CONDITIONAL CONVERSATIONAL
COMMAND PROCESSING
Chayles A.‘Grant

University of California, Berkeley

Document No. P-1l
May 1, 1969
- Office of Secretary of Defense

Advanced Research Projects Agency
- Washington 25, D. C.

Page

Grant, Charles A.
Conditicnal Conversational Command Processing -
ABRSTRACT: ‘

‘A general progranmning tacility 1s proposed tor
communication with the 1interactive conmand langunages ot
time~sharing systems in an attenpt to overcome some Ot the
current limitations ot data exchange between man and
machine, Commands wmay be constructed in an arbitrary way 1in
a string processing language and then processed as 1t typed
to a console by a user. The output resulting trom the sent
commands may be dissected and examinaed to detsarmine
subseguent action.

A set of functions to accomplish the above which could
ke entedded into any string processing lLanguage 1S

. suggested, and necessary intormation partinent to

implementation o0f the facility on existing time-sharing
systems 1is given.

Key Words: Time-sharing, Command languages, Psaudo-teletype,
Interaction, Conditional Job Control, Operating Systenms

Ck Categories: 3.80, 3.81, 4,29, 4.3Y

2

C

Page

1.0 INTECDUCTION

"Experience with time-sharing systems has shown

3

unsatistactory conditions concerning the comnunication

between user and system. This comnunication takes place via

a

whatever program the user 1s operating. This paper will not

cencern itself with the design of command languages but

teletype or display console 1in the couwmand lanquage OXf

rather with the solution ot the tollowing problens:

2) Users of time-sharing systems tind that there
may be seyguences of commands that they freguently
enter with 1little or no variation. Even nrore
anhoying than the repetition nay be the time
reguired for the phyéical console to accept the
commang and print the reply, or, more sariously,
the possible 1loss ot intormation due to the
inevitable occasional typing errov. For exaaple,
it ;s common that at the beginning of a session
with the systen there is a standard sequence of
conmands a user will give in order to retrieve his
files from secondary stdraqe, possibly assanble or
conpile them, and then initialize the particular

subsysten he will use.

Page

B} A user may wish to enter a long series ot
cermands which, due to 1ntefspergnd computation,
rgquires him to b= present at the consola tor a
much longer period ot time than i1s necessary to

type the coummands. For exawmple, it a user wishes

tc assemble or coupile several packages of a large

program, rather than 1ssuing the ssquence ot
commands togcether, he may have to wait tof each
computation té complete betore entering the next
requast, thereby partitioning his free tine.

Time-sharing systems have proved 1invaluable tor

‘Speedy construction and debugging ot programs hut

there are many prograns whlch; when conpleted,
will compute for a long period ot txmavwlth no
need ‘of human interaction. Some systens provide an
offline wmode for running these prograns put 1in
general the command languoages are ditterent trom
the online command languages and less adequate.

C} There are ‘mahy dialogues with the conputer
whichrrequira very little creative i1ntervention by
the user. His presence at the console may be
necessary solely to chaperone the computation to
check for errors or to supply as ainput to one

proqgram the output of a previonsly exacuted one.

4

11

Page

%hat 1is needed 1n a time-sharing system 1s a continuunm
cf carabilities ranging from pure non-interactive (read
batch processing) on the one hand to highly 1ateractive on

the other.

2.0 HISTORY

Some work- which has been done in this area will novw be
descrited,. |

Tn an early effort, since superseded, the SDS-94U
time-sharing system a% Rerkeley provided a system which
weuld cpérate on a character tile 1n the frellowing way:
Characters would be taken trom the tile and delivered to a
"rseudo-teletype™. The system was deluded to believe that a
psendo-teletype was no ditferent trom a real teletypre, and
that characters sent from the tlle'were éctualiy. typed at
its keyboard. The 'pseudo~teletype would react to these
characters in =xactly the same way a real teletype would

react it the same characters were typed to it by a user.

‘The output response to this input at the pseudo-teletype was

diverted to the console ot the programmer using the
facility. A file wmight «contain breakpoints which would
cause interrdption ot the program, Breakpoints coulq be
placed wherever 1t was anticipated that creative or
unpredictable intervention by a human was required. The

user vwas allowed to 1nteract arbirtrarily with the

5

@

o Page

pseudo-teletype, through his own console, at these points
and then type a command to continue sending chardcters tronm
the file.

C15S, the time-sharing systen tor the I3M /0Y4 at HMIT,
made availlable to 1ts users a program called RUNCOM, This
is again a facility for sending a saguence at commands to a
"pséudo—teletype". A macro tacility (recursion and nesting
allcewed) which permits ags}qnlng_ a name to a series ot
commands 1s provided as well as a restricted conditional
facility. The conditaional fracility 1is actuaiiy' a spedlai
coenmand _in the time-sharing system which iakes as an
argument a syabolic name. It the name 1s notAihe name ot an
existing file then the RUNCOM program will ask the user
whether or not to abort. Testing in this tashiop proves .to
ke cubbersome and very ad hoc but 1t 1s nevertheless tound
to be quite usetful for detecting errors.

While JCL, the job control language tor the IBM 360, 1s
not a time-sharing command language 1t has attacked
analogcus probleus for batch processing. JCL. allows the
detinition of a sequence of commands Aas a MACLo with
symhbolic. parameters. Calling a macro trom an input card

deck atter using special commands to 1nitialize the values

ot itgs param>ters results in the series of paraneterized -

cemmands ba2ing executed. JCI, also has a conditional
facility. Each “step” or statement of the command sequence

has Aasscciated with 1t a "return code” wvhich 18 a positive

b

Page

integer assigned to the step atter 1t has been executed.
The return code 1s an error 1ndicator returned by each
executed coanand upon termination. We can write a statement
in the language which makes numeric tests on the return
codes ct-specified previously executad steps. " The result ot
a test statement 1s to decide whether the nazxt sequential

statement 1n the program is to be bypassed or executed.

3.0 THY LANGUAGE

The above threée systems are all similar 1n that they
essentially provide a tacility tor sending a linear
sequential list ot commands to be eaxecuted as 1r entered

. ‘) i : .
from a console. Th= RACCOs wWare introduced as a labor-savaing
device and the conditionais allowgd a ~small amounf ot
control over ‘the Job beling executed. W2 propose that a
language with = goto's, tunctiouns, conditionals, and
generalized string pattérn matching statements 1s nore
Suit€d toc the task of controillné 1nteraét1vé"pfocésSés.

The 1lanqguage should have the tacility to send a command ({(oT

just a string of characters) to a psaudo-teletype and then

wait for the complete response to this input. Subsequent

action on the part of the program can then be based on the
cecntent of = the response (L. 2. the output ot the
pseudc-teletype). With reasonable conversational features

in the language, a program can selectively choosa the

F)

1]

o

Page #H

-

significant input and output required by the user and obtain
the abcve mentioned continuunm,.

We will provide below a List ot atomic tunctions which
cculd be easily enbedded 1nto an axisting meieméntatlon ot
any language with stt1ng~hand11n§ capabilities, These
functiens would provide coanplete, m;nxmhm capabllities Lor
cormunication with the pseudoﬂtelétype‘ That 15, a xuﬁétlon
will be provided which takes as arguzent a string ot
characters. Calling the tunction will cause the characters
to be sent t6 the psendo-teletype. Other tunctions will be

provided to collect the output characters. With this

e

facility we can. do arbitrary coaputation to generate
COmmands and then do complex analysis ot thev response, Ve
can iragine very grandiose 'applicatlcns ot the racility.
For exampie consider a program 1n a language containing the
special tunctibns which constructs programs in éome other
language. The consttucted' programs could be entered,
corpiled and executed on the pseudo-teletype and then
evalu%ted on the basis ot their output. Another application
would Le “to conStruct an intertace between usér énd syéteﬁ
which is- radicaily ditferent trom the standard ccoamand
language provided. The .sttlng processing language could
accert commands in the new syntax and then transtorm then
intc wmeaningful ccmmands for the standard coummand.language.
More cowrmonly, however, use of tﬁe langquage would bhe to

consclidate lengthy commnand saguences inko A sinale

I

C

Page

rarameterized command. Mechanical error checking and oOther
avkcmatie operaticns would thereatter be remnved trom the

user's responsibility.

4.0 THE CCMMUNICATION FUNCTIONS

2 complete set of atomic tunctions for cormuUnicAting
with the pseudo-teletype will now be listed. The tunctions
could be addad to a processor of any reasonable string

manipulating language, tike SNOBOL, TRAc;'br couir, dr'éven,

in the torm of system calls, to assembly lanquage. The

syntax of the presented functions will naturally depend on

the language of their embedding.

LGGIN{ <name> , <password>)

This function obtains a pseudo-telatype tor
the program and enters the named user on 1t it the
password is acceptable. Null arguwents will cause
the nane and password ot the user rvunning the

“pregram- - to - be used. - The now - - active
psendo-teletype 1S left 1in a State where 1t 1s
avaiting its tirst command. The tunétlbn will trail
and do nothing if the arguments do not result in

a legal 2ntrance to the systen.

1

i/‘

Page 10

LOGCUT {)

This function of no arguments causes the
rsendo-teletype to be logged out, regérdiess or
what state 1t i3 1in, The pseudc~teietype 1s
automatically logged §ut.at the termination O the

pregram even 1if thiz 1s not explicitliy requested.

WATT()

| | This funcﬁion of no a:gumenté cau$es a pause
in iexécution“of the céntrai é:dgrém until the job
oa_thé,pseudq~£ei@type i85 in a gtate whereV;t, cén
d¢ nothing without recieving more 1nput.; That 1s,
it waits until the pseudo~£eletype 1s done Wwlth
1ts current computatiGﬁs. This tunction has é
null value and causes all output ot the
pseudo~teletype generated while waltlnj ‘to he
losﬁ. This function 1s necessary to gharantee
that all outpu£ trom past commands to the
pseua§~teletype has been generated. Hithéut this
iaéllity we would be hard praéﬁed io deczde’wnlch

cutput was associated with which command,

SEND(<striang>)
SEND first does a WAIT aﬁd then delivers the
characters in the string to the pseudo-teletype as
it reguests iunput. The SEND Function returns a

null valua.

Page 11

FéRCEP SEMD{ <string>)

FORCED SEND forces the psusdo-telotype 1into
the highest level ot the time~sharing systen
command languaye, 1ntetru§tinq any computatloﬁ
that may be executing, (A possible method ot
i@plementing this would be +to send .a spéc1ai
escapg character. to tné input butter obf the
pseudo-taletype which wonld be recognized by the
time-sharing system - as a réquest for . this
partiéula: action.) Then the'arqumeni“Sttlng Cas

sent as with the SEND function.

RECVCHAR{ <nuaber>)}
3
<;” RECYCHAR takes as argument an expression that

evaluates to a positaive integer, N. Tt collects X
. output characters trom the k'pseuaa-téietype'
resulting from the last SEND or FORCEDL SEND
funct;dn call, where X is less than or equal to N.
It ‘thére are less than ¥ charvacters (but at least
cne) then these characters are returned as the
value of the function; , it there are N or norsa
chafactets ot output then the tairst N characters
are returned as the value. Tt there 1s no output

then the function tails.

e

Page

RECVLIKE ()

The purpose ot this tunction 18 tO0 gather
output from the pseudo-teletype line by Lline, The
function takes no argumrents and returns. as .1ts
value the next line tron “the output - ot the
rseudo-teletype. If there 1is no more output then

the function fails.
ECHO{ <number>)

For conversational applications, 1t ~Rray be

desireable to occasionally allow the user to

.-

interact directly with the pseudo-teletype through
his own console. A program to do this would

a) accept a character {or characters) trom the
user '

b) SEND the characters to. the pseundo-teletype

c) gather the reply, it any, with RECYCHAR or
RFCVLINE : ' :

d) print the reply on the user's console:

e) go to step a.

Howaver, input characters will appear twice 1in the
output at the user's console - once tor his typing
cf the character, and once as part or the output
¢t the pseudo-teletype, The function ECHO, when
called with negative argument, turns oft the
echoing ot all characters 'input to the user's
consola. A subsequent call to ECHO with a

ncn—negative argument will turn the echoinqg back

14

on again. This tunction
interactive language;

secret passwords without

The appendix contains a
exanple of the use ot the

SNORCL3 language processor)

time-sharing system. The

straightfcrward application

Page 13

has other usas 10 an
tor exanple, to accept

naving them printed.

program which represents an
above tunctlohs'(lmhedded in a
operating on a hypothetical
examnple

denonstrates . a

ot the tacility - tor

consclidating a lengthy command sequence 1nto ‘a single

command. It-also shows how the. conditional teatures can be

used btoth to control and svaluate the execution ot thw 3job

and to do it with concise, paranaterized programs.

By providing a time-sharing system with a progran to

gqueue process control program tile names and a SUpPervisor

program to sequentailly execute process control. jobs trom

the gqueue, we can have a very reasonable background batch

processing facility integrated into the system. These Jjobs

weuld hre able to comnunicate with the command languages ot

the tiwe-sharing systen and could execute with a great deal

of conditional <control over themselves. It would he very

convenient to prepare, edit and subnit background jobs fron

a time-sharing console.

11

7
\ i
NS

Page 14

5.0 IMPLEMENTATION

Irplementation ot the above tunctions will vary
depending on the characteristics ot the time-sharing systen.
The irplementation at Berkeley rTeguired ptOVlS?Onl by the
time-sharing system ot tour prlﬁlleqed todtlnes which when

called by a suitably authorized program would:

- A) Simulate the 1npptﬁ 0or a character at the
xéyboard ‘otb ‘another | teletypé. (i.e. put a
character into the i1nput butfer ot that teletype.)

B)Y Suppress the typing.or characters put into the
cutput buffer of another teletype. h
C) Read characters out ot the output butter ot
ancther teletype.
L) ﬁetermine it anothern teietypé 1s Irunnlng a
ptbqram which is dismissed wailting tor teletype
ingﬂt. (
Needlecs to say the physxcalleXLstence of a teletype tor
this jeb is not required. | |
- This method of implementation was aintluenced by the
nature of the already existing time-sharing system, and 1is
nct cbmpl@tely satlstactory. When a process control Job 1S
running undor this implenmentation, the time-sharing systen
actnally sees two separate jobs - the controlling progran

and the Jjob being controlled. This means that two entry

rorts tc tne system are absorbad although the tyo Jobs are

Page 15

.crerated by only one user and saldom compute in parallel.

Net only is this a waste of a valuahle system resource, but
it also results in a difticult accounting problem. During

crocess control, twice as much LOGIN time 135 charged than 1s

.actually spent by a user at a paysical console. Another

cemplaint 15 that the indirect approach of using teletype
bufters tor the conmmunication of commands Détween the two
jobs secms inefficient and unclean.

in a more versatiLe operating sSysten one would wish tb
canse the controlled dJob to execute as a subsidiary or
rarallel ©procass of the centrolliing prografie. This
introduces some problems however. It 1s\1mp5;tant that the
contrclled job execute exactly as 1t 1t were entered trom a
standard console. TIn particular, 1t must have all the sane
capabilities (é.g. émount ot memory, nuﬁber ‘ot devices
attachable, number ot files 1t can 51multaneously Dpen,
efc); 'Also;lits universe of discourse must be restricted to
cnly rits own created environment, and not that ot tha
contfoliinq'program. For example, 1%f 1n the course ot ats
computation, the <controlled Jjobh executas the operation

"CLOS¥ ALYL FILES", the controlling program should not be

As tor the command communication between the two jobs,
a parameterized input/output structure 15 ne2ded. HWe should
te able to specify as one of the 1nitial rparameters to a

job, that its command input and output will take the torm ot

@

~

A

Page 1b

ccmmunicaﬁlon with a partacular Ddrocess control Fprogram.
This will cause each call to a telatype input/output routine
to execute an appropriate process conmmunication routine
instead of a teletype operatlon./ Notice that 1t the
crerating sysﬁem pernits any operat;ons “which rake

assurrtions about the nature ol conmnand input/output (R.q.

WCLEAR TELETYPE OUTPUT BUFFERW)Y then these .routines nust

perforn an equivalent ope;ation vhen executed by a
centrclled job.

These reyuitements ftor a clean 1implementation ot the
conditionai éonVQrSdfibnal command processing tacilities are

in tact general problems of current operating systenm design.

6.0 CCNCLUSION

In 1967 & specialfpurpose projgramming languagev-aeyoted
entirely‘ to 1interactive process cbnﬁroilind' called CCP
(ConditionaL'Commagd Processor) wés 1aplenented on the SDS
940 in the spirif of the above. © The language had a protound
imgact.on the us2 of the time-sharing systen byA'peopie vho
construct and maintain large programs.. The assenbly éna
lcading ot fhese programs has bean alnost conpletely
auvtomated byA the use of ths language. The mosSt notable
example of this 1s the assembly and loading o the
time-sharing system itself, which requires a COP prodgram SiX

pages in lewngth., The operations requiraed are contusing

/

Y
(L

@

page 1/

encugh thaf the chance of thear beilng pertormed correctly by
hurans 1s less than fitty per cent: with CCP the entire
process can he performed automatically in a relatively shoft
time with no human intervention required.

Ncw ccmpleted 1s the embedding of tne tunctions listed
above 1in an implementatiou otVSNOBOLu at Berxeiéy.>The mucCh
greater power in the SNOBGL language has éﬁablea Amuch nore
ccrplex deb control progranms to be-wrltten, programs which
can adjust thelr execution i1n a very tlexible manner as'tney
ckserve the course ot the Jjob being controlled. For
examnple, Cne programuer 1nterésted 10 a newv 1ﬁteract1vevtext

editing command language has Dpuilt an intertace with tne

standard editor on the system to allow experimentation with

it.
Rutler Lampsbn advised this research rrom. the
beginning, and with Larry Barnes. helped specity the

commupication functions and their, implementation on the SDS

quo,

I

Page

)
(;/ REFERENCFS

The Comratible Time~Sharing Systen
P.A. Crisnan

M.T.T. Press, 1966

IEM Systen/360 Operating System Job Control Languaqge

IBM Doc. 28-6539-7, May 1968

Reterence Manual - Time-sharing System'
1.F. Deutsch, L. Durhan, B.%. Lampson .
Prcject Genie Doc. R-21, University of Calitornia,

S

<¥) Perkeley, October 1Y6Y

CCP - Ccnditional Coamand Processor
C.A. Grant
Project Genie Doc. R—29, liniversity ot Cailrorhla,

Berkeley, July 19067

Interactive SNOBOL4 System tor the 5DS 940
R. Sturgeon
Project Genie Doc. R-34, University ot Calitornia,

ferkeley, December 19568

11

1]

T Page 1Y

APPENLCIX

*THIS SNOBOL3 PROGRAN ACCEPTS AS INPUT A LIST OF FILLE NAWMES
¥*WHICH ARE EXPECTED TO BFE THR NAMES OF SYMNBOLTC ASSEMHLY
*LANGUOACE PROGRAMS. THE NAMES ARE T0O BE SEPARATED BY COMHAS.
%

¥ERCH FILE 'YX IS ASSEMBLED AND THRE BINARY IS QUTPUT TO THE
*FILE 'BTNX'. AFTER ALL ASSEMBLIES HAVE BEEN DONY, THE FLLES -
¥*ARE ALL LOADED AND THEN THE RESULTING CORE IMAGE 1S DUMEED
*TO THY FILW CALLED 'DUAPY. IF THERE ARE ANY ERRORS DURING
*THE ASSEYBLY OF THE FILES, THE NAMES OF THE FILES

*AND. THE BSSOCIATED ERROR. ﬁFaSAGE@ ARE PRINTED, BUT NC
*LOATINCG IS DCHNE.

STABT LOGIN (SHITH, PASSHORD)
*SEND MESSAGE TO USER TO INPOT FILE NAMES

OUTPUT = 'ENTER FILE NAMESz ¢
*READ TN THE FILE NAME LIST
FILELIST = INPUT v ,¢
*THE CCMYA IS USED TO ALLOW STIHPLE PATTERN MATCHING. TO
*INDIVIDUALLY REMOVE ALL THE NAMES FROM THE LIST.
FILECOPY = FILELIST
*THE CCTY OF THE LIST WTILL BE USED DURING LOADING.
ASSEMRLCOP FILELIST #NAME® ¢,v = / F(LOAD)
*NOW UNAME' HAS AS VALUE THE NEXT FILE NAME TO ASSEMKLY
: SFND(YASSENBLE FILE: ' NAME ' TO FILE BLIN' NANE)
ASSEMBLOUT = RECVCHAR (1000000) } '
*BY USING A LARGE NUMBER WE ARE SURE TO GET ALL THE
*MESSAGTES GENERATED BY THE ASSEMBLER IN RESBONSE TO
*THE COYMAND SENT ABOVE.
ASSEMBLOUT 'INVALID' ./S(ASSEMBLERROR)
ASSEMBLOUT- "ERRORY = /S (ASSEMBLERROR)
ASSEABLOUT '2' /S (ASSENBLERROR) F (ASSEMBLODP)
*IF WE FCUND ANY ERRORS WE WENT TO 'ASSEMBLERROR',
XCTHERWTSE WE WENT BACK TO GET THE NEXT FILE NANE.
LOAD . EQUALS (ERENDRFLAG, 1) /S (DONE)
SEND (*LOADER SYSTEM?)
*NOW WE CAN LOAD EACH FILF

ICADLCCE FILECOPY *NAME= v 1t = /¥ {bUMP)
SEND{'LOAD FILE BIN' NAME) / (LOADLCGOP)
DOMP SEND ('DUXAP LOAD ON FIL®: DUMPY) / {DONE)

ASSEMBLEEROR ERRORFLAG=1
OUTPUT= 'FILE ' NAMW® ' HAD ERRORS: ¢
OUTBUT = ASSENRLOUT / (ASSENBLOOP)
X*AFTER BRINTING THE ERROR MESSAGES UE WILL GO ASSEMBLE THE
*CTHER FILES IN CASE THEY ALS0 HAVE XRRORS.
%
LONE LOGOU'T () / (END)

*

I

