— N

SCIENTIFICG DATA SYSTEMS

Reference Manual

SDS Real-Time MONITOR

Price: $2.00

SDS REAL-TIME MONITOR
REFERENCE MANUAL

900 SERIES/9300 COMPUTERS

February 1966

SIDS

/1649 Seventeenth Street/Santa Monica, California/UP 1-0960

v}

'STEM

w

© 1966, Scientific Data Systems, Inc. Printed in U.S.A,

RELATED PUBLICATIONS

Name of Document

SDS SYMBOL and META-SYMBOL Reference Manual
SDS Business Language Reference Manual

SDS FORTRAN 1V Reference Manual

SDS FORTRAN 1V Operations Manual

SDS 910 Computer Reference Manual

SDS 920 Computer Reference Manual

SDS 925 Computer Reference Manual

SDS 930 Computer Reference Manual

SDS 9300 Computer Reference Manual

Publication No.

90 05 06
90 10 22
90 08 49
90 08 82
90 00 08
90 00 09
90 00 99
90 00 64
90 00 50

INTRODUCTION

Features

General Description

Hardware Requirements

MONITOR CONTROL MESSAGES

System Control Messages
Processor Control Messages

Sequential File Subcontrol Messages
Input Control Messages

Operator Control Messages

LOADING

Batch Jobs without Overlay.

Batch Jobs with Overlay.

Loading to and from Secondary Library.
Loading Resident, Real-Time Programs

PREPARING THE PROGRAM DECK

META-SYMBOL Initial Assembly.

META-SYMBOL Assembly with Corrections—

FORTRAN Comepilation

FORTRAN Compile-and-Execute

Overlay Program Example

Multiple Program Example

SYMBOL Program Example

REAL-TIME OPERATIONS
DEBUGGING
OPERATOR ACTIONS

CONTENTS

1 8. MONITOR INTERFACES

1 /O Operations

1 /O Programming

2 Magnetic Tape Operations

Card Reader Punch Operations

3 Line Printer Operations
Paper Tape and Typewriter Operations
3 Disc File Operations
5 MONITOR Subroutines
8 Standard Calling/Receiving Sequences
8
8 9. SYSTEM UPDATE ROUTINE
10 General Description
Update Processor Control Messages
10
10 10. SYSTEM GENERATION
1"
11 General Description
SYSGEN Control Messages
12 System Standard Assignment Generation
12 Standard Assignment Modifications
12 User Hold Files (Disc)
12 General System Generation
12 Summary of SYSGEN Messages
13
14 INDEX
P APPENDIXES
15
16 A SDS STANDARD BINARY LANGUAGE
17 B 900 SERIES REAL-TIME TAPE MONITOR

18

18
19
21
21
22
22
23
24
27

32

32
32

33
33
33
34
34
34
35
35

48

41

47

1. INTRODUCTION

The Real-Time MONITOR' for SDS 900 Series and 9300
Computers is a comprehensive system for monitoring and
controlling assemblies, compilations, and other program
operations. Some of its outstanding features are:

o efficient system operation with minimum operator in-
tervention;

® an easy-to-use, on-line, real-time input/output facil-
ity having maximum efficiency, while taking into ac-
count the needs of the user's program (1/O operations
are performed simultaneously with the user's program);

e an open-ended set of processors that include the SDS
META-SYMBOL assembler and SDS FORTRAN 1V; and

e a system of diagnostic routines, including highly sel-
ective program dumps.

Rapid Access Disc (RAD) Files are used as the storage medi-
um for MONITOR, the processors that it controls, library
routines, and system scratch and user files. MONITOR is
also available in a magnetic-tape version, for use with
systems that do not have RAD Files. If the tape version of
MONITOR is used, loading to the secondary library cannot
be accomplished by MONITOR, since the secondary library
must be created at system generation time. Also, any ref-
erences (in this manual) to HOLD files, sequential disc
files, and random access disc files are not applicable to the
tape version of MONITOR. All other facilities, however,
are provided (see Appendix B).

All major elements of MONITOR are stored on the RAD
Files in such a way that they are always available to the
system. Accordingly, these elements are said to be system
resident. The system resident feature, among others, en-
ables MONITOR to operate in real-time, providing the user
with a time-sharing environment in which to solve both
real-time and nonreal-time problems. The full real-time
processing capability of the hardware is utilized through
interrupt control, with a minimum of effort on the part of
the user. Batch processing functions, such as the compila-
tion of FORTRAN 1V programs and the assembly of SYM-
BOL/META-SYMBOL programs, are provided also. Both
forms of processing may be carried out intercurrently, i.e.,
allowing interrupt service routines to be resident while
batch processing functions are carried out, preempting con-
trol when an interrupt occurs, and restoring control to the
batch processing function when interrupt servicing is com-
pleted.

FEATURES
BATCH PROCESSING

Except for the servicing of interrupts, all operations are
considered to be in the batch processing mode. A batch
processing function may be "swapped out" if its storage is

t
Theatiaha H umen H H
Throughout this document, the entire system will be re-

ferred to as MONITOR, as distinct from "the monitor" which
is a primary control portion of the system.

needed by an interrupt service routine. An interrupted func-
tion will resume execution from the point of interrupt, after
the interrupt has been serviced completely. A portion of
RAD storage is reserved for the "swap out" operation.

Files used during batch processing are protected from des-
truction by interrupt service routines for the duration of the
job. Conversely, files that have been reserved explicitly
for interrupt servicing may not be accessed by batch process-
ing functions. When interrupt service routines are resident
in core memory, batch processing jobs are prohibited from
doing "compile and go" operations. This is done to protect
resident real-time programs from destruction by batch job
execution.

REAL-TIME PROCESSING

Any interrupt service routine may be made resident in core
storage if sufficient storage is available. References to pri-
mary library routines within such resident programs are sat-
isfied at the time that they are loaded. References to other
routines are satisfied at execution time, by dynamically
loading the referenced program into unused storage. Such a
dynamic load may cause an interrupted batch job to be
"swapped out" if sufficient storage is not otherwise available.
Routines that have been dynamically loaded may themselves
cause dynamic loading of other routines.

Core storage used by resident interrupt service routines can
be protected through use of the optional Memory Protection
Feature.

DISC FILES

The user may define his own disc files. Such files may be
either random access or sequential. Sequential files can be
considered to be simulations of magnetic tape files. Conse-
quently, it is possible to have essentially device-independent
files defined in a program, and to determine the device at
the time of execution.

GENERAL DESCRIPTION

The main elements in the MONITOR system are a resident
monitor, a FORTRAN 1V processor, a SYMBOL assembler, a
META-SYMBOL assembler, an overlay loader, a memory
dump program, an I/O processor, a primary library, o sec-
ondary library, and an update program.

RESIDENT MONITOR

The resident monitor consists of an executive, an interrupt
monitor, a reentrance monitor, a system bootstrap program,
and a resident loader.

Executive
e executive is the central system control, and processes

control messages. Provision is made, in the executive,
symbolic access to resident user programs.

- pp—

fo

Interrupt Monitor

The interrupt monitor controls all interrupt processing. When
an interrupt occurs, the interrupt monitor saves hardware and
program status information and performs other functions before
turning control over to the appropriate interrupt service rou-
tine. After completion of the interrupt service routine, the
interrupt monitor restores the previous program and hardware
status in the computer, clears the interrupt, and returns control
to the point in the program at which the interrupt occurred. In
addition to program status information, each interrupt save
block includes the contents of the following registers:

4. FORTRAN double-precision register
5. FORTRAN complex register
6. Location 0 (900 Series only)

1. A register
2. Bregister
3. X register(s)

Interrupt save blocks are placed in dynamic storage, and
are restored following the servicing of each interrupt.

The interrupt monitor is itself interruptable and reentrant.
All pointers, counters, etc., that are interrupi-level de-
pendent are contained withing the interrupt monitor as tem-
porary storage locations (temps), and are thus saved when-
ever the interrupt monitor is interrupted. These include
storage allocation pointers, the interrupt level counter, re-
entrance list pointers, and so forth.

Reentrance Monitor

The reentrance monitor determines whether or not a subpro-
gram is being reentered as the result of an interrupt. When
this is the case, the reentrance monitor saves the previous
status of the routine before allowing it to be reentered. The
local variables, temps, return address, calling argument
addresses, etc., are stored in a push-down list. Each item
in the reentrance push-down list is chained to the previous
item, so that the interrupt monitor can scan the list when
operations are complete at the end of each interrupt level
and restore the information saved at that level.

System Bootstrap Program

The system bootstrap program is an absolute program that
can read itself into core memory from disc storage. It
causes the MONITOR to be read into core memory and
causes the executive wait loop to be entered.

Resident Loader

The resident loader consists of a loader control program, a
semiabsolute loader, an implicit call processor, and vari-
ous utility routines. It is used to load all programs from
the system files, including programs from the primary lib-
rary, the secondary library, and the overlay file.

REAL-TIME FORTRAN 1V

The FORTRAN 1V processor will operate in real-time and is
ASA compatible.

META-SYMBOL ASSEMBLER

The META-SYMBOL assembler translates source programs,
written in symbolic code, into machine language programs.

SYMBOL ASSEMBLER

The SYMBOL assembler is similar to the META-SYMBOL as-
sembler, but without some of the latter's advanced features.

OVERLAY LOADER

The overlay loader converts relocatable programs into a
form suitable for loading. It allows the loading and oper-
ating of a program in segments.

MEMORY DUMP PROGRAM

The memory dump program can be called during batch pro-
cessing as the result of a control message. A dump may be
taken of any specified area of memory and the information
dumped is in octal format.

SYSTEM I/O PROCESSOR

The system 1/O processor is a general 1/O package that is
used to process all input/output functions, including system
requests. All I/O operations occur on a first-come-first-
served basis; and an operation, once started, continues to
completion. Prior to the start of any 1/O operation, an in-
terrogation is made to determine whether or not the physical
file has been reserved. If the file has been reserved, and if
the request is from a resident program, - the request is ser-
viced; otherwise, an error message results.

PRIMARY LIBRARY

The primary library consists of user routines such as mathe-
matical routines and FORTRAN 1/O and system routines.
Other routines may be added at the user's discretion. A de-
bug program is provided as a standard feature and includes
such facilities as tracing, patching, snapshots, memory dis-
play, and address search.

SECONDARY LIBRARY

The secondary library includes user routines such as interrupt
service routines and batch processing production programs.

UPDATE PROGRAM

The update program, accessed by means of control messages,
has the ability to perform the standard file maintenance
functions of insertion, deletion, and replacement. It may
be used for both system and user file updates.

HARDWARE REQUIREMENTS

MONITOR will function in any SDS 900 Series/9300 Com-
puter having at least 16K words of core memory. The META-
SYMBOL assembler requires 12K words of memory. If there
are to be no real-time resident programs and if META-
SYMBOL is not to be used, the minimum required memory
for MONITOR is 8K words. If real-time programs are to be
in residence, at least 12K words are required.

The system requires interlace on each channel or buffer con-
trolling:

1 Typewriter

1 Magnetic Tape Unit

1 Card Reader

1 Rapid Access Disc File (524K characters.)

MONITOR has provisions for using the optional memory
protection, multiple memory bank, and power-fail-safe
features.

2. MONITOR CONTROL MESSAGES

The user directs and controls MONITOR via control mes-
sages. These messages direct the construction and execu-
tion of programs and provide the link between the program
and its environment. The environment includes MONITOR
and its processors, the computer operator, and peripheral

equipment.

The control messages are

System Control

Loader Control

JOB SEG

ASSIGN INCLUDE

RELEASE

DATE Sequential File Subcontrol

TITLE

MESSAGE BACKSPACE

LABEL REWIND

PAUSE ENDFILE

Processor Control Operator Control

METAXXXX ABORT

SYMBOL "GO

FORTRAN RETRY

LOAD ERROR
CONNECT

Input Control

EOF

DATA

FIN

Control messages have the general form

AMNEMONIC SPECIFICATION

A space must follow the mnemonic, and no spaces are al-
lowed within the mnemonic.

Columns 73-80 are not interrogated and may be used for
identification.

SYSTEM CONTROL MESSAGES

JOB JOB signals the completion of the previous
job and the beginning of a new job.

AJOB X...X

X...X is any field desired by the user. Provision is made

for the insertion of installation accountingroutines,

i.e., those monitoring the running characteristics of
the jobs performed such as running time, units used,
output quantity produced, etc.

When a job message is encountered, all user's operational
labels (relating to a previous job), are deleted from the
operational table.

ASSIGN ASSIGN provides for equating logical peri-
pheral device names, designated by the user, to physical
peripheral device names permanently established for the
system. The operator normally generates ASSIGN cards
from programmer-supplied job request information.

AASSIGN A=B(N), RESERVE, HOLD

A is a symbolic file name of from 1 to 8 characters,
designated by the user.

B is either a symbolic file name or else the permanent
symbolic unit name of an attached physical unit. If
B is a symbolic file name, it must have beendefined
previously.

(N) is a numeric constant which specifies a maximum
size, in words, of disc storage to be allocated to
this file. A size must not be specified for files not
assigned to disc storage or for sequential disc files.
A size must be specified for all random-access disc
files. If B is a symbolic file name, (N) must not
be specified.

RESERVE may be used when assigning files to be used
by real-time programs only. The RESERVE option
specifies that the file named may be read or written

by real-time programs only.

HOLD applies to disc storage only. If a file is assigned
to disc storage, it will become a permanent file
whenever HOLD is specified and will remain on

disc storage until released by a ARELEASE message.

B Device

MD Magnetic drum
MT Magnetic tape
Ccp Card punch

CR Card reader

PP Paper tape punch
PR Paper tape reader -
TY Typewriter

LP Line printer

DF Disc file

PL Plotter

NO No /O desired

The user may fill an ASSIGN card with as many complete
assignments as will fit; no continuation is allowed.

Examples:
AASSIGN ABBC=MT2A, QRZ=ABBC, 2=DF1A(5000)

Assign the magnetic tape 2 on channel A to the label ABBC,
assign the label ABBC to the label QRZ, assign disc file 1
on channel A to the label 2 and allocate 5000 words of disc
storage.

AASSIGN ABC=MT3A, TYP=TYIA

Assign the magnetic tape 3 on channel A to the label ABC
and the typewriter 1 on channel A to the label TYP.

Note that magnetic tape units are numbered 0 through 7; all
other devices are numbered from 1.

MONITOR-defined system labels may be used as labels in
ASSIGN control messages.

The complete set of standard file names that may be used
with ASSIGN control messages (or RELEASE control messages

explained below) are as follows:

System Labels

Reassign-

Label Reference able ?
R\PROC | Processor file No
R\PROK PROC deck file No
R\PRIL Primary library file No
R\SECL Secondary library file No
R\OVRL | Overlay library file Yes
R\PERM Permanent file No
R\CONS | System typewriter No
R\SWAP Swap file No
R\DUMP Post-mortem-dump file Yes
C Control message input Yes
Xi Scratch files, where

i=1,23,... Yes
SI Symbolic input Yes
SO Symbolic output Yes
El - Encoded input Yes
EO Encoded output Yes
LO Listing output Yes
GO Binary output for load-and-GO | Yes
BI) Binary input Yes
BO Binary output Yes
TY Typewriter Yes
NO No /O operation No

Assignment, release, and reservation of files isaccomplished
through the use of File Control Blocks (FCBs) which commu-
nicate information about files to the system 1/O handler.

Reservation of a file by MONITOR is accomplished by set-
ting the reserve bit in the FCB for that file. Reservationof

files not assigned to disc storage results in a reservation of
the physical unit being assigned.

MONITOR accomplishes the reservation of files assigned to
disc storage by allocating a disc storage areq, of the re-
quired size, ond adding the FCB to o table of FCBs on disc.

RELEASE RELEASE pertains to HOLD disc files or to
those files that have been reserved.

ARELEASE A, A A A

A is a symbolic name of from 1 to 8 characters.

RELEASE instructs MONITOR to release the specified file(s)
from its previous assignment.

DATE DATE gives MONITOR the date to be used
for heading outputs. The date is also listed on the LO (list-
ing output) media after each JOB card. (The assignment of
a device as the one on which listing output is to be produced
is explained under "Processor Control Messages. ")

ADATE DAY, MONTH, YEAR

DAY is a 1= or 2-digit number.

MONTH is a 3-letter abbreviation; if it is expressed, DAY

must also be expressed.

YEAR is a 4-digit number; if it is expressed, MONTH
must also be expressed.

TITLE The TITLE control message may appear any-

where after a JOB message and before a LOAD message. The
purpose of the TITLE control message is to produce a heading
at the beginning of each page on the LO media. MONITOR
begins counting headed pages whenever a TITLE control mes-

sage appears, and it incorporates this information info the
heading.

ATITLE

The contents of columns 9 through 72, the current date, and
the number of the page appear ot the beginning of each new
page on the LO media.

MESSAGE The MESSAGE control message may appear
anywhere.
AMESSAGE

The contents of columns 1 through 80 are output on the sys-
tem console typewriter and on the TY device (if not the same
as the system console), and LO devices specified by pro-
cessor control cards.

LABEL The LABEL control message may appear any -
where before the processor and LOAD control messages.
The LABEL control message enables the user to write a la-
bel on the GO file (i.e., the file used to store the binary
listing output in assemble~and-execute or compile-and
execute processing) preceding the binary object code.

ALABEL X...X

X...X s the label to be written on the GO file. It may
be up to 8 characters in length.

PAUSE The PAUSE control message causes MONITOR
to wait for an operator response before continuing, allow-
ing time for the operator to perform some manual function
(such as changing a tape reel).

APAUSE MESSAGE

This control message will cause the message
PAUSE TYPE AABORT, AGO

to be produced on the system console preceded by the
MESSAGE, and will cause the program to loop until the
operator responds. (See Operator Control Messages.") It
may occur anywhere.

PROCESSOR CONTROL MESSAGES

Processor control messages tell MONITOR what system, such
as FORTRAN, is to be used with the input deck to follow.
Any processor message also contains a list of input and out-
put specifications to be used during the assembly or com-
pilation.

The complete set of 1/O specifications that are recognized
by MONITOR are given in the following table.

1/O Specifications

M Specification Reference

El Encoded input

EO Encoded output

SI Symbolic input

SO Symbolic output

LO Listing output or iisting object

/O Specifications (cont.)

M Specification Reference

LS Listing source

BO Binary output

X Compile X cards

GO Binary output for load-and-GO

S SYMBOL-type symbolic statements

C MONARCH compatibility

ASA ASA standard storage allocation

CONC | Stondard concordance listing

EXCP Concordance listing with exceptions

910 Defines CPU for which code is to be gener-

920 ated. (900 Series FORTRAN 1V only.) If

925 unspecified, generated code will be for

930 CPU on which compiler is operating.
METAXXXX METAXXXX specifies to META-SYMBOL

which type of inputs and outputs the program requires.

AMETAXXXX M, M, ..., M

XXXX is920, 9300, or 910. META920 produces output for
the 920/930. META9300 produces output for the
9300 and META910 produces output forthe 910/925.

M is the input/output specification.

META-SYMBOL 1/O Specifications

M Specification Reference

El Encoded input

SI Symbolic input

LO Listing output

GO Binary output for load-and-GO
BO Binary output

EO Encoded output

SO Symbolic output

C MONARCH compatibility
CONC | Concordance listing (standard)
EXCP Concordance listing with exceptions

With the METAXXXX message:

The user writes the specifications (M, M, ..., M) sepa-
rated by commas, in any order.

Once established, a set of options remains in force through-
out the job until changed by a new processor control message.

Note: If the encoded and symbolic input are from the
same source, a second scratch file for META-
SYMBOL is required.

SYMBOL The SYMBOL control message directs
MONITOR to load dnd transfer control to the SYMBOL

processor.

-- column 1) cards. The presence of the label X causes FORTRAN
ASYMBOL P1,P2 to compile X cards. Otherwise, it treats themas comment cards.

FORTRAN IV I/O Specifications

1
: M Specification Reference
P1 is 920, 9300, or 210 (920 produces output for the SI Symbolic input
920/930, 9300 produces output for the 9300, and BO Binary output
910 produces output for the 910/925). LS Listing source
P2 specifies output data parameters. The parameters ;?A k:ssgnia(:‘zl:s storage allocation
(LO and/or BO) may appear in any order, sepa- X Compile X cards
rated by a comma. GO Binary output for load-and-go
At least one output parameter (P2) must be present. Since S SYMBOL-type symbolic statements occur on
symbolic input is assumed, SI is not used as a parameter. "S" cards in a FORTRAN program
SO Symbolic output (for 9300 FORTRAN only)
FORTRAN The FORTRAN message informs MONITOR 910 Defines CPU for which code is to be gener-
that the FORTRAN IV compiler is to be used to process the 920 ated. If unspecified, generated code will
source deck. 925 be for the CPU on which the compiler is
- 930 operating. (900 Series FORTRAN only.)
AFORTRAN M, M, ..., M

Several FORTRAN programs can be compiled without preced-

ing each one with a FORTRAN control message. Each subse-
1 " quent FORTRAN program uses the same M specifications

encountered in the last FORTRAN control message.

M specifications, separated by commas, may be writ-
ten in any order and have the configurations and LOAD The LOAD control message causes MONITOR
meanings given in the table of FORTRAN IV I/O to use the loader to load programs.
Specifications.

ALOAD M M, ..., M
With FORTRAN, symbolic input (SI) is always assumed. If
the user requests the LO option together with the LS option,
the listing occurs in the order: source then object. The la-]

bel X refers to FORTRAN 1V conditional compilation (X in !

Specifications for LOAD Control Messages

M Specification Reference Precludes Use of Specifications
'name' Load named routine from secondary library into core SECLIB
UPPER Load from input medium into upper residence core area LOWER, SECLIB, X, XM, XR, M100
LOWER | Load from input medium into lower residence core area UPPER, SECLIB, X, XM, XR, M100
SECLIB | Load from input medium (except secondary library) into secon- 'name’, UPPER, LOWER, X, XM, XR, M100,
dary library BI
X Load from input medium into core and execute only if error- UPPER, LOWER, SECLIB, XM, XR
less
XM Load from input medium into core and execute only if no UPPER, LOWER, SECLIB, X, XR
major errors
XR Load from input medium into core and execute regardless of UPPER, LOWER, SECLIB, X, XM
errors
M100 Origin of relocatable programs to be a multiple of octal 100 UPPER, LOWER, SECLIB
(except for overlay and library routines)
MAP Produce load map
BI Search BI file for referenced ‘name'; if not found, search SECLIB
SECLIB. 'name' must be specified if Bl is used. If 'name'
cannot be found on BI or SECLIB, an error message will be
printed

M specifications, separated by commas, may be writ-
ten in any order. The various M specifications are
shown in the table on the preceding page.

The 'name' used as a specification in a LOAD control mes-
sage must be the defined name of a routine in the secon-
dary library. If a 'name' is specified, the specification
SECLIB must not be used in the same LOAD control message.
An example of the use of a 'name' is given below.

ALOAD X, 'name’

The above message would cause the named routine to be
loaded from the secondary library into core memory and
executedonly if free fromerrors. The lackof an X specifica-
tion (either X, XM, or XR) would cause the named routine to
be loaded into core memory but not executed.

If no 'name' is specified, MONITOR loads from the GO
file if the GO file contains any binary code to be loaded.
If the GO file contains no binary code, MONITOR then
loads from the BI file. An example is given below.

ALOAD UPPER, MAP

The above message would cause the binary code from
the input medium (i.e., the GO file, if possible, or
else the BI file) to be loaded into the highest available
resident core area. No execution of the loaded binary
code would result, but a listing, or "map" of the rela-
tive locations of all external definitions would be print-
ed out on the system console typewriter at load time. If
the specification LOWER were used, rather than UPPER,
the binary code would be loaded into the lowest avail-
able area of resident core memory instead of the high-
est. Note that the specifications UPPER and LOWER
must not be used in conjunction with any of the X speci-
fications, since resident core storage is not intended to
be used for batch processing.

If SECLIB is specified, the binary code from the input medi-
um is loaded into the secondary library. An example is
given below.

ALOAD SECLIB, MAP

Note that the only other load specification that may be used
in conjunction with SECLIB is MAP (when a load map print-
out is desired).

The specification BI may be used in conjunction with any
other load specification except SECLIB. When BI is speci-
fied, a 'name' must be specified also. The named routine
is loaded from the BI file or, if it is not found there, from
the secondary library.

On completion of loading from the input source, the load-
er affempts to fuifill any unsatified references by search-
ing the primary library. The routines that satisfy such
references are added to the program. All other refer-
ences are treated as implicit calls, i.e., references to
undefined external symbols at load time (see "Implicit
Call Processor").

LOADER CONTROL MESSAGES

SEG A segment of a program is that portion of mem-
ory that is committed by a single reference. A segment usu-
ally overlays some other segment and is constructed from sub-
segments. A fixed segment is that portion that resides incore
memory at all times. Any number of SEG cards may be used
to define the program, but they must be in sequence. (See
"MULTIPLE SEG CARDS".)

Segmentation may be specified by use of the following sym-
bols on a SEG control card:

labels one to eight alphanumeric characters that are
the labels of segments.

- indicates that two segments or segment levels
are to be consecutive in memory.

, indicates that two segments are to overlay
each other (begin at the same point).

) indicates a grouping.

; indicates that another SEG card follows.

MULTIPLE SEG CARDS

The special terminator (;) is used to continue from one SEG
card to another.

/ ASEG ,D)

ASEG A-E-(A,C; Multiple SEG
Cards
|

ASEG A-E-(B,C,D)

Single SEG Card

Comments may appear on a SEG card, provided that a semi-
colon is used to terminate the segmentation codes and the
comments field begins at the right of the semicolon. Com-
ments may not appear on the last SEG card.

INCLUDE The loader normally allocates labeled COM-
MON blocks in the highest levels in which they are refer-
enced. Library routines are usually loaded at the highest
level (see Section 3). However, the user may allocate la-
beled COMMON blocks and library routines at any subse-
quent level by the use of the INCLUDE control card.

AINCLUDE NAME/LABEL1, LABEL2,...,LABELN

NAME is the 1 to 8-character label used to define the seg-
ment in which the blocks or routines are to appear.
LABEL s the label used to define the routine or COMMON

block.

SEQUENTIAL FILE SUBCONTROL MESSAGES

BACKSPACE BACKSPACE pertains to magnetic tape or se-
quential disc files only.

ABACKSPACE A, A, ..., A

A is a symbolic name of from 1 to 8 characters rep-
resenting a file on a magnetic tape or disc file
(sequential file).

BACKSPACE instructs MONITOR to backspace 1 physical
record on the specified file(s).

REWIND REWIND pertains to magnetic tape or se-
quential disc files only.

AREWIND A, A, ..., A

A is a symbolic name of from 1 to 8 characters.
REWIND instructs MONITOR to rewind the specified file(s).

ENDFILE ENDFILE pertains to magnetic tape or se-
quential disc files only.

AENDFILE A, A, ..., A

A is a symbolic name of from 1 to 8 characters.

ENDFILE instructs MONITOR to write an end-of-file at the
current position of the specified file(s).

INPUT CONTROL MESSAGES

DATA The DATA control card informs the system
that there is a data deck to follow. The data deck is foruse
by the executing program. If a DATA control card appears
in the normal sequence of control cards, other than just
prior to a data deck, it is ignored.

ADATA

EOF An EOF card is a terminator for an input
source; it separates different types (EI or SI) of input data.
If this card appears in the normal sequence of control cards,
it is ignored.

AEOF

Note: ~ An EOF card must follow symbolic input fora META-
SYMBOL assembly that involves both symbolic and
encoded input. No EOF cards are needed for FOR-
TRAN compilations.

FIN The user places a FIN control card ot the end
of a stack of jobs, to inform MONITOR that no more informa-
tion will be received from the C input device. When this
card is encountered, all user's operational labels are deleted
from the operational label table

AFIN

At this point, MONITOR types a message to inform the op-
erator that it has completed a stack of jobs and that it re-
quires more information.

OPERATOR CONTROL MESSAGES

After the message field of a APAUSE control message is out-
put on the system console typewriter, or after the system
abort routine (R\ABRT) has been called, one of the following
MONITOR messages is typed:

PAUSE TYPE AABORT; AGO
or

PAUSE TYPE AABORT; AGO; ARETRY
or

PAUSE TYPE AABORT; AGO; ARETRY; AERROR

In response to such a MONITOR message, the operator types
one of the following (as specified by the message):

1. AABORT C/R (C/R = carriage return)

2. AGO C/R
3. ARETRY CAR
4. AERROR CAR

If AABORT is typed by the operator, MONITOR then causes
the current job or interrupt service routine to be discontinued
and one of the following MONITOR messages is typed:

JOB ABORTED
or

INTERRUPT ABORTED

If AGO is typed, the current job or interrupt service routine
will continue from the point at which it was halted by the
APAUSE control message.

A ARETRY message causes the appropriate retry routine to

be entered, and a AERROR message causes the appropriate
error routine to be entered.

USER-DEFINED CONTROL MESSAGES

The user may define his own control messages, in the follow-
ing form:

AX. . X MM, ..., M

An unrecognized control message will cause a transfer to
the program of that name, if such a program is in core at
the time that the message is received by MONITOR.

The specification fields (M, M, ..., M) of an unrecognized
control message can be processed by the user via the
MONITOR scan (R\SCAN), symbol table search (R\RSTS),
and convert (R\CNVT) routines. (See Section 8.)

SYSTEM RESERVED NAMES

Names reserved for controi messages (i.e., Aname) must not
be used as external definitions. This includes control mes-
sage names used in debugging.

CONNECT CONTROL MESSAGE

The CONNECT control message is used to associate a partic-
ular subroutine with a given interrupt location. (See Section
5.) It has the following form:

ACONNECT (loc, sublarg R arg,))
loc is an octal integer specifying the interrupt location.
sub is the name of the subroutine to which control is to

be given when interrupt loc occurs.

arg; is the normal argument list used with the subroutine,
including any symbolic name that has been defined
(i.e., the external definition has been loaded into
core). That is, the arg; may be names of GLOBAL
variables or of subprograms.

3. LOADING

BATCH JOBS WITHOUT OVERLAY

The arrangement of a typical program deck for an unseg-
mented job is shown below. Note that, although no SEG

or INCLUDE control messages are needed in this example,
an INCLUDE control message may be used to force the load-
ing of a routine from the primary library.

Next Ccn'clt

ES0ToX

Binary Deck(s)

ALOAD X, MAP

In the above example, the GO file is assumed to contain
no binary code; the binary-coded cards are loaded, a load
map is printed out on the system console typewriter, and
the program is executed.

BATCH JOBS WITH OVERLAY

The following examples represent segments diagrammaticaily
as "trees". The horizontal coordinate is used to denote in-
creasing memory allocation and decreasing segment levels
from left to right; a vertical coordinate is used to denote
overlays.

Example 1: If a program has a main segment labeled A and
two overlays, segments B and C, the program could be dia-

grammed as:
[c |
[a

5|

and could be described as ASEG A-(B,C)

Example 2: ASEG A-(B-(C-D,E),F)

c | o |

A | : |

tSee Section 4.

10

Example 3: ASEG A-(B-(C, D, E),F-(G, H))

)

]

The arrangement of a typical program deck for a segmented
job is shown below. Note that an INCLUDE control card is
used to load a table, from the primary library, with a speci-
fied segment.

Next Card

Binary Deck(s)

ALABEL NAME3

Binary Deck(s)

ALABEL NAME2

Binary Deck(s)

ALABEL NAME!

AINCLUDE NAME3/TABLE1

ASEG NAME 1-(NAME2, NAME3)

ALOAD X, MAP

The above example would result in the overlay structure
shown in the diagram below.

[NAME2 l

[NAME)

NAME3 | TABLE |

LOADING TO AND FROM SECONDARY LIBRARY

LOADING TO SECONDARY LIBRARY

The arrangement of a typical program deck to be loaded into
the secondary library is shown below. Note that any rou-
tine loaded to the secondary library must have at least one
external definition.

Next Card

Binary Deck(s)

ALOAD X, SECLIB

LOADING FROM SECONDARY LIBRARY

Loading from the secondary library can be accomplished by
means of one of the following control messages:

1. ALOAD 'name'

2. ALOAD X, 'name'

3. ALOAD X, 'name’, Bl

Note that if Bl is specified, loading will be from BI, and if the
named routine is not found on the BI media, then the secon-
dary library will be searched for the named routine. Any of

the LOAD specifications not precluded by use of a 'name’
specification may be incorporated in the control message.

LOADING RESIDENT, REAL-TIME PROGRAMS

Typical control messages for loading programs into resident
storage for interrupt servicing are as follows:

1. ALOAD X, UPPER

2. ALOAD X, 'name', LOWER

3. ALOAD X, 'name’, BI, UPPER

Note that specifying UPPER or LOWER causes the program
to be loaded into upper or lower resident core memory,

respectively. (See Section 5 for details of real-time op-
erations.)

11

4. PREPARING THE PROGRAM DECK

The following samples show various ways to prepare program

decks for MONITOR operation.
META-SYMBOL INITIAL ASSEMBLY

Symbolic Input SI
Listing Output LO
Encoded Output EGC

'Next Card'

Symbolic Program Unit

AMETA930 SI,EO,LO

AASSIGN X1=MT 1A, X2=MT2A

AASSIGN SI=CR1A,LO=LP1A

AJOB FORSAMP, 4331

Note: The "next card" must be another control message
such as JOB or METAXXXX, etc., denoting the
beginning of the next program unit. In all casesof
assembly following assembly (namely, EI to EI, EI
to SI, SI to SI, or SI to EI), the subsequent source
input decks must be preceded by a METAXXXX

card.
META-SYMBOL ASSEMBLY WITH CORRECTIONS

Symbolic Input SI
Encoded Input El
Listing Output LO
Encoded Output EO

'"Next Card'

Encoded Program Unit

Symbolic Corrections

AMETA930 SIEI,LO,EO

AASSIGN LO=LP1A,EO=CP1A

AASSIGN SI=CR1A, EI=CR1A

AASSIGN X1=MT1A, X2=MT2A

AJOB SAMP, 4331

The EOF card separates the two types of program inputs.
See the note concerning "next card" in the previous sample.

FORTRAN COMPILATION

(Symbolic Input SI Assumed)
Listing Source LS

"Next Card"

FORTRAN Program Units

AFORTRAN LS

AASSIGN X1=MT1A, X2=MT2A

AASSIGN SI=CR1A,LO=LP1A, EC=CP1A

AJOB SAMP, 4331

LS is on the LO medium.

The "next card" functions for FORTRAN as it does for META-
SYMBOL, except that if it is not a control card, it is assumed
to be another FORTRAN symbolic input deck with the same
options as specified in the last FORTRAN controi message.

FORTRAN COMPILE-AND-EXECUTE

(Symbolic Input SI Assumed)

Listing Source LS '"Next Card'
Binary Output for Load-
and-GO ALOAD X

FORTRAN Program Units

AFORTRAN GO, LS

AASSIGN USER=MT2A

AASSIGN SI=CR1A, LO=LP1A, GO=MT2A

AASSIGN X2=MT2A, X1=MT 1A

AJOB FORSAMP, 4331

The "next card" must be a A control card.

The USER assignment assigns and reservesa magnetic tape unit

for execution after program compilation. The GO specifi-
cation on the FORTRAN card informs the FORTRAN proces-
sor to generate binary output, for subsequent loading, onto
the GO file.

Note that when MONITOR encounters the FORTRAN card,

control is transferred to the FORTRAN processor. Therefore,
any control card immediately following the FORTRAN card
or within the source deck would cause FORTRAN to termi-

nate compilation.

OVERLAY PROGRAM EXAMPLE

An example of an overlay program deck is shown below.

Data Deck
| ADATA
LASEG A-(B,C)
ALOAD X

ALABEL C

Source Program Unit
IAFORTRAN GO, ASA, LS
ALABEL B

Encoded Program Unit

Symbolic Corrections
] AMETA930 SI,EI, LO,GO

| ALABEL A
AJOB 1D, 434,20, 100

MULTIPLE PROGRAM EXAMPLE

This sample shows some of the many control cards and deck configurations provided in the MONITOR system,

AFIN

Data Deck
| ADATA

lALOAD XM, MAP

AASSIGN USER=MT2A

-1 Symbolic Program Unit
AMETA930 SI,LO,GO

lSource Program Unit
AFORTRAN GO, ASA, LS

Encoded Program Unit

Symbolic’ Corrections
| AMETA930 SLEILO,GO,EOQ

Encoded Program Unit

Symbolic Corrections
— AMETA930 SIEI,LO,GO, EO
| AASSIGN GO=MT2A
| 2ASSIGN X2-MT2A
| 2ASSIGN EO=CP1A
|2ASSIGN LO=LP1A
lAASSIGN BI=CR1A
[AASSIGN EI=CR1A
]AASSIGN SI=CR1A
[AASSIGN X1=MTIA

AJOB ID

SYMBOL PROGRAM EXAMPLE

An example of a SYMBOL program deck is shown below.

LNext Card

I Symbolic Deck

IXSYMBOL 910,L0O, BO

IAASSIGN BO=PPIA, X1=MT1A

IAASSIGN SI=CR1A, LO=LP1A

AJOB SYMSAMP

X

9. REAL-TIME OPERATIONS

MONITOR responds to interrupts occurring during the exe-
cution of batch jobs, or during the execution of other real-
time service routines of lesser priority, and returns to the
interrupted task after completion of the interrupt. Provi-
sions are included for allowing a routine that is responding
to an interrupt to call any other routines interrupted while
in process, with no danger of losing data. The various
interrupt service routines may use a common pool of sub-
routines.

Real-time programs are loaded in the manner described in
Section 3 (see "Loading Resident, Real-Time Programs"). A
CONNECT control message (see Section 2) causes code to
be generated as shown in the following example (9300 Com-
puter):

ACONNECT (40, SUBR(ARGS)) -
code executed by the CONNECT message processor
BRM R\CNCT

PZE 2
PZE 040
PZE entry

code generated in dynamic storage

entry PZE

DIR *,2
BRM R\SVINTS
BRM SUBR calling sequence
PZE i for connected
PZE ARGS routine
BRM R\RSINTS
BRC *entry

When an interrupt occurs at location 40g (in the above ex-
ample), it results in the execution of a branch to the entry
of the calling sequence for the connected routine.

Any interrupt service routine having external references that .
are not satisfied at load fime causes an automatic load of the
referenced routines from the secondary library when the in-
struction referencing the routine is executed.

With the exception of 1/O operations, any action performed
at a given interrupt leve!l will be ceased during the execu-
tion of a higher-level interrupt and will be returned to when
all higher-level interrupts have been cleared.

A RECURSIVE declaration in FORTRAN defines a reentrant
subprogram. Note that this does not mean that such a pro-
gram may call itself, either directly or indirectly.

Any subprogram that can be entered as the result of more
than one interrupt (before its execution has been completed)
must be reenterable. Moreover, if a reentrant subprogram
has internal subprograms, the intemal subprograms must also
be reentrant. Note that a protected routine must not initiate
any action causing an interrupt to occur during the timespan
of its own execution (including 1/O operations). Also, a
protected subprogram should not contain an internal, re-
entrant subprogram.

15

6. DEBUGGING

The debug package is a part of the primary library. It is
loaded by using an INCLUDE control message following a
LOAD control message. A typical example is shown below.

Data Deck

ADEBUG ALPHA(P, Q)
ATRACE

Binary Deck

AINCLUDE NAME/DEBUG

ALABEL NAME

ALOAD MAP

Upon encountering a DEBUG message (see "Debug Control
Message") the Debug program will immediately begin in-
terpretive execution of the specified routine. Only the
specified routine and other routines under its control will
be executed. All execution will be done interpretively
until either (1) the specified routine executes a normal
return or (2) o LEAVE message is encountered. In either
case, control is returned to MONITOR.

DEBUG CONTROL MESSAGE

The DEBUG control message may specify a complete calling
sequence, and has the form

ADEBUG play, oy ag, -..ya) [for 0<n =10]
where p is the name of the subprogram at which interpretive
execution is to begin, and the a; form the list of arguments
required by the subprogram. The a; may be any externally
defined symbol, integer constant, or floating-point constant
consisting of a whole number followed by a decima! point
and decimal fraction. Both the subprogram name and the
argument list are optional, but, if specified, they must be
defined (i.e., they must be in core storage). If the subpro-
gram name is not specified, interpretation will begin with
the entry to the main program,

DEBUG CONTROL

The following control messages may be used when the debug
program is in residence.

TRACE Control Message

This control message is of the form

ATRACE P j/PyrPy 1P, [for 0<n < 25)

where p; may be

1. the name of a subprogram to be "branch" traced
(i.e., printouts for branches only).

2. the name of a subprogram followed by an asterisk,
causing the subprogram to be "full" traced (i.e.,
printouts for all executed instructions).

3. No pj need be specified, in which case the trace
will be a "branch and mark" trace; that is, a trace
of all BRM instructions. This trace is always given,
regardless of the p; specified in a ATRACE message.

As many TRACE messages as necessary may be used, with a
limit of 25 subprograms named. Also, a breakpoint switch is
used to allow an on-line user to cause a "full" trace regard-
less of what control messages have been.read.

TRAP Control Message

This control message is of the form

ATRAP £, fy, oy .

where each f; may be either a symbolic instruction or a sym-
bolic address. The effect of a TRAP message is that, every
time a specified instruction is used or a specified (effective)
address is referenced, a trace~type printout occurs. As many
TRAP messages as necessary may be used, with a total maxi-
mum of 25 addresses, and a total of 25 instructions. A break-
point switch may be used by an on-line user to cause a pause
following each TRAP printout.

SNAP Control Message

The format of this message is

e]/s]/n],ez/sz/n?

causing a snapshot dump of n; words starting at location s;,
whenever the instruction in location e; is about to be exe-
cuted. Both e and s are symbolic locations and n is a deci-

mal number.

ASNAP

As many SNAP messages as necessary may be used, with a
maximum of 10 snapshot dumps specified.

INSERT Control Message

This message has the form

AINSERT e/w], Wor Way .

where

1. the instructions specified (the w;) are to be insert-
ed logically following the instruction at symbolic
location e.

2. The w; may be either octal instructions (8 octal
digits), or symbolic instructions of the form

op loc

where "op" is a symbolic operation and "loc" is a
symbolic or octal location.

As many INSERT messages as necessary may be used, but a
maximum of 200 locations are reserved for insertions.

CEASE Control Messages

The format of these messages is
ACEASE m]/a], m2/u2, ms/us,
where m; may be any of the previously defined debug mes-

sage names, and a: may be any location (or instructions, in the
case of TRAP) to which the named function has been assigned.

For example:

ATRAP ALPHA+3,STB

ATRACE BETA, GAMMA*, DELTA, ALPHA

ASNAP TW3/RCU/25

AINSERT SST-4/77350031

AINSERT SST+8/LDA B,STA D,LDA C,STA W
ACEASE TRAP/ALPHA+3, SNAP/TW3, INSERT/SST+8

The named debug functions are terminated and named inser-
tions are deleted (and the original contents of the affected
core locations are resfored).

" DISPLAY Control Message

This control message allows the immediate display of the
specified locations. It has the form

ADISPLAY w]/n], w2/n2, w3/n3,

1. OPERATOR

MONITOR communicates its needs for operator actions via
the system console typewriter. Operator responses to the
PAUSE message and calls to the system pause routine are
discussed in "Operator Control Messages”, Section 2.
The calling sequences for the pause (R\PAWS), abort
(R\ABRT), and system exit (R\EXIT) routines are given in
Section 8.

where the w; define the symbolic locations at which the dis-
plays are to begin, and the n; indicate the decimal number

of words that are to be displayed.
SYMTAB Control Message

This message causes a dump of the resident symbol table. It
has the form

ASYMTAB
RENTAB Control Message

This message causes a dump of the reentrance chain. It has
the form

ARENTAB
LEAVE Control Message

This message causes the debug program to be exited and a
return to MONITOR to be executed. It has the form

ALEAVE

SYSTEM POSTMORTEM DUMP PROGRAM

An entry is provided in the executive to allow the user to
obtain a postmortem dump of memory. The dump program is
maintained on disc as a separate processor and is called with
arguments specifying the extent and type of dump desired.

When the dump program is called, it writes a sectionof mem-
ory onto a disc file and loads itself into the vacated area. All
registers are saved and the dump is written on the LO device.

Access to the dump program is via a DUMP message. Argu-
ments may be provided to specify the first and last locations
of an area to be dumped. If the required arguments are not
provided, all of memory will be dumped. The DUMP mes-
sage has the form

ADUMP START, END

Where START is the first location and END is the last loca-
tion to be dumped.

ACTIONS

Toinitiatea key-in on the 9300 Computer, the operator first
presses console buiton 32 (this is not applicable to 900 Series
Computers). Tostart the key-in message on either 900 Seriesor
9300 Computers, the operator must type a"A" as the first char-

acter. MONITOR responds by doing acarriage return and typ-
ingasecond"a". The operator then keys in the remainder of
the message and terminates by means of a carriage return.

17

8. MONITOR INTERFACES

1/0 OPERATIONS

To perform an 1/O operation, MONITOR must know the de-
scription of the basic EOM as well as other pertinent data.
The File Description Table (FDT), an area provided by the
user in his program, contains this information needed by
MONITOR. The arrangement of an FDT is shown below:

File Description Table

bit 14 Set = 1, transmit in binary mode.
Set =0, transmit in BCD mode.
bits 15-16 Specify number of characters/word:

Set =0, 1 char/word.
Set = 1, 2 char/word.
Set = 2, 3 char/word.
Set = 3, 4 char/word.

. . +
Word 1 File status; end address | word 5 may contain any of the following, depending on the
2 Origin of record device and operation:
3 Maximum word count
a. Formagnetic tape spacing operations, this word will
4 Device control EOM contain the number of records to be spaced. The
number must be positive if forward, and negative
S /O format control if backward spacing is desired.
6 Address of File Control Block . .
b. Fortypewriter and paper tape operations, a stop
7 Address of end-action routine character must be specified in bits 18-23.
c. For random-access disc storage operations, a rela-
word 1, bit 0 Set = 1 if IOPS is using this FDT. tive sector address must be specified in bits 13-23.
. o . d. For printer operations, a carriage control character
bit 1 Set =1 if an error occurred during may be specified in bits 18-23 (see opcodes 60
the operation.
and 61).
bit 2 Set = 1 if an end-of-file was detected. . . .
e. For scanning, must contain the appropriate 4 char-
bit 3 Set = 1 if an end-of-tape or end-of- acters.
disc-file was detected.
. _nat .
bit 4 Set = 1 if a beginning-of-tape was word 6, bits 10-23 Conh.:mrh? address ?f the FCB for
detected. the file being used (i.e., a reference
to the FCB which will be satisfied at
bit 5 Set = 1 if an attempt to write on a load time).
file-protected tape occurred. .
. _ . t -
bit 6 Set = 1 if I/O request cannot be word 7, bits 10-23 Cor:nfmnthe. addr.ess of fhe user's end
honored action routine, if required (if no end-
: action is required, this word must be
bits 7-8 Not used. zero)
bits 10-23' Contain the address+ 1 of the last The File Control Block (FCB) referenced in word 6 of an FDT
word transmitted. has the arrangement shown below. An FCB for any device
except discs and drums consists of words 1 and 2 only. Six
word 2, bits 10-23' Contain the address of the origin of words are required for disc files.
the record to be transmitted.
File Control Block
word 3, bit0 If set 1 by calling routine, 1OPS
will return with bit 6 in word 1 set Word 1 Channel and unit designation
h t
Loe L::‘;zzver /O request cannot 2 Flags and driver pointer
bits 10-23' Contain the maximum number of words 3 First sector address
to be transmitted. 4 Last sector address
5 Current sector address
word 4, bits 0-12 Not used. 6 Current record address
bit 13 Set = 1, start with leader (paper tape

18

only).

Set = 0, do not start with leader.

'Bits 9-23 for SDS 9300 Computer.

word 1, bits 1,6,17 Channel designation.
bits 19-23 Unit designation.

word 2, bit0 Not used.

bit 1 Set = 1 if device may be accessed
by batch programs.

bit 2 Set = 1 if device is reserved for
real-time programs.

bit 3 Set = 1 if last use of device was by
batch programs.

Set = 0 if last use of device was by
real-time program.

bit 4 Set = 1 if last operation on device
was a rewind.

bit 5 Set = 1 if device is unbuffered
printer or a Model 2158 punch unit.

bit 6 Set = 1 if device is random access
disc file.

Set = 0 if device is sequential disc

file.
bits 7-18 Not used.
bits 19-23 Index value (pointer) of subroutine

entry for this device in 1/O table.

word 3, bits 9-23 First sector address.

file area

word 4, bits 9-23 Last sector address.

word 5, bits 9-23 Current sector address.

pointers

word 6, bits 17-23 Current record address .

Note that the format of the first FCB word is identical to
that for records on magnetic tape and other units.

I/O MONITORING

The /O processor, R\IOPS, is a reentrant program having
a section of its temporary storage block reserved for each

channel connected to the system. When R\IOPS is entered,

the channel number is computed. A channel-active test is
then made to determine if 1/O operations may continue for

the current request. When the required channel is not busy,
general data (such as unit number, POT word, and the sec-
ond EOM instruction) are calculated and saved in the temp

block for that channel. The type of operation and device
are determined, and a branch is made to the appropriate
/O device subroutine.

The device subroutine determines whether or not the device

is ready, and sets up the basic I/O instruction that will be
used for the operation. All such instructions are stored in
the R\IOPS temp block for the required channel. The de-
vice subroutine issues instructions that start the interlaced

+
Relative to the beginning of the sector block.

operation, and an interrupt subroutine is connected to the
I/O interrupt submonitor to process the termination interrupt.

When the transmission is terminated, the 1/O interrupt sub-
routine is entered and a check for error conditions is made.
The interrupt subroutine is device-oriented and may cause
some /O operations to be done. When the requested 1/O
has been completed and all error flags have been set as re-
quired, the interrupt subroutine returns to the 1/O interrupt
submonitor which then enters the user's end-action routine,
if specified. Upon return from the end-action routine, the
operation is completed and control is returned to the point
of interrupt.

The I/O processor monitors all input from the device assigned
as the control message (C) file, and intercepts all A control
messages. When such a message occurs in this file, the I/O
routines set the end-of-file indicator in the user's FDT and
return. If another aftempt is made to read this, the job is
aborted.

Ovutput data written on the listing-output (LO) file is also
monitored. A line count is kept and the operation code is
examined for each call on LO.

Page ejects on the LO device occur at the maximum line
count; and title line, data, and page numbers are output,
followed by the user's line. This service is not done for
any file other than the LO file, evan though other files
may be assigned to the same device as LO.

1/0O PROGRAMMING

MONITOR uses its 1/O processor to perform input/output
operations. Via the 1/O processor, MONITOR can perform
one operation for each unit used by the user's program. Op-
erations fordifferent channels run simultaneously; operations
for the same channel run in the order requested. With each
input/output operation there is an associated FDT. This
FDT is set active as the input/output operation is requested,
and is reset to inactive when the operation is completed.

The following devices are serviced by the 1/O processor:

1. Card reader/punch

2. Paper tape reader/punch
3. Magnetic tape

4. Line printer

5. RAD File

6. Typewriter

The 1/O processor contains a single entry point for I/O op-
erations. Linkage with this entry is via a standard calling
sequence with one argument word. The calling sequence is:

BRM R\IOPS
PZE 1
OP LFDT

19

where OP is one of the following octal operation codes in
bits 3-8:

OP =0n Read one record. For magnetic tape or
RAD File operations, n (input mode speci-
fication) is disregarded. For paper tape
and typewriter operations, n may be a
value from O through 7.

OP =20 Scan forward, to record identifier speci-

fied in word 5 of FDT.

OP = 21 Scan backward to record identifier speci-

fied in word 5 of FDT.
OP =30

Space i records (where i, the record count,
is specified in word 5 of the FDT). Ap-
plicable to magnetic tape or sequential

RAD File.

OP = 31 Write end-of-file. Applicable to mag-

netic tape or sequential RAD File.

OP =32 Rewind. Applicable to magnetic tape or

sequential RAD File.

OP =33 Write end-of-file and rewind. Applica-
ble to magnetic tape or sequential RAD

File.
OP = 4n

Write one record. For magnetic tape or
RAD File operations, n is disregarded.
For paper tape and typewriter operations,

n (mode) may be either 0 or 1.

OP = 5n Write one record. This is a printer oper-
ation that specifies a skip to channel n

before printing.

OP =60 Write one record. This is a printer op-
eration specifying that the carriage con-
trol character for this record is in the

fifth word of the FDT.
OP =61

Write one record. This is a printer oper-
ation specifying that the carriage control
character for this record is the first char-
acter of the line to be printed. The car-
riage control character is replaced by

060 (blank) before the line is printed.

OP =7n Write one record. This is a printer oper-
ation specifying that n lines (maximum of

7) are to be upspaced before printing.

TYPEWRITER/PAPER TAPE OPERATION CODES

The following opcodes are used to specify I/O modes for
paper tape and typewriter operations in a user's program.

OP is 00

This specifies a BCD input mode in which transmission is im-
mediately terminated on encountering a stop code, exhaust-
ing the word count, or encountering a gap on paper tape.

OP is 02

This specifies a BCD input mode in which transmission is im-
mediately terminated only on encountering a stop code or

»
(o)

exhausting the word count. If a gap is encountered on paper
tape, it is ignored; the tape is spaced past the blank area
and transmission resumes.

OP is 04

This specifies a BCD input mode in which transmission is im-
mediately terminated on encountering a stop code, exhaust-
ing the word count, or encountering a gap on paper tape. If
the maximum word count is exhausted, paper tape is spaced
to the next gap.

OP is 06

This specifies a BCD input mode in which transmission is im-
mediately terminated on encountering a stop code. Any gaps
on paper tape, encountered before the word count is exhaust-
ed, are ignored. If the maximum word count is exhausted,
paper tape is spaced to the next gap.

This specifies a binary input mode in which transmission is
immediately terminated on exhausting the word count or en-
countfering a gap on paper tape.

OP is 03

This specifies a binary input mode in which transmission is
immediately terminated on exhausting the word count. If a
gap is encountered on paper tape, it is ignored; the tape is
spaced past the blank area and transmission resumes.

OP is 05

This specifies a binary input mode in which transmission is
immediately terminated on encountering a gap on paper tape
or exhausting the word count. If the maximum word count is
exhausted, paper tape is spaced to the next gap.

OP is 07

This specifies a binary input mode. Any gaps on paper tape,
encountered before the word count is exhausted, are ignored.
If the maximum word count is exhausted, paper tape is
spaced to the next gap.

OP is 40

This specifies a BCD output mode in which transmission is im-
mediately terminated on encountering a stop code or exhaust-
ing the word count.

QP is 41

This specifies a binary output mode in which transmission is
immediately terminated when the word count is exhausted.

Table of I/O Modes

The options implemented in the various paper tape and type-
writer I/O modes are summarized in the following table.

Paper Tape and Typewriter I/O Modes

Octal Delete? Change Stop Move Ignore
op Mode | I/O | Pad? | (077) This to This | Code? | to Gap| Gap
00 BCD I 060 Yes 012 060 Yes No No
01 Bin. I 00 No - - No No No
02 BCD I 060 Yes 012 060 Yes No Yes
03 Bin. | 00 No - - No No Yes
04 BCD 1 060 Yes 012 060 Yes Yes No
05 Bin. 1 00 No - - No Yes No
06 BCD I 060 Yes 012 060 Yes Yes Yes
07 Bin. I 00 No - - No Yes Yes
40 BCD o] No No 060 012 Yes No No
41 Bin. (0] No No -- - No No No

MAGNETIC TAPE OPERATIONS
READING

A record from the magnetic tape specified in the FCB re-
ferred to in the sixth word of the FDT is read into memory.
The starting address is specified in the second word of the
FDT. Reading continues until the end-of-record is reached
or until the word count (Word3, FDT) is reduced to zero. In
both cases, the tape is positioned in the gap following the
record read. If an error has occurred, the error flag bit in
the FDT status word will be set to 1. The end-of-file,
beginning-of-tape, and end-of-tape error flags in the FDT
status word are set if those conditions are encountered.

WRITING

Before each write operation is attempted, the tape is tested
for file-protect. If afile-protect isdetected, the file-protect
bit in the FDT status word is set and control is returned to
the user's program.

One physical record, of the length specified by the word
count in the FDT, is written. If an error occurs, and the
write is retried and is still unsuccessful, the error flag in
the FDT status word is set. The tape stops after the last
write attempt.

If the end-of-tape indicator is set during the write opera-
tion, the end-of-tape flag in the FDT status word is set.

SPACING

Spacing is accomplished by using the tape scan operation
in the 4-characters-per-word mode. Spacing may be either
forward or backward, as specified in the fifth word of the
FDT. Spacing is terminated by an end-of-tape, end-of-
file or beginning-of-tape signal.

SCANNING

The specified file will be scanned for a record identifier
identical to the key word specified in word 5 of the FDT.

For a forward scan, the identifier will be the last 4 charac-
ters of each record. If the operation is a reverse scan, the
identifier will be the first 4 characters of each record, in
reverse order.

If an end-of-file, beginning-of-tape, or end-of-tape con-

dition occurs, the scan will terminate and the appropriate
flag will be set in the FDT.

WRITE END-OF-FILE

The tape is tested for file-protect. If a file-protect is de-
tected, the file-protect bit in the FDT status word is set,
otherwise, an end-of-file is written. If an error occurs, the
tape is repositioned and the operation retried.

CARD READER/PUNCH OPERATIONS
READING

One record is read from the device specified in the FDT.

If the number of words specified in the table is less than the
number of words in the record, the remaining words are lost.
If an error occurs or an end-of-file condition is detected,
appropriate flags are set in the status word of the FDT.

PUNCHING

One record is punched on the device specified in the FDT.

If an error occurs, an error flag is set in the status word of
the FDT.

ERRORS

If a feed check error has occurred, the ending address in
word 1 of the FDT will be equal to the starting address. If
a validity check error has occurred, the ending address in
word 1 of the FDT will not be equal to the starting address.
This difference allows the program to determine which type
of error has occurred.

21

LINE PRINTER OPERATIONS
PRINTING

One record is printed on the line printer specified by the
FDT. The format control is dependent on the value of the
OP in the user's calling sequence. If the word count in

the FDT specifies more than 132 characters, only the first
132 will be printed. If the word count specifies zero words,
the format control character will be interpreted, the re-
quired format action taken, and control returned to the user.

ERRORS

A channel error will cause the emor bit to be set in the sta-
tus word of the FDT.

CARRIAGE CONTROL

The following tables list the carriage control characters
which R\JOPS will accept. Table 1 gives the standard
SDS format control characters which are specified in the
FDT or in the first character position of the output record.
If one of these characters is used, the mode of the I/O re-
quest (FDT word 4, bit 14) must be binary (i.e., FDT word
4, bit 14 =1). If the mode of the I/O request is BCD, the
carriage control character will be assumed to be a FORT-
RAN character, as described in Table 2,

Table 1. Carriage Format Control Characters

00 0 Skipto format channel 0

01 1 Skipto format channel 1

02 2 Skipto format channel 2

03 3 Skipto format channel 3

04 4 Skipto format channel 4

05 5 Skipto format channel 5

06 6 Skipto format channel 6

07 7 Skipto format channel 7

40 - Donot upspace before printing

41 J Upspace 1 line before printing

42 K Upspace 2 lines before printing

43 L Upspace 3 lines before printing

44 M Upspace 4 lines before printing

45 N Upspace 5 lines before printing

46 O Upspace 6 lines before printing

47 P Upspace 7 lines before printing

other Upspace 1 line before printing
Table 2. FORTRAN Carriage Format Control Character

00 0 Double space before printing

01 1 Skip to top of form

20 + Do not upspace before printing

other Skip one line before printing
PAPER TAPE AND TYPEWRITER OPERATIONS

Paper tape and typewriter operations are performed in either
the BCD or binary mode as described below. These modes
specify the type of character testing to be performed by

the 1/O processor during data transmission. The user's

22

program may also specify the termination conditions for the
operation, by placing a stop-character code in word 5 of
the FDT, prior to calling the 1/O processor.

The modes of operation, BCD and binary, are not hardware

modes of operation, but only convenient names describing
the options available (specified by I/O opcodes).

BCD MODE
Delete Character

A BCD input operation will ignore any 077 (delete) codes
read.

Blank Replacement

Either a 060 or a 012 will produce a blank space on a line
printer. However, a typewriter will type a 060 code as a
b and a 012 code as a space. In a BCD output operation,

all 060 codes are converted to 012 codes. In a BCD input
operation, all 012 codes are converted to 060 codes.

Padding of Partial Words

In a BCD input operation for which the number of characters
read is not an integral multiple of the number of characters
per word (specified in word 4 of the FDT), the last word is
padded with trailing 060 codes. No equivalent option is
provided for output operations, since output terminates on
the transmission of a stop character.

Stop Character

In a BCD mode, encountering a character equal to the stop
code causes transmission to be terminated when the process-
ing of that character is completed.

BINARY MODE
Delete Character

In a binary mode, the transmission of 077 code is handled in
precisely the same way as any other code.

Blank Replacement

In a binary mode of transmission, no character replacement
is done.

Padding of Partial Words

In a binary input operation for which the number of charac-
ters read is not an integral multiple of the number of charac-
ters per word, the last word is padded with trailing zeros.
(No equivalent option is provided for output operations.)

Stop Character

In a binary mode of transmission, no stop character options
exist, as no stop code is used.

DISC FILE OPERATIONS
RANDOM-ACCESS OPERATIONS

Reading

Data can be read from disc storage files by specifying a
sector address in word 5 of the FDT. The file used must
have been assigned to disc storage by an ASSIGN message
and must have had a maximum file size specified. (When
the file was assigned to disc storage, file sectors were allo-
cated for it by MONITOR and its disc address was saved in
the FCB.) The sector address specified in the FDT is treated
as a relative address (i.e., relative to the beginning of the
file). Words are read from the file, beginning at the speci-
fied sector and continuing until the word count is reduced
to zero. A maximum word count of 4096 may be specified
in word 3 of the FDT.

Writing

Data.can be written on disc storage files by using the word
count and sector address specified in the FDT. The word
count is checked to ensure that the data to be written does
not exceed the limits of the file specified.

Errors

If a channel error occurs, the error bit of the status word
of the FDT is set to 1.

If an attempt is made to transmit data beyond the limits of
the specified file, only data within the specified file is
transmitted and the end-of-disc-file bit in the status word
of the FDT is set to 1.

SEQUENTIAL OPERATIONS

Files assigned to disc storage may be treated in much the
same manner as sequential magnetic tape files. That is,
they can be manipulated with the same 1/O commands as
magnetic tape files. Each disc operation is similar to a
corresponding magnetic tape operation. Sequential disc
files are manipulated by the disc 1/O subroutine by arrang-
ing them into chained sector blocks and maintaining these
blocks by the use of pointers. The pointers for each file
are stored in the FCB.

As data is written on a file and new blocks of sectors are
needed to contain it, new blocks are obtained from a disc
sector map and are added to the chain. Within each sec-
tor block are record control words that depict the individ-
val records written on the file in that block. These record
control words are used by the disc 1/O subroutine in man-
ipulating and maintaining disc files.

When a file is released during the processing of a job (not
at the end of a job), the sectors allocated for the file are
placed in an empty~-sector pool. If, ot some later time,
no other sectors are available the empty-sector pool is

purged and its sector blocks are reallocated. The empty-
sector pool is always purged at the end of a job.

The format of the sector block record control words is given
below.

Sector Block Record Control Words

word 1 bits 9-23 Previous sector
address sector control
word 2 bits 9-23 Next sector words
address
word 3 bits 0-11 Previous record
length logical-record
bits 12-23 Current record control word
length = n
word 4 bits 0-23 First word of
record
3+n bits 0-23 nth word of
record

3+n+]f bits 0-11 Previous record

length =n logical-record
bits 12-23 Current record control word
length = m

DISC STORAGE SECTOR MAP

A disc storage sector map is maintained in core memory, for
use in allocating disc storage. The map contains a bit for
each sector block on disc. The sector map is updated in core
memory each time that a sector block is allocated. The map
is also maintained and updated on disc by the assign pro-
cessor for each file reserved by an ASSIGN control message.
On completion of a batch job, the sector map in core mem-
ory is initialized by overlaying it with the disc map.

In the following description of map searching, a sector
block is referred to as a sector.

DISC SECTOR MAP SEARCH

The disc sector map search routine performs the function of
searching the disc sector map in core, obtaining the address
of the available sectors, and allocating these sectors by set-
ting map bits. There are two entry points to the routine.

Entry point R\SECT is used when a single sector block (sec-
tors are always allocated in a block of 4 sectors) is to be
allocated. The calling sequence for R\SECT is:

BRM R\SECT
PZE O

No arguments are specified and the address of the allocated
sector is returned in the A register.

t .
Recerds may span sector blocks, so that the logical record
control word is not always the first word after the sector

control words.

23

The second entry point, R\SCTS, isused when ablock of sectors
is to be allocated. The calling sequence for R\SCTS is:

BRM R\SCTS
PZE 3
PZE SIZE
PZE FSTSCT
PZE LSTSCT
where:
SIZE is a cell containing the size, in words, of the

block of storage

FSTSCT is a cell containing the disc address of the
first sector in the allocated block.

LSTSCT is a cell containing the disc address of the
last sector in the allocated block.

Error Conditions

If the search program is unable to locate any available sec-
tors, a test is made of the empty-sector pool, which con-
tains all sectors that have been allocated and released during
a job. If there are sectors in the pool, they are returned to
the sector map and reallocated. If the empty-sector pool
does not contain any sectors, the following options apply:

1. Ifcurrent sectorswere to be allocated to a batch job, the
job is aborted and a message typed to inform the operator.

2. If a real-time program is operating and a batch job is
in memory (not swapped out), the batch job is aborted
and a message typed. When a batch job is aborted dur-
ing real-time processing, the batch symbol table is
searched for the FCBs and the sectors allocated for those
files are released.

3. If a real-time program is operating and a batch job does
not exist in memory, the current interrupt level is
cleared and the previous interrupt program continued.
A message is typed describing the reason for clearing
the interrupt and the interrupt level.

MONITOR SUBROUTINES

MONITOR subroutines of general interest are discussed here,
as an aid in understanding the basic control functions per-
formed by MONITOR. Note that the user does not normally
participate in the performance of such functions, aside from
providing the necessary control messages (via control cards
or typewriter).

SYSTEM PAUSE ROUTINE

The calling sequence for the pause routine is as follows:

BRM R\PAWS

PZE n For1=sn=<3
PZE MSG (required)
PZE RETRY (optional)
PZE ERROR (optional)

MSG PZE size
TEXT m, message

Message length, in words
m = size*4

24

Note that RETRY and ERROR are optional retum points. If
the ERROR exit is desired, RETRY must also be specified (the
RETRY exit could be a dummy). An unconditional branch to
the optional exits is executed when the exit is taken.

Routine R\PAWS types the specified message and permissible
operator actions according to the exits defined by the call.
The typeout is in the following format:

PAUSE TYPE AABORT; AGO; ARETRY; AERROR
Note that if the ERROR (or RETRY and ERROR) exit was not
defined in the call to R\PAWS, the AERROR (or the ARETRY,
AERROR) option would not appear in the typeout.

SYSTEM ABORT ROUTINE

The calling sequence for the abort routine is as follows:

BRM R\ABRT
PZE 1
PZE MSG

MSG PZE size
TEXT m, message

Message length, in words
m = size*4

If R\ABRT is called from a batch job, the routine will cause
the following message to be output:

JOB ABORTED

However, if the abort routine is called from a resident real-
time routine, the message

INTERRUPT ABORTED
will be output and MONITOR will return to the next-lower
active interrupt level (including the "zero" level, if no in-

terrupts are active).

SYSTEM EXIT ROUTINE

The calling sequence for the system exit routine is as follows:

BRM R\EXIT
PZE O

This routine is the normal exit from a batch job, and may not
be called by a resident real-time program.

CONTROL MESSAGE SCAN ROUTINE

The control message scan routine, R\SCAN, is used to scan
the specification fields of a control message. It retums each
field delimiter and the character string preceding the delim-
iter, as well as the transfer address associated with the de-
limiter. The calling sequence for R\SCAN is on the following
page.

BRM R\SCAN

PZE 1
PZE TABLE
DELIM FORM 6,18
TABLE PZE | maxchar
PZE n
DELIM 'dy', addry
DELIM 'dy', addry
DELIM 'dn',cddrn
NO.CHAR PZE 0
STRING RES m
where
maxchar = The maximum number of characters
allowable in the string. (i.e., 4*m)
n = The number of delimiter entries.
d; = Delimitercharacter.
addr; = The transfer address associated with the

delimiter.

R\SCAN will return the field delimiter (one of the set spec-
ified in the delimiter table) in bits 0 - 5 of the A register,
the associated transfer address in the index register (900
Series; X1 on a 9300), the number of characters in the string
in NO.CHAR, and the character string itself, left-justified
with trailing blanks, in STRING.

If a delimiter of the specified set cannot be found in the
control message, R\SCAN will set bit 0 of NO.CHAR and
will reset bits 1 - 23, the A register, and the index register.
If the character string length exceeds maxchar, but a delim-
iter is found, R\SCAN will retum with normal settings, ex-
cept that bit 0 of NO.CHAR will be set.

RESIDENT SYMBOL TABLE SEARCH ROUTINE

A call on R\RSTS causes the resident symbol table to be
searched for the specified symbol. The resident symbol
table is composed of external definitions of all programs
currently in memory and is broken into two parts; (1) MON-
ITOR and batch program extemal references, and (2) MON-
ITOR and resident program external references. Conse-
quently, except for symbolic file references, symbols used
by batch and resident programs will not conflict.

Each symbol table entry has the following format:

Address of previous
////// symbol table entry Word 1
Word 2
8-character symbol (BCD format)
Word 3

Location referenced by symbol| Word 4

Code LO/
L

0 345 7

Code Location referenced by symbol| Word 5t

PO T O™

9 23

fOpHonal; see code 12 below.

Code

(octal) Reference

00 = Unused.

01 = Unused.

02 = Reference to a non-disc (or drum)FCB.

03 = Reference to a system file FCB. A system file
cannot be reassigned, nor can another file be
assigned to it.

04-07 = Unused.

10 = Extemal definition reference.

11 = Unused.

12 = Reference to a disc (or drum) FCB. This symbol
table entry will consist of 5 words. If this file
is reassigned, word 4 will be saved in word 5,
and the new assignment will be reflected in
word 4.

13 = Same as code 03, but this file will be unde-
fined in the magnetic tape version of the sys-
tem.

14-17 = Unused.

LO

0 = This is not a reference to the LO file FCB.

1 = This is a reference to the LO file FCB.

FCB

0 = This is not a reference to an FCB.

1l

This is a reference to an FCB,

The calling sequence for the symbol table search routine is

BRM R\RSTS

PZE 1

PZE STRING
STRING TEXT 8, symbol

PZE K

where

K = 1, search batch program symbol table.
, search resident program symbol table.

2
3, search both batch and resident program symbol
tables.

When R\RSTS finds the symbol defined by STRING, the lo-
cation defined by the symbol will be returned in the A reg-
ister (bits 9-23). The location of the symbol table entry will
be returned in the index register (900 Series; X1 for 9300).
If the symbol cannot be found in the symbol table, bit O of
the A register will be set.

25

If K specifies that both symbol tables are to be searched, the
resident program symbol table will be searched first.

SYSTEM BCD TO BINARY CONVERSION ROUTINE

This program will convert a BCD string of numbers to a bin-
ary value. If the string contains a decimal point, it will be
considered to be a single-precision floating-point value. If
the string begins with a zero (and contains no decimal point),
it will be considered to be an octal value.

The calling sequence for RA\CNVT is

BRM R\CNVT

PZE 1
PZE NO.CHAR
NO.CHAR PZE n
STRING TEXT m, string
where
n = Number of characters to be used.
m = Integer ((n+4-1)/4).

Integer decimal and octal values will be returned in the A
register, and floating-point values will be returned in the
A and B registers. Values which are not representable, due
to excess magnitude, will result in the A and B registers
being set to maximum or minimum values (dependent on the
sign of the value). Illegal strings will cause the maximum
settings.

RESIDENT LOADER

Resident Loader Control Routine

All programs are loaded under the direction of the resident
loader control routine, which informs the semiabsolute
loader of load locations and library files required and also
generates the implicit call linkage table. Resident loader
control is entered via the calling sequence

BRM R\LOAD

PZE system file name
PZE system program name
PZE load location, tag

system file name is one of the following system files:

1. R\PROC the processor file

2. R\OVRL the overlay file (includes user's routines)

3. R\PRIL the primary library file

4. R\SECL the secondary library file (includes user's
routines)

system is the address of the first of two consecutive

program words containing the name of a program that is

name to be loaded and that can be found in the file
specified by file name.

26

load is the address of a word containing the location

location at which the program is to be loaded. The value
of tag determines whether or not the program is
entered following loading.

tag = 0: the program is not entered and control returns
to the caller.

tag = 1: the program is entered at the location speci-
fied by program name.

If the program entered returns control to resident loader con-
trol, resident loader control returns to its caller.

Semiabsolute Loader

The semiabsolute loader performs all program loading func-
tions for the system. Given the program and file names as
arguments, it searches the file dictionary to obtain the pro-
gram's disc address. It then reads the program directly into
the memory location into which it is to be loaded.

The seimabsolute loader calling sequence is

BRM R\SALD
PZE file name
PZE program name

PZE load location

file name contains the name of the file in which the pro-
gram to be loaded can be found.

program is the address of the first of two words which

name contain the name of the program to be loaded.

load contains the address at which the program is

location to be loaded.

Implicit Call Processor

The implicit-call processor is entered as a result of attempt-
ing to execute an instruction that referenced an undefined
external symbol at load time. When such an unsatisfied
reference exists at load time, the resident loader control
routine makes an implicit cal! link in dynamic storage entry.
It is through such an entry that the implicit call processor is
entered.

Upon entry, the implicit call processor searches the resident
symbol table for the required symbol. This is done in case
the symbol has been defined by a load subsequent to the link
entry being generated. If the symbol table is not in resi-
dence, a search is made of a system file, either overlay,
processor, or secondary library, depending on the type of
program being executed, and the program containing the
required symbol is loaded. After loading, the value of the
required symbol is merged into the replaced instruction with-
in the implicit call link entry and the instruction is executed
interpretively.

The implicit call link entry is
REFi BRM CALLi Original reference replaced by
this instruction
CALLi PZE O First word of link entry
BRM R\IMP Call to implicit call processor

TEXT 8,name 8-character name of referenced
item

instruction instruction originally at REFi

Manual Loading

The user may cause a program to be loaded, without exe-
cution, by referring to it as the operand of an NOP instruc-
tion. An example is given below.

NOP TABLE3

The above example would result in the generation of the
following:

BRM IMPi
IMPi PZE
BRM R\IMP
TEXT 8, TABLE3
NOP

STANDARD CALLING/RECEIVING SEQUENCES
900 SERIES COMPUTERS

The calling/receiving sequences for the SDS 900 Series use
operation code bits to determine the data type of the argu-
ments. These data type codes are derived as follows:

Data Type Codes

Calling or Receiving Sequences
Type Normal | Octal Protected | Octal
Integer INTG 001 INTP 041
Real SNGL 002 SNGP 042
Double- DOUB 004 DBLP 044
precision
Complex CMPX 010 CPXP 050
Logical LOGL 020 LGLP 060
(Labels, PZE 000 PZEP 040
subprogram
identifiers,
etc.)

Receiving Sequences Only
Type Normal | Octal Protected | Octal
(Real, in- | ANY 007 ANYP 047
teger, or
double-
precision)
(ANY plus | ALL 017 ALLP 057
complex) :
(ALL plus EVRY 037 EVRP 077
logical)
(Variable VARG 777
number of
arguments)

The above octal operation codes are composed of bits set to
1 according to the following conventions:

bit 3= 1: protected (calling — cannot be stored into;
receiving — will store into)

bit 4=1:
bit 5=1:
bit 6= 1:
bit 7=1:
bit 8=1:

logical

complex

double-precision

real

integer

BRM
PZE
type
type

type

type

subprogram

n
arg,
arg,

arg,

ar
gn

Calling Sequence. The standard calling sequence is

where n specifies the number of calling arguments,
and the arg; are the addresses of the calling argu-
ments. The "type" operation codes indicate the data
type, if any, of the calling arguments.

27

Receiving Sequences. The standard receiving sequence is

entry PZE 0 Entry point
BRM 9SETUP Call to set up n arguments
PZE NO. ARGS
BRR entry Exit (RETURN)
NO. ARGS PZE n n = number of receiving arguments
ARG1 type 0 Calling argument
. . addresses moved
to these locations
by 9SETUP
ARGn type 0 Local variables,
. . temps, etc.

The above receiving sequence is modified slightly for routines that expect varying numbers of arguments, as in

entry PZE 0 Entry point
BRM 9SETUP Call to set up a variable number of arguments
PZE NO. ARGS
BRR entry

NO. ARGS VARG n n = number of fixed arguments
ARG1 type 0
ARG2 type 0 Fixed arguments
ARG3 type 0
ARGn type 0
ARGv type *, X1 Variable arguments
PZE m = number of variable arguments
m PZE 0

Receiving Sequences for PROTECTED Routines. All FORTRAN routines designated as PROTECTED have the receiving
sequence

entry PZE 0 Entry point
DIR 0,2
BRM R\PROT Protection routine
PZE NO. ARGS
BRM R\UNPT Unprotect routine

BRR entry

NO. ARGS
ARGI1
ARG?2
ARG3

type
type
type
type

etc.

(Either PZE or VARG)

OO O3

Receiving Sequences for Reentrant Routines. FORTRAN routines that have been declared to be RECURSIVE, and reen-

trant assembly-language programs, have the receiving sequence

entry

TEMPS
LAST
RETURN
NO. ARGS
ARG
ARG2
ARG3

END

PZE
DIR

BRM
PZE
PZE

BRR

PZE
PZE
PZE
type
type
type
type

0 Entry point

0,2

R\RENT Reentrance monitor
TEMPS Temp block

NO. ARGS

RETURN

END-$+1 Size of temp block

(Either PZE or VARG)

OO O3> ©O

Fixed and/or variable arguments,
local variables, and temps

{Last temp cell)

The CONNECT Statement. The FORTRAN IV CONNECT statement generates code having the same effect as the following:

FORTRAN statement:

CONNECT (40, SUB(ARG 1, ARG2, ARG3))

Generated code:

entry

NEXT

BRM
PZE
PZE
PZE
BRU
PZE
BRM
PZE
type
type
type
BRR

R\CNCT CONNECT routine
2

040

entry

NEXT

0

SUB CONNECTED routine
3

ARG

ARG2

ARG3

entry

29

92300 Computer

A reference to a subprogram by a source program causes
the compiler to generate a calling sequence to the sub-
program. Also, some subprograms are called implicitly by
the source program. In either case, the referenced sub-
program has a receiving sequence that facilitates the ex-
change of argument addresses between the calling statement
and the subprogram. Such sequences are of three types:
standard, nonstandard, and special.

Standard Calling Sequence. The standard calling sequence
is

BRM subprogram]

PZE n

]-ype Qrg]

type argp

t r

-)'Pe argy [n=the number of
calling arguments

type argn ’

Standard Receiving Sequence. The standard receiving se-
quence is

entry PZE 0 W
BRM 9SETUPN
ryZpEe 3 n = the number of
type 0 : receiving
arguments

Standard Receiving Sequence with Conversion. It is often
desirable to allow a subprogram to accept an argument of
any of several types(e.g., any of the numeric, but not logi-
cal, forms). However, because it is practical to write the
subprogram to process only onetype, a procedure is needed
to perform the desired conversion. Anexampleisgivenbelow.

Calling, for N = 2:

BRM SPROG
PZE 2
SNGL argq

LOGL argy

Receiving:

SPROG PZE 0

R 9
;B,Z';\ ZSETUPNC The PZE 2 defines

two receiving

ANY 0

LOGL O arguments and two
DOUB 1TEMP conversion items
LOGL 2TEMP

The last two arguments of the above receiving sequence
specify the types to which the corresponding calling argu-
ments are to be converted and the locations into which the
converted arguments are to be stored.

30

Standard Receiving Sequence for o Variable Number of Ar-
guments. When it is desirable to write a subroutine capable
of handling a variable number of arguments, the receiving
sequence must determine the number of arguments from the
calling sequence and must transmit the argument address to
the subprogram. An example is given below.

Calling
BRM SPROG
PZE 5
SNGL arg
LOGL argy

EXTRA DOUB arg3

DOUB argy
DOUB args

Receiving:

SPROG PZE 0
BRM 9SETUPV

VARG 2

ANY 0

LOGL O The VARG 2 defines
pous *,X1 two fixed arguments
STA LOCN

LOCN PZE 0

VARG specifies the number of fixed arguments (even if

n =0), and ANY and LOGL are the type specifications for
the fixed arguments. The following line (DOUB*, X1) is the
type specification for the variable arguments; it is always
indirect and is normally indexed, to facilitate access of the
remaining arguments. The 9SETUPV subprogram will process
the fixed argument specifications as usual, but will replace
the operand of the variable type specification with the ad-
dress of the last fixed specification inthe calling sequence
(i.e., EXTRA - 1). The number of variable arguments is
placed in LOCN!. Thus, for the above example, after
9SETUPV has been executed the receiving sequence looks
like

SPROG PZE 0
BRM 9SETUPV

VARG 2

SNGL arg,

LOGL arg,

DOUB *EXTRA-1,X1

STA LOCN

LOCN PZE 3

where arg; means the effective address of argument i.

tThe number of variable arguments may be zero.

Standard Calling/Receiving Sequences for No Arguments. EXIT BRM R\SETDWN

The standard calling sequence for no arguments is BRR ENTRY
FIRST . local variables, and temps

BRM subprogram

PZE 0 LAST PZE O
TEMPS PZE TEMPS—FIRST +1

The standard receiving sequence for no arguments is

subprogram PZE 0

BRM 9SETUPO Receiving Sequence for PROTECTED Subprograms
PZE 0 The standard receiving sequence for PROTECTED subpro-
grams is
Nonstandard Calling/Receiving Sequences. The compiler
generates a nonstandard sequence whenever only one argu- $ENTRY PZE
ment is required and the type of argument required by the DIR *,1
subprogram is known. An example of a nonstandard calling BRM R\SETUP
sequence is PZE *TEMPS
LDP ARGUMENT . normal receiving sequence and
BRM 9SIN : program
A receiving sequence is not normally required; references EXIY EEQA E\P\ﬁ;{éBLE
such as 9SIN usually access the actual start of the subpro- .
gram FIRST . local variables, and temps
The argument supplied is always located in the "principal LAST PZE 0
register.” Each type of data has its own principal register: TEMPS PZE TEMPS~FIRST +1
Type Principal Register The CONNECT Statement
Integer A The FORTRAN IV CONNECT statement generates code as
Real A, B described in Section 5.
Double-precision 8DBL (or 8DBLO, 8DBL1, or
8DBL2) MONITOR LINKAGE CELL R\MACH
Complex %gio(orag%;)](k’sgi;é]’ R\MACH indicates the type of CPU that MONITOR is being
\ ! A used with. Bit O is set to a 0 if the CPU is either a 910 or
8CPX3)

a 925, otherwise it is set to a 1. Bit 1 is set to a 0 if the
Logical A CPU is either a 910 or a 920, otherwise it is set to a 1. This
Other (labels, etc.) A code is illustrated in the following table:

Receiving Sequence for Reentrant Subprograms. CPU | BitO | Bit 1
910 0 0
The standard receiving sequence for reentrant subprograms 920 1 0
is
925 0 1
$ENTRY PZE
DIR * 930 1 1
BRM R\SETUP 9300 1 1
PZE TEMPS

Note that the codes for the 930 and 9300 Computers are
identical.

31

9. SYSTEM UPDATE ROUTINE

GENERAL DESCRIPTION

The UPDATE processor's purpose is to update the basic sys-
tem tape for use by the system-generator (SYSGEN). It
also may be used to update any file of a similar format.
There are three basic functions of file maintenance, namely:

1. Replacement.
2. Insertion.
3. Deletion.

Other functions that the UPDATE processor can perform are:

File copying.

Labeling an output file

Rewinding a designated file or files.

Writing an end-of-file on a designated file or files.
Scanning a designated file for a given label.
Skipping a designated file forward or reverse.

UPDATE PROCESSOR CONTROL MESSAGES

The UPDATE processor is a control-message oriented routine.
UPDATE is initiated by one of the following control mes-
sages:

oA WN =

_ BLOCKED
AUPDATE from, to [— UNBLOCKED]
_ BLOCKED
AUPDATE to [~ UNBLOCKED]
where

from = a previously assigned symbolic file
name, to be used as the input file.

to = a previously assigned symbolic file,
to be used as the UPDATEd output
file.

BLOCKED = OQutput file will be blocked(54()0]0
words/block).

UNBLOCKED = Output file will be unblocked (1

card image/block).

If neither BLOCKED nor UNBLOCKED are specified,
BLOCKED is assumed.

The UPDATE control message which defines "from" and "to"
implies a file copy from "from" to "to" with possible up-
dating from the "C" device. If the UPDATE control message
defines only one parameter (i.e., "to"), the UPDATE pro-
cedure is to copy from the "C" file to the "to" file.

If the UPDATE processor's first control message is
AEND

the result is a file copy. This sequence implies that the
UPDATE control message defined both the "from" and "to"
tapes.

32

When the END control message is encountered, UPDATE

terminates by copying the remainder of the "from" file onto
the "to" file, provided that both the "from" and "to" fields
on the UPDATE control message were defined. If the pro-
cedure is to copy from "C" to "to", UPDATE just terminates.

When the UPDATE processor's first control message is not

END, the procedure followed depends on the particular
UPDATE control message encountered.

UPDATE CONTROL MESSAGES

AREPLACE name

The REPLACE control message directs UPDATE to copy the
"from" file up to the routine defined by the label "name".
UPDATE then reads the next input image, to determine if it
is a LABEL contro! message (see LABEL control message
described in Section 2). If the control message is LABEL,
the new label is written on the "to" file and UPDATE skips
the label "name" and its entire routine on the "from" file.
If the input image is not a LABEL, the label "name" from
the "from" file is copied onto the "to" file and the remain-
der of the routine on the "from" file is skipped. The routine
that is to be inserted (the replacement) is then copied from
the "C" file to the "to" file.

AINSERT name

The INSERT control message direct UPDATE to copy the
"from" file onto the "to" file, up through the label "name"
and its corresponding routine. UPDATE then performs a "C"-
to-"to" copy.

ADELETE name

The DELETE control message directs UPDATE to copy the
"from" file onto the "to" file, up to "name". The label
"name" and its entire routine are then skipped.

ASCAN name

The SCAN control message directs UPDATE to scan the
"from" file for the label "name".

ASKIP +nnnnn

The SKIP control message directs UPDATE to skip either for-
ward! (+nnnnn) or reverse (-nnnnn) "nnnnn" records, where
a record implies from one label record to another.

When UPDATE has completed its file maintenance function,
it will provide a map of all of the labels that the "to" file
contains.

The "+" is not required when nnnn references a skip for-
ward.

10. SYSTEM GENERATION

GENERAL DESCRIPTION

The system generation routine (SYSGEN) is a free-standing
processor that will generate a real-time monitor system
(MONITOR) either on a RAD File or on magnetic tape 1,
channel A (or W, for the 900 Series). When SYSGEN is
completed, the MONITOR systemwill operate from MTOA (or
from MTOW, for the 900 Series) or the appropriate RAD unit.

SYSGEN is an absolute program with its own bootstrap and
loader and is the first record on the SYSGEN tape, which
is placed on tape 0, channe! A (or W)f. The program is
loaded into high core when a magnetic tape fill operation
is performed.

The minimal peripheral requirements for SYSGEN are:

1. A magnetic tape on Channel A (MTOA or MTOW)
2. A typewriter on Channel A (TY1A or TY 1W)
One of the following (system device):
a. A RAD File
b. A magnetic tape on channel A (MT1A or MT1W)

Optional peripherals are:

1. A card reader on channel A (CR1A or CR1W)
2. A line printer on channel A (LP1A or LP1W)

SYSGEN CONTROL MESSAGES

Before SYSGEN begins, the operator must supply the
SYSGEN operating parameters by responding to several in-
formation request messages and by defining the system con-
figuration of the ultimate MONITOR. These SYSGEN-time
control messages provide the user with a dynamic system
generation capability.

INPUT/OUTPUT REQUESTS

SYSGEN initially requests the device from which the con-
trol messages will originate, by typing the message:

INPUT FROM

The reply may be one of the following (followed by a period
or carriage return):

1. TY (implies typewriter 1, channel A or W)
2. CR (implies card reader 1, channel A or W)

t ¢ P e "
All references herein to any device on channel A or B also
apply to channel W or Y for the 900 Series Computers.

Any reply other than the above implies typewriter, and the
error message

INPUT NOT 'TY' OR 'CR', 'TY' ASSUMED
will be typed.

SYSGEN then requests the device on which the control mes-
sages, diagnostics and other information will be displayed

by typing:
OUTPUT ON

The reply may be one of the following (followed by a period
or carriage return):

1. TY (implies typewriter 1, channel A or W)
2. LP (implies line printer 1, channel A or W)

Any reply other than the above implies typewriter, and the
error message

OUTPUT NOT 'TY' OR 'LP', 'TY' ASSUMED
will be typed.

MONITOR SYSTEM CONFIGURATION

The first control message required by SYSGEN must supply
information about the MONITOR system configuration. The
form of this message is given below!.

ABASE-MACHINE, SYSTEM-DEVICE, DISC-SIZE, CHECK

BASE-MACHINE is either 910, 920, 925, 930, or 9300

SYSTEM-DEVICE is MTOA(MTOW) or DFnc (where: 1 n 2
and c=A, W, B,Y,C, ..., H)

DISC-SIZE is the number of characters on a RAD
File, nnCK (needed only ifthe SYSTEM-
DEVICE is a RAD File);
where: nn =5, 10, 26, 68, etc.,

C = nn* 100, and

K = C*1000

e.g., 5CK (i.e., 500,000)

CHECK is an optional request for SYSGEN to
read the system output just written and
to compare it with that which should
have been written.

Typical messages are

2910, MTOW, CHECK.
A930, MTOA.
29300, DF1A, 47CK, CHECK.

¥

"All SYSGEN control messages begin with a A in character
position 1 and end with either a period, a carriage refurn,
or a maximum length of 80 characters.

33

RESIDENT 1/O DRIVER REQUESTS

The second control message required by SYSGEN supplies

the information concerning what peripheral device drivers
aretobe resident at all times for this particular MONITOR
system.

The control message appears as one of the following:

ADRIVERS DEVICE-CODE(S)
ADRIVERS* DEVICE-CODE(S)

where:

DEVICE-CODE(S)™= blank (the typewriter, NO 1/O
operation, and the SYSTEM-
DEVICE drivers are automatically
assumed, even if the field is not
blank but does not request these
three drivers).

= DF and/or MD, implies disc/drum
driver.

= TY and/or PR and/or PP, implies
typewriter/paper-tape driver.

= CR and/orCP, impliescard reader/
card punch driver.

= LP, implies line printer driver.

= MT, implies magnetic tape driver.

= PL and/or NO, implies NO 1/0O

operation.

DRIVERS implies that 1/O error recovery
during real-time processing is re-
quested.

DRIVERS* implies that no I/O error recovery

during real-time processing is re-
quested.

Typical messages are

ADRIVERS MT, CR,CP, TY
ADRIVERS* DF, MT,NO
ADRIVERS

SYSTEM STANDARD ASSIGNMENT GENERATION

SYSGEN proceeds to load the resident MONITOR and
INSTALlation package according to the BASE-MACHINE
designation. The INSTALlation package contains the in-
formation needed for dynamic generation of the Unit Avail-
ability Table (UAT), Unit Name Table (UNT), standard
assignment portion of the resident symbol table (SYMTAB),
and the FCBs necessary to manage the system files.

"Each field must be separated by a comma.

34

The UNT contains the device names for all devices defined
by INSTALIlation and a corresponding UAT entry which con-
tains the channel and device number bit settings. Eachentry
in the UAT also references its particular I/O driver.

STANDARD ASSIGNMENT MODIFICATIONS

After generation of SYMTAB, additional standard assign-
ments can be added to SYMTAB as well as modifications to
all the existing standard assignments, except for

R\PERM (permanent file)

R\PROC (processor file)

R\PROK (META-SYMBOL Proc deck file)
R\PRIL (primary library file)

R\SECL (secondary library file)

R\SWAP (swap file)

R\CONS (system console file)

NO (NO 1/O operation)

by modification control messages of the form
AASSIGN STANDARD-ASSIGN-NAME = ASSIGNMENT

where:

STANDARD-ASSIGN-NAME = from 1- to 8-character
operational label (e.g., ABC, MXYZT).

ASSIGNMENT= a 4~character device name which is
defined in UNT, or device NO.

= a 1- to 8-character name which may
be defined in UNT or, if not in UNT,
must be in SYMTABas a previously de-
fined STANDARD-ASSIGN-NAME

Typical examples are

AASSIGN MX =LPTA
AASSIGN 10 = MX

As many of these modification or additional standard assign
control messages may be supplied as are needed.

The modification control messages are terminated by a FIN
control message of the form

AFIN

USER HOLD FILES (DISC)

If the SYSTEM-DEVICE is a RAD File, SYSGEN needs to
know if the RAD File contains user-defined "HOLD" files.
SYSGEN will type:

ARE THERE HOLD FILES

The answer to be typed in is either YES or NO. If the an-
swer is YES, the HOLD files are retained when generating
the MONITOR system. If the answer is NO, the MONITOR
system is generated and the remainder of the RAD File is not
preserved. If the response is neither YES nor NO (e.g., YAS,
NO), SYSGEN wiil continue with the request until the re-
sponse is YES or NO.

GENERAL SYSTEM GENERATION

SYSGEN determines which 1/0 drivers aré required (and
what the BASE-MACHINE is) and will load them as part of
the basic resident MONITOR.

SYSGEN analysis is then completed, except for generating
the MONITOR system on the SYSTEM-DEVICE. The BASE-
MACHINE bootstrap is loaded and written on the SYSTEM-
DEVICE. The MONITOR is then written, followed by the
INSTALlation information.

SYSGEN can then use the MONITOR for all of its I/O for
the remainder of system generation. The remainder of the
system generation depends on the BASE-MACHINE to deter-
mine whether the remainder of the MONITOR system is for
a 900 Series or a 9300 Computer.

The appropriate overlay loader is loaded into core to serve
as the loader for the remainder of the system generation.
The MONITOR is then informed that SYSGEN is to be the
executive system. All of SYSGEN is released from core for
loading purposes, except for the executive control.

The SYSGEN input tape (MTOA) is positioned to the /O
drivers. All MONITOR routines, processors, and 1/O
drivers which were not previously loaded as part of the
basic MONITOR are loaded and put on the processor file
(R\PROC) in a semi-absolute format. When the META-
SYMBOL Proc decks are encountered, they are put on the
Proc deck file (R\PROK).

SYSGEN continues by generating the primary library
(R\PRIL) and secondary library (R\SECL) files in semi-absolute

format.

When the ENDGEN record is read from the input tape
(MTOA), SYSGEN completes the SYSTEM-DEVICE initial-
ization. MONITOR is then informed that SYSGEN has
finished and that the MONITOR executive routine is in
control.

SUMMARY OF SYSGEN MESSAGES

SYSGEN contains variouserror, I/O, and general-information
messages which may occur during a SYSGEN operation.

INPUT/OUTPUT

The following table defines the type of message, its input
source, and where it is displayed (see INPUT FROM and
OUTPUT ON messages, discussed in "Input/Output Re-
quests.):

Input | Out.
From | On Message Type Where Displayed
Input control message |Not displayed
Y TY Error message On TY1A
Installation map On TYIA
Input control message |On LP1A
TY LP Error message On TY1A and
LP1A
Installation map On LPIA
Input control message |On TY1A
CR TY rror message On TYIA
Installation map On TYIA
Input control message |On LP1A
CR LP Error message On TY1A and
LP1A
Installation map On LP1A

ERROR AND I/O MESSAGES
The SYSGEN error and 1/O messages are as follows:

Message Cause

Results/Correction

NO 'CONTROL INFO!

'‘CONTROL INFO' NOT COMPLETE

DISC SIZE UNKNOWN, OR NOT DEFINED

The first control message (BASE-
MACHINE, SYSTEM-DEVICE,

etc.) is completely blank.

The first control message (see
above) does not contain a

SYSTEM-DEVICE

The first control message (see
above) defines SYSTEM-DEVICE
as DFnc(disc) and the size is
either unknown or not present.
(where: 1 <n<2and

c=AW,B,..., H

SYSGEN will halt with A-reg.=01
Determine correct contro! message
and clear halt

SYSGEN will halt with A-reg.
=02. Detemine correct control
message and clear halt.

SYSGEN will halt with A-reg.
=014. Determine correct control
message and clear halt.

35

Message

Cause

Results/Correction

OUTPUT DEVICE NOT 'DISC' OR 'MTOA-W'

BASE-MACHINE 1.D.UNKNOWN

ASSIGN/FIN 'CONTROL INFO' MISSING

NO DRIVER CONTROL MESSAGE

XX IS ILLEGAL DRIVER REQUEST

POSSIBLE SYS-GEN ERROR (5)

XXXX DEVICE NOT AVAILABLE

MOD.OF ANON-STANDARD ASSIGN SYMB.

MOD.OF ANON-DF/MD ASSIGN, TO=DF/MD

MOD.OF STAND.ASSIGN, DEV.NOT FOUND

ILLEGAL MOD.TO STAND.ASSIGN/SYMB.

INPUT NOT 'TY' OR 'CR', 'TY' ASSUMED
OUTPUT NOT 'TY' OR 'LP', 'TY"' ASSUMED

MTnA ERROR

The first control message (see
above) has an illegal SYSTEM-
DEVICE definition. Must be
MTOA, MTOW, or DFnc where:
1=n=2 and ¢c=A, W, B, Y, ..., H.

The first control message BASE-
MACHINE is not defined as 910,
920, 925, 930, or 9300.

A modification assign control
message is incomplete, or the
control message was supposed to
be "AFIN".

The second control message re-
quired by SYSGEN must be the
control message DRIVERS.

The DRIVERS control message has
requested an 1/O driver("XX")
which is unknown to SYSGEN.

SYSGEN intemal information
missing when generating UAT.
Caused by a possible hardware
malfunction.

When generating the symbol
table for standard assignments, a
standard assignment references a
nonexistent device "XXXX".

A modification control message re-
quests an assignment modification
to a symbol which is not a stan-
dard assign.

A modification control message re-
quests a modification of a standard
assignment (which was not origin-

ally assigned to a disc or drum) to

be assigned to a disc or drum.

A modification control message re-
quests a modification of a standard
assign and the peripheral device is
unavailable.

A modification control message re-
quests an assignment which refers
to a standard assignment which
cannot be assigned to.

Incorrect response to the initial

SYSGEN request: INPUT FROM.

Incorrect response to the initial

SYSGEN request: OUTPUT ON.

(0 = n = 1) magnetic tape read or
write error.

SYSGEN will halt with A-reg.
=03. Determine correct control
message and clear halt.

SYSTEN will halt with A-reg.
=013. Determine correct control
message and clear halt.

SYSGEN will halt with A-reg.
=04, Detemine correction and
clear halt.

SYSGEN will halt with A-reg.
=016. Determine what the con-
trol message should be (even if it
is just 'A DRIVERS') and clearhalt.

SYSGEN will ignore the request
and will continue processing the
remainder of the control message.

SYSGEN will continue as though
no error had occurred. If the
error is determined to be catas-
trophic, the entire SYSGEN op-
eration should be restarted. Ifthe
error persists, check the hardware.

Standard assign from INSTALlation
is ignored and the generation con-
tinues.

SYSGEN ignores the modification
and continues processing by ob-
taining the next control message.

SYSGEN ignores the modification
and continues processing by ob-
taining the next control message

SYSGEN ignores the modification
and continues processing by ob-
taining the next control message.

SYSGEN ignores the modification
and continues processing by ob-
taining the next control message.

SYSGEN assumes 'TY1A' as its in-
put and continues.

SYSGEN assumes 'TY1A' as its
output and continues.

SYSGEN halts with A-reg.='MTE'
(446325). Clear halt forretry. Ifer-
ror persists, check tape and tape
drive.

36

Cause

Results/Correction

Message

MTnA NOT READY

CR1A ERROR

CR1A NOT READY

LP1A ERROR

LP1A NOT READY

DFnc ERROR

DFnc NOT READY

PERIPHERAL-DEVICE XXXX NOT AVAILABLE

(0 = n = 1) magnetic tape is either
physically not ready or is file-
protected for a write attempt.

Card reader error; e.g., validity
check, feed check, or read check.

Card reader is not ready.

Line printer error.

Line printer is not ready or on
line.

Disc n (1 = n < 2) on channel ¢
(=A,W,B,Y,C, ..., H) read or

write error.

Disc n(1 < n < 2) on channel ¢

(=A, W, B,Y,C, ..., H) not ready.

A peripheral device which has
been defined for SYSGEN 1/0
use is not available (XXXX = de-
vice defined).

SYSGEN waits for the condition to
be corrected and then continues.

SYSGEN halts with A-reg.='CRE'
(235125). Correct condition and
clear halt to continue.

SYSGEN waits for the condition to
be corrected and then continues.

SYSGEN halts with A-reg.='LPE"
(434725). Correct condition and
clear halt to continue.

SYSGEN waits for the condition to
be corrected and then continues.

SYSGEN halts with A-reg.='DFE"
(242625). Clear halt for retry. If
error is persistent, check disc for
hardware problems.

SYSGEN waits for the condition to
be corrected and then continues.

SYSGEN cannot continue. The en-
tire SYSGEN operation must begin
over, with the correct devices de-
fined.

GENERAL INFORMATION MESSAGES

The general information messages produced by SYSGEN
This map displays

constitute a map of INSTALlation.
the information contained in the UNT, UAT, and

Case 1: (where SYSTEM-DEVICE = DF1A)

BASE MACHINE = 93Cy
SYSTEM LDEVICE= [FI1A
v+ ECHG=CHECK

R\MACH =
SECTUR MAF =
T9TAL SECTORS=

60CnCCCU
CU3774 (LISC=ALLREES)
Case 2: (where SYSTEM-DEVICE = MT0A)

BASE MACHINE = g¢§
SYSTEM LEVICE= MiLn

SYMTAB tables and also the MONITOR system character-

istics.

Monitor System Characteristics

acteristics:

The following is an example of the MONITOR system char-

GuAnCO3(* G0 WIRLS PEr SECTHR w4 CRARJPER wOARL=NGCHAR,(BCTAL)

NGB ECHB=CHECHK

RAMACH = ZGCCQUCC
BASE-MACHINE = The machine in which the MONITOR system is to operate.
SYSTEM-DEVICE = The peripheral device where the MONITOR system resides.

**ECHO-CHECK
NO ECHO-CHECK

SYSGEN checks what was written on the SYSTEM-DEVICE against that which should have been written.

As above, except that no check is made.

R\MACH = A flag word used by the MONITOR 1/O drivers and system processors to determine if I/O error recovery
during real-time processing is requested, and also what the BASE-MACHINE is.
SECTOR MAP = Address (octal) of the disc sector where the MONITOR disc-sector-map is maintained.

TOTAL SECTORS

The total number (octal) of sectors that this particular disc contains.

37

Unit Name Table Map (UNT)

The following is an example of the UNT map:
LN

ALLRES
Jazsu
Jdgvg
laghe
lbetks
Ibiod
cd4ldle
KERP2
RERPY
Jadza
L42zk
KERCRES
Jad e
Salse
34330
24340
KEREP:
4344
J43at
34350
3430k
RERE
KTV
34264
2444C

LeviCe

LFiw
MLz A
ML2n
CPla
CPIV\
MTLA
M1
MTZA
Miaw
NT;(:A
MT 3w
Ml4A
Mlaw
Mioa
MTEw
MTE A
MTen
MT 7k
M17
LF2c
LE<Y
FPREe
FFRZY
Mlco

RYYSPAS

SALNLKSSILMAN=YEVS [/83

LYuCluued vu

satieu wLULUDZ7 LY
$A0dL Louuiyge/ QO

Saud4
S4L3«
S40ze
SsuTe
Y3V
J4éun4a
340t
Jauce
d40ku
Sac bl
SJaut g
Stz
sALTé
Jared
Sdiee
REAWd
e/
CEARPA
S4u7 e
Sa4i7a
Sa ot

UidhuLC4n U6
Loutedsn ue
uegiesll 14
Goguiull i4
wulLiitle 14
guiuLcig 14
UUCOLCWI3 lé
UgguuLits L4
SISIVIIVICE -)
cuCOLGid 14
SuLuiiis 44
LCCGuULGlo 14
LLELUULG 14
wlgugule 14
Lutteil7 14
Louteul7 la
LUGUULe7 UC
viutele7 un
LGoLells 3
vCoLulcn G3
GALULGI 14

CRAINSCHOLE <G> s<F(Ca=ie> 8 NAME

28031 Oy NE
33%es Lo NG
3slel cz N
Jalls G2 NG
4/71 Gz NG
3476 Co Nty
ajac Ue NG
34ec1 13 NG
Jsécl/7 Ce NG
3J4e1d8 Ge Ny
RE-2-T-2 T 31]
34524 g2 NG
Jaksy Ly NG
34544 Us NE
3454 (g NG
J4uéa U nNE
33547 1L NG
33243 10 ND
KRR 1C g
3354 10 NG
sb27 10 NG
33523 10 NG
33517 16 NG
33018 lu NG
gooues 1y NO
where:
CHAIN =
CODE =

38

YES
YeS
TES
Yes
YES
YES
YES
NG
YES
YES
NO
e$
YES
YES
Yes
Yes
NO
NE
NG
NG
N2
Nt
]
NO
l\c

Gueoiecel
12345678
LLbiClun
S

VaXxXyY/Z
AcCLEFGR
]

R\SKAF
£E8

cl

X1

KNG VKL
R\SECL
SAPRIL
H\FROK
RAPRrROC
R\NJCCK
K\NjCIE
R\HFK(
RAMAL K
RANCERK
KNLLNT
RANUNT
RANUAT
K\KE ST

LEKTVER

RALISC
RALISC
RALISC
RACARY
RNCARD
RANTAPE
R\TAPE
RA\TAPE
R\TAPE
K\TAPE
R\TAFE
"\TAFE
"ATAFE
=\TAPE
KA TAPE
RA\TAFE
R\TAFE
~\TAFE
RATAPE
PAL15C
~Ap]SC
BA\PAPK
S\FAPK
<k\TAPE

ir

Y

NG
N
N
NG
NG
NG
ND
YES
N
NT
YES
NG
NU
NG
[N
N
h\s}
N0
NG
G
ND
N
[}
NGO
NT

T A &

I<FLE=0>3ALURSS

a5
34354
34354
34354
da26¢
Jalee
Jaz2sl
3v117
REY-L1E
34262
KRB R
34320
3adzu
34320
3432¢C
Ja32C
25441
84851
33511
2351¢C
33506
33774
338773
3777
3S512

where:

ADDRS (1st)
DEVICE

ADDRS (2nd)
CHAN-DEV

I/0

DRIVER

1]

I

Core address of UNT's DEVICE entry
Actual name of DEVICE
DEVICE reference address to UAT

The channel EOM bits with UNIT
NUMBER

Index to the /O DRIVER name table

The DEVICE name is connected to its
appropriate 1/0O DRIVER

Symbol Table Map (SYMTAB)

The following is an example of the SYMTAB map:

LEVICE

MT7 W
MY 7w
MT7w
MY 7w
CRU1A
Cx1A
NG

UF LA
NG

CRI1A
UF LA
MTOW
MTCwW
MT W
MT Uw
MTOw

3aC72
34072
34072
34072
KENENTS
RETENTY
San 30
3400
KYJUNIS
REIARTS
340372
3406S4
S4lo4a
3404
S409H4a
$4054.

the core address of the next symbolic NAME in the SYMTAB map.
the code given for the various types of SYMTAB entries, e.g.,

02 = FCB reference (not disc or drum and is reassignable)

12 = FCB reference originally to a disc or drum (is reassignable)

iACDRSSCHAN=UEVSEL /03 URIVER

0CUGCUL7 14 R\TAPE
0Q000u17 14 R\TAPE
UGC0UU17 14 RNTAPE
CCCGCaAuL7 14 R\TAPE
OLLduGe G R\CARL
Blulduie Qe kA\CAKD
GOOOLYLL 22 RA\NG

000Q0UZe GC RANDISC
DGUOCLLL 22 RAND

U000d0Go e R\CARD
0J0000e¢8 CO0 RANLISC
OLCUUULIU 14 RN\TAPE
QuuUtuylc 14 R\TAPE
Gu0ULUulG 14 RATAPE
GU0OCGLIL 14 KANTAPE
QUUCOuULL 14 RA\TAPE

03 = SYSTEM-FCB reference (cannot be reassigned norcan a file name be assigned to it)

13 = SYSTEM-FCTB reference (same as for code 03, but this reference is ignored by SYSGEN if the
SYSTEM-DEVICE is MTOA.

10 = MONITOR and INSTALlation entries.

NO if "NAME" is not same file as "LO" file.
YES if "NAME" is the same file as "LO".

<FCB=2> = NO if "NAME" is not an FCB reference.
YES if "NAME" is a 2-word FCB reference to the UAT.

<LO>

NAME = The 1-8 character symbolic name.
<FCB=6> = NO if "NAME" is not an FCB reference.
= YES if "NAME" is a 6-word FCB reference (disc or drum).
ADDRS(1st) The core address of UNT's DEVICE entry if "NAME" is an FCB reference.

The core address of the MONITOR or INSTALlation definition if "NAME" is not an FCB reference.

Note: The remainder of a SYMTAB entry information line is blank if the "NAME" is not an FCB reference. (See UNT
example for explanation of remainder of a SYMTAB entry's information line if "NAME" is an FCB reference.)

SYSGEN EXAMPLES

The following are examples of a SYSGEN operation with modifications to standard assignments and subsequent addition of stan-
dard assigns:

Example 1:

INPUT FROM TY.

OUTPUT ON LP.
A910 DF1A, 5CK.
ADRIVERS. (DF, TY, and NO assumed)
AASSIGN A =DF1A
AASSIGN TEMPORARY = A (actual file name = TEMPORAR)
AASSIGN X3 = NO
AFIN

Example 2:

INPUT FROM CR.
OUTPUT ON TY.
A9300 MTOA, CHECK.
ADRIVERS DF,CR,NO. (MT, and TY assumed)
AASSIGN X1 = MT1A
AASSIGN X2 = MT2A.
AASSIGN X3 = MT2A.
AASSIGN 12345678 = X3
OASSIGN X4 = 12345678
AFIN

39

APPENDIX A
SDS STANDARD BINARY LANGUAGE

The following description specifies a standard binary language for SDS 900 Series and 9300 Computers. This language
is intended to be both computer-independent and medium-independent. Thus, the language provides for handling
Programmed Operator definitions and references, even though the 9300 Computer does not have this hardware feature;
similarly, there is a provision for relocation relative to blank COMMON.

In the following description of the language, a file is the total binary output from the assembly/compilation of one
program or subprogram. A file is both a physical and logical entity, since it can be subdivided physically into unit
records and logically into information blocks. While a unit record (in the case of cards) may contain more than one:
record, a logical record may not overflow from one unit record to another.

1. CONTROL WORD — first word in each type of record

Type (T) I/ Word Count (C) (é‘l"::;) Folded Checksum (FC) Field
0 101 Contents

0 23 4 8 9 1112 23 Bit Number
T Record Type

000 Data record (text)

001 External references and definitions, block and program lengths

010 Programmed Operator references and definitions

on End record (program or subroutine end)

101 Data Statement Record

(other codes unassigned)

C = total number of words in record, including Control Word
Note that the first word contains sufficient information for handling these records by routines other than the loader
(that is, tape or card duplicate routines). The format is also medium-independent, but preserves the Mode indicator

positions desirable for off-line card handling.

An exclusive OR checksum is used. If the symbol(Wis used to denote exclusive OR, and Wi denotes the ith word in
the record (1 < i =C), then

FC=W)o. 1@ 6)gqy ©6)g,_ 53 © 07777
where

S=W, @w3@ SONA

2. DATA RECORD FORMAT (T=0)

Word 1

Control Record // Mode
3=C=30 . Folded Checksum
Word Type (T) C (Binary)
000 0 101

0 23 4 8 9 1112 23

Word 2
Load 7 Data Word Load Address Load Address (Relative or Absolute)
Address Modifiers (M) |[Modifiers (A) oa r
Word "

0

01 4°5 8' 9

23

41

42

The presence of bits in field M indicates the presence of words n+3, n+4, n+5, and n+6 (shown below):

If bit position 4 contains a 1, word n+3 (load relocation) is present.

If bit position 3 contains a 1, word n+4 (COMMON relocation) is present.
If bit position 2 contains a 1, word n+5 (POP relocation) is present. v
If bit position 1 contains a 1, word n+6 (special 1/O relocation) is present.

Word 3
Data Instruction or Constant
Word 1
0 . 23
Words 3 through n+2 contain instructions or constants (where 1 < n < 24)
Word n + 3
Load Load Address Relocation Word (present iff (M) n 1= 1)
Relocation
0 23
Word n + 4
COMMON Blank COMMON Relocation Word (present iff (M) n 2 = 2)
Relocation
0 23
Word n + 5
Programmed " Programmed Operator Relocation Word (present iff (M) n 4 = 4)
Operator
Relocation
0 23
Word n + 6
S/p(e)cial Special Input/Output Operation Relocation (present iff (M) n 8 = 8)
I
Relocation
0 23

Words n+3 through n+6 are modifier words. Each bit in each of these words corresponds to a data word; that is,
bits 0 through 23 of each modifier word correspond to data words 3 through n+2 (where 1 < n <24.) A bit set to
a 1 in a modifier word indicates that the specified data word requires modification by the loader. There are four
types of modification (and, hence, four possible modifier words) which are indicated in data records. The pres-

ence of a modifier word in a data record is indicated by the M (data word modifier) field in the load address
word,

The load address is subject to modification, as indicated by the A field of the load address word, as follows:

(A) 0, absolute
(A) n1=1, current load relocation bias is added to load address

(A) n2=1, current COMMON relocationbias isadded to load address; the remaining bits of A are unassigned
(A) =3, illegal

EXTERNAL REFERENCES AND DEFINITIONS, BLOCK AND PROGRAM LENGTHS (T = 1)

(Includes labeled COMMON, blank COMMON and program lengths)

Word 1
Control
Record Mode
Word Type (T) 4 <C <31* (Binary) Folded Checksum
001 0 101
0 2 3 4 8 9 1112 23
* From 1 to 10 items per record
¢ 1- to 8-Character Label
Cl C2 C3 C4
Cc5 Cé c7 C8
COMMON
Length 0 5 6 1112 1718 23
P
t;n;hgram) Length Word
Item Item V/ /
T;;)ne W B (C Length of Program or COMMON Block (L)
00 00000
.\'0 12 67 '8'9 23
B = 1if (L) is program length
C=1if (L) is length of a labeled COMMON block
. 1- to 8Character Label
Cci C2 C3 C4
C5 Cé6 c7 C8
0 56 1112 17718 23
External .
Reference 1 Chain Word
frem lrem // SR Address of Last Reference
Type ifiers (A)**
01 000
0 12 45 8 9 23
** See data record, load address word, for interpretation.
~ 1- to 8-Character Label
Ci C2 C3 C4
c5 Ccé c7 c8
0 56 11712 17 18 23
External
Definition § Velve Word
It
em Item Address Mod- Absolute or Relocatable Value
Type | ifiers (A)**
10 000
L 0 12 4 5 8 9 23

word, for interpretation

43

External symbolic definitions include subroutine "identification" as o subset and require no special treatment of
subroutines with multiple names.

. 1- to 8-Character Label

Cl C2 C3 C4
C5 Cé c7 Ce
0 56 N2 1718 53
Chain Word
E)e(:’z:::i:e Item V/ Address Mod-
with d | Type /M ifiers (A)** Address of Last Reference
Addend 1 000
Word*
0 12 45 8 9 7
Addend Word
WY Value of Addend
000 000 000
"0 89 >3

* One of these items for each unique reference; e.g., each of the following references is repre-
sented by a separate item: A+5, B+5, B+6, C+2, C+5

** See data record, load address word, for interpretation.

PROGRAMMED OPERATOR REFERENCES AND DEFINITIONS (T = 2)

Word 1
Control
Word TR;::?:.) V 4 <C <31** (g?::fy) Folded Checksum
010 0 101
0 2'3'4 8'9 1112 23
**From 1 to 10 items per record
. 1= to 8-Character Mnemonic
Cl C2 c3 c4
C5 Cé c7 Cc8
Internal 4 0 56 1112 17718 23
Programmed Item
Operator Type Sequence No. R Origin of Programmed Operator Routine
00 1
L
0 12 7 8 9 23
1- to 8-Character Mnemonic
Cl C2 C3 Cc4
C5) Cc7 Cc8
Programmed] 0 56 112 1718 23
Operator Item //
Reference Sequence No. R /
nc Type A
01 0 000 000 000 000 000

0 12 789 23

1- to 8-Character Mnemonic

-
Cl C2 C3 C4

External C5 Cé c7 c8
Programmed | '0 56 1112 17718 23
Operator
Definition .Irf;:; Sequence No. |R Origin of Programmed Operator Routine

' 10 1

o2 7819 23

R =1 iff origin of Programmed Operator routine is relocatable. The sequence number indicates the order in
which the definitions or references occurred in the source program.

5. END RECORD (T = 3)

Word 1
Control Record |/ < < Mode
Word Type (T) 2 2=sC=5 (Binary) Folded Checksum
011 0 101
0 23 4 89 1112 23
Word 2
t|Transfer Wordw//
Length of (S) Mtz;\:lAl)f,l‘ers // 1 + Maximum Value of Location Counter
Program
0 0000
01 45 8 9 23

* See data record description for interpretation.

(Seet)
E‘::;‘;:l:s* V//////////////////// / Name List Address (Relative)
Word 000000000
0 8'9 23
(Seet)
Transfer // M “BRU" Transfer Address
Werd 000 000001
0 23 8 9 23

This may be followed by modifier words.

6. DATA STATEMENT RECORD FORMAT (T = 5)

Word 1
Record Word Mode
Control Type (T) Count (C) (Binary) Folded Checksum
Word
o 101 6<C<36 101
0 2'3 89 11712 23
t!f S =1, Word 3 is the Name List Location Word and Word 4 is the Transfer Word.
If S =0, Word 3 is the Transfer Word, and the Name List Location Word is omitted.

Word 2

Increment (I)* .
Load (Least significant 9 bits) Load Address (Relative)
Address
Word
0 89 23

* The increment (I) is added to the relative load address to obtain the next relative load address
for a repeat load.

* 7// Increment (I) (Most { - Repeat Count
?:iﬁ:tword ()] Significant 6 Bits) (R)**
ol 23 8'9 23
* If S=1, words 6 through C (6 < C < 36) are loaded relative to the labeled COMMON block's
origin.
If S =0, words 4 through C (4 < C < 36) are loaded relative to the subprogram origin.
** Data words 4+2S through C are repeatedly loaded (R) times in increments of (I)
Word 3+S
1 C2 C3 C4
COMMON
Block
Label Word 3 + 25
c5 Cé Cc7 cs8
0 56 1112 1718 23
Word 4 + 25
Data
Word 1 Data
0 23

Words 4+ 2S through C contain constants

7. BINARY CARD ORDERING

The loader places certain restrictions on the permissible ordering of relocatable binary cards. That is, the re-
quired ordering is as follows:

a. Type 1 cards (containing definitions of external symbols) and Type 2 cards must physically precede all other
cards (except Type 5; see below).

b. Type O cards ‘must follow Type 1 and Type 2 cards.

c. Type 1 cards containing references to externally defined symbols must then follow type O cards.

d. The last card in any deck must be a Type 3 card.

e. Type 5 cards may appear anywhere, prior to the Type 3 card, as long as they follow the definition of the
item into which data is to be loaded.

APPENDIX B
300 SERIES REAL-TIME TAPE MONITOR

The tape version of MONITOR is functionally similar to the
disc version, but operates in a magnetic tape environ-
ment without the mass storage and rapid access facilities of
RAD Files. It provides interrupt and batch processing capa-
bilities for real-time and general-purpose applications
where RAD Files are not required.

The "swapping out" of batch jobs is optional and, if desired,
a magnetic tape unit must be dedicated for this purpose.
Dynamic loading of programs during interrupt processing is
considerably slower than for the disc version, due to the
differences in tape and disc access and transfer rates.

Library search and program load times are dependent on the
number and size of the library programs.

A minimum of two magnetic tape units are required, and, if
the batch "swapout" facility is to be used, a third magnetic
tape unit is needed. Also, if process-and-GO is desired or
if META-SYMBOL encoded decks are to be assembled with

symbolic corrections, then an additional magnetic tape unit
is necessary. (See the table below.)

The minimum hardware configuration for the tape MONITOR
is identical to that for the RAD MONITOR, except that a
magnetic tape unit is substituted for the RAD unit,

Function

Is Function Required By Job?

Any assembly or
compilation other
than META-SYMBOL
assembly of encoded No | No | No | Yes
program unit with
symbolic corrections
(see Section 1).

No | Yes | Yes Yes

7

_

META-SYMBOL as-
sembly of encoded
program unit with No | No | No | No
symbolic corrections
(see Section 4).

No | No { No | Yes | No | Yes | Yes | Yes

GO output and/or
LOAD input (see No | No | Yes | No
Section 3).

Yes | No | Yes | No | Yes | No | Yes | Yes

Swapping of batch
jobs during real-
time operations
(see Section 5).

No | Yes | No | No

Yes | Yes | No | No | Yes | Yes | No | Yes

Number of tape It
units requiredf

Includes only those tape units required by MONITOR.

MReal-time operations only; no batch processing to be done.

47

-A-

Abort routine (see System abort routine)
Accounting routines, 3

ASA compatibility, 2, 6

ASSIGN control message, 3, 23, 34

-B-

BACKSPACE control message, 8

BASE- MACHINE designation, 33, 35, 36, 37
Batch processing, 1, 10, 19, 23, 24, 47
BI file, 4, 6, 7, 11

Binary card ordering, 46

Binary output, 12

Blank COMMON, 41, 43

Blocked files, 32

Bootstrap program, 2, 35

Branch trace, 16

Branch and mark trace, 16

-C-

C device (see Control message input device)

Calling sequences (see Standard calling sequences)

Card reader/punch operations, 21
Carriage control, 18, 20, 22
CEASE control message, 17
Channe!l number, 18, 19
Channel-active test, 19
CHECK designation, 33, 39
Comment cards, 6
Comments field, 7
Compile-and-go operations, 1, 12, 47
Concordance listing, 5
CONNECT control message, 9, 15
CONNECT statement, 29, 31
Control message input device, 4, 8, 19, 32
Control message scan routine, 9, 24, 25
Control messages, 1, 3

ASSIGN, 3, 23, 34

BACKSPACE, 8

CEASE, 17

CONNECT, 9, 15

DATA, 8

DATE, 4

DEBUG, 16

DELETE, 32

DISPLAY, 17

DRIVERS, 34

DUMP, 17

END, 32

ENDFILE, 8

EOF, 8, 12, 13, 14

FIN, 8, 34

FORTRAN, 6

INCLUDE, 7, 10, 16

INSERT, 16, 17, 32

JOB, 3

Control messages (cont.)
LABEL, 5, 32
LEAVE, 16
LOAD, 4, 5, 6, 7, 8, 10, 16
MESSAGE, 4
METAXXXX, 5, 12
PAUSE, 5, 8, 17, 24
RELEASE, 3, 4
RENTAB, 17
REPLACE, 32
REWIND, 8
SCAN, 32
SEG, 7, 10
SKIP, 32
SNAP, 16
SYMBOL, 5, 6
SYMTASB, 17
TITLE, 4
TRACE, 16
TRAP, 16
UPDATE, 32

Control word, 41

Core memory requirements, 2, 47

Counters, 2

-D-

DATA control message, 8

Data record, 41

Data statement record, 41, 45
Data type codes, 27

DATE control message, 4

DEBUG contro! message, 16
Debugging, 1, 9, 16

DELETE control message, 32
Delimiter table, 25
Device-independent files, 1
Diagnostic routines (see Debugging)
Disc files (see RAD Files)

Disc sector map, 23, 24

Disc sector map search routine, 23, 24
DISC-SIZE designation, 33
DISPLAY control message, 17
DRIVERS control ‘message, 34
DUMP control message, 17
Dynamic loading, 1, 47

Dynamic storage, 2, 26

Empty-sector pool, 23, 24

Encoded input, 4, 5, 8, 47

END control message, 32

End record, 41, 45

End-action routine, 18, 19
ENDFILE control message, 8
ENDGEN record, 35

EOF control message, 8, 12, 13, 14
EOM instruction, 18, 19, 38

Error flags, 19, 21, 22, 23

Error messages, 2

Executive, 1, 2, 17, 35

Exit routine (see System exit routine)

External definitions, 7, 11, 16, 41, 43, 44, 46
External references, 15, 41, 43, 44, 46

-F-

File Control Blocks (FCBs), 4, 18, 19, 21, 23, 24

File Description Tables (FDTs), 18, 19, 20, 21, 22, 23

File maintenance, 2, 32

FIN control message, 8, 34

Fixed segments, 7

FORTRAN, 1, 2, 8, 12, 22, 28
FORTRAN control message, 6
FORTRAN IV 1/O specifications, 6
Full trace, 16

-G-

GLOBAL variables, 9
GO file, 5, 7, 10, 12

-H-

Hardware requirements, 2, 47

HOLD files, 2, 3, 4, 34
-1-

I/O character testing modes, 22

1/0 operations, 1, 2, 15, 18, 19, 20, 21, 22, 23
1/O processor (see System 1/0 processor)

1/O specifications, 5

Identification, 3

Iliegal strings, 26

Implicit calls, 7, 30

Implicit call processor, 2, 26, 27

INCLUDE control message, 7, 10, 16

Input control messages, 8

INSERT control message, 16, 17, 32
INSTALlation package, 34, 35

Interlace requirements, 2, 47

Interpretive processing, 16, 26

Interrupt level, 2, 24

Interrupt save block, 2

Interrupt service routines, 1, 8, 9, 11, 15, 24
Interruptable routines, 2, 15

-J-
JOB control message, 3

- K-
Key~in initiation, 17

-L-

LABEL control message, 5, 32
Labeled COMMON blocks, 7, 43, 46
LEAVE control message, 16, 17
Library routines, 1, 47

Line count, 19

Line printer operations, 18, 19, 20, 22
Linkage cell R\MACH, 31, 37
Listing-object option, 5, 6, 12
Listing-output file, 4, 5, 12, 13, 14, 19
Load address word, 42

LOAD control message, 4, 5, 6, 7, 8, 10, 16

Load map, 6, 7, 10

LOAD specifications, 6, 11
Loader control messages, 7

Loader control program, 2

Local variables, 2, 28, 29, 31
Logical peripheral device names, 3

- M-

Magnetic tape files, 1, 47

Magnetic tape operations, 18, 20, 21
Manual loading, 27

Memory dump program, 2, 17
Memory dumps, 1, 16, 17

Memory Protection Feature, 1
MESSAGE control message, 4
META-SYMBOL, 1, 2, 8, 12, 35, 47
META-SYMBOL 1/0 specifications, 5
METAXXXX control message, 5, 12
Mode indicator, 41

MONARCH compatibility, 5
MONITOR system configuration, 33
Multiple program loading, 14

- N -
Name list location word, 45
-0-

Operational labels, 3, 8
Operational table, 3, 8
Operator actions, 17, 33
Operator control messages, 8
Overlay file, 2, 26

Overlay loader, 1, 2, 10, 35
Overlays, 7, 10, 13

-P-

Padding of partial words, 22

Page ejects, 19

Page headings, 4, 19

Page numbers, 4, 19

Paper tape operations, 18, 20, 21, 22
PAUSE control message, 5, 8, 17, 24
Pause routine (see System pause routine)
Permanent files (see HOLD files)
Physical peripheral device names, 3
Pointers, 2, 18, 19, 23

Postmortem dump program, 17

POT word, 19

Primary library, 1, 2, 7, 10, 16
Primary library file, 26, 35

Processor control messages, 5
Processor file, 26, 35

49

Processors, 1, 17, 33, 35
Program segments (see Segments)
Programmed Operators, 41, 44
Protected files, 1, 21

Protected routines, 15, 28, 29, 31
Push-down lists, 2

-R-

RAD Files, 1, 18, 20, 23, 33, 34, 47
Random access RAD Files, 1, 18, 19, 23
Real-time operations, 1, 11, 15, 19, 24
Receiving sequences (see Standard receiving sequences)
Record address, 18, 19

Record control words, 23

RECURSIVE declaration, 15, 29
Reentrance chain, 2, 17

Reentrance monitor, 2

Reentrant routines, 2, 15, 19, 29, 31
RELEASE control message, 3, 4
Relocatable programs, 2, 6, 46
RENTAB control message, 17

REPLACE control message, 32

Reserved files, 1, 3, 4

Resident 1/0O drivers, 34, 35

Resident loader, 2, 11, 26

Resident loader control routine, 26
Resident monitor, 1

Resident routines, 1, 7, 11, 24
Resident symbol table, 17, 25, 26, 38
Resident symbol table search routine, 25
Resident user's programs (see User's programs)
REWIND control message, 8

Rewind operation, 8, 19

-S-

S cards, 6

SCAN control message, 32

Scanning control messages, 24
Scanning files, 18, 20, 21, 32

Scratch files, 1, 5

Secondary library, 1, 2, 6, 7, 1
Secondary library file, 26, 35

Sector address, 18, 19, 23

SEG control message, 7, 10

Segments, 2, 7, 10

Semiabsolute loader, 2, 26

Sequential RAD Files, 1, 8, 19, 20, 23
Sequential file subcontrol messages, 8
SKIP control message, 32

SNAP control message, 16

Snapshot dump, 2, 16

Spacing magnetic tape, 21

Standard assignments (see System standard assignments)

50

Standard calling sequences, 27, 30, 31
Standard receiving sequences, 28, 29, 30, 31
Stop-character code, 22

Subroutines with a variable number of arguments, 30
Subroutines with no arguments, 31

SYMBOL, 1, 2, 5, 6, 15

Symbol table (see Resident symbol table)
Symbol table search routine, 9

Symbolic corrections, 12, 13, 14, 47
Symbolic file names, 3, 32

Symbolic input, 5, 6, 8

Symbolic unit names (see Physical peripheral device names)

SYMTAB control message, 17

System abort routine, 8, 17, 24

System BCD-to-binary conversion routine, 9, 26
System control messages, 3

SYSTEM-DEVICE designation, 33, 34, 35, 36, 37, 39
System exit routine, 17, 24

System files, 2, 26

System generation routine, 32, 33

System generation messages, 35, 36, 37

System 1/O processor, 1, 2, 19

System labels, 4,

System pause routine, 17, 24

System reserved names, 9

System standard assignments, 34, 39

System UPDATE processor, 1, 2, 32

-T-

Temporary storage locations, (see Temps)
Temps, 2, 19, 28, 29, 30, 31

TITLE control message, 4

TRACE control message, 16

Transfer word, 45

TRAP control message, 16

Typewriter operations, 18, 20, 21, 22

-U-

Undefined external symbols (see Implicit calls)
Unit Availability Table (UAT), 34, 37, 38, 39
Unit designation, 18, 19

Unit Name Table (UNT), 34, 37, 38, 39
Unrecognized control messages, 9

UPDATE processor control messages, 32
Update program (see System UPDATE processor)
User-defined control messages, 9

User's files, 1~

User's programs, 1, 19, 20, 21, 22, 26
Utility routines, 2

- X -

X cards, 6

SCH I‘:XTI |“I(: I)\TA\ S\STI‘:\IS 1649 Seventeenth Street *

SALES OFFICES

Santa Monica, California * Phone (213) UP 1-0960

FOREIGN
REPRESENTATIVES

IVNNVIAL 3ON3HIJ3H HOLINOW 3WIL-Tvad sas

	000
	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	xBack

