
Q.("".

QSPL REFERENCE MANUAL

L. P. Deutsch

B. W. Lampson

University of California, Berkeley

Document No. R-28

Issued June 12, 1967

Revised March 1, 1968

Contract SD-l8)

Office of Secretary of Defense

Advanced Research Projects Agency

Washington, D. C. 20325

.'

Everything described in this manual was implemented on
March 10, 1968 •

C)

"

c)

Page 1

This document is a brief but complete description of a

new language invented and implemented by the authors. This

language ~s intended to be a suitable vehicle for programs

which wou~d otherwise be written in machine language for reasons

of effici~ncy or flexibility. It is part of a system which

also inclu~es a compiler capable of producing reasonably

efficient object co~e and a runtime which implements the input­

output and! string-handling features of the language as well as

a fairly elaborate storage allocator. The system automatically

takes care of paging arrays and blocks from the drum if they

have been so declared.

The Langua.l>e:

A QSpt program consists of statements separated by semi­

colons. Carriage returns and blanks have no Significance in the

language except that they:

1. Act as word (and comment) delimiters.

2. Ate taken literally in string and character constants.

Warning: ?:'his is one of the many features of the language which

can cause trouble for the unwary programmer. It is quite

possiblet~ write two statements withoqt the separating semi­

colon and wind up with something which is legal, but not at

all what ~s intended. It is a general characteristic of QSPL

that it is I very permissive; many things are legal which are not

at all rea$onable.

A statement may be:

1. A declaration.

~. A listing control statement.

3. An end statement.

4. A function definition.

5. A comment, which is a line beginning (after a

semi-colon or another comment) with an * and

ending with a carriase return (not ;).

6. A FOR statement.

t. An IF statement.

8. Ari expression.

Most statements are expressions, so we will discuss them first.

-.--------~--,--~~---------:---------

c

(\

(!

Page 2

An eXpression is made up of operands separated by operators.

Parentheses are allowed to any reasonable depth. The operators

are arranted in a hierarchy of binding strength or precedence.

Those at ~he top of the following list are executed latest, so

that a+b*c is a+(b*c).

& denotes successive evaluation. The value of the result
i~ value of the last expression in the string. Thus
a+b & c+d; or more plausibly f(a,b) & g(l,y); which causes
b~th functions to be called in the order in which they
arie written.

WHERE is similar to &, but causes the following expression to
be evaluated first. It may not be iterated. Thus
f(!x,y) WHERE y<-l4;

FOR

IF

OR

t8lkes the form <expression> FOR <for clause>. The
eXpression is evaluated repeatedly under control of the
fO'r clause (see below for the syntax of this construct).
The final value of the expression is discarded, and the
va!lue of an expression involving FOR is undefined. Of
eOUrse, som,thing like

. A[I,J] ~O FOR I = 1 TO N FOR J = 1 TO M is legal.
, !

t~es the form <expression> IF <expression> ELSE <expression>
Th~ second expression is evaluated. If it is non-zero,
th~ first expression is evaluated. Its value becomes the
value of the whole thing, and the third expression (which,
by the way, may contain another IF), is skipped. Otherwise
the first expression is skipped, and the third is evaluated.
Th'\lS x~ IF y=l6 ELSE x~ IF p=O ELSE x~. If the final
ELSE is omitted, 0 will be supplied.

~."
is!the assigI1Il1ent operator. It ranks on the same level
as/for its left-hand operand, and just below IF for its
right-hand one. The right-hand operand is evaluated, and
it$ value becomes the value of the left-hand one. The
wh$le expression is then treated as though only the left­
hand side had been written.

is the logical or. If either operand is a relation (or
an expression containing logical operators connecting at
least one relation), then the result is 0 or 1 depending
on'whether both operands are true (non-zero). If both
op¢rands have ordinary values, these values are combined
with the machine's MRG instruction. Thus a<4 OR b<5 is
tr~e if either relation holds; a<4 OR x+l is true if a
<4 or if x+l is not zero. In both these cases, the second
operand is not evaluated if the first one 1s true. But
f(x,y) OR z is the 24-bit logical or of z and the value
of the function call. The operands of an OR are never
re-i-ordered.

-------------,-------------------

C)

C)

c)

AND
EOR

NOT

Page 3

is the logical and. It is exactly the same as OR in
~he way it treats its operands, differing only in the
~esult. EOR always converts its operands to values
and uses the EOR instruction.

~s the logical not. If its Single operand is a relation
~see discussion of OR) its value is inverted (0 becomes 1,
1 becomes 0). otherwise, a 24-bit complement is taken
Cwith EOR = -1).

'" # < <>= > >= are the relations. Each one evaluates its operands
~nd then performs the indicat~d test. For these and all
the aritlunetic operations, the operands may be re-ordered
if it suits the compiler's convenience.

MOD a MOD b is the remainder of alb

+ -

* I
LSH
RSH
ICY
RCY

+ ..
aoTO
RETURN
DO

(),

~rform 24-hit integer addition or subtraction.

~rform 24-bit integer multiplication and division. No
test is made for overflow on division. The shift operations
shift the first operand the number of places indicated by
the second operand. Vacated bits are replaced by zeros.
The cycle operators do an end-around shift.

(unary operators) The unary + and - do the obvious thing.
Db is a noise word and is ignored. It may be convenient
fOr constructions such as this: DO f(x,y); GOTO transfers
to the address which is the value of its operand (see the
d~scussion of labels below). RETURN evaluates its operand.
It leaves the value in A and returns through the return
l~nk of the most recently defined function (see below).
If this is not deSired, the RETURN may be modified by
f<!>llowing it with FROM <expression>. In this case the
return is to the address which is l+the value of the
e:tpression. Thus RETURN x+y FROM fcnl; the programmer
sfuould be sure that fcnl has a proper return address in
it, since the compiler will not check this. The operand
of RETURN may be omitted.

(function calls). The arguments of the function are
e1closed in the parentheses, separated by commas. Thus
f~x,y~,z). Note that the function may be specified by
an expression; thus (a+b)(x,y~,z) is perfectly legal.
It causes control to be transferred to the location which
i$ the value of the expression a+b with the specified
atl'guments. Beware. The values of the first three function
~guments are transmitted in the A,B, and X registers
r~spectively. The addresses of the values of further
ariguments are put into NOP instructions which follow the
fUnction call. The function is called with a pop which
l~aves the link in 0 and transfers to the location
a4dressed by it. Thus f(a,y~,z) compiles LDA y;ADD=5,
C~B; LDA a; LOX z; CALL* f. See below for a discussion
of function declarations. The function expects control
td be returned to the following locat:ton with the value

C)

•

Page 4

of the function in A. Note that this calling convention
is ~ the same as Fortran's. In particular, in the
a~ove example nothing the function does (within reason)
can affect the value of a or z. It is possible to
t~ansmit the address of a or z with the reference operator,
h~wever (see below).

(~ailing). The. must be followed by a field name (see
dtscussion of declarations below). The resulting object
r~fers to the specified field relative to the address which
i$ the value of the first operand. Thus, if we have
DECLARE FIELD a(l), b(2); and if x contains 143, then
x.a refers to location 144, x.b to 145, x.a.b to 2+the
cdntents of location 144. A tailed operand may appear
on either side of an assignment operator. Cf the
d~scussion of PAGED declaration for the treatment of
paged blocks.

$ (~inary, same precedence as .). The construct T$F is
a~ost equivalent toeT.F. I.e., it refers to the bits
of T (not the word addressed by T) selected by F. The
wd.rd displacement of F is ignored, and F must not

[]

c~oss a word boundary.

(r~ference and indirection). The reference operator
takes an operand which must be an address (i.e. acceptable
OIl! the left side of an assignment) and returns this address
aSi its value. Note that this implies that iteration of the
reference operator is illegal (in fact it does not make
an~ sense). The indirection operator $ evaluates its
o~rand and returns this value as an address. The sequence

@$: is equivalent to no operation, except that $ on an
adaress is compiled with the machine's indirect bit,
and will therefore be affected by the presence of indirect
or index bits in the contents of address. If we have
wrti tten DECLARE FIELD s (0); then <e>. s is equivalent
to $<e> , with the e:x:g~~pt,ion~oted above.

! i,.

(sUbscripting). ,IA single su~scr:i.pt is allowed. As with
fUlJ,ction calls, the object .. bEhng subscripted may be an
arbitrary expression. If it has been declared as an
array, the compiler loads the subscript into X and compiles
an indirect reference through the array name. I.e. it
expects the array name to contain the base address of
the array with the index bit on. For any other expression,
the [] operator is equiva.lent to $ +. Thus (a .• b)[c OR d]+l
compiles

:t.DA a; SUB b; STA t; LDA c; MRG d; ADD t; CAX; LDA 0,2; ADD=l;

I ,

C)
/

o

Page 5

Primaries

The primaries for expressions may be numbers, names, or

character constants.

A number is a string of digits, possibly followed by B or D,

possibly followed by a single-digit scale factor. B makes the

nUl'j1ber oct'al; if it is absent, decimal is assumed. Thus

100D = 1D2 = l44B = 1B2+44B = 100.

A name is a string of any number of letters and digits

beginning with a letter. Only the first six characters of the

name are slignificant. A name must be declared (see below).

All names except parameters and fields are treated in exactly

the same way when they occur in expressions (except for subscrip­

ting). E.g. a string name refers to the pointer to the string

descriptor which is the value of the name. Thus, if S is a string

S ~A+l

simply stores A+l into S; this is probably not reasonable.

Functions are provided to convert between strings and numbers.

There are about 80 reserved words (see Appendix B) which

may not be used as names.

A character constant has the form '<three or fewer pseudo­

charactersJ>', and may be used wherever a constant is used. A

pseudo-character is any character other than &, or & followed

by one of the following:

1. Another & or a '. The two are equivalent to a

single & or ' in the constant.

2. Three octal digits. The number thus defined,

truncated to 8 bits, counts as one character.

3. A letter. The ASCII (internal) code for the

letter + 100B is the value of the pseudo-character.

The characters are right-justified in the constant, which is

filled out with blanks (0) on the left. It is an error to

have more tha.n 3 pseudo-characters in the constant.

A string constant has the form "<any number of pseudo­

characters>" . It is legal only in the context <string name"> ~

<string constant>. A descriptor will be created which points

c)

Page 6

to the constant string. If the value of the name is 0, space

will be alloc8,ted for the descriptor. Writing into the string

will alter the constant.

A variety of operations are provided for converting field

names into constants:

1. A field name F appearing in any context other than

F (

F

$ F

is equivalent to a constant whose value is the word

displacement of the field.

2. The function FSHIFT(F) has 23 -the rightmost bit

position occupied by F as its value. F must not cross

word boundaries. The value of FSHIFT is a constant.

3. The function FMASK(F) has as value a constant which has

one bits in positions selected by the field as its value.

It is equiva.lent to (-l)$F. F must not cross word

boundaries.

4. F~expression) has the value of T after the statements

T~; T$F~xpression

have been executed. F must not cross word boundaries.

f~ Any eXpression involving operators of precedence higher

than~and constant.operands will be evaluated by the compiler,

yielding a result which behaves exactly like a constant.

Declarations

Variables are declared with DECLARE or FUNCTION statements

or by appe&ring as labels. The syntax of DECLARE is

DECLARE [FltXED or PAGED] [INTEGER or STRING] [ARRAY] (EXTERNAL or
Vi

ENTRY or LOCAI(;)] ·<namelist>. The stuff after the DEClARE may

be repeated as many times as desired. Once FIXED, PAGED or

ARRAY has been used it remains in effect for the remainder of

the current DECLARE statement. INTEGER is assumed if it is

omitted, but once STRING has been used it remains in effect

until INTEGER appears again. Each name in the namelist may be

C)

c'

Page 7

preceded by $ (which makes it an entry) or by * (which makes

it external, i.e. prevents storage from being assigned for it).

If ARRAY is present, a name may be followed by an expression

in parentheses (or brackets). Thus

ARRAY A[12], B(Xt2+l4]

If FIXED is absent, this construct makes the DECLARE an executable

statement; every time it is executed, the expression will be

evaluated and that many cells assigned for the array. The

base address of the region assigned, with the index bit set,

will be stored in the name. Any previous storage assigned to the

name will not be released automatically. The programmer must

release it explicitly, if he wants to, with the FREE function.

The system does not check to see that an array declaration is

executed before the array is referenced, or that the program

does not store other things into the array name. If either one

of these things happens, a mess will probably result unless the

programmer knows what he is doing. If a name is declared ARRAY

without/anu storage being assigned, the system will assume that

its value is a pointer to an array with the index bit set.

I.e., it will compile

LDX I; LDA* A; STA B

for B ~A[I).

Example:

DECLARE INTEGER a,b, STRING d, $gl, g2, EXTERNAL g3, g4,

~RAY e(x+y[4]), INTEGER c(lO); declares two scalar

integers, one integer array which will be assigned 10 locations

when the declaration is executed, two local scalar strings

(d and g2), one local string array which will be a,ssigned

x+y[4) locations when the declaration is executed, one scalar

string whi~h is an entry (gl), and two scalar strings which are

assumed to be defined elsewhere (g3 and g4).

If a name is declared with FIXED ARRAY, thus:

DECIARE FIXED ARRAY A[20}, B[lO};

this causes the number of words specified to be a,llocated by the

compiler and the location addressed by the name to be initialized

to the address of the block allocated with the index bit on. This

declaration is equivalent to
DECLARE ARRAY A(201, B(lO];

. -. 'r

c)

C)

Page 8

except that it is ~ an executable statement but is done once

and for all by the compiler.

A name on an array may be declared paged by putting the word

PAGED in front of its declaration. This attribute, once mentioned,

applies to all the names declared following it in the same state­

ment. If an array is declared PAGED (not a FIXED array, of course),

space will be allocated for it on the drum when the declaration

is executed, and all references to it thereafter will be made to

the drum. Correct access to the array will be obtained only if

it is subst:ripted in the usual way: A[I]. It is not true that

(A+l) [I] is equivalent to A[I+l], for example, a.s is the case

for core arrays.

If a name declared paged is not an array, the only

effect is that when it is tailed the system will assume it

contains a drum address. Such an address can only be correctly

obtained with !MAKE (see below). It is the programmer's

responsibility to see that:

a.. It does contain a drum address generated with !MAKE.

b. The field name used for tailing has a. word displace­

ment less than the block size specified by the PMAKE.

Unpredictable errors will occur if this rule is not

observed.

c. NO arithmetic is done on the address. A construct

like (P+2).X is not legal if P is paged. It will

result in P being treated as though it were not

paged.

Declarations of fieldS are not affected by PAGED. Indirection

($) should not be used on a PAGED pointer.

When a. name is declared to be a string, a single storage

location is reserved for it unless FIXED has been used. Strings

are specified, however, by four-word string descriptors. The

address of such a descriptor must be put into the string variable

before it is used in any string operation. For non-FIXED

strings, this is usua.lly done with the SETUP function, possibly

preceded by a MAKE; a.lternatively, the address of a descriptor

obtained in some other way can be used. If a string variable

is not properly initialized, the consequences of using it in

any string operation are likely to be serious.

C)

c)

Page 9

If a string declaration is preceded by FIXED, the four-word

descriptor is assigned by the compiler and its address is the

initial value of the string. If a FIXED STRING is followed by

a parenthesized expression) that many characters are allocated

for the string and the descriptor is initialized to point to

the area thus allocated. Example:

DECLARE FIXED STRING S,T,U(5),V(240);

allocates string descriptors for S and T; they muat be set up to

point to strings by SETUP. It also allocates 5 characters for U

and 240 for V and sets up the descriptors properly.

An integer may be initialized by following its name with

~ constant or ~ name. Thus,

DEClARE A ~ 3, B ~ 14; C ~A;

makes 3 the initial value of A, 14 the initial value of B. Of

course, any expression which can be evaluated by the compiler

may be used as a constant. This is not the same as a PARAMETER

declaration (see below). The use of this construct is not

recommended if the program changes the values of the variables,

since the p~ogram must then be reloaded in order to be restarted.

A FIXElD ARRAY can be initialized in the same way:

DECLARE FIXED ARRAY A[lO] ~1,3,5,7,ll,l3;

The first six elements of A are initialized as indicated. The

remaining fbur elements are initialized to O.

A string or a fixed string array may be initialized in the

same way, but the initial values must be string constants.

Warning: Writing into initialized strings will destroy the

contents.

If any declaration causes space to be allocated at the point

in the prog~am where the declaration occurs, a branch over it is

compiled. Declarations may therefore be freely interpolated

in the program.

Another form of DECLARE is the following: oJ
DECLARE FIELD name (constant [: constantq? constant]) which

defines a field. Lots of fields can be defined if desired. The

first constant specifies the word displacement of the field, the

C)

()

Cj

Page 10

other two the bit positions in the word. Bit positions can take

. on values between 0 and 47. A field may span two words, but it

may not ,be more than 24 bits long. Thus:

DECLARE FIELD a(O),b(1),c(2),cl(2:0,5),c2(2:3,20),xyz(2:12,23);

defines six fields. The last three might be thought of as sub­

fields of c, but they do not have to be used in this way. If

p were a pointer to a three-word data object, for example, then

p.xyz would refer to the last 12 bits of the third word of the

object. Such objects can be created from nowhere with the MAKE

function or, of course, may be allocated by the programmer.

Names declared as FIELD are output to DDT with their word

displacements as value. If they appear not following a ".",

. they are treated as constants equal to their word displacements.

Thus, $(ptr+b) a $(ptr+l) ; ptr.b.

The declaration

DECLARE PARAMETER cl+-l,c2~,c34-3; makes the names cl,c2,

c3 equivalent in all ways to the constants 1,2,3 for the rest

of the program. Any constant may appear on the right of the +-.

Note again that any constant expression may be used where a constant

is required. ft\lX I td<J)~~'
The declaration

DECLARE INTEGER Q=R, S=T[3] is legal only if R has

already been declared and T has already been declared as a

fixed array. It causes Q to be assigned to the same location

as R, S to the same location as T[3].

A fUnetion is defined by

FUNCTION name(arglist);

Each argument in the arglist can be preceded by INTEGER, STRING

or ARRAY and is declared automatically. INTEGER is assumed unless

otherwise specified. If ARRAY is specified, the index bit will

be merged into the value supplied. A name can be redeclared in

a function definition (this is illegal in any other context),

but only if the redeclaration exactly matches any previous

declaration. The system creates a return link by prefixing

the function name with X. The statement FUNCTION f(a, ARRAY b,

STRING c) would compile STA a; CBA.; MRG = 2B7; STA b; STX c;

LDX 0; STX Xf;

c:)

Page II

If additional arguments ,INTEGER d, e were supplied, the code

LDA* 1,2 STA d; LDA* 2,2; STA e; would be added.

The fUnct~on name itself is also declared by this statement.

A storage location is reserved for it, and the address of the

first word of the function (STA a above) is put into this address.

The link may be specified expliCitly, if deSired, as

follows: FUNCTION F(Q,R), LINK W;

No explicit provision is made for recursive functions.

However, Since the return link is available, the programmer can

save and restore it himself. If a function ca.11 appears in a

complex expression, it is not safe to re-execute the expression

inside the function, since the expression ma.y use temporary

locations Which are ~ saved when the function is called.

Beware.

A symbol is declared as a label by writing it at the

beginning of a statement followed by a colon. It is treated

exactly like a function name: a storage location is reserved

for it and initialized to the address of the first instruction

of the statement. Any statement can be labeled. A label is

assumed to .be an integer scalar. If we have A: ••• ; GOTO A;

this will compile :A BSS 0; ..• ; BRU* A; •.• ; A ZRO :A;

so that the right thing happens.

These conventions for arrays, strings and labels make it

very easy for them to be transmitted as arguments.

Control Statements

The construction

IF expression DO;

ELSEIF expression DO;

ELSE DO;

ENOIF;

} repeat 0 or more t:lme.

) optional

o

o

C\

Page 12

is legal with the obvious meaning. Any sequence of' statements

balanced with respect to IF and ENDIF may appear in place of' the

dots. Of course, IF may be nested. Proper use of indentation

is strongly recommended.

The construction

FOR for clause DO;

ENDFOR;

is also allowed. The arbitrary sequence of statements balanced

with respe'ct to FOR and ENDFOR which is symbolized by the dots

is executed repeatedly under control of the for clause, whose

syntax has three forms:

<hame> ~ <expression> WHILE <expression>

which causes the value of first expression to be aSSigned to the

name and the second expression tested each time around the loop.

When the test fails (value of the expression=O) repetition stops.

The assignment and test are performed once before the loop is

executed;

<name> ~<expression>, <expression> WHILE <expression>

which is the same as the first form except that the first expression

is used for the first aSSignment, the second one thereafter;

<name> ~ <expression> [BY <expression> 1 TO <expression>

with the obvious meaning. If the BY is omitted, an increment

of 1 is assumed. Repetition continues until the name is greater

than the TO expreSSion, unless the latter is a negative constant,

in which case it continues until the name is less. A test is

performed before the loop is executed for the first time.

The special cases

I ~ <expression> BY 1 to N

I ~ <expression> BY -1 to 0

are recognized and compiled more efficiently.

o

o

Page 13

Miscellaneous Statements

Listing ma.y be controlled with the statements LIST and NOLIST.

Either may be followed by SOURCE, CODE or BINARY, and turns on or

off the specified form of output. It is not a good idea to turn

binary output on and off, since this will in general result in an

unloadable result.

A program should be terminated by an END statement.

Special F)lections

The following special functions are a standard part of the

language. They provide all the built-in storage alloca,tion, string

handling and input-output facilities. If more elaborate facilities

are required, recourse may be had to machine-la,nguage routines. The

necessary linkages are described under function calls and

declarations above.

1. Storage allocation functions

MAKE(expression) creates a. block of storage of the length

specified by the expression (but of at least two cells) and returns

a pointer to this block as its value. In fact, one extra cell is

a.ssigned b(Y the system; the user should keep,~ts hands off this cell,

which is the one before the one pointed to ~ the value of the MAKE

function. An alternate form is MAKE(expression, arra,y name) which

assigns the block out of the specified array, which must have been

properly initialized beforehand by a call of SETARRAY(expression,

array name}; in this case no prefix word is created. Only blocks of

the size specified in the call of SETARRAY can be aSSigned in this

way. Blocks of any size can be assigned by a simple MAKE.

To allocate space on the drum the function PMAKE should be used.

It is exactly like MAKE, except that the second argument, if present,

should be a paged pointer to an object nea.r which the new space

should be assigned if possible. Proper use of this feature will

greatly improve the efficiency with which pa,ged objects are accessed.

See the discussion of the PAGED declaration for further information

about the proper use of addresses obtained from mAKE.

To release a block of storage, do FREE(expression} (or

FREE (expression, array name)), where the value of the expression

is a pointer to the block. The function has no meaningful value.

The storage allocator will attempt to coalesce freed blocks, but

(J

C)

Page 14

since it cannot move blocks around, it is possible to fragment

storage hopelessly by acquiring and releasing blocks of many

different sizes in an indiscriminate manner. If the system runs

out of spa.ce, it will complain and quit. Note that FREE(MAKE(4»

acquires and immediately relea.ses a block of four words. It is

exactly equivalent to NOP (except for timing) . FREE also works

for drum space.

To copy one block of storage into another one of equal size,

use BCOPY(~xpression,expression). The first expression is a

pointer to the source, the second to the destination. These

must be pointers a.cquired by MAKE (or carefully fabricated)

since the length of the block is determined from the contents of

the extra hidden word provided by MAKE. The source block must

have been d!reated by a MAKE with a Single argument.

2. Paging facilities and functions

The paging facilities provide a means for the user to

allocate aIlld access a large (up to 219 words) address space,

by buffering parts of this address space between core and drum

in fixed-size pages. The user can specify the pa.ge Size, the

amount of core space to allocate for buffers (which can be

changed dynamically during execution), and the size of the

address spE:l.ce; individual pages may be locked into core for a

time and 1a.ter allowed to be swapped out again; the user's pa.ged

data may be divided into a number of ca.tegories, which allows

more efficient a.llocation of space by grouping objects of the

same category on the same page.

At the time that INIT is called (see the INITIALIZE

flmction in section 6), certain cells in the runtime are

examined to determine the setup of the pa.ging logic. The names

of these cells are all pre-declared EXTERNAL. The cell NPL

contains the page size as a power of 2, which must be between

8 and 11. The cell NPG contains the size of the desired address
. NPL 19 space as a. mu1tlp1e of 2 : the size cannot exceed 2 • If

NPG contains a zero, it is assumed tha.t no use will be made of

the paging logic, and any calls on it will produce error comments.

c)

C)

o

Page 15

The cell NPB contains the number of core buffers to be provided.

If it contains 0, all available space will be used for buffer.

The cell NPC contains the highest category number which will be

used. The cell PM contains a positive number if the direct drum

access machinery, BRSs 124-127, is to be used for storing paged

data, or a negative number if a random fil~ called /$QPDATA is

to be used; the former is somewhat more efficient, especially

if the address space is large, but the latter can be accessed

by other programs via the ordinary file machinery whereas the

former cannot.

A few other cells are of interest. The cell PCAT is

examined Whenever a call is made to PMAKE. If it contains a

non-zero number, the new block will be allocated on a page

reserved for data of the deSignated category. If it contains

a zero, the new block will be allocated on some convenient page

without reference to category. A call of PMAKE with a valid

drum address as the second argument takes precedence over the

setting of PCAT.

A page may be locked into core with LOCK(X), where X is a

drum address; the value is the corresponding core address, which

is guaranteed to remain valid until the page is unlocked. The

function UNLOCK(A), where A is a core address, stores the

corresponding drum address in a cell called PADDR and returns the

old lock count (which is incremented by LOCK and decremented if

non-zero by UNLOCK) as value; it is all right to UNLOCK an

unlocked buffer. The cell NUP always contains the number of

buffers which are not locked at the moment.

Page buffers are allocated downwards (towards low-numbered

addresses) from the initial setting of a cell called ESTORG;

the bottom of the buffer area is put into the cell EARRAY by

the INIT operation. If the user wants to reduce the amount

of space available for buffers, he may use BPUT(X), where X

is a core address in a buffer. The buffer will be returned to

the pool of space available to the core allocator (MAKE). The

converse operation is BGET(X), which restores the buffer for

use by the paging logic. Note that the buffer area is defined

C)

Page 16

at INTI time (as the NPB X ~ cells just below (ESTORG) _2NPL

and BPUT and BGET may only be used on addresses in this range.

INTI allocates space up from BSTORG for tables for the drum

allocator, leaving the first unused cell in SARRAY. Thus SARRAY

and EARRAY bracket the core not used by the paging logic after

an INTI, while BSTORG and ESTORG bracket the core available to

it before an INTI.

3. String handling functions

A string is described by a four word descriptor which

specifies the beginning and end of the area assigned to the

string, the reader pointer, and the writer pointer. The function

SETUP(string name, size) will obtain a block of the specified

size and set up the descriptor pointed to by the string name to

point to that block. If the name contains 0, a descriptor will

also be created. The alternate form SETUP(string name, Size,

expression) will make a descriptor which points to the' specified

number of characters starting with the word pOinted to by the

expressiom. The storage allocator is not invoked (except maybe

to create the descriptor); it is the programmer's responsibility

to ensure that the proper amount of space is in fact available.

To set the reader and writer pointers of a string, use

SETS (name , expression, expression). The first expression specifies

the reader pointer, the second the writer pointer (which must be

greater; if it is not, the reader pointer is set equal to the

writer pointer). Characters are numbered starting at O. To set

the reader pOinter only, use SETR(name, expression). To set the

writer pointer only, use SETW(name, expression). To obtain the

length of a string (writer pointer - reader pOinter) use

LENGTH{name). None of these functions except LENGTH has a

meaningfuL value.

To get the next character from a string and increment the

reader pointer, use GCI(name). If there is no next character,

there will be an error comment and a he,lt. To avoid this, use

the alternate form GCI(name, expression) which evaluates the

specified expression on failure. Often it will be a GOTO, but

it need not be. This convention is also used for the next four

functions. GCD(name) reads a character from the end of the

string and decrement the writer pointer. WCI{expression, name)
writes the character specified by the expression on the string

c:

C)
/

Page 17

specified by the name. It fails if there is no room.

WCD(expression, name) writes the character on the front of the

string, at the location of the reader pointer, and fails for

the same reason. These functions have the character written

as their "Italue. APPEND (name , name) appends the second string

to the first one, and fails if there is not room. It has no

meaningful value. GC(name) yields the next character of the

string, but does not advance the reader pointer. It never fails,

but yields junk if the string is empty.

The eocpression a~ (where a and b are string names) Simply

moves the contents of b (presumably a pointer to a descriptor)

into a. To copy the descriptor, the BCOPY function can be used,

since string descriptors are just 4 word blocks: BCOPY(b,a).

To copy the string, use SCOPY(b,a). a will be initialized first

a.s though SETS(a,O,O) had been executed.

To convert a string S to a number, write CSN(S). To

convert a number N to a string S, write CNS (N,S); This

converts a signed number to its decimal representation, producing

only enough digits to accurately represent the number.

1+. File-naming functions

A file is opened for input with INFILE(string name, expression);

the string contains the full name of the file. This function

requires the presence of an expression which is evaluated in

case of failure. Its value is the file number. OUTFILE(name,

expression[,expression) does the same thing for output. The

second expression is the option word which BRS 16 takes in A.

It will be assumed to be ° if not supplied. Both of these

operations leave in the location FTYPE the type word returned

by the DRS, in case of failure, the error word returned by the

BRS is in location ERROR.

To acquire file names, use INNAME(name, expression) and

O~~(name, expression), both of which collect the name from

the teletype and write it on the end of the string supplied.

I

____ -.,...----------------J

CJ
Page 18

Both evaluate the expression in the event of failure, and have

the terminating character as value.

To close a file, do CLOSE(expression); the expression's

value should be the file number. To close all files, do
CLOSALL ().

5 . Input-output functions

To read a character, use CIN(expression); the value of the

expression should be the file number. This function simply

does a CIO. Its value is the character read. To write a character,

use COUT(expression(,expression); file 1 is assumed if not

specified. This function has the character written as argument.
I ,-L. 'e I 1

To read and write a:...stM:ng; use WIN and WOUT in exactly the same

way. To write a string, use SOUT(name[,file]). To write carriage

returns, use CRLF(expression[,file); the expression specifies

how many should be written.

To read a number, use IIN(file[,radix). Decimal radix

is assumed. To write a number, use IOUT(expression). Extra

arguments, in order, are the file (1 assumed), the radix

(10 assumed) and the number of characters to be written (-lor

free format assumed). Characters are discarded from the left;

the number is filled out on the left with blanks. A sign is

supplied if the number is negative.

6. Miscellaneous functions

There are three argumentless special functions of general

interest. INITIALIZE() initializes the QSPL storage allocator,

taking all the space between the contents of BSTORG and the

end of core for itself. The GO command automatica.lly sets up

BSTORG to point lOOB cells beyond the end of the program. If

you want some space for patches or whatever it is all right

to increase it.

Since the GO command does not call INITIALIZE, the compiler

provides an INITIALIZE as the first instruction of the user's

C)

Page 20

<LOAD name, name, ••• , name.

loads the specified files with DDT after installing the QSPL

runtime first. The files should be ordinary legal DDT binaries;

they need not have been produced by QSPL. When the last file

has been loaded, the remainder of core is automatically assigned

to the invisible storage allocator array called SARRAY. It

should E2i be used by the programmer. Note that QSPL binaries

can be loaded by an independent DDT if desired. If they use

no runtime features they will run without difficulty. Alternatively,

the runtime can be supplied manually. Appendix A explains how to

do this. Note that runtime features are invoked by every built-

in function except CIN, COUT, WIN, WOUT, CroSE and CLOSALL, by

the use of strings for arithmetic, and by array declarations.

Except for these features, only the call pop need be supplied.

It is the first one; a BRU* 0 in location 100 will suffice.

<GO

transfers control to DDT. If the program does not call INITIALIZE,

.ge not forget !2 do INIT; U before running it.

<EDIT file name

transfers control to QED after reading in the specified file.

Thus, an edit, compile and load sequence can be achieved

without ever leaving the shelter of the QSPL command language.

The compiler contains a number of internal tables whose

overflow is not checked for. These tables have been allocated

rather generously, but could be overwhelmed by an excessively

grandiose statement. To avoid such a disaster, it would be

wise to limit the length of statements to 2 or 3 lines.

c)

C)

APPENDIX A

Runtime Details

Page 21

At the end of this appendix is a complete list of the

runtime pops: opcodes, mnemonics, and calling sequences. The

body of the appendix is devoted to a description of QSPL

conventions for strings, core allocation, and drum allocation.
Rote that programs Which do not use:

strings

any special functions other than cm, COUT, wm, WOUT,

CLOSE, CLOSALL

declarations of non-fixed arrays or PAGED quantities

can run without any of the runtime except the CALL pop, which

is opcode 100. Putting BRU* 0 into location 100 will take

care of it.

To load the QSPL runtime with an independent DDT, rather

than with the LOAD command in QSPL, simply load the file OQRUN

with ;T like any other binary file. Before running the program,

put into the cell SARRAY (declared external in the runtime) 1+

the address of the first available cell of core, into ESTORG

the last available cell of core. When the INIT pop is executed,

the Q,SPL allocator will take over all of core between (SARRAY)

and (ESTORG). If the program does not call the INITIALIZE

function, be sure to do INIT;U before starting it up if you --....-
make any use of the storage allocator.

Strings

A QSPL string descriptor consists of four words, each of

Which is a character pointer (3* word address + 0, 1 or 2).

They are:

pointer to character before first character of space

allocated to string.

reader pointer for string.

writer pointer for string.

pointer to last character of space allocated to string.

(\
Page 22

ISD creates such a descriptor. RSD, RSR and RSW set reader and

writer pointers. Cha.racters are counted from O. RCS reads the

characters between reader and writer pointer, WCS writes

characters between writer and end pOinters. RCB reads characters

between writer and reader pointers. WCB writes characters

between reader and beginning pointers. A variable declared

STRING must contain the address of a descriptor when it is used

in a string operation.

Paging Logic

A valid drum address has bit 3 off and bit 4 on; bits 0-2

are ignored and bits 5-23 comprise the actual virtual address.

CFA and CEI are used to translate such addresses into core

addresses; if the desired page is not in core, it is read in

(which usually involves writing out some other page). CEAS

and CEIS do the same, except that they also set a flag associated

with the buffer to ensure that the page will be rewritten on the

drum before a. new one is brought into the buffer.

Core Storage Allocation

A block allocated by a (non-fixed) array declaration or by

a. single-argument call of MAKE contains one more word than was

requested by the user. The extra word, which is the one immediately

preceding the zeroth word of the block, contains the total length

of the block, including the extra word. The top two bits are

used by the storage a:Uocator:

bit 0 is on if the block is free.

bit I is on if the next lower block is free.

Blocks allocated by a FIXED ARRAY declaration or a two-argument

call of MAKE do not have this extra word.

"_._._----------,-----------------------

I

I '

I

C:
j

"

C)

o

Page 23

An array being used for storage allocation (i.e. one set

up by SETARRAY, or the BARRAY array) has the following form:

Word Contents

-1

o

1

2

3

Length + flag bits. See above.

Bead size, or 0 for an array which allocates

variable sized beads (or blocks).

Address of routine to call when free space

is exhausted. This word may beset by

the programmer. The system does a CALL*

through it.

Pointer to master free list (or just to

free list for arrays allocating fixed

sized blocks).

Free space to be allocated.

The free list for a fixed block size array starts at the

second word of the array, is linked through the first word of

each free block, and terminates with a zero.

The master free list for a variable block size array uses

one block for each block size. Three words of this block are

used.

-1

o
1

2

Length + flag bits.

Back-pointer. Terminates at Oth word of array.

Pointer to slave-free list for this block size.

Pointer to next block on master free list.

The blocks on a slave-free list are all of the same size.

Two words of each are used.

-1 Length + flag bits.

o Back pointer on slave-free list.

1 Forward pointer on slave-free list, or O.

The last entry on the master free list may be for block

size 2. In this case the third word is not available, but it

is not needed, since the master free list is sorted by decreasing

block Size, and the smallest possible block size is 2.

The situation is illustrated in Figure 1.

c;
Main Array

".

N

SARRAY 0 ~

/l TRAP

Ql

•
•
•
•

QlA \ r

QlB \

Figure 1:

Page 24

10-Word Beads 4-Word Beads 2-Word Beads

11
!

5

SARRAY Eo- Ql <-Q2 ... Q3.
QlA

~
0

.~
Q2 Q3

•
• •

,
11

V Ql

\ 1\ QlB

• r •
•
•

V
\ 11

QlA

0

•
•
•

Pointer structure for an array allocating

variable size blocks. The top row is the

master free list, the.Golumns slave free lists.

3

Q2

Q3A

3

Q3

Q3B

3

Q3A

Q3C

3

Q3B

0

~
\

~

I

C)

, ¢

C)
j

C)

Page 25

QSPL RUNTJl4E POPS

* on mnemonic meansth~t all central registers not used to return results
are destroyed.

+ on mnemonic means that all central registers are cleared.

Mnemonic

100 CALL

101 *NSC/

/
102 +~G

/
I

103 /+FIO

104 *FII

105 *SGO

106 *AIF

107 *AOF

110 *OIF

111 *OOF

Function

Function call. The definition is just BRU* O. Thus
F(A,B) complies LDA A; LDB B; CALL* F

Numeric to string conversion. (A) = ori~inal integer,
'(Q) = string description address.CNS(A,S) compiles
LDA A; NSC S

Print string starting at Q on teletype with BRS 34.
Not output by compiler

Output integer to file. (Q) = file number, (A) =
signed integer, (B) = radix, (X) = number of
characters to output (-1 means free format)
IOUT(A,F,R,G) compiles LDA A; LD.B R; tDX G; FlO F

Integer input to A, terminating character to B.
(Q) = file number, (A) = radix. A (:- IIN(r ,R,) compiles
LDB R; FII F; STA A.

String output. (Q) = string descriptor address,
(A) = file number. SOUT(S,F) compiles LDA F; SGO S

Accept input file name. (Q) % string descriptor
address. The file name is written on the end of the
string. Return terminating character to A. No skip
if name not recognized. T (- INNAME(S ,GOTO r) compiles
AIF S; BRU* F; STA T

Accept output file name. See AIF.
T~ OUTNAME(S,GOTO F) compiles AOF S;
BRU* F; ST~ T

Open input file. (Q) = string descriptor address.
The string should contain the name. Return file
number to A, type to cell FTYPE. No skip if file
cannot be opened, error code to cell ERROR
N~ INFILE(S, GOTO F) compiles OIF S; BUR* F;
STA N.

Open output file. See OIF, and (A) = option
word for BRS 16 (See R-2l).
N ~ OUTFlIiE(S ,GOTO F, Z) compiles LDA Z; OOF S;
BRU* F; STA N.

. ,

C)

C)

112

113

114

115

116

117

120

121

122

123

*CFY

*SNC

RERR

*RCN

*RCS

*VICS

*RCB

*WCB

+ISD

+RSD

Page 26

(Q) = destination bead address t (A.) = source bead
address. Copies words from (A) to (A)+«A)-l)-l
inclusive into words from (Q) to (Q)+«A)-l)-l.
COFY(A,B) compiles LDAA; CFY B

String to numeric conversion. (Q) = string
descriptor address. Converts the (possibly signed)
decimal number on the front of the string to binary
and leaves it in A. The string descriptor points
to the first character after the number. A CSN(S)
SNC S; STA A.

Runtime error. Q (n2i (Q» is the error number.

Read character, no motion. (Q) = string descriptor
address. Reads the character following the one
addressed by the descriptor to A. The descriptor is
not changed. GC(S) compiles RCN S

Read character from string. (Q) ~ string descriptor
address. Reads the character following the one
addressed by the descriptor into A, increments the
descriptor to point to the character. Skip if
string is not empty. GCI(S,GOTO F) compiles RCS S; BRU* F

Write character from string. See RCS, but writes
character from A. Skip if space left in string.
WCI(C,S,GOTO F) compiles LDA C; WCS S; BRU*F

Read character backwards. See RCS, but reads the
character which would have been written by the last
WCS. GCD(S,GOTO F) compiles RCB S; BRU* F.

Write character backwards. See RCS but writes (A)
into the string so that it will be read by a following
RCS. WCP(C ,S ,GOTO F) compiles LDA C; WCB S; BRU* F

Initialize string descriptor. (Q) = 0 (in which case
allocate a four word block) or string descriptor
address, (A) = address or 0 (in which case (B)+2/3
words will be allocated automatically), (B) = number
of characters. Sets up string descriptor at location
addressed by (Q) (allocating the necessary 4-word
block and putting its address into Q if necessar¥)
pointing to a(B) character string starting at (A).
SETUP(S,Z,W) compiles LDA W; LDB Z; ISD S

Reset stri~ descriptor. (Q) = string descriptor
address, (A) = character number to set read pointer
to (B) = character number to set write pointer
to. SETS(S,R,W) compiles LDA R; LDB W; RSD S

C)
124 *LNG

125 +CPS

126 *AFB

127 +RFB

130 +IFB

131 +INIT

132 *AVB

133 +RVB

134 CRLF

. 135 +RSR
,

C) 136 +RSW

137 ESC

Page 27

Length of string. (Q)::: string descriptor address.
Number of Characters between read and write pointers
(i.e. number of RCS operations which can be done
without a no skip return) returned in A.
T ~ LENGTH(S) complies LNG S; STA T

Copy string. (Q)::: string descriptor address for des­
tination, (X) for source. Copies source string to
destruction string. Skip return if there is enough
room. Source string is not altered. APPEND
(A,B ,GOTO F) compiles LDX A; CPS S; BRU* F

Allocate fixed block. (Q) ~ address of array, (A)=
block size. Allocates a block of size (A) from the
array, which must previously have been initialized
by IFB for blocks of this size. Error if the
block size is wrong. Returns address of block in A.
T~ MAKE(S ,A) compiles LDA S; AFB A; STA T

Release fixed block. (Q) = address of array, (A)=
block address. Inverts AFB. FREE(T,A) compiles
LDA T; RFB A

InitM.l.ize fixed array. (Q)::: address of array,
(A) = block size. Sets up the specified array
(lenght must be in (Q)-l) so that AFB and RFB
can allocate and free blocks of the specified size.
SETARRAY(S,A) compiles LDA S; IFB A.

Initialize runtime.

Allocate variable block. (Q). address of array,
(A) ::: block size. Allocates a block of specified
size from the array, which must be set up properly.
!NIT sets up SARRAY, which is the only array the
compiler will address with the pop.
T«- MAKE (S) compiles LDA S; AVB SARRAY; STA T

Release variable block. Same as RFB for SARRAY.
Inverts AVB. FREE(T) compiles LDA T; RVB SARRAY.

Generate (A) carriage returns and line feeds on
file (Q). Clears A and B but preserves X.
CRLF(N,F) compiles LOA N; CRLFF

Reset string read pointer. Same as RSD for read
pointer only. SETR(S,R) compiles LDA R; RSR S

Reset string write pointer. Same as RSR for write
pointer. SETW(S,W) compiles LDA W; RSW S

Establish string constant. (Q) as for ISD. The
word after the ESC contains a character count, the

140 CEA

141 CEI

142 CEAS

143 CEIS

144 *AP.B

145 +MRF

Page 28

following words the characters packed 3/word. i'he
string descriptor is set to point to this string
and control returns to the word following the last
word of the string.
S (- "ABCD" compiles ESC S; DATA 4; ASC 2, ABCD.

Compute effective address for paged object. (Q)=
drum address. Core address of object returned in
X. A preserved, B destroyed. The validity of the
core address is guaranteed only until the next
paged storage pop. Use CEAS if object is to be
modified. A (.- P.X compiles CEA P; LDA X,2; STA A.

Compute effective address, indexed. Same as CEA
except that (X) is added to (Q) to get drum
address. Use CEIS if object is to be modified.
~P[I] compile LOX I; CEI P; LDA 0,2: STA A

Compute effective address for above. Same as
CEA, but for storing into object. P .X~ compiles
LDA A;CEAS P; STA X,2

Compute effective address, indexed for store.
Same as CEI, but for storing into array.
P[I]~A compile LDA A; LOX J; CEIS P; STA 0,2.

Allocate paged block. (Q)=drum address near which
block ,will be assigned if possible, (A) =block size.
Address of block returned to A. If the block size
is le.ss than the page size-5, the block will lie
entirely on one page; hence, the core address can
be used directly as a base address to access all
the words of the block. otherwise, a separate
CEA or CEI is req¥ired for each reference. A
PMAKE(N,X) compiles LDA N; AP.B X; STA A

Miscellaneous. runtime functions. The effective
address Q {not (Q» determines the function. The
following values of Q a.re currently in use:

1 (LOCK) (A)=drum address. The page on which
this address lies is brought into core
if not already there, and a lock count
on the page buffer is incremented, pre­
venting the page from leaving core.
The core address is retruned in A.
X ~ LOCK(Y) compiles LDA Y; MRF I; STA X

146

147 QSBRM

Page 29

2 (UNLOCK) (A) =core a.ddress. The lock count
on the buffer is decremented; the
corresponding drum address is stored
in PADDa and the old value of the
lock count is returned in A.

3 (BRJT)

4 (WET)

XEUNLOCK{Y) compiles LDA Y; MRF 2; S~ X

(A) =core address. The page buffer
is returned for use by the in-core
storage allocator. All registers are
cleared. BRJT(X) compiles LDA X; MRF 3

(A) == core address. The page buffer
is taken back from the in-core storage
allocator for use by the paging l~ic.
All registers are cleared. BGET(XJ
compiles LDA X;MRF 4

This is exactly the same as the BRS SYSPOP, but
also stores the final contents of the central
registers in cells SYSA, SYSB, and SYSX.
BRS{12,1, ,-1) compiles LDA ::::1; LDX==-l; Q,BRS 12.

This is exactly the same as the SBRM SYSPOP,
but also stores the final contents of the
central registers in cells SYSA, SYSB, and
SYSX.· A~ SBRM(F ,X) compiles LDA ,X; QSBRM F;
STA A

Page 30

C

'< APPENDIX B

'"
Reserved Words.

AND Ge OUTNAME ~i .:;)

APPEND GeD PARAMETER
ARRAY Gel FMAKE BCOF.{ GO'1'O RCY BGET HALT RETURN BINARY IDENT RSH BPUT IF SBRM
BRS lIN SCOP.{
BY INFILE SETARRAY cm INITIALIZE SETR
CLOSE INNAME SETS
CLOSALL . INTEGER SETUP
CODE lOOT SETW
COOT ICY SOURCE
CNS LENGTH SOUT
CRLF LINK STRlEG
CSN LIST THROUGH C) DECLARE LOCAL THRU
DO LOCK TO
ELSE LSH UNLOCK
END MAKE WCD
ENTRY MOD WCI
EOR NOLIST WHERE
EXIT· NOT WHILE
EXTERNAL OR WIN
FIELD OUTFILE WOOT
FDCED
FOR
FREE
FROM
FUNCTION

t~, '

t~.'
BSTORG
EARRAY

ERROR

ESTORG

FTYPE

NPS

NPC

NM

NPL

NUP

P.A.DDR
!'CAT

1M

SARRA"!

8YSA

SYSB
SYSX

Pap 31

APPENDIX C

Standard External Symboll

First word ot storage available to INIT.

Last word not us.,d tor page butters or tables
atter INIT.

Error codes lett here by . INFILE and OUTFILE.

Laat word ot storage available to mIT.
File type lett here by INFILE and OUTFILE.

Number ot core butfers for paging. 0 = all
available apace.

Number ot categories tor paging.

Desiredl~!Dr,or drUII/. address rrpace/~.
NM < 2 • -
Page Size 8.$ power ot 2. 8 < NPL < 11. -
Number ot unlocked pages.

Drum address ot unlocked page.

Category to be used by PMAKE. 0 = don't care.

> 0 it paging logic uses NRH, < 0 it it uaea
the random rile /$QPDATA

Address ot second word not used tor page butteX's
or tables atter mrr.
Saved A register atter BRS or SBRM.

Saved B register

Saved X register

__ ~ __ ~~~ ____________________ ~ __________ ~J

