SR

SPS TIME-SHARING STRING PROCESSING SYSTEM
REFERENCE MANUAL

Butler W. Lempson
L. Peter Deutsch

Larry L. Barnes

University of Californie, Berkeley

Document No. 30.10.20
Issued April 21, 1965
Reviged July 27, 1966

Contract SD-185
Office of Secretary of Defense
~ Advenced Research Projects Agency

Washington 25, D.C.

oo
sl e

TABLE OF CONTENTS

l . 0 General LN I N 2 I D DR D D 2 IR D I N DR Y) .

2.0

1.1 String Pointer load and 3tore Operations

1.2 String Read and Write Operations .
1.3 String Compare Operations.
l.h String Inmput » « « + « ¢ ¢ o . . .
1.5 String Output . + « « « s ¢ 4 .

The Hash Table PFacility . . . +» « « . &

2.1 Hash Table Syspops and System Subroutines

2.2 An Application of the Hash Table Facility

.

1-4

. 15

1-5
2-1,
2=l
2.l

30.10.20
1-1
July 27, 1966

1.0 Genergl

The String Processing System (SPS) consists of eight SYSPOPs and six
system subroutines (BRS instructions). SPS strings are stored three 8-bit
characters per word. Strings are addressed by two-word pointers. ‘The first
word containg the character address of the character before the first character
of the string. The second word contains the character sddress of the last
character of the string. The character address of a character is obtained by
multiplying by 3 the address of the word containing it and adding O, 1 or 2
depending on its position in the word. ALl string pointers contain charscter
addresses. The character pointers used by GCI, GCD, WCI and WCH must have
the first 8 bits cleared.

The user's attention is called to the string package (8P) which is a
collection of POPs and subroutines for string processing which can be obtainéd
from a system file and included in the user's program. This package affords
the user a number of additional facilities and considerably greater flexibility
than the resident routines described in this manual.

The following SYSPOPs are independent of the hash table mechanism<which is
described leter. Any of them may be indexed or indirectly addressed (as may

most other SYSPOPs).

1.1 String Pointer load and Store Operations

LDP OPD 166000008, 1,1,0,1
LDP ADDR loads the A and B registers with the contents of ADDR and

ADDR+1L. X is undisturbed.

30.10.20
1.2
July 27, 1966

STP OPD 167000008, 1,1,0,1
STP ADDR stores the contents of the A and B registers in locations
ADDR and ADDR+1. A, B, and X are undistrubed.

1.2 String Resd end Write Operations

GCI ~ OPD 165000008, 1,1,0,1
GCI ADDR tries to load the A register with the first character of the
string addressed by the pointer pair in ADDR and ADDR+1. If the string is

null or empty (i.e., if the contents of ADDR is greater than or equal tcb

the contents of ADDR+1), then nothing is done and the next instruction in

sequence is executed. If the string is not nuli, its firét.Chafacter_is
1oaded‘into A right-justified‘and the contents of ADDR are incremented by 1,
so that the string pointer now points to the string with the first character
deleted. The next instruction in sequence is skipped. Unless a copy of
the original.pointer ig saved, the contents of the string are effectively
destroyed by GCI. For example, the code:

GCT STRING

BRU ¢UT

BRM PRACESS

BRU % -3

gur ...

will call the subroutine PRACESS with each character of the string addressed

by STRING and go to QUT after the last character is processed. To Bave
the contents of STRING, the following commands could have been executed
first:

1DP STRING

STPy SAVE

etec.

30.10.20
1-3
July 27, 1966

The X register is not disturbed by GCI. The B register is destroyed.
Timing: 43 cycles.

GCD OPD 13700000B,1,1,0,1
GCD is in every way similar to GCI except that the charscter is taken
from the end of the specified string and the second string pointer is
decremented.

WCI OPD 15700000B,1,1,0,1
WCI ADDR writeé the character in A on the end of the string addressed by
ADDR. The contents of ADDR+l are incremented by 1. A and X are not

changed. B is destroyed.

To use a WCI in constructing a string, it is necessary to start with a
null string. Supposevthe string is to be put into a buffer called LINE
and defined by o

LINE BSS 20

The instructions

.LDA =LINE
MUL =3
ISH 23
STA PTR

STA PTR+1 ; |
will make PIR a pointer to a null string beginning (and ending) with the
first character (not the Oth) in LINE. To start with the Oth character
8 éUB =1 could be inserted after the LSH. LINE éan now be filled, say frcm
the teletype by

TCI CHAR

WCI PIR

BRU * . 2

30.10.20
1-h4
July 27, 1966

WCH OPD 157000008,1,1,0,1
Takes a character in A end a table address in the operand field.

The table comprises three words:

ZRO CLB
ZRO CUB
OoP ADD

WCH tries to write a character into the aréa'defined by the character
addresses CLB, CUB. Provided that CUB>CLB, WCH will write the character

in A into character posiﬁion CLB+l and increment CLB. If CLB>CUB the
character is not written and control is transferred to the third word of the
table with A, X undisturbed snd the address of the offending WCH in B.
ThiS‘cah be an error trap or an exit to a routine which allocates more

memory, by garbage cpllection or otherwise, for successive WCH's.

1.3 String Compare Operations

SKSE OFD 163000008, 1,1,0,1
SKSE ADDR skips if the string addressed by the pointer in AB is -
identical with the string addressed by ADDR. If thé strings are of different
lengths or have different contenté, SKSE does not skip. This instruction is
essentially identical to SKE, except that it acts on strings rather than
nuﬁbers. A, B, X are not disturbed by SKSE.
SKSG OFD 16200000B,1,1,0,1 | |
SKSG ADDR skiﬁs if the contents of the string addresséd by AB is greuater
than the contents of the string addressed by ADDR and“ADDR+l. Comparison ’
isvmade character by character, énd terminstes with the first unequal' |
characters; the numerical, internal code representation of characters is
used to determine inequality. If the strings sre equal for the entire
length of the shorter one, the longer one is indicated as the greater.

A, B and X are not disturbed by SKSG.

@

30.10.20
1-5
July 27, 1966

1.4 String Input

BRS 33

Accepts a string pointer address in A, a file number in X and
a "terminal character” in B. It collects characters from the file and
eppends them to the string until the tefminal charaéter isvseen; this is
not added to the string. It then returns the updated string pointer in }
AB; the string pointer in core is also updated. If bit‘O of A 1a’aet‘on
entry the string is taken as null with the second pointer equal to the
first.

1.5 String Output

BRS 34
Accepts a file number in X, a'gggg address in A and a count in B.
It outputs B consecutive characters starting with the first character of
the specified word. If B=-1 on entry characters are output until / is
encountered; the character $ is interpreted as carriasge return, lihe feed.
BRS
Accepts a file number in X and a string pointer in ABR. It

outputs the string to the file.

30.10.20
2wl
July 27, 1966

2.0 String Manipulation vie a Hash Table

The hash table is a structure for minimizing the effort required to perform
certain scan-and-compare operations when the operands are strings.

A hash table i8 a contiguous set of 3-word "augmented string pointers". The
addresses of the first and last-plus-one locations of the hash table we ghall
denote by HT, EHT respectively. Each augmented string pointer occupies three
consecutive locations of the hash table. Bits 8 to 23 of each of the firat
two locations hold the actual string pointer; bits O to 7 of these two words, as well
as the entire third word (the so-called string 'value") may hold arbitrary
information. Note, however, that bits O to 7 of the string pointer words must
be zero if used with GCI or WCI.

2.1 The Hash Structure System Subroutines

There are three system subroutinés to perform operations on a hash .
structure; they are BRS 5, BRS 6, BRS 37. BRS 6 is used to introduce new °
string pointers into the structure; the strings will normally have been
created by WCI or WCH. BRS 5 and BRS 37 each perform a scan of the hash
table for a string to match a given string.

Before using BRS 5 and BRS 6 to insert string pointers into an

initially empty hash table, the hash table area must be cleered to zeros.

BRS 5 ;

Tekes s string pointer in A, B, a table eddress in X. The table
comprises 3 words

ZRO HT

ZRO EHT

ZRO O

The first two define the hash table bounds, the third is used for

communication with BRS 6 (g.v.).

30.10.20
g
July 27, 1966

BRS 5 searches the hash table for a string to match the given one.
If successful it returns in B the éddress of the hash table string pointer
(the string "index") -- and in A the string "value"; it skips on return.
If the search 18 unsuccessful, BRS 5 returns with A, B urichanged and the
address of the next free table entry in word 3 of the table (this will

be -1 if the table is full). X is not disturbed.

BRS 6

Takes a string pointer in A,B snd a table address in X. The table
is as for BRS 5.

BRS 6 inserts the string pointer into the bash table at the point
determined by the last BRS 5 which failed. If the table was then found to
be full, and the "communication wdrd" (third word of the table) is -1,
there is an illegal instruétion trap. BRS 6 is intended for use only in
inserting into the hash table a string pointer for which BRS 5 failed to
find a match and should not be used other than after a failling BRS 5.
Furthermore, string pointers should hot be placed in the hash table other
than with BRS 6 (otherwise the scanning algorithm used in BRS 5, BRS 37
will not workj. Note that BRS 6 does not physically move the chearacters

to which (AB) points.
On exit, BRS 6 returns in B the address of the first word of the new

hash table entry and in A, the "value" word of the entry; X is not disturbed.

To delete a hash table entry, put -1 (not O) in the first word.

BRS 37
Takes a dual file number in A, a string pointer address in B and, in X,

the address of a 2=-word teble containing hash table bounds HT, EHT. A dusal

file number is a single word holding an‘output file nﬁmber in the first

12 bits and en input file number in the second. If the output file numberv

is zero, the user's teletype will be used. The behavior of BRS 37 depends

N

30.10.20
2=3
July 27, 1966

on the command recognition mode currently set for the user's Execi(see the
TSS Exec Manual, Section 5.5).

If the mode is BEGINNER, the hash table is scanned for a string to
match exactly the given one. If noné is found but the glven string mmtches
the initlal part of some hash table string, characters from the input file
are sppended to it until either an exact match is ovtained or a match
becomes impossible. The exit is described below.

If the mode is NOVICE, the hash table is scanned for a string to match
the given one. If none is found but the given string matches the initial part
of some hash table string, characters from the input file are appended until
the string is long enough either to determine a unique hash table string,
with a matching initial part, or for no match to be possible. In ﬁhe former
case, if the hash table string now contalns 3 or less as-yetnunmatched
characters, more characters are taken from input until an exact match is
obtained or no match is possible; if the hash table string contains 4 or
more as-yet-unmatched characters these unmatched chearacters are sent to the
O~-P file. If the input file is the teletype, BRS 37 waits until all the
cheracters have been output, and the imput file buffer is cleared before exit.

If the mode is EXPERT the hash tablé is scanned for a string to match °
the given one. If none is found but the given string matches the initial
part of some hash table string, characters from the input file are appended
until the string is long enough either to determine a unique hash table
string, with a matching initial part, or for no match to be possible. In
the former case the remaiﬁing characters of the hash table string aré sent

to the 0-P file.

B R o 2020
o O naya, 1966
‘Exits are as followa: 7 v
. The no-match condition causes 8 no-skip exit withfa Qtring«pbinteri
in AB to the string so fer collectéd;'x is,undisturbed.' If a match is
fbund there is a skip exit W1thfthe ﬁésh'tabla,string index in A’and thé '
string value in B; X is undistu?ﬁed.’ | |

2.2 Example) ;
- The folinwing subrduting illust?;teg<u use of‘the hash table facility.
A string is input from the téletype'and appended to WCH string storage until a
cairiﬁgg return’ié’encountered;‘it is agsumed that string storage does not R
overflow in thﬁ‘procééa. The hash téble i8 then searched for the string; if
it is not elready there'it‘ié ihsértedgtlln any cade, an éxit is made wity,
 the value of the string in A and the address of the string pointer in B, on
' ‘<i§ ' ; ' entry X‘dontainsvthe address of fhe table for ERS 5, 6. CTL is the address
R of a table for WCH. ' |

IWPUT ZRO INPL o |
LDA C¢TL ~ remember beginning of string

| STA TEMP
I00P TCI CHAR .
. SKE =155B terminator?
ERU WRITE ’
: EﬁA »v,TEMP - yes
1B CTL
BRS 5
BRS 6
SER INPUT
WRITE WCH CIL

BRU IO0P

O

