(M

REFERENCE MANUAL
Q. E. D.
TIME-SHARING EDITOR

D. C. Angluin
L. P. Deutsch

Document No. R-15
Revised March 26, 1968
Contract SD-185
Office of Secretary of Defense
Advenced Research Projects Agency
Washington, D. C. 2032 '

AL)
(o]

9.0

TABLE OF CONTENTS

Introduction . . .,

1.1 A Summary Description .

1.2 Command Mode, Formats .

1.3 Notation and Conventions
Addressing Text

2.1 Iegal Addresses .

2.2 Type Address Commands .

2.3 Examples for Section 2.0

Printing Text

Saving Text on Piles

Destroying, Creating and Changing Lines
5.1 Deleting Lines

5.2

Adding Lines .

5.3 Changing Parts of Lines .

5.4 Control Characters for Text Input .
Substitute .

String Buffers

7.1 Loading, Deleting, and Printing Buffers .

7.2 The Uses of String Buffers
Mode and Tab-Setting Commands
8.1 Quick/Verbose Mode

8.2 Ignore Characters Mode
8.3 Tab-Setting .

Returning from QED and Panic Messages

3.1 The Normal Return . . . v « « + « « + .
9.2 Rubout
9.3 Panic Messages

APPENDIX A: Index of Control Characters

APPENDIX B: Index of Commands

1-1
1-1
1-1
1-2
P-1
2-1

1.0 Introduction

1.1 A Summary Description

QED is a rather powerful program for editing symbolic text
which runs under the 930 time-sharing system. Tts input and
output are symbolic files which can also be handled by the

‘executive COPY command. It has extensive facilities for

inserting, deleting and changing lines of text, a line edit
feature, a powerful symbolic search feature, anutomatic tabs

which may be set by the user, and thirty-six buffers. Text

can be read from any file and written onto any file. A replace
command permits all occurrences of a specified string of characters
to be replaced with another string.

1.2 Commend Mode, Formats

To enter QED from the executive type QED. (underlined
portions are typed by the user.) QED will type a * and the user
may type any of the commands described in this manual. When
the operation of a command éZE?%g}minated and QED is ready for
another command, it again types *; at this point QED is waiting
for commands and is said to be in "command mode."

The formats é@f%he various commandsare of three basic types:

1. A single (non-alphanumeric) character (possibly preceded
by line address(es)), for example: / and %, which
requires no confirming dot, but rather begins its
specified function as soon as the charscter is typed.

2. A command word (possibly preceded by line address(es)),
for example: TABS and MODIFY, which require a confirming
dot before the specified function is begun. In typing
the command word, the user only types the initial
letter, then QED recognizes the command and types the
rest of it. The user may then type a dot (.) to
confirm the command, or any other character, in which
case the command will be aborted.

C 1.2

3. Mavericks, namely: READ FROM, WRITE ON, SUBSTITUTE and
the buffer commands (LOAD, GET, JAM, BUFFER and KILL)
each of which is specified by typing its initial
letter (QED types the rest) but otherwise has a unique
format (for fuller explanation see individual descrip-
tions). ‘ |

For a list of all commands recognized in command mode (and the
locations of their descriptions) see Appendix B.

1.3 Notation and Conventions

A character with a following superscript C is a control
character and is typed by pressing the control key togéther with
the key for the basic character, for example, p° is control D
and is typed by holding down the control key and pressing the key
for D. Control characters do not have any printing characters
normally éssociated with them; to emphasize that nothing is
printed when they are typed, in the examples they are enclosed in
parentheses (which, apart from the function of emphasizing this
fact, should be ignored). In certain contexts, QED will print
some character when a control character is typed (e.g.,

for Bc, 4+ for Ac,‘\ for Wc). This is noted in the individual
descriptions of the control characters, section 5.4. Also,

when a control character is part of the text being input from
output to the teletype, QED will represent gi as & (where c

is some printing character), for example, ¢ will be typed as &*t.

'C' is used throughout this manual to indicate a single
(arbitrery) charecter. 'A', 'B' and 'I' are described in under
text addressing, section 2.1. Apert from these special symbols,
(in the examples and férmat-specifications) lower case letters,
parentheses, and underlining are used for comments, explanation,
and variable structures (always specified more fully in their
descriptions); and all other characters are literally typed by
QED or the user in specifying or executing the operation concerned.

D

2.0 .Addressing Text

The text being edited is held in a single buffer, called
the main text buffer. It consists of a series of lines delimited
by carriage returns (CR's). The line is the only addressable
unit of text. -

2.1 Legal Addresses

Lines mey be addressed in the following ways:

1.
2.

By decimal numbers. The first line is numbered 1.

By . (called 'dot'), which refers to the current

line. The value of . is changed by many of the
editor's commsnds, as noted below.

By $, which always refers to the last line in the main
text buffer. ' |

By laebels. The structure :text: typed in command mode
caugses a search for the indicated text at the beginning
of a line end followed by a charsascter which is not a
letter or a digit. When typing in the text, Ac, Wc,

o¢ and Vv° have their usuel functions (see section 5.4).
The text may contain any characters, may be a maximum
of 30 characters long, and is terminated by a colon (:).
The search begins with the line after the current line,
and cycles to the beginning of the buffer if it runs
off the end. Buffer O is loasded with the text searched
for. If the search succeeds, . addresses the line
where the label was found, and the value of :text: is
also this line. (Note that QED does not type any response
specifically to indicate ﬁhat a search succeeded.)

If there is no line with the specified label in the
main text buffer, QED types ? and restarts command input.
(In this case . is not changed.)

The search may be begun at line A where A is any
legal address), instead of at .+l, by typing A:text:
For example, .:ABC: begins the search at the current

line.

2-2

5. By arbitrary text. The structure [text] causes a
search for the specified text anywhere in the main
text buffer. The text may contain any characters
(and arbitrarily many of them) and is terminated by].

' The search proceeds in the same way as the label
search (4), and has the same effect when it succeeds
or fails. Altext] sterts the search of line A, as

in label search.

6. By a legal address followed by +, - or space, followed
by another legsal address. This construction has the
obvious meaning with the following qualifications:

a) Space is treated as +

b) A+B, A B, or A-B where A is any legal address and
B 1s a search is equivalent to AB, i.e., the search
for B is begun at A and if it is successful, . and
A+B (or A B or A-B) address the line where the
search succeeded. »

c) After a search has been given in an address, . and $
may not be added to or subtracted from the address
being constructed. EQg., stext:+$, [text]-., and
- ttext:+9-. are not legal addresses.

d) There can only be one occurrence of . or $ in a
given sddress. E.g., $-., .+, $+§-15 are not

- legal addresses.

Throughout the remainder 6f this manual, the symbols ﬂvand
B will represent any legal line addresses. Also, the symbol I
will indicate that a single line address, A, may be given; or
a pair of line addresses separated by a comma (thus: A,B),
where the second address is at least as great as the first. In
this latter case, the interval is inclusive, i.e., A,B specifies
lines A through B. (A,B where B is less than A is treated as
an illegal parsmeter.) Or, one may typeéﬂ, which addresses
 all the lines in the main text buffer. (And is thus equivalent
to 1,%.) ' ‘

9

2-3

Generally, if no line addresses are typed before a command,'
the interval is taken to be just the current line. TFor example:
¥DELETE. 1is equivalent to *.DELETE. and %/ is equivalent to
*,/ . Exceptions to this are: |

¥APPEND. , which is equivalent to *$APPEND.

¥READ FROM, which is equivalent to ¥$READ FROM

*WRITE ON, which is equivalent to *1,$WRITE ON
If en address being typed in is deemed to be illegal, QED types
? and restarts command input. When a command is given, negative
line addresses are converted to 1, and an address greater than
that of the last line is treated as an illegal parameter, i.e.,
QED types ? and restarts command input.

(Note: exemples for text-addressing and type address

- commends are in section 2.3.)

2.2 Type Address Commands

To facilitate text addressing, there are two commands which
convert between sbsolute line numbers and symbolic addresses.

A= (where A is any legal address) causes GED to type
the line number of the line addressed by A.

Ae- ' causes QFD to type the "symbolic address" of the
line addressed by A. (That is, the label of the
last line preceding A which has a label, followed
by a decimal number indicating its displacement
from A. (The label part of the address is enclosed
in colons)). For this command, any line which
begins with something other than a carriage-return
or a blank has a label, and the lebel typed out will
terminate with the first character after the initial
one which 48 not a letter or a digit. For example,
the label typed out for the line *AB¥*C will be
+*AB:, and that for **AB*C will be :%*:

2.3 Exsamples for Section 2.0

It is assumed that the reader is familiar with the command
/ which types out the line or lines addressed.

+@/
FIRST LINE
SECOND

THIRD
FOURTH ! ! LINE
##FIFTH
*1/
FIRST LINE
*.=1

*$/
HFFPIPTH
%:SECOND : =2
*, 52
*:FOURTH: /
FOURTH! ! LINE
*:POUR + 7
*:FOURTH!:/
FOURTH! ! LINE
*:FOURTH! !¢ ?
*+FOURTH! 12 FOURTH:
*[4]=5 ’
*[H! L) =k
*[8T]=1
*,e2FIRST:
*[FT e :
*[INE}:]_
*, =)
*[INE}=h
*{ INE }=1
* [INE]=1
*2[INE] =l
* [INE]=1
* [INE] =h
*:FIRST: [INE =1
*1[IRST][IRD}{ INE)=
% FIRST: :SECOND: [IRD] [FI et s
*.=5
*.1/
?
%1/
FIRST LINE
* +2/

THIRD
%, ¢+ SECOND: 1
*,+2=5
*, DetHe
*$-2=3

*

2-4

.

(N

3-1

3.0 Printing Text

As text is kept "out of sight" in the main text buffer, the
user must explicitly direct QED to type out a line or lines
for his inspection.

There are four basic print commands (in each, the value of
. is changed to the last line typed out):

I/ types out the lines(s) addressed by the
interval I.

line-feed types out the next line (i.e., .+1).
% types out the previous line (i.e., .-1).

IPRINT. allows formatted printing of the line(s)
addressed by I; on the next line, QED types
DOUBLE? and expects the user to type Yor N
(which will be completed as YES or NO, respec-
tively) in response, to indicate whether he
desires double-spacing of the text. QED then
types the lines in pages of 54 (single-spaced)
or 27 (double-spaced) lines; before each page,
QED types & number of line-feeds, a short dashed
line, and an equal number of line-feeds. Also,
the last page is filled out to the size of the
others and marked at the bottom with a dashed
1line.

Examples:

*1,$/
FIRST LINE
SECOND

THIRD
FOURTH! !LINE
#HFIFTH
*4
FOURTH! ! LINE
*4

THIRD
»*

FQURTH: ! LINE
*

HPIFTH
*

?

*1/

FIRST LINE
#17

*2, :FOURTH : PRINT.

DOUBLE? YES

SECOND
THIRD

FOURTH! ! LINE

L.0 Saving Text On Files

The following two commands enable the user to move text

between QED's main text buffer and symbolic files.

They accept

file names in the format required by the executive.

AREAD FROM (file name).

IWRITE ON (file name).

Exemples:

*15,17/

A BCD

12345678

EFGH ~
*15, L'TWRITE ON /TEST/.
9 WORDS.

*$=115 |
*READ FROM /TEST/.

9 WORDS.

#$=118

*$”23$/

A BCD

12345678
EFGH
*

QED reads all the text from the
specified file (which should be
type 3, symbolic) and appends it
after line A. ‘

¥READ FROM is the same as *$READ FROM.

After QED has finished reading the
text, it types out the number of
"words" read, (One "word" is approxi-
mately 3 characters.) and returns

to command mode.

The main text buffer is not cleared
before the READ.

QED replaces the contents of the
specified file with the lines in
the interval I.

*WRITE ON is the same as
*1,$WRITE ON

After QED has finished writing the
text, it prints out the number of
"words" written and returns to
command mode.

The main text buffer is unaffected
by the WRITE.

(the lines read were appended, and
the main text buffer was not cleared
first.)

5-1

5.0 Destroying, Creating and Changing Lines

The following sections describe the heart of QED: the
commands by which the user changes the text held in the main
text buffer:

5.1 Deleting Lines

IDEIETE. causes the line(s) addressed to be
T deleted from the main text buffer;
. is set to the line before the
first one deleted.

Example :
*,h/ print the first four lines
FIRST LINE
SECOND
THIRD
LINE POUR
*$=115 ; there are 115 lines in the main text buffer,
*2, 3DELETE. delete the second and third lines.
*, =1 . is the line before the first one deleted (#2).
*$=1%3 there are 2 fewer lines in the main text buffer.
*1,2
FIRST LINE ~ the old second and third lines have been deleted.
LINE FOUR ,
%

5.2 Adding Lines

After each of the following three commands -~ APPEND, INSERT,
and CHANGE -~ QED expects the user to type in a series of lines
(each terminated by a carriage~return), the whole series followed
by a D° to indicate the end of the series. QED then takes the
lines so collected and puts them into the main text buffer in
the position specified by the commend (see individual descriptions.)
(If the user does not follow the last line with a carriage-return
before he types the Dc, QED will insert the necessary carriagé-
return.) In addition to D%, all of the control characters described
in section 5.4 are recognized; the line being edited is taeken to
be a null line, i.e., one containing no characters. . is changed
to the last line collected.

AAPPEND.

ATNSERT.

ICHANGE.

Examples:

*1,$/
*APPEND.
NEW TEXT(D®)
* sNEW : INSERT.
Fmsr(cng
SECOND(D ")
*1,$/
FIRST
SECOND
NEW TEXT
*PAPPEND,
THIRD(D®)
*1,$/
FIRST
SECOND
THIRD

NEW TEXT
*$CHANGE .
FOURTH(CR)
FIFTH(DC®)
*1,$/
FIRST
SECOND
THIRD
FOURTH

FIFTH
*

5-2

QED expects the yser to type in a sequence
of lines; when D® is typed, the APPEND is
terminated, i.e., QED takes the lines
collected and inserts them after line A
in the main text buffer. If the address

" A is omitted, the collected lines will be

added to the end of the main text buffer.
This is the usual command for creating a
body of text from scratch.

QED expects the yser to type in a sequence
of lines; when D~ is typed, the INSERT is
terminated and the collected lines are
inserted before line A in the main text
buffer.’ :

QED expects the yser to type in a sequence
of lires; when D~ is typed the CHANGE is
terminated, the line(s) addressed by I
are deleted, and the collected lines are
put in their place. (The interval I

and the collected text need not have the

same number of lines.)

there is nothing in the main text buffer.

a CR is supplied by QED to terminate the line.
the CR does not terminate the sequence of lines.

the collected lines were inéerted before #1.

the collected line was inserted after #2.

the collected lines were inserted into the main

text buffer in place of the line NEW TEXT.

.5-3

5.3 Changing Parts of Lines

These two commands -- EDIT and MODIFY -- allow the user (via
the control characters described in section 5.4) to change-just

part of a line, and thus usually require less typing than the.

same chenge made with CHANGE (which forces the user to type a

whole line over to make a small change in it.) . is changed
to the last line edited.

AEDTT.

AMODTFY.

A BMODIFY.

Examples:

QED types out line A and then expects a new line
to be typed in to replace A. All of the control
characters described in section 5.4 are recognized;
the "old line" or line being edited is line A.

In particular, CR, D¢, or FC will terminate the
EDIT, and the new line replaces the old as line

A in the main text buffer.

is a convenience permitting repeated single-line
edits. Line A is typed out, and when the edit
of that line is terminated (with CR, DC or F°),
the next line (A+l) is typed out for editing.
When the edit of the last line (line B) is
terminated, and the new lines replace lines A
through B in the main text buffer.

is exactly equivalent to AEDIT. except that the
line being edited is not typed out at the
beginning of the edit.

is exactly equivalent to A,BEDIT. except that
the successive lines sre not typed out before
the user begins to edit thend.

(The underlined characters are assumed to be those typed by
the user in the EDIT.)

5.

*:CHCR :EDTT.

CHCR SKG =778

CECR SKE. =155B(CR)

*.] .

CECR SKE =155B

* MODIFY.

RLP CLA(CR)

%]

RLP CIA

*3,4EDIT. -

A ZRO old line #3.
Al BSS 1 " new line #3.

B ZRO 0ld line #u4.

Bl BSS 1 new line #4.

*3,4/

Al BSS 1

Bl BSS 1

*

For more (and more enlightening) exemples of these two commands
see the examples in section 5.4 on control characters.

5.4 Control Characters for Text Input

The control characters described in this section facilitate
text input. All of them are recognized (and have the functions
described) in text input in the commands APFEND, INSERT, CHANGE,
EDIT, and MODIFY. In addition, those marked with an asterisk (*)
are recognized in the JAM INTO commend, end in specifying the
text in searches and SUBSTITUTE. Finally, the following two
control characters (I° and B®) are always recognized (except
immedistely after a V©):

(3

Table of Contents for

Section 5.4

Tab and Buffer Call
Buffer Call
Tab .
Line Terminaste ,
" Carriage Return
Escape Character
*take C literally
Backspace
*one ‘character
*one word
“¥one Line
one character (restorative)
Copy |
one character
to tab stop
to end of line
up to C
through C
rest of line (terminate)
rest of line (no typing)
Skip
one character
up to C |
through C
Retype
fast
aligned
Re-Edit
concatenate-re-edit
Mode Change
insert/replace
ignore/usual
buffer 1/usual

* Recognized in APPEND, INSERT, CHANGE, EDIT, MODIFY, JAM INTO, SUBSTTIIUT

searches.

Character
B%C

Page

5-5, 1-3

5=5

5-5

5-8
5-8
5-9
5-9
5-10
5-10

5-11

512
510
5~13

5-14
5-14

5-1h

5-15
5.16
5-17

E, and

5-6

(
Pab and Buffer Call (Always Recognized) : J
B° ¢ (where C is g letter or a digit) is cal) of string

buffer C. B~ is echoed as #. Typing Bcg is equivalent

to typing in the whole string of characters in buffer C.

(For a full description and examples see section 7.2)

causes QED to space to the next tab stop (tab stops are
set with the command TABS, q.v.). If there are no more

tab stops on the line, QED types bell and takes no further
action.

The Carriage Return

M is exactly equivalent to carriage-return (i.e., M® and
the CR key are two ways of typing the same character.)
QED automatically supplies a line-feed. Carriage-returns
serve to delimit lines of text. 1In addition, a carriage-
return terminates editing of the current line in EDIT

or MODIFY. (It does not terminate an APPEND, INSERT or
CHANGE; only D° terminmates these latter operations.)

The Escape Character
% yoe causes the character C to be appended literally to the ™

text being collected and disables any control function c S
might otherwise have. C may be any character.

Examples:

*:A(V°) B2/ v° prevents : which follows it from terminating the label.
A:B,A RATIO :

*$APPEND. c ’ c ¢
(v)(D®)aD,144B(D") (&D is typed by QED) V allows the user to enter a D

* (which types as &D) without terminating the APPEND.
&D, 144B |

¥*

Backspace Characters

The following control characters delete one or more characters from the
end‘of the text already typed in; all of them may be iterated. TIf any of these
backspace characters causes the whole line currently being typed in to be

deleted, QED gives a carriage return and line~feed; typing may then continue.

* A° QED types 1 and deletes the preceding character. In

editing, A® does not affect the status of the old line. (::>

Examples:
Suppose the user has typed in part of a2 search:
*[ACD

and then types two A%'s and continues typing:

*[ACD11BCD]/
7ZABCD EF
¥*

in this case, the first A% deleted D, the second, C. Suppose the user

has begun an EDIT:

*sWXC:EDIT. ;
NXC STA CHAR old line: 'TA CHAR'

NXC S ‘ new line: 'NXC 8!

and now types A%

*:NXC:EDIT. ! :

NXC STA CHAR old line is still: 'TA CHAR'

NXC S% - new line is now: 'NXC !

w® : QED types \ and deletes the preceding "word". That is,
all preceding blanks are deleted, and all non~blank
characters up to the next preceding blank.

Examples:

Suppose the user has begun to load a buffer:

*JAM INTO #3. «
A LINE ‘ (A LINE ' has been typed)

and now typés Wc and continues typing.

*JAM INTO #3.
A LINE \CHARAC’I’ER(D)
¥BUFFER #3. ‘

"A CHARACTER"
*

that is, the characters 'LINE ' were deleted. Suppose the user has typed:

*APPEND. ,
ae CI0 NEWF ('ac CI0 NEWF' has been typed)

and now types W and continues typing:

*APPEND. ‘ .
GC CI0 NEWF\FILENO(D")
*/ » ‘

Ge cI0 FILENO

% ‘

that is, the characters 'NEWF' were deleted.

5-8

5
3 ;
5

o A .
Q QED types « , gives a carriage return and line-
?eed, and deletes the line currently being typed
in, or if there are no characters in the current
line, the preceding line is deleted (in line-
editing, the old line is restored as it was when
the edit began).
Examples:
Suppose the user has begun to type in a label:
*:NXCH
and then types Qc and continues typing:
* s NXCHe
PCHR :/
PCHR GCD MSP
* .
that is, the characters 'NXCH' were deleted. Suppose the user starts
the foliowing insert:
*3INSERT. ' |
ABC »
EFG
H
and now types two Qc*s and continues typing:
*3TNSERT .
ABC
EFG
He- line 'H' is deleted.
- line 'EFG' is deleted.
DEF o '
GHI(D")
*3,5/
ABC
DEF
GHI
*

In this case, the first Qc deleted the line 'H', and the second deleted

the line 'EFG'.
Nc QED types * and deletes the preceding character.
In addition, in edit mode, QED restores the last
- charactdr obliterated from the old line, if any.

9

5-9
Example:

If the user has begun the following edit:

*:NXC:EDIT.
NXC STA - CHAR old line: 'TA CHAR'
NXC 3 new line: 'NXC S'

and then txpes NC:

*:NXC:EDIT.
NXC STA CHAR old line is now: 'STA CHAR!
NXC S% " new line is now: 'XC !

that is, NC restored 'S' to the beginning of the old line.

Copy Character53

The following characters copy one or more characters from the'old line onto
the end of the ﬁew line. “(Except in D° and F®) if the 0ld line contains no more
characters, or if the character to be copied to (in 7° and OC) does not appear

in the old line, QFED rings the bell (perhaps more than onéé) and takes no other

action.

c¢ QED copies the next character of the old line onto
the new and types out the character copied.

Example:

* s NXC:EDIT.

NXCHR IDA CHAR old line: 'CHR IDA CHAR'

PR ‘ new line: 'PR!

‘If the user now types a CC:

*:NXC:EDIT.

NXCHR DA CHAR old line: 'HR LDA CHAR'

PRC ' new line: 'PRC’

u¢ QED copies characters from the old line onto the

new, up to the next tab stop, and types out the
characters copied.

Example:

Suppose the tab stops are the usual ones (8,16,32,40) and the.user

has begun an edit:

*32EDIT.
AB34567890 old line: '34567890"
iz new line:; '12°¢
Tf the user how.typés vt
*¥32EDIT.)
AB34567890 0ld line: '890'
1234567 new line: '1234567"
H° QED copies the rest of the old line onto the new,
typing out characters typed; editing may then continue.
Example:
*133EDIT.
STORE CHR,CNT, F1G1 old line: ' STORE CHR,CNT, FIGL’
INTT new line: 'INTT!
: c
If the user types H : (::>
¥133EDIT.
STORE CHR,CNT, FL&1 0ld line: '' (null)
INIT STORE CHR,CNT,FIGL new line: 'INIT STORE CHR, CNT, FLG1'
o°c QED campies the old line up to, and not including, the
next occurrence of the charascter g after the next
character, typing out characters copied. Q; is never
echoed.)
Examples:
#*[HALLE]EDIT.
SANG HALLELUJAH! old line: 'NG HALLELUJAH!'
ST new line: ‘ST’
If the user now types QCH:
*[HALLE]EDIT.
SANG HALLELUJAH! 0ld line: 'HALIELUJAH!'
SING new line: 'SING '

5=-10

)

5-11

If he types‘OCH again: 0

*[HALLE]EDIT. : :
SANG HALLELUJAH! old line: 'H!'
SING HALLELUJA new line: 'SING HALLELUJA'

If the user again types OCH, QED will ring the bell and take no further
action since the line beyond the next character (the next character is H, the
line beyond is '!') cortains no further occurrences of H, i.e. QED has already

copied up to the last H of the 0ld line.

e

z°C QED copies up through the next occurrence of the
character C in the old line. C is echoed when it
is copied, not when it is typed.
Example:
*[HALIE]EDIT. '
SANG HALLELUJAH! o0ld line: 'NG HALLELUJAH!®
SI new line: ‘'SI'
If the user now types ZCH:'
*[HALLE JEDIT.
SANG HALLELUJAH!: , old line: 'ALLELUJAH!'
SING H ' new line: 'SING H'
If he again types 7 H:
*[HALLE JEDIT.
BANG HALLELUJAH! old line: '
SING HALLELUJAH new line: 'SING BALLELUJAH®

1f 7°H is typed again, QED will ring the bell and take no further action,

as there are no occurrences of H in the rest of the old line.

p° QED copies the rest of the old line onto the new,

typing out the characters copied. In addition, p°
terminates the edit of the line in EDIT and MODIFY,
and terminstes text-collection in APPEND, INSERT and
CHANGE (also in JAM INTO).

5~12

Examples:
*210EDIT. f - '

STCRE . CHR,CNT, FL&1 0ld line: ' STORE CHR,CNT,FLGL'
INITL _ new line: ‘INTTL’

1r D° is typed: \ o

*210EDIT. . -

STORE CHR,CNT, FL&1 1
INIT1 STORE CHR, CNT, FLG1 «~ this is the new line #210
*

Suppose the user has begun the following edit:

*13, I4EDIT.
A BSS 1
$A '

and now types p°:

*13, 14EDIT.

A BSS 1 :

$A BSS 1 the edit of line #13 terminates

B BSS 1 and line #1h is typed out for editing.

(When the user terminates the edit of line #14, the whole edit will

terminate and the lines typed in will become the new lines #13 and 14.)

%

F ‘ QED copies the rest of the old line onto the new
without typing it. In addition the 8dit of the line
is terminated in EDIT or MODIFY. (F~ does not
terminate an APPEND, INSERT, or CHANGE.)

Example:

*:NXCHR ¢EDIT. ‘ _~

NXCHR LDA CHAR : old line: 'CHR LDA CHAR'

PV new line: 'PV'

If the user now types s

*:NXCHR :EDIT. :

NXCHR IDA CHAR ‘

PV (the characgers copied are not typed out).

*./ Note that F~ terminated the EDIT.

PVCHR IDA CHAR

*

W

5-13

Skip Characters

The féllowing control characters cause one or more characters from the
old line to be skipped; the new line is not affected. QED types % férkéach
character skipped. If there are no more characters in the old line, or if
the character to be skipped to (in P° and X°) does not occur ih the rest of
the old line, QED rings the bell end takes no furﬁher action. (Editing may

then proceed normally.)

g® QED skips the next character of the old line.
Example:
*[CARTO]JEDIT.
THE CARTONS OF SHELLS 0ld line: 'S OF SHELLS'
THE CARTON new line: 'THE CARTON'
Tf the user now types Sc:
*[CARTOJEDIT. _ S
THE CARTONS OF SHELLS 0ld line: ' OF SHELLS'
THE CARTONY% new line: ‘'THE CARTON'

(At this point, the user could type D° and the new line 'THE CARTON

OF SHELLS' would be placed in the main tekt buffer and the EDIT would
be terminated.)

PCQ ' ' QED skips up to (not including) the next occurrence
: of the charactgr C in the old line after ghe next

character. (P~ is the skip analogue of 0°.) C is
never echoed.

Example:

*[HALLE]EDIT. y

SANG HALLELUJAH! old line: ' HALLELUJAH!'

SING - new line: 'SING'

If the user now types PCH:

*[HALLE]EDIT. ,

SANG HALLELUJAH! 0ld line ig now: 'HALLELUJAH!'

SING% new line is still: 'STNG'

5-1h

If the user sgain types PH:

*[HALLE JEDIT.
SANG HALLELUJAH! 0ld line: 'H!'
SINGILHTALDTA% ' new line is still: 'STNG'

If the user again’types PCH, QED will ring the bell and take no further

action, as it has already skipped up to the last H of the old line.

c
Xc QED skips up through the next occurrence of the
chgracter C in the old line. C is never echoed.
(X~ is the skip analogue of 7°7)
Example s
*[HALLE]EDIT. ‘
SANG HALLELUJAH! old line: ' HALLELUJAH!'
SING new line: 'SING'
If the user now types‘XcH:
*[HALLEJEDIT.
SANG HALLEIUJAH! - 0ld line: 'ALLELUJAH!'
SINGY% new line is still: 'SING'
If the user again types X H:
*[HALLE JEDIT.
SANG HALLELUJAH! 0ld line: '!?
SINGEAGAAIIRAED new line is still: 'SING'

I X°H is typed once more, QED will ring the bell and take no further

action, as there are no more H's in the 0ld line.

Retype Characters

Thé following control characters do not afféct the state of the edit, but
merely retypé the old and new lines,rto permit the user to recover in case he
has become confused about the state of the edit. Editing may then continue

normally.

5-15

c | .

R QFD types line-feed and then the rest of the old
line, and on the next line, the new line so far
produced.

Example:

(Assume in this example that t indicates that AS was typed ond % indicates

a skipped character):

*Q1EDIT.

THE MANDALA (WHICH FIGURES PROM- old line: 'URES PROM-'

StAET9MY MDPANDALA 8t4(t (99% new line: 'A MANDALA ('

‘ URES PROM- o014 and new lines are unchanged.

A MANDATA { '

¢ QED types out the state of the edit as in Rc, except
that the rest of the old line is properly aligned with
the new.

Example:

"Let us take the setup in the R® example above and assume that ¢ is typed
instead of R®:

*91EDIT.
THE MANDALA (WHICH FIGURES PROM-
STAEMIMIMDY ANDALA 841(+ (%9%
URES PROM- 0ld and new lines are unchanged.
A MANDALA (

The Re~Edit Character

Y QED copies (without typing) the rest of the old line
onto the new and then the result of this concatenation
may be re-edited. That is, QED gives a carriage~-return
and line-feed and editing may continue; the old line

is now the result of the goncatenation and the new line
is null. :

Example:
*.EDIT.

7HT SKG MAX | | 0ld line: ' SKG MAX'
ZHTOT ~ new line: 'ZHTOT'

5-16

If the user now types Yc:

*.EDIT.

7ZHT SKG - MAX

7HTOT o old line: 'ZHTOT SKG MAX!
new line: '' (nuil)

(Note that the characters copied are not typed out.) Suppose the user
now types C and ‘then D%

*.EDIT. :

ZHT SKG . MAX
7HTOT

CHTOT SKG MAX
*./

CHTOT SKG MAX
*

Mode Characters

B QED changes the mode from replace to insert, and

types <; or from insert to replace, and types >.
The mode is replace at the beginning of each line;
in replace mode, characters typed by the user replace
those of the old line one-for-one. In insert mode,
characters typed by the user are appended to the new
line, but the old line is unaffected. (Skips and
copies proceed as described above in either mode.)
Example:
*112EDIT.
RESTORING THE DAMAGED old line: ' THE DAMAGED'
RESTORATT new line: 'RESTORATI'
If the user types E° and continues typing:
*112EDTIT.
RESTORING THE DAMAGED old line is still:; ' THE DAMAGED'
RESTORATI<ON COF new line is now: 'RESTORATION OF'
And if the user now types H° (q.v.):
*112EDIT. | |
RESTORING THE DAMAGED old line is now: ' (null)
RESTORATI<ON OF THE DAMAGED the new line is: 'RESTORATION OF THE

DAMAGED'

{D
§
RN

5=-17
K QED types " and changes mode from the usual one
to one in which no characters are appended to the
new line; or from this latter mode back to the usual
one. Mode is set to the usual one at the beginning
of each line.
Example:

(Underlined characters are those which would normally have been appended

to the new line but were not because of the K° mode.)

*19, 20EDIT.
CHC CT0 PILE old line: 'CI0O FILE'
CHC new line: 'CHC !

If the user types K° and then H® (q.v.):

%19, 20EDIT. , ;
CHC CI0 FILE old line: 't (null)
CHC "CI0 FILE ‘ new line: 'CHC '

If the user now types carriage return:

¥19, 20EDIT.
CHC CIO FIIE
CHC "0 10 FILE(CR) , o
- SKG =778 : old line; ' SKG =77B'
L]

new line: 'CHC
Note that although the CR caused the edit of the next line tp begin, it
was not appended to the new line, so that the new line is "left over" for the
edit of line #26. Also, the K* mode has been reset to the usual one by the

beginning of the line #20 edit. Suﬁpcse the user now types k° and then u° (q.v.):

%19, 20EDIT.
CHC - €TI0 FILE
CHC "CI0 FILE(CR)

SKG =778 old line: 'SKG =77B'
new line: ‘'CHC '

1"

Now suppose the user types K° and then D° (q.v.):

%19, 20EDIT.

CHC CI0 FIIE

CHC 'CI0 FILE(CR)
SKG =T7B

" "SKG =77B

*

5-18

Note that the single line 'CHC SKG " =T7B' replaced the old

lines #19 and 20.

D

1° QED changes mode from the usual one to one in which
characters which are (or normally would be) appended
to the new line are also collected in a special (non-
addressable) internal buffer, and types [; or from this
latter mode back to the ugusl one, and types]. Buffer
1 is cleared. Whenever L~ is echoed as], the text in
this internal buffer is loaded into buffer 1. This
action 1is also taken when the user terminates a line
in this special mode. The mode is reset to the usual
one at the beginning of each line.
Example:
(Assume that [and] indicate that I° was typed):
*¥BUFFER #1.
1" 't
%3 INIT2sAPPEND.
STORE {Fael,FnggFLG3(CR3 (note that the mode is reset by CR)
STORE [FLGY,FLG5], F1G6(D)
*.-1,./ ‘
"SIORE FLGL,FLG2,FIG3 (L° did not affect the append
STORE FLGH,FLGS ,FIG6 itself)
¥BUFFER #1. ‘
"FLG1, F1G2,FLG3
FLGL, FIGS "
*

6-1

6.0 Substitute

The SﬂBSTITUTE,command allows the user to substitute one string
of charactergs for another in all or some of its occurrences in the
main text buffer. There are options giving the user a variasble
amount of control over the individual substitutions and allowing
him to see each substitution before and/or after it is made.

The format of the command is:
In VERBOSE mode:
ISUBSTTTUTE (options)/text”/FOR/text’/

In QUICK mode:
g§(options)/textn/text°/

Where the underlined portions of the command are typed by
the user. In place of /, the user may employ any character except
: or blank to delimit the two strings of characters, text™ and
text®. To allow the user to make this command more readable,
blanks are ignored except in the two strings.

Text” and text®’ are strings of characters; neither may
contain carriage-returns, and texto should not be the null string.
The control characters V°, A%, Q° and W® (described in section 5.4)
mey be used while typing in the strings. -

When the character terminating,texto is typed, the SUBSTITUTE
begins and proceeds generally as follows: QFED begins on the first
line of the specified interval (;) and searches for occurrences
of text’. The search continues thrdugh the last line of the
specified interval (at which point the search, and the SUBSTITUTE,
terminate) or until an occurrence is found. In this case QED may
or may not make the substitution of text” for text® (according
to the "options” specified). In either case, the search continues
immediately sfter that occurrence of the text® (or the text” that
replaced it) and proceeds a8 sbove, until the end of the interval
is encountered. At that point, QED types out an integer which is
the number of substitutions actually made.

6-2

The options possible are:

G

which causes QED to make all substitutions without
typing. (It will terminate after N substitutions
if :N (q.v.) has been typed.)

Each time an occurrence of the string text® is found,
QED types out the line containing it (with the
occurrence in question enclosed in double quotes)
and expects the user to type:

S which causes QED to make the substitution
and continue, or

option which causes QED to change to that option
and wait for the user to type S, enother
option, or some other character.

any which causes QED to continue without meking
other the substitution.

non-blank
character

after all the substitutions in a given line are made,
the line is typed out. (There must be at least one
substitution made in the line for this to happen.)

is the combination of :W and :L.

where N is a string of digits (terminated by the
first non-digit following it) causes QED to make at
most N substitutions. That is, QED will terminate
the SUBSTITUTE normelly when it has made N substitu-
tions. (If this option is omitted, the SUBSTITUTE
will terminate only when the end of the interval I
is reached.)

Options may be concatenated (e.g., SUBSTITUTE :L:19/A/ FOR /B/
which will make at most 19 substitutions and 1list eech one made)
and are interpreted thusly:

:C
N

(Cis G, W, L, or V) overrides all previous :C.
(N is an integer) overrides all previous :N.

The final C and N are merged.

One may choose to give no options, which causes QED to meke

8ll substitutions in the intervel, without typing.

6-3

As examples of the SUBSTITUTE command, consider: (underlined

portions typed by the user.)

*,.SUBSTITUTE :V,HAS GIVEN, FOR,GAVE,
HE "GAVE" SEVERAL RECITALS, OF
g | note use of . instead of /
HE HAS GIVEN SEVERAL RECITALS, OF
1 .
¥:ADDR1:, ,+3
ADDR1 ADD ALFPHA
BRX *-1
ADDR2 ADD BETA
ADD GAMMA

*.»3,.§UBSTI’I'UTE :L/ SUB/ FOR /_ADD/ -
ADDR1 SUB . ALPHA : - (note use of blanks to keep

ADDR2 ggg 2ETA the labels ADDR1 and ADDR2 from
] _ AMW A being changed)

*:ADDR31:, .42 :
ADDR31 ADD TDELTA:

BRX ¥.1
ADD EPS

*,-2, SUBSTITUTE :W/SUB/ FOR /ADD/

ADD"R31 ADD DELTA

:G K

2

W._e - f .

ADDR31 SUB DELTA - (note the use of :G to change
BRX *-1 : options, and K to prevent a

‘ SUB EPS " gubstitute)

*

7.0 Strigg Buffers

Thirty-six string'buffers are available to the user, named by
the digits (0-9) and letters (A-Z). Their contents may be any
string of characters. The contents of buffers 0 and 1 are affected
by searches, SUBSTITUTE, and 1°, as noted in the description of
these features. In genersal, sﬁring buffers:0~9 are reserved to
Joint use by QED and the user, i.e., both may affect their contents,
and this should be borne in mind when buffers 0-9 are used. Tt is
advisable to use the lettered buffers (A-Z) when one wants the
contents of a buffer to be changed only when he explicitly changes
them (with LOAD, GET, KILL or JAM).

7.1 losading, Deleting and Printing Buffers

Each of the following five commands is specified by its first
letter; QED then completes the command up through the number sign
(#). The user then types a letter or a digit (C) to specify a
buffer and then gives a confirming dot (.). (In QUICK mode, QED
only types out # to complete the command; the user then proceeds
as sbove. For example, in QUICK mode the command to print buffer
E will look like: *BFE. where the underlined portions are typed
by the user.)

Any string buffer may be loaded with one of the three following
commands. A buffer is always cleared before it is loaded.

ILOAD #C. where C is a letter or a digit causes QED to
load string buffer C with the lines specified
by I. . is changed to the last line loaded.

IGET #C. causes QED to load buffer C with the specified

- lines, which are then deleted from the main text
buffer. . ie changed to the line before the
first one loaded.

JAM INTO #C. causes QED to go into text input mode. The user
~ may type in text (V©, A%, Q°, WC are recognized
and have the functions described in section 5.4),
terminated by a D®. QED then loads buffer C
with the collected text.

The contents of a string buffer may be printed with:

BUFFER #C. which types the contents of buffer C enclosed
in double quotes

To delete the contents of a buffer, type

KILL #C. which clears buffer C. (Note: to delete the
contents of the main text buffer type
1,$DELETE.)

Exsmples: (suppose buffer E contains 'ABC')

*BUFFER #E.

"ABC" (The double quotes are supplied by
*xJAM INTO #E. the BUFFER commend.)

NEW CONTENTS(D®) (Note that no CR is supplied before
*BUFFER #E,. the D¢; the contents of buffers need not
"NEW CONTENTS™ be lines.)
* / '

FIRST LINE
*1L0AD #E.

*BUFFER #E.
"FIRST LINE
*1,4/

FIRST LINE
GECOND

THIRD
FOURTH! ' LINE
*2 ySGET #5.
k1,27

FIRST LINE (The 0ld second and third lines were deleted.)

FOURTH! I LINE
+RUFFER #5,
"SECOND
THIRD

*KILL #5.
ABUFFER #5.

" o

*

(Buffer 5 conteins no text.)

(N

- 7.2 The Uses of String Buffers

Bcg is recognized at all times, and is equivalent
- to the user’'s typing the string of characters
in buffer N (with the exception of commend errors,
noted be%ow); The B~ is echoed or a letter, as #,
- and if B'C is typed, where C is not a digit QED
types ? and ignores both BC and the character C.

Thus, 'string buffers can be used to minimize typing in text
input; for example, éuppcse buffer W contains '; BSS. - 1' and the
user does the following INSERT. Assume in this example that #
indicates that B® was typed: | '

#11TNSERT.
A#W(CR)
A2#W(CR)
BI#W(CR)
B2#W(CR)
*¥11, 14/

Al BSS
A2 BSS
Bl BSS

B2 BSS
*

e

Another use of string buffers is that of moving text. For
example (assume that # indicates that BC was typed):

*:TEMPL:, . +2/
TEMPL BSS
TEMP2 BSS
TEMP3 BSS
*.-2,.GET #X. (GET deletes the lines after loading the buffer)
%115 INSERT.

e e

*115,117/
TEMPL BSS
TEMP2 BSS
TEMP3 BSS
*

e

(Note: buffer W still contains the three lines)

This sequence of commands was used to take the three lines in
guestion firom their old position and insert them before line #115.

74

Also, buffers may be used as a source of commands. (An error
in a command taken from a buffer causes control to return directly
to the user, i.e., the whole hierarchy of buffers is aborted; the
contents of the buffers are not changed, of course. Rubout has
the same effect.) When commands are taken from buffers only
characters explicitly printed with the commands /, PRINT, line-feed,
*, =, e« ", or BUFFER are typed out. As an example of commands
from buffers consider:

*JAM INTO

#3.
:ABC:E. xyz(vc)(nc)&n(n") & is typed by QED; note the use of V°©
to enter a D°.

*BUFFER #J.

"+ABC"E.XYZ&D" QED types out DC as &D.
*(BC WJ # is typed by QED.

*

At this point, all lsbels 'ABC' in the main text buffer have been

changed to 'XYZ'. The error of the search :ABC: when there are

no more labels of that form casuses control to return to the uger. ;::)
Buffers used in this way may call other buffers; that is,

if B°N 48 inserted in a buffer (with V®) then when those characters

are accessed by QED in reading from the buffer, they will cause

a transfer to buffer N until this latter is exhausted, at which

time control returns to the characters following the B°N in the
original buffer. Buffer N may call other buffers, in the same
manner. (However, if the contents of the calling buffers are
altered by the operations of the called buffer, peculisar things
may result.) For example, if we have:

*BUFFER #F.
ME.&H!

&BN"

*BUFFER #N.
", +1E.&H!

&:‘B 1

*

75

Then if(B®)F is typed, each line of the main text buffer will
be edited in turn (nothing will be typed out), and at the end,
i.e., vhen QED finally types *, each line will have ! at the end.
The error of calling for .+l (in buffer N) when . is the last
line returns control to the user.

J

8-1

8.0 Mode and Tab-Setting Commands

8.1 Quick/Verbose Mode

QUICK. ~causes command completion (in commeand mode) to
' be suppressed’ except in the cases of READ FROM
and WRITE ON.
VERBOSE. restores command completion disabled by QUICK.
: This is the usual mode.
Examples:
*11EDIT. (verbose mode: 'DIT' is typed by QED)
ClA
CLB
*QUICK.
*.E, (quick mode: 'DIT' not typed by QED)
CLB
C1LX -
¥READ FROM /T/. ('READ FROM' is unaffected)
901 WORDS,
*V, ('ERBOSE' is not typed by QED)
*11EDIT. (mode is verbose again)
C1X
CIAB
* o

8.2 Ignore Characters Mode

" causes cheracters typed by the user to be ignoréd

(carriage return is still supplied with line-feed;
I° (tab) and B® (buffer call) are still recognized)
until the next D®. Rubout also restores the mode
to the usual one. In addition, if this command

is read from a buffer, characters up to the next

D¢ are typed out. This is useful for printing
messages from buffers, as usually nothing

except explicit print commands causes printing
from buffers.

Examples:

*"THIS IS NOT(CR)

RECOGNIZED(CR)

BY QED(D®)

*1LOAD.

"(CR) | .

MESSAGE (v®)(D%)an(p®) &D is typed by QED; note the use of V
*1BUFFER. to enter a D¢ without terminating the LOAD.
"

MESSAGESD" . Only the first and last " are supplied by QED.
*(BC W1 ; ~

MESSAGE

»*

8.3 Tab-Setting

TABS.

Example:

*TABS.
5,10.
*

8-2

QFD gives a carriage return and line-feed and
then expects a string of at most twelve decimal
numbers separated by commas (,) end terminated
by a dot (.); none of the numbers is to exceed
80. Also, the numbers should be in ascending
order of magnitude to avoid peculiar results.
If the input is deemed illegal, QED types ? and
then the user may continue typing. QED sets
the tab stops to the specified positions. The
tab cheracter is I®. (Full description in

‘section 5.4.) The tab stops are initialized

upon entry into QED to 8, 16, 32, Lo.

sets the tab stops to 5 and 10.

9.0 Returning from QFD and Panic Messages

9.1 The Normal Return

When the user is in command mode, the command

FINISHED. may be used to return to the exec. If the last
command previous to the FINISHED commend was a,
WRITE command, or if there is no text in the main
text buffer, QED simply returns the user to the
exec. If there is text in the main text buffer
and the last command was not WRITE ON, QED types
WRITE OUT! (to remind the user to save his text
on & file before he leaves QED) and returns to
the exec.

If the user has returned to the exec from QED and called no
other subsystem, nor done anything to cause a RESET, he may
continue QED by typing |
€CONTINUE QED. |
This preserves the state of QED as it was before he returned to
the exec (in particular, the main text buffer is unchanged).
However, typing
€QED -
will get the user a "fresh" copy of QED, and in particular, one
with nothing in the main text buffer.

For example, after the sequence:

*FINISHED.
WRITE OUT!

@DRWM BLOCKS LEFT = 10 OUT OF 110
@CONTINUE QED.
*

the user may continue using QED just as though this sequence had
not been typed. '

9.2 Rubout

The rubout button may be pressed at any time. If QED is
inputting text, rubout will cause QED to ring the bell. If a
second rubout is typed (with no intervening typing) the command
will be aborted and the text being input will be lost.

g-2

In all other cases, typing e single rubout during the execution \;:>
of a command will cause the cufient operation to be aborted, and
QED will return to command mode. If QED is in the middle of
printing or writing a large number of lines, . will be set to the
last line printed or written. The value of . méy be unpredictebly
affected by esborting commands in this way. ‘

In command mode, two rubouts with no intervening typing will
return the user to the exec. This is not the normal return
(see section 9.1 for the normal method of returning), but the
user may continue QED with the executive command
@ONTINUE QED.
as describ¢d in section 9.1.

9.3 Penic Messages

In certain contexts, QED will type out a message to warn
the user of & condition he might not otherwise be aware of:

NO ROOM. indicates that the operation being executed s:i)
caused s memory trap. (Check machine size if
UNUSED MEMORY is >0.)

WON'T FIT. indicates that the attempt to load & string
‘ buffer will overflow the area allocated for
string buffers. The buffer concerned will have
been cleared but not loaded.

#1 FULL. indicates that the operations of L (g.v.) have
filled the special internal buffer allocated
for them, and no more characters will be collected
‘using I°. Text input may continue normally.

1-0 ERROR. indicates that a READ or WRITE wes terminated
on some sbnormal condition, possibly an unexpected
end of record.

NEARLY FULL indicetes that text input has caused the internsal
‘ text~-collection buffer to fill nearly to capacity.

The user may continue inputting text as usual,

but if he does not terminate text input before

the internal buffer overflows, he will get the

message:
EDIT TERMINATED indiceting that QED simulated a D° and terminated ,:>
text input. QFED then returns to commend mode. .

for S
a0
=

o Q
o

Ho=B @ =5 &
0.0 060 6 o0 6 o

LT

20%) t-lﬂ

(o]
[¢]

[¢]

g
1a 1

(e

mn =®W O
0o D 0o 0o

52 <5 g4
je2

3

>4
|2

o

]
0
jQ

- ‘;‘
[+ 2N e I ¢ B ¢

-
o]

Pa—")
o

APPENDIX A: INDEX OF CONTROL CHARACTERS

backspace one character (1)

call of buffer N (#)

copy (typing) one character

copy (typing) rest of line and terminate
change insert/replace mode (< , >)

CoOpy (no typing) rest of line and terminate
(vell) no function

copy (typing) rest of line

tab

cannot be typed in

change ignore/usual mode (")

change buffer 1/usual mode ([,])
(carriage return) terminate line (and edit)
backspace one character, restorative (1)
copy (typing) up to C

skip up to C (%%...%)

backspace one line («)

retype, fast

skip one character (%)

retype, aligned

copy (typing) to next tab stop

teke C literally

backspace word ()

skip through C (%%...%)

concatenate and re-edit

copy (typing) through C

no function

no function

no function

no function

no function

no function

(See also the table of contents for section 5.4)

Page
55
5-5,

5-10
5-15
5-11

5-9
5-5

5-16
5-17
5-5
5«7
5-9
5-12

5-1k
512
5-14
5.8
5=5
56
5=13
5.1k
5-10

7-3

Command

(line-feed)
APPEND
BUFFER
CHANGE
DELETE
EDIT
FINISHED
GET
INSERT
JAM INTO
KILL

LOAD
MODIFY
PRINT
QUICK
READ FROM

. SUBSTITUTE

TABS
VERBOSE
WRITE ON

Note: A description

APPENDIX B:

. .
3 . .
. . » .
L} -

2-1 and 2-2.

INDEX

. .
. .« .

. .
. . L}

. .
LI .

. .
L2) .

« e 2
¢ & .
LI I

of searches

OF COMMANDS

4 L . .
-~ L .
. . L]
. L] L4 . * .

. . . .

. . LI T Y
» . . . °
. ¢« o x .

» . L)
» . »
.

Page
8-1

3-1
2-3
3-1
2-3
3-1
5-2
7-2
5=2
51
5-3
9.1
7-1

7-1
72
7-1
5-3
3-1
8-1
h-1
6~1
8-2
8.1
ha1

is in #4 end 5 under section

2.1, pages

