
Price: $2.75

SOS MONARCH REFERENCE MANUAL

900 SERIES/9300 COMPUTERS

August 1965

SB;) I »)!§1

SCIENTIFIC DATA SYSTEMS/1649 Seventeenth Street/Santa Monica, Caiifornia/UP 1-0960

©1964.1965 Scientific Data Systems, Inc. Printed in U.S.A.

ii

REVISIONS

This publication, SDS 90 05 66B, supersedes the MONARCH Reference Manual, SDS 900566A.
Extensive add! tions and revisions have been made to the previous manua I. The new materia I includes:

Operating Environment for each processor---------------

New functions for control message METAXXXX ------------- 7

New control messages:

SYMBOL-------------------~ 7
ALGOL------·~-------------~ 7
FORTLINK --------------------- 9
ALGOLOAD------------------~10
SKIPFILE 12
SKIPREC 12
BAC KFILE 12
BAC KREC 12
EOF 13

Section 4, "Programming for MONARCH"---------------20

Section 5, "Preparing Program Decks" 29

Section 6, "Operating Procedures" 35

Appendix E, "FORTRAN Linkage" 54

Appendix G, 11 Piocessor Diagnostics" ~-------------~-65

CONTENTS

l. INTRODUCTION----------

Operating Environment-------­
MONARCH ---------­
META-SYMBOL/SYMBOL----­
FOR TRAN 11---------­
ALGOL------------

1
1
l
2
2

Functions of MONARCH 2
How MONARCH Performs Its Functions-- 2
Salient MONARCH Features 2

2. MONARCH CONTROL MESSAGES AND
FUNCTIONS----------- 3

Syntax of Control Messages 3
Control Message Parameters 3

Numeric Parameters 3
Literal Parameters 4
Symbolic Parameters 4

Control Message Formats 4
System Contro I 5

JOB 5
ENDJOB 5
ASSIGN (ONLINE) 5

Processor Control 6
METAXXXX 6
SYMBOL 7
FORTRAN 7
ALGOL 7

Input Control 8
FILL SYS 8
LOAD 8
FORTLOAD 9
FORTLINK 9
ALGOLOAD--------10

Utility Functions 10
c 10
SET 10
LABEL 10
DISPLAY (SHOW) 11
POSITION 11
REWIND 12
SKIPFILE 12
SKI PR EC 12
BACKFILE 12
BACKREC 12
WEOF 12
BOOTLOAD 13
CARDTAPE 13
EOF 13

System Maintenance 14
UPDATE 14

3. THE MONARCH SYSTEM 15

Monitor -------------15
Standard System Routines 15
Termination of a Run 16

3. THE MONARCH SYSTEM (cont.)

Loader-------------- 16
Unit Assignment Requirements 17
Storage Al location 17
The Loading Process 18
Automatic Selective Loading from the

MONARCH library-------- 18

4. PROGRAMMING FOR MONARCH 20

Octal Dump Routine 20
Symbol Table Typeout Routine 20
Octal Correction Routine 20
Loader Routine 21
System Update Routine 22

The Update Control Message 22
Controlling an Update Run 23
COPY Messages 24
Contents of a Typical MONARCH

System Tape 26
Examples 27
Error Halts during Update Runs 28

5. PREPARING PROGRAM DEC KS 29

META-SYMBOL Assembly and Execution -- 29
FORTRAN Compi lotion and Execution 30
ALGOL Compi lotion and Execution 33

6. OPERATING PROCEDURES 35

Loading the MONARCH System 35
Furnishing Control Messages 35
Program Ha Its and Recovery Procedures 37
System Output 37

MONARCH Loader's Symbol Table 37
FORTRAN Loader's Output 37

APPENDIXES
A. MONARCH UNIT ASSIGNMENT TABLE -- 39
B. MONARCH SYSTEM TAPE 42
C. LOADER OPERATIONS 48
D. UPDATING META-SYMBOL ON MONARCH

TAPES 53
E. FORTRAN LINKAGE 54
F. SDS STANDARD BINARY LANGUAGE 59
G. PROCESSOR DIAGNOSTICS 65
H. SDS CHARACTER CODES 69

INDEX--------------- 70

ILLUSTRATIONS

l. MONARCH Program Halts and Recovery
Procedures 36

2. FORTRAN Loader Output 38
3. MONARCH Loader Symbol Table 38

iii

1. INTRODUCTION

MONARCH is a batch-oriented operating system that al­
lows batched assemblies, com pi lat ions, and executions.
The MONARCH system is available to users of SOS 9300
Computers and of S DS 900 Series Computers. MONARCH
offers three distinct advantages:

l. Reduced operator intervention increases operational
re I i ab i I i ty.

2. Al I control messages are recorded at the typewriter
for visual verification and permanent logging.

3. Batch processing capability reduces throughput time.

MONARCH allows batch processing to proceed without
the operator having to set up processing parameters or
select input/output devices. Use of appropriate control
cards preceding the program permits intermixing and un­
interrupted processing of assemblies, compi la,tions, and
executions. Printouts of control and error messages are
made available during processing, and the operator is
concerned only with setting up of tapes, I ooding of cards,
etc. If a program fails, the operator inspects the hard
copy of control information and makes necessary adjust­
ments in input/output assignments, tape designations, etc.

A certain portion of MONARCH - cal led the Resident -
remains in main memory at al I times. The resident in­
cludes the MONARCH Bootstrap (to load the MONARCH
operating system), the Unit Assignment Table (UA T), er­
ror and job switches, and memory dump routines. The
MONARCH operating system does not remain in core dur­
ing the execution of programs; only the resident portion
is there. MONARCH is reloaded as needed between jobs.

The major portion of the MONARCH operating system is
the Monitor (see Section 3). The monitor accepts con­
trol information from many input media, assigns periph­
eral equipment as requested, and loads and executes
specified standard system routines. The control mes­
sages must precede the program to be processed. In this
manner, batch processing proceeds free from operator
intervention and may involve the consecutive process­
ing of programs from different media.

During al I operations, a portion of MONARCH resident
in main memory retains a record of input/output assign­
ments and contains the bootstrap. When cal led, the
bootstrap loads a short program (Bootstrap Loader) which
in turn loads the MONARCH loader. The MONARCH
loader can bring any of the following routines into core
from the system tape:

1. The META-SYMBOL Assembler (900 Series only).

2. The SYMBOL Assembler.

3. The META-SYMBOL Loader (loads bi nary object pro­
grams produced by META-SYMBOL and SYMBOL).

4. The FORTRAN II Compiler (900 Series only).

5. The FORTRAN Loader (loads object program pro­
duced by the FORTRAN compiler, necessary sub­
routines from the FORTRAN Library, and the
FORTRAN Run-Time package. 900 Series only).

6. The ALGOL Compiler (not part of the standard
MONARCH system, but available upon request).

7. The ALGOL Loader (loads object programs produced
by ALGOL; provided upon request for the ALGOL
compiler).

8. The Update Routine (al lows modifications and up­
dating of the MONARCH system tape).

The library and utility routines, provided with the system
or added by the user to the system tape, are also brought
into core by the loader.

OPERATING ENVIRONMENT
The operating environment in which this system is to func­
tion is given below. The appropriate interrupt and data
transmission facilities are assumed.

MONARCH

The MONARCH system requires for its use the following
minimum configuration of computer equipment:

l. An SDS 9300 Computer or an SDS 900 Series Com­
puter system with at least 8192 words of core memory.

2. A console typewriter to be used by the system to
communicate with the console operator.

3. Twot or more on-line magnetic tape units. The sys­
tem tape is on a magnetic tape unit.

4. One or more of the fol lowing:

card reader /punch
paper tape reader/punch
line printer

META-SYMBOL/SYMBOL

META-SYMBOL requires 12, 288 words of core memory;
its requirements for input/output devices are the same
as those for MONARCH. SYMBOL operates on the
minimum configuration required by MONARCH.

If both the encoded and symbolic input are on the same
device, an additional magnetic tape or MAGPAK is
required by META-SYMBOL. The same requirement is
true if either the symbolic or encoded input is to be read
from magnetic tape.

tA MAGPAK may be used in place of two magnetic tape
units.

FORTRAN II

FORTRAN II operates on the minimum configuration re­
quired by MONARCH.

ALGOL

In addition to the minimum MONARCH configuration,
ALGOL requires one output device. That is, ALGOL
must have a device for binary output and one (a I ine
printer) for output Ii sting.

FUNCTIONS OF MONARCH

The operating system is a basic program execution pack­
age which provides the fol lowing functions:

l. Loading and execution of standard system routines.
For example:

a. FORTRAN compilation.

b. META-SYMBOL assembly.

c. Punched card-to-magnetic tape conversion.

d. MONARCH system updating.

2. Loading and execution of previously compiled or
assembled programs for checkout or production runs.
For example:

a. Run a previously compiled ALGOL program.

b. Run a program consisting of several previously
compiled subprograms and a previously com­
piled FORTRAN main program.

3. Combined assembly, I oading, and execution of pro­
grams for checkout or production runs. For example:

a. Compile-and-go execution of FORTRAN pro­
grams.

b. Assemble-and-go execution of symbolic pro­
grams.

4. Combinations of the above functions. In the fol I ow­
ing examples the phrases 11 job stack 11 and "batched
job stack 11 refer to the collection of control infor­
mation, programs, and data which are to be pro­
cessed under control of the MONARCH monitor
routine. For example:

2

a. A series of MET A-SYMBOL assemblies.

b. Several META-SYMBOL assemblies intermixed
with one or more META-SYMBOL object pro­
grams to be assembled and then executed.

c. A mixed batch requiring that any or al I
MONARCH functions be carried out in an

arbitrary sequence determined by their order in
the batched job stack.

5. Loading of standard input/ output routines prior to
loading and executing previously assembled pro­
grams, so that these standard routines can be exe­
cuted upon request from the program being run.
For example:

a. Loading standard input/ output routines from the
system tape.

b. Loading a conversion routine or trigonometric
function routine from the MONARCH library.

HOW MONARCH PERFORMS ITS FUNCTIONS
The MONARCH operating system performs its functions
between jobs and does not exercise control over the ex­
ecution of a program once that program has been loaded
and control has been transferred to it. These functions are
indicated to MONARCH via control messages.

Upon request, MONARCH loads a program and then rel in­
quishes control of the computer and its associated periph­
eral equipment to the program. The only possible way
MONARCH can regain control of the computer is if
MONARCH is reloaded from the system tape. This may
be done manually by the console operator or under pro­
gram control by the program being executed.

SALIENT MONARCH FEATURES

The salient features of MONARCH are:

The system minimizes the amount of manual interven­
tion required to execute a succession of independent
or related programs on the computer.

Core memory requirements for the monitor routine are
minimized during program execution. That is, the
monitor performs its functions between program exe­
cutions, and MONARCH holds only those instructions
and data required for continuity of operation during
program execution.

The amount of control information which must be
furnished to the monitor and the system routines is
held to a minimum.

The control information for a 11 system functions is
presented in a consistent and straightforward manner.

Insertion and deletion of routines from the system are
accomplished via a simple update routine.

Routines to be added to the system are introduced in
the standard format used for assembly program output.
That is, al most any program which can be assembled
by SYMBOL or META-SYMBOL can be incorporated
into this operating system as a standard system routine.

2. MONARCH CONTROL MESSAGES AND FUNCTIONS

When the MONARCH system is loaded, the monitor
takes control of the computer and obtains the first item
of control information from the console typewriter. This
item may be any legal control message. With a C con­
trol message, the operator may specify that future con­
trol messages are to be obtained from other input media.
Control messages may be entered through the following
input media:

console typewriter

punched cards via an on-I ine card reader

punched paper tape via a paper tape reader

magnetic tape via a magnetic tape unit (other than
the one on which the system tape is mounted)

When the monitor obtains a control message from a medi­
um other than the typewriter, it types the message be­
fore executing the function requested. (The operator
may direct the monitor to print the control message on
an on-line printer. See "Operating Procedures, 11 Sec­
tion 6.) In this way the monitor informs the console op­
erator of the functions being performed under its control
and maintains a written record of such functions. The
monitor tel Is the operator that a given function is com­
pleted by typing the next control message or by request­
ing the next one from the typewriter.

SYNTAX OF CONTROL MESSAGES

Regardless of which device the monitor accesses for con­
trol information, the format of the messages is the same:

6f.
or

6fApl' P21 ••• ,pi.

6 (l character) indicates the beginning of a message.

f (l to 8 alphanumeric characters) is a mnemonic con­
trol function code.

A indicates a space. These symbols are used to indi­
cate the minimum number of spaces which must sep­
arate the function code and the first parameter.

(l s i s 24) is a symbolic, numeric, or I itera I para­
meter that provides necessary control information
re lated to the control function (f). For example / a
request for the system I oader to I oad a program
must indicate the intitial load relocation bias for
the program that is to be I oaded. A maximum of 24
parameters may be specified in one control message.

A separator. Acceptable separators are

1 =><$[]*/{)/\ 1 @

(1 character) indicates the logical end of message.
The physic a I end of message is indicated by the end
of record in the case of magnetic tape and cards or
by a carriage return in the case of paper tape and
typewriter. The logical end of message is required
only when comments are included.

Regardless of the length of the record containing a con­
trol message, the routine that scans control messages ex­
amines only the first 72 characters (18 words) of the
record. Therefore, the period indicating the end of the
message must occur prior to the 73rd character of the
record.

The first character of a control message is a delta (6).
This character and the function code may be contiguous
or may be separated by one or more spaces. When the
function does not require a parameter list, the function
code is followed by a period; otherwise, a space sepa­
rates the parameter list from the function code.

Various control messages require different numbers of
parameters. If more than one parameter is required, all
but the last must be fol lowed by a separator; the last one
is fol lowed by a period.

CONTROL MESSAGE PARAMETERS

The monitor converts parameters in a MONARCH control
message into a standard internal form. Except for I iterals
(see below), it represents parameters internally as single­
precision, 24-bit, binary values. Hence, the 11 value 11

of a parameter is its internal representation as.a binary
quantity or bit pattern, and it is the "value 11 of a para­
meter that is ultimately examined by the subroutine in
the monitor which processes the specific function code.
Th is method of parameter conversion usually al lows many
ways of representing a given value externally. For ex­
ample, the control message parameters 'OOOA 1 (I iteral
parameter) and MTl W (symbolic parameter) have the fol­
lowing internal representations or values:

1000A 1 = 00000021
MTl W = 00203611

which cou Id be entered as numeric parameters.

NUMERIC PARAMETERS

A numeric parameter may be written as:

1. An octal integer, consisting of up to nine octal dig­
its, the first of which must be zero. An octal in­
teger may be preceded by an algebraic sign:

047, +062, -0, 0, 077777777, -032154767

3

2. A decimal integer, consisting of up to eight deci­
mal digits the first of which must not be zero. A
decimal integer may be preceded by an algebraic
sign:

9, +532, -0, +21657899, -31579988

The first digit of an octal integer must be zero in order
for MONARCH to distinguish it from a decimal integer.

Unsigned octal parameters must have values less than
224; signed octal parameters and al I dee imal parameters
must be less than 223. If the number of digits in a num­
ber exceeds the applicable limit, the least significant
digits are truncated.

Regardless of the form used, the parameter is represented
internally as a single-precision, signed, binary integer.

LITERAL PARAMETERS

A literal parameter consists of up to eight alphanumeric
characters enclosed in single quotation marks (SDS inter­
nal code of 14). t Any legal character (see Appendix H)
except a quotation mark may be written as a literal:

l. A single-precision literal consists of up to 4 charac­
ters:

'A' ~A nl lf'\ATr-llA,., I
A6.D l\AIC A • .:>1

2. A double-precision I iteral consists of up to 8 char­
acters:

'ABC' 'LITERAL' 1ALPHA777 1 1 START:3. I

A I iteral parameter is represented internally as a left­
justified string of internal character codes (six bits each).
A single-precision literal is stored in one computer word.
A double-precision literal is stored in two words:

1ABCDEFGH 1 is stored in a and a+ l as

(a) = 21222324
(a+ l) = 25262730

Spaces (internal code of 60) are used to fill any unspec­
ified character positions. For example:

1ABC 1 is represented internally as 21222360

1 ABC DE' is represented internally as 21222324
25606060

tThe single quotation mark is not present on the type­
writer; however, its internal code (14) is the same as
that of the typewriter symbol @ (upper case 8). There­
fore, whenever input is from the typewriter, the symbol
@ must be used in place of the sing le quotation mark.

4

Double-precision literals are frequently used to desig­
nate program names for MONARCH search functions.
(See LOAD control message.)

SYMBOLIC PARAMETERS

Symboi ic parameters are symbolic representations of par­
ameters associated with many of the control messages ex­
plained later in this section.

Symbolic parameters consist of up to four characters, the
first of which must be alphabetic and the remaining either
alphabetic or numeric. Each symbolic parameter has a
predetermined value (24 bits) which is stored in MON­
ARC H's table of symbolic parameters. Use of a symbol
not defined in this table causes the control message in
which the undefined symbol appeared to be ignored and
an error message to be typed.

A octal parameter with the same value may be substi­
tuted for any symbolic parameter in a control message.

Listed below are the symbolic parameters used to specify
input/output devices to the MONARCH system. In this
list, h specifies the channel and is actually written as W
or Y for 900 Seri es Computers or A, B, C, or D for 9300
Computers. Throughout this manual, references are made
to the 11 W11 and 11 Y11 buffers; users of the 9300 Computer
should substitute the appropriate channel letters in these
places. If h is omitted fiom a parameter, chcnne! \A/ (or
A) is assumed. Then specifies the unit number.

Parameter

CR

CRnh

CPnh

PRnh

PPnh

TY

MTnh

LP

s

Definition

designates the card reader where there is
only one.

designates card reader n on channel h.

designates card punch n on channel h.

designates paper tape reader n on channel h.

designates paper tape punch n on channel h.

designates the console typewriter (i.e.,
typewriter l on channel W).

designates magnetic tape unit n on channel
h.

designates the line printer (i.e., line
printer 1 on channel W).

designates the system tape (i.e., magnetic
tape unit 0 on channel W).

CONTROL MESSAGE FORMATS
The user directs the operation of the MONARCH system
via control messages which may be input from the type­
writer, punched paper tape, or punched cards. Most
frequently, the control messages are on punched cards
preceding the user's input card decks.

System Contro I

JOB
ENDJOB
ASSIGN (ONLINE)

Processor Control

METAXXXXt
SYMBOL
FORTRAN
ALGOL

Input Control

FILL SYS
LOAD
FORTLOAD
FORTLINK
ALGOLOAD

Utility Functions

c
SET
LABEL
DISPLAY (SHOW)
POSITION
REWIND
SKI PF ILE
SKI PR EC
BAC KFILE
BACKREC
WEOF
BOOTLOAD
CARDTAPE
EOF

System Maintenance

UPDATE

SYSTEM CONTROL

JOB The JOB control message specifies the
system is to be in 11 job mode. 11

L. JOB.

When the system is set to job mode, it resets the proces­
sor error switch. If an error occurs while a processor
(such as FORTRAN or META-SYMBOL) is being exe­
cuted, the processor error switch is set. Then, if the
operation is a load-and-go (i.e., compile-and-execute
or assemble-and-execute), the 11 load 11 function is not
honored because of the processor error. If no error oc­
curs during such a load-and-go operation, the "load"
function is honored.

The MONARCH system remains in job mode until an
EN DJOB control message is encountered. Therefore,
whenever a job is preceded by a JOB message, it should
be followed by an ENDJOB (see below) as a courtesy to
the next user who may not wish to assemble (compile)
his program in job mode.

ENDJOB This control message specifies that the
system is not in job mode.

L.ENDJOB.

tXXXX indicates the name of a set of system PROCs that
wi 11 be used to interpret the program mnemonics during
the META-SYMBOL assembly (e.g., META920,
META910, META9300, METASPEC, etc.). META910
wil I assemble on any machine and will produce binary
output for 910. The set of PROCs is a L. 2 record with­
in the scope of the META-SYMBOL logical file. (See
"System Update Routine" in Section 4 for an explana­
tion of L. 2 records.)

When an ENDJOB control message is received, MON­
ARCH resets the processor error switch and terminates
job mode. If a processor is being executed in a load­
and-go operation not in job mode, MONARCH wil I
honor the 11 load 11 function even if processor errors have
occurred.

The system wi 11 not return to job mode unti I it receives
a JOB control message.

ASSIGN ASSIGN (or ONLINE) enables the user to
ONLINE specify the input and output media to be
used during the current job.

L.ASSIGN L=P
1
, L=P

2
, •.. , L=P

9
•

L. 0 NLINE L=P l' L=P 2' ••• I L=P 9·

L is a system label.

P is a symbolic parameter designating the specific device.

The labels for the standard unit assignments are:

Label

SI
so
BI
BO
EI
EO
LO
UI
Xl
X2t

X3
s

Reference

Symbolic Input
Symbolic Output
Binary Input
Binary Output
Encoded Input
Encoded Output
List Output
Update Input
System Scratch
System Intermediate Output Scratch~
System Scratch (magnetic tape)
System (magnetic tape)

Labels for Business Language unit assignments are:

Label Reference

LO Magnetic Tape Logical Unit 0
L l Magnetic Tape Logical Unit l
L2 Magnetic Tape Logical Unit 2
L3 Magnetic Tape Logical Unit 3
L4 Magnetic Tape Logical Unit 4
L5 Magnetic Tape Logical Unit 5
L6 Magnetic Tape Logical Unit 6
L7 Magnetic Tape Logical Unit 7
LCR Card Reader
LC P Card Punch
LLP Line Printer

Note: Ln may be assigned to any physical tape unit;
i.e., LO=MT2W, L2=MT7W, etc.

~ust be assigned to magnetic tape unit 2 (MT2)
under MAGPAK environment when usinq META-SYMBOL.

5

At least one pair of parameters must be given, and a
maximum of nine pairs is allowed per control message.
The value of the first parameter must be a label speci­
fying a unit assignment entry; e.g., SI, LO, etc. The
value of the second parameter must be a legal peri ph­
eral device designation on an existing channel; e.g.,
PRlW, MT3Y, etc. The symbolic parameter associated
with the peripheral device should be consistent with the
flow of information; that is, it would be illegal to as­
sign BI=CPlW (binary input to be entered from the card
punch).

Once a unit assignment has been made, it remains in
effect unti I a new assignment for that label is"made.

Examples:

.6.ASSIGN BI=CRlW, BO=CPlW.

This message assigns card reader l on the W buffer as
the binary input device and card punch 1 on the W buf­
fer as the bi nary output device.

.6.0NLINE LCR=CR lW, LLP=LPlW, L2=MT lW.

This message assigns card reader l on the W buffer as
the card input device, printer 1 on the W buffer as the
on-line printer, and a second magnetic tape (L2) as
magnetic tape physical unit 1 on the W buffer. This
ONLINE statement assigns LCR, LLP, and L2 in BAT
(Business Language Assignment Table, which is de­
scribed in Appendix A).

Note that magnetic tape units are numbered 0 through
7; al I other devices ore numbered from 1.

.6.ASSIGN BI=CR lW, S=MTOW, LCR=CR lW.
MSSIGN LLP=LPlW, L2=MT lW.

These messages assign (1) card reader l on the W buffer
as both the binary input device and the card reader for
a Business Language program, (2) magnetic tape unit 0
on the W buffer as the system tape, (3) line printer 1 on
the W buffer as the on-I ine printer for a Business Lan- ·
guage program, and (4) the magnetic tape physical unit
1 on the W buffer as the magnetic tape logical unit 2
of a Business Language program.

PROCESSOR CONTROL

METAXXXX (900 Series only) This control message
directs MONARCH to load and transfer control to the
MET A-SYMBOL assembly system.

.6.METAXXXX P1, P2, C, CONC, EXCP, SET.

XXXX specifies which procedure-oriented library
MONARCH is to load prior to the assembly. Thus,
the control message may be written as:

6

,6META920

6META910

for 920 procedure-oriented library.

for 910 procedure-oriented library.

6META9300

6METAB910)
6METAB920
6METAB93H

for 9300 procedure-oriented Ii brary.

for 900 Seri es spec i a 1-pu rpose pro -
cedure-oriented I ibrary for busi­
ness data processing.

The user may provide his own procedure-oriented
I ibrary on the system tape. It must be identified
by a unique, 4-character name. That name is then
used in place of XXXX in the METAXXXX control
message.

P
1

specifies type of input:

Parameter

SI
EI

Type of Input

Symbolic Input
Encoded Input

P
2

specifies type of output:

c

Parameter

so
EO
BO
LO

Type of Output

Symbolic (Source) Output
Encoded Output
Binary Output
List Output

(optional) specifies that compatibility mode transla­
tion of symboiic input is desired. Use of this param­
eter enables the user to translate a SYMBOL-4 or
SYMBOL-8 source program into META-SYMBOL
source form.

CO NC (optional) specifies that a concordance I isting t
is to be produced by META-SYMBOL.

EXC P (optional) specifies that exceptions are to be made
to the concordance listingt as designated on META­
SYMBOL control cards INCLUDE and EXCLUDE. If
EXCP is present, CONC is not specified.

SET (optional) specifies that a larger table should be re­
served for use by the META-SYMBOL preassembler
to accomplish translation of standard system pro­
cedures to the user's program format. Th is parame­
ter is not necessary when the control message is
META920, META910, or META9300, but should be
used with a call for the SDS Business Language. SET
may also be necessary for future higher order lan­
guages implemented in META-SYMBOL.

t"Concordance listing" refers to a listing of the symbols
appearing in the MET A-SYMBOL source program, along
with a reference to the instructions in which the symbols
appeared. INCLUDE control cards may be used to limit
concordance listing to specific symbols only; EXCLUDE
control cards enumerate specific symbols which are to be
omitted from the concordance listing.

The parameters may be I isted in any order. One input
and one output specification must be given. Multiple
outputs may be requested.

META-SYMBOL assumes that the necessary input/output
units have been assigned and that all tape units, except
scratch tapes, are correctly positioned before MONARCH
relinquishes control to it.

Examples:

.6.ASSIGN SI=CR, LO=LP, S=MTOW, Xl=MTlW .

.6.META920 SI, LO.

This message sequence requests META-SYMBOL to as­
semble a symbolic source program and produce an assem­
bly listing as the only output.

MSSIGN S=MTOW, SI=CR, BO=PPlW, LO=LP .
.6.ASSIGN Xl=MTlW.
.6.META9300 SI, BO, LO, CONC.

This sequence requests META-SYMBOL to assemble a
symbolic source program from cards and to produce a
binary output on paper tape and an assembly listing and
concordance listing on the line printer.

SYMBOL The SYMBOL control message directs
MONARCH to load and transfer control to the SYMBOL
assembly system.

.6.SYMBOL Pl' P
2

.

specifies which mnemonic table is to be used dur­
ing the assembly:

Parameter

910
920
9300

Mnemonic Table

910
920
9300

P
2

specifies output data from SYMBOL:

Parameter

BO
LO

Type of Output

Binary Output
List Output

The parameters may appear in any order. Only one
mnemonic tab I e (P1) may be specified; at least one out­
put specification parameter (P2) must be present. Sym­
bo I ic input is assumed; therefore, SI shou Id not be present
as a parameter, but must be ASSIGNed.

Under MONARCH, SYMBOL has no initial halt to
ready input, in contrast to previous bootstrap versions.
Therefore, it is particularly important in the case of
symbolic input from the paper tape reader (a device
which has no device ready test) that the paper tape
be ready at the time SYMBOL is loaded.

Each SYMBOL control message shou Id be preceded by
an ASSIGN control message, establishing the desired
unit assignments. The ASSIGN card is indicative of
device only; i.e., it supplants the typewriter control

message of bootstrap versions and causes SYMBOL to
load its own preset 1/0 package.

Example:

MSSIGN S=MTOW, SI=CR, LO=LP.
.6.ASSIGN BO=PPlW, Xl=MTlW.
.6.SYMBOL 9300, LO, BO.

This sequence of messages requests a SYMBOL assembly
from cards, using the 9300 mnemonic table. The output
from the assembly is to be a program Ii sting on the I ine
printer and an object program on punched paper tape.

FORTRAN (900 Series only) This control message
causes MONARCH to load and relinquish control to the
FORTRAN II compiler .

.6.FORTRAN P
1
, P

2
, P

3
.

P. specify type of input and output:
I

Parameter

SI
BO
LO

Type of Transmission

Symbolic Input
Binary Output
List Output

Any or all of the parameters may be omitted. Symbolic
input is always assumed. The presence of the BO param­
eter causes an object program to be generated. The LO
parameter causes an output listing to be produced. If no
1/0 unit assignment has been made to the BO or LO de­
vice, that parameter is ignored.

Examples:

.6.FORTRAN.

This message requests FORTRAN to compile a source pro­
gram; no I isting or object program is produced; only the
program allocation, diagnostics, and any erroneous
source line(s) will be listed.

MSSIGN S=MTOW, SI=CR, LO=LP, Xl=MTlW.
.6.FORTRA N BO, LO.

This sequence of messages requests FORTRAN to compile
a source program read from cards (SI is assumed if it is
not present) and to produce an output listing. No object
program is produced since no BO unit assignment was
made.

ALGOL The ALGOL control message causes
MONARCH to load and transfer control to the ALGOL
compi lert.

tThe ALGOL compiler is not part of the standard MON­
ARCH system, but is available on request.

7

Pi specify the input/output devices to be used by
ALGOL.

Parameter

LS
LO
BO

Type of Transmission

List Source
List Object Code
Binary Output

The parameters may appear in any sequence, and any
or all may be omitted. ALGOL always reads source in­
puts from the device previously assigned to SI. When
a I isting of the source program is requested (LS param­
eter), the listing is produced on the LO device. The LO
device must be a I ine printer. When requested to I ist
object code (LO parameter), ALGO produces the list
on the LO device. The BO parameter specifies that
ALGOL is to produce a binary object program on the
BO device.

If no output device is specified and an error occurs dur­
ing compilation, an error message is produced on the
console typewriter.

Note: ALGOL must have a scratch tape available to it
and will automatically use the magnetic tape
previously assigned to X l.

c _____ , __
l...AUllltJIC;

6ASSIGN S=MTOW, SI=CR, LO=LP, BO=PPl W,
6ASSIGN Xl=MTlW.
6ALGOL LS, LO, BO.

This sequence of control messages requests the ALGOL
compiler to read a source program from cards; compile
it, listing the object and source programs on the line
printer; and output the binary object program on punched
paper tape. The magnetic tape unit l on the W buffer
is to be the compiler's scratch tape.

INPUT CONTROL

FILLSYS Th is control message transfers contra I to
the monitor's bootstrap routine which will reload the
MONARCH system.

6FILLSYS.

There are no parameters. The message is equivalent to
executing an unconditional branch to memory location
00001.

LOAD The LOAD message directs the MON -
ARCH loader to load one or more binary object programs.

8

is the load relocation bias, expressed as a positive oc­
tal or decimal integer, forthe first (or only) program

to be loaded. For programs whose load addresses
and data words are not relocatable (i.e., absolute
programs), the load relocation bias is ignored.

P
2

is the loader options parameter. The options are

Parameter

STOP

GO

TSTP

TGO

Interpretation

Stop after each program is loaded
(i. e., after each end record is read);
no symbol table output and no return
to the routine that called the loader.
Octal equivalent of the symbolic pa­
rameter STOP is 10000000.

No halt after processing end record
with transfer address; no symbol table
output and no return to the routine
which called the loader. Octal equiv­
alent of the symbolic parameter GO
is 40000000.

Same as STOP except that the load­
er's symbol table is output. Octal
equivalent of the symbolic parameter
TSTP is 20000001.

Same as GO except that the loader's
symbol table is output. Octal equiv­
alent of the symbolic parameter TGO
is 60000001.

If the loader is not requested to output the symbo I
table and unsatisfied Programmed Operator refer­
ences or definitions occur, an error message and the
unsatisfied references and/or definitions are typed,
and MONARCH halts. If these unsatisfied refer­
ences/definitions will not affect the operation of
the program, the operator can clear the halt and
the program wi 11 be executed. Otherwise, he can
take appropriate action. When the loader is re­
quested to output the symbol table, it produces the
table on the line printer if Breakpoint l is set or on
the typewriter if Breakpoint l is reset.

is an optional parameter that is interpreted as a
program identification label assumed to occur in
characters 9 through 16 of a level l MONARCH
ID record on the current binary input unit. (See
Appendix B for a description of record formats.)

At least one (P1) and at most three parameters must be
given for the LOAD control message. When parameter
P3 is present, its value is converted to a left ad justed,
space-fl I led, 8-character search key. The monitor
causes records to be read from the unit assigned for bi­
nary input (BI) until (l) a level l MONARCH ID record,
with the same name in characters 9 through 16, is ob­
tained or (2) the last file has been scanned (i.e., unti I
a level l MONARCH ID record with 11 SYSEND/\/\ 11 in

characters 9 through 16 is encountered). In the first case,
control is relinquished to the MONARCH loader that
processes the input as specified by the first two param­
eters. In the second instance, a message SEARCH FOR
SPECIFIED ROUTINE FAILED is typed, and the next
MONARCH control message is requested. A detailed
description of the MONARCH loader is given in Sec­
tion 3.

Prior to processing a load function, the monitor inter­
rogates the processor error switch and the job mode
switch (see JOB control message for an explanation of
these switches). If both switches are set, the requested
load function is aborted. An appropriate error message
(PROCESSOR ERROR •••) is printed, and typewriter l
on the W buffer is selected for input of a control mes­
sage.

Examples:

.6.LOAD 010000, STOP.

This message causes the MONARCH loader to load one
or more programs, beginning in location lOOOOa. Input
is from the current BI device, and the loader stops (halts)
after each program is loaded (i.e., after each end re­
cord is read).

.6.LOAD 2048, TSTP.

This message causes the MONARCH loader to load one
or more programs, beginning in location 40008 (204810).
Input is from the current BI device, and the loader halts
after each program is loaded (i.e., after each end re­
cord is read). After loading is completed and prior to
program execution, the symbol table is output.

.6.LOAD 0, TG0, 1FILENAME 1.

This message {input from cards) causes the MONARCH
loader to find program FILENAME (as a level l ID re­
cord) on the specified BI unit and to load the program
with 0 relocation (i.e., as an absolute program). The
loader's symbol table is output prior to program execu­
tion. If input is from the typewriter, this message would
appear as

.6.LOAD 0, TGO,@FILENAME@.

(See discussion on 11 Literal Parameters. 11
)

.6.LOAD GO.

This message forces a load relocation bias of 0 and may
be used to load absolute programs.

FORTLOAD (900 Series only) The FORTLOAD control
message causes MOl'Lt.,RCH to !cad and transfer control to
the FORTRAN loader. The parameters in the control mes­
sage specify the mode in which the FORTRAN loader is
to operate and the input devicesfrom which it isto read.

.6.FORTLOAD P
1
,P

2
,P

3
, ... ,P

8
.

p.
I

consists of up to eight parameters tho t may be given.
The first three specify the mode in which the FOR­
TRAN loader is to operate:

MAP
t

Produce a storage map of the program
on the console typewriter.

LMAP
t

Produce a label map on the console
typewriter.

LTRA Produce a label tracet at execution time.

These three parameters may appear in any order or
may be omitted entirely. If they appear, they must
be the first in the parameter string. The other pa­
rameters specify which input devices are to be read
(e.g., X l, BI); at least one input device must be
specified. Information is loaded from the devices
in the order they appear in the parameter list. These
devices must have been assigned and correctly posi­
tioned before the FORTRAN loader is called •

The FORTRAN loader automatically loads the previous I y
compiled program, which must be on the first input de­
vice specified by the parameters. When additional in­
put devices are specified (i.e., in addition to the unit
from which the program is read), the loader reads from
these devices only routines that are necessary because of
unsatisfied references/definitions. However, if the user
wishes to have the loader load from the addi ti ona I de­
vices unconditionally (i.e., regardless of whether or not
the program references any of the routines read from that
device), he places the letter U after the appropriate pa­
rameter.

Example:

.6.ASSIGN BI=MTlW, X l=CR lW .

.6.FORTLOA D MAP, L TRA, BI, X l U •

The FORTRAN loader wi II read a previously compiled
FORTRAN program from magnetic tape unit l and wi II
read, unconditionally, from the card reader. It wi 11
produce a storage map of the program and a lobe I trace
as the program is executed.

FORTLINK The FORTLINK control message causes
MONARCH to load and transfer control to the FORTRAN
loader. ThJs message is used ~~hen_q link tawis tg
be generated. Linking is discussed in Appendix E.

is the identification number to be assigned to the
Ii nk about to be written on magnetic tape; may be
any three decimal digits.

P ')_O same as P: for FORTLOAD.
L. , I

tThe output resulting from the use of this parameter is
described in Section 6 .

9

ALGOLOAD This control message causes MONARCH
to load and transfer control to the ALGOL loader. The
parameter is optional.

.6.ALGOLOAD BI.

BI (optional) specifies binary object program input.
The ALGOL loader always reads binary object pro­
grams from the device previously assigned to BI.

After loading an ALGOL-compiled object program, the
ALGOL loader searches the system tape (magnetic tape
unit 0 on the W buffer) for any referenced library pro­
grams.

Examples:

.6.ASSIGN BI=CR.

.6.A LGO LOAD.

This sequence of control messages causes the ALGOL
loader to load a binary object program from the card
reader, to load any referenced I ibrary programs from
magnetic tape unit 0, and to transfer control to the
object program.

.6.ASSIGN BI=MT2W •

.6.ALGOLOAD BI.

These messages cause the ALGOL loader to read a bi­
nary object program from magnetic tape unit 2. Then,
the loader reads the system tape, loads the required li­
brary programs, and transfers control to the object pro­
gram.

UTILITY FUNCTIONS

C The C control messagedirectsMONARCH
to accept future control messages from a specific input
device.

10

.6.C pl"

must be a legal input unit assigned to an existing
buffer.

Parameter

CRnh

MTnh

PRnh

TYnh

Definition

Designates card reader n on buffer h.

Designates magnetic tape unit non
buffer h.

Designates paper tape reader n on
buffer h.

Designates typewriter n on buffer h.

Unless a C control message directs otherwise, MONARCH
automatically accepts control messages from the console
typewriter (l on the W buffer).

Once a C message has been processed, MONARCH im­
mediately attempts to read a control message from the
newly assigned device.

Example:

.6.C PR lW.

This message assigns paper tape reader l on the W buffer
as the control message input device.

SET This control message enables the user to
set the contents of a specified memory location to a given
value and is operative only if the MONARCH monitor is
in control.

.6.SET A=V.

A is any legitimate memory address.

V is the value to be stored in location A. (If the
value exceeds 223-1, the most significant digits
are stored.)

A and V may be expressed as either octal or decimal
numeric parameters.

Examples:

.6.SET 017=-59.

This message wi 11 cause the contents of memory location
000178 to be set to 77777705 (-5910 = -738).

.6.S ET 64=077777.

Th is message wi II cause the contents of cell 1008 (6410)
to be set to 00077777.

.6.SET 0235=001000114.

This message will cause the instruction BRU 00114 to be
stored in location 002358.

LABEL The LABEL control message enables the
user to write a level l or level 2 MONARCH ID record
on a magnetic tape. (See Section 4 11 System Update
Routine 11 for a discussion of MONARCH ID records.)

is the value 1 to indicate a level 1 ID record or the
value 2 to indicate a level 2 ID record.

is the unit on which the ID record is to be written.
The value of this parameter must be a legal mag­
netic tape unit designation on an existing buffer;
e.g., MT3W to specify magnetic tape unit 3 on
the W buffer.

P
3

is a double-or single-precision litera I, used to con­
struct an 8-character nama. If fewer than eight char­
acters are given, the name field wi 11 contain (trailing)
spaces in the right-most character positions.

A level 1 or level 2 MONARCH ID record (indicated by
the first parameter) is constructed with the name field
(characters 9 through 16) containing the identifier spec­
ified as the third parameter. The ID record is then writ­
ten on the magnetic tape designated by the second
parameter. An ID record consists of 40 characters (char­
acters 17 through 40 are blanks) written in binary ("odd"
parity) mode.

Example:

6LABEL 2,MT3W, 'FILENAME'.

This message will cause MONARCH to write a level 2
MONARCH ID record on magnetic tape unit 3 on the
W buffer. Characters 9 through 16 of this record will
contain FILENAME.

DISPLAY DISPLAY (or SHOW) al lows the user to
SHOW produce the contents of one or more
memory locations on the console typewriter and is op­
erative only if the MONARCH monitor is in control.

6DISPLAY P
1

THRU P
2

•

6SHOW Pl THRU P
2

.

(required) must be a legitimate memory address. If
it is the only parameter given, it designates the
one location whose contents are to be displayed.
If three parameters (P1, THRU, and P2) are given,
P1 is the beginning address of the sequential mem­
ory locations whose contents are to be displayed.

THRU (optional). When the contents of more than one
memory location are to be displayed, the second
parameter of the control message must be the word
THRU.

(optional). When present, this parameter must be
a legitimate memory address which is equal to or
greater than the value of P1. P2 specifies the end­
ing address of the sequential memory locations
whose contents are to be displayed.

After interpreting the parameters, MONARCH converts
the contents of each designated memory location to oc­
tal and types each value, together with its octal ad­
dress on typewriter 1 on the W buffer.

Examples:

If location 037777 contains zero, the message

6DISPLA Y 037777.

wi II cause the following to be typed:

037777 = 00000000

The message

6SHOW 0164 THRU 0174.

wi 11 cause the address and contents of each of the 9
locations specified to be typed.

POSITION This control message enables a user to

position a magnetic tape at a given file (identified by a
MONARCH level 1 ID record only - not a level 2 re­
cord; ID records are described under "System Update
Routine 11 in Section 4).

6POSITION Pl' P 2•

must be a legal magnetic tape unit designation on
an existing buffer; e.g., MT3W specifies magnetic
tape unit 3 on the W buffer.

is a literal consisting of up to eight alphanumeric
characters. Trailing blanks (60a) are supplied if
fewer than eight characters are given. The value
of this parameter is used as the search key.

To position the specified magnetic tape at the desired
file, the MONARCH Search subroutine reads successive
records (in a forward direction) until a level 1 MON­
ARCH ID record is found that contains, in characters 9
through 16, the given file identification (P2). The tape
is read in binary {11 odd 11 parity) mode, and the maximum
ID record length is assumed to be 40 words (160 charac­
ters). The search is terminated as fol lows:

1. If characters 9 through 16 of a level 1 ID record
contain the file ID specified as the second param­
eter, control is returned to MONARCH to obtain
the next control message. The tape wi II be posi­
tioned in the inter-record gap which fol lows the
ID record.

2. If characters 9 through 16 of a level 1 ID record
contain SYSEND/\/\, a message is typed indicating
that the specified file was not found. Then control
is returned to MONARCH to obtain the next con-
trol message.

3. If characters 9 through 16 of a level 1 ID record
contain neither SYSENDI\/\ nor the specified file
ID, the search is continued unti I either condition
or condition 2 is satisfied or until the computer op­
erator intervenes.

11

Example:

LPOSITION MT2W, 1FILEIDEN 1
•

Input from cards, this message wi 11 cause MONARCH to
position magnetic tape unit 2 on the W buffer in front of
the first record fol lowing the level l MONARCH ID re­
cord that contains FILEIDEN in characters 9 through 16.
If input is from the typewriter, this message would ap­
pear as

LPOSITION MT2W, @FILEIDEN@.

(See discussion on 11 Literal Parameters. 11
)

REWIND The REWIND control message causes
MONARCH to rewind the specified magnetic tape unit.

LREWIND P
1
•

must be a legal magnetic tape unit designation on
an existing buffer; e.g., MT3W.

Example:

The message

LREWIND MTOW.

wi 11 cause MONARCH to rewind magnetic tape unit 0
on the W buffer.

SKIPFILE These control messages cause MONARCH
SKIPREC to skip files or records in a forward di-
rection on a specified magnetic tape unit. (See also,
BACKFILE and BACKREC.) The magnetic tape unit and
number of files or records to be skipped are specified by
the control message parameters.

LSKIPFILE P
1
, P

2
. (skip files)

LS KIPREC Pl' P
2

. (skip records)

must be a legal magnetic tape unit designation on
an existing buffer; e.g., MT2W designates mag­
netic tape unit 2 on the W buffer.

P
2

specifies the number of files or records to be
skipped.

After interpreting the parameters, MONARCH moves
the specified magnetic tape forward the indicated num­
ber of files or records. If an EOF mark is encountered
during a skip record process, the tape wi 11 stop . .,_Ih!!_s,
the tape will be positioned immediately after the EOF.

Examples:

LSKIPFILE MTlW, 5.

This message causes MONARCH to skip forward 5 files
on magnetic tape unit l on the W buffer.

12

LSKIPREC MT3Y, 10.

This message causes MONARCH to skip forward 10 (12a)
records on magnetic tape unit 3 on the Y buffer.

BACKFILE These control messages have a function
BACKREC similar to that of SKIPFILE and SKIPREC;
however, with BACKFILE and BACKREC the magnetic
tape is moved in a backward direction.

LBACKFILE P
1
, P

2
.

LBACKREC P
1
, P

2
•

P1 and P2 have the same interpretation as for SKIPFILE
and S KIPREC.

After interpreting the parameters, MONARCH moves the
specified magnetic tape backward the indicated number
of files or records. If an EOF mark is encountered dur­
ing a skip record process, the tape wi 11 stop. Thus, the
tape wi 11 be positioned before the EOF mark.

Examples:

LBACKFILE MTOY, 12.

This message causes MONARCH to skip backward 1210
(14a) files on magnetic tape unit 0 on the Y buffer.

LBACKREC MT2W, 3.

This message causes MONARCH to skip backward 3 re­
cords on magnetic tape unit 2 on the W buffer.

WEOF The WEOF control message directs
MONARCH to write an end-of-file (EOF) mark on the
specified tape.

must be (l) a legal magnetic tape unit designation
on an existing buffer or (2) a legal paper tape punch
unit designation on an existing buffer. That is, P1
may take the form MT ub or PPxb, where u must be
within the range 0 s u::::: 7, bis W or Y, and x is l
or 2.

Examples:

LWEOF MT3W.

This message causes MONARCH to write an end-of-file
mark (17000000) on magnetic tape unit 3 on the W buf­
fer.

LWEOF PPlY.

This message causes a special end-of-file mark(l7170000)
to be punched on paper tape unit l on the Y buffer. (This

is to foci litate the loading of a FORTRAN-compiled
program into the FORTRAN library on the system tape.
See Section 4, "System Update Routine. 11

)

BOOTLOAD This control message directs MONARCH
to produce an absolute or relocatable bootstrapt on paper
tape or magnetic tape as specified.

P
1

must be ABS for absolute or REL for relocatable.

must specify the magnetic tape unit or paper tape
unit on which the bootstrap is to be produced; e.g.,
MT2W, PPlW for 900 series; or MT2A, PPlA for
9300.

MONARCH interprets the control message and produces
the requested bootstrap on the specified tape. These
bootstraps can load programs assembled by SYMBOL or
META-SYMBOL. Although the bootstrap may be pro­
duced on any paper tape or magnetic tape unit, it can
be read from only paper tape unit l on the W buffer or
magnetic tape unit 0 on the W buffer on 900 Series
Computers. Substitute corresponding A channel for
9300 Computers.

Examples:

llBOOTLOAD ABS, PPlW.

This control message directs MONARCH to punch an
absolute bootstrap on paper tape punch l on the W
buffer.

llBOOTLOAD REL, PP2W.

This message causes MONARCH to punch a relocatable
bootstrap on paper tape punch 2 on the W buffer.

llBOOTLOAD ABS, MTlW.

This message directs MONARCH to write an absolute
bootstrap on magnetic tape unit l on the W buffer. To
load the object program, dial the tape unit number to
zero and execute a fi 11 from magnetic tape:

Set (X l) = -7 (77777771)

EOM 03610 (0 02 03610)

WIM 2

BRU l

(O 32 00002)

(0 01 0000 l)

t Descriptions of the bootstrap routines are avai I able from
the SDS Program Library: 900 Series Paper Tape Abso-
1 ute Bootstrap, ca ta log number 020020; 900 Seri es Paper
Tape Relocatable Bootstrap, catalog number 000019;
9300 Paper Tape Relocatable Bootstrap, catalog number
60000 l. The magnetic tape bootstrap routines are modi­
fied versions of the MONARCH boostrap loader.

Set the contents of register A to 0 32 00002.

Set the contents of register C to 0 35 00001.

Set the RUN-IDLE-STEP switch to STEP.

Press START.

Press FILL switch, which sets (Xl) to -7. If program
is relocatable, set (A) =relocation bias.

Set the contents of register C to 0 02 03610.

Set the RUN-IDLE-STEP switch to RUN.

Note: To load the 925/930/9300 magnetic tape boot­
strap, execute a magnetic tape FILL procedure.
For 9300 computers, use appropriate channel la­
bel (i.e., A, B, C, or D).

CARDTAPE The CARDTAPE control message causes
MONARCH to select the designated card reader, to
read cards in symbolic, encoded, binary, MONARCH
identification, and control message formats and to write
them on the magnetic tape specified.

must be a legal card reader designation on an exist­
ing buffer; e.g., CRlW. This parameter specifies
the card unit from which the cards are to be read.

P
2

must be a legal magnetic tape unit designation on
an existing buffer; e.g., MT2W. This parameter
specifies the tape unit on which the information is
to be written.

Cards are read from the card reader specified and are
written on the designated magnetic tape. Binary, en­
coded, MONARCH identification, and control cards
are written in binary; al I other cards are written in
binary-coded decimal (BCD). When a llEOF card is
read or a card reader end-of-file is detected, an end­
of-fi le (EOF) mark is written on the magnetic tape, and
control is returned to MONARCH. If successive files
are to be written on tape, each file must be preceded b>
a CARDTAPE control message, including the necessary
parameters.

Example:

The contro I message

llCARDTAPE CR1W,MT3W.

directs MONARCH to read cards from card reader l on
the W buffer and to write them on magnetic tape unit 3
on the W buffer. When the read is completed, an EOF
mark wi 11 be written on the magnetic tape.

EOF The EOF control message signifies the
end of a logical file and transfers control to MONARCH

llEOF.

, ,,
Iv

There are no parameters for this message. It is recognized
by the "action" routine that processes the CARDTAPE con­
trol message (see Section 3 for explanation of action
routines.) The EOF message is also recognized by the
FORTRAN and META-SYMBOL processors.

SYSTEM MAINTENANCE

UPDATE This control message causes MONARCH
to load the System Update Routine and to transfer con­
trol to it.

14

(optional). When present, this parameter indicates
blocking mode operation and must be within the
range

The absence of the parameter indicates norma I mode

operation.

See Section 4 for a description of the update routine, its
operating modes, and the controi messages required for
its use.

3. THE MONARCH SYSTEM

MONITOR

The major portion of the MONARCH system is the moni­
tor routine. This routine accepts control information
which, among other things, may include a request to
load and execute a specified standard system routine.
The monitor performs its function between jobs and does
not exercise control over the execution of a program
once the program has been loaded and control has been
transferred to it.

The monitor consists of a number of subroutines. One of
these subroutines is the system tape search routine. This
is the subroutine that searches the system tape for a
given routine name (see POSITION control message).
Another monitor subroutine analyzes and interprets the
contents of the control messages that convey control in­
formation to the monitor. It also converts the param­
eters in control messages to standard internal form.

Other subroutines, cal led "action 11 subroutines, perform
the functions associated with specific control messages.
For example, the action subroutine associated with the
ASSIGN message modifies the contents of MONARCH's
unit assignment table, based on the values of the pa­
rameters in the ASSIGN message. Another action sub­
routine, associated with the LOAD message, controls
the searching of tape files for specified object programs
and cal Is on the MONARCH loader to load these object
programs. Additional subroutines employed by the mon­
itor include those which perform input/output for MON­
ARCH.

Part of the monitor, cal led the resident, remains in core
memory during program execution. The resident consists of
the monitor bootstrap routine (QBOOT), the unit assign­
ment table, the errorand job switches, the octal dump rou­
tine (QDUMP), and the symbol table dump driver (see
Appendix B for a complete description of memory layout).
The resident occupies the last l 32a locations in memory.
Memory space occupied by the remaining subroutines com­
prising the monitor and by other routines in the MONARCH
system (such as the MONARCH loader) is avai I able for use
by the program being executed. The last available location
in core is one eel I below QDUMP (however, the term
QDUMP-1 is illegal in META-SYMBOL language).

STANDARD SYSTEM ROUTINES

Standard system routines are those that exist on a MON­
ARCH system tape and that can be loaded and executed
by supplying an appropriate control message to the
MONARCH monitor. Some existing system routines, as
well as the necessary and desirable characteristics of
potential system routines, are described below.

Certain of the standard system routines must be present
on any MONARCH system tape. These programs com­
prise the minimum operable MONARCH system:

l. The monitor. This routine is the heart of the opera­
ting system.

2. The MONARCH loader. The monitor uses this rou­
tine to load standard system routines from the sys­
tem tape and to load previous! y assembled programs
presented by the MONARCH user. The MONARCH
loader is described later in this section.

3. The MONARCH bootstrap loader. This routine per­
forms the function of loading the MONARCH loader
and the MONARCH monitor and precedes all other
system routines on a MONARCH system tape. This
is the routine that is called in for execution by the
monitor bootstrap (QBOOT).

Certain system routines, while not essential for a mini­
mum MONARCH system, enhance the usefulness and
flexibility of any MONARCH system.

l. The MONARCH system update routine. With this
routine, the user can create new MONARCH system
tapes or update existing system tapes. This routine
is described in Section 4.

2. The standard input/output subroutines. These sub­
routines are used by other system routines to per­
form required input/output functions. These 1/0
subroutines, which can be selectively loaded on an
11 as needed" basis, are

Line Printer Output Subroutine (PRINT)

Magnetic Tape Input/Output Subroutine (MTAPE)

Card Read/Punch Subroutine (CDRP)

Paper Tape/Typewriter Input/Output Subroutine
(PTYIO)

The action subroutines for a given system routine ex­
amine the parameters of the control message and the
unit address codes of those MONARCH unit assign­
ment table entries that represent input/output func­
tions to be performed and, finally, direct the load­
ing of the 1/0 subroutines needed. The MONARCH
update routine relies on this feature to provide the
input/output subroutines needed to perform a speci­
fic update run,

3. The META-SYMBOL assembly system. Presence of
this routine provides a powerful and flexible assem­
bly language and processor.

15

4. The FORTRAN II system. Presence of these routines
enables the MONARCH user to use the ful I capa­
bi I ities of the SDS 900 Series FORTRAN II Compiler,
Loader, and Run-Ti me Package.

5. The ALGOL system. This system, which is avai la­
bie on request, operates on both SDS 900 Seri es
and the 9300 Computers. It includes the ALGOL
Compiler, Loader, and Run-Time package.

See "Automatic Selective Loading from the MONARCH
Library" at the end of this section for a description of
the MONARCH library, another optional MONARCH
feature that can contribute great I y to the usefulness and
efficiency of a MONARCH system.

MONARCH is designed to facilitate the incorporation
of additional system routines as needed. The user can
include in a MONARCH system any routine that meets
the following requirements:

l.. The routine must exist (on cards or paper tape) in
SDS standard binary language.

2. Its memory space require men ts must be such that it
(or a special loader which precedes it on the system
tape) can be loaded by the MONARCH loader.

3. It must be written in a manner that is consistent
with run termination as described in the paragraph,
"Termination of a Run, 11 below.

Certain other characteristics, while not essential, ease
the job of incorporating new system routines and render
these routines more useful in the MONARCH environ­
ment:

1. The routine should be one that can be assembled
as a series of one or more relocatable programs by
SYMBOL or META-SYMBOL.

2. It should be written in such a way that any "param­
eters" required for its initialization can be easily
supplied in the form of MONARCH control message
parameters (see "Control Message Parameters" in
Section 2).

3. The routine should be written to obtain unit and
channel assignments for al I its input/output func­
tions from the MONARCH unit assignment table.

TERMINATION OF A RUN

When a program being executed under MONARCH
reaches a normal conclusion, it should transfer control
to the monitor bootstrap in core memory (location 1)
rather than execute a HALT instruction; the monitor boot­
strap initiates the reloading of the MONARCH loader
and the MONARCH monitor. The monitor then attempts
to read a new control message from the current control
medium and in this way proceeds to the next job with­
out the necessity for manual intervention. The monitor
bootstrap is part of the MONARCH resident.

16

When a program being executed under MONARCH de­
tects a program or computer error that makes it i nadvi s­
able to continue program execution, it should give what­
ever error indication is suitable and transfer control to
the monitor bootstrap. This routine initiates the reload­
ing of the MONARCH loader and MONARCH monitor,
and then the console operator can decide whether or not
to continue with the next job or function in a batched
job stack or to take some alternative action.

When the console operator decides that a program being
executed has halted inadvertently or is otherwise mal­
functioning, he can stop the program, clear the registers
and restart by manually transferring control to a restart
location in the monitor bootstrap. The monitor bootstrap
initiates the reloading of the system, and then the moni­
tor attempts to obtain the next control message. At this
point, the operator can decide whether or not to continue
with the next job in the batched job stack or to execute
some other system function.

The normal restart procedure is to execute a branch to
location 1. Location 1 norma I ly contains an uncondi­
tional branch to the monitor bootstrap in upper memory.
The routine that is loaded by the monitor bootstrap is
the MONARCH bootstrap loader, which precedes all
other routines on the system tape. The MONARCH boot­
strap loader in turn loads the MONARCH loader and the
MONARCH monitor.

LOADER

The primary function of this routine is to load the user's
object programs. It is also cal led upon by the MONARCH
monitor to load from the system tape standard system
routines such as MET A-SYMBOL, the system update rou­
tine, etc. The loader (including QDUMP, QBOOT,
and UAT) occupies upper core.

The loader is capable of loading binary object programs
in the format produced by SYMBOL and META-SYMBOL.
A series of programs to be loaded may be absolute or re­
locatable and may contain:

l. External label references and/or defi ni ti ons.

2. Externa I Programmed Operator (POP) references
anc:Vor definitionst.

3. Blank COMMON references and a definition.

Blank COMMON references should be preceded by a
blank COMMON definition, but external references

tThe capability of handling POP items is not included in
9300 MONARCH loader since the 9300 does not have
Programmed Operators. Al I other capabi I iti es of the
900 Series MONARCH loader are included in 9300
MONARCH loader.

and definitions (label or POP) need not be supplied in
any particular order.

The term "program 11 in this description of the MONARCH
loader means a sequence of:

l. One or more data records (record type O) and/or

2. One or more external references or definition re­
cords (record type l) and/or

3. One or more Programmed Operator references or
definition records (record type 2) and

4. An end record (record type 3) with or without a
transfer address.

See Appendix F, 11 SDS Standard Binary Language, 11 for
a description of the record formats accepted by this load­
er. Note that the MONARCH loader does not accept
labeled COMMON definitions or references (record
type 2, item types l and 3) and treats labeled COMMON
references as format errors.

The last (or only) program in a series of programs to be
loaded must have an end record (type 3) with a trans­
fer address, and all programs preceding it must have
end records without transfer addresses.

If there are unsatisfied labe I or POP references at the
ti me the end record with a transfer address is encoun­
tered, the loader attempts to satisfy these by selectively
loading the appropriate subroutines from the MONARCH
library. If this is unsuccessful, the loaderautomatically
outputs (on typewriter l on the W buffer if Breakpoint l
is reset or on line printer l on the W buffer if Break­
point l is set) the unsatisfied labels or POP references.
Following this information, the loaderoutputs the symbol
table if requested to do so (see LOAD control message
in Section 2). Then the computer ha Its. After deter­
mining whether the missing definitions will affect the
run, the user may e I ec t to execute the program by si mp I y
clearing the halt (i.e., move the RUN-IDLE-STEP switch
from RUN to IDLE to RUN) or to abort the run by trans­
ferring manually to the bootstrap (i.e., to location 1).

Programs may be loaded from punched card, magnetic
tape, or pap&-tppe units attached to either the Wor Y
buffer .. JfKe input/output-~«withlnrne-900·-- \

+->~ONAR~ neith~cin~_r~up~s-!1..~~)
'(interlace.: The 9300 1/0 handlers use interlace and
. -.inte.rrupts-1for all 1/0 operations. Any 1/0 operation

performed by 9300 MONARCH that does not use the
1/0 handlers does not use interrupts. Reading and search­
ing of the binary input medium by the 9300 MONARCH
loader uses interlace but not interrupts. The symbol
table typeout routine, the line printer octal dump routine,
and the punching of the absolute bootstrap on paper tape
do not use interrupts or interlace.

UNIT ASSIGNMENT REQUIREMENTS

When a LOAD control message (see Section 2 for a de­
tailed description of this message) is issued to MONARCH
the unit assignment tablet is assumed to contain the fol- '
lowing information:

l. QMSG contains the unit and channel designation
for the peripheral device that is to furnish MON­
ARCH control messages. (QMSG is set by the C
control message.)

2. QBINI contains the unit and channel designation
for the peripheral device that is to furnish input
(programs) to the loader. The unit must be a card
reader, a magnetic tape unit, or a paper tape
reader.

The fol lowing sequence of MONARCH control messages
i I lustrates one means of setting the unit assignment table
and requesting the MONARCH loader to load one or
more programs:

6C TYlW.
6ASSIGN BI=CRlW.
6ENDJOB.
6LOAD 010000, GO.

The control messages are to be input from typewriter l
on the W buffer, and the bi nary input is to be read from
card reader l on the W buffer. The loader is to load the
first (or only) program with a relocation bias of 100009
and is to transfer control to the location specified on the
END record of the last program without stopping and
without a symbol table printout. If any references are
unsatisfied, a list of the unsatisfied references is typed
on typewriter l on the W buffer. Then the loader halts.
To continue, the operator clears the halt.

STORAGE ALLOCATION

When the MONARCH system is loaded, the MONARCH
loader is stored in upper core, occupying locations
X544 la through X7777a (X = l, 2, or 3). The loader's
symbol table (external label definition entries) initially
occupies memory from X5440a through X52769. As each
additional external symbol is inserted in the symbol table,
it occupies the three memory locations immediately be­
low the last symbol table entry. Thus, the loader and
its symbol table occupy that amount of upper core re­
quired by the loader routine itself and the external sym­
bol entries.

At the time a request to load a user's program is initiated,
the loader symbol table contains external table defini­
tion entries that a I low externa I references to locations

t The external labels mentioned here are discussed in
Appendix A, 11 The MONARCH Unit Assignment Table. 11

17

within the resident portion of MONARCH. Those en­
tries are defined in Appendix A.

The loader gives an appropriate error indication when­
ever a new entry is to be made in the symbol table that
would "overlay" programs or data already stored in

I .L.L I ..J T1 L..11 ·,·~ r!"'1,"',!1:,+,:,nn,,~ ;,c. nl.~n ,ref.Pr.red rnernory oy 111e 1oauer. - -- - - - - - -- - -
to as symbol table overflow. See Section 6 "Operating

Procedures. 11

THE LOADING PROCESS

Relocation and Data Records

A data record (record type 0) contains instructions and/
or data to be stored in memory by the loader. Each data
record contains a load address that is either the relative
or absolute memory location in which the first data word
(an instruction or a constant) is to be stored. The word
in the data record containing the load address also con­
tains an indicator specifying whether or not the current
load relocation bias is to be added to this load address
to obtain an effective load address (i.e., whether or
not the data record contains 11 relocatable 11 data words)
for the program.

The effective load address determines the location in
which the first data word is stored, and successive data
words in a data record are stored in consecutive memory
locations fo! !owing the first data word.

Before each data word in a program is stored its binary
value may be modified as required (e.g., by load re­
location modifier word; see Appendix F 11 SDS Standard
Bi nary Language. 11

)

Externa I Lobe I References and Definitions

The loader is capable of handling (resolving) symbolic
cross-references between separately assembled and/or
compiled programs. External reference and definition
items in type 1 binary records provide the loader with
the information needed to 11 link 11 together two or more
separately assembled or compiled programs.

During the loading process, the loader maintains a sym­
bol table of external label definitions and unsatisfied
external references. There is no restriction on the order
in which the definition of a label and the references to
it appear in the input to the loader. The definition of
a label may precede, or follow, some or all of the ref­
erences to it. Note that it is permissible for any number
of programs to contain references to a given label, pro­
vided that one program being loaded contains an exter­
nal definition item for that label.

When the loader encounters an external definition item,
it searches the symbol table fo_r a previous definition of
that label in the table; if there is one, the loader dis­
cards the new definition. If the search reveals that the

18

label is already in the table as an unsatisfied reference,
the loader uses the definition to satisfy all the references
to that label and replaces the unsatisfied reference item
in the table with the definition item. However, if that
label does not occur in the symbol table (as a reference
or as a definition), the loader inserts the external defin­
ition item in the symbol table.

When the loader encounters an externa I reference i tern,
it searches the symbol table to see if it already contains
an externa I reference i tern for that labe I; if so, the new
external reference is associated with the existing table
entry. If the search reveals that the label is already in­
cluded in the table as an external definition the loader
uses the defi ni ti on to satisfy a 11 the references to that
label. However, if that label does not occur in the
symbol table (as a reference or as a definition), the ex­
ternal reference item is inserted in the symbol table.

External Programmed Operator References and Definitions

The loader is capable of satisfying references to internal
and external Programmed Operator (POP) definitions.
External POP definition items, external reference items,
and internal POP definition items provide the loader
with the information needed to:

1. Satisfy external and internal POP references.

2. /\~aintain external POP reference and definition
items in the loader's symbol table.

3. Construct a Programmed Operator transfer table in
cells 0100a through 01778.

An 11 internaf 11 POP definition is one that is recognized
only within the scope of the program in which it occurs.
No entries are made in the loader's symbol table for in­
ternal POP definitions or references.

Many of the loader functions performed in the process­
ing of external POP references and definitions are also
performed (by the same loader subroutines) for externa I
label references and definitions. In particular, the
functions of insertion and replacement of symbol table
entries and the handling of duplicate definitions are the
same for both external label and external POP items.

AUTOMATIC SELECTIVE LOADING
FROM THE MONARCH LIBRARY

Provision is made for automatic search of the MONARCH
library when an end record with a transfer address is en­
countered and unsatisfied label or POP references exist.
This library normally consists of a collection of frequent­
! y used closed subroutines and Programmed Operator sub­
routines. The loader automatically loads any such
subroutines when it encounters an externa I reference in
a program (or group of programs) being loaded. This
relieves the programmer of the burden of including such

subroutines in the program decks (or tapes) he furnishes
to the loader. For example, the programmer may wish
to employ certain input/output subroutines avai I able on
the program library and refer to them symbolically in
his main program. Note that the loader first attempts
to satisfy all external references from the definitions
supplied in the program decks (or tapes) furnished by
the programmer, and only when this attempt is unsuc­
cessfu I does it attempt to sati3fy these references by
loading programs from the program library. The follow­
ing paragraphs describe the procedures employed to ac­
cess programs in the program library.

When the loader is loading a previously assembled pro­
gram and there are externa I references that have not
been satisfied when the end record with a transfer ad­
dress is encountered, the loader causes the monitor to
locate the MONARCH library on the system tape. The
loader then enters a specia I mode in which it searches
the external definition in each library program in suc­
cession. When it encounters a library program which
satisfies at least one such reference, it loads this pro­
gram; then, if there are sti II some unsatisfied references,
it continues to search the program library. To avoid
"backtracking 11 when switching from "search 11 to 11 load 11

mode, the definitions from each library program being
examined are temporarily added to the table of exter-

nal definitions and references maintained by the loader.
Note that the records containing external label defini­
tions and externa I Programmed Operator definitions must
precede al I other information in a binary object program;
hence, only these definitions have to be saved in mem­
ory to enable the loader to switch from "search" to "load"
mode without rereading records from the system tape.

If a given library program does not contain a definition
for any of the unsatisfied references, its definitions are
removed from the table and the next library program is
examined. If there are still unsatisfied external refer­
ences when the end of the program library is encountered,
the loader indicates that an error condition exists.

The loader employs an entirely similar method in attempt­
ing to obtain definitions for any unsatisfied Programmed
Operator references. If these references cannot be sati s-
fi ed from the Programmed Operator definitions on the
system tape, the loader indicates that an error condition
exists. The I ibrary search for Programmed Operators is
concurrent with the search for external definitions of
labels (i.e., the Programmed Operator definitions are
part of the program I ibrary). 5 i nee MONARCH makes
only one pass through the library, no routine on the li­
brary can call a routine preceding it.

19

4. PROGRAMMING WITH MONARCH

~ section describes MONARCH subroutines that can
ce referenced from the user 1s program. Also discussed
here is the MONARCH System Update Routine which is
used to create new MONARCH system tapes and to up­
date existing system tapes.

OCTAL DUMP ROUTINE

A Line Printer Octal Dump Routine with zero suppres­
sion is incorporated in the MONARCH loader. This
routine resides in the last 132a locations of memory and
may be referenced internally or from the console. When
the dump routine is to be referenced in a program, the
fol lowing cal I ing sequence must be assembled as part of
the user 1s program:

a
Q + 1
a+2
a+3

BRM
PZE
PZE
return

a represents any location. When the dump is completed,
control is returned to the user 1s program at a+ 3.

QDUMP is the externally defined label for the entry
point of the routine and must be an externally de­
fined symbol in the user 1s program.

specifies the beginning address of the sequential
memory locations whose contents are to be printed.

P
2

designates the ending address of the sequential mem­
ory locations whose contents are to be printed. The
address represented by P

2
must be equal to or great­

er than that of P
1

.

P
1

and P
2

may be numeric or symbolic (external).

To reference the dump routine from the console, set the
contents of the registers as follows:

A Beginning address (see P1 above)
B Ending address (see P2 above)
c

For 900 Series Computers:

0 01 17650 for an 8K memory
0 0 l 23650 for a 10 K memory
0 01 27650 for a l 2K memory
0 01 33650 for a 14K memory
0 01 37650 for a 16K memory

For 9300 Computers:

0 01 17646 for an 8K memory
0 01 27646 for a 12K memory
0 01 37646 for a 16K memory

Position the RUN-IDLE-STEP switch to RUN.

20

To continue dumping when the computer halts, reset
the A and B registers to the desired addresses and clear
the halt.

Note: On 900 Series Computers the octal dump routine
operates only on machines with memory of 16K or
less.

SYMBOL TABLE TYPEOUT ROUTINE

The Symbol Table Typeout Routine produces a list of all
symbols and the location to which each is assigned.
If Breakpoint l is reset, the symbol table is output on
typewriter l on the W buffer; if Breakpoint l is set, the
table is output on I ine printer l on the W buffer.

To reference the symbol table typeout routine, set the
contents of the 900/9300 C register to BRU TYPSY5:

C = 0 01 17734 for an 8K memory
= 0 01 23734 for a 1 OK memory
= 0 01 27734 for a 12K memory
= 0 01 33734 for a 14K memory
= 0 01 37734 for a 16K memory

Position the RUN-IDLE-STEP switch to RUN. The com­
puter will halt after the typeout. The user may clear
the halt, causing a transfer to QBOOT which reloads
the MONARCH system, or he may transfer manually to
any location (i.e., insert in the C register a BRU to the
desired location).

The output produced by this routine consists of two columns;
the first con ta ins the symbo I, left justified with trai I ing
blanks, and the second contains the memory location to
which the symbol was assigned. (See Appendix C for
the method used in forming the addresses.)

It is suggested that, upon receiving the MONARCH
system of programs, the user have a symbol tab I e type­
out produced. The listing produced will be useful when
reference to a specific address within the MONARCH
system of programs is required. A sample of such a
I isting appears in the discussion 11 Monarch Loader 1s
Symbol Table 11 in Section 6.

OCTAL CORRECTION ROUTINE

Corrections may be made to a program at load time via
octal correction cards. Such cards are placed just be­
fore the end card in the binary deck. The format of
correction cards is

P1 P2P3 ••• Pn·

is an address, consisting of up to five octal digits,
that specifies the location of the first correction.
P1 may start in any column. If it does not start in
column l, a character string (P2) may precede P1.

is any character string (one or more characters) not
containing an octal digit. If the first character of
the string is an R, the preceding octal number is
assumed to be relocatable. If the first character
is any other character, the preceding octal number
is assumed to be nonrelocatable.

is the octal correction (one or more octal digits). If
more than eight digits appear, only the last eight
digits read (i.e., the eight low-order digits) are
accepted.

Succeeding octal numbers are stored in consecutive lo­
cations relative to location P1. Continuation from one
card to the next is not permitted. A period may serve
as a terminator but is not required. If a period is used,
any information following the period is treated as com­
ments and is not processed.

Examples:

Assume that a program is to be loaded and that relative
locations 212, 213, and 214 are to be changed to con­
tain BRU 00235, BRU 00243, and HL T 00000, respective­
ly. The necessary corrections could be written as

I 212,R,1000235,R,1000243,R,O,·
I I I I I I'

pl P3 P3 p3
p2 p2 p2

The same changes could also be written as

,PATCH , 212,R = I 1000235,R, , 1000243,R, ZRO = .Q.
I I I I I I I I

p2 pl p2 p3 p2 p3 p2 p3

If the program is loaded with a relocation bias of 1000
8

,
these locations will contain:

Location

1212
1213
1214

Contents

01000235
01000243
00000000

LOADER ROUTINE

The MONARCH loader can be executed either via the
appropriate MONARCH control messages or directly as
a closed subroutine. The user's program can transfer to
the loader by executing the instruction

BRM QSYSLDR

QSYSLDR is the externally defined label for the entry
point to the loader and must be an externally defined
symbol in the user's program. The loader assumes that

the A register contains the load relocation bias to be
used and that the B register contains the binary value of
the loader option parameter (see LOAD control message
in Section 2).

The loader commences execution by reading a record
from the previously designated binary input medium and
checking the first word (control word) of the record to
see whether or not it is a valid binary record. Next,
the record type code (see Appendix F) of the control
word is used to indicate the appropriate subroutine with­
in the loader for processing that type of record.

When the loader has processed a record, it continues by
reading in the next record uni ess the record just process­
ed is an end record (record type code of 3). When an
end record without a transfer address has been processed,
the loader, depending upon the value of the loader op­
tion parameter, does one of three things:

1. Halts with:

c 0 20 22222

A load relocation bias to be used for loading the
next program (unless changed manually by the
console operator)

B = indeterminate

2. Returns control to the program that cal led the load­
er (by executing a BRR QSYSLDR), with:

3.

B initial load relocation bias plus program length

A loader option parameter

Sets the load relocation bias equal to its previous
value plus the length of the current program (as
specified in the end record) and continues loading
records.

When an end record with a transfer address is encount­
ered, a I ibrary search is made to satisfy references. Then
any indicated relocation is performed on the single data
word in the end record, and the loader, depending on
the value of the loader option parameter, does one of
two things:

1. Halts with:

2.

C = transfer word as modified by any relocation
indicative present in the end record

A loader option parameter

B load relocation bias

Executes the transfer word after performing any in­
dicated relocation of the address field. Normally,
the transfer word is a BRANCH UNCONDITIONAL
instruction (BRU), whose address is determined by
the value of the expression in the operand field of
a SYMBOL or META-SYMBOL END line.

21

rhe loader does not "initialize" unused memory loca­
rions with "background'' values (e.g., halt instruction).
The only memory locations modified by the loader are

1. Those within the locations occupied by the loader
and its input subroutines.

2. Those locations pre-empted by the loader for its
symbol table.

3. Locations in which the loader is explicitly directed
to store instructions or constants (i.e., data words
supplied to the loader in data records).

SYSTEM UPDATE ROUTINE

This routine is used to create new MONARCH system
tapes and to update existing system tapes. The func­
tions of insertion and deletion of both system programs
and data files (including the MONARCH monitor and
the MONARCH loader} are provided.

Since each routine on the system tape (except the boot­
strap loader and the MONARCH loader} is preceded by
an identifier (a MONARCH ID record}, insertions and
deletions are indicated to the update routine in terms
of those identifiers. The MONARCH loader has the
identifier LOAD associated with it even though no
MONARCH ID record actually precedes that routine on
the system tape. The bootstrap loader is automatically re­
corded on a new system tape as the first record on the tape.

It may be necessary to include, as standard system rou­
tines, programs whose memory space requirements pre­
clude the use of the MONARCH loader to load them at
execution time. Such programs should be preceded on
the system tape by a special purpose loader that is capa­
ble of loading the system routine in question from the
system tape. It is this special purpose loader which is
loaded, and executed, under control of the MONARCH
loader when a MONARCH control message calls for ex­
ecution of the system routine in question.

All programs on a MONARCH system tape, with the ex­
ception of the bootstrap loader, must be in either SDS
standard binary language or FORTRAN binary language.
Data files to be recorded on a MONARCH system tape
must be presented to the update routine in either of these
formats or else in S DS encoded symbo I ic format. The
only other form of information permissible on a MON­
ARCH system tape is MONARCH ID records. Such rou­
tines and data files must be presented to the update
routine on punched cards, paper tape, or magnetic tape.

It is also noted that a standard system routine (e.g., the
META-SYMBOL assembler) may itself consist of several
independently assembled subprograms and only the first
of these is preceded on the system tape by a level 1

MONARCH ID record. Hence, the MONARCH loader
automatically loads any subprograms following the first
subprogram until it encounters either the next level 1
MONARCH ID record or a binary end record (type 3)
with a transfer address. The MONARCH update routine
acknowledges this type of program structure when per­
forming insertion and deletion functions in the course of
writing a new system tape. Any or al I of the subpro­
grams of a standard system routine may be preceded on
the system tape by a level 2 MONARCH ID record to
permit insertion or deletion of individual subprograms
by the MOl'-IARCH update routine. These level 2 MOl'J­
ARCH ID records are ignored by the MONARCH loader
when loading a standard system routine for execution.

The update routine produces a typewriter or Ii ne printer
listing of the MONARCH ID records (level 1 and level
2) associated with all routines and all data files written
on a new system tape. These ID records appear on the
I isting in the order in which they exist on the new sys­
tem tape. This I isting should be preserved for use as the
basis for constructing update control messages for the
next system update run. (See examples later in this sec­
tion.)

Routines to be inserted by the MONARCH update rou­
tine must be preceded by a level 1 and/or level 2
MONARCH ID record and must be presented in the order
in which they appear on the new system tape. CO PY
messages (i.e., controi messages to the update routine)
must be presented in the order in which they are to be
executed. No reordering of update input is performed.

THE UPDATE CONTROL MESSAGE

When the update routine is loaded for execution by the
MONARCH loader, the MONARCH unit assignment
table is assumed to contain the fol lowing information:

1. QMSG (control message input unit) contains the
unit and channel designation for the peripheral de­
vice that is to furnish MONARCH control messages
and update control messages. The unit must be a
card reader or a typewriter.

2. QSYSU (the update input unit UI) contains the unit
and channel designation for the peripheral device
that is to furnish any programs or data files to be
inserted in the new system. The unit must be a card
reader, a paper tape reader, or a magnetic tape
unit.

3. QSYST (system scratch tape Xl) contains the unit
(magnetic tape only) and channel designation for
the peripheral device upon which the new system
tape will be written •

. ..
11•-tr: T'f/l~/ C.'I If~ P r.J.e. ~ $.~ R

1fk ~~~~ ~ ~ ~ 6'\ 22 ~~~

0 ~

4. QSYS (sytem tape S) is assumed to specify magne­
tic tape unit 0 on channel Wand the old system
tape is assumed to be mounted on that unit. How­
ever, if both QSYS and QSYST contain the same
unit and channel designation, the update routine
assumes that no old system tape is present.

5. QSYMO (list output unit LO) is assumed to specify
whether MONARCH ID records will be listed on
the Ii ne printer (LO=LP) or on the typewriter {LO=TY).

It should be noted that the update control message input
unit (QMSG) and update input unit (UI) assignments may
differ. For example, QMSG may be assigned to the
card reader (CR) and update input (UI) may be assigned
to a paper tape, magnetic tape, or card reader.

The following sequence of MONARCH control messages
illustrates the means of setting up the unit assignment
table and calling in the update routine for execution.

6C
6ASSIGN
6ASSIGN
6UPDATE

CRlW.
S=MTOW, Xl=MTlW, UI=CRlW.
LO=LP.
256.

The MONARCH update routine has two modes of oper­
ation: the normal mode and the blocking mode. In the
normal mode al I records are written as 40-word records.
In the blocking mode a 11 records (MONARCH ID records
excluded) are written as blocked records. The maximum
length of a blocked record is determined by the block­
ing number which is a parameter of the update control
message (411 o s blocking number s 2561 o). If the block­
ing number is less than 41, 41 is automatically used. If
the blocking number is greater than 256, 256 is automa­
tically used.

A blocked record consists of a l-word block sentinel
{defined below) followed by one or more 11 logical 11 re­
cords. A 11 logical 11 record is one of the following:

l. A MONARCH ID record (40 words).

2. A binary record {average length fewer than 28
words, maximum length 31 words).

3. An encoded symbolic record (40 words maximum).

An unblocked record consists of a single logical record;
however, al I unblocked records are written as 40-word
records even if the logical record contains fewer than
40 words.

The block sentinel word has the fol lowing format:

Bits

0 = 8

9 - ll

12 - 23

Contents

0

3

Number of words in physical record
(including the block sentinel word)

The blocking number serves a twofold purpose: it spec­
ifies the maximum number of words per record and indi­
cates whether the update routine is to operate in the
blocking mode on the selected segments. If no blocking
factor is specified, the update routine operates on all
segments in the normal mode.

Which segments are to be blocked when the update rou­
tine is operating in the blocking mode is determined by
the level l or level 2 MONARCH ID record preceding
that segment. If a level l or level 2 MONARCH ID
record contains a B in character position 22 and blanks
in character positions 21, 23, and 24, everything with­
in the scope of that level l or level 2 ID record is block­
ed. Since the MONARCH loader is not preceded by a
MONARCH ID record, it is automatically blocked when­
ever a blocking mode is specified.

CONTROLLING AN UPDATE RUN­
THE UPDATE FILE

Normally, two logical 11 fi les 11 are presented to the up­
date routine to enable it to create a new system tape.
One of these files is the old system tape, and it is an
optional input. The other file is the update file; it is
never optional, al though its form and content may vary
considerably.

In the general case, the update fi I e consists of an or­
dered sequence of COPY messages, MONARCH ID re­
cords, binary records, and encoded symbolic records.
In a particular instance, an update file may consist en­
tirely of COPY messages, in which case only the func­
tions of selective duplicating and selective deleting are
performed. Alternatively, a given update file may con­
sist entirely of MONARCH ID records, binary records,
and encoded records, in which case only the functions
of selective insertion and, by the absence of COPY mes­
sages, blanket deletion of al I information on the old
system tape are performed. In the latter case, the ab­
sence of COPY messages removes the requirement for
providing an old system tape for the update run.

Physically, the update file can exist entirely on magne­
tic tape, on punched cards, or (although highly unlikely
entirely on paper tape. Alternatively, all COPY mes­
sages and MONARCH ID records in the update file can
be presented as typewriter messages while any programs
to be inserted are presented on punched cards, paper
tape, or magnetic tape. {Samples of update file I isting~
are included at the end of this section.)

Insertion

insertion is control i ed by presenting the update routine
with a MONARCH ID record via the control message
medium (QMSG) which may also be the update medium
(QSYSU), and one or more programs {or data files) via
the update medium (QSYSU). The MONARCH ID record

23

is the first record written on the new system tape. The
update routine then co pi es records from the update me­
dium onto the new system tape unti I:

1. An end-of-file condition (not ~EOF) is detected.
The update routine wi 11 then request a contro I
message.

2. A possible COPY message is encountered; i.e., a
record other than a binary, encoded, or MONARCH
ID record. (The update routine proceeds to analyze
it as if it were a control message.)

3. If the update medium is paper tape and a binary or
encoded end record (type 3) is encountered, a halt
is executed. (Set (A) = 0 to continue insertion, or
set (A) -f 0 to stop insertion and cause the update
routine to request a control message next; then set
the RUN-IDLE-STEP switch to RUN.)

4. A level 1 MONARCH ID record with SYSEND/\/\
in characters 9 through 16 was written on the new
system tape. (Both old and new system tapes are
rewound, and the monitor is loaded from the system
tape on unit 0 of the W buffer.)

Note: When an insertion is under control of a level 2
MONARCH ID record and the insertion is to be­
come, or replace, the first subdivision of a major
division of the system tape, the level 1
MONARCH !D record for the major division
must precede the level 2 MONARCH ID record
in the update file. (See examples at the end of
this section.)

Programs to be inserted must be in SDS standard binary
language. Data files must be in this format or else in
SDS 9300/900 Series encoded symbolic format.

Al I bi nary and encoded records inserted in a new system
tape wi 11 have their checksums validated by the update
routine.

Deletion

Deletion of programs or data files from an old system
tape is accomplished by simply excluding those programs
or data files from the scope of a COPY message. In
other words, failure to COPY a program results in its
being deleted from the new system tape.

Replacement

Replacement of programs or data files is accomplished
by deleting (not COPYing) the existing program or file
and by inserting a new version of that program or file.

Retention (COPY function)

Retention of programs or data files is accomplished by
including those programs or data files in the scope of a

24

COPY message. Retention must be made explicit; the
only program implicitly 11 retained 11 from an old system
tape to a new system tape is the bootstrap loader, but
this program is not "copied" from the old tape by dupli­
cating the first record on the old tape. It is in core at
the time the update routine is executed; therefore, the
update routine writes the bootstrap loader from core onto
tape as its first operation (i.e., immediately after con­
trol is transferred to it and before any COPY messages
are read). Al I binary and encoded records written on
the new system tape will have their checksums validated
by the update routine.

COPY MESSAGES

The purpose of a COPY message is to obtain programs or
data files from the old system tape and record them on
the new system tape. The COPY message is used in lieu
of placing the indicated programs in the update file.
COPY messages refer to records (e.g., binary programs)
by using the program names that appear in character po­
sitions 9 through 16 of the MONARCH ID records on the
old system tape.

Major divisions of a MONARCH system are preceded,
on the system tape, by a level 1 MONARCH ID record:

~ 1 /\/\/\/\/\/\LIBRARY A" • •

Minor divisions of a 1V10~"1ARCH system are preceded,
on the system tape, by a ievei 2 MONARCH iD record:

Minor divisions of a MONARCH system are arbitrary
subdivisions of o program or o data file recognized by
the update routine (see description of the MONARCH
Loader in Section 3 for mention of another use of level 2
MONARCH ID records in connection with automatic li­
brary searching).

Each MONARCH ID record must have a unique label.
Labels may not contain separators (see Section 2). In
other words, each label must be explicit; a label such as

~ 1 /\/\/\/\/\/\SIN, C 0 SA ...

is illegal because of the comma.

If an argument of a COPY message consists of one
program name, the name is assumed to occur in charac­
ters 9 through 16 of a level 1 MONARCH ID record on
the old system tape. If an argument of a COPY message
consists of two program names (the second may be en­
closed in parentheses), the first (leftmost) is assumed to
occur in characters 9 through 16 of a level 1 MONARCH
ID record on the old system tape, while the second pro­
gram name is assumed to occur in characters 9 through
16 of a level 2 MONARCH ID record which occurs

subsequent to the I eve I 1 record. In other words; the
second program name is assumed to refer to a subdivision
of the major division of the old system tape that was iden­
tified by the first program name. For example,

6CO PY/\/\/\ LIBRARY (COSINE).

LIBRARY is a level 1 ID record, and COSINE is a level
2 ID record within the scope of LIBRARY.

Execution of a COPY message by the MONARCH up­
date routine involves copying the MONARCH ID re­
cord(s) and any binary or encoded records that are in
the scope of the MONARCH ID records named in the
COPY message.

The term 11 in the scope of 11 is defined as fol lows:

If 11 A" and 11 B11 are distinct program names in level
1 ID records, and 11 X 11 and 11 Y 11 are distinct pro­
gram names in level 2 ID records, then:

1. A binary or encoded record (r) is 11 in the
scope of11 A provided that no other level 1 ID
record occurs between A and r on the system tape.

2. A binary or encoded record (r) is 11 in the scope
of" X provided that no other level 2 ID record
occurs between X and r on the system tape.

3. X is "in the scope of" A provided that no other
level 1 ID record occurs between A and X on
the system tape.

4. A binary or encoded record (r) is 11 in the scope
of 11 both X and A if rules 1, 2, and 3 apply.

5. If a binary or encoded record (r) is 11 in the
scope of 11 X, it is not "in the scope of 11 Y.

6. If a binary or encoded record (r) is 11 in the·
scope of11 A, it is not 11 in the scope of 11 B.

The Syntax of COPY Messages

A valid COPY message is an instance of one of the
fol lowing:

6 /\/\/\COPY/\ a.

6 /\/\/\COPY/\ a/\ (b).

6 /\/\/\COPY/\ a/\ THRU /\ b.

6 /\/\/\CO PY/\ a/\ (c) /\ THRU /\ b.

6 /\/\/\COPY/\ a/\ THRU /\ b /\ (d).

6/\/\/\ COPY/\ a/\ (c) /\ THRU /\ b /\ (d).

where a, b, c, and d represent program names (MONARCH
ID labels). The first character of a program name must
be alphabetic and each remaining character must be
either alphabetic or numeric. Each name may consist
of up to eight characters. The message must be termi­
nated by a period.

Parentheses may be omitted, their only purpose being to
enhance readab i Ii ty.

The caret (A) is used to indicate the minimum number of
spaces that must separate words in a COPY message.

COPY messages without the word THRU are said to have
one argument. CO PY messages with the word THRU are
said to contain two arguments. Each argument consists
of either one or two program names.

COPY Messages with One Argument

A COPY message with one argument consisting of one
program name causes the update routine to read al I re­
cords in the scope of the level 1 ID record with the same
name from the old system tape and write them on the new
system tape. For example, when

6/\/\/\ COPY/\ LIBRARY.

is encountered, the update routine bypasses any records
on the old system tape preceding the level 1 MONARCH
ID record with LIBRARY/\ in characters 9 through 16.
This is the first record to be written on the new system
tape in response to this COPY message. The update rou­
tine then copies al I records fol lowing that ID record un­
ti I the next level 1 MONARCH ID record is encountered
on the old system tape. It is th is 11 next 11 level 1 record
that terminates the copying of records from the old sys­
tem tape; it is not copied onto the new system tape as a
result of this COPY message, but it is the first 11 old sys­
tem tape 11 record to be examined when the next update
control message is processed.

A COPY message with one argument consisting of two
program names causes the update routine to read all re­
cords in the scope of the level 2 MONARCH ID record
corresponding to the second program name and write them
on the new system tape. For example, when

6/\/\/\ COPY/\ LIBRARY/\ (COSINE).

is encountered, the update routine bypasses any records
on the old system tape preceding the level 1 MONARCH
ID record with LIBRARY/\ in characters 9 through 16;
that is, unless the old system tape is already positioned
at, or beyond {but sti 11 with in the scope of), that I eve I
1 ID record. In either case, the update routine searches,
within the scope of LIBRARY, for a level 2 MONARCH
ID record with COSINE/\/\ in characters 9 through 16.
If the level 1 MONARCH ID record for LIBRARY has not
already been written on the new system tape, it is the
first record written on the new system tape in response
to this COPY message. In either case the update rou­
tine writes, on the new system tape, the level 2 MON­
ARCH ID record with the name COSINE. The update
routine then copies all records following that ID record
until the next MONARCH ID record (either level l or
level 2) is encountered on the old system tape. It is
this 11 next 11 MONARCH ID record that terminates the
copying of records from the old system tape. It is not
copied onto the new system tape as a result of this COPY
message, but it is the first "old system tape 11 record

25

to be examined when the next update control message
is processed.

COPY Messages with Two Arguments

A COPY message 'Nith two arguments is equivalent to a
series of "one argument" CO PY messages. The update
routine performs the necessary copying indicated by the
first argument exactly as in the case of a 1-argument
COPY message; but, in addition, it copies all records
following those included in the scope of the first argu­
ment until the MONARCH ID record whose name matches
the second (or only) program namet of the second argu­
ment is encountered. At this point, the update routine
performs the necessary copying indicated by the second
argument exactly as in the case of a 1-argument COPY
message.

Special tests are made to detect cases in which the first
and second arguments are identical. When this occurs,
the COPY message is reduced to the equivalent 1-
argument CO PY message.

The following sets of COPY messages are equivalent if
11 A 11

,
11 B11

, and 11 C 11 occur (in that order) as program
names in consecutive level 1 MONARCH ID records on
a system tape:

Set l: 6./\/\1\co PY A THRU A.
6./\/\1\co PY B THRU B.
6./\/\/\COPY C THRU C.

Set 2: 6./\/\/\ CO PY A.
6.f\/\/\co PY B.
6./\/\/\COPY C.

Set 3: 6./\/\/\COPY A THRU A.
6./\/\/\COPY B THRU C.

Set 4: 6./\/\/\co PY A THRU B.
6./\/\/\COPY C THRU C.

Set 5: 6./\/\/\COPY A THRU C.

Thus, the use of THRU, in a COPY message with two
arguments, provides an a I ternative to using a series of
1-argument CO PY messages.

Termination of an Update Run

COPY messages of the form:

6. /\/\/\COPY/\ SYS END/\/\.
or

6./\/\/\COPY /\a/\(b)/\ THRU/\SYSEND/\/\·

cause the indicated COPY function to be performed, the
update process to be terminated, the new system tape to
be rewound, and control to be returned to the MONARCH
monitor. In this case, the MONARCH monitor in ques­
tion is 11 bootstrapped 11 from tape 0 on the W buffer.

t Matching of the second program name is inhibited until
a level l MONARCH ID record whose name matches the
first program name is encountered.

26

CONTENTS OF A TYPICAL MONARCH
SYSTEM TAPE

record containing MONARCH bootstrap and LOADER

first record of lv'10 NARC H loader

Last record of MONARCH loader

6.1 MONITOR
first record of MONARCH monitor

Last record of MONARCH monitor

6.l PRINT
first record of PRINT subroutine

END record of PRINT subroutine

6. l MT APE
first record of MTAPE subroutine

END record of MT APE subroutine

6.l CORP
first record of C DRP subroutine

END record of C DRP subroutine

6.l PTYIO
first record of PTYIO subroutine

END record of PTYIO subroutine

LIBRARY
SINE

first record of SINE subroutine

END record of SINE subroutine

6.2 COSINE

6.1 SYSEND

EXAMPLES

Facsimile of a typical listing of MONARCH ID records
resulting from a MONARCH update run:

61 LOAD·
61 MONITOR.

62 CONTROL.
62 TABLES.
62 QMSGRD.
62 LDIOSR.
62 CARD.
62 MTYIO.
62 MAGTP.
62 TFMONRCH.

61 PRINT.
61 MT APE.
61 CORP.
61 PTYIO.
61 CDR.
61 LIBRARY.

62 CORP.
62 CDR.
62 PRINT.

61 META920.
62 ENCODER.
62 MONl.
62 MSCONTRL.
62 PR EA SS EM.
62 ASSEMBLR.

61 UPDATE.
62 BOOTSTRAP.
62 UPDATERT.

61 SYSEND.

Exam pl es of Program Sequences for Update Runs

l. To duplicate an existing MONARCH system tape:

6C "fYl W. . IV -1 Y l i.1)

6ASSIGN S=MTOW, Xl=MTlW, UI=CR{W, LO=LP.
6UPDATEf\ l:Sb.
6 COPY LOAD THRU SYSEND/\/\"

/\/\/\

2. To insert a system routine (11 RN 11
) between existing

system routines 11 R1 11 and 11 R2 11
:

'', 1, l ,
L':.C CRlW. l
6ASSIGN S=MTOW, Xl=MTlW, UI=ER+W, LO=LP.
6UPDATE.
61\/\/\COPY LOAD THRU Rl.
61/\/\/\/\A/\RNAA/\/\/\/\•

"first binary record of RN 11

11 last binary record of RN (end record)"

6 COPY R2 THRU SYSEND/\/\.
/\/\/\

binary
deck for
RN

3. To delete a system routine (11 R7 11
) that appears on

the old system tape between system routines 11 R6"
and 11 R8 11

:

6C CRlW.
6ASSIGN S=MTOW, Xl=MTlW, UI=CRlW, LO=LP.
6UPDATE.
61\/\/\COPY LOAD THRU R6.
6/\/\1'-.COPY R8 THRU SYSEND/\/\·

4. To replace a system routine (11 R7 11
), appearing on

the old system tape between 11 R6 11 and 11 R8 11
, with

a new version of 11 R7 11
:

5.

6C CRlW.
6ASSIGN S=MTOW, Xl=MTlW, UI=CRlW, LO=LP.
6UPDATE.
61\/\/\COPY LOAD THRU R6.
6 l /\/\/\/\/\/\ R7 /\/\/\/\/\/\.

11 first binary record on new version of R7 11

11 last bi nary record of new version of R7 11

6 /\/\/\COPY R8 THRU SYSEND /\/\.

To insert a new subroutine (11 NEW 11
) as the first

subdivision under 11 LIBRARY 11
, where 11 LIBRARY11 is

the name in a level 1 MONARCH ID record on the
old system tape, 11 C DR 11 is the name in the level l
MONARCH ID record immediately preceding
11 LIBRARY 11

, and 11 CDRP 11 is the name in the first
level 2 MONARCH ID record under 11 LIBRARY11 on
the old system tape.

6C CRlW.
6ASSIGN S=MTOW, Xl=MTlW, Ul=CRlW, LO=LP.
6UPDATE.
6AA/\COPY LOAD THRU CDR.
6 l /\/\/\/\/\/\LIBRARY/\.
62/\ /\/\/\/\/\NEW/\/\/\/\/\.

11 first binary record of NEW 11

11 last binary record of NEW 11

6/\/\/\COPY LIBRARY (C DRP) THRU SYSEN D/\/\.

6. To re-order the system tape. Re-ordering of the
system tape is accomplished by initializing a rewinc
following a series of COPY messages and/or inserts,
then reading and executing a new series of COPY
messages. This allows for repositioning logical file~
on the system tape without having to include the
binary decks.

27

28

The control cord for the rewind is recognized by
the update routine. The format of the card is
'6.REWIN D. No blanks ore allowed. {In the up­
date routine '6.REWIND implicitly rewinds MTO.)

Example:

Old system tape order is the following se­
quence of level l ID records:

ABC D SYSEND

New order of tape requires:

AC DB SYSEND

The series of COPY messages should be:

61\/\/\ COPY A.

6 /\/\/\COPY C THRU D.

6REWIND.

6 /\/\/\COPY B.

6/\/\/\ COPY SYSEND /\/\"

ERROR HALTS DURING UPDATE RUNS

Certain error conditions occurring during an update run
cause an error message to be typed and the computer to
ha It. These error conditions are self explanatory and
include the corrective action needed. The term OST
refers to the old system tape (5), the term NST refers to
the new system tape (X l), and the term U PD refers to
the update input medium (UI), in the texts of the error
messages.

5. PREPARING PROGRAM DECKS

META-SYMBOL ASSEMBLY AND EXECUTION

Assemble a META-SYMBOL symbolic program to produce
an object program for a 910/925.

Symbolic deck
.6.META910 SI, BO, LO.

.6.ASSIGN S=MTOW, Xl=MT2W.
.6.ASSIGN SI=CRlW, BO=PPlW.

MSSIGN LO=LPl W.

Assemble a MET A-SYMBOL encoded deck to produce an
object program for 920/930. (Note that encoded deck
requires no EOF indication.)

~ENDJOB.

6~!~~~:~trJMwi111v&rl
MSSIGN S=MTOW, Xl=MT2W.

MSSIGN EI=CRlW, BO=PPlW.

Assemble META-SYMBOL symbolic and encoded input
from card reader. (Note that~ EOF indica~es termina­
tion of SI)

.6.ENDJOB.

Symbolic deck
.6.META920 SI, EI, BO, LO. l

MSSIGN S=MTOW, Xl=Mnw-: ,
MSSIGN X2=MT2W, Sl=CRlW.

.6.ASSIGN El=CRlW, BO=PPlW.

MSSIGN LO=LP.

Assemble MET A-SYMBOL encoded deck with symbolic
corrections on a 900 Series Computer to produce an ob­
ject program to run on 9300.

Symbolic correction cards
.6.META9300 SI, El, BO, LO,

MSSIGN S=MTOW, X l=MTl W.

MSSIGN X2=MT2W, SI=CRlW.
MSSIGN EI=CRlW, BO=PPlW.

Assemble a META-SYMBOL encoded deck with symbolic
corrections, requesting a concordance I isting and speci-
fying symbols to be included and/or excluded. .

I .6.ENDJOB •
.6.EOF.

EXCLUDE/INCLUDE cards

Encoded program
,.-~~~~~--"""'-'·~···~~-

.6.EOF.

Symbolic correction cards

--- .6.META920 SI, EI, LO, EXCP.
MSSIGN S=MTOW, Xl=MTlW.

MSSIGN X2=MT2W, SI=CRlW.
.6.ASSIGN EI=CRlW, BO=PPlW.

MSSIGN LO=LP.

Assemble and execute a META-SYMBOL source program.

L.o.ENDJOB.

/data (if any) :::'.,:

/ .o.LOA D 0, GO. m
L.o.REWIND MT2W.

f-'

L MSSIGN BI=MT2W.
.6.EOF. l

LSymbolic lck
B ..

@I
L .6.META920 SI, BO I LO.

lH
L- .6.REWIND MT2W.

/.o.ASSIGN S=M TOW, X l =MT l W.
1

..

L .6.ASSIGN BO=MT2W. f--1

L.o.ASSIGN SI=CR lW, LO=LPlW. r-'

.6.JOB.,

f--1

1--'

t--'

30

FORTRAN COMPILATION AND EXECUTION
(900 Series Only)

Compile a FORTRAN source program.

I .6.ENDJOB.
L .6.EOF.

rn
J FORTRAN source program

L .6.FORTRAN LO, BO. ::::::::; I-'

/ .o.REWIND MTlW. I-'

/.o.ASSIGN SI=CR lW I BO=M Tl w.
L.o.ASSIGN S=MTOW, LO=LP.

.6.JOB • µ

~

..........

µ

Compile and execute a FORTRAN source program.

I .6.ENDJOB.

TI 0
/data (if any) :::::::::

L .6.FORTLOAD BI.
llll:llllf--1 L .6.REWIND MTlW. il MSSIGN BI=MTl W.
,

L.o.EOF. ,... .

Lr-"'nTn A i...1 rvl\.11\.1-\l"'I source prngram

.6.FORTRAN LO, BO •

L .6.REWIND MTlW. 1--'

I MSSIGN S=MTOW, SI=CRl W.

L MSSIGN BO=MTlW, LO=LP. 1--'

.6.JOB •,

.......,

.......

1--'

L-

Compile and execute a FORTRAN program input from
paper tape. If the source tape does not end with a ..6.EO F,
control must be transferred to MONARCH manually.

..6.REWIND MTlW •

..6.ASSIGN BI=MTlW •
..6.FORTRAN LO, BO •

..6.REWIND MTlW •
..6.ASSIGN S=MTOW, SI=PR lW.

..6.ASSIGN BO=MTlW, LO=LP •
..6.JOB.

Compile and execute a FORTRAN program which in­
cludes a FORTRAN subroutine and function.

..6.ENDJOB.
..6.fORTLOAD BI.

FORTRAN subroutine

.. ::iMI¥@il~I@M@~lMi@~~immm~Iml@lIJ~MIMtMMHtll'.~i~
FORTRAN main program

..6.FORTRAN LO, BO •
..6.REWIND MTlW.

MSSIGN S=MTOW, BO=MTlW.

SI=CRlW.

Compile and execute a FORTRAN program that uses a
subroutine, written in META-SYMBOL language, which
must be assembled .

..6.ENDJOB •

FORTRAN subroutine
written in META-SYMBOL

..6.META920 SI, BO, LO.

~?,~;!!!=:.;;;::jJ@f@J
..6.FORTRAN LO, BO •

..6.REWIND MTlW.
MSSIGN S=MTOW, BO=MTlW •

..6.ASSIGN LO=LP, SI=CRlW.

31

Compile and execute a FORTRAN program which uses a
previously assembled (or compiled) FORTRAN subroutine
on cards.

Previously assembled
FORTRAN subroutine

6FORTLOAD Bl, X l.
6REWIND MTlW.

MSSIGN Xl=CRlW, BI=MTlW.
6EOF.

FORTRAN source program
6FORTRAN LO, BO.

6REWIND MTlW.
MSSIGN S=MTOW, BO=MTlW.

MSSIGN LO=LP, SI=CRlW •

.6.JOB.

.. s I

Execute a previously compiled FORTRAN program.

32

data (if any)

Previously com pi led FORTRAN
main program

6FORTLOAD X 1.
.6.ASSIGN S=MTOW, X l=CR lW.

6JOB.

...

Execute a previously compiled FORTRAN program that
uses a subroutine, written in META-SYMBOL language,
which must be assembled.

main program

6FORTLOAD X l, BI.
6ASSIGN Xl=CRl W.

I .6.WEOF-MTlW.
--~~~~~---.......... ~~~-

6 E OF.

FORTRAN subroutine written in
META-SYMBOL

6META920 SI, BO, LO.
6REWIND MTlW.

6ASSIGN S=MTOW, SI=CR1 W.
6ASSIGN BO=MTl W, LO=LP.

ALGOL COMPILATION AND EXECUTION

Compile an ALGOL source program input from cards.

t::.ENDJOB.

Symbolic deck
L::.ALGOL BO, LS, LO.

t::.ASSIGN S=MTOW, Xl=MTlW.

BO=PPlW.

Com pi le an ALGOL source program input from paper
tape.

L t::.ENDJOB.
L L::.ALGOL BO, LS.

L L::.ASSIGN S=MTOW, Xl=MTlW.
L MSSIGN SI=PRlW, LO=LP.

L L::.ASSIGN BO=CPlW. ~

6JOB. I-'

r--'

I-'

I-'

Compile and execute an ALGOL source program input
from cards.

~;!!f 7~Mi!Mi!@Mfii\fii!i! iWi
t::.ALGOL BO, LS.

t::.REWIND MT2W.
t::.ASSIGN S=MTOW, Xl=MTlW.

t::.ASSIGN SI=CR lW, LO=LP.
L::.ASSIGN BO=MT2W.

Execute a previously compiled ALGOL program.

ALGOL object program

L::.ALGOLOAD.
.6.ASSIGN S=MTOW, BI=CRlW.

t::.JOB.

33

34

n A Tru nnr"\rl:C'C'Tt...lr"
Di'-\1\....n rl\.V\-1....J..JJ.l'IV

"next operation 11

6REWIND MT2W.

Encoded deck t
6LOADO, TGO, 1RECON 1

•

6WEOF MT2W.

Encoded deck t

6LOAD 0, TGO, 1RECON 1
•

MSSIGN BI=fy\TOW.

6FORTLOAD Xl, BI.
6ASSIGN BI=MT4W, Xl=CR.

--~~~~~--~~~---.

bREWIND MT4W.

____ 6META920 SI, EI, EO, BO, LO.

MSSIGN BO=CRlW, EO=CP.

6ASSIGN S=MTOW, LO=LP.

6ASSIGN EI=CRlW, X2=MT2W.
bASSIGN SI=CRlW, Xl=MTlW.

Previously compiled
FORTRAN main program

tRECON is c· routine on the system tape. As directed by
parameters input from the typewriter, RECON reads en­
coded cards and reconstructs them symbolically on mag­
netic tape. A description of this routine may be obtained
from the SOS Program Library by ordering catalog number
000022.

6. OPERATING PROCEDURES

LOADING THE MONARCH SYSTEM

l. Mount the MONARCH system tape on magnetic
tape unit 0 on the W buffer; the unit must be ready
for operation and the tape positioned at load point.

2. To load the system initially, proceed as follows:

a. For SOS 910/920 Computers:

b.

(l) Set registers X, C, and P and memory
cell l as follows:

0000 l = 0 32 00002
x = 77777771
p =O
c = 0 02 03610

WIM 2
-7

EOM 03610

(2) Set the RUN-IDLE-STEP switch to RUN.
(Do not STEP first.)

For SOS 925/930 Computers:

Execute the magnetic tape FILL procedure.

c. For SOS 9300 Computers:

(l) Press RESET.

(2) Execute a magnetic tape FILL.

3. To reload the system once it has been loaded:

a. For 900 Series Computers:

(l) Set C = 0 01 00001 BRU 00001

(2) Set RUN-IDLE-STEP switch to RUN.

If th is procedure fai Is:

(l) Set C = 0 01 x7736 BRU QBOOT

X = l for an 8K computer
= 2 for a l 2K computer
= 3 for a 16K computer

(2) Set RUN-IDLE-STEP switch to RUN.

If this also fails, execute the loading proce­
dure described in paragraphs l and 2 above.

b. For 9300 Computers:

(1) PressRESET.

(2) Press STEP.

(3) Press RUI'~.

If this procedure fails, execute the loading
procedure described in paragraphs l and 2
above.

FURNISHING CONTROL MESSAGES

When the MONARCH system is initially loaded, the
monitor attempts to obtain a control message from the
console typewriter, i.e., the device indicated by the
contents of QMSG in the unit assignment table. The
control message medium may be changed from the device
currently in use to another input device with a C con­
trol message (described in Section 2). For example, to
change the control message medium to card reader l on
the W buffer, use the control message

6.C CRlW.

After processing a C control message, MONARCH imme­
diately attempts to read a control message from the
newly assigned device. Control messages may be sup­
plied on punched cards, paper tape, magnetic tape, or
manually via an on-line typewriter.

At any given time while the MONARCH monitor has con­
trol of the computer, it expects to be able to obtain the
next control message from the control message medium
currently assigned. This imposes the following require­
ments on the console operator. If the medium is a:

l. Console typewriter, theconsoleoperatorshouldbe
prepared to furnish a control message, via the type­
writer, whenever its input light is lit.

2. Paper tape reader, the console operator should make
certain that a paper tape containing a control mes­
sage is inserted in the paper tape reader before the
control request is made and that the paper tape
reader is in operation.

3. Card reader, the console operator should make cer­
tain that a card containing a control message is in
the card reader's input hopper and that the device
is ready for operation. MONARCH reads cards in
binary mode and converts the card image to SOS
internal code before analyzing the message.

4. Magnetic tape, the console operator shou Id make cer­
tain that a reel containing a physical record with a
control message in it is mounted on the tape unit and
that the unit is in ready status. MONARCH reads the
tape in binary (odd parity) mode and assumes the maxi­
mum record length is 40 words.

If programs or data precede the next control message on
the current control message medium (2, 3, or 4 above),
MONARCH reads successive records from the unit until
a control message record is encountered or an end-of­
fi le condition occurs (cards and magnetic tape only). If
an end-of-fi I e is encountered before a control message
is read, MONARCH types an appropriat: message and
requests the next control message from typewriter l on
the W buffer.

35

36

Contents of
Register C

OOlxxxxx
(xxxxx =
transfer ad­
dress from
end cord)

Program

Loader

001xy650 Loader
(See "Octal
Dump Routine"
in Section 4
for values of
x and y.)

02000000

02000001

02000003

02000004

02000006

02000007

02000010

02022222

04010410

Update

Loader or
Bootstrap
Loader
(MTO only)

Loader

Loader or
Bootstrap
Loader

Loader

Loader

Loader

Loader

Loader

Normal, Planned,
or Error Holt

Planned

Normal Planned

Normal

Error

Error

Error

Error

Error

Error

Planned

Normal Planned

Explanation of Holt

Computer halts when an
end card with a transfer
address is encountered.
This halt occurs only when
the value of the second
parameter of the LOAD
contra I message so spec i -
fies, i.e. STOP, TSTP.

Stops in the octal dump
console driver routine.

Normal halt when update
medium is paper tape.

This halt indicates a buf­
fer error.

This halt indicates an
illegal input format.

A checksum error hos oc­
curred.

This halt indicates symbol
table overflow.

Unsatisfied external label
or POP reference remains
ofter library search. Un­
sotisfi ed references and/or
missing definitions ore outo­
mati co 11 y output to the type­
writer or line printer.

Duplicate external lobelsor
POP definitions encountered.

The computer ha I ts when an
end record with no transfer
address is encountered. This
halt occurs only when re­
quested (i.e., only when
the value of the second pa­
rameter of the LOAD control
message so specifies).

Stops in the symbol table
typeout driver routine.

Recovery Procedure

Set RUN-IDLE-STEP switch to RUN
to execute the program.

Reset the A and B registers to con­
tinue the dump operation or set the
C register to 00100355 (BRU
RDlv\SGR) to have the system read a
control message.

Set the RUN-IDLE-STEP switch to
RUN.

Set (A)> 0 if the program just read
was the last paper tape record and
clear the ha.It.

Set (A)= 0 if the program just read
was not the last one. Insert next
program tape into the paper tape
reader and clear the halt.

1. For cord input, replace the
misread card in the hopper.
Set the RUN-IDLE-STEPswitch
to RUN.

2. For paper tape input, reposition
the record for re-read. Set the
RUN-IDLE-STEP switch to RUN.

3. For magnetic tape unit 0, the
program automatically tries ten
times to read the record. Setting
the RUN-IDLE-STEP switch to
RUN cm-'"'" it to try once more.

Clear the halt to cause the program
to ignore the record and continue.

Clear the halt to cause the program
to ignore the error and continue.

No recovery.

1. No recovery; i. e. , no way to
satisfy the references or defi ni­
tions.

2. Clear the halt to ignore the un­
satisfied labels or referencesand
continue.

Clear the halt to continue.

Set (A)= load relocation bias of next
program, and set RUN-IDLE-STEP
switch to RUN to continue loading.

Clear the halt to continue.

Figure l. MONARCH Program Halts and Recovery Procedures

Action

T ronsfers to object program
for execution of that pro­
gram.

Dumps the next requested
area to line printer 1 on
the W buffer or selects the
control message medium
for input.

Continues update process.

1. Not applicable.

2. Not applicable.

3. Not applicable.

Not applicable.

Not applicable.

Not applicable.

1. Not applicable.

2. Error is ignored.

Error is ignored. The first
definition encountered
will be used.

Reads next program unit.

Reloads MONARCH sys­
tem into core.

PROGRAM HALTS AND RECOVERY PROCEDURES

Al I error messages are self-explanatory and include re­
covery procedures, whenever recovery is possible. These
messages are listed on typewriter l on the W buffer if
Breakpoint l is reset or on line printer l on the W buf­
fer if Breakpoint l is set.

As stated previously, control messages may be input from
cards, paper tape, typewriter, or magnetic tape. However,
if an error is detected in a control message, typewriter
l on the W buffer is selected for input (after an appropriate
error message is output), and MONARCH waits for a new
control message to be submitted by the operator.

Figure l describes normal, planned, and error halts for
which no messages are produced. The errors are identi­
fied by codes placed in the C register.

SYSTEM OUTPUT
Parameters of various control messages enable the user
to specify that certain information be produced during
or following the operation of portions of the MONARCH
system. For example, with a LOAD control message
parameter the user may request a printout of the loader's
symbol table; via the FORTLOAD control message he
may specify that a label map, a storage map, and/or
a trace of the object program be printed.

MONARCH LOADER'S SYMBOL TABLE

The MONARCH loader constructs a symbol table during
the loading of a program. If the parameter TSTP or
TGO appeared in the LOAD control message, the load­
er will output this symbol table after the program has
been loaded. The table is produced on typewriter l on
the W buffer if Breakpoint l is reset or on line printer l
on the W buffer if Breakpoint l is set. For a 900 Series
computer with a l2K memory, the printout has the for­
mat shown bel~w. A complete symbol table list is given
in Figure 3 at the end of this section. 11 Symbol Table
Typeout 11 in Section 4 exp la ins the procedure for producing
a symbol table for computers with other memory sizes.

_QL P13f>1Jb'o
OCP%'05'0
QC~!lot)-01)

QL7Bf>1)'01J

QSYSTPbf>
ACCUMlb5
WDTYPbf>o
t:OMbf>bbb

4002 7764
40027763
40027762
40027761

40027244
40000206
40000212
40000213

The first column contains the 8-character symbols (trail­
ing blanks are supplied for symbols having fewer than

eight characters). The first group of symbols, each be­
ginning with Q, are the loader 1s external label defini­
tions that a I low the user's program to reference locations
within the resident portion of MONARCH. Following
these are the symbols from the user's program.

The second column lists the numeric codes specifying the
types of symbols (externa I label definitions, externa I
POP references, etc.) and the locations to which the
symbols are assigned (the last five octal digits). If the
first digit (counting from the left) of the numeric code is
equal to or greater than 4 (i.e., bit position 0 of the
computer word contains a l bit), the reference is satis­
fied; if the first digit is less than 4 (i.e., bit position 0
of the computer word is a 0 bit), the reference is unsat­
isfied._ If the fourth digit (counting from the left) is
equal to or greater than 4 (i.e., bit position 9 of the
computer word is a l bit), the symbol in the first column
has a duplicate definition, in which case the first defi­
nition encountered is used and the subsequent duplicate
definition is ignored. See Appendixes C and F for a
detailed description of the various types of symbols and
how they are designated.

FORTRAN LOADER'S OUTPUT

During the loading of an object program, the FORTRAt-..J
loader outputs the headings NAME, ENTRY, ORIGIN,
LAST, SIZE/10, COMMON, and BASE (on typewriter
l on the W buffer if Breakpoint l is reset or on I ine
printer l on the W buffer if Breakpoint l is set).

If neither a label map nor a storage map is requested, the
next output shows the program name, the entry location,
the origin of the program, the last location of the pro­
gram, the number (in decimal notation) of locations oc­
cupied by the program, and (when applicable) the number
(in octal notation) of COMMON locations. If a label is
requested, it is output immediately below the headings.
If a storage map is also requested, it is output following
the label map. An abbreviated example of the FORTRAN
loader's output is given in Figure 2.

The entry, *PROGRAM, is always printed; it identifies
the line containing the total program storage information.
$$$$$$$$ is the compiler-assigned identification for the
main program.

The value in the column BASE is used to determine the
exact location of variables. Variables are compiled to
be stored immediately following the program in which
they are used. At compilation time, variables are as­
signed locations relative to the end of the program; it
is these relative locations which are printed as 11 Program
Al location 11 by the compiler. To determine the absolute
location of a given variable, add its relative location to
the value listed by the FORTRAN loader as 11 base 11 for
the program containing that variable. For example,
assume the variable J was assigned relative location 55.
Using the base shown in Figure 2, the absolute location
of J is determined by adding 04643 and 55, which re­
sults in 04720.

37

38

NAME ENTRY

7 03522
2 03525

232 03547
= 7232 03553

$$$$$$$$
ABSF
203SYS

*PROGRAM

QLP%1Jo1J
QCP%1Jfaf>
QC~l31J'01J1J
QL7Bo1Jf>1J
QL6Bb'o'D1J
QL5B'01J1J1J
QL4B'O'Oof>
QL3BiJo1Jf>
QL2Bi:>o1J'O
'1L 1!3nf>nf>
QL0Bf>'bt>f>
QSYSPGf>f>
Qf31Nl'D'Df>
OSYMO'Df>f>
'1!31NO'Of>n
!1SYST'Oob
<1S Yi.11 '060
f1SYSn131Jo
OSYSl'05o
QSYSU'Go'D
QPES~~bbb

OSYLDRo'O
QrJOOTf>nf>
QOUMP'61J'D
QET3Lf>'Of>
Qt~SGf:>f>of>
QSRCHf>'Df>
QCWoo-Obb
QTAPEo'61J
QPAPEilo-0
<1CARDt»on
OSYSINf>"b
QSYSTP'o'D
ACCUMl'Of>

03462
05226
05244

03462

40027764
40027763
40027762
40027761
40 02 7760
40027757
40027756
40027755
40027754
40027753
40027i52
40027775
40027774
40027773
40027772
40027771
40027770
Lt0027767
4002 7765
40027776
40027777
40025431
40027736
40027646
40026476
40027766
40027104
40027246
40026760
40026737
40026 714
40027243
4002 7244
40000206

ORIGIN

03452
05225
05243

03452

LAST

05224
05242
05254

06101

SIZE/10

1304

875
14
iO

Figure 2. FORTRAN Loader Output

!~DTY?bof> 40000212
EOM'Of>f>o'O 40000213
IORELC'Of> 40000231
P!U1CTRof> 40000237
11ETPRCon 40000242
CMFOTbbo 40000250
CJ\DDR'Oo& 40000255
f1SG'01J1J1J1J 40000256
RDr1SGb'fJf> 40000326
RDf1SG~o6 40000 355
JI I'" n,.... T~ .t:. r. aaa~ c:'7c:.
11.:ll.:Ji""\.:> I UU 'i'J.IJ.IJIJIJIV

GETl.~RD'G-0 40000617
TY PMf>f>fJ·o 40001231
TYPOUT1J'6 400012 31
SETf>n'Df>'D 40001365
DI SPLYo'O 40001410
ASS I GNf>f> 40001470
LfJ'DfJ'Do'On 40001535
3TLDb'of>o 40001607
MS1Jf:>1J'0'6 40001617
RHnoouo 40001631
14ESSAG·o1J 40001713
f.1ESS PR'Of> 40001734
CRDT P'6'6f> 40001735
LOAD'Ofro'D 40002077
FILLSY'Dn 40002216
J0!3MSG'Oo 40002232
ENDJn%-O 40002236
UPDATE'O'O 40002242
GSYSPfro"b 40002276
ornEonof> 40002311
SRLDSYf:>o 40002313
CARDoh-0'0 40003560
MAGTPbf>fl 40004501

COMMON BASE

04643

MTYIO'Do'D 40004023
MPRMTf>of> 40005241
CODESf>'Of> 40002426
Pl\RAMSf>f> 40002650
<)MSGRDf>f> 4000 32 77
CHAR'Obf>f> 40003177
f1TLDX1Jf>1J 40007100
LD I 2X1Jb'o 40007065
CTFDTof>f> 40003465
CT3UF1J1J1J 40003474
H 0 Ll3 C Dfro 40003333
LDIOS'.'.<55 40005540
sv:13AR'D'o 40006753
i·1ET Ao'oof> 40006335
FLPTf>flf>'D 40006225
FORTLAf>'O 40006044
FCPTf:>frof:> 40006236
FORTCAoo 400~5 775
FK PTnb'oo 40006224
FOHl<Aof> 40006040
ALGOLA'O"b 40006262
POS N'Oo'6'6 40006617
L\BELoob 40006572
RB~ I MDf>u 40006534
t·JEOF'of>f>o 40006542
BKFILEbo 40006422
SKFILEbf> 40006500
3!rn:coof> 40006504
SKRECf>'Dn 40006511
FORTB I AS 400066 72
LDI 21Jb'51J 40006334
QENDMN'Of> 40007455

Figure 3. MONARCH Loader Symbol Table {900 Series Computer, 12K Memory)

APPENDIX A. THE MONARCH UNIT ASSIGNMENT TABLE (UAT)

To al low the use of the same input/output device for the same function throughout a series of runs,
MONARCH maintains a table of standard unit assignments in upper memory. Each entry represents, by
convention, a particular input or output function. For example, in a batch of runs consisting of as­
semblies and compilations, it is desirable to be able to designate a particular output. unit (e.g., a card
punch) as the unit on which al I object programs are to be written. In the MONARCH system, this unit
is referred to as the binary output unit (BO) and would be assigned, in this case, BO =CPlW.

Twenty-one such input/output functions have been designated in the MONARCH system; ten standard
UAT entries and eleven special purpose Business Language package 1/0 entries. Additional functions
may be added at a later date. The format of the unit assignment table entries and a description of the
functions currently provided are given below.

Standard SDS 1/0 subroutines are constructed so that they can make use of the MONARCH unit assign­
ment table to obtain unit and channel codes for their operation. The reader should consult the description
of these subroutines for additional information regarding the use of the MONARCH unit assignment
table. (The program description catalog numbers for these subroutines are shown on the tape listing in
Appendix B.)

At load time the unit assignment table is automatically al located to the top of core in relocatable form.
The last word of the unit assignment table is $QPESW, a l-word entry defined as the job and processor
error switch (see JOB and ENDJOB control messages in Section 2). The format of the words in the
UAT is i I lustrated below. The upper portion of each diagram contains identifying symbols which, along
with their definitions, describe the contents of the word. The lower portion of each diagram shows the
number of bits reserved to each of these elements.

I
A I B I Contents

...,(..... 1) _____________ (.._2 3) ____________ .__. Number of bits

01 ~

A =Job mode indicator:
0 =not in job mode
1 =in job mode

B = Processor error count

Format of the 1-word unit assignment table entries for 900 Series MONARCH:

Ul 0 U2 c 0 Address of 1/0 Subroutine

(1) (1) (4) (3) (1) (14)

0 1 2 5 6 8 9 10

Ul U2 =Unit Address Code (5 low-order bits of the 6-bit unit address code)
C =Channel designator:
O= W buffer
1 = Y buffer

Format of the 2-word unit assignment table entries for 9300 MONARCH:

Word 1

000 000 000 Address of 1/0 Subroutine

(9) (15)

0 8 9

Contents

Number of bits
23

ContP.nts

Number of bits
23

39

40

Word 2

0 C2 0 Cl 0 0 0 0 0 0 0 0 0 0 0 0

(1) (l) (l) (l) (13)

0 2 3 4

Cl =high-order bit of the 3-bit channel code
C2 =second highest order bit of the 3-bit channel code
C3 = low-order bit of the 3-bit channel code

0 C3 0
Unit Ad-
dress Code

Contents

(1) (l) (5)
Number of bits

16 17 18 19 23

The high speed printers are designated, in UAT entries, by unit address codes of 20
8

(number 1) and 21
8

(number 2).

STANDARD UNIT ASSIGNMENT ENTRIES

Function

Control message input
System (MONARCH magnetic tape)
System scratch
System intermediate output scratch (magnetic tape)
System scratch (magnetic tape)
Encoded output (MET A-SYMBOL)
Symbolic input (e.g., card reader)
Symbolic output, Update input
Binary input (loader uses this)
Encoded input (META-SYMBOL)
Binary output (e.g., card punch)
List output (e.g., printer)

BUSINESS LANGUAGE UNIT ASSIGNMENT ENTRIES

Function

Magnetic Tape Zero
Magnetic Tape One
Magnetic Tape Two
Magnetic Tape Three
Magnetic Tape Four
Magnetic Tape Five
Magnetic Tape Six
Magnetic Tape Seven
Card Reader
Card Punch
Line Printer

External
Label

$QMSG
$QSYS
$QSYST
$QSYSI
$QSYSP
$QSYSP
$QSYSI
$QSYSU
$QBINI
$QBINI
$QBINO
$QSYMO

External
Label

$QLOB
$QLlB
$QL2B
$QL3B
$QL4B
$QL5B
$QL6B
$QL7B
$QCRB
$QCPB
$QLPB

MONARCH
Symbolic
Parameter

s
Xl
x2t
X3
EO
SI
SO, UI
BI
EI
BO
LO

MONARCH
Symbolic
Parameter

LO
Ll
L2
L3
L4
L5
L6
L7
LCR
LCP
LLP

When a standard processor such as FORTRAN or META-SYMBOL is loaded, MONARCH selectively loads
any standard 1/0 subroutines required for 1/0 functions which the processor is expected to perform. The
address of each I/O subroutine loaded is stored in the UA T entries whose unit address codes correspond
to that subroutine. For example, if the magnetic tape 1/0 subroutine is selectively loaded, its address
is stored in each UA T entry whose unit address code specifies a magnetic tape unit.

tX2 must be assigned to magnetic tape unit 2 (MT2) under MAGPAK environment when using META­
SYMBOL.

MONARCH maintains a list of standard 1/0 subroutines required for each system action routine, in addi­
tion to the initial loading address for the first 1/0 subroutine to be loaded for operation with the system
action routine.

MONARCH provides external label definitions for unit assignment table entries which correspond to 1/0
subroutines selectively loaded by the MONARCH loader.

The 1/0 subroutines are referred to indirectly through the unit assignment table in upper memory. Unit
assignments can be made externally through ASSIGN messages. Note that the ASSIGN message does
not set up 1/0 subroutine addresses (bits 10 through 14) in UA T entries.

The Business Language user's program is linked to the Business Language 1/0 handlers via external
references and definitions at load time.

41

42

APPENDIX B. THE MONARCH SYSTEM TAPE

The MONARCH system tape consists of an ordered collection of programs and data files preceded by a
special bootstrap loader which itself can be loaded under control of the FILL switch on the SOS 910/925
Computers, the magnetic tape FI LL switch on the SOS 925/930 Computers, and the magnetic tape LOAD
switch on the SOS 9300 Computer. The bootstrap loader, in turn, loads the MONARCH loader and the
MONARCH monitor. Al I programs (or processors) on the system tape except the bootstrap loader and the
MONARCH loader are preceded by MONARCH ID records. The MONARCH monitor, the MONARCH
loader and the MONARCH update routine al I make use of MONARCH ID records to locate programs or
data files on a MONARCH system tape. Only the first 16 characters of a MONARCH ID record are
interpreted by the MONARCH operating system. MONARCH ID records have the fol lowing format:

Character
Position
Contents

n = l or 2
b =space

1

6

2

n

3 4 5

b 1) b

a =any alphabetic character

6 7 8 9

b b 1J a

lO 11 12 13 14 15 16 17 18 19 J }10 71 72

c c c c c c c e e e ~ \ e e e

c = any alphanumeric character or trai Ii ng space (i.e., space not fol lowed by another character)
e = any character

Major divisions of a MONARCH system are preceded, on the system tape, by a level l MONARCH ID
record:

~ i l\/\.A./\/\.A.PROGNAME ...

Minor divisions are preceded by a level 2 MONARCH ID record:

62 /\/\/\/\/\/\ SUBRNAME ...

Mjnor djvisions of a MONARCH system are arbitrary subdivisions of a program or of a data file that are
recognized by the MONARCH update routine. Normally, these subdivisions serve only to enable the
user to update an old system tape at the subdivision level, i.e., to insert, delete or replace one or
more subdivisions of a program without affecting the remaining subdivisions. Individual subroutines on
the MONARCH library are also separated by level 2 records both for the MONARCH loader and to
make it possible to insert, delete, and replace the subroutines individually.

Program names occurring in level l MONARCH ID records must be unique within a given MONARCH
system tape. Program names occurring in level 2 MONARCH ID records need be unique only within a
given major subdivision of a MONARCH system tape. The following additional rules apply to the
program names on a given MONARCH system tape:

If A and Bare unique program names occurring in level l MONARCH ID records and X and Y are unique
program names occurring in level 2 MONARCH ID records, then A, B, X, and Y may be used as program
names in level 2 ID records of A and/or B. Symbolically this may be represented as

Level l

Level 2 A

A

,____B ___,,! 1 _X _ _, y

B

A _B _ _,I I X y

The last record on a MONARCH system tape is a level l MONARCH ID record with the program name
SYSEND in characters 9 through 14 (15 and 16 must be blank).

The system tape contains the monitor, the MONARCH loader, the system tape update routine, and other
standard system routines required by the particular installation using the system. The system tape unit
must be assigned as unit 0 on the W buffer for the SDS 910/920, unit 0 on channel W for the SDS 925/930,
and unit 0 on channel A for the SDS 9300. A sample listing of the contents of a system tape for a 920
computer appears at the end of this appendix.

MONARCH SYSTEM TAPE RECORDS
Format of first words of valid system tape records:

SDS STANDARD BINARY OBJECT PROGRAM RECORD (first word)

Record
Word Count (C)

Mode
Folded Checksum (FC)

T1f)e (T) (Bi nary)

(3) (l) (5) 101 (12)

0 2 3 4 8 9 11 12

META-SYMBOL ENCODED PROGRAM RECORD (first word)

Record
Word Count (C)

Mode
Folded Checksum

T_tpe (T) (Binary)

(3) (6) l l T (12)

0 2 3 8 9 11 12

MONARCH ID RECORD (first word)

6 Character Zero
Mode

Space Character Space Character
(IDL)

101 111 000 o ~ o;r
0 5 6 8 9 11 12

IDL = 001, Major Division - Level 1 ID Record
IDL = 010, Minor Division - Level 2 ID Record

110 000

17 18

MONARCH BOOTSTRAP LOADER (first word = WIM 012,2)

x OPERATION I Address

0 l 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0

MEMORY ALLOCATION

110 000

0 l 0

The amount of norma I core al location can be determined with the formulat

QENDMN + Loader + Symbol Table =size
(starting address) (length) (length)

octal decimal
QENDMN 7455 3885
Loader 2512 1354
Sz:mboi Tabiett 454 300
Total 12643 5539

1

)

l

}
23 0

\
J

23 0

l
j

23 0

0

tThe formula is valid for 9300 Computers; however, the amounts given are for a 900 Series Computer.

tt The symbol table requires three words per definition.

43

The amount of core a I location during an update run can be determined with the formula: t

LDIOSR + Loader + Bootstrap Loader + Update + Symbol Table= size

(starting address) (length) (length) (length) (length)

octal decimal

LDIOSR 5540 2912
Loader 2512 1354
Bootstrap Loader 260 176

Update tt 4136 2142
Symbol Table ~ 300
Total 15344 6884

The fol lowing is a sample tape listing for a 920 Computer. The circled numbers refer to notes at the end
of the I isting.

A 1 UUD ® ®
CD 61 '"1eN l TBR 8 06/24/65 -·LABEL·- 042012

6? C~NTReL 06/24/65 117 .4 042004
Ii 2 TABLES 06/30/65 0425 042005
62 QMSGRD 04/01/65 0177 042006
62 CARD 04/01/65 0162 030004
62 I" TY I e 04/01/65 0225 020019
A2 ,., AGTP 04/3(1/65 0352 040004
/~ 2 i""PRNT 06/14/65 0191 0600058
t-.2 Ll.JJ(jSR 05/20/65 0157 042007
62 FORT ACT 04/05/65 0181 042014
t..2 F~RT8IAS 04/01/65 0000 0420i5
62 ALG'.jLA 04/0l/65 0041 042017
A2 L lJ I 2 06/30/65 0592 042030
h2 TFMOl\RCH 04/01/65 0002 042008

r PR J !\iT 8 06/14/65 0191 0600058 ••••

© ~~
MT APE 8 0'1/30/65 0352 040004
CDC?P 8 04/01/65 0211 030005

61 PTYIB B 04/Ul/65 0225 020019
61 ~ET.AQ20 n6/3G/65

"'2 ENCODER 8 06/30/65
~2 r-' ON 1 8 05/20/65
c.2 l"SCONTRL 8 04/01/65 0640
62 PREASSEM 06/30/65
62 PROCQl\J 04/27/65
62 PReC920 06/ 17165
ty,2 PROC93JO 05/02/65
62 PRf1C8920 05/ 12/65
112 SHRINK 06/30/65
62 ASSE~BLR 06/30/65
62 PAS2 06/30/65
t..2 FINISH 06/30/65
~2 CONCRD 06/ 12/65
62 CON2 06/12/65

Al LINl<INIT B 04/22/65 0665
6 1 LINKlERe 8 04/22/65 d49~

® Al FORTRAN 8 -·LABEL·-- 202004H ••••
62 FCl 04/01/65 3568
62 FC2 04/01/65 0449
62 FCJ 05/14/65 0449

tThe formula is valid for 9300 Computers; however, the amounts given are for a 900 Series Computer.

ttThe symbol table requires three words per definition.

44

td FORTLOAD 8 --LABEL••• 012015
62 FL! 04/01/65 0231
62 FL2 05/24/65 0253
62 FL3 05/12/65 0025

td FOi:fTLIB -·LA8EL·-· 202006H
62 SYS230 U4/01/b5 0108
62 ALOG 04/01/65 0138
62 EXP 04/01/65 0144
62 c~s 04/01/65 0203
62 SQRT 04/01/65 0083
62 ATAN 04/QJ/65 025fJ
62 ABS 04/01/65 0013
62 IABS 0~/01/65 0013
62 Flf;AT l.)4/01/65 0004
62 IF IX ()'1/l.)J /65 0008
62 SIGN 04/01/65 0021
t.i2 ISIGN 04/01/65 0020
62 AMOO 04/01/65 0013
62 ~eo 04/01/65 0009
62 AMIN 04/01/65 0065
62 .CI M 04/01/65 0010
62 IDIM 04/01/65 0010
62 LOCF 04/01/65 0004
A2 IF 04/01/65 0025 FORTRAN
62 EXIT 04/01/65 0010
t.2 LINKING 04/01/65 0010 Library
62 SYS160 04/01/65 0013
A2 SYS201 04/01/65 0004
62 SYS202 04/01/65 0008
62 SYS203 04/01/65 0009
62 SYS204 04/01/65 0019
62 SYS205 04/01/65 0021
f).2 SYS206 04/01/65 0011
A2 SYS207 04/01/65 0021
62 SYS210 04/0l/65 0010
f).2 SYS211 04/01/65 0053
62 SYS212 04/01/65 0033
62 SYS213 04/0l/65 0009
62 SYS214 04/01/65 0009
62 SYS215 04/01/65 0006
!12 SYS216 04/01/65 0036
62 SYS217 04/01/65 0005
62 SYS220 04/01/65 0074
62 SYS221 04/01/65 0005
A2 SYS222 04/01/65 0057
A2 SYS223 04/01/65 0007
A2 SYS224 04/01/65 0006
62 SYS225 04/01/65 0046
62 SYS226 04/01/05 0026
A2 SYS227 04/01/65 0019
62 SYS231 04/01/65 0003
62 SYS232 04/01/65 0003
62 SYS233 04/01/65 0028
62 SYS235 04/0li65 0036
A2 SYS236 0'1/Ql/65 0230
62 SYS241 04/01/65 0349
62 SYS242 04/01/65 0057
62 SYS243 04/01/65 0046
62 SYS244 04/01/65 0018
62 SYS245 04/01/65 0445
62 SYS776 04/22/65 1122
62 SYS777 04/01/65 1472 202005H

45

© 6 1 L.18RARY 8 --LA REL--- 2020030 ••••
62 CDRP (J4/0l/65 0211 030005
62 CD~ 04/01/65 0162 OJ0004
62 P TY I B 04/01/65 0225 CJ20019
62 PRINT 06/14/65 01Q1 0600058
62 MTAPE 04/01/65 0351 040004
62 onri

Cl.JI.I 07/01/65 Ole4 2030378
62 8FS 07/01/65 0075 2030148
62 8DF 07/01/65 0171 2030398
A2 DBD 07/01/65 0178 2030368
62 DFS u7/G1/65 0052 2030158
ti2 C8F 07/01/65 0169 2030388
62 EID 07/0l/65 0097 2030128
62 CIB 07/01/65 ooa·::s 2030138
62 LOG 07/01/65 0048 2030098

META-62 LGF U7/0l/65 0152 203024C
62 EXP 07/01/65 0062 2030088 SYMBOL
~.2 EXF 07/01/65 0159 203025C
ti2 ATN 07I01 /65 0057 2030078 Library t.2 ATD 07/01/65 0158 2030328

0 62 ATF 07/01/65 0249 203026C
62 CSD 07/01/65 01418 2030348.033
62 CSF 07/01/65 0217 203028C.027
ti2 cos 07/01/65 0032 2030188.006
62 CSQ 07/01/65 0082 2030358
ll2 FSQ 07/01/65 0071 2030298
62 SQR 07/01/65 008A 2030198
62 FFF 07/01/65 0082 203011C
6.2 FSN 07/01/65 0124 2030108
62 FLD' 07/01/65 0208 203023C
62 DPN 07/01/65 0010 2030228
ti2 CPD 07/01/65 0076 2030'2B.0408.0178.0168
62 LDP 07/01/65 0006 2030228
ll2 STD 07/01/65 0006 2030228
62 LTP 07/01/65 0008 2030208
62 STP 07/01/65 0009 2030208
62 LQP 07/01/65 0010 2030218
ti2 STQ 07/01/65 0011 2030218
62 TRACE 8 04/01/65 0544 2600038

Al SYf'A80L 05/06/65
62 UH DER 8 06/20/65
62 PSI 05/06/65
62 CSI 05/06/65
62 MSI 05/06/65
62 Fi30 05/06/65
62 CBO 05/06/65
f\2 MBO 05/06/65
62 TLO 05/06/65
62 LL('j 05/06/65
A2 ML6 05/06/65
62 Sl 06/27/65
62 S2 05/06/65
t:.2 SJ 05/06/65
62 ~910 05/06/65
62 M920 05/06/65
62 ~9300 05/06/65

61 t--1E l'1 I A B 05/12/65 2408 000017c ••••
61 TRACE 8 04/01/65 0544 260003R ••••
Al RECt5t-. 8 05/18/65 1773 000022A ••••
61 PRINTDGN 8 10/09/64.
Al UPDATE 8 -·LABEL•••

62 BOlHSTRAP 04/01/65 0141 042009
62 LPDATERT 04/22/f\5 1619 042011

® 6 1 ALGOL 8 04/01/65 ••LABEL·-- 242008
62 ALGOL! 04/01/65 4582 042018
62 ALG~LX 04/01/65 0501 042019

46

td
62
A2
t.2
62
62
62
62
62
tJ2
62
62
62
62
62
62
62
62
62
f).2
62
t:,2
62
fl2
62
t:,2
6.2
62
62
t:,2
t:,2
62
62
h2

61
62
62
62

® 61

Notes:

ALGOLOAD 04/Qi/65 --LABEL·-· --,
RL 8 04/01/65 0883 242009
INPUl 04/01/65 0036 042020
~UTPUT 04/01/65 0036 042021
ENDte 04/0l/65 0007 012019
ENDI~L 04/01/65 0006 012020
ACCT AP 04/0t/65 0014 012021
PNCHTP 04/01/65 0008 012022
ACCEPT 04/01/65 0020 012023
TYPE G4/0l/65 0008 012024
READ 04/Gl/65 0035 032002
PUNCH 04/01/65 0045 032003 ALGOL
PRJ~T 04/01/65 007'1 062003
READ IT 04/01/65 0073 042022 Library
~RI TOT 04/01/65 0056 042023
REW FHP 04'/01/65 0360 042025
REW I t\JD 04/01/65 0012 042024
SETI OT G4/01/65 0056 042026
TSTWRT 04/01/65 0046 042027
TREADY 04/01/65 0017 042028
I~ITFS 04/01/65 0029 012025
.ABS (l4/Qt/65 0014 012026
SQRT 04/0l/65 0083 212005
1EXP 04/01/65 0154 212006
LN 04/0J/65 0011 012028
EXP 04/01/65 0011 012027
LGF 04/01/65 01.d5 212018
EXF 04/0l/65 0151 212007
SIGN 04/01/65 0022 012029
SI~C~S 04/0l/65 0200 21200.9
ARCTO.i 04/01/65 0261 212010
l"'I N 04/01/65 0015 012030
~AX 04/0l/65 0015 012031
'"100 04/QJ/65 0023 012030

ALGORUN 8 04/0l/65 -.;LABEL·--
EXEC 04/01/65 1602 242011
FSC.AN 04/01/65 1371 212012.13.1
LIST 04/01/65 0355 242010

SYSE~D

1. If CONTROL routine is replaced (see 11 System Update Routine" in Section 4), the L'.::.. l MONITOR
label card must precede the L:::..2 CONTROL card and the binary deck; this rule is generally true
for the first program in each logical file.

2. As a general rule, any record read by the MONARCH loader can be blocked (see 11 System Update
Routine"); a blocked record is identified by the letter B in column 22. Columns 21, 23 and 24
must be blank.

3. Columns 25 through 72 may contain comments. In this listing, the comments are program approval
date, core allocation, and catalog number. The statement -- LABEL -- in the core allocation
column indicates the beginning of a logical file.

4. The four 1/0 handlers, PRINT, MTAPE, CDRP, and PTYIO, must appear in this order on the system
tape and must follow immediately after TFMO NRC H; i.e., no insertions may be made between any
two of these subroutines or between TFMONRCH and PRINT.

5. FORTRAN II is available only on 900 Series Computers.

6. Any routine or processor that is to go on the system tape should be written prior to the library if it
has any references to be satisfied from the I ibrary.

7. No programs 1,vithin the scope of a 61 library may have an END card with a transfer address as the
last card in a binary record.

8. The ALGOL system is supplied only on specific request.

9. An EOF mark is written after SYSEND.

47

48

APPENDIX C. LOADER OPERATIONS

A general description of the MONARCH loader is given in Section 3. This appendix explains the main
features of the loader in greater detai I.

RELOCATION AND DATA RECORDS

A data record (record type 0) contains instructions and/or data to be stored in memory by the loader.
Each data record contains a load address which is either the relative or absolute memory location in
which the first data word (an instruction or a constant) is to be stored. The word in the data record
containing the load address also contains an indicator that specifies whether or not the current load
relocation bias is to be added to the given load address to obtain an effective load address. In other
words the indicator specifies whether or not the data record contains relocatable words.

The effective load address determines the location in which the first data word is stored; successive
data words are then stored in consecutive memory locations fol lowing the first word.

Relocation is performed according to the type of record being loaded. Four types of relocation are
possible; these are described below. Record types are explained in Appendix F, "SDS Standard Binary
Language."

LOAD RELOCATION

If the load relocation indicator is "set" for a given data word, the initial contents (i) of the rightmost m
bits in that data word are replaced with k where:

k = (i + b) modulo 2m
m = 14 for SDS 900 Series Computers

= 15 for 5 DS 9300 Computers
b =current value of load relocation bias

COMMON RELOCATION

If the blank COMMON relocation indicator is 11 set 11 for a given word, the initial contents of the
rightmost m bits in that data word are replaced by k where:

k = (b + c) modulo 2m
m = 14 for SDS 900 Series Computers

= 15 for 5 DS 9300 Computers
c =current value of COMMON relocation bias
b =current value of load relocation bias

PROGRAMMED OPERATOR RELOCATION

If the POP relocation indicator is 11 set 11 for a given data word, the initial contents (n) of bits 3 through 8
of that data word are replaced by p where:

p =operation code from POP table entry number n
(p :::: 0) (O :s n :s 77g)

Note: n is the "relative" POP operation code and p is the effective POP operation code computed by
the loader.

SPECIAL 1/0 RELOCATION

If the special 1/0 relocation indicator is 11 set 11 for a given data word, the fol lowing modifications c
performed:

l. The rightmost m bits of d are replaced with k and the result is stored in a.

2. Bit 18 of the contents of a-bis replaced with o and the result stored in a -b.

where:

d initial value of the data word
a effective load address of d

initial value of rightmost m bits of d
b = current value of load relocation bias
m = 14 for SDS 900 Series Computers

= 15 for SDS 9300 Computers
k = (i + b) modulo 2m
o = b if (i +b) :::2m or 0 if (i +b)<2m

EXTERNAL LABEL REFERENCES AND DEFINITIONS

The loader is capable of handling (resolving) symbolic cross-references between separately assembled
and/or compiled programs. External reference and definition items in binary records (type l records)
provide the loader with the information needed to link together two or more separately assembled or
compiled programs.

During the loading process, the loader maintains a (symbol) table of external label definitions and unsat­
isfied external references. There is no restriction on the order in which the definition of a label and the
reference(s) to it appear in the input to the loader. The definition of a label may precede, or fol low,
some or all of the references to it. Note that it is permissible for any number of programs to contain
references to a given label, provided that one program being loaded contains an external definition item
for that lobe I.

When the loader encounters an external definition item, it searches the symbol table for a previous defi­
nition of that label in the table; if there is one, the loader increments the duplicate definition counter
and discards the new definition. If the search reveals that the label is already in the table as an un­
satisfied reference, the loader uses the definition to satisfy al I the references to that label and replaces
the unsatisfied reference item in the table with the definition item. However, if that label does not
occur in the symbol table (as a reference or as a definition), the loader inserts the external definition
item in the symbol table.

The operand field of an instruction which references an external label requires special consideration. At
the time of assembly, the operand field in this case will contain either zero or the relative address (in the
same program) of the previous instruction which referenced that same external label.

A typical assembly containing references to an externally defined label EXLABL might appear:

*01002 07600000

*01172 23501002

*01205 07701172

EXLABL 1205

LDA

STA

EAX
END

EXLABL

EXLABL, 2

EXLABL

AO
"T~

50

At load time the loader uses the relative address (1205) of the last instruction containing a reference
to EXLABL to down-chain (i.e., chain back through) the program (to 1172, to 1002), thus determining
all instructions that reference EXLABL. The zero address portion of the instruction at 1002 indicates
to the loader the end of the chain in that program.

Use of EXLABL + 2 in a source program could cause the loader to chain back to the wrong instruction,
and for that reason externai iabeis cannot be modified in this way at assembly time. However, since
indexing and indirect addressing are modifications occurring at execution time, they are !egal ·..vith
externally defined labels. For example, to access the locations EXLABL and EXLABL + l (EXLABL
externally defined), the fol lowing technique might be used.

The code: would be equivalent to:

EAX EXLABL LDA EXLABL
LDA o, 2 STA TEMP
STA TEMP LDA EXLABL + l
LDA l, 2 STA TEMP+ l
STA TEMP+ l

TEMP RES 2

END

When the loader encounters an external reference item, it searches the symbol table to see if it already
contains an external reference item for that label; if so, the external reference chain associated with
the new external reference item is "linked" to the external reference chain associated with the existing
table entry and the new external reference item is discarded. If the search reveals that the label is
already included in the table as an external definition, the loader uses the definition to satisfy all the
references to that label and then discards the external reference item. However, if that label does not
occur in the symbol table (as a reference or as a definition), the external reference item is inserted in
the symbol table; to be satisfied by a later definition.

EXTERNAL PROGRAMMED OPERATOR REFERENCES AND DEFINITIONS

The loader is capable of satisfying references to i nterna I and externa I Programmed Operator (POP) defi -
nitions. External POP definition items, external reference items, and internal POP definition items
provide the loader with the information needed to:

l. Satisfy external and internal POP references.

2. Maintain external POP reference and definition items in the loader's symbol table.

3. Construct a Programmed Operator transfer table in eel Is 0100
8

through 0177
8

.

An "internal" POP definition is one that is recognized only within the scope of the program in which
it occurs. No entries are made in the loader's symbol table for internal POP definitions or references.

Many of the loader functions performed in the processing of external POP references and definitions are
also performed (by the same loader subroutines) for external label references and definitions. In parti­
cular, the functions of insertion and replacement of symbol table entries and the handling of duplicate
definitions are the same both for external label and external POP items.

An internal POP definition supplies the loader with the (relative) sequence number that appears in bits
3 through 8 of data words referencing that POP and the address of the origin of the POP subroutine which
corresponds to that sequence number. The loader assigns a new sequence number X (O :5 X :5 77 B) which
it wi 11 use to replace bits 3 through 8 of al I data words containing references to that POP definition.
The loader also stores the address of the POP subroutine in the address field of eel I X + 100

8
. The

reason for assigning new sequence numbers is to avoid possible conflicts with sequence numoers assigned
in other, separately assembled (or compiled) programs that are also being loaded. A given POP

mnemonic (e.g., FLA) wi 11 be given a unique sequence number during loading, so any reference to FLA
wi 11 "quote" this sequence number. It should be noted that the method depends on the assignment of
sequential numbers, beginning with zero, to each different POP reference or definition in a given
program.

The primary difference in the treatment of internal and external POP definitions is that the external POP
definition is represented in the loader's symbol table and hence it is recognized as a definition in al I
programs being loaded, not just the one in which it occurred. Al I of the remarks in the preceding para­
graph relating to internal POP definitions apply equally to external POP definitions.

External POP reference items are inserted in the symbol table if no matching definition is found as a
result of the symbol table search. When a matching external definition is supplied, the operation code
assigned by the loader and the POP subroutine address are used by the loader to satisfy the reference.
The POP operation code (X) replaces bits 3 through 8 of al I data words containing references to that
POP, and the POP subroutine address replaces the contents of the address field of cell X + 100

8
. (See

Programmed Operator Technical Manuals.)

SYMBOL TABLE ITEM FORMAT

Each item in the loader's symbol table consists of a two-word symbol fol lowed by a one-word value.
The symbolic portion of a symbol table item consists of from one to eight alphanumeric characters,
left justified within two computer words. Unoccupied character positions contain blanks (060).

The value portion of a symbol table item may be one of seven types. In each case, the left-most 9
bits identify the type and the right-most 15 bits contain the value.

c

ST Subtype
C Code
L 0 for label items

l for POP items
M 0 no doubly defined symbol

l doubly defined symbol
V Value

Internal POP definition

0 0 POP Sequence No. l

0 2 7 8 9

Common or Program Length

c

C if V contains program length

v

POP Subroutine Origin

Length of Program/COMMON Block

L if V contains length of labeled Common

23

51

52

External Label Reference

0 Last Reference Address

External Label Definition

0 Label Value

In the 900 Series MONARCH loader, bit 9 of the value word for a given entry in the symbol table is set
to a l bit if the external definition associated with that entry has a duplicate definition. In the case
of the 9300 MONARCH loader, bit 5 is of the value word is set to a l bit.

Labeled Common Reference

0 Last Reference Address

External POP Reference

IO 1 I 6-Bit Op Code 11 I 0

0 l 2 7 8 9

External POP Definition

POP Subroutine Origin

0 2 7 8 9

In the 900 Series MONARCH loader, bit 9 of the value word for a given entry in the symbol table is
set to a l bit if the external definition associated with that entry has a duplicate definition.

Note: Items whose subtype is 00 are not entered in the table. POP items whose subtype is 11 are not
entered in the table.

The origin of the POP subroutine is stored in the address field of the actual POP transfer table entry,
at X + 1003, when a POP definition is encountered. The actual 6-bit POP address (X) replaces the
sequence number when the item is inserted in the symbol table.

Zero is stored in the address field of the actual POP transfer table entry (X + 100
8

) when a POP reference
item is inserted in the symbol table. The actual operation code replaces the sequence number.

The actual 6-bit POP operation code is also stored in the instruction code field of the POP transfer
table entry whose address is obtained by adding 100

8
to the sequence number.

APPENDIX D. UPDATING META-SYMBOL ON MONARCH TAPES

Any portion of META-SYMBOL may be updated using the standard MONARCH ASSIGN, UPDATE, and
COPY control cards. However, two sections of the system contain more than one deck, and during an
update all portions of the labeled segment must be updated. These sections are (1) ENCODER (includes
ENCODER, the proper POP deck, and S4B), and (2) MONl (includes MONl followed by the absolute
loader).

When modified through reassembly, PREASSEM, SHRINK, ASSEMBLR, and FINISH must be converted
to absolute form before being placed on the system tape. If the changes are by means of binary patches,
the patches are inserted at the end of the absolute deck, just preceding the end card.

If the S4B portion of the ENCODER increases in size by more than a few words, the origin of the tables
generated by the ENCODER must be changed. To move these tables, reassemble the ENCODER modifying
the symbol TABLES defined at the end of the ENCODER by an EQU directive.

If the size of ASSEMBLER increases in size, the constant DTAB in the preassembler must be changed. This
can be done by inserting a binary patch redefining this constant as needed. DTAB is the origin of the
encoded dictionary.

If the size of the MSCONTROL program is increased, it is necessary to reassemble and move everything
following it including the ENCODER, parts l and 2 of PREASSEM, and part l of ASSEMBLER. If this
becomes necessary, the constants CPO, BPO, HED, CSEQ, and CORG must be appropriately redefined
in both parts of PREASSEM, and the constants LITAB and PACKL must be redefined in part l of ASSEMBLER.
The origins of these programs wil I also change.

A more thorough discussion of modification procedures may be found in the META-SYMBOL Technical
Manual, SDS 900827. It is assumed that anyone attempting source level modification of META-SYMBOL
wi 11 be familiar with that document.

. 53

54

APPENDIX E. FORTRAN LINKING

FORTRAN linking is available only when FORTRAN II is part of the MONARCH operating system. This
operatinq system provides a modified Run-Time package, an initialization routine (LINKINIT), an ad­
ditional ~ubrouti~e (LINKING) for the FORTRAN library, and an additional control message (FORTLINK)
for MONARCH.

FORTRAN linking allows the segmenting of FORTRAN programs and the loading and executing of these
segments or 11 links 11 selectively under program control. A link is made up of o FORTRAN main program;
subprograms, and FORTRAN library subroutines and functions. The loading of any link automatically
erases the previous link. Only COMMON, modified FORTRAN Run-Time, and the MONARCH resident
remain undisturbed during loading of a link.

Briefly, the FORTRAN linking procedure creates a link by loading a compiled FORTRAN program into
core with necessary library subroutines and writing this program as an absolute dump preceded by a nu­
merical identification (ID) on tape. The run-time package is not written on the tape. After all links
have been written in this manner, each with its own unique ID, LINKZERO is loaded from the system
tape and scans the linking tape, builds a table of ID's in the order of their appearance on the linking
tape, inputs an initial list of the linking ID 1s to be fol lowed at execution time, and executes the first
specified link. The sequence of links to be executed is determined from CALL statements in the FORTRAN
program (e.g., CALL LINK (N), CALL NEXT LINK, etc.).

Links may be written onto a separate magnetic tape or onto the MONARCH system tape itself. The link
tape must be at 200 BPI density. It is suggested that, if links are to be written on the system tape, a
special system tape should be created, blocked at 256 words per block, 200 BPI density, containing
only the MONARCH monitor, 1/0 handlers, al I portions of the FORTRAN system, the update routine,
and SYSEND.

LINK PROCESS

Each of the various links in a chained program is a complete FORTRAN main program using any FORTRAN
subprograms and library subroutines required. When control is passed from one link to another, the new
link completely destroys the old one and execution begins at the first executable statement of the new
main program. Only variables in COMMON are passed from one link to another. Care should be ex­
ercised that no link is large enough to overlay the COMMON from a previous link that may be needed
by a fol lowing one. The easiest way to assure this is to reserve the same amount of COMMON in each
link.

After al I the desired links have been stored on magnetic tape, a chaining sequence is initiated by re­
questing LINKZERO (i.e., via a LOAD 0, GO, 1 LINKZER0 1 message). LINKZERO is loaded complete
with a modified Run-Time package and the linking routine. The modified Run-Time package remains in
memory to be used by succeeding links; the other links do not have Run-Time associated with them.
LINKZERO determines the initial sequence of links to be performed and cal Is the first one into memory.
The linking routine contains a push-down list of link numbers. Statements are provided for adding and
removing links from the list and for calling them into memory. Any link may use the following statements:

l. CALL LINK (3)
Call in link number 3. (The ID number for a link may be any three decimal digits.) The actual
procedure here is to put 3 at the top of the push-down list and then call that link, which re­
moves the number from the list.

2. CALL LINK (integer variable) or CALL LINK (integer expression).

3. CALL LINK (expression 1, expression 2, •.. , expression n).
Compute the n expressions (where n has a maximum value of 30) and place the resulting numbers
at the top of the push-down I ist so that they wi 11 be ca I led in the order 1, 2, .•. , n before
calling whatever was on the list previously. Note that 2, above, is a special case of this.
Zero is a legitimate link number and, when cal led, causes a return to MONARCH.

4. CALL LINK (-2)
Remove the top two items from the push-down list. Do not call any link but proceed to the
statement fol lowing the ca II.

5. CALL Llt'..JK (negative expression l, expression 2, expression 3, •.. , expression n)
If the first number is negative, remove the appropriate number of links from the push-down list
before proceeding to enter the following numbers. Then call the link specified by expression 2.
Only the first number may be negative. An error message (NEG. ARG) will result if any others
are negative. Note that 4, above, is a special case of this.

6. CALL NEXT LINK
Cal I the link specified by the top number in the push-down list and remove that number from
the list. If the list runs out of numbers, control is returned to MONARCH.

No parameters are used following CALL NEXT LINK. If present, they are ignored.

7. CALL FILL LINK (expression l, expression 2, ••. , expression n)
Compute the n expressions, place the resulting numbers at the top of the push-down list, and
return to the cal ling program.

When a link is called, it always begins at the first executable statement. However, one can effectively
make it start at any number of places by providing a transfer instruction as the first executable statement:

l. Label the appropriate statements (e.g., 16, 2, 19).

2. As the first statement in the link, write a computed GO TO statement which references a loca­
tion in COMMON; e.g., GOTO(l6, 2, 19), lwherelisinCOMMON.

3. In the calling program prior to the CALL LINK statement, set the COMMON location (i.e., I)
equal to the value of the desired label (in this example, I would be set to 16, 2, or 19).

GENERATING A LINK TAPE

The MONARCH control message FORTLINK has the format

The identification number to be assigned to the I ink about to be written on magnetic tape; may
be any three decima I digits.

Same as P. for FORTLOAD.
I

The FORTLINK control message causes MONARCH to load and transfer control to the FORTRAN loader,
which in turn loads a FORTRAN-compiled program and produces a storage map and/or label map as
specified by the parameters P2 through P9. Then that FORTRAN-compiled program is written onto the
link tape as link number P1. The links do not have to be written in numerical sequence.

The program always uses X2 as the link tape; therefore, X2 must be assigned to a magnetic tape unit
before MONARCH encounters the FORTLINK control message. X2 may be assigned to any tape unit
including the MONARCH system tape. The link tape must be at 200 BPI density. It is suggested that,
if links are to be written on the system tape a specie I system tape should be created, blocked at 256
words per block, 200 BPI density, containing only the MONARCH monitor, 1/0 handlers, all portions
of the FORTRAN system, the update routine, and SYSEND.

The links themselves consist of two records. The first record is a 10-word record containing the link
number. The second record is the core dump of the FORTRAl'\J program. The core dump does not include
the FORTRAN Run-Time package.

55

56

When completed, the linking tape will consist of: an end-of-file mark, a short record and a long record
for the first link, a short record and a long record for the second link, etc., and then finally another
end-of-file mark. It makes no difference whether the link tape is the system tape or a separate scratch
tape. As far as the operation and execution of a linked program is concerned, the links are bracketed
by end-of-file marks.

EXAMPLES

Example A:

.6.ASSiGN X2=MT3'vV, BI=MTO'vV •

.6.LOAD 0, GO' I LIN KINIT' •

.6.ASSIGN Xl=PRlW .

.6.FORTLINK 29, MAP, X l.

.6.FORTLINK 16, Xl, Xl.

The link tape is to be on magnetic tape unit 3. The binary input is from the system tape. The LOAD
control message causes the linkage initialization routine LINKINIT to be loaded. Magnetic tape 3 is
rewound, two end-of-file marks are written on it, and the tape is rewound again. Control is then
transferred to MONARCH, which makes the new unit assignment for X l and loads the FORTRAN loader.

The FORTRAN loader loads the previously compiled FORTRAN program from the paper tape reader and
produces a storage map of the program. The library is loaded from the system tape and the message
"LOADING COMPLETE .•• "is typed. Next, magnetic tape 3 (i.e., the link tape X2) is scanned for­
ward to the second end-of-file mark; the tape is then backspaced over this end-of-file mark. The
FORTRAN program, which was just loaded, is written onto the tape as link number 29, another end-of­
file mark is written, and the tape is rewound. The message "LINK WRITTEN ON TAPE" is typed and
control is returned to MONARCH.

The effect of the second FORTLINK control message is similar to that just described except that no map
is produced and the previously compiled programs are on two separate pieces of tape (possibly a main
program and a function}. After the programs are loaded and the message "LOADING COMPLETE ••• "
is typed, magnetic tape 3 is again scanned forward to the second end-of-file mark; the tape is back­
spaced over this end-of-file mark. Then the FORTRAN program just loaded is written onto the tape as
link number 16, another end-of-file mark is written, and the tape is rewound.

This process can continue until all the links have been written on tape. There is no restriction on the
links except that no two links may have the same identification number.

Example B:

.6.ASSIGN X2=MTOW, BI=MTOW •

.6.LOAD o, GO, I LINKINIT' •

.6.ASSlGN X l=PR l W .

.6.FORTLINK 17, MAP, LMAP, Xl.

.6.FORTLINK 169, Xl, XlU.

In this example the system tape is to be used as the link tape. After the linkage initialization routine is
loaded, the system tape is scanned forward to the first end-of-file mark, and a second end-of-file mark
is written. Then the system tape is rewound, and control is transferred to MONARCH, which makes the
new unit assignment for X l and loads the FORTRAN loader.

The FORTRAN loader loads the previously compiled FORTRAN program from the paper tape reader, loads
the I ibrary routines from the system tape, and produces a storage map and a lobe I map. After the mes­
sage 11 LOADING COMPLETE •.• 11 is typed, the system tape is scanned forward to the second end-of-
fi le mark and backspaced over this end-of-file mark. The just-loaded FORTRAN program is written onto
the system tape as link number 17, another end-of-file mark is written, and the system tape is rewound.
The message "LINK WRITTEN ON TAPE" is typed, and control is transferred to MONARCH.

The effect of the second FORTLINK control message is similar to that just described except that the
previously compiled programs are on two separate pieces of paper tape. The second piece of tape is
to be read unconditionally. After the programs and library subroutines are loaded, the message
"LOADING COMPLETE. .. " is typed. The system tape is again scanned forward to the second end­
of-file mark and backspaced over it. Then, the just-loaded FORTRAN program is written onto the
system tape as link number 169, another end-of-file mark is written, and the system tape is rewound.
The message "LINK WRITTEN ON TAPE" is typed, and control is transferred to MONARCH.

This process may continue unti I al I the links have been written on the system tape.

Example C:

.6ASSIGN X2=MT2W, BI=MTOW .

.6LOAD 0, GO, 'LINKINIT' •

.6ASSIGN SI=PRlW, BO=MTlW, LO=LPlW •

.6REWIND MTlW .

.6FORTRAN LO, BO .

.6REWIND MT lW •

.6ASSIGN BI=MTlW .

.6FORTLINK 2, Bl.

.6REWIND MTlW .

.6FORTRAN LO, BO .

.6REWIND MTlW .

.6FORTLINK 4, MAP, LMAP, BI.

In this example magnetic tape 2 is the link tape. The binary input is from the system tape to enable
the loader to load the I ink initia I ization routine. The I ink tape is rewound, two end-of-file marks
are written, and the tape is rewound again. Then control is transferred to MONARCH, which makes
the unit assignments for the SI, BO, and LO units and rewinds magnetic tape 1.

Next the FORTRAN compiler is brought into core. The compiler accepts the source input from the
paper tape reader, compiles the program, produces a listing on the line printer, and writes the com­
piled program onto magnetic tape 1. Then control is returned to MONARCH, which rewinds mag­
netic tape 1 and makes a new unit assignment for the binary input unit.

The FORTRAN loader is brought into core, and it loads the previously compiled program from magnetic
tape 1. After the program and any necessary I ibrary subroutines have been loaded, the message
11 LOADING COMPLETE ... 11 is typed. Next, the link tape is scanned forward to the second end­
of-file mark and backspaced over it. Then, the just-loaded program is written onto tape as link
number 2, another end-of-file mark is written, and the tape is rewound. Control is transferred to
MONARCH, which rewinds magnetic tape 1 and cal Is in the FORTRAN compiler again.

The compiler accepts the second source program from the paper tape reader, compiles it onto mag­
netic tape 1, and produces a listing on the line printer. Then control is returned to MONARCH
which rewinds magnetic tape 1 and cal Is in the FORTRAN loader.

The FORTRAl"-.1 loader loads the cornpi led program from magnetic tape l. The I ink tape is scanned
forward to the second end-of-file mark and backspaced over this mark. Then the just-loaded pro­
gram is written onto the link tape as link number 4, another end-of-file mark is written, and the
tape is rewound.

57

58

EXECUTING A LINKED PROGRAM

Execution of a linked program is initiated when the routine LINKZERO is called into core via a LOAD
control message. The LINKZERO routine

l. Scans the link tape to determine how many links are present and the order in which they
appear on the tape and to record the identification numbers (link numbers) of the first
thirty Ii nks.

2. Positions the tape between the two end-of-file marks that define the beginning and end of the
link tape.

3. Stores information indicating the order in which the links are to be executed.

4. Locates the link to be executed first, loads it into core, and transfers control to it.

During the execution of the user's program, the I inks are located on the I ink tape by one of two methods:

l. If the link is one of the first thirty on the tape, its location will be known, and it can be lo­
cated and read into core directly.

2. If the I ink is not one of the first thirty, its location is unknown; therefore, the I ink tape is
positioned in front of the first link and is scanned forward until the desired link or an end-of­
file mark is found.

If the link cannot be found, an error message (EOF STOP) is typed, and the computer halts. The link
number for which the search was unsuccessful is displayed in the A register.

Example:

i:.ASSIGN X2=MT2W, BI=MTOW, SI=TYlW.
i:.LOAD 0, GO, 1 LINKZER0 1

•

After LINKZERO is loaded into core, the message 11 LINKZERO LOADED 11 is typed. The link tape X2
is scanned forward to the first end-of-file mark. The tape is then read to determine the order of the
first thirty links. This information is stored in a 30-word table. (More than thirty links may be written
on the tape, but only the first thirty identification numbers are stored in the table.) After this informa­
tion is stored, the tape is positioned in front of the first link on the tape. From this point on, the tape
remains positioned between the two end-of-file marks that delimit the links.

LIN KZERO then accesses whatever symbolic input device has been assigned-in th is example, the
typewriter. The user enters the list of link numbers in the order in which the links are to be executed.
(Links may be executed any number of times and in any sequence.) This information is stored in a sec­
ond 30-word table. The list of link numbers is entered under FORTRAN FORMAT (14). The user must
enter at least one link number; a maximum of thirty may be entered. (This feature enables the user to
specify the first link and then have the links executed under program control; i.e., the first link calls
another link which calls another, etc.; or the user may specify, via the input device at execution time,
the order in which the links are to be executed, and each link is written to call the 11 next 11 link rather
than a specific one.) The first link number entered by the user will be the first link executed.
LINKZERO locates this link on the link tape, loads it into core, and transfers control to it.

APPENDIX F. SOS STANDARD BINARY LANGUAGE

The following description specifies a standard binary language for SDS 900 Series and 9300 Computers.
The intention has been that this language be both computer-independent and medium-independent. Thus,
the language provides for handling Programmed Operator definitions and references even though the 9300
does not have this hardware feature; similarly, there is a provision for relocation relative to blank
COMMON, even though this requirement is not present in SDS 900 Series FORTRAN II.

In the following description of the language, a file is the total binary output from the assembly/compi­
lation of one program or subprogram. A file is both a physical and a logical entity since it can be sub­
divided physically into unit records and logically into information blocks. While a unit record (in the
case of cards) may contain more than one record, a logical record may not overflow from one unit record
to another.

1. CONTROL WORD - first word in each type of record

Type (T) ~ Word Count (C)
Mode

Folded Checksum (FC)
(Binary)

Field

0 101 Contents

0 2 3 4 8 9 11 12 23 Bit Number

T Record Type

000 Data record (text)
001 External references and definitions, block and program lengths
010 Programmed Operator references and definitions
011 End record (program or subroutine end)
100

} Not assigned

111

C =total number of words in record, including Control Word

Note that the first word contains sufficient information for handling these records by routines other
than the loader (that is, tape or card duplicate routines). The format is also medium-independent,
but preserves the Mode indicator positions desirable for off-line card-handling.

An exclusive OR checksum is used. If the symbol -- is used to denote exclusive OR, and W. denotes
I

the i-th word in the record (l :s i :s C), then

FC = (W1)0-ll -- (S)
0

_
11

-- (S)
12

_23 -- 07777

where

2. DATA RECORD FORMAT (T=O)

Control
Word

Word l

Record ~ Type (T) ~
000 0

0 2 3 4

3sc s 30
Mode

(Binary)

101

8 9 11 12

Foided Checksum

23

59

60

Load
Address
Word

Word 2

~ Data Word Load Address

~ Modifiers (M) Modifiers (A)

0

0 . -4 .J
,..

Load Address (Relative or Absolute)

...... 23

The presence of bits in field M indicates the presence of words n + 3, n + 4, n + 5, and n + 6 (shown
below):

If bit position 4 contains a l, word n + 3 (load relocation) is present.
If bit position 3 contains a l, word n + 4 (common relocation) is present.
If bit position 2 contains a l, word n + 5 (POP relocation) is present.
If bit position l contains a l, word n + 6 (special 1/0 relocation) is presen~.

Data
Word l

Load
Relocation

Common
Relocation

Programmed
Operator
Relocation

Special
1/0
Relocation

Word 3

l Instruction or Constant

Words 3 through n+2 contain instructions or constants(where ls n s 24)

Word n + 3

Load address relocation word (present iff (M) n l = l)

0

Word n + 4

Blank common relocation word (present iff (M) n 2 = 2)

0

Word n + 5

Programmed operator relocation word (present iff (M) n 4 = 4)

0

Word n + 6

Special Input/Output operation relocation (present iff (M) n 8 = 8)

0

23

23

23

23

Words n + 3 through n + 6 are modifier words. Each bit in each of these words corresponds to a data
word; that is, bits 0 through 23 of each modifier word correspond to data words 3 through n + 2
(where ls n s24). A bit set to l in a modifier word indicates that the specified data word requires
modification by the loader. There are four types of modification (and hence four possible modifier
words) which are indicated in data records. Presence of a modifier word in a data record is indi­
cated by the M (data word modifier) field in the load address word.

The load address is subject to modification as indicated by the A field of the load address word as
follows:

(A) = 0, absolute.
(A) n l = l, current load re location bias is added to load address.
(A) n 2 = 2, current common relocation bias is added to load address;

the remaining bits of A are unassigned.
(A) = 3, illegal.

3. EXTERNAL REFERENCES AND DEFINITIONS, BLOCK AND PROGRAM LENGTHS (T = l)
(Includes labeled COMMON, blank COMMON and program lengths)

Control
Word

Common
Length

Word l

Record ~ 4sCs31*
Mode

Type (T) ~ (Binary)

001 0 101

0 2 3 4 8 9 11 12

* From l to l 0 items per record

1- to 8-Charocter Lobe I

I
Cl

I
C2 lt cs C6

0 5 6

Length Word

Folded Checksum

C3 J 18

C4

C7 cs

or Program
Length
Item Item

Type
B C Length of Program or Common Block (L)

00 00000

0 2 6 7 8 9

B = l if (L) is program length
C = l if (L) is length of a labeled common block

External
Reference
Item

[10 8-c~~racter :r C2

C6

Chain Word

0

Item
Type

01 000

2

Address Mod­
ifiers (A)**

4 5 8 9

C3

C7

Address of Last Reference

** See data record, load address word, for interpretation.

C4

CB

23

J
23

23

61

62

[to 8-c~~racter :r
C6

17118

C2 C3 C4

cs Cl

Externai

1
Definition Value Word
Item Item Address Mod-

Type ifiers (A)**
Absolute or Relocatable Value

l 10 000

0 2 4 5 s 9 23

** See data record, load address word, for interpretation

External symbolic definitions include subroutine 11 identification11 as a subset and require no special
treatment of subroutines with multiple names.

External
Reference
with
Addend
Wor<:Jk

Item
Type

l l

0

000

1 2

Addend Word

C2

C6

Address Mod-
•r• /A** ir1ers \MJ

4 5 s 9

0 s 9

C3 C4

Cl cs

Address of Last Reference

Value of Addend

* One of these items for each unique reference; e.g., each of the fol lowing
references is represented by a separate item:

A + 5, B + 5, B + 6, C + 2, C + 5

** See data record, load address word, for interpretation.

4. PROGRAMMED OPERATOR REFERENCES AND DEFINITIONS (T = 2)

Control
Word

Word l

Record ~ 4 :s c :s 31 **
Mode

Type (T) ~ (Binary)

010 0 101

0 2 3 4 s 9 11 12

** From l to lO items per record

Folded Checksum

23

23

Internal
Programmed
Operator

Programmed
Operator
Reference

External
Programmed
Operator
Definition

~

,. - to 8 Ch M - aracter nemonic

I
Cl

I
C2

C5 C6

0 5 6

Item
Sequence No. Type R

00 l
"-i

0 1 2 7 8 9

1- to 8-Character Mnemonic

I
Cl

I
C2

C5 C6

0 5 6

Item
Sequence No. R

Type

01 0

0 2 7 8 9

C2

C6

Item
Sequence No. R

Type

10 1

0 1 2 7 8 9

I
C3

I
C4

C7 C8

'11 12 17 18

Origin of Programmed Operator Routine

I
C3

I
C4

C7 C8

11 12 17 18

000 000 000 000 000

J 18

C3 C4

C8 C7

Origin of Programmed Operator Routine

R = 1 iff origin of Programmed Operator Routine is relocatable.
The sequence number indicates the order in which the definitions or references occurred
in the source program.

5. END RECORD (T = 3)

Control
Word

Length of
Program

Word 1

Record ~ ~ Type (T)

0

0

011 0

2 3 4

Transfer Word
Modifiers

(M)*

2 s cs 4

0000

0 4 5

Mode Folded Checksum
(Binary)

101

8 9 11 12

l + Maximum Value of Location Counter

8 9

** See data record description for interpretation.

J
23

I
23

23

23

23

23

63

64

Transfer
Word

Word 3

0 2 3

"BRU" Tran sf er Address

000001

8 9

This may be followed by a relocation word as described above in 11 Data Record Format, 11 paragraph 2.

APPENDIX G. PROCESSOR DIAGNOSTICS

This summary of processor errors is provided for convenience of reference. The user should refer to the
applicable processor reference manual for a more complete discussion.

META-SYMBOL (900 Series Only)

The standard abort message is

META-SYMBOL ERROR xx

where xx has the following values:

xx Interpretation

01 Insufficient space to complete encoding of input.

02 Corrections to encoded deck but encoded input file is empty.

03 End of file detected while reading encoded input.

04 Insufficient space to complete preassembly operations.

05 Insufficient space to complete the assembly.

06 Data error. META-SYMBOL does not recognize the data as anything meaningful.

07 Requested output on a device which is not available.

08 Corrections out of sequence.

09 End of file detected by ENCODER when trying to read intermediate tape Xl.

l 0 Request for non-existent system procedures.

11 Byte larger than dictionary (bad encoded deck).

12 Not encoded deck.

13 Checksum error reading system tape.

14 Preassembler overflow (ETAB).

15 Not used.

16 Data error causing META-SYMBOL to attempt to process procedure sample beyond end of table.

18 Improperly formatted or missing PROC deck series-specification card.

24 Shrink overflow.

Errors 05, 06, and 16 are accompanied by a printout that shows the value of certain internal parameters
at the ti me of the abort:

LINE NUMBER
BREAK l
LOCATION COUNTER
UPPER
LOWER
BREAK
SMPWRD
LTBE
LTBL

yyyyy
yyyyy
yyyyy
yyyyy
yyyyy
yyyyy
yyyyy

YYYYY } second pass on I y
yyyyy

(yyyyy represents the value of the particular item). The last six of these are useful in determining the
nature of the assembler overflow.

After the appropriate message has been typed, control is transferred to MONARCH.

65

66

I/O ERROR MESSAGES AND HALTS

When an 1/0 error is detected, a simple message is typed and the computer halts. The message consists
of a 2-letter indication of the type of error and a 2-digit indication of the I/O device. The letter
indicators are defined below; the 2-digit number is the unit address number used in EOM selects (see
applicable computer reference manual). The action taken if the halt is cleared depends upon the type
of error and the device involved. There are three types of error.

BUFFER ERROR (BE)

l. Examples:

BE 11 buffer error while reading magnetic tape 1.
BE52 buffer error while writing magnetic tape 2.

2. Action upon c I earing the halt:

a. Magnetic tape input - since ten attempts are made to read the record before the halt occurs,
continuing causes META-SYMBOL to accept the bad record.

b. Paper tape or card input - try again.

c. Magnetic tape output - try again.

d. Output other than magnetic tape - continues.

CHECKSUM ERROR (CS)

1. Ex amp I es:

CS06 checksum error card reader.
CS 11 checksum error reading magnetic tape l.

2. Action upon clearing the halt:

Accepts bad record.

WRITE ERROR (FP)

1. Example:

FP 12 magnetic tape 2 file protected

2. Action upon clearing the halt:

Checks again.

SYMBOL

Input/output errors during a SYMBOL assembly result in a halt with the relative location of the halt
displayed in the P register. The recovery procedure depends upon the type of error and the device
involved.

l. Paper tape reader or typewriter symbolic input - Upon deduction of a buffer error, a halt occurs
with relative location 032 displayed in the P register. To continue the assembly, one can branch
to relative location 025. To reread the record, one must reposition the paper tape and branch to
relative location 03.

2. Magnetic tape input - Input records are requi ~ed to be card images (20 words). A premature
termination is treated as being equivalent to an end of file. One end-of-file mark is allowed to
separate input files on a tape reel and is ignored by the assembler at the beginning of the first pass.
An additional end-of-file mark or one occurring after the first symbolic line but before the END
line causes a halt in relative location 050. Clearing the halt causes a branch to location 01, which
returns control to MONARCH.

In case of tape read errors, ten recovery attempts are made after which a halt occurs in relative
location 021. Clearing the halt causes the record to be accepted.

3. Line printer listing - In the event of a printer fault, a halt occurs in relative location 023. To con­
tinue the assembly, clear the fault on the printer and then clear the halt.

FORTRAN II (900 Series Only)

Both the FORTRAN II compiler 1s input/output error messages and the FORTRAN loader 1s error messages
are listed here.

1/0 ERROR MESSAGES

For input and output, FORTRAN uses MONARCH 1s 1/0 handlers. If an error occurs during input or out­
put, the compiler produces an error message of the form _

FORTRAN 1/0 ERROR x

x Interpretation

An error has been detected during listing. Compilation continues.

2 An error has been detected while reading magnetic tape. The message is output after ten un­
successful read attempts. Compilation continues using the result of the last read.

3 An error has been detected while punching or writing the object program. Output is sup­
pressed, and compilation continues.

4 No input device has been assigned. This is an irrecoverable error, and control is transferred
to MONARCH.

These messages are printed on whatever listing device has been assigned. If no listing device has been
assigned, the messages are not printed, but the indicated action is sti 11 performed.

There are three halts in the compiler. All display a flagged NOP in the C register with either a 7a or
708 as an address.

Address

7

70

Interpretation and Action

The computer wi 11 halt before reading paper tape for the first time, when a stop code
has been read, or when tape gap has been detected. Clearing the halt will allow
compi lotion to continue.

An error has been detected while reading cards or paper tape. CI earing the halt wi 11-
al low compilation to continue.

FORTRAN II LOADER ERROR MESSAGES

The error messages of the FORTRAN II loader running under MONARCH are as fol lows:

Message

ERROR SWITCH SET

Interpretation and Action

MONARCH is in the job mode (see JOB control message
in Section 2), and the processor error switch has been set.
Control is returned to MONARCH, which then attempts to
read another control message.

67

Message

PROGRAM TOO BIG

READ ERROR, RELOAD LAST RECORD

ILLEGAL INPUT, RELOAD PROGRAM

EOF STOP

68.

Interpretation and Action

The program being loaded exceeds available memory.
Loading con ti nu es, assuming an infinite memory. When
loading is finished, the program size is typed out, and
control is transferred to the MONARCH bootstrap.

The message is typed out, and the computer halts. Clearing
the halt al lows loading to continue. This message is caused

by

1. Card read error.

2. Paper tape read error.

3. Magnetic tape read error (ten attempts have been made
to read the record).

4. Checksum error.

This message is typed out, and control is transferred to the
MONARCH bootstrap. This message can be caused by

1. 12 interrupt while reading paper tape.

2. Input which is not a legal subprogram.

3. FOR--RAN program heading improperly blocked.

4. Number less than 2008 or greater than 2448 assigned to
a system subroutine reference.

5. Error in checking the sequential block count.

6. Labeled COMMON which is not accepted by the
FOR TRAN loader.

7. First word in a record not being a contro I word.

8. Type 0 records for POP relocation and special 1/0 re­
location, type 2 records (POP references and defini­
tions), illegal records (types 4 through 7), and external
references with addend i terns which are not accepted by
the FORTRAN loader.

(Can occur only when FORTRAN linking is used. See Appendix
E.) The requested I ink cannot be found on the I ink tape. The
computer halts with the link number for which the search was
unsuccessfu I displayed in the A register. Clearing the ha It
wi 11 cause the search to be repeated.

APPENDIX H. SOS CHARACTER CODES

Characters Internal
SDS Code

Card
Code

BCD Code on
Magnetic Tape

Characters Internal
SDS Code

Card
Code

BCD Code on
Magnetic Tape - ·oewriter

2

3

4

5

6

7

8

9

Space

#or=

@or'

>
v'

& or+

A

B

c
D

E

F

G

H

Printer

0

2

3

4

5

6

7

8

9

Blank

>
./

+

A

B

c
D

E

F

G

00

01

02

03

04

05

06

07

10

11

12

13

14

15

16

17

20

21

22

23

24

25

26

27

30

31

0

2

3

4

5

6

7

8

9

8-2

8-3

8-4

8-5

8-6

8-7

12

12-1

12-2

12-3

12-4

12-5

12-6

12-7

12

01

02

03

04

05

06

07

10

11

12(c)

13

14

15

16

17

60

61

62

63

64

65

66

67

Typewriter Printer

J

K

L

M

N

0

p

Q

R

Car. Ret. l (a)

$

b

I
s
T

u
v
w
x

y

J

K

L

M

N

0

p

Q

R
! (e)

$

*

Blank

I
s
T

u
v

w
x

40

41

42

43

44

45

46

47

50

:51

52

53

54

55

56

57

60

61

62

63

64

65

66

67

70

71

11

11-l

11-2

11-3

11-4

11-5

11-6

11-7

11-8

11-9

11-0(d)

11-8-3

11-8-4

11-8-5

11-8-6

11-8-7

Blank

0-1

0-2

0-3

0-4

0-5

0-6

0-7

icckspace ?(a) 32

33

12-8

12-9

12-0(d)

70

71

72

73

74

75

76

77

z
Tab :j: (a) 72

73

74

75

0-8

0-9

0-8-2

0-8-3

0-8-4

0-8-5

0-8-6

0-8-7

I1 or)

[

<
$ Stop

NOTES:

34

35

36

37(b)

12-8-3

12-8-4

12-8-5

12-8-6

12-8-7

% or (

+t+ Delete

(
(e)

\

+t+ (e)

76

77(b)

(a) The characters ? l and :j: are for input only. The functions Backspace, Carriage Return, or Tab always occur on output.

(b) On the off-line paper tape preparation unit, 37 serves as a stop code and 77 as a code delete.

(c) The internal code 12 is written on tape as a 12 in BCD. When read, this code is always converted to 00.

(d) The codes 12-0 and 11-0 are generated by the card punch; however, the card reader wi II also accept 12-8-2 for 32 and
11-8-2 for 52 to maintain compatibility with earlier systems.

(e) For the 64-character printers only.

40

41

42

43

44

45

46

47

50

51

52

53

54

55

56

57

20

21

22

23

24

25

26

27

30

31

32

33

34

35

36

37

69

Action subroutines, 15
ALGOL, 5, 7

-A -

ALGOL compiler, l, 7, 16
equipment configuration, 2
source deck structure, 33

ALGOL loader, 10
ALGOLOAD, 5, 10
ASSIGN, 5, 15, 41

BACKFILE, 5, 12
BACKREC, 5, 12
Batch processing, l, 34

- B -

Blank COMMON references and definition, 16
Blocking mode, 23
BQOTLOAD, 5, 13
Bootstrap, l, 8, 13, 15, 16
Bootstrap loader, l, 15, 16
Business Language Assignment Table (BAT), 5, 39

- c -

c I 3, 5 I 1 0 I 35
Card read/punch subroutine, 15
CARDTAPE, 5, 13
CORP, 15
Character Set, 69
COMMON relocation, 48
Control messages, 3

70

ALGOt, 5, 7
ALGOLOAD, 5, 10
ASSIGN, 5, 15, 41
BAC KF ILE, 5, 12
BACKREC, 5, 12
BOOTLOAD, 5, 13
c, 3, 5, 10, 35
CARDTAPE, 5, 13
DISPLAY, 5, 11
ENDJOB, 5
EOF, 5, 13
FILLSYS, 5, 8
FORTLINK, 5, 9, 55
FORTLOAD, 5, 9
FORTRAN, 5, 7
JOB, 5
LABEL, 5, 10
LOAD, 5, 8, 15
METAXXXX, 5, 6
ONLINE, 5
POSITION, 5, 11
REWIND, 5, 12
SET, 5, 10
SHOW, 5, 11

INDEX

Control messages (cont.)
SKIPFILE, 5, 12
SKIPREC, 5, 12
SYMBOL, 5, 7
UPDATE, 5, 14
WEOF, 5, 12

CO PY, 23, 24, 25

Data records, 18, 48, 59
Decimal integer, 4
Diagnostics

FORTRAN II, 67
META-SYMBOL, 65
MONARCH, 37
SYMBOL, 66

DISPLAY, 5, 11

ENDJOB, 5

- D -

- E -

End-of-fi I e (EOF) mark, 12
End record, 63
EOF, 5, 13
Equipment configuration,
Error switch, l, 5, 9, 15, 39
External label references/definitions, 16, 18, 19, 49, 61
External POP references/definitions, 16, 18, 19, 50, 6~

- F -

F Ill SYS, 5, 8
Format of control messages, 3
FORTLINK, 5, 9, 55
FORTLOAD, 5, 9
FORTRAN, 5, 7
FORTRAN II compiler, 1, 7, 16

equipment configuration, 2
error messages, 58
I inking, 9, 54
source deck-structure, 30

FORTRAN loader, 9, 37
Functions of MONARCH, 2
Furnishing control messages, 35

- H -

Halts (MONARCH program), 36, 37

-1-

Input control messages, 5, 8
ALGOLOAD, 5, 10
FILLSYS, 5, 8
FORTLINK, 5, 9, 55

Input control messages (cont.)
FORTLOAD, 5, 9
LOAD, 5, 8, 15

I/O device specification, 4, 5
I/O subroutines (standard), 15, 17, 39

- J -

JOB, 5
Job mode, 5
Job switch, l, 5, 9, 15, 39

- L -

LABEL, 5, 10
Level l/2 ID records, 8, 10, ll, 22, 24
Library (MONARCH), 16, 17

Loading from, 18
Line printer output subroutine, 15, 17, 20
Linking (FORTRAN), 9
Linking process (FORTRAN), 54
Li tera I parameters, 4
LOAD, 5, 8, 15
Loader, l, 8, 15, 16, 21, 48
Loading the MONARCH system, 35
Load relocation, 48

-M-

Magnetic tape I/O subroutine, 15
Memory al location, 17, 43
Memory dump routine (see Octal Dump Routine)
META-SYMBOL assembler, l, 6, 15, 16

equipment configuration, l
error messages, 65
source deck structure, 29
updating of, 53

METAXXXX, 5, 6
MONARCH

bootstrap, l, 8, 13, 15, 16
ID records, 8, 10, 11, 22, 24, 42
library, 16, 17, 18
loader, l, 8, 15, 16, 21, 48
system, l, 15, 42

Monitor, l, 3, 15, 16
MTAPE, 15

- N -

Numeric parameters, 3

- 0 -

Octa I correction routine, 20
Octal dump routine, l, 15, 20
Octa I integer, 3
ONLINE, 5
Operating environment,
Operating procedures, 35

- p -

Paper tape/typewriter I/O subroutine, 15
Parameters of control messages, 3

literal, 4
numeric, 3
symbolic, 4

POP relocation, 48
POSITION, 5, l l
Preparing program decks, 29

ALGOL, 33
batch processing, 34
FORTRAN II, 30
META-SYMBOL, 29

PRINT, 15
Program, 17
Processor control messages, 5, 6

ALGOL, 5, 7
FORTRAN, 5, 7
METAXXXX, 5, 6
SYMBOL, 5, 7

Processor error switch (see Error Switch)
PTYIO, 15

- Q -

QBINI, 17, 40
QBINO, 40
QBOOT, 15
QDUMP, 15, 20
QMSG, 17, 22, 40
QPESW, 39
Q:YMO I 23, 40
QSYS, 23, 40
QSYSI, 40
QSYSLDR, 21
QSYSP, 40
QSYST, 22, 40
QSYSU, 22, 40

Recovery procedure, 37

- R -

Relocation and data records, 18, 48
Resident, l, 15, 16
Restart procedure, 16
REWIND, 5, 12

Search subroutine, l l, 15
Separators, 3
SET, 5, 10
SHOW, 5, l l
SKIPFILE, 5, 12
SKIPREC, 5, 12

- s -

Special I/O relocation, 49
Standard binary language, 16, 59
Standard system routines, 15

71

Storage a I location, 17, 43
SYMBOL, 5, 7
SYMBOL assembler, 1, 7, 16

equipment configuration, 1
error messages, 66

Symbolic parameters, 4
Symbol table, 8, 17, 37, 51
Symbol table typeout routine, 15, 17, 20
Syntax of control messages, 3
System control messages, 5

ASSIGN, 5, 15, 41
ENDJOB, 5
JOB, 5
0 NLINE, 5

System maintenance messages
UPDATE, 5, 14

System output, 37

- T -

Tape search routine, 11, 15
Termination of a run, 16
TYPSY5, 20

- u -

Unit assignment table (UAT), 1, 15, 17, 39
UPDATE, 5, 14
Update routine, l, 15, 22

I I I • I I I "''"' 01ocK1ng;norma1 moae, L..)

CO PY message, 23, 24, 25

72

Update routine (cont.)
deletion, 24
insertion, 23
replacement, 24
retention, 24
UPDATE, 5, 14
update fi ie, 23
updating META-SYMBOL, 53

Uti Ii ty functions messages, 5, l 0
BAC KFILE, 5, 12
BAC KREC, 5, 12
BOOTLOAD, 5, 13
c, 3, 5, 10, 35
CARDTAPE, 5, 13
DISPLAY, 5, 11
EOF, 5, 13
LABEL, 5, 10
POSITION, 5, 11
REWIND, 5, 12
SET, 5, 10
SHOW, 5, 11
S KIPFILE, 5, 12
SKI PR EC, 5, 12
WEOF, 5, 12

Value of a parameter, 3

WEOF, 5, 12

-V-

-W-

