
SOS MONARCH -
0 9
DO

SOS MONARCH REFERENCE MANUAL
900 SERIES COMPUTERS

November 1964

SCIENTIFIC DATA SYSTEMS/1649 Seventeenth Street/Santa Monica, California

(2).~,. ~ . .. r. ~ ~ •
...., l't04 :>clentltlc uoto :>ystems, Inc. Printed in U.S.A .

CONTENTS

Section Page

I. GENERAL DESCRIPTION•.....••••.•..•....................

Introduction ...•......••...•.................•.•............

How MONARCH Performs Its Functions•.......•. . • . • 2

Salient MONARCH Features. • • • 2

II. THE MONARCH MONITOR, 3

Introduction••..•.•....•.•...................•......... 3

Standard System Routines ..•.. . . . • . . . • . . . • . • . . • 3

Communication with the Monitor - The MO'NARCH Control Message. 5

Termination of a Run. . . . • . • • • . • 7

Operating Environment for MONARCH•................. 8

Summary of Operating Instructions . 8

III. THE MONARCH LOADER•.....•..... 11

Introduction ... 11

The MONARCH "LOAD" Control Message. • . 11

Principles of Operation•.•..••.•.•...•............. 13

IV. MONARCH UPDATE ROUTINE•.•.•..••...............•........ 21

Introduction ... 21

The MONARCH "UPDATE" Control Message. 21

Controlling an Update Run - The Update Fi Ie . 22

Copy Messages • . . . • . • • • 23

Contents of a Typical MONARCH System Tape 26

Examp I es. • • • 26

Error "Halts" During Update Runs. 27

Appendices

A.

B.

C.

D.

E.

THE MONARCH UNIT ASSIGNMENT TABLE (UA T)

THE MONARCH SYSTEM TAPE•.............

CURRENT MONARCH FUNCTIONS AND CONTROL MESSAGES

UPDATING META-SYMBOL ON MONARCH SYSTEM TAPES

SDS STANDARD BINARY LANGUAGE

iii

29

31

35

55

57

I. GENERAL DESCRIPTION
INTRODUCTION
MONARCH performs automatic execution of a sequence

of independent or related programs without requiring

operator intervention; yet it is simple in both construc­

tion and operation. Its modular construction not only

contributes to ease of modification, but also results in

a system that uses minimum core memory space during

program execution.

The operating system is a basic, program execution

package that provides the following functions under

control of the MONARCH Monitor:

Loadi ng and execution of standard system routi nes.

Examples

a. FORTRAN compi lation

b. META-SYMBOL assembly

c. Punched card-to-magnetic tape
conversion

d. MONARCH system updating

Loading and execution of previously compiled or.

assembled progra':ls for checkout or production

runs.

Examples

a. Run a previously compiled FORTRAN
program

b. Run a program consisting of several
previously compi led subprograms and
a previously compiled FORTRAN
main program

Combined assembly, loading and execution of

programs for checkout or production runs.

Examples

a. Compi le-and-go execution of FORTRAN
programs

b. Assemble-and-go execution of symbol i c
programs

Combinations of one or more of the functions des-

cri bed above based on a II batch II of control i nfor­

mati on and programs accessible through one of the

input media. This provides for eXecuti on of a

mixed IIbatch ll of programs to be executed under

control of the monitor routine. The phrases II job

stack ll or IIbatched job stack ll used below refer to

the collection of control information, programs

and data which are to be processed under control

of the monitor routi nee

Examples

a. A series of META-SYMBOL assemblies

b. Several META-SYMBOL assemblies inter­
mixed with one or more META-SYMBOL
object programs to be assembled and then
executed

c. A mixed batch requiring that the following
functions be carried out in an arbitrary
sequence determined by their order on the
batched job stack:

(1) Compi lations

(2) Compile-and-go execution of
FOR TRAN programs

(3) Encodi ng of symbol i c language
programs

(4) Encoding and assembly of symbolic
programs

(5) Encoding, assembly and execution
of symbol i c programs

(6) Card-to-tape conversion using a
standard system routine

(7) Tape-to-pri nter conversi on (I i sti ng)
usi ng a standard system routi ne

Loading of standard input/output routines prior to

loading and executing previously assembled pro­

grams, so that these standard routi nes can be exe­

cuted upon request from the program being run.

Examples

a. The monitor routi ne can be requested to
load standard input/output routines from
the system tape pr i or to load i ng a program
from the batched job stack for a produc­
tion run of that program.

b. The monitor routine can be requested to
load a dynami c (snap-shot) memory dump
routine from the MONARCH library sub­
sequent to I oadi ng a program from the
batched job stack for a checkout run of
that program.

HOW MONARCH PERFORMS rrs FUNCTIONS

The MONARCH Operating System performs its functions

between jobs and does not exercise control over the

executi on of a program once that program has been

loaded and MONARCH transfers control to it. These

functions are communicated to MONARCH by means

of control messages.

When requested to load a program and transfer control

to it, MONARCH loads the program and relinquishes

control over the computer and its associated peripheral

equipment. The only way MONARCH can regain con­

trol of the computer is by reloading the MONARCH

System from the system tape. This is done manually,

by the console operator, or under program control by

the program being executed.

The resident portion of MONARCH {i. e., those MON­

ARCH instructions and data which remain in memory

duri ng program executi on} consi sts of:

a. A routine to reload the MONARCH Opera­
t i ng System whe n control is tra nsferred to it

b. The MONARCH Unit Assignment Table that
preserves standard unit assignments from one
program run to the next

c. The system processor error and job switches,
conta i ned ina word i n memory, that are used
to i ndi aate that a subsequent program execu­
tion run is to be deferred due to errors en­
countered during assembly or compilation of
that program

MONARCH is not an executive system. For purposes

of this discussion, an executive system is one which

performs some or all of the following functions during

the execution of a program:

a. Handles the initial processing of all internal
and external interrupts duri ng execution of
a program

b. Controls, and monitors, transmission of data
to and from the computer memory and i nput/
output units. Although requests for data
transmission originate with the program being
executed, the actual data transmission is
controlled by an i nput/ output routi ne opera­
ti ng as part of the executi on system.

2

c. Controls, and monitors, communication with
the console operator during the execution of
a program. Typically, the medium for such
communication is the console typewriter.

d. Automatically usurps control of the computer
during execution of a program whenever cer­
tain abnormal conditions arise (e. g., memory
parity error, nonrecoverable input/output
error)

e. Automatically dumps memory and/or the con­
tents of registers when a program error occurs

MONARCH performs none of the above functions. For

example, during execution of the META-SYMBOL

Assembly Program, subroutines which are part of the

assembly program perform all i nput/ output functions

and routines within the assembly program handle all

communication with the console operator.

SALIENT MONARCH FEATURES

The salient features of MONARCH are:

The system minimizes the amount of manual inter­
vention required to execute a succession of inde­
pendent or related programs on the computer.

Core memory requirements for the monitor routine
are minimized during program execution. That is,
the monitor performs its functions between program
execution, and MONARCH holds only those in­
structions and data required for continuity of oper­
ati on and error-recovery procedures in core memory
during program execution.

The amount of control information which must be
furnished to the monitor and the system routines
is held to a minimum.

The control information for all system functions
is presented in a consistent and straightforward
manner.

Insertion and deletion of routines from the system
are accomplished via a simple update routine.

Routi nes to be added to the system are introduced
in the standard format used for assembl y program
output. That is, almost any program wh i ch can
be assembled, using SYMBOL or META-SYMBOL,
can be incorporated into th i s operati ng system as
a standard system routi nee

II. THE MONARCH MONITOR

INTRODUCTION

The monitor is the highest level of authority in MON­

ARCH. The monitor routine accepts control information

wh ich, among other th ings, may incl ude a request to

load and execute a specified standard system routine.

The monitor performs its functions between jobs and does

not exercise control over the execution of a program

once that program has been loaded and the monitor has

transferred control to it.

One of the basic subroutines in the monitor is the sys­

tem tape search subroutine. This subroutine searches

the system tape by routine name when requested by the

monitor. Its function is to locate (but not load or

execute) a routine on the system tape.

Another basic subroutine anal yzes, and interprets the

contents of, the control messages wh ich convey control

information to the monitor. It also converts the para­

meters in control messages to a standard internal form.

Other subroutines, called "action II subroutines, per­

form the functions associated with specific control

messages. For example, one action subroutine, associ­

ated with the "ASSIGN" message, modifies the contents

of the MONARCH Unit Assignment Table based on the

values of the parameters in "ASSIGN II messages (i. e.,

performs the new unit assignments). Another action

subroutine associated with the "LOAD" message, con­

trols the searching of tape files for specified object

programs and calls on the MONARCH Loader to load

these ob ject programs.

Additional subroutines employed by the monitor can read

control messages from the input devices from wh ich con­

trol messages can be accepted.

That portion of the monitor which remains in core mem­

ory during program execution consists of the Monitor

Bootstrap Routine and the Un it Assignment Table. In

normal operation, the monitordoes not initiate a rewind

3

of the system tape before transferring control to the

program to be executed. The Bootstrap is preserved

in core memory during program execution, but

since its function is I imited to reading in the MON­

ARCH loader and the MONARCH Monitor at the ter-

mination of the current job, it occupies only a few words

of memory. The memory space occupied by the re­

mainder of the subroutines comprising the monitor

routine, and the space used by the MONARCH Loader,

is available for use by the program being executed.

STANDARD SYSTEM ROUTINES

Standard system routines are those that exist on a

MONARCH system tape and can be loaded and executed

by supplying an appropriate control message to the

MONARCH Monitor. Some existing system routines, as

well as the necessary and des irable characteristics of

potential system routines, are described below.

Certain of the standard system routines must be present

on any MONARCH system tape. These programs com­

prise the minimum operable MONARCH System.

a. The Monitor. This routine is the heart of the

operating system and is described in this

section.

b. The MONARCH Loader. Th~ 1'T!0nHQr u.ses

this routine to load standard system routines

from the system tape and to load previously

assembled programs presented by the MON­

ARCH user. See Section 3 (below) for a

description of the MONARCH Loader.

c. The MONARCH ~"Qotstr~"J..oo.der. This routine

performs the function of loading the MON­

ARCH Loader and the MONARCH Monitor and

pr§!~~2."~.s.._all other system routines on a MON-

ARCH system tape. This is the routine that is

called in for execution by the ~vA\onitor Bootstrap.

See below for further discussion of the Monitor Boot­

strap, the MONARCH Bootstrap Loader, and their

relationsh ip to each other.

Certain system routines, while not essential to providing

a minimum MONARCH System, enhance the usefulness

and flexibil ity of any MONARCH System.

a. The MONARCH Update Routine. With this

routine, the user can create new MONARCH

system tapes or update existing system

tapes. This routine is described in Section

IV.

b. The Standard Input/Output Subroutines. These

subroutines enable other system routines to

use them to perform all input/output functions

required by those system routines. These I/O

subroutines can be selectively loaded on an

lias needed II basis. These subroutines are:

Card Read/Punch Subroutine (CDRP)

Magnetic Tape Input/Output Subroutine

(MTAPE)

Paper Tape/Typewriter Input/Output Sub­

routine (PTYIO)

Line Printer Output Subroutine (PRINT)

The action subroutines for a given system routine exa­

m ine the parameters of the control message and the unit

address codes of those MONARCH Unit Assignment

Table entries which represent input/output functions to

be performed and, finally, direct the loading of those,

and only those, I/O subroutines needed to perform the

indicated input/output functions. The MONARCH Up­

date Routine rei ies on th is feature to provide the Input/

Output Subroutine needed to perform a specific update

run.

c. The META-SYMBOL Assembly System. Pre­

sence of th is routine provides a powerful and

flexible assembly language and its processor.

4

d. The FORTRAN II System. Presence of these

routines enables the MONARCH user to use

the full capabilities of the SDS 900 Series

FORTRAN II Compiler, Loader and Run-time

Package.

See Section III, Automatic Selective Loading -

Monitor Library, for a description of another lIoptional ll

MONARCH feature (the MONARCH Library) which can

contribute greatly to the usefulness and efficiency of

operation of a MONARCH System.

MONARCH is designed and constructed to facil itate the

incorporation of additional system routines. The user

can include in a MONARCH System any routine which

meets the following requirements:

a. The routine must exist (on cards or paper tape)

in SDS 900 Series Universal Binary Format.

b. Its memory space requirements must be such

that it (or a spec ial loader wh ich precedes it

on the system tape) can be loaded by the

MONARCH Loader.

c. It must be written in a manner that is con­

sistent with run termination as described in the

paragraph, Termination of a Run, below.

Certain other characteristics, while not essential, ease

the job of incorporating new system routines and render

these routines more useful in the MONARCH environment.

a. The routine shduld be one which can be as­

sembled as a series of one or more relocatable

programs by SYMBOL or META-SYMBOL.

b. It should be written in such a way that any

IIparameters II required for its in itial ization can

be easily supplied in the form of MONARCH

control message parameters (See Control

Message Parameters below).

c. The routine should be written to obtain unit

and channel assignments for g!J of its input/

output functions from the MONARCH Unit

Assignment Table.

COMMUNICATION WITH THE MONITOR-THE
MONARCH CONTROL MESSAGE

The Control Message

When the MONARCH system is loaded, the monitor

gains control of the computer and obtains the first item

of control information from the input device indicated

by the Unit Assignment Table entry for control messages.

This item may be any legal control message.

Control messages can be obtained from the following

input med ia :

console typewriter,

punched cards via an on-I ine card reader,

punched paper tape via a paper tape reader,

magnetic tape via a magnetic tape unit (other than

the one on wh ich the system tape is mounted).

When the monitor obtains a control message from a

medium other than the typewriter, it types that message

prior to the execution of the function requested by that

control message. In this wa)", the monitor informs the

console operator of the functions being performed under

its control and maintains a written record of such func-

tions. Monitor tells the operator of the completion of

a given function by typing out the next control message

or by requesting the next one from the typewriter.

Syntax of Control Messages

Regardless of which device the monitor accesses for

control information, the format of the control messages

is the same. Th is format is as follows:

I::::. f. or I::::.f 1\ P 1, p2,

where:

I::::. (1 character) indicates beginning of message

f (1 to 8 characters) isa mnemonic control function

code

5

pi (i=1, ... ,24) is a symbol ic, numeric or literal

parameter wh ich provides necessary control

information related to the control function

code (f). For example, a request for the sys­

tem loader to load a program must ind icate the

in itial load relocation bias for the program

which is to be loaded. A maximum of 24

parameters can be specified in one control

message.

(l character) indicates logical end of message.

Physical end of message is indicated by end of

record in the case of magnetic tape or cards,

or carriage return in the case of paper tape or

typewriter. The logical end of message is

required only to introduce comments.

1\ indicates the minimum number of spaces (l)

separating the function code from the first

parameter.

A separator II_II - , ">11 11[11 11<11 11$11 , , , ,
II/II, 11(11 or ")" can be substituted.

11*11 ,

Regardless of the length of the record containing a con­

trol message, the routine wh ich scans control messages

will examine only the first 18 words (i. e., only the

first 72 characters) of the record. The period indicating

the end of the message must, therefore, occur prior to

the 73rd character of the record.

The Control Message Function Code

The function code is separated from the beginning of

message character (I::::.) by zero or more spaces, and is

followed by a space or a period. See Appendix C fora

I ist of current function code mnemonics.

A period fo~~ows or C::~11 fpllow the function whenever

one of the following is true:

a. The function code represents a control message

for which the maximum number of parameters

is zero, or

b. The function code represents a control mes­

sage for which the minimum number of para-

meters is zero,

In a II other cases, at least one parameter must be

supplied in the message.

The MONARCH Monitor contains a table of function

code entries each of which defines a function code

mnemonic and a function (or action). The Monitor

performs the function whenever it processes a control

message containing that function code. The meaning

of the parameters furnished in a control message is

defined by a MONARCH "action II subroutine whose

address is stored in the Function Code Table entry.

Control Message Parameters

The Monitor converts parameters in a MONARCH con­

trol message into a standard internal form. Except for

double prec ision I iterals (see below), it represents

parameters internally as single precision, 24-bit,

binary values.

The Mon itor converts the parameters in a control mess­

age to their internal representations in the same manner

irrespective of wh ich function code occurs in the control

message. Hence, the "value" of a parameter is its

internal representation as a 1 (or 2) word binary

quantity or bit pattern, and it is the "val ue II of a

parameter which is ultimately examined by the "action"

subroutine associated with a specific function code.

This method of parameter conversion usually allows

many v"/ays of representing a given value externally.

For example, the following control message paro.r.r.erers

have identica I interna I representation! or va lues:

1000AI = +17 ;:: +021 = 00000021

MT1W = 00203611

See Append ix C for a description of the parameters

assoc iated with spec ific control messages as well as

their interpretation by the associated MONARCH

action subroutine. The several ways of representing

parameters externally in control messages are described

in the paragraphs which follow.

6

Numeric Parameters

A numeric parameter can be introduced in anyone of

the following forms:

a. An unsigned octal integer (1 to 9 characters),

e.g., 047, 0, 077777777

b. An unsigned decimal integer (1 to 8 characters),

e.g., 9, 0, 5283

c. A signed octal integer (2 to 10 characters),

e.g., -062, -0, +023614

d. A signed decimal integer (2 to 9 characters),

e.g., +9, -0, -58694319

Regardless of the form used, the parameter is represented

internally as a single precision signed binary integer.

Numeric parameters must have values less than 224 if

unsigned and less than 223 if signed or decimal.

Literal Parameters

A I iteral parameter consists of from 1 to 8 alphanumeric

characters enclosed in single quotation marks (SDS

internal code of 14) and can be introduced as:

a. A single precision literal (1 to 4 characters),

e. g., IA I, IAB I, IABCI, IABCD I IA.3, I

b. A double precision literal (1 to 8 characters),

e. g., IABCDE I, IABCDEF I, 112345671,

11'l,)Ar:.L'OI
I Lv'+.JOI 0

Single precision I iterals are represented internally as a

left justified string of internal character codes (6 bits

each) stored in one computer word.

Doubl e prec ision I iterals are represented internally as a

left justified string of internal character codes (6 bits

each) stored in two computer words. For examp Ie:

IABCDEFGH I is stored in 0: and 0: + 1

as (o:) = 21222324
(0: + 1) = 25262730

Spaces (internal code of 60) are used to fill any un-

specified character positions. For example,

I ABC lis represented i nterna II y as:

021222360

Double precision literals are frequently used to desig­

nate program names for MONARCH search functions.

(See the description of the MONARCH Loader for an

example).

Symbol ic Parameters

Symbol ic parameters consist of from one to four

characters, the first of which must be alphabetic and

the remaining either alphabetic or numeric. Each

symbolic parameter has a predetermined value (24

bits) which is known to the MONARCH Operating Sys­

tem. Except for recognizing the correspondence be­

tween the symbol and its predetermined value, MON­

ARCH does not interpret symbol ic parameters (i. e. ,

does not exam ine the parameter character by character

to "compute" its value).

Use of a symbol not defined in MONARCH's table of

symbol ic parameters causes the control message in

which that symbol occurred to be ignored and an error

message to be typed.

The value (e. g., an octal parameter with the same

value) can be substituted for any symbol ic parameter in

a control message.

Themnemonicsgivenbelowareintended to be illustra­

tive of the flexibility which can be obtained. If more

than one parameter is required, all but the last must be

followed by a comma. The first parameter is separated

from the function code by a space.

CR

CRnh

CPnh

PRnh

PPnh

to designate the card reader when there

is only one.

to designate card reader *n on channel h.

to designate card punch *n on channel h.

to des ignate paper tape reader *n on

channel h.
". . I JJ to deSignate paper tape puncn "n on

channel h.

7

TY

MTnh

LP

S

IPnh

MDnh

DFnh

where:

to designate the console typewriter

(* 1 on the W buffer).

to designate magnetic tape unit *n

on channel h.

to designate the line printer (*1 on the

W buffer).

to designate the system tape.

to designate incremental plotter *n on

channel h.

to designate magnetic drum unit *n on

channel h.

to designate disc file *n on channel h.

h = W or Y

n = 0, 1, ... ,7

TERMINATION OF A RUN

When a program being executed under MONARCH

reaches a normal conclusion, it should transfer control

back to the monitor bootstrap in core memory rather

than execute a "halt" instruction; the Monitor Bootstrap

initiates the reloading of the MONARCH Loader and

the MONARCH Mon itor. The mon itor then attempts to

read a new control message from the current control

medium and in this way proceeds to the next job with­

out the necessity for manual intervention. The Monitor

Bootstrap is that minimum portion of the monitor routine

that remains in memory during program execution.

When a program being executed under MONARCH

detects a program or computer error wh ich makes it

inadvisable to continue program execution, it should

give whatever error indication is suitable and transfer

control to the Mon itor Bootstrap. This routine initiates

the reloading of the MONARCH Loader and MONARCH

Monitor and then the console operator can decide

whether or not to continue with the next job or function

in a batched job stack or to take some alternative

action.

When the console operator decides that a program

being executed has halted inadvertently or is otherwise

malfunctioning, he can stop the program, clear the

registers and restart by manually transferring control

to a restart location in the Monitor Bootstrap. The

Monitor Bootstrap initiates the reloading of the system

and then the monitor attempts to obtain the next control

message. At this point, the operator can decide whether

or not to continue with the next job in the botched job

stack or to execute some other system function.

The normal restart procedure is to execute a branch to

location 1. Location 1 normally contains an uncon­

ditional branch to the Monitor Bootstrap in upper

memory. The routine which is loaded by the Monitor

Bootstrap is the MONARCH Bootstrap Loader which

preceaes all other routines on the system tape. The

MONARCH Bootstrap Loader in turn loads the MON­

ARCH Loader and the MONARCH Monitor.

OPERATING ENVIRONMENT FOR MONARCH

The operating environment in wh ich th is system is to

function is given below, with the appropriate interrupt

and data transmission facilities assumed.

a. An SDS 900 Series Computer system with at

least 4096 words of core memory.

b. A Console typewriter to be used by the system

to communicate information to the console

operator.

c. One or more on-line magnetic tape units.

The system tape is on a magnetic tape unit.

d. One or more of the following*:

Card reader

Paper tape reader

e. One or more of the following*:

Card punch

Paper tape punch

Li ne pri nter

Magnetic drum

Magnetic disc

*May be replaced by magnetic tape equivalent.

8

SUMMARY OF OPERATING INSTRUCTIONS

Loading the MONARCH System

a. Mount MONARCH system tape on unit 0, W

buffer; unit must be ready and at load point.

b. For SDS 910/920 Computers:

(1) Set registers X, C and P and memory cell

1 as follows:

(00001)

(X)

(P)

(C)

03200002

77777771

o
00203610

(WIM 2)

(-7)

(EOM 03610)

(2) Set RUN-IDLE-STEP switch to RUN.

c. For SDS 925/930 Computers:

Execute the magnetic tape FILL procedure

MONARCH loader and control system are then read into

memory and MONARCH attempts to obtain the first

control message either from the device indicated by

(QMSG) = (OX7766*) or else from the console type­

writer (unit 01 on the W buffer).

The following rule determines which device will be used:

If (QMSG) containsa legal unit, channel and I/O

subroutine address, the first control message is

taken from that device; otherwise, MONARCH

sets (QMSG) to indicate the console typev/riter

(unit 01 on the W buffer) and attempts to read the

first message from that unit.

Reloading the MONARCH System

To reload the system once it has been loaded:

a. Set (C) = 0 01 00001
b. Set RUN-IDLE-STEP to RUN

If this fails then:

a. Set (C) = 001 OX7751* (BRU QBOOT)
b. Set RUN-IDLE-STEP to RUN

* where
X=O for 4k computer
X= 1 for 8k computer
X=2 for 12k computer
X=3 for 16k computer

If this fai Is, employ load procedure described above in

paragraph II Loading the MONARCH System".

Specifying the Control Message Medium

For changing the control message medium from the device

currently in use to another input device, a control mes­

sage (mnemonic function code IICII) is provided. See

above for a discussion of the manner in which the in­

itial setting is determined. See description of IIC" in

Appendix C for details regarding the use of the "C"

control message.

Example: to change the control message medium

to card reader 1 on the W buffer:

II~CI\ CR1W.1I

Once a "C" message has been processed, MONARCH

immediately attempts to read a control message from

the newly assigned device.

Control messages can be supplied on punched cards,

paper tape, magnetic tape, or manually via an on-I ine

typewri ter.

Furnishing Control Messages

At any given time while the MONARCH Monitor has

control of the computer, it expects to be able to obtain

the next control message from the control message med­

ium currently assigned. This imposes the following re­

quirements on the console operator. If the medium isa:

a. Console typewriter, the console operator

should be prepared to furnish a control mes­

sage, via that typewriter, whenever the input

I ight for that typewri ter is lit.

9

b. Paper tape reader, the consol e operator

shou Id make certain that a paper tape contai n­

ing a control message is inserted in that paper

tape reader and that the paper tape reader is

in operation.

c. Card reader, the console operator should

make certain that a card containing a control

message is in that card reader's input hopper

and that the card reader is "ready".

MONARCH reads cards in binary mode and

converts the card image to SDS internal code

before analyzing the message.

d. Magnetic tape, the console operator should

make certain that a reel containing a physical

record which itself contains a control message

is mounted on that tape un it and that the tape

unit is in IIreadyli status. MONARCH reads

the tape in binary (liodd li parity) mode, and

assumes the maximum record length is 40 words.

If programs or data precede the next control message

on the current control message medium (b, c, or d above),

MONARCH reads successive records from that unit until

a control message record is encountered or an end-of­

file condition occurs (cards and magnetic tape only).

If an end-of-fi Ie is encountered before a control message

is read, MONARCH types an appropriate message and

requests the next control message from typewriter 1 on

the W buffer.

III. THE MONARCH LOADER
INTRODUCTION
In addition to serving as a standard system loader for

user object programs, the MONARCH Monitor uses

th is routine to load from the system tape standard system

routines such as the MONARCH Update Routine, META­

SYMBOL, etc. The loader occupies upper memory,

regardless of actual memory size (approximately 16008

~900 1 0 locations).

The loader is capable of loading binary object programs

in the format produced by SYMBOL and META-SYMBOL.

A series of programs to be loaded can be absolute or

relocatable and can contain:

(a) External label references and/or definitions.

(b) External Programmed Operator (POP) refer­

ences and/or definitions.

(c) Blank COMMON references and a definition.

Blank COMMON references should be preceded by a

blank COMMON definition, but external references

and definitions (label or POP) need not be suppl ied in

any particular order.

The term iiprogram Ii in this description of the MON­

ARCH Loader means a sequence of:

(a) One or more data records (Record Type 0),

and/or

(b) one or more external references or definition

records (Record Type 1), and/or

(c) one or more Programmed Operator references

or definition records (Record Type 2), and

(d) term ination by an end record (Record Type 3)

with or without a transfer address.

The last, or only program, in a series of programs to be

loaded should have an end record (Type 3) with a trans­

fer address and all of the programs preceding it should

have end records (Type 3) without transfer addresses.

11

If there are unsatisfied label or POP references at the

time the end record with a transfer address is encoun-

tered, the loader attempts to satisfy these by selective

loading of appropriate subroutines from the MONARCH

library. If this fails, the loader indicates that an error

condition exists.

See Appendix E for a description of the data formats

accepted by this loader. Note, however, that the

MONARCH Loader does not accept labeled common

definitions or references (Record Type 2, Item Types

and 3) and w ill treat labeled common references as for-

mat errors.

Programs to be loaded can be introduced on punched

cards, magnetic tape, or paper tape, on un its attached

to either the W or Y buffer. The input/output sub­

routines within the MONARCH loader use neither in-

terrupts nor interlace.

THE MONARCH "LOAD" CONTROL MESSAGE
Unit Assignment Requirements

When a LOAD message is issued to MONARCH, .the

Unit Assignment Table is assumed to contain the follow­

ing information:

(a) QMSG contains the unit and channel designa­

tion for the peripheral device wh ich is to

furnish MONARCH control messages.

(b) QBINI contains the unit and channel designa­

tion for the peripheral device which is to

furnish input (program(s» to the loader. The

unit must be a card reader, a magnetic tape

unit, or a paper tape reader.

The follow ing sequence of MONARCH control messages

illustrates one means of setting up the Unit Assignment

T abl e and requesting the MONARCH Loader to load one

or more programs:

"6.C TY1W~1

"AASSIGN BI = CR1W."

"6.LOAD 010000, GO I:

Parameters specified in "LOAD" Control Messages

Load Relocation Bias

The value of the first parameter in a LOAD message is

interpreted by the loader as the load relocation bias

for the first (or only) program to be loaded. For pro­

grams whose load addresses and data words are not

relocatable (i. e., "absolute" programs), the load re­

location bias is ignored. Normally this parameter will

be expressed as a positive octal or decimal integer.

Loader Options

The loader interprets the value of the second parameter

in a LOAD message as representing a 24-bit binary

word, four (4) of whose bits represent ON/OFF switches

with the remaining 20 bits not interpreted. The switch

settings and the loader options they control are:

Bit
No.

o

Status

o

Corresponding Loader Option

Halt after processing End

Record with no transfer ad-

dress. C register = 0 20

22222. The A register con­

tains the ioad reiocation bias

K* computed for the next

program to be loaded.

No halt after processing End

Record with no transfer ad­

dress. The loader proceeds

to load the next program

using K* as load relocation

bias.

Type the loader's symbol

table on typewriter 1 on the

W buffer.

12

o

22

o

23

o

*K = M+R

Loader's symbol table is not

typed.

Return control (Via BRR) to

program which calls the

loader at the point when an

End Record with no transfer

address has been processed.

The B register contains the

load relocation bias K* com-

puted for the next program to

be loaded.

Control is not returned to

program which called the

loader.

Halt immediately before

executing "BRU" to transfer

address in End Record. The

C register contains the "BRU"

instruction.

No halt prior to executing

"BRU" to transfer address in

End Record.

where M=2 plus the maximum value attained by the

location counter as computed by the assembler or other

translator wh ich generated the program, and R = the

value of the load relocation bias when the loader

started load ing the program.

The following symbol ic parameters are frequently em­

ployed to designate the indicated parameter combinations:

Symbolic
Parameter

STOP

Octal
Equivalent Corresponding Loader Options

01 Stops after each program is

loaded, no symbol table type-

out, and no return to routine

wh ich called the loader.

Symbolic
Parameter

GO

TSTP

TGO

Octal
Equivalent Corresponding Loader Options

040000000 No planned stops on End Re­

cords, no symbol table typeout

and no return to routine which

called loader.

020000001 Same as STOP but loader's

symbol table is typed.

060000001 Same as GO but loader's sym­

bol table is typed.

Program Name (Search Key)

The th ird parameter in a load mess::Jge may be om itted.

If present it is treated as a 1- to 8-character program ID

(name) which identifies a particular program to be

loaded from the medium specified by QBINI. Normally

th is feature is used for sel ective loading from magnetic

tape, but the function is equally val id for cards or

paper tape.

When this parameter is present, its value is converted

to a left ad justed, space filled, 8-character search key.

Then the MONARCH Monitor causes records to be read

from the un it assigned for binary input (QBINI) unti I:

1) a Level 1 MONARCH ID Record, with the same

name in characters 9 through 16, is obtained or 2) the

la~t file has been scanned (i. e., a Level 1 MONARCH

ID Record with IISYSEND II in characters 9 through 16
1\/\

is encountered). In the first case, control is rei inquished

to the MONARCH Loader which processes the input as

specified by the first two parameters. In the second

instance, a "search-for-specified-program-failed"

message is typed and the next MONARCH control

message is requested.

PRINCIPLES OF OPERATION

Storage Allocation for the Loader and Its Symbol Table

When the MONARCH system is loaded, the MONARCH

Loader is itself loaded into upper memory. Th is is true

regardless of the memory size of the computer (with the

13

bounds of 8 through 16K). The MONARCH Loader

occupies approximately 16008~90010 memory loca­

tions in the range X62008 through X77508 (where

X=l, 2, or 3).

At the time a request to load a user's program is initi­

ated, the loader's symbol table contains a dozen exter­

nal label definition entries which allow external

references to locations within the resident portion of

the MONARCH Operating System. The "resident

portion" of MONARCH consists of: 1) a routine for re­

loading the MONARCH system (12 words), 2) the

MONARCH Unit Assignment Table (currently 10 words),

and 3) the Processor Error Switch and "JOB" Mode

Switch (1 word). The resident portion of MONARCH

occupies locations X7751S throughX7777s(whereX=1,

2 or 3).

The loader's symbol table (external label definition

entries) initially occupies memory from about cell

X6244 "down" to X6200. As each additional external

symbol is inserted in the symbol table, it occupies the

three (3) memory locations immediately below the last

symbol table entry. Thus the loader and its symbol

table occupy upper memory in that amount required by

the size of the loader routine itself and the number of

external symbol entries.

The loader gives an appropriate error indication when­

ever a new entry is to be made in the symbol table and

this entry would "overlay" programs or data which have

already been stored in memory by the loader.

Selection of the Appropriate Binary Input Subroutine

Based on parameters furnished by the MONARCH

Monitor, the loader initial izes one of 3 binary input

subroutines (card, magnetic tape or paper tape) to read

binary records from the unit and channel (W or Y buffer)

indicated. The loader refers to a standard record area,

in upper memory, to obtain a record from the selected

binary input subroutine. Since the location of this area

is the only interface between the loader and the input

subroutines, the loader itself is completely media in­

dependent. When searching and loading from the

MONARCH Library the loader is communicating with

the magnetic tape input subroutine via a communication

cell, so that even this process is effectively media

independent.

The Loading Process

The MONARCH Loader can be executed via the appro­

priate MONARCH control messages or directly, as a

closed subroutine, by executing the instruction:

BRM QSYSLDR

where "QSYSLDR II is the externally defined label for

the entry point to the loader. The loader assumes that

the A register contains the load relocation bias to be

used and that the B register contains the binary value of

the Loader Option Parameter.

The loader commences execution by reading a record

from the previously designated input med ium and check­

ing the first word (control word) of the record to see

whether or not it is a val id binary record. Next, the

record type code (bits 0 through 2) of the control word

is used to "point" to the appropriate subroutine within

the loader for processing that type of record.

When the loader has processed a record, it continues

by reading in the next record for processing unless the

record just processed is an End Record (record type

code of 3). When an End Record without a transfer

address has been processed, the loader, depend ing on

the value of Loader Option Parameter, does one of

three things:

(a) Halt with: (C) = 0 20 22222

(A) = load relocation bias to be

used for loading the next

program (unless changed

manually by the console

operator)

(B) = indeterm inate

14

(b) Return control to the program which called the

loader (by executing a BRR QSYSLDR), with

(B) = initial load relocation bias plus program

length, and (A) = Loader Option Parameter.

(c) Set the load relocation bias equal to its pre­

vious value plus the length of the current

program (as spec ified in the End Record) and

continue loading records.

When an End Record with a transfer address is encountered,

any indicated relocation is performed on the single data

word in this record and the loader, depending on the value

of the Loader Option Parameter, does one of two th ings:

(a) Halt with: (C) = the data word (i. e., transfer

word) as modified by any

relocation indicative present

in the End Record

(A) = Loader Option Parameter

(B) = indeterm inate

(b) Execute the data word (i. e., transfer word)

after performing any indicated relocation of the

address field. Normally, the data word is a

"Branch Unconditional II instruction (BRU),

whose address is determined by the value ofthe

expression in the operand field of a SYMBOL

or META-SYMBOL END line.

The loader does not "initial ize II unused memory locations

with "background II values (e. g., halt instruction). The

only memory locations modified by the loader are:

(a) Those within the (approximately) 16008 loca­

tions occupied by the loader and its input

subroutines.

(b) Those locations pre-empted by the loader for

its symbol table.

(c) Locations in which the loader is expl icitly

directed to store instructions or constants (i. e. ,

data words suppl ied to the loader in Data

Records).

Relocation and Data Records

A Data Record (Record Type 0) contains instructions

and/or data to be stored in memory by the loader. Each

Data Record contains a load address which is either the

relative or absolute memory location in which the first

data word (an instruction or a constant) is to be stored.

The word in the Data Record which contains the load

address also contains an indicator which specifies

whether or not the current load relocation bias is to be

added to this load address to obtain an effective load

address (i. e., whether or not the Data Record contains

"relocatable II data words).

The effective load address determines the location in

wh ich the first data word is stored, and successive data

words in a Data Record are stored in consecutive mem­

ory locations following the first data word.

Before a data word is stored in the memory location

specified by the effective load address, relocation in­

dicators in the Data Record are exam ined to see if the

data word is one whose binary value is to be modified

in one or more of the ways described below.

Load Relocation. If the load relocation indicator is

"set" for a given data word, then the initial contents,

i, of the rightmost m bits in that data word are replaced

with k where:

k (i+ 1) modulo 2
m

m 14 for 50S 900 Series Computers

current value of load relocation bias

COMMON Relocation. If the (blank) COMMON re-

location indicator is "set" for a given data word, then

the initial contents, i, of the rightmost m bits in that

data word are replaced by k where:

k

m

m
(l+c) modulo 2

14 for SDS 900 Series Computers

c = current value of COMMON relocation bias

Programmed Operator Relocation. If the POP re!oca-

Hon indicator is "set II for a given data word, then the

15

initial contents, i, of bits 3 through 8 of that data word

are replaced by p where:

~p = operation code from POP table Hi ~ 778

Note: J is ,the "relative II POP operation code and p

is the effective POP operation code computed by the

loader.

Special I/O Relocation. If the special I/O relocation

indicator is "set" for a given data word, then the follow­

ing modifications are performed.:

(a) The rightmost m bits of d are replaced with

k and the result is stored in Q.

(b) Bit 18 of the contents of Q-1 is replaced with

o and the result stored in Q -1.
where:

d

m

k

o

initial value of the data word

effective load address of d

initial value of rightmost m bits of d

current val ue of load relocation bias

14 for 50S 900 series computers

(i+ 1) modulo 2
m

1 if (i+1) ~ 2m
and 0 if (i+l) < 2m

External Label References and Definitions

The loader is capable of handling (resolving) symbolic

cross-references between separately assembled and/or

compiled programs. External reference and definition

items in Type 1 Binary Records provide the loader with

the information needed to "Iink" together two or more

separately assembled or compiled programs.

During the loading process, the loader maintains a

(symbol) table of external label definitions and unsatis­

fied external references. There is no restriction on the

order in which the definition of a label and the refer­

ence{s) to it appear in the input to the loader. The

definition of a label may precede, or follow, some or

all of the references to it. Note that it is permissible

for any number of programs to contain references to a

given label, provided that one prograrn being loaded

contains an external definition item for that label.

When the loader encounters an external definition item,

it searches the symbol table for a previous definition

of that label in the table; if there is, the loader in­

crements the dupl icate definition counter and discards

the new definition. If the search reveals that the label

is al ready in the table as an unsatisfied reference, then

the loader uses the definition to satisfy all the IIrefer­

ences II to that label and replaces the unsatisfied refer­

ence item in the table with the definition item. How­

ever, if that label does not occur in the symbol table

(as a reference or as a definition) then it inserts the

external definition item in the symbol table.

An external reference item contains a label and the

relative address of the data word containing the last

reference to that label in the program containing the

reference item. For a given label in a given program,

if Al were the address of the data word which contained

the last reference to the label, then the external refer­

ence item will contain that address. The value, A2, of

the address field of the data word at A1 will be either

zero, meaning that it is also the first reference to the

label, or non-zero, meaning that it (A
2

) is the address

of the next-to-Iast reference to the label. With in a

program, each reference to the external label is

"chained II to the previous reference in this fashion, with

the data word containing the first reference being the

"end II of the chain. The lIend II of the chain is indicated

by a zero address field in the data word. The chain

"begins II with the address (A 1) in the external reference

item, and is I inked, by addresses, with the "end II of

the chain. As a consequence of this method of "chain­

ing ll references and of the manner in which the loader

IIsatisfies II the references in a chain, the Binary Records

(Type 1) containing external references should always

follow the last Data Record containing a reference (i. e.,

should always follow the Data Record containing the

data word at A1). "Satisfying" the reference in a chain

consists of starting at A1 and replacing the address field

of each "link" in the chain with the value supplied by

the correspondi ng externa I defi nition.

16

When the loader encounters an external reference item,

it searches the symbol table to see if it already contains

an external reference item for that label; if so, then the

external reference chain associated with the new ex­

ternal reference item is III inked II to the external refer­

ence chain associated with the existing table entry and

the new external reference item is discarded. If the

search reveals that the label is already included in the

table as an external definition, the loader uses the

definition to satisfy all the references to that label and

then discards the external reference item. However, if

that label does not occur in the symbol table (as a

reference or as a definition) then the external reference

item is inserted in the symbol table.

External Programmed Operator References and Definitions

The loader is capable of satisfying references to internal

and external Programmed Operator (POP) definitions.

External POP definition items, external reference items

and internal POP definition items provide the loader

with the information needed to:

(a) Satisfy external and internal POP references.

(b) Maintain external POP reference and defini­

tion items in the loader's symbol table.

(c) Constructa Programmed Operator transfer table

in cells 01000 throuqh 01770 •
U - 0

An lIinternal li POP definition is one which is recognized

only within the scope of the program in which it occurs.

No entries are made in the loader's symbol table for

internal POP definitions or references.

Many of the loader functions performed in the processing

of external POP references and definitions are also

performed {by the same I~ader subroutines} for external

label references and defin itions. In particular, the

functions of insertion and replacement of symbol tabl e

entries and the handl ing of dupl icate definitions are

the same both for external label and external POP

items.

An internal POP definition suppl ies the loader with the

(relative) operation code that appears in bits 3 through

S of data words referenc ing that POP and the address

of the origin of the POP subroutine which corresponds

to that operation code. The loader assigns a new oper­

ation code (X, ~~77S) which it will use to replace

bits 3 through S of all data words containing references

to that POP definition. The loader also stores the

address of the POP subroutine in the address field of

cell X + 100S. The reason for assigning new operation

codes is to avoid possible confl icts with operation codes

assigned in other, separately assembled (or compiled),

programs which are also being loaded. It should be

noted that the method depends on the assignment of

sequential numbers, beginning with zero, to each POP

reference or defin ition in a given program.

The primary difference in the treatment of internal and

external POP definitions is that the external POP

definition is represented in the loader's symbol table and

hence it is recognized as a definition in all programs

being loaded, not just the one in which it occurred. All

of the remarks in the preceding paragraph relating to

internal POP definitions apply equally well to external

POP definitions.

External POP reference items are inserted in the symbol

table if no match ing defin ition is found as a resu It of

the symbol table search. When a matching external

defin ition is suppl ied, the operation code ass igned by

the loader and the POP subroutine address is used by

the loader to satisfy the reference. The POP operation

code (X) replaces bits 3 through S of all data words

containing references to that POP, and the POP sub­

routine address replaces the contents of the address

field of cell X+ 1 OOS.

Automatic Selective Loading from the MONARCH Library

Provision is made for referring to the MONARCH

Library when an End Record with a transfer address is

encountered and unsatisfied iabei or POP references

17

exist. This library normally consists of a collection of

frequently used closed subroutines and Programmed

Operator subroutines. The loader automatically loads

any such subroutines when it encounters an external

reference in a program (or group of programs) being

loaded. This rei ieves the programmer of the burden of

including such subroutines in the program decks (ortapes)

he furnishes to the loader. For example, the programmer

may wish to employ certain input/output subroutines

available on the program I ibrary, and refer to them

symbolically in his main program. Note that the loader

first attempts to satisfy all external references from the

"definitions II suppl ied in the program decks (or tapes)

furnished by the programmer, and only then will it

attempt to satisfy these references by loading programs

from the program library. The following paragraphs

describe the procedures employed to access programs in

the program library.

When the loader is loading a previously assembled pro­

gram and there are external references which have not

been satisfied when the "END" record is encountered

and then if there is a transfer address (indicating that it

is the last, or only, program in a series of programs),

the loader causes the monitor to locate the MONARCH

Library on the system tape. The loader then enters a

special mode in which it searches the external defini­

tions in each I ibrary program in succession. When it

encounters a I ibrary program which satisfies at least one

such reference, it loads this program, and if there are

still some unsatisfied references, it continues to search

the program I ibrary. To avoid "backtracking II when

switching from "search II to "Ioad II mode, the definitions

from each I ibrary program being examined are tempo­

rarily added to the table of external definitions and

references ma inta ined by the loader. Note that the

records containing external label definitions and "ex­

terna I II Programmed Operator defin itions must precede a II

other information in a binary object program; henceonly

these definitions have to be saved in rnemory to enable

the loader to switch from "search" to "load" mode with-

out rereading records from the system tape.

If a given I ibrary program does not contain a defin ition for

anyoftheunsatisfied references, then itsdefinitionsare

"erased" from the table and the next I ibrary program is ex­

amined. Iftherearestill unsatisfied external references

when the end of the program library is encountered, the

loader indicates thatan error condition exists.

The loader employs an entirely simi lar method in attempting

to obtain "defin i tions" for any unsatisfied Programmed Op­

erator references. If these references cannot be satisfied

from the Programmed Operator definitions on the system

tape, then the loader indicates thatan errorcondition ex­

ists. The I ibrary search for Programmed Operators is con­

current with the search for external definitions of labels

(i.e., the Programmed Operatordefinitionsare part of the

program library.)

SUMMARY OF OPERATING INSTRUCTIONS

Load the MONARCH system. (See MONARCH

OPERATING SYSTEM - Summary of Operating

Instructions.)

"ASSIGN" a card reader, or a magnetic tape unit, or

a paper tape reader as the "binary input" device (BI).

"MSSIGN BI = CR1W" or

"MSSIGN BI = PR1W" or

"MSSIGN BI = MT1W" or

"MSSIGN BI = MT3W"

Furnish a "LOAD" message to MONARCH

",6.LOAD 010000, STOP" or

",6.LOAD 0, GO" or

",6.LOAD 0,40000001, 'APROGRAM ' II

The first example causes MONARCH to transfer control

to the loader with instructions to use 0100008 as load

relocation bias, and to stop after each program is

ioaded. The second example specifies 0 as load reloca­

tion bias and spec ifies no "planned" stops during the

loading process. The third example specifies 0 as load

18

relocation bias and a "planned" stop after loading the

program whose end record contains a transfer address.

In this case, loading begins with the record following

the level one MONARCH ID Record with "APROGRAM II

in characters 9 through 16.

Planned Halts During Loading

(C) = 0 20 22222 when end record with no transfer ad-

dress is encountered.

(C) = 0 01 xxxxx when end record with effective transfer

address of xxxxx is encountered.

These hal ts occur only when requested (i. e., only when

the value of the second parameter of the "LOAD" mes­

sage so spec ifies).

Place RUN-IDLE-STEP to RUN to continue loading.

Halts for Abnormal Conditions

(C) = 0 20 00001 Buffer error (RUN to try again).

(C) = 0 20 00003 III egal input format (RUN to

ignore record).

(C) = 0 20 00004 Checksum error (RUN to ignore

error).

(C) = 0 20 00006 LOADER symbol table overflow

(no recovery).

(C) = 0 20 00007 Unsatisfied external label or POP

reference after I ibrary search (no

recovery). RUN to ignore error.

(C) = 0 20 00010 Dupl icate external label or POP

definitions (RUN to ignore - first

definition encountered will be

used).

Symbol Table Item Format

Each item in the Loader's symbol table consists of a two­

word symbol followed by a one-word value.

Symbol Format

The symbol ic portion of a symbol table item consists 0,"

from one to eight alphanumeric characters, left justified

within two computer words. Unoccupied character

positions contain blanks (060).

The value portion of a symbol table item may be one of

seven types. In each case, the left-most nine bits

identify the type and the right-most 15 bits contain the

value.

C v
012 789 23

ST: Subtype

C: Code

L: 0 for label items, 1 for POP items

V: Value

Internal POP defin ition

POP Subroutine Origin

ST C L V

Common or Program Length

I ~ength of Prograrry' I . L COMMON Block.
ST c L V

(= 1 if V contains program length
L = 1 if V contains labeled common length

External Label Reference

1 a] 1 0 101
Last Reference Address

ST (L V

External Label Definition

110 I 0 101 Label Value

ST (L V
Labeled (ommon Reference

1 11 I 0 101 Last Reference Address

ST C L V

19

External POP Reference

I 0] 16-B i t Op-codel]1 o
ST (L V

External POP Definition

POP Subroutine Origin

ST (L V

Note: Items whose subtype is 00 are not entered in the
table. POP items whose subtype is 11 are not entered
in the table.

The origin of the POP subroutine is stored in the address
field of the actual POP transfer table entry, at X + 100

8
,

when a POP definition is encountered. The actual 6-
bit POP address (X) replaces the sequence number when
the item is inserted in the symbol tabl e.

Zero is stored in the address field of the actual POP
transfer tabl e entry (X+ 1008) when a POP reference
item is inserted in the symbol table. The actual opera­
tion code replaces the sequence number.

The actual6-bit POP operation code is also stored in the
instruction code field of the POP transfer table entry
whose address is obtained by adding 1008 to the
sequence number.

IV. MONARCH UPDATE ROUTINE

INTRODUCTION

This routine is used to create new MONARCH system

tapes and to update existing system tapes. The functions

of insertion and deletion of both system programs and

data files (including the MONARCH Monitor and the

MONARCH Loader) are provided.

Since each routine on the system tape (except the

Bootstrap Loader and the MONARCH Loader) is preceded

by an identifier (a MONARCH 10 Record), insertions

and deletions are indicated to the Update Routine in

terms of these identifiers. The MONARCH Loader has

the identifier II LOAD II associated with it even though

no MONARCH 10 Record actually precedes that routine

on the system tape. The Boostrap Loader is automati­

ca II y recorded on a new system as the fi rst record on

the tape.

It may be necessary to include, as standard system rou­

tines, programs whose memory space requirements pre-

c lude the use of the MO NARCH Loader to load these

programs at execution time. Such programs should be

preceded on the system tape by a spec ia I purpose loader

which is capable of loading the system routine in ques­

tion from the system tape. It is this special purpose

loader which is loaded, and executed, under control of

the MONARCH Loader when a MONARCH control mes­

sage calls for execution of the system routine in question.

All programs on a MONARCH System Tape, with the

exception of the Bootstrap Loader, must be in SDS 900

Series Universal Binary Format. Data files to be re­

corded on a MONARCH System Tape must be presented

to the Update Routine in this format or else in SDS 900

Series Encoded Symbol ic Format. The onl yother fo rm

of information permissible on a MONARCH System Tape

is MONARCH 10 Records. Such routines and data

files must be presented to the Update Routineon either

punched cards or paper tape.

21

It is also noted that a standard system routine (e. g., the

META-SYMBOL Assembler) may itself consist of several

independently assembled subprograms and only the first

of these is preceded on the system tape by a Level 1

MONARCH 10 Record. Hence, the MONARCH Loader

automatically loads any subprograms following the first

subprogram until it encounters either the next Levell

MONARCH 10 Record ora binary End Record (Type 3).

The MONARCH Update Routineacknowledges this type of

program structure when performing insertion and deletion

functions in the course of writing a new system tape.

Anyorall of the subprograms of a standard system routine

may be preceded on the system tape by a Level 2 MO NARCH

10 Record to permit insertion ordeletion of individual sub­

programs by the MONARCH Update Routine. These Level

2 MO NARCH 10 Records are ignored by the MO NARCH

Loader when loading a standard system routine for execution.

The Update Routine produces a typewriter listing of the

MO NARCH 10 Records (Levelland Level 2) assoc iated

with gJJ routines and all data files written on a new

system tape. These ID records appear on the listing in

the order in which they exist on the new system tape.

This listing should be preserved for use as the basis for

constructing update control messages for the next system

update run. (See examples later in this section.)

Routines to be inserted by the MONARCH Update Routine

must be preceded by a Levelland/or Level 2 MO NARCH

10 Record and must be presented in the order in which they

appea ron the new system tape. COpy messages must be

presented in the order in which they are to be executed. No

reordering of update input is performed.

THE MONARCH UPDATE' CONTROL MESSAGE

When the Update Routine is loaded for execution by the

MONARCH Loader, the MONARCH Unit Assignment

Table is assumed to contain the following information:

a. QMSG contains the unit and channel

designation for the peripheral device which

is to furnish MONARCH control messages

and Update control messages. The unit must

be a card reader or a typewriter.

b. QSYSU contains the unit and channel

designation for the periphera I device wh ich

is to furnish any programs or data files which

are to be inserted in the new system. The

unit must be a card reader or a paper tape

reader.

c. QSYST contains the unit {magnetic tape

on I y} and channel designation for the pe­

ripheral device upon which the new system

tape will be written.

d .. QSYS is assumed to specify magnetic tape

unit 0 on channel Wand the old system

tape is assumed to be mounted on that un it.

However, if both QSYS and QSYST contain

the same unit and channel designation, then

the Update Routine assumes that no old sys­

tem tape is present.

The following sequence of MONARCH control messages

illustrates the means of setting up the Unit Assignment

Table and calling in the Update Routineforexecution.

IIt::,.C CR1W il

1\

II6.ASSIGN 1\ S=MTOW, X2=MTlW, UI=CR lW 11

IIt::,.UPDATEII

CONTROLLING AN UPDATE RUN-THE UPDATE FILE

Contents of an Update Fi Ie

Normally, two logical IIfiles ll are presented to the Up-

date Routine to enable it to create a new system tape.

One of these IIfiles ll is the old system tape, and it is

an optional input. The other IIfile ll is the Update File,

and it is never optional, although its form and content

may vary considerably.

In the genera I case, the Update File consists of an

ordered sequence of COpy messages, MONARCH ID

Records, binary records and encoded symboi ic records.

22

In a particular instance, an Update File can consist

entirely of COpy messages, in which case only the

functions of selective duplicating and selective deleting

are performed. Alternatively, a given Update File may

consist entirely of MONARCH ID records, binary records,

and encoded records, in which case only the functions

of selective insertion and, by the absence of COpy mes­

sages, blanket deletion of all information on the old

system tape, are performed. In the latter case, the ab­

sence of COpy messages removes the requirement for

providing an old system tape for the update run.

Physically, the Update Fi Ie can exist entirelyon punched

cards, or {although highly unlikely} entirely on paper

tape. Alternatively, all COpy messages and MONARCH

ID records in the Update File can be presented as type­

writer messages while any programs to be inserted are

presented on either cards or on paper tape. {Samples of

Update File listings are included in Example B at the

end of this section}.

Insertion

Insertion is controlled by presenting the Update Routine

with a MONARCH ID Record via the control message

medium {QMSG} or the Update medium {QSYSU}, and

one or more programs {or data fi les} via the Update me­

dium {QSYSU}. The MONARCH ID Record is the first

record written on the new system tape as' a result. The

Update Routine then copi es records from the Update

medium onto the new system tape until:

a. An end-of-file condition is detected {card

reader only}. {The Update Routine will then

request a control message. }

b. A possible COpy message is encountered; i.e.,

a record which is neither binary nor encoded

nor a MONARCH ID Record is encountered.

{The Update Routine proceeds to analyze it as

if it were a control message.}

c. If the Update medium is paper tape and a binary

or encoded end record (Type 3) is encountered,

a halt is executed. (Set (A)=O to continue

insertion and set (A)f 0 to stop insertion and

cause Update Routine to request a control

message next, then set RUN-IDLE-STEP to

RUN.)

d. A Levell MONARCH ID Record with

"SYSEND/\A II in characters 9 through 16 was

written on the new system tape. [Both system

tapes (old and new) are rewound and the

MONARCH Monitor is loaded from the system

tape on un itO of the W buffer.]

Note: When inserting under control of a Level 2

MONARCH ID Record and when the insertion is to be-

come, or replace, the first subdivision of a major divi­

sion of the system tape, then the Levell MONARCH

ID Record for that major division must precede the

Level 2 MONARCH ID Record in the Update File.

(See Example B 5 at the end of this section.)

Programs to be inserted must be in SDS 900 Series

Universal Binary Format. Data files must be in this

format or else in SDS 900 Series Encoded Symbolic

Format.

All binary and encoded records inserted in a new sys­

tem tape wi II have their checksums va I idated by the

Update Routine.

Deletion

Deletion of programs or data fi les from an old system

tape is accomplished by simply not including those

programs or data files in the scope of a COpy message.

In other words, failure to ICOpY" a program results in

its being deleted from the new system tape.

Replacement

Replacement of programs or data files is accomplished

by deleting (not COPYing) the existing program or file

and by inserting a new version of that program or fi Ie.

Retention (COpy function)

Retention of programs or data files is accomplished by

including those programs or data files in the scope of a

23

COpy message. Retention must be made explicit; the

only program implicitly "retained" from an old system

tape to a new system tape is the Bootstrap Loader, and

this program is not "copied" from the old system tape by

duplicating the first record on the old system tape. All

binary and encoded records written on the new system

tape wi II have their checksums va I idated by the Update

Routine.

co Py MESSAGES

The Syntax of COpy Messages

A valid COpy message is an instance of one of the

following:

.6.1\/\/\COPY Aa .

.6./\/\/\ COpy /\ a /\ (b).

.6./\/\/\ COpy A a/\ THRU A b.

.6./\/\/\ COPY" a /\ (c) /\ THRU /\ b.

.6. /\/\/\ COpy /\ a A THRU /\ b /\ (d).

.6. /\/\1\ COpy 1\ a /\ (c) /\ THRU 1\ b 1\ (d).

Where a, b, c and d represent 1 to 8 character program

names. The first character of a program name must be

alphabetic and each remaining character must be either

alphabetic or numeric. The message must be terminated

by a period.

Parentheses may be omitted, their only purpose being to

enhance readability.

The caret (/\) is used to indicate the minimum number of

spaces which must separate words in a COpy message.

COpy messages without the word "THRU" are said to

have one argument. COpy messages with the word

"THRU" are said to contain two arguments. Each argu­

ment consists of either 1 or 2 program-names.

Relationsh ip of COPY Messages to the Structure of

MONARCH System Tapes

The purpose of a COpy message is to obtain programs or

data fi I es from the old system tape and record them on

the new system tape. The COpy message is used in lieu

of placing the indicated programs in the update file.

COpy messages refer to records (e.g., binary programs)

by using the program names which appear in character

positions 9 through 16 of the MONARCH 10 records on

the old system tape.

Major divisions of a MONARCH system are preceded,

on the system tape, by a level 1 MONARCH 10 record:

e.g., ".:6.1 /\/\/\/\1\/\ LIBRARY/\.. ... II

Minor divisions of a MONARCH system are preceded,

on the system tape, by a Level 2 MONARCH 10 record:

e.g., ".:6.2/\/\/\/\/\/\ COSINEI\I\ •.• ".

"Minor divisions" of a MONARCH system are arbitrary

subdivisions of a program or a data fi Ie which are recog­

nized by the MONARCH Update Routine (see description

of the MONARCH Loader for mention of another use of

Level 2 MONARCH 10 Records in connection with auto­

matic I ibrary searching).

If an argument of a COpy message consists of one

program-name, then that program-name is assumed to

occur in characters 9 through 160fa Levell MONARCH

10 Record on the old system tape. If an argument of a

COpy message consists of two program-names (the sec­

ond can be enclosed in parentheses), the first (leftmost)

is assumed to occur in characters 9 through 16 of Level

1 MONARCH 10 Record on the old system tape, whi Ie

the second program-name is assumed to occur in charac-

ters 9 through 16 of a Level 2 MONARCH 10 Record

which occurs subsequent to the Levell MONARCH 10

Record. In other words, the second program-name is

assumed to refer to a subdivision of that major division of

the old system tape which was identified by the first

program-name.

Execution of a COpy message by the MONARCH Update

Routine involves copying the MONARCH 10 record{s)

and any binary or encoded records which are in the

scope of the MONARCH 10 Records named in the COpy

message.

24

The term "in the scope of" is defined as follows:

If "A II and IIB" are distinct program-names in Level

1 10 Records, and IIX" and lIylI are distinct program­

names in Level 2 10 Records, then:

a. A binary or encoded record (b), is lIin the

scope ofll A provided that no other Level

1 10 Record occurs between A and b on the

system tape.

b. A binary or encoded record (b), is lIin the

scope of" X provided that no other Level 2

10 Record occurs between X and b on the

system tape.

c. X is "in the scope of" A provided that no

other Levell 10 Record occurs between A

and X on the system tape.

d. A binary or encoded record (b) is "in the

scope of" both X and A if rules a, b, and

c apply.

e. If a binary or encoded record is II in the

scope of" X then it is not "i n the scope of"

Y.

f. If a binary or encoded record is "in the

scope of" A then it is not "in the scope

of" B.

COpy Messages with One Argument

A COpy message with one argument consisting of one

program-name causes the Update Routine to read all

records in the scope of the Level 1 10 Record with the

same name from the old system tape and write them on

the new system tape. For example, when

".:6.1\/\1\ COpy /\ LIBRARY. II

is encountered, the Update Routine bypasses any records

on the old system tape which precede the Level 1

MONARCH 10 Record with "LIBRARY 1\" in characters 9

through 16. This is the first record which is written on

the new system tape in response to this COpy message.

The Update Routine then copies all records following

that 10 Record until the next Levell MONARCH 10

Record is encountered on the old system tape. It is th is

"next" Levell MONARCH ID Record which terminates

the copying of records from the old system tape; it is

not cop i ed onto the new system tape as a resu It of th i s

COpy message, but it is the first "old system tape"

record to be examined when the next update control

message is processed.

A COpy message with one argument which consists of

two program-names causes the Update Routine to read

all records in the scope of the Level 2 MONARCH ID

Record corresponding to the second program-name and

write them on the new system tape. Forexample, when

"6 """COpy /\ LIBRARY /\ (COSINE). "

is encountered, the Update Routine bypasses any re­

cords on the old system tape wh ich precede the Level

MONARCH ID Record with "LIBRARY /\" in characters

9 through 16, that is, unless the old system tape is al­

ready positioned at, or beyond (but still within the

scope of), that Levell ID Record. In either case, the

Update Routine then searches, within the scope of

"LIBRARY", for a Level 2 MONARCH ID Record with

"COSINE/\/\" in characters 9 through 16. If the Level

1 MONARCH ID Record for "LIBRARY" has not already

been written on the new system tape, then it is the first

record written on the new system tape in response to

this COpy message. In either case the Update Routine

then writes, on the new system tape, the Level 2

MONARCH ID Record with the name "COSINE". The

Update Routine then copies all records following that

ID Record until the next MONARCH ID Record (either

Level 1 Q! Level 2) is encountered on the old system

tape. It is this "next" MONARCH ID Record which

terminates the copying of records from the old system

tape. It is not copied onto the new system tape as a

result of this COpy message, but it is the first "old

system tape" record to be examined when the next up­

date control message is processed.

25

COpy Messages with Two Arguments

A COpy message with two arguments is equivalent to a

series of "one argument" COpy messages. The Update

Routine performs the necessary copying indicated by the

first argument exactly as in the case of a "one argument"

COpy message; but, in addition, it copies all records

following those included in the scope of the first argu­

ment unti I the MONARCH ID Record whose name matches

the second (or only) program name* of the second argu­

ment is encountered. At this point, the Update Routine

performs the necessary copying indicated by the second

argument exactly as in the case of a "one argument"

COpy message.

Special tests are made to detect cases in which the first

and second arguments are identica I. When this occurs,

the COpy message is reduced to the equivalent "one

argument" COpy message.

The following sets of COpy messages are equivalent if

"A", "B" and "c" occur (in that order) as program names

in consecutive Levell MONARCH ID Records on a

system tape:

Set 1: 6 COpy A THRU A.
b:. COpy B THRU B.
6 COpy C THRU C.

Set 2: 6 COpy A.
6 COpy B.
6 COpy C.

Set 3: 6 COpy A THRU A.
6 COpy B THRU C.

Set 4: 6 COpy A THRU B.
6 COpy C THRU C.

Set 5: 6 COpy A THRU C.

Thus, the use of "THRU", in a COpy message with two

arguments, provides an alternative to using a series of

"one argument" COpy messages.

*Matchingof the second program name is inhibited

until a Level 1 MONARCH ID Record whose name

matches the first program name is encountered.

COPY Messages which will Terminate an Update Run

COpy messages of the form:

"..6. COpy SYSEND. II or "..6. COpy a(b) THRU

SYSEND. II

causes the indicated COpy function to be performed,

the update process to be terminated, and the new sys­

tem tape to be rewound and control to be returned to

the MONARCH Monitor. In this case, the MONARCH

Monitor in question is "bootstrapped" from tape a on the

W buffer.

CONTENTS OF A TYPICAL MONARCH SYSTEM TAPE

1 record containing MONARCH
BOOTSTRAP and II LOADER" LOADER

1st record of MONARCH LOADER

Last record of MO NARCH LOADER
..6.1 MONITOR
1st record of MONARCH

Last record of MO NARCH
..6.1 PRINT
1st record of "PRINT" subr.

END record of "PRINT" subr .
..6.1 MTAPE
1st record of "MTAPE" subr.

END record of "MTAPE" subr.
CDRP

1 st record of "CDRP"

END record of "CDRP"
..6.1 PTYIO
1st record of "PTYIO"

END record of "PTYIO"
..6.1 LIBRARY
..6.2 SINE
1st record of "SINE" subr.

End record of "SINE" subr .
..6.2 COSINE

..6.1 SYSEND

26

EXAMPLES

FACSIMILE OF A TYPICAL LISTING OF MONARCH

ID RECORDS RESULTING FROM A MONARCH

UPDATE RUN

LOAD

MONITOR .

CONTROL 9/1/64 .

TABLES

QMSGRD

LDIOSR 8/28/64

CARD

MTYIO

MAGTP

..6.2 TFMONRCH

PRINT

MTAPE

CDRP

PTYIO

CDR

LIBRARY

..6.2 CDRP 8/28/64

~2

CDR 8/28/64

PRINT

METASYM

ENCODER

MONl

MSCONTRL

..6.2 PREASSEM

ASSEMBLR

UPDATE

BOOTSTRAP

UPDATERT

SYSEND

EXAMPLES (Continued)

EXAMPLES OF CONTROL MESSAGES AND PROGRAM

SEQUENCES FOR UPDATE RUNS

1. To duplicate an existing MONARCH system tape:

II~C TY1W. II
IIMSSIGN S=MTOW, Xl=MTlW, UI=CR1W. II
II~UPDATE. II
II~ COpy LOAD THRU SYSEND. II

2. To insert a system routine (IIRNII) between existing

system routines IIR111 and "R2 1i
:

"~C CR1W. II
IIMSSIGN S=MTOW, Xl=MTlW, UI=CR1W. II
II~UPDATE. II
II~ COpy LOAD THRU R 1. II
1I~1 RN II
1I1st binary record of RNII

II last binary record of RN (end record)1I
II~ COpy R2 THRU SYSEND. II

3. To delete a system routine (IIR711) which appears on

the old system tape between system routines IIR6 11

and IIR8 11 :

II~C CR1W. II
II~ASSIGN S=MTOW,Xl=MTlW,UI=CR1W.II
II~UPDATE. II
II~ COPY LOAD THRU R6. II
II~ COpy R8 THRU SYSEND. II

4. To replace a system routine (IIR711), appearing on

the old system tape between IIR6 11 and IIR8 11
, with

a new version of IIR7 11 :

"~C CR1W. II
II~ASSIGN S=MTOW, X l=MTlW, UI=CR lW. II
II~UPDATE. II
II~ COpy LOAD THRU R6. II
1I~1 R7 II
III st binary record of new version of R711

"Iast binary record of new version of R7"
II~ COpy R8 THRU SYSEND. II

5. To insert a new subroutine (IINEWII) as the first

subdivision under IILlBRARYII, where IILlBRARYIl is

the name in a Levell MONARCH ID Record on the

old system tape, IICDR II is the name in the Level

MONARCH ID Record immediately preceding

"LlBRARYli! and IICDRpll is the name in the first

27

Level 2 MONARCH ID Record under "LlBRARyl!

on the old system tape.

II~C CR1W. II
IIMSSIGN S=MTOW,Xl=MTlW,UI=CR1W. 1I

II~UPDATE. II
II~ COpy LOAD THRU CDR. II
II~ 1 LIBRARY ... II
1I~2 NEW II
III st binary record of NEW II

IIlast bi nary record of NEW II

II~ COpy LIBRARY (CDRP) THRU SYSEND. II

ERROR "HALTS" DURING UPDATE RUNS

Certain error conditions occurring during an update run

cause an error message to be typed and the computer to

halt. These error conditions are identified below along

with the error message, the contents of the C register,

and corrective action needed. The term OST refers to

the old system tape (S), the term NST refers to the new

system tape (Xl), and the term UPD refers to the update

input medium (U 1), in the texts of the error messages.

a. Message is: IIUPDATE CONTROL MSG OR

MONARCH ID RECORD NOT RECEIVED. II .

The computer does not ha I t; instead, the

Update Routine attempts to read a record from

the control message medium.

The error condition results from failure to

supply a COpy message (or a COpy message

whose first 4 characters are not II~/\I\/\II), or

failure to supply a legal Levell or Level 2

MO NARC H ID Record.

Corrective action: Since the erroneous

record has a Iready been read, and rejected,

corrective action consists of suppl ying the

missing (or corrected) COpy message or ID re­

cord via the control message medium (C).

b. Message is: IIUNABLE TO POSITION NST AT

LOAD POINT. II.

(C) = 0 20 1 1 1 1 1 •

Corrective action: Manually position the tape

at load point and clear the halt.

c. Message is: "UNABLE TO POSITION OST AT

LOAD POINT. ".

(C) = 0 20 22222.

Corrective action: Same as b.

d. Message is: "ABNORMAL CONDITION,

NST. ".

(C) = 0 20 1 111 1.

Abnormal condition could be due to: buffer

error, tape is file-protected, end-of-tape

sensed, etc.

Corrective action: Manually ready the tape

unit for writing and clear the halt.

e. Message is: "ABNORMAL CONDITION OST.".

(C) = 0 20 22222.

Abnormal condition could be due to buffer

error, unit not ready, etc.

Corrective action: Manually ready the unit

for reading and clear the halt.

f. Message is: "ABNORMAL CONDITION,

UPDATE INPUT (UPD). ".

(C) = 0 20 33333.

See e above.

g. Message is: "ABNORMAL CONDITION,

MESSAGE INPUT MEDIUM. ".

(C) = 0 20 04444.

See e above.

28

h. Message is: "ILLEGAL COpy MESSAGE, OR

COpy MESSAGE REQUIRED. ".

(C) = 0 20 04444.

Corrective action: Supply the correct (or mis­

sing) COpy message via the control message

medium and clear the halt (vice-versa if control

message medium is an on-line typewriter).

i. Message is: "ILLEGAL RECORD FORMAT,

OST. ".

(C) = 0 20 22222.

Corrective action: None. C lear the ha I t to

ignore the error. See Appendix B for a descrip­

tion of legal OST records.

i. Message is: "SEARCH OF OST FOR 1 ST

ARGUMENT OF "COPY" FAILED. ".

(C) = 0 20 02222.

Corrective action: Correct COpy message(s)

and rerun the update.

h. Message is: "CHECKSUM ERROR, OST OR

UPD BINARY OR ENCODED RECORD. ".

(C) = 0 20 00004.

Corrective action: None. Clear the halt to

ignore the error.

APPENDIX A

THE MONARCH UNIT ASSIGNMENT TABLE (UAT)

To allow the use of the same input/output device for the same function throughout a series of runs, MONARCH

maintains a table of standard unit assignments in upper memory. Each entry represents, by convention, a particular

input or output function. For example, in a batch of runs consisting of assemblies and compilations, it is desirable to

be able to designate a particular output unit (e. g., a card punch) as the unit on which all object programs are to be

written. In the MONARCH System, this unit is referred to as the Binary Output Unit (BO).

Ten such input/output functions have been (initially) designated in the MONARCH System; additional functions may

be added at a later date. The format of the Unit Assignment Table entries and a description of the ten currently

provided functions are given below.

The standard SDS 900 Series I/O subroutines are constructed in such a way that they can make use of the MO NARCH

Unit Assignment Table to obtain unit and channel codes for their operation. The reader should consult the description

of these subroutines for additional information regarding the use of the MONARCH Unit Assignment Table.

Format of l-word unit assignment table entries:

Ul

(1)

o
C:

0

U2 C

(4) (3) 0

2 5 6 8 9 10
Channel Designator

C = ° W buffer

C = 1 Y buffer

Address of I/O Subrouti ne

(14)

U 1 U2: Unit Address Code (5 low-order bits of the 6-bit unit address code)

The high speed printers are designated, in UAT entries, by 208 (No. 1) and 218 (No.2).

Standard unit assignment entries:

Function

1. Control message input

2. System (MONARCH magnetic tape)

3. System scratch

4. System intermediate output scratch (magnetic tape)

5. System scratch (magnetic tape)

6. Symbolic input (e. g., card reader)

7. Symbolic output, Update input

8. Binary input (loader uses this)

9. Binary output (e. g., card punch)

,,, " ••• I •• \
I V. LIST OUTpUT \ e. g., PrJ nrer J

29

External
Label

$QMSG

$QSYS

$QSYST

$QSYSI

$QSYSP

$QSYMI

$QSYSU

$QBINI

$QBINO

23

MONARCH
Symbolic
Parameter

S

Xl

X2

X3

SI

SO, UI

BI

BO

I r"\
L.\..J

When a standard system routine is loaded, MONARCH selectively loads any standard I/O subroutines required for

I/O functions which the processor is expected to perform. The address of each I/O subroutine loaded is stored in the

UAT entries whose un it address codes correspond to that subroutine. For example, the MONARCH Update Routine

makes use of th is feature to obtain the I/O subroutines needed to perform its input/output functions.

MONARCH maintains a list of standard I/O functions required for each standard system routine, in addition to the

initial loading address for the first I/O subroutine, to be loaded for operation with that routine.

MONARCH provides external label definitions for Unit Assignment Table entries which correspond to I/O routines

selectively loaded by MONARCH, using the MONARCH Loader.

The I/O subroutines are referred to indirectly through the Unit Assignment Table in upper memory. Unit assignments

can be made externally through "ASSIGN" messages. Note that the IIASSIGN" message does not set up I/O sub­

routine addresses (bits 1 0 through 14) in UAT entries.

30

APPENDIX B

THE MONARCH SYSTEM TAPE

A MONARCH system tape consists of an ordered collection of programs and data files and is preceded on the system

tape by a special "bootstrap" loader which can be loaded under control of the magnetic tape "FILL" switch on the

SDS 925 and 930 Computers. The "bootstrap II loader, in turn, loads the MONARCH Loader and the MONARCH Mon itor.

All programs (or processors) on the system tape except the "bootstrap II loader and the MONARCH loader are preceded by

MONARCH ID Records. Only the first 16 characters of a MONARCH ID Record are interpreted by the MONARCH

Operating System. MONARCH ID Records have the following format:

Char. pos.
Contents

1 2
6. n

3 4 5
b b b

6 7 8 9 10 11
b b b a c c

12 13 14 15
c c c c

16 17
c e

18
e

19)

e)

, 70 71 72

) e e e

n = 1 or 2, b = space, a = any alphabetic char., c = a or any digit or b, e = any character.

Major divisions of a MONARCH system are preceded, on the system tape, by a Levell MONARCH ID Record:

e. g., "6.11\1\1\1\1\I\PROGNAME •.. ".

Minor divisions of a MONARCH system are preceded, on the system tape, by a Level 2 MONARCH ID Record:

e. g., 116.21\1\/\ 1\-1\/\ SUBRNAME. •. ".

M;nor divisions of a MONARCH system are arbitrary subdivisions of a program or of a data file which are recognized

by the MONARCH Update Routine. Normally, these subdivisions serve only to enable the user to update an old sys­

tem tape at the subdivision level, i. e., to insert, delete or replace one or more subdivisions of a program without

affecting the remaining subdivisions. The Level 2 subdivisions of the MONARCH Library serve to separate the indivi­

dual subroutines on the library for the MONARCH loader as well as making it possible to insert, delete and replace

them individua Ily.

The program names occurring in Levell MONARCH ID Records must be unique within a given MONARCH system

tape. The program names occurring in Level 2 MONARCH ID Records must be unique within a given major subdivision

of a MONARCH system tape. The following additional rules apply to the program names on a given MONARCH

system tape:

If "A II and "B" are program names occurring in Level 1 MONARCH ID Records and "X II and lIyll are program names

occurring in Level 2 MONARCH ID Records, then:

a. A and B must not be the same name.

b. X and Y can both occur as names of subdivisions of A provided that X and Yare not the same name.

c. IIAII can be the name of a subdivision of A, i. e., A can occur in a Level 2 MONARCH ID Record

which is in the scope of a Levell MONARCH ID Record with the name IIA II.

d. X can occur as the name of a subdivision of A and also as the name of a subdivision of B.

e. B can occur as the name of a subdivision of A.

The last record on a MONARCH system tape is a Levell MONARCH ID Record with the program name IISYSEND II in

characters 9 through 14 {15 and 16 must be blank}.

31

The MONARCH Monitor, the MONARCH Loader and the MONARCH Update Routine all make use of MONARCH ID

Records to locate programs, or data files, on a MONARCH system tape.

The system tape contains the Monitor, the MONARCH Loader, the system tape Update Routine, and such other stan­

dard system routines as shall be required by the particular installation using this operating system. The system tape

unit will be unit 0 on the W buffer for the SDS 910/920 and unit 0 on channel W for the SDS 930.

A typical system tape is described below in terms of the standard system routines it contains:

MONARCH Bootstrap Loader

MONARCH Loader

Monitor

Standard input/output subroutines

Program Library (including Programmed Operator subroutines)

SDS 920/930 META-SYMBOL Assembler System

Translator

META-SYMBOL Assembler

Procedures

Card-to-tape conversion routine

Tape-to-card conversion routine

Tape-to-printer conversion routine

FORTRAN loader

FORTRAN compi ler

FORTRAN" library

System Tape Update Routine

End of system tape (".6.1 """""" SYSEND 1\1\ ")

THE MONARCH SYSTEM TAPE

FORMAT OF FIRST WORDS OF VALID SYSTEM TAPE RECORDS

UNIVERSAL BINARY OBJECT PROGRAM RECORD (1st word)

Record
Word Count (C)

Mode
Folded Checksum (FC) Type (T) (Binary)

(3) (1) (5) 1 0 1 (12)

o 2 3 8 9 11 12

META-SYMBOL ENCODED PROGRAM RECORD (lst word)

Recotr) Type T Word Count (C) Mode Folded Checksum

(3) (6) 1 1 1 (12)

o 2 3 8 9 11 12

32

)

}

23 0

~
1
j)

23 0

MONARCH ID RECORD (1st word)

6. Char. Zero
MOde
(IDL)

1 0 1 1 1 1 0 0 0 o Uj U /
1 1 1

o 5 6 11 12

IDL = 001, Major Division - Levell ID Record

IDL = 010, Minor Division - Level 2 ID Record

Space Char.

1 0 0 0

MONARCH BOOTSTRAP LOADER (1st word = WIM 012.2)

x OP I Address

0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0

33

Space Char.)

0 1 1 0 0 0 0)

17 18 23 0

0 0 0 1 0 1 0

APPENDIX C

CURRENT MONARCH FUNCTIONS AND CONTROL MESSAGES

Functions Page

FILLSYS 37

C 38

ASSIGN 39

ONLINE 40

DISPLAY 41

SHOW 42

SET 43

POSITION 44

REWIND 45

JOB 46

ENDJOB 47

LABEL 48

METASYM 49

LOAD 50

FORTRAN 51

FORTLOAD 52

UPDATE 53

35

Purpose:

Action:

Parameter:

Example:

APPENDIX C (Continued)

FILLSYS

To transfer control to the Monitor Bootstrap Routine which will rewind the

system tape and initiate the reloading of the MONARCH System. The mes­

sage is equivalent to executing an unconditional branch to memory location 1.

The system tape is rewound and the MONARCH Bootstrap Loader is read from

the system tape and executed.

None.

II.6.F ILLS YS. II

37

Purpose:

Action:

Parameters:

Example:

APPENDIX C (Continued)

C

To assign a specific input unit on a specific channel as the device from which

MONARCH control messages are to be obtained.

After interpreting and validating the parameter in the message, the unit and

channel designations specified are stored in the UAT entry (QMSG) for

MONARCH control messages.

One, and only one, parameter must occur in the message.

The value of the parameter must be an EOM instruction (operation code of 02)

with the channel designation in bit 17 and a legitimate unit code in bits 18

through 23. Specifically, the unit address code should be in the range 018

through 178•

II.6.C PR1W. II

This message assigns paper tape reader 1 on the W buffer as the control mes­

sage input device.

38

Purpose:

Action:

Parameters:

Example:

APPENDIX C (Continued)

ASSIGN

To assign specific input/output units to functions represented by the MONARCH

Unit Assignment Table (UAT).

After interpreting and validating the parameters in the message, the unit and

channel designations specified are stored in the UAT entrie$ specified.

At least one pair of parameters must be given, and a maximum of 9 pairs is

allowed.

a. The value of the first parameter of a pair must be the memory address

of the UAT entry to be set.

b. The value of the second parameter of a pair must be an EOM instruction

(operation code of 02) with the channel designation in bit 17 and a

legitimate unit code in bits 18 through 23.

IIMSSIGN BI=CR1W, BO=CP1W. II

This message assigns card reader 1 on the W buffer as the IIbinary input ll

device, and card punch 1 on the W buffer as the IIbinary output ll device.

39

Purpose:

Action:

Parameters:

Example:

APPENDIX C (Continued)

ONLINE

To assign specific input/output units to functions represented by the MONARCH

Unit Assignment Table (UAT).

After interpreting and validating the parameters in the message, the unit and

channel designations specified are stored in the UAT entries specified.

At least one pair of parameters must be given, and a maximum of 9 pairs is

allowed.

a. The value of the first parameter of a pair must be the memory address

of the UA T entry to be set.

b. The value of the second parameter of a pair must be an EOM instruction

(operation code of 02) with the channel designation in bit 17 and a

legitimate unit code in bits 18 through 23.

"~ ONLINE BI=CR1W, BO=CP1W. II

This message assigns card reader 1 on the W buffer as the "binary input"

device, and card punch 1 on the W buffer as the "binary output II device.

40

Purpose:

Action:

Parameters:

Example:

APPENDIX C (Continued)

DISPLAY

To provide a means of displaying the contents of one or more memory locations

on the console typewriter.

After interpreting and validating the parameter(s} the contents of each desig­

nated memory location is converted to octal and, together with its octal address,

is typed on typewriter 1 on the W buffer.

There must be either one or three parameters. The value of the first parameter

must be a legitimate memory address. If three parameters are given, the value

of the second must be "THRU" and the value of the third must be a memory

address greater than or equal to the value of the first parameter.

a. One parameter:

II~DISPLAY 037777."

If we assume that location 037777 contains zero, then this message wi II cause

the followi ng to be typed:

II [037777] = 000000000"

b. Three parameters:

"~ DISPLAY 0164 THRU 0174. II

This message wi II cause the address and contents of each of the 11 locations

specified to be typed.

41

Purpose:

Action:

Parameters:

Example:

APPENDIX C (Continued)

SHOW

To provide a means of displaying the contents of one or more memory locations

on the console typewriter.

After interpreti ng and val idati ng the parameter{s} the contents of each desig­

nated memory location is converted to octal and, together with its octal address,

is typed on typewriter 1 on the W buffer.

There must be either one or three parameters. The value of the first parameter

must be a legitimate memory address. If three parameters are given, the value

of the second must be "THRU" and the value of the third must be a memory

address greater than or equal to the value of the first parameter.

a. One parameter:

",6.SHOW 037777. 11

If we assume that location 037777 contains zero, then this message will cause

the followi ng to be typed:

II [037777] = 000000000"

b. Three parameters:

II,6.SHOW 0164 THRU 0174."

This message will cause the address and contents of each of the 11 locations

specified to be typed.

42

Purpose:

Action:

Parameters:

Example:

APPENDIX C (Continued)

SET

To set the contents of the specified memory location to the value indicated.

After interpreting and validating the parameters the memory location specified

by the first parameter is set equal to the value of the second parameter.

MONARCH then attempts to read the next control message.

Two, and only two, parameters must be supplied.

a. The value of the first parameter must be a legitimate memory address.

b. The value of the second parameter is stored in the location specified

by the fi rst.

The message

II.6.SET 017 = -59. II

will cause the contents of cell 0178 to be set to -738.

43

Purpose:

Action:

Parameters:

Example:

APPENDIX C (Continued)

POSITION

To position a magnetic tape at a given file by reading successive records (in

a forward direction) until a level 1 MONARCH ID record is found which con­

tains, in characters 9-16, the File ID specified.

Records are read, under control of the MONARCH Search Subroutine, from the

tape unit specified by the first parameter unti I a level 1 MONARCH ID Record

is read then:

a. If characters 9 through 16 contain the File ID specified by the

second parameter, control is returned to MONARCH to obtain

the next control message. The tape wi II be posi tioned in the

inter-record gap which follows the ID record.

b. If characters 9 through 16 contain "SYSEND",," then a

message is typed indicating that the specified MONARCH

ID Record was not found, and control is returned to

MONARCH to obtain the next control message.

c. If characters 9 through 16 contain neither "SYSENDI\/\ II

nor the specified FILE ID, then the search is continued

until either condition a or condition b is satisfied.

The tape is read in binary ("odd" parity) mode and the maximum record

length is assumed to be 40 words (160 characters).

Two parameters must be given.

a. The value of the first parameter must be an EOM instruc­

tion (operation code of 028) with the channel designation

in bit 17 and a legitimate tape unit address in bits 18

through 23.

b. The value of the second parameter is used as the search

key; it can be from 1 to 8 characters in length. Trailing

spaces (608) are supplied if fewer than 8 characters are

given.

The message

"D.POSITION MT2, "FILEIDEN". II will cause MONARCH to

position tape unit 2 on the W buffer in front of the first record

following the level 1 MONARCH ID Record which contains

"FILEIDEN" in characters 9 through 16.

44

Purpose:

Action:

Parameters:

Example:

APPENDIX C (Continued)

REWIND

To cause MONARCH to rewind the specified magnetic tape unit.

The tape unit specified by the parameter is rewound.

One, and only one, parameter must be supplied. Its value must be an EOM

instruction (operation code of 028) with the channel designation in bit 17 and

a legitimate tape unit address in bits 18 through 23.

The message

IIb.REWIND MT3. II

will cause MONARCH to rewind magnetic tape unit 3 on the W buffer.

45

Purpose:

Action:

Parameters:

Example:

APPENDIX C (Continued)

JOB

To set the JOB mode switch and reset the processor error switch.

When MONARCH encounters a II LOAD II control message wh i Ie the JOB mode

switch is set, the processor error switch is tested and:

a. If the processor error switch is set, a message is typed indicating

that a processor error has occurred. MONARCH wi II ignore the

II LOAD II message and attempt to read the next control message

from the current control message medium.

b. If the processor error switch is reset, the II LOAD II message is

processed regardless of the status of the processor error switch.

The memory cell containing the JOB and the processor error switches is set to

400000008' Bit zero represents the JOB switch and bits 1 through 23 represents

the processor error switch.

None.

"L~:.JOB. II

46

Purpose:

Action:

Parameters:

Example:

APPENDIX C (Continued)

ENDJOB

To reset the JOB switch and the processor error switch. See JOB message

description.

The memory cell containing the JOB and processor error switches is set to zero.

None.

"~ENDJOB. II

47

Purpose:

Action:

Parameters:

Example;

APPENDIX C (Continued)

LABEL

To write a Levell MONARCH ID record on a magnetic tape.

See Appendix B for a definition of MONARCH 10 Records.

A Levell MONARCH 10 Record is constructed with the name field (characters

9 through 16) containing the identifier specified as the second parameter. This

10 record is then written on the magnetic tape specified by the first parameter.

A 4C>-character record is written in binary (llodd il parity) mode.

At least one parameter must be given.

a. The value of the first parameter must be an EOM instruction

(operation code 02) with the channel designation in bit 17

and a legitimate magnetic tape unit address in bits 18

through 23.

b. The second parameter is optional. If not given, the 10

record written will contain spaces {608} in the name field

(characters 9 through 16). When present, this parameter,

which can be given as a double precision literal, will be

used to construct an 8-character name. If less than 8

characters are given, the name field will contain (trailing)

spaces in the right-most character positions.

II~LABEL MT3W, IIFILENAMEII. II

This message will cause MONARCH to write a Levell MONARCH 10 Record

on magnetic tape unit 30n the W buffer. Characters 9 through 16 of this record

will contain IIFILENAMEII.

48

Purpose:

Action:

Parameters:

Example:

APPENDIX C (Continued)

METASYM

To cause MONARCH to load the META-SYMBOL Assembly System and transfer

control to it.

The parameters are interpreted and validated and then MONARCH searches the

system tape for the first program in the META-SYMBOL system routine and loads

it and transfers control to it. MONARCH and META-SYMBOL assume that the

necessary input/output units have been assigned and that all tape units, except

scratch tapes, are correctly positioned.

At least one parameter from each of the first two groups (a and b below) must be

given. The parameters may occur in any order in the control message.

a. Parameters specifying input to META-SYMBOL:

Symbol ic parameter META-SYMBO L input

SI symbolic input

EI encoded input

b. Parameters specifying output data to be provided by META-SYMBOL:

Symbolic parameter META-SYMBOL output

SO symbol ic {source} output

EO

BO

LO

encoded output

binary output

I istable output

c. If compatibility mode translation of symbolic input is desired, the

symbolic parameter C should be included in the control message.

IIl::l.METASYM SI, LO. II

This message requests META-SYMBOL to assemble a symbolic source program

and produce an assembly listing as the only output.

49

Purpose:

Action:

Parameters:

Example:

APPENDIX C (Continued)

LOAD

To load one or more binary object programs using the MONARCH Loader.

See Section 3 for a description of the MONARCH Loader and a discussion of

its capabil ities.

The parameters are interpreted and val idated and then if a Program ID

parameter was given, MONARCH wi" search for the Levell MO NARCH ID

Record containing that ID by reading records from the binary input device (SI)

currently assigned. Whether or not a Program ID parameter was given,

MO NARCH wi" then transfer control to the MO NARCH Loader.

At least one and at most 3 parameters must be given.

a. The value of the first parameter is interpreted by the loader

as the initial load relocation bias.

b. The value of the second parameter is interpreted by the loader

as the Loader Options parameter.

c. The third parameter is optional. If present, its value is interpreted

as a Program ID and this Program ID is assumed to occur in charac­

ters 9 through 16 of a Levell MONARCH ID Record on the current

binary input unit.

"6.LOAD 010000, STOP. II

This message causes the MONARCH Loader to load one or more programs

from the current binary input unit (SI) and stops (halts) after each program

is loaded.

50

Purpose:

Action:

Parameters:

Example:

APPENDIX C (Continued)

FORTRAN

To cause MONARCH to load the FORTRAN compiler.

The parameters are interpreted and MONARCH then searches the system

tape for the FORTRAN compiler, loads it, and transfers control to FORTRAN.

Zero to three parameters may be given. The parameters may occur in any

order.

a. 51, Symbolic Input. If this parameter is missing, it is

assumed to be present.

b. BO, Binary Output. This will cause an Object program

to be generated. If no I/O unit has been assigned, this

parameter is ignored.

c. LO, List Output. Th is wi II cause an output listing to be

produced. If no I/O unit has been assigned, this para­

meter is ignored.

".6.FORTRAN LO. II

This message requests the FORTRAN compiler to compile and list the source

program. An object program is not generated.

".6. FORTRAN. II

This message requests the FORTRAN compiler to compile a source program;

no listing or object program$ are produced, only the program allocation and

error, if any, will be listed.

51

Purpose:

Action:

Parameters:

Example:

APPENDIX C (Continued)

FORTLOAD

To cause MONARCH to load the FORTRAN Loader.

The parameters are interpreted and MONARCH then searches the system tape

for the FORTRAN Loader, loads it, and transfers control to it.

One to eight parameters may be given. The first specify the mode in which

the loader wi II operate. They are:

MAP - Produces a map of the program on the console

typewriter

LMAP - Produces a Label map on 'the console typewriter.

LTRA - Wi II cause a label trace at execution time.

These three parameters may appear in any order or may be omitted entirely.

They must be first in the parameter string. The other parameters specify

which input devices are to be read. They are read and loaded in the order

that they appear in the parameter list. These devices must have been assigned

and correctly positioned. To load the program unconditionall~a letter V will

follow the parameter.

~FORTLOAD MAP, LMAP, X1U, CRU, X2.

This message will cause the FORTRAN Loader to load, unconditionally, I/O

device Xl unti I an end-of-fi Ie condition is encountered. The card reader is

then read, unconditionally, until an ~EOF card is read. Then I/O device

X2 is read, but only loading the programs that are needed. Finall~ the system

tape is read, loading the needed library and runtime. A MAP and a Label

MAP are produced on the consol e typewri ter.

52

Purpose:

Action:

Parameters:

Example:

APPENDIX C (Continued)

UPDATE

To cause MONARCH to load the system Update Routine and transfer control

to it.

See Section 4 for a description of the Update Routine and the control messages

required for its use.

MONARCH searches the system tape for the Update Routine, loads it, and

transfers control to it.

None.

II~UPDATE. II

53

APPENDIX D

UPDATING M ETA-SYMBOL ON MONARCH TAPES

To change the ENCODER, S4B, MON 1, MSCONTRL, ABSOLUTE LOADER or the PROC deck, use the standard

MONARCH ASSIGN, UPDATE, and COpy control cards. Insert in the update deck the binary (encoded for PROCS)

decks to be changed and do a norma I update.

The order of programs on the MO NARCH system tape is:

b.1 METASYM

b.2 ENCODER (inc ludes ENCODER followed by S4B).

b.2 MON1 (includes MON1 followed by the absolute loader).

b.2 MSCONTRL.

b.2 PREASSEM (includes PREASM absolute followed by encoded system PROCS).

b.2 ASSEMBLER. META-SYMBOL absolute.

When updating a section of META-SYMBOL all portions of the labeled segment must be updated. For example, to

insert a new PROC deck, one must also insert the PREASM absolute deck preceding it.

To update PREASSEM and ASSEMBLER, use the normal update procedure. If the changes are via binary patches, the

patches are inserted at the end of the absolute binary deck just preceding the END card and the update performed.

If the ASSEMBLER or the PREASM are modified through reassembl~ it is necessary to convert these programs to absolutt

before placing them on the updated system tape. After conversion to absolute and inserting the transfer card, update

these portions of the system I ike any other portion.

To generate an absolute version of ASSEMBLER or PREASSEM, load the relocatable binary program using the MONARC

LOAD procedure. It may be good practice to stop after each segment and record the relocation bias so that they are

available for binary patching and debugging.

After loading the relocatable program, load the dump routine (deck to be supplied); leave all keys in the reset position

while loading the dump. This deck has a 1-card loader preceding it; therefore, to load, do a bootstrap from cards.

When the dump program is loaded the program halts with a NOP to 012121 showing in the C register. At this point,

enter into the A register the first location to punch and into B the last location of the program (the relocation bias of

the last segment plus its length).

Place RUN-IDLE-STEP in RUN and the program is punched in absolute binary format onto cards. This simple dump

routine punches full cards so that you may actually punch a few words following the end of the program. Also, the

dump does not punch the transfer card (END card). If the starting location of the program changes the END card, itwil

have to be repunched manua Ily usi ng standard UB L format. Norma 11y, the END card from the previous absol ute deck

can be used.

A few comments about increasing program sizes is in order here. If the S4B portion of the ENCODER increases in SiZE

by more than a few words, the origin of the tables generated by the ENCODER must be changed. To move these table~

reassemble the ENCODER modifying the symbol TABLES defined at the end of the ENCODER by an EQU directive.

55

If the size of ASSEMBLER increases in size, the constant DTAB in the preassembler must be changed. This can be done

by inserting a binary patch redefining this constant as needed. DTAB is the origin of the encoded dictionary.

If the size of the MSCONTROL program is increased, it is necessary to reassemble and move everything following it

including the ENCODER, parts 1 and 2 of PREASSEM and part 1 of ASSEMBLER. If this becomes necessary, the con­

stants CPO, BPO, HED, CSEQ and CORG must be appropriately redefined in both parts of PREASSEMandtheconstants

LITAB and PACKL must be redefined in part 1 of ASSEMBLER. The origins of these programs will also change.

56

APPENDIX E

SDS STANDARD BINARY LANGUAGE

The following description specifies a standard binary language for the SDS 900 Series and 9300 Computers. The

intention has been that this language be both computer-independent and medium-independent. Thus,there is

provision for handling Programmed Operator definitions and references even though the 9300 does not have this

hardware featurej similarly, there is a provision for relocation relative to blank COMMON, even though this

requirement is not present in SDS 900 Series FORTRAN II.

In the following, a file is the total binary output from the assembly/compilation of one program or subprogram.

A file is both a physical and a logical entity since it can be subdivided physically into unit records and logically

into information blocks. While a unit record (in the case of cards) may contain more than one record, a logical

record may not overflow from one unit record to another.

o

1. CO NTRO L WORD - 1st word in each type of record

Type (T)
~ Mode

~ Word Count (C) (binary) Folded Checksum (FC)
~

Field

101 contents

2 3 4 89 11 12 23 bit number

T RECORD TYPE

Data Record (text) 000

001

010

011

External References & Definitions, Block & Program Lengths

Programmed Operator References and Definitions

End Record (Program or Subroutine end)

100 thru 111 Not Assigned

C = total number of words in record, including Control Word

Note that the first word contains suffic ient information for handl ing these records by

routines other than the loader (that is, tape or card duplicate routines.) The format

is also medium-independent, but preserves the MO DE indicator positions desirable

for off-I ine card-handl ing.

An exclusive OR checksum is used. If the symbol -- is used to denote exclusive OR,

and W. denotes the i -th word in the record, 1 < i < C, then
1-_

FC = (W1)0-11 -- (C) 0-11 -- (C)12-23 -- 07777

where

C = W 2 -- W 3 -- ••• -- W c

57

2.

Control
Word

Load
Address
Word

Data
Word 1

Load
Relocation

Common
Relocation

Programmed
Operator
Relocation

Special
I/O

Relocation

DATA RECORD FORMAT (T=O)

Record ~ 3~C~30 Mode
Folded Checksum Type (T) ~ (binary)

000 0 101
o 234 89 11 12

~ Data Word Load Address

~ Modifiers (M) Modifiers (A) Load Address (Relative or Absolute)

0
o 1 4 5 8 9

Instruction or Constant

o

Words 3 thru n+2 contain instructions or constants, (where 1~n~24)

Load address relocation word (present iff (M) (\1=1)

o

Blank common relocation word (present iff (M) " 2=2)

u

Programmed operator relocation word (present iff (M) A 4=4)

o

SpE~cial In~utLOutput operation relocation (present iff (M) f\ 8=8)

o

58

Word 1

23

Word 2

23

Word 3

23

Word n+3

23

Word n+4

Word n+5

23

Word n+6

23

Words n+3 thru n+6 are modifier words. Each bit in each of these words corresponds

to a data word (bits 0 thru 23 correspond to words 3 thru n+2, respectively). A bit set

to one (1) indicates that the specified data word required modification by the loader.

There are four (4) types of modification (and hence four possible modifier words) which

are indicated in data records. Presence of a modifier word is indicated by the M (data

word modifier) field in the load address word.

The load address is subject to modification as indicated by the IIAII field of the load

address word as follows «A) = 0 means absolute):

(A)f'\l=l, current load relocation bias is added to load address

(AY"2=2, current common relocation bias is added to load address

the remaining bits of A are unassigned. (A)=3 is illegal.

3. EXTERNAL REFERENCES AND DEFINITIONS, BLOC K AND PROGRAM LENGTHS

Control
Word

* From

Common
or Program
Length
Item

External
Reference
Item

(T= 1) (Includes labeled common, blank common and program lengths)

Record ~ 4~C~31*
Mode

Folded Checksum
Type (T) ~ (binary)

Word 1

001 0 101

0 234 8 9 11 12 23

1 to 10 items per record

I} Cl C2 C3 C4 1 to 8
char.

C5 C6 C7 C8 LABEL

Item B C Length
Type Length of Program or Common Block (L) Word

00 00000
0 1 2 6 7 8 9 23

'-----~~:..:~-----~.=.6.::..2 -----=~::.::~~----~.:.:..:...------II} La~1

Item Address
Type Modifiers (A)**

01 000

o 1 245

Address of Last Reference

8 9

59

23

Chain
Word

External
Definition
Item

Labelled
Common
Reference
Item*

4.

Control
Word

~--------~~~~~------~~~~---------~~7~3--------~~~:~------4IJr La~1
Item Address

Absolute or Relocatable Value Type Modifiers (A)**

10 000

o 8 9 23

External symbolic definitions include subroutine "identification" as a subset and require

no special treatment of subroutines with multiple names. B = 1 if (L) is program length,

C = 1 if (L) is length of a labeled common block.

** See data record, load address word, for interpretation

Cl C2 C3 C4

C5 C6 C7 C8

Item Address Address of Last Reference
Type Modifiers

11 000

l~·
2 4 5 8 9

~ not used Va I ue of Addend

000000000
0 8 9

PROGRAMMED OPERATOR REFERENCES AND DEFINITIONS (T=2)

Record ~ 4~C~31** Mode
Folded Checksum

Type (T) ~ (Binary)

010 0 101

o 234 8 9 11 12

*One of these items for each unique reference; e.g., each of the following
references is represented by a separate item:

A+5, B+5, B+6, C+2, C+5

** From 1 to 10 items per record

60

I}

23

23

23

Value
Word

Label

Chain
Word

Addend
Word

Word 1

Internal
Programmed
Operator

Programmed
Operator
Reference

External
Programmed
Operator
Definition

--<

Control
Word

Length of
Program

Transfer
Word

~~~~~_C_l~~~~~C~2~~~~~C~3~~~~~C~4~~~~I'} 1 to 8C~or. 
C5 C6 C7 C8 . Mnemonic 

Item 
Sequence No. R Origin of Programmed Operator Routine 

Type 

00 1 

0 1 2 7 8 9 23 

I} 1 to 8 C~ar. Cl C2 C3 C4 

C5 C6 C7 C8 Mnemonic 

Item 
Sequence No. R Not used 

T e 

01 0 000000000000000 

0 1 2 7 8 9 

1 ~1 ~2 C3 C4 

C5 C6 C7 C8 

Item 
Sequence No. R Orig in of Programmed Operator Routine 

Tvoe 

10 1 

o 1 2 789 23 

R=l iff origin of Programmed Operator Routine is relocatable. 
The sequence No. indicates the order in which the definitions or reference occurred 
in the source program. 

5. END RECORD (T=3) 

Record 
2~C~4 

Mode 
Folded Checksum 

Type (T) (Binary) 

011 0 101 

0 234 8 9 11 12 23 

Transfer Word 
l+Maxirnum Value of Location Counter 

Modifiers (M)* 

0 0000 

0 4 5 8 9 23 

I "BRU" Transfer Address 

000 000001 

0 2 3 89 23 

This may be followed by modifier words as described in Section 2. 

*See data record description for interpretation 

61 

I } 

1 to 8 Char. 
Mnemonic 

Word 1 

Word 2 

Word 3 



s J:.::»ts SCIENTIFIC DATA SYSTEMS / 1649 Seventeenth Street / Santa Monica, Cali forn ia/ Phone: (213) UP 0-5471 

c SCIENTIFIC DATA SYSTEMS 1964 PRINTED IN USA 900566A 


	000
	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	xBack

