
SCIENTIFfC DA1A ~ l~TI~MS

Reference Manual

SOS REAL-TIME MONITOR
REFERENCE MANUAL

900 SERIES/9300 COMPUTERS

February 1966

Price: $2.00

SCIEt~TIFIC DATA SYSTEMS/1649 Seventeenth Street/Santa Monica, Caiifornia/UP i-0960

© 1966. Scientific Data Systems. Inc. Printed in U.S.A.

ii

RELATED PUBLICATIONS

Name of Document

SOS SYMBOL and META-SYMBOL Reference Manual

SOS Business Language Reference Manual

SOS FORTRAN IV Reference Manual

SOS FORTRAN IV Operations Manual

SOS 910 Computer Reference Manual

SOS 920 Computer Reference Manual

SOS 925 Computer Reference Manual

SOS 930 Computer Reference Manual

SOS 9300 Computer Reference Manual

Publication No.

9005 06

90 10 22

900849

900882

900008

900009

900099

900064

900050

CONTENTS

1. INTRODUCTION 8. MONITOR INTERFACES 18

Features 1 I/O Operations 18
Genera I Description 1 I/O Programming 19
Ha rdwa re Req u i rements 2 Magnetic Tape Operations 21

Card Reader Punch Operations 21
2. MONITOR CONTROL MESSAGES 3 Line Printer Operations 22

Paper Tape and Typewriter Operations 22
System Control Messages 3 Disc File Operations 23
Processor Control Messages 5 MONITOR Subroutines 24
Sequential File Subcontrol Messages 8 Standard Calling/Receiving Sequences 27
Input Control Messages 8
Operator Control Messages 8 9. SYSTEM UPDATE ROUTINE 32

3. LOADING 10 General Description 32
Update Processor Control Messages 32

Batch Jobs without Overlay. 10
Batch Jobs with Overlay 10 10. SYSTEM GENERATION 33
Loading to and from Secondary Library 11
Loading Resident, Rea I-Time Programs 11 General Description 33

SYSGEN Control Messages 33
4. PREPARING THE PROGRAM DECK 12 System Standard Assignment Generation 34

META-SYMBOL Initial Assembly.
Standard Assignment Modifications 34

12
User Hold Fi les (Disc) 34

META-SYMBOL Assembly with Corrections 12
General System Generation 35

FORTRAN Compi lotion 12
Summary of SYSGEN Messages 35

FORTRAN Compi le-and-Execute 12
Overlay Program Example 13

INDEX 48
Multiple Program Example 14
SYMBOL Program Example 15 APPENDIXES

5. REAL-TIME OPERATIONS 15

6. DEBUGGING 16
A SDS STANDARD BINARY LANGUAGE 41

7. OPERATOR ACTIONS 17 B 900 SERIES REAL-TIME TAPE MONITOR 47

iii

1. INTRODUCTION

The Real-Time MONITOR
t

for SDS 900 Series and 9300
Computers is a comprehensive system for monitoring and
controlling assemblies, compilations, and other program
operations. Some of its outstanding features are:

•

•

•

•

efficient system operation with minimum operator in­
tervention;

an easy-to-use, on-line, real-time input/output facil­
ity having maximum efficiency, while taking into ac­
count the needs of the user's program (I/O operations
are performed simultaneously with the user's program);

an open-ended set of processors that inc lude the SDS
META-SYMBOL assembler and SDS FORTRAN IV; and

a system of diagnostic routines, including highly sel­
ective program dumps.

Rapid Access Disc (RAD) Fi les are used as the storage medi­
um for MONITOR, the processors that it controls, library
routines, and system scratch and user files. MONITOR is
also available in a magnetic-tape version, for use with
systems that do not have RAD Fi les. If the tape version of
MONITOR is used, loading to the secondary library cannot
be accomplished by MONITOR, since the secondary library
must be created at system generation time. Also, any ref­
erences (in this manual) to HOLD files, sequential disc
files, and random access disc files are not applicable to the
tape version of MONITOR. All other facil ities, however,
are provided (see Appendix B).

All ma jor elements of MONITOR are stored on the RAD
Files in such a way that they are always available to the
system. Accordingly, these elements are said to be system
resident. The system resident feature, among others, en­
ables MONITOR to operate in real-time, providing the user
with a time-sharing environment in which to solve both
real-time and nonreal-time problems. The full real-time
processing capability of the hardware is utilized through
interrupt control, with a minimum of effort on the part of
the user. Batch processing functions, such as the compila­
tion of FORTRAN IV programs and the assembly of SYM­
BOL/META-SYMBOL programs, are provided also. Both
forms of processing may be carried out intercurrently, i.e.,
allowing interrupt service routines to be resident whi Ie
batch processing functions are carried out, preempting con­
trol when an interrupt occurs, and restoring control to the
batch processing function when interrupt servicing is com­
pleted.

FEATURES
BATCH PROCESSING

Except for the servicing of interrupts, all operations are
considered to be in the batch processing mode. A batch
processing function may be "swapped out" if its storage is

tThroughout this document, the entire system wil! be re­
ferred to as MONITOR, as distinct from" the monitor" which
is a primary control portion of the system.

needed by an interrupt service routine. An interrupted func­
tion will resume execution from the point of interrupt, after
the interrupt has been serviced completely. A portion of
RAD storage is reserved for the I1swap out" operation.

Files used during batch processing are protected from des­
truction by interrupt service routines for the duration of the
job. Conversely, files that have been reserved explicitly
for interrupt servicing may not be accessed by batch process­
ing functions. When interrupt service routines are resident
in core memory, batch processing jobs are prohibited from
doing" compile and go" operations. This is done to protect
resident real-time programs from destruction by batch job
execution.

REAL-TIME PROCESSI NG

Any interrupt service routine may be made resident in core
storage if sufficient storage is available. References to pri­
mary library routines within such resident programs are sat­
isfied at the time that they are loaded. References to other
routines are satisfied at execution time, by dynamically
loading the referenced program into unused storage. Such a
dynamic load may cause an interrupted batch job to be
"swapped out" if sufficient storage is not otherwise available.
Routines that have been dynamically loaded may themselves
cause dynamic loading of other routines.

Core storage used by resident interrupt service routines can
be protected through use of the optional Memory Protection
Feature.

DISC FILES

The user may define his own disc files. Such files may be
either random access or sequential. Sequential files can be
considered to be simulations of magnetic tape fi les. Conse­
quently, it is possible to have essentially device-independent
files defined in a program, and to determine the device at
the ti me of execution.

GENERAL DESCRIPTION

The main elements in the MONITOR system are a resident
monitor, a FORTRAN IV processor, a SYMBOL assembler, a
META-SYMBOL assembler, an overlay loader, a memory
dump program, an I/O processor, a primary library, a sec­
ondary library, and an update program.

RESIDENT MONITOR

The resident monitor consists of an executive, an interrupt
monitor, a reentrance monitor, a system bootstrap program,
and a resident loader.

Executive

The executive is the central system control, and processes
all control messages. Provision is made, in the executive,
for symbolic access to resident user programs.

Interrupt Monitor

The interrupt monitor controls all interrupt processing. When
an interrupt occurs, the interrupt monitor saves hardware and
program status information and performs other functions before
turning control over to the appropriate interrupt service rou­
tine. After completion of the interrupt service routine, the
interrupt monitor restores the previous program and hardware
status in the computer, clears the interrupt, and returns control
to the point in the program at which the interrupt occurred. In
addition to program status information, each interrupt save
block includes the contents of the following registers:

1. A register 4. FORTRAN double-precision register
2. B register 5. FORTRAN complex register
3. X register{s} 6. Location 0 (900 Series only)

Interrupt save blocks are placed in dynamic storage, and
are restored following the servicing of each interrupt.

The interrupt monitor is itself interruptable and reentrant.
All pointers, counters, etc., that are interrupt-level de­
pendent are contained withing the interrupt monitor as tem­
porary storage locations (temps), and are thus saved when­
ever the interrupt monitor is interrupted. These include
storage a II ocati on poi nters, the interrupt level counter, re­
entrance list pointers, and so forth.

Reentrance Monitor

The reentrance monitor determines whether or not a subpro­
gram is being reentered as the result of an interrupt. When
this is the case, the reentrance monitor saves the previous
status of the routine before allowing it to be reentered. The
local variables, temps, return address, calling argument
addresses, etc., are stored ina push-down list. Each item
in the reentrance push-down list is chained to the previous
item, so that the interrupt monitor can scan the I ist when
operations are complete at the end of each interrupt level
and restore the information saved at that level.

System Bootstrap Program

The system bootstrap program is an absolute program that
can read itself into core memory from disc storage. It
causes the MONiTOR to be read into core memory and
causes the executive wait loop to be entered.

Resident Loader

The resident loader consists of a loader control program, a
semiabsolute loader, an implicit call processor, and vari­
ous utility routines. It is used to load all programs from
the system files, including programs from the primary lib­
rary, the secondary library, and the overlay file.

REAL- TIME FORTRAN IV

The FORTRAN IV processor will operate in real-time and is
ASA compatible.

META-SYMBOL ASSEMBLER

The META-SYMBOL assembler translates source programs,
written in symbolic code, into machine language programs.

SY MBOL ASSEMBLER

The SYMBOL assembler is similar to the META-SYMBOL as­
sembler, but without some of the latter's advanced features.

2

OVERLAY LOADER

The overlay loader converts relocatable programs into a
form suitable for loading. It allows the loading and oper­
ating of a program in segments.

MEMORY DUMP PROGRAM

The memory dump program can be called during batch pro­
cessing as the result of a control message. A dump may be
taken of any specified area of memory and the information
dumped is in octal format.

SYSTEM I/O PROCESSOR

The system I/O processor is a general I/O package that is
used to process all input/output functions, inc luding system
requests. All I/O operations occur on a first-come-first­
served basis; and an operation, once started, continues to
completion. Prior to the start of any I/O operation, an in­
terrogation is made to determine whether or not the physical
fi Ie has been reserved. If the fi Ie has been reserved, and if
the request is from a resident program, the request is ser­
viced; otherwise, an error message resu Its.

PRIMARY LIBRARY

The primary library consists of user routines such as mathe­
matical routines and FORTRAN I/O and system routines.
Other routines may be added at the user's discretion. A de­
bug program is provided as a standard fe.ature and includes
such faci lities as tracing, patching, snapshots, memory dis­
play, and address search.

SECONDARY LIBRARY

The secondary library includes user routines such as interrupt
service routines and batch processing production programs.

UPDATE PROGRAM

The update program, accessed by means of control messages,
has the ability to perform the standard file maintenance
functions of insertion, deletion, and rep!acement. It may
be used for both system and user file updates.

HARDWARE REQUIREMENTS
MONITOR will function in any SDS 900 Series/9300 Com­
puter havi ng at least 16K words of core memory. The MET A­
SYMBOL assembler requires 12K words of memory. If there
are to be no real-time resident programs and if META­
SYMBOL is not to be used, the minimum required memory
for MONITOR is 8K words. If real-time programs are to be
in residence, at least 12K words are required.

The system requires interlace on each channel or buffer con­
troll ing:

1 T y pewri ter
1 Magnetic Tape Unit
1 Card Reader
1 Rapid Access Disc Fi Ie (524K characters.)

MONITOR has provisions for using the optional memory
protection, multiple memory bank, and power-foil-safe
features.

2. MONITOR CONTROL MESSAGES

The user directs and controls MONITOR via control mes­
sages. These messages direct the construction and execu­
tion of programs and provide the I ink between the program
and its environment. The environment includes MONITOR
and its processors, the computer operator, and peripheral
equipment.

The contro I messages are

System Control

JOB
ASSIGN
RELEASE
DATE
TITLE
MESSAGE
LABEL
PAUSE

Processor Control

METAXXXX
SYMBOL
FORTRAN
LOAD

Input Control

EOF
DATA
FIN

Loader Control

SEG
INCLUDE

Sequentia I Fi Ie Subcontrol

BACKSPACE
REWIND
ENDFILE

Operator Control

ABORT
GO
RETRY
ERROR
CONNECT

Control messages have the general form

~MNEMONIC SPECIFICATION

A space must follow the mnemonic, and no spaces are al­
lowed within the mnemonic.

Columns 73-80 are not interrogated and may be used for
identi fication.

SYSTEM CONTROL MESSAGES

JOB JOB signals the completion of the previous
job and the beg i nn i ng of a new job.

(6JOB X ... X
I
I

X ... X is any field desired by the user. Provision is made
for the insertion of installation accounting routines,

i.e., those monitoring the running characteristics of
the jobs performed such as running time, units used,
output quantity produced, etc.

When a job message is encountered, all user's operational
labels (relating to a previous job), are deleted from the
operational table.

ASSIGN ASSIGN provides for equating logical peri-
pheral device names, designated by the user, to physical
peripheral device names permanently established for the
system. The operator normally generates ASSIGN cards
from programmer-supplied job request information.

A

B

~ASSIGN A=B(N), RESERVE, HOLD

is a symbol ic fi Ie name of from 1 to 8 characters,
designated by the user.

is either a symbolic file name or else the permanent
symbolic unit name of an attached physical unit. If
B is a symbolic file name, it must have been defined
previously.

(N) is a numeric constant which specifies a maximum
size, in words, of disc storage to be allocated to
this fi Ie. A size must not be specified for fi les not
assigned to disc storage or for sequential disc files.
A size must be specified for all random-access disc
files. If B is a symbolic file name, (N) must not
be specified.

RESERVE may be used when assigning files to be used
by real-time programs only. The RESERVE option
specifies that the file named may be read or written
by real-time programs only.

HOLD applies to disc storage only. If a file is assigned
to disc storage, it will become a permanent file
whenever HOLD is specified and will remain on
disc storage unti I released by a ~RELEASE message.

B Device

MD Magnetic drum
MT Magneti c tape
CP Card punch
CR Card reader
PP Paper tape punch
PR Paper tape reade r
TY Typewriter
LP Line printer
DF Disc fi Ie
PL Plotter
NO No I/O desired

3

The user may fill an ASSIGN card with as many complete
assignments as will fit; no continuation is allowed.

Examples:

~ASSIGN ABBC=MT2A, QRZ=ABBC, 2=DF1A(5000)

Assign the magnetic tape 2 on channel A to the label ABBC,
assign the label ABBC to the label QRZ, assign disc file 1
on channel A to the label 2 and allocate 5000 words of disc
storage.

MSSIGN ABC=MT3A, TYP=TY1A

Assign the magnetic tape 3 on channel A to the label ABC
and the typewriter 1 on channel A to the label TYP.

Note that magnetic tape units are numbered 0 through 7; all
other devices are numbered from 1.

MONITOR-defined system labels may be used as labels in
ASSIGN control messages.

The comp lete set of standard fi Ie names that may be used
with ASSIGN control messages (or RELEASE control messages
explained below) are as follows:

System Labels

Label Reference
Reassign-
able?

R\PROC Processor fi Ie No
R\PROK PROC deck fi Ie No
R\PRIL Primary library fi Ie No
R\SECL Secondary library fi Ie No
R\OVRL Overlay library fi Ie Yes
R\PERM Permanent fi Ie No
R\CONS System typewri ter No
R\SWAP Swap file No
R\DUMP Post-mortem -dump fi Ie Yes
C Control message input Yes
Xi Scratch fi les, where

i = 1, 2, 3, ... Yes
SI Symbolic input Yes
SO Symbol i c output Yes
EI Encoded input Yes
EO Encoded output Yes
LO Listing output Yes
GO Binary output for load-and-GO Yes
BI Binary input Yes
BO Binary output Yes
TY Typewriter Yes
NO No I/O operation No

Assignment, release, and reservation of fi les is accomplished
through the use of Fi Ie Control Blocks (FCBs) which commu­
nicate information about fi les to the system I/O handler.

Reservation of a file by MONITOR is accomplished by set­
ting the reserve bit in the FCB for that fi Ie. Reservation of

4

files not assigned to disc storage results in a reservation of
the physical unit being assigned.

MONITOR accomplishes the reservation of fi les assigned to
disc storage by allocating a disc storage area, of the re­
quired size, and adding the FCB to a table of FCBs on disc.

RELEASE RELEASE pertains to HOLD disc files or to
those fi les that have been reserved.

(<">RELEASE

I
I

A,A,A,A

A is a symbolic name of from 1 to 8 characters.

RELEASE instructs MONITOR to release the specified file{s)
from its previous assignment.

DATE DATE gives MONITOR the date to be used
for heading outputs. The date is also listed on the LO (list­
ing output) media after each JOB card. (The assignment of
a device as the one on which listing output is to be produced
is explained under "Processor Control Messages. ")

(ADATE DAY, MONTH, YEAR

DAY is a 1- or 2-digit number.

MONTH is a 3-letter abbreviation; if it is expressed, DAY
must also be expressed.

YEAR is a 4-digit number; if it is expressed, MONTH
must also be expressed.

TITLE The TITLE control message may appear any-
where after a JOB message and before a LOAD message. The
purpose of the TITLE control message is to produce a heading
at the beginning of each page on the LO media. MONITOR
begins counting headed pages whenever a TITLE control mes­
sage appears, and it incorporates this information into the
heading.

(AlITlE

I .
The contents of columns 9 through 72, the current date, and
the number of the page appear at the beginning of each new
page on the LO media.

MESSAGE The MESSAGE control message may appear
anywhere.

~r~-M-E-S-S-A-G-E-----------------------

The contents of columns 1 through 80 are output on the sys­
tem console typewriter and on the TY device (if not the same
as the system console), and LO devices specified by pro­
cessor control cards.

LABEL The LABEL control message may appear any-
where before the processor and LOAD control messages.
The LABEL control message enables the user to write a la­
bel on the GO fi Ie (i .e., the fi Ie used to store the binary
I isting output in assemble-and-execute or compile-and
execute processing) preceding the binary object code.

(",LABEL

I
I

X ••. X

X ... X is the label to be written on the GO fi Ie. It may
be up to 8 characters in length.

PAUSE The PAUSE control message causes MONITOR
to wait for an operator response before continuing, allow­
ing time for the operator to perform some manual function
(such as changing a tape reel).

(",PAUSE

I
I

MESSAGE

This control message will cause the message

PAUSE TYPE MBORT, L:lGO

to be produced on the system console preceded by the
MESSAGE, and will cause the program to loop until the
operator responds. (See Operator Control Messages. lI

) It
may occur anywhere.

PROCESSOR CONTROL MESSAGES

Processor control messages tell MONITOR what system, such
as FOR TRAN, is to be used wi th the input deck to follow.
Any processor message also contains a list of input and out­
put specifications to be used during the assembly or com-
pi lation.

The complete set of I/O specifications that are recognized
by MONITOR are given in the following table.

I/O Specifications

M Specification Reference

EI
EO
SI
SO
LO

Encoded input
Encoded output
Symbolic input
Symbol ic output
Listing output or iisting object

I/O Specifications (cont.)

M Specification Reference

LS Li sti ng source
BO Binary output
X Comp i I e X cards
GO Binary output for load-and-GO
S SYMBOL-type symbolic statements
C MONARCH compatibil ity
ASA ASA standard storage allocation
CONC Standard concordance listing
EXCP Concordance listing with exceptions

910 Defines CPU for which code is to be gener-
920 ated. (900 Series FORTRAN IV only.) If
925 unspecified, generated code will be for
930 CPU on which compiler is operating.

METAXXXX METAXXXX specifies to MET A-SYMBOL
which type of inputs and outputs the program requires.

(",METAXXXX

I
I

M, M, ... , M

XXXX is 920, 9300, or 910. META920 produces output for
the 920/930. MET A9300 produces output for the
9300 and META910produces outputforthe91O/925.

M is the input/output specification.

META-SYMBOL I/O Specifications

M Specification Reference

EI Encoded input
SI Symbolic input
LO Listing output
GO Binary output for load-and-GO
BO Binary output
EO Encoded output
SO Symbolic output
C MONARCH compatibility
CONC Concordance Ii sti ng (standard)
EXCP Concordance listing with exceptions

With the METAXXXX message:

The user writes the specifications (M, M, ... , M) sepa­
rated by commas, in any order.

Once established, a set of options remains in force through­
out the job unti I changed by a new processor control message.

Note: If the encoded and symbolic input are from the
same source, a second scratch fi Ie for MET A­
SYMBOL is required.

SYMBOL The SYMBOL control message directs
MONiTOR to load and transfer control to the SY,V,BOL
processor.

5

(&YMBOL

I

P 1, P2
column 1) cards. The presence of the label X causes FORTRAN
to compi Ie X cards. Otherwise, it treats them as comment cards.

I
I

P1 is 920, 9300, or 910 (920 produces output for the
920/930, 9300 produces output for the 9300, and
910 produces output for the 910/925).

P2 specifies output data parameters. The parameters
(LO and/or BO) may appear in any order, sepa­
rated by a comma.

At least one output parameter (P2) must be present. Since
symbolic input is assumed, SI is not used as a parameter.

FORTRAN The FORTRAN message informs MONITOR
that the FORTRAN IV compi ler is to be used to process the
sou rce dec k.

M,M, ... ,M

M

SI
BO
LS
LO
ASA
X
GO
S

SO

910
920
925
930

FORTRAN IV I/O Specifications

Specification Reference

Symbolic input
Binary output
Listing source
Listing object
ASA standard storage allocation
Compi Ie X cards
Binary output for load-and-go
SYMBOL-type symbolic statements occur on

.. S" cards in a FORTRAN program
Symbolic output (for 9300 FORTRAN only)

Defines CPU for which code is to be gener-
ated. If unspecified, generated code will
be for the CPU on which the compiler is
operating. (900 Series FORTRAN only.)

(~FORTRAN

I
I

Several FORTRAN programs can be compi led without preced­
ing each one with a FORTRAN control message. Each subse­
quent FORTRAN program uses the same M specifications
encountered in the last FORTRAN control message.

M specifications, separated by commas, may be writ­
ten in any order and have the configurations and
meanings given in the table of FORTRAN IV I/O
Specifications.

LOAD The LOAD control message causes MONITOR
to use the loader to load programs.

With FORTRAN, symbolic input (SI) is always assumed. If
the user requests the LO option together with the LS option,
the listing occurs in the order: source then object. The la­
bel X refers to FORTRAN IV conditional compi lotion (X in

(~LOAD

I

M, M, .•. , M

6

I

Specifications for LOAD Control Messages

M Specification Reference

'name' Load named routine from secondary library into core

UPPER Load from input medium into upper residence core area

LOWER Load from input medium into lower residence core area

SECLIB Load from input medium (except secondary library) into secon­
dary library

X Load from input medium into core and execute only if error­
less

XM Load from input medium into core and execute only if no
ma jor errors

XR

M100

Load from input medium into core and execute regardless of
errors

Origin of relocatable programs to be a multiple of octal 100
(except for overlay and I ibrary routines)

MAP Produce load map

BI Search BI file for referenced 'name l
; if not found, search

SECUB. 'name' must be specified if BI is used. If 'name'
cannot be found on BI or SECUB, an error message will be
printed

Precludes Use of Specifications

SECLIB

LOVv'ER, SECLIB, X, XM, XR, M 100

UPPER, SECUB, X, XM, XR, M 100

'name', UPPER, LOWER, X, XM, XR, M100,
BI

UPPER, LOWER, SECUB, XM, XR

UPPER, LOWER, SECLIB, X, XR

UPPER, LOWER, SECUB, X, XM

UPPER, LOWER, SECUB

SECLIB

M specifications, separated by commas, may be writ­
ten in any order. The various M specifications are
shown in the table on the preceding page.

The' name' used as a specification in a LOAD control mes­
sage must be the defined name of a routine in the secon­
dary library. If a 'name' is specified, the specification
SECUB must not be used in the same LOAD control message.
An example of the use of a 'name' is given below.

~LOAD X,' name'

The above message would cause the named routine to be
loaded from the secondary library into core memory and
executed only iffree from errors. The lackofan Xspecifica­
tion (either X, XM, or XR) would cause the named routine to
be loaded into core memory but not executed.

If no 'name' is specified, MONITOR loads from the GO
file if the GO file contains any binary code to be loaded.
If the GO file contains no binary code, MONITOR then
loads from the BI file. An example is given below.

~LOAD UPPER, MAP

The above message would cause the binary code from
the input medium (i.e., the GO fi Ie, if possible, or
else the BI file) to be loaded into the highest avai lable
resident core area. No execution of the loaded binary
code would result, but a listing, or "map" of the rela­
tive locations of all external definitions would be print­
ed out on the system console typewriter at load time. If
the specification LOWER were used, rather than UPPER,
the binary code would be loaded into the lowest avail­
able area of resident core memory instead of the high­
est. Note that the specifications UPPER and LOWER
must not be used in conjunction with any of the X speci­
fications, since resident core storage is not intended to
be used for batch processing.

If SECUB is specified, the binary code from the input medi­
um is loaded into the secondary library. An example is
given below.

~LOAD SEClIB, MAP

Note that the only other load specification that may be used
in conjunction with SECUB is MAP (when a load map print­
out is desired).

The specification BI may be used in conjunction with any
other load specification except SEC LIB. When BI is speci­
fied' a 'name' must be specified also. The named routine
is loaded from the BI fi Ie or, if it is not found there, from
the secondary library.

On completion of loading from the input source, the load­
er attempts to fu I fi II any unsatifi ed references by search­
ing the primary library. The routines that satisfy such
references are added to the program. All other refer­
ences are treated as implicit calls, i.e~, references to
undefined external symbols at load time (see "Implicit
Call Processor").

LOADER CONTROL MESSAGES

SEG A segment of a program is that portion of mem-
ory that is committed by a single reference. A segment usu­
ally overlays some other segment and is constructed from sub­
segments. A fixed segment is that portion that resides in core
memory at all times. Any number of SEG cards may be used
to define the program, but they must be in sequence. (See
"MULTIPLE SEG CARDS".)

Segmentation may be specified by use of the following sym­
bols on a SEG control card:

labels one to eight alphanumeric characters that are
the labels of segments.

indicates that two segments or segment levels
are to be consecutive in memory.

()

indicates that two segments are to overlay
each other (begin at the same point).

indicates a grouping.

indicates that another SEG card follows.

MULTIPLE SEG CARDS

The special terminator (;) is used to continue from one SEG
card to another.

~SEG ,D)

(t~~-S-E-G--A---E_-{-B'-C-'-D)-------

I
I

-I Multiple SEG
Cards

Single SEG Card

Comments may appear on a SEG card, provided that a semi­
colon is used to terminate the segmentation codes and the
comments field begins at the right of the semicolon. Com­
ments may not appear on the last SEG card.

I NCLUDE The loader normally allocates labeled COM-
MON blocks in the highest levels in which they are refer­
enced. library routines are usually loaded at the highest
level (see Section 3). However, the user may allocate la­
beled COMMON blocks and library routines at any subse­
quent level by the use of the INCLUDE control card.

~INCLUDE NAME/LABEll, lABEl2, ... , lABElN

NAME is the 1 to 8-cha racter label used to define the seg­
ment in which the b locks or routines are to appear.

LABEL is the label used to define the routine or COMMON
block.

7

SEQU ENTIAL FILE SUBCONTROL MESSAGES

BACKSPACE BACKSPACE pertains to magnetic tape or se-
quentia I di sc fi les on I y.

(<"BACKSPACE

I

A, A, •• " A

A is a symbolic name of from 1 to 8 characters rep­
resenting a fi Ie on a magnetic tape or disc fj Ie
(sequential file).

BACKSPACE instructs MONITOR to backspace 1 physical
record on the specified fi le{s).

REWIND REWIND pertains to magnetic tape or se-
quential disc files only.

A

(LlREWIND

I
I

A,A, ... ,A

is a symbolic name of from 1 to 8 characters.

REWIND instructs MONITOR to rewind the specified file{s).

EN DFI LE ENDFILE pertains to magnetic tape or se-
quential disc files only.

(<"ENDFILE

I
I

A, A, ... , A

A is a symbolic name of from 1 to 8 characters.

ENDFILE instructs MONITOR to write an end-of-fi Ie at the
current position of the specified fi le{s).

INPUT CONTROL MESSAGES

DATA The DATA control card informs the system
that there is a data deck to follow. The data deck is for use
by the executing program. If a DATA control card appears
in the normal sequence of control cards, other than just
prior to a data deck, it is ignored.

(<"DATA

I
I

EOF An EOF card is a terminator for an input
source; it separates different types (EI or SI) of input data.
If this card appears in the normal sequence of control cards,
it is ignored.

8

(<"EOF

I
I

Note: An EOF card must follow symbolic input fora META­
SYMBOL assembly that involves both symbolic and
encoded input. No EOF cards are needed for FOR­
TRA N compi lati ons.

FIN The user places a FIN control card at the end
of a stack of jobs, to inform MONITOR that no more informa­
tion will be received from the C input device. When this
card is encountered, all user's operational labels are deleted
from the operational label table

(<"FIN

I
I

At this point, MONITOR types a message to inform the op­
erator that it has completed a stack of jobs and that it re­
quires more information.

OPERATOR CONTROL MESSAGES

After the message field of a ~PAUSE control message is out­
put on the system console typewriter, or after_the system
abort routine (R\ABRT) has been called, one of the following
MONITOR messages is typed:

PAUSE TYPE ~ABORT; ~GO

or

* PAUSE* TYPE ~ABORT ; ~GO; METRY

or

PAUSE TYPE~ABORT; ~GO; ~RETRY; ~ERROR

In response to such a MONITOR message, the operator types
one of the following (as specified by the message):

1. ~ABORT C/R (C/R = carriage return)

2. ~GO C/R

3. ~RETRY C/R

4. ~ERROR C/R

If MBORT is typed by the operator, MONITOR then causes
the current job or interrupt service routine to be discontinued
and one of the following MONITOR messages is typed:

* JOB ABORTED*

or

INTERRUPT ABORTED

If .0.GO is typed, the current job or interrupt service routine
will continue from the point at which it was halted by the
.0.PAUSE control message.

A 6RETRY message causes the appropriate retry routine to
be entered, and a 6ERROR message causes the appropriate
error routine to be entered.

USER-DEFINED CONTROL MESSAGES

The user may define his own control messages, in the follow­
ing form:

6X ••. X M,M, ... ,M

An unrecognized control message will cause a transfer to
the program of that name, if such a program is in core at
the time that the message is received by MONITOR.

The specification fields (M, M, ..• , M) of an unrecognized
control message can be processed by the user via the
MONITOR scan (R\SCAN), symbol table search (R\RSTS),
and convert (R\CNVT) routines. (See Section 8.)

SYSTEM RESERVED NAMES

Names reserved for controi messages (i.e., .0.name) must not
be used as external definitions. This includes control mes­
sage names used in debugging.

CONNECT CONTROL MESSAGE

The CONNECT control message is used to associate a partic­
ular subroutine with a given interrupt location. (See Section
5.) It has the following form:

loc

sub

.0.CONNECT (Ioc, sub(arg l' ... ,argn)}

is an octal integer specifying the interrupt location.

is the name of the subroutine to which control is to
be given when interrupt loc occurs.

is the normal argument list used with the subroutine,
including any symbolic name that has been defined
(i.e., the externa I definition has been loaded into
core). That is, the argi may be names of GLOBAL
variables or of subprograms.

9

3. LOADING

BATCH JOBS WITHOUT OVERLAY

The arrangement of a typical program deck for an unseg­
mented job is shown be low. Note that, a Ithough no SEG
or INCLUDE control messages are needed in this example,
an INCLUDE control message may be used to force the load­
ing of a routine from the primary library.

In the above example, the GO file is assumed to contain
no binary code; the binary-coded cards are loaded, a load
map is printed out on the system console typewriter, and
the program is executed.

BATCH JOBS WITH OVERLAY

The following examples represent segments diagrammatica Ily
as IItrees ll

• The horizontal coordinate is used to denote in­
creasing memory a Ilocation and decreasing segment levels
from left to right; a vertical coordinate is used to denote
overlays.

Example 1: If a program has a main segment labeled A and
two overlays, segments Band C, the program could be dia­
grammed as:

C I

I A

B I
and could be described as 6SEG A-(B, C)

Example 2: 6SEG A-(B-(C-D, E), F)

c I D I
B

I A E I
F J

tSee Section 4.

10

Example 3: .6SEG A-(B-(C, D, E), F-(G, H))

C I
B

D I

I A E I
G I

F

H I

The arrangement of a typica I program deck for a segmented
job is shown below. Note that an INCLUDE control card is
used to load a table, from the primary library, with a speci­
fied segment.

.6LABEL NAME3

NAME1

NAME3/T ABLE 1

The above example would result in the overlay structure
shown in the diagram below.

NAME2 I
NAME1

NAME3 I TABLE 1 I

LOADING TO AND FROM SECONDARY LIBRARY

LOADING TO SECONDARY LIBRARY

The arrangement of a typical program deck to be loaded into
the secondary library is shown below. Note that any rou­
tine loaded to the secondary library must have at least one
externa I definition.

LOADING FROM SECONDARY LIBRARY

Loading from the secondary library can be accomplished by
means of one of the following control messages:

1. h.LOAD Iname l

2. h.LOAD X,lname l

3. h.LOAD X, Iname ' , BI

Note that if BI is specified, loading wi II be from BI, and if the
named routine is not found on the BI media, then the secon­
dary library wi II be searched for the named routine. Any of
the LOAD specifications not precluded by use of a Iname l

specification may be incorporated in the control message.

LOADING RESIDENT, REAL-TIME PROGRAMS

Typical control messages for loading programs into resident
storage for interrupt servicing are as follows:

1. h.LOAD X, UPPER

2. h.LOAD X, Iname ' , LOWER

3. h.LOAD X, Iname ' , BI, UPPER

Note that specifying UPPER or LOWER causes the program
to be loaded into upper or lower resident core memory,
respectively. (See Section 5 for details of real-time op­
erations.)

11

4. PREPARING THE PROGRAM DECK

The following samples show various ways to prepare program
decks for MONITOR operation.

META-SYMBOL INITIAL ASSEMBLY

Symbolic Input
Listing Output
Encoded Output

Note: The "next card II must be another control message
such as JOB or METAXXXX, etc., denoting the
beginning of the next program unit. In all cases of
assembly following assembly (namely, EI to EI, EI
to 51, 51 to 51, or 51 to EI), the subsequent source
input decks must be preceded by a METAXXXX
card.

META-SYMBOL ASSEMBLY WITH CORRECTIONS

Symbolic Input 51
Encoded Input EI
Listing Output LO
Encoded Output EO

The EOF card separates the two types of program inputs.
See the note concerning "next card II in the previous sample.

12

FORTRAN COMPILATION

(Symbolic Input 51 Assumed)
Listing Source LS -------------

.6.ASSIGN SI=CR lA, LO=lP1A, EO=CP1A

lS is on the LO medium.

The "next card" functions for FORTRAN as it does for META­
SYMBOL, except that if it is not a control card, it is assumed
to be another FORTRAN symbolic input deck with the same
options as specified in the last FORTRAN control message.

FORTRAN COMPILE-AND-EXECUTE

(Symbolic Input 51 Assumed)
listing Source LS INext Card l

Binary Output for Load-
and-GO

MSSIGN SI=CR1A, LO=lP1A, GO=MT2A

The "next card" must be a .6. control card.

The USER assignment assigns and reserves a magnetic tape unit
for execution after program compi lotion. The GO specifi­
cation on the FORTRAN card informs the FORTRAN proces­
sor to generate binary output, for subsequent loading, onto
the GO file.

Note that when MONITOR encounters the FORTRAN card,
control is transferred to th .. e FORTRAN processor. Therefore,
any control card immediately following the FORTRAN card
or within the source deck would cause FORTRAN to termi­
nate compi lation.

OVERLAY PROGRAM EXAM PLE

An example of an overlay program deck is shown below.

13

MULTIPLE PROGRAM EXAMPLE

This sample shows some of the many control cards and deck configurations provided in the MONITOR system.

14

SYMBOL PROGRAM EXAMPLE
An example of a SYMBOL program deck is shown below.

5. REAL-TIME OPERATIONS

MONITOR responds to interrupts occurring during the exe­
cution of batch jobs, or during the execution of other rea 1-
time service routines of lesser priority, and returns to the
interrupted task after completion of the interrupt. Provi­
sions are included for allowing a routine that is responding
to an interrupt to ca II any other routines interrupted whi Ie
in process, with no danger of losing data. The various
interrupt servi ce routines may use a common pool of sub­
routines.

Real-time programs are loaded in the manner described in
Section 3 (see "Loading Resident, Real-Time Programs"). A
CONNECT control message (see Section 2) causes code to
be generated as shown in the following example (9300 Com­
puter):

~CONNECT (40, SUBR(ARGS))

code executed by the CONNECT message processor

BRM R\CNCT
PZE 2
PZE 040
PZE entry

code generated in dynamic storage

entry PZE
DIR
BRM
BRM
PZE
PZE
BRM
BRC

*,2
R\SVINTS

;UBR I
ARGS ,
R\RSINTS
*entry

ca II i ng sequence
for connected
routine

When an interrupt occurs at location 408 (in the above ex­
ample), it results in the execution of a branch to the entry
of the ca lIing sequence for the connected routine.

Any interrupt service routine having external references that­
are not satisfi ed at load time causes an automatic load of the
referenced routines from the secondary library when the in­
struction referencing the routine is executed.

With the exception of I/O operations, any action performed
at a given interrupt level will be ceased during the execu­
tion of a higher-level interrupt and will be returned to when
all higher-level interrupts have been cleared.

A RECURSIVE declaration in FORTRAN defines a reentrant
subprogram. Note that this does not mean that such a pro­
gram may call itself, either directly or indirectly.

Any subprogram that can be entered as the result of more
than one interrupt (before its execution has been completed)
must be reenterable. Moreover, if a reentrant subprogram
has internal subprograms, the internal subprograms must also
be reentrant. Note that a protected routi ne must not in i t i ate
any action causing an interrupt to occur during the timespan
of its own execution (including I/O operations). Also, a
protected subprogram should not contain an internal, re­
entrant subprogram.

15

6. DEBUGGING

The debug package is a part of the primary library. It is
loaded by using an INCLUDE control message following a
LOAD control message. A typical example is shown below.

Upon encountering a DEBUG message (see II Debug Control
Message ll

) the Debug program will immediately begin in­
terpretive execution of the specified routine. Only the
specified routine and other routines under its control will
be executed. All execution will be done interpretively
unti lei ther (1) the specifi ed routi ne executes a norma I
return or (2) a LEAVE message is encountered. In either
case, control is returned to MONITOR.

DEBUG CONTROL MESSAGE

The DEBUG control message may specify a complete call ing
sequence, and has the form

[fo r 0 < n :5 iO]

where p is the name of the subprogram at which interpretive
execution is to begin, and the ai form the list of arguments
required by the subprogram. The ai may be any externally
defined symbol, integer constant, or floating-point constant
consisting of a whole number followed by a decimal point
and decimal fraction. Both the subprogram name and the
argument list are optional, but, if specified, they must be
defined (Le., they must be in core storage). If the subpro­
gram name is not specified, interpretation will begin with
the entry to the main program.

DEBUG CONTROL

The following control messages may be used when the debug
program is in residence.

TRACE Control Message

This control message is of the form

LlTRACE p l' P2' P3' ... , p n [for O<n 5 25]

16

where p. may be
I

1. the name of a subprogram to be II branch ll traced
(i.e., printouts for branches only).

2. the name of a subprogram followed by an asterisk,
causing the subprogram to be II fuli ll traced (i .e.,
pri ntouts for all executed instructions).

3. No Pi need be specified, in which case the trace
wi II be a II branch and mark ll trace; that is, a trace
of all BRM instructions. This trace is always given,
regardless of the Pi specified in a LlTRACE message.

As many TRACE messages as necessary may be used, with a
limit of 25 subprograms named. Also, a breakpoint switch is
used to allow an on-line user to cause a "full" trace regard­
less of what control messages have been read .

TRAP Control Message

This control message is of the form

where each fi may be either a symbolic instruction or a sym­
bolic address. The effect of a TRAP message is that, every
time a specified instruction is used or a specified (effective)
address is referenced, a trace-type printout occurs. As many
TRAP messages as necessary may be used, with a total maxi­
mum of 25 addresses, and a total of 25 instructions. A break­
point switch may be used by an on-line user to cause a pause
fo II owi ng eac h TRAP pri ntout.

SNAP Control Message

The format of this message is

causing a snapshot dump of ni words starting at location si,
whenever the instruction in location ei is about to be exe­
cuted. Both e and s are symbolic locations and n is a deci­
mal number.

As many SNAP messages as necessary may be used, with a
maximum of 10 snapshot dumps specified.

INSERT Control Message

This message has the form

where

1. the instructions specified (the Wi) are to be insert­
ed logically following the instruction at symbol ic
location e.

2. The wi may be either octal instructions (B octal
digits), or symbolic instructions of the form

op loc

where "0pll is a symbolic operation and "loc ll is a
symbolic or octal location.

As many I NSERT messages as necessary may be used, but a
maximum of 200 locations are reserved for insertions.

CEASE Control Messages

The format of these messages is

L}.CEASE m1/a 1, mia 2' m/a3, ...

where mi may be any of the previously defined debug mes­
sage names, and ai may be any location (or instructions, in the
case of TRAP) to which the named function has been assigned.

For example:

L}.TRAP
L}.TRACE
.tSNAP
L}.INSERT
L}.INSERT

L}.CEASE

ALPHA + 3, STB
BETA, GAMMA*, DELTA,ALPHA
TW3/RCU/25
SST-4;77350031
SST+B/LDA B, STA 0, LOA C, STA W

TRAP/ALPHA+3, SNAP/TW3, I NSERT/SST+B

The named debug functions are terminated and named inser­
tions are deleted (and the original contents of the affected
core locations are restored).

DISPLAY Control Message

This control message allows the immediate display of the
specified locations. It has the form

where the wi define the symbolic locations at which the dis­
plays are to begin, and the ni indicate the decimal number
of words that are to be displayed.

SY MT AB Control Message

This message causes a dump of the resident symbol table. It
has the form

.tSYMTAB

RE NT AB Control Message

This message causes a dump of the reentrance chain. It has
the form

~ENTAB

LEAVE Control Message

This message causes the debug program to be exited and a
return to MONITOR to be executed. It has the form

L}.LEAVE

SYSTEM POSTMORTEM DUMP PROGRAM

An entry is provided in the executive to allow the user to
obtain a postmortem dump of memory. The dump program is
maintained on disc as a separate processor and is called with
arguments specifying the extent and type of dump desired.

When the dump program is called, it writes a section of mem­
ory onto a disc file and loads itself into the vacated area. All
registers are saved and the dump is written on the LO device.

Access to the dump program is via a DUMP message. Argu­
ments may be provided to specify the first and last locations
of an area to be dumped. If the required arguments are not
provided, all of memory will be dumped. The DUMP mes­
sage has the form

L}.DUMP START, END

Where START is the first location and END is the last loca­
tion to be dumped.

7. OP ERATOR ACTIONS

MONITOR communicates its needs for operator actions via
the system console typewriter. Operator responses to the
PAUSE message and calls to the system pause routine are
discussed in 11 Operator Control Messages", Section 2.
The calling sequences for the pause (R\PAWS), abort
(R\ABRT), and system exit (R\EXIT) routines are given in
Section B.

To initiate a key-in on the 9300 Computer, the operator first
presses console button 32 (this is not applicable to 900 Series
Computers). To start the key- in message on either 900 Seriesor
9300 Computers, the operator must type a 1IL}.lIas the first char­
acter. MONITOR responds by doing a carriage return and typ­
ing a second II~II. The operator then keys in the remainder of
the message and terminates by means of a carriage return.

17

8. MONITOR INTERFACES

I/O OPERATIONS

To perform an I/O operation, MONITOR must know the de­
scription of the basic EOM as well as other pertinent data.
The File Description Table (FDT), an area provided by the
user in his program, contains this information needed by
MONITOR. The arrangement of an FDT is shown below:

Word 1

2

3

4

5

6

7

File Description Table

Fi Ie status; end address + 1

Origin of record

Maximum word count

Device control EOM

I/O format control

Address of Fi Ie Control Block

Address of end-action routine

word 1, bit 0 Set = 1 if lOPS is using this FDT.

Set = 1 if an error occurred duri ng
the operation.

bit 1

bit 2

bit 3

Set = 1 if an end-of-file was detected.

Set = 1 if an end-of-tape or end-of­
disc-fi Ie was detected.

bit 4 Set = 1 if a beginning-of-tape was
detected.

bit 5 Set = 1 if an attempt to write on a
file-protected tape occurred.

bit 6 Set = 1 if I/O request cannot be
honored.

bits 7-8 Not used.

bits 1O-23 t Contain the address + 1 of the last
word transmitted.

word 2, bits 10-23t Contain the address of the origin of
the record to be transmitted.

word 3, bit 0 If set 1 by calling routine, lOPS
wi II return wi th bi t 6 in word 1 set
to 1 whenever I/O request cannot
be honored.

bits 1O-23t Contain the maximum number of words
to be transmitted.

word 4, bits 0-12

bit 13

18

Not used.

Set = 1, start with leader (paper tape
only).

Set = 0, do not start with leader.

bit 14

bits 15-16

Set = 1, transmit in binary mode.

Set = 0, transmit in BCD mode.

Specify number of characters/word:

Set = 0, 1 char/word.

Set = 1, 2 char/word.

Set = 2, 3 char/word.

Set = 3, 4 char/word.

word 5 may contain any of the following, depending on the
device and operation:

a. Formagnetic tape spacing operations, this word will
contain the number of records to be spaced. The
number must be positive if forward, and negative
if backward spacing is desired.

b. For typewriter and paper tape operations, a stop
character must be specified in bits 18-23.

c. For random-access disc storage operations, a rela­
tive sector address must be specified in bits 13-23.

d. For printer operations, a carriage control character
may be specified in bits 18-23 (see opcodes 60
and 61).

e. For scanning, must contain the appropriate 4 char­
acters.

word 6, bits 1O-23t Contain the address of the FCB for
the fi Ie being used (Le., a reference
to the FCB which wi II be satisfied at
load time).

word 7, bits 1O-23t Contai n the address of the user's end­
action routine, if required (if no end­
action is required, this word must be
zero)

The Fi Ie Control Block (FCB) referenced in word 6 of an FOT
has the arrangement shown below. An FCB for any device
except discs and drums consists of words 1 and 2 only. Six
words are required for disc fi les.

Word 1

2

3

4

5

6

Fi Ie Control Block

Channel and unit designation

Flags and driver pointer

First sector address

Last sector address

Current sector address

Current record address

tBits 9-23 for SOS 9300 Computer.

word 1, bits 1,6,17 Channel designation.

bits 19-23 Unit designation.

word 2, bit 0

bit 1

bit 2

bit 3

bit 4

bit 5

bit 6

bits 7-18

bits 19-23

word 3, bits 9-23

word 4, bits 9-23

word 5, bits 9-23

word 6, bits 17-23

Not used.

Set = 1 if device may be accessed
by batch programs.

Set = 1 if device is reserved for
real-time programs.

Set = 1 if last use of devi ce was by
batch programs.

Set = 0 if last use of device was by
real-time program.

Set = 1 if last operation on device
was a rewind.

Set = 1 if device is unbuffered
printer or a Model 9158 punch unit.

Set = 1 if device is random access
disc fi Ie.

Set = 0 if device is sequential disc
file.

Not used.

Index value (pointer) of subroutine
entry for this device in I/o table.

First sector address.
fi Ie area

Last sector address.

Current sector addreSS'

t

1
pointers

Current record address.

Note that the format of the first FCB word is identical to
that for records on magnetic tape and other units.

I/O MONITORING

The I/O processor, R\IOPS, is a reentrant program having
a section of its temporary storage block reserved for each
channel connected to the system. When R\IOPS is entered,
the channel number is computed. A channel-active test is
then made to determine if I/O operations may continue for
the current request. When the required channel is not busy,
general data (such as unit number, POT word, and the sec­
ond EOM instruction) are calculated and saved in the temp
block for that channel. The type of operation and device
are determined, and a branch is made to the appropriate
I/O device subroutine.

The device subroutine determines whether or not the device
is ready, and sets up the basic I/o instruction that will be
used for the operation. All such instructions are stored in
the R\IOPS temp block for the required channel. The de­
vice subroutine issues instructions that start the interlaced

t
Relative to the beginning of the sector block.

operation, and an interrupt subroutine is connected to the
I/O interrupt submonitor to process the termination interrupt.

When the transmission is terminated, the I/O interrupt sub­
routine is entered and a check for error conditions is made.
The interrupt subroutine is device-oriented and may cause
some I/O operations to be done. When the requested I/O
has been completed and a II error flags have been set as re­
quired, the interrupt subroutine returns to the I/O interrupt
submonitor which then enters the user's end-action routine,
if specified. Upon return from the end-action routine, the
operation is completed and control is returned to the point
of interrupt.

The I/O processor monitors all input from the device assigned
as the control message (C) file, and intercepts al16 control
messages. When such a message occurs in this fi Ie, the I/O
routines set the end-of-fi Ie indicator in the user's FDT and
return. If another attempt is made to read this, the job is
aborted.

Output data written on the listing-output (LO) file is also
monitored. A line count is kept and the operation code is
examined for each calion LO.

Page ejects on the LO device occur at the maximum line
count; and title line, data, and page numbers are output,
followed by the user's line. This service is not done for
any fi Ie other than the LO fi Ie, evan though other fi les
may be assigned to the same device as LO.

I/O PROGRAMMING

MONITOR uses its I/O processor to perform input/output
operations. Via the I/O processor, MONITOR can perform
one operation for each unit used by the user's program. Op­
erations fordifferentchannels run simultaneously; operations
for the same channel run in the order requested. With each
input/output operation there is an associated FDT. This
FDT is set active as the input/output operation is requested,
and is reset to inactive when the operation is completed.

The following devices are serviced by the I/O processor:

l. Card reader/punch

2. Paper tape reader/punch

3. Magnetic tape

4. line printer

5. RAD File

6. Typewriter

The I/O processor contains a single entry point for I/O op­
erations. Linkage with this entry is via a standard calling
sequence with one argument word. The calling sequence is:

BRM R\IOPS
PZE 1
OP LFDT

19

where OP is one of the following octal operation codes in
bits 3-8:

OP = On

OP = 20

OP = 21

OP = 30

OP = 31

OP = 32

OP = 33

OP = 4n

OP = 5n

OP = 60

OP = 61

OP = 7n

Read one record. For magnetic tape or
RAD File operations, n (input mode speci­
fication) is disregarded. For paper tape
and typewriter operations, n may be a
va I ue from 0 throug h 7.

Scan forward, to record identifier speci­
fied in word 5 of FDT.

Scan backward to record identifier speci­
fied in word 5 of FDT.

Space i records {where i, the record count,
is specified in word 5 of the FDT}. Ap­
plicable to magnetic tape or sequential
RAD File.

Write end-of-file. Applicable to mag­
netic tape or sequentia I RAD Fi Ie.

Rewind. Applicable to magnetic tape or
sequentia I RAD Fi Ie.

Write end-of-file and rewind. Applica­
ble to magnetic tape or sequential RAD
File.

Write one record. For magnetic tape or
RAD Fi Ie operations, n is disregarded.
For paper tape and typewriter operations,
n {mode} may be either 0 or 1.

Write one record. This is a printer oper­
ation that specifies a skip to channel n
before printing.

Write one record. This is a printer op­
eration specifying that the carriage con­
trol character for this record is in the
fifth word of the FDT.

Write one record. This is a printer oper­
ation specifying that the carriage control
character for this record is the first char­
acter of the line to be printed. The car­
riage control character is replaced by
060 (blank) before the line is printed.

Write one record. This is a printer oper­
ation specifying that n lines {maximum of
7} are to be upspaced before printing.

TYPEWRITER/PAPER TAPE OPERA nON CODES

The following opcodes are used to specify I/O modes for
paper tape and typewriter operations in a user's program.

OP is 00

This specifies a BCD input mode in which transmission is im­
mediately terminated on encountering a stop code, exhaust­
ing the word count, or encountering a gap on paper tape.

OP is 02

This specifies a BCD input mode in which transmission is im­
mediately terminated only on encountering a stop code or

20

exhausting the word count. If a gap is encountered on paper
tape, it is ignored; the tape is spaced past the blank area
and transmission resumes.

OP is 04

This specifies a BCD input mode in which transmission is im­
mediately terminated on encountering a stop code, exhaust­
i ng the word count, or encounteri ng a gap on paper tape. If
the maximum word count is exhausted, paper tape is spaced
to the next gap.

OP is 06

This specifies a BCD input mode in which transmission is im­
mediately terminated on encountering a stop code. Any gaps
on paper tape, encountered before the word count is exhaust­
ed, are ignored. If the maximum word count is exhausted,
paper tape is spaced to the next gap.

OP is 01

This specifies a binary input mode in which transmission is
immediately terminated on exhausting the word count or en­
countering a gap on paper tape.

OP is 03

This specifies a binary input mode in which transmission is
immediately terminated on exhausting the word count. If a
gap is encountered on paper tape, it is ignored; the tape is
spaced past the blank area and transmission resumes.

OP is 05

This specifies a binary input mode in which transmission is
immediately terminated on encountering a gap on paper tape
or exhausting the word count. If the maximum word count is
exhausted, paper tape is spaced to the next gap.

OP is 07

This specifies a binary input mode. Any gaps on paper tape,
encountered before the word count is exhausted, are ignored.
If the maximum word count is exhausted, paper tape is
spaced to the next gap.

OP is 4()

This specifies a BCD output mode in which transmission is im­
mediately terminated on encountering a stop code or exhaust­
i ng the word count.

OP is 41

This specifies a binary output mode in which transmission is
immediately terminated when the word count is exhausted.

Table of I/O Modes

The options implemented in the various paper tape and type­
writer I/O mod es are summarized in the following table.

Paper Tape and Typewriter I/o Modes

Octal Delete?
OP Mode I/O Pad? (077)

00 BCD I 060 Yes
01 Bin. I 00 No

02 BCD I 060 Yes

03 Bin. I 00 No

04 BCD I 060 Yes

05 Bin. I 00 No

06 BCD I 060 Yes

07 Bin. I 00 No

40 BCD 0 No No
41 Bin. 0 No No

MAGNETIC TAPE OPERATIONS

READING

A record from the magnetic tape specified in the FCB re­
ferred to in the sixth word of the FDT is read into memory.
The starting address is specified in the second word of the
FDT. Reading continues until the end-of-record is reached
or unti I the word count (Word3, FDr) is reduced to ZeiO. In
both cases, the tape is positioned in the gap following the
record read. If an error has occurred, the error flag bit in
the FDT status word will be set to 1. The end-of-file,
beginning-of-tape, and end-of-tape error flags in the FDT
status word are set if those conditions are encountered.

WRITING

Before each write operation is attempted, the tape is tested
for file-protect. If a fi Ie-protect is detected, the fi Ie-protect
bit in the FDT status word is set and control is returned to
the user's program.

One ph/sical record, of the length specified by the word
count in the FDT, is written. If an error occurs, and the
write is retried and is still unsuccessful, the error flag in
the FDT status word is set. The tape stops after the last
write attempt.

If the end-of-tape indicator is set during the write opera­
tion, the end-of-tape flag in the FDr status word is set.

SPACING

Spacing is accompl ished by using the tape scan operation
in the 4-characters-per-word mode. Spacing may be either
forward or backward, as specified in the fifth word of the
FDT. Spacing is terminated by an end-of-tape, end-of­
file or beginning-of-tape signal.

SCANNING

The specified file will be scanned for a record identifier
identical to the key word specified in word 5 of the FDT.

This

012
--
012

--
012

--
012

--
060
--

Change Stop Move Ignore
to This Code? to Gap Gap

060 Yes No No
-- No No No

060 Yes No Yes

-- No No Yes

060 Yes Yes No

-- No Yes No

060 Yes Yes Yes

-- No Yes Yes

012 Yes No No
-- No No No

For a forward scan, the identifier wi II be the last 4 charac­
ters of each record. If the operation is a reverse scan, the
identifier will be the first 4 characters of each record, in
reverse order.

If an end-of-file, beginning-of-tape, or end-of-tape con­
dition occurs, the scan wi II terminate and the appropriate
flag will be set in the FDT.

WRITE END-OF-FILE

The tape is tested for fi Ie-protect. If a fi Ie-protect is de­
tected, the fi Ie-protect bit in the FDT status word is set,
otherwise, an end-of-file is written. If an error occurs, the
tape is repositioned and the operation retried.

CARD READER/PU NCH OPERATIONS

READING

One record is read from the device specified in the FDT.
If the number of words specified in the table is less than the
number of words in the record, the remaining words are lost.
If an error occurs or an end-of-file condition is detected,
appropriate flags are set in the status word of the FDT.

PUNCHING

One record is punched on the device specified in the FDT.
If an error occurs, an error flag is set in the status word of
the FDT.

ERRORS

If a feed check error has occurred, the ending address in
word 1 of the FDT wi II be equal to the starting address. If
a val idity check error has occurred, the ending address in
word 1 of the FDT will not be equal to the starting address.
This difference allows the program to determine which type
of error has occurred.

21

LIN E PRINTER OPERAT IONS

PRINTING

One record is printed on the line printer specified by the
FDT. The format control is dependent on the value of the
OP in the users calling sequence. If the word count in
the FDT specifies more than 132 characters, only the first
132 will be printed. If the word count specifies zero words,
the format control character will be interpreted, the re­
quired format action taken, and control returned to the user.

ERRORS

A channel error will cause the error bit to be set in the sta­
tus word of the FDT.

CARRIAGE CONTROL

The following tables list the carriage control characters
which R\IOPS will accept. Table 1 gives the standard
SDS format control characters which are specified in the
FDT or in the first character position of the output record.
If one of these characters is used, the mode of the I/O re­
quest (FDT word 4, bit 14) must be binary (i .e., FDT word
4, bit 14 = 1). If the mode of the I/O request is BCD, the
carriage control character wi II be assumed to be a FORT­
RAN character, as described in Table 2.

Table 1.

00 0
01 1
02 2
03 3
04 4
05 5
06 6
07 7
40
41 J
42 K
43 L
44 M
45 N
46 0
47 P
other

Carriage Format Control Characters

Skipto format channel 0
Skipto format channel 1
Skipto format channel 2
Skipto format channel 3
Skipto format channel 4
Skipto format channel 5
Ski P to format channe I 6
Skipto format channel 7
Do not upspace before printing
Upspace 1 line before printing
Upspace 2 lines before printing
Upspace 3 lines before printing
Upspace 4 lines before printing
Upspace 5 lines before printing
Upspace 6 lines before printing
Upspace 7 I ines before printing
Upspace 1 line before printing

Table 2. FORTRAN Carriage Format Control Character

00 0
01 1
20 +
other

Double space before printing
Skip to top of form
Do not upspace before printing
Skip one line before printing

PAPER TAPE AND TYPEWRITER OPERATIONS

Paper tape and typewriter operations are performed in either
the BCD or binary mode as described below. These modes
specify the type of choracter testing to be performed by
the I/O processor during data transmission. The user's

22

program may also specify the termination conditions for the
operation, by placing a stop-character code in word 5 of
the FDT, prior to calling the I/O processor.

The modes of operation, BCD and binary, are not hardware
modes of operation, but only convenient names describing
the options available (specified by I/O opcodes).

BCD MODE

Delete Character

A BCD input operation will ignore any 077 (delete) codes
read.

Blank Replacement

Either a 060 or a 012 wi II produce a blank space on a line
printer. However, a typewriter will type a 060 code as a
tl and a 012 code as a space. In a BCD output operation,
all 060 codes are converted to 012 codes. In a BCD input
operation, all 012 codes are converted to 060 codes.

Padding of Partial Words

In a BCD input operation for which the number of characters
read is not an integral multiple of the number of characters
per word (specified in word 4 of the FDT), the last word is
padded with trailing 060 codes. No equivalent option is
provided for output operations, since output terminates on
the transmission of a stop character.

Stop Character

In a BCD mode, encountering a character equal to the stop
code causes transmission to be terminated when the process­
ing of that character is completed.

BINARY MODE

Delete Character

In a binary mode, the transmission of 077 code is handled in
precisely the same way as any other code.

Blank Replacement

In a binary mode of transmission, no character replacemenf
is done.

Padding of Partial Words

In a binary input operation for which the number of charac­
ters read is not an integral multiple of the number of charac­
ters per word, the last word is padded with trailing zeros.
(No equivalent option is provided for output operations.)

Stop Character

In a binary mode of transmission, no stop character options
ex ist, as no stop code is used.

DISC FILE OPERATIONS

RANDOM-ACCESS OPERATIONS

Reading

Data can be read from disc storage files oy specifying a
sector address in word 5 of the FDT. The fi Ie used must
have been assigned to disc storage by an ASSIG N message
and must have had a maximum file size specified. (When
the file was assigned to disc storage, file sectors were allo­
cated for it by MONITOR and its disc address was saved in
the FCB.) The sector address specified in the FDT is treated
as a relative address {i .e., relative to the beginning of the
file}. Words are read from the file, beginning at the speci­
fied sector and continuing until the word count is reduced
to zero. A maximum word count of 4096 may be specified
in word 3 of the FDT.

Data can be written on disc storage files by using the word
count and sector address specified in the FDT. The word
count is checked to ensure that the data to be written does
not exceed the I imits of the file specified.

Errors

If a channel error occurs, the error bit of the status word
of the FDT is set to 1.

If an attempt is made to transmit data beyond the I imits of
the specified file, only data within the specified file is
transmitted and the end-of-disc-file bit in the status word
of the FDT is set to 1.

SEQUENTIAL OPERATIONS

Files assigned to disc storage may be treated in much the
same manner as sequential magnetic tape files. That is,
they can be manipulated with the same I/O commands as
magnetic tape files. Each disc operation is similar to a
corresponding magnetic tape operation. Sequential disc
files are manipulated by the disc I/O subroutine by arrang­
ing them into chained sector blocks and maintaining these
blocks by the use of pointers. The pointers for each fi Ie
are stored in the FCB.

As data is written on a fi Ie and new blocks of sectors are
needed to contain it, new blocks are obtained from a disc
sector map and are added to the chain. Within each sec­
tor block are record control words that depict the individ­
ual records written on the fi Ie in that block. These record
control words are used by the disc I/O subroutine in man­
ipulating and maintaining disc fi les.

When a fi Ie is released during the processing of a job (not
at the end of a lob), the sectors allocated for the file are
placed in an empty-sector pool. If; at some later time;
no other sectors are available the empty-sector pool is

purged and its sector blocks are reallocated. The empty­
sector pool is always purged at the end of a job.

The format of the sector block record control words is given
below.

Sector Block Record Control Words

word 1 bits 9-23 Previous sector
address } sector control

word 2 bits 9-23 Next sector words
address

word 3 bits 0-11 Previous record
length) logical-record

bits 12-23 Current record control word
length = n

word 4 bits 0-23 First word of
record

3+n bits 0-23 nth word of
record

3+n+ 1 t bits 0-11 Previous record
length = n } logical-record

bits 12-23 Current record control word
length = m

DISC STORAGE SECTOR MAP

A disc storage sector map is maintained in core memory, for
use in allocating disc storage. The map contains a bit for
each sector block on disc. The sector map is updated in core
memory each time that a sector block is allocated. The map
is also maintained and updated on disc by the assign pro­
cessor for each file reserved by an ASSIGN control message.
On completion of a batch job, the sector map in core mem­
ory is initialized by overlaying it with the disc map.

In the following description of map searching, a sector
block is referred to as a sector.

DISC SECTOR MAP SEARCH

The disc sector map search routine performs the function of
searching the disc sector map in core, obtaining the address
of the available sectors, and allocating these sectors by set­
ting map bits. There are two entry points to the routine.

Entry point R\SECT is used when a single sector block (sec­
tors are always allocated in a block of 4 sectors) is to be
allocated. The calling sequence for R\SECT is:

BRM R\SECT
PZE 0

No arguments are specified and the address of the allocated
sector is returned in the A register.

tJ;>"",...,.. .. rI .. ~,..., .. """'" ,.4-" .. 1..1",.1/ .. r" 4-1..,..4- '-h I",..' 1'\.""''-'VI\,oll~ IllUl ~~II ~'Iii;O'-'IVI,IV'-'f'.~, ~v •• 1 1 III";;; Iv~;cal record
control word is not always the first word after the sector
control words.

23

The second entry point, R\SCTS, is used when a block of sectors
is to be allocated. The call ing sequence for R\SCTS is:

BRM R\SCTS
PZE 3
PZE SIZE
PZE FSTSCT
PZE lSTSCT

where:

SIZE is a cell containing the size, in words, of the
block of stomge

FSTSCT is a cell containing the disc address of the
first sector in the allocated block.

LSTSCT is a cell containing the disc address of the
last sector in the allocated block.

Error Conditions

If the search program is unable to locate any avai lable sec­
tors, a test is made of the empty-sector pool, which con­
tains all sectors that have been allocated and released during
a job. If there are sectors in the pool, they are returned to
the sector map and reallocated. If the empty-sector pool
does not contain any sectors, the following options apply:

1. If current sectors were to be allocated to a batch job, the
job is aborted and a message typed to inform the operator.

2. If a real-time program is operating and a batch job is
in memory (not swapped out), the batch job is aborted
and a message typed. When a batch job is aborted dur­
ing real-time processing, the batch symbol table is
searched for the FCBs and the sectors allocated for those
files are released.

3. If a real-time program is operating and a batch job does
not exist in memory, the current interrupt level is
cleared and the previous interrupt program continued.
A message is typed describing the reason for clearing
the interrupt and the interrupt level.

MONITOR SUBROUTINES

MONITOR subroutines of general interest are discussed here,
as an aid in understanding the basic control functions per­
formed by MONITOR. Note that the user does not normally
participate in the performance of such functions, aside from
providing the necessary control messages (via control cards
or typewriter).

SYSTEM PAUSE ROUTINE

The calling sequence for the pause routine is as follows:

BRM R\PAWS
PZE n
PZE MSG
PZE RETRY
PZE ERROR

For 1 ~ n ~ 3
(required)
(optional)
(optional)

MSG PZE size Message length, in words
TEXT m, message m = si ze* 4

24

Note that RETRY and ERROR are optional return points. If
the ERROR exit is desired, RETRY must also be specified (the
RETRY exit could be a dummy). An unconditional branch to
the optional exits is executed when the exit is taken.

Routine R\PAWS types the specified message and permissible
operator actions according to the exit~ defined by the call.
The typeout is in the following format:

PAUSE TYPE MBORT; ~GO; ~RETRY; ~ERROR

Note that if the ERROR (or RETRY and ERROR) exit was not
defined in the call to R\PAWS, the &RROR (or the ~RETRY,
~ERROR) option would not appear in the typeout.

SYSTEM ABORT ROUTINE

The calling sequence for the abort routine is as follows:

BRM
PZE
PZE

R\ABRT
1
MSG

MSG PZE size
TEXT m, message

Message length, in words
m = size*4

If R\ABRT is called from a batch job, the routine will cause
the following message to be output:

* J OB ABORTE D*

However, if the abort routine is called from a resident real­
time routine, the message

INTERRUPT ABORTED

will be output and MONITOR will return to the next-lower
active interrupt level (including the "zero" level, if no in­
terrupts are active).

SYSTEM EXIT ROUTINE

The calling sequence for the system exit routine is as follows:

BRM R\EXIT
PZE 0

This routine is the normal exit from a batch job, and may not
be called by a resident real-time program.

CONTROL MESSAGE SCAN ROUTINE

The control message scan routine, R\SCAN, is used to scan
the specification fields of a control message. It returns each
field delimiter and the character string preceding the delim­
iter, as well as the transfer address associated with the de­
limiter. The calling sequence for R\SCAN is on the following
page.

DElIM
TABLE

NO.CHAR
STRING

where

maxchar

n

d· I

BRM R\SCAN
PZE 1
PZE TABLE

FORM 6, 18
PZE maxchar
PZE n
DELIM 'd1" addr1
DELIM 'd2', addr2

DELIM 'dn', addr n
PZE 0
RES m

The maximum number of characters
allowable in the string. (i.e.,4*m)

The number of del imiter entries.

Del imiter character.

The transfer address associated with the
delimiter.

R\SCAN will return the field delimiter (one of the set spec­
ified in the delimiter table) in bits 0 - 5 of the A register,
the associated transfer address in the index register (900
Series; X 1 on a 9300), the number of characters in the string
in NO.CHAR, and the character string itself, left-justified
with trailing blanks, in STRING.

If a delimiter of the specified set cannot be found in the
control message, R \SCAN wi II set bit 0 of NO.C HAR and
will reset bits 1 - 23, the A register, and the index register.
If the character string length exceeds maxchar, but a del im­
iter is found, R\SCAN wi II return with normal settings, ex­
cept that bit 0 of NO.CHAR will be set.

RESIDENT SYMBOL TABLE SEARCH ROUTINE

A call on R\RSTS causes the resident symbol table to be
searched for the specified symbol. The resident symbol
table is composed of external definitions of all programs
currently in memory and is broken into two parts; (1) MON­
ITOR and batch program external references, and (2) MON­
ITOR and resident program external references. Conse­
quently, except for symbolic file references, symbols used
by batch and resident programs wi II not conflict.

Each symbol table entry has the following format:

Address of previous
symbol table entry

t---- 8-character symbol (BCD format) -----I

L F
Code C Location referenced by symbol

0 B

L F
Code C Location referenced by symbol

0 B
0 8 9 23

~

'Optional; see code 12 below.

Word 1

Word 2

Word 3

Word 4

Word 5t

Code
(octal)

00

01

02

03

04-07

10

11

12

13

14-17

o

FCB

o

Reference

Unused.

Unused.

Reference to a non-disc (or drum)FCB.

Reference to a system file FCB. A system file
cannot be reassigned, nor can another fi Ie be
assigned to it.

Unused.

External definition reference.

Unused.

Reference to a disc (or drum) FCB. This symbol
table entry will consist of 5 words. If this file
is reassigned, word 4 will be saved in word 5,
and the new assignment will be reflected in
word 4.

Same as code 03, but this fi Ie wi II be unde­
fined in the magnetic tape version of the sys­
tem.

Unused.

This is not a reference to the LO file FCB.

This is a reference to the LO file FCB.

This is not a reference to an FCB.

This is a reference to an FCB.

The call ing sequence for the symbol table search routine is

BRM R\RSTS
PZE 1
PZE STRING

STRING TEXT 8, symbol
K

where

K

PZE

1, search batch program symbol table.

2, search resident program symbol table.

3, search both batch and resident program symbol
tables.

When R\RSTS finds the symbol defined by STRING, the lo­
cation defined by the symbol wi II be returned in the A reg­
ister (bits 9-23). The location of the symbol table entry will
be returned in the index register (900 Series; Xl for 93(0).
If the symbol cannot be found in the symbol table, bit 0 of
the A register wi II be set.

25

If K specifies that both symbol tables are to be searched, the
resident program symbol table will be searched first.

SYSTEM BCD TO BINARY CONVERSION ROUTINE

This program wi II convert a BCD string of numbers to a bin­
ary value. If the string contains a decimal point, it will be
considered to be a single-precision floating-point value. If
the string begins with a zero (and contains no decimal point),
it will be considered to be an octal value.

The calling sequence for R\CNVT is

NO.CHAR
STRING

BRM
PZE
PZE

PZE
TEXT

R\CNVT
1
NO.CHAR

n
m, string

where

n Number of characters to be used.

m Integer «n+4- 1)/ 4).

Integer decimal and octal values will be returned in the A
register,. and floating-point values will be returned in the
A and B registers. Values which are not representable, due
to excess magnitude, will result in the A and B registers
being set to maximum or minimum values (dependent on the
sign of the value). Illegal strings wi II cause the maximum
settings.

RESIDENT LOADER

Resident Loader Control Routine

All programs are loaded under the direction of the resident
loader control routine, which informs the semiabsolute
loader of load locations and library files required and also
generates the implicit call linkage table. Resident loader
control is entered via the calling sequence

BRM R\LOAD
PZE system file name
PZE system program name
PZE load location, tag

system file name is one of the following system fi les:

1. R\PROC the processor fi Ie

2. R\OVRL the overlay file (includes user1s routines)

3. R\PRIL the primary library file

4. R\SECL the secondary library file (includes user1s
routines)

system is the address of the first of two consecutive
program words containi ng the name of a program that is
name to be loaded and that can be found in the file

specified by file name.

26

load is the address of a word containing the location
location at which the program is to be loaded. The value

of tag determines whether or not the program is
entered following loading.

tag = 0: the program is not entered and control returns
to the caller.

tag = 1: the program is entered at the location speci­
fied by program name.

If the program entered returns control to resident loader con­
trol, resident loader control returns to its caller.

Semiabsolute Loader

The semiabsolute loader performs all program loading func­
tions for the system. Given the program and fi Ie names as
arguments, it searches the file dictionary to obtain the pro­
gram1s disc address. It then reads the program directly into
the memory location into which it is to be loaded.

The seimabsolute loader calling sequence is

BRM R\SALD

PZE file name

PZE program name

PZE load location

file name contains the name of the fi Ie in which the pro­
gram to be loaded can be found.

program is the address of the first of two words which
name contain the name of the program to be loaded.

load
location

contains the address at which the program is
to be loaded.

Impl i cit Co II Processor

The implicit call processor is entered as a result of attempt­
ing to execute an instruction that referenced an undefined
external symbol at load time. When such an unsatisfied
reference exists at load time, the resident loader control
routine makes an implicit call link in dynamic storage entry.
It is through such an entry that the implicit call processor is
entered.

Upon entry, the implicit call processor searches the resident
symbol table for the required symbol. This is done in case
the symbol has been defi ned by a load subsequent to the link
entry being generated. If the symbol table is not in resi­
dence, a search is made of a system file, either overlay,
processor, or secondary library, depending on the type of
program being executed, and the program containing the
required symbol is loaded. After loading, the value of the
required symbol is merged into the replaced instruction with­
in the implicit call link entry and the instruction is executed
interpretively.

The implicit call link entry is

REFi BRM CALli

CALli PZE

BRM

TEXT

o
R\IMP

8, name

instruction

Manual Loading

Original reference replaced by
this instruction

First word of I ink entry

Call to implicit call processor

8-character name of referenced
item

instruction originally at REFi

The user may cause a program to be loaded, without exe­
cution, by referring to it as the operand of an Nap instruc­
tion. An example is given below.

Nap TABLE3

The above example would result in the generation of the
following:

IMPi

BRM IMPi

PZE
BRM
TEXT
NOP

R\IMP
8, TABLE3

STANDARD CALLlNGjRECEIV ING SE QU ENCES

900 SERIES COMPUTERS

Th.:; calling/receiving sequences for the SDS 900 Series use
operation code bits to determine the data type of the argu­
ments. These data type codes are derived as follows:

Data Type Codes

Calling or Receiving Sequences

Type Normal Octal Protected Octal

Integer INTG 001 INTP 041

Real SNGL 002 SNGP 042

Double- DaUB 004 DBLP 044
precision

Complex CMPX 010 CPXP 050

Logical LOGL 020 LGLP 060

(Labels, PZE 000 PZEP 040
subprogram
identifiers,

\ etc.)

Receiving Sequences Only

Type Normal Octal Protected Octal

(Real, in- ANY 007 ANVP 047
teger, or
double-
precision)

(ANY plus ALL 017 ALLP 057
complex)

(ALL plus EVRY 037 EVRP 077
logical)

(Variable VARG 777
number of
arguments)

The above octal operation codes are composed of bits set to
1 according to the following conventions:

bit 3 = 1: protected (calling - cannot be stored into;
receiving - will store into)

bit 4 = 1: logical

bit 5 = 1: complex

bit 6 = 1: double-precision

bit 7 = 1: real

bit 8 = 1: integer

Calling Sequence. The standard calling sequence is

BRM subprogram

PZE n

type arg
1

type arg
2

type arg
3

type arg
n

where n specifies the number of calling arguments,
and the argi are the addresses of the calling argu­
ments. The IItype ll operation codes indicate the data
type, if any, of the caiiing arguments.

27

28

Receiving Sequences. The standard receiving sequence is

entry

NO. ARGS
ARGl

ARGn

PZE
BRM
PZE

BRR

PZE
type

type

o
9SETUP
NO. ARGS

entry

n
o

o

Entry point
Call to set up n arguments

Exit (RETURN)

n = number of receiving arguments
Calling argument
addresses moved
to these locations
by 9SETUP

local variables,
temps, etc.

The above receiving sequence is modified slightly for routines that expect varying numbers of arguments, as in

entry

NO. ARGS
ARGl
ARG2
ARG3

ARGn
ARGv

m

PZE
BRM
PZE

o
9SETUP
NO. ARGS

BRR entry

VARG
type
type
type

type
type
PZE

PZE

n
o
o
o

o
*, Xl
m

o

Entry point
Ca II to set up a variable number of arguments

n = number of fixed arguments

Fixed arguments

Variable arguments
m = number of variable arguments

Receiving Sequences for PROTECTED Routines. All FORTRAN routines designated as PROTECTED have the receiving
sequence

entry PZE 0 Entry point
DIR 0,2
BRM R\PROT Protection routine
PZE NO. ARGS

BRM R\UNPT Unprotect routine
BRR entry

NO. ARGS
ARGl
ARG2
ARG3

type
type
type
type

etc.

n

o
o
o

(Either PZE or VARG)

Receiving Sequences for Reentrant Routines. FORTRAN routines that have been declared to be RECURSIVE, and reen­
trant assembly-language programs, have the receiving sequence

entry PZE 0 Entry point
DIR 0,2
BRM R\RENT Reentrance monitor
PZE TEMPS Temp block
PZE NO. ARGS

BRR RETURN

TEMPS PZE END-$+l Size of temp block
LAST PZE 0
RETURN PZE 0
NO. ARGS type n (Either PZE or VARG)
ARGl type 0
ARG2 type 0
ARG3 type 0 Fixed and/or variable arguments,

local variables, and temps

END (Last temp cell)

The CONNECT Statement. The FORTRAN IV CONNECT statement generates code having the same effect as the following:

FORTRAN statement:

CONNECT (40, SUB{ARG 1,ARG2,ARG3))

G~nerated code:

BRM R\CNCT CONNECT routine
PZE 2
PZE 040
PZE entry
BRU NEXT

entry PZE 0
BRM SUB CONNECTED routine
PZE 3
type ARGl
type ARG2
type ARG3
BRR entry

NEXT

29

9300 Computer

A reference to a subprogram by a source program causes
the compiler to generate a calling sequence to the sub­
program. Also, some subprograms are called implicitly by
the source program. In either case, the referenced sub­
program has a receiving sequence that facilitates the ex­
change of argument addresses between the calling statement
and the subprogram. Such sequences are of three types:
standard, nonstandard, and special.

Standard Calling Sequence. The standard calling sequence
is

BRM subprog ram
PZE n
type
type
type

type argn

n = the number of
calling arguments

Standard Receiving Sequence. The standard receiving se­
quence is

entry PZE 0
BRM 9SETUPN
PZE n

n = the number of
type 0
type 0 receiving

arguments

Standard Receiving Sequence with Conversion. It is often
desirable to allow a subprogram to accept an argument of
any of several types (e.g., any of the numeric, but not logi­
cal, forms). However, because it is practical to write the
subprogram to process only one type, a procedure is needed
to perform the desi red conversion. An exampl e is gi ven be I ow.

Calling, for N = 2:

BRM SPROG
PZE 2
SNGL arg1
LOGL arg2

Receiving:

SPROG PZE 0
BRM 9SETUPNC

The PZE 2 defi nes PZE 2
ANY 0 two receiving

LOGL 0 arguments and two

DOUB HEMP
conversion items

LOGL 2TEMP

The last two arguments of the above receiving sequence
specify the types to which the corresponding calling argu­
ments are to be converted and the locations into which the
converted arguments are to be stored.

30

Standard Receiving Sequence for a Variable Number of Ar­
guments. When it is desirable to write a subroutine capable
of handl ing a variable number of arguments, the receiving
sequence must determine the number of arguments from the
calling sequence and must transmit the argument address to
the subprogram. An example is given below.

Calling

BRM SPROG
PZE 5
SNGL arg1
LOGL arg2

EXTRA DOUB arg3
DOUB arg4
DOUB arg5

Receiving:

SPROG PZE 0
BRM 9SETUPV
VARG 2
ANY 0
LOGL 0 The VARG 2 defines
DOUB *, Xl two fixed arguments
STA LOCN

LOCN PZE o

VARG specifies the number of fixed arguments (even if
n = 0), and ANY and LOGL are the type specifications for
the fixed arguments. The following line (DOUB*, X 1) is the
type specification for the variable arguments; it is always
indirect and is normally indexed, to facilitate access of the
remaining arguments. The 9SETUPV subprogram will process
the fixed argument specifications as usual, but wi II replace
the operand of the variable type specification with the ad­
dress of the last fixed specification in the calling sequence
(Le., EXTRA - 1). The number of variable arguments is
placed in LOCNt . Thus, for the above example, after
9SETUPV has been executed the receiving sequence looks
like

SPROG PZE 0

BRM 9SETUPV

VARG 2

SNGL arg1

LOGL arg2

DOUB *EXTRA- 1,X1

STA LOCN

LOCN PZE 3

where argj means the effective address of argument i.

tThe number of variable arguments may be zero.

Standard Calling/Receiving Sequences for No Arguments.
The standard calling sequence for no arguments is

BRM subprogram
PZE 0

The standard receiving sequence for no arguments is

subprog ram PZ E
BRM
PZE

o
9SETUPO
o

Nonstandard Calling/Receiving Seguences. The compiler
generates a nonstandard sequence whenever only one argu­
ment is required and the type of argument required by the
subprogram is known. An example of a nonstandard calling
sequence is

LDP
BRM

ARGUMENT
9SIN

A receiving sequence is not normally required; references
such as 9SIN usually access the actual start of the subpro­
gram.

The argument supplied is always located in the "principal
register.1I Each type of data has its own principal register:

Type Principal Register

Integer A

Real A,B

Double-precision 8DBL (or 8DBLO, 8DBL 1, or
8DBL2)

Complex 8CPX (or BCPXR, 8CPXI,
8CPXO, BCPX1, 8CPX2, or
8CPX3)

Logical A

Other (labels, etc.) A

Receiv;ng Sequence for Reentrant Subprograms.

The standard receiving sequence for reentrant subprograms
is

$ENTRY PZE
DIR
BRM
PZE

*, 1
R\SETUP
TEMPS

EXIT

FIRST

LAST
TEMPS

BRM
BRR

PZE
PZE

R\SETDWN
ENTRY
local variables, and temps

o
TEMPS-FIRST + 1

Receiving Sequence for PROTECTED Subprograms

The standard receiving sequence for PROTECTED subpro­
grams is

$ENTRY

EXIT

FIRST

LAST
TEMPS

PZE
DIR
BRM
PZE

BRM
BRR

PZE
PZE

The CONNECT Statement

*, 1
R\SETUP
*TEMPS
normal receiving sequence and
program

R\ENABLE
ENTRY
local variables, and temps

o
TEMPS-FIRST + 1

The FORTRAN IV CON NECT statement generates code as
described in Section 5.

MONITOR LINKAGE CELL R\MACH

R\MACH indicates the type of CPU that MONITOR is being
used with. Bit 0 is set to a 0 if the CPU is either a 910 or
a 925, otherwise it is set to a 1. Bit 1 is set to a 0 if the
CPU is either a 910 or a 920, otherwise it is set to a 1. This
code is illustrated in the following table:

CPU Bit 0 Bit 1

910 0 0

920 1 0

925 0 1

930 1 1

9300 1 1

Note that the codes for the 930 and 9300 Computers are
identical.

31

9. SYSTEM UPDATE ROUTINE

GENERAL DESCRIPTION

The UPDATE processor's purpose is to update the basic sys­
tem tape for use by the system-generator (SYSGEN). It
also may be used to update any fi Ie of a simi lar format.
There are three basic functions of file maintenance, namely:

1 . Repl acement .
2. Insertion.
3. Deletion.

Other functions that the UPDATE processor can perform are:

1. File copying.
2. Labeling an output file
3. Rewinding a designated file or fi les.
4. Writing an end-of-file on a designated file or fi les.
5. Scanning a designated file for a given label.
6. Skipping a designated file forward or reverse.

UPDATE PROCESSOR CONTROL MESSAGES

The UPDATE processor is a control-message oriented routine.
UPDATE is initiated by one of the following control mes­
sages:

~UPDATE

~UPDATE

where

from

to

BLOCKED

UNBLOCKED

[
BLOCKED]

from, to = U NBLOC KED

[
BLOCKED]

to = UNBLOCKED

a previously assigned symbolic file
name, to be used as the input file.

a previously assigned symbolic file,
to be used as the UPDATEd output
file.

Output fi Ie wi II be bloc ked (::: 400 10
words/block).

Output file wi II be unbloc ked (1
card image/block).

If neither BLOCKED nor UNBLOCKED are specified,
BLOC KED is assumed.

The UPDATE control message which defines "from" and "to"
impl ies a file copy from "from" to "to" with possible up­
dating from the "C" device. If the UPDATE control message
defines only one parameter (i.e., "to"), the UPDATE pro­
cedure is to copy from the "C" file to the "to" file.

If the UPDATE processor's first control message is

~END

the result is a file copy. This sequence implies that the
UPDATE control message defined both the" from" and "to"
tapes.

32

When the END control message is encountered, UPDATE
terminates by copying the remainder of the "fromll file onto
the "to" file, provided that both the "from" and "toll fields
on the UPDATE control message were defined. If the pro­
cedure is to copy from" C" to "to", UPDATE just terminates.

When the UPDATE processor's first control message is not
END, the procedure followed depends on the particular
UPDATE control message encountered.

UPDATE CONTROL MESSAGES

~REPLACE name

The REPLACE control message directs UPDATE to copy the
"from" file up to the routine defined by the label "name".
UPDATE then reads the next input image, to determine if it
is a LABEL control message (see LABEL control message
described in Section 2). If the control message is LABEL,
the new label is written on the "to" file and UPDATE skips
the label "name" and its entire routine on the "from" file.
If the input image is not a LABEL, the label "name" from
the "from" file is copied onto the "to" file and the remain­
der of the routine on the "from" file is skipped. The routine
that is to be inserted (the replacement) is then copied from
the "C" file to the "to" file.

~NSERT name

The INSERT control message direct UPDATE to copy the
"from" file onto the "to" fi Ie, up through the label "name ll

and its corresponding routine. UPDATE then performs a IIC"_
to-II to" copy.

~DELETE name

The DELETE control message directs UPDATE to copy the
"from" file onto the "to" file, up to IIname". The label
"name" and its entire routine are then skipped.

~CAN name

The SCAN control message directs UPDATE to scan the
"from" file for the label "name".

~KIP ±nnnnn

The SKIP control message directs UPDATE to skip either for­
wardt (+nnnnn) or reverse (-nnnnn) "nnnnn" records, where
a record implies from one label record to another.

When UPDATE has completed its file maintenance function,
it wi II provide a map of all of the labels that the "to" file
contains.

tThe "+" is not required when nnnn references a skip for­
ward.

10. SYSTEM GENERATION

GENERAL DESCRIPTION
The system generation routine (SYSGEN) is a free-standing
processor that wi II generate a rea I-t i me moni tor system
(MONITOR) either on a RAD File or on magnetic tape 1,
channel A (or W, for the 900 Series). When SYSGEN is
completed, the MONITOR system wi II operate from MTOA (or
from MTOW, for the 900 Series) or the appropriate RAD unit.

SYSGE N is an absolute program with its own bootstrap and
loader and is the first record on the SYSGEN tape, which
is placed on tape 0, channel A (or W)t. The program is
loaded into high core when a magnetic tape fill operation
is performed.

The minimal peripheral requirements for SYSGEN are:

1. A magnetic tape on Channel A (MTOA or MTOW)

2. A typewriter on Channel A (TY1A or TY1W)

3. One of the following (system device):

a. A RAD File

b. A magnetic tape on channel A (MTlA or MT1W)

Optional periphera Is are:

1. A card reader on channel A (CR1A or CR1W)

2. A line printer on channel A (LP1A or LP1W)

SYSGEN CONTROL MESSAGES
Before SYSGEN begins, the operator must supply the
SYSGEN operating parameters by responding to several in­
formation request messages and by defining the system con­
figuration of the ultimate MONITOR. These SYSGEN-time
control messages provide the user with a dynamic system
generation capabil ity.

INPUT/OUTPUT REQUESTS

SYSGEN initially requests the device from which the con­
trol messages wi II originate, by typing the message:

INPUT FROM

The reply may be one of the followi ng (followed by a period
or carriage return):

1. TY (implies typewriter 1, channel A or W)

2. CR (implies card reader 1, channel A or W)

t.& II,.. I.. I. I I... _ I

All reterences nerem TO any device on cnannel A or IS also
apply to channel W or Y for the 900 Series Computers.

Any reply other than the above impl ies typewriter, and the
error message

INPUT NOT 'TY' OR 'CR', 'TY' ASSUMED

wi II be typed.

SYSGEN then requests the device on which the control mes­
sages, diagnostics and other information will be displayed
by typing:

OUTPUT ON

The reply may be one of the following (followed by a period
or carriage return):

1. TY (implies typewriter 1, channel A or W)

2. LP (implies line printer 1, channel A or W)

Any reply other than the above impl ies typewriter, and the
error message

OUTPUT NOT 'TY' OR 'LP', 'TY' ASSUMED

will be typed.

MONITOR SYSTEM CONFIGURATION

The first control message required by SYSGEN must supply
information about the MONITOR system configuration. The
form of this message is given belowt .

6BASE-MACHINE, SYSTEM-DEVICE, DISC-SIZE, CHECK

BASE-MACHINE is either 910,920,925,930, or 9300

SYSTEM-DEVICE is MTOA(MTOW) or DFnc (where: 1 n 2
and c=A, W, B, Y, C, ... , H)

DISC-SIZE is the numbPr of characters on a RAD
File, nnCK (needed only if the SYSTEM­
DEVICE is a RAD File);
where: nn = 5, 10, 26, 68, etc.,

C = nn* 100, and
K = C * 1000
e.g., 5CK (j.e., 500,000)

CHECK is an optional request for SYSGEN to
read the system output just written and
to compare it with that which should
have been written.

Typical messages are

t

.6910, MTOW, CHEC K.

.6930, MTOA .

.69300, DF1A, 47CK, CHECK.

'All SYSGEN control messages begin with a.6 in character
position 1 and end with either a period, a carriage return,
or a maximum length of 80 characters.

33

RESIDENT I/o DRIVER REQUESTS

The second control message required by SYSGEN supplies
the information concerning what peripheral device drivers
are to be resident at all times for this particular MONITOR
system.

The control message appears as one of the following:

LlDRIVERS DEVICE-CODE(S)
LlDRIVERS* DEVICE-CODE(S}

where:

DEVICE-CODE(S}t= blank (the typewriter, NO I/O
operati on, and the SYS TE M­
DEVICE drivers are automatically
assumed, even if the field is not
blank but does not request these
three drivers).

DRIVERS

DRIVERS*-

DF and/or MD, implies disc/drum
driver.

TY and/or PR and/or PP, implies
typewriter/paper-tape driver.

CR and/orCP, implies card reader/
card punch dri ver.

LP, implies line printer driver.

MT, implies magnetic tape driver.

PL and/or NO, implies NO I/O
operation.

impl ies that I/O error recovery
during real-time processing is re­
quested.

implies that no I/O error recovery
during real-time processing is re­
quested.

Typical messages are

LlDRlVERS
LlDRlVERS*
LlDRIVERS

MT, CR, CP, TY
DF, MT, NO

SYSTEM STANDARD ASSIGNMENT GENERATION

SYSGEN proceeds to load the resident MONITOR and
INSTAllation package according to the BASE-MACHINE
designation. The INSTAllation package contains the in­
formation needed for dynamic generation of the Unit Avail­
ability Table (UAT), Unit Name Table (UNT), standard
assignment portion of the resident symbol table (SYMTAB),
and the FCBs necessary to manage the system files.

tEach field must be separated by a comma.

34

The UNT contains the device names for all devices defined
by INSTAllation and a corresponding UAT entry which con­
tains the channel and device number bit settings. Each entry
in the UAT also references its particular I/O driver.

STANDARD ASSIGNMENT MODIFICATIONS

After generation of SYMTAB, additional standard assign­
ments can be added to SYMTAB as well as modifications to
all the existing standard assignments, except for

R\PERM
R\PROC
R\PROK
R\PRIL
R\SECL
R\SWAP
R\CONS
NO

(permanent file)
(processor fi Ie)
(META-SYMBOL Proc deck fi Ie)
(primary library file)
(secondary library file)
(swap file)
(system console file)
(NO I/O operation)

by modification control messages of the form

MSSIGN STANDARD-ASSIGN-NAME = ASSIGNMENT

where:

STANDARD-ASSIGN-NAME = from 1- to 8-character
operational label (e.g., ABC, MXYZT).

ASSIGNMENT= a 4-character device name which is
defined in UNT, or device NO.

= a 1- to 8-character name which may
be defined in UNT or, if not in UNT,
must be in SYMTABas a previously de­
fined STANDARD-ASSIGN-NAME

Typical examples are

MSSIGN
MSSIGN

MX = LP1A
10= MX

As many of these modification or additional standard assign
control messages may be supplied as are needed.

The modification control messages are terminated by a FIN
control message of the form

LlFIN

USER HOLD FILES (DISC)

If the SYSTEM-DEVICE is a RAD File, SYSGEN needs to
know if the RAD File contains user-defined II HOLD" files.
SYSGEN will type:

ARE THERE HOLD FILES

The answer to be typed in is either YES or NO. If the an­
swer is YES, the HOLD fi les are retained when generating
the MONITOR system. If the answer is NO, the MONITOR
system is generated and the remainder of the RAD Fi Ie is not
preserved. If the response is neither YES nor NO (e.g., YAS,
NO), SYSGEN will c.ontinue with the request until the re­
sponse is YES or NO.

GEN ERAL SYSTEM GEN ER ATION SUMMARY OF SYSGEN MESSAGES

SYSGEN determines which I/o drivers are required (and
what the BASE-MACHINE is) and will load them as part of
the basic resident MONITOR.

SYSGEN contains various error, I/O, and general-information
messages which may occur during a SYSGEN operation.

INPUT/OUTPUT
SYSGEN analysis is then completed, except for generating
the MONITOR system on the SYSTEM-DEVICE. The BASE­
MACHINE bootstrap is loaded and written on the SYSTEM­
DEVICE. The MONITOR is then written, followed by the
INSTAllation information.

The following table defines the type of message, its input
source, and where it is displayed (see INPUT FROM and
OUTPUT ON messages, discussed in IIInput/Output Re­
quests.):

SYSGEN can then use the MONITOR for all of its I/O for
the remainder of system generation. The remainder of the
system generation depends on the BASE-MACHINE to deter­
mine whether the remainder of the MONITOR system is for
a 900 Series or a 9300 Computer.

The appropriate overlay loader is loaded into core to serve
as the loader for the remainder of the system generation.
The MONITOR is then informed that SYSGEN is to be the
executive system. All of SYSGEN is released from core for
loading purposes, except for the executive control.

The SYSGEN input tape (MTOA) is positioned to the I/O
drivers. All MONITOR routines, processors, and I/O
drivers which were not previously loaded as part of the
basic MONITOR are loaded and put on the processor file
(R\PROC) in a semi-absolute format. When the META­
SYMBOL Proc decks are encountered, they are put on the
Proc deck file (R\PROK).

SYSGEN continues by generating the primary library
(R\PRIL) and secondary library (R\SECL) fi les in semi-absol ute
format. .

Input
From

TY

TY

rD
'"'1'1.

CR

Out.
On

TY

LP

TV
1 I

LP

Message Type Where Displayed

Input control message Not displayed

Error message On TY1A

Installation map On TY1A

Input control message On LP1A

Error message On TY1A and
LP1A

Installation map On LP1A

Input control message On TY1A

Error message r-..~ TY1A '-'"

Installation map On TY1A

Input control message On LP1A

Error message On TY1A and
LP1A

Installation map On LP1A When the ENDGEN record is read from the input tape
(MTOA), SYSGEN completes the SYSTEM-DEVICE initial­
ization. MONITOR is then informed that SYSGEN has
finished and that the MONITOR executive routine is in
control.

ERROR AND I/O MESSAGES

The SYSGEN error and I/O messages are as follows:

Message Cause Resu Its/Correction

NO 'CONTROL INFO' The first control message (BASE- SYSGEN wi II halt with A-reg.=Ol
MACHINE, SYSTEM-DEVICE, Determine correct control message
etc.) is completely blank. and clear halt

'CONTROL INFO' NOT COMPLETE The first control message (see SYSGEN will halt with A-reg.
above) does not contain a =02. Determine correct control
SYSTEM-DEVICE message and clear halt.

DISC SIZE UNKNOWN, OR NOT DEFINED The first control message (see SYSGEN will halt with A-reg.
above) defines SYSTEM-DEVICE =014. Determine correct control
as DFnc(disc) and the size is message and clear halt.
either unknown or not present.
(where: 1 ~ n ~ 2 and
c = A, W, B, ... , H)

35

Message

OUTPUT DEVICE NOT IDISC I OR IMTOA-WI

BASE-MACHINE I.D.UNKNOWN

ASSIGN/FIN ICONTROL INFOI MISSING

NO DRIVER CONTROL MESSAGE

XX IS ILLEGAL DRIVER REQUEST

POSSIBLE SYS-GEN ERROR (5)

XXXX DEVICE NOT AVAILABLE

MOD.OF A NON-STANDARD ASSIGN SYMB.

MOD.OF ANON-OF /MD ASSIGN, TO=DF /MD

MOD.OF STAND.ASSIGN, DEV.NOT FOUND

ILLEGAL MOD.TO STAND.ASSIGN/SYMB.

INPUT NOT ITYI OR ICRI, ITYI ASSUMED

OUTPUT NOT ITYI OR ILpl, ITYI ASSUMED

MTnA ERROR

36

Cause

The first control message (see
above) has an illegal SYSTEM­
DEVICE definition. Must be
MTOA, MTOW, or DFnc where:
bn~2 and c=A, W, B, Y, ... , H.

The first control message BASE­
MACHINE is not defined as 910,
920, 925, 930, or 9300.

A modification assign control
message is incomplete, or the
control message was supposed to
be "NIN".

The second control message re­
quired by SYSGEN must be the
control message DRIVERS.

The DRIVERS control message has
requested an I/O driver("XX")
which is unknown to SYSGEN.

SYSGEN internal information
missing when generating UAT.
Caused by a possible hardware
malfunction.

When generating the symbol
table for standard assignments, a
standard assignment references a
nonexistent device "XXXX".

A modification control message re­
quests an assignment modification
to a symbol which is not a stan­
dard assign.

A modification control message re­
quests a modification of a standard
assignment (which was not origin­
ally assigned to a disc or drum) to
be assigned to a disc or drum.

A modi fication control message re­
quests a modification of a standard
assign and the peripheral device is
unavai lable.

A modification control message re­
quests an assignment which refers
to a standard assignment which
cannot be assigned to.

Incorrect response to the initial
SYSGEN request: INPUT FROM.

Incorrect response to the initial
SYSGEN request: OUTPUT ON.

(0 ~ n ~ 1) magnetic tape read or
wri te error.

Resu Its/Correct i on

SYS GE N wi II ha It wi th A-reg..
=03. Determine correct control
message and clear halt.

SYSTEN will halt with A-reg.
=013. Determine correct control
message and clear halt.

SYSGEN will halt with A-reg.
=04. Determine correction and
clear halt.

SYSGEN will halt with A-reg.
=016. Determine what the con­
trol message should be (even if it
is just I~ DRIVERSI)andclearhalt.

SYSGEN will ignore the request
and will continue processing the
remainder of the control message.

SYSGEN will continue as though
no error had occurred. If the
error is determined to be catas­
trophic, the entire SYSGEN op­
eration should be restarted. If the
error persists, check the hardware.

Standard assign from INSTAllation
is ignored and the generation con­
tinues.

SYSGEN ignores the modification
and continues processing by ob­
taining the next control message.

SYSGEN ignores the modification
and conti nues processi ng by ob­
taining the next control message

SYSGEN ignores the modification
and continues processing by ob­
taining the next control message.

SYSGEN ignores the modification
and continues processing by ob­
taining the next control message.

SYSGEN assumes ITY1AI as its in­
put and cont i nues.

SYSGEN assumes ITY1AI as its
output and continues.

SYSGEN halts with A-reg.=IMTP
(446325). Clearhaltforretry. Ifer­
ror persists, check tape and tape
drive.

Message

MTnA NOT READY

CR1A ERROR

CR1A NOT READY

LP1A ERROR

LP1A NOT READY

DFnc ERROR

DFnc NOT READY

PERIPHERAL-DEVICE XXXX NOT AVAILABLE

GENERAL INFORMATION MESSAGES

Cause

(o=:: n =:: 1) magnetic tape is either
physically not ready or is file­
protected for a write attempt.

Card reader error; e.g., validity
check, feed check, or read check.

Card reader is not ready.

Line printer error.

Line printer is not ready or on
line.

Disc n (1 =:: n =:: 2) on channel c
(=A, W, B, Y, C, ... , H) read or
write error.

Disc n(1 =:: n =:: 2} on channel c
(=A, W, B, Y, C, ... , H) not ready.

A peripheral device which has
been defined for SYSGEN I/O
use is not available (XXXX = de­
vice defined).

Resu Its/Correction

SYSGEN waits for the condition to
be corrected and then continues.

SYSGEN halts with A-reg.='CRP
{235125}. Correct condition and
clear halt to continue.

SYSGEN waits for the condition to
be corrected and then continues.

SYSGEN halts with A-reg.='LPP
(434725) . Correct condit i on and
clear halt to continue.

SYSGEN waits for the condition to
be corrected and then conti nues.

SYSGEN halts with A-reg.=' DFP
(242625). Clear halt for retry. If
error is persistent, check disc for
hardware problems.

SYSGEN waits for the condition to
be corrected and then continues.

SYSGEN cannot continue. The en­
tire SYSGEN operation must begin
over, with the correct devices de­
fined.

SYMTAB tables and also the MONITOR system character­
istics.

The general information messages produced by SYSGEN
constitute a map of INSTAllation. This map displays
the information contained in the UNT, UAT, and

Monitor System Characteristics

The following is an example of the MONITOR system char­
acteristics:

Case 1: (where SYSTEM-DEVICE = DF1A)

bAst MAC~i~E = 9JC~
SYSTEM DEVICE= DflA
•• E.CH(j-CHt.CI\
R\rACH = bUCGOCCu
SECTDH ~AP = COJ7/4 (tlSC-A[C~t~S)
TelAL SEC1~RS= uU4nCO=<*100 ~~~LS PE~ StCThR .4 CMAR.PtR ~RR0=~~.CHA~.(eCTAL))

Case 2: (where SYSTEM-DEVICE = MTOA)

BASE MACHl~E = 9~5
SYSTEM LEVIC~= MIG~
Nt! tCHfj-CI"1t.:C"
R\MACh 20CG0UC~

The machine in which tne MONITOR system is to operate.

The peripheral device where the MONITOR system resides.

BASE-MACHINE

SYSTEM-DEVICE

**ECHO-CHECK

NO ECHO-CHECK =

R\MACH

SYSGEN checks what was written on the SYSTEM-DEVICE against that which should have been written.

As above, except that no check is made.

SECTOR MAP

TOTAL SECTORS

A flag word used by the MONITOR I/O drivers and system processors to determine if I/O error recovery
during real-time processing is requested, and also what the BASE-MACHINE is.

Address (octal) of the disc sector where the MONITOR disc-sector-map is maintained.

The tota I number {octal} of sectors that this particular disc contains.

37

Unit Name Table Map (UNT)

The following is an example of the UNT map:

~42~L
.,!42':);:

~4~~t!

:;4~t2

.34~o4

J4J16
~4J.tL,

~4~~2

~4J2w

:':£4 ~ 2~
~ it ~ ~ (,.

24~..3£

~~~J~ 

~'..!J(; 
:!4.!4L 
~4,34i 
J4.:!44 
J4J.H 
.34'!~G 

J4J::J<C 
J4J::J4 
;!4.!62 
~4~b4 
J444C 

,~5C.3 1 
3:SC;~: 

3:,0,1 
3~:::;1:: 

34171 
3;jlf~ 

;34/4:: 
J46~1 

J4cl1 
34cJJ 
J4~~4 

Jd!:)54 

34!:)44 
34:;4) 

34u2.a 
33541 
3':;~43 

:jj::J 7 
3JtJJJ 
~!j:,21 

33523 
3':'::'17 

3J::Jl;j 
UC'(;(f' 

where: 

Lt.vICc. 

[fit-. 
I" L £ A. 

!"[2r. 
(PIA 

C PI v, 
I" 1 1 A 

tt 1 1l'\ 

""l~A 
," I ~ if, 

""T3A 
rv T .3 .. , 
1"14A 

I" 14\". 

"'I~'" 
r' 1 ~., 
!"'Tt~ 

I" T " ~, 
i" T 7 ~, 
r- 1 7 ~" 
L~2C' 

l.. f- :.: r 
FPh .. 

~P2Y 

toILe. 

U~ 

1J 
C£ 
uc: 
IG 
u£ 
lJ 
(J J 

uJ 
Uj 

If.., 

10 
10 
1U 
lCJ 
10 
1e 
lu 
lU 

CHAIN 

CODE 

38 

L ~\ I 

;ADO~b:LhA~-U~v;I/~: 

J4u~6 u0CUUW26 DU 
~4U~L uCGUUU27 UG 
J4U~C LGGLLJ21 00 
J40J4 UaG~GC4b 06 
J4~~~ LDGGC04~ U6 
,5d.U:;~ UC()GC-Jl1 14 
~4U=~ 00Cl.U011 14 
J4~~4 ~JL~UL1~ 14 
~4~~4 ~J0wUC12 14 
~~~~t 00Q00ulJ 14 
J4u~e GOCC(GIJ 14
J4Ltu QUOUu014 14
~4~l~ CGCOL01 4 14
j~Gt~ C~GU~Gl~ ~4

J406~ GCCULGL~ 14
~4L04 LLCULJIG J4

J~Lt4 uOUclU16 14

lRJVt~

!'(\l.;!SC

i-<;\[l~C

~\LISC
j"<'\CA~U

i<I\CA""D
~\lAPE.

~\TAPE

~\TAPt.

~\IAFE.

r.: \ T .APt.

~\TAFE:.

K\TAFE.

"'i\TA~t

t":\TAPf

,-:,rAPt
i.i.\lAPt.
~\rAPE

j 4 C t; t, (J U L l',,~; J 7 1 4 ~ \ TAP E
o 4 C t; 0 L, C U (; L U 1 7 1 4 ~ \, T A. P E
J 4 l; 1:"; (. :..; G U G 1 ;.: I lJ C ;.I \, [. 1 ;:, C
~ I.. I~: / 1 ;.; L; G U L 1 i. 7 t. (J '\ " L J S C
~4G7~ ~GOLL1C~ 03 ~,PAP~

~ 4 l; 7 Go G C (1 G L' 1 (; :" (J 3 ~ \ F A P k

~41~IJ G4LuLLd f; 14 I"(\TAPI::.

s y ~ T A ~

'f t. S
YeS
'Tt: 5
'ft.S
yt5
yES
YES
1\t1
'ft.S
yES
1\0
Yt.S

YE.S
rt5
Ti:S
yES
I'~ tJ

r~ e
I\~

I\(j

l'1:;

C;VJJL(CI
12J4:=c7e
L~LICCLL

~

v",-xYL
A~Cll::.fG'"
h
i'(\~V\AF

tB
r. 1
x 1
l-<\tJl/l'(L

K'\bi:LL
k\Pr:lL
fot'\~l"<bK

hi \';'>rd.1C

R\I(.;Ct­
R\H~le
fo?\tjP~L

r<\MA(r
fo?\Cl;..~

k\LLl\l
~\u"T

k'\UAf
k\kc.Sl

r-,. cj

,,:)

I\\J
I\CJ

yES
1<,-'1

vt.s
!\t1

I\u
t, I':;

f\C
~, ,:1

1\:1

f\ rj

r-.l1
'\ (j

!\iJ

!\fJ

I\~

Nb
f\ti

:!'d54
J4J~4

343'::>4
J43'::>4
J~~6~

34(lo~

.j42~(;

J~117
J4~:,U

034262
J~11:'
;3432C
.3432L
Jf.lj2G

J4J2C
J ... 32C
3-.'441
~:.s451

3J511
33tllU
33506
;33774
JJ77J
33777
3.5512

where:

ADDRS (1st)

DEVICE

ADDRS (2nd)

CHAN-DEV

Core address of U NT's DEVICE entry

Actua I name of DEVICE

DEVICE reference address to UAT

The channel EOM bits with UNIT
NUMBER

I/O

DRIVER

Index to the I/O DRIVER name table

The DEVICE name is connected to its
appropriate I/O DRIVER

Symbol Table Map (SYMTAB)

The following is an example of the SYMTAB map:

:'1 T 7 ~
'1 T 7'10:
MT7~

"', T I i'i

C·~ t A
(""1A.

LiFIA
",tt
Gid A
uF 1 A
MTOf.i
r1 T () W
M T f) \AI

M1:; ...
MIOti

J4C72 00U00017 14
J4C72 00000017 14
34072 ~OOOOW17 14
J4072 000(08&7 14
JdDJt 00GUOu06 Db
J4UJb QUwUJuGb 00
J '" C' J ri U iJ 0 0 G tJ U ij 2 2
J4U~0 00000026 00
~~UJO OOCuOGL~ i2
~40Jb U0000CGo 00
J40~~ UJOOJO~6 00
~4G54 UUGu081L 14
J4Q~4 OUUOUOIO 14
J40~4 OUOGGulG 14
J40~4 00(100Gl~ 14
J4U54 OUUCOulC 14

R\lAPE
R\TAPI:::
R\lAPE.
R\lAPt.
t>'\(,;ArdJ

k\CAkD
R\t\Cj
R\DISC
ri\I\O
R\l,;ARD
R\I,)!SC
R\IAPE
R\lAPE
~\TAPE

I-(\TAPE
k\TAPE

the core address of the next symbolic NAME in the SYMTAB map.

the code given for the various types of SYMTAB entries, e.g.,
02 = FCB reference (not disc or drum and is reassignable)
'12 = FCB reference originally to a disc or drum (is reassignable)

<LO>

<FCB=2>

NAME

<FCB=6>

03 = SYSTEM-FCB reference {cannot be reassigned norcan a file name be assigned to it}
13 = SYSTEM-FCTB reference (same as for code 03, but this reference is ignored by SYSGEN if the

SYSTEM-DEVICE is MTOA.
10 = MONITOR and INSTAllation entries.

NO if IINAMEII is not same file as II LOll file.
YES if II NAME II is the same file as IILOII.

NO if II NAMEII is not an FCB reference.
YES if II NAMEII is a 2-word FCB reference to the UAT.

The 1-8 character symbolic name.

NO if II NAME II is not an FCB reference.
YES if II NAME" is a 6-word FCB reference {disc or drum}.

ADDRS(1st} = The core address of UNTls DEVICE entry if II NAMEII is an FCB reference.
The core address of the MONITOR or INSTAllation definition if II NAME!! is not an FCB reference.

Note: The remainder of a SYMTAB entry information line is blank if the II NAMEII is not an FCB reference. (See UNT
example for explanation of remainder of a SYMTAB entry's information line if II NAME II is an FCB reference.)

SYSGE N EXAMPLES

The following are examples of a SYSGEN operation with modifications to standard assignments and subsequent addition of stan­
dard assigns:

Example 1:

INPUT FROM TY.
OUTPUT ON LP.

6910 DF1A,5CK.
6DRIVERS. (DF, TY, and NO assumed)
MSSIGN A = DF1A
MSSIGN TEMPORARY = A (actual file name = TEMPORAR)
MSSIGN X3 = NO
6FIN

Example 2:

INPUT FROM CR.
OUTPUT ON TY.

69300 MTOA, CHEC K.
6DRIVERS DF, CR, NO.
6ASSIGN X 1 = MT 1A
6ASSIGN X2 = MT2A.
MSSIGN X3 = MT2A.
MSSIGN 12345678 = X3
MSSIGN X4 = 12345678
6FIN

(MT, and TY assumed)

39

APPENDIX A
SDS STANDARD BINARY LANGUAGE

The following description specifies a standard binary language for 50S 900 Series and 9300 Computers. This language
is intended to be both computer-independent and medium-independent. Thus, the language provides for handling
Programmed Operator definitions and references, even though the 9300 Computer does not have this hardware feature;
similarly, there is a provision for relocation relative to blank COMMON.

In the following description of the language, a file is the total binary output from the assembly/compilation of one
program or subprogram. A file is both a physical and logical entity, since it can be subdivided physically into unit
records and logically into information blocks. Whi Ie a unit record (in the case of cards) may contain more than one'
record, a logical record may not overflow from one unit record to another.

1. CONTROL WORD - first word in each type of record

Type (T) ~ Word Count (C)
Mode

Fo Ided Checksum (FC)
~ (Binary)

0 101

o 2 3 4 8 9 11 12

T Record Type

000 Data record (text)
001 External references and definitions, block and program lengths
010 Programmed Operator references and definitions
011 End record (program or subroutine end)
101 Data Statement Record

(other codes unassigned)

C = total number of words in record, including Control Word

23

Field

Contents

Bit Number

Note that the first word contains sufficient information for handling these records by routines other than the loader
(that is, tape or card duplicate routines). The format is also medium-independent, but preserves the Mode indicator
positions desirable for off-line card handling.

An exclusive OR checksum is used. If the symbol@is used to denote exclusive OR, and W. denotes the ith word in
I the record (1 :5 i :5 C), then

FC = (W 1)0-11 ® {S)O-ll @{S)12-23 @ 07777

where

2. DATA RECORD FORMAT (T=O)

Control
Word

Load
Address
Word

Word 1

Record ~ Type (n
000 0

o 2 3 4

Word 2

~ Data Word
Modifiers (M)

"

I~ I
u

3 :5 C :5 30

8 9

Load Address
Modifiers (A)

Mode Folded Checksum
(Binary)

101

11 12

Load Address (Relative or Absolute)

23

41

42

The presence of bits in field M indicates the presence of words n +3, n +4, n + 5, and n +6 (shown below):

If bit position 4 contains a 1, word n +3 (load relocation) is present.
If bit position 3 contains a 1, word n +4 (COMMON relocation) is present.
If bit position 2 contains a 1, word n +5 (POP relocation) is present.
If bit position 1 contains a 1, word n +6 (special I/O relocation) is present.

Data
Word 1

Load
Relocation

COMMON
Relocation

Programmed
Operator
Relocation

Special
I/O
Relocation

Word 3

Instruction or Constant

Words 3 through n+2 contain instructions or constants (where 1 ~ n ~ 24)

Word n + 3

Load Address Relocation Word (present iff (M) n 1 = 1)

o

Word n + 4

Blank COMMON Relocation Word (present iff (M) n 2 = 2)

o

Word n + 5

Programmed Operator Relocation Word (present iff (M) n 4 = 4)

b

Word n + 6

Special Input/Output Operation Relocation (present iff (M) n 8 = 8)

o

23

23

23

23

Words n +3 through n +6 are modifier words. Each bit in each of these words corresponds to a data word; that is,
bits 0 through 23 of each modifier word correspond to data words 3 through n + 2 (where 1 ~ n ~ 24.) A bit set to
a 1 in a modifier word indicates that the specified data word requires modification by the loader. There are four
types of modification (and, hence, four possible modifier words) which are indicated in data records. The pres­
ence of a modifier word in a data record is indicated by the M (elata word modifier) field in the load address
word.

The load address is subject to modification, as indicated by the A field of the load address word, as follows:

(A) 0, absol ute

(A) n 1 = 1, current load relocation bias is added to load address

(A) n 2 = 1, current COMMON relocation bias isadded to load address; the remaining bits of Aare unassigned

(A) = 3, illegal

3. EXTERNAL REFERENCES AND DEFINITIONS, BLOCK AND PROGRAM LENGTHS (T = 1)
(Includes labeled COMMON, blank COMMON and program lengths)

Control
Word

COMMON
Length
or Program
Length
Item

Word 1

Record Mode
Type (T) ~ ~ 4 :::: C ~ 31 *

(Binary)
Folded Checksum

001 0

o 234 8 9

* From 1 to 10 i terns per record

1- to ~Character Label

10
Cl

C5

Length Word

Item
Type

J6

00 00000

C2

C6

B C

o 2 6 7 8 9

101

11 12

J12

C3 J 18

C4

C7 C8

Length of Program or COMMON Block (L)

B = 1 if (L) is program length
C = 1 if (L) is length of a labeled COMMON block

External
Reference
Item

1- to ~Character Label

Cl

C5

Chain Word

o

Item
Type

01 000

2

C2

C6

Address Mod­
ifiers (A)**

4 5 8 9

** See data record, load address word,

1- to ~Character Label

t
Cl

J6
C2

C5 C6

Value Word

C3

17 118 J12
C7

Address of Last Reference

for interpretation.

11 112

C3

J18
C7

C4

C8

C4

C8

External
Definition
Item Item

Type
Address Mod­

ifiers (A)**
Absolute or Relocatable Value

10 000

o 2 4 5 8 9

** See data record, load address \A/ord, for interpretation

23

J

23

23

J

23

43

44

External symbolic definitions include subroutine "identification ll as a subset and require no special treatment of
subroutines with multiple names.

External
Reference
with
Addend
Word*

1- to 8-Character Label

I
C1

J6
C2

J12

C3

JIB
C4 J C5 C6 C7 C8

0

Chain Word

Item Address Mod- Address of Last Reference
Type ifiers (A)**

11 000

0 1 2 4 5 8 9 23

Addend Word

~
Value of Addend

I
0 8 9 23

* One of these items for each unique reference; e.g., each of the following references is repre­
sented by a separate item: A +5, B +5, B + 6, C + 2, C +5

** See data record, load address word, for interpretation.

4. PROGRAMMED OPERATOR REFERENCES AND DEFINITIONS (T = 2)

Word 1

Control
Word

Internal
Programmed
Operator

Programmed
Operator
Reference

~

-

Record Mode
Type (T) ~ ~ 4 ::s C ::s 31 ** (Binary)

Folded Checksum

010 0

:l 2 3 4 8 9

**From 1 to 10 items per record

1- to 8-Character Mnemonic

I
C1

I
C2

C5 C6

0 5 6

Item
Type Sequence No. R

00 1

0 1 2 7 8 9

1- to 8-Character Mnemonic

I
C1

I
C2

C5 C6

0 5 6

Item
Sequenc e No. R

Type

01 0

0 2 7 8 9

101

11 12

I
C3

I
C4

C7 C8

11 12 17 18

Origin of Programmed Operator Routine

11 112

C3

1
C4

C7 C8

17 18

000 000 000 000 000

2J

J
23

I
23

23

External
Programmed
Operator
Definition

~

"

1- to 8-Character Mnemonic

t J6
C1 C2

C5 C6

Item
Type

Sequence No. R

10 1

o 1 2 7 8 9

J12 J18 J C3 C4

C7 C8

Origin of Programmed Operator Routine

23

R = 1 iff origin of Programmed Operator routine is relocatable. The sequence number indicates the order in
which the definitions or references occurred in the source program.

5. END RECORD (T = 3)

Word 1

Control
Word

Record
Type (T)

011

~ ~
0

o 2 3 4
Word 2

t Transfer Word

2 ~ C ~ 5
Mode

Folded Checksum
(Binary)

101

8 9 11 12

length of
Program

(S)
Modifiers

(M)*
1 + Maximum Value of location Counter

o 0000

o 4 5 8 9

* See data record description for interpretation.

t
(See)

Name list
location
Word

Name list Address (Relative)

089

t
(See)

Transfer

rf~
"BRU"

I Word
000001 000

023 8 9

This may be followed by modifier words.

6. DATA STATEMENT RECORD FORMAT (T = 5)

Word 1

Record Word Mode
Control
Word

Type (T) Count (C) (Binary)

101 6<C<36 101

o 2 3 8 9 11 12

Transfer Address

Folded Checksum

tIf 5 = 1; Word 3 is the Name list location Word and Word 4 is the Transfer Word.
If S = 0, Word 3 is the Transfer Word, and the Name list location Word is omitted.

23

23

J

23

45

46

Load
Address
Word

Repeat
Count Word

COMMON
Block
Label

Data
Word 1

Word 2

Increment (1)*
(Least significant 9 bits) Load Address (Relative)

o 8 9 23

* The increment (I) is added to the relative load address to obtain the next relative load address
for a repeat load.

* ~ Increment (I) (Most Repeat Count
(S) Significant 6 Bits) (R)**

o 1 2 3 8 9 23

* If S = 1, words 6 through C (6:5 C :5 36) are loaded relative to the labeled COMMON block1s
origin.

If S = 0, words 4 through C (4 :5 C :5 36) are loaded relative to the subprogram origin.

** Data words 4+2S through C are repeatedly loaded (R) times in increments of (I)

Word 3+S

C1 C2 C3 C4

Word 3 + 2S

10
C5)6 C6

11112
C7

1)18 C8 2)
Word 4 + 2S

10
Data

2)
Words 4+ 2S through C contain constants

7. BINARY CARD ORDERING

The loader places certain restrictions on the permissible ordering of relocatable binary cards. That is, the re­
quired ordering is as follows:

a. Type 1 cards (containing definitions of external symbols) and Type 2 cards must physically precede all other
cards (except Type 5; see below).

b. Type 0 cards -must follow Type 1 and Type 2 cards.

c. Type 1 cards containing references to externally defined symbols must then follow type 0 cards.

d. The last card in any deck must be a Type 3 card.

e. Type 5 cards may appear anywhere, prior to the Type 3 card, as long as they follow the definition of the
item into which data is to be loaded.

APPENDIX B
900 SERIES REAL-TIME TAPE MONITOR

The tape version of MONITOR is functionally similar to the
disc version, but operates in a magnetic tape environ­
ment without the mass storage and rapid access faci lities of
RAD Fi les. It provides interrupt and batch processing capa­
bi lities for rea I-time and genera I-purpose applications
where RAD Fi les are not required.

The "swapping out" of batch jobs is optional and, if desired,
a magnetic tape unit must be dedicated for this purpose.
Dynamic loading of programs during interrupt processing is
considerably slower than for the disc version, due to the
differences in tape and disc access and transfer rates.

Function

Library search and program load times are dependent on the
number and size of the library programs.

A minimum of two magnetic tape units are required, and, if
the batch "swapout" facility is to be used, a third magnetic
tape unit is needed. Also, if process-and-GO is desired or
if MET A-SYMBO L encoded decks are to be assembled with
symbolic corrections, then an additional magnetic tape unit
is necessary. (See the table below.)

The minimum hardware configuration for the tape MONITOR
is identical to that for the RAD MONITOR, except that a
magnetic tape unit is substituted for the RAD unit.

Is Function Required By Job?

Any assembly or
compilation other
than META-SYMBOL
assembly of encoded
program unit with
symbol ic corrections
(see Section 1).

No No No Yes No Yes Yes

META-SYMBOL as­
sembly of encoded
program unit with
symbolic corrections
(see Section 4).

GO output and/or
LOAD input (see
Section 3).

Swappi ng of batch
jobs during real­
time operations
(see Section 5).

Number of tape
. . dt Units require

No No No No No No No Yes No Yes Yes Yes

No No Yes No Yes No Yes No Yes No Yes Yes

No Yes No No Yes Yes No No Yes Yes No Yes

1H 2 2 2 3 3 3 3 4 4 4 5

tIncludes only those tape units required by MONITOR.
HReal-time operations only; no batch processing to be done.

47

-A-

Abort routine (see System abort routine)
Accounting routines, 3
ASA compatibility, 2, 6
ASSIGN control message, 3, 23, 34

- B-

BACKSPACE control message, 8
BASE-MACHINE designation, 33, 35, 36, 37
Batch processing, 1, 10, 19, 23, 24, 47
BI file, 4, 6, 7, 11
Binary card ordering, 46
Binary output, 12
Blank COMMON, 41, 43
Blocked files, 32
Bootstrap program, 2, 35
Branch trace, 16
Branch and mark trace, 16

- C-

C device (see Control message input device)
Ca II i ng sequences (see Standard ca Iii ng sequences)
Card reader/punch operations, 21
Carriage control, 18, 20, 22
CEASE control message, 17
Channel numbe~ 1~ 19
Channel-active test, 19
CHECK designation, 33, 39
Comment cards, 6
Comments field, 7
Compile-and-go operations, 1, 12, 47
Concordance listing, 5
CONNECT control message, 9, 15
CONNECT statement, 29, 31
Control message input device, 4, 8, 19, 32
Control message scan routine, 9, 24, 25
Control messages, 1, 3

48

ASSIG N, 3, 23, 34
BACKSPACE, 8
CEASE, 17
CONNECT, 9, 15
DATA, 8
DATE, 4
DEBUG, 16
DELETE, 32
DISPLAY, 17
DRIVERS, 34
DUMP, 17
END, 32
ENDFILE, 8
EOF, 8, 12, 13, 14
FIN, 8, 34
FORTRAN, 6
INCLUDE, 7, 10, 16
INSERT, 16, 17, 32
JOB, 3

INDEX

Control messages (cont.)
LABEL, 5, 32
LEAVE, 16
LOAD, 4, 5, 6, 7, 8, 10, 16
MESSAGE, 4
METAXXXX, 5, 12
PAUSE, 5, 8, 17, 24
RELEASE, 3, 4
RENTAB, 17
REPLACE, 32
REWIND, 8
SCAN, 32
SEG, 7, 10
SKIP, 32
SNAP, 16
SYMBOL, 5, 6
SYMTAB, 17
TITLE, 4
TRACE, 16
TRAP, 16
UPDATE, 32

Control word, 41
Core memory requirements, 2, 47
Counters, 2

-D-
DATA control message, 8
Data record, 41
Data statement record, 41, 45
Data type codes, 27
DATE control message, 4
DEBUG control message, 16
Debugging, 1, 9, 16
DELETE control message, 32
Delimiter table, 25
Device-independent files, 1
Diagnostic routines (see Debugging)
Disc files (see RAD Files)
Disc sector map, 23, 24
Disc sector map search routine, 23, 24
DISC-SIZE designation, 33
DISPLAY control message, 17
DRIVERS control message, 34
DUMP control message, 17
Dynamic loading, 1, 47
Dynamic storage, 2, 26

- E -

Empty-sector pool, 23, 24
Encoded input, 4, 5, 8, 47
END control message, 32
End record, 41, 45
End-action routine, 18, 19
ENDFILE control message, 8
ENDGEN record, 35
EOF control message, 8, 12, 13, 14
EOM instruction, 18, 19, 38
Error flags, 19, 21, 22, 23

Error messages, 2
Executive, 1, 2, 17, 35
Exit routine (see System exit routine)
External definitions, 7, 11, 16, 41, 43, 44, 46
External references, 15, 41, 43, 44, 46

- F -

File Control Blocks (FCBs), 4, 18, 19, 21, 23, 24
File Description Tables (FDTs), 18, 19, 20, 21, 22, 23
File maintenance, 2, 32
FIN control message, 8, 34
Fixed segments, 7
FORTRAN, 1, 2, 8, 12, 22, 28
FORTRAN control message, 6
FORTRAN IV I/O specifications, 6
Full trace, 16

GLOBAL variables, 9
GO file, 5, 7, 10, 12

- G-

- H -

Hardware requirements, 2, 47
HOLD files, 2, 3, 4, 34

- I -

I/O character testing modes, 22
I/O operations, 1, 2, 15, 18, 19, 20, 21, 22, 23
I/O processor (see System I/O processor)
I/O specifications, 5
Identification, 3
Illegal strings, 26
Implicit calls, 7, 30
Implicit call processor, 2, 26, 27
INCLUDE control message, 7, 10, 16
Input control messages, 8
INSERT control message, 16, 17, 32
INSTAllation package, 34, 35
Interlace requirements, 2, 47
Interpretive processing, 16, 26
InterrufJt level, 2, 24
Interrupt save block, 2
Interrupt service routines, 1, 8, 9, 11, 15, 24
Interruptable routines, 2, 15

- J -

JOB control message, 3

- K-

Key-in initiation, 17

- L -

LABEL control message, 5, 32
Labe!ed COMMON blocks, 7, 4~ 46
LEAVE control message, 16, 17
Library routines, 1, 47

Li ne count, 19
Line printer operations, 18, 19, 20, 22
Linkage cell R\MACH, 31, 37
Listing-object option, 5, 6, 12
Listing-output file, 4, 5, 12, 13, 14, 19
Load address word, 42
LOAD control message, 4, 5, 6, 7, 8, 10, 16
Load map, 6, 7, 10
LOAD specifications, 6, 11
Loader control messages, 7
Loader control program, 2
Local variables, 2, 28, 29, 31
Logical peripheral device names, 3

- M-

Magnetic tape files, 1, 47
Magnetic tape operations, 18, 20, 21
Manual loadi ng, 27
Memory dump program, 2, 17
Memory dumps, 1, 16, 17
Memory Protection Feature, 1
MESSAGE control message, 4
META-SYMBOL, 1, 2, 8, 12, 35, 47
META-SYMBOL I/O specifications, 5
MET AXXXX control message, 5, 12
Mode indicator, 41
MONARCH compatibility, 5
MONITOR system configuration, 33
Multiple program loading, 14

-N-

Name list location word, 45

-0-

Operational labels, 3, 8
Operational table, 3, 8
Operator actions, 17, 33
Operator control messages, 8
Overlay file, 2, 26
Overlay loader, 1, 2, 10, 35
Overlays, 7, 10, 13

- P-

Padding of partial words, 22
Page ejects, 19
Page headings, 4, 19
Page numbers, 4, 19
Paper tape operations, 18, 20, 21, 22
PAUSE control message, 5, 8, 17, 24
Pause routine (see System pause routine)
Permanent files (see HOLD fi les)
Physical peripheral device names, 3
Pointers, 2, 18, 19, 23
Postmortem dump program, 17
POT word, 19
Primary library, 1, 2, 7, 10, 16
Primary library file, 26, 35
Processor control messages, 5
Processor file, 26, 35

49

Processors, 1, 17, 33, 35
Program segments (see Segments)
Programmed Operators, 41, 44
Protected files, 1, 21
Protected routines, 15, 28, 29, 31
Push-down lists, 2

-R-

RAD Files, 1, 18, 20, 23, 33, 34, 47
Random access RAD Files, 1, 18, 19, 23
Real-time operations, 1, 11, 15, 19, 24
Receiving sequences (see Standard receiving sequences)
Record address, 18, 19
Record control words, 23
RECURSIVE declaration, 15, 29
Reentrance chain, 2, 17
Reentrance monitor, 2
Reentrant routines, 2, 15, 19, 29, 31
RELEASE control message, 3, 4
Relocatable programs, 2, 6, 46
RENTAB control message, 17
REPLACE control message, 32
Reserved files, 1, 3, 4
Resident I/O drivers, 34, 35
Resident loader, 2,11,26
Resident loader control routine, 26
Resident monitor, 1
Resident routines, 1, 7, 11, 24
Resident symbol table, 17, 25, 26, 38
Resident symbol table search routine, 25
Resident user's programs (see User's programs)
REWIND control message, 8
Rewind operation, 8, 19

- S -

S cards, 6
SCAN control message, 32
Scanning control messages, 24
Scanning files, 18, 20, 21, 32
Scratch files, 1, 5
Secondary library, 1, 2, 6, 7, 11
Secondary I ibrary file, 26, 35
Sector address, 18, 19, 23
SEG control message, 7, 10
Segments, 2, 7, 10
Semiabsolute loader, 2, 26
Sequential RAD Files, 1, 8, 19, 20, 23
Sequential file subcontrol messages, 8
SKIP control message, 32
SNAP control message, 16
Snapshot dump, 2, 16
Spacing magnetic tape, 21
Standard assignments (see System standard assignments)

50

Standard calling sequences, 27, 30, 31
Standard receiving sequences, 28, 29, 30, 31
Stop-character code, 22
Subroutines with a variable number of arguments, 30
Subroutines with no arguments, 31
SY MBOL, 1, 2, 5, 6, 15
Symbol table (see Resident symbol table)
Symbol table search routine, 9
Symbolic corrections, 12, 13, 14, 47
Symbolic file names, 3, 32
Symbolic input, 5, 6, 8
Symbol ic unit names (see Physical peripheral device names)
SY MT AB control message, 17
System abort routine, 8, 17, 24
System BCD-to-binary conversion routine, 9, 26
System control messages, 3
SYSTEM-DEVICE designation, 33, 34, 35, 36, 37, 39
System exit routine, 17, 24
System fi les, 2, 26
System generation routine, 32, 33
System generation messages, 35, 36, 37
System I/O processor, 1, 2, 19
System labels, 4,
System pause routine, 17, 24
System reserved names, 9
System standard assignments, 34, 39
System UPDATE processor, 1, 2, 32

- T-

Temporary storage locations, (see Temps)
Temps, 2, 19, 28, 29, 30, 31
TITLE control message, 4
TRACE control message, 16
Transfer word, 45
TRAP control message, 16
Typewriter operations, 18, 20, 21, 22

-U-

Undefined external symbols (see Implicit calls)
Unit Availability Table (UAT), 34, 37, 38, 39
Unit designation, 18, 19
Unit Name Table (UNT), 34, 37, 38, 39
Unrecognized control messages, 9
UPDATE processor control messages, 32
Update program (see System UPDATE processor)
User-defined control messages, 9
User's files, 1 .
User's programs, 1, 19, 20, 21, 22, 26
Utility routines, 2

-x-

X cards, 6

SCH~NTI FtC DATA 1'1 TE~L 1649 Seventeenth Street · Santa Monica. California ' Phone (213) UP 1-0960

CJ)

o
en
::Xl
m »
r
~
~
m

~
o
z
=i o
::Xl
::tI

z
(")
m
~ » z
c »
r

	000
	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	xBack

