
Xerox Data Systems

701 South Aviation Boulevard
EI Segundo, California 90245
213679-4511

Xerox Basic FORTRAN and Basic FORTRAN IV

© 1967,1968,1969,1970,1971, Xerox Corporation

Sigma 2/3 Computers

Language and Operations

Reference Manual

900967D

August 1970

Price: $2.25

I

XEROX

Printed in U.S.A.

REVISION

This publication is a revision of the Xerox Basic FORTRAN/Basic FORTRAN IV Reference f'.knual for Sigma 2/3
computers, Publication Number 90 09 67C (dated August, 1968). Any changes made to the text from that of the
previous manual are indicated by a vertical line in the margin of the page.

RELATED PUBLICATIONS

Title

Xerox Sigma 2 Computer/Reference Manual

Xerox Sigma 3 Computer/Reference Manual

Xerox Basic Control Monitor (BCM)/BP, RT Reference Manual

Xerox Basic Control Monitor (BCM)/OPS Reference Manual

Xerox Real-Time Batch Manitor (RBM)/RT, BP Reference Manual

Xerox Real-Time Batch Monitor (RBM)/OPS Reference Manual

Xerox Basic FORTRAN/OPS Reference Manual

Xerox Basic FORTRAN IV/OPS Reference Manual

Xerox FORTRAN Library/System Technical Manual

Publication No.

900964

90 1592

90 1064

90 1506

90 1037

90 1555

901061

90 1525

90 1036

Manual Type Codes: BP - batch processing, LN - language, OPS - operations, RBP - remote batch processing,
RT - real-time, SM - system management, TS - time-sharing, UT - utilities.

PREFACE
This manual explains the form and interpretation of programs written in the Basic FORTRAN or Basic FORTRAN IV
Programming Languages for use on Xerox Sigma 2/3 Computers. It is a reference guide for programmers and is not
intended to be a primer for beginners.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of same features may
depend on a specific configuration of equipment such as additional tape units or larger memary. Customers should consult their XDS sales representative for detoils.

ii

..

I

CONTENTS

PREFACE iii 7. CONTROL STATEMENTS 21

GO TO Statements 21 1. INTRODUCTION
Unconditional GO TO Statement 21

Language Computed GO TO Statement 22
Processor Arithmetic IF Statement 22

DO Statement 23
DO Range 23

2. PROGRAM FORM 3
Execution of the DO Loop 24

FORTRAN Character Set 3 Other Features of a DO Loop 24
Letters 3 Examples of DO Loops 24
Digits 3 CONTINUE Statement 25
AI phanumeri cs 3 Program Control Statements 26
Specia I Characters 3 PAUSE Statement 26

Lines 3 STOP Statement 26
Line Format 3 CALL Statement 26
Line Types 4 RETURN Statement 27

Statements 5
Executabl e Statements 5
Nonexecutable Statements 5
Statement Labels 5 8. INPUT/OUTPUT 28
Identi fi ers 6 Sequential Input/Output Statements 28

Formatted Input/Output Statements 28
3. DATA TYPES AND IDENTIFICATIONS 7 Unformatted (binary) Input/Output

Statements 29
Data Types 7

Input/Output List Specifications 30
Data Identification 7

List Items 30
Constants 7

Special List Considerations 31
Variables 8 FORMA T Statements 32
Arrays 8 Fi el d Descri ptors 32
Array Elements 8 Hollerith (Alphanumeric) Transmission 36

Hexadecimal Transmission 37
4. EXPRESSIONS 9 Auxiliary I/o Statements 41

REWIND Statement 41
Arithmetic Expressions 9

BACKSPACE Statement 42
Permissibl e lxpressions 9

END FILE Statement 42
Expression Evaluation 10 Carriage Control for Printed Output 42

Direct Access Input/Output (Basic FORTRAN IV
5. ARITHMETIC ASSIGNMENT STATEMENT 12 only) 44

Direct Access Input/Output Statements --- 44

SPECIFICATION STATEMENTS 14
Programmi ng Considerations 44

6.
READ Statement 46

DIMENSION Statement 14 WRITE Statement 46
Array Declarator 14
DIMENSION Statement Rules 14
Array Storage Allocation 15

Explicit Type Statements 15 9. SUBPROGRAMS 47
COMMON Statement 15

COMMON Statement Rules 15 Statement Functions 47
COMMON Storage 15 Defining Statement Functions 47
Correspondence of COMMON between Rules of Order and Structure 47

Program Units 16 Referenci ng Statement Functions 48
EQUIVALENCE Statements 16 Library Functions 48

EQUIVALENCE Statement Rules 17 FU NCTION Subprograms 50
EQUIVALENCE and COMMON 17 FUNCTION Subprogram Construction 51

EXTERNAL Statement (Basic FORTRAN IVonly)_ 18 Referencing FUNCTION Subprograms 52
DATA Statement (Basic FORTRAN IV only} ___ 19 SUBROUTINE Subprograms 53

DATA Variable List 20 SUBROUTINE Subprogram Construction 53
DA T A Constant Li st 20 Referencing Subroutines 55

iii

10. PROGRAMS AND PROGRAM COMPONENTS 57 3. Recommended Standard Unit Assignments 28
4. Library Functions 49

Program Components 57
Program Execution Sequence 57 ILLUSTRATIONS

1. Sample Program and Coding Form 2
INDEX 58

2. Input/Output Example 1 - Unformatted I/o -- 43
3. Input/Output Example 2 - Formatted I/O 43

TABLES 4. FUNCTION Subprogram Example 1 - DIFF --- 51
5. FUNCTION Subprogram Example 2 - DPROD-- 52

1. Constant Formats 7 6. SUBROUTINE Subprogram Example 1 - GRTST- 54
2. Rules for Arithmetic Assignment 12 7. SUBROUTINE Subprogram Example 2 - ARRNG- 54

iv

1. INTRODUCTION

FORTRAN is a computer programming system designed to simpl ify the preparation and checkout of computer programs
to solve mathematical or engineering problems. The FORTRAN system consists of two major components:

1. The FORTRAN Language

2. The FORTRAN Processor

language
The FORTRAN language is a formal language used for specifying computational or information processing procedures
for computer execution, concisely and efficiently. It is rigorous and requires the programmer to fully define the
characteristics of his problem in a series of statements. These statements normally are written on standard coding
forms similar to the one shown in Figure 1. Statement types and formats are discussed in Chapter 2 of this manual,
while Chapters 3 and 4 describe syntactic elements of statements and their expressional relationships. Chapters 5
through 9 contain descriptions of the individual statements and the rules for their construction.

Groups of statements form program units. A program unit is either a main program or a subprogram. An executable
FORTRAN program consists of precisely one main program and possibly one or more subprograms. Chapter 10 de­
scribes the composition of executable programs.

Programs written according .to the rules of the FORTRAN language are called source programs.

Processor

The FORTRAN processor is a computer program which, in operation, translates source program statements into com­
puter language instructions. Once compiled, an object program can be loaded and executed on the computer.

The XDS Sigma 2/3 Basic FORTRAN and Basic FORTRAN IV processors compile object programs for the XDS Sigma
2/3 Computers and have the following operating characteristics and capabilities:

1. Compilation is complete after "one pass" of the source program.

2. The processor may be interrupted for priority operations after which FORTRAN processing can continue from the
point of interruption.

S 3. The Basic FORTRAN processor operates under control of the Sigma 2/3 Basic Control Monitor, whereas Basic
FORTRAN IV operates under control of the Sigma 2/3 Real-Time Batch Monitor. t

In addition to the FORTRAN I anguage and processor, the FORTRAN system provides a I ibrary of standard subpro­
grams which may be referenced by FORTRAN programs. These are discussed in Chapter 9, "Subprograms".

A programmer should be familiar with all aspects of the FORTRAN language and the general aspects of the FORTRAN
processor in order to take full advantage of the system's capabi I ities.

tBasic FORTRAN IV features are indicated by a ® in the margin of the page.

Introduction

I

r-.l

['
a
c..
c
~ o·
:J

PROBLEM ____ S_~~LE r!lQI!L~M XJDl5
FORTRAN CODING FORM

PROGRAMMER ____ 5 .P.QI1f...IL ____ _ Idenli fi (ol;on
,---r-"f-'--r--r-~-r----r-t

73F ACT 0 R 2 80

v .. ;;~;f:~t~.;c::1;1M'!I:NT
NUMBER " , . "16

7, , : 0, • c--,
C R 6'U TIN E T 0-

f , t 1 I'" l I

Cy T ,"1 ~1' I I I I , "'-

u 20

FORTRAN STATEMENT
25 30 .5 50

'f -"'.- J I I -,

.6 40
I • 1 .- -} 1 "T-, -j'::,. T -:.-y I -., , I • 1"'1.:":;-''''" 1 I 1 T' I , I

CALCULATE FACT6'RIALS
., 'I' , , , ,-, .. , '.'.'.r •• -' ,

, , ' • , T· r--r--- y

I .~ (~ I I I

, . I I 1 TIl I ' ,

K • . ,-- 1 -, -, , ' . -r~. --w - -. ,--Y'-, , -J . ,- "1 I I 1

READ (I,S) KFA CT

,1.0 ,
1 1

I'F ('K'F'A'C'T) 1 2, 13,
IK' ': K' '. K'F'AC'T' 1 ' , ,

, I 1

1 1
, ,-----. f I I f - i - ,

1 '

, 1 I '--I I I I I

f

!K'F AC'T'
I ' X,
b'e' T 6

I 1

KFACT , ., 1

1 °

, , I •

, -,

I
'1,3,

, , ['. , .' '

1 211 K' =
" 'IWRI T E

IS'Te'P

, I "-,-'1) -, -r"' ",

° r 1

(2 , 6) K
I ' ,

" ... ".
., "-l -T "1 1

S I IF e'R MA T (16)
-Y--'1

6 , , F,e;R M A,T,

e,N,D

",1,2,0) , , .,
I

, I '--T---,.-- ,
l--Y- , f ,........., -,---,- --.,- -,-- r

I • "r -"-'--r' -r- 1 " .• r -,

I f 1 ; (, , 1 ,- , I

I 1--,- 1 I J ,

, I ' "I , \ 1

I f" 1 I , "I I

1

, ' , , 1 I 1-1 -l -, I ,

1 -,

, .

" 1 I 1 ' , r 1 • ,

1 ' I oro,. -, j , j , 1-"'1 I ,

r--r~-T--' "'Y

1 • • ,- 1"

Figure 1. Sampl e Program and Coding Form

,

-f -r-

j

,
I

- , ,
, , I ,

PAC~r Of

DAlf

55 /,0 " I , ,
, I

1 -, I , , ,

-. -, ,
I I 1- r I

I

, 1

1 ,

1 , I

1

I

1

,

r , , ,
, j

'-1 ,
1 ,- T I

XDS-B-~~A

111

2. PROGRAM FORM

A program unit is made up of characters formed into lines and statements.

FORTRAN Character Set

For convenience in explaining various characteristics of the FORTRAN language, the character set used to form
statements is divided into four classifications.

Letters

A, B, C, D, E, F, G, H, I, J, K, L, M, N, 0, P, Q, R, S, T, U, V, W, X, Y, Z

No distinction is made between upper and lower case letters. However, for clarity and legibility, exclusive use of
upper case letters is recommended.

Digits

0, 1, 2, 3,4, 5,6,7,8,9

Strings of digits representing numberic quantities are normally interpreted in the decimal base number system.

Alphanumerics

A subset of characters consisting of all letters and digits.

Speci 01 Characters

+

Blank

Equal

Plus sign

Minus sign

Asterisk

/ Slash

Left parenthesis

Right parenthesis

Comma

Dec ima I point

With the exception of its use in Hollerith fields, a blank character has no meaning and may be used freely to
improve legibility of FORTRAN statements.

The following special characters are classified as arithmetic operators and are significant in the unambiguous
statement of arithmetic expressions.

+ Addition or positive value

Subtraction or negative value

Multiplication

/ Division

Exponentiation

The other special characters have specific applications in the syntactical expression of the FORTRAN language
and in the construction of FORTRAN statements.

Any printable character may appear in a Hollerith field.

lines

FORTRAN lines are strings of 72 characters from the character set.

line Format

The FORTRAN Coding Form, Figure 1, shows the format of a line. Of the 80 character positions or columns indi­
cated on the form, columns 1 through 72 are used for FORTRAN lines. Columns 73 through 80 are an Identifica­
tion field, used for sequencing purposes only, and are ignored by the FORTRAN processor.

Program Form 3

I

Columns 1 through 72 comprise three fields:

1. Statement Label (or Number) field - Columns 1 through 5

2. Continuation Character field - Column 6

3. Statement field - Columns 7 through 72

Subsequent discussions will explain the utilization of these fields.

Line Types

Four types of lines are implemented for the FORTRAN language: comment line, END line, initial line, continu­
ation line.

Comment I ines are used for source program annotation at the convenience of the programmer. A comment line is
identified by the character C in column 1. Columns 2-72 may contain any characters in any desired format.

Comment lines have no effect on the object program and are ignored by the FORTRAN processor except for dis­
play purposes in listing the program. A comment line may not be followed by a continuation line.

Example:
~ C FOR COMMENT

FORTRAN STATEMENT

An END line is the last line of a program unit. Columns 1-6 contain blank characters, and columns 7-72 con­
tain the characters E, N, D, in that order. These characters may be preceded by, interspersed with, or followed
by blank characters.

Each FORTRAN program unit must have an END line as its last line to inform the processor that it is at the
physical end of the program unit. An END line may follow any other type line.

Example:

r--C FOR COMMENT

FORTRAN STATEMENT
50

, ' .

ss

An initial line is the first or only line of each statement. Columns 1-5 may contain a statement label to identify
8 the statement. Column 6 must contain a zero or blank character. Columns 7-72 contain all or part of the state­

ment. An initial line may begin anywhere within the statement field.

Example
r-- C FOR COMMENT

FORTRAN STATEMENT

4 Lines

Continuation lines are used when additional lines are required to complete a statement originating with an initial
I ine. Columns 1-5 are ignored; column 6 must contain a character other than zero or blank; and columns 7-72
contain the continuation of the statement. There may be as many as six continuation lines in succession. A con­
tinuation line may follow only an initial line or another continuation line.

Example:

C FOR COMMENT ~.

~TATEMENT J FORTRAN STATEMENT
NUMBER

1 5 S 7 10 II 20 2S 30 3S 40 45 SO SS

C BE Lej r-v ARE AN I N I T I AL LIN E AND TWr::t
i i , , , , i , i , i , i , i , , i , ,

C . - C6NTINUAT I r::tN L IN E S.
~

, i , , , i , ,
57 ALPHA(3 ,7) =

i i i i i i i

.l(, B5**7- (A L P HA (3 , 8) - B 6 *25)
I I , i , , i , , ,

~V +SQRT (A L P H A (3 , 6)) .
J<-~

I I I i i ,
=

Statements
A statement consists of an initial line optionally followed by one or more continuation lines.

Individual statements deal with specific aspects of a procedure described in a program unit and are classified as
either executable or nonexecutable.

Executable Statements

,
,

,

Executable statements specify actions and cause the FORTRAN processor to generate object program instructions.
The followi ng classifications of executable statements are implemented:

1. Arithmetic assignment statements

2. Control statements

3. Input/Output statements

Nonexecutable Statements

Nonexecutable statements describe to the processor the nature and arrangement of data, define procedures, and
provide information required by the object program during program execution. There are four types of nonexecut­
able statements:

1. Spec i ficat i on statements

2. Format statements

3. Statement Function definitions

4. Subprogram statements

Statement Labels

A statement label may be placed in columns 1-5 of a FORTRAN statement initial line and is used for reference
purposes in other statements. The following considerations govern the use of statement labels:

1. The label is an integer from 1 to 99999.

2. The numeric value of the label, leading zeros, or leading, embedded, or trailing blanks are not significant.

3. A label must be unique within a program unit.

4. A I abe I may not appear on a conti nuat i on line.

i

i

i

I

i

Statements 5

I

Examples:

C FOR COMMENT

r:-STATEMENT J FORTRAN STATEMENT
NUMBER

I 5 5 7 1O 15 20 25 30 35 40 45 50 55

f:: ,
j!'

;..

1 o 1 <

" 005 ~

"
5 6 0:

99999£

" , ~.

'"
I den ti fi ers

Identifiers are used in constructing FORTRAN statements to identify program and information entities. These var­
ious entities are discussed in subsequent sections of this manual.

An identifier in the FORTRAN language is a string of from 1 to 6 characters of which the first must be a letter.

Certain sequences of characters which are format field descriptors or which uniquely identify statement types (GO
TO, READ, etc.) are not identifiers in such occurrences.

6 Statements

3. DATA TYPES AND IDENTIFICATIONS

The various forms in which data appear in FORTRAN statements are classified by type and name.

Data Types

Two different data types are defined. Each has a different mathematical and language significance and representa­
tion. The data types, therefore, have significance in the interpretation of the operations imposed upon them.

Integer data are precise representations of integer values in the range from -32,767 to +32,767.

o Real data are approximations of the values of real numbers - positive, negative, or zero - represented in computer
storage in floating point form. Real data in Basic FORTRAN N may be of two precisions:

1. Standard Precision - precise to 6+ significant digits (i. e., the sixth most significant digit will be accurate,
while the seventh will sometimes be accurate, depending on the value) with magnitudes in the range from
5.398 x 10-79 to 7.237 x 1075.

2. Extended Precision - precise to 9+ significant digits with magnitudes in the range from 10-99 to 10+99.

Basic FORTRAN real data is standard precision. Basic FORTRAN N real data may be either standard or extended
precision, but not mixed.

Data Identification

Data, as employed in FORTRAN statements, are identified either by name or value. Rules for representing these data
further define four general classifications of data identification: constants, variables, arrays, and array elements.

Constants

Constants are data that do not vary in value and are referenced by naming their values. There are constants for each
type of data. Although numeric constants are considered as being unsigned, they may be preceded by the plus or
minus operators. The operator is not considered part of the constant, however.

Table 1 gives the rules for the various data types.

Table 1. Constant Formats

Type Format Rules

Integer 1. 1 to 5 decimal digits interpreted as a decimal number

2. No decimal point, comma, or blank characters are allowed

3. Value range: -32,767 to +32,767

Real 1. A decimal number represented in one of the forms:

a. ±i.
±.f
±j.f

b. ±i.E±e
±.fE±e
±i.fE±e

where i, f, and e are strings of digits representing integer, fraction, and
exponent, respectivel y.

2. A decimal point must be present as shown in l.

3. In the forms shown in 1.b above, if r represents any of the forms preceding
E ±e (i. e., rE± e) the value is interpreted as r times lOe •

4. If the constant preceding E±e contains more significant digits than the
precision for real data allows, truncation occurs, and only the most sig­
nificant digits in the range will be represented.

Examples

-217

512

o

-15.
.56321
15.56321

73.E02
.32E-04
73.5E03

Data Types and Identifications 7

I

Variables

Variable data are identified in a FORTRAN statement by identifiers. The names are unique strings of from] to 6
alphanumeric characters of which the first must be a letter.

The data type of a variable is specified implicitly by the first character of the variable name as integer or real.

Integer Variable

If the first character of the name is I, J, K, L, M, or N, the variable is typed as integer, unless it is otherwise
expl i citly typed.

Examples:

L]3 K I2 JAZZ MXFEE NEXT

Real Variable

If the first character of the name is other than I, J, K, L, M, or N, the variable is typed as real, unless it is other­
wise explicitly typed.

Examples:

AAA BEST FAll] ZAP X

Arrays

An array is an ordered set of data characterized by the property of dimension. Arrays may have one, two, or three
dimensions and are denoted by an identifier. Identification of the entire set of data is achieved by the use of the
array name. The data typing of an array is accomplished in the same manner as with a variable.

An array name must be declared as such by a DIMENSION statement which also specifies the number of dimensions
and size of the array. The DIMENSION statement is discussed in Chapter 6.

Array Elements

An array element is one member of the data set that makes up an array.

Identification of an array element is accomplished by immediately following the array name with subscripts, enclosed
in parentheses, which point to a particular element of the array.

(The term array element is synonymous with the term subscripted variable used in some FORTRAN reference manuals.)

Subscripts

Subscripts follow array names to uniquely identify array elements. As used in FORTRAN statements, subscripts
assume the same representational meaning as they do in familiar algebroic notation.

Subscripts are constructed and used according to the following rules:

1. No more than three subscripts are allowed.

2. If there are two or three subscripts within the parentheses, they must be separated by commas.

3. The number of subscripts must be the same as the number of dimensions specified in the array declaration.

4. A subscript is written in one of the following forms:

c*v+k
c*v - k
c*v
v+k
v-k
v
k

where c and k are integer constants and v is an integer variable name.

5. Subscripts may not be subscripted.

Examples of array elements and subscripts:

X(2* J -3,7) A(I, J) B(20) C(L -2) Y(I)

8 Data Identification

4. EXPRESSIONS

Expressions are strings of operands separated by operators. Operands may be constants, variables, or function ref­
erences. Operators may be unary, operating on a single operand, or they may be binary, operating on pairs of
operands. All expressions are single valuedi the evaluation of any expression has a unique result.

An expression may contain subexpressions. Subexpressions are expressions enclosed in parentheses.

Arithmetic Expressions

An arithmetic expression is a sequence of integer, and/or real, constant, variable, or function references connected
by arithmetic operators.

The arithmetic operators are

+ Addition or positive value

Subtroction or negative value

Multiplication

/ Division

** Exponentiation

The appearonce of contiguous operators is not allowed. For example, X* - Y is prohibited. X*(-Y) is allowed.

Parentheses may not be used to imply multiplication. The only acceptable indication of multiplication is the
asterisk (*) appearing between multiplier and multiplicand. For example, neither CD nor C(D) is acceptable to
mean "C times D". It must be expressed C*D or C*(D).

Permissible Expressions

The following rules define all permissible expression forms.

1. A constant, variable name, array element reference, or function reference (Chapter 9) standing a lone is an
expression.

Examples:

S(I) JOBNO 217 17.26 SQRT(A+ B)

2. If E is an expression, then +E and -E are called signed expressions, where the + and - are unary operators.

Examples:

-S(I) +JOBNO -217 +17.26 -SQRT(A+B)

3. If E is an expression, the form (E) means the evaluated quantity E taken as an entity.

Examples:

(-A) -(JOBNO) -(X + Y) (A - SQRT(A+ B))

4. If E is an unsigned expression and F is any expression, then: F+E, F-E, F*E, F/E, and F**E are all
ex press ions.

Examples:

-(B(I, J) + SQRT(A + B(K, l»)

I.7E - 2**(X + 5.0)

-(B(I + 3,3* J + 5) + A)

Expressions 9

I

S. An evaluated expression may be integer or real. The type is determined by the data types of the elements of
the expression. All elements must be of the same type with the following exceptions:

a. A real datum may appear in an integer expression only as an argument of a function.

Example:

I + LFUNC(B)

b. An integer datum may appear in a real expression only as an argument of a function, as a subscript, or
as an exponent.

Examples:

ABLE + AFU NC(I + 2)

A(I, J + 1)

B**N

6. An expression may contain nested parenthesized elements as in:

A * (Z - ((Y + X)/T)) * * J

where X+Y is the innennost element, (Y+X)/T is the next innermost, and Z-((Y+X)/T) the next.

In such expressions care shou Id be taken to see that the number of left parentheses and the number of right
parentheses are equal.

Expression Evaluation

Arithmetic expressions are evaluated according to the following rules:

1. Parenthesized expression elements are evaluated first. If parenthesized elements are nested, the innermost
elements are evaluated, then the next innermost until the entire expression has been evaluated.

2. Within parentheses and/or wherever parentheses do not govern the order or evaluation, the hierarchy of
operations in order of precedence is

a. Function evaluation

b. Exponentiation

c. Multiplication and Division

d. Addition and Subtraction

Example:

The expression

A*(Z-((Y + R)/T»** J + VAL

is evaluated in the following sequence:

Y+R e
1

(e 1)/T e
2

Z -e
2 -- e3

e
3

**J -- e4

A*e
4 -- eS

eS+VAL -- e6

10 Expression Evaluation

11

3. Wherever operations of equal hierarchy are involved, evaluation proceeds from left to right.

Examples:

Expression Eva luated as:

W*X/y*Z ((W*X)/Y)*Z

B**Z -4. *A*C (B**Z) -((4. *A)*C)

X-Y-Z (X - Y)-Z

X/Y/Z (X/Y)/Z

-X**3 - (X**3)

4. The expression X**y** Z is not allowed. It shou Id be written:

(X**Y)**Z to mean

or

X**(y**Z) to mean

5. Use of an array element reference requires the evaluation of its subscript. Subscript expressions are evalu­
ated under the same rules as other expressions.

Expression Evaluation 11

I

5. ARITHMETIC ASSIGNMENT STATEMENT

Arithmetic assignment statements assign values to variables or array elements.

These statements are of the form:

v = e

where

v is a variable name or an array element name.

e is an arithmetic expression.

Execution of this statement causes the evaluation of the expression e and the assignment of the resulting value
to v.

The following conditions apply to arithmetic assignment statements:

1. Both v and the equality sign must appear on the same statement line.

Examples:

C FOR COMMENT C FOR COMMENT .---'
~STATEMENT J

NUMBER
I\TATEMENT J

NUIoIBER
1 5 6 7 10 15 20 1 5 • 7 10 15 20

C P E - MI TT ED C N e'T ,PERMITTED
,-

A= ~' A
1 0 0 0 1 0 0 I

& B = B
;; ~

~

2. If the data types of v and e are different, the value determined by the evaluation of e will be converted to
conform to the data type of v. Table 2 contains the rules for arithmetic assignment.

Table 2. Rules For Arithmetic Assignment

If v Type is And e Type is The Assignment Ru Ie

Integer Integer Assign

Integer Real Fix and Assign

Real Integer Float and Assign

Real Real Assign

t"A' " . hi' I . h h sSlgn means transmit t e resu tmg va ue, Wit out c ange, to
the entity.

"Fix" means truncate any fractional part of the result and transform
that value to the form of an integer datum. For example, in the
statement

K=Z

if Z = 56.93, K will have the value 56, and
if Z = -56.93, K will have the value of -56.

"Float" means transform the value to the form of a real datum.

12 Arithmetic Assignment Statement

. t
IS

I

Examples of Arithmetic Assignment Statements:
C FOR COMMENT

-LsTATEMENT J FORTRAN STATEMENT
NUMBER , 6 & 7 '0 11 20 25 30 3& .a 4S 50 S5

'll :
/A= 3) T e"P (1 1) *

-,
T O'P (2 , - *7

iBETA(l 3 1 I = 1 5 73
~ ..

"
-"J;':-

.

Arithmetic Assignment Statement 13

6. SPECIFICATION STATEMENTS

Specification statements are nonexecutabl e statements used to inform the FORTRAN processor that certain data ref­
erenced in a program are to have specific storage allocation characteristi cs relative to each other.

There are three types of specification statements:

I. DIMENSION statement - the array declarator statement.

2. COMMON statement -a statement that establishes data storage for common use by two or more program units.

3. EQUIVALENCE statement -a statement that permits the assignment of the same storage by two or more variables.

DIMENSION Statement
A DIMENSION statement is of the form

where each v(i) is an array declarator.

Array Declarator

An array declarator specifies the identifier of an array, the number of dimensions (I, 2, or 3), and the size of each
dimension.

An array declarator has the form

v(i)

where

v (the declarator name) is an identifier

(the declarator subscript) is composed of an integer constant, or two or three integer constants separated
by commas.

The declarator name followed by declarator subscripts informs the FORTRAN processor that the declarator name is
an array name. The number of declarator subscripts specified in (i) indicates the array's dimensions. The values
given as subscripts specify the maximum values that subscripts may attain in the array element names.

No array element name may contain a subscript that, during execution of the program in which it appears, assumes
a value less than I or greater than the maximum dimension length specified in its array declarator.

DIMENSION Statement Rules

1. DIMENSION statements, if they are used, must precede all other statements of a main program unit and may
be preceded in a subprogram program unit only by a SUBROUTINE or FUNCTION statement.

2. The number of array declarators in a DIMENSION statement is restricted only by statement length and contin­
uation restrictions.

3. Array declarators may appear only in DIMENSION statements.

Example:

C FOR COMMENT ~' .-

~T"'TEMENT J
NUMBER

FORTRAN STATEMENT
, 5 6 7 10 15 20 25 3"0 35 .. 0 45 SO

OJ MEN S I eN
.,..---,-.-,- ~

ABAR(20
I

----r--r:.,---,-T~ ~ I i 'I

. G-. T~A~{ ,3 ,,3,) ,..--.-- n---.--,~ ... -'--'-'--'-~, ~,~

This statement declares two arrays:

a. The I-dimensional array of 20 elements named ABAR. The array elements are thus named as
ASAR(l), ASAR(2), ... , ABAR(20).

b. The 2-dimensional array of 9 elements named ZAP. The array elements are ZAP(I, 1), ZAP(2,1),
ZAP(3,1), ZAP(I,2), ZAP(2,2), ZAP(3,2), ZAP(I,3), ZAP(2,3), ZAP(3,3).

14 Specification Statements

1

o

Array Storage Allocation

When a DIMENSION statement is processed by the FORTRAN processor, storage is allocated for the declared
arrays. Although actual storage locations for the arrays are not necessarily determined at this point in the process­
ing, the array is henceforth considered as a block in which relative storage is allocated linearly and where the
order of ascendency is determined by the first subscript varying most rapidly and the last subscript varying least rap­
idly. For example, the elements of the array ZAP(3, 3} will be allocated storage in the order in which they appear
in statement b above.

Explicit Type Statements

These statements are used to define, explicitly, the type of an identifier. Their form is

REAL u
1
,u

2
, ... ,u

n

INTEGER u
1
,u

2
, ... ,u

n

where each u1 is a variable or array name. When u1 is an array name, the dimensions may appear with it. These
type statements must precede all statements except SUBROUTINE, FUNCTION, and comments.

C€lt1MON Statement

COMMON statements are nonexecutable, storage allocating statements that assign variables and arrays to a storage
area called COMMON storage. They provide the facil ity for various program units to share the use of the same
storage area.

COMMON statements are of the form

where each u. is a variable name or array name.
I

Example:

COMMON ZIP, A, B, I, J

In this example, the entities ZIP, A, B, I, and J are declared to be in COMMON storage.

COMMON Statement Rules

1. Each entity listed in a COMMON statement is thus declared to be in COMMON. An entity is either a vari­
able name or array name.

2. More than one COMMON statement may appear in a program unit.

3. The processor strings together in COMMON all entities appearing in the COMMON statements of a program
unit in the order of their appearance.

4. If an array name is in a COMMON list, the first element of the array will follow the immediately preceding
entity, if one exists, and the last element of the array will precede the next entity, if one exists.

5. The size of COMMON for a program unit is the sum of the storage required for the elements introduced through
COMMON and EQUNALENCE (see below) statements.

6. The size of COMMON in the various program units that are to be executed together need not be the same.

7. A COMMON statement must precede all statements in a program unit other than DIMENSION, FUNCTION,
and SUBROUTINE.

8. Dimension information may be specified in the COMMON statement.

9. A dummy may not appear in a COMMON statement.

COMMON Storage

COMMON storage size is measured in terms of Sigma 2/3 words. In standard precision mode (Basic FORTRAN or Basic
FORTRAN N) each real datum and each integer datum occupy 2 words. In extended precision mode (Basic FORTRAN
N only) each integer datum occupies 1 word and each real datum occupies 3 words.

EXPLICIT TYPE/COMMON Statements 15

I

Example:

C FOR COMMENT

~TATEMEHT j
NUMBER

FORTRA:-' S":"ATEMENT

1 5 6 7 10 15 20 25 30 40
-r-,-~-- ,- ..,.- ,-.r------r--r-- r

T , -r--,--.-r-~~r---"1--.- (--,- T----y-- ,--,.--,

DIMENSI ~N.-,A.L ,P,H,A, U~Q,l;-,.8o~,r~,(},L}) - ,---, -, --;
CO'MMO'N MAX , BE TA ,l
~ , ~--'----r--f

These statements define a COMMON area of 8 elements in the order: MAX,BETA(I, I), BETA(2, I), BETA(I,2),
BETA(2,2), BETA(I,3), BETA(2,3), Z. In standard precision mode, therefore, the size of COMMON is 14 words;
in extended precision mode, the size is 22 words.

Correspondence of COMMON between Progrom Units

The same data may be referenced by two or more program units through COMMON storage. For all program units
COMMON storage allocation starts at the same storage location. In all program units that define the identical type
(real or integer) entity to a given position in COMMON (counted by the number of preceding storage words), refer­
ences to that position refer to the same quantity.

Example:

If a main program contains

COMMON A, B, C, D

as its first COMMON statement, and a subprogram contains

COMMON W, X, Y, Z

as its first common statement, then the variables A and W refer to the same data unit. B and X, C and Y, and
D and Z have a si mi lar correspondence.

As noted above, for identity between references, the data types of the common data must be the same.

EOUIVALENCE Statements

The use of EQUIVALENCE statements allows two or more entities to share storage.

An EQUIVALENCE statement is of the form

where each k is a list of the form

Each u is a variable name or an array element name, the subscript of which contains only constants, and m is greater
than or equal to 2.

Each element in a list is assigned the same storage position by the processor. The order in which the entities appear
is not sign i fi cant.

Example:

.--C FOR COMMENT

~TATEMEHTlj
HUMBER

1 !So ,6 7 10 15 20 ,.
FORTRAN STATEMENT

3::: 35 ole 45 :5 . .j 5S

I
, , , , , , ·---,---,----,1"

EQU I VAL ENCE (A , B , C) , , I ~---r-l

-T--==r=--.,-~-.:r=~- .. --:::;...-=r=-~-=---r--T --r--=r--;-- '-------'---j

, (I , J , K)
,-- ,,-~-','- - ,.------.----,--'--,-·r·.....,,--r - --~ --~- --, --;--1

!

I 1
, , , ---.-.-,---,----,-----,- -T

In this example A, B, and C will share the same storage area during object program execution. I, J, and K will also
share an identical storage area.

16 EQUIVALENCE Statements

1

If an array element name is used in an EQUIVALENCE statement, the number of subscripts must be the same as the
number of dimensions established by the array declarator, or it must be one number where the one subscript specifies
the array element number relative to the first element of the array.

Example:

If the dimension of an array, Z, has been declared as Z(3,3), then in an EQUIVALENCE statement

Z(6)

and

Z(3,2)

have the same meaning.

EQUIVALENCE Statement Rules

1. EQUIVALENCE statements must not precede any DIMENSION or COMMON statements in a program unit.

2. EQUIVALENCE statements must precede any statements other than DIMENSION, COMMON, FUNCTION,
and SUBROUTINE.

3. The subscripts of array element names in EQU IVALEN CE statements must be integer constants.

4. An element of a 2- or 3-dimensional array may be referred to by a single subscript, if desired. (See example
above.)

5. It is in error to cause, either directly or indirectly, a single storage unit to contain more than one element of
the same array. For example, the third statement below is in error for equivalencing Band ZAP(3) when Band
ZAP(5) have already been made equivalent.

FORTRAN STATEMENT

EQUIVALENCE and COMMON

1. Entities may be assigned to common storage by equating them to previously declared COMMON entities.

Example:

C FOR COMMENT

~TATEMENT I ~II
NUMBER 0

1 !i 16 7 i 0 11 20 25

FORTRAN STATEMENT

1 ~~.-

"COMMON A "L.,C ~_,_~
o lEQ'U I 'V A L'E'N CE ('A'. D')'
I ~~ J ' , I ' -.~ r ~

In this case the variables A and D share the first storage position of COMMON storage.

2. EQUIVALENCE statements can increase the size of COMMON storage by adding more entities to the end of
the COMMON area.

Example:

C FOR COMMENT ,-.

~TATEMENTIJ FORTRAN STATEMENT
NUMBER

1 5 6 7 10 IS 20 2']0 3. 40 45 '0 , I i I , , I

DIM ENS I ON R (2 2)
i , , I , , i i

CO'MMON W X Y

IA' E QUI
...--.---,---r- , i , I , , , I ,

VALENCE y

,
,
,

{ , R { 3 I I
I 1
~, I I i i i i I , ,.,--.-

EQUIVALENCE Statements 17

I

The resulting COMMON storage assignment will have the following arrangement.

Entities

W R(I, I))
X R(2, I)
Y R(I,2)

Established by COMMON statement

R(2,2) Expanded by EQUIVALENCE statement

Note that

EQUIVALENCE (X,R(3))

would be erroneous in the example. The COMMON statement establishes W as the first entity in COMMON.
To make X and R(3) eguivalent would then make R(1, 1) the first entity and W the second. This is incompatible
with the COMMON statement.

COMMON storage may be increased only forward from the last storage unit established by the COMMON
statement, not backward from its first storage unit.

3. When two vari abl es or array el ements share storage because of the effects of an EQUIV ALE NC E statement, the
identifi ers of the variables or arrays in guestion may not appear in C aMMON statements in the same program unit.

4. It is invalid to eguivalence two entities previously assigned to COMMON.

Example:

The following statements create an invalid situation:

C FOR COMMENT

~TATEMENTlj FORTR
NUMBER

1 5 fi 7 10 15 20 25 30

AN STATEMEr-;-r
3S 4-:,. 45 S0

r-'. -r--r=-=r=-=-r=-T-~-- -T- -- i--=-r--=;-:-:::; ~'--.--T - -.:: - r...---,-=-:-

CO"MMO'N ~,B" C, 0 , E . ~ . I . -.--,------r--•

EQ U I VAL ENCE (B . 0)
•

• ----y--r --,-- ::-~r .-r--r--r-~'

, ~-~·~r-'--'-' , -!----r---,~___,.

o EXTERNAL Statement [Basic FORTRAN IV only)

The EXTERNAL statement has the form

EXTERNAL PI,P2'P3'···' Pn

where the Pi are subprogram identifiers.

The EXTERNAL statement declares, as subprogram identifiers, names that might otherwise be classified implicitly as
scalars, so that they may be passed as arguments to other subprograms. For example, if the subprogram name F ap­
pears in the statement

CALL ALPHA(F)

but appears in no other context to indicate that it is a subprogram, it would be implicitly classified as a scalar. The
EXTERNAL statement can be used to avoid this.

Examples:

In the following example the subprogram identifiers ABS and DABS are used as arguments in the subprogram
COMPRE:

C FOR COMMENT

STATEMENT ~
NUMBER (l

5 fi 7

18 EXTERNAL Statement

FORTRAN STATEMENT

10 IS 20 25-

,

In the following example the subprogram named ABS is not an argument; it is executed first, and its result be­
comes the argument. In this situation an EXTERNAL statement is not required.

C FOR COMMENT

!V .:
STN

Atl:1M
E":T J FORTRAN STATEMENT

1 S 6 7 10 15 20 25 30 3S 40
------,------,.---r--~-..---.-=I I

~tAL L SUBRE(ERROR ABS~_A'IY') , A,L ,e t:I ~ , ,x,}

0) DATA Statement (Basic FORTRAN IV only]

The D AT A statement has the form

DATA S1' S2' S3"'" Sn

where

Si is a data set specification of the form

variabl e-I ist/ constant-I ist/

~~"'-'--r-r I , , I I

... .0 . I . , I ,

, , I , . , I ,

. I , , I ,

,

.
,

The primary purpose of the DATA statement is to give names to constants. For example, instead of referring to 1T as
3.141592653589793 at every appearance, the variabl e PI can be given that val ue with a DATA statement and used instead
of the longer form of the constant. This also simplifies modifying the program, if a more accurate value is required.

Giving PI a value with a DATA statement is somewhat different from giving it a value with an assignment statement.
With the DATA statement the value is assigned when the program is loaded; with the assignment statement, PI re­
ceives its value at execution time.

Consider another example that profits even more from the use of the DATA statement: An ARCTAN function can be
written using a power series expansion. The efficient way to program this in FORTRAN is with a DO loop, stepping
through the constants. But constants cannot be subscripted, and the timing of the routine is adversely affected if an
array must be initialized each time into the routine using assignment statements, such as:

C(O) 0

C(1) .1234549945

C(2) .2447786631

etc.

Here, the DATA statement can be used to great advantage. It is not recommended that the DATA statement be used
to give "initial" values to variables that are going to be changed. This causes proper initialization of the program
to depend on loading and disallows restarting the program once it has changed these values. Good programming
practi ce di ctates that such initial ization be done with executabl e statements, e. g., with assignment statements.

The effect of the DATA statement is to initialize the variables in each data set to the values of the constants in the
set, in the order listed. For example, the statement shown below:

r-C FOR COMMENT

':"'STATEMENT ~
NUMBER (l

5 6 7 16 IS 20

FORTRAN STATEMENT

25 30 35 40 SO

i 'I""--~' 'I' i

I---r--r-r-,----t-i-=,D,!.2Ar'-Tr-A'r--+X;..o..rA~-",L~ ,c<-1.=3,..,,5o.r, « .;:.J, , ~ ,2,0,1 « ,A, L. P H,A I ,0 I--r-~-,--r-.--.-,.--,r-r-.--.---.---r-.---r-

is equivalent to the assignment statements

X = 3.5

A =-7

L = 32 (Z20 is a hexadecimal constant; 20(16) = 32(10)" See following section.)

ALPHA = 0

except that the DATA statement is not executable; its assignments take place upon loading.

Variable and constant I ists in DATA statements may be constructed as described in the following two sections.

DATA Statement 19

I

o OAT A Variable List

A DATA variable list is similar to an input list, in that it may contain scalars or subscripted or unsubscripted arrays.
It may not contain implied DO loops. Subscripts must be integers.

OAT A Constant list

A DATA constant list is of the form

C 1, C2, C3,···, Cm

where

the C i are either constants or repeated groups of constants in/the following forms:

c

r*c

where

c is a constant of one of the following forms:

1.

2.

3.

4.

unsigned integer constant}
(See Chapter 3 - may only initialize integer variable.)

negative integer constant

unsigned real constant}
(See Chapter 3 - may only initialize real variable.)

negative real constant

5. hexadecimal constant of the form Zx, where x is a string of 1-4 hexadecimal digits. Hexadecimal
constants may only initialize integers or variables. The values are right-justified. Examples are:
Z12 and ZA7.

6. literal constant of the form:

ICS'

where

cs is a character string. Blanks can be used, and a guote mark can be represented by two
consecutive guote marks. Literal constants may initialize either integer or real variables.
The I ength of a I iteral constant may not exceed 2 characters for integer variabl es, 4 charac­
ters for standard precision real variables or 6 characters for extended precision real variables.
Trailing blanks are used to fill out the field if necessary. Examples are

'ABCD'

'I J'

is an unsigned integer repeat count, whose value (nonzero) indicates the number of times the group is to be
repeated.

The constant list must completely satisfy the variable list, and there may not be any remaining unused constants. A
subscripted array element in the variable list designates the point in the array at which initialization is to begin,
and all succeeding elements in the array are to be initiulized until the constant list is exhausted.

Example:

DIMENSION I(lO),J(lO)
DATA 1(5),J/l,2,5*3,4/

initializes the I and J arrays as follows:

1(5)
1(6)
1(7)
1(8)

1
2
3
3

1(9)
1(10)
J (1)
J(2)

3
3
3
4

Dummy variables and variables in blank COMMON cannot be initialized with the DATA statement.

20 DATA Statement

7. CONTROL STATEMENTS

Control statements are executabl e statements used to control and guide the logi cal flow of FORTRAN programs. The
statements in this category are

1. Unconditional GO TO and Computed GO TO statements

2. Arithmetic IF statement

3. DO statement

4. CONTINUE statement

5. PAUSE and STOP statements

6. CALL statement

7. RETURN statement

Statement label references are part of several of these statements. Such statement labels must be associated with
executable statements in the same program unit containing the control statement.

GO TO Statements

There are two types of GO TO statements:

1. Unconditior.al GO TO

2. Computed GO TO

Unconditional GO TO Statement

Unconditional GO TO statements are used in a program whenever control is to be transferred unconditionally to
some other statement in the same program unit.

Form:

GO TO k

where

k is the statement label of an executabl e statement in the same program unit

Example:

,...--C FOR COMMENT

FORTRAN STATEMENT

~--r--.---,r-+~"";IG-~~--'--~T-'-i-0''-----'-7--r-l''''O--.--~~--'--.---r--r--.-----,c-,----.--~~-'----'~--r--'---'~--'--~~--'--~-,-,--.--r--<-.-'-~-~--~-T-r

h--.--.---,...--hF.=-.---,-:-r=:.-..-:-.-=-r:~~~~--r~~~r-r--r-~~'--'~-.---""-~~~-.--~~~--.--.---""-~~-~-, --T --~-

In these statements, statement 362 precedes statement 710 in the logical flow of the program of which they are
a part, because of the function of the GO TO statements.

Control Statements 21

I

Computed GO TO Statement?

A computed GO TO statement is a conditional transfer statement which may transfer fo anyone of several statements
depending on a computed condition.

Form:

where

k. are statement labels
1

is an integer variable (1 :s j :s n) that may be altered during program execution to determine a different
transfer point for the GO TO statement

This statement causes transfer of control to the statement having a statement label equal to the current value of k ..
J

Example:

._----, -------- -------------------

, STATEMENTi~
NUMBER I

1 Si6'7 10 15 20 2'!:'

~ !~=r==T=-' -1--'--; ~ ~I

FORTRAt" S,ATEMENT

35 40

h-.~..--t-+--..,..--. • i' "i -"-r--r~....---r--. ~....,..-,--..,__._r--,---.----.--:-.--.-----r--r-·-T---:----r--~'-r-.-~~

iJ = 3
~~-r~~~~~~-r~..-~.,~-r-r._.-~~~,~-r~-~.-.,-._.~

23 G6' T6'

~"T'~,..-f-+I J-'-~~'-'I S-.-~~--.-~-.--..... ~~~-.'~~~ ~~'-r~

';5

hl-"'" -': __ T'~ -''T---++--i+k;~~(!J=' =':T:I e':==2:=3=:=======:==-~~'-'~~--"-'~T"-.-"-" {! ---, i .. -r-'-~~-'--r-r----"""-----.---r---r --, -.~-..-~~ -~,-~~-;--r---~;

h~-r~-;HI-~~.-~~~-.-.-~~-- .. -r-y---..--~~""--"'--;--r-- -.-. ~-"----r--'~~~---r--r--,----.· -.-..... ~
i I

h--.--r-,.--..."HI-r....,--.~-.-.-~_" -.-, '1-""""-' -r-.--!.--r---.~,-----.- I-~-T-.--I--

When J = 3, statement 23 transfers control to statement 700. Changi ng J to 5 changes any subsequent execution
of statement 23 to a transfer to statement 73. Making J = a or 6 would be an error because these values are out­
side the range 1 :s j ~ n.

Arithmetic IF Statement

An arithmetic IF statement transfers control in a program to one of three specified statements depending on an
expression's val ue as negative, zero, or positive.

Form:

where

e is an arithmetic expression (real or integer)

m
1
, m

2
,m

3
are statement labels

The arithmetic IF statement is interpreted to mean

IF e < a, GO TO m
1

IF e = a, GO TO m
2

IF e > a, GO TO m3

22 Arithmetic IF Statement

1

Examples:

Statement Expression Val ue Transfer to

IF (ZAP) 3,4,5 376. 5

IF (Z-l.) 50,73,9 O. 73

IF(AMTX(3,2)) 7,2,1 -576. 7

DO Statement
The DO statement provides a method for controlled, repetitive execution of a series of statements.

The statement is written in one of the forms:

DO k i = m
1
,m

2
,m

3
DOki=m

l
,m

2
where

k is the identifier of an executable statement, called the terminal statement of the associated DO

is an integer variable, called the control variable

m
l

(the initial parameter), m2 (the terminal parameter), and m3 (the incrementation parameter)
either an integer constant or an integer variable reference

are each

If m3 is not explicitly stated (second form above), a value of 1 is assumed for the incrementation parameter. When
a DO statement is executed, ml , m2' and m3 must be greater than zero.

The terminal statement (i.e., statement labeled k) must physically follow and be in the same program unit as the DO
statement.

A terminal statement may not be a GO TO of any form, arithmetic IF, RETURN, STOP, PAUSE, or DO statement.

The portion of a DO statement through the first comma (DO k i = m
1
,) must always appear in an initial line. The

parameters m
2
, m3 may be placed on a continuation line.

DO Range

Associated with each DO statement is a range which is controlled by that DO. The range is defined to be those ex­
ecutable statements from and including the first executable statement following the DO, to and including the termi­
nal statement associated with the DO.

Within the range of a DO statement there may be other DO statements, in which case, the DO ranges must be nested.
That is, if the range of one DO contains another DO, then the range of the inner DO must be entirely contained in
(be a subset of) the outer DO.

The terminal statement of the inner DO may al so be the terminal statement of the outer DO.

Example:

Given the 10-element arrays A and B, compute a 100-element array C such that:

C (1) == A(l) *B(I),C(2) = A(1) *B(2), ... ,C(IO) == A(l)*B(1 0),C(11) == A(2)*B(I), ... ,C(lOO) = A(10) *B(10).

~ C FOR COMMENT

~STATEMENT jl FORTRAN STATEMENT
NUMBER

I 5 6!7 10 15 20 2' 30 35 40 45 50 55

. ,0 I ME N 5 I e'N AI 1 0) , B.I 1 o) C (1 00)

lK = 1
-.

, , , , , , , , , , i , , , , , , , ,
i DO' 1 S 1 = 1 1 0

l
I I , I , I I , ,

OS' 1 S J = 1 10
j , , , , ,

C (KJ = A (I) * B (J)
I

iK,=
, , i , , , , i

1St K+ 1 , i i I i i i i i i

i
!
I I I i -'----Y---r-'---'--'--'-~ i . I , , ,

DO Statement 23

I

Execution of the DO Loop

A DO statement defines a loop. A DO loop is executed in the following manner:

1. The control variable, i, is assigned the value represented by the initial parameter, mI'

2. The range of the DO is executed.

3. If control reaches the terminal statement and the terminal statement is executed, the control variable of the
most recently executed DO statement associated with the terminal statement is incremented by the value repre­
sented by its associated incrementation parameter, m

3
. i + m3 becomes the new control variable.

4. If this new control variable is less than or equal to m
2

, the process is repeated from step 2, using the incre­
mented control variable. If the value of the incremented control variable is greater than the value of its associ­
ated terminal parameter, m

2
, the DO has been satisfied and the control variable then becomes undefined.

5. If there were other DO statements referring to the terminal statement in question, the control variable of the
next most recently executed DO statement is incremented by the value of its associated incrementation param­
eter and the process is repeated from step 4 until all DO statements referring to the terminal statement are
satisfied. After this, the first executable statement following the terminal statement is executed.

Other Features of a DO Loop

1. If exit is made from a DO loop other than by satisfying the DO (i.e., with a GO TO or arithmetic IF), the con­
trol variable of the DO remains defined and is equal to the latest value attained as defined in "Execution of
the DO Loop".

2. No GO TO statement or arithmetic IF statement may cause control to be transferred into the range of a DO
statement from outside its range.

3. If a subprogram is referenced in a DO loop, the statements of that subprogram are considered to be temparari Iy
within the range of the DO.

4. The control variable, initial parameter, terminal parameter, and incrementation parameter of a DO may not be
redefined during the execution of the DO range.

5. If a statement is the terminal statement of more than one DO statement, the statement label of that terminal
statement may not be referenced by any GO TO or arithmetic IF statement that occurs anywhere except in the
range of the innermost DO having that terminal statement.

Examples of DO Loops

I. The following exampl e computes

where

A is a I-dimensional, 1 DO-element array

C FOR COMMENT

FORTRA~ STATEMENT
50

t---r---r-r---.----/~~IsI-,-U.-M-,.-' -;-, =-A-'-' (-r. -'1 '-')o~..---r--'-. -'-0 -'---'~r-r-T"-'-~-'O-"~''-'--' -.----,---. ~~,~~~ ~ ,_U~__ i ' ,

t---.r-T~-r-+"F-~"::";'-.--';--:"'>-'-:'-,-L~'-'-~~-'~~~r-T~~~~.-r--r--'--~,--,~---.----r----r-r---.....--r--,~-..----r- ,--.,.-~ ---I---.----.-..,---~.----

1---r--,---,~-HD~f3_';_-.-'-1_T'5~,..!-J~=~~2 .-J.-..!-1...,...:O~O~~~r-r--~~'--'-~----r-~~~~i~' ~~~_, ~_~ _ ,_,~~, ~, ~
15 5 U M = 5 UM + A (1)

t---.-r~'--r-+T',-';"::";'-.-r----r'''''''''-P-'f---,':''~~Y'-r-~~r-T~-r-~~-.-~......----r----f- ... ---r---'''--;-~--.- -,-

24 DO Statement

1

2. This example computes the 15 elements of the array GAMMA according to the formula

15

GAMMA =LALPHA BETA ,m=I,2,3, ... ,15
m n= 1 mn n

where

ALPHA is a 2-dimensional array of 15 rows and 15 columns

BETA is a I-dimensional array of 15 elements

- C FOR COMMENT

'TATEMENT ~ FORTRAN STATEMENT
NUMBER

1 5 6 7 10 16 20 25 30 35 40 45 50 S5

OIME'NS
, ,

• B'E r'A (
, , , i i , --.---.

[O'N AL PH A (1 5 . 1 5) 1 5) ,
GA'M'MA' (i 1 '5 ')

i , , i i , , i , , ,-- , , , , o.
X

i , i i i I I

DO' 5 3 3 M = 1 15 . i , i i i . 0 i 0 , , I

GAMMA (M) = 0 0
-r- I I , 0 0 I

De' 5 33 N = 1 . 1 5
···GA'MM'A (

I
G AM'MA (MT)r~'A~L

i i I I ~-~,~ I

533 M) = PH A (M N)
i i i

X ... BETA(N)
...-----.----.-~---.--T

0 ,

I ,'-,- .

CONTINUE Statement

Form:

CONTINUE

Continue is classed as an executable statement. However, it only causes control to go to the next executable
statement in logical sequence. It is frequently used as the terminal statement in a DO range when the statement
that would normally be the terminal statement is one of those not allowed.

Example:

.--C FOR COMMENT

I\TATEMENT ~ FORTRAN STATEMENT
NUMBER

50 1 5 6 7 10 15 20 25 30 35 40 4S

- , i , , i 0 0 I 0 I 0 I ,
jOIMENS I C9'N A(5 00)

. , , . , I , I . , I 0 0 , I
, I I . ,

,
XL R G = A (1 I , I , , I I , . I 0

::00" 1 7 1 = 2 . 5 0 0

.'. 1 F (XL RG - A (I)) 1 5 1 7 1 7 , 0 , , , 0, , 0

15 XL R G = A(1)
--r- i 0 . ..

1 7 ;CON T I NUE
,Ge' re' 3 3

"

0 0 I

0 I

5.

I

•
. , I

I

0 0 I

,

CONTINUE Statement 25

I

Program Control Statemelts

FORTRAN provides two program control statements: PAUSE and STOP.

PAUSE Statement

The PAUSE statement may take either of two forms:

PAUSE n

PAUSE

where

n is a decimal digit string from 1 to 4 digits long

A PAUSE statement causes a temporary cessation of program execution and displays "PAUSE n" on the console type­
writer. The statement permits the operator to intervene in the program execution for setup and control functions,
such as changing data tapes. The operator can then signal the program to continue execution, beginning with the
statement i mmed i atel y after PAU SE.

If no changes are made to the status of the program or the computer during a PAUSE, resuming program execution
causes the normal execution sequence to be continued.

Example:

PAUSE 123

STOP Statement

The STO P statements are wri tten in the forms

STOP n

STOP

where

n is a decimal digit string from 1 to 4 digits long

A STOP statement causes program execution to be terminated (logically the last statement of a program) and displays
"STOP n" on the console typewriter.

Example:

STOP 1371

CALL Statement

A CALL statement is one of the forms:

CALL s(a
1
,a

2
, .•. ,a

n
)

CALL s

where

is the name of a subroutine

a
i

are arguments

See "SUBRO UTINE Subprograms" in Chapter 9 for a discussion of subroutines, the use of CALL statements, and the
characteristics of arguments.

At the beginning of execution of a CALL statement, the designated subroutine, s, is referenced. Such a reference
suppl i es the arguments, ai' required for executing the subroutine.

26 Program Control/CALL Statements

1

When control is returned from the designated subroutine, CALL statement execution is compl ete.

Examples:

CALL DUMP

CALL SUBl (A,B,(I-J),C(100))

CALL SUB2 (ARRY, ZAP)

CALL ROUT (X, Z,5, I)

RETURN Statement

A RETURN statement is of the form

RETURN

This statement marks the logical end of a subprogram and ,may only appear in a subprogram. See Chapter 9 for a
discussion of subprograms.

Executing the RETURN statement causes control to return to the current referencing program unit.

If the RETURN statement is executed from within a FUNCTION subprogram, the value of the function (see Chapter 9)
is made available to the referencing program.

RETURN Statement 27

I

8. INPUT jOUTPUT

The FORTRAN language provides a series of statements that define the control of and conditions for data transmission
between computer storage and external data handling devices such as magnetic tape and paper tape handlers, type­
writers, card punch un its, line printers, and RADs. These statements are of five types.

1. Sequential READ and WRITE statements that cause specified lists of data to be transmitted between computer stor­
age and anyone of a group of external devi ces.

8 2. DEFINE FILE statements for defining the characteristics of a direct access file.

,,-,' 3. Di rect access READ and WRITE statements that cause speci fi ed I ists of data to be transmitted between computer
storage and a RAD.

4. Auxiliary I/O statements for positioning and demarcation of external files (as on magnetic tapes).

5. FORMAT statements used in conjunction with the input/output of formatted records to pravide conversion and
editing information that specifies their internal and external representation.

The data transm itted by input/output statements are transm itted as records consisting of binary-coded strings of charac­
ters or unformatted binary values in a form similarto internal storage. For eithertype of transmission the input/output
statements refer to external devices, I ists of data names, and, for formatted data, to format specification statements.

SequentiallnputjOutput Statements

The input/output statements described elsewhere in this section all specify a device unit number, u. This number
may be either an integer constant or an integer variable reference whose value then identifies the unit. This unit
number corresponds to an actual physical device in one of two ways:

1. The number may be assigned to a device at program run-time through the I/O Control System or the Monitor
(see XDS Sigma 2/3 FORTRAN Operations Manuals and Monitor Reference Manuals).

2. The number may be a standard unit number assignment, which is recognized as referring to a particular device.
(These standard assignments, as well as all others, may be overridden by run-time assignments, if necessary.)

Error checking for valid unit number assignments is performed for all but the auxiliary I/o statements explained later
(REWIND, BACKSPACE, ENDFILE). Consequently, if one of the auxiliary I/o statements specifies an invalid unit
number (perhaps because of an overriding run-time assignment) no error notification will be given, and the program
may execute incorrectly. Tabl e 3 shows the recommended standard device assignments for Sigma 2/3 Basic FORTRAN
and Basic FORTRAN N. Device assignments are made at system generation time.

Table 3. Recommended Standard Unit Assignments

Unit
Number Standard Assignments

101 T ypewri ter input
102 T ypewri te r output

103 Paper tape reader
104 Paper tape punch

105 Card reader
106 Card punch

108 Li ne pri nter

Formatted Input/Output Statements

Formatted input/output statements are used to process binary-coded (BCD) records. These statements are in the fol­
lowing generalized forms:

READ(u,f)k or
WRITE(u, f)k or

where

READ(u, f)
WRITE (u,f)

u is a device unit number (unsigned integer or integer variable)

28 Input/Output

is a FORMAT reference. It may be the statement label of a FORMAT statement or the name of an array'
into which a FORMAT statement has been read.

k is an input/output list (or it may be absent)

A formatted READ statement causes a character string in the external record of unit u to be converted into binary
values according to the specified FORMAT statement, f, and these values are then assigned to the variables speci­
fied in the list, k.

Conversely, a WRITE statement causes internal binary values identified by the variables specified in the list, k, to
be converted according to FORMAT statement, f, and output on unit u.

Examples:

READ(1 05,23) RA, RB, RC, RD
WRITE(108,23) ID, V AL
READ(K, 15)(ABLE(I),i= 1,25) }
WRITE(I, 17)((ARRAY(i,J),J = 1, 15),1= 1, 15) See DO-implied terms under "List Items".

Formatted Record Process i ng

Each formatted input/output statement begins processing with a new record. Thus, processing of any record by more
than one READ or WRITE statement is restricted. If only part of a record is read, the remainder of the record is
skipped. If output is to a device that specifies a fixed-length record and the WRITE statement does not fill the rec­
ord, the remainder of the record is filled with blanks; otherwise, FORMAT and list specifications determine record
length. (See "Formatted Record Sizes" below.)

More than one record may be processed by these statements if specifically requested by the FORMAT statement.
However, attempting to read or write more characters on a record than are (or can be) physically contained on the
record does not cause a new record to be started. On output the extra characters are lost; on input they are treated
as blanks.

Thus, it is necessary for the FORTRAN programmer to recognize the relationships between records and FORMAT
specifications.

If the list, k, is omitted from a formatted input/output statement, the normal result is that one record is skipped on
input or one blank record is written (on output). An exception to this is when the associated FORMAT statement
begins with a Hollerith or slash specification. (See "FORMAT Statements".)

Formatted Record Sizes

A formatted (BCD) record may have a maximum size of 132 characters. Certain devices may impose other restrictions
on the size of records (e.g., a punched card contains 80 characters).

A record may contain asfewas zero characters, in which case, it is considered to be a blank(or empty) record
(e.g., a blank card).

On devices such as magnetic or paper tape, the FORMAT statement may determine the actual size of an output
record. (The XDS Sigma 2/3 FORTRAN Operations Manuals and Monitor Reference Manuals contain complete
descriptions of BCD records.)

Unformatted (binary) Input/Output Statements

Unformatted (binary) input/output statements transmit information in internal (binary) form and are designed to pro­
vide temporary storage on magnetic tapes and discs.

The forms of these statements are

READ (u)k

WRITE (u)k

where

or

or

READ (u)

WRITE (u)

u is a device uni t number (unsigned integer or integer variabl e)

k is an input/output list(or it may be absent)

Input/Output Statements 29

I

r
The statements process data as a string of binary digits arranged into words according to the items in the list, k.
All data processed by an unformatted READ or WRITE statement are contained in one logical record.

Examples:

WRITE (12) ARRAY,BRRAY

READ (11) REC1,CRRAY

END and ERR Return Options on READ

These options allow the programmer to specify an exit to a special handling routine when end-of-file or error con­
ditions occur during execution of a sequential (formatted or unformatted) READ statement.

The general forms of these options are

READ (u,f, END = b, ERR = b) k

READ (u, END = b, ERR = b) k

where

u, f, and k are as defined previously.

b is the number of the statement to which control is transferred in the event that the specified condition
occurs.

END specifies that reading an end-of-file mark will cause a special exit.

ERR specifies that the special exit is to be taken upon encountering certain I/O errors (see XDS Sigma 2/3
Basic FORTRAN IV Operations Manual for errors that use the special exit).

Logi cal Record Form

A logical record may consist of one or more physicol records; however, as far as the programmer is concerned, it is
treated as a single record. (The XDS Sigma 2/3 FORTRAN Operations Manuals and Monitor Reference Manuals
contain complete descriptions of unformatted records.) The records produced by an unformatted WRITE statement
contain control words, in addition to the transmitted data, to facilitate reading or backspacing the proper number
of physical records.

Unformatted Record Processing

The information output by a single unformatted WRITE statement must be input later by only one READ statement. It
is permissible to read less than a full record.

If the input list requires more data than is contained in the record, an error will occur. The number of items that
may be processed by an unformatted READ/'vVRITE statement is not limited, but only one logical record will be pro­
cessed regardless of the amount of data transmitted.

If the list k is omitted from an unformatted READ/'vVRITE statement, a record is skipped or a blank record is written.
No data can be transferred in such a transmission. Writing such blank records has little purpose, for the record
must then be read by a READ statement without a list.

Input/Output List Specifications

An input/output list represents an ordered group of data names that identify the data to be transmitted and the order
of their transmission. These lists have the form

m1 ,m2,··· ,mn

where mi are list items separated by commas, as shown.

list Items

A list item may be a single datum identifier or a multiple data identifier.

A single datum identifier is the name of a variable or array element. One or more of these items may be enclosed
in parentheses without changing their intended meaning.

30 Input/Output List Specifications

,

Examples:

READ(5,7)A

READ (6,23) C(26, 1), R, K, D, (I, J)

WRITE (1,73) B, 1(10, 10), S, (R, K), F(I, 25)

Multiple data identifiers are in one of two fonms:

1. An array name appearing in a list without subscript(s) is considered equivalent to the listing of each element in
the array. ---

Example:

If B is a 2-dimensional array, the list item B is equivalent to

B(I, 1), B(2, 1), B(3, 1), ... , B(1 , 2), B(2, 2), ... , B(i, k)

where i and k are subscript limits of B.

2. DO-implied items are lists of one or more identifiers or other DO-implied items followed by a comma character
and an expression of one of the forms:

i=m
1

,m
2

,m
3

i = m
1

,m
2

and enclosed in parentheses.

The elements i, ml' m2' and m3 have the same meaning as defined for the DO statement. The items enclosed
in parentheses with a DO implication are considered to be in the range of the DO implication. For input lists
the indexing parameters, i, m

1
, m

2
, and m

3
, may appear in this range only as subscripts.

Examples:

DO-implied Lists

(X (I) , 1= 1,4)

(Q(J), R(J), J = 1 , 2)

(G(K), K =],7,3)

((A(I, J), 1=3,5), J = 1,9,4)

(R(M), M = 1, 2), I, ZAP(3), (R(3), T(I), I = 1, 3)

Equivalent Lists

X(l), X(2), X(3), X(4)

Q(1), R(1), Q(2), R(2)

G(l), G(4), G(7)

A(3, 1),A(4, 1),A(5, 1),A(3,5),A(4,5),A(5,5),
A(3, 9),A(4, 9),A(5, 9)

R(1), R(2), I, ZAP(3), R(3), T(1), R(3), T(2), R(3), T(3)

Thus, the elements of a square matrix, for example, may be transmitted in an order different from the order in which
they appear in storage.

The array A(3, 3) occupies storage in the order A(I, 1), A(2, 1), A(3, 1), A(1 ,2), A(2,2), A(3,2), A(1 ,3), A(2,3), A(3, 3).

By specifying the transmission of the array with the DO-implied list item

((A(I, J), J = 1,3), I = 1,3)

the transmission will be

A(I,l),A(1,2),A(l,3),A(2, l),A(2,2),A(2,3),A(3,1),A(3,2),A(3,3)

Special List Considerations

1. The ordering of a list is from left to right with repetition of items enclosed in parentheses (other than subscripts)
when accompanied by controlling DO-implied indexing parameters.

2. An unsubscripted array name in a list implies the entire array.

3. Constants may appear in input/output lists only as subscripts or as indexing parameters.

4. For input lists the DO-implying index parameters (i, m
1

, m
2

, m
3

) may not appear within the parentheses as
I ist items.

Examples:

READ(l, 20)(1, J, A(I), 1= 1, J, 2)
READ(l ,20}I, J, (A(I},I = 1 ,J,2)
WRITE (1,20)(1, J,A(I),I = 1, J,2)

is not allowed.
is allowed.
;; allowed.

Input/Output List Specifications 31

I

Consider the following:

- C FOR COMMENT ._-._----- ---------------
~TATEMENT Ie!

NUMBER
1 5 ! 6 7 10 11 20

FORTRAN STAT EMENT
25 3C 35 4S

:; 0 I
~~

MENS I ~N AI 25),~
0

- :r=--r==--;:--=;---..,....:;-~-.-,- • I

0

J = 5
I ,.--,----,-~ ..

~~-,---.- - r~~--r'-..----~~~--r-r--·~T,~~~"~

··!wR I T E I 1 20) J ,l .1, • A, t~lJ ,L .lr~ 1., I r·lJ)J,.~_ ,--.-r-r.~.-.~~

I I i -
0

~-

Output would be:

5, l,A(1),3,A(3),5,A(5)

5. The number of items in a single list is limited only by the statement length restrictions.

6. In a formatted transmission each item must have the correct format as specified by a FORMAT statement.

FORMAT Statements

FORMAT statements are used in conjunction with formatted READ and WRITE statements to specify data conversion
methods and/or editing of data as it is transmitted between computer storage and external devices.

These statements are nonexecutable and must have statement labels for reference by input/output statements.

FORMAT statements have the form

where

n2:0

S.
I

is either a field descriptor of one of the forms described in the paragraphs below or a repeated group of
such field descriptors in the form

r(Sl' 52' 53' ..• , Sm)

where

m2:0

is a repeat count as described below

S j is a field descriptor

The word FORMAT and the parentheses must appear as shown.

Commas are field separators and must be present as shown or may be replaced by slashes or groups of slashes. (See
"Field Separators".)

A field is defined as that part of an external record occupied by one transmission item.

Field Descriptors

Field descriptors describe the size of dato fields and specify the type of conversion and editing to be exercised upon
each transmitted item.

32 FORMA T Statements

1

Field descriptors may be in any of the following forms:

Descriptor

rFw.d }
rEw.d
r1w

nX

nHh
rAw
rZw

where

}

Classification

Numeric Conversion

Spacing Specifications

Hollerith (Alphanumeric) Transmission

wand n are nonzero integer constants that define the field width (including digits, decimal paints, and
algebraic signs) in the external data representation.

d is an integer specifying the number of fractional digits appearing in the external data representation.

F, E, and I indicate the type of conversion to be applied to the items in the input/output list.

H and X specify character data represented completely within the format descriptor. Such specifications
have no corresponding items in input/output lists.

A is used to read or write alphanumeric data.

Z is used to read or write hexadecimal data.

is an optional, nonzero integer indicating that the descriptor will be active during the transmission of up
to r data.

h is a string of n alphanumeric characters.

The basic forms of these descriptors are described in the following paragraphs (i.e., without the optional r). The r
specification is discussed in a separate paragraph.

1-Type Conversion

Form:

Iw

Only integer data may be converted by this type of conversion. w specifies field width.

Output. Internal values are converted to a string of decimal digits. Negative values are preceded by a minus sign.
If the converted value does not fill the specified field, the digits are right justified in the field and preceded by
blanks. If the string of converted digits exceeds the field width, only the least significant w characters are output.
This is not treated as an error.

Examples:

Format Internal Output(b indi-
Descriptor Value cates blanks}

16 +281 bbb281

16 -17631 -17631

13 126 126

13 -126 126

13 46931 931

Input. A field of w characters is input and converted to internal integer format. A minus sign (-) may precede the
integer digits. If a sign is not present, the value is considered pasitive.

Integer values in the range -32767 to +32767 are accepted. Blanks may appear anywhere in the field. Embedded
and trailing blanks are treated as zeros.

FORMAT Statements 33

I

Examples:

Format Input(b indi- Internal
Descriptor cates blanks) Value

14 b124 +124

14 -124 -124

17 bbb7631 7631

16 -bl024 -1024

15 -31024 -3102

F-Type Conversion

Form:

Fw.d

Real type data are processed using this conversion; w characters are processed, of which d are considered fractional.

Output. Internal values are converted and output as minus sign or blank (if positive), followed by the integer portion
of the number, a decimal point, and d digits of the fractional portion of the number, rounded and truncated if
necessary.

The converted characters are right justified in the field, w, with preceding blanks to fill the field if necessary. If
the conversion produces more than w characters, only the rightmost w characters are output. This is not treated as
an error. The relationship w ~d + 2 + n, where n is the number of integer digits, must hold true to prevent loss of
digits.

Examples:

Format Internal Output (b indi-
Descriptor Value cates blanks)

Fl0o4 368042 bb36804200

F7.1 -4786.361 -4786.4

F8.4 .0375 bbb.0375

F6.4 4739.76 9.7600

F7.3 15.0 b 15.000

Input. (See description under Input for E-Type Conversion.)

E-Type Conversion

Form:

Ew.d

Real type data are processed using this conversion;w characters are processed, of which d are considered fractional.

Output. Internal format values are converted, rounded to d digits, and output in the order given below as

1. A minus sign or blank (if positive)

2. A decimal point

3. d decimal digits

4. The letter E

5. The sign of the exponent (minus or blank)

6. Two exponent digits

34 FORMAT Statements

1

The values, as described above, are right justified in the field, w, with preceding blanks to fill the field if
necessary. If the conversion produces more than w characters, only the rightmost w characters are output. This
is not treated as an error. To insure against this loss of characters on the left, the relationship w ~ d + 6 must be
satisfied by the format descriptor.

Examples:

Format Internal Output {b indi-
Descri ptors Value cates blanks}

E12.5 76.573 bb.76573Eb02

E12.7 -32672.354 .3267235Eb05

E7.3 156.93 157Eb03

E13.4 -0.0012321 bbb-.1232E-02

E8.2 -3.567 -.36Eb01

Input. Input data to be processed for input under E or F conversions can be in a relatively loose format in the exter­
nal medium. w characters are input for each value.

The format is identical for either conversion and is a combination of the following:

1. Leading blanks {ignored}

2. A + or - sign {an unsigned input is assumed positive}

3. A string of digits

4. A decimal point

5. A second string of digits

6. The character E

7. A + or - sign

8. A dec ima I exponent

Each item in the list above is optional; but, if format item 8 is present, 6 or 7 or both are required.

Embedded or trailing blanks are treated as zeros.

The input data must fall within the ranges specified for real type data.

Note in the following examples that if no decimal point is given among the input characters, the d in the format
descriptor establishes the decimal point in conjunction with the exponent, if given. If a decimal point is included
in the input characters, the d specification is ignored.

Examples:

Format Input {b indi- Internal
Descriptor cates bl anks Value

E10.3 +0.13756+4 +1375.60

E10.3 bbbbb17631 17.631

F8.3 b1628911 +1628.911

F8.3 b1.62891 +1.62891

F8.3 1.72E +02 +172.0

E7.1 -36.273 -36.273

F10.3 -763267E-3 -0.763267

FORMAT Statements 35

I

The X Descriptor

Form:

nX

This descriptor causes no conversion to occur, nor does it correspond to items in an input/output list.

When used for output, nX causes n blanks to be inserted in the output record.

Under input conditions, processing nX causes n characters of the input record to be skipped.

Output Example:

If the variable ZAP contains 5.3 and the variable ZIP contains 7.6328, the statements

C FOR COMMENT

IS 20 2S

FORTRAN STATE¥ENT
35

l:=T=r----;:=:.=r-~r-r=----;. -, A" - ii' , I

f--,---.--~-,-+I-+I ~.~. :'.--rj~~~TOI~~~~'i ,..--.,---r-'--T-"'---'--' -1 -r~-r-~ l--r- /-'", - --~-'--j-~'--r-.--,----- -,-.-,-,

~ WRITE (1 14) ~AP,rIP

i .-.-(-~--,- -~ ---. ,--r- ..,--.,------.------i~-,-~-.

f--r-~1~4-.--!_f_F,..,(:J~R ,:.:MrA-=.-:-T~~(Fr4c,..:''-r=-2 .-1-r'3~.X. ,~f, 6, - I 4, L~ ,--~-',-.-~-;--r -.-~~ ~ .~~~-.--~- ~--.---r

would output the record

5 .30bbb7 .6328

Input Example:

If an external record contained

12.5ABC120

and the following statements are executed

c-- C FOR COMMENT

~TATEMENTI~ FORTRAN STATEMENT
NUMBER i

1 !i : 6 7 10 IS 20 2' 30 35 40

I
I I

!
--,--,---.- , I

R E AD (1 2 3) ~ I P rAP
I" , . ~

I (F
I I I i I

2 3 F e'RMA T 4 1 3 X F 3 0)
I
I ,
I !

----r---r--.-- i

!

: i , j i , i
I

the variable ZAP will contain 12.5 and ZIP will contain 120. ABC is skipped.

Hollerith (Alphanumeric) Transmission

Hollerith information may be transmitted by means of the H or A descriptor.

The H Descri ptor

Form:

nHh

36 FORMAT Statements

i

,

4' , I , ,
, , I . , ,

I

, j ,
, j ,

I

'0 " I , I

I . , '-'-

i i

I , , j

I , , , ,
, , r

1

This descriptor causes Hollerith information to be read into, or written from, the n characters (h) following the nH
descriptor in the format specification itself.

Output. The n characters (h) are output to the specified external device. Care should be taken that the character
string h contains exactly n characters, so that the desired external field will be created, and so that subsequent data
will be processed correctly. Blanks are counted as characters.

Examples:

Descriptor Output (b =blanks)

1HR R

8HbSTRINGb bSTRINGb

12HXb(1, 3) = 12.0 Xb(1, 3) = 12.0

Input. The n characters of the string h are replaced by the next n characters of the input record. This results in a
new string of characters in the field descriptor. Blanks are counted as characters.

Examples: (b =blanks)

Format
Descriptor

5H12345

8HbFALSEbb

9Hbbbbbbbbb

The A Descri ptor

Form:

rAw

Input Resultant
Characters Descriptor

ABCDE 5HABCDE

bFALSEbb 8HbFALSEbb

bMATRIXbb 9HbMATRIXbb

The A format code is used to read or write alphanumeric data. If w is equal to the number of characters correspond­
ing to the length specification of the items in the I/O list, w characters are read or written.

Output. Internal binary values are converted to character strings at the rate of eight binary digits (two hexadecimal
digits) per character. The most significant digits are converted first; that is, conversion is from left to right. The
number of characters produced by an item depends on the number of words of storage allocated for that type of item.
Normally, alphanumeric information is used with integer variables.

When the magnitude of w does not provide for enough positions to express the data completely, the external field is
shortened from the right (least significant) end. This is not treated as an error condition. When w has a value
greater than necessary, the external character string is right justified in the field and preceded by the appropriate
number of blank characters.

Input. When the width w is larger than necessary (that is, when its magnitude is greater than the number of charac­
ters associated with the data type of the corresponding list item), the number of characters equal to the difference
between wand the length specification are skipped and the remaining characters are read.

When thevalueof w is less than thenumberof characters associated with the data type of the list item, the most sig­
nificant positions of the list itemare filled with w characters, and the remainder of the positions are filled with blanks.

Hexadecimal Transmission

Hexadecimal information may be transmitted by means of the Z descriptor.

Z Descriptor (Hexadecimal)

Form:

rZw

FORMAT Statements 37

I

The Z format code is used to read or write hexadecimal data. If w is equal to the number of hexadecimal digits cor­
responding to the length specification of the items in the Vo list, w characters are read or written.

Output. Internal binary values are converted to character strings at the rate of four binary digits (one hexadecimal
digit) per character. The most significant digits are converted first; that is, conversion is from left to right. The
number of characters produced by an item depends on the number of words of storage allocated for that type of item.
Normally, hexadecimal information is used with integer variables.

When the magnitude of w does not provide for enough positions to express the data completely, the external field is
shortened from the left (most significant end). This is not treated as an error condition. When w has a value
greater than necessary, the external character string is right justified in the field and preceded by the appropriate
number of blank characters.

InPJt. When the width w is larger than necessary (that is, when its magnitude is greater than the number of hexa­
decimal digits associated with the data type of the corresponding list item), the number of characters equal to the
difference between wand the number of hexadecimal digits in the data item are skipped and the remaining charac­
ters are read.

When the value of w is I ess than the number of hexadecimal digits associated with the data type of the I ist item, the
least significant positions of the list item are filled with w hexadecimal digits, and the remainder of the positions are
filled with zeros.

Descriptor Repeat Specifications

Repeated use of a descriptor or descriptors is accomplished in one of three ways:

1. The E, F, and I descriptors may be immediately preceded by a repeat count, r, in the forms rEw.d, rFw.d,
and r1w.

In these cases, if the input/output list warrants it, the descriptor will be interpreted repetitively up to r times.
r must be an integer constant.

The following examples show equivalent FORMAT statements:

C FOR COMMENT

"TATEMENTIJ
NUMBER

1 5 . 6 7 10 . . i . .
3 cFO'RMAT

3 ~:F O'R MA T

I

~ C FOR COMMENT

i'lsTATEMENT IJ
HUM8ER

1 5 i 6 7 10

72 Ie;- FOR MAT
-.".-

72 ~-Fe-RMAT

FORTRAN STATEMENT

15 20 25

('4 IF
. . i r~ ~

7. 3 F DT'-r~1,.--.----.. ..,.j---r--r- -r---'- ---, ~r-- -- ~- '-l-~'-l-..,.-.-r- ... --r---~

(F 7 3, F 7 3 , F 7. 3,F7.3,F13.61

15

(2 I 6,

(16, I

I

~T-'----'--'----'--' --.------~r-~-.----.----I----r---,..-_,__-~ ii, ~

20 25

314, 2 E 1 2. 3 1
6 , I 4 , I 4 , 14 ,

I I

FORTRAN
30 35

I

I . . I

E 1 2 . 3 , E

j---r-l I

STATE MENT
I.: ...

~-~ -.:r- ~r ::"r~--"

~~

1 2.
-'3'-)- r -T- f -,--,--~---.-,-.-r

l·---;~~-'---'-l-----'--~~

2. Repetitive interpretation of a group of descriptors is accomplished by enclosing the group in porentheses and op­
tionally preceding the left parentheses with an integer constant, called the group repeat count, which indicates
the number of times the group is to be interpreted. If a group count is absent, a count of 1 is assumed. Only
one level of parentheses is permitted within the standard format specification parentheses.

38 FORMAT Statements

Note the following simi lar statements:

,--C FOR COMMENT

~TATEMENT i
NUMBER IJ

1 5 6 7 to

FORTRAN STATEMENT
20 '0

t--r--rl'-TS=-,-+~::-+F-rG":::,:.:-R r-M'i-A..:.,.T~,-1-(. ~ • (F > .. O2: ' 0 4: X,l oJ . , 0 ,

45 50

1 5 < F G" R MAT lIS F 7
0

, ,20 ' .. 0 X " F 7 • 0 2 , ,40 X , 0 F 70 • 2 , .. Xy,)'-r---,~'--'-..--..---r~'-i -YO-'-

C FOR COMMENT

r:sTATEMENT J FORTRAN STATEMENT
NUMBER

1 5 6 7 10 15 20 25 '0 35 40 45 50

-
23 .; F G"RMA T (2 (IS,2F6.2 2H5K))

23 ~F6'RMAT (IS,F6. 2, F 6 2,2HO'K ,IS,F6.2,

~ F 6 . 2 , 2H5K) , • • i • , i i
<

3. Repetition of format descriptor interpretation is also initiated when all descriptors in the FORMAT statement have
been used but there are still items in the input/output list to be processed.

When format control has proceeded to the last outer right parenthesis an:! another list item is specified, format
control demands that a new record starti and, control reverts to that group repeat specification terminated by
the last preceding right parenthesis or, if none exists, to the first left parenthesis of the format specification.

Input Exampl e:
C FOR COMMENT r-'

~TATEMENT J FORTRAN STATEMENT
NUMBER

1 5 6 7 10 ,5 20 25 '0 35 40 45 50

i i i , 0 i , 0 i , , ,
• i i 0 , i

rJDIMENS le'N B (1 00)

:.:':R E AD (1 20) B

2 0 :'F5RMAT (5 F9 3)
• , , i i , i i 0 i 0

~

"r

In this example, the descriptor 5F9.3 is used 20 times. The first 5 quantities from each of 20 records are
input and assigned to array B.

Output Example:

,--C FOR COMMENT

~STATEMENT i
NUMBER IJ

1 5 6 7 10

~ i

1 5 ~ F e'R MA T
• i

(1

(

15

, t 5) , i , i

2 E t 2.
•

20 25

A , B , I , J ,
i 0 ,

I 3 , .. , (3 I 7)
• ,

FORTRAN STATEMENT
'0 35 40 45 50

K , 1 I , J J I K K ,
i , i i i , , , 0 , ,

• i 0 , .
J 3 , K3

• , ,
•

,
) , , , , i 0 0 , ,

0

i

0

0

In this example, 3 records are output. Record 1 contains A, B, I, J, and K. Because the descriptor (317)
is reused twice, record 2 contains II, JJ, and KK. Record 3 contains 13, J3, and K3.

Field Separators

An H-format field is terminated after the specified number of characters; thus a field separator following an H-format
field is optional. In all other cases, when two or more field descriptors are included in a format specification, they
must be separated by o. Ie 61 ~ 0.8 5185"'e5.

<:CITher d {'cnn-P or s/dJ4(.:.:»~

FORMAT Statements 39

I

Example:

3X2HOK, F6. 3

3X~HOKF6.3
)

is incorrect

is acceptable

A slash(/) separator, or a series of slashes, may be used instead of a comma. A slash not only separates field descrip­
tors, but also specifies the demarcation of formatted records.

Each slash terminates a record and sets up the next record for processing. The remainder of an input record is ignored;
the remai nder of a fi xed I ength output record is fi II ed with bl anks. Successi ve slashes (II/. .. j) cause successive
records to be ignored on input and successive blank records to be written on output. If a slash or group of slashes is
used, commas must not be used concurrently.

Example:

(F5.4, I, 4F 10. 3)

(F5.4/4F 10.3)

Output Example:

is erroneous

is correct

In this example, the data specified by the list of the WRITE statement are output to unit 1 according to speci­
fications of FORMAT statement 7. Four records are written as follows:

RECORD 1: J(I), J(2), .•. , J(10)

RECORD 2: J(I1), J(12), ••. , J(20)

RECORD 3: A(I), A(2), ..• ,A(15)

RECORD 4: A(16), A(I7), .•. ,A(30)

Input Example:

FC FOR :_OM~~T _____ ~_~ ____ _

i"sTATEIoIENT ,jl ,= C.,,-;- K '". ~ - A - C ,~: N";"

i 1 NUMBER ~ Is 1 7 :) 5 ~O::. 35 4(• .:- 50 55

~:=:-:=-ll?YM~E:iS:/O:N: :)~E:tA(1'0')" _ :_~~~-- c~:=:~=:-.-:
r-'---'-'~W'~rP.-.LL<-J..cU'-Y~T~~A,Ll) ,',B E T ,A (,2.1.' ,,(B,E_ T A C~,L.-,!:~ ... Wr-r--~

[:~~OB~O"A"Af: 1< F"O ,'2: f1 0, " I • FI 0.' 2)::~' ~~ .~::~
I ' , . ,-, r r -- ------,-

In this example, the two array elements BETA(1) and BETA(2) receive their values from the first data fields of
successive records (the remainders of the two records are ignored). The third record is ignored, and the remain­
ing elements of the array are filled from the fourth record.

40 FORMA T Statements

1

Relationships between FORMAT Control, List Specifications, and Record Demarcation

The following relationships and interactions between FORMAT control, input/output lists, and record demarcation
should be noted.

1. Execution of a formatted READ or WRITE statement initiates FORMAT control.

2. The conversion performed on data depends on information jointly provided by the el ements in the input/output
list and field descriptors in the FORMAT statement.

3. If there is an input/output list, at least one descriptor of types E, F, or I must be present in the FORMAT
statement.

4. Each execution of a formatted READ statement causes a new record to be input.

5. Each item in a FORMAT control input list corresponds to a string of characters in the record and to a descriptor
of the types E, F, or I in the FORMAT statement.

6. H and X descriptors communicate information directly between the external record and the field descriptors
without reference to list items.

7. On input, whenever a slash is encountered in the FORMAT statement, the entire record has been processed, or
the FORMAT descriptors have been exhausted and reuse of the descriptors is initiated, processing of the current
record is terminated, and the following occurs:

a. Any unprocessed characters in the record are ignored.

b. If more input is necessary to satisfy list requirements, the READ is reinitiated to process the next record.

8. A READ statement is terminated when all items in the input list have been satisfied if:

a. The next FORMAT descriptor is E, F, or I, or

b. The format control has reached the last outer right porenthesis of the FORMAT statement.

If the input list has been satisfied, but the next FORMAT descriptor is H, X, or slash, more data are processed
(with the possibility of new records being input) until one of the above conditions exists.

9. If format control reaches the last right parenthesis of the FORMAT statement but there are more list items to be
processed, all or part of the descriptors will be reused.

10. When a formatted WRITE statement is executed and a slash is encountered in the FORMAT statement, format
control has reached the rightmost right parenthesis, or 132 characters have been output, processing of the cur­
rent record is terminated and if more output is necessary to satisfy list requirements, output of a new record is
initiated.

Auxiliary I/O Statements

Three auxi I iary I/O statements are provided.

REWIND Statement

G The REWIND statement is normally used to rewind a file assigned to a magnetic tape unit. If the file is a direct ac­
cess file, the associated variable for the file will be reset to the value 1.

The form of the statement is

REWIND u

where

u is an integer variable or constant designating the file unit number.

Auxi I iary I/O Statements 41

I

BACKSP ACE Statement

The BACKSPACE statement is normally used to backspace one logical reGord in a file assigned to a magnetic tape
C unit. If the file is a direct access file, the associated variable is decremented by I, subject to the constraint that

it may never be decremented to less than 1.

The form of the statement is

BACKSPACE u

where

u is an integer variable or constant designating the file unit number.

ENDFILE Statement

The ENDFILE statement is normally used to write a file mark on a file assigned to a magnetic tape unit.

The form of the statement is

ENDFILE u

where

u is an integer variable or constant designating the file unit number.

Carriage Control for Printed Output

The first character position in an output record that is intended for printing may control the printer carriage by con­
taining certain characters.

Vertical Format Control Characters

VFC Printer Output Typewriter Output Other Output

blank Print, single space Print, new line No effect

Eject page, print, single space New I i ~e, pri nt, new line No effect

o Single space, print, single space New line, print, new line No effect

Print Print, new line No effect

other Print, single space Pri nt, new line No effect

Note: On printer and typewriter output with VFC defined by a 0, 1, or -, a blank is output in
place of the VFC in the first character position. The buffer containing the record is not
changed, however.

The general effect of the vertical format control characters is:

1
o

other

Page eject
Double space
Overprint
Single space

Figure 2 is an example of an unformatted program utilizing auxiliary I/O statements.

Figure 3 is an exampl e of a program usi ng formatted I/O statements.

42 Carriage Control for Printed Output

1

.-- C FOR COMMENT

~TATEMENT ~
NUMBER

I 5 6 7 10 15 20

FORTRAN STATEMENT

25 30 3S 40 50 55
j I Iii iii. iii I

pC;-,...!-,T ,.!.'H'r'E=+·~~.~· f'--F~e'-,"L'-,'L~S~W~I N~G;.-..=.,S ,.:..T-r-A.:.,.T'---r-E .;.:.M.;.:E~N.-'T-r'S"-r-,r'-'R,.."E:,W~lr'-'N'r'D~~MT-A~G,"" T APE 5 AND THE N
C '.~UTPUT AN UNF6RMATTED REC6'RD C~'T'A'I'N'IN'G' 'TWS-'A'R'R'A·Y'S.

• i' iii I. i' • iii

C STAT:EMENTS 7 AND 8 BACKSPACE THE TAPE AND INPUT THE
C .. RECS'RO.

A (15)
, , , , , , , , , ,

B (5 5) C (1 5) 0(5 5) t,:; 0 I MEN S 1 5 N
.. ~

~ , , , , ,
~~REWINO 5 , , ,

A,B :rwR I T E (5) .
7' B A C K SPA C E 5

.
8 -READ (5) C,D

END

Figure 2. Input/Output Example 1 - Unformatted I/O

C FOR COMMENT

~TATEMENT ~
NUMBER lJ

FORTRAN STATEMENT

1 5 6 7
i ,10, ••• .;...:,~~ i 2S., • 3°1 i 3S, :--r-=~40~, =;,===r, =i,==;=4~~=r=r,=,r=r5~O,r=r=;,==;=~SS~,

C TH I $ PL~~~_)~~!Jl-l'~~TIJ2.-.~~T,l F,I CA,ll~N. ,NU,~BE,R, '.4 .0,1 G,l.1,_
C INTEGER) AND TW~ 20-ElEMENT ARRAYS

• i I T-" , i ---. I • ---.--r-,-~~--.- -r----.-~--,' :,,--,-, ~ ,-,--, ~r-, ~-c,--,-, -,,-.-, .. ,---,-,

C THE SUBRS'UTINE C6MP C&MPUTES A THIRD 20-ElEMENT ARRAY .
• ---r-'-~-r--'--'--'''----'--,---r- , i -----r------.~{---,--r____r_r_ I ~~-,-----,-,--r i

C 6 U T PUT 1 S F & R MAT TED T e P R 1 N T THE IDE N T I F 1 CAT I S'N N U M B E R
~~~--..--,---..-.......---r-----'---I-~T---,---~, ~-r---~'-----'-----'--~-r-T I ~-,----,------, Ii' I 

C Fell ew ED BY T H R E E C e l U M N HE AD 1 N G S AN 0 A TAB U l AT 1 eN 
i-=r--.--y---,--+-+--,-=~-.-----.-----r-~- I i ------,------,- i • I .,-- I i -,----y--,.----r, , j 

!-=C:.-r----.--..--+--!~~ T, H E T H ,R ,~~~! A YS, _', --,-~..----.-, ~~~,,_ ~~~~,-.--~~,'_ ~~--'-,,~~~--.,_ 
, j 

i i 

READ (5,17) 10, X,Y 
~--.--y---,--+-F~~-T,~~,~~,~,~r,~,~,~,~~~,~~-.-.,--.-, ~'''~''~'~T-~-''-'-~~-'' ~'-~'~'~'~"-'-''''-'--''-' 

~-.--r-.-~c"""A l l C e M P L.,( ~X,J'-.-'Y',L" ""!,J)'-,--,--.-.....-.-,----,-.--.---,-~o___r....-.~-,-,-~,__,__ .... _.__~_._.__.____r_r_._._, 
WRIT'E (2~20)' 'I'D, (X'(I),y'(I') ,'!'(I), 'I:' 1,'2'0) ", , 

1 7 

20 

-. F ~ R M' A T (~-'SF'1 0 . 5 ) I , , ...,--.---r, , 
F ~ R MAT (/ 1 6 H I DE N T IF' I CAT l'e' N :' ','1 4/3 X I 7 H X _'V A l U E I,' 1 0 X' 

~ I. ,. 

I 7HY-VAlUE, lOX,7Hl-VAlUEII(F12 S,5X,F12 5,5X 

~ F12.5» 
~ S T 6'P 

Figure 3. Input/Output Example 2 - Formatted I/O 

Carriage Control for Printed Output 43 

I 



o Direct Access Input/Output [Basic FORTRAN IV only] 

o Direct Access Input/Output Statements 

There are three direct access Input/Output Statements 

1. READ 

2. WRITE 

3. DEFINE FILE 

These statements identify a location within a data set from which data is read or written. As in seguential input/ 
output, the FORMAT statement is sometimes used to speci fy the format of transmitted data. 

Direct access READ and WRITE statements reguire definition of data sets by the DEFINE FILE statement and cannot 
act upon such sets without this definition. Definition of a data set by the DEFINE FILE statement must occur before 
any direct access READ or WRITE statement referencing the data set is executed. 

DEFINE FILE has the form: 

DEFINE FILE n 1 (r I' m I' a I' i 1),n2{r Zm Z a2, ii, ... , nk (r k' mk, a k, ik) 

where 

n is an integer constant identifying the data set. 

is an integer constant specifying the number of records in data set n. 

m is an integer constant specifying the maximum size of each record in data set n. Allowable record size 
increments are: storage locations, characters, or storage units. Record size determination is a function 
of "a" (see below). 

a designates the record size increment as follows: 

Example: 

L data set maximum record size specified as storage locations. 

E data set maximum record size specified as characters. 

U data set maximum record size specified as storage units (FORTRAN will assume 2 words/unit for stan-
dard precision and 3 words/unit for extended precision). 

is the associated variable. It must be in COMMON or be local to the main program. The variable i is a 
nonsubscripted integer variable whose value is the record number immediately following the last record 
transmitted at the end of a read/write operation. 

DEFINE FILE 3 {40, 90, E, K4) 

This data set has the identifying number 3. It contains 40 records with a maximum length of 90 characters. K4 con­
tains the number of the next record to be transmitted. 

The same data could be defined 3(40,30,U,K4} if in extended precision mode, or 3{40,45,L,K4) if in standard pre­
cision mode. 

More than one data set may be defined by the DEFINE FILE statement by placing a comma between parameter sets. 
{E. g., DEFINE FILE 5{25,60,L,J7}, 8(75,75,E,M3}, etc.} 

o Programming Considerations 

Direct access I/O programming entails a relationship between FORTRAN records and the records described by the 
DEFINE FILE statement. In formatted input/output, all of the FORMAT statement conditions apply. For example, 
ina data set such as 

DEFINE FILE 4{15,40,L,L9) 

the controlling FORMAT statement could not specify a record exceeding 80 characters; e.g., FORMAT {5EI6.1} 
would be acceptable, but FORMAT (IlO,3F25.l) would not be acceptable. 

44 Di rect Access Input/Output 



In unformatted input/output the size of the transmitted record may not exceed the record size designated by the 
appropriate DEFINE FILE statement. 

Assume the I/O list of a WRITE statement designates 24 real values; acceptable DEFINE FILE statements would 
be: 

DEFINE FILE 14(30,72, L, M7) 

DEFINE FILE 43(20,24, U, M7) 

An unacceptable statement would be 

DEFINE FILE 6(30,3, L, M7) 

If direct access I/O is to be used from a foreground program, the data set must be a permanent fi Ie that has been 
assi gned to the specified data set number. The fi Ie must have been previousl y defined through the use of the RAD 
Editor, and the file definition must be the same as would normally be defined by the given DEFINE FILE statement. 

G:' READ Statement 

The READ statement causes the transfer of data from direct access external devices to core memory. 

The forms of the statement are 

READ (d'p,n, ERR=b) list 

READ (d'p, ERR=b) list 

where 

d is the data set reference number expressed as an integer constant or an unsigned integer variable. Note 
the apostrophe, which is mandatory, following d. 

p is the record number in the data set d. It is an integer expression. 

n is the FORMAT statement number, if this is a formatted READ statement. 

b is the statement number of the statement to which control is transferred in the event of an unrecoverable 
input/output error. The error return (,ERR= b) is optional. 

list is the same as an I/O list for sequential input/output. 

Example: 

DIMENSION J(1000) 
DEFINE FILE 9(JOO, JOO,E,MUD), 84(25,35,L,MUL) 

15 READ (84' 2) ALPHA, BETA, GAMMA 

23 FORMAT (4IlO) 
26 READ (9 ' 50,23) (J(L),L= 1,4) 

END 

READ statement 15 reads data from the second record of data set 84 into ALPHA, BETA, and GAMMA. MUL con­
tains 3 after execution of the READ statement. 

READ statement 26 reads from record 50 of data set 9 under control of FORMAT statement 23. Integers are 
read into J(l), J(2), J(3), and J(4). Subsequent to the execution of READ statement 26, the variable MUD 
contains 51. 

The FORMAT statement may be used to control reading; e.g., if the FORMAT statement in the example was 

23 FORMAT (////28125) 

records 50-53 would have been skipped and record 54 read. MUD would contain 55. 

900967D-l (4/71) Direct Access Input/Output 

r .. 

~\ 

t-

45 



,. J~ WRITE Statement 

'"" 46 

The WRITE statement causes the transfer of data from core memory to an external direct access device. 

The forms of the statement are 

WRITE (d'p,n) list 

WRITE (d'p) list 

where 

d is the data set reference number expressed as an integer constant or an unsigned integer variable. Note 
the apostrophe, which is mandatory, following d. 

P is the record number in the data set d. It is an integer expression. 

n is the FORMAT statement number, if the statement is formatted. 

list is the same as an I/o list for sequential input/output. 

Direct Access Input/Output 

} 
1 



9. SUBPROGRAMS 

FORTRAN provides means for defining and/or using subprograms such that they may be referenced and brought into 
the logical execution sequence of a program unit wherever and as often as needed. 

These subprograms may be part of a source language program, a separately compiled series of statements, or part of 
the FORTRAN function library. 

There are four categori es of subprograms: 

1. Statement functions 

2. Library functions 

3. FUNCTION subprograms 

4. SUBROUTINE subprograms 

The first three categories are referred to collectively as functions; the last as subroutines. 

Certain features of structure, reference, and terminology are common to all subprogram categories or to two or more 
categories: 

1. A subprogram is identified by an identifier (see Chapter 2). 

2. Any function reference consists of the function name followed by an actual argument list enclosed in paren­
theses. If the list contains more than one argument, the arguments are separated by commas. 

3. Function references may occur as elements in arithmetic expressions. 

4. Functions are single valued (i.e., they return a single result to the program unit from which the function was 
referenced). The type of the value is dependent on the IJKLMN rule unless explicitly typed. 

5. A FUNCTION or SUBROUTINE subprogram constitutes a program unit. 

6. Other than statement functions, all subprograms are defi ned external I y to the program unit that references 
them. 

Statement Functions 

A statement function is defined by a single statement similar in form to an arithmetic assignment statement and is 
relevant only to the program unit in which it appears. 

Defining Statement Functions 

A statement function is defined by a statement of the form 

where 

is the function name 

u
i 

are dummy arguments 

e is an expression 

Rules of Order and Structure 

The order and structure of statement functions are governed by the following rul es. 

1. Statement functions, if they exist in a program unit, must precede all executable statements in the unit and 
must follow the specification statements. 

2. If a statement function is referenced by another statement function, the referenced statement must precede the 
the referencing statement. 

Subprograms 47 

I 



3. The name of a statement function, f, must not appear as a variabl e name or array name in the same program unit. 

4. The ui must be variabl e names, call ed the dummy arguments of the function. Array names, array el ement names, 
constants, and subprogram names are not allowed. 

5. The ui, being dummy arguments, serve only to indicate type, number, and order of arguments and may be the 
same as variable names of the same type appearing elsewhere in the program unit. 

6. Aside from the dummy arguments, the expression e may contain only: 

a. Constants 

b. Variable references 

c. Library function references 

d. References to previously defined statement functions 

e. FUNCTION subprogram references 

7. The relationship between f and e must conform to the assignment rules in Table 2, Chapter 5. 

8. If the name of the function has appeared in a type statement, then the function value will be of such type. 
Otherwise, the IJKLMN rule will imply type. 

Referencing Statement Functions 

A statement function reference hos the form 

f(a) 

where 

is the identifier of the statement function 

a is an actual argument list 

Execution of a statement function reference results in the association of actual arguments with the corresponding 
dummy arguments in the expression of the function definition and an evaluation of the expression. 

Following this, the resultant value is made available to the expression that contained the function reference. 

Example: 

r--C FORCOMMEN~T~ ______________________________________________________________________________ __ 

~TATEMENTi~: 
NUMBER °1 

FI~T=r=?59F6~.~7~~I~0r=~~=i1~5~~=TT--'~r.z'O,~'=T=r,,=25TI=r=r~T=30rl~T=r=r3~5=T=r=r~4T°=T=r~T='5r=~=T=r'~O~=T=r,~~Ss 

FORTRAN STATEMENT 

C BELeW IS A STATEMENT FUNCTI~N. 

I •• iii • ,i, i' ii" i' i ( 

~~-r-r~~T~~-'i-r~'-~"--'-~'~'-'I~-r~'-TI-r~,-r,I~~-r~,-~~~-.-r~~'-~-T~-r",-~~ 

C THE S TAT I EM E ~~ E,-,.L, .~es'--:IWc:.-.-=C,..:::(Jc.,.:N-TI-=-,T ;...:A:,....:I:..;Nc.:.,..:::-S,.-.'-A-',-,r-r-,--.-.--~--,-~~.----,-
C REfERENCE Tes AFUNC. 
rT'-~~+T~(J"':::T~rr~B~+~I~A'~F~UTN~I~C~(~R~~T"-,~H~E~D~,'i-R~A'-'r-r-,-~~'~"~~~"~~~~~ 
~~-r~~~~~~-.-r~~T'-'i~'~~'~~i~~~~Ti~~~~~rl~~~~i-T-r-r,-~~-,·-.-.~ __ ,,,'-r-~-. 

library Functions 

The identifiers of library functions are predefined to the FORTRAN processor. However, use of these names to refer­
ence library functions in one program unit does not preclude use of the same names to identify other entities in dif­
ferent program uni ts of the same executabl e program. 

A library function reference is of the form 

f( a) 

where 

is the identifier of the library function 

a is an actual argument list 

48 library Functions 



The actual arguments must agree in type, number, and order with the library function specifications in Table 4 and 
may be any expression of the specified type. 

Table 4. Library Functions 

Function 

I 

Number of Type of I Type of 
Definition of Function Name Arguments Argument I Result 

i 

ABS 
I 

1 Real Real Absolute value. 

AINT 1 Real Real Integer part of argument expressed as a real value. 

ALOG I 1 Real Real Natural logarithm (base e). 

ALOG10 1 Real Real Common logarithm (base 10). 

AMAXO N :::2 Integer Real Maximum value for integer values. 

AMAX1 N :::2 Real Real Maximum value for real values. 

AMINO N :::2 Integer Real Minimum value for integer values. 

AMIN1 N::: 2 Real Real Minimum value for real values. 

AMOD 2 Real Real Arg] (mod arg2)' Evaluated as 
arg] - arg2 * AINT (arg ]/arg2) 

i. e., the sign is the same as arg]. Functi on undefi ned 
if arg2 = O. 

ATAN ] Real Real} 
Arctangent in radians. Arg] =ordinate (y), arg2=abscissa (x). 
If arg2 not present, assumed ]. Result (R) is arctangent of 

ATAN2 2 Real Real 
arg]/arg2 quadrant allocated in the range 
-n<R:'5n;ATAN(O,O) = O. 

COS 1 Real Real Cosine of angle in radians. 

COSH ] Real Real Hyperbolic cosine. 

DIM 2 Real Real Positive difference. DIM(x,y) = x -min(x,y). 

EXP ] Real Real Exponentia I (e **arg). 

FLOAT ] Integer Real Argument converted to a real value. 

IABS 1 Integer Integer Integer absolute value. 

IDIM 2 Integer Integer Integer positive difference. IDIM(j,k) = j - MIN(j,k). 

INT 1 Real Integer) 
Argument converted to an integer value. 

IFIX ] Real Integer 

Library Functions 49 

I 



Table 4. Library Functions (cont.) 

Function Number of Type of Type of 
Definition of Function 

Name Arguments Argument Resul t 

ISIGN 2 Integer Integer Integer magnitude of arg] with sign of arg2' If arg2 is 
zero, the sign is positive. 

MAXD N ~ 2 Integer Integer Integer maximum value. 

MAX] N~2 Real Integer Integer maximum value. 

MIND N ~ 2 Integer Integer 
I 

Integer minimum value. 

MIN] N~2 Real Integer Integer minimum value. 

MOD 2 Integer Integer Arg] (mod arg2)' Eval uated as 

arg] - arg~ *[arg]/arg2J 
where the brac et indicates integer part; i. e., the sign 

i 
is the same as arg]. Function is undefined if arg2 = D. 

SIGN 2 Real Real Magnitude of arg] with sign of arg2' If arg2 is zero, 
the sign is positive. 

SIN ] Real Real Sine of angle in radians. 

SINH ] Real Real Hyperbolic sine. 

SQRT ] Real Real Square root (positive value). 

TANH ] Real Real Hyperbol ic tangent. 

Execution of a library function reference results in the actions indicated in Table 4, based on the value of the actu-
al arguments. Following execution, the resultant value of the function is made available to the expression that 
contained the function reference. 

Arguments for which the results of these functions are not mathematically defined or are of a data type other than 
that specified in Table 4 are improper. 

Examples: 

M = J + IABS(N) 
K = IFIX(ALPHA) 
AVG = A/FLOAT(K) 
A(3) = B(I) - SQRT(A(2» 
A = Y - SIN(Z) 

FUNCTION Subprograms 

A FUNCTION subprogram is a program unit constructed of a series of FORTRAN statements headed by a FUNCTION 
statement and followed by an END line. A FUNCTION statement has one of the forms 

FUNCTION f(u],U2 .•. ,un) 
REAL FU NCTION f(u], u2, ... , un) 
INTEGER FUNCTION f(u], u2"'" un) 

where 

is the identifier of the function to be defined 

u. are dummy arguments that represent the variable or array names 
I 

Example: 

FUNCTION BAL(A, B, I) 

In this example BAl is the identifier of the function subprogram, and A, B, and I are dummy arguments. The function 
type is real. 

50 FUNCTION Subprograms 

1 



FUNCTION Subprogram Construction 

Construction of F.lJNCTION subprograms must comply with the following rules. 

1. A FUNCTION statement must be the first statement of the subprogram. 

2. The identifier of the function must appear as a variable name in the subprogram. During each execution of the 
subprogram, this variable must be defined and, once defined, may be referenced or redefined. The value of 
the variable at the time of execution of any RETURN statement in the subprogram is called the value of the 
function. 

CS 3. The value of the function is of the type explicitly stated (INTEGER or REAL); otherwise, it adheres to the 
UK LMN rule. 

4. The value of a function may be defined by the appearance of the function name on the left side of the equal 
sign of an arithmetic assignment statement or as an item in the I ist of an input statement. 

5. The identifier of the function must not appear in any nonexecutable statement in the program unit other than in 
the FUNCTION statement. 

6. The identifiers of dummy arguments can not appear in an EQUIVALENCE or COMMON statement in the sub­
program. 

7. A function subprogram cannot redefine any of its arguments or any entities in COMMON. 

8. A function subprogram may contain any statements other than SUBROUTINE or another FUNCTION 
statement. 

9. A function subprogram must contain at least one RETURN statement. A RETURN statement is the logical termi­
nation of the subprogram. 

10. An END line must be the last line of a function subprogram to signify the physical end of a subprogram. 

Exampl es are shown in Fi gures 4 and 5. 

~ C FOR COMMENT 

~TATalEHTIJi FORTRAN STATEMENT 
I«.IoIBER ~ 

1 516! 7 .0 15 20 25 30 35 40 45 50 55 
i i , , i , , , I 

C TH IS FUNCTISN SUBPR6GRAM Ce'MPUTES THE D 1 F FERENCE , i i i i i I 

C BETWEEN THE LARGEST AND S MAL L EST VALUED ELEMENTS 
C K3F A SINGLE DIMENSle1N AR RA Y SF 100 ELEMENTS 

I I • • , i i i i I , i 
I 

, FUNTJO'N Of F F (ARY) 
i , , , I 

: OIMENSle1N ARY ( 100 ) 
i . I • I i i i i -, i , I 

"',:S = ARY ( 1 ) 
~.....---.----~~ 

,:G = S 
>06' 23 I = 2 1 00 

I F (S-ARY ( I ) ) 20, 20, 1 9 
i , i i i , i I i I , , i i I , , I , , , i 

1 9 <S = ARY( I ) 

:~G6' TO' 23 
20 "'- I F (G-ARY ( I ) ) 21,23,23 
2 1 cG = ARY(I ) 

i i , , i i , i , , i i i i i , i i , i I i , i , i 

23 ;' Ce1N TIN U E 
i , I i , I 

C THE " FO'LLO'WING STATEMENT OEF IN E S THE VALUE ~F THE 
C " FUN C T 1 e1N . 

DIFF = G-S 
~RETU'RN 

END . 

Figure 4. FUNCTION Subprogram Example 1 - DIFF 

FUNCTION Subprograms 51 

I 



~C FOR COMMENT 

i'lsTATEMENT I ~ 
NUMBER (I 

1 5 6 7 10 

FORTRAN STATEMENT 

Figure 5. FUNCTION Subprogram Example 2 - DPROD 

Referencing FUNCTION Subprograms 

A FUNCTION subprogram reference is of the form 

f(a) 

where 

is the identifier of the function 

a is an actual argument list 

50 

. 
i 

A 
i 

The actual arguments that constitute the argument list must agree in order, number, and type with the dummy 
arguments in the function defining program unit. An actual argument may be anyone of the following: 

1. A variable name 

2. An array element name 

3. An array name 

4. Any other expression 

55 

, 
I . 
, 
, 

, 

Execution of a FUNCTION subprogram reference causes the actual arguments of the reference to be associated with 
all appearances of correspondi ng dummy arguments in executable statements and statement function definition state­
ments within the subprogram. 

If an actual argument is an expression as specified in item 4 above, the expression is evaluated and the association 
is by value rather than by name. 

Following these associ ations, execution of the first executable statement of the subprogram is begun. 

Array elements used as actual arguments may contain variables in their subscripts. Such subscripts are evaluated 
when the function reference is executed, and the determined value is used as the subscript as if the array had a 
constant subscript. 

52 FUNCTION Subprograms 

1 



If a dummy argument of a FUNCTION subprogram is an array name, the corresponding actual argument must be an 
array name. 

Examples: 

~ C FOR COMMENT 

~TATEMENT J FORTRAN STATEMENT 
NUMBER 

I 5 6 7 10 15 20 25 ]0 U 40 45 50 

C STA IfEMENT S REFERENCES FUN C T I O'N 

55 

-,--,~ i 

4') . 
I , I i , , I , , , , I , , , , i 

C ~~EXAMPL E 1 ( FIGURE 

01 MENS I OI~, .. J_J.l,O.O) , C( 100 ) 
• • i i 

5 - B 0 IF = 01 F F ( ~ ) - 01 F F ( C) 

• • • i • • i 
.. -

~C FOR COMMENT 

{-STATEMENT J 
NUMBER 

FORTRAN STATEMENT 
1 5 6 7 10 15 20 25 ]0 35 40 

~., li' l 

C STAT~ENT 9 REFERENCES FUNCTION 
C EX 'A 'M' P L E' '2' ' ( F I' G u' R' E i 5' ) ..' , 

, i 

Iii 

SUBROUTINE Subprograms 

i • 

• 
, I , 

50 

i i , i 

A SUBROUTINE subprogram is a program unit constructed of a series of FORTRAN statements headed by a SUB­
ROUTINE statement and followed by an END line. 

A SUBROUTINE statement has either of the forms 

SUBROUTINE s(a
1
,a

2
, ... ,a

n
) 

SUBROUTINE s 

where 

is the identifier of the subroutine 

a. are dummy arguments that represent variable or array names 
I 

SUBROUTINE Subprogram Construction 

Construction of SUBROUTINE subprograms must comply with the following rules. 

1. A SUBROUTINE statement must be the first statement of the subprogram. 

, 

2. The identifier of a subroutine must not appear in any statement in the subprogram except in the SUBROUTINE 
statement i tsel f. 

3. Dummy arguments may not appear in an EQUIVALENCE or COMMON statement in the subprogram. 

4. A subroutine subprogram may contain any statements except FUNCTION or another SUBROUTINE statement. 

i 

, I 

55 

• i 

5. A SUBROUTINE subprogram must contain at I east one RETURN statement. A RETURN statement marks a logical 
terminal point in the program. 

6. An END line must be the last line of a subroutine subprogram to signify the physical end of the subprogram. 

SUBROUTINE Subprograms 53 

I 



~C FOR C~MMENT 

sT~~rljl FORTRAN STATEMENT 
1 5 16 7 1O 15 ZO 25 30 35 .0 05 SO ~s 

----
~,--. i ~~ i ~.---"-----"---r ~~--y--r--r-~ 

~1 
-..--'~---r-~-:--

C T HI SU8R~UTINE DE TERMINES THE LARGEST E LEMENT 

HABSSLUTE 
1---"- --'~r---~---'----Y-'--'~--'-~"- i i '--r--r- ' , I , '-----r---r--r--'- ...--, -

C VALUE ) SF A S P E C I F I ED PLANE e'F A 

t' 11 5 iF 

I , , I 
.,._-,..--,.-

i , i ~~ , , , , ~-------'-----'--'--.--

C , 5 * '5 ARRAY THE INPUTS Ta THE S U 8 R eu TIN E ARE 

1-
-;-<~-:--~ I '·---,--------r~r I -. ---.---------,------,.-,. I , ,~r-

C THE ARRAY NAME AND A PLANE NUMBE R THE eUTPUTS 
!. 

~ i ""'~I j -,-- ,-'----,----r- --,- , - ---,---, 

C F RfiM THE SU8ReJUTINE ARE THE LA R ~Ej~'L-. VALUE AND ITS 
I , , 1 1-- -;---,- -,-

C R6W AND C9LUMN NUMBERS 
i _ 1 -----,--. r...,----r----,..--------r-'----..,.--.------.-----,----- I r--t--r~~. --r-- ,-~"--'--'--:- '---~~l '0 " 

f 

1 1 1 1 1 1""""""'" 

<';·SUBRSUTI NE GRTST (ARRAY , 1 P , XL GST , 1 R , I C) 
1 1 1 , 1 1 I , 1 

"t'01 MENSI eN A R RAY ( 1 5 , 1 5 , 1 5 ) 

( A R R A Y('1~ 1 ~ 
1 1 , 1 1 

,XLGST = ABS , I P ) ) 
1 I ~I 1 , , , , , 1 , 

< I R = , 
~ 1 ~ 1 , , , 1 , , , ,-,--, 

0' I C = 1 
1 1 i ...,--.--.- 1 j 1 

·:·0<9' 20 K= 1 , 1 5 
j , 1 i 

.~ 0 (9' 2 0 I = 1 I 1 5 

I 
1 , j , 1 , 

;-;. I F ( A B S ( ARRAY ( K . 1 . 1 P ) ) - XLGST ) 20 . 20, 21 
I ;XLGST 

~'~ 1 1 1 , , I , , , 1 , 
2 1 = ABS (ARRAY ( K . I . I P ) ) , 

, I R = K 
" I C = 1 

2 0- CeNT! NUE , 1 1 1 1 1 1 1 1 

IRETURN 

i END 
I -'-"--1 1 1 1 , 1 , 1 , 

Figure 6. SUBROUTINE Subprogram Example 1 - GRTST 

r-C FOR COMMENT 

~TATEMENT ~I 
NUMBER 01 

FIT=;r=r=r=5+6~!=7i=T~IO~r=r=;=,:'=.5 =;==;=~2=0;=r=r=T=;=Z5'r=T=;==;=~3~0 =;=;..-=;=;_3_51= t.S.-- T 4~ ,5~ , 
55 

j-T 

THIS SUBR6UTINE REARRANGES TWf1100-ELEMENT ARRAYS 
i r--r----r-r- ", -l-..-----.---r I ' ,. I' i i 

~ C C 0' R 0 I N G T (9' THE A SeE N 0 I N G 0' ROE R 6F THE V A L U E S 
• iii Iii iii., I -~ ~ j -,- iii ' • 

c 
C 

C I NTH E FIR S T 8F THE P A I R SF AjR R,A Y.~+,~~'r-I ~~c-ri~ .~....,--. 

SUBR6UTINE ARRNG (A B) 
1--T---r-.,-,-+-F.=r,.".,.=.,.;..:-r-.,.:-;~...;:...=.~c:..r:~..-r''-o'-'rLo-'''-,-J'-r-~1 ~~--r--r--l 

~~~~D~IrMrETN~Srlr6TN~~A~(~1~0=r0~)~.~B~(~1~0~0~)~~~. 
191FLAG = 0 •

~~~-+~~~~~~~~~~-.~~--r-~~~~~~-, 

f---.-~--'--H.=::,D..=e:.-..-2=,..:-1 r--r'I:.,......,~=,-.-l'-.1-, ..:.9..,.:9:"'-~~r-r~_~-'--'-1~~~-' - '~_~_'~'-I ~~,..,.-~~ -,--T----. 

1-T-"-'--.--li-4=-I,..:..F~('TA-:,.-',-!'-(I ,.......).,.--+A';"->-r-.(I _+ .-'-' .. )..,).....,-".,2 =,O~2'r'1,.,..L,-' 2~1-'-,1 ~..--r-r, "~'~~.-, ..-, ." --r-r--,--,,-'-~,..,--c , , , , 
20 ,TEMP = A(I) 

~~~-+_rlrrT~~~~~~'-r-~-,~~,~",~~~,,~~, -.--------,----,--,-~-I 

-<~(I 1 = A (1 + 1)
1 ,

~:~ (1 + 1) = T E M P
1 ,
1 1

i . , , , 1 ,

, 1 I ,

1 ...,.,.
1 , 1

1 1

22~RETURN

]c' END
i I 1 , . 1 ,

Figure 7. SUBROUTI NE Subprogram Example 2 - ARRNG

54 SUBROUTINE Subprograms

1

Referencing Subroutines

A subroutine is referenced by a CALL statement (discussed in Chapter 7). The actual arguments that appear in the
CALL statement argument list must agree in arder, number, and type with the corresponding dummy arguments in
the subroutine being called.

The actual argument in a subroutine reference may be one of the following:

1. A variable name

2. An array element name

3. An array name

4. Any other expression

Execution of a subroutine reference causes the actual arguments of the subroutine reference, if any, to be associated
with the appearance of corresponding dummy arguments in executable statements or function definition statements
within the subroutine.

Only arguments of the first three types above may be associated with dummy arguments that appear on the left of
the equal sign of an arithmetic assignment statement or as an item in an input list. When such an association occurs,
the valuesdefined or redefined for these arguments are available to the calling program following execution of the
subroutine.

If any actual argument is as specified in item 4 above, the expression is evaluated and the association is by value
rather than by name.

Following these associations, execution of the first executable statement is begun.

A subroutine reference may contain, as an actual argument, an array element name with variables in the subscript.
Such subscripts are eval uated when the subroutine reference is executed, and the determined val ue is used as the
subscript just as if the array had had a constant subscript.

If a dummy argument of the subroutine is an array name, the corresponding actual argument must be an array name.

If a subroutine reference causes a dummy argument in the referenced subroutine to become associated with another
dummy argument in the same subroutine, or with on entity in COMMON, neither entity may be defined within the
subroutine. For example, CALL X(A, A) is prohibited if the subroutine contains:

C FOR COMMENT

~TATEMENT J
NUMBER

5 5 7 10 15 20

;SUBR6UTINE XIC 01

if,' C = 1 . 0

Examples:

.--- C fOR COMMENT

i'lsTATEMENT J
NUMBER

1 5 5 7 10 11 20

FORTRAN STATEMENT

25]0 35 4C 4S 50 55

f I

FORTRAN STATEMENT

25]0 35 40 4S 50 55

C STA EMENT 7 CALLS EXAMPLE SUB R O'U TIN E 1 (FIGURE 6) .
01 ME NS I eN A 1 (1 5 1 5 1 5)

'ii.
7 ":CALL GRTST (A 1 7 , 8 I G , M N)

C THE -;5 U B R eu TIN E DEFINES VALUES F e'R BIG M AND N.
x'
p'

~
!>i;

SUBROUTINE Subprograms 55

I

,
-C FOR COMMENT

'sTATEMENT J
NUMBER

I s 6 7 10 1$ 25

FORTRAN STATEMENT
]0 35 40 45 50

C STAY:EMENT 5 CALLS EXAMPLE SUBROUTINE 2. (F,I,~U,R,E, ,7), ,
DIMENSION ~(lOO) Y(lOO) .-. I

55

c ~.~,-.,~,-,~~~,~,~,~~,

56 SUBROUTINE Subprograms

1

10. PROGRAMS AND PROGRAM COMPONENTS

A FORTRAN source program is a collection of FORTRAN statements, comment lines, and end lines that completely
describe a computing procedure. Such programs are composed of any number of program units. Every program must
contain one main program unit and may also contain one or more subprogram units.

A main program unit must contain at least one executable statement and must not contain a SUBROUTINE or FUNC­
TION statement.

There are two types of subprogram units:

1. SUBROUTINE subprograms

2. FUNCTION subprograms

The form and rules for construction of subprograms are discussed in Chapter 9.

Program Components

FORTRAN programs consist of program parts, program bodies, and subprogram statements.

The following definitions and explanations clarify the roles these components play in the structure of a program.

Program part. A program part must contain at least one executable statement, but need not contain FORMAT
statements, and may not contain specification statements.

Program body. A program body is a coil ection of optional spec ification statements optional I y followed by
statement function definitions, followed by a program part followed by an END line. Specification state­
ments must be in the order: DIMENSION, COMMON, EQUIVALENCE.

Subprogram. A subprogram consists of a SUBRO UTiN E or FUNCTION statement followed by a program body.

Main Program. A main program consists of a program body.

Executable Program. An executable program consists of a main program plus any number of subprograms,
external procedures, or both.

Program Unit. A program unit is a main program or a subprogram.

Program Execution Sequence

Execution of a program begins with the execution of the first executable statement of the main program. When a
subprogram is referenced, execution of the subprogram begi ns with the first executabl e statement of that subprogram.

Compl etion of execution of a statement causes execution of the next following executabl e statement unless the state­
ment being executed is a GO TO, Arithmetic IF, RETURN, or STOP statement, or the terminal statement of a 00.
The sequence of execution following the execution of one of these statements is described in Chapter 7.

Programs and Program Components 57

I

A
A format descriptor, 37
alphanumeric

data, 3
characters, 8
transmission (see Holl erith transmission)

arithmetic
assignment statements, 5, 12
expressions, 9, 12,47
IF statement, 22, 24, 57
operators, 9

array
declarator, 14, 15,52,53,55
dimension, 14
element, 8,9,10-18,40,48,52
name, 8,48
storage allocation, 15

assignment statement, 12
asterisk, 9
auxiliary I/o statement, 28,29,41

B
BACKSPACE statement, 42
backspac i ng, 30
Basic Control Monitor, 1
BCD records, 28,29
binary I/O statements (see unformatted)
blank

c

in constants, 7
in END line, 4
in FORMAT, 35-38,40
in Hollerith fields, 3
special character, 3,5,42
character, 2,4, 35, 37, 40
record, 40
preceding, 40

CALL statement, 26,55
card

reader, 28
punch, 28, 29

carriage control, 42
character

C (see comment lines)
comma, 30- 32
maximum size, 29
set, 2
strings, 2,28,37,38
zero, 4

coding, forms, 1,2
comment line, 4
COMMON statement, 14-18,20,51,53,55,57
COMMON storage, 15, 16
compile, 1
computed GO TO (see GO TO)

58 Index

INDEX

constants, 7,9, 14, 16,20,31,33,48
contiguous operators, 9
continuation character field, 4
continuation line, 4,5
CONTINUE statement, 25
control

characters, 42
functions, 26
statements, 5
variable, 24

conversion
I-type/ 33
F-type, 34
E-type, 34

converted values, 33

o
data

conversion, 32,41
fields, 38
identification, 7,8
integer, 33
real, 7,34
set, 8
transmission, 26,28,30
type, 7,8, 12, 16,32

DATA statement, 19,20
constant list, 20
variable list, 20

datum
identifier, 30

declarator
name, 14, 15, 17
subscript, 14, 17,31

DEFINE FILE statement, 44
device unit number, 28
descriptor repeat specifications, 28
DIMENSION statement, 8, 14, 15, 17
direct access I/O, 44
disc, 29
DO-implied

items, 31
lists, 31
terms, 31

DO loop, 19,23,24
DO range, 23,31
DO statement, 21,24,31,57
dummy arguments, 49,51-53,55
dummy identifiers, 15

E
E format descriptor, 38,41
E-type conversion, 34
END FILE statement, 41
END line, 4,50,51,53,57
EQUIVALENCE statement, 14, 16-18,51,53,57
executable statement, 5,20,21,23,25,47,52,55,57

1

execution sequence, 57
exit, 24
Explicit Type statement, 15
expressions, 9,52,55

arithmeti c, 9,47
evaluated, 9
integer, 9, 10
permissible, 9, 10
real, 10
subscripted, 10

exponentiati on, 10
external

character string, 37
data representation, 33
device, 28
field,37,38
fi I es, 28

EXTERNAL statement, 18, 19

F
F format descriptor, 38,41
F-type conversion, 34
field

descriptors, 32,33,39,41
separators, 32, 39

files, 28
floating point data (see real data)
format

control, 39,41
descriptor, 6,33-35
specification, 39

FORMAT specifi cations, 29
FORMA T statements, 5,28,29, 32, 38, 40, 41, 44-46, 57
formatted

I/O, 28
record processing, 29
records, 40

FORTRAN
processor, 5, 48
program, 57
statements, 4, 5, 7, 50, 53

FUNCTION statement, 14, 15, 17,47,50,51
FUNCTION subprogram, 47,48,50-53,57
function

G

basic external (see I ibrary functions)
definition statements, 55
evaluation, 10
FUNCTION, 47,50
library, 42,48-50
reference, 47,48, SO-52
value, 48

GO TO, 6,21
group repeat count, 39

H
H format descriptor, 36,37,39,42
hexadecimal

data, 33,38

field, 2
transmission, 37,38

Hollerith
data, 3,5
field, 2
specification, 27
transmission, 33,36,37

I format descriptor, 38,41
I-type conversion, 33
identifier, 6,8, 15,47,48,51,53
identification field, 3
IF statement, 22,24,57
IJKLMN rule of typing, 8,47
implied DO loop, 29,31
input conditions, 36
input/output

list, 30, 39,45,46
statements, 28

integer, 7,8
constants, 14
data, 31

internal values, 33-35
interrupts, 1

L
language,
library

function, 47,48-50
references, 48-50

line

list

comment, 4
continuation, 4,5
END, 4,50,51,53,57
format, 2, 3
initial, 4,5
printer, 28
types, 4

considerations, 31
item, 31,41
requirements, 41
specification, 30,41

logical record, 30

M
magneti c tape, 29, 41
main program, 1, 16,57
monitor (see Basic Control Monitor and Real-Time

Batch Iv\onitor)
multiplication, 10

N
names (see i dent i fi ers)
negative val ues, 33
nested DO loops (see DO loop)
non-executable statements, 5, 15,32,51,57
numeric conversion, 32

Index 59

I

o
operands, 9
operators, 9

unary, 9
binary, 9
conti guous, 9

p
paper tape

reader, 28, 29
punch, 28,29

parenthesis, 9, 10,32
PAUSE statement, 21,26
permissible expressions, 9, 10
physical device, 28
precision

standard, 7
extended, 7

printed output, 42
pri nters, 28
processor, 1,4
program

R

body, 57
components, 57
executable, 1,48,57
execution, 26,57
FORTRAN, 57
main, 1, 16,57
object, 1,4
part, 57
source, 1,57
sub, 1, 16,24,27,47,51,57

READ statement, 6,28-32,41,45
real

data, 7
numbers, 7
variabl e, 8

Real-Time Batch Monitor,
real type data, 34
record

blank, 29, 30,40
demarcation, 41
formatted, 40
length, 29
processing, 29,41
skip, 29,36,45

referenc i ng
array el ements, 8,9, 11
FUNCTION subprograms, 52
statement functions, 48

RETURN statement, 21,27,51,53,57
repeat count, 38
REWIND statement, 41

s
scalars, 18
setup functions, 26

60 Index

slashes, 32, 39,40,41
slash specification, 29
source

programs, 1,4,57
statements, 1

specifications
slash, 29
spacing, 32

specification statements, 5, 14, 15,47,57
standard assignments, 28
statements

BACKSPACE, 41
CALL, 21,26,27, 55
COMMON, 14-16, 19,20,51,53,55,57
CONTINUE, 21,24
DATA, 19,20
DEFINE FILE, 44,45
DIMENSION, 14, 17,57
DO, 21,23-25,29,32,57
END FILE, 41
EQUIVALENCE, 14, 16,20,51,53,55
EXTERNAL, 18, 19
executabl e, 5,20,21,23, 25,47,52, 55, 57
FORMAT, 28,29,32,38-41,55
FORTRAN, 50,53
FUNCTION, 14, 15, 17,50,51
function definition, 5
functions, 43,48
GO TO, 6,21,22,24,57
IF,21,22,24,57
label, 4,5,21,22,28,32
line, 4, 12
nonexecutable, 5, 15,32,51,57
PAUSE, 21,26
READ, 6, 28-32,41,45
RETURN, 21,27,51,53,57
REWIND, 41
source, 1
STOP, 21,26,57
SUBROUTINE, 14, 15, 17,53
type (see Explicit Type statement)
types, 1,6, 15
WRITE, 28-32,41,46

STOP statement, 21,26,57
storage unit, 17, 18
subscripts, 8, 17,31,52
subscripted variable (see array element)
subprogram, 24,27,47,48,50,51,53,57

identifier, 18
SUBROUTINE

statement, 14, 15, 17, 53
subprograms, 47, 53, 55, 57

subroutine reference, 55

T
temporary storage, 29
terminal statement, 24,25
type statement (see Explicit Type)
typewriter

input, 28
output, 28,42

1

u
unconditional GO TO (see GO TO)
unformatted

I/O statements, 29,40
records, 30

unit number (see device unit number)
unsubscripted arrays, 30, 31

y
variables, 8, 14, 15,20,29

integer, 8,22,23,37,38
real, 8
name, 9, 12, 16,48,51,52, 55

references, 48
vertical format control, (VFC), 42

w
WRITE statement, 28-32,40,41

x
X format descriptor, 36,41

z
Z format descriptor, 37, 38
Z format code, 38

I

Index 61

1

Xerox Corporation
701 South Aviation Boulevard
EI Segundo, California 90245

Reader Comment Form
We would appreciate your comments and suggestions for improving this publication.

XEROX

Publication No. I Rev. Letter I Title I Current Date

How did you use this publication? Is the material presented effectively?

o Learning D Installing 0 Sales o Fu II y Covered DWell o Well Organized o Clear Illustrated D Reference o Maintaining 0 Operating

What is your overall rating of this publication? What is your occupation?

0 Very Good 0 Fair D Very Poor

o Good o Poor

Your other comments may be entered here. Please be specific and give page, column. and line number references where
applicable. To report errors, Please use the Xerox Software Improvement or Difficulty Report (1188) instead of this form.

Your N arne & Return Address

2190(12 72)

Thank You For Your Interest. (fold & fasten as shown on back, no postage needed if mai led in U.S.A.)

I

Fold

Attn: Programming Publications

Fold

BUSINESS REPLY MAIL
No postage stamp necessary if mailed in the United States

Postage will be paid by

Xerox Corporation
701 South Aviation Boulevard
EI Segundo, California 90245

First Class
Permit No. 229

EI Segundo,
California

I

