
Xerox Extended Symbol
Xerox 530 and Sigma 2/3 Computers

. Language and Operations

. Reference Manual

90 10 52F

© 1972, Xerox Corporation

Xerox Extended Symbol
Xlerox 530 and Sigma 2/3 Computers

language and Operations

Reference Manual

90 10 52F

Apri I 1976

XEROX

File No.: 1 X23

XH36, Rev. 0

Printed in U.S.A

REVISION

This edition merely incorporates the 90 10 52E-l and 90 10 52E-2 revision packages into the manual. Changes in
the text from that of the previous manual are indicated by a vertical line in the margin of the page.

RELATED PUBLICATIONS

Title Publ ication No.

Xerox 530 Computer/Reference Manual 90 1785

Xerox Sigma 2 Computer/Reference Manual 9009 64

Xerox Sigma 3 Computer/Reference Manual 90 15 92

Xerox Real-Time Batch Monitor (RBM)/RT, BP Reference Manual 90 10 37

Xerox Real-Time Batch Monitor (RBM)/OPS Reference Manual 90 1555

Xerox Real-Time Batch Monitor (RBM)/Userls Guide 90 1960

Xerox Symbol/LN, OPS Reference Manual 90 10 51

Manual Content Codes: BP - batch processing, LN - language, OPS - operations, RBP - remote batch processing,
RT - real-time, SM - system management, TS - time-sharing, UT - utilities.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance af some features

may depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their Xerox sales representative
fOI details.

ii

CONTENTS

PREFACE vi Address Litera I s 22
ADRL 23

1. I NTRODUCTIO N
5. LOCATION COUNTERS AND PROGRAM

Programming Features __ SECTIONS 24
Error Detection ____
Extended Symbol Language Locati on Counters 24
Extended Symbol Processor Setting the Location Counters 24

(ORG 24
LOC 25

2. EXTENDED SYMBOL L/\NGUAGE BOUND 25
ELEMENTS A ND SYNTAX 3 RES 26

COMMON 26
Language Elements __ 3 Progra m Secti ons 26

Characters ____ 3 ASECT/CSECL 26
Symbols 3
Constants ____ 4
Expressions 5 6. EXTENDED SYMBOL DIRECTIVES 28
Litera Is _______ 7

Syntax 8 DATA 28
Statements ____ 8 DEF 29
Statement Conti nuatiion 9 DISP 29
Comment Li nes ___ 9 DO/ELSE/FIN 30

Processing of Symbols __ 9 END 32
Defining Symbols __ 10 EQU 33
Redefinable SymbolL 10 GEN 33
Symbol References __ 10 GOTO 34
Classification of Symbols 10 IDNT 35
Symbol Tables ___ 10 LBL 35

Absolute and Relocatable Values 11 LIST 35
Symbols 11 LOCAL 36
Expres'ions 11 PAGE 37

PCC 37
REF 37

3. XEROX 530 AND SIGMA 2/3 MACHINE S:STEP 37
INSTRUCTIONS 13 SET 38

SOCW 38
Class 1: Memory Refere:nce Instructions 13 SPACE 38

Single Precision Clas;s 1 Instructions 13 SREF 38
Multiple Precision Class 1 Instructions 15 TEXT 39
Field Addressing Class 1 Instructions 15 TEXTC 39

Class 2: Conditional Br<elnch Instructions 16 TITLE 39
Class 3: Shift Instructions 16
Class 4: Copy Instructi ons 16 7. PROCEDURES 41
Class 5: Input/Output Control Instructions ___ 17

Procedure Format 41
CNAME 41

4. ADDRESSING 18 PROC 41
PEND 42

Argument Addressi ng Format 18 Procedure References 42
Direct Addressing-- 19 Procedure-Loca I Symbol Reg ions 42
Indirect Addressing __ 19 Intrinsic Functions 43

BASE ____ 19 ABS 43
Symbolic-Relative Addressing 19 AF 44

Automatic Addressing __ 20 AFA 44
Address Generation Dia9nostics 20 AFNUM 45
Literal Pools ____ 21 AFR 45

LPOOL 21 AT 45

iii

CF 46 D. CONCORDANCE PROGRAM 74

CFNUM 46
CFR 47 Introduction 74

UFV 47 Concordance Listing 74
Sample Procedures 48 Local Section 74

Nonlocal Section 74
Proc Section 74

8. OPERATIONS 50 Opcode Section 74
Concordance Control Command 75

RBM Control Commands 50 Section Control Commands 75
JOB Control Command 50 Error Alarms 75
ASSIGN Control Command 50 Compatibility 76
DEFINE and TEMP Control Cards

(Temporary Fi Ie Definition) 51
XSYMBOL Control Command 51 E. EXPANSION OF SIGMA 3 SIMULATED

BA 51 INSTRUCTIONS 77
BO 52
CR 52 No Indirect Addressing 77
DW 52 Indirect Addressing 77
GO 52
LO 52
LU 52
NP 52
PP 52 FIGURES
SL 52
SO 52 l. Extended Symbol Character Set 3
SS 52
UI 53 2 •. Xerox Sigma Symbolic Coding Form 8

Updating a Source Program 53
Standard Object Program Format 57 3. Flowchart of DO/ELSE/FIN Loop 31

Object Module Records 57
Load Items 57 4. Deck Setup for Assembling Multiple

Assembler Diagnostics 57 Programs Using the BA Option 54
F1ags 57
Error Messages 58 5. Deck Setup for Assembl ing Multiple

Assembly Listing 63 Programs Without BA Option 54
Summary Tables 63

6. Deck Setup for Using the UI Option With
INDEX 79 the BA Option 55

7. Deck Setup for Using the UI Option Without
the BA Option 56

APPENDIXES 8. Sample Update Listing With Errors 58

A. SUMMARY OF XEROX 530 AND SIGMA 2/3 9. Assembly Listing Format 64
INSTRUCTIONS 67

10. Assembly Listing 64
Memory Reference Instructions (C lass 1) 67

Basic Set 67 D-l. Sample Concordance Deck Setup 76
General Register Set 67
Floating-Point Set 67 D-2. Concordance From Xl RAD File
Multiple Precision Set 67 Following an Assembly 76
Field Addressing Set 68

Conditional Branch Instructions (Class 2) 68
Shift Instructions (Class 3) 68
Copy Instructions (C lass 4) 68
Input/Output Instructions (Class 5) 68

TABLES
B. EXTENDED SYMBOL DIRECTIVES 69

l. Extended Symbol Operators 6
C. INCOMPATIBILITIES BETWEEN EXTEN DED

SYMBOL AND SYMBOL 73 2. Error Messages 59

iv

EJCAMPLES 21. GEN2 Directive 34
22. GOTO Directive 35

l. Statement Continuaf'ion 9 23. LOCAL Directive 36
2. Expressions Using + and - Operators 12 24. LOCAL Directive 36
3. Expressions Using Miscellaneous Operators __ 12 25. LOCAL Directive 36
4. Automatic Addressing 21 26. REF Directive 37
5. LPOOL Directive __ 21 27. SET Directive 38
6. ADRL Directive __ 23 28. TEXT Directive 39
7. ADRL Directive 23 29. TEXTC Directive 39
8. ORG Directive __ 25 30. TITLE Directive 40
9. LOC Directive ___ 25 31. Procedure Definition/Procedure Reference 42
lO. BOUND Directive __ 25 32. Procedure-Loca I Symbol Regions 43
1l. RES Directive ___ 26 33. ABS Function 44
12. ASECT and CSECT Directive 27 34. AF/AFA Function 44
13. DATA Directive __ 29 35. AFNUM Function 45
14. DEF Directive ___ 29 36. AT Function 46
15. DO/FIN Directives. 30 37. CFNUM Function 46
16. DO/ELSE/FIN Directives 32 38. CFR Function 47
17. DO/FIN Directives _ 32 39. UFV Function 47
18. END Directive ___ 32 40. AT and UFV Functions 48
19. GEN Directive ___ 34 41. Conditional Code Generation 48
20. GEN1 Directive __ 34 42. Procedure that References a Procedure 48

v

vi

PREFACE

This manual describes the Xerox Extended Symbol assembly system for the Xerox 530 and Sigma 2/3 computers. It
defines a symbolic programming language and the general operations of the processor under control of the Real-Time
Batch Monitor.

It is intended for use as a reference document by experienced programmers and does not aim to be a programming
primer. It is assumed that the reader is familiar with the basic elements of digital computer programming and with
the description of the Xerox 530 or Sigma 2/3 computers as given in the appropriate computer reference manual.

1. INTRODUCTION

Extended Symbol, the extended assembly system for
Xerox 530 and Sigma 2/3 computers, is both a programming
language and a language processor. The Extended Symbo I
processor accepts as input a source program coded in either
Symbol or Extended Symbol, processes it, and outputs an
object module, diagnostic messages, and an assembly list-,
ing. The objed language format is described in the RBM/
RT, BP Reference Manual, 90 10 37; the diagnostic mes­
sages and the format of the assembly listing are described
in Chapter 8 of this manual.

PROGRAMMING FEATURES

Extended Symbol provides the programmer with a number of
convenient features:

• Forward references, literals, and external definitions
and references simplify the task of referring to other
program elements.

• Local and nonlocal symbols can be specified and used,

• Self-defining constants focilitate use of hexadecimal
and decimal values and character strings.

• Expressions consisting of terms and arithmetic and log­
ical operators may be used as arguments in machine in··
structions and directives.

• Automatic oddressing is invoked by the assembler when
an address value is encountered that is outside the
range allowed for the stat'ement.

• ASECT and CSECT directives allow the partitioning of
a program into absolute and relocatable sections.

• The GOTO directive allows the assembler to condition­
a Ily a I ter the sequence in Vlh i ch statements a re assernb I ed.

• TEXT and TEXTC directivl~s simplify the coding of out­
put messages.

• User,-defined procedures allow the programmer to gen­
erate different sequences of code as determ ined by
conditions existing at ossembly time.

• The GEN directives provide the facility for generating
Class 1 and Class 2 machine instructions.

• "Common" space may be shared with FORTRAN or other
Extended Symbol subprogrclms.

ERROR DETECTION

During assembly a source progrclm is checked for errors in usage
and syntax. If an error is found, appropriate noti fi cation is
given and the asse mbl yoperation conti nues so that all errors

may be 10c:Jted at one time. An assembly is terminated pre­
maturely (aborted) only if an irrecoverable I/O failure oc­
curs, or one of the assembler tables is exceeded.

EXTENDED SYMBOL LANGUAGE

The Extended Symbol language is comprised of a set of com­
mands and the qualifying rules for constructing program
statements in symbolic terms. There are two classes of com­
mands: mnemonic representations of the machine instruc­
tions and assembler (processor) directives.

A directive is a command to "he assernbler that allows the
programmer to describe or select assembly options at cssem­
bly time and, also, allows him to specify such elements in
his program as groups of data, choracter strings, and storage
areos, The format for coding program statements and the
rules of statement structure are described in th n following
chapters.

EXTENDED SYMBOL PROCESSOR

The Extended Symbol processor is a Xerox 530and Sigma 2/3

machine language program that operates as a three-pass pro­
gram assembler under control of the Real- Time Batch Moni­
tor. These posses are called the encoder, definition, and
generation passes. Throughout this manual the processor is
referred to as Extended Symbol or "the assembler".

During the encoder pass, the assembler checks the syntax of
each source statement, generates the assembler IS symbol
lable and converts constants to binnry. No semantic pro­
cessing nor symbol definition occurs during the encoder pass.

During the definition pass, the assembler a Ilocates space,
defines syrnbols, sets up symbol and literal tables as required,
and in general satisfies the many interconnection conditions
prescribed by the source program.

In the generation poss, Extended Symbol satisfies forward
and literal references and produces an object program, diag­
nostic messages, and on as~E:mbly listing.

External references (references to locations in ot!-.er programs)
and hrword referenc:es to procedure local srmbolscannot be
completely processed by the assembler; however, during the
generotion pas" information is generated in the object pro­
grom so thot the program loader may satisfy these references
prior to program execution.

In operation, the 'J"sernbler maintoins a series of temporary
storage areas:

1. Buffer areas for input of program statements and output
of object code and an assembl>.: listing.

2. Local and nonlocol symbol tables in which statements
and data identifiers {along with their storage assignments

Introduction

and perti nent characteristics) are placed as they are
defined or referenced. Local and nonlocal symbols
are explained in Chapter 2.

3. Literal tables in which literal references are accumu­
lated until the end of assembly.

4. Three location counters: a load location counter, an
execution location counter, and a common location
counter thot provide information for the object pro­
gram - and consequently for the loader. The execution
location counter is used by the assembler in defining
symbols. The load location counter is used for linking
externa I symbol references.

The common location counter is affected only by the
COMMON directive. Common symbols may be

2 Extended Symbol Processor

referenced as re I ocotabl e operands; however, the as­
sembler will not generate any instructions or data to
be stored in the common area.

5. Work areas used during assembly.

6. Assembly variables and flogs in accordance with
directives.

7. Procedure definitions that are processed only when
they are referenced.

Supplied with the assembler are a set of standard procedures
which define the Xerox 530 and Sigma 2/3 machine opera­
tion codes.

2. EXTENDED SYMBOL LANGUAGE ELEMENTS AND SYNTAX

LANGUAGE ELEMENTS
Input to the assembler consists of a sequence of characters
that are combined to form assembly language elements. These
language elements, which include symbols, constants, ex­
pressions, and literals, comprise pmgram statements which
in turn comprise a source program.

CHARACTERS

The Extended Symbol character set is shown in Figure 1.

Alphabetic: A through Z, and $f!-Z" #, L-J (break char­
acter pri nts as 01 underscore")

Numeric:

Special
Characters:

(: is reserved alphClbetic character)

o through 9

Blank

+ Add (or posi ti ve va I ue)

Subtract (or negative value)

*

/

&

I

II

Multiply, indirect addressing prefix,
source regish::r inversion designator,
or comments line i ndi cator

Divide

Decimal point

Comma

Left parenthesi s

Right parenthesis

Constant del imiter (single quotation
mark)

Logical AND

Logical OR (vertical slash)

Logical exclllsiveOR (vertical slashes)

-, Logical NOT or complement

<
>

Less than

Greater than

Equa I or introduces a litera I

<= Less than or equal

>:=; Greater than or equal

Continuation code

** Binary shift

TAB Equivalent to blank; used to tabulate
keyboard printer output

Figure 1. Extended Symbol Character Set

The colon (:) is an a Iphabetic character reserved for use by
standard Xerox software. It is included in the names of
Moni tor routines (M :POP) and various mathematica I sub­
routines (L:ATAN) to avoid any potential conflict with user
symbols.

SYMBOLS

Characters are combi ned to form symbols. Symbols provide
programmers wi th a conveni ent method of i denti fyi ng pro­
gram elements so they can be referred to by other elements.

Symbols must conform to the followi ng rules:

1. Symbols should consist of 1 to 8 alphanumeric charac­
ters: A-Z, $, Jl~, #, :, L-J, 0-9, of which at least one
must be alphabetic. No special characters or blanks
may appear in a symbol. Only the first eight charac­
ters will be used by the assembler to identify the pro­
gram element represented by the symbol. Anyremaining
characters are ignored in processing the symbol and (if
requested) a warning error is output on the listing.

2. The characters $ and $$ may be used in the argument
field of a statement to represent the current value of
the execution and load location counters, respectively
(see Chapter 5); these characters must not be used as
symbols in the label field (see "Syntax" later in this
chapter).

The following symbols are valid:

ARRAY
R1
INTRATE
BASE
7TEMP
#CHAR
$PAYROLL
$ (execution location counter)

The following symbols are also valid, but only the llnder-
I ined portion is considered by the assembler and (if requested)
a warning error is noted.

~A TE01)NCREASE
Q!JJE~IV ~LUE
ABINVERSE -----

The following symbols are invalid:

BASE PAY Blanks may not appear in symbols.

Special characters (~-::) are not permitted
in symbols.

Extended Symbol Language Elements and Syntax 3

CONSTANTS

Acomtan*. isa self-defining language element. Its value
is inherent in the constant itself, and it is assemhled as
part oJ the statement in which it appears.

Six' types of constants are permitted in Extended Symbol
statements: decimal integer constants, character string
cons'tontsi. hexadecimal; constants, fixed-point decimal
cons.tants, floating-point short constants, and floati ng-point
long constants~

Deoimal Integ~r Constants

A decimal' integer consttmt consists of a string of decimal
digits. The value represented by the decimal digits must be
in the rangeO'tb 32767. The decimal integer is converted
to its.internal binary representation and retained in olle full
word of memory.

Examples:

326
32767
5
0,

Character Stri ng Constants

A chara.cter. string constant consists,of 1: through 64 EBCDIC
characters enclosed by single quotation marks (see II Extended
Bin'ary-Coded-Decimal Interchange Code" in the Sigma 2
and Sigma 3 Computer' Reference Manuals, 90 09 64 and
90 15 92, or Xerox 530 Computer/Reference Manual;
90 19 60, as appropriate).

Example:

'ANY CHARACTER INCLUDING BLANKS'

Any EBCDIC character is permitted in a character string
constant. Each character is allocated eight bits of storage.

Because single quotation marks are used as character string
delimiters by the asseinbll'!r, a single quotation mark (or
apostrophe) within a character string must be indicated in a
special' manner. An apostrophe in the string is represented
by two'consecutive apostrophes; for example,

'AB"C"'

represents the stri ng

AB'C'

Char.acter strings are stored two characters per computer
word. The descriptions of IDNT, LBL, DATA, TEXT, TEXTC,
and TITLE directives in Chapter 6 include positioning infor­
mation pertinent to character strings used with these direc­
tives. In all other usages character strings must not contain

Ii Language Elements

more than two characters. If the string contains two char­
acters, they occupy the left and right bytes of a single word.
If the string contains one character, it occupies the right
byte of a word and the left byte is filled with a zero (i. e.,
a null EBCDIC character).

Hexadecimal Constants

A hexadecimal constant consists of a string of 1 through 16
hexadecimal digits enclosed by single quotation marks and
preceded by the letter X.

Example:

X'9COl F'

The assembler generates four bits of, storage for. e.ach hexa­
decimal digitin.the string. Thus, four hexadecimal digits
fill one word of storage. Hexadecimal constants are right­
justified in their storage area; if the number of digits is not
a multiple of 4, the assembler generates one, two, or three
leading hexadecimal zeros in the leading positions of the
storage area.

The hexadecimal constant in the example above would
be' stored as

word 1

word 2
~
~

Hexadeoimal digits and their binary and decimal equivalents
are:

Hex. Binary Decimal Hex. Binary Decimal

0 0000 0 8 1000 8
1 0001 1 9 1001 9
2 0010 2 A 1010 10
3 0011 3 B 1011 11
4 0100 4 C 1100 12
5 0101 5 D 1101 13
6 0110 6 E 1110 14
7 0111 7 F 1'111 15

The Xerox 530 and Sigma 2/3 Computer Reference Manuals
contain further information about hexadecimal arithmetic ane!
conversion of numbers from hexadecimal to decimal and deci­
ma I to hexadec i ma I.

Fixed-Point Decimal Constants

A fixed-point decimal constant consists of the following
components in order, enclosed by single quotation marks,
and preceded by the letters FX:

1. An option:!! algebraic sign.

2. d, d., d.d, or .d, where d is a decimal digit string.

3. An optional exponent: the letter E followed optionally
by an algebraic sign, followed by one or two decimal
digits.

4. A binary scale specification: the letter B followed op­
tionally by an algebraic sign, followed by one or two
decimal digits that designate the terminal bit of the
integer portion of the constant (i. e., the position of
the binary point in the number). Bit position number­
ing begins at zero and refers to the leftmost bit of the
word or the doubleword in which the constant is to be
generated.

Items 3 and 4 may occur in any relative order.

When FX constants are used as explicit arguments in a
DA TA,n directive and 1 < n 5 4, t'hey are treated as a 32-
bit integerquantity(alignment on thebinarypointis relative
to this 32-bit field) and are generoted as such. In all other
uses, FX constants are treated as 16-bit integers, with binary
point alignment relative to this 16-bit field.

No checking is ever made for truncation from the right­
hand side of an FX constant. Loss of significance on the
left-hand side or change of sign is flagged as an error.

Example:

Statement

DATA FX I 3.75B41
DATA,2 FX I 3.75B41
DATA,3 FX ':3.75B41
SUB =FX'-.OS32B1SE+41
DATA FX''l BO'
GEN,S,S FX '3.75B41,1

Yloating-Point Short Constants

Generated Hexa
decimal Value

lEOO
1 EOO 0000
0000 1 EOO 0000
FF9S (literal value)

(error)
(error)

A floating-point short constant consists of the following
components in order, enclosed by single quotation marks,
and preceded by the letters FS:

1. An optional algebraic sign.

2. d, d., d.d, or .d where d is a decimal digit string.

3. An optional exponent: the letter E followed optionally
by an algebraic sign followed by one or two decimal
digits.

A floati ng-poi nt short constant requi res two memory words
for storage. For this reason, a floating-point short constant
may appear only in the argument field of a DATA directive.

Example:

Constant Hexadecimal Value

FS'l. I 41100000

Floating-point short constants have a magnitude in the
range 5.398xlO-79 to 7.237xl075 (i.e., 16-65 to 1663- 1649)
with the associated precision of 6 + significant digits. That
is, the sixth most significant digit is accurate, while the
seventh will sometimes be accurate, depending on the value
of the constant.

Floati ng-Poi nt Long Constants

A floating-point long constant consists of the followi ng com­
ponents in order, enclosed by single quotation marks and
preceded by the letters F L:

1. An optional algebraic sign.

2. d, d., d.d, or .d where d is a decimal digit stri ng.

3. An optional exponent: the letter E followed optionally
by an algebraic sign followed by one or two decimal
digits.

A floating-point long constant requires three memory words
for storage. For this reason a floating-point long constant
may appear only in the argument field of a DATA directive.

Example:

Constant Hexadecimal

FL'-.9SEll B19999990004

The magnitude of floating-point long constants is the same
as for floating-point short constants; however, floating­
point long constants have an associated precision of 10+
significant digits.

EXPRESSIONS

An expression is an assembly language element that repre­
sents a value. It consists of a single term or a combination
of terms (multitermed) separated by arithmetic, logical, or
relational operators.

A si ngle-termed expression may be any valid symbol refer­
ence (previously defined, forward, common, or external),
a constant, or a literal. (Symbol references and literals are
described later in this chapter.)

A multitermed expression may contain any valid symbol
reference (previously defined or forward) or a constant. It
must not contain literals, forward procedure local refer­
ences, or external references. Appropriate error messages
are printed if any of these conditions is violated.

Operators and Expression Evaluation

A single-termed expression, such as 52 or $ or AB, takes on
the value of the term involved. A multitermed expression,
such as INDX+4 or ZD*S+XYZ, is reduced to a single value
by the assembler.

Language Elements 5

The value represented by a multitermed expression must not
exceed the 16-bit capacity of one computer word.

The operators that may appear in an expression are shown
in Table 1.

Multitermed expressions are evaluated as follows:

1. Each term is evaluated and replaced by its internal
value.

2. Arithmetic operations are performed from left to right.
Those with the highest"binding strength" are performed
fi rst . For examp Ie:

A+B<C*D+E

is evaluated as if it were

(A + B) < ((C * D) + E)

3. Division always yields an integer result; any fractional
portion is truncated.

An expression preceded by an asterisk (*) usually denotes
indirect addressing. Used as a prefix in this way, the
asterisk does not affect the evaluation of the expression. If
an asterisk precedes a subexpression, it is interpreted as a
multiplication operator.

Table 1. Extended Symbol Operators

Binding
Operators Strength Function

--, 7 Unary not

- 7 Unary minus

+ 7 Unary plus

** 6 Logical binary shift
(I eft sh i ft if secand operand
is positive, right shift if
second operand is negative)

* 5 Integer multiply

/ 5 Integer di vi de

+ 4 Integer add

- 4 Integer subtract

< 3 Less than

> 3 Greater than

<= 3 Less than or equa I

>= 3 Greater than or equa I

-- 3 Equal

--,= 3 Not equal

& 2 Logical AND

II 1 Exclusive logical OR

I 1 Inclusive logical OR

6 Language Elements

Logical Operators

The logical NOT (-,), or complement operator, causes a
l's complement of its operand:

Value

3
10

Hexadecimal

Equiv_~L~

00 ... 0011
00 ... 1010

l's Complement

11 1100
11 ... 0101

The binary logical shift operator C';*) determines the direc­
tion of shift from the sign of the second operand: a negative
operand denotes a right shift and a positive operand denotes
a left shift. For example:

5** - 3

results in a logical right shift of three bit positions for the
value 5, producing a result of zero.

The result of any of the comparisons produced by the com­
parison operators is

a if "false"
1 if "true"

so that

Expre:sion Result

3 > 4 a 3 is not greater than 4.

-,3=-4 a the 16-bit value -,3 is equal to
11 ..• 1100 and is not equal to 4;
(i.e., 00 ... 0100).

3-,:=: 4 3 is not equal to 4.

-, (3:'-4) 11 ... 11 3 is not equal to 4, so the resu~t
of the comparison is a which,
when complemented, becomes
a 16-bit value (all l's).

The logical operators & (AND), I (OR), and II (Exclusive
OR) perform as follows:

AND

First Operond: 0011
Second Operand: 0101
Result of & Operation: 0001

OR

First Operand: 0011
Second Operand: 0101
Result of I Operation: 0111

Exclusive OR

First Operanc~; 0011
Second Operand: 0101
Result of II Operation: 0110

Note: E1 <E2<E3 cannot be used to determine whether E2
is within the limits E1 and E:3. Instead it is evalu­
ated as if it had been written as (E 1 < E2) < E3 . That
is, the triad El < E2 results in a value, b, of 0 or 1.
Then this value is \Jsed for the triad b< E3 to
yield another binary result. The correct form is

El <E 2 &E2 <E3·

Parentheses Within Expressions

Mull"itermed expressions frequently require the use of paren­
theses to control the order of evaluation. Terms inside
parentheses are reduced to a single value before being com­
bined with the other terms in the expression. For example,
in the expression

ALPHA* (BETA+5)

the term BETA+5 is evaluated first, and that result is mul­
tiplied by ALPHA.

Expressions may contoin parenthesized terms within paren­
thesized terms:

DATA + (HRS/8~(TIME*'2*(AG+FG))+5)

The innermost term (in this example, AG + FG) is evaluated
first. Parenthesized terms may be n(~sted to any depth.

Expressions must not contain two consecutive binary oper­
ators. The assembler distinguishes between the unary op­
erators (-), (+), and(--,), and the binary operators as follows:

1. An operator precedi ng on expression may only be a
unary operator, as in -27.

2. The first operator following a tElrm in a multitermed
expression must be a binary operator:

-l27~L:ary
binary

---unary

At~S tL-unar
y

binary

In general, Extended Symbol wi II accept any combination
of operators that is algebrait::ally 10~Jical; that is,

5*-BETA
5-*BETA

is permissible.
is not permissible.

Summary of Operator and Expression Syntax

1. Labels (symbols) and constants are single-termed
expressions.

2. If El is an expression, then (El) is an expression.

3. IfEl isanexpression, then-Elp+E1and--.El are
expressions.

4. If El and E2 are expressions, then El **E 2, E1 *E2,

E1/E2' El + E2, El - E2' El < E2' El >E2' El <=E2'
El >=E2, El-,=E2, El &E2, El =E2, E1 II E2, and
Ell E2 are all expressions.

5. Externa I and forward procedure local references may
occur only as single-termed expressions.

UTERALS

Constants provide one means of incorporating data directly
into a program at the time it is being written; literals pro­
vide another means. A literal is written as a constant
(decimal, hexadecimal, or character string) or symbol refer­
ence preceded by an equal sign. The literal, in contrast to a
constant, is not processed as part of the program statement
in which it appears. Instead, the literal is evaluated and
assigned to a storage location in a literal pool, and the
address of that location is assembled into the instruction.

Literals are useful in statements that require the address of
a data value rather than the dota value itself. Without I it­
erals it would be necessary in such situations not only to
enter the address (or symbolic location) of the data value
into the statement, but also to establish the value in the lo­
cation referred to by using a DATA directive, for example.
By using a literal, the value can be written directly in the
statement; the storing of the value in a memory location
and the substitution (in the statement) of the value's address
are tasks performed automatically by Extended Symbol.

A literal consists of an equal sign followed by a single­
termed expression (other than a I iteral) or an equal sign
followed by a multi-termed expression.

The value represented by a literal must not exceed the
16-bit capacity of one computer word.

Examples of valid and invalid literals:

Literal Notation

=-185

-=e'K'

::;::'ABC'

=X'5DF'

Description

Valid. Decimal value -185

Valid. Alphanumeric constant in

storage as 10000100001110110010 I
o K

Inval id. Exceeds 1-word capacity

Valid. Hexadecimal constant in

storage as 10000101011110111111 I
o 5 D F

Language Elements 7

Literal Notation Description
---~~- ~---.-- -----

"'-XIAF6BE' Invalid. Exceeds l-word capacity.

cALPHA Val id. Address value of symbol ALPHA.

ALPHA +3

-ALPHA

=*ALPHA

Valid.

Valid (provided ALPHA is absolute).

Invalid. Multiple level indirect
addressing is not allowed.

When the assembler encounters a literal, it checks the lit­
eral for validity, generates error notations if necessary,
determines the literal value, allocates storage for the value
in a future literal pool (see LPOOL directive, Chapter 4),
and generates an address poi nting to the I iteral. This ref­
erence address is used in the generation pass for assembling
the stotement in which the literal occurred.

SYNTAX

The assembly language elements may be combined with
machine instructions and assembler directives to form state­
ments which comprise the source program.

STATEMENTS

A statement is the basi c component of on assembly language
source program. A statement is also called a source
statement, a program statement, or a symbolic line.

Source stlltements are written on the standard coding sheet
shown in Figure 2.

Fields

The body of the coding sheet is divided into four fields:
lobel, command, argument, and comments. The coding sheet
is also divided into 80 individual columns. Columns 1
through 72 constitute the active I ine; columns 73 through 80
are ignored by the assembler except for I isting purposes and
may be used for identification and a sequence number.

The col umns on the codi ng sheet correspond to those on a
standard 80-column card; one line of coding on the form
can be punched into one card.

Extended Symbol provides for free-form symbolic lines; that
is, it does not require thot each field in a statement begin

XEROX
PROBLEM ____________ _

SIGMA

SYMBOLIC CODING FORM

Identification
PAGE ______ OF ____ __

73
I I I I I I

PROGRAMMER ________ _ DATE ____________ __ 80

LABEL
5

COMMAND ARGUMENT COMMENTS

10 15 20 25 30 35 40 45 50 55 60 65 70 72
I IT I I I I I , , I I

I I T I I I 1 I I I I I ii' I I

I I I 1 I I I' ~TI·l-r~l~l~l-r~l-l~I,-~l·l-rl~~I~,·~

~~rTIT~~~"-r~-OTI4-~"-r~~"-~TO-r~I-r~-.+,,-r._,TI,-rTl.l-ri~l-···rr~I,-~,-~I-r~-T~~~~I~~~~'~

~~-rTI~r+~,~~-rTI~~~I~~-r'T,-~~'~~~~'-r~~I~~~--T~'l-r~-r~-rrT~~~r~'-~~I~

~~~I'~~~~~~~~,~~-,rT~~',~~~-~I-r~-~,"~-r,·,-r~I~I-rTl,-rTl'I-r1 ~-rl~I_r~,_~_r~l_rl-~-r~,~~ 

·1 '" 1 I I I I I I f I I 
~~~"~~~~I-~~"~I~~,-~~-~·rl"rTlll-ri '~~~,~.-r~,-r~-IT,.-~I,rr~~I,-r~-rT~-r~-~I.-~-I~ 

........ -..-........ -,-.,...-,-4-+--.-,",,---.-.,.,. ,+-f---.--'T~-.-'---'----rT---'--'--'-'-T-·-r-r-r~,-+-~~"T,-r"'T"'"'T--r--r-r-r-~'-r-""""""-T"""'-~""T-"'-""""-"'--r,--r-~-r~ 1--1
~-~'~T~rrTl--r-~~,~rT--r-'~~~~'~~II--r-~~I~~~ITI--r-~T"TI~~,,-r~~I~~-r~I~~~I'---'-~~I~
~~~'-""'-'-~~-r -r,-~,-rt'-I'~""'-'--rr.-rTf-r~-rT1-r~-r~~"rr~~~~~r('-~-r,.....~~-r~-r .. ~ I I , I I I I , I I I , 

T 1 , ,1, I I I , I I 1 I 

T I I , r , , 1 I I I 1 I I il' I I I 

T , I I T I IT' -"--ri-I"~rT.-,,......-rlTI,I_r""""'rTl'~rT'-rTI4 

~~..-r'l--r--~~" 1~"-OTI4-~--'I-"'-· .,......,r-r-.,..I.-~,-.,...-,-,,,,,,-,,-,--'-+-,-.-r-rl ..... I--.-~r-T'""_I' ,....,... . ., _. ,'·-rl .......... --r-...... --r.~~ ..... ,---.-r-r-r-r-T ,-.-..,......,.-,.-,-,~ 

T I I I I I I I I I I I I I I 

r.'-rT,-"1-~'~"'-"I4-~--"--r--.,......,r-r-,,,,,---.-~-r~,-r~-"'-+-'-·~'i-r~~I'--~ '-"-'-'I~~rr""l-rTO-'-~I-r.,......,-~,-r~-,~ 
~.-r-r,-"",-,-~~I""",-r,~~"~""-rr""-~~r~'~~I'~-"-'II,-.~r-r-~-r""--rr,,r-r-~~'-rT""-'---'--'-""'-'-·~~---'--r-Tl~ 

I I 1 ... ·......--,.-.....--r---.---.--~·""T"""1-r-"T,-+--r-~·-r---,----.r-r"""j1r-r--.--r-r-r-,r-r-r--rr.-~-r-rT,-,.-,-·--.-~---.-..,....,. I ..... 

, I I I I r-rT--r-TI'-""'-'-"!i'---'-~-I',-r-"-'-'-""r-r'-rT---.-~-r~-r~~,,--r""""~~I~ 

I I I I , I , I I , 

I I I , I"-'---r--r , I I I I .....,- , 

r-""-rT,-~--Hr--.--"-..--.---r-"",+t-.,-,,-.-~,r-r-II---'-"T""T'-,-r ,-r...--r-,rl--.-.---."-,--.,......,r-r-,,.-..--r--'--T"""T" I-'~·'-'---r-rl-'I -.-r-r--r-I -,-I---r-,-,-.-.,.....,...~ 

1 1 I 1 I I ~~-.-rT-,-,".,......,~II-r"-rTT.,..-rT---.-",-r~-,~~ 

T 1 ~"I""I' 'I' 'I 'I 

Figure 2. Xerox Sigma Symbolic Coding Form 

8 Syntax 



in a specified column (with the exception of the label field). 
The ru I es for wri ti ng free-form symbol i c lines are: 

1. The assembler interpret's the fields from left to right: 
label; command; argument; comments. 

2. A blank column terminates any field (except the com­
ments field, which is terminated at column 72 on card 
input or by a new line character on paper tape input). 

3. One or more blanks at the beginning of a line specifies 
there is no label field. 

4. The label field, when present, must begin in column 1. 

5. The command field begins with the first nonblank col­
umn following the label field or in the first nonblank 
columnfollowingcolumn 1 if th'e label field is omitted. 

6. The argument field begins with the first nonblank col­
umn following the command field. An argument field 
is designated as blank in either of two ways: 

a. Eleven or more blonk columns follow the command 
field. 

b. The end of the active line (column 72) is encoun­
tered, less than 10 blank columns appear after the 
command field, and the active I ine is notcontinued. 

7. The comments field beSJins in the first nonblank column 
following the argument field or after at least 11 
blank columns following the command field when the 
argument field is empty. 

A source statement may consist of one to four entries written 
on a coding sheet in the appropriate fields: a label field 
entry (optional), a command field entry (required), an argu­
ment field entry (usually required), and a comments field 
entry (optional). 

A label entry is a symbol that identifi,;!s the statement in which 
itappears. The label enables a programmer to refer to a spe­
cific statement from other statements within his program. 

The command entry is a mnemonic code representing a machi ne 
i nstructi on or assembler directive specifyi ng, respectivel y, the 
machine operation or assemblerfunction to be performed. A 
commond entry is required in every ()ctive line. Thus, if a 
statement I ine is entirely blank following the label field or if 
the command entry is invalid (i. e., notan acceptable instruc­
tion ordirective), the assemblerdecklres the statement in error, 
generates a word of all zeros in the object program, and flags 
the statement in the assembly listing. The mnemonic codes for 
machi ne i nstructi ons and assembler directives recognized by 
the assembler are listed in Appendixes A and B, respectively. 

An argument entry consists of one or more symbols, con­
stants, I iterals, or expressions separa'red by commas. The argu­
ment entries for machine instructions usually represent such 
things as storage locations or const<:mt values. Arguments 

for assembler directives provide the information needed by 
Extended Symbol to perform the designated operation. 

A comments entry may be any information the user wishes to 
record. It is read by the assembler and is output as part of 
the source image on the assembly listing. Comments have 
no effect on the assembly. 

STATEMENT CONTINUATION 

The semicolon (;) may be used in a statement to signal the 
continuation of the statement on the subsequent lines. This 
continuation code may be placed following a label entry, 
following a command entry, or within an argument entry. 
It must not follow the last character of the label orcommand 
entry. If it is within a character string enclosed by single 
quotation marks, or is a character in the comments field,'the 
semicolon does not cause continuation. A maximum of two 
continuation lines may be used for each statement. 

Example 1. Statement Continuation 

BEGIN LDA A· , 
Continuation 

NEW 

-tB 

TEXT 'A;B ' 

LOCAL A, START, R 1, ; 

; is not a continua­
tion character 

D,RATIO,B12, i Continuation 
C,MAP 

Leading blanks on continuation lines are ignored by the 
assembler. Thus, significant blanks that must follow 
label or command entries must precede the semicolon 
indicating continuation. 

ANS LDA The blank that ter-
SUM" 1 minates the command 

field precedes the 
semicolon. 

COMMENT LINES 

An entire line may be used for a comment by writing an as­
terisk in column 1. All valid characters may be used in 
comments. Extensive comments may be written by using a 
series of lines, each with an asterisk in column 1. 

The assembler reproduces the comment lines on the assembly 
listing and counts comment lines in making line number 
assignments. 

PROCESSING OF SYMBOLS 

Symbols are used in the label field of a machine instruction 
to represent its I ocati on in the program. In the argument 
field of an instruction, a symbol identifies the location of 
an instruction or a data value. 

The treatment of symbols that appear in the label orargument 
field of an assembler directive varies. The description in the 
following chapters define the use of symbols in directives. 

Processing of Symbols 9 



DEFINING SYMBOLS 

A symbol becomes "defined" by its appearance as a label entry 
on machine instructions and certain directives. "Defined" 
means that it is assigned a value. The definition, assigned to 
the symbol by the assembler, depends on assembly conditions 
when the symbo I is encountered, the contents of the command 
field, and the current contents of the execution location 
counter (see Chapter 5'). 

Any machine instruction may be labeled; the label is assigned 
the current value of the execution lacation counter. 

Information regarding the use of labels in directives is con­
tained in the description of each directive. 

Note: The use of labels isaprogrammeroption, andasmany 
or as few labels as desired may be used. However, 
since symbol defining requires assembly time and 
storage space, extraneous labels should be avoided. 

REDEFINABLESYMBOLS 

Two directives, DOandSET, establish redefinable symbols. 
These symbols are redefi ned by the assembler during the pro­
cessing of a DO-loop (see DO Directive, Chapter 6) or by 
a subsequent SET di rective (see SET Directive, Chapter 6). 

SYMBOL REFERENCES 

A symbol used in the argument field of a machine instruc­
tion or directive is called a symbol reference. There are 
three types of symbol references. 

Previously Defined References 

A reference made to a symbol that has already been defined 
is a previously defined reference. All references to such 
symbols are completely processed by the assembler during 
the definition pass. Previously defi ned references may be 
used in any machine instruction or directive. 

Forward References 

A reference made b a symbol that has not yet been defined 
is a forward reference. Forward references are defined during 
the definition pass, and machine instructions that reference 
them are completely assembled during the generation pass. 

Forward References (Procedure Locals) 

Forward references to symbols declared local within a pro­
cedure are incompletely assembled. The object code gen­
erated for such references allows the forward references 
and their associated definitions to be linked at load time. 
The load location counter is used for this linking operation. 

A forward reference to a procedure local symbol must not 
be a term in a multi termed expression. 

Any machine instruction may use a forward reference. Only 
the GOTO, LOCAL, REF, SREF, DEF, GEN, GEN1, GEN2, 
ADRL, and DATA directives may use forward references. 

10 Processing of Symbols 

Externa I References 

A reference made to a symbol that is defined in a program 
other than the one in which it is referenced is an external 
reference. 

A program that defi nes external references must declare 
them as external by use of the DEF directive (see Chapter 6). 
An external definition is output by the assembler as part of 
the object program for use by the loader. 

A program that uses external references must declare them 
as such by use of a REF or SREF directive (see Chapter 6). 

A machine instruction containing an external reference is 
incompletely assembled. The object code generated for 
such references allows external references and their asso­
ciated external definitions to be linked at load time. The 
load location counter is used for the linking operation. 

An external reference must not be a term in a multi termed 
expression. 

Any class 1 machine instruction (see Chapter 3) may contain 
an externa I reference. Externa I references are not allowed 
in any directive except GEN, GEN1, DATA, ADRL, REF, 
and SREF. 

CLASSIFICATION OF SYMBOLS 

Symbols may be classified as local, procedure-local, or 
nonlocal. 

A local symbol is a symbol that is defined and referenced 
within a restricted program region. The program region is 
designated by the LOCAL directive (see Chapter 6); this 
directive also declares which symbols are to be local to 
the region. 

A procedure-local symbol is a local symbol that is defined 
and referenced wi th ina parti cu lar procedure (see Chapter 7). 

A symbol not declared as local or procedure-local by use 
of the LOCAL directive is a nonlocal symbol. A nonlocal 
symbol may be defined and referenced in any region of a 
program including local and procedure-local symbol regions. 

Note that the same symbol may be both nonlocal and local 
(or procedure-local) in which case the nonlocal and local 
forms identify different program elements. 

SYMBOL TABLES 

Extended Symbol maintains three internal symbol tables in 
which it stores each symbol along with its assigned value 
and/or control information pertinent to that symbol. These 
tables are the nonlocal symbol table, the local symbol table, 
and procedure-local symbol table. 

The nonlocal symbol table contains nonlocal symbols and is 
active throughout an assembly. 

The local symbol table contai ns symbols that are declared to 
be local (see LOCAL directive, Chapter 6) to a region in the 



program. This table is temporary and may be erased and re­
establ ished with new symbols by a subsequent LOCAL directive. 

The procedure-local symbol t(lble contains symbols that are 
declared to be local to a particular plIOcedure (see II Proce­
dures ll

, Chapter 7). Each symbol in a local directive within 
a procedure causes the previous definition of that symbol to 
be temporari Iy suspended, and the symbol is set as unde­
fined in the current procedure local sY'mbol table. At the 
end of the procedure, the last' previously suspended local or 
procedure-local definition of the syst,em is reactivated. 

When the assembler encounters a symbol in the label field, 
it refers to the last active local or procedure-local symbol 
table (if assembl i ng a local or procedure-local regi on, re­
spectively); if necessary, it then refers to the nonlocal sym­
bol table. If I'he symbol is not in an active table, the symbol, 
its value, and control information are entered in the appro­
priate table. Atthispoint, the symbol is completelydefined. 
If the symbol is found in 0 table, one of the following con­
trol conditions applies and is indicated in the symbol's con­
trol information. 

1. 

2. 

3. 

4. 

Symbol Control 

Local or procedure-local 
and not previously defined. 

Previously defined in the 
approprial'e table. 

Dec lared external to pro-­
gram being assembled by 
REF or SREF. 

Dec I a red externa I by DE F; 
defi ned wi thin this program. 

5. Previously referenced but 
not defi ned. 

Result 

The symbol becomes 
defined. 

Symbol is taggedasmulti­
defined and retains the 
fi rst address va I ue - an 
error condition. 

Provides information in 
object program for loader 
to complete linkages. 

Defi nes the symbol and 
provides object program 
information tor the loader. 

Provides control i nforma­
tion for completion of 
references in generation 
pass. The symbol is de­
fined at this point. 

When the assemblerenc:ounters a symbol in an argument field 
it refers to the last active locol or procedure-local symbol 
table (if assembling a local or procedure-local symbol region, 
respectively); if necessalY, it then reFers to the nonlocal 
symbol table to determine if the symbol has already been 
defined. If it has, the assembler obtcdns information about 
the symbol from the table and is then able to assemble the 
appropriate object program information. (Actual assembly 
occurs during the generation pass; entries into symbol tables 
occur during the definition). If the !iymbol is not in any 
active symbol t~ble, the assembler enters its name and con­
trol information in the appropriate table but does not assign 
an address value until the symbol is defined in the label 
field. Symbols are entered in the nonlocal table unless 
they have been declared as locol by use of the LOCAL 
directive. Symbols dec:lared CIS local ore entered in either 
the active local or the active procedL,re-local symbol table. 

If any undefined symbols remain in the nonlocal symbol table 
at the end of an assembly, their definitions are declared 
'unknown ' and appropriate messages are produced. Error 
messages are not produced for undefined local or procedure­
local symbols that are not referenced within that region. 

ABSOLUTE AND RELOCATABLE VALUES 

The value of a symbol or expression may be absolute, re­
locatable, or common relocatable. An absolute value, 
which is assigned at assembly time, is the same value that 
wi II be used by the program at execution time. A relocat­
able or common relocatable value may be altered by the 
loader at execution time. 

SYMBOLS 

A symbol is assigned an absolute value by one of the 
following methods: 

1. By equating the symbol to an absolute numeric quantity. 

2. 

3. 

SUM EQU 2 

SUM is assigned the absolute value 2. 

By equating the symbol to an absolut,e expression. 

A 

B 
ANSWER 

EQU 
RES 
EQU 
EQU 

$ 
10 
$ 
A - B 

ANSWER is assigned the absolute value -10. 

By using the symbol as a label entry in absolute pro­
gram or program secti on (see Chapter 5). 

The value of an absolute symbol does not change, even if 
it is part of a relocatable program (a program that can be 
executed anywhere in memory). 

A symbol has a relocatable value unless declared absolute 
as described above. The value of a relocatable symbol may 
be altered by the loader when the symbol is a part of a 
relocatable program; i. e. I the loader wi II add the reloca­
tion bias to each symbol used as a label entry in a re­
locatable program or program section (see Chapter 5). 

A symbol is common relocatable if it appeared in the label 
field of a COMMON directive. 

, EXPRESSIONS 

The value of a single-term expression has the same attributes 
(absolute, relocatable, or common relocatable) as the single 
symbol or constant of which it is composed. 

The value of a multi-termed expression will be absolute 
if only absolute terms are used in the expression. All op­
erators in Table 1 may be used to combine absolute terms. 

Absolute and Relocatable Values 11 



A m'i..dti-termed expression may be composed of absolute, 
reldcdtdble, and common relocatable terms, subject to the 
restrictions itemized below. IIOperand ll refers to a single 
symbol or constant, or to the value of a subexpression at 
the time it is-combined into the expression with one of the 
operators shown in Table 1 (see IIOperators and Expression 
Evdl uation II edrlier in this chapter) .. 

• The relational operators, <, <=, >, >=, =, and -'=, 
require that both operands be of the same mode (ab­
solute, relocatable, or common relocatable). 

• The operators * and / and the logical operators, ...." 
**, &, I, and II may not be used with a relocatable 
or common relocatable operand. 

• In evaluating an expression, the assembler maintains 
a count of the number of terms added or subtracted 
that are relocatable or common relocatable. A sep­
arate counter is used for the two relocation types 
and each counter is incremented or decremented 
by 1 whenever a term of the corresponding relocation 
type is added to or subtracted from the expression. 
The final value is absolute if both counters are equal 
to O. If the final Cdunt in one (and only one) of 
the relocation counters is equal to +1, the value 
of the expression is relocatable or common relocat­
able, depending on which counter is equal to +1. 
Any other accumulation in the two relocation coun­
ters is an error and results in a diagnostic frag. 

Example 2. Expressions Using + and - Operators 

A's5ume Rf, R2, and R3 are program relocatable terms; 
C1' and C2 are common relocatable terms; and A 1 and 

- A2 are absolute terms. 

Expressi on: R1±Al I Legal, program 
Common count: 0 0 
Relocatable count: 1 1 

relocatable 

- Expression Cl±A1 

) Lega I, common ' Comnion count: 1 1 
Relocatcible count: 0 0 relocatable 

12 Absolute and Relocatable Values 

Expression: R 1+R2-Cl-R3+C2j Legal, program 
Common count: o 0 -1 -1 0 
Relocatable count: 1 2. 2 1 1 

relocatable 

Expression: -R1+Al+R2 

) Common count: 0 0 0 Legal, absolute 
Relocatable count: -1 -1 0 

Expr ess ion: Rl+A1+C1 

) Illegal, diag-
Common count: 0 0 1 
Relocatable count: 1 1 

nostic error 

Expression: R1+A 1+R2 I Illegal, diag-
Common count: 0 0 0 
Relocatable count: 1 1 2 

nosti c error 

Expression: A1±A2 
jlegal, absolute Common count: 0 a 

Relocatable count: 0 0 

Example 3. Expressions Using Miscellaneous Operators 

R 1, R2, R3, C 1, C2, A 1 and A2 have the same mean­
ings as in Example 2, above. 

Expression 

Al * A2 
A 1 * (R 1-R2) 
(C1-C2)/A 1 

R1 * A1 
C1-C2/A 1 

A1 &A2 
A 1 ** (A2-R1+R2) 
-A1 

Result 

) legal, absolute 

} Illegal, diagnostic error 

-,(C l-C2+A 1) Legal, absolute 
R1....,=R2 
C1 > C2 
A 1 > (R2 > R3) 

A1 & R1 
-R1 
R1 < = C1 
A 1> R2> R3 
C1 ** A 1 
R1 < R2 < R3 

] Illegal, diagnosfic error 



3. XEROX 530 AND SIGMA 2/3 MACHINE INSTRUCTIONS 

Xerox machine instructions may be written symbolically 
and combined with other assembly language elements to 
form symbol ic instruction st(ltements. 

A symbolic instruction statement consists of four fields. 

Fi eld Contents 

Label Any valid symbol. Use of the label entry 
is optiona I. When present, the symbol may 
be referenced by other instructions and 
direct i ves. 

Command Any mnemonic operation code listed in 
Appendix A. 

Argument One or more subfields such as elll indirect 
address designator, an argument address ex­
pression, a post-index expression, a dis­
placement expressi on, a base address speci­
fication (pre-indexing), or a shift count, 
dependi ng on the speci fie instruction. 

Comments Any remark explaini ng the specific pur­
pose of an instruction or the overall func­
tion of the program. 

The Xerox machine instructions recc,gnized by Extended 
Symbol are described below and in Appendix A. The syn­
tactical rules used in the instruction descriptions of Appen­
dix A are as follows: 

1. Underscored items are the required parts of a symbolic 
instruction statement. 

2. Nonunderscored items me optional parts of an instruc­
tion statement. 

3. m designates a mnemonic operation code. 

4. * designates indirect addressin~~ for Class 1 instructions; 
for Class 4 instructions, it indicates that the contents of 
the source regisl'er specified by the instruction are tobe 
inverted (onels complemented) before the operation is 
performed. 

5. a designates the (lrgument address used in the instruction. 

6. x designates post-inde)<ing (with index register 1); if 
x i:- 0, perform i ndexin~~; if x = 0 or blank, no indexing. 

7. b designates addressing relative to the base register 
(with index register 2). This is (II so called pre-indexing. 

If b =I Or base-relative addressing is used, and the argu­
ment address represents the displacement value. If b =0 
or is blank, the assembler may automatically impose 
base-relative addressing on the instruction, depending 
on the value of "a" and on whe,ther or not the BASE 
directive option is active. 

8. c designates a count used with the Shift instruction. 

9. s designates the source register used with the Copy 
instruction. 

10. d designates the destination register used with the 
Copy instruction. 

There are five classes of machi ne i nstructi ons for the Xerox 530 
and Sigma 2/3 computers: memory reference, conditional 
branch, shift, register copy, and input/output control. 

CLASS 1: MEMORY REFERENCE INSTRUCTIONS 

SINGLE PRECISION ClASS 1 INSTRUCTIONS 

Class 1 instructions may reference any location in memory 
through use of the various addressing techniques and may 
appear in anyone of the following forms: 

1. Nonrelative Addressing 

2. 

o ~~ ,I~I~I~I~I. ~~~:~::",,1 
The reference address is the value of the address field. 

Base-Relative Addressing 

The reference address is equa I to the va lue (0 to +255) 
in the displacement field plus the 16-bit base address 
value in index register 2. 

3. Self-Relative Addressing 

The reference address is equal to the value (-256 to +255) 
in the displacement field plus the 16-bit instruction ad­
dress value in the H register. Since the H register con­
tains the address of the instruction being executed, the 
reference address produced is relative to the instructionls 
own location. The value in the displacement field is 
treated as an 8-bit positive integer if bit 7 is a 0, and 
as a 9-bit, two's complement negative integer if bit 7 
is a 1. Thus the reference address derived during pro­
gram execution will be the current instruction address 
plus the sign extended displacement value with the sum 
treated modulo 216. 

In all three forms of memory reference instructions, the 
reference address may be further modified to produce 
the final or effective address, depending on bits 5 and 6 
of the instruction. If bit 5 is a 1, the reference address 
will be treated as an indirect address; that is, a 16-bit 
direct address value will be obtained from the location 
specified by the reference address. If bit 5 is a 0, the 
direct address is the same as the reference address. If 
bit 6 is a 1, the direct address will be modified byadd­
ing the 16-bit value in index register 1 with the sum 
treated modulo 216. Programmer control of addressing 
is explained in Chapter 4. 

Xerox 530 and Sigma 2/3 Machine Instructions 13 



With the exception noled below, Class 1 instructions are 
written in symbolic form according to the following syntax: 

label m *5:,x,b 

I. The menmonic operation code (m) determines the value 
of OP (bi ts 0-3L 

2. Either an asterisk precedi ng the argument address or 
certain assembly conditions determine bit 5, the in­
d i rec t address bi t. 

3. The x tag in the argument field determines bit 6, the 
post-indexing bit. 

4. A b tag in the argument field may determine bit 7, which 
is the pre-indexing or base-relative addressing bit. As 
mentioned previously, the assembler may set bit 7 any­
way, depending on certain conditions. This is explained 
in Chapter 4. 

5. The form and content of the argument address (a) de­
termine which instruction subclass is generated. If the 
argument address is not within self-relative or non­
relative addressing range of the instruction, the b tag 
is not I, and no BASE directive is encountered, the 
following results: 

a. If the address is indicated as indirect, the instruc­
tion is incompletely translated and tagged as an 
error. 

b. If the address is not designated as indirect, the 
assembler develops an address literal and trans­
lates the instruction into an indirect reference 
to the location of the literal. 

An indirect address literal generated by Extended 
Symbol is always placed in a literal pool within 
self-relative addressing range of the instruction 
that references the literal. By this process, ad­
dress va lues that otherwise would be out of range 
for the instruction may be used; address values ob­
tained indirectly may specify any location within 
the limits of available memory. 

More complete information on Extended Symbol ad­
dressing is given in Chapter 4. 

Single precision Class 1 instructions include basic, general 
register, and floating-point instructions. 

BASIC INSTRUCTIONS 

Mnemonic Function 

LDA Load Accumulator 

STA Store Accumulator 

ADD Add 

14 Xerox 530 and Sigma 2/3 Machint; Instructions 

Mnemonic Function 

SUB Subtract 

MUL Multiply 

DIV Divide 

B Branch Unconditionally 

1M Increment Memory 

LDX Load Index 

CP Compare 

S Shift 

RD Read Direct 

WD Write Direct 

AND Logical AND 

GENERAL REGISTER INSTRUCTIONS 

Mnemonic Function 

LWt Load 'Nord 

ANDt AND Word 

AWt Add Word 

SW
t 

Subtract Word 

CW
t 

Compare Word 

STW
t 

Store Word 

Syntactically, these general register instructions differ from 
the basic instructions in that they must specify a register: 
~ *~, x,b l where r is a register expression (2~ r~ 6). Since 
AND is also part of the basic instruction set, it retains its 
meaning as a Logical AND instruction when it is used with­
out the register expression. 

These mnemonics generate two instructions. The first is the 
Set General Register instruction which has the form 

SGR gr 

and wi" generate 

where gr designates the register affected (2 ~grS 6). 

t 
Xerox 530 on I y. 



The second instruction generated wi II use the corresponding 
single precision form (e.g., CP *~,;<,b for CW, r, etc.). 

FLOATING-POINT INSTRUCTIONS 

Mnemonic Function 

FMPt Floating Multiply 

FDVt Floading Divide 

FLDt Floating l.oad 

FADt Floating Add 

FSBt Floating Subtract 

FSTt Floating Store 

The syntax for these instructions is the same as for the basic 
instructions. A series of floating-point instructions must be 
preceded and followEid by two control instructions. 

SFM 
RFM 

Set Flooti ng Mode 
Reset F loati ng Mode 

Both control instructions consist of only the mnemonic (m), 
which takes no argument. RFM is equivalent to B $+1. 

MULTIPLE PRECISION C;lASS 1 INSTRUCTIONS 

The following mnemonics generate two instructions when 
the multiple precision hardware option is implemented. 
(Software simulations for these mnemonics except LDM 
and STM, are given in Appendix E for Sigma 2 or for 
Sigma 3 without this option.) The first it1struction of this 
pair is the Set Multiple Precision Mode instruction, and 
has the form 

SMP fr ,nr 

which will generate 

where 

nr designates the number of registers affected (start 
with fr). 

fr designates the first register affected. 

(If the option is implemented, this instruction will not gen­
erate a protection violation from unprotected memory.) The 
doubleword instructions wi II generate an SMP 6,2 instruc­
tion, and the second instruction wi II use the corresponding 
single precision form (e.g., LDA *~~,x,b, for LDD, etc.). 

Mnemonic Function 

LDD Load Double 

STD Store Double 

CPD Compare Double 

DSB Double Subtract 

DAD Double Add 

Mnemonic Function 

LDM 

STM 

Load Multiple 

Store Multiple 

LDM and STM each require two additional arguments to 
specify the first register (fr) to operate on and the number 
of registers (nr) to operate on. These mnemonics are of the 
form 

LDM} 
STM 

*~,x, b, fr ,nr 

and expand into the instruction sequence 

o SMP fr ,nr 

0+1 LDA 1 * b 
ST A f 9.,x, 

There is no software simulation for the LDM and STM 
instructions. 

FiElD ADDRESSING ClASS 1 INSTRUCTIONS t 

Field addressing instructions include the following: 

.Mnemonics Function 

CLF Compare Logical Field 

LLF Load Logical Field 

LAF Load Arithmetic Field 

STF Store Field 

SZF Store Zero Field 

SOF Store Ones Field 

CAF Compare Arithmetic Field 

SLF Sense Left Bit of Field 

These instructions have the syntax 

m,rx,sx 

where 

t 

m, a, x, and b are as described before. 

rx specifies a register to be used in indexing the 
field descriptor's start address (2 rx 7). De­
fault option (rx omitted or zero) is rx :.= 1, which 
specifies no register indexing. 

sx specifies self-indexing of the field descriptor as 
follows: 

self-incrementing - sx "" 1. 

self-decrementing - sx c.::: -lor 7. 

no indexing - sx ,oo 0 (or sx omitted). 

Any other va I ue for sx causes an error. 

Xerox 530 only, optionally. 

Xerox 530 and Sigma 2/3 Machine Instructions 15 



CLASS 2: CONDITIONAL BRANCH INSTRUCTIONS 

Conditional Branch instructions perform a branch if a test 
for a given condition is "true". If the condition being 
tested is not true, the instruction acts as a "no operation ", 
and control passes to the next instruction in sequence. The 
form forConditional Branch instructiol"s is 

OP , I±: ~i:~:~~:~.e~:t.,l 
Class 2 instructions are written in symbolic form according 
to the following syntax: 

label m a 

1. The mnemonic operation code (m) determines the value 
of OP (bits 0-6). 

2. The argument address (a) must be within self-relative 
addressing range (-256 to +255). These instructions 
may not specify indexing or indirect addressing. 

The instruction is incompletely translated and tagged as an 
error if the symbolic address is outside the self-relative ad­
dressing range. 

The instructions in Class 2 are: 

Mnemonic 

BAN 
BAZ 
BEN 
BNO 
BNC 
BIX 
BXNO 

BXNC 

Function 

Branch if Accumulator Negative 
Branch if Accumulator Zero 
Branch if Extended Accumulator Negative 
Branch if No Overflow 
Branch if No Carry 
Branch on Incrementi ng Index 
Branch on Incrementing Index and No 

Overflow 
Branch on Incrementing Index and No Carry 

CLASS 3: SHIFT INSTRUCTIONS 

The Shift instruction is capable of performing eight different 
kinds of shift on an operand stored in the accumulator or ex­
tended accumulator. The amount of shift is determined by 
the 5-bit shift count, wh:~h may be any number in the range 
o through 31. The kinds of shift available are: 

Single register shift of accumulator only (general 
register 7) 

Double register shift of extended accumulator and accu­
mu lator together (general registers 6 and 7). These reg­
isters are treated as a 32-bit accumulator with register6 
to the left of register 7. 

Arithmetic shift Circulur shift 

Right shift Left sh i ft 

The form for the Shift instruction is 

OP 
,) 1 2 ji4 

16 Conditional Branch/Shift/Copy Instrucl ions 

Class 3 instructions are written in symbol ic form according 
to the following syntax: 

label rn 5.' x, b 

1. The mnemonic operation code (m) determines the va lue 
of OP (bits 0-10). 

2. The argumenf (c, x, b) defines the shift count. 

The instructions in Class 3 are: 

Mnernonic 

SCLS 
SCLD 
SCRS 
SCRD 
SALS 
SALD 
SARS 
SARD 

Function 

Shift Circldar Left Single 
Shift Circular Left Double 
Shift Circular Right Single 
Shi ft Circular Right Double 
Shift Arithmetic Left Single 
Shift Arithmetic Left Double 
Shift Arithmetic Right Single 
Shi ft Arithmetic Right Double 

Index and base tags are permitted in these instructions; how­
ever, such use can change the direction and type of shift 
by increasing the shift count beyond the maximum value (31). 
Bits for values in excess of 31 overflow into bit positions 
8-10, which control the type of shift performed. If the 
count exceeds 31, the assembler generates an error notation. 

CLASS 4: COpy INSTRUCTIONS 

The Copy instructions are used to perform a variety of logi­
cal and arithmetic operations between any two general reg­
rsters. One register, called the source register, contains 
one of the operands; the other register, called the destination 
register, contains the second operand (if one is required) 
and is the register into which the result is loaded. 

The general registers are identified as follows: 

~egister Function 

0 Zero 

Program address 

2 Li nk address 

3 T empora ry storage 

4 Index 1 

5 Index 2 (base address) 

6 Extended accumulator 

7 Accumulator 

When execution of a Copy instruction begins, the P register 
contains the address of the instruction following the Copy. 
The form for the Copy instructions is 

OP 



Class 4 instructions are written in symbolic form according 
to the fo" ow i ng syntax 

lobe I m *s,d 

1. The mnemonic operation code (m) determines the value 
of OP (bits 0-8). 

2. The optional asterisk (*) at the front of the argument 
field sets the IS bit (invert source). This causes the 
contents of the source register to be inverted (one's 
complemented) before the operation is performed. 

3. The first argument, designated by s, is an integer in 
the range zero through seven that specifies the source 
register to be used. 

4. The second ar9ument f designated by d, is an integer in 
the range zero through seven that specifies the desti­
nation register to be used. 

The instructions in Class 4 are: 

Mnemonic 

RCPY 
RADD 
ROR 
REOR 
RAND 
RCPYI 
RADDI 
RORI 
REORI 
RANDI 
RCPYC 
RADDC 
RORC 
REORC 
RANDC 
RCLA 
RCLAI 
RCLAC 

Function 

Register Copy 
Reg i ster Add 
Register OR 
Register Exc IlJsive OR 
Regist'er AND 
Regist'er Copy and Increment 
Register Add and Increment 
Regist'er OR and Increment 
Regist'er Exc lusive OR and Increment 
Regist'er AND and Increment 
Register Copy and Carry 
Register Add cmd Carry 
Register OR and Carry 
Register Exclusive OR and Carry 
Register AND and Carry 
Register Clear and Add 
Register Cleal', Add, and Increment 
Register Clear, Add, and Carry 

CLASS 5: INPUT/OUTPUT CONTROL INSTRUCTIONS 

There are five instructions with which the Xerox 530, Sigma 2, 
and Sigma 3 computers perform and control I/O operations: 

Start Input/Output (SIO) 
Test Input/Output (TIO) 
Test Device (TDV) 
Halt Input/Output (HIO) 
Acknowledge I/O Interrupt (AIO) 

The form for I/O Control instruction is 

, , ,I. , , ~~ • '" "I" " " "I 
Class 5 instructions are written in symbolic form according 
to the following syntax: 

label m 

The mnemonic operation code determines the entire config­
uration of the instruction. 

The instructions in Class 5 are: 

Mnemonic 

SIO 
TIO 
TDV 
HIO 
AIO 

Function 

Start Input/Output 
Test Input/Output 
Test Device 
Halt Input/Output 
Acknowledge I/O Interrupt 

Note: More complete information on I/O programming and 
operation is contained in the Xerox 530, Sigma 2, I 
and Sigma 3 Computer Reference Manuals and in the 
programming reference manual for each peripheral 
device. 

Input/Output Control Instructions 17 



4. ADDRESSING 

Xerox 530 and Sigma 2/3 addressing techniques enable the 
central processor to compute an effective memory address 
for Class 1 instructions d'uring their execution cycle. A thor­
ough un'de'rstanding of this process is necessary for usi ng Ex­
tended Symbol addreSSing features most effectively. 

rhe address control bits (4 through 7) of the instruction 
word determin'e the type of addressing to be used and the 
various address computation options. The format of the in­
struction word is 

The address computation process is as follows: 

Step 1. Determi ne Reference Address 

Bit Positions 
4 5 6 7 Effect 

o 
o 

o 

o 

Reference address = Disp lacement 

Reference address == Displacement + 
va lue in index register 2 (a base ad­
dress). This is "base-relativeaddress­
ing" or "pre-indexing". 

Reference address = Value in H register 
(address of the instruction) + Displace­
ment. This is" self-re lative forward ad­
dressing" . 

Reference address = Va lue in H register 
(address of the instruction) - Displace­
ment. This is "self-relative backward 
addressing fl

• (The computer assumes 
bifs 7 and 8-15 to bea 9-bit two's com­
plement negative integer which the 
computer sign-extends to a 16-bit va lue 
and adds to the 'Ialue in H.) 

Note: A II address ca leu lati ons are pet formed modu 102 16 

Step 2. Determine Direct Address 

Bi t Posi ti ons 
4 5 6 7 Efj:'~ct 

o Direct address = Reference address. 
This is "direct addressing". 

Direct address = Contents of the word 
whose address is equa I to the reference 
address. This is II indirect addressing". 

Step 3. Determine Effective Address 

Bit Positions 
4 5 6 7 Effect 

o Effective address = Direct address. 

18 Addressing 

Effective address == Direct address + 
va lue in index reg ister 1 (an index 
value). This is "post-indexing". 

The effective address for an instruction, therefore, is the 
final 16-bit address value developed for the instruction" 
starting with the displacement value given. The core mem­
ory locationwhose address equals the effective address is re­
ferred to as the" effecti ve location" and its contents are 
the" effective word" . 

Extended Symbol uses the entri es in the argument Held of the 
symbo lie instruction statement, the execution location coun'­
ter, symbol tab Ie entries, and assemb Iy condi ti ons indi cated 
by various assemb ler directi ves to assemble Class 1 i nstruc­
tions with the most efficient type of addressing possible. 

The remainder of this chapter describes the automatic address­
ing techniques employed by Extended Symbol and various 
kind'S of addressing control that can be applied by the pro­
grammer. 

ARGUMENT ADDRESSING FORMAT 

The pro-grammercan set the address control bits and displace­
ment of a Class 1 instruction using argument addressing en­
tries. These entries have the form 

*a, 'X, b 

where 

* 

a 

x 

b 

OPTIONAL. Indicates indirect addressing; sets 
bit 5 =: 1. 

REQUIRED. An expression - multitermed, single 
~ymbol, constant, or literal - that represents the 
argument address (bits 8-15). The "a" must be 
single-termed if it is a forward or external ref­
erence. 

OPTIONAL. An index tag specifying post­
indexing with index register 1; sets bit 6. 

If x I- 0, post-indexing is specified. 

If x :.::: 0 or is blank, post-indexing is not 
specified. 

OPTIONAL. A base tag specifying base-relative 
addressing with index register 2; sets bit 7. 

If b I- 0, base-relative addressing is specified. 
and the argument address "a" is used by the assem­
bler to construct a displacement in the range 0 
through +255 relative to a base address. 

If b = 0 or is blank, the assembler determines if 
base-relative addressing will be generated for the 
instruction. (See "Base-Relative Address Control" 
and "Automatic Addressing" in this chapter). 

If the x tag is omitted but the b tag is present, two commas 
must be placed between the argument address entry and the 
base tag. If b is omitted: the cornma following x may be 
ami tted. If ooth b and x are ami tted, the two commas are 



unnecessary. The followi n~J combi nations are acceptable 
to the assemb ler: 

a or a, , 
'*0 or *0'1 Presence of trailing (ignored) 
a,x or a, x, 

comm(JS is noted in the as-
'*0, x or *0, x, 

semb I;.' Ii sti ng. Thi s is not an 
all b or a, ,b, 

*0" b *0, ,b, 
error. 

or 
*0, x, b or *0, x, b, 

Absence of "0" generates a diagnostic message. 

A symbol used in an x or b tag must have been previously 
defi ned and must not be an externa i reference. Other­
wise, a diagnostic error is noted and the tag is given the 
value O. 

DnlECT ~~DDRESSING 

A Class 1 instruction can directly specify the following 
addresses: 

1 . The 256 addresses beg i nn i ng with abso I ute location 0 (bits 
4-7 set to 0). This is called "nonrelative addressing". 

2. The 256 addresses beginning with the address specified 
by the contents of the base re9ister (bit 7 = 1). This 
is called "base-relative addres!iing". 

3. The 256 addresses starting with the location at which 
the instruction itself is 10cClted .. This is called "self­
relative forward addressing" (bj"~ 4 =-" 1, bit 7 == 0). 

4. The 256 addresses preceding the location of the instruc­
tion itself. This is called "self-'relative backward 
addressing" (bits 4 and 7 set to 1). 

These addresses may be augmented Cit execution time by 
specifying that the address be post-indexed (bit 6 = 1), in 
which case the direct address plus the contents of index 
register 1 determines the effective Clddress. 

By controlling the contents of the index registers a program 
can directly reference any location within the limits of memory. 

INDIRECT ADDRES:SING 

Any location within the limits of avclilable memory may be 
referenced through the use of indirect addressing (with or 
without use of the index registers). 

The programmer may specify indirec~ addressing in a sym­
bolic Class 1 instruction by coding em asterisk as the first 
character of the argument entry. In cases where the asterisk 
is not specified, the assembler can impm.e indirect address­
ing if assembly conditions warrant such action (see "Auto­
matic Addressing" in this chapter). 

For an instruction whose indirect bit (bit 5) is set to 1, the 
reference address points to a word in memory that contains 
the direct address. 

When indirect addressing is specified by the programmer or 
invoked by the assembler, it is performed after the reference 

address has been determined and before post-indexing (if 
specified) is applied. 

BASE Base-Relative Address Control 

The Extended Symbol programmer can control base-relative 
addressing in Class 1 instructions in two ways: with the base 

. tag (b) and with the BASE directive. 

The BASE directive has the form 

where 

label is anyvalidsymbol. Useof alabelisoptional. 
When present, it is assigned the current valu,e of 
the execution location counter and identifies the 
first word of the area affected by BASE. BASE 
does not a Iter the locati on counters. 

exp is any single-termed or multiterrned expression 
in which there are no forward references !c local 
or procedure-local symbols;or it may be absent. 
The expression may be absolute or relocatable. 

The BASE directive declares that any reference in the range 
exp to exp + X'FF' is to be assembled in the base addressing 
mode, except as noted be low. 

The BASE directive has no effect on assembly of the follow­
ing instructions: 

1. Instructions in which the base tag is 1. 

2. Instructions in which the argument is absolute and the 
BASE exp is relocatable or the argument is relocatable 
and the BASE exp is abso lute; i. e. , both the argument 
and the BASE exp must beeitherabsolute or relocatable. 

3. Instructions in which the argument is within self-relative 
addressing range. 

Note that the BASE directive does not cause the assemb ler 
to set the value in the base register. This must be done by 
the program. The BASE directive only establishes the base 
register value for the purpose of address generation. 

A BASE directive with a blank argument field cancels a pre­
vious BASE setting and directs theassemblertomake no at­
tempt at generating base-relative addressing for subsequent 
symbolic instructions with blank or zero base tags. This 
also occurs by default when no BASE directive has been en­
countered by the assembler. 

An example of the effect of the BASE directive on address­
ing is given in the next section, which discusses other as­
pects of the assembler's handling of addresses. 

SYMBOLIC-RELATIVE ADDRESSING 

Symbolic-relative addressing is the technique of refer­
encing an instruction or storage area by designating its 
location in relation to another location or in relation to 
a location counter (see "Location Counters", Chapter 5). 

Argument Addressing Format 19 



This is accomplished by usins;' symbolic designotions for 
oddresses. A location may be given a symbolic label such 
os LOOP, and the progrommer can refer to that location 
anywhere in his program by using the symbol LOOP in the 
argument entry for the statement. 

To reference the location following LOOP, he can write 
LOOP+ 1 i simi larly, to reference the location preceding 
LOOP, he can vvri te LOOP-1. Then, regard I ess of where 
the program is stored in core memory when it is to be exe­
cuted, the locations that were referred to symbolically as 
LOOP and LOO P+ 1 (or LOO P-1) wi II be in the proper 
relative positions. 

An address may be relative either to the execution or the 
load location counter (that is, re lative to the location of 
the current instruction) even though the location being ref­
erenced does not have a label. The symbol $ specifies the 
current contents of the execution location counter; $$ spe­
cifies the load location counter. The construct S+8 speci­
fies an address eight words greater than the current contents 
of the execution location counter, and the construct $$-4 
specifies an address four words less than the current contents 
.Jf the load location counter. 

It shbuld be remembered that symbolic-relative addresses 
ore subject to the same conditions as other addresses in 
regard to the address range that may be covered and that 
the assembl er wi II invoke automatic addressing when 
necessary. 

AUTOMATIC ADDRESSING 

Tt,e address control and displacement fields automatically 
generated by the assembler for Class 1 instructions and for 
(Jen 1 directives depend on the entries in the argument 
field, the current value of the execution location counter, 
symbol table entries, and the directives BASE and LPOOL. 
In determining the kind of address that wi!! be generated 
for an instruction, the assembler considers the following 
choices in the order given: 

1. Nonrelative addressing - is generated by the assembler 
if the value of the instruction's argument is absolute 
and in the range X'Q' ~arg :5X'FF'. 

L. Self-relative addressing forward or backward address-
ing relative to the current value of the execution loca­
tion counter is generated if both the conditions noted 
below are true. 

a. Nonrelative addressing does not apply. 

b. The value of the argument is in the range 
S-X'lOQ' :5 arg sS+X'FF'. 

,). Base-relative addressing - relative to the contents of 
the base register, is generated if both of the following 
are true: 

a. The base tag of the instruction is set to 1. 

b. The value of the instruction's argument is absolute 
and in the range X'Q' :5 arg:5 X'FF'. 

I\domatic Addressing/Address Generation 9iagnostics 

If (a) is met but (b) is not met, an error diagnostic wi" 

be generated. 

4. Base-relative addressing - relative to the contents of 
the base register, is generated if the base tag of the 
instruction is zero or blank. The assembler will 
impose base-relative addressing provided all of the 
following are true: 

a. Neither nonrelative nor self-relative addressing 
applies. 

b. A "BASE exp" directive has been encountered. 

c. The value of the instruction's argument address is 
in the range CXP:5 arg:5 exp +X'FF'. 

d. The mode of the argument address and of exp is 
identical (program relocatable, common relocata­
ble, or absolute). 

5. Indi rec t addressing - the programmer may invoke i ndi­
rect addressing by coding an asterisk as the first char­
acter in the argument entry for an instruction. The 
argument, along with ~he index and base togs, deter­
mines the address that will be assembled for the instruc­
tion. The value of the argument must comply with one 
of the preceding addressing rules. The argument must 
not be a litera I. 

The assembler automatically invokes indirect address­
ing for argument references under the circumstances 
listed below. When the assembler invokes indirect 
addressing, it converts the evaluated argument address 
into an address literal, and it generates a self-relative 
address and an indirect address tag (bit 5 of the instruc­
tion) which it assembles into the object instruction. The 
programmer must establish literal pool space or an 
ADRL for the reference within addressing range of the 
instruction for a proper reference to occur. 

Indirect addressing is imposed by the assembler when 
either of the following is true: 

a. Nonrelative, base-relative or self-relative address­
ing does not apply. 

b. The argument is an external reference. 

ADDRESS GENERATION DIAGNOSTICS 
Address generation errors or address diagnostic flags occur in 
the following cases: 

1. The argument is a multitermed expression containing 
forward procedure local or external references. 

2. Indirect addressing is specified (*) and the assembler is 
forced to create a multiple-level indirect reference to 
a literal;,e.g., =*ALPHA is illegal. 

3. Literal pool space is not avai lable within self-relative 
addressing range of a stoteonent that references a literal. 

4. A reference is made to an undefined symbol. 



Example 4. Automatic Addressin9 

Load 
Location 
Counterl6 Instruction -----

1000 LABL RCPY L, A 
1001 STA SAVL 

1010 AL DATA 3 

107C BL RADD A, T 

12CA CL BNO $+3 

3FCD BASE LABL 

3FDO LDA AL 

3FE1 STA BL 

3FFO B CL 

BASE 

4FOO LDA AL 

LITERAL POOLS 

If literals are specified in () source program, or if the as­
sembler imposes indirect addressing and thus generates ad­
dress I itera Is, a group of 10cCltions in which the I itera I va lues 
are stored must be provided. This group of locations is ca lied 
aliteralpool. Literalpoolsmust beapartof the object pro­
gram and they must be within self-relative addressing range 
of the instructions that reference the literals in the POOli if 
not, an error is noted on the assembly listing. A program 
may have any number of literal pools. 

Example 5. LPOOL Directive 

Load Location 
Counter l6 

100 

101 

401 

Statement 

ANS 

VAL 

x 

RES 

RES 

EQU 

LDX 

300 

=-999 

Comments 

Subroutine entry point 

AL = LABL+X'lO' 

BL = LABL+X'7C' 

CL = LABL+XI2CA'. Note that X'2CA' > X'FF'(255). 

Instruction is generated as LDA X'10'" 1 

Instruction is generated as STA X'7C'" 1 

Instruction is generated with indirect address pointing to 
an address literal since CL-LABL is> X'FF'. 

Stops assembler choice of base-relative addressing. 

Indirect address literal is formed. 

It is the responsibility of the programmer to establish literal 
pools. The only point at which the assembler automatically 
establishes a literal pool is at the end of an assembly. 

The Extended Symbol programmer can declare a literal pool 
at any point in his program by using the LPOOL directive. 

LPOOL Establish Literal Pool 

This directive has the form 

Assembler Action 

Reserves 1 word in this location for answer; defines 
the symbol ANS as th is location. 

Reserves 300 words beginning in this location for 
program data; defines the symbol VAL as this location. 

Defines the symbol X to have the va lue 1. 

The value -999 is assigned to the fi rst word of the 
following literal pooli the instruction is generated 
as though it were LDX $+8. 

Literal Pools 21 



Load Location 
Counter 16 

402 

403 

404 

405 

406 

407 

40B 

409 

Statement 

LDA 

CP 

BNO 

LDA 

BIX 

STA 

B 

LPOOL 

VAL 

VAL+ 10, X 

$-2 

VAL+ 10, X 

$-3 

ANS 

$+10 

4 

The literal pool declared above is filled as follows: 

(409) = -999 
(40A) = X' 101 1 

(40B) = X ' 10B' 
(40C)= X' 100 ' 

Assembler Action 

The address value VAL is assigned to the literal pool; 
indirect addressing is imposed on the instruction and 
its address portion is made relative forward; the 
instruction is generated as though it were LDA *$+B. 

The address value VAL+10 is assigned to the literal 
pooli indirect addressing is imposed on the instruction 
and its address is made relative forward; the instruc­
tion is generated as though it were CP *$+B, X. 

Generates the instruction; relative addressing is inher­
ent in conditional branch instructions. 

VAL+10 was previously established as a literal; indir­
ect addressing is imposed on this instruction; the 
instruction is generated as though it were LDA *$+6, X. 

Same as BNO $-2 

The address value ANS is assigned to the literal pooli 
indirect addressing is imposed on the instruction; the 
instruction is generated as though it were STA *$+5. 

Same as BNO $ -2 

Declares a literal pool of 4 words beginning at this 
location. 

Subsequ,ent literals would require another literal pool declaration. 

where 

label is any valid symbol. Use of a label is op-
tional. When present, it is assigned the current 
value of the execution location counter and iden­
tifies the first word of the literal pool. Both 
location counters are incremented by the number 
of words in the litera I poo I. 

k is either an absolute previously defined expres-
sion, an integer constant, or is absent. k must 
not be a literal. 

If the value k is specified in the argument field, the assem­
bler is directed by LPOOL to reserve k memory- locations 
for a literal pool at this point in the assembly. Anyaccumu­
lated literals (but no more than k literals) are then immedi­
atelyallocated. If there are more than k literals, the excess 
literals will be placed in the next available literal pool. If k 
is absent, the assembler is directed to assemble all accumu­
lated I iterals (including indirect address I iterals) at this poi nt. 

It is important that t'he programmer establ ish enough I itera I 
pools within his program to store all literals specified by his 
instructions as well as those address literals imposed by the 
assembler. Such literals must be stored within addressing 
range of the instructions that reference them. 

22 Address Uterals 

When the LPOOLdirective is used with a blank argument field, 
certain circumstances may result in more memory locations be­
ing allocated for the literal pool than are actually needed. 
This occurs because the assembler allocates space in such literal 
pools in the definition pass, before forward references have 
been defined. When literal pool space isavailablepriortothe 
definition point of a forward reference, one location of literal 
pool space wi II bel'allocated for each unique symbol so refer­
enced in single-termed expressions. In addition, one location 
of I iteral pool space wi II be a 1I0cated for each appearance of a 
multi termed expression involving a forward reference, unless 
the SLoption(see Chapter B) has been specified. Inthis case, 
no assembler-generated literals are allocated for any multi­
term expression involving a forward reference. This allocation 
of literal pool storage wi,ll not be performed for any single­
termed expression that has previously appeared as the argu­
ment of an ADRL directive within the addressing range of 
the instruction in question, or within a previous LPOOL di­
rective that is in addressing range. 

ADDRESS 'LITERALS 

When the assembler cannot invoke nonrelative, base-relative, 
or self-relative addressing, it invokes indirect addressing 
and generates address literals (see "Automatic Addressing" 
earlier in this chapter). These address literals require spac.,. 



ina literal pool. Thus, literal pools must be declared within 
self-relative addressing range of such occurrences. Address­
ing may be non-relative, self-relotive, or bose-relative. 

Address literals may also be declared by the programmer 
through use of the ADRL directive. 

ADRL Generate Address Literal 

This directive has the form 

L:~:~, __ ~ --;~C"-"<J_+-~~;~~~--
where 

lobel is any valid symbol. Useofa label isoptional. 
When present, it IS assigned the current value of 
the execution location counter. Both location 
counters are i ncrementeC by one. 

expression is any single-termed or multitermed 
0xpression other than a literal. 

This directive causes the ClSsembler to generate one word 
containing the address value ossigned to the symbol. 

The value "symbol" is placed in the literal table. However, 
it is togged to indicate thot it is not to be output in a lit­
eral pool. 

Any Class 1 instruction or Gen 1 directive within address­
ing range of the ADRL may use the value "symbol" as on 
indirect address as shown in the e)wmple below. 

Example 6. ADRL Directive 

If it is nccessarytoreferenceaninstruction labeled VAL, 
but VAL is out of dilect addressing ronge, the folhwintJ 
statements uccornplish the task without the nc'ed for the 
LPOOL directive. 

ADDRS ADRL VAL ADDRS ADRL VAL 

or 

B VAL B *ADDRS 

The ADRL directive must be within addlessing ronge of 
the bran,:;h instruction. 

The reference, B VAL, is handled in the some manner as 
if the address literal were invob:d by fhe assembler. 

The ADRL directive also provides a method for transmitting 
data addresses to subroutines. For example, if the items 
A, B, and C are required by a subroutine, the calling pro­
gram can provide the addresses of these items and the branch 
to the subroutine with the fo !lowing statements. 

Example 7. ADRL Directive 

CALL RCPYI 1,5 Address CALL+ 2 copied into 
base register 

B *$ + 1 Indi rect branch to subroutine 

ADRL SUBR Address of subrouti ne 

ADRL A Address of A 

ADRL B Address of B 

ADRL C Address of C 
(return) 

The subrouti ne can reference A, B, and C by usi i~g the ad­
dresses generated by the ADRL directives. Since the 
address CALL + 2 is in the base register, the subroutine has 
access to itemsA, B, C by indirect addressing through the 
base register. For example, the subroutine below selects 
the larger of A and B and makes it C. If A:c::B, C is given 
the value of 0. 

SUBR LDA "'1" 1 Load A into accumu lator 
CP *2,,1 Compare A to B 
BNO $+5 Branch if A < B 
BNC $12 Branch if A :> B 
RCPY 0,7 Clears occurnulator. 
STA *3, ,1 Makes C :.:-c (accumulator) 
B A, ,1 Return to culling program 
LDA * ~t I" Load B into accumu lator 
B $-3 

I t is !,uggested thot programmers precede each program seg­
ment smaller than 256 instructions with a list of ADRL's 
containing symbols referenced outs:de the segment. If this 
is done, the taskof debugging a program is made easier be­
cause the addressesof all such symbols appear in the address 
litemls at the beginning of the segment. Thus, time spent 
in search ing through the I isti ng for address va lues is eli mi nated. 

Address Li tera Is 23 



5. LOCATION COUNTERS AND IPROGRAM SECTIONS 

LOCATION COUNTERS 
A location counter is a memory cell that the assembler uses 
to keep track of the storage location it assigned last and, 
thus, what location it ~,hould assign next. Each section of 
a program has two location counters associated with it: the 
load location counter (referenced symbol ically as $$) and the 
execution location counter (ref.erenced symbolically as $). 

An additional location counter, the common location counter, 
is used and set only by the COMMON directive. COMMON 
symbols may be referenced as COMMON relocatable oper­
ands. However, COMMON symbols may not be assembled 

wi th values. 

The value of the load location counter is relative to the 
origin of the source program (or program section when two 
sections comprise a single program). The execution loca­
tion counter is the location relative to an execution base. 
The initial value of the location counters is specified at 

assembly time. 

Most users wi II be concerned only with the execution loca­
tion ~ounter; that is, they wi II want to assemble relocatable 
programs that can be loaded and executed anywhere in core 
memory. To have a relocatable program assembled relative 
to some value other than zero, the programmer shou Id use 
an ORG directive to designate the origin of the program 
(or a section of a program). This directive sets the load 
and execution location counters to the same value and 
allows Extended Symbol to assemble the program relative 
to that value. 

The load location counter is a facility provided for systems 
programmers to enable them to assemble a program that must 
be executed in a certain area of core memory, load it into 
a different area of core, and then, when the program is to 
be executed, move it to the proper area of memory wi thout 
having to alter any program addresses. For example, 
assume a program provides a choice of four different output 
devices: paper tape, magnetic tape, punched cards, or line 
printer. Atexecutiontime, onlyoneofthedevices will be 
used. In order to execute properly, the program must be 
stored in core as follu..vs: 

0000 

lFFF 

2FFF 

Main Program 

Desired Output Routine 

To be used 
for data 
storage during 
program 
execution 

Each of the four output routines would be assembled with an 
initial execution location counter value of lFFF butdifferent 

24 Location Counters and Program Sections 

load location counter values (e.g., 1 FFF, 2FFF, 3FFF, etc.). 
At run time all the routines could be loaded as follows: 

0000 

lFFF 

2FFF 

3FFF 

4FFF 

5FFF 

Main Program 

Magnetic Tape Routine 

Paper Tape Routine 

Typewriter Routine 

Line Printer Routine 

} Execution area 
for output routi ne 

To be used for 
data storage 
during program 
execution 

When the main program has determined which output routine 
is to be used, it moves that routine to the appropriate exe­
cution area. No address modification is required at this 
time since the routine was originally assembled to be exe­
cuted in that area. If the paper tape routine were selected, 
it would be moved to the execution area beginning at 
1 FFF, and memory from 2FFF and above could then be used 
for data storage. 

At the beginning of an assembly, Extended Symbol automat­
ically sets the value of the three location counters to zero. 
The user can reset the location values for the load and exe­
cution counters during an assembly wi th the ORG and LaC dir­
ectives. The ORG directive sets the value of both of these loca­
tion counters. The LaC directive sets the value of only the 
execution location counter. The COMMON directive alters 
the value of the common location counter. 

SETTING THE LOCATION COUNTERS 

Unless the assembler is otherwise informed via a program sec­
tion directive, it assumes at the beginning of an assembly 
that there is to be only one program section, and it sets the 
three location cOL'ni"ers to zero. The user may designate val­
ues to be assigned to these location counters by means of th,~ 
ORG, COMMON and LOC directives. Two other directives, 
BOUND and RES, have a special effect on the load and exe­
cution location counters. 

ORG Set Program Origin 

The ORG directive sets both the load and execution location 
counters to the location specified. This directive has the 
form 



where 

label isanyvalidsymbol. Useofa label is optional. 
When present, it is defined as the value "location" 
and is associated with the first word of storage 
following the ORG directive. 

location may be a relocatCible expression or an 
absolute expression resulting in a positive integer 
value. It must not contain any literal, forward, 
or external references. 

An absolute expression sets the locotion counters to the 
value designated by the expression; the mode of the current 
section (absolute or relocatable) is left unchanged (see 
"Program Sections" in this chapter). A relocatable expres­
sion sets the location counters and the current section to the 
relocatable mode. 

There is no limit on the number of ORG directives that may 
be used in a program or program section. 

Example 8. ORG Directive 

BB 

AA 

LOC 

ORG a 

ORG 8 

This directive sets both the 
load and the execution loca­
tion counters to a and assigns 
the label BB to tha'~ location. 

This directive resets both the 
load and the execution loca­
tion counters to 8 and assigns 
the label AA to that location. 

LDX INDEX This imtruction is assembled 
to be loaded into the location 
defined as AA. Thus, the effect 
is the same as if the ORG dir­
ective had not been labe I ed 
and the label AA had been 
wri tten as the label for the 
LDX instruction. 

Set Program Execution 

The LOC directive sets I'he execution location counter ($) 
to the location specified. It has the form 

Labe I Command Argument 
~-----rTaheT]-------~--Toc----t-- locati on 

where 

label is anyvalidsymbol. Useofa label isoptional. 
When one is present, it is defined as the value of 
"location" and is associat,ed with the first word 
of storage following the LOC directive. 

location may be a relocatoble expression or an 
absolute expression resulting in a positive integer 
value. It must not contain any literal, forward, 
or external references. 

This directive is the some as ORG except that it affects 
only the execution location counter. 

Example 9. LOC Directive 

ORG 

LOC 

100 

1000 

Sets the execution location 
counter and load location 
counter to 100. 

Sets the execution location 
counter to 1000. The location 
counter remains at 100. 

Subsequent instructions will be assembled so that the ob­
ject program can be loaded anywhere in core. However, the 
programwill execute properlyonlywhen itbeginsat 1000. 

BOUND Advance Location Counters 

The BOUND directive advances the execution location 
counter to the next multiple of the specified boundary, if 
the counter is not already a multiple of the boundary. The 
load location counter is then advanced the same number of 
words. The form of this directive is 

Label Command Argument 
-[label] 

-- ----_ .. _-------
BOUND boundary 

where 

label is any valid symbol. Use of a label is optional. 
When present, it is defined as the current valueof 
the execution location counter and identifies the 
first word of the bounded area. 

boundary is an expression which must not contain 
literal, forward, or external references. The value 
of "boundary" must be a power of2;ifitis not, 1 is 
assumed, and the error is flagged. 

When the BOUND directive results in the execution location 
counter bei ng advanced, it acts like a "reserve". No zeros 
are generated in the skipped words. 

Example 10. BOUND Directive 

BOUND 8 Sets the execution location 
counter to the next higher 
mu Itiple of 8 if it is not 
a Iready at such a va lue. 

If the execution location counter for the current section 
were 13, this directive would advance the counter to 16. 
Note that if the BOUND directive advances the execu­
tion location counter, the load location counter is ad­
vanced the same number of words but not necessari Iy 
to the same value, as in the following: 

ORG 11 

LOC 14 

BOUND 4 

Sets both location counters 
to 11. 

Sets the execution location 
counter to 14. 

Advances the execution loca­
tion counter 2 words to the 
nextmultipleof 4(i.e., to 16) 
and the load location counter 
to 13. 

Locati on Counters 25 



RES Reserve An Area 

The RES directive enables the user to reserve an area of 
core memory. The form of this directive is t: Label 

_ [label] 
Command 
RES 

__ t __ ~rgumen'. ___ j 
where 

1abel isanyvalidsymbol. Useofalabel isoptional. 
When present, the label is defined as the current 
value of the execution location counter; that is, 
the first location in the reserved area. 

n i<; an evaluatoble expression {no literal, external, 
or forward reference} designati ng the number of 
words to be reserved. The val ue of n may be a 
positive or negative integer, or O. 

When :xtended Symbol encounters anRESdirective, italters 
the load and execution location counters by the specified 
number of words. This enables the programmer to reserve an 
area of core within the instruction sequence of his program. 

The RES directive does not clear the reserved area. 

Example 11. RES Directive 

ORG 

A RES 

LDA 

100 

10 

Set load and execution loca­
tion counters to 100. 

Define symbol A as location 
100 and advance the load and 
execution location counters by 
10words, changing them to 110. 

VALUE This instruction is assigned to 
the location immediately fol­
lowi ng the 10 reserved words; 
that is, to 110, relative to O. 

~----------------------~---
COMMON 

The COMMON directive enables the user to reserve on 
area of core memory wi thi n the common storage area. The 
form of thedirective i~ 

Label Command 
------COMMON 

__ ~rgument 
n ----TTCibeTj-

where 

label isanyvalidsymbol. Useofalabelisoptional. 
When present, the lobe lis defi ned as a re locatable 
symbol having as its value the current value of the 
common location in the reserved area. 

n is an evaluatable expression (no literal, external, 
or forward references) desi gnati ng the number of 
words to be reserved. The value of n may be a 
positive or negative integer or O. 

26 Program Sections 

When Extended Symbol encounters a COMMON directive, 
it alters the common location counter by the specified 
number of uni ts. Thi s enables the programmer to reserve 
an area of core outside the instruction sequence of his pro­
gram. No other Extended Symbol di rective affects the 
common location counter which is automatically set to 
zero at the beginning of an assembly. 

The COMMON directive does not clear the reserved area. 
Common symbols may be referenced as relocatable operands; 
however .. the assembl er wi II not generate any instructions 
or data to be stored in the common area. 

PROGRAM SECTIONS 
An object program may consist of one or more program sec­
tions: one or more relocatable and/or one or more absolute 
sections. 

It is usually desirable to assemble a symbolic program section 
without allocating it to a particular memory area or starting 
location. When a program section can be executed indepen­
dently of its origin, that is, independently of where it is 
physically located within the computer, it is called a relo­
eatable program section. Relocatable sections are frequently 
assembled relative to location zero; that is, they are assem­
bled as if the first instruction would be stored at location 
zero. Subsequent instructions are assernbled relative to the 
beginning location of the section. 

When a relocatable section is loaded into core to be exe­
cuted, the user may specify the beginning location of the 
area where the section is to be stored, and an appropriate 
value (called a relocation bias) is added by the loader to 
each relocatable symbol and expression in the section. For 
example, if a relocatable section is loaded beginningat loca­
tion 1000, the value 1000 is the relocation bias. To illus­
trate, assume a section is assembled relative to zero: 

Location Instruction Comment 

100 ADRL ALPHA Address literal of 

120 ALPHA LDA BETA 

location ALPHA 

Load accumu lator 
with contents of 
BETA 

When these statements are assembled, locatj on 100 wi II con­
tain the value 120. If this section is loaded with a relocation 
bias of 1500, lhe location 1600 (100+1500) would contain 
the value 1620 (120+ 1500). 

Program sections are generally relocatable. However, the 
provision for absolute (nonrelocatable) sections is useful for 
providing instructions to be executed in the event of an 
interrupt. 

ASECT/CSECT Absolute/Relocatable Program Sections 

Two directives are provided for program sectioning: 

Label Command Argument -- --
ASECT 
CSECT 



where 

ASECT indicates thot labels on subsequent state-
ments wi II be defi ned CIS absolute values. An 
ORG directive should follow the ASECT statement 
to designate an absolut,e value for the location 
counters" 

CSECT indicates that labels on subsequent state-
ments wi II be defined as relocatable va lues. 
CSECT wi II normally be followed by an ORG 
statement to designate "he initial relocatable 
value to which the location counters are set. 

The argument field is ignored by the assembler. 

If neither ASECT nor CSECT is declared, CSECT is assumed. 

If an ORG directive does not follow ASECT or CSECT, both 
location counters wi II be reset to zero. 

Example 12. ASECT and CSECT Directives 

ASECT 

LAST 

CSECT 

END 

Declares an absolute program 
section. 

Last instruction of absolute 
section. 
Dec lares remainder of program 
as relocatable. 

End of symbolic program. 

Program Sections 27 



6. EXTENDED SYMBOL DIRECTIVES 

Commands to the assembler are called "directives". 
Directives may be combined with other assembly language 
elements to form directive statements. Directive state­
ments, I ike instruction statements, have four fields: label, 
command, argument, and comments. 

A symbol entry in the label field is required for three 
directives: EQU, SET, and CNAME. EQU and SET 
equate the symbol in the label field to the va lue of the 
expression in the argument field. The label field entry 
for CNAME identifies the procedure that follows. The 
location counters are not affected by these directives. 

Optional labels for the directives ORG and LOC are de­
fined as the value to which the execution location counter 
is set by the directive. 

If any of the directives ADRL, BOUND, DATA, GEN, 
GEN1, GEN2, LPOOL, RES, TEXT, or TEXTC are 
labeled, the label is defined as the current value of the 
execution location counter and the label identifies the first 
word of the area generated or specified by the directive. 
These directives also increment both the load and execu­
tion location counters by the number of words generated 
from or specified by the directive's argument field. 

Labels for the directives BASE and LPOOL identify the 
first word of the area affected by the directives; that is, 
they are nongenerative and do not increment the location 
counters. 

For the directives ASECT, CSECT, DISP, ELSE, END, FIN, 
GOTO, LBL, LIST, LOCAL, PAGE, PCC, PEND, PROC, 
SOCW, SPACE, S:STEP, and TITLE, a label field entry is 
ignored. That is, the symbol is not defined and, therefore, 
may not be referenced unless it is the target label of a 
GOTO search. 

Label field entries for the directives IDNT, DEF , REF, 
and SREF are always ignored. 

Labels for the DO directive are handled in a special 
manner. 

The command field entry is the directive itself. For some 
directives this field may consist of two subfields, in which 
case the directive must be in the first subfield, followed 
by the other entry. 

Argument field entries vary and are defined in the discus­
sion of each directive. A directive statement format with 
a blank argument field implies that arguments are ignored 
for that directive. 

A commentsJield entry is optional. 

The END and PEND directives are the only directives un­
conditionally executed. They are processed even if they 

28 Extended Symbol Directives 

appear within the range of a GOTO search or an inactive 
DO-loop. 

The directives I isted below were described in Chapters 4 
and 5. These directives are not discussed again in this 
chapter. 

BASE ] 
LPOOL Chapter 4 
ADRL 

ORG 
LOC 
BOUND 
RE S Chapter 5 
COMMON 
ASECT 
CSECT 

CNAME, PROC, and PEND are described in Chapter 7. 

See Appendix B for a summary of Extended Symbol 
directives. 

In the directive statement formats that follow, brackets 
indicate optional items. These directives are presented in 
alphabetical order. 

DATA Produce Data Value 

DATA enab les the programmer to represent data conve­
niently within a symbolic program. DATA has the form 

Label Command 
[label] DATA[,k] 

where 

label is any valid symbol. Use of a label is op-

k 

tional. When present, it is defined as the current 
value of the execution location counter and iden­
tifies the first data word. The location counters 
are incremented by the number of words generated. 

is the field size (in words) that will be generated 
for each value and may be an evaluatable ex­
pression (no forward or external references) that 
results in an integer in the range 1 :s k :s 4. 

value list is the list of values to be generated. A 
value may be a multitermed expression or symbol. 
When the entry is a symbo I, the va I ue of the 
symbo I becomes the data entry. 

The DATA dir(>("tive generates each value in the list into 
a field whose size is k words if k is specified or one word 
if k is nof( specified. 



When the field size to be generated for each value is one 
word (i. e., the command is DATA or DATA, 1), the ex­
pressions in the value list must be evaluated as one of the 
following: 

1 . Decima I integers in the range -,32768 to 32767. 

2. Hexadecimal values of one to four hexadecimal digits. 

3. 

4. 

If fewer than four hexadecimal digits are written, the 
digits are right-justified in a dClta word and leading 
hexadec ima I zeros are entered. If more than four 
digits are written, the last four are entered in a data 
word and the remaining digits are truncated. 

Example: 

Value 

X'ABC' 

X ' 12FACD ' 

Data Word ----
OABC 

FACD 

A character string of one or two characters. A two­
character string fills a word. A single character is 
placed in the right byte of a word and zeros are 
placed in the left byte. If a character string contains 
more than two characters, only the last two are 
entered in the data word. 

A symbol. The value of the symbol becomes the data 
entry • 

Note: The symbols $ and $$ always refer to the first word 
---- generated by the DATA directive. 

When k is 2, floating-point short constants are allowed; 
when k is 3, floating-point long constants may be used. 
No multitermed expression may appear in the value I ist for 
k :C' 2, 3, or 4. 

Example 13 • DATA Directive 

A DATA 

DATA, 2 

536, -22, 1,X'FAI23 1
, 'XD','S' 

6 words are generated containing, in 
hexadec i rna I: 

0218 
FFEA 
0001 
A12:1 

E7C4 
00E2 

Exceeds 1 word limit; 
F is truncated 

536,-22, FS ' 1. ' , )('9COIF', 'XDS ' 

Ten word:s are generated cont'aining, 
in hexadecimal: 

0000 0000 
0218 0009 
FFFF COl F 
FFEA 00E7 
4110 C4E2 

.DEF Declare External Definitions 

The DEF directive declares which symbols defined in this 
assembly may be referenced by other (separately assembled) 
programs. The form of this directive is 

Label Command Argument 
DEF symbo 11 ~ symbol

2
, ... , symbo In] 

where each symbol may be any label that is defined within 
the current program. 

A label field entry is ignored by the assembler. 

Symbols declared with DEF directives are used for symbolic 
program linkage between two or more programs. Such sym­
bo Is provide access to a program from another program; 
"access" may be a transfer of control (via a branch instruc­
tion) or some reference to data storage. 

It is necessary that the program following the DEF directive 
define all symbols declared by DEF. Undefined DEF­
declared symbols are noted in the assembly listing. 

Exampl e 14. DEF Directive 

DEF TAN, SUM, SORT 

Th is statement identifies the labels TAN, SUM, and 
SORT as symbols that may be referenced by other 
programs. 

DISP Display Values 

The DISP directive produces a display of the values speci­
fied in its argument list, one per line on the assembly 
listing. The form of the directive is 

~be_I-+_c_o~m~m_a_n_d-+~A~r~g~U~m_e_n __ t __________ __ C DISP (Jist] 

where list is any list of constants, symbols, intrinsic func­
tions, or expressions that are to be displayed at that point 
in the assembly listing. The values of the argument list 
will be displayed one per line, beginning at the DISP di­
rective line. 

If the DISP directive is used inside a procedure, it will not 
display values unti I the procedure is called on a procedure 
reference line. 

Extended Symbol Directives 29 



DO/ELSE/FIN Iteration Control 

The DO directive defines the beginning of an iteration 
loop; ELSE and FIN define the end of an iteration loop. 
These directives have the form 

Command Argument 1-_ Label .".--.-
I---~be!l DO exp 

ELSE 
--

.--
FIN 

whete 

label is any valid symbol. Use of a label is op-
tional. When present, it is initiallyassigned the 
value 0 and incremented by 1 each successive 
time through the loop. Note that label is not de­
fined as the current value of the execution loca­
tion counter. However, it may be the target label 
of a GOTO search. 

exp is an absolute, evaluatable (no forward, lit-
eral, or external references) expression that rep­
resents the count of how many times the DO-loop 
is to be assembled. 

A label field entry is ignored for ELSE or FIN unless it is 
the target label in a GOTO search. Argument field entries 
are always ignored in an ELSE or FIN directive. 

Figure 3 illustrates the logical flow of a DO/ELSE/FIN loop. 

The assembler processes each DO-loop as follows: 

1. Establ ishes an internal counter and defines its value 
as zero. 

2. Ifa label ispresentontheDOline, setsitsvalueto zero. 

3. Eva luates the express ion that represents the count. 

4. If the count is less than or equal to zero, discontinues 
assemblyuntilan ELSEorFINdirectiveis encountered. 

a. If an ELSE directive is encounter,-~d, assembles 
statements following it unti I a fIN directive is 
encountered. 

b. If a FIN directive is encountered, terminates 
control of the DO-loop and resumes assembly at 
the next stfltement. 

5. If the count is greater than zero, processes the D 0-
loop as follows: 

a. Increments the current value of the label by 1. 

b. Assembles all lines encountered up to the first 
ELSE or FIN directive. 

c. Repeats steps 5a and 5b unti I the loop has been pro­
cessed the number oftimes specifi ed by the count. 

d. Terminates control of the DO-loop and resumas 
assembly at the statement following the FIN. 

If the expression in the DO directive is not evaluatable 
(i. e., if it contai ns an external or forward reference), Ex­
tended Symbol sets the label (if present) to thevalue zero, 

30 Extended Symbol Di recti ves 

produces an error noti fi cati on, and processes the DO 
directive as if the expression has been evaluated as zero. 

The label for the DO directive may be redefined within the 
loop, but the assembl er wi \I increment the val ue of the 
label at the beginning of each iteration. For example, 

K 

K 

DO 
LDA 

SET 

FIN 

5 
K-l 

K+1 

The statements between DOand FIN will be assembled five 
times. The argument of the LDAwi II be 0, 2, 4, 6, and 8. 

Any symbols in "exp II that are redefinable may also be 
changed within the loop without affecting the number of 
times the loop is executed. For example: 

HOURS 
RATE 

HOURS 

SET 
SET 
DO 

SET 

FIN 

8 
5 
HOURS*RATE 

2 

The loop wi II be assembled 40 times. 

Since the label on a DO statement is redefinable, it may 
be reused on subsequent DOs following the FIN associated 
with the labeled DO. 

DO-loops may be nested; i.e., a DO-loop may exist 
within another DO-loop. An inner DO-loop must be con­
tained comp letely w,ithin an outer DO-loop. There may be 
a maximum of 30 nested DO-loops. 

A DO-loop must be completed on the same program level in 
which it 0: iginates; that is, if a DO directive occurs in 
the main program, the associated FIN for that di rective 
must also be in the main program. If a DO directive occurs 
within a procedure definition, the associated FIN for that 
directive must also be within the definition. 

When the assembler encounters a DO-loop, the statements 
in the loop arc listed even if they are not processed (for 
example, the C'.lse of DO 0). 

Example 15. DO/FIN Directives 

A DO 
ADD 
FIN 

5 
NUM+A 

This is the equivalent of 
ADD NUM+1 
ADD NUM+2 
ADD NUM+3 
ADD NUM+4 
ADD NUM+5 



0-" LABEL ~
"IC 

Eva Illate expression --.. EXP 

.---,-----,--~ 

Set flag to get~ 
following DO --.J 

j 

'--------

~C+1-IC 
~:ABEL+ 1-LABEL 

[ Terminate loop 

[
Resume assembly 
after FIN 

yes 

IC = Interna I counter 
LABEL = Label (if present on DO line) 
EXP = The result of evaluating expression 

on DO line 

yes 

Assemble until FIN 

no 

yes 

Figure 3. Flowchart of DO/ELSE/FIN Loop 

Extended Symbol Directives 31 



Example 16;. DO/ELSE/FIN Directives 

Hl' this e)(Qmple the dashed vertical lines indicate 
statements' that; are skipped; sol id vertical I ines indicate 
statements that are assembled • The numbers 1 and 2 
above the ~erticaL lines indicate which iteration of 
the. outer DO-loop is in process. 

, I DO 2 

DO 1=1 

ELSE 

FIN 

FIN 

Iteration 

2 

I 
I 

I 
I 
I 

I 

Example 17. DO/FIN Directives 

'M DO 2 
DATA M*2 

N DO 4 
DATA N*M 

P b>0 

Inner Outer 
.Loop Loop 

DATA ~+N+MJ Loop C loop B Loop A 
FIN 
FIN 
FIN 

The data, generated by this series of statements is 

Iteration 1 

Iteration 2 

Loop~~~~~~~~~~~~~~~~~~~ 
Data~-L~~~~~~~~~-L~~-L~~-L~ 

In summary, there are two forms of iterative loops as shown 
below. 

Form 1. DO 

} block 1 

ELSE 

) block 2 

FIN 

32 Extended Svmbol Directivp.c; 

Form 2. 
DO J block 1 

~IN 
If the expression in a DO directive is evaluated as positive, 
nonzero value n, then in either form block 1 is repeated n 
times and assembly is resumed following the FIN. 

If the expression in the DO directive is evaluated as a 
negativa or zero val ue, then in 

Form 1: block 1 is skipped, block 2 is assembled 
once, and assembly is resumed following 
the FIN. 

Form 2: block 1 is skipped, and assembly is 
resumed following the FIN. 

END End Assembly 

The END directive terminates the assembly of the source 
program. Any literals that have been accumulated1 but 
not yet allocated, are allocated at this point. This is the 
only occurrence of an assembler-imposed literal pool. 
The END directive has the form 

Label r Command 
~-----t[- END 

where 

Argument 
[exp] 

exp is an optional expression designating a loca-
tion to which control is to be transferred after 
the program has been loaded. Norma lIy, that 
location contains the first machine language 
instrudion in the program. The "exp" must not 
be an external reference • 

A label field entry is ignored by the assembler unless it is 
the target label of a GOTO search. 

The END directive is unconditionally executed; it is pro­
cessed even when it appears within the range of a GOTO 
search or an inactive DO-loop. 

Example 18. END Directive 

CONTROL CSECT 

START LDA TEST 

END START 



EQU Equate Symbols 

The EQU directive enables the user to define a symbol by 
assigning to it the attributes of the expression in the argu­
ment field. This directive has the form 

______ -4 __ ~mmand~A_r~g~u_m_e_n_t __ . ________ ~ 
~ ________ ~ ___ E_~ __ ~:__x~p ______________ J 

where 

label is any valrd symbol. 

exp is any sing Ie-termed expression (other than an 
external, literal, or forward reference) or is a 
multitermed, evaluatable expression (no forward, 
literal, or externa I references). The mode (abso­
lute or relocatable) of exp is assigned to label. 

When EQU is processed by Extended Symbol, "label" is de­
fined as the value of "exp". For e>:ample, the statement 

VALUE EQU 8+5 

assigns the absolute value 13 to VALUE, and 

ALPHA EQU $ - 10 

assigns the relocatable value $ - 10 to ALPHA. 

A symbol defined with an EQU cannot be redefined: 

A EQU X'F ' Legal 

A EQU 23 Illegal because A has already 
been assi9ned a value 

If two symbols are equated, they are assigned identical 
attributes and are stored in the appropriate symbol table{s) 
depending upon local symbol conditions (i. e., a local or 
procedure-local symbol may be equclted to a nonlocal 
symbol). 

GEN Generate a Value 

The GE N directive generates one or more words of object 
program code according to (l specified bit configuration. 
It has the genera I form 

. .:r-~:"""""'---4~~~-m-a-n-d---r__ _Argument 

. .!:-_-..4...--L_--.:G_E;:..;N, fie I d~_v_a_1 u_e_l_is_t ____ ---J 

where 

label is any valid symbol. Use of a label is 
optional. When present, it is defined as the 
current va I ue of the execl;ltion location counter 
and identifies the first word generated. The 
location counters (:Ire incremented by the number 
of words generated. 

field list is a list of evaluatable (no literal, for-
ward, or external references), absolute expres­
sions, each of which defines the size (in bits) of 
a generated field (size < 32,768). The sum of the 
expressions (field sizes) must be a positive multiple 
of 16. 

value list is a list of expressions that define the 
contents of each generated field. This I ist may 
conta i n forward and externa I references. The 

. value represented by the value list is assembled 
into the corresponding field. 

The expressions in the field I ist and the va I ue I ist must be 
separated by commas. Successive commas produce expres­
sion values of O. 

There is one-to-one correspondence between the entries in 
the field list and the entries in the value list; the code is 
generated so that the first field contains the first value, 
etc. A maximum of 16 list elements is allowed. 

The value produced by a GEN directive appears on the 
assembly listing as four hexadecimal digits per lire. 

GE N is used extensively by systems programmers. It en­
ables them to generate object code in the configuration 
required by their systems. 

A relocatable address may be generated only in a 16-bit 
field that occupies an entire memory word (i.e., a field 
may not overlap word boundaries). Absolute quantities are 
not restricted to word boundaries or field sizes. Their 
values, however, may not exceed the 16-bit capacity of 
a computer word. 

Note: The symbols $ and $$ always refer to the first word 
generated by the GEN directive. 

To facilitate the generation of Xerox 530 and Sigma 2/3 
instructions, two variations of the directive are provided 
by Extended Xymbol. The directives GENl and GEN2 
provide, respectively, the foci Ii ty for generating Class 1 
and Class 2 instructions. These directives cause the assem­
bler to generate i nstructi ons havi ng the proper Class 1 or 
Class 2 instruction format. The directives have the form 

Label Command Argument 
Tlabel] GEN1 op, [i], [x] , [bJ ,a 

.._. 

[labelj GEN2 op, a 

where 

label has the same meaning as described for GE N. 

op is an expression that is evaluated as a hexadec-
imal operation code. 

is an expression that must be evaluated as an 
absolute value, if present. A nonzero absolute 
value specifies indirect addressing. A 0 (or a 
blank) specifies that indirect addressing is not to 
be performed. 

Extended Symbol Directives 33 



x is an expression that must be evaluated as an 
absolute value, if present. A nonzero abso lute 
value s.pecifies post-indexing. A 0 (or a blank) 
specifies that post-indexing is not to be performed. 

b is an expression that must be evaluated I ike X. 
A nonzero absolute value specifies pre-indexing. 
A zero (or a blank) specifies that pre-indexing is 
not to be performed. 

o is any admissible address expression. 

The absence of one of the items in the argument field must 
be indicated by successive commas (see Example 21). 

GE~l and GEN2 are useful in writing procedures (see 
Chapter 7). 

Automatic addressing conditions for instructions produced 
by GE N 1 are the same as described in Chapter 4 under 
"Addressing" • 

The argument address for GEN2 must comply with the self­
relative addressing requirements of Class 2 instructions; 
that is, the address must be within the self-relative address­
ing range of the instruction ($-256 to $+255). 

Example 19. GE N Directive 

X EQU -1 
Y EQU 1 

GEN,8,; 
8,16 5,Y,X Produces: 

Hex. Binary 

0501 1 QOOOIO 1 0 1100001000 11 
0 7 15 

FFFF 1111111111111111illJ] 
B EQU 5 

0 7 15 

GEN, B, i 
16-B 3,15 Produces: 

1 80F LQQQ 11 100dfOOooUillJ 
0 7 15 

Example 20. GE N 1 Directive 

GENl 

STA EQU 

GEN1 

8,0,0, ; 
NUM 

X'E' 

Generates the equivalent 
of the symbolic instruc­
tion LDA NUM 

11000100001 N UM 
o 7 

STA, 1, " i Generates the equiva lent 
ANS of the symbolic instruc­

tion STA * ANS 

1111010JOoIANS 
o 7 

34 Extended Symbol Di rectives 

J 
I~ 

15 

( 

Example 21. GEN2 Directive 

BAN 

GOTO 

EQU 

GEN2 

X '3T 

BAN, $-3 Produces: Clo$$ 2 
Bon instruction 

liE 10 1)1\111111101 I 
o 6 15 

Conditional Branch 

The GOTO directive enables the user to conditiona lIy 
alter the sequence in which statements are assembled. The 
GOTO directive has the form 

Label Command Argument 
GOTO[, k) label) [,labeI2""~ label n ) 

where 

k is an absolute, evaluatable (no forward or exter-
nal references), integer-valued expression. If k 
is omitted, J is assumed. 

labeli is a forward reference. The labels must be 
nonloca I symbols if the GOTO directive appears 
in a nonlocal symbol region. 

A GOTO statement is executed at the time it is encoun­
tered during the assembly. Extended Symbol evaluates the 
expression k (if present) and resumes assembly at the line 
that contains a label corresponding to the kth label in the 
GOTO argument field. The labels must refer to I ines that 
follow the GOTO directive. If the va lue of k is not be­
tween J and nr Extended Symbol resumes assembly at the 
statement immediately following the GOTO directIve. An 
error message is given if the value of k is greater than n. 

A label that is normally ignored by the assembler (i. e., a 
label on END, FIN, LOCAL, PAGE, PROC, PEND, 
TITLE, or another GOTO statement) will be recognized 
if it is the target (kth) label of a GOTO search. 

A statement skipped as the result of a GOTO appears on 
the assembly listing in symbolic form; the absence of gen­
erated code indicates that it has been ignored. 

When Extended Symbo I encounters the first of a logica I pair 
of directives t while in the skipping mode, it suspends its 
search for the label unti I the other member of the pair is en­
countered. Then it continues the search. Thus, whi Ie in 
skipping mode, Extended Symbol does not recogni ze labels 
that are within procedure definitions or iteration loops. It is 
notpossibJe, therefore, towriteaGOTOdirectivethat might 
branch into a procedure definition or a DO/FIN loop. tt 

t Certain directives must occur in pairs: PROC/PEN D and 
DO/FIN. 

ttIt is legal, however, to terminate a DO loop by branch­
ing past the associated FIN. 



Furthermore, it is not permissible to write a GOTO direc­
tive that might branch out of a procedure definition. If 
such a case di d occur, E:dended Syrnbol wou Id encounter 
a PEND directive before its search had been satisfied, pro­
duce an error notification, ond terminate the search for 
the label. 

Example 22. GOTO Directive 

A EQU 2 

GOTO,A+2 B1,C,D,E,F,G 

F 

B 

E 

G 

When the assembler encounters the: GOTO directive, 
it evaluates the expression A+2 and derives the value 4. 
In the argument field of the directive, Extended Symbol 
locates the fourth lelbel, E.· Then I'he assembler begins 
searching for a statement ~abeled E. All statements 
between the GOTO directive and the statement la­
beled E are ignored and are not assembled. The assem­
bly resumes with the statement labeled E. 

IONT Identify Object Module 

The IDNT directive provides an identifying name to be 
stored in the start module item of the object module. The 
use of this name is described in detedl in the RBM/RT,BP 
Reference Manual, 90 10 37. The form of the IDNT direc­
tive is 

EL=-a_b-=..e=-I __ +-_=--= 

where 

cs. is an explicit character string constant and may 
I 

include any characters in <the EBCDIC character 
set except the blank. The total number of char­
acters may not exceed eight. The character string 
must be enclosed by single quotation marks. The 
combined character string, followed by sufficient 
blanks to make eight charclcters, wi II be inserted 
into the start module in the binary object program. 
If no IDNT statement appears in the source 
program, eight blClnks will be inserted in the start 
module. 

No more than one IDNT statement may be used in a source 
program. 

A label field entry in an IDNT statement is ignored. 

LBL Label Object Module Records 

The LBL directive causes records of the object module out­
put by the assembler to be labeled and sequenced; its form is 

Command Argument 
LBL 'character string I 

where 

'character string I is a character string constant 
(one through eight characters) and may inc lude a 
subset of characters in the EBCDIC character set. 

This subset is restricted to alphanumeric charac­
ters, blank, and those printing characters whose 
internal codes are within the range X '4A I through 
X? F', and X'6A'. A label field entry is ignored 
unless it is the target label of a GOTO search. 

When an LBL directive is encountered, the next record of 
the object module is begun with the identification field of 
this record (e.g., columns 73-80 of a binary card) followed 
by sufficient trailing zeros to make eight characters. 

Until another LBL directive is encountered, the identifica­
tion field of each succeeding object module record wi II contain 
the character string with the trailing digits incremented by 
one. Sequence numbering will recycle: after a record in 
which all the trai I ing digits are nines, there wi" come a rec­
ord in which all the trai I ing digits are again zeros. If the 
argument field of the LBL directive is blank, identification 
of object module records wi" be performed, as described 
above, commencing with eight trailing zeros. If no LBL 
directive is encountered, the identification field will con­
sist of four blanks followed by a four-digit sequence number. 

LIST List/No List 

, The LIST directive enables the user to selectively suppress 
and resume the assembly listing. The form of the directive is 

11~_la_b_e_1 ---+-_ command + ~_r~g_um_e_nt _____ --I 
LIST _ exp 

where exp is an absolute, evaluatable expression resulting 
in an integer that suppresses or resumes assembly I isting. If 
the value of exp is nonzero, a normal assembly I isting wi II 
be produced; if exp is zero when LIST is encountered, all 
I isting following the directive wi II be suppressed unti I a 
subsequent LIST directs otherwise. 

Used inside a procedure, the LIST directive wi II not suppress 
printing of the procedure reference (csll) line. However, 
LIST wi" suppress printing of the object code associated 
with the call line if the LIST directive was encountered 
prior to any code generation within the procedure. 

Unti I a LIST directive appears within a source program the 
assembler assumes a default convention of LIST 1, allowing 
a normal assembly listing. 

Extended Symbol Directives 35 



LOCA~ Declare Local Symbols 

An Extended Symbol main program and the body of each 
procedure called during the assembly of the main program 
(see II Procedures ", Chapter 7) constitute the nonlocal sym­
bol region for the asserr,bly. Local symbol regions, in which 
certain symbols will be unique to the region, may be cre­
ated within a procedure or main program by the LOCAL 
directive. This directive has the form 

Lobel Command Argument 
LOCAL [symbo 1

1
, symbo 1

2
, ••• , symbo I nJ 

where each symbol is to be loca I to the current region and is 
entered in the local symbol table. Local symbols are syntac­
tically the same as other symbols. The argument field rnay 
be blank, in which case the LOCAL directive terminates 
the current loca I symbol region and erases the loca I symbol 
table without declaring any new local symbols. 

A label field entry is ignored by the assembler unless it is 
the target label of a GOTO search. 

The local symbol region, created by a LOCAL directive, 
begins with the first statement (other than comments or 
another LOCAL) following that directive. When a new 
region is created, any previous loca I symbol region is 
terminated (see below fer exception in a procedure). 

Example 23. LOCAL Directive 

*COMMENT 
START 

LOCAL A, B, C 
LOCAL R, S, T, U 
LOCAL X, Y, Z 

EQU $ 

LOCAL 

The three LOCAL directives inform the assembler 
that the symbols A, B, C, R, 5, T, U, X, Y, 
and Z are to be local to the region beginning 
with the I ine START. The final LOCAL direc­
tive terminateS ~I,e local symbol region and erases 
the local symbol table without declaring any new 
local symbols. 

If the LOCAL directive occurs between the PROC and 
PEND directives, a procedure-local symbol table is cre­
ated, with loca I symbols that may be referenced only 
within the procedure being defined. When the procedure 
is subsequently referenced in the program, these labels are 
entered in the procedure-local symbol table. The cur­
rently active definitions of these symbols are suspended 
unti I the corresponding PEN D or a LOCAL directive with 
a blank argument field is encountered. The suspended 
definitions of these symbols are then reactivated. 

36 Extended Symbol Directives 

Example 24. LOCAL Directive 

ORG 

S EQU 
X EQU 

LOCAL 

Y EQU 

LDA 

LOCA~ 

LDX 

X EQU 

$ + 15 

T 
Z 

X,Y, Z 

Z 

T 

S and X are nonlocal 
symbols. 

Begin a local symbol region 
where X, Y, and Z are local 
and all others are nonlocal. 

This Z does not have the 
same va I ue as the one in 
the EQ U statement above. 

Same undefined T as above. 
i.e., a nonlocal symbol. 

A, B, X End current loco I symbol 
region and begin a new 
one where only A, B, and X 
are local. . 

Z This Z has the same value as 
the Z that appeared in state­
ment X prior to the first 
LOCAL directive. 

N New definition of X, dif­
ferent from either of the 
two definitions of X that 
appeared before. 

Example 25. LOCAL Directive 

PRl 

PR2 

CNAME 
PROC 
LOCAL X, Y, Z 

PEND 
CNAME 
PROC 
LOCAL X, Y, Z 

PRl A 

PEND 
*MAIN PROGRAM 

LOCAL X, Y, Z 

PR2 B, C 

LOCAL K, L 

(3) 

(2) 

(4) 

(1) 



END 

The local symbol definitions of X, Y, and Z in the main 
program are suspended when PR2 i:s called (1). The 
procedure-local symbol definitions in PR2 are suspended 
when PRl is called (2). When the PEND statement of 
PR 1 is encountered, the local definitions in PR2 are re­
activated (3). When the PE ND of PR2 is encountered, 
the local definitions in the main program are reactiva­
ted (4). Thus, the three occurren,ces of LOCAL X, Y, 
and Z do not confl ict. 

PAGE Begin A New Page 

The PAGE directive causes the assembly listing to be ad­
vanced to a new page; its form is 

L_ L::..;a:;c,;b;...::e...:...I_-+-_-,C:...:ommand 
L, ___ L--_P_AGE 

E:,gument 
A label field entry is ignored by thE~ assembler unless it is 
the target label of a GOTO search. Argument field en­
tries are a Iways ignored. 

If the line of code following the PAGE directive would 
normally appear at the top of a page, the directive is 
ignored. 

The PAGE directive is effective only at assembly time. No 
code is generated for the object program as a result of its 
use. 

PCC Print Control Cards 

The PCC directive controls the priMing of LIST, PAGE, 
TITLE, and SPACE statements; its form is 

L_ L_a_b_e_I_-+-_-::cC--=ommand Argument L pcc ---+--n~~---------~ 

where 

n is an evaluatable abso IUh:J expression (no lit-
eral, e~ternal, or forward references) indicat­
ing whether or not to print succeeding control 
cards in the assembly listing. If the value of n 
is zero, printing of LIST, PAGE, TITLE, and 
SPACE statements wi II be suppressed unti I the 
next PCC statement is encountered. Otherwise 
(e.g., before any pce stotement), all LIST, 
PAGE, TITLE, and SPACE: statements wi II be 
printed in the assembly ,"sting as they occur, 
before being executed by the Extended Symbol 
processor. 

REF Declare Externa I References 

The REF directive declares which symbols referenced in this 
assemb Iy are defined in some other (separately assembled) 
program. The directive has the form 

Command Ar ument 
REF symbol 1 [, symbol

2
, •.. , symbol

n
] 

where each symbol may be any label that is to be satisfied 
at load time by other programs. 

A label field entry is ignored by the assembler. 

The REF directive causes the loader to load programs whose 
labels it references. At load time all symbols that have ap­
peared in the argument field of REF statements and were 
referenced in the source program must be satisfied by cor­
responding external definitions (DEF's) in another program. 

It is not necessary that a program containing a REF direc­
tive reference all symbols declared by REF. Unrefer­
enced REFs will not be flagged as errors on the assembly 
listing. 

Example 26. REF Directive 

REF IOCNTRL, TAPE, TYPE, PUNCH 

This statement identifies the labels JOCNTRL, TAPE, 
TYPE, and PUNCH as symbols for which external 
definitions will be required at load time. 

S:STEP Step Source Input 

The S:STEP directive causes a temporary suspension of input 
from the SI device. It is primari Iy of use for source input 
from paper tape I where large programs must be main­
tained on separate reels. This directive has the form 

Label Command Argument 
S: STEP 

When the S:STEP directive is encountered during the en­
coder pass (during SI input), the assembler wi Ir output the 
message 

I STEP HIT 
~------~ 
on the OC device. Then the Monitor's M:WAIT routine is 
called to allow the operator to mount the next paper tape 
reel. When the operator continues the job, assembly is 
resumed with the next record from the SI device. 

Extended Symbol Directives 37 



SET Set a Value 

The SET directive, like EQU, enables the user to define a 
symbol by assigning to it the attributes of the expression in 
the argument field. SET has the form 

L._a-:-b_e~I __ + ___ Comm'~_1 Argument 
--labe I SET C exp 

where "label" and "exp" are the same as described for 
EQU. 

The SET directive differs from the EQU directive in that 
any symbol defined by a SET may be redefined later by 
means of a subsequent SET. This directive is particularly 
useful in writing procedures (see Chapter 7). 

If a symbol defined via a SET directive is to be redefined 
but the user writes an EQU directive instead of a new SET, 
Extended Symbol produces an error notification and retains 
the earlier definition. This same condition holds true for 
a variable defined by an EQU and later redefined by a SET. 

Example 27. SET Directive 

A EQU X'FF' 

M SET A M is set to the hexadecimal 
value FF. 

S SET M Thus, S:cc M, i.e., X'FF' 

M SET 263 Redefines symbol M. 

S EQU M Error; does not define symbol S 

SOCW Suppress Object Control Words 

The SOCW directive causes Extended Symbol to omit all 
loader control information in the binary output that it pro­
duces durin!] an assembly. This directive has the form 

label command argument 
SOCW 

When Extended Symbol encounters the SOCW directive, it 
sets the location counters to absolute zero, processes the 
program as an absolute section, and ignores any subsequent 
IDNT or LBL directive. An eriOr flag is given if those 
directives that require control byte generation are used 
(DEF, REF, or SREF)' An error is also given if those direc­
tives that have no meaning for a program being assemblpd 
with SOCW are used (COMMON and GSECT), if an 
illegal ob ject language feature is subsequently required 
(such as the occurrence of a procedure -Ioca I forward refer­
ence), or if the SOCW directive is used subsequent to the 
generation of any object code in the program. 

38 Extended Symbol Directives 

Use of the BOUND, LOC, ORG, and RES directives is 
allowed, although this is a highly questionable practice 
(i. e., no code is generated for these directives, but the 
location counters are modified as directed). 

Once the SOCW directive is invoked, it remains in effect 
during the assembly of the entire program. 

Norma lIy, contro I words are produced to convey to the 
loader info,mation concerning program relocation, exter­
nally defined and/or referenced symbols, etc. In special 
cases, such as writing bootstrap loaders and special diag­
nostic programs, the programmer does not want the control 
words produced; he needs only the continuous string of bits 
that result from an assembly of statements. The SOCW 
directive enables the programmer to suppress the output of 
these control words. 

When SOCW is specified, it is recommended that it be the 
first statement in the program, or at least precede the first 
generative statement. 

SPACE Insert Blank Lines 

The SPACE directive causes b lank lines to be inserted in 
the assembly listing; its form is 

Label Command Argument 
SPACE n 

where 

n is an evaluatable absolute expression (no literal, 
external, or forward references) designating the 
number of b lank lines to be inserted. If the 
va lue of n is negative or zero, the directive is 
ignored. If the value of n equals or exceeds the 
number of lines remaining to be output on the 
current page, then a SPACE directive has the same 
effect as a PAGE directive. 

A label field entry is ignored by the assembler unless it is 
the target of a GOTO search. 

SREF Secondary Externa I References 

The SREF directive is similar to REF and has the form 

Command Ar ument 
SREF symbol

1 
~, symbol

2
, •.. , symbol

n
) 

where each symbol has the same meaning as described for 
REF. 

A label field entry is ignored by the assemb ler. 

SREF differs from REF in that REF causes the loader to 
load programs whose labels it references, whereas SREF 



does not. Instead, SREF informs the loader that if the 
programs whose labels it references are in core memory, 
then the loader should satisfy the references and pro­
vide the interprogram linkage. If I'he programs are not 
in core, SRE F does nol' cause the loader to load them; how­
ever, it does cause the loader to accept any references 
within the program to the symbols, without considering 
them to be unsati sfi ed extern(ll references. 

TEXT EBCDIC Character String 

The TEXT directive enables the user 1"0 assemble an EBCDIC 
character string for use as data. This directive hels the form 

Label ~~_C~on~-lm-a-nd-~r~u~m~e~n~t ____ ~~ __ ~ 
-[label] TEX~_=~-I(~S 1[, ... , ICSn IJ 

where 

label is any va I id symbol. Use of a label is op-

cs. 
I 

tional. When present, it is definedas the current 
value of the execution location counter and iden­
tifies the first word of the character string. TEXT 
increments the location counters by the number of 
words generated from the argument field. 

is an explicit character string constant and 
may include Clny character$ in the EBCDIC char­
acter set. the character sITing must be enclosed 
by single quot'ation marks (see IIConstants" in 
Chapter 2). 

The character string is assembled in binary-coded form, 
two characters per word. A b lank is inserted as the second 
character of the last word if the number of characters is 
odd. 

Example 28. TEXT Directive 

COL 1 TEXT IVALUE OF >< I 
generates 

I~ OF 
.x 

TEXT IABCII 

generates 

~~ 

TEXTC Text with Count 

The TEXTC directive enables the user to incorporate a 
character string preceded by a character count in a pro­
gram. This directive has the form 

Command 
TEXTC 

where Ilabel ' and cs. have the same meaning as described 
for TEXT. I 

The TEXTC directive provides a byte count of the storage 
space requi red for the message. The count is placed in the 
first byte of the storage area and the character string fol­
lows, beg i nni ng in the second byte. The count represents 
only the number of characters in the character string; it 
does not include the byte it occupies nor any trailing 
blanks that may be required. The maximum number of char­
acters (in the string) for a single TEXTC directive is 63. 

In all other aspects, the TEXTC directive functions in the 
same manner as the TEXT directive. 

Example 29. TEXTC Directive 

ALPHA 

TITLE 

TEXTC IVALUE OF XI 
generates 

10 V 
A L 
U E 

F 
X 

o 

Identify Output 

The TITLE directive enables the programmer to specify an 
identification for his assembly listing. The TITLE direc­
tive has the form 

Command 
-TITLE--

Argument 
[

I I I I 
cs 1 ' ... , cs 

where CSj is an explicit character string constant (one 
through 64 characters) and may include any characters in 
the EBCDIC character set. The character string must be 
enclosed by single quotation marks. 

A label field entry is ignored by the assembler unless it is 
the target labe I of a GOTO search. 

When a TITLE directive is encountered, the assembly listing 
is advanced to a new page and the character string is 
pri nted at the top of that page and each succeedi ng page 
unti I another TITLE directive is encountered. 

Extended Symbol Directives 39 



Example 30. TITLE Directive 

TITLE ICARD READ/PUNCH ROUTINE I 

TITLE IMAG TAPE I/o ROUTINEI 

TITLE 

40 Extended Symbol Directives 

TITLE IIICONTROLLERIII 

The first TITLE causes Extended Symbol to position the 
assembly listing at the top of a new page and to print 
CARD READ/PUNCH ROUTINE there and on each suc­
ceeding page unti I the next TIT LE directive is encoun­
tered. The next directive causes a skip to a new page 
and the output of the title MAG TAPE I/o ROUTINE. 
The third TITLE directive likewise causes a skip to a 
new page but no title is printed because the argument 
field is blank. The last TITLE directive designates a 
new page with the heading ICONTROLLER I. 



7. PROCEDURES 

Procedures are extensions of the Xerox 530 and Sigma 2/3 
Extended Symbol assembly language. 

Procedures provide the programmer wi th a convenient way 
to write a definition that can be used to generate a desired 
sequence of assembly language stCltements many times in one 
or more programs. 

The procedure definition is written only once, and a single 
statement, a procedure reference, is written each time a 
programmer wants to generate the desi red sequence of 
assembly language statements. 

Using procedures, () programmer can cause Extended Symbol 
to generate different sequences of code as determined by 
conditions existing at assembly time. For example, a pro­
cedure can be written to produce a specified number of 
ADD instructions for one condition and to produce a pro­
gram loop {performing the same function} for a different 
condition (see Example 42). 

Procedures allow a program written in the assembly language 
of one computer (e. g., Sigma 7) t'o be assembled and exe­
cuted on another computer (e. g., Sigma 2/3). If a procedure 
definition is written for each Sigma 7 machine instruction, 
Extended Symbol treats the instructions as procedure ref­
erences and calls in the associated procedure definition, 
thus generating machine language code. 

All procedure definitions must occur before the first literal 
is generated by the assembler. 

PROCEDURE FORMAT 
Before a procedure r;ference can be assembled, a procedure 
defini tion must be avai lable to the assembler. A procedure def­
inition is normally placed at the be£linning of a source program. 
Th i s ensures that the defi n i ti on wi II precede a II references to it. 

A procedure definit'ion is a set of statements that provides 
the assembl er wi th the mm~moni c operation code and the 
sequence of statements the <;:lSSembler generates whe~ the 
procedure reference appears in the source program. 

Every procedure definition consists of a procedure identifi­
cation directive, a procedure header di rective, statements 
that comprise the procedure body, and a procedure trai ler 
directive. 

The procedure identification directive specifies the mne­
monic operation code; i. e., the procedure definition name. 

The procedure header and trailer directives indicate to the 
assembler the beginning and end, respectively, of a proce­
dure defini tion. 

The statements in the procedure body are used by the assem­
bler to generate the assembly language statements that 
replace each occurrence of the procedure refere'1ce. 

CNAME Procedure Name 

The CNAME directive assiigns a nome to the procedure def­
inition immediately following and has the form 

Command 
.~--+---.------.-.- ----------~ 

CNAME 

where 

exp is an evaluatable expression {other than a lit-
eral, external or forward reference} that specifies 
a value to be associated with the name in the label 
field. This value may be referenced by the intrin­
sic function CF(l) or AF(O). This value must be 
positive and less than X·2000·, or it may be zero. 

name is the symbol by which the procedure defini-
tion that follows is identified. The "name" may 
be the same as the name of another procedure def­
inition or a mnemonic operation code but it must 
not be the same as an Extended Symbol Directive. 

In the case of dupl icate procedure names, the later name 
overrides the previous and a warning error is output. The 
name may not be the argument of a GOTO search. 

Any number of CNAME directives may precede a procedure 
defini tion. These di rectives may be interspersed wi th DO, 
FIN, EQU, SET, or GOTO directives if desired, but the 
procedure definition (PROC) directive must immediately 
follow the last CNAME. 

The result of having CNAME directives within the range of 
an inactive DO is that those names are not assigned to the 
subsequent procedure definition. Use of a GOTO directive 
accompl ishes the same resu It. However, it should be remem­
bered that the label of a CNAME directive may not be used 
as the target of the GO TO. 

-FRoe Begin Procedure Definition 

The PROC directive indicates the beginning of a procedure 
definition and has the form 

A label field entry is ignored by the assembler unless it is 
the target label of a GOTO search. An argument field 
entry is always ignored. 

The first line following the PROC directive begins the 
procedure body. The body of a procedure may conta i n 
any machine instruction and any directive except PROC, 
CNAME, and END. The assembler wi II invoke the various 
addressing techniques for instructi ons in a procedure defi­
nition and will extend the effect of the BASE directive when 
declared in the main program. 

Symbol region conditions of the main program are carried 
over into a procedure, and LOCAL symbols may override 
prior symbol definitions (see "Procedure Local Symbol 
Regions" in this chapter). Nonlocal symbols defined in a 
procedure may be referenced outside the procedure. 

A procedure definition may reference other procedures; how­
ever, a procedure may not contain another procedure defini­
tion. All procedure declarations must appear before the 
first literal is generated by the assembler. 

Procedures 41 



PEND End Procedure Definition 

The PEND directive terminates the procedure definition. 
It has the form 

A label field entry is ignored by the assembler unless it is 
the target label of a GOTO search. An argument field 
entry is always ignored. 

Generally, the format of a procedure definition is 

name CNAME 
PROC 

PEND 

Identifies the procedure 

Procedure definition 

Other procedures 

Program 

PROCEDURE REFERENCES 

A procedure reference is a source program statement that is 
processed by the assembler, just as assembly language state­
ments ale source program statements processed by the 
assembler. 

During an assembly, the assembler reads the procedure 
definition and stores the symbolic statements in core mem­
ory When the assembler encounters an associated proce­
dure reference, it locates the procedure definition it stored 
and assembl es those lines. 

A procedure refr:!rence statement consists of a label field, a 
command fi eld, an argument fi eld, and an optional comments 
field: 

label field may contain any valid symbol or may be 
blank. If a label entry is present, it is assigned the 
current value of the execution location counter; how­
ever, the counter is not incremented until the first 
generative statement of the procedure has been assem­
bled. Thus, c prncedure reference label is associated 
wi th the first generated word of the procedure defini­
tion. If the fi rst generative statement of the procedure 
definition is also !abeled, that label and the pro­
cedure reference label are equated by implication. 

command field contains the name of the procedure 
definition being referenced, followed by an op­
tional seri es of arguments (separated by commas); 
the name must be wri tten as it appears in the asso­
ciated CNAME directive. The command field ar­
guments are referenced by the intrinsic function CF. 

argument field contains a series of arguments 
(separated by commas) required by the procedure 
definition. The arguments are referenced in 

42 Procedure References/P~-ocedure-Loca: Symbol Regions 

statements of the procedure body via the intrinsic 
function AF (see "Intrinsic Functions" in this 
chapter). 

Note that any argument that affects the number of words 
that will be generated by the procedure definition must be 
defined prior to its appearance in the procedure reference 
statement. The programmer must specify the arguments re­
quired by the procedure :.:Ie'7, ,1ition and the order in which 
the arguments must appear. 

For example, a procedure definition could be written to 
move the contents of one area of memory to another area 
of memory. Four items must then be specified by the proce­
dure reference statement: the name of the procedure in the 
command field and, in the argument field, the address of 
the first word of the current area, the address of the first 
word of the area into which the information is to be moved, 
and the number of words to be moved. If the name of the 
procedure is MOVE, a procedure reference statement could 
be written: 

ANY MOVE HERE, THE RE, 10 

Example 31. Procedure Definition/Procedure Reference 

The procedure SUM produces the sum of two numbers and 
stores the sum in a specified location. 

The procedure reference line may consist of: 

Label field optional 
Command field the name of the procedure (SUM) 
Argument field The address of the first addend, fol-

lowed by the address of the second addend, fol­
lowed by the address of the storage location. 

Comments field optional 

The procedure definition is written as 

SUM CNAME 
PROC 
LDA 
ADD 
STA 
PEND 

AF(l) 
AF(2) 
AF(3) 

and the procedure reference may appear as 

NOW SUM A, B, C 

The resultant code in the object program is equivalent to 

NOW LDA A 
ADD B 
STA C 

The AF(i) arguments in the procedure defini tion refer to 
the argument field function. This built-in facility of 
Extended Symbol is explained later. In the SUM proce­
dure they refer to the three arguments A, B, and C of the 
procedure reference statement. 

PROCEDURE-LOCAL SYMBOL REGIONS 

A procedure definition may contain one or more LOCAL 
statements. When used within a procedure definition, 
LOCAL statements establ ish procedure-local symbol regions 



which, in general, conform to the conditions described for 
local symbol regions in CI main program, as described in 
Chapter 6. 

When the assembler initiates processing of a procedure def­
inition as the result of encountering a procedure reference, 
the current symbol region conditions of the assembly are 
carried over into the procedure assembly. That is, the 
current main level local symbols are sti II active at their 
particular level. If within the invoked procedure a LOCAL 
d i recti ve is encountered, then 

1. Loca I symbols from the most' recent or current mai n-
I oca I I eve I form thE~ base for the current procedure­
local level. To these base local symbols are added the 
symbols specified in the most recently encountered 
LOCAL directive. In the case of duplicate names for 
local symbols from different' levels, the value of the 
later name is used. 

2. Subsequent LOCAL directive encounters within the cur­
rent level causethepreviousadditionswithinthatsame 
level to be ignored and the new set of entries on the 
LOCAL directive to be added to the local symbol table. 

If within the current procedure level a lower level proce­
dure is invoked, the current procedure-local symbol table 
(if any}forms the base for any lower level procedure-local sym­
bol table generated by thE~ occurrence of a LOCAL directive. 

In summation, where there are multilevel local symbol re­
gions, the next highest level (if any) forms the symbol table 
base for the current region. LOCAL directives within a 
particular level act as they do in the main level. When a 
particular level is 'terminated by a PEND directive, the 
previous higher level has its symbol table restored and so 
on until main level is again reached. 

If a procedure is referenced more than once in a single as­
sembly, symbols defined within 'rhe procedure except by a 
SET directive must be declared LOCAL. If not, these sym­
bols will be multidefined. 

Example 32. Procedure-Local Symbol Regions 

*PROCEDURE P3 DEFINITION 

P3 CNAME 
PROC 
LOCAL A31 
DATA A

31" 
B
ll

, C
22

, D
11

, 
LOCAL B32 
DATA .A:llff B32, C

22
, D

11
, 

PEND 

*PROCEDURE P2 DEFINITION 

P2 CNAME 
PROC 

EO 

EO 

LOCAL 
DATA 
LOCAL 
DATA 
P3 
PEND 

Bll , C 11 , D11 , E21 

Bll , C
22

, D
11

, EO 

*MAIN LEVEL 

LOCAL 
P2 
END 

In this example the subscripts are used to show which 
references are identical. In the actual program there 
are of course no subscripts. 

INTRINSIC FUNCTIONS 

Intri nsi c functi ons are bui It into the assembler. The 10 
intrinsic functions described here enable the user to pass 
arguments from procedure reference statements to procedure 
definitions. These intrinsic functions are 

ABS 
AF 
AFA 
AFNUM 
AFR 
AT 
CF 
CFNUM 
CFR 
UFV 

AFNUM and CFNUM are reserved words; they may not be 
defined by the program. ABS, AF, AFA, AFR, AT, CF, 
CFR, and UFV are not reserved words; they may be defined 
by the program. 

Intrinsic functions may be used in the command or argument 
field of any machine instruction or assembler directive with 
the following exceptions: they may not be used in command 
field one (CF(l)) of any statement, nor may they appear in 
the argument field of a DEF, GOTO, IDNT, LBL, LOCAL, 
REF, SREF, TEXT, TEXTC, or TITLE directive. 

ABS Absol ute Va I ue 

The ABS function converts a relocatable address into an 
absolute integer value representing the word offset of the 
address from its relocation base (COMMON or non­
COMMON). Its format is 

ABS(address expression) 

where 

ABS identifies the function. 

address expressi on is any valid address. 

The absolute value of any item other than a relocatable 
COMMON address or a relocatable non-COMMON address 
is the item itself (that is, the ABS function has no effect). 

Intrinsic Functions 43 



Example 33. ABS Function 

CSECT Declares control section and sets lo­
cation counters to relocatable zero. 
Reserves five words. 

RES 

DO 
DATA 
FIN 

8*( (ABS($)& 7»0)-(ABS($)& 7} 

Generates data words of zero unti I the 
execution counter ($) is at a multiple 
of eight. Note that a BOUN D 8 di­
rective would accompl ish the same 
thing, but no data would be gen­
erated in the skipped locations. 

AF Argument Fi eld 

The AF functi on refers to the arguments ina procedure ref­
erence statement. Its format is 

AF'(element number} 

where 

AF specifies the argument field. 

element number specifies which argument in the 
argument field is being referenced. Element num­
ber is required and must be enclosed by parenthe­
ses. If the desi gnated argument in the procedure 
reference argument field is an expression, it is 
evaluated when the assembler evaluates the pro­
cedure reference statement, not when the intri nsi c 
function uses it. Example 35 illustrotes the use of 
the AF function. Element number zero refers to 
the value in the argument field of the CNAME 
line for the name by which the procedure was 
invoked. 

AFA Argument Field Asterisk 

.The AFA function determines whether the specified argu­
ment in the procedure reference argument field is preceded 
by an asterisk. The format of this function is 

AFA(element number} 

where 

AFA identifies the function. 

element number specifies which argument in the 
procedure reference, argument field is to be tested. 
Element number is required and must be enclosed 
by parentheses. AFA is useful for specifying the 
indirect tag for a GEN 1 directive. 

44 Intrinsic Functions 

The AFA function produces the value 1 (true) if an asterisk 
prefix exists on the designated argument. If the asterisk 
prefix does not exist, or if the designated argument is not 
provided, AFA produces a zero value (false). 

In the case where an argument may be passed down several 
procedure levels (from one procedure to another), anyoccur­
rence of the argument with an asterisk prefix wi II satisfy the 
exi stence of the prefi x. '. 

Example 34. AF/ AFA Function 

This procedure definition (COMP) loads the accumulator 
with the smaller of two values. The procedure reference 
statement may indicate indirect addressing for one or 
both of the arguments as in the reference 

ANY COMP *X, *y 

*X and *y specify that the addresses of the two words 
to be compared are in locations X and Y. 

COMP 

LDA 
CP 

CNAME 
PROC 
SET 
SET 
GENl 
GENl 
BNO 
GENl 
PEND 

The procedure reference 

ANY COMP 

X'8' 
X'D' 
LDA, AFA(l), 0, 0, 0, AFR(1) 
CP, AFA(2), 0,0, AFR(2) 
$+2 
LDA, AFA(2), 0, 0, AF(2) 

*X,*Y 

would generate coding equivalent to 

LDA 
CP 
BNO 
LDA 

The procedure reference 

COMP 

*X 
*y 
$+2 
*y 

X,Y 

would generate coding equivalent to 

LDA 
CP 
BNO 
LDA 

X 
Y 
$+2 
Y 



AFNUM Determine Number of Arguments 

The AFNUM function counts the number of arguments in the 
argument field of a procedure reference and returns that 
number to the procedure definition in whi ch AFNUM ap­
pears. Its format is 

AFNUM 

Example 35. AFNUM Function 

The procedure SUML produces the instructions to sum 
the items whose names appear in the procedure refer­
ence argument field. 

SUML CNAME 
PROC 
LDA AFR(l) 

K DO AFNUM-l 
ADD AF(K+ 1) 
FIN 
PEND 

The procedure reference 

SUML , A, B,C 

would generate coding equivalenl' to 

LDA 
ADD 
ADD 

The procedure reference 

SUML 

A 
B 
C 

A,B 

would generate coding equivalent to 

LDA 
ADD 

A 
B 

AFR Required Argument' Field 

The AFR function refers to the arguments ina procedure 
reference statement, as does the AF function. AFR differs 
from AF only when fewer than lIele!ment number II parameters 
are present on the procedure refere!nce line. In this case, 
AFR will cause a diagnostic: error, E, to be printed on the 
listing, whi Ie AF wi II not. In both functions, the value 
wi II be replaced by zero. 

AT Argument Type 

The AT function returns an integer code that denotes the 
IItype ll of the specified argument. AT is not restricted to 
use within procedures. Its format is 

AT(jtem) 

where 

AT identifies the function. 

item represents an intrinsic function, a symbol, or 
a valid expression. 

The AT functi on returns the following val ues, depending 
on the type of "item": 

Value 

o Not determined. Used for forward refer­
ences, externals, illegal expressions, etc. 

2 

3 

Previously defined, or self-defining, abso­
lute value. 

Previously defined relocatable address (non­
COMMON). 

Previously defined COMMON-relocatable 
address. 

The AT function is primari Iy of use within procedures. It 
allows (1) an additional attribute to be passed (other than 
AFA) for a given argument and (2) the abi I ity to test whether 
logi cal operations are permissible on a particular argument 
(defined-absol ute). 

Note: The AT function value is subject to extensions in 
subsequent versions of Extended Symbol. A proper 
test for a COMMON attribute is thus 

DO AT(AF(l ))=3 

and not 

DO AT(AF(l ))>2 

since returned values greater than 3 may subse­
quently reflect quite different attributes. 

Intrinsic Functions '45 



Example 36 • AT Function 

A set of procedures is defined to implement a form of Sigma 2/3 "immediate" instructions, such as LDAI (Load 
Accumulator Immediate) or ANDI (And Immediate). A prime concern in implementing such instructions is to use 
available "zero table" constants (low-core Monitor constants) where possible. If this is not possible, a literal is to 
be generated for the desired value. This example assumes the existence of a procedure named @YAL, which searches 
the ovailable zero-table value and returns the corresponding address in a variable named @ADR, or returns a zero in 
,~i'ADR if the desired value is not in the zero table. 

LDAI 

MUll 

CNAME 

CNAME 
PROC 
LOCAL 

GCTO, AT(AFR(1))'=l 
,ciVAL 

@ADR 

$LIT 
AF(l) 
$LIT 

Define operation codes of simulated 
i nstructi ons. 

Type is not absolute. 
Call zero-table search procedure. 
Skip if no find. GOTO, ':c':L'ADR=O 

GENl 
GOTO 

AF(O), 0, 0, 0, @ADR 
$PEND 

Operation with zero-table address. 
Exit. 

SLIT SPACE ° GEN1 AF(O), 0, 0, 0, =AF(l) 
Assembly no-op instruction. 
Operation with literal address. 

$PEND PEND 

LDAI 13 

LDAI 17 

CF Command Field 

The CF function refers to the argumenis in the command 
field of a procedure reference statement. Its format is 

CF{element number} 

where 

CF specifies the command field. 

element number specifies which argument in the com-

CFNUM 

mand field is being referenced. Element number 
is required and must be enclosed by parentheses. 
Element number one refers to the value in the 
argument field of the CNAME I ine for the name 
by whi ch I'he procedure was invoked. Element 
number zero is undefined. 

Determine Number of Command Field Arguments 

The CFNUM function counts the number of arguments in the 
command field of a procedure reference (including the first 
command field, which is the name of the procedure), and 
returns that number as its value. Its format is 

CFNUM 

46 Intrinsic Functions 

Generates LDA 

Generates LDA =17. 

Example 37. CFNUM Function 

The SAL procedure given in Example 39 could he modi­
fied to assume register 2 as a default link register, if 
no CF(2) is specified. 

SAL 

Thus 

CNAME 
PROC 
DO 
RCPYI 
ELSE 
RCPYI 
FIN 
B 
PEND 

BAL,7 

would generate 

RCPYI 
B 

CFNUM=2 
1,CF(2) 

1,2 

AFR(l), AF(2), AF(3) 

ADDR 

1,7 
ADDR 



but 

BAL ADDR 

produces 

CFR 

RCPYI 

B 
1,2 
ADDR 

Required Command Field 

The CFR function refers to the arguments in the command fi el d 
cf the procedure reference statement, as does the CF functi on. 
erR differs frornCronlywhenfewerthan "element number" 

parameters are present in the command field of the procedure 
reference line. In this case, CFR will cause a diagnostic 

error, E, to be printed on the listing, while CF will not. 
In both functions, the value will b,:! replaced by zero. 

Exumple 38. CFR Function 

The procedure BA L produces the RCPYI and B i nstructi on 
Iypically used to link to Cl subrourine or Monitor service 

routine. 

BAL. CNAME 
PROC 
RCPYI 

B 
PEND 

11, CFR(2) Set link register. 
AFR(l), AF(2), AF(3) Branch. 

The procedure reference 

BAL,2 SUBR 

~wnerates the equi val ent of 

RCPYJ 1,2 
B SUBR 

---"-----, .. _---' .. 

Example 39. UFV Function 

UFV Use Forward Va I ue 

The UFV function overrides the assembler's restrictions on 

the use of forward references. Its format is 

UFV(jtem) 

where 

UFV identiJlfes the function. 

item represents an intrinsic function, a symbol, or 

an expression. 

In order tomaintain identicoladdress ClSsignmentsinboth the 

definition and generation passes of theussembler, forward ref­
erences are not allowed in certain contexts (such as the argu­

ment fieldof a RES, BOUND, ORG, or DO directiv'c). In 
certain cases, it may be desirable to allow a forward refer­
ence when it is known that the value will not affect addrcss 

assignm0nt. The UFV functiop is uS0d to achieve this. 

During the definition pass (pass 1) of the assembler, UF\; 

returns the valuc, integer zero, If its argument i~ a forword 

reference; otherwise, its value is the argument itself. During 
the generation pass (pass 2) of the assembler, UFV return~ 
the value assigned by the definition pass, and inhibits the 

error reporting that would occur if the forward reference 
were used ina norma Ily i Ilega I context. 

The UFV function can be used in conjuncl'ion with the AT 

function in order to determine the type of a forward refer­
tlnCe (see Exampl e 41). 

I'Jote: The UFV function should be used with extreme care, 

such that no val ues resul ting from its use either 

directly or indirectly affect address assignment on 
eithe~ assembly pass. Labels or literal locations 

thot are defi tV3d di fferent I~' i r the two passes are 
fj':l9gedwith a "D" o=.rror. 

At a point prior t'o the definition of ALPHA, BETA, r)r GAMMA, it is desired to generote the offset of GAMMA from 

ALPHA if ALPHA < GAMMA < BETA, or the ofhet of GAMMA from BETA if GAMMA ,'BETA. The UFV function 
makes this simple to accomplish, as shown below. 

DO 

DO 
DATA 

ELSE 
DATA 
FIN 
ELSE 
DATA 
FIN 

ALPHA EQU 

GAMMA EQU 

BETA EQU 

UFV(GAMMA) > UFV(ALPHA) 

UFV(GAMMA) < UFV(BETA) 
GAMMA - ALPHA 

GAMMA - BETA 

o 

$ 

$ 

$ 

o on definition petS< (see Chapter 1). 
o on definition pass. 
Generoted on generation pass. 

Gencluted on definition pass. 

L..-______ , ______________ , _____________ _ 

.. ,.-------,----.----.--~ 

Intrinsic Functions 47 



Example 40. AT and UFV Functions 

Normally, the AT function returns the value zero for 
all forward references. Use of UFV allows the actual 
type to be returned on the generati on pass (see 
Chapter 1) of the assemo I er. 

CSECT 

DATA AT(UFV(LABE L)) 1 on definition 
pass, 2 on gen­

LABE L RES a eration pass. 

SAMPLE PROCEDURES 

The following examples illustrate how procedures are used 
in generating conditional code and how one procedure def­
inition may call another. 

Example 41. Conditional Code Generation 

This procedure tests N in the procedure reference state­
ment to determine whether straight iterative code or an 
indexed loop is to be generated. If N is greater than 3, 
an indexed loop will be generated; if N is less than or 
equal to 3, straight code will be generated. In either 
case, the resultant code will sum the elements of a table 
and store the result in a specified location. 

The procedure definition is 

TOTE 

K 

x 

Y 

CNAME 
PROC 
RCPY 

EQU 

GOTO, K+l 
DO 
ADD 
FIN 
DO 
LDX 
ADD 
BIX 
FIN 
STA 
PEND 

0,7 

AF(2»3 

X,Y 
AF(2) 
AF(I )+X-l 

K=l 
=-AF(2) 

Clear accumu­
lator 
Produces the 
value 1 if N>3 
or a if N :5 3 

AF (1 )+AF (2), 1 
$-1 

AF(3) 

The procedure reference has the genera I form 

TOTE ADDRS, N, ANS 

where 

ADDRS represents the address of the first value 
in the table. 

N is the number of va I ues to sum. 

48 Sample Procedures 

ANS represents the address of the location 
where the sum is to be stored. 

For the procedure reference 

Y TOTE ALPH, 2, BETA 

instructions equivalent to the following lines would be 
generated in-line at assembly time. 

Y RCPY 0,7 Clear the accumulator. 
ADD ALPH Add contents of A LPH 

to accumulator. 
ADD ALPH+l Add contents of ALPH 

+1 to accumulator. 
STA BETA Store answer. 

If the procedure reference were 

TOTE ALPH, 5, BETA 

the generated code would be equivalent to 

RCPY 0,7 Clear the accumulator. 

LDX =-5 The va I ue -5 is stored 
in a literal pool and 
its address is made the 
effecti ve address of 
LDX. Thus, load index 
with the value -5. 

ADD ALPH+5,1 Index register 1 con-
tains -5 (on the first 
pass). 
ALPH+5-5=ALPH. 

BIX $ - 1 Increment index regis-
ter 1 by 1 and branch. 

STA BETA Store answer. 

Example 42. Procedure that References a Procedure 

The procedure EXCH exchanges the contents of the 
A-register and a memory location m. 

The procedure reference has the form 

EXCH m, x, b 

The EXCH procedure in turn references the LDE (load 
E-register) procedure. LDE is defined first. 

LDE CNAME 
PROC 
RCPY 
LDA 
SCLD 
PEND 

A,E 
AF(1), AF(2), AF(3) 
16 



EXCH CNAME 
PROC 
RCPY 
LDE 
STA 
RCPY 
RCPY 
PEND 

E, T 
AF(lI), AF(2), AF(3) 
AF (l'), AF (2), AF (3) 
E, A 
T, E 

Note: The EXCH procedure destroys the original con­
tents of the T register but not the E regi ster. 

If a procedure reference to EXCH is 

EXCH NEW, 1 

the equivalent symbolic code is 

RCPY E, T 
RCPY A, E 
LDA NEW, 1 
SCLD 16 
STA NEW, 1 
RCPY E, A 
RCPY T, E 

Samp Ie Procedures 49 



8. OPERATIONS 

The Xerox 530 and Sigma 2/3 Extended Symbol assembler 
is designed to run under control of the 5 igma 2/3 Real­
Time Batch Monitor (RBM). This chapter describes the op­
erational characteristics of Extended Symbol in addition 
to a brief discussion of Monitor control commands that may 
be used to control the operation of the assembler. More 
detai led discussion of these Monitor control commands wi II 
be found in the RBM/RT, BP and OPS Reference Manuals, 
90 10 37 and 90 15 55. 

RBM CONTROL COMMANDS 

In order to assemble a Symbol or Extended Symbol source 
program, a run deck containing the necessary Monitor con­
trol commands must first be prepared. Those commands 
commonly used in Extended Symb::>1 operatians are described 
below. 

JOB CONTROL COMMAND 

The first card in a run deck containing Extended Symbol 
programs must be a JOB card, which has the format IB ~lame,accountl 

where 

name,acc<::>unt provide job accounting information 
for installations that have included the accounting 
femure of RBM. 

The JOB command resets all operationol labels to their 
i nstallati on-defi ned assignments: providi n:J a convenient 
method of enwring normal input (.lnd output conventions for 
a parti cu lar assembl y. 

ASSIGh: CONTROL COMMAND 

Appearing next in the run deck are any ASSIGN cards re­
lating to the assembly. Normally, ASSIG N cards wi II not 
be needed, since the following operational labels will have 
default ass;gnments to the appropriate devices for a par­
ticular installation. 

Operati ona I 
Label Description 

BO Binary output device. 120-byte binary 
records. May be CP, PT, MT, RAD, or disk. 

DO Diagnostic output device. Used to I ist error 
;ines and error summary. May be KP, LP, 
MT, RAD, or disk. 

50 Operations 

Operational 
Label 

GO 

LL 

LO 

SI 

SO 

52 

UI 

Descri pti on 

Bi nary output fi Ie for load-and-go operations. 
120-byte records. Default is RAD or disk. 
May be CP, MT, or PT. 

Listing log device. Used to print XSYMBOL 
control command diagnostics. May be KP 
or LP. 

Listing output device. Used for assembly 
listing and c<ross-reference listing. May 
be KP, LP, MT, RAD, or disk. 

Symbolic input device. SO-byte EBCDIC or 
BCD records. May be KP, PT, CR, MT, 
RAD, or disk. 

Symbolic output device. SO-byte EBCDIC 
records. May be PT, CP, MT, RAD, or 
disk. 

Standard procedure file. lOS-byte binary 
records. Default is RAD or disk (RBMS2 file 
in SD area). 

Update input devi ceo SO-byte EBCDIC or 
BCD records. May be KP, PT, CR, MT, 
RAD, or disk. 

X 1 Used to maintain a copy of the source pro-
(scratch file) gram for the assembly listing. SO-byte 

EBCDIC records. Default is a temporary, 
compressed, RAD or disk file. May be MT 
or the 51 devi ceo 

X2 Encoded text output by the Encoder whi ch is 
(scratch file) assembled by the definition and generation 

passes. Unblocked file. If non-RAD, rec­
ord size is 360-bytes (binary). If RAD or 
disk, each record is equal to sector size. 

X3 Used for LOCAL symbol tables between the 
{scratch file} definition and generation passes. Six-byte 

binary records. Default is a temporary, 
blocked, RAD or disk file. 

If the user wishes to reassign any of these operational labels 
to a particular device, an appropriate ASSIGN card is nec­
essary. Typical reassignments might involve changing the 
51 device from the card-reader to a particular magnetic-tape 
drive, or changing the BO devi ce from the paper-tape punch 
to a specific disk file. 

Since the Monitor automatically allocates a blocking buffer 
(equal to the si?:e of a sector) for any operational labels 
assigned to a blocked RAD or disk file, a certain amount of 
core savings may be effected by assigning unused files to 



file zero (nonexisten't). For instance, a pwgram that is 
known to use no main-level LOCAL symbols may regain a 
sector-size amount of core sf'orage with the command 

(!ASSIGN X3=O 

Another typical use of the ASSIGN ,command is to reassign 
the S2 operational label to a file containing a special set 
of user-defined standard procedures, as in 

!ASSIGN S2=MYPROCS,UD 

DEFINE AND TEMP CONTROL CARDS 
'(TEMPORARY FILE DEFiil-YIONf 

The Xl, X2, and X3 files are normcilly allocated auto­
matically by the Monitor upon encountering an XSYMBOL 
control command. These are alloca'ted from the available 
BT (Background temp) area in the ratio, 90:30:3, respec­
tively. This allocation may be ovenridden if any of these 
operational labels were previously ASSIGNed or DEFINEd. 
The DEFINE command is used to allocate a portion of the 
BT area prior to call ing Extended Symbol. The format of 
the DEFINE command is 

! DEFINE opl b, nrec, srec [, format] 

where 

oplb is the opE:rational label being DEFINEd. 

nrec is the number of logical records in the file. 

srec is the logical record size, in bytes. 

format is U for an unblocked file, or C for a com-
pressed EBCDIC file. If "format" is omitted, the 
file will be blocked if "srec" is not greater than 
one-half the size of a sector. 

Temporary files are normally released at the end of each 
"job step" (for example, at the end of each assembly). 
They may be saved for the next job step by preceding 
the XSYMBOL command with a TEMP S control command. 
For instance, an assembly in which the BT area is to be 
used as the BO file could precede the XSYMBOL com­
mand with 

! DEFINE BO, 100, 120 

ITEMP S 

XSYMBOL CONTROL COMMAND 

The Extended Symbol assembler is called into operation 
with this command which has the form 

IXSYMBOL option 1, option2, ... ,option n 

where any number of options, or none, may be specified. 
The options and their meanings are given below. 

BA Batch assembly mode 

BO Binary output 

CR Cross-reference listing 

DW Display warnings 

GO Output GO file 

LO List assembly output 

LU List update input 

NP No standard procedure input 

PP Punch standard procedure file 

SL Simple literals 

SO Symbol i c output 

SS Symbol summaries 

UI Update input 

Options may be specified in any order. If no options are 
specified, the BO, GO, and LO options are assumed. 

The XSYMBOL control card is free form; blanks may appear 
anywhere except between the two letters of an option name. 
At I east one blank must separate the XSYMBOL command 
from the first option. The option list may not extend beyond 
column 72 of the XSYMBOL control command; it may be 
terminated at any point by a period in the option list. 

A sample XSYMBOL command is shown below. 

lXSYMBOL LO,DW,GO,CR .CHECK~ 

[-WARNING FLAGS 

The various options are explained below. 

BA This option selects the batch assembly mode. In this 
mode, successive assemblies may be performed with a single 
XSYMBOL command. The assembler will read and assemble 
successive programs until a double end-of-file indicator is 
encountered. In the batch mode, current operational label 
assignments and options on the XSYMBOL command are 
applied to all assemblies within the batch. 

RBM Control Commands 51 



A program is considered terminated when an END directive 
is processed. However, another program may immediately 
follow an END directive without an intervening end-of­
file indicator. In such a case all records between this 
END directive and the first subsequent END directive 
or end-of-file indicator wi" be assembled as a separate 
program. An exception to this rule is that if an END 
directive is inserted as an update, any remaining records 
between the inserted END directive and the next end-of­
file indicator are ignored. 

For any input device, a source record beginning with the 
characters !/Ef'J will serve as an end-of-file indicator. If 
source input is from cards, paper tape, or the keyboard­
printer, an EOD command is recognized as an end-of-file. 
With input from magnetic tape, RAD, or disk, the appropri­
ate end-of-file indicator is recognized as an end-of-file. 

In the l>atchassemb!ymode, the La and SO files are written 
with a single end-of-file between each file, while the last 
file is followed by a double end-oF-file. The BO file is 
written with Q single blank record following each file, 
while the GO file is written with a single end-of-file fol­
lowing the last file. 

80 This option specifies that binary output is to be pro-
duced on the BO devi ceo If the BO and GO operational 
labels are assigned to the same device, the BO option 
is ignored. 

CR This option specifies that a symbolic name cross-
reference listing is to be produced on the La device. The 
cross-reference I isting is normally generated after the as­
sembly listing; the assembly phases are skipped, however, 
if not any of the BO, GO, La or PP options is specified. 
In this case the 52, Xl/and X3 operational labels may be 
assigned to zero. 

The format of the cross-reference listing is similar to that 
produced by the Sigma Concordance :xogram (see Appen­
dix D). The major differences are listed below: 

1. Only one section is produced by this program. It con­
tains local and nonlocal symbols only. XSYMBOl 
operation codes and directives are not included. 

2. Source program cards 'vv :th syntax errors are not listed, 
and no message is produced for them. There may also 
be a loss of symbol references on such cards. 

3. No II'~CL or EXCL control commands are available in 
this program. However, the abundant occurrence of 

I certain symbol references, e. g., register designators, 
is automatically limited by placing an arbitrary max­
imum number of references that wi" be listed. If this 
maximum is imposed, those symbols whose references are 
not completely listed wi" be marked on the listing. 

4. All symbol references within a continued line will be 
listed as if the reference were on the first line. 

5. No TITLE control command is available in this program. 

52 RBM Control Commands 

6. Duplicate definitions of symbols are included as refer­
ence lines. 

7. If the SO option has not been specified, lines inserted 
as updates are I isted in the form n. m, corresponding 
to the mth update after line n in the assembly listing. 

OW This option instructs the assembler to display any 
warnings (trivial diagnostics) that it may detect during as­
sembi},'. These warning flags do not reflect assembly errors, 
but may point up unusual usage of the Extended Symbol lan­
guage (for example, unused REF symbols, symbols greater 
than eight characters, etc.). Unless this option is specified, 
lines containing only warnings are not flagged, nor is the 
"vI/arning line" count included in the summary. 

GO This option specifies that the binary object program 
is to be placed in a temporary file from which it can be 
later loaded and executed. This file is only rewound by the 
Monitor JOB command and the Overlay Loader, allowing 
multiple object modules to be grouped for subsequent loading. 

LO This option specifies that a listing of the assembled 
obiect program is to be produced on the LO devi ceo 

LU This option specifies that a listing of the update deck 
is to be produced on the LO device. This listing consists of 
an image of each update I ine along with the number of the 
line within the update deck. When the LU option is speci­
fied, the La and SO operational labels cannot be assigned 
to the same devi ceo 

NP This option specifies that no standard procedures are 
to be read from the S2 file prior to assembly. Note that the 
NP option is forced by the assembler if PP is also specified. 

PP This option specifies that a new standard procedure 
file is to be punched on the S2 device. Unless reassigned 
via an ASSIGN command, 52 has a default assignment to 
the RBMS2 file in the SD area. If S2 is assigned to a pro­
tected RAD or disk file, the operator must enter an unsolic­
ited key-in of SY before proceeding with the assembly. This 
option forces the N P option, so that N P is redundant if PP 
is specified. 

SL This option specifies that automatic address literal 
generation wi" not be performed for multitermed expres­
sions containing Forward references to symbols (see II Literal 
Pools", Chapter 4). Use of this option wi", in certain cases, 
reduce the overall size of a given program. Used consis­
tently, it will enforce more rigorous programming practices. 

SO This option specifies that an updated copy of the 
symbolic source file is to be produced on the SO device. If 
not any of the BO, GO, LO, or PP options is specified, the 
assembl y phases are sk i pped. 

SS This option specifies that the Symbol Value and Ex­
ternal Reference summaries are to be produced on the LO 
gevice at the encl of assembly. Unless this option is speci­
fied, these two summary tables are omitted. 



UI This option specifies that updates are to be read from 
the UI device and merged into the source file read from the 
51 device. When the UI option is specified, an update deck 
must be present on the UI device. The 51 and UI opera­
tional labels cannot be assigned to the same device, and 
neither can the SI and Xl operational labels. 

For compatibility with earlier versions of Extended Symbol, 
a second set of XSYMBOL control command options are rec­
ognized. If any of the foil lowing options are used, it 
should be the only option (::In the control command. Note 
that only the first two characters of these options are ex­
amined, and that they moy appecJr anywhere within the 
first 72 columns of the control command. 

Option Equivalent 
-----

ALL BA, LO, BO, GO 

NOREAD NP, LO, BO, GO 

PUNCH PP, LO, BO, GO 

READ LO, BO, GO 

Figure 4 illustrates how a deck would be set up to assemble 
multiple programs when using the HA option. Figure 5 illus­
trates a sample deck setup of the same assemblies without 
the BA option. In each figure, the assembler is instructed 
to output a binary module and a program listing for each 
deck in the job. 

UPDATING A SOURCE PROGRAM 

An Extended Symbol source program may be updated by 
specifying the UI option on the XSYMBOL card and by pro­
viding an update deck on the UI device. This update deck 
is then associated with the corresponding source program on 
the SI device. There will normally' be one update deck for 
each source program. 

An update deck consists of a set of update control cards 
(indicated by a + in column 1) int,srleaved with symbolic 
assembly images to be inserted. An update deck is ter­
minoted by a card containing the image +END in columns 1 
to 4, or by an end-of.-file indicator. Update control cards 
take one of the following forms: 

+k where k is a I ine number corresponding to a line 
on the assembly I isting produced from the source 
program. The +k control card designates that all 
cards following the +k card, up to but not includ­
ing the next upd(lte control card, are to be in­
serted after the kth line of the source program. 
The commcmd +0 desi gnates an insertion before the 
first I ine of the program. 

+j, k where j and k are line numbers corresponding 
to line numbers on the assembly listing produced 
from the source program, and j is I ess than or 

equal to k. This form desig:1ates that all cards 
following the +j,k card, up to but not including 
the next update control card, are to replace 
lines j through k of the source program. The num­
ber of lines to be inserted does not have to equa I 
the number of I ines removed; in fact, the number 
of lines to be inserted may be zero. In this case, 
lines j through k are deleted. 

+END where END designates the physical end of an 
update deck. 

The + character of each update control command must be in 
column 1, followed immediately by the control information, 
with no embedded blanks. The first blank column terminates 
the control command, and comments may optionally follow 
the blank. The update control commands, with their asso­
ciated update records must occur in numeri c sequence. If any 
symbolic cards precede the first + command, they are treated 
as if preceded by a +0 card and are inserted before the first 
line of the source program. 

The ranges of successive insert ond/or delete control com­
mands must not overlap, except that the following case is 
permissible: +j,k followed by +k, where j < k. Overlap­
pi ng or otherwi se erroneous contro I commands cause the 
assembler to go into a special mode in which the update 
deck is scanned for control card errors. When the process­
ing of the update deck is completed, an abort occurs. 

If an end-of-fi Ie indicator is encountered before a +E ND 
card is found, the assembler supplies the missing +END card 
and the UI option is turned off for any subsequent batched 
assemblies. Thus it is necessary to provide update decks 
only for the first n assemblies that will actually be changed 
in a batch. 

If an update control command attempts to insert a source 
image beyond the END directive of the source program, a 
warning message is printed and the remainder of the update 
deck (through the next +END card) is ignored. If an END 
directive is inserted into the source program with an update 
deck, a warning message is printed and all remaining rec­
ords on the SI device (through the next end-of-file indica­
tor) are ignored. Thus an END directive should never be 
inserted into a source program that is not terminated by an 
end-of-file indicator. 

The update deck may be I isted by specifying the LU ,option 
on the XSYMBOL control card. The listing displays the 
update card image with a line number indicating the position 
of the card wi thin the update deck. A new symbol ic source 
image fi Ie can be produced by specifying the SO option. 
This causes a copy of the updated source program to be out­
put to the SO device. It also causes the updated source 
program to be resequenced on the assembly and cross­
reference I istings (if any). The SI and UI operational labels 
cannot be assigned to the same device. 

Figures 6 and 7 show sample deck setups for using the UI 
option with and without the BA option. 

Updating a Source Program 53 



Figure 4. Deck Setup for Assembling Multiple Programs Using the BA Option 

Figure 5. Deck Setup for Assembling Multiple Programs Without BA Option 

54 Updating a Source Program 



IEOD 

51 Device Input-

L...---.---------------.-

,-.------------

C Device Input 

._------------------_ .. --,-_._._---
Figure 6. Deck Setup for Lh;n:,j t:'I'~ Uf Optior: V/ith f'he BA Option 

Updating a Source Program 55 



Source deck 1 
51 Device Input 

C Device Input 

Figure 7. Deck Setup for Using the UI Option Without the BA Option 

56 Updating a Source Program 



STANDARD OBJIECT PROGRAM FORMAT 

Extended Symbol object programs are output by the assem­
bler as an object module. All object modules consist of an 
ordered set of records. The Xerox loaders have the foci Ii ty 
to load and link several object modules together to form 
an executable program. 

OBJECT MODULE RECORDS 

Each object module record consi sts of two parts: a record 
header and a record body. 

1. The record header contains record control information. 
This information is in the first three words of each ob­
ject module record os follows: 

[flU::: ID :=:r::)ec ord s ize~ 
C S Sequence nt~rf{ber 

Checksum----· 

o 1 7 8 15 

where 

ID is X'FF ' for all records except last, which 
is X'9F'. 

Record size is the number of words (excluding 
the three record control words) that com­
prise i·he active rec:ord. All words in excess 
of the record size ore ignored. 1 ~ record 
size ~ 51. 

Sequence number is, zero for the first record 
of th~ object module and increases by one 
for each record thereafter. A load error wi II 
result if the records comprising an object 
module are out of sequence. If the" SOl bit 
is set to 1, the sequence number wi II be 
ignored. 

Checksum is compu ted as the sum of the words 
comprising the active record, not including 
the record header. Carries of the most sig­
nificant bit are added to the low order bit. 
If the "C" bit is set to 1, the checksum will 
not be verified by the loader. 

2. The record body contai ns load items that control 
and defi ne the load data. 

LOAD ITEMS 

Each load item consists of a header word folhwed by a 
voriable number of load or control words. The first load 
item in an object module is a start-module item and the 
last item (other than record padding) is an end-module 
item. 

Every load item header word has the same general format: 

Bits 0-3 Type number. 

4-7 Control i nformati on. 

8-15 Number of load words or control words in 
the load item. Thus, number plus 1 is al­
ways equal to the size of the load item. 

Load item types are described in detail in the RBM/RT, BP 
Reference tv\anual, 901037. 

ASSEMBLER DIAGNOSTICS 

Duri ng assembl y, the assembler checks the source program 
for syntactical errors. If such errors are found, appropriate 
flags are set and the assembly operation continues. How­
ever, if an irrecoverable I/O error occurs, or if one of the 
assembler tables is exceeded before an END line, the 
assembly is aborted and an appropriate message is typed. 

FLAGS 

Flags indicate syntactical errors but do not cause the assem­
bly to terminate. These flags appear at the left-hand mar­
gin of the assembly listing, preceding the instruction that 
contains the error(s). One to three flags may be indicated 
on one assembly listing line. 

D 

E 

G 

L 

N 

Q 

R 

S 

T 

Interpretati on 
--_.---

Duplicate symbol definition or 
reference. 

Expression error or expression missing. 

Address out of range. 

Illegal operation code or illegal place 
for a directive. 

Label error (syntax or $,$$ or AFNUM 
used as a label). 

Missing PEND directive line or END 
or PEND directive in range of DO or 
GOTO. 

Procedure local string error. The 
relocatability of a procedure local 
address string has changed, and the 
output loader text is incorrect. 

Relocatable expression error or illegal 
use of a relocatable symbol. 

Syntax error. 

Significant digits lostdue to truncation. 

Severity 
----

2 

2 

2 

2 

2 

Standard Object Program Format/Assembler Diagnostics 57 



U 

W 

Undefined symbol or 
impossible address 
construction 

Warning (permissible 
but unusual condi­
tion). Not displayed 
unless the DWoption 
is specified. 

ERROR MESSAGES 

Severi ty 

o 

System-related error mes~,ages may occur at any time during 
an assembly. Such an error may cause the assembly to be 
aborted immediately or at the termination of the current 
program. Certain errors do not terminate an assembly, but 
warn that the assembl er is attempting to recover from an 
unusual condition. 

Error messages can occur at two points; within the update 
portion of an assembl y I isti ng or at the end of the mai n 
assembly listing. Whenever an error occurs in an update 
deck, the assembler enters a special mode in which it scans 
the remainder of the update deck for errors and then aborts 
(see Figure 8). When an error occurs during the assembly 
process, either an immediate abort wi" occur or the error 
message will be delayed until the end of the assembly. 
Warning messages always occur at the end of the assembly 
listing. 

All abort error messages are listed on the OC devi ce 
(operator's console), and all error messages are listed 
on the LO and DO devi ces, unless they are the same. 

1 .], .. 
2 X [QU Y 
:1 .7,6 

UPOATE ~~ReR 
.. .Z 

UPOATE CeNFL1CT 
5 .S 

UPCATE EIitReR 
b .3 
1 "1000'1000 
8 +iNO 

ABeRT ASSEMBLY AT LtNF. ~'1 
UPDATE ceNTReL CAAO fRReR 

lBeRT ceDE XS Lee .. ,ee 

£T.000,17 
06/07/'1 0010 

F!N 

If an error causes an abort, the resulting error message 
has the form 

ABORT AS5EMB L Y AT LIN E y 
error message 

! ! ABORT CODE XS LOC xxxx 

where 

y is the line number being processed when the abort 
occurred. The format of y is n or n. m. The latter 
form is used to indicate that the abort occurred on 
the mth update after source line n. If the abort 
occurs during the encoder phase, y will reflect the 
original source I ine number even if the 50 option 
is specifi ed. 

xxxx specifies the location in the assembler at 
which the abort occurred. 

The error messages that ctm occur in the update listing 
or assembly listing are explained in alphabetical order in 
Table 2. Only messages preceded by an abort message 
cause an abort. 

In addition, there is one unique error message that is printed 
only on the OC device: 

I/O ERR AT xx LINE y 

where 

xx is SI or UI. 

Y is the same as above. 

This message occurs when a parity error or illegal EBCDIC 
code has been detected on the 51 or UI device. After this 
message is printed, the Monitor's M:WAIT routine is called 
to allow the operator to abort or continue. If the operator 
continues, the offending record is used in spite of any errors. 

Figure 8. Sample Update Listing With Errors 

58 Assembler Diagnostics 



Message 

ABORT ASSEMBLY AT LINE y 
ASSEMBLER OR MACHINE ERROR 

ABORT ASSEMBLY AT LINE Y 
DO'S NESTED TOO DEEPLY 

Table 2. Error Messages 

( , 
Comments 

The assembl er has encountered a sup­
posedly impossible situation during the 
assembl y phase. The assembl y is aborted 
immediately. The assembly should be 
rerun, specifying a postmortem dump, 
and all pertinent documentation for­
warded to the appropriate Xerox 
representati ve. 

D Os have been nested to a depth 
greater than 30. The assembly is 
aborted immediately. 

---------------- -----------------------t------------------------------~ 
ABORT ASSEMBLY AT LINE Y 
DYNAMIC TABLE OVERFLOW 

An assembly phase dynamic table has 
overflowed. The assembly is aborted 
immediately. 

----------------- -----------------------t-------------------------~ 
ABORT ASSEMBLY AT LINE y The standard procedure file that has 
INCOMPATIBLE S2 FILE·-MUST RECREATE been specified was created by a dif-

~---------------- -------------------------
ABORT ASSEMBLY AT LINE y 
I/O ERROR ON xx: BLOCKING BUFFER UNAVAILABLE

t 

ferent version of the assembler It must 
be recreated for the current version. 
The assembly is aborted immediately. 

No blocking buffer has been allocated 
for device xx. This generally indicates 
that an insufficient number of blocking 
buffers was allocated for XSYMBOL 
when it was loaded. The assembly is 
aborted immediately . 

...------------------ -------------------------------1------------.-----------------------
ABORT ASSEMBLY AT LINE y Output or scratch devi ce xx is write-
I/O ERROR ON xx: DEVICE IS WRITE PROTECTED

t 
protected. The assembly is aborted 

----A-B-O-R-T-A-S-S-E-M--i-L Y-A-r -LI-N-E-,~-------------------------T~:m::~:::I::~~nd-Of-I; lei nd i~a~,-' ---
I/O ERROR ON xx: END-OF-FILE ENCOUNTERED

t 
has been encountered on device xx. 
This generally indicates an assembler, 
operating system, or machine error, as 
end--of-file indicators on user files are 
allowed. This message cannot occur 
for devices 5J and UI. The assembly is 
aborted immediately. 

~-----------------------------------------------------------1------ ------------.---------------------~ 

ABORT ASSEMBLY AT LINE y 

I/O ERROR ON xx: END-OF- TAPE ENCOUNTERED
t 

An end-of-tape indi cator has been en­
countered on device xx. This message 
is gi ven for i nsuffi ci ent space on a 
RAD file. The assembly is aborted 
immediately. 

tThe use of xx refers ,to one of the following operational labels of an assembler fi Ie: 

Fi Ie lJse File Use 
-~ .. 

BO Object languaf Ie output S2 Standard procedure 

DO Diagnostic outF )ut ur II?dote input 

GO Execution obje, :t language output Xl Intermed iate source 

LO li sti ng output X2 Encoded text 

SI Symboll c input X3 Program I oca I s 

SO Symbol'ic outpu t 

Assembler Diagnostics 59 



Table 2. Error Messages (cont. ) 

Message 

ABORT ASSEMBLY AT LINE y 
I/O ERROR ON xx: ILLEGAL SEQUENCE OF RAD OPERA TIONS

t 

Comments 

An i" ega I sequence of RAD operations 
has occurred on device xx. This in­
dicates an assembler, operating system, 
or machi ne:-rror. The assembly is 
aborted immediately. 

---------------------------,---------------,----- - .,--------

ABORT ASSEMBLY AT LINE y 
I/O ERROR ON xx: INCORRECT RECORD LENGTH

t 
Incorrect record length has been en­
countered on an assembler-created file 
on device xx. This indicates an as-
sembler, operating system, or machine 
error. This message cannot occur for 
devi ces 51 and UI. The assembler is 
aborted immediately. 

~------,----,------- ----------------------- ~-------,---,-------,---------------------I 

ABORT ASSEMBLY AT LINE y 
I/O ERROR ON xx: IRRECOVERABLE I/O ERROR

t 
An irrecoverable input/output error of 
an unspecifi ed type has been detected 
on device xx. The assembly is aborted 
immediately. 

~--------------------------------------------_1--------------------------~ 

ABORT ASSEMBLY AT LINE y 
I/O ERROR ON xx: NOT AsSIGNED

t 
The options specified on the XsYMBOL 
control card require device xx, but it 
has not been assi gned to a va lid devi ce. 
The assembly is aborted immediately. 

~---------------------------------~~-------------------------

ABORT ASSEMBLY AT LINE y 
LO"SO CONFLICTS WITH LU OPTION 

The LO and 50 operational labels have 
been assigned to the same devi ce when 
the LU option is specified. This would 
cause the LU and 50 outputs to be in­
termixed in a garbled manner. The as­
sembly is aborted immediately. 

------------------------------------------~~------------------~ 

ABORT ASSEMBLY AT LINE y 
PROC LINE OUT OF ORDER 

ABORT ASSEMBLY AT LINE y 
PROCs NESTED TOO DEEPLY 

A PROC definition I ine has been de­
tected after the first literal was gen­
erated. The assembly is aborted 
immediately. 

PROCs have been nested to a depth 
greater than 29. The assembly is 
aborted immediately. 

~-------.--------------,---------------------~------------,------------~ 

ABORT ASSEMBLY AT LINE y 
RBM CONTROL CARD READ ON 51 

The assembler has read an RBM control 
card on the SI devi ceo The currently 
active assembly can be completed, but 

tThe use of xx refers to one of the following operational labels of an assembler fi Ie: 

File Us~ File -~ 

BO Object language output 52 Standard procedure 

DO Diagnostic output UI Update input 

GO Execution object language output Xl Intermediate source 

LO Listing output X2 Encoded text 
• . 

SI Symbolic input X3 Program locals 

SO Symbol i c output 

60 Assembler Diagnostics 



Table 2. Error Messages (cont.) 

~--------------.----,-----------.-----------------------------------.------------------------------------, 

Message 

ABORT ASSEMBLY AT LINE y 
RBM CONTROL CARD READ ON SI (cant.) 

Comments 

no further assemblies in the batch can 
be processed. The abort wi II occur at 
the completion of the active assembly. 
Both the card in error and this error 
message are displayed at the end of the 
assembly listing. 

__________________ .---------________ . ____ +--______ . _______________ ---f 

ABORT ASSEMBLY AT LINE y 
RBM CONTROL CARD READ ON UI 

The assembler has read an RBM control 
card on the UI device. The currently 
active assembly can be completed, but 
no further assemblies in the batch can 
b~ precessed. The abort wi II occur at 
the completion of the active assembly. 
The card in error is displayed at the 
end of the update I isting, and this error 
message is displayed at the end of the 
assembly listing. 

-------------------- -----------_._-----------+----------------.-_._----------------

ABORT ASSEMBLY AT LINE Y 
SIc:UI IS ILLEGAL 

The 51 and UI operational labels tlUVe 

been assigned to the same devi ce when 
the UI option is specified. The as­
sembly is aborted immediately. 

>------------------------------------------------f---------.. --------... -----.. -

ABORT ASSEMBLY AT LINE y 
SIc=Xl CONFLICTS WITH UI OPTION 

The SI and Xl operational labels have 
been assigned to the same device when 
the UI option is specified. The as­
sembly listing (on Xl) would not cor­
respond to the actual updated listing. 
The assembly is aborted immediately. 

r----.--.-------------.. -- ---------------------- ---------------------.------.. ------------~ 

ABORT ASSEMBLY AT LINE y 
SYMBOL TABLE OVERFLOW 

The encoder phase symbol table has ex­
ceeded avai lable memory. The as­
sembly is aborted immediately. 

~--------------------- ._----------------------- ---------.-.. -----------------------~ 

ABORT ASSEMBLY AT LINE y 
TOO MANY LOCAL SYMBOLS 

More than 254 locol symbols have been 
declared for a local region. The as­
sembly is aborted immediately. 

f-- ----.-------------------f-----------,----
ABORT ASSEMBLY AT LINE y When an error is detected in an update 
UPDATE CONTROL CARD ERROR control card, the assembler prints an 

appropriate message (see UPDATE 
CONFLICT and UPDATE ERROR later 
in this table) and continues processing 
the remainder of the update deck. This 
message is printed after the update deck 
has been completely scanned for further 
updl1te control card errors. No as­
sembly takes place. Also, if there are 
further assemblies in tfle batch, they 
are no!- processed. 

t------------------------- ------------.---.... -----.. - ... - --------.---.. ---- --------------------_~ 

UPDATE CONFLICT 
LAST SEQ = n, m 

An error in an update control card has 
been detec ted; name I y, the range of 
the current update command confl i cts 
wi th the range of the I ast update com­
mand. This error message is printed 
directly after the update control card 
in error. 

Assembler Diagnostics 61 



Message 

UPDATE CONFLICT 
LAST SEQ = n, m (cant.) 

UPDATE ERROR 

Table 2. Error Messages (cont.) 

WARNING: ALL INPUT ON 51 IGNORED TO NEXT EOF 

WARNING: EXCESS UPDATE CARDS IGNORED TO NEXT -I-END OR EOF 

';2 Assembler Diagnostics 

Comments 

The second line of the message (indi­
cating the sequence numbers of the 
last update card) is displayed only if 
the LU option is not specified. For 
examplF., 

+7,8 
+2,5 LU on 
UPDATE CONFLICT 

+2,5 
UPDATE CONF LICT LU off 
LAST SEQ c:: 7,8 

The assembler continues processing the 
rest of the update deck so that any 
further update control card errors are 
detected and displayed. At the com­
pletion of this special processing, the 
message UPDATE CONTROL CARD 
ERROR is printed and the assembler 
aborts. No assembly takes place. 

An error in an update control card has 
been detected; namely, there is a 
syntax error (for example, +A), or j is 
greater than k for the update command 
+j, k. This error message is printed 
di rectly after the update control card 
in error. The assembler continues pro­
cessing the rest of the update deck so 
that any further update control card 
errors are detected and displayed. At 
the completion of this special process­
ing, the message UPDATE CONTROL 
CARD ERROR is printed and the as­
sembler aborts. No assembly takes 
place. 

The update deck has inserted an END 
directive into the program. The as­
sembler's pOSition in the source file is 
thus lost for further assemblies within 
the file. The remainder of the source 
program is skipped, and the 51 device 
is posi tioned after the next end-of-fi Ie 
indicator. The assembly is not aborted; 
it continues with the next file if BA is 
on, or terminates normally if BA is off. 
Th i s message appears at the end of the 
assembly listing. 

The update deck has specified an in­
sertion beyond the end of the source 
program. The extraneous update cards 
have been ignored, and the UI device 
has been posi t ioned after the next 
+END card or end-of-file indicator. 



Table 2. Error Messages (cont.) 

-----------------------------------------~-----------------------------------, 

Message Comments 

WARNING: EXCESS UPDATE CARDS IGNORED TO NEXT +END OR EOF 
(cont. ) 

The assembly is not aborted; it con­
tinues normally with using the source 
and update files as positioned. This 
message appears at the end of the as­
sembly listing. 

----------------------------.-.-------.---+------------------------.1 

WARNING: UI OPTION TURNED OFF 

ASSEMBLY LISTING 

The general format for an assembly listing line is shown in 
Figure 9. An output line contains, where applicable: 

1. A maximum of three diagnosti c flags. Errors in excess 
of three for anyone line are not flagged. The total 
number of lines containing errors is printed at the end 
of the assembly listing. 

2. The line number in decimal, or the update line number 
in decimal followed by an asterisk. 

3. The current contents of the e><:ecution location counter 
in hexadecimal. 

4. The object code in hexadecimal. 

5. An address classification flag that indicates, for the 
last field generated by the line (the address for in­
struction), whether the field is absol ute (flag A), 
relocatable (flag R), an external reference (flag E), or 
common relocatable (flag C). 

6. Lines skipped as a result of a GOTO directive are not 
flagged. The absence of generated code (ULL XXXX A) 
indicates that a line is skipped. 

7. The source language image of the original program 
statement. 

Literals are printed at points specified by the LPOOL direc­
tive or at the end of the assembly. 

The top line of each page of the assembly listing will con­
tain the assembler version number in print positions 1 to 3, 
a user title (if specified) in print positions 10 to 73, and 
the decimal page number in 95 to 104 as IIPAGE nnnnn II. 
If Job Accounting is included in RBM, the time at which 
the assembly began is inserted in positions 77 to 81 as 
HH:MM and the calendar date is inserted in positions 84 to 

An end-of-file indicator has been en­
countered on the UI device. The UI 
option is turned off for any subsequent 
assemblies. The assembly is not 
aborted; it continues normally using 
the source file as positioned. This 
message appears at the end of the as­
sembly listing. 

91 as MM/DD/YY. The page number is set to one at 
the beginning of each assembly. One line is sk::~;:,ed after 
the title line before resuming the listing. 

SUMMARY TABLES 

Following the END directive, the assembler issues a page 
eject and prints the following summaries as a standard part 
of the assembly listing. Each summary is preceded by an 
identifying heading. 

1. Symbol Value Summary. If the SS option was specified 
on the !XSYMBOL control command, this summary 
shows all defined, nonexternal symbols in the pro­
gram, except $, $$, AFNUM, and those designated 
as LOCAL. A typical item has the form 

SCALE/01 B5 R 

where 

SCALE is a symbol name. 

01B5 is the hexadecimal address at which it 
was defined. 

R classifies the value as a relocatable address. 

A value that is in COMMON will have a C rather than 
an R following its address. An absolute address, or an 
absolute value, wi II have no classification flag follow­
ing the value, as in 

K: HIBYTE/0038 

A symbol that is declared to be an external definition 
is printed in the form 

ENTRY-OOl E R 

Symbol values are printed five entries per line. 

Assembly Listing/Summary Tables 63 



r-,-pr lnt Pas it ion 

L 0 I 1 I 2 1 3" .. 4T 5 I 6' 
123456789/0123'+56 78910123,.56 789fH2:i456'7~'"i23456 7891112 3456 78~0123456 789 • 

[FFF NNNNN·" CLLL XXXX A SSSSS3SSSS ••••• 

-Assembly Listing Lint'. 

F error Flags 
N Line Number in Dec-1mal (the asterisk occurs only on update!.! lines) 
L Current Value of the Execution Location Counter in Hexadecimal 
X = Memory Word in Hexadecimal 
A Address Classification Flag 
S = Source Image 

Figure 9. Assembly Listing Fonnot 

2. External Referenc.e Summary. If the S5 option was 
specified on the IXSYMBOL control command, this 
summary shows all symbols declared to be primary 
or secondary external references. Only symbol names 
are listed, printed with eight entries per line. 

3. Warning Line Summary. If the DW option was speci­
fied on the XSYMBOL control command, thi'5 summary 
lists the total number of statements that contained only 
warning (W) flags. Note that if a particular I ine con­
tained both q warning and an error flog, it is included 
in the error I ine summary, and not the warning I inf> 
summary. 

EOl 

~ 

3 

.~ 

j 

6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

20 

21 

EXTENDED SYHBOL SA}-llJ LE PR0C;R.:\H 

'k 

0000 />. STURE$2 

.J~ 

0001 A P 

0002 A L 
, i( 

OOCA 
OOCA M :\,jRITE 
OOCE 
OOCD M :T}~RM 

.. }( 

TITLE 
UEF 

h.EF 

CNA...1I1E 

PROC 

STA 
seLD 
STA 
PEND 

EQU 

EQl1 

ASECT 
ORG 
RES 
RES 
RES 

CSECT 

4. Error Line Summary. This summary is unconditionol, 
and wi" be printed on bath the LO and DO devices. 
It lists the total number of error lines in the assembly 
(excluding lines containing only warnings). 

5. Error Severity Level. This summary is unconditional 
and wi" be printed on both the LO and DO devices. 
It shows the highest error severity encountered in the 
program (0-2). 

An assembly I isting of a sample problem is shown in 
Figure 10. 

00:04 06/07/71 PAGE 1 

'EXTENDED SYMBOL SAMPLE PROGRAM' 
SAMPLE DECLARE EXTERNAL DEFINITION 
M :DKEYS ,M: INHEX DEF WE AS EXTERNAL REFERENCES 

AF(l)+l 

16 
AF( 1) 

1 
2 

X'CA' 

2 

DEFINE COMK~ND 'STORE$2' 
BEGIN PROCEDURE DEFINITION 

STORE A-REGISTER 
EXCHANGE A & E REGISTERS 
STORE E-REGISTER 

END PROCEDURE DEFINITION 

Ol'EFATIUl\; REGISTER EQUATES 

DECLARE ABSOLUTE SECTION 
BEGINNING AT LOCATION 202. 

DECLARE SYMBOLIC TRANSFER VECTOR 
ENTRIES TO MONITOR 

SERVICE ROUTINES. 

DECLARE CONTROL SECTION 

Figure 10. Assembly Listing 

,54 Summary Tables 



22 0000 FOC4 A MESSAGE TEXT ~ODATA KEYS READ X" I' 
, OUTPUT MESSAGE 

0001 C1E3 A 
0002 C140 A 
0003 D2CS A 
0004 E8E2 A 
0005 40D9 A 
0006 CSC1 A 
0007 C440 A 
0008 EnD A 
0009 4040 A 
OOOA 4040 A 
OOOB 7D4B A 

23 OOOC 3005 A IOLIST DATA X'300S', IOCr ,MESSAGE,24 ARG LIST FOR MESSAGE 

OOOD D6C3 A 
OOOE 0000 R 
OOOF 0018 A 

24 -k 

25 0010 SAMPLE RES a 
26 0010 7SA1 A RCPYI P,L 
27 0011 4COB A B M:DKEYS READ DATA KEYS 
28 0012 7SAl A RCPYI P,L 
29 0013 4COA A B M:INHEX CONVERT TO EBCDIC HEXADECIMAL 
30 0014 E9F6 A STORE$2 MESSAGE+9 STORE IN OUTPUT MESSAGE 

0015 20FO A 
0016 E9F3 A 

31 0017 C807 A LDX =1011ST LITERAL ADDRESS OF ARGUMENT LIST 
32 0018 7SAl A RCPY1 P,L 
33 . 0019 44CA A B >'(M:WRITE WRITE THE OUTPUT MESSAGE 
34 OOlA 7SAl A RCPYI P,L 
35 OOlB 44CD A B "'(M:TERM RETURN TO MONITOR CONTROL 

. 36 -k 

37 0010 R END SAMPLE END OF PROGRAM 
OOlC 0000 E 
OOlD 0000 E 
001E OOOC R 

E01 EXTENDED SYMBOL SAMPLE PROGRAM 00:04 06/07/71 PAGE 2 

i( SYMBOL VALUES 
IOLIST/OOOC R L/0002 M:TERM/OOCD M:WRITE/OOCA MESSAGE/aooo R 
P/OOOI SAMPLE-OOIO R 

.,.( EXTERNAL REFERENCE S 
M:DKEYS M:INHEX 

* NO ERROR LINES 
* ERROR SEVERITY: a 

ET=000.18 
06/07/71 0004 BK=000.20,FG=000.00,ID=000.OO 

Figure 10. Assembly Listing (cont.) 

Summary Tables 65 





APPENDIX A. SUMMARY OF XEROX '530 AND SIGMA 2/3 INSTRUCTiONS 

Syntax is described in abbreviated form wi th required 
elements underl i ned. The followin~l abbreviations are used: 

* Indirect addressing designcltor for Class 1 instruc­
tions; source register inversion designator for 
Class 4 instructions. 

a Address expression. 

b 

c 

d 

fr 

gr 

m 

nr 

Base (expression, 0 means no explicit base). 

Shift count. 

Destination register designator. 

First register (2 2: fr ~ 6). 

General register (same as fr). 

Instruction mnemonic. 

Number of registers (1 2: m ~ 7). 

Register expression (2 ~ r .~ 6). 

rx Register indexing of field descriptor (rx = 1 means 
no indexing). 

Source register designator. 

sx Self-indexing of field descriptor (sx = 1 
means self-incrementing; sx = -1 means 
self-decrementing) . 

x Index expression (0 means no indexing). 

MEMORY REFERENCE INSTRUCTIONS (CLASS 1) 

BASIC SET 

Mnemonic Syntax Function 

ADD !:!:!. *~, x, b Add 

AND !:!:!. *~, x, b Logical AND 

B !:!:!. *~, x, b Branch 

CP !:!:!. *~, x, b Compare 

DIV !:!:!. *~, x, b Divide 

1M !:!:!. *~,x, b Increment Memory 

LDA !:!:!. *~, x, b Load Accumu lator 

LDX !:!:!. *~, x, b Load Index 

MUL !:!:!. *~, x, b Multiply 

RD !:!:!. *~, x, b Read Direct 

S !:!:!. *~, x, b Shift 

STA !:!:!. *~, x, b Store Accumulator 

SUB !:!:!. *~, x, b Subtract 

WD !:!:!. *~, x, b Write Direct 

GENERAL REGISTER SET 

Mnemonic Syntax Functi on 

AND !:!:!.'!.. *~, x, b AND Word 

AW ~,!.. *~, x, b Add Word 

CW !:!:!.'!.. *~, x, b Compare Word 

LW ~,!.. *~, x, b Load Word 

SGR !:!:!.iE. Set General Register 

STW !:!:!.':" *~, x, b Store Word 

SW !:!:!.':" *~, x, b Subtract Word 

..... FLOATING-POINT SET 

FAD !:!:!. *~, x, b Floating Add 

FDV !:!:!. *~, x, b Floating Divide 

FLD !:!:!. *~,x, b Floating Load 

FMP ~ *~, x, b Floating Multiply 

FSB !:!:!. *~, x, b Floati ng Subtract 

FST ~ *~, x, b Floating Store 

RFM m Reset Floati ng Mode 
(Control Instruction) 

SFM m Set Floating Mode 
(Contro I I nstruc t ion) 

I 
MULTIPLE PRECISION SET 

CPDt !:!:!. *~, x, b Compare Double 

DADt !:!:!. *~,x, b Double Add 

DSBt ~ *~, x, b Double Subtract 

LDDt m *a,x,b Load Double 

LDMt ~ *~, x, b, fr, nr Load Multiple 

SMP ~ .£!"'~ Set Multiple Precision 

STD
t 

~ *~, x, b Store Double 

STM
t 

~ *~I x, b, fr, nr Store Multiple 

tThese -i.nstructions are normally used when the Sigma 3 
Multiple Precision Arithmetic option is implemented. How­
ever, when this hardware is not implemented, software ex­
pansions for use of these instructions takes place as described 
in Appendix E. Note that there is no simulation of the LDM 
and STM instructions. 

Appendix A 67 



FIELD ADDRESSING SET Mnemonic Syntax Function 

Mnemonic Syntax Function SCLS ~~, x, b Shift Circular Left Single 

CAF rx , sx *~ x, b Compare Arithmetic Field 
SCRD ~~, x, b Shift Circular Right Double 

~, 

CLF rx, sx *~, x, b Compare Logical Field 
SCRS ~~,x, b Shift Circular Right Single 

.!!!.' 
LAF .!!!.' rx, sx *~, x, b Load Arithmetic Field 

lLF .!!!.' rx, sx *~, x, b Load Logical Field 
COpy INSTRUCTIONS (CLASS 4) 

SlF ~, rx, sx *~, x, b Sense left Bit of Field RADD m *s, d Register Add 

SOF ~, rx, sx *~, x, b Store Ones Field RADDC ~ *s,d . Register Add and Carry 

STF .!!!.' rx, sx *~, x, b Store Field RADDI ~ *s, d Register Add and Increment 

SZF ~, rx, sx *~, x, b Store Zero Field RAND m *s, d Register AND 

RANDC ~*~ Register AND and Carry 

RANDI m *s d 
-~ 

Register AND and 
I 

CONDITIONAL BRANCH INSTRUCTIONS (CLASS 2) Increment 

RCLA ~ *s,d Register Clear and Add 
BAN ma Branch if Accumulator 

RCLAC ~ *s,d Register Clear, Add, and Negative 
Carry 

BAZ ma Branch if Accumulator 
RCLAI ~ *s,d Register Clear, Add, and Zero 

Increment 
BEN ma Branch if Extended 

RCPY ~ *s,d Register Copy Accumulator Negative 

BIX Branch on Incrementi ng 
RCPYC !!!. *s, d Register Copy and Carry 

ma 
Index RCPYI ~ *s,d Register Copy and 

BNC Branch if No Carry Increment ma 

BNO Branch if No Overflow 
REOR !:!! *s, d Register Exclusive OR ma 

BXNC Branch on Incre~enti ng 
REORC ~ *s,d Register Exclusive OR ma 

and Carry Index and No Carry 

BXNO Branch on Incrementing 
REORI m *s, d Register Exc lusive OR ma 

and Increment Index and No Overflow 
ROR ~ *s,d Register OR 

RORC m *s, d Register OR and Carry 

SHIFT INSTRUCTIONS [CLASS 3) RORI m *s, d Register OR and 
Increment 

iI 

SAlD .!!!.~, x, b Shift Arithmetic Left 
I 

Double INPUT jOUTPUT INSTRUCTIONS (CLASS 5) 
SAlS .!!!.~, x, b Shift Arithmetic Left 

AIO Acknowledge Input/Output Single .!!!. 
Interrupt 

SARD .!!!.~, x, b Shift Arithmetic Right 
HIO Halt Input/Output Double ~ 

SARS .!!!.~, x, b Shift Arithmetic Right SIO m Start Input/Output -
Single TDY m Test Device -

SCLD .!!!.~, x, b Shift Circular Left Double TIO m Test Input/Output 

68 Appendix A 



AI)PENDIX B. EXTENDED SYMBOL DIRECTIVES 

In this appendix brackets indicate, optional items. Although a label field entry is indicated as optional, the assembler will 
define the label as the current value of the execution location counter and enter it in the appropriate symbol table. A blank 
label field indicates that the assembler will ignore a label unless it is the target label of a GOTO search. 

The table that follows the functional descriptions summarizes the format of each directive. 

Format 

[label] ADRL expression 

ASECT 

[label] BASE [expression] 

[label] BOUND predefine!d absolute expression 

label CNAME [predefined expression] 

[label] COMMON predefine·d absolute expression 

CSECT 

DEF 

[label] DO 

ELSE 

END 

label EQU 

FIN 

Llabel] GEN, 
field list 

predefi ned absol ute expression 

[ expression] 

predefi ned expression 

value list 

Function 

Generates one word containing the address of the desig­
nated expression. The generated word may be used as an 
address I itera I for the symbol. 

Declares the following program section to be absolute; 
that is, labels on subsequent statements wi II be defi ned 
as absolute values. 

Designates that the assembler may assume the value "ex-
pression" is contained in the base register. If BASE is 
omitted or if"expression" is not specified, the assembler 
will not automatically impose base-relative addressing. 

Advances execution location counter to the next word 
multiple of "expression" and advances load location 
counter the same number of words. 

Designates a procedure name (label) for an immediately 
following procedure definition. 

Advances the COMMON location counter by "absolute 
expression" • 

Declares the following program section to be relocatable; 
that is, labels on subsequent statements wi II be defined 
as relocatable va lues. 

Generates each value (Vi) in the list into k words. If k is 
absent, one-word values are generated. 

Declares that each symbol (si) may be referenced by other 
(separately assembled) programs. 

If expression> 0, generates the code from DO to FIN ex­
pression times, then continues assembly at the statement 
following FIN. If expression < 0, skips all code from DO 
to FIN; resumes assembly followi ng FIN. 

T errninates the range of an active DO loop; or identifies 
the beginning of the alternate sequence of code for an 
inactive DO loop. 

Terminates the assembly of the object program; optionally 
provides the starting point of the program (expression). 

EquCltes "Iabel" to the value of "expression". 

Terminates a DO loop. 

Produces one or more words containing the items in II value 
list" positioned according to specifications in "field list". 

Page 

22 

25 

18 

24 

40 

25 

25 

27 

28 

28 

: 28 

31 

32 

28 

32 

Appendix B 69 



Format Function Page 
~--__________________________________________ 4-___________ ' ___________________________________ ~ ____ ~ 

[label] GEN 1 

[label] GEN2 

GOTO[,k] 

IDNT 

LBL 

LIST 

[label] LOC 

[label] 

[label] 

LOCAL 

LPOOL 

ORG 

PAGE 

PCC 

PEND 

PROC 

REF 

[label] RES 

label SET 

SOCW 

SPACE 

70 Appendi x B 

opvalue, indirectvalue, index 
value, base value, address 

op value, address 

1 I[ I I] cs 1 , ... , cSn 

predefined absolute expression 

predefi ned expression 

[predefined absolute expression] 

predefi ned expression 

absolute expression 

predefined absolute expression 

predefined expression 

absolute expression 

Generates CI :1055 1 instruction from items in argument 
field. 

Gener~tes .:1 (lrJS::; 2 ; nstruction from items in argument 
field. 

Stops assembly and resumes at the statement whose label 
correspor,ds ~o the kth ~abe! (lk) in the list. If k is 
omitted, a~sem~:ly i:, re:;umed at label

l
. 

Causes" cs: (chara::ter stri ng constant) to be used in the 
start module item of the object module. 

Causes II cs" to be used in the identification fi eld of suc­
ceeding records of the object module output. 

Suppresses or resumes assembly listing depending on value 
of II expression". If" expression" is zero, assembly listing 
following L.lST will be ~uppressed until resumed by 
another LIST direcrive; if "expression" is nonzero, assem­
bly listing is enabled. 

Advances the execution location counter ($) to the value 
"expressiol," . 

Terminates existing local symbol region and initiates a 
new region in which the symbols (s.) are local symbols. 

I 

Designates 1'0 the assembler an area in the program at 
which literals may be assembled. If "absolute expression" 
is present, it specifies the number of literals to be assem­
bled in the area; if "absolute expression" is omitted, all 
accumulated litemls are allocated storage at this point. 

Advances both the load location counter ($$) and the 
execution location counter ($) to the value "expressionll. 

Causes the assembler to upspace assembly I isti ng so that 
the next output line appears at the top of the next page. 

Controls printing of PAGE, SPACE, and TITLE directives. 

Terr:'linates procedure definition. 

Identifies the beginning of a procedure definition and 
must immediately follow CNAME. 

Declares that the symbols (s.) are defined in a separately 
assembled program. 1 

Reserves n words and advances both location counters 
by n where n is the value of the absolute expression. 

Equates "Iabel ll to the value of "expressionll, but allows 
IIlabel" to be redefined by the use of a subsequent SET. 

SuppressE;S object control words in the binary output. 

Inserts n blank lines in the assembly listing where n is the 
value of the a~scdul'(; <;;xpression. 

32 

32 

33 

34 

34 

34 

24 

34 

20 

23 

36 

36 

41 

40 

36 

25 

37 

37 

37 



Format 

5REF 

5;5TEP 

[labelJ TEXT 

[labell TEXTC 

TITLE 

I I [ cS
1 

, ... 

I I[ CS 1 , ... 

I I[ cS
1 

, ... 

,sn] 

ICS IJ , n 

ICS IJ , n 

ICS IJ , n 

Function Page 

Dec~ares that the symbols (si) are secondary external ref- 37 
erencesi that is, the loader will provide the interprogram 
linkage only if the programs whose labels it references 
are in core memory. 

Causes an interruption of input from the 51 device. 36 

Assembles lies" (character string constant) in EBCDIC for- 38 
mat for use as data. 

Same as TEXT except character string is preceded by a 38 
byte count of the number of characters. 

Pri nts .. cs" (character string constant) at the top of each 38 
subsequent page of assembly listing until a subsequent 
TITLE statement is encountered. 

Appendix B 71 



Label Field Label Identifies Argument Field Argument Allows 

"1J -0 
L._ <l> 
o ..... 
~ e 

<l> 
II> C 
'- III 

LL OJ 

o 
C 
o 
0._ 
o 

"1J 
OJ o 
C 

,2J 

'" Q) 
u 

o c E Q) 

!~ 
>; t1J 

W 0::: 

~t::-- ~~=' .. ;~~~=~~=j~ -= :-~Tx=~-~--=~~---~C--;---+-----'-----jl---~-I 
-- - ----- ------------- ------ -----'------ ---- ------

X 

COMMON X X X 
CSECT -c--~ ·X·-- -.--~-.---- -- --X-r------

~~~==r~--I X fx.~~-·.~ ,~~~_~r~=[_~ I_+~_:~_,---~--.-----t---X-~-+---~+----+-~----I 
~~ ______ c--- I I X _______ L______ -----1- X _f-____ X __ --t-__ X_-t-_X_--t ___ -+-_-+ __ --t

X -.. I)~--.--~-J X J ____ ~cu'~'ent DO<:.~~",--~ -- L-

>---~~~~---------- ~-- _____ L.:~ i--------- -----------r-- --~ ---------+----+----+------1f-----+-----t

:~~~=--. --X- .+:=-~o A';:~~· =£f=~-+r_---X-+------+-----1f---:---+-----+---+----f
GEN X X X X X X

I------------t----+--+---------.---------- -----------+---t-----

GENl X X X X X X
i---- -- ----------f----------~----f_---__+__--+----t_--~-_+--~

f-~E_~ ______ --t-X+------ __ X X _._+---t-----------
X--+--X---_+_

r-~C?.!..~ _ ..L~_____ __ X _____________ ~_X_~ ____ +__-+__-_+-~_____I

iS~~-~~=~-~±fr =_-_-_==_- ~~-~~~~~=-r~:-----~-~-~:~~~~~:~:-:::--:-::~~:-:-~~: ~~:~:~:~~~~~::~~~:-s--t+----------+t_---------1:----------_-t-l
~~~~~ -=-=~~ t-~t~-~~~-~=--~:~ '-:~-.~~ ___ _+-X-_+----:--+_-~---jf----_I 
ORG I Xii X X X 

--------------- ------~---- -- ----------- - ------f-----r---------+---+_---t_-----1~-_+--~ 

PAGE , X X 

--;«------_----- -------~-X --~_ -=~~_=~ __ -_+--------------+r-----------1t---____ -+-__ _+_--X--+---+_---+----I 

PEND X X 
1--------------- --- -- --------- ----f----r----------+--+-----+----+------t---~ 

PROC X X 
c---------------+----+--- -------t-------i------r_------r----+------t----j-----I--------t---+----i 

c--__ 
R
_
E
_
F
______ X !5--r---t=--r-~- ---

I-__ RE_S__________ X X ---r----~- f---------- _________________ X ___ -t-__ -+-__ -I-__ ---I 

SET X Label =-Argument X X 
-;---+__-~---~----_.------~~--.-r__-

SOON X 
r--------------~---_+--r_--_+---~-----+_---~--~-~----~--~---~--4_--1----~ 

X 

SPACE X IX X X 
r----------;--~-~-

SREF X X X 

r---~;-~-TT-E p--- -1-~-X-j--X---+--- -_-_-_--_-~t-_---__ -x-___ ----Ir_r--x--------.. =~.I~><.. Cha,acte, ,tdng can"cnt, 

1------------------
TEXTC X X X Character stri ng constants 

t------------ -----+------j------I----------

TITLE X X Character ztr;ng constants 

tUnless target of GOTO search. ttAlters COMMON location counter. 

72 Appendi x B 



APPENDIX C. INCOMPATIBILITIES BETWEEN EXTENDED SYMBOL AND SYMBOL 

The following list of known incompatibilities between Ex­
tended Symbol and Symbol does not include those features 
that are unique to Extended Symbol and, therefore, diag­
nosed in Symbol {e. g., procedures}. 

1. Assembl y errors may be diagnosed with different error 
flags. 

2. Literal pools may be inconsisl'ent in size and order. 

3. The LOC directive in Extended Symbol does not create 
an automatic I iteral pool. 

4. Available locations in a previous literal pool (as a re­
sult of an LPOOL K directive) wi II never be used b}1 

Extended Symbol. 

5. ihe standard instruction procedures in Extended Symbol 
do not include a check for the number of arguments. 
Therefore, an excessive number of arguments may appear 
yet not be diagnosed. 

Appendix C 73 



APPENDIX D. CONCORDANCE PROGRAM 

INTRODUCTION 
The Concordance program provides the user with a listing of 
the program symbols, and, by line number, all references to 
these symbols for any compatible Extended Symbol or Symbol 
program. Three optional control cards permit inclusion or 
exclusion of specified symbols in the local, nonlocal, or 
operation/directive code sections of the printout. The omis­
sion of all control cards yields a standard Concordance list­
i ng contai ni ng all program symbols except standard opera­
tion and directive code mnemonics. 

CONCORDANCE LISTING 
The Concordance I isting can consist of several different 
sections, but all sections have the same general format: 

T DLN SYMBOL RLN RL~-J RL~~ .,. 

where 

T is a one-Ietterdesignator describing the type of 
Symbol. The possible types of symbols are: 

A Symbol is defined in a program section des-
ignated as obsolute via an ASECT directive. 

C Symbol is defined in a program section des-
ignated as relative via a CSECT directive. jf 
neither an ASECT nor CSECT directive is pres­
ent, a relative program section is assumed. 

E Symbol is defined via en EOU directive. 

U Symbol is not used as a label in the program. 

X Symbol is externally defined via a REF or 
SREF directive. 

D Symbol is used more than once as a label in 

the program" 

DLN is the line number of the symbol definition. 
If a symbol is undefined, the DLN field will be 
blank. 

SYMBOL is the user's symbol. Symbols, up to a 
maximum of 8 characters, are listed in increasing 
sequence according to the binary value of their 
EBCDIC code. 

RLN are the line numbers on which the symbol is 
referenced, listed in ascending sequence for each 
symbol. If the standard record size for the Listing 
Output device is 85 characters, up to 7 RLNs are 
printed on a I ine; otherwise, up to 10 RLNs are 
printed per line. 

The ConcordancA listing can consist of up to four indepen­
dent sections, depending on the options chosen by the user. 

74 Appendix D 

These sections, in the order in which they occur, are the 
Local Section, Nonlocal Section, Proc Section, and the 
Operation/Directive Codes Section. The first page of the 
printout, which is titled "CONCORD", will list all Con­
cordance control commands with errors appropriately flagged, 
or ony illegal cords in the input deck that precede the 
first local region. Illegal cards following the first local 
re9ion will b" logged after the local region they follow. 

LOCAL SECTION 

The Local Section consists of n general format printouts, 
where n is the number of local regions in the program. For 
eme of identification, each local region is entitled 
"LOCAL xx" where xx is the number (1-99) of the local 
region. The symbols for each local region are printed in 
the order in which the local regions occur in the program; 
each local region being preceded by a page eject. The 
purpose of separating the local regions from each other and 
from the nonlocal region is to foci I itate locating a portion 
of a large program, and to reduce the possi ble confusion 
caused by the same symbol being defined in more than one 
local region. 

A local region is preceded and terminated by "LOCAL" di­
rectives(described earlier in this manual). The printout of 
each loco I regi on contains these symbols, which are defined 
as being local to that region via the "LOCAL" directive. 
The Local Section of the printout is always present unless 
it is specifically suppressed by a control command or no 
local regions exist in the program. 

NONLOCAL SECTION 

The Nonlocol Section consists of one general format print­
out containing all nonlocal symbols occurring in the label 
or operand fields of the program. The nonlocal section is 
entitled" NONLOCAL". The Nonlocal Section is always 
present unless specifically suppressed via a control command, 
and is preceded by a page e i ec t. 

PROC SECTION 

The Proc Section consists of one general format printout 
containing symbols used as opcodes which are different 
from the symbols in the Extended Symbol Directive Reper­
toire. The Proc Section is always present whenever such 
a symbol exists in the Extended Symbol sou rce program 
(unless specifically suppressed via a control command), but 
the symbol must appear in the opcode field. The Proc 
Section is enti tl ed "PROC". 

OPCODE'SECTION 

The Opcode Section consists of one general format printout 
(with the exception of the T and DLN fields, which are 
omitted) of all the operation codes and Symbol directives in 
the source program. The Opcode Section is present only if 
it is specifically requested via a control command. The 
Opcode Section is enti tied "0 PCODE". 



At the end of the final section to be listed the message 

END CONCORD XX 

wi II be pri nted, where XX is the fi Ie number of the last 
program completed. 

CONCORDANCECdNTROLCOMMAND 

The Concordance program is requested via a CONCORDANCE 
control command. The form of the command is 

(CONCORDANCE 

where 

[CC] [ ,ALL] 

CC denotes that section control commands follow 
the CONCORDANCE command on the CC device. 
Section control commands will be read until an 
EOD or !/END command is encountered on the 
CC device. 

ALL specifies that multiple files are to be processed 
unti I two successive end-of-fi les are encountered 
on the SI device. 

SECTION CONTROL COMMANDS 

Section control commands are used to designate which 
sections and symbols are to be output. Section control 
commands which precede the source program, have the 
fo II owi ng format: 

!/section mode s1 ,s2" .. , sn 

where 

!/ (which must be in columns 1 and 2 respectively) 
identifies the card as a Concordance control com­
mand. The fi rst blank encountered in the Si field 
or column 72 (whichever appears 'first) terminates 
the control command. 

section refers to the appropriate section on the 
printout and can be any of the following: 

LOCAL 
NONLOCAL 
PROC 
OPCODE 

mode is one of the following control designators: 

INCL List only those symbols (si) listed on the 
control card. If no symbols are designated, 
no symbols will be listed for the appropriate 
section. 

EXCL Exclude the symbols (si) listed on the 
control card. If no symbols are designated, 
none will be excluded. 

s. is a program symbol. 
I 

The section and mode fields are required; if either is blank 
or incorrectly specified, the control command wi II be 
ignored and an invalid card alarm output on the LO device. 
The si fie'ld is optional. If the Si field on one card cannot 
accommodate all the desired symbols, additional cards with 
the same format can be used. Two or more consecutive con­
trol cards with the same section entry must have t~e same 
mode entry if the program is to function correctly, even 
though no expl icit program check is made for this condition. 

If a control card is not input for a section, the following 
default case is assumed for each section: 

!/LOCAL EXCL 
!/NONLOCAL EXCL 
!/PROC EXCL 
!/OPCODE INCL 

In addition to the section control cards, there is also a 
TITLE control card that allows the user to have any specified 
information printed at the top of each page of his listing. 
This control card has the followi ng format: 

!/TITLE user's program name or other identification 

The 1/ must appear in columns 1 and 2 respectively. Col­
umns 11-80 contain the desired information and will be 
printed at the top of each page of the Concordance listing. 
The TITLE control card should precede the source deck. 

ERROR ALARMS 

There are two different alarms output by Concordance on the 
LO device in columns 1-10. 

Error Alarm 

INV CARD 

CORE OVFLO 

Error Condi ti on 

Either the syntax 
of the label, com­
mand, or argument 
field does not con­
form to the rules 
outlined in Chap­
ter 2 of this man­
ual, or illegal 
Concordance 
control command. 

Inadequate core 
storage for pro­
cessing remainder 
of source program. 

Action Taken 

Card is ignored 
from the point at 
which the error 
occurs. Valid 
fields, prior to 
the field in error 
are processed. 

Process fi rst por­
tion of the program 
and output the I ist­
ing. Process re­
mainder of program 
as a separate 
program. 

Appendix D 75 



Error alarms are I isted in the order of occurrence. The 
"CORE OVFLO" alarm is listed along with the first card 
that could not be processed because of the inadequate core 
space. This card and the remainder of the source program 
are processed as a second program. A possible way to pre­
vent a core overflow situation is to suppress the printout of 
symbols not needed on the listing, such as $, L, A, T, E, 
X, S, and Z. 

COMPATIBILITY 

Concordance basically is compatible with Extended Symbol 
in its processing of an input deck. The syntax checks that 

Concordance makes on the label, opcode, and operand 
fields of an input deck conform to the rules outlined in 
Chapter 2 of this manual. 

One difference between Concordance and Extended Symbol 
i!. that Extended Symbol ignores the label field on certain 
directives (for example, the PAGE directive), whereas 
Concordance always processes a legal label field. Also, 
Concordance does not attempt to evaluate the argument 
fie Id of (1 GOTO directive, and hence does not pass over 
the appropriate input cards that Extended Symbol would 
bypass. Somple Concordance deck setups are shown in 
Figures D-l and D-2. 

[CC] [, ALL] 

~-------------------------------------------------------------------------------------------------------------------------~ 
Note: CC, when present, denotes input of Concordance control commands from the CC device (useful when source 

input is on tape). 

ALL, when present, allows Concordance to maintain control until it encounters two consecutive! EODs. 

Figure D-l. Sample Concordance Deck Setup 

...----------------------------------'----<-""---------------------------------------------

X 1 is temporary file­
must be saved for 
Concordance. 

~---------------------------------------------------------------,------------------------------------------~ 
Figure D-2. Concordance From Xl RAD File Following an Assembly 

76 Appendix D 



APPENDIX E. EXPANSION OF SIGMA 3 SIMULATED INSTRUCTIONS 

Shown below are the equivalent expansions for the standard 
procedure simulation of Sigma 3 doubleword operations. 
This set of standard procedures is used with a Sigma 2, or 
with a Sigma 3 without the extended arithmeti c hardware 
option. Note that the load multiple (LDM) and store mul­
tiple (STM) instructions are not simulated. 

These procedure e)(pansions take two essentially different 
paths, depending upon whether indirect addressing is speci­
fied or not. These two paths are given separately, with 
comments specifi c to a parti cui ar path. Note that several 
of these expansions destroy the previous 'contents of general 
register 3 (T -register), which is not compatible with the 
action of the actual hardware instructions. 

NO INDIRECT ADDRESSING 

When indirect addressing is not specified, the address field 
of these instructions may not conl"oin an external reference 
or a procedure-local forward reference. This restriction is 
not imposed upon the actual hardware instructions 

Load Double (LDD) 

LDA 
RCpv 

LDA 

Store Double (STD) 

STA 
RCPY 
STA 
LDA 

t 
Double Add (DAD) 

RCPY 
ADD 
LDX 
RADDC 
RCPY 

t 
Double Subtract (DSB) 

RCPY 
SUB 
LDX 
RADDC 
RCPY 

(effective address) 
A,E 
(effective address + 1) 

(effective address + 1) 
E,A 
(effective address) 
(effective address + 1) 

Xl, T 
(effective address + 1) 
(effective address) 
X1"E 
T,Xl 

Xl"T 
(effective address + 1) 
(effective address) 
*X 1, E 
T, )(1 

t 
Compare Double (CPD) 

RCPY 
RCPY 
CP 
RCPY 
BNC 
SUB 
BNC 
RADDI 
RCPYI 
BNC 
RADDI 
SALS 
B 

OFF RADD 
RCPY 

NXT RES 

A, T 
E,A 
{effective address} 
T,A 
NXT 
(effective address + 1) 
OFF 
*A,Z 
Z,A 
$+2 
Z,A 
15 
$+2 
Z,Z 
T,A 
a 

INDIRECT ADDRESSING 

No restrictions. 

t 
Load Double (LDD) 

[ 

RCPY 
LDX 
RADD 
LDA 
RCPY 
LDA 
RCPY 

Store Doubl e {ST D)t 

[ 

RCPY 
LDX 
RADD 
STA 
RCPY 
STA 
LDA 
RCPY 

Xl, T 
(referen ce address) 
T, Xl] tt, ttt 

0,1 
A,E 
1,1 
T,Xl 

Xl, T 
(reference address) 
T,Xl] tt,ttt 
1, 1 
E,A 
0,1 
1, 1 
T,X1 

tThis expansion destroys the previol's contents of general 
register 3. 

tt 
This instruction is only generated when post-indexing is 

explicitly specified. 

tttTh · .'. h I 
IS instruction causes t e overf ow of any carry indica-

tors to be affected, which is not true of the corresponding 
hardware instruction. 

Appendix E 77 





INDEX 

Note: For each entry in this i'ndex, the number elf the molt significant page is listed first. Any pages thereafter are listed in 
numerical order. 

A 
ABS function, 43 
absolute and relocatable valuos, 12 
address 

direct, 18 
effective, 18 
reference, 18 

address control, base-relative, 19 
address generation diagnostics, 20 
add ress litera Is, 22 
addressing, 18 

automatic, 20,1,2'/ 
base-relative, 20 
direct, 19 
indirect, 19,20 
nonrelative, 20 
self-relative, 20 
symbolic-relative, 19 

address i ng format, argument, 18 
ADRL directive, 23, 10,28,69 
AF function, 44,42 
AFA function, 44 
AFNUM function, 45 
AFR function, 45 
ALL option, deck set-up, 75 
argument addressing format, 18 
argument entry, 9 
ASECT directive, 26, 1,27,28,,69,72 
assembler diagnor;tics, 57-63 
assembly listing, 63 
assembly listing format, 64 
ASSIGN control command, 49 
A T function, 45 
automatic addressing, 20 

8 
BA option, deck setup, 51, 54·~56, 62 
BASE directive, 18,27,41,69,72 
base-relative address control, 18 
BO option, deck setup, 50-53 
BOUND directive, 25,28,38,69,72 
buffer areas, 1 

c 
CF function, 46 
CFNUM function, 46 
CFR function, 47 
character string constants, 4 
characters, 3 
CNAME directive, 41,28,69,72 
command entry, 9 

comment lines, 9 
comments entry, 9 
COMMON directive, 26, 11,24,38,69,72 
common location counter, 2 
common space, 1 
compatibility, 76 
CONCORD, 74 
CONCORDANCE control command, 75 
Concordance, 

from Xl RAD fi Ie, 76 
listing, 74 
program (Sigma 2/3), 74 
sample deck setup, 76 

conditional code generation, 47 
constants, 4 

character string, 4 
decimal integer, 4 
fixed-point decimal, 4 
floating-point, short, 5 
hexadecimal, 4 
self-defining, 1 

control commands, 
Concordance, 74 
RBM, 50 

CR option, deck setup, 50,51 
ClECT directive, 26, 1,27,28,69,72 

o 
DATA directive, 28, 10,69,72 
decimal integer constants, 4 
DEF directive, 29, 10, 11 ,"28,37,38,69,72 
DEFINE control command, 51 
device assignments, illegal, 60,61 
diagnostics, 

address generation, 20 
assembler, 57,63 

direct address, 18 
direct addressing, 19 
directives 

ADRL,23,10,28,69,72 
ASECT, 26,1,27,28,69,72 
BASE, 19,28,40,69,72 
BOUND, 25,28,38,69,72 
CNAME,41,28,69,72 
COMMON, 26, 11,24,38,69,72 
CSECT, 26, 1,27,28,69,72 
DATA, 28, 10,69,72 
DEF, 29,10,28,37,38,69,72 
DO, 29-32, 28,40,69,72 
ELSE, 29-32,28,69,72 
END, 31,28,34,41,52,62,69,72 
EQU,32,28,38,41,69,72 
FIN, 29-32,28,34,41,69,72 
GEN, 32,1,10,28,34,69,72 

Index 79 



Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in 
numerical order. 

GEN1, 33,10,28,34,70,72 
GEN2, 33,10,28,34,70,72 
GOTO, 34,1,10,28,29,41,63,70,72 
IONT, 35,28,37,38,70,72 
LBL,35,28,29,37,38,70,72 
LIS T, 35,28,70,72 
LaC, 25,28,38,70,72 
LOCAL, 35,37, 10,28,34,41,42,63,70,72 
LPOOL, 20,28,63,70,72 
ORG, 24,25,27,28,38,70,72 
PAGE, 37,28,29,34,35,38,70,72 
PCC, 37,28,29,35,36,70,72 
PEND, 42,28,34,36,37,70,72 
PROC, 41,28,34,36,70,72 
REF, 37,10,28,38,70,72 
RES, 26,28,38,70,72 
S:STEP, 37,28,71,72 
SET, 38,28,41,70,72 
SOCW, 38,28,70,72 
SPACE, 38,28,29,35,37,70,72 
SREF, 38, 10,28,35,37,71,72 
TEXT, 39,1,28,71,72 
TEXTC, 39,1,28,71,72 
TITLE, 39,34,35,37,38 

directives, extended symbol, 28 
DO option, deck setup, 49 
DO/ELSE/FIN directives, 29-32,28,40,69,72 
DWoption, deck setup, 52,53 

E 
effective address, 18 
ELSE directive, 29-32,28,69,72 
END directive, 32,18,28,34,41,52,62,69,72 
entries, 9,28 

argument, 9 
argument field, 28 
command, 9 
commond field, 28 
comments, 9 
comments field r 23 

EQU directive, 33,28,38,41,69,72 
error alarms, 75 
error detection, 1 
error messages, 57-63 
eva luation, operators and expression, 5 
EXCL, 75 
execution location counter, 2 
expressions, 5, 11 
external definitions, 1 
externa ~ references, 1 

F 
fie Ids, 8 
FIN directive, 29-32,28,33,41,69,72 
fixed-point decimal constants, 4 
flags, 57 

80 Index 

floating-point short constants, 5 
format, assembly listing, 63 
forward references, 1 
forward references (procedure loca Is), 10 
functions, intrinsic, 43-48 

G 

GEN directive, 33, 1, 10,28, 34~69,72 
GEN1 directive, 33, 10,28,34,69,72 
GEN2 directive, 33,10,28,34,69,72 
GO option, deck setup, 50-53 
GOTO directive, 34, 1, 10,28,29,41,63,70-72 

H 
hexadecima I constants, 4 

ID NT directive, 35,28,37,38 
INCL, 75 
incompatibilities, 73 
indirect addressing, 19,20 
instruction statement, fields, 14 
instructions, class 1: memory reference, 14 
instructions, class 2: conditional branch, 16 
instructions, class 3: shift, 16 
instructions, class 4: copy, 16 
instructions, class 5: input/output control, 17 
instructions, Sigma 3, 77 
intrinsic functions, 43-48 

J 
JOB control command, 50 

L 
label entry, 9 
I'anguage elements, 3 
language, extended symbol, 
LBL directive, 35,28,29,37,38,70,72 
LIST directive, 35,28,70,72 
literal pools, 20 
literal tables, 2 
literals, 7, 1 
LL option, deck setup, 50 
LO option, deck setup, 50-53,60 
load items, 56 
load location counter, 2 
LOC directive, 25,28,38,70,72 
LOCAL directive, 35-37,10,28,34,41,70,72 
I.ocal references, external and forward procedure, 7 
local section, 73,74 



_Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in 
numerica I order. 

local symbols, 42,43,61 
location counters, 24,2 
logical operators, 6 
loop, 20 
LPOOL directive, 21,28,63,70,72 
LU option, deck setup, 51,52,60 

M 
'-nachit)t: instructions, Sigma 2/3, 66, 14 
memory reference instructions, 14 
ressoge5, 47 

N 
nesting, 31,59,60 
nonlocal section, 74,75 
notation, literal, 7 
NP option, deck setup, 51-53 
NS option, deck setup I 51-53 

o 
object module records, 57 
opcode section, 74,75 
operat ions, 43 
operators, arithmdic, logical, and relational, 5,6 
ORG directive, 24-27,38,70,72 

p 

PAGE directive, 37,28,29,34,35,38,70,72 
parentheses within expressions, 7 
pee directive, 37,28,29,35,38,70,72 
PEND directive, 42,28,34,36,37,70,72 
PP option, deck setup, 50,51 
PROC directive, 41,28,34,36,60,70,72 
PROC section, 74,75 
piOcedure 

definition, 41,42,47 
format, 41 
reference::>.. 42,47 

procedure that references a procedure, 47 
procedure-·local symbol regions, 41,42 
procedures, 41-49 

user-defined, 1 
processor, extended symbol, 
program format, standard object, 57 
program sections, 26,24 
programming features, 1 

R 
REF directive, 37, 10,28,38,70,72 
reference address, 18 
references, 

external, 10 
forward, 10 
previously defined, 10 
symbol, 10 

re iocatoble va lues, 11 
RES directive, 26,28,38,70,72 

s 
S;STEP :-lirective, 37,28,71,72 
sarnpie ;)rocedures, 47 
semicolon (;), 9 
SET direcPve, 38,28,41,70,72 
51 option, deck setu~', 4'7',59-61 
Sigma 2/3 machine instructions, 66 
Sigma 3 simulated instructions, 77 
SLoption, deck setup, 51,52 
SO option, deck setup, 50-52,60 
SOCW directive, 38,28,70-72 
SPACE directive, 38,28,29,35,37,70,72 
SREF.::1irectlvc, 38, 10,28,35,38,71,72 
stcmdard object progt'Orrl format, 57 
sh1!'enlcnt continuoi'ion, 9 
staterM~nt5, 3 
stJmmory table'i, 6:;' 
Symbol; 74 
syrnbo I references, 1() 

symbol tqbles, 10 
symbol taLkSr iocal and non!ocal, 
syr."\b(;lic co;:]in~l fort--;-:, 8 
syrn'">o!k lim1's, 8 
symboiic;··relaf'ivc addressing, 19 
syrrbo Is,r 3, 11 

clmsifi cation of, 10 
defining, 10 
local ond nonlocal, 1,61 
orvces5ing of, 9 
redefi ncb Ie, 10 

syn~(l.x, 8 
52opiirJr., der::k setup, 49 

T 
TUv'\F S control command, 51 
fei·min,:Jtion mf~ssages, 58-63 
TEXT direclive, 39,1,28,71,72 
HyrC d;:-ective, 39,1,28,71,72 
Htle cOTltro! card, 73 
TITLE directive, 39/ 34,35,37,38,71,72 

Index 81 



Note: For each entry in this index, the number of the most significant page is listed first-. Any pages thereafte,r are listed; i:n 
numeri ca I order. 

u 
UFV, 47,43 
update error messages, 53,58,61-63 
updating source program, 53-56,58 
Uloption,. deck setup, 49,51,53,55,56,59-61,63: 

y 

values, absolute and relocatable, 11-

82 Index 

warni-ng messages,. 58,62:,63 

x 
Xn option, deck setup" 49,51,61 
XSYMBOL control, command, 51,60-



XEROX 

Reader Comment Form 
We would appreciate your comments and sugg .. tlons for improving this publication 

Publication No. I Rev. L.tte~1 Title I Current Date 

How did you use this publication? 
/ 

Is the material presented effectlvelv? 

D Learning D Installing o Sales o FullV Covered DWell Illustrated o Well organized o Clear o Reference o Malntalnin,; o Operating 

What is your overall ra'tlng of this public:iltlon? What is your occupation? 

o Very Good o Fair o Very Poor 

o Good o Poor 

Your other comments ma" be entered here. Please be specific and give page, column, and line number referenc .. where 
applicable. To report errors, please use the Xero)( Software Improvement or Difficultv Report (1188) inst~ad of this form. 

f--. 

• 

• 

Your name & Return Addre .. 

Thank You For Your Interest. (fold & fasten as shown on bttt::k, no postage needed if mailed in U.S.A.) 



PLEASE FOLD AND TAPE -
NOTE: U. S. Postal Service will not deliver stapled forms 

Attn: Programming Publ icat ions 

Fold 

BUSINESS REPLY MAIL 
No postage stamp necessary If mailed in the United States 

• 
Postage will be paid by 

Honeywell Information Systems 
5250 W. Century Boulevard 
Los Angeles, CA 90045 

First Class 
Permit No. 59153 
Los Angeles, CA 



Honeywell information Sye.eme 
In '" U,S.A.: 200 SlMh Street. MS 486. W.llham. M •• achusefta 02154 
In Cw\eda; 202$ ShIIpperd A~ Ea •• Willowdale. Ontario M2J 1 W5 

In Mexico: Avenida Nuew Leon 250. Mexico t " D.F. 

21881, 2C87S, Printed In U.S.A. XH36, Aev. 0 


	0000
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	replyA
	replyB
	xBack

