Reference Manual

Xerox Business
Language

Xerox Corporation

701 South Aviation Boulevard
El Segundo, California 90245
213 679-4511

© Xerox Corporation, 1965-1970

Xerox Business Language

900 Series/9300 Computers

Reference Manual

90 10 22C

October 1967

Price: $2.75

XEROX

Printed in U.S.A

REVISION

This publication, 90 10 22C, is a minor revision of the Xerox Business Language Reference Manual, 90 10 22B.
Changes to the previous edition are indicated by a line at the right or left margin of the affected page.

RELATED PUBLICATIONS

Title Publication No.
Xerox 910 Computer/Reference Manual 90 00 08
Xerox 920 Computer/Reference Manual 90 00 09
Xerox 925 Computer/Reference Manual 90 00 99
Xerox 930 Computer/Reference Manual 90 00 64
Xerox 9300 Compufer/ReFerence Manual 90 00 50
Xerox MONARCH/Reference Manual 90 05 66
Xerox 9300 MONITOR/Reference Manual 90 05 13
Xerox >Symbo| and Meta-Symbol/Reference Manual 90 05 06
Xerox SORT/MERGE/Reference Manual 90 09 97
Xerox MANAGE/Reference Manual 90 10 46
Xerox Business Programming Systems 66 05 02

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features
may depend on a specific configuration of equipment such as additional tape units or larger memory. Customersshould consult their Xerox sales representative
for detoils.

EXPLANATION OF TERMS

1.

2.

INTRODUCTION

BASIC ELEMENTS OF META-SYMBOL

Syntax

Character Set

Program
Symbolic Line

Label Field

Operation Field
Operand Field

Comments Field

Comments Line

Free Form

DIRECTIVES

Introduction

AORG and RORG

RES

END

PAGE

DATA
DED

TEXT or BCD

EQU

ADDITIONAL PROGRAMMING FEATURES

Literals

Relocation

THE BUSINESS LANGUAGE
Indexing and Indirect Addressing in

the Business Language
Business Instructions

Area Definitions

Data Transmission

Decimal Arithmetic

Branch on Arithmetic Overflow
Decimal Conversion

Character Manipulation

CONTENTS

p—

ARADMOWCWWWWWW W

O N0 N0 0O O0OoONN N

—

1

B
11

12

12
13
13
13
15
16
16
17

Data Testing
Program Branch Control

Data Field Initializing

Internal Sorting
Register Shift

Special Operations

Business Language Input/Output

Instruction Routines
Input/Output Branch Tests

APPENDIX

General Programming Introduction
Number Systems

Computer Word Organization

Business Language Word Organization

Symbolic Coding

Assembly Listing Format

Calling Sequence Generation for

Business Instructions
Calling Sequence' Generation for
Decimal Arithmetic

Business Language Assemblies

Making Symbolic Changes to Encoded Programs

Assembly-Time Operations

Execution-Time Operations

Assembly Error Flags and Error Message Codes

1/O Error Messages and Halts

External Definitions and References

Business Language Programming Examples

XDS 920/930 Instruction List

XDS 910/925 Instruction List

XDS 9300 Instruction List
Special Instructions - XDS 900 Series/
XDS 9300 Computer

Business Instruction List

Related Publications

FIGURES
Symbolic Coding Form

Sample Assembly Listing

AWN —

Sample Input Deck for XDS 900 Series
Sample Input Deck for XDS 9300 Computer

18
19
20
22
23
23

23
29

31
31
31
32
34
40

41

47
48
51
52
52
53
54
55
57
62
65
67

70

72
75

49
50

Array

Assembler

Binary-Coded Decimal (BCD)

Calling sequence

Character string
Computer word

Covered quotient

Decimal digit or

alphabetic character

Double-precision
(double-length)
Field

File

In-line code

Meta-assembler

Monitor
Object program

Octal digit
Octal word

Parameter

Record

Run-time count

Shift
Source program

Truncation flag

Word

EXPLANATION OF TERMS

Group of consecutive words.

Computer program that prepares a machine language object program from a symbolic
language program by substituting machine operation codes for symbolic operation
codes and absolute or relocatable addresses for symbolic addresses.

Decimal number and alphabetic character representation in which each digit or char-
acter is represented by a coded combination of 6 binary digits.

Standardized sequence of instructions appropriate to the calling of a particular sub-
routine; it usually sets up the input values required by the subroutine, makes provi-
sion for reentering the main program when the subroutine is finished, .transfers control
to it, and finally may specify some action concerning the output values of the sub-
routines.

Consecutive set of alphanumeric characters.
24 binary digits (bits).

Number of words required to hold a character string in memory, given by the formula
a+(b=1) =+ b where a is the number of characters in the string and b is the number of
characters in a word.

6 bits

Number having twice as many digits as are ordinarily used in a given computer.

Successive characters in an assigned area of a record (defined character string) that
specify a particular item of information.

Sequential set of information units, not necessarily all the same size.

Generation of one or more machine language instructions from the applicable source
language code which specifies the function desired at that point.

A processor whose characteristics supplement those of a conventional assembler, en-
abling the user to program using a higher-level language than that of the machine it-
self. Inherent in a meta-assembler is the incorporation of a list structure in the
syntax of the source language. The presence of a "Do" verb and a Boolean as well
as arithmetic operators in expressions provides the ability to conditionally generate
multiple machine-language instructions from a given source-language statement. A
valuable feature of meta-assemblers is their ability to provide true program capabil-
ity among related computers.

Executive routine that controls the operation of a complex information-processing
system involving one or more computers together with all of the associated software.

Output of an assemble. or compiler when it has translated the source program to
either machine language or intermediate-level assembly language.

3 bits.
8 octal digits.

Constant or variable used in some calculation; definable characteristic of an item,
device, or system; quantity in a subroutine whose value specifies, or partly speci-
fies, the process to be performed.

Group of related items of information organized internally into words, characters,
or fields.

Count of number of operand items supplied to o business language instruction at run-
time when count is unknown until program is executed.

Displacement of an ordered set of characters one or more places to the left or right.
Original program, usually written in a universal symbolic language.

Flag which is set when value can not be held in available number of bits and trun-
cation to the maximum number of allowable bits occurs.

4 alphanumeric characters.

INTRODUCTION

A comprehensive business programming package, developed
by Xerox Data Systems, extends the application of XDS
computers to business data processing and management
decision-making. This new "software" in conjunction with
the extensive scientific library gives XDS users a problem-
solving, data-handling capability through a wide range of
scientific and business applications. The XDS Business Pro-
gramming Package! consists of three programming systems:
XDS Business Language, SORT/MERGE, and a management
information-processing program called MANAGE.

Programming languages like XDS META-SYMBOL, FOR-
TRAN, and ALGOL were not designed for the character
manipulation necessary for business data processing. The
XDS Business Language is designed specifically to permit
XDS binary word computers to be programmed as though
they were decimal, character-oriented machines.

XDS Business Language is a procedure-oriented extension
of the XDS meta-assembler, META-SYMBOL. The Business
Language is free-form, character-oriented, and analogous
to the types of assemblers used with character-organized
computers.

Availability of this Business Language for binary, fixed-
word machines frees the programmer from the tedious tasks
of mask selection and loading, extracting and merging, and
extensive shift operations.

When called, procedures within the language either gener-
ate in-line code or calling sequences that interface with
closed subroutines. Which alternative will be taken is a
function of: (1) the type of procedure invoked; or (2) the
distinct characteristics of the operand of a procedure call.
In the latter case, the ability of META-SYMBOL to take
conditional action at assembly time allows considerable
latitude in generating actual machine code; and this, in
turn, produces virtually optimum code. Conventional

'See XDS Business Programming Systems, 66-05-028

macro-assemblers do not have this capability. Also, the
assembler incorporates a unique technique for minimizing
temporary storage that is global (common) to all generated
in-line code and subroutines, XDS Business Language gen-
erates code approaching optimum storage efficiency. The
generated code usually has better storage-utilization char-
acteristics than code written by a competent programmer,

XDS META-SYMBOL with Business Language can be used on
any XDS 900 Series Computer with 12, 288 words of memory,
or on an XDS 9300 Computer with 16, 384 words of memory;
on either system, the complement of peripheral equipment is
the same as that required for META-SYMBOL. A typical
configuration consists of three magnetic tape units, a card
reader/punch, and a line prinfer,

This manual contains two main parts and an extensive appen-
dix, The first part describes basic elements of the XDS
META-SYMBOL Assembly Language; the second describes
Business Language instructions, The appendix includes a
general programming introduction, an elementary discussion
of symbolic coding, the assembly listing format, calling se-
quence generation, operating information, programming ex-
amples, and instruction lists,

The manifold capabilities of the Business Language system
will be achieved more readily if the user is also conversant
with:

The computer at his installation (see applicable com-
puter reference manual®).

XDS MONARCH! or XDS 9300 MONITOR! (whichever
is applicable to his system).

XDS META-SYMBOL! and its compatible subset, SYMBOL'.

In the body of this manual, the assumption has been made
that the reader is familiar with symbolic programming.

t
See Related Publications page in this manual.

PROBLEM

PROGRAMMER

XDS

SYMBOLIC CODING FORM

Identification

73

80

PAGE

OF

DATE

OPERAND

COMMENTS

25 30 35 40 45 50 55 60 65 70 72
LA A LA ryvy vvery LR T T \ARARAER SRR 'r LA § LA BN | vy t] v LA DA
LAND SN N (NR B LD SLANLE rvyvrvyvyrryyvyyrvvevyry LA AR | LA | LI A S LA B
YT A L L S A B N A N A LA A S AL SN SN | LI B { LA ANN B | -l LB UL
vvoy (v " T v U T°7 LN L B B TR S S AN RN AL LD B IR | LB 1 LA LA R LINE S
Tt T{vyryr§grsrvyvyrvryrrrrvrrveryg LA BN B LI L | LA B LEE
Tr v e rerr v rry ! LANLJNE JNEL N (ML ANN SNM AL S SRR AN SR RN BN | v T AR | LB B LA G
LN B B BN | Ty lf{ rrvr|rrryvyrvrrrroeryg LER LR | LA SN | v vyt MR B
LN SEN SN NN B | Tfryyrryryry vy ryvrrrrrryorg ML | LN BN § LA B8 I T
LN B B (R B T YTy Ty rr T rrrr T rrrg LA | vy YT T 17
T vrr iy rrrrrrrr l Trvy vy vrryr vy LA B B | VY T 1
LS LR Y vy]‘ LEER B 1 "’TW'VI AL B | LI 1 'l L l' LA B ‘ v v ‘ v
Ty T r" LA LA A SR AN AR A | LA | LIa e e | T T 1T
Ty TV li'i LI A LA S0 N N (L BN B A B | ER S | LI | L L
T v ryrvyr T YT vy Y rrr vy T rrryr rreTg LN | LERARLE § LENL S T
T Ty viovTvY LANLANL N AN A AN ED S A BND AN L SN BN | LN BN B | LEN B B | LA NS B LA B
LA B L l LA BN B J LR BN B | SR "l' "ll LEIRJ " LN 4 "' LA SIS 4 LR B
Tvr Ty TrTyrrv>y rvYvryryrvyvYyvyyrvrvryym Ty LN BNN g LENL BN A B LS B4
LA A L L B LA LA ' LI " L l LI l LN 4 "" LA B LR
v v Ty T v T LANLINL BEL BN RN AN SN ML BN BN ANL AN A AN | LA | rrvr LA AL B T 1 °
vy |y ryyvoryry?y vvvyrvyrrvyvrryrrvrvevyy v v LA B | LA BN A L B
LN SED BN SN S Y yYvyvryrgvyvyrryryyvyr v eroog LR | T v v LI B
LANL AN D SN0 BNNL S B AN N SRR BN BN | bu LANL AN I (LN SR BN BN SN AN BN Il LB 'l LR I' LEND B NS B T l L
Ty T 1 yvr Y rryrvryryvyvvyrvrrrvvyvyyg LI | T "' v T T T 1
Ter Vv Y rTTrever rreorrrrvrrvy vy AERA S A | T v T Ty
rrvy v vrryrvyvrrry AANLANL B A N S B N (L SRR B AL | LA B | T 1T

XDS -E-356A (5/65)

Figure 1.

Symbolic Coding Form

2. BASIC ELEMENTS OF THE META-SYMBOL ASSEMBLER

SYNTAX

The syntax of any language is the set of rules governing its
sentence (or statement) structure. To use a language, such
as an assembly language, one must know its syntax. META-
SYMBOL syntax is simpler than that of most assemblers and
is more powerful; there are fewer definitions and rules to
learn, because each one is more comprehensive. However,
to use this language and assembler efficiently, its basic
principles must be clearly understood. This section of the
manual explains how to use META-SYMBOL to produce
efficient business programs.

CHARACTER SET

The "words" used in META-SYMBOL to give instructions to
the computer are made up of letters, numbers, and symbols.
These characters are the familiar ones of everyday English,
but the user will put them together in new and unfamiliar
ways while learning this new language. Characters are
classified by type as follows:

Alphabetic character: one of the characters A-Z.
Numeric character: one of the characters 0-9.

Alphanumeric character: any character that is either
alphabetic or numeric.

Special character: a nonalphanumeric character
(e'g‘l *I $l +)'

PROGRAM

META-SYMBOL programs (that is, those written in the
META-SYMBOL language) consist of a number of lines of
symbolic coding. The coding is symbolic in the respect

that each line is only a symbolic representation of the ac-
tual numeric instructions that a computer can act on direct-
ly. After the program has been written and put onto an in-
put medium such as cards or magnetic tape, the assembler
reads the symbolic program and assembles it into a machine
language program suitable for being loaded into the com-
puter and operated with no further alteration. (See Figure 2,
a sample assembly listing at the end of this section.)

The coding of the program is done on a Symbolic Coding
Sheet, a sample of which is shown in Figure 1.

SYMBOLIC LINE

Each line of symbolic code in the original program consti-
tutes a unit record that the assembler processes during an
assembly. Usually, each line is punched into one card and
the cards are combined to form a symbolic deck for com-
puter input during assembly. META-SYMBOL conveniently
allows continuation of a symbolic line onto two or more cards
when necessary. A symbolic line is more precisely called
a logical record, inasmuch as it may require more than one
physicai record (two or more cards, for examplie) to con-
tain itf.

A symbolic line consists of four fields; the first three, label,
operation, and operand field, are essential elements of as-
sembler instructions and directives; the fourth is a comments
field. With the exception of a line consisting entirely of
comments, a line must always have something specified in
the operation field; the presence of information in the other
fields is at the programmer's option.

LABEL FIELD

A label. field labels an operation or a value so that it can be
symbolically referred to elsewhere. Labelingisaccomplished
by writing a symbol (defined according to META-SYMBOL
rules) in the label field; that is, if the user needs to refer to
any instruction or piece of data, he writes a name for it in
the referencing operand field and also writes the same name
in the label field of the data or instruction to which a ref-
erence has been made.

OPERATION FIELD

An operation field contains @ mnemonic instruction, a busi-
ness language instruction, or an assembler directive. A
mnemonic instruction produces a single line of object code
(i.e., asingle operation) merged with information from the
operand field. A business language instruction causes the
assembler to inspect the parameters in the operand field and
conditionally produce zero or more lines of object code. A
directive is a pseudo-instruction to the assembler to perform
some action at assembly time; it may or may not produce
any object code.

OPERAND FIELD

The reference in the operand field to a named, symbolic line
orother element of data need not be a simple name. META-
SYMBOL allows flexibility in writing compound names. An
operand field may contain one or more expressions. Defini-
tions of expressions and expression elements follow.

EXPRESSIONS

Anexpression isaseriesof items connected by operators. The
processor evaluates expressions by successively combining
items, in the manrer specified by the connecting operator,
and in the order of decreasing operator hierarchy.

ITEMS
An item may be one of the following:
Irem Definition Example
Symbol A symbol is a string of al- ALPHA
phanumeric characters Bl
X1y
Octal Anoctalintegerisasigned 012
integer orunsignedstringof from 1 01234567
to 15 octa! digits preceded 077777777
by a zero. -031

[tem Definition Example
Decimal A decimal integer is a 12
integer signed or unsigned string 1234567

of from 1 to 15 decimal dig- -42
its; the first digit is not zero.

Decimal Adecimal number is either 12
number adecimal integeror string 0.12
of decimal digits and one +12.0*+4
or more of the following: (=12.5)*+(-2)*/3
decimal point, decimal
scale operator, binary
scale operator. When an
item has a decimal point
but has no binary scale op-
erator, the item is of the
floating-point mode.

Character A characterdata stringisa 'B1

datastring string of alphabetic, numer- 'X1Y!
ic, and/orspecial characters '012!
enclosedinsingle quotes.

Current The current location symbol §
location represents the current value
symbol ofthe location counter at

program execution time.

Subex- A subexpression is an ex-

pression pression enclosed in paren-
theses and occurring as part
of another expression.

OPERATORS

An operator may be one of the following:

Operator Representation Hierarchy
Conditional
less than < 1
equals = 1
greater than > 1
Boolean
sum (OR) ++ 2
difference (exclusive OR) -- 2
product (AND) wH 3
Arithmetic
sum + 4
difference - 4
product * 5
truncated quotient / 5
covered quotient // 5
decimal scale *+ 6
binary scale */ 6

Under hierarchy there are é levels, a highest level of 1 and
alowest level of 6; the lowest level is evaluated first.

t
Examples of the use of parentheses in business instructions
are given later.

The covered quotient operator, //, is defined as: a//b =
(a+b-1)/b; it is useful in determining the number of mem-
ory cells needed to store a characters in a b characters-
per-word mode of storage. B

The decimal and binary scale operators, * + and */, respec-
tively, can be used between any two expressions. Where x
and y are two expressions:

x *+ y is equivalent to (x) - (10")
x */‘ y is equivalenf to (x) .(2)’)

Note that the nominal binary point of x is to the right of
the least significant bit; that is, these operations use integer,
not fractional notation.

Actually, */ functions as a logical shift operator, so that
£ x */(~y) performs a logical right shift y places. Hence,
because of operator precedence, */ functions as an arith-
metic operator for £ x */y but not for (-x) */y.

COMMENTS FIELD

A line's comments field may contain comments to annotate
the program. The assembler ignores comments, but outputs
them on listing.

COMMENTS LINE

Label] Operation I Operand

*THIS IS A COMMENTS LINE

When an asterisk introduces a symbolic line (i.e., * in col-

umn 1), the assembler ignores its contents. Such lines are
used to annotate the source program. They appear on the
source program output listing produced by the assembler.
The comments line may contain a maximum of 64 characters,
beginning with the first nonblank following the asterisk.
Additional characters are discarded during assembly.

FREE FORM

The assembler provides for free-form symbolic lines; that is,
each field need not begin at a prescribed column of the
source input record (usually a coding sheet — see Figure 1).
Rules for writing such a record are:

The label field begins in column one.

One or more blanks written at the beginning of a line
specify no label is desired (i.e., there will be no label
field with such a symbolic line).

A blank terminates any field.

Eight or more blanks written following a symbol in
either the label or operation field specify that the next
field is absent.

When the input record contains 80 columns (i.e., a card),
the assembler ignores columns 73-80 and terminates the
physical record at column 72.

All lines in Example 1, below, are valid; lines 1, 2,
and 4 produce the same result.

Note: These examples are in assembler instruction format.

The format definition given below describes typical ma-
chine instructions that may be used along with business
language instructions. Detailed information concerning
machine instructions for various XDS computers is to be
found in their applicable computer reference manuals. For
convenience, complete listings of XDS machine instructions
are given in the appendixes of this manual.

Label Operation Operand

[le [e

[LABEL] | LDA

Inthe above example, those items enclosed withinbracketsare
optional inthe instruction format. All instructions must have an

Example 1.

F

ALPHA LDA

LPHA _ TEMP._
ALPHA LDA TEMP COMMENT

' STA TEMP COMMENT
ALPHA LDA

_ TEMP COMMENT

operation mnemonic and most of them have an operand. In-
dexing (indicated by E2) and indirect addressing (indicated
by *) are optional. The label and comments fields need not
be present.

As indicated, a line's operand field may consist of a se-
quence of expressions. Expressions are represented by the
symbols E, E1, E2, . .. throughout the assembler portion of
this manual. Additional examples, showing how various
operand fields are written, are given with the individual
instructions.

SAMPLE ASSEMBLY LISTING

An output listing of a representative (although not typical)
program is shown on the following page. A complete
description of the output fields on this listing is given in
the Appendix.

* ® %5

1 3

00024
00050

00051
00053
00055
60057
00065

00072
00073
00074
00075
00076
00077
00103
00104
00105
00106
00111
00112
00114
00115
00121
00124
00125
00126
00130
00132

00142
00143
00144
00345

04144
04145
04146
04147
00126
00130
00053
ooi12
000ss
00057
00065
000714
o021
00133
00434
00142

00000000

0 43 0 00000
0 43 0 00000
0 60 0 00000
0 43 0 00000
0 43 0 00000
0 786 0 003146
0 63 0 00144
0 61 O 00143
0 60 0 000S0
0 01 O 00106
0 71 0 00147
0 6§ 0 00050
0 61 0 00050
Q0 01 O 00053
0 43 0 00000
0 01 0 00053
0 43 0 00000
0 01 C 00053
0 76 0 00150
0 43 0 00106
0 60 0 00050
0 01 0 00t1S
0 43 0 00000
0 43 0 00051
0 76 0 00151
0 43 0 00000
00000000
00000145

00 00 00 00
00000051
00000004
00177754
00000000
77777777

OBNOA®UN -

« READ A CARDS TESTY COL 18 FOR 2,4,6,M 8 1F YES~ WRITE ON TP2 BLCKk 2

L]
L]

EXTEND

BUTAREA DEFAREA 20
INAREA RES 20
FLAG DATA 0

.

START REWIND 2
RDCD READCD INAREA

8LCD WRAPUP

MOVE COL 18=33 1O TABLE
NO = TYPE BUT CARD

DEFINE BUTPUT AREA
DEFINE INPUT AREA

BRACNE TYPCARDLINAREA,18,%2%,%4%,26%,°M°
MOVE INAREA,18,%TABLE,Ls L6

LDA =4

ADM TABLE

MIN SRTCNT

SKR FLAG

8RU SECND

MOVEWD [INAREA,OUTAREA,20
MIN FLAG

MIN FLAG

RDCD

BRU
SECND WRITETP 2,0UTAREA,160

BRYU RDCD

TYPCARD TYPE [INAREA

BRY RDCD

FILLER CLEAR BUTAREA*20,20

WRITETP 2,0UTAREA,160

WRAPUP SKR FLAG

BRU FILLER

ENDMARK WTMARK 2

REWIND 2

SORT TABLE+1,(SRTCNT)»452,3

BRM M\EXIT

SRTCNT DATA 0
TABLE DATA S+f

DA 2047,0
END START

B\18
B\!9
B\I3
B\I6
B\l23
B\§2
8\Ss18
B\S12
B\I1l
B\DIR
B\SBRT
MAEXIT

TRACK NEXT AVAILABLE TABLE ADDR
TRACK NO OF ITEMS IN TABLE

TEST BLOCKING FLAG

SEY UP LOGICAL RCD 2

MOVE 20 WORDS T8 LOGICAL RCD |
FLIP BLOCKING FLAG

WRITE 2 CARD IMAGES ON TAPE
COL 18 NBT 2,4,6.M

PAD LAST BLBCK

WRITE LAST BLOCK

WRITE TAPE MARK

SORT 4 WRD ITM ON WRDS 2-4

Figure 2. Sample Assembly Listing

3. DIRECTIVES

INTRODUCTION

An assembler operates on input data (a source program) to
produce output data (machine language object program).

Its difference from other programs is that the output data
from an assembler generally constitute another program
which, when loaded and executed, operates on input data
to produce output data. There are two times when the re-
sultant program can be affected logically: at assembly time
and at execution time. In the latter case, this is accom-
plished by input parameters to the program, and in the former
case, by input parameters (called directives) to the assem-
bler. Thus, directives are operative at assembly time,

whereas instructions are operative at program executiontime.

The following directives are included in the assembly lan-
guage:

Assembler Instruction Data Generation

AORG DATA

RORG DED

RES TEXT

END Value Declaration
- PAGE EQU

When a user writes a program, he frequently needs to refer,
in the operand line, to some name (label) that is or will be
defined at a subsequent place or symbolic line. This is
called a forward reference; it is not allowed in an assembler
directive. However, the forward reference is allowed with
all mnemonic machine instructions and business instructions
except FIELD. Although FIELD is defined in the Business
Language section, a comment on FIELD forward references

is in order. The name in the operand field of a FIELD in-
struction must not be a forward reference, and no field name

can appear in any business instruction as a forward reference.

The following examples, showing the functions of directives,
include machine instructions. These instructions are for il-
lustrative purposes only; understanding the examples does
not depend on knowing the instructions of any particular
machine.

AORG AND RORG

Absolute Origin and Relative Origin

Label Operation Operand | Comments

[LABEL] | AORG or RORG | E [PROGRAM ORIGIN]

The origin (E) of a program is the lowest-numbered memory
address occupied by (instructions or data of) the program. In
other words, it is the nominal beginning of the program.

Generally, it is useful to allow the origin to be relocatable
at execution time, so that the program can be executed
equally well whether loaded at one_location or another.

Relocation of a program to another area of memory is per-
formed automatically at execution time by the loader through
actions taken by the assembler. The assembler accomplishes
this by producing relocation information together with the
binary object program at assembly time. Using this informa-
tion, the loader (part of the monitor in the XDS MONARCH
or MONITOR 9300 systems) performs the relocation when

the binary object program is loaded for execution.

In some cases, however, the programmer may desire to con-
trol the program origin. For example, all or part of his pro-
gram might have to occupy fixed memory iocations; or in the
case of program debugging, it might be easier to relate the
contents of memory to an assembly listing if all addresses
have absolute values.

The user controls the relocatability of his program through
the AORG and RORG directives, for absolute origin and re-
locatable origin, respectively. See Example 2.

In this example, all addresses except that of 11 are relocat-
able. Thus, the BRM I1INT is always loaded into location 030,
but the contents of its address field, as a relocatable quantity
(IVINT), is assigned af loading time. The subroutine ITINT,
on the other hand, is completely relocatable, since the load-
er can override the otherwise automatic loading into loca-

tion 0200.

’Excmple 2:
TIINT

AT LOCATI®N 30(OCTA

PLACE LINKAGE T® IIINT

~ IIINT IS TO BE RELOCATABLE

Viewed otherwise, AORG ond RORG have the function of
resetting the location counter’; the symbol 11 has the same
value (030) whether it appears on the AORG line or on the
following line.

The operand can be a completely general expression and is
not restricted to numeric values. lts value must, however,
be defined within the program previous to its use in the
operand.

RES
Reserve
Label Operation Operand | Comments
[LABEL] | RES E [RESERVE A BLOCK]

RES is primarily used to reserve and (optionally) label stor-
age areas. See Example 3.

END

End of Program

Label Operand | Comments

(]

Operation

END [END OF PROGRAM)

END indicates the end of the program to the assembler.
When the END line terminates a program, the operand field
may {but need not) be used to specify to the loader the lo-
cation to which it will transfer after loading the program.

PAGE

Eject Page

Label

Operand Comments

(€]

Operation

PAGE [EJECT PAGE]

When PAGE is encountered, the assembler causes a page-

eject to occur on the output listing medium during ussembly.

The PAGE line is the first line on the new page. Pages may
be numbered in the operand field.

t . . .
The "location counter" is a special memory cell used by
the assembler in defining labels at assembly time.

I?xqm’ple 3:

TABLE RES 10
o "RES__ PTAB RTAB ‘
3

DATA

Generate Data Block

Label Operation Operand Comments

DATA

[LABEL] E1[E2,...,EN]| [GENERATE DATA BLOCK]

Data permits convenient representation of single~precision
data within the symbolic program. Since operands may be
general expressions, octal, decimal, binary-coded decimal
and symbolic data may all be generated with a single direc-
tive. In all cases, the translated expression is right-justified
within the computer word; except for negative data, unfilled
bit positions always contain zeros.

In conventional assembly programs, interpretation of the con-
tents of the operand field depends on the contents of the op-
eration field. This restriction does not apply to META-
SYMBOL programs, where data unambiguously describe their
own item type. See Example 4.

A DATA statement can have a maximum of 72 bytes per state-
ment. A byte is:

A symbol.

Anoctal or decimal integer.
A scaled decimal integer.
A character data string.

Two or more of the four above connected by double
operators (++, ==, **, // *+),

-*/)
’ ’ .

A single arithmetic operator (+,
A comma (,).

A blank field (contiguous series of blanks of any length).

A DATA statement can be continued by terminating the cur-
rent line with one of the separating commas and starting (in
any column) the next physical line with the continuing data
items; the total number of all columns in the continued lines
cannot exceed 56. See Example 5.

Each continuation (trailing comma in a line) causes a blank
byte to be generated at the end of the line. The only ef-
fect of this is that the maximum number of bytes that may be
written in the DATA statement is reduced by 1 for each con-
tinuation. The number of bytes shown in Example 5 is 19,
Note that a string of alphanumeric information within
quotes, as designated by the last item in Example 5,
should not exceed four characters (i.e., 24 bits).

RESERVE“IO LOCATIONSMQWWM“

___ AREA BETWEEN LABELS PTAB_

S

AND RTAB

Example 4:

Location Contents Label Operation Operand Comments
01000 TENS AORG 01000
01000 00000010 DATA 010 OCTAL 10
01001 00000012 DATA 10 DECIMAL 10
01002 00000100 DATA 10! BCD 10
01003 00001000 DATA TENS CURRENT VALUE OF LABEL TENS
01004 02101012 DATA (TENS+10)++ ('A'*0100000)
01005 00000011 DATA 011,11,012121252, 'TENS'
01006 00000013
01007 12121252
01010 63254562
R4l o
DED The programmer often needs to incorporate output messages
Decimal Double Precision in binary-coded decimal form within a program. This can
be accomplished by subdividing the message into 4-character
Label Operation | Operand Comments (24-bit) strings and placing them in the operand field of a
[LaBEL] | DED E1[,E2...,EN]| [GENERATE DP DECIMAL DATA directive line. Normally, however, the TEXT state-
* DATA] ment is used for all textual and heading-type information

DED enables the programmer to represent double-precision
deciraal data conveniently within a symbolic program. The
resultant data will be generated in standard XDS double-
precision fixed=- or floating-point format according to the
mode of the expression(s) in the operand field. In the case
of DED, only decimal numbers constitute legitimate expres-
sions. See Example 6.

Because numeric quantities are restricted to 15 digits in
length, the use of scientific or floating=point notation is
preferable to absolute notation (e.g., 0.0000147235821).
When both a binary and a decimal scale factor are desired,
the decimal scale factor should be specified first.

TEXT OR BCD
Binary-Coded Character String

Label Operation Operand
[LABEL] TEXT or BCD E, character string
[LABEL] TEXT or BCD < character string >
Example 6:

__DED 3.1415926535
DED ~ 6.023%423
_.DED 2.7182828%/45

e T—

 FIXED

and messages.

Using the TEXT directive, the programmer places the char-
acter string (not enclosed in quotes) in the operand field and
specifies the total message length in one of two ways:

1. Precede the character string by a character count, sep-
arating the string and the count by a comma. The count
can be indicated by writing a number or any general ex-
pression, provided that it has previously been defined
within the program.

2. Enclose the character string by the characters < and >.
(This is the more convenient way, since the character
count need not be known in short messages.

Two important rules must be noted:

1. The number of characters that can be written with one
TEXT statement is limited to the number of characters

_FLOATING
FIXED

that can be written in the operand line on which the
TEXT statement is written; there canbe no continuation.

2. The message is left-justified within the block of com-
puter words allocated to it. Unfilled character posi-
tions always contain blanks (060).

The BCD directive is identical to TEXT, except that in the
computer words generated blanks are represented by 012 in
BCD and 060 in TEXT. Thisdistinction may be ignored when
using business input/output instructions.

A usual programming need is to generate 132-character line
printer headings that consist of alphanumeric information.
The simplest way to generate such a heading is to write three
successive TEXT statements whose total character count is
132, Only the first need be labeled to label the entire head-
ing. It is important that each of the first two lines consists
of a multiple of four characters; otherwise, undesirabte
blanks will be intermixed in the message (rule 2 above). See
Example 7.

Example 7.

Location Contents Line Label Operation Operand

01000 1 MSG RORG 01000

01000 22232460 2 TEXT 8, BCD INFO
01001 31452646

01002 22232460 3 TEXT <BCD INFO>
01003 31452646

01004 00222324 4 DATA 'BCD’, 'INFO!
01005 31452646

01006 22232460 5 TEXT 4,BCD
01007 60222324 6 TEXT 4, BCD
01010 00222324 7 DATA 'BCD!

01011 22232412 8 BCD 'BCD!

Example 8:

Note that lines 2 and 3 in Example 7 result in identical
code, whereas lines 5, 6, 7, and 8 do nof.

EQU
Equals
Label Operation Operond Comments
LABEL EQU E LABEL COMPULSORY

Since the DATA and TEXT enable the programmer to central-
ize and label execution-time data specifications, they con-
tribute to both the readability and flexibility of the symbolic
program. For the same reasons, it is frequently desirable to
specify assembly-time data symbolically, or to use "paramet-
ric programming," a technique that is useful whenever a
number of symbolic lines are related to one another by their
common dependence upon one or more values. Using the
parametric approach, the programmer labels the value(s) by
an EQU directive and replaces all references to the appropri-
ate value(s) by its (their) symbolic equivalent(s). See Ex-
ample 8.

Another example of EQU use is equating the index register
to a label, like X2, for mnemonic identification:

X2 EQU 2

Assembler instructions with indexing indicated can, there-
fore, be written:

LABEL LDA WORK, X2

For the XDS 9300 with three index registers, X1, X2, and
X3 can be used.

ONE_ EQU 1
TWe. EQU ONE+XR

A S N g g S s g

g T s g 23 g

10

T TS ———

4. ADDITIONAL PROGRAMMING FEATURES

LITERALS

Label Operation Operand

LABEL orP =E

Typically, computer instructions operate on variables and
constants. When an instruction operates on a variable, it
must know the location of the variable because the variable
value is not known until the instant of obtaining it. Thus,
a variable's location is "important" to the instruction using
it. This is not true of constants; since the value of a con-
stant does not change, its value isessential, not its location.

Symbolic programming facilitates the representation of both
types of values. Variable operands can be given symbolic
names (such as, X, ALPHA, INPUT) and can be referred to
by these names throughout the symbolic program. For oper-
ating with constants, however, it is generally desirable to
refer to the constant by value rather than by name; literals
provide this capability.

To use literals, the programmer writes the value of the ex-
pression, rather than a name, in the operand field of the
symbolic line, and precedes the expression by an equal sign
(=). Detecting the leading equal sign, the assembler com-
putes, as usual, the value of the expression that follows,
but it then stores this value in a literal table that it con-
structs following the program. The address portion of the
generated instruction is then made to refer to the literal
table entry rather than to contain the value of the com-
puted expression. See Example 9. As shown in this ex-
ample, the processor detects the duplicate equal values(1*8
is equivalent to 010) and enters them once into the literal
table.

RELOCATION

It is usually desirable to assemble a symbolic program with-
out allocating the program to a particular memory area or
starting location. When a program can be executed inde-
pendently of its origin, that is, independently of where it
is physically located within the computer, it is called a
relocatable program.

Example 10:

Example 9:
Location Contents Label Operation Operand
00144 RORG 100
00144 07600151 TENS LDA =010
00145 07600152 LDA =10
00146 07600153 LDA ="10'
00147 07600154 LDA =TENS
00150 07600151 LDA =1*8
END

00151 © 00000010
00152 00000012
00153 00000100
00154 00000144

All instructions are relocatable unless they have been af-
fected by an AORG directive. All decimal and octal num-
bers are nonrelocatable (since adding the loading origin to
the address portion of an instruction would change a num-
ber). Assuming the absence ofan AORG directive, all sym-
bols are relocatable that are not equated to a nonrelocatable
expression by an EQU directive. As a symbol, $ is always
relocatable.

The assembler assigns a code number of 1 to each relocatable
item and assigns a code number of 0 to each nonrelocatable
item. When an expression consists of at least one relocatable
item, the expression is (see Example 10):

Relocatable if R (the algebraic sum of the relocatable
codes) is equal to 1.

Nonrelocatable if R is equal to zero.

Illegal if 0# R# 1 or if the expression involves any
operations other than addition and subtraction upon
two relocatable items.

The assembler provides relocation information in the text
section of the binary output. Detecting a relocation flag
for any instruction, the loader adds a bias (the loading ori-
gin) to the address portion of the instruction. See the
META-SYMBOL Reference Manual for binary card format
details.

A

C __EQU RI+NON

D ___EQU RI%NON
E__ __EQU _ RI®*RI

 ILLEGAL

NON-RELOCATABLE

RELOCATABLE
CILLEGAL
ILLEGAL

g R i g S

9. THE BUSINESS LANGUAGE

This section describes the set of "higher-level" instructions
that make up the XDS Business Language proper. These in-
structions provide the business data-processing user with the
character-and-word manipulative capability that is o re-
quirement of most business data processing applications.
XDS Business Language programs are processed by the XDS
META-SYMBOL Assembler which operates under control of
MONARCH (for XDS 900 Series Computers) or under
MONITOR (for XDS 9300 Computers),

INDEXING AND INDIRECT ADDRESSING
IN THE BUSINESS LANGUAGE

In the following description of the elements (parameters)
specified in the operand field of business instructions, the
main operand (such as the location of a move areq) is re-
ferred to as Ei. Unless otherwise specified, an element
from this class of operands (E1, E2, ...) specifies a location
and can be indexed and indirectly addressed. Specifica-
tion of indexing is different for the XDS 900 Series
machines and the XDS 9300 Computer,

Any entry in the operand field of a business instruction can
be a general META-SYMBOL expression except:

1. Labels that are indexed, and

2. Those operands expressly prohibited in the instruction
description.

XDS 900 SERIES COMPUTERS

Ei specifies a simple address.

MOVEWD TABL1, TABL2, 3

The statement above moves the contents of the three words
at TABL1 into the three words at TABL2.

*Ei specifies indirect addressing.

MOVEWD *VECTOR, TABL2, 3

VECTOR PZE TABL1Y

The above series of instructions perform the same three-word
move as the first example. The statement "VECTOR PZE
TABL1" is one way to place the numerical address of TABLI
into location VECTOR.

(Ei) specifies indexing, that is, parentheses denote in-
dexing.

fPZE means halt,

12

Assume that the index register contains a 4.

MOVEWD (TABLO), TABL2, 3
TABLO PZE
TABLA PZE
TABLB PZE
TABLC PZE
TABLl PZE

This series of instructions also performs the same three-word
move, beginning in location TABL1, that the preceding ex-
amples accomplished.

(*Ei) specifies both indirect addressing and indexing.

XDS 9300 COMPUTER

Indirect addressing for the XDS 9300 is specified the same
way as for XDS 900 Series Computers, that is, *E1. How-
ever, the XDS 9300 has three index registers; (E1, 1), (E1,2)
or (E1, 3) specifies the particular index register. Any label
equated via EQU to 1, 2, or 3, may be used in place of the
index register number.

Assume the same conditions as in the previous examples, with
index register number 2 containing 4; the same move is
written:

MOVEWD (TABLO, 2), TABL2, 3
or where
X2 EQU 2
equivalently,
MOVEWD (TABLO, X2), TABL2, 3

Notes: In META-SYMBOL, the program counter is identi-
fied by the lobel $. Contrary to META-SYMBOL
usage, this label is not allowed in the operand field
of a business instruction.

As a general rule, the contents of the A and B reg-
isters are volatile for any call of a business instruc~
tion.

Labels (symbols) that begin with "REG" are reserved
for system use.

For certain classes of instructions, parentheses en-
closing an operand signify other things than index-
ing. In each case the exception is noted in the
description of the instruction.

BUSINESS INSTRUCTIONS
AREA DEFINITIONS

FIELD

Define Data Field

Definesa character string (data field) in memory relative to
a defined and labeled memory area. /

In a business instruction, the name (label) of a field carries
to the assembler all of the information needed to define the
first location of the related area, the position of the first
character in the defined field, and the number of characters
in the field.

Label Operation Operand
L1 FIELD E1, HC1,CC
L1 = Name of the field; it may not be blank.

El = First location of the defined memory areq; it
may be indexed and/or indirectly addressed.

HC1 = High count, the number of the first character
in the field, counting to the right from the
left-most character in E1.

CC = Character count, the number of successive

characters in the defined field.

Names are assigned to memory areas via FIELD. When used
in other business instructions, the assembler automatically
translates the field name into the starting reference location
(E1), the starting high count character position (HC1), and
the field length (CC). Using field names saves labor when
defining considerable data manipulation in memory. FIELD
generates no execution-time code.

Via the RES direcffve, reserve the following:
JONO RES 50

Using FIELD, define a field named JONOI10 that is 10 char-
acters long and begins at the 103rd character of JONO,

JONOI10 FIELD JONO, 103, 10

Note: Field-defined labels can be used only with the
following instructions:

MOVE
MOVEIZ
MOVEED
COMPARE
CLEARCH

DEFAREA (DA)!

Define and Reserve Area of Memory

Defines and reserves (similar to RES) an area of memory con-
taining a specified number of words. If a number or charac-
ter is present following the word count, the words in the

indicated memory area are initialized to this specified char-
acter (four characters per word) at object program load time.

Label | Operation Operand
L1 DEFAREA N
L1 DEFAREA N, 'CH'
L1 = Any label or blank.
N = Number of words in the defined area.
'CH' = Number or character to which the indicated

memory area is to be initialized. If an alpha-
numeric character is written, it must be en-
closed in single quotes (e.g., 'A'). A number
need not be enclosed in quotes. If neither a
character nor a number is specified, the DA
instruction functions like a RES. If the entry
is a number, it must be less than or equal to
octal 77. Any character, special or alpha-
numeric, can be written within the quotes.

An "S" flag is generated on the instruction line during as-

sembly, if the number of arguments in the operand is greater
than two or less than one. An "E" flag is generated if there
is more than one argument and the first argument (N) isgreater
than 20471¢.

DATA TRANSMISSION INSTRUCTIONS

MOVEWD (Mvw)'
Move Word String

Moves a word or consecutive sequence of words from one
memory area to another.

Label Operation Operand

L1 MOVEWD E1,E2, N

L MOVEWD E1,E2, N, X
L1 = Any label or blank.

El = Source, the first location of the source mem-
ory area; E1 can be indexed, indirectly ad-
dressed, or both.

t

In this manual, alternative and equivalent instruction mne-
monics are written in parentheses; they are for the user de-
siring coding brevity.

E2 = Destination, the first location of the destina-
tion memory area; E2 can be indexed, indi-
rectly addressed, or both.

N = Count, the number of words to be moved. If
written (N) where N is a user-reserved label,
the contents of N at execution time are taken
as the word count.

X = User-defined label (or number) whose presence
instructs MOVEWD to preserve the contents of
the index register(s).

MOVEWD generates in-line code that varies from two to six
words; or it generates a four-word calling sequence if an op-
erand is indirectly addressed or indexed. The calling se-
quence is also generated if a run-time count is requested.

If the word count as an execution-time parameter is nega-
tive or zero, one word is moved. If the word count as an
assembly-time parameter is zero, no word is moved. If the
word count is blank, one word is moved. If the word count
as an assembly~-time parameter is negative, a syntax error

is recorded at assembly-time.

MOVEWD disturbs the A and B registers.

MOVE
Move Character String (Field)

Moves a string of characters in consecutive positions from

one memory area to another. MOVE need not begin or end
the move operation on a word boundary and can move char-
acters between fields, consecutive word sequences, or both.

Label Operation Operand
L1 MOVE E1, HC1, £2, HC2, CC
L1 MOVE E1, HC1, F2
LY MOVE El, HC1, CC, F2
L1 MOVE F1,E2, HC2
L1 MOVE F1,E2, HC2,CC
L1 MOVE F1,F2
LY = Any label or blank.
El = Source, the first location of the source mem-

ory area; E1 can be indexed, indirectly ad-
dressed, or both.

HC1 = High count of the source; the number of the
first character to be moved, determined by
counting from the left in location E1 to, and
including, that first character.

E2 = Destination, the first location of the destina-
tion memory area; E2 can be indexed and in-
directly addressed.

HC2 = High count of the destination; the number for
the first character in the destination area.

CC = Character count, the number of characters to
be moved.

Fi = Source field, the field F1, defined in the

user's program as the source memory area. No
indexing or indirect addressing is allowed.

14

F2 = Destination field, like F1.

MOVE moves a character string defined by a source location,
high character position count, and tength (number of charac-
ters) or by a field definition, into a second memory area that
is also defined by a field definition or source location, high
count, and length. [f a conflict arises between the length of
the source area, destination area, and character count, the
instruction will move the number of characters equivalent to
the minimum value. The string in the destination area may
be truncated on the right in such cases, since the move is
performed from left to right. If a field length of 10 and a
character count of 8 occur, for example, the move is 8 char-
acters only from the left end of the string. MOVE locates the
word containing the first character in the memory area by
computing Ei + (HCi + 4), where El is the first location and
HCi is the high count.

When written for indirect addressing, MOVE computes the
*Ei and then adds to it the HCi + 4 to find the first word.
The high character position count must be no more than 1027;
the length must be no more than 256. Exceeding these limits
generates a T (trancation) flag during assembly, The calling
sequence generated is 5 words in length.

MOVE does not disturb the index register(s).

MOVEIZ

Move Character String with Zero Fill

Performs the same operations as the MOVE instruction, ex-
cept that all leading blanks in the source area are converted
to zeros in the destination area. Once a non-blank character
is encountered, MOVEIZ functions identically to MOVE.

MOVEED (EDIT, MCE)
Move and Edit Character String

Performs a MOVE operation on a string of BCD digits, auto-
matically suppressing leading zeros in the destination area
and optionaily punctuating the string with S, commas, deci-
mal point, and CR or - (minus) for credit. These items must
be placed in the operand list in the order given here.

The format is the same as the MOVE directive, with the op-
tions added following a comma and enclosed within paren-
theses.

Labe! Operation Operand

L MOVEED E1, HC1,CC,F2,('$','C', P, I'C_R.')

L MOVEED F1,F2,(0,'C',,'CR")
'$' = Float a leading dollar sign.
'C' = Intersperse a comma at intervals of 3 digits.
P = Integer; place a decimal point P digits to the

left of the right-most digit.

‘CR' = Place trailing CR symbol in destination area if
string of digits being moved is negative; or

- = Place trailing - symbol in the destination area
if string of digits being moved is negative.

Any, all, or none of the actions can be written in one state-
ment, However, when any option is unused, its place must
be marked by a zero or by a comma alone. An option list
specifying only the minus would be: (0,0,0,'-'). An op-
tion list for the $ and the minus for credit would be
(*'$',0,0,'-") or equivalently ('$',,,'-").

Conflicts in length between source areq, destination areg,
and character count are resolved the same as in MOVE.

If no option list is written, the zero suppression is still ac-
tive.

If the operand is alphabetic, the zone bits are automatical-
ly stripped.

DECIMAL ARITHMETIC INSTRUCTIONS

Number Formats

Arithmetic instructions generate decimal-character numbers
with a sign and magnitude format of 1) an overpunched
(merged) least significant digit for negative numbers, and
2) no indication on positive numbers, Any character other
than 1 through 9 is treated as a zero. Any negative zero
number is changed to a positive zero, if encountered as
data or generated by an intermediate operation.

The least significant digit indicates the sign of a quantity,
as follows.

XDS Numeric Sign
Card Internal Value of of

Characters Code Code LSD Field
., Space, Blank (b) 8-2, Blank 12,60 0 +
&+ 12 20 0 +
Backspace, ? 12-0 32 0 +
0 0 00 0 +
1,A 1,12-1 01, 21 1 +
2,8 2,12-2 02,22 2 +
3 C 3,12-3 03,23 3 +
4,D 4,12-4 04,24 4 N
5E 5, 12-5 05,25 5 +
6, F 6,12-6 06,26 6 +
7,G 7,12-7 07,27 7 +
8, H 8,12-8 10,30 8 +
9,1 9,12-9 11,31 9 +
- 1 40 0 -
Carriage Return, ! 11-0 52 0 -
J 11-1 41 1 -
K 11-2 42 2 -
L 11-3 43 3 -
M 11-4 44 4 -
N 11-5 45 5 -
0] 11-6 46 6 -
P 11-7 47 7 -
Q 11-8 50 8 -
R 11-9 51 9 -

Note: The characters S through Z are unpredictable.

Examples:

~3710 [030747) characters
-400;, [040040]
40014 [040000]

Upon encountering negative numbers whose least significant
digit is octal 52 (equivalent to a punched card zero over-
punched with an 11-zone), the arithmetic package replaces
the octal 52 code with the octal 40 code.

The arithmetic instructions have the form:

Label Operation Operand

L1 OPCODE E1,LO1,CC1, E2, LO2, CC2

L1 OPCODE E1,LO1,CCY, E2,LO2,CC2, E3,LO3, CC3
L1 = Any label or blank.
Ei = First location of the memory area containing

the ith operand (i=1, 2, or 3).

LOi = Character position number of the least signifi-
cant character of the ith operand. LOi must
be greater than or equal to one.

CCi = Number of characters in the ith operand. CCi
must be greater than or equal to one and less
than or equal to 14,

El, LOI1, and CC1 refer to the first operand. E2, LO2, and
CQC2refer to the second operand; in the first form above, they
also define the areain which the resultis placed. E3, LO3,
and CC3 define the areain whichthe resultis placedin the
second form above. For example, inthe add operation DADD
A,2,2,B,2,2 the resulting sum of A and B is placed in the
area defined by B, completely replacing the operand previ-
ously in B, For the addition DADD A, 2,2,8,2,2,C,2,2
the result is placed in the area defined at C; areas A and B
are left undisturbed.

A third form of decimal arithmetic instruction is provided
for addition and subtraction:

Label Operation Operand

L1 OPCODE E1,LO1, CCl

in whichadecimal one is added to or subtracted from the giv-
en number and the result is placed back into the given area.

The Ei can be indirectly addressed and/or indexed.

For the XDS 900 Series, the form of the operand signified by
Ei is

*Ej Indirectly Addressed
(ED) Indexed
(*Ei) Both
For the XDS 9300, the form is
*Ej Indirectly Addressed
{€i, X) Indexed, where X=1,2,3, or is some

label made equivalent to one of these
numbers by an EQU
Ei, X) Both

Arithmetic Overflow

When an arithmetic overflow occurs during a decimal arith-
metic operation, the instruction sets an overflow flag. The
BAOV business instructions can test this. The flag can be reset
only by using another arithmetic instruction. An attempt to
divide by 0 or -0 sets the overflow flag and causes no other
action. An overflow may also occur during multiply, add,
or subtract when the result at run-time is larger than the
defined size of the result field.

Note: No FIELD-defined labels can be used with decimal
arithmetic instructions.

DADD
Decimal Add

Performs decimal character addition in one of three ways:
1) adds 1 to the decimal character string given, 2) adds the
first string to the second and replaces the second with the
result, or 3) adds the first string to the second and places
the result in a third memory area.

Label Operation Operand

L1 DADD E1,LO1,CCI

L1 DADD Et,LO1,CC1,E2,LO2,CC2

L1 DADD E1,LO1,CC1, E2, LO2, CC2, E3, LO3, CC3
DSUB

Decimal Subtract

Performs decimal character subtraction in one of three ways:
1) subtracts 1 from the decimal character string given, 2)
subtracts the second string from the first and replaces the
second with the result, or 3) subtracts the second string
from the first and places the result in a third memory area.

Label Operation Operand

L1 DsuB E1,LO1, CCH

L DsuUB E1,LO1,CC1, E2,1L02,CC2

L1 DSUB E1,LO1,CCl, E2,L02,CC2, E3,LO3,CC3
DMUL

Decimal Multiply

Performs decimal character multiplication in one of two
ways: (1) multiplies the first string by the second and re-
places the second with the result, or (2) multiplies the first
string by the second and places the result in a third memory
area.

Label Operation Operand

L DMUL
Ll DMUL

E1,L01,CCY, E2, LO2,CC2
E1,L01,CC1, E2,L02,CC2, E3,L0O3,CC3

16

DDIV
Decimal Divide

Performs decimal character division in one of two ways: 1)
divides the first string by the second and replaces the second
with the result, or 2) divides the first string by the second
and places the result in a third memory area.

Labe! Operation Operond

Ll DDV EI,LOI,CCI,/ E2,L02,CC2

L1 DOIV E1,LO1,CC1, E2,LO2,CC2,E3,LO3,CC3
Remainder

The remainder from a division operation is found right-justified
in a 14-character memory area whose label is B\REG2 (the
label's peculiarmakeup is due to its being a special system
label). The sign is in the least significant digit position (as
with any other decimal number), and it is the same as for the
quotient.

BAOV

Branch on Arithmetic Overflow

Tests the decimal arithmetic overflow flag and branches to
location E1 if it is set true. BAOV does not reset the flag.

Label Operation Operand
L1 BAOV 3]
L1 = Any label or blank.

El = Symbolic address of the branch;if E1is written
within parentheses, the branch is a branch and
mark operation.t No indexing is allowed.

Decimal Conversion Instructions

BINBCD BCDBIN
Binary to BCD BCD to Binary

Label Operation Operand
L BINBCD El, HC1,CC1, E2
L1 BCDBIN E1, HC1, CC1, E2
El = First location of the memory area associated

with the decimal character string.

HC1 = Character position of the most significant char-
acter of the decimal string.

CCl = Length of the character string.
E2 = First core location (defined label) of the binary
word pair.

t
See computer reference manual.

BINBCD converts abinary integer fo its BCD (decimal) equiv-
alent. It converts the binary words, located by E2, to a BCD

character string; the result is placed in the memory area in-
dicated by E1, HC1 with a character string length of CCI1,

BCDBIN converts a BCD character string to its binary equiv-
alent. E1, HCI specify the memory area of the defined char-
acter string, with CC1 indicating the number of characters;
the result is placed in the area located by E2.

Indexing and indirect addressing for E1 and E2 is as defined
inthedecimal arithmetic instructions. All binary numbers are
considered to be double-precision (double-length) integer val-
ues and are held inmemory, inthe XDS 900 Series, as follows:

E.ecsf significant haﬂ
rMost significant hulr]

Location N

Location N + 1

and for the XDS 9300:

Location N LMosf significant half l

Location N+ 1

F.ecusf significant half l

BINBCD and BCDBIN also observe these conventions.

Note: No FIELD-defined labels may be used with these
instructions.

Number Formats

Number formats are the same as with the decimal arithme-
tic instructions.

CHARACTER MANIPULATION INSTRU‘CTIONS

PACK (PACKL)

Pack Left-Justified Character String

Packs a group of characters, contained one per word and
left-justified in the word, into an array of words packed
four characters per word.

Label Operation Operand
L1 PACK E1,E2,E3, ...
L1 = Any label or blank
El = Location of the first word of the resultant

array of packed words. It may be indexed
and/or indirectly addressed.

E2, E3,...

Locations of the individual character words
whose left-justified characters are retrieved
and packed. Any of these addresses may be
indexed and/or indirectly addressed.

The packing proéess scans data from left to right, placing
the first character into the left-most position of the pack~
ing area, the second character into the position adjacent

H H PR I ! s
to the first, and so on until all characiers have been stored.

If the number of characters specified in the source line is
not an even multiple of four, the last word in the packed
array will contain trailing zeros. For example, an operand
list

E1,E2,E3 ... E8
will cause characters to be packed as shown:
word E1: [E2| E3| E4 | E5]

e1+1 | e | E7[es|o |

PACK generates a calling sequence whose length is 3+ num-
ber of character words specified.

An "S" error flag is generated at assembly time if the number
of arguments in the operand is less than two.

UNPACK
Unpack Left-Justified Character String

Unpacks characters, contained four per word in an array of
words, into individual words. The character in each word
is left=justified.

Label | Operation Operand
L1 UNPACK E1,E2,E3,
L1 = Any label or blank
El = Location of the first word of the array of

packed words, It may be indexed and/or in-
directly addressed.

E2,E3,... Locations of the individual words into which
the left-justified characters are formed by
unpacking. Any of these addresses may be

indexed and/or indirectly addressed.

UNPACK unpacks an array of words, packed four characters
per word, into individual character words where each con-
tains the character left-justified with trailing blanks (60's).
The unpacking operation proceeds from left to right through
contiguous packed words. That is, the first character word
formed contains the leftmost character of the initial packed
word, the second character word contains the second char-
acter of the initial packed word, and so on, for as many
character words as specified.

UNPACK generates a variable-length calling sequence, the
length of which is equal to 3+ the number of character words
specified. An exception to this occurs when only one char-
acter is unpacked; in this case, four words of in-line code
are generated.

An "S" error flag is generated during the assembly if the
number of arguments in the operand is less than two.

PACKR

Pack Right=-Justified Character String

Packs an array of right-justified single-character words into
a four-characters-per-word array of packed words.

Label Operation Operand
L PACKR El,E2,N
L1 = Any label or blank
E1l = Location of the first word of the resultant ar-

ray of packed words. It may be indexed and/
or indirectly addressed.

E2 = Location of the first word of the array of un-
packed right-justified single-character words.

It may be indexed and/or indirectly addressed.

N = Count of the characters to be packed, i.e.,
the number of character words in the array at
E2. N may be written as a user-reserved la-
bel enclosed in parentheses, indicating the
symbolic address of a location containing the
count (right-justified) at run-time.

PACKR packs the right-justified characters contained in an
array of character words into an array of packed words (four
characters per word). The packing process is executed from
left to right, with the character in the first unpacked char-
acter word being placed in the left-most character position
of the initial packed word, the character in the second un-
packed word being placed in the adjacent character posi-
tion of the first packed word, and so on. If the number of
unpacked character words is not a multiple of four, the last
word in the resultant array of packed words will contain

trailing blanks (60's).
PACKR generates a four-word calling sequence.

An "S" error flag is generated at assembly time if the num-
ber of arguments in the operand is not equal to three.

UNPACKR
Unpack Right-Justified Character String

Unpacks an array of packed words into an array of right=
justified, single-character words.

Label Operation Operand
L1 UNPACKR E1,E2, N
L UNPACKR E1, E2, N, ‘CH*
L1 = Any label or blank
E1 = Location of the first word of the array of

packed words. It may be indexed and/or in-
directly addressed.

E2 = Location of the first word of the resultant
array of right-justified single-character words
formed by the unpacking. It may be indexed
and/or indirectly addressed.

N = Count of characters to be unpacked, i.e.,
the number of character words in the array at
E2. N may be written as a user-reserved la-
bel in parentheses, indicating the symbolic
address of a location containing the count
(right=justified) at run-time.

18

'CH' = Alphanumeric or special character enclosed in
single quotes, to be inserted as the leading
three characters in all derived unpacked char-
acter words. If this argument is not specified,
three leading blanks (60's) will be inserted in-
stead. -

UNPACKR unpacks an array of packed words (four characters
per word) into an array of right-justified unpacked character
words, where each derived character word normally contains
leading blanks (60's). An optional fill character can be
specified, which is inserted instead of blanks (60's). The un-
packing process occurs from left to right, with the left-most
character in the initial word of the packed array forming the
first unpacked character word.

UNPACKR generates o calling sequence of five words.

An "S" error flag is generated at assembly time if the number
of arguments inthe operand is less than 3 or greater than 4.

DATA TESTING INSTRUCTIONS

COMPARW (CPW)
Compare Word String

Compares one consecutive sequence of memory words to an-
other and sets the high,low or equal flag according to whether
the second area is higher, lower, or equal to the first. The
comparison is left to right and is performed according to the
collating sequence specified by the COLLATE instruction
(XDS or BDP). The comparison flag can be tested by the
Business Language branch instructions.

Label Operation Operand
L1 COMPARW El, E2, N
L1 = Any label or blank
El = The first location of the first memory areq; E1

can be indexed, indirectly addressed, or both.

E2 = First location of the second memory areq; E2
can be indexed, indirectly addressed, or both.

N = Count, the number of words to be compared.
If written (N) where N is a user-reserved label,
the contents of N at execution time are taken
as the word count (right-justified).

COMPARW generates a four-word calling sequence. At as-
sembly time, if the word count has been given as zero, no
words will be compared and no flags will be set; if the count
has been given as blank, one word pair will be compared; if
the count has been given as negative, a syntax error indica-
tion will be recorded. At execution time if the count is neg-
ative or zero, one word pair will be compared.

COMPARW disturbs the A and B registers.
COMPARE

Compare Character String

Compares a consecutive string of characters in one memory
area to another, setting the high, low or equal flag according

to whether the second area is higher, lower, or equal to
the first. The comparison is from left to right and is per-
formed according to the collating sequence specified by
COLLATE (XDS or BDP), COMPARE need not begin or end
the comparison on a word boundary and thus can compare
between fields, consecutive word sequences, or both,

Label Operation Operand

L1 COMPARE E1, HC1, E2, HC2,CC
Ll COMPARE El, HC1, F2

L1 COMPARE E1,HC1,CC,F2

L1 COMPARE F1,E2, HC2

L1 COMPARE F1,E2, HC2,CC

L COMPARE F1, F2

L1 = Any label or blank

El = First, the first location of the first memory
area; E1 can be indexed, indirectly addressed,
or both.

HC1" = High count of the first area; the position num-
ber of the first character to be compared, as
determined by counting from the left in loca-
tion E1 to, and including, that first character.

E2 = Second, the first location of the second mem-

ory area; E2 can be indexed, indirectly ad-
dressed, or both.

HC2 = High count of the second areq; the position
number of the first comparison character in
the second area.

CC = Character count, the number of characters
to be compared.

F1 = First field; the field F1 defined in the user’s.
program as the first memory area. No in-
dexing or indirect addressing is allowed.

F2 = Second field.

COMPARE compares a character string defined by a first
lo¢ation, high character count, and length (number of
characters) or by a field definition with a second field or
character string in a second memory area. Comparing from
the left, COMPARE sets the high, low or equal flag as appro-
priate; this flag is testable by the Business Language branch
instructions. The number of characters compared will be
equal to the smaller of the comparison areas or to the char-
acter count, whichever is the lesser. COMPARE locates
the word containing the first comparison character by com-
puting Ei+ (HCi + 4). When Ei is indirectly addressed,
COMPARE first computes the indirect address then adds it
to HCi + 4 to find the first word. The high character posi-
tion count must be no more than 1027; the length must be
no more than 256. Exceeding these limits generates a T
(truncation) flag during assembly.

COMPARE does not disturb the index register(s).

PROGRAM BRANCH CONTROL INSTRUCTIONS

BREQ (BE)
Branch on Equal

Branches to the location specified, if the preceding COM-
PARE instruction set the compare flag to EQUAL,

Label Operation Operand
L1 BREQ El
L1 = Any label or blank
El = Symbolic address of the branch-to location.

If written (E1), the branch instruction will be
a branch and mark place. No indexing is
allowed. Indirect addressing is allowed.

BRNE (BU)

Branch on Not Equal

Branches to the location specified, if the preceding COM-
PARE instruction set the compare flag to NOT EQUAL.

Label Operation Operand
L1 BRNE El
L1 = Any label or blank
El = Symbolic address of the branch~to location.

If written (E1), the branch instruction will be
a branch and mark place. No indexing is
allowed. Indirect addressing is allowed.

BRHI (BH)
Branch on High
Branches to the location specified, if the preceding COM-

PARE instruction set the compare flag to HIGH (i.e., the
second operand is greater than the first).

Lobel | Operation Operand
L1 BRHI El
L1 = Any label or blank
El = Symbolic address of the branch-to location.

If written (E1), the branch instruction will be
a branch and mark place. No indexing is
allowed. Indirect addressing is allowed.

BRLO (BL)

Branch on Low
—anchon -ow

Branch to the location specified, if the preceding COM-
PARE instruction set the compare flag to LOW.,

Label Operation Operand
L1 BRLO El
L1 = Any label or blank

19

El = Symbolic address of the branch-to location.
If written (E1), the branch instruction will be
a branch and mark place. No indexing is
allowed. Indirect addressing is allowed.

BRACNE

Branch on any Character Not Equal

Branches to the location specified, if the character in the
specified location and character position is not equal to one
of the characters in an indicated list of characters.

Label Operation Operand
L1 BRACNE El1,E2,E3,'Q1','Q2', ...
L1 = Any label or blank

El Symbolic address of the branch-to location on
nonequality. If enclosed in parentheses, a
mark place and branch (BRM) will be executed.
No indexing is allowed. Indirect addressing

is ollowed.

E2 Symbolic address of the base location of the
character argument to be compared; it may be

indexed and/or indirectly addressed.
E3

Relative character position (offset) from the
base location of the character to be compared.
If enclosed in parentheses, it indicates the
symbolic address of a location containing the
offset (right-justified) at run-time.

'Q1,'Q2', ... = The list of alphanumeric or special char-
acters to which the characterargument iscom-
pared for equality. Each member of the list
must be written within single quotes unless it
is numeric. To specify a blank, write ' ',

BRACNE compares a character argument at a given location
and offset to a list of characters. The offset is the number
of the first character to be compared, determined by count-
ing from the left in location E2 to, and including, the first
character. If the character argument in the effective loca-
tion isnot equal to any memberof the specified list, control is
transferred (BRU) to E1. If E1 is enclosed in parentheses,

a BRM to El is executed. Normally, BRACNE generates a
calling sequence whose length is four plus the covered quo-
tient of the number of members in the compared list + 4,
This is conditionally supplemented by a preceding three-word
calling sequence if E2 is indexed or indirectly addressed, or
if E3 is a run-time parameter (i.e., E3 is enclosed in paren-
theses).

An "S" error flag is generated at assembly time if the number
of arguments in the operand is less than four.

BRACEQ

Branch on any Character Equal

Branches to the location specified if the character in the
specified location and character position is equal to one
of the characters in an indicated list of characters.

20

Label Operation Operand
L1 BRACEQ El,E2, E3,'Q1', 'Q2, ...
L1 = Any label or blank
El = Symbolic address of the branch to location on

equality, If enclosed in parentheses, a mark
place and branch (BRM) will be executed. No
indexing is allowed. Indirect addressing is
allowed.

E2 = Symbolic address of the base location of the
character argument to be compared; it may be
indexed and/or indirectly addressed.

E3 = Relative character position (offset) from the base |
location of the character to be compared. If
enclosed in parentheses, it indicates the sym-
bolic address of a location containing the off-
set (right-justified) at run-time.

'Q1','Q2Y, ... = The list of alphanumeric or special char-
acters to which the character argument is com-
pared for equality. Each member of the list
must be written within single quotes unless it
is numeric. To specify a blank, write ' .

BRACEQ compares a character argument, at given location
and offset, to a list of characters. The offset is the number
of the first character to be compared, determined by count-
ing from the left in location E2 to, and including the first
character. If the character argument in the effective loca-
tion is equal to any member of the specified list, control is
transferred (BRU) to E1. If E1 is enclosed in parentheses, a
BRM to El is executed. Normally, BRACEQ generates a
calling sequence whose length is four plus the covered quo-
tient of the number of members in the compared list + 4.
This is conditionally supplemented by a precedingthree-word
calling sequence, if E2 is indexed or indirectly addressed or
if E3 is a run-time parameter (i.e., E3 is enclosed in paren-
theses).

An "S" error flag is generated at assembly time if the number
of arguments in the operand is less than four.

DATA FIELD INITIALIZING INSTRUCTIONS

CLEAR

Clear Word String to Zeros

Clears (to zeros) an indicated area of memory for a specified
number of words.

Label Operation Operand
L1 CLEAR EV, N
L CLEAR El, N, X
L1 = Any label or blank
El = Initial location of the memory area to be
cleared; it may be indexed or indirectly ad-
dressed.

N = Count of the number of memory locations to
be cleared; if missing, N is assumed to be one.
If enclosed in parentheses, N indicates the
symbolic oddress of a location containing the
word count at run-time. No indexing or in-
direct addressing is allowed.

X = If present, the index register(s) is saved and
restored.

Clears an area of memory to zeros. CLEAR generates vari-
ous combinations of in-line code, from a minimum of two

words to a maximum of eleven.

An "S" error flag is generated at assembly time if there are
no arguments in the operand. :

CLEARCH

Clear Character String to Zeros

Clears to zeros a consecutive sequence of characters in
memory.

Label Operation Operand
L1 CLEARCH El, HC1, CC
L1 CLEARCH F1
L1 = Any label or blank
E1 = First location of the area to be cleared; El
can be indexed, indirectly addressed or both.
HC1 = High count; the position number of the first
character of the string to be cleared.
CC = Character count, the number of characters in
the string.
F1 = User-defined field name indicating the field

to be cleared.
CLEARCH selects the first character in the same way as
MOVE. HC1 must be no more than 1027; CC must be no
more than 256. Exceeding these limits causes a T (trunca-
tion) error at assembly time. The calling sequence is nine
words in length.
CLEARCH does not disturb the index register(s).
BLANK

Set Word String to Blanks

Clears to blanks (60's) an indicated area of memory for a
specified number of words.

Label Operation Operand
L1 BLANK El, N
Li BLANK E1, N, X
L1 = Any label or blank
El = Initial location of the memory area to be cleared;

it may be indexed or indirectly addressed.

N = Count of the number of memory locations to be
cleared (if missing, N is assumed to be one).
If enclosed in parentheses, N indicates the
symbolic address of a location containing the
word count at run-fime. No indexing or in-
direct addressing is allowed.

X = If present, the index register(s) is saved and
restored.

Clears an area of memory to blanks. BLANK generates vari-
ous combinations of in-line code from a minimum of two words

to a maximum of eleven.

An "S" error flag is generated at assembly time if there are
no arguments in the operand.

BLANKCH

Set Character String to Blanks

Clears to blanks (060's) a consecutive sequence of characters
in memory.

Label Operation Operand
Ll BLANKCH El, HC1,CC
L BLANKCH F1

L1 = Any label or blank

El = First location of the area to be cleared; E1 can
be indexed, indirectly addressed, or both.

HC1 = High count; the position number of the first
character of the string to be cleared.

CC = Character count; the number of characters in
the string.

F1 = User-defined field name indicating the field to
be cleared.

BLANKCH selects the first character in the same way as
MOVE. HC1 must be no more than 1027; CC must be no
more than 256. Exceeding these limits causes a T (truncation)
error at assembly time. The calling sequence is nine words in
length.

BLANKCH does not disturb the index register(s).
FILL

Fill Word String with Character

Fills an indicated area of memory with the character speci-
fied for a specified number of words.

Label Operation Operand
L1 FILL El, N, 'CH'
Ll FILL El, N, 'CH', X
L1 = Any label or blank
El = Initial location of the memory area to be filled;

it may be indexed and/or indirectly addressed.

21

N = Count of the number of memory locations to be
filled. (If missing, N is assumed to be one.)
If enclosed in parentheses, it indicates the
symbolic address of a location containing the
word count at run-time. No indexing or in-
direct addressing is allowed.

ICHI

i

Character with which memory is to be filled.

X = If present, it indicates that the index register(s)
should be saved and restored.

Fills an area of memory with a specified character, packed
four to a word. FILL generates various combinations of in-
line code ranging from a minimum of two words to a maxi-
mum of eleven.

An "S" error flag is generated at assembly time if the num=

ber of arguments in the operand is less than three or if the
word count is less than one.

FILLCH

Fill Character String with Character

Fills a consecutive sequence of character positions in mem-
ory with a specified character.

Label Operation Operand
L1 FILLCH E1, HC1, CC, 'CH'
L1 FILLCH F1,'CH'
L1 = Any label or blank
El = First location of the area to be filled; E1 can

be indexed, indirectly addressed, or both,

HC1 = High count; the position number of the first
character of the string to be filied.

CC = Character count; the number of characters in
the string.

Fi = User~defined field name indicating the field
to be filled.
'CH' = Alphanumeric or special character with which

memory is o be filled.

FILLCH selects the first character in the same way MOVE
does. HCI1 must be no more than 1027; CC must be no more
than 256. Exceeding these limits causes a T (truncation)
error af assembly time. The calling sequence is nine words
in length.

INTERNAL SORTING INSTRUCTIONS

SORT (SORTDS, SORTBIN, SORTBDS)

Sorts a table of items in memory, into ascending or descend-
ing sequence; an item being a specified number of words in
length. A logical sort is performed on BCD items; an alge-
braic sort on binary items.

SORT
SORTDS

Ascending BCD Sort.
Descending BCD Sort.

22

SORTBIN = Ascending Binary Sort

SORTBDS = Descending Binary Sort

Label Operation Operand

L1 SORT El, E2,E3, E4, E5

L1 SORT El, E2, E3, E4, E5, E6
L1 = Any label or blank
El = Location of origin of table to be sorted. It

may be indexed and/or indirectly addressed.

E2 = Number of items to be sorted. If enclosed in
parentheses, it indicates the symbolic address
of a location containing the number of items
at run-time. No indexing or indirect address-
ing is allowed.

E3 = Length of an item (number of words).
Parentheses indicate the symbolic address of
the location containing the item length at run-
time. No indexing or indirect addressing is
allowed.

E4 = Relative (high-order) word position of the sort
key within the item. Parentheses indicate the
symbolic address of the location containing key
positionat run-time. No indexing or indirect
addressing is allowed.

E5 = Length of key (number of words).
Parentheses indicate the symbolic address of
the location containing key length at run-
time. No indexing or indirect addressing is
allowed.

E6 = Location of the origin of the sorted table, ifit
(optional) is to be relocated; it may be indexed and/or
indirectly addressed.

SORT performs an internal sort on the table indicated, over-
laying the result on the original table unless overridden by
the presence of an entry for E6. Comparisons during sorting
are influenced by the status of the last COLLATE command
executed prior to the SORT. (See COLLATE description in
"Special Operations" group of instructions.) If a COLLATE
'BDP' has been given, compares act on a translated key
(commercial collating) sequence. It is suggested that COL-
LATE 'BDP' be given only when absolutely necessary, be-
cause sorting is appreciably slower (by a factor of approxi-
mately six) if translation is required. SORT generates a six~
word calling sequence and also generates in-line code prior
to the calling sequence, varying from one to 12 words as a
function of the arguments in the operand.

An "S" error flag is generated at assembly time if (a) the
number of arguments in the operand is less than five or greater
than six, (b) assembly-time item length is greater than 50
words, (c)assembly-time key position or key length isgreater
than 50 words, or the total size of the table (assembly-time
arguments) is greater than 8191 words.

REGISTER SHIFT INSTRUCTIONS

LSHIFT (RSHIFT)

Logical Left Shift ABRegister (Logical Right Shift ABRegister)

Performs a left (right) logical shift on the eight-character,
BCD contents of the A and B registers taken together as one
register (the AB register).

Label Operation Operand
L1 LSHIFT N
L1 RSHIFT N
L1 = Any label or blank
N = Length of shift (in character positions).

Shifts the BCD contents of the AB register N character posi-
tions to the left or right. This instruction generated a single,
machine-language binary shift instruction. The shift count
N can be indexed (N) and/or indirectly addressed *N (900
Series only).

An "S" error flag is generated at assembly time if the num-
ber of arguments in the operand is not equal to one. On the
XDS 9300 only, it will generate an "S" error flag for any
indirect shift attempt.

SPECIAL OPERATIONS

COLLATE

Set Collating Sequence

Indicates that compares made thereafter are dependent on
'XDS' internal collating sequence or on 'BDP' (IBM 1400
Series) collating sequence, depending on the specified
operand.

Label Operation Operand
L1 COLLATE ‘XDS'
L1 COLLATE 'BDP!
L1 = Any label or blank
'XDS'= Compares made are based on the XDS internal

collating sequence.

'BDP’

Compares made are based on the commercial
collating sequence.

The operand of COLLATE indicates whether ensuing com-
pares will be based on normal XDS internal collating se-
quence or commercial (IBM 1400 Series) collating sequence.
If COLLATE is never given in the source language program,
all compares will be based on XDS collating sequence.
COLLATE 'BDP' actually initiates a translation of the COM-
PARE arguments into an inverted character set representa-
tive of IBM 1400 Series. The COLLATE instruction can be
given repetitively during the flow of a program. If a pro-
grammer calls the Business Language "SORT" verb, com-
parisons made within the SORT will be based on the sequence

stated in the last COLLATE executed prior to calling SORT.

COLLATE generates either one or two words of in-line code.

An "S" error flag will be generated at assembly time if the
operand is neither 'XDS' or 'BDP'.

MEMORY

Compute Memory Size

Computes the memory size of the machine in which the in-
struction is executed and place a 2, 4, 6, 8, 12, 16, 20,
24, 28, or 32 in the A register. These digits respectively
represent two thousand through 32 thousand words of memory.

Label Operation Operand
L1 MEMORY
L1 MEMORY E1
L1 = Any label or blank
E1l = Location in which memory size is to be stored;
{optional) it can be indirectly addressed (not indexed).

MEMORY computes the memory size of the machine in which
it is executed. Memory size is represented by the appropri-
ate number 2, 4, 6, 8, 12, 16, 20, 24, 28, or 32 being
placed in the A register. If an operand is present, computed
memory size is stored in that location. MEMORY generates
either 15 or 16 words of in-line code.

EXTEND

Specify Extended Assembly Mode

Instructs META-SYMBOL to perform an assembly in the ex-
tended XDS Business Language mode. It is mandatory that
this directive be given at the beginning of any source pro-
gram that has called any Business Language instruction

(PROCedure).

Label Operation Operand
L1 EXTEND
L1 = Any label or blank

No operand is applicable to this directive.

This directive must be present in every Business Language as-
sembly. As a matter of good practice, it should be given as
the first statement in any source-language program (i.e., im-
mediately following the AMETA card). No object code is
generated by this directive.

BUSINESS LANGUAGE INPUT /OUTPUT
INSTRUCTION ROUTINES

XDS 900 SERIES

Before a Business Language input/output instruction is initi-
ated, the I/O routine checks to see if the buffer is active.
If it is active for more than two seconds, the routine halts
and displays a NOP in the C register. The address portion
of the register contains zero if the buffer being tested is the

W buffer, and one if it is the Y buffer.

23

When the buffer is found not active (i.e., ready), the rou-
tine queries Breakpoint 4. If it is set, the routine waifs in
a short loop, allowing the operator the opportunity to ad-
just any portion of the physical system such as setting up
magnetic tapes. As soon as Breakpoint 4 is reset (or if the
routine initially finds it reset), the routine continues 1/O
processing. Interrupts are never used by or with the 1/0
package. 1f any interrupt is enabled during the use of the
I/O package, unpredictable results will be obtained. All
1/O is performed in the single-word mode of transmission.

When any of the 1/O instructions is called within a program,
the entire package is loaded into memory. It occupies ap-
proximately 713 (decimal) locations.

XDS 9300

All input/output operations and the errors detected during
them are handled by the 9300 MONITOR. The Business
Language recognizes and handles errors as noted in the fol -
lowing descriptions only when the 'F' option is used by the
operator. That is, only when a AFtyped input instructs
MONITOR to return does the awareness of the error get back
to the Business Language Input/Output Routine. If the error
is passed on to the routine, the channel-error flag (testable
by BCER) is set. For operational policy to be decided, a
thorough knowledge of the MONITOR 9300 as found in the
MONITOR Reference Manual is required.

The more normal indicators, such as end-of-file, end-of-tape,
beginning-of-tape, are testable via the 1/O branch tests ex-
plained later in this section.

WRITETP
Write Magnetic Tape Record (BCD Mode)

Writes a record of specified length, in BCD format, onto
tape from a specified memory area.

Label Operation Operand
L1 WRITETP LU, EY, CC
L1 = Any label or blank
LU = Logical tape unit number.
El = Symbolic address of the output area; it may be
indexed and indirectly addressed.
CC = Number of characters to be written; this pa-

rameter cannot be omitted. If CC is a label

and is enclosed in parentheses, the binary
contents of location CC is the number of words
to be written (four-characters-per-word output
mode). If CC is a label, is enclosed in paren-
theses, and is prefixed with an asterisk (*CC),
the number of words to be written is the contents
of the effective address, where the asterisk in-
indicates indirect addressing.

WRITETP writes a record, in BCD format, of a specified
number of words (an execution-time parameter) or a speci- .
fied number of characters (an assembly-time parameter).
When writing a number of characters, WRITETP writes an
integral number of words which cover the specified number
of characters. The calling sequence generated in-line by

24

WRITETP is three words in length. Note: In writing or

reading tapes, any 012 code characters (zeros) written will
read back as 00.

900 Series Error Checking

At the beginning of WRITETP execution, it resets the channel
error, tape mark, beginning-of-tape, end-of-tape and file-
protect flags. If the beginning-of-tape marker is sensed as
the write operation begins, WRITETP erases a length of tape
as a leader before it begins writing the record. WRITETP
performs the following sequence of operations in writing
tape:

Writes the number of words {or characters //4) specified.
If this record is less than four words in length, it is al-
ways read back as a noise record and, as such, is lost to
the user. If the character count CC is 12 or less, a T
(truncation) flag syntax error will be printed on the
WRITETP line during program assembly.

If a channel error is detected, WRITETP backspaces the
length of the record and writes the record again. If an-
other channel error is detected, it backspaces again and
erases over the record. This is attempted no more than
five times. If failure continues, WRITETP returns to the
user with the channel error flag set. The tape is posi~
tioned past the bad area that has been erased.

If the end-of-reel is encountered, WRITETP sets the end-
of-tape flag and returns to the user.

If a file-protected tape is encountered, WRITETP sets
the file-protect flag and returns without writing.

WTPBIN

Write Magnetic Tape Record (Binary Mode)

Writes a record of specified length, in binary format, onto
tape from a specified memory area.

Label | Operation Operand
L1 WTPBIN Ly, E1,CC -
L1 = Any label or blank
LU = Logical tape unit number.
El = Symbolic address of the output areq; it may be
indexed or indirectly addressed.
CC = Numberof characters tobe written, asfollows

(this parameter cannot be omitted). IfCCis a
label and is enclosed inparentheses, the binary
contents of location CC is the number of words to
be written. If CC is a label, is enclosed in
parentheses, and is prefixed with an asterisk
(*CC), the number of words to be written is
the contents of the effective address, where
the asterisk indicates indirect addressing. If

written alone as a number without parentheses,
CC is a character count that is divided by four
(covered quotient) to generate the binary
record word count.

WTPBIN functions indentically to WRITETP, except that it
writes the record in binary and not in BCD. If a character
count is specified (assembly-time parameter), WTPBIN forms
the word count via the covered quotient CC//4.

Error checking is identical to WRITETP.

READTP

Read Magnetic Tape Record (BCD Mode)

Reads a record from magnetic tape, in BCD format, into a
specified memory areqa, until the number of characters spec-
ified has been read into the specified memory area.

Label Operation Operand
L READTP LU, E1,CC
L1 = Any label or blank
LU = Logical tape unit number.
El = Symbolic address of the input areq; it can be

indexed and/or indirectly addressed.

CC = Number of characters to be read; if omitted,
the entire record is read. If CC is a label and
is enclosed in parentheses, the contents of lo-
cation CC is the number of words to be read
(four-characters-per-word input mode). If CC
is a label, is enclosed in parentheses, and is
prefixed with an asterisk (*CC), the number
of words to be read is the contents of the ef-
fective address, where the asterisk indicates
indirect addressing.

READTP reads an entire record, the specified number of
words (an execution-time parameter), or the specified num-
ber of characters {an assembly-time parameter). When
reading characters, READTP reads an integral number of
words containing enough characters to cover the requested
amount (CC). The calling sequence generated in-line by
READTP is three words in length.

XDS 900 Series Error Checking

At the beginning of READTP execution, it resets the chan-
nel error, tape-mark, beginning-of-tape, end-of-tape and
file-protect flags. READTP performs the following sequence
of operations:

Reads the number of words (characters//4) specified or
reads to the end-of-record, whichever occurs first.

Tests for having read four or more words. If not four
or more, a test is made for a tape mark (EOF). If the
tape mark has been encountered, READTP sets the tape

mark flag; and if not end-of-file it increments a noise-
record count, reads the next record, and queries four or
more words again, and so on. After fifty such 'noise
records’ are read in a row, the number 02000004 is
placed in the C register and the programhalts. To clear
the count and read the next record via the same READTP
instruction, clear the halt. Run-time arguments speci-
fying three words or less will cause noise records and
can only be detected as stated above. If the character
count CC is 12 or less, a T (truncation) flag will be
printed on the assembly line during program assembly.

If four or more words are read into memory, other errors
are checked as follows:

If a channel error is detected, READTP attempts to
read the record ten times. If unsuccessful, it sets
the channel error flag and positions the read head
after the bad record.

If the end-of-reel is encountered, READTP sets the
end-of-tape flag.

RTPBIN
Read Magnetic Tape Record (Binary Mode)

Reads a record from magnetic tape, in binary format, into a
specified memory areq; or, reads words from tape until the
end-of-record has been read into the specifiedmemory area.

Label Operation Operand
L1 RTPBIN LU, E1,CC
L1 = Any label or blank
LU = Logical tape unit number.
El = Symbolic address of the input areq; it can be

indexed and/or indirectly addressed.

CC = Numberofcharacters to be read, as follows. If
omitted, the entire record isread. If CC is
a label and is enclosed in parentheses, the
binary contents of location CC is the number
of words to be read. If CC is a label, is en-
closed in parentheses, and is prefixed with an
asterisk, the number of words to be read is the
contents of the effective address, where the
asterisk indicates indirect addressing. If written
alone as a number without parentheses, CC is
a character count that is divided by four (cov-
ered quotient) to generate the record word
count.

RTPBIN functions and checks errors identically to READTP,
except that it reads in binary rather than BCD format. If a
character count is specified (e.g., only a CC), RTPBIN di-
vides the count by four and forms the word count via the
covered quotient CC//4.

REWIND

Rewind Magnetic Tape

Rewinds the specified tape to the load point (beginning of
tape reflective point).

25

Label Operation Operand
L1 REWIND LY
Lt = Any label or blank.

LU

1l

Logical tape unit number.

REWIND rewinds the tape to the load point. The calling
sequence generated in-line by REWIND is two words in
length.

XDS 900 Series Error Checking

At the beginning of REWIND execution, it resets the
channel-error, tape-mark, end-of-tape and file-protect
flags. After executing the instructions to position the tape
at the load point, REWIND sets the beginning-of-tape flag.

WTMARK (WTM)

Write End-of-Tape Mark

Writes an end-of-tape mark.

Label Operation Operand
L1 WTMARK LU
L1 = Any label or blank.

LU Logical tape unit number.

WTMARK writes an end-of-file record (equivalently, a tape

mark). The calling sequence generated in-line by WTMARK
is two words in length.

XDS 900 Series Error Checking

At the beginning of WTMARK execution, it resets the
channel-error, tape-mark, beginning-of-tape, end-of-
tape and file-protect flags. It performs the following op-
erations:

Writes a tape mark.

If a channel error occurs, WTMARK backspaces over
the mark, erases forward over the mark record, and
writes another mark.

This procedure is continued until a tape mark is suc-
cessfully written or until the program hangs up because
it has written the tape off the end of the reel.

It checks for and sets the flags accordingly for end-of-
tape and file-protected tape.

BACKSPACE

Backspace Magnetic Tape

Backspaces N records or files, as specified, on tape unit
LU.

Label Operation Operand

L1 BACKSPACE LU, N

26

L1 = Any label or blank.
LU = Logical tape unit number.

N = Number of records to be backspaced over; if
written (N), N specifies the number of files
to be backspaced over.

BACKSPACE backspaces tape unit LU over N records, if N

is written alone, or N files if N is written within parentheses.
To backspace over N files means that BACKSPACE moves the
tape backward over N end-of-file marks and then returns
forward past the last one, so that reading can begin within
the last file passed over. For example, BACKSPACE LU, (1)
positions the tape at the beginning of the first record of the
current file. The calling sequence generated in-line by

BACKSPACE is two words in length.

XDS 900 Series and XDS 9300 Error Checking

BACKSPACE first resets all tape flags (see WRITETP). Once
the backspacing operation has begun, it is stopped as follows:
\
If an end-of-file is encountered during a backspace of
N records, BACKSPACE returns control to the user, with
the tape-mark flag set and the tape head positioned in
front of the end-of-file mark.

If the beginning-of-tape (load point) is encountered
during a backspace, the beginning-of-tape flag is set
and control returns to the user.

If the required number of records is backspaced over,
control returns to the user without setting any flags. If
the required number of files is encountered during a
file-counting backspace, control returns to the user
with only the tape-mark flag set.

SKIPTAPE

Skip Magnetic Tape Records Forward

Skips forward N records or files as specified on tape unit LU.

Label Operation Operand
L1 SKIPTAPE LU, N
L1 = Any label or blank.
LU = Logical tape unit number.
N = Number of records to be skipped over; if

written (N), N specifies the number of files
to be skipped over.

SKIPTAPE skips tape unit LU over N records if N is written
alone, or N files if N is written within parentheses. The
calling sequence generated in-line by SKIPTAPE is two
words in length.

XDS 900 Series and XDS 9300 Error Checking

SKIPTAPE initially resets all tape flags. Once the skip
operation has begun, it stopped as follows:

If an end-of-file is encountered during a skip of N re-
cords, SKIPTAPE returns control to the user, with the

tape-mark flag set and the tape head positioned in front
of the end-of-file mark.

If the end-of-tape (end-of-reel marker) is encountered
during a skip, the end-of-tape flag is set and control
returns to the user.

If the required number of records is skipped over, con-
trol returns to the user without setting any flags. If
the required number of files is skipped over, control
returns to the user with only the tape-mark flag set.
READCD
Read BCD Card -

Reads a card in BCD format into a specified memory area.

Label Operation Operand
L1 READCD El
L1 = Any label or blank.

El = Symbolic address of the input areq; if E1 is
enclosed in parentheses it indicates indexing
is to be performed on the address. Indirect
addressing is allowed.

READCD reads one card (80 columns) into a 20-word memory
area defined by E1. The calling sequence generated in-line

by READCD is two words in length.

XDS 900 Series Error Checking

Initially READCD resets the channel-error flag and the last
card flag. A validity check, read check, or any channel
error (other than feed check) causes READCD to set the
channel-error flag. A feed check causes READCD to halt
the program and display 02000003 in the C register; straight-
ening the current card, readying the reader, and clearing
the halt causes the program to continue undisturbed. The
card hopper is tested empty before the card is read and, if

it is empty, READCD sets the last-card flag and executes
the next instruction in sequence.

PUNCH
Punch BCD Card

Punches an 80 column card in BCD format from a specified
memory area.

Label Operation Operand
L1 PUNCH El
L1 = Any label or blank.

E1

Symbolic address of the output areq; if El is
enclosed in parentheses it indicates indexing
is to be performed. Indirect addressing is
allowed.

PUNCH punches a BCD card, taking the information from a
20-word memory area defined by El, using either a buffered
or unbuffered punch unit. The calling sequence generated
in-line by PUNCH is two words in length.

XDS 900 Series Error Checking

PUNCH initially resets the channel-error flag; any detectable
channel error causes PUNCH to set the channel-error flag.

TYPEIN

Input from Typewriter

Accepts characters from the typewriter and stores them in a
specified memory area, until 80 characters have been re-
ceived or until a carriage return has been typed.

Label Operation Operand
L1 TYPEIN El
L1 = Any label or blank.
El = Symbolic address of the input areq; if EI is

enclosed in parentheses it indicates indexing
is to be performed. Indirect addressing is
allowed.

TYPEIN lights the typewriter type-in light and waits for the
operator to type his message. The routine will accept up to
80 characters or up to a carriage return. If terminated by the
carriage return, the carriage-return character (code 052)
appears as the last nonblank character in the input areq;
the rest of the current word and the rest of the 20-word in-
put area is blank (060) filled. On the XDS 9300, the car-
riage refurn code is not placed in the input area nor is the
rest of the area blanked out. Spaces input from the type-
writer are placed into the input area as 060 blanks. Input
is packed four characters per word. The calling sequence
generated in=line by TYPEIN is two words in length.

XDS 900 Series and XDS 2300 Error Checking

Initially TYPEIN resets the channel-error flag, and any
channel error (returned via AF on the 9300) causes TYPEIN
to set the channel-error flag.

TYPE

Output on Typewriter (XDS 900 Series only)

Types characters on the typewriter, from a specified memory
area, until 80 characters have been typed or until a carriage-
return character is detected in the memory area.

Label Operation Operand
L1 TYPE El
L1 = Any label or blank.

El

Symbolic address of the output areq; it can be
indexed and indirectly addressed.

27

TYPE types characters beginning at location E1, and contin-
ves until 80 characters (a 20-word memory buffer) followed
by an automatic carriage return, have been typed or until
the character to be typed is the carriage-return character.
This character is the same as the exclamation point and is
written as ! or octal code 52. TYPE converts all 060 code
blanks to 012 blanks; 012 codes are not altered. TYPE does
not disturb the memory area. Typing is done on the console
typewriter (unit 1, channel 0). The calling sequence gen-
erated in-line by TYPE is two words in length.

Initially TYPE resets the channel-error flag; and any chan-
nel error causes TYPE to set the channel-error flag.

Laobel Operation Operand
MSG TEXT <AB CDI! >
TYPE MSG

The above sequence causes AB CD to be typed, followed by
a carriage return,

TYPE

Output on Typewriter (XDS 9300 only)

Types 80 characters on the typewriter, from a specified
memory ared.

Label Operation Operand
Lt TYPE 3]
L1 = Any label or blank.

El

Symbolic address of the output areq; it can
be indexed and/or indirectly addressed.

TYPE types 80 characters, beginning at the first character
in location E1. Typing terminates when only trailing blanks
remain in the 80-character image. It converts all 060 code
blanks to 012 blanks, 012 being the typewriter carriage
space. If no carriage return code is encountered at or be-
fore the 80th character is typed, TYPE will not automati-
cally return the carriage. Four characters per word are
typed out even though only blanks remain in the buffer.
This is significant when a carriage return occurs at the end
of a line. If the carriage return is other than the fourth
character of a word, the following one, two, or three
blanks in the word would be typed on the next line. Typing
is performed on the console typewriter (unit 1, channel 0).
The calling sequence generated in-line by TYPE is two words
in length.

PRINT

Print 132-Character Line

Prints one 132-character line on the line printer, with the
specified upspacing. Upspacing always occurs prior to the
printing of the line.

28

Lobel | Operation Operand
L1 PRINT El
LY PRINT E1,N
L1 PRINT Ey,'Q
L1 = Any label or blank.
El = Location of the output areq; it can be indexed

and indirectly addressed. When no other pa-
rameter is present, PRINT upspaces one line.

N = Channel, on the print control tape loop, to
which the printer upspaces prior to printing
the line. N=0,...,7.

Q = Alphabetic character specifying the number of
print lines that the printer upspaces prior to
printing the line. Q=-,J,K,L,M, N, O, or
P, specifying upspacing of 0, 1,...,7 lines,
respectively. The alphabetic character must
be written within single quotes.

PRINT always upspaces, as specified, before printing. The
characters in the entire 33-word memory area beginning at
E1 are printed. The calling sequence generated in-line by
PRINT is two words in length.

XDS 900 Series Error Checking

Initially, PRINT resets the print-fault, page-overflow and
channel-error flags. PRINT operates in the following man-
ner: (1) if a channel error is encountered during printing,
the channel-error flag is set and control returns to the user;
(2) if there had been a print fault on the previous printer
operation (e.g., printing a line, upspacing, channel skip-
ping, or a restore), PRINT sets the print-fault flag and
prints the current line before returning control to the user;
(3) if the page-overflow condition (true condition on channel 7
of the print control loop) is found prior to this print operation,
the page-overflow flag is set and printing continues.

PRT 120
Print 120-Character Line

Prints one 120-character line on the line printer, with the
specified upspacing. Upspacing always occurs prior to the
printing of the line.

Label Operation Operand
L1 PRT120 E1
L PRT120 £, N
L1 PRT120 E1,'Q'
LT = Any label or blank.
El = Symbolic address of the output areg; it may

be indexed and indirectly addressed. When
no other parameter is present, PRT120 up-
spaces one line.

N = Channel, on the print control tape loop, to
which the printer upspaces prior to printing
the line. N=0,...,7.

Q = An alphabetic character specifying the number
of print lines that the printer upspaces prior to
printing the line. Q=-,J,K,L, M, N, O, or P,
specifying the upspacing of 0,1, ..., 7 lines,
respectively. The alphabetic character must
be written within single quotes.

PRT120 always upspaces, as specified, before printing. The
characters in the entire 30-word memory area beginning at
E1 are printed. The calling sequence generated in-line by
PRT120 is two words in length.

Error checking is identical with that of PRINT,

UPSPACE

Upspace Line Printer

Upspaces N print lines, where N can range from 0 to 7.

Label Operation Operand
Li UPSPACE N
L1 = Any label or blank.

N Number of lines to be upspaced; O,...,7.

The calling sequence generated in-line by UPSPACE is two
words in length.

XDS 900 Series Error Checking

Initially, UPSPACE resets the print-fault, page-overflow,
and channel-error flags. It sets page-overflow if channel
7 on the format loop is 'true' before the upspace starts. It
sets printer~fault if a print fault had occurred on the previ-
ous printer operation.

SKPCHN

Skip to Channel N

Upspaces the printer to channel N on the format control
loop.

Label Operation Operand
L1 SKPCHN N
LT = Any label or blank
N = Number of the channel, on the format con-
trol loop, to which the printer is to upspace;
N=0,...,7.

The calling sequence generated in-line by SKPCHN is two
words in length.

XDS 900 Series Error Checking

Initially, SKPCHN resets the print-fault, page-overflow,
and channei-error fiags. It sets page-overfiow if channel

7 on the format loop is 'true' before the upspace starts. It
sets printer-fault if a print fault had occurred on the previ-
ous printer operation.

RESTORE

Skip to Channel 1

Upspaces the printer paper to the top of the form (skips to
channel T on the format control loop).

Label Operation Operand
L1 RESTORE
L1 = Any label or blank.

The calling sequence generated in-line by RESTORE is two
words in length.

XDS 900 Series Error Checking

Initially, RESTORE resets the print-fault, page-overflow,
and channel-error flags. It sets page-overflow if channel
7 on the format loop is 'true' before the upspace starts. It
sets printer-fault if a print fault had occurred on the previ-
ous printer operation.

INPUT/OUTPUT BRANCH TESTS

BCER

Branch on Channel Error

Tests the channel-error flag, branches to location E1 if it
is set true, and unconditionally resets the flag.

Label Operation Operand
L1 BCER El
L1 = Any label or blank.

El = Symbolic address of the branch; if E1 is written
within parentheses, the branch is a branch and
mark operation. Indirect addressing is allowed
but not indexing.

BCER generates two words of in-line code. The branch od-
dress cannot be indexed.

BPOV

Branch on Page Overflow XDS 900 Series only)

Tests the page-overflow flag, branches to location E1 if it is
set true, and unconditionally resets the flag.

Lobel | Operation Operand
L1 BPOV El

L1 = Any label or blank.

E1 = Symbolic address of the branch; if E1 is written

within parentheses, the branch is a branch and

29

mark operation. Indirect addressing is allowed
but not indexing.

BPOV generates two words of in-line code. The branch ad-
dress cannot be indexed. The page overflow flagis set by
sensing a punch in channel 7 of the printer format control
tape.

BPRF

Branch on Printer Fault

Tests the printer-fault flag, branches to location E1 if it is
set true, and unconditionally resets the flag.

Label Operation Operand
L1 BPRF E1
L1 = Any label or blank.
El = Symbolic address of the branch; if E1 is written

within parentheses, the branch is a branch and
mark operation. Indirect addressing is allowed
but not indexing.

BPRF generates two words of in-line code. The branch ad-
dress cannot be indexed.

BTMK

Branch on Tape Mark

Tests the tape-mark flag, branches to location E1 if it is set
true, and unconditionally resets the flag.

Label Operation Operond
L1 BTMK El
L1 = Any label or blank.
El = Symbolic address of the branch; if E1 is written

within parentheses, the branch is a branch and
mark operation. Indirect addressing is allowed
but not indexing.

BTMK generates two words of in-line code. The branch ad-
dress cannot be indexed.

BBTP

Branch on Beginning of Tape

Tests the beginning-of-tape flag, branches to location E1 if
it is set true, and unconditionally resets the flag.

Label Operation Operand
L1 BBTP E1
L1 = Any label or blank.
E1 = Symbolic address of the branch; if E1 is written

within parentheses, the branch is a branch and
mark operation. Indirect addressing is allowed
but not indexing.

30

BBTP generates two words of in-line code. The branch ad-
dress cannot be indexed.

BETP

Branch on End of Tape

Tests the end-of-tape flag, branches to location E1 if it is
set true, and unconditionally resets the flag.

Label Operation Operand
L1 BETP El
L1 = Any label or blank.
El = Symbolic address of the branch; if E1 is written

within parentheses, the branch is a branch and
mark operation. Indirect addressing is allowed
but not indexing.

BETP generates two words of in-line code. The branch ad-
dress cannot be indexed.

BFPT

Branch on File-Protected Tape

Tests the file~protected-tape flag, branches to location El
if it is set true, and unconditionally resets the flag.

Label Operation Operand
L1 BFPT El
L1 = Any label or blank.
E1 = Symbolic address of the branch; if E1 is written

within parentheses, the branch is a branch and
mark operation. Indirect addressing is allowed
but not indexing.

BFPT generates two words of in-line code. The branch ad-
dress cannot be indexed.

BLCD

Branch on Last Card

Tests the last-card flag, branches to location E1 if it is set
true, and unconditionally resets the flag.

Label Operation Operand
L1 BLCD El
Lt = Any label or blank.
El = Symbolic address of the branch; if E1 is written

within parentheses, the branch is a branch and
mark operation. Indirect addressing is allowed
but not indexing.

BLCD generates two words of in-line code, The branch ad-
dress cannot be indexed.

APPENDIX
GENERAL PROGRAMMING INTRODUCTION

NUMBER SYSTEMS

The decimal number system is based on powers of ten. The
value of a decimal number is the total of each digit, where
a digit is O through 9 times its corresponding power of ten.

Example: 987654 is the sum of

4x10°= 4
5x 10! = 50
6x102= 600
7 x 103= 7000
8 x 104 = 80000
9 x 10° = 900000

987654

The binary number system is based on powers of two. The
value of a binary number is the total of each digit, where
a digit is 0 or 1 times its corresponding power of two.

Example: 1010100 is the sum of

0x20= 0
ox2'= o0
1x22= 4
0x23= 0
1x24=16
0x22= 0
1x20=164

84

Binary numbers are convenient for computer use, since only
two digits are involved. These digits can be represented
physically as "off" and "on." Thus, in a magnetic core
memory, cores magnetized in one direction can be "on",
or 1, and cores magnetized in another direction can be
"off", or 0.

COMPUTER WORD ORGANIZATION

In the XDS 9300 or 900 Series Computers, a word is defined
as 24 core elements, or bits'. Each bit can be either a 0 or
a 1. Thus, in a 24-bit computer word, the 84 in the above
example would be represented as

000000000000000001010100

For humans, reading or writing numbers in 24-bit form is
awkward. It is more convenient to represent a 24-bit word
in sets of three bits, the highest value of any set of three
bits being seven:

1x20=1
]x2]=2
1x22=4

7

t
"Bit" is a confraction of "binary digit."

Thus, the 24-bit word for 84 can be represented by eight sets
of three bits each; these sets of three bits are called octal
digits:

00000124

and octal 124 equals decimal 84 and binary 1010100,

As before, the highest octal digit is 7. To represent a deci-
mal 8, two octal digits are required:

0x22=0
0x2'=0
0x22=0
1x23=8

8

and octal 10 equals decimal 8.

With six bits, numbers from octal 00 to octal 77 are avail-
able:

Octal Decimal Octal Decimal
00 0 05 5
01 1 06 6
02 2 07 7
03 3 10 8
04 4 11 9

We have represented all decimal digits. Many pairs of octal
digits are still unused. The letters A through Z and a few
special characters, such as the dollar sign, are represented
by assigning them the same kind of two-digit codes:

21=A
22=8
23=C

and so on, until two-digit combinations are exhausted.
(XDS computer reference manuals contain lists of the XDS
codes.) This type of representation is called binary-coded
decimal, or BCD.

Looking again at the 84 in the above examples, which in
sets of three binary digits was equivalent to

000001 248

we find that, in sets of six binary digits, this combination
is equivalent to

31

Note that a BCD number does not "equal" a decimal num-
ber as a binary or octal one does.

9999 in BCD
is

mm in octal
which is

001 001 001 001 001 001 001 001 in binary
or

1x20 =]

1 x 23 = 8

1x26 = 64

1x2% = 512

1x212= 409

1x219= 32768
1x218= 262144
1 x 221 = 2097152

2396745 in decimal
Binary representation of decimal 9999 is

000 000 000 010 011 100 001 111

1x20 = 1
1x2 = 2
]x22 = 4
1x23 = 8
1x28 = 256
1x27 = 512
1x 210 = 1024
1x 213 = 8192

9999

that is, octal 23417 equals decimal 9999.

Programmers easily write routines to convert BCD to octal
or binary, that is, 11111111 to 00023417 or vice-versa.

These conversion routines are built into the XDS Business
Language Programming System.

BUSINESS LANGUAGE WORD ORGANIZATION

Programmers involved with business data processing work
primarily with BCD because most data input is in decimal
digits and alphabetic characters. Thus, for this type of
programming, the computer word is best considered divided
into four sets of six bits each.

The way that four BCD characters are represented in a 24~
bit computer word has been shown., Words, obviously, are
not always four characters long, nor are numbers necessarily
four digits. A man named Smith, for example, might have
a salary of 50, 000 dollars. Manipulation of this man's
name and salary in 24-bit or four-character words becomes
complicated by extensions into additional computer words.

32

XDS Business Language performs the otherwise tedious man-
ipulation of the data, allowing the programmer to handle
data as though no such restriction as a four-character word
existed. He may work with character strings of any length.
Alternatively, he can define character strings as "fields"
and thereafter refer to them by name without being con-
cermned with their length in characters.

Suppose that data were entered on a punched card that can
contain up to 80 characters in its 80 columns, as follows:

Field Card Columns Data
LASTNAME 1-26 SMITH,

FIRST 27 - 36 JOHN,

AGE 37 - 38 54

SALARY 39 - 43 50000
LOCATION 44 - 63 WESTERN STEEL
START 64 - 65 53

DEGREE 66 - 69 PHD

When this information on the card is read into the computer,
it is entered four characters per word:

Location Word Characters
A 62 44 31 63 S MI T
A+1 30 73 60 60 H ,
A+2 60 60 60 60
A+6 60 60 41 46 J O
A+7 30 4573 60 H N,
A+8 60 60 60 60
A+9 05 04 60 60 54,

‘ etc.

But, as above, the programmer may ignore the computer's
word structure and mcnipulcre character strings; moreover,
he can define the character strings as fields.

A field definition requires the name of the area in which the
datc appears, its relative character position, and the num-
ber of characters to go into the field. The relative position
is the high-order, or left-most, card position of the first
character in a field.

If the card had been read into an area called CARDIN, the
following fields could be defined:

LASTNAME FIELD
FIRST FIELD
AGE FIELD
SALARY FIELD
LOCATION FIELD
START FIELD
DEGREE FIELD

CARDIN, 1,26
CARDIN, 27, 10
CARDIN, 37,2
CARDIN, 39,5
CARDIN, 44, 20
CARDIN, 64, 2
CARDIN, 66,4

Now the data can be manipulated without the user being con-
cerned with its orientationinmemory. Forexample, he canre-
fer to the field SALARY and be assured of pickingup all five
digits, no matter how they "spread" across word boundaries.

The programmer need not handle data in terms of "fields".
He can instead treat the data as character strings without
defining them as fields. For example, suppose that new in-
formation was to be added to the data read from the card in
the example above. Assume that another cardis read into
core memory beginning at a location called CARD2. The
first six characters on that card contain the name of the
university from which Smith received his degree.

The user can insert this data into the CARDIN area without
defining a field for it. He can move six characters, start-
ing at position 1 in CARD2, to the area starting at position
70 in CARDIN, with the following instruction:

MOVE CARD2, 1, CARDIN, 70, 6

In XDS Business Language arithmetic operations, the low-
order, or right-most character position isto be specified. In the
example above, the low-order position of the salary is 43.

An "array" is a group of consecutive words. To the Business
Language programmer, this means a set of four-character-
per-word words. The words, in this example, containing
the 69 characters read in from the card above, constitute
an array.

Two more definitions are in order: "record" and "file".
There are both physical and logical records and files.

A physical record is that which is physically limited. A
punched card, for instance, is a physical record. A por-
tion of magnetic tape written between "gaps" is a physical
record.

A physical file on magnetic tape may be indicated by a
tape mark that can be sensed with an end~of-file test on
the tape drive.

A programmer makes his own logical record or logical file.
Considering a metal cabinet of student's folders, for example,
it is apparent that record and file assume various meanings.
On the one hand, the entire cabinet may be a file; each
drawer may be a file; a set of six folders may be a file; or
each folder may be a file.

One sheet of paper in a folder may be a record, or a whole
folder may be a record, or a set of four folders may be a

record.

Generally, logical records are sets of items and logical
files are sets of logical records.

33

SYMBOLIC CODING

Digital computer programming may be an avocation with some
readers; others may have entered this field only recently
from some other discipline. If their experience has been
mainly with systems like FORTRAN or COBOL, they may
be unaware of the advantages of using an assembly system

such as META-SYMBOL.

Thisdiscussion isdirected to these individuals. It coversbriefly
the background information needed to understand basic sym-
bolic programming, and in so doing, explains some of the
main features of the XDS META-SYMBOL Assembler and its
programming language. XDS Business Language is founded
on META-SYMBOL. Business Language instructions are actu~
ally pseudo-instructions that are directed to META-SYMBOL;
the assembler transforms these into in-line code and subrou-
tine calls in the same efficient manner as it processes stan-
dard assembly language programs. Therefore, the Business
Language programmer should be conversant with META-
SYMBOL. For example, (1) symbolic coding may be inter-
mixed with Business Language coding, (2) constants and
other values are generated and memory areas reserved with
META-SYMBOL directives, and (3) symbolic addresses or
labels in a Business Language program are handled as they
are in standard META-SYMBOL coding.

The basic instruction word in the XDS 900 Series Computers and
the XDS 9300 is 24 bits. Eachbit hasameaningtothe central
processor that interprets it. For example, the binary number

010 111 110 000 011 100 101 110

would be decoded by the central processor as an instruction
to add the contents of the index register to the address given
(i.e., 000 011 100 101 110) and move the contents of that

memory location to the A register.

Programs conceivably might be coded in this absolute binary
form, and would be the "purest" kind of coding.

Octal coding, while still a form of pure machine language,
makes a concession to symbolism by grouping the binary dig-
its in threes to obtain octal code (a concession brought about
by the desire to make absolute binary coding a little more
intelligible). That is,

010 111 110 000 011 100 101 110
becomes

2 7 6 0 3 4 5 6

8
Programs may be written using sequences of such instructions
but itisdifficult unless the programmer remembers the meaning
of each numeric operation code, and can interpret otherdigits
of the word readily. Let usinvestigate the individual elements
in the octal instruction word by way of learning a more con-
venient method of writing instructions. In the instruction

2 76 03456

the 2g represents 0107, indicating in that position that
the index register is to be used in executing this instruction,

34

76g represents 111 1105, the operation code that commands
the central processor to load the contents of the "effective
memory location" info the A register.

03456g represents 000 011 100 101 1107, the base address
that will be modified by adding the contents of the index
register (because of the 28) to create the effective address.
At this point we have determined that the instruction has

specified three elements: an operation (76g), a tag (28), and
a base address (034568).

Note that 28’ 76g, and 03456g are n erely octal symbols rep-
resenting the true binary code the computer understands.

If we look at the octal instruction 2 76 03456 once more, we
may note that 764 is an invariant; thot is, its meaning to the
computer to load the A register is fixed. Also, 2g fixes the
bit that indicates indexing. The programmer may use these
numbers only if he desires to perform the loading and index-
ing operation. If he wishes not to index, he can only not
use the index digit; if he wishes the computer to perform an-
other operation, he must use an operation code other than
76g. However, the use of the address 034568 is an arbitrary
choice of the programmer. He might have chosen any ad-
dress, provided the data he wished to transfer to the A regis-
ter were at that address.

Since the operation code function is fixed, a mnemonic code
may be substituted for the binary computer code to make rec-
ognition quicker. Thus,

111 110, becomes 764 becomes LDA (LOAD A REGISTER
FROM MEMORY) c:nd8

101 1012 becomes 55g becomes ADD (ADD MEMORY
TO A REGISTER)

and so on.

Whether we write 101 1013, 55g, or ADD, the function per-
formed by the computer is the same. If we write ADD, the
assembler will translate that to 101 1015 for input to the
computer.

Therefore, programs may now be written:

Memory

Location Instruction
1000 0 LDX 01015
1001 2 LDA 02345
1002 2 ADD 02772
1003 0 BRX 01002
1004 0 SKA 01016
1005 0 BRU 01012
1006 0 CNA 00000
1015 77777774
1016 40000000

A problem arises that if we wish to insert an instruction,

say after 1001, many of the following instructions would re-
quire their operand addresses to be changed, and each would
have to be recorded. If we wished to place the program in
another portion of memory, say at 5000, every address would
have to be modified.

We can gain much flexibility by using symbolic addresses
rather than absolute octal addresses. Remember 03456g is
just a symbolic representation for the cell addressed as

000 011 100 101 110 by the central processor. META-
SYMBOL permits us to go one step further and give a cell

a name without considering where it will be located at the
time the program is executed. (We will be able to arbitrar-
ily designate this location later if we wish.) Since a com-
puter follows instructions serially unless a branch or skip in-
instruction is given, we need be concerned only with the
positions of instructions relative to each other. For example,
in this sequence of instructions,

Memory

Location Instruction
01000 0 LDA 02020
01001 2 ADD 02050
01002 0 SKE 02077
01003 0 BRU 01152

we are concerned only that a cell (which we have named
02020) contains the information we need to load into the A
register; we do not really need to fix its position at absolute
location 02020. Similarly, the BRU to 01152 means only
that we wish to branch to a sequence of instructions in an-
other portion of memory. Because of the absolute nature

of octal addressing, we needed to choose a location arbi-
trarily, namely 01152. However, we may find later that
this is an unsuitable location, in which case we will have to
change 01152 to some other location, and recode (rewrite
the addresses) of all instructions moved from 01152 to the
new location.

The solution to difficulties of this kind is to name all cells
symbolically with alphanumeric location names rather than
absolute octal location names. After the program is writ-
ten, we (or the assembler) will arbitrarily assign addresses
to these alphanumeric location names (labels) in order to
preserve the sequential nature of the instructions. The pre-
ceding example might then be coded:

Memory

Location Instruction

01000 0 LDA TABLE
01001 2 ADD CONST
01002 0 SKE M1
01003 0 BRU NEWLOC

We know that TABLE is somewhere in memory. When TABLE
is given an arbitrary location designation (say 04020),

0 LDA TABLE

will become

0 LDA 04020
and eventually
0 76 04020

when the operation code 76 is substituted for LDA.

Similarly, CONST, M1, and NEWLOC are alphanumeric des-
ignators (labels) for cells that will be assigned numeric loca-
tions later.

At this point, we are still tied to the arbitrary designation of
cells 01000, 01001, etc., to contain these instructions. In-
stead of the octal designation 1000, let us give it an alpha-
numeric designation with the label BEGIN. We (i.e., the
assembler) will assign a location to BEGIN later.

Our program now appears, as follows:

Memory

Location Instruction

BEGIN 0 LDA TABLE
2 ADD CONST
0 SKE M1

0 BRU NEWLOC

Notice that BEGIN labels only the first instruction of the
block. It is unnecessary to label the ADD, SKE, and BRU
instructions since the computer's operation is serial, and it
is assumed that whatever location is designated for BEGIN,
following instructions will have successive locations. (We
can refer to them later in the program, if we choose, as

BEGIN +1, BEGIN+2, and so on.)

If we loter assign 05000 to be the location that BEGIN labels,
ADD will be ot 05001, SKE will be at 05002, ete. Our pro-
gram might now take on the appearance:

Location
(LABEL) Instruction
BEGIN 0 LDA TABLE
2 ADD CONST
0 SKE M1
0 BRU NEWLOC
(sequence of instructions)
TABLE 00000001
CONST 77777776
M1 77777777
NEWLOC 0 CNA
etc.

Note that the sequential quality of the original program is
retained, but that now we can insert as many instructions
(cards) between M1 and NEWLOC as we wish without chang-~
ing the meaning of NEWLOC as a sequential designator for

a new block of instructions in memory. When this symbolic
program is assembled into a working program, the assembler

35

will substitute numeric quantfities such that no matter where
in memory NEWLOC may be, BRU NEWLOC will cause a
branch to that location in memory. This property is called
relocatability of the program in memory.

Note that we now call the location field the LABEL field,
since we are using symbolic alphanumeric labels instead of
octal addresses to represent locations. One more modifica-
tion: Since there is no index on

0 LDA TABLE
we can write it

LDA TABLE
But
2 ADD CONST

we can write

ADD CONST, 2

The assembler will set the required index bit. If indirect
addressing is required, we can write

ADD *CONST

If both indirect addressing and indexing are desired, we can
write

ADD *CONST, 2

We can arbitrarily locate a block of instructions ot any lo-
cation in memory by using the QRG directive. Thus,

AORG 01000
BEGIN LDA TABLE
ADD CONST,?2

will cause BEGIN to be given the value 01000, and all
other labels in that block to be numbered accordingly. At
load time the block of instructions with starting label BEGIN
will be located at 01000.

It is alo permissible to write

BEGIN LDA TABLE

etc,

without the AORG, and later to designate by a parameter
given to the loader where the block of instructions starting
with BEGIN is to be located (relocated). The loader is a
routine in the MONARCH/META-SYMBOL system that loads
assembled programs into memory for execution.

META-SYMBOL provides some other convenient features.
If we write

CONST DATA 01000

we are instructing the assembler to construct a DATA word,
00001000, that will be put into the cell designated CONST.
Therefore,

LDA CONST
will result in the quantity 00001000 being transferred

from its memory location to the A register at execution
time.

36

If we say
CONST EQU 01000

we are informing the assembler that CONST is to have the
value 01000. Since CONST is a LABEL (alphanumeric des-
ignator for a cell), we wish the cell to be designated as

01000. That is, CONST must be cell 01000. Then
LDA CONST

would cause the contents of cell CONST (cell 01000) to be
loaded into the A register.

To show it another way, if
CONST EQU 01000

and
CONST DATA 05000

Then cell 01000 would contain 00005000, and
LDA CONST

would result in the quantity 00005000 being loaded into the
A register. DATA puts a quantity into a cell. EQU fixes
the location of a cell.

For instance,

INT EQU 032
INT BRM INTSUB

would cause a BRM INTSUB to be placed in location 32, for
processing an 12 interrupt. If INTSUB is located at 07000,
the instruction 0 43 07000 (BRM INTSUB) will be placed in
location 032 at load time.

The following would have the same result:

AORG 032
BRM INTSUB

Labels must contain alphabetic or numeric characters only.
No special characters (*, (, +, etc.) may be used. See the
SYMBOL/META-SYMBOL Manual (XDS Publication 90 05 06)
for a description of labels,

In summary, the assembler arbitrarily assigns values to labels
according to: their relative position in the sequence of in-
structions and the arbitrary assignment of location numbers
by AORG or EQU directives. Therefore, a label is defined
(assigned a numerical value by the assembler) by one of two
methods: (1) appearing in the labe! field at some point in
the program to establish a value according to its relative
position in the sequence, (2) using EQU to establish a def-
inite value for the labei. Each label referenced in the op-
erand field of an instruction, as in

LDA XRAY
ADD M1
must be defined at some point in the program. For example:

XRAY EQU 01121
XRAY DATA 00050

defines XRAY as a cell at location 01121 containing the
value 00000050.

Finally, remember that a label is unique; that is, it can be
the designator for only ene memory location. Example:

QR DATA
LDA QR
STA QR
QR PZE

is illegal, since the assembler does not know which QR is
really being referred to in the LDA and STA instructions.
Therefore, a label must be defined only once in any pro-
gram.

Reference should be made to the sample program shown as-
sembled at the end of this section. The first two columns

on the sample show the assembled, machine language equiv-
alent of the symbolic code written by the programmer. The
third through sixth columns show this symbolic code. The
programmer has punched this information one line to a card.

Note that all machine code is in octal form. Since the ma-
chine code contains references to other memory locations,
they must be octal as well. Thus, sequential locations in
memory are numbered octally. One implication of this is
that certain conventions must be observed in setting up data
words: the assembler must be told whether they are octal or
decimal or BCD values.

A zero in front of a number indicates that it is an octal num-
ber; absence of a zero indicates that it is decimal and will
be converted to octal by the assembler; single quotes (and
other conventions) signal that the word is BCD and is not to
be converted but coded.

The first directive, AORG 0200, says that the program is to
origin or begin at the 200th (octal) word in memory.

Labels start in column 1 on the cards. If an asterisk appears
in card column 1, the card is a comment card and is ignored
by the assembler except for being printed on the program
listing. Also ignored by the assembler are the comments
shown in the sixth column of the listing (unless this informa-
tion, beginning in card column 36, happens to be a continu-
ation of an operand field.)

Column 1 of the listing shows the memory location of the
word in column 2. This word is generated from the informa-
tion in columns 3, 4, and 5; it is the octal number that will
actually reside in the computer's memory when the program
is executed.

The program is executed sequentially unless told to change
direction by a branch instruction. The only instructions used
in the example are LDA (16), STA (76), HLT (00) and BRU
(01). Their functions are described later.

In memory locations 200-215 is the actual program to be ex-
ecuted. Memory locations 216 through 226 contain reserved
areas or data. They are never "executed" since the BRU in-
struction causes a branch out of the sequential order before
they are reached.

The END directive tells the assembler that everything re-
quired for the assembly has been transmitted to it.

In memory locations 227-231 are words generated by literals,
that is, items in the fifth column preceded by an =sign.
These are explained in a later paragraph.

Note in column 5 an asterisk preceding a symbolic address.
This specifies indirect addressing, which also is explained
later.

Usually, an instruction like LDA (which means load the A
register of the computer) loads A with the contents of the
memory location specified.

In the same way an instruction like STA (which means store
the A register) stores A in the location specified.

When LDA CONS is executed, the contents of CONS are
placed in the A register. The next instruction is then exe-
cuted. The STA LOCT causes the contents of the A register
to be stored in LOC1. Thus, in the example, 00001000 was
put into location 217. It is important to remember that noth-
ing has changed in location 200, 201, or 216. The contents
of memory are affected only by a storing operation.

Placing an asterisk in front of an address notifies the assem-
bler that it must set a signal to be recognized at execution
time. The asterisk causes the "indirect address" bit to be
set in the word. At execution time, this alerts the computer
to use indirect addressing. If STA *LOC] is used instead of
STA LOCI, the computer is instructed to go to LOC1 to find
the address into which to store A. Since LOC1 contains
00001000, the A register will be stored in location 1000 in-
stead of in 217. Indirect addressing can be continued at as
many levels as desired (see computer reference manual), but
this example indicates how it works.

The instructions are executed one after another and the pro-
gram continues until it reaches the HLT instruction. At this
point, the computer halts. When the operator resets it to
"RUN", the next instruction in sequence is executed. In the
example, the next instruction is a branch back to the begin-
ning of the program. The program will go to START, that is,
it will re-execute.

Literals are a coding convenience. They save the program-
mer from setting up DATA words. The equal sign in the ad-
dress portion of the instruction tells the assembler to handle
the data following the equal sign as though it had been de-
fined with a DATA directive.

The assembler finds the first location available at the end of
the program and generates the data word. The reference to
the word generated is then set up. In the instruction LDA=1,
a word containing 00000001 is put into the first available
memory location at the end of the program, that is, into 227,
and the instruction generated is "load A from 227." When
the instruction is executed, the contents of 227, that is
00000001, is placed in A.

In LDA =LOCI, the programmer wishes to put the address
of LOCI in the A register. The assembier generates the

37

address in the next available location, 230, as though it
had been defined as DATA LOCTI. Thus, the instruction
generated is "load A with the contents of 230." that is,
00000217.

In LDA ='ENDS', the word is generated as though it had
been defined as DATA 'ENDS'.

The first part of this manual presents more information on

the use of literals and the generation of constants with DATA,

BCD, and TEXT. The few examples given here show some
of their uses.

Note that blanks are coded as 060's or 012's, depending on
the directive given. Punched cards, magnetic tape, and

38

the printer use the 060 code for blanks, but the typewriter
uses the 012 code.

One final note on the preceding discussion should be given.
In an attempt to acquaint the reader quickly with the basic
ideas of symbolic programs, many unequivocal statements
have been made. There are exceptions to these rules. Fa-
miliarity’ with the assembler and the experience of trying
variations will broaden the programmer's repertoire of "ex-
ceptions" allowed by the assembler. Part of the challenge
of using an assembler such as META-SYMBOL is its excep-
tional flexibility, which allows the programmer to investi-
gate increasingly sophisticated uses.

200
201
202
203
204
205
206
207
210
211
212
213
214
215

216
217
221

222
223
224
225
226

227
230
231

01600216
07600217
01600227
07602000
01600230
47600216
07600220
01600231
07600012
07600060
01600221
07600216
00000000
00100200

00001000

60622462

62246260
00622462
60622462
62246212
12622462

00000001
00000217
25452462

*THIS PROGRAM ILLUSTRATES THE ASSEMBLING
*OF A SYMBOLIC PROGRAM.

*

AORG 0200
START LDA CONS MOVE ONE DATA WORD
STA LOCI
LDA =i
STA LOC2
LDA =LOC1
STA *CONS
STA LOCI+
LDA ='ENDS'
STA 10
STA 060
LDA FIN
STA $+3
HLT
BRU START

CONS DATA 01000
LOC1 RES 2
FIN TEXT 4, SDS
LOC2 EQU 02000 USED ONLY BY ASSEMBLER
TEXT 4, SDS
DATA 'SDS'
DATA ' SDS'
BCD 4, SDS
BCD 4, SDS
END

When this program is executed, the following words in core memory will be changed by the store instructions:

Location Contains

217 00001000
2000 00000001
1000 00000217

220 00000217

12 25452462
60 25452462
216 60622462

This program was assembled on the XDS 9300 Computer. Some machine language octal formats are different for

XDS 900 Series Computers.

39

ASSEMBLY LISTING FORMAT

XDS 9300

The elements of the octal listing output are as follows, ex-
cept as given within the particular description:

I

Indirect address

X = Indexing

0] 4 = Operation code
ADD = Address

DDDD = Eight octal digits

An all-zero octal digit pattern is shown under each element,
to indicate its form. The number of binary digits equivalent
to the octal representation is given on the third line.

Standard Instructions

I X o°p ADD
0 o0 00 00000
1 2 6 15

Shift Instructions
I X (0] SHIFT NO
0O 0 0000 000
1 2 12 9

Flag Set/Test

0 OP SELECT BITS
0 000 0000
3 9 12

COPY Instructions

1. 0 OP N BYTES REG
0 00 O 000 00
3 6 i 8 6
2, X OP BYTES REG
0 o0 O 0000
3 6 3 12

DATA Instruction

DDDD
00000000
24

DED Instruction
DDDDDDDD

0000000000000000
48

40

XDS 900 Series

The elements of the octal listing are defined the same way
as for the XDS 9300.

Standard Instructions

X OP 1 ADD
0 00 O 00000
3 6 1 14

Shift Instructions

1. X OP 1 ADD
0 00 O 00000
3 6 i 14
2. X OP ADD
0 0000 000
3 12 9

Register Change Instructions

X OP ADD
0 00 00000
3 6 15

COPY Instruction

X OP BYTES REG
0 00 00 0000
3 6 5 10

DATA Instruction
DDDD
00000000
24

DED Instruction
DDDDDDDD
0000000000000000
48

PZE Instruction

1. X 00 I ADD
0 00 O 00000
3 6 1 14
2. X 00 ADD
0 00 00000
3 6 15

CALLING SEQUENCE GENERATION FOR BUSINESS INSTRUCTIONS

Business Instruction Word
MOVEWD (MVW) 1

2

3

4

Calling Sequence Description
BRM B\S1 Link to subroutine "B\S1"

Address of source array
Address of destination array

Word count of number of words moved

Comments: The above calling sequence is generated only when either

a. A source or destination address is indirectly addressed and the word count is greater than one.

or b. A source or destination address is indexed and the word count is greater than three.

or c. A source or destination address is indexed and the word count is greater than two, with the operand in-
dicating that the index register should be saved.

or d. The word count is a "run-time" variable.

Note: In this case, an LDA/STA is generated preceding the calling sequence.

In all other cases, an LDX/LDA/STA/BRX loop is generated (with conditional saving and restoring of the in-

dex register ... STX ... LDX) or a sequence of from one to three successive LDA/STAs is generated.
BRACEQ (BRACNE) 1 BRM B\S8 Linkage to offset routine
2 Base location for referencing character argument
3 Character offset, or location of same (with forced
indirect bit) relative to word 2
Note: The above three words are conditionally generated, as described below.
4(1) BRM B\S2 Linkage to BRACEQ/BRACNE
routine
5(2) Computed location of character argument (assembly
time), or zero
6(3) Shift necessary to left justify character argument or
zero
7(4) Count of packed words containing character list
8(5) Packed word 1 First four characters in list
8(n) Packed word N
BRU(BRM) to branch address of BRACNE (Only generated if BRACNE)
n+l or
BRU $+2 if BRACEQ (Only generated if BRACEQ)
n+2 BRU(BRM) to branch address for BRACEQ (Only generated if BRACEQ)

Continuation of source program

Comments: The linkage to "B\S8" (words 1-3 above) is only generated when

a. The character offset is a "run-time" variable.

or b. The base location is indexed or indirectly addressed.

In such a case, words 5 and 6 will be zero prior to object program execution.

UNPACK (UNPACKL) 1
2
3

BRM B\S3 Subroutine linkage
Number of characters to be unpacked

Address of packed array

41

Business Instruction Word Calling Sequence Description

UNPACK (UNPACKL) 4 Address of unpacked character word
(cont.) . .

Address of last unpacked character word

Comments: There is one exception to the above calling sequence generation; namely, when only one unpacked charac-
ter word address is specified. In this case, four in-line instructions are generated: LDA/ETR/MRG/STA.

PACK (PACKL) 1 BRM B\S4 Subroutine linkage
2 Number of characters to be packed
3 Address of packed array
4 Address of first unpacked character word

Address of last unpacked character word

UNPACKR 1 BRM B\S9 Subroutine linkage
2 Right-justified "fill character" (060 if not specified)
3 Address of packed array
4 Address of unpacked array
5 Number of characters to be unpacked
PACKR 1 BRM B\S10 - Subroutine linkage
2 Address of packed array
3 Address of unpacked array
4 Number of characters to be packed
COMPARW (CPW) 1 BRM B\Sé Subroutine linkage
2 Number of words to be compared
3 Address of first array to be compared
4 Address of second array to be compared
Comments: If the number of words to be compared is a "run-time" variable, the above calling sequence is preceded by
an LDA/STA.
COLLATE
Note: With 'XDS' as the operand, an LDA/STA is generated. With 'BDP' as an operand, a MIN (MPO) is generated.
BREQ (BE)
Note: This generates an LDA/SKA/BRU followed by a BRU (BRM if the operand is in parentheses).
BRNE (BU)
Note: This generates an LDA/SKA followed by a BRU (BRM if the operand is in parentheses).
BRHI (BH)
Note: This generates an LDA/SKG followed by a BRU (BRM if the operand is in parentheses).
BRLO (BL)
Note: This generates an SKN/BRU followed by a BRU (BRM if the operand is in parentheses).

42

Business Instruction Word Calling Sequence Description

BAOV
Note: This generates an SKN followed by a BRU (BRM if the operand is in parentheses).
MOVE 1 BRM B\S18 Linkage to character setup
routine
2 Word offset - 1 of sending (8 bits), word offset - 1
of receiving (8 bits), character - 1 (8 bits)
3 Opcode = relative byte position (0-3),
address = address of sending
4 Opcode = relative byte position (0-3)
address = address of receiving
5 BRM B\S12 Linkage to character move
routine

Comments: The above is the normal form of the calling sequence generated; but, if the nature of the operand is such that
it is word-oriented, a MOVEWD will be generated (see MOVEWD generation).

MOVEIZ 1 BRM B\S18 Linkage to character setup
routine
2 Word offset - 1 of sending (8 bits), word offset - 1
of receiving (8 bits), character - 1 (8 bits)
3 Opcode = relative byte position (0-3),
address = address of sending
4 Opcode = relative byte position (0-3),
address = address of receiving
5 BRM B\S13 Linkage to MOVEIZ routine
MOVEED (MCE, EDIT) 1 BRM B\S18 Linkage to character setup
routine
2 Word offset - 1 of sending (8 bits), word offset - 1
of receiving (8 bits), character - 1 (8 bits)
3 Opcode = relative byte position (0-3),
Address = address of sending
4 Opcode = relative byte position (0-3),
address = address of receiving
5 BRM B\S14 Linkage to MOVEED routine
6 Optional punctuation parameters (see below)

Comments: The representation of the punctuation in word 6 is as follows: a one at bit 5 indicates trailing minus sign; a
one at bit 6 indicates trailing "CR"; a one at bit 7 indicates comma insertion; a one at bit 8 indicates float-
ing dollar sign; the decimal scaling factor is in bits 16-23.

COMPARE 1 BRM B\S18 Linkage to character setup
routine
2 Word offset - 1 of first operand (8 bits), word offset - 1
of second operand (8 bits), character count = 1 (8 bits)
3 Opcode = relative byte position (0-3),
address = first operand address
4 Opcode = relative byte position (0-3),
address = second operand address
5 BRM B\ST1 Linkage to COMPARE routine

Comments: If the routine of the operand is a word-oriented operation, @ COMPARW will be generated (see COMPARW).

s
Character count - 1 in the right-most 8 bits of woid 2 is the shorter, if fwo counts are specified.

43

Business Instruction Word Calling Sequence Description

CLEARCH 1 BRM B\S18 Linkage to character setup
routine
2 Zero (8 bits), word offset - 1 of operand (8 bits),
character count - 1 (8 bits)
PZE $
4 Opcode = relative byte position (0-3) of operand,
address = address of operand
5 LDB
6 BRM
7 SKR
8 BRU
9 LDX
Comments: If the operand is a word-oriented operation, a FILL will be generated (see FILL generation).
FILLCH
Note: Generation here is the same as that of CLEARCH, except that the address of the LDB is representative of a
literal reference to the fill character specified.
Comments: If the operand is a word-oriented operation, a FILL will be generated (see FILL generation).
BLANKCH
Note: Generation here is the same as that of CLEARCH, with the exception that the address of the LDB is to a dif-
ferent literal.
Comments: If the operand is a word-oriented operation, a FILL will be generated (see FILL generation).
FILL, CLEAR, BLANK
Note: These generate various combinations of in-line code, ranging from 2 to 11 words in length. The gener-

ated code represents either an STA loop (the A register containing zero, 060's, or the FILL character) or suc-
cessive STAs. Additional code generation is brought about by the conditional specification of the index regis-
ter being saved, the word count being a "run-time" variable, and/or the operand being indexed or indirectly
addressed.

SORT (SORTDS, SORTBIN,

SORTBDS)
Note:

44

Any of the various SORT calls causes the generation of various combinationsof in-line code prior to a six-word
calling sequence to the SORT routine. For descending sorts, an MIN (MPO for the XDS 9300) is the first word
generated; for ascending sorts an LDA/STA. Following this, for binary sorts, an LDA/STA is generated. Con-
tinuing, if relocation of the sorted table is specified, conditional code is generated as follows: if the item
length and number of items are assembly-time variables, a load/store loop is generated ... STX/LDX/LDA/
STA/BRX/LDX. If either item length of the number of items is a "run-time" variable, code generation is
LDA/MUL/RSH/STB followed by BRM B\S1/address of unsorted table/address of relocated sorted table/
computed total number of words in table (i.e., the four-word calling sequence to the MOVEWD routine is gen-
erated). Notice that the unsorted table is relocated prior to the actual sorting, leaving the unsorted table un-
disturbed. Finally, the SORT calling sequence is generated and appears as:

1 BRM B\SORT Linkage to SORT routine
2 Address of the table to be sorted
3 Number of items (or address of same, with forced
indirect bit)
4 Item length (or address of same)
5 Relative key position (or address of same, with forced

indirect bit)

6 Key length (or address of same)

Business Instruction Word Calling Sequence Description

READTP 1 BRM B\I10 Linkage to subroutine

2 BCD indicator, logical unit, address of tape image
(see below)

3 Word count
Comments: Entries in word 2 consist of
A zero at bit 5, indicating the BCD mode.
Bits 6-8 indicate the logical unit.

c. Address, index, and indirect bits (per XDS 900 Series or XDS 9300) representing the address of the first
word of the tape image.

Note: The calling sequence is preceded by an LDA/STA if a "run-time" count is specified.
RTPBIN
Note: Code generation is identical to READTP, except that a one at bit 5 in word 2 indicates the binary mode.
WRITETP, WTPBIN 1 BRM B\I11 Linkage to subroutine
2 BCD indicator, logical unit, address of tape image
(see READTP generation)
3 Word count
Comment: As in READTP and RTPBIN, the calling sequence can be preceded by an LDA/STA if a "run~time" count is
specified.
BACKSPACE, SKIPTAPE 1 BRM B\I17 Linkage to subroutine
2 (see below for bit representation)
Note: The contents of word 2 are represented as:

a. Bit 3 =1 indicates that files are to be backspaced or skipped.
=0 indicates that records are to be backspaced or skipped.
b. Bit 4 = 1 indicates backspacing.
=0 indicates skipping (forward).

c. Bits 6-8 indicate the logical unit.
d. Bits 9-23 indicate the number of records or files to be backspaced or skipped.
PRINT, PRT120 1 BRM B\I1 Linkage to subroutine
2 (See below for bit representation)
Note: The contents of word 2 are represented as:

a. Bit 3 =1 indicates that a 120-character line image is to be printed (PRT120).

=0 indicates that a 132-character line image is to be printed (PRINT).
b. Bits 4-6 indicate the number of lines to be spaced or the format channel specified.
c. Bit 8 =1 indicates vertical spacing by a specified number of lines.

=0 indicates skipping to the format channel specified.

d. Address, index, and indirect bits indicate the location of the line image.

UPSPACE, SKPCHN, 1 BRM B\I2 Linkage to subroutine
RESTORE 2 (See below for bit representation)
Note: The contents of word 2 are represented as

a. Bit 8 = 1 indicates upspacing by the specified number of lines.
= 0 indicates skipping to the format channel specified.

45

Business Instruction Word Calling Sequence Description

UPSPACE, SKPCHN,
RESTORE (cont.)

b. Bits 4-6 indicate the number of lines to be upspaced or the format channel to which a skip is to be made.

READCD 1 BRM B\I3 Linkage to subroutine
2 Address of card image to be read

PUNCH 1 BRM B\14 Linkage to subroutine
2 Address of card image to be punched

TYPEIN i BRM B\I5 Linkage to subroutine
2 Address of image to be typed in

TYPE 1 BRM B\16 Linkage to subroutine
2 Address of image to be typed out

REWIND 1 BRM B\I9 Linkage to subroutine
2 Bits 6-8 indicate logical unit

WTMARK, WTM 1 BRM B\I8 Linkage to subroutine
2 Bits 6-8 indicate logical unit

BPRF, BPOV, BLCD, BTMK,

BBTP, BETP, BFPT, BCER

Note: All of these generate an SKR followed by a BRU or BRM to the conditional branch address.

Business Instruction

DADD or DSUB

DADD or DSUB

DADD or DSUB

DMUL or DDIV

DMUL or DDIV

BCDBIN

BINBCD

CALLING SEQUENCE GENERATION FOR DECIMAL ARITHMETIC

E1,LO1,CCl

E1,LO1,CCl, E2,LO2,CC2

E1,LO1,CC1, E2,LO2, CC2,E3,
LO3,CC3

E1,LO1,CC1, E2,LO2,CC2

E1,LO1,CCl,E2,LO2,CC2, E3,
LO3,CC3

E1,HC1,CC1, E2

E1,HCI,CC1, E2

Word Calling Sequence

1 CLR (for DADD) or LDA = -1 (for DSUB)

2 BRM B\S523

3 PZE E1

4 Sign = 1, bits 1-11 = CC1, bits 12-23 = LOI
1 CLR (for DADD) or LDA = -1 (for DSUB)

2 BRM B\S23

3 PZE E1

4 Sign =0, bits 1-11 = CC1, bits 12-23 = LO1
5 PZE E2

6 Sign =1, bits 1-11 = CC2, bits 12-23 = LO2
1 CLR (for DADD) or LDA = -1 (for DSUB)

2 BRM B\S23

3 PZE E1

4 Sign = 0, bits 1-11 = CC1, bits 12-23 = LO1
5 PZE E2

6 Sign = 0, bits 1-11 = CC2, bits 12-23 = LO2
7 PZE E3

8 Sign = 0, bits 1-11 = CC3, bits 12-23 = LO3
1 BRM B\S21 (for DMUL) or BRM B\S522 (for DDIV)
2 PZE E1

3 Sign =0, bits 1-11 = CC1, bits 12-23 = LOI
4 PZE E2

5 Sign = 1, bits 1-11 = CC2, bits 12-23 = LO2
1 BRM B\S21 (for DMUL) or BRM B\S22 (for DDIV)
2 PZE E1

3 Sign =0, bits 1-11 = CC1, bits 12-23 = LO1
4 PZE E2

5 Sign = 0, bits 1-11 = CC2, bits 12-23 = LO2
6 PZE E3

7 Sign = 0, bits 1-11 =CC3, bits 12-23 = LO3
1 BRM B\S32

2 PZE E1

3 Bits 0-11 = CC1, bits 12-23 = HC1

4 PZE E2

1 BRM B\S31

2 PZE E1

3 Bits 0-11 = CC1, Bits 12-23 = HC1 + CC1 - 1
4 PZE E2

47

BUSINESS LANGUAGE ASSEMBLIES

The input deck for Business Language assemblies may be
divided into three portions: (1) control cards preceding the
program to be assembled, (2) the program to be assembled,
and (3) control cards following the program.

The XDS MONARCH Reference Manual or the XDS MONI-
TOR Reference Manual contains a detailed description of
card functions. The following material outlines some work-
ing possibilities:

CONTROL CARDS PRECEDING THE PROGRAM

A, AJOB — must be on XDS 9300; may be on XDS 900 Series,

B. AASSIGN —may be one or a series of cards to assign ali
necessary I/O devices. See applicable computer refer-
ence manual for a list of possible 1/O devices.

XDS 900 Series

Must ASSIGN X1=MTIW, S=MTOW
ASSIGN necessary options

Possible assignments to check — these are also some of the
parameters for the META card (see METAB for the respec-
tive computers, below):

SI Symbolic Input
E1 Encoded Input
EO Encoded Output
BO Binary Output
LO Listing Output

A standard ASSIGN card might be:

AASSIGN S=MTOW, X1=MTI1W, X2=MT2W, SI=CR1W,
EI=CR1W, EO=CP1W, BO=CP1W, LO=LPIW.,

XDS 9300

These standard assignments are already contained within
MONITOR:

El, SI, EQ, BO on cards, X1 to MT1A, X2 to MT2A, GO
to MT2A, LO to LPTA

Only deviations from these need be assigned.

C. AMETAB910 for object output to execute on XDS 210
AMETAB920 for object output to execute on XDS 920
AMETAB93H for object output to execute on XDS 9300

Parameters on these cards will be:

SI If symbolic deck or symbolic correction to en-
coded deck

El Encoded Input

EOC Encoded Output

BO Binary Output

48

GO (XDS 9300 only — for assemble, load, and exe-
cute — GO is MT2A unless otherwise assigned)

LO Listing Output
CONC Concordance listing

SET Must be included as a parameter on any
METABxxx card

EXAMPLES
XDS 900 Series
AMETAB920 SI, El, EO, LO, BO, CONC, SET

Accepts SI and El, produces EQ, BO (for XDS 920), and LO
with CONC listing.

XDS 9300
AMETAB93H EI, BO, LO, GO, CONC, SET

Accepts EI, produces BO, LO with CONC, and creates a
GO tape that may be loaded and executed.

PROGRAM DECK'S

Symbolic deck or symbolic corrections to encoded deck.
Must be terminated by AEOF card or EOF condition on SI
medium.

Encoded deck — the END card of this deck terminates. (Do
not use AEOF here.)

Note: An EXTEND card must be present as the first card to
be assembled.

CONTROL CARDS FOLLOWING THE PRO GRAM

XDS 900 Series

AENDJOB resets processor error switch set by assembly errors.
Processor error switch must be reset for loading to take place.
The following is optional for assemble, load, and execute:

AASSIGN Bl = (as determined by user)
AREWIND MTNW (if BI=MTNW)

GO

TGO

STOP

TSTP

ALOAD Address,

Even if program is absolute (AORG), a load address must be
given to permit loading of any necessary relocatable POPs
or subroutines from the library.

GO, TGO, STOP, TSTP all result in: (1) loading of programs
from BI until an END with transfer address is encountered,
(2) a search of the library for needed subroutines or POPs,

and (3) a branch to indicated transfer address (not to load
address).

GO process is continuous, no halts; map of unsatis-
fied references.

TGO GO and MAP of external definitions and un-
satisfied references.

STOP stops at each END record (for loading of sev-
eral paper tapes, etc.)

TSTP STOP with MAP. Set BPT1 for MAP on LP.

If BI=MTNW, then ALOAD Address, TGO, results in con-
tinuous loading and MAP,

A typical input deck for the XDS 900 Series would consist
of these cards (see Figure 3):

AJOB (optional)
AASSIGN
AMETABxxx

. SI corrections Symbolic source
optional AEOF of AEOF
encoded
AENDJOB
AREWIND (if BI on MT)

GO
STOP
TGO
TSTP

ALOAD Address,

XDS 9300

X
ALOAD [XM , MAP,
XR

MAP gives full map of memory allocation

X execute if no errors

XM execute if minor errors

XR execute regardless of severity of errors

Results in rewind of and load from GO tape, search of library
for necessary routines, and execution. If input is not to be from
GO tape, see XDS MONITOR Reference Manual for details.

A variety of debug features (SNAPS, PATCHES, DUMPS)
are available; see XDS MONITOR Reference Manual.

A typical input deck for the XDS 9300 would consist of the
following (see Figure 4):

AJOB
AASSIGN (only if parameters not on standard assignments)
AMETABxxx (GO if load and execute desired)

SI corrections Symbolic source

optional AEOF or A
encoded
X

ALOAD {XR , map from GO and executes.
XM Prints map

ADUMP, etc. , for debug (optional)
AFIN end of run

or
AJOB for next job in batch processing

ALOAD (optional if execution
desired)

/ AREWIND (if BI on MT)

AENDJOB

PROGRAM DECK'

/ AMETABXXX

/ AASSIGN

AJOB (optional)

t .) .
Three possible configurations are:

ENCODED

ENCODED DECK

or

Svl CORRECTIONS

SYMBOLIC SOURCE
DECK

or

Figure 3.

Sample Input Deck for XDS 900 Series

49

~/ AJOB OR AFIN
ALOAD (optional)

PROGRAM DECK'

/ AMETABXXX

JZASSIGN (optional)

AJOB

t . . .
Three possible configurations are:

ENCODED DECK

or

ENCODED

or

SI CORRECTIONS

SYMBOLIC SOURCE
DECK

50

Figure 4.

Sample Input Deck for XDS 9300 Computer

MAKING SYMBOLIC CHANGES TO ENCODED PROGRAMS

Symbolic changes are made by a series of insertions and de-
letions represented by specially formatted records, usually
symbolic cards. The encoded program is interpreted as a
series of logical lines, as indicated by the line numbers giv-
en on the program assembly listing. Note that, via the
continuation feature, two ormore cards may be considered as
one logical line.

SYNTAX OF INSERT, REPLACE, AND DELETE

Insert S1, ..., SN following line a.

ta
S1
S2

SN
Delete lines o through B inclusively.
+ao,B
Note that, if @ = B, one line is deleted.
Replace lines a through B inclusively with S1, 52, ..., SN.

*o,f
S1
S2

SN

Notes:

ooR W

The + must be in Column 1.

a and B are decimal integers.

The first space terminates the scan of the + card.

SK (K=1, N) is a symbolic card for assembly.
To insert before the first line, use:

+0
S1
S2

SN

DECK STRUCTURE FOR SYMBOLIC CHANGES

TO ENCODED DECK

AMETAXXXX S, El, etc.

+...

symbolic correction cards (the first card following

] the AMETA must be a +... card).

AEGF

encoded deck

Note: It is impossible to "merge" or "juxtapose" encoded

decks.

51

ASSEMBLY - TIME OPERATIONS

AMETABXXX

The assembler to be used for a particular machine is select -
ed via the "AMETABXXX" card (statement). The XXX re-
fers to the selected machine: XDS 910, 920, 930, 925, or

93H for the XDS 9300.

The parameters used on this card are the usual ones, with
the addition of "SET". SET must be one of the parameters
on every Business Language assembly. With the pertinent
card equipment assignments, a typical "AMETAXXX" assem-
bly request for the XDS 920 Computer might be:

AMETAB920 I, SI, LO, BO, SET.

which directs the MONARCH Monitor to select the XDS 920
Business Language Assembler and perform an assembly from
an encoded program deck (EI), with updating via source in-
struction information (SI); output is to be a program listing
on the printer (LO), and encoded deck (EO), and a binary
deck (BO).

EXTEND
Though not a control message in the MONITOR/MONARCH

sense, this statement (written in the operation code field)
must always appear at the beginning of all Business Language

assemblies. It initiates the extension of META-SYMBOL
into the Business Language, as it pertains to global literals.

Assembly Sample

AASSIGN S=MTO, X1=MT1, X2=MT2, SI=CR, EO=CP,
BO=CP, LO=LP.
AMETA920 SI, EO, BO, LO, SET.

EXTEND

Source Program Cards

END

INHS

INHS, Inhibit Suppress, is an optional directive to META -
SYMBOL. It inhibits the suppression (normal condition) of
generated code produced by Business Language instructions
(PROCedures) in an assembly listing. Normally, the only
octal code listing is the first word generated (adjacent to
the Business Language instruction call). However, if the

octal expansion of Business Language PROCedures is needed,
the programmer may call the INHS directive.

EXECUTION-TIME OPERATIONS

XDS 900 SERIES; OPERATING UNDER MONARCH

The XDS MONARCH Monitor System operates input/output
devices through use of a unit assignment table. That, is be-
fore any program can be assembled/compiled/loaded for ex-
ecution under MONARCH, the user must tell the system which
peripherals are available and what the communicating labels
for these peripherals are. The AASSIGN card (statement)

is used to set up the table.

In particular, when loading a program for execution that
uses the Business Language, special peripheral assignments
must be made. Only those items from the following list that
will be used during the execution need be assigned:

LLP Line printer
LCR Card reader
LCP Card punch
LT Magnetic tape unit 1
L2 Magnetic tape unit 2

L7 Magnetic tape unit 7

52

Any other peripheral that is used, such as the paper tape
reader, need not be assigned; the standard assignments for
loading MONARCH take care of the rest. When multiple
units, such as three card readers, are available, consult the
XDS MONARCH Reference Manual on the ASSIGN statement.

Assuming the use of a card reader, line printer, and magnetic
tapes 1 and 2, the ASSIGN card (statement) looks like:
AASSIGN LCR=CR, LLP=LP, L1=MT1, L2=MT2.

Typically, the cards for loading a program in binary form on
cards, with the above peripherals being used, are as follows:

AASSIGN LCR=CR, LLP=LP, L1=MT1, L2=MT2
ALOAD 0200, GO.

MONARCH assigns the peripherals and then transfers con-
trol to the program, as looded in location 200 (octal).

XDS 92300; OPERATING UNDER MONITOR 9300

The same assignments and load cards are used with the XDS
9300 Computer.

ASSEMBLY ERROR FLAGS AND ERROR MESSAGE CODES

ERROR FLAGS
D Duplicate definition of level-1 symbol

E 1. Expression error
2. Directive syntax error
Examples (not exhaustive)

a. TEXT (if first symbol is value and second sym-
bol not comma)

b. END (external reference in end line)
3. Procedure syntax error

Examples (not exhaustive)

a. LDX,BRX,STX (no index field given)

b. shifts (use of indirect addressing)

c. COPY (various syntax errors)
F Illegal forward reference in directive
G Generative code in function
I Unknown opcode
L 1Illegal label (special characters)

M Improper use of SBRK or DISP (see the XDS META-
SYMBOL Reference Manual)

N Missing END line

P Exceeding maximum parenthesis nesting level
R Primitive relocation el;ror

S Business Language syntax error

T 1. Truncation (attempt to use form reference line to
insert a value exceeding the capacity of the speci-
fied field)

2. Request COPY not available in hardware
U Undefined symbol used in manner that does not allow
possibility of external reference

Notes:

1. Error and "MARK" (S) flags generated within PROCs
(PROCedures) may appear in three possible places.
All Business Language instructions are PROCs.

a. On the call line, if generated during pass 1
of a two-pass PROC.

b. On the next generated line.

¢. On ablank line following the PROC if no

generative line follows the error.

2. Labels appearing on PROC reference lines are not
defined until the end of the PROC. This is neces-
sary to mechanize the lone $ feature. Therefore,
if such a label is doubly defined, the D flag will
come out on a blank line following the PROC.

Machine instructions (LDA, etc.) are procedures
within the assembler itself.

ASSEMBLER ERROR MESSAGE CODES

The standard abort message is "META-SYMBOL ERROR XX",
where XX has the following meanings:

XX Interpretation

01 Insufficient space to complete encoding of input

02 Corrections to encoded deck but encoded input file is
empty

03 End-of-file detected while reading encoded input
04 Insufficient space to complete preassembly operations
05 Insufficient space to complete the assembly

06 Data error; META-SYMBOL does not recognize the

data as anything meaningful
07 Requested output on a device that is not available
08 Corrections out of sequence

09 End-of-file detected by ENCODER when trying to
read intermediate output tape X1

10 METAXXXX error; the XXXX name not recognized in
the system

11 Byte larger than dictionary (bad encoded deck)
12 Not ENCODED deck

13 Checksum error reading system tape

14 Preassembler overflow (ETAB)

15 Not used

16 Data error causing META-SYMBOL to attempt to pro-
cess procedure sample beyond end of table

24 Shrink overflow

Errors 05, 06, and 16 are accompanied by a printout that
shows the value of certain internal parameters at the time of
the abort:

LINE NUMBER BREAK

BREAKI SMPWRD

LOCATION COUNTER LTBE

UPPER LTBL} SECOND PASS ONLY
LOWER

The last six messages are useful in determining the nature of
assembler overflow.

For unfamiliar terms not explained in this manual, see the
XDS META-SYMBOL Reference Manual.

53

1/0 ERROR MESSAGES AND HALTS

When an 1/O error is detected, a simple message is typed
and the computerhalts. The message consists of a two-letter
indication of the type of error and a two-digit indication
of the 1/0O device. The letter indicators are defined below;
the two-digit number is the unit address number used in
EOM selects (see applicable computer reference manual). The
action taken if the halt iscleared depends on the type of error
and the device involved. There are three types of error.

XDS 900 SERIES COMPUTERS

Buffer Error (BE)

Examples:
BE11 buffer error while reading magnetic tape 1.
BE42 buffer error while writing magnetic tape 2.
Action upon clearing the halt:

Magnetic tape input — since ten attempts are made to

read the record before the halt occurs, continuing
causes META-SYMBOL to accept the bad record.

Paper tape or card input — try again.
Magnetic tape output — try again.

Output other than magnetic tape — continues.

Checksum Error (CS)

Examples:

CS06 checksum error card reader.
CS11 checksum error reading magnetic tape 1.

54

Action upon clearing the halt:

Accepts bad record.

Write Error (FP) (XDS 900 Series Only)
Example:

FP42 magnetic tape 2 file-protected.

Action upon clearing the halt:

Checks again.

XDS 9300 COMPUTER

When an 1/O error is detected on the XDS 9300, a message
is typed, and conftrol is returned to MONITOR. The mes-
sage will be

I META ERROR @ ¢

where o is a letter E (Encoder), P (Preassembler), or A
(Assembler) indicating which overlay segment of the assem-
bler was last loaded; and, ¢ identifies the type of error:

< Interpretation
IOC Checksum error (irrecoverable)

I0E Buffer error
IOA Abnormal return

EXTERNAL DEFINITIONS AND REFERENCES '

A most useful META-SYMBOL Assembler feature allows sep-
arate assembly of independent programs. This feature not
only permits reference by name to standard library programs,
such as subroutines, but also allows large programs not using
Business Language to be segmented without, in either case,
shifting the burden of memory allocation to the programmer.
Therefore, economies result both in reduced assemblies and
debugging.

Symbolic interprogram communication is by means of exter-
nal labels. Most labels are internal (or local) labels, de-
fined internally to a program. Accordingly, the assembler
recognizes a symbolic reference in the operand field of a
line only when the symbol is defined elsewhere in the pro-
gram by its appearance in the line's label field. When a
symbolic reference cannot be satisfied within a program,
all references to the symbol are called external references;
that is, the symbol is assumed to be defined within some
context external to the program in which the reference
occurs.

The counterpart of the external reference is the external
definition; a symbolic definition is made external by pre-
ceding it with a dollar sign ($). The programmer may es-
tablish an external definition either on the line that defines
the symbol or on a subsequent line. In the latter case, the
entire line is an external definition line; more than one
symbol can be defined as external by listing them following

the first symbol. Although additional dollar signs are not re-
quired, commas must separate one symbol from another. Ex-
ternal references may appear only in the address field of a
mnemonic instruction or FORM reference line. External def-
initions and references are restricted to eight characters.
Relative external references (e.g., Symbol£n) are not per-
mitted.

The three programs shown in Example 11 are assembled sep-
arately and use external references for intercommunication.
The program, MAIN, via two subroutines, DOUBLE and
STORE, loads the number in NUMBER, doubles it, adds a
constant to it, and stores it in location BIGGER. The con-
stant, CONST, is defined as 05000g.

If a user has not yet determined which labels to make exter-
nal, he can write one or more external definition lines at
the end of the program, and then reassemble. As stated
previously, more than one such label can be written on one
external definition line. However, the external definition
line must be written someplace in the program after the sym-
bol has been used in the label field (i.e., has been defined).
See Example 12.

As indicated previously, program segmentation may be useful
for maintenance or debugging. Segmenting can also be used
to facilitate assembly of programs containing many symbols.
For especially large programs, the numbers of symbols used

Example 11:

LABEL COPERATION OPERAND COMMENTS
“ o 10 = 20 mE icigl 5 a0 48 50 [S1] a0
GIN_ _LDA o . BEGINNING OF MAIL AAREAN
55 _BRM wﬂ“%%ﬁﬁf@ IRRRRRNE ENTER DOUBIL NG'SUBR?UT NE,
ADD CONST ‘ _
':::"ggyl "I}jﬁhkji"‘:,:rj‘ :’Te sfeRE sueRpu‘TINE§ ‘Yi“‘
HLT AERARARE , HALT PRGGRAM EERREN
§BIGGER RES_ I ; . - BEAREERARRRARRAR
CONST DATA 05000 L F

L S A L A R { Y AR A AL S T

Eno . BEGIN.

$NUMBER_DATA

,Yl!!‘i!’ ¥ ¥ Y

—END_GF PROGRAM

LS B St SN e S Tt Tt | Yy T

$DEUBLE | DATA

‘ENTRY FOR DOUBLE

ADD____NUMBER e (AL *NUMBER INTO A
T ¥ L. 1BYRYRX LR DOUBLE ki A LI A | ¥ T RETURN T ¥ L TN I LA T ; L4 ¥ \ LA 4 2
¥ i E N D v ‘{ L4 1 4 ! v T L4 ¥ { ¥ LA 2 1 7 L] T ! LA L ¥ hH 4 A
SSTORE ATA ST ENTRY PR STeRE T
o ASTA»{WH BIGGER L | . L
e ; : .

[

'See also "External Label References and Definitions” in the Appendix and "The Loading Process, External Label References and

Definitions"

in Section 3 of the XDS MONARCH Reference Manual (90 05 66).

55

Example 12:

may overflow the capacity of the assembler's symbol table.
In this event, segmentation can be accomplished manually,
as follows:

Divide the program into as many physical segments as
desired. Assemble each of these segments separately.

Prepare a set of external definition lines from the ex-
ternal reference lists output at the end of each assem-
bly listing. Relative external references are eliminated.

Duplicate the set of external definition lines for each
program segment and include it before each END card.

Reassemble the program segments. The loader can now

fulfill all external references.

To communicate external definition and reference informa-
tion to the loader, the assembler outputs the former prior to
the binary output (called "text") and the latter following

the text. The external definition table consists of the alpha-
numeric symbols accompanied by their (relocatable or not)
binary values. Each entry in the external reference table
consists of the alphanumeric symbol accompanied by the

56

START _LDA__ X o
— _BRM__ SIN GO TO’ SIN ROUTI NJ:Z, e
| _STA WS?‘IYNX B o [' S

;HerTv ¥ ¥ ig r i 4 et
SINX DATA O) n ‘RESERVE A LOGCATIGON o

T RES g o RESERVE A LoCAfleN FGR xj 1

END START ' ' - : .
T A LA k3 T T 13 T T ¥ ki ¥ ¥ H F H * H ¥ T T H
SIN DATA o 77 ENTRY To SIN Rdurlng‘ o
B S LA . S A S —— AR, LS
ey f A f § 3.1 ¥ Y 1 T] Y £ ¥ LA SN S Nt St S i e 1 ¥ 'f - Y Y ¥ ; ¥ i . I ¥ ¥ ¥ H k4
k ' k] \'B!R*Rg ES!I 'N f % H ' | 1 i ¥)
cos DAT% 0 ; ; ENTRY TO C6S ROUTINE ‘
L 4 L L R T F 3 ' ; ¥ L4 A b4 E T L 4 Y ¥ 4 § ¥

LA . ¥ ¥ i AN S M ¥ T S LA S S ERAE I S LIRS R S S
L4 LA N A £ ¥ LA S ¢ t ¥ ¥ E I S H T 7Ty ey —g—"p
s BRR ,Twiéos ANNSS 5'??jfﬁfwfffwwrﬂ ,iv!,ii;i“?;;;ij
$siN,cOs | ’ f DEFINE As EXTERNAL L
O L N'Dg T H] f H 1 K k4 , L4 ¥ L2 H 3 ' ¥ 4 i k] ¥ ‘g g ¥ ’ ¥ ¥

¥ ¥ ¥ A, 3 T H ¥ ¥ H ‘g ¥ ¥ ks A ! H ¥ L4 ;4 H ¥ k’\ ¥ ¢ £l T ¥ T 3 7 1 ¥ ¥ 4 ¥

(relocatable or not) binary address of the last location in
which the external reference occurred. The address portion
of that location points (contains the address of), in turn, to
the last previous location where an external reference was
made to the same symbol. The chain terminates when the
address portion of an instruction contains 0. See Example 13.

Example 13:

Location Contents Label Operation Operand
00100 ORG 0100
00100 07600000 START LDA X
00101 07500000 LDB Y
00102 03500101 STA Y
00103 03600100 STB X
00104 07600103 LDA X
00105 06400104 MUL X
00106 03500107 STA XsQ
00107 00000000 XSQ DATA 0
END START
00105 X
00102 Y

BUSINESS LANGUAGE PROGRAMMING EXAMPLES

The following examples illustrate the use of XDS Business Language instructions.

Example A
LABEL OPERATION OPERAND COMMENTS
1 5 10 18 20 25 GO 35 40 45 50 55 &0
Y Y T i 9 T - < L] { 7 H H i‘ b ¥ H (T T ¥ il [v ¥ ¥ ‘ R LA ¥ f ¥ ¥ v v ‘ i 4 ;4 v T ‘ T .l
WRITETP TAPE2,80UTPUT, 200
L SN 4 T r kS 4 ": Y Y} ¥ 1 T 1 T L T v ! b3 A B 1 s ¥ ¥ LA 3 !‘ T ¥ t ‘ 1§ ¥ v ¥ ! Al T Y
T LA SR S S A A S T 5 4 Y LA A I R T | A A H LI S | LA DR S A { YTy , rmr T | A B A A A { L2

A block of information 200 characters long is written on tape unit 2 from the memory area "OUTPUT".

Example B
LABEL OPERATION 3 COMMENMTS
1 & 10 15 20 25 30 35 a0 45 50 55 80
Lot L SR SR SR A AL T LN S S S L ¢ T AL S B S SRR S [SN N A S A S S S S A SN S A
READTP TAPE ! ,INPUT
L L ¥ L3 L4 x I k- § L i T 1 ¥ I T i ¥ T * ¥ ; H L ¥ ‘ ¥ i ¥ LA 4 ¥ ' ¥ ¥ ¥ T ‘ T ¥ ¥ * ' ¥ ¥ L4
L2 k1 *) v H LA - Al 4 ¥ i ¥ Ed ¥ ! v A ¥ Y T 14 7 ¥ z L4 ¥ i ¥ ¥ F ¥ “ Yy 7 &1 ! T

A block of information (interrecord gap to interrecord gap) is read from tape unit 1 into the memory area "INPUT".

Example C
LABEL OPERATION OPERAND COMMENTS
i oy iC 1o @i 25 30 35 a0 45 50 85 80
Ty -y Y ™y — S A S B S S S S S - Y

“REKBTR | [TAPESCHANGE, 80

LN I SR LABALIN A S A A S A M A S A N S AN SO B SN M A A S BN AN S S R

L/ S A A SR S R S St R AR B S SN AN A RN A S S SR A A SR A ANRLA Yy

P

LA R A B M ! LR B A ' L A 7 L 2NN SRR N § “ LA A
A block of information is read from tape unit 3 into the memory area "CHANGE". Blocks longer than 80 characters are trun-
cated to 80.

Example D

LABEL OPERATION OPERAND COMMENTS

1 5 10 15 20 25 30 35 40 45 50 55 60

z'a's“i'"i’{lﬁ‘iTg!"“"“iYYIYYY!g!)“‘Tr‘r"’!rgvr:|1{v‘tt't'l"'l111‘(11v]’7ﬁ‘*'
SORT TABLEUN, 18,4, 1
!gTY"’I‘!"? L

LIS SN S St St S e S LA

7"I'¥71§T, AL A G S S S A S S SN A S A S N B A AN A e A

LA AL A L A S L B B AL S S S S H S S S BT M A B NS S R SN R S S U St N S M B AN M S AN SRALAND S S SN A N SR

The 18-word table of four word items whose address is "TABLEUN" is sorted and the sorted table is placed in memory in the
same locations. The key is two words long and its first word is the first word in an item.

Example E
LABEL OPERATION OPERAND COMMENTS
1) 10 15 20 25 30 25 40 48 50 55 50
L 2 S 4 ror v v Y Yy ¥ Y “ } A L v Y { ¥ A S r! 1] l! Y‘I ;'- f‘ " N ‘l; ~'¥ 1 T Y ¥ ¥ 1 LA S ‘ L *
BRACNE ERROR,INPUT, I8, E , N , 6 , 'L , Z
* AR S ‘ LA RS I I T ¥ v , Y v LA T T ¥ H f T LA B } LA AN | 1 T ¥ Y] LA S B 1 ‘ LA D A 1 ¥ LI ‘ T 7 Al
LN A S S S 755 SN S S * LN shee T Y H v M S Y T | LA S A A S S A LA S S SN N S SR A A

Where the operation "BRACNE" denotes "Branch on Any Character Not Equal”, this PROCedure causes a transfer to "ERROR",
if the 18th character in the "INPUT" area is not equal to E, N, G, L, or Z. Otherwise, control is transferred to the next
statement in sequence.

Example F
LABE 71 OPERAND ‘ COMMENTS
1 & ke 15 20 153 cle’ 35 40 45 =0 Be [Sle
L2 ki ¥ 1‘7 7 ¥ ¥ : Y r H k2 L4 LA T H T H T 4 ¥ i T H * ¥ { Lo ‘ v i L4 f x L] L3 s ? ¥ H i ¥ ¥
MOVE INPUT ,8,0UTPUT, 14,9
¥ ¥ ¥ L o ¥ ? L T }' L ; L3 k4 T 14 L k4 H H k4 * T T ! ¥ ¥ ¥ ¥ ! Al 1 T : L1 € i T ?’ k1 L2 k] k) -I T T T 1 3 ‘! 1 L ¥
LI S 2o SNEANEE N S i ¥ T T 4 gy T LA S e S S S A 1 T A S N M G S A B S

The nine characters, starting at the eighth character position of the memory area "INPUT", are moved to positions 14 through
22 of the area "OUTPUT".

57

Example G

~PE i CORMMENTS

! AR

i 530 5

% H s L o A o G

f vy s vy y vy ¥y ¥ e T Y

RATE ~ FIELD WORK,9,4 .

[N S S A e LA T ; { ; ¥ e e

H

;& — —— veyy g gy gy ey ’ ‘ i B A S e e ¢ - oy

The four characters, beginning in the ninth character position of "WORK", are defined as a field. The name or label "RATE"
is assigned to that field.

Example H
PAREL PERATION OPet COMMENTS
4 10 15 20 25 SO 35 15 50 55
oy v Y . ey ¥ e T oy T T
_MOVE INPUT,20,RATE R ‘
T T ¥ ¥ HE LI LA . 1 Y L. € gy T oy Y YT - S A A

A four-character field, starting at the 20th character of the memory area "INPUT", is moved to the field named "RATE",
which begins at the ninth character position of the area "WORK" and is four characters long.

Example 1
LABEL
1 5 20 4G 3% e b =
CGMPARE VALUE, vQLusz f *,'j ,i;:;¥ ‘r . !*‘:V’ .
BRHT HIGHVAL ’ ~Z*f~:i jT’ r §> R
¥ " 2 4 7 LA ¢ L B Y H oy Y ; H ¥ P ¥ Al v 2) S A T .

These two PROCedures compare two fields identified as "VALUE]" and "VALUE2" and branchtoa |ocof|on labeled "HIGHVAL"
if "WALUE2" is higher than "VALUE1".

Example J

Problem: An existing data file contains logical records of three characters each, blocked by a factor of twenty. The record,
in memory at INPUT AREA, must be internally sorted before processing.

Method: Realign logical record internally to four characters each (one per word).

1 15 20 an
SORTAREA, zo,v . N
i =4 . '5¥THROUGH
LOOPCOUNTER _WILL MOVE 20 FIELDS ‘
‘ _=INPUTAREA INITIAL1ZE_ MGVEBA§E A
MOVEBASE ’ _ ! '
kDX =0 ‘ f lNlTIAleE !NDE .
LOOP __MOVE *MOVEBASE L(SORTAREA) , 1,3 "~ ' "~ .
MOVE #MOVEBASE 4 (stTAREA+|), .3 ' ' ’
) __MOVE #MOVEBASE, 7 (SORTAREA+2) , r BARARSERRAERAN
' “ MOVE ! *MOVEBASE , (SORTAR EA+3V 3’ o
_EAX BTEP INDEX T o
,,,.,,,th,,.yr13,,,,,,,,l,,,,g.,, STEE MGVEBASE S —
DM "MOVEBASE '~~~ 'BY THREE WoRDS ' "'
e SKR 'LOOPCGUNTER o TEST LOOP PASSES o
BRU____LoOP - AAAAAARAREARARARASERARRERN
e SORT__ SORTAREA,20, |,t,3
e s g e s s e e e g ;

58

Example K

Note that the previous example has a logical requirement for two index registers, one to modify INPUTAREA, the other to
modify SORTAREA. But only one hardware index register is available in the XDS 900 Series Computers. Indirect addressing
is easily used to gain the effect of the other index register. For example, the same loop could be written:

LABEL OPERAND COMMENTS
1 = He T prie =l il 35 7%) 1 B S0
¥ v T A3 i T g v ¥ L3 I L S 4 ¥ T I L 4 h g I A g ¥ E 3 Y ‘g Al L4 T 1 L] T L . x’ T
BLANK SGRTAREA zo
¥ T L4 T ¥ x 1 4 ¥ ¥ L ¥ ! L4 T L 4 Y { ¥ Y 1 ¥ ; L3 v L ‘ v b4 Y ‘ 1 ¥ YT ¥ Y k1 L4 £
LDA -4
T A g f k4 T v v f h ghuie & L4 H v i k4 T ‘{ T ¥ H H I k] ki { k4 A 1 ‘i £ +
STA LOOPCOUNTER
¥ ¥ ¥ Y Y y L] i g k4 T { ¥ T T L E }' L ¥ ; ¥ I 2. L4 LA Ed 5 F ! ¥
LDA -soafAREA
Ty LA S e 3 ¥ TYTYY b i T LA S SN AL A S S A A A S S AR S A 1 v T k1
TA SORTBASE
G I St S 4 LA S | g T LA AR S e ﬁfilg LA f YTTTY T «g!"TTY LA S S B
L DX =0

1 LA T ¢ ¥ ¥ H ¥ L L B ! ¥ 1 T ¥ !§ * T L 4 ! L LA "}' ki T 3' Al Ad
LOOP MOVE fINPUTAREA), ,*SO’RTBASE, 0 N

3
MOVE INPUTAREA) .4, *SORTBASE, 5, 3
MOVE ’(1NPUTARE£).7 ¥SORTBASE , 9 T ' ! '
i o

INPUTAREA' '*SGRTBASE ,'| DRSS

(4

—

LA St S A S A SR S 4 LA § ST T Ty 1 T LN S S A A A LA A S S S I A

AL S S
LDA
L LA LS 1 !r;lxr']!‘{vlil‘l rgif?lg’t 11‘?‘!!“!1!‘1“7](!!“ LS 4
ADM SORTBASE
LA SRS S A, S S A S v T T 7 YT Y T T SN
LOOPCOUNTER
v TTYTTTTYTTTYY T Y TrTYTTTTTYTY | SN AR N S L R AN SELAN S S A S LA R U B RN SR SRS S A A
LOGP
LA S SNl S SN s ot S SHRG SR NN N S B T TTTTYYTTYTTYTYY LANLENA SR AN AL A S L S SR AN N AN A AL S
SGRT saRTAhEA 20 0 153
L AN S N S e MR SN SN SN SN RN e xtivrr 7T T YT T LANLANL SN S R AR S SN NN B B S B A S
LA S S L SN A LA S SN LA 5 S B S R A S S A S R S AL S I S A S SR B A S S AL AN LA AL LA AL AN
AR S B AN i S S St S S NS i ST R A A SR S SN S AL A S0 S AL LGNS BRI UL S A S S R U AN U AL AR S AN SR SR S S AN SN A S S A

These examples assume that the labels MOVEBASE (SORTBASE), INPUTAREA, SORTAREA, and LOOPCOUNTER have been de-
fined elsewhere in the program.

Example L

When processing data whose format is a variable at run-time, one cannot specify the high-order character position required for
such operations as MOVE. Such data is best scanned and processed after being unpacked to one character per word by the
UNPACKR operation.

Assume a data card has been read into CARDAREA containing personnel names and account numbers in the following format:
first name first, at least one space (blank), last name, comma, account number. For example:

SAMUEL GREENFIELD, 90060-01

The names and account numbers are to be built up in a table for subsequent processing. Assume a maximum of twenty charac-
ters each for the first name and the last name, and twelve characters for the account number. Thus, the internal logical record is
fifty-two characters (thirteen words) long.

The code that might be used for this example is given on the following page.

59

L ARE]

__READCD 'CARDAREA gttt
UNPACKR CARDAREAMQQAﬂAgﬁAwggwymﬁAgg 80 _COLUMNS, -
. . LDA T TSCANAREA | __INITIALIZE) .
‘{,erYSTA . COLUMNCOUNT POSITION ,,,,,Yr;,,,, .
¥ SCAN_TO END OF FIRST NAME | ‘ '
* CURRENﬁ PLACE IN DATA TABLE IS ALREADY ssf w.
‘HQQPJ_TﬁﬁAFFQ‘YNEXT ¥ COLUMNCOUNT), 4, oeo MRS AR
_MIN coLuMNcoUNT ‘ ' ‘ ' ' ’

T TTTBRU. . Leepl ‘ ; ‘ T r '
T T R COMRE SR T S — ——
e T TS CANARER T T e
- ARaa FIRSTNAMECOUNT SRS AR RRAL AR
o PACKR ¥DATATABLE,SCANAREA, (FIRSTNAMECOUNT) "
oo LDA =5 e STEP _DATA_TABLE RN

___ADM_ IDATAfABLEs * POSITION zo CHARACT€d§'
LoGP2 BRACNE NEXTZ2, :coLUMNCdUNT 4,060 SKIP EXTRA BERRERARE
":jzyhﬁh’::,,ceLuMNceUNT T TSPACES PRECEDING _

_____BRU Leop2 . _LAST NAME AR .
NEXT2 _MOVEWD _COLUMNCOUNT,STARTOFLASTNAME " "' " """ "~
LOOP3 BRACEQ NEXT3, *CGLUMNCdUNT 4 073 _'SCAN_TO chMA L
o MIN ”%GLUMNCGUMT BARRAE AR REEARRRS
f;if{r!Bqus‘r‘l TLeeP3 ¥ H \"; H sY‘T T 1171.4 i
EXT3 LDA _____ COLUMNCOUNT _ o AR

T sUB __ STARTOFLASTNAME """ T -
_STA LASTNAMECOUNT
o _PACKR _ #DATATABLE, ¥STARTEFLASTNAME, (LASTNAMEcegNT)
DA =5 , e STEP DATA TABLE -
ADM DATATABLE BY TWENTY | CHARACTERS .
_MIN ~~ COLUMNCOUNT =
__PACKR *DATATABLE *COLUMNCOUNT, 3 MOVE. AccduuT’iyé' ﬁ
_Sunsushiiiien T e T
B ‘LDA SR T T T T 'STEP. DATA__TABLE ! L
i ,Apy “;‘DATATABLE ; ”f;,k‘ BY TWELVE CHARACTERS s
,,,,, B e e
N S —

Note that the above code assumes the actual data table has been blanked prior to the loop so that all names will be appropri-
ately filled out to the assumed length of twenty characters. The labels CARDAREA, DATATABLE, SCANAREA, COLUMNCOUNT,
FIRSTNAMECOUNT, STARTOFLASTNAME, and LASTNAMECOUNT must be defined elsewhere in the program.

BPOV for the XDS 9300 Computer

BPOV was not implemented for the XDS 9300 because it can not be done in a completely generalized way. In the first place,
MONITOR prints its own heading line at the top of each page and, secondly, any output on the printer by any file name will
reduce the line count remaining. If one knows that only one file is going to the line printer, the following PROCedure defini-
tions may be useful even if they are not completely general. See Example M on the following page.

60

Example M

One uses SETLINES at the beginning of the executable program.
cluding his own heading line and the number of lines (N) upspaced after the heading in the NEXTPAGE PROCedure. LINE-

COUNT is a counter cell defined by the user.

The number of lines (P(1)) is the user's

LABREL COMMENTS
1 = EE prsel p 20O aE 40 a5 =50 55 =0
hi Al L2 T ‘E’ k] k4 kil ¥ }‘ ¥ El A4 ’{ Y k4 4 L 4 L] B ¥ 5 : 2 ! ¥ T v ¥ ; T ¥ Y i\! v
P PROC . ‘
£ 00 it 4 L ¥ Y 1 A] ¥ ! YT ! Ty H k4 ¥ f YTy g T % T ‘{ 4 A }' hd v
BPOV NAME
4 T r P H " T A1 Y ki
SKR LINECGUNT REDUCE LINES REMAINING
k4 3 4 H 7 ¥ Ea] v { L L4
BRU P(I) , . THERE IS STILL ReeM
) 4 LA B B S S) YTy T Y 5NN Stuh dab s 3 A4 x4
LAST LINE 'HAS BEEN PRINTED
T ¥ kAl L] L4 ; ¥ £ L1 L i s T L1 L4 ¥ T Y }' v T ¥ L4 l’ £ 2 I L 3 L3 ¥ 1 k3 ¥
H 14 ¥ 5 ¥ Ll L { H g H ¥ L H v H ¥ z i1 W H I & ¥ H ¥ ¥] " A L s L4 T Li L3 ¥ i R 2 ‘ L4 ¥
3 ¥ L 3 T T k] ki ki ¥ T ¥ T 3 T L ks L H EH ¥ LS Y T ! b e ¥ v v A4 Y ! Y ¥ Y L3 g k4 L4 T ; yror v H ey
P PROC
‘ k4 Y }‘ T L4 '%] ¥ T 4 T A £ 2 g L4 L AERE N 2 t ¥ 1] ¥ x ‘ A L3 Y ¥ ! ki A3 R v , ¥ v L4
NEXTPAGE NAME !
L k4 T r L4 ¥ T i 2N T !’ T ¥ ; ¥ T { k4 v ¥ T ¥ ¥ ¥ Ls ¥ T ¥ Y v L A L I v T T L i T A ¥ Y } h T A4
'RES TORE : ! '
Y L3 ¥ l 1] L4 T L3 X Al T k4 ¥ ;T 1 Y S £ l T ¥ Y A 4 * LA L 4 ‘ k] 1 L ¢ k] ‘ T k4 1 4 ‘ T T k1
RINT _HEADING i
T ¥ 14 L 4 i ¥ i 3 v k3 l L T L1 ¥ ¥ % A ¥ ka] ¥ ¥ L1 ‘ v ¥ I T A LS Y “ T A3 ¥ ¥ { v ¥ L4 L4 I T T * v ! T 1 1
UPSPACE ‘
L T L x L LA L2 T ‘!’ 14 ¥ L * T ¥ ¥ L] * k] ¥ T T ‘ L4 ¥ ¥ ¥ g ¥ T ¥ { k] 3 ; Y r o ! ¥ g 2 3 Y T A s " L L3 ¥ t ¥ k4 k4
LDA ‘=L|N€s-|
¥ ¥ ¥ L] ¥ 1T ¥ 13 L s 3] L1 T ¥ 1] ‘§ ¥ Y ¥ ¥ [i L] L4 L3 L3 T ¥ 1 L4 L 4 A4 T ! A LA L i ¥ ! A ¥ ¥ L ! T L4 ¥
STA LINECGUNT ! !
H L4 ¥ T ¥ T v I T ¥ [T T v T ¥ ¥ ¥ T ‘ T T F ¥ l L Y k4 T ! A 4 Y ¥ " L3 Y ¥ ¥ ! L3 Y 1 4 ! L] L4 ¥ Y i ¥ L 4 ¥ ¥ T 1
END
i ¥ ¥ LN SN A SR § ¥ g’ 14 ¥) " k4 T v T 3‘ v k4 L 4 1 L 3 T k4 ! ¥ 1] ¥ T ‘ T T ¥ ¥ ’f k1 13 k4 T I A % ¥ A ¥ LA R 3 k. i k3 ¥ A 4 T I A 4
Ty v L 4 LN R S ¥ '{ ooy r LA LA LA 4 ‘E L o L] } LA 2 H A 3 Y Y LA § T ™Y Y ! A A4 Y i Y v v i) 4 L A 1 ¥ ‘f ¥ ¥ T
P PR@% ‘
k4 T k4 Y ‘ T Y L T L 4 L 4 T ; k4 1 k4 A i T ¥ v YT k4 L 4 ¥ x I v k A4 2 T L 4 f ¥ k3 ¥ §' T ¥ L3
SETLINES NAME I '
Y T ¥ ¥ YM 2 v k3 kg A ¥ L] L T k3 L1 ¥ k4 ¥ ¥ T ‘ ¥ L4 L 4 ; ¥ v L 4 ¥ v Y ¥ ¥ H T L3 R 3 LA ¥ ¥ L3 LS ¥ E k4 ¥
IB R § M\MAR G f L YT I T T T L } YT ¥ ; T TR ‘(¥ L ! TTTTYTY
-y ¥ Y | H ¥ + ToYrTYTTY
PZE P(l)+l
2 4 T v £ 2 ki T ¥ T T T ¥ ki :) T ! LS E ¥ H T ¥ ; ¥ ¥ “ v 1’ ¥ kd ¥ 7 ‘ v ¥ L4 L I v € ¥ ¥ i 13 ¥ T A s ‘ A f Y ;3
STZ LINECOUNT
L} k4 T T]‘-‘i ¥ % H ¥ ! ¥ ki T T ‘{ ¥ R T T }’ ¥ v § H EH ¥ ¥ L 2 A A 4 } A4 T La v T L2 T f k] LA 4 3 l T T ¥ ‘! L 2 4 R
END
AN SR A B 4 T £ 1 LA ¥ } L 208 e & 7 Y LI B H R4 4 A g YT g h A 3'7, LA . 4 g Y T I 4 Y
¥ ¥ ¥ ¥ T W ¥ ¥ T—y ¥ ¥ ¥ ¥ g ¥ T ¥ ¥ ! ¥ L 4 A I L4 T ¥ I T A i T ; i ¥ k4 '; T L ¥ L 3 ; x v T i 4 ' ki ks T ¥ [L] Ll ¥ T ! T L 4 L 3

number of lines in-

NEXTPAGE restores the page, printing the MONITOR's title line, the user's

title (33 words beginning at HEADING, where HEADING is defined by the user), upspaces the margin desired before the reg-
ular information, and sets up the counter used by the BPOV PROCedure. LINES is the number of actual information lines per

page, excluding headings.
each page.

MONITOR title and user title, additional subheadings, etc.

See Example N below.

This discussion points out an important feature of XDS Business Language.

By using BPOV prior to each PRINT, the programmer is sure that his title will appear at the top of
Note that additional features could be added to the NEXTPAGE PROCedure, including an UPSPACE between the
The extra lines must be reflected in the SETLINES PROCedure.

The programmer can use the full META-SYMBOL

PROCedure power to define his special combinations of Business Language Procedures, creating a still higher-level language

(NEXTPAGE does more than RESTORE).

BPOV that will satisfy his requirements,

Because of this inherent power, the XDS 9300 user can often implement for himself a

Example N
g COMMENTS
1k “9 e 15 e 25 30 35 43 45 =0 55 [Sin
L S ¥ St T & LS e | T LN e SN A S A SIS S A S SN AL SN S B S B A S g T
SETLINES 35

T i S ¢ Y 7 LA gy LA S A A | YT Y =y
’ T + L4 ¥ ¥ LA ¥ ¥ ¥ v L1 L4 Y v hd ¥ g
f’° Ty gy L g T £ Y gy T T Lo ¥

{ i H

; dev NEXT
gy " ST — ooy g et . .
: NEXTPAGE
E S S S S S Ee g I g 'i"‘T"}” ¥ ¥ Y FTTTTTYTYTTYTYTTY T ¥ ki LA S S S
NEXT PRINT INF@RMATI NLINE

. ey e e S S

T L ¥ ¥ ¥ ¥ T - ¥ ey ¥ ¥ i I Y l L Y k4 Al T Y Y L4 3 k2 I (] kil Al b

61

XDS 920,/930 INSTRUCTION LIST

Instruction

Mnemonic Code Name
LOAD/STORE
LDA 76 LOAD A
STA 35 STORE A
LDB 75 LOAD B
STB 36 STORE B
LDX : 71 LOAD INDEX
STX 37 STORE INDEX
EAX 77 COPY EFFECTIVE ADDRESS INTO INDEX
XMA 62 EXCHANGE M AND A
ARITHMETIC
ADD 55 ADDMTO A
ADC 57 ADD WITH CARRY
ADM 63 ADDATO M
MIN 61 MEMORY INCREMENT
SUB 54 SUBTRACT M FROM A
suC 56 SUBTRACT WITH CARRY
MUL 64 MULTIPLY
DIV 65 DIVIDE
LOGICAL
ETR 14 EXTRACT
MRG 16 MERGE
EOR 17 EXCLUSIVE OR
REGISTER CHANGE
RCH, COPY 46 REGISTER CHANGE
CLA 0 46 00001 CLEAR A
CLB 0 46 00002 CLEAR B
CLR 0 46 00003 CLEAR AB
CAB 0 46 00004 COPY AINTO B
CBA 0 46 00010 COPY BINTO A
XAB 0 46 00014 EXCHANGE A AND B
BAC 0 46 00012 COPY B INTO A, CLEAR B
ABC 0 46 00005 COPY AINTO B, CLEAR A
CXA 0 46 00200 COPY INDEX INTO A
CAX 0 46 00400 COPY A INTO INDEX
XXA 0 46 00600 EXCHANGE INDEX AND A
CBX 0 46 00020 COPY B INTO INDEX
CXB 0 46 00040 COPY INDEX INTO B
XXB 0 46 00060 EXCHANGE INDEX AND B
STE 0 46 00122 STORE EXPONENT
LDE 0 46 00140 LOAD EXPONENT
XEE 0 46 00160 EXCHANGE EXPONENTS
CNA 0 46 01000 COPY NEGATIVE INTO A
BRANCH
BRU 01 BRANCH UNCONDITIONALLY
BRX 4] INCREMENT INDEX AND BRANCH
BRM 43 MARK PLACE AND BRANCH

BRR 51 RETURN BRANCH

Mnemonic

TEST/SKIP

SKS
SKE
SKG
SKR
SKM
SKN
SKA
SKB
SKD

SHIFT

RSH
RCY
LSH
LCY
NOD

CONTROL

HLT, PZE
NOP
EXU

Instruction

Code

40
50
73
60
70
53
72
52
74

0 66 000XX
0 66 200XX
0 67 000XX
0 67 200XX
0 67 100XX

00
20
23

Name

SKIP IF SIGNAL NOT SET

SKIP IF A EQUALS M

SKIP IF A GREATER THAN M

REDUCE M, SKIP IF NEGATIVE

SKIP IF A =M ON B MASK

SKIP IF M NEGATIVE

SKIP IF M AND A DO NOT COMPARE ONES
SKIP IF M AND B DO NOT COMPARE ONES
DIFFERENCE EXPONENTS AND SKIP

RIGHT SHIFT AB

RIGHT CYCLE AB

LEFT SHIFT AB

LEFT CYCLE AB

NORMALIZE AND DECREMENT X

HALT
NO OPERATION
EXECUTE

BREAKPOINT TESTS (Breakpoints specified as expression list in operand field)

BPT

0 40 20XX0

OVERFLOW (No operand)

OovT
ROV
REO

0 40 20001
0 02 20001
0 02 20010

INTERRUPT (No operand)

EIR
DIR
IET
IDT
AIR

0 02 20002
0 02 20004
0 40 20004
0 40 20002
0 02 20020

BREAKPOINT TEST

OVERFLOW INDICATOR TEST AND RESET
RESET OVERFLOW
RECORD EXPONENT OVERFLOW (930 only)

ENABLE INTERRUPT SYSTEM
DISABLE INTERRUPT SYSTEM
INTERRUPT ENABLED TEST
INTERRUPT DISABLED TEST
ARM INTERRUPTS

CHANNEL CONTROL (Channel designated by expression in operand field)

ALC
DSC
ASC
TOP

X 0X 50X00
X 0X 00X00
X O0X 12X00
X 0X 14X00

ALERT CHANNEL (930 only)

DISCONNECT CHANNEL

ALERT TO STORE ADDRESS IN CHANNEL (930 only)
TERMINATE OUTPUT ON CHANNEL

63

64

Mnemonic

Instruction

Code

Name

CHANNEL TESTS (930 only - Channel designated by expression in operand field)

CAT
CET
czt
CIT

INPUT/OUTPUT

MIW
WIM

MIY

YIM

BRTW, BRTY
BETW, BETY
POT

PIN

EOM

EOD

X 40 X4X00
X 40 X1X00
X 40 X2X00
X 40 X0X00

12

32

10

30
0 40 2X000
0 40 200X0

13

33

02

06

CHANNEL ACTIVE TEST
CHANNEL ERROR TEST
CHANNEL ZERO COUNT TEST
CHANNEL INTER-RECORD TEST

M INTO W BUFFER WHEN READY

W BUFFER INTO M WHEN READY

M INTO Y BUFFER WHEN READY

Y BUFFER INTO M WHEN READY

BUFFER READY TEST

BUFFER ERROR TEST

PARALLEL OUTPUT

PARALLEL INPUT

ENERGIZE OUTPUT M

ENERGIZE OUTPUT TO DIRECT ACCESS CHANNEL (930 only)

Nonstandard instruction configurations are indicated in parentheses beside the instruction class affected; for examples, see

BREAKPOINT TESTS, OVERFLOW.

Mnemonic
LOAD/STORE

LDA
STA
LDB
STB

LDX
STX
EAX

ARITHMETIC

ADD
MIN
SuB
MDE
MUS
DIS

LOGICAL
ETR

MRG
EOR

REGISTER CHANGE

RCH, COPY
XAB
BAC
ABC
CLR

BRANCH

BRU
BRX
BRM
BRR

TEST/SKIP

SKS

SKG
SKN
SKA
SKM

Instruction

Code

76
35
75

71
37
77

55
61
54
60
64
65

14
16
17

46
0 46 00000
0 46 10000
0 46 20000
0 46 30000

01
4]
43
51

40
73
53
72
70

XDS 910/925 INSTRUCTION LIST

Name

LOAD A

STORE A

LOAD B

STORE B

LOAD INDEX

STORE INDEX

COPY EFFECTIVE ADDRESS INTO INDEX

ADD M TO A
MEMORY INCREMENT
SUBTRACT M FROM A
MEMORY DECREMENT
MULTIPLY STEP
DIVIDE STEP

EXTRACT
MERGE
EXCLUSIVE OR

REGISTER CHANGE
EXCHANGE A AND B
COPY B INTO A, CLEAR B
COPY A INTO B, CLEAR A
CLEAR A, B

BRANCH UNCONDITIONALLY
INCREMENT INDEX AND BRANCH
MARK PLACE AND BRANCH
RETURN BRANCH

SKIP IF SIGNAL NOT SET

SKIP IF A GREATER THAN M

SKIP IF M NEGATIVE

SKIP IF M AND A DO NOT COMPARE ONES
SKIPIF A =M ON B MASK

65

66

Mnemonic

SHIFT
RSH
RCY
LSH
LCY
NOD

CONTROL

HLT, PZE
NOP
EXU

Instruction
Code

0 66 000XX
0 66 200XX
0 67 000XX
0 67 200XX
0 67 100XX

00
20
23

Name

RIGHT SHIFT AB

RIGHT CYCLE AB

LEFT SHIFT AB

LEFT CYCLE AB

NORMALIZE AND DECREMENT X

HALT
NO OPERATION
EXECUTE

BREAKPOINT TESTS (Breakpoints specified as expression list in operand field)

BPT

0 40 20XX0

OVERFLOW (No operand)

OVT
ROV

EIR
DIR
IET
IDT
AIR

0 40 20001
0 02 20001

INTERRUPT (No operand)

0 02 20002
0 02 20004
0 40 20004
0 40 20002
0 02 20020

BREAKPOINT TEST

OVERFLOW INDICATOR TEST AND RESET
RESET OVERFLOW

ENABLE INTERRUPT SYSTEM
DISABLE INTERRUPT SYSTEM
INTERRUPT ENABLED TEST
INTERRUPT DISABLED TEST
ARM INTERRUPT

CHANNEL CONTROL (Channel designated by expression in operand field)

ALC
DsC
ASC
TOP

X 0X 50X00
X 0X 00X00
X 0X 12X00
X 0X 14X00

ALERT CHANNEL (925 only)
DISCONNECT CHANNEL

ALERT TO STORE ADDRESS IN CHANNEL (925 only)

TERMINATE OUTPUT ON CHANNEL

CHANNEL TESTS (925 only - Channe! designated by expression in operand field)

CAT
CET
CcZT
CIT

INPUT/OUTPUT

MIW
WIM

MIY

YIM

BRTW, BRTY
BETW, BETY
POT

PIN

BPO

BPI

EOM

EOD

X 40 X4X00
X 40 X1X00
X 40 X2X00
X 40 X0X00

12

32

10

30
0 40 2X000
0 40 200X0

13

33

11

31

02

06

CHANNEL ACTIVE TEST
CHANNEL ERROR TEST
CHANNEL ZERO COUNT TEST
CHANNEL INTER-RECORD TEST

M INTO W BUFFER WHEN READY
W BUFFER INTO M WHEN READY
M INTO Y BUFFER WHEN READY
Y BUFFER INTO M WHEN READY
BUFFER READY TEST

BUFFER ERROR TEST

PARALLEL OUTPUT

PARALLEL INPUT

BLOCK PARALLEL OQUTPUT (925 only)
BLOCK PARALLEL INPUT (925 only)
ENERGIZE OUTPUT M

ENERGIZE QUTPUT TO DIRECT ACCESS CHANNEL (925 only)

Instruction

XDS 9300 INSTRUCTION LIST

Name

FLOATING-POINT

FLA 65

FLS 64

FLM 67

FLD 66
LOGICAL

ETR 1

MRG 13

EOR 12
REGISTER CHANGE
Mode 1

RCH, COPY 0 40 XXXXX

Mode 11

RCH, COPY X 40 XXXXX

Mode II1

AXB 4X 40 XXXXX

Mnemonic Code

LOAD/STORE
LDA 16
STA 76
LDB 14
STB 74
LDX X =17
STX X =77
S1Z 0-77
LDP, LDF 26
STD, STF 75
XMA 36
XMB 34
XMX X -37
LDS 06
STS 70
EAX 15

ARITHMETIC
ADD 05
DPA 25
SUB 04
DPS 24
MPO 71
MPT 72
MUL 63
DIV 62
ADM 35
TMU 61
DPN 27

LOAD A

STORE A

LOAD B

STORE B

LOAD INDEX

STORE INDEX

STORE ZERO

LOAD DOUBLE PRECISION (FLOATING)
STORE DOUBLE PRECISION (FLOATING)
EXCHANGE M AND A

EXCHANGE M AND B

EXCHANGE MEMORY AND INDEX
LOAD SELECTIVE

STORE SELECTIVE

COPY EFFECTIVE ADDRESS INTO INDEX REGISTER 1

ADDMTO A

DOUBLE PRECISION ADD
SUBTRACT

DOUBLE PRECISION SUBTRACT
MEMORY PLUS ONE
MEMORY PLUS TWO
MULTIPLY

DIVIDE

ADD ATO M

TWIN MULTIPLY

DOUBLE PRECISION NEGATE

FLOATING ADD
FLOATING SUBTRACT
FLOATING MULTIPLY
FLOATING DIVIDE

EXTRACT
MERGE
EXCLUSIVE OR

ADDRESS TO INDEX BASE

67

68

Mnemonic

BRANCH

BRU
BRX
BRC
BRM
BMA
BRR

TEST/SKIP

SKE
SKU
SKG
SKL
SKR
SKM
SKN
SKA
SKB
SKP
SKS
SKF
SKQ

SHIFT
SHIFT
ARSA
ARSB
ARSD
ARST

LRSA
LRSB
LRSD
LRST

CRSA
CRSB
CRSD
CRST

ALSA
ALSB
ALSD
ALST

LLSA
LLSB
LLSD
LLST

CLSA
CLSB
CLSD
CLST

NORA
NORD

Instruction

Code

01
X - 57
0-57
03
43
41

45
47

73
55
53
54
52
51
20
50
56

60
60-20
60-10
60-00
60-30

60-21
60-11
60-01
60-31

60-22
60-12
60-02
60-32

60-24
60-14
60-04
60-34

60-25
60-15
60-05
60-35

60-26
60-16
60-06
60-36

60-60
60-40

Name

BRANCH UNCONDITIONALLY

INCREMENT INDEX AND BRANCH

BRANCH AND CLEAR INTERRUPT

MARK PLACE AND BRANCH

BRANCH AND MARK PLACE OF ARGUMENT ADDRESS
RETURN ADDRESS

SKIP IF A EQUALS M

SKIP IF A UNEQUAL TO M

SKIP IF A GREATER THAN M

SKIP IF A LESS THAN OR EQUAL TO M
REDUCE M, SKIP IF NEGATIVE

SKIP IF A =M ON B MASK

SKIP IF M NEGATIVE

SKIP IF M AND A DO NOT COMPARE ONES
SKIP IF M AND B DO COMPARE ONES

SKIP IF BIT SUM EVEN

SKIP IF SIGNAL NOT SET

SKIP IF FLOATING EXPONENT INB>M
SKIP IF MASKED QUANTITY IN A GREATER THAN M

“«

SHIFT (Used in conjunction with indirect addressing)
ARITHMETIC RIGHT SHIFT A

ARITHMETIC RIGHT SHIFT B

ARITHMETIC RIGHT SHIFT DOUBLE

ARITHMETIC RIGHT SHIFT TWIN (A AND B)

LOGICAL RIGHT SHIFT A

LOGICAL RIGHT SHIFT B

LOGICAL RIGHT SHIFT DOUBLE
LOGICAL RIGHT SHIFT TWIN (A AND B)

CIRCULAR RIGHT SHIFT A

CIRCULAR RIGHT SHIFT B

CIRCULAR RIGHT SHIFT DOUBLE
CIRCULAR RIGHT SHIFT TWIN (A AND B)

ARITHMETIC LEFT SHIFT A

ARITHMETIC LEFT SHIFT B

ARITHMETIC LEFT SHIFT DOUBLE
ARITHMETIC LEFT SHIFT TWIN (A AND B)

LOGICAL LEFT SHIFT A

LOGICAL LEFT SHIFT B

LOGICAL LEFT SHIFT DOUBLE
LOGICAL LEFT SHIFT TWIN (A AND B)

CIRCULAR LEFT SHIFT A

CIRCULAR LEFT SHIFT B

CIRCULAR LEFT SHIFT DOUBLE
CIRCULAR LEFT SHIFT TWIN (A AND B)

NORMALIZE A
NORMALIZE DOUBLE

Mnemonic

Instruction

Code

Name

FLAG REGISTER (Single operand expression)

FLAG
FIRS
FSTR
FRTS
FRST
SWT

CONTROL

HLT, PZE
NOP
EXU
INT

REP

22
22-0
22-1
22-2
22-3
22-4

00
10
21
07
23

INTERRUPTS (No operand)

EIR
DIR
AIR
IET
IDT

0 02 20002
0 02 20004
0 02 20020
0 20 20004
0 20 20002

FLAG

FLAG INDICATOR RESET/SET
FLAG INDICATOR SET TEST/RESET
FLAG INDICATOR RESET TEST/SET
FLAG INDICATOR RESET/SET TEST
SENSE SWITCH TEST

HALT

NO OPERATION

EXECUTE

LOAD OP CODE INTO INDEX 2, SKIP ON BIT 1
REPEAT INSTRUCTION IN M

ENABLE INTERRUPT SYSTEM
DISABLE INTERRUPT SYSTEM
ARM INTERRUPTS
INTERRUPT ENABLED TEST
INTERRUPT DISABLED TEST

CHANNEL CONTROL (Channel designated by expression in operand field)

DsC
ALC
ASC
TOP

X X2 00X00
X X2 50X00
X X2 12X00
X X2 14X00

DISCONNECT CHANNEL

ALERT CHANNEL

ALERT TO STORE ADDRESS IN CHANNEL
TERMINATE OUTPUT ON CHANNEL

CHANNEL TEST (Channel designated by expression in operand field)

CAT
CET
CIt

czt

INPUT/QUTPUT

EOM
EOD
PIN
POT
MIA
AIM

X 20 X4X00
X 20 X1X00
X 20 X0X00
X 20 X2X00

02
42
33
31
30
32

CHANNEL ACTIVE TEST
CHANNEL ERROR TEST
CHANNEL INTER-RECORD TEST
CHANNEL ZERO COUNT TEST

ENERGIZE OUTPUT M

ENERGIZE OUTPUT TO DIRECT ACCESS CHANNEL
PARALLEL INPUT

PARALLEL OUTPUT

MEMORY INTO CHANNEL A BUFFER

CHANNEL A BUFFER INTO MEMORY

69

SPECIAL INSTRUCTIONS - XDS 900 SERIES/XDS 9300 COMPUTER

XDS 9300 REGISTER CHANGE INSTRUCTION (040)

This instruction has three main functions:

Interchange and /or modify information between selected
bytes of A and B.

Interchange and/or modify information among selected
bytes of A, B, and the index registers.

Load the address portion of a selected index register
from the address portion of the instruction.

In modes 1and 2, the address portion of the instruction serves
to extend the operand code; each address bit has a particu-
lar significance during instruction decoding and execution.
In mode 3, however, the interpretation of the address por-
tion is conventional; the 15-bit value defines an operand.
Therefore, in mode 3, the instruction is programmed follow-
ing the mnemonic, AXB, by an expression in the operand
field. The assembler inserts the value of the expression in
the instruction's 15-bit address portion.

When programmed in mode 1or2, the instruction may be given
one of two mnemonics: RCH or COPY. The assembler pro -
cesses the operand field of RCH in the conventional manner,
inserting the evaluated operand field expression into the in-
struction's 15-bit address portion. In general, the expres-
sion is an octal number representing the bit pattern that
specifies the function to be performed. This implies the pro-
grammer's detailed knowledge of the instruction.

The operand field of COPY is interpreted differently. The
field consists of a byte selection "mask" followed by one
or more grouped expression lists that describe the desired

Example 14.

The programmer need not be concerned with
See Example 14.

operations (s).
operand specification via bit patterns.

Unless a merge is specified, the assembler automaticallysets
the "clear" bit. Thus, the second line causes the genera-

tion of 0 40 37703.

Label Operation Operand

LABEL |COPY E, (EN1, ..., EIN), (E21,... E2N), ...,
(EM, ..., EMN)

Since parenthetical notation is used in the operand field,
parentheses are not used to denote "optional." As usual, the
label is optional and may or may not be external. The first
operand and all successive operand lists are also optional.

Rules:

1. The byte selection mask, if present, is the first expres -
sion to appear in the operand field. It is not enclosed
within parentheses. In the absence of this expression,
the assembler assumes the mask 077777777 to be implic-
itly specified. Actually, the assembler cannot insert
the mask directly into the byte-selection position of the
instruction, since the 24-bit value must be mapped into
three or eight bits. However, it is convenient to think
of the mask in this manner. Since the mask may be an
expression, it need not always be written as an octal
number. See Example 15,

Unless the programmer indicates that the specified index
register be cleared (in a mode 2 register change), the as-
sembler automatically sets one of the bits, 12, 13, or 14,
to prevent the register from being cleared.

§ oA ne
LADBUL

&c« AL <48

CLEAR A AND B

A R S A b e

. _COPY CGPY A _INTO BVW,)
COPY EXCHANGE A AND B .

erTTWTQgPY _MERGE THE LOW ORDER 31x o
* S ; N BITS OF A AND B IN B | {
Example 15,
1) :j () o =l et N LB o
EXP____EQU o177 o A ’ T

¥ L4 ¥y f I . T ! A3 H ‘¥ Y 1 1 ¥ T ‘i T b4 ki y H v
ngwrwr;ggwww o7ooooooo: - R .
e COPY EXP,(B,1),(0,8B) ADDRESS FRGM B INTG Xl
X e R ’ _ CLEAR B ADDRESS ‘ '
. cePY V;HLQMQA%&Lﬂ, TAG_FIELD FROM_A INTO B

70

A G e - S N e e e e

2. Following the mask, one or more parenthetical expres-
sion lists appear, separated by commas. Within a list,
two or more expressions (or expression groups) appear.
The first of these specifies the source of information
flow, and the last specifies the destination. In the case

of three or more successive expressions, an OR is implied.

Thus, COPY operations are specified by ordered group-
ings of values. The following definitions relate the val-
ue of an expression to the 24-bit source value/register
or destination register. Where octal registers are not
involved (0 and -1), it is convenient to imagine the ex-
istence of two fictitious registers always containing all
zeros and all ones, respectively.

Value Meaning
-5 -(A) The 2's complement of (A)t
-4 1-(A) The 1's complement of (A)
-3 1 - (B) The 1's complement of (B)
-1 -1

0 0

! (x1)

2 {X2)

3 (X3)

4 (B)

5 (A)

Therefore, to refer to the registers mnemonically, the
programmer must precede his program by equality direc-
tives such as:

A EQU 5
B EQU 4
X2 EQU 2
IA EQU -4
IB EQU -3
ONES EQU -1
Examples:
Mnemonic Notation Absolute Interpretation
COPY (A, B), (B, A) COPY (5,4), Exchange A and
(4,5) B
COPY (IA, B), (0, A) COPY (-4,4), Copy inverse of
COPY (1-A, B), (0, A) (0, 5) A into B and
clear A
COPY 070, (ONES,B) COPY070, Form mask in
COPY 070, (-1, B) (-1,4) 818-20

Thus, the programmer can specify any legitimate regis-
ter change without having to write the necessary bit
pattern explicitly and without being restricted to a pre=
selected set of mnemonic opcodes. Also, the assembler
diagnoses the variable field for legitimacy.

t
() denotes contents of.

XDS 920/930 REGISTER CHANGE INSTRUCTION (046)

The XDS 920/930 Register Change Instruction has some, but
not all, of the capabilities of its XDS 9300 Computer count-
erpart. The differences are:

The XDS 920/930 RCH does not provide for byte selec~
tion except for selecting the low-order nine bits,

The XDS 920/930 Computers include only one index
register,

There is no capability for copying (or merging) the 1's
complement of one register into another.

Format:

Label Operation Operand

LABEL COPY or COPYE | (EI1,...,EIN), (E2I,...E2N), ...
(EM1, ..., EMN)

’

As before, the label is optional and may or may not be ex-
ternal. All expression lists are optional. The mnemonic
COPY implies that operands are whole-word registers; the
mnemonic COPYE causes the exponent portion (the low-
order nine bits) only to be affected.

COPY(E) operations are specified by ordering groupings of
values. The following definitions relate the value of an ex-
pression to the 24-bit source value/register or destination
register.

Value Meaning
-5 -(A) The 2's complement of A
0 0 A register containing all 0's
2 2 The index register
4 (B) The contents of B
5 (A) The contents of A
Examples:
Mnemonic Notation Absolute Interpretation

COPY (A, B), (B,A) COPY (5,4), Exchange A and B

(4, 5)

COPYE (B, X), (0,8) COPYE(4,2), Extend exponent to
(0,4) X, Clear B

COPY (A, B, X) COPY Merge A and B to X

(5,4,2)

71

Name

Area Definitions
Define Data Field

Define and Reserve Area of Memory

Data Transmission

Move Word String

Move Character String

Move Character String with Zero Fill
Move and Edit Character String

Decimal Arithmetic

Decimal Add

Decimal Subtract

Decimal Multiply

Decimal Divide

Decimal Conversion

Binary to BCD
BCD to Binary

Data Testing

Compare Word String
Compare Character String

Program Branch Control

Branch on Equal

Branch on Not Equal

Branch on High

Branch on Low

Branch on any Character Not Equal
Branch on any Character Equal

72

BUSINESS INSTRUCTION LIST

Operation

FIELD

DEFAREA (DA)
DEFAREA

MOVEWD (MVW)
MOVEWD

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVEIZ

MOVEED (EDIT, MCE)

DADD
DADD
DADD
DSUB
DSUB
DSuUB
DMUL
DMUL
DDIV
DDIV

BINBCD
BCDBIN

COMPARW (CPW)
COMPARE
COMPARE
COMPARE
COMPARE
COMPARE
COMPARE

BREQ (BE)
BRNE (BU)
BRHI (BH)
BRLO (BL)
BRACNE
BRACEQ

Operand

E1, HC1, CC

N
N, 'CH

E1,E2, N

E1,E2, N, X
E1,HC1,E2, HC2,CC
E1, HC1, F2
E1,HC1,CC, F2
F1,E2, HC2
F1,E2,HC2,CC
F1,F2

'Same as MOVE'

'Same as MOVE', (*$','C', P,'~' or 'CR")

E1,LOI1, CCH

E1,LO1,CCl, E2, LO2, CC2
E1, LO1, CC1, E2, LO2, CC2, E3, LO3, CC3

E1, LO1, CCH

E1,LO1,CC1, E2, LO2, CC2
E1,LO1,CC1, E2, LO2, CC2, E3, LO3, CC3
E1,LO1,CC1,E2, LO2, CC2
E1,LO1,CCY, E2, LO2, CC2, E3, LO3, CC3
E1,LO1, CCY, E2, LO2, CC2
E1, LO1,CC1, E2, LO2, CC2, E3, LO3, CC3

E1,E2, N
E1, HC1, E2, HC2, CC
E1, HCY, F2

E1, HC1,CC, F2

F1, E2, HC2

F1,E2, HC2,CC
F1, F2

El
El
El
El

E1,E2,E3, 'Ql,'Q2, . ..
E1,E2,E3,'QYV,'Q2,. ..

Page

13

13

14
14

16

16

16

16

16
16

18
18

19
19
19
19
20
20

Name

Character Manipulation

Pack Left-justified Character String
Unpack Left-justified Character String
Pack Right-justified Character String
Unpack Right-justified Character String

Data Field Initializing

Clear Word String to Zeros
Clear Character String to Zeros
Set Word String to Blanks

Set Character String to Blanks
Fill Word String with Character

Fill Character String with Character

Internal Sorting
Ascending BCD Sort
Descending BCD Sort
Ascending Binary Sort

Descending Binary Sort

Register Shifting

Logical Left Shift AB Register
Logical Right Shift AB Register

Special Operations

Set Collating Sequence
Compute Memory Size

Specify Extended Assembly Mode
Overflow Test

Branch on Arithmetic Overflow
Magnetic Tape

Write Magnetic Tape Record (BCD Mode)
Write Magnetic Tape Record (Binary Mode)
Read Magnetic Tape Record (BCD Mode)
Read Magnetic Tape Record (Binary Mode)
Rewind Magnetic Tape

Write End of Tape Mark

Backspace Magnetic Tape

Skip Magnetic Tape Records Forward

Operation

PACK (PACKL)

UNPACK (UNPACKL)

PACKR
UNPACKR
UNPACKR

CLEAR
CLEAR
CLEARCH
CLEARCH
BLANK
BLANK
BLANKCH
BLANKCH
FILL

FILL
FILLCH
FILLCH

SORT
SORT
SORTDS
SORTDS
SORTBIN
SORTBIN
SORTBDS
SORTBDS

LSHIFT
RSHIFT

COLLATE
MEMORY
MEMORY
EXTEND

BAOV

WRITETP
WTPBIN

READTP

RTPBIN

REWIND
WTMARK (WTM)
BACKSPACE

SKIPTAPE

Operand

E1,E2,...
EV,E2,...
E1,E2, N
E1,E2, N

E1, E2, N, 'CH'

E1, N
E1, N, X

E1, HC1,CC

F1

El, N

E1, N, X

E1, HC1, CC

F1

E1, N, 'CH'

E1, N, 'CH', X

E1, HC1,CC, 'CH'
F1,'CH'

ET,E2,E3, E4,E5

E1,E2,E3,E4,E5 E6

E1,E2,E3, E4,ES

E1,E2, E3,E4, E5, E6

E1,E2,E3,E4,ES

E1,E2,E3,E4,E5 E6

EV,E2,E3,E4,E5

E1,E2,E3,E4,E5,E6

zZ

'SDS! or 'BDP!

E1

El

LU, E1,CC
LU, E1,CC
LU,E1, CC
LU, E1,CC
LU

LU

LU, N

LU, N

Page

17
17
17
18

20
21
21
21

21

22

22
22
22

22

23
23

23
23

23

24
24
25
25
25
26
26

26

73

Name

Punched Card

Read BCD Card
Punch BCD Card

Typewriter

Input from Typewriter
Output on Typewriter

Line Printer

Print 132-Character Line
Print 120-Character Line

Upspace Line Printer
Skip to Channel N
Skip to Channel 1

Input/Qutput Branch Tests

Branch on Channel Error

Branch on Page Overflow (XDS 900 Series only)

Branch on Printer Fault
Branch on Tape Mark

Branch on Beginning of Tape

Branch on End of Tape

Branch on File-protected Tape

Branch on Last Card

74

Operation

READCD
PUNCH

TYPEIN
TYPE

PRINT
PRINT
PRINT
PRT120
PRT120
PRT120
UPSPACE
SKPCHN
RESTORE

BCER
BPOV
BPRF
BTMK
BBTP
BETP
BFPT
BLCD

Operand

El
El

El
El

El
El,N
E‘I’IQI
El
E1, N
E], Q

El
El
E1
El
E1
El
El
El

Page

27
27

27
27, 28

28

28

29
29
29

29
29
30
30
30
30
30
30

Xerox Corporation

701 South Aviation Boulevard
El Segundo, California 90245

Reader Comment Form

XH

ROX

Publication No.

We would appreciate your comments and suggestions for improving this publication.

Rev. Letter | Title

How did you use this publication?

Current Date

D Learning
D Reference

D Installing
D Maintaining

Is the material presented effectively?

D Sales

Fully Covered Well lllustrated Well Organized Clear
3 ovemine | 0 0 O 0

I:] Very Good

D Good

What is your overall rating of this publication?

[:] Fair
D Poor

What is your occupation?

D Very Poor

Your other comments may be entered here. Please be specific and give page, column, and line number references where
applicable. Toreport errors, Please use the Xerox Software improvement or Difficulty Report (1188) instead of this form.

Your Name & Return Address

2190(12/72)

Thank You For Your interest. (fold & fasten as shown on back, no postage needed if mailed in U.S.A.)

Staple Staple

First Class
Permit No. 229
E! Segundo,
California

; BUSINESS REPLY MAIL
No postage stamp necessary if mailed in the United States

Postage will be paid by

Xerox Corporation
701 South Aviation Boulevard
El Segundo, California 90245

Attn; Programming Publications

	000
	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	replyA
	replyB

