
j

Reference Manual

SYMBOL and META·SYMBOL
REFERENCE MANUAL

for

900 SERIES/9300 COMPUTERS

900506G

March 1969

5DS

Price: $3.50

SCIENTIFIC DATA SYSTEMS/701 South Aviation Boulevard/EI Segundo, California 90245

©1964. 1965.1966. 1967.1968. 1969. Scientific Data Systems. Inc. Pflnted In USA.

REVISION

This publication, SOS 9005 06G, is a minor revision of the SYMBOL and META­

SYMBOL Reference Manual, SOS 90 05 06F. Changes to the previous edition are

indicated by a line at the right or left margin of the page.

RELATED PUBLICATIONS

Pub I icati on
Title of Manual Number

SOS 910 Computer Reference 90 00 08

SOS 920 Computer Reference 90 00 09

SOS 925 Computer Reference 90 00 99

SOS 930 Computer Reference 90 00 64

SOS 9300 Computer Reference 90 00 50

SOS 92 Computer Reference 90 05 05

SOS MONARCH Reference 90 05 66

SOS 9300 MONITOR Reference 90 05 13

SOS 900 Series FORTRAN II Reference 90 00 03

SOS 900 Series FORTRAN II Operations 90 05 87

SDS FORTRAN IV Reference 90 08 49

SOS FORTRAN IV Operations 90 08 82

SOS Business Language Reference 90 10 22

NOTICE

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features me

depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their SOS sales representative for details.

i i

CONTENTS

PREFACE v

I. GENERAL DESCRIPTION

II. SYNTAX 3

A. Introduction 3
B. Characters 3
C. Program 3
D. Line 3
E. Label Field 3
F. Operation Field 4
G. Operand Field 4
H. Comments Fie Id 6

III. INSTRUCTIONS 10

IV. DIRECTIVES 11

A. Introduction 11
B. AORG and RORG (Absolute ORiGin and Relative ORiGin) 11
C. RES (REServe) 12
D. DATA (DATA) 13
E. DED (DEcimal Double Precision) 14
F. TEXT or BCD (Binary-coded character string) 14
G. E QU (E QUa Is) 15
H. OPD (Operation Definition) 17
I. FORM (FORMat) 18
J. RELTST (TeST RELocatability) 18
K. END 19
L. DO 19
M. NAME 22
N. PROC and FUNC (PROCedures and FUNCtions) 22
O. PAGE (Eject PAGE) 31
P. DISP (DISPlay) 31
Q. INHD (INHibit Display) 31
R. SUPR (SUPpRess octal listing of binary output) 32
S. INHS (INHibit Suppression) 32
T. MARK (insert character in flag region on listing) 32
U. SBRK (Set BREAK 1) 33
V. SIOR (Set special I/O Relocation) 33

V. ADDITIONAL PROGRAMMING FEATURES 34

A. Comments Line 34
B. Free Form and Continuation 34
C. Litera Is 35
D. External Definitions and References 36
E. Relocation 38
F. Concordance Listi ng 39
G. System Procedu res 41

iii

VIo COMPATIBILITY: SYMBOL/MET A-SYMBOL 44

VII. COMPATIBILITY: 92 SYMBOL/MET A-SYMBOL 45

A. Symbols 45
B. Directives 45
C. Expressions 47
D. Instruction Generation 48
E. Remarks 48

VIII. OPERATIONAL PROCEDURES 50

A. Error Flags 50
B. MET A-SYMBOL Error Messages 51
C. SYMBOL Error Halts 54
D. Concordance Routine Error Messages 54
E. Use of SBRK 55
F. Making Symbolic Changes to Encoded Programs 57

APPENDIXES
A. SDS 900 Series Programmed Operators 60
B. SDS 910/925 Instruction List 62
C. SDS 920/930 Instruction List 65
D. SDS 9300 Instruction List 69
E. SDS 92 Instruction List 74
F. Special Instructions - SDS 900 Series/SDS 9300 78
G. Input/Output - Device EOMs (SKSs) 82
H. Input/Output - Channel Operations (SDS 925/930/9300) 84
I. MET A-SYMBOL/FORTRAN Interface 87
J. Compatibi lity with SDS SYMBOL 4 and SYMBOL 8 90
K. SDS Standard Binary Language 94

iv

PREFACE

This manual describes two SOS Assembly Systems: META-SYMBOL, and its compatible subset, SYMBOL. For

both systems, it defines a symbol ic programm ing language and the processor that assembles programs written in

th is language. Although the name SYM BOL (or META-SYMBOL) appl ies to both the language and the proces­

sor, context will normally clarify the distinction. Since SYMBOL is a compatible subset of META-SYMBOL,

all programs written in SYMBOL may be assembled by META-SYMBOL; the converse is not true.

The introduction to META-SYMBOL is basic since, in many ways, META-SYMBOL represents a radical depar­

ture from more conventional assemblers. The description is del iberatel y syntax-oriented, and the detai Is per­

taining to its implementation on particular SOS computers are relegated to appendixes.

The presentation assumes that the reader is familiar with the basic theory of digital computer programming.

v

I. GENERAL DESCRIPTION

Basically, the solution of problems on a digital computer involves two steps:

Analysis: mathematical description of the problem, or the formulation of a mathematical model

Coding: transcription of the mathematical equations into a sequence of machine instructions

The result, called a program, operates on data specified to it (input data) and produces data which constitute

the problem's solution (output data). If the mathematical description is in parametric form, a family of solu­

tions may be obtained by varying the input data.

Both analysis and coding involve language translation: normally, the translation sequence is from verbal to

mathematical to machine code. The first two forms are more familiar to humans than machine code, particu­

larly since machine code varies from computer to computer. Although del iberately simple, the following

example is illustrative:

Verbal Mathematical

Let x be the sum of y and z x = y + z

Machine (octal)

07601000

05501001

03501002

No wonder, therefore, that the coding phase frequently is the most time-consuming and unrel iable portion of

programming.

Automatic programming systems arose because of early recognition that coding itself had all the attributes of a

typical programming problem. Ironically, therefore, the computer could solve the very problem it created.

The creation of a program was involved that would generate machine language programs (the output data) from

problem specifications (the input data), as written in some convenient non-machine language; to be conven­

ient, the language had to be easy to teach, learn, read, and write. Since the output data form is immediately

specified by the computer on which the program is to be executed (called the target machine), only the form

(syntax) of the source language input to the translation program rema ined to be described.

Clearly, the source language would occupy a level in between mathematical notation and machine language

but, unfortunately, no single language evolved. At one end of the language spectrum, several algebraically­

oriented languages developed, such as FORTRAN and ALGOL. The assoc iated langucge translators are known

as compilers. Toward the other end of the spectrum, as languages become more machine-dependent, a new

language tends to develop for each new machine. The associated language translators are called assemblers,

and the input (assembly) language is generally in the form of machine instructions represented symbolically.

Either language becomes more or less appropriate as the problem shifts from mathematical to machine in nature.

But the problem was not yet solved. For, once specified, the assembler and compiler in turn engendered a sec­

ond problem: In what language were they to be written? Just as the prol iferation of programs pointed to the

first problem, the prol iferation of mach ines and languages gave rise to the second. A programm ing language

suitable for dealing with programming languages, that is, a programming meta-language, was required. META­

SYMBOL is the outgrowth of this concept as implemented on SDS computers.

META-SYMBOL consists of two basic parts: a processing section (the processor proper) and a directive section.

The directive section contains directives that describe the computer, directives that describe the assembler,

and directives that instruct the meta-assembler. Since directives describe all appl icable computer characteris­

tics, only the directive section need be changed in implementing META-SYMBOL for other target machines.

Similarly, alteration of the assembler-descriptive portion enables variations in the assembler's syntax, or even

the implementation of entirely new programming systems. In normal usage, META-SYMBOL operates on con­

ventional symbol ic programs as a high-level symbolic assembler.

Operationally, META-SYMBOL is both faster and easier to use than conventional assembly programs. These

benefits result from an advanced source language encoding scheme that makes modify-and-Ioad assembl ies not

only convenient but efficient.

2

II. SYNTAX

A. Introduction

The syntax of a language is the set of rules governing its sentence (or statement) structure. All assembly and

compiler languages possess a formal syntax.

Formerly, the syntaxes of many languages were strongly influenced by ease of implementation and/or computer

hardware characteristics; they had numerous restrictions and ex.ceptions. SYMBOL and META-SYMBOL do not

have these I imitations; consequently, they possess a simpler but rllore powerful syntax. There are fewer defini­

tions and rules to learn because each one is more comprehensive. In learning them, however, the experienced

programmer is cautioned since, in many cases, a famil iar term (such as lIexpressionll) is redefined with greater

generality. Proper use of the language is possible only after completely understanding the basic principles.

For convenient reference, the following definitions oppear without illustration. Unless otherwise specified,

all rules and definitions apply both to SYMBOL and to META-SYMBOL.

B. Characters

1. Alphabetic character: one of the characters A - z.
2. Numeric character: one of the characters 0 - 9.

3. Alphanumeric character: any character which is either alphabetic or numeric.

4. Special character: a nonalphanumeric character (such as *, $, +). The character
-Ht{internal 077) is strictly illegal in Meta-Symbol except for use in comments.

c. Program

A program is a series of one or more symbolic lines, the last of which must contain an END directive.

D. Line

A I ine is the unit in which the assembler processes information much as a card is the proc.essing unit (unit

record) to a keypunch.

Unl ike a card, a I ine is a logical unit, subdivided into four parts, or fields, and may be equivalent to one or

more (physical) unit records. The four fields that comprise a line are: the label field, the operation field, the

operand field, and the comments field. With the exception of a I ine consisting entirely of comments, a line

must always spec ify an operation. In the latter case, the presence of information in the other fields is at the

programmer1s option.

E. Label Field

The label field labels an operation or a value so that it can be symbolicolly referred to elsewhere. Labeling

is accomp! ished by '.vriting a symbol (see G. Lb. i.) in the label field

3

F. Operation Field

The operation field may contain a generative, such as a mnemonic machine instruction, or a non-generative,

such as an assembler directive.

A directive, which always appears in the operation field, has three basic functions:

1. Describe the computer

2. Describe the assembler

3. Instruct the meta-assembler

Sections III and IV describe instructions and directives.

G. Operand Field

The operand field of a I ine may contain a sequence or a I ist of one or inore expressions.

1. List

A I ist is a parenthetically-enclosed sequence of one or more expressions separated by commas.

These expressions, called list items, are elements of the list. A list may itself be a list item.

As shown below, I ists are most useful in handl ing PROCedures and FUNCtions.

a. Expression

An expression is a series of items connected by operators (see G. 2.).The processor evalu­

ates expressions by successively combining items, as spec ified by the connecting operator,

in the order of decreasing operator hierarchy.

b. Items

An item may be one of the following types:

Item Definition Example

i. Symbol A symbol is a string of alpha- ALPHA

numeric characters, of wh ich B 1

the first character isalphabetic. X lY

(Cf. VI, also Appendix J.)

ii. Subscripted A subscripted symbol is a symbol

Symbol followed by a I ist of one or more

expressions enclosed with in

parentheses.

iii. Octal Integer An octal integer is a string of

from one to 15 octal digits pre­

ceded by a (signed or unsigned)

zero.

4

ALPHA (2)

Bl (1, N)

X1Y (3*N, 4)

012

01234567

077777777

iv.

v.

vi.

vii.

viii.

ix.

Item

Decimal

Integer

Decimal

Number

Character

Data String

Current

Location

Symbol

Definition

A decimal integer is a (signed

or unsigned) string of from one

to 15 decimal digits, of which

the first is not zero. The legal

range is 247_1 :! N :! _~7.

A decimal number is either a

decimal integer or a (signed

or unsigned) string of dec imal

digits and one or more of the

following: decimal point,

decimal scale operator, binary

scale operator. When an item

has a decimal point but has no

binary scale operator, the item

is of the floating point mode.

A character data string is a

string of characters (alphabetic,

numeric and/or special) sur­

rounded by single quotes.

The current location symbol

represents the execut ion-t ime

value of the location counter.

Subexpression A subexpression is a paren­

thetically-enclosed expression

that occurs as part of another

Function

Reference

expression.

A function reference is a symbol

followed by a parenthetically­

enclosed expression list. The

symbol must have appeared in

the label field of a NAME direc-

tive within a function definition

(see IV, N).

5

Example

12

1234567

12

0.12

+12.0*+4

(-12.5)*+(-2)*/3

1811

IX1YI

10121

1121

$

(ALPHA +81)

(12+012)

($ + 12)

MAX (X, Y)

2. Operators

An operator may be one of the following:

Operator Representat ion Hierarchy

Boolean

equals

greater than > 1

less than < 1

sum (OR) ++ 2

difference (exclusive OR) -- 2

product (AND) ** 3

Arithmetic

sum + 4

difference 4

product * 5

truncated quotient I 5

covered quotient II 5

decimal scale *+ 6

binary scale *1 6

The covered quotient operator, II, is defined: allb = (a + b -1)/b.

The dec imal and binary scale operators, *+ and *1, respectively, may be used to combine any

two expressions. Where x and y represent two expressions,

x *+y is equivalent to (x) . (lOY)

x * Iy is equivalent to (x) . (2Y)

Note that the nominal binary point of x is to the right of the least significant bit; that is,

these operations use integer, not fractional notation.

Actually, * / functions as a logical shift operator, so that x * /y is equal to x right (left)

logical shifted y places, y < 0 (y ~ 0). Hence, because of operator precedence, * / func­

tions as an arithmetiC operator for ±x */y but not for (-x) */y.

The use of operators is illustrated in the example which appears at the end of this section.

H. Comments Field

The comments field of a I ine may contain comments to annotate the program. The assembler ignores comments.

The next two sections describe instructions and directives. A format defin ition precedes usage description in

each case. The following example illustrates the instruction format·

6

Format:

label Operation Operand Comments

[[$] LABEL] LDA [*] El [, E2]

In this example, some of the parameters are enclosed in brackets to indicate that they are optional. All in­

structions must have at least an operation mnemonic and most must have an operand address. However, index­

ing (as indicated by E2) and indirect addressing (*) are optional. Similarly, the label and comment need not

be present; if the line specifies a label, an optional dollar sign preceding the label indicates that it is an

external label (Cf. ~. D.).

As indicated above, the operand field of a I ine consists of a sequence or a I ist of expressions. Expressions will

be represented by the symbols E, El, E2, ... ,EN.

The illustration on the following page is a representative (although not typical) META-SYMBOL program that

uses each directive at least once.

7

00000
00002
00003
00004
00005
00006
00007
00010
00011
00012
00013
00014
00015
00016
00017
00020
00021

77777777
OOOOOOO!
00000000
00000001
00000001
00000000
00000003
7.7777776
00000001
77777777
00000000
77777777
37777776
'7777772
00000024
3110375524202002
3110375524202002
00000012
00000010
00000100
00000002
50224321
45426250
23464565
25516325
24606346
60000600
12224321
45426212
23464565
25516325
24t26346
12000102

1 A EQU -1
2 8 EQU I
3 C EQU A=a FALSE
4 0 EQU A=(-8) TRUE
5 E EQU 8>A TRUE
6 F EQU 8<A FALSE
7 G EQU 8+B++i3 1+1.0R.l=3
8 H EQU A--8 -1.EOR.l=-2
9 I EQU A**8 -1.AND.l-1

10 J EQU G/H 3/-2--1
t 1 K EQU GIIH 311-2-0
12 L EQU -3,*/(-1) -3*/(-1)=-3/2--1
13 M EQU (-3)*/(-1) (-3)*/C-l)S077777775*/C-l)-037777776
14 N EQU -3*/1 -3*/1--3*2--6
15 0 EQU 2*+1 2*(10.EXP.I)=2*10-20
16 PI EQU 3.1415926535 DECLARE FLOATING POINT VALUE
17 PIE OED PI r.~NERATE FL~ATING POINT DATUM
18 TEN DATA 10.010.·10·.T::N

19 TYf!EOUT TEXT < BLANKS CONVERTED TO 060>

20 PRINTOUT BCD < BLANKS CONVERTEU TO 012>

21 F FUNC
22 ASS NAME
23 DO
24 RESULT EQU
25 RESULT EQU

F(I)<J.1.1
-F (1)
F (1)

THIS FUNCTION COMPUTES THE ABSOLUTE
VALUE OF THE REFERENCE PARAMETER

26 END RESULT
27 P PROC 1
28 Cl A NAME 050000
29 ST9 NAME 060100
30 I FORM 3.15.3.15
31 I P(O)*/C-15).P(O)**077777.P(2).P(1)
32 END
33 P PROC THIS PROCEDURE Mtt"fS T~E C"NT~NT5

34 MOVE NAME OF ONE MEMBRY LBCATIjN Ttt AI~ljrhER

35 CLA P(t)
36 STO P(2)
37 END

00001 38 AORG 1 ESTABLISH PRBGRAM RE~NTRY Pt1}NT

00001 I) 0 01 00032 39 BRU BEGIN AT LBC~TI'N 1
00000 40 RBRG 0 REST BF PROGRAM RELBCATABLE
00000 41 ALPHA RES 1
00001 42 BETA RI:':S 1
00002 0 50000 4 JOOOI 43 BEGIN CLA 1.4
00004 I) 60100 4 JOO02 44 STO 2.4
00006 a 50000 0 JOOOO 45 MOVE ALPHA. BETA
00010 (') 60100 0 JOOOI

46 CONST EQIJ (-1.AaS(-1).-~BS(-1).ABS(-ABS(-1»)

47 INDEX DB :CONST
00012 00000001 48 DATA A B S (C B N 5 T , I I~ D EX))
00Cl13 00000001
00014 OOOOOOOJ
00015 OOOOOOOJ

00000002 49 END BEGIN

III. INSTRUCTIONS
Instructions are represented as follows:

Format:

Label Operation Operand Comments

LOA [*] E1 L E2]

All SOS computers include similar, although not identical, instruction characteristics. Among these are:

an operation field

an address field, modifiable by indexing and/or indirect addressing

an index field

an indirect address field

In the example, where the LOA instruction is used; the quantities enclosed in brackets are optional. The aster­

isk preceding the first operand indicates indirect addressing; the second operand, separated from the first by a

comma, indicates indexing. Both Eland E2 may be expressions, although their values may not exceed the ad­

dress and index fields, respectively.

Examples:

Label

L1

LB

L2

BL

Operation

LOA

LOA

LDA

LOA

Operand Comments

M LOAD A WITH CONTENTS OF M

M,2 LOAD A WITH CONTENTS OF M+X (900 Series)
LOAD A WITH CONTENTS OF M+X2 (9300)

*M IN OIREC T AOORESSIN G

*M,2 INDEXING AND INDIRECT ADDRESSING

Some instructions (e. g., EOM), have more than two operands. The syntax for these instructions is covered

separately.

In all these examples, the label is optional. The use of operand expressions will be illustrated following the

introduction of directives.

10

IV. DIRECTIVES

A. Introduction

As noted previously, an assembler, I ike any other program, operates on input data to produce output data. The differ­

ence is that the output data from an assembler genera Ily constitute another program wh ich, in turn, operates on input

data to produce output data. Thus, there are two levels at which the resultant program can be affected logica lIy: at

assembl y ti me and at execution ti me. In the latter case, this is accompl ished by input parameters to the program, and

in the former case, by input parameters (ca lied directives) to the assembler. These directives may enrich the seman­

tics, but never the syntax, for a particularassembl y. Syntactic changes may be accompl ished on Iy through reassembly

of the assembler itself. Thus, directives are dynamic at assembly ti me, whereas instructions are dynamic at program

execution time. Thefollowingdirectivesare included in theassembly language:

Data Generation Assembler Instruction

DATA AORG PAGE

DED RORG DISP

TEXT RES INHD

BCD DO SUPR

Value Declaration PROC INHS

EQU FUNC MARK

FORM NAME SBRK

OPD END SIOR

RELTST

DA TA and OPD are actually system PROCs, but are inc luded in this I ist because they behave simi larly to directives.

Important: No forward or external reference is permitted within the operand field of a directive. Thus, the

following example contains two violations.

r: 00000
00000002

D 00002
* OOOO~ 0 43 0 00000
*E

00004

1
?
3
4
5

RES A
A EQU 2
B RES A

RRt-A Z
E"-!D l

Z

ILLEGALI A=Q 1ST PASS, 2 2ND pASS

~ENCE B=O 1ST PASS, 2 2r-..D PASS
LFGAL
ILLEGAL

In the following, examples are provided to illustrate the functions of these directives, and they frequently

include machine instructions. However, the role of the instruction is illustrative only, so that an under­

standing of the examples should not depend on an understanding of any particular machine.

B. AORG and RORG (Absolute ORiGin and Relative ORiGin)

Format:

Label Operation Operand Comments

r r$l LABELl
L-- ~

AORG or RORG E rPROGRAM ORIGINl
L ~

11

The origin of a program is defined as the lowest numbered memory address occupied by {instructions or data of}

the program. Generally, it is useful to allow the origin to be relocatable at execution time, so that the pro­

gram can be executed equally well whether it is loaded beginning at one location or beginning at another.

Program relocatability is automatic in SYMBOL and META-SYMBOL. The assembler accomplishes it by pro­

ducing relocation information together with the binary object program. Using this information, the Loader

performs the relocation when the binary object program is loaded for execution.

In some cases, however, the programmer desires to control the program origin. This may be because all or part

of his program must occupy fixed memory locations {for example, interrupt locations} or because, during program

debugging, it is easier to relate the contents of memory to an assembly listing.

To accomplish these objectives, two directives are provided: AORG and RORG (for absolute and relocatable

origin, respectively).

Example:

Label

11

IlINT

°eeration

AORG

BRM

RORG

HLT

BRR

Operand Comments

030 AT LOCA nON 30 (OCTAL)

I11NT PLACE LINKAGE TO 11INT

0200 Il INT IS TO BE RELOCATABLE

IlINT

In this example, all addresses except Il are relocatable. Thus, the BRM IlINT is always loaded into location

030, but the contents of its address field, as a relocatable quantity (IlINT), is assigned at loading time. The

subroutine I lINT, on the other hand, is completely relocatable, since the Loader provides the capabil ity to

override the otherwise automatic loading into location 0200.

Viewed otherwise, AORG and RORG have the function of resetting the location counter;CDthe symbol 11

has the same value (030) whether it appears on the AORG line or on the following line.

Naturally, the operand may be a completely general expression, and is not restricted to simple numeric values.

Its value must, however, be defined within the program, and cannot be externally defined.

c. RES (REServe)

Format:

Label Operation Operand Comments

[[$] LABE L] RES E [RESERVE A BLOCK]

The IJl0cation counter II is a special memory cell retained by the assembler in defining labels at

assembly time.

12

The RES directive is primarily used to reserve and (optionally) label storage areas. It may also be used to reset

the location counter; used in this manner, it is functionally redundant with respect to the RORG directive.

Example:

Label

TABLE

Operation

RES

RES

Operand

10

0200-$

Using the origin directives, these I ines could have been written:

Label

TABLE

D. DATA (DATA)

Format:

Label

[[$J LABEL]

Operation

RORG

RORG

AORG

Operation

DATA

Operand

$

$+10

0200

Operand

Comments

RESERVE 10 LOCATIONS

RESET LOCATION COUNTER TO 0200

Comments

LABEL BLOCK

RESERVE 10 LOCA nONS

RESET LOCATION COUNTER TO 0200

Comments

[GENERATE DATA BLOCK]

The directive DATA enables the programmer to represent single-prec is ion data conveniently within the symbol ic

program. Since operands may be general expressions, octal, decimal, binary-coded decimal, and symbolic

data may all be generated with a single directive. In all cases, the translated expression is right justified

within the computer word; except for negative data, unfilled bits always contain zeros.

Example:

Location

01000

01000

01001

01002

01003

01004

Contents

00000010

00000012

00000100

00001000

02101012

Label

TENS

Operation

AORG

DATA

DATA

Operand

01000

010,10,1101, TENS

(TENS+ 1 O)++(IA 1*01 00000)

In conventional assembl y programs, the manner of interpretation of the contents of the operand field depends

upon the contents of the operation field. In SYMBOL and META-SYMBOL, however, th is restriction does not

apply since data unambiguously describe their own item type by adherence to the definitions in Section II.

13

E. OED (DEcimal Double Precision)

Format:

Label Operation Operand Comment

DED E 1 [, E2, ... , EN] [GENERATE DP DECIMAL DATA]

The directive DED enables the programmer to represent double-precision decimal data conveniently within

the symbolic program. The resultant data will be generated in standard SDS double-precision fixed- or

floating-point format according to the mode of the expression{s) in the operand field (Cf. II. G. 1. v). In the

case of DED, only decimal numbers constitute legitimate expressions.

Example:

Label Operation

PI DED

AVO DED

E DED

LIGHT DED

Operand

3.1415926535

6.023*+23

2.7182828* /45

1.86*+ 5* /23

Comment

FLOATING

FLOATING

FIXED

FIXED

Because numeric quantities are restricted to 15 digits in length, the use of "scientific" or "fl~ting-point"

notation is preferable to absolute notation (e. g., 0.0000147235821). When both a binary and a decimal scale

factor are desired, the decimal scale factor should be specified first.

F. TEXT or BCD (Binary-coded character string)

Format:

Label Operation Operand

TEXT or BCD E, character string

or

[[$] LABEL] TEXT or BCD <character string>

The programmer often needs the capabi lity to incorporate within programs output messages in binary-coded form.

This may be accomplished by subdividing the message into four-character (24-bit) strings and placing them in

the operand field of a DATA directive line. For greater convenience, however, a TEXT directive is provided

with which the message may be described independently of the word-size of the target computer.

Using the TEXT directive, the programmer places the character string (not enclosed in quotes) in the operand

field and specifies the total message length in one of two ways: in the first, he precedes the character string

by a character count, separated from the string by a comma; in the second, he encloses the character string by

the characters < and >, respectively. The latter method is more convenient when it is unnecessary to know the

length of the string for other reasons; but the former method is necessary when the charac ters < and/or> wi II

14

appear within the message. In this case, the value of the expression E must be defined prior to the TEXT line.

In both cases, the message is left-justified within the block of computer words allocated to it. Unfilled char­

acter positions always contain blanks (060). Note that TEXT and DATA differ in these two respects.

Example:

Location

01000

01000

01001

01002

01003

01004

01005

01006

01007

01010

01011

Contents

22232460

31452646

22232460

31452646

22232460

31452646

22232460

60222324

00222324

60222324

Label

MSGE

Operation

RORG

TEXT

TEXT

DATA

TEXT

TEXT

DATA

DATA

Operand

01000

8, BCD INFO

<BCD INFO>

'BCD', 'INFO'

4, BCD

4, BCD

'BCD'

' BCD'

Note that the first three lines result in identical code, whereas the last four do not.

The BCD directive is identical to TEXT, except that the 012 character is used for blank. The normal use of

BCD, therefore, is to generate messages intended for typewriter or paper-tape output, whereas TEXT is used

for a II other devices.

G. EQU (EQUals)

Format:

Label Operation Operand Comments

[$] LABEL EQU E LABEL COMPULSORY

or

[$] LABEL EQU (E 1, E2, ... , EN) LABEL COMPULSORY

Since the directives DATA, DED, and TEXT enable the programmer to centralize and label execution-time

data specifications, they contribute to both the readability and flexibility of the symbolic program. For the

same reasons, it is frequently desirable to specifiy assembly-time data symbolically; or to use "parametric

programming", a techniql1e that is useful whenever a number of symbolic lines are related to one another by

their common dependence upon one or more values. Using the parametric approach, the programmer labels the

value(s} by an EQU directive and replaces all references to the appropriate value{s} by its {their} symbol ic

equivalent{s}.

15

The EQU directive usually defines a single datum symbolically, as on the first line appearing above. Since

the operand is a general expression, it is possible to pyramid parametric definition. Moreover, any single-

or double-precision value may be defined by the EQU directive, whereas in conventional assembly languages,

EQU (or its equivalent) can only define symbolic addresses.

Example:

Label

ONE

TWO

PI

Operation

EQU

EQU

EQU

DED

Operand

ONE + ONE

3.1415926535

PI

Comments

CHANGING THIS DEFINITION

WILL CHANGE THE VALUE TWO

FLOATING POINT DEFINITION

In Meta-Symbol the EQU directive can also define a symbolic list, similarly to the way in which the

DATA directive can define a data block.

Example:

Label

SQUARE

CUBE

Operation

DATA

EQU

Operand

1,4,9

(1, 8,27)

The difference is the way reference is made to list items. If LABEL is the label of a DATA block, then the ad­

dress of the ith element may be symbolically referred to as LABEL +(i-1). If, however, LABEL is the,label of a

list definition, then the ith list element may be symbolically referred to as LABEL (i). Thus, in the above ex-

ample,

SQUARE contains

SQUARE +0 contains

SQUARE +1 contains 4

SQUARE +2 contains 9

CUBE has the va lue (1, 8,27)

CUBE (1) has the va I ue

CUBE (2) has the va lue 8

CUBE (3) has the va lue 27

Note that a list definition must always be enclosed in parentheses. Because of this, it is possible to pyramid

list definitions.

Label Operation Operand Comments

OPl EQU 3 OPl IS NOT A LIST

OP2 EQU (3) OP2 IS A LIST OF 1 ELEMENT

A EQU (1,2)

B EQU (3,4)

C EQU (A, B) EQUIVALENT TO ((1,2), (3,4))

16

The fifth line illustrates the case in which elements of the list are lists themselves. Thus:

C(l) is equivalent to (1,2)

C(2) is equivalent to (3,4), and

C(l)(l), written C(l, 1), is equivalent to 1

C(1)(2), written C(l, 2), is equivalent to 2

C(2)(1), written C(2, 1), is equiva lent to 3

C(2)(2), written C(2, 2), is equivalent to 4

Subscripting to higher levels follows the same rules of parenthetical notation. Lists are primarily useful as

they apply to PROCedures and FUNCtions, and additional list notation and examples are provided within the

sections describing these two directives. In particular, the concepts of list dimension and symbolic redefini­

tion are explored there.

H. OPD (Operation Definition)

Format:

Label Operation Operand

LABEL OPD E

OPD is the counterpart for operations of the EQU directive for values.

Example:

Label

LOC

LDA

Operation

EQU

OPD

LDA

Operand

3

07600000

LOC

Comments

LABEL COMPULSORY

Comments

GE N E RAT ES 07600003

Thus, wh i Ie the interpretation of the operand fie Id of an OPD I ine is identica I to that of the single-va lued

EQU directive, the reference to an OPD-defined symbol is made in the operation rather than in the operand

field. Encountering a reference to the OPD-defined symbol, the assembler merges (OR, logical sum) the

operation value with the address portion of the operand value. If the second line above had appeared

LDA OPD 07600010

then the third line would have generated 07600013

OPD is preserved for compatibility with SYMBOL 4/8. The use of a FORM or a PROC definition

offers greater flexibi Ii ty.

In Meta-Symbol, OPD is implemented by means of a nested PROC definition. Hence, OPD may

not be used within a PROC.

17

I. FORM (FORM at)

Format:

Label Operation Operand Comments

LABEL FORM E1, E2, ••• , EN DESCRIBE FORMAT

It is frequently desirable to pack multiple data within a single computer word. The computer instruction is a

typical example: the computer word is divided into operation, address, index, and indirect address subfields.

In processing symbolic instructions, the assembler recognizes an implicitly specified subdivision format and,

upon translation to binary, packs the instruction accordingly.

The FORM directive enables the programmer to describe completely general computer word subdivisions, and

to invoke them simply.

Example:

01000

01001

Label

DCHAR

INST

X2

LDA

LOC

04432126

27600003

Operation

FORM

FORM

EQU

EQU

EQU

RORG

DCHAR

INST

Operand

4, 4, 4, 4, 4, 4

1,2,6,15t

2

076

3

01000

1, 2, 3, 4, 5, 6

0, X2, LDA, LOC

Comments

DEFINE DECIMAL SUBDIVISION

DEFINE INSTRUCTION FORMAT

PAC K 6 DECIMAL CHARACTERS

PAC K COMPUTER INSTRUCTION

For SYMBOL, the sum of the operands on the FORM definition line must be equal to the word size {24 bits for

SDS 900 Series Computers}. For MET A-SYMBOL, the sum may range between one bit and twice the word size;

when the sum is not equal to the word size {or twice the word size}, the expressions in the FORM reference

line are right justified in the generated single {or double} data word.

The FORM definition must precede all references to it.

J. RELTST (TeST RELocatability)

Format:

Label

L

Operation

RELTST

Operand

E

Comments

tApplicable to META-SYMBOL only. 900 SYMBOL will not handle an address field greater than 14 bits.

18

A value is assigned to L depending upon the relocatability of E:

K. END

Format:

Relocatabilityof
Expression E

absolute

relocatable

common relocatable (blank common)

Label Operation Operand

END E

Value assigned
to L

o

2

Comments

(END OF PROGRAM, PROC OR FUNC)

The END directive indicates to the assembler the end of a PROCedure, FUNCtion, or of an entire program.

When the END line terminates a PROCedure, any expression in the operand field is ignored and need therefore

not appear.

When the END line terminates a FUNCtion, the operand field serves to return the FUNCtional value to the

functional reference line (Cf., PROC and FUNC).

When the END line terminates a program, the operand field may (but need not) be used to specify the starting

address of the program.

L. DO

Format:

Label

(LABEL)

(LABEL)

Operation

DO

or

DO

Operana Comments

El WITHIN PROC, FUNC OR PROGRAM

El [,E2,E3] WITHIN PROC OR FUNC ONLY

The DO directive provides for conditional and/or repetitive code or value generation based upon the value of

the first expression in the operand field of the DO I ine. The DO directive is valuable in conjunction with

parametric programming (Cf. the EQU directive), since it enables assembly-time decisions to be made and pro­

cessed.

19

Normally, the "range" of the DO (the number of successive statements upon which it is active) is a single state­

ment. When used within PROCedures and FUNCtions, however, its capability is extended for action upon mul­

tiple I ines. The use of th is capabi I ity is described below.

The simplest use of the DO directive can be illustrated:

Label Operation

DO

ADD

Operand

K

C

Comments

ACCUMULATE SUM

Encountering this instruction sequence, the assembler generates the ADD instruction K times for K ~ 0, and will

indicate an error for K<O. Thus the following sequence:

K EQU

DO

ADD

3

K

C

results in the generation of three successive ADD instructions.

More typically than the above case (~ C), the user desires to generate code to perform ~ Cj" This capa­

bil ity is provided by the label field of the DO directive, which becomes a dynamic index. Encountering a

symbol in the label field of the DO line, the assembler assigns it the initial value zero, which is then incre­

mented by one each time prior to the processing of the following line. Thus the sequence:

DO

ADD

K

C+I

results in the generation of K ADD instructions, K~O, which have the successive operands C+l, C+2, ... ,

C+K. For K<O, an error indication results.

Within PROCedures and FUNCtions, the DO line may have up to two additional operands interpreted as follows.

El > °

El = °
El < °

DO the next E2 lines E 1 time(s), then

sk ip E3 I ine(s).

Skip the next E2 I ine(s)

Error

When unspecified, the values of E2 and E3 are 1 and 0, respectively, to coincide with the DO that is used ex­

ternally to PROCedures and FUNCtions.

Note: When counting lines, the assembler includes all symbolic lines including comments lines.

20

Example 1:

DO

DATA

DATA

generates:

DATA

DATA

DATA

DATA

DATA

DATA

Example 2:
DO

DATA

DATA

DATA

DATA

DATA

3,2

1*1

1* 1

2

2*2

3

3*3

TYPE < 8, 3, 2

5

50

500

17

34

If TYPE < 8, E 1 = 1 and the following is generated.

DATA 5

DATA 50

DATA 500

If TYPE ~ 8, E 1 = 0 and the following is generated.

DATA 17

DATA 34
Example 3:

DO (TYPE < 8) *3,

DATA 5*+(1-1)

DATA 17

DATA 34

If TYPE < 8, E 1 = 3 and the following is generated.

DATA 5*+ (1-1)

DATA 5*+ (2-1)

DATA 5*+ (3-1)

If TYPE ~ 8, E 1 = 0 and the following is generated.

DATA 17

DATA 34

1, 2

Examples 2 and 3 illustrate why E2 and E3 may be reterred to as the "true range" and "false range, II respectively.

21

M. NAME
Format:

Label Operation Operand Comments

LABEL NAME [E] [CALLING NAME]

The NAME directive labelsa PROCedure or a FUNCtion definition, enabling it to be called by a PROCedure

reference line or a FUNCtion reference item. Just as multiple entries can be created for subroutines, multiple

NM\E I ines can appear within a PROC/FUNC definition. In such cases, it is normally desirable to have the abi I ity

to determine internally by what NAME the PROC/FUNC was called. Since only values (not names) can be

tested (as, for example, with a DO directive), the programmer may associate different values with the different

calling NAMEs. This is accomplished by placing different expressions{usually integers) in the operand fields of

the different NAME I ines. The use of this feature is illustrated under PROCedures and FUNCtions.

The operand field of the NAME line may also contai n an expression list. In this case, the expression list

must be surrounded by parentheses.

N. PROC and FUNC (PROCedures and FUNCtions)
Format:

Label Operation Operand Comments

LABEL PROC INTRODUCE PROCEDURE DEFINITION
or

LABEL FUNC INTRODUCE FUNCTION DEFINITION

PROCedures and FUNCtions are bodies of code analogous to subroutines, but which are processed at assembly

time rather than at execution time. Introduced by a PROC/FUNC directive, the coding sample is always ter­

minated by an END directive. Used without the DO directive, the PROCedure is similar to the simpler "macro",

in which a single line of code (the reference line) is replaced by one or more lines specified in a macro defini­

tion. Used together with the DO, however, the PROCedure provides a more powerful capabil ity than simple

line replacement. This capability is illustrated in examples which follow.

The FUNCtion, I ike the PROCedure, is a generator; whereas the PROCedure generates code, and is invoked

by placing its name in the operation field of a I ine, the FUNCtion generates val ues and is invoked by plac ing

its name in the operand field.

The PROCedure or FUNCtion definition must always precede the first reference line.

The follow ing exampl es of an ord inary macro are provided for ill ustrative purposes only. There is no MACRO

directive in META-SYMBOL.

Label Operation Operand Comments

MOVE MACRO A,B MACRO DEFINITION

LOA A

STA B

END

MOVE C,D MACRO REFERENCE LINE
22

The macro definition defines an instruction sequence in terms of dummy parameters A and B that appear on the

MACRO definition I ine. Encountering the MOVE I ine, the assembler generates the LDA, STA sequence, but

replaces the dummy parameters A and B by the reference parameters C and D. The macro is said to operate on

a "call by name" principle.

The PROCedure operates, on the other hand, on a "call by val ue II basis.

Example:

Label Operation Operand Comments

P PROC PROCEDURE DEFINITION

MOVE NAME

LDA P(1)

STA P(2)

END

MOVE C,D PROCEDURE REFERENCE LINE

In this case, the reference parameters are named implicitly in terms of the symbol P that appears in the label

field of the PROC I ine. They are evaluated before the PROC/FUNC is processed, and it is only these values,

not their names, that can be determined within the sample. If the PROCedure reference I ines were:

OP E 1, E2, ... , EN

then the correspondence between the symbol P and the parameters El, E2, ... , EN exists as though the refer­

ence I ine had been:

P EQU

Thus,

(E 1, E2,

P(1) has the value El

P(2) has the val ue E2

P(N) has the value EN

EN)

Note that the reference parameters constitute a I ist even though they are not enclosed in parentheses.

If any of the parameters El, E2, ... , EN is in turn a I ist, the elements can be referred to by subscripting

further the symbol wh ich appears in the PROC line.

Example:

Q PROC PROC DEFINITION

OP NAME

END

OP (A, (B, C), (D, (E,F))) PROC REFERENCE

23

This reference I ine contains only one operand, viz., Q. Thus,

Q (A, (B, C), (D, (E,F)))) I ist of one element

Q(l) (A, (B, C), (D, (E, F») I ist of three elements

Q(l,1) A not a I ist unless A is

Q(l,2) (B, C) I ist of two elements

Q(l,2,1) B not a I ist unless B is

Q(l, 2, 2) C not a I ist unless C is

Q(l,3) (D, (E, F» I ist of two elements

Q(1,3,1) D not a I ist unless D is

Q(l, 3, 2) (E, F) I ist of two elements

Q(l, 3, 2, 1) E not a I ist unless E is

Q(l,3,2,2) F not a I ist unless F is

It is frequently desirable that the PROC/FUNC defin it ion be written without restricting the I ist structure of the

PROC/FUNC reference I ine, although the I ist structure of the reference I ine must be determinable within the

definition. Notationally, this problem is resolved by the convention that, if L is the name of a list, then: L

has the value lithe number of elements in the list L ". Thus, in the above example:

:Q =1

:Q(l) =3

:Q(l, 1) =0

:Q(1,2) =2

:Q(l,2,1) =0

:Q(l, 2, 2) =0

:Q(l,3) =2

:Q(l,3,l) =0

:Q(l, 3, 2) =2

:Q(l, 3, 2, 1) =0

:Q(l, 3, 2, 2) =0

In general, there are two additional quantities of interest with in a procedure: the identity of the operation on

the call ing (reference) I ine and the know ledge whether any of the reference operands was indirectly addressed.

24

Example:

Label

P

LOA

LOB

LOX

STA

STB

STX

INST

Operation

PROC

NAME

NAME

NAME

NAME

NAME

NAME

FORM

INST

END

LOA

STA

Operand

076

075

071

035

036

037

3,6,1,14

P(2), P(O), P(* 1), P(1)

100

*0200,2

Comments

900 SERIES LOAD/STORE

INSTRUCTION SET

GENERATES 07600144

GENERATES 23540200

The above exampl e illustrates how several reference I ines may invoke the same PROCedure. In the first case,

the INST I ine wi II generate an 076 for the six-bit instruction code, since the operation field on the call ing line

corresponds to the label field of the first NAME line, which, in turn, contains the value 076 in its operand

field. For the same reasons, the INST line generates an 035 for the six-bit instruction code of the STA line.

The correspondence is establ ished via the subscripted symbol P{O), wh ich stands for the va lue on the NAME

line whose label field agrees with the operation field of the reference line.

The examp Ie a Iso illustrates how a procedure may determi ne whether or not a reference parameter was indi­

rectlyaddressed: If the reference parameter P{i) was indirectly addressed (preceded by an asterisk), then the

item P{*i) wi" have the value 1; otherwise, P{*i) wi" have the value O.

Moregenera"y, ifP{E1,E2, .•• ,EN) is a subscripted symbol, then the subscripted symbol flag corresponding to

this item, written P{E1, E2, .•• , *EN), has the value 1 if an asterisk preceded the expression that defined this'

item. Otherwise, the subscripted symbol flag has the value O. Note that the subscripted symbol flag corre­

sponding to an element is notationally indicated by an asterisk preceding the last subscript of the element.

Normally, the programmer does not have to make this identification. The MOVE PROCedure, for instance,

generates correct code regardless of whether one or both of the reference parameters is indirectly addressed.

This is true because the MOVE PROC invokes the LDA/STA PROC, which does make the determination. Since

a" META-SYMBOL instructions are defined by PROCs, indirect address determination by the programmer is

necessary onl y when he uses non-mach ine instructions defined by himself. Note the imp I ication that PROCs

may be defined and/or called within other PROCs, which is illustrated in the third example below~

25

Example:

Label

LOAD

STORE

P

MOVE

Operation

OPD

OPD

PROC

NAME

DO

LOAD

LOAD

DO

STORE

STORE

END

Operand

07600000

03500000

P(*l), 1,1

* P(1)

P(l)

P(*2), 1, 1

*P(2)

P(2)

Comments

In this example, indirect address determination is necessary because LOAD and STORE are defined by OPD and

not by instruction PROCs. By the above means, all the attributes of the operation and operand fields at the

reference line can be determined and tested within a PROC. It is also useful to operate within procedures on

the contents of the label field of the reference line.

Example:

It is desired to define two procedures, one a BSS (Block Started by Symbol) PROC, and one a BES (Block Ended

by Symbol) PROC:

Label

P

BSS

BES

$

$

LABEL 1

LABEL 2

Operation

PROC

NAME

NAME

DO

RES

RES

RES

END

RORG

BSS

BES

Operand

0

P(0),2, 1

P(l)

0

P(l)

o

Comments

DO NEXT 2 FOR BES

RESERVE P(1) LOCA nONS

THEN DEFINE SYMBOL

BSS IDENTICAL TO RES

LABEL 1= 0, BUT

LABEL 2=2

Normally, when the reference label is not manipulated within the PROCedure, it is equated to the value of

the location counter when the PROCedure is called. A lone dollar sign placed in the label field of a line

within a PROC, however, has the effect of "postponing" the definition of the reference label from the begin­

ning of the PROC to the processing of the $-Iabeled line. In no other case can a dollar sign appear alone in

the label field of a symbolic line.

26

The followi ng examp Ie illustrates an interesting use of th i s feature in a nested PROC. The examp Ie, wh ich is the

OPD PROC as it actually appears in the system, shows again how a PROC may be used to si mulate a directive.

Label

P

OPD

A

B

C

D

Q

$

Z

Operation

PROC

NAME

EQU

EQU

EQU

EQU

PROC

NAME

EQU

FORM

DO

END

END

Operand

P(1)*/(-21)**7

P(1)*/(-15)**077

P(1)*/(- 14)* * 1

P(1)**037777

1

(A,B,C,D)

Q(O)

3,6,1,14

Z(4)=0, 1, 1

Z(1)++ Q(2), Z(2), Z(3)++Q(* 1), Q(1)

Z(1)++Q(2), Z(2), Z(3)++Q(* 1), Q(1)++Z(4)

When an OPD line is encountered, the OPD PROC is processed, resulting simply in the definition of another

PROC, which takes its NAME from the label field of the OPD line. This PROC in turn is processed when its

reference I ine is encountered.

There is one restriction on the nested PROC: All NAME lines in the internal PROC must be rendered external

by the appearance of a "$" alone or preceding the symbol in the label field, therefore, PROC definitions may

be nested only one level.

The example also illustrates a use of a one-pass PROC, conveyed to the assembler by the appearance of the

value 1 in the operand field of the PROC line. When, as in the preceding examples, the operand field of the

PROC line is vacant, the assembler performs a two-pass "assembly" on the PROC when the reference line is

. encountered. This is necessary whenever a PROC contains an internal forward reference, but unnecessary

otherwise. For example, the following PROC can be changed to a "PROC 111 only if the reference to the sym­

bol A is replaced by a reference to $+2.

Label Operation

P PROC

SUM NAME

BRU

DUMMY RES

$ RES

A LDA

DO

ADD

STA

END

Operand

A

o

P(1)

:P-1

P{I+ 1)

DUMMY

27

Comments

BRANCH AROUND RESULT

LABE L RESU L T WITH

REFERENCE LINE LABEL

SUM REFERENCE PARAMETERS

STORE RESU LT

Since FU NCtions onl y generate va I ues, and do not influence storage a Ilocation, they are a I ways processed in

one pass.

Because of the flexible list structure, it is possible to write very general PROCedures and FUNCtions where

the operands can be indexed and/or indirectly addressed. They may, in addition, be literals (Cf. 'Yl.. C) as the

following example illustrates:

Label· Operation

P PROC

ATANF NAME

DO

LDF

LDF

BMA

DO

PZE

PZE

END

ATANF

Operand

: P(1) =0, 1, 1

P(l)

P{ 1, 1), P{ 1, 2)

ATAN

: P(2) =0, 1, 1

P(2)

P{2, 1), P{2, 2)

(* ARGS, 2), = 1. 0

The code generated by the PROC reference line is equivalent to:

LDF

BMA

PZE

*ARGS,2

ATAN

=1.0

Comments

It can be inferred from this example that PROCedure/FUNCtion NAMEs are defined externally to the PROC/

FUNC sample. However, no symbols appearing on other than NAME lines are defined externally unless they

are preceded by a dollar sign. Similarly, any PROC/FUNC may refer to symbols defined externally to it. In

cases of conflict (where the same symbol isdefined both externally and internally with respect to a PROC/FUNC

sample), the ambiguity is resolved in favor of the innermost (internal) definition level. However, this conven­

tion applies only within the sample, and cannot affect the reference line.

Example:
Label Operation Operand Comments

X EQU 3

P PROC PROC DEFINITION

LOADX NAME

X EQU 2

LDX P{ 1), X

END

LOADX X PROC REFERENCE

28

The PROCedure reference I ine wi II become LDX 3,2.

The writing of FU NCtions follows the same rules as PROCedures except that:

1. The FUNCtion call occurs in the operand field of the reference line and not in the operation

field.

2. The function generates a value-not code -and only nongenerative lines may be used within

FUNCtions.

3. The reference label symbol, $, has no meaning within a FUNCtion.

Example: The following FUNCtion will determine the maximum or the minimum of two given arguments.

Label Operation

F FUNC

MAX2 NAME

MIN2 NAME

DO

M EQU

M EQU

END

A general MAX/MIN FUNCtion can now be written:

Label Operation

G FUNC

MAX NAME

MIN NAME

M EQU

N DO

DO

M EQU

M EQU

END

Operand

o
F(O)--(F(l)<F(2)), 1, 1

F(1)

F(2)

M

Operand

o
G(1)

:G-l,3

G(O), 1, 1

MAX2f...M, G(N+l))

MIN2(M, G(N+l))

M

This example illustrates the use of symbolic redefinition, which is permissible only when none of the multiple

definitions equates the symbol to a relocatable quantity. Either a symbol or a list may be redefined as a sym­

bol (list), but a list may not be redefined as a non-list.

29

The entire FUNCtion could instead have been written recursively:

Label Operation

F FUNC

MAX NAME

MIN NAME

DO

M EQU

M EQU

N DO

DO

M EQU

M EQU

END

Operand

o
F(O)--(F(1)<F(2», 1, 1

F(l)

F(2)

:F-2,3

F(O), 1, 1

MAX(M, F(N+2»

MIN(M, F(N+2»

M

Evidently, a FUNCtion can be written to execute any computation that can be stated algorithmically.

From the foregoing, we can define four new quantities:

Quantity Definition Example

l. List Dimension The dimension of a list is the number of :L

elements contained within the list

2. Subscripted The subscripted symbol flag corresponding P(2, *3)

Symbol Flag to a subscripted symbol is notationally iden-

tical to the element, but with an asterisk

preceding the last subscript.

3. Reference The reference NAME va lue is the value of P(O)

NAME Value the expression on the NAME I ine summoned

by a PROC/FUNC reference line

4. Reference The Reference Label Symbol represents the $

Label Symbol symbol that appears in the label field of the

PROC reference line

Of these quantities, all but the last are items. The last two have meaning only within PROCedures and

FUNCtions.

30

o. PAGE (Eject PAGE)

Format:

Label Operation Operand Comments

PAGE (EJECT PAGE)

When the PAGE directive is encountered, the assembler causes a page eject to occur on the output listing

medium. The PAGE I ine is the first I ine on the new page.

P. DISP (DISPlay)

Format:

Label Operation Operand Comments

DISP

The DISP directive is used within a procedure. If during the "expansion" of a procedure a DISP directive is

encountered, those statements encountered in expanding the remainder of the procedure are I isted in a format

similar to the lines of the main program code. The two listings differ in that for those produced as the result of

DISP I ine numbers are not given and I ines skipped under control of DO statements are not displayed.

DISP governs the display of the internal structure of only those procedures in which it occurs. Thus, if a pro­

cedure containing DISP calls a procedure that does not contain its own DISP directive, the called procedure

wi II not be displayed.

The DISP directive is ignored when encountered in a function or a procedure called by a function. It is also

ignored when encountered in a procedure that is being executed under the influence of a main program DO.

An M flag is given in the latter case (see II Error F lags" in Section VII.)

The DISP directive is invaluable both for debugging procedures and as a tutorial device.

Q. INHD (INHibit Display)

Format:

Label Operation Operand Comments

INHD

The INHD directive causes the assembler to ignore all succeeding DISP directives.

After a set of procedures has been debugged, an INHD may be inserted early in the main program to cancel

the effect of all subseguent DISP directives. Then if further errors occur, removal of that one statement allows

complete display for continued debugging. After full confidence in the procedure is gained, the DISP direc­

tives may be removed from the individual procedures.

31

R. SUPR (SUPpRess octal listing of binary output)

Format:

Label Operation Operand Comments

SUPR

The SUPR directive is used within a procedure to suppress the octal listing of the binary output. It does not

suppress the first generated work. Its primary use is to provide more compact listings for procedure-mechanized

higher level languages, where the user is not expected to be interested in the mechanization. The action of

the SUPR directive may be overridden by the INHS (inhibit suppression) directive.

A side effect of an active DISP directive within a procedure containing an active SUPR directive is to neutral­

ize the effect of the SUPR directive. However, a DISP directive is not the converse of the SUPR directive.

S. INHS (lNH ibit Suppress ion)

Format:

Label Operation Operand Comments

INHS

The INHS directive causes the assembler to ignore succeeding SUPR directives for the remainder of the program.

T. MARK (insert character in flag region on listing)

Format:

Label Operation Operand Comments

MARK E

The MARK directive causes the last six bits of the expression in the operand field to be inserted in the flag

fi eld of the next I ine to be I isted. The primary purpose of MAR K is to provide the procedure wri ter with the

capability to flag possible errors in the use of the procedure.

The MARK directive can generate only one flag per I isted line. Thus, the use of a MARK directive before a

preceding MARK has generated its character causes that first character to be lost.

If any flags are waiting to be listed when the assembler processes a procedure END line, they are listed on an

otherwise blank line. This increases the clarity of flagging within the assembly.

32

U. SBRK (Set BREAK1)

Format:

Label Operation Operand Comments

SBRK E

SBR K causes the assembl er to modify, at assembly time, its own work ing storage memory allocation scheme.

The need for this ability and its effect on memory allocation are described in Section VIII.

SBRK should be the first non-comment line in the program. It must be used before the first external reference

and before the first procedure reference. An ill egal use of SBR K wi II be flagged wi th an M and ignored.

v. SIOR (Set spec ialljO Relocation)

Format:

Label Operation Operand Comments

SIOR

The next form reference I ine encountered wi II have the spec ial I/O relocation bi t set if its address is load

relocatable. This directive is used within the lORD, 10RP, 10SD, 10SP, and 10CT procedures to mechanize

special I/O relocation.

33

v. ADDITIONAL PROGRAMMING FEATURES

A. Comments Line

Format:

Label Operation Operand

*THIS IS A COMMENTS LINE

Whenever an asterisk introduces a symbolic line, the assembler ignores its contents. Such lines are used to an­

notate the source program, and are preserved on the output listing. The comments line may contain a maxi­

mum of 63 characters beginning with the first non-blank following the asterisk. Additional characters are

discarded by the Encoder.

B. Free Form and Continuation

SYMBOL and META-SYMBOL provide for free-form symbolic lines; that is, it is unnecessary to begin each

field at a prespecified column of the source input record. The rules for writing such a record are:

The label field begins in column one.

A blank character terminates any field.

One or more blanks written at the beginning of a line specify that there is no label field.

A maximum of 15 blanks may be written following a symbol in the label field to specify that

the next field is absent.

More than eight blanks written following a symbol in the operation field specify that the next

field is blank.

When the input record contains 80 columns (that is, a card), the assembly processor ignores columns 73-80 and

terminates the physical record at column 72. However, when the operand field contains a list, the list may

continue to subsequent physical records. The user specifies continuation by ending each to-be-continued op­

erand field with a comma followed by all blanks to column 72. Such continuable lists include a list definition

line or a PROC/FUNC reference line.

Example:

LABEL OPERATION

5 10

OPERAND

20 25 30
.Ji!1

L

\L 0 A D 1

l:: ::;t
>01 (

I i

h:-:t k::: -I-
ut M 0 V E :::/ L 0 C 1 ,

lll!iiil(: : : : : : il::III I : : : : : : : : : : : : : : : : : :

I :

: iii
34

c. Literals

Format:

Label Operation Operand Comments

[£$] LABEJ OP =E OPERAND SPECIFIED BY VALUE, NOT NAME

In a typical program, machine instructions serve two basic purposes: they operate on variables and on con­

stants. When operating on variables, the location of the variable is important, but its value is unknown until

tested. When operating on constants, the converse is generally true in that only the value of the operand is

important.

Symbol ic programming facil itates the representation of both types of operation. Operands of the first category

(variables) can be given symbol ic names (such as X, ALPHA, etc.), and can be referred to by these names

throughout the symbol ic program. For operating with constants, however, it is generally desirable to refer to

the constant by value rather than by name; literals provide this capability.

In order to use literals, the programmer writes the value of the expression, rather than a name, in the operand

field of the symbol ic I ine, and precedes the expression by an equals sign (=). Detecting the leading equals

sign, the assembler computes as usual the value of the expression that follows, but it then stores this value in

a literal table which it constructs following the program. The address portion of the generated instruction is

then made to refer to the literal table entry rather than to contain the value of the computed expression.

Examples:

Location Contents Label Operation Operand

00144 RORG 100

00144 07600152 TENS LDA =010

00145 07600153 LDA =10

00146 07600154 LDA ='10'

00147 07600155 LDA =TENS

00150 07600156 LDA =010*/15+TENS+l0

00151 07600152 LDA =1*8

END

00152 00000010

00153 00000012

00154 00000100

00155 00000144

00156 01000156

As shown in this example, the processor detects the multiple equal values (010=1*8) and enters them only once

into the literal tabl e.

35

D. External Definitions and References

One of the most powerful features of SYMBOL and META-SYMBOL is the provision for separate assembly of

interdependent programs. This feature not only permits programs to refer by name to standard library programs

such as subroutines, but it also allows large programs to be segmented, without in either case shifting the bur­

den of memory allocation to the programmer. As a result, considerable economies accrue both in reduced

assembl ies and in debugging.

Symbol ic inter-program communication is achieved by means of external labels. Most labels are internal {or

local} labels in that they are defined only internally to a program. This means that the assembler recognizes

a symbol ic reference in the operand field of a I ine only when the symbol is defined elsewhere in the program

by its appearance in the label field of a I ine. When a symool ic reference cannot be satisfied within a program,

references to the symbol are said to be external references {that is, the symbol is assumed to be defined within

some context external to the program in which the symbol ic reference occurs}.

The counterpart of the external reference is the external definition; a symbolic definition is made external by

preceding it by a dollar sign {$}. The programmer may establ ish an external definition either on the I ine that

defines the symbol, or on a subsequent I ine. In the latter case, where the entire I ine is simply an external

definition line, it is possible to define additional symbols as external by listing them following the first symbol.

Although additional dollar signs are not required, commas must separate one symbol from another.

External references may appear only in the address field of an instruction or FORM reference line. External

definitions and references are restricted to six characters in SYMBOL and to eight in META-SYMBOL. Rela­

tive external references (e. g., Symbol±n) are not permitted.

Example:

Label

X

$START

$SINX

$COSX

SIN

COS

$SIN,COS

Operation

EQU

LDA

BRM

STA

LDA

BRM

STA

DATA

DATA

END

DATA

DATA

END

Operand

01000

X

SIN

SINX

X

COS

COSX

o
o
START

o

o

36

Comments

ADDRESS OF DATA

EXTERNAL REFERENCE

EXTERNAL REFERENCE

EXTERNAL DEFINITION

EXTERNAL DEFINITION

SIN ENTRY

COS ENTRY

RENDER DEFINITIONS EXTERNAL

The above example illustrates both methods of external definition. In the first program, their definition lines

make SINX and COSX external. In the second, SIN and COS are made external after their definition.

As indicated above, program segmentation may be useful for maintenance or debugging reasons. Segmenting

can also be used to fac il itate the assembl y of programs wh ich contain large numbers of symbols. For espec ially

large programs, the situation may arise that the number of symbols used in a program overflows the capacity of

the assembler1s symbol table (approximately 250 symbols for a 4K 900 Series SDS Computer). In this event,

segmentation can be accompl ished mechanically in the following manner:

1. The program is divided into as many physical segments as desired. Each of these segments

is separately assembled.

2. A set of external definition lines is prepared from the external reference lists output at

the end of each assembly listing. Relative external references are eliminated.

3. The set of external defin ition I ines is dupl icated for each program segment and included

before each END card.

4. The program segments are reassembled. The loader can now fulfill all external references.

To communicate external definition and reference information to the loader, the assembler outputs the former

prior to the binary output (called "text") and the latter following the text. The external definition table con­

sists of the alphanumeric symbols accompanied by their (relocatable or not) binary values. Each entry in the

external reference table consists of the alphanumeric symbol accompanied by the (relocatable or not) binary

address of the last location in which the external reference occurred. The address portion of that location

will point, in turn, to (contain the address of) the last previous location where an external reference was

made to the same symbol. The chain terminates when the address portion of an· instruction contains O.

Example:

Location Contents Label Operation Operand

00100 ORG 0100

00100 07600000 START LOA X

00101 07500000 LOB Y

00102 03500101 STA Y

00103 03600100 STB X

00104 07600103 LOA X

00105 06400104 MUL X

00106 03500107 STA XSQ

00107 00000000 XSQ DATA 0

END START

00105 X

OOi02 y

37

". Consulting the external reference information, which appears following the END line on the assembly listing,

the programmer can easily find all references to the external label by threading his way backward through the

listing. As a result, octal corrections for undefined symbols can be made more reliably than with conventional

assemblers. However, octal corrections are seldom required, since it is simpler to assemble a separate "pro­

gram II consisting solely of I ines to define the symbols.

E. Relocat ion

Particularly because of program segmentation capabil ity, it is normally desirable to assemble a. symbol ic pro­

gram without being required to allocate the program to any particular memory area or starting location. When

a program is written such that it can be executed independently of its origin (that is, independently of where

it is physically located within the computer), the program is said to be relocatable. All instructions are relo­

catable that are not affected by an AORG directive (see IV. B.).

All decimal and octal numbers are clearly non-relocatable. Assuming the absence of an AORG directive, all

symbols, however, are relocatable that are not equated to a non-relocatable expression by an EQU directive.

As a symbol, $ is always relocatable.

When an expression consists of at least one reiocatable item, the expression is:

Example:

1. Relocatable if R, the sum of the added relocatable items minus the sum of the sub­

tracted relocatable items, is equal to 1, and non-relocatable if R=O.

2. Illegal if RIO, 1 or if the expression involves any operations other than addition and

Label

R1

R2

NON

A

B

C

D

E

subtraction upon two relocatable items.

Operation Operand

DATA 0

DATA 0

EQU

EQU R1+R2

EQU R1-R2

EQU R1+NON

EQU Rl*NON

EQU Rl*Rl

END

Comments

ILLEGAL

NO N- RELOCA TABLE

RELOCATABLE

RELOCATABLE

ILLEGAL

The assembler provides relocation information in the text section of the binary output. Detecting a relocation

flag for any instruction, the loader adds a bias (the loading origin) to the address portion of the instruction.

Further details concerning the binary format are available in Appendix K.

38

F. Concordance Listing

The 900 Series META-SYMBOL system has been extended to include an optional program concordance listing.

The option is selected by the presence of the parameters CONC or EXCP in the MONARCH METAXXXX con­

trol message. The use of CONC results in a standard concordance being generated; the use of EXCP results in

a concordance being generated with exceptions from the standard. The exceptions from the standard concord­

ance must be specified on INCLUDE or EXCLUDE cards.

The standard concordance includes all symbols that occur in the user1s program except:

1. Operation codes.

2. Symbols appearing as part of a function or procedure sample unless the symbols, including proce­
dure or function names, are available for reference by code not occurring within any PROC or
FUNC.

The format of the concordance listing is

T DLN SYMBOL RLN RLN RLN RLN RLN

where:

Tis th e symbo I type code:

Code Interpretation

A absolute

R relocatable

* undefined

$ externally defined

0 operation code

L list

DLN is the line number of the definition.

SYMBOL is the user1s symbol. Symbols are I isted in alphanumeric sort sequence with the collating

sequence:

1\ (blank), 0 through 9, A through Z,\

RLN are the I ine numbers on which the symbol is referenced. Reference line numbers appear in

ascending sequence for each symbol.

Whe'1 a concordance is to be generated with the exceptions from the standard, the user must supply INCLUDE

and/or EXCLUDE records specifying the exceptions. (The INCLUDE and/or EXCLUDE records must be followed

by an end-of-fi Ie record, .6EOF.)

39

\ EXCLUDE records must precede the INCLUDE records. The format of these records is:

or

where

/\EXCLUDE/\SYM, SYM, SYM, ••• I

I'JNCLUDE/\SYM, SYM, SYM, ••• I

/\EXCLU DE/\ * ALL/\

/\INCLUDE/\ *ALL/\

/\ represents one or more blanks. Note that /\ is the only legal terminator.

SYM represents:

1. In the case of EXCLUDE, the specific symbols to be excluded from the

concordanc e.

2. In the case of INCLUDE, the specific symbols to be included in the concordance

(this enables the user to specify symbols that would not be included in a standard

concordanc e).

*ALL specifies:

1. In the case of EXCLU DE, no symbol is to be I isted unless it appears on a subse­

quent INCLUDE.

2. In the case of INCLU DE, every symbol in the user's program is to be I isted re­

gardless of where it appears in the code unless it is present on a previous

EXCLUDE.

If a symbol is both excluded and included, the exclusion takes precedence.

Examples:

/\EXCLUDE/\ P, X2, XO, A, B, LDA/\

/\INCLUDE/\ *ALL/\

,0.EOF.

In this case all mnemonic codes, labels, and symbol references will be listed except those indicated by the

EXCLUDE record.

/\EXCLUDE/\ *ALL/\

/\INCLUDE/\ BRX, LDX, STX/\

,0.EOF.

This would result in only three symbols (BRX, LDX, and STX) appearing in the concordance.

40

The concord6nce subroutine takes the exception records from the symbolic input device. It is assumed that the

unit assigned as X2 is available as a scratch tape. The user1s program is scanned from the intermediate output

tape Xl. The concordance is produced on the device assigned for listing output. All assignments must be

made prior to calling META-SYMBOl.

G. System Procedures

The user is not restricted as to the number of system procedure decks he may have in the procedure library

on the system tape. He is free to add specialized procedures to the META-SYMBOL library either as modifica­

tions to an existing system procedure deck or as an entirely new segment on the MONARCH or MONITOR sys­

tem tape.

Since system procedures are handled somewhat differently than procedures occurring in the user1s program,

caution must be exercised in putting a group of user procedures with the standard system procedures for a given

machine. For instance, system procedures are selectively loaded by the Preassembler. Therefore, if a new sys­

tem procedure is to use any of the other system procedures, it must precede those other procedures in the system

procedure deck. Also, only the parts of the system procedure deck that are within the scope of procedure lines

are processed by the Preassembler. Thus, whi Ie a simple FORM definition I ine, external to all the procedures

usi ng it, wi II suffice at the user-program level, such a FORM must be i nterna I to all these procedures at the

system-procedure level. Also, a name line in a system PROC may not have a list in the operand field.

MONARCH

Each system procedure is inserted on the MONARC H tape between PREASSEM and SHRIN K. It must be preceded

by its 62 MONARCH identification record and its machine series identification record.

The MONARCH ID record has the following format:

~2 PROCXXXX

Column

2

3 - 8

9 - 16

17 - 25

26 - 72

Contents

6 {delta}

2 {identifying a level 2 record}

Blank

The letters PROC occupy columns 9 through 12. The four alphanumeric charac­

ters that identify the procedure occupy columns 13 through 16. These four

characters are used in place of XXXX in a MONARCH METAXXXX control

message. Blank is a terminator.

Blank

Comments

41

The machine series identification record consists of a 2-word, encoded record of the following configuration:

12 f I
11 I
0 I
1 I
2 I
3 I
4 I
5 I
6 I
7 I
8 I
9 I

col 2 3

Column

2

3 -72

Example:

Row

12

11 - 0

1 - 6

7 - 9

12 - 9

80

Contents

Punched if the object code is to be run on a 9300 Computer.

Not punched if the object code is for a 900 Series mach ine.

Blank

Word count (Th is value is always 2, indicating a 2-word record.)

Punched to indicate an encoded card.

Checksum for the card. (Each row contains the opposite - punch or non-punch

- of the same row in column 1.)

Blank

To add the procedure deck, labelled CUBE, for 9300 machines to the META-SYMBOL system procedure library,

the user must prepare an encoded deck for the procedures, a MONARCH level 2 ID record:

r column 1

fOCCUBE.

column 9

and the mach ine series identification record:

12 /I
11 I
o I
1 I
2 I
3 I
4 I
5 I
6 I
7 I
8 I
9 I

~~--~
col 2 3 80

42

The procedure is inserted on the system tape via the System Update Routine (see the SDS MONARCH Reference

Manual, publication number 90 05 66). It is called into core with a MONARCH control message:

6METACUBE P l' P 2' P 3' P 4' P 5' P 6 .

See the MONARC H Reference Manual for an explanation of the parameters for th is control message.

MONITOR

Changing a MONITOR system tape is the function of System-Make, a free-standing program. A description of

System-Make is contained in SDS Library Program, Catalog Number 860692.

43

VI. COMPATABILITY: SYMBOL/META-SYMBOL
The preceding sections described the programming language as though it were identical in SYMBOL and META­

SYMBOL. Actually, META-SYMBOL requires a larger hardware configuration than SYMBOL, and SYMBOL

does not therefore include all of the features of the meta-assembler. Aside from the lack of PROCedures and

FUNCtions, these differences are slight, and it is entirely possible to write programs in a common subset of the

language.

The differences between SYMBOL and META-SYMBOL are:

1. In META-SYMBOL, symbols may be from 1 to 15 characters in length. External definitions

may not exceed 8 characters in length.

In SYMBOL, no symbol may exceed 6 characters in length.

2. Symbol does not include the Boolean operators >, =, and <.

3. SYMBOL does not inc lude PROCedures and FUNCtions. Therefore, it does not inc lude the

following di rectives:

PROC

FUNC

NAME

DO

It also does not include lists (Cf. IV. G.).

4. In SYMBOL, the sum of the expressions in the operand field of a FORM definition line must

be equal to the number of bits in a single computer word. In META-SYMBOL, the sum may

have any value between 1 and twice the word size (in bits). Double precision is also ex­

cluded in literals and as operands of a SYMBOL EOM line.

5. In META-SYMBOL, but not in SYMBOL, an OPD line may override a system definition.

44

VII. COMPATIBILITY: 92 SYMBOL/META-SYMBOL

92 SYMBOL is a 1-pass assembly program for the SDS 92. It operates on a minimal SDS 92 with 4K memory

and a Teletype, model 35ASR, and processes a language which is very similar to SYMBOL and META-SYMBOL

for other SDS computers. For this reason, the 92 SYMBOL language will be defined in terms of compatibility

with META-SYMBOL.

A. Symbols

A symbol is a string of from one to eight alphanumeric characters of which the first is alphabetic. Operation

symbols (instruction mnemonics, directives, etc.) are restricted to four characters.

92 SYMBOL provides for the definition, and possible subsequent discarding, of local symbols which retain

value only within a certain region of the program. (See B.3, below.) A local symbol is a symbol preceded by

the character \ (internal code 076); for example:

\ TEMP 1

The current location counter, indexing, indirect addressing, and literals (which are immediate) are indicated

as in 900 Series/9300 SYMBOL.

B. 0 irect iv es

Data Generation

DATA

TEXT

BCD

Value Declaration

EQU

FORM

OPD

1. DED and floating-point items are not implemented.

Assembler Instruction

AORG

RORG

RES

DO

REG

DEF

REF

PAGE

END

2. The DO directive is used to process a line a given number of times. The expression in the

operand field indicates the number of times the line is to be processed.

45

3. REG is used to declare the beginning of a local symbol region. When this line is encoun­

tered, all currently defined local symbols are discarded. New local labels may now be de­

fined which will not conflict with previous local symbols.

Example:

TEMPl

\TEMPl

\ TEMPl

RORG 0100

RES 1

RES 1

REG

RES 1

TEMPl is a valid symbol.

\ TEMPl is a local symbol and is

distinct from TEMP1.

All previous local symbols purged.

\ TEMPl redefined as present loca­

tion counter, a value which it will

retain unti I next REG directive.

4. DEF is used to dec lore external symbols. The symbols to be made external are I isted as

operands. All such symbols must have been previously defined, non-local symbols. The

DEF line is analogous to the $ line in META-SYMBOL.

Example:

Label

as opposed to

$ALPHA, BETA

in META-SYMBOL.

Operation Operand

DEF ALPHA, BETA

5. REF is used to declare explicitly external references. All external references and undefined

symbols are published at the end of the assembly; undefined symbols are preceded by a U

diagnostic. The REF line must precede the first external reference.

Example:

Label Operation Operand

REF ALPHA, BETA

46

6. The OPD directive has two operands separated by commas. The second operand may have

the value 6 or 12 to define the field size in which the OPD is effective.

Second Operand

6

12

Interpretation

The OPD-defined symbol is treated similarly to

a computer instruction (e.g., LDA).

The subsequent reference line causes a 12-bit,

single word to be generated. The value of the

OPD definition line is added to the value of the

reference I ine operand.

The OPD definition line must precede all references. All OPD lines must precede the first

local symbol definition. An OPD line may not override a system definition.

7. The syntax for TEXT and BCD lines is

TEXT/BCD character count, string

The option

TEXT/BCD <string>

is not implemented.

8. PROC, FUNC, NAME, FORT2, FORT4, DISP, INHD, SUPR, INHS, MARK, SBRK, REL TST,

and SIOR are not implemented.

9. All other directives are implemented as in META-SYMBOL. The sum of the operands on a

FORM line must equal 12.

c. Express ions

The operations =, >, <, ++, --, **, +, -, * / are implemented, and occupy the same relative hierarchy, as in

META-SYMBOL. The operations *, /, / /, *+ are not implemented. Parenthetical expressions are not allowed.

Examples:

A

\A

EQU

EQU

TYPE>O

A--O**A

47

D. Instruction Generation

The typical instruction line may be represented as

ITabeTI operation [*] operand 1 , [?perand ~
where the brackets denote "optional." If the value of the first expression is absolute, greater than zero, and

less than 32, the address is considered to be a Scratch Pad address (unless a literal was indicated).

If the value of the second expression is not zero, indexing is applied. In this case, the address may not indi­

cate a literal.

If the first operand is a symbol (not an expression composed of a symbol plus one or more items connected by

operations), and the symbol has not been previously defined, the reference will be treated as a forward or ex­

ternal reference. A 2-word instruction will be generated. The value of the address will be determined when

the program is loaded.

Relative forward or external references are not permitted except when they are relative to the location counter

symbol ($), such as BRU $+5.

The instruction mnemonics recognized by 92 SYMBOL are those provided in the SDS 92 Instruction list

(Appendix E) plus the EOM/SES instructions that address the typewriter/keyboard, paper tape reader/punch,

and card/reader punch. The mnemonics for magnetic tape and other devices are not recognized. The syntax

for SDS 92 device EOMs and SESs is identical to that for the corresponding 900 Series/9300 operations (see

Appendix G) with the exception that no channel designation is required, and an asterisk does not denote interlace.

Example:

RPT 1, 1

CRT

Read paper tape unit 1 in 1-character mode (EOM 02104)

Card reader 1 ready test (SES 012106)

For programming convenience there are two additional instruction mnemonics NOP (No Operation-07340) and

XAB (Exchange A and B- 03040).

E. Remarks

Although the assembler's space requirements are modest, table overflows can occur in a minimal configuration

whenever many and/or long symbols are used. Short symbols and local symbols are to be encouraged to alleviate

overflows.

Because 92 SYMBOL is a 1-pass assembler, forward references are "chained" on the assembly I isting and binary

output and are satisfied at load time. This means that the address portion of an instruction involving a forward

48

reference will not, after loading, correspond to the assembly I isting. Therefore, forward references should be

used as sparingly as possible. A good programming practice is to allocate all data at the beginning of the pro­

gram and to use forward references only in branch instructions.

Relative forward references are not permitted in any case except where they are relative to the current loca­

tion counter ($).

49

VIII. OPERATIONAL PROCEDURES

A. Error Flags
Certain errors are detected by the assembler and are indicated, during the listing of the program, by special

symbols. These symbols appear at the left-hand margin of the output listing, preceding the instruction that

contains the error{s}. Errors, flagged in this manner, do not cause the assembler to terminate the job.

Symbol Interpretation

* External address reference. {Mayor may not be an actual error.}

D 1. Duplicate definition of a main program symbol.

2. Multiple use of a variable name within COMMON statements.

E 1. Operand field expression error.

2. Directive syntax error. Examples {not exhaustive}:

a. TEXT - if the first symbol is a value and the second symbol is not a comma.

b. DO - more than one expression or improper nesting.

c. END - external reference in END line.

3. Procedure syntax error. Exampl es {not exhaustive}:

a. LDX, BRX, STX - no index field given.

b. Shifts - indirect addressing.

F Illegal forward references in directive.

G Generative code in function.

Unknown operation code {on 900 Series Computers all POP's are flagged with an I}.

L 1. III egal label (special characters).

2. Exceeding PROC or FUNC level.

M Improper use of SBRK or DISP.

N Missing END line.

P Exceeding maximum parenthesis nesting I eve!. May occur during use of function.

R 1. Primitive relocation error. See .Appendix V section E of reference manual.

2. Use of relocatable address in extended mode I/O procedure calls other than lORD,

10RP, 10SD, IOSP, IOCT.

T 1. Truncation. Attempt to use a value exceeding the capacity of the specified field.

2. Request COpy not available in hardware.

U 1. Undefined symbol used in manner which does not all ow possibil ity of external reference.

2. Use of labeled common name in directive or procedure other than COMMON.

Notes:

1. Error and MARK flags generated within PROCs may appear in three possible places:

a. On call I ine if generated during pass 1 of a 2-pass procedure.

b. On the next generated line.

c. On a blank line following the procedure if no generative line follows error.

50

2. Labels appearing on PROC reference lines are not defined until the end of the PROC.

This is necessary to mechanize the lone $ feature. Therefore, if such a label is doubl y

defined, the 0 flag will be printed on a blank line following the procedure.

3. Machine instructions (LOA, etc.) are procedures.

B. META-SYMBOL Error Messages

9300 COMPUTERS

The 9300 META-SYMBOL abort messages are of the form

! META ERROR a xx

where a indicates which overlay segment of the assembler was last loaded:

a Interpretation

E Encoder

P Preassembl er

A Assembler

xx identifi es the type of error:

xx Interpretation

01 Insufficient space to complete encoding of input.

02 Corrections to encoded deck but encoded input file is empty.

03 End of file detected before an end card while reading encoded input.

04 Insufficient space to complete preassembly operations.

05 Insuffici ent space to compl ete the assembl y.

06 Data error. META-SYMBOL does not recognize the data as anything meaningful.

07 Requested output on a device which is not available.

08 Correcti ons out of sequence.

09 End of file detected by ENCODER when trying to read intermediate tape Xl.

10 Request for non-existent system procedures.

11 Byte larger than dictionary (bad encoded deck).

12 Not encoded deck.

13 Checksum error reading system tape.

14 Preassembler overflow (ETAB). Try using ISET I option in META Control Card.

15 Not used.

16 Data error causing META-SYMBOL to attempt to process procedure sample beyond end of table.

17 Shrink overflow.

18 Improperly formatted or missing PROC deck series-specification card.

19 End of fi I e encountered wh i I e readi ng system procedures.

20 Irrecoverable error in attempting to read Xl or X2.

21 Symbol tabl e overflow.

22 Abnormal condi ti on (probobl y end of tape) on X2.

51

xx Interpretati on

23 End of file on Xl.

24 Input is not encoded.

25 Checksum error on encoded deck.

26 End of file on Xl.

27 Irrecoverable error in attempting to read INCLUDE, EXCLUDE, or SI.

28 Irrecoverabl e error in attempti ng to read X2.

29 Both SI and EI were specified on the META card, but the first card of EI does not have a + in

column 1 (i.e., is not a correction card). Note that an empty SI file (a ~EOF only) will not

cause an error 29 abort.

30 The first SI card is a + card, but no EI parameter appears on the META card.

31 No SI or EI parameter has been specifi ed on the META card.

For example, an improperly nested DO pair would cause the printout

!META ERROR A 06

900 SERIES COMPUTERS

The standard abort message for 900 Seri es Computers is

MET A-SYMBOL ERROR xx

where xx has any of the val ues 01 through 19 as described above for 9300 META-SYMBOL.

For both 9300 and 900 Series Computers errors 05, 06, and 16 are accompani ed by a printout that shows the

value of certain internal parameters at the time of the abort:

LINE NUMBER yyyyy

BREAK1 yyyyy

LOCATION COUNTER yyyyy

UPPER yyyyy

LOWER yyyyy

BREAK yyyyy

SMPWRD yyyyy

LTBE yyyyy
\ second pass only

LTBL yyyyy

(yyyyy represents the value of the particular item.) The last six of these are useful in determining the

nature of the assembly overflow and are defined in paragraph E of this section. After the appropriate message

has been typed, control is transferred to the system Monitor.

52

9300 I/O ERROR MESSAGES AND HALTS

When an I/O error is detected, a message is typed, and control is returned to MONITOR. The message will

be either

!META ERRORa' IOC

indicating checksum error, or

! META ERROR a' IOE

indicating buffer error. (a' has the same maaning as for abort messages.)

A checksum error is considered to be irrecoverable.

900 SERIES I/O ERROR MESSAGES AN D HALTS

When an I/O error is detected, a simple message is typed and the computer halts. The message consists of a

2-letter indication of the type of error and a 2-digit indication of the I/O device. The letter indicators are

defined below; the 2-digit number is the unit address number used in EOM selects (see applicable computer

reference manual). The action taken if the halt is cleared d~pends upon the type of error and the device in­

volved. There are three types of error.

BUFFER ERROR (BE)

1. Exampl es:

BEll buffer error while reading magnetic tape 1.

BE52 buffer error while writing magnetic tape 2.

2. Action upon clearing the halt:

a. Magnetic tape input - since ten attempts are made to read the record before the halt

occurs, continuing causes MET A-SYMBOL to accept the bad record.

b. Paper tape or card input - try again.

c. Magnetic tape output - try again.

d. Output other than magnetic tape - continues.

CHEC KSUM ERROR (CS)

1. Examples:

CS06 checksum error card reader.

C S 11 checksum error read ing magnetic tape 1.

2. Action upon clearing the halt:

Accepts bad record.

53

WRITE ERROR (F P)

1. Example:

F P12 magnetic tape 2 file protected.

2. Action upon clearing the halt:

Checks again.

c. SYMBOL Error Halts

Input/output errors during a SYMBOL assembly result in a halt with the relative location of the halt displayed

in the P register. The recovery procedure depends on the type of error and the device involved.

1. Paper tape reader or typewriter symbolic input - Upon detection of a buffer error, a halt occurs

with relative location 032 displayed in the P register. To continue the assembly, one can branch

to relative location 025. To reread the record, one must reposition the paper tape and branch to

relative location 03.

2. Magnetic tape input - Input records are required to be card images (20 words). A premature

termination is treated as being equivalent to an end-of-file. One end-of-file mark is allowed

to separate input files on a tape reel and is ignored by the assembler at the beginning of the first

pass. An additional end-of-file mark or one occurring after the first symbolic line but before the

END line causes a halt in relative location 050. Clearing the halt causes a branch to location01,

which reinstates the assembly process.

In case of tape read errors, ten recovery attempts are made after which a halt occurs in relative

location 021. Clearing the halt causes the record to be accepted.

3. Line printer listing - In the event of a printer fault, a halt occurs in relative location 023. To

continue the assembly, clear the fault on the printer and then clear the halt.

D. Concordance Routine Error Messages (META-SYMBOL only)

If an error occurs whi Ie a concordance is being output, a message is produced on the output I isting device.

Message

Write error on magnetic

tape.

Tape fi Ie protected

Magnetic tape read error

Meaning

Unable to write on magnetic

tape.

Write ring removed from tape.

Read failure on magnetic tape.

54

Action

Clear the halt to tryagain.

Insert ring; c lear the hal t

to continue.

Clear the halt to accept

record as read.

Message

Symbol table overflow

End-of-fi Ie error

Input is not encoded

Checksum error

EXCLUDE follows

INCLUDE

Concordance control card

not recognized

Printer fault

Print buffer error

Typewriter buffer error

E. Use of SBRK

Meaning Action

Insufficient space to retain all sym- Run is aborted.

bois requested.

End of fi Ie detected on Xl.

A non -encoded record is detec ted

on Xl.

An erroneous checksum is detected

on Xl.

An EXCLUDE card follows an

INCLUDE card.

Control card is not INCLUDE,

EXCLUDE, or 6.EOF.

Error on printing.

Buffer error while printing.

Buffer error while typing listing.

Run is aborted.

Run is aborted.

Clear the halt to read next

record.

EXCLUDE card is ignored.

Card is ignored.

Run continues.

Run conti nues.

Run continues.

The SBRK directive gives the user the capabi I ity of modifying, at assembly time, the assembler's working

storage memory allocation scheme. To understand how SBR K may be usefu I; one must first understand how

META-SYMBOL's table storage is arranged.

After the particular system procedures required for the job have been read in and properly arranged, all of

memory from PAC KL (the next ava i lable cell above the system procedures) to TO P (the highest ava i labl e

location) will be used for building the tables required for assembly. At this time-immediately prior to assem­

bly-the value BREAK, which determines the relative sizes of the various tables, is set. For 8K machines

BREAK is set to PAC KL + 600
8

. For larger machines the increment between PAC KL and BREA K is progressively

greater. This increment is BREAK1. In the case of an abort due to lack of table storage, the value of BREAK1

for that run is given in the error printout.

During pass 1 of the assembly, user sample or procedures are assigned storage starting at PACKL and pro­

gressing upward toward BREAK. The next avai lable cell above the user sample is SMPWRD. Main code sym­

bols and aJd procedure level t symbols are assigned storage starting at the highest ava i I abl e address and

tIn discussing META-SYMBOL storage, items are referred to by "Ievels. II The main program is arbitrarily

defined as "Ievel 1, II external definitions to be satisfied at load time are designated as "level 0, II and

procedures take on level values 2, 3, 4, etc. (and thus are referred to as "odd" or "even" level procedures).

55

expanding downward. The next available address is contained in UPPER. Even procedure level symbols and

main coda definitions are stored starting at BREAK and expanding upward. The next available address for

this purpose is contained in LOWER.

Two possibilities for pass 1 overflow exist: (1) if LOWER is greater than UPPER, processing must cease, as no

more symbols may be defined; (2) if SMPWRD is greater than BREAK, there are too many user procedures for

avai lable storage.

At the start of pass 2, SMPWRD has attained its final value. The amount of memory left between SMPWRD

and BREAK is used for two purposes. Table storage for literals starts at SMPWRD and expands upward with the

next avai lable address in L TBL. External reference storage starts at BREAK - 1 and expands downward, where

L TBE points to the next location for this purpose.

Above BREAK, the situation in pass 2 is the same as in pass 1 with the exception that since no external defi­

nitions are being processed, the difference between BREAK and LOWER becomes only as large as is necessary

to define even procedure level symbols.

Again, two possibi I ities for pass 2 overflow exist: (1) if LOWER is greater than UPPER or (2) if L TBL is greater

than L TBE, processing must cease.

The SBRK directive enables the user to set, at assembly time, the value of BREAK1. As indicated earlier, the

directive must be used before the first external definition or procedure reference; i.e., before the pointers

have begun to move. In this manner, the value of the expression E in the operand field of the directive

is used as BREAK1, and BREAK is set to PACKL + E.

This is useful primarily in attempting to recover from an assembler overflow. For example, suppose one re-

ceives the error printout:

META SYMBOL ERROR 05

LINE NUMBER 1090

BREAK1 01300

LOCA nON COUNTER 00737

UPPER 24155

LOWER 17326

BREAK 17304

SMPWRD 17017

LTBE 17077

LTBL 17077

In th is case, a pass 2 overflow (indicated by the presence of L TBE and L TBL in the diagnostic), the assembler

has run out of storage for literals and references. However, it is apparent that at this point in the assembly

considerable memory is still available for symbol storage. The only solution short of program modification,

56

or a larger machine, is to attempt to recover by increasing the amount of pass 2 table storage for literals and

references through an initial increase in the value of BREAK1, currently 1300
8

, Inserting the card:

SBRK 01700

at the start of the program would accomplish this. In any case, the exact value to be used in the directive

is based upon an evaluation of such immediate considerations as the pass and the point in the program at

which overflow occurred, the amount of user sample, and the number of literals and external references that

can subsequently be expected to be encountered.

BREAK
Can be set

via SBRK. @

UPPER (current) Odd level
procedure
symbols ----------- CD Meeting point of UPPER and LOWER.
Even level C t b t

d
an no e se •

proce ure

..... s __ y_m_b_o_1 s--:--____ +-I LOWE R (c u rren t)
External L TBE (current)
references

------------ @ Meeting point of LTBE and LTBL.
Literals Can not be set.

I---------~ L TBL (current)
SMPWRD User PROCs

PAC KL ...-------....a........t

When UPPER and LOWER meet, an overflow error occurs.
When L TBE and L TBL meet, an overflow error occurs.
BREAK is preset to a fixed point. It can be changed at assembly time via

the directive SBRK.

F. Making Symbolic Changes to Encoded Programs

Symbolic changes are accompl ished by a series of insertions and deletions controlled by specially formatted

symbolic records. The encodad program is interpreted as a series of logical lines as indicated by the line

numbers given on the assembly listing for that program. Note that the continuation feature allows two or

more cards to be considered as one logical line.

The format of the symbolic change control record is

+a'f3/\

+ must be in col umn 1.

a is a decimal integer corresponding to the line number given on the assembly listing and specifying

the line following which an insertion is to be made, or the first line of a group of sequential lines

to be deleted or replaced.

57

f>has the same interpretation as a except that it specifies the last line of a group of sequential lines to

be deleted or replaced.

1\ indicates a space which terminates the scan of the + card.

1. Insertion

Insert 51' ... , 5
n

following line a:

5
n

The 5. are symbolic cards for assembly.
I

To insert before the first line, use:

+0

5
n

2. Deletion

Delete lines a through f> inclusively:

+ a , f>

(Note that if 0'= f>, only one line is deleted.)

3. Replacement

Replace lines a through f>, inclusively, with 5
1
,5

2
, ... , 5

n
:

+0' ,f>

5
n

58

4. Deck Structure

Symbol ic correction cards. The first
card following the 6METAXXXX card
must be a +.

Note: An encoded deck may not be corrected by merging or juxtaposing other
encoded decks.

59

APPENDIX A. SDS 900 SERIES PROGRAMMED OPERATORS

In 900 Series SYMBOL and META-SYMBOL, non-machine instructions are treated similarly to external ref­

erences. This enables Programmed Operator definitions and I inkages to be establ ished at execution rather than

at assembly time. As a resu It, the entire 64 Programmed Operator instructions are at the disposal of the pro-

grammer.

To define a Programmed Operator, the Programmer precedes the POP subroutine by a line which has the follow­

ing format:

Operation Operand Comments

POPD OPERAND IGNORED. POP FOLLOWS

A dollar sign preceding the symbol in the label field causes the POP to be externally defined (so that it can be

referred to in other, separately assembled programs).

To refer to a Programmed Operator, the programmer places its name in the operation field of a symbolic line.

If a corresponding POP definition does not exist within the same program, the assembler assumes that the oper­

ation is a reference to an external POP.

POP assignments are established at assembly time in order of appearance, beginning at 0100, and corrected at

loading time if necessary.

EX~PLE:

Location

00000

00001

00002

00003

00000

00002

00003

00004

00005

00006

00007

00010

Contents

10000000

10100000

10200001

10300002

10000000

10100000

10200000

10300000

03700014

07740000

27600001

Label

PROG1

$X

PROG2

$LDP

Operation Operand

LDP X

FLA X

FLM X

STD X

END

RES 2

LDP X

FLM X

FLA X

STD X

POPD

STX TEMP

EAX *0

LOA 1, 2

60

EXAMPLE (continued)

Location

00011

00012

00013

00014

Contents

27500000

07100014

05100000

Label

TEMP

Operation Operand

LDB 0, 2

LDX TEMP

BRR 0

RES

END

If PROG 1 is loaded first, the operation assignment of PROG 1 overrides those of PROG2i if PROG2 is loaded

first, the converse is true.

Loading PROG 1 first, the loader inherits from the assembler a table equivalent to the following:

LDP: 0100

FLA: 0101

FLM: 0102

STD: 0103

Upon subsequently loading PROG2, the loader detects the mnemonic coincidence(but binary confl ict) of FLA

and FLM. It therefore changes all 0101 instructions (F LM) in PROG2 to 0102 to agree with PROG 1, and all

0102 to 0101.

Also, the loader establishes the necessary POP linkages in locations 0100-01XX.

61

APPENDIX B. SDS 910/925 INSTRUCTION LIST

Instruction syntax is indicated where non-standard (Cf. 111.).

Mnemonic

LOAD/STORE

LDA

STA

LDB

STB

LDX

STX

EAX

ARITHMETIC

ADD

MIN

SUB

MDE

MUS

DIS

LOGICAL

ETR

MRG

EOR

REGISTER CHANGE

RCH

XAB

BAC

ABC

CLR

Instruction
Code

76

35

75

36

71

37

77

55

61

54

60

64

65

14

16

17

46

04600000

o 46 10000

04620000

04630000

62

LOAD A

STORE A

LOAD B

STORE B

LOAD INDEX

STORE INDEX

Function

COpy EFFECTIVE ADDRESS INTO INDEX

ADDM TO A

MEMORY INCREMENT

SUBTRACT M FROM A

MEMORY DECREMENT

MULTIPL Y STEP

DIVIDE STEP

EXTRACT

MERGE

EXCLUSIVE OR

REGISTER CHANGE

EXCHANGE A AND B

COPY B INTO A, CLEAR B

COpy A INTO B, CLEAR A

CLEAR A, B

Mnemonic

BRANCH

BRU

BRX

BRM

BRR

TEST/SKIP

SKS

SKG

SKN

SKA

SKM

SHIFT

RSH

RCY

LSH

LCY

NOD

CONTROL

HLT I PZE

NOP

EXU

Instruction
Code

01

41

43

51

40

73

53

72

70

066000XX

066200XX

067000XX

067200XX

067 100XX

00

20

23

Function

BRANCH UNCONDITIONALLY

INCREMENT INDEX AND BRANCH

MARK PLACE AND BRANCH

RETURN BRANCH

S KIP IF SIGNAL NOT SET

SKIP IF A GREATER THAN M

SKIP IF M NEGATIVE

SKIP IF M AND A DO NOT COMPARE ONES

SKIP IF A = M ON B MASK

RIGHT SHIFT AB

RIGHT C YC LE AB

LEFT SHIFT AB

LEFT CYCLE AB

NORMALIZE AND DECREMENT X

HALT

NO OPERATION

EXECUTE

BREAKPOINT TESTS (Breakpoints specified as expression list in operand field.)

BPT

OVERFLOW (No operand.)

OVT

ROV

04920XXO

040 20001

002 20001

63

BREAKPOINT TEST

OVERFLOW INDICATOR TEST AND RESET

RESET OVERFLOW

Instruction
Mnemonic Code Function

INTERRUPT (No operand)

EIR 002 20002 ENABLE INTERRUPT SYSTEM

DIR o 02 20004 DISABLE INTERRUPT SYSTEM

lET 040 20004 INTERRUPT ENABLED TEST

IDT 04020002 INTERRUPT DISABLED TEST

AIR 002 20020 ARM INTERRUPT

CHANNEL CONTROL (Channel designated by expression in operand field)

ALC

DSC

ASC

TOP

x OX 50XOO

X OX OOXOO

X OX 12XOO

X OX 14XOO

ALERT CHANNEL (925 only)

DISCONNECT CHANNEL

ALERT TO STORE ADDRESS IN CHANNEL (925 only)

TERMINATE OUTPUT ON CHANNEL

CHANNEL TESTS (925 only-Channel designated by expression in operand field)

CAT X 40 X4XOO CHANNEL ACTIVE TEST

CET X 40 X 1XOO CHANNEL ERROR TEST

CZT X 40 X2XOO CHANNEL ZERO COUNT TEST

CIT X 40 XOXOO CHANNEL INTER-RECORD TEST

INPUT/OUTPUT

MIW 12 MINTO W BUFFER WHEN READY

WIM 32 W BUFFER INTO M WH EN READY

MIY 10 MINTO Y BUFFER WHEN READY

YIM 30 Y BUFFER INTO M WHEN READY

BRTW, BRTY 0402XOOO BUFFER READY TEST

BETW, BETY 040200XO BUFF ER ERROR TEST

POT 13 PARALLEL OUTPUT

PIN 33 PARALLEL INPUT

BPO 11 BLOC K PARALLEL OUTPUT (925 only)

BPI 31 BLOC K PARALLEL INPUT (925 only)

EOM
t

02 ENERGIZE OUTPUT M

EOD
t

06 ENERGIZE OUTPUT TO DIRECT ACCESS
CHANNELS (925 only)

t Indi rect address flag (*) interpreted as interlace control flag.

64

APPENDIX C. SDS 920/930 INSTRUCTION LIST

Mnemonic

LOAD/STORE

LDA

STA

LDB

STB

LDX

STX

EAX

XMA

ARITHMETIC

ADD

ADC

ADM

MIN

SUB

SUC

MUL

DIV

LOGICAL

ETR

MRG

EOR

Instruction
Code

76

35

75

36

71

37

77

62

55

57

63

61

54

56

64

65

14

16

17

Function

LOAD A

STORE A

LOAD B

STORE B

LOAD INDEX

STORE INDEX

COpy EFFECTIVE ADDRESS INTO INDEX

EXCHANGE M AND A

ADDM TO A

ADD WITH CARRY

ADD A TO M

MEMORY INCREMENT

SUBTRACT M FROM A

SUBTRACT WITH CARRY

MULTIPLY

DIVIDE

EXTRACT

MERGE

EXC LUSIVE OR

REGISTER CHANGE (Cf. Appendix E - no operand except for RCH and COPY)

RCH, COpy 46 REGISTER CHANGE

CLA 046 00001 CLEAR A

CLB 046 00002 CLEAR B

CLR 046 00003 CLEAR AB

CAB 046 00004 COpy A INTO B

65

Instruction
Mnemonic Code

REGISTER CHANGE (continued)

CBA

XAB

BAC

ABC

CXA

CAX

XXA

CBX

CXB

XXB

STE

LDE

XEE

CNA

BRANCH

BRU

BRX

BRM

BRR

TEST/SKIP

SKS

SKE

SKG

SKR

SKM

SKN

SKA

SKB

SKD

046 00010

046 00014

046 00012

04600005

04600200

04600400

04600600

046 00020

04600040

04600060

o 46 00122

04600140

046 00160

o 46 01000

01

41

43

51

40

50

73

60

70

53

72

52

74

66

Function

COpy B INTO A

EXCHANGE A AND B

COpy B INTO A, CLEAR B

COpy A INTO B, C LEAR A

COpy INDEX INTO A

COpy A INTO INDEX

EXCHANGE INDEX AND A

COpy B INTO IN DEX

COpy INDEX INTO B

EXCHANGE INDEX AND B

STORE EXPONENT

LOAD EXPONENT

EXCHANGE EXPONENTS

COpy NEGATIVE INTO A

BRANC H UNCONDITIONALLY

INCREMENT INDEX AND BRANCH

MARK PLACE AND BRANCH

RETURN BRANCH

S KIP IF SIGNAL NOT SET

S KIP IF A EQUALS M

SKIP IF A GREATER THAN M

REDUCE M, SKIP IF NEGATIVE

SKIP IF A = M ON B MASK

SKIP IF M NEGATIVE

SKIP IF M AND A DO NOT COMPARE ONES

SKIP IF M AND B DO NOT COMPARE ONES

DIFFERENCE EXPONENTS AND SKIP

Mnemonic

SHIFT

RSH

LRSH

RCY

LSH

LCY

NOD

CONTROL

HLT, PZE

NOP

EXU

Instruction
Code

066000XX

066240XX

066200XX

067000XX

067200XX

067 100XX

00

20

23

Function

RI GHT SHIFT AB

LOGICAL RIGHT SHIFT AB

RI GHT CYCLE AB

LEFT SHIFT AB

LEFT CYCLE AB

NORMALIZE AND DECREMENT X

HALT

NO OPERATION

EXECUTE

BREAKPOINT TESTS (Breakpoints specified as expression list in operand field)

BPT 04020XXO BREAKPOINT TEST

OVERFLOW (No operand)

OVT 040 20001 OVERFLOW INDICATOR TEST AND RESET

ROV o 02 20001 RESET OVERFLOW

REO o 02 20010 RECORD EXPONENT OVERFLOIV (930 only)

INTERRUPT (No operand)

EIR o 02 20002 ENABLE INTERRUPT SYSTEM

DIR o 02 20004 DISABLE INTERRUPT SYSTEM

lET 040 20004 INTERRUPT ENABLED TEST

lOT 040 20002 INTERRUPT DISABLED TEST

AIR o 02 20020 ARM INTERRUPTS

CHANNEL CONTROL (Channel designated by expression in operand field)

ALC

DSC

ASC

TOP

x OX 50XOO

X OX OOXOO

X OX 12XOO

X OX 14XOO

67

ALERT CHANNEL (930 only)

DISCONNECT CHANNEL

ALERT TO STORE ADDRESS IN CHANNEL (930 only)

TERMINATE OUTPUT ON CHANNEL

Mnemonic
Instruction

Code Function

CHANNEL TESTS (930 only - Channel designated by expression in operand field)

CAT

CET

CZT

CIT

INPUT/OUTPUT

MIW

WIM

MIY

YIM

BRTW, BRTY

BETW, BETY

POT

PIN

EOM
t

EODt

X 40 X4XOO

X 40 X lXOO

X 40 X2XOO

X 40 XOXOO

12

32

10

30

0402XOOO

040200XO

13

33

02

06

CHANNEL ACTIVE TEST

CHANNEL ERROR TEST

CHANNEL ZERO COUNT TEST

CHANNEL INTER-RECORD TEST

MINTO WBUFFER WHEN READY

W BUFFER INTO M WHEN READY

MINTO Y BUFFER WHEN READY

Y BUFFER INTO M WHEN READY

BUFFER READY TEST

BUFFER ERROR TEST

PARALLEL OUTPUT

PARALLEL INPUT

ENERGIZE OUTPUT M

ENERGIZE OUTPUT TO DIRECT ACCESS
CHANNELS (930 only)

tIndirect address flag (*) interpreted as interlace control flag.

68

APPENDIX D. SDS 9300 INSTRUCTION LIST

Instruction
Mnemonic Code Function

LOAD/STORE

LDA 16 LOAD A

STA 76 STORE A

LDB 14 LOAD B

STB 74 STORE B

LDX X - 17 LOAD INDEX

STX X - 77 STORE INDEX

STZ 0-77 STORE ZERO

LDP, LDF 26 LOAD DOUBLE PRECISION (FLOATING)

STD, STF 75 STORE DOUBLE PRECISION (FLOATING)

XMA 36 EXCHANGE M AND A

XMB 34 EXCHANGE M AND B

XMX X - 37 EXCHAI'-!GE MEMORY AND INDEX

LDS 06 LOAD SE LECTIVE

STS 70 STORE SELECTIVE

EAX 15 COpy EFFECTIVE ADDRESS INTO INDEX
REGISTER 1

ARITHMETIC

ADD 05 ADD M TO A

DPA 25 DOUBLE PRECISION ADD

SUB 04 SUBTRACT

DPS 24 DOUBLE PRECISION SUBTRACT

MPO 71 MEMORY PLUS ONE
MPT 72 MEMORY PLUS TWO

MUL 63 MULTIPLY

DIV 62 DIVIDE

ADM 35 ADD A TO M

TMU 61 TWIN MULTIPLY

DPN 27 DOUBLE PRECISION NEGATE

69

Mnemonic

FLOATING
POINT

FLA

FLS

FLM

FLD

LOGICAL

ETR

MRG

EOR

Instruction
Code

65

64

67

66

11

13

12

REGISTER CHANGE (Cf. Appendix E)

Mode I

RCH, COpy 040 XXXXX

Modell

RCH, COpy X 40 XXXXX

Mode III

AXB 4X 40 XXXXX

BRANCH

BRU 01

BRX X-57

BRC 0-57

BRM 03

BMA 43

BRR 41

Function

FLOATING ADD

FLOATING SUBTRACT

FLOATING MULTIPLY

FLOATING DIVIDE

EXTRACT

MERGE

EXC LUSIVE OR

ADDRESS TO INDEX BASE

BRANCH UNCONDITIONALLY

INCREASE INDEX AND BRANCH

BRANCH AND C LEAR INTERRUPT

MARK PLACE AND BRANCH

BRANCH AND MARK PLACE OF ARGUMENT
ADDRESS

RETURN ADDRESS

70

Instruction
Mnemonic Code Function

TEST/SKIP

SKE 45 SKIP IF A EQUALS M

SKU 47 SKIP IF A UNEQUAL TO M

SKG 46 SKIP IF A GREATER THAN M

SKL 44 SKIP IF A LESS THAN OR EQUAL TO M

SKR 73 REDUCE M, SKIP IF NEGATIVE

SKM 55 SKIP IF A = M ON B MASK

SKN 53 SKIP IF M NEGATIVE

SKA 54 SKIP IF M AND A DO NOT COMPARE ONES

SKB 52 SKIP IF M AND B DO COMPARE ONES

SKP 51 SKIP IF BIT SUM EVEN

SKS 20 SKIP IF SIGNAL NOT SET

SKF 50 SKIP IF FLOATING EXPONENT IN B > M -
SKQ 56 SKIP IF MASKED QUANTITY IN A GREATER

THANM

SHIFT

SHIFT 60 SHIFT (Used in conjunction with indirect addressing)

ARSA 60-20 ARITHMETIC RIGHT SHIFT A

ARSB 60-10 ARITHMETIC RIGHT SHIFT B

ARSD 60-00 ARITHMETIC RIGHT SHIFT DOUBLE

ARST 60-30 ARITHMETIC RIGHT SHIFT TWIN (A AND B)

LRSA 60-21 LOGICAL RIGHT SHIFT A

LRSB 60-11 LOGICAL RIGHT SHIFT B

LRSD 60-01 LOGICAL RIGHT SHIFT DOUBLE

LRST 60-31 LOGICAL RIGHT SHIFT TWIN (A AND B)

CRSA 60-22 CIRCULAR RIGHT SHIFT A

CRSB 60-12 CIRCULAR RIGHT SHIFT B

CRSD 60-02 CIRCULAR RIGHT SHIFT DOUBLE

CRST 60-32 CIRCULAR RIGHT SHIFT TWIN (A AND B)

71

Instruction
Mnemonic Code Function

SHIFT (continued)

ALSA 60-24 ARITHMETIC LEFT SHIFT A

ALSB 60-14 ARITHMETIC LEFT SHIFT B

ALSO 60-Q.4 ARITHMETIC LEFT SHIFT DOUBLE

ALST 60-34 ARITHMETIC SHIFT TWIN (A AND B)

LLSA 60-25 LOGICAL LEFT SHIFT A

LLSB 60-15 LOGICAL LEFT SHIFT B

LLSD 60-05 LOGICAL LEFT SHIFT DOUBLE

LLST 60-35 LOGICAL LEFT SHIFT A AND B

CLSA 60-26 CIRCULAR LEFT SHIFT A

CLSB 60-16 CIRCULAR LEFT SHIFT B

CLSD 60-()6 CIRCULAR LEFT SHIFT DOUBLE

CLST 60-36 CIRCULAR LEFT SHIFT TWIN (A AND B)

NORA 60-64 NORMALIZE A

NORD 60-44 NORMALIZE DOUBLE

FLAG REGISTER {Single operand expression}

FLAG 22 FLAG

FIRS 22-0 FLAG INDICATOR RESET/SET

FSTR 22-1 FLAG INDICATOR SET TEST/RESET

FRTS 22-2 FLAG INDICATOR RESET TEST/SET

FRST 22-3 FLAG INDICATOR RESET/SET TEST

SWT 22-4 SENSE SWITCH TEST

CONTROL

HLT, PZE 00 HALT

NOP 10 NO 0 PERA TIO N

EXU 21 EXECUTE

INT 07 LOAD OP CODE INTO INDEX 2, SKIP ON
BIT 1

REP 23 REPEAT INSTRUCTION IN M

72

Instruction
Mnemonic Code Function

INTERRUPTS (No operand)

EIR o 02 20002 ENABLE INTERRUPT SYSTEM

DIR o 02 20004 DISABLE INTERRUPT SYSTEM

AIR o 02 20020 ARM INTERRUPTS

lET o 20 20004 INTERRUPT ENABLED TEST

IDT o 20 20002 INTERRUPT DISABLED TEST

CHANNEL CONTROL (Channel designated by expression in operand field)

DSC

ALC

ASC

TOP

X X2 OOXOO

X X2 50XOO

X X2 12XOO

X X2 14XOO

DISCONNECT CHANNEL

ALERT CHANNEL

ALERT TO STORE ADDRESS IN CHANNEL

TERMINATE OUTPUT ON CHANNEL

CHANNEL TEST (Channel designated by expression in operand field)

CAT

CET

CIT

CZT

INPUT/OUTPUT

EOM
t

EOD
t

PIN

POT

MIA

AIM

X 20 X4XOO

X 20 X1XOO

X 20 XOXOO

X 20 X2XOO

02

42

33

31

30

32

t . .. _.

CHANNEL ACTIVE TEST

CHANNEL ERROR TEST

CHANNEL INTER-RECORD TEST

CHANNEL ZERO COUNT TEST

ENERGIZE OUTPUT M

ENERGIZE OUTPUT TO DIRECT ACCESS
CHANNEL

PARALLEL INPUT

PARALLEL OUTPUT

MEMORY INTO CHANNEL A BUFFER

CHANNEL A BUFFER INTO MEMORY

'Indirect address flag (*) interpreted as interlace control tlag.

73

APPENDIX E. SDS 92 INSTRUCTION LIST

Instruc t ion
Mnemonic Code Function

LOAD/STORE

LDA 64 LOAD A

LDB 24 LOAD B

STA 44 STORE A

STB 04 STORE B

XMA 74 EXCHANGE M AND A

XMB 34 EXCHANGE M AND B

FLAG

XMF 17 EXCHANGE M AND F

LDF 57 LOAD F

SFT 0044 SET FLAG TRUE

SFF 0042 SET FLAG FALSE

INF 0046 INVERT FLAG

ARITHMETIC

ADA 62 ADD TO A

ADB 22 ADD TO B

ACA 63 ADD WITH CARRY TO A

ACB 23 ADD WITH CARRY TO B

SUA 60 SUBTRACT TO A

SUB 20 SUBTRACT TO B

SCA 61 SUBTRACT WITH CARRY TO A

SCB 21 SUBTRACT WITH CARRY TO B

MPA 76 MEMORY PLUS A TO MEMORY

MPB 36 MEMORY PLUS B TO MEMORY

MPO 16 MEMORY PLUS ONE TO MEMORY

MPF 56 MEMORY PLUS FLAG TO MEMORY

MUA 13 MUL TIPL Y A (0 PTIONAL)

MUB 53 MUL TIPL Y B (0 PTIO NAL)

DVA 52 DIVIDE AB (0 PTIO NAL)

DVB 12 DIVIDE BA (OPTIONAL)

74

Mnemonic

CONTROL

EXU

HLT

Instruc tion
Code

73

0041/00000000*

TRAPPIN G (no operand)

SCT

RCT

TCT

0061

0060

0160

BREAKPOINT TESTS (single operand)

BRT

BRT 2

BRT 3

BRT 4

0144

0145

0146

0147

INTERRUPTS (no operand)

EIR

DIR

lET

AIR

0051

0050

0150

00020001

EXECUTE

HALT

Function

SET PROGRAM-CONTROLLED TRAP

RESET PROGRAM-CONTROLLED TRAP

TEST PROGRAM-CONTROLLED TRAP

BREAKPOINT NUMBER 1 TEST

BREAKPOINT NUMBER 2 TEST

BREAKPOINT NUMBER 3 TEST

BREAKPO INT NUMBER 4 TEST

ENABLE INTERRUPT

DISABLE INTERRUPT

INTERRUPT ENABLED TEST; SET FLAG IF INTERRUPT SyS­
TEM ENABLED

ARM INTERRUPTS

CHANNEL CONTROL AND TESTS (no operand)

DSC

TOP

TIP

AlC

ASC

CAT

CET

LOGICAL

ANA

ANB

ORA

00000100

00012100

00012100

00050100

00010500

01004100

01001100

65

25

67

DISCONNECT CHANNEL

TERMINATE OUTPUT ON CHANNEL

TERMINATE INPUT 0 N CHANNEL

ALERT CHANNEL INTERLACE

ALERT TO STORE INTERLACE COUNT

CHANNEL ACTIVE TEST; SET FLAG IF NOT ACTIVE

CHANNEL ERROR TEST; SET FLAG IF ERROR

AND TO A

AND TO B

OR TO A

+A slash (/) indicates that either instruction code can be used to perform the same operation.

75

Instruc t ion
Mnemonic Code Function

LOGICAL (continued)

ORB 27 OR TO B

EOA 66 EXCLUSIVE OR TO A

EOB 26 EXCLUSIVE 0 R TO B

MAA 75 MEMORY AND A TO MEMORY

MAB 35 MEMORY AND B TO MEMORY

COMPARISON

COA 45 COMPARE ONES WITH A

COB 05 COMPARE ONES WITH B

CMA 47 COMPARE MAGNITUDE OF M WITH A

CMB 07 COMPARE MAGNITUDE OF M WITH B

CEA 46 COMPARE M EQUAL TO A

CEB 06 COMPARE M EQUAL TO B

BRANCH

BRU 73 BRANC H U NCO N DITIO NALLY

BRC 32 BRANCH, CLEAR INTERRUPT, AND LOAD FLAG

BRL 33 BRANCH AND LOAD FLAG

BFF 31 BRANCH ON FLAG FALSE

BFT 71 BRANCH ON FLAG TRUE

BDA 70 BRANCH ON DECREMENTING A

BAX 30 BRANCH AND EXCHANGE A AND B

BRM 77 BRANCH AND MARK PLACE

BMC 37 BRANCH, MARK PLACE, AND CLEAR FLAG

SHIFT

CYA 42 CYCLE A

CYB 02 CYCLE B

CFA 43 CYCLE FLAG AND A

CFB 03 CYCLE FLAG AND B

CYD 02/42* CYCLE DOUBLE

CFD 43 CYCLE FLAG AND DOUBLE

CFI 03 CYCLE FLAG AND DOUBLE INVERSE

*A slash (I) indicates that either instruction code can be used to perform the same operation.

76

Instruction
Mnemonic Code Function

INPUT/OUTPUT

WIN 15 WORD IN

RIN 55 RECORD IN

WOT 11 WORD OUT

ROT 51 RECORD OUT

PIN 14 PARALLEL INPUT

POT 10 PARALLEL OUTPUT

BPI 54 BLOC K PARALLEL INPUT

BPO 50 BLOC K PARALLEL OUTPUT

EOM 00(40*) ENERGIZE OUTPUT M

SES 01(41*) SENSE EXTERNAL SIGNAL

*Codes EOM 40 and SES 41 are reserved for use in spec ial system appl ications.

77

APPENDIX F. SPECIAL INSTRUCTIONS - SoS 900 SERIES/SoS 9300

A. SOS 9300 Register Change Instruction (040)

This instruction has three main functions:

1. Interchange and/or modify information between selected bytes of A and B.

2. Interchange and/or modify information among selected bytes of A, B, and the index registers.

3. Load the address portion of a se lected index register from the address portion of the instruction.

In modes 1 and 2, the address portion of the instruction serves to extend the operation code; each of

the address bits has a particular significance during instruction decoding and execution. In mode 3,

however, the interpretation of the address portion is the conventional one in which the 15-bit value

defines an operand. Therefore, in mode 3, the instruction is programmed by following the mnemonic,

AXB, by an expression in the operand field. The assembler inserts the value of the expression in the

instruction's 15-bit address portion.

When programmed in Mode 1 or 2, the instruction may be given one of two mnemonics: RCH or COPY.

The assembler processes the operand field of RCH in the conventional manner, inserting the evaluated

operand field expression into the instruction's 15-bit address portion. In general, the expression is an

octal number representing the bit pattern that specifies the function to be performed. This implies a

detailed knowledge of the instruction on the programmer's part.

The operand field of COPY, on the other hand, IS interpreted differently. The field consists of a byte

selection "mask" followed by one or more grouped expression lists that describe the desired operation(s).

The programmer need be concerned only with operational legitimacy and not with its specification via

bit patterns.

EXAMPLES:

Label Operation Operand Effect

COpy (0, (A, B» Clear A and B

COpy (A, B) Copy A into B

COpy (A, B), (B,A) Exchange A and B

COpy 077, (A, B, B) Merge the low order six
bits of A and B in B.

Unless a merge is specified, the assembler automatically sets the "clear" bit. Thus, the second line

causes the generation of 0 40 37703.

Format:

Label

LABEL

Operation

COpy

Operand

E, (E 11 I ••• , E 1 N) I (E21 I E2N) I ••• I (EM 1, ••• , EM N)

78

Since parenthetical notation is used in the operand field, parentheses have not been used to denote

lIoptional". As usual, the label is optional and mayor may not be external. The first operand and all

successive operand I ists are also optional.

RULES:

1. The byte selection mask, if present, is the first expression to appear in the operand field. It is

not enclosed within parentheses. In the absence of this expression, the assembler assumes the

mask 077777777 to be implicitly specified. Actually, the assembler cannot insert the mask di­

rectly into the byte-selection position of the instruction, since the 24-bit value must be mapped

into three or eight bits. However, it is convenient to think of the mask in this manner. Since

the mask may be an expression, it need not always be written as an octal number.

EXAMPLES:

Label Operation

EXP EQU

HI3 EQU

COpy

COpy

Operand

0777

070000000

EXP, (B, 1), (O,B)

HI3, (A, B)

Effect

(B)15_23-X1 15-23' 0-(B)15_23

(A)0-2 -BO- 2

Un less the programmer ind icates that the spec ified index register be cleared (in a Mode 2 register change),

the assembl er automati ca II y sets one of the bi ts 12, 13, or 14 to prevent the regi sterfrom be i ng c I eared.

2. Following the mask, one or more parenthetical expression I ists appear, separated by commas.

Within a list, two or more expressions (or expression groups) appear. The first of these specify

the source of information flow, and the last specifies the destination. In the case of three or

more successive expressions, an OR is implied. Thus, COpy operations are specified by ordered

groupings of values. The following definitions relate the value of an expression to the 24-bit

source value/register or destination register. Where actual registers are not involved (0 and -1)

it is convenient to imagine the existence of two fictitious registers always containing all zeros

and all ones, respectively.

Value

-5 -(A)

-4 (A)

-3 (B)

-1 -1

0 0

(X 1)

2 (X2)

3 (X3)

4 (B)

5 (A)

*() denote lithe contents of II •

79

Meaning*

The negative (2s complement) of (A)

The inverse (ls complement) of (A)

The inverse (ls complement) of (B)

All lis

Therefore to refer to the registers mnemonically, the programmer must precede his program by

equality directives such as:

A

B

X2

IA

IS

ONES

EXAN\PLES:

Mnemonic Notation

COpy (A, B), (B,A)

COpy (lA, B), (O,A)
COpy (l-A, B), (O,A)

COpy 070, (ONES, B)
COpy 070, (-l,B)

EQU

EQU

EQU

EQU

EQU

EQU

Absolute

5

4

2

-4

-3

-1

COpy (5,4), (4,5)

COpy (-4,4), (0,5)

COpy 070, (-1,4)

Interpretation

Exchange A and B

Copy inverse of A into Band
clear A

Form mask in B
18

-
21

Thus, the programmer can spec ify any legitimate register change without having to write the

necessary bit pattern explicitly and without being restricted to a pre-selected set of mnemonic

op;..codes. Also, the assembler diagnoses the variable field for legitimacy.

B. SDS 920/930 REGISTER CHANGE INSTRUCTION (046)

The S DS 920/930 Register Change instruction has some, but not a II, of the capabi I ities of its 9300

counterpart. The differences are:

1. The SDS 920/930 RCH does not provide for byte selection except for selecting the low-order

nine bits.

2. The SDS 920/930 Computers include only one index register.

3. There is no capability for copying (or merging) the one's complement of one register into another.

FORMAT:

Label

LABEL

Operation

COpy or COPYE

Operand

(Ell, ••• , E1N), (E21, ••• E2N), ••• ,(EM1, ••• , EMN)

As before, the label is optional and mayor may not be external. All expression lists are optional. The

mnemonic COpy implies that operands are whole-word registers; the mnemonic COPYE causes the ex­

ponent portion (the low-order nine bits) only to be affected.

80

COPY(E) operations are specified by ordered groupings of values. The following definitions relate the

val ue of an expression to the 24-bit source val ue/register or destination register.

Value

-5

o
2

4

5

EXAMPLES:

Mnemonic Notation

COpy (A, B), (B,A)

COPYE (B,X), (a, B)

COpy (A, B, X)

-(A)

a
(X)

(B)

(A)

Absolute

Meaning

The negative (2s complement) of A

A register contai ni ng all as

The index register

The contents of B

The contents of A

Interpretat i on

COpy (5,4), (4,5)

COPYE (4,2),(0,4)

Exchange A and B

B 15-23 --. X15 - 23

B15 ---. XO- 14

a ---. B 15-23

COpy (5, 4, 2) Merge A and B to X

81

APPENDIX G. INPUT jOUTPUT - DEVICE EOMs I SKSs)

FORMAT:

label Operation Operand

[[$] LABEL] OP E 1 [, E2 [, E3]]

The format for device (I/O peripheral unit) EOMs (SKSs) is different from that of the standard instruction; for

a definition of the format, refer to the appropriate SDS reference manual. The expressions E 1, E2, and E3 have

the following meaning:

Mnemonic

TYPEWRITER, U=l, 2,3

RKB C, U, CC

TYP C, U, CC

PAPER TAPE, U=1,2

RPT C, U, CC

PPT C, U, CC

PTl C, U, CC

CARDS, U=l, 2

CRT C, U

CFT C, U

FCT C, U

RCD C, U, CC

RCB C, U, CC

SRC C, U

CPT C, U

PBT C, U

PCD C, U, CC

PCB C, U, CC

El:Ct : Channel (Buffer), nominally, 0

E2:U: Unit Number

E3:CC: Character Transmission Mode (1-4)
(Paper Tape Channel for PSC;
Number of lines to be spaced for PSP)

Instruction
Code

EOM 002XOX

EOM 002X4X

EOM 002XOX

EOM 002X4X

EOM OOOX4X

SKS O1200X

SKS OllOOX

SKS O1400X

EOM 002XOX

EOM 003XOX

EOM O1200X

SKS O1404X

SKS Ol204X

EOM 002X4X

EOM 003X4X

Function

Read Typewriter Keyboard

Type

Read Paper Tape

Punch Paper Tape

Punch Paper Tape with leader

Card Reader Test

Card End-of-file Test

First Column Test

Read Cards Dec i rna I

Read Cards Binary

Skip Remainder of Card

Card Punch Test

Punch Buffer Test

Punch Cards Decimal

Punch Cards Binary

tFor the SDS 92 the channel designator (E 1) is absent.

82

Instruction
Mnemonic Code Function

MAGNETIC TAPE, U=O, 1, ••• , 7

TRT C, U SKS 01041X T ape Ready Test

FPT C, U SKS 01401X File Protected Test

BTT C, U SKS 01201X Beginning of Tape Test

ETT C, U SKS 01101X End of Tape Test

WTD C, U, CC EOM 002X5X Write Tape Decimal

WTB C, U, CC EOM 003X5X Write Tape Binary

EFT C, U, CC EOM 003X7X Erase Forward Tape

ERT C, U, CC EOM 007X7X Erase Reverse Tape

RTD C, U, CC EOM 002X1X Read Tape Decimal

RTB C, U, CC EOM 003X1X Read Tape Binary

SFD C, U, CC EOM 002X3X Scan Forward Decimal

SFB C, U, CC EOM 003X3X Scan Forward Binary

SRD C, U, CC EOM 006X3X Scan Reverse Decimal

SRB C, U, CC EOM 007X3X Scan Reverse Binary

REW C, U, CC EOM 01401X Rewind

RTS C EOM 014000 Convert Read to Scan

MAGNETIC TAPE (41.7KC and 96KC only), U=O, 1, ••• , 7 (META-SYMBOL only)

DT2 C, U SKS 01621X Density Test (200 BPI)

DT5 C, U SKS 01661X Density Test (500 BPI)

DT8 C, U SKS 01721X Density Test (800 BPI)

TFT C SKS 013610 Tape File Test

TGT C SKS 012610 Tape Gap Test

SRR C EOM 013610 Skip Remainder of Record

PRINTER, U=l,2 (These mnemonics appear in META-SYMBOL only.)

PLP C, U, CC EOM 002X6X Pri nt Li ne Pri nter

PSC C, U, CC EOM 01X46X Printer Skip to Channel

PSP C, U, CC EOM 01X66X Printer Up Space

EPT C, U SKS 01406X End of Page Test

PFT C, U SKS 01l06X Printer Fault Test

POL C, U EOM 01206X Printer Off-I ine

PRT C, U SKS 01206X Printer Ready Test

83

APPENDIX H. INPUT/OUTPUT - CHANNEL OPERATIONS (SDS 925/930/9300)

The initiation of an I/O channel operation consists of alerting the channel (generally with a device EOM),

executing an interlace control EOM, and issuing (via POT) an interlace (I/O) control word (IOCW). An

IOCW can accommodate a 14-bit address and a 10-bit word count. Whenever the count exceeds 10 bits or

the address is 15 bits (930/9300 only) the extra high-order bits are required in the EOM. To simplify the pro­

gramming of input/output, special I/O command PROCs have been incorporated in the standard META-SYMBOL

system PROCs. The use of these PROCs is described below.

1. Load Channel with Remote Command

The mnemonic LCH (Load Channel) is written at the point of execution. Its operand field

specifies the location of a remote I/O command. The valid (remote) I/O commands are:

lORD

10RP

10SD

10SP

IOCT

EXAMPLE:

Input/Output Record and Disconnect

Input/Output Record and Proceed

Input/Output until Signal and Disconnect

Input/Output until Signal and Proceed

Input/Output under Count and Terminate
(Non-terminal-function interlace operation)

Source Code Generated Code (expressed symbol ically)

LCH ALPHA

ALPHA lORD [*] ADDR, COUNT, ICD ALPHA

EXU

POT

EOM/EOD

IOCW

The asterisk causes an EOD to be generated instead of an EOM.

ADDR points to the beginning of the buffer area.

COUNT specifies the number of words to be input/output.

ICD is an interrupt control digit (0, 1, 2, or 3).

ALPHA

ALPHA + 1

ADDR,COUNT

If ALPHA is tagged, the tag is generated in both the EXU and the POT.

"Overflow" bits for the address and count are automatically inserted into the EOM.

2. Load Channel with Proximate Command

These mnemonics cause the generation of the entire I/O packet (EOM, POT, IOCW)

and are, therefore, more economical of space in those cases where the programmer

does not desire multiple references to an lORD.

84

The five mnemonics are:

LCRD

LCRP

LCSD

LCSP

LCCT

Load Channel for I/O Record, Disconnect Mode

Load Channel for I/O Record, Proceed Mode

Load Channel for I/O until Signal, Disconnect Mode

Load Channel for I/O until Signal, Proceed Mode

Load Channe I for I/O under Count, Term i nate Mode

These mnemonics are written at the point of execution. Their operand fields are identical to

those of the remote I/O commands (e.g., lORD). The assembler generates an EOM-POT

combination and inserts the 10CW in the literal table. The extra high-order address and count

bits are inserted into the EOM by the assembler. Note that for 930 or 9300 target machines

it is possible for a relocatable buffer area to be loaded such that it can be referenced only by

a 15-bit address. In this case, the separation of the EOM from the IOCW precludes the possi­

bility of the loader inserting the high-order address bit into the EOM. The assembler flags such

potential difficulties with an 'R'.

EXAMPLE:

Source Code Generated Code (expressed symbolically)

LCRD [*] ADDR,COUNT,ICD EOM

POT LTE

LTE 10CW

The symbol L TE is used to denote a I iteral table entry.

3. "Hand-Coded" I/O

The Interlace Control EOM may always be written by specifying the EOM's address portion

as an octal number in the operand field. However, the programmer must then know at what

location the I/O block begins, since the EOM contains the high order address and count bits.

Naturally, this is not always possible, especially in the case of relocatable programs. In

fact, for relocatable buffer areas (on a 930 or 9300), the programmer should always prefer the

first method since only then does the Loader know where the EOM is relative to the IOCW.

The system provides the following mnemonics to simplify the coding of the Interlace Control

EOM. Their operand fields are identical in format to those of the IOXX and LCXX Command

PROCs.

85

ICRD I/O Record and Disconnect EOM

ICRP I/O Record and Proceed EOM

ICSD I/O until Signal and Disconnect EOM

ICSP I/O until Signal and Proceed EOM

ICCT I/O under Count and Terminate EOM

Detecting one of these mnemonics, the assembler generates the appropriate EOM (or EOD),

inserting the terminal function bits and the high order address and count bits. The restric­

tion on the use of relocatable buffer areas which applies to the LCXX PROCs also applies

to these.

EXAMPLE:

ICRD

POT

ALPHA IOCW

[*] ADDR, COUNT, ICD

ALPHA

ADDR, COUNT

86

APPENDIX I. META-SYMBOL/FORTRAN INTERFACE

(SDS 9300 COMPUTERS ONl YJ

As indicated in the introduction, the merits of any programming language depend strongly upon its application.

Wh i Ie some appl ications demand a mathematica lIy oriented language, such as FORTRAN, others requi re the

close contact with the machine that the programmer can gain only through "machine language II programming.

Frequently, the optimal solution to the programming problem consists of "marrying" two or more languages, and

coding different sections of the program in the languages most appropriate. However, this cannot be accom­

plished without providing for a common interface, and the burden for the interface is generally placed upon

the language having the least restrictive syntax.

Such interface allows the execution of META-SYMBOL programs in con junction with programs written in the

SOS FORTRAN IV language.

MET A-SYMBOL recognizes the following directives. Note that, as META-SYMBOL directives, they are sub­

ject to some restrictions (noted below) not present for the analogous FORTRAN statements.

l. LOGICAL vl, v2, ••• , vn

2. INTEGER vl, v2, ••• , vn

3. REAL vl, v2, • •• , vn

4. COMPLEXvl, v2, ••• , vn

5. OOUBLEPRECISION vl, v2, ••• , vn

(Note that OOUBLEPRECISION is one word.)

Each vn represents a variable name. The assembler ignores redundant declarations;

it flags conflicting declarations as errors.

6. COMMON Vl, ••• , Vn/B l/Vll, ••• , Vln ••• /Bm/Vml, ••• , Vmn

Each V represents a variable name or an array name followed by its dimensions

in parentheses: e.g., II A{3, 4, 5)" •

Each B represents a COMMON block name. If no block name appears, META-SYMBOL

assumes blank common. At the beginning of each COMMON statement, it assumes

blank common.

Since COMMON statements are cumu lative over the program, no variab Ie may mean­

ingfully appear in COMMON twice. The assembler recognizes this error.

No symbol that can be used in the operation field of a MET A-SYMBOL program may

appear as a COMMON block name.

87

SYNTAX

Dimension information, legal in type statements in FORTRAN IV, may not be used in

MET A-SYMBOL type directives. Such dimensions must appear in a COMMON state­

ment. For example,

REAL A(9)

COMMON A

is illegal in META-SYMBOl. The correct form is

REAL A

COMMON A(9)

It is mandatory that each variable used in a COMMON statement be previously de­

fined in a type directive (REAL, etc.).

COMMON allocation is in SDS mode (integer variables are allocated one word; real,

two words; etc.).

Generalized array bounds as permitted in SDS Extended FORTRAN IV must be trans­

lated either to an integer quantity or to an expression resulting in the correct integer

quantity at assembly time. For example, FORTRAN allows

REAL A

COMMON A(-3: 3)

MET A-SYMBOL must have

REAL A

COMMON A(E)

where E has the value 7 at assembly time.

No continuation is permitted in type directives; however, any type directive may be

used more than once.

Columns 1 to 6 must be blank. One or more blanks must appear between the directive name and the list. No

blanks may appear within words or within variable lists. (Blank common is indicated by two successive slashes.)

SEMANTICS

1. Common variables are assigned relative locations within the appropriate block

in order of appearance in the program. The assembler computes the size of

each named COMMON block by summing the sizes of the variables named.

88

2. The type directives (LOGICAL, INTEGER, etc.) specify to the assembler the

size of each COMMON variable and array element. The assembler keeps a

table of the space required for each type.

It is essential in a program in which a named COMMON variable is referred to that the COMMON and type

directives give the assembler enough information to compute the size of the block and the relative location of

each variable referred to. It is mandatory to list all variables named in the COMMON block, to give the

dimensions of all'arrays in COMMON directives, and to list each variable in a type directive.

89

APPENDIX J. COMPATIBILITY WITH SDS SYMBOL 4 AND SYMBOL 8
(900 SERIES ONLY)

In 1963, SDS announced two assemblers for the 900 Series Computers: SYMBOL 4 and SYMBOL 8. Patterned

after other familiar assemblers, SYMBOL 4 proved popular with users; literals and macros were added in

SYMBOL 8.

It can be seen from this manual that SYMBOL and META-SYMBOL offer still an additional level of capability

to the SYMBOL 4/SYMBOL 8 user. In some cases, however, the additional generality of the new assemblers

has created some incompatibilities with respect to the 1963 assemblers. To assist users in converting to the new

assemblers, these incompatibilities have been resolved in all but exceptional cases.

Compatibility has been provided in two ways:

SYMBOL

The assembler accepts programs written either in the SYMBOL or in the SYMBOL 4 language.

MET A-SYM BO L

The assembler consists of an Encoder and a Translator. The Translator accepts only encoded META-SYMBOL

language. The conversion from SYMBOL 4/8 to META-SYMBOL is accomp lished by the Encoder, which has a

special Compatibility Mode. Since the Translator offers optional recovery of the source language, SYMBOL 4/8

programs can be easi I y converted, if desired, to META-SYMBOL source language.

The compatibility features are described in greater detail below:

A. Label Field

Both assemblers allow symbols to begin with a numeric character. Symbols are not allowed to con­

tain special characters. The symbol must begin in column 1.

B. Operation Field

1. Instruction mnemonics:

The following EOM/SKS mnemonics are included in addition to those

I isted in Appendix B and Appendix C.

90

TOPW/TOPY

DISW/DISY

PTLW/PTLY

PPTW/PPTY

RPTWjRPTY

TYPW/TYPY

RKBW/RKBY

RCBWjRCBY

RCDW/RCDY

RTDWjRTDY

RTBW/RTBY

WTDW/'NTDY

WTBW/'NTBY

ETW

SFBW

SRBW

REWW

Programmed operator mnemonics are not recognized and are treated as indicated in

Appendix A. *

Directives:

Recognized

ORG

BORG

BSS

OCT

DEC

BCI

BaaL
**VFD

**MACRO

Ignored*

FORT

BLK

L1L

TCD

LIST

UNLIST

**REL

**BES

**IDEN

**LOAD

**LTAB

**TITLE

**DETAIL

*Only when a 900 Series target machine is specified.

**I1legal in SYMBOL

91

a. The FORTRAN interface (FORT, BLK) is solved by the use of

external definitions.

b. All programs are relocatable unless preceded by AORG.

c. Bootstrap loaders are available separately.

d. List suppression may be spec ified when the assembler is loaded.

3. Indirect Addressing:

Indirect addressing is a Ilowed to be indicated by an asterisk following an instruction

mnemonic.

C. Operand Field

1. Location counter:

An asterisk is allowed to denote the location counter. In cases where an expression

which includes the symbol * is to be indirectly addressed, the syntax of SYMBOL and

of SYMBOL 4 cannot be mixed. Thus, either

or

is permissible, but

is not.

LDA*

LDA

*+5

*$+5

LDA **+5

2. Octal/Decimal Interpretation:

Octal jnterpretation of the operand field is forced in the case of SYMBOL

and META-SYMBOL for the operations EOM, SKS, RCH and OPD. Decimal inter­

pretation is never forced. Therefore, the instruction

RSH 010

would cause a right shift of 8 places.

3. Literals:

a. Leading 0 is converted to zero

b. Leading H is converted to surrounding quotes.

c. Internal Band E (binary and decimal scale factors) are converted to

the operator notation using */ and *+, respectively.

92

4. The VFD line is translated to a list which is then handled by a system PROC.

5. Macros:

MACROs are translated to PROCs.

6. Spaces:

Spaces are converted to 060 whenever they occur in a TEXT line or within a

literal character string. The BCI directive is translated to BCD, and the word

count is multiplied by four in order to agree with the BCD syntax.

7. "Fill" operand:

Whenever the expression ** occurs as an operand, a diagnostic flag will result.

8. Breakpoint Test (BPT)

Whenever multiple breakpoints are tested with the BPT pseudo operation, incor­

rect assembly will result. This is because the BPT mn of SYMBOL 4/8 must be

written BPT m, n for SYMBOL/META-SYMBOL.

93

APPENDIX K. SDS STANDARD BINARY LANGUAGE

The following description specifies a standard binary language for the SDS 900 Series and 9300 Computers. The

intention has been that this language be both computer-independent and medium-independent. Thus, there is

provision for handling Programmed Operator definitions and references even though the 9300 does not have this

hardware feature; similarly, there is a provision for relocation relative to blank COMMON, even though this

requirement is not present in SDS 900 Series FORTRAN II.

In the following, a file is the total binary output from the assembly/compilation of one program or subprogram.

A fi Ie is both a physical and a logical entity since it can be subdivided physically into unit records and logically

into information blocks. While a unit record (in the case of cards) may contain more than one record, a logical

record may not overflow from one unit record to another.

o

1. CO NTRO L WORD - 1st word in each type of record

Type (T) ~ Mode

~ Word Count (C) (binary) Folded Checksum (FC) Field

101 contents

2 3 4 89 11 12 23 bit number

T RECORD TYPE

Data Record (text) 000

001

010

011

External References & Definitions, Block & Program Lengths

Programmed Operator References and Definitions

End Record (Program or Subroutine end)

100 thru 111 Not Assigned

C = total number of words in record, including Control Word

Note that the first word contains suffic ient information for handl ing these records by

routines other than the loader (that is, tape or card dupl icate routines.) The format

is also medium-independent, but preserves the MODE indicator positions desirable

for off-I ine card-handl ing.

An exclusive OR checksum is used. If the symbol -- is used to denote exclusive OR,

and W. denotes the i-th word in the record, 1 < i < C, then
1-_

Fe = (W1'O-11-- (C) 0-11-- (C)12-23 -- 07777

where

C = W 2 -- W 3 -- ••• -- W c

94

2.

Control
Word

Load
Address
Word

Data
Word

Load
Relocation

Common
Relocation

Programmed
Operator
Relocation

Special
I/O

Relocation

DATA RECORD FORMAT (T=O)

Record ~ 3~C~30 Mode
Folded Checksum Type (T) ~ (binary)

000 0 101
o 234 89 11 12

~ Data Word Load Address
Load Address (Relative or Absolute)

~ Modifiers (M) Modifiers (A)

0
o 1 4 5 8 9

Instruction or Constant

o

Words 3 thru n+2 contain instructions or constants, (where 1~~24)

Load address relocation word (present iff (M) (\l=l)

o

Blank common relocation word (present iff (M) f"\ 2=2)

u

Programmed operator relocation word (present iff (M).{"\ 4=4)

o

Spec ial Input/Output operation rei ocation (present iff (M) f\ 8=8)

o

95

Word 1

23

Word 2

23

Word 3

23

Word n+3

23

Word n+4

23

Word n+5

23

Word n+6

23

Words n+3 thru n+6 are modifier words. Each bit in each of these words corresponds

to a data word (bits 0 thru 23 correspond to words 3 thru n+2, respectively). A bit set

to one (1) indicates that the specified data word required modification by the loader.

There are four (4) types of modification (and hence four possible modifier words) which

are indicated in data records. Presence of a modifier word is indicated by the M (data

word modifier) field in the load address word.

The load address is subiect to modification as indicated by the \I A" field of the load

address word as follows ((A) = 0 means absolute):

(A)f\l=l, current load relocation bias is added to load address

3. EXTERNAL REFERENCES AND DEFINITIONS, BLOC K AND PROGRAM LENGTHS

(T= 1) (Inc ludes labeled common, blank common and program. lengths)

Control
Word

o

Record
Type (T)

001

~ ~ 4~C~31*

0
234

* From 1 to 10 items per record

C1

Common C5
or Program
Length
Item Item

Type

00 00000
0 1 2

Mode
Folded Checksum

(binary)

101

8 9 11 12

C2 C3 C4

C6 C7 C8

Length of Program or Common Block (L)

6 7 8 9

23

I}

23

Word 1

1 to 8
char.
LABEL

Length
Word

External
Reference
Item

I
C1

C5

C2

C6

C3 C4 I C7 C8
} Label

Item Address
T~ Modifiers (A)**

01 000
~ o 1 245

Address of Last Reference

8 9

96

23

Chain
Word

External
Definition
Item

External
Reference
with
Addend
Item*

4.

Control
Word

~--------~~~~--------~~~~---------~¥7~3--------~~~8~----~IJr Laool

Item Address
Absolute or Relocatable Value Type Modifiers (A)**

10 000

o 1 2 4 5 8 9 23

External symbolic definitions indude subroutine "identification" as a subset and require

no special treatment of subroutines with multiple names. B = 1 if (L) is program length,

C = 1 if (L) is length of a labeled common block.

** See data record, load address word, for interpretation

C1 C2 C3 C4

C5 C6 C7 C8

Item Address Address of Last Reference
Type Modifiers

11 000

l~)
2 4 5 8 9

~ not used Va I ue of Addend

000000000
0 8 9

PROGRAMMED OPERATOR REFERENCES AND DEFINITIONS (T=2)

Record ~ 4.~C~31** Mode
Folded Checksum Type (T) ~ (Binary)

010 0 101

o 234. 8 9 11 12

*One of these items for each unique reference; e.g., each of the following
references is represented by a separate item:

A+5, B+5, B+6, C+2, C+5

** From 1 to 10 items per record

97

~}

23

23

23

Value
Word

Label

Chain
Word

Addend
Word

Word 1

Internal
Programmed
Operator

Programmed
Operator
Reference

External
Programmed
Operator
Definition

--<

Control
Word

Length of
Program

Transfer
Word

Item
Sequence No. R Origin of Programmed Operator Routine

Type

00 1

0 1 2 7 a 9 23

I} I to 8 C~ar. C1 C2 C3 C4

C5 C6 C7 ca MnemOniC

Item
Sequence No. R Not used

T

01 0 000000000000000

0 1 2 7 a

1 ~1 C2 C3 C4

I C5 C6 C7 ca

Item
Sequence No. R Origin of Programmed Operator Routine

Tvoe

10 1

o 1 2 789 23

R=l iff origin of Programmed Operator Routine is relocatable.
The sequence No. indicates the order in which the definitions or reference occurred
in the source program.

5. END RECORD (T=3)

Record
2~C~4

Mode
Folded Checksum

Type (1) (Binary)

011 0 101

0 234 8 9 11 12 23

Transfer Word
l+Maxirnum Value of Location Counter

Modifiers (M)*

0 0000

0 4 5 8 9 23

I "BRU" Transfer Address

000 000001

0 23 89 23

This may be followed by modifier words as described in Section 2.

*See data record description for interpretation

98

}
1 to a Char.
Mnemonic

Word 1

Word 2

Word 3

505

; ,

	000
	001
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97
	98
	xBack

