
Scientific Data Systems e XEROX COMPANY

5P1S SIGMR 2/3 BASIC CONTROL MONITOR

Reference Manual

BASIC CONTROL MONITOR
REFERENCE MANUAL

for

SOS SIGMA 2/3 COMPUTERS

90 10 MC

August 1969

Pri ce: $3. 00

SCIENTIFIC DATA SYSTEMS A XEROX COMPANy/701 South Aviation Boulevard/EI Segundo, California 90245

C 1968. 1969. Scientific Data Systems. Inc. Printed in U.S.A

REVISION

This publication, SOS 90 10 64C, is a revision of the SOS Sigma 2 Basic Control Monitor
Reference Manual, SOS 90 10 64B (dated March 1969). A change in text from that of the
previous manual is indicated by a vertical line in the margin of the page. Most of the
revisions consist of updating Sigma 2 documentation and software to apply to Sigma 2/3
documentation and software. The symbol 0 is used in the margin throughout this manua I
to indicate capabilities limited to users of SOS Sigma 3 hardware.

RELATED PUBLICATIONS

Title

SOS Sigma 2 Computer Reference Manual

SOS Sigma 3 Computer Reference Manual

SOS Sigma 2/3 Basic Control Monitor Operations Manual

SOS Sigma 2/3 Symbol Reference Manual

SOS Sigma 2/3 Basic FORTRAN/Basic FORTRAN IV Reference Manual

SOS Sigma 2/3 Basic FORTRAN Operations Manual

SOS Sigma 2/3 Basi c FORTRAN/Basic FORTRAN IV Library/Run-Time
Technical Manual

NOTICE

Publ ication No.

900964

90 15 92

90 15 06

90 10 51

900967

90 1061

90 1036

The specifications of the software system described in this publication are subject to change without notice. The availabi lity or performance of some features may
depend on a specific configuration of equipment such as additional tape units or larger memory. Customers shou Id consu It their SDS sales representative for detai Is.

ii

CONTENTS

l. INTRODUCTION KP 12
FG 12

System Features 1 CP 12
Hardware Configuration Requirements 1
BCM Subsystems 2 4. LINKING LOADER 13

Language Translators 2
Serv i ce Programs 2 Introduction 13

Basic Definitions 2 Operating Sequence and Options 13
Task 2 Loader Control Commands 13
Program 3 LOAD 13
Foreground 3 $LD 14
Background 3 $LB 14
Monitor Service Routines 3 $MP, $ML 14
Priority Level 3 $MD 15
Temporary Stack 3 $XZ, $XR 15
Floating Accumulator 3 IEOD 15
BCM Control Task 4 Absolute Run-Time Job Setup 15
Device-File Number 4 Mapping 15
Operational Label 4 Loader Symbol Table 17
Device Number 4 Diagnostic Messages 18
Device Type 4 Severity Levels 18
Device Unit Number 4

BCM Characteristics 4 5. BCM SYSTEM LOADER 19
Resident Section 4
Non-Resident Section 4 Introducti on 19
Priority Levels 4 Functions 19
Mon itor Tasks 5 FORTRAN Absolute Run-Time 19

Core Memory Allocation 6 Restrictions 19
Control Commands 19

2. CONTROL COMMANDS 7 SLOAD 19
$SL 20

Introducti on 7 $LB 20
ABS 7 $ID 20
ASSIGN 7 SPA 20
C: 8 $DF 20
EOD 8 $MD, $MP, $ML 20
FASSIGN 8 IEOD 20
FIN 8 Absolute Run-Time Job Setup 20
FSKIP 8 Error Messages 21
JOB 8
PAUSE 9 6. MONITOR SERVICE ROUTINES 22
REWIND 9
UNLOAD 9 Branching to Service Routines 22
WEOF 9 Service Routines 24

Processor Subsystem Control Commands and M:READ 24
BCM Interface 9 M:WRITE 28

Control Commands in Minimum BCM Systems __ 10 M:CTRL 30
Sample Deck Setups Under BCM 10 M:IOEX 31

M:TERM 33
M:ABORT 33

3. OPERA TOR COMMUNICATION 11 M:SAVE 33
M:EXIT 33

System Communication 11 M:INHEX 34
Mon i tor T ypeouts 11 M:HEXIN 34

Operator Control 11
Unsol icited Key-Ins 11 7. REAL-TIME PROGRAMMING 35

S 11
W 12 Schedul ing Resident Foreground Tasks 35
X 12 Task Control Block Functions 35

iii

Generating Foreground Tasks 37 Operating Characteristi cs 55
Loading Resident Foreground Tasks 37 Call Dump 55
Foreground and I/O Priorities 38 Control Commands 55

*DUMP 55
8. I/O OPERATIONS 39 Sequence Editor 56

Sequence Editor Operational Labels 56
Introduction 39 Sequence Editor Operating Characteristics __ 56
I/O Initiation 39 Calling Sequence Editor 56
End Action 39 Sequence Editor Control Commands 57
Logical/Physical Device Equivalence 39 IDENT 57
FORTRAN Binary I/O Record Format 41 DELETE 57

SUPPRESS 57

9. UTILITY SUBSYSTEM 42
SEQUENCE 57

Sequence Editor Error Messages 58

Introduction 42
Calling the Utility Subsystem 42 10. DEBUG PROGRAM 59

Utility Subsystem Response 42
Uti lity Subsystem Control 42 Introduction 59

Uti I ity Subsystem Executive 42 Calls to Debug 59
Source Input Interpreter 43
Control Function Processor 43 1l. SYSTEM GENERATION 60

! *FSKIP 43
!*RSKIP 44 Introduction 60
!*FBACK 44 Initialization Procedure 60
!*RBACK 45 Input Format 60
!*REWIND 45 Input Parameters 60
!*UNLOAD 45 Error Messages 64
!*MESSAGE 46 Background Processors 64
!*PAUSE 46
!*WEOF 46 INDEX 73
! *PRESTORE 46

Operator Communication Routine 46
I/O Error Messages 47 APPENDIXES
Control Routine Operational Labels 48

COPY 48 A. SIGMA 2/3 STANDARD OBJECT LANGUAGE 66
Operational Labels Used 48
Operating Characteristics 49 Introduction 66
Call ing COpy 49 Description of Object Modules 66

*OPLBS 49 General Description 66
*COPY 49 Bi nary Object Record Format 66
*VERIFY 49 Format of Record Header 67

Record Editor 50 Load I tern Format 67
Operational Labels Used 50 Format of Load Item Control (Header) Word _ 67
Operati ng Characteristi cs 50 Summary of Load I tem Formats 67
Calling Record Editor 50
Control Commands 51 B. STANDARD BCM ABORT CODES 72

*LIST 51
*MODIFY 51
*DELETE 52 ILLUSTRATIONS
*INSERT 52
*CHANGE 52 1. Relative Priority Levels 5

Object Module Editor 52 2. BCM Core Memory Allocation (Example) 6
Operational Labels 52 3. Assembly Without Magnetic Scratch Tape 10
Operating Characteristics 52 4. Assembly with Magnetic Scratch Tape 10
Calling Object Module Editor 54 5. Load Example for Background Program 10
Control Commands 54 6. Background Memory Allocation 13

*LIST 54 7. Overlaying Linking Loader for Absolute
*MODIFY 54 Run-Time 16
*INSERT 54 8. Map Output Format 16
*DELETE 55 9. System Loader Job Setup for Absol ute

Dump 55 Run-Time Output 21
Operational Labels Used 55 10. Deck Set-up to Generate a Foreground Program _ 37

iv

11. Logical/Physical Equivalence 40
12. Deck Setup to Punch Absol ute Background

Processor 64
13. Deck Setup to Punch Absolute Utility Package __ 65
A-l. Typical Object Module of M Records 66
A-2. Displacement Chain Format 71

TABLES

1. BCM Control Commands 9
2. Linking Loader Diagnostic Messages _____ 18
3. System Loader Diagnostic Messages ______ 21

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.

BCM Zero Table _____________ 22

Standard Constants 23
Transfer Vector for Monitor Service Routines __ 24
Mon i tor Constants 24
Return Status from M:READ, M:WRITE, M:CTRL _ 25
I/O Completion Codes 26
M:READ I/O Operations Summary 28
M:WRITE I/O Operations Summary 29
M:IOEX Return Status 32
Task Control Block (TCB) 36
Standard FORTRAN Device Unit Numbers 40
Standard Background Operational Labels 40
Input Options and Parameters 60

v

1. INTRODUCTION

SYSTEM FEATURES

The SDS Sigma 2/3 Basic Control Monitor is a standard soft­
ware system avai lable for use with Sigma 2/3 computers and
has full real-time capabil ity with some provision for batch
processing in the background. The Basic Control Monitort

can partition memory for simultaneous residency of real­
time foreground tasks, Monitor resident space, and batch
(background) operations.

The real-time requirements of the Monitor are satisfied with
the foil owi ng features:

• All Monitor service routines are reentrant.

• All background requests are serviced below the prior­
ity level of the real-time foreground.

• Very low Monitor overhead is required in the proces­
sing of input/output requests.

• Interrupts are not inhibited for more than 100 CPU
mi croseconds. tt

Regardless of whether the system is used for foreground/
background multiprogramming, the BCM is capable of hand­
ling, independently and concurrently, up to 132 real-time
foreground tasks, each with a unique priority level.

When multiprogramming with foreground/background, the
foreground has access to a II privi leged instructions in
Sigma 2/3 computers. The background is checked by both
hardware and software to provide complete protection of
the foreground programs for both core memory and peripheral
operation.

The BCM allows the user to assemble, compile, or perform
data processing in the background (concurrent with fore­
ground operations) to absorb any CPU time not being used
to perform the required foreground operations. This is an
important feature where fast response times are required,
but where the overall real-time system load is small. The
BCM makes use of the special Sigma 2/3 hardware for mem­
ory protection and priority interrupts to accomplish the con­
current foreground/background operati on.

For maximum user flexibility and maximum control of inpuT/
output, the user has the option to specify his own 10CDs
and order bytes, perform independent error recovery, and

tHereinafter referred to as lithe Monitor" or lithe BCM".

ttA CPU miscrosecond is defined as the amount of CPU time
used when no I/O is in progress. The figure of 100 assumes
multiply/divide hardware. Multiply/divide software sim­
ulation takes about 250 microseconds at the multiply/divide
interrupt level.

be informed by the BCM when an I/O operation has termin­
ated. Alternatively, for greater ease of programming and
device independence, the BCM will create the 10CDs and
order bytes and will perform standard error checking and
standard error recovery.

Many input/output editing features are available to speed
paper tape operations. Through a unique system of software
IIcommand chaining ll the BCM is able to drive low-speed,
byte-oriented peripherals at full speed without interfering
with real-time responsiveness in the system.

The BCM provides two levels of logical (rather than physi­
cal) device referencing, enabling system configurations to
change or grow without reprogramming. Further, through
many device-independent features and by the use of stan­
dard media formats, input and output can be directed to
card equipment, paper tape equipment, or magnetic tape
with no changes in the user's program.

By use of a special system initialization program, each
installation can specify the peripheral devices available,
the hardware options and interrupt levels, and the amount
of core memory to be devoted to both real-time foreground
and background.

The Symbol assembler, Basic FORTRAN compiler, Concor­
dance program, mathematics library, and paper-tape utility
routines are available under the BCM. Limited debugging
capability is also available.

HARDWARE CONFIGURATION REQUIREMENTS
The min imum hardware configurati on requirements are

l. Sigma 2 CPU or SDS Mode I 8001 or
Sigma 3 CPU SDS Model 8101

2. Core memory SDS Model 8051
(4096 words)

3. Memory parit/ SDS Model 8012
interrupt (incl udes
watchdog timer in
Sigma 3)

4. Memory protection SDS Model 8014

5. One interrupt level SDS Model 8022,8023, or
(for BCM Control Task) 8011 (external, integral,

or counter-equals-zero)

6. Memory increment SDS Model 8053
(4096 words)

7. Keyboard/Printer SDS Model 8092
with paper tape
reader/punch

tMemory parity and memory protection are required only for
concurrent foreground/background.

Introduction

A Keyboard/Printer (50S Model 8091) and a Paper Tape
Input/Output System (SDS Model 7060) are a highl y recom­
mended substitution for the SDS Model 8092.

An additional interrupt level is required for each foreground
task under the BCM.

BCM SUBSYSTEMS

A variety of subsystems and processing programs are avail­
able under the BCM, all of which operate as background
programs within the system.

LANGUAGE TRANSLATORS

SYMBOL

The basic Symbol assembler provides the user with a symbolic,
machine-oriented language and a language processor. The
assembler accepts a program coded in Symbol language,
processes it, and outputs a binary object program and an
assembly listing. The standard object language format is
described in Appendix A.

The Symbol assembler and Concordance program are fully
described in the Sigma 2/3 Symbol Reference Manua I (Pub­
lication No. 90 1051).

BASIC FORTRAN

Basic FORTRAN is a mathematically oriented language and
processor that provides simplified programming for scientific,
engineering, and mathematical applications. Basic FOR­
TRAN is completely described in the Sigma 2/3 Basic
FORTRAN Reference Manual (Publication No. 900967),
and Sigma 2/3 Basic FORTRAN Operations Manual (Publi­
cation No. 90 10 61).

SERVICE PROGRAMS

CONCORDANCE

A subprogram available to the Symbol user under the BCM
is Concordance. The Concordance subprogram provides the
user with a listing of program symbols and, by line number,
all references to these symbols. Opti onal control cards per­
mit the inclusion or exclusion of specified symbols in the
local, nonlocal, or operation/directive code sections of
the printout.

The omission of the optional control cards yields a standard
Concordance listing containing all program symbols except
standard operation and directive code mnemonics.

LINKING LOADER

The Linking (relocatable) Loader performs the following
functions:

1. Loads one or more binary object programs from the BI
(binary input) device.

2. Resol ves ai I cross references among programs and sub­
programs, and processes all call s to library routi nes.

2 BCM Subsystems/Basic Definitions

3. Writes a memory map on the LO (listing output) de­
vice, showing the address of each external definition
in the object program.

4. Updates instructions in the loaded program with cor­
rections suppl ied at load time.

SYSTEM LOADER

The System Loader is an extended version of the Linking
Loader. It allows for the preparation of foreground tasks,
background programs, and processors from absol ute or re­
locatable decks. A complete description of the System
Loader is given in Chapter 5.

UTILITY SUBSYSTEM

The Utility processor operates in the background and pro­
vides the BCM user with a media copy routine, a record
editor, an object module editor, a dump routine, and a
sequence number editor.

A complete description of the Utility Subsystem is given in
Chapter 9.

DEBUG PROGRAM

The Debug program operates in the background and permits
the BCM user to dump selected portions of memory in a hexa­
decimal format. This is a highly desirable feature to ex­
pedite debugging. Debug can be loaded like any library
routine. A description of the Debug program is given in
Chapter 10.

BASIC DEFINITIONS

TASK

A task is an entire set of operations performed independently
of other operations in the system. A task, logically, con-
si sts of three parts (that mayor may not be physi ca II y
contiguous).

1. A Task Control Block (TCB) that contains both status
information and the contents of the registers from the
interrupted task (see T abl e 13).

2. A task body that consists of a sequence of instructions
exec uted in. response to the task interrupt.

3: A task temporary storage area for the Monitor service
routines that provides reentrancy for these routines.

Exampl es of tasks are:

1. Real-time foreground routines connected to external
interrupts.

2. Monitor I/O Interrupt routine.

3. Monitor Control Panel Interrupt routine.

4. Each of the override group of interrupts.

5. BCM Control routi ne (for I oadi ng, abort, etc.).

6. Background program, that operates as a single task.

A task may use Monitor service routines (defined below) but
must never "branch II to another task. One task may "trigger"
another task at the interrupt level of the receiving task by
means of a Write Direct instruction. There is a prescribed
entrance and exit procedure for real-time tasks in the sys­
tem, described in Chapter 7.

PROGRAM

A program is one or more tasks (and, optionally, some
common data storage) that are loaded and controlled as a
unit. There are two types of programs under the BCM:

1. Resident foreground programs that consist of one or
more tasks, special routines for receiving I/O inter­
rupt responses, and any common storage that may
be needed.

2. Background programs, consisting of a single task.

FOREGROUND

Foreground refers to the real-time or Monitor tasks
that are operated in protected memory on a real-time basis.
There can be any number of foreground tasks, up to the num­
ber of internal and external interrupts possible in the sys­
tem. However, since all foreground tasks must be resi­
dent, the fundamental limitation is the amount of core
space avai lable.

BACKGROUND

Background refers to a nonreal-time program executed in
nonprotected memory, when such memory is available. The
background program uses available CPU time (that is not
needed by the real-time foreground tasks) to provide higher
efficiency in the system. Background programs may be
assembl ies, compi lati ons, or data processing programs.
There are two fundamental restrictions in background
programming:

1. The Sigma 2/3 hardware and the BCM software must com­
pletely and absolutely protect the resident foreground
programs from the background program, in terms of I/O
and core memory protection. Thus, an undebugged
background program is never allowed to interfere with
real-time foreground tasks; it must operate in a non­
protected memory, and it must use the Monitor service
routines for all I/O or other privileged operations.

2. The background program must use the CPU time that is
available after the real-time foreground is satisfied.
Thus, the background program will not be guaranteed
any processing time if the foreground is very active.
The background must not inhibit interrupts or do any­
thing else that would interfere with real-time fore­
ground responsiveness.

MONITOR SERVICE ROUTINES

These are resident parts of the BCM that can be used by
real-ti me foreground tasks, by the bac kground task, or by
BCM tasks. The routines are all coded in a reentrant man­
ner and those that require temporary storage use the tempor­
ary stack space pointed to by the TC B for each task.

PRIORITY LEVEL
The Interrupt Priority Sequence (described in detail in the
SDS Sigma 2 and Sigma 3 Computer Reference Manuals), is
the basis for the priority level of tasks in the BCM system.
That is, the priority level of a task is dependent on the
position of the associated hardware interrupt in the inter­
rupt priority chain. Thus, no two tasks in the system have
the same priority level. The background program is not
connected to any priority in the system, i. e., below any
of the hardware priority levels.

TEMPORARY STACK

This is a block of core storage associated with a particular
task, and is used by the Monitor service routines for tem­
porary storage to achieve reentrance in the service routines.
An entry in the TCB for a task points to the temporary stack
space. When the task is active and is using either the
Monitor service routines or the floating accumulator (de­
fined below) the beginning of the temporary stack space for
the active task must be set into core memory location 0006
(after the previous contents of 0006 are saved).

When the Monitor service routines need temporary space,
they load the contents of location 0006 into the base reg­
ister, and use this to point to the temporary stack space for
the active task. The Monitor service routine M:SAVE sets
this pointer. The background temp stack is the first 32 words
of background space.

FLOATING ACCUMULATOR

This is a software convention that is used extensively by the
FORTRAN compi ler, the mathematics library, and al so can
be used by any Symbol programs. The floating-point accu­
mulator is assumed to occupy the first five locations of the
temporary stack space for each task that uses a temporary
stack space. The floating-point accumulator is used like a
hardware accumulator, i.e., to build up a cumulative resul t
from single-precision real (floating-point) calculations. The
single-precision real number is assumed to occupy the first
two of the five locations. The third and fourth locations
are used for temporary scratch storage, and the fifth loca­
tion contains error flags.

As a convenience in referencing the floating accumulator,
locations 0001 through 0005 are set with pointers to the
actual core locations. This is done when entry is made to
the active task (and is performed by the Monitor service
routine M:SAVE when the routine is used). Location 0001
contains the value of location 0006, location 0002 contains
the value in location 0006 plus 1, and so forth. Therefore,
indirect addressing on locations 0001 through 0005 will re­
sult in storing, loading, or modifying the actual floating
accumulator.

Basic Definitions 3

BCM CONTROL TASK

The BCM Control Task control s the readi ng of control com­
mands, loading background programs, interpreting unsol i­
cited key-ins, and aborting or terminating the background
job. The BCM Control Task must be connected to the lowest
priority hardware interrupt in the priority sequence during
system initialization.

The BCM Control Task uses the same entrance and exit pro­
cedure and the same type of TCB that a real-time fore­
ground task does. Since its main function is to control the
background space, it must be lower in the priority sequence
than the real-time tasks.

It is necessary that this be a separate task (and not part of
the background priority level) so that effective and respon­
sive control can be made for purposes of unsolicited key-ins.
Also, if the background task is in a loop and must be aborted,
the Monitor must have a hardware priority level available
for immediate control.

All of the BCM functions associated with this level operate
as subtasks to the BCM Control Task and are not reentrant.

DEVICE-FILE NUMBER

The device-file number is a logical means of referring to
a physical, peripheral device. The term inc! udes both the
words "device" and "file" to imply both a physical device
and a collection of information on the device, since the
current position of the device is associated with the current
file of information.

The device-file number is an integer, and the set of all
valid device-file numbers in the BCM system is the set of
integers from 1 to n (defined at system initialization).

The device-file number is an index to a table of information,
maintained by the BCM, that concerns the activity associ­
ated with both a particular device and a current file on the
device. (The use of the device-file number is explained
more full y in Chapter 8.)

OPERATIONAL LABEL

The convention of operational labels is used for the proces­
sors {such as the Symbol assembler or the Basic FORTRAN
compiler} to make them device-independent, and is also
used to give some mnemonic value to the input/output oper­
ations associated with the processors.

An operational label is a two-byte EBCDIC name that is
used as a label in referring to a device-file number.

The standard operational labels can be reassigned to differ­
ent device file numbers by means of system initialization
changes or by an ASSIGN control command. There is one
table of operational labels used for the background and
another for the foreground. (The device fi I e numbers are
also stored as binary integer values in the two tables that
correspond to foreground and background use, respectively.)

4 BCM Characteristics

DEVICE NUMBER

The device number is a two-character hexadecimal repre­
sentation of the physical device number shown in the device
selection switches. It is generally set when the system is
installed, and need not be changed unless the device selec­
tion switches are changed.

DEVICE TYPE

Adevice type is a name (and a collection of characteristics)
associated with a particular class of peripheral devices.
There can be either one devi ce on the system bel ongi ng to
a given device type, such as a CR devi ce (for a card reader),
or there can be several devices of the same type, such as
MT (for magnetic tapes). This is a convenient method of
referring to a device and an economical way to contain in­
formation common to several devices.

DEVICE UNIT NUMBER

Basic FORTRAN refers to peripheral devices by an integer
value, called a device unit number. The device unit num­
bers can be equated to a device-file number by FASSIGN
control commands as a way of equating the device unit nu~­
bers to an actual peripheral device, or can be defined at
systems generation.

BCM CHARACTERISTICS

RESIDENT SECTION

The Basic Control Monitor consists of the following resident
parts:

1. Several independent tasks (memory parity, Multiply/
Divide, etc.) that operate from the hardware interrupts,
as do the rea I-ti me tasks. The tasks are not reentrant.
They may communi cate with one another and may use
some of the Monitor service routines, as do real-time
tasks.

2. Several reentrant Monitor service routines, used by any
tasks in the system. These are described in Chapter 6.

3. Constants and tabl es in the zero-tabl e (locations 0 to
255, decimal). See Core Memory Allocation below for
a description of the zero-table.

4. Input/output constants and status information, outside
the zero-table.

NON-RESIDENT SECTION

The non-resident part of the Basic Control Monitor (system
initialization portion) is loaded into core storage from 8K
downward, and is used to select the optional features of the
BCM and also to initialize the input/output constants.

PRIORITY LEVELS

The relative priorities of the separate Monitor tasks are
shown in Figure 1. AI though these tasks are not reentrant

(there is no need for them to be reentrant), they are serial I y
reusable; that is, as soon as one of these tasks finishes pro­
cessing a request for one operation or real-ti me task, it can
then immediately process another operation or request. For
example, I/O interrupts are processed one at a time, with
the highest priority device always being processed first if
several interrupts are waiting; but as soon as one interrupt
request is completely processed, another request for a sep­
arate device can then be processed.

Highest Memory Parity Error

Protection Violation

Mul tiply Exception

Divide Exception

Real-time Task(s), if any higher than I/O

Input/Output

Control Panel Interrupt

Real-time Task(s), if any lower than I/O

BCM Control Task (lowest hardware level)

lowest Background (lower than all hardware levels)

Figure 1. Relative Priority levels

The guiding phil osophy of the Monitor tasks is to keep the
processing of the background below the priority level of the
real-time foreground operations (which is why the special
interrupt level is required for the BCM Control Task), and
to keep all processing at the higher Monitor task levels
(such as the I/O task level or Control Panel interrupt level)
as brief as possible. A short description of each of the
BCM tasks follows below.

MONITOR TASKS

MEMORY PARITY

This task is responsible for examining memory parity errors.
If a memory parity error occurs for the background program,
the background. program is aborted and the real-time fore­
ground is not disturbed. The Memory Parity Task calls the
reentrant Monitor routine M:ABORT but does not actually
do the aborting at this level. The routine M:ABORT sets an
abort flag and triggers an interrupt at the BCM Control Task
level that actually aborts the background and prints an error
message. The BCM will halt and display the bad address
in the A-register if the parity error is in protected memory.

o In a Sigma 3 configuration, the interrupt associated with the
memory parity error is also related to one of two types of
watchdog timer runouts. The first type of timer runout is
caused by an attempt to reference an unrecognized device
during direct I/O, and the second type is caused by an
unexplained delay during an integral lOP call. If a timer
runout occurs because an unrecognized device has been

referenced during direct I/O, the Memory Parity Task will
test for a watchdog timeout receiver. t If no receiver is
specified, the task wi II then trigger another task (at the
BCM priority level) to write an appropriate message. The
BCM wi II then continue with the foreground task. If the
second type of timer runout occurs, the Memory Parity Task
takes the same action as fora foreground parity error and the
BCM wi II halt, except that in this case the Overflow Indi­
cator will be set. An integral lOP timer runout indicates
hardware problems.

PROTECTION VIOLATION

Any attempt by the background to modify the contents of
protected memory or to execute a privi leged instruction
wi II cause the Protection Violation interrupt to abort the
background program, using the same method as the Memory
Parity interrupt, above.

MULTIPLY/DIVIDE EXCEPTION

This task simulates and subsequently executes a Multiply or
Divide instruction for Sigma 2/3 computers not equipped with
Multiply/Divide hardware. The task is not reentrant, so all
lower-level interrupts are locked out for the duration of the
simulation (approximately 250 to 300 CPU microseconds).

INPUT/OUTPUT

After an input/output interrupt, the Input/Output Task
identifies the highest priority device with a pending inter­
rupt. It then clears the channel activity status and sets the
operational status byte and byte count residue in the proper
device file status table, if the device is no longer operating.
(The channel is not cleared for a zero-byte count interrupt.)
If an AIO receiver was specified (see Chapter 8 on Input/
Output for a description of an AIO Receiver), control is
transferred to this receiver at the I/O priority level. It is
expected that the AIO Receiver will return to the Input/
Output Task so that the task can exit proper! y.

CONTROL PANEL

A Control Panel Interrupt causes the Control Panel Task
to set a fI ag for the BCM Control Task, tri gger the task,
and then exit from the Control Panel Task in about 40 to 50
microseconds of CPU time. The operator response is pro­
cessed at the level of the BCM Control Task.

BCM CONTROL

This task control s the background operations. It is the onl y
BCM task that actually performs input/output and, there­
fore, is the onl y task that requires temporary stack space
for the reentrant BCM input/output routines.

~ watchdog timeout receiver is specified by loading a perma- 0
nent task into foreground. This task must have an initiali­
zation routine that stores the address of the receiver in the
first cell preceding the program status doubleword (PSD) of
the Memory Parity Task. A pointer to the PSD is located in
cell X ' 1021

•

BCM Characteristics 5

CORE MEMORY ALLOCATION
The following rules must be followed in regard to core
memory allocation:

is not required, the Monitor uses the remainder of this
region for table space.

1. Background space must be in the upper part of avai lable
memory and must begin on a page boundary (a page is
256 words on 256-word boundaries). It is necessary to
allocate at least one page of background.

4. The resident BCM begins loading at 400 (decimal) and
continues upward in lower core. Only the required
Monitor options are actually loaded.

5. Each resident foreground task must be explicitly and
directly connected to its proper interrupt level.

2. The first 256 words of lower memory are reserved for
constants and user communication region.

3. The region from 256 (decimal) to 399 is reserved for
internal and external interrupt levels; if all the space

6. All of memory, except the background space, is pro­
tected (on a multiple of 256 words). An example of
core memory allocation is given in Figure 2.

High

Background

~

Foreground

Low

6 Core Memory Allocation

Blank COMMON

Library subprograms

User subprograms

User main program

Background temp. stack

Real-time task #3 temp. stack

Real-ti me task #3

T ask Control Bloc k #3

Foreground program #1 COMMON

Special end-action I/O routine

Real-time task #2 temp. stack

Rea I-ti me task #2

Task Control Block #2

Real-time task # 1 temp. stack.

Real-time task #1

Task Control Block #1

Task Control Block for BCM Control

I/O tables for BCM

Selectable, optional BCM routines

Resident BCM (Supervisor)
(lOCS, OPe COMM., etc.)

External/Internal Interrupts

Zero Table (constants and pointers)

Figure 2. BCM Core Memory Allocation (Example)

Background Program
(Unprotec ted)

Foreground Program #2
(Protected)

Foreground Program #1
(Protected)

BCM
(Protected)

2. CONTROL COMMANDS

INTRODUCTION

The Monitor is controlled and directed by means of control
commands. These commands effect the construction and
execution of programs and provide communication between
a program and its environment. The environment incl udes
the Monitor, SDS Basic FORTRAN, Symbol assembler or
other processors, the operator, and the peripheral equipment.

Control commands have the general form

where

mnemonic specification

is the first character of the record and identifies
the beginning of a control message.

mnemonic is the mnemonic code name of a control
functi on or the name of a processor. It must begi n
immediately following the! character. Only the
first four col umns are used to identify the command.

specification is a listing of required or optional
specifications. This may include labels and nu­
meric val ues appropriate to the specific command.
In the specification field, hexadecimal values
must be shown as +xxxx, and EBCDIC values must
begin with a letter; any other values are assumed
to be decimal integer values. Specification fields
are separated by a comma.

In this manual, options that can be included in the speci­
fication fiel d of a given type of control command are
shown enclosed in brackets (although brackets are not
actual I y used in control commands).

One or more blanks separate the mnemonic and specifica­
tion fields, but no blanks may be embedded within a field.
A control command is terminated by the first blank after
the specification field. Comments detailing the specific
purpose of a command may be written following the com­
mand terminator, but no control command record may
contain more than 72 characters.

Communication between the operator and the Monitor is
accomplished via control commands, key-ins, and messages.
Control commands from the CC device are usually input to
the Monitor via punched cards; however, any input device{s)
can be designated for this function (see "ASSIGN", below).

Control key-i ns are al ways input through the typewri ter.
All control commands and Monitor messages are listed
on the output device designated as the listing log (nor­
mally a line printer). In this manner, the Monitor keeps

the operator informed regarding the progress of a job. A
summary of the control commands is shown in Table 1.

Monitor service control commands follow.

ASS Each absolute binary program to be loaded into
core memory is preceded by an ABS control command. The
binary program that follows must be in Sigma 2/3 standard
object language format (see Appendix A), and must not
contain any SREFs, REFs, or DEFs. The deck may be a
user's program for the background, a processor for the back­
ground, or a real-time program for the foreground. The
binary program is read from the BI device.

The form of the ABS control command is

name

where

name is the two-character name of the program or
task that follows. If the name is for the processor
that is to follow, it can be three characters or
more. However, the first three characters must
be identical to the first three characters appear­
ing in the subsequent processor control command.

This command is not free field in format. The name must
start in column 6. The binary deck can be produced from an
assembly, or can be output from the System Loader. The
transfer address in the end module is used as the entry point
into the program. The deck must contain the name in the
start module. This name is created by the FORTRAN com­
piler for a main program, by the IDNT directive in Symbol,
or by the ID command in the System Loader. A foreground
module must be preceded by an FG key-in.

ASSIGN The ASSIG N control command causes a new
operational label to be equated to a specified file number,
or causes a standard operational label to be redefined.
Operational labels are reset to the standard values at the
beginning of a job by the BCM Control Card Interpreter.
When a standard assignment is redefined, it remains in effect
only until a JOB command is encountered or until it is again
redefined. If an assignment is made to file zero, it indi­
cates that the label is not effective, and all references to
this operational label result in a no-operation until it is
redefined.

ASSIGN commands may appear anywhere within the con­
trol command stack, and take effect immediately. That is,
if an ASSIGN command redefines the CC device, the very
next control command is read from the newl y defi ned de­
vice. ASSIGN commands can define or redefine both fore­
ground and background operational labels.

Control Commands 7

The form of the ASSIGN command is

!ASSIGN operational label = file number [, F]

where

operational label is one of the two-character
alphanumeric names in the foreground or back­
ground operational label table (or is to be placed
in the table).

file number is the device-file number for some
physical device in the system.

F when present, declares that the file number is to
be included in the foreground operational label
table; otherwise, it is assumed to be in the back­
ground operational label table.

c: The C: control command causes the specified real­
time foreground task to be connected to a specified inter­
rupt location and optionally armed and enabled (as the
control code specifies); it can also be triggered by a second
connec t operation if the cod e is equa I to 7. (See II Task
Control Block Functions" in Chapter 7.)

The form of C: control command is

tcb [, code]

where

tcb is the address of the Task Control Block for this
task. As noted above, if the value is hexadecimal,
it must be shown as +xxxx.

code when present, overrides the initial interrupt
functi on control code in the TCB for the task; a
code of 7 would cause the level to be triggered.
The code in the TCB is not changed.

Warning: Use codesDand 6withgreatcaution. CodeD
is undefined, and code 6 will disable all
other interrupts in the group.

EOD Blocks may be defined in the user's deck by insert-
ing EOD control commands at the end of each block. When
an EOD command is encountered (when using the M:READ I/O
routine), the Monitor returns an end-of-file status. This is
similar to a tape mark on the magnetic tape. Any number
of EOD control commands can be used in a job, and for
any reason.

The form of the EOD control command is

8 Introducti on

FASSIGN This is identical to the ASSIGN control com-
mand, except that it operates on FORTRAN device unit
numbers and not on operational labels.

The form of the FASSIGN control command is

!FASSIGN device unit number=device-file number [, F]

where

device unit number is an integer in the foreground
or background operational label tables (or is to be
placed in the table).

device-file number is the device-file number for
some physical device in the system.

F when present, declares that the file number is to
be included in the foreground operational label
table; otherwise, it is assumed to be in the back­
ground operational label table. The F specification
on FASSIGN must be preceded by an FG key-in.

FIN The FIN control command is used to specify the end
of a stack of jobs. When the FIN control command is en­
countered, the Monitor outputs the command on the listing
log to inform the operator that all current jobs have been
completed, and then enters the idle state.

The form of the FIN control command is

FSKIP The skip fi Ie control command (FSKIP) causes a
specified magnetic tape to be spaced forward, either im­
mediatel y past the next tape mark, or past the nth tape
mark if n files are specified.

The form of the FSKIP control command is

!FSKIP device [, number]

where

device is the device-file number of the tape to be
spaced forward. It is restricted to magnetic tapes
for background usage.

number is the number of files to be skipped; if
absent, one file is skipped.

JOB The JOB control command is used to signal the
beginning of a new job. The background operational label
table is reset to the standard device-file numbers defined at
system initialization, as are the FORTRAN device unit num­
bers. Any device-file numbers for the background with

pending input/output are reset, and the background core
memory is reset to all zeros. The use of this command is
optional.

The form of the JOB control command is

PAUSE The PAUSE control command is used to tempor-
arily suspend the background program loading operation. It
can be used to indicate the end of a reel of paper tape, thus
allowing the operator time to change reels. When the oper­
ator performs an unsol icited "S" key-in, the Monitor reads
the next control command. This command is listed on the
OC device.

The form of the PAUSE control command is

(!PAUSE [comments]

REWIND The REWIND control command is used to rewind
a magnetic tape. It has no effect on the other devices.
The operation takes place immediately when the command
is interpreted.

The form of the REWIND control command is

(REWIND device

where

device is the device-file number of the tape to be
rewound. It is restricted to background files.

UNLOAD The manual rewind (UNLOAD) control com-
mand causes the specified device to be rewound in the man­
ual mode, so that operator intervention is required to use
the device again.

The form of the UNLOAD control command is

(!UNLOAD device

where

device is the device-file number of the tape to be
unloaded. It is restricted to background files.

WEOF The write end-of-file (WEOF) command causes
an end-of-file mark to be written on the output device, if
it is appropriate to the device. For magnetic tape, a tape
mark is written. For the card punch or paper tape punch,
an EOD command is written.

The format of the WEOF control command is

(IWEOF device

where

device is the device-file number of the device
that is to have an end-of-file written on it. It is
restricted to background fj les.

The valid BCM control commands are listed in Table 1.

Table 1. BCM Control Commands

BCM Servi ce Commands

ABS
ASSIGN
C:
EOD
FASSIGN
FIN
FSKIP
JOB
PAUSE
REWIND
UNLOAD
WEOF

BCM Processor Subsystem Commands

BFORTRAN
CONCORDANCE
LOAD
SYMBOL
UTILITY
SLOAD

PROCESSOR SUBSYSTEM CONTROL COMMANDS
AND BCM INTERFACE

The Monitor operates independently of secondary storage
for the processors and will not load the processors from sec­
ondary storage even if it is available.

The details of the control commands for each of the standard
processor subsystems are defined later in chapters for the in­
dividual subsystems. However, there are some rules common
to all of them, as follows:

1. All of the processors operate in the background space.

2. The processors use the standard background operational
label table assignments for their I/O requests, with the
exception of the UTILITY program. (See Table 7 for
the standard background operational labels.)

3. The first character of each line of the listing output
from the processor is always interpreted as a vertical

Processor Subsystem Control Command and BCM Interface 9

format character (a carriage control) and is never
printed. The BCM I/O routines treat the vertical for­
mat properly for keyboard/printer, line printer, and
magnetic tape.

4. When the BCM transfers control to each processor,
the X register contains the address of the control
image.

5. All processors use the standard system constants, as de­
fined in Table 2, where applicable.

6. At the completion of an assembly or compilation, the
processor writes two end-of-fi les on the LO device and
then backspaces the LO devi ce one record. The
M:CTRL routine will treat these operations properly for
the devices involved, as described in the I/O section.
This permits file processing of output on magnetic tape
if LO is assigned to magnetic tape. The processor also
writes a blank card image on the BO device if that de­
vice was used for the operation.

CONTROL COMMANDS IN MINIMUM
BCM SYSTEMS

In a minimum BCM configuration, without the full control
command interpreter (CCI), onl y ABS, EOD, and FIN are
recognized as valid service commands. The processor sub­
system commands are all recognized, however.

SAMPLE DECK SETUPS UNDER BCM

!FIN

Figure 3. Assembly without Magnetic Scratch Tape

10 Control Commands in Minimum BCM Systems

Figure 4. Assembly with Magnetic Scratch Tape

Figure 5. Load Example for Background Program

•
3. OPERATOR COMMUNICATION

SYSTEM COMMUNICATION

Occasionally, the Monitor may inform the operator of un­
usual conditions in the BCM system via Monitor typeouts.
These will be directed to the operator's console through a
dev i ce fi I e that is assi gned to the Keyboard/Pri nter.

If the message is concerned with some I/O error condition,
the Monitor I/O routine that generated the message will be
waiting to sense a change-of-state in the device from auto­
matic to manual and back to automatic; or from manual to
automatic, if the device was in the manual mode after the
operation was attempted. When this change-of-state is
sensed, the operation is retried.

MONITOR TYPEOUTS

The possible Monitor typeouts under the BCM are

!! KEY ERROR The Monitor did not recognize a key-in;
a new key-in should be initiated.

! ! ABORT CODE xx LOC yyyy The background job has
been aborted by reason of code xx at I ocati on yyyy. The
standard Monitor abort codes are given in Appendix B, but
any two EBCDIC character codes can be given by the rou­
tine that called for the abort. The routine sets the index
register to the two EBCDIC characters of the abort code on
entry to M:ABORT and sets the A register to the loca­
tion value.

! ! MACHINE FAULT AT LOC yyyy An attempt has been
made to reference an unrecognized device during direct
I/O. The message will not appear until the BCM Control
Task becomes active.

! ! CCI Begin reading control commands from the CC
device. This is the indication that the previous job has
terminated norma Ily and that the BCM is ready for the next
background job. This typeout occurs after an S key-in
when no background job is active.

!! PAUSE comments A PAUSE control command has been
read. The comments fi e I d may conta i n messages or i nstruc­
tions to the operator. A control panel interrupt and a key­
in of'S' will cause the BCM to continue reading from the
job stack.

! !dtnn FAULT Some condition on device type dt with
physical device number nn (hexadecimal) has put the device
in a nonoperational status. The recovery procedure is de­
scribed above (in the discussion under change-of-state).
The operation is automatically retried when the device is
returned to the automatic mode. It is not necessary (or
possible) for the operator to type in a response.

! !dtnn ERROR There is a parity, transmission, or data
rate overrun error on the device. Any specified retries
have been performed before the message is output.

! !dtnn PUNCHES An invalid punch combination has
been sensed on the EBCDIC card.

! !dtnn EMPTY The device specified is in the manual
mode and may be out of paper, cards, or tape.

Rea I-time programs with specia I requi rements can inform
the operator of special conditions and wait for an operator
response; however, the error messages are primarily designed
for background programs.

The ATTENTION switch on magnetic tape units isfor special
use under the RBM (Real-Time Batch Monitor) and has no
effect in BCM error recovery.

OPERATOR CONTROL

UNSOLICITED KEY-INS

Because of the possible time delays associated with messages
to the operator and subsequent responses, no devi ces used
for an operation with a critical time factor should time­
share an I/O channel used for operator communi cation.

All background references to the operator output device
should be made to the OC operationa I labe I. One method
of operator control is in answer to a specific request from a
foreground or background program. In this case, there is
no standard format.

However, the operator may also desire to exercise control
over the background programs on an unsolicited basis. This
control (unsolicited key-ins) is initiated by the operator
placing the INTERRUPT switch on the Sigma 2/3 Processor
Control Panels at the INTERRUPT position. This causes an
interrupt into the Control Panel Task. The task sets a BCM
Control Task status flag, issues a Write Direct to trigger the
BCM Control Task, and then exits.

When the BCM Control Task becomes the highest priority
task in the system (that is, when all real-time foreground
tasks are nonactive), the BCM Control task issues the output
message

!!KEY-IN

and then requests a two-character input from the operator.
Each response must be terminated with the NEW LINE code.
The backspace (/) and delete (EOM) codes may be used
before the NEW LINE is typed, to correct the key-in. The
analysis and subsequent action from this unsolicited key-in
are performed at the BCM Control Task priority level. If
there is a second control panel interrupt before the first one
is processed, the second one is ignored.

The specifi c responses possible under BCM are given be low.

S Continue processing, if the Monitor is in an idle state
(the Monitor can be put into an id Ie state from a IIWII key­
in or a PAUSE or FIN control command). If there is an
active background program, continue processing it. If there
is no active background program, begin reading control cards
from the CC device.

Operator Communication 11

W Either the Background or BCM Control Task wi II go
into an idle state, whichever one is active (foreground tasks
are not affected).

X Abort the background job without dumps but with the
error code OP and a printed message that shows the location
of the last background instruction executed.

KP Reassign CC to the keyboard/printer. This is useful
if CC has been improperly assigned.

FG For any operation that intends to modify the fore-
ground (such as ABS, ASSIGN, C:, or FASSIGN), it

12 Operator Contro I

is necessary to first perform a key-in of FG or this fore­
ground modification will not be permitted and the intended
operation wi II be aborted. The key-in is effective unti I the
next FIN command. It is merely intended as an additional
check for foreground modification.

CP After a JAM A or a JAM B (or other unusual con-
dition) on the card punch that resu Its in the card punch
stopping, clear the jam, place the punch in START, and
input the CP key-in. This wi II cause the previous (errone­
ous) card to be repunched. !! C Pnn FAULT wi II be typed
on a keyboard/printer, device-file number 1, and the card
punch wi" then continue punching in a normal manner.

4. LINKING LOADER

INTRODUCTION

The Linking Loader used with the Sigma 2/3 Basic Control
Monitor reads binary modules in Standard Object Language
format (see Appendix A), loads them into background mem­
ory, and I inks modul es with external references and defi­
nitions. One or more I ibraries can be selectively loaded
to satisfy primary and secondary external references. Load
map, program modification, and execution capabilities are
optional.

The Monitor transfers control to the Linking Loader upon
reading a LOAD control command. After initialization of
the Linking Loader process in the background, the loader
reads subcommands preceded by the speci al characters ! $.

OPERATING SEQUENCE AND OPTIONS

After the Linking Loader is loaded by the Monitor Absolute
Loader, the Linking Loader moves itsel f to the topof avai lable
memory, clears the remainderofthe background to zero, and
initial izes itself. It then sets a symbol tabl e origin in a manner
that wi II permit the symbol tables to build from the origin of the
linking Loader to the beginning of the background.

The load/execution origin is initialized to the value of
K:BACKBG (beginning of background) plus X'20'. The
X '20' locations are reserved as temporary storage for the
Monitor service routines used by the background program.
The general memory areas involved are shown in Figure 6.

-------~-----------------. K:BACKBG

K :BAC-KBG+X ;-20'
{Load Bias for
Relocatable
Modules}

Task Control Information and Temp.
Storage for BCM Service Routines

LOW

COMMON base =
Non-Reserved Storage K:UNAVBG-size

of COMMON

--------------------t
User Symbol Table

Loader Symbol Table {Permanent}

Linking Loader
------- ---1..-__________ -1

K:CCBUF
BCM Control Card Buffer

HIGH

Figure 6. Background Memory Allocation

The following steps then take place:

1. Binary object modul es are loaded, Seginning from this
origin.

2. Checksum, record sequence number, item type, error
severity, and control card sequence are checked.

3. the I ast transfer address encountered is saved as the
execution address (see $Xm in th is chapter).

4. COMMON size is allocated by taking the larger val ue
of the 'csize ' parameter in the LOAD control command,
or the first nonzero common size located in the START
item of a binary module.

5. Optionally, a concurrent map of module names, be­
ginning addresses, external definitions and their values,
and unused or doubly-defined external definitions are
output on DO.

6. A" loader control commands read are listed on DO.

To satisfy external references whose values were not defined
during the main loading, one or more I ibraries can be loaded,
and modifications to either absolute locations or locations
relative to external definitions can be made.

Program execution that is dependent on a severity level can
be initiated, with a choice of either a transfer address spec­
i fi ed on a ! $XZ or ! $XR contro I command, or a transfer ad­
dress encountered during loading.

If the asize option is exercised, it allows an absolute FOR­
TRAN Run-Time package to effectively use up the space
occupied by the Linking Loader and the symbol table. This
faci I ity is performed by having the Linking Loader overlay
itself with the program it just loaded. The Absolute Run­
Time package is then read into the beginning of background
to occupy the space vacated by the program. The parameter
"asize" is determined by the size of the Run-Time package.

References to Monitor servi ce routines are satisfied by
definitions in the permanent symbol table.

LOADER CONTROL COMMANDS

LOAD The LOAD command, read by the BCM from the
CC device, causes the initiation of the Linking Loader pro­
cess in the background. The loader wi II read subcommands
(given below) to carry out the load, map, modify, and exe­
cute functions. The LOAD command has the form

(LOAD resize] [,asize]

where

csize denotes an alternative COMMON allocation
value. If missing, it is assumed to be zero. The
first nonzero COMMON allocation located in the
START item of a binary module will be compared
with the value of csize, and the larger of the two
values will be used for COMMON allocation. If
noCOMMON relocation item is encountered in a
START item, the value of csize will be used. If
used, COMMON resides at the highest core area
available.

Linking Loader 13

asize denotes that an Absolute Run- Time (l:A) is to
be loaded at the beginning of the background.
After loading is complete (!EOD), the loader moves
the program just loaded to this increment above
background (overlaying the linking loader), and
thus creates room for the Absolute Run-Time. The
Absolute Run-Time wi II be loaded using the !ABS
command of the BCM.

If asize is nonzero, EBIAS (execution bias) is set to
K:BACKBG+X '20 '+asize, and BIAS {load bias} will be set to
K:BACKBG+X '20' •

Upon encountering an EOD, the linking Loader enters the
hash code (BCM identifier) and the transfer address in the
first two cells of background. It then moves the program to
its execution location and returns control to the Monitor,
to await the loading of the L:A Absolute Run-Time.

If asize is empty, the linking Loader functions in a normal
manner; i. e., loading and execution are to be at the same
location, K:BACKBG+X '20 ' .

The following control commands are read from the CC de­
vice by the linking Loader and are listed on DO after they
are read. All linking loader mnemonics are preceded by
the special characters! $. The general form of the command
is

($mnemOniC parameters

where

eight blank characters following the mnemonic termi­
nate the control message. A single blank termi­
nates the parameter string. (Thus, the card may
contain comments.) The mnemonic and first pa­
rameter can be separated by 1 to 8 blanks. A
comma must separate parameters.

$LD The $LD command causes the linking loader to
load a single binary module in Standard Binary Format from
BI and save the program name and transfer address, if any.
A $lD command must precede each binary module to be
loaded. The form of the command is

bound

where

bound is an optional parameter specifying that the
load bias is to be rounded to the next higher mul­
tiple of the bound value before loading this mod­
ule (bound must be a power of 2). An empty bound
field resets the bound to zero. Bound must be of
the form

+value
label
label±value

14 loader Control Commands

where

label is an external definition

value is a hexadecimal number

The linking Loader initializes the load bias to the value in
K:BACKBG plus X'20'. The bias for loading the next mod­
ule is calculated by adding the relocatable program length
(in the END item) of the current program to its load bias.
The result may be modified by the bound value.

$LB The $lB command causes selective loading to pro-
ceed from the LI medium only if there are unsatisfied pri­
mary references in the loader symbol table at the time the
$LB control message is read. If there are no unsatisfied ref­
erences, the 'I ibrary is passed over, but no programs are
loaded and the next control message is read. Unsatisfied
references cause the loader to read the library, and to load
those programs having external definitions that satisfy the
references.

The selective loading process terminates when

1. An E 00 from LI is encountered, in wh i ch case a list of
unsatisfi ed references is output on DO and a new con­
trol command is read.

2. All references are satisfied, in which case the remainder
of the library is passed up to the next EOD and the next
control command is then read.

3. An irrecoverable error occurs, in which case the loader
aborts.

Note that the selective loading may produce additional
external references that must be satisfi ed by definitions
further on in either the same or another library. One li­
brary is scanned for each $lB control command. The form of
the command is

bound

where

bound is an optional parameter specifying that the
load bias is to be rounded to the next higher mul­
tiple of the bound value before loading this mod­
ule (bound must be a power of 2). An empty bound
fi el d resets the bound to zero. Bound must be of
the form

+value
label
label±value

$MP, $ML The $MP and $Ml commands cause a load
map to be output on the DO device (see map formats later
in this chapter). The map is written out as loading progresses.
For both $MP and $Ml, maps of main programs and subpro­
grams (i. e., modules preceded by a $lD control command)
are identical. For $Ml, the name, starting location, exter­
nal definitions, and transfer address of each module are

output on the map. $MP suppresses the external definitions
in the library subroutines{loadedby$LB control command}.

When used, a $MP or $ML control message must precede all
other! $ control cards in the control card sequence.

The format of these control commands is

I!$MLI
r!$MPI

SMD The $MD control command indicates that modi-
fications are to be inserted in specified locations in core
storage. Modifications are of the form

! $MD addr,mod 1 [,mod
2

, ... , mOd)

where

addr is the memory location where the first "mod"
is to be placed. Successive mods are placed in
successive locations.

mod is the value to be stored in addr ora successive
location. If a "mod" parameter is empty {denoted
by successive commas} zeros are stored in the
corresponding location.

addr and mod. are of the form
I

+value
label
label±value

where

label is an external definition

value is a hexadecimal number

Examples:

! $MD +402C,+4CO 1,+41 FC

!$MD LABL+2C,+4C01,LABL+1FC

Note: The "Iabel" must have been defined prior to its use
in a $MD card. A label must not be used if an asize
has been sti pul ated.

SXZ, SXR The execution control commands, $XZ or
$XR, initiate execution at the last transfer address encoun­
tered according to existing load severity levels. The
general format of these commands is

\!$XZ/
1!$XRI

transfer address

where

XZ means execute if there are no load errors {sev-
erity = O}t

XR means execute regardless of the number of load
errors (severi ty ~ 1) t

transfer address is an optional parameter that speci-
fies where execution must begin. It supersedes
any transfer address encountered in the loading
process. It must have the same form as the "addr"
parameter of the $MD command.

!EOD An ! EOD may be substituted for a $XZ or $XR
command in the control card stack. When the Loader en­
counters an ! E OD in the proper context, it stores the name
of the program just loaded and its entry address in the first
two cells of background memory so that the program just
loaded may be entered through BCM Ii ke a processor, by
using a ! II name" control card. In normal mode {non-asize
mode} the name used on the Monitor control card to reenter
must be the II idnt" of the last program wi th a transfer address
in the load stack. If an asize has been stipulated, the Loader
relocates the program and returns to the Monitor. The se­
quence: !ABS L:A, Absolute Run-Time, and !L:Awill load
the Run- Time and transfer control to the background program.

ABSOLUTE RUN-TIME JOB SETUP

The role of the Linking Loader in the loading and subsequent
processing of a FORTRAN program that uses the Absolute
Run- Time package and DEFs output by the System Loader
(see Figure 9 in Chapter 5) is illustrated in Figure 7.

MAPPING

For each modu I e preceded by an ! $LD card, the map
includes

1. the name of the module

2. the beginning address of the module

3. a list of external definitions that are suitably flagged,
and the address of each definition

4. the val ue of any transfer address encountered in that
module.

For either $MP or $ML, the map for each module loaded
with a $LD commands includes items 1-4.

For both $MP and $ML, item 3 it output for external defi­
nitions in the permanent symbol table.

tSee "Severity Levels" at the end of this chapter.

Absolute Run-Time Job Setup/Mapping 15

tNot part of Abs. Run-Time

Figure 7. Overlaying linking Loader for
Absolute Run-Time

For $ML, items 1-4 are output for modules loaded with $ LB
commands; for $MP, only items 1,2, and 4 are output for
modules loaded with $ LB commands. Even if no $MP or $ML
Loader command is input, the listing on DO always includes
the following.

1. Each loader command read.

2. Unsatisfied references at the conclusion of each
library load or in response to an $XR or $XZ command
before terminating the loader.

3. The COMMO N storage base address.

4. The COMMON storage size.

5. The transfer address where execution wi II begin.

6. The error severi ty level.

16 Mapping

The format of the map output for ! $ML is illustrated in
Figure 8.

!$ML
PERMANENT

!$LD
PROGRAM

U
D

!$LD
PROGRAM

!$LB
LIBRARY

LIBRARY

LDERR UR

!$LB
LIBRARY

LDERR UR

definition
definition

definition

name
definition
definition

definition
definition

definition

name
definition

definition

name
definition

name
definition

definition

reference

reference

name

reference

value
value

value

address
value
value

value
value

value
END TRANSFER value

address
value

value
END TRANSFER value

address
value

address
value

value

chain

chain

address

chain

COM ADD value COM SIZ value ENDTRAvalue ERR SEV+n

Figure 8. Map Output Format

where

definition is the (up to) 8-character symbol for an
external defi nition.

value is a 4-character hexadecimal address, number,
or INONEI.

name is the program name or blanks obtained from
tht:: start module item.

address is the 4-character hexadecimal representa-
tion of the beginning load address for the program.

U means the definition is declared but not given a
value.

D is a double definition.

END TRANSFER is the execution address from the
END item of the module.

reference is the 8-character symbol for an external
reference.

chain is the hexadecimal representation of the last
address in the chain.

COM ADD is the base address for COMMON
storage.

COM SIZ
storage.

is the hexadecimal size of COMMON

END TRA is the transfer address where execution
begins.

ERR SEV is the error severity I eve I (0 or 1).

LOADER SYMBOL TABLE

The maximum allowable size of an entry is six words
(up to eight characters) per symbol. The table is not
ordered by the loader during the loading process. Entries
are inserted as encountered. The entry size includes the
control word.

word °
Module declaration no.

8 9 10 11 12 13 14 15

word

Def. addr. = effective addr./
Ref. = effective addr. of 1st link in ref. chain

o

word 2

1st char. of DEF or REF 2nd character

o 7 8

word 5

7th character 8th character

o 7 8

In this item, word 0 is the control word

where

15

15

15

Bit ° is set only if the entry is a definition value.
During loading, definitions are declared at the

beginning of the module but are defined later in
the module. The entryismade in the symbol table
when the REF is encountered or the DEF is decl ared
(see MAP). Bit 2 = 1 indicates that the entry is a
definition declaration (the symbol has not been de­
fined yet). Bit 0 = 1 indicates that a definition ad­
dress or value has been inserted in word 1 of the
table.

Bit 1 is set if the reference name is encountered
prior to encountering a definition value. When
bit ° is set, bit 1 is reset. However, bits 1 and 2
may both be set at the same time if a reference
and definition declaration are encountered before
the definition value.

Bit 2 is set when a declaration is encountered. It
is used for flagging (on the map) definitions that
are declared but not defined.

Bit 3 defines an entry as a primary or secondary ref-
erence (assuming bit 1 is set). If bit 3 is set to a
1, it is a primary reference; if set to a 0, it is a
secondary reference.

Bit 4 indicates whether or not the loader was in the
library loading mode when the current symbol was
encountered or defined. If bit 4 = 1, it designates
loading of main programs and subroutines ($LD com­
mand). If bit 4 = 0, it indicates the library loading
mode ($LB command).

Bits 5-7 indicate the length of an entry in words
(the length can be 3 to 6 words). Trailing blanks
in a symbol are suppressed.

Bits 8-15 are the declaration numbers of the entry.
As a start item is encountered, the Loader assigns
to the module a declaration number between 1 and
X'FF' (this includes library programs). The number
is used to locate the source of definitions for map­
ping (see MAP).

Word 1 is the effective address of the item. If the entry is
a definition address, the effective address or val ue of the
definition is contained in word 1. If the entry is a refer­
ence, the effective address of the first link in the threaded
reference list (chain) is contained.

Words 2 to 5 contain the EBCDIC representation of the SREF,
REF, or DEF. If the symbol entry contains less than 8 char­
acters, trai ling blank words are suppressed.

The symbol tabl e is divided into two portions: the Perma­
nent Symbol table, consisting of permanent definitions
(principally for Monitor service routines, such as M:READ
and M:WRITE); and the User's Symbol table, consisting
of references and definitions encountered and entered during
the load process. The permanent Symbol table may be altered
only by reassembly of the Loader. Since the User's Symbol
table is searched before the Permanent Symbol table, entries
to the User's Symbol table supersede the definition in the
Permanent Symbol table.

Mapping 17

DIAGNOSTIC MESSAGES loading process by an unsolicited key-in at any time. The
diagnostic messages are given in Table 2.

Diagnostic messages are output on DO if errors are encoun­
tered during the loading process. For those errors considered
irrecoverable, the loader first outputs the appropriate error
message on OC and DO and then takes the abort exit to the
BCM (see IIBCM II for a description of abort procedures).

SEVERITY LEVELS

The possible severity levels for loading errors are as follows.

o means no error severity on the module or no ir­
recoverable errors during loading (i. e., sequence
number, checks, etc.).

For recoverable loading errors, the error severity level is set
to 1. Since space does not permit the listing of detailed in­
formation concerning the source of an error level of 1, the
diagnostic messages are output on DO and thus may be inter­
spersed with map information. The operator may abort the

means any nonabortabl e error, assembly/ compi I ation
errors, unsatisfied primary references, or no transfer
address.

Message I. D.
Abort/
Continue

LDERR SQ A

LDERR IB A

LDERR CS A

LDERR IT A

LDERR TO A

LDERR IE A

LDERR CM A

LDERR CC C

LDERR UR C

LDERR TA C

LDERR MD C

LDERR SE C

LDERR 10 A

LDERR Ef A

LDERR MP C

18 Diagnostic Messages

Table 2. linking Loader Diagnostic Messages

Explanation

Sequence number on this record is incorrect.

A binary card has been encountered where an EBCDIC command card was expected.

The card cannot be checksummed correctly.

Illegal item type.

Symbol table overflow.

An EBCDIC card has been encountered before the end card of a module.

A COMMON displacement beyond the allotted COMMON size has been encoun­
tered. An error in COMMON allocation has occurred.

There is an error in the control command just read. Read another command from
CC.

The references I isted after this message are sti II undefined after the last library
search. The next control command is read.

A $X control command without transfer address has been read and no transfer ad­
dress was encountered in the loading of any modul e. The next control command is
read; it should be II !$XR transfer addr".

Multiple external definitions have been encountered in loading. The first encoun-
tered value wi II be used throughout the loading.

A severity level (n) greater than that specified by the $X card has been encoun-
tered in loading. A new control command is read.

Irrecoverab I e II 0 error.

An illegal EOF has been encountered on CC, BI, or LI.

The $MP or $ML command did not immediately follow the LOAD command. The
next command is read.

5. BCM SYSTEM LOADER

INTRODUCTION

The BCM System Loader is an extended version of the
Linking Loader that permits preparation of BCM systems
from relocatable decks. That is, in addition to the ca­
pabi lities of the Linking Loader, the System Loader pro­
vides a method for prepari ng foreground tasks, background
programs, an absolute FORTRAN Run-Time package, and
processors for loadi ng and executi on under the BCM (res­
ident) Absolute Loader.

FUNCTIONS

Except for the restrictions given below, the System Loader
has all of the capabilities of the Linking Loader and, in
addition, has the extended capabi lities defined in the fol­
lowing list of functions:

1. Longer programs are loaded in segments as though ex­
ecution memory extends beyond the background space
available for loading. Essentially, the execution loca­
tion counter is incremented normally, while the load
location counter is incremented modulo the segment
length.

2. An absolute execution location counter (foreground or
background) can be specified.

3. A COMMON base can be stipulated.

4. Entries can be made to the loader symbol table by con­
trol cards.

5. Areas of memory can be punched on BO with an iden­
tifier, beginn ing location, end location, and transfer
address specified. No severity level is output.

6. An Absolute Run- Time deck consisting of an absolute
binary module and a module of external definitions
(DEFs) contained in the Run- Time can be punched using
the L:A option.

FORTRAN ABSOLUTE RUN -TIME

The Absolute Run-Time deck and the necessary DEF deck
can be punched out by a modification to the System Loader
(see SLOAD below for SLOAD command modifi cations via
the L:A option). The L:A option indicates an Absolute Run­
Time deck is to be output followed by the appropriate DEF
deck.

If the L:A parameter is present, the System Loader enters a
library type loading mode and all object decks following
the $SL command are automatically loaded beginning at
the start of background. The last object deck must be fol­
lowed by an EOD command. Normally, no library pro­
grams would contain a transfer address, and the System
Loader (in this case) would not consider this an error.

An $ID command will have to be used with an ident of L:A.
The name L:A is a special flag to the BCM Absolute Loader

that allows a transfer address of zero and wi II not destroy
the transfer address left by the Linking Loader. If a trans­
fer address is present in one of the Absolute Run-Time rou­
tines, it wi II be used and wi II supersede the transfer ad­
dress left by the Linking Loader.

Upon encountering a SPA command, the System Loader
punches out the Absol ute Run-Time deck (followed by a
blank card), plus all the DEFs defined in the loading pro­
cess in the standard Address Definition (type 9) Object
Language format. The deck of DEFs can then be loaded as
a separate library program along with the user's program.
The System Loader will also print out the size of the Abso­
lute Run-Time program at the end of the run.

Figures 7 and 9 ill ustrate the job setups for preparation and
execution of an Absol ute Run-Time program. A further dis­
cussion Clf FORTRAN Absolute Run-Time is given in Chap­
ter 6 of the Sigma 2/3 Basic FORTRAN Operations Manual.

RESTRICTIONS

In contrast to the Linking Loader, there are three restric­
tions in the use of the BCM System Loader:

1. The Linking Loader bound parameter on load commands
is not honored.

2. No program execution is allowed.

3. No ASECTs wi II be loaded.

CONTROL COMMANDS

In general, the same rules that apply to control command
format for the BCM Linking Loader are also applicable to
the Sys tem Loade r.

The explanation of each parameter is followed by the de­
fault case (default cases apply only for empty fields). If
the field is in error or a parameter value is undefinable, a
control command diagnosti c wi II be output.

SLOAD The S LOAD command causes the BCM to execute
the System Loader. It must have been previously loaded by
an ABS command (see BCM Control Commands). The SLOAD
command has the form

(SLOAD [proglim, L:A]

where

proglim is the total size of the area for execution.
It defines the upper-limit for number of locations
punched and is of the form

symbo I ±Va I ue
symbol
±value

BCM System Loader 19

where

symbol

value

is defined as an external definition.

is a hexadecimal number.

The default is the available background.

L:A specifies that an Absolute Run-Time package
is to be punched.

$SL In the normal mode (no L:A parameter), the $SL
command loads a sing Ie modu lei nto background memory. If
an L:A option is given, all modules down to EODare loaded
with a single $SL command. Relocatable modules are
loaded contiguously, starting at K:BACKBG+X 1201• The
$SL command has the form

(SSL exloc, cbose

where

exloc is the execution location for this module.

The default is K:BACKBG+X I201
•

cbase is the COMMON base (absolute address),
which must be above the user's program in core.

The cbase parameter must be specified if COM­
MON is used.

Here, exloc and cbase have the same form as progl im in the
S LOAD command.

SLB The$LB command loads a library selectively. The
$ LB command has the form

The cbase value from the $SL command is retained. The
selective loading process terminates on (1) encountering an
EOD, (2) satisfying all external references (the next con­
trol command is then read). One library is scanned for each
$ LB command. An $ LB command must be preceded by an
$SL command.

SID The $ID command specifies an identification to be
punched into the start item of the absolute module output.
The $ID command has the form

idnt

where

idnt is the identification. It isfrom3to8 EBCDIC
characters in length.

SPA The SPA command punches an area of background
memory on BO in absolute format (subset of the standard
object language) that can be loaded by the resident BCM

20 Control Commands

Absolute Loader. In the L:A mode, the Run-Time package
(absolute module and DEFs) are punched. The identification
in the start item is obtained from the $ID command. The
$PA command has the form

!$PA begloc, endloc, transadr

where

begloc is the beginning of the area to be punched.

The default is K:BACKBG+X I20 1
•

endloc is the end of the area to be punched.

The defaul t is the highest location loaded.

transadr is the execution transfer address to be out-
put in the end item.

The defaul t is the last transfer address encountered.

Note: If the value "endloc-begloc" is greater than
"proglim" in the SLOAD command, only the num­
ber of cells indicated by proglim will be punched.
Beloc, endloc, and transadr have the same form
as proglim on the SLOAD command.

After PA has been executed, control is returned to BCM.

SDF The $DF command defines one or more symbols and
enters them into the Loader symbol table. Up to 5 symbols
and their values may be entered on a single card. The
values override previous definitions in the symbol table.
The $ DF command has the form

!$DF symbol, value L symbol, value ... J

where

symbol is up to 8 a Iphanumeric characters in length.

value is the definition address for the symbol.

Value has the same form as proglim in the SLOAD command.

SMD, SMP, SML These commands have the same func-
tion and format as for the BCM Linking Loader.

!EOD is used to specify the end of a library in normal
mode. Under the L:A option, ! EOD defines the end of the
deck to be loaded the $SL command.

ABSOLUTE RUN-TIME JOB SETUP

A typical job setup for the System Loader to punch out an
Absolute Run-Time and deck of DEFs is illustrated in Figure
9 below. The Absolute Run-Time package would be re­
loaded subsequently by the Linking Loader (which would
overlay itself as illustrated in Figure 1) to conserve memory
space.

Figure 9. System Loader Job Setup for Absolute
Run- Time Output

ERROR MESSAGES
Under the System Loader, the error messages in Table 3 are
applicable in addition to those under the Linking Loader as
given in Table 2.

Table 3. System Loader Diagnostic Messages

Message ID
Abort/

Explanation
Continue

LDERR CH A An attempt was made to resolve
a forward chain outside the
current segment area.

LDERR SS C The area to be punched ex-
ceeds progl im. No data be-
yond this point wi II be punched.

LDERR US C An undefined symbol was used
on a control card. The whole
card is ignored. Read the next
control card. An undefined
reference was found in creating
an Absol ute Run- Ti me.

LDERR ID A No ID command preceded first
segment punched. An ID com-
mand must be present.

LDERR UR A An unsati sfi ed reference re-
mains after loading an Absolute
Run- Time. The Run-Time is
not punched.

LDERR IT A An attempt was made to load
an ASECT program.

Error Messages 21

6. MONITOR SERVICE ROUTINES

BRANCHING TO SERVICE ROUTINES

Under the BCM, foreground and background programs can
ca II the Mon itor to perform va ri ous serv ices or priv i I eged
operations. (Table 6 shows which are available.)

For requests from the background, the branch to protected
memory causes an interrupt to the protection routine where
the branch is examined for validity. If the protection
violation is one of a permissible set of "controlled" viola­
tions, the branch is permitted; otherwise, the background
job is aborted with a suitable error message that gives the
location from which the branch was attempted. If the
branch is valid, the protection routine will effect the
branch to the appropriate Monitor service routine.

All of the service routines are completely reentrant; there­
fore, they can be used by multiple tasks on a completely

I independent basis. Table 6 shows which of the routines re­
quire temporary space in the Monitor portion of the user's
temp stack.

There are two different methods of branching to one of the
Monitor service routines: one method is to branch indirectly
through the address literal in the zero table, using the abso­
lute address shown in Table 6. This is especially useful for
a foreground program that is to be assembled in absolute
format, a processor, or self-relocating program.

A more conventional method of branching is to declare the
routine name as an externa I reference and let the Linking
Loader satisfy the reference at load time. In this case, the
address literal will be in the user's program, and it is filled
in by the Linking Loader.

The B register is a Iways saved and restored and is used as
the pointer to the temporary storage.

Table 4. BCM Zero Table

Address Address

Dec. Hex. Name Purpose and Assignment Dec. Hex. Name Purpose and Assignment

1 0 Reserved for Monitor Use 96 60 Loader and Control Card Interpreter
Pointers and Constants

1 1 K:AC Pointer to Floating Accumulator

2 2 K:ACl Pointer to Floating Accumulator (1)
127 7F

3 3 K:AC2 Pointer to Floating Accumulator (2)
128 80 Real-time Foreground User Storage

4 4 K:AC3 Pointer to Floating Accumulator (3)
(Reserved for Foreground) (For com-
munication between foreground and

5 5 K:FFLG Pointer to Floating Flags
background or for address literals or

159 9F
constants)

6 6 K:BASE Pointer to Task Reentrant Temp
Stack

160 AO Reserved for Monitor User

7 7 K:DYN Reserved for RBM

8 8 K:LIM Reserved for RBM 199 C6

200 C7 Monitor Service Routines Transfer
9 9 Standard Constants for Foreground, Vectors (see Table 6 for list)

Monitor, and Background Use (see
Table 5 for compl ete list)

231 E7
63 3F

232 E8 Monitor Constants (see Table 7 fora
64 40 IOCS Pointers and Constants complete list)

95 5F 255 FF

22 Monitor Service Routines

Table 5. Standard Constants

Address Value Address Value

Dec. Hex. Dec. Hex. Dec. Hex. Dec. Hex.

9 9 32768 8000 36 24 -7 FFF9

10 A 16384 4000 37 25 -8 FFF8

11 B 8192 2000 38 26 9 9

12 C 4096 1000 39 27 -9 FFF7

13 D 2048 800 40 28 10 A

14 E 1024 400 41 29 -10 FFF6

15 F 512 200 42 2A 11 B

16 10 256 100 43 2B -11 FFF5

17 11 128 80 44 2C 12 C

18 12 64 40 45 2D -12 FFF4

19 13 32 20 46 2E 13 D

20 14 16 10 47 2F -13 FFF3

21 15 8 8 48 30 14 E

22 16 4 4 49 31 -14 FFF2

23 17 2 2 50 32 15 F

24 18 1 1 51 33 -15 FFF1

25 19 0 0 52 34 -16 FFFO

26 lA -1 FFFF 53 35 32767 7FFF

27 1B -2 FFFE 54 36 32512 7FOO

28 lC 3 3 55 37 33023 80FF

29 lD -3 FFFD 56 38 65280 FFOO

30 lE -4 FFFC 57 39 255 OOFF

31 1F 5 5 58 3A 61440 FOOO

32 20 -5 FFFB 59 3B 3840 OFOO

33 21 6 6 60 3C 240 OOFO

34 22 -6 FFFA 61 3D 49152 COOO

35 23 7 7 62 3E 31 IF

Branching to Service Routines 23

Table 6. Transfer Vector for Monitor Service Routines

Address

Dec. Hex. ADRl for

199 C7 M:FSAVE

200 C8 M:IOEX

201 C9 M:READ

202 CA M:WRITE

203 CB M:CTRl

204 CC

205 CD M:TERM

206 CE M:ABORT

207 CF M:SAVE

208 DO M:EXIT

209 D1 M:HEXIN

210 D2 M:INHEX

Table 7. Monitor Constants

Address

Dec. Hex. Name Purpose and Use

232 E8 K:FOREBG Beginning of resident
foreground

233 E9 K:FOREND Ending of resident fore-
ground

236 EC K:BACKBG Beginning of background
space (core)

237 ED K:UNAVBG Beginning of unavailable
memory

239 EF K:FEF FORTRAN error severity
level

243 F3 K:MTMP Size of temp for Monitor
service calls

244 F4 K:CCBUF Address of control card
image (buffer)

SERVICE ROUTINES

M:READ (Genera I Read Routine)

The call to M:READ provides device-independent input with
standard editing and checking. Standard error detection
and correction is optional on each call. The calling
sequence is

lDX

RCPYI

B

ADRlST

P, l

M:READ

24 Service Routines

Temp Space
Purpose of this Routine Required (Dec.)

M:SAVE Function if Registers Saved 0

Devi ce-Dependent I/O Driver 16

Devi ce-Independent Read Routine 30

Device-Independent Write Routine 30

Device-Independent Control Routine 30

(Reserved for RBM use)

Normal Termination of Background 0

Abnormal Termination of Background 0

Save Registers on Real-Time Interrupt 0

Restore Registers on Foreground Exit 0

Hexadeci ma I-to-Integer Conversion 0

Integer-to-Hexadecimal Conversion 0

where

ADRlST is a pointer to the first word of the argu-
ment list which is a set of four or five words either
in the user's program, or in a temporary stack.
This argument list appears as:

ORDER

Operational label or File Number

Address of buffer to receive data

Number of bytes to transmit

AIO Receiver address (optional)

o

where

F A device-file number is specified.

F 0 An operational label or devi ce unit

A

A

number is specified.

An AIO receiver address is specified.

o No AIO receiver address is specified.

(Note: Only a foreground task may specify
this.)

w = 1 Unconditional wait for input to com-
plete is specified.

W = 0 Only initiate input and return. Return
is immediate if input cannot be started
immediately.

E = 1 Standard error recovery is to be performed at Return is to the location specified in the L register. The
B register is always saved. channel end for this operation.

E = 0 No error recovery is to be att.empted.
The E, A, and X registers all contain status on the return,
as shown in Table 8. ORDER is one of the permissible IIpseudo ll input

orders shown below:

ORDER (Hex.) Operation
The return is immediate if there is a calling sequence error
{and the E register is negative on return}. In those cases
where a wait is specified, the I/O is initiated and the
M:READ routine loops until the operation is complete.

Operation

All
operations

Initiate
I/O and
no wait

Check and
no wait

Initiate
and
wait

Initiate
and wait
or check
and wait

*

00 Return standard record si ze for
this device in the X register
and device type in A register. If lIinitiate I/O and no wait" is specified, an SIO is issued

before the return if the devi ce
02

04

Read bi nary.

Check previous input for
completion.

Read automatic,

1. Is currently free.

2. Can accept an 510.
06

OC Read backward. 3. Is not in the "manual" mode.

Table 8. Return Status from M:READ, M:WRITE, M:CTRL

Major Status Action E Reg.t A Reg. t

Operational label not valid Return immediately -1 8

Calling sequence error Return immediately -1 4

Operational label is set to zero Return immediately 0 2

Irrecoverable I/O error Return after error recovery -1 1
attempt, if any

Channel and device are free Initiate I/O and return 0 0
and in automatic mode

Channel and/or device are busy Return immediately 0 -1

Manual intervention is required Return immediately -1 -1
{manual mode or no device
recognized}

I/O still in progress Return immediately 0 -1

I/O complete Return after end-action, 0 Completion
if any code

Channel and devi ce are free Initiate I/O and wait for
and in automati c mode. completion

Channel or device are busy Wait and keep trying

Device number is not recognized Type out "FAULT" message
or is write-protected to operator and retry

Device is in manual mode Type out IIEMPTY" message
to operator and retry

I/O sti II in progress Wait and keep checking 0 Completion

I/O complete Perform any end-action o or
code

and return -1

X Reg.

*

*

*

*

*

*

*

*

Byte count
tra nsm i tted

Byte count
tra nsm itted

Unspecified. I tSee Table 9 for meaning of codes shown below.

Service Routines 25

If any of these conditions is false, the M:READ routine
returns immediately with appropriate indicators set.

The caller can loop back to the call to M:READ if the
channel or device are busy, or can switch to another de­
vice. The "wait" flag has meaning whether this is an
initiate or a check order. If error recovery is specified,
it is attempted prior to the final return.

The status table (Table 8) refers to various return codes
for recognition, rejection, initiation, and completion.
The return codes are listed in Table 9.

M:READ FUNCTIONS

M:READ reads one physical record from the specified device
regardless of device type and regardless of whether the rec­
ord is EBCDIC or binary. Thus, M:READ sets up the proper
order bytes for the actual device (using the "pseudo order
by te" given in the call to M:READ only as a guide). Few­
er bytes than are in the physical record can be requested,
and only the requested number will be returned in the user1s
buffer. However, if more bytes are requested than are in
a physical record, only one physical record will be read.

On a Check operation, the byte count returned in the X
register is not meaningful if the calling sequence does not
specify the same count as the initial Read. This is be­
cause the byte count is calculated by subtracting the byte
count residue in the status table from the byte count in the
calling sequence.

In any case, the actual number of bytes read will be re­
turned in the X register on input completion and, if this is
not identi ca I to the number of bytes requested, there wi II
be an "unusual end" condition with an "incorrect" length
code. It is not always necessary for the user to check all
of the possible, distinct return codes but it can be useful
to print the codes out for debugging purposes.

Code in Value in
E Reg. A Reg.

0 0

-1 1

0 2

0 3

o 4

o 5

0 6

0 7

0 8

26 Service Routines

Table 9. I/O Completion Codes

Meaning

Operation successful

Irrecoverable I/O error

Operation not meaningful
for this device

End-of-file encountered
on a Read

End-of-tape encountered

Incorrect record length
specified

No I/O pending for this
Check operation

Device is write protected

Device is at load point

Interpretation or Effect

X register contains the count of the number of data bytes
transmitted.

If error recovery was specified, the maximum number of retires
has been attempted unsuccessfu lIy.

Either an operational label is assigned to file zero or the I/O
operation has no meaning for the particular device.

A tape mark has been encountered while reading from magnetic
tape, or an EOD has been read from cards, paper tape, or key­
board/printer while reading in the automatic mode. (For magnetic
tape, tape marks are recognized in all modes.)

Significant only for magnetic tapes. Tape is positioned beyond the
end-of-tape marker and a writeor read with the E bit= 1 has been
attempted. No data is written (only tape marks can be written
beyond the end-of-tape marker). On a read, if an end-of-fi Ie and
an end-of-tape are both sensed at the same time, the end-of-tape
return is given.

Significant only for read operations. For magnetic tape, the byte
count and physical record size do not agree. For cards or paper
tape, a read Automati c has read a binary record and the byte count
is not 120, or an EBCDIC record has been read but the requested
byte count was not 80.

Probably an error in I/O buffering operations. Can be ignored, if
the user desi res.

Significant only for magnetic tape and only for the no-wait case
when a W rite was attempted.

Attempt to space or read backward over the load point on magneti c
tape.

Using M:READ, a user can (for example) read 80 EBCDIC
bytes either from cards, paper tape, or keyboard/printer.
M:READ will perform standard editing from paper tape, as
described below, to make the record appear as though it
had come from ca rds.

By using a "Read and No Wait" followed later by a "Check
for Input Complete" the user can effectively overlap input
and computation.

The order code X'OO' is used to determine the standard rec­
ord size for an unknown device and can be helpful for de­
termining the optimum blocking sizes to use.

The "Read Backward II order is requi red primari Iy as a log­
ical backspace for Basic FORTRAN when using SDS 9-track
magnetic tapes, since a logical record may be composed of
several physical records. By interpreting the leading or
trail ing bytes on the record, FORTRAN run-time routines
can determine if it is the final physical record in a logical
record. (See Chapter 8 for a description of FORTRAN
II unformatted II records.)

Read Backward is ignored for a II devi ces except 9-track
magnetic tape. The buffer is in an "inverted" condition
after a read backward.

Note: If an "odd" byte count is given, the first byte is
transmitted into the right half of the first word in
the user's buffer, and the buffer will end on a
word boundary (right-justified). Genera"y it is
better to give even byte counts, because of the
method used by Sigma 2/3 hardware to perform
I/O operations.

REAL-TIME PRIORITY

A" of the I/O routines are reenterant, and any input being
initiated by a given task can be interrupted up to the "point
of no return" to initiate input for a higher priority task.

External and internal interrupts are inhibited for up to 100
microseconds of CPU time during the actual SIO sequence.
By keeping a high-priority task active and looping on an
input request to a busy device, a high-priority task can
seize control of the channel or devi ce as soon as the current
I/O operation is completed.

SPECIAL EDITING FOR READ AUTOMATIC

Card Reader. Any cards with a "1" and "2" punch in col­
umn 1 are automatically read as binary; all other cards are
read as EBCDIC. (For nonstandard binary cards, the user
must use "read binary".) It is possible to specify that all
cards from a certain filet are to be read as BCD and con­
verted by M:READ to EBCDIC before being returned to the
user. This would apply to only one file, so it is possible to
read a number of cards in EBCDIC and others in BCD from
the same card reader. (BCD card codes are produced on an

tFile must be declared as BR nn at system initialization.

IBM 026 keypunch, and EBCDIC on an IBM 029 keypunch.)
The EBCDIC record size is 80 bytes; the binary size is 120
bytes. An incorrect length status is returned if the requested
byte count does not exactly match.

Paper Tape or Keyboard/Printer. All input from paper tape
or keyboard/printer is intiated in a one-byte-at-a-time mode
(from paper tape, the Read order is always, "Read Ignoring
leader"). If the first byte is a code of X'lC', X'3C', X'FF',
X'9F', X'BF', X'DF' or X'78' (which can only happen from
paper tape input), the M:READ routine switches to a "bin­
ary record II mode and reads up to 119 more bytes for a tota I
of 120 in this record. The code byte is the first byte in the
user's buffer. Code bytes are all invalid EBCDIC codes (in
the sense that they are not printable graphics or control
codes) and are "supersets" of the card reader "1 and 2punch"
rule for column 1. Therefore, the same codes for Read Auto­
matic can be used for both the card reader and paper tape.
In both cases, the code is part of the user's data buffer.

If the fj rst byte from the paper tape or keyboard/printer is
not one of the "binary" codes, M:READ continues to read
one byte at a time until a NEW LINE e code is encountered.
When the e is encountered, input transmission is terminated
and the line image is filled out (to the byte count that the
user requested) with blanks. The e code is not transmitted
to the user buffer. (If a e code is the first code in the input
line, it is ignored.)

Thus, all EBCDIC records are of variable length, up to the
maximum size requested (which must be no more than 80) or
unti I a @ is encountered. The EOM and "cent" (/) sign have
special meanings within the user's data line. An EOM
causes the entire line, up to the present position (including
the EOM byte) to be thrown away. A i sign acts I ike a
backspace: for each i sign received, this byte and the
byte just preceding it in the buffer are discarded.

When reading binary records in the automatic mode, the
paper tape is positioned after 120 bytes at the completion
of the read operations, regardless of the number of bytes
requested un less the record is in FORTRAN binary form. In
this case, the number of bytes specified in the record are
read. For either EBCDIC or binary records, no more bytes
than those requested are ever transmitted to the user's buf­
fer. For EBCDIC records, the paper tape is positioned just
after the NEW LINE code. The requested byte count must
be 80 for EBCDIC records and exactly 120 for binary rec­
ords. Any other byte counts result in an incorrect length
status being returned.

Magnetic Tape. No editing is performed for magnetic tape.
Records can be of any size, since the record is always trans­
mitted directly to the user's buffer. Binary and EBCDIC
modes are identical on 9-track tape.

Only the packed-binary mode is supported by M:READ for
7-track tapes, so the mode is identical to that for 9-track
tapes. However, only one physical record is read in re­
sponse to one call to M:READ, regardless of the byte count.

End-of-File Marks. From the card reader, paper tape, or
keyboard/printer, an EBCDIC record beginning with EOD

Service Routines 27

causes an end-of-file return from M:READ. From magnetic
tape, a tape mark will cause an end-of-file return.

Device End. From magnetic tape, sensing an end-of-tape
mark will cause an end -of-tape retu rn. (Data may sti II be
read from magnetic tape.)

Read Binary. No editing is performed, and M:READ reads
the number of bytes specified (up to the physical record
size of the device) as follows:

Device

Cards

Paper Tape

Magnetic Tape

Physical Record Size

120 bytes.

No limit. Also, the read order
is Read Immediate and the lead­
er is read as zeros.

Variable.

Keyboard/Printer Variable, (up to 255 bytes)

A summary of M:READ I/O operations is given in Table 10.

Table 10. M:READ I/O Operations Summary

OP
Code Keyboard Paper Card Magnetic
(Hex.) Printer Tape Reader Tape

Read Read Read no. Read 1 Read no.
binary without of bytes card up of bytes
(02) edit specified to 120 specified

(even nos.) bytes

Read Read and Read and Read Read no.
auto- edit to edit to automatic of bytes
matic NEW NEW 80 or 120 specified
(06) LINE LINE bytes (one or one

card) physical
record,
whichever
is smaller

Read NOpt NOpt NOpt Read
back- backward
ward (one record
(OC) at most)

t NOP indicates no operation is performed and a com-
pletion code of zero is returned in the E register and a
value of 2 in the A register.

M:WRITE (General Write Routines)

The M:WRITE routine provides device-independent output
with standard editing, standard error detection, and stand­
ard error recovery. The error detector is optional on each
call to M:WRITE. The calling sequence is

28 Servi ce Routines

LDX

RCPYI

B

ADRLST

P, L

M:WRITE

where

ADRLST is a pointer to the first word of the argu-
ment I ist which is a set of two to five words either
in the user's program, or in a temporary stack.
This argument list appears as:

ORDER

Operational Label or File Number

Address of buffer containing data

Number of bytes to transmit

AIO Receiver address (optional)

o 78 15

where

F A device-file number is specified.

F 0 An operational label or device unit
number is specified.

A An AIO receiver is specified.

A o No AIO receiver is specified.

W = An unconditional wait for output
complete.

W = 0 Only intiate output and return.
Return is immediate if output cannot be
started immediately.

E = 1 Standard error recovery is to be per-
formed at channel end for this operation.

E = 0 No error recovery is to be attempted.

ORDER is one of the "pseudo" order bytes
shown below.

ORDER (Hex.) Operation

00 Return standard record
size for this device in X
register and device type
in A register.

01

03

05

04

Write binary.

Write tape mark or EOD.

Write EBCDIC.

Check for output complete
(aftera "nowait" initiation).

Return is to the location in the L register (the B register is
a Iways saved).

The status is returned in the E, A, and X registers. The
method of returning and the status is identical to that de­
scribed under II M:READ" .

M :WRITE FU NCTION

M:WRITE writes one physical record on the device speci­
fied' regardless of device type. Because of differences in
write orders for the card punch, it is necessary to specify
whether the output record is binary or EBCDIC (for other
devices, the difference is not meaningful).

For devi ces such as a card punch, if fewer than a standard
number of bytes are specified (80 for EBCDIC and 120 for
binary), the remainder of the record is padded with blanks
(EBCDIC) or zeros (binary).

For a write binary on the keyboard/printer, the user must
insert his own NEW LINE codes, as desired.

Most of the general comments applicable to M:READ also
apply to M:WRITE.

Note: If an lIodd" byte count is given, the first byte
written is from the right half of the first word and
the byte in the left half is ignored. This can be
useful in writing out messages created from
"TEXTC", or where the first byte is control infor­
mation and, therefore, should not be written out.
Output to the card punch assumes an "even" byte
count. An extra byte at the start of the buffer is
sent if the count is "odd".

A summary of M:WRITE I/O operations is given in Table 11.

SPECIAL OUTPUT EDITING

Keyboard/Printer. The first byte is assumed to be a carriage
control byte and is never pri nted. If it is an EBCDIC 0 or

1, double-spacing is used. If it is an EBCDIC minus (-),
no spacing is used. Otherwise, single-spacing is used and
the first byte is not sent to the keyboard/printer. Trailing
blanks are removed.

If there are more than 85 printable characters, those be­
yond 85 are ignored.

Paper Tape. If the EBCDIC mode is specified, trailing
blanks are removed. An e code is always inserted as the
last byte (if not already present). For the binary mode,
the record is punched with no changes.

Magnetic Tape. Variable-length records are possible. No
check is made of the data and no editing is performed. The
exact count specified is always written.

On a Read or Write, if the tape is positioned past the end­
of-tape (EOT) marker and error checking is specified, un­
usual end '4' is returned in A and no I/O takes place. If
error checking is not specified, the Read or Write is per­
mitted, and no EOT status returned. A Write File Mark
operation is permitted regardless.

Card Punch. For the EBCDIC mode, 80 bytes are always
written. The user can specify up to 80 bytes.

If this file has been declared BCD at system initialization,
all EBCDIC output records are converted to BCD before
being punched.

For binary write requests, 120 bytes are always punched.
The user can specify from 2 to 120 bytes, and the Monitor's
buffer is filled with zeros (up to 120 bytes). No modifica­
tion is performed in the user's actual data or buffer.

Line Printer. The first byte per record is always assumed to
be a carriage control (format) byte, and is never printed. If
133 bytes are sent, 132 will be printed and the first byte is
interpreted as the format byte. With any "odd byte count"

Table 11. M:WRITE I/O Operations Summary

OP Code (Hex.) Keyboard/Pri nter Paper Tape Card Punch Line Printer Magnetic Tape

Write binary (01) Type without Write even number Write 120 bytes NOpt Write number of
editing of bytes always always bytes spec i fi ed

Write end-of- NOpt Write IEOD Write IEOD NOpt Write tape
file (03) mark

Write EBCDIC Ed i t and type Edit and punch Write out 80 Format and Write number of
(05) bytes print up to bytes spec i fi ed

132 bytes

tNOP indicates no operation is performed, and a completion code of 0 is returned in the E register and a value of 2 in
the A register.

Servi ce Routines 29

(as in all I/O), the first byte transmitted is from the right of
the first word, and the left half of the first word is ignored.

The print routine changes the logical format byte (as shown
below) to the proper physical format code for the printer.
No incorrect length status is ever returned. If more than
133 bytes are specified, the remainder are ignored beyond
133. If fewer than 133 bytes are specified, the right-hand
portion of the printed image wi II contain blanks.

However, the user's buffer is not modified. The print routine
data chains on the order byte and format byte, first in the
Monitor area, and then on the user's print image.

If it is desired to force single spacing, a word can be ap­
pended to the beginning of the user's buffer with a blank in
the right half, and the byte count increased to an odd value.
Up to 132 bytes from the original buffer will then be printed,
and the extra "blank" will be used as the format byte to
force single-spacing. The format codes are as follows {in
EBCDIC}.

Format Byte Effect

blank No space before printing, single
space after pri nti ng.

o

Page eject before printing, single
space after printing.

Single space before printing, single
space after pri nti ng.

No space before printing, no space
after printing.

Any other format code is treated like a blank but is not
printed. These are standard FORTRAN format characters
with the exception of 11_". This code is substituted for the
standard FORTRAN "+" to a II ow overprinting, but the mean­
ing has been changed to correspond to the effect of post­
slew printers. The user can use M:IOEX (General I/O
Driver) and send the actual format code for any of the other
format codes for SDS printers.

Write End-of-File. Order code X'03' will produce the fol­
lowing results on the devices given below.

Device Result

Line Printer No effect

Keyboard/Printer No effect

Card Punch ! EOD card punched

Paper Tape Punch !EOD@

Magneti c Tape Tape mark

M:CTRL (Genera I Control Routine)

This routine provides device-independent positioning cap­
abilities for magnetic tapes (7-track and 9-track). The
calling sequence is

30 Service Routines

LDX ADRLST

RCPYI P, L

B M:CTRL

where

ADRLST is the pointer to the first word of the argu-
ment list which is a set of two consecutive words
in either the user's program or in a temporary stack.
This argument list appears as:

ORDER

Operational Label or File Number

o

where
3 '" 78 15

F a device-fi Ie number is specified.

F 0 an operational label or device unit
number is specified.

W = 1 wait for operation to be completed (for
a rewind, complete means order was accepted
and rewind has begun).

W = 0 no IIwait for operation to be completed ll

is specified.

ORDER is one of the following IIpseudo ll order
bytes.

ORDER (Hex.) Operation

EB Space Record Backward

EF Space Record Forward

FB Space File Backward

FF Space Fi Ie Forward

2B Rewind (Off Line)

3B Rewind (On Line)

Retu~n is to the location in the L register. The B register is
always saved. The status is returned in the E, A, and X
registers, as for M:READ, and the effect of the wait is iden­
tical to M:READ.

M:CTRL FUNCTIONS

The device (if a magnetic tape) is positioned as indicated
by the order in the argument list. Error checks are not mean­
ingful. The rewind or backspace commands are not consid­
ered an error if the tape is already at the load point.

The Space Record commands are for physi ca I records and
are not applicable for FORTRAN logical records.

The "rewind off line" operation is useful when the user
wi shes to save a tape off line or for a tape at end -of-ree I
status when a new tape must be mounted; however, the user
must control and check for the end-of-reel condition. (The
end-of-~eel status is returned as Completion Code 4.)

M:IOEX (General I/O Driver)

M:IOEX provides direct control by the background programs,
the Monitor, or the foreground real-time programs for all
I/O operations on the buffered I/O channe Is and addition­
ally provides for centralization of I/O interrupts. The
calling sequence is

LDX

RCPYI

B

ADRLST

P, L

M:IOEX

where

ADRLST is a pointer to the first word in the argu-
ment list, which is a set of two, three, or four
consecutive words in either the user's program or
in a temporary stack. The argument list appears
as

where

F

F OP

Operational Label or File Number

Address of first 10CD (for SIO only)

Address of AIO Receiver, if any
(for SIO only).

o

A device-file number is used.

F 0 An operational label or device unit
number is specified.

A If AIO Receiver is specified (fore-
ground option only).

A 0 If no AIO Receiver is specified (three-
word call, then).

OP Code for the operation to be performed,
as:

o for SIO

for TIO

2 for TDV

3 for HIO

4 for check previous data transfer

Return is to the location in the L register on the call to
M:IOEX (the B register is always saved).

The Overflow and Carry Indi cators, the A register, the E
register, and (in some cases) the X register are used to re­
turn status information on the operation required. The com­
plete list of status codes is shown in Table 12. In this table,
the DSB stands for the Device Status Byte, the OSB for the
Operationa I Status Byte, the Byte Count Residue is from the
Odd I/O Channel Register at Channel End, and DN stands
for Device Number of the current device. The "reject
codes" are shown in Table 9.

Note that no I/O error recovery has been attempted. The
DSBs and OSBs are just as received from the I/O system
hardware. These status returns are organized so that a quick
and simple test will show the nature of the return. If the
user wishes to continue trying to initiate the I/O operation,
or keep check ing for completion, it is possible to loop back
to the call to M:IOEX.

The user can read/write on the RAD or any peripheral de­
vice that uses standard SDS Sigma peripheral responses. For
input/output operations to the RAD, the user must first give
a seek order (see SDS Sigma RAD Storage System Reference
Manual) and then the appropriate data-transfer request.
The user must a Iso perform his own fi Ie management.

If multiple tasks use the RAD, they must cooperate in some
way so that the seek address is not modified by some higher­
level task before the data operation is initiated.

M:IOEX FUNCTIONS

TIO, TDV, HIO In these operations, the request is per­
formed immediately and the devi ce status bytes are returned
if the device is recognized. If specified, the AIO Receiver
will be ineffective.

SIO For an SIO operation, the operation is initiated if
there is device recognition and the channel is free (which
may not be the same as device free or device controller free
for channels with several devices).

The SIO is issued even if the device is in the manual mode.
Therefore, it is the responsibi I ity of the user's program to
test for the manual mode both before and after the SIO re­
quest, and inform the operator by a suitable message.

An HIO can be used to abort an I/O operation. This re­
sults in setting the channel ready for a new activity and
setting the "end action pending" flag for the device. The
flag should then be cleared by an I/O check operation.

Protection checks are performed onl y for background I/O
requests. The background is not permitted an AIO receiver,
and a receiver is ignored if attempted from the background.
This is due to the structure of the 10CDs, I/O Data Tables,
and the requirements for the absolute protection of fore­
ground programs (see "End Action II in Chapter 8).

Service Routines 31

Table 12. M:IOEX Return Status

Indicators

Operation Major Status 0 C

SIO, no,
TOY, HIO Device number not recognized 1 1

All Invalid calling sequence 0 0

SIO SIO cannot be accepted 0 1

Channel busy 0 0

Successful initiation 0 0

no SIO cannot be accepted 0 1

Other 0 0

TOY Device abnormal condition 0 1

Device normal condition 0 0

HIO Device operating when HIO 0 1
received

Device not operating when 0 0
HIO received

I/O I/O operation in progress 1 0
check

I/O completed unusua I end 0 1

I/O completed normal end 0 0

If the request for I/O action is for an odd number of bytes,
the 10CD and order bytes must be properly set in the left
or right half of the word, as specified in the Sigma 2 and
Sigma 3 Computer Reference Manuals. M:IOEX does not
move any data or order bytes.

When using data chaining, it is very important to set the
interrupt flags on all 10CDs except for the "order" byte,
since an unusua I end condition in one of the 10CDs, with­
out the interrupt flag being set, wi II cause the I/O to ter­
minate without an interrupt, and the channel may then
"hang-up" waiting for the interrupt. The last IOCD must
set the interrupt flag.

The Monitor does not alter the user's data in any way. If
an I/O interrupt is received and there is no AIO Receiver
specified (and the device is still "busy"), the I/O interrupt
is ignored and the channel remains active. Similarly, if
an AIO Receiver is specified, the branch is taken with the
same status as for an ordinary return.

32 Service Routines

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

E Register A Register X Register

1 - 7 8 - 15 0 - 7 8 - 15 0-- 15

Recognition code 0

Reject code 0

Current fi Ie number no Dev. no. 0
DSB

Active fi Ie number DSB Dev. no. -1

Current fi Ie number SIO Dev. no. 0
DSB

Current fi Ie number no Dev. no.
DSB

Current fi Ie number TDY Dev. no.
DSB

Current fi Ie number HIO Dev. no.
DSB

Current fi Ie number SIO Dev. no.
DSB

E OSB AIO Dev. no. Byte count
flag DSB residue

(bit 7) (DN)

The user's program must determine whether there was a chan­
nel end or an unusual end condition.

If the return is for a "busy" device or channel, the program
can loop on this request unti I the operation is successful.

Since only higher priority tasks can take control from the
task issuing the request, the routine issuing the request
gains control of the desired device and/or channel as soon
as the current operation is complete. The M:IOEX routine
inhibits interrupts for a period of less than 100 mi croseconds
during the loading of the I/O channel registers and the set­
ting of the activity status for the device and channel. Thus,
a higher priority task can always interrupt up to the point
when the I/O channels are loaded during the initiation of
an I/O request.

I/O CHECK This operation tests for channel end on the
previously requested I/O operation by testing certain flags
within the BCM I/O tables. The flag is set by the I/O

•
interrupt task when the device interrupt occurs. Thus, no
TIOs are required in order to determine when the operation
is complete.

Since TIOs take a small amount of I/O bandwidth (particu­
larly if executed repeatedly in a test loop) the method of
checking for I/O completion described herein is desirable.

The Monitor saves the operational status byte and the byte
count residue from the completion of the I/O operation,
even though another device may have used the channel be­
fore the end-action check is made by the requesting task.

M:TERM (Norma I Exit from Background Programs)

The M:TERM routine provides a return to the Monitor on a
normal termination of a background program or a foreground
task-initialization program. The calling sequence is

RCPYI P, L

B M:TERM

M:TERM FUNCTIONS

No postmortem dumps are performed. The background is
set to lIemptyll and all peripherals allocated to the back­
ground are now avai lable to the foreground if there is no
other activity waiting for the background job.

However, if the terminating program is one of a series of
assemblies or compi lations, the background is not considered
"empty" and no peripherals are released or repositioned.
The normal return is controlled by the Monitor and is never
to the location in the L register. Nevertheless, the L reg­
ister must be set as indicated.

M:ABORT (Background Abort Routine)

The M:ABORT routine provides a method of terminating the
background program when it has failed for one of many pos­
sibte reasons, and terminates all active I/O for the back­
ground program. The calling sequence is

LDA ADRL

LDX CODE

RCPYI P, L

B M:ABORT

where

CODE is a word of EBCDIC information (printed
on the OC device) that indicates why the job was
aborted.

ADRL contains the address to be printed in the error message.
Return is to the location in the L register, if from a real­
time foreground program. Otherwise, return is to the Mon­
itor load routine.

Note: This routine should not be used by foreground
tasks.

M:ABORT FUNCTIONS

All I/O functions in progress are allowed to complete. The
actual "abortll operation is accomplished at the background
priority level.

M:SAVE (Interrupt Save Routine)

This routine performs the full context switching when a fore­
ground interrupt occurs. It is avai lable only for foreground
programs that are connected directly to an interrupt. The
call ing sequence is

RCPYI

B

ADRL

where

P,L

M:SAVE
(or M:FSA VE)

tcb

tcb is the address of the Task Control Block for
this task.

Return is to the va lue in the L register, plus 1. The con­
tents of all registers are no longer in the register, but in­
stead, are in the Task Control Block.

M:SAVE FUNCTIONS

The contents of registers A and L must be saved in the prop­
er place in the Task Control Block before the task calls
M:SAVE. M:SAVE then will save the original values of X,
T, B, and E in the Task Control Block.

If the T flag of the Task Control Block is set for "temporary
storage", M:SAVE wi II set floating accumulator pointers
for the task into locations 0001 to 0005. M:SAVE will then
set the task1s temp stack pointer into location 0006, saving
the previous contents of this location (it defines the begin­
ning of the temp stack for the interrupted task) in the Task
Control Block. If the T flag is set for "no temporary stor­
age ", M: SAVE wi II preserve on I y the hard ware reg ister for
the interrupted task, and wi II not disturb its floating accu­
mulator or temp stack pointers (in locations 0001 to 0006).

M:FSAVE

For Sigma 3 configurations a second entry point, M:FSAVE,
has been added to M:SAVE for users who exercise the
optional Sigma 3 Store Multiple instruction. The address
literal to this entry point is saved in location X I C71 and is
not available as a transfer vector to unprotected background.
M:FSAVE assumes that all registers have a I ready been
saved, but it uses the same calling sequence as described
above for M:SA VE.

M:EXIT (Interrupt Restore Routine)

The M:EXIT routine restores the contents of all registers
prior to exit from a foreground task, switches the full

Service Routines 33

context back to the previous task, and performs the actual
exit sequence. The calling sequence is

RCPYI P,L

B

ADRL

where

M:EXIT

tcb

tcb is the address of the Task Control Block for the
task.

Return is to the interrupted task, at the address saved in
the PSD. All registers are restored to their previous val ue
when the interrupt occurred.

M:EXIT FUNCTIONS

The operations performed by M:EXIT are essentially the re­
verse of those in M:SAVE. It is necessary to inhibit inter­
rupts for about 11 microseconds for the actual exit sequence,
but it is not necessary to call M:EXIT if the user1s program
can perform the exit sequence.

The Task Control Block contains a flag to indicate whether
any temporary storage is used. If the task uses no Monitor
I/O routines and does not use the floating accumulator, no
temporary storage is needed. In this case, only the hard­
ware registers are restored.

M:INHEX (Integer to Hexadecimal Conversion)

The M:INHEX routine converts a binary integer to a hexa­
decimal representation in EBCDIC code. The calling
sequence is

LDA integer

RCPYI P,L

B M:INHEX

where

integer is the value to be converted.

34 Service Routines

Return is to the location in the L register. On return, the
E register contains the leftmost two bytes, and the A reg­
ister contains the rightmost two bytes. The B register is
unchanged. The X register is changed.

M:INHEX FUNCTION

Four fields of four-bit hexadecimal codes are converted to
four fields of eight-bit EBCDIC equivalents. No temporary
storage is used.

M:HEXIN (Hexadecimal to Integer Conversion)

The M:HEXIN routine converts a hexadeci mal number
{represented in EBCDIC} to a binary integer. The calling
sequence is

LDA left

RCPY A,E

LDA right

RCPYI P, L

B M:HEXIN

where

IIleftll and IIrightll contain the EBCDIC codes for
the hexadecimal number (the left and right parts
of a possible four-byte field, respectively).

Return is to the location in the L register. The result is in
the A register; the X register is changed, and the B reg­
ister is unchanged.

M:HEXIN FUNCTION

Blanks and zeros are treated as hexadecima I zeros. No tem­
porary storage is used and no error checking is performed.

7 . REAL-TIME PROGRAMMING

SCHEDULING RESIDENT FOREGROUND TASKS

The orderl y transfer of control from one task to another is
called scheduling. Under the BCM, with only resident
foreground tasks, the scheduling proceeds in the following
sequential steps.

1. When there is no background or foreground task active
in the system, the Monitor enters the "wait" state and
waits for the operator to direct the loading of a set of
control commands from some input device.

2. When a background program is finally loaded, the Mon­
itor transfers control to the background program by an
exit sequence from the BCM Control Task. During exe­
cution of the background program (if the program is
waiting for I/o to complete), there can be nothing in
execution in the system. That is, the Monitor makes
no attempt to mul tiprogram to absorb idle time. If
there is a resident foreground task in core that is armed
and enabled, this task may receive an interrupt from
some external source.

3. As soon as the interrupt is received by the CPU, the
CPU wi II stop at the next interruptable point and fol­
low the interrupt entry sequence procedure (described
in the Sigma 2 and Sigma 3 Computer Reference
Manuals). After entry to the interrupt task, this task
saves the contents of any registers it will alter and
then proceeds to carry out its function. (It may use the
Monitor service routine M:SAVE to do this, or it may
perform the saving operations in its own code.)

4. When the real-time task is completed, it restores the
contents of the saved registers and exits via the stan­
dard Sigma 2/3 exit procedure (described in the Sigma 2
and Sigma 3 Computer Reference Manuals). The real­
time task may use the Monitor service routine M:EXIT
to restore the previ ous states and exit, or it may do it
in its own code.

It is important to note that this is a last-in, first-out form of
scheduling. The interrupting task may be interrupted at any
time during execution by a higher priority task, up to the
maximum number of tasks possible in the system.

A new task saves the status and register contents of the inter­
rupted task each time, although it does not know what the
previous task was. When the new task exits, it returns con­
trol to the task it interrupted. If there is an interrupt wait­
ing between the level of the current task (which is just com­
pleting) and the interrupted task, the interrupted task will
immediately again be interrupted and the new (intermediate)
task will follow the same procedure. Thus, it is never neces­
sary for any task to know what task precedes or follows it.
The task merely perserves and restores the environment ac­
cording to the established rules.

The "temporary stack pointer" must be switched to the cur­
rently active stack in addition to switching the floating

accumulator. t There are Monitor service routines provided
to help make this context switch. After an interrupt, the
actual entry point is to the task itself rather than to the
Monitor, however.

Due to the design of the hardware priority system, the Mon­
itor is not involved in the actual scheduling.

This procedure allows the task and programs to independently
control the priority of execution of certain operations with­
in the foreground. For example, a real-time foreground
task that is activated by an external interrupt may perform
some processing and then issue a special Wri te Direct to
trigger another related task to continue the processing at a
higher or a lower interrupt level.

If the Write Direct is to a higher level, the interrupt to the
higher level takes place immediately and the new task is
begun. If, as is more likely, the Write Direct is to a task
at a lower priority level, the current task wi" then exit ina
normal manner and the next lower priority "waiting" task
will continue. This next lower task may be the one that
just received the Write Direct, or it may be a task in a
different program; the tasks in a program can be connected
to any interrupt level, and need not be adjacent in the inter­
rupt priority hierarchy. Eventua"y, the task that received
the Write Direct wi" be reached, and this task wi" then
continue the processing at that level. Thus, with a few
interrupt levels, the real-time foreground programs can have
an intricate scheduling scheme without BCM action.

TASK CONTROL BLOCK FUNCTIONS

The Task Control Block (TCB) is a software convention. It
is a convenient means of organizing and storing information
necessary to perform task entrance and exit, defining tem­
porary space and initial arming and enabling.

The TCB is used by the Monitor service routines M:SAVE and
M:EXIT and by the control command interpreter upon en­
countering a C: command. The actual contents of the TCB
are shown in Table 13.

The TCB can be created at assembly time as a block of code
contiguous to the task it describes, with address literals
pointing to the temporary stack space. By use of a DATA
statement, the initial code for the interrupt level state for
the task interrupt level can be set.

Note: The code in TCB + 2 is the exact code used in the
Write Direct that sets the interrupt level. This
code is described in the Sigma 2 and Sigma 3 Com­
puter Reference Manua I s under II Interrupt System
Control II •

tThe task temp pointer and the floating accumulator can be
thought of as core pseudo-registers, in that they must be
saved and restored just I ike the actual hardware registers,
but only if the task is using the Monitor I/o routines or any
of the standard FORTRAN Run-Time or mathematics libraries.

Real-Time Programming 35

Table 13. Task Control Block (TCB)

Location Contents Set By

TCB + 0 ADRL PSD Assembler

1
R bit

T Dedicated Interrupt Location Assembler
For WD

2 0001 I 0 I CODE I 0000 I GROUP Assembler

3
ADRL TEMPBASE (temporary stack lower

Assembler
I imit address)

4 ADRL TEMPLIM (upper address plus one) Assembler

5 Contents of L register from Interrupted Task Current Task (on actual entry)

6 Contents of T register from Interrupted Task M:SAVE (or current task 0)

7 Contents of X register from Interrupted Task M:SAVE (or current task 0)

8 Contents of B register from Interrupted Task M:SAVE (or current task 0)

9 Contents of E register from Interrupted Task M:SAVE (or current task 0)

10 Contents of A register from Interrupted Task Current Task (on actual entry)

11 Contents of location 0006 on current entry M:SAVE (optional)

Note: It is optional whether or not the PSD for the interrupted task is saved in locations --
contiguous to TeB + 11.
the Task Control Block

PSD + 0 Interru pted Task status

1 Interrupted Task status

2 First instruction of Task

In Tabl e 13 above,

PSD is the address where the Program Status Double-
word of the interrupted task is to be stored - the
same address contained in the dedicated interrupt
location for the interrupting task.

R bit for WD is the hexadecimal value from (O to F)
that indicates the register bit which identifies the
particular interrupt level within the GROUP{the
hardware block of 16 possible interrupts).

T is the flag that indicates whether the M:SAVE
and M:EXIT routines shou Id set locations 0001 to
0006; 0 means yes, 1 means no.

CODE is the interrupt system function control code
(as defined in the Sigma 2 and Sigma 3 Computer
Reference Manuals) that indicates current or de­
sired initial interrupt control status.

36 Task Control Block Functions

In any case, the saved PSD is considered to be part of

Interrupt

Interru pt

Assembler

Bit "T" in word TCB + 1 is set to show whether the task is
using the Monitor I/o routines and the floating accumula­
tor. If bit "TII is zero, a temporary stack is required and
the M:SAVE routine wi II initial ize locations 0001 through
0006 after savi ng the previous temp stack poi nter for the
interrupted task.

If bit IIT" is a 1 (meaning no floating accumulator and no
temporary space are required), the M:SAVE routine wi II
not set these locations. The Monitor service routines
M:SAVE and M:EXIT do not themselves use any temporary
storage.

When programming the task in Basi c FORTRAN, the task
entrance and exit must be coded in Symbol, and the TeB is
set up with the task entrance procedure. The C: control
command sets the pointer to the PSD into the dedicated in­
terrupt location.

Background programs do not require a Task Control Block.

GENERATING FOREGROUND TASKS

If a foreground program is assembled in relocatable form, it
can be punched out in absol ute by the System Loader. That
is, the program can be created in the background even
though it is to be executed in the foreground. The System
Loader {like the Linking Loader} has the ability to satisfy
external REFs and DEFs at load time. Thus, Symbol, Basic
FORTRAN, and I ibrary programs can be combined and then
punched out in absolute format as one program, for subse­
quent I oadi ng into the foreground.

Figure 10 illustrates a sample deck structure to punch a
foreground program that calls one user-coded subroutine,
pi us library routi nes.

When the foreground program TASK is subsequently loaded
(see Figure 10), it will load at +2000.

LOADING RESIDENT FOREGROUND TASKS

Foreground tasks do not have to be generated and loaded
at the time that the user's BCM is created. They may be
generated at any ti me and loaded into the foreground after
an operator FG response to an ! ! KEY-IN.

A foreground program may be connected to its interrupt in
either of two ways:

1. Using the BCM C: control command.

2. Coding an initialization routine to connect the task to
its interrupt. This is accomplished by using a transfer
address in the task and by requesti ng that the BCM
transfer control to this entry point after loading, via
an ! name contro I command.

If the second method is used, the user should be aware that
the initial ization routine is processed at background priority
level and therefore can be interrupted. Also note that as
soon as the initialization routine arms and enables the task,
the task itself may interrupt the initialization routine before
the routine has completed its function. Therefore, the user
should code this initialization routine so that it completes
its initialization function before it arms and enables the
task. After completing the initialization function, the rou­
tine should return to the location in the L register.

The following examples ill ustrate the use of both methods
of connecting a foreground task to its interrupt. Example 1
assumes that the control command (CC) device is the card
reader. Exampl e 2 assumes that th i s device is the keyboard/
printer.

!$PA

Figure 10. Deck Set-up to Generate a Foreground Program

Generating/Loading Resident Foreground Tasks 37

Example 1: Using Connect Command to Connect Task
to Interrupt

Activate INTERRUPT on control panel. BCM types

!! KEY-IN

Key in

FG

and activate INTERRUPT on control panel. BCM types

! !KEY-IN

Key in

S

BCM will now read the CC device and process the
following deck:

where

TASK is the name in the start modul e of the
foreground program; +2000 is the absolute hexa­
decimal address of the TeB for the foreground
program.

2 is the code causing the interrupt to be armed
and enabl ed.

38 Foreground and I/O Priorities

Example 2: Using Initialization Routine to Connect Task
to Interrupt

Activate INTERRUPT on control panel. BCM types

! !KEY-IN

Key in

FG

and activate INTERRUPT on control panel. BCM types

!! KEY-IN

Key in

S

BCM types

! !CCI

Type in

!ABS TASK

The Absol ute Loader wi II load the foreground task and
return control to the keyboard/printer. Type in

!TASK

This command causes control to transfer to the address spe­
cified in the end module of the task. On completion of
initialization, the routine will return to the Monitor which
will return control to the keyboard. Type in

!FIN

to deactivate the effect of the FG key-in.

FOREGROUND AND I/O PRIORITIES
All foreground programs with a priority lower than the I/O
pri ority level may use Monitor I/O routines without difficu Ity
or restrictions. However, real-time foreground programs
with a priority level higher than the I/O priority level
cannot use the Monitor I/O routines under any conditions.
Thus, the termination and initiation of I/O requests must
take place at a lower-than-I/O task (i.e., one that has
been triggered by a Write Direct from a higher level task).
Generally, the high-level tasks are used for critical real­
time situations where no I/O is performed, or where the
task does its own I/O due to special requirements.

8. I/O OPERATIONS

INTRODUCTION

The Monitor can perform all I/o services for the byte­
oriented I/o system. This incl udes:

1. Logical-to-physical device equivalence.

2. In itiation of I/O requests.

3. Standard error checking and recovery (optional).

4. Software checking of background requests to preserve
protection of foreground and Monitor.

5. Option to generate device order bytes to provide for
device independent operations.

6. Provision for accepting user-generated 10CDs and
device order bytes to provide complete control for a
user1s program.

7. Capability to use data chaining for foreground pro­
grams for scatter-read or gather-write operations.

I 8. Provision for reading or punching cards in either BCD
or EBCDIC.

9. Positioning capabi I ities for magnetic tapes.

10. Editing capabi I ities from paper tape or keyboard/printer.

11. All I/o interrupt handling.

I/O INITIATION

Whenever a task needs to initiate an I/O operation, it ca lis
on the appropriate Monitor I/O routine (see Chapter 6 for
complete calling sequences). These Monitor I/o routines
are reentrant, so that a higher priority task may interrupt
and request I/O during a lower priority task. In this case,
the lower priority task is suspended and the higher priority
task is satisfied first. Thus, a real-time foreground pro­
gram can take control of a multi-device controller away
from background users at the completion of any current I/O
operation. This technique is used in place of queuing. All
Monitor I/O initiation is made according to the priority of
the calling task, with background tasks having the lowest
priority.

END ACTION

The section on "0perator Communication" specifies the
possible error messages. Generally, error recovery takes
place when I/O is checked for completion rather than on
an I/O interrupt. This means that error recovery for the
background will be processed at the priority level of the
background, rather than at the I/o priority level.

However, there is a provision for the real-time foreground
user to specify an end-action routine to be called when the
Monitor answers the I/O interrupt. This is the AIO re­
ceiver address in the I/O routine ca II ing sequence and it
is to be used only when more sophisticated end-action is
required. The routine is processed at the priority level
of the I/O interrupt, so the processing should be of very
short duration.

Reentrancy in an end-action routine is the user1s responsi­
bility. For example, the routine might consist of storing
the I/O status information and then triggering a lower­
level external interrupt through a Write Direct, where this
lower-level task performs the actual processing. The end­
action routine should then return to the Monitor I/O task
from whi ch it originally came.

The form of the call to the AIO receiver is

LDA AIODSB

RCPYI P,L

B AIO receiver address

(devi ce status byte
from AIO in bits 0-7,
device number in
bits 8-15)

The AIO receiver routine should return to the location con­
tained in the L register on entry. All registers are assumed
to be vo I ati Ie, wh i ch means tha t the i r con ten ts need not be
saved and restored.

The purpose of the AIO receiver technique is to allow a
real-time user1s program to be informed by the BCM when
channel end occurs on a particular I/O operation. It is used
instead of I/O queuing by the Monitor. Typica Ily, the fore­
ground program wishing to maximize I/O and computation
overlap issues an I/o request with the no-wait option and
with an AIO receiver address specified. When the I/O is
successfully initiated, the foreground task exits from the
active state (by a call to M:EXIT) and is restored to active
status at channel end by a Write Direct to trigger the inter­
rupt level from the AIO receiver.

To minimize interrupt inhibit time, the channel registers
are loaded and the I/O initializing SIO is issued at the
I/O interrupt priority level. Consequently, any task with
an interrupt priority higher than I/O cannot use M:READ,
M:WRITE, or M:IOEX, but must perform its own I/O without
interrupt control.

LOGICAL/PHYSICAL DEVICE EQUIVALENCE

When writing a foreground or background program in either
Symbol or Basic FORTRAN, the user is not required to know
the actual physical device number that will be used in the
input/output operation. Two ways are provided under BCM
to help the user in making the input/output device selection
on a logical rather than physical basis. (Figure 11 gives an
illustration of the process.)

I/O Operations 39

The first method is called the Direct Logical Reference. The
user can specify a device-file number in his calling param­
eters to the input/output routines, and the BCMwil1 trans­
late this into an actual physical device number. There may
be several device-file numbers pointing to the same physical
device;generally, however, only onedevice-file number is
needed per device. For all device-file numbers, only one
task may use each number. This is a necessary restriction,
since the I/O status is saved in the device-file number table
in the BCM, and independent operation by several tasks on
the same device would cause an invalid status from the sep­
arate tasks using it. The device-file numbers are created
at system initialization. The device-file number table is
open-ended and any number of entries may be created.

The second method of device referencing is through the
Indirect logical Reference. The Indirect Logical Reference
will first equate a device unit number or an operational label
to a device-file number, which in turn is equated to a physi­
cal device number. The equivalence between operational
labels or device unit numbers and the device-file numbers
is set at system initialization time for certain standard de­
vices as illustrated in Tables 14 and 15. These standard
assignments can be changed later by use of assignment con­
trol commands.

The standard background operational labels are merel y names.
The devi ces and functions indicate how the standard proces­
sors use the labels. Since each I/O call must specify a
byte count, a user's program can read any number of bytes
from SI (if SI is magnetic tape, for example). There is no
restri cti on on the record size except as imposed on the peri­
phera� devices. The standard operational labels are given
in Table 15.

Indirect logical Direct logical Physical Device
Reference Reference (Peripheral)

Operational labels
(Used by Processors)

Device >-{Device Type ~ File and Device
/ Number Number

Devi ce Unit Num-
bers (Used by user
programs in Basic
FORTRAN)

Figure 11. logical/Physical Equivalence

Table 14. Standard FORTRAN Device Unit Numbers

Device Unit
Number Standard Assignment

101 Keyboard/printer input
102 Keyboard/printer output
103 Paper tape reader
104 Paper tape punch
105 Card reader
106 Card punch
108 line printer

Table 15. Standard Background Operational labels

Operational
Reference I/O Device I/O Function

label

SI Symbolic input KP, CR, PT, MT, TY Read number of bytes specified, up to 80.

BI Bi nary input CR, PT, MT Read number of bytes specified, up to 120.

LI Library input Same as BI

BO Binary output CP, PT, MT Punch number of bytes specified, up to 120.

LO Li sti ng output LP, KP, MT, TY Perform device format operations, if required,
and print up to 132 bytes.

DO Diagnostic output same as lO

Ll Listing log same as LO

PB Punch BCM same as BO

CC Control command input KP,CR, PT,MT, TY Read number of bytes specified, up to 72.

OC Operator's console KP, TY Write number of bytes specified.

Xl Intermediate scratch MT Read or write number of bytes specified.

UI Update input MT Read/write as specified.

UO Update output MT Read/write as specified.

AI Absolute input same as BI

40 FORTRAN Binary I/O Record Format

FORTRAN BINARY I/O RECORD FORMAT

Sigma 2/3 Basic FORTRAN binary record formats are
compatible with Sigma 5/7 FORTRAN IV-H binary record
formats, as follows:

Physical
Record Byte

2

3 and 4

5 ... n

Contents

X '3C ' - physical binary record code for any
record except the last physi ca I record of a
logical record

X ' 1C -code for last physical record in a
logical binary record

Checksum - sum of all the bytes in the
physical record excluding the checksum
byte and ignoring byte overflow

Physical record size - number of bytes in
the physical record, including the control
bytes

Zero or more data bytes in the physical
record

Physical
Record Byte

n+1

n+1

n+2

n+3 and n+4

Contents

X '3C -not the last physical record of the
logical record

X 11 C 1 - the last physi ca I record in a logi ca I
record

Physical record number - starting with zero
and increasing by one for each succeeding
physical record in the logical record

A logical record may be composed of one or more physical
records but no more than one logica I record may occupy any
given physical record. If a logical record extends over more
than one physical record, the control information (above) can
be used to correctly read/write position the logical record.

The maximum size of a physical record depends on the de­
vice involved. (For cards or paper tape, the maximum size
is a total of 120 bytes; for magnetic tape, the maximum size
is a total of 360 bytes.) The IIread backward ll order in
M:READ can be used to backspace 9-track magnetic tape
over logical records without the backspace-read-backspace
sequence being necessary (as with 7-track tapes). The min­
imum record size is 44 bytes for a read backward order.

FORTRAN Binary I/o Record Format 41

9. UTILITY SUBSYSTEM

INTRODUCTION

The Utility Subsystem is a processor that operates in the
background under the SCM. It provides the SCM user
with a media copy routine, a record editor, an object mod­
ule editor, a dump routine, and a sequence number editor.
The routines are device independent.

CALLING THE UTILITY SUBSYSTEM

The Utility Subsystem is requested via a UTILITY control
command, but it must be loaded intor core by an ABS con­
trol command prior to the UTILITY control command input.
The UTILITY control command is read from the CC device
and has the following format.

! UTILITY [name] [, parameters]

where

name is the name of a Utility Subroutine or may be
omitted. It may be any of the following:

COpy (copy routine)
RELEDIT (record editor)
OMEDIT (object module editor)
DUMP (dump)
SEQEDIT (sequence editor)
omitted (control functions only)

Parameters are optional and unique for each Utility Subrou­
tine; their use is explained in the description of the indi­
vidual routines.

UTILITY SUBSYSTEM RESPONSE

When the Monitor encounters a UTILITY control command on
the control command (CC) device, it checks to determine if
the requested processor is currently in core storage.

If the Uti I ity Subsystem is not in core storage, the SCM fol­
lows its standard procedure when a requested processor is not
loaded. If the Utility Subsystem is present, control is trans­
ferred to the Util ity Subsystem Control Routine, with the X
register containing the address of the control command image.

If the "name" parameter is present, the Uti I ity Subsystem is
able to identify the subroutine to be executed. Control is
then transferred to the requested routine to process the pa­
rameters, if they exist. If the Utility Subsystem cannot iden­
tify the subroutine named on the UTILITY control command,
the message

UT NT RES

is written on OC and DO and the Utility Subsystem aborts.

42 Utility Sybsystem

UTILITY SUBSYSTEM CONTROL

The Uti I ity Subsystem consists of two major sections: the
Utility Subsystem Control (always resident when the Utility
Subsystem is operating); and the currently operating Utility
Subroutine. The Uti I ity Subsystem Control contains four
interdependent el ements:

• The Utility Subsystem Executive that initializes the
subsystem upon entry from the SCM, interprets the
UTILITY control command, exercises control over the
flow of control commands, handles the normal and abort
exits to the Monitor, and performs all I/O checking for
the Utility Subsystem.

• The Source Input Interpreter that reads and scans Utility
Subsystem control commands for the Control Function
Processor and the current Uti I ity Subroutine.

• The Control Function Processor that executes control
function commands common to all Uti I ity Subroutines
(such as *REWIND and *FSKIP).

• The Operator Communication Routine that outputs mes­
sages to OC and DO, and receives key-in responses.

The various portions of the Uti I ity Subsystem Control are
described in detail below.

UTILITY SUBSYSTEM EXECUTIVE

When the Monitor has read a UTILITY control command (on
CC) and has determined that the Uti I ity Subsystem is resi­
dent, control is transferred to the Uti I ity Subsystem Execu­
tive Routine. The UTILITY control command is then scanned
for parameters. If the "name" parameter is omitted, it is
assumed that the control commands on SI call only upon the
faci I ities of the Control Function Processor.

If a specific Utility Subroutine is named, the Executive
checks to see if that subroutine is in core storage: if not, an
error message is written and exit to the Monitor is taken,
whi ch terminates the background operation. If the subrou­
tine is present, initialization of tables and flags occurs.

The Executive then transfers control to the requested Uti I ity
Subroutine. The Utility Subroutine uses the Source Input
Interpreter to read all commands, and uses the Control Func­
tion Processor to execute contro I functions. All other con­
trol commands are interpreted and executed by the Uti I ity
Subroutine itsel f.

When the Executive or Uti I ity Routine encounters an ! EOD
card image from SI, it terminates processing. The form of
the EOD command is

This causes the Utility Subsystem to transfer control back to
the Monitor.

SOURCE INPUT INTERPRETER

All control commands read by the Utility Subsystem are input
from the Symbolic Input (51) device and are first processed
by the Source Input Interpreter which, in turn, is called by
the Uti I ity Subsystem Executive Routine. Control commands
are I isted on the DO device as they are interpreted. The
control commands have the general form

! *mnemonic specification

where

*

identifies the record as the beginning of a control
command.

indicates that the control command is unique to
the Uti I ity Subsystem.

mnemonic is the code name of a Utility Control
Command. It must begin immediately following
the ! * characters.

specification is a series of required or optional pa-
rameters unique to the specific command. The
following special conventions are used in specify­
ing parameters:

1. Astringofupto5decimal digits, havingavalue
less than 32,768 denotes a decimal integer.

2. Astring containing more than 5 characters is
always assumed to be EBCDIC, regardless of
content.

One or more blanks separate the mnemonic and specification
fi elds, but no bl anks may be embedded within a field. A
control command is terminated by the first blank after the
specification field; or, if the specification field is absent
and a comment follows the mnemonic field, the command is
terminated by a period. No control command record may
contain more than 80 characters.

In the pictorial representation of control commands in this
chapter, certain conventions are used to describe the for­
mats of specification fields. Optional parameters are shown
enclosed in brackets (no brackets appear in the actual con­
trol command). The omission of a parameter embedded with­
in the fi eld is denoted by an additional comma. A comma
may not terminate a field.

The first two characters of the mnemonic portion of the com­
mand are suffi cient to define a control command; the remain­
ing characters can be omitted, since they are ignored when
present. Therefore, the user may input commands in an ab­
breviated form (e. g., ! *MODIFY may be input as ! *MO).
This is particularly useful when control commands are input
from the keyboard/printer.

Upon reading a command, the Control Command Interpreter
determines if the command is val id. If the syntax for a

command is inval id, the following message is written on
OC and DO:

INY CTRL
! lUKEYIN

The operator response (either an S for continue or X for abort)
determines whether or not the Uti I ity subsystem continues.

If the response is S, the Source Input Interpreter reads the
next control command from SI. If the command is val id, it
may be interpreted and executed either by the Utility Sub­
routine or by the Control Function Processor, which executes
commands common to all Utility Subroutines (e.g., *MES­
SAGE, * PAUSE, etc.).

Uti I ity functions are generally executed dynamically; that
is, control commands in the SI stack are interpreted and ex­
ecuted as they are read. However, when the same devi ce
is assigned to several operational labels, it is impractical to
execute dynamically. In this case, certain input is prestored.
This decision to prestore is made by the Uti I ity Subsystem
with one exception: when the! UTILITY command has no
name parameter, the *PRESTORE control command allows the
user the option of prestori ng S I input unti I an ! E OD card
image is encountered.

CONTROL FUNCTION PROCESSOR

The Control Function Processor interprets and executes the
commands, given below, that are common to all Uti I ity
Subroutines. If any of the control commands interpreted
and executed by the Control Function Processor contain an
inval id operational label (not allowed by requested Uti I ity
Subrouti ne) the message

INY OPLB
! lUKEYIN

is output.

In all cases, the response for inval id operational I abels is
one of the following, which is keyed in on OC by the op­
erator:

S (continue; this causes the next SI card image to
be read)

X (abort; this causes a return to Monitor control)

!*FSKIP (File Skip Forward)

The *FSKIP control command causes a magnetic tape to be
spaced forward until the specified number of file marks has
been passed. The form of the command is

(!*FSKIP oplb[,number]

where

oplb is the operational label of the device.

number is the number of fi I e marks to skip. If
omitted, the number is assumed to be 1.

Uti I i ty Subsystem Control 43

If the oplb parameter is missing, or if the number parameter
is non-numeric or greater than 32,767, the following message
is written on OC and DO.

PARAM ERR
!!UKEYIN

If oplb identifies an invalid device, the following message
is written on OC and DO.

INV OPLB
!IUKEYIN

If two consecutive fi Ie marks are encountered before the re­
quired number of files is passed, the following message is
typed on the OC and DO devices.

DEOF oplb,device
llUKEYIN

where

oplb is the operational label of the device.

device is the device type and physical device
number.

If the end-of-tape is encountered before the required num­
ber of files has been passed, the following message is typed
on OC and DO.

EOT oplb,device
I !UKEYIN

where

oplb is the operational label of the device.

device is the device type and physical device
number.

!*RSKIP {Record Skip Forward}

The *RSKIP control command causes the device to be spaced
forward until the specified number of records has been
passed. The form of the command is

('*RSKIP

where

oplbLnumberJ

oplb is the operational label of the device.

number is the number of records to be skipped. If
it is omitted, the number is assumed to be 1.

If the oplb parameter is missing, or the number parameter is
non-numeric or greater than 32,767, the following message
is wri tten on OC and DO.

PARAM ERR
! lUKEYIN

If oplb identifies an invalid device, the following message
is written on OC and DO.

INV OPLB
! !UKEYIN

44 Uti I ity Subsystem Control

If an I EOD or file mark is encountered before the required
number of records is passed, the fo II owi ng message is typed
on OC and DO.

EOF oplb,device
llUKEYIN

where

oplb is the operational label of the device.

device is the device type and physical device
number.

If the end-of-tape is encountered before the specified num­
ber of records has been skipped, the following message is
typed on OC and DO.

EOT oplb,device
I I UKEYIN

where

oplb is the operational label of the device.

device is the device type and physical device
number.

!*FBACK (File Skip Backward - magnetic tape only)

The *FBACK control command causes the magnetic tape to
be spaced backward until the specified number of file marks
have been passed. The form of the command is

('*FBACK

where

oplb [, number]

oplb is the operational label of a magnetic tape.

number is the number of fi Ie marks to skip. If it is
omitted, the number is assumed to be 1.

If the operational label parameter is missing or contains more
than 2 characters, or if"the number parameter is non-numeric
or greater than 32,767, the following message is written on
OC and DO.

PARAM ERR
llUKEYIN

If the operational label identifies an invalid device, the
following message is written on OC and DO.

INV OPLB oplb,devi ce
llUKEYIN

where

oplb is the operational label of the device.

device is the device type and physical device
number.

If beginning of tape is encountered before the required
number of fi les have been passed, the following message
is written on OC and DO.

BOT oplb,device
llUKEYIN

where

oplb is the operational label of the device.

device is the device type and physical device
number.

If double end-of-file marks are encountered while exe­
cuting *FBACK, the following message is written on OC
and DO.

DEOF oplb,device
llUKEYIN

where

oplb is the operational label of the device.

device is the device type and physical device
number.

!*RBACK (Record Skip Backward - magnetic tape only)

The *RBACK control command causes the magnetic tape spec­
ified to be spaced backward the specified number of records.
The form of the command is

I *RBACK oplb (, number]

where

oplb is the operational label of the magnetic tape.

number is the number of records to be passed. If it
is omitted, the number is assumed to be one.

If the operational I abel parameter is missing or contains more
than 2 characters, or if the number parameter is non-numeri c
or greater than 32,767, the following message is written on
OC and DO.

PARAM ERR
llUKEYIN

If the operational label identifies an invalid device, the fol­
lowing message is written on OC and DO.

INV OPLB oplb,device
I I UKEYIN

where

oplb is the operational label of the device.

device is the device type and physical device
number.

If a file mark is encountered before the specified number of
records have been passed, the following message is written
on OC and DO.

EOF oplb,device
I I UKEYIN

where

oplb is the operational label of the device.

device is the device type and physical device
numbers.

If beginning of tape is encountered before the requested num­
ber of records have been passed, the following message is
written on OC and DO.

BOT oplb,device
llUKEYIN

where

oplb is the operational label of the device.

device is the device type and physical device
number.

!*REWIND (Rewind - magnetic tape only)

The *REWIND control command causes the specified mag­
netic tape to be rewound. The form of the command is I 'REWIND oplb

where

oplb is the operational label of the magnetic tape
to be rewound.

If the operational I abel parameter contains more than 2
characters, the following message is written on OC and DO.

PARAM ERR
llUKEYIN

!*UNLOAD (Unload - magnetic tape only)

The *UNLOAD control command causes the specified tapes
to be un loaded. The form of the command is

('UNLOAD oplb

where

oplb is the operational label of the magnetic tape.

If the operational label parameter is missing or contains more
than 2 characters, the following message is written on OC
and DO.

PARAM ERR
llUKEYIN

Uti I ity Subsystem Control 45

If the operational label identifies an invalid device, the
following message is written on OC and DO.

INV OPLB oplb,device
llUKEYIN

where

oplb is the operational label of the device.

device is the device type and physical device
number.

!*MESSAGE (Message)

The *MESSAGE control command writes a message to the
operator on the OC and DO devices. The form of the
command is

('*MESSAGE

where

message

message is any EBCDIC character string up to a full
card image.

The format of the output is

I * MESSAGE message

!*PAUSE (Message With Pause)

The *PAUSE control command causes a message to be written
on the OC and DO device followed by a wait for the oper­
ator1s response. The form of the command is

i*PAUSE message

where

message is any EBCDIC character string up to a fu II
card image.

The format of the output is

! * PAUSE message
! I UKEYIN

!*WEOF (Write File Mark or EOD)

The *WEOF control command causes a single file mark to
be written on magnetic tape or an I EOD source image (80
bytes) to be written on a non-magneti c tape medium. The
form of the command is

i*WEOF oplb

where

oplb is the operational label of the device.

46 Uti lity Subsystem Control

If the oplb parameter is missing, the following message is
written on OC and DO.

PARAM ERR
llUKEYIN

If oplb identifies an invalid device, the following message
is written on OC and DO.

INV OPLB
llUKEYIN

If the end-of-tape is encountered whi Ie an *WEOF command
is being executed, the following message is written on OC
and DO.

EOT oplb,device
llUKEYIN

where

oplb is the operational label of the device.

device is the device type and physical device
number.

!*PRESTORE (Prestore 51)

The *PRESTORE control command causes all control commands
and data to be read from the SI device until an I EOD is en­
countered. Interpretation of the control commands then be­
gins. (NOTE: the prestore mode is set automatically where
a name parameter appears on the UTILITY command and one
or more operational labels have been assigned to the same
device as SI.) The *PRESTORE control command must im­
mediately follow the UTILITY control command and precede
any other control commands for the Uti I ity Subsystem. The
form of the command is

i*PRESTORE

If an overflow of available memory occurs, the following
error message is typed on OC and DO.

I CORE OVFLO

The Uti I i ty Subsystem aborts operati on and transfers contro I
to the Monitor.

If the *PRESTORE command is not the first command follow­
ing UTILITY, the following message is written on OC and
DO.

PRE ERR
llUKEYIN

OPERATOR COMMUNICATION ROUTINE

All messages to the operator are written on the OC devi ce
by the Operator Commun ication Subroutine.

If a response is required from the operator, the Operator
Communication Routine types

I llUKEYIN

The operator keys in one of the following responses on OC.

S (continue processing)

X (abort the Utility Subsystem operation and return
control to the Monitor)

If the response is S, a return is made to the calling routine.

If the operator keys in an inval id response (not S or X), the
following message is written on OC and DO.

KEY ERR
llUKEYIN

The operator then types in the correct response.

I/O ERROR MESSAGES

The Executive performs all I/o checking for the Utility
Subsystem. The messages regarding I/o errors are written
on both the OC and DO devices.

If manual intervention is required (the devi ce is in manual
mode or no device is recognized) the following message is
written.

EMPTY oplb,device
llUKEYIN

where

oplb is the operational label of the device.

device is the device type and physical device
number.

Unless otherwise noted, the operator response is

S (continue; the operator has readied the device)

X (abort)

If the operational label is not valid, the following message
is written.

INV OPLB oplb,device
llUKEYIN

where

oplb is the operational label of the device.

device is the device type and physical device
number.

The "oplb,device" portion of the message may contain in­
valid data if I/o is attempted for an operational label not
recognized by the Monitor.

If an unrecoverable I/O error occurs after the maximum
number of retries has been unsuccessfully attempted, the
following message is written.

UNRECOV I/O

The Uti I ity Subsystem aborts.

If an unexpected tape mark has been encountered wh i I e
reading from magnetic tape or an unexpected EOD has been
read from cards, paper tape or keyboard/printer, the follow­
ing message is written.

EOF oplb,device
llUKEYIN

where

oplb is the operational label of the device.

device is the device type and physical device
number.

If the end-of-tape mark is sensed on magnetic tape, the
following message is written.

EOT oplb,device
IIUKEYIN

where

oplb is the operational label of the device.

device is the device type and physical device
number.

If an attempt is made to write on a write-protected tape,
the following message is written.

WRITE PRO oplb,device
IIUKEYIN

where

oplb is the operational label of the device.

device is the device type and physical device
number.

If an attempt is made to space backward over the load point
on magnetic tape, the following message is written.

BOT oplb,device
llUKEYIN

where

oplb is the operational label of the device.

device is the device type and physical device
number.

If an I/o operation is not meaningful for the device re­
quested, the following message is written.

INV I/O OP oplb,device
llUKEYIN

where

oplb is the operational label of the device.

device is the device type and physical device
number.

Utility Subsystem Control 47

If the I/o calling sequence is in error, incorrect length is
specified, or no I/O is pending for a check operation, the
following message is written.

I/O ERR oplb,device

where

oplb is the operational label of the device.

device is the device type and physical device
number.

The Uti I ity Subsystem aborts.

ABORT RETURN TO MONITOR

When an irrecoverable error occurs, the Utility Subsystem
aborts by calling the Background Abort Routine (M:ABORT).
For an irrecoverable I/o error, the code in the abort mes­
sage is the operational label for the device. The code is
'UT ' if the abort was caused by an X response by the opera­
tor, or by some other error condition.

CONTROL ROUTINE OPERATIONAL LABELS

Four operational labels are reserved for the Utility Subsys­
tem Control Routine and their use is restricted to the func­
tions below. They may not be used in place of the labels
required by the various Util ity Subroutines explained later.

CC Device for Monitor control command input
(UTILITY and EOD control commands only).

OC Device for messages to the operator, or key-in
responses from the operator (a I ways via the key­
boa rd/pri nter).

SI Device for Utility Subsystem control commands
and various mod ifi cati on source inputs.

DO Device for listing of control commands as they
are interpreted, messages, error conditions,
operator responses, etc. Provides a permanent
log of the control command flow. This is the
only operational label for Utility Subsystem
control that can be assigned to the o (zero) device­
fi Ie number (i. e., suppressed). If OC and DO
are assigned to the same device, duplication of
messages is suppressed.

COpy
Under the BCM,COPY provides the ability to copy variable
length binary or EBCDIC records from cards, paper tape,
magnetic tape, or keyboard/printer to cards, paper tape,
magnetic tape, line printer, or keyboard/printer. Using
control functions of the Control Function Processor, records
and files can be skipped. Output generated by the COpy
routine can be verified.

Since COpy uses M:READ and M:WRITE for all reading and
writing, data copied with the COpy routine must be in a

48 COpy

standard format. t The distinction between binary and EBCDIC
modes is artificial except for the card punch.

For records being copied to the card punch, the COpy rou­
tine performs as follows. Records containing a first byte of
X' 1C ' , X' 3C ', X'9F', X'BF', X'DF', X'FF', XIOOI, or X'78 1

are always punched in the binary mode; all other records
are punched in the EBCDIC mode.

Note: When writing on an EBCDIC device such as the
keyboard/printer or line printer, no special re­
formatting is performed; therefore, attempting to
copy binary data to an EBCDIC device may result
in meaningless output.

For paper tape, if BIN and SIZE are not specified, the length
of each binary record (first byte of X'1C ', X' 3C ', .X' 9F',
X'BF', X'DF', X'FF', XIOOI, and X'78 1

) is always 120 bytes.
The BIN control card allows the user to override the standard
count. When M:READ reads EBCDIC records from paper tape,
it transmits only the number of bytes specified by the calling
sequence to memory. Ordi nari I y, the COpy routi ne assumes
that paper tape EBCDIC records have a byte count of 120.
The user can override the standard count with a control card
option.

If a record copied to the line printer or keyboard/printer
contains more than 132 characters, only the first 132 are
printed. Normally, the first character of the record is
printed and singl e spacing is forced. Therefore, even if the
first character is intended for format control, it will be
printed as the first character of the print line in the normal
mode. If the format option is specified, the first character is
interpreted as a format control character and is not printed.

The BIN option should only be used to copy nonstandard bi­
nary records (i. e., where the fi rst byte does not contai n
X'1C', X' 3C', X'9F ', X'BF ' , X'DF ', X'78 1

, XIOOI, or X'FF').
Since no editing is done when a binary read operation is
specified, NL, EOM, and I. are not interpreted as editing
characters. All records are copi ed on a byte-for-byte basis
(including leading and trailing blanks). EOD is not recog-
nized as a file mark. Therefore, a request to Copy/Verify
(one or more files) causes input to terminate only when the
input device goes into manual mode. A request to Copy /
Verify one or more times (when the input device is magnetic
tape) is processed normally, since file marks are recognized.

OPERATIONAL LABELS USED

The following operational labels are used by the COpy rou­
tine in addition to the Utility subsystem operational labels.

X 1 (verify device)

U I (i nput devi ce)

tCertain "standard" conventions can be overridden by use of
SIZE, MODE, and BIN parameters. The user should be
familiar with standard conventions to ascertain the effect
of the deviations. (Bootstrap records on paper tape, for ex­
ample, contain 128 bytes.)

Other operational labels are used by COpy (at the option of
the user) to specify the input and output devices for copying
and verifying.

OP ERA TING CHARACTERISTICS

The COpy routine checks whether or not SI, Xl, UI, and
any other input/output operational labels are assigned to the
same physi ca I devi ceo If so, all control commands are read
from the SI device and stored in memory prior to interpreta­
tion of the control commands to begin copying.

If the operational labels are not assigned to the same physi­
cal devices, interpretation of control commands takes place
as they are read from SI.

When the SI and any input or output operational labels are
assigned to the same physi cal device, the message

LD INPUT
llUKEYIN

is written on the OC and DO devices, and the Operator
Communication routine waits for an operator response. The
operator should load the input at this point and key-in an S
response to initiate the actual copy procedure.

If the SI and the input or output operational labels are not
assigned to the same physical device, copying begins imme­
diately without any message being output on the OC device.

CALLING COPY

The COpy routine is requested with the control command

(!UTILITY COPY[,CORE]

where

CORE specifies that, for the first *COPY or *YERIFY
command, the records from the input device are
stored in core in addition to being copied or veri­
fied. For subsequent *COPY or *YERIFY commands,
these records in core, rather than those on the in­
put device, are used as the input source.

After interpretation of the UTILITY control command, con­
trol is transferred to the COpy routine which interprets the
control commands I isted below.

*OPLBS (Specify Operational Labels)

The *OPLBS control command specifies the operational la­
bels of devices to be used in *COPY and *YERIFY requests
and must precede the first *COPY or *YERIFY control com­
mand (i. e., an *OPLBS command must follow the UTILITY
command). These operational label assignments remain in

effect until a new *OPLBS control command is read. The
form of the command is

where

oplb. is the operational label for an output device
Ifor subsequent *COPY commands, or an input de­
vice for subsequent *YERIFY control commands.
'oplb ' cannot be assigned to device-file number O.

*COpy (Copy)

The *COPY control command causes records from the input
device (UI) to be copied on the output device(s} (specified
on the *OPLBS command) until the requested number of EOD
or file marks has been read and copied, or until the speci­
fied number of records has been copied. The form of the
command is

! *COPY type [, number] [,FORM] [,size] [,BIN]

where

type is R if the "number" parameter refers to rec-
ords, or F if the "number" parameter refers to files.

number has different meanings, depending upon the
"type" parameter. If "type" is R, "number" is the
number of records to be copied. If "type" is F,
"number" is the number of files to be copied, or is
ALL, indicating that all files should be copied
until two consecutive EOD images or file marks
are copied. If II number II is omitted, one record or
file is copied.

FORM applies only if data is being copied onto the
line printer or keyboard/printer. If the FORM
parameter is omitted, singl e spacing of printed out­
put is the format. If FORM is uti I ized, the first
character of each record is used for format control
and is not printed.

size specifies the maximum number of bytes in each
record. If "size" is omitted, all records are read
and written in the standard record size (120 bytes).

BIN if omitted, allows mode (BIN or EBCDIC) to be
determined according to byte 1 of the record. If
BIN is present, all copying is done in binary,
either with the count specified in "size" or by the
standard record size (120 bytes) by default.

*VERIFY {Verify}

The *YERIFY control command is used to request the compari­
son of data on the Xl device with data in core (CORE option}

COpy 49

or with data from devices specified on the *OPLBS control
command. The form of the command is

! *VERIFY type [, number] [,size] [,BIN]

The parameters are defined as for the *COPY control
command.

Before the *VERIFY control command is issued, it is assumed
that all magnetic tape files have been repositioned, if nec­
essary, by use of *REWIND and other file positioning con­
trol commands (described in Control Function Processor).

Any errors found by the verification process cause the
message

VERIFY ERR oplb,devi ce

to be written on OC and DO

where

oplb is the operational label of the device on which

If an EOD or fi I e mark is detected on X 1 or UI before the
number of records requested have been compared, the fol­
lowing message is written on the OC and DO device.

EOF oplb,device
!! UKEYIN

where

oplb is the operational label of a device (either
X 1 or UI).

device is the device type and physical device
number.

RECORD EDITOR
The Record Editor routine generates or updates tapes (paper
or magnetic) containing symbolic source data. The following
capabilities are provided:

1. Generates a tape containing source data.

2. Lists a tape containing source images in addition to as­
sociated line numbers.

3. Modifies tapes containing source images.

the error was detected. OPERATIONAL LABELS USED

device is the device type and physical device
number.

When a verification error occurs, the COpy routine termi­
nates execution of the *VERIFY command for that device,
but continues verification on the other input devices.

The entire verifi cation process is completed when the number
of files or records requested for verification has been com­
pared. If an error is detected on every input device, the
Uti I ity Subsystem is aborted. The standard BCM abort mes­
sage is written on OC with a code of VE.

If an end-of-tape, two consecutive tape marks, or E ODs are
de·tected on X 1 or U I before the number of fi I es requested
has been compared, the following message is typed

or

EaT oplb,device
! lUKEYIN

DEOF oplb,device

where

oplb is the operational I abel of a devi ce (either
Xl or UI).

device is the device type and physical device
number.

The response for EaT is:

S (continue; this causes processing to continue)

X (abort)

50 Record Editor

The following operational labels must be assigned in addition
to the standard Uti lity Subsystem operational labels:

SI Input devi ce for control commands
LO Input device for listing source images
UI Input tape device
UO Output tape devi ce

OPERATING CHARACTERISTICS

The Record Editor operates in two modes: I ist and
modify.

In the list mode, the editor reads source images from UI and
I ists them on the LO devi ceo It associates each image with
a decimal line number, starting with 1.

In the modify mode, the editor either updates or generates a
tape on the UO device.

The Record Editor uses M:READ and M:WRITE to perform
all I/O. Therefore, all the paper tape editing and
keyboard/printer editing that is standard to these routines is
performed.

CALLING RECORD EDITOR

The Record Editor is requested with the control command

(UTILITY RECEDIT

After interpretation of the UTILITY control commands, con­
trol is transferred to the Record Editor, which begins reading
control commands.

CONTROL COMMANDS

A command requesting the list or modify mode must immedi­
ately follow the UTILITY command. All other control com­
mands are interpreted as sub-commands under each mode.
If a binary record is read from UI, the message

MODE ERR UI,device
! !UKEYIN

is written on OC and DO

where

device is the device type and physical device
number.

*LIST (List Mode)

The *LIST control command causes the previous mode to ter­
minate. The source files are read from UI and listed on LO.
Each EBCDIC source image is listed along with an associated
line number up to and including the first! EOD source image
orfi Ie mark read. After the required number of fi les has been
listed, another control command is read from the SI device.

Each *LIST control command, file mark, or EOD causes
the I ine numbering to restart with 1. The form of the
command is

("UST [number]

where

number indicates the number of files to list. Listing
continues until two consecutive !EODs are encoun­
tered or the specified number of files is listed. If
IInumberll is omitted, one file is listed.

Upon entering the list mode, the Record Editor checks
whether or not both SI and UI are the same device. If so,
the following message is written on OC and DO.

! ! LD LIST UI, device

where

device is the device type and physical device
number.

The operator responds by mounting the tape to be
listed and changes the state of the device. If both SI
and UI are not assigned to the same device, listing be­
gins immediately. For subsequent *LIST control com­
mands, no message is written. A *MODIFY control
command or an EOD control command causes the list
mode to terminate.

*MODIFY (Modi fy Mode)

The *MODIFY control command informs the Record Edi­
tor that a tape is to be either generated or updated. The
form of the command is

i'MODIFY

where

[LIST] [,GEN]

LIST indi cates that a I isting of records del eted or
inserted wi II be produced on LO. If LIST is the
only parameter used, the listing will contain the
UI line numbers {the number deleted or the number
preceding the one inserted}. If GEN is also present,
the UO line numbers will be listed.

GEN indicates that a new tape is to be generated
(i. e., there is no input tape on UI) and written on
the UO device. If updating is to be performed
(i. e., there is an input tape on UI to read), the
field is left empty.

When the modify mode is entered and updating is to be per­
formed, the following message is written on the OC and
DO device.

LD INPUT UI,device
! IUKEYIN

where

device is the device type and physical device
number.

The operator must respond by mounting the tape to be input
and key-in an S response on OC to continue.

The modify mode is terminated whenever a * LIST, *MODIFY,
or EOD control command is input from SI.

When the modify mode is terminated and GEN is specified,
an EOD or fi Ie mark is written on UO. When the modify
mode is terminated and GEN is not specified, the remain-
i ng source i mages of the fi I e on U I a re written on U 0, fo 1-
lowed by an EOD or file mark.

The modify mode control commands are *DELETE, *INSERT,
and *CHANGE. If the Record Editor is not in the
modify mode and one of the commands is interpreted from SI,
the following message is written on OC and DO.

INV CTRL
! !UKEYIN

An automatic copy to the appropriate place on the output
tape is performed preceding the execution of a *DELETE,
*INSERT, or *CHANGE control command. The Record
Editor remains in the modify mode until a *LIST or EOD con­
trol command is interpreted.

Record Editor 51

"'DELETE (Delete Records - modify mode only)

The *DELETE control command causes the indicated source
image(s) to be deleted and is effective only in the modify
mode. The form of the command is

where

numbeq is the line number of the first (or only)
source image to be deleted.

number2 is the line number of the last source image

"'INSERT

to be deleted. If number
2

is omitted, only one
image is deleted.

(Insert Records - modify mode only)

The *INSERT control command causes source card(s) to be
added to the output tape and is effective only in the modi­
fy mode. The form of the command is

(!'INSERT number

where

number is the line number that the insertions
should follow. If a line number of 0 (zero) is used,
the insertions will precede the first line.

Every source image on 51 following the *INSERT control
command is inserted until a new Paper Tape Editor control
command is encountered.

"'CHANGE (Replace Records - modify mode only)

The *CHANGE control command causes the indicated source
image(s) to be deleted, and source card(s) following the
*CHANGE command to be written on UO. The command is
effective only in the modify mode. The form ofthe command is

!*CHANGE numberl'number2

where

numberl is the line number of the first (or only)
source image to be deleted.

number2 is the line number of the last source image
to be deleted. If number 2 is omitted, only one
image is deleted.

Following the *CHANGE control command, every source
image on 51 is inserted until another Record Editor con­
trol command is encountered.

52 Object Module Editor

OBJECT MODULE EDITOR

The Object Module Editor is designed to maintain tapes
containing I ibraries of standard Sigma 2/3 object language
modules. It generates or updates tapes by inserting and
deleting object modules according to the program name in
the start module item for each module. For each output
tape written, a list of module names is printed in the order
of their appearance.

The Object Module Editor is also used to list a tape con­
taining object modules and to verify that the input object
records contain no checksum or sequence errors.

A binary object module is defined as a sequence of binary
records in Sigma 2'"/3 Standard Binary Format, each of which
begins with a nonblank name item and terminates with a
record whose first byte is X ' 9F ' (END card) indicating that
the record contai ns an end item.

A library consists of one or more object modules and is ter­
minated by a file mark or EOD.A library tape may contain
one or more libraries and is terminated by double file marks
or EODs.

OPERATIONAL LABELS

The Object Module Editor uses the following operational labels.

LO Device for listing either UI or UO object module
names

BI Device from which binary object modules are to
be inserted

UI Input tape device
UO Output tape device

OPERATING CHARACTERISTICS

If any two of the operational labels 51, BI, and UI are as­
signed to the same device, every control command is read in
from 51 and stored in memory until an EOD or file mark is
encountered. The control commands are interpreted in order
and written on DO.

If no two of 51, BI, or UI are assigned to the same devi ce,
control commands on 51 are interpreted as they are read and
are written on DO.

The Object Module Editor operates in two modes: list and
modify.

In the list mode, the tape on U I is read. The names of the
object modules on the tape are printed on LO, and the
checksum and sequence for each record are verified. After
interpreting the *LIST control command, the editor checks
to see if any two of 51, BI, and UI are assigned to the same
device. If so, the message

LD LIST
!! UKEYIN

is written on OC. The operator responds by mounting the
tape to be I isted on UI and keys in an 5 response. Listing
of the tape proceeds. If no two of 51, BI, and UI are assigned
to the same device, no message is written and listing begins
immediately.

In the modify mode, any modules to be inserted are read
from the BI device and written on UO, as indicated by the
51 control commands. If there is an input tape to be updated,
the tape is read from UI. The names of all object modules
written on UO are listed on LO. The object modules on BI
must be in the same order in which they are to be inserted
on UO.

The Object Module Editor operates in IIprestore" mode {read­
ing and storing commands before interpreting} when the con­
ditions shown below occur; otherwise, the Editor operates
dynamically.

Operational Labels Assigned
to Same Device

51,BI
51,UI
BI,UI
51,BI,UI

Prestored Data

51
51
BI
51,BI

After entering the modify mode, the Object Module Editor
operates as follows:

If any two of the 51, BI, and UI operational I abels are as­
signed to the same device, the Object Module Editor follows
the steps below.

1. Interpretation of control commands begins. If any ob­
ject modules are to be inserted, and if 51 and BI are
assigned to the same device, the 51 device is read
until an EOD is encountered, and the message

lD INSERTS
IIUKEYIN

is written on OC and DO. The operator loads the mod­
ules to be inserted on the BI device and keys in an 5
response. If 51 and BI are assigned to different devices,
no message is written. Then, the Editor reads in all the
modules on BI until either an EOD or any other record
with a first byte different from X'FF' or X'9F' is read
from BI. Blank records are ignored.

2. If there is an input tape to be updated, the message

LD INPUT
I lUKEYIN

is written on OC and DO. The operator must load the
tape to be updated on UI and key in an 5 response.

3. The modify mode control commands are interpreted,
causing updating or generation to proceed. Each con­
trol command is listed on DO as it is interpreted.

If no two of the operational labels (51, BI, and UI) are as­
signed to the same device, control commands from 51 are
read and interpreted dynamically. Records are read from BI
and UI and written on UO in response to each modify mode
control command. Every control command read from 51 is
listed on DO.

The Object Module Editor uses M:READ and M:WRITE to per­
form all I/O. Each object module is identified by the pro­
gram name stored in the start module item. No modul es with

blank names are ever written on the UO tape. If any blank
program names are input, the following error message is
written on OC and DO.

BLNK NAME oplb,device
llUKEYIN

where

oplb is the operational label of the device.

device is the device type and physical device
number.

Unless otherwise noted, the operator responses are:

5 {continue; this causes the next 51 card image to
be read}

X {abort}

If a checksum error is detected on any of the records read
from UI or BI, the following message is written on OC and
DO.

CK5M ERR oplb,device
1 lUKEYIN

where

oplb is the operational label of the device.

device is the device type and physical device
number.

The operator responses are

5 {the Editor continues reading the UI or BI input
and the record in error is written on UO if an
output tape is being generated}

X {abort}

If a sequence error is detected on any of the records read
from UI or BI, the following message is written on OC and
DO.

SEQ ERR opl b,devi ce
1 lUKEYIN

where

oplb is the operating label of the device.

device is the device type and physical device
number.

The operator responses are

5 {the Editor continues reading the UI or BI input
and the record in error is written on UO if an
output tape is being generated}

X {abort}

If the first byte of a record read from UI on BI does not con­
tain X'FF' or X'9F', the following message is written on OC
and DO.

ILLEG BIN oplb,device
1 lKEYIN

Object Module Editor 53

where

oplb is the operational label of the device.

device is the device type and physical device
number.

If two consecutive EODs or tape marks on UI or one EOD
or tape mark on BI are encountered during the editing pro­
cess before the desired number of modules have been copied,
the following message is written on OC and DO.

NO name oplb device
IIUKEYIN

where

name is the program name not found.

oplb is the operational label of the input device.

devi ce is the device type and physical device
number.

If an end-of-tape is encountered before a single EOF on BI,
or before a double EOF on UI, the following message is out­
put on OC and DO.

EOT oplb,device
IIUKEYIN

where

oplb is the operational label of the device.

device is the device type and physical device
number.

CALLING OBJECT MODULE EDITOR

The Object Module Editor is given control via the command

(UTILITY OMEDIT

The Object Module Editor begins reading control commands
until an IEOD is read, which terminates the SI input.

CONTROL COMMANDS

* LIST (List)

The *LIST control command causes the Editor to enter the list
mode. The names of the object modules on UI are read and
I isted on LO. Any checksum errors detected cause error
messages to be written on LO, but listing continues. If
the record is EOD, it is listed. If two consecutive
EODs occur, the Editor leaves the list mode and the
next control command is interpreted. The form of the
command is

('LIST

54 Object Module Editor

*MODIFY (Modify)

The *MODIFY control command indicates to the Editor that
a library tape is to be output on the UO device and causes
the Editor to enter the modify mode. The modify mode ter­
minates when an EOD or *LIST control command is inter­
preted. The form of the command is

where

GEN is an optional parameter indicating that object
modules are to be selectively input from BI and that
a new tape is to be generated on UO. UI is not
read. The control command

('MODIFY GEN

may be followed only by *INSERT control commands
(GEN impl ies INSERT) used to define the elements to
be selectively copied from BI to UO. No *DELETE
control commands can be used in the GEN mode.

INSERT must be specified if insertions from BI are
to be read. If BI and UI are on the same physical
device, the complete BI file (up to EOD) will be
prestored. Modules can be selected from BI by
names on the *INSERT control commands. The
inserts must be in proper order. Th i s command is
used to update (input both *INSERT and *DELETE
commands) the UI tape and to write a UO tape.

Note: If INSERT and GEN are omitted from the *MODIFY
control command, only *DELETE control commands
may be input.

*INSERT (Insert)

The *INSERT control command causes an object module to
be inserted and is effective only in the modify mode. The
form of the command is

where

name 1 is the name (up to 8 EBCDIC characters) of
the object modul e to be inserted.

name2 is the name (up to 8 EBCDIC characters) of
the object module on the UI tape that the namel
object module must follow. If name2 is omitted,
the namel is written following the module previously
written on UO.

Modules to be inserted from BI must be in the same order as
in the *INSERT control commands. If GEN is specified on
the *MODIFY command, only the name

1
parameter on the

*IN5ERT command is required; if name
2

is specified, it
is ignored.

*DELETE (Delete)

The *DELETE control command causes object modu les to be
deleted and is effective only in the modify mode. The form
of the command is

("DELETE name1[,name;J

where

name 1 is the program name (up to 8 EBCDIC char-
acters) of the first or only module on the UI tape
to be del eted.

name
2

is the program name (up to 8 EBCDIC char-
acters) of the last modul e on the UI tape to be
deleted. If absent, only one module is deleted.

The *DELETE control command must name modules in the
same order as the programs occur on U I.

DUMP

The Dump routine (DUMP) provides the capability of
dumping tapes onto an output device in either hexadecimal
or EBCDIC format.

The Dump routine uses M:READ and M:WRITE for all
I/O. If no mode or the EBCDIC mode is specified for
dumping, all records are dumped according to the content
of the first byte of each record. Any record having a first
byte of X'lC', X'3C', X'9F', X'BF', X'DF', X'FF', X'OO',
or X'78' is assumed to be a binary record containing 120
bytes, and it is dumped with each data word being repre­
sented in EBCDIC as a 4-digit hexadecimal number. Any
record that does not contain one of these characters in its
first byte is assumed to be in EBCDIC and is dumped as such.

The user has the option to specify the byte count for paper
tape records input, since M:READ pads all EBCDIC records
with trailing blanks so that they appear to be fixed length
in memory.

The BIN option for dumping should be used to dump non­
standard binary records (i. e., where the first byte does
not contain X'lC', X'3C', X'9F', X'BF', X'DF', X'78',
X'OO', or X'FF'). The BIN option causes all records that
are to be dumped to be read in binary and dumped with
each data word represented in EBCDIC as a 4-character
hexadecimal number. Since no editing is done when a bi­
nary read is specified, NL, EOM, and i are not interpreted
as editing characters. EOD is not recognized as a file
mark. Therefore a request to dump one or more fi les can be
terminated when the specified number of records has been
dumped or by putting the device in manual mode. A
request to dump one or more files (when the device is
magnetic tape) is processed normally, since file marks are
recognized.

OPERATIONAL LABELS USED

The Dump routine uses the following operational labels:

51 Device for input commands
UI Input device for dumping
LO Output device for dumping (unless some other

input device is specified)

OPERATING CHARACTERISTICS

If both 51 and the Dump input are assigned to the same de­
vice, all of the control commands on the 51 device are
read and stored in memory before interpretation of the com­
mands and dumping of the input tape begins. When this
occurs, the message

LD INPUT
! lUKEYIN

is written on the OC and DO device. The operator mounts
the input tape and keys in an 5 response to continue. If
51 and the tape device to be dumped are not assigned to the
same device, no message is written and control commands
are interpreted as they are read. The PTDUMPcontrol com­
mands are then listed on DO and dumping is performed.

CALL DUMP

Control is transferred to the Utility Package via the control
command

(UTILITY DUMP [,oplb]

where

oplb is the operational label of the input device.
If oplb is omitted, the operational I abel is assumed
to be UI.

After interpretation of the UTILITY control command, con­
trol is transferred to the Dump routine. The control com­
mand and options available to DUMP are described below.

*DUMP

CONTROL COMMANDS

(Dump)

The *DUMP control command causes records to be read from
the input tape and written on the LO device in the specified
mode until an EOD or file mark is read. The form of
the command is

I *DUMP [number] [,mode] [,size]

Dump 55

where

number is a decimal integer. Only the specified
number of records are dumped. If "number" is
omitted, the fi Ie is dumped through an EOF or
file mark. If "number ll is ALL, the dump is per­
formed up through double file marks or EODs.

mode is an optional parameter. If it is included,
all records on the input tape, regardless of the
content of the first byte of each record, are writ­
ten on the LO device in the mode specified.
IIMode" is HEX for hexadecimal and EBCDIC for
EBCDIC. If omitted, EBCDIC is assumed.

size specifies the maximum number of bytes to be
read in each record. If size is omitted, the stan­
dard record size is used.

SEQUENCE EDITOR

The Sequence Editor routine edits EBCDIC card images by
sequence number. It is more flexible than Record Editor in
that multiple programs or sections of programs may be up­
dated and sequenced individually within single or multiple
fi les. It provides greater protection from updating in an
incorrect sequence, or from accidentally updating the wrong
program. Another feature of the Sequence Editor routine is
that update card images may be inserted without changing
the existing sequence numbers. Thus, update decks may be
cumulative and wi II reflect the development of a source
program.

Sequence Editor is primari Iy intended for installations where
EBCDIC source programs are kept on magnetic tape. It is
somewhat impractical for paper-tape-oriented systems or
systems without a line printer.

To accomplish editing, the user designates columns 73
through 80 of a source card image as the IIsequence field ll

•

This field consists of the ident and the sequence number.

The ident is optional and identifies a program or program
segment. If defined, it begins in column 73 of the card
image and is from one to six alphanumeric characters in
length.

The sequence number, which is required, is the numerically
sequenced part of the sequence field. It consists of two
to eight decimal characters and ends in column 80. The
user can specify the value by which successive sequence
numbers are incremented. In general, a large sequence
increment wi II allow larger insertions without affecting the
existing sequence numbers.

Ident and sequence number together must not total more
than eight characters. Unused columns between ident and
sequence number are ignored by Sequence Editor.

SEQUENCE EDITOR OPERATIONAL LABELS

The following operational labels are used by the Sequence
Editor routine.

56 Sequence Editor

Label

SI

LO

Explanation

Update data (includes card images and con­
trol commands).

Annotated I isting of added and deleted card
images.

UI Input device.

UO Output device.

Device, above, refers to any permanent storage device
such as magnetic tape, paper tape, or RAD (single sequen­
tial file). Note that LO should not be assigned to the
keyboard/printer, because the sequence-number portion of
the printout is truncated on that device.

SEQUENCE EDITOR OPERATING CHARACTERISTICS

Sequence Editor performs two separate and distinct functions:
it generates fi les on UO from source images input on 51, and
updates fi les from UI onto UO, taking updates from SI. Only
one of these functions can be performed per call to Sequence
Editor (SEQEDIT).

The file generation (GEN) function is used to create the
permanent fi les initially. It is recommended that the files
be sequenced as they are generated to avoid an update pass
at a later stage. The user can generate either one fi Ie
(terminated by an EOO from SI) wherein a single file mark
is written on UO, or multiple files (terminated by two EOOs
from SI) wherein two file marks are written onto UO and US
is backspaced one file.

The update function is used to update UI by replaci ng, de­
leting, or inserting card images from SI and writing the up­
dated files onto UO. The files can be resequenced as they
are written. The user can update one file (terminated by an
EOF from UI) wherein an EOF is written onto UO, or all
files (terminated by logical end-of-tape or two EOFs from
UI) wherein two file marks are written on UO and UO is
backspaced one file. With the "ALL" option, it is not
necessary to update each file, but all files will be copied
onto UO.

Fi les can be sequenced as they are generated or updated.
Sequencing is a separate operation in that the card images
are sequenced as they are written on UO. Thus it is possi­
ble to update an existing fi Ie by ident and sequence number
whi Ie placing a new ident and sequence number on the up­
dated file.

CALLING SEQUENCE EDITOR

The Sequence Editor (SEQEDln routine is requested via the
following control command.

! UTILITY SEQEOIT [, GEN] [, IGN] [, ALL]

where

GEN indicates that output files are being gener-
ated on the UO device and that there are no input
fi les to be updated.

I GN indi cates that SI sequence errors are to be
ignored if UO is being generated; or that UI se­
quence errors are to be ignored if UI is being up­
dated. If IGN is used, no sequence error messages
are pr i nted .

ALL indicates that the GEN function is to continue
until two EOD cards are encountered from SI, or
that the update function is to continue unti I two
EOFs are encountered from UI.

The Uti I ity Program Executive transfers control to Sequence
Editor, which interprets and validates the parameters. If
illegal parameters are input, the Utility program aborts with
a code of IUT'. If this is an update (GEN option not speci­
fied) the following message is output on OC and DO:

LD INPUT UI,device
! !UKEYIN

SEQUENCE EDITOR CONTROL COMMANDS

I.DENT The IDENT command defines the breakdown of
the sequence field into the ident and the sequence number.
It applies to card images from UI and SI only. If used, it
should precede the update cards to which it applies. If
omitted, the ident field is considered empty and the se­
quence number is eight characters in length. The IDENT
control command is used whenever it is necessary for
Sequence Editor to know the size and content of the ident
field (that is, when UI contains multiprogram files or single
program fi les with nondecimal characters in the sequence
field). It is not to be used when files are being generated.
The form of the command is

!*IDENT [ident] [,sequence number]

where

ident is an integer nl (0 $ n
1

$ 6) that specifies
the number of characters in the ident subset of the
sequence field starting from column 73. If "ident"
is omitted, the ident field does not exist.

sequence number is an integer n2 (2 $ n2 $ 8) that
specifies the number of characters in the sequence
number subset of the sequence field ending in
column 80. If omitted, sequence number is set
equal to the difference (8 - ident).

The user should note that if a nonzero ident field has been
specified on an IDENT command, the idents on each card
image from UI must match exactly or resequencing will be
suspended when the first nonmatching ident is encountered.
Hence, if UI is known to have nonmatching idents (for

example, a fi Ie that has never been sequenced or one that
has been updated and contains some blank sequence fields),
a separate sequence operation should be performed (without
a simultaneous update) specifying an empty ident field.

Replacement. The update card itse If, rather than a control
command, is used to replace a card image from UI. The
sequence number on the update card must equal the sequence
number on the UI card image to be replaced. The card
image from UI and the message II DE LETED", followed by the
card image from SI and the message "INSERTED" are out­
put on LO.

Insertion. The update card itself, rather than a control
command, is used to insert a card image on UO. The se­
quence number on the update card must be between the se­
quence number of the two contiguous UI card images where
the update card is to be inserted. The card image from SI
and the message "INSERTED" are output on LO. Cards with­
out sequence numbers are inserted immediately following
the sequenced card preceding them. Thus, a large block of
card images can be inserted by placing the proper sequence
number on the first card only. The nonsequenced cards will
be written on the output tape without sequence numbers.
It is recommended that the tape be resequenced as it is
being updated if unsequenced cards are inserted.

DELETE The DELETE command deletes one or more card
images from UI. Nonsequenced cards can only be deleted
by deleting from the last sequenced card preceding the non­
sequenced card(s) up to and including the next sequenced
card. Deleted card images are listed on LO. The form of
the command is

73 80

! * DELETE [sequence field
2

] sequence field 1

where

sequence fieldl contains the ident and/or sequence
number of the first or only card image to be de­
leted from UI. This parameter is required.

sequence field 2 indicates that more card images
are to be deleted, from the card image specified
in sequence fieldl up to and including the card
image specified in sequence field2 .

SUPPRESS The SUPPRESS command is identical to the
DELETE command except that deleted card images are not
listed on LO. The form of the command is

73 80

!*SUPPRESS [sequence field
2

] sequence field
1

SEQUENCE The SEQUENCE command is used to resequence
columns 73 through 80 of the card images on UO. Only one
program can be resequenced with each Sequence control

Sequence Editor 57

command. Therefore, resequencing is suspended when
either a file mark or a card image with a sequence number
identifying a new program is written on the output tape.
Resequencing is also suspended when another SEQUENCE
control command is executed; therefore, parts of a program
as well as entire programs can be resequenced. The form of
the command is

I*SEQUENCE [sequence field
2

}increment

73 80

[sequence field
1
]

where

sequence field
1

contains the specified card image
from UI at which the SEQUENCE control command
becomes effective. If omitted, the SEQUENCE
control command takes effect with the next card
image to be written on UO.

increment is the resequencing increment number.
If omitted, an increment of 10 is used. It is the
responsibility of the user to ensure that the se­
quence number does not get incremented past the
size of the sequence number field. No warning
is issued if this overlap occurs.

sequence field
2

specifies the first resequenced card
image to l5e written on the output tape and does
not necessarily have the same fields as defined in
the IDENT control command {which defines se­
quence fields for the input tape and update data
only}. If omitted, resequencing is suspended.

SEQUENCE EDITOR ERROR MESSAGES

DELETE ERR
llUKEYIN

No UI card images were found in the block to be deleted
{for DELETE and SUPPRESS commands}.

58 Sequence Editor

DEOF UI,device
llUKEYIN

The program to be updated was not encountered on the in­
put tape before the logical end-of-tape. All updating done
prior to this point was written on the output tape, along
with the logical end-of-tape marker. An S response causes
Sequence Editor to return to RBM.

PARAM ERR
llUKEYIN

Case 1. Update data from SI contains an illegal sequence
number; that is, a nonnumeric character. An er­
ror alarm is also I isted on LO.

Case 2. A necessary control command parameter was omitted.

Case 3. The ident parameter {on an IDENT card} is greater
than 6, the sequence number parameter is less than
2, or the sum of the two parameters is greater than 8.

SEQ ERR oplb,device
llUKEYIN

A sequence error was found in either the update data or the
input tape. In this case, the oplb parameter refers to either
SI or UI. An error alarm is also listed on LO.

UNRECOV I/O UI,device
llUKEYIN

An irrecoverable read error has occurred on UI. The partial
card image input and the message "UI IGNORED RECORD
FOLLOWS XXXXXXXx" {where xxxxxxxx is the previous non­
blank UI sequence field} is output on LO.

UNRECOV I/O UO,device
llUKEYIN

An irrecoverable write error has occurred on UO. The card
image and the message "UO RECORD OMITTED" or "UO
FILE MARK OMITTED" are output on LO.

10. DEBUG PROGRAM

INTRODUCTION

The Debug program gives the user the capability of dumping
selected portions of memory at execution time in a hexa­
decimal format. As do other BCM subsystems, the Debug
program operates in the background under the BCM and
can be loaded by the Linking Loader like any other library
routine. Debug requires about 400 locations in memory.
This includes the program, print buffers, etc.

The three different entries to Debug that are provided are
L: DUMP, PDUMP, and DUMP. The last two are compat­
ible with the standard FORTRAN calls to PDUMP and
DUMP. Since only the hexadecimal format is provided,
the FORTRAN parameters specifying the format are ignored.
Output is to the DO device. If the DO device is assigned
to file zero, or is not operational, no output occurs.

A call to L:DUMP is primarily used by a program coded in
the Symbol language (PDUMP and DUMP entries are the
standard FORTRAN calls).

CALLS TO DEBUG

The call s to Debug are

L:DUMP

RCPYI
B
DATA
ADRL
ADRL

return

P, L
L:DUMP
X'keys'
L1
L2

Return is to the location following the last parameterof the
calling sequence. The B, X, A, E, and T registers are
restored.

PDUMP

RCPYI
B
DATA
ADRL
ADRL
ADRL

return

P, L
PDUMP
X'keys'
L1
L2
L3

Return for PDUMP is identical to the L:DUMP entry above.

DUMP

RCPI
B
DATA
ADRL
ADRL
ADRL

P, L
DUMP
X'keys'
L1
L2
L3

return is to M:TERM

M:TERM is the BCM background termination routine.

keys is the value of the standard library argument defi-
nition keys. That is, keys is a series of two-bit codes,
from left to right, that specify the addressing mode of
each argument as follows:

00 means no more arguments
01 means absol ute address
10 means base relative indirect
11 means base relative

One keyword can be followed by up to eight arguments.
The argument order para"els the two-bit keys from left to
right. As many keywords as necessary should be present.

L 1 is the lower address at which to start dumping.

L2 is the upper address to terminate dumping (the last val ue
printed is the contents of L2, in the case of an L:DUMP
entry, or (L2+ 1), in the case ofa PDUMP or DUMP entry.

If L2 < L 1, the two addresses will be inverted so that L2
will be the lower address and L 1 the upper address.

L3 is a format control parameter of 0, and is present only
for the PDUMP and DUMP entries. The L3 parameter
is ignored by the Dump program, since only the hexa­
decimal format is available. The L3 parameter need
not be present for the last triplet of parameters.

The lower address (L 1) is rounded down to a mul ti pi e of 8
if output is to a Keyboard/Printer (KP), or to a multiple of
16 if output is to a Line Printer (LP). Output consists of 8
columns of data per row on the KP, or 16 col umns per row
on the LP. The contents of the L, T, X, B, E, and A reg­
isters are printed on each entry to the Dump routine. If
there are 8 or more identical values on the KP, or 16 or more
identical values on the LP (and said values are identical to
the last printed value), the duplicate values are suppressed
and the foil owi ng message is output:

LOC xxxx THRU yyyy CONTAIN zzzz

A page is ejected prior to printing, and the output from
different calling parameters is separated by double spacing.

The BCM Debug program uses BCM I/O routines and there­
fore will not execute without the BCM.

Debug Program 59

11. SYSTEM GENERATION

INTRODUCTION

System generation of a Basic Control Monitor adapted to a
specific installation is performed by selection of the Mon­
itor options required by the facility, and by definition of
the installation hardware parameters, such as memory size
and peripheral device numbers.

The minimum hardware requirements for BCM initialization
are an ASR keyboard/printer and at least 8K of core memory.

The software required to perform initial ization incl udes the
absolute binary version of the BCM program with all options
included, but without the system I/O tables defined. A self­
loading bootstrap or the Stand Alone loader is used to load
the BCM program. The BCM and bootstrap modules can be
in either card or paper tape format (as can system genera­
tion output).

Once the modules are loaded, the self-loading bootstrap
enters a II wa i t II state. Then the operator must enter the
device number of the keyboard/printer used by SYSGEN to
output its messages and queries. When the IIwait" is
cleared, control is transferred to the SCM initial ization
and se lection routines. These routines wi II then request
input from the user, who in turn defines the selected Moni­
tor options and hardware parameters.

The initia lization and selection routines proceed to create
a rebootable version of the SCM with the specific faci lity
requirements. Any further status messages or possible error
messages are output on the keyboard/printer. In the case of an
error, the SCM types out a definition of the error and waits
for the user to input the corrected parameters, and a Read
is then retried. The system initialization need not be per­
formed again unless changes are required in the BCM or the
hardware configuration.

The rebootable version of the BCM is punched on the PB
device when all input selection has been completed. This
binary program (card or paper tape) is preceded by a boot­
strap record that is in a special absolute format and can be
loaded without any other loaders or processors. This system
is the standard SCM used until there is a change in the re­
quirements of the faci I ity.

Each loading of the BCM causes the I/O Interrupt, Control
Panel Interrupt, and BCM Control Task Interrupt to be
armed and enabled.

INITIALIZATION PROCEDURE

After successfully loading the complete absolute binary
SCM program, the initialization and selection routines re­
quest input via the keyboard/printer.

I NPUT FORMAT

The format of all input records is free form, with the param­
eters beginning at the left of the record. A record is
defined as one Keyboard/Printer image up to a NEW LINE
e character, or one EBCDIC card.

The conventions and restrictions given below must be fol­
lowed in formatting input records:

1. The first blank terminates the parameter scan; there­
fore, comments can be included in the remaining por­
tion of the record.

2. A backspace character (j) will cause the previous
character to be deleted {from the Keyboard/Printer}.

3. Depressing the EOM key prior to the appearance of a
NEW LINE character wi II cancel the I ine (on the
K eyboard/Pri n ter).

4. A hexadecimal field must begin with a plus sign.

5. A comma is used to separate fields.

6. All operational labels must begin with an alphabetical
character.

INPUT PARAMETERS

Following a specific BCM request for input on the Keyboard/
Printer, the user responds with one or more lines of input,
as appropriate. Table 16 gives the possible SCM output
messages, the user responses (parameters), and comments that
define the consequences of the responses.

Table 16. Input Options and Parameters

Operation
t

Function

1. Initial load of Stand-Alone 1. The Stand-Alone Absolute loader is loaded at location 800010 which
Absolute Loader wi II then load the full SCM, as it was output from the assembler.

2. ! ! SCM SYSGEN 2. This is output by the BCM initialization routines as an indication that
the BCM is ready to begin generating a system.

t Items in parentheses are input by the operator.

60 System Generation

O . t
peratJon

3. INPUT DEVICES
(dtnn,dtmm)

4. MEMORY SIZE
(size)

5. BACKGROUND START
(BCM) or (address)

6. MAX. INTERRUPT LOC
(address)

7. BCM INTERRUPT LOC
(address)

8. BCM GROUP CODE
(number)

9. INCLUDE FULL CCI
(Y) or (N)

10. INCLUDE PROTECT
(Y) or (N)

Table 16. Input Options and Parameters (cont.)

Function

3. The remainder of the input parameters will be read from the input device
specified, where dt is the device type, and nn is the device number, in
hexadecimal.

The input devices are KP40 and CRnn. The output devices are KP40,
0)

LPnn or NO for Sigma 2; or KPnn, CRnn, LPnn, or NO for Sigma 3. 1

If input is from the card reader, a summary of the information is listed
on the Keyboard/Printer or on the line printer.

4. Specify core size of the computer in either decimal or hexadecimal.
This size must be on a 4K (K = 1024) boundary.

5. If "BCM" is specified, the initialization routines wi II begin the back­
ground just above a II of the resident BCM, leaving no room for fore­
ground. If protection is used, the background will begin on a page
boundary. If no protection is used, the background .will begin on a
multiple of 1610. If an address is specified, it should inc I ude space for
all of the BCM options and tables selected, as well as for any fore­
ground desired. (The size of the BCM will vary from 197010 to 350010'
depending on the options.) The address, if specified, must be on a page
boundary. (One page equals 25610 words.) This must be at least one
page smaller than memory size.

6. Specify the highest numbered interrupt address (264 .$ address < 399 for
Sigma 2, or 264 .$ address .$ 367 for Sigma 3). Example:

MAX. INTERRUPT LOC
274

7. Specify the interrupt address to which the BCM Control Task is con­
nected. This may be a counter-equals-zero level or an integral or ex­
ternal real-time level. If it is an external level, it must be in a group
with lower priority than the I/O group, or the BCM wi II not accept
control panel interrupts. Further, the BCM interrupt level must always
be the lowest priority interrupt in the system, or the real-time priorities
below this BCM level will not function. Note that the highest numbered
interrupt location is usually (but not always) the lowest priority interrupt.

8. Specify the group code for the BCM Control Task interrupt associated
with the location above. This number must be either 0, 5, 6, ... , or
X ·C·. Refer to the Sigma 2 and Sigma 3 Computer Reference Manua Is
to determine the group code associated with the BCM interrupt.

9. Specify yes (Y) or no (N). If this option is not incl uded, the only BCM
control commands that may be used are !ABS,! EOD, ! FIN, ! LOAD,
! SLOAD, ! BFORTRAN, ! SYMBOL, ! UTILITY, ! CONCORDANCE, and
! ident where ident is the name of a user·s program previously loaded by
the ABS control command.

10. Specify yes (Y) or no (N). This option is not required if there is no con­
current foreground/background processing. However, it is useful to
protect the BCM from the background even without foreground. The
memory protect hardware option will be required.

tItems in parentheses are input by the operator.

Initialization Procedure 61

0)

I

O
. t

perahon

11. INCLUDE PARITY
(Y) or (N)

12. INCLUDE MULTIPLY SIM.
(Y) or (N)

13. INCLUDE DIVIDE SIM.
(Y) or (N)

14. INCLUDE M:IOEX
(Y) or (N)

15. DEVICE FILE INFO
KPnn,F (FILE # 1)
(dtnn,B) or (dtnn,F)
(...)
(-1)

Example for ASR 35, with
no foreground:

KP40,F
KP40,B
PT40,B
PT40,B
-1

(FILE #1)
(FILE #2)
(FILE #3)
(FILE #4)

Table 16. Input Options and Parameters (cont.)

Function

11. Specify yes (Y) or no (N). The protect option without parity does not
give complete foreground protection. This option requires the memory
parity hardware. In a Sigma 3 configuration the inclusion of this option
also includes the processing of watchdog and integral timeouts.

12. Specify yes (Y) or no (N). This option is not required if a hardware
multiply capability exists. Multiply is not used by any of the standard
processors except Basic FORTRAN, but is required by the math library.

13. Specify yes (Y) or no (N). This option is not required if divide hardware
exists. Divide is not required for any processors but is required for the
math library. The divide option forces the inclusion of the multiply
option as well.

14. Specify yes (Y) or no (N). This option is not used by any of the proces­
sors and is needed only if the user has nonstandard peripherals or non­
standard I/O operations.

15. Specify device type name (dt) and device number (nn), in hexadecimal,
for each peripheral in the system configuration. Specify whether the
peripheral is to be used by the foreground only (F) or by the background
only (B). The device-file number assigned to each peripheral is implic­
itly identical to the line number. An input of -1 terminates this step.
A device-fi Ie number may be used by only one task at a time. Therefore,
if several foreground tasks use the keyboard/printer, for example, each
task must have a unique device-file number assigned to KPnn. Device­
file number 1 is for use by the BCM Control Task for unsolicited key-ins
only. A device such as an ASR 35 must have three device-fi Ie numbers
if it is to be used by the background: one for the keyboard, one for the
paper tape reader and one for the paper tape punch. The permissible
device types to be used are

Type

KP
PT
LP
CR
BR
CP
BP
M9
M7
PL
IP
IC
IB
XX

Device

Keyboard/printer
Paper tape
Line printer
Card reader (EBCDIC)
Card reader (BCD)
Card punch (EBCDIC)
Card punch (BCD)
9-track magnetic tape
7-track magnetic tape
Graphic plotter
Line printer (Model No. 7450, 225 lines per minute)
Card punch (Model No. 7165, 100 cards per minute)
Card punch (Model No. 7165, 100cardsperminute, BCDmode)
Nonstandard devi ces, to be used by M: 10EX on Iy

The keyboard/printer must always be the first device to be input, and
the user must specify the device number.

To distinguish the lOP type for a multi-unit device, the BCM requires
either an ,lor an ,E appended to each parameter input under step 15,
where ,1 indicates an internal lOP and ,E indicates an external lOP.
For example, M9DO,F ,E indicates a magnetic tape on EIOP.

t I terns in parentheses are input by the operator.

62 Initialization Procedure

Table 16. Input Options and Parameters (cont.)

O . t
peratlon

16. BACKGROUND OP LBL

(op Ibl = device-fi Ie number)

or

(devi ce unit number = devi ce-fi Ie
number)
(...)
(-1)

17. FOREGROUND OP LBL

(op Ibl = device-file number)

or

(device unit number = device­
fi Ie number)

(...)
(-1)

18. BCM ENDS AT LOC xxx x

Function

16. Assign the permanent background operational labels for the system. Use
the devi ce-fi Ie numbers defined in step 15. An assignment of 110=11 wi II
reserve space in the operational table to allow nonstandard FORTRAN
device unit number to be assigned at execution time, if the full CCI is
included. (If the full CCI is not included, all FORTRAN device unit
numbers that are to be referenced must be defined here.) A permanent
assignment to file zero means that this label is not to be used. (Exam­
ple: LL=O.) If a label has been previously defined, the new value over­
rides the old. An input of -1 wi II terminate this step. The standard
operational labels are

Label Reference

OC Operator's Console
51 Symbolic Input
AI Absol ute Input
BI Binary Input
LI Library Input
LO Listing Output
LL Listing Log
DO Diagnosti c Output
BO Binary Output
PB Punch BCM
CC Control Command Input
X 1 Intermediate Scratch
UI Uti I ity Input
UO Uti lity Output

The standard FORTRAN device unit numbers are

Number Standard Assignment

101 Keyboard/printer input
102 Keyboard/printer output
103 Paper tape reader
104 Paper tape punch
105 Card reader
106 Card punch
108 Line printer

17. Assign foreground labels, using the same method as for the background.
There are no standard foreground labels (it is not actually necessary to
specify any foreground labels). This step is also terminated by a -1.

18. At this point, BCM initialization is complete and the rebootable version
of the user's BCM has been output on the PB device, if system initializa­
tion was successful. If initialization was not successful, the BCM will
output the message! ! BCM OVERLAPS BACKGND, and the initializa­
tion procedure must be restarted from the beginning.

tItems in parentheses are input by the operator.

Initialization Procedure 63

Table 16. Input Options and Parameters (cont.)

O . t perahon Function

19. BACKGROUND BEGINS AT
LOC xxx x

19. If the "BCM" format was specified in step 5, above, this message is
output to inform the operator of the actual beginning of background.

20. ! !SET PARITY TO IINTERRUPT I 20. This indicates that the BCM includes the parity option, and the operator
should set the specified condition on the control panel.

21. ! !AFTER IWAIT I, SET PROTECT
10N I

21. This indicates that the BCM includes the protect option. The operator
must not set the protect to ON until the SCM enters the "wait ll state.

22. !! INTERRUPT AND KEY-IN AN
lSI TO BEGIN

22. This indicates that the BCM is in core storage and ready for execution.
This message is also typed after each successful loading of the reboot­
able BCM program.

t ltems in parentheses are input by the operator.

ERROR MESSAGES

During initialization, invalid input causes one or more of
the following error messages to be typed out on the Keyboard/
Printer:

Message Meaning Recovery

! !INVALID Input parameter Correct input and
PARAMETER is out of ex- retry this command

pected range

! !FORMAT Input format Check format, re-
ERROR not valid try the command

that caused the
fai lure

! !BCM OVER- Error in size Check sizes, re-
LAPS BACKGND specifications start from begin-

ning

BACKGROUND PROCESSORS

Under the BCM, background processors (wi th the exception
of the Linking Loader and System Loader; see below) are
supplied to the user in relocatable format as either paper
tapes or cards. The processors are loaded into core storage
at the position they wi II occupy at execution time. The
System Loader then produces absolute object modules that
are loaded later vi a the ASS control command prior to
execution.

The generation of absolute load modules is mandatory only
for the utility subsystem. All other relocatable and abso­
lute processors are compatible with the ABS Loader. (For
minimum core configurations, FORTRAN requires absolute
object module generation.)

Only one system loading process is necessary, unless changes
to the size limits of background are required.

The System Loader and the Linking Loader are in absolute
binary and use the special addressing features of Sigma 2/3
hardware to re locate themse Ives, regard less of the loca­
tion of the background space.

64 Initialization Procedure

Sample deck structures to generate absolute background
processors are shown below. These deck structures and con­
trol commands assume that the processor is being generated
in the machine on which it is to be run; i. e., the load lo­
cation is set by the Monitor background plus 2016 rather
than being specified on an $SL control command.

tAlso applicable to Basic FORTRAN or Concordance.

Figure 12. Deck Setup to Punch Absolute
Background Processor

Figure 13. Deck Setup to Punch Absolute Utility Package

Initial ization Procedure 65

APPENDIX A. SIGMA 2/3 STANDARD OBJECT LANGUAGE

INTRODUCTION

The SDS Sigma 2/3 standard object language provides a
means of expressing the output of a processor in a standard
format. A" programs and subprograms in this object format
can be loaded by the SDS Sigma 2/3 Linking Loader and
System Loader. The complete standard object language
contains 15 load item types.

An object module consists of the ordered set of binary rec­
ords generated by an assembly or compilation for later load­
ing. The Linking Loader has the facil ity to load and link
several ob ject modu I es together to form an executabl e program.

The Sigma 2/3 BCM System Absolute loader can load a
single module (absolute subset) to form an executable pro­
gram. The following load item types from the standard
object language comprise the absolute subset.

1. Record Header
2. Record Paddi ng (type 0, subtype 0)
3. Repeat Load (type 0, subtype 1)
4. Unrelocated Load (type 1)
5. Start Modu I e (type 4)
6. End Module (type 5)
7. Load Origin (type 7)

This subset is acceptable input to the resident BCMAbsolute
Loader, Linking Loader, and System Loader.

DESCRIPTION OF OBJECT MODULES

GENERAL DESCRIPTION

An object module consists of a set of binary object records,
each containing an integral number of load items after a
standard three-word record header (see Figure A-I). Each
binary record in the module is a 120-byte record.

FF I n

Seq. No. 1

Checksum

Load Items First Record

Non-active
Information

F F I n

Seq. No. 1

Checksum

Load Items Second Record

Non-active
Information

Figure A-1. Typical Object Module of M Records

66 Appendi x A

F F I n

Seq. No. M-2

Checksum

Load Items {M-l)th Record

Non-active
Information

9F I n

Seq. No.M-l

Checksum

Load Items Mth Record (Last record of modul e)

Non-active
Information

Figure A- 1. T ypi cal Object Modu I e of M Records (cont.)

Each load item consists of a header word followed by a
variable number of data words. The first load item in an
object module is a start-module item and the last item (other
than record padding) is an end-module item. There are 15
types of load items, described below.

BINARY OBJECT RECORD FORMAT

Each l20-byte binary record in an object module consists of
these parts: Record Header, Load Items, and Non-active In­
formation in the following arrangement. The Record Header
and Load Items are considered the "active" portion of the
record.

Record Header 3 words

Load Item 1

Load Item 2

up to 51 words
00::::

Load Item n

Non-active
Information

The "active" portion of the record is that information con­
cerning type, sequence number, checksum and binary data
usually processed by loaders. The IInon-active" portion may
contain sequence or identification information, or it may be
empty. It is not processed by the loaders.

FORMAT OF RECORD HEADER

The first byte of the record header may be either XI F' or
X '9

1
• X'F ' denotes that this is a standard record of the ob­

ject module: X'9
1 denotes that this is the last record of the

object module.

word 0

Control word
F or 9 I F 10 0 n n n n n n

0 3 4 7 8 9 10 11 12 13 14 15

word

I SIC I Record sequence no.

0 1 2 15

word 2

Checksum

0 15

nnnnnn in the first word is the number of active words in the
record, excluding the record header. II Active ll denotes data
to be processed by a loader. There may be some padding
words or sequence information at the end of the record that
is not included in the "active" count. The maximum value
of n is 51. Note that although the physi cal record size is
fixed at 120 bytes (80 columns of binary data) the number of
active words may vary from 3 to 54. This effectively stan­
dardizes the reading of binary object records but allows ver­
satility in the generation of active data. The record sequence
number starts at 0 and takes on consecutive integer val ues
for all the records in one file. The 5 bit is a sequence over­
ride. If this is a 1, the loader ignores sequence checking
for the record. The checksum is an arithmetic sum, with
carry, of the n-3 active words after the record header. If
the C bit is a 1, the checksum is ignored.

LOAD ITEM FORMAT

Each load item consists of a one-word header and an op­
tional variable-length body of data.

Load Item Header }
Load Item

Load Item Data

FORMAT OF LOAD ITEM CONTROL (Header) WORD

Every header word has the same general format:

bits 0-3 Type

bits 4-7 Subtype or control

bits 8-15 Number of data words in the load item (ex­
cluding item header).

This number plus 1 is equal to the size of the
load item. All words of a load item must be
contained in the same physical record.

SUMMARY OF LOAD ITEM FORMATS

RECORD PADDING (Type 0, Subtype 0)

word 0

Control word
o o 010 0 o 0 10 0 o o 10 0 o o

o 3 4 7 8 11 12 15

There is no body of data. Padding words are ignored by the
loader. The object language allows padding as a conve­
ni ence for processors.

REPEAT LOAD (Type 0, Subtype 1)

word 0

Control word
o o 0 I 0 0 o 1 10 0 o o 10 0 0

o 3 4 7 8 11 12 15

word

Repeat count

o 15

This item repeats the next load item a specified number of
times. The load item (type 1, 2, or 3 only) immediately
following the repeat load is repeated (i. e., loaded) in its
entirety the number of times indicated by the data word.

UNRELOCATED LOAD (Type 1)

word 0

Control word
o o 1 10 0 o 0 10 0 n n I n n n n

o 3 4 7 8 11 12 15

word

First data word

o 15

word n

Last data word

o

This item loads n words without relocation.

RELOCA TED LOAD-MODULE BASE (Type 2)

word 0

Control word
o o 100 o 0 10 0 n n In n n n

o 3 4 7 8 11 12 15

Appendix A 67

word

Fi rst data word

o 15

word n

Last data word

o 15

This item loads n words with module relocation. The reloca­
tion bias of the current object module is added to each data
word in the item.

RELOCATED LOAD-COMMON BASE (Type 3)

word 0

10
Control word

0 1 I 0 0 0 01 0 0 n nln n n n
0 3 4 7 8 11 12 15

word

Fi rst data word

o 15

word n

Last data word

o 15

This item loads n words with a common base relocation.

START MODULE (Type 4)

word 0

Contro I word
o 0 10 0 001 n+1

o 3 4 7 8 15

word

Common size allocation

o 15

word 2

First character Second character

o 7 8 15

word n + 1

{2n-1)th character Last character (or blank)

o 7 8 15

This item identifies the start of the object modu Ie. The
characters in words 2 through n + 1 are the program name
{identification} for the module.

6B Appendix A

END MODULE (Type 5)

word 0

10
Control word

0 1 10 0 0 r 10 0 0 010 0
0 3 4 7 8 11 12 15

word

Starting address

0 15

word 2

Severity level

o 15

word 3

Relocatable size (or zero)

o 15

This item identifies the end of the object module. In the
control word (word 0), the starting address is defined in
bit 7

where

r = 1 indicates absolute starting address.
r = 0 indicates relocatable starting address.

The severity level in word 2 is defined as the highest level
reached during processing.

The loader uses the relocatable section size, if present, rather
than its own location counter to determine the starting loca­
tion for the next relocatable section.

A starting address of absolute 0 indicates there is no starting
address for this module.

LOAD ORIGIN (Type 7)

word 0

10
Control word

1 I 0 0 0 riO 0 0 010 0 0 1
0 3 4 7 8 11 12 15

word

Origin address

o 15

This item sets the origin within the object module. In the
control word (word 0), the origin is defined in bit 7

where

r = 0 indicates relocatable origin.
r = 1 indicates absolute origin.

RELATIVE LOCATION POINTER (Type 8)

word 0

Control word
o o 0 I 0 0 o r 10 0 o 010 o 0

o 3 4 7 8 11 12 15

word

Chain base address

o 15

This item establishes the chain base for later chain resolu­
tion. In the control word (word 0), the chain base address
is defined in bit 7

where

r = 0 indicates a relocatable address.
r = 1 indicates an absolute address.

NAME DEFINITION (Type 9)

word 0

Control word
o o 100 1 0 I n + 1

o 3 4 7 8

word

Fi rst data word

o

word 2

Fi rst character Second character

o 7 8

word n + 1

15

15

15

{2n- 1)th character Last character (or blank)

o 15

This item identifies a name as a definition within the object
module.

All name definitions immediately follow the start-module
item and must precede all other load items. For each name
definition, an address definition should appear later in the
object module.

ADDRESS DEFINITION (Type 9)

word 0

Con tro I word
o o 1 10 0 o r I n + 1

o 3 4 7 8 15

word

First data word definition - address

o 15

word 2

First character Second character

o 7 8 15

word n + 1

{2n-1)th character Last character or blanks

o 7 8 15

This item associates a location in the module with a defini­
tion name (characters in words 2 through n + 1) for other
modules to reference. In the control word (word 0), the
definition address is defined in bit 7

where

r = 0 indicates relocatable definition address.
r = 1 indicates absolute definition address.

EXTERNAL REFERENCE (Type A)

word 0

Control word
o 000 o r I n + 1

o 3 4 7 8

word

Chain address (or zero)

o

word 2

First character Second character

o 7 8

word n + 1

15

15

15

{2n- l)th character Last character (or blank)

o 7 8 15

This item states a name (characters in words 2 through n + 1),
defined in another module, whose definition address must be
inserted in a chain of locations within the module. In the
control word (word 0), the chain address is defined in bit 7

where

r = 0 indicates a relocatable chain address.
r = 1 indicates an absolute chain address.

Note: If there is no chain address, the reference address is
zero and is used for library searching purposes only.

Appendix A 69

SECONDARY REFERENCE (Type B)

word 0

o 1 10 n + 1
3 4 7 8 15

word

First data word chain address

o 15

word 2

Fi rst character Second character

o 7 8 15

word n + 1

2n-1)th character Last character (or blank)

7 8 15

This item states a name (characters in words 2 through n + 1),
defined in another module, whose address may be inserted
in a chain of locations within the module. This item is iden­
tical to type A, above, except that it does not force loading
of the routine from the library. In the control word, the
chain address is defined in bit 7

where

r = 0 indicates a relocatable chain address.
r = 1 indicates an absol ute chain address.

ADDRESS LITERAL CHAIN RESOLUTION (Type C, sub­
types 0, 1, 2, and 3)

word 0

Control word
o 0 10 0 q r 10 0 o o 0 o

o 3 4 7 8

word

Resolution address

o

word 2

Chain address

o

o
15

15

15

This item defines a location within the modul e (called the
resol ution address) whose address must be inserted in a chain
of displacement fields within the module. In the control
word, the chain address is defined in bit 6

where

q = 0 indicates a relocatable chain address.
q = 1 indicates an absolute chain address.

70 Appendix A

The resolution address is defined in bit 7

where

r = 0 indicates a relocatable resolution address.
r = 1 indicates an absolute resolution address.

An address literal chain is a threaded list of forward refer­
ences to a single location in a program. The definition
value (called the resolution address) can be output as an
address literal chain resolution (Type C, subtypes 0, 1, 2,
and 3). The chain address points to the beginning of the
threaded I ist which is terminated by an absol ute zero value.
The resolution address and the chain address may be absolute
or relocatable.

Note: Because the terminator of the chain is zero, no pro­
gram may have an address literal chain whose last
link is at absolute zero (i.e., the item would refer­
ence zero, and would thus appear to terminate the
chain).

Note that external reference (REF) (type A) and secondary
reference (SREF) (type B) chains are structured in the same
manner, but resolved by the loader using an external defi­
nition value (type 9).

DISPLACEMENT CHAIN RESOLUTION (Type C, subtypes
6, 7, A, and B)

word 0

Control word
o 0 I p p q riO 0 o 0 10 o o

3 4 7 8 9 11 12 15

word

Resolution address

o 15

word 2

Chain address

o 15

This item defines a location (called the resolution address)
within the module whose relative displacement must be in­
serted in a chain of displacement fields within the module.
In the control word, the displacement chain is defined in
bits 4-5

where

pp = 01 indicates that an indirect bit is not set in each
instruction in the displacement chain.

pp = 10 indicates that an indirect bit is set in each
instruction in the displacement chain.

q = 1 always indicates absolute displacement of the
last item in the chain (relative to the chain
base declared in item type 8).

The resolution address is defined in bit 7

where

r = 0 indicates a relocatable resolution address.
r = 1 indicates an absolute resolution address.

When forward references occur during 1-pass processing,
and the possibility of resolving the referencebyadefinition
or literal may occur within 255 locations, the 8-bit dis­
placement field of the instruction may be used to form a
displacement chain. The item types 8 (relative location
pointer - establish chain-base) and C (displacement-chain
resol uti on) must be used together to resolve the chain by
substituting actual displacements determined at load time.

In the creation of a displacement chain, the pointer in the
type 8 item defines the relative location in the program to
be establ ished as the chain base. Each new type 8 item can
define a new chain base. The values in the displacement
field of the instructions included in any given displacement
chain refer to the absolute displacement of that instruction
relative to the currently established chain base; e. g., if the
chain base is established to be X'100' and an instruction is
located at X'125', the displacement of that instruction for
purposes of the displacement chain is X'125'-X'100' or X'25'.
This point is emphasized since the loader will use this dis-
pi acement onl y to determine the final displacement ofthe in­
struction relative to the location of I iteral or target locations.

When the displacement chain connects instructions that ref­
erence a I iteral or a specific target location with in range of
the chain base {e. g., LDA=3 LDA=LAB, B XR}, no indirect
bit is set in each instruction (pp = 01 in Header - Type C).

When the chain connects references to an external symbol
or forward reference whose value will be given in some lit­
eral within range of the chain base, pp is set to 2 in the
type C header, to set the indirect bi t in each i nstruc­
tion in the chain (e.g., LDA X, which will be resolved

as LDA *$+n, where n is the displacement of ADRL X rel­
ative to the instruction).

The chain base address (in the type 8 item}maybedeclared
as an absolute or relocatable value. The resolution address
(first data-word of a Type C item) is the address of the target
location or I iteral expressed as a location, and not as a dis­
placement on the chain base. Note that although the reso­
lution address is defined at this point, the value of the literal
at that resolution may not be defined until later. In fact, it
may be an element of an address-I iteral chain (type C) or
external reference chain (type A). The address-literal or
external chain resolution is independent of the displ acement
chain resolution.

The chain-address given in the second data word is the ab­
solute displacement of the last item in the chain, relative
to the chain base declared in type 8 (e. g., if the effective
chain base were X' WOO' and the val ue of the chain address
were X'20', the last item of the displacement chain would
be located at X'1020').

A separate displacement chain will be created for each
unique variable in a given displacement region. Thus, many
displacement chains may be built using the same chain base.
As a matter of fact, the chain base may not be changed un­
til a displacement chain resolution item has been output for
each displacement chain. An unresolved displacement chain
is a serious error condition in the output, and is unaccept­
abl e for execution.

The format of the displacement chain is described in the
example in Figure A-2.

Example: Let a chain base be declared at 109(R}. (Numbers
given are decimal.) It is assumed that the ADRL for XLB
will be ultimately loaded at 140(R}. Note that the displace­
ment field of each instruction before resolution is a pointer
to the location of the next item in the threaded list relative
to the chain base.

Relative D ispl acement
Displ acement Displacement
Fi el d of Instru c- Field of Instruc-

Location Symbolic From Chain
tion before tion after

Counter Base
Loading Resolution

110 LDA XLB 1 00 (end of chain) 30 (140-110)
125 STA XLB 16 01 15 (140- 125)
134 CP XLB 25 16 06 (140-134)
136 STA XLB 27 25 04 (140-136)
140

I
Item type C, Displacement

I Chain Resolution

I Resolution Address 140(R) I
I Chain Address 27(A} I

Figure A-2. Displacement Chain Format

Appendi x A 71

Code

OP

PV

PE

10

AE

CC

SQ

CS

XE

APPENDIX B. STANDARD BCM ABORT CODES

Meaning

Operator abort, from unsolicited key-in.

Protection violation.

Parity error in background (perhaps attempting to read from unavailable memory).

Irrecoverab I e II 0 error.

Assignment error during loading; improper I/O assignment or invalid format.

Error in control cards or in sequence of job stack.

Sequence error in absolute binary deck.

Checksum error from card or paper tape input.

Invalid transfer address, fatal error in loading, or improper name for background
program.

SI Irrecoverable input error on SI device.

BI Irrecoverable input error on BI device.

1I Irrecoverable input error on 1I device.

LO Irrecoverable output error on LO device.

BO Irrecoverable output error on BO device.

MD Multiply or divide instruction without supporting hardware or software.

TY Program being loaded with !ABS command contains an external or relocatable
load item.

Note: The processing of the job stack is discontinued after any abort message, to allow the operator to correct the
condition. The Monitor will continue to read from CC when a key-in of S is given, and will attempt to
recover if the new commands are for the current job. If a new job is input, the current job is overwritten
in core storage.

72 Appendix B

•

A
A register, 5,11,25,28-33,36,59
abort (see also M:ABORT)

background job, 12, 14,33
codes, 11, 72
exit, 18
flag, 5
I/O, 31,72
load i ng process, 18
operator, 72
message, 50,72

abnormal termination, 24
ABS control command, 7, 12, 15,42,61,64, 72
absolute

address, 22
binary module, 19
deck, 19,31
format, 20,36

Absolute Loader, 13,19,20,38,66
Absolute Run-Time, 13-15, 19,20
active fi Ie number, 32
add byte count, 29
address defin ition, 19
address literal, 22,35
addressing mode, 59
Ala receiver, 5,28,31,32,39
alphanumeric names, 7
argument addressing mode, 59
arithmetic sum, 65
arming, 35,37
asize, 13-15
assembly

error, 18
listing, 2

ASSIG N, 4,7,8, 12
assignment error, 72
ATTENTION switch, 11
automatic mode, 11,27
available memory, 6

B
B reg ister, 22,28,30,31,36,59
background

abort routine (see M:ABORT)
files, 9
job dumps, 2
memory, 13, 15, 19,20
normal termination, 24
operational labels, 7,8
priority level, 33
processors, 2,7
program, 1-3,5, 11, 13,35-37
program exit, 33
program preparation, 19
program requests, 22
program restrictions, 3

INDEX

space, 6,9
temporary stack, 3,6
termination (see M: TERM)

backspace
character, 60
magnetic tape, 41

base
address, 17
register, 3

batch processing,
BCD

cards, 39
fi Ie, 29
input, 27

BCM
Control Routine, 3
Control Task, 4,5,11, 12,35
deck setup, 1 0
I/O routines, 59
I/O tables, 32
system generation, 37,60-64

beginning of background (see K:BACKBG)
BI device (see operational label)
BIAS, 14 (see EBIAS)
BIN, 48
binary

integer values, 34
mode, 27,29,48
object module, 13,52,66
object program, 2
output record, 29
program, 7,60
record, 41,48
record format, 41

BFORTRAN, 9,61
blank COMMON, 6
blanks

format byte, 30
separators, 7, 19
terminators, 14

block definition, 8
BO device (see operational label)
bootstrap record, 60
brackets, 7
branching, 22

c
C:, 8, 12,35-38
card

punch, 12,29,30,40,62
reader, 27,28,37,40,62

carriage control byte, 29
carry indicators, 31
CC device, 11, 12,62 (see also operational label)
CCI, 11
cent, sign, 27
CHANGE utility, 52

Index 73

channel
activity status, 5,32
buffered I/O, 31
end, 32, 39

checksum, 13,41
error, 53,54,72

comma separator, 7, 14
COMMON

allocation value, 13
base, 16, 19,20
size, 13
storage size, 16

communication key-ins, 7
communication messages, 7
Concordance

listing, 2
program, 1, 29,61

connect operation, 8 (see also C:)
constants, 22-24
context switching, 33
control

key-ins, 7
message identifier, 7
routine (see M:CTRC)

control command
interpreter, 35
Sequence Editor, 57
terminator, 7

Control Panel interrupt, 2,5, 11,60
Control Panel task, 11
controlled violations, 22
conversion

hexadecimal, 24,34
integer, 24,34

COpy subroutine, 42, 48-50
BIN parameter, 48-50
COpy, 49
FORM parameter, 49
MODE parameter, 48
OPLBS, 49
SIZE parameter, 48
VERIFY, 49,50

core limits, 3
core memory allocation, 6
CP key-in, 12
csize, 13

o
data chain, 32,39
DATA statement, 35
data word, 64,65
Debug program, 2, 59
debugg i ng, 1, 2
declaration numbers, 17
DEF, 7,15,17,19,20,37
definition address, 17
DELETE, Sequence Editor, 57
DELETE, utility, 52
DEOF utility, 50
device

change-of-state, 11
equivalence, 39,40

74 Index

file number, 4,8,39,40
interrupt, 32, 33
number, 4, 11,25,32, 39
recovery procedures, 11
referencing, 1,40
type, 4,39,60
unit number, 4,8,39,40,62

diagnostic messages, 18,21
divide exception, 5
DO device (see operational label)
double spacing, 29
DUMP, 59
DUMP uti I ity, 55,56

E
E register, 25, 28-32,34,36,59
EBCDIC

dump, 55
invalid code, 27
mode, 29,48,56
output, 29
records, 26,27,48

EBIAS, 14
editing, 27,29,50
embedded blanks, 7
END card, 52
END item, 14, 16
end module, 66
END TRA, 17
END TRANSFER, 16, 17
EOD, 8-10,14, 15,19,20,61
EOD utility, 42-44,46-49,51,52,54
EOM, 27,48,60
EOT utility, 50
error

checking, 1
I/O, 11,72
messages, 11,18,21,60
recovery, 1, 39
severity, 13, 16, 18

execution
bias (see EBIAS)
location counter, 19
pri ori ty, 35

external definitions, 13, 14, 19
external reference, 13,20

F
F specification, 8
facility requirements, 60
FASSIGN, 4,8, 12
FBACK utility, 44
FG key-in, 7,8, 11,37
file

backward, 30,43
forward, 30,43
number, 4, 39, 40

fi Ie skip
backward (see FBACK)
forward (see FSKIP)

FIN, 8,11,12,38,61

floating accumulator, 3,22,33,35
foreground

interrupt, 33
modification, 12
module, 7
operational label, 7,8
program, 3,6,37,38
program protection, 1,3
protection, 3,39

foreground tasks, 3,33,35,37,38
preparati on, 2, 19
termination (see M: TERM)

format
byte, 30
characters, 30
code, 30
option, 48

FORTRAN, 2,7,27
binary record format, 41
compi ler, 1-3,4,7
device unit, 8
error severi ty, 24
format characters, 30
logical records, 30
program, 36,37,59

forward references, 71
free fi e I d format, 7
FSKIP, 8
FSKIP util ity, 43,44

H
hardware

configuration requirements,
opti ons, 1,58
priority level, 3,4

header word, 66,67
hexadecimal

dumps, 55,59
field, 60
format, 59
mode, 56

HIO, 31,32

IDENT control command, 57
idle

state, 8, 11, 12 (see also WAIT state)
time, 35

IDNT directive, 7,61
indirect branching (see service routines)
initialization routine, 37,38,60
input

error, 72
record format, 60
record parameter, 60
selection, 60

input/output, 5
editing, 1
requests, 1
tasks, 5

INSERT utility, 52,54

integer
conversion, 24,34
values, 34

interrupt, 1, 2, 35
device, 32,33
flag, 32
I/O, 2,5,32,39,60
level, 1,3,35
restore routine (see M:EXIT)
save routine (see M:SAVE)

INTERRUPT switch, 11,38
invalid device, 44-46
I/O

abort, 31,72
check operation, 31,32
driver (see M:IOEX)
error condition, 11,72
error recovery, 31
initiation, 39
interrupt, 2,5,32,39,60
operation, 31,32,39-41
priority level, 5,38
protection, 3
requests, 9,32
routines, 38,39
status, 39,40

IOCD,1,31,32,39
10CS

constants, 22
poi nters, 22

irrecoverable error, 14, 18
irrecoverable I/O error, 18,26

J
JAM A, 12
JAM B, 12
JOB, 1,8,9

K
K:BACKBG, 13, 14,20
keyboard/printer, 1,2, 10, 12,26-30,40,48,59,60

editing, 39,50
OC messages, 48

key-in, 7,8, 11, 12,37
communication, 7
errors, 11

keys, 57
KP key-in, 12

L
L register, 25,29,33,34,36,37,39,59
L:A, 14, 15, 19-21
L:DUMP, 57
library, 14,52

loading, 6, 13, 17, 19
program, 19,37
routines, 2
scanning, 14,20

Index 75

selective loading, 20
subprograms, 6
tape output, 54

LI medium (see operational label)
line printer 7,10,29,39,48,59
Linking Loader, 2, 13-20,22,37,59,64,66
Linking Loader control commands, 13

$LB, 14-16
$LD, 14-16
$MD, 15
$ML, 14-16, 18
$MP, 14, 15, 18
$XR, 15, 16 (see also EOD)
$XZ, 15, 16 (see also EOD)
EOD, 15
LOAD, 13, 18

I ist mode, 50-52,54
LIST utility, 51,54
listing

log, 7
output, 9

LO (see operational label)
LOAD, 9,13,61
load

bias (see BIAS)
errors, 15
error messages, 18,21
execution origin, 13
map, 13, 14
origin, 64
severity levels, 15

load item, 67-69
loader symbol table, 19
loading background programs, 4
location counter, 19
logical

M

device referencing,
format byte, 30
record, 30

M:ABORT, 5,33,48
M:CTRL, 10,30-31
M:EXIT, 22,33,35,36,39
M:FSAVE, 24,33
M:HEXIN, 22
M:INHEX, 22,34
M:IOEX, 22,30-33,39,62
M:READ, 8,17,22-30,39,41,48,50,53,55
M:SAVE, 22,33,35
M: TERM, 22,33,57
M:WRITE, 17,28-30,39,48,50,53,55
magnetic tape, 1,8, 10,26-30

position ing, 30,41,43-45
record size, 41

map
format, 16
memory, 2

mathematics library,
memory, 19,20

overflow, 46
parity error, 5, 11

76 Index

partition, 1
protection, 1,3,5,6,22

MESSAGE utility, 43,46
minimum BCM configuration, 10
modify mode, 50-54
MODIFY utility, 43,51,54
module declaration, 17
Monitor

control, 7
protecti on, 39
resident space,
service routines (see service routines)
tasks, 5
typeouts, 11

Monitor control commands, 7
ABS, 7,9, 10, 12, 14, 15
ASSIGN, 7-9, 12
C:, 8,9, 12
EOD, 8,9, 10
FASSIGN, 8,9,12
FIN, 8-12
FSKIP, 8,9
JOB, 7-9
PAUSE, 9, 11
REWIND, 9
UNLOAD, 9
WEOF, 9

multiply/divide
hardware, 5
instruction, 5

multiply exception, 5
multiprogramming, 1,35

N
"name" control card, 15
NEW LI NE, 11,27-29,48,60
nonprotected memory, 3
nonreal-time program (see background program)
nonzero COMMON allocation, 13
NOP, 29

o
object deck, 19
object language, 66, 68
object module, 13,52-54,66-69

editor (see OME DIT)
object program, 2,52
OC device, 18 (see also operational label)
off line rewind, 30,31
OMEDIT control commands

DELETE, 54,55
INSERT, 54,55
LIST, 54
MODIFY, 54

OMEDIT utility, 52-54
on line rewind, 30
operational label, 4,7-9,39,40

table, 8,40
operational labels, Sequence Editor, 56
operational labels, utility, 43

•
operational status byte, 5,33
operator

abort, 72
communication, 11
key-in, 47,48
message (see MESSAGE)
Monitor communication, 7
output device, 11

OPLBS utility, 49
order bytes, 1, 28, 30, 32
overflow indi cators, 31
overlay Linking Loader, 13, 14, 16,20

p

paper tape
binary record, 48
input/output, 27-29

parity error, 5, 11,72
PAUSE, 9, 11
PAUSE uti I ity, 43,46
PB device (see operational label)
PDUMP, 59
Permanent Symbol Table, 17
positioning magnetic tape, 30,41,43-45
prestore mode, 53
PRESTORE utility, 43,46,47
print routine, 30
priority level, 1,3-5,27,33,38,39
privileged

instructions, 1,5
operations, 3,22

processor, 2, 7, 22
control commands, 7,9
execution, 19
loading, 19

protection
routine, 22
violation, 5,22,72

pseudo

R

input orders, 25
order bytes, 28,30

RAD, 31
RBACK utility, 45
read

automatic, 25,28
backward, 25-28,41
binary, 25,28
immediate, 28
routine (see M:READ)

real-time
foreground routine, 2
foreground tasks, 4-6,35,39
program, 7,33,35-39

RECEDIT control commands
CHANGE, 51,52
DELETE, 51,52

INSERT, 51,52
LIST, 51
MODIFY, 51

record
binary, 48
EBCDIC, 48
editor, 42,50 (see also RECEDIT)
format, 60
header, 66-67
padding, 29,64,67
parameter, 60
sequence, 67
size, 27,67
skip backward (see RBACK)
skip forward (see RSKIP)
spacing, 30,44,45

REF, 7, 17,37
register contents, 33,35
repeat load, 66
resident

foreground task, 6,24,35
Loader (see Absolute Loader)

restore registers, 33
restore routine (see M:EXIT)
return status, 25,26,29-32
REWIND, 9
rewind magnetic tape, 30,31 (see also REWIND)
REWIND utility, 42,45
RSKIP utility, 44

s
S key-in, 9, 11
save routine (see M:SAVE)
secondary external reference, 13, 17
selective loading, 14,20
self-loading bootstrap, 60
Sequence Editor, 56
Sequence Editor Control Commands, 57
sequence errors, 72
service routines, 1,3,13,17,22,24-35

M:ABORT, 5,22,33
M:CTRL, 10,22,30,31
M:EXIT,22,33,35,36,39
M:FSAVE, 24,33
M:HEXIN, 22
M:INHEX, 22,34
M:IOEX, 22,30,31-33,39,62
M:READ, 8, 17,22-30,39,41,48,50,53,55
M:SAVE, 22,33,35,36
M: TERM, 22,33,59
M:WRITE, 17,22,28-30,39,48,50,53,55

single spacing, 29,30,48
SI 0, 25, 31 , 32
skip fi Ie control command (see FSKIP)
skip record control command (see RSKIP)
SLOAD, 9, 19,61

modification (see L:A)
special editing, 27,29
SREF, 7,17,70
Stand-Alone Loader, 60
Standard Object Language, 66-72

Index 77

standard system constants, 10,22,23
status

codes, 31,32
return, 25,26,29-32

SUPPRESS, 57
SYMBOL, 9,61
Symbol assembler, 1,2,4,7,37
symbol table, 13, 17
system generation, 37,60

error messages, 64
output messages, 60-64

system initio I ization, 1,4, 60 (s~e also system generation)
System Loader, 2,7, 15, 19-21,36,64,66
System Loader control commands, 19

T

$DF, 20
$ID, 20,21
$LB, 20
$MD, 20
$ML, 20
$MP, 20
$PA, 20,21
$SL, 20,21
EOD, 20,21
SLOAD, 19-31

T register, 36,59
tape editing, 50-56
task, 2,35

interrupt, 2
priority, 3,27,39
real-time, 1,4,5
status, 36

Task Control Block, 2,3,5,6,8,33-36,38
TeB (see task control block)
TDV, 31,32
temporary

pointer, 33,35
scratch storage, 3
stack, 3,5,6,22
storage, 13, 22

termination (see M: TERM)
TEXTC, 29
timer runout, 5
TIO, 31-33
transfer address, 15, 16, 19,20,37

invalid, 72
vector, 22,24

transmission error, 11

u
undefined values, 13
unformatted records, 27

78 Index

UNLOAD, 9
UNLOAD utility, 45
unrelocated load, 66,67
unsatisfied primary references, 14, 18,21
unsolicited key-ins, 4,11,18,72
unusual end condition, 32
Utility positioning commands

FBACK, 44
FSKIP, 43,44
MESSAGE, 46
PAUSE, 46
PRESTORE, 46,47
RBACK, 45
REWIND, 45
RSKIP, 44
UNLOAD, 45
WEOF, 46

Utility Subroutines
COPY, 42,48,49
DUMP, 42,55. 56
OMEDIT, 42,52-54
RECEDIT, 42,50
SEQEDIT, 42,57

Uti lity Subsystem, 42-56

v
variable length records, 27,29,48
VERIFY utility, 49,50
verti cal format character, 9, 10
volati Ie registers, 39

w
W key-in, 11,12
wait state, 35
watchdog timeout, 5,62
WEOF,9
WEOF utility, 46
Write Direct, 3,11,35,39

x
X register, 5,10,25,28,30-32,34,36,42,59
X key-in, 12
Xl device, 49,50

z
zero

byte count interrupt, 5
device-file number, 48
table, 4,6,22

	000
	001
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	xBack

