
SOS ALGOL 60

REFERENCE MANUAL

90 06 99C

November 1966

SCIENTIFIC DATA SYSTEMS/1649 Seventeenth Street/Santa Monica, California/UP 1-0960

01965, 1966, Scientific Data Systems, Inc. Printed in U.S.A.

ii

REVISIONS

This publication, 9006 99C, augments the previous edition of the SDS ALGOL 60 Reference Manual,
9006998. The additional information is "Non-AlGOl Code", Appendix F.

RELATED PUBLICATIONS

Name of Document

SDS 910 Computer Reference Manual
SDS 920 Computer Reference Marwal
SDS 925 Computer Reference Manual
SDS 930 Computer Reference Manual
SDS 9300 Compute-r Reference Manual
SDS MONARCH Reference Manual
900 Series ALGOL 60-4 Operating Procedures
900 Series ALGOL 60-8 Operating Procedures
9300 ALGOL 60-8 Operating Procedures

Publication Number

900008
900009
90 00 99
900064
900050
9005 66
012029
042035
642029

CONTENTS

INTRODUCTION 2.3 Delimiters 13
2.4 Identifiers 14

SECTION I 2 2.5 Numbers 14
2.6 Strings 14

1. PROGRAM FORM 2 2.7 Quantities, Kinds and Scopes 14
2.8 Values and Types 15

1.1 Lexicon Words 2
1.2 Comments 2 3. EXPRESSIONS 15
1.3 Declarations 2
1.4 Statements 2 3.1 Variables 15

3.2 Function Designators 15
2. DECLARATIONS AND REFERENCES 2 3.3 Ari thmetic Expressions 16

3.4 Boolean Expressions 18
2.1 Type, Value, and Definition 2 3.5 Designational Expressions 19
2.2 Constants 3
2.3 Strings 3 4. STATEMENTS 19
2.4 Variables 3
2.5 Arrays 3 4.1 Compound Statements and Blocks 19
2.6 Labels 4 4.2 Assignment Statements 20
2.7 Switches 4 4.3 GO TO Statements 20
2.8 Procedures 4 4.4 Dummy Statements 21

4.5 Conditional Statements 21
3. EXPRESSIONS 5 4.6 FOR Statements 22

4.7 Procedure Statements 23
3.1 Arithmetic Expressions 5 4.8 Format Statements 24
3.2 Boolean Expressions 6
3.3 Designationa I Expressions 6 5. DECLARATIONS 27

4. STATEMENTS 7 5.1 Type Declarations 27
5.2 Array Declarations 28

4.1 Arithmetic Assignment Statements ___ 7 5.3 Swi tch Declarations 29
4.2 Boolean Assignment Statements 7 5.4 Procedure Declarations 29
4.3 GO TO Statements 8 5.5 External Procedure Declarations 31
4.4 Procedure Statements 8
4.5 Format Statements 9
4.6 IF Statements 9
4.7 Condi tional Statements 9 APPENDIXES 4.8 FOR Statements 10
4.9 Compound Statements 10
4.10 Blocks 11 A. DELIMITER CHARACTER SET 32
4.11 Dummy Statements 11

B. RESERVED LEXICON WORDS 33
5. COMPILATIONS 11

C. STANDARD FUNCTIONS AND
6. SAMPLE PROGRAM 12 PROCEDURES 33

SECTION II 13
D. NOTES TO USERS OF THE

ALGOL 60 COMPILERS 34

1. STRUCTURE OF THE LANGUAGE 13
E. NOTES TO USERS OF THE

2. BASIC CONCEPTS; SYMBOLS, IDENTIFIERS,
ALGOL 60-4 EXECUTORS 34

NUMBERS, AND STRINGS 13
F. NON-ALGOL CODE 35

,... 1 Letters and Digits ' '" L.I I.)

2.2 I ,...~:~~I \/~I •• ,...~ 13 II'~ DEX 37 L..V~ I \",oy I Y \",II U c'")

iii

INTRODUCTION

The SDS ALGOL 60 Compi ler is a comprehensive imple­
mentation of ALGOL 60, the international algorithmic
language. The source language of SDS ALGOL is essen­
tially that specified in the "Revised Report on the Algo­
rithmic Language ALGOL 60", Communications of the
ACM, Volume 6, No.1, January 1963.

SDS ALGOL 60 includes facilities for the following ex­
cepti ons to the revised report:

FORTRAN-like Input/Output. FORTRAN input/
output logic has been adopted and implemented,
maintaining the FORMAT declaration of FORTRAN.

Separate Compi lation of Procedures. Procedures
can be compi led separately, thereby reducing con­
cern for adequate core requirements in program
compi lations.

Initialization of OWN Variables and Arrays. The
ALGOL 60 revised report does not explicitly pro­
vide for defining OWN variables or arrays upon
initial entry into the block in which they reside.
Distinguishing between initial entry and subsequent
reentries to the block in which the OWN declara­
tion resides is required. The SDS ALGOL OWN
initialization feature permits variables and arrays
to be defined with initial values, removing the need
to distinguish between initial entry and reentry.

This document is not a primer on ALGOL 60; it is in­
tended for programmers having previous experience with
algebraic compilers. However, Section I of this manual
contains a brief, general introduction to the ALGOL
language and should be studied by those unfamiliarwith
ALGOL. Section II consists of a precise, technical des­
cription of the compi ler language; it is directed to ex­
perienced ALGOL programmers.

Two SDS ALGOL 60 systems are avai lable - a basic sys­
tem and an expanded system. The basic system requires
one pass that generates code in identical format to that
of the expanded system; the expanded system uses mag­
netic tape for intermediate storage and requires two
passes. During the first pass, the source program is en­
coded into concise intermediate language. As a result,
processing time is considerably reduced for the second
pass, which is essentially I/O limited.

The basic computer configuration required for ALGOL
60 is an SDS 900 Series Computer with 4K memory (see
appendixes of this manual and the 900 Series ALGOL
60-4 Operating Procedures, Catalog No. 012029). The

expanded system is either an SDS 900 Series or a 9300
Computer with 8K memory and two magnetic tape units
(see either 900 Series ALGOL 60-8 Operating Procedures,
Catalog No. 042035, or 9300 ALGOL 60-8 Operating
Procedures, Catalog No. 642029).

This manual describes the ALGOL 60-4 and ALGOL 60-8
compiler languages for both systems. The systems include
a compiler, loader/executor, and a library consisting of
common input/output and mathematical function subrou­
tines. The systems are compatible; most programs may be
compi led by either compi ler and executed by either exe­
cutor on the 900 Series and 9300 Computers, except for
programs using features avai lable only in the expanded
system. The information in the body of this manual ap­
plies to the ALGOL 60-8 compiler and executor. The
different characteristics of the basic ALGOL 60-4 com­
pi ler and executor are described in the appendixes. In­
terface is provided for programs written and assembled
with SYMBOL and META-SYMBOL.

The form of Section II is parallel to that of the previously
mentioned ACM revised report. A simple meta-language
parallel to the Backus notation in that report is used here
to describe the syntax. In th is meta-language, upper­
case letters, numbers, and most special characters denote
themselves. Strings of lower-case letters (possibly sepa­
rated by hyphens) represent meta-linguistic variables.
The first equal sign divides the meta-linguistic variable
being described from its description. A vertical line is
used to separate entities.

For example:

parameter-delimiter = , I) letter-string:(

may be read, "a parameter delimiter is either a comma
or else a right parenthesis followed by a letter string fol­
lowed by a colon and a left parenthesis. II

Examples are given exactly as they would be typed for
input to one of the compi lers, except that the space char­
acter, ordinari Iy insignificant in both ALGOL and the
meta-language, is represented by U .
In case of discrepancies or contradictory statements be­
tween Sections I and II of this manual, the reader should
accept the descriptions in Section II as valid. Restric­
tions that affect the writing of ALGOL statements appear
in the text. Restrictions concerning table sizes, etc. I

which affect programs as a whole, appear in the applic­
able operating procedures.

SECTION I
1. PROGRAM FORM

An ALGOL program consists of a string of letters, num­
bers, blanks, and special characters arranged in valid
comments, declarations, and statements on the input
medium. Blanks are generally ignored by the compiler
as are carriage return characters, transitions from one
card to another, etc. Thus one line of coding may con­
tain many ALGOL statements, or, conversely, one state­
ment may be spread over several lines. This makes it
possible to group the characters in easily readable form.

1.1 Lexicon Words
Certain words, like DO and GO TO, have special mean­
ings to the compiler when surrounded by single quota­
tion marks: IDOl, IGO TOI. These are called lexicon
words when within quotation marks; they may be used
freely outside quotes without ambiguity.

1.2 Comments

Comments do not change the meaning of the program;
they are for the benefit of the human reader only.

Comments may appear in two contexts:

The lexicon word ICOMMENTI, followed by any
string of characters ending with a semicolon, mayap­
pear anywhere in a program except within lexicon
words, identifiers, or compound special characters.

The lexicon word IENDI, when it appears, may be fol­
lowed by any string of characters other than apostro­
phes ending with a semicolon, another IENDI or the
lexicon word IE LSE I.

ICOMMENT I BESSELFUNCTION.J.SMITH.10-12-64;

IENDI BESSEL FUNCTION

1.3 Declarations

Declarations inform the compiler of the characteristics
of the data needed by the program. Some dec larations
produce code; others produce data words; others produce
no output.

Dec larations are fu lIy described under the head ing
"Declarations and References".

1.4 Statements

Statements describe the computations which the program
is to perform on the data. Most statements produce
computer instructions.

There are several kinds of statements: basic statements;
compound statements, containing one or more basic
statements; and blocks, which contain statements and
dec larations of the data to which they refer.

2

The execution of an ALGOL program consists in execut­
ing its statements in order of appearance, except where
ordering is changed by the statements themselves.

Statements are classified functionally and are more fully
described in paragraph 4.

2. DECLARATIONS AND REFERENCES

Statements may refer to the following kinds of entities:

constants
stri ngs
variables
arrays
labels
switches
procedures

(constant values)
(groups of a Iphanumeric characters)
(variable values)
{ordered sets of variable values}
(names of single statements)
{ordered sets of labels}
(names of groups of statements)

Except for numbers and strings, each entity is identified
by an identifier, consisting of a letter followed optional­
ly by letters or numbers:

A
B 12A
POINT TWO

Blanks may appear within identifiers, as elsewhere, with­
out affecting the meaning.

POINT TWO = POINTTWO = POI NT TW 0

However, to refer to the same entity, the same charac­
ters must be written in the same order.

END -I EON -I DEN -I END1 etc.

The same identifier may refer to different entities, even
different kinds of entities, at different places in the pro­
gram, at the discretion of the program~er. See "Blo~ks,"
paragraph 4.10.

2.1 Type, Value, and Definition

There are three types of data in ALGOL: BOOLEAN,
INTEGER, and REAL. At any time in the running of a
program, every variable and each element of every ar­
ray contains a value of one of these types or is undefined.

The value of an entity may change during the running of
a program, but its type cannot change.

The value of a variable may be defined by any of the
following means:

1. Input, reading a value from cards, etc.
2. OWN initialization.
3. Assignment statements.
4. FOR statements.

Until a variable is defined by one of these means, it is
undefined and computations involving it give unpredict­
able resu Its.

2.2 Constants

Constants of all three types are written explicitly within
statements and dec larations. Since their types can be
determined by inspection, they do not need declarations.

Boolean constants consist of the lexicon words 'TRUE I
and 'FALSE I. Boolean calculations may produce only
these two va lues.

Integer constants consist of whole numbers less than
32768:

3
32767
o

Integer ca Icu lations, however, may produce numbers up
to 2,097,151 without exceeding the range of the ALGOL
system.

Real constants consist of numbers of the following form
(where X and Y represent whole numbers and Z repre­
sents an optionally signed whole number):

Form Example Value

X.Y 1.5 1.5

X.Y6Z 0.63748561 6.37485

.Y .17 0.17

.Y6Z .56-5 0.000005

X 6Z 46+9 4000000000.0

6Z 62 100.0

From these examples it is clear that the value of a real
constant is X. Y times 10Z. When X, Y or Z is absent,
zero is assumed; when both X and Yare absent, 1.0 is
assumed. X and Yare less than 8,388,608; Z is less
than 256 in absolute value.

Real calculations, however, may produce numbers up to
10160 without exceeding the range of the ALGOL sys­
tem. Real calculations do not always yield exact results
and it is advisable not to rely on them. However, ap­
proximately 12 decimal digits of accuracy are retained.

2.3 Strings

Strings are a Iphanumeric constants and, I ike other con­
stants, are dec lared by being used.

iiTHIS IS A STRING"

Strings are begun by two single quotation marks and ended
by the next pair of single quotation marks. They may con­
tain any character except the end-of-program character *
Blanks are significant in strings, and only in strings.

Strings may be used only in format statements and as ar­
guments of procedures, both described further on.

2.4 Variables

Variables are declared by means of the following
dec larations:

'INTEGER ' I
'REAL' Al, A2, END
'BOOLEAN I SWITCH, MARRIED

That is, the type is given by a lexicon word; and one or
more variables, separated by commas, may be declared
in a single declaration.

All variables must be dec lared except procedure arguments
(paragraphs 2.8 and 4.4).

'OWN' variables are declared as follows:

'OWN' 'INTEGER ' I
'OWN' 'REAL' A 1, A2, ~ND
'OWN' 'BOOLEAN' SWITCH, MARRIED

The unique properties of OWN variables are discussed
in paragraph 4.10.1.

OWN variables may be preset to specific values as follows:

'OWN' 'INTEGER ' I := 13
'OWN' 'REAL' A 1 := 0.9, A2, END := -76-3
'OWN' 'BOOLEAN' SWITCH, MARRIED := 'TRUE'

A2 and SWITCH, which are not explicitly initialized,
are preset to .0 and 'FALSE', respectively.

Note that the constant val ue must be of the same type
as the variable to which it corresponds.

Variables are referenced by writing their identifiers.
The value of a variable reference is the last value as­
signed it by the running program.

2.5 Arrays
Arrays are declared by means of the following declara­
tions:

'INTEGER' 'ARRAY ' BIG (0: 999)
IRE A L I I A R RA Y' SMA L L (- 1 : 1, - 1 : 1)
'BOO LEAN I 'ARRA yl B, C (0: 48), D (0: 72)

The numbers in parentheses are called bound pairs; they
spec ify the number of dimensions of the array and the
minimum and maximum subscripts for each dimension po­
sition. Each bound may be any arithmetic expression
(paragraph 3.1). That is, BIG is used to refer to 1000

3

integer variables which may be referred to individually
as BIG (0), BIG (1), etc.

The numbers in parentheses are subscripts. Subscripts,
too, may be any arithmetic expression. Real subscripts
are rounded to the nearest integer value before use.
SMALL contains 9 real variables; they are referred to as
SMALL (n 1, n2), where n 1 and n2 stand for arithmetic
expressions whose values are between -1 and 1 inclusive.

Arrays are referenced by writing the array identifier.
References to full arrays may appear only as arguments
to procedures. In all other situations a single element
is referenced, and the number of subscripts written must
be the same as the number of bound pairs declared.

The word 'REAL' is optional when declaring a real array.
A I ist of arrays may be given in a single dec laration, as
shown in the third example. This example declares B
and C to run from 0 through 48, and D to run from 0
through 72. Own arrays are declared by prefixing the
declarations like those above with the word 'OWN'.

'OWN"ARRAY' A(0:1,2:4):=", .5".4

declares A an OWN real array and presets it as follows:

A(0,2) 0.0
A(1,2) 0.0
A(0,3) 0.0
A(1,3) .5
A(0,4) .5
A(1,4) .4

Note that elements are initialized in a particular order
(with the leading subscripts rising fastest), and that un­
specified elements are set to the previous value.

2.6 Labels

Labels may be used to name statements. A label is de­
clared by writing its name followed by a colon in front
of the statement it names. A statement may have more
than one label.

L: (statement)
LABEL 1 : XYZ: HERE: (statement)

Labels are referenced by writing their names.

2.7 Switches

Switches are declared by means of switch declarations:

'SWITCH I PICK 1 := L 1, L2, L3

Here the name of the switch (PICK 1) is associated with
one or more labels (L 1, L2, and L3) separated by com­
mas. PICK1 may now be referenced by writing

PICKl (l),PICKl (2), etc.,

4

where the subscript is any arithmetic expression whose
value is between 1 and the numberof labels in the dec­
laration, inc lusive. In th is way PICK 1 (1) is assoc iated
with L1, PICK 1 (2) with L2, etc.; and a reference to
PICK1 (1) is said to have the value Ll. Actually the
positions of a switch may themse Ives be switch references
or any other designationa I expression (paragraph 3.3).

2.8 Procedures

Procedure declarations in ALGOL are very much like
subroutines in machine language code, and they exist
for the same reasons:

1. To localize the code which performs a certain
calculation.

2. To state only one time the code which is to be
executed more than once.

3. To permit clear, explicit substitution of vari­
able arguments in an invariable calculation.

Like a subroutine, a procedure is written outside the
main body of the code by which it is called, in this case
in a declaration.

Like a subroutine, it is entered and executed whenever
the running program encounters a call to it; and it nor­
mally, but not always, returns to the running program
just after the point of call.

The more compl icated forms of procedure dec larations
and references are discussed under "Procedure State­
ments ", paragraph 4.4.

Here is a simple example.

Declaration: 'REAL' 'PROCEDURE' ARCTAN (X, V);
statement

References: ARCTAN (Q, ROOT) ... ARCTAN (Pi,2.0)

The declaration contains:

a type word ('INTEGER ' , 'REAL ', or 'BOOLEAN')

the word 'PROCEDURE'

the name of the procedure (ARCTAN)

a I ist of forma I parameters in parentheses (X and Y)

a semicolon

a statement

The type word 'REAL' indicates that this procedure cal-
c u la tes a va I ue of type rea I and retu rns the va I ue to the
point of the call upon it. The word 'PROCEDURE ' speci­
fies the kind of entity being declared and tells the com­
piler that the identifier which follows will be used to
calion the procedure.

Because the actual parameters supplied to the procedure
usually vary from one call to the next, a list of formal
parameters is supplied. Then, in the "statement" part of
the procedure, where the formal parameter is referenced,
the corresponding actual parameter of the current call is
substituted. That is, when ARCTAN (Q, ROOT) is exe­
cuted, all references to X actually refer to Q; when
ARCTAN (PI, 2.0) is executed, they refer to PI. Y re­
fers to ROOT during the first call and to 2.0 during the
second. The actual parameters can be quite compli­
cated, but the formal parameters are simply identifiers.

Procedures which do not require actual parameters do
not dec lare formal parameters:

'INTEGER ' 'PROCEDURE' GET NEXT PRIME;
statement

Some procedures in the ALGOL library may be refer­
enced without the programmer's dec laring them. That is,
their declarations are built into the compiler.

Other procedure dec larations may be compiled sep­
arately from the sections of the program which reference
them. In this case, the referencing programs must con­
tain 'EXTERNAL ' declarations:

'REAL' 'EXTERNAL ' ARCTAN
'INTEGER ' 'EXTERNAL ' GET NEXT PRIME

Here only the type, the word 'EXTERNAL ', and the pro­
cedure identifier are written.

References to procedures declared internally and those
declared externally are identical in form.

Procedures for which a type is given are ca lied functions
and the references to them are called function designa­
tors. The va lue of a function designator is computed by
the procedure based on the current values of the varia­
bles in the program.

3. EXPRESSIONS

An expression is a rule for computing a single value.
ALGOL permits three kinds of expressions:

Symbol Kind of Expression Value

A arithmetic a rea I or integer
number

B Boolean true or false

C designational a label

The contexts in which expressions A, Band C may ap­
pear will be described further under "Statements", para­
graph 4. For the moment, let us concern ourse Ives with

the way in which the entities already described combine
with each other, and with expressions to form expressions.

3.1 Arithmetic Expressions

An arithmetic expression is a rule for computing a value
of type 'INTEGER ' or of type 'REAL'. Wherever the
word "arithmetic II appears, the phrase "INTEGER or
REAL" may be substituted.

Boolean entities and entities without type may appear in
arithmetic expressions, but not as elements of them. This
distinction may become c lear as we consider the permis­
sible elements of arithmetic expressions.

3.1. 1 Arithmetic Elements

1. Arithmetic constants.

2. Arithmetic variable references.

3. Arithmetic array references.

4. Arithmetic function designators.

5. ('IF ' B 'THEN' A1 'ELSE ' A2)
Note: The parentheses are unnecessary if this

element stands a lone.

6. (A), that is, an arithmetic expression in paren­
theses.

The values of the first four elements have already been
discussed.

The value of 'IF' B 'THEN' A 1 'ELSE ' A2 is the value of
A 1 if B is true, the value of A2 if B is false.

The value of (A) is the value of A. The parentheses are
used to specify grouping to the user and to the compiler.

Any of the above elements, standing alone, constitutes
an arithmetic expression.

Expression

2

X

Y(3, Z)

MOD(Y(3, Z), Y)

'IF' 'TRUE' 'THEN' 10
'ELSE I -10

((99))

Value

2

last value assigned X

last value assigned the cor­
responding array element

resulting value

10

99

3.1.2 Arithmetic Operators

The elements may be combined by the following arith­
metic operators:

5

Operator Meaning Type of Result

+ addition note
subtraction note

* multiplication note

I division note 2

\ integer division note 3
**. exponentiation note 4

Note 1: integer if both elements are integers,
otherwise real.

Note 2: rea I.

Note 3: integer (both elements are of type integer).

Note 4: Depends on current values of operands
(see Section II, paragraph 3.3.4.3).

An expression may be preceded by a plus or a minus sign,
in which case a leading zero of the appropriate type is
implied.

Examples Values

2+3 5
-2+3 1
4.2-3 1.2
18*.0005 .0090
7/3 2.333 ...
7\3 2
8\3 3
9.0\3 i "egal
2**3 8
0**0 undefined
2**-3 0.125
-3.14159**0 undefined
16**2~0 256.0
0**.1 0.0
0** -.1 undefined

Where more than one arithmetic operator appears. in an
expression, exponentiation takes precedence over the
multiplicative operators (*, I, and\), and multiplica­
tive operators take precedence over additive operators
(+ and -). When two operators of the same precedence
are adjacent, they are computed from left to right.

Expressions within parentheses have the highest preced­
ence, and parentheses may be used to specify any de­
sired grouping when grouping is important.

Examples

A+B*C
-A**B/C
A\B/C**D

Grouping

A+ (B*C)
O-((A**B)/C)
((A\B)/C)**D

These rules permit the reader to construct and compre­
hend arithmetic expressions as complicated as those in
Section II, paragraph 3.3.2.

6

3.2 Boolean Expressions

3.2.1 Boolean Elements

1. Boolean constants-.

2. Boolean variable references.

3. Boolean array references.

4. Boolean function designators.

5. ('IF' B1 'THEN' B2 'ELSE' B3).
Note: The parentheses are unnecess<;lry if this

element stands alone.

6. (B).

7. Relation.

A relation is one of the following:

A1 =A2
A 1 ><A2, A 1 <> A2
A1 <A2
A1 >A2
A 1 <=A2, A 1 =<A2
A 1 >=A2, A 1 =>A2

equal
not equal
less than
greater than
not greater than
not less than

That is, it is a comparison between two arithmetic ex­
pressions, yielding the result 'TRUE I if the comparison
is satisfied, and 'FALSE' if it is not.

3.2.2 Boolean Operators

The Boolean operators are listed below in order of pre­
cedence.

Operator Meaning Type of Result

'NOT' negation Boolean
'AND' logical intersection Boolean
'OR ' logical union Boolean
» implication Boolean

equ i va I ence Boolean
Relations as described Boolean

Definitions of the operators appear in Section II, para­
graph 3.4.5.

Examples

'NOT ' A 'AND' B
A 'OR' B 'AND' C
A»B==C»D

Grouping

(,NOT' A) 'AND' B
A 'OR ' (B 'AND' C)
(A »B) ==(C »D)

3.3 Designational Expressions

A designational expression is a rule for selecting (not
computing) a label.

The following elements may be combined by designa­
tiona I expressions:

1. Labels.

2. Switch references.

3. (, IF' B 'T HEN' C 1 ' E LS E' C 2)
Note: the parentheses are unnecessary if th is

element stands alone.

Any of these elements by itself consitutes a designa­
tiona I expression.

Examples

P9

CHOOSE (N -1)

'IF' 3>2 'THEN' Ll
'ELSE' L2

4. STATEMENTS

Value

P9

n -1 st position of
switch CHOOSE

Ll

Using the symbols A, B, and C as already defined, D to
represent a dec laration, and S as a statement (not yet
fully defined), the following statements are available
in ALGOL:

Kind of Statement Form

1. Arithmetic assignment
statement arithmetic list: =A

2. Boolean assignment
statement Boolean list: =B

3. GO TO statement 'GO TO' C

4. Procedure statement procedure-name actua 1-
parameter-I ist

5. Format statement 'FORMA T' string

6. Dummy statement (empty)

7. IF statement 'IF' B 'THEN'S

8. Conditional statement 'IF' B 'THEN'S 'ELSE'S

9. FOR statement 'FOR' arithmetic-
variable:=for-list 'DO'S

10. Compound statement 'BEGIN' S;S .•. ;S 'END'

11. Block 'BEGIN' D;D; ••• ;D;
S;S; ... ;S 'END'

Statements will now be more fully described individually.
However, this list should give an idea of the general
structure and facilities of ALGOL.

4.1 Arithmetic Assignment Statements

form: arithmetic list := A

Probably the most useful statement in ALGOL is the
arithmetic assignment statement, which calls for the
evaluation of an arithmetic expression and the subse­
quent assignment of the resulting value to one or more
arithmetic variables or array elements. The operator
:=, which resembles an arrow pointing left is sometimes
called the replacement operator. It separates each var­
iable to be assigned from the rest of the statement.

The entities to be assigned must all be of the same type.
If they are of type integer and the expression is real,
the expression is rounded to the nearest integer before
being stored.

Example

I := 2

I := 2.4

V(3,4) := J := 0

A :=B:= 'IF' Q<O 'THEN'
X**2 'ELSE' A+l

Meaning

assign 2 to I

if I is real, assign 2.4 to
I; if I is integer, assign
2 to I

assign 0 to V(3,4) and
to J

if Q <0, assign X2 to A
and B; if not, assign A + 1
to A and B

It is obvious from the last example that an assignment
statement is an algorithm, not an equation. That is,
A = A + 1 is always false, but A := A + 1 is valid as the
statement increments A.

4.2 Boolean Assignment Statements

form: Boolean list := B

This statement is identical in form to the arithmetic as­
signment statement, except that the entities assigned
and the expression evaluated are of type Boolean.

Example Meaning

A := B := 'TRUE' assign 'TRUE' to A and B

CHANGE := 'NOT' CHANGE reverse the value of
CHANGE

TWO(I* J) := X = 4 if X = 4, assign 'TRUE'
to TWO(I*J); if not, as­
sign =FALSE= to TWO(i* j)

7

4.3 GO TO Statements

form: IGO TO' C

The GO TO statement is analogous to a branch in ma­
chine language code. It interrupts the order of execu­
tion of the statements. The designational expression C
is evaluated, yielding a label as-a value, and program
execution continues with the statement following that
label.

Examples

IGO TO ' ((L))

'SWITCH ' S := AB, BC

'SWITCH' T:= CD,S ('IF'
W <0 'THEN' 1 'ELSE' 2)

IGO TO ' T (N)

Meaning

continue at statement
following L

continue at CD if N =.1;
continue at- AB if Nil,
W<O; continue at BC if
Nil, W?O; continue
with next statement if
N < lor N >2

Note: When the designational expression following
IGO TO' is a switch reference whose subscript
is out of range of the correspond ing switch, no
jump takes place.

4.4 Procedure Statements

form: procedure-name actua I-parameter-I i st

We began the discussion of procedure dec larations and
references under the heading "Dec larations and Refer­
ences. 11 There we mentioned function designators only.
Function designators are eiements of arithmetic and of
Boolean expressions of the form

procedure-name actua I-parameter-I ist

Each function designator has a value, like any other
arithmetic or Boolean expression, the type of the value
being part of the declaration. The value is obtained by
executing an assignment statement within the procedure
with the procedure name on the left of the replacement
operator.

IREAL' 'PROCEDURE' RANDOM; ••• RANDOM:=**2 •..

Procedure statements have the same form as function des­
ignators, but they do not take part in expressions nor
have associated values. For example:

MATRIX MU LTIPLY (A, B, C)

8

Here the procedure has access to arrays A, B, and C
and it may alter them or any other variable to which it
has access, but no value is returned by the procedure
statement.

Neither does the corresponding declaration state a type.

'PROCEDURE' MATRIX MULTIPLY (X, Y, Z); •.•

If a procedure declaration has a type, it is referenced
only by function designators; if not, only by procedure
statements.

Unless otherwise stated, the rest of the discussion per­
tains to declarations/references of either kind.

4.4.1 Calls by Name and Calls by Value

The number of actual parameters in each reference to a
procedure must equal the number of formal parameters in
a declaration and must be in the same order. During
execution of the_procedure, the current actua I param­
eters are substituted for the corresponding formal param­
eters. Two distinct types of substitution are permitted
in ALGOL: substitution of the current value of the par­
ameter and substitution of the name of the parameter.
The difference may be clarified by a simple example.

Given the declaration

'PROCEDURE' P(X, V); •.• Y := 3

we may expect the execution of the statement

P(Z, W)

to set W to 3. It does, if Y is called by name. If Y is
called by value, however, the effect is to declare a
variable Y inside the procedure, and it is that variable
which changes.

Parameters which are to be called by value are indicated
by listing them after the word 'VALUE' at the beginning
of the procedure dec laration.

'PROCEDURE' P(X, V); 'VALUE I Y, X; ... Y := 3

In most cases it does not matter whether the call is by
name or by value. Generally, it is only necessary to
call by value when one wants to avoid changing the
value of the actual parameter.

4.4.2 Specification of Formal Parameters

Since ALGOL permits actual parameters to be any kind
of entity in the language, it is clear that there must be
some correspondence in kind between actual parameters
and formal parameters. It would not make sense, for
example, tosupplyaconstant as an actual parameter and

to refer to the correspondi ng forma I parameter as though
it were a switch. For this reason, the kinds (and some­
times types) of the formal parameters are specified at
the beginning of the procedure. One specification ap­
pears for each parameter, with the possible exceptions
of arithmetic expressions and strings.

Spec ifications appear between the 'VALUE I part of the
procedure declaration (if any) and the statement which
constitutes the procedure body, and are followed by
semicolons.

'PROCEDURE' P(X,Y); 'VALUE' Y, X; 'REAL' X,Y; •.•

The following spec ifications are sufficient in spec ifying
parameters called by name:

Specification

'REAL' or 'INTEGER '

'BOOLEAN'

'STRING'

'ARRAY '

Kind of Actual Parameter

arithmetic expression
(spec ification optional)

Boolean expression

string (spec ification
optional)

arithmetic array name

'LABEL' designational expression

'SWITCH I switch name

'INTEGER ' 'PROCEDURE ' arithmetic procedure name*

'REAL' 'PROCEDURE I arithmetic procedure name*

'BOOLEAN' 'PROCEDURE' Boolean procedure name

'PROCEDURE' untyped procedure name

Programs may assign values to formal parameters only
when the corresponding actual parameters are variables
or array elements.

The following specifications apply to parameters called
by value:

Specification

'INTEGER '
'REAL'
'BOOLEAN'
'INTEGER ' 'ARRAY '
'REAL' 'ARRAY '
'ARRAY'**
'BOOLEAN' 'ARRAY'

Kind of Actual Parameter

arithmetic expression
arithmetic expression
Boolean expression
arithmetic array
arithmetic array
arithmetic array
Bool ean array

*The type of the actual parameter determines the type
of arithmetic performed.

** 'ARRAY ' implies 'REAL' 'ARRAY'.

If the actua I and forma I parameters are arithmetic but
of different types, the type of the forma I parameter de­
termines the type of arithmetic performed within the
procedure.

4.5 Format Statements

form: 'FORMA T' string

Executing a format statement does not affect the program.
The format statement is intended for reference by a call
on the INPUT or the OUTPUT procedure. Formats and
their effects are discussed fully in Section II, paragraph
4.8.1.

4.6 I F Statements

form: 'IF' B 'THEN' S

The Boolean expression B is eva luated; if it is true, the
statement S is executed, otherwise it is not.

To avoid ambiguity, the statement S may not itself be­
gine with the word 'IF I.

Examples:

'IF' DELTA<EPSILON 'THEN' 'GOTO ' END
'IF' B 1 'AND' B2 'THEN' B3 := 'FALSE I

4.7 Conditional Statements

form: 'IF' B 'THEN' S 1 'ELSE' S2

The Boolean expression B is eva luated; if it is true,
statement S 1 is executed; otherwise, statement S2 is
executed.

In either case, the statement following the entire con­
ditional statement is executed next, unless of course S 1
or S2 changes the flow.

To avoid ambiguities, S 1 may not itself begin with the
word 'IF'.

Examples:

'IF' A 'OR ' B 'THEN' X!= 1 'ELSE' X := 2

'IF' 12>Q 'THEN' IGO TO' TOP 'ELSE' 'IF' 13<Q
'THEN' SORT

It is interesting to note that the first example above is
equivalent to the arithmetic assignment statement X:='IF'
A lOR I B 'THEN I 1 IE LSE I 2. Either statement may be
chosen arbitrarily to perform this function.

9

4.8 FOR Statements

form: 'FOR ' arithmetic-variable:=for-list 10015

The FOR statement ca lis for the repeated execution of
the statement 5 which it enc loses. The number of repe­
titions may actually be zero, one, or more and may de­
pend on the computations done in 5 or in the FOR list.

The arithmetic variable may be referenced inside 5; its
value may change depending on the nature of the FOR
list and of the computations inside S.

The FOR list consists of elements of any of the follow­
ing three kinds, separated by commas. The FOR list
gives a rule for assigning va lues to the arithmetic vari­
able.

Kind of Element Example

A

A 'STEP ' A
'UNTIL ' A

A 'WHILE' B

0.001

10'STEP'-1
'UNTIL'O

X+1IWHILE'
X>O

Va lues Assigned the
Arithmetic Variable

0.001

10,9,8, ... ,0

depends on the loop

The elements may be combined in any order. In prac­
tice combinations of like elements are most common.

0,1,1,2,3,5
o 1ST E pl. 00 1 I U N TI L I 1, 1 1ST E pl. 0 1 I U N TI L I 1 0

When the element is an arithmetic expression, the ex­
pression is evaluated and its value assigned to the arith­
metic variable; then the statement which constitutes the
body of the FOR statement is executed exactly once.
The next FOR-list element is then processed. If there.
are no more, the statement following the FOR statement
is executed. (Of course, the body of the FOR state­
ment may contain an exitwhich interrupts this sequence.)

When the element is a step-until element,thefirstarith­
metic expression in it is evaluated and its value assigned
to the arithmetic..,.variable. At this point a test is made
to determine whether or not the body of the FOR should
be executed even once. If it is executed, the value of
the arithmetic variable is then increased by the value
of the second expression. Testing, execution, incre­
menting, and testing continue until the test fails or the
statement changes the sequence of control.

Denoting the three expressions by A 1, A2, and A3, the
test is this:

10

if A2 is positive, stop when the variable exceeds
A3

if A2 is negative, stop when the variable is less
than A3

In most cases, the value of the variable increases or de­
creases by A2 each time through the body, and the proc­
ess stops when it has passed through A3.

Because A2 and A3 are recomputed at each execution of
the loop, and the loop may alter either expression, strik­
ingly complicated FOR statements can be constructed.

When the element is a 'WHILE' element, the value of the
arithmetic expression is assigned to the variable, but the
body is only executed if the value of the Boolean expres­
sion is 'TRUE I. Ordinari Iy, the body of the loop is re­
peated unti I it sets the Boolean expression to I FALSE I.

4.9 Compound Statements

form: 'BEGIN' 5; ... ;5 'END'

Compound statements consist of severa I statements sepa­
rated by semicolons and surrounded by the words 'BEGIN I
and lEND I. Compound statements are very useful in
situations where several simpler statements are to be
executed conditionally. Theygreatlyincrease the power
of the IF, conditional, and FOR statements.

Examples:

'IF' LATE 'THEN' 'BEGIN ' HOUR := 12 ;
IGO Tal BED 'END'

'IF' B >0 'THEN' 'BEGIN ' 'IF' V>C 'THEN'
IGO Tal END 'END'

'FOR I I := 3,4,5 1001 'BEGIN I A(I) := B(I) ;
B(I) := C(I) 'END'

Because a compound statement may appear anywhere a
statement may appear, they may be nested.

'BEGIN' 'BEGIN' ... 'END';'BEGIN' ... 'END' 'END'

'BEGIN ' 'BEGIN' ... lEND I lEND I

(In the second example, one of the begin-end pairs is
redundant, but not illegal.)

It is worth noting here that no semicolon is needed be­
fore the word 'END', wherever it appears. In general,
a semicolon is needed after an lEND I, however, and
the omission of this semicolon is a common error in
ALGOL programming.

4.10 Blocks

form: 'BEGIN' 0; •.. ;D;S; ..• ;S 'END'

Blocks differ from compound statements in that they
include one or more declarations, bydefinition. Blocks
are a Iso statements and may appear wherever statements
may appear, e.g., in a procedure declaration, which is
in a block, which is in a procedure declaration, etc.

The primary purpose of the block is to declare entities
which may be used only within that block.

.•• 'BEGIN ' 'REAL' X; ••• 'END';'BEGIN' 'INTEGER'
X; ..• 'END'

This example shows parallel blocks declaring the same
identifier differently. The two X IS are totally unre­
lated; allowing the re-use of identifiers without inter­
ference is one of the advantages of the block structure.

... 'BEGIN' 'REA~ X,Y; ..• 'BEGIN' 'INTEGER '
X, Z; ... 'END' 'END' •••

This example shows an inner block redeclaring an identi­
fier declared in an outer block; within the inner block,
all references to X refer to the "inner" X; the "outer "
X cannot be used. Within the outer block, including
that part of the outer block which physically follows
the inner block, it is the other way around: only the
"outer" X can be used.

Y can be used in either block; Z, only in the inner
block. In a sense, entities come into existence on
entry into the block which declares them and cease to
exist when an exit from the block occurs.

Because labels and procedures, too, have existence
only in the blocks in which they are declared, it is im­
possible to enter a block except by way of its 'BEGIN I.
It is possible to exit by fa II ing through the end or by
going to a label in an outer block.

4. 1 O. 1 OWN variables

'OWN' declarations (described earlier) are introduced
to permit variables to retain their values, if not their
existence, after the declaring block is exited. They
permit the programmer to make the action taken in a
block depend on the number of times it has been entered,
for example.

'BEGIN ' 'OWN' 'INTEGER ' N; ••• 'IF' N>5
'THEN' •.. ;'END'

4.11 Dummy Statements

form: (empty)

Executing a dummy statement does not affect the pro­
gram. Dummy statements are most useful in permitting
the exits of procedures: compound statements, and
blocks to be labeled.

• •• FINISH: 'END' •••.

Dummy statements must be labeled.

5. COMPILATIONS

An ALGOL program is defined to be either a block or a
compound statement. However, the ALGOL compilers
wi II compi Ie a block, a compound statement, or a pro­
cedure dec laration as one un it. The executors wi II run
one non-procedure and zero or more procedures as a
single unit. The several programs are related as though
they were part of a (nonexistent) larger block.

('BEGIN I)
'PROCEDURE' NUMBER 1; ••. ;$
'PROCEDURE' NUMBER 2; ... ;$

'BEGIN ' .•. lEND I $
('ENOl)

-- the single non-procedure

Note that the character * ends every compi lation (its
only use).

Each of the above compi lations wh ich references one of
the procedures must contain appropriate 'EXTERNAL'
dec larations (paragraph 2.8).

5.1 Implicit Declarations of Standard Functions

Standard functions which are implicitly declared may be
thought of as being declared in the (nonexistent) outer
block of the program structure. They are available to
all compilations but may have their identifiers redeclared
for loca I use by any.

11

6. SAMPLE PROGRAM

Program

'COMMENT' PRIME FACTORIZATION.
INPUT = 7 DIGITS, OUTPUT = FACTORS (ASCENDING ORDER);
'BOOLEAN' 'PROCEDURE' PRIME (N);

'VALUE' N; 'INTEGER' N;
'BEGIN'

'EXTERNAL' NEXT;
'INTEGER' Q;

Q:= 2;
PRIME1:'IF' Q*Q>N 'THEN' PRIME:= 'TRUE'

'ELSE' 'IF' N\Q*Q = N
'THEN' PRIME := 'FALSE'
'ELSE I 'BEGIN I NEXT (Q); 'GO TO I PRIME 1 'END I

'END' PRIME; *
'PROCEDURE' NEXT (X);

'BEGIN'
'BOOLEAN' 'EXTERNAV PRIME;

A:X := X + 1;
'IF' 'NOT' PRIME (X) 'THEN' 'GO TO I A

'ENDI NEXT; *
BEGIN: 'BEGIN'

'INTEGER' M, P, TYPEWRITER;
'PROCEDURE' OUT (X);

'BEGINI OUTPUT (TYPEWRITER, 17); 10 (X); ENDIO 'ENDI;
'EXTERNAL' NEXT;

TYPEWRITER := 1;
17: 'FORMAT I " 17";

INPUT (TYPEWRITER, 17); 10 (M); ENDIO;
P := 2;
PRIME3: 'IF' P*P>M

'THEN' 'BEGIN' OUT (M); 'GO TO' BEGIN 'ENDI
'ELSE' 'IF' M\P*P=M

'THEN' 'BEGIN' OUT (P); M := M/P lEND I
'ELSE' NEXT (P);

IGO TO' PRIME3;
'ENDI FACTORIZATION *

12

Remarks

This is a two-line comment
ending with a semicolon
First compilation: a typed procedure
Value list and specifications, in that order
The body of the procedure is a block

containing 2 declarations

and 2 statements
an if statement containing
another if statement
which in turn contains
a compound statement

End of block, declaration, and compilation

Second compi lation: an untyped procedure
no value or specification: X is an
arithmetic variable called by name

A labeled arithmetic assignment statement
Indirect recursion: NEXT calls PRIME calls NEXT
End of block, dec laration, and comp i lation

Third compilation: a labeled block
dec laration
declaration, parameter called by name
the body of OUT is a compound statement
dec laration

a format statement (not executed)
three procedure statements

an if statement containing
a compound statement and
another if statement containing
another compound statement

comments may follow 'ENDls

SECTION II

1. STRUCTURE OF THE LANGUAGE

The purpose of the algorithmic language is to describe
computational processes. The basic concept used for the
description of ca Iculating ru les is the well-known arith­
metic expression containing as constituents numbers,
variables, and functions. From such expressions are
compounded, by applying rules of arithmetic composi­
tion' self-contained units of the language -- explicit
formulae -- called assignment statements.

To show the flow of computational processes, certain
nonarithmetic statements and statement clauses are add­
ed which may describe, e.g., alternatives, or iterative
repetitions of computing statements. Since it is neces­
sary for the function of these statements that one state­
ment refer to another, statements may be provided with
labels. A sequence of statements may be enclosed be­
tween the statement brackets 'BEGIN' and 'END' to
form a compound statement.

Statements are supported by dec larations wh ich are not
themselves computing instructions but inform the trans­
lator of the existence and certain properties of objects
appearing in statements, such as the c lass of numbers
taken on as values by a variable, the dimension of an
array of numbers, or even the set of rules defining a
function. A sequence of dec larations followed by a
sequence of statements and enc losed between 'BEGIN'
and 'END' constitutes a block. Every declaration ap­
pears in a block in this way and is valid only for that
block.

A program is a block or compound statement which is not
contained within another statement and which makes no
use of other statements not contained within it. A pro­
gram may be compiled in several parts.

The syntax and semantics of the language follow below.

2. BASIC CONCEPTS; SYMBOLS, IDENTIFIERS,
NUMBERS, AND STRINGS

The reference language is bui It up from the following
basic symbols:

basic-symbol = letterl digit Ilogical-value delimiter

2.1 Letters a nd Digits

2. 1. 1 Letters

letter = A I B I C I DIE I FIG I H I I I J I K I L IMI N 10 I p IQI
RI sl T Iu IV IwlX IYI z

Letters do not have individual meaning. They are used
for forming identifiers and strings (cf. paragraphs 2.4
Identifiers, 2.6 Strings).

2.1.2 Digits

Digits are used for forming numbers, identifiers, and
stri ngs.

2.2 Logical Values

logical-value = 'TRUE' I'FALSE'

The logical values have a fixed obvious meaning.

2.3 Delimiters

del imiter = operator I separatorl bracket Idec larator!
spec ificator

operator = arithmetic-operatorl relationa I-operatorl
logical-operatorl sequential­
operator

arithmetic-operator = +1-1*\/1\1**

relational-operator = < 1<=1=<1=1 >=1=>1>1<>1><

logical-operator = ==I»I'OR'I'AND'I'NOT'

sequential-operator = 'GO To'I'IF'I'THEN'I'ELSE'\
'FOR'I'DO'

separator = , I· I~ I: I; J:= lul'STEP' I'UNTIL' I'WHILE 'I
COMMENT'

bracket = (or) I"I'BEGIN 'I 'END'

declarator = OWN IBOOLEAN !INTEGER IREAd
ARRAY I SWITCH I PROCEDURE

specificator = STRINGI LABEL IVALUE

Delimiters have a tixed meaning which for the most part
is obvious or else wi II be given at tht: appropriate place
in the sequel.

Typographical features such as blank space or change to
new line have no significance in the reference language.
They may, however, be used freely for facilitating read­
ing.

For the purpose of including text among the symbols of
a program, the following "comment" conventions hold:

The sequence of basic symbols

'COMMENT' (any-sequence­
not-containing-;) i

'END' (any-sequence-not­
containing' or ;)

is equivalent to

u

13

IIEquivalence" in this case means that either of the
structures shown in the left-hand column may be re­
p laced, in any occurrence outside of strings, by the sym­
bol shown on the same line in the right-hand column
wi thout any effect on the action of the program. It is
further understood that the comment structure encount­
ered first in the text when reading from left to right has
precedence in being replaced over later structures con­
tained in the sequence.

2.4 Identifiers

2.4.1 Syntax

identifier = letter\ identifier-letter I identifier-digit

2.4.2 Examples

Q
SOUP
V17A
A34KTMNS
MARGARET

2.4.3 Semantics

Identifiers have no inherent meaning, but serve for the
identification of simple variables, arrays, labels, switch­
es, and procedures. Identifiers may be of any length;
however, identifiers which are external names must be
distinct from each other with respect to the first eight
characters.

Lexicon words are listed in Appendix B.

The identifiers for standard procedures may be used for
other purposes at wi II. The procedures avai lable are
described in Appendix C.

The same identifier cannot be used to denote two differ­
ent quantities except when these quantities have disjoint
scopes as defined by the declarations of the program
(d. paragraphs 2.7 Quantities, Kinds and Scopes, and 5.
Dec larations).

2.5 Numbers

2.5. 1 Syntax

14

unsigned-integer = digitlunsigned-integer digit

integer = unsigned-integer \+ unsigned-integer\
- unsigned-integer

dec i rna I-fraction = . unsigned-integer

exponent-part = 6 integer

decimal-number = unsigned-integer Idec imal-fractionl
. unsigned-integer decimal­

fraction

unsigned-number = decimal-number lexponent-partl
decimal-number exponent­
part

number = unsigned-number 1+ unsigned-numberl
- unsigned-number

2.5.2 Examples

o
177

.5384

+0.7300

2.5.3 Semantics

-200.084

+07.4368

9.346 + 10

26-4

-.0836-02

-67

6-4

+6+5

Decimal numbers have their conventional meaning. The
exponent part is a scale factor expressed as an integral
power of 10.

2.5.4 Types

Integers are of type I INTEGER I. All other numbers are
of type 'REAL' (d. paragraph 5.1 Type Declarations).

2.6 Strings

2.6. 1 Syntax

string = "(any-sequence-of-basic-symbols-not­
containing-")"

2.6.2 Examp les

"THIS U IS UA USTRING"

2.6.3 Semantics

To enable the language to handle arbitrary sequences of
basic symbols, the string quotation marks II (two single
quotation marks) are introduced. The symbol U denotes
a space. It has no significance outside strings.

Strings are used as actual parameters of procedures (d.
paragraphs 3.2 Function Designators and 4.7 Procedure
Statements).

2.7 Quantities, Kinds and Scopes

The following kinds of quantities are distinguished: sim­
ple variables, arrays, labels, switches, and procedures.

The scope of a quantity is the set of statements and ex­
pressions in which the declaration of the identifier as­
sociated with that quantity is valid. For labels see
paragraph 4. 1.3.

2.8 Values and Types

A value is an ordered set of numbers (special case: a
single number), an ordered set of logical values (spe­
cial case: a single logical value), or a label.

Certain of the syntactic units are said to possess values.
These values will in general change during the execu­
tion of the program. The values of expressions and their
constituents are defined in paragraph 3. The value of
an array identifier is the ordered set of values of the
corresponding array of subscripted variables (cf. para­
graph 3. 1.4. 1).

The various "types" CINTEGER', 'REAL', 'BOOLEAN ')
basically denote properties of values. The types associ­
ated with syntactic units refer to the values of these
units.

3. EXPRESSIONS

In the language, the primary constituents of the pro­
grams describing algorithmic processes are arithmetic,
Boolean, and designational expressions. Constituents
of these expressions, except for certain delimiters, are
logical values, numbers, variables, function designators,
and elementary arithmetic, relationa I, logica I, and se­
quential operators. Since the syntactic definition of
both variables and function designators contains expres­
sions, the definition of expressions, and their constitu­
ents, is necessari Iy recursive.

If the interpretation of the syntax of a statement depends
on the type of a parameter called by name, the type of
the parameter wi II be assumed to be rea I.

expression = arithmetic-expressionl Boolean-expression\
designationa I-expression

3.1 Variables

3.1. 1 Syntax

variable-identifier = identifier

simple-variable = variable-identifier

subscript-expression = arithmetic-expression

subscript-I ist = subscript-expression I subscript-I i st,
subscript-expression

array-identifier = identifier

subscripted-variable = array-identifier {subscript-list}

variable = simple-variable subscripted-variable

3.1.2 Examples

EPSILON
INTEGER
A17
Q{7,2}
X{A+B,5}

3.1.3 Semantics

A variable is a designation given to a single value. This
value may be used in expressions for forming other values
and may be changed at wi II by means of assignment state­
ments (paragraph 4.2). The type of the value of a par­
ticular variable is defined in the dec laration for the
variable itself {cf. paragraph 5.1 Type Declarations} or
for the correspondi ng array identifier (d. paragraph 5.2
Array Dec larations).

3. 1.4 Subscripts

3.1.4. 1 Subscripted variables designate va lues wh ich
are components of multidimensional arrays (cf. paragraph
5.2 Array Declarations). Each arithmetic expression of
the subscript list occupies one subscript position of the
subscripted variable, and is called a subscript. The com­
plete list of subscripts is enclosed in parentheses { }.
The array component referred to by a subscripted varia­
ble is specified by the actual numerical value of its sub­
scripts {cf. paragraph 3.3 Arithmetic Expression}.

3.1.4.2 Each subscript position acts like a variable of
type 'INTEGER I, and the evaluation of the subscript is
understood to be equivalent to an assignment to this fic­
titious variable (d. paragraph 4.2.4). The value of the
subscripted variable is defined only if the value of the
subscript expression is within the subscript bounds of the
array (d. paragraph 5.2 Array Dec larations).

3.2 Function Designators

3.2. 1 Syntax

procedure-identifier = identifier

actual-parameter = string lexpression larray-identifier!
switch-identifier Iprocedure­
identifier

letter-string = letter I letter-string letter

parameter-delimiter = , I) letter-string:

actual-parameter-list = actual-parameterlactual-
parameter-I ist parameter­
delimiter actual-parameter

15

actua I-parameter-part = emptyl (actua I-parameter­
list)

function-designator = procedure-identifier actua 1-
parameter-part

3.2.2 Examples

SIN(A-B)
J(V+S, N)
R
V(S-5)TEMPERATURE:(T)PRESSURE:(P)
COMPILE(II:=II)STACK:(Q)

3.2.3 Semantics

Function designators define single numerical or logical
values, which result through the application of given
sets of rules defined by a procedure declaration (cf.
paragraph 5.4 Procedure Dec larations) to fixed sets of
actual parameters. The rules governing specification
of actual parameters are given in paragraph 4.7 Proce­
dure Statements. Not every procedure dec laration de­
fines the value of a function designator. For function
designators outside the scope of any corresponding pro­
cedure dec larations, see paragraph 5.5.

3.2.4 Standard Functions

Certai n standard functions and procedures, available
for use with the compilers, are assumed to be declared
in an implicit block outside and including all the state­
ments of each compilation. That is, if any of them is
declared in a program, it assumes local significance;
if not, it is assumed to be the function or procedure de­
scribed below, and wi II be loaded from the I ibrary at
load time.

The standard functions and procedures are listed in Ap­
pendix C.

3.2.5 Transfers of Type

'REAL' variables may be implicitly transferred to type
'INTEGER ' by assignment statements, calls by value,
and use as arguments of standard functions, array
bounds, and subscripts. In transferring to type 'REAL ' ,
no significance is lost. In describing transfer to type
'INTEGER ' , it is convenient to refer to the imaginary
function ENTlER, where ENTlER(X) is the largest integer
not greater than X.

ENTlER(5.5) = 5
ENTIER(-5.5) = -6

ENTlER is neither a standard function nor a reserved
word.

16

3.3 Arithmetic Expressions

3.3.1 Syntax

adding-operator = +1-

multiplying-operator = *1 II \
primary = unsigned-numberlvariable Ifunction­

designatod (orithmetic­
expression)

factor = primaryl factor ** primary

term = factorlterm multiplying-operator factor

simple-arithmetic-expression = term ladding-operator
term lsi mp le-arithmetic­
expression adding-operator
term

IF -c lause = 'IF' Boolean-expression 'THE N II

arithmetic-expression = simple-arithmetic-expression\
IF-c lausel si mple-arithmetic­
expression IE LSE I arithmetic­
expression

3.3.2 Examples

Primaries:

7.394.6.-8
SUM
W(I+2,8)
COS(Y+Z*3)
(A-3/Y+vu** 8)

Factors:

OMEGA
SUM**COS(Y+ Z*3)
7.394.6.-8**W(I+2, 8)**(A-3/Y+vu** 8)

Terms:

U
OMEGA*SUM

Simple Arithmetic Expression:

U-OMEGA*SUM+ YU

Arithmetic Expressions:

W*U-Q(S+CU)**2
'IF' Q>O 'THEN' S +3*Q/A 'ELSE' 2*S

3.3.3 Semantics

An arithmetic expression is a rule for computing a num­
erical value. In case of simple arithmetic expressions,
this value is obtained by executing the indicated arith­
metic operations on the actua I numerica I va lues of the
primaries of the expression, as explained in detai I in
paragraph 3.3.4. The actual numerical value of a pri­
mary is obvious in the case of numbers. For variables,
it is the current value (assigned last in the dynamic
sense), and for function designators, it is the value aris­
ing from the computing rules defining the procedure (cf.
paragraph 5.4.4 Values of Function Designators) when
app lied to the current va I ues of the proced ure parame­
ters given in the expression. Finally, for arithmetic ex­
pressions enclosed in parentheses, the value must through
recursive analysis be expressed in terms of the values of
primaries of the other three kinds.

In the more general arithmetic expressions, which include
IF clauses, one of several simple arithmetic expressions
is selected on the basis of the actual values of the
Boolean expressions (cf. paragraph 3.4 Boolean Expres­
sions). This selection is made as follows: The Boolean
expressions of the IF clauses are evaluated one by one
in sequence from left to right until one having the value
'TRUE I is found. The value of the arithmetic expression
is then the value of the first arithmetic expression fol­
lowing this Boolean (the largest arithmetic expression
found in this position is understood). The construction:

IE LSE I (simple arithmetic expression)

is equivalent to the construction:

'ELSE' 'IF' 'TRUE' 'THEN' (simple arithmetic
expression)

3.3.4 Operators and Types

Apart from the Boolean expressions of IF clauses, the
constituents of simple arithmetic expressions must be of
types 'REAL' or 'INTEGER ' (cf. paragraph 5.1 Type Dec­
larations). The meaning of the basic operators and the
types of the expressions to which they lead are given to
the following rules:

3.3.4.1 The operators +, -, and * have the conventional
meaning (additions, subtraction, and multiplication).
The type of the expression wi \I be 'INTEGER I if both of
the operands are of 'INTEGER I type; otherwise, 'REAL'.

3.3.4.2 The operations (term)/(factor) and (term)\(factor)
both denote division, to be understood as a multiplica­
tion of the term by the reciprocal of the factor with due
regard to the rules of precedence (cf. paragraph 3.3.5).
Thus, for example

A/B*7 /(P-Q)*V /S

means

III/ .. _1_ ,_ - 1 \ \ _1 __ \ .1. I I _ _ \ - 1 \. '\ .1." • \ .1. J ,.. - 1 \
nnAA~!j))"lrnt'-lJ)))"VrT:>)

The operator / is defined for all four combinations of
types 'REAL' and 'INTEGER ' and will yield results of
'REAL' type in any case. The operator \ is defined
only for two operands both of type 'INTEGER' and will
yield a result of type 'INTEGER', mathematically de­
fined as fo \lows:

a\b = SIGN(A/B)*ENTIER(ABS(A/B))

(cf. paragraphs 3.2.4 and 3.2.5)

3.3.4.3 The operation factor ** primary denotes ex­
ponentiation, where the factor is the base and the pri­
mary is the exponent. For example,

2**N**K means

while

2**(N**M) means

Writing i for a number of 'INTEGER ' type, r for
a number of 'REAL' type, and a for a number of either
'INTEGER ' or 'REAL' type, the result is given by the
following rules:

A**I If i >0, a*a* .•• *a (i times), of the same
type as a.

If i =0, if alO, 1, of the same type as a;
if a = 0, undefined.

If i < 0, if a 10, l/(a*a* .•. *a) (the denom­
inator has -i factors), of type 'REAL';

A**R

if a = 0, undefined.

If a>O, EXP(r*LN(a)), of type 'REAL'.

If a = 0, if r > 0,0.0, of type 'REAL I;
if r~O, undefined.

If a <0, always undefined.

3.3.5 Precedence of Operators

The sequence of evaluation of primaries within an ex­
pression is, in effect, from left to right.

The sequence of operations within one expression is gen­
erally from left to right, with the following additional
rules:

3.3.5.1 According to the syntax given in paragraph 3.3.1,
the following rules of precedence hold:

first: **
second: * / \
third: +-

3.3.5.2 The expiession between a left parenthesis and
the matching right parenthesis is evaluated by itself and
this value is used in subsequent calculations. Conse­
quentiy, the desired order of execution of operations

17

within an expression can always be arranged by appro­
priate positioning of parentheses.

3.3.6 Arithmetics of 'REAL' Quantities

Numbers and variables of type 'REAL' must be inter­
preted in the sense of numerical analysis, i. e., as en­
tities defined inherently with only a finite accuracy.
Similarly, the possibility of the occurrence of a finite
deviation from the mathematically defined result in any
arithmetic expression is explicitly understood.

Integer quantities may take on the va lue zero or any
value representable in two's complement form in 22 bits.

Real quantities may take on the value zero or any value
representable in two's complement form with a 39-bit
fraction and a 9-bit binary exponent.

Programs in which quantities outside the stated ranges
occur or are generated are undefined.

3.4 Boolean Expressions

3.4.1 Syntax

relational-operator = <I <=1 =<1>=1=>1 =1 >1 ><1 <>
relation = simple-arithmetic-expression relational­

operator simple-arithmetic­
expression

Boolean-primary = logical-value I variable Ifunction­
designator Irelation I(Boolean­
expression}

Boolean-secondary = Boolean-primary /' NOT'
Boolean-primary

Boolean-factor = Boolean-secondary' Boolean-factor
'AND' Boolean-secondary

Boolean-term = Boolean-factorl Boolean-term 'OR' ,
Boo I eo n -foe tor

implication = Boolean-term limplication »Boolean­
term

simple-Boolean = implication Isimple-Boolean ==
implication

Boolean-expression = simple-Boolean IIF-clause
simp Ie-Boolean' ELSE' Boolean­
expression

3.4.2 Examples

18

x =-2
Y>V 'OR' Z<Q
A+B>-5 'AND' Z-D>Q**2
P 'AND' Q 'OR' X <> Y
'IF' K < 1 'THEN'S >W 'ELSE' H <=C
'IF' 'IF' 'IF' A 'THEN' B 'ELSE' C 'THEN' D 'ELSE' F

'TH EN' G 'E LS E' H < K

3.4.3 Semantics

A Boolean expression is a rule for computing a logical
value. The principles of evaluation are entirely analo­
gous to those given for arithmetic expressions in para­
graph 3.3.3.

3.4.4 Types

Variables and function designators entered as Boolean
primaries must be declared 'BOOLEAN' (cf. paragraphs
5.1 Type Declarations and 5 4.4 Values of Function
Designators).

3.4.5 The Operators

Relations take on the value 'TRUE' whenever the corre­
sponding relation is satisfied for the expression involved;
otherwise, 'FALSE'.

The meaning of the logical operators 'NOT', 'AND',
'OR', »(implies), and == {equivalent}, is given by the
following function table:

Bl F F T T
B2 F T F T

'NOT' Bl T T F F
Bl 'AND' B2 F F F T
Bl 'OR' B2 F T T T
B 1 > > B2 T T F T
B 1 == B2 T F F T

where T implies the value 'TRUE' and F implies
'FALSE'.

3.4.6 Precedence of Operators

All primaries in simple Booleans will be evaluated.

The sequence of operations v/ithin one expression is gen-
erally from left to right, with the following additional
rules:

3.4.6.1 According to the syntax given in paragraph 3.4.1,
the following rules of precedence hold:

first:

second:

third:

fourth:

arithmetic expression accordi ng to para­
graph 3.3.5

re loti ona I operators

'NOT'

'AND'

fifth: 'OR'

sixth: »

seventh:

3.4.6.2 The use of parentheses wi II be interpreted in the
sense given in paragraph 3.3.5.2.

3.5 Designational Expressions

3.5. 1 Syntax

label = identifier

switch-identifier = identifier

switch-designator = switch-identifier (subscript­
expression)

simple-designational-expression = label! switch­
designator I (designationa 1-
expression)

designationa I-expression = simp le-designationa 1-
expressionl IF-c lause I simple­
designationa I-expression IE LSE I
designationa I-expression

3.5.2 Examples

P9
CHOOSE (N-l)
TOWN ('IF' Y>O 'THEN' N 'ELSE' N + 1)

3.5.3 Semantics

A designational expression is a rule for obtaininga label
of a statement (cf. paragraph 4 Statements). Again, the
principle of the evaluation is entirely analogous to that
of arithmetic expressions (paragraph 3.3.3). In the gen­
eral case, the Boolean expressions of the IF clauses will
select a simple designational expression. If th is is a label,
the desired result is already found. A switch designator
refers to the correspondi ng switch dec laration (cf. para­
graph 5.3 Switch Dec larations) and by the actua I num­
erical value of its subscript expression selects one of the
designational expressions listed in the switch declaration
by counting these from left to right. Since the designa­
tional expression thus selected may again be a switch
designator, this evaluation is obviously a recursive
process.

3.5.4 The Subscript Expression

The eva I uation of the subscript expression is ana logous
to that of subscripted variables (cf. paragraph 3.1.4.2).
The value of a switch designator is defined only if the
subscript expression assumes one of the positive values
1,2,3, ..• , n, where n is the number of entries in the
switch list.

4. STATEMENTS

The units of operation within the language are called
statements. They v'li II norma! 1,1 be executed consecu­

tively as written. However, this sequence of operations

may be broken to GO TO statements, which define their
successor explicitly, and shortened by conditional state­
'!lents, wh ich may cause certain statements to be skipped.

To make it possible to define a spec ific dynamic succes­
sion, statements may be provided with labels.

Since sequences of statements may be grouped together
into compound statements and blocks, the definition of
statement must necessari Iy be recursive. Also, since dec­
larations, described in paragraph 5, enter fundamentally
into the syntactic structure, the syntactic definition of
statements must suppose dec larations to be a I ready
defined.

4.1 Compound Statements and Blocks

4.1. 1 Syntax

unlabeled-basic-statement = assignment-statement I
GO-TO-statement! dummy­
statement I procedure-statement

basic-statement = unlabeled-basic-statementllabel :
basic-statement Ilabel : format­
statement

unconditional-statement = basic-statement/ compound­
statement I block

statement = unconditional-statement conditional­
statement I FOR-statement

compound-tail = statement 'END'lstatement ;
compound-tai I

block-head = 'BEGIN I declaration Iblock-head ;
dec laration

unlabeled-compound = 'BEGIN I compound-tai I

unlabeled-block = block-head; compound-tai I

compound-statement = unlabeled-compound I label :
compound -statement

block = unlabeled-blockllabel : block

program = block Icompound-statement

This syntax may be illustrated as follows: Denoting arbi­
trary statements, dec larations, and labe Is, by the let­
ters S, D, and L, respectively, the basic syntactic units
take the forms:

Compound Statements:

L:L: ... 'BEGIN' S;S; ... S;S 'END'

Block:

L: L: ... I BEG I N I D; D; ... D; S; S; ... S; S lEN D I

It should be kept in mind that each of the statements S
mav aaain be a comolete comoound statement or block . .. I "-' - 1- - - - I

19

4.1.2 Examples

Basic Statements:

A := P+Q
IGO TO ' NAPLES
START:CONTINUE:W := 7.993

Compound Statement:

'BEGIN' X := 0; Y := A+B**2 'END'

Block

Q: 'BEGIN' 'INTEGER' I, J; 'REAL' W;
I := 1; J := I +L**2;
W : = A(I + J, 1* J)

4.1.3 Semantics

Every block automatically introduces a new level of
nomenclature. This is realized as follows: Any identi­
fier occurring within the block may, through a suitable
declaration (cf. paragraph 5 Declarations), be specified
to be local to the block in question. This means (a) that
the entity represented by this identifier inside the block
has no existence outside it, and (b) that any entity rep­
resented by this identifier outside the block is complete­
ly inaccessible inside the block.

Identifiers (except those representing labels) occurring
within a block and not being declared to this block will
be non local to it; i.e., wi II represent the same entity
inside the block and in the level immediately outside it.
A label separated by a colon from a statement, i.e.,
labeling that statement, behaves as though declared in
the head of the sma Ilest em~racing block; i. e., the
smallest block whose brackets 'BEGIN' and 'END' en­
close that statement. In this context, a procedure body
must be considered as if it were enciosed by !BEGIt~!
and 'END' and treated as a block.

Since a statement of a block may again itself be a block,
the concepts local and nonlocal to a block must be un­

-derstood recursively. Thus an identifier, which is non­
local to a block A, mayor may not be nonlocal to the
block B in which A is one statement.

4.2 Assignment Statements

4.2. 1 Syntax

20

left-part = variable :=Iprocedure-identifier :=

left-part-I ist = left-part Ileft-part-I ist left-part

assignment-statement = left-part-list arithmetic-
expression Ileft-part-I ist Boolean­
expression

4.2.2 Examples

S := P(O) := N := N + 1 +S
N := N + 1
V:= Q>Y 'AND' Z

4.2.3 Semantics

Assignment statements serve for assigning the value of an
expression to one or several variables or procedure iden­
tifiers. Assignment to a procedure identifier may occur
only within the body of a procedure defining the value
of a function designator (cf. paragraph 5.4.4). The pro­
cess will in general cases be understood to take place
in three steps as follows:

4.2.3.1 Any subscript expressions occurring in the left­
part-variables are evaluated in sequence from left to
right.

4.2.3.2 The expression of the statement is eva luated.

4.2.3.3 The value of the expression is assigned to all
the left-part-variables, with any subscript expressions
having values as evaluated in step 4.2.3.1.

4.2.4 Types

The type associated with all variables and procedure
identifiers of a left-part-list must be the same. If this
type is 'BOOLEAN', the expression must likewise be
'BOOLEAN ' . If the type is 'REAL' or 'INTEGER ', the
expression must be arithmetic. If the type of the arith­
metic expression differs from that associated with the
variables and procedure identifiers, appropriate transfer
functions are understood to be automatica II y invoked.
For transfer from 'REAL' to 'INTEGER ' type, the trans­
fer function is understood to yield a result equivalent to:

ENTIER(E + 0.5)

where E is the value of the expression. The type asso­
c iated with a procedure identifier: is given by the dec lara­
tor which appears as the first symbol of the corresponding
procedure dec laration (cf. paragraph 5.4.4).

4.3 GO TO Statements

4.3. 1 Syntax

GO-TO-statement = IGO TO ' designational­
expression

4.3.2 Examples

'GO TO' ALPHA
IGO TO ' EXIT (N + 1)
IGO TO ' TOWN ('IF' Y <0 'THEN' N 'ELSE' N + 1)

4.3.3 Semantics

A GO TO statement interrupts the norma I sequence of
operations, defined by the write-up of statements, by
defining its successor explicitly by the value of a desig­
nationa I expression. Thus, the next statement to be
executed wi II be the one having this value as its label.

4.3.4 Restriction

Since labels are inherently local, no GO TO statement
can lead from outside into a block. A GO TO state­
ment may, however, lead from outside into a compound
statement.

4.3.5 GO TO an Undefined Switch Designator

A GO TO statement is equivalent to a dummy statement
if the designationa I expression is a switch designator
whose value is undefined because its subscript is out of
the range of the corresponding switch. If the designa­
tional expression is undefined for any other reason, the
GO TO is undefined.

The phrase "equivalent to a dummy statement ll means
that the flow of the program does not change at th i s
point.

4.4 Dummy Statements

4.4. 1 Syntax

dummy-statement = empty

4.4.2 Examples

L: 'BEGIN';JOHN: 'END'

4.4.3 Semantics

A dummy statement executes no operation. It may serve
to place a label.

4.5 Conditional Statements

4.5. 1 Syntax

IF-clause = 'IF' Boolean-expression 'THEN'

unconditiona I-statement = basic statement I
compound-statement I block

IF-statement = IF-c lause unconditiona I-statement

conditional-statement = IF-statement JIF-statement
'ELSE ' statementlIF-clause FOR-
statement I label : conditional­
statement

4.5.2 Examples

I IF I X > 0 I TH EN IN: = N + 1
'IF' V>U 'THEN' L:Q:= N +M 'ELSE I IGO TO' R

4.5.3 Semantics

Conditional statements cause certain statements to be
executed or skipped depending on the running values of
specified Boolean expressions.

4.5.3. 1 IF Statement. The unconditiona I statement of
an IF statement wi II be executed if the Boolean expres­
sion of the IF clause is true. Otherwise, it wi II be
skipped and the operation will be continued with the
next statement.

4.5.3.2 Cond itiona I Statement. Accord i ng to the syn­
tax, two different forms of conditional statements are
possible. These may be illustrated as follows:

'IF' B1 'THEN' 51 'ELSE' 'IF' B2 'THEN' 52 'ELSE'
53; 54

and

'IF'B 1 'THEN' 51 'ELSE' 'IF' B2 'THEN' 52 'ELSE '
'IF' B3 'THEN' 53; 54

Here B 1 to B3 are Boolean expressions, while 51 to 53
are unconditional statements. 54 is the statement fol­
lowing the complete conditional statement.

The execution of a conditional statement may be de­
scribed as follows: The Boolean expressions of the IF
c louses are eva luated one after the other in sequence

from left to right until one yielding the value 'TRUE ' is
found. Then the unconditional statement following this
Boolean is executed. Unless this statement defined its
successor explicitly, the next statement to be executed
will be 54; i.e., the statement following the complete
conditional statement. Thus, the effect of the delimiter
'ELSE ' may be described by saying that it defines the
successor of the statement wh ich it follows to be the
statement following the complete conditional statement.

The construction

IE LSE I unconditiona I statement

is equivalent to

'ELSE' 'IF' 'TRUE ' 'THEN' unconditional statement

If none of the Boolean expressions of the IF clauses is
true, the effect of the whole cond itiona I statement wi II
be equivalent to that of a dummy statement.

21

For further explanation, the following picture may be
useful: r-------r-l
'IF' B 1 'THEN' S 1 'ELSE' 'IF' B2 'THEN I S2 'ELSE ' 53· S4

L _____ J L _____ JU
B 1 false B2 false

4.5.4 GO TO into a Conditional Statement

The effect of a GO TO statement leading into a condi­
tional statement follows directly from the above expla­
nation of the effect of IE LSE I.

4.6 FOR Statements

4.6. 1 Syntax

FOR-I ist-element = arithmetic-expressionl arithmetic­
expression 'STEP' arithmetic­
expression 'UNTIL I arithmetic­
expressionl arithmetic-expression
'WHILE I Boolean-expression

FOR-list = FOR-list-elementl FOR-list, FOR-list­
element

FOR-clause = 'FOR ' variable := FOR-list 1001

FOR-statement = FOR-clause statement' label: FOR­
statement

4.6.2 Examples

'FOR ' Q:= 1 'STEP' S 'UNTIL ' N 1001 A(Q) := B(Q)

'FOR ' K:= 1,V1*2 'WHILE ' V1<N 1001 'FOR '
J := I +G, L, 1 'STEP ' 1 'UNTIL '
N, C +0 1001 A(K, J) := B(K, J)

4.6.3 Semantics

A FOR clause causes the statement S which it precedes
to be repeatedly executed zero or more times. In addi­
tion, it performs a sequence of assignments to its con­
trolled variable. The process may be visual ized by
means of the following picture:

In i ti a I i ze;

r----l
test; statement S; advance; successor

L ______ J
FOR-list exhausted

In this picture, the word initialize means perform the
first assignment of the FOR clause. Advance means per­
form the next assignment of the FOR clause. Test de­
termines if the last assignment has been done. If so, the

22

execution continues with the successor of the FOR state­
ment. If not, the statement following the FOR clause
is executed.

4.6.4 The FOR List Elements

The FOR list gives a rule for obtaining the values which
are consecutively assigned to the controlled variable.
This sequence. of values is obtained from the FOR list
elements by taking these one by one in the order in
which they are written. The sequence of values gener­
ated by each of the three species of FOR list elements
and the corresponding execution of the statement S are
given by the following rules:

4.6.4.1 Arithmetic expression. This element gives rise
to one value, namely, the value of the given arithmetic
expression as calculated immediately before the corre­
sponding execution of the statement S.

4.6.4.2 Step-unti I-element. An element of the form
A 'STEP' B 'UNTIL ' C, whereA, B, and C are arith­
metic expressions, gives rise to an execution which may
be described most concisely in terms of additional
ALGOL statements as follows:

V:= A;
Ll: 'IF'(V -C)*SIGN(B) >0 'THEN' IGO TO '

element exhausted
statement S;
V:= V+B;
IGO TO ' Ll;

where V is the controlled variable of the FOR clause
and element exhausted points to the evaluation accord­
ing to the next element in the FOR list, or if the step­
until-element is the last of the list, to the next state­
ment in the program.

The arithmetic expressions Band C in "A 'STEP ' B 'UNTIL '
C" and liB 'WHILE ' C" are evaluated dynamically, that
is, once per execution of the loop.

If the controlled variable is subscripted, its subscript is
evaluated once, at the top of the loop.

4.6.4.3 WHILE-element. The execution governed by a
FOR I ist element of the form E 'WHILE IF, where E is
an arithmetic and F a Boolean expression, is most con­
cisely described in terms of additional ALGOL state­
ments as follows:

L3:V := E
'IF' 'NOr F 'THEN' IGO TO ' element exhausted
Statement S;
IGO TO ' L3

where the notation is the same as in 4.6.4.2 above.

4.6.5 The Value of the Controlled Variable upon Exit

The value of a controlled variable after exhaustion of a
FOR I ist or on exit from the body of the FOR by a GO
TO statement is defined as the last value dynamically
assigned to the variable in performing the loop.

4.6.6 GO TO Leading into a FOR Statement

The effect of a GO TO statement, outside a FOR state­
ment, which refers to a label within the FOR statement,
is undefined.

4.7 Procedure Statements

4.7. 1 Syntax

actual-parameter = stri ng I expression I array-identifierl
switch identifier I procedure­
identifi er

letter-string = letter\letter-string letter

parameter-delimiter = ,I)Ietter-string:(

actual-parameter-list = actual-parameter\actual-
parameter-I ist parameter-de limiter
actual-parameter

actual-parameter-part = empty I (actual-parameter­
list)

procedure-statement = procedure-identifier actual­
parameter-I ist

4.7.2 Examples

SPUR (A) ORDER:(7) RESULT TO:(V)
TRANSPOSE (W, V + 1)

4.7.3 Semantics

A procedure statement serves to invoke (call for) the ex­
ecution of a procedure body (cf. paragraph 5.4 Proce­
dure Dec larations). For procedure statements outside
the scope of any corresponding procedure declarations,
see paragraph 5.5. Where the procedure body is a state­
ment written in ALGOL, the effect of this execution
will be equivalent to the effect of performing the fol­
lowi ng operations on the program at the time of execu­
tion of the procedure statement:

4.7.3.1 Value assignment (call by value). All formal
parameters quoted in the value part of the procedure
dec laration head ing are assigned the val ues (cf. para­
graph 2.8 Values and Types) of the corresponding actual
parameters, these assignments being considered as being
performed exp Ii cit I y before enteri ng the proced ure body.
The effect is as though an additional block embracing
the procedure body were created in which these assign­
ments were made to variables local to this fictitious

block with types as given in the corresponding specifica­
tions (cf. paragraph 5.4.5). As a consequence, varia­
bles called by value are to be considered as nonlocal to
the body of the procedure, but local to the fictitious
block (cf. paragraph 5.4.3).

4.7.3.2 Name replacement (call by name). Any formal
parameter not quoted in the value list is replaced,
throughout the procedure body, by the correspond ing
actual parameter, after enclosing this latter in paren­
theses wherever syntactically possible. Possible con­
flicts between identifiers inserted through this process
and other identifiers already present within the proce­
dure body wi II be avoided by suitable systematic changes
of the formal or local identifiers involved.

4.7.3.3 Body replacement and execution. Finally the
procedure body, modified as above, is inserted in place
of the procedure statem ent and executed. If the proce­
dure is called from a place outside the scope of any non­
local quantity of the procedure body, the conflicts be­
tween the identifiers inserted through this process of
body replacement and the identifiers whose declarations
are valid at the place of the procedure statement or func­
tion designator wi II be avoided through suitable system­
atic changes of the latter identifiers.

4.7.4 Actual-Formal Correspondence

The correspondence between the actual parameters of the
procedure statement and the formal parameters of the pro­
cedure heading is established as follows: The actual pa­
rameter I ist of the procedure statement must have the
same number of entries as the formal parameter list of the
procedure dec laration head i ng. The correspondence is
obtained by taking the entries of these two lists in the
same order.

4.7.5 Restrictions

For a procedure statement to be defined, it is evidently
necessary that the operations on the procedure body de­
fined in paragraphs 4.7.3.1 and 4.7.3.2 lead to a correct
ALGOL statement.

This imposes the restriction on any procedure statement
that the kind and type of each actual parameter be com­
patible with the kind and type of the corresponding for­
mal parameter. Some important particular cases of this
general rule are the following:

4.7.5.1 If a string is supplied as an actual parameter in
a procedure statement or function designator, whose de­
fining procedure body is an ALGOL 60 statement (as op­
posed to non-ALGO L code, cf. paragraph 4.7.8), th i s
string can only be used within the procedure body as an
actual parameter in further procedure calls. Ultimately
it can only be used by a procedure body expressed in non­
ALGOL code.

23

4.7.5.2 A formal parameter which occurs as a left part
variable in an assignment statement within the proce­
dure body and which is not called by value can only
correspond to an actual parameter which is a variable
(special case of expression).

4.7.5.3 A formal parameter which is used within the pro­
cedure body as an array identifier can only correspond
to an actual parameter which is an array identifier of an
array of the same dimensions. In addition, if the for­
mal parameter is called by value, the local array cre­
ated during the call wi II have the same subscript bounds
as the ac tua I array.

4.7.5.4 A formal parameter which is called by value can-
.not in genE~.ra I correspond to a swi tch identifi er or a proce­
dure identifier or a string, because these latter items do
not possess values. (The exception is the procedure iden­
tifier of a procedure dec laration which has an empty for­
mal parameter part, cf. "paragraph 5.4.1, and which
defines the value of a function designator, cf. para­
graph 5.4.4. This procedure identifier is in itself a com­
plete expression.)

4.7.5.5 Any formal para"meter may have restrictions on
the type of the correspond i ng ac tua I parameter assoc i ated
with it (these restrictions may, or may not, be given through
specifications in the procedure heading). In the procedure
statement, such restrictions must evidentl y be observed.

4.7.6 Parameter Delimiters

All parameter del imiters are understood to be equivalent.
No correspondence between the parameter de lim i ters used
in a procedure statement and those used in procedure head­
ing is expected beyond their number being the same. Thus,
the information conveyed by using the elaborate ones is
entirely optional.

4.8 Format Statements

Values for variables may be transmi tted from or to periph­
eral devices by the program at any point. For this pur­
pose, several standard procedures are supplied and the
'FORMAT I statement is introduced into the language.

4.B.1 Syntax

24

format-statement = 'FORMAT I "format-I ist II

format-I ist = spec ificationl spec ification format-I ist
specification, format-list

specification = repetitions I integer! scale repetitions
E integer. integerlscale repetitions
F integer. integerlrepetitions A in­
tegerl$ alphanumeric-string ~inte­
ger H alphanumeric-stringlrepeti­
tions Xl / Irepetitions (format-I ist)

scale = sign integer P lempty

sign = +I-Iempty

repetitions = integer! empty

4.B.2 Examples

'FORMAT"'IB II

'FORMA r I i2E 12.4, 2(AB, 2PF4.0)SDS"

4.B.3 Semantics

Format strings spec ify the correspondence between the
memory representation and the printed (or typed or
punch) representation of the values of variables in input/
output lists. When the INPUT or the OUTPUT procedure
is called, the format which it references is scanned from
left to right. Duri ng the scan, the sequence of events
is as follows:

1. Each / on input" indicates that the next record should
be read. On output, it ~ignals the scanner to transmit
the current "record .Any further data wi II begin a new
record. At the end of the format I ist, a / is impl ied.

2. "integer (format-list)1I causes the format-list to
be scanned as many times as the integer directs.
Repetition within repetitions are not permitted.

3. "(format-list)1I causes the format-list to be
scanned repeatedly until the input record runs
out (on input) or until the ENDIO procedure is
called (on output). This form normally appears
at the end of the format. Parentheses are im­
plied around the entire format-string, so the en­
tire string is rescanned if no parentheses occur in
it. The action caused by each specification de­
pends on the spec ification.

4.B.3.1 Conversion of data: I, E, and F specifications.
Conversions of numerical data during input/output may
be one of three types:

type-E

internal form - binary floating-point
external form - decimal floating-point

type-F

internal form ~ binary floating-point
external form - decimal fixed-point

type-I

i nterna I form - binary integer
external form - decimal integer

These types of conversions are spec Hied by the forms:

Ew.d
Fw.d
Iw

where E, F, and I specify the type of conversion re­
quired, w is an integer specifying the width of the
field, and d isan integer specifying the numberofdecimal
places to the right of the decimal point.

As an example, the statement

IFORMA l' liE 12.3, F 12.3,112 11

may correspond to the line

10.987EU 00 -16.909 333

Note that the dec imal fixed-point number {type F} has a
decimal point but no exponent, whereas the decimal
floating-point {type E} has an exponent. On output the
exponent always has the form shown, i.e., an IIEII fol­
lowed by a minus sign or blank and a two-digit integer.
On input , however, the II E II or the enti re exponent may
be omitted on the external form. For example, the fol­
lowing are all equivalent E 12.3 fields:

10.987
10987E-3
10987-03

The field width w includes all of the characters {deci­
mal point, signs, blanks, etc.} which comprise the num­
ber. If a number is too long for its specified field, the
excess characters are lost. Since numbers are right
justified in their fields, the loss is from the most signifi­
cant part of the number.

During input, the appearance of a decimal point II. II in
an E or F type number overrides the d specification of
the field. If there is no explicit decimal point, the
point is positioned d places from the right of the field,
not counting the exponent, if any.

For example, a number with external appearance
314159E-2 and specification E12.3 is interpreted as
314.159E-2, or 3.14159.

The same conversion may be used for severa I successive
numbers by preceding the specification with a nonzero
integer which represents the number of repetitions.

Scale factors can be specified for F and E type con­
versions. A sca Ie factor has the from nP where n is
a signed or unsigned integer specifying the scale factor.
In F type conversions, the scale factor specifies a pow­
er of 10, such that

external number = (internal number}*{power of 10)

With E type conversions, the scale factor is used to
change the number by a power of 10 and then to correct
the exponent such that the result represents the same
real number as before, but now has a different form.

For example, if the statement

IFORMAT I IIF 12.3, E 12.3 11

corresponds to the output line

-1.234 9.752EU 01

then the statement

IFORMAT I 11-2PF 12.3, + 1 PE 12.3 11

may correspond to the line

-.012 97.520EUOO

The scale factor is assumed zero if none has been given.
However, once a value has been given, it holds for all
E and F type conversions following the scale factor. A
zero scale factor can be used to return conditions to nor­
mal. {Scale factors are ignored in I conversions.}

On input, a comma may be used to terminate a numeri­
cal field. This allows simplified preparation of data
records; a data record using the format

IFORMA1' IIF12.3,3112 11

may be punched

.0, 15, 16,20

instead of

.0 15 16 20

The field width ,specified in the format must be greater
than the number of characters encountered before the
commas.

4.8.3.2 Transmission of alphanumeric information: A,
X, H, and $ specifications. The A-specification resem­
bles the 1-, E-, and F-specifications in that it specifies
the transmission of data to or from a quantity {that is, a
constant, variable, or subscripted variable} in memory.
The quantity involved must be of type real. Repetition
of A-specifications is permitted.

The form of the spec ification is Ac, where c is the
number of characters to be transmitted, to a maximum
of 8. If c>8, the remaining characters are lost on in­
put or replaced with blanks on output. If c<8, trailing

- blanks are supplied,

The X-specification specifies the output of a single
blank; on input, a single character is ignored. Repeti­
tion of X-specifications is permitted.

25

The H-specification specifies the output of the charac­
ters (including blanks) which immediately follow the H.
The integer preceding the H specifies the number of
characters which follow it. On input, the same number
of characters is read in; they replace the original char­
acters in the format in memory: 6HGEORGE

The $-specification is identical to the H-specification
except that no count is given; instead, the characters
to be transmitted are placed (including blanks) between
two dollar signs: $GEORGE$

4.S.4 Input/Output

Input and output are performed by executing the follow­
ing procedure statements dynamically:

INPUT (code, format) or "OUTPUT"

10 (list)

ENOIO

where the following definitions apply:

INPUT

OUTPUT

code

format

10

list

ENOIO

standard procedure to initiate input

standard procedure to initiate output

arithmetic expression the value of which
specifies the unit involved and the form
of data transferred

designational expression designating a
format statement

standard piOcedure (with a vadable num­
berof arguments) to perform input/output

real or integer variables, arrays, or (for
output) constants, separated by commas

standard procedure to terminate input/
output

The input/output codes are as follows:

o
1
2
3
lO+N
20+N

paper tape, alphanumeric
typewriter, alphanumeric
punched cards, alphanumeric
line printer, alphanumeric
magnetic tape N, alphanumeric
magnetic tape N, binary

Execution of the call on INPUT or OUTPUT in alphanu­
meric mode causes the designated format to be scanned

26

and the appropriate action taken, unti I the point where
an I, E, F, or A spec ification is encountered. Execution
of the program then continues. One or more calls to 10
supply lists of parameters corresponding to the I, E, F,
and A specification of the format; when an 10 call is
executed the conversions for its parameters take place.
Finally, a call to ENOIO terminates the transmission
until another call to INPUT or OUTPUT is executed.

Alphanumeric transmissions may be performed by call ing
the INPUT (or OUTPUT) and ENOIO procedures only.
If one or more calls on the 10 procedure occur, how­
ever, their arguments are transmitted as specified by the
referenced format statement, and in that order.

The following examples illustrate the way in which for­
mat statements, input/output procedure calls, and data
on external media interact:

Example 1

Consider a program containing the following declaration
and statements:

IINTEGERIM1, M2, Nl, N2 ..•

XYZ: IFORMAT' "IS" ...

INPUT(2, XYZ) •.• 10(M 1, M2) ... 10(N 1, N2) ...
ENOIO

The statements on the third line may be written in any
order, but are executed in the order shown.

The input statement requests input from cards (code 2).
The format IIISII is equivalent to (IS/) since the paren­
theses and the final end-of-record are implied for all
formats.

The sequence of events is as follows:

When the call to INPUT is executed, scanning of the
format begins. The specification IS which is encoun­
tered immediately cannot be processed until the pro­
gram calls the 10 procedure, so program execution
continues until the first call on 10. Then the first S
columns of the first data card are converted to a 22-
bit binary integer and stored in the variable M 1.

Scanning of the format continues. The "/" (implied)
causes the remainder of the first data card to be ig­
nored. The ")" (also implied) signals the format
scanner to return to the previous "(", in this case the
one implied at the beginning of the format.

Again the specification 18 is encountered. The first
S columns of the second data card are now converted
to a 22-bit integer, and that value stored in M2.

The process continues whi Ie values for N 1 and N2
are stored. The call to ENDIO then terminates trans­
mission. Further Input/Output may be initiated by
re-executing this sequence of statements or by exe­
cuting another si mi lar sequence involving another
call to INPUT (or OUTPUT).

Example 2

Suppose six variables of type real are to be output (to
the typewriter) according to the following format:

/2E 12.4, 2(A8, 2PF4.0/)SDS

The typeout might look like this:

U-1.3625E-11UUO.OOOOEUOOUALPHA=U100.

I II II IU
E 12.4 E12.4 A8 2PF.O

UUBETA=UUU6.

I IU
A8 2PF4.0

SDS

U
SDS

Execution of the calion INPUT or OUTPUT in binary
mode is simi lar to that of the alphanumeric mode with the
the following exceptions:

1. A format statement is not used to control conversion.
Instead, the va lues designated by the 10 procedure
calls are transmitted as binary words without conver­
sion.

2. Although the second argument of the INPUT or OUT­
PUT procedure call is required to be in the statement,
it is not used. The second argument must be a desig-:­
nati ona I expression; however, it need not designate
a format statement.

5. DECLARATIONS

Declarations serve to define certain properties of the
quantities used in the program, and to associate them
with identifiers. A declaration of an identifier is valid
for one block. Outside this block, the particular iden­
tifi er may be used for other purposes (cf. paragraph 4. 1.3).

Dynamically, this implies the following: at the time of
an entry into a block (through the IBEGINI, since the
labels inside are local and therefore inaccessible from
outside), all identifiers declared for the block assume
the significance implied by the nature of the declaration
given. If these identifiers had already been defined by
other declarations outside, they are for the time being
given a new significance. Identifiers which are not de-

c lared for the block, on the other hand, retai n thei r old
meaning.

At the time of an exit from a block (through IENDI or by
a GO TO statement), a II identifi ers which are dec lared
for the block lose their local significance.

A declaration may be marked with the additional declar­
ator 10WN I. Th is has the following effect: upon re­
entry into the block, the values of OWN quantities wi II
be unchanged from their values at the last exit, while
the values of declared variables which are not marked
as OWN are undefined. OWN declarations are taken
to declare their variables available to the current block
but nonlocal to the entire program.

For the behavior of OWN variables under recursion, see
paragraph 5.4.6.

Apart from labels and formal parameters of procedure
dec larations and with the possible exception of those
for standard functions (cf. paragraphs 3.2.4 and 3.2.5),
all identifiers of a program must be dec lared. No iden­
tifier may be declared more than once in anyone block
head.

Syntax

declaration = type-dec laration I array-dec larationl
switch-dec larationsl procedure­
dec laration) externa I-procedure­
dec laration

5.1 Type Declarations

5.1. 1 Syntax

type-I ist = simple-variable lsi mp le-variab Ie type-I ist

type = IREALI IIINTEGERIIIBOOLEANI

loca I-or-own-type = type \IOWN I type

type-dec laration = local-or-own-type type-I ist

5. 1.2 Examples

IINTEGER I P, Q, S
10WN I IBOO LEAN I ACRYL, N

5.1.3 Semantics

Type declarations serve to declare certain identifiers to
represent simple variables of a given type. Real declared
variables may only assume positive or negative values
including zero. Integer declared variables may only as­
sume positive and negative integral values including zero.
Boolean declared variables may only assume the values
ITRUE I and IFALSE I.

In arithmetic expressions, any position wh i ch can be oc­
cupied by a reai deciared variabie may be occupied by

27

an integer declared variable, except as stated in para­
graph 3.3.4.2.

For the semantics of 'OWN', see paragraph 5.

5.1.4 Initialization of OWN Variables

In an 'OWN' type declaration, each variable in the list
may optionally have a value assigned to it at compile
time by appending to the variable a replace operator fol­
lowed by a value; e. g.,

'OWN' 'REAL' K := 3, BETA, RHO := 3.14;
'OWN' 'BOOLEAN' P:= 'TRUE', Q := 'FALSE', F, R;

The value must be of the type declared.

5.2 Array Declarations

5.2.1 Syntax

lower-bound = arithmetic-expression

upper-bound = arithmetic-expression

bound-pair = lower-bound: upper-bound

bound-pair-list = bound-pair! bound-pair-list ,
bound-pair

array-segment = array-identifier (bound-pair-list)!
array-identifier, array-segment

array-I ist = array-segment! array-I ist , array-segment

array-declaration = 'ARRAY' array-listjlocal-or­
own-type 'ARRAY' array-list

5.2.2 Examples

'ARRAY' A,B,C(7:N,2:M), 5(-2:10)

'OWN' 'INTEGER' 'ARRAY' A('IF' C<O 'THEN' 2
IELSEI 1:20)

'REAL' 'ARRAY' Q(-7:-1)

5.2.3 Semantics

An array dec laration dec lares one or several identifiers
to represent multidi mensional arrays of subscripted vari­
abies and gives the dimensions of the arrays, the bounds
of the subscripts, and the types of the variables.

5.2.3.1 Subscript bounds. The subscript bounds for any
array are given in the first subscript bracket following
the identifierofthisarrayin theformofabound pair list.
Each item of this list gives the lower and upper bound of
a subscript in the form of two arithmetic expressions sep-

28

arated by the delimiter ":". The bound pair list gives
the bounds of all subscripts taken in order from left to
right.

5.2.3.2 Dimensions. The dimensions are given as the
number of entries in the bound pair lists.

5.2.3.3 Types. All arrays declared in one declaration
are of the same quoted type. If no type declarator is
given, the type 'REALI is understood.

5.2.4 Lower Upper Bound Expressions

5.2.4.1 The expressions wi II be evaluated in the same
way as subscript expressions (cf. paragraph 3.1.4.2).

5.2.4.2 The expressions can only depend on variables
and procedures which are nonlocal to the block for which
the array declaration is valid. Consequently, in the out­
ermost block of a program, only array declarations with
constant bounds may be declared.

5.2.4.3 An array is defined only when the values of all
upper subscript bounds are not smaller than those of the
corresponding lower bounds.

5.2.4.4 The expressions wi II be evaluated once at each
entrance into the block.

5.2.5 The Identity of Subscripted Variables

The identity of a subscripted variable is not related to
the subscript bounds given in the array declaration.
However, even if an array is dec lared 'OWN', the
values of the corresponding subscripted variables will,
at any time, be defined only for those variables which
have subscripts within the most recently calculated sub­
script bounds.

5.2.6 OWN Array Dec laration

In an OWN array declaration, the elements of an array
may be assigned a set of values at compile time by ap­
pending to the array identifier a replace operator fol­
lowed by a list of values which are to be assigned to
successive elements of the array (the first subscript var­
ies most rapidly). The value list is terminated by the
semicolon which ~Iso terminates the statement. Elements
of the array which are not explicitly assigned a value
are assigned the value of the immediately preceding
element; e.g.,

'OWN' 'INTEGER' 'ARRAY' PHI (0:12),
OMEGA (0: 3, -1: 1):= 0,1,2,4,

0, ", 8 i

will assign the values as follows:

OMEGA (0, -1) 0
OMEGA (1, -1) 1
OMEGA (2, -1) 2
OMEGA (3, -1) 4
OMEGA (0, 0) 0
OMEGA (1, 0) 0
OMEGA (2, 0) 0
OMEGA (3, 0) 0
OMEGA (0, 1) 8
OMEGA (1, 1) 8
OMEGA (2, 1) 8
OMEGA (3, 1) 8

The values assigned must be of the type declared.

5.3 Switch Declarations

5.3.1 Syntax

switch-I ist = designational-expression Iswitch-I ist,
designational-expression

switch-declaration = 'SWITCH ' switch-identifier :=
swi tch-I ist

5.3.2 Examples

'SWITCH' 5 := 51,52, Q(M), 'IF' V>-5 'THEN' 53
'ELSE' 54

'SWITCH ' Q := P1, W

5.3.3 Semantics

A SWITCH declaration defines the set of values of the
corresponding switch ·designators. These values are giv­
en one by one as the values of the designational expres­
sions entered in the switch list. With each of these
designational expressions, there is associated a positive
integer, 1,2, •.. , obtained by counting the items in the
list from left to right. The value of the switch desig­
nator corresponding to a given value of the subscript
expression (cf. paragraph 3.5 Designational Expressions)
is the value of the designational expression in the switch
I ist having this given value as its associated integer.

5.3.4 Evaluation of Expression in the Switch List

An expression in the switch list will be evaluated every
time the item of the list in which the expression occurs
is referred to, using the current values of all variables
involved.

5.3.5 Influence of Scopes

If a switch designator occurs outside the socpe of a quan­
tity entering into a designational expression in the switch
list, and an evaluation of this switch designator selects
this designational expression, the conflicts between the

identifiers for the quantities in this expression and the
identifiers whose declarations are valid at the place of
the switch designator wi II be avoided through suitable
systematic changes of the latter identifi ers.

5.4 Procedure Declarations

5.4.1 '. Syntax

formal-parameter = identifier

forma I-pa rameter-I i st = forma I-parameter I forma 1-
parameter-I ist parameter-del imiter
forma I-parameter

forma I-parameter-part = empty I (forma I-parameter-
list)

identifier-I ist = identifier I identifier-I ist, ideritifi er

value-part = 'VALUE I identifier-I ist ; I empty

specifier = 'STRING')typel'ARRAy,!type 'ARRAy,1
'LABEL'I'SWITCH'I'PROCEDURE'
type 'PROCEDURE I

spec ification-part = spec ifier identifier-I ist ;1
spec ification-part spec ifi er
identifier-I istl empty

procedure-heading = procedure-identifier formal­
parameter-part; va lue-part
spec ification part

procedure-body = statement

procedure-dec laration = I PROCEDURE I procedure
heading procedure-body Itype
'PROCEDURE' procedure-heading
procedure body

5.4.2 Examples

I PROCEDURE I SPUR (A) ORDER: (N) RESU LT : (5) ;
'VALUE' N ; 'ARRAY' A; 'INTEGER ' N ;
'REAL' 5 ;
'BEGIN' 'INTEGER ' K ;
5 := 0
'FOR ' K := 1 'STEP ' 1 'UNTIL ' N IDOl
5 := 5 + A (K, K) 'END'

'PROCEDURE ' INNERPRODUCT (A, B) ORDER:
(K, P) RESULT: (Y) ;

'VALUE' K ;
'INTEGER ' K, P ; 'REAL' Y, A, B ;
'BEGIN' 'REAL' 5 ; 5 := 0 ;
'FOR ' P := 1 'STEP ' 1 'UNTIL ' K IDOlS := 5 +A*B ;
Y:= 5
'END' INNERPRODUCT

5.4.3 Semantics

A procedure declaration serves to define the procedure
associated with a procedure identifier. The principal
constituent of a procedure declaration is a statement,

29

the procedure body, which through the use of procedure
statements and/or function designators may be activated
from other parts of the block in the head of which the
procedure dec laration appears. Assoc iated with the
body is a heading, which specifies certain identifiers oc­
curring within the body to represent formal parameters.
Formal parameters in the procedure body wi II, whenever
the procedure is activated (cf. paragraphs 3.2 Function
Designators and 4.7 Procedure Statements), be assigned
the values of or replaced by actual parameters. Iden­
tifiers in the procedure body which are not formal wi II
be either local or nonlocal to the body depending on
whether or not they are declared within the body. Those
which are nonlocal to the body may well be local to the
block in the head of which the procedure declaration
appears. The procedure body always acts like a block,
whether it has the form of one or not. Consequent I y,
the scope of any label labeling a statement within the
body or the body itself can never extend beyond the
procedure body. In addition, if the identifier of a for­
mal parameter is declared anew within the procedure
body (including the case of its use as a label as in para­
graph 4.1.3), it is thereby given a local significance and
actua I parameters wh ich correspond to it are inaccessi­
b�e throughout the scope of this inner local quantity.

5.4.4 Values of Function Designators

For a procedure declaration to define the value of a
function designator, there must, within the procedure
body, occur one or more explicit assignment statements
with the procedure identifier in a left part; at least one
of these must be executed, and the type associated with
the procedure identifi er must be dec lared through the
appearance of a type declarator as the very first symbol
of the procedure declaration. The last value so assigned
is used to continue the evaluation of the expression in
which the function designator occurs. Any occurrence
of the procedure identifier within the body of the pro-
cedure other than in a left part in an assignment state­
ment denotes activation of the procedure.

5.4.5 Spec ifi cations

In the head ing, a specifi cation part, giving information
about the kinds and types of the formal parameters by
means of an obvious notation, may be included. In this
part, no formal parameter may occur more than once.
Specifications of formal parameters must be supplied,
unless the parameter is called by name and the declara­
tor is simply 'REAL' or 'INTEGER ' •

If the specification of a formal parameter called by
value conflicts in type with the corresponding actual
parameter in that one is of type real and the other is of
type integer, the value will be transferred to the type
requested by the specification.

30

If the specification of a formal parameter called by
name conflicts in type with the corresponding actual
parameter in that one is of type real and the other is of
type integer, the type of the actual parameter wi II be
used.

If any other confl ict between the spec ifi cation and
the corresponding declaration exists, the program is
undefined.

5.4.6 Recursive Call ing of Procedures

5.4.6.1 Definition. A procedure is said to be called
recursively when the execution of one of its statements
requires that the procedure be re-entered with new
arguments. The procedure wi II eventua II y be exi ted
repeated Iy or the program wi II not terminate.

Every procedure is potentially recursive.

5.4.6.2 Kinds of recursive calls. Recursive calling may
occur in any of the following ways:

A statement of the procedure may explicitly call the
procedure.

A statement of the procedure may call another proce­
dure which, perhaps at many levels ' distance, calls
the original procedure.

The procedure name may be an actual parameter to
the procedure.

An expression wh i ch ca lis the procedure may be an
actual parameter, called by name, to the procedure.

(In the last two cases, recursion occurs at every refer­
ence to the corresponding formal parameter.)

An expression which calls the procedure may be an
actual parameter, called by value, to the procedure.
In this case, one level of recursion occurs.

5.4.6.3 Behavior of variables under recursion. At each
level of recursion, each non-OWN variable is rede­
clared and takes on a new identity. Its value is unde­
fined at the entrance to the dec laring block; at the exit
from the declaring block, its previous value is regained.
All current values of each variable are retained; previ­
ous values are used in evaluating parameters called by
name.

Each OWN variable, however, has a unique identity.
Its previous va I ue is avai lable for use at re-entrances to
the declaring block; its new value, if any, is retained at
the exit. If the variable participates in the evaluation
of a parameter called by name, its then-current value
is the one used.

5.5 External Procedure Declarations

5.5.1 Syntax

procedure-identifier-list = procedure-identifierl
procedure-identifi er-I ist,
procedure-identifi er

external-procedure-dec laration = 'EXTERNAL'
procedure-identifier-li stl type
'EXTERNAL' procedure-identifier­
list

5.5.2 Examples

'EXTERNAL' INTEGRA nON
'REAL' 'EXTERNAL' SINH, COSH, TANH

5.5.3 Semantics

An externa I procedure dec laration dec lares that the
identifiers associated with it are names of procedures to
be compiled separately. Outside the block in which
the external dec laration appears, the procedure identi­
fiers may be redeclared as other quantities; however,

the names of the external procedures required by any
compilation must be unique in the first eight characters.

The dec laration of type serves to distinguish those
procedures which may be called as function designa-­
tors. If the type differs from the type declared with
the procedure body when it is compi led in that one is
of type real and the other is of type integer, the latter
takes precedence. If any other conflict exists, the pro­
gram is undefined.

5.5.4 Program Organization

A program may be compi led all together or it may be
broken into two or more compi lations according to the
fo lIowi ng ru les.

1. Each compi lation consists of a complete block
or a complete procedure.

2. Compi lations which are to be executed together
are all procedures, except one.

3. The procedures are loaded first; the single block last.
Each procedure is followed by the characters; *.
Each block is followed by the character *.

5.5.5 Non-ALGOL Code (see Appendix F)

Coding in languages other than ALGOL may appear in
external procedures, provided that the entire procedure
is in non-ALGOL code and that it adheres to the entry
and exit conventions compiler output requires. The
standard functions are examples of external procedures
in non-ALGOL code.

31

APPENDIX A
DELIMITER CHARACTER SET

ALGa L Reference SDS Typewriter Printer
Language Character Character

+ & +

x * *

/ / /
\ \

+ ** **

< < <
::; =< Otr <= same

2:: => or >= same

> > >

I <> or >< same

-

> » »
V IORI IORI

1\ IANDI IANDI

INOT' 'NOT I

10

.= .= .=
()) or [] []
[]) or [] []

II II II II

Notes

1. On output, (is converted to [and) is converted to].

2. Same: the characters in the source program will be printed.

3. The final character of each compilation is printed as * .

32

APPENDIX B
RESERVED LEXICON WORDS

'AND' 'FOR' 'REAL'
'ARRAY' I FORMAT' 'STEP'
'BEGIN' IGO TO' 'STRING'
'BOOLEAN' 'IF I 'SWITCH '
'COMMENT ' 'INTEGER' 'THEN'
IDOl 'LABEL' 'TRUE'
'ELSE' 'NOT ' 'UNTIL'
'END' 'OR' 'VALUE'
'EXTERNAL' 'OWN' 'WHILE'
'FALSE' 'PROCEDURE'

APPENDIX C
STANDARD FUNCTIONS AND PROCEDURES

Number of Type of
Function Description Arguments Result

ABS absolute value real

SIGN + 1, 0, or -1 integer

SQRT square root real

SIN sine real

COS cosine real

ARCTAN arctangent 2 real

LN logarithm real

EXP exponential real

MIN minimum 2 real

MAX maximum 2 real

MOD modulo 2 real

Procedures

INPUT initiate input 2 none

OUTPUT initiate output 2 none

10 transmit variables variable none

ENDIO terminate input/output none none

INPUT and OUTPUT require one arithmetic expression and one designational expression as
arguments.

Arguments of the other procedures and functions are arithmetic; i. e., eithei ieal or integer.

33

APPENDIX D
NOTES TO USERS OF THE ALGOL 60 COMPILERS

Procedures may reference themse I ves.

'PROCEDURE ' P(X,4); ... P(M,N) ... ;

The bounds of arrays are optionally signed integer
constants.

Arithmetic OWN variables are automatically initialized
to zero. Boolean OWN variables are automatica lIy ini­
tia�ized to 'FALSE ' . No other initialization isprovided.

A GO TO that allows an undefined label (that is, in a
switch) is left undefined.

The following features are included only in the ex­
panded (ALGOL 60-8) system:

All identifiers may be used prior to declaration.

Dynamic array bounds are allowed.

Procedures can be called recursively with a call by
value OWN array as an argument.

The following restrictions apply only to the basic (ALGOL
60-4) system:

Each identifier declared must be declared before any
reference is made to it. Specifically, variables and
arrays must be dec lared before be ing referenced.
Switches must be fully declared before being refer­
enced. The example below wou Id be incorrect:

'SWITCH ' S: = ... S(N) ...

Labels may be declared after being referenced; how­
ever, in this case the identifier representing the
label may not be within the scope of another dec­
laration of it.

Identifiers whose first eight characters are identical
are treated as identical in the small system.

APPENDIX E
NOTES TO USERS OF THE ALGOL 60 -4 EXECUTORS

Programs containing dynamic array bounds or arrays as
parameters called by value cannot be executed using
the smaller executors.

34

For this purpose a dynamic array is defined as an array
any of whose bounds is other than an integer number as
defined in Section II paragraph 2.5.1.

Input/output is restricted to paper tape, typewriter, and
punched cards (code = 0, 1 or 2).

APPENDIX F
NON-ALGOL CODE

It may be necessary or desirable to write parts of an
ALGOL program in a non-ALGOL language for reasons
of efficiency, convenience, or extending the language.
Machine language subroutines run faster than ALGOL
subroutines since neither the command nor the address
of an instruction needs to be interpreted. Subroutines
may be conveniently included in an ALGOL program
without the need for reprogramming. The ALGOL com­
piler has no facility for performing operations like pack­
i ng and unpacki ng parti al word data, i nput/ output of
octal data and stOring manipulation, for example. In­
cluding subroutines to perform these functions extends
the language.

Non-ALGOL procedures are ordinarily coded in SYM­
BOL or META-SYMBOL. The ALGOL Loader incorpo­
rates all the features in the MONARCH Loader and is
thus equipped to load SYMBOL or META-SYMBOL out­
put.

REFERENCES TO NON·ALGOL PROCEDURES

Non-ALGOL procedures may be referenced by the
ALGOL section of the program as though they were
coded in ALGO L. They may be referenced by functi on
designators or by procedure statements. The external
declarations for them follow the rules for other external
procedures. The values returned by function designators
contribute to the arithmetic expression of which they
are a part in the usual way. Parameters of non-ALGOL
procedures may be as general as those of ALGOL pro­
cedures, and parameters may be call ed by name or by
value. (Remember that the call procedure determines
which parameters are called by name and which by
val ue.)

EXECUTION LANGUAGE AND MACHINE LANGUAGE

Every non-ALGOL procedure must begin and end with
several memory words corresponding to those generated
by the compi I er for ALGO L procedures. On entrance
to all procedures the executor is processing and inter­
preting instructions in the execution language described
in Appendix A of the ALGOL Technical Manual (publi­
cation 90 06 99A). Within the body of a non-ALGOL
procedure, the programmer may switch freel y back and
forth between execution language and machine language
provided that he executes the proper transitional com­
mands. For example, a mixture of the two languages is
ordinarily used in referencing formal parameters.

USE OF EXECUTION LANGUAGE IN SYMBOL AND
META·SYMBOL
An illustration of one way the ALGOL execution language
may be convenieni Iy used through SYMBOL and META­
SYMBOL follows. Two of the execution language for­
mats, the instruction and the descriptor, are in common
use. Instructi ons may be defi ned in both assembl ers by
means of OPD directives.

BPRO OPD 04100000

$SIN BPRO START,O

The OPD directive defines the command (Begin Procedure)
asequivalent to octal code 41 in the command field
(commands and their codes are found in the ALGOL
Technical Manual, Appendix A, Section IV). There­
after, in coding, the execution language command and
address correspond to the SYMBOL/META-SYMBOL com­
mand and address; the execution language flag (Oabove)
is written in the index field.

To define the descriptor format, a FORM directive is
recommended:

DESC FORM 3,2,4,15

x DESC 2, 1,0, BLOCK

The descriptor shown is of type 2 (call by name). It
describes X, a real array (1 = real, 0 = no dimensions)
in the block beginning at the symbol BLOCK. The
language may be made more readable by defining ad­
ditional symbols.

NAME EQU 2
VALUE EQU 4
INTEGER EQU 0
REAL EQU 1
BOOLEAN EQU 2
VARIABLE EQU 0
VECTOR EQU 1
ARRAY EQU 2

X DESC NAME, REAL, VARIABLE,
BLOCK

35

In the exampl es below it is assumed that the foil owi ng
definitions have been presented to the assembler:

*ALGOL EXECUTION LANGUAGE COMMANDS

LOAD
BPRO
EPRO
EXIT

OPD
OPD
OPD
OPD

*DESCRIPTOR DEFINITIONS

DESC
NAME
VALUE
INTEG
REAL
VARI

FORM
EQU
EQU
EQU
EQU
EQU

00100000
04100000
04200000
05100000

3,2,4, 15
2
4
o
1
o

Several quantities in the executor are needed by non­
ALGOL procedures. They are

A the 2-word pseudo-accumulator
ATYPE an integer representi ng the type of the

accumul ator:

EXEC

o = INTEGER, 1 = REAL,
2 = BOOLEAN

the entrance to the executor

The following definitions, which apply to all ALGOL
versi ons, are al so assumed in the exam pi es below:

A
ATYPE
EXEC

EQU
EQU
EQU

0160
0167
0360

CODING NON·ALGOL PROCEDURES

For coding of non-ALGOL procedures the skeleton of
the procedure is

36

$NAME BPRO
PZE
PZE
PZE

ST ART the address of the body
EN D the address of the end
NUMPAR the number of parameters
o

X
Y

START

END

DESC
DESC

LOAD
EXIT

BRM
LOAD
EXIT

BRM
EPRO
END

X,4
$+1

EXEC
Y,4
$ + 1

EXEC

exits execution language

(the first actual param-
eter is now in cells A and
A + 1; its type is in
ATYPE. Assemb Iy code
is written here to save,
test, or operate on this
parameter.)

enters execution language

{the body of the pro-
cedure goes here}

The programmer should note the fo!lowing:

1. The name of the procedure is external and appl i es
to the BPRO command.

2. The BPRO command is followed immediately by
three special words and the parameter descriptors.

3. The instruction II EXIT II changes from interpretive mode
to machine language and branches to the address given.
The instruction "BRM EXEC" reenters the interpre­
tive mode at the following instruction.

4. At exit the program must be in the interpretive
mode. If the procedure is called as a function, A
must contain the function's value and ATYPE must
contain the type of the value.

5. The body of the procedure may make use of pro­
grammed operators (on 900 Seri es Computers), the
ALGOL error subroutines, and other features of the
executor. The ALGOL library furnishes examples
of non-ALGOL procedures.

INDEX

- A -

Actual-Formal correspondence, II 4.7.4
Alphabetic Information, transmission of, II 4.8.3.2; 114.8.4;

also see A, H, X, and $ (dollar) Specifications.
AN D, I 3.2.2; II 2.3; II 3.4.5
Arguments, II 3.2.5; also see Parameters.
Arithmetic Expressions, I 3.1; II 3.3; II 4.6.4.1

elements, I 3.1.1
operators, I 3.1.2; II 3.3.1; II 3.3.4

Arithmetics of.REAL quantities, II 3.3.6
ARRAY, I 4.4.2; II 2.3; II 5.2.1; II 5.4.1
Array Declarations, II 5.2
Arrays, I 2; I 2.5; II 3.2.5; II 5.2
A Specification, II 4.8.3.2
Assignment Statement, 12. 1; 14; 14.1; II 1; II 3.2.5; 114.2

- B -

Basi c Concepts, II 2
BEGIN, I 4.9; I 4.10; II 1; II 2.3; II 4.1.1; II 5
Behavior of Variables under Recursion, II 5.4.6.3
Binary Information, transmission of, 114.8.4
Blanks, I 1; I 2.3; II 2.3; II 2 .. 6.3; II 4.8.3.2
Blocks, I 1.4; I 2; 14; 14.10; II 1; II 4.1; II 4.3.4; 114.7 .3.1
Body Replacement and Execution, II 4.7 .3.3
BOOLEAN, 12.1; 14.4.2; II 2.3; II 2.8; II 4.2.4; II 5.1.1
Boolean Statements

assignment statement, I 4; I 4.2
elements, 13.2.1
expressions, 113.3.1, II 3.4.
operators, I 3.2.2; II 3.4.5

Bounds of Subscripts, II 5.2.3.1; II 5.2.4

- C -

Calls
by name, I 4.4.1; II 4.7.3.2; II 5.4.5; 115.4.6.3
by value, 14.4.1; 113.2.5;114.7.3.1;114.7.5.4;115.4.5

COMMENT, I 1.2; II 2.3
Comments, I 1; I 1.2; II 2.2.2
Compi lation, I 5; II 5.5.4
Compound Statement, I 4; I 4.9; II 4.1; II 4.3.4
Conditional Statement, 14; 14.7; II 4.5; II 4.5.3.2; II 4.5.4
Constants, I 2; I 2.2
Controlled Variables, Value of, II 4.6.5
Conversion of Data, II 4.8.3.1

- D -

$ Speci fi cation, II 4.8.3.2
Data, Conversion of, II 4.8.3.1
Declarations, 11; I 1.3; I 2; II 1; II 5; II 5.2; II 5.2.6;

II 5.3; II 5.4; II 5.5
Definition of Variables, I 2.1
Delimiters, II 2.3; II 4.7.6
Designationa! Expressions, I 3.3; II 3.5; II 4.3.3; II 4.4;

also see Labels.

Digits, II 2.2.1
Dimensions, II 5.2.3.2 .
DO, I 1. 1; II 2.3
Dummy Statements, I 4. 11; II 4.4

- E -

ELSE, I 1.2; II 2.3; II 3.3.3; II 4.5.1
END, I 1.2; I 4.9; II 1; II 2.3; II 4.1.1; II 5
ENDIO, II 4.8.3; II 4.8.4
ENTlER, II 3.2.5; II 4.2.4
Equi valent (=), II 3.4.5
E Speci fication, II 4.8.3.1
Evaluation of Switch Lists, II 5.3.4
Execution, I 1.4; I 2.8; II 4; II 4.7 .3.3
Expressions, I 3; II 3; II 4.7 .5.2

Arithmetic, I 3.1
Boolean, I 3.2
Designational, I 3.3

EXTERNAL, I 2.8; I 5; II 5.5.1
External Procedure Declaration, II 5.5

- F -

FALSE, I 2.2; I 3.2.1; II 2.2.2; II 3.4.5; II 5.1.3
FOR, I 2.1; I 4; I 4.8; I 4.9; II 2.3; II 4.6; II 4. 6.6
FOR List Elements, II 4.6.4
Formal Parameters, I 4.4.2; II 4.7.4
FORMAT, II 4.8
Format Statement, I 4; I 4.5; II 4.8
F Specification, II 4.8.3.1
Function Designators, I 4.4; II 3.2
Function Table, II 3.4.5

- G --

GO TO, I 1.1; I 4; I 4.3; II 2.3; II 4; II 4.3; II 4.6.6; II 5

- H -

H Specification, II 4.8.3.2

- I -

Identifiers, 12; II 2; II 2.1; II 2.4; 114.1.3; 114.7.5.3;115
Identity of Subscripted Variables, II 5.2.5
IF Statement, I 4; I 4.6; I 4.9; II 2.3; II 3.3.1; II 3.3.3;

II 4.5.1; II 4.5.3.1
Implies, II 3.4.5
Influence of Scopes, II 5.3.5
Initialization of OWN Variables, II 5.1.4
INPUT, I 4.5; II 4.8.3; II 4.8.4
Input/Output, II 4.8.4
INTEGER, I 2.1; I 4.4.2; II 2.3; II 2.5.4; II 2.8; 113.1.4.2;

II 3.2.5; II 3.3.4; II 4.2.4; II 5.1.1; II 5.4.5
Integer Values, I 2.2; II 3.1.4.2; II 3.3.6
la, II 4.8.4
I Specification, II 4.8.3.1

37

- K -

Kinds of Recursive Calls, II 5.4.6.2

- L -

LABEL, I 4.4.2; II 2.3; II 5.4. 1
Labels, I 2; I 2.6; II 1; II 4; II 4.1.3; II 4.3.4; also see

Designational Expressions.
Language, Structure of, II 1
Letters, I 1; II 2.1
Lexicon Words, I 1.1; Appendix B
Logical Values, II 2.2.2
Lower Bounds, II 5.2.4

- N -

Named Statements, I 2.6
Name Replacement, II 4.7 .3.2
Non-ALGOL Code, II 5.5.5; Appendix F
NOT, I 3.2.2; II 2.3; II 3.4.5
Numbers, I 1; II 2; II 2.5

types of, II 2.8
value of, II 2.8

-0-

Operators and Types, II 3.3.4
OR, I 3.2.2; II 2.3; II 3.4.5
OUTPUT, I 4.5; II 4.8.3; II 4.8.4
OWN, I 2.1; I 2.4; I 4.10.1; II 2.3; II 5; II 5.1.4;

II 5.2.5; II 5.2.6; II 5.4.6.3
OWN Array Declaration, II 5.2.6

- P -

Parameter Delimiters, II 4.7.6
Parameters, Spec ification of Formal, I 4.4.2; II 4.7 .3.1;

II 4.7.4; II 4.7 .5.2; II 5.4.5
Parentheses for Grouping; I 3.1.2; II 3.3.3; II 3.3.5.2;

II 4.8.3
Precedence

arithmetic operations, I 3.1.2; II 3.3.5
Boolean operations, I 3.2.2; II 3.4.6

PROC E DURE, I 4.4.2; II 2.3; II 5.4.1
Procedure Declarations, II 5.4; II 5.5
Procedures, I 2; I 2.8; Appendix C
Procedures, Recursive Calling of, II 5.4.6
Procedure Statement, I 4; I 4.4; II 4.7
Program Form, I 1; II 1
Program Organization, II 5.5.4

-Q-

Quantities, Kinds and Scope, II 2.7
Quotation Marks (Single), I 1.1; I 2.3

- R -

REAL, I 2.1; I 4.4.2; II 23; II 2.8; II 3.2.5; II 3.3.4;
II 3.3.6; II 4.2.4; II 5.1.1, II 5.2.3.3; II 5.4.5

Real Va lues, I 2.2; II 3.3.6
Recursive Calling of Procedures, II 5.4.6

38

References, I 2
Relations, II 3.4.5
Replacement Operator, I 4.1
Restrictions on Procedures, II 4.7.5

- S -

Scale Factor, II 2.5.3; II 4.8.3.1
Single Quotation Marks, I 1.1; I 2.3
Space, II 2.6.3
Special Characters, I 1
Specification of Formal Parameters, I 4.4.2; II 4.7.3.1;

II 4.7.4; II 4.7 .5.2; II 5.4.5
Standard Functions, I 5.1; II 3.2.4; Appendix C
Statements, I 1; I 1.4; I 2.6; I 4; II 4
STEP, II 4.6.1
Step-Unti I Element, II 4.6.4.2
STRING, I 4.4.2; II 2.3; II 5.4.1
Strings, I 2; I 2.3; II 2; II 2.1; II 2.6; II 4.7.5.1
Structure of the Language, II 1
Subscript Bounds, II 5.2.3.1
Subscripted Vari ables, II 5.2.5,
Subscripted Expression, II 3.5.4
Subscripts, I 2.5; II 3.1.4; II 3.2.5; II 3.4.5
SWITCH, 14.4.2; II 2.3; II 5.3.1; II 5.4.1
Switch Declarations, II 5.3
Switches, I 2; I 2.7; II 4.3.5
Switch list, II 5.3.4
Symbols, Basi c, II 2

- T -

THEN, II 2.3; II 3.3.1; II 3.3.3; II 4.5.1
Transfers of Types, II 3.2.5
Transmission of Alphanumeric Data, II 4.8.3.2
TRUE, I 2.2; I 3.2.1; II 2.2.2; II 3.3.3; II 3.4.5; II 5.1.3
T ruth Table, II 3.4.5
Tape Declarations, II 3.4.4; II 5.1
Types of Arrays, II 5.2.3.3
Types of Variables, I 2.1; II 2.5.4; II 3.1.3; II 3.3.4;

Tl ~ A A. Tl A ? A
.La. V.~.-"TI a..L -y.£...-r

- U -

UNTIL, II 2.3; II 4.6.1

-V­

VALUE, I 4.4.1; I 4.4.2; II 2.3; II 5.4.1
Value Assignment, II 4.7 .3.1
Value of Variables, I 2.1; II 4.6.5; II 5.4.6.3
Values and Types of Numbers, II 2.8
Va lues of Function Designators, II 5.4.4
Variables, I 2; I 2.4; II 3.1; II 5.4.6.3
Variables, Subscripted, II 5.2.5

-w-
WHILE, II 2.3; II 4.6.1; II 4.6.4.3

- X -

X Specification, II 4.8.3.2

	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38

