Xerox 900,/9300 Meta-Symbol

Technical Manual

90 08 27C July 1971

Xerox Data Systems XEROX

701 South Aviation Boulevard
El Segundo, California 90245
213 679-4511

Xerox 900,/9300 Meta-Symbol

Technical Manual

90 08 27C July 1971

Price: $18.50

1965, 1966, 1967, 1971, Xerox Data Systems, inc. . Printed in U.S.A.

REVISION

This publication is a revision of the Xerox META-SYMBOL/Technical Manual, Publication
Number 90 08 27B (dated October, 1967). Sections 6 and 7 have been added, as well as
Appendixes B and C. All changes in the text from that of the previous manual are indicated

by a vertical line in the margin of the page.

NOTICE

The specifications of the software system described in this publication are subject to change
without notice. The availability or performance of some features may depend on a specific
configuration of equipment such as additional tape units or larger memory. Customers should

consult their XDS sales representative for details.

Section

CONTENTS

Page

INTRODUCTION v

META-SYMBOL ASSEMBLY SYSTEM OVERALL DATA FLOW

(P00 Series Only) v v v i it ittt ittt it it e 1-1

META-SYMBOL ASSEMBLY SYSTEM OVERALL DATA FLOW

(9300 Only) o v vttt ettt e e e e e e e e e e e 1-1

DETAILED DESCRIPTION OF THE META-SYMBOL ASSEMBLY

SYSTEM (900 Series Only) . ..o v v vttt it it i e e eie e 2-1

DETAILED DESCRIPTION OF THE META-SYMBOL ASSEMBLY

SYSTEM (9300 Only) « vt it i et e e e e e et e et e 2-1

INDIVIDUAL DESCRIPTION AND FLOWCHARTS

a. Basic Tape Loader (900 Series Only)o v 3-1
MSCONTRL (900 Series Only) i, 3-3
MSCONTRL (9300 Only) v oo v i it et it e i i e e e 3-3

b. ENCODER (900 Series Only) v v v i i ittt en.. 3-39
ENCODER (9300 Only). v o v v v v e et e it e e e e i e i e 3-39
R 3-94
MONT1 (900 Series Only) oo i i i i i ittt i i i 3-114

c. PREA (900 Series Only). . o vt v v vt i ittt i i 3-117
PREA (9300 Only) & v v i it ittt e e ittt i e e e 3-117
SRNK f e e e e et e e et 3-155

d. PAST (900 Series Only). ¢ ¢ v v v vt i ittt e et 3-169
PAST (9300 Only) « vt it i i i it e i i it i e e 3-169
Programmed Operators (900 Series Only).o v v vt 3-240

e. PAS2 (900 Series Only). . v o v i i it it it i e e 3-299
PAS2 (9300 Only) v v v vt i it ittt i i e e e 3-299
FNSH (900 Series Only) v v v v v v i ittt et i e et i i et i e e 3-341

FNSH (9300 Only) . « v o v ve e e et et e e e e 3-34]

Section

4

Page

ITEM AND TABLE FORMATS USED IN META-SYMBOL (900 Series Only. . 4-1

ITEM AND TABLE FORMATS USED IN META-SYMBOL (9300 Only) 4-1
OPERATIONAL INFORMATION (900 Series Only). o 5-1
META-SYMBOL CONCORDANCE OPTION (900 and 9300 Series). 6-1
ITEM AND TABLE FORMATS USED BY THE CONCORDANCE PROGRAM
(900 and 9300 Series) .« = v v v v v e i e e e e e e e e e e e e e e e e e 7-1
APPENDIX A. LISTING OF SUBROUTINES. A-1
APPENDIX B. HOW TO MAKE A 900 META-SYMBOL SYSTEM B-1
Figure B-1. META-SYMBOL Overlay Structures. B-16

APPENDIX C. 900 SERIES META-SYMBOL ENCODED FORMAT C-1

INTRODUCTION

The META-SYMBOL Technical Manual will be an aid in maintaining the 900 Series and 9300
programming systems as well as being a reference manual suitable for an operations guide in
using the system. No definition or explanation of the source language is provided; it is assumed
that the reader is familiar with the language as well as the XDS computers and their peripheral
equipment. The language is described in Xerox Data Systems publication XDS 90 05 068,
SYMBOL and META-SYMBOL Reference Manual

This manual contains four major parts. The first part (Section 1) gives an overall picture of
the assembly system and the monitor META-SYMBOL relationships. The secondpart (Sections 2
and 3) is a detailed explanation of the assembly system, explaining the various programs
and routines used. The third part (Section 4) describes item and table formats. The combin-
ation of parts 2 and 3 is a basic maintenance manual for the assembly system. The fourth part
(Sections 5 and 6) is a self-standing operations reference manual for machine room use. The

Appendixes — whose titles are self-explanatory — give further detailed information.

The 900 Series and 9300 META-SYMBOL have some differences. The most significant
difference is caused by the fundamental differences in the monitors META-SYMBOL operates
under. The 900 Series monitor (MONARCH) is not resident, while the 9300 monitor
(MONITOR) is resident. The 900 Series META-SYMBOL does its own 1/O which is initial ized
using the UAT (unit assignment table) set up by MONARCH. The 9300 META-SYMBOL does
its I/O through MONITOR.

When information is applicable to only the 900 Series or to only the 9300, the fact is noted at

the top of the page.

In the sections that follow, references to "the system tape" should be construed as references to
"the system file" when META-SYMBOL is operating within the RAD MONARCH environment.
In the RAD MONARCH system, S is always RAD-resident; however, X1 and X2 may be
optionally assigned to the RAD.

900 Series Only

SECTION |
META-SYMBOL ASSEMBLY SYSTEM OVERALL DATA FLOW

Figure 1 illustrates the overall data and program flow for the META-SYMBOL assembly system.
Each of the program boxes represents a separate core overlay of the system. Each overlay in
turn represents a group of records (one or more labeled segments) on the MONARCH system tape .
The first segment of the assembly system (META) is loaded by MONARCH. All other segments
(except MONARCH) are loaded by an absolute tape load program loaded with the META and
left in low memory. MONARCH is reloaded at the end of the assembly process by means of the
MONARCH bootstrap routine, left residing in high memory .

Although the diagram shows a card-oriented system, the META-SYMBOL assembly system has a
complete range of self-initializing 1/O capability, dependent on the setting of UAT and MSFNC
by MONARCH, which allows the user to relate |/O functions and devices at assembly time.

The processing of control records within the assembly system is performed by MONARCH. From
the ASSIGN and METASYM control cards MONARCH sets up two communication regions for the
assembler; the first of these is the Unit Assignment Table (UAT) which indicates the unit and
channel assignments for the various |/O devices and options which the assembly system may use .
The second communication region is a cell, MSFNC, in which MONARCH indicates the 1/0
functions to be performed for a given assembly as determined from the METASYM control card.

After setting MSFNC, MONARCH loads the first overlay of the system: META.

The ENCODER portion of META reod; and processes the input program which may be symbolic,
or encoded, or encoded with symbolic corrections. The ENCODER outputs an intermediate pro-
gram tape (X1) and, if requested, a new encoded file. If no additional processing is requested,
the ENCODER returns control to MONARCH. [f additional processing is required, the
ENCODER calls a basic tape loader routine to load the PREA (preassembler) routine.

When loaded, PREA, has at its disposal in core the dictionary for the encoded program and the
balanced tree search table for searching the dictionary as constructed by the ENCODER. PREA
processes the selected standard system procedures from the system tape, defining only those pro-
cedures which are used within the user's program. The preassembler also defines the directives

for the assembler and converts the dictionary from the ENCODER format to the format used by the

======xfp PROGRAM LINKAGE

———— DATA FLOW
Symbolic
Records

[Encoded
Program

META (ENCODER)

Encode program.
Leave dictionary

900 Series Only

| Control
Cards

MONARCH
set UAT and
MSFNC

FNSH (FINISH)

Output literals, refer-
encesand END record
on listing and binary

outputs.

in core.

N Std.
ew PROC:s
Encoded) :
Program

PREA (PREASM)

Define directives, define

standard procedures, convert
dictionary to assembler for-
mat. Directives, PROC def-

initions and dictionary left

in core.

SRNK (SHRINK)

dictionary.

Figure 1-1.

Purge unused bytes from e ——

Encoded
Text

(XP

y

Assembly
Listing

PAS2
Do 2nd assembly pass.

-] Generate listing and
binary outputs. Leave
tables and routines in

core. Set QPESW.

1

>

PAS1 (ASSEMBLR)

Do lIst pass of assembly proc-
ess. Reconstruct symbolic pro-
gram. Leave symbol table in
core.

900
1-2

MONARCH-META-SYMBOL Data Flow

900 Series Only

assembler. (See Section 4, Item Formats.) The preassembler then calls the tape loader to load

SRNK (SHRINK).

SHRINK purges the dictionary and byte table constructed by the preassembler to remove unused
bytes. The sole purpose of SHRINK is to minimize the table size and thus maximize available

working storage.

SHRINK calls the tape loader to load PAS1 (assembler pass 1). The input to the assembler
is the encoded text tape (X1) generated by the ENCODER. During pass 1, the assembler defines
the labels used within the program and determines program size in order to set the starting location
for literals. If a symbolic regeneration is requested, the symbolic program is output during pass 1
of the assembler. At the conclusion of pass 1, the external symbol (entry points) definitions are
output in type 1 records, and the external programmed operator definitions are output on type 2
records, provided binary output has been requested. If either listing or binary output has been
requested, assembler pass 1 calls the loader to load PAS2 (assembler pass 2). If no additional out-

put has been requested control returns to MONARCH.

PAS2 is the data-generating pass of the assembly system. Using X1 as input, PAS2 generates the
binary output records and assembly listing. If errors are detected, cell QPESW is set for MONARCH
indicating that errors have been encountered. This cell is important in "assemble-and-go" oper-
ation as a measure of the quality of the binary output. During this second assembly pass, literals
are defined and references to externally defined symbols are flagged and linked. At the con-

clusion of the second assembly pass, PAS2 calls the tape loader to load FNSH (FINISH).

FINISH punches and lists the literals, punches and lists the external symbol references, and
punches the transfer or end card for the binary program file. Upon completion, MONARCH is

reloaded by calling the bootstrap routine which has been retained in high memory.

SUMMARY OF MONARCH-META-SYMBOL COMMUNICATIONS

MONARCH processes the ASSIGN control card and passes on to the assembler the unit and

channel assignment information in the UAT.

MONARCH processes the METASYM control card and passes on to the assembler the functions to
be performed in the form of entries in MSFNC.

900

900 Series Only

MONARCH loads the first overlay of the assembler,

MONARCH determines maximum machine size for the run and locates the bootstrap routine
(QBOOT) and UAT accordingly. The assembler uses the contents of cell 1, which MONARCH
sets to BRU QBOOT, to determine the location of QBOOT and hence the available storage.

MONARCH does all tape positioning in the system. The only positioning performed by the assem-
bler is on scratch tapes X1 and X2 (in the event it is necessary to copy symbolic corrections) and
on the system tape when specific routines are being loaded. Thus, all inputs and/or outputs may

be stacked.

The assembler sets QPESW, program error switch, for MONARCH as a quality indicator for

"assemble -and-go" jobs.

The assembler returns control to MONARCH at the conclusion of all runs by branching to the
MONARCH bootstrap routine QBOOT.

Following are the interpretations given the UAT settings by the assembler.

MONARCH Symbol Assemble Interpretation
QSYSI Scratch tape for corrections (X2)
QMSG Not used

QSYS System tape (S)

QSYMI Symbolic input device (SI)
QSYST Intermediate output tape (X1)
QBINO Binary output device (BO)
QSYMO Listing output device (LO)
QBINI Encoded input device (EI)
QSYSP Encoded output device (EO)
QSYSW Symbolic output device (SO)
QPESW Error switch

Following is the format of MSFNC,

P S1 T0 BO LO El EO SO
Bits 01 23 56 89 1112 1415 1718 2021 23

900
1-4

900 Series Only

The P field indicates by the binary numbers 00, 01, 10, and 11 which of four procedure libraries

are to be used. The other fields indicate the presence or absence of a function by a 1 or 0:

C - compatability mode LO - listing output
SI - symbolic input El - encoded input
TO - intermediate output EO - encoded output
BO - binary output SO - symbolic output

GENERAL RESTRICTIONS AND LIMITATIONS

The META-SYMBOL assembly system requires a minimum configuration of at least 8192 words of

core memory and two magnetic tape units or one MAGPAK pair.

If both encoded and symbolic inputs are present for an assembly and if both these inputs are on
the same peripheral unit, an additional tape unit is needed. One MAGPAK pair of tapes meets

this requirement .

The system does not have the capability to process FORTRAN compatibility directives nor to

process local NAME directives.

SECTION 1
META-SYMBOL ASSEMBLY SYSTEM OVERALL DATA FLOW

Figure 1 illustrates the overall data and program flow for the META-SYMBOL assembly system.
Each of the program boxes, with the exception of MONITOR, represents a separate core overlay.

Each overlay is a labeled absolute binary record on the MONITOR system tape .

MONITOR reads control cards. Assign cards cause MONITOR to set up the |/O linkage. The
META card causes MONITOR to read the first overlay (META) into core and branch to it. The
functions requested on the META card are passed on to META-SYMBOL by a coded word in index
register 2. This word is saved in a cell called OPTION:

T R BT F
Bits 012 45 g 11 1314 17 200 23
P - selects one of four standard procedure sets GO - GO output
E - encoded input = symbolic input BO - binary output
C - compatability LO - listing output
vSO - symbolic output EI - encoded input
EO - encoded output SI - symbolic input

META has two sections: MSCONTRL and ENCODER. MSCONTRL is never overlayed. It con-
tains the 1/O file control routines and a tapeloading subprogram to read each of the succeeding

overlays into core.

The ENCODER portion of META reads and processes the input program which may be symbolic,
or encoded, or encoded with symbolic corrections. The ENCODER outputs an intermediate pro-
gram tape (X1) and, if requested, a new encoded file. If no additional processing is requested,
the ENCODER returns control to MONITOR. If additional processing is required, the
ENCODER ¢alls a basic tape loader routine to load the PREA (preassembler) routine.

When loaded, PREA, has at its disposal in core the dictionary for the encoded program and the

balanced tree search table for searching the dictionary as constructed by the ENCODER. PREA

9300
-1

===l PROGRAM LINKAGE

——» DATA FLOW

| Symbolic
Records

[Encoded
Program

META (ENCODER)

Encode program.
Leave dictionary

9300 Only

in core.

~ Std.
ew PRO
Encoded R(S)C s
Program

PREA (PREASM)

Define directives, define

standard procedures, convert
dictionary to assembler for-
mat. Directives, PROC def-

initions and dictionary left

in core.

SRNK (SHRINK)

dictionary.

MONITOR

Control
Cards

FNSH (FINISH)

Output literals, refer-
encesand END record
on listing and binary

oufputs.

Encoded
Text

(X1)
S

Assembly
Listing

PAS2
Do 2nd assembly pass.

Purge Unused byfes from M

| Generate listing and
binary outputs. Leave
tables and routines in

core. Set QPESW.

1

PAS] (ASSEMBLR)

Do 1st pass of assembly proc-
ess. Reconstruct symbolic pro-
gram. Leave symbol table in
core.

Figre 1-1. MONITOR-META-SYMBOL Data Flow

9300 Only

processes the selected standard system procedures from the system tape, defining only those pro-
cedures which are used within the user's program. The preassembler also defines the directives
for the assembler and converts the dictionary from the ENCODER format to the format used by the
assembler. (See Section 4, Item Formats.) The preassembler then calls the tape loader to load

SRNK' (SHRINK).

SHRINK purges the dictionary and byte table constructed by the preassembler to remove unused
bytes. The sole purpose of SHRINK is to minimize the table size and thus maximize available

working storage .

SHRINK calls the tape loader to load PAS1 (assembler pass 1). The input to the assembler is the
encoded text tape (X1) generated by the ENCODER. During pass 1, the assembler defines the
labels used within the program and determines program size in order to set the starting location
for literals. If a symbolic regeneration is requested, the symbolic program is output during pass 1
of the assembler. At the conclusion of pass 1, the external symbol (entry points) definitions are
output in type 1 records, and the external programmed operator definitions are output on type 2
records, provided binary output has been requested. If either listing or binary output has been
requested, assembler pass 1 calls the loader to load PAS2 (assembler pass 2). If no additional

output has been requested control returns to MONITOR.

PAS2 is the data-generating pass of the assembly system. Using X1 as input, PAS2 generates the
binary output records and assembly listing. If errors are detected, cell QPESW is set to control
the type of return to MONITOR. This cell is important in "assemble-and-go" operation as a
measure of the quality of the binary output. During this second assembly pass, literals are de-
fined and references to externally defined symbols are flagged and linked. At the conclusion of

the second assembly pass, PAS2 calls the tape loader to load FNSH (FINISH).

FINISH punches and lists the literals, punches and lists the external symbol references, and
punches the transfer or end card for the binary program file. Upon completion MONITOR is

reloaded by calling the bootstrap routine which has been retained in high memory .

9300
1-3

900 Series Only

SECTION 2
DETAILED DESCRIPTION OF THE META-SYMBOL ASSEMBLY SYSTEM

PURPOSES OF THE ASSEMBLY SYSTEM

The primary purpose of the assembly system is to provide users of SDS computers a processor capable
of translating symbolic lines of code (written in an advanced assembly language) to machine lan-

guage and to provide the user a listing of the machine language generated as well as a loadable

program tape or deck.
Secondary purposes of the assembly system provide:

1. The user the capability to obtain a condensed representation of the symbolic source pro-

gram (the encoded program).

2. The capabilities to modify symbolically an encoded program and to recover from the

encoded program the symbolic program it represents.

3. The capability to assemble a program or group of programs and to load and execute the
resulting machine language output in essentially a single operation with a minimum of

human intervention.

4, The user the capability to assemble programs written in the SYMBOL, SYMBOL 4, or
SYMBOL 8 programming languages.

5. A system capable of running on a wide range of machine configurations. This includes
the ability to allow the user to assign peripheral devices to the various assembly func-

tions in a convenient manner at assembly time and with a minimum of restrictions.
6. A processor capable of generating machine code for machines other than that on which
META-SYMBOL is operating.
GENERAL CONSIDERATIONS ABOQUT META-SYMBOL

Those routines which process the encoded information on the intermediate output tape X1 and con-
vert it to a machine language program are grouped into three separate machine overloys. These

overlays, PAS1 (ASSEMBLR), PAS2, and FNSH (FINISH) are the assembler, META-SYMBOL.

900

900 Series Only

META-SYMBOL is a 2-pass assembly system with the separate passes PAS1 and PAS2.

FINISH is the end logic of PAS2 and is maintained as a separate overlay for space economy.
(See Figure 2.)

0
Tape loader and POP transfer points
200 '
01340 MSCONTRL
META-SYMBOL routines and programmed operator
routines
DTAB
L DICTIONARY (variable in length) set by
‘ Standard procedure sample PREA
PACKL
. . set by
User's procedure sample (variable in length) PASI
BREAK T v o T T T T T T
cellst 1 —Llierils—(voiuoile_m—lenfth_) ————————— set by
t . . PAS2
External symbol references (variable in length)
LOWER
External symbol definitions and other symbols
. symbols
| defined at even procedure levels defined by
1 Symbols defined at odd procedure levels including ZA?’LS2
normal symbols '
LITAB
Standard NAME and directive items (variable in length)
oo |\ _ - ______T7 set by
UPPER Byte table (variable in length) PREA
QBOOT QBOOT and UAT

Figure 2-1. META-SYMBOL Core Layout

'"Value of BREAK1 depends on machine size.

900 Series Only

Many of the functions and routines of PAS1 and PAS2 are identical; therefore, where a routine
is present in both programs, within this document it is described with PAS1 and cross-referenced

within the PAS2 descriptions.

META-SYMBOL Symbol Table Processing

META-SYMBOL enters symbol definitions into the symbol table from both ends; the determination
of which end of the table to use is a function of the current procedure level and the presence or

absence of the external symbol flag ($) associated with the symbol.

Each time a procedure reference is encountered, the direction of the symbol table is reversed
(normally, symbols are entered from high to low core), andsymbols appearing within the proce-
dure are thereby defined af the alternate end of the symbol table. When the procedure reference
is completed, the table direction is again reversed. When a leading $ (dollar sign) is found on a

label, a flag is set so that the label will be defined at the opposite side of the symbol table.

All symbols defined within a procedure at its normal level are purged when the procedure is com-
pleted (this includes the list of parameters for the procedure) by resetting the appropriate pointer
for the next available cell in the symbol table (UPPER or LOWER) and relinking the pointers in
the byte table for symbols purged. Labels preceded by $ marks are all external (saved) for one

procedure level outside the level at which they were defined.

Input/Output Routines Used

All 1/O routines used by META-SYMBOL are initialized as to unit and channel assignments. All

1/O routines used, except the listing routines, are standard routines in MSCONTRL.

Processing of Procedures

Inherent in the concept of procedure processing is the procedure storage table. This table is suf-

ficient to allow for six levels of procedures or functions and each level has 278 cells of informa-

tion. (See Item Formats, Section 4.)

Normal level for processing code is level 1 [indicated by (PLV = PLVT = PLV1 = 278)]- For each
current procedure reference level, the level indicators PLV and PLVT are incremented by the

length of the table. The entries within this table reflect information to be retained during the

900

900 Series Only

processing of the procedure or functions. For example, the location of the next character to be
obtained when the procedure is completed, the tentative definition of any label on the procedure
reference line, and the value of the location counter when the procedure was referenced are all
retained in this table. When discussing the value of parameters saved in the procedure storage

table, that value associated with the current level is implied unless specified otherwise.

References to procedures are processed almost as separate programs. A double pass is made over
the procedure sample (unless the procedure is defined as a single-pass procedure) during the sec-
ond assembly pass so that forward references to local symbols within the procedure may be made.

In general, any line of code permitted outside the procedure is allowed within the procedure.
META-SYMBOL COMPONENT PROGRAMS

The component programs of the META-SYMBOL assembly system are grouped as five segments:

1. Loader and file control routine

2. ENCODER, S4B, MONI1

3. PREA (PREASM), SRNK (SHRINK)

4. PAS1 (ASSEMBLR) (Assembler Pass 1)

5. PAS2 (Assembler Pass 2), FNSH (FIN{SH)

Each of the segments 2 through 5 are independent entities and may not reference each other; how-

ever, all segments may reference the control routine.

Basic Tape Loader

This program loads absolute programs from MONARCH system tape.

MSCONTRL

This program contains the input/output and function control cells initialized by MONT1.
MSCONTRL is resident in lower memory during the entire assembly process. MSCONTRL con-

tains those 1/O routines used by two or more overlays of the assembly system.

ENCODER

This program reads symbolic input, encoded input, or symbolic corrections and encoded input.

It also produces the intermediate output tape to be used as input to the assembler and produces

900

900 Series Only

new encoded program if requested. It leaves the dictionary and balanced tree search table in

core for the preassembler (PREA).

s48

This program is called by the ENCODER to translate symbolic input from SYMBOL 4or SYMBOL 8
format to META-SYMBOL format . ‘

MON!]

This program is called by the ENCODER to initialize the 1/O control cells for the system. MONI
also copies corrections to scratch tape X2 when the symbolic corrections and encoded inputs are

on the same input device.

PREA (PRESM)

The preassembler program defines directives, processes the selected standard procedure file, and
reformats the dictionary in preparation to starting the assembly process. The standard procedures

are located on the system tape between PREA and SRNK.

SRNK (SHRINK)

This program purges the dictionary and byte table left by PREA to remove bytes from the standard
procedure deck which are not referred to in the user's program or by that portion of the standard

procedures needed to process the user's program.

PAS1 (ASSEMBLR)

This is the first pass of the assembler. PAS] reads the intermediate input tape constructed by the
ENCODER. This pass also defines the symbols used within the user's program, determines the
origin of the literals, establishes the origin of the literal and reference tables, processes user
PROC and FUNC sample definitions, and defines procedure NAMEs and programmed operators .
At the conclusion of PAS1 the external symbol and programmed operator definitions are output on

the binary output device. If symbolic output is requested, it is generated by PAST .

2-5

900 Series Only

POPs

These are the programmed operators for either the 920/930 computers or 910/925 computers de-
pending on installation. The POPs are loaded separately with the ENCODER, PREASM, and
ASSEMBLR.

PAS2

This is the second pass of the assembler. PAS2 generates the binary and listing outputs. During
the second pass, symbols are redefined; however, NAME definifipns are not redefined. There-
fore, no local NAMEs are permitted within nested sample. Literals are generated and references

to externally defined symbols are flagged and linked.

FNSH (FINISH)

This program outputs the literals and external references on the listing and binary outputs. It also

prints the END line and outputs the transfer or end record.

FLOWCHART CONVENTIONS
Included in MSCONTRL and ENCODER are 1/O device subroutines which are not called by name:

MSCONTRL ENCODER

EFC CRDB
EFPT CRDH
EOF HOLP
PCB RDPT
PCH RPTB
PPTB

RMTB

RMTBU

WMTB

For example, the following is a call to a subroutine:

HOLP ‘ _____ | Device subroutine in
Read symbolic input MSCONTRL specified
record by HOLP

#

Thus, in location HOLP is a pointer specifying which device subroutine is to be called.

900
- 2-6

900 Series Only

A transfer to MONITR means a branch to the MONARCH monitor, whieh is described in a sepa-

rate document.

Branch tables are used throughout META-SYMBOL:

Branch Table

Tl

Directive Number

DIRT (directive

routines)

TYP

Accessed from

ENCODER

PREA

PAS1 and
PAS2

PAS] and
PAS2

900
2-7

Subroutines Accessed Page

AL
BLANK
DOT
EORC
NU
QUOTE
SPEC

FUN (function)
NAM (name)
PRO (procedure)
SEND (end)

AORG
BCD
DED
DO
END
EQU
FORM
FUNC
NAME
ORG
PAGE
POPD
PROC
RES
TEXTR

DATAT (end cards)

DEF (types 1 and 2)

ENDM (END card with
transfer address)

ENDN (END card without
transfer address)

POPRD (POP reference or
DEF)

9300 Only

SECTION 2
DETAILED DESCRIPTION OF THE META-SYMBOL ASSEMBLY SYSTEM

PURPOSES OF THE ASSEMBLY SYSTEM

The primary purpose of the assembly system is to provide users of SDS computers a processor
capable of translating symbolic lines of code (written in an advanced assembly language) to
machine language and to provide the user a listing of the machine language generated as well

as a loadable program tape or deck.
Secondary purposes of the assembly system provide:

1. The user the capability to obtain a condensed representation of the symbolic source

program (the encoded program).

2, The capabilities to modify symbolically an encoded program and to recover from the

encoded program the symbolic program it represents,

3. The capability to assemble a program or group of programs and to load and execute the
resulting machine language output in essentially a single operation with a minimum of

human intervention.

4, The user the capability to assembly programs written in the SYMBOL, SYMBOL 4, or
SYMBOL 8 programming languages.

5. A system capable of running on a wide range of machine configurations. This includes
the ability to allow the user to assign peripheral devices to the various assembly func-

tions in a convenient manner at assembly time and with a minimum of restrictions.
6. A processor capable of generating machine code for machines other than that on which
META-SYMBOL is operating.

GENERAL CONSIDERATIONS ABOUT META-SYMBOL

Those routines which process the encoded information on the intermediate output tape X1 and

convert it to a machine language program are grouped into three separate machine overlays, These

overlays, PAS1 (ASSEMBLR), PAS2, and FNSH (FINISH) are the assembler, META-SYMBOL.

9300 Only

META-SYMBOL is a 2-pass assembly system with the separate passes PAS leand PAS2, FINISH is

the end logic of PAS2 and is maintained as a separate overlay for space economy. (See Figure 2.)

low core
MSCONTRL
META-SYMBOL routines and programmed operator
routines
DTAB
DICTIONARY (variable in length) set by
e e e e e e L LMoo PREA
Standard procedure sample
PACKL
\ set by
User's procedure sample (variable in length) PAS1
BREAK 1 T G o T T T T T T »
cellst | Literals (variable in length) ~ set by
1T .. T T T T PAS2
f External symbol references (variable in length)
LOWER ’
External symbol definitions and other symbols symbols
f defined at even procedure levels defined by
PAS1
A Symbols defined at odd procedure levels including or PAS2
normal symbols
LITAB
or Standard NAME and directive items (variable in length)
UPPER _ set by
—————————————————————— PREA
Byte table (variable in length)

Figure 2-1. META-SYMBOL Core Layout

fVaiue of BREAK1 depends on machine size.

9300
2-2

9300 Only

Many of the functions and routines of PAS1 and PAS2 are identical; therefore, where a routine
is present in both programs, within this document it is described with PAS1 and cross-referenced

within the PAS2 descriptions.

META-SYMBOL Symbol Table Processing

META-SYMBOL enters symbol definitions into the symbol table from both ends; the determination
of which end of the table to use is a function of the current procedure level and the presence or

absence of the external symbol flag ($) associated with the symbol.

Each time a procedure reference is encountered, the direction of the symbol table is reversed
(normally, symbols are entered from high to low core), and symbols appearing within the proce-
dure are thereby defined at the alternate end of the symbol table. When the procedure reference
is completed, the table direction is again reversed. When a leading $ (dollar sign) is found on a

label, a flag is set so that the label will be defined at the opposite side of the symbol table.

All symbols defined within a procedure at its normal level are purged when the procedure is com-
pleted (this includes the list of parameters for the procedure) by resetting the appropriate pointer
for the next available cell in the symbol table (UPPER or LOWER) and relinking the pointers in
the byte table for symbols purged. Labels preceded by $ marks are all external (saved) for one

procedure level outside the level at which they were defined.

Processing of Procedures

Inherent in the concept of procedure processing is the procedure storage table. This table is suf-
ficient to allow for six levels of procedures or functions and each level has 278 cells of informa-

tion. (See Item Formats, Section 4.)

Normal level for processing code is level 1[indicated by (PLV = PLVT = PLV1 = 278)]. For each
current procedure reference level, the level indicators PLV and PLVT are incremented by the
length of the table. The entries within this table reflect information to be retained during the
processing of the procedure or functions. For example, the location of the next character to be
obtained when the procedure is completed, the tentative definition of any label on the procedure
reference line, and the value of the location counter when the procedure was referenced are all
retained in this table., When discussing the value of parameters saved in the procedure storage

table, that value associated with the current level is implied unless specified otherwise,

9300
2-3

9300 Only

References to procedures are processed almost as separate programs. A double pass is made over
the procedure sample (unless the procedure is defined as a single-pass procedure) during the
second assembly pass so that forward references to local symbols within the procedure may be
made. In general, any line of code permitted outside the procedure is allowed within the

procedure,
META-SYMBOL COMPONENT PROGRAMS

The component programs of the META-SYMBOL assembly system are grouped as five segments:

1. Loader and file control routine

2, ENCODER, S4B

3. PREA (PREASM), SRNK (SHRINK)

4, PAS1 (ASSEMBLR) (Assembler Pass 1)

5. PAS2 (Assembler Pass 2), FNSH (FINISH)

Each of the segments 2 through 5 are independent entities and may not reference each other;

however, all segments may reference the control routine,

Loader

This program loads absolute programs from MONITOR system tape.
MSCONTRL

MSCONTRL contains the 1/O file control routines and the communication cells used by two or

more overlays of the assembly system,
ENCODER

This program reads symbolic input, encoded input, or symbolic corrections and encoded input.
It also produces the intermediate output tape to be used as input to the assembler and produces
new encoded program if requested. It leaves the dictionary and balanced tree search table in

core for the preassembler (PREA).

9300
2-4

9300 Only

548

This program is called by the ENCODER to translate symbolic input from SYMBOL 4 or SYMBOL 8
format to META-SYMBOL format,

PREA (PRESM)

The preassembler program defines directives, processes the selected standard procedure file, and
reformats the dictionary in preparation to starting the assembly process. The standard procedures

are located on the system tape between PREA and SRNK,

SRNK (SHRINK)

This program purges the dictionary and byte table left by PREA to remove bytes from the standard
procedure deck which are not referred to in the user's program or by that portion of the standard

procedures needed to process the user's program,

PAS1 (ASSEMBLR)

This is the first pass of the assembler. PAS1 reads the intermediate input tape constructed by the
ENCODER. This pass also defines the symbols used within the user's program, determines the
origin of the literals, establishes the origin of the literal and reference tables, processes user
PROC and FUNC sample definitions, and defines procedure NAMEs and programmed operators.
At the conclusion of PAS1 the external symbol and programmed operator definitions are output on

the binary output device. If symbolic output is requested, it is generated by PAST,

PAS2

This is the second pass of the assembler. PAS2 generates the binary and listing outputs. During
the second pass, symbols are redefined; however, NAME definitions are not redefined. There-
fore, no local NAMEs are permitted within nested sample, Literals are generated and references

to externally defined symbols are flagged and linked.

9300
2-5

9300 Only

FNSH (FINISH)

This program outputs the literals and external references on the listing and binary outputs. It

also prints the END line and outputs the transfer or end record.

FLOWCHART CONVENTIONS
Branch tables are used throughout META-SYMBOL:

Branch Table Accessed from Subroutines Accessed Page

T1 ENCODER v AL
BLANK
DOT
EORC
NU
QUOTE
SPEC

Directive Number PREA FUN (function)
NAM (name)
PRO (procedure)
SEND (end)

DIRT (directive PAS1 and AORG

routines) PAS2 BCD
DED
DO
END
EQU
FORM
FUNC
NAME
ORG
PAGE
POPD
PROC
RES
TEXTR

TYP PAS1 and DATAT (end cards)
PAS2 DEF (types 1 and 2)
ENDM (END card with transfer
address)
ENDN (END card without
transfer address)
POPRD (POP reference or
DEF)

9300
2-6

SECTION 3 |
INDIVIDUAL DESCRIPTIONS AND FLOWCHARTS

The routines for META-SYMBOL are described inthe following orders:

Loader and MSCONTRL
ENCODER, S4B, and MONI1
PREA and SRNK

PASI

PAS2

® O 0 U Q

SD|S

900 Series Only

SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

PRO GRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION
‘ Catalog No. 042016

Basic Tape Loader

To load absolute sections of the assembly system into core and to transfer

control to them.

The tape loader reads records from the system tape until it finds an identifi-
cation record at level 2 (A 2 in characters 1 and 2) with the first four
characters of the segment name identical to the contents of the A register at
entry. The following records are then loaded until a transfer record is
reached, at which point the loader branches to the location indicated as the
starting address. All records loaded are checksummed, and a checksum
error results in @ HALT with an address of 4 displayed in C. Stepping causes
the record to be accepted. A tape read error results in a halt with an

address of 1 displayed.

The tape loader is an absolute routine originated at 3 with a starting location
at 4. The routine occupies low memory up to and including cell]778 except
that cells 1008 through]358 inclusive are not used and are available for
programmed operator use. The tape read routine used is not self-initializing
and assumes the system tape to be on unit 0 of the W buffer. The tape loader
does not supply its own input buffers. Locations 14278 through]5048 are
used as input buffers so programs loading data into this region cannot be

loaded by tape loader.

Program ID to A register
BRU 4

900 Series only
Disc MONARCH only

Sﬁg SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
~ PROGRAM DESCRIPTION

Page 1 of 2 Catalog No. 042016
IDENTIFICATION: Basic RAD Loader
PURPOSE: Provide linkages to the RAD input/output routines for 900 Series RAD
META-SYMBOL.
ACTION: The basic RAD loader contains the following routines, called

individually

SCTP Scan system file for A2 record
RDTP Read system file

RDF Read RAD record

WDF Write RAD record

EFDF Close RAD file

RWTST Rewind RAD file

SETUP Initialize I/O packet for RAD

SCTP is called by the preassembler when scanning for the A2
PROC records, and in the loading operation to load the next over-
lay from disc.

RDTP is called by the preassembler to read the encoded PROC
images and by the SCTP routine to obtain the A2 records.

RDF is a generalized RAD read linkage routine to read records
from scratch files X1 and X2, and calls SETUP to initialize the
RAD read calling sequence.

WDF is a generalized linkage to the RAD write routine and is used
to write the X1, X2 and BO files on the RAD. WDF calls SETUP
to initialize the RAD 1/O calling sequence.

EFDF is a gencralized linking routine to close RAD output files.

RWTST is called from the rewind routine REWW, in MSCONTRL,
to rewind and open a disc file on scratch files X1 and X2 or binary
output file BO,

SETUP initialized the calling sequence to the RAD 1/O routines.

3-2A

Page 7 ¢f 2 Catalog No. 042016

PROGRAMMING
TECHNIQUES: The routines in the Basic RAD Loader have absolute origins. The
routine uses space from cell 3 to 177g inclusive, except for loca-
tions 100-126g which are reserved for POPs. The RDTP routine
uses the 40 words starting at location 1444g as an input buffer
area.
CALLIMG
SEQULENCE: The general calling sequence for the I,/O voutines on disc is:
LDX Disc 1/O control word
LDA Buffer location
LDB Record length
BRM 1/O linkage routine
If the record length is to be taken from the data itself, the B reg-
ister should contain a minus 1 on entry to the disc 1/O linkage
routine. The rewind routine is entered by placing the relative
UAT location for the file in X2 (e.g., O for system file, -2 for
scratch file X2, 2 for scratch file X1) and executing a BRM REWW,
The loader is entered by placing the alphanumeric values of the
first 4 characters of the segment name in the A register and branch-
ing to location 4. For example:
LDA = 'PREA'
BRU 4
MEMORY
REQUIREMENTS: Locations 3—778, 1278-1778
SUBROUTINES

USED: RAD File Management Routine

3-28

900 Series Only

Catalog No. 042016

MEMORY
REQUIREMENTS: See "Programming Techniques" above.

SUBROUTINES
USED: None

900
3-2

900 Series Only

S_J—ﬂg SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION
Catalog No. 042016

IDENTIFICATION: Resident 1/O routines (MSCONTRL)

PURPOSE: To provide 1/O control information and standard input/output file control

and device handling routines for the assembly system.

ACTION: MSCONTRL as such is never executed; it is merely a collection of routines

and control information to be used by the assembly system.

PRO GRAMMING
TECHNIQUES: MSCONTRL is an absolute program loaded in the first overlay of the system

and retained in low core throughout the assembly run. It is the last pro-
gram loaded with the ENCODER and contains the transfer to ENCODER to
start the assembly process. The file handling routines contained in
MSCONTRL all assume an input/output control packet which is part of the
input/output buffer. These routines, INPUT, OUTPUT, OPEN, CLOSE,
READ and WRITE, use a packet of the following format:

INPUT/OUTPUT PACKET FORMAT

Word Read Write

0 location from which to location into which to store next data
load next data word word

1 not used (used as full word checksum for words stored
temporary by READ) in buffer

2 last location of buffer last location of buffer

3 location of input location of output subroutine
subroutine

4 not used ‘ location of end-of-file subroutine

5 not used (used as dummy control word (used to initialize
temporary by READ) control word)

900

3-3

900 Series Only

Catalog No. 042016

PRO GRAMMING
TECHNIQUES:
(cont.)

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

Word Read Write

6 buffer. First word is buffer. First word is control word
control word :

7-45 remainder of buffer remainder of buffer .

For formats of the I/O control cells, see MON1 program description,

The I/O device handling routines in MSCONTRL are all self-initializing as
to unit and channel, and none of them depends on the existence of a buffer
interlace system. When called, the routines depend on the following in-

formation in the machine registers:

A register address of first word to transmit
B register number of words to transmit
Index register standard 1I/O control word

When entered, the file control routines assume that the index register

contains the location of the I/O packet.

MSCONTRL as such is never executed.

MSCONTRL has an absolute origin at location 2008 and uses core from that

point to location 1336,. Since MSCONTRL has several routines and con-

g
trol words which are addressed by programs not loaded with MSCONTRL and

since cell]3378 is the origin of the ENCODER routine, any change in the
size or ordering of MSCONTRL is likely to necessitate the reassembly of

several other major sections of the system.

Not applicable.

900
3-4

9300 Only

SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION
Catalog No. 612001

I/O file routines (MSCONTRL)

To provide 1/O control information and standard input/output file control
routines for the assembly system. Communication cells used by more than

one overlay are in FILE.

MSCONTRL is an absolute program loaded in the first overlay of the system
and retained in low core throughout the assembly run. The file handling rou-
tines contained in MSCONTRL all assume an input/output control packet
which is part of the input/output buffer. These routines, INPUT, OUTPUT,
OPEN, CLOSE, READ and WRITE, use a packet of the following format:

INPUT/OUTPUT PACKET FORMAT

Word Read Write

0 location from which to location into which to store next data
load next data word word

1 not used (used as tem- full word checksum for words stored in
porary by READ) buffer

2 last location of buffer last location of buffer

3 read flag and location not used

of file description table

4 not used write flag and location of file description
table
5 not used (used as tem- dummy control word (used to initialize
porary by READ) control word)
6 buffer. First word is buffer. First word is control word

control word

7-45 remainder of buffer remainder of buffer

9300
3-3

9300 Only

Page

Catalog No, 612001

CALLING
SEQUENCE:

MEMORY

REQUIREMENTS:

SUBROUTINES
USED:

MSCONTRL as such is never executed.

4758 cells

Not applicable.

9300
3-4

ENTRY POINTS TO LOADER AND MSCONTRL SUBROUTINES

Page Page

Entry Description Flowchart Entry Description Flowchart
ABORT 3-12 3-32 PBC 3-24 3-38
CLOSE 3-8 3-34 PCB 3-37
EFC 3-29 3-38 PCH 3-26 3-38
EFMT 3-21 3-37 PPTB 3-15 3-33
EFPT 3-17 3-33 R ' 3-1 3-31
GTUNT 3-30 3-38 READ 3-11 3-35
1AW 3-27 3-38 READY 3-36
INEFC 3-28 3-38 REWW 3-13 3-32
INEFPT 3-16 3-33 RMTB 3-22 3-37
INPCB 3-23 3-37 RMTBU 3-18 3-35
INPCH 3-25 3-38 TBOT 3-36
INPPT 3-14 3-32 TYPMSG 3-32
INPUT - 3-10 3-34 WMTB 3-20 3-36
LOADER 3-1 3-31 WMTBU 3-19 3-35
OPEN 3-6 3-33 WRITE 3-9 3-34
OUTPUT 3-7 3-33

gm—ns SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROCRAM DESCRIPTION 000 serien. o
Catalog No. 9300: 612001

IDENTIFICATION: Open a standard 1/0O file (OPEN)
PURPOSE: To initialize an 1/O packet to output a file.
ACTION: OPEN clears word 2 of the packet (checksum) and sets word 1 of the packet

to the location of the seventh word (first buffer word) and word 3 to the

location of the 46th word of the packet (last word of buffer).

PRO GRAMMING
TECHNIQUES: OPEN assumes the index register contains the location of the packet.
OPEN is an absolute routine assembled as part of MSCONTRL.
CALLING
SEQUENCE: Packet location to index register
BRM OPEN
MEMORY

REQUIREMENTS: 1]8 cells

SUBROUTINE
USED: None.

SID‘S SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 200 Series. 0420
Catalog No. 9300: 6120

IDENTIFICATION: Output words to an output file (OUTPUT)

PURPOSE: To store an nutput word located in the A register into an output buffer and

to empty the buffer when filled.

ACTION: OUTPUT stores the contents of the A register into the next buffer location
and increments the location. The full word checksum is set in the secord
word of the packet; When the buffer becomes full, OUTPUT empties the
buffer by calling WRITE.

PRO GRAMMING
TECHNIQUES: The packet location is assumed to be in the index register when OUTPUT is
entered. OUTPUT is an absolute program assembled as part of MSCONTRL.
CALLING
SEQUENCE: Word to be output to A register
Location of packet to index register
BRM OUTPUT
MEMORY
REQUIREMENTS: 128 cells
SUBROUTINES
USED: WRITE

Sjg SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 000 Sories. 042016
Catalog No. 9300: 612001

IDENTIFICATION: Close an output file (CLOSE)

PURPOSE: To close an output file by emptying the output buffer and writing an

end-of -file mark.

ACTION: CLOSE calls WRITE to empty the buffer associated with the packet at the
location given by the index register. CLOSE then calls the end-of-file

routine at the location indicated in the fifth word of the packet.

PRO GRAMMING

TECHNIQUES: CLOSE is a standard 1/O file maintenance routine using the standard packet
format and register assignments. CLOSE is an absolute routine assembled as
part of MSCONTRL,

CALLING

SEQUENCE: Location of packet to index register
BRM CLOSE

MEMORY

REQUIREMENTS: 6 cells

SUBROUTINES
USED: WRITE
Any of the standard end-of-file device routines

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION %00 Series. 04
Catalog No. 9300: 61

IDENTIFICATION: Write the contents of a buffer (WRITE) -
PURPOSE: To write the contents of a buffer onto an output file.

ACTION: If the buffer addressed by the index register is empty, WRITE exists; if it is
not, the word count is saved and the control word is formed and stored in
the seventh word of the packet. The location of the seventh packet word
is placed in the A register and the word count in the B register; WRITE calls
the I/O routine addressed by the fourth word of the packet. OPEN is

called to reinitialize the packet.

PRO GRAMMING
TECHNIQUES: WRITE uses the standard I/O file control routine packet format and register
contents, WRITE is an absolute routine assembled as part of MSCONTRL.
CALLING
SEQUENCE: Location of packet to index register
BRM WRITE
MEMORY

REQUIREMENTS: 378 cells

SUBROUTINES
USED: OPEN
Any of standard output device handling routines

SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

PRO GRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

Obtain the next word from an input file (INPUT)

To obtain in the A register the next word from a specified input file.

If the input buffer is empty, INPUT calls READ to obtain the next record.
An end-of-file return from READ results in an end-of-file exit from INPUT.
The next word of input is loaded into the A register, and the buffer location

is incremented.

INPUT is a standard file maintenance routine and assumes the presence of an
I/O packet addressed by the index register. INPUT is an absolute routine
assembled as part of MSCONTRL.

Location of packet to index register
BRM INPUT

End-of -file return

Normal return

148 cells

READ

S 1D\

SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION %00 Serios: 042
Catalog No. 9300: 612

Read the next record of an input file (READ)

To obtain the next record from the specified input file and to verify its cor-

rectness by computing the checksum.

READ loads the A register with the location of the seventh word of the spe-
cified 1/O packet, loads the B register with 40]0, and calls the 1/O device
routine addressed by the fourth word of the packet. If the read results in an
end of file, READ exits through its end-of-file return. READ computes the
checksum for the record and verifies the record by comparing the computed

and stated checksums. A checksum discrepancy results inahalt witha NOP 2

displayed in C. Stepping causes the record to be accepted as read.

READ is a standard file processing routine and assumes a standard packet ad-
dressed by the contents of the index register. READ is an absolute program

assembled as part of MSCONTRL.

Location of 1/O packet to index register
BRM READ

478 cells

900 Series Only: Any of the standard binary input device handling routines

9300 Only: None

SDS

SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

PRO GRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION
Catalog No. 042016

Write on-line typewriter message and call MONARCH (ABORT)
To print an assembly system error message and return control to MONARCH.,
ABORT stores the contents of the A register (error message code) into the

skeletal error message and types the error message. The error control switch

QPESW in the UAT is set, and control goes to QBOOT to reload MONARCH.

The A register contains the error message code when ABORT is entered.

ABORT is an absolute program assembled as part of MSCONTRL.

Error code to A register

BRU ABORT

258 cells

None. The typewriter routine used to type the error message in this case is

assumed to be part of ABORT.

9200
3-12

900 Series Only

SID‘S SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION
Catalog No. 042016

IDENTIFICATION: Rewind magnetic tapes (REWW)
PURPOSE: To rewind the magnetic tape specffied.

ACTION: REWW constructs a rewind instruction by determining the proper unit and

channel designations from the UAT entry and executes that instruction.

PROGRAMMING :

TECHNIQUES: The index register at entry to REWW contains the location, relative to
QSYS, of the UAT entry to be used in determining unit and channel
assignments, REWW is an absolute routine assembled as part of MSCONTRL.

CALLING '

SEQUENCE: UAT relative location to index register
BRM REWW

MEMORY-

REQUIREMENTS: 158 cells

SUBROUTINES

USED: None

NOTE: In the RAD MONARCH system, REWW calls RWTST to determine
whether the file is allocated to magnetic tape or to the RAD. When
the file is RAD-allocated, the File Management Routine is called in

order to rewind the file.

900
3-13

900 Series Only

§J__—I_DS SCIENTIFId DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION
: Catalog No. 042016

IDENTIFICATION: Initialize binary paper tape punch routine (INPPT)

PURPOSE: To initialize with respect to unit and channel the binary paper tape punch
routine, PPTB.

ACTION: INPPT obtains the unit and channel assignments by calling GTUNT. It
then sets the 1/O instructions in PPTB.

PRO GRAMMING

TECHNIQUES: INPPT is an absolute routine assembled as part of MSCONTRL and is an
extension of PPTB.

CALLING

SEQUENCE: I/O control word to index register
BRM INPPT

MEMORY

REQUIREMENTS: 258 cells

SUBROUTINES

USED: ~ GTUNT

900
3-14

900 Series Only

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION
Catalog No. 042016

IDENTIFICATION: Punch paper tape binary (PPTB)
PURPOSE: To punch a record on paper tape in the binary mode.

ACTION: PPTB calls IAW to obtain the buffer address and INPPT to initialize its I/O
instructions with respect to unit and channel. PPTB then outputs the speci-
fied number of words from the specified location by executing a MIW loop.
A buffer error results in a halt with a NOP 4 displayed in the C register;

stepping permits the routine to conclude as though no error had occurred.

PRO GRAMMING

TECHNIQUES: PPTB is a device handling routine designed to work with the standard file
processing routines. PPTB is an absolute routine assembled as part of
MSCONTRL.

"CALLING

SEQUENCE: Buffer location to A register
Word count to B register
Control word to index register
BRM PPTB

MEMORY

REQUIREMENTS: 168 cells

SUBROUTINES
USED: IAW
INPPT

200
3-15

900 Series Only

SlD‘s SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION
Catalog No. 042016

IDENTIFICATION: Initialize the paper tape end-of-file routine (INEFPT)

PURPOSE: To initialize the end-of-file routine for paper tape, EFPT, as to unit and

channel assignments.

ACTION: INEFPT calls GTUNT to obtain the channel and unit assignments which

are used to initialize the 1/O instructions in EFPT.

PROGRAMMING

TECHNIQUES: INEFPT is an absolute routine assembled as part of MSCONTRL and is an
extension to EFPT, '

CALLING

SEQUENCE: I/O Control word to index register
BRM INEFPT

MEMORY

REQUIREMENTS: 138 cells

SUBROUTINES

USED: GTUNT

900
3-16

900 Series Only

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION
Catalog No. 042016

IDENTIFICATION: Feed blank paper tape (EFPT)

PURPOSE: To feed blank paper tape following an output paper tape file.

ACTION: EFPT calls INEFPT to set channel and unit assignments and then spaces
blank tape.

PRO GRAMMING

TECHNIQUES: EFPT is designed to work with the standard file processing routines and is

an absolute routine assembled as part of MSCONTRL.

CALLING

SEQUENCE: I/O control word to index register
BRM EFPT

MEMORY

REQUIREMENTS: ”8 cells

SUBROUTINES

USED: INEFPT

900
3-17

900 Series Only

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION
' Catalog No. 042016

IDENTIFICATION: Initialize the magnetic tape read routine (RMTBU)
PURPOSE: To initialize the I/O instructions in RMTB as to mode, unit, and channel.

ACTION: RMTBU initializes the I/O instructions remotely executed by RMTB as to
unit, channel, and mode (decimal or binary). RMTBU calls GTUNT to
obtain the unit and channel designation in the proper format to initialize

the 1/O instructions within RMTB.

PRO GRAMMING

TECHNIQUES: RMTBU is a logical extension of the RMTB routine and makes use of the
fact that RMTB is designed to work with the file processing routines and
has the normal contents in the registers when called. RMTBU is an
absolute routine assembled as part of MSCONTRL.

CALLING

SEQUENCE: Bits O through 9 of 1/O control word to bits 14 through 23 of A register
1/0 control word to TEMP + 3
BRM RMTBU

MEMORY

REQUIREMENTS: 328 cells

SUBROUTINES

USED: GTUNT

900

3-18

900 Series Only

SlDIs SCIENTIFIC DATA SYSTEMS
SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION
Catalog No. 042016

IDENTIFICATION: Initialize magnetic tape write routine (WMTBU)

PURPOSE: To initialize the write end-of-file routine EFMT and the magnetic tape
write routine, WMTB, as to mode, unit, and channel.

ACTION: WMTBU initializes the 1/O instructions remotely executed by WMTB and
EFMT as to unit, channel, and mode. WMTBU calls GTUNT to obtain the
channel and unit designations in the format to initialize the 1/O instruc-
tions within WMTB and EFMT.

PROGRAMMING

TECHNIQUES: WMTBU is a logical extension of the routines to write magnetic tape. It
assumes on entry that an 1/O control word has been stored in WCNT and
that the high order ten bits of that control word are in the low order ten
bits of the A register. WMTBU is an absolute routine assembled as part
of MSCONTRL.

CALLING

SEQUENCE: Control word to WCNT
Bits O through 9 of WCNT to bits 14 through 23 of A register
BRM WMTBU

MEMORY

REQUIREMENTS: 578 cells

SUBROUTINES

USED: GTUNT

900
3-19

SDS

900 Series Only

SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

Write magnetic tape (WMTB)

To write a record of a given size, from a specified buffer to magnetic tape
on a given channel and unit and in the mode requested; to check for write

errors and if necessary to erase and rewrite the record up to three times.

WMTB calls IAW to set the buffer address and WMTBU to initialize the 1/O
instructions. WMTB tests the tape for ready and, if the tape is at load point,
erases forward the required distance. If the tape is at the end-of-tape mark,
WMTB exits; otherwise, the record is written by executing a WIM loop the
required number of times. An error in writing causes the tape to be erased
backward to remove the record; then WMTB rewrites it. If this fails, the re-
cord is erased backward and forward and then rewritten. This procedure is
followed up to three times before WMTB halts. Stepping will cause the rou-

tine to try once more to write the record.

WMTB is designed to be used with the standard file processing routines; it is
an absolute program assembled as part of MSCONTRL.

Location of buffer to A register
Number of words to write to B register

I/O control word to index register
BRM WMTB

768 cells

IAW
WMTBU

200
3-20

900 Series Only
SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION
Catalog No. 042016

IDENTIFICATION: Write end-of -file marks on magnetic tape (EFMT)
PURPOSE: To write a tape end-of-file mark on the specified magnetic tape.
ACTION: EFMT calls WMTBU to initialize the 1/O instructions. Tape ready and

beginning of tape status are checked after which EFMT writes a one-

character record of]78 to the tape.

PRO GRAMMING

TECHNIQUES: EFMT is designed to work with the standard file processing routines and is
an absolute routine assembled as part of MSCONTRL.

CALLING

SEQUENCE: I/O control word to index register
BRM EFMT

MEMORY

REQUIREMENTS: 168 cells

SUBROUTINES ,

USED: WMTBU

Those portions of WMTB to check tape ready status and beginning of tape

900
3-21

900 Series Only

S|Dls SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION
Catalog No. 042016

IDENTIFICATION: Read magnetic tape (RMTB)

PURPOSE: To obtain a record of given maximum size from a specified tape unit in the

indicated mode and place it in the specified buffer,

ACTION: RMTB calls IAW to set the buffer address and RMTBU to initialize the I/O
instructions. RMTB executes a WIM loop until an end of record is reached
or until the indicated number of words have been read. If the record is
less than a full word long or if the first word is AEOF, RMTB takes the
end-of-file exit. A read error causes the routine to backspace and reread
the tape up to ten times. An error still detected after ten attempts results

in a halt. Stepping causes the record to be accepted as read.

PROGRAMMING
TECHNIQUES: RMTB is designed to work with the standard file processing routines. RMTB
is an absolute routine assembled as part of MSCONTRL.
CALLING
SEQUENCE: Buffer location to A register
Word count to B register
Standard control word to index register
BRM RMTB
End-of -file return
Normal return
MEMORY
REQUIREMENTS: 608 cells
SUBROUTINES
USED: IAW
RMTBU

900
3-22

900 Series Only

S|Dls SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION
Catalog No. 042016

IDENTIFICATION: Initialize the punch cards binary mode routine (INPCB)

PURPOSE: To initialize as to unit and channel the 1/O instructions in the punch cards

binary mode routine, PCB.

ACTION: INPCB calls GTUNT to get the unit and channel assignments which are
used to set the I/O instructions in PCB.

PRO GRAMMING 7

TECHNIQUES: INPCB is a logical extension of the PCB routine and is an absolute routine
assembled as part of MSCONTRL,

CALLING

SEQUENCE: I/O control word to index register
BRM INPCB

MEMORY

REQUIREMENTS: 278 cells

SUBROUTINES

USED: GTUNT

200
3-23

900 Series Only

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION
‘ Catalog No. 042016

IDENTIFICATION: Punch cards binary mode (PCB)

PURPOSE: To punch in the binary mode a record of given size from a specified buffer

into a card on the unit and channel indicated.

ACTION: ' PCB calls IAW to set the buffer address and INPCB to initialize the 1/O

instructions. PCB then punches the card received by executing 12]0 times

a WIM loop for the number of words to be punched.

PRO GRAMMING
TECHNIQUES: PCB is designed to work with the standard file processing routines and is an
absolute routine assembled as part of MSCONTRL.
CALLING
SEQUENCE: Buffer location to A register
Word count to B register
I/O control word to index register
BRM PCB
MEMORY
REQUIREMENTS: 358 cells
SUBROUTINES
USED: IAW
INPCB

900
3-24

900 Series Only

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION
Catalog No., 042016

IDENTIFICATION: Initialize the routine to punch cards in the BCD or Hollerith mode (INPCH)

PURPOSE: To initialize the 1/O instructions in PCH as to unit and channel.

ACTION: INPCH calls GTUNT to obtain channel and unit designations which are

used to initialize the I/O instructions in PCH,

PROGRAMMING

TECHNIQUES: INPCH is a logical extension of the PCH routine and is an absolute routine
assembled as part of MSCONTRL.

CALLING

SEQUENCE: I/O control word to index register
BRM INPCH

MEMORY

REQUIREMENTS: 228 cells

SUBROUTINES

USED: GTUNT

900
3-25

900 Series Only

SIDls SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Punch cards in BCD or Hollerith mode (PCH)

PURPOSE: To punch in the BCD mode a record of given length from a specified buffer

to cards on the unit and channel indicated.

ACTION: PCH calls IAW to set the buffer address and INPCH to initialize its 1/O
instructions. It then outputs the record by executing a WIM loop the
required number of times as determined by the word count. This loop is

repeated 12 times.

PRO GRAMMING
TECHNIQUES: PCH is designed to work with the standard file processing routines and is
an absolute routine assembled as part of MSCONTRL.
CALLING
SEQUENCE: Word count to B register
I/O control word to index register
Buffer location to A register
BRM PCH
MEMORY
REQUIREMENTS: 218 cells
SUBROUTINES
USED: IAW
INPCH

900
3-26

900 Series Only
SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Set 1/O buffer address (IAW)

PURPOSE: To set cell ADDR to address the last cell of the I/O buffer with an index of

2 and to complement the word count in the B register.

ACTION: IAW sets cell ADDR with an index of 2 and an address of the last location
of the 1/O buffer. The contents of the B register are complemented.

PRO GRAMMING

TECHNIQUES: IAW is an absolute routine assembled as part of MSCONTRL.

CALLING

SEQUENCE: Buffer location to A register
Word count to B register
BRM 1AW

MEMORY

REQUIREMENTS:]08 cells

SUBROUTINES

USED: None

900

3-27

900 Series Only

SIDls SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016
T ——

IDENTIFICATION: Initialize the end-of-file cards routine (INEFC)

PURPCS E: To set the unit and channel assignments in the 1/O instructions to clear

the card punch.

ACTION: INEFC calls GTUNT to obtain the unit and channel assignments which are

used to initialize the I/O instructions in EFC.

PRO GRAMMING

TECHNIQUES: INEFC is a logical extension of the EFC routine and is an absolute routine
assembled as part of MSCONTRL.

CALLING

SEQUENCE: I/O control word to index register
BRM INEFC

MEMORY

REQUIREMENTS: ISR cells

SUBROUTINES
USED: GTUNT

900
3-28

900 Series Only
SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Clear the card punch (EFC)

PURPOSE: To feed two cards through the designated card punch.

ACTION: EFC calls INEFC to initialize I/O instructions; it then punches two cards.
PROGRAMMING

TECHNIQUES: EFC is designed to work with the standard file processing routines and is an

absolute routine assembled as part of MSCONTRL.

CALLING

SEQUENCE: 1/O control word to index register
BRM EFC

MEMORY

REQUIREMENTS: 148 cells

SUBROUTINES
USED: INEFC

900
3-29

900 Series Only

(=4 »] SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION
Catalog No. 042016

IDENTIFICATION: Extract unit and channel assignments (GTUNT)

PURPOSE: To obtain the unit and channel assignments from a standard 1/O control

word for use by the various I/O initialization routines.

ACTION: GTUNT extracts the unit channel and mode bits from the 1/O control word
in the index register and stores them in CHANL. The channel designation

is right adjusted in the index register.

PROGRAMMING
TECHNIQUES: GTUNT is an absolute routine assembled as part of MSCONTRL.
CALLING
SEQUENCE: 1/O control word to index register
BRM GTUNT
MEMORY

REQUIREMENTS: 138 cells

SUBROUTINES
USED: None

900
3-30

900 Series Only

BASIC TAPE LOADER

LOADER

Name of section to
load —= WI
0 — FFF

o—ﬁ(This s the record?) STB LEXIT — = LOC

Read record.
Type —=T
Count —= CT

A

no yes

i

Starting loc
(FFF < 0? H End record?)n—o———o of record

—L0C

yes

A

-1 — FFF

BRU R — LEXIT

/

Store data into address
given by LOC
Checksum card

LEXIT nommally is BRU R, but
on end records the data word,
or BRU program, gets loaded

there.

900
3-31

Execute
instruction - yes(Cord Checksum?)
at LEXIT |

' no

: ,

| HALT

display

| 4

|

1

[

Initialize

s\
/

Output record

Tape file

no

File number —
calling sequence

File nr.— calling sequence
Word count — calling sequence
0 — error flags

Record origin — calling sequenc

Called from
READ

-1— record

length

Exit

900
3-32A

Do disc
rewind

MSCONTRL

ABORT, TYPMSG, REWW AND INPUT ROUTINES

See messoge no. Type 5 words
Set QPESW from MSORG

type error
message

- GTUNT 1}
get unit and
channel
L
Tape only :-— - - — Y
) Initialize all SKS, EOM,

and WIM instructions in the
Using relative UAT location PPTB routine.

given by X2 obtain channel

and unit to rewind. Buildand
execute rewind instruction, .
V

Y

: Exit ;

RAD only
-7

Build rewind com-

o] mand for tape 1e-
wind. Execute
rewind.

Test it tape

3-328

Loader

Find &2
record

Names match

Load registers for
disc read linkage

Read disc
record

Exit

900 Series Only
RAD MONARCH Only

BASIC RAD LOADER

Get Next
record

yes

©

Setu
Initialize

Get disc
record

ii
Exit
A

no

900
3-32

PPTB

MSCONTRL
PPTB, INEFPT, EFPT, OPEN AND OUTPUT ROUTINES

?

Location 6th word of
packet — packet loc.

0 — packet loc +1.
Location 45th word of
packet —s packet +2.

1AW INEFPT
get address initialize I/O
A
INPPT A

initialize 1/0O Feed paper through
punch by punching 0 1
words with leader 4
times.

A

Y

Using WIM loop, punch

requested number of words.

A

(Buffer error?

Yoo

yes

HALT
’ display
4

>‘___.

EXIT

Step packet location. Store
data word in new packet
location. Checksum data
word added.

3

Disconnect buffer,
Wait till buffer ready.

Buffer full?

D)

4 I

yes

y

GTUNT
get unit and channel

EXIT

WRITE
empty buffer

)

A

Initialize the I/O
instructions in the EFPT
routine .

EXIT

EXIT

3-33

(Buffer empty ?

no

A

Count of words = SAVEX

Complete Checksum and
store control word in word
7 of packet.

SAVEX — B reg

loc control word — A reg

loc packet —= SAVEX

loc 1/O routine —= X2

|

I/0 routine
oddressed by X2
write record

)

SAVEX — X2

Y

OPEN
initialize buffer

)

Y

EXIT

yes

MSCONTRL

WRITE, CLOSE, AND INPUT ROUTINES

EXIT

WRITE
empty buffer

yes

\
EOF
write end of file
\ 4
EXIT
(Buffer empty ?
no

>_____.

Device EOF
routine In
MSCONTRL
specified by
file description
table

READ
get next
record

normal

A

Step to next data word.
Data word — A reg
Increment INPUT

EXIT

3-34

EOF

EXIT

Location Ist data word — A reg.
40 — B reg.

X2 — SAVEX

Location 1/O routine — X2

)/

\ EOF

MSCONTRL
READ, RMTBU AND WMTBU ROUTINES

I/O routine addressed
by X2 get record /

SAVEX — X2

Number data words = 3rd word
of packet

Checksum record read.

Y
(* Checksum OK?
yes

EXIT

900 Series Only

Initialize 1/O instructions as to
mode (decimal or binary)

y

GTUNT

get unit and channel

<

!

)

Initialize 1/O instructions in
RMTB routine as to channel and
unit.

EXIT

d

4

Location 1st data word = 1st
word of packet.

Address of last data word — 3rd
word of packet.

Increment READ.

EXIT

3-35

Initialize 1/O instruction for
WMTB as to mode.

\

GTUNT
get unit and channel

)

A 4

Initialize 1/O instructions in
WMTB and EFMT as to unit and
channel .

4
V

900 Series Only

MSCONTRL
‘WMTB, READY AND TBOT ROUTINES

@ READY

A
(Tape unit ready ?

X2 —= WCNT
yes
A
1 C Buffer ready?
. 1AW yes
get address !
Fil tected?
C [¢ protecte Erase tape forward
WMTBU no 641 words.
initialize unit and
channel Y
Terminate.
Y
READY EXIT v
test ready EXIT
Y
T80T
test beginning
Y
READY
test ready
‘ Using MIW |
yes READY . sing oop,
C End of tape <:e-ml—y>‘_ Teminate output. g erase forward.
no { A
Y ~ jno
READY . I Tried rewrite \ Yes
Using MIW loop, write test ready Tried 6 times? 3 this spot.
specified number of words. Y yes
A
Y Terminate. HALT
Terminate output.

A Using MIW loop, erase
READY reverse the number of
test ready words written.

‘ 1

> yes READY
Error? test ready

no

EXIT

900
3-36

WMTBU

initiolize unit

A

READY
test ready

i

TBOT
beginning tape

READY
test ready

Y

Write one character

of 017.

NN AN N
~

v

MSCONTRL

[EMT RMTB, INPCB AND PCB ROUTINIS

1AW

get uddress

v

RMTBU
initialize unit
channel ond mode

1

GTUNT
get 11it and
ciorne!

v

tnitialize 1/O instructions
in PCB routine as to unit
and channel

K
C Tape «
yes

\

y
eady ?

ves

Using WIM,
read 1 woid

]

Terminate .

\

RFADY
test ready

EXIY

(Buffer ready?
_ | no

\ i

Rend word,

Y

no
)/

‘Backspace record.

A

‘_‘“U N warids ead?

ye:

J no
(Buffer ready?)—n—o——‘
) ves

yes
‘ Buffer recdy ? H

e

(Buffer 1eady?)&

yes

Y

no

no
(Tried 10 times? H Buffer error?)
yes
yes

y

¥

4
EXIT
EQ

EXIT

IAW
get address

Y

INPCB
initialize [/O

\ i

\
ves
Control record? Y
‘ ontro! r)

"o

A

C [OF?
{no

RMTB + | — RMTB

\ EXIT
900
3-37

] yes

/
EXIT

v_no_C Punch ready?)

yes

-

vy

Punch specified
numbe: of words
into next row.,

| J

Terminate wait
for buffer
ready

no
C 12th time?)—

yes

A 4
EXIT

ENCODER
S48
MON!I1

GTUNT
get unit and channel

A J

Initialize 1/O
instructions in
PCH routine as to
unit and channel

EXIT

INPCH, PCH, 1AW, PBC, INEFC, EFC AND GTUNT ROUTINLS

AW
get address

INEFC
initialize 1/0O

Wait for
punch ready

GTUNT
get unit and
channel

Initialize the 1/0O
instructions in PBC
as to unit and

channel .

EXIT

2
>

y

900 Series Only

MSCONTRL

Punch next row
specified member
of words, then
terminate and wait

for buffer ready .

——i(12 rowsouv? j

yes

EXIT

® <&

Unit channel and
mode —+ low 10
Ibits of CHANL.
Channel No., —= X 2

EXIT

<%

900
3-38

Last location of buffer indexed

by 2 —> ADDR

word count ——=B reg

Wait for punch ready.
Punch word of zeros
and then terminate .

\
EXIT

INPCH
initialize 1/

(¢}

N

PBC
punch blan

k

N

PBC
do it again

NS

EXIT

EXIT

900 Series Only

SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION
Catalog No. 042016

ENCODER

To encode symbolic programs or to update existing encoded programs.

Performs the following functions:

].

Calls MONI1 to set up the input/output unit and channel assignments
and the input/output function requests in MSCONTRL and, if

necessary, to copy symbolic corrections to scratch tape X2.

Reads a record of symbolic input and checks for correction (+ in column
1). If the card is a correction, or if there is encoded input only as
determined by an end-of-file return from the reader, ENCODER copies
the old encoded dictionary into core and builds the APO table of

dictionary addresses.

ENCODER reads the symbolic input or the encoded text, or both if it be
an update run. When correcting an encoded file, the symbolic in-
sertions are inserted into the file by using the same TRANS routine as is
used for runs with only symbolic input. Deleted encoded lines are by-
passed by calling the DELETE routine, and encoded lines to be retained
are passed along by calling the SKIP routine. All symbolic lines are
translated to META-SYMBOL language by calling the translation
program S4B.

As each line of input is obtained, ENCODER scans the line and collects
each string of characters into a dictionary entry. (See Section 4, Item
Formats.) The encoder builds four types of entries: blank strings,
special characters, numeric items, and alphanumeric items. If the

string is in the form »f a byte of encoded record, this construction step

900
3-39

900 Series Only

Catalog No, 042016

ACTION:
(cont.)

is eliminated since the dictionary entry is already available. If this is
an encoded byte, the program tests APO to see if the new byte value has
been determined; if it has not, or if this is a string from a symbolic
record, SRCH is called to find the location of the CPO (balanced tree
insert table) entry for the string and to obtain the byte value. If SRCH
fails to find an equivalent entry in CPO, NSRT is called to enter the
string into the dictionary (BPO) and insert a 3-word entry into CPO for
later reference. (See Section 4, Item Formats.) The sequence number
of a unique string of characters or dictionary entry is the byte value for

the entry.

As a value for each byte is obtained, it is output on the intermediate
output tape (X1). This encoding-updating procéss continues until an
end of file is detected on the input file. Note that an END card does
not terminate the encoding process. During the encoding process com-
ments are not encoded in the manner indicated. Comments, as deter-
mined by the presence of an* in the first character of the record or by
three blank fields (excluding imbedded blank strings in TEXT and BCD
variable fields or in alphanumeric expressions), are output as they
appear in the source language except that they are preceded by a count

byte of six bits indicating the number of comment characters.

When an end-of-file condition is detected on the input file, control
goes to the END section of ENCODER. Here a check is made to see if
there was encoded input; if so, the insert table CPO is moved to the
origin of APO and the dictionary is moved to a position immediately
following CPO. The intermediate output tape is rewound, and the
dictionary is output on the encoded output device by selecting the
dictionary entry for each entry in CPO. In this manner dropped bytes
caused by deleting encoded lines are purged. As each dictionary

entry is output, it is moved to high memory to form a dictionary for

900
3-40

900 Series Only

Catalog No, 042016

ACTION:

(cont.)

CALLING
SEQUENCE:

PRO GRAMMING

CONVENTIONS:

PREASM. When all dictionary entries have been output, the encoded

text records are copied from X1 to the output file.

7. When the output file has been completed, ENCODER checks the 1/O
function control cells in MSCONTRL to determine if additional outputs
are required. If encoded output is the or;ly output, control is returned
to MONARCH; otherwise, the PREASM routine is loaded by branching

to the basic tape loader routine.

ENCODER is one of several independently assembled routines loaded as the
first assembler overlay. The last of these routines in order loaded is
MSCONTRL. The transfer address for MSCONTRL is to a cell containing a
branch to the starting location of ENCODER (TRACOR).

ENCODER is assembled with an origin of 01337, which is just above the
MSCONTRL program. Since ENCODER leaves the dictionary and search
tables in core for PREASM, it is necessary to provide a few control words to
PREASM indicating the location of tables and key words. The following
control cells are left by ENCODER in the first locations following
MSCONTRL.

1. DTAB. Starting location for PREASM-built dictionary if no POPs are
used. (The programmed operator routines overload this cell to account

for the additional length of the POP code.)

2. APO or CPO. The next available location in the balanced tree search

table for entering items.
3. BPO. The next available cell in the ENCODER-built dictionary.

4. HED. A 3-word control region used in building CPO and BPO. All
chain ends in CPO point to HED.

900
3-41

900 Series Only

Catalog No. 042016

PRO GRAMMING
CONVENTIONS:

(cont.)

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

5. CORG. The location minus 9 of the first word of CPO table.
6. CSEQ. The next sequence number or byte value to be defined.

ENCODER is designed to be maximally independent of machine configura-

tion.

1. Memory size is determined by examining cell 1 of memory in which
MONARCH stores the instruction BRU QBOOT. Hence maximum

memory is always used.

2. MON!I1 sets the delay timing for the paper tape read routines in
ENCODER so that in the event of inputs on paper tape proper reading

will result.

3. All instructions used which are not common to all machines are either
converted to alternate instructions by using procedures (e.g., CLB is

LDB = 0) or by generating POP items by use of procedures.

ENCODER has a 2-condition rewind of magnetic tape X2. If corrections
are used and copied to X2, ENCODER rewinds X2 in preparation of taking
outputs on X2. If running with MAGPAK tapes, X2 is rewound.

Variable

PTCH OuTC RPTB MON1
DEC SRCH INCRD OPENt
DELETE NSRT CRD REWWH
SKIP TRAIL CRDB READt
INIT . IN CRDH INPUTH
TRANS ouT INRDT GTUNTH
STORE MVTAB RDPT WRITE!
CHAR RESET EDC IAW!
RCRD TBOUT EDS ourtrutt
INC INRPT S4B CLOSE!

t These routines are described under MSCONTRL.

900
3-42

S DS

9300 Only

SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION.
Catalog No. 612001

ENCODER

To encode symbolic programs or to update existing encoded programs.

Performs the following functions:

1.

2.

Copies symbolic corrections to scratch tape X2, if necessary.

Reads a record of symbolic input and checks for correction (+ in column
1). If the card is a correction, or if there is encoded input only as de-
termined by an end-of-file return from the reader, ENCODER copies the
old encoded dictionary into core and builds the APO table of dictionary

addresses.

ENCODER reads the symbolic input or the encoded text, or both if it be
an update run. When correcting an encoded file, the symbolic inser-
tions are inserted into the file by using the same TRANS routine as is
used for runs with only symbolic input. Deleted encoded lines are by~
passed by calling the DELETE routine, and encoded lines to be retained
are passed along by calling the SKIP routine. All symbolic lines are
translated to META-SYMBOL language by calling the translation pro-
gram S4B.

As each line of input is obtained, ENCODER scans the line and collects
each string of characters into adictionary entry. (See Section 4, Item
Formats.) The encoder builds four types of entries: blank strings, spe-
cial characters, numeric items, and alphanumeric items. If the string

is in the form of a byte of encoded record, this construction step is elim-
inated since the dictionary entry is already available. If this is an en-

coded byte, the program tests APO to see if the new byte value has been

9300
3-39

9300 Only

Catalog No, 612001

ACTION:

(cont.)

5.

determined; if it has not, or if this is a string from a symbolic record,
SRCH is called to find the location of the CPO (balanced tree insert
table) entry for the string and to obtain the byte value. If SRCH fails
to find an equivalent entry in CPO, NSRT is called to enter the string
intothedictionary (BPO) and insert a 3-word entry into CPO for later
reference. (See Section 4, Item Formats.) The sequence number of a
un.ique string of characters or dictionary entry is the byte value for the

entry.

As a value for each byte is obtained, it is output on the intermediate
output tape (X1). This encoding-updating process continues until an
end of file is detected on the input file. Note that an END card does
not terminate the encoding process. During the encoding process com-
ments are not encoded in the manner indicated. Comments, as deter-
mined by the presence of an * in the first character of the record or by
three blank fields (excluding imbedded blank strings in TEXT and BCD
variable fields or in alphanumeric expressions), are output as they ap-
pear in the source language except that they are preceded by a count

byte of six bits indicating the number of comment characters.

When an end-of-file conditions is detected on the input file, control
goes to the END section of ENCODER. Here a check is made to see if
there was encoded input; if so, the insert table CPO is moved to the
origin of APO and the dictionary is moved to a position immediately
following CPO. The intermediate output tape is rewound, and the dic-
tionary is output on the encoded output device by selecting the diction-
ary entry for each entry in CPO. In this manner dropped bytes caused
by deleting encoded lines are purged. As each dictionary entry is out-
put, it is moved to high memory to form a dictionary for PREASM. When
all dictionary entries have been output, the encoded text records are

copied from X1 to the output file.

9300
3-40

9300 Only

Catalog No, 612001

ACTION:
(cont.)

CALLING
SEQUENCE:

PROGRAMMING

CONVENTIONS:

7. When the output file has been completed, ENCODER checks the 1/0
function control cells in MSCONTRL to determine if additional outputs

are required. If encoded output is the only output, control is returned
to MONARCH; otherwise, the PREASM routine is loaded by branching

to the basic tape loader routine.

ENCODER is one of several independently assembled routines loaded as the

first assembler overlay. The last of these routines in order loaded is
MSCONTRL. The transfer address for MSCONTRL is to a cell containing a
branch to the starting location of ENCODER (TRACOR).

Since ENCODER leaves the dictionary and search tables in core for PREASM,
it is necessary to provide a few control words to PREASM indicating the lo-

cation of tables and key words. The following control cells are left by

ENCODRER in the first locations following MSCONTRL.
1. DTAB. Starting location for PREASM-built dictionary.

2. APO or CPO. The next available location in the balanced tree search

table for entering items.
3. BPO. The next available cell in the ENCODER-built dictionary.

4, HED. A 3-word control region used in building CPO and BPO. All
chain ends in CPO point to HED.

5. CORG. The location minus 9 of the first word of CPO table.
6. CSEQ. The next sequence number or byte value to be defined.

ENCODER has a 2-condition rewind of magnetic tape X2. If corrections
are used and copied to X2, ENCODER rewinds X2 in preparation of taking
outputs on X2. If running with MAGPAK tapes, X2 is rewound.

9300
3-41

9300 Only

Catalog No,

612001

MEMORY

REQUIREMENTS:

SUBROUTINES
USED:

Variable

PTCH
DEC
DELETE
SKIP
INIT
TRANS
STORE
CHAR
RCRD

INC
OuTC
SRCH
NSRT
TRAIL
IN
ouTt
MVTAB
RESET

TBOUT
S48
OPEN
READ!
INPUT!
WRITE'
output'
CLOSE!

1LThese routines are described under MSCONTRL.

92300
3-42

ENTRY POINTS TO ENCODER SUBROUTINES

Page Page

Entry Description Flowchart Entry Description Flowchart
ALL 3-49 3-81 INAB4 3-75
ALL2 3-49 3-81 INC 3-54 3-83
ALL3 3-49 3-81 INCRD 3-66 3-91
ALL4 3-49 3-81 INIT 3-48 3-78
ALLS 3-49 - 3-81 INRDT 3-70 3-92
BEGIN 3-75 INRPT 3-64 3-91
BLANI 3-49 3-79 MVTAB 3-61 3-90
BLANK 3-49 3-79 NS3 3-57 3-86
BLANKI 3-49 3-79 NS4 3-57 3-86
BLANK2 3-49 3-79 NS4A 3-57 3-87
CHAR 3-52 3-82 NS48 3-57 3-87
CHARI 3-52 3-82 NS5 3-57 3-87
CHAR2 3-52 3-82 NSé 3-57 3-87
CHARX 3-52 3-82 NS7 3-57 3-87
CORR 3-75 NS8 3-57 3-86
CORRI1 3-76 NS9 3-57 3-87
CORR4 3-76 NS10 3-57 3-87
CORRS5 3-76 NSRT 3-57 3-86
CORRé6 3-76 NU 3-49 3-81
CORR8 3-76 ouT 3-60 3-88
CORR10 3-76 OouTC 3-55 3-83
CORR11 3-76 PROG 3-76
CRD 3-67 3-91 PTCH 3-44 3-77
CRDB 3-68 3-92 RCRD 3-53 3-83
CRDH 3-69 3-92 RDPT 3-71 3-92
DEC 3-45 3-77 RESET 3-62 3-90
DELETE 3-46 3-77 RPTB 3-65 3-91
DOT 3-49 3-81 SKIP 3-47 3-78
EDC 3-72 3-93 SR1 3-58 3-84
EDS 3-73 3-93 SRCH 3-56 3-84
END 3-89 STORE 3-51 3-82
END2 3-89 TBOUT 3-63 3-90
EQD 3-49 3-80 TRACOR 3-39 3-74
EOR 3-49 3-80 TRAIL 3-58 3-88
EORC 3-79 TRAN 3-49 3-79
IN 3-59 3-88 TRANI1 3-49 3-79
IN1B 3-59 3-88 TRANS 3-49 3-79

3-43

S’D!S SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 900 Series: 042016
Catalog No. 9300: 612001

e]

IDENTIFICATION: Get input character subroutine (PTCH)

PURPOSE: To get next character of encoded input dictionary,

ACTION: Extracts next character from TEMP and stores the remaining characters in
TEMP. If a new word is needed as determined by the character count, B,
PTCH calls INPUT to obtain next word of dictionary. An end-of-file

return from input results in an abort message of '03'.

PRO GRAMMING
CONVENTIONS: PTCH is a relocatable routine contained in ENCODER.,

CALLING
SEQUENCE: B register should be set to zero
BRM PTCH on initial call for each dictionary entry
MEMORY
REQUIREMENTS: 248 cells
SUBROUTINES
USED: INPUT

3-44

S|Dls SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION %00 Serios: 0420
Catalog No. 9300: 612(

IDENTIFICATION: Compute correction number routine (DEC)

PURPOSE: To compute correction numbers for ENCODER symbolic correction logic.

ACTION: Computes correction numbers by successive multiplication. Leaves resulting

number in WORD.

PRO GRAMMING
CONVENTIONS: First character of correction number is in A register on entry. Obtains

characters by calling CHAR until end of record or non-numeric digit is
obtained. If first character of corrections is +, the plus is ignored. DEC

is a relocatable routine assembled as part of ENCODER.

CALLING

SEQUENCE: First character of number to A register
BRM DEC
Result left in WORD

MEMORY

REQUIREMENTS: 2]8 cells

SUBROUTINES

USED: CHAR

3-45

SJ_:b‘S SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 900 Serics: 042014
Catalog No. 9300: 612001

IDENTIFICATION: Delete line of encoded input (DELETE)

PURPOSE: To delete lines of encoded input when updating encoded files.

ACTION: Gets input characters by calling IN until end of line is reached; then calls

INC until all comments have been passed.

PRO GRAMMING
CONVENTIONS: DELETE is a relocatable routine assembled as part of ENCODER.

CALLING
SEQUENCE: BRM DELETE
MEMORY
REQUIREMENTS:]38 cells
SUBROUTINES
USED: IN

}I\

SIDls SCIENTIFIC DATA BYSTEMS

~ $DS PROGRAM LIBRARY

PROGRAM DESCRIPTION 000 Serics. 0420
Catalog No. 9300: 6120

IDENTIFICATION: Routine to save lines of encoded input (SKIP)

PURPOSE: To transeribe bytes of encoded input file by calling IN. Each byte is
translated to the correct output value by either obtaining the value from the |
APO table entry for the byte or by using SRCH and NSRT to obtain the
value. Bytes are output by calling OUT. Comments are copied by using
INC and OUTC.

PRO GRAMMING
CONVENTIONS: SKIP is a relocatable routine assembled as part of ENCODER.

CALLING
SEQUENCE: BRM SKIP

MEMORY
REQUIREMENTS: 458 cells

SUBROUTINES

USED: IN our
INC OUTC
NSRT SRCH

3-47

SID‘S SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016
Catalog No. 9300: 612001

b ———

IDENTIFICATION: Table initialization routine (INIT)

PURPOSE: To initialize cells for ENCODER, SRCH, and NSRT routines.
ACTION: INIT initializes CORG, HED, and CSEQ.
PRO GRAMMING

CONVENTIONS: INIT is a relocatable routine assembled as part of ENCODER.

CALLING

SEQUENCE: BRM INIT
MEMORY

REQUIREMENTS: 108 cells
SUBROUTINES

USED: None

3-48

S DS

SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

PRO GRAMMING
CONVENTIONS:

CALLING
SEQUENCE:

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 900 Series: 0420
Catalog No. 9300: 6120

Symbolic translation routine (TRANS)

To convert symbolic lines of code by generating a dictionary entry for each
character string within the line and calling SRCH/NSRT to define the entry.
The resulting byte value is o #tput to the intermediate output tape (X1) by
calling OUT. Comment characters are counted and output as a count

followed by the character string.

TRANS obtains input symbolic characters by calling the CHAR routine.
Character strings are constructed, the initial type being determined by
executing a 64-place transfer table T1. As each string or dictionary entry
is constructed, it is defined by calling SRCH/NSRT and the resulting byte
value is output on X1 by calling OUT. Blank fields are counted and the
third blank field or end of symbolic record terminates the line. Blank fields
within alphanumeric data strings are not used as terminators. If a comma
appears as the terminal non-blank character of a line, the line is interpreted
as a continuation. Trailing blanks on the current card plus leading blanks
on the following card are treated as a single blank string, and the following
card is taken as part of the current record without an end-of-line mark

between.

TRANS uses transfer table T1 to determine string types by loading the index
with the initial character and branching indirectly to T1 modified by the
index. TRANS is a relocatable routine assembled as part of ENCODER.

BRM TRANS

3-49

900 Series: 042016

Catal .
atalog No. 3. 612001

MEMORY
REQUIREMENTS: 3038 cells

SUBROUTINES
USED: CHAR NSRT
' ouT SRCH
OUTC STORE

3-50

s,DlS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 200 Serics. 0421
Catalog No. 9300: 612C

IDENTIFICATION: Subroutine to store characters into dictionary entry (STORE)

PURPOSE: To insert characters into a dictionary entry being constructed.

ACTION: STORE positions characters to the next available cell addressed by WORD
and merges the characters into the location specified by WORD by adding

to memory.

PRO GRAMMING
CONVENTIONS: Before the initial call for a dictionary entry, cells SHIFT, WORD, and the

cell addressed by WORD must be initialized. STORE is a relocatable
routine assembled as part of ENCODER.

CALLING

SEQUENCE: Character to A register
BRM STORE

MEMORY

REQUIREMENTS: 208 cells

SUBROUTINES

USED: None

3-51

SIDls SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION %00 Series. 042016
Catalog No. 9300: 612001

IDENTIFICATION: Fetch a symbolic input character (CHAR)
PURPOSE: To get the next character of input from the symbolic input file.

ACTION: CHAR extracts the néxf input character from P2 into the low order six bits
of the A register. When the input word P2 is empty, the next word is taken
from the input buffer CARD. When CARD is empty, the next record is ob-
tained by calling RCRD. If the end-of -file flag is set, CHAR terminates the
encoding operation by exiting from the TRANS routine. On EOF returns from
RCRD, CHAR sets the end-of-file flag. After reading a record, CHAR

exits with an end-of-record character in the A register.

PRO GRAMMING
CONVENTIONS: RCRD and CHAR work together since the number of input characters is set

by RCRD. CHAR is a relocatable routine assembled as part of ENCODER,

CALLING
SEQUENCE: BRM CHAR

MEMORY
REQUIREMENTS: 358 cells

SUBROUTINES
USED: RCRD

3-52

SDS

SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

PRO GRAMMING
CONVENTIONS:

CALLING
SEQUENCE:

MEMORY

REQUIREMENTS:

SUBROUTINES
USED:

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION %00 Series. 04201
Catalog No. 9300: 6120C

Read input s‘ymbolic records (RCRD)
To read symbolie records.

On entry, RCRD saves the character count for the current line (P7) in cell
P8. The next input record is read by calling the proper routine to read
symbolic input as indicated by HOLP. An end-of-file return from the read
results in an end-of-file exit from RCRD. S4B is called to perform any
language translation needed on the input record. The number of terminal
blank characters in the record is set in P5. The characters remaining in
current word count (P) are cleared, and P1 is set to -19 for indexing the input
buffer by CHAR. The number of characters to the first blank of a terminal

blank string is set in P7.

RCRD uses the input 1/O routine established by MON1 as determined from
the UAT. RCRD is a relocatable routine assembled as part of ENCODER.

BRM RCRD
end-of -file exit
normal exit

508 cells

S4B
I/O routine needed to read symbolic input

3-53

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION %00 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Get comment characters from encoded input file (INC)

PURPOSE: Get next comment character from encoded input file.

ACTION: INC sets the input byte size to six bits, calls IN to get the next byte into

the A register, and then resets the byte size to its initial value.

PROGRAMMING
CONVENTIONS: INC is a relocatable routine assembled as part of the ENCODER.

CALLING

SEQUENCE: BRM INC
MEMORY

REQUIREMENTS: 128 cells
SUBROUTINES

USED: IN

3-54

SID|S SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION %00 Series: 0420
Catalog No. 9300: 6120

IDENTIFICATION: Output comment characters (OUTC)
PURPOSE: To output comment characters to the encoded output file.

ACTION: OUTC sets the output byte size to six bits, calls OUT to output the

character in the A register, and then resets the output byte size.

PRO GRAMMING
CONVENTIONS: OUTC is a relocatable routine assembled as part of ENCODER.

CALLING
SEQUENCE: BRM OUTC
Output character to A register
MEMORY
REQUIREMENTS: 1]8 cells
SUBROUTINES
USED: ouTt

3-55

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION %00 Serics: 042014
Catalog No. 9300: 612001

IDENTIFICATION: Search balanced tree table (SRCH)

PURPOSE To search the balanced tree table of bytes, CPO, for a given dictionary
entry.
ACTION: SRCH steps through CPO starting at the loaction given in HED+1, looking

for an item identical to the input item. See Section 3, Item Formats for an
illustration of CPO and dictionary entries. When an identical item is found
in CPO, SRCH exits with the sequence number of the dictionary entry in the
A register (byte value). Successful search results in a return to the calling
location plus 2; an unsuccessful search results in a return to the calling
location plus 1. SRCH sets cell U to the last point of imbalance in the path
searched and MO to the last point examined by search . In addition SRCH sets
the direction pointer in each CPO item examined to indicate the path taken

from that point.

PRO GRAMMING

CONVENTIONS: SRCH is a relocatable routine assembled as part of ENCODER.

CALLING

SEQUENCE: Set HED to location of dictionary item being searched for
BRM SRCH
Item not found exit
Item found exit

MEMORY

REQUIREMENTS: 6218 cells

SUBROUTINES

USED: None

3-56

SD S

SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

PRO GRAMMING
CONVENTIONS:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES

[T sl

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION %00 Series: 04201
Catalog No. 9300: 6120C

Insert entries in dictionary, BPO, and search table, CPO (NSRT)

To define unique dictionary entries representing unique character strings of
input by inserting a dictionary item in BPO and a corresponding balanced

tree search table entry in CPO, and to maintain the balance of CPO.

NSRT enters the dictionary item into BPO and a 3-word item into CPO. The
CPO entry is inserted such that the first word addresses the dictionary entry
in BPO, the second word addresses the item that is just less than the current
entry, and the third word addresses the item just larger than the current
entry. If the addition of the current item results in a tree that is out of
balance, (a tree such that from that point the longest path on one side is
more than one item longer than the longest path on the alternate side),

NSRT rebalances the tree by adjusting the lesser and greater linkages within
the tree from the last point of imbalance. Upon exit the value of the byte

inserted is in the A register.

NSRT is a relocatable routine assembled as part of ENCODER. NSRT
depends upon SRCH having been called to search for the item being inserted

orior to entering NSRT.
BRM NSRT

2668 cells

TRAIL

3-57

SD|S

SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

PRO GRAMMING
CONVENTION:

CALLING
SEQUENCE:

AACAAND
IV\CIV\\JI\Y

REQUIREMENTS:

SUBROUTINES
USED:

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Determine path taken by SRCH (TRAIL)

900 Series: 042016

Catalog No. 9300: 612001

To determine the location of the item following a given CPO item on the

path taken by search.

TRAIL sets cell LINK with the location of the item following a CPO entry,

indicated by X2 on entry, on the path taken by SRCH. Cell LINK+1 is set

with the location of the item following the item given by X2 on the

alternate path.

TRAIL is a relocatable routine assembled as part of ENCODER.

BRM TRAIL
Location of CPO entry to index register

138 cells

None

3-58

S D S

SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

PRO GRAMMING
CONVENTIONS:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION %00 Series:
Catalog No. 9300:

Obtain one byte of encoded input (IN)
To obtain in the A register the next byte of encoded text input.

IN extracts the next INBYTE bits of encoded text from cell INCELL. If
INCELL does not contain at least INBYTE bits, IN calls INPUT to obtain
the next word of encoded text. An end-of-file return from INPUT is
considered a catastrophic error, and results in an abort message '03'. The
remaining bits of text in INCELL are retained in INCELL, and INBIT is set
to reflect the number of data bits remaining in INCELL. If a byte is zero,
INBYTE

it is converted to 2 and INBYTE is incremented by 1. Upon exit

the byteis in the A register.

IN is a relocatable program assembled as part of ENCODER,

BRM IN

468 cells

INPUT

3-59

04201¢
612001

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 200 Series. 042016
Catalog No. 9300: 612001

IDENTIFICATION: Output one byte of encoded text (OUT)

PURPOSE: To output a byte of encoded text located in the A register to the inter-
mediate output file (X1).

ACTION: OUT positions the byte and merges it into the location CELL. If the byte is
larger than BYTE bits, BYTE is incremented. When 24 bits of bytes have
been placed in CELL, OUT calls OUTPUT to write the contents of CELL on
the intermediate output file, X1. To reflect the number of bits of data

stored in CELL, BIT is reset each time OUT is called.

PRO GRAMMING
CONVENTIONS: OUT is a relocatable routine assembled as part of ENCODER.

CALLING

SEQUENCE: Byte to A register
BRM OUT

MEMORY

REQUIREMENTS: 348 cells

SUBROUTINES

USED: OUTPUT

3-60

S|D|S SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 900 Series: 0420

Catalog No. 9300: 6120

IDENTIFICATION: Move tables BPO and CPO (MVTAB)

PURPOSE: To move the CPO and BPO tables to a lower location in memory so that the
dictionary (BPO) may be reinserted purging bytes lost because of lines being

deleted from encoded input.

ACTION: MVTAB moves CPO to the starting location of APO and adjusts the CPO
table pointers to reflect the amount of relocation. BPO. is then moved to
the first locations following CPO. The location of CPO is set in CORG,

and the amount of displacement in each table is recorded.

PRO GRAMMING
CONVENTIONS: MVTAB is u relocatable routine assembled as part of ENCODER.

CALLING
SEQUENCE: BRM MVTAB

MEMORY
REQUIREMENTS: 608 cells

SUBROUTINES
USED: Ncne

3-61

SIDlS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 000 Series. 042016
Catalog No. 9300: 612001

IDENTIFICATION: Relocate dictionary entries into high core (RESET)

PURPOSE: To store dictionary entries remaining after an update run into the BPO in
high core and to alter the CPO pointers to the dictionary items to reflect

the move.

ACTION: RESET stores the next location for BPO into the CPO table entry given by
the index X2. Then RESET moves the dictionary item from the location
indicated by TEMP to the next available location for BPO. The number of
words to m:;ve, less 1, is given by COUNT. If the location of the item as
indicated by TEMP is greater than the next available location for BPO,
RESET aborts with an '02' message.

PRO GRAMMING
CONVENTION: RESET is a relocatable routine assembled as part of ENCODER.

CALLING
SEQUENCE: BRM RESET
Word count -1 to COUNT
Location of dictionary item to TEMP
Location of CPO entry for byte to X2
MEMORY

REQUIREMENTS: 248 cells

SUBROUTINES
USED: None

3-62

SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

PRO GRAMMING
CONVENTIONS:

CALLING

SEQUENCE:

MEMORY

REQUIREMENTS:

SUBROUTINES
USED:

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 000 Sortes. 04201
Catalog No. 9300: 6120C

Output encoded dictionary items to the encoded output file (TBOUT)

To output the number of dictionary characters given by the A register to the

encoded output file.

TBOUT first tests to see if encoded output is requested and exits if it is not.
If an encoded output file is requested, TBOUT obtains the output characters
from the location addressed by TEMP and packs them into cell DATA until
DATA contains four characters as indicated by the count A. At this time
TBOUT calls OUTPUT to write the dictionary word on the encoded output
file. When the number of characters to output has been depleted, TBOUT

exits.

TBOUT is a relocatable routine assembled as part of ENCODER.

BRM TBOUT
Location of dictionary entry to TEMP
Number of characters to output to A register

'308 cells

OUTPUT

3-63

900 Series Only

S'Dls SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Initialize RPTB routine (INRPT)

PURPOSE: To initialize unit and channel assignments in the read paper tape binary

routine, RPTB.

ACTION: INRPT obtains the unit and channel assignments for the device by calling
GTUNT. The I/O instructions within RPTB are then set using the unit and

channel assignments available.

PRO GRAMMING
CONVENTIONS: INRPT works as an integral part of RPTB using the unit and channel assign-

ments from UAT as reflected in the I/O control words within MSCONTRL,
INRPT is a relocatable routine assembled as part of ENCODER.

CALLING

SEQUENCE: BRM INRPT
NOTE: 1/O routines used by the META-SYMBOL assembly system have in
general special requirements on the contents of the A, B, and X registers;
for an explanation of the contents of these registers see MSCONTRL.

MEMORY

REQUIREMENTS: 228 cells

SUBROUTINES

USED: GTUNT

900
3-64

900 Series Only

SIDls SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION
Catalog No. 042016

IDENTIFICATION: Read binary paper tape (RPTB)

- PURPOSE: To read into the indicated address the number of words specified (or one

record) of encoded input from paper tape.

ACTION: RPTB uses a WIM loop to read from paper tape the specified number of words,
or to an end of record, in four character-per-word binary format. 1AW and
INRPT are called to initialize the buffer address and unit and channel

assignments.

PRO GRAMMING
CONVENTIONS: RPTB is coded to work with the file maintenance programs in MSCONTRL.

RPTB is a relocatable binary routine assembled as part of ENCODER. A
buffer error results in @ HALT displaying '10'. Stepping causes the next

record to be read.

CALLING

SEQUENCE: BRM RDPT
Number of words to B register
Location of buffer to A register
Not used
Normal return

MEMORY

REQUIREMENTS: 228 cells

SUBROUTINES

USED: INRPT
IAW

900
3-65

900 Series Only

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION
Catalog No., 042016

IDENTIFICATION: Initialize card read routine (INCRD)

PURPOSE: To initialize the card read routine, CRD, as to unit and channel.

ACTION: INCRD initializes the I/O instructions in CRD by setting the correct unit

and channel bits for each 1/O instruction.

PRO GRAMMING
CONVENTION: INCRD is a logical extension of the CRD routine and depends on the GTUNT

routine having been called to obtain the proper unit and channel assign-

ments. INCRD is a relocatable routine assembled as part of ENCODER,

CALLING

SEQUENCE: BRM INCRD
MEMORY

REQUIREMENTS: 238 cells
SUBROUTINES

USED: None

900
3-66

SDOS

900 Series Only

SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

PRO GRAMMING
CONVENTIONS:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Card read routine (CRD)

To read the specified number of words from the next card in the card reader

Catalog No. 042016

specified into the buffer specified and in the mode specified.

CRD calls IAW to initialize the buffer address and INCRD to initialize

itself as fo unit and channel. CRD then reads the number of words requested
into the buffer requested by executing the EOM following the BRM to CRD
and entering a WIM loop. A buffer error results in a HALT displaying NOP1 .

Stepping to the next instruction results in the next card being read.

CRD is coded to work with the binary and Hollerith card read routines

CRDB and CRDH. CRD is a relocatable routine assembled as part of

ENCODER.

Buffer location to ASV
BRM CRD

Word count to IN1
EOM instruction
End-of -file exit
Normal exit

35, cells

IAW
INCRD

200

3-67

900 Series Only

s—rﬂg SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION
Catalog No. 042016

IDENTIFICATION: Read binary cards (CRDB or CRDN)

PURPOSE: To read cards in the binary mode.

ACTION: CRDB gets the unit and channel by calling GTUNT. An EOM instruction is
then initialized for CRD. CRD is called to read the card.

PRO GRAMMING
TECHNIQUES: CRDB is coded to be used with the file control routines in MSCONTRL.
CRDB is a relocatable routine assembled as part of ENCODER.
CALLING
SEQUENCE: Number of words to B register
Location of buffer to A register
BRM CRDB
End-of -file return
Normal return
MEMORY

REQUIREMENTS: 148 cells

SUBROUTINES
USED: CRD

200
3-68

900 Series Only

SlDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION
Catalog No. 042016

IDENTIFICATION: Read Hollerith cards (CRDH)

PUPPOSE: To read cards in the Hollerith mode.

ACTION: CRDH calls GTUNT to obtain the unit and channel assignments; it then
initializes an EOM instruction for the CRD routine. The CRD routine is
called to read the card. The first word is tested for AEOF indicating

end of file.

PRO GRAMMING
TECHNIQUES: CRDH is designed to work with the file control routines in MSCONTRL.
CRDH is a relocatable routine assembled as part of ENCODER,
CALLING
SEQUENCE: Word count to B register
Buffer location to A register
BRM CRDH
End-of-file return
Normal return
MEMORY
REQUIREMENTS: 208 cells
SUBROUTINES
USED: CRD

900
3-69

900 Series Only

SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

PRO GRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

SUBROUTINES
USED:

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION
Catalog No. 042016

Initialize the RDPT routine (INRDT)

To initialize with respect to unit and channel the 1/O instructions used in

the RDPT routine.

INRDT calls GTUNT to obtain the unit and channel assignments for the
read. INRDT then sets the I/O instructions in RDPT to reflect these

assignments.

INRDT is a logical extension of the RDPT routine and is a relocatable

routine assembled as part of ENCODER.

BRM INRDT

NN "
LU, Cells
8

GTUNT

900
3-70

900 Series Only

s,Dls SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION
Catalog No. 042016

IDENTIFICATION: Read paper tape and typewriter (RDPT)

PURPOSE: To read binary-coded decimal records from paper tape or from the type-
writer.
ACTION: RDPT calls INRDT to initialize 1/O instructions. Characters are then read

into memory, one at a time using a WIM instruction. Tabulation characters
are converted to blank strings, typewriter blanks (012) are converted to
blanks (060), and carriage return characters are interpreted as end-of -record
marks. Up to 80 characters per record are read. AEOF in the first word of

input is taken as end of file.

PRO GRAMMING
TECHNIQUES: RDPT is designed to work with the file control routines in MSCONTRL.
RDPT is a relocatable routine assembled as part of ENCODER.
CALLING
SEQUENCE: BRM RDPT
End-of -file return
Normal return
MEMORY
REQUIREMENTS: 738 cells
SUBROUTINES
USED:. EDC
EDS
INRDT

900
3-71

900 Series Only

S’Dls SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION
Catalog No. 042016

IDENTIFICATION: Store characters into buffer (EDC)
PURPOSE: To store a character into the buffer location specified.
ACTION: EDC subtracts 608 from the character furnished in the A register, positions

it to the correct character position as determined by EDC1, and stores it

into the location addressed by EDWW by adding to memory.

PRO GRAMMING .

TECHNIQUES: EDC assumes the buffer has been cleared to blanks (608) prior to being
called. EDC is a relocatable routine assembled as part of ENCODER.

CALLING

SEQUENCE: BRM EDC
Character to A register

MEMORY

REQUIREMENTS: 2]8 cells

SUBROUTINES

USED: None

900
3-72

900 Series Only

SI|S SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION
Catalog No. 042016

IDENTIFICATION: Initialize word and character positions to store characters (EDS)
PURPOSE: To set parameters EDC1 and EDWW for EDC routine.
ACTION: EDS uses the control word supplied in the A register to set the shift para-

meter, EDC1, and the buffer location, EDWW, for storing characters. The

control word has the following format:

character (9 bits) word position (15 bits)

v L) ¥ L] 1 J

0 89 23

Character is 0 through 3 giving character positions from left to right to
store next character.

Word position is the address in buffer to store next character,

PRO GRAMMING
TECHNIQUES: EDS is a relocatable routine assembled as part of ENCODER.
CALLING
SEQUENCE: Control word to A register
BRM EDS
MEMORY

REQUIREMENTS: 6 cells

SUBROUTINES
USED: None

900
3-73

Set 'TOP of core

Initialize tables,
constants, and
switches

1/O routine read
symbolic record?

ENCODER
OVERALL FLOW

MONI1
initialize

10

Initialize ENCODER
1/0 Tables

OPEN
scrateh file (X1)

Set flag

] Read and store old

y

Read and encode symbolic
source .

Build CPO (Search) Table
and BPO (dictionary).

Put text on scratch (X1).

encoded dictionary .

Y

Read symbolic corrections
and merge with encoded
input. Build Equivalence
Table (APO), Search Table
(CPO), and dictionary
(BPO). Write text on

Write end of file on scratch
tape (X1) and rewind.
Using the text us a basis,
collapse dictionary
removing deleted bytes.
Output dictionary and
text as requested.

scratch tape (X1).

OADER

Load PREASM

3-/4

TRACOR

ENCODER
TRACOR, BEGIN, AND CORR
ROUTINES

es
—-L—QOUNT - 0?)————7

no

Begin N-CODER

LIQBOOT-4)
— MMAX

A

MONI1
initialize 1 /O calls

A

)

Initialize encoded output
file table, PACKEO.
[nitialize encoded input
file table, PACKEI.
Initialize encoded text

1/0 file, MTP.

Y

OPEN
encoded text file
\

REWW
rewind scratch tape

4

Initialize parameters:
BYTE, BD, BIT, CELL,
APO, BPO, and
FLAG..

i

RCRD
read 1 record of
symbolic input

FOF

||OI"I(]‘

PTCH
get character

Decrement character
count in COUNT

]

STORE
place character in dictionary

3

4

= SHIFT? 2

L(STORT)

no

J

WORD-1— WORD

INAB4

normal

Set loc. of dictionary
entry into APO,

yes

no

End of dictionary

)

3

Character —= COUNT

N

TRANS
encode 1 symbolic record

EOF

4

»

INAB4

INIT

< initialize SRCH parameters >

a

no

CChorocter: + 7 yes)

3

Get Ist character
from CARD.

T

ps— p4 |1,

0 —pP

CORR

©

[

'

PTCH
get dictionary character

)

f

1
0 — loc given by

WORD.
L(STORT) — SHIFT
[y

0—8

BPO — WORD

normal

READ
read encoded dictionary
record

)

EOF
Yy

02— A reg

Set TLAG positive

3-75

ABORT

INIT
initialize for SPCH

WORD —* BPC
2 — IN BYTE
Location of st word

ENCODER
PROG ROUTINE

CORRl 1}

DELETE

delete line

y
SEQ + | — SEQ

SEQ + 1 — SEQ

i

[

SKIP
skip line

yes

SEQ > WORD?)
4

encoded input —= CORRIO
INCEL.
0— INBIT
1— SEQ
)
no

i
C FLAG

<0?

99999 —> WORD

Tyes

get symbolic character,

)

DEC

A CORR6

get corr. number

\ i
WORD

6?

yes

C
e
Vo

RCRD
read symbolic record

normal

Get 1st charadler -l

[}

SEQ + 11— SEQ
]

SKIP
skip

line

3

yes

[—>(wono - SEQ?

-

Y

get corr. number

>

CORR4

‘ DECT

no
yes
WORD - SEQ?)——
DEC \ no
get correction numbery
y A
08 —= A Reg
CORR8
CHAR ABORT
get character
1
yes
| 2 ~\ no - TRANS

—————bCChﬂruder

from CARDY,

_J

\ encode line

normal

ENCODER
DELETE, PTCH AND DEC ROUTINES

TEMP —= A reg
B-1—B

yes

\
INPUT \ normal ¢ Extract character of

get dictionary word input — A reg

03—*7Akeg. B < 0? yes ol 3 —5
I ol
y Y
EXIT, EXIT,
ABORT
DELETE

\

IN
C Areg= + ? yes 0 A reg get encoded byte
| no
yes A by 1 12 no
te = 17
P4 = 0?)= A reg —> word C)
_J]

no yes

4
CHAR INC
get character get comment byte

9
no WORD * 10 +
C Character > 9q—>- character ——» Count —* P4A
WORD

yes <

Character —= DECT P4A - 1 —> P4A

¥ 1
§rxn7 i PAA - - |

INC
aet next byte
commen s

3-77

ENCODER
SKIP AND INIT ROUTINES

SKip

ourt

\ output byte
IN ' i

INC
get comment
count

ouTt
output byte

(Byte in APO?)92- Count — P4A

yes
ING QuUTC
get char. output char,

no
€ End of comments?

W,

yes
y Y
SRCH EXIT
get byte number
not
yfound
NSRT ! e
insert byte in BPO o byte>5112)
and CPO .
no
. A
- Insert byte in APO.

cur
output byte
from APO

CPO - 9 —+ CORG
L(HED) — HED +1
L(HED) — HED + 2
3 — CSEQ

EXIT,

3-78

0 —= BC

0 — BBC

0 — ALF1

0 — ALF2

0 — PDATA
L(DATA) — HED

CHAR
get character

PR

Character —+ X2

ENCODER
TRANS ROUTINE

BBC + 1 — BBC

BLANK2,

Y

==, N°
C BBC - 2?2)

no
(7exT or BCD line? s

yes

\

ALF2 + 1 — ALF2

0 — COUNT

BLANKI

¥

COUNT + 1 —= COUNT

T1 Branch
Table

no

yes

(BLANK?

4

CHAR —
get next character

C End of record?) .

DATA have EORC

special character? } -

yes

y

ALF2 + 0?)
Set DATA to

yes
2 character biank

y

P8 —s COUNT
P5 — P4

Character — NEXT

i
yes
4———-‘ COUNT > 637)
no

L
Set DATA to

BBC + 1 —= BBC -

B ALLIY

3-79

1 character blank.

ourt
Output |

ENCODER
TRANS ROUTINE (cont.)

014 —»
A reg

(ALF2 = 02 >
yes

P

ALF1-1 — ALFA

TRANS + 1 —= TRAMNS

1

(ALF1- 0?)r_,

Character *0100 ~— DATA

CHAR
Get character

)

Character —= NEXT

Y

,__"°C2—chomcter byte?)

yes

Set up 2-character
special character
byte in DATA.

yes
A
v
11— Al
P4+ 1 — PA LF1
\
(P4 > 647)ES—-»‘63—-P4
no T
| 4 A 4
ouTtC Set up single
Output P4 character special
character byte
in DATA.
\
P4 - 1~ P4
\
‘ P4 < 0?)ﬁ
no
4
NEXT —= A reg
Y
ouTtC
Output character
M
CHAR
Get character
‘ !
P4 < 02 JY“ P5 — P4
.
EXIT

3-80

ENCODER
TRANS ROUTINE (cont.)

1 — B Reg.
DATA — PDATA
NEXT — A Reg.
0 —= B Reg. > b
4

B RPeg. —= ALFF

L(STORT + 2) —
SHIFT

L(DATA) — WORD
13— P3 no

Character + 212 — yes
DATA (Comment Card?)_—__l

3

ALL3

A\

yes

CHAR o
get character CMore than 8 blunks)———

no 3
yes
More than 16 blonks)
es b
4 Numeric?)

no yes
no
¥ BBC = 1? BBC = 27
Alphabetic) [
4
yes yes
(DATA Blank type?)L
- ALFF + 1 — ALFF [|
| ‘___‘yes Previous byte = , ?)
BC + | —BC —
STORE

store character

A
§ ves
L——(ALFI or ALF2 > 07)
no

yes no
‘-—CNEXT - Blank?)———-—-b-

3

CHAR yes J
get character no
4‘—(Comment Cord? >

1\ EOR
yes
‘ o wk-00)
Character — NEXT L
Set type yes N . .
to 2 umeric? Merge count into
i - control byte.
ouTt
Y Output byte
Set type to 3 Y
find
ALLY h & A SRCH no find NSRT

for this entry this entry

3-81

STORE AND CHAR ROUTINES

Position character
and add to location
given by WORD.

ENCODER

4

C Full word?)""5

Decrement WORD

_ |Clear loc. given

by WORD .
Set SHIFT - L(STORT)

J

P4 < 0?

h A

no

Shift character from
B Reg. to A Reg.
B Reg. —= P2

EX[
XIT,
p-1 — P
P2 —> B Re
? g
P J P4-1-—> P4
yes
CHAR2
\ NS 3 —P
Buff ? > P1 +1 — P!
(uiter emely J Next data word
" yes — P2
P4-1 — P4
End of File
i
Yy I
Pé-1 —= P6 :
|
|
yes _JEXIT
P6 -0) ; TRANS
no
-
RCRD end of file - EOREC P6
get next record /

normal

EOREC —= A reg

3-82

exii/

P7 — P8

Execute EMPTY

HOLP Y
Read symbolic e e = =
input record.

normal EOF

EXIT,

S4B
transiate

A

RCRD + 1 — RCRD.

Number characters in
record —> P5.

0 — P

-19 — P}

Number trailing
blanks — P7.

EXIT

ENCODER

RCRD, INC AND OUTC ROUTINES

See S4B to determine
contents of EMPTY ,

INBYTE — A Reg.
6 — [NBYTE
A Reg — CBYTE

Device subroutine in
MSCONTRL specified
in HOLP,

4

IN
get next (6 bit) byte

CBYTE ——= [NBYTE
Byte (mod 64)
— A Reg.

BYTE — CBYTE
6 — BYTE

4
ouT
output byte (6 bits)

from A Reg.

L

CBYTE — BYTE

EXIT

3-83

XIT

HED —= LDATA
L(HED) —= MO
L(HED) — U

L(HED + 1) —+ A reg

ENCODER
SRCH ROUTINE

lesser link

greater link

key of item

= balance of item

B = 0 balanced

B =1 heavy greater
B = 2 heavy lesser
direction followed
D = 0 lesser

D > | greater

X = current item

L
G
K
B

o
"

M1 —= MO

»ie SRI
1
A Reg. — M1
HED —» LDATA
C B(M1) = 0? j&, MO — U
yes
A
no
(KM1) = k))
yes
: Y
_ no
(M1 = HED?)
yes
j— — —~4 No find
Find ———
Y
EXIT

(M1-CORG)/3
—_— A reg
SRCH + | — SRCH

C—K(MI) ; K(X)?}
yes

0 — D(M1)
L(M1) — A reg

Y

1 —= D(M1)
G(M1) — A reg

) 4 l

3-84

ENCODER
NSRT ROUTINE (DEFINITIONS)

Let o denote some byte entry in the table; then:
L (o) is the pointer from o to a lesser item.
G (o) is the pointer from oto a greater item.
K (a) is the key of a.
B (o) is the balance of a.
B (a) = 0 denotes balance.

B (2) =1 denotes heavy in the greater chain.
B (2) =2 denotes heavy in the lesser chain.

D (o) is the direction followed from a in searching for
an item.
D (@) = 0 denotes lesser chain taken .
D (@) = 1 denotes greater chain taken .

X denotes current item to insert.

F (a) denotes the item following « on the search path
taken .

Q (a) denotes the item following a on the path other
than that taken .

U denotes the last point of imbalance on the last search
path,
MO denotes the last point examined by SRCH.
M (B) and N (p) are defined such that
: If G (o) - pthen M () = G (p)
and N (p) = L (p)
If L (a) - pthen M (p) = L (p)
ond N (g) =G (p)
H denotes location of HED.

P (o) denctes location of dictionary entry for byte a.

3-85

ENCODER
NSRT ROUTINE

XX — X2
C DIMO) 07 no CPO —= G(MO) 1
yes
QW) — F(V)
! vV — QW)
CPO —= L(MO) > i
\
F(W) — XX
H — L (X) F(W) — VWX
H — G(X)
3
A
A TRAIL
__% Is item in dictionary ?) get path from W
y e t
W — L(U) >
Location of dictionary Y [Y
entry — P(X) BPO — P(X)
Number of words of
dictionary —+ NUM yes

(D) = 0?)no o| W— G(V)

) 4

[

Move dictionary item e no
NS3 >ie into dictionary . (D(V) = D(W)?
BPO-NUM — BPO 3
\
n yes
(CPO+3>BPO‘ 01 —= A Reg. F(V) — W
no
T b
TRAIL
mark path from V

| ABORT

3

TRAIL
Mark path token at

FU) — V —vGS D(V) same as B(V)B

imbalance

1

F(V) — xx

TRAIL
mark path trom V

vV — X?
vV —= VWX

es B(V) 0?),no_. F(V) —> VWX

3-86

—)

=

TRAIL
get path from X

ENCODER

NSRT ROUTINE (cont.)

TRAIL
get path from W

L(XX) —NXx

G(XX) = MX

no

F(W) — XX

-DC DW) = 0?)

yes

\

1 G(XX) — NX -
L(XX) —=MX o
F(X) — XX L
TRAIL XX —— VWX
gonoe (o)
XX — F(U) get path from XX XX — X2
N(XX) — F(VVV))_
M(XX) — F(
v W — N(XX) Ns10
5 5V) vV — M(XX)
- O — B(XX)
XX—=X2 o—8v) s xx-cror)]
yes
! F(F(U)) —= VWX
C X2 = H? D(VWX) = 0?)&— 2 —= BIVWX)
yes no y

) J

CPO + 3 — CPO
CSEQ — A reg

CSEQ + 1— CSEQ

1 — B(VWX)

Y

y

TRAIL
get path from X2

F(X2) — X2

2 —=B(Q(XX))

F(VWX) — X2

TRAIL
get path from XX

A

no

\ J

e——2(i@y - 07)

TRAIL
get path from VWX

3-87

1 — B(Q(XX))

ENCODER
TRAIL, IN AND OUT ROUTINES

FIX2) — LINK no
0(X2) — LINK + 1 C INCELL empty ?)— ‘ no(Byte > 28YTE,)

yes yo
3 y
;EX”; - BYTE + 1 — BYTE
» \
INPUT \
EOF get word of encoded ..
input Position byte to start
in bit position BIT.
normal Merge into CELL

ABORT
03

]
—"—°(Full word?)
y
Yes

Text record?)

no

es
4 \ J
BIT + BYTE
\ =24 —= BIT
Encoded input word >
— INCELL
, A
QUTPUT

write word from CELL

Extract INBYTE bits from

no | INCELL starting at
—(INBIT > 247)4—— vy ‘

yes INBIT + INBYTE —> [NBIT EXIT

v
INBIT-24 — INBIT

[

v ANBYTE ___ A Reg
yes b
Byte = 07)'—'_J |h¢';sBY¥fEe+ 1| — BIT + BYTE — BIT
— INBYTE

i A Y

§Exn7 EXIT EXIT

3-88

ENCODER
END ROUTINE

CLOSE
encoded output

WRITE
end record

f

ouTt
output byte of 2
(EOF)

Other cutput wanted?

Copy text from
OUTPUT X1 to output
output last word media.

CLOSE 22{8PO moved
intermediate file __I TEMP - 1 — TEMP

Reset BPO HED + |
] and HED + 2

COUNT - 1 — COUNT

4

Eww
rewind intermediate TBOUT

TBOUT
finish last word

m
< <

tape (X1) output word
from TEMP 3
no [
MAGPAK? ’ no
yes (COUNT < 0?
Y
REWW ~ !
rewind X2 \
COUNT - I —= COUNT X2 +3 — X2
"y
Initialize to read X1. Y yes
X2 = CPO?
\ no
RE RESET
intermediate tope reset dictionary
3
yes

Get dictionary entry
Wot';s ;hem) for byte at X2.
coded input No. words — count

3
3

yes No. bytes mod 3
] — NEXT
Location dictionary
MVTAB - TEMP
move CPO and BPO ’ [
END2 >t
1
3 — SEQ OPEN Location of Ist
Initialize to output encoded output byte —> X2
dictionary . file

3-89

ENCODER

MVTAB, RESET AND TBOUT ROUTINES

Move CPO (search, insert
table) to 1st available cells
after encoder.

Adjust all pointers to items
within CPO by the amount
of displacement.

Reset CORG.

Move BPO (dictionary) to
Ist cells following CPO.

Save new BOP originin
NBTO.

Reset CPO Table pointer
to new dictionary
location.

Move dictionary entry
from BPO to high core.

EXIT,

/

‘ Encoded output requested?

no

¥

<7

BOP.entry yes
new location? > 01 —= A Reg.
)
A 4
XIT,
ABORT
\res JV Store next
J 7| choracter — DATA
 J
no
(oaramnr Y
yes
J ™\ no
QuUTPUT »{ End of entry?)
write word AL
yes
A
EXI

3-90

900 Series Only

ENCODER
INRPT, RPT8B, INCRD AND CRD ROUTINES

RPTB

et unit and chann

AW
GTUNT initialize oddress
g el

y

INRPT
A initialize
Initialize all the ECMs, unit and channel

SKSs and WIMs in the
RPTB routine > |

Using WIM loop, copy
requested number of

L words to given location.
EXIT
\ i b
C o\ | Disconnect buffer
Buffer error? | *™1 RPTB + 1 — RPTB
A

EXIT

1AW
initialize
address

Initialize all EOM, SKS,)
and WIM instructions in
the CRD routine for unit . . !N'_CRD .
and channel . initialize unit HALT
and channel display 1
P a
\ / \ yes
EXIT yes Copy specified number
Unit ready ? of words into location error?
O given. no
\
no Y
?
EOF? CRD + 1 —= CRD
yes
l Y
EXIT EXIT
200

3-91

CRDB

GTUNT
get unit and
channel

CRD
read card

(

normal

CRDB + 1 —=CRDB

y

EXI T,

D

GTUNT
get unit and
channel

Initialize all

EOM, SKS and
WIM instructions
in RDPT as to

unit and channel .

;EXIT;

900 Series Only

ENCODER

CRDB, CRDH, INKDT AND RDPT ROUTINES

EOF b

INRDT
initialize unit
and channel

]

Blanks to buffer
delay a few mils.

EDS
initialize locations
to store

GTUNT
get unit and
channel

CRD

read card

<

normal

y

(Ist word AEOF?)’-“———

no

y

EOF

CRDH + 1 — CRDH

yes
80 characters read? ’

s
0522}

no

CHR

Read 1 chamcter

EXIT

EDS

reset location

¢

)

4

EXIT

no
:‘ 4th tab?
\)
ves |

Disconnect
buffer

900
3-92

ﬁ

RDPT + 1 —= RDPT

no

AEOF?

es 1

900 Series Only

ENCODER
EDC AND EDS ROUTINES

Store character in A reg
into next position addressed
by EDC1 and EDWW.

!

C Full word?)L»‘ Increment EDCI

yes

\ 4

Reset EDC1 and EDWW

 J

EXIT,

Set EDWW to word to
receive next character
and EDCI to character
position.

Xl

900
3-93

SD S

SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 200 Serion. 042016
Catalog No. 9300: 612001

Translation program (54B)

To translate symbolic input from SYMBOL 4 or SYMBOL 8 language into
META-SYMBOL language.

S4B tests the control cell MSFNC to determine if translation has been
requested. If no trnaslation is requested, S4B exits immediately. The input

record is scanned for items to be translated which includes the following:

1. MACROs written in the SYMBOL 8 format are translated to PROCs and
NAMEs in the META-SYMBOL format; ENDM is translated to END.

2. Fields which have assumed octal values in the input language are

supplied leading zero characters in the META-SYMBOL format.

3. Decimal and binary scale factors are converted to META-SYMBOL

format.

4. Indirect flags are moved from the last character of the operation field

to the leading character position of the operand field.
5. Operand fields of VFD directives are translated to META-SYMBOL lists.
6. BCI directives are converted to BCD directives,

7. Leading O or H characters on literals are replaced by 0 (zero) and

leading and trailing ' respectively.
8. DEC and OCT directives are translated to DATA.

9. Parameter references within macros are translated to META-SYMBOL

format,

3-94

900 Series: 04201

Catalog No.
atatog Mo« 9300. 6120(

ACTION:

(cont.)

PRO GRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

If an input record results in an expansion necessitating the generation of
two or more output records, the location EMPTY is set to transfer to the
appropriate point in 54B to resume the translation. EMPTY, normally a
NOP instruction, is executed by the RCRD routine of ENCODER before
reading the next symbolic input record and in this way proper translation

results.

S4B as a translation program is designed to work with ENCODER and may be
thought of as an extension to the symbolic input section of ENCODER. Note
that only symbolic inputs are translated, the assumption being that all
encoded outputs have been translated from the original symbolic on the
initial encoding run. S4B is a separately assembled relocatable routine to
be loaded behind ENCODER and the programmed operator routines. The
cell TABLES in ENCODER is set to a value which addresses some location
following S4B. Since this cell represents the starting location in lower
memory for tables constructed by ENCODER, any increase in the size of

S4B may result in the need to reassemble ENCODER. The symbols EMPTY
and $4B are defined as external for reference within ENCODER. The

symbol CARD within S4B addresses the symbolic input buffer within
ENCODER; and, if the location of this buffer (CARD) changes in ENCODER,

it is necessary to reassemble S4B to reflect this shift.

Initial entry to S4B for record
BRM S4B

Subsequent entries to S4B to resume translation of a single symbolic record.
EXU EMPTY

The return in this case is to the location of the EXU plus 4.

3-95

Catalog No, 900 Series: 042QJ6
2300; 3y i

MEMORY
REQUIREMENTS: 12208 cells

SUBROUTINES

USED: TENC MOVE
OCTC RESET
NUM GET
NAME PUT
PARAMS

3-96

ENTRY POINTS TO S4B SUBROUTINES

Page Page

Entry Description Flowchart Entry Description Flowchart
BCI 3-108 OCT8 3-99 3-109
BINS 3-110 OCTC 3-99 3-109
DECS 3-110 PARAMS 3-102 3-112
DECS2 3-110 PUT 3-106 3-113
DED 3-108 RESET 3-104 3-113
ENDM 3-111 S4B 3-94 3-107
GET 3-105 3-113 S4B02 3-94 3-108
LIT 3-94 3-107 S4B03 3-94 3-108
LITY 3-94 3-107 S4B1 3-94 3-108
MACRO 3-112 S4B2 3-94 3-107
MOVE 3-103 3-113 S4B6 3-94 3-107
N AME 3-101 3-112 TEN 3-98 3-108
NUM 3-100 3-109 TEN3 3-98 3-108
NUM1 3-100 3-109 TENC 3-98 3-108
NUM2 3-100 3-109 VFD 3-111
OCT 3-99 3-109 VFD3 3-111
OCT5 3-99 3-109 VFD4 3-111
OCT6 3-99 3-109

3-97

SI:Dls SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016
/ Catalog No. 9300: 612001

IDENTIFICATION: Resume translation of DEC directive (TENC)

PURPOSE: To initialize parameters and exit location when resuming the translation of
the operand field of a DEC directive which expands to more than 72

characters.

ACTION: TENC sets S4B to the location of the EXU EMPTY instruction plus 4 and then
calls RESET to initialize the card buffer for resuming the translation. TENC

exits to TEN3 to continue the translation process.

PROGRAMMING
CONVENTIONS: TENC is executed only after the DEC translation code is unable to translate

the input image into a 72~-character META-SYMBOL equivalent because of
space. It assumes the ENCODER will remotely execute the instruction at

EMPTY. TENC is a relocatable routine assembled as part of S4B,

CALLING

SEQUENCE: A BRM TENC is stored in EMPTY, and TENC is called when EMPTY is
executed.

MEMORY

REQUIREMENTS: 6 cells

SUBROUTINES
USED: RESET

3-98

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 000 Serive. 0420
Catalog No. 92300: 6120(

IDENTIFICATION: Resume translation of OCT directive (OCTC)

PURPOSE: To reset the S4B exit and the symbolic input buffer to resume the translation
of the OCT directive.

ACTION: OCTC sets S4B to the location of the EXU EMPTY plus 4 and then calls
RESET to initialize the symbolic input buffer to resume translation of the

OCT directive.

PRO GRAMMING

TECHNIQUES: OCTC is called only when during the translation of an OCT directive the
symbolic card buffer filled before the translation could be completed. It
assumes the ENCODER will remotely execute cell EMPTY. OCTC is a
relocatable routine assembled as part of S4B.

CALLING

SEQUENCE: A BRM OCTC is stored in EMPTY during the translation of an input OCT
directive. OCTC is called by executing EMPTY remotely.

MEMORY

REQUIREMENTS: 7 cells

SUBROUTINES
USED: RESET

3-99

m SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 200 Serios. 042016
Catalog No. 9300: 612001

IDENTIFICATION: Convert input numeric fields to META-SYMBOL format (NUM)

PURPOSE: To translate input symbolic numeric fields from SYMBOL 4 or SYMBOL 8
format to META-SYMBOL format.

ACTION: NUM obtains characters one at a time by calling GET until a terminator is
obtained. Binary scaling factors are converted from the B notation to */;
decimal scaling factors are converted from the E notation to *+. Characters

are stored in the input symbolic buffer by calling PUT.

PROGRAMMING _
TECHNIQUES: NUM is a relocatable routine assembled as part of S4B,
CALLING
SEQUENCE: BRM NUM
MEMORY
REQUIREMENTS: ”28 cells
SUBROUTINES
USED: GET
PUT

3-100

SlDls SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 000 Series: 04201
Catalog No. 9300: 61200

IDENTIFICATION: Define name lines for MACRO directives being translated (NAME)

PURPOSE: To define NAME directives by which procedures being generated from input
MACRO lines may be called.

ACTION: NAME sets the exit from S4B and calls RESET to initialize the symbolic input
buffer. NAME then sets NAME in the operation field of the buffer and the
label from the MACRO line into the label field in the buffer. Before
exiting S4B, NAME sets EMPTY to contain BRM PARAMS for translating
the parameters to the MACRO sample.

PRO GRAMMING
TECHNIQUES: NAME is called only as a result of encountering an input MACRO line.
NAME is a relocatable routine assembled as part of S4B.
CALLING
SEQUENCE: BRM NAME is stored in EMPTY
NAME is called when EMPTY is executed.
NAME returns to the EXU EMPTY plus 4.
MEMORY
REQUIREMENTS: 218 cells
SUBROUTINES
USED: RESET

3-101

s—rﬂg SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 000 Series. 042010
Catalog No. 9300: 612001

IDENTIFICATION: Define parameters on MACRO lines (PARAMS)

PURPOSE: To translate macro parameters to a format suitable to META-SYMBOL.

ACTION: PARAMS provides for the translation of parametric values by defining each
parameter equal to the corresponding META-SYMBOL subscripted symbol
for the parameter. PARAMS sets the S4B exit location and then calls RESET
to initialize the input buffer. The next parameter is then placed in the
label field, the operation is set to EQU, and the operand field is set to the
REFLIST (n), where REFLIST is the label given the PROC line generated in

place of the MACRO and n is the current parameter number.

PRO GRAMMING

TECHNIQUES: PARAMS is called only after generating a NAME line as part of the trans-
lation of a MACRO. PARAMS is a relocatable routine assembled as part of
S48.

CALLING

SEQUENCE: PARAMS is called by an EXU EMPTY after EMPTY has been set with o

' BRM PARAMS by the NAME routine. Return is to the EXU EMPTY plus 4.
MEMORY

REQUIREMENTS: 448 cells

SUBROUTINES

USED: GET
PUT
RESET

3-102

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 000 Series. 0420
Catalog No. 9300: 6120

IDENTIFICATION: Save symbolic lines of input (MOVE)

PURPOSE: To move symbolic input lines and clear the symbolic input buffer to blanks

in anticipation of having to translate a line and expand its size.

ACTION. MOVE moves the contents of the buffer CARD to the buffer XCRD and stores
blanks in CARD. MOVE then initializes the cells GETD, GETW, and
GETCT for GET and the cells PUTT and PUTW for the PUT routine.

PRO GRAMMING

TECHNIQUES: MOVE is a relocatable routine assembled as part of S4B.
CALLING

SEQUENCE: BRM MOVE

MEMORY

REQUIREMENTS: 238 cells

SUBROUTINES
USED: None

3-103

m SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

Catalog No. 9300: 612001

IDENTIFICATION: Initialize symbolic input buffer when continuing translation (RESET)

PURPOSE: To set the last 16 words of the symbolic input buffer to blank and to

initialize the PUT routine parameters.

ACTION: RESET stores blanks in the last 16 words of CARD and also in the label field
of CARD. RESET then initializes the PUT parameter words PUTT and PUTW.

PRO GRAMMING

TECHNIQUES: RESET is a relocatable routine assembled as part of S48,
CALLING

SEQUENCE: BRM RESET

MEMORY

REQUIREMENTS: 258 cells

SUBROUTINES

USED: None

3-104

S[:b—]s SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 200 Serics. 042016
Catalog No. 9300: 612001

IDENTIFICATION: Get next character of symbolic source (GET)
PURPOSE: To get the next character of symbolic input into the A register.

ACTION: GET extracts the next input character into the low order bit positions of the
A register and GETC. The pointers to the next character of source are
incremented, If the character is a comma or a blank, GET exits to the

location following the call; otherwise, it exits to the location of the call

plus 2.
PRO GRAMMING
TECHNIQUES: GET is a relocatable routine assembled as part of S4B,
CALLING
SEQUENCE: BRM GET
end-of -entry return
normal return
MEMORY

REQUIREMENTS : 358 cells

SUBROUTINES
USED: None

3-105

SID‘S SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 000 Series. 042014
Catalog No. 9300: 612001

IDENTIFICATION: Store a character of translated source (PUT)

PURPOSE: To insert a character located in the A register into the next character

position of the symbolic input buffer.

ACTION: PUT positions and stores the input character into the buffer at the location

given by PUTW. The buffer location pointers are incremented for the next

character.

PRO GRAMMING

TECHNIQUES: Since PUT subtracts 608 from the character and adds the result to memory,
it assumes the buffer has been cleared to blanks before being called. PUT
is a relocatable routine assembled as part of S4B.

CALLING ,

SEQUENCE: Character to A register
BRM PUT

MEMORY

REQUIREMENTS: 228 cells

SUBROUTINES

USED: None

C In translation mode ?

yes
A

C Operation MACRO?

no

Other mnemonic to be
translated ?

=TT

EXIT

S48
OVERALL FLOW

BCI for BCl

DED for DED

TEN for DEC

OCT for OCT

S48; for EOM, RCH,
SKS or OPD

VFD for VFD

ENDM for ENDM

$4BO2 for BOOL

S4BO3 for BORG

yes

Finished?

C

PUT

store character

GET
get next

character

i yes

no .
« after mnemonic?)’no__’

field

Move « to operand|

S4B6

A

\
- Location?
yes

EXIT

LIT1

Change * to $

@

v

—.(no Operand a literal ? ’

{

)

yes
\ J
no
S -
yes
Replace O
with 0
A
yes
(Hollerith
no
¥
Replace H with
lead and trail

PUT

store character

NUM

move scaled

number /

\.

MOVE

move card image

GET

next character

PUT

store character

3-107

$23 — SCALE

S4B1

BOOL

EQU — operation
field

S48
OVERALL FLOW (cont.)
TENC AND DEC ROUTINES

Ist character of
operand 1-9?

yes

A 4

Place lead zero
before operand.
Move « if needed.

S4B6

DEC

$23 — SCALE
Change mnemonic
to DATA

¥

MOVE

move card image

@

BORG
RORG — operation Change mnemonic
field to BCD
A
o
/‘ v Count given?)
yes
) J
Set count to 56 Y
Change count tc
character count.
A
EXIT
y
EXIT,
Set retum address i
for S4B 546 —= SCALE
S
— PR S
RESEY MOVE

start new card image, move card image

TEN3

¥
NUM

move scaled number

Y

PUT

store comma

ye

s
es
(, terminate Hoom left on card? ’

no

no

?

BRM TENC — EMPTY

3-108

MOVE
move card
image

Change mnemonic

to DATA

S4B
OCTC AND NUM ROUTINES

Set 1etumn for S4B

RESET
start new card image

OCr8

GET

\ terminator

get character /

Normal

>

Generate 9 character
octal constant with lead
zero and 4 merged into
Ist octal digit

+ 2 no
yes
y
GET
skip +
Terminator

OCT5

nomal ¢ . < Character > 0?)E————‘—D
yes

)
PUT

OCT6

output 0

NOP —— EMPTY

Y
; EI-(IT;

no
‘————-{ ’

yes
y

Image full?

C

no

@

)
PUT
STORE ,

yes

character

BRM OCTC —* EMPTY

EXIT,

NUMI

Terminator

4
EXIT

3-

109

PUT
store charocter

S4B
DECS AND BINS ROUTINES

ZEXIT s

terminator

PUT
store *

Y

< GET yes
character : +?

es
terminator 4

no
[4
1
PUT PUT
W store (character
no
-2 >
\ Chaoracter -7
/ yes
PUT PUT
store - store -

=

w
N
[
m

—_—
L
yes
GET (character + ?)'———
character
no

\ .
PUT no S o7
Character ?) ’_j[__\
character e
= r__\ \ store

PUT

store character ‘

srzl::) GET
character

\

—

&

t

PP

Blank?
PUT
yes [yes character Character > 9?)
ves
1 Y
EXIT EXIT

3-110

MOVE
move card image

Reset S, O, and

S48
VFD AND ENDM ROUTINES

Change mnemonic
to END

EXIT

H flags
A
normal PUT
no
terminator
y y
n no
{ H flag set?) (Character = /? H 0? J—" Set O flag
yes yes no
L 4 L
s:Jr: ‘ Set S flag (H? _)—— Set H flag |-o
no
A \
PUT PUT
store character store ,
A]
yes yes
_(Comma?) (O flag set? T
no no
vy

3-111

VFD4

S48
MACRO, NAME AND PARAMS ROUTINES

Save label modified by adding Reset retum address
1 to last character (M for S48
— N) store REFLIST in
image as PROC label .

Set mnemonic to PROC. !
BRM NAME — EMPTY
RESET
start new card
EXIT [}
Restore label from MACRO
card.

Set mnemonic to NAME.
BRM PARAMS — EMPTY

PARAMS,

EXIT

Reset exit for S4B

RESET
new card

<

A
/ o \)
GET normai
< character / o

character
terminator
A
no
Blank ?
yes
v Dummy parameter — label
field EQU — operation
NOP —= EMPTY Y o] field
REFLIST (n) — operand
field

3-112

S4B

MOVE, RESET, GET AND PUT ROUTINES

Card image

— XCRD-XCRD t+ 17

Blanks — CARD + 3
-CARD + 20

Initiclize parameters for GET.

Initialize parameters for PUT.

Extract character and store
in GETC.
Step character position.

Y

yes
(Chomcrer , or A '?)—————ﬁ

no

Y

Increment EXIT

EXIT,

3-113

7

Blanks to last 16 words of
CARD buffer and to label
field.

Initialize parameters for PUT.

y
EXIT

T

Insert character into
CARD buffer.
Step character position.

EXIT

900 Series Only
SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Initialize 1/O control cells and copy symbolic corrections (MONT1)

PURPOSE: To initialize the file maintenance and 1/O device handling control words of
MSCONTRL, to copy symbolic corrections to scratch tape X2 if needed, and

to set the delay loop timing for paper tape reading.

ACTION: MONI examines each eniry of the unit assignment table (UAT) referenced
by the assembly system and each entry in the MSFNC control word to deter-
mine which 1/O functions and devices are to be used for the run. If a func-

tion is requested, MON inserts an entry into a control cell of the following

format:
Standard 1I/O Control Word
contents M C U A
bits it : . — :
01 3 4 9 10 23

where: M is decimal/binary mode flag
C is channel designation
U is unit number

A is address of routine to perform function

The above control words are found in MSCONTRL from MONBO through
MONLF. In addition, the control flags USI through USO in MSCONTRL
are set by MONT1 in the following format:

Standard I/O Control Flag

contents

M| C U Code
bits } i } } }

01 3 4 910

-
-
-

N
w

where: M is decimal/binary mode flag

C is channel

900
3-114

900 Series Only

Catalog No., 042(

ACTION

(conf.)

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

U is unit

Code is 0 for no operation
1 for cards
2 for paper tape
3 for magnetic tape

If the contents of the cell is zero, no request has been made for this input

or output function,

The Standard 1/O control word for a disc file is

NR A
0 910 23
where
NR is a file number

A is address of I/O linkage routine to perform operation.

If both encoded and symbolic inputs are requested on the same device,

MON!T1 copies the symbolic corrections to scratch tape X2 and changes the
control cells for symbolic input in MSCONTRL. [f corrections are not copied,
MON] stores a NOP over the rewind call in ENCODER at SETMO. MONI
also sets DELAY for the paper tape read routine depending on the type of

machine as determined by executing a shift instruction,

MONT1 is dependent on the ordering of the control cells in MSCONTRL, the
order of the UAT, and the order of parameters in MSFNC. MONI is a re-
locatable routine and is the last relocatable routine loaded with ENCODER.
Since MONI is an initialization routine, ENCODER does not preserve it
and overlays MONI with tables.

BRM MON!I

4048 cells (all reusable after MON1 has been executed)

900
3-115

Q00 Series Only

MONI
Set DELAY using functions
given in MSFNC and Unit
Assignments from UAT .,
Set Control words in MSCONTRL
with device codes:
0, not used
1, cards
2, paper fa.e
3, mag. tape
\
Y
Using device codes extracted
above and /O unit uddress
starting at 7SO, set the sub-
routine linkage words in
MSCONTRL.
\
Sy mbolic and \ REWW
encoded inLut both yes > rewind
on cards? / u2
no
/
- { Copy corrections from
symbolic source to X2,
Store NOP over BRM Write EOF on X2 and
REWW in ENCODER rewind it.
at SETMO Change symbolic input
assigninents to mag. tape
\ y
EXIT EXIT
900

3-116A

PREA
SRNK

900 Series Only

Catalog No. 042016

SUBROUTINES
USED: Routine associated with symbolic input
(CRDHt, RDPT!, and RMTB!)
WMTBHt REww
EFMTH

t These routines are described under ENCODER.
ttThese routines are described under MSCONTRL.

900
3-116

SIDS

900 Series Only

SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION.

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION
Catalog No. 042016

Process standard procedure file (PREA or PREASM)

To define directives, process standard procedures, and reformat dictionary

entries and to establish the byte table in preparation for assembling programs.

PREASM acts as the link between ENCODER and the assembler programs.
ENCODER builds a series of tables during the encoding process in order to
translate the symbolic data into compressed encoded information. These

tables are inadequate for the assembly program for several reasons.

1. The tables are too extravagant of space. ENCODER needs a 3-word
table to find and define unique dictionary entries efficiently; once the
dictionary is defined, however, a 1-word pointer to each entry will

suffice very well to interpret the encoded text.

2. The dictionary is in the wrong format. The assembly programs will need
to make relatively few references to the actual dictionary entries for a

byte if they can know the type of information the byte represents.

3. The data is incomplete. ENCODER processes only the user program; in
order to complete the assembly operation the assembly routines must also
have at their disposal definitions of the directives and standard procedures

referenced by the user's program.

PREASM first reads the dictionary from the standard procedures file on the
systems tape and then, using the tables and communication cells left by
ENCODER, defines all unique bytes in much the same manner as does
ENCODER. For each entry in the standard procedure dictionary PREASM
makes a 1-word entry in an equivalence table, ETAB, which allows the

translation of byte numbers from the standard procedures text to the equivalent

900
3-117

900 Series Only

Catalog No. 042016

ACTION:
(cont.)

PROGRAMMING
TECHNIQUES:

byte numbers in the user's program. In a similar manner PREASM defines

the directive bytes from dummy dictionary entries assembled as part of

PREASM.

This done, PREASM has no further need for the balanced tree search table
CPO. The next step is to convert the dictionary into two tables, part being
the dictionary characters themselves in packed format and the remainder a
1-word pointer to the character position of the lead dictionary character for
the byte. The pointer word also contains the number of characters in the

dictionary and the code indicating type of entry.

The dictionary characters are stored in ascending order starting at the loca-
tion given in DTAB whose address is sufficiently large to allow the largest
segment of the assembly system to be loaded below it. The byte table
(BTAB) is stored in descending locations starting just above QBOOT at the

upper end of memory.

Once the dictionary has been compressed and the byte table has been estab-
lished, PREASM defines the directives by entering them in the symbol table

just below BTAB; these are also stored in descending order,

The text of the standard procedures file are now read, and those procedures
to which reference has been made in the user's program are stored in the
sample storage area just above the dictionary. Those NAMEs which have
been referred to in the user's program are defined by entering NAME items

in the symbol table.

When all records from the standard procedures file have been processed,

PREASM calls the tape loader routine to load SHRINK,

PREASM is a relocatable program originated at location 1350,. This leaves
Q

sufficient room below PREASM for the resident routines and the communi-

cation cells established by ENCODER. PREASM is assembled in two parts

900
3-118

900 Series Only

Catalog No. 042016

PROGRAMMING
TECHNIQUES:

(cont.)

and converted to an absolute program by loading the two segments with POPs
between them and then punching out an absolute program from the contents

of core.

PREASM determines the location of QBOOT and hence the available table
space by examining cell 1 which contains the instruction BRU QBOOT,
established by MONARCH.

Since the length of ENCODER and S4B combined is larger than PREASM, the
tables generated by ENCODER are sufficiently above the end of PREASM to
allow room for the equivalence table, ETAB, below them. Should the number

of bytes in the standard procedures deck increase sharply or the size of

- PREASM relative to ENCODER increase sharply, this may not be the case;

then ETAB will have to be moved or the origin of the ENCODER tables increased.

As noted above, there are afew words of communication between ENCODER
and PREASM. These cells are addressed by absolute addresses within PREASM.
PREASM has two communication links with the assembler routines in addition
to the tables noted above. These cells, PACKL and LITAB, indicate to the
assembler programs the ending locations of the procedure sample and the

symbol or item table, respectively. The words are the first two locations in

PREASM.

Processing of Standard Procedure Sample

The encoding technique used in the META-SYMBOL assembly system allows
for a monotonically increasing byte size. The byte size is incremented
whenever the byte represented by the current size is zero. Because procedure
NAME lines are not normally saved in the procedure sample area and be-
cause the number of NAMEs associated with a procedure may be large, it is
possible to have the byte size incremented several times between the end of
the PROC line and the first line following the procedure names. Unless the
byte size for the PROC line is set to reflect this hidden increase in byte

size, the processing of lines of code from the procedure sample area will

200
3-119

900 Series Only

(.l'atalog No. 042016

PROGRAMMING
TECHNIQUES:

(cont.)

degenerate to nothing. This single underiying phenomenon will be apparent

through the following discourse on sample processing.

NAMEs of procedures are not defined when they appear inside a nested pro-
cedure but rather the NAME lines are moved to the procedure sample and

the NAMEs defined when the outer procedure is referenced.

Each new line of procedure sample is processed starting at the location LINE.
The line is read by calling TEX and then scanning from left to right. The
label is saved at LBL. The operation code is obtained and tested to see if it
is a directive. If the line is not a directive, control goes to LIN3. If it is
a directive, control goes to PRO for a PROC, FUN for a function, NAM for
a NAME, or SEND for an END. All other directives go to LIN3. A direc-
tive branch table is used to determine ti:\e type of directive. Processing

stops when an end-of-file is detected.

At LIN3 the line is moved to the sample storage area if the previous line was
moved there. If the line is not inside a procedure, or if it is inside a proce-

dure but no NAMEs have been defined for the procedure, the line is ignored.

If the line is the first line following a procedure NAME line, and at least
one NAME of the procedure has been referred to by the user's program, the
starting location for the procedure is determined and placed in the NAME
items saved for this PROC. The procedure line is moved to sample storage
followed by the current line, and a flag is set indicating the sample is being

saved.

Processing the PROC and FUNC lines. The detection of PROC or FUNC

lines results in a count being incremented to indicate the level of procedure
nesting. If the PROC or FUNC is not nested, the line is moved to a buffer,

PRBYTS, for later insertion into the sample storage area, and a flag is set to
indicate if the sample is procedure or function. If the PROC is nested, con-

trol goes to LIN3 to be processed like any other line.

200
3-120

900 Series Only

Catalog No, 042016

PRO GRAMMING
TECHNIQUES:

(cont.)

Processing the NAME line. When a NAME is detected, a test is made to

determine if a PROC or FUNC line has been encountered; if one has not,
the line is ignored. If the NAME appears in nested sample, it is treated
like any other line by transferring control to LIN3A. If the NAME appears
in the user's sample, the count of NAMEs saved is incremented and a
NAME item inserted in the symbol table. If it does not appear in the user's
program, the line is ignored. When inserting NAME items into the symbol
table, the NAMEs associated with a procedure are linked so that once the
procedure origin has been established it may readily be inserted in all the
NAME items. The value associated with the NAME is obtained by calling
VAL.

Processing the END lines. When an END directive is detected, the pro-
gram determines whether the END follows a PROC or FUNC. If not, it is

ignored; if it does, the nested procedure count is decremented. If this is
the END of an outer PROC, the sample processing flag is turned off and a
test is made to see if any NAMEs have been defined. If the sample is being
saved, control goes to LIN3A; if not, the line is ignored. If an END is
detected within nested PROC, sample control goes to LIN3 after decrement -

ing the nested procedure count.

The following modifications have been incorporated within the RAD

MONARCH version of META-SYMBOL:

1. The input buffer has been moved to correspond with the locations

used in the Basic RAD Loader routine.

2. Calculation of top of memory and UAT entries is changed slightly

because of the larger resident monitor.

3. The initialization of the RDTP routine is bypassed since the system

is RAD—residenf_.

900
3-121

900 Series Only

Catalog No. 042016

4, The SCTP routine is overlaid with a call to the SCTP routine in the
Basic RAD loader.

5. The RDTP routine is overlaid with a call to the RDTP routine in the
Basic RAD loader.

6. The DONE code to load the next core overlay simply calls the RAD
loader since it searches for the A2 name records anyway, and the
special skipping of encoded procedure decks on the system file is

therefore avoided.

CALLING

SEQUENCE: PREASM is called by the tape loader when the latter executes the transfer
address in the last record of the PREASM program file.

MEMORY

REQUIREMENTS: Variable, but at least 8192, = words of core. PREASM, when it has ex-

10

hausted its working storage area, calls the ABORT routine to write an error

message and return control to the monitor,

SUBROUTINES ,

USED: TRAIL GCW GTCHR
SRCH, GTB DPDIV
NISRT GBW GPDC
ABORT'T TEX PI(RDPD)
GBC'tt INC FETCH
VAL MRKBYT PACK
MVPRC CNVRT RDTP
MOVE

tTl'lese routines are the same as those described under ENCODER except
that they are assembled as part of PREASM.

”This routine is described under MSCONTRL.

HtNo flow diagram provided.

900
3-122

SD S

9300 Only

SCIENTIFIC DATA SYSTEMS

Page 1 of

IDENTIFICATION:

PURPOSE:

ACTION:

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION
Catalog No. 612001

Process standard procedure file (PREA or PREASM)

To define directives, process standard procedures, and reformat dictionary

entries and to establish the byte table in preparation for aszembling programs.

PREASM acts as the link between ENCODER and the assembler programs.
ENCODER builds a series of tables during the encoding process in order to
translate the symbolic data into compressed encoded information. These

tables are inadequate for the assembly program for several reasons.

1. The tables are too extravagant of space. ENCODER needs a 3-word
table to find and define unique dictionary entries efficiently; once the
dictionary is defined, however, a 1-word pointer to each entry will suf-

fice very well to interpret the encoded text.

2. The dictionary is in the wrong format. The assembly programs will need

to make relatively few references to the actual dictionary entries for a

byte if they can know the type of information the byte represents.

3. The data is incomplete. ENCODER processes only the user program; in
order to complete the assembly operation the assembly routines must also
have at their disposal definitions of the directives and standard proce-

dures referenced by the user's program.

PREASM first reads the dictionary from the standard procedures file on the
systems tape and then, using the tables and communication cells left by
ENCODER, defines all unique bytes in much the same manner as does
ENCODER. For each entry in the standard procedure dictionary, PREASM
makes a 1-word entry in an equivalence table, ETAB, which allows the trans-

lation of byte numbers from the standard procedures text to the equivalent

9300
3-117

9300 Only

Page

Catalog No. 612001

ACTION:
(cont.)

PROGRAMMING
TECHNIQUES:

byte numbers in the user's program. In a similar manner PREASM defines the

directive bytes from dummy dictionary entries assembled as part of PREASM.

This done, PREASM has no further need for the balanced tree search table
CPO. The next step is to convert the dictionary into two tables, part being
the dictionary characters themselves in packed format and the remainder a
1-word pointer to the character position of the lead dictionary character for
the byte. The pointer word also contains the number of characters in the

dictionary and the code indicating type of entry.

The dictionary characters are stored in ascending order starting at the loca-
tion given in DTAB whose address is sufficiently large to allow the largest
segment of the assembly system to be loaded below it. The byte table

(BTAB) is stored in descending locations starting at the top of core.

Once the dictionary has been compressed and the byte table has been estab-
lished, PREASM defines the directives by entering them in the symbol table

just below BTAB; these are also stored in descending order.

The text of the standard procedures file are now read, and those procedures
to which reference has been made in the user's program are stored in the
sample storage area just above the dictionary. Those NAMEs which have
been referred to in the user's program are defined by entering NAME items

in the symbol table.

When all records from the standard procedure file have been processed,

PREASM calls the tape loader routine to load SHRINK.

Since the length of ENCODER and S4B combined is larger than PREASM, the
tables generated by ENCODER are sufficiently above the end of PREASM to
allow room for the equivalence table, ETAB, below them. Should the num-

ber of bytes in the standard procedures deck increase sharply or the size of

9300
3-118

9300 Only

Page

Catalog No. 612001

PROGRAMMING
TECHNIQUES:
(cont.)

PREASM relative to ENCODER increase sharply, this may not be the case;
then ETABwill have to be moved or the origin of the ENCODER tables increased.

Asnoted before, there are a few wordsof communication between ENCODER
and PREASM. These cellsare addressed by absolute addresses within PREASM.
PREASM has two communication links with the assembler routines in addition
to the tables noted above. These cells, PACKL and LITAB, indicate to the
assembler programs the ending locations of the procedure sample and the
symbol or item table, respectively. The words are the first two locations in

PREASM.

Processing of Standard Procedure Sample

The encoding technique used in the META-SYMBOL assembly system allows
for a monotonically increasing byte size. The byte size is incremented
whenever the byte represented by the current size is zero. Because proce-
dure NAME lines are not normally saved in the procedure sample area and
because the number of NAMEs associated with a procedure may be large, it
is possible to have the byte size incremented several times between the end
of the PROC line and the first line following the procedure names. Unless
the byte size for the PROC line is set to reflect this hidden increase in byte
size, the processing of lines of code from the procedure sample area will
degenerate to nothing. This single underlying phenomenon will be apparent

through the following discourse on sample processing.

NAMEs of procedures are not defined-when they appear inside a nested pro-
cedure but rather the NAME lines are moved to the procedure sample and

the NAMEs defined when the outer procedure is referenced.

Each new line of procedure sample is processed starting at the location LINE.
The line is read by calling TEX and then scanning from left to right. The
label is saved at LBL. The operation code is obtained and tested to see if it

is a directive. If the line is not a directive, control goes to LIN3. If it is

9300
3-119

9300 Only

Page

Catalog No. 612001

PROGRAMMING
TECHNIQUES:
(cont.)

a directive, control goes to PRO for a PROC, FUN for a function, NAM for

a NAME, or SEND for an END. All other directives go to LIN3. A direc-

tive branch table is used to determine the type of directive. Processing

stops when an end-of-file is detected.

At LIN3 the line is moved to the sample storage area if the previous line was
moved there. If the line is not inside a procedure, or if it is inside a proce-

dure but no NAMEs have been defined for the procedure, the line is ignored.

If the line is the first line following a procedure NAME line, and at least
one NAME of the procedure has been referred to by the user's program, the

starting location for the procedure is determined and placed in the NAME

items saved for this PROC. The procedure line is moved to sample storage

followed by the current line, and a flag is set indicating the sample is being

saved.

Processing the PROC and FUNC lines. The detection of PROC or FUNC

lines results in a count being incremented to indicate the level of procedure
nesting. If the PROC or FUNC is not nested, the line is moved to a buffer,

PRBYTS, for later insertion into the sample storage area, and a flag is set to
indicate if the sample is procedure or function. If the PROC is nested, con-

trol goes to LIN3 to be processed like any other line.

Processing the NAME line. When a NAME is detected, a test is made to

determine if a PROC or FUNC line has been encountered; if one has not,
the line is ignored. If the NAME appears in nested sample, it is treated
like any other line by transferring control to LIN3A. If the NAME appears
in the user's sample, the count of NAMEs saved is incremented and a
NAME item inserted in the symbol table. If it does not appear in the user's
program, the line is ignored. When inserting NAME items into the symbol
table, the NAMEs associated with a procedure are linked so that once the
procedure origin has been established it may readily be inserted in all the
NAME items. The value associated with the NAME isobtained by calling VAL.

9300
3-120

9300 Only

Catalog No. 612001

PROGRAMMING Processing the END lines. When an END directive is detected, the pro-

Ifil;l[;ﬂQUES: gram determines whether the END follows a PROC or FUNC. If not, it is
ignored; if it does, the nested procedure count is decremented. If this is
the END of an outer PROC, the sample processing flag is turned off and a
test is made to see if any NAMEs have been defined. If the sample is being
saved, control goes to LIN3A; if not, the line is ignored. If an END is
detected within nested PROC, sample control goes to LIN3 after decrement-
ing the nested procedure count.
The following modifications have been incorporated within the RAD
MONARCH version of META-SYMBOL:
1. The input buffer has been moved to correspond with the locations
used in the Basic RAD Loader routine.
2. Calculation of top of memory and UAT entries is changed slightly
because of the larger resident monitor.
3. The initialization of the RDTP routine is bypassed since the system is
RAD-resident,
4, The SCTP routine is overlaid with a call to the SCTP routine in the
Basic RAD loader.
5. The RDTP routine is overlaid with a call to the RDTP routine in the
Basic RAD loader. |
6. The DONE code to load the next core overlay simply calls the RAD
loader since it searches for the A2 name records anyway, and the
special skipping of encoded procedure decks on the system file is
therefore avoided.
CALLING
SEQUENCE: PREASM is called by the tape loader when the latter executes the transfer

address in the last record of the PREASM program file.

9300
3-121

9300 Only

Catalog No. 612001

MEMORY

REQUIREMENTS: Variable, but at least 8]9210 words of core., PREASM, when it has ex~
hausted its working storage area, calls the ABORT routine to write an error
'message and return control to the monitor.

SUBROUTINES N

USED: TRAIL GCW GTCHR

‘ SRCH! GTB DPDIV

NSRT! " GBW GPDC
ABORT TEX PI(RDPD)
GBCMr INC FETCH
VAL MRKBYT PACK
MVPRC CNVRT RDTP
MOVE

tThese routines are the same as those described under ENCODER except that
they are assembled as part of PREASM.

”This routine is described under MSCONTRL.
"o flow diagram provided.

9300
3-122

ENTRY POINTS TO PREASM SUBROUTINES

Entrx

CHNG1
CNVI1
CNV2
CNV3
CNVéZ
CNVRT
CNVT
DONE
DPDIV
FETCH
FUN
GBW
GCwW
GPDC
GTB
GTCHR
INC
LIN1
LIN2A
LIN3
LIN3A
LINS
LINE
MO
MOVE
MRKBYT
MVPRC
NA5SA
NAM
NS3

Page
Description Flowchart Entry
3-117 3-141 NS4
3-132 3-147 NS4A
3-132 3-147 NS4B
3-132 3-148 NS5
3-132 3-148 NS6
3-132 3-147 NS7
3-132 3-148 NS8
3-142 NS9
3-134 3-149 NS10
3-137 3-150 NSRT
3-143 PACK
3-128 3-145 PI
3-126 3-145 PRE1
3-135 3-150 PRE2
3-127 3-145 PRE5
3-133 3-149 PRE6
3-130 3-146 PRES8
3-142 PRE11
3-142 * PRE12
3-142 PREASM
3-142 PRO
3-142 RDTP
3-142 RREAD
3-125 3-144 SAMP
3-125 3-144 SEND
3-131 3-146 SR1
3-125 3-144 SRCH
3-143 TEX
3-143 TRAIL
3-152 VAL

3-122A

Page
Description Flowchart
3-152
3-153
3-153
3-153
3-153
3-153
3-152
3-153
3-153
3-152
3-138 3-150
3-136 3-150
3-117 3-140
3-117 3-141
3-117 3-140
3-117 3-141
3-117 3-140
3-117 3-140
3-117 3-142
3-117 3-140
3-143
3-139 3-150
3-139 3-150
3-140
3-144
3-154
3-154
3-129 3-146
3-154
3-124 3-144

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION %00 Serie: 043¢

- — hiveleweN. S
IDENTIFICATION: Determine blank character string lengths (GBC)
PURPOSE: To determine the number of characters in a blank character string.
ACTION: GBC gets the location for the dictionary entry and then calls GTCHR to get

the entry which is the number of blank characters. ‘The count is placed in

the A register and in BCNT.

PRO GRAMMING
TECHNIQUES: GBC is a relocatable routine assembled as part of PREASM.
CALLING .
SEQUENCE: BRM GBC
Byte table entry to B register
MEMORY
REQUIREMENTS: 338 cells
SUBROUTINES
USED: GTCHR

3-123

SID|S SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

Catalog No. 9300: 612001

IDENTIFICATION: Evaluate numeric expressions on NAME lines (VAL)

PURPOSE: To evaluate numeric expressions and construct a numeric item which is used

in setting the value associated with a procedure NAME.

ACTION: If the byte is not numeric, VAL returns via the nonnumeric exit. VAL sets
the character count for the string and the dictionary location for the string.
Next VAL calls CNVRT to convert the string to a binary constant. VAL
then builds a numeric value item and places its length in the low order bits

of the A register,

PRO GRAMMING
TECHNIQUES: VAL is a relocatable routine assembled as part of PREASM.
CALLING
SEQUENCE: Byte table entry to B register
BRM VAL
nonnumeric return
numeric item return
MEMORY
REQUIREMENTS: 578 cells
SUBROUTINES
USED: CNWRT

3-124

S|Dls SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 200 Series. 0420
Catalog No. 9300: 6120

IDENTIFICATION: Move lines of sample to procedure storage (MVPRC and MOVE)

PURPOSE: To move a line of code which is part of a procedure definition to procedure

sample storage area.

ACTION: MVPRC and MOVE are a common routine. Each of them causes a line of
code to be moved from a buffer area to the sample storage area. MRKBYT
is called to flag each byte moved so that it will be retained by SHRINK.
As bytes are moved, the bite size is tested; if it increases above the byte
size currently being used, the byte size used to save sample is increased.
At the conclusion of the move SMPBIT is set to indicate the number of bits

in the current sample word that have been used.

PRO GRAMMING
TECHNIQUES: MVPRC and MOVE are relocatable routines assembled as part of PREASM.
CALLING
SEQUENCE: BRM MVPRC to move PROC lines
BRM MOVE to move all other lines
MEMORY
REQUIREMENTS: 658 cells
SUBROUTINES
USED: MRKBYT

3-125

L 4

s—_l_ﬁ—l_g SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 200 Serios. 042016
Catalog No. 9300: 612001

IDENTIFICATION: Obtain next byte table entry (GCW)
PURPOSE: To get the next byte value and byte table entry corresponding to it.
ACTION: GCW obtains the next byte value from BBUF and uses it to index the byte

table. The byte table entry is loaded into the B register, and the negative

of the byte value is left in the A and index registers.

PRO GRAMMING

TECHNIQUES: GCW is a relocatable routine assembled as part of PREASM.
CALLING

SEQUENCE: BRM GCW

MEMORY

REQUIREMENTS: 108 words

SUBROUTINES

USED: None

3-126

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 200 Series. 04201
Catalog No. 9300: 61200

IDENTIFICATION: Get the next byte value from the standard procedures file (GTB)

PURPOSE: To extract into the low order bits of the A register the value of the next

byte of standard procedure text.

ACTION: GTB extracts from CHAD the next BSIZ bits of standard procedure text. If
fewer than BSIZ bits of data remain in CHAD, GTB calls GBW to obtain the
next word of input, If a zero byte is obtained, GTB takes QBSIZ as the
value of the byte and steps BSIZ and the related mask BMSK. The byte
value obtained is then converted to the equivalent user value by taking the
corresponding entry from ETAB as the byte value. If the ETAB entry is
greater than the mask SVBMS, the size indicator SVBSZ and the mask

SVBMS are increased in size until SVBMS is as large or larger than the byte.

PRO GRAMMING

TECHNIQUES: GTB is a relocatable routine assembled as part of PREASM.
CALLING

SEQUENCE: BRM GTB

MEMORY

REQUIREMENTS: 618 cells

SUBROUTINES

USED: GBW

3-127

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series; 042016
Catalog No. 9300 612001

IDENTIFICATION: Get the next word of standard procedure text (GBW)
PURPOSE: To place into CHAD the next word of standard procedure test.
ACTION: GBW moves the next word of standard procedure text from the input buffer

to CHAD. If the buffer is empty, GBW first calls the input routine PI
(indirectly through RDPD) to read the next record from the standard procedure

file.

PRO GRAMMING

TECHNIQUES: PI is indirectly addressed through cell RDPD. GBW is a relocatable routine
assembled as part of PREASM.

CALLING

SEQUENCE: BRM GBW

MEMORY

REQUIREMENTS: 2]8 cells

SUBROUTINES
USED: PI

3-128

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 200 Sertes. 04201
Catalog No. 9300: 6120C

IDENTIFICATION: Obtain the next line of encoded text (TEX)

PURPOSE: To store the byte values for the next line of standard procedure text into

consecutive cells starting at BBUF and to skip the comments on the line.

ACTION: TEX calls GTB to obtain the byte values from the input file which are then
stored in BBUF. Bytes are moved until an end-of-line byte is encountered,
at which point TEX calls INC to obtain comment characters until all

comments have been skipped.

PRO GRAMMING
TECHNIQUES: TEX is a relocatable routine assembled as part of PREASM.
CALLING
SEQUENCE: BRM TEX
MEMORY
REQUIREMENTS: 238 cells
SUBROUTINES
USED: GTB
INC

3-129

SJDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 200 Series. 042014
Catalog No. 9300: 612001

IDENTIFICATION: Get comment characters (INC)

PURPOSE: To get the next comment character from the standard procedures file.

ACTION: INC sets a flag INCFG to cause GTB to suppress stepping of the byte sizes
and masks. INC then saves the current byte size and mask and sets the byte
size to 6. GTB is called to obtain the next six bits of encoded text, and

the byte size and mask are restored.

PRO GRAMMING

TECHNIQUES: INC is a relocatable routine assembled as part of PREASM.
CALLING

SEQUENCE: BRM INC

MEMORY

REQUIREMENTS: 2]8 cells

SUBROUTINES

USED: GTB

3-130

S|Dls SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 000 Sories. 0420
Catalog No. 9300: 6120

IDENTIFICATION: Flag bytes to be saved (MRKBYT)

PURPOSE: MRKBYT marks bytes appearing in all lines of procedure sample, including
name lines which are saved. The purpose for this flagging is to identify
those bytes and only those bytes from the standard procedure file which are
needed to process the user's program. SHRINK, when called, will purge all
bytes from the dictionary and byte table which neither appear in the user's
program or are ﬁcrked as being needed. This marking is necessary since the
appearance of a byte in the dictionary is unique, but the first reference to

the byte may not be the instance that resulted in its being needed.

ACTION: MRKBYT sets bit 2 of the byte table entry for each byte in the buffer
addressed by the contents of the A register.

PRO GRAMMING

TECHNIQUES: MRKBYT makes use of the fact that bit 2 of the byte table entry is not used.
MRKBYT is a relocatable routine assembled as part of PREASM.

CALLING

SEQUENCE: Buffer location to A register
BRM MRKBYT

MEMORY

REQUIREMENTS: 148 cells

SUBROUTINES

USED: None

3-131

SlD|s SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 200 Sories. 042015
Catalog No, 9300: 612001

IDENTIFICATION: Convert numeric strings to binary values (CNVRT)

PURPOSE: To convert numeric items to binary values,

ACTION: CNVRT converts numeric character strings to their binary value by successive
multiplications of 8 or 10 (depending on the value of the first character).
GTCHR is used to fetch the characters of the string. Results are left in
PROD, PROD1, and PROD2. If the leading character is a dot, the number
is converted to floating point by dividing the integer by the appropriate
powers of 10 and calculating the exponent. The DPDIV routine is used to
perform the divisions. All floating point fractions so calculated are left in

normalized form,

PRO GRAMMING

TECHNIQUES: CNWRT is a relocatable routine assembled as part of PREASM,

CALLING

SEQUENCE: Number of characters in byte to SIZE
Character position of first character to CHAR
Memory location of dictionary word to DLOC
BRM CNVWRT

MEMORY

REQUIREMENTS: 1708 cells

SUBROUTINES

USED: GTCHR
DPDIV

3-132

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 200 Series. 042
Catalog No. 9300; 612

IDENTIFICATION: Extract characters from the packed dictionary (GTCHR)
PURPOSE: To get the next character of a dictionary entry to the A register.
ACTION: GTCHR loads the next character from the dictionary entry into the low order

bits of the A register. The dictionary location of the next character as

indicated by DLOC and CHAR is established, and SIZE is decremented.

PRO GRAMMING

TECHNIQUES: GTCHR is a relocatable routine assembled as part of PREASM.

CALLING

SEQUENCE: Character position in word to CHAR
Location of dictionary word to DLOC
Size of byte in characters to SIZE
BRM GTCHR
end of entry
normal exit

MEMORY

REQUIREMENTS: 228 cells

SUBROUTINES

USED: None

3-133

SI—ﬁIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 200 Series. 042016
Catalog No. 9300: 612001

IDENTIFICATION: Perform double-precision divisions (DPDIV)

PURPOSE: To divide the contents of the A and B registers by the contents of the

location addressed by the index register and maintain maximum precision.

ACTION: DPDIV divides the contents of the A and B registers by the single precision
divisor addressed by the index register. The remainders are then divided

and that remainder divided. The resulting quotient is normalized.

PRO GRAMMING

TECHNIQUES: DPDIV assumes that both the dividend and divisor are normalized and leaves
the results in the same format. DPDIV is a relocatable routine assembled
as part of PREASM,

CALLING .

SEQUENCE: Double-precision dividend to A and B registers
Location of divisor to X register
BRM DPDIV

MEMORY

REQUIREMENTS: 368 cells

SUBROUTINES

USED: None

3-134

SID|S SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 200 Serios. 043
Catalog No. 9300: 612

IDENTIFICATION: Get characters from the input standard procedure dictionary (GPDC)

PURPOSE: To fetch the next dictionary character into the A register and PDCHR.

ACTION: GPDC extracts the next dictionary character from the input buffer into the
low order bits of the A register and to PDCHR. If the buffer is empty,
GPDC calls PI to read the next record of input from the standard procedures
file. If the record read is not of type 1 (dictionary), GPDC returns through

the end-of -dictionary exit.

PRO GRAMMING
TECHNIQUES: GPDC is a relocatable routine assembled as part of PREASM,
CALLING
SEQUENCE: BRM GPDC
end-of -dictionary return
normal return
MEMORY
REQUIREMENTS: 368 cells
SUBROUTINES
USED: PI (indirectly addressed through RDPD).

3-135

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 000 Series. 042014
Catalog No. 9300: 612001

IDENTIFICATION: Obtain the next record from the standard procedures file (PI)

PURPOSE: To cause the next record to be read from the standard procedures deck and

to extract the record type and length.

ACTION: PI calls RDTP to read the next record of standard procedures. PI extracts

the record type and stores it in RT; next it extracts the record length and

stores it minus 2 in PIWC for the GPDC routine.

PRO GRAMMING
TECHNIQUES: Pl is a relocatable routine addressed through cell RDPD and is assembled as

part of PREASM.
CALLING
SEQUENCE: ' BRM PI

or

BRM *RDPD
MEMORY
REQUIREMENTS:]38 cells
SUBROUTINES
USED: RDTP

3-136

SID|S SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 000 Series. 04
Catalog No. 9300: 612

IDENTIFICATION: Get a character from the unpacked dictionary in core (FETCH)

PURPOSE: To extract the next character from the unpacked dictionary as constructed

by ENCODER.

ACTION: FETCH gets the next dictionary character as addressed by FCHWD and
FCHSH into the low-order bits of the A and B registers.

PRO GRAMMING

TECHNIQUES: FETCH is a relocatable routine assembled as part of PREASM.
CALLING

SEQUENCE: BRM FETCH

MEMORY

REQUIREMENTS: 208 cells

SUBROUTINES

USED: None

3-137

S!D|S SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION %00 Serics: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Pack characters into consecutive bytes of core (PACK)

PURPOSE: To merge a character in the low-order bits of the A register into the next
byte position of memory as addressed by PCKSH and PACKL.

ACTION: PACK positions the character using the contents of PCKSH and merges the
character into the locations addressed by PACKL. PCKSH and PACKL are
incremented as needed. PCKNT indicates the number of characters stored

in the current location.

PRO GRAMMING
TECHNIQUES: PACK is a relocatable routine assembled as part of PREASM.
CALLING
SEQUENCE: Character to A register
BRM PACK
MEMORY
REQUIREMENTS: 248 words
SUBROUTINES
USED: None

3-138

SD S

SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 000 Serics. O
Catalog No. 9300: 61

Read records from the standard procedure file of the system tape (RDTP)
To read the next record of standard procedures.

RDTP uses a WIM loop to read records of up to 40, . words each from the

10
systems tape. Records are read in the binary mode. A read error results in
the tape being backspaced and the record reread. Up to ten rereads are
executed before the routine halts. Stepping from the halt causes the

record to be accepted as read.

RDTP is initialized as to unit and channel assignments by the initialization
code of PREASM. RDTP is a relocatable routine assembled as part of
PREASM. |

BRM RDTP
328 cells
None

NOTE: In the RAD MONARCH system this routine is overlaid by a call
upon the system file read routine, RDTP, which is contained

within the Basic RAD Loader.

3-139

Initialize parameters, switches,
‘and flags. Set "top" of
memory. Initialize |/O

routine to read system tape .
Set largest byte user's

program. Set location of
equivalence table.

]

PREASM
OVERALL FLOW

GPDC \ End of dictionary

get Ist char. of
dictionary /

nomal

Read standard proc dictionary and
insert it into BPO. Build
Equivalence Table (ETAB) giving
translation of standard proc bytes
to user bytes.

Define directives by inserting
them into the Symbol Table
immediately below BTAB. Link
directives such that BTAB points
to the directive which points to
the dictionary .

y

Read the standard proc text.
Save sample for all procs for
which at least 1 name appears
in user's program. [nsert name
item in Symbol Table for each
name that appears in user's
program. Sample starts just
following dictionary in lower
core. Name items follow
directives in upper core and
are linked to dictionary and
BTAB in the same way .

oad SHRINK

LOADE

Insert directives bytes
into BPO and establish;
save byte numbers with
skelgtal directive.

PRES

J

3-140A

Collapse dictionary and build
Byte Table (BTAB). The
character strings from the
dictionary are packed starting
at DTAB and ascending. BTAB
starts at high core and
descends. BTAB entries have
mode and size fields from old
dictionary and pointers to st
character position for byte in
new dictionary .

SIDls SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION
Page 1 of Catalog No., 042016

IDENTIFICATION: Find A2 record on system file (SCTP)*
PURPOSE: To scan the procedure on the system file for the next A2 record.
ACTION: SCTP initializes some parameters to the RDTP routine, then calls

RDTP to fetch the first word of the next record in the system file.
When a A2 record is encountered the routine exits,

CALLING

SEQUENCE: BRM SCTP
MEMORY

REQUIREMENTS: 9 cells
SUBROUTINES

USED: RDTP

—
In the RAD system this routine is overlaid by a call to the SCTP routine in the Basic RAD
Loader.

3-140

PRE1

Initlalize parameters,
switches, flags, etc.
Set 'Top! of memory .
Initialize | /O
commands for reading
standard procs. Set
ETAB — ESCEL.

GPDC End of

PREASM
OVERALL FLOW (cont.)

dictionary

NSRT
define directive

3

no find

SRCH

for directive

Move entry into DATA

A

Save byte number
with dummy directive
definition

Y

Initialize cell: to get

get character of
PROC dictionary /
norma

A

Initialize cells to store
dictionary entry.

No. characters — PDICC

Character —+ DATA

normal

End of
dictionary

GPDC
get character

|

Store character
into DATA

i
SRCH ind
for this byte

dummy directive
dictionary entries

FETCH

PREB

Y| dictionary in PACKL

nos . . . e
\Fumshed dlrechves)

yes

y

Save location of

get a character /‘

y

and FCHWD.

Save BTAB location
in BYTE.

[nitialize cells for
packing dictionary .

Build BTAB entry and
store it in TEMP.

Move dictionary
character to PACKL.

NSRT
enter this byte

Byte no. — ETAB

4

no
{ Table overflow)

yes

CHNG!

ABORT

3-141

K

4

(End of entry?)L°l+

TEMP — BTAB

no

Y

FETCH
a character

PACK

a choracter

Yy
no
< Finished packing)—
yes

Initialize cells to insert
directive entries into
the Symbol Table.

PRE12 »>le

i

Set BTAB entry for
directive to point to
directive definition.
Set directive definition
to point to dictionary
entry . Move definition
to Symbol Table
LITAB).

yes

A
Table overflow?)

no

PREASM
OVERALL FLOW (cont.)

LINE

CAH directives in?)_"&_

yes

Initialize cells, switches,

flags, ond counts for
storing procedure
somple and defining
procedure names.

A

Reset label flag

TEX
get next line

(End of line?

no

GCw
get byte

Y

Blank label? Y8
C an a J

LOADE
t_ I Load
SHRINK
LINY

no

3
(Special chamcfer?

yes

Label
— LBL

GCw
get byte

no
4——(In sample?)

yes

(Saving Sample ?)ﬁ—

no

Store PROC origin in
all names for this
PROC

MVPRC
save PROC line

3-142

no

GCw
get byte

A

Byte —= DRTV

A
‘——2(Alphanumeric? »

yes

A

————T:(Directive?)

Branch
table on
Directive

Number

MOVE
save this line

PRCC

PREASM

PRO, FUN AND NAM ROUTINES

FUNC

DRIV —= 1 CRYY
| — INIG

DRTY —= PRBYT
© — FNFG

Clear proc origin

0 —s LBL

0 ~» NMLNT

Move 10 bytes of
proc line to
PRBYTS until
known If needed.

Set sample flag.

{ncrement Proc
count,

2 nested proc?
yes

Set linkage to last
name (PRORG —
LBL + 1) increment
NMCNT append
value to name and
move name item to
Symbol Table
(LITAB).

Set location of name
in PRORG.

PRCNT

In PROC or FUNC?)22

yes

L

no
In user's program?

yes

MRKBYT
mark bytes in lin
to save

A

Set up name control
word.

Increment name

y Link BTAB entry for
name.

GCw
get next byte

End of line?

no

A
09(" Byte blanks?
yes

\

yes

More than 7 blunkso
no

4

GCwW
get next byte

y
*(End of line?

no

item length

[}

get name value

3-143

(Byte numeric? no,

yes

) 4

Initialize cells for
CNVRT routine .

A

CNVRT
get name value

A

Set up numeric
type item in
PIDTA.

Length of item
— A reg.

Increment VAL.

EXIT

!

Set location from
which to get
bytes.

MVPRC —» MOVE

MRKBYT
mark bytes to be
saved

MOi

PREASM
VAL, SEND, MVPRC AND MOVE ROUTINES

l

Set location from
which to get bytes.

\J

MRKBYT
mork bytes to be
saved

DRTV ~— ENDBT

A

‘ In sample ? ™

yes
¥

PRCNT -1 ——=PRCNT

A
< Nested PROC? yes

no

A

Reset sample
flag SMPFG .

Y
C Any names saved?

no

es

\

Reset current
PROC flag?

Increment
byte size

Reset control
words for

next call -

¥

table overflow

Move byte to

3-144

somple storage.

yes

- (Byte number)

— A reg and X reg.
Byte table entry

—=+ ECW ond B reg.

EXIT

Reset INCFG

increment exit

‘,_<"° Byte > SVBMS?)

PREASM
GCW, GTB AND GBW ROUTINES

C BSIZ bits left in CHAD?

yes

GBW
next word to
CHAD

normal

)

Take next BSIZ bits as
byte.

Load corresponding
byte from ETAB
(Equivalence Table)
and store in BYT if
next bits are all
zero. Increment
BSIZ ond take
BMSK + 1 as input
bytes.

y

yes

EXIT

\d

Increase size of
SVBMS 1 bit

Pl
(*RDPD) read
next record

y

)

Next word of input goes
into CHAD .
Increment exit,

es no
4 (Text record?)—-——-—

EXIT,

EXIT

3-145

EOF

TEX

G18
get byte

Store byte
in BBUF.

Y
C End of line?)_no__

yes

A
INC

get comment count

<

PREASM

TEX, INC AND MRKBYT ROUTINES

INC

.rs?}m

1
(End of cc

yes

EXIT

get comment
character

MRKBY

3

)

Get byte from
location given

)

(End of line?
no

Y
Set bit 2 of BTAB

entry this byte.

3-146

yes

Set INCFG.
Set BSIZ to
6 bits.

EXI T

\ 4

GT8
get character

) 4

Restore BS[Z
to original .

EXI

0 —= PROD
0 — PROD |

GTCHR
get next

character

End of strin

PREASM
CNVRT ROUTINE

g

normal

no

s

8 — MULT

A
yes 10 —= MULT
Ccm.@_.‘m waT

EXIT

8 —= MAXNO

End of
string

GTCHR
get character

normal

1

MAXNO -1
—+ MAXNO
Character —= DOT

Charac

CNVI

Cchamcfer > MAXNO?)-):s—u Set error |

no

A

PROD * MULT
— PROD

Y

\ oet character

End of string

[

Set error flag

[
yes

no
verflow?

Oy

PROD + 1 — PROD

>

yes
< Overflow ? =
Y
A reg + MULT A reg —»
—— PROD | PROD1
3
yes

(sit230fprODT - 1?)1‘°—J

4

Breg + character
~— A reg

Y

1 Product > 24 bits?

no
= < Overflow? "yes

yes

4

1 Set error flag

PROD 1 * MULT

Set T error flag.

— A and B regs.
A + PROD — PROD.

3-147

0 — NDX

PREASM

CNVRT ROUTINE (cont.)

s 9
DOT - .7 J

Normalize PROD CNV6Z
and PRODI
~ shift count — X2
b
” -
‘ PROD 07 J)’ - —————— -
no Set PRECS
floating point
ty;e item
X2 — MINB
— 23 — MINC
SIZFRC — X2

7

V

i
(SIZFRC - 0? no

yes

0 — A reg
0 ——= B reg

4

"\ no

»{ PROD — PRECS]
4

|NDX- + X2 —=NDX
—(MINC ~MINB +V

+ SIZFRC—2

+ NDX) **0777

— PROD 2

3

DPDIV
complete fraction

[

Nomalize FIVES, X2
and store in PWR,
— shift count —= V

SIZFRC > 9?

yes

SIZFRC — 9 —= PWR
0 — X2

FIVES + 9 —= A reg

0 —— B reg

Normelize A and B regs .
X2 — 1 —= MINC

A reg —s PWR + |
PRCD ~—= A reg
PROD| — B reg

L(PWR +1) —= X reg

DPDIV
get fraction

X2 —= NDX
PWR — X2

3-148

PROD — A reg
PROD1— B reg
L(PWR) —= X reg

Shift A and B regs right 1;
divide by 0, X2.

A reg — PROD

B reg —* A reg

0 —+ 8 reg

A

Divide A and B regs by 0,
X2

A reg *2 — PROD 1

B reg —A reg

0 ~—= B reg

y

Divide A and B regs by 0,
X2.

A reg *4 — PROD2

-1—=X2

PROD — A reg

PROD1—B reg

PREASM

DPDIV AND GTCHR ROUTINES

Extract character from
DLOC to A reg.

A
(End of string?

no

yes

4

Increment exit

\

EXIT

EXIT

A reg — PROD

-X2 —= X2
B reg —* A reg
[Append X2 bits from
EXIT PRCD 2 to A reg.

A reg — PRODI

!
yes

A J

Normalize A and B regs .
X2 +1 —= X2

_>(X2 <0?)

no

3-149

EXIT

PREASM

RDP, PACK, GPDC, Pl and HETCH outines

Pl
(Buffer empty ? (*RDPD) get RDTP
next record read record
no
A y
Initialize Record type — RT
count and Number words
location - 2 — PIWC
\
yes Dictionary rocord?) EXIT
\ no
Extract next
character of Y
dictionary entry EXIT
into A reg.
A reg — PDCHR
[ncrement exit.
Y
EXIT,
Extract next
character of
dictionary into
A reg.
Step character
position.
\
RDTP EXIT
Merge character in
A reg into next P
character position >1e RREAD
in dictionary . v
Step character -
position. Wait for
tape ready .
no

A \
EXI7 WIM | word . yes
\/ into core - > (Buffer ready ? >’——"< 40 words? >
I no yes
\

yes

Error?
no

yes .
Read anything?

Backspace . no)
Wait until ready 10 tries?
yes

Y

L
EXIT HALT (' rread)

no

3-150

PREASM
NSRT ROUTINE (DEFINITIONS)

Let o denote some byte entry in the table. Then:

L (a) is the pointer from a to a lesser item

G (a) is the pointer from o to o greater item

K (@) is the key of o .

B (@) is the balance of o .
B (@) - O denotes balance
B (a) - 1 denotes heavy in the greater chain
B (a) = 2 denotes heavy in the lesser chain

D(a) is the direction followed from @ in searching for an item.
D (o) = 0 denotes lesser chain taken
D (o) = 1 denotes greater chain taken

X denotes current item to insert.

F (o) denotes the item following @ on the search path taken.

Q () denotes the item following o on the path other than that taken.
U denotes the last point of imbalance on the last search path.

MO denotes the last point examined by SRCH.
M(B) and N (B) are defined such that

If Gl) =8 then M(p) - G(B)
and N(p) . L(p)

If L(a)-B then M(B) - L ()
and N(B) - G(p)

H denotes location of HED.

P (o) denotes tocation of dictionary entry for byte o« .

3-151

no

D (MO) =0?
yes

1
CPO — L(MO)

CPQO — G(MO)

yes

Location of dictionary
entry
— P(X)

H —= L(X)
H — G(X)

1

PREASM
NSRT ROUTINE

Is item in dictionary ? >

no

)

BPO — P(X)
Number of words of
dictionary — NUM

no

U — X2

TRAIL
mark path taken
at unbalonce

Move dictionary item
into dictionary .

BPO — NUM —= BPO

y
(cro + 3@»‘

01 —= Areg

ABORT

F(U) —V

TRAIL
mark path
from V

{1~

yes

——0(Is D(V) some as B(V)?)

no

F(V) — XX

mark

~

TRAIL
poth
from V

V —e X2
V —= VWX

| F(V)— VWX

3-

152

XX —= X2
)
QW) —= F(V)
vV — QW)
F(W) = XX
F(W) — VWX
[Y
TRAIL
get path
fromwW
W — L(U) >
[%
yes
(ow=o07)= W — G(U)
Y
yes
(ov) = pewy2)22
Y
V) — W
4

:

TRAIL
get path from X

<

0—=B (V)
XX — X2

A
<X2

\d

CPO +3—= CPO
CSEQ —+ A reg
CSEQ + | — CSEQ

EXIT,

PREASM

NSRT ROUTINE (cont.)

TRAIL
get path from W

Q(Xx) — Qx
XX —= F{U)

N(XX) —> F(W)
M(XX) —= F(Vi

L(XX) — NX
G(XX) —> MX "'1

F(W) —= XX

TRAIL
get path from XX

yes

G(XX)— NX
L(XX) == MX

XX —> VWX
XX —= X2

NS10

\

F(F(U)) — VWX

W ~— N(XX)
V — M(XX)
0 — B(XX)
0~ B(V) no
XX = CPO?
yes
2 — B(VWX)

F(vWX)

X2

TRAIL

;et path from X2

\ 4

F(X2) —s X2

2 — B(Q(XX))

ﬂ——’—'“Cmfo—(xx)) 0?

A

TRAIL
get path from XX

Y

no

1

TRAIL
get path from

3-153

VWX

1 —= B(Q(XX))

PREASM
SRCH AND TRAIL ROUTINES

L = lesser link
G = greater link

K = key of item
B = balance of item
B = 0 balanced

B = 1 heavy greater
B = 2 heavy lesser

HED — LDATA D = direction followed
L(HED) ~—= MO D =0 lesser
L(HED) — U D =1 greater

L(HED + 1) —A reg X = current item

A reg —» MI
HED — LDATA

(C smp-02)®{mo—u

C 0 - K00)2 »{M — MO
yes
{ ()3 — A ‘
MI-CORG)/3 —> A re
C Ml - HED?)Q"' SRCH + 1 v SRCH C Kimn >K(X)D'ﬁ_
yes
yes
A
—————— no find 0 —= D(MID)

LM[) — A reg

find — —

XIT, EXIT,

1 1 —= D(M1)

G(MI1) —> A reg

F(X2) —= LINK
Q(X2) —= LINK + 1

XIT,

3-154

SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 200 Sories. 042016
Catalog No. 9300: 612001

IDENTIFICATION:

PURPOSE:

ACTION:

|

Purge unused bytes from the dictionary and byte tables (SRNK or SHRINK)

To make maximum table space available to the assembly routines by removing
those entries in the dictionary and byte table which represent bytes from the
standard procedures file that are not needed to assemble a particular

program.,

SHRINK steps through the byte table starting at the first byte following the
user's program and examines each byte to see if it has been flagged to be
saved. Bytes not flagged are skipped. Bytes to be saved are moved up to
follow the previous saved bytes, and the dictionary entry for the byte is
moved down to follow the previously saved dictionary entry. As each byte
is examined, a translation table is constructed giving the new byte value

for the byte.

The byte table is scanned again in its entirety, and the save flags are re-
moved. As each byte is obtained, it is examined to determine if a symbol
table entry exists for the byte. The dictionary pointer in each symbol re-
places the byte table pointer to the symbol, and the symbol is set to point to
the byte table entry. When all save flags have been removed and all

symbol table pointers reversed, SHRINK proceeds to the next step.

The symbol table is scanned, and the symbols to be saved are moved up to
follow the byte table. If this is a NAME, the sample pointer must be
revised; and, if it is the first NAME encountered for a procedure, the pro-
cedure sample is moved to the cells following the dictionary. As each byte
in the sample is moved, it is translated to the new byte value so that the

byte numbers resulting will be a contiguous set. The symbol table pointers

are reset to their normal format.

3-155

Q00 Series: 042016

Catalog No,
9300: 612001

ACTION: After the symbol table and sample have been moved, SHRINK sets the

cont, . e .
() communication cells for the assembler routines and calls the tape loader to

load ASSEMBLER.

PRO GRAMMING
TECHNIQUES: The SHRINK routine must proceed to accomplish its function in a rigid

sequence, since there is no correspondence between the sequence of bytes

in the byte table and the order of the appearance of the NAME and directive
items in the symbol table. SHRINK assumes that there is at most one symbol
for each byte and that the order of NAMEs is also the order in which sample
is saved. The first assumption could be violated, but should not be on the

standard procedures file, and the second assumption is always true.

SHRINK is loaded over part of PREASM; however, care must be exercised
in setting the origin for SHRINK since many communication cells and some
PREASM subroutines are used by SHRINK. The external references to
SHRINK are satisfied by loading SHRINK with PREASM and then punching
the absolute program, to be placed on the system tape, from memory.

SHRINK is an absolute routine separately assembled.

SEQUENCE: SHRINK is loaded and executed by the tape loader as a separate memory

overlay.

MEMORY
REQUIREMENTS: Variable, but at least 819210 words

SUBROUTINES

USED: crs' , GTCR
MOVE STCR
MVITM ITMOV

SMPTRN SAMPLE

t These routines are described under PREASM.

3-156

ENTRY POINTS TO SHRINK SUBROUTINES

Page Page

Entry Description Flowchart Entry Description Flowchart
GTCR 3-160 3-165 SHR10 3-155 3-164
ITMO 3-162 3-166 SHR11 3-155 3-164
ITMOV 3-162 3-166 SHR12 3-155 3-165
MVITM 3-158 3-165 SHRINK 3-155 3-164
SAMPLE 3-163 3-167 SMPTRN 3-159 3-166
SHR3 3-155 3-164 STCL 3-161 3-165
SHR7 3-155 3-164

SI—DlS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 000 Seric. 042016
Catalog No. 9300: 612001

IDENTIFICATION: Reverse symbol table linkage (MVITM)

PURPOSE: To relink the byte table and symbol table pointers so the byte table points
to the dictionary and the symbol table points to the byte table.

ACTION: MVITM takes the dictionary pointer from the symbol table entry addressed
by the A register at entry and places it in the A field of the byte table
entry addressed by FBWRD. The location of the byte table location is then
placed in the A field of the symbol entry.

PRO GRAMMING

TECHNIQUES: MVITM is an absolute routine assembled as part of SHRINK.
CALLING
SEQUENCE: Byte table entry to A register
BRM MVITM
MEMORY
REQUIREMENTS: 148 cells
SUBROUTINES
USED: None

3-158

SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001
—_——]

Translate and move procedure sample (SMPTRN)

To translate the bytes of procedure sample to the new byte values and move

the sample to its new origin.

SMPTRN sets the parameters to cause GTB to get bytes starting at the old
procedure sample and the parameters to cause MOVE to store bytes at the
new sample origin. SMPTRN then obtains bytes by calling GTB, translates
them to the new value by taking the TRTB table entry for the byte, and
stores them in BBUF. As each line is obtained, SMPTRN checks for PROC,
FUNC, or END directives to determine the amount of sample to move.

MOVE is called to store bytes into sample storage.

SMPTRN is an absolute routine assembled as part of SHRINK.

BRM SMPTRN

106, cells

8

GTB
MOVE

3-159

Slnls SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 200 Seric. 04201
Catalog No. 9300: 612001

IDENTIFICATION: Get dictionary characters (GTCR)
PURPOSE: To get the next dictionary character to the A register and FCHR.
ACTION: GTC takes the next character as indicated by FBDC from the dictionary

word addressed by FDW and stores it in the A register and FCHR. The

character position is incremented.

PRO GRAMMING

TECHNIQUES: GTCR is an absolute routine assembled as part of SHRINK.,
CALLING

SEQUENCE: BRM GTCR

MEMORY

REQUIREMENTS: 258 cells

SUBROUTINES

USED: None

3-160

SlDlS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 200 Serics. 042016
Catalog No. 9300 612001

IDENTIFICATION: Store characters into dictionary (STCR)
PURPOSE: To store characters into their new dictionary locations.
ACTION: STCR positions the character given in the A register to the position indicated

by TBDC and stores it into the dictionary word addressed by TDW. The

other three characters in TDW are preserved. The character position is

incremented.
PRO GRAMMING
TECHNIQUES: STCR is an absolute routine assembled as part of SHRINK.
CALLING
SEQUENCE: Character to A register
BRM STCR
MEMORY
REQUIREMENTS: 308 cells
SUBROUTINES
USED: None

3-161

S_—Jﬁg SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 200 Serioe. 042014
Catalog No, 9300: 612001
—————— — —— . e]

IDENTIFICATION: Move symbol table entries (ITMOV)

PURPOSE: To move all symbol table entries to their new location and to relink the

byte table and items pointers.

ACTION: ITMOV calls SAMPLE to process the NAME item sample linkage and sample
moving. The item is moved from the old location given by FITAB to the
location given by TITAB. The byte table entry for the entry is given an
associate address of the new location, and the symbol table item is given
the associate linkage from the byte table (points to dictionary). The 'from'
and 'to' positions are incremented. If the item is to be deleted, it is not
moved and only the 'from' pointer is incremented. ITMOV continues

processing until all items are moved.

PRO GRAMMING

TECHNIQUES: ITMOV is an absolute routine assembled as part of SHRINK.
CALLING

SEQUENCE: BRM ITMOV

MEMORY

REQUIREMENTS: 518 cells

SUBROUTINES

USED: SAMPLE

3-162

SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

PRO GRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINGES
USED:

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 200 Serics: 042016
Catalog No. 9300: . 612001

Set NAME item sample pointers (SAMPLE)

To determine the proper sample pointer word to be associated with a NAME

item and, when needed, to call SMPTRN to move procedure sample.

SAMPLE tests the symbol table entry at FITAB to determine if it is @ NAME.
If the item is not a NAME item, SAMPLE exits without taking further action.
If it is a name item, SAMPLE tests to see if this is the first occurrence of a
NAME item for this procedure by comparing the sample pointer word for the
name with the entries in a table giving the old and new sample pointer words
from previously processed NAME items. If the NAME is that of a procedure
which has been encountered, SAMPLE takes the new sample pointer word
from the table and inserts it into the NAME item. If this is a first NAME
encountered, SAMPLE determines the current sample position and constructs
a new pointer word which is inserted into the NAME item. Entries are made
in'the PSMPLC table showing the old and new sample positions, and
SMPTRN is called to move the procedure sample.

SAMPLE is a relocatable routine assembled as part of SHRINK.

BRM SAMPLE

708 cells

SMPTRN

3-163

SHRINK
OVERALL FLOW

Initialize addresses,
flags, counts, ond
pointers for detecting
bytes not needed by
assembler.

y
Get next nonuser
BTAB entry.

Set new character
position into BTAB
entry and move to
new location. Put

Symbol in table

< Flagged to save?

for this byte? new dictionary word
no o position into Symbol
Table entry.
A
Put new dictionary
g'ep BTAB and location into BTAB
ictionary entry and move to <
pointers. Clear mwrylocgﬁm . N SHR10
translation Table

(TRTB) entry for
byte.

Step BTAB pointer for
new bytes.
A Calculate new byte

4-—"—0'(Finished BTAB?) value and store in
TRTB.

yes GTCR No dictiona
Y

get character / characters
— TEMP

4

STCR
store character

SHR12

no

:;OAPBF;Z,:. no Finished BTAB?)‘L.EC Dictionary entry moved?)—

3-164

SHRINK
OVERALL FLOW (cont.)
MVITM, GTCR AND STCR ROUTINES

Location (address) of dictionary
T . entry — BTAB.
lnmah'ze‘cells :; obh;m Location of BTAB Symbl
| t’:::,::":r;l‘lr: memv:v:es. Table dictionary pointer field.
nth [}
procedure sample .
Translate bytes for END,
PROC, and FUNC.

EXIT
Get next BTAB entry and
remove save flag.
y
. e MVITM
C BTAB point to dictionary ? reverses symbol
yes and BTAB pointer
A
2(Finished flagging symbol?) Extract next character from
old dictionary location.
yes Character — A reg
Character — FCHR
ITMOV

go move symbols
EXIT

y Store character in A reg into
Set PACKL and LITAB for next position of new dictionary .

the assembler.

Load . EXIT
assembler

LOADER

3-165

Initialize cell

s for

GTB and MCVE routines.

GT8
get next byte

Y

Translate

new number.
Store in BBUF.

byte to

1

A

line?

yes

for this

Get mnemonic

line.

1

‘ PROC or
A

‘ EN

\

no

yes
FUNC?)
Yﬂs

SMPTRN AND ITMOV ROUTINES

Increment
proc count

Decrement proc count

A

[wove \

M
K move line

(— es
no‘ End of proc? >‘—“Y

SHRINK

Y
EXIT

3-166

[nitialize cell to
test range.

yes

SAMPLE
move sample
and relink

A

be wveﬂ%

Relink Symbol Table
entry to point to
dictionary and
BTAB entry to point
to symbol .

Move Symbol entry
to new location.

ITMO

22 Finished moving?

\

yes

Set to next Symbol
Table entry (old).

EXIT

PASI
(ASSEMBLR)

Ist entry in sample '\ yes

ranslation Table? /

T

Symbol proc or
func name ?

(il

SHRINK
SAMPLE ROUTINE

yes

no

Does sample pointer \no

word this entry

match previous entry ?

yes

Second word, from
Transiation Table
.goes into 2nd word
(sample pointer word)

of name item

1
EXIT,

3-167

Y

\ 4

Store old sample location
word into next cell of
sample translation table.

New sample location word
goes to 2nd cell of
sample Translation Table
and to 2nd word of name
entry .

Step translation table
pointer by 2 Get bite
size, bits used, and word
position for SMPTRN.

y

SMPTRN
transiate and move

sample

EXIT

900 Series Only

SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION
Catalog No. 042016

Perform the first assembly pass (PAS1 or ASSEMBLR)

To perform the first assembly pass over the user's program contained on the

intermediate output tape X1. This includes the following functions;

].

To define symbols appearing in the label fields by inserting the appro-
priate item type (see Section 4, Item Formats) entry into the symbol

table.

To store the procedure sample contained in the user's program into

memory for later reference.

To maintain a count of the space needed by the program so that
location-dependent labels may be defined and the origin of literals

may be determined.

If called for, to regenerate the symbolic program from the encoded

representation.
To output the external symbol definitions to the binary output file.

To generate both internal and external programmed operator definitions

and to define programmed operator references.

To output external programmed operator definitions and programmed

operator references to the binary output file.

ASSEMBLR rewinds the input tape, X1, and then reads and processes the

program contained thereon one line at a time. If symbolic output has been

requested, each line is reconstructed and written on the symbolic output file.

Lines are scanned from left to right. When a label is encountered, a ten-

tative definition of the label is made equating its value to the current value

900
3-169

900 Series Only

Catalog No, 042016

ACTION:
(cont.)

PROGRAMMING
TECHNIQUES:

of the location countei. The operation ficld is obtained and a determination
is made of the line type. Directives are processed by executing a directive
branch table which causes control to go to the proper directive processing
routine. Procedure references are processed at PRL; FORM references, at
FRL. If an operation is undefined, it is processed at POPR as a programmed

operator reference. A non-symbolic operation is treated as an error.

Before each new line is obtained, a test is made to see of a DO directive
has been encountered, but not completed. If there is an active DO direc-

tive, control goes to DOAGN to repeat the line or lines already obtained.

Within each of the routines to process the various types of lines, the operand
field is evaluated by calling SCAN. When the routines have completed
their tasks, control returns to the main control section where any label which
has been encountered, but not defined, is defined by calling NSRT to place
the label definition into the symbol table. The location counter is incre-
mented as needed, and control returns to LINE to process the next line of

user's program.

When all lines have been processed, ASSEMBLR outputs the external symbol
definitions, external programmed operator definitions, and programmed op-

erator references to the binary output file.

PAS2 is then loaded by calling the tape loader.

ASSEMBLR is segmented into five separately assembled parts plus the pro-
grammed operators. An absolute version of ASSEMBLR is made for insertion
onthe system tape by loading the separate routines and punching the absolute
program from core. Two cells (PACKL and LITAB), giving the upper and
lower table locations used by PREASM, are located just below the origin of
ASSEMBLR and are referenced by ASSEMBLR as absolute location. Several
of the communication cells between MSCONTRL and ASSEMBLR are also

200
3-170

900 Series Only

Catalog No, 042016

PRO GRAMMING
TECHNIQUES:
(cont.)

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

referred to as absolute locations. Changes in any of these communication
locations necessitate the reassembly of ASSEMBLR to reflect the changes.
ASSEMBLR is a relocatable program originated at 01354, The machine

memory size is determined from the contents of cell 1.

ASSEMBLR is loaded and executed by the tape loader.

Variable but at least 8192](') words

In addition to the routines listed here, the file processing and 1/0 routines

of MSCONTRL may be used.

TEXT POPR SCRP PEEK
IPL DO EDC GNC
MBYT DOAGN EDS GET
SKIP DODEC OQUTP GBSL
INC PRL FLUSH MIFT
GCW FNRL RESET GLOP
GTB DFLST PAGE POP
- GEC END EPRNT EDTST,
LBTST FRL DED PLINE
PLB BCD GLov roplf
PLTST TEXTR M3WAI EDIT'f
EQU SAM ~ FLN EDTV
AORG NAME FLM = TYPWRT
ORG MVPRC RELTST EDTL!
RES MOVE CNWRT EDE!

FORV SWITCH DPDIV HOME'

FUNC GTLBL SCAN FLDC!
PROC SRCH GIT PRNTft
POPD NSRT SCANC MFOI

Mhese routines may be called by ASSEMBLR, but perform no operation
needed for first pass processing. In the case of EDTST, return is to the
location of its call (BRM EDTST) plus 2.

900
3-171

SD S

9300 Only

SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Page 1 of Catalog No. 612001
- IDENTIFICATION: Perform the first assembly pass (PAS1 or ASSEMBLR)
PURPOSE: To perform the first assembly pass over the user's program contained on the
intermediate output tape X1. This includes the following functions:

1. To define symbols appearing in the label fields by inserting the appro-
priate item type (see Section 4, Item Formats) entry into the symbol
table.

2. To store the procedure sample contained in the user's program into
memory for later reference.

3. To maintain a count of the space needed by the program so that
location-dependent labels may be defined and the origin of literals
may be determined.

4. If called for, to regenerate the symbolic program from the encoded
representation.

5. To output the external symbol definitions to the binary output file.

6. To generate both internal and external programmed operator definitions
and to define programmed operator references.

7. To output external programmed operator definitions and programmed
operator references to the binary output file.

ACTION: ASSEMBLR rewinds the input tape, X1, and then reads and processes the

program contained thereon one line at a time. If symbolic output has been

requested, each line is reconstructed and writtenon the symbolic output file.

Lines are scanned from left to right. When a label is encountered, a ten-

tative definition of the label ismade equating its value to the current value

9300
3-169

9300 Only

Page

Catalog No, 612001

ACTION:
(cont.)

PROGRAMMING
TECHNIQUES:

of the location counter. The operation field is obtained and a determination
is made of the line type. Directives are processed by executing a directive
branch table which causes control to go to the proper directive processing
routine. Procedure references are processed at PRL; FORM references, at
FRL. If an operation is undefined, it is processed at POPR as a programmed

operator reference. A non-symbolic operation is treated as an error.

Before each new line is obtained, a test is made to see of a DO directive
has been encountered, but not completed. If there is an active DO direc-

tive, control goes to DOAGN to repeat the line or lines already obtained.

Within each of the routines to process the various types of lines, the operand
field is evaluated by calling SCAN. When the routines have completed
their tasks, control returns to the main control section where any label which
has been encountered, but not defined, is defined by calling NSRT toplace
the label definition into the symbol table. The location counter is incre-
mented as needed, and control returns to LINE to process the next line of

user's program.

When all lines have been processed, ASSEMBLR outputs the external symbol
definitions, external programmed operator definitions, and programmed op-

erator references to the binary output file.

PAS2 is then loaded by calling the tape loader.

ASSEMBLR is segmented into five separately assembled parts plus the pro-
grammed operators. An absolute version of ASSEMBLR is made for insertion
on the system tape by loading the separate routines and punching the absolute

program from core.

9300
3-170

9300 Only

Page

Catalog No. 612001

CALLING
SEQUENCE:

MEMORY

REQUIREMENTS:

SUBROUTINES
USED:

ASSEMBLR is loaded and executed by the tape loader.

Variable but at least 8192]0 words

In addition to the routines listed here, the file processing and 1/O routines

of MSCONTRL may be used.

TEXT POPR SCRP PEEK
IPL DO EDC GNC
MBYT DOAGN EDS GET
SKIP DODEC OuTP GBSL
INC PRL FLUSH MIFT
GCW FNRL RESET GLOP
GTB DFLST PAGE POP
GEC END EPRNT EDTST
LBTST FRL DED PLINE!
PLB BCD GLOV RDPIt
PLTST TEXTR M3WAI EDIT'f
EQU SAM FLN EDTV |
AORG NAME FLM TYPWRT

ORG MVPRC RELTST EDTL!
RES MOVE CNVRT EDE! .
FORM SWITCH DPDIV HOME
FUNC GTLBL SCAN FLDC!
PROC SRCH GIT PRNT!
POPD NSRT SCANC MFOIf

"hese routines may be called by ASSEMBLR, but perform no operation
needed for first pass processing. In the case of EDTST, return is to the
location of its call (BRM EDTST) plus 2.

9300
3-171

ENTRY POINTS TO ASSEMBLR (PASS 1) SUBROUTINES

Page Page
Entry Description Flowchart Entry Description Flowchart
AORG 3-188 3-151 DO2 3-193 3-255
BCD 3-202 3-263 DO3 3-193 3-255
CNVI 3-226 3-296 DOA2 3-194 3-256
CNV2 3-226 3-296 DOA3 3-194 3-256
CNV3 3-226 3-297 DOA4 3-194 3-256
CNVé 3-226 3-297 DOA5 3-193 3-255
CNV/7 3-226 3-297 DOAGN 3-194 3-256
CNWVRT 3-226 3-296 DODEC 3-195 3-257
COAD 3-228 3-284 DOEND 3-193 3-255
COAD2 3-228 3-284 DOERR 3-193 3-255
- COAD3 3-228 3-284 DOVFW 3-193 3-255
COAP 3-228 3-285 DPDIV 3-227 3-295
COAS 3-228 3-284 EDC 3-213 3-273
COASI 3-228 3-284 EDE 3-272
COAS3 3-228 3-284 EDIT 3-272
COBS 3-228 3-286 EDS 3-214 3-273
CODS 3-228 3-285 EDTL 3-272
COEQ 3-228 3-282 EDTST 3-267
COGT 3-228 © 3-282 EDTV 3-272
colQ 3-228 3-285 END 3-199 3-260
COLD 3-228 3-283 ENDI 3-199 3-261
COLS 3-228 3-283 ENDIA 3-199 3-261
COLSI 3-228 3-283 ENDI1B 3-199 3-261
COLS2 3-228 3-283 ENDI1BA 3-199 3-261
COLS3 3-228 3-283 END2 3-199 3-260
COLS4 3-228 3-283 END3 3-199 3-261
COLS6 3-228 3-283 ENDM 3-274
COLS6A 3-228 3-283 ENDN 3-274
COoLsz 3-228 3-283 ENDP 3-199 3-262
COLT 3-228 3-282 ENDS 3-199 3-260
COLTI 3-228 3-282 EPRNT 3-219 3-276
COLT2 3-228 3-282 EQU 3-187 3-251
COLT3 3-228 3-282 EQUI 3-187 3-251
coxQ 3-228 3-285 EQU3 3-187 3-251
coXQl 3-228 3-285 EQUA4 3-187 3-251
DATAT 3-274 EQU6 3-187 3-251
DED 3-220 3-277 EQU7 3-187 3-251
DEF ‘ 3-274 FLDC 3-272
DELST 3-198 3-259 FLM 3-224 3-279
DO 3-193 3-255 FLN 3-223 3-279
DOI 3-193 3-255 FLUSH 3-216 3-275
DOizZ 3-193 3-255 FLUSHI 3-216 3-275

3-172

ENTRY POINTS TO ASSEMBLR (PASS 1) SUBROUTINES (cont.)

Page Page
Entry Description Flowchart Entry Description Flowchart
FNRL 3-196 3-258 GITS2 3-230 3-288
FNRLI1 3-196 3-258 GITS3 3-230 3-288
FNRL2 3-196 3-258 GITS4 3-230 3-287
FORM 3-189 3-252 GITSS 3-230 3-288
FRL 3-201 3-263 GITS8 3-230 3-287
FUNC 3-190 3-253 GITS9 3-230 3-288
GBSL 3-237 3-294 GITX 3-230 3-291
GBSL2 3-237 3-294 GLOP 3-239 3-278
GCW 3-181 3-249 GLOV 3-221 3-278
GEC 3-183 3-250 GNC 3-235 3-293
GET 3-236 3-294 GNC3 3-235 3-293
GETI 3-236 3-294 GNCE 3-235 3-293
GET4 3-236 3-294 GNCER 3-235 3-293
GET6 3-236 3-294 GOl 3-198 3-259
GII3 3-230 3-287 GTB 3-182 3-250
GIT 3-230 3-287 GTBI1 3-182 3-250
GIT1 3-230 3-287 GTLBL 3-208 3-268
GIT2 3-230 3-291 GTRBL 3-287
GIT3 3-230 3-287 HOME 3-272
GIT4 3-230 3-290 INC 3-180 3-249
GIT? 3-230 3-289 IPL 3-177 3-247
GITI 3-230 3-287 LBERR 3-185 3-245
GIT31 3-230 3-290 LBTST 3-184 3-249
GIT32 3-230 3-290 LINE 3-243
GIT33 3-230 3-289 LINSYM 3-244
GIT34 3-230 3-290 LNI 3-243
GIT35 - 3-230 3-288 LNTA 3-243
GIT35A 3-230 3-288 LN4 3-243
GIT37 3-230 3-290 LNDPV 3-244
GIT41 3-230 3-290 LNE 3-244
GIT42 3-230 3-290 LNEN 3-243
GIT43 3-230 3-289 LNERR 3-244
GIT44 3-230 3-289 LNFRM 3-244
GIT99 3-230 3-289 LNLOC 3-244
GIT351 3-230 3-289 LNVAL 3-244
GIT352 3-230 3-289 M3WAI 3-222 3-278
GITA 3-230 3-291 MBYT 3-178 3-248
GITA2 3-230 3-291 MFOI 3-277
GITC 3-230 3-291 MIFT 3-238 3-279
GITE 3-230 3-291 MOI 3-206 3-266
GITL 3-230 3-291 MOS5 3-206 3-266
GITS] 3-230 3-288 MO6 3-206 3-266

3-173

ENTRY POINTS TO ASSEMBLR (PASS 1) SUBROUTINES (cont.)

Page Page
Entry Description Flowchart Entry Description Flowchart
MOVE 3-206 3-266 PRL2A 3-196 3-259
MTASYM 3-242 PRL3 3-196 3-258
MVPRC 3-206 3-266 PRL7 3-196 3-259
NAMI 3-205 3-265 PRNT 3-272
NAM?2 3-205 3-265 PROC 3-190 3-253
NAME 3-205 3-265 RDPI 3-278
NMEND 3-205 3-265 RELTST 3-225 3-295
NMERR 3-205 3-265 RES 3-188 3-252
NOEND 3-244 RESET 3-217 3-275
NSIA 3-210 3-270 RET3A 3-248
NS18B 3-210 3-270 RET4 3-248
NSIC 3-210 3-270 RETS 3-248
NS1D 3-210 3-270 RET10 3-248
NS3 3-210 3-270 REZZ 3-248
NS3A 3-210 3-270 SA2 3-203 3-264
NS? 3-210 3-270 SA3 3-203 3-264
NS99 3-210 3-270 SA4 3-203 3-264
NSRT 3-210 3-270 SAM 3-203 3-264
ORG 3-188 3-251 SC2 3-212 3-271
ORGI 3-188 3-251 SC3 3-212 3-271
OourTp 3-215 3-274 SCAN 3-228 3-280
OUTPI 3-215 3-274 SCANI 3-228 3-280
OuTP2 3-215 3-274 SCAN2 3-228 3-280
PAGE 3-218 3-276 SCAN3 3-228 3-280
PEEK 3-234 3-293 SCAN6 3-228 3-282
PLI 3-185 3-245 SCAN7 3-228 3-280
PLB 3-185 3-245 SCAN?9 3-228 3-281
PLB2 3-185 3-245 SCAN21 3-228 3-280
PLB3 3-185 3-245 SCAN23 3-228 3-280
PLBEX 3-185 3-245 SCAN99 3-228 3-281
PLINE 3-272 SCAN998 3-228 3-281
PLT4 3-186 3-246 SCAN999 3-228 3-281
PLT4A 3-186 3-246 SCANC 3-232 3-292
PLTS 3-186 3-246 SCANCI 3-232 3-292
PLT6 3-186 3-246 SCANC2 3-232 3-292
PLTST 3-186 3-246 SCANC3 3-232 3-292
POP 3-201 3-264 SCANC6 3-232 3-292
POPD 3-191 3-254 SCANCS8 3-232 3-292
POPR 3-192 3-254 SCANC? 3-232 3-292
PR7 3-203 3-264 SCANC?E 3-228 3-281
PRL 3-196 3-258 SCANR 3-232 3-292
PRLI1 3-196 3-258 SCNCl1 3-232 3-292

3-174

ENTRY POINTS TO ASSEMBLR (PASS 1) SUBROUTINES (cont.)

Page Page
Entry Description Flowchart Entry Description Flowchart
SCRP 3-212 3-271 TEXTI1 3-176 3-247
SKIP 3-179 3-249 TEXT2 3-202 3-263
SR5 3-209 3-269 TEXT3 3-202 3-263
SR6 3-209 3-269 TEXTR 3-202 3-263
SR7 3-209 3-269 TXT2 3-176 3-247
SR9 3-209 3-269 TXT3 3-176 3-247
SRCH 3-209 3-269 XTS5 3-176 3-247
START 3-169 3-241 TYPWRT 3-272
SWITCH 3-207 3-267 UNDEF 3-244
TEXT 3-176 3-247 WEOFL 3-276

3-175

SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROCRAM DESCRIPTION 000 Seriee. 042010
Catalog No. 9300: 612001

— e ———— ———

IDENTIFICATION: Obtain next line of text (TEXT)

PURPOSE:

ACTION:

PRO GRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY

REQUIREMENTS:

SUBROUTINES
USED:

To obtain the next line of input to be processed.

TEXT takes the following actions:

1. If the line is to be obtained from the procedure sample area, TEXT

calls SKIP to skip to the end of the current line.

2. If symbolic output is requested, TEXT reconstructs the line and stores
the bytes into BBUF by calling MBYT and writes the line on the

symbolic output file,

3. If the line is not to be output as symbolic, TEXT obtains the bytes by
calling GTB and stores them in BBUF. SKIP is called to skip over

comments,

TEXT is a relocatable routine assembled as part of ASSEMBLR. The symbolic
output routine is a standard MSCONTRL I/O routine.

BRM TEXT
end-of -file return
normal return

708 cells

IPL SKIP
EDS GT8
EDC MBYT

symbolic output routine

3-176

SIbls SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCR"’T'ON 900 Series: 04201

Catalog No. 9300: 6120(
IDENTIFICATION: Initialize line reconstruction (IPL)
PURPOSE: To initialize parameters for reconstructing line images.
ACTION: IPL sets the maximum character count and the line length and initializes the

buffer locations for fields by calling EDS. The buffer is set to blanks.

PROGRAMMING

TECHNIQUES: IPL is a relocatable routine assembled as part of ASSEMBLR.
CALLING

SEQUENCE: BRM IPL

MEMORY

REQUIREMENTS:]48 cells

SUBROUTINES

USED: EDS

3-177

SJ__D‘LS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016
Catalog No., 9300: 612001

IDENTIFICATION: Reconstruct symbolic lines (MBYT)

PURPOSE: To reconstruct line images for punching and to enter bytes into byte buffer,
BBUF.
ACTION: MBYT obtains bytes by calling GTB. The byte is stored in BBUF, and the

byte table entry is obtained and placed in ECW, The dictionary characters
represented by the byte are obtained by calling GEC and stored into the
image by calling EDC. If the line is continued, the first portion is output

to the symbolic file (listing in PAS2), INC is used to obtain comment

characters.
PROGRAMMING
TECHNIQUES: MBYT is a relocatable routine assembled as part of ASSEMBLR.
CALLING
SEQUENCE: BRM MBYT
MEMORY
REQUIREMENTS: 1028 cells
SUBROUTINES
USED: GTB GEC
IPL EDC
INC GBSL

3-178

S|Dls SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 900 Series: 04201

Catalog No. 9300: 6120(¢

IDENTIFICATION: Skip to the end of lines (SKIP)

PURPOSE: To skip to the end of the current line.

ACTION: SKIP calls GCW to get consecutive bytes until an end-of-line byte is
obtained. Comments are skipped by calling INC to get comment
characters.

PROGRAMMING

TECHNIQUES: SKIP is a relocatable routine assembled as part of ASSEMBLR.

CALLING

SEQUENCE: BRM SKIP

MEMORY

REQUIREMENTS: 228 cells

SUBROUTINES

USED: GCW
INC

3-179

SID‘S SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Get comment characters (INC)
PURPOSE: To fetch the next comment character,
ACTION: INC saves the current byte size and mask and then sets the size to six bits.

INC calls GTB to fetch the next six bits of input, after which it restores the

byte size and mask. The character is in the A register,

PRO GRAMMING

TECHNIQUES: INC is a relocatable routine assembled as part of ASSEMBLR,
CALLING

SEQUENCE: BRM INC

MEMORY

REQUIREMENTS: 228 cells

SUBROUTINES

USED: GTB

3-180

stnls SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PRUGRAM DESCR'F"ON 900 Series: 042016

Catalog No. 9300 612001
IDENTIFICATION: Get the next byte table entry (GCW)
PURPOSE: To gefAfhe next byte table entry and byte value.
ACTION: GCW gets the next byte from BBUF or by calling GTB if within a procedure.

The negative byte value is placed in the A and X registers and in BYT; the
byte table location for the byte is placed in ABYT, and the byte table
entry is placed in the B register and in ECW.

PRO GRAMMING

TECHNIQUES: GCW is a relocatable routine assembled as part of ASSEMBLR.
CALLING

SEQUENCE: BRM GCW

MEMORY

REQUIREMENTS: 208 cells

SUBROUTINES

USED: GTB

3-181

S—Jﬁg SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 00 Serios. 042016
Catalog No. 9300: 612001

IDENTIFICATION: Get bytes from the input file (GTB)

PURPOSE: To obtain the negative of the next byte of input and place it in BYT and in

the A and index registers.

ACTION: GTB extracts the next BSIZ bits from CHAD, complements the result, and
stores it in BYT and the index register. If there are fewer than BSIZ bits
remaining in CHAD, INPUT is called to obtain the next encoded text word.
If a byte has zero value, the value is taken to the ZBSIZ, and BSIZ and its

related mask are incremented.

PRO GRAMMING

TECHNIQUES: GTB is a relocatable routine assembled as part of ASSEMBLR.
CALLING

SEQUENCE: BRM GTB

MEMORY

REQUIREMENTS: 428 cells

SUBROUTINES
USED: INPUT

3-182

§J———L—Ds SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 04201
Catalog No. 9300: 61200

IDENTIFICATION: Get a dictionary character (GEC)
PURPOSE: To fetch to the A register and NCE the character from a dictionary entry.

ACTION: GEC extracts the next character from the location given by ECW and stores
it in the A register and NCE.

PROGRAMMING

TECHNIQUES: GEC assumes that ECW has the format of the byte table entry and that the
right 15]0 bits of ECW point to the dictionary word. GEC modifies ECW
to indicate characters remaining and next character position. GEC is a
relocatable routine assembled as part of ASSEMBLR.,

CALLING

SEQUENCE:; Contro! word to ECW
BRM GEC
end-of =string return
normal return

MEMORY

REQUIREMENTS: 348 cells

SUBROUTINES

USED: None

3-183

SID|S SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Test for waiting labels (LBTST)

PURPOSE: To define waiting labels and reset the label flag.

ACTION: If LBL at the current PROC level contains a label, LBTST calls NSRT to

enter it into the symbol table and then resets LBL to zero.

PROGRAMMING

TECHNIQUES: LBTST is a relocatable routine assembled as part of ASSEMBLR.
CALLING

SEQUENCE: BRM LBTST

MEMORY

REQUIREMENTS: ”8 cells

SUBROUTINES

USED: NSRT

3-184

SD S

SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

PRO GRAMMING
TECHNIQUES:

CALLING

SEQUENCE:

MEMORY

REQUIREMENTS:

SUBROUTINES
USED:

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 900 Serics: 04201
Catalog No. 9300: 6120C

Process label fields (PLB)

To scan the label field of a line, set a tentative definition of the label if it
is present, and set the cell WLLVL to indicate the procedure level at which

the label is to be defined.

WLLVL calls GCW to obtain the bytes of the label field and the blank
following the label. If the line is a comment, PLB exits with an end-of-line
flag in the A register. WLLVL is set to reflect the level at which the label
is to be defined, A tentative definition is made for the label, setting it
equal to the location counter value; this tentative definition in the form of
an address item is placed in LBL through LBL+3., PLTST is called to test for

an external label string.

PLB is a relocatable routine assembled as part of ASSEMBLR,

BRM PLB
end-of -line return
normal return

]348 cells
GCW GBSL
GEC PLTST

3-185

S__j_—‘—Ds SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION %00 Serics: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Process external label strings (PLTST)
PURPOSE: To process strings of external label definitions.

ACTION: PLTST determines if the label is external and if it is either the only field on
the line or followed by a second symbol. If it is not, PLTST returns to PLB
without taking action. Otherwise, a flag is set for SRCH to accept any type
of symbol definition, and SRCH is called to test for the presence of the
symbols in the string at the current procedure level. As each symbol def-
inition at the current level is found, it is redefined at a lower level by

calling NSRT. Labels not found are ignored.

PROGRAMMING
TECHNIQUES: PLTST is an open routine assembled as part of ASSEMBLR and used only in
conjunction with PLB.
CALLING
SEQUENCE: PLTST is called by PLB and returns either to PLB or to the main line code.
MEMORY
REQUIREMENTS: |228 cells
SUBROUTINES
USED: GCW NSRT
GBSL GEC
SRCH

S1D S

SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 000 Serics. 042014
Catalog No. 9300: 612001

Process EQU directives (EQU).
To process the EQU directive

The operand field of the line is evaluated by calling SCAN. The value
returned by SCAN is used to construct an item definition in LBL to LBL+3,
If the operation is a reference, LBL is set to zero and return is made to
LINSYM. In constructing the item definition, EQU uses the associate set
for the tentative definition of the symbol by PLB and the type and mode bits
of the operand field. NSRT is called to define the item.

EQU is an open subroutine assembled as part of ASSEMBLR.

EQU is called by executing the directive branch table and returns to the

main line code.

lO78 cells
SCAN MFQOI
NSRT RDPI

3-187

S‘D‘s SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Process AORG, ORG and RES directives (AORG, ORG and RES)

PURPOSE: To process the indicated directive.

ACTION: Each of these routines calls SCAN to evaluate the operand field.

1. RES stores the resulting value in CCINC.
2. ORG appends the relocation flag and stores the value in CC and LBL+1.

3. AORG removes any relocation flag and stores the value in CC and

LBL+1.
PROGRAMMING
TECHNIQUES: All of these routines are open routines assembled as part of ASSEMBLR.
CALLING
SEQUENCE: Each is called by executing the directive branch table, and each returns to
the main line code at LNLOC.
MEMORY
REQUIREMENTS: 158 cells total
SUBROUTINES
USED: SCAN

3-188

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 04201¢

Catalog No. 9300: 612001
—_—

IDENTIFICATION: Process FORM directives (FORM)

PURPOSE: To process the FORM directive.

ACTION: FORM calls SCAN to evaluate the expressions in the operand field. As each
field is obtained, a bit is set in a double form control word and the word is
cycled left by the value of expression evaluated by SCAN. When all fields
have been evaluated, the form control words are cycled right one bit and
placed in a form definition item in LBL through LBL+2. NSRT is called to

place the item into the symbol table.

PROGRAMMING

TECHNIQUES: FORM is an open routine assembled as part of ASSEMBLR.

CALLING

SEQUENCE: FORM is called by executing the directive branch table and returns to the
line code at LINSYM,

MEMORY

REQUIREMENTS: 558 cells

SUBROUTINES

USED: NSRT
SCAN

3-189

SD S

SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

Process the PROC and FUNC directives (PROC and FUNC)

To process the indicated directive.

The sample processing flag is set, and the nested sample count is incremented.
If the line appears while already processing sample, control goes to SA2 to
process the line like any other sample line. A flag is set to indicate PROC

or FUNC, and a test is made to determine if ASSEMBLR is processing a

PROC or FUNC reference. If a reference is being processed, the line
position at the beginning of the line is set in PRPOS to be used in defining
following NAME lines. If not inside a reference, the bytes of the line are
moved to PRBYTS for later insertion into sample storage (see PREASM for

more information on the concept of processing procedure sample).

PROC and FUNC are open routines assembled as part of ASSEMBLR.

PROC and FUNC are entered by executing the directive transfer table.

Both routines return to the main line code at LINSYM.
53 _ cells total

8

None

3-190

) SIES SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 900 Series: 04201¢

Catalog No. 9300: 612001
IDENTIFICATION: Process POPD directive (POPD)
PURPOSE: To process the POPD directive.
ACTION: The label given on the line is defined as a programmed operator by building

a local or external programmed operator item with the operation value of
the current programmed operator count. The POP count is then incremented.

The item built is placed in LBL and LBLH, and WLLVL is set to define the

item at the lower level.

PROGRAMMING

TECHNIQUES: POPD is an open routine assembled as part of ASSEMBLR.

CALLING

SEQUENCE: POPD is called by executing the directive transfer table; control returns to
the main line code at LNLOC.

MEMORY

REQUIREMENTS: 278 cells

SUBROUTINES

USED: None

3-191

S|D|s SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Process undefined operations (POPR)

PURPOSE: To define a programmed operator reference item.

ACTION: POPR defines the waiting label and then constructs a programmed operator
reference item at LBL and LBL+1. WLLVL is set to cause the item to be
defined at the lower procedure level. NSRT is called to place the POP
reference item into the symbol table, LBL is set to zero, and the programmed

operator count is incremented.

PROGRAMMING

TECHNIQUES: POPR is an open routine assembled as part of ASSEMBLR.

CALLING

SEQUENCE: POPR is called by the line code when an undefined operation is detected
and return is to the line code at LNLOC..

MEMORY

REQUIREMENTS: 4]8 cells

SUBROUTINES

USED: NSRT

SID'S SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 900 Serics: 0420

Catalog No. 9300: 61201
IDENTIFICATION: Process DO directives (DO)
PURPOSE: To process DO directives.
ACTION: DO calls SCAN to evaluate the expressions in the operand field. These

values are placed into a DO table entry. NSRT is called to define the

label on the DO line which is given a value of zero. The location of the
DO label value is placed in the DO table entry as is the current procedure
level. The pointer to the current DO table entry is set. If the DO appears
in a PROC or FUNC reference, the next line is obtained by calling SKIP

and its location is moved to the DO table. If the line is outside any PROC
or FUNC reference, it is obtained by calling TEXT. If a void DO appears
outside a PROC reference, the DO line and the line following it are ignored.
A void DO within a PROC reference results in the number of lines to 'do’

being skipped.

PROGRAMMING
TECH™IQUES: DO is an open routine assembled as part of ASSEMBLR.
CALLING
SEQUENCE: DO is called by executing the directive branch table and returns to the main
line code.
MEMORY
REQUIREMENTS: |448' cells
SUBROQUTINES
USED: SCAN TEXT
NSRT EPRNT
SKIP

3-193

S|Dls SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Repeat lines of code (DOAGN)
PURPOSE: To repeat lines of code in the range of a DO directive.

ACTION: DOAGN decrements the line count for the DO and, if all lines have not
been finished, returns to LN4 in the main line code to continue processing
the line. When all lines have been done, ‘the DO count is decremented and,
if not finished, the origin of the first line to do is reset, the DO label value
is incremented, and control goes to DOAGN to count the lines. As each
line is done, DODEC is called to decrement the line counts on outer active
DOs. When the DO count reaches zero, the lines to skip are skipped and

the DO table pointer is reset to the next lower DO level.

PROGRAMMING
TECHNIQUES: DOAGN is an open routine assembled as part of ASSEMBLR.
CALLING
SEQUENCE: DOAGN is called by the line control code when an active DO is detected
and control returns to the line code.
MEMORY
REQUIREMENTS: 1248 cells
SUBROUTINES
USED: DODEC GCW
TEXT SKIP
SWITCH

3-194

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 0420
61201

IDENTIFICATION: Decrement DO line counts (DODEC).

PURPOSE: To decrement the DO line counts of active DOs outside the current DO,

ACTION: DODEC steps through the DO table, decrementing the DO line counts for
active DOs outside the current DO but at the same PROC level.

PROGRAMMING

TECHNIQUES: DODEC is a relocatable routine assembled as part of ASSEMBLR.
CALLING

SEQUENCE: BRM DODEC

MEMORY

REQUIREMENTS: 248 cells

SUBROUTINES

USED: None

3-195

S|D‘S SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Process PROC and FUNC reference lines (PRL and FNRL)
PURPOSE: To process the line referencing a PROC or FUNC,

ACTION: The procedure level is first tested to determine if space exists to process the
line; and, if space is not available, the routine is exited. The temporary
procedure level, PLVT, is incremented, a flag is set to indicate whether the
reference was to a PROC or FUNC, WLLVL is set equal to PLVT, and the
symbol table direction is reversed. PLV and the location counter are saved
and the pass is set to first. DFLST is called to define the parameter list
elements. PLV is set to PLVT; BYT, ECW, and TERM are saved. The starting

location of the sample is obtained from the calling NAME item, and SWITCH
is called to reset the origin of the next byte of input. The old input position
is saved for resuming later. PLB is called to obtain the PROC line label, and
a test is made to see if this is a 1- or 2-pass procedure. If it is a 1-pass
procedure, PASS is set equal to PASS at the referencing level. The list

item is constructed using the element linkage established by DFLST, the

list identification is obtained from the PROC label by PLB, and the value

is associated with the NAME item. NSRT is called to place the list item
into the symbol table. SKIP is called to bypass the remainder of the PROC

line.

PROGRAMMING
TECHNIQUES: The temporary setting of the procedure level PLVT before defining the list

parameters is done so that the parameters will be inserted into the correct
table position. Since a FUNC reference is possible before finishing the

definition of the list, the PLV flag must remain unaltered so that characters

3-196

Catalog No, 900 Series: 0420
9300:. &1 20(

PROGRAMMING
TECHNIQUES:
(cont.)

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

are obtained and labels processed, etc., in the normal manner; however,
it must be remembered that this additional reference must be completed.

These routines are open routines assembled as part of ASSEMBLR.

PRL is called by the main line code when a procedure reference is encount-
ered. FNRL is called by SCANC when a function reference is encountered.

Both return to the main line code.

2258 cells total

DFLST EL(?W
SWITCH

GBSL SKIP
NSRT

3-197

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 000 Serics. 042014
Catalog No. 9300: 612001

IDENTIFICATION: Define procedure reference parameters (DFLST)

PURPOSE: To define the parameters on the PROC or FUNC reference line.

ACTION: DFLST calls SCAN to evaluate the parameters and NSRT to place them in
the symbol table. The parameters are linked as they are inserted, and the
number of parameters and the location of the first parameter are saved to

define the list item. A skeletal list item is placed in ICW and VALU.

PROGRAMMING
TECHNIQUES: DFLST is a relocatable routine assembled as part of ASSEMBLR.
CALLING .
SEQUENCE: BRM DFLST
MEMORY
REQUIREMENTS: 428 cells
SUBROUTINES
USED: SCAN
NSRT

3-198

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 900 Series: 0420

Catalog No. 9300: 6120
IDENTIFICATION: Process END directives (END)
PURPOSE: To process END directives.
ACTION: END may process an END directive in any of four ways:

1. The END occurs while processing procedure sample. The procedure
sample count is decremented. If it is zero, the sample processing
flag is reset and control goes to SA2. If the count is not zero, MOVE

is called to save the line and control goes to the line code at LINSYM,

2, The END occurs while processing a procedure reference. The label,
if any, on the line is defined by calling NSRT, SWITCH is called
to reset the origin of the next byte, SCRP is called to purge symbols,
and the parameters which were saved when the PROC was referenced
are restored. The label on the calling line is defined, if still present,

and control is returned to the main line code.

3. The END occurs while processing a FUNC reference. SCAN is called
to evaluate the END line expression. SWITCH is called to restore the
origin for the next byte, SCRP is called to purge symbols, the parame-
ters saved at the time of reference are restored, and control goes to

SCANR in the SCANC routine to continue the expression evaluation.

4. The END is the end of the program. If no further outputs are wanted,
control is returned to the monitor. The END line label is defined by
calling NSRT. The symbolic output file is closed. The binary output

file is opened, and the external symbol and programmed operators

3-199

900 Series: 042016

C
atalog No. 534, 612001

ACTION:

(cont.)

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

are output as are the programmed operator reference items. When the

external symbols have been completed, they are flushed from the

output buffer by calling FLUSH. PAS2 is now loaded.

END is an open routine assembled as part of ASSEMBLR.

END is called by executing the directive branch table.

2508 cells

End-of -file routine for symbolic output

NSRT FLUSH
OPEN MOVE
GTLBL SWITCH
OUTP SCRP

3-200

S|DIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 900 Series: 0420

Catalog No. 9300: 6120

IDENTIFICATION: Process FORM reference lines and programmed operator references (FRL and

POP)
PURPOSE: To increment the location counter for FORM and POP references.
ACTION: If the FORM is single-precision, CCINC is set to 1; if it isdouble-precision,

CCINC is set to 2. POP sets CCINC to 1.

PROGRAMMING

TECHNIQUES: These are open routines assembled as part of ASSEMBLR.

CALLING

SEQUENCE: These routines are entered from the main line code when a POP or FORM
reference is encountered. Control returns to the line code at LNFRM,

MEMORY

REQUIREMENTS: 228 cells total

SUBROUTINES

USED: N e

3-201

S‘D'S SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016

IDENTIFICATION: Process BCD and TEXT directives (BCD and TEXTR)

PURPOSE: To process BCD or TEXT directive lines.

ACTION: If the first operand field character is a< (less than), a > (greater than)
character is set as the line terminator and the character count is set to 56]0.
If it is not, the terminating character is set as 1008 (impossible), and SCAN

is called to obtain the character count.

Characters, obtained by calling GET, are then packed into WORD, When
WORD is filled, EDIT is called to output the data words. Characters are

thus obtained and output until the count reaches zero or the terminating

character is encountered. Blanks (608) are translated to 128 if the entry is
at BCD,

PROGRAMMING

TECHNIQUES: This routine is an open routine assembled as part of ASSEMBLR.

CALLING

SEQUENCE: This routine is entered by executing the directive transfer table. Return is
to the main line code.

MEMORY

REQUIREMENT: 1 168 cells

SUBROUTINES

USED: PEEK GBSL
GCW GET
SCAN LBTST
EDIT

3-202

SDS

SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 900 Series: 04201

Catalog No. 9300: 6120C

Process lines of sample (SAM).
To process lines of procedure or function sample.

SAM calls PLB to process the label field of the line and GCW to obtain the
operation field. The operation field is tested for a PROC, FUNC, NAME,
or END directive; and, if it is any of these, control goes to the appropriate

routine. All other lines are processed by SAM starting at SA2,

If this is the first line following the procedure NAME, the location of the
PROC line is determined either by using the parameters set by MOVE and the
current byté size and mask or by using PRPOS if this line appears in a pro-
cedure reference. This origin of the PROC line is then set in each of the
NAME items associated with the PROC. If fhe line appears outside any
procedure reference, the PROC line is moved to storage by calling MVPRC
and the current line is moved by calling MOVE. If the line is not the first
line following the NAME lines and is outside any procedure reference,

only the current line is moved. The label on the line is ignored.

SAM is an open routine assembled as part of ASSEMBLR,

SAM is called from the main line code when the sample processing flag

is ON. Control returns to the main line code at LINSYM,

15]8cells

3-203

900 Series: 042016

Catalog No. o4, 612001

SUBROUTINES

USED: PLB MVPRC
GCW MOVE
GBSL

3-204

SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 500 Serien, 0ss0l

Catalog No. 9300: 01200

Process NAME directives (NAME)

To process NAME directives.

If the name does not follow a PROC, FUNC, or other NAME line, it is an
error. If the sample level count is greater than 1, the line is moved to the
procedure storage area. The value associated with the NAME is evaluated
by calling SCAN, and a NAME item is constructed in LBL through LBL+3.
If the value of the operand field is a list, a flag is set in the second word of
the NAME item reflecting this fact. NSRT is called to place the NAME
item reflecting this fact. NSRT is called to place the NAME item in symbol
table. When NAME items are built, they are linked together so that the

setting of the procedure origin can be expedited later.

NAME is an open routine assembled as part of ASSEMBLR.

NAME is entered by executing the directive branch table. Control returns

to the main line code at LINSYM.

1318 cells
GBSL NSRT
SCAN MFOI

3-205

SIDls SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION %00 Serics; 042016

Catalog No. 9300 612001

IDENTIFICATION: Move lines to sample storage (MVPRC and MOVE)

PURPOSE: To move a line to the user sample storage area.

ACTION: MVPRC is used to move PROC lines to sample storage; MOVE moves all
other lines. Bytes are moved until an end-of-line mark is encountered. If
the value of a byte(modulo the byte size)is zero, the byte size and related
mask are incremented. If table overflow occurs and no symbols have been
entered in the lower side of the symbol table, LOWER is moved up to make

more space available.

PROGRAMMING :
TECHNIQUES: MVPRC sets the origin at which to obtain bytes and then branches to MOVE
' to move the PROC line. The routines are relocatable routines assembled as
part of ASSEMBLR.
CALLING
SEQUENCE: BRM MOVE
or
BRM MVPRC
MEMORY
REQUIREMENTS: 1 ”8 cells total
SUBROQUTINES
USED: None

3-206

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series; 0420
Catalog No. 9300: 6120

IDENTIFICATION: Reset line origins (SWITCH)

PURPOSE: To reset the origin to obtain the next byte of input to the location specified.

ACTION: SWITCH packs the current position into the format of a NAME item pointer
word. The contents of the A register, in the same format, are unpacked and
used to set the new parameters. The contents of the B register is placed in
CHAD. On exit the old position in packed format is in the A register and
the old CHAD contents in the B register,

PROGRAMMING
TECHNIQUES: SWITCH is a relocatable routine assembled as part of ASSEMBLR.
CALLING
SEQUENCE: Current location to A register
CHAD to B register
BRM SWITCH
MEMORY
REQUIREMENTS: 4]8 cells
SUBROUTINES
USED: None

3-207

Slnls SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Get symbols from the dictionary (GTLBL)

PURPOSE: To find the dictionary entry, given the location of a symbol table entry,

and to move the dictionary characters to the location given by WORD.
ACTION: GTLBL determines the dictionary location associated with an item at the
location given by the index at entry. The dictionary characters are then

obtained by calling GEC and packed into the locations addressed by WORD.

PROGRAMMING

TECHNIQUES: GTLBL assumes that TPFLG has been set to indicate the direction of the
entry and that a dictionary pointer word follows the symbol table item
specified, GTLBL is a relocatable routine assembled as part of ASSEMBLR,

CALLING

SEQUENCE: Direction of symbol table entry to TPFLG
Location of entry to index register
Location for resulting label to WORD
BRM GTLBL

MEMORY

REQUIREMENTS: 508 cells

SUBROUTINES

USED: GEC

3-208

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION %00 Serics: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Search symbol table (SRCH)

PURPOSE: To search for a specified entry in the symbol table.

ACTION: SRCH examines the entries in the symbol table chain for an item of the same
type and at the same level as the current item. If SRFG is positive, the type
fields are not compared. On exit SRLNK points to the item found or the last

item in the chain if the item is not found.

PROGRAMMING

TECHNIQUES: SRCH assumes that the direction of the table, WLLVL and TBLOC, are all
properly set when SRCH is entered. SRCH is a relocatable routine assembled
as part of ASSEMBLR.

CALLING

SEQUENCE: Location of item to search for to index
BRM SRCH
item-not-found return
item-found return

MEMORY

REQUIREMENTS: 668 cells

SUBROUTINES

USED: None

3-209

Slnls SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Insert items into the symbol table (NSRT)

PURPOSE: To store items into the symbol table and to connect their linkages if they are

not already in the table.

ACTION: If PLVT does not equal WLLVL, the table direction is reversed. If the item
is not a list element, SRCH is called to determine if it is already in the
table; and if it is, a test is made to determine whether the item has the same
value as the current item. If the values are not the same and both items are
not absolute values or mnemonics, the error bit is set in both items and the
item is reinserted. If the items are different but absolute values of the same
length, the new item value replaces the old value. If they differ and are of
different lengths, the new item is inserted as though the old item had not
been found. Special tests are made when inserting mnemonic items for the
presence of a programmed operator reference item. If one is found in the
chain, it is given the subtype of seven so that it will not be output. SRLNK
is set to the location of any new item inserted. A pointer to the byte table
entry is inserted following items not at level one of the symbol table. The

table direction is restored before exit.

PROGRAMMING

TECHNIQUES: NSRT is a relocatable routine assembled as part of ASSEMBLR.
CALLING

SEQUENCE: Location of item to insert to index.

BRM NSRT

3-210

900 Series: 042016

Catalog No, 9300: 612001

~ MEMORY
REQUIREMENTS: 3108 cells

SUBROUTINES
USED: SRCH

3-211

SlDls SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001
IDENTIFICATION: Purge items from the symbol table (SCRP)
PURPOSE: To remove local symbols and lists from the symbol table at the conclusion of
a procedure reference.
ACTION: SCRP steps through the symbol table entries for the current procedure level

and reconnects the chain linkages to bypass these symbols. The pointers to
the next available cell in the table are reset to the table origin of this level.

The direction of the table is reversed.

PROGRAMMING

TECHNIQUES: SRCP is a relocatable routine assembled as part of ASSEMBLR.
CALLING

SEQUENCE: BRM SCRP

MEMORY

REQUIREMENTS: 1028 cells

SUBROUTINES
USED: None

3-212

SIbls SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 000 Series. 042014
Catalog No. 9300: 612001

IDENTIFICATION: Store characters into buffer (EDC)

PURPOSE: To store a character into the buffer location specified.

ACTION: EDC subtracts 608 from the character furnished in the A register, positions it

to the correct character position as determined by EDC1, and stores it into

the location addressed by EDWW by adding to memory.

PROGRAMMING

TECHNIQUES: EDC assumes the buffer has been cleared to blanks (608) prior to being called.
EDC is a relocatable routine assembled as part of ASSEMBLR.

CALLING

SEQUENCE: Character to A register
BRM EDC

MEMORY

REQUIREMENTS: 218 cells

SUBROUTINES

USED: None

3-213

Dls SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Initialize word and character positions to store characters (EDS)
PURPOSE: To set parameters EDC1 and EDWW for the EDC routine.
ACTION: EDS uses the control word supplied in the A register to set the shift parame-

ter, EDC1, and the buffer location, EDWW, for storing characters. The

control word has the following format:

char.acter (9lbifs) lword position (115 bits).

¥

0 89 23

Character is 0 through 3, giving character positions from left to right to store

next character.

Word position is the address in buffer to store next character.

PROGRAMMING

TECHNIQUES: EDS is a relocatable routine assembled as part of ASSEMBLR.
CALLING
SEQUENCE: Control word to A register
BRM EDS
MEMORY

REQUIREMENTS: 6 cells

SUBROUTINES
USED: None

3-214

SO S

SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING

SEQUENCE:

MEMORY

REQUIREMENTS:

SUBROUTINES
USED:

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 000 Serics. 04201,
Catalog No. 9300: 61200

Output a universal binary output item (OUTP)

To store an output item into the output buffer and call the 1/O routines to

write the record.

If no binary output has been requested, OUTP exits without taking any
action. If the output buffer is full or if the output item is of a different
type than the previous item, OUTP calls FLUSH to empty the buffer. The
item is stored into the output buffer and the relocation flags and checksum
are accumulated for it. OUTP uses a branch table to transfer to the correct

segment of code to process the various item types.

OUTP is a relocatable routine assembled as part of ASSEMBLR.

Item type to CTYP
Output data to WORD
BRM OUTP

t

]4]8 cells

FLUSH
RESET

"For item types one and two, WORD addresses the location of the datum. The
relocation flags WMODR, WMODC, and WMODP indicate whether the datum
has the particular relocation quality.

3-215

Sj—l_s— SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Empty to binary output buffer (FLUSH)
PURPOSE: To empty the binary output buffer.

ACTION: FLUSH sets the accumulated relocation words into the buffer, sets the output
card type into the control word, and calls OUTPUT with each word in the

buffer to write the data on the binary output file. When all words are out,

FLUSH calls WRITE to write the record.

PROGRAMMING
TECHNIQUES: FLUSH is a relocatable routine assembled as part of ASSEMBLR.
CALLING
SEQUENCE: BRM FLUSH
MEMORY
REQUIREMENTS: 628 cells
SUBROUTINES
USED: OUTPUT
WRITE

3-216

SID|S SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series; 042016
Catalog No. 9300: 612001

IDENTIFICATION: Initialize control cells for OUTP (RESET)

PURPOSE: To initialize the OUTP control cells for a new record.
ACTION: RESET initializes the output control cells for a new record.
PROGRAMMING

TECHNIQUES: RESET is a relocatable routine assembled as part of ASSEMBLR.
CALLING

SEQUENCE: BRM RESET

MEMORY

REQUIREMENTS: 138 cells

SUBROUTINES
USED: None

3-217

g_JDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Process the PAGE directive (PAGE)

PURPOSE: To process the PAGE directive.

ACTION: PAGE calls EDTST to determine whether listing is being done. If so, the
HOME routine is called.

PROGRAMMING

TECHNIQUES: PAGE is an open routine assembled as part of ASSEMBLR.

CALLING

SEQUENCE: PAGE is called by executing the directive branch table. PAGE returns to
the line code at LINSYM,

MEMORY

REQUIREMENTS: 4 cells

SUBROUTINES
USED: EDTST
HOME

3-218

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042014
Catalog No. 9300 612001

IDENTIFICATION: Print errors and symbolics (EPRNT)
PURPOSE: To cause rhe error flags and symbolics to be written on the listing.

ACTION: If listing is to be performed on the line, EPRNT calls EDE to edit error flags
and PRNT to print the line.

PROGRAMMING
TECHNIQUES: EPRNT is a relocatable routine assembled as part of ASSEMBLR.
CALLING
SEQUENCE: BRM EPRNT
MEMORY
REQUIREMENTS: 108 cells
SUBROUTINES
USED: EDTST
EDE
PRNT

3-219

SIDls SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Process DED directives (DED)
PURPOSE: To process DED directive lines.

ACTION: DED calls SCAN to evaluate the expressions in the operand field. The values
are then placed into WORD and WORD+1, a double-precision FORM control
word is moved to WRD2 and WRD2+1, and the data are output by calling
EDIT. Before editing the data, LBTST is called to define any waifihg label.
When all expressions have been evaluated, control goes to LNFRM, The

location counter is incremented by 2 for each expression output.

PROGRAMMING

TECHNIQUES: DED is an open routine assembled as part of ASSEMBLR.

CALLING

SEQUENCE: DED is called by executing the directive branch table. Control is returned
to the main line code at LNFRM,

MEMORY

REQUIREMENTS: 468 cells

SUBROUTINES

USED: SCAN LBTST
MFOI EDIT
RDPI GLOV

3-220

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 900 Series: 04201

Catalog No. 9300: 61200

e

IDENTIFICATION: Obtain the low order value word set by SCAN (GLOV)
PURPOSE: To get the low order value word from VALU or VALU+1,
ACTION: If the value is a 3-word address item as indicated by ICW, the value is taken

from VALU+1; if not, the value is taken from VALU. The resulting value is

in the A register, and the contents of ICW is in the B register at exit,

PROGRAMMING

TECHNIQUES: GLOV is a relocatable routine assembled as part of ASSEMBLR.
CALLING

SEQUENCE: BRM GLOV

MEMORY

REQUIREMENTS: 138 cells

SUBROUTINES
USED: None

3-221

L

Dls SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Make 3-word address items (M3WAI)

PURPOSE: To expand an address item into three words if necessary.

ACTION: M3WAI removes bits 9 through 23 of the VALU and stores it in VALU+1,
Bits 9 through 23 of VALU are set to zero. The item length is set to three
words.

PROGRAMMING

TECHNIQUES: M3WAI is a relocatable routine assembled as part of ASSEMBLR.

CALLING

SEQUENCE: BRM M3WAI

MEMORY

REQUIREMENTS: 138 words

SUBROUTINES

USED: None

' 3-222

Slbls SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 000 Series. 04201
Catalog No. 9300: 61200

IDENTIFICATION: Negate floating point numbers (FLN)
PURPOSE: To negate a floating point number and to normalize the result.
ACTION: FLN takes the negative of the floating point number at the location given by

the index register, by complementing the fraction and adding 1. The result-

ing number is then normalized as needed to correct for overflow or underflow.

PROGRAMMING
TECHNIQUES: FLN is a relocatable routine assembled as part of ASSEMBLR
CALLING
SEQUENCE: Location of floating point number to the index register.
BRM FLN
MEMORY

REQUIREMENTS: 358 cells

SUBROUTINES
USED: None

3-223

S—I——_D]:s_ SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 200 Series. 042016
Catalog No. 9300: 612001

IDENTIFICATION: Multiply floating point numbers (FLM)
PURPOSE: To obtain the product of two floating point numbers.

ACTION: FLM obtains the product of a2™*b2™ as ab2™ ™ where the product ab is
taken as (h +i)*(j +k)=hj +ij +hk.

If the result is over- or under-normalized, the resulting exponent is corrected.

PROGRAMMING

TECHNIQUES: FLM is a relocatable routine assembled as part of ASSEMBLR.

CALLING

SEQUENCE: Location of multiplicand to A register
Location of multiplier to B register
BRM FLM
The product replaces the multiplicand.

MEMORY

REQUIREMENTS: 1064 cells

SUBROUTINES

USED: None

3-224

SIDls SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001
IDENTIFICATION: Test item relocations (RELTST)

PURPOSE: To determine the relocation status of a pair of items.

ACTION: If the item addressed by MODA is relocatable, RELTST sets bit 22 of the A

register; if the item at ICW is relocatable, RELTST sets bit 23 of the A
register, A is stored in RELFG.

PROGRAMMING

TECHNIQUES: RELTST is designed to be used by SCAN and is a relocatable routine assem-
bled as part of ASSEMBLR.

CALLING

SEQUENCE: BRM RELTST

MEMORY

REQUIREMENTS: 268 cells

SUBRQUTINES
USED: None

3-225

SID|S SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Convert numeric strings to binary values (CNVRT)
PURPOSE: To convert numeric items to binary values.

ACTION: CNVRT converts numeric character strings to their binary value by successive
multiplications of 8 or 10 (depending on the value of the first character).
GEC is used to fetch the characters of the string. Results are left in VALU,
VALUI1, and VALU2. If the leading character is a dot, the number is con-
verted to floating point by dividing the integer by the appropriate powers of
10 and calculating the exponent. The DPDIV routine is used to perform the

divisions. All floating point fractions so calculated are left in normalized

form.
PROGRAMMING
TECHNIQUES: CNVRT is a relocatable routine assembled as part of ASSEMBLR.
CALLING
SEQUENCE: Byte table entry for numeric byte to ECW
BRM CNVRT
MEMORY
REQUIREMEINTS: 1708 cells
SUBROUTINES
USED: GEC
DPDIV

3-226

SID|S SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 04201«
Catalog No. 9300: 61200

IDENTIFICATION: Perform double-precision divisions (DPDIV)

PURPCSE: To divide the contents of the A and B registers by the contents of the loca-

tion addressed by the index register and maintain maximum precision.

ACTION: DPDIV divides the contents of the A and B registers by the single-precision
divisor addressed by the index register. The remainders are then divided and

that remainder divided. The resulting quotient is normalized.

PROGRAMMING

TECHNIQUES: DPDIV assumes that both the dividend and divisor are normalized and leaves
the results in the same format. DPDIV is a relocatable routine assembled as
part of the ASSEMBLR.

CALLING

SEQUENCE: Double-precision dividend to A and B registers
Location of divisor to X register
BRM DPDIV

MEMORY

REQUIREMENTS: 368 cells

SUBROUTINES

USED: None

3-227

Dls SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Evaluate expressions (SCAN)

PURPOSE: To evaluate an expression and leave the control word of the results in the
B register and ICW and the value in VALU through VALU+2 with the low

order portion of the value in the A register,

ACTION: SCAN obtains the items in the expression by calling GIT and the connectors
by calling GNC. The items and connectors are obtained in pairs. If the
connector obtained is of higher priority than the previous connector, the
item value and the connector are saved in the SCAN operations table and
the table pointers are incremented. If the connector is of lower priority,
the previous operation is performed. The type of operation to be performed
is determined by executing an operations branch table which carries control

to the various operation routines.

The operation routines perform the indicated operation between a pair of
operands, one of which is located in the SCAN operations table and the

other of which is located in ICW and VALU to VALU+2. The first item is

always the one in the SCAN operations table.

The result of the operation is placed in the cells ICW and VALU to VALU+2,
and the pointers to the operations branch table are decremented to point

to the previous item.

When a leading = (equals) mark is encountered, SCAN sets a flag indicating
that the expression is to be interpreted as a literal. A leading * (asterisk)
mark causes a flag to be set which will result in the value of the expression

being interpreted as an address quantity. This * flag will also be output

3-228

900 Series: 04201¢

Catalog No.
aralog WNo. 6300, 612001

ACTION:
(cont.)

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

with the resulting value so that expressions of the format P (*i) may be
properly interpreted.

When the last operation to be performed is a terminator, SCAN tests for the
literal flag being set; and if it is, SCAN takes zero as the value of the
expression, If the * flag is ON, the value is converted to a 3-word address

value and the sign bit of VALU is set.

Upon exit the contents of TERM are

0 if blank terminated
1 if commo terminated
2 if right parenthesis terminated

The cell STAR contains 1 if the expression had a leading * and 0 otherwise.

The SCAN operations table is really a series of short tables each of which
is indirectly addressed. The table positions are incremented or decremented
by incrementing or decrementing the indirect pointer words. SCAN is a

relocatable routine assembled as part of ASSEMBLR.

Byte table entry for the first byte of the expression to ECW
BRM SCAN

12668 cells

GCW MIFT RELTST
GIT GLOV FLM
GNC GLOP FLN

3-229

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION %00 Serios: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Get next item of an expression (GIT)

PURPOSE: To obtain the value of an item and store it in VALU through VALU+2 with

its control word in ICW,

ACTION: GIT evaluates the following types of items:
alphanumeric constants
location counter reference
function references
subscripted symbols (parameter)
symbolic items
numeric items
lists
list count

parenthetical expression

1. Alphanumeric constants are evaluated by obtaining the characters from
the dictionary which comprise the constant and packing them together

into VALU and VALU+I1,

2. The value of location counter references is the current value of CC,

3. Function references are evaluated by calling SCANC (which in turn

calls FNRL).

4, Subscripted symbols are evaluated by calling SCANC to obtain the

subscripts and by stepping through the list to extract the proper element.

5. Symbolic items are obtained by picking the item out of the symbol table.

If a symbolic item is undefined, the resulting value is taken as zero.

3-230

900 Series: 042016
Cat.alog No, 9300 612001

ACTION:
(cont.)

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

Numeric items are evaluated by calling CNVRT, If a numeric item is
a mixed floating point number, the integer and fractional parts are
obtained by separate calls on CNVRT and the parts are then combined
by GIT.

Lists are obtained by inserting the elements of the list into the symbol
table by calling SCANC and by generating a list item giving the loca-

tion of the first element and the number of elements.

List counts are evaluated by finding the appropriate list item and ex-

tracting the element count from it.

Parenthetical expressions are obtained by calling SCANC. GIT does
not differentiate between lists and parenthetical expressions; the dis-

tinction is made by SCANC,

GIT works with the SCAN and SCANC routines and is really a major section
of the overall expression evaluation processing. GIT is a relocatable routine

assembled as part of ASSEMBLR.

Byte table entry for first byte to ECW

BRM GIT

4728 words

GCW SCANC
GLOV MIFT
CNVRT GBSL
PEEK GET

3-231

S|Dls SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Process lists and parenthetical expressions (SCANC)

PURPOSE: To evaluate parenthetical expressions, define elements of lists, evaluate

function references, and obtain values of subscripts.

ACTION: SCANC increments all the SCAN table level pointers in anticipation of
calling the SCAN routine. If the mode field of the contents of the B regis-
ter is non-zero, SCANC calls FNRL to evaluate a function reference. If it
is zero, SCAN is called to evaluate the expression. If there is an operator
at the SCAN level at which SCANC was called, the resulting value is not
taken as an element and SCANC decrements the SCAN operation table
pointers and exits. (GIT takes advantage of this test when calling SCANC
to obtain subscripts by setting an artificial value in the SCAN operations

table.) Similarly, if the literal flag is set, the value is not a list element.

The element of a list is inserted into the symbol table by calling NSRT. The
next element is obtained by calling SCAN. When all elements have been
inserted and linked, SCANC constructs a list item in ICW and VALU, decre-

ments the SCAN operation table pointers, and exits.

PROGRAMMING
TECHNIQUES: SCANC is designed to be recursive with the SCAN routine. Since it auto-
| matically steps the SCAN operations table pointers, SCANC serves as the
device for forcing parenthetical expressions to be completed before other
operations. SCANC is a relocatable routine assembled as part of ASSEMBLR.
CALLING
SEQUENCE: Control word to B register

BRM SCANC

3-232

Catalog No. 900 Series: 04201«
9300: 61200

CALLING FNRL returns control to SCANC at SCANR.
SEQUENCE:

(cont.)

MEMORY
REQUIREMENTS: 1578 cells

SUBROUTINES

USED: SCAN NSRT
FNRL GLOV
PEEK GCwW
GEC

3-233

Dls SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Peek at next dictionary character (PEEK)

PURPOSE: To peek at the next character in the dictionary entry without obtaining the
character. PEEK is normally used when a conditional test is needed but the

contents of ECW are not to be destroyed.

ACTION: PEEK locates the dictionary entry for the byte addressed by ECW then extracts
the character addressed from the dictionary. The result is left in the A
register.

PROGRAMMING

TECHNIQUES: PEEK is a relocatable routine assembled as part of ASSEMBLR.

CALLING

SEQUENCE: Byte table entry to ECW

: BRM PEEK

MEMORY

REQUIREMENTS: 248 cells

SUBROUTINES

USED: None

3-234

SIDls SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 200 Series. 04201
Catalog No. 9300: 61200

IDENTIFICATION: Get next connector (GNC)

PURPOSE: To get the operator table entry for the next connector into TERM and the A
register.
ACTION: GNC obtains the next connector characters by calling GEC. The characters

are left-adjusted in the A register and compared to bits O through 11 of the
operator table OTBL. When a match is found, bits 12-23 of the OTBL entry
are placed in TERM. GCW is called to get the first byte of the following

item. TERM is loaded into the A register before exit,

PROGRAMMING

TECHNIQUES: GNC is designed to work with SCAN and is a relocatable routine assembled
as part of ASSEMBLR.

CALLING

SEQUENCE: Byte table entry for connector to ECW
BRM GNC

MEMORY :

REQUIREMENTS: 448 cells

SUBROUTINES

USED: GEC
GCW

3-235

SID|S SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Get next character of a line (GET)
PURPOSE: To get the next dictionary character for a line of input.

ACTION: If the end of line has been reached, GET exits with a blank. GET gets the
next character for a byte by either using blank and reducing BCNT if the
string is blank or by calling GEC for nonblank strings. When the end of a
byte is reached, GET gets the next byte by calling GCW. If it is blank,

GBSL is also called. The character is in the A register at exit.

PROGRAMMING
TECHNIQUES: GET is a relocatable routine assembled as part of ASSEMBLR,
CALLING
SEQUENCE: Byte table entry to ECW
BRM GET
MEMORY
REQUIREMENTS: 448 cells
SUBROUTINES
USED: GCw
GBSL
GEC

3-236

srﬁqis SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 200 Serics. 0420

Catalog No. 9300: 6120
IDENTIFICATION: Count blank string lengths (GBSL)

PURPOSE: To determine the size of blank strings.

ACTION: GBSL calls GEC to obtain the characters in the dictionary entry representing

the blank count. The count is placed in BCNT,

PROGRAMMING
TECHNIQUES: GBSL is a relocatable routine assembled as part of ASSEMBLR.
CALLING ;
SEQUENCE: Byte table entry for blank byte to ECW
BRM GBSL
MEMORY
REQUIREMENTS: 158 cells
SUBROUTINES

USED: GEC

3-237

m SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Fetch symbol table entries (MIFT)

PURPOSE: To move the item addressed by the contents of the index register to ICW
through ICW+3.

ACTION: MIFT moves four words starting at the location specified in the index register
to ICW to ICW+3. If the address specified is greater than LOWER, the items
are taken in descending order from the starting point. If the item moved is a

2-word address item, M3WAI is called to expand it to three words.

PROGRAMMING
TECHNIQUES: MIFT is a relocatable routine assembled as part of ASSEMBLR.
CALLING
SEQUENCE: Location of item to index register
BRM MIFT
MEMORY
REQUIREMENTS: 278 cells
SUBROUTINES
USED: M3WAI

3-238

gﬁ's SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 900 Series: 0420

Catalog No. 9300: 6120(
IDENTIFICATION: Get low order parameter values (GLOP)
PURPOSE: To get the low order parameter word into the A register.
ACTION: If the item addressed by MODA is a 3-word address item, the value is loaded

from the cell addressed by HOA; otherwise, the value is taken from the cell

addressed by LOA.

PROGRAMMING

TECHNIQUES: GLOP is designed to be used by the SCAN routine and is a relocatable
routine assembled as part of ASSEMBLR.

CALLING

SEQUENCE: BRM GLOP

MEMORY

REQUIREMENTS: ”8 cells

SUBROUTINES

USED: / None

3-239

70J Series Only

Sjﬂs SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 0420]6

IDENTIFICATION: Programmed Operators (POPs)

PURPOSE: To define those instructinns not common to all machines in the 900 series,

but which are used in the assembly system.

ACTION: The POPs are executed individually as referred to by the system.
PROGRAMMING
TECHNIQUES: There are two sets of programmed operators used, one set for the 910/925

and one for the 920/930. Both are coded in the intersection of the instruct-
ion sets so no nesting results. The transfer words in cells 100 to 117 have
absolute origins; the routines to simulate the machine instructions are reloca-
table. In addition to the programmed operators, cell 1337 (DTAB) is set

by POPs to reflect the increase in space for code needed when POPs are
vsed. In this way better memory utilization results than if DTAB were fixed

sufficient for the largest set.

CALLING
SEQUENCE: Not applicable

MEMORY
REQUIREMENTS: 920 cells 100, through 126 plus 64g cells

910 cells 1008 through 1178 plus 2578 cells

SUBROUTINES
USED: Not applicable

900
3-240

[nitialize tables,
constants and
buffers

ASSEMBLR
OVERALL FLOW

A

[nitialize line
oriented parameters

(Inside DO?
o

)L"’——-—CPROC within DO ?)""———»<

yes]

TEXT

read next line

\

(Sample line?

yes

SAM

process line

FRL
increment CC

PRL
process PROC

POP
increment CC

POPR
define POP

EOF

no

Flag
error

DOAGN

”% DO finished)Les_’

PLB EOR 4] no
process label /' FOF "\ End of file?)——D-
1@
normal
Flag
error
1
Get operation
LOAD PASS2
FORM reference?) r
no]
]
[}
Punch externals LOADER

\

and PODs

PROC reference?)

no

no

J

DIRECTIVE?

3-241

3

yes
no
C End of PASS1? 3——-—
4

Process .

END

DIRT
branch table

MTASYM

ASSEMBLR
START AND MTASYM ROUTINES

Rewind input tape (X1).

L(QBOOT) —= MONITR and TOP.

Core size —+= AQPESW

TOP - 2 —=TEMP

0 — HIGH 3 CELLS of working
storage ,

24 — BUSD (bits used)

2 — BSIZ (byte size)

3 —= BMSK (byte mask)

PACKL + BREAK 1 — BREAK,
LOWER, and TBLOC (location
of top of Symbol Table and bottom
of references).

SET MTP + 3 with loc of input
routine.,

\

READ EOF
get line of input

)

Initialize proc levels.

Initialize DO table origin.

Initiolize word size.

Initialize location counter.

Clear LBL, PRCNT, and SMPBIT.

Set sample flag off.

Set direction to negative.

Set PASS to 1.

Set SRFG so SRCH finds only type
requested.

Set sample storage origin.

Set upper Symbol Table location
(UPPER and NEXT)

Initialize 1st word of sample storage
to zero.

Set POP counter (POPNR) to zero.

Clear literal and operation flags for
SCAN.

Set bits remaining to 24.

Clear error flags.

3-242

LINE

ASSEMBLR
LINE ROUTINI

Clecr retocction Haos.

Reset SCAN levol,

Reset location increment .

Suve focation paramelers
(CHAD, BSIZ, BMSK, MTP,
BUSD) for he-iinnivg ol line,

Q ~—— DPPF
O ——= LDLRF

"l max (CC, MCC)
— MCC

Is there an yes

(Does current proc
> l val DO

aztive DO? /

no

> evel eq
. proc]

no

>1E

TEXT EOF
get next line of
nput

o

A

Processing yes
sample?

#

no

EOF

LB
get label field

ol

aomal

GCW
get operand byte

Save ECW for
operand in DRCTV
ABYT — POPBYT

GCW
get blanks following
operand

v

no
no
C Blank string?)—'(End of line? >

yes

yes

Y

20 —=BCNT

yes

OAGN

DIRT
branch
table

DIRECTIVE

POP reference?

no

yes

Proc reference?)

no

Form reference?)

POPR

GBSL
count blank string

y
GCW

s
'—»L End of line?)—y——]
no

get ist byte of
variable field

3-243

yes

OL in
table ?

)

es

DRCTV

alphanumeric?

Set E
error flag
1 —+ CCINC

y

ASSEMBLR
LINE ROUTINE (cont.)

0 —+ B reg

Y

LBTST
insert label

EPRNT

print line

LNLOC
e
<_____.Y_s(End of record?) - set |
- error flag
1 —= CCINC
no
Y
Set N
error flag
v
LBTST
insert label
-} —> DPPF
v 0 — DPPF
0 — B reg I
LNE y
LBTST
{ insert label
'
EDTST
test to print
) J
Print
v 0 —=Breg

EDTL
print location

\

CC + CCINC—+CC

LBTST
insert label

No print(

print value

2 —+Breg

i

/ EDIT

3-244

print lines

&

Clear label at
current proc level

GCW
get label byte

Save labe! byte

Y

(Blank string?

yes

l f Numeric

(e ?—_@
yes LBERR

ASSEMBLR

PLB ROUTINE

PLV - CPINC
— A reg

) 4

string?

More than

63 blanks? /

yes

PLTST
test for external
string.

A reg — WLLUL
Current Byte Table
location of labe!
— BYTLOC

ECW —> A reg

Set label type to
address value.

Set label value=
location counter.

Lno
no
PLV —= A reg]
{ PLB + 1
—PLB
< Special character?)22
yes
End of]
GEC string EXIT
" get character
normal
C Character = *?).YL_—_ 1 — A reg
no
Y
(Charocter = $?)—&‘
yes
A LBERR

GCW
get label byte

Save label byte

]

\
1 Blank string?
no

yes

Set L error flag.

PLY

4 PLBEX

no

no

“:, UNDEF

yes

More than
15 blanks?

i

yes

Blank string?)

[

r’

ECW —> B reg

t

Clear current label .

PLV-CPINC — TEMP
LBL-CPINC — LBL
0 — LBL-CPINC

3-245

Set value

Move label from
lower proc level .

Set BYLOC from
lower level .

CcC

3

yes

Is there a
waiting label?

C Label at current
proc level ?

yes

no

L

Set WLLVL to

current level.

any item type.

Set SKFG to accept

!

GCw
get next byte

A

m

yes
End of line?)———

no

) 4

Blank string?

m

)

yes

4

GBSL
count blanks

v

‘ End of line?

Yo

no
i

1

ASSEMBLR
PLTST ROUTINE

l*_—’(Ist pass?

PLTS
A A
J ¥ Clear LBL
yes
PLV-CPINC
— WLLVL

Move Symbol Table
entry at SRLNK to
LBL.

L(LBL) — X2

]

NSRT
redefine symbol

00— LBL

Y

End of line?

no

L(LBL) — X2

Reset SRFG.
Reset WLLVL

PLT4 >
find
SRCH
look for no find >
symbol J
no
(Special char? H
yes
\
> GEC
get character
A
no
C Comma?)“‘
-
get next byte
L(LeL)y — X2

GEC
get next byte

L(byte) —= BYTLOC

PLV — WLLWVL

Set LBL to address
item with CC value.

CC —+ SRFG

3-246

7

ASSEMBLR
IPL AND TEXT ROUTINES

-

In PROC?

!

7

SKIP

to end of
current line

TEXT + 1
— TEXT

79 — CCNT
L(BBUF) — BYTE

TXT2

A

Must symbolics
be reconstructed?

no 1

yes

A

IPL
initialize print
line

v

Line number to
CBUF - 1 ond
CBUF - 2

y

MYBT
move byte to
BBUF

i

A
‘__no_(End of line?) @
yes

GT8
get byte

\

BYTE

Byte — L(BYTE)

+ 1 — BYTE

BYTE < 3?

no

y

CCNT - 1 — CCNT

SKIP
skip comments

Ovtput routine
write symbolic
output.

\V

3-247

no
—-C CCNT < 072)
yes
i
L(BBUF) —>
BYTE
TEST 4 1 —=
TEXT
79 —= CCNT EDS
LLC —= LC

initialize EDC

v

Blank print
buffer

GT8
get next byte

¥

Byte — L(BYTE)
BYTE + 1 —= BYTE

!

ASSEMBLR
MBYT ROUTINE

yes

06 ——s A reg

ABORT

Y
@TE > BBUF + 807 e

BYTE-1— BYTE

“(cont-r > 00

)__

1

EDC
edit character

INC
get character

4

end of comments?

yes

v

<
-

No characters
— L(BYTE)

[

'/ INC

get comment

GEC

/) Set E error
no
v
C byte > 2?)m =\‘ Byte = 1? }
no
ot ¥
EXIT
Set ECW
y no Get dictionary
(Blank string? } > address of byte
into ECW
yes
/——‘ \
GBsL
< count blanks > @
\
yes
(End of blank string ?} I hﬁi’l’ ;-B‘YT
no
EDC
store blank EXIT

y

CCNT-1—=CCNT

'C End of card?

no

WRITE
punch card

3-248

IPL
initiolize
line

—*{ get character

N

‘}Normal
EDC

adit character

CCNT-1 — CCNT

J

no
‘—(End of card?)

yes

WRITE
punch’ card

initialize line

ASSEMBLR
LBTST, SKIP, INC, AND GCW ROUTINES

GCw
get next byte

EXIT

A
(Inside PROC?)y;cs_’

EXIT

\

INC
get comment char.

Y

No. comment
characters
—= CCNT

BMSK —= BMSK6
077 —== BMSK
BSIZ — BSIZ6

6 —»BSIZ

v

C

GT8
get input byte

)

!

BMSK6 —* BMSK
Byte —= BMSK6
BS1Z6 —= BSIZ
BMSK6 = A reg

Inside PROC?

GT8
get byte

no

]

yes

Load A reg from
L(BYTE).

BYTE + 1 —= BYTE

A/

NSRT
define label

0~ LBL

3-249

A 4

Byte —= BYT

Table entry
— ABYT

Location of Byte

Byte Table entry
— B reg and ECW

A

I.\-EXIT;

All characters of
byte obtained?

no

ECW -0400000
— ECW

ECW ~—= B reg

Load A indirectly
from ECW.

Extract character
from dictionary
entry given ot
ECW.

Character ——= NCE

Step ECW to point
at next entry
character

NCE — A reg

GEC +1 — GEC

EXIT

ASSEMBLR
GEC AND GTB ROUTINES

TEXT

Location
given by

Left adjust input
word in B reg.

BUSD + BSIZ
— BUSD

BSIZ = X reg

Y

(BUSD > 23?)-""—-.

yes
\ J

BUSD -24 —= BUSD
CHAD — NBYTE

INPUT
get next word

end of file

normal

4

Merge byte from
NBYTE and new
input word.

GTBI

4

Increment BSIZ by 1
and size of BMSK
by 1,

BMSK + 1 —A reg.

Shift byte into A reg
and mask.

yes

Byte = 0? >

no

Y
-A — A reg.

A reg — NBYTE
A reg —=BYT

A reg — X reg

EXIT

ASSEMBLR
EQU, ORG, AND AORG ROUTINES

SCAN
get location
value

Contents of LBL at
current proc level
— ELBC

SCAN
get location
Value + +0100000

— CC 7777
evaluate variable field Vc'--—>|ue(;C"03

|

A

ORG1 >
ELBL — LBL y
! CC — LBL +
GLOV
et low order value
vy
valve — LBL + 1
and WORD. Bits 0-8
of ICW ——=bits
0-8 of LBL 0 — LBL |
yes
\
no o n
Gi'em of value fypea —»(Reference ? }—
ves

L J
C ADDRESS value?

yes no

VALY 2 —=
LBL+ 3
VAW — WORD

2 word floating point

y
! eQus YL

ves
y—{i\/alue >2'99)
A
no

EQUI
Move 2nd word

|4 no
Doubl .. | of value to LBL+2
Make 2 word (oun e prechion) and to WORD +1

yes

address value

RDP!
reverse words

NSRT
define label
value

4

yes
Clear label
y defined.
Set # flag in r_J
labe! value
List item? Double precision? o
yes
| o] volue — LBL+ 2
VALU—> LBL+ 1 LNDPV

3-251

SCAN
get increment

)

A

Value —+ CCINC

ASSEMBLR
RES AND FORM ROUTINES

0—=1LBC +1
0—LBC +2
0 — BTCNT

y

SCAN
get field size

1

LBL ¢+ 1and LBL + 2
+ +1 rotated left VALUE
bits

A

C

Teminator =, ?

) yes ‘

no

A

Rotate LBL+) and LBL+2
right 1 bit position

M

BTCNT > 24?2

-

Yes

A

LBL + 2 —=BL + 1
Set mods bits 1o 2 word,

type 2, mode O item.

Set mode in LBL to 3 word,
type 2, mode O item

3-252

A

NSRT
define FORM item

)

'

Clear label (LBC)

ASSEMBLR

FUNC AND PROC ROUTINIS

1 —=B reg N

0 ——=B reg

In sample process routine

(SAM)

[P o —

SA? }e

)

PRCNT +1

Tum SMPFG to on

——= PRCNT

Save sample storage
position of PROC item

T
|
i
I
|
1

svesD* 2'9+ svesz+ 2'° + |

yesJ\ PRCNT > 1?

\

no

B reg ——FNFG
0 —=PRORG
0 —=LB8L

A

)

WRDPOS —PRPOS

3-253

yes \.

(Inside procedure ?

no

Move 10 bytes of proc
line to PRBYTS .

Save WLLWL ot WLLVL + PINC.

WLLWVL — PINC — WLLVL
Set mode bits of labe! to
2 word, type 2, mode 3.
pOPNR* 216+ cC
—LBL + 1 (label value).

\

no
(Extemnal definition)——-

yes

A

Set extemal flag in LBL + 1

POPD AND POPR ROUTINES

ASSEMBLR

LBTST
define waiting label

)

A

CCINC + 1 -_—->CC|NC

A J

\

POPNR + 1
— POPNR

Define item in LBL as 2 word,
type 2, mode 3 item.

Save WLLVL and BYTLOC of
current levels.

Set BYTLOC with Byte Table
location of POP.

Set WLLWL to next lower
level .

POPNR + 222 —=1BL+ 1.

3-254

\

NSRT
define item to
assembler

Clear LBL.
POPNR + 1 —= POPNR,
Reset WLLVL and BYTLOC.

DOTB + 5 —= DOTB
(DO Table pointer)

\ A
(Table overflow

no

SCAN
get DO count

COUNT —>DOTAB+3

¥
nF-(Label on DO |ine)

ves

A

Set up label as
2 word, type 1,
model value item
with unit value

NSRT
define DO label

Clear label
LOC of DO label
value — DOTAB

ASSEMBLR
DO ROUTINE

Increment DO label

D Do?

no
value VOl

CHAD — DOTAB+4

Position of 1st

1

ol

fine —= DOTAB + 2| SOTAB 1 3
BUSD, BSIZ, | MTP -
(DOTAB | 1 DOTB-5
— DOTB
[
SKIP
DO line
3
yes Store skip Count "
in bits 6-11 of >
DOTAB + 3 I EPRNT
print line
DO1ZZ
es
e——2=(voooor)
4 t
SCAN Step DO Set lines to
get lines to label value do in DOTAB + |
and DOTAB + 3 =1
yes b
no
CTerninotor , 7)—————P
Store lines to
do in bits EOF TEXT
0-5 of DOTAB + 3 get next line
no
More than
64 times? no
Set E ves -
error flag 4———(terminator =, ?)
[
SCAN r
get lines to DO
ye 1 — bits_

>

Y

Proc level to
bits 0-9 of DOTAB

terminator

OF

no
?
¢ ° "—’

l

EPRNT

-5 of
0-30 edit line

DOTAB + 3

@ (IN pmcedure" }——Ino

no

DO count »210 2)

ves

DOERR

Set P error
flag

[DOTB-5

Set E error flag

3-255

- DOTB

EPRNT
print line

DODEC
count lower lines

ASSEMBLR
DO ROUTINE (CONT)

Line count - 1
= line count

Number lines to
DO ——e TEMP

TEXT
get next line

no
A

In procedure? D
‘no

y

Location of
BBUF — BYTE

DOA4

yes
——C DO finished?

DO count - 1 —= DO
count ot DOTAB +3.

Original lines to DO and
lines to skip from DOTAB
+3 — DOTAB +1

[ncrement DO label value

\ 4
C Inside procedure ?

\

SWITCH
reset to Ist line
of DO

\
EOR flag — BYT

Lines to skip
s TEMP

Y
(Inside procedure ?

get Ist byte

skip line

DODEC
skip outer lines

3-256

) J
(Finishod all lines?

DODEC
decrement outer

yes

DOTB - 5 —=TEMP + 1

»

Y

(TEMP + 1 > L (DOTAB))_’12_—-_4

yes

Level this do =
Current proc level

no

ASSEMBLR

DODEC ROUTINE

DOTB — X

\

(TEMP + 1) - 5 —=TEMP + 1

Lines to do - 1 —
lines to do (for
DO at TEMP + 1)

3-257

ASSEMBLR
FNRL AND PRL ROUTINES

More than GBSL
7 blanks Count Blanks
no
)
4 no
yes
1 —= B reg 0 —=B reg PASS-PINC — PASS End of line?)
[
v GCw
Blank string
Location of name !
item —— *NMLOC
PRL1T
Y GCW
yes £ At highest tred get directive
ighest permitte
Set L flag {Ievel? :
no
EOR /
b PLB
no get proc label
(F'JNC reference ?
A 4
re A/ Set E error Old line position ———e
PLVT 4 CPINC —» . REFPOS
PLVT and WLLVL Old CHAD —+ CHDWRD
B reg —>PRFG MTP2 ——+SVMTP
Reverse NEXT. MTP + 02000 —=
NEXT — TBLOC MTP + 2
-DRCTN —= DRCTN
PLY ~— LPLV
SWITCH
reset to get next
Y line from sample
PASS-PINC— PASS no
CCINC —+ CCVAL Is this a PROC?)
0 — CCINC FUNC -
Y PLVT — PLV
8YT ——= PRBYT
Yy ECW —— PRECW
TERM —— PTERM
CC— CCVAL
PROC ORIGIN
-1 — PASS —— PROR
ELEMENT ZERO WORD
~—LBL + PINC
3
3 N yes 2 word mode 3
(End of line? Y item ——|CW >
0 ——Valye-
no
FNRL2
v
yes
Cmore than 7 blcnks’D—
no
Y / DFLST

0 B reg evaluate list

3-258

ASSEMBLR
FNRL AND PRL ROUTINES (cont.)
DFLST ROUTINE

no
Mode of ICW Set U
—» Mode of LBL |}— i"mg"g o wrror
VALU — LBL + 1 set

no

Is there a zero

element? /
SKIP

yes to end of
] proc line
|s element zero ‘ 021000000
a list? no —LBC +2 PRL2A 3 .
yes
4
023000000 -
— LBL+ 2 | 0 —LBL
A
zero element
value —LBL + 3
item length 4 2 /
——item length P:ISRT
field of LBL > define proc
list item
0 —=FST
Set [CW to
yes /7~ R I 2 words,
1 Terminator =, ? }-—’ type 3,
4 item,
SCAN FST — VALU
get Tst element Increment element
count in FST.
? EXIT
Location of
element —»
/ LNK
Set element flag
in1ICW, loc of element
0 —»to ICW — FST.
associate
yes
NSRT no Location of
define element FST=07? element —
*LNK

no

3-259

ASSEMBLR
END ROUTINE

es
(End of sampl }y

no

3
(End of proc? yes

no

1

(Symbolic output?)’L———

yes

MONSF
output END card

C

Binary or listing wanted? es "—-——-—(LBL = 07) -

End of

symbolic
regeneration

run

#{ PRCNT -1—pPRCNT

\
(PRCNT = 07 }""
e

4

y
-1 — SMPFG

NSRT
define END
line label

Set binary output linkage
0 — DWC

A

vesf .
¢ Binary output?)

no

BREAK —& DATA

(DATA - LOWER?)—'L————

yes

040000000 — TPFLG
040000000 —* ITYPC

0 —LBL

»{ ENDI

V= CTYPC
1 — DTYPC

—\oe

FLUSH

DWC = 07
—

yes

\ empty buffer

PAS2 —= A reg

3-260

LOADER

CIYPC —= CTYP

L(LBL) — WORD

Blanks —LBL and
LBL + 1

length of item at DATA
—=VALU

!

(Type = DTYPC?

yes

(Type - 1?

Y

C

Subtype = ITYPC j—'ﬁ

yes

|

Item value + + ITYPC
— LBL +2

GTLBL
get Item symbol

L(LBL) —= WORD

Y
ouTP

ASSEMBLR
END ROUTINE (cont.)

Truncate value to

15 biis
Y
yes
Type = 1? Yes Mode = 1? ’
no no
BREAK — DATA

2% + ITYPC —= ITYPC

)

? no
ye ITYPC < 07
L

2 —=CTYPC
2 — DTYPC
0 —=|TYPC
BREAK — DATA

DATA 4+ VALU

punch item

— DATA

yes

DATA = Low&)l’-‘————(CTYPC = 12)""_

3-261

ASSEMBLR
END ROUTINE (cont.)

PLV - CPINC
— WLLVL

 J

SCAN
evaluate end

(Is there a label ?)""
yes
\
N\ ¢
define label

Y

0 —=L8L
SVMTP ~—= MTP2

3

SWITCH
reset GET
parameters

\ J

SCRP
purge symbol table

A

PRBYT ~—= BYT

LPLV —= PLV

PRECW —= ECW

PTERM — TERM

PLVT - CPINC — PLVT

no

A

es
‘ End of FUNC? } Y
no
A
LBTST
define waiting
label
\
yes
LLC = LC?

3-262

CCVAL
— CCINC

CCINC + 1 —= CCINC
0 — FRLCNT
0 — EXPCT

4
FORM?

yes

(2 word

A

CCINC + 11— CCINC

ASSEMBLR
FRL, TEXTR, AND BCD ROUTI

060 — SPC

NES

012 — SPC

y

0100 — TEXTC

GCwW
get next byte

> m—

TEXTC

5 — A reg

PEEK

) J

at next character

Character = <?)

no
Y

Character — TEXFGl

4

SCAN

get character count

-1 — TEXFG

!

yes
GBSL n
count blanks

ext byte blanks?)‘l A reg-1—CNTT

no

<

y

GET
next character

no

LBTST
define label

SPC —*= A reg

Y

yes

4——(character blank ? '
]no

=

TEXT3

Position and store
character into

WORD

060 — A reg

< nof‘ count > 56?2 }
pre
set T error
- 56 — A reg
y no
yes
Full word)
4
EOIT Set FORM CNTT-1
print word control word — CNTT
¥ t
es
Blank? ¢ SPC —= A reg cC +1—CC SPC —> Areg| |
-1 — CNTT
Byes
"te . TEXT2 o
\
’ CChoructer = TEXTC
CNTT < 0?) .
y o
Blanks — word L o no
SpC 1z
e A reg ‘—_—QA reg ~ 0602)

GET
next character

3-263

no
)XES

o < 07
o oNTT -0

ASSEMBLR
SAM AND POP ROUTINES

@
Gs! non-NAME line? Y— y MOVE
save line
yes

PLB
get label

norma

0 —=LBL

A

y
GCw .__._Yion PROC referonce'D
get directive s

MVPRC
move PROC line

) i
N no
‘ alphanumeric ?)—D Store location of next yes
yes

sample position in all .)
NAME o for s [—=(_Any NAMES given?

i PROC [no
-] —= FENFG
Mnemonic in no 1 > PR7
Symbol Table? |
yes
Set E error
A
| Store sample storage no
(no position of PROC in yes
Mnemonic directive'D—‘ all NAME items for —(A“Y NAMES givena—’“
yes this proc
Clear LBL
-1 — FNFG

Blank string? no

GCw
get Blanks

yes

y

es
(End of line?)L——

no

GCW
get variable

CCINC + 1| — CCINC

3-264

ASSEMBLR

NAME ROUTINE

© o Clear
C Istpas?) ¥ 1 e
yes Set E flag
[
\ no es
no yes l [+
C In sample? In proc ref. 'D"‘(PLV = WLLVL)'&C label $A?
yes yes
‘ .
(PRCNT ~17 P MOVE
’ Move name
ine
no
es
(j FNFG < 07 Y
no
v
. yes Set control
(Function name? }—, word to 2 word,
no type 3, mode | Location of
| J name item + 1
-—=PRORG
Control word to o
2 word, type 2, »te—{ NAMI 1
mode 1
4
Control word — LBL
PRORG — LBL +1 NAM2 NSRT
define name
4
(End of line } e Kk >
no
"°(Blanks follow) merge 040000
into LBL + 1
yes
\
GBSL
count blanks no = N Set error
———*‘ List item?)= flag in
LBL
More than yes yes
7 blanks
MFOI XERR no
make FLT.PT. VALU — 0
LBL2
VALYl —
get name value LBL3 v
1 4 word items;
yes
Dy
value — LBL + 2 —’(pr:z?siuem; = ?:\:r:e 3 word

3-265

MO1

L(PPBYTS) —= TEMP
MVPRC —= MOVE

ASSEMBLR

MVPRC AND MOVE ROUTINES

L(BBWF) — TEMP

TEMP

+1
TEMP

BTLFT-BSZSM

"\ proc? /

no

y

{ inside \ yes

1 EXIT

Move byte from
temp into location
given by SMPWRD

——== BTLFT

BTLFT-BSZSM
+ 24 — BTLFT

\

no
=)

yes

BSZSM +1
— BSZSM

2*BMSSM + 1
-~ BMSSM

yes

b

ABORT

SMPWRD + 1
— SMPWRD

Clear new
sample word.

Table overfiow

yes

LOWER >
BREAK

no

A

24-BTLFT
— SMPBIT

(UPPER-LOWER)/4

—

BREA

LOWER AND
K

EXIT

3-266

ASSEMBLR
SWITCH AND EDTST ROUTINES

A reg —= TEMP (location)

B reg —= TEMP + 3 (CHAD)

BuUSD * 219 + asiz * 215
+ MTP — TEMP + |

CHAD —=TEMP + 2

Bits 0-4 of TEMP — BUSD

Bits 5-8 of TEMP — BSIZ

Bits 9-23 of TEMP —= MTP

TEMP + 3 — CHAD

BSIZ bits — BMSK

TEMP + 2 —= B reg

TEMP + 1 — A reg

EDTST

!

EDTST + | — EDTST

L J

;EXIT;

3-267

\

;EXIT;

0 — TEMP + 1}
X2 + 2 — X2

ASSEMBLR

GTLBL ROUTINE

X2-4 —= X2

A
no
(TPFLG < 07 }

Bits 0-8 of byte
table entry for
symbol —» TEMP,

Byte table entry
- X2.

>

A

X2 point to dictionary?

no

3

Location next

entry this byte
X2

—

yes

Dictionary location
+ TEMP —= ECW

) J

GEC
get character
of symbol

A

Location for Jabel
—TEMP + 4.
Pack character into
location given by

TEMP + 4.

A

EOR

EXIT

GEMPJr 7>3?J

0 —>TEMP + 1

(TEMP + &) + 1
— TEMP + 4

3-268

(TEMP + 1) + 1
— TEMP + 1

ASSEMBLR
SRCH ROUTINE

EXI

Save index -1— SRFG
— [TLOC

\ J

no
Any entries this \ —
BYTE?)

yes

vy

Location of level

Break this level
~— LVBRK

ITLOC — X2

v

Bits 10-23 of input item
—> TEMP t 3
and SRLNK

Bits 4-5 of input item
(type) —= TEMP + 2

Bits 10-23 of item
- at SRLNK
) — SRLNK
" TYPE to be T TEMP Y3
considered 4
(SRFG negative)?

z ()
A
' no
nput item and item no
at SRLNK N End of Imoc .
same type? [¢hain? yes — X2

yes “+
J @ yes @ no
no
C DRCTN< 0 ? LVBRK -~ SRLNK?)— NEXT > SRLNK)
yes yes

N\
CSRLNK > LVBRK?)

Ve : ~7 ITLOC — X2
= i > SRLNK - NEXT?) "ISRCH + 1 —= SRCH
yes no

3-269

ASSEMBLR
NSRT ROUTINE

1A ind Set D error flag.
NS Save '"_(Q;C Address value yes »| Set error flag in
on either item? } item at SRLNK
and in new item.
\ 4
yes
item to be inserted N\ o
at current level? (VALU type?) ;
a
Set NEXT to no es
- altemate Symbol (it al? y Set POP subitem
Table location; ems equ type to 7.
reverse DRCTN [
y ‘no I

(Element of list?) < Error flag }_. Increment
DERR

C A 0 yes no
ssociate - 07
1 word itemP)Y23
no ‘ EXIT
b
4
no
List item? ’ . ' ILOC — X2
yes NS3A b o
A;;Z ih:;n in ch;i?n yes Reverse DRCTN.
ve type Set NEXT to
NSI1D no . | Item inserted at ne ‘ altemate
g current level? Symbol Table
Set Byte Table NS3 g e
entry to point yes
to NEX
© NEXT A?(%RT - UPPER > LOWER?)
\
new item length — N
>0 0¢ A reg

NEXT — UPPER

yes

ABORT yes
no NEXT — LOWER
C DRCTN < 0 ?)—» DRAER e n
[tem defined
at level 1?

yes

A

NEXT — SRLNK
Move new item into
Symbol Table at

NEXT

A

yes
Element ok list? >—_———"

[

Store Byte Table
location of BYTE
into Symbol Table
step NEXT

3-270

DRCTN -+ 0?

no

Location of level

break == LOWER
and LOW 1

NEXT —= HIGH 1

yes

ASSEMBLR
SCRP ROUTINE

Location of level

break —= UPPER and
HIGH 1

NEXT = LOW 1

Y

y

Location of level
break ——= TEMP
Complement DRCTN

Increment TEMP
for SCRP word

\
yes Reset NEXT to current
(TEMP - NEXT position in alternate table
no
Y y
EXIT

TEMP + item length
— TEMP

Y

yes
-‘—L Item an element of list?)

SC2

no

\

Link of item - HIGH 1? ’
es

Y

A

<
d

4

Associate of purged
item goes into Byte
Table entry given

by X2

AN

yes Does Byte Table poinf)

to dictionary ?

no

Y

yes

. Byte Table associate
D no
oes Byr'ehi:o:ri:e p;nnt to X2 as dummy Byte
v Table location

3-271

GO
GO
<0G

3-272

O IO

ASSEMBLR

EDC AND EDS ROUTINES

y

Position character
Add character
to buffer
Decrement shift
count

EXIT,

EOC
Enter with
— — — — — - character in
A reg
\i
Character -060
— Areg
A
no /’
A ¢ Shift count = 0?)
ves
\

Reset shift count to

18 bits
Add character to buffer
Increment buffer

EXIT

Store buffer
position in EDW

Set shift count for
EDC (EDC1) to

initial value

EXIT

3-273

Binary Outpist
requested?

yes

v

C Word count > 07?
yes

OuTPi
DATAT

Y

y
4—"3-(CTYP - PTYP?)
yes

v
4—%4 -~ word’ counf?)

yes

3

(PTYP = 07)m—

yes

yes

PLOC +1 = LOC)—V

no

RESET

reset buffer type

ASSEMBLR
ENDM, POPRD, DEF, ENDN, AND QUTP ROUTINES

WORD**077777
+ + 0100000
— WORD
MLOC —= QLOC

3-274

L

Y

LOC — PLOC
WORD — buffer,
set relocation

flags for word

Gos‘r card type 37)

no

Move 3 words to
output buffer
from location
given in WORD

y

no
_'C Subtype - 3?)

yes

y

Move 1 more
word to buffer,
DWC + 1 — DWC

3 —s PTYP
MLOC — QLOC

Y

FLUSH
empty buffer

Y

REXIT;

L
DWC +3 — DWC

EXIT

EXIT

ASSEMBLR
FLUSH AND RESIT ROUTINES

DWC + 1 —= DWC
QLOC —= DWI

L (M FLAGS) — MFLGTM
L (REL) —= CHKS

L (OW1) +DWC — [CN

3 — OUTTMP

A

C CHKS point to zero word?

A\
J

no

Y

Move word at location
given in CHKS to word
addressed by ICN

Add contents of word
addressed by MFLGTM
to DWI1.

DWC +1 —= DWC

h

L=

OUTTMP < 0?

yes

Y

Move PTYP ond binary
flag to Ist word in
buffer

L (DW1) — CHKS

DWG - 1 — DWC

3-275

LOC —= QLOC
0 — REL
0 — CREL
0 —= PREL
0 — SREL
CTYP —= PTYP
y
EXIT
yes
)
MFLGTM + 1 —= MFLGTM
)‘————— CHKS + 1 —= CHKS
OUTTMP-1 —= OUTTMP
OUTPUT
> output data word
[\ from CHKS EXIT
4
A
CHKS + 1 — CHKS WRITE
DWC-1 —= DWC punch card
T
]
L——"3(r>wc<0? yes 0 —= DWC

ASSEMBLR
WEOFL, PAGE AND [PRNT ROUTINIS

0 —Breg
0 —Breg

EDTST

No print test to print

EDTST
test listing

Print

Print

EDE
set up error flags

HOME
eject page

LINSYM i
PRNT

print line

EXIT

L (PBUF) — A reg
L (EFMT) — X reg
LC —=8 reg

A

EFMT
write end-of-file
mark

EXIT

3-276

ASSEMBLR
DED AND MFOI ROUTINES

DED

¥
SCAN

evaluate expression

-

7

A
y no
‘ Value type?)——’ Set E error

yes l,

A
- no
< Floating point?H Double precision
yes

yes

MFOI

make output item

GLov

get value

\

Value —» VALU
Signs = VALUI

Y

VALU —= WORD

VALUl — WORDI

Set DPPF.

Set 2 word form
control word

2 — CCINC

RDP1

reverse item

Y

no
C TERM =17

LBTST
define label

2 — B reg

EDIT
print line

CcC+2—cCC

3-277

ASSEMBLR
GLOP, RDPI, GLOV, AND M3WAI ROUTINES

Item at ICW a 3 VALU — A reg

word address item ICW — B reg
yes
VALU1 —* A reg
ICW —> B reg
A \
EXIT, EXIT,

Bits 9-23 of VALU

— VALU +1 ltem at MOD)} ald LOA — A reg
Bits 0-8 of VALU word address item?
A
ICW++2°" —= ICW
HOA — A reg EXIT,

XIT

EXIT,

3-278

ASSEMBLR
MIFT, FLM AND FLN ROUTINES

Move 4 words from Save location of
Symbol Table to arguments — L1 & L2
ICWto ICW + 3 Exponent of L2 — TEMPE

A

(2 word address uem?)&_ (LL2)*(HL1)) — TEMP

Exponent of L1 + TEMPE

yes
v ! — exponent of L1
MIWAL (LIL1))*(H(L2)) + TEMP
EXIT — L(L1) and TEMP
moke 3 word address (HL)*(H(L2)) + TEMP +
L(L1)—s A & B regs
\
EXIT v
yes
< Overflow? }—.
Adjust
L exponent

A

< Exponent overfl ow?)&—

yes

4

Y

Set overflow

Take 2's complement of
st 2 words of floating
item at X2,]

Y

Store results in
L1 location

A

Number no Overflow? 4).’1&_______
unnormalized?

yesl

<

yes y

A
T(' Overflow?)
yes

Decrement fraction and EXIT

L yes
< Ovemormalized?)—’ exponent .

Borrow from exponent .

ne . Y
L Set T error
Increment fraction.
Carry adds to
exponent. .)
1 > XIT
\
L oo Overflow?)
yes
Set T error

3-279

Enter SCAN with st
byte of item in 1 (W

ASSEMBLR
SCAN ROUTINE

0 — VALU

0 —= OPA

2 word, type 1 control
word — MODA
— ICW

0 —= STAR

0 — LITF

-

Y

Byte alphabetic or e
numeric?

no
L

Normal
exit GEC
get character

End of Entry

Sprriul character

GIT

get next item

y

GNC
get next connector

Increment storage address for
QPA, COA, MODA, HOA,
LOA.

TERM — OPA

ICW — MODA

VALU — LOA

VALU +1 — HOA

VALU +2 —> COA

A

CConnector > OPA

no

|

no

Connector same |evel

as OPA

(Byte blanks?)!es >l SCAN2
no ¥
Tst it 12 Y
(st item type Y,
1%
GEC End of Entry Set control word of 1st
get special character —{ GNCER item to type 1.

/ 0 —* 1st item value \
Clear * flag.

[Set U flag. SCAN?Z1

GCw
get next byte (Commo?)lﬁ 1 — TERM
no

[

A 4

C 2nd item type 1?)Lz
no

STAR 4+ 1 —= STAR

LITF +1 —= LITF

SCAN3

3-280

\J
Operutor zero?)
yes
L] ICW —> B reg I
Set U error flag.
/1_\ Clear * flag. gg‘g}f‘e
ICW — B reg.
SCAN?
\ i
Reset overflow
es
+ ”__)-’ 0411 — TERM
no Branch to
______ various
operation

-',WE- 0412 —= TERM ¥ routines

COGT,

ne . coLT,

GCW 5¢j etc.

get next Byte

ASSEMBLR
SCAN ROUTINE (cont.)

Operation is

terminator
no
C LITF > 0?)"0 -—< STAR - 0? yes Reference item? Hinglo procision?)
yes no yes o

A

Set ICW to 2 word address type

0 — VALU (Address item?)L- Make 3 word
address item

‘yes T

A

A
> Set * flag?

Set E
error flag

(TERM = 17 L

[} >

(Blanks follow? oo
yes

SCN998

T ¥

TEXT or BCD es ‘
directivi

no

GCw

get next byte End of line?)

yes

4

0 — TERM
Set E ervor flag

vy

GLOV
get value

3-281

2nd value
s TEMP

GLOP
get Ist value

ASSEMBLR
SCAN ROUTINE (cont.)

> Operator

- — — — < Operator

2nd value
—— TEMP

GLOP
get Ist value

2nd value — A reg

Ist value — TEMP

) 4
(A reg - temp? o
yes

0——»8;]

—~ = 1= Operator

2nd value — TEMP

A
GLOP

get Ist value

!

L

1 —— B reg

0 — B reg 4-—'2(Values equal ? >

< COLT 1

]

yes

B reg— A reg
2 word, type 1, mode (
— B reg

A reg — value
B reg — ICW

SCAN 6

Decrement storage
locations for

OPA, MODA, LOA

HOA and COA

3-282

1 ~—> B reg

ASSEMBLR
SCAN ROUTINE (cont,)

— —~4+ + Operator ~ ~4¢ *Operator

2nd value — TEMP

GLOP

get 1st valye

Merge values

A

Result —= VALU t+1
0 —=B reg

2nd value — TEMP

4

GLOP
get Ist value

A

Set R
error
flag

Logical product
of values—-VALU + 1
037777 —B reg

) 4

B reg — TEMP
A reg — Breg

RELTST

test relocations

(Both absolute ? L
no

Y

g

— = —]- - Operator

2nd value —= TEMP

Y

RELTST
test relocations

no
4—‘ Both absolute »

yes

GLOP
get lst value

Take logical
difference of

A reg <— B reg

I

)

% Both values absolu;al———-b‘ B reg — VALU +1

a

COLs4

C Both relocatable "J

yes

y
e O no
Gnd value relocatable s \B/|:L3 3 (}fEMP?

yes

Bits 9-23 of yes
TEMP?

\

yes

Set R

e
error flag

¥

Ist value —= A reg

Set R error flag Al

yes

values

ICW — B reg

A

2nd item obsolu'ea

no

) 4

Ist valve
— A reg

031100000 —= B reg

2nd value — A reg

3-283

A

Mask A reg saving
bits 0-8 ’

ASSEMBLR
SCAN ROUTINL (cont.)

COAD
— = - == == + Operator — Operator|
A
Floati yes{ 2nd value
2nd volue —» TEMP e doubl ision?
point?] \, Cdouble precision
no
yes
[
y \
< GLOP
get Ist value LIVALY) — X reg 2nd value —= TEMP
A A
Sum of values FLN ?LOP
— B reg Negate value get Ist value
Y
) Set [CW to 1st value —
RELTST 4 \tmrd floating ind value —
test relocations point type A rergeg B reg

RELTST
test relocations

\
yes ‘Sef 'R
(Both re|ocutoble?‘)—" error
no

fla

\

Set 'R V
< ° < yes Only 2nd value

<% error -
flag

relocatable ?

no

T

Logical difference of
control words merged
with 2 word, type |

Mask — A reg

A reg —— B reg

i

(Results oddress 7 Joo

yes

Negative of double

yes precision item at VALU
Cm value addresio—o- LOA —= B reg — VALU and VALU + 1
VALU — A reg
no 3 word double precision

control word — B reg

\

VALU ~— B reg e COAS 3

A

A reg —= VALU +1
B reg — VALU

3-284

2nd value — TEMP

GLOP
get st value

Multiply values

* Operator

ASSEMBLR
SCAN ROUTINE (cont.)

// Operator

2nd value —= TEMP

\

GLOP
get Ist value

Y

Sum of values

— = = - /Operator

2nd value —+ TEMP

GLOP

get Ist vaive

-1~ Areg

A reg

ICW — A reg

* + Operator

Scale exponent — X reg

b 4

C

st mode 2 or 37

no

no]

Power of 10 —= A reg

es
.L—Qogotive scale?)ﬂ.‘

Divide by TEMP
Value — B reg

*2— Breg

3* Scale — A reg

H (floating point) ?)Y—”" S Lc%i' i}:\?éMP

to TEMP + 2

‘ Scale - 0?)&‘_...‘-A__. A
no

TEMP + 2 —VALU 2
ITEMP 4+ 11— VALU 1
TEMP —= A reg

041300000 —» B reg

{VALU +1 > 0?)

A reg — X reg
A reg 30 —VALU +1

-CVALU +1- 092
no

]

30 —= X reg

FLM
Scale floating point

L (Soo|e) — B reg

Y

es

3-285

ASSEMBLR

SCAN ROUTINE (cont.)

*/ operator

(1st item mode 2 or 3?

yes

Mode 3 (floating point)?)23-_‘

no yes
\ \
no Floating Point scale -47
_‘< VALU < 07) +VALU —=VALU
yes
y
-VALU — A reg
A
(IVALUI - 637 48 — A reg

Tno

/

VALU — A reg

(VALU < 0?

A

‘ yes

-VALU—A reg

<

GLOV
get st value

A reg — TEMP

48 — A reg

Pl
>.__

A

1st value — TEMP

yes
<——(IVALU] > 632)

no

A

A reg —» X reg
HOA ~—+ A reg

Scale factor — A reg
1
no
(TEMP<0?)—>
yes
A
A req —e Xreg

GLOP

get Ist value >

4

Right shift A and B

reg X2 bits

Areg —» Xreg
0 —=Breg

A

GLOP
get 1st value

Y

Vaolue —= B reg
N —= Avreg

Shift left X2 bits

\ i

(A=0?

LOA —» B reg
y
yes Shift A and B
(VALU < 0?)—_’ right X bits
no
\
Shift A and B |
left X bits >

!

Areg — VALU + 1

B reg — A reg
Fixed Point mode
— B reg

yes

y

Value — A reg
Q0 —> Breg

3-286

Value type mask
ECW —= B reg

¥

B reg —= LICW

4

ASSEMBLR

GIT ROUTINE
05 —= Avreg
End of job
I table overflow
ABORT

L yes

no |

o es
CA'phonumeric item? }——-"n Special character ? }——v{y Value requested?)
yes o

A reg — LTYPE

y
.. yes
(Numeri item?
no

A

Location of byte
— SCREF

GCw
get next byte

Ml

LICW —= B reg

i

Item in B reg in
Symbol Table?

yes

I

©

EEK

at next character

i
yes es
< character (? H 1 character ?
no no

GITE

©

CNVRT
Calculate
Numeric

GCwW
get next byte

Reset previous
operation flag
(OPA-04000
— OPA)

Reference type control.
Word — B reg ond |ICW
N — A reg and VALU

¥

SCANC
evaluate function

no

Y= Zero element given’D

yes
fio Subscript = 07 ,
b

Subscript — VALU+1
Location of 2nd list
word —— X2

SCANC
get subscript

)

3
no

s R
&5 { Function reference ? ’

3

yes

!

Set E error flag —>-

GCw
get next byte

3-287

GITS? e

m‘{ {tem o list? ’

'___.

et previous
operation flag
OPA+04000— OPA)

i

GITS9

e

SCANC
skip element

es
or =, ?)L

no

e
3

L(ZITEM) — X2

TT

ASSEMBLR
GIT ROUTINE (cont.)

Location of
zero element — X2

Element
defined?

yes

Get element

location — X2

Licw

TERM = 1 (comma)?

no

-

OPA-04000 — OPA
(remove operation flag)

1
‘ * flag for value?
s

ye:

Element a
reference?

\yes 9

Address value

PEEK
ot next character

}
no

Floating point item ?
g p Vi

MIFT
get item at X2

Element

this element? J

no

value — B reg

Next character

flag on?

.?
no
yes >
1
GIT352
GIT351
)
0 —»A reg >
[
no
|tem error 1 A reg

Element have
* flag?

L(OITEM) —= X2

no

i

L(ZITEM) — X2

3-288

GIT35

Normalize integer:
high portion —+ TEMP+ 1
Low portion —» TEMP
exponent — TEMP+ 2

i

CNVRT
get fraction

\

yes A
F—-C integer zero?)
no

 J

ASSEMBLR

GIT ROUTINE (cont.)

A reg + DERR
—— DERR

[}

TEMP + 2 - fraction

scaling —= X2

Right shift fraction

X2 positions

Combine fractionand
integer.

High value

— VALU

Low portion plus
exponent —= VALU + 1

[4—1 Set |CW to floating

type item.

GCw
get next byte

A

item type

GI1352

no

MIFT
get reference item

no

type requested? /

yes

\

> ?
¢ Value requested)

yes

Set * error flag

< List requested?)io

yes

1

Get list count
from VALU,
Set ICW to value type.

3-289

End of line?

yes

GIT99

no

A
GCwW

get next byte

GLOV
get value
;EX[T;

GIT37

ASSEMBLR
GIT ROUTINE (cont.)

Previous control
word —= A reg

\

Get item at location
given by A reg

\J

(hem of value type?

no

y

(Command type? Y,

no

(Lust item in chain?

yes

\yes

yes

|tem control word
—|CW
Location of item ~1

— VALU

no

A
no
(List type irem?)————-v

yes

GiT32 >l

SCREF — X2

MIFT
get ZERQ item

3-290

Special character

ASSEMBLR
GIT ROUTINE (cont.)

GITL

< Character § ?)les >
no A
GCw \
get next byte
8 — CNTR
(Character _' ? e 0 —» VALU
= 0 — VALU +1
n
i
(Character (2 GCW
get next byte
no

get next byte

List type
— Areg

LOC —= VALU
address value >
type — [CW

EXIT

GCw
get next byte

Blank string?

)2(_)

evaluate list,

GITA2 >
y
Set E
error flag GET
get character
End of line?)

no
4

GCw

GIT32

Set item
control word

in ICW

yes

GBSC
count blanks

1

b \o

= Character - ' ?

)

3-291

no

]

Pack charocter
into value in VALU

and VALU ¢ |

!

y_esC

8 characters
packed?

ASSEMBLR
SCANC ROUTINE

PASS 1
’ @ SCNC11
o
T level ?\y > \ 2 GCwW
(oo many (levels > Set P error flag —> get next byte
no
A yes
‘ ECW contain blank? "‘ GEC End of entry
no get character?
\ normal
Save SCANC exit. no A
Save SCAN exit. —(Character = } ?)
Increment SCAN
level pointers. . v
1 get next byte
X yes
C Function item?)—-b- 0 — OPA
no 0 —= Areg
Value type
\ IS — Breg
0—— FRST
\
EXIT,
A oe
List item control
SCAN word — B reg
gst element FRST — A re
CANC 1CW— ’
B reg q
A y
y B reg —- ICW
* A reg—s VALU
A
. D\ RAM | _
@eced'"g °P°‘°"°'9 [" PDecrement SCAN level] GLov
no pointers. get value
estore SCANC exit.
\] estore SCAN exit.
Vs ~ yes
‘ Value literal ?)———' EXIT
no
) J
< Terminator =) ?
no
CANC >e
Location of element
Loc of element — LLNK.
Y —+ last element 3 “1 Increment element
count,
Set element bit)
in item !

C Terminator =, ? ,
yes no
no
yes Loc of element
1st element? | FRST [5 6 IS g

NSRT
define element

3-292

(Item blank string?

yes

no

A

Does ECW point \ yes
to dictionary ? J [

ASSEMBLR

PEEK AND GNC ROUTINES

Blank ——

A reg

Right adjust

lﬁ

Step down chain

to dictionary

ECW— LICW
00— Areg

»| dictionary character
in A reg

EXIT

> EXIT

»{ A reg — TERM

Set E fl
(Item alphanumeric ? - oe .erLo:egug
no
< Special character? }no >
yes
GEC 06 —»
get character A reg ABORT
left adjust character
—TERM
© GEC Normal > C::r:i::: i
c C n
get next character /) A reg.
End of entry

A

Blank — A reg

Term = 0?

get next byte

OTBE entry

—> A reg

yes

f A reg match any

3-293

entry in OTBE?

ASSEMBLR

GET AND GBSL ROUTINES

GET4

es Blank —= CHR
(Byte blank srringay [ondnA reg

no

yes

—.(BCNT > 07
no

GBSL
count blanks

GETé

Blank =

L
C End of line? yos A reg

no

\ 4

GCW 1
get next byte EXIT

Blank

A
GCW point to dictionar@zes C

no

A

Step through

GEC

\ get character

Nomal

chain to dictionary
Reset ECW

GEC

get length A reg — BCNT

GEC
get 2nd char.

End of entry

End of
entry

GBSL2

\

CCMT — A reg

of length

Normal

)

Combine characters

A reg —» BCNT

EXIT

— Areg

3-294

ASSEMBLR
RELTST AND DPDIV ROUTINES

Save B reg .
Shift A and B right 1.
0~ RELFG Divide A and B regs
by 0,X2.

A reg — VALUI

(2nd item address ?)ﬁ__ Breg — Areg
0 —=Breg

yes
C Relocatable ?)—no———'ﬁ‘
yes
) Divide A and B regs
N by 0,X2
RELFG + 1 —= RELFG A reg * 2 — VALU

B reg—=A reg
0 — B reg

4
;—m{?t item address?)
yes

A reg *-4 — |CW

no ..
o—-——{ Relocatable ? } Dll::;u:; ;\;nd B regs
yes

-1 — X2
VALUI — A reg
VAW —
< RELFG 2 — RELFG v B reo
!
Restore B reg b

RELFG —= A reg

Normalize and
decrement
X2 + 11— X2

EXIT

A reg — VALU1 y
-X2 —> X2 . _____(Y“)
B reg — A reg X2 < 0?
Append X2 bits no

from ICW to A reg
A reg — VALU 1

EXIT,

EXIT

3-295

No. characters — SIZFRC
0 — VALUI

0 — VALU2

0 —= VALU

0 — PRECS

y End of

GEC
character

Normal

vy

yes
C Character - 09———.———.

no

8 — MULT

ASSEMBLR
CNVRT ROUTINE

10 — MULT
10 — MAXNO

8 —= MAXNO

End of
string

GEC
get character

Normal

End of
string

GEC
get character

Set T error flag >
A

yes

C Overflow ?)ﬂ_.
)

VALU1+ 1 — VALUI

Y

MAXNO-1 — MAXNO
Character — DOT

A
Character -

;no

.?) v

|

yes

Ghdmcter > MAXN@'—__—.'

no

A

VALU1 * MULT
— VALU1

v
(Product > 24 birs?)—
yes

no

Set T error flag

CNW1

Set E error

Q Over;low?)_

yes
no
‘ Bit 23 of VALU = l?’———‘
A

es
y no

<

A Reg + MULT
— VALU

)

B reg + character
— Areg

)

no

(Overflow? 4)-&———’

Set T
error flag

[

VALU * MULT
> — A and B regs

A + VALU! — VALUI

3-296

PAS2

0—=NDX

ASSEMBLER
CNVRIT ROUTINL (cont.)

Set ICW to single

(DOT = .7? oo Single precision? e precision type
yes o item
4 \
Normalize VALU1 Set [CW to
and VALU double precision >
- shift count —=X2 type item
A
EXIT,
CNVé
v NDX + X2 —=NDX
~\yes - (MINC - MINB + V
(: VALUD - 07 M I >l +SIZFRC - 2
s +NDX) * * 0777
—VALU2
Y 4’ a
Set ICW to
1(223 N:H\:\IBC floating point
SIZFRC —> X2 ype tftem
DPDLYV
| complete fraction
A
no
3
(SIZFRC - 0?)_'_ EXIT. !
yes
b Normalize FIVES, X2
1 and store in PWR.
C SIZFRC - 97 \ no - shift count ——eV
_J [Y VALUTl —— A reg
yes VALU —=B reg
v LC(PWR) ——=X reg
SIZFRC - 9 — PWR
0 —=X2
FIVES + 9 —A reg
0 ——Breg
Normalize A and B regs
X2 - 1 —= MINC
A reg —PWR + |
VALU1 — A reg
VALY — b reg
L(PWR + 1) —= X reg
DPDIV X2 —— NDX
get fraction PWR ——= X2

3-297

900 Series Only

SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION
Catalog No. 042016

Program to complete the second assembly pass (PAS2)

To complete the second assembly pass over the intermediate output tape X1.

More specifically, PAS2 is to accomplish the following items:
1. To process each line of input and detect any errors thereon.

2. To generate the machine language (binary) output represented by each

line in the user's program.

3. To list the machine language code generated and the errors together

with the symbolic source line.

4. To redefine symbols used as needed and to search for duplicate symbol

definitions.
5. To generate literals as requested.

6. To generate items for externally defined symbols which will allow for

their definition at load time.

The main flow of PAS2 is very similar to the ASSEMBLR logic. When PAS2
is loaded, it takes the table locations generated by Pass 1 and from them sets
the origin of the literal and reference tables. The cells to obtain inputs are
initialized and the input tape X1 is rewound. The error flags are set to zero
and the print buffer is set to blanks. The routines to perform the listing are
initialized with respect to hardware device, channel, and unit. The first
record of the input text is read, and control goes to the main line processing

code to process the individual lines of input.

In the line processing code, a line is obtained by calling TEXT. If the line

is a line of procedure sample, SAM is called and, if a DO directive is

200
3-299

900 Series Only

Catalog No, 042016

ACTION:

(cont.)

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

active, DOAGN is called. PLB is called to process the label and establish
a tentative definition; the operation is obtained and the proper routine is
called to process the remainder of the |ineb. Normally, control returns to
the main line code where the label is now defined by inserting it into the
symbol table; the line is listed, and the binary output is written on the
output file. The location counter is incremented for the word generated,
and control returns to the beginning of the main line code to fetch the next
line of input. When all lines have been processed, FINISH is loaded by

calling the tape loader.

PAS2 is the largest overlay in the META-SYMBOL assembly system. DTAB,
as set in ENCODER, and POPs must be sufficiently large to allow PAS2 to
be loaded below it. The first cells of PAS2 and ASSEMBLR are common to
both routines. Many of these cells are set by ASSEMBLR (SMPWRD and
UPPER for example) and used by PAS2; therefore, care must be exercised in
introducing new constants or control cells to this region. FINISH, which
follows PAS2, uses some of the routines in PAS2 (for example, PRNT) and
must be loaded so as not to destroy the routines it uses or any of the memory
cells used by them. Finally the tape loader has been assigned storage in the
routines it loads to use as input buffer. None of the routines loaded by tape
loader can depend on the contents of those cells assigned to tape loader for
its buffer. PAS2 is a relocatable program assembled in one piece and origi-
nated at 13548. PAS2depends on the POPs having been loaded by ASSEMBLR

and does not contain the POP code.

PAS2 is loaded and executed by the tape loader after completion of
ASSEMBLR,

900
3-300

900 Series Only

Catalog No, 042016

MEMORY

REQUIREMENTS: Variable, but a minimum of 8]9210 cells.
SUBROUTINES .

USED: TEXT EDIT INTYP RES RESET

MBYT EDTV MFOI FOR{\Af PAGE*t
PLB EDTL RDPI EDC} EPRNT

EQU EDL SCAN DS MIFf
PROC EDE GIT GET' ~ FLM'
FUNC EDR IPL DPDIV' ~ RELTST'
NAME EDF SKIP' SCANC' ~ SWITCH
SAM FLDC INC' ~ DO' SRCH|
POPD PRNT ~ GCY' DOAGN' NsRT!
POPR PLINE GTB OUTP SCRP

FNRL HOME GEC'f FLUSPfif N
PRL TYPWRT GNC GBSL cLovt

END TYPE CNVRfT' PEEK! FLNY
FRL TYCC LBTST prisTt GLop!
POP LNCT ORG scp! pLTST!

EDTST THOME AORG' TEXTR!

i‘These routines are the same as those described under ASSEMBLR except
that they are assembled as part of PAS2,

900
3-301

9300 Only

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION
Page 1 of | Catalog No. 612001

IDENTIFICATION: Program to complete the second assembly pass (PAS2)

PURPOSE: To complete the second assembly pass over the intermediate output tape X1.

More specifically, PAS2 is to accomplish the following items:
1. To process each line of input and detect any errors thereon.

2. To generate the machine language (binary) output represented by each

line in the user's program.

3. To list the machine language code generated and the errors together

with the symbolic source line.

4. To redefine symbols used as needed and to search for duplicate symbol

definitions.
5. To generate literals as requested.

6. To generate items for externally defined symbols which will allow for

their definition at load time.

ACTION: The main flow of PAS2 is very similar to the ASSEMBLR logic. When PAS2
is loaded, it takes the table locations generated by Pass 1 and from them sets
the origin of the literal and reference tables. The cells to obtain inputs are
initialized and the input tape X1 is rewound. The error flags are set to zero
and the print buffer is set to blanks. The routines to perform the listing are
initialized with respect to hardware device, channel, and unit. The first
record of the input text is read, and control goes to the main line processing

code to process the individual lines of input.

In the line processing code, a line is obtained by calling TEXT. If the line

is a line of procedure sample, SAM is called and, if a DO directive is

9300
3-299

9300 Only

Page Catalog No, 612001
ACTION active, DOAGN is called. PLB is called to process the label and establish
(cont.) a tentative definition; the operation is obtained and the proper routine is
called to process the remainder of the line. Normally, control returns to
the main line code where the label is now defined by inserting it into the
symbol table; the line is listed, and the binary output is written on the out-
put file. The location counter is incremented for the word generated, and
control returns to the beginning of the main line code to fetch the next line
of input. When all lines have been processed, FINISH is loaded by calling
the tape loader.
PROGRAMMING
TECHNIQUES: PAS2 is the largest overlay in the META-SYMBOL assembly system. DTAB,
as set in ENCODER, must be sufficiently large to allow PAS2 to be loaded
below it.
CALLING
SEQUENCE: PAS2 is loaded and executed by the tape loader after completion of
ASSEMBLR.
MEMORY
REQUIREMENTS: Variable, but a minimum of 8]92]0 cells.
SUBROUTINES
USED: TEXT END PRNT GNcCt DO! MIFT!
MBYT FRL HOME CNWRT' DOAGN' FLM!
PLB POP MFOI LBTSTt ourpt RELTST
EQU EDTST RDPI ORG' FLUSH' SwITCH!
PROC EDIT SCAN AORG!' GBsLt SRCH!
FUNC EDTV GIT RES! PEEK! NSRTf
NAME EDTL IpLt FORM! DFLST! SCRPY
SAM EDL SKIPt EDC' BCD! DED!
POPD EDE INCt EDS! TEXTRY GLOV!
POPR EDR GCwW! GETt RESET! FLNt
FNRL EDF GT8t DPDIV! PAGE! GLop!
PRL FLDC GEC' SCANC' EpRNTH pLTST!

tThese routines are the same as those described under ASSEMBLR except that
they are assembled as part of PAS2,

9300
3-300

ENTRY POINTS TO PAS2 (ASSEMBLY PASS 2) SUBROUTINES

Page Page
Entry Description Flowchart Entry Description Flowchart
AORG 3-188 3-353 DOl1Zz 3-193 3-356
BCD 3-202 3-364 DO2 3-193 3-356
CNVI 3-226 3-399 DO3 3-193 3-356
CNV2 3-226 3-399 DOAZ2 3-194 3-357
CNV3 3-226 3-400 DOA3 3-194 3-357
CNV6 3-226 3-400 DOA4 3-194 3-357
CNV7 3-226 3-400 DOA5 3-193 3-356
CNWRT 3-226 3-399 DOAGN 3-194 3-357
COAD 3-337 3-387 DODEC 3-358
COAD2 3-337 3-387 DOEND 3-193 3-356
COAD3 3-337 3-387 DOERR 3-193 3-356
COAP 3-337 3-388 DOVFW 3-193 3-356
COAS 3-337 3-387 DPDIV 3-227 3-398
COASI 3-337 3-387 ED 3-318 3-370
COAS3 3-337 3-387 EDC 3-213 3-373
COBS 3-337 3-389 EDE 3-321 3-371
CODS 3-337 3-388 EDF 3-323 3-372
COEQ 3-337 3-385 EDIT 3-318 3-370
COGT 3-337 3-385 EDITP 3-318 3-370
colQ 3-337 3-388 EDL 3-320 3-372
CcOLD 3-337 3-386 EDR 3-322 3-372
COLP 3-337 3-386 EDS 3-214 3-373
COLS 3-337 3-386 EDTL 3-320 3-371
COLSI 3-337 3-386 EDTST 3-317 3-366
COLS2 3-337 3-386 EDTV 3-319 3-371
COLS3 3-337 3-386 END 3-313 3-361
COLS4 3-337 3-386 ENDF 3-313 3-361
COLS6 3-337 3-386 ENDM 3-375
COLS6A 3-337 3-386 ENDN 3-375
COLSZ 3-337 3-386 ENDS 3-313 3-361
COLT 3-337 3-385 EPRNT 3-219 3-379
COLTI 3-337 3-385 EQU 3-308 3-353
COLT2 3-337 3-385 EQU3 3-308 3-353
COLT3 3-337 3-385 EQU4 3-308 3-353
cOoXQ 3-337 3-388 EQU6 3-308 3-353
COoXQl 3-337 3-388 EQU7 3-308 3-353
DATAT 3-375 FINISH 3-341 3-401
DED 3-220 3-380 FLDC 3-324 3-373
DEF 3-375 FLM 3-224 3-382
DFLST 3-198 3-360 FLN 3-223 3-382
DO 3-193 3-356 FLUSH 3-216 3-376
DOI 3-193 3-356 FLUSHI 3-216 3-371

3-301

ENTRY POINTS TO PAS2 (ASSEMBLY PASS 2) SUBROUTINES (cont.)

Page Page
Entry Description Flowchart Entry Description Flowchart
FNRL 3-311 3-359 GIT44 3-339 3-392
FNRLI 3-311 3-359 GIT99 3-339 3-392
FNRL2 3-311 3-359 GIT351 3-339 3-392
FORM 3-189 3-354 GIT352 3-339 3-392
FRERR 3-315 3-363 GITA 3-339 3-394
FRL 3-315 - 3-362 GITA2 3-339 3-3%94
FRL4 3-315 3-362 GITC 3-339 3-3%94
FRL4A 3-315 3-363 GITE 3-339 3-394
FRL4B 3-315 3-362 GITL 3-339 3-394
FRL4C 3-315 3-362 GITSI 3-339 3-391
FRL4E 3-315 3-362 GITS2 3-339 3-391
FRLS 3-315 3-362 GITS3 3-339 3-391
FRLSA 3-315 3-362 GITS4 3-339 3-390
FRL5B 3-315 3-362 GITS5 3-339 3-391
FRL6 3-315 3-363 GITS8 3-339 3-390
FRL8 3-315 3~363 GITS? 3-339 3-391
FRND 3-315 3-362 GITX 3-339 3-3%94
FUNC 3-309 3-355 GLOP 3-239 3-381
GBSL 3-237 3-397 GLOV 3-221 3-381
GVSL2 3-239 3-397 GNC 3-235 3-396
GCW 3-181 3-351 GNC3 3-235 3-3%96
GEC 3-183 3-352 GNCE 3-235 3-3%96
GET 3-236 3-397 GNCER 3-235 3-396
GETI 3-236 3-397 GOl 3-198 3-360
GET4 3-236 3-397 GTB 3-182 3-352
GET6 3-236 3-397 GTBI 3-182 3-352
GIT 3-339 3-390 GTLBL 3-208 3-402
GITI 3-339 3-390 GTRBL 3-390
GIT2 3-339 3-394 HOME 3-328 3-374
GIT3 3-339 3-3%90 INC 3-180 3-351
GIT? 3-339 3-392 INTYP 3-334 3-378
GITh 3-339 3-390 IPL 3-177 3-349
GIT31 3-339 3-393 LBERR 3-307 3-348
GIT32 3-339 3-393 LBTST 3-184 3-351
GIT33 3-339 3-392 LINE 3-346
GIT34 3-339 3-393 LINSYM 3-347
GIT35 3-339 3-391 LNI1 3-346
GIT35A 3-339 3-391 LNTA 3-346
GIT37 3-339 3-393 LN4 3-346
GIT41 3-339 3-390 LNCT 3-332 3-378
GIT42 3-339 3-393 LNDPV 3-347
GIT43 3-339 3-392 LNE 3-347

3-302

ENTRY POINTS TO PAS2 (ASSEMBLY PASS 2) SUBROUTINES (cont.)

Page Page
Entry Description Flowchart Entry ' Description Flowchart
LNEN 3-347 PRLI1 3-311 3-359
LNEND 3-347 PRL2A 3-311 3-360
LNERR 3-347 PRL3 3-311 3-359
LNFRM 3-347 PRL7 3-311 3-360
LNLOC 3-347 PRNT 3-325/3-326 3-374
LNVAL 3-347 PROC 3-3-9 3-355
M3WAI 3-381 RDIP 3-336 3-381
MBYT 3-306 3-350 RELTST 3-225 3-398
MFOI 3-335 3-380 RES 3-188 3-354
MIFT 3-238 3-382 RESET 3-217 3-376
NAME 3-309 3-355 RET3A 3-306 3-350
NOEDT 3-317 3-366 RETS 3-306 3-350
NOEND 3-347 RETIO 3-306 3-350
NRST 3-210 3-368 REZZ 3-306 3-350
NSITA 3-210 3-368 SA2 3-309 3-355
NSIB 3-210 3-368 SAM 3-309 3-355
NSIC 3-210 3-368 SC2 3-212 3-369
NSID 3-210 3-368 SC3 3-212 3-369
NS3 3-210 3-368 SCAN 3-337 3-383
NS3A 3-210 3-368 SCANI 3-337 3-383
NS9 3-210 3-368 SCAN2 3-337 3-383
NS99 3-210 3-368 SCAN21 3-337 3-383
ORG 3-188 3-353 SCAN23 3-337 3-383
ORGI1 3-188 3-353 SCANS3 3-337 3-383
ourTp 3-215 3-375 SCANG 3-337 3-385
OUTPI 3-215 3-375 SCAN7 3-337 3-383
PAGE 3-218 3-379 SCAN?9 3-337 3-384
PEEK 3-234 3-396 SCANGSE 3-337 3-384
PL1 3-307 3-348 SCANY9S8 3-337 3-384
PLB 3-307 3-348 SCAN?99 3-337 3-384
PLB2 3-307 3-348 SCANC 3-232 3-395
PLB3 3-307 3-348 SCANCI 3-232 3-395
PLBEX 3-307 3-348 SCANC2 3-232 3-395
PLINE 3-327 3-374 SCANC3 3-232 3-395
POP 3-316 3-365 SCANC6 3-232 3-395
POPI 3-316 3-365 SCANCS 3-232 3-395
POP2 3-316 3-365 SCANC? 3-232 3-395
POP3 3-316 3-365 SCANF 3-337 3-384
POP4 3-316 3-365 SCANK 3-337 3-384
POPD 3-310 3-355 SCANL 3-337 3-384
POPR 3-310 3-355 SCANR 3-232 3-395
PRL 3-311 3-359 SCN998 3-337 3-384

3-303

ENTRY POINTS TO PAS2 (ASSEMBLY PASS 2) SUBROUTINES (cont.)

Page : Page

Entry Description Flowchart Entry Description Flowchart
SCNCI11 3-232 3-395 TEXT3 3-202 3-364
SCRP 3-212 3-369 TEXTR 3-202 3-364
SKIP 3-179 3-351 THOME 3-333 3-378
SRS 3-209 3-367 TXT2 3-305 3-349
SR6 3-209 3-367 TXT3 3-305 3-349
SR7 3-209 3-367 TXTS 3-305 3-349
SR? 3-209 3-367 TYCC 3-331 3-378
SRCH 3-209 3-367 TYPE 3-330 3-377
SWITCH 3-207 3-366 TYPWRT 3-329 3-377
TEXT 3-305 3-349 UNDEF 3-347
TEXTI 3-305 3-349 WEOFL 3-343 3-402
TEXT2 3-202 3-364

3-304

SD S

SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING

SEQUENCE:

MEMORY

REQUIREMENTS:

SUBROUTINES
USED:

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 000 Series. 0420
Catalog No. 9300: 6120

Obtain next line of text (TEXT)
To obtain the next line of input to be processed.

TEXT takes the following actions:

1. If the line is to be obtained from the procedure sample area, TEXT calls
SKIP to skip to the end of the current line.

2. If the line is to be listed, it is reconstructed by calling MBYT. The
line is not output on the symbolic output file.

3. If the line is not to be listed, TEXT obtains the bytes by calling GTB

and stores them in BBUF.

TEXT is a relocatable routine assembied as part of PAS2.

BRM TEXT
end-of-file return
normal return

708 cells

IPL SKIP

EDS GT8

EDC MBYT

3-305

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 900 Series: 042016

Catalog No, 9300: 612001
IDENTIFICATION: Reconstruct symbolic lines (MBYT)
PURPOSE: To reconstruct line images for printing and to enter bytes into byte buffer,
BBUF.
ACTION: MBYT obtains bytes by calling GTB. The byte is stored in BBUF, and the

byte table entry is obtained and placed in ECW. The dictionary characters
represented by the byte are obtained by calling GEC and are stored into the
image by calling EDC. The first portion of continued lines is listed. INC

is used to obtain comment characters.

PROGRAMMING
"TECHNIQUES: MBYT is a relocatable routine assembled as part of PAS2.
CALLING
SEQUENCE: BRM MBYT
MEMORY
REQUIREMENTS: 1028 cells
SUBROUTINES
USED: - GTB GEC
IPL EDC
INC GBSL

3-306

SO S

SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING

TECHNIQUE:

MEMORY

REQUIREMENTS:

SUBROUTINES
USED:

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 900 Serjes:

Catalog No. 9300:

042(
612

Process label fields (PLB)

To scan the label field of a line, set a tentative definition of the label (if it
is present), and set the cell WLLVL to indicate the procedure level at which

the label is to be defined.

WLLVL calls GCW to obtain the bytes of the label field and the blank fol-
lowing the label. If the line is a comment, PLB exits with an end-of-line
flag in the A register. WLLVL is set to reflect the level at which the label
is to be defined. A tentative definition is made for the label, setting it

equal to the location counter value; this tentative definition in the form of

an address item is placed in LBL through LBL+3.

PLB is a relocatable routine assembled as part of PAS2.

BRM PLB
end-of-line return
normal return

]348 cells
GCW GBSL
GEC PLTST

3-307

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016
Catalog No. 9300 612001

IDENTIFICATION: Process EQU directives (EQU)

PURPOSE: To process the EQU directive.

ACTION: The operand field of the line is evaluated by calling SCAN. The value re-
turned by SCAN is used to construct an item definition in LBL to LBL+3. If
the operation is a reference, LBL is set to zero and return is made to LINSYM.
In constructing the item definition, EQU uses the associate set for the ten-
tative definition of the symbol by PLB and the type and mode bits of the op-
erand field. NSRT is called to define the item. When an undefined value
appears in the operand field, the U error flag is set, the * flag is reset, a

zero value is assumed, and control returns to the main line code at LNVAL.

PROGRAMMING

TECHNIQUES: EQU is an open subroutine assembled as part of ASSEMBLR.

CALLING

SEQUENCE: EQU is assembled as part of PAS2 and is called by executing the directive
branch table. Return is to the main line code.

MEMORY

REQUIREMENTS: 1078 cells

SUBROUTINES

USED: SCAN MFOI
NSRT RDPI

3-308

SDS

SCIENTIFIC BATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

SDS PROGRAM LIBRARY

‘PROGRAM DESCRIPTION 900 Series: 04201,

Catalog No. 9300: = 61200

Process lines of procedure sample (PROC, FUNC, NAME and SAM)

To skip sample lines and at the same time keep sufficient track of the sample

nesting to determine when the end of the sample is reached.

PROC and FUNC set the sample processing flag, increment the nested sample
count, and go to SA2. NAME is synonymous with SA2. SAM calls PLB to
process the label and then tests the operation field for a directive that is a
NAME, PROC, FUNC or END. If the operation field contains one of these,
SAM executes the proper routine by using the directive branch table; other-
wise, control goes to SA2 where the label flag (LBL) is reset and control is

returned to the main line routine at LINSYM.

All these routines are open routines assembled as part of PAS2.

PROC, FUNC, and NAME are called by using the directive branch table.
SAM is called by the main line code when the sample processing flag is ON,

528 words total

PLB
GCw
GBSL

3-309

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Process undefined mnemonics and POPD directives (POPD and POPR)

PURPOSE: To cause the lines with undefined mnemonics or POPD directives to be
ignored. ‘
ACTION: POPR defines any waiting label, increments CCINC, and goes to POPD

where LBL is reset before returning to the main line code at LNLOC.

PROGRAMMING

TECHNIQUES: POPD and POPR are open routines assembled as part of PAS2.

CALLING

SEQUENCES: POPD is called by using the directive branch table. POPR is called by the
line code when an undefined operation is encountered.

MEMORY

REQUIREMENTS: 5 cells total

SUBROUTINES
USED: LBTST

3-310

SlDls SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION %00 Serice. 04

Catalog No. 9300: 61

201,
200

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

Process PROC and FUNC reference lines (FNRL and PRL)
To process the line referencing a PROC or FUNC.

The procedure level is tested to determine if space exists to process the line:
if it does not, the routine is exited. The temporary procedure level (PLVT)
is incremented, a flag is set to indicate whether the reference was to a PROC
or FUNC, WLLVL is set equal to PLVT, and the symbol table direction is re-
versed. PLV and the location counter are saved, and the pass is set to first.
DFLST is called to define the parameter list elements. PLV is set to PLVT;
BYT, ECW, and TERM are saved. The starting location of the switch is
called to reset the origin of the next byte of input. The old input position

is saved for resuming later. PLB is called to obtain the PROC or FUNC line
label, and a test is made to determine whether the PROC is a 1-pass or a 2-
pass PROC. If it is a 1-pass PROC, the PASS for this level is set equal to
the PASS at the next lower procedure level. The list item is constructed
using the element linkagé established by DFLST, the list identification is ob-
tained from the PROC label by PLB, and the value is associated with the
NAME item. NSRT is called to place the list item into the symbol table.

SKIP is called to bypass the remainder of the PROC line.

The temporary setting of the procedure level PLVT before defining the list
parameters is done so that the parameters will be inserted into the correct
table position. Since a FUNC reference is possible befoie finishing the def-
inition of the list, the PLV flag must remain unaltered so that characters are

obtained and labels processed, etc., in the normal manner: however, it must

3-311

200 Series: 042016

Catalog No. o4, 612001

PROGRAMMING
TECHNIQUES:

(cont.)

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

be remembered that this additional reference must be completed. These

routines are open routines assembled as part of PAS2.

PRL is called by the main line code when a procedure reference is encountered.

FNRL is called SCANC when a function reference is encountered. Both re-

turn to the main line code.

225_ cells total

8
DFLST PLB
SWITCH GCw
GBSL SKIP
NSRT

3-312

SD S

SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 000 Series. 04201
Catalog No. 9300: 61200

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

Process END directives (END)

To process END directives.

There are four separate cases involved in processing END lines:

1. The END of the program. Control goes to tape loader to load FINISH.
2. The END of user sample. The sample level count is decremented and,
if zero, the sample processing flag is reset. Control goes to LINSYM
in the main line code.
3. The END of a PROC reference. If this is the first pass of a 2-pass PROC,

the PASS is set tosecond;SWITCH is called to reset the line origin to the

* and

first line of the PROC; the location counter is reset; error flags for
U errors are cleared; and GCW is called to get the first byte of the PROC
line from sample. Control then goes to the start of the main line code.
If this is the second pass of the PROC, any waiting label is defined by
calling NSRT; SWITCH is called to reset the line origin to the point at
which the PROC was entered; SCRP is called to purge local symbols from
the table; the external parameters are restored; PLV and PLVT are decre-
mented; and control is returned to the end of the main line code.

4, The END of a function reference. SCAN is called to define the operand
field of the END line. SWITCH is called to reset the line origin to the
point of entry, SCRP is called to purge the symbol table, the parametcis

are reset, PLV and PLVT are decremented, and control goes to SCANR

in the SCANC routine.

END is an open routine assembled as part of PAS2.

3-313

Catalog No, 700 Series: 042016

9300: 612001

CALLING
SEQUENCE: END is called by executing the directive branch table.
MEMORY
REQUIREMENTS: 1178 cells
SUBROUTINES
USED: SWITCH SCAN

SCRP NSRT

GCW

3-314

SlDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 900 Series: 04201

Catalog No. 9300: 6120(
IDENTIFICATION: Process FORM reference lines (FRL)
PURPOSE: To process FORM reference lines.
ACTION: The FORM control word is obtained and saved. CCINC is set to the number

of words generated by the FORM. The form control word is normalized to
determine the number of bits to be generated; this number is set in BITSS.
The normalized FORM goes to WRD2 and WRD2+1. SCANiscalledtoevalu-
ate the expressions in the operand field and FLDC to determine the field size
for each expression. The data are positioned and stored into WORD and
WORD+1. If an expression is relocatable, WMODR is set. If an expression
is a reference, the value is taken from the location indicated as the value
and the value of the location counter is placed into the location indicated

as the value. In this way the references are linked for the loader.

PROGRAMMING

TECHNIQUES: FRL is an open routine assembled as part of PAS2.

CALLING

SEQUENCE: FRL is entered when the line code encounters a FORM reference. Return is
to the line code at LNFRM.

MEMORY

REQUIREMENTS: 3078 cells

SUBROUTINES

USED: SCAN MFOI

FLDC GLOV

3-315

Slb\s SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 200 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Process programmed operator references (POP)

ACTION: CCINC is incremented, and the programmed operator item is obtained. The
operation code from the programmed operator is set to WORD. If the pro-
grammed operator is an external reference, type IERR is set. SCAN is called
to obtain the address and index fields which are inserted into WORD. If the
address is a reference, the contents of the cell addressed by VALU is used as

the value and the location counter is stored in the cell addressed by VALU.

WMODRP is set (as is WMODR, if needed).

PROGRAMMING

TECHNIQUES: POP is an open routine assembled as part of PAS2.

CALLING

SEQUENCE: POP is called by the main line code when a programmed operator item is en-
countered. POP returns to the line code at LNFRM.

MEMORY

REQUIREMENTS:]308 cells

SUBROUTINES

USED: SCAN GLOV

3-316

SI:._)’S SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 900 Series: 04201

- Catalog No. 9300 61200

IDENTIFICATION: Test to list line (EDTST)

PURPOSE: To determine if the current line should be listed.

ACTION: Lines are listed only if:

1. Listing is requested, and

2. The pass at the current level is the second pass, and
3. A procedure or function reference is not being processed, or
4. A procedure or function reference is being processed and data have been
generated at this point for output.
PROGRAMMING
TECHNIQUES: EDTST is a relocatable routine assembled as part of PAS2.
CALLING
SEQUENCE: Data generated flag to B register
BRM EDTST
Listing+o-be-done return
Do-not-list return
MEMORY
REQUIREMENTS: 218 cells
SUBROUTINES
USED: None.

3-317

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 200 Series. 042016
Catalog No. 9300: 612001

IDENTIFICATION: Edit full lines for listing (EDIT)

PURPOSE: To format a line for listing and cause it to be listed and to cause the data

generated to be output.

ACTION: EDTST is called to determine whether listing is to be done. EDE, EDL, and
EDR are called to format the error flags, location, and datq, respectively.

PRNT is called to output the line to the listing. The binary data are output
by calling OQUTP.

PROGRAMMING .

TECHNIQUES: EDIT assumes that a FORM control word for formatting the data has been
placed in WRD2 and WRD2+1, that the datum is in WORD and WORD+1, and
that double-precision flag (DPPF) is negative if the datum is double-precision.
EDIT is a relocatable routine assembled as part of PAS2.

CALLING

SEQUENCE: Control words set as noted
BRM EDIT

MEMORY

REQUIREMENTS: 438 cells

SUBROUTINES

USED: EDTST EDS
EDE PRNT
EDL ouTp
EDR

3-316

SIDIS SCIENTIFIC DATA SYSTEMS

SDS POGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Edit value fields (EDTV)

PURPOSE: To format the value field of a line and cause the line to be listed.

ACTION: EDTV calls EDE to format the error flags; EDF is called to format the value;

and PRNT is called to output the line to the listing.

PROGRAMMING

TECHNIQUES: EDTV assumes that the datum to be output is in WORD and WORD+1 and that
DPPF is negative if the datum is double-precision. EDTV is a relocatable
routine assembled as part of PAS2.

CALLING

SEQUENCE: Control words set as indicated above
BRM EDTV

MEMORY

REQUIREMENTS: 228 cells

SUBROUTINES

USED: EDE EDF
EDS PRNT

3-319

SDOS

SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING

SEQUENCE:

MEMORY

REQUIREMENTS:

SUBROUTINES
USED:

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016
Catalog No. 9300: 612001

Edit locations (EDTL and EDL)

To format the location field of the listing. EDTL also formats the errors and

causes the line to be listed.
EDTL calls EDE to format the error flags, EDL to format the location, and

PRNT to output the line. EDL calls EDS to initialize the buffer position to

store the location and EDF to place the location characters in the buffer.

Both routines are relocatable routines assembled as part of PAS2.

BRM EDTL

BRM EDL

8
by EDTL: EDE
EDL
PRNT
by EDL: EDS
EDF

3-320

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Format error flags (EDE)
PURPOSE: To format the error flags for the listing and to set QPESW.
ACTION: QPESW is incremented if any error flags other than I or * have been set.

The error flags are tested, and for each one set the equivalent letter code is

placed in the listing by calling EDC. The flags are reset when found set.

PROGRAMMING
TECHNIQUES: EDE is a relocatable routine assembled as part of PAS2.
CALLING
SEQUENCE: BRM EDE
MEMORY
REQUIREMENTS: 238 cells
SUBROUTINES
USED: EDS
EDC

3-321

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300, 612001
IDENTIFICATION: Format data fields (EDR)
PURPOSE: To format the data field for the listing under the control of a FORM
control word.
ACTION: EDR normalizes the FORM control word and determines the number of bits

of data. The datum in WRD1 and WRD 1+1 is positioned, and FLDC is
called to determine the field size. The proper number of bits of data are
loaded into the B register and low order character of the A register. EDF
is called to insert the field into the listing buffer. EDC is called to insert

a blank character between each field processed.

PROGRAMMING

TECHNIQUES: The FORM control word is assumed to be in WRD2 and WRD2+1, The
datum is assumed to be in WRD1 and WRD1+1. EDR is a relocatable routine
assembled as part of PAS2.

CALLING

SEQUENCE: Data and form control word as indicated
BRM EDR

MEMORY

REQUIREMENTS: 1078 cells

SUBROUTINES

USED: FLDC
EDF
EDC

3-322

SID'S SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 04201«
Catalog No. 9300: 61200

IDENTIFICATION: Insert data fields into listing buffer (EDF)

PURPOSE: To insert the data contained in the A and B registers into the listing
buffer,

ACTION: EDF calls EDC to store in the A register the individual characters which
are shifted from the B register until all characters are stored as determined
by CNTR.

PROGRAMMING

TECHNIQUES: EDF is a relocatable routine assembled as part of PAS2,

CALLING

SEQUENCE: Character count to CNTR
First character to A register
Remainder of field left-adjusted in B register
BRM EDF

MEMORY

REQUIREMENTS: 128 cells

SUBROUTINES

USED: EDC

3-323

s@s_ SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016
Catalog No. 9300. 612001

IDENTIFICATION: Determine field sizes of a FORM word (FLDC)
PURPOSE: To determine the size of a field in a FORM control word.

ACTION: FLDC removes the sign bit of a FORM control word in WRD2 and WRD2+1
and normalizes the result to determine the field size. BITSS contains the
number of bits remaining in the control word and is decremented by the

size of this field. The result is in the A register.

PROGRAMMING
TECHNIQUES: FLDC is a relocatable subroutine assembled as part of PAS2,
CALLING
SEQUENCE: FORM control word to WRD2 and WRD2+1
FORM length to BITSS
BRM FLDC
end-of -=FORM return
normal return
MEMORY
REQUIREMENTS: 328 cells
SUBROUTINES
USED: None

3-324

900 Series Only

SDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LiBRARY

PROGRAM DESCRIPTION
Catalog No. 042016

IDENTIFICATION: List one line of output (PRNT)

PURPOSE: To list one line.

ACTION: PRNT calls the listing output routine to write the line. The left portion
(nine words) of the listing buffer are cleared to blanks, and LC is set to

print data only.

PROGRAMMING
TECHNIQUES: The 1/O routine called is set by the initialization code for PAS2. PRNT

is a relocatable routine assembled as part of PAS2,

CALLING

SEQUENCE: BRM PRNT

MEMORY

REQUIREMENTS: 148 cells

SUBROUTINES

USED: List output routine, normally PLINE

900
3-325

9300 Only
S'Dls SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 612001

IDENTIFICATION: List one line of output (PRNT)
PURPOSE: To list one line.

ACTION: PRNT calls the listing output routine to write the line. The left portion (nine

words) of the listing buffer are cleared to blanks, and LC is set to print data

only.

PROGRAMMING

- TECHNIQUES: The 1/O routine called is set by the initialization code for PAS2. PRNT is a

relocatable routine assembled as part of PAS2,

CALLING

SEQUENCE: BRM PRNT

MEMORY

REQUIREMENTS: 148 cells

SUBROUTINES

USED: List output routine

9300
3-326

900 Series Only

S|D|s SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION
Catalog No, 042016

IDENTIFICATION: Write listing on the printer (PLINE)

PURPOSE: To write the line of listing output to the on-line printer.

ACTION: PLINE executes a MIW loop to output the required number of words to the
printer. »

PROGRAMMING

TECHNIQUES: PLINE is initialized as to channel and unit assignments by the initialization

code for PAS2, If a buffer error or print fault occurs, PLINE halts. Step-
ping causes processing to resume. PLINE is a relocatable routine assem-

bled as part of PAS2,

CALLING

SEQUENCE: Word count to B register
Buffer location to A register
BRM PLINE

MEMORY

REQUIREMENTS: 268 cells

SUBROUTINES

USED: None

200

3-327

SlD @&} sciEnTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 000 Series. 042016
Catalog No. 9300: 612001

IDENTIFICATION: Home paper on the printer (HOME)

PURPOSE: To space to the top of the next page on the on-line printer or call the

proper routine if the listing is other than on the printer.

ACTION: If the listing is on the on-line printer HOME ejects the page by skipping

to the proper channel.

PROGRAMMING

TECHNIQUES: HOME is initialized by the initialization code of PAS2 as to unit and
channel assignments if the printer is to be used. If not, a branch instruc-
tion is inserted in HOME to cause control to go to the proper routine for
homing the page. HOME is a relocatable routine assembled as part of
PAS2,

CALLING

SEQUENCE: BRM HOME

MEMORY

REQUIREMENTS: 108 cells

SUBROUTINES

USED: None

3-328

YUU Series Unly

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Write a line of listing on the typewriter (TYPWRT)
PURPOSE: To output lines of listing on the on-line typewriter,

ACTION: TYPWRT determines the number of characters to output, returns the
carriage by calling TYCC, and tabs to the correct starting point by again
calling TYCC. Characters are output by calling TYPE, If a line is
longer than 72]0 characters, it is output in two lines. LNCT is éolled to

maintain a line count.

PROGRAMMING

TECHNIQUES: TYPWRT is initialized by INTYP, which sets the control linkage to call
TYPWRT when typed listing is indicated. TYPWRT is a relocatable
routine assembled as part of PAS2,

CALLING

SEQUENCE: BRM TYPWRT

MEMORY

REQUIREMENTS: 478 cells

SUBROUTINES

USED: LNCT
TYPE
TYCC

900
3-329

900 Series Only

S’DIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Type a specified number of words (TYPE)

PURPOSE: To output to the on-line typewriter the number of words indicated in the

index register from the location specified in the A register,

ACTION: TYPE outputs to the typewriter from the location specified by the A
register the number of words indicated by the index register (count is in
negative form). Blanks are converted to 128, and a MIW loop is used to

output the words.

PROGRAMMING
TECHNIQUES: TYPE is initialized by INTYP as to unit and channel assignments. TYPE is
a relocatable routine assembled as part of PAS2,
CALLING
SEQUENCE: Buffer location to A register
Negative word count to index register
BRM TYPE
MEMORY
REQUIREMENTS: 268 cells
SUBROUTINES
USED: None
900

3-330

900 Series Only

SID'S SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION
Catalop No. 042016

IDENTIFICATION: Output one character to the typewriter (TYCC)

PURPOSE: To output the high-order character of the A register to the typewriter.
ACTION: TYCC writes the high-order character in the A register on the typewriter.
PROGRAMMING

TECHNIQUES: TYCC is initialized as to unit and channel by INTYP. TYCC is a relocatable

routine assembled as part of PAS2.

CALLING

SEQUENCE: Character to A register
BRM TYCC

MEMORY

REQUIREMENTS: 148 cells

SUBROUTINES

USED: None

900
3-331

900 Series Only

S|D.s SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Keep listing line counts (LNCT)

PURPOSE: To count lines output on the typewriter and call THOME when 50 lines
have been typed.

ACTION: LNCT increments the line count and, if it is greater than 50, calls
THOME.
PROGRAMMING
TECHNIQUES: LNCT is a relocatable routine assembled as part of PAS2.
CALLING
SEQUENCE: BRM LNCT
MEMORY
REQUIREMENTS: 7 cells
SUBROUTINES
USED: THOME
900

3-332

900 Series Only

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Home paper on typewriter (THOME)

PURPOSE: To space paper on the typewriter

ACTION: THOME spaces the typewriter listing 66 - CTR lines by calling TYCC

with a carriage return character.

PROGRAMMING

TECHNIQUES: THOME is a relocatable routine assembled as part of PAS2,
CALLING

SEQUENCE: BRM THOME

MEMORY

REQUIREMENTS: 128 cells

SUBROUTINES

USED: TYCC .

900
3-333

900 Series Only

S,DI €=p sciENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Initialize the typewriter routines (INTYP)

PURPOSE: To set the linkage to use the typewriter routines for listing output and to

initialize the typewriter routines as to channel and unit assignments,

ACTION: INTYP sets the location of TYPWRT into PRINT and the branch to HMTW
into the HOME routine. The unit and channel assignments for listing are

obtained and the 1/O instructions in the various typewriter routines set.

PROGRAMMING

TECHNIQUES: INTYP is a relocatable routine assembled as part of PAS2,
CALLING

SEQUENCE: BRM INTYP

MEMORY

REQUIREMENTS: Nil. INTYP resides in an output buffer.

SUBROUTINES

USED: None

900
3-334

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 200 Sevics. 04201
Catalog No. 9300: 61200

IDENTIFICATION: Make 2-word floating-point values (MFOI)

PURPOSE: To convert the 3-word internal floating-point items into items with two

value words.

ACTION: MFOI rounds the floating-point value to 3710 fractional bits. If overflow
occurs, FLN is called to rescale the result. The exponent is moved into the

low-order bits of the low-order data word,

PROGRAMMING
TECHNIQUES: MFOQOl is a relocatable routine assembled as part of PAS2,
CALLING
SEQUENCE: Floating-point item to VALU through VALU+2
BRM MFOI
MEMORY
REQUIREMENTS: 258 words
SUBROUTINES
USED: FLN

3-335

s‘D‘s SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Reverse double-precision data words (RDPI)
PURPOSE: To reverse double-precision values for output.
ACTION: The data words in WORD and WORD+1 are reversed.
PROGRAMMING
TECHNIQUES: This routine must be 'NOPed* for 9300 format outputs.
CALLING
SEQUENCE: Double precision value to WORD and WORD+1

BRM RDPI
MEMORY
REQUIREMENTS: 6 cells

SUBROUTINES
USED: None

3-336

SIDIS SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 500 Serics. 042015
Catalog No. 9300: 612001

IDENTIFICATION: Evaluate expressions (SCAN)

PURPOSE: To evaluate an expression and leave the control word of the results in the
B register and ICW and the value in VALU through VALU+2 with the low

order portion of the value in the A register.

ACTION: SCAN obtains the items in the expression by calling GIT and the connec-
tors by calling GNC. The items and connectors are obtained in pairs. If
the connector obtained is of higher priority than the previous connector,
the item value and the connector are saved in the SCAN operations table
and the table pointers are incremented. If the connector is of lower
priority, the previous operation is performed. The type of operation to be
performed is determined by executing an operations branch table which

carries control to the various operation routines.

The operation routines perform the indicated operation between a pair of
operands one of which is located in the SCAN operations table and the

other of which is located in ICW and VALU to VALU+2, The first item is
always the one in the SCAN operations table. The result of the operation
is placed in the cells ICW and VALU to VALU+2, and the pointers to the

operations branch table are decremented to point to the previous item,

When a leading = (equals) mark is encountered, SCAN searches the literal
table to find the literal location. If the literal is not in the table, it is
inserted. The value of a literal is the location of the literal in the object
program. A leading * (asterisk) mark causes a flag to be set which will

result in the value of the expression being interpreted as an address quantity.

3-337

900 Series: 042016

Catalog No.
atatog Mo« o300. 612001

ACTION: This * flag will also be output with the resulting value so that expressions

(cont.) of the format P (*i) may be properly interpreted.

When the last operation to be performed is a terminator, SCAN tests for the
literal flag being set; if it is, SCAN takes zero as the value of the expres-
sion. If the * flag is ON, the value is converted to a 3-word address value

and the sign bit of VALU is set.
Upon exit, the contents of TERM are

0 if blank terminated
1 if comma terminated

2 if right parenthesis terminated

The cell STAR contains 1 if the expression had a leading * and 0 otherwise.

PROGRAMMING

TECHNIQUES: The SCAN operations table is really a series of short tables each of which is
indirectly addressed. The table positions are incremented or decremented by
incrementing or decrementing the indirect point words. SCAN is a relocata-
ble routine assembled as part of PAS2.

CALLING

SEQUENCE: Byte table entry for the first byte of the expression ECW
BRM SCAN

MEMORY

REQUIREMENTS: 12668 cells

SUBROUTINES

USED: GCW MIFT RELTST

GIT GLOV FWM
GNC GLOP FLN

3-338

SDOS

SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 000 Series. 0420
Catalog No. 9300: 6120(

Get next item of an expression (GIT)

To obtain the value of an item and store it in VALU through VALU 2 with

its control word in ICW.

GIT evaluates the following types of items:

alphanumeric constants
location counter reference
function references
subscripted symbols (parameters)
symbolic items
numeric items
lists
list count
parenthetical expressions
1. Alphanumeric constants are evaluated by obtaining the characters from

the dictionary which comprise the constant and packing them together

into VALU and VALU+1.
2. The value of location counter reference is the current value of CC.

3. Function references are evaluated by calling SCANC (which in turn

calls FNRL).

4. Subscripted symbols are evaluated by calling SCANC to obtain the sub-

scripts and by stepping through the list to extract the proper element.

5. Symbolic items are obtained by picking the item out of the symbol table.
When an undefined symbol is encountered, the reference table is

searched for the symbol. If the symbol is not in the table, a reference

3-339

Ca.'talog NO. 900 SerieS: 042016
9300: 612001

ACTION:

(cont.)

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

item with zero value is inserted into the table. The value of the refer-
ence is taken as the location of the reference value in the reference

table.

6. Numeric items are evaluated by calling CNVRT. If a numeric item is a
mixed floating point number, the integer and fractional parts are ob-
tained by separate calls on CNVRT and the parts are then combined by
GIT.

7. Lists are obtained by inserting the elements of the list into the symbol
table by calling SCANC and generating a list item giving the location

of the first element and the number of elements.

8. List counts are evaluated by finding the appropriate list item and ex-

tracting the element count from it.

9. Parenthetical expressions are obtained by calling SCANC. GIT does
not differentiate between lists and parenthetical expressions; the dis-

tinction is made by SCANC.

GIT works with the SCAN and SCANC routines and is really a major section
of the overall expression evaluation processing. GIT is a relocatable routine

assembled as part of PAS2.

Byte table entry for first byte to ECW
BRM GIT ‘

4728 words

GCw SCANC

GLOV MIFT
CNVRT GBSL
PEEK GET

3-340

9300 Only

SCIENTIFIC DATA SYSTEMS

Page 1 of

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION
Catalog No. 612001

Program to output literals and references (FNSH or FINISH)

To output the literals, references, and END records to the binary and listing

outputs.

The system tape is rewound, the transfer value is obtained by calling SCAN
(left in core from PAS2), and the END line is listed by calling EPRNT if no
transfer address and EDTV if there is a transfer address. The literals are
taken from the literal table and output to the listing and binary files by call-
ing EDIT. When the literals are completed, the references are obtained and
output. GTLB is used to reconstruct the symbols, and EDTL is called to list
them. OUTP is called to write the references to the binary file. When all
the references are out, the END record is written on the binary output file .
by calling OUTP; the binary output file is closed; and, the last page is ejected

for a listing or an end of file written for magnetic tape.

FINISH is loaded over parts of the PAS2 code. When the FINISH absolute
deck was made, the external references from PAS2 were loaded with FINISH
since the table's origins and certain subroutines from PAS2 are used by
FINISH. Care must be exercised, therefore, when changing either PAS2 or
FINISH to preserve these communications. FINISH is an absolute program

separately assembled.

FINISH is loaded and executed as a separate overlay of the assembly system

by the tape loader.

9300
3-341

9300 Only

Page Catalog No, 612001
MEMORY

REQUIREMENTS: Same as for PAS2

SUBROUTINES ' ' ot

USED: SCAN EDIT CLOSE

epRNT' RDPI' HOME!
cLovt ottt Gect
eptstt EDTL

epTVt ourtp'

ENTRY POINTS TO FINISH SUBROUTINES

Page
Entry Description Flowchart
FINISH 3-341 3-401
GTLBL 3-208 3-402

Mhese routines are part of PAS2.
"GTLBL is described under ASSEMBLR.
MREWW and CLOSE are described under MSCONTRL .

9300
3-342

900 Series Only

SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

SDS PROGRAM LIBRARY

PROGRAM DESCRIPTION

Catalog No. 042016
—— e ——————— —— ————————

Write end-of-file marks on listing output (WEOQFL)

To write an end-of-file mark on the listing output on magnetic tape.

WEOFL calls the end-of-file routine associated with listing output (EFMT)

to write an end-of-file mark.

WEOFL is an absolute routine assembled as part of FINISH,

BRM WEOFL

6 cells

End-of-file routine for magnetic tape

200
3-343

[nitialize tables

PAS 2
OVERALL FLOW

LINE

switches, buffers
and /O routines

[nitialize line
oriented parameters.

EDIT

print and punch
outputs

p———-——"—"-(Need to PRINT?)
Y

b

NSRT
define labe!

Flag error. ———ﬁ(Inside DO?) yes
1 yes ——-—-—-(m Label to define ?)
=] DOAGN 1
e L Y"(" Proc within DO? reset line
get next line origin
Normal
- 20" DO finished? Yo
Y
. \ nho PLB . no |
< Sample line?) > get label End of file? }-——————b
yes | U yes
! Nommal
' 9 1
SAM - '
Process line get operation Flag error.

FRL
generate data

POP

1
FORM reference?)

generate POP

PRL
process list
and PROC line

no
A
yﬁ@ogmmmod operator?
no

A
PROC reference?)

no

y
Flag error ‘ nof” . D
e step CC. @ Directive?
yes
< \ no DIRT
END_?/ branch table
yes
\ 4
Process end
sample, PROC - nef” End of bly? R l.oad
or FUNC ref. N J e---- Finish

LOADER

3-344

PAS2
START ROUTINE

Initialize TOP,
AQPESW, LADD,
LITO, LTBL,

LTBE, ALN, LITC,
CC, MCC, CHAD,
BUSD, BSIZ, BMSK,
PASS, TBLOC, LBL,
DOTB, WLLWVL,
FNFG, SRFG, and
MTP, +3

s

REWW
rewind input (X1)

)

[nitialize calls to

binary output devices.

Clear DWC.

) 4

OPEN
binary output file

[nitiolize CTYP.
Clear print buffer.
Clear WMQODC.
Clear ervor flags.

Initialize print routine.

READ
get st line

EOF

NO
END

3-345

normal

PAS 2
LINE ROUTINE

LINE

Clear relocation flags

Reset |SCA't‘ le\‘rel 0 — DPPF

lslesat locu:'lon lncrem;a:t > 0 —» LDLRF

ave location parameters M CC, MCE MCC
(CHAD, BSIZ, BMSK, MTP, o ()

BUSD) for beginning of line

/
Is there an yes Does current proc level \yes
active DO? equal DO proc level ? j

il

(—F i
LNIA <
TEXT F
get next line of NOEND|
input DIRT
branch table
Normal
. 1 ~ —— =1 DIRECTIVE
Processing es
sample?
— no
- POP roferonce?)
y EOF
PLB EOR
get label field e =
Proc reference?)
Normal]

get operand byte

Form refi

o)
TN

Save ECW for POPR no
operand in DRCTV
ABYT —= POPBYT

GCwW
get blanks following

operand

C Blank string? jrno >(End of line?)

GBSL
count blank string

es A

;(End of line?

no

GCwW
get Ist byte of
-variable field

3-346

|

no
‘erence ? ’
3

a3

Symbol in

tab|

]

DRCTV
alphanumeric?

le?

yes

PAS2

LINE ROUTINE (cont,)

Set E LNLOC
enor flag
1 = CCINC
q———ff-(End of record ? L Set | error flag
- 1 — CCINC
no
0 —=Breg
A
Set N
error flag LBTST
insert label
LBTST LNE ¥ -1 — DPPF
insert label o B reg
0 ——>
DPPF
\
EPRNT X /_—— -
print line < No Print EDTST
\ test to print
y
Print
LBTST
insert label

/ EDTL

print location

]
CC + CCINC — C(

LINE

No Print (

0 —=B reg

A

EDTST

)

Print

EDTV
print value

LBTST
insert

label

3-347

PAS2
PLB ROUTINE

Clear label at
current proc level

Alphanumeric
string?

LBERR

yes
GCwW 4
bel Byt
get label Byte PLV-CPINC
=+ A reg
¥

Save label Byte Numeric 9| Ares —= WLLVL ‘
string? Current byte table S:'d:::sl vzr:eh
location of label | ¥
! & —wynoc [7| e

E
(svrE>22)= = —
LBERR
ves
\
C - yes More than yes ol UNDEF
Blank string? / o
63 bl ? ‘
— anks? P
‘ no
v — Ares - —{ PLoex

PLB + 1 — PLB

vy
;EXIT;

(Speciol character? }22

yes
GEC
get character

« N yes 3
Character = * ? h | —> A reg
no
LBERR EXIT,
! A\’
Charact Yo Set L error flag
(peter $7 J Clear current label

get label byte

save label Byte

PLV-CPINC —= TEMP
LBL-CPINC — LBL
0 — LBL-CPINC

i
(Blank string? yes
no

3-348

yes
no more than
‘ 15 blanks?
[

yes

Blank string?

3

1 PLI
+ 1
' oow
blanks
ECW —= B reg

}

Move label from
lower proc level .

Set BYLOC from
lower level .

Set value - CC

yes
is there o
waiting label ?

PAS2

IPL AND TEXT ROUTINES

C In PROC? yes

no

\

79 —= CCNT
L(BBUF) — BYTE

Must symbolies '\ no

T™XT12

be reconstructed?

¢

yes

|P
initialize print
line

-

) 4

Line number
to CBUF-1 and
CBUF-2

MBYT
move byte to
BBU

A

—"EC End of line?)Yi————-.

Yo

/ SKIP \
> to end of
\ current line /

GTB

) 4

T\ get byte

Byte —>
BYTE +1

L(BYTE)
— BYTE

A

C BYTE

TEXT + 1
- TEXT

Y

no

CCNT-1 — CCNT

&

—l"—(CONT

<07)

XT3

yes

"\ skip comments

EXIT

SKIP

A

L(BBUF) — BYTE
TEXT 4+ 1 — TEXT

EXIT

3-349

79 — CCNT
LLC — LC

_.<

EDS
initialize EDC

Blank print
buffer

PAS2
MBYT ROUTINE

no

vy 1
GTB 06 —= A reg
get next byte o
edit character
[
ABORT
Byte —— L(BYTE) INC
BYTE + | —=BYTE get character
[
no
yes
End of commntsD
‘ e
GYTE >BBUF +807)X of BYTE-1 — BYTE
Set E error
no No characters
— L(BYTE)
y
\
C BYTE > 27 Byte - 1? INC

yes

no
A
Set ECW A

CCNT-1 ~ 07 }Y“

get comment

RET3A
: EXlT;
Y Get di d of
et dictionary b end of entry
C Blank string? oo > address of byte -> GEC
yes - into E(s:VOV brte 1 _getc_hatocter
Normal
vy)
() EDC
GBSL
count blanks edit character
\.__________/ l
hl \ 4
L CCNT-1 — CCNT
yes
(End of blank string? MBYT + 1
no ~— MBYT L
‘4—"—9(Full card?)
Y
EDC EXIT,
store blank ED
No print
Y PRNT
print line
CCNT-1—=+ CCNT o

s

Y

la]
Full card?

print

EDTST

no

3-350

1PL

initialize line

initialize line

PAS2
LBTST, SKIP, INC, AND GCW ROUTINES

SKip

BMSK — BMSKé

1
; GCW 077 — BMSK
(ayre-20 gt next byte BSIZ — BSIZ6
no 6 — BSIZ

(Byte =12)"°—>EXIT ‘

GTB
get input byte

(Inside PROC ? }L= EXI
A

BMSK —e BMSK
Byte ~—s BMSK 6
e BSIZ6 —e BSIZ
BMSKé —+ A re
get comment char , :

no

1 i
EXAT,

No. comment
characters
— CCNT

h J
CCNT-1 === CCNT

) yes
C CONT < 0?
no ‘ Inside PROC? Gr8
no

get byte

INC Yy

get character Load A reg
from L(BYTE). >
BYTE -+1 —= BYTE

(L -0 yes Byte — BYT
Location of
no Byte Table entry
! — ABYT

Byte table entry
NSRT ~— B reg and ECW
define label
0—1BL | b EXIT

3-351

Al characters of

-byte obtained?

no

ECW —= B reg

Load A indirectly
from ECW.

Extract character
from dictinnary

entry given at ECW.

Character —» NCE

Step ECW to point
at next entry
character.

NCE — Areg

GEC + | — GEC

PAS2

GEC AND GTB ROUTINES

Left adjust input

word in B reg.
BUSD + BSIZ —= BUSD
BSIZ — X reg

(ﬁawo>n?‘)ﬂL___,

yes

BUSD-24 — BUSD
CHAD — NBYTE

A

INPUT
get next word

Normal

End of

\

Merge byte from
NBYTE and new

GTBi

input word

Increment BSIZ

by 1 and size of
BMSK by 1

BMSK +1 — A reg

yes

\

Shift byte
info A reg and
mask

A

byte = 0 ?)

no

Y

-A — A reg

A reg — NBYTE
A reg —= BYT

A reg — X reg

XiY,

3-352

Contents of LBL at
current proc level
-— ELBC

L4

PAS2

EQU, ORG, AND AORG ROUTINES

SCAN
get location

value -+ + 0100000

SCAN

evaluate variable field

<

— CC

ELBL — LBL

4

GLOV
get low order value

SCAN
get location
value

y
Value **037777

—CC

[

o)
=
Q
P |
“—3

CC—
LBL +1

Set U error flag

Valye — 1 BL + 1 and WORD

bits 0-8 of [CW-— bits 0-8
of LBL

 J

_Lez(Value

¥

@ item of value rypejm >
(11

(ADDRESS velue? ode 37
yes

y
. 21592)
no

0— LBL
0 — VERR
0 — WORD

fyes

~(Reference ? o
VALU2 —»
L +3 |.
U 2 word floating point VALU
WORD

no

b4 &

y
EQU3 !

EQU1

Make 2 word

address value

A
(*flag on?

>h0 >
\

"——H—O‘Gouble precision?)‘_

L 4

Move 2nd word
of value to LBL + 2
and to WORD + 1

/ RDPI

A

NSRT
define label
value

yes
Clear label
! defined
Set * flag in 1
labe! value
C List item?

value — LBL + 2
VALU— LBL+ 1

3-353

yes
)

reverse words

no
>—->‘"° Double precision?

yes

PAS2
RES AND FORM ROUTINES

SCAN
get increment 00— LBC +1
0— LBC + 2
0 — BTCNT
A
Value = CCINC 1:

SCAN
get field size
@ ‘
LBL+ 1 and LBL + 2

++ 1 rotated
left VALU bits

\
yes
(Termina'or =,
no

\

Rotate LBL + 1
and LBL + 2 right

1 bit position
\ TBL+ 2 — LBL + 1
(BTLNT > 24 ?‘—)_'_‘o_—__"Sef mode bits to 2
word, type 2, mode
yes 0 item
A
Set mode in
LBL to 3 word, _
type 2, mode 0
item
\
NSRT
define FORM
item
A
Clear labe!
(LBL)

3-354

PAS2
NAME, SAM, PROC. FUNC, POPD AND POPR ROUTINES

PROC

A

C : LBTST
define labe! POPD

Set SMPFG positive
PRCNT + 1 —= PRCNT y
CCINC + 1 — CCINC

4
—‘ CLRLBL
3 0 — LBL
CLRLBL
0 —LBL

A
Alphanumeric?)

yes

\
no, N
e Directive?)
yes

|

7 < DIR < 122)

GCwW
get blanks

4
© Blanks?)-&-b(End of line?)yes
— PROC, FUNC,
= -~ NAME, or
Gecw END
operand

DIRT
branch table

3-355

[ncrement DO label
value.

CHAD — DOTAB + 4

Position of Ist line

—~— DOTAB + 2

(BUSD, BSIZ, & MTP)

(DO Table pointer)

DOTB + 5 —= DOTB

PAS2

DO ROUTINE

yes
¢__"°C Void DO?)y .

DOTAB + 3 —=

in bits 6-11 of

DOTAB + 3

Store skip count

y
yes s
C‘Iuble overflow?
no

y

SCAN
get DO count

\

no

More than
64 lines?

Count —»

DOTAB + 3

-2(Labe!l on

DO lineﬂ

yes

A

store lines to
do in bits 0-5
of DOTAB + 3

Set up label as
2 word, type 1,
mode 0, value
item with unit
value

NSRT
define DO label

A

DOERR

More than
64 lines?

Clear label
LOC of DO label

value — DOTAB

Y

Qerml nator -, ?
yes

>

. |
1 no

IN procedure?)10

>/ EPRNT

Proc level to
bits 0-9 of DOTAB

edit line

Set P error flag

Set E error flag

DOTB-5

— DOTB

DOEND

3-356

EPRNT
print line

DOTASB + 1
DOTB -~ 5
— DOTB
SKIP i
DO line
Y
EPRNTY
print line
DOIZZ 1
yes
no
4__(Void DO?)
¥ b
Step DO
label value
Set lines to
do in DOTAB + 1
ond DOTAB +3 =1
4
normmal
EOF TEXT
get next line
[)
no
e
?IZ;E error 4 Terminator -, ?)
Y
1 ~— bits
0-5 of
DOTJAB + 3

DODEC

count lower line

PAS2
DO ROUTINE (cont.)

Line count-1
— line count

Current DO count
original count

no

DO count-1 —s

DO count at DOTAB + 3
Origincl lines to do and

lines to skip from DOTAB + 3
— DOTAB +1

Increment DO label value

Inside no
procedure?

yes

\ J

SWITCH
reset to st line
of DO

v
EOR flag —= BYT

A

In procedure?)

no

Location of

BBUF —= BYTE

Lines to skip
— TEMP

sKie
skip line

-

y

DODEC
skip outer lines

3-357

Noumber lines
to do — TEMP

all lines?

‘ Finished

no

get Ist Byte

SKIP
skip line

DODEC
decrement outer

\
yes
CFinished skipping ?}-———‘
no

es

PAS2
DODEC ROUTINE

DOTB-5 ~—= TEMP + 1

P

-

i

A
no
C TEMP 4 1 > L(DOTAB))_——_" DOT8 —= X

yes

1

C Level this do - M

current proc level J |Lines to :o-l —_—
ines to do
° (for DO at TEMP + 1)

Y

(TEMP + 1)=5 —— TEMP + 1

3-358

1 —Breg

PAS2

FNRL AND PRL ROUTINES

yes

Set L flag

) J

(FUNC reference?

no

lyes

CCINC —= CCVA
0 — CCINC

PASS-PINC —— PASS

L

FNRL2

More than
7 blanks?

no

GBSC
count blanks

FUNC,

A
(End of line? })

A

yes
(Mom than 7 blanksD—

no

item — [CW
0 — value

no
PASS - PINC
0 —Breg — PASS yes End of line?)
A
] KN
Location of name GCW
item — * NMLOC PRL7 blank string
3
y
ves [At highest permitted GCwW
proc level ? get directive
no]
normal
EOR PLB
Set E ervor get proc label
\
PLVT + CPINC i
— PLVT
and WLLWVL . iae
B reg — PRFG Old line position
reverse NEXT -—— REFPOS
NEXT — TBLOC Old CHAD — CHD'WRD
~DRCTN — DRCTN MTP2 —> SVMTP
PLV — LPLV MPT + 02000 —= MTP + 2
A J SWITCH
. reset to get next
{s this a PROC?) line from sample
yes T
PLVT — PLV
BYT — PRBYT
CC —+ CCVAL ECW — PRECW
-1 —= PASS TERM —> PTERM
PROC ORIGIN
— PROR
ELEMENT ZERO
WORD — LBL +
PINC
L yes 2 word mode, 3)

\ 4

O0— B reg

DFLST
evaluate list

3-359

PAS?2
FNRL AND PRL ROUTINES (cont.)
DFLST ROUTINE

Yyes
C LBL 0?)

no

y
Mode of [CW

— mode of LBL Er::;Aféog :),;‘ Set U
VALU —LBL + 1 (se) error

Y

\no
(Is there a zero element?) SKIP
yes to end of PROC line

v A
¥ N
Is element zero no 021000000 — PRL2A Rl
alist? LBL + 2
yes
A
023000000 0— LBL
— LBL + 2 > [}
]
Zero element value
-~ LBL + 3
item length + 2 4 —/ . NSRT. .
9 \define proc list item
—— item length \
0 FST field of LBL

Set [CW to 2 word,

- Y”(Terminator ,?)no_’ type 3 item
FST —VALU

[

y

SCAN [ncrement element b
get 1st element count in FST EXIT

t

\d

Set element flag in v Location of
1CW element —* LNK
associate Loc of element L
— FST -
\J yes

Location of
N NSI:T . EST - 0? d element —»
define elemen * LNK

3-360

PAS2
END ROUTINE

ENDP

es -
(endofruncy Po—uf PLVICRNC ‘
{ n ‘ End of sample?)L

o
A
‘ [s there a |abe|D-2°—- L no
SCAN
”Y“ evaluate end Load .
FINISH

\) 4

define label

0—1LBL
SVMTP —= MTP2

SWITCH y

:asr::vuftgs PRCNT-1 — PRCNT

\ / Y

< SCRP > ——=(rroNT- 02)
p

urge Symbol Table —

) -1 — SMPFG

PRBYT —= BYT
LPLV — PLV !
PRECW — ECW
PTERM — TERM (insym
PLUT-CPINC — PLUT

'

(End of FUNC?_)Y—“—— CCVAL — CCINC

no

LBTST
define waiting
label

) J
LLlC =1LCc ?

3-361

X2 — ITLOC

CCINC + 1 —= CCINC
0 — FRLCNT

0 — EXPCT

yes
(2 word form?

no

PAS2

FRL ROUTINE

CCINC + 1 — CCINC
High form word ——= WRD2
Low word — WRD21

g e
3
()
040000000 —>WRD21 V::C Double) DATA — WRD21
0 — WRD2 precision? DATA + | —= WRD2
FRLI ﬂ 1
-1 —— DPPF

no

% EXPCT > §)

b

and DATA + 1
‘} >re FRL5
Form Word — WRD21
Form Word — DATA +1 _ yes
0 — WRD2 (’ B no
0 — DATA BITSS = 0? Set E flag
4
no
———Zi-Germinator =, ?)
yes) t
st pass?)
Add value
" to WORD Truncate
W value.
A FRL4C no yes Set T flag.
0 — WORD Value > field
0 —= WORDI allows?
Left adjust form >
words in WRD2 and no
WRD21 (
P Field size > 24 id
Form size «~— B[TSS bin? o
] sign of
FRL4 >te FRL4B ‘ e value

Teminator
comma?

yes

\ i

SCAN
get next
value

Set E error

FRLS

FRLCNT + size
—# FRLCNT
EXPCT + | —» EXPCT
shift WORD and
WORD] left by
amount of field size

:

This field a value?

no

3-362

3

Value —= VALU

3

GLOV
get value

Set WMODR
if relocatable

no Y”T
-C Address

value?)

no

Double precision?

C Floating point?)—y”

Gield size > 247 \ryes

yes
(High word - 02 P

PAS2
FRL ROUTINE (cont.)

2 word

no

floating point

\ J

Add high order

value word to

no

no

Y

Set T error flag

FRL8

 J

>y

FRL4B

WORD1

Overflow? LS

yes

) 4

Set T error flag

A

Set U error flag
0 —» Vlag
0 —» VALU

no

Relocatable ?)"‘—

yes

) 4

Set WMODR

CFie!d > 13 bits?

yes

no

< End of word? no

CC —> location given
by VALU

Contents of word
addressed by value
—VALU

3-363

Set E error flag

PAS2
TEXTR AND BCD ROUTINES

060 — SPC

012 — SPC

PEEK
at next character

Character = < ? >
Im

Character — TEXFG

SCAN
get character count

-1 — TEXFG

¥
o-—:(l-(Count > 567)
‘yes

- =t T error
— Areg
!

0100 — TEXTC

GCw
get next byte

A

">

TEXTC
56 — A reg

GBSL
count blanks

Next byte blanks?)‘l A reg-1 — CNTT

no

n

¥

GET

next character

Blank ?

no

o
EDIT i
i print word

!

yes
e)

Set FORM CNTI-1
control word — CNTT
SPC — A reg
SPC — A reg CC+1— CC -} —w CNTT -
{

——

Blanks —= WORD

-l SPC — A reg

1

SPC
— A reg yes Character blank?)
TEXT3 ﬁ:F -

Position and store
character into
WORD

> 060 —» A reg

3-364

X2 — ITLOC
— SVERR
11— CCINC

Y

Location of
POP value
— [TLOC

Y

PAS?2
POP ROUTINE

Place form word
into WRD2

0 — WRD21

0 — WORDI1
set WMODP
SVERR — VERR

Set T flag

)no
:?

External POP yes Ser 1 fl
reference? et °9
no
o Connect linkage for
reference.
Op code —= WORD Last reference location
— VALU
Set WMODR
SCAN VERR —» SVERR
get address POP4 0 — VERR
1 yes Set index
—\ no into WORD
(Address a value?J f ﬂeference?, UERR + VERR
es ~— UERR
4 no 0 —= VERR
POP1 >
Yy | J no
yes vﬂ
(Absolute?)—"' Set E error Glulue > 7}
! nc 3
no
yes ! SCAN
get index
(: Value >247)= = T
yes
yes
Truncate and C Terminator =
set T error
Y
Set WMODC .
and WMODR as Merge value into
indicated . {' 3 WOR_‘) .
Trim value to Add indirect flag
14 bits if needed.

3-365

POP3

A reg —= TEMP (location)

B reg —= TEMP+ 3 (CHAD)

BUSD * 219 4 Bs(z « 215
+ MTP —=TEMP + 1

CHAD — TEMP+ 2

Bits 0-4 of TEMP
—eBUSD

Bits 58 of TEMP

— BSI(Z

Bits 9-23 of TEMP
—MTP

TEMP 43 — CHAD

BSIZ bits —=BMSK

TEMP + 2 —» B reg

TEMP + 1 — A reg

EXIT,

PAS2
SWITCH AND EDTST ROUTINE

NOEDT

C Print flog set? no

\

C Pass 2 this level ?)"o————-

yes

A]

yes
———(Outside PROC?)
no

\ 4

ﬂ———-y—”(Both value and LOCD"O_——D

S —— Print exit

XIT,

Do not
print

EDTST + 1

— EDTST

EXIT,

3-366

Save index
— [TLOC

Y

byte?

Any entries this) "

PAS2
SRCH ROUTINE

Location of level .

Break this level
— LVBRK

{TLOC ——» X 2

Y

Bits 10-23 of innut item
—— TEMP + 3 and SRLNK.

Bits 4-5 of input item (type)
—, MP +2

\

_El(j

Type to be considered?

(SRFG negative)

yes

Y

C

[nput item and item

at SRLNK same type?

yes

no
< SKLNK > LVBRK }

yes

as
e N
1 SRLNK} NEXT?J

no

3-367

EXI
-1 —= SRFG
A
Bits 10-23 of item
at SRLNK
— SRLNK
~—= TEMP +3
:) |
no
\ of of ol iTLoc —» x 2 >
J \ \ Chain?
no
no
LVBRK > SRLNK NEXT > SRLNK'D
yes
ITLOC —= X 2

SRCH 4 | —= SRCH

NSI1A

Save index-+ [LOC

PAS2
NSRT ROUTINE

no

4

c

Address value on
either item?

)&

yes

{tem to be inserted
at current level ?

no

¥

Set NEXT to
altemate Symbol
Table location;
reverse DRCTN

y

A
‘Element of list?

yes

C

NS1B

‘ VALU

4

[

[tems

Set D error flag.
Set error flag in
item ot SRLNK
and in new item.

\ 4

no

equal ? yes Set POP subitem
type to 7.

-
.

Move new item
into Symbol
Table ot NEXT.

T

{tem defined at
level 1?

Element

no

of list? =2

—

no

\ 4

Store Byte Table
location of Byte
into Symbol Table
step NEXT

3-368

NSIC

no
no
A
(. (Error flag set? = Increment DERR
Associate - 7
no
A no EXIT
(; yes
SRCH found 1 word item? [
is item in table? /'y
no ILOC — X2
ne List item?)
found | —’G em b
yes NS3A Y >
Any item in chain yes
have type - 2? yes Reverse DRCTN .
ne [tem inserted at no Set NEXT to
current level ? alternate
NSID >re Y Symbol Table
NS3 yes location .
) no)
UPPER > LOWER
Set Byte Table \
entry to point y
to NEXT 05 - Areg
Y
New item length no
> 07 06 — A reg
= ABORT) | NEXT — UPPER
yes
ABORT no NEXT ==
y DRCTN < 0? LOWER
UPPER — A
NEXT — SRLNK

PAS2
SCRP ROUTINE

Location of level break
yes | — UPPER ond

DRCTN < 0) *! HIGH!
NEXT — LOWI

no

]

Location of level break
—> LOWER and LOWI1 —
NEXT —= HIGH! A

Location of level break|
—s TEMP
‘Complement DRCTN

y >
¥ Reset NEXT to
current position
TEMP = NEXT? in altemate
table
no
A
y
TEMP + item
length —» TEMP EXIT
Increment TEMP
for SCRP word
1 ¥
Y%/ ltem an element
of list?
no
SC2
Yy
= ow > tink? ~5{(Link of item > HIGHI?)
o yes
y
‘ vesf Does Byte Table
«* \ point to dictionary?
no
Byte Table
] Y associate
Assoc.note of purged item yes Does Byte Table no — X2
goes ""f° Byte Table point to this entry ? as dummy
entry given by Xi Byte table
location

3-369

PAS2
EDIT ROUTINE

EDTST print o EDE
test to print / ~ T\ edit enor flogs
no
print
L EDL
C Ist pass current level ? yes edit location
no
. A
C Double precision value?
EDS
yes initialize EDC

ouTp

output binary value vy

WORD — WRD1
WORD1 — WRD11

\
Reverse WORD and EXIT
1 ; ;
WORD on
edit value

ourp
output high value

Al

PRNT
print line

 J

WORD1 — WORD
LOC+ 1 —= LOC

i

ourte
output low value

LOC -1 —=LOC
0 — DPPF

EXIT

3-370

EDE
edit error flags

EDS
initialize EDC
routine

d

7 —» CNTR

)

y
(5. jle pncision?)_y“——
no

EDF
edit high word
of value

Ul

7 —=CNTR

ED
edit low word
of value

-

PRNT
print line

u

EXIT

€

PAS2
EDTV, EDTL, AND EDE ROUTINES

EDE
edit error flags

v

EDL
edit location

\

PRNT
print line

EXIT

3-371

Set QPESW if any
emor flags other
than | or * are on

EDS
initialize EDC
routine

——"o-(Finished error ﬂogsa

yes

\i

<EXIT7

EDS
initialize EDC

EDF
edit location

EXIT

PAS2

EDL, EDR AND EDF ROUTINES

Left adjust FORM
control words for
data field.

High order form
word — WRD2

Low order form
word — WRD21

No. bits — BITSS

Left adjust data:
high word to WRD1,
low word to WRDI11

EDC
insert blank character,

[

Remove edited bits
from WRD1 and
WRD11 left adjust

> remaining data with
high order word in
WRDI

(TEMP + 1) = 1 —> CNTR
right adjust WRD11 by 3
- TEMP + 2 bits and merge
into WRD1

0 —=TEMP +1

CNTR — A, 3 —8

FLDC
get field size

. ” no Areg -1 —= A reg
Remainder > 07 3 > B reg

yes

B reg — WRDI

EDC
insert character from
A to image

y

WRD1 — B reg
CNTR — 1 — CNTR

y

yes
CNTR < 0?

no

¥

0 —+ A reg

End of
fields

Shift next character

_.A

\

Y

EDF \
edit CNTR characters\..

Octal characters (A reg)
— CNTR, remainder
— TEMP 4 2 and X2

More than 7 choracters?

no

yes

No. characters -7
—> TEMP + 1
7 — CNTR

from WRDI

3-372

EXIT,

BITSS > 0?

of field

WRD2 — A reg (high form word)
WRD21 — B reg (low word)

-1 —= X2

Complement sign of A reg

Nomalize A and B regs
Left adfust A and B regs
A reg—> WRD2

B reg —» WRD21

- X2 — A (shift count)

A

PAS2
FLDC, EDC AND EDS ROUTINES

———

Enter with
character
in A reg

character - 060
~ A reg

Position
character.
Add character
to buffer.

Decrement
shift count.

(Shift count > BITSS?)ﬂ"——

yes
y

BITSS - shift count
-— BITSS
Shift count — A reg

A
EXIT

BITSS —= A reg
n — BITSS

y

FLDC + 1 — FLDC

yNormal
EXIT

¢

yes

A

Reset shift count
to 18 bits.
Add character to

buffer.
Increment buffer.

EXIT

Store buffer position
in EDW.

Set shift count for
EDC (EDCI) to

initial value.

3-373

EXIT

|

PRINT — X2
L(PBUF) —= A reg
LC — B reg

A

0, X2
normally PLINE

y

Clear print buffer
to blanks SLC

— LC

—— o

PRINT contains
location of output
routine .

For tape this is
WMTB.

Y
; EXIT;

U

Printer EOF

For mag tape
output, HOME
becomes a NOP
routine via

WMTLST

routine (HOME)

Y

‘_no@e.r-ready ? ’

Skip to channel 1.
Energize .rinter.
Terminate output.

EXIT

PAS2
PRNT, PLINE AND HOME ROUTINES

3-374

900 Series Onl

Compute last address
of image.

Add index field and
store in DPTW.

&

/

yes
\

Skip to channel 0;
disable interupts.

Printer fault? ’

yes

>

/

- word count
—_ X2

=

y

Output word indirectly
from DPTW

yes

\

Terminate output|
on buffer

PAS2
ENDM, POPRD, DEF, ENDN, AND OUTP ROUTINES

Binary output
requested?

77

yes WORD**(777 Move 3 words to
+ +0100000 output buffer from
— WORD location given
MLOC —» QLOC in WORD

ouTR!
, r2(subtype =32)
yes

4——""-(CTYP = PTYP?) !

yes LOC —= PLOC
WORD —= buffer Move 1 more word
! Set relocation flags to buffer
for word . bwC + 1
»4——""-(24 > word count?) — DWC
yes
EXIT A
3 DWC + 3 —= DWC
(prve - 02)re—
yes

EXIT,

y
FLUSH C Last card type 37 P2 w
empty buffer? no

\

3 — PTYP
MLOC — QLOC

RESET
réset buffer type

FLUSH
TYP : empty buffer
branch
table
EXIT,

3-375

PAS2

FLUSH AND RESEY ROUTINES

C oo Yo pve=ae)

T

noiﬁ“

DWC + 1 —= DWC
QLOC — DW1
L(MFLAGS) — MFLGTM
L(REL) — CHKS

L(DW1) + DWC ~——= [CN
3 — OUTTMP

-

A

CHKS point to yes
zeto word?

no

Yy

Move word at location given
in CHKS to word addressed
by ICN.,

Add contents of word addressed
by MFLGTM to DWI

DWC + 1 —= DWC

yes

FLUSH

no
L————(OUTTMP < 0?)-—

yes

Y

MFLGTM + 1 — MFLGTM
CHKS + 1 — CHKS
OUTTMP - | == OUTTMP

Move PTYP and binary flag
to Vst word in buffer.

L(DW1) —= CHKS

DWC -1 —= DWC

QUTPUT

=\ ourpet data word
\ from CHKS
4

CHKS + 1 —= CHKS
DWC - 1 — DWC

3-376

L
no yes
—-(DWC < 0?)———>

LOC —=QlOC
0 —REL

0 —> CREL

0 — PREL

0 — SREL
CTYP — PTYP

EXIT

EXIT
[

WRITE
punch card

3

0 — DWC

900 Series Onlz
PAS2)
TYPWRT AND TYPE ROUTINES

L(buffer) —= EDWW)

Disconnect buffer.
R2duce LC for words
of trailing blanks.

y

Pack output word
4 replacing 60's with

LNCT 12's type packed
set line count. word

yes b
(18 > LC?)—» -18 — X reg (Error?
no

no

) 4
-LC ~—+ X reg

Y

\

y
| ‘__ng(Buffer ready ?)

TYPE $7
type line
EDWW +1

} -—= EDWW
no
Lc 182) ' o
ves ‘ End of line?)————
4 yes
LC-18 — LC +

-LC — X reg .
CTR +1 — CTR <Ex”7
TYCC
type 052, CR

TYCC
type 072, tab

TYCC
type carriage
return

TYPE
type end of line

900
3-377

900 Series Only

PAS2
INTYP, LNCT, TYCC, AND THOME ROUTINES

Character ~-» TMP CTR + 1 — CTR
‘ 1]
no
) (cmo> 50
Type character from Y yes
T™P THOME
’ f home paper
(Error?)’”” > HALT
s o
> e : EXIT,

PTWL — PRINT

HTW — HOM

Unit and channel — TEMP
Channel — X reg

Set all channel dependent

/O commands in TY PWRT,
CTR - 66 — X reg THOME, TYPE, and TYCC
routines. Using TEMP,
3 set all unit and channel
dependent /O commands
050 —= A reg in above routines.

A

TYCcC
type carriage retum ;EX[T;

900
3-378

PAS2
PAGE AND EPRNT ROUTINES

0 — Breg

00— Breg
1
EDTST No print EDTST
test listing test to print
Print Print
HOME

eject page EDE

set up emor flags

)

LINSYM

L[

print line

EXIT

3-379

PAS2
DED AND MFOI ROUTINES

SCAN
evaluate expression

< Value type?)m————— Set E error

el |
. C N
. \no - isi no - GLov
C Floating point? J ¢ Double precmon?J get value
yes
Value —= VALU
make output item Signs —» VALUI
J
i
VALU —= WORD
'VALUl —= WORD!1
Set DPPF
Set 2-word form control
word 2 —= CCINC *

Round value to

next higher value
RDPL
reverse item ‘
‘—————.‘"o Overflow?)

yes

L

(TERM T L »{ LNFRM
ll S\
v FLN

A

LBTST
define labe!

! Make 2 word floating
4 value by putting scale
EDIT in low order word

print line

CC+ 22— CC

3-380

WORD — WORDI

PAS2

GLOP, RDPI, GLOV, AND M3WAI ROUTINES

C

Item at ICW a 3-word
address item?

e

BTt 9-23 of VALU
— VALU +1

Bits 0-8 of VALU
— VALY

oW ++ 221 —jcw

yes

VALU1 — A reg
ICW —*> B reg

[tem at MODA a 3
word address item?

VALU — A reg
{CW — B reg

EXIT

LOA —> A reg

yes

3-381

EXIT

Move 4 words from
Symbol Table to ICW
tolCW+ 3

(2 word address item@-n-o———

yes

M3WAI
make 3 word address

XIT,

Take 2's complement of 1st
2 words of floating item
at X2.

\i

PAS2

MIFT, FLM AND FLN ROUTINES

;EXI T;

(Number unnormalized?)—EJ

yes

Save location of arguments
— L1 & L2 exponent
Exponent of L2 — TEMPE

(L(L2)) * (H(L1)) — TEMP
Exponent of L1 + TEMPE
—— exponent of L1
(L(LY)) * (H(L2)) + TEMP
—= L(L1) and TEMP
(H(L1)) * (H(L2)) + TEMP
+ L(L1)— Aand B regs

(Overflow? ’ yess

no

Adjust exponent

A

<

y

no

A
(Exponent ovarﬂow?f

yes

A

Set overflow

Overflow?)L——

yes v

XIT,

4

yes
‘ Ovemormalized?)-——>
no

v

Decrement fraction and
exponent.
Borrow from exponent

Increment fraction.
Corry adds to exponent.

no

Set T error

3-382

\

y

Store result, in
L1 location

Set T error

PAS2
SCAN ROUTINE

Nomal exit

Enter SCAN
with 1st byte
_____ T of item in
ECW.
SCANI
0 — VALU
0 —= OPA
2 word, type >
1 control y
word GIT
— MODA get next item
— |CW
0 — STAR
0— LITF \
GNC
get next
connector

K
Byte o|phobetic' ves |
or numeric?

no

GEC
get character

yes

< "°< Special chcmcfer?)

Increment storage
address for OPA,
COA, MODA,
HOA, LOA.

TERM — OPA

ICW —> MODA

MLU — LOA

VALU +1 — HOA

VALU +2 — COA

3

Connector same
level as OPA?

End of entry

SCAN2

Set control word
of Ist item to
type 1. >
0 —= lst item
value !
Clear * flag (2nd item 12)yes
! Set U flag fype
yes no
Comma? 1 — TERM
™ MIFT A
J move zero operator zero?)
item
C? no Gew yes
get next byte
yes Set U eror A J
flag GLov
Clear * flag get value
STAR +1 ICW —=~ B reg ICW
— STAR — Breg
4
Reset overflow
yes R
+?) 0411 —> TERM
no
et
(-» ¥ »| 0412 — TERM >

SCAN2I1

LITF 1}
— LITF

3-383

get next byte

Branch to
various
operation
routines
COET,
coLr,

etc.

PAS2
SCAN ROUTINE (cont.)

no

______ Operation is
terminator SCANYS
\ no
-
(LITF > 0?)
yes
\
es
‘ Reference item? Y Set E emor flag
no
LITC —= TEMP
L] yes
yes
(End of literals? Table overflow?)
no no
v)
yes
(hi ﬂ,__.
Entry equal this item Move item at ICW
no to location given
by LTBL.
! Increment LTBL by
| item length
Step to next e LITC +1
Literal Table entry — LITC
SCAN998

SCANP

Set T error flag

\J
yes
mEEED
| no

n

Location

Relocation flag
— VALU

— VALWU + 1
Set ICW to 3 word
address type

SCAN?®8

3-384

[y

o yes yes
* STAR > 07?)—"(Reference item?)

\

Set * flag on item

C

TERM 1?

yes

‘ Blank next?

yes

i

Y
‘ [n text line?
no

|

D
)L.
y

no

Single

precision value?

yes

¥

Address type?)

no

b

Make address type
item

GLOV

get low value

EXIT

y
(Endofline?)2'2!
no

Set E error flag
0 — TERM

GCw
get next byte

PAS2
SCAN ROUTINE (cont.)

— -4 > operator - —| < operator - —1 = operator
2nd value 2nd value 2nd value —» TEMP
y | L
GLOP GLOP GLoP
get st value get Ist value get 1st value
) \ J
_ 2nd value —s A reg 0 — ¢_9(Val 1?
< 1st value — TEMP B reg Tues e)
yes
< A reg > TEMP? \,—no 40 — B reg
yes
A
1 — B reg > coLm
y
A

1— Breg

Y

B reg — A reg
2 word, type 1,
mode 0 — B reg /

COLT2 >

A reg —s value

B reg — ICW

SCANS >
\

Decrement storage
locations for OPA,
MODA, LOA, HOA,
and COA

3-385

PAS2
SCAN ROUTINE (cont.)

- -———

-

+ + operator

** operator -- operator

2nd value —» TEMP

2nd value
—— TEMP

2nd value

—> TEMP

4

A
GLoP Y
get 1st value GLOP RELTST

get 1st value test relocation

Merge values Set R vy
Logical product of error 4—“—0‘(Both absolute? ,
values ——s flag s
A VALU +1
037777 — B reg I N
1
Result —= VALU + 1 '

0 —» B reg GLOP

get Ist value

COLsé e

B reg —« TEMP
A reg — B reg

RELTST

test relocations

A

(Both absolute?

no

Y

(iBorh reloca mble’x’}yes
no

A reg < B reg

)

Both values

absolute?

COLsS4

yes

Bits 9-23 of
LOA = TEMP?

no

yes

~23 of no

no Bits 9
R e GRVATIEE I

yes

y

Set R error flag

A

st value
— A reg

Set R error flag

2nd value

yes

Take logical
difference of
values

[CW — B reg

| B reg — VALU +1

L
2nd item ubsoluteD

no

1st value
—Areg

~ A reg

3-386

Y

031100000

—

Mask A reg
saving bits 0-8

B reg

COAS

PAS2

SCAN ROUTINE (cont.)

+ operator

2nd value —s TEMP

\

GLOP
get Ist value

Sum of values
— B reg

‘4—-—"3(Floating point?)4
yes

yes

-1 - operator

2nd value

L(VALU) — X reg

FLN
negate value

Set [CW to 4 word
f|oaﬁng point type

Set R error ﬂogl

yes
(BOth relocatable ?)—"
no

COASI »le

Logical difference of
control words merged
with 2 word, type 1
mask — A reg

A reg «—B reg

\
C Results address?)12

yes

< Set R error flag

\ double precision?

\
2nd valye — TEMP

GLOP
get 1st volue

1st value - 2nd value
—> A reg
A reg+— B reg

RELTST
test relocations

Only 2nd volue
relocatable?

LOA—— B reg

. yes
(lsf value address? }"
no

> COAS3

VALU — B reg

A reg — VALU +
B reg —— VALU

3-387

Negative of double
precision item at
VALU — VALU
and VALU + 1

VALU —= A reg

3 word double
precision control
word —= B reg

* operator

2n'd value — TEMP

Multiply values

PAS2
SCAN ROUTINE (cont.)

// operator

/ operator

2nd value — TEMP

2nd valye — TEMP

y
GLOP

< get st value

) J

)

Sum of values

\

GLOP
get Ist value

-1 —=Areg

A

Areg*2 —>Breg
Divide by TEMP

|CW—>Am9

* + operator

Scale exponent
~— X reg

\

value —=B reg

3*scale —=A reg

yes
(st mode 2 or 37 H

3 (floating point)

Save LOA, HOA
and COA in

p

no

TEMP to TEMP + 2

no]

Y
Power of 10 —A reg

A

A

< Scale < 0? yes

no
<

~A —=A

A reg — X reg
A reg - 30 —

o vaw 102
no

Y

30 —= X reg

yes . no
Negative scale? VALU + 1
yes
TEMP + 2 no
— VALU?2 o——-CVALU +1 07)
TEMP + | ‘
— VALU!
;45?;’:!)(”0 Ao FLM L(scale) —=Breg | . ¢
—Breg scale FLT. PT. L(TEMP) — A reg [

3-388

PAS?2

SCAN ROUTINE (cont.)

-

_________ operator
st item yes N Mode 3
mode 2 or 37 / > (floating point)
J no
0 VALU < 0? Floating point .
< 0%
scale - 47 + VALU %! VALU — A reg
ves — VALU
-V,
—A;L*U A reg VALU < 0?
yes
. i
yes

CIVALU|>63?)—» 48 —= A reg
Lno

GLOV
get Ist value

¥

15t value
—» TEMP

Scale factor
— A reg

Y
(TEMPE@-"—O———b

yes
A

A reg — X reg
0 — Breg

GLOP
get 1st value

4

Right shift A and
B regs X2 bits

- VALU —* A reg

A reg — TEMP

 J

A reg — X reg
0 —Breg

|
GLOP

get 1st value

es
48 — Areg X VALU > 63?)
e T
I no
A reg —> X reg
HOA — A reg
LOA —*= B reg
yes Shift A and B
VALU < 0? right X bits
no
A
Shift A and B >
left X bits

Y

Value —= B reg
0 —=Avreg
Shift left X2 bits

3

¥

no
< A =0?

yes

vy

Value — A reg
0 —Breg

3-389

Areg —= VALU +1

B reg —+ A reg

Fixed point mode
== B reg

Value type
mask
— A reg
ECW—s3 reg

) 4

B reg
— LICW

' yo
CA|phonumeric itmDLb(Speciul chomcferHol“ requested?)
i) |

v
A reg
-— LTYPE

y

(Numeric item?

no

y

Location of

byte — SCREF

GCW
get next byte

LICW

— B reg

@_.

item i
in Syml

1
\
PEEK
at next character

A

n B reg no |
bol Table? >—!—’ Set * error
yes

PAS2

GIT ROUTINE
05 —= A reg
_______ End of job
table overflow
ABORT

| L)

CNVRT
Calculate
numeric

GCw
get next byte

no

Reset previous
operation flag
(OPA-04000
— OPA)

Zero element
given?

y“
Subscript - O?j
3

Subscript —»
VALU +1

Location of 2nd
list word —» X2

-

SCANC

SCANC
evaluate function get subscript

Insert reference in
symbol table.

Location —= VALU
step literal location.

(Character (W

yes
1 character?)—

no

no

)

®
—PC Element ?)2-
no !

Set £ error flag

3-390

4

;EX!T;

GCw

get next byte

Set previous
operation flag
(OPA + 04000
— OPA)

PAS2
GIT ROUTINE (cont.)

no
skip element . C Element defined?
yes

Location of zero

)

yes element —= X2 y
(Terminator = , ?)‘_‘ Get element
ho location —X2

Y
L(ZITEM) —X2

GITS3 >
y

PEEK no, - -
< at next character > ‘ < Floating point “’2@
X2 — LICW Yo
i
@M 1 (comma)‘ay”_’. Gext character - ,?j-:'o——.
no yes

A

y

A GIT352
OPA - 04000 —OP.
(remove operation GIT351
flag)
3
00— Areg >
[}
\ MIFT e yes

< * flag for value? get item at [tem ervor flag on? 1— Areg

~es X2

yes

Glement a referen@—

no

Yy
Address value Y7 _ ¥ > Element value
this element? / — B reg
no
. yos
(Element have * ﬂcg}_—’ L(OITEM) —X2
no
\
LEZITEM) —>X2 ! »(Gir3s

3-391

PAS2
GIT ROUTINE (cont.)

Normolize integer A reg + DERR MIFT

High portion — TEMP +1 — DERR get reference item
Low portion —s TEMP
Exponent —=TEMP + 2

>te GIT352

CNVRT
get fraction

—yi_(Integer zero?)

no 4
Set * error flag

A

ltem type = no) d Ve -
(type requested? /J e ¢ Value requested?)

yes yes

A

TEMP + 2 - fraction scaling (List requesfed?}no >
Right shift fraction yes
X2 positions.
»a Combine fraction and integer.

High value — VALU
Low portion plus exponent
—= VAU + 1 Y
Set ICW to floating type item

Get list count from
VALU.
Set [CW to value type

GCw
get next byte

EXIT,

End of line?)Z”—->

no

GCW
get next byte

GIT199

OT<%

GLOV
get value

PAS2
GIT ROUTINE (cont.)

Previous control word
—— A reg

GIT37 >l
¥

Get item at location
given by A reg

v
‘ {tem of value iypeDL“——v. @
no

'

no
C Command type? yes o End of chain? '
yes

no

CLast item in chain?)-n—L'. A4
yes

C List type item?

yes

)

[tem control word
Location of item-1

— VALY MIFT
get ZERO item

3-393

PAS2

GIT ROUTINE (cont.)

(] y
GCW
get next byte
Y

List type
—= A rog

Special
character GITL
LOC — VALU
GCw
Address volue type]
get next byte 1cW e
0 — VALY Sw
0 U get next byte

0 — VALU+ 1

y

yes

GCw SCANC
get next byte evaluate list
A
EXIT
Set E
error flag

L’i@f line?)

no

\

GCw
get next byte

3-3%94

Count

(em)—

GET
get character

Set item control |
word in (CW - A

GBSL

blanks

A

3
GIT32

A
{ racter = '?>
no

|

Pack character
into value in
VALU and
VALU + 1

8 Characters
packed?

C To many (levels? yer
no

(Ecwconminblank? P
no
y

Save SCANC exit.

Save SCAN exit.

Increment SCAN
level pointers.

PAS2

SCANC ROUTINE

SCNCHY

L f GCW

Set P error flag

[\ gel next byte

no

0 — OPA

A
yes
< Func'im@—-&
L

0 —= FRST

Y . /
SCAN
get element

CANC

Do Choracter =) ?

Y

GEC \ End of entry

get character?

yes

v

GCwW \

get next byte

ICW —»
B reg

Bit item control worTil

— B reg
FRST — A reg

yes
2)

B reg —= ICW
A reg— VALU

A

0 —= A reg
Value type
— B reg

Preceding operation

J 1

no
A

Value literal ?

no

Decrement SCAN level
pointers.

Restore SCANC exit.

Restore SCAN exit,

GLOV

_,<

get value

)

EXIT

ol aYa

NSRT
define element

1st element?

Loc of element
—~— FRST

\

3-395

C Terminator =, ?)

yes

§

vy no
Terminator =) ? at next Char Char = A ? Char =) ? Char =, ?)
no yes yes yes
< Y Y
A
Set element
bit in item Loc of element
Loc of element — LLNK
—» last element 3 "1 Increment element
y count .

! yes
C Item blank strin@————.‘

no

Y

PAS2
PEEK AND GNC ROUTINES

Blank — A reg

o] Right adjust dictionary

EXIT

1 EXIT

Does ECW point) Y®s
to dictionary? J 4

no

!

Step down chain
to dictionary

ECW — LICW
0— Avreg

yes

Cl tem alphanumeric?

no

Y

character in A reg

GNGC3

Set E)enwor flag L]

0—> A reg [

A reg — TERM

C Special chomcter?) i

yes

Left adjust character
— TERM

)
GEC \ normal

ABORT

get next byte

OTBE entry —»

Combine 2 characters

get next charocter y

end of entry
1

in A reg

Blank —= A reg

3-396

A reg

[y

yes

A reg match any
entry in OTBE

EXIT

PAS2

GET AND GBSL ROUTINES

GET4

T\ e

_/

_{Blank

Byte blank string? 7y

C

" land A reg

> CHR es

BCNT > 0

no

no

GBSL \

End of line?

Blank —= A reg

get next byte

yes

count blanks

{ Blank string?

no

y
yes
ECW point to dictionary ? y

{no

get character

GEC

Step through chain
to dictionary .
Reset ECW

A reg — CHR

get length A reg —=BCNT

GEC
get 2nd char

end of entry

at length

end of entry GBsL?

CCNT — A reg

Combine characters

1

— A reg

A reg — BCNT

3-397

Save B reg
0 — RELFG

A
C2nd item oddmx?)L———

yes

1

(Relocatable?)2&____.

yes

\

RELFG + 1— RELFG

\

PAS2

RELTST AND DPDIV ROUTINES

A

no(Ist item address?)
yes

T

_____2?(Relocatable? ’
yes

i

RELFG + 2 — RELFG

Restore B reg
RELFG — A reg

\

;EX! T;

Shift A and B right 1.

Divide A and B regs by
0, X2

A reg — VALU1

B reg — A reg

0 — B reg

\

Divide A and B regs by
0, X2

A reg * 2 — VALU

B reg — A reg

0 —=Breg

_

Divide A and B regs by
0, X2

A reg*4 — ICW

=1 — X2

VALU1 —= A reg

VALU — B reg

Y

Nommalize and
decrement
X2 + 11— X2

A reg — VALUI

-X2 — X2

Breg —> Areg

Append X2 bits from
ICW to A reg

A reg — VALU

A

3-398

yesf'
—_ X2 < 0?)
no

EXIT,

PAS2
CNVRT ROUTINE

No. characters
— SIZFRC
0 — VALUI
0 — VALU2
0 — VALU

0 —= PRECS normal GEC

\ get character
3

end of string

GEC end of string

get next character

normal Set T error flag >
r 4

yes 10 —= MULT yes
‘ Character - 0?)————J
10 —= MAXNO (Overflow)"'0

no

Y
VALUI + 1
B — MAX > — VAWI
8 —» MAXNO ‘
) -
MAXNO-) (Overflow }E_
—s MAXNO
Character l‘
—s DOT -
A reg + MULTY
— VALU
3
get character Character = . ?)
no
normal | v “ Jos

CNW1 no
th of VALY = la——‘

y

s
@haracter > MAXNOBY——’ Set E error

no
B reg + character
— A reg
A
VALU! = MULT
— VALUI
no
) (Overflow?)—E—b Set T error flag
(no
Product > 24 bits? Y
yes
VALU = MULT
— A and B regs
Set T ervor flag -»{ A + VALUI
— VALU!

3-399

0 —s NDX

4

(DOT = .7?

yes

\

Normalize VALU1
and VALU
- shift count —»X2

yes

PAS2

CNVRT ROUTINE (cont.)

yes

Single precision?)

no

Set [CW to double

Set ICW to single
precision type item

precision type item

CNVé

A
- \
C VALUI = 07)

no

X2 ~—= MINB
-23 —= MINC
SIZFRC — X2

CSIZFRC)O?)——1‘1—

yres
N\

no

\

Set [CW to floating
point type item

1

:EXIT;

NDX + X2 —+ NDX
~(MINC-MINB + V +
SIZFRC-2 + NDX)
**0777 —= VALU2

Y

DPDLV
complete fraction

(SIZFRC > 97)

=

SIZFRC~9 ~— PWR

0 — X2

FIVES + 9—= A reg
0 —=Breg
Normlize A ond B regs
X2-1—+> MINC

A reg —e PWR + 1|
VALUl — A reg
VALU — 3 reg
L(PWR + 1) — X reg

DPDIV \

X2 — NDX

get fraction

Yy

PWR — X2

3-400

Nomalize FIVES, X2
and store in PWR.

- rhift count — V

VALU! — A reg

VALU —— B reg

L(PWR) — X reg

FINISH

REWW
rewind
system tape

Blank 1st 7

words of print

imnage
Y EPRNT

C Transfer address? j\"° > print end
Yos \ line
A
SCAN

get transfer

A 4

print end
line

Set up a literal
y in normal format
of data.
Maximum of CC
and MCC —> MCC.

\ i

OuTP [DTST
punch ref. test to print

EDIT
print and punch
literal

print
 J
- GTLBL EDTV

get label in :
LBL and LBLI print ref.

T vy
_n_o(End of literals?)
es

M
Y
L(LBL) —= WORD o ~\ ,
Reference value ‘—L—(More refs? _/: Sat MLOC
~—LBL + 2

Listing on tape?

yes

WEOFL
write EOF

MONIT

3-401

FINISH
WEOFL AND GTLBL ROUTINES

900 Series Only

. EFMT . Set ECW to point to
write EOF list dictionary entry for

byte

Y v
EXIT A

GEC End of entry
get character

\
normal

EXIT

Y

Insert character into
location addressed by
WORD

¥

‘4———2(4th character?)

yes

Y
WORD + 1 —= WORD

3-402

?00 Series Only

Field Read Write

B Binary mode flag Binary mode flag

C Channel Channel

U Unit Unit

[O routine Location of input routine Location of output routine
EOF routine Not used Location of EOF routine
Dummy control word Temporary storage To initialize control word
Control word First word read First word to write

Words 7-45 Remainder of record read Remainder of record to write

ITEM AND TABLE FORMATS USED BY ENCODER

Dictionary Item Format

bits 0 3456 1112 17 18 23

word

0 L T st 2nd 3rd
1 4th

2
3 14th 15th

where:

L is the number of characters in entry
T is type of string:

0 - blank

1 - special

2 - numeric

3 - alphanumeric
Entries are full words, as many as needed to represent the string, with a maximum of four words.

The 1st through 15th are characters comprising the string (except for type 0 (blank) strings, where

the following one or two characters give the string length).

900 Series Only

CPO (Search Table) Item Format

bits 01 3456 89 23
words

0 D B DICTIONARY

1 LESSER

2 GREATER

where:
D is direction taken from item:
0 if lesser

1 if greater

B is balance of table from item:
0 if in balance
1 heavy greater

2 heavy lesser

DICTIONARY is location of dictionary entry for item.
" LESSER is location of item smaller than this item.

GREATER is location of item larger than this item.

APO (Dictionary Address Table) Item Format

VALU DICTIONARY

bits 0 89 23

where:

VALU is byte value of entry.
DICTIONARY is location of dictionary item for entry.

200
4-4

900 Series Only

ITEM TABLE FORMATS USED IN META-SYMBOL

Byte Table Entry

Entry for byte b is in STBL - b. Byte table consist of one word with the following format:

C N TI|F A field
(2) [0 (4) (2) |(1) (14) no. of bits
0 123 67 8910 23 bit number

where:
C is character position of first character of string in dictionary.
N is number of characters in dictionary string entry,
T is type:
0 - Blank string
1 - Special character string
2 - Numeric character string
3 - Alphanumeric character string
F - The interpretation of F depends upon which routine is operative:
PREA and SRNK
F is flag for interpreting A field.
PAS1, PAS2, FNSH

F is used to detect illegal forward references. F is set to 1 when item is defined during

second pass.

A -If F = 0, A isaddress of word in dictionary containing first character of string. If F = 1,
A is address of item in item table with the string of this byte as key. That item will also
have an F and an A field which are interpreted in the same manner. Eventually they will
be an item with 0 in the F field, and the A field of this item will locate the word in the

dictionary containing the first character of string.

Dictionary Table Entry

Entry for string s follows entry for string s-1.

Dictionary strings, with control characters removed, are packed one following the other without
regard to word boundaries. The first character of a string is stored in the character position
following the position of the last character of the previous string.

900
4-5

900 Series Only

Symbol Table Entries

First word is control word. Interpretation of remainder of item is determined by control word.

il tlelm]e A field
(3) |M] @ K} @ 1) (14) no. of bits

374 57677 8 0

where:

L is length of entry, including control word.
I is item flag: O if item; 1 if element of list.

T is type: 1 if value; 2 if command; 3 if list; O if reference.
E is error flag.
M is mode. Interpretation is determined by type (T).

F - The interpretation of F depends upon which routine is operative:
PREA and SRNK

F is flag for interpreting A field.
PAS1, PAS2, FNSH

F is used to detect illegal forward reference. F is set to 1 when item is defined during

second pass.

A - If F = 0, Ais address of word in dictionary containing first character of string. If
F = 1, A is address of another item in table (either next item with the same key, if
I = 0, or next element of list, if I = 1). In this case, A is called the associate.

Value item (T = 1). The mode of a value item has the following interpretation:

M=0 Single-precision absolute.
M= Single-precision address.

M=2 Double-precision absolute.
M

it

3 Double-precision floating point.
If M=0, 2, or 3, the datum (or value) follows in the next one to three words. If M =1 and

L = 2, the next word has the following format:

not used

e
IR TRINN

CIR \% field
(M (1) (15) no. of bits

900
4-6

900 Series Only

where:
S is the asterisk flag: 1 if definitions of item was preceded by an asterisk.
C is the common flag: 1 if common bias is to be added.
R is the relocation flag: 1 if relocation bias is to be added.

V is the value of address quantity.

If M=1and L =3, the following two words have this format:

01 AT : 23 bits

where: S, C, R and V have the same meaning as above.

If the mode is 3, a 3-word floating-point value follows.

WORD 1 Least significant 24 bits of fraction.
WORD 2 Most significant 24 bits of fraction.
WORD 3 Exponent.

If the mode is 2, the 2-word double-precision value follows.

WORD 1 Least significant 24 bits of value.
WORD 2 Most significant 24 bits of value.

Command Item (T =2). The mode of a command item determines the sub-type.

Form Command (M = 0). Form pattern is in next word. Form pattern is a word with a 1 in the

first bit position of each field and zeros elsewhere.

Procedure Name (M = 1). The control word is followed by the sample control word:

p B A W field
5) (4) (1) (14) no. of bits
0 45 8 910 23
900

4-7

900 Series Only

where:
P is starting bit position of sample in sample storage word.
B is size of first byte of sample.
Z - If an implied parameter follows (as determined by L in the control word) and if Z =0,
the parameter is a 1-word absolute value; if Z =1, it is a list word (see list word type).

W is the address of word in sample storage containing first bit of sample.

If an implied parameter is present, it follows in the next word.

Directive (M = 2). The control word is followed by a word containing an index to the directive

branch table entry to perform the directive task.

POP Definition (M = 3). The control word is followed by a programmed operator definition word:

bits 0 1'2 7'8'9 23

where:
'S is subtype: 0 - local POP definition
1 - POP reference
2 - external POP definition
N is programmed operator code.

A is value of location counter for POP definitions and zero for POP reference.

List Type (T = 3). This type refers to items which can be referred to in a functional notation.

This includes both list items and function names. The mode determines which sub-type the itemis.

List Item (M =0). The control word for a list item is followed by a list word:

S field

(8) (14) no. of bits
0 78 910 23

900
4-8

900 Series Only

where:
N is number of elements in list,
S is address of first element of list, This is element number 1. If the length of a list item is

greater than 2, a sub-item follows the list word. The sub-item is element 0.

Function Name (M = 1). The control word for a function name item is followed by a sample

control word as described under procedure name item,

Literal Table Entries

First word is control word. Interpretation of remainder of item is determined by control word.

L oo |el m |R A field
(3) (1] @ Jo (14) no. of bits
0 23 567 89"10 23

where:
L is length of entry, including control word.
E is truncation error flag.

M is mode. The mode of a literal item has the following interpretation:

M=0 Single-precision absolute.
M= Single-precision address.
M=2 Double-precision absolute.

M=3 Double-precision floating point.

IfM=0, 2, or 3, the datum (or value) follows in the next one or two words, If M =1,

the next word has the following format.

not used
S C1R v field
(o])'] (6) g(;7(; 5 (15) — No. of bits
900

4-9

where:

900 Series Only

S is asterisk flag: 1 if definition of item was preceded by an asterisk.

C is common flag: 1 if common bias is to be added.

R is relocation flag: 1 if relocation bias is to be added.

V is value of address quantity,

R is relocation flag: 1 if A is relocatable.

A is location the literal will occupy when program is loaded.

DO Table (DOTAB) Format

DOTAB

+1

+2

+3

+4

proc level of DO

9

location of DO label value

®

lines left to
do

(©)

lines left to N\
skip

bits used
byte word

(5)

(14)

lines to do

(6)

DO count
am

contents of CHAD for first line
(24)

Procedure Storage Table Values

PTERM

FST

Terminator of reference parameter list (TERM):

0 if blank
1 if comma
2 if right parenthesis

CNT

Ist ELEMENT LOC

900
4-10

number of bits

number of bits

number of bits

number of bits

number of bits

LNK
PRECW
LPLV
TBLOC
SVMTP
PRORG
PROR
CHDWRD
PRPOS

REFPOS
CCVAL
PRFG

PASS
PRBYT
LBL

LBL1-
LBL3

ELBL
BYTLOC
WLLVL

900 Series Only

Location of last element in list,

Byte table entry from ECW at end-of -parameter list definition.
Value of PLV when proc was entered.

Origin of first symbol table entry at current PROC level.
Location of last word in input buffer at lower PROC level.
Location of last NAME item sample pointer word.

Sample table location of procedure sample for current PROC,
CHAD the current word of input after processing reference list.,

Sample location of PROC line encountered when processing from the sample
storage area.

Location of next input byte following procedure reference parameter list.
Value of CC (location center) at start of PROC reference.

PROC/FUNC flag: negative if neither; zero if PROC reference; 1 if FUNC
reference,

Pass at current PROC level: negative if first; positive if second.
Value of BYT after processing reference parameter list.,

Symbol table control word for a label waiting to be defined. Zero if no
waiting label,

Value of waiting label.

Contents of label on EQU line before calling SCAN.
Location in BYTE table of byte for current waiting label,

Procedure level at which a waiting label is defined.

Formats of Certain SCAN Communication Cells

ICW. This is the control word for an item evaluated by SCAN; it is the symbol table control

word format without dictionary or symbol table pointer,

L ll T IEI M |0 zero
bits 0 234567 82910 23

900
4-11

900 Series Only

where:
L is length
I is element of list
T is type
E is error

M is mode
VALU through VALU+2, This is the value associated with the item at ICW,

TERM terminator of expression:

0 if blank
1 if comma
2 if right parenthesis

STAR leading * flag: 1 if leading * on expression; zero otherwise

Sample Procedure and Function Entries, in order of occurrence. Procedure and function samples

are packed one after the other. A sample follows the preceding sample in the next bit position
without regard to word boundaries, The first bit of a sample is stored in the bit position following

the position of the last bit of the previous sample.

The first line in the sample is the procedure of function line. If the sample is within another
sample, the NAME lines will follow. Otherwise, the next line is the line following the last
NAME line. The remaining lines of the sample follow, through the END line.

X
1

—
N

900 Series Only

SECTION 4
ITEM AND TABLE FORMATS USED IN META-SYMBOL

STANDARD I/O CONTROL WORD

contents |M| C U A
bits 0" 3'4 9710 23
where:
M is a decimal/binary mode flag; -1 for binary
C is channel designation
U is unit number
A is location of 1/O routine to perform the function
Standard /O control word - RAD
NR A
0 910 23
where:
NR is file number
A is address of 1/O linkage routine to perform the function.
STANDARD I/O CONTROL FLAG
contents
Ml C U v Code
bits 0’1 34 9710 23

900 Series Only

MSFNC FORMAT

contents |C SI TO BO LO El EO SO
bits 0'1'2 3 56 89 1712 1415 1718 2021 23

A nonzero field indicates the function is to be performed.

C - compatibility mode LO - listing output
SI - symbolic input El - encoded input
TO - intermediate output! EO - encoded output
BO - binary output SO - symbolic output

STANDARD INPUT/OUTPUT PACKET FORMAT

word bits O=I 3}4 9 10 23

0 LOCATION

] CHECKSUM

2 MAX

3 C U 1/O Routine

4 C U EOF Routine

5 Dummy Control Word

6 Control Word

7

e ——— .

. ———/_\—’

45 —

where the fields have the following meaning:

Field Read ‘ Write

LOCATION Location of next data word Location for next data word
CHECKSUM Temporary storage Exclusive 'OR' of words
MAX Last location of buffer Last location of buffer

t .
TO is always set to nonzero.

900
4-2A

900 Series Only

where:

M is decimal/binary mode flag; -1 for binary

C is channel designation
U is unit number
Code is 0 for no operation

1 for card operation
2 for paper tape operation
3 for magnetic tape operation

If the entire cell is zero, the function is not to be completed.

900
4-2

9300 Only

SECTION 4
ITEM AND TABLE FORMATS USED IN META-SYMBOL

ITEM AND TABLE FORMATS USED BY ENCODER

Dictionary Item Format

bits 0 3456 11 12 17 18 23
word

0 L T Ist 2nd 3rd

1 Ath

2 -

3 14th 15th

where:

L is the number of characters in entry
T is type of string:

0 - blank

1 - special

2 - numeric

3 - alphanumeric
Entries are full words, as many as needed to represent the string, with a maximum of four words.
The 1st through 15th are characters comprising the string (except for type 0 (blank) strings, where

‘the following one or two characters give the string length).

CPO (Search Table) Item Format

bits 01 3456 89 23
words
0 D B DICTIONARY
! LESSER
2 GREATER
9300

4-1

9300 Only

where:

D is direction taken from item:
0 if lesser

1 if greater

B is balance of table from item:
0 if in balance
1 heavy greater

2 heavy lesser

DICTIONARY is location of dictionary entry for item.
LESSER is location of item smaller than this item.

GREATER is location of item larger than this item.

APQO (Dictionary Address Table) Item Format

VALU DICTIONARY
bits 0 89 23

where:

VALU is byte value of entry.
DICTIONARY is location of dictionary item for entry.

ITEM TABLE FORMATS USED IN META-SYMBOL

Byte Table Entry

Entry for byte b is in STBL - b. Byte table consists of one word with the following format:

C |F N T A field
2y @ (2) (15) no. of bits
01 3 67 89 . 23 bit number
9300

4-2

9300 Only

where:
C is character position of first character of string in dictionary.

N is number of characters in dictionary string entry.
T is type:
0 - Blank string
| - Special character string
2 - Numeric character string
3 - Alphanumeric character string
F - The interpretation of F depends upon which routine is operative:

PREA and SRNK
F is flag for interpreting A field.

PAS1, PAS2, FNSH
F is used to detect illegal forward references. F is set to 1 when item is defined during

second pass.

A - IfF = 0, A is address of word in dictionary containing first character of string. If
F = 1, A is address of item in item table with the string of this byte as key. That item
will also have an F and an A field which are interpreted in the same manner. Eventually
they will be an item with 0 in the F field, and the A field of this item will locate the

word in the dictionary containing the first character of string.
Dictionary Table Entry

Entry for string s follows entry for string s-1.

Dictionary strings, with control characters removed, are packed one following the other without
regard to word boundaries. The first character of a string is stored in the character position fol-

lowing the position of the last character of the previous string.

Symbol Table Entries

First word is control word. Interpretation of remainder of item is determined by control word.

LIFJI] T JEIM A field
@ (o] @ 0] @ (15) no. of bits
0 1'23'4 56'78'9 23

where:

L is length of entry, including control word.

Iis item flag: O if item; 1 if element of list.

9300
4-3

9300 Only

T is type: 1 if value; 2 if command; 3 if list; 0 if reference.

E is error flag.

M is mode. Interpretation is determined by type (T).

F - The interpretation of F depends upon which routine is operative:
PREA and SRNK
F is flag for interpreting A field.
PAS1, PAS2, FNSH

F is used to detect illegal forward references. F is set to 1 when item is defined during
second pass.

A - If F = 0, Ais address of word in dictionary containing first character of string. If
F = 1, A is address of another item in table (either next item with the same key, if
I = 0, or next element of list, if I = 1), In this case, A is called the associate.

Value item (T = 1). The mode of a value item has the following interpretation:

M = 0 Single-precision absolute.

M =1 Single=precision address.
M=2 Double-precision absolute.

M =3 Double-precision floating point.

i

If M =0, 2, or 3, the datum (or value) follows in the next one to three words. If M = 1 and
L = 2, the next word has the following format:

not used

S CIR \ field

DK (15) no. of bits
] Ll
01 67 89 23
where:
S is the asterisk flag: 1 if definitions of item was preceded by an asterisk.

C is the common flag: 1 if common bias is to be added.
R is the relocation flag: 1 if relocation bias is to be added.

V is the value of address quantity.

If M =1andL = 3, the following two words have this format:

R &\\\\\\\\\\\\\\\\\\\ field
23 bits

9300
4-4

9300 Only

where:
S, C, Rand V have the same meaning as above.
If the mode is 3, a 3-word floating-point value follows.

WORD 1 Least significant 24 bits of fraction.
WORD 2 Most significant 24 bits of fraction.
WORD 3 Exponent.

If the mode is 2, the 2-word double-precision value follows.

WORD 1 Least significant 24 bits of value.
WORD 2 Most significant 24 bits of value.

Command Item (T = 2). The mode of a command item determines the sub-type.

Form Command (M = 0). Form pattern is in next word. Form pattern is a word with a 1 in the

first bit position of each field and zeros elsewhere.

Procedure Name (M = 1). The control word is followed by the sample control word:

P B Z w field
() (4) (1) (14) no. of bits
0 4°5 8 910 23

where:

P is starting bit position of sample in sample storage word.

B is size of first byte of sample.

Z - If an implied parameter follows (as determined by L in the control word) and if Z = 0,
the parameter is a 1-word absolute value; if Z = 1, it is a list word (see list word type).

W is the address of word in sample storage containing first bit of sample.

If an implied parameter is present, it follows the next word.

Directive (M = 2). The control word is followed by a word containing an index to the directive

branch table entry to perform the directive task.

9300
4-5

9300 Only

POP Definition (M = 3). Thecontrol word is followed by a programmed operator definition word:

bits 0172 7°8 23

where:

S is subtype: 0 - local POP definition

1 - POP reference

2 - external POP definition
N is programmed operator code.

A is value of location counter for POP definitions and zero for POP reference.

List Type (T = 3). This type refers to items which can be referred to in a functional notation.

This includes both list items and function names. The mode determines which sub-type the item

is.

List Item (M = 0). The control word for a list item is followed by a list word:

N S field
(8) (2) (14) no. of bits

where:

N is number of elements in list.
S is address of first element of list. This is element number 1. If the length of a list item is

greater than 2, a sub-item follows the list word. The sub-item is element 0.

Function Name (M = 1). The control word for a function name item is followed by a sample

control word as described under procedure name item.

9300
4-6

9300 Only

Literal Table Entries

Fitst word is control word. Interpretation of remainder of item is determined by control word.

LIR|OooI1{EfM A field
@M (1)] (2) (15) no. of bits
0 123 567 89 23

where:

L is length of entry, including control word.

E is truncation error flag.

M is mode. The mode of a literal item has the following interpretation:
M =0 Single-precision absolute.
M =1 Single-precision address.
M -2 Double-precision absolute.

M =3 Double-precision floating point.

IfM =0, 2, or 3, the datum (or value) follows in the next one or two words. If M = 1, the

next word has the following format,

5 CIR v | field
)) (15) no. of bits

(1) (6) (1
01 6'7'89 23

where:

S is asterisk flag: 1 if definition of item was preceded by an asterisk.
C is common flag: 1 if common bias is o be added.

R is relocation flag: 1 if relocation bias is to be added.

V is value of address quantity.

R is relocation flag: 1 if A is relocatable.

A is location the literal will occupy when program is loaded.

9300
4-7

9300 Only

DO Table (DOTAB) Format

DOTAB

+1

+2

+3

+4

proc level of DO location of DO label value
1) (14)

(%)

lines left to | lines left to

do skip

(6) 6)
bits used byte \\\\\\ location of first byte of first line
byte word size A\

) @ M (14)

lines to do lines to skip DO count

(6) (6) (1) (11)

contents of CHAD for first line

(24)

Procedure Storage Table Values

PTERM

FST

LNK
PRECW
LPLV
TBLOC
SVMTP
PRORG
PROR
CHDWRD

Terminator of reference parameter list (TERM):

0 if blank
1 if comma
2 if right parenthesis

CNT Ist ELEMENT LOC

Location of last element in list.

Byte table entry from ECW at end-of-parameter list definition.
Value of PLV when proc was entered.

Origin of first symbol table entry at current PROC level.
Location of last word in input buffer at lower PROC level.
Location of last NAME item sample pointer word.

Sample table location of procedure sample for cﬁrrent PROC.

CHAD the current word of input after processing reference list.

9300
4-8

number of bits

number of bits

number of bits

number of bits

number of bits

9300 Only

PRPOS Sample location of PROC line encountered when processing from the sample
storage area.

REFPOS Location of next input byte following procedure reference parameter list.

CCVAL Value of CC (location center) at start of PROC reference.

PRFG PROC/FUNC flag: negative if neither; zero if PROC reference; 1 if FUNC
reference.

PASS Pass at current PROC level: negative if first; positive if second.

PRBYT Value of BYT after processing reference parameter |ist.

LBL Symbol table control word for a label waiting to be defined. Zero if no waiting
label.

LBL1- Value of waiting label.

LBL3

ELBL Contents of label on EQU line before calling SCAN.

BYTLOC Location in BYTE table of byte for current waiting label.

WLLVL Procedure level at which a waiting label is defined.

Formats of Certain SCAN Communication Cells

ICW. This is the control word for an item evaluated by SCAN; it is the symbol table control

word format without dictionary or symbol table pointer.

L 10JI1 T |E] M zero
bits 0 12 34 567 8 23

where;:

L is length

[is element of list
Tis type>

E is error

M is mode

9300 Only

VALU through VAL+2. This is the value associated with the item at ICW.

TERM terminator of expression:

0 if blank
1 if comma
2 if right parenthesis

STAR leading * flag: 1 if leading * on expression; zero otherwise

Sample Procedure and Function Entries, in order of occurrence. Procedure and function samples

are packed one after the other. A sample follows the preceding sample in the next bit position
without regard to word boundaries. The first bit of a sample is stored in the bit position following

the position of the last bit of the previous sample.

The first line in the sample is the procedure of function line. If the sample is within another
sample, the NAME lines will follow. Otherwise, the next line is the line following the last

NAME line. The remaining lines of the sample follow, through the END line.

9300
4-10

900 Series Only

SECTION 5
OPERATIONAL INFORMATION

The META-SYMBOL assembly system encompasses several core overlays and much communication
between segments. The purpose of this section is to summarize the steps taken in modifying
portions of the system, to explain how to make system tapes, to define error messages and error

halts, and to suggest items to be checked in the event of trouble.

UPDATING META-SYMBOL ON MONARCH SYSTEM TAPES

Use the standard MCNARCH ASSIGN, UPDATE, and COPY control cards, Insert in the update
deck the binary (encoded in the case of PROC) decks to be changed and do a normal update.

When updating a section of META-SYMBOL, all portions of the labeled segment must be updated.

For example, to insert a new PROC deck, one must also insert the PREASM absolute deck pre-

ceding it.

Binary patches may be inserted at the end of the absolute binary deck just preceding the END

card,

If PREASM, SHRINK, ASSEMBLR, PAS2, or FINISH is modified through reassembly, it is neces-

sary to convert the program to absolute before placing it on the updated system tape.

The order of the deck is as follows:

ENCODER

POPS (910 or 920 depending on object machine)

S48

MON1

Basic Tape Loader

MSCONTRL

PREASM (absolute deck combining parts 1 and 2 and the POPS)
Standard procedure deck (210, 920, or 9300)

SHRINK (absolute deck)

ASSEMBLR (absolute deck of pass 1 containing pass 1 parts 1-5 and POPS)
PAS2 (absolute deck of pass 2)

FINISH (absolute deck of FINISH)

20
5-1

900 Series Only

MAKING THE ABSOLUTE PROGRAM DECKS

Following is a list of steps needed to make the various absolute decks:

].

PREA

Load with zero relocation bias PREASM part 1, the POP deck (910, or 920), and
PREASM part 2, Load the absolute program maker (Cat. No. 000018B) and dump from
cell 100 through 126, Dump from 1505 through the end of PREASM part 2,

SRNK

Remove the END card from PREASM part 2 and load PREASM part 1, POP, PREASM
part 2, and SHRINK at relocation bias zero. Load the absolute program maker and

dump from 3615 through the end of SHRINK.
PAS1

Load the POPs with a relocation bias sufficient to put them after PAS2, After the POPs
are loaded, clear the relocation bias to zero (clear the A register) and load parts 1 to 5
of the assembler pass 1. Load the absolute program maker and dump from 100 to 126 and

from 1600 through the end of the POPs.
PAS2

Remove the external symbol definition cards (type 1 cards) from the beginning of the

relocatable deck. The balance is a loadable absolute deck.
FNSH
Take the external symbol definitions from PAS2 and place them in front of the FINISH

relocatable deck. Load the external definitions and FINISH, Load the absolute pro-

gram maker and dump from 4506 to the end of the FINISH program,

5-2

900 Series Only

ERROR MESSAGE CODES

The standard abort message is "META-SYMBOL ERROR XX. "

Where XX has the following meanings:

XX

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16

Interpretation

Insufficient space to complete encoding of input.

Corrections to encoded deck but encoded input file is empty.

End of file detected while reading encoded input.

Insufficient space to complete preassembly operations.

Insufficient space to complete the assembly.

Data error. META-SYMBOL does not recognize the data as anything meaningful.
Requested output on a device which is not available.

Corrections out of sequence.

End of file detected by ENCODER when trying to read intermediate output tape X1.
Not used

Byte larger than dictionary (bad encoded deck).

Not ENCODED deck

Checksum error reading system tape.

Preassembler overflow (ETAB)

Not used

Data error causing META-SYMBOL to attempt to process procedure sample beyond end of
table.

Errors 05, 06, and 16 are accompanied by a printout which shows the value of certain internal

parameters at the time of the abort:

LINE NUMBER BREAK
BREAK SMPWRD
ATION
LOCATION COUNTER LTBE | cEcOND PASS ONLY
UPPER LTBL
LOWER

The last six of these are useful in determining the nature of the assembler overflow.

900
5-3

900 Series Only

PAS1 Overflows

During PAS!1 all memory not in use is allocated to four partially dynamic tables. UPPER is set to
top of available memory; SMPWRD is set to bottom of available memory; LOWER and BREAK are
set to bottom of available memory + BREAK1.

Odd procedure level symbols are saved in decending order from top of memory (note main program
is considered level 1); UPPER is updated to continuously point to the next high available cell.
Even procedures and external definitions are built upward from the original value of LOWER, and

LOWER is modified. If LOWER > UPPER, one type of PAS] overflow has occurred.

User procedure sample is built upward from SMPWRD, and SMPWRD is modified. If SMPWRD >
BREAK, the second type of overflow has occurred.

PAS2 Overflows

At the beginning of PAS2, LTBE is set equal to BREAK, LOWER is set equal to BREAK, and
LTBL is set equal to SMPWRD which is just above user sample. During PAS2 the area between
LOWER and UPPER is used in a manner similar to that of PAS1 and can overflow if LOWER >
UPPER.

External reference tables are builtdown from BREAK using LTBE as a pointer. Literals are built

up from SMPWRD using LTBL as a pointer. If LTBL > LTBE, overflow has occurred.

I/O ERROR MESSAGES AND HALTS

When an 1/O error is detected a simple message is typed and the computer halts. The action
taken if the halt is cleared depends on the type of error and the device involved. There are
three types of error. The message consists of a 2-letter indication of the type of error and a
2-digit indication of the I/O device. The letter indicators are defined below; the 2-digit
number is the unit address number used in EOM selects (see Reference Manual for appropriate

900 Series Computer).

Buffer Error (BE)

1. Examples:
BE11 buffer error while reading magnetic tape 1

BE42 buffer error while writing magnetic tape 2

900
5-4

900 Series Only

2. Action on clearing halt.

a. Magnetic tape input
Since ten attempts are made to read the record before halting, continueing causes
META-SYMBOL to accept the bad record.
b. Paper tape or card input
Try again,
c. Magnetic tape output
Try again.
d. Output other than magnetic tape.

Continve,

Checksum Error (CS)

1. Examples:

CS06 checksum error card reader.

CS11 checksum error reading magnetic tape 1.
2. Action on clearing halt

Accept bad record.

Write Error (FP) - Trying to write on file protected tape

1. Example:
FP42 Magnetic tape 2 file protected
2. Action on clearing halt

Checks again.

S00
5-5

900 and 9300 Series

SECTION 6
META-SYMBOL CONCORDANCE OPTION

DESCRIPTION OF THE OVERALL PROCESSING

The program to provide the concordance listing is loaded as two separate overlays following

FINISH on the MONARCH system tape.

If a request for a concordance has been made, FINISH saves the locations of the dictionary
and symbol tables and then calls the tape loader to load the first overlay of the concordance

program, CONCRD.

If exceptions to the normal case are indicated, CONCRD reads the exception control records
consisting of EXCLUDE or INCLUDE records from the symbolic input device and retains the
list of symbols to be included or excluded. The intermediate output tape, X1, is then scanned
to extract the symbols and line numbers to appear in the concordance listing. Symbols to
appear in the listing are converted from the encoded to symbolic format and are retained

in core. The line numbers containing symbolic definitions or references to appear in the
listing are written to the scratch file on X2. For each definition or reference to appear

on a line, a pointer word giving the location of the symbol in core and a flag indicating
definition or reference is written on X2. As each symbol reference is encountered, a count
of the number of half words needed to retain the reference line number is kept with the

symbol .

When the entire encoded input file has been processed, the tapes X1 and X2 are rewound

and the second overlay, CON2, of the concordance routine is loaded.

CONZ2 rewinds the system tape and then passes through the symbol table and determines the
total core requirement to retain the reference line numbers for the program. If the number
of words needed to retain the reference line numbers exceeds the core available, the
symbols that appear at the end of the listing are ignored and a recount is made. This process
of elimination of later symbols is continued until a subset of symbols is obtained for which
all reference line numbers can be retained. Space is then allocated for reference line
numbers for each symbol or each symbol in the subset, the scratch tape X2 is read, and

the reference and definition line numbers are stored into blocks for each symbol.

6-1

900 and 9300 Series

The symbol table is then searched for the lowest remaining entry, using a modified linear

search technique, and the listing is formatted and output. When the symbol table becomes
empty the core requirements for any remaining symbol reference line numbers is determined
and these are read and processed. Again, if there is insufficient space for all of them they

are taken in segments.

When all symbols have been listed, control returns to MONARCH.

X!Dis Xerox Data Systems

XDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 850086

850088

Catalog No. 9300: 860083

IDENTIFICATION:

PURPOSE:

ACTION:

CONCRD

To process the exception control records, scan the encoded program
file, generate the concordance scratch output file, determine space
requirements needed to retain the reference lines number for each
symbol, and expand the symbols to appear on the concordance output

from their encoded format.

CONCRD performs the following functions:

1. CONCRD determines the locations of the unit assignment table
entries for the various 1/O functions and calls INIT to initialize

the 1/O routines.
2. GETXC is called to process the INCLUDE and EXCLUDE records.

3. RECON is called to initialize the parameters to process the encoded

input file.

4. The LINE routine is called to process the encoded input file,
determine which symbols to include in the listing, reconstruct
the symbols to be included, output the scratch tape X2 and maintain

the reference line number storage requirements for each symbol.

5. CONCRD rewinds the encoded input tape X1 and scratch tape
X2 before calling the tape loader to load the second overlay

of the concordance routine X, CON2.

6-3

900 Series: 850086, 850088
Catalog No. 9300: 860083

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

1/O assignments are determined from ’the unit assignments maintained
by MONARCH. CONCRD overlays 2 cells of the tape loader in
order to reset the calling locations of the typewriter error message
routine and the abort routine used by the loader. CONCRD is given
three words of control information by FINISH, which are located in
lower core. CONCRD is an absolute program, part of which is
origined just below the start of the encoded dictionary; this part is

initialization code that may be destroyed after the initialization

- process is completed. CONCRD is coded in 910-925 subset code.

Control is transferred to CONCRD by the tape loader upon completion
of the loading process.

CONCRD uses all available memory.

REWW
INIT
GETXC
RECON
LINE

XIDIS Xerox Data Systems

XDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 850086

850088
Cgiglog No. 9300: 860083

IDENTIFICATION: LINE

PURPOSE: To obtain and process lines of encoded program text, generate the
symbol table of reconstructed symbols, output the reference and
definition line numbers and pointers to the scratch tape, and maintain
a count of the memory storage requirements associated with each

symbol.

ACTION: LINE calls PLBL to obtain the label and operation bytes for the line.
The label, if any, is tested for inclusion into the concordance listing
and, if it is to be included, the symbol is entered into the symbol
table. The byte table pointer is changed to point to the symbol table
entry, the line number of the label is output to the scratch tape,
followed by a pointer word indicating the location of the symbol

table entry.

The operation field is processed and tested for special action (PROC,
FUNC, NAME, END, TEXT, BCD, etc.). If the operation is to
appear in the listing it is counted as a reference to the appropriate

symbol. If the symbol is not in the symbol table it is inserted.

The operand field is then scanned by calling VFLD and the reference
line number is output, followed by the symbol pointer word. If the
referenced symbol does not appear in the symbol table it is inserted,

together with a flag indicating that the symbol definition is unknown.
Comments are skipped by calling SKIP.

Line continues processing text lines until the program END line has

been processed.

900 Series: 850086, 850088
Catalog No. 2300: 860083

PROGRAMMING LINE is an open routine called by the CONCRD program and

TECHNIQUES: assembled as part of CONCRD.
CALLING BRU LINE

SEQUENCE: return is to location STOP in CONCRD.
MEMORY 3648 cells plus constants.
REQUIREMENTS:

SUBROUTINES PLBL STC

USED: TSTTYP COMP

TSTOP OUTPUT
GTDC TSTEX
GET VFLD
SKiP

6-6

X'D'S Xerox Data Systems

XDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 700 Seres: 850086
Catalog No. 9300: 860083

IDENTIFICATION: TSTTYP
PURPOSE: To determine the type of label definition.

ACTION: TSTTYP locates the symbol table entry generated by META-SYMBOL
for a given symbol and from this determines the type of definition

associated with a symbol.

PROGRAMMING TSTTYP is a closed routine assembled as part of CONCRD.
TECHNIQUES:

CALLING byte number to LBYTE
SEQUENCE: byte table entry to LBCDE
BRM TSTTYP

on exit the type code is in LTYPE

MEMORY

REQUIREMENTS: 668 cells plus constants.
SUBROUTINES None

USED:

X.D‘S Xerox Data Systems

XDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 900 Series: 850086
850088
Catalog No. 9300: 860083

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING

SEQUENCE:

MEMORY

REQUIREMENTS:

SUBROUTINES
USED:

PLBL

To process the line of text through the operation field retaining the
byte number and byte table entry for the label and operation

code.

PLBL obtains the bytes for the line of text by calling GTB. The label
and operation code bytes are retained, as is the byte table entry for
each. The current sample level is retained as the label level unless
the label is external, in which case it is reduced by one. The first
nonblank byte of the operand field is obtained to be analyzed by

the VFLD routine.

PLBL is a closed routine assembled as part of CONCRD.

BRM PLBL
end of line return

normal return

”]8 cells plus constants and storage cells.

GTB
GTDC

X[D'S Xerox Data Sgstems

XDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 900 Series: 850086
850088
o Catalog No. 92300; 860083
IDENTIFICATION: TSTOP
PURPOSE: To reconstruct the operation code and test it for certain operations

(PROC, FUNC, NAME, END, TEXT, BCD, FORM, POPD, OPD).

ACTION: TSTOP obtains the symbolic operation code and tests it against a list
of directives. If the operation matches, control goes to the code to
process that class of directive. PROC and FUNC cause the sample
level to be incremented and the label type to be set to list. END
decrements the sample level. Name decrements the label level by 1
and sets the label type to operator. FORM, POPD, and OPD set the
label type to operator. BCD and TEXT cause flags to be set to prevent

the BCD message from being interpreted as symbolics.

PROGRAMMING TSTOP is a closed routine assembled as part of CONCRD.
TECHNIQUES:

CALLING BRM TSTOP
SEQUENCE:
MEMORY 1668 cells plus constants and storage cells.
REQUIREMENTS:
SUBROUTINES GTDC
USED: STC
GET

X1D‘S Xerox Data Systems

XDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 850086

850088

— : 860083

IDENTIFICATION: TSTEX

PURPOSE: To test each operator that is to be deleted from the listing and, if it

is not critical (see TSTOP), to purge the entry from the byte table.
ACTION: TSTEX tests the operation code against a list of special directives. If

the operation is not any of these, the byte table entry for the symbol

is set to zero.

PROGRAMMING TSTEX is a closed routine assembled as part of CONCRD.

TECHNIQUES:
CALLING location of symbol to CLOC
SEQUENCE: symbol length to A register
BRM TSTEX
MEMORY 338 cells plus constants and storage cells.
REQUIREMENTS:
SUBROUTINES None

USED:

6-10

XlDls Xerox Data Systems

XDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 850086

850088
__ Catalog No. 9300: 860083

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING

SEQUENCE:

MEMORY

REQUIREMENTS:

SUBROUTINES
USED:

VFLD

To process the operand fields of the program text.

VFLD scans the operand field for symbolic items. As they are encoun-
tered they are tested for inclusion in the concordance listing. If the
symbol is to-appear in the listing and has not been previously encoun-
tered, it is reconstructed and inserted into the symbol table. The
space requirement (one or two halfwords) is tallied in the symbol
control word and the location of the symbol is output to the scratch
file. If the line number of the current line has not been output to the
scratch file, it is output preceding the symbol table pointer. Alpha-
numeric data is skipped and, if the line is a TEXT or BCD line, only

the count field is processed.

VFLD is a closed routine assembled as part of CONCRD.

First byte of field to NBYT
First byte table entry to BCW
BRM VFLD

210, cells plus constants and storage cells.

8

GTDC SKPQT

STC GET
COMP TSTTYP
GTB TSTEX
OUTPUT

6-11

&D‘E Xerox Data Systems

XDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 900 Series: 850085
: 850088
Catalog No. 9300: 860083
 IDENTIFICATION: COMP
PURPOSE: To compare a symbol with the entries in a table of symbols.
ACTION: COMP compares a symbol at CLOC with length SLNG with the entries

in a table of symbols at CMTB. CMLN gives the numbers of symbols in
the table CMTB.

PROGRAMMING COMP is a closed routine assembled as part of CONCRD.
TECHNIQUES:

CALLING symbol to CLOC
SEQUENCE: length to SLNG
table address to CMTB
table length to CMLN
BRM COMP
not found exit
symbol found exit

on exit cell TEMP+2 contains the location of the symbol entry if found.

MEMORY 5]8 cells plus constants and storage cells.
REQUIREMENTS:

SUBROUTINES None

USED:

Xlnls Xerox Data Systems

XDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 900 Series: 850086
850088
_ Catalog No. 9300: 860083
IDENTIFICATION: SKPQT
PURPOSE: To skip an alphanumeric constant until an apostrophe (') is encountered.
ACTION: SKPQT obtains bytes by calling GTB until an apostrophe is obtained.

PROGRAMMING SKPQT is a closed routine assembled as part of CONCRD.
TECHNIQUES:

CALLING BRM SKPQT
SEQUENCE:

end of line return

normal return

MEMORY 168 cells plus constants.
REQUIREMENTS:

SUBROUTINES GTB

USED: GTDC

XiDLS‘ Xerox Data Systems

XDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 900 Series: 850086
850088
Catalog No. 9300: 860083
IDENTIFICATION: SKIP B
PURPOSE: To skip to the end of lines of text, including any comments.
ACTION: SKIP calls GTB until an end of line is detected; it then calls GCM

until the comments have been passed.

PROGRAMMING SKIP is a closed routine assembled as part of CONCRD.

TECHNIQUES:

CALLING BRM SKIP

SEQUENCE:

MEMORY 238 cells plus constants and storage cells
REQUIREMENTS:

SUBROUTINES GTB

USED: GCM

6-14

XlD’S Xerox Data Systems

XDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 900 Series: 850085
850088
Catalog N; 9300: 860083

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING

SEQUENCE:

MEMORY

REQUIREMENTS:

SUBROUTINES
USED:

GTDC

To get the first symbolic character for a byte, given the table entry for
the byte.

GTDC stores the symbol length for the byte in LN, sets CNT to the
previous dictionary character position for STC. The location of the
dictionary entry is then determined and the first word of symbolics
obtained, positioned, and placed in DWRD. GTC is called to extract
the first character of the entry, which is placed in CHR and the A

register at ‘exit.

GTDC is a closed subroutine assembled as part of CONCRD.

byte table entry to BCW
GRM GTDC

exit character in CHR and A register

44 octal cells plus constants and storage cells.

GTC

XID‘S Xerox Data Systems

XDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 850086

850088
Catalog No, 92300; 860083)

|

* IDENTIFICATION: ~ GET
- PURPOSE: To get the second and following symbolic characters for a byte.

ACTION: GET decrements the character count, LN, and, if the string is empty,
exits through the end of string exit. If additional characters remain,
GET calls GTC to obtain the next character, which is placed in

CHR and the A register on a normal exit.

PROGRAMMING GET is a closed subroutine assembled as part of CONCRD.
TECHNIQUES:

CALLING BRM GET
SEQUENCE:

end of string exit

normal exit

MEMORY 138 cells plus constants and storage cells.
REQUIREMENTS:

SUBROUTINES GiC

USED:

XlD'S Xerox Data Systems

XDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 900 Series: 850086
850088
Catalog No. 9300: 860083

IDENTIFICATION: OUTPUT

PURPOSE: To output a word to the scratch file on unit X2.

ACTION: OUTPUT stores the contents of the A register into the output
buffer OBUF. If the buffer is filled, the WMTB routine is called to
write the buffer to the scratch file. The buffer is then cleared to zero

and the location for the next data word is initialized .

PROGRAMMING OUTPUT is a closed routine assembled as part of CONCRD. It
TECHNIQUES:

assumes a standard 1/O calling sequence to call the tape write

routine.
CALLING word to output to A register
SEQUENCE: BRM OUTPUT
MEMORY 228 cells plus constants and storage cells.
REQUIREMENTS:
SUBROUTINES 1/O routine associated with writing scratch tape, WMTB.
USED:

XDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 900 Series: 850086
850088
Catalog No. 9300: 860083
IDENTIFICATION: CLOSE
PURPOSE: To close the scratch output file X2.
ACTION: CLOSE empties the output buffer OBUF by calling the WMTB routine
and then writes an end-of-file on X2.
PROGRAMMING CLOSE is a closed routine assembled as part of CONCRD. CLOSE
TECHNIQUES: . .
uses standard 1/O calling sequences to perform the 1/O functions.
CALLING BRM CLOSE
SEQUENCE:
MEMORY 158 cells plus constants and storage cells.
REQUIREMENTS:
SUBROUTINES WMTB
USED: EFMT

XlDls Xerox Data Systems

XDS PROGRAM LIBRARY

——

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

PROGRAM DESCRIPTION 900 Series: 850086
850088
Catalog No. 9300: 860083

RECON

To initialize parameters for reading the encoded input file.

RECON initializes the input buffer location, byte size, byte table

location, and related parameters for interpreting the encoded text file,

X1.

RECON is a closed routine assembled as part of CONCRD.

BRM RECON

378 cells plus constants and storage cells.

None

6-19

X\Dls Xerox Data Systems

XDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 850086

850088
Catalog No. 9300: 860083
IDENTIFICATION: GTC
PURPOSE: To get the next symbolic character from the specified location.
ACTION: GTC extracts the next character from DWRD. If DWRD is empty as

determined by CNT, the next word is obtained from the location
address by BUF. If the buffer is empty (which is not possible when
obtaining characters from the dictionary) the next input record is

obtained by calling INPUT.

PROGRAMMING GTC is a closed routine assembled as part of CONCRD.
TECHNIQUES:

CALLING Number of characters in string, -1 to CNT
SEQUENCE: word containing next character, left-adjusted in DWRD
location of word containing character to BUF
BRM GTC
on exit the character is in CHR and the A register. CNT, DWRD, and

BUF are reset to obtain the next character.

MEMORY 558 cells plus constants and storage cells.
REQUIREMENTS:

SUBROUTINES INPUT

USED:

6-20

XD‘S Xerox Data Systems

XDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 900 Series: 850086
850088
_ _ Ca;fa_l_og No. 9300: 860083
IDENTIFICATION: GTB
PURPOSE: To obtain the next byte of encoded input from the file on X1.
ACTION: GTB extracts the next BSZ bits from BWRD. When BWRD becomes

empty, the next word is taken from the location given by BLOC.
When the buffer becomes empty, INPUT is called to obtain the next
encoded record. GTB steps the byte size when a zero byte is

encountered.

PROGRAMMING GTB is a closed routine assembled as part of CONCRD.
TECHNIQUES:

CALLING BRM GTB
SEQUENCE: on exit BCW contains the byte table entry for the byte, BYT contains
the byte number, NBYT contains the negative of the byte number.
The contents of BCW are in the B register, the byte number is in the

A register, and the X register contains NBYT.

MEM ORY 1038 cells plus constants and storage cells.
REQUIREMENTS:

SUBROUTINES INPUT

USED:

6-21

X!D‘S Xerox Data Systems

XDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 850086

850088
Catalog No. 2300

IDENTIFICATION: GCM
PURPOSE: To obtain comment characters from the encoded input file.

ACTION: GCM gets the next six bits of encoded information from the encoded
input file. BWRD contains the current encoded word addressed by
BLOC. BIT contains the number of bits BWRD which have been used.
INPUT is used to obtain the next encoded record when the input

buffer becomes empty.

PROGRAMMING GCM is closed routine assembled as part of CONCRD.

TECHNIQUES:

CALLING BRM GCM

SEQUENCE:

MEMORY 508 cells plus constants and storage cells.

REQUIREMENTS:

SUBROUTINES INPUT
USED:

6-22

X‘DIS Xerox Data Systems

XDS PROGRAM LIBRARY

9 ies:
PROGRAM DESCRIPTION e o08s
Catalog No. 9300: 860083
IDENTIFICATION: STC
PURPOSE: To store the character in the A register into the character position

indicated by SCHR in the word addressed by SLOC.

ACTION: STC positions the character in the A register to the character position
indicated by SCHR and adds the character to the word addressed by
SLOC. When the word becomes filled, SLOC is incremented and the

new location is cleared.

PROGRAMMING STC is a closed routine assembled as part of CONCRD.
TECHNIQUES:

CALLING character position to SCHR

SEQUENCE: word position to SLOC

character to A register

BRM STC
MEMORY 238 cells plus constants and storage cells
REQUIREMENTS:
SUBROUTINES None
USED:

6-23

Xﬂs Xerox Data Systems

XDS PROGRAM LIBRARY

900 Series: 850086
PROGRAM DESCRIPTION 830085
Catalog No. 9300: 860083
IDENTIFICATION: INPUT
PURPOSE: To read and checksum an encoded input record from X1.
ACTION: INPUT reads a maximum 40-word record from X1 into the encoded

input buffer CBFE and checksums the image.

PROGRAMMING INPUT is a closed routine assembled as part of CONCRD. INPUT

TECHNIQUES: uses the standard META-SYMBOL calling sequence to call RMTB.
CALLING BRM INPUT
SEQUENCE: end of file exit
normal exit
MEMORY 478 cells plus constants, storage cells, and buffer.
REQUIREMENTS:
SUBROUTINES RMTB
USED:

6-24

X.D‘S Xerox Data Systems

XDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 850086

850088
Catalog No. 9300: 860083

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

GETXC

To process the concordance exception control records (INCLUDE,

EXCLUDE, and AEOF).

GETXC initializes the cells to locate the lists of exclusions or
inclusions, then tests to see if exceptions are to be processed. If
there are no exceptions, control returns to CONCRD; otherwise the
exceptions are processed and tables of symbols to be excluded and/or
included are built. GSYM is called to obtain the symbols on the
control card. The appearance of *ALL results in flags (NONE for an
EXCLUDE and ALL for an INCLUDE) being set, indicating a general

exception.
GETXC is a closed routine assembled as part of CONCRD. It is

origined in middle core to be overlaid by tables after it has been

executed.

BRM GETXC

17]8 cells, all resuable, plus constants and storage cells.

GSYM TYPMSG

1/O routine associated with symbolic input.

6-25

X{D]\S Xerox Data Systems

XDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 90 Seies: 50085
Catalog No. 9300: 869r083

(

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY

REQUIREMENTS:

SUBROUTINES
USED:

———

GSC

To get the next symbolic character of the exception control record.

GSC extracts the next character from the symbolic input buffer and

steps the indicators to obtain the next character.

GSC is a closed routine assemblied as part of CONCRD. It is origined

in middle core to be overlaid by tables.
BRM GSC
end of line exit

normal exit

27, cells, all reusable, for table plus constants and storage cells.

8

None

6-26

XJDE Xerox Data Systems

XDS PROGRAM LIBRARY

PROGRAM DESCRIPTION 500 Srie: 85008
Catalog No. 9300: 860083

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING

SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

GSYM
To obtain the next symbol from the exception control record.

GSYM calls GSC to obtain characters from the control record.
Leading blanks are ignored. COMMA, blank, or end of record
terminate the symbol. STC is called to pack the characters into

core. The symbol size is set in SIZE,
GSYM is a closed routine assembled as part of CONCRD. It is
origined in middle core to be overlaid after the exception records

have been processed.

BRM GSYM

25, cells, all reusable, plus constants and storage cells.

8

STC GSC

6-27

1/0 AND 1/0O INITIALIZATION ROUTINES

The input/output device routines used in CONCRD and their attendant initialization

routines are basically a subset of the routines found in MSCONTRL, ENCODER, and other
portions of META-SYMBOL.

Unit and channel assignment are taken from the Unit Assignment Table maintained by

MONARCH. To find unit assignments, the contents of cell 1, which is set by MONARCH,

is used as an index to the table location.

6-28

XtDIS Xerox Data Systems

XDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 700 Series: 850087
Catalog No. 2300: 860084

—

—

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

CON2

To determine the space needed for each symbol to retain all reference
line numbers for the symbol, to read the concordance scratch tape X2,
to build the reference line number table in accordance with the space
allocation, to search the symbol table for the alphanumeric sequence in
which to print the concordance, and to edit and print the concordance

listing.

CON2 calls the allocation routine ALLOC to determine which symbols
are to be processed in this edit pass, and to allocate the storage
requirements for the reference line numbers associated with each symbol .
STRNO is then called to read the scratch tape X2 and to store the
reference and definition line numbers into blocks, each of which
contains all the line numbers associated with a given symbol. SRCH

is then called to fetch the lowest entry in the table and EDIT is

called to format and print the concordance listing for the symbol. When
each symbol is output, its symbol table entry is purged. When all
symbols have been output, control returns to MONARCH.

Communication between CONCRD and CON2, which are separate
core overlays, is maintained in locations between 2008 and 3008.

The program CON2 has an absolute origin that starts at location 3008.

Control is transferred to CON2 by the tape loader when the program
has been loaded. Control returns to MONARCH when the concordance

listing has been completed.

&-29

900 Series: 850087, 850089

Catalog No. 9300: 860084
MEMORY All available core storage.
REQUIREMENTS:
SUBROUTINES REWW STLNO
USED: INPRT SRCH
ALLOC EDIT

I/O routine to perform end-of-file action on the listing output

(EFMT, HOME, or THOME).

6-30

XJD'S Xerox Data Systems

XDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 850087

850089
Catalog No.9300: 860084

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

ALLOC

To allocate the available memory to allow space for the references to
each symbol to be stored together in a single block of core. If space

is not available for all references, to determine the number of symbols

for which space is available. To set a parameter indicating which symbols

are to be included in this edit pass and allocate core accordingly.

ALLOC scans the symbol table established by CONCRD and determines
the space needed for reference line numbers for the concordance. If
the space needed is greater than that available, those symbols appearing
last in the collating sequence are dropped and a recount is made. This
process is repeated until a subset of the symbols that appear at the
beginning of the collating sequence has been selected and can be
processed with the available storage capacity. ALLOC then scans the
symbol table, and for each symbol which is to appear in this edit pass
sets a pointer to the first location for the symbol's reference line
number block. An initial entry is then made in the block, indicating
the location (relative) in which to store the line number containing

the next reference to the symbol. ALLOC exits when the linkages have

all been set.

ALLOC sets a pointer to a table of masks. Any symbol that has an
absolute value larger than the indicated mask is excluded from this

edit pass. ALLOC is a closed routine assembled as part of CON2.

BRM ALLOC

6-31

900 Series: 850087, 850089
Catalog No. 2300; 860084

MEMORY 1348 cells plus constants and storage cells.
REQUIREMENTS:

SUBROUTINES None
USED:

6-32

XID!S Xerox Data Systems

XDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 850087

850089

Catalog No. 9300: 860084

IDENTIFICATION: STLNO

PURPOSE: To read the concordance scratch tape X2 and to establish the reference

line number table.

ACTION: STLNO reads the scratch tape X2 by calling the magnetic tape read
routine RMTB. The data is then processed and the reference and
definition line numbers for each symbol are stored in the space
allocated for them. When entering line numbers, only those symbols

which are less than the allocation mask are considered.

PROGRAMMING STLNO uses the standard META-SYMBOL call sequence to call the

TECHNIQUES: RMTB 1/O routine. STLNO is a closed routine assembled as part of
CONZ2.

CALLING BRM STLNO

SEQUENCE:

MEMORY 1428ce||s plus constants and storage cells.

REQUIREMENTS:

SUBROUTINES RMTB

USED:

6-33

X@s Xerox Data Systems

XDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 850087

850089

Catalog No._9300; 860084

IDENTIFICATION: SRCH

PURPOSE: To obtain the lowest entry in the symbol table.

ACTION: SRCH is a modified linear search routine capable of comparing variable
length entries. When SRCH is entered, the origin of the symbol
table is entered in LAST and the previous contents of LAST are placed
in STRT as the location of the first symbol to consider. Symbols
following STRT are then compared to the symbol addressed by STRT
until an entry is found that precedes STRT in the collating sequence.
The contents of STRT are then moved to LAST and the location of the
lower entry is placed in STRT. When the end of the table is reached,

the routine exits with STRT pointing to the lowest entry.

PROGRAMMING SRCH is a closed routine assembled as part of CONZ2,

TECHNIQUES:

CALLING BRM SRCH

SEQUENCE: on exit STRT points to lowest symbol
MEMORY 1748 cells plus constants and storage cells.
REQUIREMENTS:

SUBROUTINES None

USED:

6-34

X‘Dls Xerox Data Systems

XDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 850087
850089
Catalog No. 9300: 860084 _

IDENTIFICATION: EDIT

PURPOSE: To format the line images for the concordance listing and to cause

the line to be written to the listing output media.

ACTION: EDIT extracts the symbol type from the symbol table entry and translates
this to a one- or two-character alphanumeric type flag. The defining
line number is converted to BCD code and inserted into the image. The
symbol is moved into the print buffer and padded with trailing blanks.
The reference line numbers are obtained, converted to BCD by calling
CNVWRT, and inserted into the image by calling STRNO. When the
entire list of references has been processed, any partial line image is
output by calling the listing output routine, the buffer is set to blanks,

and an exit is made from EDIT.

PROGRAMMING EDIT is a closed routine assembled as part of CON2. The standard

TECHNIQUES: META-SYMBOL call sequence is used to call the listing output

routine.
CALLING location of symboyl table entry to STRT
SEQUENCE: location of symbol to CFT

BRM EDIT

MEMORY 1608 locations plus constants and storage cells.
REQUIREMENTS:
SUBROUTINES CNVRT STRNO
USED:

1/0O routine associated with listing output (PRNT, TYPWRT, WMTB).

6-35

XEDIS Xerox Data Systems

XDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 850087

850088
Catalog No. 9300: 860084
IDENTIFICATION: STRNO
PURPOSE: To insert reference line numbers into the concordance print image and

to cause the line image to be output when filled.

ACTION: STRNO places the reference line number contained in the A register
on entry into the next available position in the print image: if the
line image is complete, the listing output routine is called to write the

line and the buffer is cleared to blanks.

PROGRAMMING STRNO is a closed routine assembled as part of CON2.
TECHNIQUES:

CALLING line number to A register

SEQUENCE: BRM STRNO

MEMORY 43, cells plus constants and storage cells.
REQUIREMENTS: -

SUBROUTINES 1/O routine for listing output (PRNT, TYPWRT, WMTB).
USED: '

6-36

X’D{S Xerox Data Systems

XDS PROGRAM LIBRARY

PROGRAM DESCR'PT'UN 900 Series: 850087
850089
Catolgq‘__(No. 9300: 86(1284

IDENTIFICATION: CNVRT

PURPOSE: To convert binary line number to BCD with lead blanks.

ACTION: By successive division, CNVRT generates the BCD number from the
binary number contained in the A register on entry. The BCD result
is then edited and lead zeros are replaced by blanks. Results are

left in the A register.

PROGRAMMING CNVRT is a closed routine assembled as part of CON2.
TECHNIQUES:

CALLING binary number to A register

SEQUENCE: BRM CNVRT

MEMORY 40 _ cells plus constants and storage cells.
REQUIREMENTS: 8

SUBROUTINES None

USED:

6-37

1/O ROUTINES AND INITIALIZATION ROUTINES

The input/output routines and attendant initialization routines used in CON2 are basically
the same as those used in MSCONTRL, PAS2, and other portions of META-SYMBOL. Unit

and channel assignments are taken from the Unit Assignment Table maintained by MONARCH.

6-38

900 and 9300 Series

SECTION 7
ITEM AND TABLE FORMATS USED BY THE CONCORDANCE PROGRAM

SYMBOL TABLE ENTRY FORMAT

0 1 2-5 6 -19 20 - 23
control word D | H I W L

symbol — from
1-4 words left-adjusted
with trailing zeros

where
D is a one-bit flag, 1 if symbol definition line number is unknown.
H is not used.
T is type code:
0 —absolute
1 —relocatable
2 — list
3 —operation
4 — external-absolute
5 — external-relocatable
6 — external-list
7 — external-operation
W is the number of halfwords of reference line numbers.

L is the number of characters in symbol.

After the ALLOC routine has been executed, the control word is given the following format:
0-1 2-5 6 -19 20 - 23
H T A L

where

H is the high 2 bits of the definition line number.

T is type, as above.

A is the address of first word of reference line number block for this symbol.

L is length, as above.

7-1

900 and 92300 Series

If the first word of the symbol is zero, the symbol has been previously output to the

concordance listing.

REFERENCE LINE NUMBER BLOCK FORMAT

0 11 12 23
DEF SIZE
NO. NO.
NO. NO.
NO.

where

DEF is the low 12 bits of the definition line number.

SIZE is the number of words in the block.
NO. are reference line numbers packed two per word unless the line number is

greater than 2]22, in which case the high 10 bits all contain 1's and the line

number is in the low 14 bits.

RECORD FORMAT OF CONCORDANCE SCRATCH TAPE X2

The record size maximum is 40 words. Words have the following format:

012 8 9 23
L D A

where

L is the line number flag. If L =1, the line number is A. If L is zero, A is the location

in the symbol table of a symbol entry.
D is the definition flag if L =0 and D is not zero. The symbol at A was defined at the

last preceding line number. If L =0 and D = 0 the symbol at A was referenced

at the last preceding line number.

BYTE TABLE FORMAT

During the concordance run, entries in the byte table are modified to reflect definitions of
concordance symbols. If a byte table entry is zero, the symbol represented by the entry is to
be excluded from the corcordance.

7-2

900 and 9300 Series

When a symbol is inserted into the concordance symbol table, the associate field (bits 9

to 23) of the byte table entry is modified to point to the new symbol location.

EXCLUDE AND INCLUDE TABLE FORMATS

20 - 23

symbol — from 1-4 words with
trailing zero characters

where

L is the symbol length in characters.

CONCORDANCE OVERALL FLOW

CONZ2

Determine memory size,
1/O control cells, and
initialize 1/O routines.
Rewind tapes.

Rewind system tape,
initialize 1/0O routines
for listing.

=

'

GETXC

ALLOC \

|locate memory for
reference line numbers.

Process exceptions.

~J

+

RECON

STLNO

Initialize cells to
process X1 file.

N

'

i

SRCH

Build reference line
number table.

\ exit

/\\

normal

EDIT

Find lowest symbol. >

/ LINE
Process lines of text,
build srmbol table,
general scratch file,
X2, rewmd tapes.

/ LOADER
\ Load CON2.

2
\
)

Format and print ||ne)

empty
table

All symbols
output ?

LISTING OF SUBROUTINES

Page
Subroutine Contained In Des Chart
ABORT MSCONTRL 3-12 3-32
AORG PASI 3-188 3-151
PAS2 3-188 3-353
BCD PASI 3-202 3-364
PAS2 3-202 3-364
CHAR ENCODER 3-52 3-82
CLOSE MSCONTRL 3-8 3-34
CNWRT PASI 3-226 3-296
PAS2 3-226 3-399
PREA 3-132 3-147
CRD ENCODER 3-67 3-91
CRDB ENCODER 3-68 3-92
CRDH ENCODER 3-69 3-92
DEC ENCODER 3-45 3-77
DED PASI 3-220 3-277
PAS2 3-220 3-380
DELETE ENCODER 3-46 3-77
DFLST PASI 3-198 3-259
PAS2 3-198 3-360
DO PASI 3-193 3-255
PAS2 3-193 3-356
DOAGN PASI 3-194 3-256
PAS2 3-194 3-357
DODEC PAS] 3-195 3-257
DPDIV PAS! 3-227 3-295
PAS2 3-227 3-398
PREA ' 3-134 3-149
EDC ENCODER 3-72 3-93
PASI 3-213 3-273
PAS2 3-213 3-373
EDE PASI 3-272
PAS2 3-321 3-371
EDF PAS2 3-323 3-372
EDIT PASI 3-272
PAS2 3-318 3-370
EDL PAS2 3-320 3-372
EDR PAS2 3-322 3-372
EDS ENCODER 3-73 3-93

Page

Subroutine Contained In Des
EDS PASI 3-214

PAS2 3-214
EDTL PASI

PAS2 3-320
EDTST PASI

PAS2 3-317
EDTV PASI

PAS2 3-319
EFC MSCONTRL 3-29
EFMT MSCONTRL 3-21
EFPT MSCONTRL 3-17
END PASI 3-199

PAS2 3-313
EPRNT PASI 3-219

PAS2 3-219
EQU PASI 3-187

PAS2 3-308
FETCH PREA 3-137
FLDC PASI

PAS2 3-324
FLM PASI 3-224

PAS2 3-224
FLN PASI 3-223

PAS2 3-223
FLUSH PASI 3-216

PAS2 3-216
FNRL PASI 3-196

PAS2 3-311
FORM PASI 3-189

PAS2 3-189
FRL PASI 3-201

PAS2 3-315
FUNC PASI 3-190

' PAS2 3-309

GBC PREA 3-123
GBSL PASI 3-237

PAS2 3-237
GBW PREA 3-128
GCW PAS] 3-181

PAS2 3-181

Chart

3-273
3-373
3-272
3-371
3-267
3-366
3-272
3-371
3-38

3-37

3-33

3-260
3-361
3-276
3-379
3-251
3-353

3-150
3-272
3-373
3-279
3-382
3-279
3-282
3-275
3-376
3-258
3-359
3-252
3-354
3-263
3-362
3-253
3-355

none
3-294
3-397
3-145
3-249
3-351

Page
Subroutine Contained In Des Chart
GCwW PREA 3-126 3-145
GEC PASI 3-183 3-250
PAS2 3-183 3-352
GET PASI 3-236 3-294
PAS2 3-23¢6 3-397
S4B 3-105 3-113
GIT PASI 3-230. 3-287
PAS2 3-339 3-390
GLOP PASI 3-239 3-278
PAS2 3-239 3-381
GLOV PASI 3-221 3-278
PAS2 3-221 3-381
GNC PASI 3-235 3-293
PAS2 3-235 3-396
GPDC PREA 3-135 3-150
GTB PASI 3-182 3-250
PAS2 3-182 3-352
PREA 3-127 3-145
GTCHR PREA 3-133 3-149
GTCR SRNK 3-160 3-165
GTLBL FNSH 3-208 3-402
PASI 3-208 3-268
PAS2 3-208 3-402
GTUNT MSCONTRL 3-30 3-38
HOME PASI 3-272
PAS2 3-328 3-374
1A MSCONTRL 3-27 3-38
IN ENCODER 3-59 3-88
INC ENCODER 3-54 3-83
PASI 3-180 3-249
PAS2 3-180 3-351
PREA 3-130 3-146
INCRD ENCODER 3-66 3-91
INEFC MSCONTRL 3-28 3-38
INEFPT MSCONTRL 3-16 3-33
INIT ENCODER 3-48 3-78
INPCB MSCONTRL 3-23 3-37
INPCH MSCONTRL 3-25 3-38
INPPT MSCONTRL 3-14 3-32
INPUT MSCONTRL 3-10 3-34

Page

Subroutine Contained In Des Chart
INRDT ENCODER 3-70 3-92
INRPT ENCODER 3-64 3-91
INTYP PAS2 3-334 3-378
IPL PASI 3-177 3-247
PAS2 3-177 3-349
ITMOV SRNK 3-162 3-166
LBTST PASI 3-184 3-249
PAS2 3-184 3-351
LNCT PAS2 3-332 3-378
M3WAI PASI 3-222 3-278
MBYT PASI 3-178 3-248
PAS2 3-306 3-350
MFOI PASI 3-277
PAS2 3-335 3-380
MIFT PASI 3-238 3-279
PAS2 3-238 3-382
MOVE PAS1 3-206 3-266
PREA 3-125 3-144
S48 3-103 3-113
SRNK 3-125 3-144
MRKBYT PREA 3-131 3-147
MVITM SRNK 3-158 3-165
MVPRC PASI 3-206 3-266
PREA 3-125 3-144
MVTAB ENCODER 3-61 3-90
NAME PASI 3-205 3-265
PAS2 3-309 3-355
S4B 3-101 3-112
NSRT ENCODER 3-57 3-86
PASI 3-210 3-270
PAS2 3-210 3-368
NUM S4B 3-100 3-109
OCTC S48 3-99 3-109
OPEN MSCONTRL 3-6 3-33
ORG PASI 3-188 3-251
PAS2 3-188 3-353
ouT ENCODER 3-60 3-88
OouTC ENCODER 3-55 3-83

Page Page
Subroutine Contained In Des Chart Subroutine Contained In Des Chart
OurTp PASI 3-215 3-274 RELTST PAS2 3-225 3-398
PAS2 3-215 3-375 RES PASI 3-188 3-252
OUTPUT MSCONTRL 3-7 3-33 PAS2 3-188 "~ 3-354
RESET ENCODER 3-62 3-90
PACK PREA 3-138 3-150 PASI] 3-217 3-275
PAGE PAS] 3-218 3-276 PAS2 3-217 3-376
PAS2 3-218 3-379 S4B 3-104 3-113
PARAMS S48 3-102 3-112 REWW MSCONTRL 3-13 3-32
PBC MSCONTRL 3-24 3-38 RMTB MSCONTRL 3-22 3-37
PCB MSCONTRL 3-37 RMTBU MSCONTRL 3-18 3-35
PCH MSCONTRL 3-26 3-38
PEEK PASI 3-234 3-293 SAM PASI 3-203 3-264
PAS2 3-234 3-3%96 PAS2 3-309 3-355
PI (RDPD) PREA 3-136 3-150 SAMPLE SRNK 3-163 3-167
PLB PASI 3-185 3-245 SCAN PASI 3-228 3-280
PAS2 3-307 3-348 PAS2 3-337 3-383
PLINE PASI 3-272 SCANC PAS1 3-232 3-292
PAS2 3-327 3-374 PAS2 3-232 3-395
PLTST PASI 3-186 3-246 SCRP PASI 3-212 3-271
POP PASI 3-201 3-264 PAS2 3-212 3-369
PAS2 3-316 3-365 SKIP ENCODER 3-47 3-78
POPD PASI 3-191 3-254 PASI 3-179 3-249
PAS2 3-310 3-355 PAS2 3-179 3-351
POPR PASI 3-192 3-254 SMPTRN SRNK 3-159 3-166
PAS2 3-310 3-355 SRCH ENCODER 3-56 3-84
PPTB MSCONTRL 3-15 3-33 PAS] 3-209 3-269
PRL PASI 3-196 3-258 PAS2 3-209 3-367
PAS2 3-311 3-359 STCR SRNK 3-161 3-165
PRNT PASI 3-272 STORE ENCODER 3-51 3-82
PAS2 3-325/326 3-374 SWITCH PAS1 3-207 3-267
PROC PAS] 3-190 3-253 PAS2 3-207 3-366
PAS2 3-309 3-355
PTCH ENCODER 3-44 3-77 TBOUT ENCODER 3-63 3-90
PUT S48 3-106 3-113 TENC S4B 3-98 3-108
TEX PREA 3-129 3-146
RCRD ENCODER 3-53 3-83 TEXT PAS1 3-176 3-247
RDPI PASI 3-278 PAS?2 3-305 3-349
PAS2 3-336 3-381 TEXTR PAS1 3-202 3-263
RDPT ENCODER 3-71 3-92 PAS2 3-202 3-364
RDTP PREA 3-139 3-150 THOME PAS2 3-333 3-378
READ MSCONTRL 3-11 3-35 TRACOR ENCODER 3-39 3-74
RELTST PASI 3-225 3-295 TRAIL ENCODER 3-58 3-88

Subroutine

Contained In

TRAIL
TRANS
TYCC
TYPE
TYPWRT

PREA
ENCODER
PAS2
PAS2
PAS1
PAS2

Page
Des

3-58
3-49
3-331
3-330

3-329

Chart Subroutine Contained In

3-154 VAL PREA

3-79

3-378 WEOFL FNSH

3-377 PAS1

3-272 WMTB MSCONTRL

3-377 WMTBU MSCONTRL
~ WRITE MSCONTRL

Chart

3-144

3-402
3-276
3-36
3-35
3-34

APPENDIX B
HOW TO MAKE A 900 META-SYMBOL SYSTEM

This appendix describes the aspects of the system that the user needs to know to generate a
working META-SYMBOL system, and in particular, emphasizes the pitfalls the user must
avoid if he wishes to modify META-SYMBOL successfully. For deeper understanding, the
reader should consult a set of META-SYMBOL listings and a system map of the MONARCH
tape. Although the 910 and 920 systems do not operate interchangeably, the listings are
identical; the difference lies in the use of POPS and method of creating system overlap
(910 = 910/925; 920 = 920/930 throughout the discussion). The discussion which follows
describes the generation of both 910 and 920 systems. (Note: Although the 9300 META-
SYMBOL operates like 900 META-SYMBOL, its method of generation is so radically dif-

ferent as to merit only this cursory note.)

The present META-SYMBOL Assembler has eight overlays. Because of space considerations,
only "common" 1/O is resident (MSCONTRL); the 1/O for LO to the printer, being used
only in PAS2, FINISH, and CON2, is written in-line in these passes. (The ramifications
of this may be seen in the present Unbuffered Printer Update Packages.) Of the eight
overlays, the first is loaded by the MONARCH Loader, and intercommunication between
the programs that make up this overlay is by external references and definitions. The last
seven overlays, on the other hand, are absolute decks with no external references or
definitions, since the small resident system overlay loader (TAPE LOADER) can load only
the restricted absolute, unblocked format. All intercommunication between overlays is
through absolute locations, assembled into the routines of each overlay as absolute EQU's.
Even through "relocatable" decks are used in constructing absolute overlays, the whole system

isextremely sensitive torelocationof any segment or change in size and arrangement of tables.

THE ROUTINES OF META-SYMBOL

The routines of META-SYMBOL are listed below, numbered as individual assemblies and
identified by the overlay in which they are used. (The POPS are indicated only as separate
assemblies, although in essence they are included in each overlay. The procedure will be

explained later.)

p—y
.

920 POPS

2. 910 POPS)

3. ENCODER

4. S4B

5. MONI OVERLAY 1
6. TAPELOADER

7. MSCONTRL i

8. PREASSEMBLER PARTI (P1)]

9. PREASSEMBLER PART2 (P2) | OVERLAY 2
10. SHRINK]

11. ASSEMBLER PART1 (M1)]

12. ASSEMBLER PART2 (M2)

13. ASSEMBLER PART3 (M3) OVERLAY 4
14. ASSEMBLER PART4 (M4)

15. ASSEMBLER PART5 (M5) _

16. PAS2] OVERLAY 5
17. FINISH] OVERLAY 6
18. CONCORDANCE PART] (CONCRD)] OVERLAY 7
19. CONCORDANCE PART2 (CON2)] OVERLAY 8

Assembling the Routines of META-SYMBOL

Each routine may be assembled with META910 or META920, except for the 910 POPS, which
must be assembled with META 910, and the 920 PSEUDO POPS, which must be assembled
with META920. Each routine is preceded by PROCedures that define 920 instructions with
operation codes between octal 100 — 117. This causes any 920 instruction to POP on either 910
or 920. For example, the OP code for CAB is 100, for SKR, 107. This is true for each
routine. These arbitrary POP codes are generated no matter whether the routine is assembled
with META910 or META920. Of course, the 910 POPS and 920 POPS should contain no
POPS themselves; 1 flags on any instructions in these routines, indicates they have been

incorrectly assembled.

Note that although POP codes are generated for 920 instructions and I flags occur on these
instructions, these codes are unique; nowhere is a POP reference/definition item generated
or used. For example, for SKR exp it is as though the op code 0107 were merged with the
value of exp. The machinery in the PROCS preceding each routine that generates the 1 flag
without producing a POP reference item is worthy of the user's attention. Again, it is
important to note that POPS for 920 instructions are unique, forced, and exist in META910
and META920. |

How POPS are used in the META-SYMBOL Assembler

As noted, a 920 instruction not in the 910 subset will POP on both 910 and 920 systems
through a unique POP transfer location in 100 — 117 that is identical for each routine and
for both 910 and 920 systems. Let us trace the execution of an ADM instruction first in the
920 system and then in the 910 system. If we looked at the ADM instruction in memory at
location L, it would be 0112 in both systems. On the 920, POP code ”2 causes a transfer
to location 0112, which contains a BRM CHANGE, where CHANGE is located in the
relocatable section of the 920 PSEUDO POPS. The PSEUDO POPS then replaces the POP
instruction at location L with the actual 920 instruction for ADM, retaining the index,
indirect, and address characteristics, and executes the instruction. Thus, when a POP
instruction is encountered on the 920, it is replaced by the actual instruction. In loops con-
taining a POP instruction, the POP occurs only the first time and the instruction itself is
executed all other times in location L of that overlay. On a 9210 system, the ADM instruc-
tion at location L is a 0112. When the POP occurs, the instruction is simulated by the 910

POPS, and no modification takes place.

Note that both the 910 POPS and 920 PSEUDQO POPS contain both AORGS and RORGS.
The AORGS define the absolute section 100 — 117 where the POP transfers are located. The
RORGS define the relocatable section of both packages, which will be located at different

points in memory for different overlays.

DTAB
In ENCODER and 9210 POPS there is a cell labeled DTAB DATA N. It is AORGed at 01372.

This cell is extremely important, since it contains the address of the top of the longest

B-3

overlay in the META-SYMBOL system, and is used for the beginning of certain tables. At
present, since PAS2 is the longest, the value in DTAB would be calculated as the last
location in PAS2 plus the length of the relocatable section of the POPS being used in that
system. For example, if PAS2 ended at 013500, DTAB for 920 would contain 013500 + 048
(length of relocatable section of 920 PSEUDO POPS) 013548. We would probably set
DTAB to 013600 to allow a little leeway, depending on the tightness of the system. On
910, DTAB = 013500 + 0260 = 013760, or 014000 for safety. DTAB may be set too high,
but not too low. It must clear the top of PAS2+POPS. The DTAB value for 920 is assembled
into the DTAB cell in ENCODER, the 210 value is assembled in the DTAB cell in the 910
POPS. (Note: The 920 POPS contains no DTAB.) As description of the system continues,

the determination of DTAB value will also be more clearly seen (see also Figure B-1).

OVERLAY 1

The routines in OVERLAY 1 in the order of loading by the MONARCH loader are as
follows (Al and A2 records are indicated also):
Al METASYM
A2 ENCODER
ENCODER (BIN)
910 POPS OR 920 PSEUDO POPS (BIN)
A2 MONI1
S4B (BIN)
MONT1 (BIN)
A2 MSCONTRL
TAPELOADER (BIN)
MSCONTRL (BIN)

ENCODER is ORGed at 01372. Although it is a relocatable program,. it is loaded at 0 and
its ORG effectively absolutely positions it at 01372. Note that its references to MSCONTRL
and TAPELOADER are absolute through EQU's. These must be changed in all overlays if
change is necessary. The last definition in ENCODER is ZTABLES EQU $+01640. This value
of ZTABLE can be changed only with discretion. ENCODER is the routine that reads in

Symbolic/Encoded cards, builds a dictionary in core, merges corrections where necessary,

and outputs an encoded bit string to tape X1. ENCODER contains the 920 value for DTAB.

910/920 POPS

The 910 POPS or 920 PSEUDO POPS are loaded so that the transfer vector has an AORG
0100 and the relocatable section is located above ENCODER. These function thus for the
first overlay only and are repositioned for succeeding overlays. If the 910 POPS are loaded,
a new 910 value for DTAB (AORG 1372) overlays the 920 value loaded in ENCODER. If
920 POPS are loaded, the initial 920 value in DTAB is unchanged.

S4B

S4B (RORG 0) is relocated above the POPS. If the C option is called, it translates from old
Symbol 4 code to Modern META-SYMBOL code; it translates such items as VFD to FORM,
etc. The actual translation is done during encoding and the ENCODED or Source Output
(including LO) contains the translation into META-SYMBOL language.

MONI1

MONT1 is a relocatable routine with RORG 0, loaded just above S4B. It is the 1/O initiali-
zation section of META-SYMBOL. By querying the MONARCH Unit Assignment Table and
MSFNC (0273 in MSCONTRL, the cell that the MONARCH Action routine initialized with
 parameters on the META control card), it initializes the unit and channel numbers in all

resident /O in MSCONTRL. After initialization, MON]1 is overlaid by Encoder tables.

TAPE LOADER

The TAPE LOADER (AORG 2) is a short loader used to load overlays from the systems tape.
It reads only absolute subset of the 900 Standard Binary Format, unblocked records only; it

can search the system tape for A2 labels.

MSCONTRL
MSCONTRL (AORG 0200) contains the resident 1/O information. It is responsible for all

input/output except the printing to the line printer or typewriter done by PAS2 or

B-5

Concordance (CONZ2) when listing. If PAS2 puts listing out to magnetic tape for instance,
the magnetic tape routine in MSCONTRL is used. MSCONTRL also contains the ABORT
logic for typing out the META-SYMBOL ABORT message and returning to MONARCH.
MSCONTRL, which is the last program of OVERLAY 1 to be loaded, contains an end
transfer to ENCODE, a cell containing a BRU to TRACOR, the entry point of ENCODER.
Thus ENCODER is the first program to be executed after the loading of the first overlay.

OVERLAY 2

PREASSEMBLER PART 1 is a relocatable program with an origin of octal 1403. Loading this
at 0 effectively positions this overlay absolutely in the correct place. Looking down to
approximately line 167 of the listing of PREASSEMBLER PART 1, we find an ORG 01540
followed by some EOM's and SKS's. If we follow the octal addressing, we note that this
section effectively overlays the preceding reserve area. In addition, around line 348,

just preceding the label PREASSEM, there is another ORG at PIERT + 2. This is the
initialization section of PREASSEMBLER, and is overlaid later by quantities placed into the
reserve section defined at the beginning of the program. Further on, at about line 416,
there is another ORG at CHNG1+2 following the comment "END OF INITIALIZATION
CODE". This is the actual operating portion of the PREASSEMBLER. Note that the lowest
portion in memory where meaningful coding exists is octal 1540, where those EOM's and
SKS's are established. The relocatable section of the POPS will be loaded between P1 and
P2. The second portion of the PREASSEMBLER is RORGed at 0. It is also relocatable and

is loaded after PREASSEMBLER PART 1 and the POPS. Note that PREASSEMBLER PART 2 has
as its last cell the label $LLITX and the unique literal 01234567. It uses this to find the end

of its own string of literals and thus begin its tables.

Procedures

Since the PROCS go on the tape just as they come in ENCODED form, it is not necessary to |
alter them. However, there is a machine definition card that must precede every PROC

deck on the system tape. Thedescription of this card is contained in the SYMBOL and META-
SYMBOL Reference Manual, under the heading *System Procedures”. The PREASSEMBLER

B-6

searches the tape for the A2 label of the proper set of PROCS, loads it into memory, and
builds all the symbol tables accordingly as it makes its first pass through the byte string on
X1.

OVERLAY 3

The next program is SHRINK, AORG at octal 4000. It has external references to many
labels in PREASSEMBLER PARTS 1 and 2, and overlays only a portion of part 2 (i.e., the
portion from octal 4000 to the end of SHRINK). Note that the second to the last label in
SHRINK is called PSMPLC EQU $+0100. This effectively allows room for the literals and
gives SHRINK some working storage. The purpose of SHRINK is to purge unwanted proce-
dures from the procedure sample table so that more table space can be allowed for the rest

of the assembly.

OVERLAY 4

M1 through M5 are the portions of the first pass of the Assembler. This pass was split

into portions only because it could not be assembled in 8K as a single overlay. Note that
M1 is RORGed at octal 1407. Although it is a relocatable program, loading it at 0
effectively places it correctly in memory. M2 through M5 have RORGS of 0 and are located
consecutively following M1. The loading of these five programs, plus the POPS, constitutes

the whole of ASSEMBLER PART 1,

OVERLAY 5

PAS2 is an absolutely origined program (AORG 01407). It is put on the tape just as it comes
from the assembly, with definition cards removed. The definition cards from PAS2 are used

to satisfy the external references in FINISH, the next overlay.

OVERLAY 6

FINISH is an absolutely origined overlay with an AORG of octal 4700. It overlays a

portion of PAS2 and makes references to routines in PAS2,

OVERLAYS 7 AND 8

CONCORDANCE PARTS 1 and 2 are both assembled absolute and they go on the system tape

exactly as they come from the assembly.

This concludes one rough run over the META-SYMBOL decks. If he wishes, the user can
familiarize himself with the system by going through and marking all cells that are absolute,

by noting all the intercommunication that is done by absolute cells, snd by mapping the origins

of each overlay.

CONSTRUCTION OF THE OVERLAYS

This section describes both how the overlays are to be formed in memory, and the absolute
overlay created for the META-SYMBOL tape. A following section will describe the actual

System Make procedure in more detail.

Overlay 1

Overlay 1 consists of the binary decks as they come from assembly in the following order:

Al META SYM

A2 ENCODER

(Binary deck of ENCODER)
(Binary deck of 910 or 920 POPS)
A2 MONI1

(Binary deck of S4B)

(Binary deck of MONT)

A2 MSCONTRL

(Binary deck of TAPE LOADER)
(Binary deck of MSCONTRL)

These routines make up the first overlay. When a META-SYMBOL card is encountered by
the MONARCH System, it goes to the META-SYMBOL action routine that searches the
system tape for the A1 METASYM label. Ignoring A2's, it loads decks up to the end transfer,
which is on MSCONTRL. Before this, the cell MSFNC is initialized by the action routine

B-8

according to the parameters on the META-SYMBOL card. ENCODER is loaded by the
MONARCH loader at 0 and its ORG of octal 1372 positions it in memory. The POPS, which
have a relocatable origin of 0 and an absolute origin of 0100; S4B, which has a relocatable
origin of 0; followed by MON1, which has a relocatable origin of 0, are then loaded,
following ENCODER. This completes the relocatable section of the first overlay. TAPE
LOADER is then loaded, starting at absolute origin of octal 2. Finally MSCONTRL is
loaded, with an absolute origin of octal 200. All references and definitions are satisfied
by MONARCH loader and control is transferred to the end transfer location of MSCONTRL,
initiating the META-SYMBOL system. From here on, the MONARCH system is not used;
the META-SYMBOL TAPE LOADER takes care of loading all overlays necessary for the
execution of the META-SYMBOL assembly. Control is returned to MONARCH only on
completion of the assembly and/or CONCORDANCE or in an ABORT situation. The first
overlay is the only one on the system tape that contains external references and definitions.

It is also the only overlay loaded by the MONARCH loader.

Overlay 2

Overlay 2 consists of PREASSEMBLER PART 1 (P1), the POPS (910 or 920), and P2, It is
formed by loading PREASSEMBLER PART 1, the suitable POPS, and PREASSEMBLER PART 2
into memory with the MONARCH loader and dumping out in absolute version 100 to 117,
which contain the POP transfer locations, and octal 1540 through the top PART 2 of
PREASSEMBLER. Generally, in making the absolute decks, reserve locations are not to be
dumped; only meaningful data is output. The reserves are often used as intercommunication
between two different overlays; by dumping them in making the absolute decks we may over-
lay some meaningful data meant to be left in memory between overlays. Therefore, although
PREASSEMBLER PART 1 is ORGed at 01403, only from 01540, the first meaningful data, is
dumped.

Overlay 3

The third overlay, SHRINK, is formed by loading P1, POPS, and P2, along with the
SHRINK deck, to satisfy all references and definitions, and then dumping from the
beginning (octal 4015) to the end of SHRINK. |

Overlay 4

The fourth overlay, ASSEMBLER is formed by loading the POPS into memory at a position
where they are not overlaid by PAS2 and yet lie under the value of DTAB. After the
MONARCH loader has been used to load the POPS, and M1 through M5, then the portion
0100 to 0117 is dumped absolutely and the portion from 01705, which is the first meaningful
data cell of ASSEMBLER PART 1, through the top of POPS is dumped. This forms the
ASSEMBLER overlay.

Overlay 5

PAS2 is formed by stripping the definition cards from the front of the binary deck as it came
from the assembly and using this absolute deck as the overlay. Note that when the deck is
read into CORE, it uses the POPS left there by PAS1. Remember that DTAB was calculated
so that if the POPS were loaded directly beneath DTAB, PAS2 could load in without over-

laying the POPS. Therefore, the binary deck for PAS2 is used as it comes from the

assembly but without definition cards.

Overlay 6

FINISH overlays a portion of PAS2; it makes references to labels and subroutines in PAS2,
Note that it is an absolutely origined deck. To form the FINISH overlay, the definitions
from PAS2 are attached to the FINISH bindry deck which is loaded into memory, and the
portion from the beginning (04700) to the end of FINISH is punched out.

Overlays 7 and 8

The overlays for CONCORDANCE PARTS 1 and 2 are put on the system tape exactly as

they come from the assembly.

ACTUALLY MAKING THE SYSTEM

Assume that the user is at a machine with a card punch, a set of binary decks, o
MONARCH System, and a copy of Program Catalog Number 850643, Binary Dump to Paper
Tape or Cards. The user then loads this into memory with the MONARCH loader at DTAB or

B-10

above, but where it does not conflict with the MONARCH loader tables. It remains
resident in memory during the making of all overlays. Note the entry location for this
dump routine. Also note that for the punching of cards, break points 3 and 4 must be set;

otherwise, a tape with bootstrap is punched.

Overlay 2 PREASSEMBLER

First, boot the MONARCH system. Using the ALOAD STOP commands, load PREASSEMBLER
PAST at 0, load the 9210 or 920 POPS, and load PREASSEMBLER PART 2. Note that the
loader stops after the loading of each of these decks. After PART 2 has been loaded, the

C register contains the transfer address and the B register contains the last location plus 1.
Next, transfer to the dump program. Dump location 100 through 117 with no transfer
address (i.e., set X =0). Now dump location 1540 through the top of PART 2 with the
transfer address in the X régisfer. The deck punched out is now the absolute deck for
PREASSEMBLER. This is preceded by a A2 PREASSEM card in the system deck. The PROC

decks follow, with their A2 cards and the machine identification card discussed earlier.

Overlay 3 SHRINK

To form the SHRINK overlay, first set up a binary deck as folloWs: P1, POPS, P2 with its
end card removed, and the SHRINK deck. This effectively loads SHRINK as though it were
part of P2. If the end transfer were left on PART 2, the SHRINK deck could not be loaded.
Next, boot MONARCH in. Using the ALOAD STOP function, and a bias of 0, load P1,
POPS, and then the third deck, consisting of P2 plus SHRINK. Note the ending location
and transfer address of SHRINK. Then, using the punch program, punch from the beginning
of meaningful data in SHRINK, 04015, through the end of SHRINK, with transfer address

in the X register. It is not necessary to punch out the POPS at this time as they will be left
there from the PREASSEMBLER overlay. SHRINK does not overlay the POPS. This constitutes
the SHRINK overlay deck for the system and is now put inthe system deck with a A2 SHRINK

card preceding it.

(-]
i

Overlay 4 ASSEMBLER

Assuming that the calculation for DTAB has been done, the user must now calculate a bias
for the POPS, approximately 42 or 260 octal locations below DTAB, depending on which
POP system he is using. If the MONARCH loader with the stop function is being used,

load the POPS at this bias. When the loader stops, reset the bias in the A register to 0 and
load overlays M1 through M5. Because of the ORG on M1, M1 through M5 will be

located correctly in memory. After having loaded the POPS in at its bias below DTAB,

and loaded M1 through M5, punch out locations 100 through 117 for the POPS transfer
locations, and 1705 through the top of the POPS with an end transfer as detemined from the
values in the C and B registers. The user will now have an absolute deck consisting of 100 to
117 and 1705 through the top of the POPS with an end transfer. This constitutes the
absolute overlay of the ASSEMBLER.

Overlay 5 PAS2

To form overlay 5, PAS2, strip the DEF cards (type 1) from the front of the binary deck,
that came from the assembly, and use the remaining deck as the absolute overlay. Look at
the listings, being careful to determine that the last location on PAS2 lies below the current

bias for the POPS. When that check is made, the deck is ready to go on the system.

Overlay 6 FINISH

To make the FINISH overlay, put the DEF cards from PAS2 onto the front of the FINISH
binary deck. Load the deck with the MONARCH loader into 0, STOP. Its absolute origin
biases it correctly. After loading, determine the final location in B and the transfer
location from C. Punch from the beginning (04705) through the end of FINISH, with the
transfer address. Do not punch the POP locations or any of PAS2, since these will still be

in CORE from the previous overlay at execution time. This absolute deck is now the overlay

for FINISH.

Overlays 7 and 8 CONCORD and CON2

The CONCORDANCE PARTS 1 and 2 overlays are the binary decks from the assembly.

B-12

These constitute the overlays for META-SYMBOL for MONARCH tape. Make sure that every
overlay is preceded with the proper A2 label card. Note that it is possible to remake a
single overlay and to replace it by using the UPDATE procedure on the MONARCH tape.
However, take care that such things as the values of DTAB and the linkages with the POPS
for that overlay are properly taken care of. Table Bl describes the final overlay deck

structure for system update.

REVIEW

A final review follows of the making of overlays to indicate the exact nature of the decks

used to update the META-SYMBOL processor on the MONARCH tape.

Following the A1 METASYM ID card is the A2 ENCODER 1D, the binary decks for
ENCODER and 910 or 920 POPS, a 2 MONI1 ID, the S4B and MONT1 binary decks, a A2
MSCONTRL ID, and binary decks of TAPELOADER and MSCONTRL. This constitutes
OVERLAY 1 and is loaded by the MONARCH loader upon encountering a AMETA control
card. Overlay 2 is preceded by a A2 PREASSEM ID. The absolute overlay was formed by
loading P1, the POPS, and P2, and dumping 0100 — 117 and 01540 to top of P2 with an end

transfer into P2. It is a single absolute deck.

The six procedure decks follow, each one an encoded deck preceded by a A2 PROCXXXX
ID and a machine identification card. Overlay 3 is preceded by a A2 SHRINK ID. The
absolute deck is formed by loading P1, POPS, P2 (without end card), and SHRINK binary
deck, and dumping 04015 (beginning of SHRINK) to the end of SHRINK, with transfer
address. It is a single absolute deck. Overlay 4 is preceded by an A2 ASSEMBLER ID.
The absolute deck is formed by calculating DTAB, loading the POPS at a bias below DTAB,
resetting the bias to zero, loading M1 — M5, and dumping 0100 — 117 and 01705 to the top
of the POPS, with end transfer into M5. It is a single absolute deck. Overlay 5 is preceded
'by a A2 PAS2 ID. It is a single absolute deck from the assembly with the definition cards
removed (type 1). Overlay 6 is preceded by a A2 FINISH ID. The absolute overlay is
formed by putting the definition cards from PAS2 on the front of the FINISH deck, loading
it at 0, and dumping from the beginning (04700) to the top of FINISH, with end transfer.

It is a single absolute deck. Overlay 7 is preceded by a A2 CONCRD ID. It is formed by
using the binary deck direct from assembly. Overlay 8 is preceded by a A2 CON2 ID. It

is formed by using the binary deck direct from assembly.

This completes the description of ABS overlays for the creation of the META-SYMBOL tape.
The only difference, then, between the 910 and the 920 tapes is the POPS that are used.
The size of the POPS makes the size of the overlays differ and makes the value for DTAB
differ for the two systems. Only a 910 system with a 210 POPS will run on a 910/925.
Only a system containing 920 PSEUDO POPS will run on the 920/930. Although the
MONARCH system tapes run interchangeably on both systems, processors do not.

During the creation of the system a careful map of loading and dumping should be kept in
case the system does not function correctly. Remember that reserve locations at the begin-
ning of the overlays are not punched out. Also, the listings must be studied carefully to
determine that useful information is not neglected. For instance, remember the situation of
the PREASSEMBLER where the origins are reset in the body of PART 1 of the PREASSEMBLER.
Assemblies to create the binary decks may be done with either Meta 910 or 920, since any
instructions not in the 910 subset are automatically forced to POP by the procedure definition
at the beginning of the deck (except 910/920 POPS). If a reassembly is done, check that
the POP operation codes on the listing correspond with the actual transfers in the POPS.
None of the overlays uses the POP machinery of the MONARCH loader. All POP operation

codes must be generated absolutely at assembly time, or the system will not function.

The complete discussion here has been oriented to creating a system using card input and
output. It seems that this could be done equivalently on paper tape, with two exceptions.

In the making of the SHRINK overlay, the end card was removed from P2 to orient properly
the loading of the SHRINK overlay with P1, POPS, and P2, so that definitions and references
could be satisfied. Also, PAS2 definitions were used on the FINISH deck. On paper tape
this might be difficult, although possible.

CONCLUSION

Hopefully, by using this discussion, the information in the SYMBOL and META-SYMBOL
Reference Manual and the META-SYMBOL Technical Manual (Section 5, "Operational

B-14

Information"), the user may successfully create his own META-SYMBOL system. It is

suggested that the user try to recreate an existing system before trying any modifications.

oL-4

META-SYMBOL DICTIONARY AND TABLES

DTAB
7 //7/////
POPS
%////9////
’////////////
 CONCRDZ
Ll LLLLLL

e

Zé;///z//// I RINK /
- Ty
W%@?’f}% 01407 01407 %//

/ /CONCRD/%

;;,};","3.“’“%213613'/////// . POP /1)) 0260
rrrrrrrr

.U
>
wn
N

\\

\\\

/

7/ /////////
AN
04700 03700

JTRANS Z/JRANSFER7] / TRANSFER 0
1 2 3 4 5 6 7
ENCODER, PREASSEM SHRINK ASSEMBLER PAS2 FINISH CONCRD CON2
etc.

FIGURE B-1. META-SYMBOL OVERLAY STRUCTURES

Table B-1. The META-SYMBOL Update Package

Al
A2

A2

A2

A2

A2

A2

A2

A2

A2

a2

METASYM

ENCODER

ENCODER BINARY (os assembled)
910 or 920 POPS BINARY (as assembled)
MONI1

S4B BINARY (as assembled)

MONT1 BINARY (as assembled)
MSCONTRL .

TAPE LOADER BINARY (as assembled)
MSCONTRL BINARY (as assembled)
PREASSEM

PREASSEM ABSOLUTE (P1+POPS+P2)
(loaded and dumped)

PROC910
910 PROC (as assembled + machine identification card)

etc.

PROCB93H

9300 BUSINESS PROCS

SHRINK

SHRINK ABSOLUTE (P1+POPS+P2+SHRINK loaded — SHRINK dumped)
ASSEMBLER

ASSEMBER ABSOLUTE (M1 — M5+POPS, POPS biased below DTAB)
(loaded and dumped)
PAS2

PAS2 BINARY (as assembled, less definition cards [fype 1)
FINISH

FINISH ABSOLUTE (FINISH+PAS2 DEFS)
(loaded and FINISH dumped)

B-17

A2

A2

CONCRD

CONCORDANCE PT1 BINARY (as assembled)
CONZ2

CONCORDANCE PT2 BINARY (as assembled)

APPENDIX C
META-SYMBOL ENCODED 1/0O FORMAT — 900 or 9300 SERIES

An encoded program is an almost exact, but less voluminous, representation of original source
code. The principle of its organization is relatively simple. The entire source program is
broken down into a set of unique sequences of characters (called character strings) and a
table of these unique character strings, called the dictionary, is established. The actual
program is then represented to the dictionary by an ordered set of references called the text.
Source code is obtained by replacing each dictionary reference with the character string to

which it points.

Embedded in the text are punctuation flags which indicate such conditions as end-of-line,
end-of-file, and length-of-comment. Also embedded in the text are the actual comments
that appear in the source code. Comment fields are excluded from the character string

definition and dictionary formation process.

Example 1. Organization of an Encoded Program

The organization of an encoded program may be illustrated by the following two lines
of code:

LABEL,, LDA,, 076, COMMENTS HERE.
/\/\/\/\/\EI\ID

These two lines may be represented by a text with the following dictionary:

Dictionary

Reference Number Character String

LABEL
AN
LDA
076
AAN
ANAAA
END

NO O b WN =

Text 13 characters

123245 |{END OF LINE FLAG {13 (LENGTH OF COMMENT) EOMMENTSA HERE

beginning of next line

PP,

6 7 |END OF LINE FLAG|0 (LENGTH OF COMMENT)|END OF FILE

The text is read by replacing its reference numbers, one at a time, with the character
strings to which they correspond. Note that duplicate items ("AA" in our example appear
only once in the dictionary.

DETAILED DESCRIPTION
Dictionary

The dictionary is a table of unique source character strings. Source code is divided into

character strings in the following way:

A line of source code is moved, one character at a time, into a character string accumulator.
The type (blank, special, numeric, or alphanumeric) of the first character is determined,
then the type of each subsequent character is compared with that of the first before it is
placed in the accumulator. If an unequal compare is made, the new character becomes the
first of the next string and the string being accumulated is terminated. The treatment of
alphanumeric characters is an exception. Alphabetic and numeric characters are treated as
the same type during character string accumulation. However, an alpha "switch" is set
whenever an alphabetic character is accumulated. When the string is terminated, this
switch is tested. If it is on, the string is alphanumeric, if off, numeric. A character string

is arbitrarily terminated when it contains 15 characters.

Each entry in the dictionary specifies four items of information:
1. Number of characters in the string
2. Type of character string
3. The character string itself
4

. Byte number (position of entry in the table; initialized at three).

The dictionary is in a packed format. Only its first entry is guaranteed to start at a word

boundary. Each entry comprises from 12 to 96 bits. The entry format is as follows:

bit 1 4 567 12 13 18 19 90 91 96
L T |1st char. | 2nd char. { < 15th char.

where:
L is the number of characters in the string (1<L<15)
T is the type of character string:
0 —blank
1 —special
2 — numeric

3 — alphanumeric

Each entry is just long enough to contain L, T, and exactly L characters. If T =0, the
character string is interpreted as a binary count of the number of spaces (internal "60's")
represented by the entry, in which case a "one-character" string may represent as many as

077 spaces.

"Byte number" is not explicitly entered. It is inferred from the position of the entry in the
dictionary. The byte numbers 0, 1, and 2 are reserved as punctuation. Byte number 3 is

associated with the first dictionary entry, byte number 4 with the second, and so on.

Example 2. Dictionary

Suppose the first four character strings in the dictionary are LABEL, AA, LDA, and 076.
The beginning of the dictionary would look like the following:

Word 1 2 3 4
Appearance 27:1321 22 254?;9402 17432421 16000706

o \ s g .

v

These words would be interpreted in the following manner:

It is known that the first entry starts on a word boundary. So, the first six bits (octal 27)
are known to specify the first character string length and type.

Octal 27 in binary is 010111; therefore, we have L =0101, =5, and T= 11, =3. This
means that the next five characters (101(octal digits or 3010 bits) are “to be
interpreted as an alphanumeric character string. Accordingly, we interrupt 4321222543
to be the character string LABEL.

The next six bits are the length and type of the second dictionary entry. Octal 04 in
binary is 000100; therefore, L =1 and T=0. Note that T =0. This means that the

next character (two octal digits or six bits) contains a count of the number of spaces
represented by this entry. That next character is 02, and it is interpreted as the char-
acter string.

The next six bits are the length and type of the third entry. Octal 17 in binary is
001111; therefore, L =3 and T -~ 3, indicating a three-character alphanumeric string.
The next three characters are LDA.

For the last entry, L =3, T = 2; therefore, the next three characters (or 18 bits) are
interpreted as a three-character numeric string. We interpret 000706 to be the
character string 076.

Text

Note: Statements made without explanation in this section will be better understood after

study of the next section, which describes the dictionary -text generation algorithm.

The text is an ordered set of byte numbers with embedded punctuation and comments. This

data is in a highly packed format.

The first item ('byte') of the text always points to the first entry in the dictionary. That
is, the first byte always contains the byte number 3. The minimum number of bits required
to contain the number 3 is two. Accordingly, the size of the first text byte is arbitrarily

set at two bits, and the byte is said to have a byte size of two.

The text (excluding comments) is written with a monotonically increasing byte size. For any
given size, the first attempt to write a byte number too large for that size will always occur
when the byte number is an integral power of 2 (i.e., 2n). Specifically, for a byte size of
P bits, the first such attempt will occur on the byte number 2P (e.g., if P =4, the byte
number will be 24 =020g = 100007). When this condition arises, a P-bit byte containing
the byte number O is written. This is the last P-bit byte in the text. The next byte written

will have P+1 bits.,

Dictionary-Text Generation Algorithm

Consider the general case.
1. A character string is defined.

2. The dictionary is searched for the presence of that same character string.

C-4

3. If that string is already present, its dictionary byte number is placed in a byte of
the currently used size. Suppose that the current byte size is 7 and the char-
acter string being considered already has a byte number of 5. The byte 0000101
is then added to the text. Processing then returns to step 1.

4. If that string is not already present, it is entered into the dictionary along with
its length and type code. The corresponding byte number is equal to 1 plus the
highest previously used byte number (it occupies the next available dictionary
position). This byte number is then used to define a byte of the currently used
byte size. Suppose the current byte size is 5, and the byte number is 036, then
the byte 11110 is added to the text.

Consider the case in which a newly defined byte number is an integer power of 2 (i.e., 2").

This will always be a number which is too large to be contained in a byte of the current
size. Extending the illustration immediately above:

Byte Size Octal Byte No. Binary Byte No. Byte

5 036 11110 (five bits) 11110
5 037 111 (Five bits) 11111
5 040(2°) 100000 (six bits) 2

What happens is the following:
1. A byte of the current size containing the value 0 is added to the text.
2. The current byte size is incremented (BS + 1—BS).
3. When later read back, an all-zero byte is interpreted as a byte number = ZBS'
In our example, we defined a byte number of 040 when the current byte size was 5,
so we added the byte 00000 to the text. When being read (later) the byte size
is known (remember this is an ordered set of bytes) so our all-zero byte is inter-
preted as 25 = 040 and is also recognized as a signal that subsequent bytes have a
length of six bits. Further, the six-bit zero byte 000000 implies the byte number
26 = 0100 and signals that subsequent bytes will be seven bits long. Note that if,
at the time the current byte size is 010, a character string identical to that with

byte number 040 (225) is encountered, the byte 00100000 is added to the text.

C-5

Punctuation and Comments

Recall that the initial byte number was defined as 3. The byte numbers 0, 1, and 2 are
reserved as special flags (or punctuation). The significance of the byte number 0 has
already been discussed. The byte number 1 indicates end-of-line and will be more fully

discussed. The byte number 2 is an end-of-file flag.

Source input is expected to be in a format which is compatible with that described in the
META-SYMBOL Reference Manual. If the third (operand) field is nonblank, it will be
followed by a blank string whose termination signals an end-of-line condition. If the

third field is blank, the termination of its character string indicates end of line.

End of line is indicated in the text by a byte of the currently-being-written size which
contains the byte number O1. If this condition arises while bytes are being written with a
length of four bits, the byte 0001 is added to the text. If there is no comment present, the
blank string that signaled the end~of-line condition will include the end of the source

record. Such a blank string is not entered in the dictionary or referenced by the text.

When the operand field contains a list that is continued on a subsequent physical record,
the line containing that operand field is extended to include the entire list. The blank
field that terminates the physical record of such a to-be-continued operand field is
encoded through column 80, and its character string also includes any leading blanks on
the continuation record. In this situation, a single encoded line will represent more than

one physical source record.

The end-of-line byte is unconditionally followed by a six-bit count of the number of
comment characters on that line. This count may be zero. If the count is not zero, it is
immediately followed by the actual comment characters in XDS internal format. The
comment characters (or the count if it is zero) are immediately followed by the first byte

of the next line of code.

Asterisk-comment (*) lines are treated like any other line, except that the end-of-line flag

is added to the text just before the first nonblank comment character is processed. If there

are no nonblank characters, the end-of-line flag immediately follows the byte that refer-

ences the asterisk.

C-6

After the last line of source is encoded, an end-of-file flag is written. This flag is a byte

of the currently-being-written size which contains the byte number 2.

Additional Comments

1.

Only the first 72 characters of each source record (card) are encoded (except in
the case of a continued list).

The first word of each encoded record is a control word in the following format:

0 23 89 1112 23
[1] L | E=7 | folded checksum_l

where:
T is the record type:
0 — if part of program text
1 —if part of program dictionary
3 —if last record in file
L is the number of words in the record, including the control word.

E is always seven, which signifies an encoded record.

An encoded file comprises a dictionary followed by its text. The dictionary is
terminated with a zero length entry. The text is terminated by a byte with byte
number 02.

An encoded program is described as an "almost" exact representation of original
source code because of the restriction on comment length. The maximum count

that can be represented in six bits is 077 = 63 This means that any comment

character beyond the 63rd is truncated at the]f?me the program is encoded.
META-SYMBOL assembles with source code in encoded form. Therefore,
comment 4 above applies to any program assembled by META-SYMBOL.

The special character "delete-code" (), internal code 077, cannot be encoded
properly by the META-SYMBOL routine ENCODER. According to the design of
ENCODER, when an end-of-line condition is encountered, the internal code 077

is inserted into the next-character-to-be-processed save location. Its presence

there subsequently cues end-of-line flagging and comment field addition to the

text. Intemal 077 does not become an actual part of the source input; it is

merely inserted into a temporary cell through which every character encoded

passes.

When the character "delete code" is actually present in the source program, one
of two things happens. If it is used in a comment field, it is processed normally
since comment fields are not encoded. If it is used anywhere else, it cues
end-of-line processing. That is:

a. The character string being accumulated is terminated.

b. The appropriate dictionary and text entries are made.

c. An end-of-line byte is added to the text.

d. A comment count is output, followed by the actual comment. In this
situation, the balance of the source line, from the "delete code" on, is
treated as a comment.

e. If an end-of-line condition arises while a blank string is being accumulated,
it is assumed that the end of the source record has been reached and that the
blank string represents trailing blanks on the source line. In this case, that
string causes no entries into the dictionary or text. The balance of the line
(including the "delete code") is, however, treated as a comment.

During PAS2, any attempt by the subroutine GET to access a character from a

given line, after the end-of-line flag has been detected, results in the default

accessing of the character blank (060). For an example of this situation, try

using a "delete code" within the range of a TEXT directive.
Conclusion
The following example illustrates the foregoing discussion:

Example 3. Encoding of Source Program

Let us encode the following five line source program.

1. ABSDAAAEQUAAAADT 2345 saanannna AAA
1 5 72

SENTRY A aNOP A INSTRUCTIONLINECOMMENT = aan

1 5 79
A LDA AN ABED annnn AA
* MAASTERISK , LINE , COMMENT Aan : AA
T 5 72
AnEND A ENTRY \ A A
1 5 72

The first character string is AB6D; it is a four-character alphanumeric string. Its
dictionary entry is 2321220624. The leading 23 indicates L = 0100,, = 4 and

T =11_=3. It is the first entry in the dictionary, so it can be reférenced by a
byte number of 03. Accordingly, the text begins with a two-bit byte equal to 3
(i.e., 11).

The second string is AMA, a three-character blank field. Its dictionary entry is
0403. The leading 04 indicates L =0001,. T =0. The character 03 indicates
three blanks. It is the second entry in the dictionary, and can be referenced by a
byte number of 4. Accordingly, a two-bit byte (we are still in a two-bit-per-byte
mode) indicating the byte number 04 is added to the text. In this case, two bits
cannot contain the value 04, so an all-zero byte of two bits (i.e., 00) is added.
The writing of an all-zero byte means that the next byte will be one bit longer.

At this point, there are two entries each in the dictionary and text. They are:

e,
Dictionary —23212206240403

Text (a bit string) — 1100

The third character string is EQU, a three-character alphanumeric string. Its
dictionary entry is 17255064. The leading 17 indicates L =00112 =3, T =119 =3,
This is the third entry in the dictionary. It is referenced by the byte number 05.
The last byte written in the text was a two-bit all-zero byte. Therefore, bytes are
now to be written in a three-bit-per-byte mode. Accordingly, the byte 101 is
added to the text.

The fourth string is another set of blanks, AAMAA. Its dictionary string is 0405.
The leading 04 indicates L =1, T=0. Since T =0, the 05 must specify a five-
character sequence of blanks. The terminology in this situation may be confusing.
The actual "character-string" is the single character with the internal represen-
tation 05. Since this string is specified as type 0, the character 05 is understood
to represent the set of characters AAMAAA. This dictionary entry is associated with
the byte number 06. Accordingly, the three-bit byte 110 is added to the text.
The text now contains the bits 1100101110.

The next string is the six-character set 012345. A six-character numeric string
implies L =06 =01102, T =02 = 102. Therefore, the dictionary entry is
32000102030405. This is the fifth dictionary entry, so it is referenced by byte
number 07. The three-bit byte 111 is added to the text. The text now contains
the bits 1100101110111.

The last string processed was the operand field; therefore, end-of-line processing
begins. The blank string which immediately follows the operand field includes
the end of the source record, so it is not included in the dictionary or text. The
next byte added to the text is an end-of-line flag. Since we are currently writing
bytes of three bits each, the end-of-line flag is the byte 001. This byte is
immediately followed by a six-bit character count specifying the length of the
comment on the source line. There is no comment on this line, so the character

count 000000 is added to the text.

At this point, the dictionary and text are as follows:

(Byte Number) (3) (4) (5) (6) (Z)

. . rm— e—— e, /" t~.. . ~
Dictionary —2321220624040317255064040532000102030405
Text (bit string) —1100101110111001000000

3 45 6 7EOL comment length

Encoding of the second source line now begins. The first string is the single
special character "$". Its dictionary entry is 0553 (05 impliesL =1, T = 1),
Its byte number is 010, so the appropriate three-bit byte is added to the text.
The new text byte is 000, indicating a byte number equal to 23 and further
indicating that the byte size is to be increased by one bit.

The next string ‘is the five-character alphanumeric (type 3) string ENTRY. Its
dictionary entry is 272545635170 and its byte number is 011. The four-bit byte
1001 is added to the text.

The next string is a three-character blank field. Such a string is already in the
dictionary (the second entry), so no additional entry is made. A four-bit byte
(the current size) containing the byte number of that dictionary entry, 04, is
therefore added to the text. That byte is 0100.

The three-character alphanumeric string NGP is then entered into the dictionary
as 17454647 (L =3, T =3). Iis byte number, 012, is then added to the text in
a four-bit byte, 1010.

There is no operand field present, so end-of-line processing begins. The blank
string which immediately follows the last string (the operation field) is
terminated by a comment. This blank string is 027 characters long and is entered
into the dictionary as 0427 (L ~ 1, T 0). The byte number of the blank string,

013, is added to the text as 1011. Then the four-bit end-of-line byte, 0001, is
added to the text. Next, the six-bit comment character count is added.
INSTRUCTION, LINE, COMMENT. has a length of 031, so the count

011001 is used. Immediately following the count in the text is the actual

031 character (0226 bit) comment in XDS internal format, unfortunately not
constrained to respect standard character and word boundaries (i.e., a
character may begin on any of the three bits of an octal digit).

The third line has four character strings:

Source Dictionary Entry Byte Number Text Addition
AN 0404 014 1100
LDA 17432421 015 ’ 1101
AAAA previously defined 06 0110
AB6D previously defined 03 0011

There are no comments, so the end-of-line byte 0001 and the character count
000000 are added to the text, concluding the third line.

The fourth line is an asterisk-comment line. These lines are encoded normally,
except that end-of-line processing begins with the first nonblank character

(if any) after the leading asterisk.

This line has two character strings:

Source Dictionary Entry Byte Number Text Addition
* 0554 016 1110
A previously defined 04 0100

Then comes the end-of-line byte, 0001, followed by the comment length
010110 (026) and the 0204 bit comment.

The last line of code has four character strings:

Source Dictionary Entry Byte Number Text Addition
AN previously defined 04 0100
END 17254524 017 1
AAA previously defined 04 0100
ENTRY previously defined 0N 1001

These bytes are followed by the end-of-line byte 0001 and the comment length
000000.

(@)
"

The last record of a source input file is followed by a AEOF record. This
record cues the generation of an EOF byte. This byte is of the currently
being written size (four bits) and contains the byte number 02. - Our file is
ended with the byte 0010. Our dictionary is terminated with the entry

00 (L=0, T=0).

A detailed dictionary and text for the program just encoded is given below.

Dictionary

(byte number) ©03) (04) (05) (06) (07) (010)
Actual Entry —23212206240403172550640405320001020304050553
(character AB6D) (03" (EQU) (05") (012345) ($)
string) ©11) (012) (OI3)OM) (015) (016) (©17)

r N NP e Py e e
072545635 170174546 470427040417 432421055417 25452400
(ENTRY) (NOP) (027)(04) (LDA) (*) (END)

Text — See next page.

t . .
Number of characters in "blank string".

Text — for Exam

ple 3, Encoding of Source Program

031 char.

0 char.

o7
e 26 Floy-

w m o|” n.W
PRI

— o]

o s LR PO

- o o o
0V5 0V4 . S~ >

Zi5 - 0{2 o
0V4 OV] ! OV4 — OVO

0
N
i
i
A\
3
03

0
A\
1
0
N4
1

—-12 2 s S
T.I.Vné ﬁ]VS oj—>o 0V4
o Lle o)~ —

HED N £ SN S D T

E] @ - Yl o —

£ -1~

2 ...I.V3 MVO °l->m» ~ MVO
° <3S <[3 2

gl e Sl (o

w - - o

O = T

S o Zi o mv -
.lV < N .|V3

A = s =
—_ — o

3 0V5 Wv,o .IV3 - .IVé
o %13 1o o

< OV4 oy« ~>o -«

ol — — — o

_ ‘0|V2 WV.I MVS o WVZ

=) e o o

125 “He S TN e

oo o —_ o

W*NVO HVB NVS w OVS

z[a 3 wio o

glodo —)o) —> o

B - 2 -

e 0V4 .IV3 0V4 — 0V4

olo vl 25 -

E*0V4 ..|V2 0V4 OVS

~(Z o e .

© .IV3 0V4 0V4 niod~

6_m oo 3o ~

o .|V7 ...V6 0V4 .|V3
- — — o

n -—

O*WVZ Ov.l .nIVVé < WV4

<t § O o o ol - —

olo — o o

3*\. o o) wn o) . 0V4

T - -

o m 1o U)o ° Yleg

c £ o .IVé _.IVZ B NVQ

228 o = 0o

2 5 2 .IV2 OVO w OVO

e _ < o o o

£ 353 1o) <]o

0 char.
comment

EOF

EOL

011

017 04

04

ud

Xerox Corporation

701 South Aviation Boulevard
El Segundo, California 90245

Reader Comment Form

ROX

Publication No.

We would appreciate your comments and suggestions for improving this publication.

Rev. Letter | Title

How did you use this publication?

Current Date

D Learning
D Reference

D Installing
D Maintaining

Is the material presented effectively?

D Sales

Fully Covered Well |ltustrated Well Organized Clear
D Operating D D D D

D very Good

[:] Good

What is your overall rating of this publication?

D Fair
D Poor

What is your occupation?

D Very Poor

Your other comments may be entered here. Please be specific and give page, column, and line number references where
applicable. To report errors, Please use the Xerox Software Improvement or Difficulty Report (1188) instead of this form.

Your Name & Return Address

2190(12/72)

Thank You For Your Interest. (fold & fasten as shown on back, no postage needed if mailed in U.S.A.)

Staple Staple

First Class
Permit No. 229
E! Segundo,
California

_ BUSINESS REPLY MAIL
No postage stamp necessary if mailed in the United States

Postage will be paid by

Xerox Corporation
701 South Aviation Boulevard
El Segundo, California 90245

Attn: Programming Publications

	0000
	0001
	0002
	0003
	0004
	0005
	1-900-01
	1-900-02
	1-900-03
	1-900-04
	1-900-05
	1-9300-01
	1-9300-02
	1-9300-03
	2-900-01
	2-900-02
	2-900-03
	2-900-04
	2-900-05
	2-900-06
	2-900-07
	2-9300-01
	2-9300-02
	2-9300-03
	2-9300-04
	2-9300-05
	2-9300-06
	3-000
	3-001
	3-002A
	3-002B
	3-002
	3-003A
	3-003B
	3-004A
	3-004B
	3-005
	3-006
	3-007
	3-008
	3-009
	3-010
	3-011
	3-012
	3-013
	3-014
	3-015
	3-016
	3-017
	3-018
	3-019
	3-020
	3-021
	3-022
	3-023
	3-024
	3-025
	3-026
	3-027
	3-028
	3-029
	3-030
	3-031
	3-032A
	3-032B
	3-032
	3-033
	3-034
	3-035
	3-036
	3-037
	3-038A
	3-038
	3-039A_900
	3-039B_900
	3-039C_900
	3-039D_900
	3-040A_9300
	3-040B_9300
	3-040C_9300
	3-040D_9300
	3-043
	3-044
	3-045
	3-046
	3-047
	3-048
	3-049
	3-050
	3-051
	3-052
	3-053
	3-054
	3-055
	3-056
	3-057
	3-058
	3-059
	3-060
	3-061
	3-062
	3-063
	3-064
	3-065
	3-066
	3-067
	3-068
	3-069
	3-070
	3-071
	3-072
	3-073
	3-074
	3-075
	3-076
	3-077
	3-078
	3-079
	3-080
	3-081
	3-082
	3-083
	3-084
	3-085
	3-086
	3-087
	3-088
	3-089
	3-090
	3-091
	3-092
	3-093
	3-094
	3-095
	3-096
	3-097
	3-098
	3-099
	3-100
	3-101
	3-102
	3-103
	3-104
	3-105
	3-106
	3-107
	3-108
	3-109
	3-110
	3-111
	3-112
	3-113
	3-114
	3-115
	3-116A
	3-116B
	3-116
	3-117A_900
	3-117B_900
	3-117C_900
	3-117D_900
	3-117E_900
	3-117F_900
	3-118A_9300
	3-118B_9300
	3-118C_9300
	3-118D_9300
	3-118E_9300
	3-118F_9300
	3-122A
	3-123
	3-124
	3-125
	3-126
	3-127
	3-128
	3-129
	3-130
	3-131
	3-132
	3-133
	3-134
	3-135
	3-136
	3-137
	3-138
	3-139
	3-140A
	3-140
	3-141
	3-142
	3-143
	3-144
	3-145
	3-146
	3-147
	3-148
	3-149
	3-150
	3-151
	3-152
	3-153
	3-154
	3-155
	3-156
	3-157
	3-158
	3-159
	3-160
	3-161
	3-162
	3-163
	3-164
	3-165
	3-166
	3-167A
	3-167
	3-169A_900
	3-169B_900
	3-169C_900
	3-170A_9300
	3-170B_9300
	3-170C_9300
	3-172
	3-173
	3-174
	3-175
	3-176
	3-177
	3-178
	3-179
	3-180
	3-181
	3-182
	3-183
	3-184
	3-185
	3-186
	3-187
	3-188
	3-189
	3-190
	3-191
	3-192
	3-193
	3-194
	3-195
	3-196
	3-197
	3-198
	3-199
	3-200
	3-201
	3-202
	3-203
	3-204
	3-205
	3-206
	3-207
	3-208
	3-209
	3-210
	3-211
	3-212
	3-213
	3-214
	3-215
	3-216
	3-217
	3-218
	3-219
	3-220
	3-221
	3-222
	3-223
	3-224
	3-225
	3-226
	3-227
	3-228
	3-229
	3-230
	3-231
	3-232
	3-233
	3-234
	3-235
	3-236
	3-237
	3-238
	3-239
	3-240
	3-241
	3-242
	3-243
	3-244
	3-245
	3-246
	3-247
	3-248
	3-249
	3-250
	3-251
	3-252
	3-253
	3-254
	3-255
	3-256
	3-257
	3-258
	3-259
	3-260
	3-261
	3-262
	3-263
	3-264
	3-265
	3-266
	3-267
	3-268
	3-269
	3-270
	3-271
	3-272
	3-273
	3-274
	3-275
	3-276
	3-277
	3-278
	3-279
	3-280
	3-281
	3-282
	3-283
	3-284
	3-285
	3-286
	3-287
	3-288
	3-289
	3-290
	3-291
	3-292
	3-293
	3-294
	3-295
	3-296
	3-297A
	3-297
	3-299A_900
	3-299B_900
	3-299C_900
	3-300A_9300
	3-300B_9300
	3-300C_9300
	3-302
	3-303
	3-304
	3-305
	3-306
	3-307
	3-308
	3-309
	3-310
	3-311
	3-312
	3-313
	3-314
	3-315
	3-316
	3-317
	3-318
	3-319
	3-320
	3-321
	3-322
	3-323
	3-324
	3-325
	3-326
	3-327
	3-328
	3-329
	3-330
	3-331
	3-332
	3-333
	3-334
	3-335
	3-336
	3-337
	3-338
	3-339
	3-340
	3-341
	3-342
	3-343
	3-344
	3-345
	3-346
	3-347
	3-348
	3-349
	3-350
	3-351
	3-352
	3-353
	3-354
	3-355
	3-356
	3-357
	3-358
	3-359
	3-360
	3-361
	3-362
	3-363
	3-364
	3-365
	3-366
	3-367
	3-368
	3-369
	3-370
	3-371
	3-372
	3-373
	3-374
	3-375
	3-376
	3-377
	3-378
	3-379
	3-380
	3-381
	3-382
	3-383
	3-384
	3-385
	3-386
	3-387
	3-388
	3-389
	3-390
	3-391
	3-392
	3-393
	3-394
	3-395
	3-396
	3-397
	3-398
	3-399
	3-400
	3-401
	3-402
	4-900-03
	4-900-04
	4-900-05
	4-900-06
	4-900-07
	4-900-08
	4-900-09
	4-900-10
	4-900-11
	4-900-12
	4-900-1
	4-900-2A
	4-900-2
	4-9300-01
	4-9300-02
	4-9300-03
	4-9300-04
	4-9300-05
	4-9300-06
	4-9300-07
	4-9300-08
	4-9300-09
	4-9300-10
	5-01
	5-02
	5-03
	5-04
	5-05
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	7-01
	7-02
	7-03
	7-04
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	replyA
	replyB

