
· .

Op rations Manual

SOS FORTRAN II
OPERATIONS MANUAL

SDS 900 Seri es Computers

90 05 87B

July 1966

Pr ice: $1. 50

.JCIENTIFIC DATA SYSTEMSA XEROX COMPANY,1701 South Aviation Boulevard/EI Segundo, California 90245

@1964, 1965, 1966, 1967,1968, 1969, SCientific Data Systems, Inc, Printed In U S.A

REVISIONS

This publication, 9005 87B, dated Ju Iy 1966, is a minor revision of the SDS 900 Series FORTRAN II
Operations Manua I, 900587 A.

Changesto the previous edition are indicated by a vertical line in the margin of each affected page.

NOTICE

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features may
depend on a specific configuration of equipment such as additiona I tape units or larger memory. Customers should consult their SDS sales representative for detai Is.

ii

CONTENTS

l. INTRODUCTION

2. COMPILER 2

Compiling Source Programs 2
Symbol Table Size 3
Output Format 4
Compi ler Diagnostics 6

3. LOADER 10

FORTRAN Object Program Loading Procedure 10
Missing Subprograms 11
Loader Ha Its 11
Loader Restart 11
Object Program Restart 11
FORTRAN Loader's Output 12

4. LIBRARY 13

Elementary Mathematical and Miscellaneous Functions 13
System Routines 16

5. RUN-TIME 19

Programmed Operators 19
Run-Time Ha Its and Errors 24
Run-Time Errors 25
Run-Time Magnetic Tape Errors 27
Memory Layout at Run-Time 28
Arrangement of Variables in COMMON 29

6. MACHINE LANGUAGE SUBROUTINES 30

APPENDIX A - ADDITIONAL OPERATING PROCEDURES 34

APPEN DIX B - COMPATIBILITY 34

iii

iv

RELATED PUBLICATIONS

Name of Manual

SOS FORTRAN II Reference Manual

SOS SYMBOL and META-SYMBOL Reference Manual

SOS MONARCH Reference Manual

SOS 910 Computer Reference Manual

SOS 920 Computer Reference Manual

SOS 925 Computer Reference Manual

SOS 930 Computer Reference Manual

Publ ication No.

900003

9005 06

900566

900008

900009

9000 99

900064

1. INTRODUCTION

The SOS FORTRAN II System consists of four parts: Compi ler, Loader, Library and Run-Time.

1. Compi ler. The SOS FORTRAN II Compi ler is a one-pass routine. It reads the source program only once
and simultaneously generates the object program in a form acceptable to the FORTRAN Loader. Since the en­
tire compiler fits into 4096 words of memory, no reloading is necessary to process batch jobs.

2. Loader. The Loader is used to load all object programs that have been either compiled in FORTRAN or written
in machine language to be used as FORTRAN subprograms. It also loads the standard library routines that are
requested by any program.

3. Library. The Library contains all the standard subroutines that may be called for, explicitly or implicitly. These
include elementary mathematical functions (such as, square root, sine, etc.), miscellaneous functions (such as,
absolute value, maximum value, modulo, etc.) and system library routines (such as, input/output routines).

4. Run-Time. The Run-Time consists of programmed operators for use by FORTRAN object programs, format scan
routines for input/output operations, and control constants for use during execution.

The SOS FORTRAN II System is a complete package for compiling, loading, and executing FORTRAN II programs.
The configuration required is an SOS 900 Series Computer, with 4096 words of memory, a paper tape reader and
punch, and a console typewriter. No magnetic tapes or other auxiliary storage media are necessary.

This manual assumes that the reader knows basic FORTRAN II syntax and semantics and that he is familiar with one
of the SOS 900 Series Computers.

2

2. COMPILER

COMPILING SOURCE PROGRAMS

The procedure for compiling FORTRAN source programs is:

1. Turn spooler off.

2. Mount system tape on spooler and insert in paper tape reader. Set brake.

3. Turn spooler on.

4. Load the compi ler by the standard FILL procedure. When the compi ler is completely loaded, the message:

SET PAPER
COMPILER READY

is typed and the computer halts.

5. Position typewriter paper at the top of a page. The compiler will now start each new program on a new page.

6. Turn spooler off.

7. Remove system tape from paper tape reader.

8. Insert source program in paper tape reader. Set brake.

9. Set BREAKPOINT switches 1 and 2 as follows:

10.

Switch 1 RESET (up)
SET (down)

Switch 2 RESET (up)
SET (down)

Punch ob ject program
Suppress punching

Type source statements
Supp ress typ i ng

Note: With both breakpoints set, the compiler operates at full speed in the diagnostic mode, typing only
control statements, statements with errors and the program summary.

Clear the HALT to begin compilation.

The source program need not be a single, physical tape. The compiler ignores leading blank tape, but stops when it
encounters a stop code.

Control Statements

FORTRAN source programs may, but need not, begin with compiler control statements. These are statements intro­
duced by an asterisk (in column 1 on cards, or immediately following the carriage return on paper tape), and may be
used to indicate the start of a program. Since the compiler begins a nev.,' program vvhen Q control staternent is en­
countered, these must all precede the first actual source program statement.

Th is feature perm its di rect compi lation of FORTRAN prog rams written for large, mon itor-controlled mach ines that ad­
m it control statements such as:

*XEQ

*LIST
*LIBE

etc.

All control statements will be typed, even when switch 2 is set. (See section 3, "LOADER" on page 10.)

The end of the source program is determined by one of the following statements:

1. END statement - any line of source coding consisting solely of an END statement terminates the compilation;
thus, an END FILE M statement may not be written:

END
X FILE M

This is a restriction in all currently known FORTRAN compilers.
(

2. Control statement - defines the start of a new program regardless of whether or not a preceding END statement
has been encountered.

When the end of the source program is reached, a program summary is typed out consisting of the following:

1. Program diagnostics, if any.

2. Program allocation - relative locations of all variables. The absolute addresses may be determined at run-time.
(See Memory Layout at Run-Time.)

3. Common allocation - these addresses are relative to the end of memory on the run-time computer. The loader
determines run-time memory size and assigns common storage accordingly. For example, 77777 becomes 7777
on a 4K machine and 17777 on an 8K machine.

4. Required subprograms, if any.

The punching of memory allocation information for the loader now completes the object program generation. To sig­
nify this, the message

THE END

is typed, the typewriter carriage advances to the top of the next page, the message

COMPILER READY

is typed, and the computer halts.

To compile another program, repeat steps 8 through 10 of the compiling procedure.

Compiler Halts

All halts during compilation display a "tagged" NOP (bits 1 and 4) in the C register, plus a number to indicate the type
of ha It. There are two such hal ts:

22000000

22000001

22000002

Compi ler Restart

Compiler ready

If the source program is on two or more separate pieces of tape, the compiler halts, allowing the
additional tapes to be mounted in the photo-reader.

Parity error during input - the incorrectly read character is displayed in A. The character may be
corrected and processing continued, if desired.

The standard Restart Procedure (see Appendix A) may be used to discontinue compilation at any point and to reinitial­
ize the compi ler to step 5 above.

SYMBOL TABLE SIZE

Symbol table storage is dynamically allocated by the compiler, that is, none of the tables have fixed lengths; each
may be lengthened, shortened, or relocated as items are added or removed, and no table can be exceeded until there
are no unused locations anywhere in memory. The total number of words available for tables is 604 (920/930) and
484 (910/925) for a 4K machine. On larger machines, all the additional memory is used for tables, which means
that it is virtually impossible to exceed the symbol tables.

Included in the table storage is working storage for statement translation. This area is expanded during analysis of
each statement and contracted as the object program is punched out. Thus, its size fluctuates rapidly according to
the size of the statements, making available symbol table storage difficult to predict. A reasonable guess for the
upper bound on work ing storage (W below) in the average program is 150 words.

The following formula defines available table area:

N+2S+6A+2F+I+2G+4L+2C+3E+3D+M+W:;604 (for SDS 920/930)

N + 2S+ 6A+ 2F+ 1+ 2G+ 4L + 2C + 3E+ 3D+ M+ W:; 484 (for SDS 910/925)

where

N = no. of statement numbers
S = no. of scalar variables

3

4

A = no. of array variables
F = no. of floating-point constants
I = no. of integer constants
L = no. of LOCAL subprograms (arithmetic statement functions)
G = no. of GLOBAL subprograms (all other than LOCAL subprograms)
C = no. of COMMON identifiers
E = no. of EQUIVALENCEd identifiers
D = no. of DO loops
M = no. of FORMAT statements
W = size of working storage

Note: Since W fluctuates with each statement, an especially complex statement near the end of a long pro­
gram may cause table overflow even though the symbols would not. In such cases, it is useful to move
long, complex statements to the beginning of the program.

OUTPUT FORMAT

Paper tape produced by the compiler is blocked with a maximum of 93 words per block. The first word of each block
is a block count and is zero for the first block. The last word of each block is a logical checksum for all words in
that block with the exception of the checksum word. Each block is separated by a gap. All words between the block
number and checksum are data words.

A layout of the data words on a typical compi ler output tape is shown below.

00000000
04000000
00000000
53535353
53535353
00600000

TEXT

011NNNNN

Fixed
constants

Floating
constants

00600000

Array table

00600000

Fixed special
table

00600000

Floating
special table

00600000

10 special
words

Names of
required sub-
programs

Block count (Block number)
02000000, if subprogram
Entry point

Subprogram name, if not main program
BLK LOP (special Loader OP - "mark end of block")

ABS LOP NNNNN is number of words of fixed and floating constants
that follow in this block

BLK LOP

BLK LOP

BLK LOP

BLK LOP

TEXT

The text is composed of absolute instructions, relocatable instructions, absolute data, and special loader OPS (called
LOPS). The different types of loader OPS are:

BLK
LBL
ABS
SYS
DEL

006xxxxx
003xxxxx
011xxxxx
005xxxxx
004xxxxx

Block end marker
Label LOP
Absolute LOP indicating x number of data words follow
System LOP that is converted to BRM* instruction at load time to branch to a routine
The address, xxxxx, is added to the following instruction's address at load time

The text also contains some programmed operators that are converted into machine code by the loader at load time.
They are:

POP Machine Code

124 LDA
130 ADD
134 SUB
106 STA
146 CNA

In the SDS 910 Computer, the 146 POP is not converted; it is executed as a run-time CNA POP.

If the instruction is relocatable, the sign bit is a 1 and the 14-bit address field refers to one of nine different tables.
The table keys are:

34340 - 37777
30704 - 34337
25250 - 30703
21614 - 25247
16 160 - 2 16 13
12524 - 16157
7070 - 12523
3434 - 7067

o - 3433

Array Table

dummy
temp
link
array
fixed constant
floating constant
label key
fixed sca lar
floating scalar

The array table contains one entry for each array referred to by the program. This word gives the location of the array
and, if the array is in COMMON, the word is negative.

Fixed Special Table

Each fixed scalar that appears in an EQUIVALENCE or COMMON statement produces a two-word entry in this
table. The first word is its identification number and the second word is its address, similar to the addresses that
appear in the array table.

Floating Special Table

Each floating scalar that appears in an EQUIVALENCE or COMMON statement produces a two-word entry in this
table. The fi rst word is its identification number and the second word is its address, simi lar to the addresses that
appear in the array table.

Ten Special Words

Number of fixed constants
Number of words of floating constant
Beginning of link table
Beginning of dummy storage
Beginning of temporary storage
Beginning of array storage
Beginning of fixed scalar storage
Beginning of floating scalar storage
End of floating scalar storage + 1
Size of COMMON

Names of Required Subprograms

Each subprogram required by this program causes a two-word BCD entry in this table.

5

6

COMPILER DIAGNOSTICS

The compi ler checks FORTRAN source program errors extensively and pi npoints those detected to facil itate correc­
tion. In general, errors are nonfatal; the object program may still be produced and run, bearing in mind changes
introduced by the errors, as described below.

Two types of diagnostics are provided: statement diagnostics and program diagnostics.

Statement Diagnostics

Most errors are caused because one particular statement is faulty. The compiler detects these errors when encounter­
ing such a statement and prints an error indication beneath it on the listing. If the compiler is operating in the non­
list mode, only the statements in error are listed, along with the error indications.

Statements in error are discarded and compilation then proceeds as if they had never existed.

The compiler proceeds from left to right in translating a source statement. When an error occurs, the compiler notes
the character at which the error became evident and prints a f::::. (delta) underneath it on the I isting. The delta may
indicate an error of:

1. Omission. The statement has ended and something further is required. The f::::. wi II follow the last character in
the statement, e.g.,

A= B**
f::::.

2. Commission. The flagged character does not make sense where it is. The compiler cannot proceed beyond it, e.g.,

A = SQRTF~}

3. Usage. A number or identifier that is incorrect will be flagged underneath its last character, since at this point
the compiler had examined it completely, e.g.,

COMMON ALPHA, ALPH~

An error message will also be printed on the following line. These messages are described in the following para­
graphs.

Syntax. At the flagged character, the statement no longer conforms to the syntax of any recognized type of statement.

Subscripts. The number of subscripts being used with the array does not equal the number declared for the array.

ID Declaration. The identifier marked is being used in a manner that contradicts a previous declaration.

Allocation. Allocation errors may occur in three statements:

1. In a DIMENSION statement, either

A negative or zero dimension is specified;
The lower limit for a subscript exceeds the upper limit; or
The requested size of an array exceeds 16K.

2. An identifier appears in COMMON that has previously appeared in either COMMON or EQUIVALENCE.

3. In an EQUIVALENCE set, more than one identifier has previously appeared in either COMMON or EQUIVALE NCE.

Number. Number errors are of two types:

1. The magnitude of the integer marked exceeds 8388607.

2. The number marked is a statement label that does not fall between 1 and 99999, inclusive.

Overfiow. The statement cannot be compiied due to either:

1. Too many continuation cards.

2. Exhaustion of the compiler's working storage; in this case l compilation is terminated and the compiler initial­
izes for a new job.

Program Diagnostics

Certain errors cannot be detected until the entire source program has been read. These errors will be indicated be­
neath the source listing, with the summary listing. They are described in the following paragraphs.

DO Nest Errors. The statement numbers I isted were meant to close the range of a DO statement. The compiler can­
not close the DO loop correctly if:

The closing statement is undefined. (See Labeling Errors, below.)

The closing statement is a transfer. The incrementing and testing of the DO loop will never take place.

The closing statement is within the range of another DO statement that follows this one (i .e., the ranges par­
tially intersect). The results of such a situation can be determined by inspection.

Labeling Errors. The statement numbers listed are either:

Undefined. The program will run normally until a transfer to one of these statements is actually attempted. At
this point, the typeout II ERR LABL" will occur, and the program will not proceed.

Multiply defined. All transfers will be made to the last statement encountered with each of the particular
numbers.

Errors under COMMON ALLOCATION. If the bounds of COMMON are exceeded by improper use of EQUIVAL­
ENCE, those variables that cannot be assigned as requested will appear under COMMON ALLOCATION, preceded
by the word "ERROR" instead of an octal location. Such variables will then be assigned again under PROGRAM
ALLOCATION as if they had never appeared in the EQUIVALENCE.

The following listing illustrates most of the different types of error diagnostics.

7

8

1 C
2 C
3 C
4 C
5 C
6

ALLOC!~TIOi~
7

I-\LLOCATIOIJ
() C u

9 C
10 C
11
12
13
14 C
15 C
16 C
17
18

TilE FOLLm'Jlt~G STATEi1E!nS \11 LL I LLUSTRATE THE ERROR CHECKltJG
FEATURES OF TIlE SOS 900 SER I ES FORTRAIJ II

ZERO OR tJEG:~TIVE 0111ErJSIOiJS

DII·1ElJSIOrJ ALPHA[O]
6

Dlj1EtlSIOI~ 8ETA[-1,3]
6

co,t;10rJ E)(CEEDED [SEE P,ELml unOER C 0;·11,10 14 ALLOCATIOln

OI:lEtJSIOrJ A[3],R[20]
COl1110ll X,Y,Z
EQU I VJ\LEiJCE [A, Y]

F U I J C T I 0 I~ /J A r 1 E USE 0 A S A R RAY

13 X # ROl\RI tJG[I, [3]
RO/\RIIJG[2C,20] # GOODOLO~'rGO;JE(3Y

6
I D n E C U\ RA T lor J
19 C
20 C tJROIJG /-lUI·1I3ER OF SU[3SCR I PTS
21 C
22 Y # A[I,J]

6
S U !~ S C RIP T S
23 C
24 C lJUt1U EH TOO LARG E
25 C
26 J # 123456739

!.U;·1BER
27 C
28 C
29 C
30

i,\LLOCATION
31 C

6

ARRAY TOO LARGE

0111E14SIOI. EI;ORi·l0US[1000,10CO]
6

32 C 111SSIIJG J\iJD DUPLICATE STATGIEllT IJUiWERS [SEE BELO\J]
33
34
35
36
37
38
39
40
41
42
43

C

C

13 X # Y
13 Y # X

GO TO 5

C DO LOOP ERRORS [SEE GELO\J]
C

DO 3 1#1,10
DO 4 J#1,3

4 IF [X-V] 18,18,19
19 DO 6 1#1,10

44
45
46
47 C
48 C
49 C
50

SYIJTAX
51

SYiJTAX
52

SYIlTAX
53

SYIJTAX
54

S Yf~T t~X
55

SYfJTAX
56

SYlnAX
57

6
7

DO 7 J#1,10
X # X&R [I]
Y # Y &R [I]

III SCELLAiJEOUS SY1:TAX ERRORS

READ Id, [R[I], 1# 1]
/::,.

X # 3.*[[2.&Y]*SQRT[3.14159265359/[Y**2&Z**2-4.7[P-Q]]] & ABS[P]
/::,.

X # ALP f I A ~'~ GET /\ --:d~ [1 .(, S Q R T [1 2 • 6;'~ P ~', - Q] / 3 • 5] - 2 • ;'(";" J
/::,.

IF [P-Q] 27,16

X # -[I.~2.8*[R[3]-4.*R[I]*[3.-SQRTF[P~~/[1.&X**2]]]]]]
/::,.

III FORi,lAT [4FI2.5, 17,14ilTOTAL VALUES F12.0]
/::,.

EflO

00 lJEST ERRORS

6 3

LA8EL' rIG ERRORS

13 5 3

cor,11,10N ALLOCATIOlj

77776 X 77774 Y 77772 Z ERROR A

PROGR/,!-1 ALLOCi\TIOiJ

00005 A 00013 R 00063 I 00064 J
00065 B

SU B PRO GRAI,lS HEqUIRED

ROARII~G

THE EtW

9

10

3. LOADER

FORTRAN OBJECT PROGRAM LOADING PROCEDURE

The procedure for loading FORTRAN object programs is:

1. Insert system tape in the paper tape reader. Set brake. (It is assumed that the user has just finished compi lation
and the system tape is at the beginning of the loader. Otherwise, mount the tape and advance it to the second
block.)

2. Turn spooler on.

3. Load the FORTRAN loader by the standard fi II procedure. When the loader is completely read in, the message

LOAD MAIN PROGRAM.

is typed and the computer halts.

4. Turn spooler off.

5. Remove system tape from reader.

6. Insert main object program in reader. Set brake.

7. Select the desired FORTRAN loader output options by setting the appropriate breakpoint switches.

Switch 1 RESET Output on typewriter
SET Output on printer

Switch 2 RESET
SET

Switch 3 RESET
SET

Switch 4 RESET
SET

No program maps
Produce a map of a II programs and subprograms loaded.

No label maps
Produce a map of all statement labels used in FORTRAN-compiled programs or subprograms.

No label trace
Load the special 160 POP. The 160 POPs are produced by the compiler and, if loaded,
cause the statement number of a labeled statement to be printed each time that statement
is executed during run-time.

8. C lear the halt to read in program. When the main program has been read in, the message

LOAD SUBPROGRAMS.

is typed. If the main program requires FORTRAN subprograms that are not in the library, read them in using
steps 6 through 8.

9. Replace system tape in the reader. Set brake.

10. Turn spooler on.

11. Clear the halt to read in the library. When the library routines have been read in, the loader proceeds to read
in the run-time program, unless there are sti II some subprograms required (see below). When it is completely
loaded, the message

LOADING COMPLETE

is typed and the computer halts.

12. Clear the halt to begin execution of the object program.

The loader makes no distinction between library subroutines and those written by the user in FORTRAN or META­
SYMBOL/SYMBOL.

On Iy those subprograms that have been ca lied for are accepted by the loader. A II others are ignored.

If two or more subprograms with the same name are presented to the loader, the first one is accepted and subsequent
one{s) ignored.

If two subprograms, A and B, both ca II a third, C, either A or B shou Id precede C in order that C be called before
it is read. It is not necessary for both A and B to precede C.

An attempt to load a tape that is not a legitimate object program causes reading to halt and the message

ILLEGAL INPUT. RELOAD PROGRAM.

to be typed.

If a reading error occurs during loading, the message

READ ERROR. RELOAD LAST RECORD.

is typed and the computer halts. The tape should be moved back to the nearest gap and loading continued by clear­
i ng the ha It.

If the memory is exceeded during loading, the message

PROGRAM TOO BIG.

is typed; the loader simulates loading into an infinite memory.

MISSING SUBPROGRAMS

If the operator has neglected to load all required subprograms before reading in the library, the computer types

MISSING SUBPROGRAMS
XXXXXXXX

Where XXXXXXXX represents a subprogram name I isting of each of the required subprograms that have not been
found in the library. The operator should provide the requested subprograms.

The message

LOAD SUBPROGRAMS.

wi II continue to be typed out unti I all required subprograms have been loaded. Some of them may be library subpro­
grams and the system tape may have to be repositioned and the iibrary read in again.

When no further subprograms are required, the computer types

LOAD RUN TIME.

The operator should remount the system tape (after the I ibrary block) and c lear the hal t to read in the run-time package.

Note: Run-time may also be loaded at any time using the standard fill procedure. The library, however, must be
read in by the loader, and the loader and compi ler may on Iy be loaded by the standard fi II procedure.

LOADER HALTS

All halts during loading are accompanied by a display in the C register of a II tagged ll NOP plus a number to indicate
the type of halt. These are:

22001000

22001001

22001002

22001003

LOADER RESTART

Load system

Load subprograms

Read error

Load main program

The standard restart procedure (see Appendix A) may be used at any time to reinitialize the loader to step 6 above.

OBJECT PROGRAM RESTART

The standard restart procedure (see Appendix A) may be used at any time after completion of all loading; including
run-time, to reinitialize to step 12 above.

11

12

FORTRAN LOADER'S OUTPUT

During the loading of an object program, the FORTRAN loader outputs memory maps describing program storage allo­
cation at execution time. The breakpoint switches are used to select the various output options. The breakpoint set­
tings dynamically control the output in the sense that they can turn the various options on or off, when desired, as
the loading proceeds.

An abbreviated example of the FORTRAN loader's output is given below.

NAME ENTRY ORIGIN LAST SIZE/l0 COMMON BASE

7 03522
2 03525
232 03547
7232 03553

$$$$$$$$ 03462 03452 05224 875 04643
ABSF 05226 05225 05242 14
203SYS 05244 05243 05254 10

*PROGRAM 03462 03452 06101 1304

If a label map is requested, it is output immediately below the headings. If a storage map is also requested, it is
output following the label map.

Program names or statement numbers appear under the heading NAME.

The entry, *PROGRAM, is always printed; it identifies the line containing the total program storage information.
$$$$$$$$ is the compi ler-assigned identification for the main program.

The entry location to the program or to the code interpreting a labeled statement appears under the heading ENTRY.
Under the remaining headings appear the location of the program origin, the last location occupied by the program,
the program size (in decimal notation), the beginning location of COMMON (when applicable) and the base loca­
tion for determining the location of variables used in a FORTRAN-compiled program.

The value in the column BASE is used to determine the absolute location of variables. At compilation time, vari­
ables are assigned locations relative to the end of the program; it is these relative locations that are printed as II Pro­
gram Allocation" by the compiler. To determine the absolute location of a given variable, add its relative location
to the value listed by the FORTRAN loader as "base" for the program containing that variabie. For exampie, assume
the variable J was assigned relative location 55. Using the base shown above, the absolute location of J is deter­
mined by adding 04643 and 55, which results in 04720.

4. LIBRARY

The library functions are described in this section in the order they appear on the system tape, giving for each:

Preferred name of function
Other acceptable names, if any
Number and mode of arguments
Function performed
Memory required (in words)
Accuracy, where applicable
Timing, for normal cases (in microseconds unless otherwise indicated)

All library functions are closed subroutines; that is, they appear only once in the object program.

ELEMENTARY MATHEMATICAL AND MISCELLANEOUS FU NCTIONS

230SYS. Raises a number to a power. Cannot be explicitly called by the programmer. This routine is called implic­
itly by the presence of "**" in the source program, and it requires ALOG and EXP. When the power is 2, the first
argument is multipl ied by itsel f.

Accuracy: Integer arguments, exact
Floating arguments (except 2.0), see ALOG and EXP

910 925 920 930

Memory: 113 113 106 106
Timing: I**N 648(N)-352 142(N)-77 88+ 144(N) 2Ot32N

A**2 5050 1105 1150 252
A**B 60 ms 13.2 ms 12.5 ms 2.8 ms

ALOG - ALOGF, ELOG, ELOGF. Computes the natural logarithm of a floating-point argument.
-11

Accuracy: lin x I ?: 1: relative error < 6 x 10 -11

Memory:
Timing:

lin x I < 1: absolute error < 6 x 10

910

137
32 ms

925

137
7 ms

920

138
5.9 ms

EXP - EXPF. Computes the exponential (base e) of a floating-point argument.

I . < 6 10- 11 2max [0, (log2 lX I +1)] Accuracy: re atlve error x x

Memory:
Timing:

910

163
21 ms

925

163
4.6 ms

920

147
6.5 ms

SIN - SINF. Computes the sine of a floating-point argument in radians.
COS - COSF. Computes the cosine of a floating-point argument in radians.

930

138
1.3 ms

930

147
1.5 ms

Accuracy: relative error < 6 x 10- 11
+ error arising from loss of significance in the argument (X) as X becomes

large and as X approaches the zeros of sin X (cos X)

Memory:
Timing:

910

201
30 ms

925

201
6.6 ms

920

204
5.1 ms

SQRT - SQRTF. Computes the square root of a floating-point argument.

Accuracy:

Memory:
Timing:

-11
relative error < 10

910

98
3.9 ms

925

98
0.9 ms

920

83
1100

930

204
1.2 ms

930

83
240

13

14

AT AN - ATANF. Given two floating-point arguments, Y and X, the routine computes the arctangent of Y IX, allo­
cating the result in radians to the proper quadrant. The range of this function is -TT 'S. arctan < 7T.

Given one floating-point argument, Y, the routine assumes X = 1.0.

Accuracy:

Memory:
Timing:

-11
relative error < 6 x 10

910

259
29 ms

925

259
6.4 ms

920

256
8.3 ms

ABS - ABSF. Floating-point absolute value of a floating or integer argument.

910 925 920

Memory: 13 13 13
Timing: (floating-poi nt argument)

positive 184 41 184
negative 866 190 320

For integer argument, add FLOAT time.

lABS - IABSF. Integer absolute value of an integer or floating argument.

Memory:
Timing: (integer argument)

positive
negative

910

13

120
184

For floating point argument, add fix time.

925

13

27
41

FLOAT - FLOATF. Converts integer argument to floating-point.

Memory:
Timing: (+ normalize time)

910

4
328

925

4
72

920

13

120
120

920

4
152

930

256
1.9 ms

930

13

41
70

930

13

27
27

930

4
34

IFIX - IFIXF, INT. Truncates floating-point argument to integer. Positive and negative arguments are both trun­
cated towards zero.

Memory:
Timing:

910

8
272-1784
1000 avg.

925

8
60-391
220 avg.

920

8
144-624
376 avg.

930

8
32-137
83 avg.

AINT - AINTF. Truncates floating-point argument to integer, then floats the integer.

910 925 920 930

Memory: 8 8 8 8
Timing: Add FLOAT time to IFIX time above.

SIGN - SIGNF. The algebraic sign of the second argument is assigned to the first argument. Each argument may be
of either mode, but the result will be in floating-point.

910

Memory: 21
Timing: {plus FLOAT time if necessary} 560-1940

925

21
125-425

920

21
400-690

930

21
90-150

ISIGN - ISIGNF. The algebraic sign of the second argument is assigned to the first argument. Each argument may
be of either mode, but the result will be in integer form.

Memory:
Timing: (plus IFIX time if necessary)

910

20
216-352

925

20
48-77

920

20
224

930

20
49

AMOD - AMODF. Requires two floating-point arguments. Returns the remainder when the first is divided by the
second, i.e., AMOD(A, B) = A - FLOAT (IFIX(A/B))*B.

Memory:
Timing: (plus fix time)

910

13
9.2 ms

925

13
2.0 ms

920 930

13 13
3.7 ms 0.8 ms

MOD. Requires two integer arguments. Returns the remainder when the first is divided by the second, i.e.,
MOD (I, J) = I - (1/ J)* J.

Memory:
Timing:

910

9
1336

925

9
293

920

9
408

930

9
90

The following routines use a common loop that finds the maximum or minimum of any number of arguments, each of
which may be of either mode. Each argument is converted to floating-point before comparing. The resulting maxi­
mum or minimum is then fixed, if necessary.

AMAX - AMAXO, AMAX 1. Floating-point maximum.
MAX - MAXO, MAX 1. Integer maximum.
AMIN - AMINO, AMINl. Floating-point minimum.
MIN - MINO, MIN 1. Integer minimum.

910

Memory: 65
Timing: each argument (plus FLOAT 670

time if necessary) +3.5 ms

925

65
150
+0.8 ms

920

65
500
+ 1.5 ms

930

65
110
+0.4 ms

DIM - DIMF. Requires two floating-point arguments. Returns difference if first greater than second; otherwise,
zero, i.e., DIM(A, B) = AMAX(A-B, 0.0)

Note also that AMAX(A, 0.0) = DIM(A, 0.0)
AMIN(O.O, A) = -DIM(O.O, A)

and the DIM routine is much shorter, if this result is needed.

Memory:
Timing:

910

10
3.0 ms

925

10
0.8 ms

920

10
1.2 ms

930

10
0.3 ms

IDIM - IDIMF. Requires two integer arguments. Returns difference if first greater than second; otherwise, zero,
i.e., IDIM(I, J) = MAX(I-J, 0)

Memory:
Timing:

910

10
144

925

10
32

920

10
120

930

10
27

LOCF. Returns the absolute address of an argument of either mode. This is useful in conjunction with dump routines.

910 925 920 930

Memory: 4 4 4 4
Timing: 56 13 56 13

15

16

IF. Given two floating-point arguments, P and Q, this function returns zero if they are equal to within the four
TOw order mantissa bits; otherwise, it returns an integer with the sign of P-Q.

-10
Given one floating-point argument, P, the function returns zero if it is of magnitude less than 10 ; otherwise, it
returns an integer with the sign of P.

The IF function is most useful in conjunction with the IF statement to provide a means of testing equality of decimal
numbers in binary.

Memory:
Timing: (for one argument)

(for two arguments)

910

31
624
3.4 ms

925

31
156
0.8 ms

920

25
432
1.4 ms

930

25
102
0.3 ms

EXIT. Same effect as STOP statement, except that it types *EXIT* and branches to a transfer point. This provides
compatibility with 7090 Monitor FORTRAN programs.

Memory:

910

11

925

11

920

11

930

11

SYSTEM ROUTINES

These routines are not ca lied by name; the compi ler sets up references to them by using octal numbers ranging from
201 to 244. The linkage to them is stored in locations 201 - 244 and they are entered by a BRM* instruction. Only
those routines called for implicitly in the program are actually loaded.

The system routines are listed in this section, giving for each:

Octal number
Name
Operation performed
Memory storage used
Other system routines required, if any

160SYS.

Memory:
Requires:

201SYS.

Memory:

202SYS.

Memory:

203SYS.

Memory:

204SYS.

Memory:

205SYS.

Memory:

206SYS.

Memory:

207SYS.

Memory:
Requires:

label Trace POP. Outputs the statement number when a labeled statement is executed at run-time.

14 words
211 SYS and 223SYS

Start of dummies. Used by FORTRAN subprograms in obtaining arguments from the calling program.

4 words

End of dummies. Used in conjunction with 201SYS in obtaining arguments.

8 words

Stop. Types *STOP* and halts.

10 words

If Sense Switch. Performs the If Sense Switch test.

21 words

If Sense light. Performs the If Sense light test.

20 words

Computed GO TO. Performs the Computed GO TO.

11 words

Accept. Initializes for reading information from the console typewriter.

9 words
234SYS and 235SYS

21OSYS. Accept Tape. Initializes for reading information from paper tape.

Memory: 9 words
Requires: 234SYS and 235SYS

211SYS. Print. Prints on the line printer. Not in the standard library. See 50S Catalog No. 062001 or 062005.

Memory: 43 words
Requires: 235SYS

212SYS. Punch. Punches BCD cards. Not in the standard library. See 50S Catalog No.032001.

Memory: 50 words
Requires: 235SYS

213SYS. Punch Tape. Initializes to punch paper tape. This routine will also be called by the IIPUNCH II statement
if the PUNCH routine (212SYS) is not loaded first.

Memory: 10 words
Requires: 235SYS and 240SYS

214SYS. Type. Initial izes to type on the console typewriter. This routine wi II also be called by the 11 PRINTII state­
ment, if the PRINT routine (211SYS) is not loaded first.

Memory: 10 words
Requires: 235SYS and 240SYS

215SYS. Rewind. Rewinds magnetic tape.

Memory: 6 words
Requires: 242SYS and 244SYS

216SYS. Read. Reads BCD cards. If card reader is not ready, waits 15 seconds, then types ERR CRDS. Continues
to type this at 5-minute intervals until reader is made ready.

Memory:
Requires:

217SYS.

Memory:
Requires:

220SYS.

53 words
235SYS and 236SYS

Read Tape. Initializes for reading magnetic tape in binary mode.

5 words
241SYS and 242SYS

Read Input Tape. Reads from magnetic tape in BCD mode.

Memory: 88 words
Requires: 235SYS, 236SYS, 242SYS, and 244SYS

221SYS. Write Tape. Initializes for writing magnetic tape in binary mode.

Memory: 5 words
Requires: 241SYS and 242SYS

222SYS.

Memory:
Requires:

223SYS.

Memory:

224SYS.

Memory:

225SYS.

Memory:
Requires:

Write Output Tape. Writes magnetic tape in BCD mode.

70 words
235SYS, 242SYS, 243SYS, and 244SYS

End Input/Output List. Used by all input/output lists.

12 words

IF Overflow. Tests status of floating-point overflow and branches accordingly.

6 words

Backspace. Backspaces magnetic tape one logical record.

45 words
242SYS and 244SYS

17

18

226SYS.

Memory:
Requires:

227SYS.

Memory:

230SYS.

231SYS.

Memory:

232SYS.

Memory:

End File. Writes an end-of-file mark on magnetic tape.

33 words
242SYS, 243SYS, and 244SYS

Sense Light. Sets Sense Light.

19 words

Power. See Elementary Mathematical and Miscellaneous Functions at beginning of this section.

Fix. Converts floating-point number to integer.

3 words

Float. Converts integer to floating-point number.

3 words

233SYS. Input/Output List Unscripted Array. Used during input and output of arrays when listed without subscripts,
(e.g., TYPE 3, A).

Memory: 28 words

234SYS. Accept/Accept Tape. Used with 207SYS and/or 210SYS for inputting information from the console type­
writer and/or from paper tape.

Memory: 68 words
Requ ires: 236SYS

235SYS. Initialize Format Scan. Used by the input/output system routines to initialize the FORMAT scan.

Memory: 78 words

236SYS. BCD to binary. Used by the FORMAT scan routines to convert BCD numbers to binary during input.

Memory: 220 words(920/930); 238 words(91 0/925)

240SYS. Punch/Type. Used with 213SYS and/or 214SYS for outputting information on paper tape and/or on the
console typewriter.

Memory: 46 words

241SYS. Read/Write Tape. Used with 217SYS and/or 221SYS for reading and/or writing of binary information on
magnetic tape.

Memory: 367 words
Requires: 243SYS and 244SYS

242SYS. Set Up Input/Output Table. Selects proper tape unit and sets up constants preparatory to all operations
involving magnetic tape.

Memory: 58 words

243SYS. Test Write. Checks if ready to write on magnetic tape. Writes a leader if at beginning of tape.

Memory: 45 words
Requ ires: 244SYS

244SYS. Tape Ready. Checks tape before all magnetic tape operations to assure that it is selected and ready. If
unit is not ready within 3 minutes, 17 seconds (the time required for a full-reel rewind), the program types ERR TNR#
(see RUN-TIME MAGNETIC TAPE ERRORS). These typeouts recur at the same time interval until the tape unit is
made ready.

Memory: 20 words

5. RUN-TIME

PROGRAMMED OPERATORS

SDS FORTRAN II incorporates a set of special-purpose programmed operators designed particularly for FORTRAN
programs.

100 XSD
101 FSD
114 XFA
115 FFA
116 XNA
117 FNA

Fixed Setup Dummy
Floating Setup Dummy
Fixed First Argument
Floating First Argument
Fixed Next Argument
Floating Next Argument

The purpose of the XSD and FSD POPs is to procure one address from erasable storage, to store that address in abso­
lute form in the location specified by XSD (or FSD), and to store that address with an index bit of one in the speci­
fied location + 1.

XSD and FSD are used by FORTRAN subroutines to locate the address{es) of the argument{s) specified by a CALL
statement or a function call in a FORTRAN program. These POPs are used in conjunction with several additional
run-time POPs and subroutines whose functions are described below.

Suppose a FORTRAN program contains the following statement:

CALL FIND{A, N)

The machine language code generated by the compiler for this call would be

FFA A
XNA N
BRM FIND

FFA (F loating First Argument) is run-time POP 115 which places the address of the variable A in the first location, EO,
of erasable storage. Since it isthe first address to be placed in erasable, FFAaisoinitializesEADR1 to the address, EO,
(found in EOADR) and then increments EADR 1. Thus, EADR 1 will thereafter contain the next available address in
erasable storage. Since the argument is in floating-point, bit 5 of the word placed in erasable is set to one.

XNA (Fixed Next Argument) is run-time POP 116 which places the address of the variable N into the next avail­
able location of erasable storage. Since the argument is in fixed-point, bit 5 of the word placed in erasable is set
to zero. EADR1 is incremented before leaving.

The machine language code generated at the start of SUBROUTINE FIND (A, N) would be

FIND PZE
BRM
FSD
XSD
BRM

201SYS
TEMP
TEMP+2
202SYS

Now, the appearance of the variable names A and N in the calling program requires the compiler to allocate storage
for these quantities. Since storage for these quantities has already been set aside in the calling program, doing so
again in the subroutine would have no meaning. Therefore, the appearance of these names in the subroutine serves
only to indicate to the subroutine that there are two arguments, the first of which is floating-point and the second of
which is integer. For this reason, variablesappearing in the argument list of a subroutine are called DUMMIES.

201SYS is a library subroutine whose function is to initialize EADR2 to the address in EOADR. EADR2 is then used by
the subroutine to point to that address in erasable where the next argument address may be obtained.

FSD (Floating Setup Dummy) is run-time POP 101 which procures the address from the erasable location specified by
EADR2 and places that address and that address, tagged, in (in this case) TEMP and TEMP+ 1. Bit 5 of this quantity
is checked for a one. If bit 5 is not set to one, there is a disagreement of variable mode between the main program
and the subroutine and the run-time error message ERR ARGM is typed out. EADR2 is incremented before leaving.

19

20

XSD (Fixed Setup Dummy) is run-time POP 100 which procures the address from the erasable location specified by
EADR2 and places that address and that address, tagged, in (in this case) TEMP + 2 and TEMP + 3. Bit 5 of this quantity
is checked fora zero. If bit 5 is not set to zero, there is a disagreement of variable mode between the main program
and the subroutine and the run-time error message ERR ARGM is typed out. EADR2 is incremented before leaving.

202SYS is a library subroutine whose function is to compare EADR 1 and EADR2. EADR 1 indicates how many addresses
were placed into erasable by the call ing program and EADR2 indicates how many were taken out by the subroutine.
If they are not equal, there is a discrepancy in the number of arguments and the run-time error message ERR ARG N
is typed out.

Note that it is absolutely necessary to initiate this procedure at the beginning of every subroutine to preserve those
addresses that have been placed in erasable storage. If the first statement of the subroutine had been another CAll,
the setup would destroy the original addresses placed there by the main program.

FFA and FNA double the contents of the index register before determining the effective address of an argument.

110 DOX DO Fixed

111 DOF DO Floating

These run-time POPs are generated by FORTRAN DO statements. The POP adds the increment to the variable and
compares it with the limit and skips if the DO loop is not finished.

Example:

DO 3 X = A, B, C

The coding generated is:

lDP A
STD X
BRU l2

II lDP C (increment)
DOF B (I imit)
PZE X (variable)
BRU L3 finished

l2 loop

BRU II
l3 finished

Example:

DO 3 I = M, N, J

The coding generated is:

lDA M
STA I
BRU l2

II lDA J (increment)
DOX N (limit)
PZE I (variable)
BRU l3 finished

l2 loop

BRU Ll
L3 finished

An exception is:

DO 3 1= M, N

The coding generated for this case, where the increment is understood to be one, is as follows:

LDA M
STA I
BRU L1

L2 MIN I
LDA N
ADD ONE standard constant
SKG I
BRU L3

L1 loop

BRU L2
L3 finished

150 ALX Assign Label to Fixed

ASSIGN 3 TO M

ALX M
BRU (3) Address of statement 3

The ALX puts its own address in M, e.g., if the ALX instruction is executed in location 3460, M contains 3460. Fol­
lowing the ALX POP is a BRU to the start of the assigned statement.

112 AGX Assigned GO TO Fixed

GOTOM

This POP checks the address in M. In this address, there should be an ALX POP (or ALF POP) showing that a state­
ment label was assigned. If so, it transfers control to the location after the one specified by the variable. That lo­
cation should contain a BRU to the assigned statement. If the word at the address specified by the variable is not an
ALX or ALF POP, the message ERR AGTO is typed and the computer halts.

Mode is not checked.

151 ALF Assign Label to Floating

Similar to ALX but doubles the inde)l' register before determining the effective address of the argument.

113 AFG Assigned GO TO Floating

Similar to AGX but doubles the index register before determining the effective address of the argument.

120 XIO Fixed Input/Output

This POP communicates with the FORMAT processor to transmit the address of an integer input/output argument.

Use is similar to a MIW or WUl, in machine language.

21

22

Example:

FORTRAN - Generated Code Machine Language

BRM PRINT EOM
PZE FORMAT

XIO ARG1 MIW/WIM ARG1

XIO ARG2 MIW/WIM ARG2

BRM ENDIOL TOPO/DSCO

121 FlO Floating Input/Output

Simi lar to XIO but doubles the index register before determining the effective address of a floating, input/output ar­
gument.

DOUBLING THE INDEX REGISTER

The compiler handles subscripted variables in the following manner. If XXX is the base address of a floating-point
array and i is the value of the subscript, the location of any variable can be found by:

L OC = XXX + 2(i - 1) = XXX - 2 + 2 i

Multiplying the subscript by two is necessary because two locations are used for each floating-point variable.

The compiler calculates a basic address, YYY= XXX - 2, and generates code similar to the following

LDX
POP YYV,2

If the POP is a floating run-time POP, it will double the index before execution and restore the original value after.
Thus, part of the array indexing is done by the compiler in calculating the basic address YVY, and part is done by
the floating-point run-time POP by doubling the index.

As for integer arrays, the location of a variable is given by XXX + (I - 1), or XXX - 1 + I. The basic addressas cal­
c u I ated by the compil e r wou I d be YVY = XXX - 1.

Fixed-point run-time POPs do not double the index register.

125 LDP Load Double Precision

Loads the B and A registers with the contents of Memory and Memory + 1, respectively.

Doubles the index register before determining the effective address of the argument.

107 STD Store Double Precision

Stores the contents of the B and A registers in Memory and Memory + 1, respectively.

Doubles the index register before determining the effective address of the argument.

105 FST Float and Store

Floats the integer in A and stores the contents of the B and A registers in Memory and Memory + 1, respectively.

Doubles the index register before determining the effective address of the argument.

126 FT A Float then Add

Floats the integer in memory and then adds it to A, B.

132 FTS Float then Subtract

Floats the integer in memory, then subtracts it from A, B.

136 FTM Float then Mu Itiply

Floats the integer in memory, then multiplies it by A, B.

142 FTD Float then Divide

Floats the integer in memory and divides A, B by it.

104 XST Fix and Store

Fixes the floating-point number in A, B and stores it in memory.

122 LTF Load then Float

Loads A with an integer in memory and then floats it.

123 LTX Load then Fix

Loads A, B with the floating-point number in memory and fixes it, leaving the integer result in A.

The index register is doubled before determining the effective address of the argument.

131 FLA Floating Add

135 FLS Floating Subtract

141 FLM Floating Multiply

145 FLD Floating Divide

Perform the indicated floating-point operation with memory and the A, B register; the result is left in A, B. The
floating-point number in memory is reversed. The high-order part is in M+ 1 and the low-order part and the exponent
is in M.

The index register is doubled before determining the effective address of the argument.

147 FLN Floating Negate

Negates the floating-point number in A, B. The effective address of the POP is ignored.

154 DPA Double-Precision Add

153 DPS Double-Precision Subtract

155 DPM Double-Precision Multiply

Performs the indicated machine operation. Treats the A, B register as one register. The number in memory is stored
in reverse order as is the case with floating-point numbers. M + 1 contains the most significant and M contains the
least significant part of the number.

These POPs are not generated by the compiler, but are used by the run-time package and the library.

23

24

140 XMP Fixed Multiply

Multipl ies the integer contents of A by memory and puts the resulting integer in A. This is an integer multiply with
the binary point at 23.

144 XDV Fixed Divide

Divides the contents of A by the integer in memory and puts the resulting integer in A. The integer remainder is left
in B. This is an integer divide with the binary point at 23.

All of the floating-point POPs can set the overflow indicator. The results given in an overflow are the maximum
value of the variable with the proper sign. An underflow returns a zero result.

RUN-TIME HALTS AND ERRORS

The following conditions cause suspension of FORTRAN object program execution. In some cases, execution is re­
sumed immediately after a typeout.

STOP Statement. When this statement is executed, the computer will type:

STOP

and will not continue.

CALL EXIT Statement. When this statement is executed, the computer will type:

EXIT

and branch to location 1. This will cause II LOADING COMPLETE II to be typed out and the computer wi II halt. The
statement is provided primarily to allow linkage with other (e.g., monitor) systems.

PAUSE Statement. When this statement is executed, the computer wi II halt and display the integer constant, if any,
in the C register.

ERROR Conditions. There are a number of conditions which cause error typeouts of the form:

ERR XXXX

Following the typeout the computer wi II either halt or take remedial action and continue. The following table in­
dicates, for each of the errors,

Message typed.

Whether a halt occurs.

Cause of the error.

Contents of registers at time of halt, if such information may be useful or if it may be changed before proceed­
ing.

Result if program is allowed to continue.

RUN-TIME ERRORS

Message Halt

AGTO x

ARGM x

ARGN

CARD x

CGTO

CRDS

EFIA

EIOL x

EXP

FCHt x

FORL x

FORM x

FORP x

FXIO x

ICHt x

IFSL

IFSS

Explanation

Assigned GO TO - Variable never assigned. Variable displayed in X. Result: Branch to
(effective address determ ined by variable) + 1.

Argument Mode - Argument of wrong mode given to FORTRAN subprogram. Proper mode
is fixed if A = 0, floating if A = 01000000. Dummy address of argument displayed in X.
Resu It: Argument used as if its mode were correct.

Argument Number - Wrong number of arguments given to FORTRAN subprogram. Result:
If too many, extra ones ignored. If too few, whatever arguments remain in erasable
storage wi II be used.

Card "READ CHECK" or "FEED CHECK" error - If "READ CHECK" light is on, the last
card read was in error. Place it back in the hopper. If "FEED CHECK" light is on, the
offending card is still in the hopper. It probably has a wrinkled leading edge. Result:
Try to read the card again.

Computed GO TO - Valueoutside allowable range. Result: Go to first statement number
in list.

Card Reader Not Ready-Program has waited 15 seconds for reader. Place cards in reader
and press start. Resu It: Program conti nues to wait for reader. T ypeouts occur in 5-m inute
intervals.

E, F, I, or A Needed in FORMAT - Unable to output variables. Result: Proceeds without
outputting variables.

End Input/Output List encountered without prior initialization. Result: Proceeds without
taking any I/O action.

Exponential Function - Argument greater than 176. Result: Answer set to maximum
floating-point value.

FORMAT Character Illegal - The illegal character is displayed as the fourth character (t)
in the message typed out. Result: Begins scan for next specification, i. e., treats char­
acter as if it were a comma.

FORMAT Label Error - The scalar variable referenced by an I/O statement has not been
assigned a FORMAT statement label. Result: The contents of the (effective address de­
termined by the variable) + 1 is used as the address of the start of the FORMAT statement.

FORMAT Missing - I/O statemen t references something else. X = address of supposed
FORMAT. A = first word of supposed FORMAT. Result: Scans supposed FORMAT.

FORMAT Pointer Error - The address in the I/O list pointing to the FORMAT statement
is not in an acceptable form, i.e., HLT, BRUorAGT(112orl13). X=addressof
pointer. A = bad pointer. Result: Pointer at address specified by X is treated as if it
had form specified by a HLT.

Floating or Fixed Data requested for I/O without prior initialization. Result: Proceeds
without taking any I/O action.

Input Character Illegal - The illegal character is displayed as the fourth character (t) in
the message typed out. Result: Begins scan for next field, i. e., treats character as if it
were a comma.

If Sense Light - Value not 1-24. Result: Assume sense light off.

If Sense Switch - Value not 1-4. Result: Assume sense switch off.

25

26

RUN-TIME ERRORS (cont.)

Message Halt

INOV

LABL x

LCRD x

LOG

NO[x

N**F

OCTt

PNCH

PRNT

PRTY x

REP[

REP$

SIZE x

SNLT

SQRT

XPOV

XPUN

O**N

[OVF x

Explanation

Integer Overflow - Input value of integer quantity exceeds 8,388,607. Result: Number
truncated to the least significant 24 bits.

Label Undefined - Result: Computer will not proceed.

Last Card Read in Error - Mayor may not be caused by a validity check. Place the last
card back in the hopper. Result: Try to read the card again.

Logarithm Function - Argument negative or zero. Resu It: Answer set to zero.

No left parenthesis in FORMAT statement - Result: Computer will not proceed.

Negative Number Raised to Nonintegral Power. Result: Computes (INI **F).

Non-Octal Character (t) encountered during input under octal FORMAT specification.
Result: Character is truncated to 3 least significant bits.

Card Punch Not Ready - Program has waited 15 seconds for punch. Make the punch
ready. Result: Continues to wait. Typeouts occur in 5-minute intervals.

Printer Not Ready - Program has waited 15 seconds for printer. Make the printer ready.
Result: Continues to wait. Typeouts occur in5-minute intervals.

Parity Error During Input - Result: Processing continues using incorrect character.

Repeat Count Precedes Outermost [in FORMAT - Result: Where applicable, group re­
peat count is applied to entire FORMAT specification.

Repeat Count Precedes $ in FORMAT - Resu It: Repeat count is ignored.

Size of Erasable Storage Exceeded - There is no unused memory in which to transferargu­
ments to subroutines. Result: Erasable storage will run into COMMON, if any, or out
of memory.

Sense Light - Value not 0-24. Result: Statement has no effect.

Square Root Function - Argument negative. Result: Square root of absolute value of
argument.

Exponent Overflow on Input Datum - Result: List item set to positive maximum (approxi­
mately .579 x 1077).

Exponent Underflow on Input Datum - Result: List item set to zero.

Zero Raised to Nonpositive Power - Result: (0**0) wi II be 1 or 1. 0, and (O**NEGATIVE)
will be the maximum possible integer or floating number, as the case may be.

Nesting Level Exceeded - Limit on number of parenthesized groups of FORMAT specifi­
cations is normally 4 levels. Result: Higher levels of nesting are disregarded.

RUN-TIME MAGNETIC TAPE ERRORS

Message Halt

TPNO x

x

EOF# x

x

x

x

x

x

x

WEF# x

x

Explanation

Tape Number Not 0-7 - Tape number displayed in A. Result: Number will be truncated
and the low-order octal dig it (0-7) wi II be used.

For the remainder of the tape errors, the tape unit in error wi II be indicated as the fourth
character (#) of the message typed out.

Backspace - Failed 10 Times. Result: Proceed as if backspace has successfully taken
place.

End of File Reached During Reading - Result: Continue to read past end of file.

End of Tape Whi Ie Reading - Remove the finished tape and replace with next reel.
Resu I t: Conti nue readi ng.

End of Tape While Writing - Remove the finished tape and replace with next reel. Re­
sult: Continue writing. This, in conjunction with ETR, facilitates writing and reading
of multiple reels.

File Protect - Attempted to write on tape which is file protected. Result: Check again.

Long Record Read - READ TAPE (binary) has read a logical record which contains more
information than is required by the I/O list. Result: The remainder of the record is
sk ipped.

Read Tape Error- Failed to read 10 times. Result: Proceed assuming read to have been
satisfactory.

Short Record Read - READ TAPE (binary) attempting to read more information from a
logical record than is present. Result: Remaining items in the I/O list are supplied
with words of zero.

Tape Not Ready - Program has waited 3 minutes, 17 seconds for tape unit. Ready the
tape unit. Result: Program continues to wait for tape unit. Typeouts occur in 3 minute,
17 second intervals.

Write End of File Error - Result: Try again.

Write Tape Error - Failed to write 5 times. Result: Proceed, assuming write to have been
satisfactory.

27

28

MEMORY LAYOUT AT RUN-TIME

Run-Time System
0001

Ma i n Prog ram
Main Program Start - 8

Subprograms

Erasable
EO

COMMON
EO + EOSIZE

Last word of memory

Main Program Start

The entrance point to the main program may be determ ined from the branch instruction in location 00400. Run-Time
ends ten locations below this to allow room for the heading. (See below.)

EO

The starting address of erasable storage is contained in EOADR in 00071.

EOSIZE

The amount of unused memory is contained in 00072.

The address of the first word of each subprogram is contained in the first word of the preceding subprogram. (See
Heading, below.)

Each FORTRAN-written program consists of the following segments:

1. Heading

This consists of nine words.

2. Text

PPOAAAAA

NNNNNNNN

NNNNNNNN

OOOCCCCC

00000000

OOOEEEEE

OOOFFFFF

OOOGGGGG

OOOHHHHH

where AAAAA is the beginning of the next program, and PP determines program type:
PP = 10 for machine language subprograms; PP = 04 for the main program; PP = 02 for
subprograms.

These two words give the BCD name of the program.

For the main program; this is all dollar signs. (OCT 53)

Address of beginning of linkage table. (See Linkage Table, below.)

Note: This is the base address to which the relative addresses of the variables (given
at compi Ie time under program a lIocation) are added to obtain their absolute
memory locations.

Address of beginning of dummies and temporary storage locations.

Address of beginning of equiva lenced variables. (See EQUIVALENCEd Variables.)

Address of beg i nn i ng of arrays. (See Arrays.)

Address of beginning of fixed scalar variables. (See Integer Scalar Variables.)

Address of beginning of floating scalar variables. (See Floating Scalar Variables.)

The instructions and constants which comprise the program.

3. Linkage Table

Transfer vector to subroutines called.

4. Dumm i es and Temporary Storage

5. EQUIVALENCEd Variables

All variables, including arrays, which appear in EQUIVALENCE statements. These are stored in the order in
which they appear in EQUIVALENCE statements.

6. Arrays

Stored independent of mode in the order in which they appear in DIMENSION statements. All arrays are stored
forward in memory, e. g., if M(l) is in location 4000, M(2) would be in 4001.

7. Integer Scalar Variables

Stored in the order of their appearance in the source program.

8. Floating Scalar Variables

Stored in the order of their appearance in the source program.

Subprograms written in SYMBOL/META-SYMBOL are preceded in memory by only one word, a pointer to the be­
ginning of the next program. The external definitions and references of the SYMBOL/META-SYMBOL programs (de­
fining their names and required subroutines) are used on Iy by the loader at load-time and are then discarded. (See
Machine Language FORTRAN Subroutines.)

The use of words 1-4 in the heading of FORTRAN programs enables the user to locate programs and variables readily by
name. This process is handled automatically by the FORTRAN Run-Time Debug utility routine (Catalog No.012001). In
addition, the user may obtain a memory map of the layout at run-time by selecting this option in the FORTRAN
loader. (See FORTRAN Loader's Output.)

ARRANGEMENT OF VARIABLES IN COMMON

Variables are stored in COMMON in exactly the order in which they appear in COMMON, starting at the end of
memory and working back. EQUIVALENCE is not allowed to affect the order or spacing of COMMON. Variables
which are equivalenced to variables in COMMON will simply overlay COMMON. Thus, the arrangement of COM­
MON is determined solely by the COMMON statements. Consider the following examples:

DIMENSION B(3) 77777 I
COMMON I, A, B, J 77775 A

77773 B(3)
77771 B(2)
77767 B(1)
77766 J

DIMENSION B(3) 77776 A B(3)
COMMON A, C, D, I 77774 C B(2) Q
EQUIVALENCE (C, Q), (D, B) 77772 D B(1)

77771 I

DIMENSION B(3) * B(3)
COMMON A,C, D 77776 A B(2)
EQUIVALENCE (A, B(2)) 77774 C

77772 D

* Not Allowed - B(3) would not lie within memory.

29

30

6. MACHINE LANGUAGE SUBROUTINES

In interfacing machine language subroutines with FORTRAN calling programs the following conventions apply:

1. The contents of the index register X should be saved upon entry to the subroutine and X should be restored prior
to return.

2. The contents of the A and B registers are not readily predictable upon entry to the routine and need not be pre­
served.

3. The value of a FUNCTION (as opposed to a subroutine) is returned to the cal ling program via the A register
(for integer functions) or the A and B registers (for floating functions). The most significant part of the fraction
is in Ai the least significant part of the fraction and the exponent are in B.

Linkage of Machine Language Subroutines to FORTRAN

The linkage of machine language (M- L) subroutines to FORTRAN programs is simple with the externa I definition and
reference capabi Iities of SYMBOL and META-SYMBOL. If the FORTRAN program has the instruction

CALL SUBRNM (A, B, C, •..)

then the M-Lsubroutine should have, as a first location symbol, the name of the CALLed subroutine, precededbya$.

Example 1:

$SUBRNM PZE

BRR SUBRNM

The FORTRAN loader tags SUBRNM as an unsatisfied subroutine reference, and when the M-L program is loaded,
since $SUBRNM is externalized, linkage is set up. Multiple entry points to the M-L subroutine could be established
by extema lizing the label at each of these points.

Example 2:

$SUBRMN PZE

$ENTRY2 PZE

$ENTRY3 PZE

Thus, a statement such as: CALL ENTRY3 (X, Y, Z, •. 0) is possible in the FORTRAN program.

FORTRAN Run-Time POPs

Each M-L subroutine must be preceded by the identification-by-OPO of any run-time POPs used in the subroutine.
For example, if XSD, FSD, LOP, STO are to be used in the M-L subroutine SUBR, the following must be done:

XSO OPO 010000000
FSO OPD 010100000
LOP OPO 012500000
STO OPO 010700000

$SUBR PZE

XSD

FSO

etc.

END

No POPs from the standard SOS POP library may be called by the M-L subroutine.

Accessing FORTRAN Program Arguments

The M-L subroutine cannot access the FORTRAN variables by name. For example, LDP VSTAR would not pick up the
variable VSTAR from the main program. It is necessary to employ the FORTRAN run-time POPs XSD (Fixed Set-up
Dummy) and FSD (Floating Set-up Dummy) to make the address of the FORTRAN variable available to the M-L pro­
gram.

Each time XSD or FSD is used in the M-L program, the address of a variable in the calling sequence is placed in the
effective address of the POP reference line.

Example:

FORTRAN Program

CALL MLSUBR (A, I, R)

M-L Program

1. XSD
2. FSD

OPD
OPD

3. $MLSUBR PZE

4.
5.
6.
7.
8.

9.

10.

1l.
12.

13. VAR1
14. VAR2
15. VAR3

BRM
FSD
XSD
FSD
BRM

LDA

LDP

LDX
LDP

RES
RES
RES

END

010000000
010100000

201 SYS
VAR1
VAR2
VAR3
202SYS

*VAR2

*VAR1

=5
*VAR3+1

2
2
2

Note that a pair of locations is reserved for each variable address (lines 13-15), whether the variable is fixed or float­
ing. The first location of the pair (e.g., VAR1) contains the address of the variable; the second (e.g., VAR1+ 1) con­
tains the address of the variable with the index tag set.

When line 5 has been executed, VAR1 (line 13) will contain the address of the first variable in the calling sequence
(i. e., A); VAR 1 + 1 wi II contain the address of A with the index tag set. Line 6 wi II set the address and address tagged
of I into VAR2 and VAR2+ 1; line 7 will set the address of R into VAR3 and VAR3+ 1.

31

32

Line 9 will load the A register with variable I. Line 10 will load the A and B registers with variable A. Suppose R
is an array variable (i. e., DIMENSION R (100)), then lines 11 and 12 will result in the loading of A and B registers
with R(6). If we LDX with an N, then the sequence

LDX =N
LDP *VAR3+ 1

wi II load R(N+L), where L is defined in a DIMENSION statement: DIMENSION R(L/U), into A, B, since VAR3+1
contains the address of the beginning location of the array R, with index tag set. Note that LDP takes care of the
doubling of the index register necessary for floating-point variables that occupy two cells each.

Writing POPs for SYMBOL/META-SYMBOL Subroutines Called from FORTRAN Programs

The programmer may supply his own POP to be used in the SYMBOL/META-SYMBOL subroutine. However, the fol­
lowing conventions must be followed to ensure that linkage is established at load time.

Let LXR be a POP defined in a subroutine written by the programmer, with POP transfer location 175. The POP LXR
is to be used in a SYMBOL subprogram called $MLSUB. The SYMBOL subprogram will have the following form:

Example 1:

LXR
$MLSUB

OPD 017500000
PZE

LXR ALPHA

PZE 175SYS

END

Defi nes Opcode
Start of SYMBOL subroutine

POP reference

Establishes external reference to be satisfied at load time

Note that although mnemonic LXR forces Opcode 175 to be used (because of OPD), and transfer to that location
will occur at execution time, the FORTRAN loader cannot interpret the reference LXR. For this reason, the POP
subroutine LXR, instead of being designated $LXR POPD, must be labeled $175SYS in order for the- FORTRAN loader
to load it and set up the linkage through location 175. This explains the need for PZE 175SYS in the SYMBOL sub­
program to generate the requi red external reference.

Example 2:

*DEFiNiTiON OF LXR POP USED iN MLSUB
$175SYS STX

BRR a
END

The FORTRAN loader wi II place a BRU to $175SYS in location 175. LXR wi II be executed as a POP in MLSUB.

The programmer is restricted to use of POP locations 162-177. Therefore, the only labels that may be used in pro­
grammed operator definitions are:

$162SYS
$163SYS

$177SYS

It is suggested that the programmer assigns from 177 down, to leave the 162 upward available for possible expansion
of FORTRAN run-time POPs.

When a FORTRAN program ca lis a subroutine, the addresses of the arguments are placed into the erasable storage
area (all memory not used by programs or data). Since the subroutine must obtain its arguments by using these ad­
dresses, the following run-time locations provide the necessary information.

Octal
Name Location

EADR1 15
EADR2 16
EOADR 71

EOSIZE 72
EOTAG 73
EOIND 74
FL TIND 254

EO L
E 1 L+ 1

E(N-1) L+ N-1

Contents

Location of E(N), which follows the last argument.
Pointer to location in erasable where XSD(FS D) gets next argument address.
EO, the first location of the argument address vector.

Total size of erasable storage.
Same as EOADR plus tag bit.
Same as EOADR plus indirect bit.
Floating indicator, octal 01000000.

Location of first argument - Bit 5 is 1 if floating.
Location of second argument - Bit 5 is 1 if floating.

Location of Nth argument - Bit 5 is 1 if floating.

Argument mode may be determ ined as follows:

LDA*
SKA

LDA
LDX
SKA*

EOADR I Skip if first argument is integer; otherwise
FL TIND argument is floating-point.

(N -1) Skip if Nth argument is integer; otherwise FLTIND I
EOTAG argument is floating-point.

The following methods may be used to access partial or double-word arguments. (Less-significant half, more­
significant half, or the whole double-precision word. In the case of integer arguments, the address of the less­
significant half should be used.)

Arg. 1, Ish
or integer

Arg. 1, msh

Arg. 1, both

Arg. 2, Ish
or integer

Arg. 2, msh

Arg. 2, both

Method 1

LDX EOADR
LDA* 0, 2

LDX EOADR
LDA* 1, 2

LDX EOADR
LDX 1, 2
LDA 1, 2

Method 2 Method 3

LDX* EOADR LDA* EOIND
LDA 0; 2

LDX* EOADR
LDA 1, 2

LDP* EOIND

LDA EOIND
ADD ONE
STA TEMP
LDA* TEMP

LDA EOIND
ADD ONE
STA TEMP
LDP* TEMP

The operations FIX and FLOAT may be done in SYMBOL-written subroutines without calling the library functions,
as follows:

FIXL
BRM*

EQU
FIXL
0266 FLOATL

BRM*

EQU
FLOATL

0267

with the argument and result transferred in the A, B registers.

33

34

APPENDIX A
ADDITIONAL OPERATING PROCEDURES

STANDARD FILL PROCEDURE

This procedure is used for loading a paper tape that will not be read in by another program already in memory.

1. Move compute switch to IDLE.

2. Set register switch to C.

3. Push START.

4. Move compute switch to RUN.

5. Raise FILL switch.

ST ANDARD REST ART PROCEDURE

All programs (compiler, loader, and object program at run-time) may be restarted, as follows:

1. Move compute switch to IDLE.

2. Set register switch to C.

3. Push START.

4. Move compute switch fo STEP and RUN.

CLEARING A HALT

This term refers to the operation of moving the compute switch from RUN to IDLE and back to RUN.

APPENDIX B
COMPATIBILITY

SDS FORTRAN II is, for the most part, completely downward compatible with standard FORTRAN II compilers. That
is, they are mostly a direct subset of SDS FORTRAN II and programs written for them are fully compatible; programs
that use the expanded features of SDS FORTRAN II, however, are not compatible with other compi lers.

SDS FORTRAN II does not, in general, compile programs written in:

FORTRAN IV

1620 FORTRAN I (including the Western Region FORTRAN, and all others except FORTRAN with FORMAT)

COMPACT (unless its few differences from FORTRAN II are not used)

ACT, ALGOL, GE WIZ, JOVIAL, MAD, NELIAC, etc.

Note that operations that are not defined by the FORTRAN language and that rely on the hardware configuration of
a particular computer cannot be expected to produce the same result when compiled on another computer; for exam­
ple, reading in alphanumeric characters and using their internal numeric representation as a number, or doing mod­
ulo arithmetic dependent on the size of the number at which the machine overflows. Such II machine language ll coding
via FORTRAN cannot be retained from anyone machine to any other.

Since many existing FORTRAN II compilers are, for the most part, mutually incompatible, it is impossible to be
compatible with all of them. Accordingly, SDS FORTRAN II was designed to allow maximum compatibility with the
most widely used compilers. For example, either SIN or SINF will call the library sine function; alphanumeric
FORMAT specifications may, but need not, have commas after them.

The remaining differences are few and, in most cases, rarely found. These differences are detailed for the IBM 1620
and 7090.

1620 FORTRAN II

LOGF must be changed to ALOG, ALOGF, ELOG, or ELOGF.

IF statements with floating-point numbers should not, in general, have a unique branch for zero. That is, t1IF (A-B)
4,5,611 may not branch to 5 even though A and B are equal to 11 decimal digits. The problem, which is character­
istic of all binary machines, is that most decimal fractions do not possess terminating binary representations. More­
over, uncertainties in the low-order bits are compounded by round-off and truncation errors. SDS FORTRAN II
provides a library function, called IF, which, as a function of two arguments, checks for equality to within four
bits. When given only one argument, it checks whether the argument is less than 10-10 in magnitude. Thus, the
following changes may be made:

IF (A-B) 4,5,6

IF (A) 4,5,6

becomes

becomes

IF (IF (A, B)) 4,5,6

IF (IF (A)) 4,5,6

An alternate method that does not make use of the IF library function is as follows:

IF (A-B) 4,5,6 becomes IF (ABSF (A-B) -1.0 E-10) 5,5, 10
10 IF (A-B) 4,5,6

Variable Precision - Inter:ers that exceed 8,388,607 are truncated at the high-order end. Floating-point numbers
must be in the range 10- 7 to 1077 . Accuracy greater than 12 decimal digits is not available.

FORMATs specifying more than 80 characters per typewritten line compile correctly but the extra 1-7 characters are
lost when the line is typed.

709/7090 FORTRAN II

The following differences are mostly anomalies within 709/7090 FORTRAN II that have been recognized and re­
moved in SDS FORTRAN II.

Function Names

The function names below on the left must be changed to those on the right to obtain the proper mode of the result:

LOGF
XABSF
XFIXF
XSIGNF
XDIMF
XINTF
INTF
XMODF
MODF

MAXOF}
MAX1F

XMAXOFI
XMAX1F

MINOF}
MIN1F

XMINOF}
XMIN1F

ALOG, ALOGF, ELOG, or ELOGF
lABS or IABSF
IFIX or IFIXF
ISIGN or ISIGNF
IDIM or IDIMF
INT
AINT or AINTF
MOD
AMOD or AMODF

AMAX, AMAXO, or AMAX 1

MAX, MAX 0, or MAX1

AMIN, AMINO, or AMIN 1

MIN, MINO, or MIN 1

Overlap of Variables in COMMON and EQUIVALENCE

Since arrays are stored backward in 7090 FORTRAN II, problems arise if variables that are equivalenced are not of
the same dimension or if an attempt is made to access one variable by calling another with a subscript outside its
range.

Note also that in 7090 FORTRAN II, EQUIVALENCE takes precedence over COMMON, which is not true in SDS
FORTRAN II.

35

36

Handling of Relative Constants

Relative constants are treated as any other variable. Thus, for example, the index of a DO loop, if used as an in­
dex in an I/O statement, will be changed.

B, I, F, or D in Column 1

Boolean and complex statements and function names transferred to subroutines are not included in SDS FORTRAN II.
Double-precision computation is performed automatically.

Sense Switch 5 or 6

The SDS 900 Series Computers have four breakpoint switches.

Unacceptable Statements

IF DIVIDE CHECK
IF ACCUMULATOR OVERFLOW
IF QUOTIENT OVERFLOW

FREQUENCY

Evaluation of Extended Integer Expressions

The expression:

1* J*K/L*M

replaced by:
IF FLOATING
OVERFLOW

for example, is evaluated incorrectly in 7090 FORTRAN II as:

(((M*I)/L)* K}* J

which will, in general, give the wrong result since integer quantities are truncated after each operation. SDS
FORTRAN II evaluates this from left to right as:

(((I*J}*K}/L}*M

Hollerith Constants

e.g., J = 4HABCD is not allowed in the basic compiler.

Dimensioned Variables without Subscripts

e. g., X to mean X(1) or X(1, 1} is not a !lowed.

More than 3 Continuation Cards are not allowed in the basic compiler.

FORMATs Read in at Object Time are not allowed in the basic compiler.

IIAII FORMAT with Integer Variables

The 7090, having a 36-bit word, allows a width of 6 characters. SDS FORTRAN II allows 4 with integers and 8 with
floating-point variables. Extra characters are lost at the left.

Scientific Data Systems A XEROX COMPANY

701 South Aviation Blvd./EI Segundo, California 90245 (213) 772-4511 Cable ' SCIDATA / Telex: 674839 / TWX: 910-325-6908

I
I

	000
	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	xBack

