Xerox Extended Symbol
Xerox 530 and Sigma 2/3 Computers

_L.anguage and Operations
. Reference Manual

FROXEROXEROXEROXEROXEROXEROX
DXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXER(
ROXEROXEROXEROXEROXEROXEROXE
EROXEROXEROXEROXEROXEROXEROXE
IXEROXEROXEROXEROXEROXEROXERO
OXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXER
ROXEROXEROXEROXEROXEROXEROXE
KEROXEROXEROXEROXEROXEROXEROX
IXEROXEROXEROXEROXEROXEROXERO)
LOXEROXEROXEROXEROXEROXEROXER(
ROXEROXEROXEROXEROXEROXEROXETR
IEROXEROXEROXEROXEROXEROXEROXE
XEROXEROXEROXEROXEROXEROXEROX
OXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXERS
ROXEROXEROXEROXEROXEROXEROXE
EROXEROXEROXEROXEROXEROXEROXI

XEROX

Xerox Extended Symbol

Xerox 530 and Sigma 2/3 Computers

Language and Operations

Reference Manual

90 10 52F

April 1976

File No,: 1X23

XH36, Rev, 0

© 1972, Xerox Corporation Printed in U.S A

REVISION

This edition merely incorporates the 90 10 52E-1 and 90 10 52E-2 revision packages into the manual. Changes in
the text from that of the previous manual are indicated by a vertical line in the margin of the page.

RELATED PUBLICATIONS

Title Publication No.
Xerox 530 Computer/Reference Manual 90 17 85
Xerox Sigma 2 Computer/Reference Manual 90 09 64
Xerox Sigma 3 Computer/Reference Manual 90 15 92
Xerox Real-Time Batch Monitor (RBM)/RT, BP Reference Manual 90 10 37
Xerox Real-Time Batch Monitor (RBM)/OPS Reference Manual 90 15 55
Xerox Real-Time Batch Monitor (RBM)/User's Guide 90 19 60
Xerox Symbol/LN, OPS Reference Manual 90 10 51

Manual Content Codes: BP — batch processing, LN — language, OPS — operations, RBP — remote batch processing,
RT — real=time, SM — system management, TS — time=sharing, UT — utilities.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features
may depend on o specific configuration of equipment such as additional tape units or larger memory . Customersshould consult their Xerox sales representative
for details.

PREFACE

1. INTRODUCTION

Programming Features

Error Detection

Extended Symbol Language
Extended Symbol Processor

/

2. EXTENDED SYMBOL LANGUAGE
ELEMENTS AND SYNTAX

Language Elements
Characters

Symbols

Constants

Expressions

Literals

Syntax
Statements

Statement Continuation

Comment Lines

Processing of Symbols
Defining Symbols

Redefinable Symbols

Symbol References
Classification of Symbols

Symbol Tables

Absolute and Relocatable Values
Symbols

Expres-ions

3. XEROX 530 AND SIGMA 2/3 MACHINE
INSTRUCTIONS

Class 1: Memory Reference Instructions
Single Precision Class 1 Instructions
Multiple Precision Class 1 Instructions
Field Addressing Class 1 Instructions

Class 2: Conditional Branch Instructions

Class 3: Shift Instructions

Class 4: Copy Instructions

Class 5: Input/Output Control Instructions

4, ADDRESSING

Argument Addressing Format

Direct Addressing
Indirect Addressing

BASE

Symbolic-Relative Addressing
Automatic Addressing

Address Generation Diagnostics —
Literal Pools

LPOOL

CONTENTS

vi

NONONV OO NO DA WLOW w —_—— ——

—_—— - 00O oOoC

13
13
15
15
16
16
16
17

Address Literals

ADRL

LOCATION COUNTERS AND PROGRAM

SECTIONS

Location Counters

Setting the Location Counters
ORG

LOC

BOUND

RES

COMMON

Program Sections

ASECT/CSECT

EXTENDED SYMBOL DIRECTIVES

DATA

DEF

DISP

DO/ELSE/FIN

END

EQU

GEN

GOTO

IDNT

LBL

LIST

LOCAL

PAGE

PCC

REF

S:STEP

SET

SOCwW

SPACE

SREF.

TEXT

TEXTC

TITLE

PROCEDURES

Procedure Format

CNAME

PROC

PEND

Procedure References

Procedure~Local Symbol Regions
Intfinsic Functions

ABS

AF

AFA

AFNUM

AFR

AT

22
23

24

24
24
24
25
25
26
26
26
26

28

28
29
29
30
32
33
33
34
35
35
35
36
37
37
37
37
38
38
38
38
39
39
39

41
41
4]
41
42
42
43
43
45

45

ifi

8.

RBM Control Commands

CF

CFNUM

CFR

UFV

Sample Procedures

OPERATIONS

JOB Control Command

ASSIGN Control Command

DEFINE and TEMP Control Cards
{Temporary File Definition)
XSYMBOL Confrol Command
BA

BO

CR

DW

GO

LO

LU

NP

PP

SL

SO

SS

Ul

Updating a Source Program

Standard Object Program Format
Object Module Records

Load lrems

Assembler Diagnostics

Flags

Error Messages

Assembly Listing

Summary Tables

INDEX

A,

APPENDIXES

SUMMARY OF XEROX 530 AND SIGMA 2/3

INSTRUCTIONS

Memory Reference Instructions (Class 1)
Basic Set

General Register Set

Floating=Point Set

Multiple Precision Set

Field Addressing Set

Conditional Branch Instructions (Class 2)

Shift Instructions (Class 3)
Copy Instructions (Class 4)

Input/Output Instructions (Class 5)
EXTENDED SYMBOL DIRECTIVES

INCOMPATIBILITIES BETWEEN EXTENDED
SYMBOL AND SYMBOL

46

47
47
48

50

50
50
50

51
51
51
52
52
52
52
52
52
52
52
52
52
52
53
53
57
57
57

57
58
63
63

79

67

67
67
67
67
67
68
68
68
68

69

73

CONCORDANCE PROGRAM

Introduction

Concordance Listing

Local Section

Nonlocal Section

Proc Section

Opcode Section

Concordance Control Command
Section Control Commands

Error Alarms

Compatibility

EXPANSION OF SIGMA 3 SIMULATED
INSTRUCTIONS

No Indirect Addressing

Indirect Addressing

FIGURES
Extended Symbol Character Set
Xerox Sigma Symbolic Coding Form
Flowchart of DO/ELSE/FIN Loop

Deck Setup for Assembling Multiple
Programs Using the BA Option

Deck Setup for Assembling Multiple
Programs Without BA Option

Deck Setup for Using the Ul Option With
the BA Option

Deck Setup for Using the UI Option Without

the BA Option
Sample Update Listing With Errors

Assembly Listing Format

Assembly Listing

Sample Concordance Deck Setup

Concordance From X1 RAD File
Following an Assembly

TABLES

Extended Symbol Operators

Error Messages

74
74
74
74
74
74
74
75

75
76

77

77
77

31

54

54

55

56
58
64
64

76

76

59

NV ONOO D WN —~

EXAMPLES

Statement Continuation

Expressions Using + and = Operators
Expressions Using Miscellaneous Operators
Automatic Addressing

LPOOL Directive

ADRL Directive

ADRL Directive

ORG Directive

LOC Directive

BOUND Directive

RES Directive

ASECT and CSECT Directive

DATA Directive

DEF Directive

DO/FIN Directives

DO/ELSE/FIN Directives

DO/FIN Directives
END Directive

GEN Directive

GENT1 Directive

12
12
21
21
23
23
25
25
25
26
27
29
29

32
32
32

34

21.
22,
23.
24,
25.
2.
27.

29.
30.
31.
32.
33.
34.
35.

37.
38.
39.
40.

42,

GEN2 Directive

GOTO Directive

LOCAL Directive

LOCAL Directive

LOCAL Directive
REF Directive

SET Directive

TEXT Directive

TEXTC Directive

TITLE Directive

Procedure Definition/Procedure Reference

Procedure-Local Symbol Regions
ABS Function

AF/AFA Function

AFNUM Function

AT Function

CFNUM Function

CFR Function

UFV Function

AT and UFV Functions

Conditional Code Generation

Procedure that References a Procedure

vi

PREFACE

This manua! describes the Xerox Extended Symbol assembly system for the Xerox 530 and Sigma 2/3 computers. 1t
defines a symbolic programming language and the general operations of the processor under control of the Real-Time
Batch Monitor,

It is intended for use as a reference document by experienced programmers and does not aim to be a programming
primer. It is assumed that the reader is familiar with the basic elements of digital computer programming and with
the description of the Xerox 530 or Sigma 2/3 computers as given in the appropriate computer reference manual.

1. INTRODUCTION

Extended Symbol, the extended assembly system for
Xerox 530 and Sigma 2/3 computers, is both a programming
language and o language processor. The Extended Symbol
processor accepts as input a source program coded in either
Symbol or Extended Symbol, processes it, and outputs an
object module, diagnostic messages, and an assembly list-
ing. The object language format is described in the RBM/
RT, BP Reference Manual, 90 10 37; the diagnostic mes-
sages and the format of the assembly listing are described
in Chapter 8 of this manual.

PROGRAMMING FEATURES

Extended Symbol provides the programmer with a number of
convenient features:

e Forward references, literals, and external definitions
and references simplify the task of referring to other
program elements.

e Local and nonlocal symbols can be specified and used.

e Self-defining constants facilitate use of hexadecimal
and decimal values and character strings.

e Expressions consisting of terms and arithmetic and log-
ical operators may be used as arguments in machine in-
structions and directives.

e Automatic addressing is invoked by the assembler when
an address value is encountered that is outside the
range allowed for the statement.

e ASECT and CSECT directives allow the partitioning of
a program into absolute and relocatable sections.

e The GOTOQ directive allows the assembler to condition-
ally alter the sequence in which statements are assembled.

e TEXT and TEXTC directives simplify the coding of out-
put messages.

e User~defined procedures allow the programmer to gen-
erate different sequences of code as determined by
conditions existing at assembly time.

e The GEN directives provide the facility for generating
Class 1 and Class 2 machine instructions.

e "Common" space may be shared with FORTRAN or other
Extended Symbol subprograms.

ERROR DETECTION

During assembly asource program is checked for errors in usage
and syntax. 1fanerroris found, appropriate notification is
given and the assembly operation continues so that all errors

may be located at one time. An assembly is terminated pre-
maturely (aborted) only if an irrecoverable [/O failure oc-
curs, or one of the assembler tables is exceeded.

EXTENDED SYMBOL LANGUAGE

The Extended Symbol language is comprised of a set of com-
mands and the qualifying rules for constructing progrom
statements in symbolic terms. There ure two classes of com-
mands: mnemonic representations of the machine instruc~
tions and assembler (processor) directives.

A directive is a command to the assembler that allows the
programmer to describe or select assembly options at cssem-
bly time and, also, allows him to specify such elements in
his program as groups of data, character strings, and storage
areas. The format for coding program statements and the
rules of statement structure are deseribed in th~ following
chapters.

EXTENDED SYMBOL PROCESSOR

The Extended Symbol processor is a Xerox 530and Sigma 2/3 |
machine language program that operates as a three-pass pro-
gram assembler under control of the Real-~Time Batch Moni-
tor. These passes ore called the encoder, definition, and
generation passes. Throughout this manual the processor is
referred to as Extended Symbol or "the assembler",

During the encoder pass, the assembler checks the syntax of
each source statement, generates the assembler's symbol
tuble and converts constants to binary. No semantic pro-
cessing nor symbol definition occurs during the encoder pass.

During the definition pass, the assembler allocates space,
defines symbols, sets up symbol and literal tables asrequired,
and in general satisfies the many interconnection conditions
presctibed by the source program.

In the generation pass, Extended Symbol satisfies forward
and literal references and produces an object program, diag-
nostic messages, and an assembly listing.

External references (references to locations inother programs)
and forword references to procedure local symbols cannot be
completely processed by the assembler; however, during the
generation pass, information is generated in the object pro-
gram so that the program loader may satisfy these references
prior to program execution.

[n operation, the assembler maintains a series of temporary
storage areas:

1. Buffer areas for input of program statements and output
of object code and an assembly listing.

2. Local and nonlocal symbol tables in which statements
and data identifiers (along with their storage assignments

Introduction 1

2

and pertinent charagteristics) are placed as they are
defined or referenced. Local and nonlocal symbols
are explained in Chapter 2.

Literal tables in which literal references are accumu-
lated until the end of assembly.

Three location counters: a load location coynter, an
execution location counter, and a common location
counter that provide information for the object pro-
gram — and consequently for the loader. The execution
location counter is used by the assembler in defining
symbols. The load lacation counter is used for linking
external symbol references.

The common location counter is affected only by the
COMMON directive. Common symbols may be

Extended Symbol Processor

referenced ¢s relocatable operands; however, the as-
sembler will not generate any instructions or data to
be stored in the common area.

5. Work areas used during assembly.

6. Assembly variables and flags in accordance with
directives.

7. Procedure definitians that are processed only when
they are referenced.

Supplied with the assembler are a set of standard procedures
which define the Xerox 530 and Sigma 2/3 machine opera- |
tion codes.

2. EXTENDED SYMBOL LANGUAGE ELEMENTS AND SYNTAX

LANGUAGE ELEMENTS

Input to the assembler consists of a sequence of characters
that are combined to form assembly language elements. These
language elements, which include symbols, constants, ex-
pressions, and literals, comprise program statements which
in furn comprise a source program.

CHARACTERS

The Extended Symbol character set is shown in Figure 1.

Alphabetic: A through Z, and $, @, #, (break char-
acter prints as "underscore")

(: is reserved alphabetic character)

Numeric: 0 through 9
Special
Characters: Blank
+ Add (or positive value)

- Subtract (or negative value)

Multiply, indirect addressing prefix,
source register inversion designator,
or comments line indicator

/ Divide
Decimal point
Comma

Left parenthesis

~— o~~~

Right parenthesis

Constant delimiter (single quotation
mark)

& Logical AND

I Logical OR (vertical slash)

] Logical exclusive OR (vertical slashes)
- Logical NOT or complement
< Less than
>

Greater than

i

Equal or introduces o literal

<= Less than or equal
>= Greater than or equal
; Continuation code

Binary shift

TAB Equivalent to blank; used to tabulate
keyboard printer output

Figure 1, Extended Symbol Character Set

The colon (:) is an alphabetic character reserved for use by
standard Xerox software. It is included in the names of
Monitor routines (M:POP)and various mathematical sub-
routines (L:ATAN) to avoid any potential conflict with user
symbols.

SYMBOLS

Characters are combined to form symbols. Symbols provide
programmers with a convenient method of identifying pro-
gram elements so they can be referred to by other elements.

Symbols must conform to the following rules:

1. Symbols should consist of 1 to 8 alphanumeric charac-
ters: A-Z, $, «, # ., ., 0-9, of which at least one
must be alphabetic. No special characters or blanks
may appear in a symbol. Only the first eight charac-
ters will be used by the assembler to identify the pro-
gram element represented by the symbol. Anyremaining
characters are ignored in processing the symbol and (if
requested) a warning error is output on the listing.

2. The characters $ and $$ may be used in the argument
field of a statement to represent the current value of
the execution and load location counters, respectively
(see Chapter 5); these characters must not be used as
symbols in the label field (see "Syntax" later in this
chapter).

The following symbols are valid:

ARRAY

R1

INTRATE

BASE

7TEMP

#CHAR

$PAYROLL

$ (execution location counter)

The following symbols are also valid, but only the under-
lined portion is considered by the assembler and (if requested)
a warning error is noted.

The following symbols are invalid:

BASE PAY Blanks may not appear in symbols,

TWO:=2

Special characters (=) are not permitted
in symbols.

Extended Symbol Language Elements and Syntax 3

CONSTANTS

A constant. is-a self-defining language element, lts value
is inkerent in the constant itself, and it is assembled as
part: of the statement-in which it appears.

Six: types of constants are permitted in Extended Symbol
statements: decimal integer constants, character string
constants,. hexadecimal! constants, fixed-point decimal
constants, floating=-paint short constants, and floating=-point
long constants.

Decimal Integer Constants

A decimal’ integer constant consists of a string of decimal
digits. The value represented by the decimal digits must be
in the range 0'to 32767. The decimal integer is converted
to its.internal binary representation and retained in one full
word of memory.

Examples:

326
32767
5

o

Character String Constants:

A character. string.constant consists.of 1: through 64 EBCDIC
characters enclosed by single quotation marks (see "Extended
Binary-Coded-Decimal Interchange Code" in the Sigma:2
and Sigma.3 Computer Reference Manuals, 90 09 64 and
90 15 92, or Xerox 530 Computer/Reference Manual,

90 19 60, as appropriate).

Example:
'ANY: CHARACTER: INCLUDING BLANKS'

Any EBCDIC character is permitted in a character string
constant.. Each character is allocated eight bits of storage.

Because single quetation marks are used as character string
delimiters by the assembler, a single quotation mark (or
apostrophe) within a character string must be indicated in a
special’ manner. An-apostrophe in the string is represented
by two-consecutive apostrophes; for example,

IABHCH 1
represents the string

AB'C!
Character strings are stored two characters per computer
word. The descriptions of IDNT, LBL, DATA, TEXT, TEXTC,
and TITLE directives in Chapter é include positioning infor-

mation pertinent to character strings used with these direc-
tives. In.all other usages character strings must not contain

lLanguage Elements

more than two characters, If the string contains two char-
acters, they occupy the left and right bytes of a single word.
If the string contains one character, it occupies the right
byte of a word and the left byte is filled with a zero (i. e,
a null EBCDIC character).

Hexadecimal Constants

A hexadecimal constant consists of a string of 1 through 16
hexadecimal digits enclosed by single quotation marks and
preceded by the letter X.

Example:

X'9CQIF!

The assembler generates four: bits of storage for. each hexa-
decimal digit-in.the string. Thus, four hexadecimal digits

fill one word of storage. Hexadecimal constants are right-
justified in their storage areq; if the number of digits.is not
a multiple of 4, the assembler generates one, two, or three
leading hexadecimal zeros in the leading positions of the

storage area.

The hexadecimal constant in the example above would
be stored as

word 1 0{0]|0]|9
word 2 CiO0/1|F

Hexadecimal digits and their binary and decimal equivalents
are:

Hex. Binary Decimal Hex. Binary Decimal

0 0000 0 8 1000 8

1 0001 1 9 1001 9

2 0010 2 A 1010 10
3 oon 3 B 101 N
4 0100 4 C 1100 12
5 0101 5 D 1101 13
6 0110 6 E 1110 14
7 om 7 F (RRY 15

The Xerox 530 and Sigma 2/3 Computer Reference Manuals |
contain further information about hexadecimal arithmetic and

conversion of numbers from hexadecimal to decimal and deci-

mal to hexadecimal.

Fixed-Point Decimal Constants

A fixed=point decimal constant consists of the following
components in order, enclosed by single quotation marks,
and preceded by the letters FX:
1. An optional algebraic sign.

2. d, d., d.d, or .d, where d is a decimal digit string.

3. An optional exponent: the letter E followed optionally
by an algebraic sign, followad by one or two decimal
digits.

4. A binary scale specification: the letter B followed op-
tionally by an algebraic sign, followed by one or two
decimal digits that designate the terminal bit of the
integer portion of the constant (i.e., the position of
the binary point in the number). Bit position number-
ing begins at zero and refers to the leftmost bit of the
word or the doubleword in which the constant is to be
generated.

Items 3 and 4 may occur in any relative order.

When FX constants are used as explicit arguments in a
DATA,n directive and 1 < n = 4, they are treated as a 32-
bit integer quantity (alignment on the binary point is relative
to this 32-bit field) and are generated as such. In all other
uses, FX constants are treated as 16-bit integers, with binary
point alignment relative to this 16~bit field.

No checking is ever made for truncation from the right-
hand side of an FX constant. Loss of significance on the
left-hand side or change of sign is flagged as an error.

Example:
Generated Hexa~
Statement decimal Value
DATA FX'3.7584' 1E00

1E00 0000
0000 1E00 0000

DATA,2 FX'3.75B4'
DATA,3 FX'3.75B4'

SuB =FX'-.0832B18E+4' FF98 (literal value)
DATA FX'{BO" (error)
GEN,8,8 FX'3.7584',1 (error)

Floating-Point Short Constants

A floating-point short constant consists of the following
components in order, enclosed by single quotation marks,
and preceded by the letters FS:

1. An optional algebraic sign.
2. d,d., d.d, or .d where d is a decimal digit string.
3. An optional exponent: the letter E followed optionally

by an algebraic sign followed by one or two decimal
digits.

A floating=point short constant requires two memory words
for storage. For this reason, a floating-point short constant
may appear only in the argument field of a DATA directive.

Example:
Constant Hexadecimal Value
FS'1.! 41100000

Floating-point short constants have a magnitude in the
range 5.398x10~79 to 7.237x1075 (i.e., 16769 to 1663- 1649
with the associated precision of 6 +significant digits. That
is, the sixth most significant digit is accurate, while the
seventh will sometimes be accurate, depending on the value
of the constant.

Floating-Point Long Constants

A floating-point long constant consists of the following com-
ponents in order, enclosed by single quotation marks and
preceded by the letters FL:

1. An optional algebraic sign.
2. d, d., d.d, or .d where d is a decimal digit string.
3. An optional exponent: the letter E followed optionally

by an algebraic sign followed by one or two decimal
digits.

A floating-point long constant requires three memory words
for storage. For this reason a floating=point long constant
may appear only in the argument field of a DATA directive.

Example:
Constant Hexadecimal
FL'-.98E1' B19999990004

The magnitude of floating-point fong constants is the same
as for floating-point short constants; however, floating-
point long constants have an associated precision of 10+
significant digits.

EXPRESSIONS

An expression is an assembly language element that repre-
sents a value. It consists of a single term or a combination
of terms (multitermed) separated by arithmetic, logical, or
relational operators.

A single-termed expression may be any valid symbol refer-
ence (previously defined, forward, common, or external),

a constant, or a literal. (Symbol references and literals are
described later in this chapter.)

A multitermed expression may contain any valid symbol
reference (previously defined or forward) or a constant, It
must not contain literals, forward procedure local refer-
ences, or external references. Appropriate error messages
are printed if any of these conditions is violated.

Operators and Expression Evaluation

A single-termed expression, such as 52 or $ or AB, takes on
the value of the term involved. A multitermed expression,
such as INDX+4 or ZD*8+XYZ, is reduced to a single value
by the assembler.

Language Elements 5

The value represented by a multitermed expression must not

exceed the 16-bit capacity of one computer word,

The operators that may appear in an expression are shown

in Table 1.

Multitermed expressions are e

1. Each term is evaluated and replaced by its internal

value.

2. Arithmetic operations are performed from left to right.
Those with the highest "binding strength" are performed

first. For example:
A+B<C*D+E
is evaluated as if it were

(A+B)<((C*D)+E)

3. Division always yields an integer result; any fractional

portion is truncated.

An expression preceded by an asterisk (*) usually denotes

indirect addressing. Used as

asterisk does not affect the evaluation of the expression. If
an asterisk precedes a subexpression, it is interpreted as a

multiplication operator.

Table 1. Extended

valuated as follows:

a prefix in this way, the

Symbol Operators

Binding

Operators Strength

Function

-

7
- 7
+ 7
6

* K

S *
o O

Ay
i
N W W W W W W A M

Unary not
Unary minus
Unary plus

Logical binary shift

(left shift if second operand
is positive, right shift if
second operand is negative)

Integer multiply
Integer divide
Integer add

Integer subtract

Less than

Creater than

Less than or equal
Greater than or equal
Equal

Not equal

Logical AND
Exclusive logical OR

Inclusive logical OR

6 Language Elements

Logical Operators

The logical NOT (=), or complement operator, causes a
1's complement of its operand:

Hexadecimal

Value Equivalent 1's Complement
3 00... 00N ... 1100
10 00... 1010 11... 0101

The binary logical shift operator (**) determines the direc-
tion of shift from the sign of the second operand: a negative
operand denotes a right shift and a positive operand denotes
a left shift. For example:

5%%-3

results in a logical right shift of three bit positions for the
value 5, producing a result of zero.

The result of any of the comparisons produced by the com-
parison operators is

0 if "“false"
1 if "true"
so that

Expression Result

3>4 0 3 is not greater than 4,

—3=4 0 the 16-bit value —3 is equal to
11...1100 and is not equal to 4;
(i.e., 00...0100).

3==4 1 3 is not equal to 4,

—(@3=4) 11...11 3 is not equal to 4, so the result
of the comparison is 0 which,
when complemented, becomes

a 16~bit value (all 1's),

The logical operators & (AND), | (OR), and Il (Exclusive
OR) perform s follows:

AND
First Operand: 0011
Second Operand: 0101
Result of & Operation: 0001
oR
First Operand: 0011
Second Operand: 0101
Result of | Operation: 0111
Exclusive OR
First Operand: 0011
Second Operand: 0101

Result of I Operation: 0110

Note: Ej<Ep<Ej cannot be used to determine whether Ej
is within the limits E} and E3. Instead it is evalu-
ated as if it had been written as (E] <E)<E3. That
is, the triad E<E9 results in a value, E, of Oor 1.
Then this value is used for the triad b<Eg to
yield another binary result. The correct form is
E] <E2&E2<E3.

Parentheses Within Expressions

Multitermed expressions frequently require the use of paren-
theses to control the order of evaluation. Terms inside
parentheses are reduced to a single value before being com-
bined with the other terms in the expression. For example,
in the expression

ALPHA™* (BETA +5)

the term BETA+5 is evaluated first, and that result is mul-
tiplied by ALPHA,
Expressions may contain parenthesized terms within paren-
thesized terms:

DATA + (HRS/8-(TIME*2*(AG +FG)) + 5)

The innermost term (in this example, AG+FG) is evaluated
first. Parenthesized terms may be nested to any depth.

Expressions must not contain two consecutive binary oper-
ators. The assembler distinguishes between the unary op-

erators (=), (+), and(—), and the binary operators as follows:

1. An operator preceding an expression may only be a
unary operator, as in =27.

2. The first operator following a term in a multitermed
expression must be a binary operator:

-27--ABLE ANS<-6
unary unary
binary binary
—-unary

In general, Extended Symbol will accept any combination
of operators that is algebraically logical; that is,

5*-BETA
5-*BETA

is permissible.
is not permissible.

Summary of Operator and Expression Syntax

1. Labels (symbols) and constants are single-termed
expressions.

2. If Ey is an expression, then (E1)is an expression,

3. If Eyis an expression, then ~Ey, +Ey and —E7 are
expressions,

4, If Ey and Ey are expressions, then E]**Ez, E1*Ep,
E]/Ez, E] + E2, E] - E2, E] < E2, E‘>E2, E]<=E2,
Ey>=Ep, Ey—=Ep, E1&Ep, Ey=Ey, Ey Il Ep, and
Eq1 | Eo are all expressions.

5. External and forward procedure local references may
occur only as single-termed expressions.

LITERALS

Constants provide one means of incorporating data directly
into a program at the time it is being written; literals pro-
vide another means. A literal is written as a constant
(decimal, hexadecimal, or character string) or symbol refer-
ence preceded by an equal sign. The literal, in contrast to o
constant, is not processed as part of the program statement
in which it appears. Instead, the literal is evaluated and
assigned to a storage location in a literal pool, and the
address of that location is assembled into the instruction.

Literals are useful in statements that require the address of
a data value rather than the data value itself. Without lit-
erals it would be necessary in such situations not only to
enter the address (or symbolic location) of the data value
into the statement, but also to establish the value in the lo-
cation referred to by using a DATA directive, for example.
By using a literal, the value can be written directly in the
statement; the storing of the value in a memory location
and the substitution (in the statement) of the value's address
are tasks performed automatically by Extended Symbol.

A literal consists of an equal sign followed by o single-
termed expression (other than a literal) or an equal sign
followed by a multi-termed expression.

The value represented by a literal must not exceed the
16-bit capacity of one computer word,

Examples of valid and invalid literals:

Literal Notation ~ Description
=-185 Valid. Decimal value -185
=K' Valid. Alphanumeric constant in
storage s | 0000[0000[1101]0010]
0 K
='ABC' Invalid, Exceeds 1-word capacity

=X'5DF' Valid. Hexadecimal constant in

storage as [0000J0101]1101]1111]
o 5 D F

Language Elements 7

L_I»rfriol Notation Description

=X'AF6BE' Invalid. Exceeds 1-word capacity.
=ALPHA Valid, Address value of symbol ALPHA,
=ALPHA +3 Valid,

“~ALPHA Valid {(provided ALPHA is absolute).
=*ALPHA Invalid. Multiple level indirect

addressing is not allowed.

When the assembler encounters a literal, it checks the lit-
eral for validity, generates error notations if necessary,
determines the literal value, allocates storage for the value
in a future literal pool (see LPOOL directive, Chapter 4),
and generates an address pointing to the literal. This ref-
erence address is used in the generation pass for assembling
the statement in which the literal occurred.

SYNTAX

The assembly language elements may be combined with
machine instructions and assembler directives to form state-
ments which comprise the source program.

STATEMENTS

A statement is the basic component of an assembly language
source program, A statement is also called a source
statement, a program statement, or a symbolic line.

Source statements are written on the standard coding sheer
shown in Figure 2.

Fields

The body of the coding sheet is divided into four fields:
label, command, argument, and comments. The codingsheet
is also divided into 80 individual columns. Columns 1
through 72 constitute the active line; columns 73 through 80
are ignored by the assembler except for listing purposes and
may be used for identification and a sequence number.

The columns on the coding sheet correspond to those on a
standard 80-column card; one line of coding on the form
can be punched into one card.

Extended Symbol provides for free-form symbolic lines; that
is, it does not require that each field in a statement begin

XEROX
SIGMA
PROBLEM SYMBOLIC CODING FORM
identification PAGE OF
PROGRAMMER 73 80 DATE
e
LABEL COMMAND ARGUMENT COMMENTS
1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 72
. == — I IS SS S SSS a— e e e e S B e e
——r— et — B A A A
e 7 T T e B A E
T LB A B B S B B SR | MR RN A A S S B L AL SRR A SN A
A T — A A A e e o B o i B
IR LI ¢ AR R A B B | L ISR S EEMELAALARLE B B RLILAE SRR AL B B
Tp— T AR A AL B S S LSRRI L LA S LR A N LSS REUNL LN BRI N NS R B
T | S | IR SRS ISR LA EE L s BELA AR R LB AN S RN BELALANLA BELAL N e
T | I B | I AL BRELEA T
T T T T L S B AR RS ML EAALEAS SRR IS SRULAL IR BN B
T r T L SRS SRS BRI | U SRS RAE AN AL LRSI R LA SRS N R AR B
- e —————— B o o A e e e e e N I o o o B nn
e - B A N B e e B B e e e A a
T T LA B B B B B AL | A AR BN SRS RN BELEINARILE SIS RIS B
T T ML AN SRR RS BN L EEASL N e SR L B S A RN B
T T L S S B | L RS B B AL S I AN SN S
T T LA L S S S S A S LA N A CHL S B B B RN L A SN L BN R
AL R T T TT TrPTTTT Ty T Ty A A R L B AL
——r— r——y T T e e B e s b
——— T B S T e T s I e
EAELEE B | B L B B A A AR | 0 RN R RN LS UL IS DL S A N B
L B T A B A e e e e e B S A RS A RSN S M S M S Bt R S B L S B B
e e e e T e B i e B A maman
T T N N A S RN S B A L B S A B BB B A SRS S B e
T | A T T T T T T A SN R S B S H L SR SIS S B S B B AL B
Figure 2. Xerox Sigma Symbolic Coding Form

8 Syntax

in a specified column (with the exception of the label field).
The rules for writing free-form symhkolic lines are:

1. The assembler interprets the fields from left to right:
label; command; argument; comments.

2. A blank column terminates any field (except the com-
ments field, which is terminated at column 72 on card
input or by a new line character on paper tape input).

3. One or more blanks at the beginning of a line specifies
there is no label field.

4. The label field, when present, must begin in columnl.

5. The command field begins with the first nonblank col-
umn following the label field or in the first nonblank
column following column 1 if the label field is omitted.

6. The argument field begins with the first nonblank cot-
umn following the command field. An argument field
is designated as blank in either of two ways:

a. Eleven or more blank columns follow the command
field.

b. The end of the active line (column 72) is encoun-
tered, less than 10 blank columns appear after the
command field, and the active line is not continued.

7. The comments field begins in the first nonblank column
following the argument field or after at least 11
blank columns following the command field when the
argument field is empty.

Entries

A source statement may consist of one to four entries written
on a coding sheet in the appropriate fields: a label field
entry (optional), a command field entry (required), an argu-
ment field entry (usually required), and a comments field
entry (optional).

A label entry is asymbol that identifies the statement in which
itappears. The label enables a programmer to refer to a spe-
cific statement from other statements within his program.

The command entry is a mnemonic code representing a machine
instruction or assembler directive specifying, respectively,the
machine operation or assembler function to be performed. A
command entry is required in every active line. Thus, if a
statement line isentirely blank following the label field or if
the command entry isinvalid (i. e., not an acceptable instruc-
tionordirective), the assembler declares the statement inerror,
generates a word of all zeros in the object program, and flags
the statement in the assembly listing. The mnemonic codes for
machine instructions and assembler directives recognized by
the assembler are listed in Appendixes A and B, respectively.

An argument entry consists of one or more symbols, con-
stants, literals, orexpressions separated by commas. The argu-
ment entries for machine instructions usually represent such
things as storage locations or constant values. Arguments

for assembler directives provide the information needed by
Extended Symbol to perform the designated operation.

A comments entry may be any information the user wishes to
record. It is read by the assembler and is output as part of
the source image on the assembly listing. Comments have
no effect on the assembly.

STATEMENT CONTINUATION

The semicolon (;) may be used in a statement to signal the
continuation of the statement on the subsequent lines. This
continuation code may be placed following o label entry,
following a command entry, or within an argument entry.

It must not follow the last character of the label or command
entry. If it is within a character string enclosed by single
quotation marks, or is a character in the comments field, the
semicolon does not cause continuation. A maximum of two
continuation lines may be used for each statement.

Example 1. Statement Continuation

BEGIN LDA f\é Continuation

NEW TEXT 'A;8'

; is not a continua-
tion character

LOCAL A, START,R1, ;
D,RATIO,B12, ;
C,MAP

Continuation

Leading blanks on continuation lines are ignored by the
assembler, Thus, significant blanks that must follow
label or command entries must precede the semicolon
indicating continuation,

ANS LDA The blank that ter-
minates the command
field precedes the

semicolon,

SUM, , 1

COMMENT LINES

An entire line may be used for a comment by writing an as-
terisk in column 1. All valid characters may be used in
comments. Extensive comments may be written by using o
series of lines, each with an asterisk in column 1.

The assembler reproduces the comment lines on the assembly
listing and counts comment lines in making line number
assignments.,

PROCESSING OF SYMBOLS

Symbols are used in the label field of a machine instruction
to represent its location in the program. In the argument
field of an instruction, o symbol identifies the location of
an instruction or a data value.

The treatment of symbols that appear in the label or argument

fieldof an assembler directive varies. The description in the
following chapters define the use of symbols in directives.

Processing of Symbols 9

DEFINING SYMBOLS

A symbol becomes "defined" by its appearance as a label entry
on machine instructions and certain directives, "Defined"
means that it is assigned a value. The definition, assigned to
the symbol by the assembler, dependson assembly conditions
when the symbol is encountered, the contentsof the command
field, and the current contents of the execution location
counter (see Chapter 5).

Any machine instruction may be labeled; the label is assigned
the current value of the execution location counter.

Information regarding the use of labels in directives is con-
tained in the description of each directive.

Note: The use of labels is a programmer option, and as many
or as few labels as desired may be used. However,
since symbol defining requires assembly time and
storage space, extraneous labels should be avoided.

REDEFINABLE SYMBOLS

Two directives, DO and SET, establish redefinable symbols.
These symbols are redefined by the assembler during the pro-
cessing of a DO-loop (see DO Directive, Chapter 6) or by
a subsequent SET directive (see SET Directive, Chapter 6).

SYMBOL REFERENCES
A symbol used in the argument field of a machine instruc-
tion or directive is called a symbol reference. There are

three types of symbol references.

Previously Defined References

A reference made to a symbol that has already been defined
is a previously defined reference. All references to such
symbols are completely processed by the assembler during
the definition pass. Previously defined references may be
used in any machine instruction or directive.

Forward References

A reference made t~ a symbol that has not yet been defined
is a forward reference. Forward references are defined during
the definition pass, and machine instructions that reference
them are completely assembled during the generation pass.

Forward References (Procedure Locals)

Forward references to symbols declared local within a pro-
cedure are incompletely assembled. The object code gen-
erated for such references allows the forward references
and their associated definitions to be linked ot load time.

The load location counter is used for this linking operation.

A forward reference to a procedure local symbol must not
be o term in a multitermed expression.

Any machine instruction may use a forward reference. Only

the GOTO, LOCAL, REF, SREF, DEF, GEN, GEN1, GEN2,
ADRL, and DATA directives may use forward references.

10 Processing of Symbols

External References

A reference made to a symbol that is defined in a program
other than the one in which it is referenced is an external
reference.

A program that defines external references must declare
them as external by use of the DEF directive (see Chapter 6).
An external definition is output by the assembler as part of
the object program for use by the loader.

A program that uses external references must declare them
as such by use of a REF or SREF directive (see Chapter 6).

A machine instruction containing an external reference is

incompletely assembled. The object code generated for
such references allows external references and their asso-

ciated external definitions to be linked at load time. The
load location counter is used for the linking operation.

An external reference must not be a term in a multitermed
expression.

Any class 1 machine instruction (see Chapter 3) may contain
an external reference. External references are not allowed
in any directive except GEN, GEN1, DATA, ADRL, REF,
and SREF.

CLASSIFICATION OF SYMBOLS

Symbols may be classified as local, procedure-local, or
nonlocal.

A local symbol is a symbol that is defined and referenced
within a restricted program region. The program region is
designated by the LOCAL directive (see Chapter 6); this
directive also declares which symbols are to be local to
the region.

A procedure=~local symbol is a local symbol that is defined
and referenced within o particular procedure (see Chapter 7).

A symbol not declared as local or procedure-local by use
of the LOCAL directive is a nonlocal symbol. A nonlocal
symbol may be defined and referenced in any region of a
program including local and procedure-local symbol regions.

Note that the same symbol may be both nonlocal and local
(or procedure=local) in which case the nonlocal and local
forms identify different program elements.

SYMBOL TABLES

Extended Symbol maintains three internal symbol tables in
which it stores each symbol along with its assigned value
and/or control information pertinent to that symbol. These
tables are the nonlocal symbol table, the local symbol table,
and procedure~-local symbol table.

The nonlocal symbol table contains nonlocal symbols and is
active throughout an assembly.

The local symbol table contains symbols that are declared to
be local (see LOCAL directive, Chapter 6) to aregionin the

program. This table is temporary and may be erased and re-

established with new symbols by a subsequent LOCAL directive.

The procedure-tocal symbol table contains symbols that are
declared to be local to a particular procedure (see "Proce-
dures", Chapter 7). Each symbol in a local directive within
a procedure causes the previous definition of that symbol to
be temporarily suspended, and the symbol is set as unde-
fined in the current procedure local symbol table. At the
end of the procedure, the last previously suspended local or
procedure-local definition of the system is reactivated.

When the assembler encounters a symbol in the label field,
it refers to the last active local or procedure-~local symbol
table (if assembling a local or procedure-local region, re~
spectively); if necessary, it then refers to the nonlocal sym-
bol table. If the symbol isnot inan active table, the symbol,
its value, and control information are entered in the appro~
priate table. At thispoint, the symbol is completely defined.
If the symbol is found in a table, one of the following con-
trol conditions applies and is indicated in the symbol's con-
trol information.

Symbol Control Result

Local or procedure-local

and not previously defined.

Previously defined in the

The symbol becomes
defined.

Symbol is tagged as multi-

defined and retains the
first address value — an
error condition.

appropriate table.

Provides information in
object program for loader
to complete linkages.

3. Declared external to pro-
gram being assembled by
REF or SREF.

4. Declared external by DEF;
defined within this program.

Defines the symbol and
provides object program
information tor the loader.

Provides control informa-
tion for completion of
references in generation
pass. The symbol is de-
fined at this point.

5. Previously referenced but
not defined.

When the assembler encounters asymbal in an argument field
it refers to the last active local or procedure-local symbol
table (if assembling a local or procedure-local symbel region,
respectively); if necessary, it then refers to the nonlocal
symbol table to determine if the symbol has already been
defined. If it has, the assembler obtains information about
the symbol from the table and is then able to assemble the
appropriate object program information. (Actual assembly
occurs during the generation pass; entries into symbol fables
occur during the definition). If the symbol is not in any
active symbol table, the assembler enters its name and con-
trol information in the appropriate table but does not assign
an address value until the symbol is defined in the label
field. Symbols are entered in the nonlocal table unless
they have been declared as local by use of the LOCAL
directive. Symbols declared as local are entered in either
the active local or the active procedure-local symbol table.

If any undefined symbols remain in the nonlocal symbol table
at the end of an assembly, their definitions are declared
‘unknown' and appropriate messages are produced. Error
messages are not produced for undefined local or procedure-
local symbols that are not referenced within that region.

ABSOLUTE AND RELOCATABLE VALUES

The value of a symbol or expression may be absolute, re-
locatable, or common relocatable. An absolute value,
which is assigned at assembly time, is the same value that
will be used by the program at execution time. A relocat-
able or common relocatable value may be altered by the
loader at execution time.

SYMBOLS

A symbol is assigned an absolute value by one of the
following methods:

1. By equating the symbol to an absolute numeric quantity.
SUM EQU 2

SUM is assigned the absolute value 2.

2. By equating the symbol to an absolute expression.

A EQU §
RES 10

B EQU $
EQU A-B

ANSWER

ANSWER is assigned the absolute value -10.

3. By using the symbol as a label entry in absolute pro-
' gram or program section (see Chapter 5).

The value of an absolute symbol does not change, even if
it is part of a relocatable program (a program that can be
executed anywhere in memory).

A symbol has a relocatable value unless declared absolute
as described above. The value of o relocatable symbol may
be altered by the loader when the symbol is o part of a
relocatable program; i.e., the loader will add the refoca-
tion bias to each symbol used as o label entry in a re-
locatable program or program section (see Chapter 5).

A symbol is common relocatable if it appeared in the label
field of o COMMON directive.

- EXPRESSIONS

The value of a single-term expression has the same attributes
(absolute, relocatable, or common relocatable) as the single
symbol or constant of which it is composed.

The value of a multi-termed expression will be absolute

if only absolute terms are used in the expression. All op-
erators in Table 1 may be used to combine absolute terms.

Absolute and Relocatable Values n

A multi~termed expression may be composed of absolute,

rélscdtable, and common relocatable terms, subject to the
restrictions itemized below. "Operdnd" refers to a single
symbol or constant, or to the value of a subexpression at
the time it is-conibined into the expression with one of the
operators shown in Table 1 (see "Operators and Expression
Evaluation" edrlier in this chapter). |

e The reldtional operators, <, <=, >, >=, =, and ==,
require that both operands be of the same mode (ab-
solute, relocatable, or common relocatable).

¢ The operators * and / and the logical operators, =1,
** &, |, and || mdy not be used with a relocatable
or comffion relocatable operand.

¢ In evaluating an expression, the assembler maintains
a count of the number of terms added or subtracted
that are relocatable or common relocatable. A sep-
arate counter is used for the two relocation types
and each counter is incremented or decremented
by 1 whenever a term of the corresponding relocation
type is added to or subtracted from the expression.
The final value is absolute if both counters are equal
to 0. If the final count in one (and only one) of
the relocation counters is equal to +1, the value
of the expression is relocatable or common relocat-
able, depending on which counter is equal to +1.
Any other accumulation in the two relocafion coun=
ters is an error and results in a diagnostic flag.

Example 2. Expressions Using + and - Operators

Assume RT, R2, and R3 are program relocatable terms;
C1 and C2 are common relocatable terms; and Al and
| A2 are absolute terms.

Expression: R1xA1 Leaal

Common count: 0 0 egai, program
| Relocatable count: 1 1 refocatable
| Expression ClzA1 Leaal
| Common count: 11 egal, common
| Relocatable count: 0 0 relocatable

12 Absolute and Relocatable Values

Expression:
Common count:

Expression:
Common count:

Expression:
Common count:

Expression:
Common count:

Expression:
Common count:

Relocatable count:

Relocatable count:

Relocatable count:

Relocatable count:

Relocatable count:

R1+R2-C1-R3+C2
00 -1 -10
12 2 11

-R1+A1+R2
0 00
-1 -1 0

RI+AT+C1
00 T
1 1 1

RI+AT+R2
00 0
11 2
AlxA2

00
00

Legal,. program’
relocatable

Legal, absolute

lllegal, diag~
nostic error

llegal, diag-
nostic error

" Legal, absolute

Example 3. Expressions Using Miscellaneous Operators

Expression
ATl * A2
(C1-C2)/A1

RT * Al
C1-C2/A1

Al & A2

Al ** (A2-R1+R2)
-Al
=1(C1-C2+A1)

RT == =R2
Ci>cC2

A1 > (R2 > R3)

-R1
R1<=CI
Al1> R2> R3
Cl1 ** Al
R1 < R2< R3

A1 & RI1)

Result

Al * (R1-R2)] Legal, absolute

R1, R2, R3, C1, C2, Al and A2 have the same mean-
ings as in Example 2, above.

] Illegal, diagnostic error

Legal, absolute

Illegal, diagnostic error

3. XEROX 530 AND SIGMA 2/3 MACHINE INSTRUCTIONS

| Xerox machine instructions may be written symbolically
and combined with other assembly language elements to
form symbolic instruction statements,

A symbolic instruction statement consists of four fields.

Field Contents

Label Any valid symbol. Use of the label entry
is optional, When present, the symbol may
be referenced by other instructions and
directives.

Command Any mnemonic operation code listed in
Appendix A,

Argument One or more subfields such as an indirect
address designator, an argument address ex-
pression, a post-index expression, a dis-
placement expression, a base address speci-
fication (pre-indexing), or a shift count,
depending on the specific instruction.

Comments Any remark explaining the specific pur-
pose of an instruction or the overall func-
tion of the program.

The Xerox machine instructions recegnized by Extended
Symbol are described below and in Appendix A. The syn-
tactical rules used in the instruction descriptions of Appen-
dix A are as follows:

1.

Underscored items are the required parts of a symbolic
instruction statement,

Nonunderscored items are opticnal parts of an instruc-
tion statement,

m designates a mnemonic operation code.

* designates indirect addressing for Class 1instructions;
for Class 4 instructions, it indicates that the contents of
the source register specified by the instruction are tobe
inverted (one's complemented) before the operation is
performed.

a designates the argument address used in the instruction,

x designates post-indexing (with index register 1); if
x #0, perform indexing; if x =0 or blank, no indexing.

b designates addressing relative to the base register
(with index register 2). This is also called pre-indexing.

If b #0, base-relative addressing is used, and the argu-
ment address represents the displacement value. If b=0
or is blank, the assembler may automatically impose
base-relative addressing on the instruction, depending
on the value of "a" and on whether or not the BASE
directive option is active,

c designates a count used with the Shift instruction.

9. s designates the source register used with the Copy
instruction,

10. d designates the destination register used with the
Copy instruction.

There are five classes of machine instructions for the Xerox 530
and Sigma 2/3 computers: memory reference, conditional
branch, shift, register copy, and input/output control.

CLASS 1: MEMORY REFERENCE INSTRUCTIONS

SINGLE PRECISION CLASS 1 INSTRUCTIONS

Class 1 instructions may reference any location in memory
through use of the various addressing techniques and may
appear in any one of the following forms:

1. Nonrelative Addressing

OP |0{*|X]0 Address

0 1 2 314 5 6 718 9 10 11112 13 14 15

The reference address is the value of the address field.

2. Base-Relative Addressing

OP |0{*{X|1| Displacement

0 1 2 314 5 6 718 9 10 11112 13 14 15

The reference address is equal to the value (0 to +255)
in the displacement field plus the 16-bit base address
value in index register 2.

3. Self-Relative Addressing

OP [1[*|X| Displacement

0 1 2 314 5 &6 718 9 10111213 1415

The reference address is equal to the value (=256 to +255)
in the displacement field plus the 16-bit instruction ad-
dress value in the H register, Since the H register con-
tains the address of the instruction being executed, the
reference address produced isrelative to the instruction's
own location. The value in the displacement field is
treated as an 8-bit positive integer if bit 7 is a 0, and
as a 9-bit, two's complement negative integer if bit 7
isa 1. Thus the reference address derived during pro-
gram execution will be the current instruction address
plus the sign extended displacement value with the sum
treated modulo 216,

In all three forms of memory reference instructions, the
reference address may be further modified to produce
the final or effective address, depending on bits 5 and 6
of the instruction. If bit 5isa 1, the reference address
will be treated as an indirect address; that is, a 16-bit
direct address value will be obtained from the location
specified by the reference address. If bit 5isa 0, the
direct address is the same as the reference address. If
bit 6 isa 1, the direct address will be modified by add-
ing the 16-bit value in index register 1 with the sum
treated modulo 216, Programmer control of addressing
is explained in Chapter 4.

Xerox 530 and Sigma 2/3 Machine Instructions 13

With the exception noted below, Class 1 instructions are
written in symbolic form according to the following syntax:

label m *a,x,b
1. The menmonic operation code (m) determines the value

of OP bits 0-3).

2. Either an asterisk preceding the argument address or
certain assembly conditions determine bit 5, the in=~
direct address bit,

3. The x tag in the argument field determines bit 6, the
post=indexing bit,

4. A b tag in the argument field may determine bit 7, which
is the pre-indexing or base-relative addressing bit. As
mentioned previously, the assembler may set bit 7 any-
way, dependingon certain conditions. Thisis explained
in Chapter 4.

5. The form and content of the argument address (a) de-
termine which instruction subclass is generated. If the
argument address is not within self-relative or non-
relative addressing range of the instruction, the b tag
is not 1, and no BASE directive is encountered, the
following results:

a. If the address is indicated as indirect, the instruc-
tion is incompletely translated and tagged as an
error.

b. If the address is not designated as indirect, the
assembler develops an address literal and trans-
lates the instruction into an indirect reference
to the location of the literal,

An indirect address literal generated by Extended
Symbol is always placed in a literal pool within
self-relative addressing range of the instruction
that references the literal. By this process, ad-
dress values that otherwise would be out of range
for the instruction may be used; address values ob-
tained indirectly may specify any location within
the limits of available memory.

More complete information on Extended Symbol ad-
dressing is given in Chapter 4.

Single precision Class 1 instructions include basic, general
register, and floating=point instructions.

BASIC INSTRUCTIONS

Mnemonic Function

LDA Load Accumulator
STA Store Accumulator
ADD Add

14 Xerox 530 and Sigma 2/3 Machine Instructions

Mnemonic Function

SUB Subtract

MUL Multiply

DIV Divide

B Branch Unconditionally
IM Increment Memory
LDX Load Index

cp Compare

S Shift

RD Read Direct

WD Write Direct
AND Logical AND

GENERAL REGISTER INSTRUCTIONS

Mnemonic Function

Lw' Load Word
AND' AND Word
Aw' Add Word
SWf Subtract Word
cw! Compare Ward
sTW' Store Word

Syntactically, these general register instructions differ from
the basic instructions in that they must specify a register:
m,r *a,x,b, where r is a register expression (2Sr<6). Since
AND is also part of the basic instruction set, it retains its
meaning as a Logical AND instruction when it is used with-
out the register expression.

These mnemonics generate two instructions. The first is the
Set General Register instruction which has the form
SGR gr

and will generate

000T | 0000 | 1000 | 1| gr

0 v 2 3Ta 5 6 718 9 101112 13 14 15

where gr designates the register offected (2 <gr< 6).

"Xerox 530 only.

The second instruction generated will use the corresponding
single precision form (e.g., CP *a,x,b for CW,r, etc.).

FLOATING-POINT INSTRUCTIONS

Mnemonic Function

FMP! Floating Multiply
FDV! Floading Divide
FLD! Floating Load
FAD Floating Add
Fsaf Floating Subtract
FsT Floating Store

The syntax for these instructions is the same as for the basic
instructions. A series of floating=point instructions must be
preceded and followed by two control instructions.

SFM Set Floating Mode
RFM Reset Floating Mode

Both control instructions consist of only the mnemonic (m),

which takes no argument, RFM is equivalent to B §+1,

MULTIPLE PRECISION CLASS 1 INSTRUCTIONS

The following mnemonics generate two instructions when
the mulitiple precision hardware option is implemented,

(Software simulations for these mnemonics except LDM

and STM, are given in Appendix E for Sigma 2 or for

Sigma 3 without this option.) The first instruction of this
pair is the Set Multiple Precision Mode instruction, and
has the form

SMP frnr

which will generate

0001 0000{10] nr| fr

D 1 2 314 5 6 718 ¢ 10 1112 13 415

where
nr designates the number of registers affected (start
with fr),
fr designates the first register affected,

(If the option is implemented, thisinstruction will not gen-
erate a protection violation from unprotected memory.) The
doubleword instructions will generate an SMP 6,2 instruc-
tion, and the second instruction will use the corresponding
single precision form (e.g., LDA *a,x,b, for LDD, etc.).

Mnemonic Function

LDD * Load Double
STD Store Double
CPD Compare Double
DSB Double Subtract
DAD Double Add

Mnemonic Function
LDM Load Multiple
STM Store Multiple

LDM and STM each require two additional arguments to
specify the first register (fr) to operate on and the number
of registers (nr) to operate on. These mnemonics are of the
form

*a,x,b,frnr

LDM }
STM

and expand into the instruction sequence

a SMP fr,nr
LDA} .
a+] STA g_,x,b

There is no software simulation for the LDM and STM
instructions,

FIELD ADDRESSING CLASS 1 INSTRUCTIONS'

Field addressing instructions include the following:

Mnemonics Function

CLF Compare Logical Field
LLF Load Logical Field

LAF Load Arithmetic Field
STF Store Field

SZF Store Zero Field

SOF Store Ones Field

CAF Compare Arithmetic Field
SLF Sense Left Bit of Field

These instructions have the syntax
m,rx,sx *a,x,b
where
m,a, x, and b are as described before,

rx specifies a register to be used in indexing the
field descriptor's start address (2 rx 7). De-
fault option (rx omitted or zero) is rx = 1, which
specifies no register indexing.

sX specifies self-indexing of the field descriptor as
foliows:

self-incrementing ~sx = 1,
self-decrementing —sx = -1 or 7,
no indexing —sx = 0 (or sx omitted),

Any other value for sx causes an error,

t
Xerox 530 only, optionally,

Xerox 530 and Sigma 2/3 Machine Instructions 15

CLASS 2: CONDITIONAL BRANCH INSTRUCTIONS

Conditional Branch instructions perform a branch if a test
for a given condition is "true". If the condition being
tested is not true, the instruction acts as a "no operation",
and control passes to the next instruction in sequence. The
form for Conditional Branch instructions is

Oop £ Displacement

[CREE) R IR

31 2 314 ¢ 5 18 ¥

Class 2 instructions are written in symbolic form according
to the following syntax:

label m o
1. The mnemonic operation code (m) determines the value
of OP (bits 0-6).

2. The argument address (a) must be within self-relative
addressing range (=256 to +255). These instructions
may not specify indexing or indirect addressing.

The instruction is incompletely translated and tagged as an
error if the symbolic address is outside the self-relative ad-
dressing range.

The instructions in Class 2 are:

Mnemonic Function

BAN Branch if Accumulator Negative

BAZ Branch if Accumulator Zero

BEN Branch if Extended Accumulator Negative

BNO Branch if No Overflow

BNC Branch if No Carry

BIX Branch on Incrementing Index

BXNO Branch on Incrementing Index and No
Overflow

BXNC Branch on Incrementing Index and No Carry

CLASS 3: SHIFT INSTRUCTIONS

The Shift instruction is capable of performing eight different
kinds of shift on an operand stored in the accumulator or ex-
tended accumulator. The amount of shift is determined by
the 5-bit shift count, whizh may be any number in the range
0 through 31, The kinds of shift available are:

Single register shift of accumulator only (general
register 7)

Double register shift of extended accumulator and accu-
mulator together (general registers 6 and 7). These reg-
isters are treated as a 32-bit accumulator with register 6
to the left of register 7.

Circular shift

Left shift

Arithmetic shift
Right shift

The form for the Shift instruction is

op Count

,
T Tt TR s o TS

16 Conditional Branch/Shift/Copy Instructions

Class 3 instructions are written in symbolic form according
to the following syntax:

label m ¢, x,b

1. The mnemonic operation code (m) determines the value
of OP (bits 0-10),

2. The argument (c, x, b) defines the shift count,

The instructions in Class 3 are:

Mnemonic Function

SCLS Shift Circular Left Single
SCLD Shift Circular Left Double
SCRS Shift Circular Right Single
SCRD Shift Circular Right Double
SALS Shift Arithmetic Left Single
SALD Shift Arithmetic Left Double
SARS Shift Arithmetic Right Single
SARD Shift Arithmetic Right Double

Index and base tags are permitted in these instructions; how=
ever, such use can change the direction and type of shift

by increasing the shift count beyond the maximum value (31).
Bits for values in excess of 31 overflow into bit positions
8-10, which control the type of shift performed, If the
count exceeds 31, the assembler generates an error notation,

CLASS 4: COPY INSTRUCTIONS

The Copy instructions are used to perform a variety of logi-
cal and arithmetic operations between any two general reg-
isters, One register, called the source register, contains
one of the operands; the other register, called the destination
register, contains the second operand (if one is required)

and is the register into which the result is loaded.

The general registers are identified as follows:

Register Function

0 Zero

1 Program address

Link address
Temporary storage
Index 1

Index 2 (base address)

Extended accumulator

N oo howoN

Accumulator

When execution of a Copy instruction begins, the P register
contains the address of the instruction following the Copy.
The form for the Copy instructions is

opP Dest. IS Source

02 3T sy TR ¢ 1012 12 14 15

Cluss 4 instructions are written in symbolic form according
to the following syntax

label m *s,d

1. The mnemonic operation code (m) determines the value
of OP (bits 0-8).

2. The optional asterisk (*) at the front of the argument
field sets the IS bit (invert source). This causes the
contents of the source register to be inverted (one's
complemented) before the operation is performed.

3. The first argument, designated by s, is an integer in
the range zero through seven that specifies the source
register to be used.

4, The second argument, designated by d, is an integer in
the range zero through seven that specifies the desti-
nation register to be used.

The instructions in Class 4 are:

Mnemonic Function

RCPY Register Copy

RADD Register Add

ROR Register OR

REOR Register Exclusive OR

RAND Register AND

RCPYI Register Copy and Increment

RADDI Register Add and Increment

RORI Register OR and Increment

REORI Register Exclusive OR and Increment
RANDI Register AND and Increment
RCPYC Register Copy and Carry

RADDC Register Add and Carry

RORC Register OR and Carry

REORC Register Exclusive OR and Carry
RANDC Register AND and Carry

RCLA Register Clear and Add

RCLAI Register Clear, Add, and Increment
RCLAC Register Clear, Add, and Carry

CLASS 5: INPUT/OUTPUT CONTROL INSTRUCTIONS

There are five instructions with which the Xerox 530, Sigma 2,
and Sigma 3 computersperform and control 1/O operations:

Start Input/Output (SIO)

Test Input/Output (TIO)

Test Device (TDV)

Halt Input/Output (HIO)
Acknowiedge 1/O Interrupt (AIO)

The form for 1/O Control instruction is

OopP

0 1 2 314 5 &5 718 9 10 17(12 33 14 15

Class 5 instructions are written in symbolic form according
to the following syntax:

label m

The mnemonic operation code determines the entire config-
uration of the instruction.

The instructions in Class 5 are:

Mnemonic Function

SI10 Start Input/Output

TIO Test Input/Output

DV Test Device

HIO Halt Input/Output

AlIO Acknowledge 1/O Interrupt

Note: More complete information on 1/O programming and
operation is contained in the Xerox 530, Sigma 2,
and Sigma 3 Computer Reference Manuals and in the
programming reference manual for each peripheral
device.

Input/Output Control Instructions 17

4. ADDRESSING

| Xerox 530 and Sigma 2/3 addressing techniques enable the
central processor to compute an effective memory address
for Class 1 insfructions during their execution cycle, A thor-
ough understanding of this process is necessary for using Ex-
tended Symbo! addressing features most effectively.

The address control bits (4 through 7) of the instruction
word determine the type of addressing to be used and the
varisus address computdtion options. The format of the in-
strucfion word is

| Addr.
OP Comrp. Displacement

6 718 9 10 14112 13 14 15

".- T2 304 3
The address computdtion process is as follows:

Step 1. Determine Reference Address

Bit Positions

4 5 6 7 Effect

0 - = 0 Reference address = Displacement

0 - -1 Reference address = Displacement +
value in index register 2 (a base ad-
dress). This is"base-retative address-
ing" or "pre-indexing".

I = - 0 Reference address = Value in H register

(address of the instruction) + Displace-
ment. This is"self-relative forward ad-
dressing”.

Reference address = Value in H register
(address of the insfruction) - Displace-
ment, This is "self-relative backward
addressing”. (The computer assumes
bits 7 and 8-15 to be a 9-bit two's com-
plement negative integer which the
cofiputer sign-extendsto a 16-bit value
and adds to the value in H.)

6

Note: Alladdress calculationsare performedmodulo?l .

Step 2. Determine Direct Address

Bit Positions

4 5 6 7 Effact

- 0 - = Direct dddress = Reference address.
This is "direct addressing" .

- 1 - - Direct address = Contents of the word

whose address is equal to the reference
address. This is "indirect addressing".
Step 3. Determine Effective Address

Bit Positions
4 5 6 7 Effect

Effective address = Direct address.

Effective address = Direct address +
value in index register T (an index
value), This is "post-indexing",

18 Addressing

The effective address for an instruction, therefore, is the
final 16-bit address value developed for the instruction,
starting with the displacement value given. The core mem-
ory locationwhose address equals the effective address is re-
ferred to as the "effective location™ and its contents are
the "effective word",

Extended Symbol uses theentriesin the argument fieldof the
symbolic instruction statement, the execution location coun-
ter, symbol table entries, and assembly conditions indicoted
by various assembler directives to assemble Class 1 instruc-
tions with the most efficient type of addressing possible,

The remainder of this chapter describes the automatic address-
ing techniques employed by Extended Symbol and various
kinds of addressing contro! that can be applied by the pro-
grammer.

ARGUMENT ADDRESSING FORMAT

The programmer canset the address control bits and displace-
ment of a Class 1 instruction using argument addressing en-
tries. These entries have the form

*a,x, b
where
* OPTIONAL, Indicates indirect addressing; sets
bit 5= 1.

a REQUIRED. An expression — multitermed, single
symbol, constant, or literal — that represents the
argument address (bits 8-15). The "o" must be
single-termed if it is a forward or external ref-
erence.

X OPTIONAL. An index tag specifying post~
indexing with index register 1; sets bit 6.

If x #0, post-indexing is specified.

If x = 0 or is blank, post-indexing is not
specified,

b OPTIONAL. A base tag specifying base-relative
addressing with index register 2; sets bit 7,

If b #0, base-relative addressing is specified.
and the argument address "a" is used by the assem-
bler to construct a displacement in the range 0

through +2535 relative to a base address.

If b =0 or is blank, the assembler determines if
base-relative addressing will be generated for the
instruction. (See "Base-Relative Address Control"
and "Automatic Addressing” in this chapter).

If the x tag is omitted but the b tag is present, two commas
must be placed between the argument address entry and the
base tag. If b is omitted, the comma following x may be

omitted, If poth b and x are omitted, the two commas are

unnecessary. The following combinations are acceptable
to the assembler:

a or a,,
* *
a or *g e s
a x or a' ’ Preserce of trailing (ignored)
X . \
. % commas is noted in the as-
a,x or *a,x,

sembly listing. This is not an
a,,b or a,,b, / 9

error.
*a,,b or *q,,b,

*a,x,b or *qg,x,b,

Absence of "o" generates a diagnostic message.,

A symbol used in an x or b tag must have been previously
defined and must not be an external reference, Other~
wise, a diagnostic error is noted and the tag is given the

value 0.

DIHECT ADDRESSING

A Class 1 instruction can directly specify the following
addresses:

1. The256 addresses beginning with absolute location 0 (bits
4-7 set to 0). This is called "nonrelative addressing".

2. The 256 addresses beginning with the address specified
by the contents of the base register (bit 7 =1), This
is called "base-relative addressing".

3. The 256 addresses starting with the location at which
the instruction itself is located. This is called "self-
relative forward addressing" (bit 4 =1, bit 7 = 0),

4. The 256 addresses preceding the location of the instruc-
tion itself. This is called "self-relative backward
addressing" (bits 4 and 7 set to 1),

These addresses may be augmented ot execution time by
specifying that the address be post-indexed (bit 6 = 1), in
which case the direct address plus the contents of index
register 1 determines the effective cddress.

By conirolling the contents of the index registers a program
candirectly reference any location within the limits of memory.

INDIRECT ADDRESSING

Any location within the limits of available memory may be
referenced through the use of indirect addressing (with or
without use of the index registers).

The programmer may specify indirect addressing in a sym-
bolic Class 1 instruction by coding an asterisk as the first
character of the argument entry. In cases where the asterisk
is not specified, the assembler can impose indirect address-
ing if assembly conditions warrant such action (see "Auto-
matic Addressing" in this chapter).

For an instruction whose indirect bit (bit 5) is set to 1, the
reference address points to a word in memory that céntains
the direct address.

When indirect addressing is specified by the programmer or
invoked by the assembler, it is performed ofter the reference

address has been determined and before post-indexing (if
specified) is applied.
BASE Base-Relative Address Control

The Extended Symbo! programmer can control base-relative
addressing in Class 1 instructions in two ways: with the base

" tag (b) and with the BASE directive.

The BASE directive has the form

| Label Command Argument
llabell BASE [exp]
where
labe! is any valid symbol. Useof alabelisoptional.

When present, it is assigned the current value of
the execution location counter and identifies the
first word of the area affected by BASE, BASE
does not alter the location counters,

exp is any single-termed or multitermed expression
in which there are no forward references !c local
or procedure-local symbols;or it may be absent,
The expression may be absolfute or relocatable.

The BASE directive declares that any reference in the range
exp to exp + X'FF' is to be assembled in the base addressing
mode, except as noted below,)

The BASE directive has no effect on assembly of the follow-
ing instructions:

1. Instructions in which the base tag is T,

2. Instructions in which the argument is absolute and the
BASE exp is relocatable or the argument is relocatable
and the BASE exp is absolute; i. e., both the argument
and the BASE exp must be eitherabsolute or relocatable.

3. Instructions inwhichthe argumentiswithinself-relative
addressing range.

Note that the BASE directive does not cause the assembler
to set the value in the base register. This must be done by
the program. The BASE directive only establishes the base
register value for the purpose of address generation.

A BASE directive with a blank argument field cancels a pre-
vious BASE setting and directs the assembler to make no at-
tempt at generating base-relative addressing for subsequent
symbolic instructions with blank or zero base tags. This
also occurs by default when no BASE directive has been en-
counfered by the assembler,

An example of the effect of the BASE directive on address-
ing is given in the next section, which discusses other as-
pects of the assembler's handling of addresses.

SYMBOLIC-RELATIVE ADDRESSING

Symbolic-relative addressing is the technique of refer-
encing an instruction or storage area by designating its
location in relation to another location or in relation fo
a location counter (see "Location Counters", Chapter 5).

Argument Addressing Format 19

This is accomplished by using symbolic designations for
addresses, A location may be given a symbolic label such
as LOOP, and the programmer can refer to that location
anywhere in his program by using the symbol LOOP in the
argument entry for the statement,

To reference the location following LOOP, he can write
LOOP+1; similarly, to reference the location preceding
LOOP, he can write LOOP-1, Then, regardless of where
the program is stored in core memory when it is to be exe-
cuted, the locations that were referred to symbolically as
LOOP and LOOP+1 (or LOOP-1) will be in the proper

relative positions.

An address may be relative either to the execution or the
load location counter (that is, relative to the location of
the current instruction) even though the location beingref-
erenced does not have a label. The symbol $ specifies the
current contents of the execution location counter; $$ spe-
cifies the load location counter, The construct $+8 speci-
fies an address eight words greater than the current contents
of the exetution location counter, and the construct $$-4
specifies an address four words less than the current contents
>f the load location counter.

It should be remembered that symbolic-relative addresses
are subject to the same conditions as other addresses in
regard to the address range that may be covered and that
the assembler will invoke automatic oddressing when
necessary.

AUTOMATIC ADDRESSING

The address control and displacement fields automatically
generated by the assembler for Class 1 instructions and for
Gen 1 directives depend on the entries in the argument
field, the current value of the execution location counter,
symbol table entries, and the directives BASE and LPOOL,
In determining the kind of address that will be generated
for an instruction, the assembler considers the following
choices in the order given:

1. Nonrelative addressing — is generated by the assembler
if the value of the instruction's argument is absolute
and in the range X'0' <arg s X'FF',

2. Self-relative addressing - forward or backward address-
ing relative to the current value of the execution loca-
tion counter is generated if both the conditions noted
below are true,

a. Nonrelative addressing does not apply,
b. The value of the argument is in the range

$-X"100" = arg = S+X'FF',

5. Base-relative addressing — relative to the contents of
the base register, is generated if both of the following
are true:

a. The base tag of the instruction is set to 1,

b. The value of the instruction's argument is absolute
and in the range X'0' < arg < X'FF',

Artomatic Addressing/Address Generation Diagnostics

If (o) is met but (b) is not met, an error diagnostic will
be generated,

Base-relative addressing — relative to the contents of
the base register, is generated if the base tag of the
instruction is zero or blank, The assembler will
impose base-relative addressing provided all of the
following are true:

a. Neither nonrelative nor self-relative addressing
applies,

b. A "BASE exp" directive has been encountered,

c. The value of the instruction's argument address is
in the range exp < arg < exp +X'FF',

d. The mode of the argument address and of exp is
identical (program relocatable, common relocata-
bie, or absolute).

Indirect addressing — the programmer may invoke indi-
rect addressing by coding an asterisk as the first char-
acter in the argument entry for an instruction, The
argument, along with the index and base tags, deter-
mines the address that will be assembled for the instruc-
tion. The value of the argument must comply with one
of the preceding addressing rules, The argument must
not be a literal,

The assembler automatically invokes indirect address-
ing for argument references under the circumstances
listed below., When the assembler invokes indirect
addressing, it converts the evaluated argument address
into an address literal, and it generates a self-relative
address and an indirect address tag (bit 5 of the instruc-
tion) which it assembles into the object instruction. The
programmer must establish literal pool space or an
ADRL for the reference within addressing range of the
instruction for a proper reference to occur,

Indirect addressing is imposed by the assembler when
either of the following is true:

a. Nonrelative, base-relative or self-relative address-
ing does not apply.

b, The argument is an external reference,

ADDRESS GENERATION DIAGNOSTICS

Address generation errors or address diagnostic flags occur in
the following cases:

1.

4,

The argument is a multitermed expression containing
forward procedure local or external references,

Indirect addressing is specified (*) and the assembler is
forced to create a multiple-level indirect reference to
a literal; e.g., =*ALPHA is illegal.

Literal pool space is not available within self-relative
addressing range of a statement that references a literal,

A reference is made to an undefined symbol.

Example 4. Automatic Addressing

Load
Location
Counters Instruction Comments
1000 LABL RCPY LA Subroutine entry point
1001 STA SAVL
1010 AL DATA 3 AL = LABL+X"10'
107C BL RADD A,T BL = LABL+X'7C'
12CA CL 'BNO $+3 CL = LABL+X'2CA'. Note that X'2CA' > X'FF'(255) .
3FCD BASE LABL
3FDO LDA AL Instruction is generated as LDA X'10',, 1
3FET 'STA BL Instruction is generated as STA X'7C*, 1
3FFO B CL Instruction is generated with indirect address pointing to
: an address literal since CL-LABL is > X'FF'.
BASE Stops assembler choice of base-relative addressing.
4F00 LDA AL Indirect address literal is formed.
LITERAL POOLS It is the responsibility of the programmer to establish literal
pools. The only point at which the assembler automatically
If literals are specified in a source program, or if the as- establishes a literal pool is at the end of an assembly.
sembler imposes indirect addressing and thus generates ad-
dress literals, agroup of locations inwhich the literal values The Extended Symbol programmer can declare a literal pool
are stored mustbe provided. This group of locations iscalled at any point in his program by using the LPOOL directive.
aliteralpool. Literal poc?lsfnust beapor'fof the obi.ect pro- LPOOL Establish Literal Pool
gram and they must be within self-relative addressing range
of the instructions that reference the literals in the pool; if This directive has the form
not, an error is noted on I"he assembly listing. A program Label Command Argument
may have any number of literal pools. Mlabell | LPOOL Tk]
Example 5. LPOOL Directive
Load Location
Counter,, Statement Assembler Action
100 ANS RES 1 Reserves 1 word in this location for answer; defines
the symbol ANS as this location.
101 VAL RES 300 Reserves 300 words beginning in this location for
program data; defines the symbol VAL as this location.
X EQU 1 Defines the symbol X to have the value 1.
401 LDX =-999 The value =999 is assigned to the first word of the
following literal pool; the instruction is generated
as though it were LDX $+8,

Literal Pools 21

Load Location

Counter |, Statement

402 LDA VAL

403 Ccp VAL+10, X
404 BNO $-2

405 LDA VAL+10, X
406 BIX $-3

407 STA ANS

408 B $+10

409 LPOOL 4

The literal pool declared above is filled as follows:

(409) = -999
(40A) = X'101"
(40B) = X'10B*
(40C)= X'100"

Subsequent literals would require another literal pool declaration,

Assembler Action

The address value VAL is assigned to the literal pool;
indirect addressing is imposed on the instruction and
its address portion is made relative forward; the
instruction is generated as though it were LDA *$+8,

The address value VAL+10 is assigned to the literal
pool; indirect addressing is imposed on the instruction
and its address is made relative forward; the instruc-
tion is generated as though it were CP *$+8, X,

Generates the instruction; relative addressing is inher-
ent in conditional branch instructions.

VAL+10 was previously established as a literal; indir-
ect addressing is imposed on this instruction; the
instruction is generated as though it were LDA *$+6, X,

Same as BNO $-2

The address value ANS is assigned to the literal pool;
indirect addressing is imposed on the instruction; the
instruction is generated as though it were STA *$+5,

Same as BNO § -2

Declares a literal pool of 4 words beginning at this
location.

where

label is any valid symbol. Use of a label is op-
tional. When present, it is assigned the current
value of the execution location counter and iden-
tifies the first word of the literal pool. Both
location counters are incremented by the number
of words in the literal pool.

k is either an absolute previously defined expres~
sion, an integer constant, or is absent. k must
not be a literal.

If the value k is specified in the argument field, the assem-
bler is directed by LPOOL to reserve k memory locations
for a literal pool at thispoint in the assembly. Any accumu-
lated literals (but no more than k literals) are then immedi-
ately allocated. If there are more than k literals, the excess
literals will be placed in the next available literal pool. If k
is absent, the assembler is directed to assemble all accumu-
lated literals (including indirect address literals) at this point.

It is important that the programmer establish enough literal
pools within his program to store all literals specified by his
instructions as well as those address literals imposed by the
assembler. Such literals must be stored within addressing
range of the instructions that reference them.

22 Address Literals

When the LPOOL directive is used with a blank argument field,
certain circumstances may result in more memory locations be-
ing allocated for the literal pool than are actually needed.
This occurs because the assembler allocates space insuch literal
pools in the definition pass, before forward references have
beendefined. When literal pool space is available prior to the
definition point of a forward reference, one location of literal
pool space will be'allocated for each unique symbol so refer-
enced insingle-termed expressions. Inaddition, one location
of literal pool space will be allocated for each appearance of a
multitermed expression involving a forward reference, unless
the SLoption (see Chapter 8) has been specified. Inthis case,
no assembler-generated literals are allocated for any multi-
term expression involving a forward reference. Thisallocation
of literal pool storage will not be performed for any single-
termed expression that has previously appeared as the argu-
ment of an ADRL directive within the addressing range of
the instruction in question, or within a previous LPOOL di-
rective that is in addressing range.

ADDRESS LITERALS

When the assembler cannot invoke nonrelative, base-relative,
or self-relative addressing, it invokes indirect addressing
and generates address literals (see "Automatic Addressing"
earlier in this chapter). These address literals require space

inaliteral pool. Thus, literal pools must be declared within
self-relative addressing range of such occurrences, Address-
ing may be non-relative, self-relative, or base-relative.

Address literals may also be declared by the programmer
through use of the ADRL directive.

ADRL Generate Address Literal

This directive has the form

Label Command Argument
Mabell ADRL expression
where
label is any valid symbol. Use of a label is optional,

When present, it is assigned the current value of
the execution location counter, Both location
counters are incrementec by one,

expression is any single-termed or multitermed
expression other than a literal,

This directive causes the assembler to generate one word
containing the address value assigned to the symbol,

The value "symbol" is placed in the literal table. However,
it is tagged to indicate that it is not to be output in a lit=
eral pool,

Any Class 1 instruction or Gen | directive within address-

ing range of the ADRL may use the value "symbol" as an
indirect address as shown in the example below,

Example 6. ADRL Directive

If it is necessary toreference aninstruction labeled VAL,
but VAL is out of direct addressing range, the following
statements accomplish the tfask without the need for the

LPOOL directive,

ADDRS ADRL VAL

ADLCRS ADRL VAL

. or :
B VAL B *ADDRS
The ADRL directive must be within addiessing range of
the branch instruction,

The reference, B VAL, is handled in the same manner as
if the address literal were invoked by the assembler,

The ADRL directive also provides a method for transmitting
data addresses to subroutines. For example, if the items
A, B, and C are required by a subroutine, the calling pro-
gramcan provide the addresses of these itemsand the branch
to the subroutine with the following statements.

Example 7. ADRL Directive

CALL RCPYI 1,5 Address CALL+ 2 copied into

base register
B *$+1 Indirect branch to subroutine

ADRL SUBR Address of subroutine

ADRL A Address of A
ADRL B Address of B
ADRL C Address of C

(return)

The subroutine can reference A, B, and Cby usingthe ad-
dresses generated by the ADRL directives, Since the
address CALL +2 is in the base register, the subroutine has
access to items A, B, C by indirect addressing through the
base register, For example, the subroutine below selects
the larger of A and B and makes it C. If A=B, C is given
the value of O,

SUBR LDA *1,,1

Load A into accumulator

CpP *2,,1 Compare A to B
BNO §+5 Branch if A< B
BNC $+2 Branch if A > B
RCPY 0,7 Clears uccumulator,

STA *3,,1 Makes C = (accumulator)

B 4,1 Return to calling program
LDA *2,,1 Load B into accumulator
B $-3

It is suggested that pregrammers precede each program seg-
ment smaller than 256 instructions with a list of ADRL's
containing symbols referenced outside the segment. If this
is done, the taskof debugging a program is made easier be-
cause the addressesof all such symbols appear in the address
literals at the beginning of the segment. Thus, time spent
insearching through the listing for address valuesis ¢liminated.

Address Literals 23

5. LOCATION COUNTERS AND PROGRAM SECTIONS

LOCATION COUNTERS

A location counter is a memory cell that the assembler uses
to keep track of the stcrage location it assigned last and,
thus, what location it should assign next. Each section of
a program has two location counters associated with it: the
load location counter (referenced symbolically as $3) and the
execution location counter (referenced symbolically as §$).

An additional location counter, the common location counter,
isused and set only by the COMMON directive, COMMON

symbols may be referenced as COMMON relocatable oper-

ands. However, COMMON symbols may not be assembled

with values,

The value of the load location counter is relative to the
origin of the source program (or program section when two
sections comprise a single program), The execution loca-
tion counter is the location relative to an execution base.
The initial value of the location counters is specified at
assembly time,

Most users will be concerned only with the execution loca-
tion counter; that is, they will want to assemble relocatable
programs that can be loaded and executed anywhere in core
memory. To have a relocatable program assembled relative
to some value other than zero, the programmer should use
an ORG directive to designate the origin of the program
(or a section of a program). This directive sets the load

and execution location counters to the same value and
allows Extended Symbol to assemble the program relative
to that value.

The load location counter is a facility provided for systems
programmers to enable them to assemble o program that must
be executed in a certain area of core memory, load it into
a different area of core, and then, when the program is to
be executed, move it to the proper area of memory without
having to alter any program addresses, For example,
assume a program provides a choice of four different output
devices: paper tape, magnetic tope, punched cards, orline
printer. Atexecutiontime, only one of thedevices will be
used, In order to execute properly, the program must be
stored in core as foliuws:

0000
Main Program
1FFF
Desired Output Routine
2FFF To be used
for data
storage during
program
execution

Each of the four output routines would be assembled with an
initial execution location counter value of 1FFF butdifferent

24 Location Counters and Program Sections

load location counter values (e.g., 1FFF, 2FFF, 3FFF, etc.).
At run time all the routines could be loaded as follows:

0000
Main Program
1FFF Executionarea
for output routine
2FFF .])
Magnetic Tape Routine
3FFF

Paper Tape Routine To be used for
AFFF datastorage
Typewriter Routine during program
5FFF execution
Line Printer Routine

P

When the main program has determined which output routine
is to be used, it moves that routine to the appropriate exe-
cution area. No address modification is required at this
time since the routine was originally assembled to be exe-
cuted in that area. If the paper tape routine wereselected,
it would be moved to the execution area beginning at
1FFF, and memory from 2FFF and above could then be used
for data storage.

At the beginning of an assembly, Extended Symbol automat-
ically sets the value of the three location counters to zero.,
The user can reset the location values for the load and exe-
cution counters during an assembly with the ORG and LOC dir-
ectives. The ORG directive sets the value of both of these loca-
tion counters, The LOCdirective sets the value of only the
execution location counter, The COMMON directive alters
the value of the common location counter,

SETTING THE LOCATION COUNTERS

Unless the assembler is otherwise informed via a program sec-
tion directive, it assumes at the beginning of an assembly
that there is to be only one program section, and it sets the
three location counters to zero, The user may designate val-
ues to be assigned to these location counters by means of tha
ORG, COMMON and LOC directives, Two other directives,
BOUND and RES, have a special effect on the load and exe-
cution location counters,

ORG Set Program Origin
The ORG directive sets both the load and execution location

counters to the location specified, This directive has the
form

;_Lgbel Command
label ORG

Argument
location

where

label isany valid symbol, Use of a label is optional.
When present, it isdefined as the value "location"
and is associated with the first word of storage
following the ORG directive,

location may be a relocatcble expression or an
absolute expression resulting in a positive integer
value. It must not contain any literal, forward,
or external references.

An absolute expression sets the location counters to the
value designated by the expression; the mode of the current
section (absolute or relocatable) is left unchanged (see
"Program Sections" in this chapter). A relocatable expres-
sion sets the location counters and the current section to the
relocatable mode.

There is no limit on the number of ORG directives that may
be used in a program or program section.

Example 8. ORG Directive

BB ORG 0 This directive sets both the

load and the execution loca-
tion counters to 0 and assigns
the label BB to that location,
AA ORG 8 This directive resets both the
load and the execution loca-
tion counters to 8 and assigns
the label AA to that location,

LDX INDEX This instruction is assembled
to be loaded into the location
defined as AA., Thus, the effect
is the same as if the ORG dir-
ective had not been labeled
and the label AA had been
written as the label for the
LDX instruction.

LocC Set Program Execution

The LOC directive sets the execution location counter ($)
to the location specified. It has the form

Label Command Argument
(tabell LOC location

where
label is any valid symbol. Use of a label is optional.

When one is present, it is defined as the value of
"location" and is associated with the first word
of storage following the LOC directive.

location may be a relocatable expression or an
absolute expression resulting in a positive integer
value. It must not contain any literal, forward,

or external references.

This directive is the same as ORG except that it affects
only the execution location counter.

Example 9. LOC Directive

ORG 100

Sets the execution location
counter and load location
counter to 100.

LOC 1000 Sets the execution location

counter to 1000, The location
counter remains at 100,

Subsequent instructions will be assembled so that the ob-
ject program can be loaded anywhere in core. However, the
program will execute properly only when it begins at 1000,

BOUND

The BOUND directive advances the execution location
counter to the nextmultiple of the specified boundary, if
the counter is not already a multiple of the boundary. The
load location counter is then advanced the same number of
words, The form of this directive is

Advance Location Counters

Label Command Argument
[labell BOUND boundary
where
label is any valid symbol. Use of a label is optional.

When present, it is defined as the current value of
the execution location counter and identifies the
first word of the bounded area,

boundary is an expression which must not contain
literal, forward, or external references, The value
of "boundary " must be a power of 2; if itis not, 1is
assumed, and the error is flagged.

When the BOUND directive results in the execution location
counter being advanced, it acts like a "reserve". No zeros
are generated in the skipped words,

Example 10. BOUND Directive

BOUND 8

Sets the execution location
counter to the next higher
multiple of 8 if it is not
already at such a value.

If the execution location counter for the current section
were 13, this directive would advance the counter to 16,
Note that if the BOUND directive advances the execu-
tion location counter, the load location counter is ad-
vanced the same number of words but not necessarily
to the same value, as in the following:

ORG 11 Sets both location counters
to 11.

LOC 14 Sets the execution location
counter to 14,

BOUND 4 Advances the execution loca-

tion counter 2 words to the
nextmultiple of 4(i.e., to 16)
and the load location counter
to 13.

Location Counters 25

RES Reserve An Area

The RES directive enables the user to reserve an area of
core memory. The form of this directive is

Losel Command Argument
[label] RES n
where
label is any valid symbol. Use of a label isoptional.

When present, the label is defined as the current
value of the execution location counter; that is,
the first location in the reserved area,

n is an evaluatable expression (no literal, external,
or forward reference) designating the number of
words to be reserved, The value of n may be a
positive or negative integer, or O.

When Extended Symbol encounters anRES directive, italters
the load and execution location counters by the specified
number of words, This enables the programmer to reserve an
area of core within the instruction sequence of his program.

The RES directive does not clear the reserved area.

Example 11, RES Directive

ORG 100

Set load and execution loca-
tion counters to 100.
A RES 10 Define symbol A as location

100 and advance the load and
execution location counters by
10 words, changing themto 110.

LDA VALUE This instruction is assigned to
the location immediately fol-
lowing the 10 reserved words;
that is, to 110, relative to Q.

COMMON

The COMMON directive enables the user to reserve an
area of core memory within the common storage area. The
form of thedirective is

Label Command Argument
[label] COMMON n
where
label isany valid symbol, Use of alabel isoptional,

When present, the label is defined as a relocatable
symbol having as its value the current value of the
common location in the reserved area,

n is an evaluatable expression (no literal, external,
or forward references) designating the number of
words to be reserved. The value of n may be a
positive or negative integer or 0.

26 Program Sections

When Extended Symbol encounters a COMMON directive,
it alters the common location counter by the specified
number of units, This enables the programmer to reserve
an area of core outside the instruction sequence of his pro-
gram. No other Extended Symbo!l directive affects the
common location counter which is automatically set to
zero ot the beginning of an assembly.

The COMMON directive does not clear the reserved area,
Common symbols may be referenced as relocatable operands;
however, the assembler will not generate any instructions
or data to be stored in the common area,

" PROGRAM SECTIONS

An object program may consist of one or more program sec-
) i
tions: one or more relocatable and/or one or more absolute |
sections,

[t is usually desirable to assemble a symbolic program section
without allocating it to a particular memory area or starting
location. When a program section can be executed indepen-
dently of its origin, that is, independently of where it is
physically located within the computer, it is called a relo-
catable program section. Relocatable sections are frequently
assembled relative to location zero; that is, they are assem-
bled as if the first instruction would be stored at location
zero. Subsequent instructions are assembled relative to the
beginning location of the section,

When a relocatable section is loaded into core to be exe-
cuted, the user may specify the beginning location of the
area where the section is to be stored, and an appropriate
value (called a relocation bias) is added by the loader to
each relocatable symbol and expression in the section, For
example, if a relocatable section is loaded beginning at loca-
tion 1000, the value 1000 is the relocation bias. To illus-
trate, assume a section is assembled relative to zero:

Location Instruction Comment

100 ADRL ALPHA Address literal of
: . location ALPHA
120 ALPHA LDA BETA Load accumulator

with contents of

BETA

When these statements are assembled, location 100 will con-
tain the value 120, If this section is loaded with a relocation
bias of 1500, the location 1600 (100+1500) would contain
the value 1620 (120+1500).

Program sections are generally relocatable, However, the
provision for absolute (nonrelocatable) sections is useful for
providing instructions to be executed in the event of an
interrupt,

ASECT/CSECT

Two directives are provided for program sectioning:

Absolute/Relocatable Program Sections

Labe! Command Argument

ASECT
CSECT

where If an ORG directive does not follow ASECT or CSECT, both
location counters will be reset to zero,
ASECT indicates that labels on subsequent state-
ments will be defined cs absolute values. An Example 12. ASECT and CSECT Directives
ORG directive should follow the ASECT statement :
to designate an absolute value for the location

counters. ASECT Dec!ores an absolute program
section.
CSECT indicates that labels on subsequent state- :
ments will be defined as relocatable values. : . L
CSECT will normally be followed by an ORG LAST SL"S:_;““’““” of absolute
ection.

statement to designate the initial relocatable

value to which the location counters are set, CSECT Declares remainder of program

as relocatable.
The argument field is ignored by the assembler, -

If neither ASECT nor CSECT is declared, CSECT is assumed. END End of symbolic program.

Program Sections 27

6. EXTENDED SYMBOL DIRECTIVES

Commands to the assembler are called "directives".
Directives may be combined with other assembly language
elements to form directive statements. Directive state-

“ments, like instruction statements, have four fields: label,
command, argument, and comments.

A symbol entry in the label field is required for three
directives: EQU, SET, and CNAME. EQU and SET
equate the symbol in the label field to the value of the
expression in the argument field. The label field entry
for CNAME identifies the procedure that follows. The
location counters are not affected by these directives.

Optional labels for the directives ORG and LOC are de-
fined as the value to which the execution location counter
is set by the directive.

If any of the directives ADRL, BOUND, DATA, GEN,
GEN1, GEN2, LPOOL, RES, TEXT, or TEXTC are
labeled, the label is defined as the current value of the
execution location counter and the label identifies the first
word of the area generated or specified by the directive.
These directives also increment both the load and execu-
tion location counters by the number of words generated
from or specified by the directive's argument field.

Labels for the directives BASE and LPOOL identify the
first word of the area affected by the directives; that is,
they are nongenerative and do not increment the location
counters.,

For the directives ASECT, CSECT, DISP, ELSE, END, FIN,
GOTO, LBL, LIST, LOCAL, PAGE, PCC, PEND, PROC,
SOCW, SPACE, S:STEP, and TITLE, a label field entry is
ignored. That is, the symbol is not defined and, therefore,
may not be referenced unless it is the target label of a
GOTO search.

Label field entries for the directives IDNT, DEF, REF,
and SREF are always ignored.

Labels for the DO directive are handled in a special
manner.

The command field entry is the directive itself. For some
directives this field may consist of two subfields, in which
case the directive must be in the first subfield, followed
by the other entry.

Argument field entries vary and are defined in the discus-
sion of each directive. A directive statement format with
a blank argument field implies that arguments are ignored
for that directive.

A comments field entry is optional.

The END and PEND directives are the only directives un=
conditionally executed. They are processed even if they

28 Extended Symbol Directives

appear within the range of a GOTO search or an inactive
DO-loop.

The directives listed below were described in Chapters 4
and 5. These directives are not discussed again in this
chapter.

BASE ORG A

LPOOL { Chapter 4 LOC

ADRL BOUND
RES > Chapter 5
COMMON
ASECT
CSECT J

CNAME, PROC, and PEND are described in Chapter 7.

See Appendix B for a summary of Extended Symbol
directives.

In the directive statement formats that follow, brackets

indicate optional items. These directives are presented in
alphabetical order.

DATA Produce Data Value

DATA enables the programmer to represent data conve-
niently within a symbolic program. DATA has the form

Label Command Argument
[label] DATA[, k] value list
where
labe! is any valid symbol. Use of a label is op=~

tional. When present, it is defined as the current
value of the execution location counter and iden-
tifies the first data word. The location counters

are incremented by the number of words generated.

k is the field size {in words) that will be generated
for each value and may be an evaluatable ex-
pression (no forward or external references) that
results in an integer in the range 1<k <4,

value list is the list of values to be generated. A
value may be a multitermed expression or symbol.
When the entry is a symbol, the value of the
symbol becomes the data entry.

The DATA directive generates each value in the list into
a field whose size is k words if k is specified or one word
if k is notfspecified.

When the field size to be generated for each value is one
word (i.e., the command is DATA or DATA, 1), the ex~
pressions in the value list must be evaluated as one of the
following:

1. Decimal integers in the range -32768 to 32767 .

2. Hexadecimal values of one to four hexadecimal digits.
If fewer than four hexadecimal digits are written, the
digits are right-justified in a data word and leading
hexadecimal zeros are entered. If more than four
digits are written, the last four are entered in a data
word and the remaining digits are truncated.

Example:

Valve Data Word
X'ABC! 0ABC
X'12FACD' FACD

3. A character string of one or two characters. A two-
character string fills a word. A single character is
placed in the right byte of a word and zeros are
placed in the left byte. If a character string contains
more than two characters, only the last two are
entered in the data word.

4. Asymbol. The value of the symbol becomes the data
entry .
L\lofe:v The symbols $ and $$ always refer to the first word
generated by the DATA directive.

When k is 2, floating-point short constants are allowed;
when k is 3, floating=point long constants may be used.
No multitermed expression may appear in the value list for

k=2, 3, or 4.

Example 13. DATA Directive

A DATA 536, -22,1,X'FA123', 'XD', 'S’

6 words are generated containing, in

hexadecimal:
0218
FFEA
0001
A123 Exceeds 1 word limit;

F is truncated
E7C4
00E2
DATA, 2 536, ~22,FS'1.', X'9CO1F', 'XDS'

Ten words are generated containing,
in hexadecimal:

0000 0000
0218 0009
FFFF COTF
FFEA 00E7
4110 C4£2

.DEF Declare External Definitions

The DEF directive declares which symbols defined in this
assembly may be referenced by other (separately assembled)
programs. The form of this directive is

Label | Command | Argument
DEF symboll [, symbolz, cees symboln]

where each symbo! may be any label that is defined within
the current program.

A label field entry is ignored by the assembler.

Symbols declared with DEF directives are used for symbolic
program linkage between two or more programs. Such sym-
bols provide access to a program from another program;
"access" may be a transfer of control (via a branch instruc-
tion) or some reference to data storage.

It is necessary that the program following the DEF directive
define all symbols declared by DEF. Undefined DEF-
declared symbols are noted in the assembly listing.

Example 14. DEF Directive

DEF TAN, SUM, SORT

This statement identifies the labels TAN, SUM, and
SORT as symbols that may be referenced by other
programs.

DISP Display Values

The DISP directive produces a display of the values speci-
fied in its argument list, one per line on the assembly
listing. The form of the directive is

Label Command | Argument
DISP [list]

where list is any list of constants, symbols, intrinsic func-
tions, or expressions that are to be displayed at that point
in the assembly listing. The values of the argument list
will be displayed one per line, beginning at the DISP di-
rective line.

If the DISP directive is used inside a procedure, it will not
display values until the procedure is called on a procedure
reference line.

Extended Symbol Directives 29

DO/ELSE/FIN Iteration Control

The DO directive defines the beginning of an iteration
loop; ELSE and FIN define the end of an iteration loop.
These directives have the form

Label Command Argument
[label] DO exp
ELSE
FIN
whete
label is any valid symbol. Use of a label is op-

tional, When present, it is initially assigned the
value 0 and incremented by 1 each successive
time through the loop. Note that label is not de~-
fined as the current value of the execution loca-
tion counter, However, it may be the target label
of a GOTO search.

exp is an absolute, evaluatable (no forward, lit-
eral, or external references) expression that rep-
resents the count of how many times the DO-loop
is to be assembled.

A label field entry is ignored for ELSE or FIN unless it is
the target label in a GOTO search. Argument field entries
are always ignored in an ELSE or FIN directive,

Figure 3illustrates the logical flow of a DO/ELSE/FIN loop.

The assembler processes each DO-=loop as follows:

1. Establishes an internal counter and defines its value
as zero.

2. [Ifalabelispresentonthe DO line, setsits value to zero.
Evaluates the expression that represents the count,

If the count isless than or equal to zero, discontinues
assembly until an ELSEor FIN directive is encountered,

a. If an ELSE directive is encounterad, assembles
statements following it until a FIN directive is
encountered,

b. 1If a FIN directive is encountered, terminates
control of the DO-loop and resumes assembly af
the next statement.

(8]

If the count is greater than zero, processes the DO-
loop as follows:

a. Increments the current value of the label by 1,

b, Assembles all lines encountered up to the first
ELSE or FIN directive,

c. Repeats steps 5a and 5b until the loop has been pro-
cessed the number of times specified by the count.

d, Terminates control of the DO=loop and resumas
assembly at the statement following the FIN.

If the expression in the DO directive is not evaluatable
(i.e., if it contains an external or forward reference), Ex-
tended Symbol sets the label (if present)to the value zero,

30 Extended Symbol Directives

produces an error notification, and processes the DO
directive as if the expression has been evaluated as zero,

The label for the DO directive may be redefined within the
loop, but the assembler will increment the value of the
label at the beginning of each iteration, For example,

K DG 5

DA K-l
K SET K+1
FIN

The statements between DQOuand FIN will be assembled five
times. The argument of the LDAwill be0, 2, 4, 6, and 8.

Any symbols in "exp" that are redefinable may also be
changed within the loop without affecting the number of
times the loop is executed, For example:

HOURS SET 8
RATE SET 5
DO HOURS*RATE

HOURS SET 2

.

FIN
The loop will be assembled 40 times,

Since the label on a DO statement is redefinable, it may
be reused on subsequent DOs following the FIN associated
with the labeled DO,

DO-loops may be nested; i.e., a DO-loop may exist
within ancther DO=loop. An inner DO-loop must be con=-
tained completely within an outer DO=loop. There may be
a maximum of 30 nested DO-loops.

A DO-loop must be completedon the same program level in
which it originates; that is, if a DO directive occurs in
the main program, the associated FIN for that directive
mustalso be in the mainprogram. If a DO directive occurs
within a procedure definition, the associated FIN for that
directive must also be within the definition.

When the assembler encounters a DO=loop, the statements
in the loop are listed even if they are not processed (for

example, the case of DO 0),

Example 15. DO/FIN Directives

A DO 5 This is the equivalent of
ADD NUM+A ADD NUM+I
FIN ADD NUM+2
. ADD NUM+3
ADD NUM+4
ADD NUM+5

IC = Internal counter

LABEL = Labe! (if present on DO line)

EXP = The result of evaluating expression
on DO line

0—1C
0 — LABEL
Evaluate expression — EXP

< EXP<0?
yes 1

i NO

-

\

[C+1—1IC
LABEL + 1—= LABEL

yes

Assemble until FIN

Set flog to get line -

Is it FIN?

following DO /’
l _< Next line

yes " ELSE?

yes

Assemble -

Is it FIN?

\

Terminate loop

Resume assembly
after FIN

Figure 3. Flowchart of DO/ELSE/FIN Loop

Extended Symbol Directives 31

Example 16:.. DO/ELSE/FIN Directives

~In-this-example the dashed vertical lines indicate
“statements: that: are skipped; solid vertical lines indicate
statements that are assembled. The numbers 1 and 2
above the vertical: lines indicate which iteration of

the: outer DO~locp is in process.

Iteration
: 1l 2
T DO 2 T F-I]
DO I=1 J |
. I
|

Inner {Outer

{ELSE 1 Loop | Loop |
: I |
FIN +

FIN 1] .

Example 17. DO/FIN Directives

‘M DO 2

DATA M*2
DO 4
DATA N*M
P PO 2
DATA P+N+M | Loop C | Loop B | Loop A
FIN }
FIN
FIN J

The data generated by this series of statements is

Iteration 1

Loop|[A1|B1|C1[C2{B2[C3|C4|B3|C5|C6[B4|C7|CB

Dataf 2 [T 3424|533 [5]6]4]6]7
- Iteration 2

Loop|AZ[BT|CT1[C2|B2[C3|C4|B3{C5[C6|B4[C7|C8
Data| 4 1214|514 15|6]6]617[8]7]8

Form 2. DO
. block 1

FIN
If the expression in a DO directive is evaluated. as.positive,

nonzero value n, then in either form block 1 is repeated n
times and assembly is resumed following the FIN.,

If the expression in the DO directive is evaluated: as a
negativa or zero volue, then in

Form 1: block 1 is skipped, block 2 is assembled
once, and assembly is resumed following
the FIN.

Form 2: block 1 is skipped, and assembly is
resumed- following the FIN.

END End Assembly

The END directive terminates the assembly of the source
program. Any literals that have been accumulated, but
not yet allocated, are allocated at this point. This is the
only occurrence of an assembler~imposed literal pool.
The END directive has the form

Label Command Argument
END [exp]
where
exp is an optional expression designating a loca-

tion to which control is to be transferred. after
the program has been loaded. Normally, that
location contains the first machine language
instruction in the program. The "exp" must not
be an external reference.

A label field entry is ignored by the assembler unless it is

the target label of a GOTO search.

The END directive is unconditionally executed; it is pro-
cessed even when it appears within the range of a GOTO
search or an inactive DO-loop.

Example 18. END Directive

In summary, there are two forms of iterative loops as shown
below.

For‘m 1. DO !

] block 1
ELSE

.] block 2
FIN

32 Extended Symbol Directives

CONTROL CSECT
START LDA TEST

END = START

EQU Equate Symbols

The EQU directive enables the user to define a symbol by
assigning to it the attributes of the expression in the argu-
ment field, This directive has the form

Label Command Argument
label EQU exp
where
label is any valid symbol.
exp is any single-termed expression (other than an

external, literal, or forward reference) or is a
multitermed, evaluatable expression (no forward,
literal, or external references). The mode (abso-
lute or relocatable) of exp is assigned to label.

When EQU is processed by Extended Symbol, "label" is de-
fined as the value of "exp". For example, the statement

VALUE EQU 8+5

assigns the absolute value 13 to VALUE, and
ALPHA EQU $-10

assigns the relocatable value $ - 10 to ALPHA,

A symbol defined with an EQU cannot be redefined:

A EQU X'F' Legal

A EQU 23 Illegal because A has already

been assigned a value

If two symbols are equated, they are assigned identical
aftributes and are stored in the appropriate symbo! table(s)
depending upon local symbol conditions (i.e., a local or
procedure-local symbol may be equated to a nonlocal
symbol).

GEN Generate a Value

The GEN directive generates one or more words of object
program code according to a specified bit configuration.
It has the general form

Label Command Argument
MNabel] GEN, field list | value list
where
label is any valid symbol. ~ Use of a label is

optional. When present, it is defined as the
current value of the execution location counter
and identifies the first word generated. The
location counters are incremented by the number
of words generated.

field list is a list of evaluatable {no literal, for-
ward, or external references), absolute expres-
sions, each of which defines the size (in bits) of
a generated field (size < 32,768). The sum of the
expressions (field sizes) must be a positive multiple

of 16.

value list is a list of expressions that define the
contents of each generated field. This list may
contain forward and external references. The
" value represented by the value list is assembled
into the corresponding field.

The expressions in the field list and the value list must be
separated by commas. Successive commas produce expres-
sion values of 0.

There is one-to-one correspondence between the entries in
the field list and the entries in the value list; the code is
generated so that the first field contains the first value,
etc. A maximum of 16 list elements is allowed.

The value produced by a GEN directive appears on the
assembly listing as four hexadecimal digits per line.

GEN is used extensively by systems programmers. It en-
ables them to generate object code in the configuration
required by their systems.

A relocatable address may be generated only in a 16-bit
field that occupies an entire memory word (i.e., a field
may not overlap word boundaries). Absolute quantities are
not restricted to word boundaries or field sizes. Their
values, however, may not exceed the 16-bit capacity of

a computer word.

Note: The symbols $ and $$ always refer to the first word
generated by the GEN directive.

To facilitate the generation of Xerox 530 and Sigma 2/3
instructions, two variations of the directive are provided
by Extended Xymbol. The directives GEN1 and GEN2
provide, respectively, the facility for generating Class 1
and Class 2 instructions. These directives cause the assem=
bler to generate instructions having the proper Class 1 or
Class 2 instruction format. The directives have the form

Label Command Argument
label GENI1 op, [i], [x], [b] ,a
label] GEN2 op, a
where
label has the same meaning as described for GEN.
op is an expression that is evaluated as a hexadec-

imal operation code.

i is an expression that must be evaluated as an
absolute value, if present. A nonzero absolute
value specifies indirect addressing. A 0 (or a
blank) specifies that indirect addressing is not to
be performed.

Extended Symbol Directives 33

X is an expression that must be evaluated as an
absolute value, if present. A nonzero absolute
value specifies post-indexing. A O (or a blank)

specifies that post-indexing is not ta be performed.

b is an expression that must be evaluated like X.
A nonzero absolute value specifies pre-indexing.
A zero (or a blank) specifies that pre-indexing is
not to be performed.

a is any admissible address expression.

The absence of one of the items in the argument field must
be indicated by successive commas (see Example 21).

GEN1 and GEN2 are useful in writing procedures (see
Chapter 7).

Automatic addressing conditions for instructions produced
by GENT1 are the same as described in Chapter 4 under
"Addressing" .

The argument address for GEN2 must comply with the self-
relative addressing requirements of Class 2 instructions;

that is, the address must be within the self-relative address-
ing range of the instruction ($-256 to $+255).

Example 19. GEN Directive

X EQU -1
Y EQU 1
GEN, 8,;
8,16 5Y,X Produces:
Hex. Binary
0501 [EO&IO_D_UMIQQQ}_]
FFFF [N TIINITIRTD
B EQU 5 ° ’ "
GEN, B, ;
16-B 3,15 Produces:
180F [QOOTIIO00GO00ITTI]

Example 20, GEN1 Directive

GENI 8,0,0,; Generates the equivalent
NUM of the symbolic instruc~
tion LDA NUM
lOJ_Q_QQJQQ_leNUALH]
STA EQU X'E! :
-GEN] STA,1,,,; Generates the equivalent
ANS of the symbolic instrue-
tion STA* ANS
[[TTOI0TO0IANS]
0 7 15

34 Extended Symbol Directives

Example 21. GEN2 Directive

BAN EQU X'37!

GEN2 BAN, $-3 Produces: Class 2

. Ban instruction
[o1101 11111111101 |
[3 15

GOTO Conditional Branch

The GOTO directive enables the user to conditionally
aiter the sequence in which statements are assembled. The
GOTO directive has the form

Label Command Argument
GQTO[, k] lobell [lubelz, ooy lqbeln]
where
k is an absolute, evaluatable (no forward or exter-

nal references), integer-valued expression. If k
is omitted, 1 is assumed.

label; is a forward reference. The labels must be
nonlocal symbols if the GOTO directive appears
in a nonlocal symbol region.

A GOTO statement is executed at the time it is encoun-
tered during the assembly. Extended Symbol evaluates the
expression k (if present) and resumes assembly at the line
that contains a label corresponding to the kth label in the
GOTO argument field. The labels must refer to lines that
follow the GOTO directive. If the value of k is not be~
tween 1 and n, Extended Symbol resumes assembly at the
statement immediately following the GOTO directlve. An
error message is given if the value of k is greater than n.

A ldabel that is normally ignored by the assembler (i,e., a
label on END, FIN, LOCAL, PAGE, PROC, PEND,
TITLE, or another GOTO statement) will be recognized
if it is the target (kth) label of a GOTO search.

A statement skipped as the result of a GOTO appears on
the assembly listing in symbolic form; the absence of gen-
erated code indicates that it has been ignored.

When Extended Symbol encounters the first of a logical pair
of directives’ while in the skipping mode, it suspends its
search for the label until the other member of the pair is en-
countered, Then it continues the search. Thus, while in
skipping mode, Extended Symbol does not recognize labels
that are within procedure definitions or iteration loops. It is
not possible, therefore, to write a GOTOdirective that might
branch into a procedure definition or a DO/FIN loop.H

fCermin directives must occur in pairs: PROC/PEND and
DO/FIN.

t, . .
UTER legal, however, to terminate a DO loop by branch-
ing past the associated FIN,

(

Furthermore, it is not permissible to write a GOTO direc-
tive that might branch out of o procedure definition. If
such o case did occur, Extended Symbol would encounter

a PEND directive before its search had been satisfied, pro-
duce an error notification, and terminate the search for
the label,

Example 22, GOTO Directive

A I%QU 2

iGOTO, A+2 B,C,D,E,F,G
F
B
E
G

When the assembler encounters the GOTO directive,

it evaluates the expression A+2 and derives the value 4,
In the argument field of the directive, Extended Symbol
locates the fourth label, E. Then the assembler begins
searching for a statement labeled E. All statements
between the GOTQC directive and the statement la-
beled E are ignored and are not assembled. The assem-
bly resumes with the statement labeled E.

IDNT Identify Object Module

The IDNT directive provides an identifying name to be
stored in the start module item of the object module. The
use of this name is described in detail in the RBM/RT, BP
Reference Manual, 90 10 37. The form of the IDNT direc-

tive is

A label field entry in an IDNT statement is ignored,

LBL Label Object Module Records

The LBL directive causes records of the object module out-
put by the assembler to be labeled andsequenced; its form is

Labe! Command Argument

LBL ['character string']

where

'character string' is a character string constant
(one through eight characters)and may include a
subset of characters in the EBCDIC character sef,

This subset is restricted to alphanumeric charac-
ters, blank, and those printing characters whose
internal codes are within the range X'4A' through
X'7F', and X'6A', A label field entry is ignored
unless it is the target label of @ GOTO search,

When an LBL directive is encountered, the next record of
the object module is begun with the identification field of
this record (e.g., columns 73-80 of a binary card) foilowed
by sufficient trailing zeros to make eight characters.

Until another LBL directive is encountered, the identifica~-
tion field of each succeeding object module record will contain
the character stringwith the trailing digits incremented by
one, Sequence numbering will recycle: after a record in
whichall thetrailingdigits are nines, there will come a rec-
ord inwhich all the trailing digits are again zeros, If the
argument field of the LBLdirective is blank, identification
of object module records will be performed, as described
above, commencing with eight trailing zeros, If no LBL
directive is encountered, the identification field will con-
sist of four blanks followed by afour-digit sequence number,

LIST List/No List

+ The LIST directive enables the user to selectively suppress
i and resume the assembly listing, The form of the directive is

label command argument
Label Command Argument LIST exp
IDNT 'csl'[,. . .-,'csn']
where exp is an absolute, evaluatable expression resulting
where in an integer that suppresses or resumes assembly listing, If
cs, is an explicit character string constant and may i the value of exp is nonzero, a normal assembly listing will

include any characters in the EBCDIC character
set except the blank. The total number of char-
acters may not exceed eight. The character string
must be enclosed by single quotation marks. The
combined choracter string, followed by sufficient
blanks to make eight characters, will be inserted
into the start module in the binary object program,
If no IDNT statement appears in the source
program, eight blanks will be inserted in the start
module.

No more than one IDNT statement may be used in a source
program.

be produced; if exp is zero when LIST is encountered, all
listing following the directive will be suppressed until a
subsequent LIST directs otherwise,

Used inside a procedure, the LISTdirective will notsuppress
printing of the procedure reference (csll) line. However,
LIST will suppress printing of the object code associated
with the call line if the LIST directive was encountered
prior to any code generation within the procedure.

Until a LIST directive appears within a source program the

assembler assumes a default convention of LIST 1, allowing
a normal assembly listing.

Extended Symbol Directives 35

LOCAL Declare Local Symbols

An Extended Symbol main program and the body of each
procedure called during the assembly of the main program
{(see "Procedures", Chapter 7)constitute the nonlocal sym-
bol region for the assembly. Local symbol regions, in which
certain symbols will be unique to the region, may be cre-
ated within o procedure or main program by the LOCAL
directive, This directive has the form

Example 24. LOCAL Directive

Label Command Argument

LOCAL [symbol],symbolz, . ..,symboln]

where each symbel is to be local to the currentregion and is
entered in the local symbol table. Local symbols are syntac-
tically the same as other symbols. The argument field may
be blank, in which case the LOCAL directive terminates
the current local symbol region and erases the local symbol
table without declaring any new local symbols,

A label field entry is ignored by the assembler unless it is
the target label of a GOTO search.

The local symbol region, created by a LOCAL directive,
begins with the first statement (other than comments or

another LOCAL) following that directive, When a new
region is created, any previous local symbol region is

terminated (see below for exception in a procedure).

Example 23. LOCAL Directive

LOCAL A, B,

C
LOCALR, S, T, U
LOCAL X, Y, Z
*C OMMENT
START EQU §

LOCAL

The three LOCAL directives inform the assembler
that the symbols A, B, C, R, S, T, U, X, Y,
and Z are to be local to the region beginning
with the line START., The final LOCAL direc~
tive terminates the local symbo! region and erases
the local symbol table without declaring any new
local symbols.

If the LOCAL directive occurs between the PROC and
PEND directives, a procedure-local symbol table is cre-
ated, with local symbols that may be referenced only
within the procedure being defined, When the procedure
is subsequently referenced in the program, these labels are
entered in the procedure=-local symbol table. The cur-
rently active definitions of these symbols are suspended
until the corresponding PEND or a LOCAL directive with
a blank argument field is encountered. The suspended
definitions of these symbols are then reactivated.

36 Extended Symbol Directives

ORG $+15
S EQU T S and X are nonlocal
X EQU V4 symbols,

LOCAL X, Y, Z Begin alocal symbol region
where X, Y, and Zare local
and all others are nonlocal.

Y EQU y4 This Z does not have the
same value as the one in
the EQU statement above.

LDA T Same undefined T as above.
i.e., a nonlocal symbol,

LOCAL A, B, X End current local symbol
region and begin a new
one where only A, B, and X
are local, '

LDX Zz This Z has the same value as
the Z that appeared in state-
ment X prior to the first
LOCAL directive,

X EQU N New definition of X, dif-

ferent from either of the
two definitions of X that
appeared before,

Example 25. LOCAL Directive

PRI CNAME
PROC
LOCAL X, Y, Z

PEND
PR2 CNAME
PROC
LOCAL X, Y, Z @3)

RI A)

PEND
*MAIN PROGRAM

LOCAL X, Y, Z 4)
PRR2 B C 1)

LOCAL K, L

END L

The local symbol definitions of X,Y, and Z in the main
program are suspended when PR2 is called (1). The
procedure=-local symbol definitions in PR2 are suspended
when PR1 is called (2). When the PEND statement of
PR1 is encountered, the local definitions in PR2 are re~
activated (3). When the PEND of PR2 is encountered,
the local definitions in the main program are reactiva-
ted (4). Thus, the three occurrences of LOCAL X, Y,
and Z do not conflict.

PAGE Begin A New Page

The PAGE directive causes the assembly listing to be ad-
vanced to a new page; its form is

Label Command Argument

PAGE

A label field entry is ignored by the assembler unless it is
the target label of a GOTO search. Argument field en-
tries are always ignored.

If the line of code following the PAGE directive would
normally appear at the top of a page, the directive is
ignored.

The PAGE directive is effective only at assembly time. No
code is generated for the object program as a result of its
use.

PCC Print Control Cards

The PCC directive controls the printing of LIST, PAGE,
TITLE, and SPACE statements; its form is

Label Command Argument
PCC n
where
n is an evaluatable absolute expression (no lit-

eral, external, or forward references) indicat-
ing whether or not to print succeeding control
cards in the assembly listing. If the value of n
is zero, printing of LIST, PAGE, TITLE, ond
SPACE statements will be suppressed until the
next PCC statement is encountered. Otherwise
(e.g., before any PCC statement), all LIST,
PAGE, TITLE, and SPACE statements will be
printed in the assembly listing as they occur,
before being executed by the Extended Symbol
processor,

REF Declare External References

The REF directive declares which symbols referenced in this
assembly are defined in some other (separately assembled)
program. The directive has the form

Label Command Argument
REF symboll[, symbol,, .. .,symboln]

where each symbol may be any label that is to be satisfied
at load time by other programs.

A label field entry is ignored by the assembler.

The REF directive causes the loader to load programs whose
labels it references. At load time all symbols that have ap-
peared in the argument field of REF statements and were
referenced in the source program must be satisfied by cor-
responding external definitions (DEF's) in another program.

It is not necessary that a program containing a REF direc~
tive reference all symbols declared by REF. Unrefer-
enced REFs will not be flagged as errors on the assembly
listing.

Example 26. REF Directive

REF IOCNTRL, TAPE, TYPE, PUNCH

This statement identifies the labels IOCNTRL, TAPE,
TYPE, and PUNCH as symbols for which external
definitions will be required at load time.

S:STEP Step Source Input

The S:STEP directive causes a temporary suspension of input
from the Sl device. It is primarily of use for source input
from paper tape, where large programs must be main-
tained on separate reels. This directive has the form

Label Command
S:STEP

Argument

When the S:STEP directive is encountered during the en-
coder pass (during SI input), the assembler will output the
message

STEP HIT |

on the OC device. Then the Monitor's M:WAIT routine is
called to allow the operator to mount the next paper tape
reel. When the operator continues the job, assembly is
resumed with the next record from the SI device.

Extended Symbol Directives 37

SET Set a Value

The SET directive, like EQU, endables the user to define a
symbol by assigning to it the attributes of the expression in
the argument field. SET has the form

Label Command Argument
label SET exp

where "label" and "exp" are the same as described for

EQU.

The SET directive differs from the EQU directive in that
any symbol defined by a SET may be redefined later by
means of a subsequent SET, This directive is particularly
useful in writing procedures (see Chapter 7).

If a symbol defined via a SET directive is to be redefined
but the user writes an EQU directive instead of a new SET,
Extended Symbol produces an error notification and retains
the earlier definition. This same condition holds true for

a variable defined by an EQU and later redefined by a SET.

Example 27. SET Directive

1 A EQU X'FF!

M SET A M is set to the hexadecimal
value FF.
S SET M Thus, S=M, i.e., X'FF'

M SET 263 Redefines symbol M.

Error; does not define symbol S

S EQU M

socw Suppress Object Control Words

The SOCW directive causes Extended Symbol to omit all
loader control information in the binary output that it pro-
duces during on assembly. This directive has the form

label command
SOCW

argument

When Extended Symbol encounters the SOCW directive, it
sets the location counters to absolute zero, processes the
program as an absolute section, and ignores any subsequent
IDNT or LBL directive. An erior flag is given if those
directives fhat require control byte generation are used
(DEF, REF, or SREF). An error is also given if those direc-
tives that have no meaning for a program being assembled
with SOCW are used (COMMON and GSECT), if an
illegal object language feature is subsequently required
(such as the occurrence of a procedure-local forward refer-
ence), or if the SOCW directive is used subsequent to the
generation of any object code in the program.

38 Extended Symbol Directives

Use of the BOUND, LOC, ORG, and RES directives is

allowed, although this is a highly questionable practice
(i.e., no code is generated for these directives, but the
location counters are modified as directed).

Once the SOCW directive is invoked, it remains in effect
during the assembly of the entire program,

Normally, control words are produced to convey to the
loader infogmation concerning program relocation, exter-
nally defined and/or referenced symbols, etc. In special
cases, such as writing bootstrap loaders and special diag-
nostic programs, the programmer does not want the control
words produced; he needs only the continuous string of bits
that result from an assembly of statements. The SOCW
directive enables the programmer to suppress the output of
these control words. 4

When SOCW is specified, it is recommended that it be the
first statement in the program, or at least precede the first
generative stotement.

SPACE Insert Blank Lines

The SPACE directive causes blank lines to be inserted in
the assembly listing; its form is

Label Command Argument
SPACE n
where
n is an evaluatable absolute expression (no literal,

external, or forward references) designating the
number of blank lines to be inserted. If the
value of n is negative or zero, the directive is
ignored. If the value of n equals or exceeds the
number of lines remaining to be output on the
current page, then a SPACE directive has the same
effect as a PAGE directive.

A label field entry is ignored by the assembler unless it is
the target of a GOTO search.

SREF Secondary External References

The SREF directive is similar to REF and has the form

Label Command Argument

SREF symboI] Y symbo|2, cees symboln]

where each symbol has the same meaning as described for
REF.

A label field entry is ignored by the assembler.

SREF differs from REF in that REF causes the loader to
load programs whose labels it references, whereas SREF

does not. Instead, SREF informs the loader that if the
programs whose labels it references are in core memory,
then the loader should satisfy the references and pro-
vide the interprogram linkage. If the programs are not
in core, SREF does not cause the loader to load them; how-
ever, it does cause the loader to accept any references
within the program to the symbols, without considering
them to be unsatisfied external references.

TEXT EBCDIC Character String

The TEXT directive enables the user to assemble an EBCDIC
character string for use as data. This directive has the form

Label Command Argument
[label] TEXT fesy ' [e s tesy ']
where

label is any valid symbol. Use of a label is op-
. tional. When present, it is definedas the current
value of the execution location counter and iden-
tifies the first word of the character string. TEXT

increments the location counters by the number of

words generated from the argument field.

cs; is an explicit character string constant and
may include cny characters in the EBCDIC char-
acter set. The character string must be enclosed
by single quotation marks (see "Constants" in
Chapter 2).

The character string is assembled in binary~coded form,
two characters per word. A blank is inserted as the second
character of the last word if the number of characters is
odd.

Example 28, TEXT Directive

COLl TEXT '"VALUE OF X'
generates
VIA
LU
E
OlF
X
TEXT 'ABC'
generates
AlB
C

TEXTC Text with Count

The TEXTC directive enables the user to incorporate a
character string preceded by a character count in a pro-
gram. This directive has the form

Label Command Argument

[label] | TEXTC

'cs]'[, vevr'csy']

where 'label' and cs, have the same meaning as described

for TEXT.

The TEXTC directive provides a byte count of the storage
space required for the message. The count is placed in the
first byte of the storage area and the character string fol-
lows, beginning in the second byte. The count represents
only the number of characters in the character string; it
does not include the byte it occupies nor any trailing
blanks that may be required. The maximum number of char-
acters (in the string) for a single TEXTC directive is 63.

In all other aspects, the TEXTC directive functions in the
same manner as the TEXT directive.

Example 29. TEXTC Directive

'"VALUE OF X'

generates

ALPHA TEXTC

C)>5'

\
L
E
o

TITLE Identify Output

The TITLE directive enables the programmer to specify an
identification for his assembly listing. The TITLE direc-
tive has the form

Label Command Argument

TITLE ['csl',...,‘csn'J

where cs; is an explicit character string constant (one

through 64 characters) and may include any characters in
the EBCDIC character set. The character string must be

enclosed by single quotation marks.

A label field entry is ignored by the assembler unless it is
the target label of a GOTO search.

When a TITLE directive is encountered, the assembly listing
is advanced to a new page and the character string is
printed at the top of that page and each succeeding page
until another TITLE directive is encountered.

Extended Symbol Directives 39

Example 30. TITLE Directive

40

TITLE 'CARD READ/PUNCH ROUTINE!
TITLE '"MAG TAPE 1/O ROUTINE'

TITLE

Extended Symbol Directives

TITLE '"""CONTROLLER""

The first TITLE causes Extended Symbol to position the
assembly listing at the top of a new page and to print
CARD READ/PUNCH ROUTINE there and on each suc-
ceeding page until the next TITLE directive is encoun-
tered. The next directive causes a skip to a new page
and the output of the title MAG TAPE 1/O ROUTINE.
The third TITLE directive likewise causes a skip to a
new page but no title is printed because the argument
field is blank. The last TITLE directive designates a
new page with the heading 'CONTROLLER'.

7. PROCEDURES

| Procedures are extensions of the Xerox 530 and Sigma 2/3
Extended Symbol assembly language.

Procedures provide the programmer with a convenient way
to write a definition that can be used to generate a desired
sequence of assembly language statements many times in one
or more programs,

The procedure definition is written only once, and a single
statement, o procedure reference, is written each time a
programmer wants to generate the desired sequence of
assembly language statements,

Using procedures, a programmer can cause Extended Symbol
to generate different sequences of code as determined by
conditions existing at assembly time, For example, a pro-
cedure can be written to produce a specified number of
ADD instructions for one condition and to produce a pro-
gram loop (performing the same function) for a different
condition (see Example 42),

Procedures allow a program written in the assembly language
of one computer (e.g., Sigma 7) to be assembled and exe-
cuted on another computer (e.g., Sigma 2/3). Ifaprocedure
definition is written for each Sigma 7 machine instruction,
Extended Symbol treats the instructions as procedure ref-
erences and calls in the associated procedure definition,
thus generating machine language code.

All procedure definitions must occur before the first literal
is generated by the assembler.

PROCEDURE FORMAT

Before a procedure raference can be assembled, aprocedure
definition must be available to the assembler. A procedure def-
initionisnormally placed at the beginning of a source program,
This ensures that the definition will precede all references toit,

A procedure definition is a set of statements that provides
the assembler with the mnemonic operation code and the
sequence of statements the assembler generates when the
procedure reference appears in the source program,

Every procedure definition consists of a procedure identifi-
cation directive, a procedure header directive, statements
that comprise the procedure body, and a procedure trailer

directive.

The procedure identification directive specifies the mne-
monic operation code; i.e., the procedure definition name,

The procedure header and trailer directives indicate to the
assembler the beginning and end, respectively, of a proce-
dure definition,

The statements in the procedure body are used by the assem-
bler to generate the assembly language statements that
replace each occurrence of the procedure reference.

CNAME Procedure Name

The CNAME directive assigns a name to the procedure def-
inition immediately following and has the form

Label Command | Argument
name CNAME [exp]
where
exp is an evaluatable expression (other than a lit-

eral, external or forward reference) that specifies
a value to be associated with the name in the label
field. This value may be referenced by the intrin-
sic function CF(1) or AF(0). This value must be
positive and less than X'2000', or it may be zero.

name is the symbol by which the procedure defini-
tion that follows is identified. The "name" may
be the same as the name of another procedure def-
inition or a mnemonic operation code but it must
not be the same as an Extended Symbol Directive.

In the case of duplicate procedure names, the later name
overrides the previous and a warning error is output, The
name may not be the argument of a GOTO search,

Any number of CNAME directives may precede a procedure
definition, These directives may be interspersed with DO,
FIN, EQU, SET, or GOTO directives if desired, but the
procedure definition (PROC) directive must immediately
follow the last CNAME.

The result of having CNAME directives within the range of
an inactive DO is that those names are not assigned to the -
subsequent procedure definition. Use of a GOTO directive
accomplishes the same result. However, it should be remem-
bered that the label of a CNAME directive may not be used
as the target of the GOTO,

-PROC Begin Procedure Definition

The PROC directive indicates the beginning of a procedure
definition and has the form-

Label Command Argument

PROC

A label field entry is ignored by the assembler unless it is
the target label of a GOTO search. An argument field
entry is always ignored,

The first line following the PROC directive begins the
procedure body. The body of a procedure may contain
any machine instruction and any directive except PROC,
CNAME, and END. The assembler will invoke the various
addressing techniques for instructions in a procedure defi-
nition and will extend the effect of the BASE directive when
declared in the main program.

Symbol region conditions of the main program are cairied
over into a procedure, and LOCAL symbols may override
prior symbol definitions (see "Procedure Local Symbol
Regions" in this chapter). Nonlocal symbols defined in a
procedure may be referenced outside the procedure,

A procedure definition may reference other procedures; how-
ever, a procedure may not contain another procedure defini-
tion. All procedure declarations must appear before the
first literal is generated by the assembler,

Procedures 41

PEND End Procedure Definition

The PEND directive terminates the procedure definition.
It has the form

Command Argument

PEND

_ Label

A label field entry is ignored by the assembler unless it is
the target label of a GOTO search. An argument field
entry is always ignored,

Generally, the format of a procedure definition is

rame CNAME Identifies the procedure
PROC
. Procedure definition
PEND

Other procedures

Program

PROCEDURE REFERENCES

A procedure reference is a source program statement that is
processed by the assembler, just as assembly language state-
ments are source program statements processed by the
assembler.

During an assembly, the assembler reads the procedure
definition and stores the symbolic statements in core mem-
ory. When the assembler encounters an associated proce-
dure reference, it locates the procedure definition it stored
and assembles those lines,

A procedure reference statement consists of a label field, a
command field, anargument field, and an optional comments

field:

label field may contain any valid symbol or may be
blenk. If a label entry is present, it is assigned the
current value of the execution location counter; how-
ever, the counter is not incremented until the first
generative statement of the procedure has been assem-
bled. Thus, ¢ procedure reference label is associated
with the first generated word of the procedure defini-
tion. If the first generative statement of the procedure
definition is also !abeled, that label and the pro-
cedure reference label are equated by implication.

command field contains the name of the procedure
definition being referenced, followed by an op-
tional series of arguments (separated by commas);
the name must be written as it appears in the asso~
ciated CNAME directive. The command field ar-~
guments arereferenced by the intrinsic function CF.

argument field contains a series of arguments
(separated by commas) required by the procedure
definition, The arguments are referenced in

42 Procedure References/Procedure-Loca. Symbol Regions

statements of the procedure body via the intrinsic
function AF (see "Intrinsic Functions" in this
chapter).

Note that any argument that affects the number of words
that will be generated by the procedure definition must be
defined prior to its appearance in the procedure reference
statement. The programmer must specify the arguments re-
quired by the procedure de:aition and the order in which
the arguments must appear,

For example, « procedure definition could be written to
move the contents of one area of memory to another area

of memory. Four items must then be specified by the proce-
dure reference statement: the name of the procedure in the
command field and, in the argument field, the address of
the first word of the current area, the address of the first
word of the area into which the information is to be moved,
and the number of words to be moved. If the name of the
procedure is MOVE, a procedure reference statement could
be written:

ANY MOVE HERE, THERE, 10

Example 31. Procedure Definition/Procedure Reference

The procedure SUM produces the sum of two numbers and
stores the sum in a specified location,

The procedure reference line may consist of:

Label field
Command field the name of the procedure (SUM)
Argument field The address of the first addend, fol-
lowed by the address of the second addend, fol-
lowed by the address of the storage location.
Comments field optional

optional

The procedure definition is written as

SUM CNAME
PROC
LDA AF(1)
ADD AF(2)
STA AF(3)
PEND

and the procedure reference may appear as
NOW SUM A,B,C
The resultant code in the object program is equivalent to
NOw LDA A
ADD B
STA C

The AF(i) arguments in the procedure definition refer to
the argument field function. This built-in facility of
Extended Symbol is explained later. In the SUM proce-
dure they refer to the three arguments A, B, and C of the

procedure reference statement,

PROCEDURE-LOCAL SYMBOL REGIONS

A procedure definition may contain one or more LOCAL
statements. When used within a procedure definition,
LOCAL statements establish procedure-local symbol regions

which, in general, conform to the conditions described for
local symbol regions in o main program, as described in
Chapter 6.)

When the assembler initiates processing of a procedure def-
inition as the result of encountering a procedure reference,
the current symbol region conditions of the assembly are
carried over into the procedure assembly. That is, the
current main level local symbols are still active at their
particular level. If within the invoked procedure a LOCAL
directive is encountered, then

1. Local symbols from the most recent or current main-
local level form the base for the current procedure-
local level. To these base local symbols are added the
symbols specified in the most recently encountered
LOCAL directive. In the case of duplicate names for
local symbols from different levels, the value of the
later name is used.

2, Subsequent LOCALdirective encounters within the cur=
rent level cause the previous additions within that same
level to be ignored and the new set of entries on the
LOCAL directive tobe added to the local symbol table.

If within the current procedure level a lower level proce-
dure is invoked, the current procedure-local symbol table
(if any)forms the base for any lower [evel procedure-local sym-
bol table generated by the occurrence of a LOCAL directive.

In summation, where there are multilevel local symbol re-
gions, the next highest leve! (if any) forms the symbol table
base for the current region. LOCAL directives within a
particular level act as they do in the main level. When a
particular level is terminated by a PEND directive, the
previous higher level has its symbol table restored and so
on until main level is again reached.

If a procedure is referenced morz than once in a single as-
sembly, symbols defined within the procedure except by a
SET directive must be declared LOCAL. If not, these sym-
bols will be multidefined.

Example 32. Procedure-Local Symbol Regions

*PROCEDURE P3 DEFINITION
P3 CNAME
PROC
LOCAL Asl
DATA A..,B,.,C.., D ., E
LOCAL B3321 1 7227 7111 70
DATA A~ B.,C,., D, E
PEND 11" °327 22" 111 0
*PROCEDURE P2 DEFINITION
P2 CNAME
PROC
LOCAL E2]
DATA A,B. .,C ., D, E
LOCAL c;; 1 71 11 21
DATA A”, B”, c22, D”, Eq
P3
PEND

*MAIN LEVEL

LOCAL A, B, C.. D
£ P2 LR LA B A b M B

END
In this example the subscripts are used to show which

references are identical, In the actual program there
are of course no subscripts,

- |

INTRINSIC FUNCTIONS

Intrinsic functions are built into the assembler. The 10
intrinsic functions described here enable the user to pass
arguments from procedure reference statements to procedure
definitions. These intrinsic functions are ’

ABS

AF

AFA
AFNUM
AFR

AT

CF
CFNUM
CFR
UFV

AFNUM and CFNUM are reserved words; they may not be
defined by the program. ABS, AF, AFA, AFR, AT, CF,
CFR, and UFV are not reserved words; they may be defined
by the program.

Intrinsic functions may be used in the command or argument
field of any machine instruction or assembler directive with
the following exceptions: they may not be used in command
field one (CF(1)) of any statement, nor may they appear in
the argument field of o DEF, GOTO, IDNT, LBL, LOCAL,
REF, SREF, TEXT, TEXTC, or TITLE directive.

ABS Absolute Value
The ABS function converts a relocatable address into an
absolute integer value representing the word offset of the
address from its relocation base (COMMON or non-
COMMON). Its format is

ABS (address expression)
where

ABS identifies the function.

address expression is any valid address.
The absolute value of any item other than a relocatable

COMMON address or a relocatable non-COMMON address
is the item itself (that is, the ABS function has no effect),

Intrinsic Functions 43

Example 33. ABS Function

CSECT Declares control section and sets lo-

RES 9]
DO 8*((ABS($)&7)>0)-(ABS($)&7)
DATA
Generates data words of zero until the

FIN

cation counters to relocatable zero.
Reserves five words.

execution counter ($) is at a multiple
of eight. Note that a BOUND 8 di-
rective would accomplish the same
thing, but no data would be gen-
erated in the skipped locations.

AF

Argument Field

The AF function refers to the arguments in a procedure ref-
erence statement, Its format is

where

AFA

AF

AF(element number)

specifies the argument field.

element number specifies which argument in the

argument field is being referenced. Element num-
ber is required and must be enclosed by parenthe-
ses. If the designated argument in the procedure
reference argument field is an expression, it is
evaluated when the assembler evaluates the pro-
cedure reference statement, not when the intrinsic
function uses it. Example 35 illustrates the use of
the AF function. Element number zero refers to
the value in the argument field of the CNAME
line for the name by which the procedure was
invoked.

Argument Field Asterisk

.The AFA function determines whether the specified argu-
ment in the procedure reference argument field is preceded
by an asterisk, The format of this function is

AFA(element number)

where
AFA identifies the function,
element number specifies which argument in the
procedure reference argument field is to be tested.
Element number is required and must be enclosed
by parentheses. AFA is useful for specifying the
indirect tag for a GENT directive.
44 Intrinsic Functions

The AFA function produces the value 1 (true) if an asterisk
prefix exists on the designated argument. If the asterisk
prefix does not exist, or if the designated argument is not
provided, AFA produces a zero value (false).

In the case where an argument may be passed down several

procedure levels (from one procedure to another), any occur-

rence of the argument with an asterisk prefix will satisfy the

existence of the prefix.

Example 34. AF/AFA Function

ANY COMP

COMP CNAME
PROC

LDA SET

Cp SET
GENT1
GENI1
BNO
GENT1
PEND

The procedure reference

ANY COMP

LDA
Cp
BNO
LDA

The procedure reference

COMP

LDA
CpP
BNO
LDA

This procedure definition (COMP) loads the accumulator
with the smaller of two values. The procedure reference
statement may indicate indirect addressing for one or
both of the arguments as in the reference

*X and *Y specify that the addresses of the two words
to be compared are in locations X and Y.

would generate coding equivalent to

would generate coding equivalent to

*X, *Y

X's

X'D!

LDA, AFA(1),0,0,0, AFR(1)
CP, AFA(2),0,0, AFR(2)
$+2

LDA, AFA(2),0,0, AF(2)

*X*Y

*X
*Y
$+2
*Y

X, Y

X
Y
$+2
Y

AFNUM Determine Number of Arguments

The AFNUM function counts the number of arguments in the
argument field of a procedure reference and returns that
number to the procedure definition in which AFNUM ap-

pears, Its format is

AFNUM

Example 35. AFNUM Function

The procedure SUML produces the instructions to sum
the items whose names appear in the procedure refer-
ence argument field.

SUML CNAME

PROC
LDA AFR(1)
K DO AFNUM-1

ADD AF(K+1)
FIN
PEND

The procedure reference
SUML © A B,C

would generate coding equivalent to

LDA A
ADD B
ADD C

The procedure reference

SUML A, B

would generate coding equivalent to

LDA A
ADD B

AFR Required Argument Field

The AFR function refers to the arguments in a procedure
reference statement, as does the AF function. AFR differs
from AF only when fewer than "element number" parameters
are present on the procedure reference line. In this case,
AFR will cause a diagnostic error, E, to be printed on the
listing, while AF will not. In both functions, the value
will be replaced by zero.

AT Argument Type

The AT function returns an integer code that denotes the
"type" of the specified argument. AT is not restricted to
use within procedures. Its format is

AT(item)
where
AT identifies the function.
item represents an intrinsic function, a symbol, or

a valid expression,

The AT function returns the following values, depending
on the type of "item":

Value Type

0 Not determined. Used for forward refer-
ences, externals, illegal expressions, etc,

1 Previously defined, or self-defining, abso-
lute value,

2 Previously defined relocatable address (non-
COMMON).

3 Previously defined COMMON-relocatable
address.

The AT function is primarily of use within procedures, It
allows (1) an additional attribute to be passed (other than
AFA) for a given argument and (2) the ability to test whether
logical operations are permissible on a particular argument
(defined-absolute).

Note: The AT function value is subject to extensions in
subsequent versions of Extended Symbol. A proper
test for a COMMON attribute is thus

DO AT(AF(1))=3

and not

DO AT(AF(1))>2

since refurned values greater than 3 may subse-~
quently reflect quite different attributes,

Intrinsic Functions 45

Example 36. AT Function

If this is not possible, a literal is to

Define operation codes of simulated
instructions.

Type is not absolute,

Call zero~table search procedure,
Skip if no find.

Operation with zero-table address.
Exit.

Assembly no-op instruction,
Operation with literal address,

Generates LDA X'2€',

A set of procedures is defined to implement a form of Sigma 2/3 "immediate" instructions, such as LDAI (Load
Accumulator Immediate) or ANDI (And Immediate)., A prime concern in implementing such instructions is to use
available "zero table" constants (low-core Monitor constants) where possible.
be generated for the desired value. This example assumes the existence of a procedure named @VAL, which searches
the available zero-table value and returns the corresponding address in a variable named @ADR, or returns a zero in
@ADR if the desired value is not in the zero table.
LDAI CNAME X'8'
MULI CNAME X'3!
PROC
LOCAL @ADR
GCTO, AT(AFR(1))=1 $LIT
VAL AF(1)
GOTO, ADR=0 $LIT
GEN1 AF(0),0, 0,0, @ADR
GOTO $PEND
SLIT SPACE 0
GENI1 AF(0),0,0,0,=AF(1)
$PEND PEND
LLDAI 13
LDAI 17

Generates LDA =17,

CF Command Field

The CF furiction refers to the argumenis in the command
field of a procedure reference statement, Its format is

CF(element number)
where
CF specifies the command field.

element number specifies which argument in the com~
mand field is being referenced. Element number
is required and must be enclosed by parentheses,
Element number one refers to the value in the
argument field of the CNAME line for the name
by which the procedure was invoked. Element
number zero is undefined.

CFNUM Determine Number of Command Field Arguments

The CFNUM function counts the number of arguments in the
command field of a procedure reference (including the first
command field, which is the name of the procedure), and
returns that number as its value, lts format is

CENUM

46 Intrinsic Functions

Example 37. CFNUM Function

BAL

Thus

The BAL procedure given in Example 39 could be modi~
fied to assume register 2 as a default link register, if
no CF(2) is specified.

CNAME
PROC

DO CENUM=2

RCPYI 1, CF(2)

ELSE

RCPYI 1,2

FIN

B AFR(1), AF(2), AF(3)
PEND

BAL, 7 ADDR

would generate

RCPYI 1,7
B ADDR

but

BAL ADDR
produces

RCPYI 1,2

B ADDR

CFR Required Command Field

The CFRfunction refers to the arguments in the command field

of the procedure reference statement, as does the CF function,

CFR differs from CF only when fewer than "element number"
parameters are present in the command field of the procedure
reference line. In this case, CFR will cause a diagnostic
error, E, to be printed on the listing, while CF will not.
In both functions, the value will be replaced by zero.

Example 38. CFR Function

The procedure BAL produces the RCPYland B instruction
typically used to link to a subroutine or Monitor service
routine.

BAL CINAME

PROC
RCPYI 1, CFR(2) Set link register.
B AFR(1), AF(2), AF(3) Branch,
PEND

The procedure reference
BAL, 2 SUBR
generates the equivalent of

RCPYI 1,2
B SUBR

Example 39. UFV Function

UFV Use Forward Value

The UFV function overrides the assembler's restrictions on
the use of forward references. Its format is

UFV(item)
where
UFV identi#es the function.

item represents an intrinsic function, a symbol, or
an expression.

In order to maintain identical address assignments inboth the
definition and generation passes of the ussembler, forward ref-
erences are notallowed incertain contexts (such as the orgu-
ment field of a RES, BOUND, ORG, ¢r DO directive). In
certain cases, it may be desirable to allow a forward refer-
ence when it is known that the value will not offect address
assignment. The UFV function is usnd to achieve this.

During the definition pass (puss 1) of the assembler, UFV
returns the value, integer zero, if its argument is a forward
reference; otherwise, its value is the argument itself. During
the generation pass (pass 2) of the assembler, UFV returns
the value assigned by the definition pass, and inhibits the
error reporting that would cceur if the forward reference
were used in a normally illegal context.

The UFV function can be used in conjunction with the AT
function in order to determine the type of a forward refer-
gnce (see Ixample 41),

Note: The UFV function should be used with extreme care,
such that no values resulting from its use either
directly or indirectly affect address assignment on
either assembly pass. Labels or literal locations
that are defined differently in the two passes are
fiagged with a "D" error.,

At a point prior to the definition of ALPHA, BETA, or GAMMA, it is desired to generate the offset of GAMMA from
ALPHA if ALPHA < GAMMA < BETA, or the offset of GAMMA from BETA if. GAMMA ~ BETA. The UFV function
makes this simple to accomplish, as shown below,
DO UFV (GAMMA) > UFV(ALPHA) 0 on definition pase (see Chapter 1),
DO UFV(GAMMA) < UFV(BETA) 0 on definition pass.
DATA CAMMA - ALPHA Generated on generation pass,
ELSE
DATA GAMMA - BETA
FIN
ELSE
DATA 0 Generuted on definition pass.
FIN
ALPHA EQU $
GAMMA EQU $
BETA EQU 5

Intrinsic Functions” 47

Example 40. AT and UFV Functions

Normally, the AT function returns the value zero for
all forward references. Use of UFV allows the actual
type to be returned on the generation pass (see
Chapter 1) of the assemoler,

CSECT

DATA AT(UFV(LABEL)) 1 on definition
: pass, 2ongen-
eration pass.

LABEL RES 0

SAMPLE PROCEDURES

The following examples illustrate how procedures are used
in generating conditional code ond how one procedure def-
inition may call another.

Example 41, Conditional Code Generation

This procedure tests N in the procedure reference state-
ment to determine whether straight iterative code or an
indexed loop is to be generated. If N is greater than 3,
an indexed loop will be generated; if N is less than or
equal to 3, straight code will be generated. In either
case, the resultant code will sum the elements of a table
and store the result in o specified location.

The procedure definition is

TOTE CNAME

PROC
RCPY 0,7 Clear accumu~
lator
K EQU AF(2)>3 Produces the
valve T if N>3
or 0if N3
GOTO, K+1 X, Y
X DO AF(2)
ADD AF(1)+X-1
FIN
Y DO K=1
LDX =-AF(2)
ADD AF(1)+AF(2),1
BIX $-1
FIN
STA AF(3)
PEND

The procedure reference has the general form
TOTE ADDRS, N, ANS
where

ADDRS represents the address of the first value
in the table.

N is the number of values to sum,

48 Sample Procedures

ANS represents the address of the location
where the sum is fo be stored.

For the procedure reference

Y TOTE ALPH, 2, BETA

instructions equivalent to the following lines would be
generated in-line at assembly time.

Clear the accumulator,
Add contents of ALPH
to accumulator.

Add contents of ALPH
+1 to accumulator,
Store answer.

Y RCPY 0,7
ADD ALPH

ADD ALPH+]

STA BETA
If the procedure reference were
TOTE ALPH, 5, BETA

the generated code would be equivalent to

RCPY 0,7
LDX =5

Clear the accumulator.
The value -5 is stored
in a literal pool and
its address is made the
effective address of
LDX. Thus, load index
with the value -5.
ADD ALPH+5,1 Index register 1 con-
tains =5 (on the first
pass).
ALPH+5-5=ALPH.

BIX $-1 Increment index regis~
ter 1 by 1 and branch.
STA BETA Store answer.

Example 42, Procedure that References a Procedure

The procedure EXCH exchanges the contents of the
A-register and a memory location m.

The procedure reference has the form

EXCH m, x, b

The EXCH procedure in turn references the LDE (load
E-register) procedure. LDE is defined first,

LDE CNAME

PROC

RCPY A, E

LDA AE(1), AF(2), AF(3)
SCLD 16

PEND

EXCH CNAME If a procedure reference to EXCH is
PROC
RCPY ET EXCH NEW, 1
LDE AF(1), AF(2), AF(3) the equivalent symbolic code is
STA AF(1), AF(2), AF(3) RCPY ET
RCPY E, A ’
RCPY TE RCPY AE
PEND ! LDA NEW, 1
SCLD 16
STA NEW, 1
Note: The EXCH procedure destroys the original con- ;ggz ?'é
tents of the T register but not the E register. ’

Sample Procedures 49

8. OPERATIONS

| The Xerox 530 and Sigma 2/3 Extended Symbol assembler
is designed to run under control of the Sigma 2/3 Real-
Time Batch Monitor (RBMj. This chapter describes the op-
erational characteristics of Extended Symbol in addition
to o brief discussion of Monitor control commands that may
be used to control the operation of the assembler. More
detailed discussion of these Monitor control commands will
be found in the RBM/RT, BP and OPS Reference Manuals,
90 10 37 and 90 15 55,

RBM CONTROL COMMANDS

In order to assemble a Symbol or Extended Symbo! source
program, a run deck containing the necessary Monitor con-
trol commands must first be prepared. Those commands
commonly used in Extended Symbol operations are described
below.

JOB CONTROL COMMAND

The first card in a run deck containing Extended Symbol
programs must be a JOB card, which has the format

1JOB [name,account]

where

name,account provide job accounting information
for installations that have included the accounting
fearure of RBM,

The JOB command resets cil operational labels to their
installation~defined assignments, providing a convenient
method of ensuring normal input and output conventions for
a particular assembly.

ASSIGN CONTROL COMMAND

Appearing next in the run deck are any ASSIGN cards re-

lating to the assembly. Normally, ASSIGN cards will not
be needed, since the following operational abels will have
default assignments to the appropriate devices for a par-
ticular installation.

Operational

Label Description

BO Binary output device. 120-byte binary
records. May be CP, PT, MT, RAD, or disk.

DO Diagnostic output device. Used to list error

iines and error summary. May be KP, LP,
MT, RAD, or disk.

50 Qperations

Operationcl

Label Description

GO Binary output file for load~and-go operations.
120-byte records. Default is RAD or disk.
May be CP, MT, or PT,

LL Listing log device. Used to print XSYMBOL
control command diagnostics. May be KP
or LP.

LO Listing output device. Used for assembly
listing and cross-reference listing. May
be KP, LP, MT, RAD, or disk.

SI Symbolic input device. 80-byte EBCDIC or
BCD records. May be KP, PT, CR, MT,
RAD, or disk.

SO Symbolic output device. 80-byte EBCDIC
records. May be PT, CP, MT, RAD, or
disk.

52 Standard procedure file. 108-byte binary
records. Default is RAD or disk (RBMS2 file
in SD area).

ul Update input device. 80-byte EBCDIC or
BCD records. May be KP, PT, CR, MT,
RAD, or disk.

X1 Used to maintain a copy of the source pro-

(scratch file)

X2
(scratch file)

X3
(scratch file)

gram for the assembly listing. 80-byte
EBCDIC records. Default is a temporary,
compressed, RAD or disk file. May be MT

or the S device.

Encoded text output by the Encoder which is
assembled by the definition and generation
passes. Unblocked file. If non-RAD, rec-
ord size is 360-bytes (binary). If RAD or
disk, each record is equal to sector size.

Used for LOCAL symbol tables between the
definition and generation passes. Six=byte
binary records. Default is a temporary,
blocked, RAD or disk file.

If the user wishes to reassign any of these operational labels

to a particular device, an appropriate ASSIGN card is nec-

essary. Typical reassignments might involve changing the

S1 device from the card-reader to a particular magnetic-tape
drive, or changing the BO device from the paper-tape punch
to a specific disk file.

Since the Monitor automatically allocates a blocking buffer
(equal to the size of a sector) for any operational labels
assigned to a blocked RAD or disk file, a certain amount of
core savings may be effected by assigning unused files to

file zero (nonexistent). For instance, a program that is
known to use no main-level LOCAL symbols may regain a
sector-size amount of core storage with the command

1ASSIGN X3=0

Another typical use of the ASSIGN command is to reassign
the S2 operational label to a file containing a special set
of user-defined standard procedures, as in

TASSIGN $2=MYPROCS, UD

DEFINE AND TEMP CONTROL CARDS
(TEMPGRARY FILE DEFINITION)

The X1, X2, and X3 files are normally allocated auto-
matically by the Monitor upon encountering an XSYMBOL
control command. These are allocated from the available
BT (Background temp) area in the ratio, 90:30:3, respec-
tively. This allocation may be overridden if any of these
operational labels were previously ASSIGNed or DEFINEd,
The DEFINE command is used to allocate a portion of the
BT area prior to calling Extended Symbol. The format of
the DEFINE command is

IDEFINE

oplb, nrec, srec[, format]

where

oplb is the operational label being DEFINEd.

nrec is the number of logical records in the file.
srec is the logical record size, in bytes.
format is U for an unblocked file, or C for a com-

pressed EBCDIC file. If "format" is omitted, the
file will be blocked if “srec" is not greater than
one-half the size of a sector.

Temporary files are normally released at the end of each
"job step" (for example, at the end of each assembly).
They may be saved for the next jeb step by preceding

the XSYMBOL command with a TEMP S control command.

For instance, an assembly in which the BT area is to be
used as the BO file could precede the XSYMBOL com-
mand with

IDEFINE BO, 100, 120

ITEMP S

XSYMBOL CONTROL COMMAND

The Extended Symbol assembler is called into operation
with this command which has the form

IXSYMBOL optionl,option2,...,option n

where any number of options, or none, may be specified.
The options and their meanings are given below.

BA Batch assembly mode
BO Binary output
CR Cross-reference listing

DW Display warnings

GO Output GO file

LO List assembly output

LU List update input

NP No standard procedure input
PP Punch standard procedure file
SL Simple literals

SO Symbolic output

SS Symbol summaries

Ul Update input

Options may be specified in any order. If no options are
specified, the BO, GO, and LO options are assumed.

The XSYMBOL control card is free form; blanks may appear
anywhere except between the two letters of an option name.
At least one blank must separate the XSYMBOL command
from the first option. The option list may not extend beyond
column 72 of the XSYMBOL control command; it may be
terminated at any point by a period in the option list.

A sample XSYMBOL command is shown below.

IXSYMBOL LO,DW,GO,CR

.CHECK——-I

l———WARNING FLAGS
The various options are explained below.

BA This option selects the batch assembly mode. In this
mode, successive assemblies may be performed with a single
XSYMBOL command. The assembler will read and assemble
successive programs until a double end-of-file indicator is
encountered. In the batch mode, current operational label
assignments and options on the XSYMBOL command are
applied to all assemblies within the batch.

RBM Control Commands 51

A program is considered terminated when an END directive
is processed. However, another program may immediately
follow an END directive without an intervening end-of-
file indicator. In such a case all records between this
END directive and the first subsequent END directive
or end-of-file indicator will be assembled as a separate
program. An exception to this rule is that if an END
directive is inserted as an update, any remaining records
between the inserted END directive and the next end-of-
file indicator are ignored.

For any input device, a source record beginning with the
characters | /EN will serve as an end-of-file indicator. If
source input is from cards, paper tape, or the keyboard-
printer, an EOD command is recognized as an end-of-file.
With input from magnetic tape, RAD, or disk, the appropri-
ate end-of-file indicator is recognized as an end-of-file.

In the batchassembly mode, the LO and SO files are written
with a single end-of~file between each file, while the last
file is followed by a double end-of-file. The BO file is
written with a single blank record following each file,
while the GO file is written with a single end-of-file fol-
lowing the last file.

BO This option specifies that binary output is to be pro-
duced on the BO device. If the BO and GO operational
labels are assigned to the same device, the BO option
is ignored.

CR This option specifies that a symbolic name cross-
reference listing is to be produced on the LO device. The
cross-reference listing is normally generated after the as-
sembly listing; the assembly phases are skipped, however,
if not any of the BO, GO, LO or PP options is specified.
In this case the S2, X1, and X3 operational labels may be
assigned fo zero.

The format of the cross-reference listing is similar to that
produced by the Sigma Concordance nrogram (see Appen-
dix D). The major differences are listed below:

1. Only one section is produced by this program. It con~
tains local and nonlocal symbols only. XSYMBOL
operaiion codes and directives are not included.

2. Source program cards with syntax errors are not listed,
and no message is produced for them. There may also
be a loss of symbo! references on such cards.

3. No INCL or EXCL control commands are available in

this program. However, the abundant occurrence of

certain symbo! references, e.g., register designators,

is automatically limited by placing an arbitrary max-

" imum number of references that will be listed. If this

maximum is imposed, those symbols whose references are
not completely listed will be marked on the listing.

4. - All symbol references within a continued line will be
listed as if the reference were on the first line.

5. No TITLE control command is available in this program.

52 RBM Control Commands

6. Duplicate definitions of symbols are included as refer-
ence lines.

7. If the SC option has not been specified, lines inserted
as updates are listed in the form n.m, corresponding
to the mth update after line n in the assembly listing.

DW This option instructs the assembler to display any
warnings (trivial diagnostics) that it may detect during as-
sembly. These warning flags do not reflect assembly errors,
but may point up unusual usage of the Extended Symbol lan-
guage {for example, unused REF symbols, symbols greater
than eight characters, etc.). Unless this option is specified,
lines containing only warnings are not flagged, nor is the
"warning line" count included in the summary.

GO This option specifies that the binary object program
is to be placed in a temporary file from which it can be
later loaded and executed. This file is only rewound by the
Monitor JOB command and the Overlay Loader, allowing
multiple object modules to be grouped for subsequent loading.

Lo This option specifies that a listing of the assembled
object program is to be produced on the LO device.

Lu This option specifies that a listing of the update deck
is to be produced on the LO device. This listing consists of
an image of each update line along with the number of the
line within the update deck. When the LU option is speci-
fied, the LO and SO operational labels cannot be assigned
to the same device.

NP This option specifies that no standard procedures are
to be read from the S2 file prior to assembly. Note that the
NP option is forced by the assembler if PP is also specified.

PP This option specifies that a new standard procedure
file is to be punched on the S2 device. Unless reassigned
via an ASSIGN command, S2 has a default assignment to
the RBMS2 file in the SD area. If S2 is assigned to a pro-
tected RAD or disk file, the operator must enter an unsolic-
ited key-in of SY before proceeding with the assembly. This
option forces the NP option, so that NP is redundant if PP

is specified.

SL This option specifies that automatic address literal
generation will not be performed for multitermed expres-
sions containing forward references to symbols (see "Literal
Pools", Chapter 4). Use of this option will, in certain cases,
reduce the overall size of a given program. Used consis-
tently, it will enforce more rigorous programming practices.

S0 This option specifies that an updated copy of the
symbolic source file is to be produced on the SO device. If
not any of the BO, GO, LO, or PP options is specified, the
assembly phaoses are skipped.

$S This option specifies that the Symbol Value and Ex-
ternal Reference summaries are to be produced on the LO
device at the end of assembly. Unless this option is speci-
fied, these two summary tables are omitted.

ul This option specifies that updates are to be read from
the Ul device and merged into the source file read from the
Sl device. When the Ul option is specified, an update deck
must be present on the Ul device. The SI and Ul opera~
tional labels cannot be assigned to the same device, and
neither can the S1 and X1 operational labels.

For compatibility with earlier versions of Extended Symbol,
a second set of XSYMBOL control command options are rec-
ognized. If any of the following options are used, it
should be the only option on the control command. Note
that only the first two characters of these options are ex-
amined, and that they may appecr anywhere within the
first 72 columns of the control command.

Option Equivalent

ALL BA, LO, BC, GO
NOREAD NP, LO, BO, GO
PUNCH PP, LO, BO, GO
READ LO, BO, GO

Figure 4 illustrates how a deck would be set up to assemble
multiple programs when using the BA option. Figure 5 illus-
trates a sample deck setup of the same assemblies without
the BA option. In each figure, the assembler is instructed
to output a binary module and a program listing for each
deck in the job.

UPDATING A SOURCE PROGRAM

An Extended Symbol source program may be updated by
specifying the Ul option on the XSYMBOL card and by pro-
viding an update deck on the Ul device. This update deck
is then associated with the corresponding source program on
the Sl device. There will normally be one update deck for
each source program.

An update deck consists of a set of update control cards
(indicated by a + in column 1) interleaved with symbolic
assembly images fo be inserted. An update deck is fer=-
minated by a card containing the image +END in columns 1
to 4, or by an end-of-file indicator. Update control cards
take one of the following forms:

+k where k is a line number corresponding to a line
on the assembly listing produced from the source
program. The +k control card designates that all
cards following the +k card, up to but not includ-
ing the next update control card, are to be in-
serted after the kth line of the source program.
The command +0 designates an insertion before the
first line of the program.

+,k where j and k are line numbers corresponding
to line numbers on the assembly listing produced
from the source program, and j is less than or

equal to k. This form designates that all cards
following the +j, k card, up to but not including
the next update control card, are to replace
lines | through k of the source program. The num-
ber of lines to be inserted does not have to equal
the number of lines removed; in fact, the number
of lines to be inserted may be zero. In this case,
lines j through k are deleted.

+END where END designates the physical end of an
update deck.

The + character of each update control command must be in
column 1, followed immediately by the control information,
with no embedded blanks. The first blank column terminates
the control command, and comments may optionally follow
the blank. The update control commands, with their asso-
ciated update records must occur in numericsequence. If any
symbolic cards precede the first + command, they are treated
as if preceded by a +0 card and are inserted before the first
line of the source program.

The ranges of successive insert and/or delete control com=-
mands must not overlap, except that the following case is
permissible: +j, k followed by +k, wherej <k. Overlap-
ping or otherwise erroneous control commands cause the
assembler to go info a special mode in which the update
deck is scanned for control card errors. When the process-
ing of the update deck is completed, an abort occurs.

If an end-of-file indicator is encountered before a +END
card is found, the assembler supplies the missing +END card
and the Ul option is turned off for any subsequent batched
assemblies. Thus it is necessary to provide update decks
only for the first n assemblies that will actually be changed
in a batch.

If an update control command attempts to insert a source
image beyond the END directive of the source program, a
warning message is printed and the remainder of the update
deck (through the next +END card) is ignored. If an END
directive is inserted into the source program with an update
deck, a warning message is printed and all remaining rec-
ords on the SI device (through the next end-of-file indica-
tor) are ignored. Thus an END directive should never be
inserted into a source program that is not terminated by an
end-of-file indicator.

The update deck may be listed by specifying the LU option
on the XSYMBOL control card. The listing displays the
update card image with a line number indicating the position
of the card within the update deck. A new symbolic source
image file can be produced by specifying the SO option.
This causes a copy of the updated source program to be out-
put to the SO device. It also causes the updated source
program to be resequenced on the assembly and cross-
reference listings (if any). The SI and UI operational labels
cannot be assigned to the same device.

Figures 6 and 7 show sample deck setups for using the Ul
option with and without the BA option.

Updating a Source Program 53

| teoD

IEOD

| Deck 3
IEOD (optional)

Deck 2
IEQOD (optional)

Deck 1

[IXSYMBOL LO,BO,BA

1JOB \

Figure 4. Deck Setup for Assembling Multiple Programs Using the BA Option

[1xsymBOL LO,BO
1JOB

54

¢
\

Figure 5. Deck Setup for Assembling Multiple Programs Without BA Option

Updating a Source Program

[1E0D

l Source deck 3
[1EOD (optional)

[Source deck 2
[1[EOD (optional)

A SI Device Input

Source deck 1

rUpdafe deck 7

l Update dack 2 _

[Updcre deck 1
l!XS‘YMBOL LO, BO, BA, U, L1, 5C

y C Device Input

1JOB

Figure 6. Deck Setup for Using the Ul Opticn With the BA Option

Updating a Source Program 55

Source deck 3

Source deck 2

Source deck 1

lUpdare deck 3

ljpdare deck 2

IUpdore deck 1
| ixsymBoL LO, BO, UL, LU

1JOB

A SI Device Input

s C Device Input

56

Figure 7. Deck Setup for Using the Ul Option Without the BA Option

Updating a Source Program

STANDARD OBJECT PROGRAM FORMAT

Extended Symbol object programs are output by the assem-
bler as an object module. All object modules consist of an
ordered set of records. The Xerox loaders have the facility
to load and link several object modules together to form
an executable program.

OBJECT MODULE RECORDS

Each object module record consists of two parts: o record
header and a record body.

1. The record header contains record control information.
This information is in the first three words of each ob-
ject module record as follows:

1D | Record size
cls] Sequence nuriber
Checksum
01 7 8 15

where

ID is X'FF' for all records except last, which
is X'9F',

Record size is the number of words (excluding
the three record control words) that com-
prise the active record. All words in excess
of the record size are ignored. 1 =< record
size = 51,

Sequence number is zero for the first record
of thz object module and increases by one
for each record thereafter. A load error will
result if the records comprising an object
module are out of sequence. If the "$" bit
is set to 1, the sequence number will be
ignored.

Checksum is computed as the sum of the words
comprising the active record, not including
the record header. Carries of the most sig-
nificant bit are added to the low order bit.

If the "C" bit is set to 1, the checksum will
not be verified by the loader.

2. The record body contains load items that control
and define the load data.

LDAD ITEMS

Each load item consists of a header word followed by a
variable number of load or contro! words. The first load
item in an object module is a start-module item and the
last item (other than record padding) is an end-module
item,

Every load item header word has the same general format:
Bits 0-3 Type number.
4-7 Control information.

8-15 Number of load words or control words in
the load item. Thus, number plus 1 is al-
ways equal to the size of the load item,

Load item types are described in detail in the RBM/RT, BP
Reference Manual, 90 10 37.

ASSEMBLER DIAGNOSTICS

During assembly, the assembler checks the source program
for syntactical errors. If such errors are found, appropriate
flags are set and the assembly operation continues. How-
ever, if an irrecoverable 1/O error occurs, or if one of the
assembler tables is exceeded before an END line, the
assembly is aborted and an appropriate message is typed.

FLAGS

Flags indicate syntactical errors but do not cause the assem-
bly to terminate. These flags appear ot the left-hand mar-
gin of the assembly listing, preceding the instruction that
contains the error(s). One to three flags may be indicated
on one assembly listing line.

Symbol Interpretation Severity

D Duplicate symbol definition or 2
reference.

E Expression error or expression missing. 2

G Address out of range. 2

| Illegal operation code or illegal place 2
for a directive.

L Label error (syntax or $,$$ or AFNUM i
used as a label).

N Missing PEND directive line or END i
or PEND directive in range of DO or
GOTO.

Q Procedure local string error. The 1
relocatability of a procedure local
address string has changed, and the
output loader text is incorrect.

R Relocatable expression error or illegal i
use of a relocatable symbol.

S Syntax error. 2

T Significant digits lost due to truncation. 1

Standard Object Program Format/Assembler Diagnostics 57

Symbol Interpretation Severity
U Undefined symbol or 1
impossible address
construction
w Warning (permissible 0

but unusual condi-
tion). Not displayed
unless the DW option
is specified.

ERROR MESSAGES

System-related error messages may occur at any time during
an assembly. Such an error may cause the assembly to be
aborted immediately or at the termination of the current
program. Certain errors do not terminate an assembly, but
warn that the assembler is attempting to recover from an
unusual condition.

Error messages can occur at two points; within the update
portion of an assembly listing or at the end of the main
assembly listing. Whenever an error occurs in an update
deck, the assembler enters a special mode in which it scans
the remainder of the update deck for errors and then aborts
(see Figure 8). When an error occurs during the assembly
process, either an immediate abort will occur or the error
message will be delayed until the end of the assembly.
Warning messages always occur at the end of the assembly
listing.

All abort error messages are listed on the OC device
(operator's console), and all error messages are listed
on the LO and DO devices, unless they are the same.

If an error causes an abort, the resulting error message
has the form

ABORT ASSEMBLY AT LINE y

error message
1 TABORT CODE XS LOC xxxx
where

y is the line number being processed when the abort
occurred. The format of y is nor n.m. The latter
form is used to indicate that the abort occurred on
the mth update after source line n. If the abort
occurs during the encoder phase, y will reflect the
original source line number even if the SO option
is specified.

XXXX specifies the location in the assembler at
which the abort occurred.

The error messages that ctin occur in the update listing
or assembly listing are explained in alphabetical order in
Table 2. Only messages preceded by an abort message
cause an abort.

In addition, there is one unique error message that is printed
only on the OC device:

1/O ERR AT xx LINE y
where

XX is STor UL

y is the same as above.
This message occurs when a parity error or illegal EBCDIC
code has been detected on the SI or Ul device. After this
message is printed, the Monitor's M:WAIT routine is called

to allow the operator to abort or continue. If the operator
continues, the offending record is used in spite of any errors.

{1 *+3,4
2 X EQU A
3 +7s6
UPDATE ERRBR
4 2
UPDATE CONFLICY
5 5
UPLATE ERRBR
6 +3
7 +1000,41000

8 *+END
ABBRT ASSEMBLY AT LINE 201
UPDATE CONTROL CARD ERROR

ABSRT CODE xS LBC 4yCC .

ET=000417
06/07/71 0010

FIN

BKe0O0n18,FGe000«05 102000400

Figure 8. Sample Update Listing With Errors

58 Assembler Diagnostics

Table 2. Error Messages

Message

e

Comments

ABORT ASSEMBLY AT LINE y
ASSEMBLER OR MACHINE ERROR

The assemblier has encountered a sup-
posedly impossible situation during the
assembly phase. The assembly is aborted
immediately. The assembly should be
rerun, specifying a postmortem dump,
and all pertinent documentation for-
warded to the appropriate Xerox
representative.

ABORT ASSEMBLY AT LINE y
DO'S NESTED TOO DEEPLY

DOs have been nested to a depth
greater than 30. The assembly is
aborted immediately.

ABORT ASSEMBLY AT LINE y
DYNAMIC TABLE OVERFLOW

An assembly phase dynamic table has
overflowed. The assembly is aborted
immediately.

ABORT ASSEMBLY AT LINE y
INCOMPATIBLE S2 FILE-MUST RECREATE

The standard procedure file that has
been specified was created by a dif-
ferent version of the assembler. It must
be recreated for the current version.
The assembly is aborted immediately.

ABORT ASSEMBLY AT LINE y '
1/0O ERROR ON xx: BLOCKING BUFFER UNAVAILABLE

No blocking buffer has been allocated
for device xx. This generally indicates
that an insufficient number of blocking
buffers was allocated for XSYMBOL
when it was loaded. The assembly is
aborted immediately.

ABORT ASSEMBLY AT LINE y '
I/O ERROR ON xx: DEVICE IS WRITE PROTECTED

Output or scratch device xx is write-
protected. The assembly is aborted
immediately.

ABORT ASSEMBLY AT LINE y t
/O ERROR ON xx: END-OF-FILE ENCOUNTERED

An unexpected end-of~file indicator
has been encountered on device xx.
This generally indicates an assembler,
operating system, or machine error, as
end-of-file indicators on user files are
allowed. This message cannot occur
for devices ST and UL. The assembly is
aborted immediately.

ABORT ASSEMBLY AT LINE y ;
/0 ERROR ON xx: END-OF-TAPE ENCOUNTERED

An end-of-tape indicator has been en-
countered on device xx. This message
is given for insufficient space on a
RAD file. The assembly is aborted
immediately.

- ‘
The use of xx refers to one of the following operational labels of an assembler

File Use

BO Object language output

DO Diagnostic output

GO Execution object language output
LO Listing output

S1 Symbolic input

SO Symbolic output

file:

File Use

S2 Standard procedure
Ut Undote input

X1 Intermediate source
X2 Encoded text

X3 Program locals

Assembler Diagnostics

59

Table 2. Error Messages (cont.)

Message

Comments

ABORT ASSEMBLY AT LINE y '
170 ERROR ON xx: ILLEGAL SEQUENCE OF RAD OPERATIONS

An illegal sequence of RAD operations
has occurred on device xx. This in-
dicates an assembler, operating system,
or machine 2rror. The assembly is
aborted immediately.

ABORT ASSEMBLY AT LINE y t
/O ERROR ON xx: INCORRECT RECORD LENGTH

Incorrect record length has been en-
countered on an assembler-created file
on device xx. This indicates an as-
sembler, operating system, or machine
error. This message cannot occur for
devices SI and UL. The assembler is
aborted immediately.

ABORT ASSEMBLY AT LINE y '
I/O ERROR ON xx: IRRECOVERABLE 1/O ERROR

An irrecoverable input/output error of
an unspecified type has been detected
on device xx. The assembly is aborted
immediately.

ABORT ASSEMBLY AT LINE y '
[/O ERROR ON xx: NOT ASSIGNED

The options specified on the XSYMBOL
control card require device xx, but it
has not been assigned to a valid device.
The assembly is aborted immediately.

ABORT ASSEMBLY AT LINE y
LO=50 CONFLICTS WITH LU OPTION

The LO and SO operational labels have
been assigned to the same device when

the LU option is specified. This would

cause the LU and SO outputs to be in-

termixed in a garbled manner. The as-
sembly is aborted immediately.

ABORT ASSEMBLY AT LINE y
PROC LINE OUT OF ORDER

A PROC definition line has been de-
tected after the first literal was gen-
erated. The assembly is aborted
immediately.

ABORT ASSEMBLY AT LINE y
PROC'S NESTED TOO DEEPLY

PROCs have been nested to a depth
greater than 29. The assembly is
aborted immediately.

ABORT ASSEMBLY AT LINE y
RBM CONTRGL CARD READ ON Sl

The assembler has read an RBM control
card on the Sl device. The currently
active assembly can be completed, but

"The use of xx refers to one of the following operational labels of an assembler file:

File Use

BO Object language output

DO Diagnostic output

GO Execution object language output
LO Listing output

S1 Symbolic input

SO Symbolic output

File Use

S2 Standard procedure
Ul Update input

X1 Intermediate source
X2 . .Encoded text

X3 Program locals

Assembler Diagnostics

Table 2.

Error Messages (cont.)

Message

Comments

ABORT ASSEMBLY AT LINE y
RBM CONTROL CARD READ ON SI (cont.)

no further assemblies in the batch can
be processed. The abort will occur at
the completion of the active assembly.
Both the card in error and this error
message are displayed at the end of the
assembly listing.

ABORT ASSEMBLY AT LINE y
RBM CONTROL CARD READ ON UI

The assembler has read an RBM control
card on the Ul device. The currently
active assembly can be completed, but
no further assemblies in the batch can
be precessed. The abort will occur at
the completion of the active assembly.
The card in error is displayed at the
end of the update listing, and thiserror
message is displayed at the end of the
assembly listing.

ABORT ASSEMBLY AT LINE y
SI=UT IS ILLEGAL

The SI and U! operational labels huve
been assigned to the same device when
the Ul option is specified. The as-
sembly is aborted immediately.

ABORT ASSEMBLY AT LINE y
SI=X1 CONFLICTS WITH UT OPTION

The SI and X1 operational labels have
been assigned to the same device when
the Ul option is specified. The as-
sembly listing (on X1) would not cor-
respond to the actual updated listing.
The assembly is aborted immediately.

ABORT ASSEMBLY AT LINE y
SYMBOL TABLE OVERFLOW

The encoder phase symbol table has ex-
ceeded available memory. The os-
sembly is aborted immediately.

ABORT ASSEMBLY AT LINE y
TOO MANY LOCAL SYMBOLS

More than 254 local symbols have been
declared for a local region. The as-
sembly is aborted immediately.

ABORT ASSEMBLY AT LINE y
UPDATE CONTROL CARD ERROR

When an error is detected in an update
control card, the assembler prints an
appropriate message (see UPDATE
CONFLICT and UPDATE ERROR fater
in this table) and continues processing
the remainder of the update deck. This
message is printed affer the update deck
has been completely scanned for further
update control card errors. No as-
sembly takes place. Also, if there are
further assemblies in the batch, they
are not processed.

UPDATE CONFLICT
LAST SEQ =n,m

An error in an update control card has
been detected; namely, the range of
the current update command conflicts
with the range of the last update com-
mand. This error message is printed
directly after the update control card
in error.

Assembler Diagnostics

61

Table 2. Error Messages (cont.)

Message

Comments

UPDATE CONFLICT
LAST SEQ = n,m (cont.)

The second line of the message (indi-
cating the sequence numbers of the
last update cerd) is displayed only if
the LU option is not specified. For
example,

+7,8
+2,5 LU on
UPDATE CONFLICT

+2,5
UPDATE CONFLICT LU off
LAST SEQ = 7,8

The assembler continues processing the
rest of the update deck so that any
further update control card errors are
detected and displayed. At the com-
pletion of this special processing, the
message UPDATE CONTROL CARD
ERROR is printed and the assembler
aborts. No assembly takes place.

UPDATE ERROR

An error in an update control card has
been detected; namely, there is a
syntax error (for example, +A), or j is
greater than k for the update command
+j,k. This error message is printed
direct!ly after the update contro! card
in error. The assembler continues pro-
cessing the rest of the update deck so
that any further update control card
errors are detected and displayed. At
the completion of this special process-
ing, the message UPDATE CONTROL
CARD ERROR is printed and the as-
sembler aborts. No assembly takes
place.

WARNING: ALL INPUT ON SI IGNORED TO NEXT EOF

The update deck has inserted an END
directive into the program. The as-
sembler's position in the source file is
thus lost for further assemblies within
the file. The remainder of the source
program is skipped, and the SI device
is positioned after the next end-of-file
indicator. The assembly is not aborted;
it continues with the next file if BA is
on, or terminates normally if BA is off.
This message appears at the end of the
assembly listing.

WARNING: EXCESS UPDATE CARDS IGNORED TO NEXT +END OR EOF

The update deck has specified an in-
sertion beyond the end of the source
program. The extraneous update cards
have been ignored, and the Ul device
has been positioned after the next
+END card or end-of-file indicator.

2

Assembler Diagnostics

Table 2. Error Messages (cont.)

Message

Comments

WARNING: EXCESS UPDATE CARDS IGNORED TO NEXT +END OR EOF

The assembly is not aborted; it con-

(cont.) tinues normally with using the source
and update files as positioned. This
message appears at the end of the as-
sembly listing.

WARNING: Ul OPTION TURNED OFF \ An end-of-file indicator has been en-

countered on the Ul device. The Ul
option is turned off for any subsequent
assemblies. The assembly is not
aborted; it continues normally using
the source file as positioned. This
message appears at the end of the as-
sembly listing.

ASSEMBLY LISTING

The general format for an assembly listing line is shown in
Figure 9. An output line contains, where applicable:

1. A maximum of three diagnostic flags. Errors in excess
of three for any one line are not flagged. The total
number of lines containing errors is printed at the end
of the assembly listing.

2. The line number in decimal, or the update line number
in decimal followed by an asterisk.

3. The current contents of the execution location counter
in hexadecimal.

4. The object code in hexadecimal.

5. An address classification flag that indicates, for the
last field generated by the line (the address for in-
struction), whether the field is absolute (flag A),
relocatable (flag R), an external reference (flag E), or
common relocatable (flag C).

6. Lines skipped as a result of a GOTO directive are not
flagged. The absence of generated code (LLLL XXXX A)
indicates that a line is skipped.

7. The source language image of the original program
statement.

Literals are printed at points specified by the LPOOL direc-
tive or at the end of the assembly.

The top line of each page of the assembly listing will con-
tain the assembler version number in print positions 1 to 3,
a user title (if specified) in print positions 10 to 73, and
the decimal page number in 95 to 104 as "PAGE nnnnn".
If Job Accounting is included in RBM, the time at which
the assembly began is inserted in positions 77 to 81 as
HH:MM and the calendar date is inserted in positions 84 to

91 as MM/DD/YY. The page number is set to one ot
the beginning of each assembly. One line is ski~=ed after
the title line before resuming the listing.

SUMMARY TABLES

Following the END directive, the assembler issues a page
eject and prints the following summaries as a standard part
of the assembly listing. Each summary is preceded by an
identifying heading.

1. Symbol Value Summary. If the SS option was specified
on the IXSYMBOL control command, this summary
shows all defined, nonexternal symbols in the pro-
gram, except $, $$, AFNUM, and those designated
as LOCAL. A typical item has the form

SCALE/01B5 R

where
SCALE is a symbol name.
0185 is the hexadecimal address at which it
was defined.
R classifies the value as a relocatable address.

A value that is in COMMON will have a C rather than
an R following its address. An absolute address, or an
absolute value, will have no classification flag follow-
ing the value, as in

K:HIBYTE,/0038

A symbol that is declared to be an external definition
is printed in the form

ENTRY-001E R

Symbol values are printed five entries per line.

Assembly Listing/Summary Tables 63

—Print Position

0 1 2

3

4 5)

12345678H012345678

0123456789012345578

012345678901234567890123456789 « . -

FEF NNNNN+« LLLL

-Assembly Listing Line

= Error Flags

2

= Source Image

XXXX A S555538S5S8S.....

= Line Number in Decimal (the asterisk occurs only on updated lines)
= Current Value of the Fxecution Location Counter in Hexadecimal

= Memory Word in Hexadecimal
= Address Classification Flag

Figure 9. Assembly Listing Format

2. External Reference Summary. If the S$$ option was 4. Error Line Summary. This summary is unconditional,
specified on the IXSYMBOL control command, this and will be printed on both the LO and DO devices.
summary shows all symbols declared to be primary It lists the total number of error lines in the assembly
or secondary external references. Only symbo! naomes (excluding lines containing only warnings).
are listed, printed with eight entries per line.

. . . . 5. Error Severity Level. This summary is unconditional

3. Warning Line Summary. If the DW option was speci= and will be);/:»rinfed on both the L)(l) and DO devices.
fied an the XSYMBOL control command, fhls.summcry It shows the highest error severity encountered in the
lists the tatal number of statements that contained only program (0-2).
warning (W) flags. Note that if a particular line con-
tained both g warning and an error flag, it is included
in the error line summary, and not the warning line An assembly listing of a sample problem is shown in
summary. Figure 10.

EOL EXTENDEL SYMBOL SAMPLE PROGRAM 00:04 06/07/71 PAGE 1
1 TITLE 'EXTENDED SYMBOL SAMPLE PROGRAM'
2 DETF SAMPLE DECLARE EXTERNAL DEFINITION
3 REF M:DKEYS,M:INHEX DEFINE AS EXTERNAL REFERENCES
N £
3 0000 4 STORES2 CNAME DEFINE COMMAND 'STORES2'
6 PRGC BEGIN PROCEDURE DEFINITION
7 STA AF(1)+1 STORE A=~REGISTER
8 SCLD 16 EXCHANGE A & E REGISTERS
9 STA AF(D) STORE E-REGISTER
10 PEND END PROCEDURE DEFINITION
11 3
12 0001 A P EQU 1 OPERATTON REGISTER EQUATES
13 0002 A L EQU 2 .
14 L
15 ASECT DECLARE ABSOLUTE SECTION
16 00CA ORG X'CA' BEGINNING AT LOCATION 202.
17 00CA M:WRITE RES 1 DECLARE SYMBOLIC TRANSFER VECTOR
18 00CB RES 2 ENTRIES TO MONITOR
19 00CD M:TERM RES 1 SERVICE ROUTINES.
20 *
21 CSECT DECLARFE CONTROL SECTION
Figure 10. Assembly Listing
54 Summary Tables

OUTPUT MESSAGE

22 0000 FOC4 A MESSAGE TEXT 'ODATA KEYS READ X'' e
0001 C1E3 A
0002 C140 A
0003 D2C5 A
0004 ESE2 A
0005 40D9 A
0006 C5C1 A
0007 C440 A
0008 E77D A
0009 4040 A
000A 4040 A
000B 7D4B A
23 000C 3005 A IOLIST DATA X'3005','0C' ,MESSAGE,24 ARG LIST FOR MESSAGE
000D D6C3 A
000E 0000 R
000F 0018 A
24 ¥
25 0010 SAMPLE RES o}
26 0010 75A1 A RCPYI P,L
27 0011 4COB A B M:DKEYS READ DATA KEYS
28 0012 75A1 A RCPYI P,L
29 0013 4COA A B M:INHEX CONVERT TO EBCDIC HEXADECIMAL
30 0014 E9F6 A STORE$2 MESSAGE+9 STORE IN OUTPUT MESSAGE
0015 20F0 A
0016 E9F3 A
31 0017 Cc807 A LDX =10LIST LITERAL ADDRESS OF ARGUMENT LIST
32 0018 75A1 A RCPYI P,L
33+ 0019 44CA A B *M:WRITE WRITE THE OUTPUT MESSAGE
34 001A 75A1 A RCPYI P,L
" 35 0018 44CD A B *M:TERM RETURN TO MONITOR CONTROL
. 36 e
37 0010 R END SAMPLE END OF PROGRAM
co1C 0000 E
001D 0000 E
001E 000C R
EOL EXTENDED SYMBOL SAMPLE PROGRAM 00:04 06/07/71 PAGE 2
¥ SYMBOL VALUES
I0OLIST/000C R 1../0002 M:TERM/00CD M:WRITE/0OCA MESSAGE /0000 R
P/0001 SAMPLE~0010 R
% EXTERNAL REFERENCES
M:DKEYS M:INHEX
% NO ERROR LINES
i ERROR SEVERITY: O
ET=000.18

06/07/71 0004

BK=000.20,FG=000.00,1ID=000.00

Figure 10. Assembly Listing (cont.)

Summary Tables

65

APPENDIX A. SUMMARY OF XEROX 530 AND SIGMA 2/3 INSTRUCTiONS

Syntax is described in abbreviated form with required

elements underlined. The following abbreviations are used:

*

T O

(4]

fr

gr

nr

rx

SX

Indirect addressing designator for Class 1 instruc—
tions; source register inversion designator for
Class 4 instructions.

Address expression.

Base (expression, 0 means no explicit base).
Shift count.

Destination register designator.

First register (2 > fr < 6).

General register (same as fr).

Instruction mnemonic.

Number of registers (1> m < 7).

Register expression (2 21 < 6).

Register indexing of field descriptor (rx = 1 means
no indexing).

Source register designator,

Self-indexing of field descriptor (sx = 1
means self-incrementing; sx = -1 means
self-decrementing).

Index expression (0 means no indexing).

MEMORY REFERENCE INSTRUCTIONS (CLASS 1)

BASIC SET
Mnemonic Syntax Function
ADD m *a,x, b Add
AND m *a,x,b Logical AND
B m *g, x, b Branch
CP m *a,x,b Compare
DIV m *a, x, b Divide
M m *a,x, b Increment Memory
LDA m *a, x, b Load Accumulator
LDX m *a,x, b Load Index
MUL m *a,x, b Multiply
RD m *g, x, b Read Direct
S m *a,x,b Shift
STA m *a, x, b Store Accumulator
SUB m *a,x, b Subtract
WD -m_ *;, x, b Write Direct

GENERAL REGISTER SET

Mnemonic Syntax Function

AND _nl,_r_*_, x, b AND Word

AW m,r *a,x, b Add Word

CW m,r *g,x, b Compare Word

LW m, i *q,x, b Load Word

SGR mgr Set General Register

STW m,r *a,x, b Store Word

SW m,r *a,x,b Subtract Word

- FLOATING-POINT SET

FAD m *a, x, b Floating Add

FDV m *a,x, b Floating Divide

FLD m *a,x,b Floating Load

FMP m *a, x, b Floating Multiply

FSB m *a,x, b Floating Subfract

FST m *a, %, b Floating Store

RFM m Reset Floating Mode
(Control Instruction)

SFM m Set Floating Mode
(Control Instruction)

MULTIPLE PAECISION SET

cpp! m *a,x,b Compare Double

DAD m *a,x, b Double Add

DsBf m *a,x, b Double Subtract

Loot m *a,x, b Load Double

LDM! m *a,x, b, fr, nr Load Multiple

SMpP m fr,nr Set Multiple Precision

sTD' m *a,x,b Store Double

STMf m *a, x, b, fr, nr Store Multiple

t " . .

These ‘instructions are normally used when the Sigma 3
Multiple Precision Arithmetic option is implemented. How-
ever, when this hardware is not implemented, software ex-~

pansions for use of these instructions tokes place as described

in Appendix E. Note that there is no simulation of the LDM

and STM instructions.

Appendix A 67

Mnemonic Syn

FIELD ADDRESSING SET

tax

CAF
CLF
LAF
LLF
SLF
SOF
STF
SZF

m,
m,
m,

m,

m,

m,

m,

m,

X, sx *a,x, b
X, $X *9_, x, b
rx, sx *a,x, b
%, sx *a, X, b
X, sx *a,x, b
rx,sx *a,x,b
rx, sx *a,x, b

rx, sx *a,x, b

Function

Compare Arithmetic Field
Compare Logical Field
Load Arithmetic Field
Load Logical Field

Sense Left Bit of Field
Store Ones Fieid

Store Field

Store Zero Field

CONDITIONAL BRANCH INSTRUCTIONS (CLASS 2)

BAN
BAZ
BEN
BIX
BNC
BNO
BXNC

BXNO

@
SALD
SALS
SARD
SARS

SCLD

68

13
12

13
1o

13
12

(E
1o

I3
1o

13
ie

E}
12

Branch if Accumulator
Negative

Branch if Accumulator
Zero

Branch if Extended
Accumulator Negative

Branch on Incrementing
Index

Branch if No Carry
Branch if No Overflow

Branch on Incrementing
Index and No Carry

Branch on Incrementing
Index and No Overfiow

SHIFT INSTRUCTIONS (CLASS 3)

mc,x, b

mec,x, b

mec,x, b

me,x, b

mec,x, b

Appendix A

Shift Arithmetic Left
Double

Shift Arithmetic Left
Single

Shift Arithmetic Right
Double

Shift Arithmetic Right
Single

Shift Circular Left Double

Function

Shift Circular Left Single
Shift Circular Right Double
Shift Circular Right Single

COPY INSTRUCTIONS (CLASS 4)

Mnemonic Syntax
SCLS mc,x,
SCRD m ¢, X,
SCRS mc,x,
RADD msd
RADDC m*s,d
RADDI m *ﬁ
RAND m*sd
RANDC m *s,d
RANDI m *s,d
RCLA m *s,d
RCLAC m *s,d
RCLAI m *s,d
RCPY m *s, d
RCPYC m *s, d
RCPYI m *s,d
REOR m *s, d
REORC m *s, d
REQORI m *s, d
ROR m *s,d
RORC m*s, d
RORI m *s, d

Register Add

- Register Add and Carry

Register Add and Increment
Register AND
Register AND and Carry

Register AND and
Increment

Register Clear and Add

Register Clear, Add, and
Carry

Register Clear, Add, and
Increment

Register Copy
Register Copy and Carry

Register Copy and
Increment

Register Exclusive OR

Register Exclusive OR
and Carry

Register Exclusive OR
and Increment

Register OR
Register OR and Carry

Register OR and
Increment

INPUT /OUTPUT INSTRUCTIONS (CLASS 5]

AlIO

HIO
SIO
DV
TIO

13

13 I3 I3

13

Acknowledge Input/Output
Interrupt

Halt Input/Output
Start Input/Output
Test Device

Test Input/Qutput

APPENDIX B. EXTENDED SYMBOL DIRECTIVES

In this appendix brackets indicate optional items. Although a label field entry is indicated as optional, the assembler will
define the label as the current value of the execution location counfer and enter it in the appropriate symbol table. A blank
label field indicates that the assembler will ignore a label unless it is the target label of a GOTO search.

The table that follows the functional descriptions summarizes the format of each directive.

Format Function Page

[label] ADRL expression Generates one word containing the address of the desig- 22
nated expression. The generated word may be used as an
address literal for the symbol.

ASECT Declares the following program section to be absolute; 25
that is, labels on subsequent statements will be defined
as absolute values.

[label] BASE [expression] Designates that the assembler may assume the value "ex~ 18
pression" is contained in the base register. If BASE is
omitted or if “expression" is not specified, the assembler
will not automatically impose base-relative addressing,

[label] BOUND predefined absolute expression | Advances execution location counter to the next word 24
multiple of "expression" and advances load focation
counter the same number of words.

label CNAME [predefired expression] Designates a procedure name (label) for an immediately 40
following procedure definition,

(label] COMMON predefined absolute expression | Advances the COMMON focation counter by "absolute 25
expression",

CSECT Declares the following program section to be relocatable; 25
that is, labels on subsequent statements will be defined
as relocatable values,

[label] DATA, (k] vy [, Vorees ,vn] Generates each value (v;) in the list into k words. If k is 27
absent, one-word values are generated.

DEF 5) [, Sgreees sn] Declares that each symbol (s;) may be referenced by other | 28
(separately assembled) programs.

[label] DO predefined absolute expression | If expression > 0, generates the code from DO to FIN ex- | 28
pression times, then continues assembly at the statement
following FIN. If expression < 0, skips all code from DO
to FIN; resumes assembly following FIN,

ELSE Terminates the range of an active DO loop; or identifies |’ 28
the beginning of the alternate sequence of code for an
inactive DO loop.

END [expression] Terminates the assembly of the object program; optionally | 31
provides the starting point of the program (expression).

label EQU predefined expression Equates "label" to the value of "expression". 32

FIN Terminates a DO loop. 28

Llabel] GEN, value [ist Produces one or more words containing the items in"value | 32

field list list" positioned according to specifications in"field list".

Appendix B

69

Format Function Page
(label] GEN1 op value, indirectvalue, index | Generates a Class 1 instruction from items in argument 32
value, base value, address field.
[label] GEN2 op value, address Generates o Class 2 instruction from items in argument 32
field.
GOTO[k] l] [,|2, coosl] Stops assembly and resumes at the statement whose label 33
n correspords to the kth labe! (Ip) in the fist. If k is
omitted, assemuly is resumed at |abe|].
IDNT Yes [, ... tes '] Causes "cs" {(charazter string constant) to be used in the 34
! n start module item of the object module,

LBL [tes1] Causes "cs" 10 be used in the identification field of sue- 34
ceeding records of the object module output.

LIST predefined absolute expression | Suppresses or resumes assembly listing depending on valve | 34
of "expression". If "expression” is zero, assembly listing
following LIST will be suppressed until resumed by
another LIST directive; if "expression" is nonzero, assem=-
bly listing is enabled.

(label} LOC predefined expression Advances the execution location counter ($) fo the value 24
"expression’,

LOCAL [51’52’ veesS] Terminates existing local symbol region and initiates a 34
n new region in which the symbols (Si) are local symbols.

[label] LPOOL [predefined absolute expression] | Designates to the ussembler an area in the program at 20
which literals may be assembled. If "absolute expression”
is present, it specifies the number of literals to be assem-
bled in the areq; if "absolute expression" is omitted, all
accumulated literals are allocated storage at this point,

[label] ORG predefined expression Advances both the load location counter ($$) and the 23
execution location counter ($) to the value "expression".

PAGE Causes the assembler to upspace assembly listing so that 36
the next output line appears at the top of the next page.

PCC absolute expression Controls printing of PAGE, SPACE, and TITLE directives. 36

PEND Terminates procedure definition, 41

PROC Identifies the beginning of a procedure definition and 40
must immediately follow CNAME,

REF 5 [,52, voe ,sn] Declares that the symbols <Si> are defined in a separately 36
assembled program.

[label] RES predefined absolute expression | Reserves n werds and advances both location counters 25
by n where n is the value of the absolute expression.
label SET predefined expression Equates "label" to the value of "expression”, but allows 37
"label" to be redefined by the use of a subsequent SET.
SOCW Suppresses object control words in the binary output. 37
SPACE absolute expression Inserts n blank lines in the assembly listing where n is the 37

value of the absalulc expression,

70 Appendix B

Format Function Page
SREF Sy {/SmreessS Declares that the symbols (s;) are secondary external ref- 37
1172 n
erences; that is, the loader will provide the interprogram
linkage only if the programs whose labels it references
are in core memory.
S:STEP Causes an interruption of input from the SI device. 36
[label] TEXT e [reees ‘es ! Assembles "cs" (character string constant) in EBCDIC for- | 38
mat for use as data.
[lobel] TEXTC 'cs]'[, cer lcsn' Same as TEXT except character string is ﬁreceded by a 38
byte count of the number of characters.
TITLE ‘e ‘[reves 'csn' Prints "cs" (character string constant) at the top of each 38
subsequent page of assembly listing until a subsequent
TITLE statement is encountered.
Appendix B 71

Label Field Label Identifies Argument Field Argument Allows Locofiﬁ:\t%::unters
- 8 T o 4 ? 8 & c +

a8 |t B8 |85 5| Ssles|zr (B2
ADRL X | X X X | x | X X | x
ASECT) X X X X |
BASE X X X X X
BOUND X X X X X X

(If necessary)

CNAME X Identifies Procedure X X X
COMMON X X X xH
CSECT X X X X
DATA X X X X | x | X X | x|
DEF X X X X
DIsp X X X X X
DO X Cuirent DO Count X X
ELSE X X X
END X X X X
EQU X Label = Argument X X X
FIN X X X
GEN X X X X X X X X
GENI1 X X X X X X X X
GEN2 X X X X X X X
GOTO X X X X
IDNT X X Character string constants X
LBL X X Character string constant X
LIST X X X X
LOC X X X - X X
LOCAL Ix X X X
LPOCL X N X X X X X
ORG X X X X X X
PAGE X X X
PCC X X X X
PEND X X X
PROC X X X
REF X X X X
RES X X X X X X
SET X Label = Argument X X X
SOCW X X X X
SPACE X X X X X
SREF X X X X
S:STEP X X X
TEXT X X X Character string constants | X X
TEXTC X X X Character string constants | X X
TITLE X X Characterstring constants X

72

"Unless target of GOTO search.

"Alfers COMMON location counter,

Appendix B

APPENDIX C. INCOMPATIBILITIES BETWEEN EXTENDED SYMBOL AND SYMBOL

The following list of known incompatibilities between Ex-
tended Symbol and Symbol does not include those features
that are unique to Extended Symbol and, therefore, diag-
nosed in Symbol {e.g., procedures).

1. Assembly errors may be diagnosed with different error
flags.

2. Literal pools may be inconsistent in size and order.

The LOC directive in Extended Symbol does not create
an automatic literal pool.

Available locations in a previous literal pool (as a re-
sult of an LPOOL K directive) will never be used by |
Extended Symbol.

The standard instruction procedures in Extended Symbol
do not include a check for the number of arguments,
Therefore, an excessive number of arguments may appear
yet not be diagnosed.

Appendix C 73

APPENDIX D. CONCORDANCE PROGRAM

INTRODUCTION

The Concordance program provides the user with a listing of
the program symbols, and, by line number, all references to
these symbols for any compatible Extended Symbol or Symbol
program, Three optional control cards permit inclusion or
exclusion of specified symbols in the local, nonlocal, or
operation/directive code sections of the printout, The omis-
sion of all control cards yields a standard Concordance list-
ing containing all program symbols except standard opera-
tion and directive code mnemonics,

CONCORDANCE LISTING

The Concordance listing can consist of several different
sections, but all sections have the same general format:

T DLN SYMBOL RLN RLN RLN . ..

where

T is a one-letterdesignator describing the type of
Symbol. The possible types of symbols are:

A Symbol is defined in a program section des-
ignated os absolute via an ASECT directive,

C Symbol is defined in a program section des-
ignated as relative via a CSECT directive. if
neither an ASECT nor CSECT directive is pres-

ent, a relative progrom section is assumed.

Symbel is defined via an EQU directive.
U Symbolisnot used as a label in the program.

X Symbol is externally defined via a REF or
SREF directive.

D Symbol is used more than once as a label in
the program,

DLN is the line number of the symbol definition.
If o symbo! is undefined, the DLN field will be
blank,

SYMBOL is the user's symbol, Symbols, up to a
maximum of 8 characters, are listed in increasing
sequence according to the binary value of their

EBCDIC code.

RLN are the line numbers on which the symbol is
referenced, listed in ascending sequence for each
symbol, [f the standard record size for the Listing
Ovutput device is 85 characters, up to 7 RLNs are
printed on a line; otherwise, up to 10 RLNs are
printed per line,

The Concordance listing can consist of up to four indepen-
dent sections, depending on the options chosen by the user.

74 Appendix D

These sections, in the order in which they occur, are the
Local Section, Nonlocal Section, Proc Section, and the
Operation/Directive Codes Section. The first page of the
printout, which is titfed "CONCORD", will list all Con-
cordance control commands with errors appropriately flagged,
or any illegal cards in the input deck that precede the

first local region. lllegal cards following the first local
region will be logged after the Jocal region they follow.

LOCAL SECTION

The Local Section consists of n general format printouts,
where n is the number of local regions in the program. For
ease of identification, each local region is entitled
"LOCAL xx" where xx is the number (1-99) of the local
region. The symbols for each local region are printed in
the order in which the local regions occur in the program;
each local region being preceded by a page eject. The
purpose of separating the local regions from each other and
from the nonlocal region is to facilitate locating a portion
of a large program, and to reduce the possible confusion
caused by the same symbol being defined in more than one
local region,

A local region is preceded and terminated by "LOCAL" di-
rectives(described earlier in this manual), The printout of
each local region contains these symbols, whichare defined
os being local to that region via the "LOCAL" directive.
The Local Section of the printout is always present unless
it is specifically suppressed by a control command or no
local regions exist in the program,

NONLOCAL SECTION

The Nonlocal Section consists of one general format print-
out containing all nonlocal symbols occurring in the label
or operand fields of the program. The nonlocal section is
entitfed "NONLOCAL". The Nonlocal Section is always
present unless specifically suppressed viaa control command,
and is preceded by a puge eject,

PROC SECTION

The Proc Section consists of one general format printout
containing symbols used as opcodes which are different
from the symbols in the Extended Symbol Directive Reper-
toire, The Proc Section is always present whenever such

a symbol exists in the Extended Symbol source program
(unless specifically suppressed via a control command), but
the symbol must appear in the opcode field, The Proc
Section is entitled "PROC",

OPCODE SECTION

The Opcode Section consists of one general format printout
{(with the exception of the T and DLN fields, which are
omitted) of all the operation codes and Symbol directivesin
the source program. The Opcode Section is present only if
it is specifically requested via a control command. The

Opcode Section is entitled "OPCODE",

At the end of the final section to be listed the message
END CONCORD XX

will be printed, where XX is the file number of the last
program completed.

CONCORDANCE CONTROL COMMAND

The Concordance program isrequested via a CONCORDANCE
control command. The form of the command is

ICONCORDANCE [cc](,ALL]
where
CcC denotes that section control commands follow

the CONCORDANCE command on the CC device.
Section control commands will be read until an
EOD or !/END command is encountered on the
CC device.

ALL specifies that multiple files are to be processed
until two successive end-of-files are encountered
on the SI device.

SECTION CONTROL COMMANDS

Section control commands are used to designate which
sections and symbols are fo be output. Section control
commands which precede the source program, have the
following format:

| /section mode SyrSgren S,

where

1/ (which must be in columns 1 and 2 respectively)
identifies the card as o Concordance control com-
mand. The first blank encountered in the s; field
or column 72 (whichever appears first) terminates
the control command.

section refers to the appropriate section on the
printout and can be any of the following:

LOCAL
NONLOCAL
PROC
OPCODE

mode is one of the following control designators:

INCL List only those symbols (si) listed on the
control card. If no symbols are designated,
no symbols will be listed for the appropriate
section.

EXCL Exclude the symbols (si) listed on the
control card. If no symbols are designated,
none will be excluded.

s, is a program symbol,

The section and mode fields are required; if either is blank
or incorrectly specified, the control command will be
ignored and an invalid card alarm output on the LO device.
The s; field is optional. If the s; field on one card cannot
accommodate all the desired symbols, additional cards with
the same format can be used. Two or more consecutive con-
trol cards with the same section entry must have the same
mode entry if the program is to function correctly, even
though no explicit program check is made for this condition.

If a control card is not input for a section, the following
default case is assumed for each section:

| /LOCAL EXCL

1 /NONLOCAL EXCL
1/PROC EXCL

| /OPCODE INCL

In addition to the section control cards, there is also a
TITLE conirol card that allows the user to have any specified
information printed at the top of each page of his listing.
This control card has the following format:

1 /TITLE

user's program name or other identification

The 1/ must appear in columns 1 and 2 respectively. Col-
umns 11-80 contain the desired information and will be
printed at the top of each page of the Concordance listing.
The TITLE control card should precede the source deck.

ERROR ALARMS

There are two different alarms output by Concordance on the
LO device in columns 1-10,

Error Alarm Error Condition Action Taken

INV CARD Either the syntax Card is ignored
of the label, com- from the point at
mand, or argument which the error
field does not con- occurs. Valid
form to the rules fields, prior to
outlined in Chap- the field in error
ter 2 of this man- are processed.
val, or illegal
Concordance
control command.

CORE OVFLO Inadequate core Process first por-

storage for pro-
cessing remainder
of source program,

tion of the program
and output the list-
ing. Process re-
mainder of program
as a separate
program.

Appendix D 75

Error alarms are listed in the order of occurrence. The
"CORE OVFLO" alarm is listed along with the first card
that could not be processed because of the inadequate core
space. This card and the remainder of the source program
are processed as a second program. A possible way fo pre-
vent a core overflow situation is to suppress the printout of
symbols not needed on the listing, suchas $, L, A, T, E,
X, B, and Z.

COMPATIBILITY

Concordance basically is compatible with Extended Symbol
in its processing of an input deck. The syntax checks that

Concordance makes on the label, opcode, and operand
fields of an input deck conform fo the rules outlined in
Chapter 2 of this manual.

One difference between Concordance and Extended Symbol
is that Extended Symbol ignores the label field on certain
directives (for example, the PAGE directive), whereas
Concordance always processes a legal label field. Also,
Concordance does not aftempt to evaluate the argument
field of « GOTO directive, and hence does not pass over
the appropriate input cards that Extended Symbol would
bypass. Sample Concordance deck setups are shown in
Figures D=1 and D-2.

frFIN

[1EoD

END

*XSY‘MBOL Soﬁrce Program (or Symbo

[1cONCORDANCE [cC] [, ALL)

1JOB

input is on tape).

Note: CC, when present, denotes input of Concordance control commands from the CC device (useful when source

ALL, when present, allows Concordance to maintain control until it encounters two consecutive !EQDs,

Figure D-1. Sampie Concordance Deck Setup

[!FIN

l I CONCORDANCE

J IREWIND X1

[1ASSIGN s1=X1

1EOD

I

*XSYMBOL SOURCE PROGRAM

J IXSYMBOL

ITEMP S
1JOB

X1 is temporary file —

must be saved for
Concordance.

Figure D-2, Concordance From X1 RAD File Following an Assembly

76 Appendix D

APPENDIX E. EXPANSION OF SIGMA 3 SIMULATED INSTRUCTIONS

Shown below are the equivalent expansions for the standard
procedure simulation of Sigma 3 doubleword operations.
This set of standard procedures is used with a Sigma 2, or
with a Sigma 3 without the extended arithmetic hardware
option. Note that the load multiple (LDM) and store mul-
tiple (STM) instructions are not simulated.

These procedure expansions take two essentially different

paths, depending upon whether indirect addressing is speci-

fied or not. These two paths are given separately, with
comments specific to o particular path. Note that several
of these expansions destroy the previous contents of general
register 3 (T-register), which is not compatible with the
action of the actual hardware instructions.

NO INDIRECT ADDRESSING

When indirect addressing is not specified, the address field
of these instructions may not contain an external reference
or a procedure=local forward reference. This restriction is
not imposed upon the actual hardware instructions

Load Double (LDD)

LDA (effective address)
RCPY AE
LDA (effective address + 1)

Store Double (STD)

STA (effective address + 1)
RCPY E,A

STA (effective address)
LDA (effective address + 1)

Double Add (DAD)'

RCPY X1, T
ADD (effective address + 1)
LDX (effective address)
RADDC X1,E
RCPY T, X1

Double Subtract (DSB)r
RCPY X1.T
SUB (effective address + 1)
LDX (effective oddress)
RADDC *X1,E
RCPY T, X1

Compare Double (C PD)t

RCPY
RCPY
cp
RCPY
BNC
SuUB
BNC
RADDI
RCPYI
BNC
RADDI
SALS
B

OFF RADD
RCPY

NXT RES

AT

E,A

(effective address)
T,A

NXT

(effective address + 1)
OFF

*A,Z

Z,A

$+2

Z,A

15

$+2

Z,Z

T, A

0

INDIRECT ADDRESSING

No restrictions.
Load Double (LDD)'

RCPY
LDX

[RADD
LDA
RCPY
LDA
RCPY

Store Double (STD)f

RCPY
LDX

[RADD
STA
RCPY
STA
LDA
RCPY

X1, T

(reference address)
T, X]] H, Ht

0,1

,E
1

>

x

1

’
14

[-

X1,T

(reference address)
T,X1] Htt

1,1

E,A

’

—_ - O
X — -

1
’

1

to . . .
This expansion destroys the previous contents of general

register 3.

Ho .o, .
This instruction is only generated when post-indexing is

explicitly specified.

[23 S .
This instruction causes the overflow of any carry indica-
tors to be affected, which is not true of the corresponding

hardware instruction.

Appendix E

77

INDEX

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical order.

A

ABS function, 43
absolute and relocatable values, 12
address
direct, 18
effective, 18
reference, 18
address control, base-relative, 19
address generation diagnostics, 20
address literals, 22
addressing, 18
automatic, 20,1,21
base-relative, 20
direct, 19
indirect, 19,20
nonrelative, 20
self-relative, 20
symbolic-relative, 19
addressing format, argument, 18
ADRL directive, 23, 10,28,69
AF function, 44,42
AFA function, 44
AFNUM function, 45
AFR function, 45
ALL option, deck set-up, 75
argument addressing format, 18
argument entry, 9
ASECT directive, 26,1,27,28,69,72
assembler diagno<tics, 57-63
assembly listing, 63
assembly listing format, 64
ASSIGN control command, 49
AT function, 45
automatic addressing, 20

BA option, deck setup, 51,54-56,62
BASE directive, 18,27,41,69,72
base-relative address control, 18
BO option, deck setup, 50-53
BOUND directive, 25,28,38,69,72

buffer areas, 1

C

CF function, 46

CFNUM function, 46

CFR function, 47

character string constants, 4
characters, 3

CNAME directive, 41,28,69,72

command entry, 9

comment lines, 9
comments entry, 9
COMMON directive, 26,11,24,38,69,72
common location counter, 2
common space, |
compatibility, 76
CONCORD, 74
CONCORDANCE contro! command, 75
Concordance,
from X1 RAD file, 76
listing, 74
program (Sigma 2/3), 74
sample deck setup, 76
conditional code generation, 47
constants, 4
character string, 4
decimal integer, 4
fixed=-point decimal, 4
floating=point, short, 5
hexadecimal, 4
self-defining, 1
control commands,
Concordance, 74
RBM, 50
CR option, deck setup, 50,51
CSECT directive, 26,1,27,28,69,72

DATA directive, 28, 10,69,72
decimal integer constants, 4
DEF directive, 29,10, 11,28,37, 38,69,72
DEFINE control command, 51
device assignments, illegal, 60,61
diagnostics,
address generation, 20
assembler, 57,63
direct address, 18
direct addressing, 19
directives
ADRL, 23,10,28,69,72
ASECT, 26,1,27,28,69,72
BASE, 19,28,40,69,72
BOUND, 25,28,38,69,72
CNAME, 41,28,69,72
COMMON, 26,11,24,38,69,72
CSECT, 26,1,27,28,69,72
DATA, 28,10,69,72
DEF, 29,10,28,37,38,69,72
DO, 29-32, 28,40,69,72
ELSE, 29-32,28,69,72
END, 31,28,34,41,52,62,69,72
EQU, 32,28,38,41,69,72
FIN, 29-32,28,34,41,69,72
GEN, 32,1,10,28,34,69,72

Index

79

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical order.

GENT1, 33,10,28,34,70,72
GEN2, 33,10,28,34,70,72
GOTO, 34,1,10,28,29,41,63,70,72
IDNT, 35,28,37,38,70,72
LBL, 35,28,29,37,38,70,72
LIST, 35,28,70C,72
LOC, 25,28,38,70,72
LOCAL, 35,37,10,28,34,41,42,63,70,72
LPOOL, 20,28,63,70,72
ORG, 24,25,27,28,38,70,72
PAGE, 37,28,29,34,35,38,70,72
PCC, 37,28,29,35,3,70,72
PEND, 42,28,34,36,37,70,72
PROC, 41,28,34,36,70,72
REF, 37,10,28,38,70,72
RES, 26,28,38,70,72
S:STEP, 37,28,71,72
SET, 38,28,41,70,72
SOCW, 38,28,70,72
SPACE, 38,28,29,35,37,70,72
SREF, 38,10,28,35,37,71,72
TEXT, 39,1,28,71,72
TEXTC, 39,1,28,71,72
TITLE, 39,34,35,37,38
directives, extended symbol, 28
DO option, deck setup, 49
DO/ELSE/FIN directives, 29-32,28,40,69,72
DW option, deck setup, 52,53

E

effective uddress, 18
ELSE directive, 29-32,28,69,72
END directive, 32,18,28,34,41,52,62,69,72
entries, 9,28
argument, ¢
argument field, 28
command, ?
command field, 28
comments, 9
comments field, 23
EQU directive, 33,28,38,41,69,72
error alarms, 75
error detection, 1
error messages, 37-63
evaluation, operators and expression, 5
EXCL, 75
execution location counter, 2
expressions, 5, 11
external definitions, 1
external references, 1

F

fields, 8

FIN directive, 29-32,28,33,41,69,72
fixed-point decimal constants, 4
flags, 57

80 Index

floating=point short constants, 5

format, assembly listing, 63

forward references, 1

forward references (procedure locals), 10
functions, intrinsic, 43-48

G

GEN directive, 33,1,10,28,34,69,72

GENT directive, 33, 10,28, 34,69,72

GEN2 directive, 33,10,28,34,69,72

GO option, deck setup, 50-53

GOTO directive, 34,1,10,28,29,41,63,70-72

hexadecimal constants, 4

|

IDNT directive, 35,28,37,38

INCL, 75

incompatibilities, 73

indirect addressing, 19,20

instruction statement, fields, 14
instructions, class 1: memory reference, 14
instructions, class 2: conditional branch, 16
instructions, class 3: shift, 16

instructions, class 4: copy, 16

instructions, class 5: inpu!'/oufpuf control, 17
instructions, Sigma 3, 77

intrinsic functions, 43-48

)

JOB control command, 50

L

label entry, 9

language elements, 3

language, extended symbol, 1

LBL directive, 35,28,29%,37,38,70,72
LIST directive, 35,28,70,72

literal pools, 20

literal tables, 2

literals, 7,1

LL option, deck setup, 50

LO option, deck setup, 50-53,60
load items, 56

load location counter, 2

LOC directive, 25,28,38,70,72
LOCAL directive, 35-37,10,28,34,41,70,72

local references, external and forward procedure, 7

focal section, 73,74

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical order.

local symbols, 42,43,61

location counters, 24,2

logical operators, 6

loop, 20

LPOOL directive, 21,28,63,70,72
LU option, deck setup, 51,52,60

machine instructions, Sigma 2/3, 66, 14
memory reference instructions, 14
messages, 47

nesting, 31,59,60
nonlocal section, 74,75
notation, literal, 7

NP option, deck setup, 51-53
NS option, deck setup, 51-53

0

object module records, 57

opcode section, 74,75

operations, 43

operators, arithmetic, logical, and relational, 5,6
ORG directive, 24=27,38,70,72

P

PAGE directive, 37,28,29,34,35,38,70,72
parentheses within expressions, 7
PCC directive, 37,28,29,35,38,70,72
PEND directive, 42,28,34,36,37,70,72
FP option, deck setup, 50,51
PROC directive, 41,28,34,36,40,70,72
PROC section, 74,75
procedure

definition, 41,42,47

format, 41

references, 42,47
procedure that references a procedure, 47
procedure~local symbol regions, 41,42
procedures, 41-4%9

user-defined, 1
processer, extended symbol, 1
program format, standard object, 57
program sections, 26,24
programming features, 1

REF directive, 37,10,28,38,70,72
reference address, 18
references,
external, 10
forward, 10
previously defined, 10
symbol, 10
relocatable values, 11
RES directive, 26,28,38,70,72

S

S:STEP directive, 37,28,71,72
sample procedures, 47
semicolon {;Y, ¢
SET directive, 38,28,41,70,72
$1 option, deck setup, 4%,59-61
Sigma 2/3 machine instructions, 66
Sigma 3 simulated instructions, 77
SL option, deck setup, 51,52
SO option, deck setup, 50-52,60
SOCW directive, 38,28,70-72
SPACE directive, 38,28,29,35,37,70,72
SREF directive, 38,10,28,35,38,71,72
standard object program format, 57
statement continuation, 9
statements, 3
summary tables, 63
Symbol, 74
symbel references, 10
symbol! tables, 10
symbol tables, iocal and nonlocal, 1
svmbelic coding form, 8
symbolic lines, 8
symbolic-relative addressing, 19
symhols, 3, 11
classification of, 10
defining, 10
local and nonlocal, 1,61
pracessing of, 9
redefinable, 10
syntax, 3
SZ option, deck setup, 49

T

TEMF S control command, 51
terminution messages, 58-63

TEXT directive, 39,1,28,71,72

TEXTC directive, 39,1,28,71,72

title control card, 73

TITLE directive, 39,34,35,37,38,71,72

Index

81

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical order.

UFV, 47,43 warning messages, 58,62,63
update error messages, 53, 58,61-63

updating source program, 53-56,58

Ul option, deck setup, 49,51, 53, 55,56,59-61,63

Y X
Xn option, deck setup, 49,51,61
values, absolute and relocatable, 17 . XSYMBOL control command, 51,60

82 Index

Reader Comment Form

ROX

We wolild appreciate your comments and suggestions for improving this publication

Publication No.

Rev. Letter

Title

Current Date

D Learning

D Reference

How did you use this publication?

D Installing

D Maintaining

D Sales

D Operating

Is the material presented effectively?

D Fully Covered D Waell litustrated [:] Weli organized D Clear

D Very Good

D Good

O rair
D Poor

What is your overall rating of this publication?

D Very Poor

What is your occupation?

Your other comments may be entered hare. Please be specific and give page, column, and line number references where
applicable. To report arrors, please use the Xerox Software improvement or Difficulty Report (1188) instead of this form.

Your name & Return Address

Thank You For Your Interest. (fold & fasten as shown on back, no postage needed if mailed in U.S.A\)

PLEASE FOLD AND TAPE —
NOTE: U.S. Postal Service will not deliver stapled forms

First Class
Permit No. 59153
Los Angeles, CA

BUSINESS REPLY MAIL
No postage stamp necessary if mailed in the United States

Postage will be paid by

Honeywell information Systems
65250 W. Century Boulevard
L.os Angeles, CA 90045

I

Attn: Programming Publications

e e em amt wwm e e e e e e e mm e e e e e e e mm e e amm mm em mr mm —m eem e e e e e e e e e e e -

Honeywell information Systems
inthe U.S.A.: 200 Smith Street, MS 486, Wakham, Massachusefts 02154
Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1W5
InMexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

21661, 2€878, Printed in U.S.A,

XH36, Rev. 0

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	replyA
	replyB
	xBack

