ;G then all registers vill be typed.
- Purthermore, if a register has not been printed in the
last ten break messages, then it will be printed anyway
in the fornm s:A=<expression>, instead of the normal
form ;A€<expressiond>. The contents of the break
location will also be typed in the break message if the
special symbol %I is set to a non-negative valae. The
tyring of the break address can be suppressed by
setting the special symbol %P to a non-negative value.
Tf one instruction is executed by the ;N or ;S
conmnands, then the break message will include the
address and new contents of any cell modified as a
result of executing that instruction. In addition to

Page 15

these breakpoints there is the conditional breakpoint
facility (see the section on coniitional breaking).

<E>'! (SET SPECIAL BREAXPOINT) This coamand sets the special
breakpoint to the value , The previous value of the
special breakpoint will of course he lost.

! (CLEAR SPECYIAL BREAKPOINT) This command clears the
special breakpoint.

<E>:;' (SET REGULAR BREAKPOINT) This command sets a regular
breakpoint to the value , If all the regular
hreakpoints are already set then DDT will type back
FOLL?. If a breakpoint already exists with that value
then DDT will type a 2.

<PO%? {CLEAR REGULAR BREAXKPOINT) This command will clear a
regular breakpoint that has the value <E>. 1If no such
breakpoint exists, then DDT will type 2.

¥! (CLEAR ALL BREAKPOINTS) This command clears all &
breakpoints.

:?! (list breakpoints) This command lists all breakpoints,
the special breakpoint first.

2.6 _Program Rxecution Commands

<A>,<A>:6 (GO TO) This command allows transfer of
control to the wuser prograe. The first argument, if
given, specifies the starting address. The seconAd
arqument, if given, specifies the number of breakpoints
the program will pass through before the program halts.
The first argument, if missing, is assumed to be the
current location. The second arqument, if missing, is
assumed to be one. TIf there are any undefined symbhols
in DDT's symnbol table, then DDT will type *--0X' and
expect a confiraing dot to be typed before it will
allow transfer of control to the user program. This is
true also of all the other progam execution comsands.

<A>,<A>;P (PROCEED) This command also causes transfer of
‘ control to the user program, but it is designed to
restart a program after a breakpoint. 7Tt is identical
to the 3G command, with the follovwing exceptions. The
sP command will not break on the first instruction
executed if a breakpoint is set at that address,
vhereas the ;G command will break. The arqguments of
the ;P command are interpreted in the opposite order of
the ;G command. All central registers will be printed

Page 16

at a break after a ;G command, wvhile only the changed
central registers are printed after the ;P command,

<A>,<A>:V {ADVANCE) This command is identical to the ;P
comnand except that a break message is printed at every
breakpoint encountered during execution of the progranm,
wvhereas ;P will print a break messaae only after the
last breakpoint.

<A>,<A>:N {(NEXIT) This coamand causes the number of
instructions specified by the first argument to bhe
exectuted starting at the address specified by the
second argument., Tf the first arqument is omitted then
1 is assumed. If the second arqument is omitted then
:1 1is assumed. 1A break message is printed at the end
of the execution.

<A>,<A>:S {(STEP) This command is identical to the ;N
command except that a break message is printed after
the execution of every instruction.

<F>:0 (FXECUTE) This command causes the value of the
expression to be executed as an instruction. If it is
a branch, coantrol goes to the location branched to. Tn
all other cases coantrol remains with DDT. A single
carriage return is typed before executuion of the
instruction. If the instrucition does not branch anA
does not skip, or returns to the following location, a
$¢ and another carriage return are typed after its
execution. Tf the instruction does skip, two Adollar
signs ($%) are typed followed by a carriage return.

DDT may be put in pop trace mode by setting the special
symbol %0 to a non-negative value. A negative value
will cause DDT to leave pop trace mode. In pop trace
mode all programmed operators together with their
associated subroutines will be treated 1like machine
instructions for the :N and :S commands, i.e. the break
¥ill not occur until control returns to the location
following the pop. Since DDT determines when it should
break by counting POPs, BRMs, SBRMs, RRRS, and SBRRs,
it can be fooled by POPs which do sufficiently peculiar
things.

DDT can be put is subroutine trace mode by setting the
special symbol %0 to a non-negative value and removed
from this mode by setting %0 to a negative value. In
subroutine trace mode BRNs and SBRMs together with
their associatied subroutines will be treated as single
instructions by the N and ;S commands.

Page 17°

Attempts to proceed through certain instructions having ¢to
do with forks will produce erroneous results, and
breakpoints encountered wvhen the program is running in
a fork will not do the right thing. Attempts to
proceed through unreasonable instructions wvwill cause
the error comment $>> to be typed by DDT. Also, when
control returns to DDT from a breakpoint or rubout, the
interrupt mask for the program is cleared.

2.6 _Input/ouput Commands

A>3 Y <P> DDT expects to find a binary prograr on the file
<F>, If the program is absolute, it is read in. Tf it
is relocatable, it is read in and relocated at the
location specified by <>, If the expression is
omitted, relocatable loading coamences at location ;F.
1P is updated when the file is loaded. After reading
is complete, the first location not used by the progranm
is typed out. Any local symbols or opcode definitions
on the binary file are ignored.

AAD>:T <P This conmand is identical to ;Y except that it
also reads 1local symbols and opcode definitions from
the file and adds them to DNT's symbol table. Any
syabols on the file will be recognized by DDT
thereafter.

<A>%Y <P> This command is identical ¢to the ;Y command
except that it vill also read in opcode Aefinitions anAd
put them in DDT's symbol table, but it will still
ignore local syabol definitions.

The following two points should be noted in connection with
sY, %Y, or ;T coamands.

1 The use of an expression before ;7, or %Y or ;Y vwhen
the file is absolute (i.e. SAVE file) is an error.

2) The block read in becomes the primary block.

Several files can be loaded in a row with greater speed if a
semi=colon is used for the file name terminator instead
of a dot. Using a semi-colon causes the resorting of
the DODDT symbol table ¢to be sappressed at the end of
loading.

W <P Causes all global symbols with their values to be
written on the specified file, in a format which can be
read back in with ;™.

Page 18

:C <P Causes all syabols to be written on the specified

file.
2.7 Search Commands .
<I>; W (WORD search) This command searches memeory

between the 1limits ;1 and :2 for cells whose contents
match <W> when both are masked by the value of ;M. The
locations and contents of all such cells are typed out.

LA KWW will perform the same search, and in addition
perforas the following replacemnt: if 0 is the address
of a cell such that (0) (and) M = W2, then the masked
part of W1 will replace the masked part of (0).

[

<H>: 4 (NOT word search) This is the same as W except
that all cells which 4o not match <W> will be printed.
This is useful, for example, in finding and printing
all non-~zero cells in a given part of memory.

<F>:F (FPPECTIVE address search) This command searches
memory bhetween the limits 31 and ;2 for effective
addresses equal to <E>. Indexing, if specified, 1is
done with the value of :X. TIndirect address chains are
followed to a depth of 64. The addresses and contents
of all wvords found are typed out. When ;W or ;B is
complete, '.' is left pointing to the last cell typed
out,

2.8 Patch Comemands

) This comrmand causes a patch to be inserted before the
instruction in the open cell. A cell must be open for
this coamand to be legal. DDT inserts in this location
a branch to the current value of ;F. When the patch is
done, ;P is updated. 7Tt then gives a carriage return
and a) and vaits for the user to type in the patch.
Legal input consists of a series of expressions wvhose
values are inserted in successive locations in memory.
RPach of these expressions should be terminated by line
feed or ;(space), exactly as though the program vere
being typed in with the # commadnd instead of as a
patch. The ¢ command may be given in place of the line
feed and has its usual meaning, except that the
contents of the previous location are not typed. Two
other commands are in patch mode. they are:

(1) Colon, which may be used to define a symbol
with value equal to the cuarrent location.

Page 19

(2) Carriage return, which terminates the patch.
#hen the patch is terminated, DDT inserts in
the next available 1location the original
contents of the location at vhich the patch
vas inseted. It then insets in the following
twvo locations branch instructions to the
first and second 1locations following the
patch. This means that if the patched
instruction is a skip instruction, the
program will continue to operate correctly.
Any other command given in patch nmode may
cause unpredictable errors.

s { This command is identical to ;) command except that it
puts the instruction being patched before the new code
inserted by the user instead of after.

2.9 Miscellaneous Coamands

A (ZFRO) <E>,<E>;%7 sets to zero all 1locations betueen
the value of the first expression and that of the
second. <E><CCBE>,<F>:7 sets to the value of the first
expression all 1locations between the values of the
second and third. 1Z alone releases all merory
accessible to the user's program. DDT will type back
--0% and vait for a confirming Adot. Yf this memory is
returned, due to later acces by DDT or a program, it
will be cleared to zero.

L4 (LIST BLOCKS) This command causes all blocks known
to DDT™ to be listed. TIf printing of symbols in that
block has been suppressed then a 31 wvwill be typed
following the block nanme.

<hlock name>;] {(SUPPRESS) This command causes symbols in
the given block to be ignored vhen DNT prints symbolic
address.

<block named>;[This comamand reverses the action caused by

the ;1 command.

" %F This command causes control to be returned to the fork
vhich called DDT.

R (PRYNT MAP) The current program map is printed.
<F>,<CE>:R (SET MAP) The program sap is set as indicated,

This is equivalent to putting the expressions in A anA
R respectively and executing BRS 44, :

Page 20

¥A This command lists all ambiquous syahols in ¢the DDT

syabol table and lists the blocks that each ambhiguous
symbol is in.

2. 10 _Special Symbols

DDT has built into it a number of special symbols. these
syabols can have their values set with the following
construct. <BE>:A vhere ;A is a special symbol. if
a special symbol is used in any other context then it
is treated like any other symbol in DDT. Whenever O0ODT

executes any command involving execution of
instructions in the user's program, it restores the
values of all machine registers. If any of these

values have been changed by the user, it is the changed
value which will be restored.

sA the value of this symbol is the conteats of the A
register

1B contents of the B register

:X contents of the X register

3L contents of the program counter
M mask used by word search comrmands

30 the value of this symbol +1 is the smallest address which
DDT will ever atteapt to print in symholic form.

:1 lover limit for searches using search coamands
s2 upper limit for searches
10 value of the last expression typed by DDT or the user.

;¥ the value of this symbol is the address of the 1lowvest
location in core not used by the program. New literals

and patches are inserted starting at this address. It
is wupdated by patches, literal definitions, and load
commands.

" The value of this symbol is the field dAescriptor for type
out and loading of cells in formatted form.

%M The value of this symbol is the mask for type out and
loading of cells in formatted fornm.

Page 21

€Y The value of this symbol is the opcode number which will
next be used in automatic opcode definitions using the
opcode linking feature of the DNT 1loader. (see the
manual on binary file format for the DDT loader)

The remaining special syabols are used to control modes in
DDT. The specified action will occur if the syabol is
set to a non-negative value,. .

¥R Turn on conditional breaking

XT rrint the instruction at ;L as part of a break messsagqge.

¥» Suppress printing of the value of the program counter as
a part of the break message.

%0 Suppress tracing of POP subroutines.

€0 Suppress tracing of BRM and SBRM subroutines.
2.11 _Panics

nDT recognizes four kinds of panic conditions:

(1) Illegal instruction panics from the nuser's
prograa.

(2) Memory allocation exceeded panics from the
users's proqran

{3) Panics generated by pushing the rubout button.

(4) rPanics generated by the execution of BRS 10 in
the user's program.

Por the first two of these conditions DDT prints ount a
message, the 1location of the instruction at which the
panic occurred, and the contents of this location. The
messages are as follows:

{1) Yllegal instruction panic ™>

(2) memory allocation panic #M>>

(3) The other two types of panics cause DDT to
type bell and carriage return. ;L and '.?

¥ill both be equal to the location at which
the panic occurred.

Page 22

1f memory allocation exceed panic is caused by a transfer to
an illegal 1location, ¢the contents of the location
causing the panic is not avialabe and DDT, therefore,
tyves a ?.

Two other paic conditions are possible in DDT.

(1) If the rubout button is pushed twice with no
intervening typing by the user, control
returns to the calling fork.

{2) If the rubout buttom is pushed while DDT™ |is
executing a command, execution and typeout
are terminated and DDT types carriage return
and bell and themn awaits further coamands.

2. 12 Conditional Breaking

Conditional breaking a feature which allows the user to run
a program and have it break on the exact instruction
where a specified condition becomes true. Conditional
breaking is implemented by loading an interpreter at ;¥
vhen control is transfered to the auaser program.
Therefore, if conditional breaking is used,
approximately 200 cells following :;F will be clobhbered.
Conditional break mode is entered by setting the symhol
¥B to a non-negative number. A negative value of %R
returns DDT to normal break mode. To use conditional
breaking, put DDT in conditional break mode and specify
a condition to break on using the %F command.
Thereafter, any transfer of control to the user progran
will cause conditional breaking to take effect. A user
program vill execute about 15 times slover in
conditional break mode.

To specify a break condition type %E. DDT will ¢then type
carriage return and expect the user to type a logical
expression vhich obeys the following syntax. A
conditional expression is terminated with a control-D.
Control-A may be used to delete characters typed. When
the value of this expression becomes true then the
condition is satisfied and DDT will cause the user
program to break.

Syntax:
<expr> € any number of <{term> separated by !
<term> € any number of primary separated by ¥

<prim> € <operand?> <relational> <operand2>

Page 23

<relationald> € =/&/,>/</&=>=

<operand1> <€ any number of <operand2> separated by
<operator>

<operaor> € %/-/3/blank

<operand2> € [{$] (<constant>/<symbold>/<{special symbol>
<special symbol> € ;A/:B/3X/;L/:®/30

A constant may be any legal DDT constant.

A symbol may be any defined symbol optionally preceded by a
block name and §.

Seaantics:

Expressions are cosmpiled left to right. The streagnth of
binding of operators is as flollows:

<operators>.<telationals>,*,!.

! means OR

* means AND

? means NASK i.e. extract second operand from first operand.
$ means literal as opposed to contents of |

blank means address add e.g. b 3 is the contents of b+3
+ means ada

- means subtract

sA,:8B,:Y are the contents of the central registers.

3L is the program counter |

:E is the effective address of the current instruction.

;0 is the 7-bit opcode field of the current instruction
right justified.

Examples:

A 3=:P*:0=$83"R+3=2123

Page 24

This expression will cause conditional breaking if the
contents of A+¢3 1is equal to the effective address of
the current instruction at the same time that the
opcode of the current instruction is U3 or if the
contents of B plus the contents of 3 equals 123,

