
Xerox 530 Computer

Reference Manual

90 1960B

XEROX 530 INSTRUCTIONS INAMESI
Syntax

t
Format

tt

Instruction Name Command Argument First Word Second Word Page

Acknowledge I/o Interrupt AIO 0001 0000 0101 0000 58
Add ADD *o,x,b 1010 R1XS D 21
Add Word AW,r *o,x,b 000 1 0000 10001 GR 1010 RIXS D 35
And, Logical (one-word instruction) AND *a,x,b 1001 RIXS D 21
And, Logical (two-word instruction) AND,r *c,x,b 0001 0000 10001 GR 1001 RIXS D 36
Branch ' B *~x,b 0100 RIXS D 24
Branch if Accumulator Negative BAN a 0,110 111 S D 24
Bran~ch if Accumulator Zero BAZ a 0110 010S D 25
Branch if Extended Accumulator Negative BEN ~ 0110 1105 D 25
Branch if No Carry BNC ~ 0110001 S D 25
Branch if No Overflow BNO ~ 0110 ODDS D 25
Branch on Incrementing Index BIX ~ 0110011SD 25
Branch on Incrementing Index and No Carry BXNC a 0110 101 S D 25
Branch on InGremeriti n9 Index and No Overflow BXNO a 0110 100S D 25
Compare CP *a,x,b 1101 RIXS D 24
Compare Arithmetic Field (optional) CAF,rxtsx *a,x,b 0001 0000 10 RX SX 1101 RIXS D 51
Compare Double CPD *o,x,b 0001 0000 10 010 110 1101 RIXS D 38
Compare Logical Field (optional) elF, rx, sx *a,x,b 000 1 0000 10 RX SX 0101 RIXS D 50
Compare Word CW,r *a,x,b 000 1 0000 10001 G R 1101 RIXS D 36
Divide DIV *o,x,b 0101 RIXS D 28
Double Add DAD *a,x,b 0001 0000 10 010 110 1010 RIXS D 38
Double Subtract DSB *o,x,b 0001 0000 10 010 110 1011 RIXS D 38
Floating Add FAD *o,x,b 1010 RIXS D 42
Floating Compare FCP *a,x,b 1101 RIXS D 43
Floating Divide FDV *a,x,b 0101 RIXS D 43
Floating Load optional FLD *a,x,b 1000 RIXS D 42
Floating Multiply FtviP *a,x,b 0011 RIXS D 43
Floating Store FST *o,x,b 1110 RIXS D 42
Floating Subtract FSB *~x,b 1011 RIXS D 42
Ha It Input/Output HIO 0001 0000 0100 1000 58
Increment Memory 1M *a,x,b 1111 RIXS D 21
Load Arithmetic Field (optional) LAF,rx,sx *o,x,b 000 1 0000 10 RX SX 1001 RIXS D 49
Load Double LDD *a,x,b 0001 0000 10 010 110 1000 RIXS D 37
Load Index LOX *a,x,b 1100 RIXS D 21
Load Logical Field (optional) LLF I rx , sx *a,x,b 0001 0000 10 RX SX 1000 RIXS D 49
Load Multiple LDM *0, X, b, fr, nr 0001 0000 10 XXX YYY 1000 RIXS D 37
Load Register A LDA *a,x,b - 1000 RIXS D 20
Load Word LW,r *o,x,b 000 1 0000 10001 GR 1000 RIXS D 34
Multiply MUL *a,x,b 0011 RIXS D 28
Read Direct RD *a,x,b 0001 RIXS D 32
Register Add RADD *s,d 0111 11000 DR I/s SR 26
Register Add and Carry RADDC *s,d 0111 1110 b DR I/s SR 27
Register Add and Increl!lent RADDI ·s/d 0111 1101 0 DR I/s SR 27
Register AND RAND *s,Cf 0111 0000 0 DR I/S SR 27
Register AND and Carry RANDC *s,d 0111 00100 DR I/S SR 28
Register AND and Increment RANDI *s,d 0111 0001 0 DR I/s SR 27
Register Clear, Add and Carry RCLAC *s,d 0111 11101 DR I/S SR 28
Register Clear, Add and Increment RCLAI *s,d 0111 1101 1 DR I/s SR 28
Register Clear and Add' RCLA *s,Cf 011111001 DR I/S SR 28
Register Copy RCPY *s,d 011101001 DRI/S SR 26
Register Copy and Carry, RCPYC *s,d 0111 0110 1 DR I/S SR 27
Register Copy and Increm'ent RCPYI *s,d 0111 0101 1 DR I/s SR 27
Register Exclusive OR REOR *s,d 0111 10000 DR I/s SR 27
Register Exclusive OR and Carry REORC *5,d 01111010 0 DR I/S SR 28
Register Exclusive OR and Increment REORI *s,d 0111 1001 0 DR I/S SR 27
Register OR ROR *s,d 0111 0100 0 DR I/s SR 27
Reg ister OR and Carry RORC *s,d 0111 01100 DR I/S SR 28
Register OR and Increment RORI *s,d " 0111 0101 0 DR I/s SR 27
Sense Left Bit of Field (optional) SLF, rx , sx *~/x,b 0001 0000 10 RX SX 1111 RIXS D 51
Set Floating Mode (optional) SFM 0001 0000 1001 1110 41
Shift S *a,x,b 0010 RIXS D 22
Shift Arithmetic Left Double SALD c,x,b 0010 0000 101 count 23
Shift Arithmetic Left Single SALS c,x,b 00100000 001 count 23
Shift Arithmetic Right Double SARD c,x,b 0010 0000 100 cou nt 22
Shift Arithmetic Right Single SARS c,x,b 0010 0000 000 count 22
Shift Circular Left Double SCLD c,x/b 0010 0000 111 count 24
Shift Circular Left Single SCLS c,x,b 00100000 011 count 24

, Shift Circular Right Double SCRD c,x,b 00100000 110 count 23
Shift Circular Right Single SCRS ~x/b 0010 0000 010 count 23
Start Input/Output SIO 000 1 0000 0100 000 1 57
Store Double STD *o,x,b 0001 0000 10010 110 1110 RIXS D 37
Store Field (optional) STF, rx,sx *o,x,b 0001 0000 10 RX SX 1010 RIXS D 49
Store Mul,tiple STM *a, x, b, frf nr 0001 0000 10 XXX YYY 1110 RIXS D 37
Store Ones Field (optional) SOF,rx,sx *o,x,b -- 0001 0000 10 RX SX 1100 RIXS D 50
Store Register A STA *o,x,b 1110 RIXS D 21
Store Word STW *o,x,b 0001 0000 10001 GR 1110 RIXS D 35
Store Zero Field (optional) STZ,r>(,sx *a,x,b 0001 0000 10 RX SX 1011 RIXS D 50
Subtract SUB *a,x,b 1011 RIXS D 21
Subtract Word SW,r *~xlb 0001 0000 10001 GR 1011 RIXS D 35
Test Device TDV 0001 0000 0100 0100 58
Test Input/Output TIO 0001 0000 0100 0010 57
Write Direct WD *~,x,b 0000 RIXS D 29

tRefer to the Xerox Extended Symbol/LN, OPS Reference Manual, 90 10 52, for further information on symbolic notation.

ttExcept for using binary notation (rather than hexadecimal) to represent fixed fields, the format is the same as described in Chapters 3 and 4.

Xerox Corporation
701 South Aviation Boulevard
EI Segundo, California 90245
213679-4511

Xerox 530 Computer

Reference Manual

90 19 60B

September 1973

Price: $3.75

XEROX

Printed in U.S.A.

ii

REVISION

This publication, 90 19 60B, is a revision of the Xerox 530 Computer Reference Manual, 90 19 60A. It incorporates
Publication Revision Package, 90 19 60A-2(4/73). The major change to the manual is the addition of Appendix S,
"Instruction Timing". Other changes are indicated by a vertical line in the margin of the affected page.

RELATED PUBLICATIONS

Title Publication No.

Xerox Symbol/Reference Manual 90 10 51

Xerox Extended Symbol/Reference Manual 90 10 52

Xerox Computer Systems/Interface Design Manual 900973

Manual Content Codes: SP - batch processing, LN - language, OPS - operations, RP - remote processing,
RT - real-time, SM - system management, TS - time-sharing, UT - utilities.

ALL SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

CONTENTS

1. XEROX 530 COMPUTER SYSTEM RAND 27
RCPYI 27

Introduction 1 RADDI 27
Genera I Character i st i cs 1 RORI 27
Real-Time and Multiusage Features 3 REORI 27
Standard and Optional Features 4 RANDI 27
Information Nomenclature and Formats 4 RCPYC 27

RADDC 27
RORC 28

2. SYSTEM ORGANIZATION 6 REORC 28
RANDC 28

Buses 6 RCLA 28
Main Memory 6 RCLAI 28
Central Processing Unit 6 RCLAC 28

General Registers 6 MUL 28
Protection System Registers 6 DIY 28
Arithmetic and Control Un it 9 WD 29
Program Status Doub I eword 9 RD 32
Interrupt System 10 Genera I Reg ister Instruct ions 34
Fau I t System 16 LW 34
Effective Address Computation 18 STW 35
Effective Instructions 19 AW 35

SW 35
AND 36

3. INSTRUCTION REPERTOIRE 20 CW 36
Multiple-Register Instructions 37

Memory Reference Instructions 20 LDM 37
LDA 20 LDD 37
STA 21 STM 37
LDX 21 STD 37
ADD 21 DAD 38
SUB 21 DSB 38
AND 21 CPD 38
1M 21 Floating-Point Instructions 39
S 22 Floating-Point Numbers 39
SARS 22 Floating-Point Mode Control 40
SARD 22 Scratchpad Floating Accumulator 41
SALS 23 FLD 42
SALD 23 FST 42
SCRS 23 FAD 42
SCRD 23 FSB 42
SCLS 24 FMP 43
SCLD 24 FDV 43
CP 24 FCP 43
B 24 Field Addressing Instructions 43

Conditional Branch Instructions 24 Field Descriptor 45
BAN 24 Self-Incrementing of the Start-of-Field
BAZ 25 Address 45
BEN 25 Register Indexing of the Start-of-Field
BNO 25 Address 46
BNC 25 Other Characteristics of Field Addressing
BIX 25 Instructions 47
BXNO 25 Self-Decrementing of the Start-of-Field
BXNC 25 Address 48

Copy Instructions 25 LLF 49
RCPY 26 LAF 49
RADD 26 STF 49
ROR 27 SZF 50
REOR 27 SOF 50

iii

ClF 50 Hexadecimal-Decimal Integer
CAF 51 Conversion Table 75
SlF 51 Hexadecimal-Decimal Fraction

Conversion Table 81
Table of Powers of Two 85

4. INPUT/OUTPUT SYSTEMS 52 Mathematical Constants 85

lOP Systems 52 B. INSTRUCTION TIMING 86
Device Number 52 Instruction Times 86
I/O Control Doubleword (IOCD) 53
Operational Status Byte 54

C. READ/WRITE (MODE 0) INSTRUCTIONS 92
I/O Tables 54
Dev i ce Orders 56
Device Interrupts 57 FIGURES
I/O Instructions 57

SIO 57 Xerox 530 Computer System v
TIO 57 1. Xerox 530 Central System Block Diagram ___ 7
TOV 58 2. Central Processing Unit 8
HIO 58 3. Interrupt level Operation 13
AIO 58 4. Se If-Incrementing Operation 46

Dev i ce Sta tus Byte 58 5. Self-Decrementing Operation 48
External 010 60 6. I/O Control Doublewords and I/o Tables 55

7. Processor Control Panel 61

5. OPERATOR CONTROLS 61

TABLES
Processor Control Panel 61
Basic Operating Procedures 61 1. Interrupt System 11

Initialization (Power On and Normal 2. Unit Field (Fault Information) 16
load) 61 3. Mode and Fault Status Values (CPU Faults) __ 17

Register Modification 65 4. Mode and Fault Status Values (lOP Faults) ___ 18
Enter Loop 65 5. Mode and Fault Status Values (1M and
Memory Display 65 DIO Faults) 18
Memory Modification (Single) 66 6. Effective Address Computation 19
Memory Modification (Multiple 7. WRITE DIRECT Mode Values and General

Sequential Locations) 66 Functi ons Performed 29
Address Ha It 66 8. READ DIRECT Mode Values and General
Memory Scan 66 Functions Performed 32

9. Floating-Point Numbers 40
10. lOP Channel Register and Channel-Device-

Controller Numbers (Hexadecimal) 52
11. I/O Tables 55
12. Devi ce Status Byte 59
13. PC P Swi tches 62

APPENDIXES 14. PC P Indi cators 65
B-l. Instruction Preparation and Execution Times

A. REFERENCE TABLES 67 (in j-lsecs.) 86
C-l. READ DIRECT (Mode 0) Instruction, Function

Standard Symbols and Codes 67 Values X '00'-X '3F' 92
Standard Character Sets 67 C-2. READ DIRECT (Mode 0) Instruction, Function
Contro I Codes 67 Values X'40'-X'7F' 92
Specia I Code Properties 67 C-3. READ DIRECT (Mode 0) Instruction, Function
Standard 8-Bit Computer Codes Values X '80' -X'BF' 93

(EBCDIC) 68 C-4. READ DIRECT (Mode 0) Instruction, Function
Standard 7-Bit Communication Codes Values X ICOI_X IFF I 94

(ANSCII) 68 C-5. WRITE DIRECT (Mode 0) Instruction, Function
Standard Symbo I-Code Values X '00'-X '3F' 94

Correspondences 69 C-6. WRITE DIRECT (Mode 0) Instruction, Function
Hexadecimal Arithmetic 73 Values X'40'-X'7F' 95

Addition Table 73 C-7. WRITE DIRECT (Mode 0) Instruction, Function
Multiplication Table 73 Values X '80' - X'BF ' 95
Table of Powers of SixteenlO 74 C-8. WRITE DIRECT (Mode 0) Instruction, Function
Table of Powers of Ten16 74 Values X'CO'-X'FF' 95

iv

Xerox 530 Computer Sys tem

v

1. XEROX 530 COMPUTER SYSTEM

INTRODUCTION

This high-speed low-cost system is an integrated combination
of sophisticated hardware technology (i. e., large- and
medium-scale integrated circuits), advanced micropro­
gramming techniques, and field-proven existing software.
The Xerox 530 has advantages that are usually found only
in large computing systems. It is well suited for a mu Iti­
usage environment, both real-time and general-purpose
applications.

A basic system includes a central processor, main memory,
and an independent input/output processor. The basic
system may be expanded easily to accommodate the user's
requirements (see "Standard and Optional Features "). The
CPU's basic instruction repertoire may be increased to in­
clude the optional floating-point and field-addressing in­
strl,Jctions. Main memory may be expanded by adding more
memory modules. Input/output capability may be increased
by adding a second input/output processor and additional
device controllers and peripheral devices. A large com­
plement of periphera I devices is avai lable for cost effec­
tive input/output.

Concurrent multiprogramming capabi lity permits the user
to operate one or more fu II y protected, rea I-time pro­
grams in the foreground whi Ie concurrently operating a
genera I-purpose program in the background. Overhead
in switching from one task to another is minimized because
both hardware and software are specifically designed for
rapid context switching. A hardware register permits
the software to generate reentrant code efficiently.
Therefore, routines common to several programs, whether
in foreground or background, need to be stored in mem­
ory on Iy once.

The comprehensive field-proven programming package (assem­
blers, compilers, mathematical and utility routines, and ap­
plications) utilizes advanced features inthehardware. These
programm ing systems are easy-to-use programm ing too Is that
increase productivity and allow user programs to be written
more quickly at lower cost.

Existing Sigma 2 or 3 computer programs may be run on a
Xerox 530 computer system. The compatibi lity ofthe mod­
u�ar software eliminates reprogramming or requires only
minimal upgrading.

Optional field addressing instructions enable efficient op­
eration upon any group of from 1 to 16 contiguous bits in
memory without regard to word boundaries. Effectivel y used,
the system provides a bit and byte manipulating capabil ity,
a general pushdown stack facility, and theabilitytoeffec­
tivelyoperate on logical structures such as tables and strings.

General register instruction capability puts the resul t of
executing one of a prescribed set of arithmetic and logica I
instructions (see Chapter 3) into a designated general register
rather than into the accumulator. This mode of operation
permits efficiencies in both code generation and execution
times.

To enhance computations using scientific notations,- op­
tional floating-point hardware is available.

Xerox 530 systems provide significant reliabi lity, maintain­
ability, and availability improvements over other small- or
medium-size computer systems. A remote assistance terminal
connection with special software permits remote assistance
as an integral part of maintenance.

GENERAL CHARACTERISTICS

The Xerox 530 computer system functions efficiently in a
variety of computing environments and applications. Its
operating characteristics and features are outlined below:

• Both word and byte organization of memory.

• Memory expandable from 8K words to 64K words in
increments of 8K words.

• General-purpose registers to control program operations
(all are available to the program). They provide

• Hardware index registers for pre indexing (base
address), postindexing, or both (double indexing).

• Hardware register for subroutine linkages.

• Double precision accumulator.

• Program address reg i ster .

• Temporary storage register.

• Rapid context switching to preserve computer environ­
ment when switching from one program to another,
including automatic status preservation at interrupt.

• Up to two independent Input/Output Processors (lOPs)
for high-volume data I/O operations.

• Up to 28 fully automatic I/O channels operating
concurrently with one another.

• I/O data chaining, for scatter-read and gather­
write operations.

Xerox 530 Computer System

• Up to two direct memory adapters (optional), each
having a maximum information transfer rate of approx­
imately 625,000 words per second.

• Direct input/output of a full word (in parallel)without
the use of an I/O channel (optional).

• A real-time priority interrupt system that features

• Ten internal interrupt levels and up to 30 external
interrupt levels. All external and most interna I
levels can be individually armed, enabled, and
triggered by program control.

• Automatic identification and fast response time.

• Machine fault register which collects fault status
enabling program retrieval.

•

•

•

Power Monitor for automatic shutdown in event of
power fai lure and resumption of processing when
power returns.

System protection that includes both memory write
protection and operation protection for foreground
programs.

Two real-time clocks (one with a choice of reso­
lution) for independent time bases.

• An extensive repertoire that includes these classes of
instructi ons:

• Memory reference.

• Conditional branch.

• Copy (register-to-register).

• Direct control.

• Multiply/Divide.

• Double precision, operations on 32-bit operands.

• General register capability, which places the
resu It of executing one of a prescribed set of
arithmetic and logical instructions into a des­
ignated general register rather than in the
accurnu lator .

• Floating-point (optional).

• Field addressing (optional), which permits oper­
ation on any group of from 1 to 16 contiguous
bits in memory without regard to word bound­
aries, providing bit and byte manipulation,
general pushdown stack capability, and ability
to operate on logical structures such as tables
and strings.

2 Genera I Characteristics

• Instruction characteristics include

• Only one word of storage required for most
instructions.

• Two levels of indexing and one level of indirect
addressing may be invoked individually or
simul taneously.

• Relative addressing (forward and backward).

• Use of index register 2{B)as a base address register.

• Direct reference of up to 1024 addresses; 256 ad­
dresses beginning with location zero, 256addresses
beginning with the base address, 256 addresses be­
ginning with the current instruction location (rel­
ative forward), and 256 addresses backward from
the current instruction (relative backward).

• Comprehensive, modular software thatexpands in capabi 1-
ity and speed as the system grows, with no reprogram­
ming required. Existing, field-proven Sigma 2 or 3
computer programs may be run on a Xerox 530 system.

• Basic Control Monitor (BCM) Operating System
for smaller systems including Symbol and Basic
FORTRAN.

• Real-Time Batch Monitor (RBM) Operating System
including Extended Symbol, Basic FORTRAN IV,
ANS FORTRAN IV, RPG, and SORT.

• General loading programs.

• Utility routines.

• Mathematical routines.

• General Debug for symbo lie program troubleshooting.

• Concordance program for documentation.

• System Generation program for creating installa­
ti on master.

• Standard and special-purpose peripheral equipment
including

• Rapid Access Data (RAD) files: capacities of .75,
1.5, or 3.0 mi Ilion bytes per storage unit; transfer
rate of 188,000 bytes per second; average access
time of 17 milliseconds.

• Magnetic tape units: IBM compatible; 7-track
units operating at 37.5 inches per second with
transfer rates up to 20,800 bytes per second; 9-track
units operating at 75 inches per second with trans­
fer rates up to 60,000 bytes per second.

• Card equipment: reading speeds up to 200 or
400 cards per minute; punching speeds up to
100 cards per minute.

• Line printers: fully buffered with speeds from 310
to 1100 lines per minute; up to 132 print posi­
tions and up to 91 characters.

• Keyboard/printers: ten characters per second; also
available with paper tape reader (20 characters
per second) and punch (10 characters per second).

• Paper tape equipment: readers with speeds up to
300 characters per second; punches with speeds up
to 120 characters per second.

• Graph plotters: digital incremental, providing
drift-free plotting in two axes in up to 300 steps
per second at speeds from 30 millimeters to three
inches per second.

• Data communications equipment: complete line
of character-oriented and message-oriented equip­
ment to connect remote user terminals to the com­
puter system via common carrier lines and local
terminals directly.

• Removable disk storage: capacities from 24.5mil­
lion to 196.6 million bytes; transfer rate of
312,000 bytes per second; average access time
of 87.5 milliseconds; one- or two-byte data
paths; device pooling.

• Multiprocessing equipment: exchange of critical
control and data signals between CPUs and be­
tween lOPs on a real-time basis; sharing of I/O
devices attached to lOPs; concurrent control of
external (DIO) devices.

REAL-TIME AND MUlTIUSAGE FEATURES

Real-time applications are characterized by a need for (1)
hardware that provides quick response to an external environ­
ment, (2) sufficient speed to keep up with the real-time
process itself, and (3) input/output flexibility to handle a
wide variety of data types at varying speeds.

Multiusage applications, in the context of this computer
system, are defined as the combination of foreground
(real-time) and background processing techniques into one
system. One of the most difficult general computing
problems is the real-time application with its severe
requirements for extreme speed and capacity. Since the
computer system design is on a real-time base, it is well
qualified for a mixture of applications in a multiusage
environment. Many hardware features that are valuable
for real-time applications are equally useful in background
processing, but in different ways. The major features that
make this system suitable for multiusage applications are
described in the following paragraphs.

Multilevel, Priority Interrupt System. In a multiusage
environment, many elements operate simultaneously and
asynchronously. Thus, an efficient priority interrupt sys­
tem is essential. The source of each interrupt is automat­
ically identified and responded to according to its priority.
For further flexibility, each level can be individuallydis­
armed (to discontinue input acceptance) and disabled (to
defer responses). Use of the disarm/disable feature makes
programmed dynamic reassignment of priorities quick and
easy, even while a real-time process is in progress.

Programs that deal with interrupt signals from special equip­
ment often require checkout before the equipment is actually
available. To permit simulating this special equipment, any
external interrupt leve I can be "triggered" by the CPU
through execution of a single instruction. This capability is
also useful in establishing a modified hierarchy of responses.
For example, in responding to a high priority interrupt after
the urgent processing is completed, it may be desirable to
assign a lower priority to the remaining portion so that the
interrupt system is free to respond to other critical stimuli.
The interrupt routine can accomplish this by "triggering"
a lower priority level, which processes the remaining data
on I y after other interrupts have been hand led.

READ DIRECT and WRITE DIRECT instructions (described in
Chapter 3)allow the program to acknowledge an I/O inter­
rupt condition, read the status of interrupts, and control the
individual levels of the priority interrupt system.

Nonstop O~ration. When connected to special devices
(on a ready~esume basis), the computer may be excessively
delayed if the specific device does not respond quickly. A
built-in watchdog timer assures that the computer cannot be
delayed for an excessive length of time.

Real-Time Clocks. Many real-time functions must be timed
to occur at specific instants. Other timing information is
also needed; for example, elapsed time since a given event,
or the current time of day. The computer system provides
two real-time clocks, one with varying degrees of resolution,
to meet these needs. These c locks also faci litate handling
separate time bases and relative time priorities.

Rapid Context Switching. When responding to a new set of
interrupt-initiated circumstances, a computer system must pre­
serve the current operating environment for continuance
later, while setting up the new environment. This changing
of environments must be done quickly, with a minimum of
"overhead" time costs. In this computer system, relevant
information about the current environment (instruction ad­
dress, status indicators, etc.) is retained in a 32-bit pro­
gram status doubleword (PSD). When an interrupt occurs,
the current PSD is automatica lIy stored at an arbitrary lo­
cation in memory; and the interrupt-servicing routine begins,
following the location into which the PSD is stored. At
the end of the interrupt-servicing routine, the PS D is re­
stored and the interrupt level cleared.

Real-Time and Multiusage Features 3

Memory Protection. Both foreground (real-time) and
background programs can be run concurrently in this
computer system, since a real-time program is protected
against destruction or alteration by an unchecked back­
ground program. The protect feature prevents accessing
protected areas of memory for specified combinations of
reading, writing, and instruction acquisition. The feature
guarantees that protected memory cannot be written into
by a program residing in unprotected memory. This feature
a Iso prevents background programs from executing instruc­
tions that could change the I/O system or the protection
system. The protection pattern can be changed veryquickly.

Input/Output. Because of the wide range of capacities
and speeds, the computer system simu Itaneously satisfies
the needs of many different application areas economically,
both in terms of equipment and programming.

STANDARD AND OPTIONAL FEATURES

The basic Xerox 530 system has the following standard
features:

• A CPU that includes

• Main memory of 8K words.

• Extended arithmetic unit (including multiply/
divide).

• Processor control panel.

• Two real-time clocks.

• Memory protection feature.

• Interrupt master including 16 levels of interrupt
priority.

• Power Monitor.

• Input/Output Processor (lOP) with 16 channels.

• Remote assistance terminal connection.

The system may also include the following optional features:

• Memory in 8K increments to a maximum of 64K.

• Floating-point arithmetic instructions.

• Field addressing instructions.

• Up to 24 external interrupt levels (two optional groups
of 12).

• External interface (Direct I/O).

• An additional input/output processor with 12 channels.

• Four ASR, KSR Teletype models available (keyboard/
printer required as operator's console).

• Up to two Direct Memory Attachments.

INFORMATION NOMENCLATURE AND FORMATS

The binary digit, or bit, is the most basic unit of digital
information. Depending upon the context, a bit may be
described by its binary value (0 or 1), status (off or on),
condition (false or true), or other dichotomous attributes.
A group of bits that are functionally related is commonly
referred to as a IIfield ". Except for fields that are used as
operands for field addressing instructions, all fields have
fixed formats and parameters (length, boundaries, and posi­
tional notations). The parameters of operands (containing
from 1 to 16 bits) for field address instructions, described in
Chapter 3, are defined by the software. Common "fixed"
fields are bits, bytes, words, and doublewords.

The parameters of a fixed word, as illustrated, are 16 con­
tiguous bits, a unique position (0 through 15) for each bit,
and word boundaries that occur between bit 15 of one word
and bit 0 of the next word.

I", ,I.,. ,: •• ,""1"",,,,1
The format of a data word for fixed point arithmetic oper­
ation is

Bit position 0 contains a sign bit which is 0 if the integer is
positive or a 1 if the integer is negative. Bit positions 1-15
represent the value of the integer. Bit position 1 is the most
significant bit; bit position 15 is the least significant bit.
The binary point is assumed to be on the right boundary.

Negative numbers are expressed in the two's complement.

For logical operations, a word is considered to be 16 bits
without sign.

The format for a typical one-word instruction is

Bit positions 0-3 contain the operation code (OP). The
operation code and format for each instruction are described
in Chapters 3 or 4.

Bit positions 4-7 (R, I,X, S) comprise an address-control field.
Refer to "Effective Address Computation II for further detai Is.

Bit positions 8-15 contain a displacement value. Refer to
"Effective Address Computation II and Chapters 3 or 4 for
further details.

4 Standard and Optional Features/Information Nomenclature and Formats

When the parameters of a byte (eight contiguous bits) are
fixed, a byte is either the most significant half of a word
(byte 0) or the least significant half of a word (byte 1).
Bit positions within a byte are designated as 0 through 7.
Byte boundaries occur between bit 7 of one byte and
bit 0 of the next byte. Byte boundaries between bytes of
different words coincide with the word boundaries.

Byte 0 I
0123145670

Byte 1 I
2 314 5 6 7

The parameters of a doubleword are always fixed. The
individual bits are numbered 0 through 31.

The first 16 bits (0-15) comprise the most significant word
and the second 16 bits (16-31) comprise the least sign ifi cant
word. Doubleword boundaries occur between bit 31 of one
doubleword and bit 0 of the next doubleword. The general
format of a doubleword is

A doubleword is always referred to by the address of the
most significant word. As part of a Program Status Double­
word, an I/o Control Doubleword, a Field Descriptor
required forfield addressing instructions, or as part of double­
word operands, the most significant word of a doubleword
may have either an even or odd address.

Field Addressing, General Register, and Multiple Register
instructions, as described in Chapter 3, are two-word in­
struction sequences which have the following format:

1 0 Function

OP RIIIX\S Displacement
o 1 2 3 4 5 6 7 8 9 10 11112 13 14 15

For these instructions, the first word is always a READ
DIRECT (Mode 0) instruction. As such, the recommended
coding for the first word is as illustrated. The format and
coding of the second word is simi lar to that described above
for the typical one-word instruction.

A two-word instruction sequence is also used to exit from
an interrupt-servicing routine. The format is similar to that
illustrated above, except the first word is coded as a
WRITE DIRECT (Mode 0).

The specific format (and recommended coding, when appli­
cable) for each instruction is shown in Chapter 3.

Hexadecimal digits (each equivalent to four bits) are com­
monly used when referring to binary information. Thus, a

four-bit field (e. g., operation code) may be expressed as
one hexadecimal character, a byte may be expressed as a
string of two hexadecimal digits, a word as a string of four
hexadecimal digits, and a doubleword as a string of eight
hexadecimal digits. The 16 configurations of four bits and
corresponding decimal and hexadecimal digits are shown
below.

Decimal Hexadecimal

0000 o o

0001

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 8

1001 9 9

1010 10 A

1011 11 B

1100 12 C

1101 13 D

1110 14 E

1111 15 F

Note that within this manual (except for format diagrams)
a heX:adecimal number is displayed as a string of hexadeci­
mal digits enclosed by single quotes and preceded by the
letter "XII. For example, the binary number 01011010 is
expressed in hexadecimal notation as XI 5A I.

Although hexadecimal notation is generally used to denote
address and data values, decimal notation (where it is more
meaningful or customary) maybe used. Decimal/hexadecimal
conversions are performed by assembler systems.

Information Nomenclature and Formats 5

2. SYSTEM ORGANIZATION

A Xerox 530 computer system, as illustrated in Figure 1,
may be comprised of standard and optional units. A func­
tional description of the main memory, central processor
unit (CPU), interrupt system, fault system, and inter­
connecting buses is given in this chapter. The input/
output processors (lOPs) and related input/output instruc­
tions are described in Chapter 4. The processor control
panel (PCP) and related operating procedures are described
in Chapter 5.

BUSES

The various units of the computer system are interconnected
by three buses. The II memory II bus connects the Memory
Control to all memory modules. The "unit memory" bus is
used by all units that require direct access to memory with
the exception of the CPU, which connects directly to
memory control logic. The II internal Direct I/o (DIO)"
bus provides control interconnections between the CPU,
interrupt system, external DIO Interface, lOPs, and Direct
Memory Adaptors.

MAIN MEMORY

The memory system, which operates synchronously with the
other central system components, is composed of magnetic
core memory modules (CMM). The storage capacity of
each memory module is 8K words, with each word consist­
ing of 16 data bits plus two parity bits (one parity bit for
each byte of the word). The memory capacity ranges from
a minimum of 8K words to a maximum of 64K words, in
8K word increments.

When the memory system is 64K words, the memory is
"wraparound" or circular, where the next location after
64K-I is location O. If a system has less than 64K words,
any attempt to address a nonexistent location for either
a fetch or store operation results in a machine fault
interrupt.

The main memory may be accessed via one of four (maxi­
mum) access paths to the unit memory bus and by the CPU.
Each access path of the unit memory bus is used- by an lOP
or a Direct Memory Adapter. Memory is addressed identi­
cally by all units (including the CPU) and only one memory
access may take place during any instant of time. If two
or more accesses to memory are attempted simultaneously,
the confl ict is resolved in accordance with the following
priority: Direct Memory Adapter-2 (highest priority),
IOP-2, lOP-I, Direct Memory Adapter-I, CPU (lowest
priority).

6 System Organization

CENTRAL PROCESSING UNIT

The central processing unit (CPU) is the primary controlling
element for most system functions. Control intercommunica­
tions between the CPU, the interrupt system, external DIO
adapter, lOPs, and Direct Memory Adapters are accom-
pi ished via the internal DIO bus.

Basically, the CPU consists of registers, an arithmetic logic
unit, and a microprogrammed control unit (see Figure 2).

GENERAL REGISTERS

These eight registers are used for various purposes by a pro­
gram. The address, designation, and function of each gen­
eral register are as follows:

Address Designation Function

o Z Zero-Source

P Program Address

2 L Li nk Address

3 T Temporary storage

4 X Index 1 (post-index)

5 B Index 2 (pre-index or base)

6 E Extended accumul ator

7 A Accumulator

The general registers are addressable by General Register
instructions, COpy instructions, READ DIRECT (Mode 0)
instructions, and WRITE DIRECT (Mode 0) instructions, as
described in Chapter 3.

PROTECTION SYSTEM REGISTERS

These 16 registers and a protect violation interrupt level
comprise a protection system that guarantees the integrity
of a master- or executive-mode (foreground) program while
another (background) program is concurrently being exe­
cuted. The protection system provides both operation pro­
tection and memory write protection. Each bit in these
16 registers (or words) is associated with a specific block of
256 consecutive locations in main memory. Bit 0 of pro­
tection register 0 is associated with main memory locations
X'OOOO' through X'OOFF', bit 1 of protection register 0 is

8K
Memory
Module

Memory Control

I

CPU

Memory Bus

Unit Memory Bus

IOP-l

Internal 010 Bus

Second
8K Memory
Modu Ie (optiona I)

External
Controllers

-

Internal
Controllers

I

KPC

Local TTY

-

-

Remote Assistance
Interface

.

IOP-2
(optional)

Processor
Control Panel

Interrupt Master
Interrupt
Expansion
(optional)

I
Externa I Interrupt

Interface

Eighth
8K Memory
Module (optional)

External
Controllers

I---

I--

Direct Memory
Adapter-l
(optiona I)

Interna I
Controllers

I
External 010
Adapter (optional)

I
Externa I 010 Interface

Figure 1. Xerox 530 Central System Block Diagram

External
Device

Direct Memory
Adapter-2
(optional)

·1
External
Device

GENERAL REGISTERS

0 Zero (Z)

Program Address (P)

2 I Link Address (L)

3 Temporary Storage (T)

MA

4 Index 1 (X)

MBR

5 Index 2 (B)
MBW

6 I Extended Accumulator (E) W

7 Accumulator (A)

PROTECTION SYSTEM REGISTERS

o '--__ A_d_dr_e_ss_e_s_O_th_r_ou_g_h_4_K_-_l _---'1-

Addresses 4K through 8K-l

F Addresses 60K through 64K-l

'II

'II

...

...

'II

To/From

Direct Memory Adapter

To/From

MainMemory

To/From

lOPs

Read/Write Direct

010

To/From

Interrupt Master

ARITHMETIC AND CONTROL UNIT

Memory Address

Memory Data (Read)

Memory Data (Write)

Working Register

Arithmetic/Logic
Unit

Microprogrammed
Control Unit

PROGRAM STATUS INDICATORS (PSW1)

D Program Protect (PP)

D Floating Mode (FM)

D Internal Interrupts Inhibit (II)

D External Interrupts Inhibit (EI)

D Overflow Indicator (0)

D Carry Indicator (C)

Figure 2. Central Processing Un it

8 Central Processing Unit

~

~

•

~

~

associated with main memory locations X'0100' through
X'D1 FP, and bit 15 of protection register X' P is associated
with main memory locations X'FFOO' through X' FFFP. A
protect bit of "0" designates an unprotected memory block
and a protect bit of "1" designates a protected block.

Each of the protection system registers can be loaded indi­
vidually by executing a WRITE DIRECT (Mode 0) instruction
having a function value of X'Srl, where r is a hexadecimal
digit that designates the protection register that is to be
loaded with the contents of the accumulator (A register).
Thus, the protect bits for 16 memory blocks (4096 words of
main memory) can be set up by executing a single instruction.

Operation of the protection system is under control of the
key-operated switch on the processor control panel (see
Chapter 5). If the protection system is enabled, the follow­
ing rules apply:

1. Privileged READ DIRECT and WRITE DIRECT instruc­
tions can be executed only if they are accessed
from protected memory. If a privileged instruction is
accessed from unprotected memory, the instruction is
not executed; instead, the protect violation interrupt
level is triggered. Note that two-word instruction
sequences for Field Addressing, General Register, and
Multiple Register instructions, as well as the SET
FLOATING MODE instruction, are not privileged.

2. An instruction accessed from unprotected memory can
be immediately followed by an instruction accessed
from protected memory only in response to an interrupt
condition. If an instruction is accessed from protected
memory and the immediately preceding instruction was
accessed from unprotected memory, the instruction is
not executed (unless it is in response to an interrupt
condition); instead, the protect violation interrupt
level is triggered. This rule applies to branching from
unprotected memory to protected memory as well as to
executing an instruction in protected memory as the
next instruction in normal sequence after an instruction
in unprotected memory.

3. A STORE ACCUMULATOR (STA) or an INCREMENT
MEMORY (1M) instruction can be used to alter pro­
tected memory only if the instruction is accessed from
protected memory. If an attempt is made to alter pro­
tected memory with an instruction accessed from un­
protected memory, the operation is not performed;
instead, the protect violation interrupt level is triggered.

ARITHMETIC AND CONTROL UNIT

The arithmetic and control unit contains the necessary
registers and control logic to access general registers or
main memory, to modify instruction addresses, to perform
arithmetic and logical operations, to provide indications of
computational results, and to preserve interrupt status infor­
mation. Basically, the arithmetic and control unit consists

of registers, program status indicators, and a bussed arithmetic/
logic unit with control provided by a microprogrammed
control unit built around a read-only memory.

The MA (Memory Address), MBR (Memory Buffer Read), and
MBW (Memory Buffer Write) registers are used to access
main memory and provide temporary storage for information
read out or written into main memory. The W (Working)
register is an internal register and is not programmable;
however, its contents may be displayed by the indi cators
on the processor control panel. The contents of the W reg­
ister are used when generating effective addresses or effec­
tive instructions.

PROGRAM STATUS DOUBLEWORD

Critical control conditions of the CPU are defined by the
Program Status Doubleword (PSD). When stored in main
memory, the fi rst (most sign ifi cant) word of a PS D may occupy
a location with an even address or an odd address and the
second word must occupy the next contiguous location.
The format of a PSD, as stored in memory, is as follows:

The first word of a PSD contains the following six status bits:

Bit Status Bit
Position Designation Function

S PP Protected Program

9 FM Floating Mode

10 II Internal Interrupt Inhibit

11 EI External Interrupt Inhibit

14 0 Overflow

15 C Carry

Other bit positions are unassigned and must contain a zero.
The second word of a PSD contains a program address. The
first word of the current PSD is contained within an internal
register (PSW); the second word of the current PSD is con­
tained within general register 1 (P). The contents of the first
word of the current PSD may be displayed by indicators on
the Processor Control Panel.

If the Protected Program (PP) bit is a 1, the current program
is located in an area of main memory that is protected;
otherwise, the PP bit is a o.

If the Floating Mode (FM) bit is a 1, the CPU is conditioned
to perform Floating Point instructions (optional).

Central Processing Unit 9

The Internal and External Interrupt inhibit bits determine
whether a program interruption can occur. If an interrupt
inhibit bit is a 0, the respective set of interrupt levels are
allowed to interrupt the program be ing executed. Con­
versely; if an interrupt inhibit bit is a 1, the respective set
of interrupt levels are inhibited from interrupting the pro­
gram. Inhibiting interrupt levels also removes them from
the interrupt system priority chain, allowing a lower-priority
interrupt level to interrupt the program. Note, however,
that the first six standard interrupt levels cannot be inhibited;
and, that the six integral (external) interrupt levels within
the standard group may be controlled with the Internal Inter­
rupt inhibit bit.

The Overflow and Carry bits reflect the results of various
operations. For arithmetic operations, the Overflow bit is
set to a 1 if an overflow occurred and the Carry bit is set
to a 1 if a carry occurred from the most significant (sign)
position of the adder. Also, on a subtract operation, the
Carry bit is set to a 1 if a IIborrow ll occurred from the sign
position of the adder. For nonarithmetic operations (i. e. ,
I/o operations), the Overflow and Carry bits may reflect
status information relevant to the operation. When applic­
able, the significance of the Overflow and Carry bits are
described under each instruction.

When an interrupt occurs, the current PSD is automatically
stored in main memory and another PSD is loaded into the
PSWand P registers to become the active PSD. The first
PSD remains inactive in main memory until it is restored
into the PSW and P registers (normally, when exiting from
an interrupt-servicing routine).

INTERRUPT SYSTEM

Physically, the modular interrupt system is composed of one
standard group of 16 interrupt levels and one or two op­
tional groups, each with 12 external interrupt levels (see
Table 1). Thus, a minimum interrupt system has 16 interrupt
levels, an intermediate system has 28 levels, and a maxi­
mum system has 40 interrupt levels.

Each interrupt level has a unique priority, as listed in
column 2, Table 1; a unique memory location, as listed in
column 1; and, an assignment, as listed in column 6. Other
operational and control characteristics are described in sub­
sequent paragraphs.

STANDARD GROUP

The 16 interrupt levels that comprise the standard group
are divided into two functional groups: internal and in­
tegral (or external). The functional assignments of each
interrupt level is described below.

10 Central Processing Unit

Power-On/Power-Off. These two interrupt levels (memory
locations X'100' and X'101') are essential to the power mon­
itor feature. Whenever an imminent power failure is sensed,
the power-off interrupt level is triggered and a "power-off"
routine is entered that typically stores (saves) volatile in­
formation (e.g., registers, program statusdoublewords, etc.)
in main memory, halts all I/o operations, and ends with
the CPU in a waiting state. When the power returns to a
safe limit, the power-on interrupt level is triggered and a
IIpower-onll routine is entered that typically restores infor­
mation from main memory and prepares the system to resume
processing.

These two interrupt levels operate automati cally and con­
tinuously. They cannot be inhibited by the Internal Inter­
rupt (II) bit of the Program Status Doubleword. Also, they
are not addressable; hence, they cannot be controlled by a
WRITE DIRECT instruction or interrogated with a READ
DIRECT instruction.

If the power-on and power-off routines are both executed
within two mill iseconds, the power monitor feature is able
to preserve the system, even under the most adverse con­
dition (i. e., a power failure occurs immediately after the
power assumed a normal value). This time constraint is
imposed because of the following reasons:

1. The relative priority of the two interrupt levels pre­
cludes the power-off routine from becoming active
until the power-on routine is completed (system is re­
stored to a predictable state).

2. The primary power will remain at a safe limit for two
milliseconds after an imminent power failure has been
detected.

Note that when the power-on interrupt is active, the pro­
gram protect feature is disabled (status of PSD 8. the PP bit,
is ignored); and the program may execute instructions from
any portion of memory.

Counter 2/Counter 1 (Real-Time Clocks). These two stan­
dard interrupt levels may be triggered by pulses from internal
or external sources. Counter 1 has a constant frequency
of 500 Hz; counter 2 may be set, at installation time, to
any of four frequencies - the commerical line frequency,
2kHz, 8kHz, or a user-supplied external signal. When a
clock pulse is received by one of the counter interrupt levels
(and the level is armed and enabled), the value in the
dedi cated interrupt location is incremented by 1, and the
level is cleared and re-armed. If the value in the dedi­
cated interrupt location is zero after being incremented, the
corresponding counter-equals-zero interrupt level is then
triggered. All other interrupt levels (including the counter­
equals-zero interrupt levels) are processed by interrupt­
servi c ing routines and are designated as IInormal ll interrupt
levels. The counter interrupt levels are addressable (group
code X'O') and their status can be read with a READ DIRECT
(Mode 1) instruction. They can be armed, disarmed, en­
abled, disabled, or triggered. Since a counter interrupt
level never goes to the active state in normal operations,

Table 1. Interrupt System

Dedicated
Read Set Write Interrupt
Status Active Direct PSD Location

Priority Register Register Register Inhibit Read/Write
Dec. Hex. Level Bit Bit Bit Assignment Availability Bit Group Code

256 100 1 None None
t

None
t

Power on Standard None None
257 101 2 None Nonet Nonet Power off Standard None None
254 FE 3 2 None 2 Counter 2 Standard None X'O'
255 FF 4 3 None 3 Counter 1 Standard None X'O'
258 102 5 0 Nonet Nonet Machine Fault Standard None X'O'
259 103 6 1 Nonet Nonet Protection Violation Standard None X'O'
264 108 7 8 8 8 - Integra I 5tt Standard II X'O'
265 109 8 9 9 9 Integra I 6tt Standard II X'O'
262 106 9 6 6 6 Input/Output Standard II X'O'
263 107 10 7 7 7 Control Pane I Standard II X'O'
266 lOA 11 10 10 10 Counter 2 = 0 Standard II X'O'
267 lOB 12 11 11 11 Counter 1 = 0 Standard II X'O'
268 10C 13 12 12 12 Integra I 1 tt Standard II X'O'
269 10D 14 13 13 13 Integra I 2tt Standard II X'O'
270 lOE 15 14 14 14 Integral 3tt Standard II X'O'
271 lOF 16 15 15 15 Integra I 4tt Standard II X'O'

272 110 17 0 0 0 EI X'5'
273 111 18 1 1 1 EI X'5'
274 112 19 2 2 2 EI X'5'
275 113 20 3 3 3 EI X'5'
276 114 21 4 4 4 First optional EI X'5'
277 115 22 5 5 5 Designated by group of EI X'5'
278 116 23 6 6 6 Customer. 12 external EI X'5'
279 117 24 7 7 7 interrupts. EI X'5'
280 118 25 8 8 8 EI X'5'
281 119 26 9 9 9 EI X'5'
282 11A 27 10 10 10 EI X'5'
283 11B 28 11 11 11 EI X'5'

284 11C 29 12 12 12 EI X'5'
285 11D 30 13 13 13 EI X'5'
286 11E 31 14 14 14 EI X'5'
287 11F 32 15 15 15 EI X'5'
288 120 33 0 0 0 Second EI X'6'
289 121 34 1 1 1 Designated by optional EI X'6'
290 122 35 2 2 2 Customer. group of EI X'6'
291 123 36 3 3 3 12 external EI X'6'
292 124 37 4 4 4 interrupts. EI X'6'
293 125 38 5 5 5 EI X'6'
294 126 39 6 6 6 EI X'6'
295 127 40 7 7 7 EI X'6'

tThese bits need not be set to zero by program (they are ignored by hardware).

ttConnected and used as an external interrupt level.

the level must not be programmed into that state. These
two levels can not be inhibited by the II bit of the Program
Status Doubleword. Counter 2 has the third highest priority
and counter 1 has the fourth highest priority within the
interrupt system.

Machine Fault. This interrupt level is triggered whenever
the Fault Register is nonzero, signifying that an abnormal
condition has been detected and the correct PCP switches
are enabled (see "Fault System"). The status of the machine
fault interrupt level may be read into bit position 0 of the

Central Processing Unit 11

A register by executing a READ DIRECT (Mode 1) instruction.
This interrupt level cannot be controlled with a WRITE
DIRECT (Mode 1) instruction nor can it be inhibited by the
Internal Interrupt bit of the Program Status Doubleword.

Protection Violation. This sixth highest priority interrupt
level is part of the protection system. This interrupt level
is triggered if the protection system is enabled when a pro­
tection violation is encountered. The status of the interrupt
level is read into bit position 1 of the A register when­
ever a READ DIRECT (Mode 1) instruction is executed.
This interrupt level cannot be controlled with a WRITE
DIRECT (Mode 1) instruction nor can it be inhibited by
the Internal Interrupt control bit of the Program Status
Doubleword.

Input/Output. The input/output interrupt level accepts
interrupt signals from standard I/O systems. An I/O
interrupt-servicing routine must contain anACKNOWlEDGE
I/O INTERRUPT (AIO) instruction, described in Chapter 4,
that identifies the source and cause of an I/o interrupt.
The I/o interrupt level is addressed with a group code
of X'O'. The state of the interrupt level may be read into
bit 6 of the A register by executing a READ DIRECT
(Mode 1) instruction. The interrupt level may be controlled
by a WRITE DIRECT (Mode 1) instruction and bit 6 of the
A register. The interrupt level may be inhibited by the
Internal Interrupt bit of the Program Status Doubl eword.

Control Panel. The control panel interrupt level may be
activated by either the INTERRUPT switch on the processor
control panel or by a special control sequence on the
operator's keyboard (see Chapter 5). The interrupt level
can be triggered by the computer operator to initiate a
specific routine. The control panel interrupt level is
addressed with a group code of X'OI. The state of this
interrupt level may be read into bit position 7 of the A reg­
ister by executing a READ DIRECT (Mode 1) instruction.
The interrupt level may be controlled with a WRITE DIRECT
(Mode 1) instruction and bit 7 of the A register. The inter­
rupt level may be inhibited by the Internal Interrupt bit of
the Program Status Doubl eword .

Counter-Equals-Zero. As described under "Counter 2/
Counter 1" above, a counter-equa Is-zero interrupt I eve I
is triggered whenever the corresponding counter (memory
location) is incremented to the value of zero as a result
of a count pulse. Triggering a counter-equals-zero inter­
rupt level does not affect the counting process. The
counter-equals-zero interrupt levels may be addressed with
a group code of X'O'. The state of counter two-equals-zero
may be read into bit position 10 of the A register and the
state of counter one-equals-zero may be read into bit posi­
tion 11 of the A register when a READ DIRECT (Mode 1)
instruction is executed. Both interrupt levels may be

12 Central Processing Unit

controlled with a WRITE DIRECT (Mode 1) instruction and
both interrupt levels may be inhibited by the Internal Inter­
rupt bit of the Program Status Doubleword.

Integral Interrupt levels. There are six integral interrupt
levels within the standard group that may be used by the
customer as external interrupts. The interrupt levels are
addressed with a group code of X'O'. The state of each
interrupt level may be read with a READ DIRECT instruction
and controlled with a WRITE DIRECT instruction. The inter­
rupt levels may be inhibited by the Internal Interrupt bit of
the Program Status Doubleword.

Note: Care must be exercised in assigning integral five
and integral six interrupt levels since foreground
tasks connected to these interrupts can not uti I ize
certain RBM or BCM monitor services (e. g., requests
for monitor input/output services can not be made
from these interrupt levels).

OPTIONAL INTERRUPT GROUPS

Each optional interrupt group consists of 12 external inter­
rupt levels. All 24 optional interrupt levels may be in­
hibited by the External Interrupt bit of the Program Status
Doubleword. The first 16 optional interrupt levels are
addressed with a group code of X'5' while the last eight
optional interrupt levels are addressed with a group code
of X'6'. All optional interrupt levels may be read with a
READ DIRECT (Mode 1) instruction and controlled with a
WRITE DIRECT (Mode 1) instruction.

INTERRUPT LEVEL STATES

Each interrupt level is controlled on an individual basis by
three flip-flops. Two of the flip-flops define four mutually
exclusive states: disarmed, armed, waiting, and active.
The third flip-flop enables or disables the level. The various
states and the condition causing changes in state (see
Figure 3) are described in the following paragraphs:

Disarmed. When an interrupt level is in the disarmed state,
no signal to that interrupt level is admitted; that is, no
record is retained of the signal nor is any program interrupt
caused by it at any time.

Armed. When an interrupt level is in the armed state (IP
flip-flop is on), it is capable of accepting and remembering
an interrupt signal. The receipt of such a signal advances the
interrupt level to the waiting state (IS flip-flop is turned on).

Interrupt
state

Flip-flop
confi guration

IS IP

Disarmed rn
I
I-

Armed 0 I
,
I
I-
I

Level
enable

Source of
change signal

WRITE DIRECT
or

ex it sequence

External signal
or

WRITE DIRECT

1 IN ,----1-----,
~~~~~~ 11 ill _I ~ U 

I I---- WRITE DIRECT c.-: - - - - - - -l 
IWaltlng ~ 
,Enabled ~ 1 1 

L ___ +- _J 

Active 

1 

1 Group inhibit off 
No higher-priority 
level active (or 
waiting and 
enabled) 

Interrupt timing 

WRITE DIRECT 
(certain levels 
only) 

Figure 3. Interrupt Level Operation 

Waiting. When an interrupt level in the armed state 
receives an interrupt, signal, it advances to the waiting 
state, and remains in the waiting state until it is allowed 
to advance to the active state. (IP and IS flip-flops are 
both on in the waiting state.) 

If the level-enable flip-flop (IN) is off, the interrupt level 
can undergo all state changes except that of moving from 
the waiting to the active state. Furthermore, if this flip­
flop is off, the interrupt level is completely removed from 
the chain that determines the priority of access to the CPU. 
Thus, an interrupt level in the waiting state with its 
level-enable in the off condition does not prevent an en­
abled, uninhibited interrupt level of lower priority from 
moving to the active state. 

When an interrupt level is in the waiting state, the following 
conditions must all exist simultaneously before the level 
advances to the active state: 

1. The level is enabled (i.e., its level enable flip-flop, 
IN, is a 1). 

2. The group inhibit (if applicable) is off (i. e., the appro­
priate inhibit is a 0). 

3. No higher-priority interrupt level is in the active state 
(or is in the enabled, waiting state with its inhibit off). 

4. The CPU is in an interruptible phase of operation. 

Active. When a normal interrupt level (any interrupt level 
except Counter 2 or Counter 1) meets all of the conditions 
necessary to permit it to move from the waiting state to the 
active state, it is permitted to do so by being acknowledged 
by the computer, which then automatically stores the cur­
rent PSD at the location specified by the contents of the 
location associated with the level. The first instruction of 
the interrupt-servicing routine is then taken from the loca­
tion following the stored PSD. A new interrupt cannot occur 
until after the execution of this first instruction. 

A normal interrupt level remains in the active state until it 
is removed from the active state by a specific configuration 
of the WRITE DIRECT CWD) instruction, followed by an 
LDX instruction (an lIexit sequence II), or if the same active 
level is armed or disarmed via an appropriate WD instruc­
tion. An interrupt-servicing routine can itself be interrup­
ted (whenever a higher-priority interrupt level meets all 
of the conditions for becoming active) and then continued 
(after the higher-priority interrupt level is removed from 
the active state). However, an interrupt-servicing routine 
cannot be interrupted by a lower-priority interrupt level as 
longas its interrupt level remains in the active state. Nor­
mally, the interrupt-servicing routine returns its interrupt 
I evel to the armed state and transfers program control back 
to the point of interrupt by means of an interrupt routine 
exit sequence (see "Interrupt Routine Entry and Exit "). 

READING INTERRUPT LEVELS 

Except for the first two interrupt levels (power on and power 
off), the state of all interrupt levels may be read into the 
A register by executing a READ DIRECT (Mode 1) instruc­
tion. The format of a typical READ DIRECT (Mode 1) 
instruction is as follows: 

The effective instruction (shown enclosed within broken 
I ines) is generated from the original instruction in the same 
manner as an effective address; i. e., the displacement value 
is modified as specified by the IIRIXS" bits. 

Central Processing Unit 13 



The recommended method for producing the appropriate 
configuration of the effective instruction is to indirectly 
address a memory location that contains the appropriate bit 
configuration. 

Bits 0-3 of the effective instruction must be coded as X' l 1 

to specify the interrupt control mode. (See READ DIRECT 
instruction, Chapter 3, for other control modes.) 

Bits 4 and 8- 11 must be coded as zeros. 

Bits 5, 6, and 7 (the II code II field) may be coded to one 
of three values to specify a read operation to be performed 
(read one of the three flip-flops associated with each inter­
rupt level). 

Code Field 
Bits 5 6 7 

001 

010 

100 

Read Function 

Set to a 1 the accumulator bits correspond­
ing to each interrupt level that is in 
the Armed or Waiting state. Read IP 
fl ip-flops. ) 

Set to a 1 the accumulator bits correspond­
ing to each interrupt level that is in 
the Waiting (or Active) state. (Read IS 
fl ip-flops. ) 

Set to a 1 the accumulator bits correspond­
ing to each interrupt level that is Enabled. 
{Read IN fl ip-flops. } 

The A register bit format for the READ DIRECT (Mode 1) 
instruction is shown in column 3 of Table 1. For READ 
DIRECT group code XIQ', bit 5 is unused and is indetermi­
nate, and bit 4 is set to 1 if the TRACE toggle switch is in 
the up (on) position or set to Q if the TRAC E switch is in the 
down (off) position. An uninstalled interrupt level will 
respond with a Q to any of the three read operations. 

Bits 12-15 specify which group of interrupt levels is to be 
interrogated. 

Group Field 
Value 

XIOI 

X '5 1 

Interrupt Group Interrogated 

Standard group. Note that the first 
two interrupt levels (power on and 
power off) cannot be interrogated 
with a READ DIRECT instruction. 

The first 16 (optional) external inter­
rupt levels. 

The last 8 (optional) external inter­
rupt levels. 

14 Central Processing Unit 

INTERRUPT SYSTEM CONTROL 

The interrupt system may be controlled in the following 
ways: 

1. If the Internal Interrupt (II) bit of the Program Status 
Doubleword (PSD) is set to a 1, all interrupt levels 
within the standard group, except the first six - power 
on, power off, counter 2, counter 1, mach ine fault, 
and protection violation (see Table 1), are inhibited. 

2. If the External Interrupt (EI) bit of the PSD is set to a 
1, all optional interrupt levels are inhibited. 

3. Except for the first six interrupt levels, each interrupt 
level (on an individual basis as specified by assigned 
bits of the A register) may be set to the Active state 
by executing a WRITE DIRECT (Mode 1) instruction, 
described below. 

4. Except for the power on, power off, machine fault, 
and protection violation interrupt levels, each inter­
rupt level (on an individual basis as specified by 
assigned bits of the A register) may be armed, dis­
armed, enabled, disabled, or triggered by execut­
ing a WRITE DIRECT (Mode 1) instruction, described 
below. 

The format of a typical WRITE DIRECT (Mode 1) instruction 
for controll ing the interrupt system is as follows: 

The effective instruction (enclosed with in broken I ines) is 
generated in the same manner as an effective address; i. e. , 
the displacement value of the original instruction is modi­
fied by the "RIXS" bits. 

The recommended method for producing the appropriate con­
figuration of the WRITE DIRECT effective instruction is to 
indirectly address a memory location that contains the 
appropriate bit configuration. 

Bits 0-3 of the effective instruction must be coded as X' l 1 

to specify the interrupt control mode. (See "WRITE DIRECT" 
instruction, Chapter 3, for other control modes.) 

Bits 4 and 8-11 must be coded as zeros. 

Bits 5, 6, and 7 (the "code" field) may be coded to anyone 
of eight values to specify a function that is to be performed 
on a group of interrupt levels which is designated by the 
value of the "group" field (bits 12-15). 

Individual interrupt levels within the designated group are 
further designated by the contents of the A register. 



The value of the "code" field and associated functions are 
as follows: 

Code Field 
Bits 5 67 

000 

001 

010 

011 

100 

101 

110 

111 

Write Function 

A code field (bits 5-7) of 000 will cause 
each interrupt level corresponding to 
the lIs in the accumulator to be set 
to the Active state if that interrupt 
level was previously in either the Armed 
or Waiting state. This operation is not 
affected by the state of the level en­
able flip-flops or the group inhibits. 
Any levels in the Disarmed state and 
those levels corresponding to the O's in 
the accumulator are not affected. If 
the selected interrupt level is already 
Active, it will be set to the Disarmed 
state. The Set Active operation causes 
the selected level to enter the Active 
state, without going through the auto­
matic interrupt entry sequence. 

Disarm all levels corresponding to a 1 in 
the accumulator; no other levels are 
affected. 

Arm and enable all levels corresponding 
to a 1 in the accumulator; no other levels 
are affected. 

Arm and disable all levels corresponding 
to a 1 in the accumulator; no other 
levels are affected. 

Enable all levels corresponding to a 1 in 
the accumulator; no other levels are 
affected. 

Disable all levels corresponding to a 1 in 
the accumulator; no other I evels are 
affected. 

Enable all levels corresponding to a 1 in 
the accumulator and disable all other 
levels. 

Trigger all levels corresponding to a 1 in 
the accumulator. All such levelsthat are 
currently armed advance to the waiting 
state. Those levels currently disarmed are 
not a I tered, and a II I eve I s correspond i ng 
to a 0 in the accumul at or are not affected. 
The interrupt trigger is applied at the same 
input point as that used by the devi ce 
connected to the interrupt level. 

The required values for the "group" field and the designated 
interrupt groups are as follows: 

Group 
Value 

X'O' 

X'5' 

X'6' 

Sel ected Interrupt Group 

Standard group. Note, as shown in Table 1, 
that the power on, power off, mach ine 
fault, and protection violation interrupt 
levels cannot be controlled by a WRITE 
DIRECT instruction. 

The first 16 (optional) external interrupt 
levels. 

The last 8 (optional) external interrupt 
levels. 

The relationship between the individual bits of the A regis­
ter and the individual interrupt levels for the WRITE DIRECT 
instruction is shown in columns 4 and 5 of Table 1. Note 
that all bits of the A register are not assigned within groups 
X'O' and X'6'. 

INTERRUPT ROUTINE ENTRY AND EXIT 

When a normal interrupt level (not counter 2 or counter 1) 
becomes active, the computer automatically saves the Pro­
gram Status Doubleword (which contains the protected pro­
gram indicator, the floating mode bit, internal and external 
inhibit bits, overflow and carry bits, and the program 
address). The status information is stored in the location 
whose address is contained in the dedicated interrupt loca­
tion. If the FM bit is set, the Scratchpad Floating Accumu­
lator is stored into the Memory Floating Accumulator 
(three locations identified by the address in memory lo­
cation 1). 

The current value in the program address (P) register is 
stored in the location following the status information. The 
significance of the stored program address depends upon the 
particular interrupt level as follows: 

1. For the machine fault error or the protect violation, 
the stored program address is the address of the instruc­
tion that was being executed at the time the interrupt 
condition occurred. 

2. For all other normal interrupt levels, the stored pro­
gram address is the address of the next instruction in 
sequence after the instruction whose execution was just 
completed at the time the interrupt condition occurred. 

After the program address is stored, the next instruction to 
be executed is then taken from the location following the 
stored program address. The first instruction of the interrupt­
servicing routine is always executed before another interrupt 

Central Processing Unit 15 



can occur. Thus, the interrupt-servicing routine may inhibit 
all other normal interrupt levels so that the routine itself 
will not be interrupted while in process. 

At the end of an interrupt-servicing routine, an exit se­
quence restores the program status and Scratchpad Floating 
Accumulator that existed when the interrupt level became 
active. An exit sequence is a two-word instruction se­
quence comprised of a WRITE DIRECT (Mode 0) instruction 
with an effective address of X'OODS' followed immediately 
by a LOAD INDEX (LDX) instruction with an effective 
address equal to the address value in the interrupt location 
for the routine (no interrupt is processed by the CPU between 
these two instructions). Execution of LDX in an interrupt 
routine exit sequence does not affect the contents of index 
register T (X). 

COUNTER INTERRUPT PROCESSING 

The counter interrupt levels are not associated with interrupt­
servicing as such. Instead, an active counter interrupt 
level is serviced by accessing the contents of the memory 
location assigned to the interrupt level, incrementing the 
value in the memory location by 1, and restoring the new 
value in the same memory location. The processing of an 
active counter interrupt level does not affect the overflow 
indicator or the carry indicator. Thus, the on-going pro­
gram is not affected by a counter clock pu Ise (other than by 
the time required for processing) unless the result in the 
assigned memory location is all O's after being incremented; 
in that case, the corresponding counter-equals-zero inter­
rupt level is triggered. 

CPU INTERRUPT RECOGNITION 

If all other conditions are met and an interrupt level is 
waiting and enabled, the CPU will recognize and process 
an interrupt following the completion of any instruction, 
except between the storing of the PSD and the execution 
of the next instruction upon entering a normal interrupt 
subroutine. 

Note: Two-word instruction sequences, as required for 
field addressing, multiple register operations, and 
general register operations, as well as for exiting 
from an interrupt-servi cing routine, are not com­
pleted until the second word of the sequence is 
executed. Hence, the CPU does not process any 
interrupts during a two-word instruction sequence. 

FAULT SYSTEM 

The fault system continuously monitors operations, especially 
data transfers, within the entire computer system in order to 
detect abnormal conditions. 

16 Central Processing Unit 

By executing a READ DIRECT (Mode 1) instruction with an 
effective address of X'1040' (normally, as part of an MFI 
subroutine), 16 bits of fault status information (as described 
below) are copied into the A register and the fault register 
is reset. By evaluating the fault information, the CPU 
may perform either a fault logging operation or a fault 
recovery procedure. 

The relatively high priority of the MFI level within the in­
terrupt 'system permits a fault condition to be reported and 
processed expeditiously. Note that the MFI level may be 
interrogated with a READ DIRECT (Mode 1) instruction but 
cannot be controlled with a WRITE DIRECT instruction or 
inhibited by the Internal Interrupt inhibit bit of the Program 
Status Doubl eword. 

FAULT INFORMATION FORMATS 

The general format for the 16 bits of fault information which 
may be copied into the A register or displayed on the pro­
cessor control panel is as follows: 

The "unit" field identifies the source{s) of fault information 
(see Table 2); the II mode II field permits the various faults 
which may be detected within each unit to be classified 
into one of four modes; and the IIfault status" field indi­
cates specific faults. In case a memory fault is detected, 
the fault status field also includes the three most significant 
bits of memory address associated with the attempted mem­
ory access. The mode and fault status information is de­
pendent upon the unit (see Tables 3, 4, and 5). 

Table 2. Unit Field (Fault Information) 

Bit Position 
012345 Source of Fault Information 

000000 No faults. 

1----- CPU. 

o 1 - - - - Reserved for special systems. 

o - 1 - - - IOP-2. 

0-- 1 - - lOP-I. 

o - - - 1 - Interrupt Master or External DIO 
system. 

0----1 Direct Memory Adapter. 

Notes: 1. If the unit field indicates a CPU fault 
(bit 0 is a 1) in combination with one 



Table 2. Unit Field (Fault Information) (cont.) 

Notes: 
(cont. ) 

or more other unit indicators 
(b i ts 1-5), then the mode and fau It 
status information (bits 6-15) is val id 
only for the CPU. The READ DIRECT 
instruction (effective address X' 1040') 
that returned this word of fault infor­
mation will reset the CPU unit fault 
indicator (bit 0) to 0, reset the CPU 
mode and fault status information 
(bits 6-15), and allow the mode and 
fault status information from the 
other units to occupy the fault regis­
ter. A second READ DIRECT in­
struction should be issued within 
the Machine Fault Interrupt (MFI) 
subroutine in order to avoid a 
second MFI, and in order to process 
the remaining fault information. 
(See Note 2.) 

2. If the unit field indicates a combina­
tion of two or more unit indicators 
(bits 1-5) and the CPU indicator is 
zero (bit 0 is a 0), then the unit field 
is valid in pointing to the units thatre­
ported faults simultaneously, but the 
mode and fault status information (bits 
6-15) is not valid (the information is 
merged). The READ DIRECT instruction 
which returned this word offault infor­
mation will resetthe entire fault register. 

Table 3. Mode and Fault Status Values (CPU Faults) 

Bit Position 
6789 10 11 12 13 14 15 Type of Fault 

Mode 1 

o 1 1 - - - - - - - Instruction access faul t. 

o 1 - X - - - - - - Most significant bit 
(MSB) of memory 
address. 

o 1 - - X - - - - - Second MSB of memory 
address. 

o 1 - - - X - - - - Third MSB of memory 
address. 

o 1 - - - - 1 - - - Reserved. 

o 1 - - - - - 1 - - Memory module absent 
(nonexistent address). 

Table 3. Mode and Fault Status Values (CPU Faults) (cont.) 

Bit Position 
6789 10 11 12 13 14 15 Type of Fault 

o 1 - - - - - - 1 - Memory address parity 
error. 

o 1 - - - - - - - 1 Memory read data 
par i ty error. 

Mode 3 

1 1 1 - - - - - - - Instruction timer error. 

1 1 - 1 - - - - - - Address par ity error in 
ROS. 

1 1 - - 1 - - - - - Data par i ty error in R as. 

1 1 - - - 1 - - - - Memory control error. 

1 1 - - - - 1 - - - Parity error in arithme-
tic unit. 

1 1 - - - - - r - - Reserved. 

1 1 - - - - - - 1 - Reserved. 

1 1 - - - - - - - 1 Reserved. 

Mode 2 

101 - 0 - 0 0 0 0 Reserved. 

1 0 - 1 0 - 0 0 0 0 Fan not norma I. 

1 0 - - 0 1 0 0 0 0 DIO data-;n parity error. 

1000 1 0 0 0 0 0 Control module error. 

100 0 - 0 1 - - - No DFSA response. 

1000 - 0 - 1 - - DFSA remains high 
constantly. 

1 000 - 0 - - 1 - Unimplemented instruc-
tion (class A). 

1000 - 0 - - - 1 Unimplemented in-
struction (class B). 

Mode 0 

00-- - - - - - - Reserved. 

Notes: 1. If more than one mode of faults exists 
simultaneously, the CPU Fault Register 

Central Processing Unit 17 



Table 3. Mode and Fault Status Values (CPU Faults) (cont.) 

Notes: 
(cont. ) 

2. 

will report only the highest priority 
fault mode. The fault modes have the 
following priority: Mode 1 (highest), 
Mode 3, Mode 2, Mode O. In addition, 
Mode 2 faults are divided into two 
groups which are mutually exclusive 
for reporting purposes. The first group 
consists of two faults: fan not normal 
and DIO data-in parity error. The 
second group of Mode 2 faults consists 
of five faults that may be detected 
within the microprogrammed operations. 
The first group of Mode 2 faults have 
priority over the second group. 

Within a particular mode, more than one 
fault may be reported simultaneously. 

Table 4. Mode and Fault Status Values (lOP Faults) 

Bit Positions 
6789 10 11 12 13 14 15 De£inition 

Memory Faults: 

o 1 1 - - - - - - - Reserved. 

o 1 - X - - - - - - First bit of memory 
address. 

o 1 -- X - - - - - Second bit of memory 
address. 

o 1 - - - X - - - - Third bit of memory 
address. 

o 1 - - - - 1 - - - Reserved. 

o 1 - - - - - 1 - - Memory address not 
here. 

o 1 - - - - - - 1 - Memory address parity 
error. 

o 1 -- - - - - - 1 Memory data parity 
error. 

I/o Faults: 

001 - - - - - - - Reserved. 

00- 1 - - - - - - lOP Adapter fault. 

00-- 1 - - - - - lOP Fault. 

00-- - 1 - - - - Watchdog timer 
interface. 

18 Central Processing Unit 

Table 4. Mode and Fault Status Values (lOP Faults) (cont.) 

Bit Positions 
6789 10 11 12 13 14 15 Definition 

I/O Faults (cont.): 

00-- - - 1 - - - DIO address fault. 

00-- - - - 1 - - DIO data parity error. 

00-- - - - - 1 - NIO address parity 
error. 

00-- - - - - - 1 NIO data par i ty error 
(not reported for data-in 
parity error). 

Table 5. Mode and Fault Status Values 
(1M and DIO Faults) 

Bit Positions 
6789 10 11 12 13 14 15 

0000 0 0 0 1 0 0 

0000 0 0 0 0 1 0 

0000 0 0 0 0 0 1 

Descri ption 

A pseudo-fau It gener­
ated whenever the 
TRACE switch is on and 
the INTERRUPT switch 
is activated. 

A DIO parityerroroc­
curred during a WRITE 
DIRECT instruction to 
the Interrupt Master. 
No attempt is made to 
abort the WRITE DIRECT. 

Data pari ty error oc­
curred during an external 
WRITE DIRECT instruc­
tion. No attempt is made 
to abort the WRITE 
DIRECT. 

Note: Faults that are detected in the Interrupt 
Master (IM)or in DIOoperations are as listed 
above. The first two fau Its are associated 
with 1M operations and the last fault is asso­
ciated with DIO operations. 

EFFECTIVE ADDRESS COMPUTATION 

The CPU forms the effective address of a memory reference 
instruction in three basic steps as follows: 

1. If the R bit (bit 4 of the instruction word) and the S bit 
(bit 7 of the instruction word) are both O's, the refer­
ence address is equal to the value in the displacement 
field of the instruction. (This is referred to as "non­
relative II addressing.) 

2. If the R bit is a Oand the S bit is a 1, the reference ad­
dress is equal to the value in the displacement field 



in the instruction plus the 16-bit value (base address) 
in index register 2. (This is referred to as "pre­
indexing", or "base-relative" addressing.) 

3. If the R bit is a 1, the reference address is equal to 
the 16-bit value in the internal W register (address of 
the current instruction before it is incremented to the 
address of the next instruction) plus the value in the 
low-order nine bits of the instruction, interpreted as 
a 9-bit two's complement integer. (This is referred to 
as "self-relative" addressing.) 

Step 2 (determine direct address) 

1. If the I bit (bit 5 of the instruction word) is 0, the 
direct address is equal to the value of the reference 
address (as determined in step 1). 

2. If the I bit is a 1, the reference address is treated as 
an indirect address; the direct address is the 16-bit 
value in the location whose address is equal to the 
reference address. In effect, the indirect address is 
replaced by the direct address value. 

Step 3 (determine effective address) 

1. If the X bit (bit 6 of the instruction word) is a 0, the 
effective address is equal to the value of the direct 
address (as determined by step 2). 

2. If the X bit is a 1, the effective address is equal to the 
value of the direct address plus the 16-bit value in 
index register 1. Note that indexing with X is appl ied 
after indirect addressing. (This is referred to as 
"post-indexing". ) 

The effective address for an instruction, therefore, is the 
final 16-bit address value developed for that instruction, 
starting with the displacementvalue in the instruction itself. 
The main memory location whose address equals the effective 
address value is referred to as the "effective location". 
Similarly, the contents of the effective location are re­
ferred to as the "effective word". 

The process of effective address computation is summarized 
in Table 6. The symbols used in Table 6 are defined as 
follows: 

R Bit 4 of the instruction. 

Bit 5 of the instruction. 

X Bit 6 of the instruction. 

S 

D 

SD 

(D) 

(X) 

(B) 

(W) 

R 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

Bit 7 of the instruction. 

Bits 8-15 of the instruction (Displacement). 

Sign extended displacement value. 

Contents of location D. 

Contents of index register 1 (general register 4). 

Contents of index register 2 (general register 5). 

Contents of the internal W register {the address 
of the current instruction}. 

Table 6. Effective Address Computation 

I X S Effective Address 

0 0 0 D 

0 0 1 D + (B) 

0 1 0 D + (X) 

0 1 1 D + (X) + (B) 

1 0 0 (D) 

1 0 1 (D + (B)) 

1 1 0 (D) + (X) 

1 1 1 (D + (B)) + (X) 

0 0 (W) + SD 

0 1 (W) + SD + (X) 

1 0 «W) + SD) 

1 1 «W) + SD) + (X) 

EffECTIVE INSTRUCTIONS 

An effective instruction is generated in the same manner as 
an effective address. In the case of effective instructions, 
the final 16-bit value (or portions thereof) is used to modify 
or augment the operation code of a given instruction, 
namely, a READ DIRECT or a WRITE DIRECT instruction that 
is used separately or as part of a two-word instruction se­
quence, as described in Chapter 3. 

Central Processing Unit 19 



3. INSTRUCTION REPERTOIRE 

This chapter describes all CPU instructions, except I/o 
instructions, which are described in Chapter 4. When ap­
plicable, the following information is provided for each 
instruction: 

1. Mnemonic - the code used by assemblers to produce 
the instruction's basic operation code. 

2. Instruction name - the instruction's descriptive title. 

3. Parenthetical note -an indication of whether the in­
struction is optional and/or privileged. 

4. Format - a one- or two-word diagram showing the var­
ious subfields of the instruction. The contents of sub­
fields may be represented with descriptive words, 
symbols, abbreviations, or specific hexadecimal or 
binary values. 

When the configuration of an effective instruction can 
be ascertained readily from the configuration of the 
original instruction (i.e., when the "RIXS" bits of the 
original instruction are coded with zeros, the last eight 
bits of the effective instruction are equal to the last 
eight bits of the original instruction, and the leading 
eight bits of the effective instruction are zeros), the 
diagram (enclosed with solid border lines) illustrates 
the format of the instruction as stored in memory or as 
printed out during a listing. 

When the configuration of an effective instruction does 
not correlate directly with that stored in memory, that 
portion of the effective instruction wh ich is generated 
by modifying the contents of the displacement field is 
enc losed within broken border lines and appears imme­
diately to the right of the original instruction. These 
portions of the effective instruction are available to 
the computer via internal registers and are not stored 
in memory or available for printouts. 

Two-word instructions that specify Field Addressing, 
General Register, and Multiple Register operations 
must occupy two contiguous memory locations. The 
diagrams for these instructions show the first instruction 
word directly above the second instruction word. The 
address of the first word may be either even or odd. 

5. Verbal description - an explanation of the function or 
operation performed by the instruction. 

6. Affected - a symbol ic listing of registers, storage areas, 
and indicators that can be affected by the instruction. 

Note: The instruction address portion of the program 
status doubleword (P register) is considered af­
fected only if a branch condition can occur as 
a result of the instruction execution. 

20 Instruction Repertoire 

7. Timing - see Appendix B. 

The following symbols are commonly used in the descriptions: 

A Accumulator (general register 7). 

B 

C 

D 

E 

EI 

El 

EW 

FM 

(W) 

II 

o 
P 

PP 

SD 

T 

Index 2 (genera I reg ister 5). 

Carry indicator (PSD bit 15). 

Displacement (b its 8-15 of instruction). 

Extended accumulator (general register 6). 

External interrupt inhibit (PSD bit 11). 

Effective location. 

Effective word, or (El). 

Floating Mode bit (PSD bit 9). 

Contents of the internal W register (address of 
the current instruction). 

Internal interrupt inhibit (PSD bit 10). 

Overflow indicator (PSD bit 14). 

Program address register, next instruction 
address, (genera I reg ister 1). 

Protected program indicator (PSD bit 8). 

Sign extended displacement value. 

Temporary storage (general register 3). 

X Index 1 (general register 4). 

Z General RegisterO. 

Other symbols and abbreviations, normally applicable to a 
limited number of instructions, are defined within the de­
scriptions of those instructions. 

MEMORY REFERENCE INSTRUCTIONS 

LOA lOAD REG ISTER A 

8 IRlllxlsl D i'placement I 
o 1 2 3 <4 5 6 7 8 9 10 11112 13 14 15 

lOAD REGISTER A is a one-word nonfloating-point instruc­
tion that loads the effective word into the A register (gen­
eral register 7). 

This format is also used-by FLOATING lOAD (see "Floating­
Po i nt Instruct ions ") • 

Affected: (A) 



STA STORE REGISTER A 

STORE REGISTER A is a one-word nonfloating-point in­
struction that stores the contents of the A register (general 
register 7) into the effective location. 

This format is also used by FLOATING STORE (see 
"Floating-Point Instructions ") • 

Affected: (EL) 

. LOX LOAD INDEX 

LOAD INDEX is a one-word instruction that loads the ef­
fective word into Index 1 (general register 4). This instruc­
tion is not affected by the Floating Mode bit (PSD 9). 

Affected: (X) 

ADD ADD 

ADD is a one-word nonfloating-point instruction that adds 
the effective word to the contents of the A register and then 
loads the result into the A register. 

The Overflow and Carry indicators are set or reset to reflect 
the result of the addition as follows: 

o C Significance 

o 0 

The signs of the two operands are equal but 
the si.Qn of the result is different. 

A carry occurred from the sign bit position of 
the adder. 

Ne i ther of the above condi ti ons occurred. 

Th is format is also used by FLOA lING ADD (see "Floating­
Point Instructions"). 

Affected: (A), 0, C 

SUB SUBTRACT 

SUBTRACT is a one-word nonfloating-poing instruction that 
forms the one's complement of the effective word, incre­
ments by 1, adds this value to the contents of the A register, 
and then loads the result into the A register. 

The Overflow and Carry indicators are set or reset to reflect 
the result of the subtraction as follows: 

o C Significance 

o 0 

The sign of the result in the A register is equal 
equal to the sign of the effective word, but 
the sign of the original operand in the A reg­
ister was different • 

A carry occurred from the sign bit position of 
the adder, either during incrementing the one's 
complementor in adding the value to the A reg­
ister: the magnitude of the 16-bit word in the 
effe·ctive location is equal to or less than the 
magnitude of the 16-bit word in the A register. 

Neither of the above conditions occurred. 

This format is also used by FLOATING SUBTRACT (see 
IIFloating-Point Instructions"). 

Affected: (A), 0, C 

AND LOGICAL AND 

9 1+ !xIsl Displacement I 
o 1 2 3 4 5 6 7 8 9 10 11112 13 14 15 

LOGICAL AND is a one-word instruction (not affected by 
the FM bit) that forms the logical product of the effective 
word and the contents of the A register, and loads this prod­
uct into the A register. The logical product contains a 1 in 
each bit position for which there is a corresponding 1 in both 
the A register and th~ effective word; the logical product 
contains a O· in each bit position for which there is a 0 in 
the corresponding bit position of either operand. 

Affected: (A) 

1M INCREMENT MEMORY 

INCREMENT MEMORY is a one-word instruction (not af­
fected by the FM bit) that adds 1 to the effective word and 
then stores the result in the effective location. 

Memory Reference Instructions 21 



The Overflow and Carry indicators are setor reset to reflect 
the result of the incrementing as follows: 

o C Significance 
------

o 0 

The resulting value of the effective word is 
X'8000' (32,768). 

The resulting value of the effective word is 
X'OOOO'. 

Neither of the above conditions occurred. 

Affected: (EL), 0, C 

S SHIFT (General) 

This general format may be used to specify any of nine one­
word SHIFT instructions. The displacement value is modi­
fied as specified by the "RIXS" bits to generate the effective 
instruction. SHIFT instructions are not affected by the 
Floating Mode bit. 

Bits 0 through 6 of the effective instruction must be coded 
as zeros. Bits 7 through 10 specify one of the following 
nine shift instructions which are described separately: 

789 10 Shift instruction specified Mnemonic 

1 0 0 0 Normalize shift 

000 0 Shift Arithmetic Right SARS 
Single 

000 1 Shift Arithmetic Left SALS 
Single 

o 0 1 0 Shift Circular Right SCRS 
Single 

001 1 Shift Circular Left SCLS 
Single 

o 1 0 0 Shift Arithmetic Right SARD 
Double 

010 1 Shift Arithmetic Left SALD 
Double 

o 1 0 Shift Circular Right Double SCRD 

o 1 1 1 Shift Circular Left Double SCLD 

Bits 11 through 15 are used only by the nonnormal ized shift 
instructions (when bit 7 is a 0). These b its contain the 
"count", a value of 0 through 31, which specifies the 
number of bit positions of the shift operation. 

22 Memory Reference Instructions 

NORMALIZE SHIfT 

The NORMALIZE SHIFT instruction must be generated by 
coding the "RIXS" bits of the original shift instruction with 
a nonzero value so that bit 7 of the effective instruction is 
a 1. All other bits of the effective instruction must be o. 

If the initial contents of the Extended Accumulator (E) and 
the Accumulator (A) are both zero, the instruction exits 
without changing any register. 

If the initial contents of either E or A are not zero, the in­
struction performs a double-register arithmetic left sh ift on 
E and A (bits shifted out of bit position 0 of A shift into bit 
position 15 of E). The double-register shifting continues 
until bit positions 0 and 1 of E are different. The contents 
of the temporary storage register, T (general register 3), are 
decremented by one for each left sh ift performed. At the 
completion of the NORMALIZE SHIFT instruction, the 
Carry indicator is reset and the Overflow indicator is set if 
the contents of the T reg ister overflowed (i. e., was decre­
mented past negative full scale during the normalize opera­
tion). If the T register has not overflowed, the Overflow 
indicator is reset. 

Affected: (T), (E), (A), 0, C 

SARS SHIFT ARITHMETIC RIGHT SINGLE 

A SHIFT ARITHMETIC RIGHT SINGLE instruction causes the 
contents of theA register to be shifted right as many bit po­
sitions as specified by the "count" field. The sign position 
(bit 0) is copied into vacated bit positions on the left. Bits 
shifted out of bit position 15 are lost. Both Overflow and 
Carry indicators are reset to zero. 

Note: Although the effective instruction may be generated 
by using other values in bit positions 4 through 15 of 
the original instruction, the recommended coding is 
as illustrated above. 

Affected: (A), 0, C 

SARD SHIFT ARITHMETIC RIGHT DOUBLE 

A SHIFT ARITHMETIC RIGHT DOUBLE instruction causes the 
contents of the E and A registers to be shifted right as many 
bit positions as specified by the "count" field. The two 
registers are treated as a single 32-bit register. The sign 
position (bit 0) of the E register is copied into vacated bit 



positions on the left of the E register. Bits shifted out of 
bit position 15 of the E register are copied into bit posi­
tion 0 of the A register. Bits shifted out of bit position 15 
of the A register are lost. Both Overflow and Carry indica­
tors are reset to zero. 

Note: Although the effective instruction may be generated 
by using other values in bit positions 4 through 150f 
the original instruction, the recommended coding is 
as illustrated above. 

Affected: (E), (A), 0, C 

SALS SHIFT ARlTHMETIC LEFT SINGLE 

A SHIFT ARITHMETIC LEFT SINGLE instruction causes the 
contents of the A register to be shifted left as many bit po­
sitions as specified by the "count" field. Zeros are copied 
into the vacated bit positions on the right. Bits shifted out 
of the sign position (bit 0) are lost. 

The Overflow and Carry indicators are set or reset to reflect 
the resu It of the shift as follows: 

o C Significance 

The sign bit was changed. 

An odd number of "1" bits were sh ifted out of 
the sign bit position. 

o 0 Neither of the above conditions occurred. 

Note: Although the effective instruction may be generated 
by using other values in bit positions 4 through 15 of 
the original instruction, the recommended coding is 
as illustrated above. 

Affected: (A), 0, C 

SALD SHIFT ARITHMETIC LEFT DOUBLE 

A SHIFT ARITHMETIC LEFT DOUBLE instruction causes the 
contents of the E and A registers to be shifted left as many 
bit positions as specified by the "count" field. The two 
registers are treated as a single 32-bit register. Vacated 
bit positions on the right of A register are filled with zeros. 
Bits shifted out of bit position 0 of the A register are copied 
into bit position 15 of the E register. Bits shifted out of bit 
position 0 of the E register are lost. 

The Overflow and Carry indicators are setor reset to reflect 
the result of the shift as follows: 

o C Significance 

The sign bit was changed. 

An odd number of "1" bits were shifted out of 
the sign bit position. 

o 0 Neither of the above conditions occurred. 

Note: Although the effective instruction may be generated 
by using other values in bit positions 4 through 15 of 
the original instruction, the recommended coding is 
as illustrated above. 

Affected: (E), (A), 0, C 

SCRS SHIFT CIRCULAR RIGHT SINGLE 

A SHIFT CIRCULAR RIGHT SINGLE instruction causes the 
contents of the A register to be shifted right as many bit 
positions as specified by the "count" field. Bits sh if ted out 
of bit position 15 are copied into bit position O. Both Over­
flow and Carry indicators are reset to zero. 

Note: Although the effective instruction may be generated 
-- by using other values in bit positions 4 through 15 

of the original instruction, the recommended cod­
ing is as illustrated above. 

Affected: (A), 0, C 

SCRD SHIFT CIRCULAR RIGHT DOUBLE 

A SHIFT CIRCULAR RIGHT DOUBLE instruction causes the 
contents of the E and A registers to be shifted right as many 
bit positions as specified by the "count" field. The two reg­
isters are treated as a single 32-bit register. Bits are shifted 
out of bit position 15 of the E register into bit position 0 of 
the A register and from bit position 15 of the A register into 
bit position 0 of the E register. Both Overflow and Carry 
indicators are reset to zero. 

Note: AI though the effective i nstructi on may be generated 
by using other values in bit positions 4 though 15 of 
the original instruction, the recommended coding is 
as illustrated above. 

Affected: (E), (A), 0, C, 

Memory Reference Instructions 23 



SCLS SHIFT CIRCULAR LEFT SINGLE 

A SHIFT CIRCULAR LEFT SINGLE instruction causes the 
contents of the A register to be shifted left as many bit po­
sitions as specified by the "count II field. Bits shifted out 
of the sign position (bit 0) are copied into bit position 15. 

o C Significance 

o 0 An even number of "1" bits were shifted out 
of the sign bit position. 

o An odd number of "111 bits were shifted out 
of the sign bit position. 

Note: Although the effective instruction may be generated 
by using other values in bit positions 4 through 15 
of the original instruction, the recommended coding 
is as illustrated above. 

Affected: (A), 0, C 

SCLD SHIFT CIRCULAR LEFT DOUBLE 

A SHIFT CIRCULAR LEFT DOUBLE instruction causes the 
contents of the E and A registers to be shifted left as many 
bit positions as specified by the IIcount" field. The two 
registers are treated as a single 32-bit register. Bits are 
shifted from bit position 0 of the A register into bit posi­
tion 15 of the E register and from bit position 0 of the 
E register into bit position 15 of the A register. 

o C Significance 

o 0 An even number of 111" bits were shifted out 
of the sign bit position. 

o An odd number of 11111 bits were shifted out 
of the sign bit position. 

Note: Although the effective instruction may be generated 
by using other values in bit positions 4 through 15 
of the original instruction, the recommended coding 
is as illustrated above. 

Affected: (E), (A), 0, C 

CP COMPARE 

o HI Ix lsi Displacement I 
o 1 2 3 4 5 6 7 8 9 10 11112 13 14 15 

COMPARE is a one-word nonfloating-point instruction that 
algebraically compares the contents of the A register and 
the effective word, with both operands treated as signed 
quantities. The Overflow and Carry indicators are set or 
reset to reflect the result of the comparison as follows: 

o C Result of Comparison 

o 0 The operand in the A register is algebraically 
less than the effective word. 

24 Conditional Branch Instructions 

o C Result of Comparison 

o The operand in the A register is algebraically 
greater than the effective word. 

The operand in the A register is equal to the 
effecti ve word. 

This format is also used by FLOATING COMPARE (see 
"Floating-Point Instructions "). 

Affected: 0, C 

B BRANCH 

BRANCH (a one-word instruction, not affected by FM bit) 
loads the effective address into the Program Address register 
(general register 1). Thus, unconditionally, the next in­
struction is accessed from the location pointed to by the 
effective address of the BRANCH instruction. (Conditional 
branch instructions are described below.) 

This instruction also resets the Floating Mode (FM) bit 
(PSD 9) to a zero. 

Affected: (P), FM 

CONDITIONAL BRANCH INSTRUCTIONS 

The eight conditional branch instructions specify condi­
tional, relative branching. Each conditional branch in­
struction performs a test to determine whether the branch 
condition is "true". 

If the branch condition is true, the instruction acts as a 
BRANCH instruction coded for self-relative addressing with 
neither indirect addressing nor indexing. (The conditional 
branch instructions automatically invoke self-relative ad­
dress i ng.) Thus, if the branch condi tion is true, the next 
instruction is accessed from the location pointed to by the 
effective address of the conditional branch instruction. 

If the branch condition is not true, the instruction acts as a 
"no operation II instruction and the next instruction is ac­
cessed from the next location in ascendi.ng sequence after 
the conditional branch instruction. 

Each conditional branch instruction is a one-word instruc­
tion not affected by the FM bit. 

BAN BRANCH IF ACCUMULATOR NEGATIVE 

6 111111~: Displacement I 
o 1 2 3 4 5 6 7 8 9 10 11112 13 14 15 

The branch condition is true only if bit 0 of the accumulator 
(general register 7) is 1. 

Affected: (P) 



BAZ BRANCH IF ACCUMU LA TOR ZERO 

. The branch condition is true only if the accumulator (gen­
eral register 7) contains the value X 100001 • 

Affected: (P) 

BEN BRANCH IF EXTENDED ACCUMULATOR 
NEGATIVE 

The branch condition is true only if bit 0 of the extended 
accumulator (general register 6) is 1. 

Affected: (P) 

BNO BRANCH IF NO OVERFLOW 

The branch condition is true only if the Overflow indicator 
is reset (0). The Overflow indicator is not affected. 

Affected: (P) 

BNC BRANCH IF NO CARRY 

The branch condition is true only if the Carry indicator is 
reset (0). . The CarrY i ndi cator is not affected. 

Affected: (P) 

BIX BRANCH ON INCREMENTING INDEX 

BIX adds 1 to the current value in Index 1 (general regis­
ter 4) and loads the resu It into Index 1. The branch condi­
tion is true only if the result in Index 1 is a nonzero value. 

Affected: (X), (P) 

BXNO BRANCH ON INCREMENTING INDEX AND 
NO OVERFLOW 

If the Overflow indicator is set (1), no operation is per­
formed and the computer executes the next instruction in 
sequence. However, if the Overflow indicator is reset (0)7 
BXNO adds 1 to the current value in Index 1 (general reg­
ister 4) and loads the resu I t into Index 1; the branch condi­
tion is true only if the result in Index 1 is a nonzero value. 
The Overflow indicator is not affected by this instruction. 

Affected: (X), (P) 

BXNC BRANCH ON INCREMENTING INDEX AND 
NO CARRY 

If the Carry indicator is set (1), no operation is performed 
and the computer executes the next instruction in sequence. 
However, if the Carry indicator is reset (0), BXNC adds 1 
to the current value in Index 1 and loads the result into 
Index 1; the branch condition is true only if the result in 
Index 1 is a nonzero value. The Carry indicator is not 
affected. 

Affected: (X), (P) 

COpy INSTRUCTIONS 

A one-word copy instruction specifies operations between 
any two genera I reg isters. The format of a copy i nstruc­
tion is 

Bit(s) 

0-3 

4-5 
(OP) 

Function 

Bit positions 0-3 are coded as X?I, to specify the 
copy instruct i on. 

Bit positions 4-5 specify whi ch of four operations 
is to be performed. The operations are 

4 5 Operation 

o 0 Logical AND } 0 fl d ver ow an 
o Logical inclusive OR Carry indicators 

O L . I I· OR not affected. oglca exc uSlve 

Arithmetic add (Overflow and Carry indi­
cators set as described for the instruction 
ADD.) 

Copy Instructions 25 



Bit(s) 

6 
(AC) 

7 
(AI) 

8 
(CD) 

9-11 
(DR) 

12 
(IS) 

13-15 
(SR) 

Function 

Bit position 6 specifies whether the current value 
of the Carry indicator is to be added to the result. 
If this bit is a 1, the Carry indicator is added to 
the low-order bit position of the result. If this bit 
is a 0, the Carry indicator is ignored. 

Bit position 7 specifies whether the value X '0001 1 

is to be added to the result. If this bit is a 1, a 1 
is added to the low-order bit position of the result. 
If bits 6 and 7 are both lis, the value X 100011 is 
added to the result (regardless of the current value 
of the Carry indicator). 

Bit position 8 specifies whether the destination 
register (specified by bits 9-11) is to be cleared 
before the operation called for by bits 4-7 is per­
formed. If bit 8 is a 1, the destination register is 
initially cleared. If bit 8 is 0, the initial contents 
of the destination register remain unchanged unti I 
the resu It is loaded into the destination register. 

Bit positions 9-11 specify the general register that 
is to contain the result of the instruction. The 
Overflow and Carry indicators may be affected. 

Bit position 12 specifies whether the source regis­
ter operand (the value in the register specified by 
bits 13-15) is to be used as it appears in the source 
register, or is to be inverted (one's complemented) 
before the operation is performed. If bit 12 is a 1, 
the inverse of the value in the source register is 
to be used as the source register operand; however, 
the value in the source register is not changed. 
If bit 12 is a 0, the value in the source register 
is used as the source register operand. 

Bit positions 13-15 specify the general register 
that contains the value to be used (normally or 
inverted) as the source reg ister operand. A va lue 
of 0 in this field designates the value X 10000 I as 
the contents of the source register. 

The general registers are identified as follows: 

Address Designation Function 

o Z Zero 

P Program address 

2 L li nk address 

3 T Temporary storage 

4 X Index 1 

5 B Index 2 (base address) 

6 E Extended accumu lator 

7 A Accumu lator 

26 Copy Instructions 

When execution of the copy instruction begins, the P reg­
ister has already been incremented and contains the address 
of the next instruction. 

Copy instructions are not affected by the Floating Mode bit. 

Affected: (DR), 0, C 

Examples: 

Instruction 

X?4FF ' 

X?DFF ' 

X ' 75Al l 

Effect 

Clear the accumulator (general regis­
ter 7) to a II zeros. 

Invert (form the one's complement of) 
the contents of the accumulator. 

Negate (form the twols complement of) 
the contents of the accumulator. 

Subtract 1 from the contents of the 
accumu lator . 

Subtract the contents of the T reg ister 
from the contents of the accumulator. 

Copy the contents of the P register 
plus 1 into the L register. 

The" basic assembly language recognizes the following com­
mand mnemonics and generates the appropriate settings for 
bit positions 0-8 of the copy instruction. The settings for 
bit positions 9-15 are derived from the argument field of 
the symbol ic I ine in which the command mnemonic appears. 
The source reg ister operand is the contents of the source 
register if the IS bit is 0, or is the inverse (one's comple­
ment) of the contents of the source register if the IS bit is 1. 

RCPY REGISTER COpy 

RCPY copies the source register operand into the destina­
tion register. The Overflow and Carry indicators are not 
affected. 

RADD REGISTER ADD 

RADD adds the source register operand to the contents of 
the destination register and loads the result into the destin­
ation register. The Overflow and Carry indicators are set 
as described for the instruction ADD, based on the register 
operands and the final result. 



ROR REGISTER OR 

ROR logically inclusive ORs the source register operand 
with the contents of the destination register and loads the 
result into the destination register. If the corresponding 
bits in the source register operand and the destination reg­
ister are both 0, a 0 remains in the corresponding bit posi­
tion of the destination register; otherwise, the corresponding 
bit position of the destination register is set to 1. The 
Overflow and Carry indicators are not affected. 

REOR REGISTER EXCLUSIVE OR 

REOR logically exclusive ORs the source register operand 
with the contents of the destination reg ister and loads the 
result into the destination register. If the corresponding bits 
of the source register operand and the destination register 
are different, the corresponding bit position of the destina­
tion register is set to 1; otherwise, the corresponding bit 
position of the destination register is reset to o. The Over­
flow and Carry indicators are not affected. 

RAND ,REGISTER AND 

RAND logically ANDs the source register operand with the 
contents of the destination register and loads the result into 
the destination register. If the corresponding bits of the 
source register operand and the destination register are 
both 1, a 1 remains in the destination register; otherwise, 
the corresponding bit position of the destination register is 
reset to o. The Overflow and Carry indicators are not 
affected. 

RCPYI REGISTER COpy AND INCREMENT 

RCPYI copies the source register operand into the destina­
tion register and then adds 1 to the new contents of the 
destination register. The Overflow and Carry indicators 
are not affected. 

RADDI REGISTER ADD AND INCREMENT 

RADDI adds the source register operand to the contents of 
the destination register, increments the result by 1, and 

loads the final result into the destination register. The 
Overflow and Carry indicators are set, as described for the 
instruction ADD, based on the register operands and the 
final result. 

RORI REGISTER OR AND INCREMENT 

RORI logically ORs the source register operand with the 
contents of the destination register, increments the result 
by 1, and loads the final result into the destination register. 
The Overflow and Carry indicators are not affected. 

REORI REGISTER EXCLUSIVE OR AND INCREMENT 

REORI logically exclusive ORs the source register operand 
with the contents of the destination register, increments the 
result by 1, and loads the final result into the destination 
register. The Overflowand Carry indicators are notaffected. 

RANDI REGISTER AND AND INCREMENT 

RANDI logically ANDs the source register operand with the 
contents of the destination register, increments the result 
by 1, and loads the final result into the destination register. 
The Overflow and Carry indicators are not affected. 

RCPYC REGISTER COpy AND CARRY 

RCPYC copies the source register operand into the destina­
tion register and then adds the current value of the Carry 
indi cator to the result in the destination register. The Over­
flow and Carry indicators are not affected. 

RADDC REGISTER ADD AND CARRY 

RADDC adds the source register operand to the contents of 
the destination register, adds the current value of the Carry 
indicator to the result and loads the final result into the 
destination register. The Overflow and Carry indicators 
are set, as described for the instruction ADD, based on the 
register operands and the final result. 

Copy Instructions 27 



RORC REGISTER OR AND CARRY 

RORC logically inclusive ORs the source register operand 
with the contents of the destination register, adds the cur­
rent value of the Carry indicator to the result, and loads 
the final result into the destination register. The Overflow 
and Carry indicators are not affected. 

REORC REGISTER EXCLUSIVE OR AND CARRY 

REORC logically exclusive ORs the source register operand 
with the contents of the destination register, adds the cur­
rent value of the Carry indicator to the result, and loads 
the final result into the destination register. The Overflow 
and Carry indicators are not affected. 

RANDC REGISTER AND AND CARRY 

RANDC logically ANDs the source register operand with 
the contents of the destination register, adds the current 
value of the Carry indicator to the result and loads the fi­
na� result into the destination register. The Overflow and 
Carry indicators are not affected. 

RClA REGISTER CLEAR AND ADD 

RCLA clears the destination register, adds the source regis­
ter operand to the cleared destination register, and loads 
the fina I result into the destination register. The Overflow 
and Carry indicators are reset to O. 

RClAI REGISTER CLEAR, ADD, AND INCREMENT 

RCLAI clears the destination register, adds the source regis­
ter operand to the cleared destination register, increments 
the result by 1, and loads the final result into the destina­
tion register. The Overflow and Carry indicators are set, 
as described for the instruction ADD, based on the contents 
of the source register operand and the final result. 

28 Copy Instructions 

RCLAC REGISTER CLEAR, ADD AND CARRY 

RCLAC clears the destination register, adds the source reg­
ister operand to the cleared destination register, adds the 
current value of the Carry indicator to the result, and loads 
the final resu It into the destination register. The Overflow 
and Carry indicators are set, as described for the instruction 
ADD, based on the contents of the source register operand 
and the final result. 

MUL MULTIPLY 

MULTIPLY is a one-word nonfloating-point instruction that 
multiplies the effective word by the contents of the A reg­
ister (treating both words as signed integers), loads the 16 
high-order bits of the doubleword product into the extended 
accumulator (general register 6), and loads the 16 low-order 
bits into the A register (general register 7). Neither over­
flow nor carry can occur; however, the Carry indicator is 
set equal to the sign of the doubleword product. 

This format is also used by FLOATING MULTIPLY (see 
"Floating-Point Instructions ll

). 

Affected: (E), (A), C 

DIV DIVIDE 

DIVIDE is a one-word nonfloating-point instruction that 
divides the doubleword contained within the extended ac­
cumulator (general register 6) and the accumulator (general 
register 7) by the effective word (treating both words as 
a signed integer). 

If the absolute value of the quotient is equal to or greater 
than 32,768 (2 15), the Overflow indicator is set to 1 and 
the instruction is terminated with the contents of the ex­
tended accumu lator and the accumulator unchanged from 
their previous values, and the Carry indicator is set equal 
to the sign of the dividend. 

If the absolute value of the quotient is less than 32,768, the 
Overflow indicator is reset to 0, the integer quotient is 
loaded into the accumulator (general register 7), the integer 
remainder is loaded into the extended accumulator, and the 
Carry indicator is set equal to the sign of the remainder. 
(The sign of the remainder is the same as the sign of the 
dividend.) 

This format is also used by FLOATING DIVIDE (see 
IIFloating-Point Instructions"). 

Affected: (E), (A), 0, C 



WD WRITE DIRECT (privileged, partially optional) is described within subsequent paragraphs. The subsets of 
instructions for other modes of operations (Mode 1 through 
Mode F) are appropriately referenced. The format of a typical WRITE DIRECT instruction is 

WRITE DIRECT (MODE 0) INSTRUCTIONS 

The "mode" and "function" fields for the effective instruc­
tion are generated in the same manner as described under 
"Effective Address Computation II in Chapter 2. As listed 
in Table 7, each of the 16 different values of the mode 
field designates a different portion of the computer system 
that is to perform a control or nonarithmetic operation as 
specified by the value of the accompanying function field. 
The number of different operations that can be specified 
within each mode (or for each portion of the computer sys­
tem) varies for each mode. The WRITE DIRECT instruction, 
as the READ DIRECT instruction, generates a set of control 
or nonarithmetic instructions that may be comprised of 

The format and recommended coding for a typical WRITE 
DIRECT (Mode 0) instruction is as follows: 

The WRITE DIRECT (Mode 0) instruction is unique in that if 
the "RIXS" bits are coded as zeros, the "function" may be 
encoded directly into the original instruction. Otherwise, 
the "RIXS" bits and the "displacement" field of the origina I 
instruction must be coded with appropriate values, which 
will resu It in an effective instruction as shown below. 

16 subsets of instructions (one subset of instructions for each 
mode or for eqch portion of the computer system). The sub­
set of instructions for WRITE DIRECT (Mode 0) operations 

Mode 

Value Title 

o 

2 
thru 
E 

F 

Internal 
Computer 
Control 

Interrupt 
Control 

Direct 
Control 

Direct 
Control 

Table 7. WRITE DIRECT Mode Values and General Functions Performed 

Portions of 
Computer 
System 
Designated 

CPU and/or 
lOP 

Interrupt 
system 

DIO system 
using stan­
dard Xerox 
computer 
products 

Specially 
designed 
equipment 

General Control or Nonarithmetic Operation Performed 

1. Copy contents of the A register into a specified general register or I/o channel 
register. 

2. Copy contents of bit position 0 of specified general register or I/o channel reg­
ister into the Overflow indicator and then reset bit position 0 of the same register 
to O. 

3. Copy contents of the A register into one of the 16 protection registers. 

4. Load program status information from the A register into the first word of the 
Program Status Doubleword. 

5. Prepare lOP-lor IOP-2to operate as directed by a subsequent diagnostic program. 

6. Set the Wait fl ip-flop to a 1 and cause the CPU to stop computations. 

7. Prepare the CPU to exit from an interrupt-servicing routine. 

8. Set or reset the External Interrupt (EI) and/or the Internal Interrupt (II) program 
status indicators. 

As described in Chapter 2, under II Interrupt System II • 

Exchange control information and data as required to perform an I/o operation. Note 
that each mode value is assigned to a different DIO system. (Refer to the Xerox Com­
puter Systems/Interface Design Manual, 90 09 73, for further details.) 

Exchange control information and data as required to perform an I/O operation. 
(Refer to the Xerox Computer Systems/Interface Design Manual, 90 0973, for further 
details. ) 

Copy Instructions 29 



The function field may have anyone of 256 different 
values; however, as described subsequently, not all values 
of the function field are assigned as part of an effective 
instruction (see Appendix C). 

Note: Attempting to use a function value that is not as­
signed results in an lIunimplemented instruction ll 

fault. 

For explanation purposes, the function values associated 
with WRITE DIRECT (Mode 0) instructions are divided into 
four functional groups, which are also readily differentiated 
by the values of the first two bits of the function field 
(bits 8 and 9), as described below. 

Function field 
bit positions 

8 9 

o o 

o 

Control or nonarithmetic 
operation performed 

All function values within this group 
(except X1001) are assigned. Each value 
designates a specific general register or an 
I/o channel register that is to be loaded 
with the contents of the A reg ister. 

The format and recommended coding for a 
WRITE DIRECT instruction to perform the 
above described operation is as follows: 

, ,0, J ,0, ,I~~I" 'd'~~".J 
The IIDR II field is coded with the address of 
the general or I/o channel register that is 
to be the destination register for the load 
operation. 

Affected: (DR) 

All function values within this group 
(except X'40' ) are assigned. Each value 
designates a specific general register or 
an I/o channel register whose bit posi­
tion 0 content is to be copied into the 
Overflow indicator and then reset to a O. 

The format and recommended coding for a 
WRITE DIRECT instruction to perform the 
above described operation is as follows: 

The "SR" field is coded with the address of 
the general or I/o channel register that 
is to be the source register from which bit 
position 0 is to be copied. 

Affected: 0 and bit 0 of source register. 

30 Copy Instructions 

Function field 
bit positions 

8 9 

o 

Control or nonarithmetic 
operation performed 

Within this group of function values (X '80 ' -
X'BF') only the first 16 function values 
(X '80 ' -X '8F') are assigned. Each of the 
assigned values permits one of the 16 pro­
tection registers to be loaded with the 
contents of the A register. 

The format and recommended coding for a 
WRITE DIRECT instruction to load a pro­
tection register is as follows: 

The protection register, as specified by the 
value of the "PR" field is loaded with the 
contents of the A register. 

Affected: (protection register) 

Within this group of function values (X1COI­
X'FF '), only the function values described 
below are assigned. 

The format and recommended coding for a 
WRITE DIRECT instruction to load the pro­
gram status indicators of the first word of 
the Program Status Doubleword from the 
A register is as follows: 

Bit positions 8-11, 14, and 15 of the PSD 
are loaded with the contents of correspond­
ing bit positions of the A register. If this 
instruction causes the Protected Program 
bit (PSD 8) to change from a 1 to a 0, the 
next instruction is in protected memory, and 
the protection feature is operative. A pro­
tection violation interrupt occurs when the 
next instruction is accessed. 

Affected: Program Status Indicators 

The format and recommended coding for a 
WRITE DIRECT instruction to prepare IOP-1 
to operate as directed by a subsequent 
diagnostic program is as follows: 

The format and recommended coding for a 
WRITE DIRECT instruction to prepare IOP-2 
to operate as directed by a subsequent 
diagnostic program is as follows: 

, ,0, J ,0, J .~"L ,,~J 



Function field 
bit positions 

8 9 
Control or nonarithmetic 
operation performed 

The format and recommended coding 
for a WRITE DIRECT instruction to 
set the Wait flip-flop and cause the 
CPU to stop communication is as 
follows: 

The Wait fl ip-flop may be reset to 
a 0 by any interrupt activation (in­
c I udi ng counter interrupts) or by 
moving the COMPUTE switch to the 
IDLE position. 

Affected: Wait flip-flop 

A WRITE DIRECT instruction is also 
used as the first word of a two-word 
instruction sequence for exiting from 
an interrupt-servicing routine. The 
format and recommended codi ng for 
the two-word instruction sequence is 
as follows: 

o 

C 
o 1 2 

The first instruction word sets the 
exit condition by inhibiting all nor­
mal interrupt levels. The second in­
struction word, whose effective address 
must be equal to the address in the 
interrupt location for the desired 
interrupt-servicing routine, performs 
the following: 

1. Loads the Program Status Double­
word from the fi rst two words of 
the interrupt routine (bits 0-7, 12, 
and 13 of the effective double­
word are ignored). 

2. If the FM bit of the new PSD is set, 
the SFA is loaded from the Memory 
Floating Accumulator. 

Function field 
bit posi tions 

8 9 

(cont .) 

Control or nonarithmetic 
operati on performed 

3. Arms the highest-priority active 
interrupt I eve I. 

4. Resets the exit condition. 

Affected: PP, FM, II, EI, 0, C, (P), 
SFA, highest-priority inter­
rupt level 

The format and recommended codings 
for setting and resetting the External 
and Internal interrupt control bits of the 
Program Status Doubleword and the sig­
nificance of each are as follows: 

Reset the External Interrupt bit to O. 

Reset the Interna I Interrupt bit to O. 

Reset both the External and Internal 
Interrupt bits to O. 

Set the External Interrupt bit to 1. 

Set the Internal Interrupt bit to 1. 

Set both the External and Internal 
Interrupt bits to 1. 

Copy Instructions 31 



RD READ DIRECT (partially privileged, partially optional) that is to perform a control or nonarithmetic operation as 
specified by the value of the accompanying function field. 
The number of different operations that can be specified 
within each mode (or for each portion of the computer sys­
tem) varies for each mode. Thus, the READ DIRECT instruc­
tion generates a set of control or nonarithmetic instructions 
that may be comprised of 16 subsets of instructions (one sub­
set of instructions for each mode or for each portion of the 
computer system). The subset of instructions for READ 
DIRECT (Mode 0) operations is described within subsequent 
paragraphs. The subsets of instructions for the other modes 
of operations (Mode 1 through Mode F) are appropriately 
referenced. 

The format of a typical READ DIRECT instruction is 

S Displacement Mode i - ;unction - ] 
7 8 9 10 11 12 13 14 15 0 1 T 31'4 5"6 ita 910 m12 i3 14 15 

The "mode" and "function" fields for the effective instruc­
tion are generated in the same manner as described under 
IlEffective Address Computation ", in Chapter 2. As listed 
in Table 8, each of the 1Q different values of the mode 
field designates a different portion of the computer system 

Mode 

Value Title 

o 

1 

2 
-

thru 
E 

F 

Internal 
Computer 
Control 

Interrupt 
Control 

Direct 
Control 

Direct 
Control 

Table 8. READ DIRECT Mode Values and General Functions Performed 

Portions of 
Computer 
System 
Designated 

CPU and/or 
lOP 

Interrupt 
System 

DIO system 
using stan­
dard Xerox 
computer 
products 

Specially 
designed 
equipment 

General Control or Nonarithmetic Operations Performed 

1. Copy contents of specified general register or I/O channel register into the A 
register. 

2. I/o operations via an lOP, as described in Chapter 4. 

3. Copy contents of E>ATA switches into the A register. 

4. Condition the CPU to perform 

a. Field Addressing instructions. 

b. General Register instructions. 

c. Doubleword instructions. 

d. Multiple-Register instructions. 

e. Floating-Point instructions. 

5. Copy the first word of the Program Status Doubleword into the A register and 
then conditionally alter the program status indicators. 

As described in Chapter 2, under "Interrupt System II • 

Exchange control information and data as required to perform an I/o operation. 
Note that each mode value is assigned to a different DIOsystem. (Refer to the 
Xerox Computer Systems/Interface Design Manual, 900973, for further details.) 

Exchange control information and data as required to perform an I/o operation. 
(Refer to the Xerox Computer Systems/Interface Design Manual, 90 0973, for 
further deta ils.) 

32 Copy Instructions 



READ DIRECT (MODE 0) INSTRUCTIONS 

The format and recommended coding of a typical READ 
DIRECT (Mode 0) instruc-tion is as follows: 

The READ DIRECT (Mode 0) instruction is unique in that if 
the IIRIXS II bits are coded as zeros, the Ilfunction U may be 
e""coded directly into the original instruction. Otherwise, 
the "RIXS II bits aod the IIdisplacement ll field of the original 
instruction must be coded with appropriate values, which 
will result in an effective instruction as shown below. 

The function field may have anyone of 256 different values; 
however, as described below, not all values of the function 
field are assigned as part of an effective instruction (see 
Appendix C). 

Note: Attempting to use a function value that is not as­
signed -results in an lIunimplemented instruction" 
fault. 

For explanation purposes, the function values associated 
with a READ DIRECT (Mode 0) instruction are divided into 
four functional groups, which are also readily differentiated 
by the values of the first two bits -of the function field 
(bits Sand 9), as described below. 

Function field 
bit positions 

S 9 

o 0 

o 

Control or nonarithmetic 
operation performed 

All values within this group (except X'OO') 
are assigned. Each va lue designates a 
specific general register or an I/O chan­
nel register whose contents are copied into 
the A reg ister • . 

The format and recommended coding for a 
READ DIRECT instruction to perform the 
above described operation is as fol lows: 

o ,1, J ,0, ,I~0,l" "I'~~"..J 
The IISR II field is coded with the address 
of the general or I/o channel register -
that is to be the source register for the 
copy operation. 

Affected: (A) 

Except for function values X'41', X'42', 
X'44', X'4S', X'50', and X'60', which 

Function field 
bit positions 

S 9 

o 
(cont .) 

o 

Control or nonarithmetic 
operation performed 

are interpreted as I/o instructions, all 
function values within this group (X'4Q'­
X'7F') are unassigned. The I/o instruc­
tions are described in Chapter 4. 

Function values within this group (X'SO'­
X' BF ') are assigned as follows: 

1. Function value X'SO' causes the con­
tents of the DATA sw itches to be 
copied into the A register. 

The format and recommended coding 
for a READ DIRECT -instruction to per­
form the above described operation is 
as follows: 

o I 2 

Affected: (A) 

2. Excluding function values X'SO', X'Sl', 
and X'S7', the function values asso­
ciated with field addressing instruc­
tions areX'NO', X'N1', X'N7', X'NS', 
X'N9', and X'NF', where IINII may 
have a hexadecimal value of S, 9, A, 
or B. See IIField Addressing Instruc­
tions ll for further details. 

3. Function values X'SA'-X'SE' are asso­
ciated with general register operations, 
other than the A register. See IIGen­
eral Register Instructions ll for further 
details. 

4. Function values X'92'-X'96', X'9A'­
X'9D', X'A2'-X'A4', X'AA', X'AB', 
and X'B2' are associated with LOAD/ 
STORE MULTIPLE and doubleword in­
structions as described under IIMultiple­
Register Instructions II • 

5. Function value X'9E' causes the 
Floating Mode control bit (PSD9) to 
be set to a 1. See IIFloating-Point 
Instruct ions II for further deta i Is. 

6. The following function values are 
unassigned: X'Sl'-X'S7', X'A5', 
X'A6', X'AC'-X'AE', X'B3':"'X'B6', 
and X'BA'-X'BE'. 

Within this group of function values 
(X'CO'-X'FF'), all values except the nine 
described below are unassigned. Each of 

Copy Instructions 33 



Function field 
bit positions 

8 9 

- (cont.) 

Control or nonarithmetic 
operation performed 

the assigned vaiues may be encoded into 
the origina I READ DIRECT instruction, as­

_ illustrated; their format and recommended 
coding, and the operations performed are 
as follows: 

o 1 2 ~",L,~" J 
o 1 2 

Each of the three READ DIRECT instruc­
tions causes the first word of the program 
Status Doubleword to be copied into the -
A register. 

o 1 2 

Copy first word of PSD into A register;­
then reset the External Interrupt (EI) bit, 
PSD 11, to zero. 

Copy the first word of PSD into A register; 
then reset the Internal Interrupt (II) bit, 
PSD 10, to zero 0-

C~py the first word of PSD into A register; 
then reset the EI and II bits (PSD lO 
and 11) to zeros. 

Copy -first word of PSD into A register; 
then set the EI bit to 1. 

Copy first word of PSD into A register; 
then set the II bit to 1.-

34 General Register 

Function field 
b it positions 

Control or nonarithmetic 
operation performed 8 9 

(cont.) -

Copy first word of PSD into A register; 
-then set the EI and II bits to l's. 

Note that bit positions within the first 
word of the Program Status Doubleword­
that do not contain program status indica­
tors are copied into the A reg ister as zeros. 

GENERAL REGISTER INSTRUCTIONS 

AU general register instructions, as listed below, are pro­
vided as part of the standard repertoire of instructions. 

Instruction Name Mnemonic 

Load Word LW 

Store Word STW 

Add Wqrd AW 

Subtract Word SW 

Logical And AND 

Compare Word CW 

LW LOAD WORD 

8 
o 1 2 

LOAD WORD is a two-word instruction sequence that loads 
the effective word (specified by -the effective address of the 
second instruction word) into register L, T, X, 8, or E 
(specified by the GR field of the first instruction word). 

No interrupt,s are processed by the CPU between these two 
i nstruc ti on -wo rds • 

The GR field must be coded with a value of 010 through 110 
and is interpreted as follows: 

GR Code 

010 

011 

100 

Significance 

General Register 2 (L) 

General Register 3 (T). 

General Register 4 (X) 



GR Code Significance 

101 General Register 5 (B). 

110 General Register 6 (E). 

Affected: (L, T .. X, B, or E) 

STW STORE WORD 

E 
. 0 1 2 

STORE WORD is a two-word instruction sequence that 
stores the contents Qf register L, T ,_ X, B, or E (specified 
by the GR field of the first instruction word) into the effec­
tive location (spedfied by the effective address of the 
second instruction word). 

No interrupts are processed by the CPU between these two 
instruction words. 

The GR field must be coded with a value of 010 through 110 
and is interpreted as follows: 

GR Code Significance 

010 General Register 2 (l). 

011 General Register 3 (T). 

100 General Register 4 (X). 

101 General Register 5 (B). 

110 General Register 6 (E). 

Affected: (El) 

AW ADP WORD 

A 
o 1 2 

ADD WORD is a two-word instruction sequence that adds 
the effective word (specified by the effective address of the 
second instruction word) to the contents of register L, T, 
X, B, or E (specified by the GR field of the first instruction 
word) and then loads the result into the specified register. 

The Overflow and Carry indicators are set as described 
below. 

o C Significance 

The signs of the two operands are equal but 
the sign of the result is different. 

A carry occurred from the sign bit position of 
the adder. 

o 0 No overrlow or carry occurred . 

No interrupts are processed by the CPU between these two 
instruction words. 

The -GR field must be coded with a value of 010 through 110 
and is interpreted cis follows: 

GR Code Significance 

010 General Register 2 (l). 

011 General Register 3 (T). 

100 General Register 4 (X). 

101 General Register 5 (B). 

110 General Register 6 (E). 

Affected: (l, T, X, B, orE), 0, C 

SW SUBTRACT WORD 

B 
o 1 2 

SUBTRACT WORD is a two-word instruction sequence that­
forms the one's complement of the effective word (specified 
by the effective address of the second instruction word), 
increments by 1, adds this va lue to the contents of register 
L, T, X, B, or E (specified by the GR field of the first in­
struction word), and then loads the result into the specified 
register. 

General Register 35 



The Overflow and Carry indicators are set as described 
below. 

o C Significance 

o 0 

The s ig n of the resu It in the reg ister is equa I 
to the sign of the effective word but the sign 
of the original operand in the register was 
different. 

A carryoccurred from the sign bit position of 
the adder, either during incrementing the one IS 

complement or in adding the value tothespec­
ified register: the 16-bit magnitude in the 
effective location is equal to or less than the 
16-bit magnitude in the specified register. 

No overflow or carry occurred. 

No interrupts are processed by the CPU between these two 
instruction words. 

The GR field must be coded with a value of 010 through 110 
and is interpreted as follows: 

GR Code~ Significance 

010 General Register 2 (L). 

011 General Register 3 (T). 

100 General Register 4 (X). 

101 General Register 5 (B). 

110 General Register 6 (E). 

Affected: (L, T, X, B, orE), 0, C 

AND LOGICAL AND 

9 
o 1 2 

LOGICAL AND, as a two-word instruction sequence, forms 
the logical product between the effective word (specified 
by the effective address of the second word) and the con­
tents of register L, T, X, B, or E (specified by the GR field). 
The logical product is loaded into the specified register. 

No interrupts are processed by the CPU between these two 
instruction words. 

36 General Register 

The GR field must be coded with a value of Ql0 through 110 
and is interpreted as follows: 

GR Code Sign ifi cance 

010 General Register 2 (L}. 

011 General Register 3 (T). 

100 General Register 4 (X). 

101 General Register 5 (B). 

110 General Register 6 (E). 

Affected: (L, T, X, B, or E) 

cw COMPARE WORD 

D 
o 1 2 

COM PARE WORD is a two-word instruction sequence that 
algebraically compares the contents of register L, T, X, 8, 
or E (specified by the GR field) and the effective word 
(specified by the second instruction word). Both operands 
are treated as signed quantities. 

The Overflow and Carry indicators are set or reset according 
to the resu It of the comparison as follows: 

o C Significance 

o 0 The operand in the specified register is alge­
braically less than the effective word. 

o The operand in the- specified register is alge­
braically greater than the effective word. 

The opercmd in the specified register is equal 
to the effective word. 

No interrupts are processed by the CPU between these two 
instruction words. 

The GR field must be coded with a value of 010 through 110 
and is interpreted as follows: 

GR Code Significance 

010 General Register 2 (L). 

011 General Register 3 (T). 



GR Code Significance 

100 General Register 4 (X). 

101 General Register 5 (B). 

110 General Register 6 (E). 

Affected: 0, C 

MULTIPLE...;REGISTER INSTRUCTIONS 

All nonfloating-point multiple-register instructions, as 
listed below, are included with the standard repertoire of 
instructions. 

Instruction Name Mnemonic-

Load Multiple LDM 

Load Double LDD 

Store Multiple STM 

Store Double STD 

-Double Add DAD 

Double Subtract SDB 

Compare Double CPD 

LDM LOAD MULTIPLE 

8 
o 1 2 

LOAD MULTIPLE is a two-word instruction sequence that 
loads two or more consecutive registers with a corresponding 
number of effective words from consecutive memory loca­
tions. The function field of the first instruction word speci­
fies the number of registers to be loaded (value of X field), 
and the address of the first register (value of Y field). 
(The X and Y fields must be coded with valves of 010 
through 110.) The· effective address of the second instruc­
tion word points to fhe first effective word in memory. 

No interrupts are processed by the CPU between these two 
instruction words. 

Affected: (specified registers) 

LDD LOAD DOUBLE 

8 
o 1 2 

LOAD DOUBLE is a LOAD MULTIPLE instruction in which 
the X field is coded with a value of 2 (specifying the num­
ber of registers- to be loaded) and the Y field is coded with 
a value of 6 (specifying the extended accumulator _as the 
first register to be loaded). rhe effective address of the 

- second instruction word points to the first effective word in 
memory. 

No interrupts are processed by the CPU between these two 
instruction words. 

Affected: (E), (A) 

STM STORE MULTIPLE 

E 
o 1 2 

STORE MULTIPLE -is a two-word instruction sequence that 
stores the contents of specified registers into specified ef­
fective locations. The function field of the first instruction 
word specifies the number of registers to be stored (value of 
X field), and the address of the first register (value of 
Y field). (The X and Y fields must be coded with val ues of 
010 through 110.) The effective address of the second 
instruction word points to the first word of the effective 

_location. 

No interrupts are processed by the CPU between these two 
instruction words. 

Affected: (specified effective locations) 

STO STORE DOUBLE 

E 
o 1 2 

STORE DOUBLE is a STORE MULTIPLE instruction in which 
the X field is coded with a value of 2 (specifying the num­
ber of registers) and the Y field is coded with a value of 6 
(specifying the extended accumulator as the first register). 
The effective address of the second instruction word points 
to the first of two effective locations in which the contents 
of the E and A registers wi II be stored as a doubleword. 

Multiple-Register Instructions 37 



No interrupts are processed by the CPU between these two 
instruction words. 

Affected: (two specified effective locations) 

DAD DOUBLE ADD 

A 
o 1 2 

DOUBLE ADD is a two-word instruction sequence that adds 
the contents of the effective locations (as specified by the 
effective address of the second instruction word) to the con­
tents of the extended accumulator and accumulator (E and 
A registers), as specified by the function field of the first 
instruction word, and then loads the result into the ex­
tended accumulator and accumulator. 

The Overflow and Carry indicators may be set as follows: 

o C Significance 

The signs of the two operands are equal but 
the sign of the result is different. 

A carry occurred from the sign bit position of 
the adder. 

o 0 No overflow or carry occurred. 

No interrupts are processed by the CPU between these two 
instruction words. 

Affected: (E), (A), 0, C 

OSB DOUBLE SUBTRACT 

~ 1 

B 
o 1 2 

DOUBLE SUBTRACTis a two-word instruction sequence that 
forms the onels complement of the effective doubleword 
(as specified by the effective address of the second instruc­
tion word), increments by 1, adds this value to the contents 
of the extended accumulator and accumulator (as specified by 
the function field of the first instruction word), and then loads 
the resu I t into the extended accumul ator and accumu I ator • 

38 Multiple-Register Instructions 

The Overflow and Carry indicators may be set as fonows: 

o C Significance 

The sign of the result in the extended accumu­
lator is equal to the sign of the effective 
doubleword but the sign of the original oper­
and in the extended accumulator was different. 

A carry occurred from the sign bit position of 
the adder, either during_ incrementing the onels 
complement or in adding the value to the ex­
tended accumulator and acc~umulator: the 32-
bit magnitude of the effective doubleword is 
equal to or less than the 32-bit magnitude in 
the extended accumulator and accumulator. 

No interrupts are processed by the CPU between these two 
instruction words. 

Affected: (E), (A), 0, C 

CPD COMPARE DOUBLE 

D 
o I 2 

COMPARE DOUBLE is a two-word instruction sequence that 
algebraically compares the 32 bits of the extended accumu­
lator and accumulator (E and A registers) and the effective 
doubleword. The function field of the first instruction word 
specifies the number of general registers involved (the value 
of the X field must be 2), and the address of the first regis­
ter (the value of the Y field must be 6). The effective ad­
dress of the second instruction word points to the effective 
doubleword. Both operands are treated as signed quantities. 

The Overflow and Carry indicators are set or reset according 
to the result of the comparison as follows: 

o C Result of Comparison 

o 0 

o 

The 32-bit operand in the extended accumu­
lator and accumulator is algebraically less 
than the effective doubleword. 

The 32-bit operand in the extended accumu­
lator and accumulator is algebraically greater 
than the effective doubleword. 

The 32-bit operand in the extended accumu­
lator and accumulator is equal to the effective 
doub I eword . 

No interrupts are processed by the CPU between these two 
instruction words. 

Affected: 0, C 



FLOATING-POINT INSTRUCTIONS 

The floating-point feature consists of the hardware imple­
mentation of seven optional floating-point instructions: 

Instruction Name Mnemonic 

Floating Load FLD 
Floating Store FST 
Floating Add FAD 
Floating Subtract FSB 
Floating Multiply FMP 
Floating Divide FDV 
Floating Compare FCP 

Each of these floating-point instructions is evoked by exe­
cuting. the corresponding fixed-point instruction (LOAD, 
STORE, ADD, SUBTRACT, MULTIPLY, DIVIDE, or 
COMPARE) with the Floating Mode (FM) bit in the Program 
Status Doubleword (PSD) set to a 1 (see "Floating-Point 
Mode Contro I"). 

All floating-point instructions operate on the Scratchpad 
Floating Accumulator (SFA) described below and a speci­
fied three-word floating operand contained within three 
contiguous memory locations. (See "Floating-Point Num­
\;>ers" for other characteristics of floating-point operands.) 
The effective address of the floating-point instruction, 
which may be generated using any mode of effective ad­
dress computation available to memory reference type of in­
structions, points to the first location containing the floating 
operand. Except for FLOATING STORE and FLOATING 
COMPARE instructions, the results of all floating-point in­
structions replace the original contents of the SFA and the 
floating operand in main memory is not affected. For 
FLOATING STORE instructions, the contents of the SFA is 
stored into the floating operand. For FLOATING COM­
PARE instructions, neither the contents of SFA nor the 
floating operand is modified. 

FLOATING-POINT NUMBERS 

An extended precision floating-point number consists of the 
three consecutive 16-bit words with the following format: 

First word: 

Second word: 

Least significant part 
of mantissa 

5 6 7 8 9 10 11 12 13 1 15 

Third word: 

The first two words contain a signed two's complement man­
tissa with the binary point following bit 0 of the first word. 
The third word contains a signed two's complement integer 
binary expone n t • 

A floating-point number (N) has the following formal 
definition: 

1. A nonzero floating-point number has the value 

N = (mantissa)(2X) 

where X represents the binary exponent. 

2. A positive floating-point number with a mantissa of 
zero and a binary exponent of zero is called a IItrue" 
zero. All floating-point operations that produce a 
zero result will1llways produce a "true" zero. 

3. A positive nonzero floating-point number is normalized 
if and only if the mantissa is contained in the interval 

1/2 ~ mantissa < 1 

4. A negative floating-point number is formed by taking 
the two's complement of the mantissa of its positive 
representation. The binary exponent portion of a nega­
tive floating-point number is jdentical to the binary 
exponent portion of its positive representation. 

5. A negative floating-point number is normalized if and 
only if the floating-point number formed by taking the 
two's complement of the mantissa is a normalized posi-. 
tive floating-point number. 

By this definition, a floating-point number of the form 

First-word: 

0
1 

10 11112 13 14 15 

Second word: 

01 
10 11112 13 14 15 

Third word: Binary Expon~nt = X 

is not normalized because the two 1s complement of the man­
-tissa is not a normalized positive number. Since all floating­
point arithmetic instructions produce a result that is either a 
true zero or a norma I i zed float i ng -po i nt number, whenever 
a number of the form shown above might be generated, it is 
converted by the hardware into a floating-point number of 
the form 

First word; 

1:1: , ,I, , "t. 01 
10 11 h2 13 14 15 

Second word: 

01 
10 11112 13 14 15 

Third word: Binary Exponent = y 

where the binary exponent Y is one greater than the binary 
exponent X. 

Table 9 contains examples of floating-point numbers. 

Floating-Point Instructions 39 



Table 9. Floating-Point Numbers 

Decimal Number 

o (cal led true zero) 

+1 =(1/2)x2 
1 

-1 = - (1/2) x 2 
1 

+10 = (5/8) x 24 

-10=-(5/8)x2 
4 

- 7 
+ 100 = (25/32) x 2 

-100 = -(25/32) x 2 
7 

(1_2-31 ) x 232767 ::::::109864 

(1_2-31 ) x 2-32768 ::::10-9864 

EXPONENT UNDERFLOW AND OVERFLOW 

Exponent underflow occurs during any floating-point arith­
metic operation whenever an arithmetic operation results in 
a binary exponent that is a larger negative number than can 
be properly represented in two's complement form in 16 bits 
including the sign. Whenever exponent underflow occurs 
during the operation of a floating-point instruction, the 
result of that instruction will be a true zero. 

Exponent overflow occurs during any floating-point arith­
metic operation whenever an arithmetic operation results in 
a binary exponent that is a larger positive number thon can 
be properly represented in 16 bits including the sign. An 
attempt to divide by zero during a floating-point divide 
operation will also ca~se exponent overflow. Whenever 
exponent overflow occurs during the operation of a floating­
point instruction, the result of that instruction will be the 
largest possible normalized floating-point number with the 
same sign as the correct result of the instruction would have 
had if exponent overflow had not occurred. If the correcf 
resu It of the floating-point instruction would have been 
positive and exponent overflow occurs, the hexadecimal 
result of the instruction will be 

first word: X'7FFF' 

second word: X'FFFF' 

third word: X'7FFF' 

40 Floating-Point Instructions 

Extended Precision Floating-Point Number 

Mantissa Exponent 

First Word Second Word Third Word 

X '0000' X '0000' X '0000' 

X '4000' X '0000' X '0001 , 

X'COOO' X '0000 , X'OOOl' 

X '5000' X '0000' X '0004' 

X'BOOO' X '0000' X '0004' 

X '6400' X '0000' X'0007' 

X'9COO' X '0000' X'OOOT 

X'7FFF' X'FFFF' X'7FFF' 

X'7FFF' X'FFFF' X '8000' 

If the correct result of the floating-point instruction would 
have been negative and exponent overflow occurs, the hex­
adecimal result of the instruction will be 

first word: X'8000' 

second word: X'OOOl' 

third word: X'7FFF' 

The Overflow (0) indicator is set or reset at the conclusion 
of each arithmetic floating-point instruction to indicate 
whether exponent overflow or underflow occurred during 
that instruction as follows: 

o Result of Instruction 

o Neither expon_ent overflow nor exponent underflow 
occurred. 

Exponent overflow or exponent underflow occurred. 

FLOATING-POINT MODE CONTROL 

Hardware-implemented floating-point operations are auto­
matically invoked whenever bit 9 (FM) of the Program Status 
Doubleword is set to a 1. The LOAD, STORE, ADD, SUB­
TRACT, MULTIPLY, DIVIDE, and COMPARE instructions 



are automatically modified into FLOATING LOAD, 
FLOATING STORE, FLOATING ADD, FLOATING SUB­
TRACT, FLOATING MULTIPLY, FLOATING DIVIDE, and 
FLOATING COMPARE, respectively. All other instruc­
tions are not affected by the state of FM. 

The FM bit is set to a 1 whenever any of the following op­
erations are performed: 

1. By executing a SET FLOATING MODE (SFM) instruc­
tion. The format and required coding of the SFM in­
struction is as follows: 

The SFM instruction is a nonprivileged READ DIRECT 
(Mode 0) instruction that can be executed from either 
protected or unprotected memory. The "RIXS" bits of 
the instruction must all be coded as zeros. 

If an attempt is made to set FM when the floating-point 
option is not installed, bit 9 of the PSD remains a zero 
and machine fault interrupt is triggered. 

2. Ifbit90ftheA register (general register 7) isa 1, it 
wilt be copied into the FM position whenever the privi­
leged WRITE DIRECT instruction with a final effective 
address of X'OOCO' is executed. This WD instruction 
can only be executed from protected memory. 

3. If the FM bit was a 1 at the time it was stored (saved) 
by an interrupt entry procedure, the FM bit will be re­
stored as a 1 when exiting the interrupt routine (a 
WRITE DIRECT instruction with a final effective address 
of X'00D8' followed immediately with a LOAD INDEX 
(LDX) instruction). Bit 9 of the effective word for the 
LDX instruction contains the FM bit that was saved. 

Hardware-implemented floating-point operations are auto­
matically inhibited whenever the FM bit of the PSD is reset. 
The FM bit is reset to 0 by any of the following conditions 
or operations: 

1. Whenever a general CPU reset signal is generated 
(occurs when primary power is initially applied to the 
system and when the RESET switch on the Processor 
Control Panel is. raised). 

2. By executing an unconditional BRANCH (B) instruction 
from either protected or unprotected memory. 

3. If bit 9 of the A register (general register 7) is a zero, 
it will be copied into the FM position whenever the 
privi leged WRITE DIRECT instruction with a final ef­
fective address of X'OOCO' is executed. This WD in­
struction can only be executed from protected memory. 

4. When an interrupt level moves from the waiting state 
to the active state as the result of the occurrence of an 
interrupt that alters the normal sequence of instructions, 
the state of the FM bit will be saved with the rest of 
the current PSD at the memory location specified by the 
contents of the interrupt location. After saving the 
previous state of the FM bit, the FM bit is reset. 

The status of the FM b it (as well as other program status 
indicators) can be read under program control by privileged 
READ DIRECT (Mode 0) instructions that copy the first word 
of the Program Status Doubleword into the A register. 

SCRATCHPAD FLOATING ACCUMULATOR 

A Scratchpad Floating Accumulator (SFA), consisting of 
three 16-bit high-speed registers, is used in conjunction 
with all hardware floating-point instructions. The contents 
of the SFA can be modified and read only by executing 
hardware floating-point instructions. -For all hardware 
floating-point instructions, the SFA contains one of the 
initia I arguments prior to execution of the instruction. At 
the conclusion of all arithmetic floating-point instructions, 
the initial argument in SFA is replaced by the result of the 
floating-point instruction. 

Whenever an operatron occurs that causes the FM bit of 
the PSD to be reset, the contents of SFAis automatically 
saved in memory by storing it in three contiguous memory 
locations (called Memory Floating Accumulator). This 
automatic transfer will occur regardless of how the FM bit 
is reset (incl uding interrupt entry) except t~at no transfers 
will occur when the general CPU reset signal occurs. The 
address of the first location of the Memory Floating Accumu­
lator is-specified by the contents of memory location 1. 

Note: If the program is operating under Basi c Control 
Monitor (BCM) or Real-Time Batch Monitor (RBM), 
the Memory Floating Accumulator is the-first three 
locations in the user's temporary stack in memory. 

Whenever an operation occurs that causes the FM bit of the 
PSD to be set, the contents of the Memory FloatingAccumu­
lator replaces the previous contents of SFA. This automatic 
transfer will occur regardless of how the FM bit is set, in­
cluding interrupt exit where the interrupted program being 
restored was operating with the FM bit set. 

The contents of SFA will also be transferred automatically 
to the Memory Floating Accumulator when the FM bit is set 
and the COMPUTE switch on the Processor Control Panel 
(PCP) is switched from RUN or STEP to IDLE. 

When the COMPUTE switch is switched from IDLE to RUN 
or STEP and the FM bit is set, the contents of the Memory 
Floating Accumulator replaces the previous contents of SFA 
prior to an insTruction execution. The availability of the 
contents of SFA in memory when the CPU is in an IDLE state 
facilitates testing and debugging floating-point operations 
from the PC P • 

Floating-Point Instructions 41 



FLO FLOA TING LOAD (optional) 

If FM is set, the execution of the following instruction will 
result in a floating-point load operation: 

The effective address of the instruction is the address of the 
first word of the floating operand. FlD loads the floating 
operand into SFA. The first word of the floating operand 
also replaces the previous contents of the A register (gen­
era I reg ister 7) • 

Affected: SFA, (A) 

FST F LOA TING STORE (optional) 

If FM is set, the execution of the follo.w-ing instruction will 
result in a floating-point store operation: 

The effective address of the instruction is the address of the 
first word of the floating operand. FST replaces the float- _ 

_ ing operand with the contents of SFA. The first word of 
SF A a Iso replaces the pre vi ous contents of the A reg ister 
(genera I reg ister 7) . 

Affected: Floating operand, (A). 

FAD FLOATING ADD (optional) 

If FM is set, the execution of the following instruction wi II 
result in a floating-point add opera~ion: 

The effective address of the instruction is the address of the 
first word of the floating operand. FAD adds the floating 
operand to the contents of the SFA and then loads the re­
sult into SFA. The first word of the result also replaces 
the previous contents of theA register (general register 7). 

Prior to the FAD, SFA and the floating operand must both 
contain either a normalized nonzero number or a true zero. 
The result in SFA after FAD is always either a normalized 
nonzero number or a true zero. The result is unpredictable 
if, prior to the FAD, either SFA or the floating operand 
contains a floating-point number that is neither a normalized 
nonzero number nor a true zero. There is one exception 
to the previous statement; if the floating operand contains 
a true zero and SFA contains neither a normalized nonzero 
number nor a true zero, FAD will replace the contents of 
SFA with either the properly normalized nonzero number 
or a true zero. 

42 Floating-Point Instructions 

During the operation of FAD no guard digits are used. If 
prealignment shifting of one of the arguments is required, 
none of the bits shifted off the right end of the mantissa are 
preserved. If postnormaJization of the result is required, 
zeros will be shifted into the right end of the mantissa. 

If exponent underflow occurs, the Overflow indic(]tor is set 
to 1 and the result stored in SFA is a true zero. If exponent 
overflow occurs, the Overflow indic(]tor is set to 1 and the 
result stored in SFA is the largest possible normalized 
floating-point number with the same sign as the correct re­
sult of the instruction would have had if exponent overflow 
h(]d not occurred. If neither exponent underflow nor over­
flow occurs, the Overflow indicator is set to o. 

Affected: SFA, (A), 0 

FSB FLOATING SUBTRACT (optional) 

If FM is set, the execution of the folJowing instruction will 
result in a floating-point subtract oper(]tion: 

The effective-address of the instruction is the address of the 
floqfing oper(]nd. FSBsubtracts the floating operand from 
the contents of SFA and then loads the results into SFA. The 
first word of the result also replaces the previous contents 
of the A register (general register 7). 

Prior to the FSB, SFA and the floating operand must both 
contain either a normatized nonzero- number or a true zero. 
The result in SFA after FSB is always either a normalized 
nonzero number or a true zero. The resu It is unpredictable 
if, prior to the FSB, either SFA or the floating operand con­
tains a floating-point number that is neither a normalized 
nonzero number nor a true zero. 

During the operation of FSB no guard digits are used. If 
prealignment shifting of one of the arguments is required, 
none of the bits shifted off the right end of the mantissa 
are preserved. If postnormalization of the result is re­
quired, zeros will be shifted into the right end of the 
mantissa. -

If exponent underflow occurs, the Overflow indicator is set 
tol and the result stored in SFA is a true zero. If ex­
ponentoverflow occurs, the Overflow indicator is set to 1 
and the result stored in SFA is the largest possible normalized 
floating-point number with the same sign as the correct 
result of the instruction would have had if exponent over­
flow had not occurred. If neither exponent underflow nor 
overflow occurs, the Overflow indicator is set to O. 

Affected: SFA, (A), 0 



FMP FLOATING MULTIPLY (optional) 

If FM is set, the execution of the following instruction wi II 
resu It in a floating-point multiply operation: 

The effective address of the instruction is the address of the 
first word of the floating operand. FMP multiplies the 
floating operand by the contents of SFA and then loads the 
result into SFA. The first word of the result also replaces 
the previous contents of the A register (general register 7). 

Prior to the FM P, SFA and the floating operand must both 
contain either a normalized nonzero number or a true zero. 
The result in SFA after FMP is always either a normalized 
nonzero number or a true zero. The result is unpredictable 
if, prior to the FM P, either SFA or the floating operand con­
tains a floating-point number that is neither <l normalized 
nonzero number nor a true zero. 

All the bits of the mantissa _of the normalized product wi" 
be significant. One additional bit of the product wi II be 
generated so that if 0 one-place postnormalization shift is 
Tequired, a significant bit can be shifted into the right end 
of the mantissa rather than a zero. 

If exponent underflow occurs, the Overflow indicator is set 
to 1 and the result stored in SFA is a true zero. If exponent 
overflow occurs, the Overflow indicator is set to 1 and the 
result stored in SFA is the largest possible normalized floating­
point number with the same sign as the correct result of the 
instruction would have-had if exponent overflow had not 
occurred. If neither exponent underflow nor overflow 
occurs, the Overflow indicator is set to o. 

Affected: SFA, (A), 0 

FDV FLOATING DIVIDE (optional) 

If FM is set, the execution of the following instruction will 
result in a floating-point divide operation: 

The effective address of the instruction is the address of the 
first word of the floating operand. FDV divides the contents 
of SFA by the floating operand and then loads the result 
into SFA. The first word of the result also replaces the pre­
vious contents of the A register (general register 7). 

Prior to the FDV, SFA and the floating operand must both 
contain either a normal ized nonzero number or a true zero. 
The resu It in SFA after FDV is always either a normalized 
nonzero number or a true zero. The result is unpredictable 
if, prior to the FDV, either SFA or the floating operand 
contains a floating-point number that is neither a normalized 
nonzero number nor a true zero. 

If exponent underflow occurs, the Overflow indicator is set 
to 1 and the result stored in SFA is a true zero. If the 
floating operand is zero or if exponent overflow occurs, 
the Overflow indicator is set to 1 and the result stored in 
SFA is the largest possible normalized floating-point num­
ber with the same sign that the correct result of the in­
struction would have had if exponent overflow had not 
occurred. If neither exponent underflow nor overflow oc­
curs, the Overflow indicator is set to o. 

Affected: SFA, (A), 0 

FCP FLOATING COMPARE (optional) 

If FM is set, the execution of the following instruction will 
result in a floating-point compare operation: 

The effective address of the instruction is the address of the 
first word of the floating operand. FCP compares the float­
ing operand to the contents of SFA. The result of the com­
parison is used to set and reset the Overflow and Carry 
indicators as follows: 

o C Result of Comparison 

0_ 0 The contents of SFA is less than the floating 
operand. 

o The contents of SFA is greater -than the float­
ing operand. 

The contents of SFA is equal to the floating 
operand. 

The contents of the A register (general register 7) are not 
affected by the execution of FCP. The result of FCP wi" 
be unpredictable if either SFA or the floating operand con­
tains a floating-point number that is neither a normalized 
nonzero number nor a true zero. 

Affected: 0, C 

FIELD ADDRESSING INSTRUCTIONS 

All of the following field addressing instructions are 
optional: 

Instruction Name Mnemonic 

Load Logical Field LLF 

Load Arithmetic Field LAF 

Store Field STF 

Field Addressing Instructions 43 



Instruction Name Mnemonic 

Store Zero Field SZF 

Store Ones Field SOF 

Compare Logical Field ClF 

Compare Arithmetic Field CAF 

Sense left Bit of Field SLF 

Field addressing instructions facHitate specifying and op­
erating upon fields of information (l through 16 contiguous 
bits) within memory without restriction in regard to byte 
or word boundaries (i. e., a specified field of 16 bits may 
occupy bit positions 9 through 15 of memory location "n ll 

and bit positions 0 through 8 of memory location lin + 1"). 
The abHity fo perform bit and byte manipulations as welt as 
push-down stock operations permit field addressing instruc­
tions to operate efficiently upon component elements (fields) 
of three types of logical structures. 

1. Tables - FieJd addressing instructions facilitate the 
creation of tabte structures (collections of different 
sized fields) that make efficient use of memory and 
allow direct access to any element within those tables •. 
Table structures utilized by field addressing instruc­
tions can be modified without requiring the modifica­
tion of the code that references those tab les. 

2. Strings - Field addressing instructions efficiently oper­
ate on strings of identically sized elements. loop ter­
mination control, without the use of any of the general 
registers, is provided for strings of up to and including 
256 elements. Byte string operations are an example 
of such a string. 

3. Push-Down Stocks - Field addressing instructions allow 
the creation of any number of push-down stacks in 
memory. Various modes of field addressing instructions 
allow pushing new elements into any stack, pulling the 
top element from any stack, accessing words within a 
stack that are a known number of word locations away 
from the current top-of-stack and also detecting when 
the last avai lable space within a stack has been used. 

A typical field addressing instruction consists of two con­
tiguous instruction words. The first instruction word is 
a nonprivileged READ DIRECT (Mode 0) instruction with the 
followin~ format: 

44 Fi eld Addressing Instructions 

The SX field of the function value must be coded as either 
000, 001, or 111. The SX field specifies one of three setf­
indexing modes as follows: 

Function Value of READ DIRECT 

0000000010 [RXJooo 

0000000010 l!Q9oo 1 

0000000010009111 

Se If-Index i ng Mode 

No Self-Indexing 

Serf-Incrementing 

Se If-Decrement i n9 

Self-incrementing and self-decrementing are described fur­
ther below. 

For all three seff-indexing modes, the RX field causes iden­
tical action and must be coded to some three-bit value 
(other than 000). The RX field specifies one of two register­
indexing modes as follows: 

RX Field Register-Indexing Mode 

o 0 1 No Register Indexing 

010 
01 1 
100 
101 
1 1 0 
111 

Register Indexing 

Register indexing is described further below. 

The second instruction word has the format of a single-word 
referenc ing instruction. 

The operation code (OP) field indicates the specific field 
manipulation operation that is to be performed: load 
Logical Field, load Arithmetic Field, Store Field, Store 
Zero Field, Store Ones Field, Compare Logical Field, 
Compare Arithmetic Field, -and Sense Left Bit of Field. 

The effective address of the second instruction word is the 
address of the first word of a two-word "field descriptor" 
in main memory. This effective address may be generated 
using any mode (described under UEffective Address Compu­
tation"), thereby al lowing, for example, indexing into a 
table of field descriptors. 

No interrupts are processed by the CPU between these two 
instruction words. 



FIELD DESCRIPTOR 

The two-word field descriptor may start on any word 
boundary and has the following format: 

I I 
I I 
.... I~---- First Word ---l-~:l-"'--- Second Word 
I I 

START -OF-FIELD ADDRESS 

I 
I -, 
I 

If no self-indexing is specified (SX field of the first instruc­
tion word is coded 000) and if no register indexing is spec­
ified (RX field is coded 001), the first 20 bits (all 16 bits 
of word 1 and the fi rst 4 bits of word 2) of the field descrip­
tor (unmodified) become the effective start-of-field address. 
Otherwise, these 20 bits are modified as specified by the 
field addressing instruction to generate the effective start­
of::field address. The final result of any and all address 
modification is ~the bit-address of the first (leftmost) bit of 
the effective field (the field actually operated on by the 
field addressing instruction). The first 16 bits of the ef­
fective start-of-field address point to the word containing 
the first bit of the effective field and the next 4 bits spec­
ify the bit position occupied by that bit with in that word. 

FIELD LENGTH 

Th is 4-bit field is contiguous to the start-of-field address 
and specifies the length (number of bits) of the effective 
field. The value in this field is one less than the number 
of bits in the field (i.e., 0000 indicates a l-bit field, 0001 
indicates a 2-bit field, .•• , 1111 indicates a 16-bit field. 

COUNT 

This 8-bit field is used in conjunction with self-incrementing 
and self-decrementing to provide loop termination control 
when operating on a string of identically sized elements or 
to provide a "stack-full" indication for push-down stack 
operations. 

SELF-INCREMENTING Of THE START-Of-FIELD ADDRESS 

If self-incrementing is specified (SX field of the first instruc­
tion word is coded with 001), the start-of-field address in 
the field descriptor is incremented by the number of bits in 
the field (field length plus one), the count field in the field 
descriptor is incremented by one and then the field descrip­
tor as modified by these two addition operations replaces 
the original field descriptor in memory. The addition of 
one to the count field (bits 24-31) is performed modulo 256 
so that the field length field (bits 20-23) as restored to 
memory is always unmodified from the original field 
length. 

This new incremented start-of-field address is either the 
effective start-of-field address or is used as the basis for 
register indexing as described subsequently. 

The self-incrementing operation is illustrated in Figure 4. 

For all field addressing instructions, except COMPARE 
LOGICAL FIELD and COMPARE ARITHMETIC FIELD, the 
Overflow indicator (0) is set or reset depending on whether 
overflow occurred when incrementing the count field (as-

. suming the count field fo be an eight-bit positive integer). 
The Overflow indicator is set if the incremented count re­
stored to memory is equal to all zeros and is reset otherwise. 
For COMPARE LOGICAL FIELD and COMPARE ARITHME­
TIC FIELD, the Overflow indicator is used to indicate the 
results of a comparison and is not affected by the contents 
of the incremented count field. 

Self-incrementing is useful as part of the inner loop when 
operating sequentially on every element in a string of ele­
ments of identical size. If prior to the field addressing in­
struction, the field descriptor points at the last element 
processed, then a field addressing instruction with self­
incrementing wi II modify the field descriptor to point at the 
next element in the string as part of the effective start-of­
field address computation. In this case, the count field can 
be used to provide loop termination control. If prior to 
starting to process a string of identical sized elements, the 
count field in the initial descriptor contains a number equal 
to 256 minus the number of elements in the string, then, when 
the string is processed using field addressing instructions 
with self-incrementing, the Overflow indicator will be set 
by the field addressing instruction that processes the last 
element. 

Self-incrementing is also used for operating on push-down 
stacks. If a push-down stack consists of a sequential string 
of identical sized elements with the currenttop-of-stack 
element having an address larger than the address of the 
other elements within the stack, then self-incrementing is 
used for pushing a new element into the stack. If prior to 
a field addressing instruction, the field descriptor points 
at the current top-of-stack element, then a Store Field 
instruction with self-incrementing wi II push a new element 
into the stack and leave the field descriptor pointing to 
that new element as the current top-of-stack. In th is case 
the count field can be used to indicate that the stack is 
full. If the initial descriptor that is set up when the 
push-down stack is empty contains a number in the count 
field equal to 256 minus the maximum allowable size of the 
push-down stack, then the Overflow indicator wi II be set 
following the field addressing instruction that pushed a 
new element into the last available space in the stack. 

If self-incrementing is specified and no register indexing is 
specified (RX field of the first instruction word is coded 
with 001), then the effective start-of-field address is equal 
to the incremented start-of-field address in the field de­
scriptor as restored to memory. 

Field Addressing Instructions 45 



Original field Descriptor 

Plus Plus 

Increments 

1000000011 
24 25 26 27128 29 30 31 

I 
20-8it Add 8-Bit Add 

Incremented Field Descriptor 

The incremented field descriptor is restored to memory and also used in subsequ_ent effective start-of-address computation. 

tN is the number of bits in the effective field (equal to the contents of the field-length field plus one). 

Figure 4. Self-Incrementing Operation -

REGISTER INDEXING OF THE START-OF-FIELD ADDRESS 

Register indexing can be invoked in conjunction with any 
of the self-indexing modes. Register indexing ad_ds the­
contents of one of the general registers to the word address 
portion (bits 0-15) of .the start-of-field address contained 
in the field descriptor in memory. If either self-decrementing 
or no self-indexing is specified, the fieJd descriptor in mem­
ory at the time register indexing is performed wi II be iden­
tical to the original field descriptor in memory. If self­
incrementing is specified, the field descriptor in memory 
at the time register indexing is performed will be the in­
cremented resu I t of the se I f- incrementing operation. The 
RX field of the first instruction word specifies whether 
register indexing is to be invoked and if so, which general 
reg ister is to be used. 

RX Field General Register 

001 No reg i ster index i ng 

010 L 

011 T 

100 X 

101 B 

110 E 

111 A 

46 Field Addressing Instructions 

If register indexing is specified, the operation performed on 
the start-of-field address currently contained in the field 
descriptor in memory is i "ustrated by the following diagram: 

Start-of-field address from current contents of field 
descriptor in memory (after self-incrementing) 

start-o:f-Field Addre$ I 
o 1 2 31-4 5 6 7 8 9 10 11112 13 14 15; 16 17 18 19 ------

Plus 

16-Bit Add 



Register indexing can only affect the word address portion 
of the effective start-of-field address. The result of the 
register indexing addition is the effective start-of-field 
address; however, the field descriptor in memory is not 
modified as a resu It of register-incrementing. Note this 
important distinction between self-incrementing and 
register indexing. Whenever self-incrementing is per­
formed, the result replaces the original field descriptor in 
memory whereas the results of register-indexing never af­
fects the field descrip~or in memory. 

-

As an example of the use of register indexing, consider a 
table made- up of "n" sequential 16-bit words in memory. 
Each word contains a collection of software status asso­
ciated with a particular I/o device. The I/o devices 
are arbitrari Iy numbered sequentially from "0" to "n-l" for 
a system with "n" devices. The first-word of the table con­
tains software status information associated with device 
number "0", the second word contains software status in-­
formation associated with device number "1", etc. The 
format of each word in the table is identical; the same 
specific piece of status information for each device appears 
in the same bit positions in each word of the table. Given 
such a table structure, a set of field descriptors would exist 
(one for each different piece of status information in the 
_table). These field descriptors would all have a start-of­
field address indicating the left bitof the appropriate field 
in the tab I e entry for device "0 ". Th is same set of descri p­
tors would then be used to locate the appropriate status 
information for any device. This would be accomplished 
by loading one of the general registers 2 through 7 with 
the device number of the device of interest. Then, a field 
addressing instruction would be executed pointing at the 
field descriptor for the desired piece of status information 
for device "0" and invoking register indexing using the 
register containing the device number. 

Register indexing can also be used to reference elements 
contained within a push-down stack provided that the ele­
ments within the push-down stack are all 16-bit words. A 
word that is known to be "1'1" words below the current top­
of-stack word can be accessed by loading one of the gen­
eral registers 2 through 7 with a number- equal to "-n". 
Then, a field addressing instruction would be executed with 
a field descriptor which points to the current top-of-stack 
word and invoking register-indexing using the register con­
taining the value "-n". 

OTHER CHARACTERISTICS OFFIELD ADDRESSING INSTRUCTIONS 

Information presented thus far has been associated with the 
identification of the effective field (generating an effective 
start-of-field address). This section briefly describes the 
operation performed on the effective field by the various 
field addressing instructions. 

The eight field addressing instructions fall logically into 
four categories: load, store, compare, and sense. In all 
of the following descriptions, the A register refers to gen­
eral register 7. 

There are two load instructions, LOAD LOGICAL FIELD 
and LOAD ARITHMETIC FIELD. LOAD LOGICAL FIELD 
loads the effective field into the right-hand end of the 
A register (i .e., the rightmost bit of the effective field 
replaces bit 15 of A) and loads zeros into the remainder of 
the A register. LOAD ARITHMETIC FIELD loads the ef­
fective field into the right -hand end of the A register and 
replaces the remainder of the bits in the A register with the 
leftmost bit of the effective field. LOAD ARITHMETIC 
FIELD treats the field to be a signed quantity and, there­
fore, loading the remainder of the bits in the A register with 
the leftmost bit of the field is really sign extension. 

As an example of the two load operations, consider a five­
bit effective field with a bi nary configuration of 

Effective Field I L-1 ___ 0 __ 0_1 ..... 1 

The final result in the A register for each of the load in­
structions is as follows: 

Result of LOAD LOGICAL FIELD 

A Register 

Result of LOAD ARITHMETIC FIELD 

11 1 1 1 1 1 1 1: 1 1 11 1 0 0 d A Reg ister 
o 1 2 3 14 5 6 7 8 9 10 11112 13 14 15 

However, if the five-bit effective field has a binary con­
figuration of 

Effective Field L-I 0 ___ 0 __ 0_1~1 

Then the r~sult in the A register of each of the load in­
structions is as follows: 

Result of LOAD LOGICAL FIELD 

A Register 

Result of LOAD ARITHMETIC FIELD 

I? ~? ~I? ?? ~:? ? ~ ?I~' ~? ~J A Register 

If the field length is 16 bits, the results of LOAD LOGICAL 
FIELD and LOAD ARITHMETIC FIELD are identical regard­
less of the binary configuration of the field. 

There are three store instructions, STORE FIELD, STORE 
ZERO FIELD, and STORE ONES FIELD. STORE FIELD re­
places the effective field in memory by the "n" rightmost 
bits of the A register where "n" is equal to the number of 
bits in the effective field. For example, if the contents of 
the field length field specifies a field length of three, then 

Field Addressing Instructions 47 



STORE FIELD replaces the effective field in memory by the 
contents of bits 13-15 of the A register. The contents of 
the A register is not affected by a STORE FIELD instruction. 
STORE ZERO FIELD replaces every bit of the effective 
field in memory with zeros. STORE ONES FIELD replaces 
every bit of the effective field with ones. For all store in­
structions, no other b its in the memory word or words con­
taining the effective field are modified except those bits 
which are part of the effective field. 

If the contents of the field length field in the field descrip­
tor specifies a field length of one bit, STORE ZERO FIELD 
and STORE ONES FIELD perform the function of clearing 
or setting a particular bit in memory. 

There are two compare instructions, COMPARE LOGICAL 
FIELD, and COMPARE ARITHMETIC FIELD. COMPARE 
LOGICAL FIELD forms a 16-bit word containing the ef­
fective field at the right-hand end and zeros in all other 
bit positions and then compares th is word with the contents 
of the A reg ister. The Overflow and Carry i ndi co tors are 
set or reset as in the fixed-point compare instruction to in­
dicate the result of the comparison. COMPARE ARITHME­
TIC FIELD is the same as COMPARE LOGICAL FIELD ex­
cept that the 16-bit word compared to the contents of the 
A register is formed by sign extending the leftmost bit of 
the effective field into QII other bit positions rather than 
zeros. Neither compare instruction modifies the contents 
of the A reg ister. 

There is one sense instruction called SENSE LEFT BIT OF 
FIELD. This instruction loads the leftmost bit of the effec­
tive field into the Carry indicator (C) without modifying 
either the effective field or the A register. If the contents 
of the field length field in the field descriptor specifies a 

Field Descriptor 

Minus 

Becrements 

20-Bit Subtract 

Decremented Field Descriptor Restored to Memory 

field length of one bit, SENSE LEFT BIT OF FIELD performs 
the function of testing the state of a particular bit in 
memory. 

SELF-DECREMENTING Of THE START-Of-fiELD ADDRESS 

Self-decrementing has no effect on the effective start-of­
field address calculation for the current field addressing 
instruction. Self-decrementi ng is essentially the converse 
operation to self-incrementing. However, where self­
incrementing modifies the field descriptor in memory and 
affects the effective start-of-field address calcu lotion, self­
decrementing is performed after the operation on the effec­
tive field is complete and, therefore, only modifies the field 
descriptor in memory. Self-decrementing wi II, however, 
affect the effective start-of-field address of any subsequent 
field instructions using the same field descriptor. Self­
incrementing and self-decrementing cannot both be invoked 
in the same field addressing instruction. 

If self-decrementing is specified (SX field of first instruction 
word is coded with 111), then, after all operations involving 
the effective field are completed, the start-of-field address 
in the field descriptor in memory is decremented by the num­
ber of bits in the field, the count field in the field descrip­
tor is decremented by one,- and then the field descriptor as 
modified by these two subtraction operations replaces the 
original field descriptor in memory. 

The subtraction of one from the count field (bits 24-31) is 
performed modulo 256 so that the field length (bits 20-23) as 
restored to memory is always unmodified from the origina I 
field length. 

The self-decrementing operation is illustrated in Figure 5. 

Minus 

loooooood 
24 _25 26 27128 29 30 31 

I 
8-Bit Subtract 

tN is the number of bits in the effective field (equal to the contents of the field-length field plus one). 

Figure 5. Self-Decrementing Operation 

48 Fierd Addressing Instructions 



For all field addressing instructions, except COMPARE 
LOGICAL FIELD and COMPARE ARITHMETIC FIELD, the 
Overflow indicator (0) is set or reset depending on whether 
overflow occurred when decrementing the count field (as­
suming the count field to be an eight-bit positive integer). 
The Overflow indicator is set if the decremented count re­
stored to memory is equal to all ones and is reset otherwise. 
For COMPARE LOGICAL FIELD and COMPARE ARITHME­
TIC FIELD, the Overflow indicator is used to indicate the 
results of a comparison and is not affected by the contents 
of the decremented count field. 

Jf self-decrementing and register-indexing are both speci­
fied, the register indexing operation is performed on the 
original field descriptor as part of the effective start-of­
field address calculation as described under "Register 
Indexing of- the Start-of-Field Address ". Then the re-
su Itant effective start-of-field address is used tofind the 
effective field and !he operation is performed as described 
under "Other Characteristics of Field Addressing Instruc­
tions". After all operations involving the effective field 
are completed, the self-decrementing takes place. The 
or i gina I fi e I d descr i ptor from memory is used for se If­
decrementing as described above. 

Self-decrementing is used for operating on push-down 
stacks of the type previously described unaer "Self­
Incrementing of the Start-of-Field Address". If, prior to 
a field addressing instruction, the field descripfor points at 
the current top-of.,..stack element, then a load field instruc­
tion with self-decrementing will- pull the current top-of­
stack element off of the stack and load it into the A register 
and then decrement the field descriptor so that it is point­
ing to the next element down in the stack as the current 
top-of-stack. 

LLF LOAD LOGICAL FIELD (optional) 

8 
o I 2 

LOAD LOGICAL FIELD is a two-word instruction sequence 
that loads the effective field into the right-hand end of the 
A register (general register 7). The rightmost bit of the ef­
fective field replaces bit 15 of the A register, etc. If the 
number of bits in the effective field is less than 16, then 
zeros replace the remainder of bits in the A register. 

The effective address of the second instruction word is the 
address of the first word of a 32-bit field descriptor. The 
contents of the field descriptor in conjunction with the con­
tents of the RX and SX fields of the first instruction word 
are used to locate the effective field. The contents of the 
SX field may also cause the field descriptor in memory to 
be mod i fi ed • 

If self-incrementing is specified and the incremented count 
field that replaces the original count field in the field 

descriptor in memory contains all zeros, the Overflow (0) 
indicator is set. If self-decrementing is specified and the 
decremented count field that replaces the original count 
field in the field descriptor in memory contains all ones, 
the Overflow indicator is set. If neither of the above two 
conditions occurs, the Overflow indicator wi II be reset as 
a resu It of the LOAD LOGICAL FIE LD instruction. 

No interrupts are processed by the CPU between these two 
instruction words. 

Affected: (A), 0, field descriptor if self-incrementing or 
self-decrementing is specified. 

LAF LOAD ARITHMETIC FIELD (optional) 

9 
o I 2 

LOAD ARITHMETIC FIELD is a two-word instruction se­
quence that loads the effective field into the right-hand end 
of the A register (general register 7). The rightmost bit of 
the effective field replaces bit 15 of the A register, etc. 
If the number of bits in the effective field is less than 16, 
the leftmost bit of the effective field replaces the remainder 
of bits in the A register (sign extension). 

The effective address of the second instruction word is the 
address of the first word of a 32-bit field descriptor. The 
contents of the field descriptor in conjunction with the con­
tents of the RX and SX fields of the first instruction are used 
to locate the effective field. The contents of the SX field 
may also cause the field descriptor in memory to be 
modified. 

If self-incrementing is specified and the incremented count 
field that replaces the original count field in the field de­
scriptor in memory contains a" zeros, the Overflow (0) in­
dicator is set. If self-decrementing is specified and the 
decremented count field that replaces the original count 
field in the field descriptor in memory contains all ones, 
the Overflow indicator is set. If neither of the above two 
conditions occurs, the Overflow indicator wi" be reset as 
a result of the LOAD ARITHMETIC FIELD instruction. 

No interrupts are processed by the CPU between these two 
instruction words. 

Affected: (A), 0, Field descriptor if self-incrementing or 
self-decrementing is specified. 

STF STORE FIELD (optional) 

A 
o I 2 

Field Addressing Instructions 49 



STORE FIELD is a two-word instruction sequence that 
replaces the effective field in memory with "n ll rightmost 
bits of the contents of the A register (general register 7), 
where "n ll is equal to the number of bits in the field. Bit 15 
of the A register replaces the rightmost bit of the effective 
field, etc. The contents of the A register are unchanged 
by the STORE fIELD instruction. No other bits in the mem­
ory word or words containing the effective field are mod­
ified except those bits that are part of the effective field. 

The effective address of the second instruction word is the 
address of the first word of a 32-bit field descriptor. The 
contents of the field descriptor in conjunction with the con­
tents of the RX and SX fields of the first instruction are used 
to locate the effective field. The contents of the SX field 
may also cause the field descriptor in memory to be 
modified. 

-If self-incrementing is specified and the incremented count 
field that replaces the original count field in the field de­
scriptor in memory contains all zeros, the Overflow (0) 
indicator is set. If self-decrementing is specified and the 
decremented count field that replaces the original count 
field in the field descriptor in memory contains all ones, 
the Overflow indicator is set. If neither of the above two 
conditions occurs, the Overflow indicator wi II be reset as 
a resu It of the STORE FIELD Instruction.-

No interrupts are processed by the CPU between these two 
instruction words. 

Affected: Effective field, 0, Field descriptor if self­
incrementing or self-decrementing is specified. 

SZF STORE ZERO FIELD (optional) 

B 
o 1 2 

STORE ZERO FIElD is a two-word instruction sequence that 
replaces every bit of the effective field in memory with a 
zero. No other bits in the memory word or words contain­
ing the effective field are modifi.ed except those bits that 
are part of the effective field. 

The effective address of the second instruction is the ad­
dress of the first word of a 32-bit field descriptor. The 
contents of the field descriptor in conjunction with the con­
tents of the RX and SX fields of the first instruction are used 
to locate the effective field. The contents of the SX field 
may also cause the field descriptor in memory to be 
modified. 

If self-incrementing is specified and the incremented count 
field that replaces the original count field in the field de­
scriptor in memory contains all zeros, the Overflow (0) in­
dicator is set. If self-decrementing is specified and the 
decremented count field that replaces the original count 

50 Field Addressing Instructions 

field in the field descriptor_in memory contains all ones, 
the Overflow indicator is set. If neither of the above two 
conditions occurs, the Overflow indicator wi II be reset as 
a result of the STORE ZERO FIELD instruction. 

No interrupts are processed by the CPU between these two 
instruction words. 

Affected: Effective field, 0, Field descriptor if seJf­
incrementing or self-decrementing is specified. 

SOF STORE ONES FIELD (optional) 

C 
o 1 2 

STORE ONES FIELD is a two-word instruction sequence that 
replaces every bit of the effective field in memory with a 
one. No other bits in the memory word or words containing 
the effective field are modified except those bits that are 
part of the effective field. 

The effective address of the second instruction is the address 
of the first word of a 32-bit field descriptor. The contents 
of the field descriptor in conjunction with the contents of 
the RX and SX fields of the first instruction are used to Jo­
cate the effective field. The contents of the SX field may 
also cause the field descriptor in memory to be modified. 

If self-incrementing is specified and the incremented count 
field that replaces the original count field in the field de­
scriptor in memory contains all zeros, the Overflow (0) in­
dicator is set. If self-decrementing is specified and the 
decremented count field that replaces the original count 
field in the field descriptor in memory contains afl ones, 
the Overflow indicato( is set. If neither of the above two 
conditions occurs, the Overflow indicator will be reset as 
a resu It of the STORE ONES FIELD instruction. 

No interrupts are processed by the CPU between these two 
instruction words. 

Affected: Effective field, 0, Field descriptor if seH­
incrementing or self-decrementing is specified. 

elF COMPARE LOGICAL FIELD (optional) 

5 
o 1 2 

COMPARE LOGICAL FIELD is a two-word instruction se­
quence that forms a 16-b it word made up of the contents of 
the effective field in the right~hand end and zeros in all 



other bit positions. COMPARE LOGICAL FIELD then 
algebraically compares the contents of this word containing 
the logical field with the contents of the A register (gen­
eral register 7). 

The effective address of the second instruction is the ad­
dress of the first word of a 32-bit field descriptor. The 
contents of the field descriptor in conjunction with the con­
tents of the RX and SX fields of the first instruction are used 
to locate the effective field. The contents of the SX field 
may also cause the field descriptor in memory to be 
modified. 

The Overflow (0) and Carry (C) indicators are set or reset 
according to the result of the comparison as follows: 

o C Result of Comparison 

o 0 The contents of the A register are algebrai-
cally less than the contents of the word con­
taining the logical field. 

o The contents of the A register are algebrai­
ca II y greater than the contents of the word 
containing the logical field. 

The contents of the A register are equal-to 
the contents of the word containing-the logi­
cal field. 

No interrupts are processed by the CPU between these 
two instruction words. 

Affected: 0, C, Field descriptor if self";incrementing or 
self-decrementing is specified. 

CAF COMPARE ARITHMETIC FIELD (optional) 

D 
o 1 2 

- COMPARE ARITHMETIC FIELD is a two-word instruction 
sequence that forms a 16-bit word made u-p of the contents 
-of the effective field in the right-hand end and all other 
bit positions equal to the leftmost bit of the effective field. 
COMPARE ARITHMETIC FIELD then algebraically compares 
the contents of this word containing the sign-extended field 
with the contents of the A register (general register 7). 

The effective address of the second instruction is the address 
of the first word of a 32-bit field descriptor. The contents 
of the field descriptor in conjunction with the contents of 
the RX and SX fields of the first instruction are used to lo­
cate the effective field. The contents of the SX field may 
a Iso cause the field descriptor in memory to be modified. 

The Overflow (0) and Carry (C) indicators are set or reset 
according to the results of _the comparison as follows: 

o C Result of Comparison 

o 0 The contents of the A register are algebrai­
cally less than the contents of the word con­
taining the sign-extended field. 

o The contents of the A register are algebrai­
cally greater than the contents of the word 
containing the sign-extended field. 

The contents of the A register are equal to 
the contents of the word containing the sign": 
extended field. 

No interrupts are processed by the CPU between these 
two instruction words. 

Affected: 0, C, Field descriptor if self-incrementing or 
self-decrementing is specified. 

SLF SENSE LEFT BIT OF FIELD (optional) 

F 
o 1 2 

SENSE tEFT BIT OF FIELD is a two-word in-struction se­
quence that sets or resets the Carry (C) indicator based on 
whether the leftmost bit of the effective field is a one or a 
zero. Neither the effective field nor the A register (gen­
eral register 7) is modified by this instruction. 

The effective address of the second instruction is the address 
of the first word of a 32-bit field descriptor. The contents 
of the field descriptor in conjunction with the contents of 
the RX and-SX fields of the first instruction are used to lo­
cate the effective field. The contents of the SX field may 
also cause the field descriptor in memory to be modified. 

If self-incrementing is specified and fhe incremented count 
field that replaces the original count field in the field de­
scriptor in memory contains all zeros, the Overflow (0) in-

- dicator is set. If self-decrementing is specified and the 
decremented count field that replaces the original count 
field in the field descriptor in memory contains all ones, 
the Overflow indicator is set. If neither of the above con­
ditions occurs, the Overflow indicator will be reset as a 
result of the SENSE LEFT BIT OF FIELD instruction. 

No interrupts are processed by the CPU between these 
two instruction words. 

Affected: 0, C, Field descriptor if self-incrementing or 
self-decrementing is specified~ 

Field Addressing Instructions 51 



4. INPUT/OUTPUT SYSTEMS 

This chapter contains information pertaining to byte­
oriented input/output processors (lOPs) and to external 
direct input/output (010) systems. 

lOP SYSTEMS 

The computer system may have one or two input/output 
processors: IOP-1 (standard) with 16 channels, and IOP-2 
(optiona I) with 12 channels~ The maximum transfer rate of 
an lOP is 640,000 bytes per second for controllers con­
nected to the internal interface and 504,000 bytes per 
second for controllers connected to the external interface 
using the optional two-byte interface feature. 

The CPU initiates an I/O operation by selecting a device 
and lOP channel (see "Device Numbers ") and executing an 
I/O instruction (see "SIO Instruction "). The lOP assumes 
control of the I/O operation and performs it automatically 
in accordance with prestored control pa-rameters contained 
within a pair of channel registers (see "1/0 Control Double­
word ")and main memory (see II I/O Tables "). Data chaining 
is automatic under control of these parameters. 

While the I/O operation is being performed, the CPU is 
fre~ to execute instructions or perform other operations. 
Any lOP event that requires CPU intervention is reported 
either as an I/O interrupt or as a machine fault interrupt. 
An interrupt-servicing routine entered as a result of an I/O 
interrupt must contain an AIO instruction (see II I/O Instruc­
tions "). An interrupt-servicing routine entered as a resu It 
of a machine fault interrupt must contain a READ DIRECT 
(Mode 1) instruction (see "Fault System "). 

At the end of each lOP operation, the lOP automatically 
provides information regarding the I/O operation (see 1I0p­
erationa I Status By te"). 

Although the time-consuming detai Is of a byte-orientEld I/O 
operation are assumed by an lOP, the CPU retains IImaster" 
control at all times. When necessary, the CPU may deter­
mine the progress of any I/O operation or the status of any 
I/O device without affecting the I/O operation. The CPU 
may also stop any I/O operation or reset the entire I/O 
system (see "1/0 Instructions II and "Device Status Byte "). 

DEVICE NUMBER 

Each device within an lOP system is assigned an eight-bit 
device number at installation time. This number is man­
ually selected by physical means, based on the equipment 
configuration for the specific installation. Thedevice num­
ber of a given device, when loaded into bit positions 8-15 
of the accumu lator, is used as an I/O address by I/O in­
structions. It determines which I/O channel register pair 
is used to govern the data transmission to and from the de­
vice. Table 10 illustrates the re lationship between device 
numbers and channel register pairs. 

52 Input/Output Systems 

Table 10. lOP Channel Register and Channel-Device-
Controller Numbers (Hexadecimal) 

Contents of Bits 8-15 Channel Register 

Single or 
Single Multiple 
Device Device Word Byte 
Controllers 

t Controllers . Address Count 

IOP-1 (First 
or Only lOP) 

-00 8X 08 09 
01 9X OA OB 
02 AX DC OD 
03 BX OE OF 
04 cxtt 10 11 
05 DXtt 12 13 
06 EXtt 14 15 
07 FXtt 16 17 
08 18 19 
09 - 1A 1B 
OA 1C 1D 
OB 1E 1F 
OC 20 21 
OD 22 23 
OE 24 25 
OF 26 27 

IOP-2 (Sec-
ond lOP) 

10 cxtt 28 29 
11 DXtt 2A 2B 
12 EXtt 2C 2D 
13 FXtt 2E 2F 
14 30 31 
15 32 33 
16 34 35 
17 36 37 
18 38 39 
19 3A 3B 
1A 3C 3D 
1B 3E 3F 

tAli other device numbers in the range of X1001-X'7F' 
are unassigned and not used. 

tt If the system contains only IOP-1, these four groups 
of device numbers are assigned to IOP-1. If the sys­
tem contains IOP-1 and IOP-2, these device numbers 
are assigned to IOP-2 only. 

Device numbers are generally of two types: single-unit de­
vice numbers that are assigned to devices whose controllers 
permit only that device to be governed by the associated 
channel register pair (for example, a card" reader or card 



punch); or multiunit device numbers that are assigned to 
devices whose controller permits more than one device to 
be governed by the associated channel register pair (for 

- example, magnetic tape units). The two types of device 
numbers are illustrated below: 

Single-unit device number Multiunit device number 

1000 I Device Number I L.1_l....LI_D_C_--'-___ D __ ~ 
8 10 11 15 8 9 11 12 15 

For single-unit device numbers, bits 8-10 are coded as zeros 
and bits 11-15 identify the device. For multiunit device 
numbers, bit 8 is coded as a 1, bits 9-11 specify the device 
controller, and bits 12-15 identify the individual device to 
be used with that controller. -

Note: As shown in Table 10, both single-unit and multi­
unit device numbers are associated with the first 
eight channels of IOP-1 and the first four channels 
of IOP-2. Each of these channels may accommodate 
devices of either the single-unit or multiunit types, 
but not both. The last eight channels of each lOP 
may each accommodate only one device of the 
single-unit type. 

110 CONTROL OOUBLEWORO (lOCO) 

Each I/O channel has a pair of I/O channel registers asso­
ciated with it. The first lOCO for each I/O operation must 
be copied into the appropriate I/o channel registers by the 
CPU prior to in itiating the I/b operation. The address of 
each I/O channel register is listed in columns 3 and 4 in 
Table 10. Subsequent 10CDs required to complete the I/o 
operation as a result of data chaining are fetched automat­
ically by-the lOP from the current I/O table in memory 
after all data transfers for that I/o table have been com­
pleted. During an I/o operation, the I/O channel registers 
contain the current I/O Control Doubleword, which has 
the fQllowing format: 

The even-numbered register contains a word address that 
points -to a memory location that is part of an I/O table 
(described below). The odd-numbered register contains 
three flag bits and a byte count. The first flag bit (E) is an 
error fl ag that is set to -a 1 if a memory faul t (memory parity, 
address parity, or nonexistent memory error - see IIFault 
System ll ) is detected during a memory access for either in­
put or output operations, or if any parity error is detected 
on bytes received from a device. The next two flag bits, 
caHed data chaining (DC) and interrupt (I) flags, specify 
action to be taken by the lOP system when the data trans­
mission, as specified by the byte countof the current 10DC, 
is completed. If the DC flag is 0 when the byte count is 
reduced to zero, the device is told (via a IIcount done II 
signal) that the I/O operation is over and that it should 
neither send nor receive more data but should terminate 
its operation. At the conclusion of an I/O operation, 

when all data has been transmitted and all checking associated 
with the data record has been performed, the device trans­
mits an Operational Status Byte which is loaded into the 
even-numbered I/O channel register containing IIchannel 
end II and/or lIunusual end ll . The device controller may 
generate an lIunusual end II signal in place of or in con­
junction with the IIchannel end II signal. The action caused 
is the same as for IIchannel end II, except that the Oper­
ational Status Byte wi II contain different information. IIUn­
usual end II may occur at any time during an I/O operation, 
and causes termination of all I/O operations for the device 
controller involved; the data chaining flag is ignored. 

During normal operations, if the DC flag is set to a 1 when 
the byte count reaches zero, the lOP system automatically 
fetches the next lOCO from a doubleword location in the 
current I/O table and loads it into the I/O channel regis­
ters in place of the previous 10CD. Data transmission 
continues using the new lOCO and a new I/O table. 

Note: The Operational Status Byte is loaded into the even­
--- numbered I/O channel register only if the I/O oper­

ation has been either completed or terminated, as 
signaled by IIchannel end II or lIunusual end ll . 

If the interrupt (I) flag is set to a 1, the 10Psystem will in­
struct the devi ce contro II er to generate an interrupt request if 

1. The byte count reaches zero. 

2. The I/o operation has been abnormally terminated by 
the lOP or device controller (llunusual end II). 

3. The I/o operation has been normally completed (llchannel 
end II). 

The I/O interrupt servicing routine includes an AIO instruc­
tion to determine which device controller (with the highest 
priority) is interrupting and the reason for the interrupt (see 
IIDevice Interruptll). 

Data chaining must be specified 

1. When the amount of data required to complete the I/O 
operation exceeds the amount that can be specified by 
the current IOCD. The byte count field of the first 
lOCO may specify one order byte and up to 8191 data 
bytes. The byte count field of each subsequent IOCD 
relating to the same I/O operation may specify up 
to 8192 data bytes. 

Note: A maximum byte count is specified when the 
initial value of the byte count field is zero. 
The byte count fie Id configuration goes from 
all zeros to all ones after the first byte is trans­
ferred into or out of the current I/O table. 

2. When the amount of data required to complete an I/O 
operation cannot be contained in one I/O table because 
the available memory is comprised of fragments (isolated 
regions of unused memory locations), none large enough 
to contain all of the required data bytes and/or control 
information (see 111/0 Tables ll

). 

lOP Systems 53 



OPERATIONAL STATUS BYTE 

At the conclusion ofthe I/O operation, the device transmits 
the operational status byte to the CPU, which loads the 
status byte into bit positions 0-7 of the even-numbered I/O 
channel register associated with the device and loads zeros 
into the rema i nde r of the reg i ster • (The load i ng of the op­
erationa� status byte occurs even if channel end is signaled 
in the midd Ie of an I/O table transmission.) The operational 
status byte contains five flags, as shown in the following 
diagram. 

Bit Function 

ot The transmission error (TE}flag is set to 1 if the device 
or~ the device controller has detected any errors during 
the operation. This includes such errors as parity check 
on magnetic tape, the parity check at the end of a RAD 
sector, and memory parity error on an outputoperation. 

1t The incorrect length (IL)flag indicates whether (1) or 
not (O}the input or output record ~contained the number 
of bytes specified by the controlling IOCDls byte count. 
Incorrect length mayor may not be considered an error, 
depending on the type of operation performed. For ex­
ample, during a card read operation, if a byte count 
of 80 is specified, then the length is correct, because 
on I y 80 bytes can be read from the card in the EBC D IC 
format. If, however, a count of 75 bytes is specified, 
the card reader will receive a -count done signa I before 
it reaches the end of the card, which causes the in­
correct length flag to be set to 1. Similarly, if the 
reader detects the end of the card before itreaches a 
countdone signa I, the lncorrect length flag is set to 1. 

2t The chaining modifier (CM) flag is set to 1- by~ some 
devices to indicate that a special condition has been 
encountered. For example, the unbuffered card punch 
requires the output image to be transmitted 12 times, 
once for each row. After the 12th row is punched, the 
punch controller sets the chaining modifier flag to 1 
to indicate that the last transmission has been received 
and that no further transmissions are required for the 
current card. The chaining modifier may be used in 
different ways by other devices. 

3 The channel end (CE) flag is set to 1 atthe conclusion 
of every errorfree I/O operation to indicate that all 
data involved in the operation have been transmitted 
and all checking associated with the data has been 
performed. 

tThese functions are not necessarily implemented in all 
peripheral device controllers. Refer to peripheral device 
reference manuals for more complete information. 

54 lOP Systems 

Bit Function 

4 The unusual end (UE) flag is set to 1 if the operation 
terminated because of some unusual condition. The 
unusual condition mayor may notbe an erroneous or 
faulty condition; in any event, it is not a normal ter­
mination. For example, a magnetic tape Read oper­
ation that encountered an end-of-fi Ie record instead 
of a data record would produce an unusual end con­
dition. A faulty operation such as a card jam in the 
middle of a card-reading operation would also pro­
duce unusual end. If the UE flag is set, the state of 
the CE flag is not specified. 

5-7 These bits are always loacled as zeros. 

1/0 TABLES 

All I/O operations are performed to and from an I/O table. 
The lOCO controlling the first I/O table must be loaded 
into the I/O channel registers by the CPU. A specific 
configuration of the WRITE DIRECT instruction is used to 
transfer the initial IOCD from the accumu lator to the 
I/O channel registers (see "WRITE DIRECT (Mode 0) II 
instructions ). 

Each I/O table contains a data section and/or control infor­
mation for an I/O operation controll~d byan lOP. The type 
and number of I/O tables required for an operation is de­
pendent upon the~ type of operation and the number of 
data bytes to be transferred. An I/O table (see Figure 6) 
may have an order byte, a data section, and a next I/O 
Control Doubleword. All parts of an I/O table must be 
contained within contiguous memory locations and may 
occupy any region of memory except dedicated memory 
locations (e_. g., memory locations assigned to or reserved 
for interrupt levels). ~ 

The six types of I/O tables that may be formed by using 
the order byte, data section, and next lOCO either in­
dividually or in combination with one another are de­
scribed in Table 11. 

ORDER BYTE 

This part of an I/O table is required only in the first I/O 
table for an I/O operation. The eight bits that comprise the 
order byte contain control information for the device con­
troller and I/O device (see IIDevice Orders "). In a multi­
I/O table operation, the order byte from the first I/O table 
prevai Is for the entire operation. For some control opera­
tions (e.g., stop), the order byte constitutes the I/O table. 
For a data transfer operation, the order byte is followed 
immediately by a data section. If the data section contains 
an odd number of bytes, the order byte occupies the first 
byte of the first word of the first I/O table. If the data 
section contains an even· number of bytes, the order byte 
occupies the second byte of the first word of the first I/O 
table and the first byte of the first word is ignored. 



First [OCD [ 

Location alpha 

First data 
section of 
record 

Second [OCD [ 

Location beta 

Second data 
section of 
record 

First 
I/O 
table 

Sec­
ond 
I/O 
table 

DATA SECTION 

This part of an I/O table is required for all operations 
involving data transfers into or out of main memory. The 
data section will be the second part of the first I/O table 
and the first or only part of subsequent I/O tables relat­
ing to the same I/O operation. If additional data is re­
quired, the data section will be followed immediately by 
the next I/O Control Doubleword. As part of the first 
I/O table, the data section may contain up to 8191 data 
bytes. As part of subsequent I/O tables, the data sec­
tion may contain up to 8192 data bytes. For output op­
erations, the data section contains information that has 
been pre-stored by the CPU in preparation of a forth­
com ing output operation. For input operations, the data 
section will contain the information after the input op­
eration has been performed. Thus, data transfers into or 
out of main memory via lOP operations are accompl ished 
into or out of data sections of I/O tables. 

NEXT lOCO 

This part of an I/O table is required only if data chain-
ing is specified by the current lOCO. The four bytes 

Figure 6. I/O Control Doublewords and I/O Tables 

that comprise the next lOCO are not included in the 
byte count value. When present, the next lOCO is al­
ways the last part of an I/O table. The next 10CD is 
automatically copied by the lOP into the appropriate I/O 
channel registers when the byte count of the associated 
lOCO reaches zero. After being copied into the I/O 
channel registers, the next lOCO becomes the current 
lOCO and assumes all associated functions. 

Order Data 
Byte Section 

o 

o 

Next 
lOCO 

o 

o 

Table 11. I/O Tables 

Description 

I/O table is comprised of an order byte only and may be stored in any available mem­
ory location. In the associated lOCO, data chaining is not specified and the byte count 
value is 1. This form of I/O table is used for operations in which no data is transferred 
(e. g., Stop of Control orders as described under "Device Orders "). 

I/O table is comprised of an order byte and the next lOCO. In the associated 
lOCO, data chaining is specified and the byte count value is 1 (the four bytes con­
taining the next lOCO are not included in the byte count). No data transfers will 
take place. This form of I/O table permits utilizing a five-byte memory fragment as 
the first I/O table ora multitable I/o operation. 

I/O table is comprised of an order byte and a data section. In the associated 10CD, 
data chaining is not specified and the byte count value must reflect the order byte 
and the number of data bytes to be transferred. Maximum number of data bytes may 
be 8191. This form of I/O table is used when all data bytes for the I/O operation 
are contained in this I/O table. The size of the I/O table is as specified by the 
byte count of the associated lOCO. 

10 P Systems 55 



Order Data 
Byte Section 

o 

o 

Next 
10CD 

o 

Table 11. I/O Tables (cont.) 

Description 

I/O table is comprised of on order byte, a data section, and the next 10CD. In the 
associated lOCO, data chaining is specified and the byte count value must reflect the 
order byte and the number of data bytes to be transferred. Maximum number of data 
bytes is 8191. Byte count does not include the four bytes containing the next 10CD. 
This form of I/O table is used as the first I/O table in a multitable I/o operation. The 
size of the I/O table is four bytes more than specified by the byte count of the asso­
ciated lOCO. 

I/O table is comprised of a data section and the next 10CD. In the associated lOCO, 
data chaining is specified and the byte count value reflects only the number of data 
bytes to be transferred. Maximum number of data bytes may be 8192. Byte count does 
not include the four bytes containing the next lOCO. This form of I/O table is used as 
an intermediate (not the first or last) I/O table in a multitable I/o operation. The size 
of the I/O table is four bytes more than specified by the byte count of the associated 
10CD. 

I/O table is comprised of a data section only. In the associated lOCO, data chaining 
is not specified and the byte count value reflects only the number of data bytes to be 
transferred. Maximum number of data bytes may be 8192. This form of I/O table is 
used as the last I/O table of a multitable I/o operation. The size of the I/o table is 
as specified by the byte count of the associated lOCO. 

DEVICE ORDERS 

When a device is started for an I/O operation, it first re­
quests an order from the lOP system to determ ine what op­
eration is to be performed. An order byte, which has been 
prestored in the first word of the first I/O table in antici­
pation of this I/O operation, is transmitted to the device 
under control of the I/O channel to which the device is 
attached. The orders that may be accepted by a devi ce 
are Write, Read, Read Backward, Control, Sense, and 
Stop. The code format for each order is shown below. Bit 
positions marked IIM" specify unique modifications that de­
pend on the device to which the order is sent. 

until no further data chaining is to take place and the 
byte count of the last 10CD is reduced to zero. At 
this time, the lOP signals count done and the device 
generates channel end. Channel end occurs when 
the device has received all information associated with 
the output operation, has generated all checking in­
formation, and (if possible) has performed post-write 
checking. It is possible for some devices to generate 
channel end before count done is received. 

2. Read. The Read order causes the device to initiate an 
input operation. Bytes are transmitted by thedevices, 
then stored in memory under control of the 10CD. The 
input operation continues until the device generates 
channe I end or unti I the byte count is reduced to zero 
and count done is signaled to the device. In either 
case, the operation is eventua Ily terminated bya chan­
nel end signal when all checking has been performed 
on the input record. 

Order 

Write 

Read 

Bit position of device order byte 
01234567 

M M M M M M 0 

M M M M M M o 

Read Backward M M M M o 0 

Control M M M M M M 

Sense MMMMO 00 

Stop 0000000 

The device orders operate in the following manner: 

1. _ Write. The Write order causes the device controller 
to initiate an output operation. The controller makes 
output requests to the lOP system and data bytes are 
transmitted from memory, under control of the 10CD, to 
the device. The output operation normally continues 

56 lOP Systems 

3. Read Backward. The Read Backward order can be exe­
cuted only by certain peripheral devices. The Read 
Backward order causes the device that can execute it 
to start operation in a backward direction and to 
transmit bytes; however, the record appears in memory 
in reverse sequence from the way it was originally 
written. 

4. Control. The Control order is used to initiate special 
operations by the device. For some operations, the 
Control order itself may be sufficient to specify the 
entire operation to be performed. With magnetic tape 
operations, for example, the Control order initiates 
such operations as rewind, backspace record, back­
space file, space record, etc. These orders can a II be 
specified by the modifier (M) bits of the Control order. 



If, however, the controller requires additional infor­
mation for a particular operation, it is provided by 
the same IOCD that controls the transmission of the 
Control order. When all data necessary for the op­
eration have been transmitted (and, in some cases 
when the operation itself is complete), the device 
controller signals channel end. 

5. Sense. The Sense order causes the device to trans­
mit one or more bytes of information describing its 
current operational status. These bytes are stored 
in memory under control of the IOCD. The type 
of status information that may be transmitted is a 
function of each individual device. 

6. Stop. The Stop order (interpreted by some devices) 
causes a device to terminate its operation immedi­
ate�y. The I modifier bit (in position 0 of the Stop 
order) indicates that the device is to trigger the 
I/O interrupt level at the time it receives the Stop 
order. Bit positions 1, 2, and 3 of the Stop order 
are ignored. 

DEVICE INTERRUPTS 

All device controllers (and in the case of multiunit de­
vices, the devices themselves) can generate a device in­
terrupt. Each devke remembers thaf it has generated 
an interrupt so that when the instruction ACKNOWLEDGE 
I/O· INTERRUPT (AIO) is executed, - the device with the 
highest priority identifies itself to the program. Device 
interrupts are generated by the device at the time of 
data chaining or at unusual end or channel end if the 
interrupt (I) flag in the controlling IOCD is set to 1. 
The interrupt flag is inspected by the I/O system at 
channel end. time, unusual- end time, - and at data chain­
ing time. 

In addition to these normal times for interrupts, some de­
vices can accept a Control order (or even a Read or 
Write order) that directs the device to interrupt after the 
transmission operation is completed. This type of interrupt 
generally occurs at channel end (that time during the oper­
ation of the device when all mechanica I motion associated 
with a previously initiated operation has been completed). 
For example, a -magnetic tape unit can be directed (with 
a Control order) to rewind and_ to interrupt when the re­
wind is complete. The order is accepted and channel end 
is generated immediately after the rewind operation be­
gins. The device remembers the necessity to interrupt 
and, when the load point is encountered, the tape stops 
and channel end occurs; at this time the device generates 
an interrupt (and holds the interrupt-pending status until 
it is acknowledged). In this case, the magnetic tape 
control unit may be busy controlling the operation of an­
other device for a read or write function. The pending 
device interrupt is a status condition that can be read 
by I/O instructions. 

I/O INSTRUCTIONS 

The CPU initiates and controls I/O operations using six 
instructions. 

• Start Input/Output (SIO) 

• Test Input/Output (TIO) 

• Test Device (TDY) 

• Halt Input/Output (HIO) 

• Acknowledge I/O Interrupt (AIO) 

• Reset Input/Output. 

These instructions are coded as internal control functions 
of the READ DIRECT instruction. All instructions except 
AIO and Reset Input/Output require a device number in 
bit positions 8-15 of the accumulator when the instruction 
is executed. 

To permit lOPs to operate at optimum data transfer rates, 
short program loops that repetitive Iy execute I/O instruc­
tions should be avoided. 

SID Start Input/Output 

SIO is used to initiate an input or output operation with 
the device selected by the device number contained in 
bit positions 8-15 of the accumulator. If a device recog­
nizes the number, it returns its device status byte into bit 
positionsO-70f the accumulator (see "Device Status Byte"); 
otherwise, zeros are returned to these positions. 

The Overflow and Carry indicators are set or reset, accord­
ing to the result of the instruction, as follows: 

o C Significance 

o 0 I/O address recognized and SIO accepted. 

o I/o address recognized but SIO not accepted. 

o Controller "busy" with device other than one ad­
dressed and unab Ie to send status. 

I/O address not recogn ized. 

Affected: (A)O_7' 0, C Timing: See Appendix B 

TIO Test Input/Output 

o 1 2 

TIO causes the device whose device number is in bit posi­
tions 8-15 of the accumulator to make the same responses 
it would make to an S 10 instruction, except that the de­
vice is not started nor is its state altered. If a device 

lOP Systems 57 



recognizes the device number, it returns its device status 
byte to bit positions 0-7 of the accumulator (see "De­
vice Status By te"); otherwise, zeros are returned to these 
positions. 

The Overflow and Carry indicators are set or reset, accord­
ing to the result of the instruction, as follows: 

o C 

o 0 

o 

o 

Significance 

I/o address recognized and SIO can be accepted. 

I/o address recognized but SIO cannot be 
accepted. 

Controller IIbusy" with device other than one ad­
dressed and unab Ie to send status. 

I/o address not recognized. 

Affected: (A)0_7'0,C Timing: See Appendix B 

TDV Test Device 

I 
o 1 2 

TDV is used to obtain specific information about the device 
whose device number is contained in bit positions 8-15 of 
the accumulator. The device state is not altered. If a de­
vice recognizes the device number, it returns its device 
status byte to bit positions 0-7 of the accumulator (see "De­
vice Status By te"); otherwise, ze-ros are returned to these 
positions. 

The Overflow and Carry indicators are set or reset, accord­
ing to the result of the instruction, as follows: 

o C Significance 

o 0 I/o address recognized. 

o I/o address recognized and controller is in a test 
mode. 

o Controller "busyll with device other than one ad­
dressed and unable to send status. 

I/o address not recognized. 

Affected: (A)0_7'0,C Timing: See Appendix B 

HID Ha It Input/Output 

o 1 2 

HIO causes the device whose device number is in bit posi­
tions 8-15 of the accumulator to stop its current operation 
immediately. The HIO instruction may cause the device to 
terminate improperly. In the case of magnetic tape units, 
for example, the device is forced to stop whether it has 
reached an interrecord gap or not. A pending interrupt 
within the device will be reset. If a device recognizes the 
device number, it returns its device status byte to bit posi­
tions 0-7 of the accumulator (see "Device Status By te"); 
otherwise, zeros are returned to these positions. 

58 lOP Systems 

The Overflow and Carry indicators are set or reset, accord­
ing to the result of the instruction, as follows: 

o C Significance 

o o 

o 

o 

I/o address recognized and the device controller 
is not "busy". 

I/o address recognized and the device controller 
was "busyll at the time of the halt. 

HIO not accepted. Controller "busy" with device 
other than one addressed and unable to send status. 

I/o address not recognized. 

Affected: (A)0_7' 0, C Timing: See Appendix B 

AID Acknowledge I/O Interrupt 

AIO is used to acknowledge an interrupt generated by an 
I/O device. It causes the highest-priority interrupting de­
vice to identify itself and return not only stQtus, but also its 
device number. If any devices have interrupts-pending, 
the highest-priority device clears its pending interrupt and 
returns its status (which is loaded into bit positions 0-7 of 
the accumulator) and its device number (which is loaded 
into bit positions 8-15) (see IIDevice Status Byte"); if no 
interrupt is recognized, zeros are returned into bit posi­
tions 0-7 of the accumulator. 

- The Overflow and Carry indicators are set or reset, accord­
ing to the result of the instruction, as follows: 

o C Significance 

o 0 Normal interrupt recognition. 

o Unusual interrupt recognition or controller in test 
mode. 

o Inva Ii d code. 

No interrupt recognition. 

Affected: (A),O,C Timing: See Appendix B 

Reset Input/Output 

Reset Input/Output causes all units connected to the inter­
nal DIO bus to be initialized (e. g., Direct Memory 
Adapters, External DIO, lOPs, and the interrupt system. 

Note: The integrity of the I/O channels cannot be as­
--- sured to be the same after executing a Reset Input/ 

Output instruction. 

DEVICE STATUS BYTE 

As the resu It of executing an I/O instruction,- if there is 
a device whose number corresponds to the number in the 



accumulator, its Device -Status Byte is loaded into bit 
positions 0-7 of the accumulator. (The device number 
in bits 8-15 is not altered.) 

The AIO instruction does not require the device number, 
since one of its functions is to obtain the number of the 
device that triggered the I/O interrupt level. 

The overflow and c-arry indicators are set to record the 
nature of the response to all I/O instructions. The I/O 
status loaded into the accumulator by the I/O instructions 
is summarized in Table 12. 

For the instructions SIO, TIO, and HIO the status indica­
tors have" the following meaning: 

Device Interrupt Pending. Bit 0 indicates whether (if it is 
a 1) or not (if it is a 0) the device has generated an inter­
rupt signal that has not yet been acknowledged. A new 
I/O operation cannot be initiated on this device until the 
pending interrupt signal has been acknowledged by means 
_of -an AIO instruction. 

Device Condition. t Bits 1 and 2 describe which of four 
possible conditions the device is currenfly in. The device 
conditions are 

00 Device ready. The device can accept and act upon an 
SIO instruction if no device interrupt is pending. 

01 Device not operational. A nonoperational device does 
not accept an SIO instruction. It requires operator in­
tervention before any action can be taken with regard 
to itsoperation. 

t For sing Ie-unit device controllers, bits 1-2 and 5-6 are 
identical. Some devices only differentiate between the 
"ready" and "busy" states rather than identifying four 
distinct states. 

10 Devi~e unavailable. 

11 Device busy. The device has accepted an SIO instruc­
tionand has not yet concluded the operation. 

Device Mode. Bit 3, the mode status indicator, is a 1 if 
the operator has cleared the device for operation and has 
actuated the START switch, placing the device in the "auto- _ 
matic II mode. If the mode status indica_tor is a 0, the device 
is in the "manual" mode and requires operator intervention 
before it can operate. A ready device in the "manual" 
mode can accept an SIO instruction even though it cannot 
begin to operate until it is placed in the "automatic"mode. 
Some devices are "permanently" in the automatic mode. 

Unusual End Termination. Bit 4 is set to 1 if the previous 
operation on this device resulted in an unusual end; other­
wise, bit 4 is reset to O. 

Device Contoller Condition. Bits Sand 6describe which of 
four possible conditions the device controller is currently 
in. These conditions are identical in meaning to the de­
vice conditions. The controller need not be in the same 
condition as the device in the cas~ of a multiunit device 
controller. The devicecontrollei conditions are 

00 Device controller ready. If the controller is ready 
and the device is ready, an SIO instruction can be 
accepted. 

01 Device controller not operational. 

10 Device controller unavailable. 

11 Device controller busy. The controller and the device 
connected to it (or one of the devices connected to it) 
have accepted an SIO instruction and the I/O oper­
ation thus initiated has not terminated. 

Note that in addition to the Device Status Byte in posi­
tion 0-7, the instruction AIO also causes the device num­
ber to be loaded into bit positions8-150f the accumulator. 

Table 12. Device Status Byte 

Position and state in A 

o 1 2 345 6 7 

- 0 0 -
-- 0 1 
- 10--
- 1 1 

- 0 
1 

- - 00-
- - 0 1 -

10-
1 1 -
- - 0 

Significance for 
SIO, HIO, TIO 

- device interrupt pending 
device ready 
device not operational 
device unavailable 
device busy 
device m(lnual 
device automatic 

device unusual end 
device controller ready 
device controller not operational 
device controller unavailable 
device controller busy 
unassigned 

Position and state in A 

o 2 3 4 5 6 7-

1 -

Significance for 
TDV, Ala 

unique to the de­
vice (see peripheral 
device reference 
manuals) 

lOP Systems 59 



EXTERNAL DID 

With the optional External DIO, the READ DIRECT and 
WRITE DIRECT instructions are used to communicate with 
special system devices. WRITE DIRECT is used to transmit 
a control signal, along with 16 data bits, to a device. 
Similarly, READ DIRECT is used to transmit a control signal 
and then accept 16 data bits from the external unit. Both 
instructions can be used to obtain a two-bit status response 
from the device. 

When the External DIO feature is installed, the WRITE 
DIRECT instruction can set up~ the 16 contr,ol lines plus 

60 Externa I D I 0 

the 16 data I ines; these remain stable unti I an acknowl­
edgment signal is received from the device. A delay 
by the device in responding to WRITE DIRECT does not 
have any adverse effect on the operation of the byte­
oriented lOP system. 

The READ DIRECT instruction operates in a similarfashion. 
The 16 control lines are held stable and thedevice responds 
with its acknowledge signal and 16 data bits. Xerox pub­
lication 90 09 73 (Interface Design Manual) describes the 
External DIO in detail. . 



5. OPERATOR CONTROLS 

PROCESSOR CONTROL PANEL 

The processor control panel (PCP), illustrated in Figure 7, 
contains switches and indicators that permit operating and 
maintenance personnel to control and monitor the computer 
system. Each switch and/or switch position is identified 
with functional and/or operational information. The DATA 
indicators are labeled with positional information; all other 
indicators are backlighted and identified functionally. 

PCP switches are described in Table 13. PCP indicators 
are described in Table 14. 

BASIC OPERATING PROCEDURES 

INITIALIZATION (POWER ON AND NORMAL LOAD) 

1. Set all foggle switches located above DATA indicators 
to the down position. 

2. Set the PCP MODE SELECT switch to the NORMAL 
position. 

3. Turn the Keylock switch to the PCP ENABLED position. 

4. After the power-on-sequence is completed (signified by 
the POWER ON indicator), proceed to next step. 

5. Prepare input device. 

6. Set DATA switch 7 (0 = IOP-1; 1 = IOP-2). 

7. Set DATA switches 8-15 to value of device number. 

8. Momentarily lift RESET switch. 

9. Momentarily lift LOAD switch. 

10. Place RUN switch in the up position (self-locking). As 
a result of the above procedures r a micrologic test of 
the basic CPU functions will be executed and the first 
record will be loaded from the input device to loca­
tion X'OOOO' through X'OO3F' and the WAIT indicator 
will be backlighted. 

11. Place RUN switch in the down position and then return 
to the up position. The record that has been loaded, 
as described in the preceding steps, wiH now be 
executed. 

12. The Keylock switch may be turned to the PROTECT ON 
position if subsequent operator interventions arere­
quired only for PCP interrupJs. All switches other 
than DISPLAY SELECT and INTERRUPT are disabled. 

Figure 7. Processor Control Panel 

Operator Control s 61 



Name (Type)'. 

(Keylock) 

PCP MODE 
SElECT 

(Rotary) 

This switch is 
effective only 
when the PCP 
is enabled. 

Position 

POWER OFF 

PCP ENABLED 

PROTECT ON 

NORMAL 

INSTRUCTION 
ADDRESS HALT 

MEMORY 
REFERENCE 
ADDRESS HALT .. 

MEMORY WRITE 
ADDRESS HALT 

DIAG 

MLOOP 

ENTER DATA 

FETCH/HOLD 

DEPOSIT/HOLD 

FETCH/ 
INCREMENT 

DEPOSIT/ 
INCREMENT 

62 Basic Operating Procedures 

Table 13. PCP Switches 

Function 

Removes ac power from the computer system. 

Permits ac power to be applied to the computer system. When this switch is 
initially moved from the POWER OFF to the PCP ENABLED position, an auto­
matic power-on sequence is started and the POWER ON indicator is lighted. 
WhEm the keylock switch is in this position, all switches on the PCP are 
enabled. 

Disables all PCP switches except the INTERRUPT and the DISPLAY SELECT. 
This position is normally used when the CPU is executing a program that re­
quires a minimal amount of attention and service from the computer operator. 

Allows the CPU to operate in a normal manner as determined by the other 
contr.ol switches and programmed controls. 

Allows an address match to cause an Idle condition only if the access is one of 
the instruction. itself. 

Allows any address match to cause an Idle condition. 

Allows an address match to-cause an Idle condition only if a write access is 
attempted. 

Modifies the load and run operation such that a predetermined machine lan­
guage test routine is transferred from read-only-memory to the first 256 main 
memory locations and executed from main memory. The normal load and run 
operation does not occur. 

In conjunction with the run funcHon, permits continuous execution of the 
CPU micrologic test. 

Enables the operator to store the contents of the DATA indicators into 
the register selected by the DISPLAY switch by activating the STEP or 
RUN switch. 

Allows the contents of the memory location specified by the address register 
to be read into the data register when the STEP or RUN switch is activated. 
The address register is not incremented as a result of this operation. 

Allows the contents of the DATA switches to be stored in the location speci­
fied by the memory address register and in the data register when the RUN or 
STEP switch is activated. The address register is not incremented by this 
operation. 

The same as FETCH/HOLD except the address register is incremented. 

The same as DEPOSIT/HOLD except the address register is incremented. 



Name (Type) 

DISPLAY 
SELECT 

(Rotary) 

This switch 
is always 
effective. 

DATA 0 
through 
DATA 15 

TRACE 

(Locking 
Toggle) 

Position 

PSW1 

P 

L 

T 

x 

B 

E 

Table 13. PCP Switches (cont.) 

Function 

Allows the contents of the first word of the program status word to be displayed 
and modified. Bits 0 through 7 are always zero. 

Allows the contents of the P register (general register 1) to be displayed and 
modified. 

Allows the contents of the L register (general register 2) to be displayed and 
modified. 

Allows the contents of the T register (general register 3) to be displayed and 
modified. 

Allows the contents of the X register (general register 4) to be displayed and 
modified. 

Allows the contents of the B register (general register 5) to be displayed and 
modified. 

Allows the contents of the E register (general register 6) to be displayed and 
modified. 

-
~---------------+----------------------------------------------------------------~ 

A 

ADDRESS HALT 

DATA 

AD.DRESS 

FAULT 

up 

Allows the contents of the A register (general register 7) to be displayed and 
modified. 

Allows the contents of the address halt register to be displayed and modified. 
The address halt register is used in conjunction with the three address halt 
modes as selected by the PCP MODE SELECT switch (INSTRUCTION ADDRESS 
HALT, MEMORY ADDRESS HALT, and MEMORY WRITE ADDRESS HALT). 
The contents of the address holt register must be modified appropriately by the 
operator prior to entering the RUN mode with the PCP MODE SELECT switch 
in one of the three ADDRESS HALT positions. Otherwise, the results of the 
operation are indeterminate. -

Note: The address halt register is also used to contain the top-of-memory 
address in memory scan operations. 

Allows the contents of the data register to be displayed. This register con­
tains the contents of the memory location pointed to by the contents of the 
address reg ister . 

Allows the contents of specific memory locations to be displayed and modified. 

Allows the contents of the fault register to be displayed only. The fault regis­
ter can not be modified via the PCP. 

Each of these 16 general-purpose switches may be set to the 1 or 0 position to 
represent data or control information during load, register modification, mem­
ory d i sp I ay, memory mod i fi cati on, address ha It, and memory- scan ope rat ions. 

If PCP is enabled, this switch provides a continuous trigger of the PCP inter­
rupt level, which, if this level is armed and enabled, will cause an interrupt 
to occur at every interruptible point of each instruction executed (interrupt 
routines can not be traced). 

Note: If the INTERRUPT switch is raised while the TRACE switch is up, the 
machine fault interrupt will be triggered and the fault register will 
uniquely identify this "pseudo-fault" combination of events. 

Basi c Operating Procedures 63 



Table 13. PCP Switches (cont.) 

Name (Type) Position Function 

TRACE (cont.) down Allows INTERRUPT switch to function normally when PCP is enabled. 

HALT up Causes the CPU to halt if a fault condition is encountered. 

(Locking 
down If the HALT and INTRPT switches are both down, any fault condition will be 

Toggle) 
ignored. 

INTRPT up Causes the CPU to enter an interrupt service routine if a fault condition is 
encountered (overrides HALT switch). 

(Locking 
Toggle 

down If the HALT and INTRPT switches are both down, any fault condition will be 
ignored. 

PROTECT up Enables memory protect feature if PCP is enabled. 

(Locking 
down Disables memory protect feature if PCP is enabled. 

Toggle) 

INTERRUPT up A manual means for generating PCP interrupt (see also TRACE). 

(MOMENTARY 
down None. 

Toggle) 

RESET up Causes the CPU system, including the I/O, to be manually reset by the 
operator. 

(Momentary 
Toggle) 

down None. 

LOAD up Permits the operator to initiate the load operation (input data from I/o device). 

(Momentary 
down None. 

Toggle) 

RUN up If the PCP MODE SELECT switch is in the NORMAL position, the CPU enters 
the compute mode of operation whereby instructions are executed in a con-

(Locking tinuous manner under program control. 
Toggle) 

down If the RUN and STEP switches are down at the same time, the CPU is in the 
Idle mode. 

STEP up If the PCP MODE SELECT switch is in the NORMAL position, the CPU enters 
the compute mode and executes a single instruction. This switch is disab~ed 

(Momentary if the RUN switch is in the up position. 
Toggle) 

down If the STEP and RUN switches are both down, the CPU is in the Idle mode. 

64 Basi c Operating Procedures 



Table 14. PCP Indicators 

Name Significance (when lighted) 

WAIT Indicates that the CPU is in the Wait state. 

-

DCY NOT NORMAL Indicates that a power supply has been set to the LOW MARGIN condition. 

FAULT Indicates a fault has occurred. The type of fault may be determined by displaying the 
fault register. 

RUN The CPU is busy executing instructions in a continuous manner. 

DATA 0 When the CPU is in the Idle state, these 16 indicators display the contents of registers 
through selected by the DISPLAY SELECT switch. When the CPU is in the Run state, these indi-
DATA 15 cators will display either the contents of the CPU W register or the fault register. 

Each indicator is labeled with a positional notation that corresponds to the bit position of 
a word. DATA indicators 8, 9, 10, 11, 14, and 15 are also functionally marked (above 
each mentioned position) to reflect the significance of the bits when displaying the first 
word of the program status doubleword (PSW1). 

The Keylock switch in the PROTECT ON position 
forces the following PCP switches into the state listed 
below: -

RESET DISABLED 

LOAD DISABLED 

TRACE DISABLED 

COMPUTE RUN 

FAULT INTERRUPT 

PROTECT ON 

PCP MODE SELECT NORMAL 

13. If the loading operation failed, 

a. Check for obvious peripheral failures (e.g., card 
jam, runaway tape, etc.). 

b. If a peripheral failure is not immediately observed, 
set the DISPLAY SELECT switch to the FAULT posi­
tion and, if the display indicates a machine fault, 
record the machine environment immediately for 
use by maintenance personnel. 

REGISTER MODIFICATION 

1. Set PCP to Idle state (the Keylock switch is in the PCP 
ENABLED position and the RUN and STEP switches are 
both in the down position). 

2. Rotate the DISPLAY SELECT switch to select the ap­
propriate register. The current contents of the select 
register is displayed in the DATA indicators. 

3. Rotate the PCP MODE SELECT switch to the ENTER 
DATA position. 

4. Set the individual DATA switches to the desired 
configuration. 

5. Momentarily lift the STEP switch. The DATA indica­
tors now display the same bit configuration as the 
DATA switches. 

Note: The contents of the fault register may be selected 
and displayed at any time. However, the contents 
can not be modified by the operator via the PCP. 

ENTER LOOP 

If the RUN switch is used instead of the STEP switch in 
step 5 of "Register Modification", the enter data function 
is cycled continuously. 

MEMORY DISPLAY 

1. Set PCP to Idle mode (the Keylock switch is in the PCP 
ENABLED position and the RUN and STEP switches are 
both in the down position). 

2. Set the PCP MODE SELECT switch to the ENTER DATA 
po~ition. 

3. Set the DATA switches to the address of the first mem­
ory location to be displayed. 

4. Set the DISPLAY SELECT switch to the ADDRESS 
position. 

5. Momentarily lift STEP switch. 

Basi c Operating Procedures 65 



6. Set the DISPLAY SELECT switch to the DATA position. 

7. Set the PCP MODE SELECT switch to the FETCH/HOLD 
position (if a single location access is desired) or to the 
FETCH/INCREMENT position (if a series of sequential 
accesses is desired). 

8. Momentarily lift the STEP switch. The DATA indica­
tors now display the contents of the desired memory 
location. If the PCP MODE SELECT switch is in the 
FETCH/INCREMENT position, the contents of the 
next sequential memory location will be displayed 
each time the STEP switch is momentarily lifted. 

7. Set DATA switches with desired data. 

8. Momentarily I ift STEP switch. 

9. Repeat steps 7 and 8 until all memory locations are 
modified. 

ADDRESS HALT 

1. Set PCP to Idle state (Keylock switch must be in the 
PCP ENABLED position, the RUN switch must be down, 
and the STEP switch must be down). 

2. Set the DISPLAY SELECT switch to the ADDRESS HALT 

MEMORY MODIFICATION (SINGLE) position. 

1. Set PCP to Idle mode (Keylock switch is in the PCP 
ENABLED position, and the RUN and STEP switches 
are both in the down position). 

2. Set PCP MODE SELECT switch to the ENTER DATA 
position. 

3. Set address of location to be modified in DATA 
switches. 

4. Set DISPLAY SELECT switch to ADDRESS position. 

5. Mementarily lift STEP switch. 

6. Set PCP MODE SELECT switch to DEPOSIT/HOLD 
position. 

7. Set desired data configuration in DATA switches. 

8. Momentarily I ift STEP switch. 

MEMORY MODIFICATION (MULTIPLE 
SEQUENTIAL LOCA liONS) 

1. Set PCP to Idle mode (Keylock switch is in the PCP 
ENABLED position and the RUN and STEP switches 
are both in the down position)g 

2. Set PCP MODE SELECT switch to the ENTER DATA 
position. 

3. Set DATA switches with address of first location to be 
modified. 

4. Set DISPLAY SELECT switch to ADDRESS position. 

5. Momentari Iy I ift STEP switch. 

6. Set PCP MODE SELECT switch to DEPOSIT/INCREMENT 
position. 

66 Basic Operating Procedures 

3. Set PCP MODE SELECT switch to the ENTER DATA 
position. 

4. Set DATA switches to the desired stop address. 

5. Momentarily I ift the STEP switch. 

6. Set the PCP MODE SELECT switch to one of the fol­
lowing positions: 

a. INSTRUCTION } 

MEMORY REFERENCE 

MEMORY WRITE 

ADDRESS HALT b. 

c. 

7. Set the RUN switch in the up position. Program exe­
cution is performed until a match occurs. The RUN 
indicator is turned off. To continue, place the RUN 
switch in the down position and then return it to -the 
up position. 

Note: The IIAddress Halt ll mode may be used during 
load operations by performing this step after 
step 6 and before step 7 as described under 
IIInitialization li

• 

MEMORY SCAN 

1. To cycle on a single location, follow the procedures 
listed under IIMemory Displayll or IIMemory Modifica­
tion II, as desired, but use the RUN switch instead of 
the STEP switch. 

2. To cycle on all or some portion of memory other than 
a single location, enter a top-of-memory (or top-of­
test area) into the ADDRESS HALT register first; then 
perform the procedures listed for IIMemory Displayll or 
IIMemory Modification (Sequential)1I but use the RUN 
switch instead of the STEP switch. 



APPENDIX A. REFERENCE TABLES 

This appendix contains the following reference material: 

Title 

Standard Symbols and Codes 

Standard 8-Bit Computer Codes (EBCDIC) 

Standard 7-Bit Communication Codes (ANSCII) 

Sta ndard Symbo I-Code Correspondences 

Hexadecimal Arithmetic 

Addition Table 
Multiplication Table 
Table of Powers of Sixteen10 
Table of Powers of Ten16 

Hexadecimal-Decimal Integer Conversion Table 

Hexadecimal-Decimal Fraction Conversion Table 

Table of Powers of Two 

Mathematical Constants 

STANDARD SYMBOLS AND CODES 
The symbol and code standards described in this publication 
are applkable to all Xerox computer products, both hard­
ware and software. They may be expanded or altered from 
time to time to meet changing requirements. 

The symbols listed here include two types: graphic symbols 
and control characters. Graphic symbols are displayable 
and printable; control characters are -not. Hybrids are SP, 
the symbol for a blank space; and DEL, the delete code, 
which is not considered a control command. 

Three types of code are shown: (1) the 8-bit Xerox Standard 
Computer Code, i.e., the Extended Binary-Coded-Decimal 
Interchange Code (EBCDIC); (2) the7-bit American National 
Standard Code for Information Interchange (ANSCII); and 
(3) the Xerox standard card code. 

STANDARD CHARACTER SETS 

1. EBCDIC 

57-character set: uppercase letters, numerals, space, 
and & / < > ( ) + I $ * 

% # @ 

63-character set: same as above plus i 
" 

89-character set: same as 63-character set plus 
lowercase I etters 

2. ANSCII 

? 

64-character set: uppercase letters, numerals, space, 
and! " $ % & I ( ) * -+ , 
A ~\ < >?@ L] 

95-character set: same as above plus lowercase letters 
and { } 

CONTROL CODES 
In addit ion to the standard character sets I isted above, the 
symbol repertoire includes 37 control codes and the hybrid 
code DEL (hyorid code SP is considered part of all charac­
ter sets). These are listed in the table titled Standard 
Symbo I-Code Correspondences. 

SPECIAL CODE PROPERTIES 
The following two properties of all standard codes will be 
retained for future standard code extensions: 

1. All control codes, and only the control codes, have 
thei r two high-order bi ts equa I to "00". DEL is not 
considered a control code. 

2. No two graphic EBCDIC codes have their seven low-
order bi ts equa I. -

Appendix A 67 



Hexadecimal 0 I 

Binary 0000 0001 

0 0000 NUL DLE 

1 0001 SOH DCI 

2 0010 STX DC2 

3 0011 ETX DC3 

4 0100 EaT DC4 

5 0101 HT 
LF 

:~ 
NL 

0 6 0110 ACK SYN 

7 0111 BEL -ETB 
;: 

E~M 
" 8 1000 CAN 

< 

I] 9 1001 IENQ EM 

INAK A 1010 SUB 

B 1011 VT ESC 

C 1100 FF FS 

D 1101 CR GS 

E 1110 SO RS 

F 1111 SI US 
\ I 

Decimal 
0 (rows) (col's.)- I 

l Binary 
1 

xooO xOOI 

0 0000 NUL DLE 

I 0001 SOH DCI 

2 0010 STX DC2 

3 0011 ETX DC3 

4 0100 EaT DC4 

5 0101 ENQ NAK 

'01 
(5 6 0110 ACK SYN 

"E 
0 7 0111 BEL ETB 
~ 
'c 8 1000 BS CAN 0> 
Vi 

5 9 1001 HT EM 
~ LF 

10 1010 SUB 
NL 

II 1011 VT ESC 

12 1100 FF FS 

13 1101 CR GS 

14 1110 SO RS 

15 I III SI US 

\ . " 

68 Appendix A 

STANDARD 8-BIT COMPUTER CODES (EBCDIC) 

Most .. ", Digits 

2 3 5 6 7 8 9 A B C D E F 

0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 

ds SP & - ~ 0 

ss ~ ~ / ~ a j \1 A J I 

fs ~ ~ ~ ~ b k s t 1 B K S 2 

si ~ ~ ~ ~ c I t J 1 C L T 3 

~ ~ ~ ~ d m u [ 1 D M U 4 

r~' 'u, r//r~!;~:d e n v ] 1 E N V 5 

~ ~ ~ ~ f 0 w F a w 6 

~ ~ ~ ~ g p x G P X 7 

~ ~ ~ ~ h q y H Q Y 8 

~ ~ ~ ~ i r z I R Z 9 

,2 ~1 ~ ~ ~ ~ ! : 

, ~ ~ ~ ~ 
< * % @ 

~//r -r,r -;" "','1, 

~", ",,~!i~I~~cI,~ 
( ) 

, ~ ~ ~ ~ -
+ ; > = ~ ~ ~ ~ 

2 2 
? II ~ ~ ~ DEL ..., 

STANDARD 7-BIT COMMUNICATION CODES (ANSCII) 1 

NOTES: 

The characters ,.. \ t J [J are ANSCII 
characters that do not appear in any of the 
EBCDIC-based character sets, though they 
are shown in the EBCDIC table. 

The characters,t I...,appear in the 63- and 
89-character EBCDIC sets but not in either 
of the ANSCII-based sets. However, Xerox 
software translates the characters c 
into ANSCII characters as follows: 

EBCDIC ANSCII 

i \ (6-0) 

I : (7-12) 

..., - (7-14) 

The EBCDIC contral codes in columns 0 
and 1 and their binary representation are 
exactly the same as those in the ANSCII 
table, except for two interchanges: LF /NL 
with NAK, and HT with ENQ. 

Characters enclosed in heavy lines are 
included only in the standard 63- and 
89-character EBCDIC sets. 

These characters are included only in the 
standard 89-character EBCDIC set. 

Most Significant Digits 

2 3 4 5 

xOIO xOI1 xloo xlOl 

SP 0 @ P 

! 5 I A Q 

II 2 B R 

# 3 C .S 

$ 4 D T 

% 5 E U 

& 6 F V 

, 
7 G W 

( 8 H X 

) 9 I Y 

* : J Z 

+ ; K [ 5 

, < L \ 

- = M ] 5 

> N 
4.-. .. 5 

/ ? 0 
4 

-. 

6 7 

xl 10 xl11 

\ P 

a q 

b r 

C 5 

d t 

e u 

f v 

g w 

h X 

i y 

j z 

k { 

I I 
I 

m } 
4 

n -
0 DEL 

, 

Most significant bit, added for 8-bit format, is either 0 or even parity. 

Columns 0-1 are control codes. 

Columns 2-5 correspond to the 64-character ANSCII set. 
Columns 2-7 correspond to the 95-character ANSCII set. 

On many current teletypes, the symbol 

is (5-14) 

is (5-15) 

is ESC or ALTMODE control (7-14) 

and none of the symbols appearing in columns 6-7 are provided. Except for the three 
symbol differences noted above, therefore, such teletypes provide all the characters in 
the 64-character ANSCII set. (The Xerox 7015 Remote Keyboard Printer provides the 
64-character ANSCII set also, but prints" as A.) 

On the Xerox 7670 Remote Batch Terminal, the symbol 

is I (2-1) 

[ is i (5-1I) 

] is (5-13) 

is ~ (5-14) 

and none of the symbols appearing in columns 6-7 are provided. Except fOT the four symbol 
differences noted above, therefore, this terminal provides all the characters in the 64-
character ANSCII set. 



STANDARD SYMBOL-CODE CORRESPONDENCES 

EBCDICt 
ANScntt 

Hex. Dec. Symbol Card Code Meaning Remarks 

00 0 NUL 12-0-9-8-1 0-0 null 00 through 23 and 2F are control codes. 
01 1 SOH 12-9-1 0-1 start of header 
02 2 STX 12-9-2 0-2 start of text 
03 3 ETX 12-9-3 0-3 end of text 
04 4 EOT 12-9-4 0-4 end of transmission 
05 5 HT 12-9-5 0-9 horizontal tab 
06 6 ACK 12-9-6 0-6 acknowledge (positive) 
07 7 BEL 12-9-7 0-7 bell 
08 8 BSorEOM 12-9-8 0-8 backspace or end of message EOM is used only on Xerox Keyboard/ 
09 9 ENQ 12-9-8-1 0-5 enquiry Printers Models 7012, 7020, 8091, 
OA 10 NAK 12-9-8-2 1-5 negative acknowledge and 8092. 
OB 11 VT 12-9-8-3 0-11 vertical tab 
OC 12 FF 12-9-8-4 0-12 form feed 
00 13 .. CR 12-9-8-5· 0-13 carriage return 
OE 14 SO 12-9-8-6 0-14 shift out 
OF 15 SI 12-9-8-7 0-15 shift in 

10 16 OLE 12-11-9-8-1 1-0 data link escape 
11 17 DCl 11-9-1 1-1 device control 1 
12 18 DC2 11-9-2 1-2 device control 2 
13 19 DC3 11-9-3 1-3 device control 3 
14 20 DC4 11-9-4 1-4 device control 4 
15 21 LF or NL 11-9-5 0-10 line feed or new line 
16 22 SYN 11-9-6 1-6 sync 
17 23 ETB 11-9-7 1-7 end of transmission block 
18 24 CAN 11-9-8 1-8 cancel 
19 25 EM 11-9-8-1 1-9 end of medium 
1A 26 SUB 11-9-8-2 1-10 substitute Replaces characters with parity error. 
1B 27 ESC 11-9-8-3 1-11 escape 

-lC 28 FS 11-9-8-4 1-12 file separator 
10 29 GS 11-9-8-5 1-13 group separator 
1E 30 RS 11-9-8-6 1-14 record separator 
1F 31 US 11-9-8-7 1-15 unit separator 

20 32 ds 11-0-9-8-1 digit selector 20 through 23 are used with 
21 33 ss 0-9-1 significance start Sigma EDIT BYTE STRING (EBS) 
22 34 fs 0-9-2 field separation instruction - not input/output con-
23 35 si 0-9.-3 immediate significance start trol codes. 
24 36 0-9-4 24 through 2E are unassigned. 
25 37 0-9-5 
26 38 0-9-6 
27 39 0-9-7 
28 40 0-9-8 
29 41 0-9-8-1 
2A 42 0-9-8-2 
2B 43 0-9-8-3 
2C 44 0-9-8-4 
20 45 0-9-8-5 
2E 46 0-9-8-6 
2F 47 0-9-8-7 

30 48 12-11-0-9-8-1 30 through 3F are unassigned. 
31 49 9-1 
32 50 9-2 
33 51 9-3 
34 52 9-4 
35 53 9-5 
36 54 9-6 
37 55 9-7 
38 56 9-8 
39 57 9-8-1 
3A 58 9-8-2 
38 59 9-8-3 
3C 60 9-8-4 
3D 61 9-8-5 
3E 62 9-8-6 
3F 63 9-8-7 

tHexadecimal and decimal notation. 

ttOecimal notation (column-row). 

Append ix A 69 



STANDARD SYMBOL-CODE CORRESPONDENCES (cont.) 

EBCDlCt 
Symbol Card Code ANScn

tt 
Meaning Remarks 

Hex. Dec. 

40 64 SP blank 2-0 blank 
41 65 12-0-9-1 41 through 49 wi II not be assigned. 
42 66 12-0-9-2 

~ 

43 67 12-0-9-3 
44 68 12-0-9-4 
45 69 12-0-9-5 
46 70 12-0-9-6 
47 71 12-0-9-7 
48 72 12-0-9-8 

~ 

49 73 12-8-1 
4A 74 tor \ 12-8 ... 2 6-0 cent or accent grave Accent grave used for left single 
48 75 12-8-3 2-14 period quote. 9n model 7670, \ not 
4C 76 < 12-8-4 3-12 less than available, and I = ANSCII 5-1l. 
40 77 ( 12-8-5 2-8 left parenthesis 
4E 78 + 12-8-6 2-11 plus 
4F 79 I or 

I 12-8-7 7-12 vertical bar or broken bar On Model 7670, : not available, I 

and I = ANSCII 2-1. 

50 80 & 12 2-6 ampersand 
51 81 12-11-9-1 51 through 59 will not be assigned. 
52 82 12-11-9-2 
53 83 12-11-9-3 
54 84 12-11-9-4 
55 85 12-11-9-5 
56 86 12-11-9-6 
57 87 12-11-9-7 
58 88 12-11-9-8 
59 89 11-8-1 
5A 90 I 11-8-2 2-1 exclamation point On Model 7670, I is I. 
58 91 $ 11-8-3 2-4 dollars 
5C 92 * 11-8-4 2-10 asterisk 
50 93 ) 11-8-5 2-9 right parenthesis ---

5E 94 i 11-8-6 3-11 semicolon 
5F 95 - or ...., 11-8-7 7-14 tilde or logical not On Model 7670,- is not available, 

and""" = ANSCII 5-14. 

60 96 - 11 2-13 minus, dash, hyphen 
61 97 / 0-1 2-15 slash 
62 98 11-0-9-2 62 through 69 will not be assigned. 
63 99 11-0-9-3 
64 100 11-0-9-4 
65 101 11-0-9-5 
66 102 11-0-9-6 
67 103 11-0-9-7 
68 104 11-0-9-8 
69 105 0-8-1 
6A 106 

,... 
12-11 5-14 circumflex On Model 7670 ....... is ..,. On Model 

68 107 , 0-8-3 2-12 comma 7015 ....... is" {caret}. 
6C 108 % 0-8-4 2-5 percent 
60 109 - 0-8-5 5-15 underline Underline is sometimes called "break 
6E 110 > 0-8-6 3-14 greater than character"; may be printed along 
6F 111 ? 0-8-7 3-15 question mark bottom of character line. 

70 112 12-11-0 70 through 79 will not be assigned. 
71 113 12-11-0-9-1 
72 114 12-11-0-9-2 
73 115 12-11-0-9-3 
74 116 12-11-0-9-4 
75 117 12-11-0-9-5 
76 118 12-11-0-9-6 
77 119 12-11-0-9-7 
78 120 12-11-0-9-8 
79 121 8-1 
7A 122 8-2 3-10 colon 
78 123 /I 8-3 2-3 number 
7C 124 @ 8-4 4-0 at 
70 125 I 8-5 2-7 apostrophe {right single quote} 
7E 126 = 8-6 3-13 equals 
7F 127 II 8-7 2-2 quotation mark 

tHexadecimal and decimal notation. 

ttOecimal notation (column-row). 

70 Appendix A 



STANDARD SYMBOL-CODE CORRESPONDENCES (cont.) 

E8COICt 
ANSCntt 

Hex. Dec. Symbol Card Code Meaning Remarks 

80 128 12-0-8-1 80 is unassigned. 
81 129 a 12-0-1 6-1 81-89, 91-99, A2-A9 comprise the 
82 130 b 12-0-2 6-2 lowercase alphabet. Available 
83 131 c 12-0-3 6-3 only in standard 89- and 95-
84 132 d 12-0-4 6-4 character sets. 
85 133 e 12-0-5 6-5 
86 134 f 12-0-6 6-6 
87 135 g 12-0-7 6-7 
88 136 h 12-0-8 6-8 
89 137 i 12-0-9 6-9 
8A 138 12-0-8-2 8A through 90 are unassigned. 
88 139 12-0-8-3 
8C 140 12-0-8-4 
80 141 12-0-8-5 
8E 142 12-0-8-6 
8F 143 12-0-8-7 

90 144 12-11-8-1 
91 145 j 12-11-1 6-10 
92 146 k 12-11-2 6-11 
93 147 I 12-11-3 6-12 
94 148 m 12-11-4 6-13 
95 149 n 12-11-5 6-14 

-

96 150 0 12-11-6 6-15 
97 151 p 12-11-7 7-0 
98 152 q 12-11-8 7-1 
99 153 r 12-11-9 7-2 
9A 154 12-11-8-2 9A through Al are unassigned. 
98 155 12-11-8-3 
9C 156 12-11-8-4 
90 157 12-11-8-5 
9E 158 12-11-8-6 
9F 159 12-11-8-7 

AO 160 11-0-8-1 
Al 161 11-0-1 
A2 162 s 11-0-2 7-3 
A3 163 t 11-0-3 7-4 
A4 164 u 11-0-4 7-5 
A5 165 v 11-0-5 7-6 
A6 166 w 11-0-6 7-7 
A7 167 x 11-0-7 7-8 
A8 168 Y 11-0-8 7-9 
A9 169 z 11-0-9 7-10 
AA 170 11-0-8-2 AA through BO are unassigned. 
A8 171 11-0-8-3 
AC 172 11-0-8-4 
AD 173 11-0-8-5 
AE 174 11-0-8-6 
AF 175 11-0-8-7 

80 176 12-11-0-8-1 
81 177 ( 12-11-0-1 5-12 bockslash 
82 178 12-11-0-2 7-11 left brace 
83 179 } 12-11-0-3 7-13 right brace 
B4 180 

~ 
12-11-0-4 5-11 left bracket On Model 7670, ~ is i. 

85 181 12-11-0-5 5-13 right brocket On Model 7670, is!.· 
86 182 12-11-0-6 B6 through 8F are unassigned. 
87 183 12-11-0-7 
88 184 12-11-0-8 
89 185 12-11-0-9 
BA 186 12-11-0-8-2 
BB 187 12-11-0-8-3 
BC 188 12-11-0-8-4 
BD H~9 12-11-0-8-5 
BE 190 12-11-0-8-6 
BF 191 12-11-0-8-7 

tHexadecimal and decimal notation. 

ttDecimal notation (column-row). 

Appendix A 71 



STANDARD SYMBOL-CODE CORRESPONDENCES (cont.) 

EBCDlCt SY!'!"bol Card Code ANScntt Meaning Remarks 
Hex. Dec. 

CO 192 12-0 CO is unassigned. 
C1 193 A 12-1 4-1 C1-C9, D1-D9, E2-E9 comprise the 
C2 194 B 12-2 4-2 uppercase alphabet. 
C3 195 C 12-3 4-3 
C4 196 D 12-4 4-4 
C5 197 E 12-5 4-5 
C6 198 F 12-6 4-6 
C7 199 G 12-7 4-7 
C8 200 H 12-8 4-8 
C9 201 I 12-9 4-9 
CA 202 12-0-9-8-2 CA through CF will not be assigned. 
CB 203 12-0-9-8-3 
CC 204 12-0-9-8-4 
CD 205 12-0-9-8-5 
CE 206 - 12-0-9-8-6 
CF 207 12-0-9-8-7 

DO 208 11-0 DO is unassigned. 
D1 209 J 11-1 4-10 
D2 210 K 11-2 4-11 
D3 211 L 11-3 4-12 
D4 212 M 11-4 4-13 
D5 213 N 11-5 4-14 
D6 214 -0 11-6 4-15 
D7 215 P 11--7 5-0 
D8 216 Q 11-8 5-1 
D9 217 R 11-9 5-2 
DA 218 12-11-9-8-2 DA through DF will not be assigned. 
DB 219 12-11-9-8-3 
DC 220 12-11-9-8-4 
DD 221 12-11-9-8-5 
DE 222 12-11-9-8-6 
DF 223 12-11-9-8-7 

EO 224 -0-8-2 EO, E1 are unassigned. 
E1 225 11-0-9-1 
E2 226 S 0-2 5-3 
E3 227 T 0-3 5-4 
E4 228 U 0-4 5-5 
E5 229 V 0-5 5-6 
E6 230 W 0-6 5-7 
E7 231 X 0-7 5-8 
E8 232 - Y 0-8 5-9 
E9 233 Z 0-9 5-10 
EA 234 11-0-9-8-2 EA through EF will not be assigned. 

EB 235 11-0-9-8-3 
EC 236 11-0-9-8-4 
ED 237 11-0-9-8-5 
EE 238 11-0-9-8-6 
EF 239 11-0-9-8-7 

FO 240 0 0 3-0 
F1 241 1 1 3-1 
F2 242 2 2 3-2 
F3 243 3 3 3-3 
F4 244 4 4 3-4 
F5 245 5 5 3-5 
F6 246 6 6 3-6 
F7 247 7 7 3-7 
F8 248 8 8 3-8 
F9 249 9 9 3-9 
FA 250 12-11-0-9-8-2 FA through FE wi II not be assigned. 

FB 251 12-11-0-9-8-3 
FC 252 12-11-0-9-8-4 
FD 253 12-11-0-9-8-5 
FE 254 12-11-0-9-8-6 
FF 255 DEL 12-11-0-9-8-7 delete Specia I - ne ither graph ic nor con-

trol symbol. 

tHexadecimal and decimal notation. 

tt Decimal notation (col umn-row). 

72 Appendix A 



HEXADECIMAL ARITHMETIC 

ADDITION TABLE 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

1 02 03 04 -05 06 07 08 09 OA OS OC 00 OE OF 10 

2 03 04 05 06 07 08 09 OA OB OC 00 OE OF 10 11 

3 04 05 06 07 08 09 OA OB OC OD OE OF 10 11 12 

4 05 06 07 08 09 OA OB OC 00 OE OF 10 11 12 13 

5 06 07 08 09 OA OB OC OD OE OF 10 11 12 13 14 

6 07 08 09 OA OB OC OD OE OF 10 11 12 13 14 15 

7 08 09 OA OB OC 00 OE OF 10 11 -12 13 14 15 16 

8 09 OA OB OC 00 OE OF 10 11 12 13 14 15 16 17 

9 OA 06 DC 00 OE OF 10 11 12 13 14 15 16 17 18 

A OB OC 00 OE OF 10 11 12 13 14 15 16 17 18 19 

B OC 00 OE OF 10 11 12 - 13 14 15 16 17 18 19 1A 

C 00 OE OF 10 11 12 13 14 15 16 17 18 19 1A 1B 

0 OE OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 

E OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 

F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 10 1E 

MULTIPLICATION TABLE 

1 2 3 4 5 6 7 8 9 A B C 0 E F -

2 04 06 08 OA - OC OE 10 12 14 16 J8 1A 1C 1E 

3 06 09 OC OF 12 15 18 1B 1E 21 24 27 2A 2D 

4 08 OC 10 14 18 - 1C 20 - 24 28 2C 30 34 38 3C 
-

5 OA OF 14 19 1E 23 28 20 32 37 - 3C 41 46 4B 

6 OC 12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A 

7 OE 15 1C 23 2A- 31 38 3F 46 4D 54 5B 62 69 

8 10 18 20 28 - 30 38 40 48 50 -58 60 68 70 78 

9 12 1B 24 20 36 3F 48 51 5A 63 6C 75 7E 87 

A 14 1E 28 32 3C 46 50 5A 64 6E 78 82 8C 96 

B 16 21 2C 37 42 40 58 63 6E 79 84 8F 9A A5 

C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 64 

0 1A 27 34 41 4E 5B 68 75 82 8F 9C A9 66 C3 

E 1C 2A 38 46 54 62 70 7E 8C 9A A8 B6 C4 02 

F 1E 20 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1 

Appendix A 73 



16 

256 

4 096 

65 536 

1 048 576 

16 777 216 

268435 456 

4 294 967 296 

68 719 476 736 

1 099 511 627 776 

17 592 186 044 416 

281 474 976 710 656 

4 503 599 627 370 496 

72 057 594 037 927 936 

1 152 921 504 606 846 976 

3 

23 

163 

DEO 

8AC7 

74 Appendix A 

2 

-17 

E8 

918 

5AF3 

8D7E 

86F2 

4578 

B6B3 

2304 

A 

64 

3E8 

2710 

-86AQ 

F 4240 

98 9680 

5F5 E100 

3B9A CAOO 

540B E400 

4876 E800 

D4A5 1000 

4E 72 AOOO 

107 A 4000 

A4C6 8000 

6FC1 0000 

5 D8A 0000 

A764 0000 

89E8 0000 

TABLE OF POWERS OF SIXTEEN II 

o 

2 

3 

4 

5 

6 

7 

8 

9 

10 --

11 

12 

13 

14 

15 

0.10000 00000 00000 00000 x 

0.62500 00000 00000 00000 x 

0.39062 50000 00000 00000 x 

0.24414 06250 00000 00000 x 

0.15258 78906 25000 00000 x 

0.95367 -43164 06250 00000 x 

0.59604 64477 53906 25000 x 

0.37252 90298 46191 40625 x 

0.23283 06436 53869 62891 x 

0.14551 91522 83668 51807 x 

0.90949 47017 72928 23792 x 

0.56843 41886 08080 14870 x 

0.35527 13678 80050 09294 x 

0.22204 46049 25031 30808 x 

0.13877 78780 78144 56755 x 

0.86736 17379 88403 54721 x 

10 

10- 1 

10-2 

-3 
10 

10-4 

10-6 

10-7 

10-8 -

10-9 

10- 10 

10- 12 

10- 13 

10- 14 

10- 15 

10- 16 

10- 18 

TABLE OF POWERS OF TEN 18 

11 

o 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

-
1.0000 0000 0000 0000 

0.1999 9999 9999 999A 

0.28F5 C28F 5C28 F5C3 x - 16 
-1 

0.4 1 89 374 B C6 A7 E F 9 E x 16-
2 

0.68DB 8BAC 710C B296 x 16-
3 

0.A7e5 AC47 IB47 8423 x 16-
4 

0.10C6 F7AO B5ED 8037 x 16-
4 

0.lAD7 F29A BCAF 4858 x 16-
5 

0.2AF3 IDC4 6118 73BF x 16-
6 

0.44B 8 2 FAO 9 B5A 52CC x 16-
7 

0.6DF3 7F67 5EF6 EADF x 16-
8 

O.AFEB FFOB CB24 AAFF x 16-
9 

0.1 197 9981 2 DE All 19 x 16-
9 

0.lC25 C268 4976 81C2 x 16-
10 

0.2 DO 9 370 D 425 7 36 04 x 16 -11 

0.4 80 E B E 7 B 9 D5 8 5 66 D x 16- 12 

0.734A CA5F 6226 FOAE x 16-
13 

0.B877 AA32 36A4B449 x 16-
14 

0.1272 5DDl D243 ABA1 x 16-
14 

0.1 D83 C94F B6D2 AC35 x 16-
15 



HEXADECIMAL·DECIMAL INTEGER CONVERSION TABLE 

The table below provides for direct conversions between hexa­
decimal integers in the range O-FFF and decimal integers in 
the range 0-4095. For conversion of-larger integers, the 
table values may be added to the following figures: 

Hexadecima I 

01 000 
02000 
03000 
04 000 
05000 
06 000 
07000 
08000 
09-000 
OA 000 
OB 000 
OC 000 
00000 
OE 000 
OF 000 
10000 
11 000 
12000 
13000 
14000 
15000 
16000 
17000 
18000 
19000 
1A 000 
18000 
1C 000 
10000 
1E 000 
IF 000 

000 
010 
020 
030 

040 
050 
060 
070 

080 
090 
OAO 
OBO 

OCO 
000 
OEO 
OFO 

0 

0000 
0016 
0032 
0048 

0064 
0080 
0096 
0112 

0128 
0144 
0160 
0176 

0192 
0208 
0224 
0240 

Decimal 

-

4096 
8 192 

12288 
16384 
20480 
24576 
28672 
32768 
36 864 
40960 
45056 
49 152 
53248 
57344 
61440 

- 65536 
69632 
73728 
77824 
81 920 
86 016 
90 112 
94208 
98304 

102400 
106 496 
110592 
114688 
118784 
122880 
126 976 

1 2 

0001 0002 
0017 0018 
0033 0034 
0049 0050 

0065 0066 
0081- 0082 
0097 0098 
0113 0114 

0129 0130 
0145 0146 
0161 0162 
0177 0178 

0193 0194 
0209 0210 
0225 0226 
0241 0242 

Hexadecimal 

20000 
30000 
40000 
50000 
60000 
70000 
80000 
90000 
AOOoo 
BO 000 

CO 000 
DO 000-
EO 000 
FOOoo 

100000 
200000 
300000 
400000 
500000 
600000 
700000 
800000 
900000 

AOO 000 
BOO 000 

COO 000 
000000 
EOO 000 
FOO 000 

1 000000 
2000000 

3 4 

0003 0004 
0019 0020 
0035 0036 
0051 0052 

0067 0068 
0083 0084 
0099 0100 
0115 0116 

0131 0132 
0147 0148 
0163 0164 
0179 0180 

0195 0196 
0211 0212 
0227 0228 
0243 0244 

Decimal 

131 072 
196608 
262 144 
327680 
393216 
458752 
524288 
589824 
655360 
720896 
786 432 
851 968 
917 504 
983040 

1 048576 
2 097 152 
3 145 728 
4 194304 
5 242880 
6 291 456 
7 340032 
8388608 
9437 184 

10485 760 
11 534336 
12582 912 
13 631 488 
14680064 
15 728640 
16777 216 
33554432 

5 6 

0005 0006 
0021 0022 
0037 0038 
0053 0054 

0069 0070 
0085 0086 
0101 0102 
0117 0118 

0133 0134 
0149 0150 
0165 0166 
0181 0182 

0197 0198 
0213 0214 
0229 0230 
0245 0246 

7 

0007 
0023 
0039 
0055 

0071 
0087 
0103 
0119 

0135 
0151 
0167 
0183 

0199 
0215 
0231 
0247 

Hexadecimal fractions may be converted to decimal fractions 
as follows: 

1. Express the hexadecimal fraction as an integer times 
16-n, where n is the number of significant hexadecimal 
places- to the right of the hexadecimal point. 

O. CA9BF316 = CA9 BF316 x 16-6 

2. Find the decimal equivalent of the hexadecimal integer 

CA9 BF3
16 

= 13 278 195
10 

3. Multiply the decimal equivalent by 16-n 

13278 195 
x 596 046 448 x 10-16 

0.791 44209610 

Decimalfractions may be converted to hexadecimal fractions 
by successively multiplying the 'decimal fraction by 1610. 
After e9ch multiplication, the integer portion is removea to 
form a hexadecimal fraction by building to the right of the 
hexadecimal point. However, since decimal arithmetic is 
used in this conversion, the integer portion of each product 
must be converted to hexadecima I numbers. 

Example: Convert 0.89510 to its hexadecimal equivalent 

0.895 
16 

-----@.320 
16 

-----0).120 

/1/ CD.9;~ If ]6 

0.ES1 E16~1----@.720 

8 9 A B C 

0008 0009 0010 0011 0012 
0024 0025 0026 0027 0028 
0040 0041 0042 0043 0044 
0056 0057 0058 0059 0060 

0072 0073 -0074 0075 0076 
0088 0089 0090 0091 0092 
0104 0105 0106 0107 0108 
0]20 0121 0122 0123 0124 

0136 0137 0138 0139 0140 
0152 0153 0154 0155 0156 
0168 0169 0170 0171 0172 
0184 0185 0186 0187 0188 

0200 0201 0202 0203 0204 
0216 0217 0218 0219 0220 
0232 0233 0234 0235 0236 
0248 0249 0250 0251 0252 

D E F 

0013 0014 0015 
0029 0030 0031 
0045 0046 0047 
0061 0062 0063 

0077 0078 0079 
0093 0094 0095 
0109 0110 0111 
0125 0]26 0127 

0141 0142 0143 
0157 0158 0159 
0173 0174 0175 
0189 0190 0191 

0205 0206 0207 
-

0221 0222 0223 
0237 0238 0239 
0253 0254 0255 

Appendix A 75 



HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE (cont.) 

0 1 2 3 4 5 6 7 8 9 A -S C D E F 

100 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271 
110- 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287 
120 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303 
130 0304 0305 0306 0307 -0308 0309 0310 0311 0312 0313 0314 0315 0316 Q317 0318 0319 

14-0 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335 
150 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351 
160 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367 
170 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383 

180 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399 
190 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415 
lAO 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431 
ISO - 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447 

lCO 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463 
100 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479 
lEO 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495 
IFO 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511 

200 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527 
210 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543 
220 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559 
230 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575 

-
240 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591 
250 0592 0593 0594 0595 0596 0597 0598- 0599 {)6oo 0601 0602 0603 0604 0605 0606 0607 
260 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622- 0623 
270 0624 0625 0626 0627 0628 0629 0630 063J 0632 0633 0634 0635 0636 0637 0638 0639 

-

280 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655 
290 0656 00-57 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671 
2AO 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687 
2BO 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703 

2CO 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719 
200 0720 0721 0722 0723- 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735 
2£0 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751 
2FO 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767 

-

300 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 OZ83 
310 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799 
320 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815 
330 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831 

340 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847 
350 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863 
360 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879 
370 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895 

380 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911 
390 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927 
3AO 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 
3BO 0944 -0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959 

3CO 0960 096t 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975 
3DO 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991 
3EO 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007 
3FO 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 

76 Appendix A 



HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE (cont.) 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

4PO 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 
410 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 
420 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 
430 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 

440 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 
450 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 
460 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 
470 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 

480 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 
490 1168 1169 1170 1171 1172 1173 1174 1175 1176 11n 1178 1179 1180 1181 1182 1183 
4AO 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 

··4BO. 1200 -1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 

4CO 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 
400 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 
4EO 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 
4FO 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 12n 1278 1279 

500 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 
510 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 
520 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 
530 1328 1329 1330 1331 1332 1333 J334 1335 1336 1337 1338 1339 1340 1341 1342 1343 

540 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 
550 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 
560 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 
570 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 

580 1408 -1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 
590 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 
5AO 1440· 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 
5BO 1456 1457- 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 

5CO 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 
5DO 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 
5EO 1504-1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 
5FO 1520 1521 1522 1523 1524 

~ 

152~ 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 

600 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 
610 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 
620 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 
630 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 

640 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 
650 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 
660 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 
670 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 

680 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 
690 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 
6AO 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 
6BO 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 

6CO 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 
6DO 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 
6EO 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 
6FO 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 

Appendix A 77 



HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE (cont.) 

0 1 2- 3 4 5 6 7 8 9 A B C D E F 

700 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 
710 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 
720 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 
730 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 

740 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 
750 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 
760 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 -

770 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 

780 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 
790 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 
7AO 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 
7BO 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 

7CO 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 
700 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 
7EO 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 
7FO 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 

BOO 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 
810 2064 2065 2066 2067 _ 2068 2069 2070 2071 2072 2073 2074 2075 2076 - 2077 2078 2079 
820 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2993 2094 2095 
830 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 

-

840 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 
850 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 
860 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 
870 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 

880 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 
890 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 
8AO 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 
8BO 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 

8CO 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 
8DO 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 
8EO 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 
8FO 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 

900 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 
910 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 
920 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 
930 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 

940 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 
950 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 
960 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 
970 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 

980 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 
990 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 
9AO 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 
9BO 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 

9C0 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 
9DO 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 
9EO 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 
9FO 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 

78 Appendix A 



HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE (cont.) 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

AOO 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 
AlO 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 
A20 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 
A30 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 

A40 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 
A50 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 
A60 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669· 2670 2671 
A70 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 

A80 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 
A90 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 
AAO 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 
ABO 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 

ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 
ADO 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 
AEO 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 
AFO 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 

BOO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 
B10 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 
B20 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 
B30 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 

B40 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 
B50 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 
B60 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 
B70 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 

B80 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 
B90 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 
BAO 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 
BBO 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 

BCO 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 
BDO 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 
BEO 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 
BFO 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 

COO 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 
C10 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 
C20 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 ~119 
C30 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 

C40 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 .3150 3151 
C50 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 
C60 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 
C70 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 

C80 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 
C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 
CAO 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 
CBO 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 

CCO 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 
CDO 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 
CEO 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 
CFO 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 

Appendix A 79 



HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE (cont.) 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

DOO 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 
010 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 
020 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 
030 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 

040 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 
050 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 
060 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 
070 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 

080 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 
090 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 
OAO 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 
OBO 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 

OCO 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 
000 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 
OEO 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 
OFO 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 

EOO 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 
E10 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 
E20 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 
E30 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 

E40 3648 3649 3650 3651 3652 3653 3654. 3655 3656 3657 3658 3659 3660 3661 3662 3663 
E50 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 
E60 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 
E70 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 

E80 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 
E90 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 
EAO 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 
EBO 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 

ECO 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 
EOO 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 
EEO 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 
EFO 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 

FOO 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 
FlO 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 
F20 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 
F30 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 

F40 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 
F50 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 
F60 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 
F70 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 

F80 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 
F90 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 
FAO 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 
FBO 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 

FCO 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 
FDO 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 
FEO 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 
FFO 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 

80 Append i x A 



HEXADECIMAL·DECIMAL FRACTION CONVERSION TABLE 

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal 

.00 000000 .00000 00000 .40 000000 .25000 00000 .80 000000 .50000 00000 .co 000000 .75000 00000 

.01 000000 .00390 62500 .41 000000 .25390 62500 .81 000000 .50390 62500 .Cl 000000 .75390 62500 

.02 000000 .00781 25000 .42 000000 .25781 25000 .82 000000 .50781 25000 .C2 000000 .75781 25000 

.03 000000 .01171 87500 .43 000000 .26171 87500 .83 000000 .51171 87500 .C3 000000 .76171 87500 

.04 000000 .0156250000 .44 000000 .26562 50000 .84 000000 .51562 50000 .C4 000000 .7656250000 

.05 000000 .01953 12500 .45 000000 .26953 12500 .85 000000 .51 953 1 2500 .C5 000000 .76953 12500 

.06 000000 .02343 75000 .46 000000 .27343 75000 .86 000000 .5234375000 .C6 000000 .77343 75000 

.07 000000 .02734 37500 .47 000000 .27734 37500 .87 000000 .52734 37500 .C7 000000 .77734 37500 

.08 000000 .031 25 00000 .48 000000 .281 25 00000 .88 000000 .53125 00000 .C8 000000 .78125 00000 

.09 000000 .0351562500 .49 000000 .28515 62500 .89 000000 .53515 62500 .C9 000000 .7851562500 

.OA 000000 .03906 25000 .4A 000000 .28906 25000 .8A 000000 .53906 25000 .CA 000000 .78906 25000 

.OB 000000 .04296 87500 .4B 000000 .29296 87500 .8B 000000 .54296 87500 .CB 000000 .79296 87500 

.OC 000000 .04687 50000 .4C 000000 .29687 50000 .8C 000000 .54687 50000 .CC 000000 .79687 50000 

.00 000000 .05078 12500 .40 00 00 00 .30078 12500 .80 000000 .55078 12500 .CO 00 0000 .80078 12500 

.OE 000000 .05468 75000 .4E 000000 .30468 75000 .8E 000000 .55468 75000 .CE 000000 .8046875000 

.OF 000000 .05859 37500 .4F 000000 .3085937500 .8F 000000 .55859 37500 .CF 000000 .80859 37500 

.10 000000 .06250 00000 .50 000000 .3125000000 .90 000000 .56250 00000 .00 000000 .81250 00000 

.11 000000 .0664062500 .51 000000 .31640 62500 .91 000000 .56640 62500 .01 000000 .81640 62500 

.12 000000 .07031 25000 .52 000000 .32031 25000 .92 000000 .57031 25000 .02 000000 .82031 25000 

.13 000000 .07421 87500 .53 000000 .32421 87500 .93 000000 .57421 87500 .03 000000 .82421 87500 

.14 000000 .0781250000 .54 000000 .32812 50000 .94 00 00 00 .57812 50000 .04 000000 .8281250000 

.15 000000 .08203 12500 .55 000000 .33203 12500 .95 000000 .58203 12500 .05 000000 .83203 12500 

.16 000000 .08593 75000 .56 000000 .33593 75000 .96 000000 .58593 75000 .06 000000 .83593 75000 

.17 000000 .08984 37500 .57 000000 .33984 37500 .97 000000 .58984 37500 .07 000000 .83984 37500 

.18 000000 .09375 00000 .58 000000 .34375 00000 .98 000000 .59375 00000 .08 000000 .84375 00000 

.19 000000 .09765 62500 .59 000000 .34765 62500 .99 000000 .59765 62500 .09 000000 .84765 62500 

.IA 000000 .10156 25000 .5A 000000 .3515625000 .9A 000000 .60156 25000 .OA 00 00 00 .85156 25000 

.IB 000000 .10546 87500 .5B 000000 .35546 87500 .9B 000000 .60546 87500 .OB 000000 .85546 87500 

.K 000000 · 10937 50000 .5C 000000 .35937 50000 .9C 000000 .60937 50000 .OC 00 0000 .85937 50000 

.10 000000 .11328 12500 .50 000000 .36328 12500 .90 000000 .61328 12500 .00000000 .86328 12500 

.IE 000000 .1171875000 .5E 000000 .3671875000 .9E 000000 .6171875000 .OE 000000 .8671875000 

.IF 000000 .12109 37500 .5F 000000 .3710937500 .9F 000000 .6210937500 .OF 000000 .8710937500 

.20 000000 · 12500 00000 .60 000000 .37500 00000 .AO 000000 .62500 00000 .EO 000000 .87500 00000 

.21 000000 .12890 62500 .61 000000 .37890 62500 .Al 000000 .62890 62500 .El 000000 .87890 62500 

.22 000000 · 13281 25000 .62 000000 .38281 25000 .A2 000000 .63281 25000 .E2 000000 .88281 25000 

.23 000000 .13671 87500 .63 000000 .38671 87500 .A3 000000 .63671 87500 .E3 000000 .88671 87500 

.24 000000 · 14062 50000 .64 000000 .39062 50000 .A4 00 00 00 .64062 50000 .E4 000000 .89062 50000 

.25 000000 · 14453 1 2500 .65 000000 .39453 12500 .A5 000000 .64453 12500 .E5 000000 .89453 12500 

.26 000000 .1484375000 .66 000000 .39843 75000 .A6 000000 .64843 75000 .E6 000000 .89843 75000 

.27 000000 .1523437500 .67 000000 .40234 37500 .A7 000000 .65234 37500 .E7 000000 .90234 37500 

.28 000000 .15625 00000 .68 000000 .40625 00000 .A8 000000 .65625 00000 .E8 000000 .90625 00000 

.29 000000 .1601562500 .69 000000 .410 15 62500 .A9 000000 .66015 62500 .E9 000000 .9101562500 

.2A 000000 · 16406 25000 .6A 000000 .41406 25000 .AA 00 00 00 .66406 25000 .EA 000000 .91406 25000 

.2B 000000 .1679687500 .6B 000000 .4179687500 .AB 000000 .6679687500 .EB '000000 .91796 87500 

.2C 000000 .1718750000 .6C 000000 .42187 50000 .AC 000000 .67187 50000 .EC 000000 .92187 50000 

.20 000000 .17578 12500 .60 000000 .42578 12500 .AO 00 00 00 .67578 12500 .EO 000000 .92578 1 2500 

.2E 000000 .1796875000 .6E 000000 .42968 75000 .AE 000000 .67968 75000 .EE 000000 .92968 75000 

.2F 000000 .1835937500 .6F 000000 .4335937500 .AF 000000 .68359 37500 .EF 000000 .93359 37500 . -

.30 000000 .18750 00000 .70 000000 .43750 00000 .BO 000000 .68750 00000 .FO 000000 .93750 00000 

.31 000000 .1914062500 .71 000000 .44140 62500 .BI 000000 .69140 62500 .FI 000000 .9414062500 

.32 000000 · I 9531 25000 .72 000000 .44531 25000 .B2 000000 .69531 25000 .F2 000000 .94531 25000 

.33 000000 .19921 87500 .73 000000 .44921 87500 .B3 000000 .69921 87500 .F3 000000 .94921 87500 

.34 000000 .2031 2 50000 .74 000000 .4531 2 50000 .84 000000 .7031 2 50000 .F4 000000 .95312 50000 

.35 000000 .20703 12500 .75 000000 .45703 12500 .B5 000000 .70703 1 2500 .F5 000000 .95703 12500 

.36 000000 .2109375000 .76 000000 .46093 75000 .B6 000000 .71 093 75000 .F6 000000 .9609375000 

.37 000000 .2148437500 .77 000000 .46484 37500 .B7 000000 .71484 37500 .F7 000000 .96484 37500 

.38 000000 .2187500000 .78 000000 .46875 00000 .B8 000000 .71875 00000 .F8 000000 .96875 00000 

.39 000000 .22265 62500 .79 000000 .47265 62500 .B9 000000 .72265 62500 .F9 000000 .97265 62500 

.3A 000000 .22656 25000 .7A 000000 .47656 25000 .BA 000000 .72656 25000 .FA 000000 .97656 25000 

.3B 000000 .23046 87500 .7lf 000000 .48046 87500 .BB 000000 .73046 87500 .FB 000000 .98046 87500 

.3C 000000 .23437 50000 .7C 000000 .48437 50000 .BC 000000 .73437 50000 .FC 000000 .98437 50000 

.30 000000 .23828 12500 .70 000000 .48828 12500 .BO 000000 .73828 12500 .FO 000000 .98828 12500 

.3E 000000 .2421875000 .7E 000000 .49218 75000 .BE 000000 .7421875000 .FE 000000 .9921875000 

.3F 000000 .2460937500 .7F 000000 .49609 37500 .BF 000000 .74609 37500 .FF 000000 .99609 37500 

Appendix A 81 



HEXADECIMAL-DECIMAL FRACTION CONVERSION TABLE (cont.) 

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal 

.0000 0000 .00000 00000 .0040 0000 .00097 65625 .0080 0000 .00195 31250 .00 CO 0000 .00292 96875 

.0001 0000 .00001 52587 .0041 00 00 .00099 18212 .0081 0000 .0019683837 .00 Cl 0000 .00294 49462 

.0002 0000 .0000305175 .0042 0000 .0010070800 .0082 0000 .00198 36425 .00 C2 0000 .00296 02050 

.00 03 0000 .00004 57763 .0043 0000 .00102 23388 .0083 0000 .0019989013 .00 C3 0000 .00297 54638 

.0004 0000 .00006 10351 .0044 0000 .0010375976 .0084 0000 .00201 41601 .00 C4 0000 .00299 07226 

.0005 0000 .0000762939 .00 45 0000 .00105 28564 .0085 0000 .00202 94189 .00 C5 0000 .0030059814 

.00 06 0000 .00009 15527 .0046 0000 .00106 81152 .0086 0000 .00204 46777 .00 C6 0000 .00302 12402 

.0007 0000 .0001068115 .0047 0000 .00108 33740 .0087 0000 .00205 99365 .00 C7 0000 .0030364990 

.00 08 0000 .0001220703 .0048 0000 .0010986328 .0088 0000 .00207 51953 .00 C8 0000 .00305 17578 

.0009 0000 .0001373291 .0049 0000 .00111 38916 .0089 0000 .0020904541 .00 C9 0000 .00306 70166 

.00 OA 0000 .00015 25878 .004A 00 00 .0011291503 .008A 0000 .0021057128 .00 CA 00 00 .00308 22753 

.00 DB 0000 .00016 78466 .004B 0000 .0011444091 .008B 0000 .0021209716 .00 CB 0000 .00309 75341 

.00 DC 0000 .0001831054 .004C 0000 .00115 96679 .008C 0000 .00213 62304 .00 CC 0000 .00311 27929 

.0000 00 00 .0001983642 .0040 0000 .00117 49267 .0080 0000 .00215 14892 .00 CD 0000 .0031280517 

.00 OE 0000 .00021 36230 .004E 0000 .0011901855 .008E 0000 .0021667480 .00 CE 0000 .00314 33105 

.00 OF 0000 .0002288818 .004F 0000 .00 120 54443 .008F 0000 .00218 20068 .00 CF 0000 .00315 85693 

.00 10 0000 .0002441406 .0050 0000 .0012207031 .0090 0000 .00219 72656 .00 00 0000 .00317 38281 

.00 11 0000 .00025 93994 .0051 0000 .0012359619 .0091 0000 .00221 25244 .00 01 0000 .00318 90869 

.0012 0000 .00027 46582 .0052 0000 .00125 12207 .0092 0000 .00222 77832 .00 02 0000 .00320 43457 

.00 13 0000 .00028 99169 .0053 0000 .00126 64794 .0093 0000 .0022430419 .00 03 0000 .00321 96044 

.00 14 0000 .0003051757 .0054 0000 .00128 17382 .0094 0000 .00225 83007 .00 04 0000 .00323 48632 

.00 15 0000 .0003204345 .0055 0000 .0012969970 .0095 0000 .00227 35595 .0005 0000 .00325 01220 

.00 16 0000 .00033 56933 .0056 0000 .00131 22558 .0096 0000 .00228 88183 .00 06 0000 .00326 53808 

.00 17 0000 .0003509521 .0057 0000 .0013275146 .0097 0000 .00230 40771 .0007 0000 .00328 06396 

.00 18 0000 .00036 62109 .0058 0000 .0013427734 .0098 0000 .00231 93359 .00 08 0000 .00329 58984 

.00 19 0000 .00038 14697 .0059 0000 .0013580322 .0099 0000 .0023345947 .00 09 0000 .00331 11572 

.00 lA 0000 .0003967285 .005A 0000 .0013732910 .009A 0000 .00234 98535 .00 OA 00 00 .00332 64160 

.00 IB 0000 .00041 19873 .005B 0000 .0013885498 .009B 0000 .00236 511 23 .00 OB 0000 .00334 16748 

.001C 0000 .00042 72460 .005C 0000 .0014038085 .009C 0000 .00238 03710 .00 OC 0000 .00335 69335 

.0010 0000 .00044 25048 .0050 0000 .00141 90673 .0090 0000 .00239 56298 .00 000000 .00337 21923 

.001E 0000 .00045 77636 .005E 0000 .00143 43261 .009E 0000 .00241 08886 .00 OE 0000 .00338 74511 

.001F 0000 .00047 30224 .005F 0000 .00144 95849 .009F 0000 .00242 61474 .00 OF 0000 .00340 27099 

.0020 0000 .00048 82812 .0060 0000 .00146 48437 .00 AO 0000 .00244 14062 .00 EO 0000 .00341 79687 

.00 21 0000 .00050 35400 .0061 0000 .00148 01025 .00 A1 0000 .00245 66650 .00 E1 0000 .00343 32275 

.0022 0000 .00051 87988 .0062 0000 .0014953613 .00 A2 0000 .00247 19238 .00 E2 0000 .00344 84863 

.00 23 0000 .0005340576 .0063 0000 .00151 06201 .00 A3 0000 .00248 71826 .00 E3 0000 .00346 37451 

.00 24 0000 .00054 93164 .0064 0000 .0015258789 .00 A4 0000 .0025024414 .00 E4 0000 .00347 90039 

.0025 0000 .00056 45751 .0065 0000 .00154 11376 .00 A5 0000 .00251 77001 .00 E5 0000 .00349 42626 

.0026 0000 .00057 98339 .0066 0000 .0015563964 .00 A6 0000 .00253 29589 .00 E6 0000 .00350 95214 

.00 27 0000 .00059 50927 .0067 0000 .00157 16552 .00 A7 0000 .00254 82177 .00 E7 0000 .00352 47802 

.0028 00 00 .00061 03515 .0068 0000 .0015869140 .00 A8 0000 .00256 34765 .00 E8 0000 .00354 00390 

.0029 0000 .00062 56103 .0069 0000 .0016021728 .00 A9 0000 .00257 87353 .00 E9 0000 .00355 52978 

.002A 0000 .00064 08691 .006A 0000 .00161 74316 .00 AA 00 00 .00259 39941 .00 EA 0000 .0035705566 

.0026 0000 .00065 61279 .0066 0000 .00163 26904 .00 A6 0000 .00260 92529 .00 E6 0000 .0035858154 

.002C 0000 .00067 13867 .006C 0000 .0016479492 .00 AC 0000 .0026245117 .00 EC 0000 .00360 10742 

.00 2D 0000 .0006866455 .0060 0000 .00166 32080 .00 AO 00 00 .00263 97705 .00 EO 0000 .00361 63330 

.002E 0000 .00070 19042 .006E 0000 .0016784667 .00 AE 0000 .00265 50292 .00 EE 0000 .00363 15917 

.002F 0000 .00071 71630 .006F 0000 .0016937255 .00 AF 0000 .00267 02880 .00 EF 0000 .0036468505 

.0030 0000 .00073 24218 .0070 0000 .0017089843 .0060 0000 .0026855468 .00 FO 0000 .00366 21093 

.0031 0000 .0007476806 .0071 0000 .00172 42431 .0061 0000 .00270 08056 .00 F1 0000 .0036773681 

.0032 0000 .00076 29394 .0072 0000 .0017395019 .0062 0000 .00271 60644 .00 F2 0000 .00369 26269 

.0033 0000 .00077 81982 .0073 0000 .0017547607 .00 63 0000 .00273 13232 .00 F3 0000 .00370 78857 

.0034 0000 .00079 34570 .0074 0000 .0017700195 .0064 0000 .0027465820 .00 F4 0000 .00372 31445 

.0035 0000 .0008087158 .0075 0000 .00178 52783 .0065 0000 .00276 18408 .00 F5 0000 .0037384033 

.0036 0000 .0008239746 .0076 0000 .0018005371 .0066 0000 .00277 70996 .00 F6 0000 .00375 36621 

.0037 0000 .00083 92333 .0077 0000 .00181 57958 .0067 0000 .0027923583 .00 F7 0000 .00376 89208 

.0038 0000 .00085 44921 .0078 0000 .00183 10546 .00 68 0000 .0028076171 .00 F8 0000 .00378 41796 

.0039 0000 .00086 97509 .0079 0000 .0018463134 .00 69 0000 .00282 28759 .00 F9 0000 .00379 94384 

.003A 0000 .0008850097 .007A 0000 .00186 15722 .006A 0000 .0028381347 .00 FA 0000 .00381 46972 

.0036 0000 .00090 02685 .0076 0000 .0018768310 .00 66 0000 .00285 33935 .00 F6 0000 .00382 99560 

.003C 0000 .00091 55273 .007C 0000 .0018920898 .00 6C 0000 .00286 86523 .00 FC 0000 .0038452148 

.00 3D 0000 .00093 07861 .0070 0000 .0019073486 .00 60 0000 .00288 39111 .00 FO 0000 .00386 04736 

.003E 0000 .00094 60449 .007E 0000 .00192 26074 .006E 0000 .00289 91699 .00 FE 0000 .00387 57324 

.003F 0000 .00096 13037 .007F 0000 .00193 78662 .006F 0000 .00291 44287 .00 FF 0000 .0038909912 

82 Append i x A 



HEXADECIMAL-DECIMAL FRACTION CONVERSION TABLE (cont.) 

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal 

.000000 00 .00000 00000 .000040 00 .00000 38146 .00 00 80 00 .00000 76293 .00 00 CO 00 . 00001 14440 

.00 00 01 00 .00000 00596 .00 0041 00 .00000 38743 .00 00 81 00 .00000 76889 .0000 Cl 00 .00001 15036 

.0000 02 00 .00000 01192 .00 0042 00 .00000 39339 .00 00 82 00 .00000 77486 .0000 C2 00 .00001 15633 

.00 00 03 00 .00000 01788 .00 00 43 00 . 00000 39935 .00 00 83 00 .00000 78082 .0000 C3. 00 .00001 16229 

.00 00 04 00 .00000 02384 .00 00 44 00 .00000 40531 .00 00 84 00 .00000 78678 .0000 C4 00 .00001 16825 

.00 0005 00 .00000 02980 .00 00 45 00 .00000 41127 .00 00 85 00 .00000 79274 .0000 C5 00 .00001 17421 

.00 00 06 00 · 00000 03576 .0000 46 00 .00000 41723 .00 00 86 00 .00000 79870 .0000 C6 00 .00001 18017 

.000007 00 .00000 04172 .00 00 47 00 .00000 42319 .00 00 87 00 .00000 80466 .0000 C7 00 .00001 18613 

.00 00 08 00 .00000 04768 .0000 48 00 .00000 42915 .00 00 88 00 .00000 81062 .00 00 C8 00 .00001 19209 

.00 0009 00 .00000 05364 .000049 00 .00000 43511 .00 00 89 00 .00000 81658 .0000 C9 00 .00001 19805 

.00 00 OA 00 .00000 05960 .00004A 00 .00000 44107 .00 00 8A 00 .00000 82254 .0000 CA{)O .00001 2040 1 

.OOOOOB 00 · 00000 06556 .00 004B 00 .00000 44703 .00 00 8B 00 .00000 82850 .0000 CB 00 .00001 20997 

.00 00 OC 00 .00000 07152 .00 00 4C 00 .0000045299 .00 00 8C 00 .00000 83446 .0000 CC 00 .00001 21593 

.00 00 OD 00 · 00000 07748 .00004D 00 .00000 45895 .00 00 8D 00 .00000 84042 .0000 CD 00 .00001 22189 

.00 00 OE 00 .00000 08344 .00004E 00 .00000 46491 .00008E 00 .00000 84638 .0000 CE 00 .00001 22785 

.00 00 OF 00 .00000 08940 .00 00 4F 00 .00000 47087 .00 00 8F 00 .00000 85234 .0000 CF 00 .00001 23381 

.00 00 10 00 .00000 09536 .00 0050 00 .00000 47683 .000090 00 .00000 85830 .00 00 DO 00 .00001 23977 

.00 00 11 00 .00000 10132 .000051 00 .00000 48279 .00 00 91 00 .00000 86426 .0000 D1 00 .00001 24573 

.00 00 12 00 .00000 10728 .000052 00 .0000048875 .000092 00 .00000 87022 .0000 D2 00 .00001 25169 

.00 00 13 00 .00000 11324 .000053 00 .00000 49471 .00 00 93 00 .0000087618 .0000 D3 00 .00001 25765 

.0000 14 00 · 00000 11920 .000054 00 .0000050067 .00 00 94 00 .0000088214 .0000 D4 00 .00001 26361 

.000015 00 .00000 12516 .00 0055 00 .00000 50663 .00 00 95 00 .00000 88810 .0000 D5 00 .00001 26957 

.00 0016 00 .00000 13113 .00 0056 00 .00000 51259 .00 0096 00 .00000 89406 .0000 D6 00 .00001 27553 

.00 00 17 00 .00000 13709 .00 00 57 00 .00000 51856 .00 00 97 00 .00000 90003 .00 00 D7 00 .00001 28149 

.00 00 18 00 · 00000 14305 .00 00 58 00 .00000 52452 .00 00 98 00 .00000 90599 .0000 D8 00 .00001 28746 

.00 00 19 00 .00000 14901 .00 00 59 00 .00000 53048 .00 00 99 00 .00000 91195 .00 00 D9 00 .00001 29342 

.00 00 lA 00 .00000 15497 .00 00 5A 00 .00000 53644 .00 00 9A 00 .00000 91791 .00 00 DA 00 .00001 29938 

.00 00 1B 00 · 00000 16093 .00005B 00 .00000 54240 .00 00 9B 00 .00000 92387 .00 00 DB 00 .00001 30534 

.00 00 1C 00 .00000 16689 .00 00 5C 00 .00000 54836 .00 00 9C 00 .00000 92983 .00 00 DC 00 .00001 31130 

.00 00 1 D 00 .00000 17285 .00 00 5D 00 .oodoo 55432 .0000 9D 00 .00000 93579 .0000 DD 00 .00001 31726 

.00 00 IE 00 .00000 17881 .00005E 00 .00000 56028 .00009E 00 .00000 94175 .0000 DE 00 .00001 32322 

.00 00 IF 00 .00000 18477 .00005F 00 .00000 56624 .00 00 9F 00 .0000094771 .0000 DF 00 .00001 32918 

.00 00 20 00 .00000 19073 .000060 00 .00000 57220 .0000 AO 00 .00000 95367 .0000 EO 00 .00001 33514 

.000021 00 .00000 1 9669 .00 00 61 00 .00000 57816 .00 00 Al 00 .00000 95963 .0000 El 00 .00001 34110 

.00 00 22 00 .00000 20265 .000062 00 .00000 58412 .0000 A2 00 .00000 96559 .0000 E2 00 .00001 34706 

.00 00 23 00 · 00000 20861 .00 0063 00 .0000059008 .00 00 A3 00 .00000 97155 .0000 E3 00 .00001 35302 

.000024 00 .00000 21457 .00 00 64 00 .00000 59604 .00 00 A4 00 .00000 97751 .0000 E4 00 .00001 35898 

.000025 00 .00000 22053 .000065 00 .00000 60200 .00 00 A5 00 .00000 98347 .0000 E5 00 .00001 36494 

.00 00 26 00 · 00000 22649 .00 00 66 00 .00000 60796 .00 00 A6 00 .00000 98 943 .0000 E6 00 .00001 37090 

.00 00 27 00 .0000023245 .00 00 67 00 .00000 61392 .0000 A7 00 .00000 99539 .0000 E7 00 .00001 37686 

.000028 00 .00000 23841 .0000 68 00 .00000 61 988 .0000 A8 00 .00001 00135 .0000 E8 00 .00001 38282 

.00 00 29 00 .00000 24437 .0000 69 00 .00000 62584 .00 00 A9 00 .00001 00731 .0000 E9 00 .00001 38878 

.00 00 2A 00 .00000 25033 .0000 6A 00 .00000 63180 .00 00 AA 00 .00001 01327 .0000 EA 00 .00001 39474 

.00 00 2B 00 .00000 25629 .00 00 6B 00 .00000 63776 .0000 AB 00 .00001 01923 .0000 EB 00 .00001 40070 

.00 00 2C 00 - .00000 26226 .00 00 6C 00 .0000064373 .0000 AC 00 .00001 02519 .0000 EC 00 .00001 40666 

.00 00 2D 00 .00000 26822 .00 00 6D 00 .00000 64969 .00 00 AD 00 .00001 03116 .0000 ED 00 .00001 41263 

.00 00 2E 00 .0000027418 .00 00 6E 00 .0000065565 .0000 AE 00 .00001 03712 .0000 EE 00 .00001 41859 

.00 00 2F 00 .00000 28014 .00006F 00 .00000 66161 .0000 AF 00 .00001 04308 .0000 EF 00 .00001 42455 

.000030 00 .00000 2861 0 .0000 70 00 .00000 66757 .0000 BO 00 .00001 04904 .0000 FO 00 .00001 43051 

.0000 31 00 · 00000 29206 .000071 00 .00000 67353 .0000 B1 00 .00001 05500 .0000 Fl 00 .00001 43647 

.000032 00 .00000 29802 .000072 00 .00000 67949 .0000 B2 00 .00001 06096 .00 00 F2 00 .00001 44243 

.00 00 33 00 .00000 30398 .00 00 73 00 .0000068545 .00 00 B3 00 .00001 06692 .0000 F3 00 .00001 44839 

.00 00 34 00 .0000030994 .000074 00 .0000069141 .00 00 B4 00 .00001 07288 .0000 F4 00 .00001 45435 

.00 00 35 00 .0000031590 .00 00 75 00 .00000 69737 .00 00 B5 00 .00001 07884 .00 00 F5 00 .00001 46031 

.00 00 36 00 .00000 32186 .000076 00 .00000 70333 .00 00 B6 00 .00001 08480 
-

.00 00 F6 00 .00001 46627 
.00 00 37 00 .00000 32782 .0000 77 00 .00000 70929 .0000 B7 00 .00001 09076 .00 00 F7 00 .00001 47223 
.00 00 38 00 .00000 33378 .0000 78 00 . 0000071525 .00 00 B8 00 .00001 09672 .0000 F8 00 . .00001 47819 
.00 00 39 00 .0000033974 .0000 79 00 .00000 72121 .0000 B9 00 .00001 10268 .00 00 F9 00 .00001 48415 
.00 00 3A 00 .00000 34570 .00007A 00 .00000 72717 .0000 BA 00 .00001 10864 .00 00 FA 00 .00001 49011 
.00 00 3B 00 .00000 35166 .0000 7B 00 .0000073313 .00 00 BB 00 .00001 11460 .0000 FB 00 .00001 49607 
.00 00 3C 00 .0000035762 .0000 7C 00 .00000 73909 .0000 BC 00 .00001 12056 .0000 FC 00 .00001 50203 
.00 00 3D 00 .00000 36358 .00007D 00 .00000 74505 .0000 BD 00 .00eOl 12652 .00 00 FD 00 .00001 50799 
.00 00 3E 00 .0000036954 .00 00 7E 00 .0000075101 .0000 BE 00 .00001 13248 .00 00 FE 00 .00001 51395 
.00 00 3F 00 .00000 37550 .00 00 7F 00 .00000 75697 .0000 BF 00 .00001 13844 .00 00 FF 00 .00001 51991 

Appendix A 83 



HEXADECIMAL-DECIMAL FRACTION CONVERSION TABLE (cont.) 

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal 

.00000000 .00000 00000 .00000040 .00000 00149 .00000080 .00000 00298 .000000 CO .00000 00447 

.00000001 .00000 00002 .00000041 .00000 00151 .00000081 .00000 00300 .0000 00 Cl .00000 00449 

.00000002 .00000 00004 .00000042 .0000000153 .00000082 .00000 00302 .000000 C2 .00000 00451 

.00000003 .00000 00006 .00000043 .00000 00155 .00000083 .00000 00305 .000000 C3 .00000 00454 

.00000004 .00000 00009 .00000044 .00000 00158 .00000084 .00000 00307 .000000 C4 .00000 00456 

.00000005 .00000 00011 .00000045 .00000 00160 .00000085 .0000000309 .000000 C5 .00000 00458 

.00000006 .00000 00013 .00000046 .00000 00162 .00 00 00 86 .00000 00311 .000000 C6 .00000 00461 

.00000007 .00000 00016 .00000047 .00000 00 165 .00 00 00 87 .00000 00314 .000000 C7 .00000 00463 

.00000008 .00000 00018 .00000048 .0000000167 .00000088 .00000-00316 .000000 C8 .00000 00465 

.00000009 .00000 00020- .00000049 .0000000169 .00000089 .00000 00318 .000000 C9 .00000 00467 

.OOOOOOOA .00000 00023 .0000004A .00000 00172 .0000 00 8A .00000 00321 .00 00 00 CA .00000 00470 

.0000 00 OB .00000 00025 .0000 00 4B .00000 00174 .00 00 00 8B .00000 00323 .00 00 00 CB .00000 00472 

.000000 OC .00000 00027 .0000 00 4C .00000 00176 .0000 00 8C .00000 00325 .000000 CC .00000 00474 

.0000 00 00 .00000 00030 .0000 00 4D .00000 00179 .00 00 00 8D .00000 00328 .00 0000 CD .00000 00477 

.0000 00 OE .00000 00032 .0000 00 4E .00000 00181 .0000 00 8E .00000 00330 .000000 CE .00000 00479 

.0000 00 OF .00000 00034 .0000 00 4F .00000 00183 .00 00 00 8F .00000 00332 .00 0000 CF .00000 00481 

.000000 10 .00000 00037 .0000 00 50 . 00000 00186 .00 00 00 90 .00000 003-35 .00 00 00 DO .00000 00484 

.0000 00 11 .00000 00039 .0000 00 51 . 00000 00 188 .0000 00 91 .00000 00337 .00 00 00 01 .00000 00486 

.0000 00 12 .00000 00041 .0000 00 52 .00000 00 1 90 .00 00 00 92 .00000 00339 .00 0000 02 .00000 00488 

.000000 13 .00000 00044 .0000 00 53 .00000 00 193 .00 00 00 93 .00000 00342 .00 00 0003 .00000 00491 

.000000 14 .00000 00046 .0000 00 54 .00000 00 195 .0000 00 94 .00000 00344 .000000 D4 .00000 00493 

.0000 00 15 .00000 00048 .0000 00 55 .00000 00 197 .0000 00 95 .00000 00346 .0000 00 05 .00000 00495 

.0000 00 16 .00000 00051 .000000 56 .00000 00200 .00 00 00 96 .00000 00349 .00 00 00 D6 .00000 00498 

.00 00 00 17 .00000 00053 .00000057 .00000 00202 .0000 00 97 .00000 00351 .00 00 00 07 .00000 00500 

.0000 00 18 .00000 00055 .0000 00 58 .00000 00204 .0000 00 98 .00000 00353 .00 00 00 D8 .00000 -00502 

.000000 19 .00000 00058 .0000 00 59 .00000 00207 .0000 00 99 .00000 00356 .000000 09 .0000000505 

.0000 00 lA .0000000060 .0000 00 5A .00000 00209 .00 00 00 9A .00000 00358 .00 00 00 DA .00000 00507 

.0000 00 lB .00000 00062 .0000 00 5B .00000 00211 .00000098 .00000 00360 .000000 DB .00000 00509 

.00 00 00 lC .00000 00065 .0000 00 5C .00000 00214 .0000 00 9C .00000 00363 .00 0000 DC .00000 00512 

.0000 00 1 D .00000 00067 .0000 00 5D .00000 00216 .0000 00 9D .00000 00365 .00 00 00 OD .00000 00514 

.000000 lE .00000 0006 9 .00 00 00 5E .00000 00218 .00 00 00 9E .00000 00367 .00 00 00 DE .00000 00516 

.0000 00 IF .00000 00072 .0000 00 5F .00000 00221 .0000 00 9F .00000 00370 .00 00 00 OF .00000 00519 

.0000 00 20 .0000000074 .0000 00 60 .00000 00223 .0000 00 AO .00000 00372 .00 00 00 EO .00000 00521 

.0000 00 21 .00000 00076 .000000 61 .00000 00225 .0000 00 Al .00000 00374 .00 00 00 El .00000 00523 

.0000 00 22 .00000 00079 .0000 00 62 .00000 00228 .00 00 00 A2 .00000 00377 .00 00 00 E2 .00000 00526 

.00 00 0023 .00000 00081 .0000 00 63 .00000 00230 .00 00 00 A3 .00000 00379 .00 00 00 E3 .00000 00528 

.0000 00 24 .00000 00083 .0000 00 64 .00000 00232 .00 00 00 A4 .00000 00381 .00 00 00 E4 .00000 00530 

.00 00 00 25 .00000 00086 .0000 00 65 .00000 00235 .0000 00 A5 .00000 00384 .00 00 00 E5 .00000 00533 

.000000 26 .00000 00088 .0000 00 66 .00000 00237 .0000 00 A6 .00000 00386 .00 00 00 E6 .0000000535 

.0000 00 27 .0000000090 .0000 00 67 .00000 00239 .00 00 00 A7 .00000 00388 .00 00 00 E7 .00000 00537 

.0000 00 28 .00000 00093 .0000 0068 .00000 00242 .0000 00 A8 .00000 00391 .00 00 00 f8 - .00000 00540 

.0000 00 29 .00000 00095 .0000 00 69 .00000 00244 .0000 00 A9 .00000 00393 .00 00 00 E9 .00000 00542 

.0000 00 2A .00000 00097 .0000 00 6A .00000 00246 .0000 00 AA .00000 00395 .00 00 00 EA .00000 00544 

.000000 2B .00000 00100 .0000 00 6B .00000 00249 .00 00 00 AB .00000 00398 .00 00 00 EB .00000 00547 

.0000002C .00000 00102 .0000 00 6C .00000 00251 .0000 00 AC .00000 00400 .00 00 00 EC .00000 00549 

.0000 00 2D .00000 00104 .0000006D .00000 00253 .000000 AD .00000 00402 .0000 00 ED .00000 00551 

.0000002E .00000 00107 .0000006E .0000000256 .000000 AE .00000 00405 .000000 EE .00000 00554 

.0000002F .00000 00109 .00 00 006F .00000 00258 .000000 AF .0000000407 .000000 EF .00000 00556 

.00000030 .00000 00111 .00000070 .0000000260 .0000 00 BO .00000 00409 .00 00 00 Fa .00000 00558 

.0000 00 31 .00000 00114 .0000 00 71 .00000 00263 .0000 00 Bl .00000 00412 .00 00 00 Fl .00000 00561 

.00 00 00 32 .00000 00116 .000000 72 .00000 00265 .0000 00 B2 .00000 00414 .00 00 00 F2 .00000 00563 

.0000 0033 .0000000118 .0000 00 73 .00000 00267 .0000 00 B3 .00000 00416 .00 00 00 F3 .00000 00565 

.00 00 0034 .00000 00121 .0000 00 74 .00000 00270 .0000 00 B4 .00000 0041 9 .00 00 00 F4 .00000 00568 

.00000035 .00000 00123 .0000 00 75 .0000000272 .0000 00 B5 .00000 00421 .00 00 00 F5 .00000 00570 

.00000036 . 00000 001 25 .0000 00 76 .00000 00274 .00 00 00 B6 .00000 00423 .00 00 00 F6 .00000 00572 

.0000 00 37 .00000 00128 .00000077 .00000 00277 .0000 00 B7 .00000 00426 .00 00 00 F7 .00000 00575 

.00000038 .00000 00130 .000000 78 .00000 00279 .0000 00 B8 .00000 00428 .00 00 00 F8 .00000 00577 

.0000 00 39 .0000000132 .00000079 .00000 00281 .000000 B9 .00000 00430 .00 0000 F9 .00000 00579 

.0000 00 3A .00000 00135 .0000 00 7A .00000 00284 .0000 00 BA . 00000 00433 .00 00 00 FA .00000 00582 

.0000003B .00000 00137 .0000 00 7B .00000 00286 .0000 00 BB .00000 00435 .00 0000 FB .0000000584 

.0000 00 3C .0000000139 .0000007C .00000 00288 .0000 00 BC .00000 00437 .00 00 00 Fe .0000000586 

.0000 00 3D .0000000142 .0000 00 7D .00000 00291 .000000 BD .00000 00440 .00 0000 FD .00000 00589 

.0000 00 3E .00000 00144 .0000 00 7E .00000 00293 .0000 00 BE .00000 00442 .00 0000 FE .00000 00591 

.0000 00 3F .00000 00146 .0000 00 7F .00000 00295 .0000 00 BF .00000 00444 .00 00 00 FF .00000 00593 

84 Appendix A 



TABLE OF POWERS OF TWO MATHEMATICAL CONSTANTS 

2n n 2-n 
----

I 0 1.0 
2 1 0.5 
4 2 0.25 
8 3 0.125 

16 4 0.062 5 
32 5 0.031 25 
64 6 0.015 625 

128 7 0.007 812 5 

256 8 0.003 906 25 
512 9 0.001 953 125 

1 024 10 0.000 976 562 5 
2 048 11 0.000 488 281 25 

4096 12 0.000 244 140 625 
8 192 13 0.000 122 070 312 5 

16 384 14 0.000 061 035 156 25 
32 768 15 0.000 030 517 578 125 

I( '; 
65 536~~0.000 015 258 789 062 5 

131 072 1 0.000 007 629 394 531 25 
262 144 18 0.000 003 814 697 265 625 
524 288 19 0.000 001 907 348 632 812 5 

1 048 576 20 0.000 000 953 674 316 406 25 
2 097 152 21 0.000 000 476 837 158 203 125 
4 194 304 22 0.000 000 238 418 579 101 562 5 
8 388 608 23 0.000 000 119 209 289 550 781 25 

16 777 216 24 0.000 000 059 604 644 775 390 625 
33 554 432 25 0.000 000 029 802 322 387 695 312 5 
67 108 864 26 0.000 000 014 901 161 193 847 656 25 

134 217 728 27 0.000 000 007 450 580 596 923 828 125 

268 435 456 28 0.000 000 003 725 290 298 461 914 062 5 
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25 

1 073 741 82~ 0.000 000 000 931 322 574 615 478 515 625 
2 147 483 64~ 0.000 000 000 465 661 287 307 739 257 812 5 

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25 
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125 

17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5 
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25 

68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625 
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5 
274 877 906 944 38 0.000 000 000 003 637 978 S07 091 712 951 660 156 25 
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125 

1 099 511 627 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 
2 199 023 255 552 41 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 
4 398 046 511 104 42 0.000 000 000 000 '1:27 373 675 443 232 059 478 759 765 625 
8 796 093 022 208 43 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 

17 592 186 044 416 44 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 
35 184 372 088 832 45 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 
70 368 744 177 664 46 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 

140 737 488 355 328 47 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 

281 474 976 710 656 48 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 
562 949 953 421 312 49 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 

1 125 899 906 842 624 50 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 
2 251 799 813 685 248 51 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 

Constant 

'If 

IT- l 

.J; 

InlT 

e 
-1 

e 

.Je 
I0910 e 

log2 e 

"V 

In"V 

.J2 
In2 

109 10
2 

.JfO 
In 10 

4 503 599 627 370 496 52 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 
9 007 199 254 740 992 53 0.000 000 000 000 000 111 022 302 462 515 654 042 363 166 809 082 031 25 

18 014 398 509 481 984 54 0.000 000 000 000 000 055 511 151 231 257 827 021 181 583404 541 015 625 
36 028 797 018 963 968 55 0.000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 507 812 5 

72 057 594 037 927 936 56 0.000 000 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906 25 

Decimal Value 

3.14159 2653589793 

0.31830 98861 83790 

1.77245 38509 05516 

1.14472 98858 49400 

2.71828 18284 59045 

0.36787 94411 71442 

1.64872 12707 00128 

0.43429 44819 03252 

1.44269 50408 88963 

0.57721 56649 01533 

-0.54953 93129 81645 

1.41421 35623 73095 

0.69314 71805 59945 

0.30102 99956 63981 

3.16227 76601 68379 

2.30258 40929 94046 

144 115 188 075 855 872 57 0.000 000 000 000 000 006 938 893 903 907 228 377 647 697 925 567 626 953 125 
288 230 376 151 711 744 58 0.000 000 000 000 000 003 469 446 951 953 614 188 823 848 962 783 813 476 562 5 
576 460 752 303 423 488 59 0.000 000 000 000 000 001 734 723 475 976 807 094 411 924481 391 906 738 281 25 

I 152 921 504 606 846 976 60 0.000 000 000 000 000 000 867 361 737988 403 547205 962 240 695 953 369 140 625 
2 305 843 009213 693 952 61 0.000 000 000 000 000 000 433 680 868 994 201 773602 981 120 347976 684 570 312 5 
4 611 686 018 427 387 904 62 0.000 000 000 000 000 000 216 840 434 497 100 886 801 490 560 173 988 342 285 156 25 
9 223 372 036 854 775 808 63 0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125 

Hexadecimal Value 

3.243F 6A89 

0.517C C1B7 

l.C5BF 891C 

1.2500 048F 

2.B7El 5163 

0.5E20 5809 

l.A612 98E2 

0.6F20 EC55 

1.7154 7653 

0.93C4 67E4 

-0.8CAE 9BCl 

1.6A09 E668 

O.BI72 17F8 

0.4010 4042 

3.298B 075C 

2.4076 3777 

Appendix A 85 



APPENDIX B. INSTRUCTION TIMING 

INSJRUCTION TIMES 

The instruction times for the Xerox 530 instructions are calculated by adding the preparation time and the instruction execution 
time. These times are shown in Table B-1. For those instructions where a range of numbers is shown for the preparation time, 
the preparation time is a function of the specifi c effective address mode as shown in note 0 to Table B-1. All of the times 
shown in the table are accurate within ±0.1%, assume no input/output or memory interference, and assume that all instruc­
tions and operands are in the same 8K memory module. 

Table B-1. Instruction Preparation and Execution Times (in !-'secs.) 

Preparation Instruction 
Instruction/Mnemonic Time0 Execution Time Minimum Maximum 

Memory Reference Instructions 
~ 

lDA -0-.80 1.92 1.92 2.72 

STA 0-.80 2.24 2.24 3.04 

lDX (Normal) 0-.80 1.92 1.92 2.72 

lDX (Interrupt Exit) 
See "Interrupt Exit" under "Direct Control Instructions" 

ADD 0-.80 1.92 1.92 2.72 

SUB 0-.80 1.92 1.92 2.72 

AND 0-.80 1.92 1.92 2.72 

1M 0-.80 2.72 2.72 3.52 

CP 0-.80 1.92 1.92 2.72 

MUl 0-.80 8.00 8.00 8.80 

DIY 0-.80 13. 12- 13 .76 13. 12 14.56 

Branch Instructions 

B 0-.80 1. 12 1. 12 1.92 

BA N (no Branch) 0 .80 .80 .80 

BAN (Branch) 0 1.12 1. 12 1. 12 

BAZ (no Branch) 0 .80 .80 .80 

BAZ (Branch) 0 1. 12 1. 12 1. 12 

BEN (no Branch) 0 .80 .80 .80 

BE N (Branch) 0 1. 12 1. 12 1. 12 

BNC (no Branch) 0 .80 .80 .80 

BNC (Branch) 0 1. 12 1. 12 1. 12 

BNO (no Branch) 0 .80 .80 .80 

BNO (Branch) 0 1.12 1. 12 1. 12 

BIX (no Branch) 0 .80 .80 .80 

BIX (Branch) 0 1.12 1. 12 1. 12 

BX NO (no Branch) 0 .80 .80 .80 

BXNO (Branch) 0 1.12 1. 12 1. 12 

BXNC (no Branch) 0 .80 .80 .80 

BXNC (Branch) 0 1.12 1. 12 1. 12 

86 Appendix B 



Table B-1. Instruction Preparation and Execution Times (in J-Isecs.) (cont.) 

Preparation Instruction 
Instruction/Mnemonic Time 0 Execution Time Minimum Maximum 

Shift Instructions 

SARS 0-.80 2.56 + .32N0) 2.56 8.16 

SARD 0-.80 2.88 + .32N 0) 2.88 13.60 

SALS 0-.80 2.56 + .32N 0) 2.56 8.16 

SALD 0-.80 2.56 + .32N 0 2.56 13.28 

SCRS 0-.80 2.56 + .32N 0 2.56 8.16 

SCRD 0-.80 2.56 + .32N 0) 2.56 13.28 

SCLS 0-.80 2.56 + .32N 0 2.56 8.16 

SCLD 0-.80 2.88 + .32N 0 2.56 13.60 

Normalize Shift 0-.80 3.52 + .32N 0 3.52 14.24 

Copy Instructions 

RCPY, RCPYI, RCPYC, RADD, RADDI, RADDC, 
RCLA, RCLAI, RCLAC, ROR, RORI, RORC, 0 .960 .96 1.44 
RAND, REaR 

RANDI, RANDC, REORI, REORC 0 1.280 1.28 1.76 

Direct Control Instructions 

RD - Internal Mode (Except for the following) 0-.80 2.88 - 4. 16 2.88 4.96 

I/o Reset 0-.80 83.80 G 83.80 84.60 

lOP Registers 0-.80 5.440) 5.44 -
lOP Instructions 0-.80 10.88 + .32 FSLG 11.20 -

RD - Interrupt Mode 0-.80 8.96@ 8.96 15.52 

RD - External Mode 0-.80 3.52 + .32 FSA@ 3.84 -
WD - Internal Mode (Except for the following) 0-.80 2.24 ~ 4.32 2.24 5.12 

Interrupt Exit 0 0-.80 11.52 <0 11.52 16.26 

lOP Registers 0-.80 5.120) 5.12 -
WD - Interrupt Mode 0-.80 9.28@ 9.28 15.84 

WD - External Mode 0-.80 "3.84 + .32 FSA@ 4.16 -
Genera I Reg ister Instruct ions 

., 
3.84 ., 3.84 4.64 LW 0-.80 

STW 0-.80 4.48 4.48 5.28 

AW 0-.80 
0 

3.84 
0 

3.84 4.64 

SW 0-.80 3.84 3.84 4.64 

AND 0-.80 3.84 3.84 4.64 

CW 0-.80 .. 4.48 .. 4.48 5.28 

Multiple Register Instructions 

LDM 0-.800 4.64 - 7.68 008- 4.64 8.48 

LDD 0-.800 4.000 4.00 4.80 

Appendix B 87 



Table B-1. Instruction Preparation and Execution Times (in tJSecs.) (cont.) 

Preparation Instruction 

Instruction/Mnemonic Time 0 Execution Time Minimum Maximum 

Multiple Register Instructions (cont.) 
... 

STM 0-.80 5.28 - 8.32008 5.28 9. 12 

STD 0-.80 
4.16 } 

4.16 4.96 

DAD 0-.80 ~0 4.00 0 4.00 4.80 

DSB 0-.80 4.00 4.00 4.80 

CPD 0-.80 4.32 4.32 5. 12 
~ 

Floating Point Instructions 

FLD "" 0-.80 3.68 3.68 4.48 

FST 0-.80 3.84 3.84 4.64 

FAD 0-.80 8.80 + .32J + • 96K8 8.80 38.40 

FSB @ 0-.80 8.80 + .32J + .961<8 8.80 38.40 

FMP 0-.80 32.96 Typical G 31.36 35.36 

FDV 0-.80 77.56 Typical G 8.32 101.92 

FCP ~ 0-.80 5.96 Typical 3.52 20.36 

Field Addressing Instructions 

LLF@ 

16-bit field (starting on bit 0) e 0-.80 ... 8.640@ 8.64 13.92 

8-bit field (starting on bit 0 or 8) e 0-.80 9.28 - 9.60 0@ 9.28 14.88 

4-bit field (starting on bit 0, 4, 8, or 12) e 0-.80 
~0 

9.28 - 9.600@ 9.28 14.88 

l-bit field 0-.80 10.880@ 10.88 16. 16 

Other fields - contained within one word 0-.80 11.20 - 15.680@ 11.20 20.96 

Other fields - contained within two words 0-.80 .. 11. 52 - 16.00 0 @ 11.52 21.28 

LAF@ 

16-bit field (starting on bit 0) e 0-.80 ... 8.640@ 8.64 13.92 

8-bit field (starting on bit 0 or 8) G 0-.80 10.24 - 10.560@ 10.24 15.84 

4-bit field (starting on bit 0, 4, 8, or 12)@ 0-.80 
~0 

10.24 - 10.5688 10.24 15.84 

l-bit field 0-.80 10.880e 10.88 16. 16 

Other fields - contained within one word 0-.80 11.20 - 15.680@ 11.20 20.96 

Other fields - contained within two words 0-. 80 ~ 11.52 - 16.000 @ 11.52 21.28 

CLF0 

16-bit field (starting on bit 0) G 0-.80 
... 

8.960e 8.96 14.24 

8-bit field (starting on bit 0 or 8) 0 0-.80 9.60 - 9.920) @ 9.60 15.20 

4-bit field (starting on bit 0, 4, 8, or 12) @ 0-.80 
0 

9.60 - 9.92 0 @ 9.60 15.20 

l-bit field 0-.80 11.200 e 11.20 16.48 

Other fields - contained within one word 0-.80 11. 52 - 16. 00 0 @ 11.52 21.28 

Other fields - contained within two words 0-. 80 ~ 11.84 - 16.320 @ 11.84 21.60 

88 Appendix B 



Table B-1. Instruction Preparation and Execution Times (in fJSecs.) (cont.) 

Preparation Instruction 
Instructi on/Mnemoni c TimeQ Execution Time Minimum Maximum 

Field Addressing Instructions (cont.) 

CAF@ 

16-bit field (starting on bit 0) e 0-.80 .. 8.640@ 8.64 13.92 

8-bit field (starting bit 0 or 8) @ 0-.80 10.24 - 10.560 @ 10.24 15.84 

4-bit field (starting on bit 0, 4, 8, or 12) @ 0-.80 
8 

10.24 - 10.560@ 10.24 15.84 

I-bit field 0-.80 10.880@ 10.88 16. 16 

Other fields - contained within one word 0-.80 11.20 - 15.68 0G 11.20 20.96 

Other fields - contained within two words 0- 80 · .. 11.52 - 16.00 0@ 11.52 21.28 

SLF G 

16-bit field (starting on bit 0) e 0-.80 .. 10.880@ 10.88 16. 16 

8-bit field (starting on bit 0 or 8) @ 0-.80 10.56 - 10.88 0 @ 10.56 16. 16 

4-bit field (starting on bit 0,4,8, or 12) e 0-.80 
0) 

10.56 - 10.880@ 10.56 16. 16 
-

11.200@ I-bit field 0-.80 11.20 16.48 

Other fields - contained within one word 0-.80 11.52 - 16.00 0@ 11.52 21.28 

Other fields - contained within two words 0-.80 .... 11.82 - 16.320 ® 11.82 21.60 

SOF@ 

16-bit field (starting on bit 0) @ 
.. 

9.440@ 0-.80 9.44 14.72 

8-bit field (starting on bit 0 or 8) @ 0-.80 10.080@ 10.08 15.36 

4-bit field (starting on bit 0, 4, 8, or 12)@ 0-.80 
0) 

10.080 e 10.08 15.36 

I-bit field 0-.80 11.68 0 @ 11.68 16.96 

Other fields - contained within one word 0-.80 11.68 0 @ 11. 68 16.96 

Other fields - contained within two words 0-.80 .... 14.2406 14.24 19.52 

SZF@ 

16-bit field (starting on bit 0) e 0-.80 .. 9.120® 9. 12 14.40 

8-bit field (starting on bit 0 or 8) @ 0-.80 9.7606 9.76 15.04 

4-bit field (starting on bit 0, 4, 8, or 12)@ 0-.80 
G 

9. 76 06 9.76 15.04 

I-bit field 0-.80 11.360 @ 11.36 16.64 

Other fields - contained within one word 0-.80 11.3606 11.36 16.64 

Other fields - contained within two words 0- 80 · .. 13.600 €V 13 g 60 18.88 

STFG 

16-bit field (starting on bit 0) e 0-.80 .. 10.400@ 10.40 15.68 

8-bit field (starting on bit 0 or 8) 0 0-.80 10.72 - 11. 04 0 @ 10.72 16.32 

4-bit field (starting on bit 0, 4, 8, or 12) @ 0-.80 
~0) 

10.72 - 11.36 0e 10.72 16.64 

I-bit field 0-.80 13.28 - 18.080 @ 13.28 23.36 

Other fields - contained within one word 0-.80 13.28 - 17.76 0 e 13.28 23.04 

Other fields - contained within two words 0- 80 · .... 16. 16 - 20.64 0@ 16. 16 25.92 

Appendix B 89 



Notes: 

o 
o 
o 
o 
o 
o 

G 
G 

Table B-1. Instruction Preparation and Execution Times (in jJSecs.)(cont.) 

Preparation time depends on effective address mode according to the following table: 

R X S Effective Addresst Preparation Timing (jJsec.) 

0 0 0 0 D 0 

0 0 0 D + (B) 0 

0 0 0 D + (X) 0 

0 0 D + (B) + (X) .32 

0 0 0 (D) .80 

0 0 (D + (B» .80 

0 0 (D) + (X) .80 

0 (D + (B» + (X) .80 

0 0 (W) + so 0 

0 (W) + so + (X) .32 

0 «W) + SO) .80 

«W) + SO) + (X) .80 

t Refer to IIEffective Address Computation II, Chapter 2, for definition of symbols. 

For single register shift instructions, N is the number of bit positions shifted (0 ~ N ~ 15). 

For double register shift instructions, N is the number of bit positions shifted (0 ~ N ~ 31). 

For normalize shift instructions, N is the number of bit positions registers Eand A must be shifted to generate 
a normalized number (0 $ N $ 31). 

For copy instructions, add .48 jJSec if the destination register is general register 1 (P). 

Time shown for interrupt exit is for both the set exit WD instruction and the LDX instruction. 

Preparation time varies according to the addressing mode specified by the R, I, X, and S bits of the second 
word of the two-word instruction. Preparation times are the same as shown in noteG) above. 

Instruction execution time is for the entire two-word instruction. 

Two-register LDM and STM instructions which operate specifically on the E and A registers have the 
same execution times as LDD and STO instructions, respectively. 

LOM and STM instruction execution time depends on the number of registers to be stored according to 
the following table: 

Number of Reg isters 

2 
3 
4 
5 
6 

LDM Instruction Execution Time 

4.64 
5.44 
6.08 
6.88 
7.68 

STM Instruction Execution Time 

5.28 
6.08 
6.72 
7.52 
8.32 

@ Optional Instruction. 

@ Generates approximately 81 jJSec reset pulse. 

90 Appendix B 



Table B-1. Instruction Preparation and Execution Times (in jJSecs.) (cont.) 

Notes: (cont.) 

@ Assumes lOP is not busy. If lOP is busy, CPU must wait until the end of the current lOP service cycle. 

G Assumes external device controller. FSL is Function Strobe Leading Acknowledge. 

G Assumes standard interrupts. Add 2.88 jJSec for first group of 12 interrupt levels. Add 5.76 jJSec for 
second group of 12 optional interrupt levels. 

G FSA is Function Strobe Acknowledge from external device. 

<0 Assumes standard interrupts. Add 1.92 jJSec for first group of 12 optional interrupt levels. Add 3.94 jJSec 
for second group of optional interrupt levels. Also assumes not reentering floating point mode. 

G J is the number of prealignment shifts required. K is the number of postnormalization shifts required. 

0) FMP and FDV instruction execution times are typical times based on a random distribution of ones cmd zeros 
in the.operands. 

@ Time shown is for 16-bit field starting on bit O. For a 16-bit field starting on some other bit position, use 
the 1I0ther fields - contained within two words II execution times. 

o Time shown is for 8-bit field starting on bit 0 or 8. For an 8-bit field starting on some other bit position, 
use the appropriate 1I0ther fields II execution times, depending on whether the 8-bit field is contained 
within one memory word or two memory words. 

e Time shown is for 4-bit field starting on bit 0, 4, 8, or 12. For a 4-bit field starting on some other bit 
position, use the appropriate 1I0ther fields II execution times, depending on whether the 4-bit field is con­
tained within one memory word or two memory words. 

e Add 0.32 jJSec if register indexing is specified by the RX field in the instruction. Add 3.52 jJSec if self­
incrementing is specified by the SX field in the instruction. Add 4. 16 if self-decrementing is specified by 
the SX field in the instruction. See the description of IIField Addressing Instructions II in Chapter 3. 

Appendix B 91 



APPENDIX C. READjWRITE (MODE 0) INSTRUCTIONS 

This appendix is comprised of eight tables. Tables C-1 
through C-4 show the 256 different function values fora READ 
DIRECT (Mode O) instruction. Tables C-5 through C-8 show 
the 256 different function values for a WRITE DIRECT 

(Mode O) instruction. Each table consists of 64 function 
values (assigned and unassigned). Unassigned function values 
are reserved and must not be used. Attempting to use an un­
assigned function value results in a Machine Fault Interrupt. 

I 
00 

o 

Table C-1. READ DIRECT (Mode O) Instruction, Function Values X'00'-X'3F' 

Hexadecimal Value of Bits 12-15 of Function Field 

7 8 F 

Copy contents of specified ---~"""E------ Copy contents of specified 
general register into A I/O channel register into A 

~ 

a5~ 
o p LIT A X'OF' 

'-I- cu 
0LL: 
cu c 
~ 0 

...... E------------ Copy contents of specified I/O channel register into A ----------~ 

>t _ c 
o :> 
Eu-
.- '-I-
o 0 
cu 

-c 
o x 
cu 

:r: 

Copy contents of specified I/O channel register into A 

2 

3 

Note: Except for function va lue X'OO', which is unassigned, each of the function va lues designates a general 
register or I/O channel register whose contents are copied into the A register (accumulator). Function 
values X'08' and X'09' are associated with the first I/O channel and function values X'3E' and X'3F' 
are associated with the last I/O channel. 

Table C-2. READ DIRECT (Mode O) Instruction, Function Values X'40'-X'7F' 

Hexadecimal Value of Bits 12-15 of Function Field 

0 1 2 3 4 5 6 7 8 9 A B C D E 

t! 4 SIO TIO TDV HIO 
a5~ 
'-I- cu o .-u-

cu c 
~ 0 

5 Ala 
o .-
>t 

c 
6 I/O '0 :> 

Eu-
RESET .- '-I-

o 0 
cu -c-
o-x I 

7 cu OO 
:c 

Note: Each of the assigned function values within this group is labeled with an appropriate mnemonic representing 
an I/o instruction. See Chapter 4 for further details. 

92 Appendix C 

F 



Table C-3. READ DIRECT (Mode 0) Instruction, Function Values XI801-XIBFI 

Hexadecimal Value of Bits 12-15 of Function Field 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

Copy FA FA GR=2 GR=3 GR=4 GR=5 GR=6 FA 
8 (DATA) RX=l RX=l RX=l 

~ 

-u into A SX=O SX=l SX=7 Q) 

u:: 
c FA FA LDM LDM LDM LDM LDD, FA FA FA LDM LDM LDM LDM SFM FA 
~ RX=2 RX=2 or or or or STD, RX=2 RX=3 RX=3 or or or or RX=3 
u 
c SX=O SX=l STM STM STM STM DAD, SX=7 SX=O SX=l STM STM STM STM SX=7 :> 

u.. 9 X=2 X=2 X=2 X=2 DSB, X=3 X=3 X=3 X=3 ...... 
0 Y=2 Y=3 Y=4 Y=5 or Y=2 Y=3 Y=4 Y=5 
r-

CPD r-

I 
00 X=2 
.:? Y=6 di 
...... 
0 

FA FA LDM LDM LDM FA FA FA LDM LDM FA Q) 

:> RX=4 RX=4 or or or RX=4 RX=5 RX=5 or or RX=5 
0 

A SX=O SX=l STM STM STM SX=7 SX=O SX=l STM STM > SX=7 
- X=4 X=4 X=4 X=5 X=5 0 
E Y=2 Y=3 Y=4 Y=2 Y=3 u 
Q) 

-u 
~ FA FA LDM FA FA FA FA 
Q) 

RX=6 RX=6 RX=6 RX=7 RX=7 RX=7 ::r: or 
B SX=O SX=l STM SX=7 SX=O SX=l SX=7 

X=6 
Y=2 

Note: Except for function values XI801 (copy contents of DATA switches into A register) and X1 9f1 (SFM; Set Floating --
Mode), which are one-word instructions, each of the other assigned function values within this group is the first 
word of a two-word instruction sequence. These function values are identified and described with the following 
symbols and mnemonics: 

CPD A doubleword compare instruction. 

DAD A doubleword add instruction. 

DSB A doubleword subtract instruction. 

FA A field addressing instruction. 

GR A general register instruction. The accompanying value (2-6) indicates the general register that is used 
as the accumulator. 

LDD A doubleword load instruction. 

LDM A multiple register (other than doubleword) load instruction. 

RX For field addressing instructions, RX=l signifies no indexing register, RX=2 through RX=7 signify the 
indexing register. 

STD A doubleword store instruction. 

STM A multiple register (other than doubleword) store instruction. 

SX For field addressing instructions, SX=O signifies no self-indexing, SX=l signifies self-incrementing, 
SX=7 signifies self-decrementing. 

X For multiple register and doubleword instructions, the X value signifies the number of registers. 

Y For multiple register and doubleword instructions, the Y value signifies the first register. 

Appendix C 93 



C --I 
CX) 

~ D 
CQ~ 
..... Q) o .-

LL 
Q) c: 

2 0 o .-
>0 E 
- 5 
~LL .- ..... 
u 0 
Q) 

-0 
0 x 
Q) 

F :c 

Note: ---

I 
CX) 

~ 
a5~ 
..... Q) o .­LL 

Q) c: 
2 0 
0·-
>"t 
- 5 
~LL .- ..... u 0 
Q) 

-0 

~ 
Q) 

:c 

Note: 

o 

2 

3 

Table C-4. READ DIRECT (Mode 0) Instruction, Function Values XI CO'-X'FF I 

Hexadecimal Value of Bits 12-15 of Function Field 

0 1 2 3 4 5 6 7 S 9 A B C D E F 

Copy 
(PSW1) 

Copy Copy Copy Copy 
(PSW1) (PSW1 ); (PSW1 ); (PSW1); 

reset EI reset II reset 
EI & II 

Copy Copy Copy Copy 
(PSWl ) (PSW1 ); (PSW1); (PSW1); 

set EI set II set 
EI & II 

Each of the assigned function values causes the contents of the first word of the Program Status Doubleword (PSWl) 
to be copied into the A register (accumulator); zeros are copied into those positions that do not correspond to a 
program status indicator. In addition, function values X'E41, X'ES', X'EC', X'F41, X'F81, and X'FC' permit the 
EI and II bits to be set or reset, as indicated. 

Table C-5. WRITE DIRECT (Mode 0) Instruction, Function Values X'00'-X'3F' 

Hexadecimal Value of Bits 12-15 of Function Fi eld 

o 7 S F 

~-r-__ -Copy (A) into specified I/O channel register-___. .... 

Except for function value XIOOI, which is unassigned, each of the function values specifies either a general 
or I/O channel register that is to receive a word of information, as copied from the A register. (These copy in­
structions are the converse of READ DIRECT (Mode 0) instructions with the same function values.) 

94 Appendix C 



Table C-6. WRITE DIRECT (Mode 0) Instruction, Function Values X'40 '-X'7F' 

Hexadecimal Value of Bits 12-15 of Function Field 

o 7 S F 

l! 
co -u 4 P A o ~ ~~ ____ -L ____ ~ __ ~ ____ _L ____ ~ __ ~~ __ ~ ____ ~ ____ ~ __ ~ ____ -L ____ ~ ____ ~ __ ~~ __ ~ ____ ~ 

Q)ll. 
::l C 

"O.Q 5 >t o § ~-r----~----+---~----~----~--~~--~----~----~--~----~----~----~--~~--~----~ 
Ell. 

.~ 0 
-u - 6 
~ I r--+----~----~--~-----L----~--~~--~----~----~--~----~----~----~--~~--_L ____ ~ 
Q)CX) 
I. 

7 

Notes: 1. Except for function value X'40', which is unassigned, the function value for a specified register is X'40' 
greater than the address of the spec ified register. 

2. Copy bit 0 of specified general register into Overflow; then reset bit 0 of specified general register to O. 

3. Copy bit 0 of specified I/O channel register into Overflow; then reset bit 0 of specified I/O channel regis­
ter to O. 

Table C-7. WRITE DIRECT (Mode 0) Instruction, Function Values X' 80-X'BF' 

Hexadecimal Value of Bits 12-15 of Function Field 

0 1 2 3 4 5 6 7 S 9 A B C D E F 

.., Copy (A) into specified protection register 
--u --I Q) S XIOI 
CX) .-

ll. 
X' l 1 X' 2

1 X'3
1 X'4

1 X'5
1 X' 6

1 XI?, XISI X'9 1 XlA' X'B ' XICI X'D ' X'E ' X'F ' 
II) 

~ g 9 '+-:;: 
o 0 

C 
Q) ::l 

A :::Ill. c ...... 
> 0 

B . 

Note: Except for function values XISOI_XISF', all function values are unassigned. 

Table C-S. WRITE DIRECT (Mode 0) Instruction, Function Values X'CO'-X'FF' 

Hexadecimal Value of Bits 12-15 of Function Field 

0 1 2 3 4 5 6 7 S 9 A B C D E F 

~ 
C 

Diagnose Diagnose 
i:i5~ IOP-1 IOP-2 
...... Q) o .-

ll. 
Q) C Set Wait Set Exit 2 0 D 0·- flip-flop condition >t 

_ C 
o :::I 
Ell. Reset EI Reset II Reset EI .- ...... E o 0 to 0 to 0 & II to 0 Q) ,,-
o-
X I 
Q)CX) Set EI Set II Set EI 

I F to 1 to 1 &IItol 

Note: Except for the ten function values shown above, all function values within this group are unassigned. 

... 

Appendi x C 95 



Xerox Corporation 
701 South Aviation Boulevard 
EI Segundo, California 90245 

Reader Comment Form 
We would appreciate your comments and suggestions for improving this publ ication. 

XEROX 

Publ ication No. I Rev. Letter I Tit Ie I Current Date 

How did you use this publication? Is the material presented effectively? 

o Learning D Installing 0 Sales o Fully Covered DWell D Well Organized o Clear III ustrated D Reference D Maintaining D Operating 

What is your overall rating of this publication? What is your occupation? 

D Very Good D Fair D Very Poor 

o Good D Poor 

Your other comments may be entered here. Please be specific and give page, column, and line number references where 
applicable. To report errors, Please use the Xerox Software Improvement or Difficulty Report (1188) instead of this form. 

Your Name & Return Address 

2190(12172) 
Thank You For Your Interest. (fold & fasten as shown on back, no postage needed if mai led in U.S.A.) 



Staple 

Fold 

Attn: Programming Publications 

Fold 

BUSINESS REPLY MAIL 
No postage stamp necessary if mailed in the United States 

Postage will be paid by 

Xerox Corporation 
701 South Aviation Boulevard 
EI Segundo, California 90245 

Staple 

First Class 
Permit No. 229 

EI Segundo, 
California 



XEROX 530 INSTRUCTIONS (OPERATION CODES) 

Format
t 

Syntax 
tt 

First Word Second Ward Command Argu'!Ient Instruction Name ---, 
0000 RIXS D WD *a,x,b Write Direct 

0001 RIXS D RD *o,x, b Read Direct 
000 I 0000 0 100 000 1 SIO Start Input/Output 
0'00 1 0000 0100 0010 no Test Input/Output 
0001 0000 0100 0100 TDV Test Device 

000 1 0000 0100 1000 HIO Halt Input/Output 
0001 00000101 0000 AIO Acknowledge I/O Interrupt 
000 1 0000 10 RX SX 0101 RIXS D eLF, rx, sx *o,x,b Compare Logical Field 
0001 ood'o 10 RX SX 1000 RIXS D LLF, rx, sx *o,x,b Load Logical J'ield 
0001 0000 10 RX SX 1001 RIXS D LAF,rx., sx *a,x,b Load Arithmetic Field 
0001 0000 10 RX SX 1010 RIXS D STF, rx, sx *a,x, b Store Field optional 
000 I 0000 10 RX SX 1011 RIXS D STZ,rx, sx *o,x,b Store Zero Field 
000 I 0000 10 RX SX 1101 RIXS D CAF,rx,sx *a,x,b Compare Arithmetic Field 
0001 0000 10 RX SX 1100 RIXS D SOF,rx, sx *a,x, b Store Ones Field 
000 1 0000 10 RX SX I I 11 RIXS D SLF, rX,5X *o,x, b Sense Left Bit of Field 
0001 0000 10001 G R 1000 RIXS D LW,r *a,x, b Load Word 
0001 0000 10001 GR 1001 RIXS D AND,r *a,x, b Logical And (two-word instruction) 
00010000 10001 GR 1010 RIXS D AW,r *a,x, b Add Word 
0001 0000 10001 GR 1011 RIXS D SW,r *o,x,b Subtract Word 
0001 0000 10.001 GR 1101 RIXS D CW,r *o,x, b Compare Word 
0001 0000 10001 GR 11 10 RIXS D STW,r *a,x,b Store Word 
0001 0000 10 XXX YYY 1000 RIXS D LDM *0, x, b, fr, nr Load Multiple 
0001 0000 10 XXX YYY 1110 RIXS D STM *o,x, b, fr, nr Store Multiple 
0001000010 010110 1000 RIXS D LDD *a,x,b Load Double 
0001 0000 10010 110 1010 RIXS D DAD *o,x, b Double Add 
0001 0000 10010 110 1011 RIXS D DSB *0, X, b Double Subtract 
0001 0000 10010 110 1101 RIXS D CPQ *o,x, b Compare'Double 
0001 0000 10010 110 1110 RIXS D STD *a,x,b Store Double 
0001 0000 1001 1110 SFM Set Floating Mode (optional) 
0010 RIXS D S *a,x, b Shift 
0010 0000 000 cou nt SARS c,x,b Shift Arithmetic Right Single 
0010 0000 100 cou~t SARD c,x,b Shift Arithmetic Right Double 
00100000001 count SALS c, X, b Shift Arithmetic Left Single 
00100000 101 count SALD c,x,b Shift Arithmetic Left Double 
0010 0000 010 count SCRS c,x,b Shift Circular Right Single 
0010 0000 110 count SCRD c,x,b Shift Circular Right Double 
0010 0000 011 count SCLS c,x,b Shift Circular Left Single 
00100000 111 count SCLD c/x,b Shift Circular Left Double 
0011 RIXS D MUL or FMP *o,x,b Multiply or Floating Multiply (optional) if FM bit is set 
0100 RIXS D B *a,x,b Branch 
0101 RIXS D DIVor FDV *o,x,b Divide, or Floating Divide (optional) if FM bit is set 
0110 ODDS D BNO a Branch if No Overflow 
01100015 D BNC a Branch if No Carry 
01100lOSD BAZ a Branch if Accumulator Zero 
0110 01lS D BIX a Branch on Incrementing Index 
01 io 100S D BXNO a Branch on Incrementing Index and No Overflow 

0110 101 S D BXNC a Branch on Incrementing Index and No Carry 

0110 110S D BEN a Branch if Extended Accumulator Negative 
0110 I11SD BAN a Branch if Accumulator Negative 

0111 00000 DR I/S SR RAND *s,d Register AND 
0111 0001 0 DR I/S SR RAND! *s, d Register AND and Increment 
0111 0010 0 DR I/s SR RANDC *5,d Register AND and Carry 
0111 01000 DR I/s SR ROR *5, d Register OR 
0111 0100 1 DR I/s SR RCPY *s, d Reg ister Copy 
011101010 DR I/s SR RORI *5, d Register OR and Increment 
0111 0101 1 DR I/s SR RCPYI *5, d Register Copy and Increment 
011 I 01100 DR I/s SR RORC *s,d Register OR and Carry 
0111 0110 1 DR I/s SR RCPYC *5, d Register Copy and Carry 
0111 10000 DR I/s SR REOR *5, d Register Exclusive OR 
0111 1001 0 DR I/s SR REORI *5,d Register Exclusive OR and Increment 

0111 1010 0 DR I/s SR REORC *s,d Register Exclusive OR and Carry 
0111 11000 DR I/S SR RADD *s,d Register Add 
0111 1100 I DR I/s SR RCLA *s,d Register Clear and Add 
0111 1101 0 DR I/s SR RADDI *s, d Register Add and Increment 
0111 1101 1 DR I/s SR RCLAI *s,d Register Clear, Add and Increment 
011111100 DR I/s SR RADDC *s,d Reg i ster Add and Carry 
0111 1110 1 DR I/s SR RCLAC *s,d Register Clear, Add, and Carry 
1000 RIXS D LDA or FLD *a,)(., b Load Register A, or Floating Load (optional) if FM bit is set 
1001 RIXS D AND *a,x,b And, Logical (one-word instruction) 
1010 RIXS D ADD or FAD *a,x,b Add, or Floating Add (optional) if FM bit is set 
1011 RIXS D SUB or FSB *o,x,b Subtract, or Floating Subtract (optional) if FM bit is set 
1100 RIXS D LDX *o,x,b Load Index 
1101 RIXS D CP or FCP *a,x,b Compare, or Floating Compare (optional) if FM bit is set 
1110 RIXS D STA or FST *o,x,b Store Register A, or Floating Store (optional) if FM bit is set 
1111 RIXS D 1M *a,x,b Increment Memory 

tExcept for using, binary notation (rather than hexadecimal) to represent fixed fields, the format is the same as described in Chapters 3 and 4. 

ttRefer to the Xerox Extended Symbol/LN, OPS Reference Manual, 901052, for further information on symbolic notation. 

Poge 

29 
32 
57 
57 
58 
58 
58 
50 
49 
49 
49 
50 
51 
50 
51 
34 
36 
35 
35 
36 
35 
37 
37 
37 
38 
38 
38 
37 
41 
22 
22 
22 
23 
23 
23 
23 
24 
24 
28,43 
24 
28,43 
25 
25 
25 
25 
25 
25 
25 
24 
27 
27 
28 
27 
26 
27 
27 
28 
27 
27 
27 
28 
26 
28 
27 
28 
27 
28 
20,42 
21 
21,42 
21,42 
21 
24,43 
21,42 
21 



701 South Aviation Boulevard 
EI Segundo, Cal ifornia 90245 
213679-4511 

XEROXJ 

XERDX3 is a trademark 01 XEROX CORPORATION 


	0001
	0002
	001
	002
	003
	004
	005
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	replyA
	replyB
	xBackA
	xBackB

