
Pri ce: $3.00

MONARCH REFERENCE MANUAL
for

900 SERIES/9300 COMPUTERS

90 05 66D

December 1969

© 1964,1965,1966,1967,1968,1969, Xerox Data Systems, Inc. Printed in U.SA

REVISION

This publication, XDS 90 05 66D, is a minor revision of the MONARCH Reference Manual,
90 05 66C (dated July 1967). A change in text from that of the previous manual is indi­
cated by a vertical line in the margin of the page.

RELATED PUBLICATIONS

Title

XDS 92 Integrated Computer Reference Manual

XDS 910 Computer Reference Manual

XDS 920 Computer Reference Manual

XDS 925 Computer Reference Manual

XDS 930 Computer Reference Manua I

XDS 940 Computer Reference Manual

XDS 9300 Computer Reference Manual

XDS 900 Series/9300 Monarch Technical Mtanual

XDS 900 Series FORTRAN II Reference Mtanual

XDS 900 Series FORTRAN II Operations Manual

XDS 900 Series/9300 ALGOL 60 Reference Manual

XDS 900 Series/9300 Symbol and Meta-Symbol Reference Manual

XDS 900 Series/9300 Project Management System Reference Manual

XDS 900 Series/9300 Extended Project Mtanagement System
Reference Manual

XDS 900 Series/9300 Sort/Merge Reference Manual

XDS 900 Series/9300 Business Language Reference Manual

XDS 900 Series/9300 Manage Reference Manual

XDS 900 Series/9300/Sigma ADAPT Part Programming Reference
Manual

NOTICE

Publ ication No.

9005 05

900008

900009

900099

900064

900640

900050

90 06 16

900003

9005 87

900699

9005 06

90 08 18

90 15 04

9009 97

90 1022

90 1046

90 1045

rhe s~cifjcation~ ~f the ~oftwo.re sy~tem .described in this p~~lication are subject to change without notice. The availability or performance of some features may
iepena on a specIfIc confIguration or equIpment such as addItIonal tape units or larger memory. Customers should consult their XDS sales representative for details.

ii

CONTENTS

l. INTRODUCTION Termination of a Run 17
Loader 17

Operating Environment 1 Unit Assignment Requirements 18
MONARCH 1

Storage All oca t ion 18
META-SYMBOL/SYMBOL 2

The Loading Process 19
FORTRAN II 2 Automatic Selective Loading from the
ALGOL 2 MONARCH library 19

Functions of MONARCH 2
How MONARCH Performs Its Functions 2 4. PROGRAMMING FOR MONARCH 21
Sal ient MONARCH Features 3 Octal Dump Routine 21

2. MONARCH CONTROL MESSAGES AND Symbol Table Typeout Routine 21
FUNCTIONS 4 Octal Correction Routine 21

Loader Routine 22
Syntax of Control Messages 4 System Update Routine 23
Control Message Parameters 4 The Update Control Message 23

Numeric Parameters 4 Control I ing an Update Run 24
Literal Parameters 5 COpy Messages 25
Symbolic Parameters 5 Contents of a Typical MONARCH System

Control Message Formats 5 Tape 27
System Control 6 System Tape 27

JOB 6 Examples 28
ENDJOB 6 Error Hal ts during Update Runs 29
ASSIGN (ONLINE) 6

Processor Control 7 5. PREPARING PROGRAM DECKS 30
METAXXXX 7 MET A-SYMBOL Assembiy and Execution 30
SYMBOL 8 FORTRAN Compi lation and Execution 31
FORTRAN 8 ALGOL Compilation and Execution 34
RTFTRAN 8
ALGOL 9 6. OPERATING PROCEDURES 36

Input Control 9 Loading the MONARCH System 36 FILLSYS .. ____ 9 Furnishing Control Messages 36
LOAD 9 Program Hal ts and Recovery Procedures 38
FORTLOAD 10 System Output 38
RTFTLOAD 11

MONARCH Loader's Symbol Table 38
FORTLINK 11 FORTRAN Loader's Output 38
ALGOLOAD 1 1

Utility Functions 11 APPENDIXES
C 1 1

A. MONARCH UNIT ASSIGNMENT TABLE 40 SET 12
B. MONARCH SYSTEM TAPE 43 LABEL 12
C. LOADER OPERATIONS 49 DISPLA Y (S HOW) 12
D. UPDATING META-SYMBOL ON MONARCH

POSITION 13 TAPES 54 REWIND 13 E. FORTRAN LIN KAGE 55 S KIPFILE 13 F. XDS STANDARD BINARY LANGUAGE 60 S KIPREC 13 G. PROCESSOR DIAGNOSTICS 66 BACKFILE 14
H. RAD MONARCH 70 BACKREC 14
I. XDS CHARACTER CODES 74

WEOF 14
J. FORTRAN II RUN-TIME MAGNETIC TAPE

BOOTLOAD 14 OPERATIONS 75 CARDTAPE 15 INDEX 79 EOF 15
ILLUSTRATIONS System Maintenance 15

UPDATE 15 l. MONARCH Program Halts and Recovery
Procedures 37 3. THE MONARCH SYSTEM 16

2. FORTRAN Loader Output 'lO '"',
Monitor 16 3. MONARCH Loader Symbol Table 39
Standard System Routines 16 4. FORTRAN Run-time Errors 76

iii

1. INTRODUCTION

MONARCH is a batch-oriented operating system that
allows batched assemblies, compilations, and executions.
The MONARCH system is available to users of XDS 9300
Computers and of XDS 900 Series Computers, and offers
three distinct advantages:

1. Reduced operator intervention that increases oper­
ational reliability.

2. All control messages recorded at the typewriter for
visual verification and permanent logging.

3. Batch processing capabi I ity that reduces throughput
time.

MONARCH allows batch processing to proceed without
the operator having to set up processing parameters or
select input/output devices. Use of appropriate control
cards preceding the program permits intermixing and
uninterrupted processing of assemblies, compilations,
and executions. Printouts of control and error messages
are made available during processing, and the oper­
ator is concerned only with setting up of tapes, ioad­
ing of cards, etc. If a program fai Is, the operator
inspects the hard copy of control information and
makes necessary adjustments in input/output assign­
ments, tape designations, etc.

A certain portion of MONARCH - called the Resident­
remains in main memory at all times. The resident in­
cludes the MONARCH Bootstrap (to load the MONARCH
operating system), the Unit Assignment Table (UAT),
error and job switches, memory dump routines, and
for RAD MONARCH, the RAD file Management Pack­
age. The MONARCH operating system does not re­
main in core during the execution of programs; only
the resident portion is there. MONARCH is reloaded
as needed between jobs.

The major portion of the MONARCH operating system is
the Monitor (see Section 3). The monitor accepts con­
trol information from many input media, assigns periph­
eral equipment as requested, and loads and executes
specified standard system routines. The control mes­
sages must precede the program to be processed. In this
manner, batch processing proceeds free from operator
intervention and may involve the consecutive processing
of programs from different media.

During all operations, a portion of MONARCH resident
in main memory retains a record of input/output assign­
ments and contains the bootstrap. When called, the

bootstrap loads a short program (Bootstrap Loader) which
in turn loads the MONARCH loader. The MONARCH
loader can bring any of the following routines into core
from the system tape:

1. The META-SYMBOL Assembler (900 Series only).

2. The SYMBOL Assembler.

3. The META-SYMBOL Loader(loads binary object pro­
grams produced by MET A-SYMBOL and SYMBOL).

4. The FORTRAN II Compiler (900 Series only).

5. The FORTRAN Loader (loads object program pro­
duced by the FORTRAN compi ler, necessary sub­
routines from the FORTRAN Library, and the
FORTRAN Run-Time package (900 Series only).

6. The ALGOL Compiler.

7. The ALGOL Loader (loads object programs produced
by ALGOL).

8. The Update Routine (allows modifications and up­
dating of the MONARCH system tape).

9. The SYSGEN Routine (copies a RAD MONARCH
system tape onto the RAD).

The library and utility routines, provided with the system
or added by the user to the system tape, are also brought
into core by the loader.

In the remainder of this document, the phrase "system
tape ll refers to the medium on which the MONARCH
system is stored: a magnetic tape for TAPE MONARCH,
or a RAD File for RAD MONARCH.

OPERATING ENVIRONMENTS

The operating environment in wh ich th is system is to func­
tion is given below. The appropriate interrupt and data
transmission facilities are assumed.

MONARCH

The MONARCH system requires for its use the following
minimum configuration of computer equipment:

1. An XDS 9300 Computer or an XDS 900 Series Com­
puter system with at I east 8192 words of core memory.

2.

3.

A console typewriter to be used by the system to
communicate with the console operator.

T tl' . . wo or more on- me magnetic tape units. The sys-
tem tape is on a magnetic tape unit.

4. For RAD MONARCH, one RAD File.

5. One or more of the following:

card reader/punch
paper tape reader/punch
I ine printer

MET A-SYMBOL/SYMBOL

META-SYMBOL requires 12,288 words of core memory;
its requirements for input/output devices are the same
as those for MONARCH. SYMBOL operates on the
minimum configuration required by MONARCH.

If both the encoded and symbolic input are on the same
device, an additional magnetic tape or MAGPAK is re­
quired by META-SYMBOL. The same requirement is
true if either the symbol i c or encoded input is to be read
from magnetic tape.

FORTRAN II

FORTRAN II operates on the minimum configuration re­
quired by MONARCH.

ALGOL

In addition to the minimum MONARCH configuration,
ALGOL requires one output device; that is, ALGOL
must have a device for binary output and one for output
I isting (a I ine printer).

FUNCTIONS OF MONARCH

The operating system is a basic program execution pack­
age which provides the following functions:

1. Loading and execution of standard system routines.
For example:

a. FORTRAN compilation.

b. META-SYMBOL assembly.

c. Punched card-to-magnetic tape conversion.

d. MONARCH system updating.

tA MAGPAK may be used in place of two magnetic tape
units.

2

2. Loading and execution of previously compiled or
assembled programs for checkout or production runs.
For example:

a. Run a previously compiled ALGOL program.

b. Run a program consisting of several previously
compiled subprograms and a previously com­
piled FORTRAN main program.

3. Combined assembly, loading, and execution of pro­
grams for checkout or production runs. For example:

a. Compile-and-go execution of FORTRAN pro­
grams.

b. Assemble-and-go execution of symbolic pro­
grams.

4. Combinations of the above functions. In the follow­
ing examples the phrases "job stack" and "batched
job stack" refer to the collection of control infor­
mation, programs, and data which are to be pro­
cessed under control of the MONARCH monitor
routine. For example:

a. A series of META-SYMBOL assemblies.

b. Several META-SYMBOL assemblies intermixed
with one or more META-SYMBOL object pro­
grams to be assembled and then executed.

c. A mixed batch requiring that any or all
MONARCH functions be carried out in an
arbitrary sequence determined by their order in
the batched job stack.

5. Loading of standard input/output routines prior to
loading and executing previ ously assembled pro­
grams, so that these standard routi nes can be exe­
cuted upon request from the program being run. For
example:

a. Loading standard input/output routines from the
system tape.

b. Loading a conversion routine or trigonometric
function routine from the MONARCH library.

HOW MONARCH PERFORMS ITS FUNCTIONS

The MONARCH operating system performs its functions
between jobs and does not exerc ise control over the exe­
cution of a program once that program has been loaded
and control has been transferred to it. The functions are
indicated to MONARCH via control messages.

Upon request, MONARCH loads a program and then re-
I inquishes control of the computer and its associated pe­
ripheral equipment to the program. The only possible
way MONARCH can regain control of the computer is if
MONARCH is reloaded from the system tape. This may

be done manually by the console operator or under pro­
gram control by the program being executed.

SALIENT MONARCH FEATURES

The sal ient features of MONARCH are:

1. The system minimizes the amount of manual interven­
tion required to execute a succession of independent
or related programs on the computer.

2. Core memory requirements for the monitor routine
are minimized during program execution; that is,
the monitor performs its functions between program
executions, and MONARCH holds only those in­
structions and data required for continuity of oper­
ation during program execution.

. 3. The amount of control information that must be
furnished to the monitor and the system routines is
held to a minimum.

4. The control information for all system functions
is presented in a consistent and straightforward
manner.

5. Insertion and deletion of routines from the system
are accompl ished via a simple update routine.

6. Routines to be added to the system are introduced
in the standard format used for assembly program
output. That is, al most any program which can be
assembled by SYMBOL or META-SYMBOL can be
incorporated into this operating system as a stan­
dard system routine.

3

2. MONARCH CONTROL MESSAGES AND FUNCTIONS

When the MONARCH system is loaded, the monitor
takes control of the computer and obtains the first item
of control information from the console typewriter. This
item may be any legal control message. With a C con­
frol message, the operator may specify that future con­
trol messages are to be obtained from other input media.
Control messages may be entered through the following
input media:

console typewriter

punched cards via an on-I ine card reader

punched paper tape via a paper tape reader

magnetic tape via a magnetic tape unit (other than
the one on which the system tape is mounted)

When the monitor obtains a control message from a medi­
um other than the typewriter, it types the message be­
fore executing the functi on req uested. (The operator
may direct the monitor to print the control message on
an on-line printer. See "Operating Procedures," Sec­
tion 6.) In th is way the monitor informs the console op­
erator of the functions be ing performed under its control
and maintains a written record of such functions. The
monitor tells the operator that a given function is com­
pleted by typing the next control message or by request­
ing the next one from the typewriter.

SYNTAX OF CONTROL MESSAGES

Regardless of which device the monitor accesses for con­
trol information, the format of the messages is the same:

~f.

or

~fI\P1' P2' ••• ,Pi·

/:::,. (1 character) indicates the beginning of a message.

f (1 to 8 alphanumeric characters) is a mnemonic con­
trol functi on code.

4

indicates a space. These symbols are used to indi­
cate the minimum number of spaces which must sep­
arate the function code and the first parameter.

(1 sis 24) is a symbolic, numeric, or literal para­
meter that provides necessary control information
re lated to the control function (f). For example I a
request for the system loader to load a program
must indicate the intitial load relocation bias for
the program that is to be loaded. A maximum of 24
parameters may be specified in one control message.

A separator. Acceptable separators are

, =><$[J*/()/\I@

(1 character) indicates the log ical end of message.
The physical end of message is indicated by the end
of record in the case of magnetic tape and cards or
by a carriage return in the case of paper tape and
typewriter. The logical end of message is required
only when comments are included.

Regardless of the length of the record containing a con­
trol message, the routine that scans control messages ex­
amines only the first 72 characters (18 words) of the
record. Therefore, the period indicating the end of the
message must occur prior to the 73rd character of the
record.

The first character of a control message is a delta (~).
This character and the function code may be contiguous
or may be separated by one or more spaces. When the
function does not require a parameter list, the function
code is followed by a period; otherwise, a space sepa­
rates the parameter I ist from the function code.

Various control messages require different numbers of
parameters. If more than one parameter is required, all
but the last must be followed by a separator; the last one
is followed by a period.

CONTROL MESSAGE PARAMETERS

The monitor converts parameters in a MO NARC H control
message into a standard internal form. Except for literals
(see below), it represents parameters internally as single­
precision, 24-bit, binary values. Hence, the "value"
of a parameter is its internal representation as a binary
quantity or bit pattern, and it is the "value" of a para­
meter that is ultimately examined by the subroutine in
the monitor which processes the specific function code.
Th is method of parameter conversion usually allows many
ways of representing a given value externally. For ex­
ample, the control message parameters 'OOOA' (literal
parameter) and MTl W (symbolic parameter) have the fol­
lowing internal representations or values:

'OooA' = 00000021
MTlW = 00203611

which cou Id be entered as numeric parameters.

NUMERIC PARAMETERS

A numeric parameter may be written as:

1. An octal integer, consisting of up to nine octal dig­
its, the first of which must be zero. An octal in­
teger may be preceded by an algebraic sign:

047, +062, -0, 0, 077777777, -032154767

2. A decimal integer, consisting of up to eight deci­
mal digits the first of which must not be zero. A
decimal integer may be' preceded by an algebraic
sign:

9, +532, -0, +21657899, -31579988

The first digit of an octal integer must be zero in order
for MONARCH to distinguish it from a decimal integer.

Unsigned octal parameters must have values less than
224; signed octal parameters and all dec imal parameters
must be less than 223. If the number of digits in a num­
ber exceeds the appl icable I imit, the least significant
digits are truncated.

Regard less of the form used, the parameter is represented
internally as a single-precision, signed, binary integer.

LITERAL PARAMETERS

A I iteral parameter consists of up to eight alphanumeric
characters enclosed in single quotation marks (SDS inter­
nal code of 14). t Any legal character (see Appendix H)
except a quotation mark may be written as a literal:

1. A single-precision Hteral consists of up to 4 charac­
ters:

2. A double-prec ision I iteral consists of up to 8 char­
acters:

A literal parameter is represented internally as a left­
justified string of internal character codes (six bits each).
A single-precision literal isstored in one computer word.
A double-precision I iteral is stored in two words:

I ABC DEFGH ' is stored in a and a + 1 as

(a) = 21222324
(a+ 1) = 25262730

Spaces (internal code of 60) are used to fill any unspec­
ified character positions. For example:

'ABC ' is represented internally as 21222360

I ABC DEI is represented internally as 21222324
25606060

tThe single quotation mark is not present on the type­
writer; however, its internal code (14) is the same as
that of the typewriter symbol @ (upper case 8). There­
fore, whenever input is from the typewriter, the symbol
@ must be used in place of the sing Ie quotation mark.

Double-prec ision I iterals are frequently used to desig­
nate program names for MONARCH search functions.
(See LOAD control message.)

SYMBOLIC PARAMETERS

Symbol ic parameters are symbol ic representations of par­
ameters associated with many of the control messages ex­
plained later in this section.

Symbolic parameters consist of up to four characters, the
first of which must be alphabetic and the remaining either
alphabetic or numeric. Each symbolic parameter has a
predetermined value (24 bits) which is stored in MON­
ARCH's table of symbolic parameters. Use of a symbol
not defined in this table causes the control message in
which the undefined symbol appeared to be ignored and
an error message to be typed.

A octal parameter with the same value may be substi­
tuted for any symbol ic parameter in a control message.

Listed below are the symbol ic parameters used to spec ify
input/output devices to the MONARCH system. In this
list, h specifies the channel and is actually written as W
or Y for 900 Series Computers or A, B, C, or D for 9300
Computers. Throughout this manual, references are made
to the "W" and "Y" buffers; users of the 9300 Computer
shou Id substitute the appropriate channel letters in these
places. If h is omitted from a parameter, channel W (or
A) is assumed. The n specifies the unit number.

Parameter Definition

CR designates the card reader where there is
only one.

CRnh designates card reader n on channel h.

CPnh designates card punch n on channel h.

PRnh designates paper tape reader n on channel h.

PPnh designates paper tape punch n on channel h.

TV designates the console typewriter (i. e.,
typewriter 1 on channel W).

MTnh designates magnetic tape unit n on channel h.

DFnh designates RAD Fi Ie n on channel h.

LP designates the I ine printer (i. e., line
printer 1 on channel W).

S designates the system tape (i. e. , magnetic
tape unit 0 on channel W).

CONTROL MESSAGE FORMATS
The user directs the operation of the MONARCH system
via control messages which may be input from the type­
writer, punched paper tape, or punched cards. Most
frequently, the control messages are on punched cards
preceding the user's input card decks.

5

System Control

JOB
ENDJOB
ASSIGN (ONLINE)

Processor Control

METAXXXXt
SYMBOL
FORTRAN
RTFTRAN
ALGOL
Input Control

FILLSYS
LOAD
FORTLOAD
RTFTLOAD
FORTLINK
ALGOLOAD

Utility Functions

C
SET
LABEL
DISPLAY (SHOW)
POSITION
REWIND
S KIPFILE
SKIPREC
BACKFILE
BACKREC
WE OF
BOOTLOAD
CARDTAPE
EOF

System Maintenance

UPDATE

SYSTEM CONTROL

JOB The JOB control message specifies the
system is to be in 11 job mode ll

•

~JOB.

When the system is set to job mode, it resets the proces­
sor error switch. If an error occurs while a processor
(such as FORTRAN or META-SYMBOL) is being exe­
cuted, the processor error switch is set. Then, if the
operation is a load-and-go (i. e., compile-and-execute
or assembl e-and-execute), the IIload" function is not
honored because of the processor error. If no error oc­
curs during such a load-and-go operation, the IIload ll

function is honored.

The MONARCH system remains in job mode until an
ENDJOB control message is encountered. Therefore,
whenever a job is preceded by a JOB message, it should
be followed by an E NDJ 0 B (see be low) as a courtesy to
the next user who may not wish to assemble (compile)
his program in job mode.

END JOB This control message spec ifi es that the
system is not in job mode.

~ENDJOB

tXXXX indicates the name of a set of system PROCs that
will be used to interpret the program mnemonics during
the META-SYMBOL assembly (e. g., ME TA92 0,
MET A910, MET A9300, METASPEC, etc.). META91 0
wi II assemble on any machine and will produce binary
output for 910. The set of PROCs is a ~ 2 record within
the scope of the META-SYMBOL logical file (see IISys­
tem Update Routine ll in Section 4 for an explanation of
62 records).

6

When an E NDJOB control message is received, MON­
ARCH resets the processor error switch and terminates
job mode. If a processor is being executed in a load­
and-go operation not in job mode, MONARCH wi II
honor the IIload ll function even if processor errors have
occurred.

The system wi II not return to job mode unti I it receives
a JOB control message.

ASSIGN ASSIG N (or ONLINE) enables the user
ON LINE to specify the input and output media to
be used during the current job.

~ASSIG N L=P l' L=P 2' ..• , L=P 9'

~ONLINE L=P
1

,L=P
2
,· .. ,L=P

9
.

Lis a system label.

P is a symbolic parameter designating the specific device
(see Symbol ic Parameters).

The labels for the standard unit assignments are:

Label Reference

SI Symbolic Input
SO Symbolic Output
BI Binary Input
BO Binary Output
EI Encoded Input
EO Encoded Output
LO List Output
UI Update Input
X 1 System Scratch
X2t System Intermediate Output Scratch
X3 System Scratch (magnetic tape)
S System (magnetic tape)

Labels for Logical unit assignments are:

Label

LO
L1
L2
L3
L4
L5
L6
L7
LCR
LCP
LLP

Reference

Magnetic Tape Logical Unit 0
Magnetic Tape Logical Unit 1
Magnetic Tape Logical Unit 2
Magnetic Tape Logical Unit 3
Magnetic Tape Logical Unit 4
Magnetic Tape Logical Unit 5
Magnetic Tape Logical Unit 6
Magnetic Tape Logical Unit 7
Card Reader
Card Punch
Line Printer

Note: Ln may be assigned to any physical tape unit;
i. e., LO=MT2W, L2=MT7W, etc.

The logical unit assignments are used in the Business Lan­
guage and in FORTRAN II RAD MONARCH to permit re­
assignment of unit numbers.

tX2 must be assigned to magnetic tape unit 2 (MT2)
under MAGPAK environment when using META-SYMBOL.

At least one pair of parameters must be given, and a maxi­
mum of nine pairs is allowed per control message. The
valueofthe first parameter must bea label specifying a
unit assignment entry; e. g., SI, LO, etc. The value of
the second parameter must be a legal peripheral device
designation on an existing channel; e. g., PR1W, MT3Y,
etc. The symbolic parameter associated with the periph­
eral device should be consistent with the flow of infor­
mation; that is, it would be illegal to assign BI=CP1W
(binary input to be entered from the card punch).

Once a unit assignment has been made, it remains in
effect until a new assignment for that label is made.

When a logical tape is assigned to the RAD for execution
of a FORTRAN program, it should be assigned to Xl or
X2, where Xl or X2 has been assigned to the RAD. This
permits up to two such files to be simultaneously active.

Examples:

.6ASSIGN BI=CR1W, BO=CP1W.

This message assigns card reader 1 on the W buffer as
the binary input device and card punch 1 on the W buf­
fer as the binary output device.

.60NLINE LCR=CR1W, LLP=LP1W, L2=MT1W.

This message assigns card reader 1 on the W buffer as
the card input device, printer 1 on the W buffer as the
on-line printer, and a second magnetic tape (L2) as
magnetic tape physical unit 1 on the W buffer. This
ONLINE statement assigns LCR, LLP, and L2 in BAT
(Business Language Assignment Table, which is de­
scribed in Appendix A).

Note that magnetic tape units are numbered 0 through
7; all other devices are numbered from 1.

.6 ASSIGN BI=CR1W, S=MTOW, LCR=CR1W •

.6ASSIGN LLP=LP1W, L2=MT1W.

These messages assign: (1) card reader 1 on the W buffer
as both the binary input device and the card reader for
a Business Language program; (2) magnetic tape unit 0
on the W buffer as the system tape; (3) I ine printer 1 on
the W buffer as the on-I ine printer for a Business Lan­
guage program; and (4) the magnetic tape physical unit
1 on the W buffer as the magnetic tape logical unit 2
of a Business Language program.

PROCESSOR CONTROL

METAXXXX (900 Series only) This control message
directs MONARCH to load and transfer control to the
MET A-SYMBOL assembly system •

.6MET AXXXX P
1

, P 2' C, CONC, EXCP, SET.

XXXX specifies which procedure-oriented library
MONARCH is to load prior to the assembly. Thus,
the control message may be written as:

.6l·AET A920 for 920 procedure-oriented library.

.6META910 for 910 procedure-oriented library.

.6META9300

6METAB910]
6METAB920

for 9300 procedure-ori ented library .

6METAB93H
for 900 Series special-purpose pro­
cedure-oriented I ibrary for busi­
ness data processing.

The user may provide his own procedure-oriented
I ibrary on the system tape. It must be identified
by a unique, 4-character name. That name isthen
used in place of XXXX in the METAXXXX control
message.

P
1

specifies type of input:

Parameter

SI
EI

Type of Input

Symbolic Input
Encoded Input

P 2 spec i fi es type of ou tpu t:

Parameter

SO
EO
BO
LO

Type of Output

Symbol ic (Source) Output
Encoded Output
Binary Output
List Output

C (optional) specif ies that cornpatibil ity mode tiOnsla­
tion of symbolic input is desired. Use of this param­
eter enables the user to translate a SYMBOL-4 or
SYMBOL-8 source program into META-SYMBOL
source form.

CONC (optional) specifies that a concordance listing
t

is to be produced by META-SYMBOL.

EXCP (optional) specifies that exceptions are to bemade
to the concordance I isting t as designated on META­
SYMBOL control cards INCLUDE and EXCLUDE. If
EXCP is present, CONC is not specified.

SET (optional) specifies that a larger table should be re­
served for use by the META-SYMBOL preassembler
to accomplish translation of standard system pro­
cedures to the user's program format. This parame­
ter is not necessary when the control message is
META920, META910, or META9300, but should be
used with a call for the XDS Business Language. SET
may also be necessary for future higher order lan­
guages implemented in META-SYMBOL.

tllConcordance I isting" refers to a I isting of the symbols
appearing in the META-SYMBOL source program, along
with a reference to the instructions in which the symbols
appeared. INCLUDE control cards may be used to limit
concordance listing to specific symbols only; EXCLUDE
control cards enumerate specific symbols which are to be
omitted from the concordance listing.

7

The parameters may be listed in any order. One input
and one output specification must be given. Multiple
outputs may be requested.

META-SYMBOL assumes that the necessary input/output
units have been assigned and that all tape units, except
scratch tapes, are correctly positioned before MONARC H
relinquishes control to it.

Examples:

6ASSIGN SI=CR, LO=LP, S=MTOW, X l=MTlW.
6META920 SI, LO.

This message sequence requests META-SYMBOL to as­
semble a symbolic source program and produce an assem­
bly listing as the only output.

6ASSIGN S=MTOW, SI=CR, BO=PP1W, LO=LP.
6ASSIGN X1=MTlW.
6META9300 SI, BO, LO, CONC.

This sequence requests META-SYMBOL to assemble a
symbol ic source program from cards and to produce a
binary output on paper tape and an assembly listing and
concordance listing on the line printer.

SYMBOL The SYMBOL control message directs
MO NARC H to load and transfer control to the SYMBOL
assembly system.

6SYMBOL P
1
, P

2
.

specifies which mnemonic table is to be used dur­
ing the assembly:

Parameter

910
920
9300

Mnemonic Table

910
920
9300

P 2 specifies output data from SYMBOL:

Parameter

BO
LO

Type of Output

Binary Output
List Output

The parameters may appear in any order. Only one
mnemonic table (P 1) may be specified; at least oneout­
put spec ification parameter (P2) must be present. Sym­
bolic input is assumed; therefore, SI should not be present
as a parameter, but must be ASSIGNed.

Under MONARCH, SYMBOL has no initial halt to
ready input, in contrast to previous bootstrap versions.
Therefore, it is particularly important in the case of
symbolic input from the paper tape_ reader (a device
which has no device ready test) that the paper tape
be ready at the time SYMBOL is loaded.

Each SYMBOL control message shou Id be preceded by
an ASSIGN control message, establishing the desired
unit assignments. The ASSIGN card is indicative of
device only; i. e., it supplants the typewriter control

8

message of bootstrap versions and causes SYMBOL to
load its own preset I/o package.

Example:

MSSIGN S=MTOW, SI=CR, LO=LP.
MSSIGN BO=PP1W, Xl=MTlW.
6SYMBOL 9300, LO, BO.

This sequence of messages requests a SYMBOL assembly
from cards, using the 9300 mnemonic table. The output
from the assembly is to be a program listing on the line
printer and an object program on punched paper tape.

FORTRAN (900 Series only) This control message
causes MONARCH to load and relinquish control to the
FORTRAN II compi ler.

6FORTRAN P
1
, P

2
, P

3
•

P. specify type of input and output:
I

Parameter

SI
BO
LO

Type of Transmission

Symbolic Input
Binary Output
List Output

Any or all of the parameters may be omitted. Symbolic
input is always assumed. The presence of the BO param­
eter causes an object program to be generated. The LO
parameter causes an output listing to be produced. If no
I/O unit assignment has been made to the BO or LO de­
vice, that parameter is ignored.

Examples:

6FORTRAN.

This message requests FORTRAN to compile a source pro­
gram; no I isting or object program is produced; only the
program allocation, diagnostics, and any erroneous
source line(s) will be listed.

6ASSIGN S=MTOW, SI=CR, LO=LP, Xl=MT1W.
6FORTRAN BO, LO.

This sequence of messages requests FORTRAN to compile
a source program read from cards (SI is assumed if it is
not present) and to produce an output listing. No object
program is produced since no BO unit assignment was
made.

RTFTRAN (900 Series only) This control message
causes MONARCH to load and rei inquish control to the
Real-time FORTRAN II compiler.

P. specify type of input and output consistent with the
I .

format of the above mentioned FORTRAN control message.

ALGOL The ALGOL control message causes
MONARCH to load and transfer control to the ALGOL
compiler.

P.
I

specify the input/output devices to be used by
ALGOL.

Parameter

LS
LO
BO

Type of Transmission

List Source
List Object Code
Binary Output

The parameters may appear in any sequence, and any
or all may be omitted. ALGOL always reads source in­
puts from the device previously assigned to SI. When
a I isting of the source program is requested (LS param­
eter), the listing is produced on the LO device. The
LO device must be a I ine printer. When requested to
I ist object code (LO parameter), ALGOL produces the
I ist on the LO devi ceo The BO parameter spec ifies that
ALGOL is to produce a binary object program on the
BO device.

If no output device i..s specified and an error occurs dur­
ing compilation, an error message is produced on the
console typewriter.

Note: ALGOL must have a scratch tape available to it
and will automatically use the magnetic tape
previously assigned to Xl.

Example:

b.ASSIGN S=MTOW, SI=CR, LO=LP, BO=PP1W.
b.ASSIGN Xl=MT1W.
b.ALGOL LS, LO, BO.

This sequence of control messages requests the ALGOL
compiler to read a source program from cards, compile
it, I isting the object and source programs on the line
printer, and output the binary object program on punched
paper tape. The magnetic tape unit 1 on the W buffer
is to be the compiler's scratch tape.

~ ADAPTt (900 Series only) No parameters. This
control message directs MONARCH to load and transfer

tThe ADAPT compiler is not part of the standard MON­
ARCH system, but is avai lable on request for the tape
MONARCH system only. When the ADAPT FORTRAN II
MONARCH system tape is generated, only the following
programs should be incl uded on the system tape:

1. MONARCH control
2. I/O handler
3. FORTRAN II linking system
4. FORTRAN II compiler
5. FORTRAN II loader
6. FORTRAN II library
7. MONARCH tape update routines
8. SYSEND

control to the ADAPT numerical control compiler.
LINKZEROis loaded and control is transferred to it. This
in turn reads the next control record which must contain
the linknumberofthenext linkto be executed in column 4.

Example:

b.ADAPT.

/\ /\/\ 1

This message sequence loads LINKZERO which in turn
loads link 1 of the ADAPT compiler. Each link there­
after calls the next link until compilation is terminated.

~ MANAGE t (900 Series only) No parameters. This
control message causes MONARCH to load and transfer
control to the MANAGE executive routine.

~ DICTIONAt (900 Series only) No parameters. This
control message is used in conjunction with MANAGE.
It causes control to be transferred from the Executive
routine to the Dictionary generator.

INPUT CONTROL

FILLSYS This control message transfers control to
the monitor's bootstrap routine which wi II reload the
MONARCH system.

b.FILLSYS.

There are no parameters. The message is equivalent to
executing an unconditional branch to memory location
OOODl.

LOAD The LOAD message directs the MON-
ARCH loader to load one or more binary object programs.

b.LOAD P
1
,P

2
,P

3
.

is the load relocation bias, expressed as a positive
octal or decimal integer, for the first (or only) pro­
gram to be loaded. For programs whose load ad­
dresses and data words are not relocatable (i. e., ab­
solute programs), the load relocation bias is ignored.

is the loader options parameter. The options are:

Parameter Interpretation

STOP Stop after each program is loaded (i. e. ,
after each end record is read); no sym­
bol table output and no return to the
routine that called the loader. Octal
equivalent of the symbol ic parameter
STOP is 10000000.

tThe MANAGE system is not part of the standard MON­
ARCH system, but is avai lable on request for the tape
MONARCH system only. The MANAGE system tape
must be generated with the Dictionary generator. The
form and contents of th is tape are spec ia I ized and wi II
be supplied to the user upon request.

9

Parameter Interpretation

GO No halt after processing end record
with transfer address; no symbol table
output and no return to the routine
which called the loader. Octal equiv­
alent of the symbolic parameter GO
is 40000000.

TSTP Same as STOP except that the loader's
symbol table is output. Octal equiva­
I ent of the symbol ic parameter TSTP is
20000001.

TGO Same as GO except that the loader's
symbol table is output. Octal equiva­
lent of the symbol ic parameter TGO is
60000001.

If the loader is not requested to output the symbol
table and unsatisfied Programmed Operator refer­
ences or definitions occur, an error message and the
unsatisfi ed references and/or definitions are typed,
and MONARCH halts. If these unsatisfied refer­
ences/definitions will not affect the operation of
the program, the operator can clear the ha It and
the program wi II be executed. Otherwise, he can
take appropriate action. When the loader is re­
quested to output the symbol table, it produces the
table on the line printer if Breakpoint 1 is set or on
the typewriter if Breakpoint 1 is reset.

P 3 is an optional parameter that is interpreted as a
program identification label assumed to occur in
characters 9 through 16 of a level 1 MONARCH
ID record on the current binary input unit (see Ap­
pendix B for a description of record formats).

At least one (P1) and three parameters at most must be
given for the LOAD control message. When parameter
P3 is present, its value is converted to a left adjusted,
space-filled, S-character search key. The monitor
causes records to be read from the unit assigned for bi­
nary input (BO until (1) a level 1 MONARCH ID record,
with the same name in characters 9 through 16, is ob­
tained or (2) the last file has been scanned (i. e., until
a level 1 MONARCH ID record with "SYSEND",," in
characters 9 through 16 is encountered). In the first case
control is relinquished tothe MONARCH loaderthat pro­
cesses the input asspecified by the first two parameters. In
the second instance, a message SEARCH FOR SPECIFIED
ROUTINE FAILED is typed, and the next MONARCH
control message is requested. A detailed description of
the MONARCH loader is given in Section 3.

Prior to processing a load function, the monitor interro­
gates the processor errorswitch and the job mode switch (see
JOB control message for an explanation ofthese switches).
If both switches are set, the requested load function is
aborted. An appropriate error message (PROCESSOR
ERROR ...) is printed, and typewriter 1 on the W buffer
is selected for input of a control message.

10

Examples:

~LOAD 010000, STOP.

This message causes the MONARCH loader to load one
or more programs, beginning in location 100ooS_ Input
is from the current BI device, and the loader stops (halts)
after each program is loaded (i. e. , after each end record
is read).

~LOAD 2048, TSTP.

This message causes the MONARCH loader to load one
or more programs, beginning in location 4000s (204S1 0>.
Input is from the current BI device, and the loader halts
after each program is loaded (i. e., after each end record
is read). After loading is completed and prior to program
execution, the symbol table is output.

~LOAD 0, TGO, 'FILENAME'.

This message (input from cards) causes the MONARCH
loader to find program FILENAME (as a level 1 ID record)
on the specified BI unit and to load the program with 0
relocation (i. e., as an absolute program). The loader's
symbol table is output prior to program execution. If in­
put is from the typewriter, this message would appear
as

~LOAD 0, TGO,@FILENAME@.

(See discussion on II Literal Parameters. ")

~LOAD GO.

This message forces a load relocation bias of 0 and may
be used to load absolute programs.

FORTLOAD (900 Series only) The FORT LOAD control
message causes MONARCH to load and transfer control to
the FORTRAN loader. The parameters in the control mes­
sage specify the mode in which the FORTRAN loader is to
operate and the input devices from which it is to read.

P.
I

consists of up to eight parameters that may be given.
The first three specify the mode in which the FOR­
TRAN loader is to operate:

MAP
t

Produce a storage map of the program on the
console typewriter.

LMAP
t

Produce a label map on the console type-
writer.

LTRA Produce a label trace
t

at execution time.

tThe output resulting from the use of this parameter is de­
scri bed in Section 6.

These three parameters may appear in any order or
may be omitted entirely. If they appear, they must
be the first in the parameter string. The other pa­
rameters specify which input devices are to be read
(e.g., Xl, BI); at least one input device must be
specified. Information is loaded from the devices
in the order they appear in the parameter I ist. These
devices must have been assigned and correctly posi­
tioned before the FORTRAN loader is called.

The FORTRAN loader automatically loads the previously
compiled program, which must be on the first input device
specified by the parameters. When additional input de­
vices are specified (i. e., in addition to the un itfromwhich
the program is read), the loader reads from these devices
only routines that are necessary because of unsatisfied
references/definitions. However, if the user wishes to
have the loader load from the additional devices uncon­
ditionally (i. e., regardlessofwhetherornot the program
references any of the routines read from that device), he
places the letter U after the appropriate parameter.

Example:

~ASSIGN BI=MT1W, X1=CR1W.
~FORTLOAD MAP, LTRA, BI, Xl U.

The FORTRAN loader will read a previously compiled
FORTRAN program from magnetic tape unit 1 and will
read, unconditionally, from the card reader. It will
produce a storage map of the program and a label trace
as the program is executed.

RTFLOAD (900 Series only). This control message
causes MONARCH to load and transfer control to the
Real-time FORTRAN loader. The parameters specify the
mode in which the loader operates and the input devices
from which it reads.

Pi consists of up to eight parameters that may be given.
The first three specify the mode in which the FORTRAN
loader operates; the narrative is consistent with that of
FORTLOAD.

FORTLINK The FORTLINK control message causes
MONARCH to load and transfer control to the FORTRAN
loader. This message is used only when a link tape is to
be generated. Linking is discussed in Appendix E.

is the identification number to be assigned to the
I ink about to be written on magnetic tape; it may be
any three decimal digits.

P
2

- 9 same as Pi for FORTLOAD.

ALGOLOAD This control message causes MONARCH
to ioad and transfer controi to the ALGOL ioader. The
parameter is optional.

~ALGOLOAD BI

BI (optional) specifies binary object program input.
The ALGOL loaderalways reads binary object pro­
grams from the device previ ously assigned to BI.

After loading an ALGOL-compi led object program, the
ALGOL loader searches the system tape (magnetic tape
unit ° on the W buffer) for any referenced library pro­
grams.

Examples:

~ASSIG N BI=CR.
~ALGOLOAD.

This sequence of control messages causes the ALGOL
loader to load a binary object program from the card
reader, to load any referenced I ibrary programs from
magnetic tape unit 0, and to transfer control to the ob­
ject program.

~ASSIGN BI=MT2W.
~ALGOLOAD BI.

These messages cause the A LG OL loader to read a bi nary
object program from magnetic tape unit 2. Then, the
loader reads the system tape, loads the required library
programs, and transfers control to the object program.

UTILITY FUNCTIONS

C The C control message directs MONARCH
to accept future control messages from a specific input
device.

~C Pl.

must be a legal input unit assigned to an existing
buffer.

Parameter Definiti on

CRnh Designates card reader n on buffer h.

MTnh Designates magnetic tape unit n on
buffer h.

PRnh Designates paper tape reader n on buf­
fer h.

TYnh Designates typewriter n on buffer h.

Unless a C control message directs otherwise, MONARCH
automatically accepts control messages from the console
typewriter (1 on the W buffer).

Once a C message has been processed, MONARCH im­
mediately attempts to read a control message from the
newly assigned device.

Example:

~C PR1W.

This message assigns paper tape reader 1 on the W buffer
as the control message input device.

11

SET This control message enables the user to
set the contents of a specified memory location to a
given value and is operative only if the MONARCH
monitor is in control.

~SET A=V

A is any legitimate memory address.

V is the value to be stored in location A. If the
value exceeds 223_1, the most significant digits
are stored.

A and V may be expressed as either octal or decimal
numeric parameters.

Examples:

~SET 017= -59.

This message wi II cause the contents of memory location
000178 to be set to 77777705 (-59

10
= -73

8
).

~SET 64=077777.

T his message wi II cause the contents of cell 100
8

(64
1

0>
to be set to 00077777.

~SET 0235=001000114.

This message wi II cause the instruction BRU 00114 to be
stored in location 00235

8
.

LABEL The LABEL control message enables the
user to write a level 1 or level 2 MONARCH ID record
on a magnetic tape or on the RAD (see Section 4 II Sys­
tem Update Routine" for a discussion of MONARCH ID
records).

~LABEL P l' P 2' P 3·

is the value 1 to indicate a level 1 ID record or the
value 2 to indicate a level 2 ID record.

P 2 is the unit on which the ID record is to be written.
The value of this parameter must be either a legal
logical or physical magnetic tape unit designation
on an existing buffer (e. g., MT3W to specify mag­
netic tape unit 3 on the W buffer) or II BO", if the
RAD file is to be labeled.

P 3 is a double- or single-precision I iteral, used tocon­
struct an 8-character name. If fewer than eight
characters are given, the name field will con­
tain (trail ing) spaces in the right-most character
positions.

A level 1 or level 2 MONARCH ID record (indicated by
the first parameter) is constructed with the name field
(characters 9 through 16) containing the identifier spec­
ified as the third parameter. The ID record is then writ­
ten on the magnetic tape designated by the second pa­
rameter. A magnetic tape ID record consists of 40 char­
acters (characters 17 through 40 are blanks) written in
binary (II odd II parity) mode.

12

Example:

~LABEL 2, MT3W, 'FILENAME'.

This message will cause MONARCH to write a level 2
MONARCH ID record on magnetic tape unit 3 on the
W buffer. Characters 9 through 16 of this record will
contain FILENAME.

Normally, the only labels of which RAD MONARCH is
cognizant are those in the Directory (D file) which were
entered at the time the RAD system was generated (see
Appendix H). Since, however, the SO file immediate­
ly follows the S file, additional binary programs may be
added to the system (S file) by issuing a LA BE L control
message before each such program is generated. After
the last program, the message

~LABEL 1, BO, 'SYSEND'

should be issued to cause the end of the system to be re­
defined as following the last location in the BO file.

DISPLAY DISPLAY (or SHOW) allows the user to
SHOW produce the contents of one or more
memory locations on the console typewriter and is op­
erative only if the MONARCH monitor is in control.

~DISPLA Y P
1

THRU P
2

•

~SHOW P1 THRU P2 .

(required) must be a legitimate memory address. If
it is the only parametergiven, it designates the one
location whose contents are to be displayed. If
three parameters (p], THRU, and P 2) are given, P 1
is the beginning acIaress of the sequential memory
locations whose contents are to be displayed.

THRU (optional). When the contents of more than one mem­
ory location are to be displayed, the second param­
eter of the control message must be the word TH RU.

(optional). When present, this parameter must be
a legitimate memory address which is equal to or
greater than the value of Pl. P

2
specifies the end­

ing address of the sequential memory I ocations whose
contents are to be displayed.

After interpreting the parameters, MONARCH converts
the contents of each designated memory location to
octal and types each value, together with its octal
address on typewriter 1 on the W buffer.

Examples:

If location 037777 contains zero, the message

~DISPLAY 037777.

wi II cause the following to be typed:

037777 = 00000000

The message

.6.SHOW 0164 THRU 0174.

wi II cause the address and contents of each of the 9
locations specified to be typed.

POSITION This control message enables a user to
position a magnetic tape or the RAD at a given logical
file (identified by a MONARCH level 1 ID record only
- not a level 2 record; ID records are described under
11 System Update Routine ll in Section 4).

must be a legal magnetic tape unit or logical unit
designation on an existing buffer; e. g. , MT3W spec­
ifies magnetic tape unit 3 on the W buffer, BI spec­
ifies the tape or RAD-assigned BI file.

P 2 is a I iteral consisting of up to eight alphanumeri c
characters. Trailing blanks (60S) are supplied if
fewer than eight characters are given. The value
of th is parameter is used as the search key.

To position the spec ified magnetic tape or logical un it
at the desired logical file, the MONARCH Search sub­
routine reads successive records (in a forward direction)
until a level 1 MONARCH ID record is found that con­
tains, in characters 9 through 16, the given fi I e identi­
fication (P2). The tape is read in binary (" odd l1 parity)
mode, and the maximum ID record length is assumed to
be 40 words (160 characters). The search is terminated
as follows:

1. If characters 9 through 16 of a level 1 ID record
contain the logical file ID specified as the second
parameter, control is returned to MONARCH to ob­
tain the next control message. The tape will be po­
sitioned in the interrecord gap wh ich follows the
ID record.

2. If characters 9 through 16 of a level 1 ID record
contains SYSENDAA , a message is typed indicating
that the specified logical file was not found. Then
control is returned to MONARCH to obtain the next
control message.

3. If characters 9 through 16 of a level 1 ID record
contain neither SYSEND AA nor the specified logi­
cal file ID, the search is continued until either
condition 1 or condition 2 is satisfied, or until the
computer operator intervenes.

Access to RAD-assigned 5 or BI files is random, since
all level 1 names are retained in a directory.

Examples:

.6.POSITION BI,'FILEIDEN'.

.6.POSITION MT2W, 'FILEIDE N'.

Input from cards, the latter message will cause MON­
ARCH to position magnetic tape unit 2 on the W buffer
in front of the first record, foiiowing the ievei 1 MON­
ARCH ID record that contains FILE IDE t-.J in characters 9

through 16. If input is from the typewriter, th is message
would appear as

.6.POSITION MT2W, @FILEIDEN@.

(See discussion on 11 Literal Parametersll
•)

REWIND The REWIND control message causes
MONARCH to rewind a specified magnetic tape unit or
perform a pseudo-rewind on a specified disc file .

.6.REWIN D P 1

must be a legal magnetic tape unit or logical unit
designation on an existing buffer; e. g. , MT3W or
BO. If the logical unit specified has been assigned
to a disc file, MONARCH performs a pseudo-rewind
so that a subsequent read or write operation will
start at the beginning of the fi Ie.

A disc file may be specified in a REWIND message
only as a logical unit, such as 51 or BO; it is not
permissible to specify the disc file directly with a
symbolic parameter such as DF1 B.

Example:

.6.REWIN D MTOW.

wi II cause MONARCH to rewind magnetic tape unit 0
on the W buffer.

SKIPFILE t These control messages cause MONARCH
SKIPREC to skip fi I es or records in a forward direc-
tion on a specified magnetic tape unit (see also, BACK­
FILE and BACKREC). The magnetic tape unit and num­
ber of files or records to be skipped are specified by the
control message parameters.

.6.5 KIPFILE P l' P 2. (skip fi les)

.6.SKIPREC P
1
,P

2
• (skip records)

must be a legal magnetic tape unit designation on
an existing buffer; e. g. / MT2W designates magnetic
tape unit 2 on the W buffer.

P 2 specifies the number of files or records to be skipped.

After interpreting the parameters, MONARCH moves the
specified mangetic tape forward the indicated number of
files or records. If an EOF mark is encountered during a
skip record process, the tape will stop. Thus, the tape
will be positioned immediately after the EOF.

Examples:

.6.SKIPFILE MT1W,5 .

This message causes MONARCH to skip forward 5 files
on magnetic tape unit 1 on the W buffer.

t_. _____ . __ ._., __ ._ ___
~l<..ll"'t-lLt, HAL l<..t-lLt and Wt Ut- deSCriptions have not been

a Itered, therefore, they still appl y on Iy to rnogtape.

13

~SKIPREC MT3Y, 10.

This message causes MONARCH to skip forward 10(12
8
)

records on magnetic tape unit 3 on the Y buffer.

BACKFllE These control messages have a function
BACKREC similar to that of SKIPFILE and SKIPREC;
however, with BACKFILE and BACKREC the magnetic
tape is moved in a backward direction.

~BACKFILE P l' P 2'

~BACKREC P l' P 2'

P1 and P2 have the same interpretation as for S KIPFILE
and SKIPREC.

After interpreting the parameters, MONARCH moves the
specified magnetic tape backward the indicated number
of files or records. If an EOF mark is encountered dur­
ing a skip record process, the tape wi II stop. Thus, the
tape will be positioned before the EOF mark. During a
BACKFILE operation the user must backfile one plus the
number of files to be skipped to return to a particular
fil e of interest.

Examples:

~BAC KFILE MTOY, 12.

This message causes MONARCH to skip backward 1210
(148) files on magnetic tape unit 0 on the Y buffer.
When the 12th file is skipped MONARCH will read for­
ward over the 12th EO F mark so that the tape w ill be
positioned to read the first record of the next file.

~BACKREC MT2W,3.

This message causes MONARCH to skip backward 3 rec­
ords on magnetic tape unit 2 on the W buffer.

WEOF The WEOF control message directs MON-
ARCH to write an end-of-file (EOF) mark on the speci­
fied tape.

~WEOF Pl'

must be a legal magnetic tape unit designation
on an existing bufferor a legal paper tape punch
unit designation on an existing buffer. That is, P1
may take the form MT ub or PPxb, where u must be
within the range 0::; u ::; 7, b is W or Y, and x is 1
or 2.

Examples:

~WEOF MT3W.

This message causes MONARCH to write an end-of-file
mark (17000000) on magnetic tape unit 3 on the W buffer.

b.WEOF PP1Y.

This message causes a special end-of-file mark (17170000)
to be punched on paper tape unit 1 on the Y buffer. (This

14

is to faci litate the loading of a FORTRAN-compi led
program into the FORTRAN library on the system tape
(see Section 4, II System Update Routine").

BOOTlOAD This control message directs MONARCH
to produce an absolute or relocatable bootstrapt on paper
tape or magnetic tape as specified.

~BOOTLOAD P l' P 2'

P 1 must be ABS for absolute or REL for relocatable.

P 2 must specify the magnetic tape unit or paper tape
unit on which the bootstrap is to be produced; e. g.,
MT2W, PP1W for 900 series; or MT2A, PP1A for
9300.

MONARCH interprets the control message and produces
the requested bootstrap on the specified tape. These
bootstraps can load programs assembled by SYMBOL or
META-SYMBOL. Although the bootstrap may be pro­
duced on any paper tape or magnetic tape unit, it can
be read from only paper tape unit 1 on the W buffer or
magnetic tape unit 0 on the W buffer, on 900 Series
Computers. Substitute corresponding A channel for
9300 Computers.

Examples:

~BOOTLOAD ABS, PP1W.

This control message directs MONARCH to punch an
absolute bootstrap on paper tape punch 1 on the W
buffer.

~BOOTLOAD REL, PP2W.

This message causes MONARCH to punch a relocatable
bootstrap on paper tape punch 2 on the W buffer.

b.BOOTLOAD ABS, MT1W.

This message directs MONARCH to write an absolute
bootstrap on magnetic tape unit 1 on the W buffer. To
load the object program, dial the tape unit number to
zero and execute a fi II from magnetic tape:

Set (Xl) = -7 (77777771)

EOM 03610 (0 02 03610)

WIM 2

BRU 1

(032 00002)

(0 01 00001)

t Descriptions of the bootstrap routines are avai lable from
the XDS Program Library: 900 Series Paper Tape Abso­
lute Bootstrap, catalog number 020020; 900 Series Paper
Tape Relocatable Bootstrap, catalog number 000019;
9300 Paper Tape Relocatable Bootstrap, catalog number
600001. The magnetic tape bootstrap routines are modi­
fi ed versions of the MO NARCH boostrap loader.

Set the contents of register A to 0 32 00002.

Set the contents of register C to 0 35 00001.

Set the RUN-IDLE-STEP switch to STEP.

Press START.

Press FILL switch, which sets (X 1) to -7. If program
is relocatable, set (A) = relocation bias.

Set the contents of register C to 0 02 03610.

Set the RUN-IDLE-STEP switch to RUN.

Note: To load the 925/930/9300 magnetic tape boot­
strap, execute a magnetic tape FI LL procedure.
For 9300 computers, use appropriate channel la­
bel (i. e., A, B, C, or D).

CARDTAPE The CARDTAPE control message causes
MONARCH to select the designated card reader, to
read cards in symbolic, encoded, binary, MONARCH
identification, and control message formats and to write
them on the magnetic tape specified.

~CARDTAPE P l' P 2'

must be a legal card reader designation on an exist­
ing buffer; e. g., CR1W. This parameter specifies
the card unit from which the cards are to be read.

P 2 must be a legal magnetic tape unit designation on
an existing buffer; e. g., MT2W. This parameter
specifies the tape unit on which the information is
to be wri tten.

Cards are read from the card reader specifi ed and are
written on the designated magnetic tape. Binary, en­
coded, MONARCH identification, and control cards
are written in binary; all other cards are written in
binary-coded decimal (BCD). When a ~EOF card is
read or a card reader end-of-fi Ie is detected, an end­
of-fi Ie (EOF) mark is written on the magnetic tape, and
control is returned to MONARCH. If successive fi les
are to be written on tape, each fj Ie must be preceded by
a CARDTAPE control message, including the necessary
parameters.

Example:

The contro I message

~CARDTAPE CR1W,MT3W.

directs MONARCH to read cards from card reader 1 on
the W buffer and to write them on magnetic tape unit 3
on the W buffer. When the read is completed, an EOF
mark wi II be written on the magnetic tape.

EOF The EOF control message signifies the
end of a logical fi Ie and transfers control to MONARCH.

~EOF.

There are no parameters for this message. It is recognized
by the "action" routine that processes the CARDTAPE con­
trol message (see Section 3 for explanation of action
routines). The EOF message is a Iso recognized by the
FORTRAN and META-SYMBOL processors.

SYSTEM MAINTENANCE

UPDATE This control message causes MONARCH
to load the System Update Routine and to transfer con­
trol to it.

~UPDATE Pl'

(optional). When present, this parameter indicates
blocking mode operation and must be within the
range

The absence of the parameter indicates normal mode
operation.

See Section 4 for a description of the update routine, its
operating modes, and the control messages required for
its use.

15

3. THE MONARCH SYSTEM

MONITOR

The major portion of the MONARCH system is the moni­
tor routine. This routine accepts control information
which, among other things, may include a request to
load and execute a specified standard system routine.
The monitor performs its function between jobs and does
not exercise control over the execution of a program
once the program has been loaded and control has been
transferred to it.

The monitor consists of a number of subroutines. One of
these subroutines is the system tape search routine. This
is the subroutine that searches the system tape for a
given routine name (see POSITION control message).
Another monitor subroutine analyzes and interprets the
contents of the control messages that convey control i n­
formation to the monitor. It also converts the param­
eters in control messages to standard internal form.

Other subroutines, called "action" subroutines, perform
the functions associated with specific control messages.
For example, the action subroutine associated with the
ASSIG N message modifies the contents of MONARCH's
unit assignment tabl e, based on the values of the param­
eters in theASSIGN message. Another action subroutine,
associated with the LOAD message, controls the search.:
ing of tape files for specified object programs and calls
on the MONARCH loader to load these object programs.
Additional subroutines employed by the monitor include
those which perform input/output for MONARCH.

Part of the monitor, called the resident, j"emains in core
memory during program execution. The resident consists
of the monitor bootstrap routine (Q BOOT) , the unit as­
signment table, the error and job switches, the octal
dump routine (QDUMP), and the symbol table dump driver
(see Appendix B for a complete description of memory
layout). The resident occupies the last 1328 locations
in memory. In RAD MONARCH, the resident also in­
cludes a RAD file management routine of approximately
500 memory locations, which handles all RAD I/O com­
munications in a file-oriented manner. Memory space
occupied by the remaining subroutines comprising the
monitor and by other routines in the MONARCH system
(such as the MONARCH loader) is available for use by
the program being executed. The last available location
in core is one cell below QDUMP (however, the term
QDUMP-l is illegal in META-SYMBOL language), or
one below QBOOT for users who do not require thedump.

STANDARD SYSTEM ROUTINES
Standard system routines are those that exist on a MO N­
ARCH system tape and that can be loaded and executed
by supplying an appropriate control message to the
MONARCH monitor. Some existing system routines, as
well as the necessary and desirable characteristics of
potential system routines, are described below.

16

Certain of the standard system routines must be present
on any MONARCH system tape. These programs com­
prise the minimum operable MONARCH system:

1. The monitor. This routine is the heart of the opera­
ting system.

2. The MONARCH loader. The monitor uses this rou­
tine to load standard system routines from the sys­
tem tape and to load previously assembled programs
presented by the MONARCH user. The MONARCH
loader is described later in this section.

3. The MONARCH bootstrap loader. This routine per­
forms the function of loading the MONARCH loader
and the MONARCH monitor and precedes all other
system routines on a MONARCH system tape. This
is the routine that is called in for execution by the
monitor bootstrap (QBOOT).

Certain system routines, while not essential for a mini­
mum MO NARCH system, enhance the usefulness and
flexibil ity of any MONARCH system.

1. The MONARCH system update 'routine. With this
routine, the user can create new MO NARCH system
tapes or update existing system tapes. This routine
is described in Section 4.

2. The standard input/output subroutines. These sub­
routines are used by other system routines to per­
form required input/output functions. These I/O
subroutines, which can be selectively loaded on an
II as needed ll basis, are

line Printer Output Subroutine (PRINT)

Magnetic Tape Input/Output Subroutine (MT APE)

Card Read/punch Subroutine (CORP)

Paper Tape/Typewriter Input/Output Subroutine
(PTYIO)

The action subroutines for a given system routine ex­
amine the parameters of the control message and the
unit address codes of those MONARCH unit assign­
ment tab Ie entries that represent i nput/ output func­
tions tobe performed and, finally, direct the loading
of the I/O subroutines needed. The MONARCH up­
date routine relies on this feature to provice the in­
put/output sub rout ines needed to perform a speci fic
update run.

3. The META-SYMBOL assembly system. Presence of
this routine provides a powerful and flexible assem­
bly language and processor.

4. The FORTRAN II system. Presence of these routines
enables the MONARCH user to use the full capa­
bilities of the XDS 900 Series FORTRAN II Compiler,
Loader, and Run-Time Package.

5. The ALGOL system. This system, which is avai la­
ble on request, operates on both XDS 900 Seri es
and the 9300 Computers. It inc ludes the ALGOL
Compi ler, Loader, and Run-Time package.

See "Automatic Selective Loading from the MONARCH
Librarl l at the end of this section for a description of
the MONARCH library, another optional MONARCH
feature that can contribute greatl y to the useful ness and
efficiency of a MONARCH system.

MONARCH is designed to faci litate the incorporation
of additional system routines as needed. The user can
include in a MONARCH system any routine that meets
the following requirements:

1.. The routine must exist (on cards or paper tape) in
XDS standard bi nary language.

2. Its memory space requirements must be such that it
(or a special loader which precedes it on the system
tape) can be loaded by the MONARCH loader.

3. It must be written in a manner that is consistent
with run termination as described in the paragraph,
"Termination of a Run, II below.

Certain other characteristics, while not essential, ease
the job of incorporating new system routines and render
these routines more useful in the MONARCH environ­
ment:

1. The routine should be one that can be assembled
as a series of one or more relocatable programs by
SYMBOL or META-SYMBOL.

2. It should be written in such a way that any "param­
eters" required for its initialization can be easi Iy
suppl i ed in the form of MO NARCH control message
parameters (see "Control Message Parameters" in
Section 2).

3. The routi ne should be wri tten to obtai n uni t and
channel assignments for all its input/output func­
tions from the MONARCH unit assignment table.

TERMINATION OF A RUN

When a program being executed under MONARCH
reaches a normal conclusion, it should transfer control
to the monitor bootstrap in core memory (location 1)
rather than execute a HALT instruction; the monitor
bootstrap initiates the reloading of the MONARCH loader
and the MO NARCH monitor. The monitor then attempts
to read a new control message from the current control
medium and in this way proceeds to the next job with­
out the necessity for manual intervention. The monitor
bootstrap is part of the MONARCH resident.

When a program being executed under MONARCH de­
tects a program or computer error that makes it inadvis­
able to continue program execution, it should give what­
ever error indication is suitable and transfer control to
the monitor bootstrap. This routine initiates the reload­
ing of the MONARCH loader and MONARCH monitor,
and then the console operator can decide whether or not
to continue with the next job or function in a batched
job stack or to take some alternative action.

When the console operator decides that a program being
executed has halted inadvertently or is otherwise mal­
functioni ng, he can stop the program, c lear the regi sters
and restart by manually transferring control to a restart
location in the monitor bootstrap. The monitor bootstrap
initiates the reloading of the system, and then the moni­
tor attempts to obtain the next control message. At this
point, the operator can decide whetheror not to continue
with the next job in the batched job stack or to execute
some other system function.

The normal restart procedure is to execute a branch to
location 1. Location 1 norma Ily contai ns an uncondi­
tiona� branch to the monitor bootstrap in upper memory.
The routine that is loaded by the monitor bootstrap is
the MONARCH bootstrap loader, which precedes all
other routines on the system tape. The MONARCH boot­
strap loader in turn loads the MONARCH loader and the
MONARCH moni tor.

LOADER

The primary function of this routine is to load the user1s
object programs. It is also called upon by the MONARCH
monitor to load from the system tape standard system
routines such as META-SYMBOL, the system update rou­
tine, etc. The loader (inc luding QDUMP, QBOOT,
and UAT) occupies upper core.

The loader is capable of loading binary object programs
in the format produced by SYMBOL and META-SYMBOL.
A series of programs to be loaded may be absolute or re­
locatable and may contain:

1. External label references and/or definitions.

2. Externa I Programmed Operator (POP) references
.J/ d f' .. t anY' or e I nl tlons .

3. Blank COMMON references and a definition.

Blank COMMON references should be preceded by a
blank COMMON definition, but external references

tThe capability of handling POP items is not included
in 9300 MONARCH loader since the 9300 does not have
Programmed Operators. All other capabilities of the
900 Series MONARCH loader are included in 9300
MONARCH loader.

17

and definitions (label or POP) need not be supplied in
any particular order.

The term "program" in this description of the MONARCH
loader means a sequence of:

1. One or more data records (record type 0) and/or

2. One or more external references or definition re­
cords (record type 1) and/or

3. One or more Programmed Operator references or
defi ni ti on records (record type 2) and

4. An end record (record type 3) with or without a
transfer address.

See Appendix F, "XDS Standard Binary Language, .. for
a description of the record formats accepted by this load­
er. Note that the MONARCH loader does not accept
labeled COMMON definitions or references (record
type 2, item types 1 and 3) and treats labeled COMMON
references as format errors.

The last (or on I y) program ina seri es of programs to be
loaded must have an end record (type 3) with a trans­
fer address, and all programs preceding it must have
end records without transfer addresses.

If there are unsatisfied label or POP references at the
time the end record with a transfer address is encoun­
tered, the loader attempts to satisfy theseby selectively
loading the appropriate subroutines from the MO NARCH
library. If th is is unsuccessfu I, the loader automatica Ily
outputs (on typewriter 1 on the W buffer if Breakpoint 1
is reset or on I ine printer 1 on the W buffer if Break­
point 1 is set) the unsatisfied labels or POP references.
Fo"owing this information, the loader outputs the sym­
bol table if requested to do so (see LOAD control message
in Section 2). Then the computer halts. After determin­
ing whether the missing definitions wi" affect the run,
the user may elect to execute the program by simply
clearing the halt (i. e., move theRUN-IDLE-STEPswitch
from RUN to IDLE to RUN) or to abort the run by trans­
ferring manually to the bootstrap (i. e., to location 1).

Programs may be loaded from punched card, magnetic
tape, or paper tape units attached to either the W or Y
buffer. In RAD MONARCH, programs mayalsobe loaded
from RAD files. The input/output subroutines within the
900 Series MONARCH loader use neither interrupts nor
interlace. The 9300 I/O handlers use interlace and
interrupts for all I/O operations. Any I/O operation
performed by 9300 MONARCH that does not use the
I/O handlers does not use interrupts. Reading and search­
ing of the binary input medium by the 9300 MONARCH
loader uses interlace but not interrupts. The symbol
table typeout routine, the line printer octal dump routine,
and the punching of the absolute bootstrap on paper tape
do not use interrupts or interlace.

1a

UNIT ASSIGNMENT REQUIREMENTS

When a LOAD control message (see Section 2 for a de­
tailed description of this message) is issued to MONARCH,
the unit assignment tablet is assumed to contain the fol­
lowing information:

1. QMSG contains the unit and channel designation
for the peripheral device that is to furnish MON­
ARCH control messages. (QMSG is set by the C
control message.)

2. QBINI contains the unit and channel designation
for the peripheral device that is to furnish input
(programs) to the loader. The unit must be a card
reader, a magnetic tape unit, a paper tape reader,
or the RAD file.

The following sequence of MONARCH control messages
illustrates one means of setting the unit assignment table
and requesting the MONARCH loader to load one or
more programs:

b.C TY1W.
b.ASSIGN BI=CR lW.
b.ENDJOB.
b.LOAD 010000, GO.

The control messages are to be input from typewriter 1
on the W buffer, and the binary input is to be read from
card reader 1 on the W buffer. The loader is to load the
first (or only) program with a relocation bias of 10000a
and is to transfer control to the location specified on the
END record of the last program without stopping and
without a symbol table printout. If any references are
unsatisfied, a list of the unsatisfied references is typed
on typewriter 1 on the W buffer. Then the loader halts.
To continue, the operator clears the halt.

STORAGE ALLOCATION

When the MONARCH system is loaded, the MONARCH
loader is stored in upper core, occupying locationsX5441 a

tt

through X7777a (X = 1, 2, or 3). The locder'ssymbol table
(external label definition entries) initially occupies mem­
ory from X5440a

tt through X5276att. As each additional
external symbol is inserted in the symbol table, it occu­
pies the three memory locations immediately below the
last symbol table entry. Thus, the loader and its symbol
table occupy that amount of upper core required by the
loader routine itself and the external symbol entries.

At the timea request to loada user's program is initiated,
the loader symbol table contains external table defini­
tion entries that allow external references to locations

tThe external labels mentioned here are discussed inAp­
pendix A, liThe MONARCH Unit Assignment Table".

ttApproximately 1000a less in RAD MONARCH

within the resident portion of MONARCH. Those en­
tries are defined in Appendix A.

The loader gives an appropriate error indication when­
ever a new entry is to be made in the symbol table that
would 1I0verlal' programs or data a Iready stored in
memory by the loader. This conditions is also referred
to as symbol table overflow. See Section 6 1I0pera ting
Procedures. II

THE LOADING PROCESS

Relocation and Data Records

A data record (record type 0) contains instructions and/
or data to be stored in memory by the loader. Each data
record contains a load address that is either the relative
or absolute memory location in which the first data word
(an instruction or a constant) is to be stored. The word
in the data record containing the load address also con­
tains an indicator specifying whether or not the current
load relocation bias is to be added to this load address
to obtain an effective load address (i. e., whether or
not the data record contains IIrelocatable ll data words)
for the program.

The effective load address determines the location in
which the first data word is stored, and successive data
words in a data record are stored in consecutive memory
locations following the first data word.

Before each data word in a program is stored its binary
value may be modified as required (e.g., by load re­
location modifier word; see Appendi~ F IIXDS Standard
Binary Language. ")

External Label References and Definitions

The loader is capable of handling (resolving) symbolic
cross-references between separately assembled and/or
compiled programs. External reference and definition
items in type 1 binary records provide the loader with
the information needed to IIlink ll together two or more
separate Iy assembled or compi led programs.

During the loading process, the loader maintains a sym­
bol table of external label definitions and unsatisfied
external references. There is no restriction on the order
in which the definition of a label and the references to
it appear in the input to the loader. The definition of
a label may precede, or follow, some or a II of the ref­
erences to it. Note that it is permissible for any number
of programs to contain references to a given label, pro­
vided that one program being loaded contains an exter­
nal definition item for that label.

When the loader encounters an external definition item,
it searches the symbol table for a previous definition of
that label in the Tabie; if there is one, the ioader dis­
cards the new definition. If the search reveals that the

label is already in the table as an unsatisfied reference,
the loader uses the definition to satisfy all the references
to that label and replaces the unsatisfied reference item
in the table with the definition item. However, if that
label does not occur in the symbol table (as a reference
or as a definition), the loader inserts the external defin­
ition item in the symbol table.

When the loader encounters an externa I reference item,
it searches the symbol table to see if it already contains
an externa I reference item for that labe I; if so, the new
external reference is associated with the existing table
entry. If the search reveals that the label is already in­
cluded in the table as an external definition the loader
uses the definition to satisfy all the references to that
label. However, if that label does not occur in the
symbol table (as a reference or as a definition), the ex­
ternal reference item is inserted in the symbol table.

External Programmed Operator Referencesand Definitions

The loader is capable of satisfying references to internal
and external Programmed Operator (POP) definitions.
External POP definition items, external reference items,
and internal POP definition items provide the loader
wi th the information needed to:

1. Satisfy external and internal POP references.

2. Maintain external POP reference and definition
items in the loader's symbol table.

3. Construct a Programmed Operator transfer table in
cells 0100a through 01778.

An lIinternal ll POP definition is one that is recognized
only within the scope of the program in which it occurs.
No entries are made in the loader's symbol table for in­
terna I PO P definitions or references.

Many of the loader functions performed in the process­
ing of external POP references and definitions are also
performed (by the same loader subrouti nes) for externa I
label references and definitions. In particular, the
functions of insertion and replacement of symbol table
entries and the handling of duplicate definitions are the
same for both external label and external POP items.

AUTOMATIC SELECTIVE LOADING
FROM THE MONARCH LIBRARY

Provision is made for automatic search of the MONARCH
library when an end record with a transfer address is en­
countered and unsatisfied label or POP references exist.
This library normally consists of a collection of frequent­
I y used closed subrouti nes and Programmed Operator sub­
routi nes. The loader automati ca II y loads any such
subrouti nes when it encounters an externa I reference in
a program (or group of programs) being loaded. This
relieves the programmer of the burden of including such

19

subroutines in the program decks (or tapes) he furnishes
to the loader. For example, the programmer may wish
to employ certai n input/output subrouti nes available on
the program library and refer to them symbolically in
his main program. Note that the loader first attempts
to satisfy a II external references from the definitions
supplied in the program decks (or tapes) furnished by
the programmer, and only when this attempt is unsuc­
cessfu I does it attempt to sati sfy these references by
loading programs from the program library. The follow­
ing paragraphs describe the procedures employed to ac­
cess programs in the program library.

When the loader is loading a previously assembled pro­
gram and there are externa I references that have not
been satisfied when the end record with a transfer ad­
dress is encountered, the loader causes the monitor to
locate the MONARCH library on the system tape. The
loader then enters a specia I mode in which it searches
the external definition in each library program in suc­
cession. When it encounters a library program which
satisfi es at least one such reference, it loads thi s pro­
gram; then, if there are sti II some unsatisfi ed references,
it continues to search the program library. To avoid
"backtracking" when switching from "search" to "load"
mode, the definitions from each library program being
examined are temporarily added to the table of exter-

20

nal definitions and references maintained by the loader.
Note that the records containing external label defini­
tions and external Programmed Operator definitions must
precede all other information in a binary object program;
hence, only these definitions have to be saved in mem­
ory to enable the loader to switch from IIsearch" to 1I10ad ll

mode without rereading records from the system tape.

If a given library program does not contain a definition
for any of the unsatisfied references, its definitions are
removed from the table and the next library program is
examined. If there are sti II unsatisfi ed external refer­
ences when the end of the program library is encountered,
the loader indicates that an error condition exists.

The loader employs an entirely simi lar method in attempt­
ing to obtain definitions for any unsatisfied Programmed
Operator references. If these references cannot be satis­
fied from the Programmed Operator definitions on the
system tape, th.e loader indicates that an error condition
exists. The library search for Programmed Operators is
concurrent with the search for external definitions of
labels (i. e., the Programmed Operator definitions are
part of the program library). Since MONARCH makes
only one pass through the library, no routine on the li­
brary can call a routine preceding it.

4. PROGRAMMING WITH MONARCH

This section describes MONARCH subroutines that can
be referenced from the user's program. Also discussed
here is the MONARCH System Update Routine which is
used to create new MONARCH system tapes and to up­
date existing system tapes.

OCTAL DUMP ROUTINE

A Line Printer Octal Dump Routinewith zero suppression is
incorporated in the MONARCH loader. This routine re­
sides in the MONARCH resident portion and may be refer­
enced internally or from the console. When the dump rou­
tine is to be referenced in a program, the following call ing
sequence must be assembled as part of the user's program:

a BRM
a + 1 PZE
a + 2 PZE
a + 3 return

a represents any location. When the dump iscompleted,
control is returned to the user's program at a + 3.

QDUMP is the externally defined label for the entry
point of the routine and must be an externally de­
fined symbol in the user!s program.

specifies the beginning address of the sequential
memory locations whose contents are to be printed.

P 2 designates the ending address of the sequential mem­
ory locations whose contents are to be printed. The
address represented by P 2 must be equal to or greater
than that of Pl.

P
1

and P
2

may be numeric or symbolic (external).

To reference the dump routine from the consol e, set the
contents of the registers as follows:

A = Beginning address (see Pl above)
B = Ending address (see P2 above)
C = For 900 Series Computers:

RAD

o 01 17751 a o 01 23751 a o 01 27751 a
o 01 33751a
o 01 37751 a

aK memory
10K memory
12K memory
14K memory
16K memory

For 9300 Computers:

aK memory
12K memory
16K memory

TAPE

o 01 17650
o 01 23650
o 01 27650
o 01 33650
o 01 37650

TAPE

o 01 17646
o 01 27646
o 01 37646

Position the RUN-IDLE-STEP switch to RUN.

To continue dumpi ng when the computer hal ts, reset the A
and B registers to the desired addresses and clear the halt.

Note: On 900 Series Computers the octal dump routine op-
erates only on machines with memory of 16K or less.

SYMBOL TABLE TYPEOUT ROUTINE

The Symbol Table Typeout Routine produces a list of all
symbols and the location to which each is assigned. If
Breakpoint 1 is reset, the symbol table is output on type­
writer 1 on the W buffer; if Breakpoint 1 is set, the table
is output on line printer 1 on the W buffer.

To reference the symbol table typeout routine, set the
contents of the 900/9300 C register to BRU TYPSY5:

RAD TAPE

C = 0 01 17750a aK memory 0 01 17734
= 0 01 23750a 10K memory 0 01 23734
= 0 01 27750a 12K memory 0 01 27734
= 0 01 33750a 14K memory 0 01 33734
= 0 01 37750a 16K memory 0 01 37734

Position the RUN-IDLE-STEP switch to RUN. The com­
puter wi II hal t after the typeout. The user may clear
the halt, causing a transfer to QBOOT which reloads
the MONARCH system, or he may transfer manually to
any location (i. e., insert in the C register a BRU to the
desired location).

The output produced by th is routine consists of two col umns;
the first contains the symbol, left justified with trailing
blanks, and the second contains the memory location to
wh ich the symbol was assigned. (See Appendix C for
the method used in forming the addresses.)

It is suggested that, upon receiving the MONARCH
system of programs, the user have a symbol table type­
out produced. The listing produced will be useful when
reference to a specific address within the MONARCH
system of programs is required. A sample of such a
listing appears in the discussion "Monarch Loader's
Symbol Table" in Section 6.

OCTAL CORRECTION ROUTINE

Corrections may be made to a program at load time via
octal correction cards. Such cards are placed just be­
fore the end card in the binary deck. The format of
correc tion cards is

Pl P2 P3o
00 P n°

is an address, consisting of up to five octal digits,
that specifies the location of the first correction.
P1 may start in any column. If it does not start in
c~lumn 1, a char~cter string (P2) may precede Pl.

21

is any character string (one or more characters) not
containing an octal digit. If the first character of
the string is an R, the preceding octal number is
assumed to be relocatable. If the first character
is any other character, the preceding octal number
is assumed to be nonrelocatable.

P 3 is the octal correction (one or more octal digits). If
more than eight digi ts appear, only the last eight
digits read (i. e., the eight low-order digits) are
accepted.

Succeeding octal numbers are stored in consecutive lo­
cations relative to location Pl. Continuation from one
card to the next is not permitted. A period may serve
as a terminator but is not required. If a period is used,
any information following the period is treated as com­
ments and is not processed.

Examples:

Assume that a program is to be loaded and that relative
locations 212, 213, and 214 are to be changed to con­
tain BRU 00235, BRU 00243, and HL T 00000, respective­
ly. The necessary corrections could be written as

,212,R,1 000235,R,1 000243,R,O,.
I I I I I II

P
1

P
3

P
3

P
3 P

2
P

2
P
2

The same changes could also be written as

,PA TC H ,212,R = ,1 000235,R, ,1 000243,R, ZRO =, Q.
i I Iii iii

P
2

P
1

P
2

P
3

P
2

P
3

P
2

P
3

If the program is loaded with a relocation bias of 1000
8
,

these locations will contain:

Location

1212
1213
1214

Contents

01000235
01000243
00000000

LOADER ROUTINE

The MONARCH loader can be executed either via the
appropriate MONARCH control messages or directly as
a closed subroutine. The user's program can transfer to
the loader by executing the instruction

BRM QSYLDR

QSYLDR is the externally defined label for the entry
point to the loader and must be an externally defined
symbol in the user's program. The loader assumes that

22

the A register contains the load relocation bias to be
used and that the B register contains the binary value of
the loader option parameter (see LOAD control message
in Section 2).

The loader commences execution by reading a record
from the previously designated binary input medium and
checking the first word (control word) of the record to
see whether or not it is a valid binary record. Next,
the record type code (see Appendix F) of the control
word is used to indicate the appropriate subroutine with­
in the loader for processing that type of record.

When the loader has processed a record, it continues by
reading in the next record unless the record just process­
ed is an end record (record type code of 3). When an
end record without a transfer address has been processed,
the loader, depending upon the value of the loader op­
tion parameter, does one of three things:

1. Halts with:

C = 0 20 22222

A = load relocation bias to be used for loading the
next program (unless changed manually by the
console operator)

B = indeterminate

2. Returns control to the program that called the load­
er (by executing a BRR QSYLDR), with:

3.

B initial load relocation bias plus program length

A loader option parameter

Sets the load relocation bias equal to its previous
value plus the length of the current program (as
specified in the end record) and continues loading
records.

When an end record with a transfer address is encount­
ered, a I ibrary search is made to satis~y references. Then
any indicated relocation is performed on the single data
word in the end record, and the loader, depending on
the value of the loader option parameter, does one of
two things:

1. Halts with:

C = transfer word as modified by any relocation
indicative present in the end record

A

B

loader option parameter

load relocation bias

2. Executes the transfer word after performing any in­
dicated relocation of the address fi eld. Normally,
the transfer word is a BRANCH UNCONDITIONAL
instruction (BRU), whose address is determined by
the value of the expression in the operand field of
a SYMBOL or META-SYMBOL END line.

The loader does not flinitialize" unused memory loca­
tions with "background II values (e. g., halt instruction).
The only memcry locations modified by the loader are

1. Those within the locations occupied by the loader
and its input subroutines.

2. Those locations pre-empted by the loader for its
symbol table.

3. Locations in which the loader is explicitly directed
to store instructions or constants (i. e., data words
suppl ied to the loader in data records).

SYSTEM UPDATE ROUTINE

This routine is used to create new MONARCH system
tapes and to update existing system tapes. The func­
tions of insertion and deletion of both system programs
and data fi I es (i nc I ud i ng the MO NARC H mon i tor and
the MONARCH loader) are provided.

Since each routi ne on the system tape (except the boot­
strap loader and the MONARCH loader) is preceded by
an identifier (a MONARCH ID record), insertions and
deletions are indicated to the update routine in terms
of those identifiers. The MONARCH loader has the
identifier LOAD associated with it even though no
MONARCH ID record actually precedes that routine on
the system tape. The bootstrap loader is automatically re­
corded on a new system tape as the first record on the tape.

It may be necessary to include, as standard system rou­
tines, programs whose memory space requirements pre­
clude the use of the MONARCH loader to load them at
execution time. Such programs should be preceded on
the system tape by a special purpose loader that is capa­
ble of loading the system routine in question from the
system tape. It is this special purpose loader which is
loaded, and executed, under control of the MO NARCH
loader when a MONARCH control message calls for ex­
ecution of the system routine in question.

All programs on a MONARCH system tape, with the ex­
ception of the bootstrap loader, must be in either XDS
standard binary language or FORTRAN binary language.
Data files to be recorded on a MONARCH system tape
must be presented to the update routine in either of these
formats or else in XDS encoded symbolic format. The
only other form of information permissible on a MON­
ARCH system tape is MONARCH ID records. Such rou­
tines and data files must be presented to the update
routine on punched cards, paper tape, or magnetic tape.

It is also noted that a standard system routine (e. g., the
META-SYMBOL assembier) may itseif consist of severai
independently assembled subprograms and only the first
of these is preceded on the system tape by a level 1

MONARCH ID record. Hence, the MONARCH loader
automatically loads any subprograms followi ng the fi rst
subprogram until it encounters either the next level 1
MONARCH ID record or a binary end record (type 3)
with a transfer address. The MONARCH update routine
acknowledges this type of program structure when per­
forming insertion and deletion functions in the course of
writing a new system tape. Any or all of the subpro­
grams of a standard system routine may be preceded on
the system tape by a level 2 MONARCH ID record to
permit insertion or deletion of individual subprograms
by the MONARCH update routine. These level 2 MON­
ARCH ID records are ignored by the MONARCH loader
when loading a standard system routine for execution.

The update routine produces a typewriter or line printer
I isting of the MONARCH ID records (levelland level
2) assoc iated with all routines and all data fi les written
on a new system tape. These ID records appear on the
listing in the order in which they exist on the new sys­
tem tape. This listing should be preserved for use as the
basis for constructi ng update control messages for the
next system update run. (See examples later in th is sec­
tion.)

Routines to be inserted by the MONARCH update rou­
tine must be preceded by a levelland/or level 2
.. jr"\ hr.1 A. nr' I T~ I I • I • 1..1 I

IV'VI"l~I\\.....n lU recora ana mUST oe presenTea In me order
in which they appear on the new system tape. COpy
messages (i. e., control messages to the update routine)
must be presented in the order in which they are to be
executed. No reordering of update input is performed.

THE UPDATE CONTROL MESSAGE

When the update routi ne is loaded for execution by the
MONARCH loader, the MONARCH unit assignment
table is assumed to contain the following information:

1. QMSG (control message input unit) contains the
unit and channel designation for the peripheral de­
vice that is to furnish MONARCH control messages
and update control messages. The unit must be a
card reader or a typewriter.

2. QSYSU (the update input unit UI) contains the unit
and channel designation for the peripheral device
that is to furnish any programs or data files to be
inserted in the new system. The unit must be a card
reader, a paper tape reader, or a magnetic tape
un it.

3. QSYST (system scratch tape Xl) contains the unit
(magnetic tape oniy) and channei designation for
the peripheral device upon which the new system
tape will be written.

23

4. QSYS (sytem tape S) is assumed to specify magne­
tic tape unit 0 on channel Wand the old system
tape is assumed to be mounted on that unit. How­
ever, if both QSYS and QSYST contain the same
unit and channel designation, the update routine
assumes that no old system tape is present.

5. QSYMO (list output unit LO) is assumed to specify
whether MONARCH ID records will be listed on
the I ine printer (LO=LP) or on the typewriter (LO=TY).

It should be noted that the update control message input
unit (QMSG) and update input unit (UI) assignments may
differ. For example, QMSG may be assigned to the
card reader (CR) and update input (UI) may be assigned
to a paper tape, magnetic tape, or card reader.

The following sequence of MONARCH control messages
illustrates the means of setting up the unit assignment
table and calling in the update routine for execution.

f:::.C
!:::.ASSIGN
f:::.ASSIGN
f:::.UPDATE

CR1W.
S=M TOW, Xl =M T1 W, UI=CR 1 W.
LO=LP.
256.

The MONARCH update routine has two modes of oper­
ation: the normal mode and the blocking mode. In the
normal mode all records are written as 40-word records.
Inthe blockingmodeall records (MONARCH ID records
excluded) are written as blocked records. The maximum
length of a blocked record is determined by the block­
ing number which is a parameter of the update control
message (411 0 ~ blocking number ~ 25610)' If the block­
ing number is less than 41, 41 is automatically used. If
the blocking number is greater than 256, 256 is automa­
tically used.

A blocked record consists of a 1-word block senti nel
(defined below) followed by one or more Illogical II re­
cords. A Illogical II record is one of the following:

1. A MONARCH ID record (40 words).

2. A binary record {average length fewer than 28
words, maximum length 31 words}.

3. An encoded symbol ic record (40 words maximum).

An unblocked record consists of a sing Ie log ical record;
however, all unblocked records are written as 40-word
records even if the logical record contains fewer than
40 words.

The block sentinel word has the following format:

24

Bits

0- 8

9 - 11

12 - 23

Contents

o
3

Number of words in physical record
(including the block sentinel word)

The blocking number serves a twofold purpose: it spec­
ifies the maximum number of words per record and indi­
cates whether the update routine is to operate in the
blocking mode on the selected segments. If no blocking
factor is specified, the update routine operates on all
segments in the normal mode.

Which segments are to be blocked when the update rou­
tine is operating in the blocking mode is determined by
the level 1 or level 2 MONARCH ID record preceding
that segment. If a level 1 or level 2 MONARCH ID
record contains a B in character position 22 and blanks
in character positions 21, 23, and 24, everything with­
in the scope of that level 1 or level 2 ID record is block­
ed. Since the MONARCH loader is not preceded by a
MONARCH ID record, it is automatically blocked when­
ever a blocking mode is specified.

CONTROLLING AN UPDATE RUN­
THE UPDATE FILE

Normally, two logical IIfiles ll are presented to the up­
date routine to enable it to create a new system tape.
One of these files is the old system tape, and it is an
optional input. The other fi Ie is the update fi Ie; it is
never optional, al though its form and content may vary
considerably.

In the general case, the update file consists of an or­
dered sequence of COpy messages, MONARCH ID re­
cords, binary records, and encoded symbolic records.
In a particular instance, an update file may consist en­
tirely of COpy messages, in which case only the func­
tions of selective duplicating and selective deleting are
performed. Alternatively, a given update file may con­
sist entirely of MONARCH ID records, binary records,
and encoded records, in which case only the functions
of selective insertion and, by the absence of COpy mes­
sages, blanket deletion of all information on the old
system tape are performed. In the latter case, the ab­
sence of COpy messages removes the requirement for
providing an old system tape for the update run.

Physically, the update fi Ie can exist entirely on magne­
tic tape, on punched cards, or (although highly unlikely)
entirely on paper tape. Alternatively, all COpy mes­
sages and MONARCH ID records in the update file can
be presented as typewriter messages wh i Ie any programs
to be inserted are presented on punched cards, paper
tape, or magnetic tape. (Samples of update file listings
are included at the end of this section.)

Insertion

Insertion is controlled by presenting the update routine
with a MONARCH ID record via the control message
medium (QMSG) which may also be the update medium
(QSYSU), and one or more programs (or data files) via
the update medium (QSYSU). The MONARCH ID record

is the first record written on the new system tape. The
update routi ne then copi es records from the update me­
dium onto the new system tape unti I:

1. An end-of-file condition (not .6EOF) is detected.
The update routine wi II then request a control
message.

2. A possible CO PY message is encountered; i. e., a
record other than a binary, encoded, or MONARCH
ID record. (The update routine proceeds to analyze
it as if it were a control message.)

3. If the update medi um is paper tape and a binary or
encoded end record (type 3) is encountered, a halt
is executed. (Set (A) = 0 to continue insertion, or
set (A) "10 to stop insertion and cause the update
routine to request a control message next; then set
the RUN-IDLE-STEP switch to RUN.)

4. A level 1 MONARCH ID record with SYSEND/\/\
in characters 9 through 16 was written on the new
system tape. (Both old and new system tapes are
rewound, and the monitor is loaded from the system
tape on unit 0 of the W buffer.)

Note: When an insertion is under control of a level 2
MONARCH ID record and the insertion is to be­
come, or replace, the first subdivision of a major
division of the system tape, the level 1
MONARCH ID record for the major division
must precede the level 2 MO NARC HID record
in the update file. (See examples at the end of
this section.)

Programs to be inserted must be in XDS standard binary
language. Data files must be in this format or else in
XDS9300/900Series encoded symbolic format.

All bi nary and encoded records inserted ina new system
tape wi II have thei r checksums val idated by the update
routine.

Deletion

Deletion of programs or data fi les from an old system
tape is accompl ished by simply exc luding those programs
or data files from the scope of a COpy message. In
other words, failure to COpy a program results in its
being deleted from the new system tape.

Replacement

Replacement of programs or data files is accomplished
by deleting (not COPYing) the existing program or file
and by inserting a new version of that program or file.

Retention (COpy function)

Retention of programs or data fi !es is accompl ished by
including those programs or data files in the scope of a

COpy message. Retention must be made explicit; the
only program impl icitly "retained" from an old system
tape to a new system tape is the bootstrap loader, but
this program is not "copied ll from the old tape by dupli­
cating the first record on the old tape. It is in core at
the time the update routine is executed; therefore, the
update routine writes the bootstrap loader from core onto
tape as its first operation (i. e., immediately after con­
trol is transferred to it and before any COpy messages
are read). All binary and encoded records written on
the new system tape will have their checksums validated
by the update routine.

COpy MESSAGES

The purpose of a COpy message is to obtain programs or
data files from the old system tape and record them on
the new system tape. The COpy message is used in lieu
of placing the indicated programs in the update fi Ie.
COpy messages refer to records (e. g., binary programs)
by using the program names that appear in character po­
sitions 9 through 16 of the MONARCH ID records on the
old system tape.

Major divisions of a MONARCH system are preceded,
on the system tape, by a level 1 MONARCH ID record:

.61 1\ 1\ 1\ 1\ 1\ 1\ LIBRARY 1\ • ••
, ,/ ,/ ,/ '/ \/ \. I \

Minor divisions of a MONARCH system are preceded,
on the system tape, by a level 2 MONARCH ID record:

Minor divisions of a MONARCH system are arbitrary
subdivisions of a program or a data file recognized by
the update routine (see description of the MONARCH
Loader in Section 3 for mention of another use of level 2
MONARCH ID records in connection with automatic li­
brary search ing).

Each MONARC H ID record must have a unique label.
Labels may not contain separators (see Section 2). In
other words, each label must be expl icit; a label such as

.61/\/\/\/\/\/\ 51 N, CO 51\ ...

is illegal because of the comma.

If an argument of a CO PY message consists of one
program name, the name is assumed to occur in charac­
ters 9 through 16 of a level 1 MONARCH ID record on
the old system tape. If an argument of a COpy message
consists of two program names (the second may be en­
closed in parentheses), the first (leftmost) is assumed to
occur in characters 9 through 16 of a level 1 MONARCH
ID record on the old system tape, while the second pro­
gram name is assumed to occur in characters 9 through
16 of a level 2 MONARCH ID record which occurs

25

subsequent to the level 1 record. In other words, the
second program name is assumed to refer to a subdivision
of the major divisionof theold system tapethatwas iden­
tified by the first program name. For example,

~/\/\/\COPY LIBRARY (COSINE).

LIBRARY is a level 1 ID record, and COSINE is a level
2 ID record within the scope of LIBRARY.

Execution of a COpy message by the MONARCH up­
date routine involves copying the MONARCH ID re­
cord{s) and any binary or encoded records that are in
the scope of the MONARCH ID records named in the
COpy message.

The term "in the scope of" is defined as follows:

If "A" and "B" are distinct program names in level
1 ID records, and "X" and "Y" are distinct pro­
gram names in level 2 ID records, then:

1. A binary or encoded record (r) is II in the
scope ofll A provided that no other level 1 ID
record occurs between A and r on the system tape.

2. A binary or encoded record (r) is "in the scope
ofll X provided that no other level 2 ID record
occurs between X and r on the system tape.

3. X is "in the scope of" A provided that no other
level 1 ID record occurs between A and X on
the system tape.

4. A binary or encoded record (r) is "in the scope
of" both X and A if rules 1, 2, and 3 apply.

5. If a binary or encoded record (r) is "in the
scope of" X, it is not "in the scope of" Y.

6. If a binary or encoded record (r) is "in the
scope oP' A, it is not "in the scope of" B.

The Syntax of COpy Messages

A val id CO PY message is an instance of one of the
following:

6 /\/\!\ COpy /\ a.

6 !\/\/\ COpy !\ a /\ (b).

L !\!\!\ COpy !\ a /\ THRU /\ b.

6 !\!\;\COPY !\ a!\ (c) /\ THRU!\ b.

6 !\!\!\ COpy 1\ a!\ THRU!\ b!\ (d).

6 !\!\/\ COpy !\ a!\ (c) 1\ THRU!\b!\ (d).

where a, b, c, and d represent program names (MO NARCH
ID labels). The first character of a program name must
be alphabetic and each remaining character must be
either alphabetic or numeric. Each name may consist
of up to eight characters. The message must be termi­
nated by a period.

26

Parentheses may be omitted, their only purpose being to
enhance readability.

The caret (1\) is used to indicate the minimum number of
spaces that must separate words in a COpy message.

COpy messages without the word THRU are said to have
one argument. COpy messages with the word THRU are
said to contain two arguments. Each argument consists
of either one or two program names.

COpy Messages with One Argument

A COpy message with one argument consisting of one
program name causes the update routi ne to read all re­
cords in the scope of the level 1 ID record with the same
name from the old system tape and write them on the new
system tape. For example, when

61\/\/\ COpy 1\ LIBRARY.

is encountered, the update routi ne bypasses any records
on the old system tape preceding the level 1 MONARCH
ID record with LIBRARY 1\ in characters 9 through 16.
This is the first record to be written on the new system
tape in response to this COpy message. The update rou­
tine then copies all records following that ID record un­
til the next level 1 MONARCH ID record is encountered
on the old system tape. It is th is "next" level 1 record
that terminates the copying of records from the old sys­
tem tape; it is not copied onto the new system tape as a
result of this COpy message, but it is the first "old sys­
tem tape" record to be examined when the next update
control message is processed.

A COpy message with one argument consisting of two
program names causes the update routine to read all re­
cords in the scope of the level 2 MONARCH ID record
corresponding to the second program name and write them
on the new system tape. For example, when

6 !\!\!\ COpy 1\ LIBRARY 1\ (COSINE).

is encountered, the update routine bypasses any records
on the old system tape preceding the level 1 MONARCH
ID record with LIBRARY 1\ in characters 9 through 16;
that is, unless the old system tape is already positioned
at, or beyond (but sti II with in the scope of), that level
1 ID record. In either case, the update routine searches,
within the scope of LIBRARY, for a level 2 MONARCH
ID record with COSINEI\I\ in characters 9 through 16.
If the level 1 MONARCH ID record for LIBRARY has not
already been written on the new system tape, it is the
fi rst record wri tten on the new system tape in response
to this COpy message. In either case the update rou­
tine writes, on the new system tape, the level 2 MON­
ARCH ID record with the name COSINE. The update
routine then copies all records following that ID record
unti I the next MONARCH ID record (either level 1 or
level 2) is encountered on the old system tape. It is
this "next" MONARCH ID record that terminates the
copying of records from the old system tape. It is not
copied onto the new system tape as a result of this COpy
message, but it is the first "old system tape" record

to be examined when the next update control message
is proc essed.

COpy Messages with Two Arguments

A COpy message with two arguments is equivalent to a
seri es of lIone argument ll CO PY messages. The update
routine performs the necessary copying indicated by the
first argument exactly as in the case of a 1-argument
COpy message; but, in addition, it copies all records
following those included in the scope of the first argu­
ment until the MONARCH ID record whose name matches
the second (or only) program namet of the second argu­
ment is encountered. At this point, the update routine
performs the necessary copying indicated by the second
argument exactly as in the case of a 1-argument COpy
message.

Special tests are made to detect cases in which the first
and second arguments are identical. When this occurs,
the COpy message is reduced to the equivalent 1-
argument COpy message.

The following sets of COpy messages are equivalent if
IIAII, IIBII, and IICII occur (in that order) as program
names in consecutive level 1 MONARCH ID records on
a system tape:

Set 1: 6;\;\;\COPY A THRU A.
6;\;\;\CO PY B THRU B.
6;\;\;\COPY C THRU C.

Set 2: 6;\;\;\COPY A.
6;\;\;\COPY B.
6;\;\;\COPY C.

Set 3: 6/\/\/\COPY A THRU A.
6;\;\;\COPY B THRU C.

Set 4: 6;\/\/\CO PY A THRU B.
6;\;\;\COPY C THRU C.

Set 5: 6;\;\;\COPY A THRU C.

Thus, the use of THRU, in a COpy message with two
arguments, provides an alternative to using a series of
1-argument COpy messages.

Termination of an Update Run

CO PY messages of the form:

6;\;\/\ COPY;\ SYSEND /\/\.
or

6;\;\;\COPY /\a;\(b);\ THRU;\SYSEND;\/\.

cause the indicated COpy function to be performed, the
update process to be term inated, the new system tape to
be rewound, and control to be returned to the MONARCH
monitor. In this case, the MONARCH monitor in ques­
tion is IIbootstrapped ll from tape 0 on the W buffer.

t Match ing of the second program name is inh ibited unti I
a level 1 MONARCH ID record whose name matches the
first program name is encountered.

CONTENTS OF A TYPICAL MONARCH
SYSTEM TAPE

record containing MONARCH bootstrap and LOADER

first record of MO NARC H loader

Last record of MO NARC H loader

61 MONITOR
first record of MONARCH monitor

Last record of MONARCH monitor

61 PRINT
first record of PRINT subroutine

END record of PRINT subroutine

MTAPE
first record of MTAPE subroutine

EN D record of MTAPE subroutine

61 CDRP
first record of CDRP subroutine

END record of CDRP subroutin~

61 PTYIO
first record of PTYIO subroutine

END record of PTYIO subroutine

LIBRARY
SINE

first record of SINE subroutine

END record of SINE subroutine

62 COSINE

61 SYSEND

27

EXAMPLES

Facsimile of a typical listing of MONARCH ID records
resulting from a MONARCH update run:

f).1 LOAD.
f).1 MONITOR.

f).2 CONTROL.
f).2 TABLES.
f).2 QMSGRD.
f).2 LDIOSR.
f).2 CARD.
f).2 MTYIO.
~ MAGTP.
f).2 TFMONRCH.

f).1 PRINT.
f).1 MTAPE.
f).1 CDRP.
f).1 PTYIO.
f).1 CDR.
f).1 LIBRARY.

f).2 CDRP.
f).2 CDR.
f).2 PRINT.

f).1 META920.
f).2 ENCODER.
f).2 MONlo
f).2 MSCONTRL.
f).2 PREASSEM.
f).2 ASSEMBLR.

f).1 UPDATE.
f).2 BOOTSTRAP.
f).2 UPDATERT.

f).1 SYSEND.

Exampl es of Program Sequences for Update Runs

1. To dupl icate an existing MONARCH system tape:

f).C TY1 W.
f).ASSIGN S=MTOW, X1=MTlW, UI=CR1W, LO=LP.
f).UPDATE.
f)./\/\/\ COpy LOAD THRU SYSEN D /\/\'

2. To insert a system routine ("RN") between existing
system routines IR1" and IR2":

28

f).C CRl W.
f).ASSIGN S=MTOW, X1=MTlW, UI=CR1W, LO=LP.
f).UPDATE.
f)./\/\/\COPY LOAD THRU Rl.
f).l/\/\/\/\/\/\RN/\/\/\/\/\/\.

IIfirst binary record of RN"

deck for
}

binary

• RN

II last binary record of RN (end record)"

f)./\/\/\ COpy R2 THRU SYSEND /\/\'

3. To delete a system routine (IR7") that appears on
the old system tape between system routines IR6"
and IR8":

f).C CR1 W.
f).ASSIGN S=MTOW, Xl=MTlW, UI=CR1W, LO=LP.
f).UPDATE.
f)./\/\/\COPY LOAD THRU R6.
f)./\/\/\COPY R8 THRU SYSEND/\/\.

4. To replace a system routine ("Rl"), appearing on
the old system tape between IR6" and IR8", with
a new version of IR7":

f).C CR1 W.
f).ASSIGN S=MTOW, Xl=MTlW, UI=CR1W, LO=LP.
f).UPDATE.
f)./\/\/\COPY LOAD THRU R6.
f).1/\/\/\/\/\/\R7/\/\/\/\/\/\.

IIfirst binary record on new version of R7"

II last bi nary record of new version of R7"

5. To insert a new subroutine (" NEW") as the first
subdivision under "LIBRARY", where "LIBRARY" is
the name in a level 1 MONARCH ID record on the
old system tape, "C DR" is the name in the level 1
MONARCH ID record immediately preceding
"LIBRARY", and "C DRP" is the name in the first
level 2 MONARCH ID record under "LIBRARY" on
the old system tape.

f).C CR1W.
~ASSIGN S=MTOW, X 1 =MTl W, UI=CR 1W, LO=LP.
f).UPDATE.
f)./\/\/\COPY LOAD THRU CDR.
f).l/\/\/\/\/\/\LIBRARY /\.
f).2/\ /\ /\ /\ 1\ /\ NEW /\/\ /\ /\/\.

IIfirst binary record of NEW"

"Iast binary record of NEW"

f)./\/\/\COPY LIBRARY (CDRP) THRU SYSEND/\/\.

6. To re-order the system tape. Re-ordering of the'
system tape is accomplished by initializing a rewind
following a series of COpy messages and/or inserts,
then reading and executing a new series of COpy
messages. Th is allows for repositioning logical fi les
on the system tape without having to include the
binary decks.

The control card for the rewind is recognized by
the update routine. The format of the card is
6REWIND. No blanks are allowed. (In the up­
date routine 6REWIND implicitly rewinds MTO.)

Example:

Old system tape order is the following se­
quence of level 1 ID records:

ABC D SYSEND

New order of tape requires:

A C D B SYSEND

The series of COpy messages should be:

6/\/\/\ COpy A.

6/\/\/\ COpy C THRU D.

6REWIND.

6/\/\/\ COpy B.

6/\/\/\ COpy SYSEND /\/\.

ERROR HALTS DURIN G UPDATE RUN S

Certain error conditions occurring during an update run
cause an error message to be typed and the computer to
halt. These error conditions are self explanatory and
include the corrective action needed. The term OST
refers to the old system tape (S), the term NST refers to
th e new system tape (X 1), and the term UPD refers to
the update input medium (UI), in the texts of the error
messages.

29

5. PREPARING PROGRAM DECKS

META-SYMBOL ASSEMBLY AND EXECUTION

Assemble a MET A-SY MBOl symbol ic program to produce
an object program for a 910/925.

Assemble a META-SYMBOL encoded deck to produce an
object program for 920/930. (Note that encoded deck
requires no EOF indication.)

30

Assemble META-SYMBOL symbolic and encoded input
from card reader. (Note that C:,. EOF indicates termina­
tion of SI)

Assemble META-SYMBOL encoded deck with symbolic
corrections on a 900 Series Computer to produce an ob­
ject program to run on 9300.

Assemble a META-SYMBOL encoded deck with symbolic
corrections, requesting a concordance listing and speci­
fying symbols to be included and/or excluded.

Assemble and execute a META-SYMBOL source program.

FORTRAN COMPILATION AND EXECUTION
(900 Series Only)

Compile a FORTRAN source program.

Compile and execute a FORTRAN source program.

31

Compile and execute a FORTRAN program input from
paper tape. If the source tape does not end with a ~EOF,
control must be transferred to MONARCH manually.

Compi Ie and execute a FORTRAN program which in­
cludes a FORTRAN subroutine and function.

32

Compi Ie and execute a FORTRAN program that uses a
subroutine, written in META-SYMBOL language, which
must be assembled.

Compile and execute a FORTRAN program which uses a
previously assembled {or compi led} FORTRAN subroutine
on cards.

Execute a previously compiled FORTRAN program.

Execute a previousl y compi led FORTRAN program that
uses a subroutine, written in META-SYMBOL language,
which must be assembled.

33

ALGOL COMPILATION AND EXECUTION

Compile an ALGOL source program input from cards.

/ ~ENDJOB.

A1II~lI~lIllI~l~l~l~~~~~~~ImI~~~~I~~~~I~I~I@~liIH~~~~~~~Im~~~1~~~i~fi.~il1~1~m1~~~1~:~~li~I:I~tf~ItttB
/ Symbol ic deck tI~l

/ ~ALGOL BO, LS, LO. lllI
/ ~ASSIGN S=MTOW, Xl=MTlW. ~f~~>-

/ ~ASSIGN LO=LP, BO=PP1W. ,
~JOB. ~

-
-

Compi Ie an ALGOL source program input from paper
tape.

I ~ENDJOB.
I ~ALGOL BO, LS.

I ~ASSIGN S=MTOW, Xl=MTlW.
I ~ASSIGN SI=PR1W, LO=LP.

/ LASSIGN BO=CP1W. -
~JOB. -

~

r-
r-

34

Compile and execute an ALGOL source program input
from cards.

/ ~ENDJOB.

L1l1~1~1I~~Ii¥i~~1~111~~!~It~11~~i~ti~~ll~~~~ili~I~l~:~~~1~~~:I1~@~~~~~1~1~~~11~~~1~1~ltt~1:~:IIIJI
L data (i f any) lI~1

/ ~ALGOLOAD. ~lI~I:r-L ~REWI N D M T2W. .:.:.:.:.:

/ ~ASSIGN BI=MT2W. ,

A1~f~~~~~~~~f~1f~~~~~~@~~~~~~I~I~~I1@II~~~Ilti1~~1~I1l~It~1~~~U~t~~~~l~it1~~m~1~~~l!IIiIttIHm r-
/ Symbol ic deck fir ~

/ ~ALGOL BO, LS.

16REWIND MT2W.
16ASSIGN S=MTOW, Xl=MT1W.

j6ASSIGN SI=CR1W, LO=LP.

/6ASSIGN BO=MT2W. r-
6JOB. -

Execute a previously compiled ALGOL program.

BATCH PROCESSING

"next operation"

Previously compi led
FORTRAN main program

tRECON is a routine on the system tape. As directed by
parameters input from the typewriter, RECON reads en­
coded cards and reconstructs them symbolically on mag­
netic tape. A description of this routine may be obtained
from the XDS Progrom Library by orderi ng catalog number
000022.

35

6. OPERATING PROCEDURES

LOADING THE MONARCH SYSTEM

1. Mount the MONARCH system tape on magnetic
tape unit 0 on the W buffer; the unit must be ready
for operation and the tape positioned at load point.

2. To load the system initially, proceed as follows:

a. For XDS 910/920 Computers:

b.

c.

(1) Set registers X, C, and P and memory
cell 1 as follows:

00001 = 0 32 00002
X = 77777771
P = 0
C = 0 02 03610

WIM 2
-7

EOM 03610

(2) Set the RUN-IDLE-STEP switch to RUN.
(Do not STEP fi rst.)

For XDS 925/930 Computers:

Execute the magnetic tape FILL procedure.

For XDS 9300 Computers:

(1) Press RESET.

(2) Execute a magnetic tape FILL.

3. To reload the system once it has been loaded:

36

a. For 900 Series Computers:

(1) Set C = 0 01 00001 BRU 00001

(2) Set RUN-IDLE-STEP switch to RUN.

If th is procedure fai Is:

(1) Set C = 0 01 x7736 BRU QBOOT

X = 1 for an 8K computer
= 2 for a 12 K computer
= 3 for a 16 K computer

(2) Set RUN-IDLE-STEP switch to RUN.

If this also fails, execute the loading proce­
dure described in paragraphs 1 and 2 above.

b. For 9300 Computers:

(1) Press RESET.

(2) Press STEP.

(3) Press RUN.

If this procedure fails, execute the loading
procedure described in paragraphs 1 and 2
above.

FURNISHING CONTROL MESSAGES

When the MONARCH system is initially loaded, the
monitor attempts to obtain a control message from the
console typewriter, i. e., the device indicated by the
contents of QMSG in the unit assignment table. The
control message medium may be changed from the device
currently in use to another input device with a C con­
trol message (described in Section 2). For example, to
change the control message med ium to card reader 1 on
the W buffer, use the control message

!:::"C CR1W.

After processing a C control message, MONARCH imme­
diately attempts to read a control message from the
newly assigned device. Control messages may be sup­
plied on punched cards, paper tape, magnetic tape, or
manually via an on-line typewriter.

At any given time while the MONARCH monitor has con­
trol of the computer, it expects to be able to obtain the
next control message from the control message medium
currently assigned. This imposes the follow ing requi re­
ments on the console operator. If the medium is a:

1. Console typewriter, the console operator should be
prepared to furnish a control message, via the type­
writer, whenever its input light is lit.

2. Paper tape reader, the console operator should make
certain that a paper tape containing a control mes­
sage is inserted in the paper tape reader before the
control request is made and that the paper tape
reader is in operation.

3. Card reader, the console operator should make cer­
tain that a card containing a control message is in
the card reader's input hopper and that the device
is ready for operation. MONARCH reads cards in
binary and converts the card image to XDS internal
code before analyzing the message.

4. Magnetic tape, the console operator should make cer­
tain that a reel containing a physical record with a
control message in it is mounted on the tape unit and
that the unit is in ready status. MONARCH reads the
tape in binary (odd parity) mode and assumes the maxi­
mum record length is 40 words.

If programs or data precede the next control message on
the current control message medium (2, 3, or 4 above),
MONARCH reads successive records from the unit until
a control message record is encountered or an end-of­
file condition occurs (cards and magnetic tape only). If
an end-of-file is encountered before a control message
is read, MO NARC H types an appropriate message and
requests the next control message from typewriter 1 on
the W buffer.

Contents of Normal, Planned,
Register C Program or Error Halt Explanation of Halt Recovery Procedure Action

001xxxxx Loader Planned Computer halts when an Set RUN-IDLE-S TEP switch to RUN Transfers to object program
(xxxxx = end card with a transfer to execute the program. for execution of that pro-
transfer ad- address is encountered. gram.
dress from This halt occurs only when
end card) the value of the second

parameter of the LOAD
contro I message so speci-
fies, i. e. STOP, TSTP.

001xy650 Loader Normal Planned Stops in the octal dump Reset the A and B registers to con- Dumps the next requested
(See "Octal console driver routine. tinue the dump operation or set the area to line printer 1 on
Dump Routine " C register to ao 100355 (BRU the W buffer or selects the
in Section 4 RDMSGR) to have the system read a control message medium
for va I ues of control message. for input.
x and y.)

Set the RUN-IDLE-STEP switch to
RUN.

02000000 Update Normal Normal halt when update Set (A) > 0 if the program just read Continues update process.
medium is paper tape. was the last paper tape record and

c lear the ha.!t.

Set (A) = 0 if the program just read
was not the last one. Insert next
program tape into the paper tape
reader and clear the halt.

02000001 Loader or Error This halt indicates a buf- I. For card input, replace the I. Not applicable.
Bootstrop fer error. misread cord in the hopper.
Loader Set the RUN-IDLE-STEPswitch
(MTO only) to RUN.

2. For paper tape input, reposition 2. Not applicable.
the record for re-read. Set the
RUN-IDLE-STEP switch to RUN.

3. For magnetic tope unit 0, the 3. Not applicable,
program automatically tries ten
times to read the record. Setting
the RUN-IDLE-STEP switch to
RUN causes it to try once more.

02000003 Loader Error This holt indicates on Clear the holt to couse the program Not applicable.
illegal input format. to ignore the record and continue.

020000U4 Loader or Error A checksum errar has oc- Clear the holt to couse the program Not applicable.
Bootstrap curred. to ignore the error and continue.
Loader

02000006 Loader Error This halt indicates symbol No recovery. Not applicable.
table overflow.

02000007 Loader Error Unsatisfied external label 1. No recovery; i. e., no way to I. Not applicable.
or POP reference remains satisfy the references or defini-
after library search. Un- rions.
satisfied references and/or
missing definitions are auto- 2. Clear the halt to ignore the un- 2. Error is ignored.
matically output to the type- satisfi ed labels or references and
writer or line printer. continue.

02000010 Loader Error Duplicate external labelsor Clear the holt to continue. Error is ignored. The first
POP definitions encountered. defini tion encountered

will be used.

02022222 Loader Planned The computer halts when on Set (A) = load re location bi as of next Reads next program unit.
end record with no transfer program, and set RUN-IDLE-STEP
address is encountered. This switch to RUN to continue loading.
holt occurs only when re-
quested (i. e., only when
the value of the second pa-
rameter of the LO<\D control
message so specifies).

04010410 Loader Normal Planned Stops in the symbol table Clear the holt to continue. Reloads MONARCH sys-
typeout driver routine. tem into core.

Figure 1. MONARCH Program Halts and Recovery Procedures

37

PROGRAM HALTS AND RECOVERY PROCEDURES

All error messages are self-explanatory and inc lude re­
covery procedures, whenever recovery is possible. These
messages are listed on typewriter 1 on the W buffer if
Breakpoint 1 is reset or on line printer 1 on the W buf­
fer if Breakpoint 1 is set.

As stated previously, control messages may be input from
cards, paper tape, typewriter, or magnetic tape. However,
if an error is detected in a control message, typewriter
1 on the W buffer isselected for input (afteran appropriate
error message is output), and MONARCH waits for a new
control message to be submitted by the operator.

Figure 1 describes norma I, planned, and error hal ts for
which no messages are produced. The errors are identi­
fied by codes placed in the C register.

SYSTEM OUTPUT

Parameters of various control messages enable the user
to specify that certain information be produced during
or following the operation of portions of theMONARCH
system. For example, with a LOAD control message
parameter the user may request a printout of the loader's
symbol table; via the FORTLOAD control message he
may specify that a label map, a storage map, and/or
a trace of the object program be printed.

MONARCH LOADER'S SYMBOL TABLE

The MO NARC H loader constructs a symbol table during
the loading of a program. If the parameter TSTP or
TGO appeared in the LOAD control message, the load­
er wi II output th is symbol table after the program has
been loaded. The table is produced on typewriter 1 on
the W buffer if Breakpoint 1 is reset or on line printer 1
on the W buffer if Breakpoi nt 1 is set. For a 900 Series
computer with a 12K memory, the printout has the for­
mat shown below. A complete symbol table list is given
in Figure 3 at the end of this section. "Symbol Table
Typeout" in Section 4 expla ins the procedure for producing
a symbol table for computers with other memory sizes.

QlP13f>"Db1J
OCP31J"D1)b
QCRB1Jtjoo1J
Ql7Bbb"D1J

QSYSTP'oo
ACCUH11J1)
~'4DTY P1)O"D
EDr11Joo'Do

40027764
40027763
40027762
40027761

40027244
40000206
40000212
40000213

The first column contains the 8-character symbols (trai l­
ing blanks are supplied for symbols having fewer than

38

eight characters). The first group of symbols, each be­
g inning with Q, are the loader's external label defini­
tions that allow the user's program to reference locations
within the resident portion of MONARCH. Following
these are the symbols from the user's program.

The second column lists the numeric codes specifying the
types of symbols (external label definitions, external
POP references, etc.) and the locations to wh ich the
symbols are assigned (the last five octal digits). If the
first digit (counting from the left) of the numeric code is
equal to or greater than 4 (i. e., bit position 0 of the
computer word contains a 1 bit), the reference is satis­
fied; if the first digit is less than 4 (i.e., bit position 0
of the computer word is a 0 bit), the reference is unsat­
isfied. If the fourth digit (counting from the left) is
equa I to or greater than 4 (i. e., bit position 9 of the
computer word is a 1 bit), the symbol in the first column
has a duplicate definition, in which case the first defi­
nition encountered is used and the subsequent duplicate
definition is ignored. See Appendixes C and F for a
detailed description of the various types of symbols and
how they are designated.

FORTRAN LOADER'S OUTPUT

During the loading of an object program, the FORTRAN
loader outputs the headings NAME, ENTRY, ORIGIN,
LAST, SIZE/10, COMMON, and BASE (on typewriter
1 on the W buffer if Breakpoint 1 is reset or on line
printer 1 on the W buffer if Breakpoint 1 is set).

If nei ther a label map nor a storage map is requested, the
next output shows the program name, the entry location,
the origin of the program, the last location of the pro­
gram, the number (in dec imal notation) of locations oc­
cupied by the program, and (when applicable) the number
(in octal notation) of COMMON locations. If a label is
requested, it is output immediately below the headings.
If a storage map is also requested, it is output following
the label map. An abbreviated example of the FORTRAN
loader's output is given in Figure 2.

The entry, *PROGRAM, is always printed; it identifies
the line containing the total program storage information.
$$$$$$$$ is the compiler-assigned identification for the
main program.

The value in the column BASE is used to determine the
exact location of variables. Variables are compiled to
be stored immediately following the program in which
they are used. At compi lation time, variables are as­
signed locations relative to the end of the program; it
is these relative locations which are printed as" Program
Allocation" by the compiler. To determine the absolute
location of a given variable, add its relative location to
the value I isted by the FORTRAN loader as "base" for
the program containing that variable. For example,
assume the variable J was assigned relative location 55.
Using the base shown in Figure 2, the absolute location
of J is determined by adding 04643 and 55, which re­
sults in 04720.

NAME ENTRY

7 03522
2 03525

232 03547
= 7232 03553

$$$$$$$$
ABSF
203SYS

*PROGRAM

QLP31)1J1)1)
QCP(31)b1)1)
QCR(1)bb1)
QL 7 Bt)1)fi1)
QL6(1)t)1)fi
QL5B1)fi1)1)
QL4B1)1)bt)
QL3Bb1)1)b
QL2Booof>
QL1rJ1)1)1J1)
QL0Bf>1)1)1)
QSYSPof>1)
QBINI1)1)1)
OSYM01)bb
QrJIN01)b1)
QSYSTooo
QSyrlil1)bb
QSYS1Jt}t)t)
OSYSI1)b1)
OSYSUt}ot)
Q PES~~bb{)
OSYLDRbt)
() 1100 Tb1)f>
QDur~Pbb1)
QETBL1)b1)
QMSGf>bbf>
QSRCH1Jbb
QC~~t}f>ob1)
QTAPEb1)1)
QPAPERb"iJ
QCARDbb1)
nSYSINbb
QSYSTPbt)
ACCur~l1)1)

03462
05226
05244

03462

40027764
40027763
40027762
40027761
40027760
40027757
40027756
40027755
40027754
40027753
40027752
40027775
40027774
40027773
40027772
40027771
40027770"
40027767
40027765
40027776
40027777
40025431
40027736
40027646
40026476
40027766
40027104
40027246
40026760
40026737
40026714
40027243
40027244
40000206

ORIGIN

03452
05225
05243

03452

LAST

05224
05242
05254

06101

SIZE/10

1304

875
14
10

Figure 2. FORTRAN Loader Output

t~D TY ?f)1)1) 40000212
EO r .. 11) 1) 1) 0 b 40000213
IORELCbf> 40000231
PRt,1C TR1)1) 40000237
l1ETPRC1)b 40000242
Cf1FDTt}t}b 40000250
CADDRt}ob 40000255
fiS G1J1)1)1)1J 40000256
RDt1S G1)b1) 40000326
RDf.1SGR1)b 40000355
tiS GRS T1)1) 40000576
GEn~RD1J1J 40000617
TY P(11)t}f>f> 40001231
TYPOUTfib 40001231
SETt}f>bbf> 40001365
DISPLYob 40001410
ASSIGNb1) 40001470
Lot}1)t)o1Jf> 40001535
3TLD1)b1Jo 40001607
Al3St}{)t}t)b 40001617
RELt)t)Ob1) 40001631
r~ESSAG'o1) 40001713
11ESS PR1J1) 40001734
CRDTP'bbb 40001735
LOADbObb 40002077
FILLSYbf> 40002216
JO Bt·1S Gf>1J 40002232
END·J()[31)1) 40002236
UPDj~TE1)b 40002242
GSYS pt}1)t) 40002276
miT 1:1)1){)b 40002311
SRLDSYt)1) 40002313
CARD1)ot)t) 40003560
t,1AGT P6bf> 40004501

COMMON BASE

04643

r1TY I 01)1)1) 40004023
r~PRNTb1)1) 40005241
COD ESt)t)1) 40002426
PARAr~St)1) 40002650
nr~SGRDb1) 40003277
CHARt)b1)1) 40003177
I1TLDXb1)1) 40007100
LDI2X1J1)b 40007065
CTFDT1)1)f> 40003465
CTlJUF1)1)1) 40003474
HOLBCD1)1) 40003333
LDIOSR1)b 40005540
SyrmARf>1) 40006753
r~ ET A1)1Jo1) 40006335
FLPTf>ub1) 40006225
FORTLAb1) 40006044
FCPT1J1Jf>1J 40006236
FORTC,~t)1J 40005775
FKPT1)b1)B 40006224
FO~TKA{)1) 40006040
.~LGOLA1)1) 40006262
POSN1)bf>1) 40006617
LABEL1Jt)1) 40006572
11 E~~ I tJDbt) 40006534
t~ EOF1Jbt}1J 40006542
BKFILEbb 40006422
S[(F I LEbb 40006500
BI<RECt)1)f> 40006504
SKRECf>t}1) 40006511
FORTBIAS 40006672
LD 12bbb1) 40006334
QENmiN1)b 40007455

Figure 3. MONARCH Loader Symbol Table (900 Series Computer, 12K Memory)

39

40

APPENDIX A. THE MONARCH UNIT ASSIGNMENT TABLE

To allow the use of the same input/output device for the same function throughout a series of runs,
MONARC H maintains a table of standard unit assignments in upper memory. Each entry represents, by
convention, a particular input or output function. For example, in a batch of runs consisting of as­
semblies and compilations, it is desirable to be able to designate a particular output unit (e. g., a card
punch) as the unit on which all object programs are to be written. In the MONARCH system, this unit
is referred to as the binary output unit (BO) and would be assigned, in this case, BO =CP1W.

Twenty-one such input/output functions have been designated in the MONARCH system; ten standard
UAT entries and eleven special purpose Business Language package I/O entries. Additional functions
may be added at a later date. The format of the unit assignment table entries and a description of the
functions currently provided are given below.

Standard XDS I/O subroutines are constructed so that they can make use of the MONARCH unit assign­
ment table to obtain unit and channel codes for their operation. The reader should consult the description
of these subroutines for additional information regarding the use of the MONARCH unit assignment
table. (The program description catalog numbers for these subroutines are shown on the tape listing in
Appendix B.)

At load time the unit assignment table is automatically allocated to the top of core in relocatable form.
The last word of the unit assignment table is $QPESW, a 1-word entry defined as the job and processor
error switch (see JOB and ENDJOB control messages in Section 2). The format of the words in the
UAT is illustrated below. The upper portion of each diagram contains identifying symbols which, along
with their definitions, describe the contents of the word. The lower portion of each diagram shows the
number of bits reserved to each of these elements.

~ ::j:======================:=~=====================:I:~~blli o 1 23

A = Job mode indicator:
o = not in job mode
1 = in job mode

B = Processor error count

Format of the 1-word unit assignment table entries for 900 Series MONARC H:

U1 0 U2 C 0 Address of I/O Subroutine

(1) (1) (4) (3) (1) (14)

012 5 6 8 9 10

U1 U2 = Unit Address Code (5 low-order bits of the 6-bit unit address code)
C = Channe I designator:
0= W buffer
1 = Y buffer

Format of the 2-word unit assignment table entries for 9300 MONARC H:

Word 1

000 000 000 Address of I/O Subroutine

(9) (15)

o 8 9

Contents

Number of bits
23

Contents

Number of bits
23

Word 2

0 C2 0 Cl 0 0 0 0 0 0 0 0 0 0 0 0

(l) (1) (1) (1) (13)

o 1 2 3 4

C 1 = high-order bit of the 3-bit channel code
C2 = second highest order bit of the 3-bit channel code
C3 = low-order bit of the 3-bit channel code

0 C3 0
Unit Ad-
dress Code Contents

(1) (1) (5)
Number of bits

16 17 18 19 23

The high speed printers are designated, in UAT entries, by unit address codes of 20
8

(number 1) and 218
(number 2).

STANDARD UNIT ASSIGNMENT ENTRIES

Function

Control message input
System (MONARCH magnetic tape)
System scratch
System intermediate output scratch (magnetic tape)
System scratch (magnetic tape)
Encoded output (META-SYMBOL)
Symbolic input {e. g., card reader}
Symbolic output, Update input
Binary input (loader uses this)
Encoded input (META-SYMBOL)
Binary output (e. g., card punch)
List output (e. g., printer)

BUSINESS LANGUAGE UNIT ASSIGNMENT ENTRIES

Function

Magnetic Tape Zero
Magnetic Tape One
Magnetic Tape Two
Magnetic Tape Three
Magnetic Tape Four
Magnetic Tape Five
Magnetic Tape Six
Magnetic Tape Seven
Card Reader
Card Punch
Li ne Pri nter

External
Label

$QMSG
$QSYS
$QSYST
$QSYSI
$QSYSP
$QSYSP
$QSYMI
$QSYSU
$QBINI
$QBINI
$QBINO
$QSYMO

External
Label

$QLOB
$QL1B
$QL2B
$QL3B
$QL4B
$QL5B
$QL6B
$QL7B
$QCRB
$QCPB
$QLPB

MONARCH
Symbolic
Parameter

5
Xl
X2t
X3
EO
SI
SO, UI
BI
EI
BO
LO

MONARCH
Symbolic
Parameter

LO
L1
L2
L3
L4
L5
L6
L7
LCR
LCP
LLP

When a standard processor such as FORTRAN or META-SYMBOL is loaded, MONARCH selectively loads
any standard I/O subroutines required for I/O functions which the processor is expected to perform. The
address of each I/O subroutine loaded is stored in the UA T entries whose unit address codes correspond
to that subroutine. For example, if the magnetic tape I/O subroutine is selectively loaded, its address
is stored in each UA T entry whose unit address code specifies a magnetic tape unit.

fX2 must be assigned to magnetic tape unit 2 (MT2) under MAGPAK environment when using META­
SYMBOL.

41

42

MONARCH maintains a list of standard I/O subroutines required for each system action routine, in addi­
tion to the initial loading address for the first I/O subroutine to be loaded for operation with the system
action routine.

MONARCH provides external label definitions for unit assignment table entries which correspond to I/O
subroutines selectively loaded by the MONARCH loader.

The I/O subroutines are referred to indirectly through the unit assignment table in upper memory. Unit
assignments can be made externally through ASSIGN messages. Note that the ASSIGN message does
not set up I/O subroutine addresses (bits 10 through 14) in UAT entries.

The Business Language user's program is linked to the Business Language I/O handlers via external
references and definitions at load time.

APPENDIX B. THE MONARCH SYSTEM TAPE

The MONARCH system tape consists of an ordered collection of programs and data files preceded by a
special bootstrap loader which itself can be loaded under control of the FILL switch on the XDS 910/925
Computers, the magnetic tape FI LL switch on the XDS 925/930 Computers, and the magnetic tape LOAD
switch on the XDS 9300 Computer. The bootstrap loader, in turn, loads the MONARCH loader and the
MONARCH monitor. All programs (or processors) on the system tape except the bootstrap loader and the
MONARCH loader are preceded by MONARCH ID records. The MONARCH monitor, the MONARCH
loader and the MONARCH update routine all make use of MONARCH ID records to locate programs or
data files on a MONARCH system tape. Only the first 16 characters of a MONARCH ID record are
interpreted by the MONARCH operating system. MONARCH ID records have the following format:

Character
Position
Contents

n = 1 or 2
1) = space

1 2

.6. n

3 4 5

b f> b

a = any alphabetic character

6 7 8 9

b b b a

10 11 12 13 14 15 16 17 18 19 \ \70 71 72

c c c c c c c e e e \ \ e e e

c = any alphanumeric character or trai ling space (i .e., space not followed by another character)
e = any character

Major divisions of a MONARCH system are preceded, on the system tape, by a level 1 MONARCH ID
record:

.6.1/\/\/\/\/\/\ PROGNAME ...

Minor divisions are preceded by a level 2 MONARCH ID record:

Minor divisions of a MONARCH system are arbitrary subdivisions of a program or of a data file that are
recognized by the MONARCH update routine. Normally, these subdivisions serve only to enable the
user to update an old system tape at the subdivision level, i. e., to insert, delete or replace one or
more subdivisions of a program without affecting the remaining subdivisions. Individual subroutines on
the MONARCH library are also separated by level 2 records both for the MONARCH loader and to
make it possible to insert, delete, and replace the subroutines individually.

Program names occurring in level 1 MONARCH ID records must be unique within a given MONARCH
system tape. Program names occurring in level 2 MONARCH ID records need be unique only within a
given major subdivision of a MONARCH system tape. The following additional rules apply to the
program names on a given MONARCH system tape:

If A and B are unique program names occurring in level 1 MONARCH ID records and X and Yare unique
program names occurring in level 2 MONARCH ID records, then A, B, X, and Y may be used as program
names in level 2 ID records of A and/or B. Symbolically this may be represented as

Levell

Level 2

A

~_A~ ~_B~! ~I __ X~ Y

B

A
L..-

B __ ! I X y

The last record on a MONARCH system tape is a level 1 MONARC H ID record with the program name
SYSEND in characters 9 through 14 (15 and 16 must be blank).

43

44

The system tape contains the monitor, the MONARCH loader, the system tape update routine, and other
standard system routines required by the particular installation using the system. The system tape unit
must be assigned as unit 0 on the W buffer for the XDS 910/920, unit 0 on channel W for the XDS 925/930,
and unit 0 on channel A for the XDS 9300. A sample listing of the contents of a system tape for a 920
computer appears at the end of this appendix.

MONARCH SYSTEM TAPE RECORDS

Format of first words of valid system tape records:

XDS STANDARD BINARY OBJECT PROGRAM RECORD (first word)

Record
Word Count (C)

Mode
Folded Checksum (FC)

Type (T) (Binary)

(3) (1) (5) 101 (12)

o 2 3 4 8 9 11 12

META-SYMBOL ENCODED PROGRAM RECORD (first word)

Record
Word Count ,C)

Mode
Folded Checksum

Type (T) (Binary)

(3) (6) 111 (12)

o 2 3 8 9 11 12

MONARCH ID RECORD (first word)

6. Character Zero
Mode

Space Character Space Character
(IDL)

101 111 000 o O~ O~
o 5 6 8 9 11 12

IDL = 001, Major Division - Levell ID Record
IDL = 010, Minor Division - Level 2 ID Record

110 000

17 18

MONARCH BOOTSTRAP LOADER (first word = WIM 012,2)

X OPERATION I Address

0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 o 0 0

MEMORY ALLOCATION

110 000

0 1 0

The amount of norma I core allocation can be determined with the formula
t

QENDMN + Loader + Symbol Table = size
(starting address) (length) (length)

QENDMN
Loader
Symbol Table tt

Total

octal
7455
2512

454
12643

decimal
3885
1354
300

5539

1

)

)
23 0

(

I

23 0

l
j

23 0

0

tThe formula is valid for 9300 Computers; however, the amounts given are for a 900 Series Computer.

tt The symbol table requi res three words per definition.

The amount of core allocation during an update run can be determined with the formula: t

LDIOSR + Loader + Bootstrap Loader + Update + Symbol Table = size
(starting address) (length) (Iengt~) {length) (length)

octal decimal

LDIOSR 5540 2912
Loader 2512 1354
Bootstrap Loader 260 176

Update tt 4136 2142
Symbol Table 454 300
Total 15344 6884

The following is a sample
ttt

tape listing for a 920 Computer. The circled numbers refer to notes at the end
of the listing.

~ 1

CD t 1

til
61 ® 61

L~AD
""1'H,:ITe~

CCH;T~ftL

TABLES
~MSGKD

CAPO
"'TYI~
"'AGTP
I""PRI\JT
LDI~SR

i!l2 FCJRjJlCT
t\2 FtjRTt-IAS
62 ALc,;'LA
,,2 LLlI2
1\2 TFM~".RCM

FoRT"'T [:,
MTAPE B
CORP t;

FTYIR 8
""tTA~20

62 tNCOLER
~2 rveNI
62 "'Scef\;T~L
~2 PREASSEM
t:.2 PReC c1iu
62 FReC920
,.,2 PR~C93,JO

62 PRf!CB~20
/1,2 SHRIt-.fo(
62 ASSE""PLR
62 PAS2
t.2 FINISI"'
1!2 COt-JCPD
62 CttN2

lI:-:t<INIT 8
LINKlERR 8
FtjRTRAt-J 8

~2 FC1
62 FC2
!-2 FC3

06/24/65
06/24/65
U6/30/65
C4/01/65
0.4/01/65
0 6 101/65
041/30/65
ub/14/65
U5/2()/65
D4iG~i65

04/01/65
C4/0t/65
OIi/3L'/65
{.;4/01/65
06/14/65
GJ/301b5
04/01/65
04/01/65

n6/3U/6S
d ub/30/65
8 OS/20/65
8 1,j 4 /01/65

06/30/65
04/27/65
06/17/65
G~/02/65

(;5/12/65
06/30/65
J6/30/65
06/30/65
06/30/65
06/12/65
06/12/65
04/22/65
04/22/65

04/01/65
04/01/65
G5/14/65

o
--l.A8EL--
1174
0425
0177
0162
0225
0352
0191
0157
0181
0000
0041
0592
0002
0191
0352
0211
0225

0640

0665
2496
--LA8EL--­
~568

0449
0449

.... 04~012

042004
O~2005

04200b
03000~

020ti19
040004
060005~

042007
042014
042015
042017
042n30
042008
060:)058 ••••
040004 ••••
030005
020019

2020Q4H ••••

tThe formula is valid for 9300 Computers; however, the amounts given are for a 900 Series Computer.

ttThe symbol table requires three words per definition.
ttt-ri. I •• I-,r nAr""-"'J~h.IAn"""'ll InlS sample IS nOT valla Tor l\o'\U IV\UI"IAI\\....n.

45

III FORTLOAD --L~8EL--- 012015
62 FLI 04/01/65 0231
62 FL2 OS/24/65 0253
62 FL3 05/12/65 0025

61 FO~TLIB --LA~EL--- 202006104
fJ2 SYS230 U4 /01/t>5 010B
62 ALOG 04/01/05 0138
62 ExP 04/01/65 0144
62 COS 04/01/65 02C3
62 SQRT 04/01/65 0083
62 ATAN O.d/OJ/65 025fo)
62 At:jS 04/01/65 0013
62 lABS 0 41 /01/65 0013
62 FLflAT u.1/01/65 0004
62 I F I X (jd/ul/65 oooe
~2 SIGN 04/01/65 0021
fj2 ISIGN 04/Cl/65 0020
62 AMOD 0 4 /01/65 001J
62 ~"D (.;4/01/65 0009
~2 AMP" C4/0J/05 0065
f;2 rIM 04/01/"5 0010
62 IDIM 04/01/65 0010
62 LOCF Ll4/Ql/o5 0004
h2 IF 04/01/65 OO?5 FORTRAN
,.,2 EXIT 04/01/65 0010
/12 LI~KI~G 04/01/65 0010 Library
62 SYSlbO U4/Gl/65 0013
1\2 5Y5201 04/01/65 OC04
fl2 SYS202 04/Cil/65 0008
62 SYS203 04/01/65 0009
1I2 SYS204 04/01/65 0019
t\2 SYS205 0 4 /01/65 0021
t-,2 SYS206 U4/01/65 0011
A2 SYS207 04/01/65 0021
1'2 SYS210 04/01/65 0010
,,2 SYS211 04/01/65 0053
112 SYS212 G4/01/o5 0033
62 SYS213 04/01/f,5 00C9
.1.2 SYS214 04/01/65 0009
.",2 SYS215 04/01/65 0006
.,.,,2 SYS216 04/0J/fl5 0036
.12 SYS217 04/01/65 0005
1\2 SYS220 04/01/65 0074
t2 SYS221 04/01/65 0005
62 SYS222 04/0J/65 0057
62 SYS223 04/01/65 0007
62 5YS224 04/01/65 0006
62 SYS225 (l4/0l/6S 0046
"-2 SYS226 04/01/05 0026
62 SYS227 Q~/Ol/65 0019
62 5YS231 0 4 /01/65 0003
62 SYS232 04/01/65 0003
62 SYS233 04/01/65 0028
62 S'1'S23~ 0 4 /01/65 0036
,,2 SYS236 OIJ./Jl/h5 0230
t.2 5YS241 C4 /01/05 0349
,..2 SYS242 C4/01/65 0057
62 5'1'5243 04/01/65 0046
A2 5'1'S244 04/01/65 0018
t.2 SYS245 C4/01/05 0445
62 SYS776 C4/22/65 1122
112 SYS777 04/01/65 1472 202005H

46

® 61 lI~RARY G --LABEL--- 202003D ••••
1Y2 CDRP u4/01/t15 0211 030005
~2 CDP 04/0L/h5 0162 030004
~2 PTYIft 04/01/b5 0225 CJ20019
112 PRINl Q6/14/t)5 01<11 0000058
62 MTAPE Q4/Cl/oS 0351 040004
A2 eDD 07/01/65 01~4 2030378
62 8FS 07101/65 0075 2030148
62 8DF Q710l/tl5 0171 2030398
A'i. CBD G7101/b5 0178 2030369
62 CFS l;7/lJl/65 0052 2030158
1;2 [BF U7/01/6:; 0169 2030388
~2 611) 0710J/65 0097 203012R
,\ 2 CIS lj7/Cl/65 008·3 2030138
62 LOG G7/0t/65 0048 20J0098

META-tJ2 L GF u7/Gl/65 0152 203024C
.~ 2 EXP (7/01/65 0062 203008R SYMBOL
,II. 2 EXF 07101/65 0159 203C25C
".2 ATI\; 07/01/65 0057 203007~ library
",2 AlC G710l/6S 0158 203032H

0 ,..2 ATF (J7/01/65 0249 203020C
,,2 CSD 07/01/65 01.48 203034'3.033
112 CSF 07101/65 0217 203C28C.027
~? C~S 07/01/65 0032 20301ti8.006
!\ 2 esc 07101/65 0082 2U30J5B
/1.2 FSQ LJ7/0l/65 0071 203029R
11.2 SQR 07101/65 0084 2030198
.12 FFF C7/Gl/65 OOe2 203011C
~2 FSI\; C1IOl/65 0124 2030108
t:.2 FLD G7/01/65 0208 203023C
1\2 CP~; l.j7/01/65 00lC 203022A
112 CPD G7/01/65 007t 2030'28.04~8.0!78.0168
~2 LDP 07101/65 OOO~ 2030228
1\2 SlD 07/01/65 ooce 20J022H
/<..2 LTP 07101/65 acoe 2030208
62 STP G7/01/ to)S 0009 2030208
.t-.2 LQP G7/01/0S OCIO 2030218
112 STG u710J/h5 0011 2030218
62 P~ACE' b ~;:1/ul/65 0544 2600038

t.l SY~8BL 05/Cb/65
A2 LrJADER 6 00/20/65
~2 F 5 J 05/06/tJ5
A..'? (51 05/06/65
A2 fVSI 05/06/b5
t.2 Fde 05/06/65
A2 Cde G5/06/n5
112 ~t:le 05/06/65
,,2 TU1 05/06/65
A.2 LLe C5/06/£-5
".2 /l-'Lt U5/0t'l/f-S
.0\2 51 G6/271h5
/12 S~ G~/Cfllb5

"2 SJ l;S/06/65
!!.2 rv, 91 [] j~/J6/65

!l2 rv92CJ u5/0o/~5

,~ 2 "'9300 O~/06/65

~ 1 ~EliIA Ij 05/12/65 2408 aOOO17C ••••
lI1 TRACE b 04/01/65 054.c1 260003R ••••
t.d RtCel\ 2 OS/IA/oS 1773 000022 •••••
~ 1 PRIi\TDG~ R 10/09/64.
61 l' P r.A T E B --LABEL---

~2 E(H~TST~AF C 4 /01/65 0141 042009
t,2 LPD~TERT 84/22/65 1619 042011

® ~ 1 ALGbL H C&101/65 --L~BEL--- 242008
/:2 ALGrJLl 0 4 101/05 4582 042018
~2 ALG~L)(04/01/65 0501 nJl"lf"'ltn

U .. e;,U4':#

47

61
62
1\2
t.2
62
62
62
62
~2
~. 2
62
62
62
t.2
62
t.2
A2
62
62
~. 2
t;2
,~2
t,2
1<.2
62
62
112
~2

62
62
62
62
t.2
1\2

61
,,\2
62
~2

® 61

Notes:

48

ALGOLOAD 04/01/6S --LA8EL---
j;(L 8 04/01/b5 0883 2420Q9
INPUl 04/01/65 0036 04202u
~UTPUl Q4/!Jl/h5 0036 042C21
ENDIE: 04/01/05 0007 012019
ENDI~L 04/01/65 OOOe 012020
ACCTAP 04/0J/6':5 0014 012021
PNCHTP 04/01/65 ooc~ 012022
ACCEPT \)4/01/65 0020 01~O23

TYPE u t /ul/n5 0008 012024
Rc.AO u 4 /1.J1/f.':I 003:; 032002
PUNC~ 04/01/65 n(J4~ 032(')03 ALGOL
PRJ~T 04/01/65 0074 062r;03
REAiJIT 04/01/65 0073 042022 Library
v.RITOT 04/01/65 OQ56 04;?02j
io(E~RTP C"101/65 0360 042025
RE~I~D 04/01/t'l5 0012 042024
SETI~l C4/U1/6';:) 0056 042n26
TST~F-'T Q4101/fJ5 004n 0420~7

TRfACY 04/01/65 0017 042028
I~ITFC; 04/01/6'5 0029 012025
At3S (id/at/65 0014 012026
SQRl 0"'/01/05 OO,~J 212005
lE)(P 04/01/65 8154 212006
LN 04/01/65 0011 012020
EXP 04/01/"":> 0011 012027
LGF 04/01/65 01"'~ 212018
ExF 04/01/6~ 0151 212007
SIGN (;"'/01/65 0022 012029
Sl~ces G4/JJ/65 ()200 212009
ARCTA~ G4/01/65 0261 212010
I"'l~ u4 /01/65 on15 012030
~A)(04/01/65 0015 0120,31
r-'OD Cd/Ol/o5 0023 012030

~LGORU~ 8 04/01/65 -~LA8EL---

EXEC C4/01/65 160~ 242011
FSC.A~ 0 4 /(;1/65 1371 212012.13.1
LIST U t /Gl/65 0355 242010

SY5EI\D

1. If CONTROL routine is replaced (see "System Update Routine" in Section 4), the 61 MONITOR
label card must precede the 62 CONTROL card and the binary'deck; this rule is generally true
for the first program in each logical fi Ie.

2. As a general rule, any record read by the MONARCH loader can be blocked (see "System Update
Routine"); a blocked record is identified by the letter B in column 22. Columns 21, 23 and 24
must be blank.

3. Columns 25 through 72 may contain comments. In th is I isting, the comments are program approval
date, core allocation, and catalog number. The statement -- LABEL -- in the core allocation
column indicates the beginning of a logical file.

4. The four I/O handlers, PRINT, MTAPE, CORP, and PTYIO, must appear in this order on the system
tape and must follow immediately after TFMO NRC H; i. e., no insertions may be made between any
two of these subroutines or between TFMONRCH and PRINT.

5. FORTRAN II is available only on 900 Series Computers.

6. Any routine or processor that is to go on the system tape should be written prior to the I ibrary if it
has any references to be satisfied from the library.

7. No programs within the scope of a 61 library may have an END card with a transfer address as the
last card in a binary record. .

8. The ALGOL system is supplied only on specific request.

9. A double EOF mark is written after SYSE ND.

APPENDIX C. LOADER OPERATIONS

A general description of the MONARCH loader is given in Section 3. This appendix explains the main
features of the loader in greater detai I.

RELOCATION AND DATA RECORDS

A data record (record type 0) contains instructions and/or data to be stored in memory by the loader.
Each data record contains a load address which is either the relative or absolute memory location in
which the first data word (an instruction or a constant) is to be stored. The word in the data record
containing the load address also contains an indicator that specifies whether or not the current load
relocation bias is to be added to the given load address to obtain an effective load address. In other
words the indicator specifies whether or not the data record contains relocatable words.

The effective load address determines the location in which the first data word is stored; successive
data words are then stored in consecutive memory locations following the first word.

Relocation is performed according to the type of record being loaded. Four types of relocation are
possible; these are described below. Record types are explained in Appendix F, "XDS Standard Binary
Language."

LOAD RELOCATION

If the load relocation indicator is "set" for a given data word, the initial contents (i) of the rightmost m
bits in that data word are replaced with k where:

k = (i + b) modulo 2m

m = 14 for XDS 900 Series Computers
= 15 for XDS 9300 Computers

b = current value of load relocation bias

COMMON RELOCATION

If the blank COMMON relocation indicator is "set" for a given word, the initial contents of the
rightmost m bits in that data word are replaced by k where:

k = (b + c) modulo 2m

m = 14 for XDS 900 Series Computers
= 15 for XDS 9300 Computers

c = current value of COMMON relocation bias
b = current value of load relocation bias

PROGRAMMED OPERATOR RE LOCATION

If the POP relocation indicator is "set" for a given data word, the initial contents (n) of bits 3 through 8
of that data word are rep laced by p where:

p = operation code from POP table entry number n
(p 2: 0) (O S n S 778)

Note: n is the II relative II POP operation code and p is the effective PO P ope ration code computed by
the loader.

49

50

SPECIAL I/O RELOCATION

If the special I/O relocation indicator is "set" for a given data word, the following modifications are
performed:

1. The rightmost m bits of d are replaced with k and the result is stored in QI.

2. Bit 18 of the contents of QI -b is replaced with 6 and the result stored in QI -b.

where:

d initial value of the data word
QI effective load address of d

initial value of rightmost m bits of d
b = current value of load relocation bias
m = 14 for XDS 900 Series Computers

15 for XDS 9300 Computers
k (i + b) modulo 2m

6 b if (i + b) ~ 2m or 0 if (i + b) < 2m

EXTERNAL LABEL REFERENCES AND DEFINITIONS

The loader is capable of handling (resolving) symbolic cross-references between separately assembled
and/or compiled programs. External reference and definition items in binary records (type 1 records)
provide the loader with the information needed to link together two or more separately assembled or
compi led programs.

During the loading process, the loader maintains a (symbol) table of external label definitions and unsat­
isfied external references. There is no restriction on the order in which the definition of a label and the
reference{s) to it appear in the input to the loader. The definition of a label may precede, or follow,
some or all of the references to it. Note that it is permissible for any number of programs to contain
references to a given label, provided that one program being loaded contains an external definition item
for that label.

When the loader encounters an external definition item, it searches the symbol table for a previous defi­
nition of that label in the table; if there is one, the loader increments the duplicate definition counter
and discards the new definition. If the search reveals that the label is already in the table as an un­
satisfied reference, the loader uses the definition to satisfy all the references to that label and replaces
the unsatisfied reference item in the table with the definition item. However, if that label does not
occur in the symbol table (as a reference or as a definition), the loader inserts the external definition
item in the symbol table.

The operand field of an instruction which references an external label requires special consideration. At
the time of assembly, the operand field in this case wi II contain either zero or the relative address (in the
same program) of the previous instruction which referenced that same external label.

A typical assembly containing references to an externally defined label EXLABL might appear:

*01002 07600000

*01172 23501002

*01205 07701172

EXLABL 1205

LDA

STA

EAX
END

EXLABL

EXLABL, 2

EXLABL

At load time the loader uses the relative address (1205) of the last instruction containing a reference
to EXLABL to down-chain (i. e., chain back through) the program (to 1172, to 1002), thus determining
all instructions that reference EXLABL The zero address portion of the instruction at 1002 indicates
to the loader the end of the chain in that program.

Use of EXLABL + 2 in a source program could cause the loader to chain back to the wrong instruction,
and for that reason external labels cannot be modified in this way at assembly time. However, since
indexing and indirect addressing are modifications occurring at execution time, they are legal with
externally defined labels. For example, to access the locations EXLABL and EXLABL + 1 (EXLABL
externally defined), the following technique might be used.

The code: would be equivalent to:

EAX EXLABL LOA EXLABL
LOA 0,2 STA TEMP
STA TEMP LOA EXLABL + 1
LOA 1,2 STA TEMP + 1
STA TEMP + 1

TEMP RES 2

END

When the loader encounters an external reference item, it searches the symbol table to see if it already
contains an external reference item for that label; if so, the external reference chain associated with
the new external reference item is Ilinked" to the external reference chain associated with the existing
tabie entry and the new externai reference item is discarded. If the search reveals that the label is
already included in the table as an external definition, the loader uses the definition to satisfy all the
references to that labe I and then discards the externa I reference item. However, if that labe I does not
occur in the symbol table (as a reference or as a definition), the external reference item is inserted in
the symbol table; to be satisfied by a later definition.

EXTERNAL PROGRAMMED OPERATOR REFERENCES AND DEFINITIONS

The loader is capable of satisfying references to internal and external Programmed Operator (POP) defi­
nitions. External POP definition items, external reference items, and internal POP definition items
provide the loader with the information needed to:

1. Satisfy external and internal POP references.

2. Maintain external POP reference and definition items in the loader's symbol table.

3. Construct a Programmed Operator transfer table in cells 0100
8

through 0177
8

,

An "internal" POP definition is one that is recognized only within the scope of the program in which
it occurs. No entries are made in the loader's symbol table for internal POP definitions or references.

Many of the loader functions performed in the processing of external POP references and definitions are
also performed (by the same loader subroutines) for external label references and definitions. In parti­
cular, the functions of insertion and replacement of symbol table entries and the handling of duplicate
definitions are the same both for external label and external POP items.

An internal POP definition supplies the loader with the (relative) sequence number that appears in bits
3 through 8 of data words referencing that POP and the address of the origin of the POP subroutine which
corresponds to that sequence number. The loader assigns a new sequence number X (0 s X s 77

8
) which

it will use to replace bits 3 through 8 of all data words containing references to that POP definition.
The loader also stores the address of the POP subroutine in the address field of cell X + 100A' The
reason for assigning new sequence numbers is to avoid possible conflicts with sequence numbers assigned
in other, separateiy assembied (or campi ied) programs that are aiso being ioaded. A given POP

51

52

mnemonic (e. g., FLA) will be given a unique sequence number during loading, so any reference to FLA
wi II II quote ll this sequence number. It should be noted that the method depends on the assignment of
sequential numbers, beginning with zero, to each different POP reference or definition in a given
program.

The primary difference in the treatment of internal and external POP definitions is that the external POP
definition is represented in the loader's symbol table and hence it is recognized as a definition in all
programs being loaded, not just the one in which it occurred. All of the remarks in the preceding para­
graph relating to internal POP definitions apply equally to external POP definitions.

External POP reference items are inserted in the symbol table if no matching definition is found as a
result of the symbol table search. When a matching external definition is supplied, the operation code
assigned by the loader and the POP subroutine address are used by the loader to satisfy the reference.
The POP operation code (X) replaces bits 3 through 8 of all data words containing references to that
POP, and the POP subroutine address replaces the contents of the address field of cell X + 100

8
. (See

Programmed Operator Technical Manuals.)

SYMBOL TABLE ITEM FORMAT

Each item in the loader's symbol table consists of a two-word symbol followed by a one-word value.
The symbolic portion of a symbol table item consists of from one to eight alphanumeric characters,
left justified within two computer words. Unoccupied character positions contain blanks (060).

The value portion of a symbol table item may be one of seven types. In each case, the left-most 9
bits identify the type and the right-most 15 bits contain the value.

c

ST Subtype
C Code
L 0 for label items

1 for POP items
MOno doubly defined symbol

1 doubly defined symbol
V Value

Internal POP definition

o 0 POP Sequence No. 1

o 2 7 8 9

Common or Program Length

C

C 1 if V contains program length

v

POP Subroutine Origin

Length of Program/COMMON Block

L 1 if V contains length of labeled Common

23

External Label Reference

o Last Reference Address

External Label Definition

o Label Value

In the 900 Series MONARCH loader, bit 9 of the value word for a given entry in the symbol table is set
to a 1 bit if the external definition associated with that entry has a duplicate definition. In the case
of the 9300 MONARCH loader, bit 5 is of the va lue word is set to a 1 bit.

Labeled Common Reference

o Last Reference Address

External POP Reference

10 1 I Hit Op Code 11 I o

o 1 2 7 8 9

External POP Definition

11 0 I 6-Bit Op Code 11 I POP Subroutine Origin

o 2 7 8 9

In the 900 Series MONARCH loader, bit 9 of the value word for a given entry in the symbol table is
set to a 1 bit if the external definition associated with that entry has a duplicate definition.

Note: Items whose subtype is 00 are not entered in the table. POP items whose subtype is 11 are not
entered in the table.

The origin of the POP subroutine is stored in the address field of the actual POP transfer table entry,
at X + 100S' when a POP definition is encountered. The actual 6-bit POP address (X) replaces the
sequence number when the item is inserted in the symbol table.

Zero is stored in the address field of the actual POP transfer table entry (X + laOS) when a POP reference
item is inserted in the symbol table. The actual operation code replaces the sequence number.

The actual 6-bit POP operation code is also stored in the instruction code field of the POP transfer
table entry whose address is obtained by adding laOS to the sequence number.

53

54

APPENDIX D.UPDATING META-SYMBOL ON MONARCH TAPES

Any portion of META-SYMBOL may be updated using the standard MONARCH ASSIGN, UPDATE, and
COpy control cards. However, two sections of the system contain more than one deck, and during an
update all portions of the labeled segment must be updated. These sections are (1) ENCODER (includes
ENCODER, the proper POP deck, and S4B), and (2) MON1 (includes MON1 followed by the absolute
loader).

When modified through reassembly, PREASSEM, SHRINK, ASSEMBLR, and FINISH must be converted
to absolute form before being placed on the system tape. If the changes are by means of binary patches,
the patches are inserted at the end of the absolute deck, just preceding the end card.

If the S4B portion of the ENCODER increases in size by more than a few words, the origin of the tables
generated by the ENCODER must be changed. To move these tables, reassemble the ENCODER modifying
the symbol TABLES defined at the end of the ENCODER by an EQU directive.

If the size of ASSEMBLER increases in size, the constant DTAB in the preassembler must be changed. This
can be done by inserting a binary patch redefining this constant as needed. DTAB is the origin of the
encoded dictionary.

If the size of the MSCONTROL program is increased, it is necessary to reassemble and move everything
following it inc luding the ENCODER, parts 1 and 2 of PREASSEM, and part 1 of ASSEMBLER. If this
becomes necessary, the constants CPO, BPO, HED, CSEQ, and CORG must be appropriately redefined
in both parts of PREASSEM, and the constants LlTAB and PACKL must be redefined in part 1 of ASSEMBLER.
The origins of these programs wi II also change.

A more thorough discussion of modification procedures may be found in the META-SYMBOL Technical
Manual, XDS 900827. It is assumed that anyone attempting source level modification of META-SYMBOL
will be familiar with that document.

APPENDIX E. FORTRAN LINKING

FORTRAN linking is available only when FORTRAN II is part of the MONARCH operating system. This
operating system provides a modified Run-Time package, an initialization routine (LINKINIT), an ad­
ditional subroutine (LINKING) for the FORTRAN library, and an additional control message (FORTLINK)
for MONARCH.

FORTRAN linking allows the segmenting of FORTRAN programs and the loading and executing of these
segments or "Iinks" selectively under program control. A link is made up of a FORTRAN main program,
subprograms, and FORTRAN library subroutines and functions. The loading of any link automatically
erases the previous link. Only COMMON, modified FORTRAN Run-Time, and the MONARCH resident
remain undisturbed during loading of a link.

Briefly, the FORTRAN linking procedure creates a link by loading a compiled FORTRAN program into
core with necessary library subroutines and writing this program as an absolute dump preceded by a nu­
merical identification (ID) on tape. The run-time package is not written on the tape. After all links
have been written in this manner, each with its own unique ID, LINKZERO is loaded from the system
tape and scans the linking tape, builds a table of IDls in the order of their appearance on the linking
tape, inputs an initial list of the linking IDls to be followed at execution time, and executes the first
specified link. The sequence of links to be executed is determined from CALL statements in the FORTRAN
program (e. g., CALL LINK (N), CALL NEXT LINK, etc.).

Links may be written onto a separate magentic tape or onto the MONARCH system tape itself. Links
may also be written on the X2 disc file instead of tape, in which case the IDls will be placed in the
Directory disc file.

LINK PROCESS

Each of the various links in a chained program is a complete FORTRAN main program using any FORTRAN
subprograms and library subroutines required. When control is passed from one link to another, the new
link completely destroys the old one and execution begins at the first executable statement of the new
main program. Only variables in COMMON are passed from one link to another. Care should be ex­
ercised that no link is large enough to overlay the COMMON from a previous link that may be needed
by a following one. The easiest way to assure this is to reserve the same amount of COMMON in each
link.

After all the desired I inks have been stored on magnetic tape or on the X2 disc fi Ie, a chaining sequence
is initiated by requesting LIN KZERO (i. e., via a LOAD 0, GO, ILINKZERO I message). LINKZERO is
loaded complete with a modified Run-Time package and the linking routine. The modified Run-Time
package remains in memory to be used by succeeding links; the other links do not have Run-Time associ­
ated with them. LINKZERO determines the initial sequence of links to be performed and calls the first
one into memory. The I inking routine contains a push-down I ist of I ink numbers. Statements are pro­
vided for adding and removing I inks from the I ist and for call ing them into memory. Any I ink may use
the following statements:

1. CALL LINK {3}
Call in link number 3. {The ID number for a link may be any three decimal digits.} The actual
procedure here is to put 3 at the top of the push-down list and then call that link, which re­
moves the number from the list.

2. CALL LINK (integer variable) or CALL LINK (integer expression).

3. CALL LINK (expression 1, expression 2, .•. , expression n).
Compute the n expressions (where n has a maximum value of 30) and place the resulting numbers
at the top of the push-down list so that they will be called in the order 1,2, ... , n before
calling whatever was on the list previously. Note that 2, above, is a special case of this.
Zero is a legitimate link number and, when called, causes a return to MONARCH.

55

56

4. CALL LINK (-2)
Remove the top two items from the push-down list. Do not call any link but proceed to the
statement following the ca II.

5. CALL LINK (negative expression 1, expression 2, expression 3, ..• , expression n)
If the first number is negative, remove the appropriate number of links from the push-down list
before proceeding to enter the following numbers. Then call the link specified by expression 2.
Only the first number may be negative. An error message (NEG. ARG) will result if any others
are negative. Note that 4, above, is a special case of this.

6. CALL NEXT LINK
Call the link specified by the top number in the push-down list and remove that number from
the list. If the list runs out of numbers, control is returned to MONARCH.

No parameters are used following CALL NEXT LINK. If present, they are ignored.

7. CALL FILL LINK (expression 1, expression 2, ••• , expression n)
Compute the n expressions, place the resulting numbers at the top of the push-down list, and
return to the ca II i ng program.

When a link is called, it always begins at the first executable statement. However, one can effectively
make it start at any number of places by providing a transfer instruction as the first executable statement:

1. Label the appropriate statements (e. g., 16, 2, 19).

2. As the first statement in the link, write a computed GO TO statement which references a loca­
tion in COMMON; e. g., GO TO (16, 2, 19), I where I is in COMMON.

3. In the calling program prior to the CALL LINK statement, set the COMMON location (i. e., I)
equal to the value of the desired label (in this example, I would be set to 1, 2, or 3).

GENERATING A LINK TAPE / LINK FILE ON DISC

LINKINIT is used to initialize a link file (X2). When X2 follows the system, which is the case when
X2 is assigned to the same device (MTO for Tape MONARCH and DF for RAD MONARCH) calling
LINKINIT will result in the removal of any previous links from the link file.

The MONARC H control message FORTLIN K has the format

6 FORTLINK P
1
, P2• ••• , Po·

P 1 The identification number to be assigned to the I ink about to be written on magnetic tape or
disc, may be any three decimal digits.

Same as P. for FORTLOAD.
I

The FORTLINK control message causes MONARCH to load and transfer control to the FORTRAN loader,
which in turn loads a FORTRAN-compiled program and produces a storage map and/or label map as
spec ified by the parameters P2 through P9. Then that FORTRAN -compi led program is written onto the
I ink tape or disc as I ink number Pl. The I inks do not have to be written numerical sequence.

The program always uses X2 as the I ink tape i therefore, X2 must be assigned to a magnetic tape unit
before MONARCH encounters the FORTLINK control message. X2 may be assigned to any tape unit
including the MONARCH system tape. Alternately, X2 may be assigned to the disc.

The links themselves consist of two records. The first record is a 10-word record containing the link
number. The second record is the core dump of the FORTRAN program. The core dump does not incl ude
the FORTRAN Run-Time package.

If the links are written on the X2 disc file, the first "record" consists of just 2 words: the program
origin and the number of program locations (from origin to beginning of erasable storage).

When completed, the linking tape will consist of: an end-of-file mark, a short record and a long record
for the first I ink, a short record and a long record for the second I ink, etc., and then finally another

end-of-fi Ie mark. It makes no difference whether the I ink tape is the system tape or a separate scratch
tape. As far as the operation and execution of a I inked program is concerned, the I inks are bracketed
by en~of-file marks.

If the I inks are written on the disc, the I ink I D entries, automaticall y placed in the disc directory,
render end-of-record and end-of-file marks unnecessary.

EXAMPLES

Example A:

~ASSIGN X2=MT3W, BI=MTOW.
~LOAD 0, GO, ILINKINITI.
~ASSIGN X 1=PR1W.
~FORTLINK 29, MAP, Xl.
~FORTLINK 16, Xl, Xl.

The link tape is to be on magnetic tape unit 3. The binary input is from the system tape. The LOAD
control message causes the linkage initialization routine LINKINIT to be loaded. Magnetic tape 3 is
rewound, two end-of-file marks are written on it, and the tape is rewound again. Control is then
transferred to MONARCH, which makes the new unit assignment for Xl and loads the FORTRAN loader.

The FORTRAN loader loads the previously compi led FORTRAN program from the paper tape reader and
produces a storage map of the program. The library is loaded from the system tape and the message
II LOADING COMPLETE .•• II is typed. Next, magnetic tape 3 (i. e., the I ink tape X2) is scanned for­
ward to the second end-of-file mark; the tape is then backspaced over this end-of-file mark. The
FORTRAN program, which was just loaded, is written onto the tape as link number 29, another end-of­
fi Ie mark is written, and the tape is rev/ound. The message II LI t'-JK WRITTEt'-J ON T,A,PE" is typed and
control is returned to MONARCH.

The effect of the second FORTLINK control message is similar to that just described except that no map
is produced and the previously compiled programs are on two separate pieces of tape (possibly a main
program and a function). After the programs are loaded and the message II LOADING COMPLETE ..• II

is typed, magnetic tape 3 is again scanned forward to the second end-of-file mark; the tape is back­
spaced over this end-of-fi Ie mark. Then the FORTRAN program just loaded is written onto the tape as
link number 16, another end-of-file mark is written, and the tape is rewound.

This process can continue until all the links have been written on tape. There is no restriction on the
links except that no two links may have the same identification number.

Example B:

~ASSIGN X2=MTOW, BI=MTOW.
~LOAD 0, GO, ILINKINIT 1

,

~ASSIGN Xl=PR1W.
~FORTLINK 17, MAP, LMAP, Xl.
~FORTLINK 169, Xl, X1U.

In this example the system tape is to be used as the link tape. After the linkage initialization routine is
loaded, the system tape is scanned forward to the first end-of-fi Ie mark, and a second end-of-file mark
is written. Then the system tape is rewound, and control is transferred to MONARC H, which makes the
new unit assignment for X 1 and loads the FORTRAN loader.

The FORTRAN loader loads the previously compi led FORTRAN program from the paper tape reader, loads
the I ibrary routines from the system tape, and produces a storage map and a labe I map. After the mes­
sage II LOADING COMPLETE ... II is typed, the system tape is scanned forward to the second end -of-
fi Ie mark and backspaced over this end -of-fi Ie mark. The just-loaded FORTRAJ'..I program is written onto
the system tape as link number 17, another end=of~file mark is 'lv'ritten, and the system tape is ie'vvound.

The message "LINK WRITTEN ON TAPEII is typed, and control is transferred to MONARCH,

57

58

The effect of the second FORTLINK control message is simi lar to that just described except that the
previously compiled programs are on two separate pieces of paper tape. The second piece of tape is
to be read unconditionally. After the programs and library subroutines are loaded, the message
"LOADING COMPLETE. .. " is typed. The system tape is again scanned forward to the second end­
of-file mark and backspaced over it. Then, the just-loaded FORTRAN program is written onto the
system tape as link number 169, another end-of-file mark is written, and the system tape is rewound.
The message "LINK WRITTEN ON TAPE" is typed, and control is transferred to MONARCH.

This process may continue unti I all the links have been written on the system tape.

Example C:

.6.ASSIGN X2=MT2W, BI=MTOW •

.6.LOAD 0, GO, 'LINKINIT' •

.6.ASSIGN SI=PR1W, BO=MTlW, LO=LP1W •

.6.REWIND MT1W •

.6.FORTRAN LO, BO •

.6.REWIND MT 1W .

.6.ASSIGN BI=MT1W •

.6.FORTLINK 2, BI.

.6.REWIND MT 1W •

.6.FORTRAN LO, BO .

.6.REWIND MT 1W •

.6.FORTLINK 4, MAP, LMAP, BI.

In this example magnetic tape 2 is the link tape. The binary input is from the system tape to enable
the loader to load the link initialization routine. The link tape is rewound, two end-of-file marks
are written, and the tape is rewound again. Then control is transferred to MONARCH, which makes
the unit assignments for the SI, BO, and LO units and rewinds magnetic tape 1.

Next the FORTRAN compi ler is brought into core. The compi ler accepts the source input from the
paper tape reader, compiles the program, produces a listing on the line printer, and writes the com­
piled program onto magnetic tape 1. Then control is returned to MONARCH, which rewinds mag­
netic tape 1 and makes a new unit assignment for the binary input unit.

The FORTRAN loader is brought into core, and it loads the previously compiled program from magnetic
tape 1. After the program and any necessary library subroutines have been loaded, the message
"LOADING COMPLETE ... II is typed. Next, the link tape is scanned forward to the second end­
of-file mark and backspaced over it. Then, the just-loaded program is written onto tape as link
number 2, another end-of-file mark is written, and the tape is rewound. Control is transferred to
MONARCH, which rewinds magnetic tape 1 and calls in the FORTRAN compi ler again.

The compi ler accepts the second source program from the paper tape reader, compi les it onto mag­
netic tape 1, and produces a listing on the line printer. Then control is returned to MONARCH
which rewinds magnetic tape 1 and calls in the FORTRAN loader.

The FORTRAN loader loads the compiled program from magnetic tape 1. The link tape is scanned
forward to the second end-of-fi Ie mark and backspaced over this mark. Then the just-loaded pro­
gram is written onto the link tape as link number 4, another end-of-file mark is written, and the
tape is rewound.

EXECUTING A LINKED PROGRAM

Execution of a linked program is initiated when the routine LINKZERO is called into core via a LOAD
control message. The LIN KZERO routine

1. Scans the link tape to determine how many links are present and the order in which they
appear on the tape and to record the identification numbers (link numbers) of the first
th irty I inks.

2. Positions the tape between the two end-of-file marks that define the beginning and end of the
link tape.

3. Stores information indicating the order in which the links are to be executed.

4. Locates the link to be executed first, loads it into core, and transfers control to it.

During the execution of the user's program, the I inks are located on the link tape by one of two methods:

1. If the I ink is one of the first thirty on the tape, its location will be known, and it can be lo­
cated and read into core directly.

2. If the link is not one of the first thirty, its location is unknown; therefore, the link .tape is
positioned in front of the first link and is scanned forward until the desired link or an end-of­
file mark is found.

If the link cannot be found, an error message (EOF STOP) is typed, and the computer halts. The link
number for which the search was unsuccessful is displayed in the A register.

Example:

.6.ASSIGN X2=MT2W, BI=MTOW, SI=TY1W .

.6.LOAD 0, GO, 'LINKZERO'.

After LINKZERO is loaded into core, the message "LINKZERO LOADED" is typed. The link tape X2
is scanned forward to the first end-of-file mark. The tape is then read to determine the order of the
first thirty links. This information is stored in a 30-word table. (More than thirty links may be written
on the tape, but only the first thirty identification numbers are stored in the table.) After this informa­
tion is stored, the tape is positioned in front of the first link on the tape. From this point on, the tape
remains positioned between the two end-of-file marks that delimit the links.

LIN KZERO then accesses whatever symbol ic input device has been assigned - in th is example, the
typewriter. The user enters the list of link numbers in the order in which the links are to be executed.
(Links may be executed any number of times and in any sequence.) This information is stored in a sec­
ond 30-word table. The list of link numbers is entered under FORTRAN FORMAT (14). The user must
enter at least one link number; a maximum of thirty may be entered. (This feature enables the user to
specify the first link and then have the links executed under program control; i. e., the first link calls
another I ink whic h calls another, etc.; or the user may spec i fy, via the input device at execution time,
the order in which the links are to be executed, and each link is written to call the "next" link rather
than a specific one.) The first link number entered by the user will be the first link executed.
LINKZERO locates this link on the link tape, loads it into core, and transfers control to it.

If the I inks are written on the disc, they decrease avai lable disc storage. To free this storage space,
another .6. LOAD D., GO, 'LINKINIT' control message should be used, at the completion of the
link job.

59

60

APPENDIX F. XDS STANDARD BINARY LANGUAGE

The following description specifies a standard binary language for XDS 900 Series and 9300 Computers.
The intention has been that this language be both computer-independent and medium-independent. Thus,
the language provides for handling Programmed Operator definitions and references even though the 9300
does not have this hardware feature; similarly, there is a provision for relocation relative to blank
COMMON, even though this requirement is not present in XDS 900 Series FORTRAN II.

In the following description of the language, a file is the total binary output from the assembly/compi­
lation of one program or subprogram. A file is both a physical and a logical entity since it can be sub­
divided physically into unit records and logically into information blocks. While a unit record {in the
case of cards} may contain more than one record, a logical record may not overflow from one unit record
to another.

1. CONTROL WORD - first word in each type of record

Type (T) ~ Word Count (C)
Mode

Folded Checksum (FC) 0 (Binary)

0 101

0 2 3 4 8 9 11 12

T Record Type

000 Data record {text}
001 External references and definitions, block and program lengths
010 Programmed Operator references and definitions
011 End record {program or subroutine end}
100

} Not assigned

11 1

C = total number of words in record, including Control Word

23

Field

Contents

Bit Number

Note that the first word contains sufficient information for handling these records by routines other
than the loader {that is, tape or card duplicate routines}. The format is also medium-independent,
but preserves the Mode indicator positions desirable for off-line card-handling.

An exclusive OR checksum is used. If the symbol -- is used to denote exclusive OR, and W. denotes
I

the i-th word in the record (1 ~ i ~ C), then

FC= {W1}0-1l-- (5)0-11-- (5)12-23-- 07777

where

2. DATA RECORD FORMAT (T=O)

Control
Word

Word 1

Record ~ Type (T) 0
000 0

o 2 3 4

3 ::: C ::: 30
Mode

(Binary)

101

8 9 11 12

Folded Checksum

23

Load
Address
Word

Word 2

~ Data Word Load Address

~ Modifiers (M) Modifiers (A)

0

o 4 5 8 9

Load Address (Relative or Absolute)

23

The presence of bits in field M indicates the presence of words n + 3, n + 4, n + 5, and n + 6 (shown
below):

If bit position 4 contains a 1, word n + 3 (load relocation). is present.
If bit position 3 contains a 1, word n + 4 (common relocation) is present.
If bit position 2 contains a 1, word n + 5 (POP relocation) is present.
If bit position 1 contains a 1, word n + 6 (special I/O relocation) is present.

Data
Word 1

Load
Relocation

Common
Relocation

Programmed
Operator
Relocation

Special
I/O
Relocation

Word 3

Instruction or Constant

Words 3 through n+2 contain instructions or constants {where 1 :s n:S 24)

Word n + 3

Load address relocation word (present iff (M) n 1 = 1)

o

Word n + 4

Blank common relocation word (present iff (M) n 2 = 2)

o

Word n + 5

Programmed operator relocation word (present iff (M) n 4 = 4)

o

Word n + 6

Special Input/Output operation relocation (present iff (M) n 8 = 8)

o

23

23

23

23

Words n + 3 through n + 6 are modifier words. Each bit in each of these words corresponds to a data
word; that is, bits 0 through 23 of each modifier word correspond to data words 3 through n + 2
(where 1 :s n s: 24). A bit set to 1 in a modifier word indicates that the spec; fi ed data word requi res
modification by the loader. There are four types of modification (and hence four possible modifier
words) which are indicated in data records. Presence of a modifier word in a data record is indi­
cated by the "y", (data vlard modifier) field in the load address wOid.

61

62

The load address is subject to modification as indicated by the A field of the load address word as
follows:

(A) = 0, absolute.
(A) n 1 = 1, current load re location bias is added to load address.
(A) n 2 = 2, current common relocation bias is added to load address;

the remaining bits of A are unassigned.
{A} = 3, i \Iega I.

3. EXTERNAL REFERENCES AND DEFINITIONS, BLOCK AND PROGRAM LENGTHS {T = 1}
{Includes labeled COMMON, blank COMMON and program lengths}

Control
Word

Common
Length

Word 1

Record ~ Mode
Type {T} ~ 4:sC:s31*

(Binary)

001 0 101

0 2 3 4 8 9 11 12

* From 1 to 10 items per record

1- to 8-Character Label

10

C1

I
C2

J12

C5 C6

5 6

Length Word

Folded Checksum

C3 J 18

C4

C7 C8

or Program
Length
Item Item

Type
B C Length of Program or Common Block (L)

00 00000

o 2 6 7 8 9

B = 1 if (L) is program length
C = 1 if {L} is length of a labeled common block

External
Reference
Item

[10 8-c~~raCler :T' C2

C6

Chain Word

o

Item
Type

01 000

2

Address Mod­
ifiers {A}**

4 5 8 9

17 118

C3

C7

Address of Last Reference

** See data record, load address word, for interpretation.

C4

C8

23

J

23

23

External
Definition
Item

I: 10 8-c~~raCler :T'
C6

C2

Value Word

Item
Type

10 000

.Address Mod­
ifiers (A)**

o 2 4 5 8 9

C3 C4

C7 C8

Absolute or Relocatable Value

** See data record, load address word, for interpretation

23

External symbolic definitions include subroutine "identification" as a subset and require no special
treatment of subroutines with multiple names.

External
Reference
with
Addend
Word*

1- to 8-Character Label

item
Type

1 1

o 1 2

000

Addend Word

C2

C6

Address Mod­
ifiers (A)**

4 5 8 9

089

C3 C4

C7 C8

Address of Last Reference

Value of Addend

* One of these items for each unique reference; e.g., each of the following
references is represented by a separate item:

A + 5, B + 5, B + 6, C + 2, C + 5

** See data record, load address word, for interpretation.

4. PROGRAMMED OPERATOR REFERENCES AND DEFINITIONS (T = 2)

Control
Word

Word 1

Record ~ 4 s C s 31 **
Mode

Type (T) (Binary)

010 0 101

o 2 3 4 8 9 11 12

** From 1 to 10 items per record

Folded Checksum

23

23

23

63

64

Internal
Programmed
Operator

Programmed
Operator
Reference

External
Programmed
Operator
Definition

~

~

, - to 8 Ch M - arac er nemonJc

I
C1

I
C2

C5 C6

0 5 6

Item
Sequence No. R

Type

00 1

-o 1 2 7 8 9

1- to 8-Character Mnemonic

I
C1

I
C2

C5 C6

0 5 6

Item
Sequenc e No. R

Type

01 0

0 2 7 a 9

1- to a-Character Mnemonic

l C1

J6
C2

C5 C6

Item
Sequence No. R

Type

10 1
~ o 1 2 7 a 9

I
C3

I
C4

C7 C8

11 12 17 18

Origin of Programmed Operator Routine

I
C3

I
C4

C7 ca

11 12 17 1a

000 000 000 000 000

J 12

C3 J 18

C4

C7 ca

Origin of Programmed Operator Routine

R = 1 if origin of Programmed Operator Routine is relocatable.
The sequence number indicates the order in which the definitions or references occurred
in the source program.

5. END RECORD (T = 3)

Control
Word

length of
Program

Word 1

Record
Type (T) ~ ~
o

o

011 0

2 3 4

Transfer Word
Modifiers

(M)*

2 ~ C ~ 4

0000

o 4 5

Mode
Folded Checksum

(Binary)

101

a 9 11 12

1 + Maximum Value of location Counter

a 9

** See data record description for interpretation.

J
23

I
23

23

J
23

23

23

Transfer
Word

Word 3

023

"BRU" Transfer Add ress

000001

8 9

This may be followed by a relocation word as described above in "Data Record Format, II paragraph 2.

65

66

APPENDIX G. PROCESSOR DIAGNOSTICS

This summary of processor errors is provided for convenience of reference. The user should refer to the
applicable processor reference manual for a more complete discussion.

META-SYMBOL (900 Series Only)

The standard abort message is

META-SYMBOL ERROR xx

where xx has the following values:

xx Interpretation

01 Insufficient space to complete encoding of input.

02 Corrections to encoded deck but encoded input fi Ie is empty.

03 End of fi Ie detected whi Ie reading encoded input.

04 Insufficient space to complete preassembly operations.

05 Insufficient space to complete the assembly.

06 Data error. META-SYMBOL does not recognize the data as anything meaningful.

07 Requested output on a device which is not available.

08 Corrections out of sequence.

09 End of fi Ie detected by ENCODER when trying to read intermediate tape X 1.

10 Request for non-existent system procedures.

11 Byte larger than dictionary (bad encoded deck).

12 Not encoded deck.

13 Checksum error reading system tape.

14 Preassembler overflow (ETAB).

15 Not used.

16 Data error causing META-SYMBOL to attempt to process procedure sample beyond end of table.

18 Improperly formatted or missing PROC deck series-specification card.

24 Shrink overflow.

Errors OS, 06, and 16 are accompanied by a p.rintout that shows the value of certain internal parameters
at the time of the abort:

LINE NUMBER
BREAK 1
LOCA lION COUNTER
UPPER
LOWER
BREAK
SMPWRD
LTBE
LTBL

yyyyy
yyyyy
yyyyy
yyyyy
yyyyy
yyyyy
yyyyy

yyyyy 1 second pass on I y
yyyyy

(yyyyy represents the value of the particular item). The last six of these are useful in determining the
nature of the assembler overflow.

After the appropriate message has been typed, control is transferred to MONARCH.

I/O ERROR MESSAGES AND HALTS

When an I/O error is detected, a simple message is typed and the computer halts. The message consists
of a 2-letter indication of the type of error and a 2-digit indication of the I/O device. The letter
indicators are defined below; the 2-digit number is the unit address number used in EOM selects (see
applicable computer reference manual). The action taken if the halt is cleared depends upon the type
of error and the device involved. There are three types of error.

BUFFER ERROR (BE)

1. Examp I es:

BE 11 buffer error whi Ie reading magnetic tape 1.
BE52 buffer error while writing magnetic tape 2.

2. Action upon clearing the halt:

a. Magnetic tape input - since ten attempts are made to read the record before the halt occurs,
continuing causes META-SYMBOL to accept the bad record.

b. Paper tape or card input - try again.

c. Magnetic tape output - try again.

d. Output other than magnetic tape - conti nues.

CHECKSUM ERROR (CS)

1. Examples:

CS06 checksum error card reader.
CS 11 checksum error reading magnetic tape 1.

2. Action upon clearing the halt:

Accepts bad record.

WRITE ERROR (FP)

1. Example:

FP12 magnetic tape 2 file protected

2. Action upon clearing the halt:

Checks again.

SYMBOL

Input/output errors during a SYMBOL assembly result in a typed error message stating the logical file
(e.g. SI) and the cause for alarm (ER or FP). Halts will occur after the message has been typed only
in the cases listed below. An erroneous magnetic tape input record is accepted by SYMBOL.

1. File-protected magnetic tape of RAD file (output) -Clearing the halt will result in another attempt
to wri te the record.

2. Paper tape reader symbolic input error - To reread the record one must reposition the paper tape
and clear the haiti otherwise, the erroneous record is lost.

3: Card reader input error - clear the halt. Unless the card is repositioned in the reader the record
is lost.

67

68

RAD saturation can occur when the disc is unable to accept either a symbol ic input record during
SYMBOLls pass one or a binary output record during pass two. If overflow occurs, the file manage­
ment routine types an appropriate message and control is returned to MONARC H.

FORTRAN II (900 Series Only)

Both the FORTRAN II compiler1s input/output error messages and the FORTRAN loader1s error messages
are I isted here.

I/O ERROR MESSAGES

For input and output, FORTRAN uses MONARCHls I/O handlers. If an error occurs during input or
output, the compiler produces an error message of the form

FORTRAN I/O ERROR x

x Interpretation

An error has been detected during I isting. Compilation continues.

2 An error has been detected while reading magnetic tape. The message is output after ten
unsuccessful read attempts. Compilation continues using the result of the last read.

3 An error has been detected while punching or writing the object program. Output is sup­
pressed, and compilation continues.

4 No input device has been assigned. This is an irrecoverable error, and control is transferred
to MONARCH.

5 RAD saturation has occurred. Compilation continues after the processor error switch is set.

These messages are printed on whatever I isting device has been assigned. If no I isting device has been
assigned, the messages are not printed, but the indicated action is still performed.

There are three halts in the compiler. All display a flagged NOP in the C register with either a 78 or
708 as an address.

Address

7

70

Interpretation and Action

The computer will hal t before reading paper tape for the first time, when a stop code
has been read, or when the tape gap has been detected. Clearing the halt will allow
compilation to continue.

An error has been detected while reading cards or paper tape. Clearing the halt will
allow compilation to continue.

FORTRAN II lOADER ERROR MESSAGES

The error messages of the FORTRAN II loader running under MONARCH are as follows:

Message

ERROR SWITCH SET

Interpretation and Action

MONARCH is in the job mode (see JOB control message in
Section 2), and the processor error switch has been set.
Control is returned to MONARCH, which then attempts to
read another control message.

Message

PROGRAM TOO BIG

READ ERROR, RELOAD
LAST RECORD

ILLEGAL INPUT, RELOAD
PROGRAM

EOF STOP
or

NO LINK (disc case)

illEGAL iNPUT FilE ASSiGNED
TO DISC

Interpretation and Action

The program being loaded exceeds available memory.
Loading continues, assuming an infinite memory. When
loading is finished, the program size is typed out, and
control is transferred to the MONARCH bootstrap.

The message is typed out, and the computer hal ts. If the
input device is the RAD, control returns to MONARCH.
Otherwise, clearing the halt allows loading to continue.
This message is caused by:

1. Card read error.

2. Paper tape read error.

3. Magnetic tape read error (ten attempts have been made
to read the record).

4. Disc file read error.

5. Checksum error.

This message is typed out, and control is transferred to the
MONARCH bootstrap. This message can be caused by:

i. 12 interrupt whiie reading paper tape.

2. Input that is not a legal subprogram.

3. FORTRAN program heading improperly blocked.

4. Number less than 2008 or greater than 2448 assigned to
a system subroutine reference.

5. Error in checking the sequential block count.

6. Labeled COMMON which is not accepted by the
FORTRAN loader.

7. First word in a record not being a control word.

8. Type 0 records for POP relocation and special I/O relo­
cation, type 2 records (POP references and definitions),
illegal records (types 4 through 7), and external refer­
ences with addend items which are not accepted by the
FORTRAN loader.

Can occur only when FORTRAN linking is used (see Ap­
pendix E). The requested I ink cannot be found on the
I ink tape or on the disc. The computer halts with the I ink
number for wh ich the search was unsuccessful displayed in
the A register. Clearing the halt will cause the search to
be repeated.

The message is typed out, and controi is transferred to
tv"'\O~-.lARCH. This rnessage is caused by the specification of
a logical file other than BI to be loaded from the RAD.

69

70

APPENDIX H. RAD MONARCH

INTRODUCTION

RAD MONARCH is a modified version of Tape MONARCH, which is oriented to an XDS 925/930
computer with a 9367 RAD unit. The concepts are those of Tape MONARCH; i.e., to maximize the
efficiency of the XDS 900 Series through minimization of interjob overhead, a factor which is in
proportion to the ratio of peripheral I/O rates to memory cycle time (as job execution time diminishes
in proportion to memory cycle time, interjob overhead plays an increasingly important role).

In Tape MONARCH, interjob overhead corresponds roughly to rewinding the system tape and reloading
the non-resident operating system. In RAD MONARCH, no actual rewind is necessary, since access to
the operating system is on a random basis.

USE OF RAD MONARCH

The generation of a RAD MONARCH system is accomplished in two phases:

1. The Tape MONARCH system is converted to a RAD MONARCH system by an UPDATE opera­
tion (this step is unnecessary if begun from a tape-situated RAD MONARCH system).

2. The resultant NST (New System Tape) is input to a SYSGEN operation that copies the RAD
MONARCH system onto the RAD.

At this point, the Tape and RAD MONARCH systems are completely analogous since they are non­
resident and bootstrapped into memory in between jobs from the medium on which they are resident,
and control cards are identical except for the unit assignment of logical files to the RAD. For example:

Tape MONARCH

6ASSIGN 5 = MTO, Xl = MT1, X2 = MT2, 51 = CR, LO = CP, BO = MT3.

6META910 51, LO, BO

RAD MONARCH

6ASSIGN 5 = DF1A, Xl = DF1A, X2 = DF1A, 51 = CR, LO = LP, BO = DF1A.

6META910 51, LO, BO.

The sole difference is that the system (5) is assigned to the RAD and that Xl, X2, and BO may be
optionally assigned to the RAD. In all other respects the cards controll ing a job are identical within
the two systems. Since the Xl, X2 and BO (BI) files are treated as sequential, this includes the use of
REWIND cards wherever they are necessary in Tape MONARCH.

DIFFERENCES BETWEEN TAPE AND RAD MONARCH

Residency

File Access

No. Files

Sequential Access Time (avg.)

Transfer rate

Tape MONARCH

~42 locations (approx.)

sequential

= no. tapes

5 ms./ record

kc.

RAD MONARCH

~653 octal locations (approx.)

random

4:5, Xl, X2, BO/BI

17.5 ms./sector

558.6 kc.

The primary difference between Tape and Disc MONARCH is that tapes permit variable length record­
ing, whereas the RAD is read/written by sector. Therefore, a file management package is resident in

RAD MONARCH that "buffers" RAD I/O transfers. As a result, the sequential access time to the
RAD is actually dependent on the ratio of the average record length to the sector size. Moreover,
RAD MONARCH permits certain files to be accessed on a random basis. In this manner, loading time
for system processors is reduced to a minimum.

Organization of RAD Storage

Example:

RAD

() S) _BO_X_2 ___

CORE X7777

X6564

00000

UAT (11)

BAT

BRU

(11)

DUMP (1)

BRU TYPSM (1)

CAT (11)

FILE POINTERS (12)

RAD PACKAGE

BUFFERS

QBOOT

~ ~

BRU QBOOT (1)

ERASABLE (l)

Unit Assignment Table

Business Assignment Table

Linkage to Memory Dump

Linkage to Symbol Tbl. Dump

READ EOM/SKS Table

File Maintenance Pointers

RAD File Mgt. Package

RAD I/O Buffers (3)

Linkage to Bootstrap

RAD storage allocation is based on the concept of two concurrently active files. When the system is
generated, these are S (the System File itself) and D (the Directory). After the system is generated,
Sand D are closed, and the remain ing storage is used for the X 1 and X2 fi les. Since X2 and BO (BI)
are not simultaneously active, they both share the same file; X2 is defined as beginning immediately
after the BO file.

GENERATION OF RAD MONARCH

RAD MONARCH is generated by first bootstrapping the RAD MONARCH tape, and issuing the following
control messages:

6 ASSIGN S = MTO, Xl = DFuc, SO = X.
6SYSGEN N

This sequence of messages results in the system being read from magnetic tape 0 on channel A and
written on RAD unit "Ull, on channel IIC Il

, beginning with sector O. N is the number of files dedicated
to the RAD MONARCH system. A IIdirectory" of level 4 (61) files is maintained from sector N down­
ward. The original level 1 records are output on LO (LP or TY).

Example:

6ASSIGN S = MTO, Xl = DF1Y, LO = LP.
~SYSGEN 0, 4095.

71

72

The X2 and Xl files are then begun following the Sand D files. Levell identifiers are discarded from
the output (X 1) fi Ie during SYSGE N i level 2 records are abbreviated to the fi rst four words.

When the end of the Old System Tape (OST) is reached, the Sand D files are closed, the OST is
rewound, and control is returned to MONARCH.

SYSGEN uses the resident RAD package in performing all RAD I/O operations.

COMMUNICATION WITH THE RAD FILE MANAGEMENT PACKAGE

The RAD File Management Package is a fi Ie-oriented Input/Output Control System (lOCS) that provides
sequential access up to three concurrently active fi les (S, Xl, and X2). The operations provided are
Rewind, Open, Close, Read, Write, Write with Verification and Position.

The call ing sequence consists of a BRM followed by a pointer to a file description table:

BRM *QSYS

OP FDT

RETURN ((A) = II NEXT II RAD ADDRESS)

FDT RES

PZE RECORD ORIGIN (CORE ADDRESS)

DATA RECORD LENGTH

DATA LOGICAL FILE NO.

OP is a pseudo instruction whose value indicates the appropriate file operation.

0: Rewind

1 : Open

2: Close

3: Read

4: Write

5: Write with Verification (S and D only)

6: Position

The first word of the file description table is set by the file management package to indicate abnormal
conditions as follows:

Bit No.

2

3

5

Interpretati on

I/O Transmission error

EOF (read only)

Storage overflow (write only)

File protect (write only)

The correspondence between physical and logical files is as follows:

File No. File

o S

Xl

2 X2

3 BO/BI

4 D

The file management package behaves as though the RAD were word addressable. For each active file,
it maintains the "current sector" in core until it has been fully utilized, at which time the buffer is
emptied/refilled in preparation for the next sector. Since the sectors are ordinarily contiguous, the p-th
word is located at word r in sector q, where

p = q * 64 + r, 0 :s q :s 2047, o:s r :s 63.

X2 and BO are actually the same file, but are distinguishable from the standpoint of rewind. RAD files
are similar to tape files and are destructible when rewound, therefore, the same control cards can be
used for either Tape or RAD MONARCH. SKIPFILE, SKIPREC, BACKFILE and BACKREC are, however,
not provided for RAD files.

Each write on Xl and X2 is checked for infringement upon the other file (overflow of storage space).
Both files are rewound between JOBs.

Since RAD logical files would be expected to begin at a sector boundary only in rare instances, it is
necessary to open the file prior to recording or writing. For example, if the Xl file begins with the
fourth word in sector 040538, the file management routine must first transfer sector 040538 to the core
buffer before reading or writing can commence.

Similarly, all output files should be closed after the last write operation. The file management pack­
age automatically opens a file after a rewind operation.

The write with verification operation is used during SYSGEN to verify, by post-read, every RAD write
operation. Since the X2 file is not active during SYSGEN, its buffer is used for the post-read opera­
tion and is compared word-by-word with the contents of the S or D buffer. The user is cautioned not
to use write with verification, since he might inadvertently affect X2 or BO in doing so. -

The position operation is used by MONARC H to position S randomly, and I ike the rewind, it is auto­
matically followed by an open operation. To utilize this option, the contents of A must contain the
RAD address to which positioning is requested when the file management routine is entered.

Additional technical information on the File Management Routine may be found in the MONARC H
Technical Manual 90 06 16.

73

APPENDIX I. XDS CHARACTER CODES

Characters Internal Card
Code

BCD Code on
Magnetic Tape

Characters Internal
XDS Code

Card
Code

BCD Code on
Magneti c Tape Typewriter Printer XDS Code Typewriter Printer

2

3

4

5

6

7

8

9

Space

or =

@ or

>
.j

& or +

A

B

C

D

F

G

H

o

2

3

4

5

6

7

8

9

Blank

>

+

A

B

C

D

F

G

H

00

01

02

03

04

05

06

07

10

11

12

13

14

15

16

17

20

21

22

23

24

25

26

27

30

31

o

2

3

4

5

6

7

8

9

8-2

8-3

8-4

8-5

8-6

8-7

12

12-1

12-2

12-3

12-4

12-5

12-6

12-7

12

01

02

03

04

05

06

07

10

11

12(c)

13

14

15

16

17

60

61

62

63

64

65

66

67

J

K

L

M

N

o
P

Q

R

Car. Ret. !(a)

S

b

/
s
T

U

V

W

X

y

J

K

L

M

N

o
P

Q

R
!(e)

S

Blank

/
S

T

U

V

W

X

40

41

42

43

44

45

46

47

50

51

52

53

54

55

56

57

60

61

62

63

64

65

66

67

70

71

11

11-1

11-2

11-3

11-4

11-5

11-6

11-7

11-8

11-9

11-0(d)

11-8-3

11-8-4

11-8-5

11-8-6

11-8-7

Blank

0-1

0-2

0-3

0-4

0-5

0-6

0-7

40

41

42

43

44

45

46

47

50

51

52

53

54

55

56

57

20

21

22

23

24

25

26

27

Backspace? (a) 32

33

34

35

12-8

12-9

12-0(d)

70

71

72

73

74

75

76

77

Z

Tab t (a) 72

73

74

75

0-8

0-9

0-8-2

0-8-3

0-8-4

0-8-5

0-8-6

0-8-7

30

31

32

33

34

35

36

37

I1 or)

<
t Stop

NOTES:

74

36

37(b)

12-8-3

12-8-4

12-8-5

12-8-6

12-8-7

% or

\

... Delete

(

,.. (e)

\
... (e)

76

77(b)

(a) The chara<..ters ? ! and * are for input only. The functions Backspace, Carriage Return, or Tab always occur on output.

(b) On the off-line paper tape preparation unit, 37 serves as a stop code and 77 as a code delete.

(c) The internal code 12 is written on tape as a 12 in BCD. When read, this code is always converted to 00.

(d) The codes 12-0 and 11-0 are generated by the card punch; however, the card reader wi 1/ also accept 12-8-2 for 32 and
11-8-2 for 52 to maintain compatibility with earlier systems.

(e) For the 64-character printers only.

APPENDIX J. FORTRAN II RUN-TIME MAGNETIC TAPE OPERATIONS

Magnetic tape operation statements such as

READ INPUT TAPE expression, m, list

and

REWIND expression

will refer to logical unit K, where K is the (truncated) value of the expression.

Before execution of a FORTRAN II program, the logical unit numbers must be assigned to physical
devices. This is done with ASSIGN control messages as follows: For magnetic tapes,

.6.ASSIGN LK = P,

where

K = 0, 1, ••• , or 7

and

P = MTO, MT1, ••• ,MT7, MTOW, ••• , MTOY, ••• , or MT7Y.

For the Xl and X2 files on the

.6.ASSIGN Xl = DF, X2 = DF, L6 = Xl, L7 = X2.

Note that the order of assignment is from left to right; that is, Xl and X2 are dummy variables, and are
used only to distinguish between two RAD files.

The message

.6. ASSIGN LK = DF

is always taken as an abbreviation for

.6.ASSIGN Xl = DF, LK = Xl,

where

K = 0, 1, ••• , or 7; i.e., without a dummy variable, Xl is assumed.

Thus the above example can be shortened to

.6. ASSIGN L6 = DF, X2 = DF, L7 = X2.

The val ue of K in the system label, LK, corresponds precisel y to the va I ue of K in the FORTRAN II
magnetic tape operation statement such as

WRITE TAPE K, list

even when IItape" K has been assigned to one of the disc files. Only the Xl and X2 files of the disc
are available for this appl ication.

ERROR CONDITIONS

Figure 4 on the following pages illustrates run-time errors for 900 series FORTRAN II with and without
RAD, and indicates, for each of the errors,

message typed

whether a hal t occurs

cause of the error

contents of register at time of halt, if such information may be
usefui or if it may be changed before proceeding

result if program is allowed to continue.

75

76

Message Hal t Explanation

AGTO X Assigned GO TO - Variable never assigned. Variable displayed in X. Result: Branch to
{effective address determined by variable} + 1.

ARGM X Argument Mode - Argument of wrong mode given to FORTRAN subprogram. Proper mode
is fixed if A = 0, floating if A = 01000000. Dummy address of argument displayed in X.
Result: Argument used as if its mode were correct.

ARGN

CARD X

CGTO

CRDS

EFIA

EIOL X

EXP

FCHt x

FORL X

FORM X

FORP X

FXIO X

ICHt X

Argument Number - Wrong number of arguments given to FORTRAN subprogram. Result:
If too many, extra ones ignored. If too few, whatever arguments remain in erasable stor­
age will be used.

Card "READ CHECK" or "FEED CHECK" error - If "READ CHECK" light is on, the last
card read was in error. Place it back in the hopper. If "FEED CHECK" light is on, the
offe'nding card is still in the hopper. It probably has a wrinkled leading edge. Result:
Try to read the card again.

Computer GO TO - Value outside allowable range. Result: Go to first statement number
in list.

Card Reader Not Ready - Program has waited 15 seconds for reader. Place cards in reader
and press start. Result: Program continues to wait for reader. Typeouts occur in 5-minute
intervals.

E, F, I, or A Needed in FORMAT - Unable to output variables. Result: Proceeds without
outputting variables.

End Input/Output List encountered without prior initial ization. Resul t: Proceeds without
taking any I/O action.

Exponential Function - Argument greater than 176. Result: Answer set to maximum floating­
point value.

FORMAT Character Illegal - The illegal character is displayed as the fourth character {t} in
the message typed out. Result: Begins scan for next specification; i. e., treats character as
if it were a comma.

FORMAT Label Error - The scalar variable referenced by an I/O statement has not been as­
signed a FORMAT statement label. Result: The contents of the {effective address deter­
mined by the variable} + 1 is used as the address of the start of the FORMAT statement.

FORMAT Missing - I/O statement references something else. X = address of supposed FOR­
MAT. A = first word of supposed FORMAT. Result: Scans supposed FORMAT.

FORMAT Pointer Error - The address in the I/o I ist pointing to the FORMAT statement is not
in an acceptable form; i.e., HLT, BRU or AGT {112 or 113}. X = address of pointer. A =
bad pointer. Result: Pointer at address specified by X is treated as if it had form specified
by a HLT.

Floating or Fixed Data requested for I/o without prior initial ization. Result: Proceeds
without taking any I/O action

Input Character Illegal - The illegal character is displayed as the fourth character {t} in the
message typed out. Result: Begins scan for next field; i. e., treats character as if it were
a comma.

Figure 4. FORTRAN Run-time Errors

,

Message Halt Explanation

IFSL

IFSS

INOV

LABL x

LCRD X

LOG

NO[x

N**F

OCTt

PNCH

PRNT

PRTY X

REP[

REP$

SIZE x

SNLT

SQRT

XPOV

XPUN

O**N

[OVF X

TPNO X

, ,

If Sense Light - Value not 1-24. Resul t: Assume sense I ight off.

If Sense Switch - Value not 1-4. Result: Assume sense switch off.

Integer Overflow - Input value of integer quantity exceeds 8,388,607. Result: Number
truncated to the least significant 24 bits.

Label Undefined - Result: Computer will not proceed.

Last Card Read in Error - Mayor may not be caused by a val idity check. Place the last
card back in the hopper. Result: Try to read the card again.

Logarithm Function - Argument negative or zero. Result: Answer set to zero.

No left parenthesis in FORMAT statement - Result: Computer will not proceed.

Negative Number Raised or Nonintegral Power. Result: Computes (I N 1* *F).

Non-Octal Character (t) encountered during input under octal FORMAT specification.
Result: Character is truncated to 3 least significant bits.

Card Punch Not Ready - Program has waited 15 seconds for punch. Make the punch ready.
Result: Continues to wait. Typeouts occur in 5-minute intervals.

Printer Not Ready - Program has waited 15 seconds for printer. Make the printer ready.
Result: Continues to wait. Typeouts occur in 5-minute intervals.

Parity Error During Input - Result: Processing continues using incorrect character.

Repeat Count Precedes Outermost [in FORMAT - Resul t: Where appl icable, group repeat
count is applied to entire FORMAT specification.

Repeat Count Precedes $ in FORMAT - Result: Repeat count is ignored.

Size of Erasable Storage Exceeded - There is no unused memory in which to transfer argu­
ments to subroutines. Result: Erasable storage will run into COMMON, if any, or out of
memory.

Sense Light - Value not 0-24. Result: Statement has no effect.

Square Root Function - Argument negative. Result: Square root of absolute value of
argument.

Exponent Overflow on Input Datum - Result: List item set to positive maximum (approxi­
mately .579 x 1077).

Exponent Underflow on Input Datum - Result: List item set to zero.

Zero Raised to Nonpositive Power - Result: (0* *0) wi II be 1 or 1.0, and (0** NEGATIVE)
wi II be the maximum possible integer or floating number, as the case may be.

Nesting Level Exceeded - Limit on number of parenthesized groups of FORMAT specifications
is normally 4 levels. Result: Higher levels of nesting are disregarded.

Logical Unit Number Not 0.7 - Logical unit number displayed in A. Result: Number will be
truncated and the low-order octal digit (0-7) wi II be used.

Figure 4. FORTRAN Run-time Errors (cont'd)

77

78

Message Halt Explanation

x

EOF# x

x

x

x

x

x

x

WEF# x

x

x

DWC# x

DTE# x

For the remainder of the tape errors, the logical unit in error will be indicated as the
fourth character (#) of the message typed out.

Backspace - Failed '10 Times. Resul t: Proceed as if backspace has successfully taken
place.

End of File Reached During Reading - Result: Continue to read past end of file.

End of Tape While Reading - Remove the finished tape and replace with next reel. Result:
Continue reading.

End of Tape While Writing - Remove the finished tape and replace with next reel. Result:
Continue writing. This, in conjunction with ETR, facilitates writing and reading of mul­
tiple reels.

File Protect - Attempted to write on tape which is file protected. Result: Check again.

Long Record Read - READ TAPE (binary) has read a logical record which contains more in­
formation than is required by the I/O I ist. Result: The remainder of the record is skipped.

Read Tape Error - Failed to read 10 times. Result: Proceed assuming read to have been
satisfactory •

Short Record Read - READ TAPE (binary) attempting to read more information from a logical
record than is present. Result: Remaining items in the I/O list are supplied with words of
zero.

Tape Not Ready - Program has waited 3 minutes, 17 seconds for tape unit. Ready the tape
unit. Result: Program continues to wait for tape unit. Typeouts occur in 3-minute, 17-
second intervals.

Write End of File Error - Result: Try again.

Write Tape Error - Failed to write 5 times. Result: Proceed, assuming write to have been
satisfactory •

Attempted to read a nonexistent record on X 1 or X2 disc file - Result: Return to MONARCH.

Inval id word count in second word of a disc file record - Result: Return to MONARCH.

Disc Transmission Error - (A) 1 = 1 impl ies read/write error. (A)3 = 1 impl ies an unsatisfied
request to write due to lack of any further available disc storage. (A)5 = 1 implies write
operation was attempted into a file protected area. Result: If rewind or open operation,
try again. If read or write operation, proceed, assuming operation to have been satisfactory.

Figure 4. FORTRAN Run-time Errors

INDEX

A
Action subroutines, 16
ALGOL, 6,9
ALGOL compiler, 1,9, 17

equipment configuration, 2
source deck structure, 34

ALGOL loader, 11
ALGOLOAD, 6, 11
ASSIGN, 5,16,42

B
BAC KFILE, 6, 13, 14
BACKREC, 6, 13, 14
Batch processing, 1,35
Blank COMMON references and definition, 17
Blocking mode, 24
BOOTLOAD, 6, 14
Bootstrap, 1,9, 14, 16, 17
Bootstrap loader, 1, 16, 17
Business Language Assignment Table (BAT), 6,40,41,42

c
C, 4,6, 11,36
Card read/punch subroutine, 16
CARDTAPE, 6, 15
CDRP, 15
Character Set, 69
COMMON relocation, 49
Control messages, 4, 5

ALGOL, 6,9
ALGOLOAD, 6, 11
ASSIGN, 6, 16,42
BAC KFILE, 6, 13, 14
BACKREC, 6, 14
BOOTLOAD, 6, 14, 15
C, 4,6, 11, 36
CARDTAPE, 6, 15
DISPLA Y, 6, 12
ENDJOB,6
EOF, 6, 14, 15
FILLSYS, 5,9
FORTLINK, 6, 11,55,56,57,58
FORTLOAD, 6, 10, 11
FORTRAN, 6,8
JOB, 6
LABEL, 6, 12
LOAD, 6,9, 10
ME T AXXXX, 6, 7
ONLINE, (see ASSIGN)
POSITION, 6, 13
REWIND, 6,13
RTFTLOAD, 6, 11
RTFTRAN, 6,8

Control messages (cont.)
SET, 6, 12
SHOW (see DISPLAY)
SKIPFILE, 6, 13, 14
SKIPREC, 6,13,14
SYMBOL, 6,7
UPDA TE, 6, 15
WEOF, 6, 14

COPY, 23-29

o
Data records, 18,48,49,60
Decimal integer, 5
Diagnostics, 66

FORTRAN II, 68
META-SYMBOL, 66,67
MONARCH, 38
SYMBOL, 67,68

DISPLA Y, 6, 12

E
ENDJOB, 6
End-of-fi Ie (EOF) mark, 13, 15,56,57
End record, 64, 65
EOF, 6, 13, 15
Equipment configuration, 1,2
Error switch, 6, 10, 16,40 (see JOB, ENDJOB)
External label references/definitions/ 17, 18, 19,20, 50,

51,60,62
External POP references/definitions, 17, 18, 19,20,49,

51, 52, 53, 60, 62, 63, 64

F
FI LLSYS, 5,9
Format of control messages, 4
FORTLINK, 6, 11, 55, 56, 57, 58
FORTLOAD, 6, 10, 11
FORTRAN, 6,8
FORTRAN II compiler, 1,9, 17

equ i pment configurati on, 2
linking, 9,55-59
source deck-structure, 31

FORTRAN loader, 9,38, 39
Functions of MONARCH, 2
Furnishing control messages, 36

H
Halts (MONARCH programL 38

Input control messages, 9, 10, 11
ALGOLOAD, 6, 11

79

Input control messages (cont.)
FILLSYS, 5,9
FORTLINK, 6, 11,56,57,58
FORTLOAD, 6, 10, 11
LOAD, 6,9, 10

I/O device specification, 5
I/O subrouti nes {standard}, 16, 17,40,41,42

J
JOB, 6
Job mode, 6
Job switch, 1, 10, 16,40

L
LABEL, 6, 12, 13
Level 1/2 ID records, 10,12,13,23,24,25,26,27,28
library (MONARCH), 17

Loading from, 18, 19, 20
line printer output subroutine, 16, 18
linking (FORTRAN), 9,55
linking process (FORTRAN), 55, 56
literal parameters, 5
LOAD, 6,9, 10
Loader, 1,9,16,17,21,22,23
Loading the MONARCH system, 36,43,48
Load relocation, 49

M
Magnetic tape I/O subroutine, 16
Memory allocation, 17, 18,44
Memory dump routine {see Octal Dump Routine}
META-SYMBOL assembler, 1,2,7, 17

equipment configuration, 2
error messages, 66
source deck structure, 31
updating of, 54

ME T AXXXX, 6, 7
MONARCH

bootstrap, 1,8,9, 14, 16, 17, 18,45
ID records 10, 12, 13, 23, 24, 25, 26, 27, 28, 42, 43, 44
library, 17,18,19,20
loader, 1,9, 10, 16, 17, 18,20,48
system, 16, 43, 44

Monitor, 1,2, 3, 16, 17
MTAPE, 16,48

N
Numeric parameters, 4

o
Octal correction routine, 21,22
Octal dump routine, 16,21
Octal integer, 4
ONLINE, 6
Operating environment, 1
Operating procedures, 36

80

p

Paper tape/typewriter I/O subroutine, 16
Parameters of control messages, 3

literal, 5
numeric, 4
symbolic, 5

POP relocation, 49
POSITION, 6, 13
Preparing program decks, 30

ALGOL, 34
batch processing, 35
FORTRAN II, 31
META-SYMBOL, 30

PRINT, 16
Program, 18
Processor control messages, 6, 7

ALGOL, 6,9
FORTRAN, 6,8
ME T AXXXX, 6, 7
SYMBOL, 6,8

Processor error switch (see Error Switch)
PTYIO, 16,48

o
QBINI, 18,41
QBINO, 41
QBOOT, 17
QDUMP, 16,21
QMSG, 18,23,41
QPESW, 40
QSYLDR, 22
QSYMO, 24,41
QSYS, 24,41
QSYSI, 41
QSYSP, 41
QSYST, 23,41
QSYSU, 23,41

R
Recovery procedure, 38
Rei ocation and data records, 19,49,50
Resident, 1, 16, 17
Restart procedure, 17
REWI ND, 6, 13

s
Search subroutine, 13, 16
Separators, 4
SET, 6, 12
SHOW, 6, 12
SKIPFILE, 6, 13
SKIPREC, 6, 13
Special I/O relocation, 50
Standard bi nary language, 17,60
Standard system routines, 16
Storage allocation, 18,44

SYMBOL, 6,8
SYMBOL assembler, 1,8, 17

equipment configuration,
error messages, 67,68

Symbol i c parameters, 5
Symbol table, 8, 17,38,52
Symbol table typeout routine, 15, 18, 19,20
Syntax of control messages, 4
System control messages 6

ASSIGN, 6,16,42
ENDJOB, 6
JOB, 6
ONLINE, 6
SYSE ND, 12,28,29, 43, 48

System maintenance messages
UPDATE, 6, 15

System output, 38

T
Tape search routine, 13, 16
Termination of a run, 17
TYPSY5, 21

u
Unit assignment table (UA T), 1, 16, 17, 18,40
UPDATE, 6, 15
Update routine, 1, 15, 16,23

blocking/normal mode, 24
COpy message, 24, 25, 26, 27

Update routine (cont.)
deletion, 25
insertion, 24,25
replacement, 25
retention, 25
UPDATE, 6, 14
update file, 23,24
updating META-SYMBOL, 54

Utility functions messages, 6
BAC KFI lE, 6, 14
BACKREC, 6, 14
BOOTlOAD, 6, 14

v

C, 4,6,7, 11,36
CARDTAPE, 6, 15
DISPLAY, 6, 12
EOF, 6, 14
LABEL, 6
POSITION, 6, 13
REWIND, 6, 13
SET, 6, 12
SHOW, 6, 12
SKIPFIlE, 6, 13
SKIPREC, 6, 13
WEOF, 6, 14

Value of a parameter, 4

w
WEOF, 6, 14

81

XErOX Data SystEms 701 South Aviation Blvd. / EI Segundo, California 90245 (213) 772-4511/ Cable SCIDATA / Telex 674839/TWX 910-325-6908

EASTERN TECHNOLOGY
CENTER
12150 Parklawn Drive
Rockville, Maryland 20852
(301) 933-5900

PRINTED CIRCUITS DEPT.
600 East Bonita Avenue
Pomona, Calif. 91767
(714) 624-8011

TECHNICAL TRAINING
5250 West Century Blvd.
Los Angeles, Calif. 90045
(213) 772-4511

INTERNATIONAL
MANUFACTURING SUBSIDIARY

Scientific Data Systems Israel, Ltd.
P.O. Box 5101
Haifa, Israel
04-530253, 04-64589
Telex 922 4474

SALES OFFICES

Western Region

Building Arts Bldg.
Suite G100
5045 N. 12th St.
Phoenix, Arizona 85014
(602) 264-9324

1360 So. Anaheim Blvd.
Anaheim, Calif. 92805
(714) 774-0461

5250 West Century Blvd.
Los Angeles, Calif. 90045
(213) 772-4511

Vista Del Lago Office Center
122 Saratoga Avenue
Santa Clara, Calif. 95050
(408) 246-8330

13701 Riverside Drive
Sherman Oaks, Calif. 91403
(213) 986-5510

*Wells Fargo Building
Suite 410
Del Amo Financial Center
21535 Hawthorne Blvd.
Torrance, Calif. 90503
(213) 542-5561

• Regional Headquarters

3333 South Bannock
Suite 400
Englewood, Colo. 80110
(303) 761-2645

Southern Region

S~ate National Bank Bldg.
Suite 620
200 W. Court Square
Huntsville, Alabama 35801
(205) 539-5131

320 Ward Avenue
Honolulu, Hawaii 96814
(808) 531-8257 Orlando Executive Center
Fountain Professional Bldg. 1080 Woodcock Road
9004 Menaul Blvd., N.E. Orlando, Florida 32803
Albuquerque, N.M. 87112 (305) 841-6371
(505) 298-7683

EI Paso Natural Gas Bldg.
Suite 201
315 E. 2nd South Street
Salt Lake City, Utah 84111
(801) 322-0501

400 Building
Suite415
400 108th Avenue N.E.
Bellevue, Wash. 98004
(206) 454-3991

Midwestern Region

2964 Peachtree Road, N.w.
Suite 350
Atlanta, Georgia 30305
(404) 261-5323

Jefferson Bank Bldg.
Suite 720
3525 N. Causeway Blvd.
Metairie, Louisiana 70002
(504) 837-1515

4920 S. Lewis Avenue
Suite 103
Tulsa, Oklahoma 74105
(918) 743-7753

* International Towers Building One Turtle Creek Village
6th Floor Dallas Texas 75219
8550 West Bryn Mawr Avenue (214) 528-6580
Des Plaines, IllinOIS 60018
(312) 693-6060 * 2300 West Loop South

Clausen Bldg., Suite 310 Suite 150
16000 W. Nine Mile Road Houston, Texas 77027
Southfield, Michigan 48075 (713) 623-0510
(313) 353-7360

4410 Woodson Road
Suite 111
St. Louis, Missouri 63134
(314) 423-6200

One Erieview Plaza
13th Floor
Cleveland, Ohio 44114
(216) 522-1850

Seven Parkway Center
Suite 238
Pittsburgh, Pa. 15220
(412) 921-3640

Eastern Region

10227 Wincopin Circle
Suite 716
Columbia, Maryland 21043
(301) 730-4900

20 Walnut Street
Wellesley Hills, Mass. 02181
(617) 237-2300

Brearley Office Building
190 Moore Street
Hackensack, N. J. 07601
(201) 489-0100

The Fortune Building
280 North Central Avenue
Hartsdale, New York 10530
(914) 948-2929

*1301 Avenue of the Americas
New York City, N.Y. 10019
(212) 765-1230

673 Panorama Trail West
Rochester, New York 14625
(716) 586-1500

P.O. Box 168
535 Pennsylvania Ave.
Ft. Washington Industrial Park
Ft. Washington, Pa 19034
(215) 643-4250

Kogerama Building
Suite 212
No.1 Tidewater
Executive Center
Norfolk, Virginia 23502
(703) 497-6811

INTERNATIONAL OFFICES
& REPRESENTATIVES

European! African Headquarters

Scientific Data Systems
York House, Empire Way
Wembley, Middlesex
HA 9 OOB
England
(01) 903-2511, Telex 27992

Sweden
Nordisk Elektronik AB
Stureplan 3
Stockholm 7
(08) 248340

Denmark

A/S Nordisk Elektronik
Danasvej 2
Copenhagen V
EVA 8285 / EVA 8238

Norway

Nordisk Elektronik (Norge) A/S
Middelthunsgt. 27
Oslo 3

Washington (D.C.) Operations (2) 60 25 90

*2351 Research Blvd.
Rockville, Maryland 20850
(301) 948-8190

Canada

864 Lady Ellen Place
Ottawa 3, Ontario
(613) 722-8387

1009 7th Avenue, S.w.
Calgary 2. Alberta
(403) 265-8134

280 Belfield Road
Rexdale 605, Ontario
(416) 677-8422

1901 North Service Road
Trans-Canada Highway
Dorval, P.O.
(514) 683-3755

France

Compagnie Internationale
pour l'lnformatique, C.1.1.
66, Route de Versailles
78-Louveciennes
Yvelines
951 86 00 (Paris area)

Israel

Elbit Computers Ltd.
Subs1diary of Elron
Electronic Industries Ltd.
88 Hagiborim Street
Haifa
6 4613

9005 660

	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	xBack

