Xerox Real-Time Batch Monitor (RBM)
Xerox 530 and Sigma 2/3 Computers

Technical Manual

I BXEROXEROXEROXEROXEROXEROXEROX
X FROXEROXEROXEROXEROXEROXERC
OXEROXEROXEROXEROXEROXEROXER
ROXEROXEROXEROXEROXEROXEROXE
EROXEROXEROXEROXEROXEROXEROXE
XEROXEROXEROXEROXEROXEROXERO)
BOXFROXEROXEROXEROXEROXEROXERC
R OXEROXEROXEROXEROXEROXEROXER
ROXEROXEROXEROXEROXEROXEROXE
XEROXEROXEROXEROXEROXEROXEROXE
XEROXEROXEROXEROXEROXEROXERO
OXEROXEROXEROXEROXEROXEROXER(
ROXEROXEROXEROXEROXEROXEROXER
EROXEROXEROXEROXEROXEROXEROXE

P
g o b
et i

XEROXEROXEROXEROXEROXEROXEROX
OXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXER
- ROXEROXEROXEROXEROXEROXEROXE
EROXEROXEROXEROXEROXEROXEROX |

Xerox Corporation -
701 South Aviation Boulevard F {
El Segundo, California 90245

213 679-4511

Xerox Real-Time Batch Monitor (RBM)

Xerox 530 and Sigma 2/3 Computers

Technical Manual

90 11 53F

February 1975

Price: $8.75

© Xerox Corporation, 1969 -1973, 1975 Printed in U.S.A.

REVISION

This publication, 90 11 53F, is a revision of the Xerox Real-Time Batch Monitor (RBM)/Technical Manual for
Xerox 530 and Sigma 2/3 computers, 90 11 53E (dated October 1973). The changes made to the text are for the
GO0O0-version of RBM. All changes in the text from that of the previous manual are indicated by a vertical line in
the margin of the page.

RELATED PUBLICATIONS

Title) ’ o Publication No.
Xerox 530 Computer/Reference Manual - - | | 90 19 60
Xerox Sigma 2 Computer/Reference Manual . 90 09 64
Xerox Sigma 3 Computer/Reference Manual 90 15 92
Xerox Availability Features/Reference Manual 90 30 54
Xerox Real-Time Batch Monitor (RBM)/RT, BP Reference Manual 90 10 37
Xerox Real=Time Batch Monitor (RBM)/OPS Reference Manual 90 15 55
Xerox Real=Time Batch Monitor (RBM)/SM Reference Manual 90 30 36
Xerox Real-Time Batch Monitor (RBM)/User's Guide 90 17 85

Manual Content Codes: BP = batch processing, LN - language, OPS = operations, RP = remote processing, RT - real-
time, SM - system management, TS - time-sharing, UT - utilities,

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features
may depend on a specific configuration of equipment such as additional tape units or larger memory. Customersshould consult their Xerox sales representative
for details.

PREFACE

INTRODUCTION

Priority Interrupts

CONTENTS

vii

Monitor Service Routines

RBM Initialization and Selection 20
Job Control Processor 24
RBM Control Task 24
RBM Subtasks 24
RBM Overlay Table 30
Nonresident Foreground Queve Stack 31
Control Command Interpreter 31
Background Termination Procedures 31
RBM Accounting 36
RBM Accounting File (RBMAL) 39
INPUT/OUTPUT PROCEDURES 40
Protection 40
Input/OQutput Priority 40
Asynchronous Operation 40
Error Recovery 40
Command Chaining : 41
Device-Independent lnpuf/OuI'puf 42
M:CTRL 42
‘Channel Time Limits 42
Operational Labels 54
Channel Status Tables 54
File Control Tables 56
Disk Pack Seek Overlap 56
Task Dismissal on Wait I/O 56
Disk Pack Flawed Track Handling 74
Disk Pack Alternate Track Handling 74
M:RSVP 75
RAD FILE MANAGEMENT 77
Overview 77
Blocked Files 77
Compressed 77
Blocked 78
Packed 78
"Shared" Files 78
Unblocked Files 79
RAD File Directory 81
OVERLAY LOADERS 89
Infroduction 89
Loader Structure 89
PASST _ 89
97

PASS2

Loading a User Program Root Segment
Public Library

Creating the Public Library

Loading the Pubfic Library

System and User Libraries
Library Search Order Tables

Input/Qutput

Library Loading
BLOAD

RAD EDITOR

Library File Formats
MODIR File

MODULE File

MDEFRF, BDFRF, and EDFRF Files
EBCDIC File

Overlay Structure

Control Command Execution

Area Maintenance Commands

#ADD Command

#DELETE Command

#CLEAR Command
#TRUNCATE Command

#SQUEEZE Command

Area Maintenance Routines

Library File Maintenance Commands
#LADD Command

#LDELETE Command

#LREPLACE Command

fLSQUEEZE Command

Library File Maintenance Routines

Utility Commands
#DUMP Command

#FCOPY Command

#LCOPY Command

#MAP Command

#LMAP Command

#SAVE Command

Control Records’

Data Records

File Definition Record

Standard Binary Files

Region of Save

Listing of Saved Files

Rebootable Save Tape Format
Area Definition Record

#RESTORE Command

#INITIALIZE Command

#MESSAGE and #PAUSE Commands
#MESSAGE

#PAUSE

#GDTRACKS and #BDTRACKS
Commands

97
104
104
104
104
104
104
105
108

116

118
118
119
120
121
121
121
122
122
125
125
125
125
125
128
128
129
129
129
129
130
130
131
131

131

133
134
134
134
135
135
135
135
136
137
137
138
138
138
138

138

CHARACTER-ORIENTED COMMUNICATIONS
HANDLER (R:COC)

Introduction

R:COC Input Buffer

Character Output

Monitor Service Request {(M:COC)
Translation Tables

SYSERR ANALYSIS

Resident SYSERR Routine

SYSGEN Considerations

Operator-Forced SY SERR

Background SYSERR-Analysis Program
Root Segment

Base Table

1/O Buffers

Common Subroutines

GTCTXTWD

LDWD

LDNXT

BURST

CVDEC

CVSTORE

DELZRO

NDECCH

BLANK

MOVE

STBYTE

STCHAR

SEQADD

SEQST

PRINT

MESSAGE

IOERR

TYPE

CPSTRING

GETPAR

SCAN

SEGLD

Initialization Routine

Control Routines

Overlay Segments

Procedures

BLANK

BURST
CPSTRING

CVSTORE

DISPLAY
ENTRY

GET#CHAR

GETPAR

GTCTXTWD

IOERR

LITERALS

LOAD

LOADNEXT

LOADSEG

MESSAGE

MOVE

PRINT

141

141
141
141
150
150

157

157
160
160
160
161
161
161
161
162
162
162
165
166
166
166
167
167
167
167
168
168
168
169
169
169
170
170
170
171
172
172
172
172
182
182
182
182
182
183
183
183
183
183
184
184
184
184
184
184
185
185

8.

SEQADD

SEQEND

SEQSTART

SETERRX

SKIPLINE

STBYTE

TYPE

ERROR LOGGING AND DEVICE
ISOLATION

Error Logging

Error Log Formats

Glossary for Error-Log Formats
Device Isolation

Device Key~in Implementation
Tests for "Down" Devices

Special Receiver Group

Global AIO Receiver

Dismissal Receiver

M:TERM Receiver

Q:ROC Receiver

Keyin Receiver
M:ABORT Receiver

JOB/FIN Receiver

File Directory Receiver

DBUF

BASIC SPOOLING SYSTEM

Line Printer "Symbiont"

Blocking/Compression Scheme

APPENDIXES

XEROX 16-BIT STANDARD OBJECT
LANGUAGE

Introduction

Description of Object Modules

General Description
Binary Object Record Format

Format of Record Header

Load Item Format

Format of Load Item Control (Header) Word____

Summary of Load Item Formats
CRITICAL RBM TIMES
MAGNETIC TAPE HANDLING

Magnetic Tape Command Chaining
Receiver (Resident)

Resident Magnetic Tape Pre-1/O Edit
7-Track BCD Tape Pre-1/O Edit and BCD
Conversion Overlay

185
185
185
185
186
186
186

187

187
187
202
204
204
204
205
206
206
206
207
207
208
208
208
208

209

212
213

215

215
215
215
215
216
216
216
216

222

223

223

223

223

10.

1.

12,

13.

15.

Magnetic Tape Error Recovery Overlay
Noise Record Correction

M:CTRL Overlay

Recommended Practices

BCD/EBCDIC CODE CONVERSION

Introduction

SYSGEN Options

Programming Considerations

Other Considerations

ERROR SUMMARY ACCOUNTING
LINE PRINTER VFCs
LOGICAL DEVICES

General

Overview

SYSGEN Considerations

Implementation

Pre~1/O Edit Routine

Error Recovery Routine

Post-1/O Edit Routine
Use of M:READ/M:WRITE

Recommended Practices

FIGURES

RBM Machine Fault Task Flow

RBM Protection Task Flow

RBM Input/Qutput Task Flow

RBM Control Panel Task Flow

RBM Clock 1 Task Flow

RBM Control Task Flow
RBM M:SAVE/M:EXIT Task Flow
Q:ROC Use of Temp Stack and K:SEGIN

Q:ROC Flow

Temp Stack Usage

RBM Selection Operation

Core Memory Allocation

RBM Control Task Status Word (R:RBM)

Power On/Power Off Tasks

JCP Status Word (R:JCP)

224

225
225
225
227
227
227
228
229
230
232
233
233
233
233
235
235
238
238

238
238

11

12

13

14

15

16

19

21

22

25

26

29

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

8

37.

38.

40.

41.

42.

43.

44,

45,

Job Control Processor

Loading Processors from JCP

Queue Stack Loading of Foreground
Processors

Postmortem Dump Table

Operator Abort with Postmortem Dump

RBM Accounting Table

RBM Accounting File (RBMAL)

Ilustration of Command Chaining

M:READ/M:WRITE Flow

Device Type Tables

Operational Label Table Pointers

Operational Label Table

Channel Status Table Structure

Channe! Status Table

File Control Table

Storage Allocation of File Control Tables

Non=RAD 1I/O Control Tables

RAD 1/O Control Table

Disk 1/O Control Subtable

Disk Pack Seek Overlap Flow

Dismissal Routine (Optional)

M:RSVP Table Format

M:RSVP Decision Table

Permanent RAD File Layout (RAD Area N

Containing M Files)
Processes Executed by M:ASSIGN
Processes Executed by M:DEFINE

Processes Executed by M:OPEN

Processes Executed by M:CLOSE

Overlay Loader Core Layout

OV:LOAD Table Format

Overlay 1 Structure

32

35

37
38
39
41
43
52
55
55
57
58
59
62
63
67
69
70
72
76

76

82
83

85

%
91

92

47.

48.

49.

50.

51.

52.

53.

54.

55.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

vi

Overlay 2 Structure 93
Overlay 3 Structure 94
Overlay 4 Structure 95
Overlay 5 Structure 96
Segment Table Format 98
Symbol Table Format 100
Background Overlay Task Header 102
Foreground Overlay Task Header 103
System/User Library Area Structure _105 .
Building the Library Search Criterion Table 106
Building the Library Module Load List ____ 107
BLOAD Tree Structure 108
BLOAD Overlay 1 Structure 109
BLOAD Overlay 2 Structure 110
BLOAD Overlay 3 Structure m
BLOAD Overlay 4 Structure 112
BLOAD Overlay 5 Structure 113
BLOAD Overlay 6 Structure 114
Overlay 10 Structure 114
BLOAD Overlay 20 Structure 115
RBM File Structure 117
RADEDIT Tree Structure 122
Control Command Execution Flow 123
File Area Before Squeeze 126
File’ Area After Squeeze 127
GDTRACKS/BDTRACKS Command Flow

Diagram 139
R:COC Input Interrupt Handler 142
R:COC Output Interrupt Handler 148
Line Status Table Format 151

M:COC Request Processing 152

77. ANSCII to EBCDIC Table Entry Format

78. Data Acquisition Subroutines LDWD and
LDNXT

79. Initialization Routine

80. Control Routines

81. Resident Error Log Code

82. Nonresident Error Log Code
(Overlay '06")

83. System-Startup Entry

84. Power-On Entry

&

Time—and=-Date Entry

86. Operator-Message Entry

87. SIO-Rejection Entry

88. Device-Timeout Entry

89. Spurious-1/O-Interrupt Entry

90. 1/O-Error Entry

921. Lost-Entries Entry

92. Configuration Entry

93. System-ldentification Entry

94. Machine=Fault Entry

A-1. Typical Object Module of M Records

A-2, Displacement Chain Format

G-1. Logical Device Handler

TABLES
1. RAD Editor Root Segment Entry Points

2. Area Maintenance Routines

3. Library File Maintenance Routines

C-1. M:CTRL Mag Tape Operations Status
Returns

156

163

173

175

188

189

190

191

192

193

194

195

196

197

198

199

200

201

215

220

236

124

128

129

225

D-1. Special Character BCD/EBCDIC Conversions ____ 227

PREFACE

The primary purpose of this manual is to provide a guide for better comprehension of the Monitor listings supplied
with the Xerox 530 and Sigma 2/3 Real-Time Batch Monitor operating system. The manual is intended for users who
require an in-depth knowledge of the structure and internal functions of the system for maintenance purposes.

It is assumed that the reader is familiar with the RBM Reference Manual (90 10 37) and that more detailed informa-
tion about the various program elements will be obtained from the listings.

Since this manual and the Monitor listings are complementary, it is recommended that the listings be readily
available when referencing the manual,

vii

1. INTRODUCTION

Priority Interrupts

Under RBM, both-Monitor and user real-time tasks must be connected to a specific, unique hardware priority level,
Each task operates at the priority level of its corresponding hardware interrupt. There is no software scheduling of
tasks, except for two special cases:

1. The background has no specific hardware interrupt, but operates as though it were connected to the low-
est priority interrupt, below all hardware priority levels.

2. The RBM Control Task controls its subtasks on a software-priority basis. The Control Task must be connec-
ted to the. lowest priority hardware interrupt in the system. Each subtask priority corresponds to a bit in
a special core location (R:RBM). When this bit is set to 1, the subtask is active or waiting; when the bit
is reset to 0, the subtask is inactive.. Thus, RBM tasks and subtasks can set the appropriate bit (or bits) in
this status word and trigger the RBM Control Task interrupt with a special write-direct code to provide simple,
responsive, and ordered processing of other related subtasks. Since the priority level of the RBM Control
Task is lower than all real-time levels and higher than the background, it can provide simple and direct
control of all operator communication and all batch background processing.

Figures 1 through 7 show the flow of control through the various RBM tasks, and the sum of all these tasks can be
considered to be RBM. Each task is a closed loop in terms of execution; however, a task may pass information to
other tasks or may trigger other tasks to ensure that RBM functions take place at the appropriate priority level. The
accounting routine for RBM is shown in Figure 5.

Monitor Service Routines

Each Monitor service routine operates as a closed subroutine when called by a task to aid in carrying out task func-
tions. All Monitor service routines can be reentered, can be interrupted during execution at any time by a higher

priority task, can perform a service for the higher priority task, and can continue execution of the interrupted task
when the higher task releases control.

To achieve reentrancy, certain Monitor service routines require temporary storage. This storage space is provided by
the user task's dynamic temporary (temp) stack. The Monitor service routines will reserve the amount of temporary
space required by a call to the Monitor service routine M:RES, which will reserve the requested space and return
with the base register set to the first word of the reserved temporary space. Since there is a three-cell overhead,
all routines requiring temporary space must request the amount actually required plus three. The first three words
reserved are used as follows:

1. Word 0 is aflag used by M: POPto determine whether dynamic storage or static storage isused. It isalso used by
the Monitor routine Q:ROC to control the loadingand unloading of nonresident Monitor service routines.

2. Word 1 is set to the previous contents of the base register.

3. Word 2 is set to the return address, initially set by M:RES to M:ABORT.

Thus, Monitor service routines using temp storage do not modify the first two words of the temp space reserved. The
appropriate return address must be stored in the third word prior to calling the service routine M:POP to release the
temporary space and exit to the address given in the third word.

Entry to all Monitor service routines from the background is through a vector of addresses in the zero table, so that
validity of background service calls can be established. All Monitor service routines must verify that requested

" background operations will not modify protected memory or use any devices reserved for the foreground. Return ad-
dresses are verified by the Protection Task when the original entry is made, and the background is aborted if the re-
turn is not set to valid background space.

MISAVE

SRVE
REGISTERS
AND CONTEXT

1G

RERD AND 3TORE
FRULT REGLITER
(RD X*1040°)

13
RESUL,; ZERED

MEEXLT

RESTORE
REGISTERS
AND CONTEXT.
EX1T.

Machine Fault Interrupt Task
Model 530

4y
DETERMINE ERROR
SEVERLTY. 3AVE CRASHS
SEVERLTY IN COOE = *MF'
FAULT REGw+la
LINK AND BRANCH
10 RECEIVER.
¢ADD IN X' 1AR")
X POINTS AT
FRULT REG.
M1DOW CATASTROPHIC
STTUTATLONS
LDG _ NALT WLTH R =
MACHINE FAULT WS X = FRULT
ERROR. REG.
¥
SAVE K2TCB
PDtL AND EACLT
REGa FOR RETRY
TEST NEXT TIME.
Yy
ABORT ACTLVE ABORT MERNSS
TR3K, CODE = L. LDA =(P3D*1)
"MF — |2 10X = cooe
3. PSD"'L =
ADRL. H2ABORT

FBORT
BACKGROUND CODE

= ‘N OR MFC.

Figure 1. RBM Machine Fault Task Flow

INTERRUPT

SRYE OVERFLOW
AND CARRY IN
o5 CIYES

INDICATION OF
ERROR TYPE

Mg SAVE

SR¥E REGISTERS
AND CONTEXT

Cwe
110P TIMEQUT
ERR

Machine Fault Interrupt Task

LINK AND BRANCM
10 D10 ERROR
RECEIVER.
(POINTER 1IN

X'1RR)

‘ RBORY
ACTIVE TRSK

CODE = "MF’

.

Mz00W

LOG
E10P TIMEOUT
ERROR &

LINK AND GRANCH
TQ E10P TIMEQUT
RECEIVER
(POINTER. IN
X 1AB")

SYSF]

CRRASMg
CORE = "ET”

RBORT MEANSE

1. LDA =(P3D*1)

2. LDX = CODE

3. PSDtL =)
ADRL M%ABORT

B4

———

RBORT
ACTIVE TASK
CBOE = "PE’

LINK AND BRANCH
TO 110P TIMEQUT).
RECEIVER.
(POINTER 1IN
X 1ACT)

SET "BEVICE NOT
| RECOGNIZED”

STATUS FOR
X1

|

MIEXLT

RESTORE
REGIITERS
AND CONTEXT.

- EXITa

MiDOW

LOG
MEMORY PRRITY
ERROR &

LINK AND BRANCH
T0 PARITY ERROR
RECEIVER.
(POINTER IN
X 1D}

Figure 1. RBM Machine Fault Task Flow (cont.)

Machine Fault Interrupt Task
Sigma 2

INTERRUPT

Mg SAVE

SAVE
REGISTERS
AND CONTEXT

MiDOW

LOG
MEMORY PRARITY
ERROR

LINK AND BRANCH
T0 PARLTY ERROR
RECEIVER.
(POINTER IN
X'1AD}

ABORT MEANSE

1. DA =(P3D*1) ABORT

2 LDX = CODE - — — — ACTIVE TASK

3. PSDt1 = CODE = "PE-
RORL M2RBORT

MIEXIT

RESTORE
REGISTERS
AND CONTEXT.
[243)

Figure 1. RBM Machine Fault Task Flow (cont.)

Entry After
Protection Interrupt

Y

Save
Registers

Is This
a Branch to a

RBM Service no
Routine ?
Y
/ M:ABORT \
IBSQEEHIJ‘;THIS" no ?/ Set Control To
°) \ Abort Background

Allow _Brandh
To Take Place

Note: Foreground cannot cause a protection violation.

Figure 2. RBM Protection Task Flow

PAGE 1

10 INTERRUPT
{10P KMOCKS)
‘A’ REGa

—y
SﬂVE A0 D3Ba
B LDFG SAVE CARKY. 1SSUE TIO,
SEE NOTE FOR DERIVE. CHANNEL
Q3LOFG USE NO. FROM DEVICE
EXPLANATION, ADDRESS IN AI0.

TINEOUT uuﬁc N
Pmms éﬂcx Ar

SAVE CONTEXT
‘L’ REG
B TO MSSAVE"

uruzmsz,
ADDRESS ~ 'A'.

1C3T1 FOR THIS
CHANNEL SET DFN
CONTAINS THE NEGATIVE.
DFN OF THE FILE
USING THE CTHAN.

=0

PAE 2

MiDOW

LOG SPURIOUS
170 INTERRUPT

Jj B

Figure 3. RBM Input/Output Task Flow

PAGE 2

SAYE 10 CONTEXT DFN > CST6 .
TIO/TOV -> FCT7 C313 & 4 —> FCT GO TO GLOBAL
{EVN REG -> FCT4 . C3T1 13 FREE AI® RECEIVER.
00D REG —> FCTS . |FOR FOREGROUND.
INYERT SIGN OF :
FCT2, ‘ LOAD. CHANNEL GO TO CHANNEL
(3eT REGS AND 133UE SPECIFIC RIO
END-ACTION- . S10. RECEIVER
PENDING} :
ﬁ 1
) TASKS WARITING
CLEAR FOR THIS CHANa
(OR RE-SET) ARE RETRIGGERED
PEC3T1 FOR AT THIS POINTa
THI3 CHANNEL.

SET ERROR
CONDITION IN
FCT4 & FCT7.

!

THE CC RECEIVER
19 DEVICE

- SPECIFIC FOR -

1 ~ coueten

OPERATIONS .

Figure 3. RBM Input/Output Task Flow (cbhf'.) |

PAGE 3

IF NO MOVERBLE
HEAD DEVICES
— —|PRE_INCLUDED AT
SYSGEN, A21DSK

-> AISPLR.

NOW THAT SEEK

1S COMPLETE

ISSUE SID FOR
TRANSFER.

WAS
. sID
SUCCESSFUL

STEP STRTE CODE INCLUDE TIMEOUT
DFN -> (STl BIT IN IO

AID RXR -> CST2 ’ CONTEXT. HIO
o -> €513,) THE DEVICE.

=@

FRE)

 —

SET ERROR SET QiLOFG = 0.
CONDITION. . -

=9, -

Exir N
MZEXIT
RESTORE
CONTEXT,
EXIT 10 LEVEL

Note: Q:LDFG is a convention which allows code fo be executed at the 1/O interrupt level. This is
necessary for non-reentrant code, such as the "load channel registers, set channel status tables,
issue SIO" sequence found in Q:LOADC and the RAD handler. These routines inhibit interrupts,
set Q:LDFG to the address of the non-reentrant code, trigger the 1/O interrupt level and then un-
inhibit interrupts. The non-reentrant code then resets Q:LDFG, performs the prescribed functions
and exits the I/O level.

This convention precludes tasks which run at an interrupt level higher than the I/O level from using
Monitor 1/O (nearly all Monitor Service Routines use Monitor 1/0).

This restriction can be overcome by setting Q:NLDFG to some nonzero value. However, other
implications of doing Monitor 1/O at a level higher than the 1/O level make this a very esoteric
feature. For example, guaranteed response time will increase to about 700 to 800 psec.

Figure 3. RBM Input/Output Task Flow (cont.)

PAGE 4

Disk Pack
Command Chaining
Receiver

Disk Pack Seek
Interrupt Handler

Was
Interrupt
From a Disk

Pack 2,
page 1

Was
There an
Unusual End?

Was
Operation
a Flawed Header
Read ?

Reset 'Seek-Active’
Bit in CST5, Get
DFN from 10CS,
Save It.

Order was a
Restore Carriage

@ Set Up 10CD
in 10CS to
Seek to an
Alternate Track
Was
State .
Code for Seek Build Header
Read Order
for Flawed in IOCS
Header Read
no
Load Chain Regs.
for Command
Chain (IOCD in
(10CS); SIO
SIO Advance to
Accepted ? Next State

() Is Is
'] Current Tl':is a +DFN — CST1
Save SIO Status; Stats Flowed f:le to an AIO Receiver — CST2
AIO Receiver Header Read? T'e’”':’;e 0 —CST3
Address —~ CST2; rack £
0 — CST3;
-DFN — CST1 SET 'Seek-Active' e
° 0 -~ CsT2 Bit in CST5
1 — CST3 -DFN —CST1
2 (Dummy Chaining Flag) 0 — CST2 page 1
page 0 — CST3
page 1 page 1

Figure 3. RBM Input/Output Task Flow (cont.)

10

Standard
Command Chaining
Receiver

Was
TE, UE or

Used by 300-CPM Card
Punch, Low Cost Printer,
720X and 7232 RADS.

CM Bit Set
in OSB?

0—A
(Indicates OK
to Continve
Chaining)

-1—A
(Terminate
Chaining)

T

‘ Return ’

Magnetic Tape
Command Chaining
Receiver

Was
TE or UE
Bit Set in
OsSB?

Was
E-Flag Set
in Odd Channel
Reg?

PAGE 5

Called for Both
7-Track and
9-Track Magnetic
Tapes.

0 —CST3
(New IOCD Pointer)
-1-A '
(Inhibit Chaining)

‘ Return ,

HIO

\

Load IOCD Into
Chan. Regs to Do
Sense into IOCT;
SIO

50 usec
Elapsed Since
Sense
Issued ?

Figure 3. RBM Input/Output Task Flow (cont.)

Entry After
Control Panel
Interrupt

[

Compare and
Store Data Switch
Value in DSWTCH

Were
They
Different ?

=Dedicated
Interrupt Location
of Active
Task 2

yes

Switch PSD
to Exit
to M:ABORT

no

Trigger
Key-In
Subtask

Figure 4. RBM Control Panel Task Flow

N

12

DI

ENTRY AT
COUNTER1=0 '

SAVE CONTEXT

s

INCREMENT
ACTIVE CHANNEL
TIMEQUT VALLE

HAS
CHANNEL
TIMED OUT?
YES

X210TRI

QUANTIM

KEND \V
SET COUNTERI INHIBIT
FOR NEXT INTERRUPTS

TICKS
LEFT ON
CLOCKI?

Le@
N

PRECHARGE
CURRENT USER
NEXT QUANTUM

INCREMENT HALF
DAY OF YEAR
RESET SECOND OF
HALF OAY

HALF DAY
TIME STAMP
T0 ERROR LOG

L

BKG

T LIMIT
EXCEEDED?

SIMULATE CHARGE FGD IF RES TORE
CLKICNT= CHANNEL END PARTIAL QUANTUM INTERRUPTS
CLKICNT+1 OVERRUN
3 , J
[LKST KEX V¥V
E‘:gug{c% e RESTORE LONTEXT
RAN
CLOCK] RXRS NO_AALL CHANNELS
{Es
INCREMENT CHARGE FGD FULL
SECOND SECOND OF HALF QUANTLM .
ELAPSED? DAY

(Exitciockn)

Figure 5. RBM Clock 1 Task Flow

—
| Under
| Debug

Control
L —_J

Is Exit to

a Foreground
Task ?

Save Status of
Interrupted Task,

Reset RBM

K:DYN

\Checkpointed 2

Subtask

Background
Waiting ?

Generate Calling
Parameters for a
Reload. Branch to
Q:ROCX for a
Reload

Get the Highest
Priority Subtask

Is It IDLE?

Active Overlay Is the
Been Sidelined ? Interrupted Task
Background

or JCP?

yes

Load and
Enter Subtask

Restore Régisters
and Exit

yes

Wait
| (WD X'D0")

Figure 6. RBM Control Task Flow

13

——v
RESTORE K:TCB

PRECHARGE FGO AND REGISTERS

Mg SAVE Fg‘é‘"gmg" MIEXIT
- .
INHIBIT N
INTERRUPTS MARDWARE EX1T)

SET KaTCB TO SET KSBASE AND NO
NER TASK FLT ACC D

SAVE CONTEXT IN
NEW TASK TCB

RESTORE K:BASE
EXIT MaSAVE AND FLT ACC

SET TO CHARGE CREDIT FGO FOR
FGD ’ QUANTLM
REMA INDER

CREDIT OLD USER PRECHAGE OLD
FOR QUANTUN USER FOR
REMAINDER QUANTLM
REKA INDER

| — | I

Figure 7. RBM M:SAVE/M:EXIT Task Flow

Access to the overlaid Monitor service routines is controlled by service routine Q:ROC. By using the temp stack
and the overlay control flag K:SEGIN (see Figures 8 and 9), Q:ROC controls the loading and subsequent reloading
(if required) of the Monitor overlay area (a 512-word reserve). Normally a call to an overlaid Monitor service
routine results in a three-word call to Q:ROC to explicitly load and transfer control to the overlaid routine. The
calling sequence to Q:ROC is as follows:

RCPY1 P, T T points to ADRLST
B Q:ROC
DATA 'IDNN' ID = segment ID
NN = temp stack requirement
(NN = 12)
K:SEGIN A TASKID Current Overlay ID
o 1 2 7 8 15
Temp Stack 0t A Previous Overlay ID
! M:RES,/M:POP (B)
2 Set to (L) by Q:ROC
3 X
4 A
5 E
6 Request (overlay ID)
7 X'8802'
8 Device File Number of 'RM' File
9 Overlay Area Address
10 Byte Size of Overlay
11 Sector Displacement of Overlay ‘
11 +R ' ' Additional Temp Space Required by the Overlay
0’1 "2 7'8 15

- Notes:

1. ‘Words 3 through 12+R are available for use by the overlay, where R is the number of cells required
minus 12, If the result is negative, R is zero. '

2. The symbols used in the figure are described below.

K:SEGIN is the overlay control flag and actually resides as the first word of the overlay region. It
is composed of the following:

|
1

A indicates whether the overlay is active (A = 1) or not active (A =0).

i

TASKID is the seven low order bits of the dedicated interrupt location of the task using |
the overlay.

X, A, and E contain, at exit, the status returned by the routine.

Figure 8. Q:ROC Use of Temp Stack and K:SEGIN

16

CALLING SEQ2
RCPYI P,T

EMP

SEE NOTE | FOR
KESEGIN | — — — sl
EXPLANATION. | RE 10)l
RETURN 15 'L
GO T0 RES.
ERLAY. -

ov
POINTER IS IN |
K:0LOAD TABEL.

PACE 3

RETURN
IMMEDIATLY .
A E' AND

fi'y 'E° R
X = -1

‘B nV'RDf be — — — QiROV
pATA X’ I?OO VECTOR © X'70°
+

/

MAKE SPECIAL
CALL TO M:RES
T0 RESERVE
“1IEMP" CELLS.

X 001D 10 6yl
K.SEGIN TO 0,,1

GET BYTE COUNT
fND POINTER -
FROM K20DLOAD

| TRBLE AND BUILD

MIREAD FRGLST.

CALL QsROC
RECEIVER (ORXR
e X168).
‘BT =0

PAGE 1

SAVE x.,.fcm IN

ACAN,

TRIGGER RBM FOR
BXGD RE-LOAD
K:SEGIN ->
INACTIVE.

| I

I

SAVE IONT OF
ACTIVE OVERLAY
IN HIGH BYTE OF

TCB WORD 15.

FPRE @

THIS WILL ALLOW
OVERLAY RELOAD
SHOULD THIS
TASK ABORT.

Figure 9. Q:ROC Flow

.

RESET ACTIVE
FLAG

INHIBIT

15
REQUESTED
OVERLAY
N CORE

INTERRUPTS.

CALL M2READ TO
READ OVERLAY.

—y .

BRANCH TOr PATCI
ROUTINE FOR
TEMPORARY
PATCHES.

SET K8SEGIN
UNINHIBIT INTS.
RESTORE “X°

]
BRANCH TO
OVERLAY.

D

PACE 3

18,51, UNINHIBIT
NT]

UNINHIBIT

INTERRUPTS.

SET KSSEGIN =
ERRUPTS

SYSERR

CRASH: CODE =
“Sp°

9,

'‘PAGE 2

SEE NOTE 1 FOR

— ' KISEGIN

EXPLANATION.

Figure 9. Q:ROC ’Flow (cont.)

Note:

PAGE 3

‘ Q2ROCX '

Bl

SAYE ‘A’
SET KSSEGIN
INACTIVE SAVE
“X° AND E-

1
OVERLAY

ARER_FREE
e
YES
CALL O3ROC
RECE [VER.
B = -l.
SJOVE 05,1 10
- <
**INDICATES
RELOFD. RESTORE 'A°,
X" AND E’
REGS, AS PASSED
FROM OVERLAY.
EESﬂD JES
REOUIKED
£2
Yno PR 11

Q:ROC first reserves NN temporary cells via the monitor service routine M:RES and then saves the
current status of the overlay area (indicated by K:SEGIN) info word 0 and the return address into
word 2 of the temp stack just reserved. (Q:ROC steps info M:RES with the number of required temp
cells in the A register and with the T register less than X'100'. M:RES recognizes a call from
Q:ROC by the contents of the Tregister and after reserving the requested number of cells and saving
the original contents of the A register, returns directly to Q:ROC.) Q:ROC then sets K:SEGIN fo
reflect the status of the overlay area. If the overlay is not already resident, Q:ROC loads the re~
quested overlay. At completion of the load, K:SEGIN is set to ID "active", the X register is re-
stored, and control is transferred to the second word of the overlay area. The routine will perform
its prescribed function and return to the location indicated by the monitor pointer Q:ROCX.

K:SEGIN, pointed to by location X'7F' is the first cell of the overlay area and contains the follow-
ing information.

Bit 0 if on, the overlay area is active; if off, the overlay area passively contains the
last overlay executed.

Bits 1-7 contain the low order 7 bits of the dedicated interrupt location associated with
the task currently (or, most recently) using the overlay area. These 7 bits are
zero for Background, JCP or PMD.

Biis 8-15 contain the overlay IDNT.

Each overlay must be assembled with the first cell containing X'FF00' + IDNT.

Figure 9. Q:ROC Flow (cont.)

This address is also contained in the L register at entry to the routine. Q:ROC will initiate a reload operation if
the previous overlay status was "active". A call is now made to the Monitor service routine M:POP to release the
temporary space and fo return fo the calling program with the status returned by the overlaid routines in the X, A,
and E registers.

A special entry point, Q:ROCC, is used when one overlay calls another. This entry requires that the IDENT of the
requested overlay be in 6,, 1.

The minimum temp stack requirement for any overlay is. 12 + R, The maximum temp stack requirement is a function

of the nested calls to both resident and overlaid Monitor service routines.

The maximum nested temp stack requirement occurs when a call is made to M:SEGLD, data switch #0 is set, and
RBM and its overlays are assembled with #TEST = YES.

Reserved Total

1. User calls M:SEGLD 10 10
2. M:SEGLD calls M:READ to read segment 19 29
3. M:READ returns to M:SEGLD -19 10
4. M:SEGLD calls M:WAIT which transfers to Q:ROC 15 25
5. Q:ROC calls M:READ to load overlay 19 44
6. M:READ returns to Q:ROC, which branches to M:WAIT -19 25
7. M:WAIT calls M:WRITE to write "BEGIN SEG XX" 19 44
8. M:WRITE calls Keyboard Edit routine which transfers to Q:ROC 13 57
9.. Q:ROC calls M:READ to load overlay 19 76
10. M:READ returns to Q:ROC which branches fo the Keyboard

Edit routine which, in turn, exits, and the temp stack is

eventually unwound. The entire process is diagrammed in

Figure 10.

ll() 20 3‘0 40 50 60 70 80
e | l
M:SEGLD | M:READ
M:WAIT | " M:READ for Q:ROC

M:WRITE KP EDIT " M:READ for Q:ROC

Figure 10. Temp Stack Usage

19

20

RBM Initialization and Selection

There are two phases in establishing an RBM failored to o particular installation:

1.

2.

The selection phase, SYSGEN (shown in Figure 11), is performed at least once for each system. SYSGEN
selects the options and the peripheral devices to be used by the system and allocates areas on the RAD.

The initialization phase, SYSLOAD, loads the RBM overlays onto the RAD and then writes RBM and the
RBM symbol table onto the RAD. SYSLOAD also stores information in the RBM RAD bootstrap that enables
the bootstrap to load RBM from the RAD. SYSLOAD then exits to the bootstrap.

There are several characteristics common to both phases. Both are nonresident (as shown in Figure 12); thatis, when
each has performed its function, it can be overwritten by foreground or background programs. Also, both operate
as protected programs, and hence the memory protection must be off during these phases because the protectionreg-
isters are not set up until the RAD bootstrap executes.

There are several functions performed in the selection phase:

1.

2.

All 1/O tables are set to the installation dependent values.

All tables are compacted in low core (either in unused hardware interrupt space or just above resident RBM
instructions) to conserve space. Thus, pointers to all 1/O tables are dynamically assigned and initialized
in the zero table as part of the selection operation.

The selection of mandatory and optional resident tasks and routines and nonresident routines is determined
by symbols placed in the SYSGEN Symbol Table and in the RBM Overlay Table. The format of the SYSGEN
Symbol Table is based on the BCM Linking Loader symbol table.

The maximum allowable size of an eniry is six words (up fo eight characters) per symbol. The table is not
ordered by the loader during the loading process. Entries are inserted as encountered. The entry size
includes the control word.

word 0

No. of

Def|Ref[Dec| 0 | O words Module declaration No.

¢ 1 2 3 4 5 6 7 8 9 10 11 12 13 M4 15

word 1

For a DEF: Effective address
For a REF: Effective address of Ist link in REF chain

0 1
word 2
Ist character of DEF or REF 2nd character
0 7 8 15
word 5
7th character 8th character
0 7 8 ‘ 15

In this item, word O is the control word
where

bit 0 is set only if the entry is a definition value. During loading, definitions are declared at
the beginning of the module but are defined later in the module. The entry is made in the sym-
bo! table when the REF is encountered or the DEF is declared. Bit 2 = 1 indicates that the entry is .
a definition declaration (the symbol has not been defined yet). Bit 0 = 1 indicates thatadefinition
address or value has been inserted in word 1 of the table.

Binary Input of SYSGEN
(in Absolute) and
RBM Modules (in Relocatable)

Required: 16K Sigma 2 or Sigma 3
with a Binary Input Device; the
RBM Selection Routines Will Cus-
tomize All I/O Tables and Core
Allocation Parameters for a
Particular System

Operator's Console; KP

|
|
1
|
i
|
!
|
|
|
1
!
!
1
!
)
J
1
]
]
|
1
|
I
]
e

Parameter Input
Device; Either
KP, PT, or CR

Listing Output
Device; Either
KP or LP

Figure 11. RBM Selection Operation

21

22

Unused Unused
(if any) (if any)

16K 16K - r
Relocatable loader A Relocatable loader
Initialization Initialization
Selection routines
Unused
Unused
RBM routines
and tasks
I/O tables and I/O tables and
interrupt locations interrupt locations
Constants Constants
0 0
Selection phase Initialization phase
(After loading resident
RBM routines and tasks)
Figure 12. Core Memory Allocation
bit 1 is set if the reference name is encountered prior to encountering a definition value. When

bit 0 is set, bit 1is reset. However, bits 1 and 2 may both be set at the same time if a reference
and definition declaration are encountered before the definition value.

bit 2 is set when a declaration is encountered. It is used for flagging (on the map) definitions that
are declared but not defined.

bits 5-7 .indicate the length of an entry in words (the length can be 3 to 6 words). Trailing blanks
in a symbol are suppressed.

bits 8-15 are the declaration number of the entry. As a start item is encountered, the Loader
assigns to the module a declaration number between 1 and X'FF' (this includes library programs).
The number is used to locate the source of definitions for mapping.

Word 1 is the effective address of the item. If the entry is a definition address the effective address or
value of the definition is contained in word 1. If the entry is a reference, the effective address of the
first link in the threaded reference list is contained.

Words 2 to 5 contain the EBCDIC representation of the SREF, REF, or DEF. If the symbol eniry contains

less than eight characters,

trailing blank words are suppressed.

The following procedures are available in the SYSGEN source program to simplify management of the sym-

bol and overlay tables.
Procedure

REFSYM

STDSYM

ADDREF

ADDOV

Function

Creates a symbol table entry for an optionally-included module DEF.
Calling sequence: label REFSYM 'cicy’, ‘egey’s ...

where c; are up to eight characters.

Creates a symbol table entry for a required module DEF. These symbol table
entries must appear between the labels PST and SYSLOAD.

Calling sequence: STDSYM 'cjco’, 'cacy’, ...
where ¢, are up to eight characters.
Adds a symbol to the SYSGEN REF stack.

Calling sequence: [label] ADDREF symbol

where 'symbol’ is the label of the REFSYM procedure.

If the symbol already exists, the new pointer will be linked to the previous
one, in which case carry will be set on return; otherwise, carry is reset
on return.

Adds an ident to the OV:LOAD table.

Calling sequence: [label] ADDOV ‘id’

where id is a 2-character EBCDIC constant corresponding to the ident of the
overlay to be added.

If the overlay ID already exists in the table, the routine will exit without adding
it again, in which case carry will be set on return; otherwise, carry will be reset.

The resident tasks and routines (optional and mandatory) for monitor services and 1/O handling are loaded
from the same device used to load SYSGEN. Each routine is assembled as o relocatable module that con-
tains a DEF statement to externally define the module. The module may also contain any (or all) of the

following characteristics:

@ REF statements for linkage to other modules.

e DEF statements for reference by other modules.

e Initialization code to set pointers in zero table, 1/O tables, etc., or to eliminate unnecessary
configuration-dependent code. The cell IN:UB1 is set to the initialization start, which may be
altered by the initialization routine. Loading of the next module begins at the location in
IN:UB1 on return.

23

24

Initially, if there is no previous data on the RAD to be saved, the initialization phase writes zeros into the first two
sectors of all SYSGEN-defined areas of the RAD. Then the initialization phase loads the RBM overlays from the
SYSGEN boot device, writes them on the RAD, and constructs the RBM OV:LOAD table that is used by Q:ROC
when the overlays are loaded for execution. Next, RBM and the transfer vector (TVECT) table are written on the
RAD. The 10OCDs necessary to read RBM from the RAD are calculated and stored in the RAD bootstrap, and the
bootstrap is written on the RAD. Finally, the RBM symbol table (used by the Overlay Loader to satisfy external ref-
erences fo Monitor service routines) is written, and the initialization phase reads in the RAD bootstrap and trans-
fers control to it.

Job Control Processor

The Job Control Processor for RBM is herein defined as the routines required to control the operation of a background
processor, which includes loading, initializing, and checkpointing and subsequent restarting of a background job.
For the purpose of illustration, the Job Control Processor has been divided into three main parts: the RBM Conirol
Task, the RBM subtasks, and the Control Command Interpreter. Each part is described separately, but each part
interacts with all of the other parts.

RBM Control Task

The RBM Control Task operates at the lowest hardware interrupt level. When triggered to operate one of the RBM
subtasks, the RBM Control Task will scan the RBM Control Task status word (R:RBM) for the highest priority subtask
currently requested (see Figure 13).

If the subtask is not already in core, it will be read into the RBM overlay area, and control will be transferred to
the subtask at the RBM Control Task level. When its operation is finished, the subtask will clear the respective
flag in the RBM Control Task status word and return to the RBM Control Task. This process is repeated until all
requests for subtasks have been satisfied.

RBM Subtasks
Currently there are 13 RBM subtasks, each of which is described below in order of priority:
1. S:PARPWR outputs power-on and machine fault alarms (see Figure 14).

2. S:CKPT controls the checkpointing of a background processor.
3. S:REST controls the restarting of a background processor that has been checkpointed.

4. S:LOAD loads root segments and controls the initialization of background processors or foreground program.

5. S:ABORT controls the aborting of a background processor and also outputs foreground abort messages with-
out affecting background. S:ABORT examines the Job Control Processor status word (R: JCP; see Figure 15)
to determine whether or not additional subtasks are required (e.g., S:PMD, S:IDLE).

6. S:ELOG writes error=log entries from memory to the ERRLOG disk file, and tests the file for imminent
overflow condition,

7. S:KEY responds to all unsolicited key-ins and is called as a result of a control panel interrupt.

8. S:TERM terminates a background processor after all background input/output is finished.

9. S:ATTN transmits Turn Data Terminal Ready On order code to the keyboard/printer device with AIS
code of 2 in FCT2, and sets AIS to 3. If function is being performed for keyboard/printer other
than DFN1, foreground attention receiver (ATTNRXR) is entered with the X register containing the
keyboard/printer DFN.

14

Q

- ————»
| o M:ABORT - M:DOW
O B
k Control
-- M:LOAD ' Panel
| ‘ Interrupt
i
I
{
& —— = ~®| M:CKREST M:TERM
ook RA and RD
achine key-ins
Fault Task Y
o=
JCP
Power (FIN)
On Task
¥ Y ’ R Y Y
R'RBM 1 T T T o T T T . T - r ’ r T
i Z:PARPWR Z:CKPT Z:REST Z:LOAD Z:ABORT Unused Z:ELOG Z:KEY Z:TERM Unused Unused Z:ATTN Z:DEBUG Z:IDLE Z:PMD Z:CCI
BitNo.) | o . v 2 3 4 5 6 . 7 L9 10, 11 .12 13 14 15
\ A
S:CKPT * S:ELOG S:ATTN S:PMD
S:REST S:TERM
S:KEY S:ABQRT
S:LOAD -—————»@ — -———- S:KEY
Notes: 1.

Solid lines show direct access to RBM, and broken lines shown indirect access via subsequent calls.
2. The priority of subtasks is from left to right.

Figure 13. RBM Control Task Status Word (R:RBM)

Power-On Task for Sigma 3 Computers with External Interrupts and Sigma 2 Computers.

Entry after
Power-on
Interrupt

Y |
Wait 30 seconds Set error Trigger 1/O task to

for peripherals severity level call AIO receivers
to power up. equal 3. for 1/0 active at
power-off time.

L

This code not
assembled for sys-
tems not including
disk packs.

Y ‘I
Wait for system
RAD to become Set error Trigger 1/0 task to
ready. severity level call AIO receivers

equal 0. for disks doing seek }— —
overlap (Sigma 3

] - only).
Arm and enable ‘
RBM-required Coll
interrupts. power-on

receiver.

M:DOW

Was
RBM control
task active

Is

error severity
zero

Log power failure.

yes

\

Restore

protefchon Set up to enter

registers. ochve'boot no RBM control

overlay in core task at its inter-
rupt level.
Y

Q:RBMSET —
Trigger RBM ‘
control task to M:SYSERR
send power-on code = 'PF'. MEXTT
message.

BKG or RBM
control task

Figure 14. Power-On/Power-Off Tosks

26

Power-On Task for Sigma 3 Computers with no External Interrupts and Xerox 530 Computers.
Entry after
power—on
interrupt
Y
Wait 30 seconds Call
for peripherals all power=on
receiver.
to power up.
Wait for system
RAD to become M:SYSERR
ready. code = 'PF'.
Restore
protection
registers. active boot
overlay in yes
Restore
interrupt
system. Trigger 1/O task to
call AIO receivers
for I/0O active at
power-off time.
Q:RBMSET
Trigger RBM \
control task to .
send power—on Trigger 1/0 fq.Sk to This code not
message. call AIO receivers | __ __ _] assembled for sys-
for disks doing seek tems not including
overlap. disk packs.
\
Log power failure. MEXIT
\
Set error
severity level
equal 0.

Figure 14. Power-On/Power-Off Tasks (cont.)

27

28

Power-Off Task for Sigma 2/3 and Xerox 530 Computers

ntry after
power-off:
interrupt

Y

Save available

s Sigma 3 and
interrupf system |- — — — 530 Computers only
status
Y
M:SAVE

Save active
task context

HIO all active
devices

Save status

Y

Call power-off

receiver

HALT

A contains 'PF'

fAn assembly switch can be reset which will cause the removal, at assembly time, of the code which
HIO's disk packs doing overlapped seek operations for systems not configured with these devices.

Figure 14. Power On/Power Off Tasks (cont.)

R:JCP

Bit No.

T T T T

— T T T T T T | E——
Z:JCKPT ?-yK:eT Z:JBKACT Z:JNRACT Z:JPMACTZ:JPMREQ Z:JATEND Z:JSKIP Z:JTEMP Z:JIDLE Z:JCCACT Unused Z:JSAVCC Z:JERFIL
| L)) I i I !] i ! I _
0 b2 3 4 5) 7 8 9 10 1 1213 14 15
Z:JCKPT 0 = no checkpoint, Z:JSKIP 0 = not in skip mode,
1 = background is checkpointed. 1 = skip until JOB or FIN,
CKPT Type 00 = resident or nonresident foreground. Z:JTEMP 0 = clear background temp files at end of activity.
01 = S:LOAD checkpoint. 1 = retain background temp files until next job,
Z:)BKACT 0 = not active (RAD not required for checkpoint). Z:JIDLE 0 = not in idle.
= active, 1 = idie mode.
Z:JNRACT 0 = nonresident foreground not active, Z:JCCACT 0 = JCP not active.
= nonresident active (prevents any new loads). 1 = JCP active.
Z:JPMACT 0 = postmortem dump not active, Z:JSAVCC 0 =reset 'CC' at 1JOB
1 = active, 1 =SAVE 'CC' for 1 1JOB,
Z:JPMREQ 0 = postmortem dump not requested. Z:JERFIL 0 = No-op.
= requested, = out error file overflow warning.
Z:JATEND 0 = background job not attended.

1 = attended,

6C

Figure 15. JCP Status Word (R:JCP)

10. S:DEBUG transfers control to the Debug executive.

11. S:IDLE is a resident routine that causes the background to go into an idle state until the operator supplies
a key-in of S to resume operation.

12. S:PMD controls the operation of the postmortem dump by loading and transferring control to the postmortem
dump overlay.

13. S:CCl initiates the loading of the control command interpreter and extends memory protection to the
background. ‘

RBM Overlay Table

The format of the RBM overlay table is shown below:

K:OLOAD Number of entries

FWA Ident

Eni‘ryi
Word size

Ve 3 7| b

where FWA is
1. The relative sector number of the start of this overlay, or
2. - A flag (X'FF') which indicates that this overlay permanently resides in resident core.

If FWA is a relative sector number, Q:ROC, which makes extensive use of the K:OLOAD table, will add FWA
to the contents of absolute core location X'1B5' (ROVBIAS) and use the result as the disk record displacement for
the 10 operation to read in the overlay specified by Ident. The byte count for. this operation is Word Size times
two.

If, on the other hand, FWA is X'FF', Word Size is actually a 16-bit value and indicates the core-resident starting
address of the overlay.

Nonresident Foreground Queue Stack

The format of the nonresident foreground queue stack is shown below.

K:NRFQ 0 No. of Queue Entries
1 DFN for JCP Load
2 nl n2
3 n3 n4 Queve Stack Entry
9
4 n5 nb (4 words per entry)
5 n/ . n8 J

Queue Stack Entry,

Z Z b (word O of entry = 0

if available)

n J

where nl through n8 represent the program name.

The size of the nonresident foreground queue stack is 4n + 3, where n is the number of queue entries allocated at
SYSGEN (n is always greater than 0). A request is inserted into the queue stack by storing the program name (as
defined in the User Processor Dictionary) .into the first available entry. As each entry is loaded, the queue stack
entries are pushed up and the last entry is set to "empty " by zeroing out the first word of that entry. Word 1 is a
special entry for the Job Control Processor; whenever a load is requested by the Job Control Processor, the device-
file number associated with the load is stored into word 1 of the queuve stack.

Control Command Interpreter

The Control Command Interpreter (CCI) is a routine that operates in the background area to read and process control
commands (see Figure 16). It operates at the background priority level, with memory protection extended to the
background. When CClI is active, the task control block pointer K:TCB will be set to K:BACKP + 1. This process
identifies CCI as a foreground task.

The Control Command Interpreter will process all the Monitor control commands (see the Sigma 2/3 RBM Reference
Manual for a description of the control commands); will copy relocatable binary decks onto the GO file; and, via
processor control commands, will cause the loading of system or user processors.

See Figure 17 for an illustration of loading processors from JCP, and Figure 18 for queue stack loading of foreground
processors.

Background Termination Procedures

There are two ways for a background job to terminate: (1) norma! termination, with a call to M:TERM, and (2) ab-
normal termination, with a call to M:ABORT.

On termination,| the RBM subtask S:TERM allows all input/output for the background to run to completion. If an
SIO has been issued on a background device and if that device is in manual when the termination is attempted, the
input/output is aborted by an HIO operation and the input/output status tables are cleared. This procedure prevents
an uncompleted or incorrect operation in one job from affecting the following job. A postmortem dump will be per-
formed if appropriate.

A postmortem dump is initiated by a PMD command following the JOB command. The Job Control Processor builds
the postmortem dump table from the parameters on the PMD card (see Figure 19). Whenever background terminates,
this table is used to determine whether or not a dump must be performed and what areas of memory are to be dumped.

M:WRITE

1IEND IDLE

Comment or
Control Command
(*or 1) ?

A

Log Elapsed Clear Z:JIDLE Abort with
Time Flag Code CC
4
M:WRITE J

Control

HHCP

New

Activity

(CCIFLAG=0)
?

Set
CCIFLAG <0

RADCLOSE

Close Out
RAD Temp Files

M:ASSIGN

Assign PI =
Name, SP

M:OPFILE

/ M:ASSIGN '\

Processor .
Located? Assign PI =
Name, UP

Set to Use Set to Use

KP DFN CC DEN

Processor
?
/ MREAD \ Located?

Read a
Control Card

Figure 16. Job Control Processor

L DFLTASS \
Do All Default
ASSIGN;s

A
DFLTDEF

Do All Default
DEFINEs

\

t
Current system processors

MREAD \

Read Header
from P1

Foreground?

OLO,FOR,UTI,
RPG,COBf,BLO

Backload

Foreground?

| Set Up the Dynamic
Blo;king Buffer Pool yes

no

Set Up Back-
- ground -TCB

 M:LOAD"

Initiate
Load

Abort with
Code PV

Abort with
Code XE

Figure 16. Job Control Processor (cont.)

33

y

Trigger S:LOAD

-
e / aroc \ | / Q:ROC \
@ E Read in Read in
O S:CCl S:LOAD
|V
L
vy
)
< / M:READ \ / M:READ \
[aa]
P Read CCI Read Processor
s into Background . into Core »
&
Y
Extend Memory
Protection Foreground ?
¥ no
'
y
CClI
Back-
ground cca
Processor
/ M:ASSIGN \ |
Assign Pl to !
Processor Name !
[a] . ‘ B
5 [/~ mioan T\
S ' —
V) Set for Loading -/
S from OPLB Pl
<
m N

Figure 17. Loading Processors from JCP

Operator
Interrupt

A

Trigger RBM
Contro!l Task
for S:KEY

CONTROL PANEL INTERRUPT TASK

Enter Program Name
into Queuve Stack

FOREGROUND TASK

2

/ Q:ROC" \

Read S:KEY
into RBM Overlay

-

RBM CONTROL

M:WRITE

Cien)

y
M:READ

Accept Key-in
(Q Name)

RBM -SUBTASKS

M:LOAD

Enter Name into '
Queve Stack

ead S:LOAD into
RBM Overlay

M:READ

Read Header
of Program

Require
Background ?

/ aroc __\

Read S:CKPT into
RBM Overlay

M:WRITE

Write Background
onto RAD

Y

Extend
Memory

Protection

Checkpointed ?

M:READ

Read in
Program

Figure 18. Queue Stack Loading of Foreground Processors

35

36

KEYS It
FWA (1)
LWA (1)
FWA (2)
LWA (2)
LWA (4) .
0 V 34 7'8) 1415
KEYS is a series of 3 bit codes interpreted as follows (each code specifies a complete dump entry):
000 no more dumps
001 hexadecimal
010 hexadecimal /EBCDIC
100 integer
110 mnemonic
u is set to 1 for an unconditional dump request (i,e,, PMD will occur regardless of the method
if background termination).
FWA is the first word address to be dumped.
LWA is the last word address to be dumped.

Figure 19. Postmortem Dump Table

If an unconditional postmortem dump was requested, it will accur after either type of background termination. If a
conditional postmortem dump was requested, it will eccur only after an abnormal termination,

Figure 20 illustrates the operation of the RBM Control Task following a request for a postmortem dump.

RBM Accounting

When the JOBACCT option is specified at SYSGEN, accounting services are provided for controlling the execution
time of a background job and for maintaining a log of background jobs.

The accounting functions are controlled via the RBM accounting table (see Figure 21). The current date and time
of day are stored and maintained in the first two words of the accounting table. The date is stored as the year bias
from the most recent leap year (e.g., year-68) and as the half-day of year, The time is stored as the second of the
half-day, minus 43,200, and is incremented once each second by the counter-one—equals~zero routine. The counter-
one-equals-zero routine will reset this value to ~43,200 at the end of the half-day and will increment the half-day
of year. The Clock 1 routine will provide watchdog services on background execution time.

LE

CONTROL PANEL
INTERRUPT TASK

Operator
Interrupt

Trigger RBM
Control Task
for S:KEY

I

Hardware Exit

RBM \
CONTROLTASK /" Groe [Sioe) AT [~Gro) [moc
Load Load Load Load Load Load
S:KEY S:ABORT S:TERM S:PMD S:TERM S:CCI
RBM SUBTASKS
S:ABORT $:CCl
SQ:RE?ASE-; Wait for Back~ Perform Wait for 50Ck- M:Ri:ACD
et Flags for ground 1/0 Dump Per > ground I/O !‘wd !
S:TERM and to Run Down K:PMDTBL to Run Down fntoBack-
Q:RBMSET Extend
Set Flag. Memory
for S:CCI Protection
M:ABORT
Request
Abort
BACKGROUND \
CcCl
Next Job

Figure 20. Operator Abort with Postmortem Dump

38

Word -1 2 Millisecond Ticks (+ 1 quantum) Since Last Second
K:CLOCK—— 0] Year Bias | Current Half=Day of Year
_ Y e Always
i Current Second of Half-Day Minus 43,200 bush Stack Present
N ¢ * I y vannm B __ FPus fac ‘

\ W ;Cxi“3 Cxif'z .,Cxi‘] Cxi « (right to left) ¥
Year Bias Background Start (half-day of year) [}
Background Start (second of half-day minus 43,200)

F4

Limit for Background (minutes)
2 MS Accumulator for CXg
2 MS AccumAulcztorA for CX; ‘
2 MS Accumulator for CXz ’ JOBACCT
2 MS Accumulator for CX3

Minute Accumulator for CXg

- O 0V 0 N O A~ W N

[p—

Minute Accumulator for CXy

N

Minute Accumulator for CX2

13 Minute Accumulator for CX3 , A
01 3'4 6'7 om0 12'13 15

Notes: 1. The abbreviations used in this table are described below:
K:CLOCK is a pointer in the zero table.

Year Bias is the value to be added to 1972 to determine year.

N is a flag fo indicate job accounting (N = 1 for no job accounting).
CX; indicates current charge index.

Xy

CXi__2 indicate previous charge index.

X3

CXO foreground execution plus I/0 wait.
CX] reserved for background 1/0 wait.
CX2 background execution.

CX3 idle (W, FIN, M:WAIT, PAUSE).

2. The number 43200 is a constant (there dre 43,200 seconds in ¢ half day).

3. Word-1 when added to Counter 1 will yield 2 ms ticks since last second.

Figure 21, RBM Accounting Table

When a JOB control command is encountered, an entry is made in the RBM accounting file (RBMAL,SD) (see Fig~
ure 22). At this time the entry will contain the start time of the job, the user name, and the accounting number
as specified on the JOB command. The start time is also recorded in the RBM accounting fable. If a LIMIT com-~
mand is encountered, the execution limit (expressed in seconds) is stored in the RBM accounting table and will be
used by the RBM accounting routine to control job execution time.

All time available for use by the backgiound is charged to the entry just created. On encountering a new JOB
command or a FIN command, the entry is updated on the RAD fo reflect the accumulated execution time.

RBM Accounting File (RBMAL)

The RBM accounting file is a blocked random RAD file that is allocated at system initialization time. It is long
enough to contain approximately 75 entries and resides in the System Data area. Each entry or record within the
file is submitted as shown in Figure 22.

A special case is made for the IDLE account. The IDLE account will occupy the first entry in the accounting file.
Entries n1 through n12 will be blank, entries a3 and a4 will contain the record displacement to the current account-
ing file entry, and entries a5 and a6 will be used to expand the elapsed time to a double precision value.

All non-IDLE entries, and the elapsed time given in words 10 and 11 of the IDLE entry, will be reset when the
accounting file is cleared by the PURGE command specifying the clear option.

Word 0] Year Bias | Half-Day of Year Date and Time
1 Second of Half-Day Minus 43,200] of Start of Job
2 nl n2
3

4
5
6
7 nll n12
8 al a2
9 a3 ol
10 a5 a6
11 Elapsed Time (seconds)
0 3 4 7' 8 15

Note: The abbreviations in this accounting file are described as follows:

Year Bias is the value to be added to 1972 to determine year.
Half-Day of Year is the date at the start of the job.
Second of Half-Day is the time at the start of the job.

nl-nl2 represents the name given on the JOB card, expressed as 12 EBCDIC characters.
al - ab represents the account number given on the JOB card, expressed as 6 EBCDIC characters.

Elapsed Time represents the total background execution time. This value is not set until the
next 1JOB or IFIN card is encountered.

Figure 22. RBM Accounting File (RBMAL)

39

2. INPUT/OUTPUT PROCEDURES

Protection

All input/output tables are in protected memory, and all foreground and RBM devices are flagged as protected
input/output. Consequently, all background input/output requests are checked for validity before operation is per-
mitted; the check includes both device name and device address and data address. Since any number of devices
can be specified for an installation at system generation time, the user has complete control over all input/output
protection in the system.

Input/Output Priority

All input/output is initiated at the priority level of the requesting task by calls to the appropriate RBM service rou-
tines. No queuing of requests, either on a device or a channel basis, is performed. Thus, up to the point just
prior to issuing the SIO, o higher level task can interrupt and seize control of a channel or device from a lower
level task. Since device-file numbers are unique to a task, any end action for an input/output operation is remem-
bered for the initiating task until that task has a chance to process it. This implies that all channel end information
is saved in the device-file tables rather than in the channel registers. Thus, real-time tasks always have control of
the order of input/output operations.

The Monitor does not explicitly know the priority level associated with a given request, but the method of interrupt
control guarantees responsiveness to the higher priority tasks. By initiating I/O at the 1/O interrupt priority level
and following the ground rule that a task with a priority level higher than I/O may not use Monitor 1/O, RBM pre-
vents having one 1/O request partially initiated on a particular device and then having a higher priority task inter-
rupt with a request for the same device. Without these "inhibits", a device shared by many tasks (e.g., the
keyboard/printer) could become "locked", with an operation partially begun by a low=priority task and with a wait
loop in a high-priority task that could never be satisfied.

To further solve this problem, all input/output initiated by RBM uses interrupts at device and channel end. When
an input/output interrupt is received by the RBM input/output interrupt task, all pertinent status is saved and the
channel and device are released for subsequent use by another task. The 1/O interrupt is higher than all interrupts
that can use RBM 1/O services; hence RBM can always release a channel as soon as the actual input/output is com-
plete. Real-time tasks with a priority higher than the 1/O level must perform their own input/output without using
1/O interrupt control.

Asynchronous Operation

Since Sigma 2/3 can simultaneously operate up to 28 1/O devices on separate 1/O channels, RBM must provide for
buffering operations. The no-wait options in all /O requests and the AIQ receiver option for foreground can be

used to simply and efficiently control buffering operations on several channels concurrently. To reduce system
overhead, RBM does not attempt any buffering for the user, but assumes that the user knows better than the Monitor
the operations that should be buffered. Hence the user can always control which operations are to be buffered.

Error Recovery

All error recovery is performed at the initiating task level rather than at the 1/O interrupt level. Each call to RBM
can control whether standard error checking is to be attempted by RBM or whether the user is to perform his own.
RBM will retry all operations a given number of times (depending on the device), providing that automatic retry is
possible for the device involved and that the user has specified standard error recovery in his calling sequence. RBM
makes no aftempt to provide "bandwidth” control over 1/O operations; thus systems with high-speed devices must
control these devices through the external 1/O processor. (If a data rate error occurs, it will be treated by RBM
like a parityerror.) No error recovery will be performed until a "check" operation isrequested if the input/output was
initiated with a no-wait option. If the background task terminatesor aborts without a check request, noerror recovery
will be attempted. (An initiate and wait is the same as a check request, but maybe used inplace of a check request.)

Any error message is output to the operator on device file number 1 without using a specific device-file entry, since
no entry may be free. The status at channel end is not saved for these messages.

Command Chaining

Command chaining 'in 530 RBM is a software convention that parallels the command chaining in the Sigma 5/7
hardware. It is used only by RBM and is not available to the user except by M:IOEX. Command chaining is used
by RBM to control the unbuffered card punch and low-cost line print (but could be easily adapted to control only
unbuffered device). In addition, command chaining is used to obtain sense information from the 9-track tapes and
to check for errors on the RAD. If also controls the input/output of information from the keyboard/printer and paper
tape to provide flexible editing on a character basis and to simulate fixed-length records on nonrecord equipment by
a character-by-character analysis. The pre-setup and the post-setup (e.g., adding or deleting trailing blanks to
the keyboard/printer or paper tape in EBCDIC mode) is performed at the level of the initiating task. On input,
however, the characters are scanned for editing codes or termination codes at the 1/O interrupt level by the key-
board/printer command chaining receiver. '

Use of a command chain allows output or input to be performed without requiring the IOCDs to be at the end of the
data buffer (e.g., when a NEW LINE code is issued by RBM at the end of each line of output to the keyboard/
printer) and without modifying the user's buffer or moving the entire buffer to the Monitor area. This use is similar
to the performance of the Sigma 5/7 with a separate stack of IOCDs. The format of the command chaining opera-
tion is illustrated in Figure 23. ‘

When RBM loads the channel registers, the loading routine checks the E flag in the second word of the first IOCD.
If the flag is set, RBM will then clear the flag before loading the actual hardware registers, but will pick up the
word following the IOCD as a pointer to the next IOCD in the command chain.

Command Chain Flag [ALPHA 1OCD No. 1
Command Chain Pointer | [1]1lo] 0 0 o0 1
GAMMA
0123 15
ALPHA] 0———0 |[Write Order
] BETA IOCD No. 2
0[0]1 Byte Count {Data Chained)
0123 78 15
BETA
Data
Buffer
GAMMA . DELTA 1OCD No. 3
ool 0 0 o0 2
0123 15
DELTA Lﬁ Write NEW LINE
Order Code
0 78 15
Figure 23. Illustration of Command Chaining

41

42

Command chaining requires a new SIO to be issued by the 1/O interrupt task when channel end occurs on the first
10CD and when all data chaining is complete. When the chaining modifier or an unusual end is encountered, com-
mand chaining ceases. (The command chaining receiver for the keyboard/printer signals the end of the command
chaining when o NEW LINE code is encountered in read automatic.)

Command chaining allows RBM to perform editing on a character-by-character basis for low-priority requesting

tasks (e.g., the background) even though high-priority tasks are active, since the editing is performed at the 1/0
task level. Thus operator input to the background on the keyboard/printer can never exceed the ability of the sys-
tem to respond, even though the requesting task is waiting for a higher priority task fo finish. However, a real-time
task at a level higher than 1/O can seriously affect an 1/O operation where command chaining is used. If this task
operates for too long (or if interrupts are locked out for too long), the 1/O interrupt task will be delayed and a data
overrun may occur. For this reason, any real-time task with higher priority than the 1/O group must operate for a
very short time.

Device-Independent Input/Output

RBM can make many standard operations completely device-independent by (1) using the routines M:READ and
M:WRITE to set up 1/O requests on a functional rather than a specific basis (see Figure 24), and (2) using device
type tables (see Figure 25). Special device-dependent editing routines are called by the general M:READ/M:WRITE
routines without the user's knowledge. The structure can also be expanded to new devices with similar character-
istics. Device type tables are used by M:READ, M:WRITE, and M:CTRL to set up standard IOCDs and standard
order bytes; this frees the user from the work and minimizes duplication of Monitor routines when several 1/0 de-
vices are included in a system. The device type tables are assembled info RBM and then are compressed and relo-
cated by the selection routines to use only the devices referenced. The general routine M:IOEX does not use the
device type tables and thus permits the user to operate with nonstandard requests on standard or nonstandard 1/0
devices, providing that the devices are compatible with the Sigma 1/O interface.

M:CTRL

M:CTRL provides a device-independent positioning capability for magnetic tapes and disk files. An M:CTRL ser-

vice call exercised on other devices or files will receive a status return of "operation not meaningful .

M:CTRL may be used with either "WAIT" or "NO-WAIT" for completion. Calls to M:CTRL may or may not result
in physical transfers, If a "NO-WAIT" call is performed and no physical transfer occurs (e.g., a record backspace
for a magnetic tape already at load point), a return will be made with the X-register set to =1 to indicate that the
AIO receiver will not be entered. The "check" should be performed immediately. The same condition occurs for
both magnetic tape and disk files (although 1/O for disk files is actually performed with a "WAIT"),

End-action status will be deferred until a subsequent "check" operation is performed. M:CTRL status returns are
identical to those for M:READ/M:WRITE. Specifically the X-register will be set to a -1 (when the A-register is
equal to zero) on return from "NO=-WAIT" calls, This indicates that the AIO receiver will not be entered.

The M:CTRL entry point is the same as for M:READ/M:WRITE. However, M:READ/M:WRITE will bypass the device.
status check, pseudo order byte test, and validity test on buffer address and byte count, and will proceed directly
to the M:CTRL overlay. The magnetic tape overlay will establish the IOCT and temp stack for Q:LOADC. It will
then POP to M:READ/M:WRITE to call Q:LOADC.

For "NO-WAIT" M:CTRL calls, a check (order=4) must be performed.. This order is treated in the same way as a
M:READ/M:WRITE "check" request except that the appropriate device post-1/O editor will be entered. This facil-
itates EOF and BOT tests.

Channel Time Limits
When Clock 1 is reserved at SYSGEN for RBM accounting, /O operations initiated by M:READ and M:WRITE are

‘subject to channel time limits. The actual time limit depends on the device and is assembled into RBM, When

Q:LOADC (i.e., the channel register loading routine) is called by M:READ or M:WRITE, the two's complement of

MIRERD
MAHRITE
MICTRL

MIRES

RESERVE
TEMPORARY
SPACEa

V2

MOVE USER
RRGUMENT L1SY
TO TEMP.

MiOPFILE

CONVERT CPLB TO
DFN.

LIF w0 oeL

=1, ‘A=,
-IF Gub=

uipoe

CONSTRUCT
MIREAD/WRTTE
TEHP STACK.

SET MAX
RETRIES = O IN
piFCTR

1§
RR RECCYER
SPEC;FIEB

SEY MAX RETRIES
FROM P2DTYC,

|

A= [EY NAME
B o= TDV
STATUS
‘X" = RECORD

St

EI

NG CMECK
PENDING.
SET A" = &
‘ET = 0.

PP

PAGE 1

CALLING

N A T—

CLERR

RETRY

COUNTa
(PiFCT2)

RETURN
DEVICE
UNAVAILABLE
STRTUS. (A" =8)

Figure 24. M:READ/M:WRITE Flow

LINK AXD BRAS

BISUME MITTRL T¢ FRE 1/0
Citl. ED1 T0R.

IF RRD —>
QIRAD.

@@24 ;L

; LINK AND BSRACH
TO QiLCHIC.
M2TTRL . C{EXCEPT 'RD-
. AND tDT)

DISMIS THE TRSK
"TIL CHARNEL
GOELS FREE.

RETURN OP 1OT
MERNINGUL.

2!

1]

UINESS

DUTPUTS
"UNRET™ CR

"REJECT”
HESSAGE «

!

CHANNEL HAS SET

MiPOP

ONLY BRACKGROUND

CAN CAUSE 15 ACTIVE WITH 30+
PROTECTION PEOTELTION SECOND TIMEQUT
VIOLATION \'wL7m£0 YALUE:
L@
PRCE 3

PAGE 2

HAS
DEVICE

‘.ﬁ!-;.iﬁl_
S r 3

QIKESS

oUTPUTE
“ENPTY
MESSAGE «

!

MANUAL
CoNDiTION ALSO
. GETS 30+
TIMEQUT VALUES

DISKHISS THE
TRSK "TIL
CHANNEL GIES

FR

=3

Figure 24, M:READ/M:WRITE Flow (cont.)

ot

EWd
ACTION
PENDING
LO0P .

13
TH1S
NO- P?ir"t] T

RHE 1

RETURN BUSY
STATY;
A= -1, E’

DISMIS THE TRASK
*T1L CAMEL GOES

FREE.
CTIL EuRaPal

]

PH34

CLERR FILE
ACTIVE RO
‘FufPa BITS,

LINK BiND BRANCH
T8 PO3T 1/0

PAGE 3

LINK 8D BRANCH
TO RECOVERY
ROUTING,

EDIT ROUTINE.

HPOP
STAIUS IN ‘A

Figure 24. M:READ/M:WRITE Flow (cont.)

(Resident File Management Routines)

Software
Write Project
Violation

I/O Pending
on Blocked

Go to Format
Specific Routine:

Blocked, RD300
Unblocked RD400

Compressed, RD500

Random, RD600

Random Blocked, RD300

Return "Write
Protect" Status

Update IOCT
EOQF Pointer
(Word 3)

Is
This a 'Wait!
Operation

PAGE 4

RD90X

Save Status
Set E.A. P,
Return "1/O
Initiated"
(AIO will not

be recognized)

Figure 24. M:READ/M:WRITE Flow (cont.)

RD500

RWE2

(Resident File Management Routines: Blocked)

-~

‘RD300

RD350

Limit Byte Count

to no More Than
One Logical Record.

Incorrect Length is
Determined at this
Point and Maintained
on Bit 5 of IOCT,

Word 0.

Is
'SR* Flag
Set
?

Is
Byte Count
<LRZ?

PAGE 5

Move User Byte Count to
End of Full Size Record.

I
Access Mode
Random yes
?
no

Is
This o
yes "Shared File"
?

no

Is

EOF True
2 yes

no

Is
Format
Sequential
?

no

Is
This a
“Shared File"
?

no

Set Byte Count = LRZ.
Set 'SR condition; Bit 15
1IOCT Word 14.

yes

Is
This a "Wait
Operation" no
?

yes

Is
File Positioned
to Requested
Block ?

Is
Other Block

in Core?

yes

RWE2

Write Out
Old Block.

EOT or EOF
True?

yes

h J

Return EOT

or EOF Status

Position File to
Requested BI

RD311

Figure 24, M:READ/M:WRITE Flow (cont.)

47

48

(Resident File Management Routines: Blocked - cont.) PAGE 6

Blocking Buffer
(BBUF) Defined
?

Get BBUF
{Word 7)

Is
Requested Block
in CV‘

Transfer One Word

of Data (compress/
decompress) Decrement
Byte Count (by 2)

Get Requested
Block

Is
Byte Count
=07?

Write Out Current
Block, Read in
Next Block if
Read Operation

Is
Current Block
Full ?

Current Block
Written In

Write Current
Block.

Read in Next Block
if Write Operation

A

Set "Block Not
in Memory" Flag.

A

RD90OX

Figure 24. M:READ/M:WRITE Flow (cont.)

(Resident File Management Routines: Unblocked)
PAGE 7

Iys
Access Mode
Random?

RD350 Incorrect Length is

Limit Byte Count Determined at this

to no More Than — — — Point and Maintained

One Logical Record. on Bit 5 of 10CT,
Word 0.

Is
'SR' Flag
Set
?

Is
Byte Count
<LRZ?

/

Move User Byte Count fo
End of Full Size Record.
Set Byte Count = LRZ.
Set 'SR condition; Bit 15
1I0CT Word 14.

Is
Access Mode
Random?

no

Position File to

Go Transfer Requested Record

Record

y

Position File to
Next Record

Figure 24. M:READ/M:WRITE Flow (cont.)

49

50

(RX100)

Will
EOT be

Encountered
?

yes

Y
Return EOT Status

Is the
Granule or
Blocking Buffer Size Equal

to the Sector no {

Size?
Reduce Byte Count to
Do Only 1 Granule or
Block-at a Time

the Byte Count
too Large for One
10CD yes

2 y

Reduce Byte Count to
Maximum Even Number
of Sectors

il

r——————
I (Disk onl
|) Will
| a Track Reduce Byte Count to
| Boundary be Transfer Only to End
Crossed of Track
l ?
|
L ———————————

(Pre-1/0 Edit for RAD and Disk Pack)

PAGE 8
'_If the resulting byte cour-l;.:
does not equal the re- |
—1 quested byte count at this |
| point, the transfer will |
| be done in multiple |
Loperafions: |

Figure 24. M:READ/M:WRITE Flow (cont.)

(Post 1/0 Edit for
RAD and Disk Pack)

C QRADP)

Is
here Another

Transfer
?

Return to Resident File
Management Routines
which will complete
blocking/deblocking,
update pointers, and
return to caller.

Q:RAD

(RX200)
!

Substitute Alternate
Track if Requested
Track in Bad Track
List for Device.

<

PAGE 9

\J
l Compute Seek Address]

Can
Device Accept

Query Dismissal
(see Figure 36).

=

An SIO
?

no

Enter 1/O Interrupt
Level to Initiate I/O

\

Set up 1OCS,
Activate Channel,
and lIssve SIO

Is
This a 'Wait'
Operation
?

Is
Task
Flagged For
No Dismissal

Return Device
Busy Status

y

Update Core Address,
Byte Count, and Sector
Address

A

Deactivate Channel

Figure 24. M:READ/M:WRITE Flow (cont.)

51

52

ABS Loc (Hex.)

55

56

57

. 58

59

5A

5B

5C

5D

Write EBCDIC Order Byte

Write Binary Order Byte

Write EOF Order Byte

Pre-1/O Editor Address (if applicable; zero means none)

Number of Cylinders per Device

Number of Alternates per Device

P.DIT = Length of Device Type Tables
Pointer Contents of Tables Pointed to
P:D'I'Tlt Device Type Name for Error Messages
P:DTT2 Standord Record Size (bytes)
P:DTT3 Read Automatic Order Byte
P:DTT4 Read Binary Order Byte
If not rotating memory:
P.DTT5 Read Backward Order Byte
If rotating memory:
Number of Sectors per Track
If not rotating memory:
P:DTT6
If rotating memory:
Number of Tracks per Device
If not rotating memory:
P:DTT7 Post-1/O Editor Address (if applicable)
If rotating memory:
Number of Tracks per Cylinder
If not rotating memory:
P:DTT8

Command Chaining Receiver Address (if applicable)

tFor all Logical Device DFNs, the mnemonic 'LD' will be stored in DTT1, while the actual two-character
mnemonic used in the SYSGEN deck will be stored in FCT7; e.g., LD, LP, L1 etfc.

Figure 25. Device Type Tables

5 P:DTT9?
5F P:DTTA
60 P:DTTB
61 P:DTTC
62 P:DTTD
63 P:DTTE
70 P:DTTF
Notes: 1.

If rotating memory:

Flags (see Note 4)

If not rotating memory:

Special Error Recovery Address (if applicable)

If rotating memory:

VTOC Sector

If not rotating memory:

TDV Manual Read Mask (DSB) TDV Manual Write Mask (DSB)

If rotating memory:

Number of Sectors On Device

Standard 10CD Flags and Byte Count Word, for IOCD No. 1

I Max. No. of Retries IOCT Length
67

Standard User-Byte-Count-Word 10CD Flags

If 'PT' device:

Transfer Rate (always <X'8000")

For all other devices:

2's Complement of Timeout Value (seconds) -- 0 if 'KP* Device

Model Number as a Binary Integer

Some order bytes are pseudo order bytes and are modified during the pre-1/0 process to an actual

hardware order byte.

2, This table is indexed by device type, from 1to n, in the same way as file control tables.

3. 1=1if command chaining for the device can be interrupted if the device is used by the back-
ground and the background has been checkpointed.

Figure 25. Device Type Tables (cont.)

54

4. Flags in DTT8

Bit Designation If Set to 1
0 SOP Seek overlap okay on devices whose addresses differ only in

least significant bit.

1 SO Seek overlap okay on device type subject to restriction of
bit 0. ’

2 BTL Alternates indicated for bad tracks by bad track list.

3 FLW Alternates fndicated for bad tracks By flaw marks in headers.

4 RRS Restore required for seek.

5 RRH Restore requires header read.

6 TWS Two word seek address.

7 CsD Collect sense data.

8 SST Single track transfers.

Figure 25. Device Type Tables (cont.)

the device time limit is stored into the channel status table entry, indexed through P:CST8. Once each second,
this value is incremented by the counter-one-equals-zero routine, and if the time limit is exceeded, an HIO is
issued to the offending device and the status and end-action pending flags are stored in the associated file control
table entry. The associated channel then is made available for use.

Operational Labels

Many references to I/O devices are on a logical rather than physical basis, and the operational label tables are
designed to permit this logical referencing. There are two such tables, one for background and one for foreground.
When RBM operates at a hardware priority level, the foreground operational labels are used; when RBM operates at
the background level (below all hardware interrupts), the background table is used. The structure of the table is
shown in Figures 26 and 27. Note that entries in the tables are indexed with a negative value in the index register
to facilitate searching with a BXNC instruction. Thus, the pointers point to one location beyond the actual tables.
The pointers P:BOL1 and P:BOL2 are in the zero table to facilitate RBM referencing. The item P:BOL contains the
negative length of the table, to be loaded into the X register before the search. All other 1/O tables use indexing
and zero table pointers but are indexed forward.

Channel Status Tables

The channel status table is a convenient method of controlling channel activity. Since there is no "test channel"
I/O command, RBM will maintain status for all device controllers on each channel. The following items are also
included in the channel status tables since there are no hardware registers for these items: the AIO receiver, the
command chaining receiver, and the command chaining pointer. The channel status tables are created at RBM
selection and are cleared with each initialization process.

The channel status tables for a given channel are accessed via a double index, once with a device's actual hardware
channel number into the index table (CSTO) to the channel status table and then, with the attained value, into the
channel status tables. For example, where B:CHAN is the actual channel number,

LDX B:CHAN
LDX *P.CSTO, 1
LDA *P.CST(X), 1

BOL1 FOL1

Table Table
Pointers in L S Pointers in L e 4
Zero Table Zero Table
P:BOL1 P:FOL1
P:BOL2 P:FOL2
BOL2 FOL2
Table Table
‘I-— ——————— -; e T p— J

Figure 26, Operational Label Table Pointers

ABS Loc
(Hex.)
40 PBOL = Negative Length of Operational Label Table
43 P:FOL = o 5
Pointer Contents of Tables Pointed To
41 P:BOLI Operational Label or Device Unit No.
44 P:FOLI
0 15
42 P:BOL2 A Permanent File No. B Current File No.
45 P:FOL2 0 : 7809 15

Notes: 1. Appropriate BOL1 and BOL2 table entries are obtained by an indexed search operation on a
background operational label. Appropriate FOL1 and FOL2 table entries are obtained by an
indexed search operation on a foreground operational label,

Figure 27. Operational Label Table

56

Notes: 2. Blank (i.e., zero) entries are used for temporary user assignments.
(cont.) .
3. A permanent file is indicated by bit 0 of word 2 being set to 1.

4, Foreground operational labels are similar to background operational labels,

5. W A =1, this oplb has a standard or permanent file assignment; if A = 0, it does not.

6. Bissetto 1 whenever the oplb is assigned to a file by a call to M:ASSIGN or
M:DEFINE.

Figure 27. Operational Label Table (cont.)

P:CSTO points at the CSTO (the index table to the channel status table), and the A register contains the value in the
Xth channel status table.

Care must be taken in deriving a device's actual channel number from its device number, since multiunit devices
on the external IOP will have the same apparent channel number as a device on one of the first eight channels of
the internal IOP. To resolve this ambiguity, a nine-word table with a zero table pointer (R:10P) is used. The ap-
parent channel number of a multiunit device is used as an index into this table. If the result is X'20', the multi-
unit device is on the external IOP and its true channe! number is the apparent channel number plus 12. Otherwise,
the value in this table is eight, which indicates that the device is on an internal 1OP and that the apparent and
actual device channel numbers are the same.

RBM will support one multiunit controller on each of the internal IOP channels 0 through 7 and the external 10P
channels X'C' through X'13', and up to four single-unit controllers on each of the remaining channels.

Note: In contrast to any other RBM tables, the channel status tables are indexed forward by the value attained in.
P:CSTO, beginning with zero and ending with the value in P:CST. The channel status pointers and tables
are illustrated in Figures 28 and 29,

File Control Tables

A number of central tables are used to preserve the information needed for maintaining reentrant, asynchronous op-
eration, and multiple tasks per device. To facilitate referencing and searching, the central file tables are organized
as shown in Figures 30 and 31.

The I/O control tables (see Figures 32, 33, and 34) are designed to control the IOCDs (which must be contiguous)
created by the RBM routines,

Disk Pack Seek Overlap

Seek overlap is achieved in RBM by setting the channel status indicator (C:CST1) active for only those operations
that actually utilize the channel. On the 7242 device, head movement after the seek address is received does not
require channel activity, the channel is not set active and other disk devices may use the channel to initiate seek
or data transfer operations.

During head movement, the device itself is busy and this status is indicated by the "busy" bit in P:CST5. During
other phases of disk pack 1/O, the entire channel is active. A flow diagram of the disk pack 1/0 is given
in Figure 35. T

Task Dismissal on Wait I/0

The task dismissal feature, a SYSGEN option, allows foreground tasks to be automatically dismissed by RBM if they
elect to wait for I/O completion. Dismissal is to the next lower priority ready task, providing a further overlap of
CPU execution and 1/O processing to the enhancement of low priority throughput. This task is DISABLED for inter-
rupts while dismissed. The feature is controllable on a task basis and on a system basis. This feature can signif-
cantly increase total system throughput. The flow of the Dismissal routine is shown in Figure 36.

Device Number

|

Channel Numbert

CsT10

P:CSTO—— Channel 0 | 0= X < (P:CST) A

Channel 1 | 0< X, < (P:CST) cstn)™
> P:CST(Y),Xi ———— Xi =0
X. =1
[}
Channel 27 [0<X,,, <(P:CST)
28)
Xi = (P:CST) -1
where
CST0 is a table, 28 words long, one word for each possible channel. If a channel is

undefined, X; =-1
P:CSTO is vc pointer in the zero table at entry 0 of CSTO.
P:CST contains the number iof defined channels.
CST(Y) (1=Y<8) is the actual .channe! status tables, 1 through 8, as used in Figure 29.

P:CST(Y) is a pointer in the zero table at entry 0 of CST(Y).

Tas normally derived from the device number, except add 12 for a multiunit device on an
external 1OP.

™n this example, 10 unique channels have been defined at SYSGEN (i.e., (P:CST) = 10).

Figure 28. Channel Status Table Structure

ABS Loc

Number of /O Channels

Contents of Table Pointed To

(Hex.)
19C P:CST
Pointer
46 p.CSTO
47 p.CSTI
48 p.CST2
49 p.CST3
4A p.CST4
4B p.CST5
AC p.CST6
4D p.CST7
6D P.CST8
Notes: 1.
2.
3.
6.
7.
8.
9.

Channel Index Value (28 words long)

Active Device-File Number

Response Control Word (AIO)

Command Chaining Pointer

Command Response Word

Busy Bits

P:CST1 If CKPT Suspension

(Currently Unused)

Channel Time Limit

0 15
This table is indexed by channel status table index value, from 0 to P:CST - 1.

CST1 =0 if channel is inactive.

CST2 = address of AIO receiver. (Zero means none.)

CST3 = address of IOCD for 2nd transfer. (Zero means none.)
CST4 = address of command chaining receiver. (Zero means none.)

P:CST5 contains a busy bit for each disk device attached to the channel. This bit indicates that
a seek is in progress. For example, on the Sigma 3, if there is a seek in progress on device E1,
bit 1 of P:CST5 is set for channel 6.

CST6 holds the contents of CST1 when background command chaining is suspended because of
checkpoint.

CST8 is set by Q:LOADC to =N, where N represents the allowable channel time limit for this
device. Once per second this value is incremented by the counter-one-equals-zero routine,
and if the time limit has been exceeded (i.e., the count reaches zero) an HIO is sent
to the offending device and unusual end condition flags are set in the associated file
control table, In addition, if the operation specified an AIO Receiver, the receiver
will be entered at this time,

The following is an example of testing channel activity.

LDX B:CHAN (channe! number)
LDX *P.CST0, 1 (CST Index Value)
LDA *p.CSTI, 1 (A =0, inactive)

58

Figure 29. Channel Status Table

ABS Loc

(Hex.)
4E P:FCT = Number of File Control Table Entries

0 15

Pointer Contents of Table Pointed To

4F P:FCTI FI R A Channel Number B Q S DT

0 1 2 3 7 8 9 10 11 15
50 P:FCT2 P AlS Max Retry DV WNUN;H of Retries

o 1 2 3 6'7 8 9 12 15
51 P:FCT3 AIO Device Status Byte M Device Number

0 67 8 15
52 P:FCT4 Operational Status Byte C|[T{O1|Cl [O2(C2 {03 |C3

0 : 7 8 9 10 N 12 13 14 15
53 P:FCT5 m‘ Byte Count Residue

0 1 2 3 15
54 P:FCTé Address of I/O Conirol Table

0 15
66 P:FCT7 TIO Device Status Byte TDV Device Status Byte

or Logical Device two-character mnemonic!
0 7 8 15

Notes: 1, This table is indexed by device-file number,
2. The abbreviations used in this table are explained below:

F indicates whether or not the file is active (F = 1, if active file; F =0, if inactive
file). Fisset by Q:LOADC or Q:RADLIO and is reset by M:READ/M:WRITE/
M:CTRL/M:IOEX. (Refer to RAD I/O routines within the Monitor for mnemonics
of the form Q:RAD.)

R indicates whether or not the file is RAD (R = 1, if RAD file; R =0, if non-RAD
file). Ris set by SYSGEN,

A indicates whether or not the device-file number has been assigned to a RAD
file (A =1, if assigned fo RAD file; A = O; if not assigned to RAD file). A is
set by M:ASSIGN/M:DEFINE and is reset by M:CLOSE, A is only meaningful
ifR=1,

B indicates whether file is background (B = 1), foreground (B = 0), or RBM (B = 0).
B is set by SYSGEN.

rThe two-character mnemonic used in the SYSGEN deck to define the Logical Device DFN is stored in
P:FCT7 for that DFN; e.g., LP, L1, or even LD, However, all Logical Device DFNs will have the
mnemonic 'LD' stored in P:DTT1,

Figure 30. File Control Table

. 59

Q indicates whether or not the AlO receiver is operating when data chaining on zero byte
count (Q =1, if yes; Q =0, if no). This is used only for M:1OEX.

S indicates that the file may be processed through a "shared” blocking buffer if such is war-
ranted by the Task Control Block.

DT is the five-bit Device Type Table Index (DTTX). DT is set by SYSGEN for non-RAD
files and by M:ASSIGN/M:DEFINE for disk files.

P indicates the presence of end action (P = 1, if end action pending on current 1/O
operation; P = 0, if no end action). P is set by 1/O interrupt task or Q:RADLIO and
is reset by M:READ/M:WRITE/M:CTRL/M:IOEX.

AlS is the "attention interrupt status" used to control use of the remote terminal ring re-
sponse interrupt. The possible states are:

0 disarmed — any ring interrupt is ignored.

1 armed — a ring interrupt causes bit 15 of R:RBM (X:ATTN) to be set, the RBM
conirol task to be triggered, and AlS to be advanced to 2.

2 waiting — RBM control subtask S:ATTN transmits order to turn data terminal ready
signal on, links to foreground receiver ATTNRXR if other than DFN1, and AIS
is advanced to 3.

3 active — remote connection has been made. If TDV indicates loss of “carrier
defect" status, S:ATTN will transmit order to disarm ring indicator interrupt
and will transmit order to turn data terminal ready signal off.

Max Retry is the maximum number of retries to attempt on transmission errors. Max retry is
device specific, but is set to zero if no error recovery is specified in the M:READ/M:WRITE
argument list.

DV is used to indicate whether a device is; available to Background and Foreground (00),
reserved to foreground (01), reserved to a specific foreground task (10), or down (11). 1I/O
may not be performed on a down device unless bit 7 of the request order word is a 1; other-
wise, device-unavailable status is returned. Similarly, 1/O may not be performed on an
"up" device unless bit 7 of the request order word is a zero. If DV = 11 and bit 7 of the request
order word is one, the background program may use a foreground DFN.

Number of Retries is the number of retries attempted on the cument /O operation. Number
of retries is set/reset by M:READ/M:WRITE.

AIO Device Status Byte is the byte returned from the device when an AIO instruction is
executed. Device status byte is set by the /O interrupt task or QRADLIO, Q:RADLWP,
Q:RADBOT, Q:RADEOF, or Q:RADEOT.

M is set to 1 if the device was in manual mode, or nonoperational when the SIO was issued,
This bit is maintained with the "AIO" DSB (Device Status Byte) if the device times out,

Figure 30. File Control Table (cont.)

Device Number is the hexadecimal number assigned to a peripheral device. Device
number is set by SYSGEN for non-RAD files and by M:ASSIGN/M:DEFINE for RAD

files.

Operational Status Byte is the byte returned from the device at the conclusion of an
I/O operation (i.e., channel end). This is set by the I/O interrupt task or Q:RADLIO.

C indicates whether bits 8-15 of the even 1/O channel register were all zeros (C = 0
if yes; C = 1 if no).

T indicates whether the last 1/O operation on the device was timed out (T = 1 if yes;
T = 0 if no).

ol AlIO overflow im:licator.t
Cl VAIO carry indiccﬂ'or.f
02 TIO overflow indicator."
C2 TIO carry indiccﬂ'or.t
o3 TDV overflow indicator.'
c3 TDV carry ind‘iccﬂ'or.t

E indicates if there are parity errors (E = 1, if there are parity errors on the write oper-
ation, or memory parity or bad punches on a read operation; E = 0, if there are no parity
errors). E is set by the 1/O interrupt task.

Byte Count Residue is the number of bytes not transferred in the 1/O operation. This is set
by the 1/O interrupt task. Note: Bits 1 and 2 of FCT5 will reflect the settings of the data
chain and interrupt flags by the last 1/O operation on the channel.

Address of 1/O Control Table (I0CT) is the core address of the IOCT entry associated with
this file. This is set by SYSGEN.

TIO and TDV Device Status Bytes are the status bytes returned from the device when TIO
and TDV instructions are executed at /O completion time.

When a No-Wait M:CTRL operation is performed for RAD files TIO DSB = FF.

T . .
Overflow and carry status at completion of the last I/O operation.

~ Figure 30. File Control Table (cont.)

61

» T T T

FCTI1
Table
= —
FCT2
Table
P:FCT1
.
P:FCT2
FCT3
Table
P:FCT3
P:FCT4 > B
FCT4
P:FCT5 Table
P:FCT6 — — —7
P:FCT7 FCT5
Table
—
FCTé
Table
Nolnia
FCT7
Table
Note: The following is used as an index into the I/O control tables:
LDX B:1IOEX2 (device-file number)

LDX *P:FCT6, 1

For example, LDA 2,1

1/0O Control Table
for Device File N

Figure 31. Storage Allocation of File Control Tables

The general setup after M:READ/M:WRITE is as follows:

NO COMMAND CHAINING

Address Contents

$+2
(*P:DTTB)
0

~

~

| Order Byte
User Buffer Address

(*P:DTTD) + BC

0 78 15

~

Aw‘w-—-o
— ot ot — —

~

where BC is the user byte count.

LINE PRINTER (3451, 7440, 7441, 7445)

Format Byte =Ax, Bx, Dx or Ex (Format, then print)

Address Contents

COMMAND CHAINING

Address Contents

$+3

(*P:DTTB)

0

0 | Order Byte
User Buffer Address

(*P:DTTD) + BC

0 78 15

~

~

~

~
— e ot ot —

U'l-h\(.of\)—'o

~

After pre-1/O edit, the setup of the tables depends on the device type:

LINE PRINTER (3451, 7440, 7441, 7445)
Format Byte =8x or 9x (Print, then format)

Address Contents

0,1 $+3

1,1 A002

2,1 $+2

3,1 0300 + Format Byte

4,1 $+2

5,1 4002

6,1 4560

7,1 User Text Address

8,1 X'2000" + (User byte count -1)

0 15

LINE PRINTER (3451, 7440, 7441, 7445)
Format Byte =60, Cx, Fx

Address Contents

$+3

X'C002!

$+4

X'0560'

User Text Address

X'2000' + (User Byte Count -1)
$+2

X'2002'

X'4300" + Format Byte

0 15

~

~

~

~

~

-

~

m\IO*Lh;th—O
— ot e et ot -t —

-

LINE PRINTER (3451, 7440, 7441, 7445)
User Byte Count =0 or 1 (Format Only)

Address Contents

$+2

~

X'4002

~

X'4500' + Format Byte

User Text Address

~

rON—O
—r) — —) —

~

X'2000' + (User Byte Count -1)

0 15

LINE PRINTER (7446, 346x)
Format Byte =60, Ax, Bx, Cx, Dx, Ex, Fx

Address Contents

$+2

X'2002'

X'4300' + Format Byte
0 15

~

M:-O
—_—— -

-

LINE PRINTER (7446, 346x)
User Byte Count =0 or 1 (Format Only)

Address Contents

$+2

4

X'4002'

~

X'4500' + Format Byte

User Text Address

~

~
—_— ot e ot

0
1
2
3
4

X'2000' + (User Byte Count -1)

~

0 15

0,1 $+2
1,1 X'2002'
2,1 X'4300' + Format Byte
0 15

Figure 32. Non-RAD I/O Control Tables

. 63

LINE PRINTER (7446, 346x)
Format Byte = 8x, 9x (Print, then Format)

LINE PRINTER (7450)
Format Byte = Bx or Dx (Format, then Print)

Address Contents

$+3

~

X'A0Q2'

~

$+2

-

X'0300' + Format Byte

~

$+3

X'Co02'

~

$+4

X'0560'

-

User Text Address

-

~
— el o et imd =)t ot o —d

X'2000" + (User Byte Count -1)

$+2

~

X'4002'

~

X'4560'

User Text Address

~

—-—-—-—-—nooo\l?m-hww—-o

-hwl\)do‘
— ot — —

X'2000' + (User Byte Count ~1)

~

0

LINE PRINTER (7450)
Format Byte = 8x or 9x (Print, then Format)

15

Address Contents
0,1 $+3
1,1 X'C002'
2,1 $+4
3,1 X'0560Q'
4,1 User Text Address
5,1 X'2000' + (User Byte Count -1)
6,1 $+2
7,1 X'2002'
8,1 X'4300' + Format Byte
0 15
LINE PRINTER (7450)
Format Byte =60, Ax, Cx, Ex, Fx
Address Contents
0,1 $+3
1,1 X'C002'
2,1 $+4
3,1 X'0500' + Format Byte
4,1 User Text Address
5,1 X'2000' + (User Byte Count ~1)
6,1 $+2 :
7,1 X'4002'
8,1 X'4500' + Format Byte
9,1 User Text Address
10,1 X'2000' + (User Byte Count —1)
0 15
LINE PRINTER (7450)
User Byte Count =0 or 1 (Format Only)
Address Contents
0,1 $+2
1,1 X'2002'
2,1 X'4300' + Format Byte
0 15
PAPER TAPE (Read Binary)
Address Contents
0,1 $+3
1,1 X'4001"
2,1 0
3,1 X'0082'
4,1 User Buffer Address
5,1 X'2000' + BC
6,1 0
7,1 -1
8,1 -1
0 15

Address Contents
0,1 $+3
1,1 X'C002'
2,1 $+4
3,1 X'0560'
4,1 User Text Address
5,1 X'2000' + (User Byte Count -1)
6,1 $+3
7.1 X'C002'
8,1 $+4
9,1 X'0560'
10,1 User Text Address
11,1 X'2000' + (User Byte Count =1)
12,1 $+2
13,1 X'2002'
14,1 X'4300' + Format Byte
0 15
PAPER TAPE (Write Binary)
Address Contents
0,1 $+3
1,1 X'4001'
2,1 0
3,1 X'0001"
4,1 User Buffer Address
5,1 X'2000' + BC
6,1 0
7,1 =1
8,1 -1
0 15

Figure 32.

Non-RAD 1/O Control Tables (cont.)

KEYBOARD/PRINTER - Model 7012 (Auto. Input) KEYBOARD/PRINTER ~ Model 7012 (EBCDIC Out.)

Address Contents Address Contents
0,1 $+3 0,1 $+3
1,1 X'A002' 1,1 X'C001" or X'C002'
2,1 $-2 2,1 $+4
3,1 X'06' [Data 3,1 X'0005' or X'0505'T
4,1 User Buffer Address 4,1 User Buffer Address + w
5,1 BC 51 X'2000' + BC - TB =1
6,1 Actual Byte Count (0) 6,1 $+2
7,1 X'0082' 7,1 X'2002'
8,1 0 8,1 X'0515'
0 7'8 15 0 15
h
KEYBOARD,/PRINTER - Mode! 419x (Auto. Input) where
Address Contents TB = number of trailing blanks.
01 §+3 w = 1 if byte count is odd.
1,1 X'A002’
2,1 $+2 ~0if byt fi
3,1 X'0500" + PROMPT (cell X'FC') W o T I byte count s even.
4,1 (0,1) |Same as O through 7 for
: 7012 Keyboard/ Printer KEYBOARD/PRINTER - 419x (EBCDIC Output)
: : Automatic Input
12,1 8,1) (512 infer 7012 0 through 8
131 ©.1) [x'2002° 5221: c:s Keyboard/Printer roug
14,1 (10,1) [X"050D" except:
0 15 Address Contents
PAPER TAPE (Read Automatic) 7,1 X'2003'
)) 8,1 X'0005'
Same as Keyboard/Printer (Automatic Input) 9.1 X' 150D"
except: 0 15
Address Confents PAPER TAPE (Write EBCDIC)
3,1 %(02' Data (8 - 15) 19 Same as Keyboard/Printer (EBCDIC Output) except
Address Contents
Same as Paper Tape (Write Binary) except: 0 15
Address Contents KEYBOARD,/PRINTER (Binary Output)
31 Ig(lOO%l]5] Same as Paper Tape (Write Binary) except:
Address Contents
LOGICAL DEVICE 3,1 R’OOOS']
Address Contents 0 15
0,1 542
1,1 Device Type Table B Entry CARD READER
2,1 Pseudo-order Byte Address Contents
3,1 User Buffer Address from B:10CD 542
4,1 User Byte Count from B:]JOCD +1 ! . 0
51 , X'4001

Write Order Byte from Last

Completed /O operation

6,1 0
0 15

~

X'000E' or X'000A'
User Buffer Address
X'2000' + BC

0 15

~

-hw‘l\)—'o
— — o — —

~

fUse X'CO01" and X'0005' if format is single space; use X'C002' and X'0505" if format is double space.

Figure 32. Non-RAD 1/O Control Tables (cont.)

MAGNETIC TAPE (3xxx - 9 track) CARD PUNCH' (Model 7160)
(300 cards per minute)
Address Contents

0,1 $+3 Address Contents
1,1 X'C001°
2,1 $+4

’ 0,1 $+3
3,1 XX I Order Byte ! . -

4,1 User Buffer Address]2' : ? :AgOO + 81 for + 121)
31 X'2000" + BC 3.1 X'09" or X'0D"

6,1 $+12 a1

7,1 X'2010' !

! 80 or 120 Bytes of Dat
81 SYSGEN Mode Byte | Assign Mode Byte (coment cond)
9,1 X'00FF'

10,1 0 63,1
11,1 $+2 64,1 $+3
12,1 28 65, 1 X*A000' + 81 (or + 121)
13,1 X'9600' 66, 1 $-2
14,1 0 67 1 X'19' or X'1D"
15,1 0 ' (Previous Order Byte + X'10")
16, 1 0 68, 1
17,1 DFN 1/O Address . Previous Card Image
18, 1 X'04° Sense Byte 0 v 9
19,1 Sense Byte 1 Sense Byte 2 127,1
) ’ 0 15
25,1 Sense Byte 13 Sense Byte 14
0 7'8 15 CARD PUNCH (Model 7165)

(100 cards per minute)
MAGNETIC TAPE (7xxx - 9 track)

Address Contents Address Contents

0,1 $+3 0,1 $+42
11 X'Cool’ 1,1 X'4001"
2,1 $+4 2,1 0 | Order Byte
3,1 XX [Order Byte 3,1 User Buffer Address
4,1 User Buffer Address 4,1 X'2000' + BC
5,1 X'2000' + BC 0 7'8 15
6,1 $+2
7,1 X'2002'
8,1 X'04' I Sense Byte 0
0 7'8 15

MAGNETIC TAPE (7xxx - 7 track)

Address Contents

$+3
X'C001"
0

-~

~
—t ot o —t v —

~

| Order Byte
User Buffer Address
X'2000' + BC
0 7'8 15

-

b WN—~O

~

fThe card punch table is very long because error recovery on the card punch requires the previous card
image.

Figure 32. Non-RAD I/O Control Tables (cont.)

- O

NV 0N O A WwN

— e e
w N = O

14

File Format Byte F w S STATE Order Byte
LRZ logical record size or granule size, in words

BOT

EOF

EOT

PRAIS, Pointer to Current RAD Address

T
Temporary Storage

BBA (blocking buffer address)

BBP

Temporary Storage

Remaining word count

Word count for current I/O

Buffer address for current I/O

Return address to file management routine (-1 for return to M:CTRL)

PLR (bits 0-15) or SR (bit 15) SR

0 4 "5 "¢ " 708 10N 14 15

Note: The abbreviations used in this table are explained below:

File Format Byte is X X X wp
0 1 2 3 4

where the following values of XXX specify the indicated conditions and modes:

Value Format Conditionft Mode
000 Unblocked N/A sequential only
001 Blocked inactive sequential only
010 Compressed inactive sequential only
011 Blocked (Packed) inactive random and sequential
100 Random N/A random and sequential
101 Biocked Device access pending N/A
110 Compressed Device access pending N/A
11 Blocked (Packed) Device access pending N/A
WP indicates the write-protection status (WP =11, if write is permitted only when K:TCB equals

T:RBMTCB, unless SY iskeyed in; WP=10, if write is permitted only when K:TCB does not equal
K:BACKP, unless SY is keyed in; WP=01, if write is permitted only when K:TCB equals K:BACKP,
unless SY is keyed in; WP=00, if there is no write protection).

F if set, indicates incorrect length on the last transfer.

W indicates the status of data in the blocking buffer (W = 1, if data has been written in the

biocking buffer that has not been written on the disk; W = 0, if data in the blocking buffer has
already been output on the disk).

S indicates whether or not the sector addressed by PRAD is currently in the blocking buffer (S=1,

ifitis; S =0, if it is not).

"Record number for blocked and packed file formats,

MSee RAD File Management, Chapter 3,

Figure 33. RAD 1/O Control Table

67

68

STATE

0 SEEK to READ FLAWED HEADER

2 READ FLAWED HEADER

4 SEEK FOR REQUESTED OPERATION
5 RESTORE

6 PERFORM REQUESTED OPERATION

7 HEADER READ FOLLOWING RESTORE

Order Byte is the actual order byte for the last operation.
Logical Record Size is the number of words in a logical record or granule.
BOT is the absolute RAD address of the first sector defined for the file.

EOF is the pointer to the logical file mark. If EOF = -1, a logical file mark has not been
written. For Unblocked, Random, or Compressed files, EOF is the absolute RAD address of
the logical file mark; otherwise (for Blocked files) EOF is the count of the number of logical
records that precede the logical file mark.

EOT is the absolute RAD address of the last sector plus one defined for the file.

PRAD is the pointer to the current absolute RAD address of the file and is initially set to BOT
by M:ASSIGN/M:DEFINE. Complications may arise in the unauthorized manipulation of
this pointer, especially in a mixed RAD system.

BBA is the core address of the blocking buffer assigned to the file or zero. The pointer is
initially set to zero by M:ASSIGN/M:DEFINE.

BBP this pointer contains the address, within the blocking buffer, where the file is currently
positioned. The pointer is initially set to BBA by M:ASSIGN/M:DEFINE.

PLR is the address of the FORTRAN-associated variable. Meaningful only for random
mode files.

SR is the short record flag (see RAD File Directory).

Figure 33. RAD 1/O Control Table (cont.)

X'E2' K:10OCS —~’I - (length of bad track list) or zero l

f DTTX l Device No. nj
0 7 8 15
L | F |
0 7 8 » 15
[AlO Receiver Address J
0 15
I Seek Order I
[Seek Address I
1/O Control
Subtable for < | SA I
Device N]
[$ + 2 (Unused for 724x, 7270, and 323x) |
| X'4001" |
I I Order Byte I
0 7 8 15
L Core Address
L[X'2000" + Byte Count |
(DTTX Device No. n;
I/O Control 7 8 15
Subtable for % .
Device Ni
L X'2000' + Byte Count |
lo 0]
where

DTTX is the Device Type Table index,
Device No. n; is the hardware device address for which this table is dedicated. One table is used for

each rotating device. As many as 12 unique rotating devices may be defined.

F is zero for disk devices. For disk devices, F isthe Device File Number of the file using the device dur-
ing the seek operation. At the conclusion of the seek operation, the DFN is moved to the channel
status tables,

Seek Order is X'83' for Model 724x, 7270, and 323x disk devices; for all other disk devices use 3.

SA is $+2 for 7202/3/4, 7251/2, and 7232 devices and is loaded into the even channel register
during the command chaining procedure. SA is the second 2 bytes of the seek address for all
other devices.

fSee Disk Pack alternate Track Handling Section at the end of this chapter.

Figure 34. Disk I/O Control Subtable

69

70

Inhibit Interrupts

/O Interrupt
Level Available to

Issue SIO
?

yes

Trigger 1/O Task,
Uninhibit Interrupts; 1/0

| Task Will Return to

Issue SIO

Is
Device or

RX600

Channel Active
?

yes

Are

Heads

Moving (Boot)
?

Load Channel Regs.
Store Order Bytes, AIO
Receiver, Buffer Address
and Byte Count in IOCS

y

Issue S1IO

SIO Successful

?

yes

/

>

A

Uninhibit Interrupts or
Exit /O Interrupt
Level

Is
This a Wait

Operation
?

Exit, Device
Busy Status

Store DFN (Two's
Complemented in
C:CST1). Set"B" bit

Figure 35. Disk Pack Seek Overlap Flow

Indicates Device Con-
troller Has Received Seek I

: |
(1/O Interrupt) —I Address and Head Move- I

! ment Has Been Initiated

L

A
Because Value in
C:CST1 is Negative, 1/0O
Task Will Clear Channel
Status rAf This Point, Any
_| Other Device on This I
Channel May Take
| Control of the Channel |

CI/O Interruptf)

Is
Channel

Inactive
?

yes

)

Seek is Complete.
Initiate I/O, Set Channel
Active

Transfer is Complete

b
This interrupt will occur twice for each transfer on the disk; once when the heads have completed their
movement, and once when the transfer is complete.

Figure 35. Disk Pack Seek Overlap Flow (cont.)

71

QID1ISMIS
(PRIMARY ENTRY)

>

' ¥
D15MISSAL DISMISSAL
CANNOT HILL
DCCYR. OCCURa
4 BRANCH TO NOTE :
C—ggy_um—) DISMISSAL |— —] INTERRUPTS
(RCPY L,P) RECEIVER ARE INHIBITED
N

INHIBIT
INTERRUPTS.

LINK PSFUDO RLO
RECEIVER TQ
ACTIVE CHANNEL .

LINK FORMER RIO

RECEIVER YO
PSEUDD R10
RECEIVER.

BUILD PSEUNO UNIMNIBET MIEXIT
A10 RECEI¥ER INTERRUPTS . NILL RESTORE
IN . STATUS IN INTERRUPTS .,

R:PSW1
[v [
y
MIEXIT
Figure 36. Dismissal Routine (Optional)

TRSK
170 INTERRUPT RE-RCTIVATED.
N———

1/0 TRSK WILL
ENTER PSEUD RE$TORE
AI0 RECEIYER AT ‘8
CHANNEL END. REGISTER.
RE-TRIGGER RES TORE
D1SMISSED PSD.
TR3K,
_BUWD
8 MISAVE RE TURN
N TEMP, (RCPY L,P)

POINT DEDICATED
INTERRUPT
LOCATION AT

P«

BRANCH TO NEXT
A10 RECEIVER OR
RETURN TQ 10
TASK,

Figure 36. Dismissal Routine (Optional) (cont.)

74

The task dismissal feature is used for 1/O requests that must wait for access fo a channel that is busy; that is, an
1/O request to a busy channel is queued, followed by task dismissal. The queue is serviced automatically in
priority order on the queued channel upon I/O completion. The task dismissal code is entered by MsREAD/M:WRITE
at any dismissal opportunity via location V:DISMIS. This location points either to the dismissal routine or fo an
RCPY L,P instruction (determined at SYSGEN).

Dismissal is disabled during the disk-boot sequence to avoid conflicts resulting from the loading of resident foreground
routines. In addition, a 'no dismissal' flag in a task's TCB will inhibit dismissal if desired.

Disk Pack Flawed Track Handling — Models 7242 /46

The tracks on cylinder's 200, 201, and 202 of the 7242 disk packs may be used as alternates for faulty tracks on the
device. The track substitution is made using RADEDIT 1#GDTRACKS command. The 1#BDTRACKS command locates
the next available alternate track and writes new headers on it and the faulty track, as follows:

Byte Faulty Track Alternate Track
0 X'FF' : 0
t 0 0
2 Faulty track cylinder Alternate cylinder
3 Faulty track head Alternate head
4 Sector Sector
5 Alternate cylinder Faulty track cylinder
6 Alternate head Faulty track head
7 0 0

The ¥ GDTRACKS command places zero in bytes 0, 5, and 6 of the faulty track headers, and it sets the contents of

bytes 5 and 6 of the alternate track header to X'FF'.

Whenever a Read or a Write is issued to the flawed track, a flawed track error condition will be returned. As all
Reads and Writes are segmented initially to a maximum transfer size of a single track, there is no difficulty in
merely repeating the last transfer with the alternate track instead of the flawed track. The determination that the
track returned a "flawed header” status is made by Q:RADE, the RAD error recovery routine. '

After the sensibility of a retry is established, Q:RADE returns to RX128 (the point where a simple retry is made) with
the state code set to zero, indicating that a seek to the original track is to be followed by a header read.

When the seek is complete, the header read is formatted in the 10CS by the disk pack seek interrupt handler to read
the header into the IOCS. The state code is then set to 2, indicating that a seek to the track described by the
alternate cylinder and head is to be formatted and issued when the header read is complete (by the disk pack com-
mand chaining receiver). The state code is set to 4 at the completion of issuing the seek to the alternate track.

The remainder of the operation proceeds as if the seek were to the original track.

Disk Pack Alternate Track Handling — Models 7251/52 and 3231/32/33

The tracks in cylinders 400-407 of the 3232 disk packs and cylinders 200-203 of the disk packs model 7252, may be

used as alternates for faulty tracks on the device. A record of faulty tracks is ke;f on cylinder 0, track 0, sector 2,

in a bad track list (BTL). The BTL is created and modified using the RADEDIT |#GDTRACK and I#BDTRACK com-

mands. The M (Mount) keyin will read the BTL into the system tables and the R (Remove "ALL") will delete the BTL
for the specified device from the system tables. The bad track list in core precedes the IOCS in memory and is located

via K:IOCS which points at the cell followingthe bad track list. This cell contains - (length of the bad track list).

The format of the BTL in core is as follows:

Word Bits Meaning

0 0-7 - n-= number of alternates on the device + 2.
0 8-15 d= de\)ice ;'number.

1 0-15 equals ;-1 if BTL is in core; equals 0 if not.
2 to n=1 0-15 | Bad track list entry containing

Value Significance

-1 Corresponding alternate track has never been assigned.

-2 Corresponding alternate track has been assigned to a bad track and has
subsequently been unassigned by a 1#GDTRACK command.

t Corresponding alternate track has been assigned to replace track t by a
1#BDTRACK command.

n 0-15 Same as word O for the next device or negative if there are no more devices.
The bad track list is written on the device without word 0 of the core version.

It is necessary before initializing a disk pack to write the BTL on sector 2 using a !#GDTRACK or !#BDTRACK com-
mand. The next step is to key in M dn, BTL in order to read the bad track list into core. Then the I#INITIALIZE
command can be used to construct areas on the device.

In bringing up a system, astartup deck is required to initialize the disk packs and their bad track lists. It is most
likely that the disk packs which usually are not removed or cannot be removed will have had the BTL in sector 2
destroyed. A record must be kept of the bad tracks for each device.

M:RSVP

The MRSVP service routine allows foreground tasks to acquire a physical device for exclusive use or for use by only
foreground tasks, This is accomplished by flagging the FCTs pointing to that device as "reserved for foreground use.

A device may be reserved at two different levels. The first level is the same as for pre~G00 RBM reserves. The de~-
vice is not reserved to a particular task, but only foreground tasks may access it. The second level (new in G0O
RBM) is an exclusive reserve, - At this level only the task whose dedicated interrupt location (DIL) was active at the
time of the reserve call to M:RSVP is allowed to access the device (until such time as that task, M:TERM/M:ABORT,
or a "BP" keyin releases it).

When MRRSVP is called for a reserve request and the device has already been reserved, the caller may be queuved if
table space is available, the request was for exclusive use of the device, and the call specified a Reserve Complete -
Receiver (RXR).

When M:RSVP is called for a release request, the device is released to the next requestor (the background is the de-
fault lowest priority request) in priority order. Release requests always return a status of A=0,

M:RSVP treats reserve and release requests for logical devices as valid, but performs no operation on such requests.
The status return is A=0 for both reserve and release of logical devices, :

M:RSVP 'uses a single table with three words per entry (see Figure 37), The size of the table is set by SYS-
GEN and defaults to 5 entries. If RSVPTABL is set to zero entries at SYSGEN, M:RSVP will be omitted from
the system and no table space will be allocated for it. Any calls to M:RSVP when RSVP is not part of the
system will receive a status return of A=0 but with X=-1 (see Figure 38). The maximum size of the table is
255 entries. The table contains the DT index and Device Number in word 1 of the entry, flags and the DIL in
word 2, and the RXR in word 3.

75

76

0 7 8 15
entry 1 word 1 DT INDEX Device Number
entry 2 word 1
entry Z word 1
(-2) K:RSVTBL
entry Z word 2 FLAGS {(0-6) DIL (7-15)
eniry 2 word 2
entry 1 word 2
entry Z word 3 RXR
entry 2 word 3
entry 1 word 3
Figure 37. MRSVP Table Format
DEVICE STATUS {CURRENT)
Request Available Reserved
Background Device Standard Exclusive

I

Reserve "exclusive'

Device becomes reserved
exclusive mode, status
return "A = 0",

Request is queved, status
return "A = 3",

Request is queved, status
return "A = 3",

Reserve "standard”

Device becomes reserved
“non-exclusive” mode,
status return "A = 0",

Device previously reserved,
status return "A = -1",

Device previously re-
served, status return

A = =T,

Explicit release

Status return "A = 0",
no action.

Device is released from
current task to the next
task and status is re-

If DIL = table DIL, re-
lease the device to the
next task and return

| turned "A = 0", status "A = 0",
BR keyin "Key error" is output Device is released to the Device is released to
on OC. next task, status return the next task, status
‘ A =07, return "A =0",
Implicit Status return "A = 0", | No action, status return All devices reserved to
(M:TERM/M:ABORT) “A = 0", the current DIL are re-

leased to the next user,
return status "A = 0",

Figure 38.

MRSVP Decision Table

3. RAD FILE MANAGEMENT

Overview

As the central storage medium for RBM, the RAD is used for permanent storage of RBM and all related processors and
for permanent or temporary storage of users' programs and data. The RBM RAD management scheme is flexible both
for rapid storage and retrieval and for easy file maintenance.

The RAD is addressable in physical units called sectors. The most important unit of RAD storage is the file which
consists of one or more contiguous sectors freated by RBM as a unit. The RAD file is bounded by the first sector
address (BOT) and by the last sector address plus 1 (EOT).

A RAD file becomes accessible to RBM whenever an entry in the file control table is initialized to the boundaries
of the file, which usually takes place as one of the functions of an assign or define process. In this sense, a RAD
file is similar to a device, and the entire RAD can be considered as many devices.

All RAD files are either blocked or unblocked.

Blocked Files
Blocked files differ from unblocked files in that actual 1/O is done in terms of blocks, rather than granules (which

are synonymous with logical records) for unblocked fites. (On the RAD, a physical record is a sector.)

A block is an increment of RAD space, the size of which is determined at SYSGEN. When a block is in memory,
it resides in a blocking buffer.

A block may contain a partial logical record, one logical record, a number of fogical records, or a number of logi-
cal records and one or two partial records. If a "no-wait" transfer operation references a record which crosses a
block boundary and the second block (containing the remainder of the record) cannot be accessed because the RAD
device is busy, the file is set to the "1/O Pending" status and "Device Busy" status is returned. The remainder of
the record will be transferred on the retry operation.

Blocked files may have any one of the following formats. Only one logical record may be accessed with each call

to M:READ/M:WRITE:

Compressed

File format equals 010, must be accessed sequentially. The special codes used for compressed files are as
follows:

X'2600' Denoting end of sector.
X'EC00! Denoting end of record.

X'DCO00' Denoting compression code, bits 6 through 15 contain the two's complement of the number of words
containing X'4040' which are replaced by this code word.

For the sake of COO capability, the following codes are also recognized.
X'2500' Denoting end of record.

X'2700" Denoting compression code. In this case bits 9-15 contain the number of subsequent blank words.

Implications of the above scheme are:
e The maximum record size is 2K-2 bytes.
o Single blanks will not be compressed.
e Only standard EBCDIC data should be compressed.

In addition. each write of a compressed record is followed by an implied EOF mark, which is overwritten on sub-
sequent data writes.

Blocked

File format equals 001, must be accessed sequentially.

Packed

Format equals 011, may be accessed sequentially or randomly. Access mode is determined solely by the "R" bit of
the M:READ/M:WRITE argument list (see the RBM/RT,BP Reference Manual, 90 10 37, "Monitor Service Routines"
section, M:READ, M:WRITE).

“Packed" files differ from other blocked files in that about twice as many RAD accesses will be required for write
operations in the random mode. Therefore, it is more economical to create files sequentially, when possible.

"Shared" Files

RBM permits packed files to use common blocking buffers under certain restrictions.
o The file must be in packed format and may only be accessed randomly.
o The file must only be accessed with the "wait" specification.

e The task using this file must be flagged as possessing "shared" files (via a 1$BLOCK card).

o The file must itself be flagged as "shared" via M:ASSIGN or M:DEFINE calls.

e Non-"shared" files may not make use of the “shared" buffer.

If these restrictions are met and a user block is not identified, M:OPEN will allocate the last available blocking
buffer for any requests for "shared" files.

In using such a buffer, input records are extracted from a block(s) newly read into the shared buffer regardless of
its previous contents, and the buffer is set as clear (W, S = 0 in the IOCT) after each record is extracted. Output
will always require the block(s) containing the record in question to be freshly read, updated, and then written to
secondary memory before completing the output request and marking the buffer as clear.

Unblocked Files

Unblocked files are unique from blocked in that a RAD transfer is always required and an AIO receiver will always
be acknowledged. "1/O Pending" condition does not apply to unblocked files. Unblocked files may have either
of the following formats:

"Unblocked", file format equals 000, may be accessed sequentially only, one record at a time.

"Random:, file format equals 100, may be dccessed randomly or sequentially. The access mode is determined
by the "R" bit of the M:READ or M:WRITE argument list, as for "Packed" files. "Random" files differ from all
other files in that the transfer size is determined by the byte count; multiple records may be accessed with one

call to M:READ/M:WRITE.

No transfer initiated by M:READ/M:WRITE for a disk pack will cross a track boundary. The advantages for this
restriction are twofold:

1. long transfers cannot tie up a device. Foreground response time.is improved.

2. Flawed track handling is simplified.‘

The implication of this restriction is that an AIO Receiver may be entered before the 1/0 transfer is complete. Sec-
ondary transfers will be initialed when the “"check" operation is performed. The "check" operation may also specify
an AlO Receiver.

At SYSGEN the RAD is divided into large blocks called RAD areas. These areas generally represent functional
groupings of files (e.g., RBM and all related processors reside in the system processor area) and are either perma-
nent or temporary. Permanent areas contain a directory of the files within that area, while temporary areas do not.
Also while temporary files are created on demand by calls to M:DEFINE and are eliminated by calls to M:CLOSE,
permanent files must be created by a separate processor, the RAD Editor. A

The boundaries of the RAD areas are contained in the master dictionary in core memory. Since an area is a block
of RAD space containing RAD files, it is itself a file. This concept is important in understanding the manipulation
of RAD files. To gain access to a permanent file, the directory contdining that file's location must be read into
core memory by considering the area as a random-access file with BOT and EOT in the master dictionary. Thus
the directory of an area is read from sector 1 of the area. Figure 39 shows the relationship between the master

79

Permanent
RAD Area

C| NEP or NFD

—— K:MASTD
Master
Dictionary
(Core)
0
1
2
3
3IN+0 Mnemonic
! Format
3N +1 Word
3N+ 2 BOT
3N +3 EOT
(Neg. Length
of Directory)

where

mnemonic

where

]

1 Label (Sector 0)

File
Directory

File 1

File 2

File 3

File M

Unused

1 First Sector of
L Next Area

SP up
SD ub
SL UL
n s a hexadecimal digit.

NAS
File 1
Entry
. Expanded
File 2 File Directory
Entry for RAD
Area (N)
File M
Entry
Unused
- For
OV File Header }ngmm
(1 Sector)
Only
Programs
OS:{:r Expanded
C . . RAD File M
omprising
File M
Unused

is the two-character EBCDIC name of the area. The mnemonic may be any two
characters except "SK", but is usually one of the following:

If the mnemonic is zero, this entry of the Master Dictionary is not in use.

Figure 39. Permanent RAD File Layout (RAD Area N Containing M Files)

Format Word

DTTX wp 10CSB

where
DTTX is the index into the Device Type Table for the device containing this area.
WP is the write protect code. (See Figure 33.)

10CSB is the 1/0O Control Subtable Bias. When this value is added to the contents of Zero Table
cell K:IOCS, it gives the address of the IOCS for the device containing the area.

\

BOT is the absolute sector address of the beginning of this area.
EOT is the absolute sector address of the end of this area, plus 1.

LABEL always occupies the first sector of each area, including BT and CP, and contains the follow-
ing information:
Word 0 Area mnemonic in EBCDIC.

Word 1 Bits 0-3 contain the value of the third digit of device model number (e.g., O for
7202, 3 for 7232, etc.).

Word 2 BOT
Word. 3 EOT
Directory is as shown. All directories may be composed of one or more segments, but each segment

is as long as a blocking buffer (K:BLOCK). Therefore, on a 7204 device the label and directory
may span relative sector numbers 0 through 3 if K:BLOCK = 512.

Figure 3?. Permanent RAD File Layout (RAD Area N Containing M Files) (cont.)

d‘icﬁonary, the permanent area, and the file within the area. Figures 40 through 43 show functionally the
processes executed by the Monitor service routines M:ASSIGN, M:DEFINE, M:OPEN, and M:CLOSE.

RAD File Directory

The first two words of a RAD file directory contain the following:

wordo | C NEP or NFD
Word 1 NAS

:} First Entry of
*) Directory
where

C indicates the sector in which the directory ends (C =0, if the directory ends in this RAD sector; C = 1,
if the directory continues on angther sector).

NEP or NFD depends on the status of C, If C=0, NEP is the location of the next cell in this RAD sector

to be used for future directory entries, If C =1, NFD is the relative sector address where the directory
is continued.

NAS indicates the relative address of the next available sector in this area, and is only meaningful ifC = 0.

81

‘ M:ASSIGN ’

i

/ Q:ROC \
Load Nonresident
%A:ASSIGN and Reserve?
18 Temp Cells

Assign to
RAD Area or

File yes
?

Oplb(1)
to Oplb(2)

to DFN)

M:OPFILE

Convert Oplb(2)
to DFN

=)

no (Oplb

M:OPFILE ee e
Initialize
Find Spare This File to the
DFN RAD Area

Go to MZASS]GN Assign
Receiver (X'1BC) Oplb to RAD
X' =-1 File

'L' = Return ?

/ 2\

\ /

M:READ

Read in Area
File Directory

-

A

Go to M:ASSIGN

i t Fil
Receiver (X'1BC') Find Correct File Name,

Initialize File IOCT

Set Oplb(1) Assigned|
to the DFN

'

Q:ROCX

Release Temp Cells
and Exit

=)

Error Check :i(,l jl;-eziurn ol From Directory Entry
DFN
«
A Is
This a Packed

Format File

Is
The 'S* Bit
Specified
?

Set Bit 10 of
FCT1 (i.e. Flag
File as "Shared").

Figure 40. Processes Executed by M:ASSIGN

2DEF INE

SHORTEN LMST
BN\C

BT ONLT NS LONG
hs 175 ECF.

MANIPULNTE
FOR TR
NSSOCINTED
VORINGLE.

23

T

D
FILE SO IT WiLL} — | —

DETERNINE
NUNOER OF

SECTARS
MMLMLE, SIWT

IN “SECTORs .

IF NG EOF WS “SECTORS” =
HRITTEN, ONE (SECTORS X10m
| GRAMULE OR DIVIDED BT Z
BLOCK WILL BE Flewp -
MN_LOCRTED .
R 2
TRRORS PREZ AT LERST ONE
FOREGROUND CALL GRMLE OR
- ortB=0 BLOCK WILL
RECORDS = O. WM
ALLOCATED.
X
SET ERROR
COMDITION (A=1)
SIZE WILL
PERTRIN TQ
TRUNCINTED FILE.
NE 2z
“SECTORS ™ =
BT NREM €QT -
] KZNEXT
KZNEXT MODIFICD DIYIDED o7
BY TRUNCHTE. rzoLaTK..
PG
Yy
GRAMMAES =
NUNBER OF
RECORDS
m:: ¢

Figure 41. Processes Executed by M:DEFINE

83

84

“SECTORS ™ =
GRANULES X
NUNBER OF
SECTORS FER
GRANULE.

SET OVERFLOW
CONRITION

RHILL PERTNIN TO
TRUNCATER FILE.

(h=4). SIZE |

1¥F
(SECTORS/GRAM)
Xi= GRANW) 7
“SECTORS”

OYERFLOW ERROR.

®Df!00

| 4

TSTNBLISH
PLFCTX
ThBLES.

ESlTPGLISH

T.

ORMAT
SPECIFIO)

DE-NLOCNTE
THE DFN.
]
| 2
STT ERROR
CONDITION POINT OPLE AT
{N=31. SIZE NER OF.
HILL PERTAIN TO
TRUNCATED FILE

B

2

DETERNINE FILE
SIZE.

(RECORDS)

X = RECORD SIZE
T = FILE SIZE
N = TRROR CODE

Figure 41. Processes Executed by M:DEFINE (cont.)

(M:OPEN >

y

/ Q:ROC \

Load Nonresident
M:OPEN and
Reserve 13 Temp Cells

Does
Call Contain a
Blocking BFR
Address ?

s
his Task Set Last Blocki Find One in Buffer Pool;
Flaggfghas f;c:'vmg Bi:Fefsifn U:: N9 Set Corresponding Use Bit
are .

Files?

Store Blocking Buffer
Address in the File

M:OPFILE

Does
Call Contain an IOCT Entry
Oplb Convert Oplb
P to DFN.
?) 4

Recompute Sector Address
and Buffer Pointer.

Y
Q:ROCX
Release Temp
Cells and Exit

This Task
Flagged as Having
"Shared "
Files 2

no

Allocate Last
Blocking Buffer.

Declare File Release Temp
Non-"Sharable". Cells and Exit.

.

A

Perform Various
Error Checks on
the File

Figure 42. Processes Executed by M: OPEN

85

86

(M:CLOSE)

Load Nonresident
M:CLOSE Overlay.

Reserve 14 Temp

Is
DFN Valid

Is

Set 'Illegal
DFN' Status

File Blocked

no

7/ ves

Is

Buffer Written

no

!

in/ 7"

Write Out Last Buffer

]

i

\

Was
an EOF Written
?

no

Clear "Buffer Written
In" and "In Core" Bits

yes

Go to M:CLOSE Receiver
(DBUF, X'1BC")

lX' ____3

'L' =Return

A

If Buffer is Available,
Update EOF Value and
'SR’ Flag in Area File

Directory
|

-
y

CL40

Figure 43. Processes Executed by M:CLOSE

Isa
Standard Buffer
Allocated for This
File?

es
Y Y

Clear Use Bit in TCB and
Deallocate Buffer

Load Status
Release Temp
and Return

This Update EOF

Is This
'Undefine File'
Operation

Clear all References to
This DFN in the OPLB
Table(s)

Undefine 10OCT and
Set DFN Unused

Figure 43. Processes Executed by M:CLOSE (cont.)

87

88

Each RAD directory entry has the following format:

voo\lo~<.n4>wr\>

where

nl n2
n3 ' n4
n5 né
n/ n8
File Format Byte RF SR

Logical Record Size

RAD FWA of File

RAD Address of EOF -

RAD LWA + 1 of File

0 1 2 345 789 14 15

nl - n8 is the name of the file in EBCDIC.

File Format Byte (see Figure 33).

if set to 1, indicates that this file (foreground) is to be loaded and initialized at boot time.

RF
Logical Record Size is the number of words in a logical record or granule.
SR is only meaningful for 'Blocked" or 'Unblocked' (*B' or 'U') format files and indicates that the final rec-

. ord written in this file (i.e., just before the EOF marker) was written with a byte count less than that

specified in word 5, 'logical Record Size'. If this record is subsequently read with a byte count equal to

or greater than the size specified by 'Logical Record Size', incorrect length will be returned and the num-
ber of bytes transferred (in the 'X' register) will be the same as that specified in the original, short record
written,

This feature is only invoked when the user specifies the 'Short Record' flag in the M:WRITE argument [ist.
Otherwise, 'SR' will be reset on all write operations.

A "Write-End-of-File' must follow a short record written if the directory is to be updated.

4. OVERLAY LOADERS

Introduction

. The following discussion applies to the OLOAD loader. The BLOAD loader is functionally and structurally similar.
The differences from OLOAD are detailed at the end of Chapter 4 under the BLOAD heading.

The Overlay Loader consists of a root segment and five overlay segments. Loading of the root segment is initiated
by the Job Control Processor upon receiving an !OLOAD control command.

The Overlay Loader performs two mutually exclusive functions:

1. Forms a program (load module) through Loader I$ROOT and !$SEG control commands.
2. Forms a Public Library through Loader !$PUBLIB control commands.

The Loader is assembled as absolute code since it is initially loaded into the system by a separate Loader called the
Absolute Loader. However, the Overlay Loader is self-relocating in execution through the use of a base table.
The base table, which is pointed to by the B register during execution, is divided into three main areas:

1. Relocafable vector elements (initialized by the root).
2. A common overlay vector area (initialized by each overlay loaded).

3. Remaining pointers, flags, constants, etc. (initialized by the value loaded except where modified by the
root or overlays).

An "EQU" list (O:BASE procedure from the S24RBM file) precedes the individual overlay assemblies to define the
relative displacements of items in the Root Base Table. Thus, S2 must be assigned to the S24RBM file for successful
assembly of the Loader. (524RBM must have been assembled with switch #OLOAD set YES.)

Loader Structure

The Overlay Loader consists of a root and five segment overlays with the root containing the following elements:
OV:LOAD Table, subroutines of common utilization, and the temporary storage space for the monitor service rou-
tines. Figure 44 illustrates the Overlay Loader and its parts and Figure 45 shows the format of the OV:LOAD Table.

An OV:LOAD Table is created for the user's program by the Overlay Loader. Information is collected in the
Segment Table during PASS1, and the actual OV:LOAD Table inserted in the root segment of the user's pro-
gram during PASS2.

Each entry is a fixed-length, five=word entry, and the table length = 5n+1, where n is number of segments specified
on the !OLOAD control card.

The first overlay initializes the loading process. Symbol table pointers are set and the Permanent Symbol Table is
read in. This table consists of LIBSYM, the Public Library definitions, and the RBMSYM Monitor service routine
definitions. The first overlay is illustrated in Figure 46.

The next three overlays (2, 3, 4) constitute PASS1 of the loading process. These overlays read control cards, load
input modules, and load the required library modules. These. overlays are illustrated in Figures 47, 48, and 49
respectively.

The last or fifth; overlay (PASS2) will: satisfy forward references, print any required load map, complete the OV
file; or alternatively, create a new Public Library. This overlay is illustrated in Figure 50.

PASS1

The three overlays (2, 3, and 4) of PASS1 are called individually as required. The subfunctions for instruction/
data storing (O:STOR) and for Symbol Table insertion (O:INSERT), plus the address lists associated with common
read/writes of PASS1 are loaded by overlay 2 and are undisturbed when overlay 3 or 4 is called. The Library
Search Criterion Table is used commonly by overlays 3 and 4 and is defined as a leading reserve area of 300 cells
in both these segments.

(K:UNAVBG)
(K :CCBUF)

(K :BACKBUF)

(P:SEGTAB)
(P:SYMEND)

(P:PST)

(P:RST)

(P:SST)

(P:LDLOC)

(P:SEG)

Overlays ¢

hld

C.C. Buffer

T —m——————.

Segment/Path .
Symbo! Table

General 1/0 and Blocking Buffer

[~ 7 7| Overlay 4
| __ ___| Overlay 2 | Overlay 3

(can Pass 2:

MAP/

Overlay 1 LscT PUBLIB
{Init and Overlay 5
L% | ‘

O:STORE/O:INSERT

OV:LOAD Table

Binary Input Buffer

OC/DO Buffer

Root Subroutines

Overlay and Base Table

Root Initialization

Temp Stack

BG TCB

Permanent
Symbol
Table

(8:0L)

(8:CC)

(R:INIT)

{K:BACKP)

Figure 44. Overlay Loader Core Layout

OV:LOAD

where

Word

‘Word

Number of Entries in Table 0

Segment Identifier (binary) 1)
Core Load Address

Number Bytes (even) p Entry 1

Sector Displacement in File

o AW N

Entry Point (opfionol)

/ / Entry 2

{ Entry n

Description

Segment identifier as specified on 1$SEG card (1 <N < X'FF'),

Core load address (address where segment is to be loaded at execution time).

. Number of bytes in this overlay segment (must be even).

Sector displacement of this segmént in the OV file (numbering starts at 0)." Segments
begin on sector boundaries.

Entry point, which must be present only if load-and-enter mode is specified in the call
to M:SEGLD.

Figure 45. OV:LOAD Table Format

Overlay 1

Initialize
Appropriate Base
Table Entries

M |

Analyze
Parameters on
10LOAD
Command

Establish Upper
End of S)(mbol
Table

[

Load RBMSYM
and LIBSYM into
Symbol Table

\

Read and Print
Control Cards

1$PUBLIB
?
no
I$ROOT
?
no

1$MS,
I$ML, 1$MP

Reset (Erase)
LIBSYM

Write Header
Sector on-
OV File

Process
Parameters

Y

Exit
Overlay 2

Set Appropriate
Map Flag

Process
Parameters

Process
Parameters

Y

Figure 46. Overlay 1 Structure

‘ Overlay 2)

Initialize

Appropriate | Link Back to
Base Table Overlay 3 Call

Entries
yes
Establish P:SEG
Program Load
Read a Control |\ 1EOD Cail Overlay 3
Card and Print '/ : End-of-Segment,
l!)$ROOT Call Overlay 3
rocess Input Load
Parameter
I$INCLUDE, -
ISEXCLUDE,
1$RES,1$LCOM 1$SEG Call Overlay 3
Process Parameters : *‘@Segmenf)
V
Process
Parameters
1$LB Process

Parameters

Save Appropriate
Segment Symbol
Tables on ‘X1'

I$LIB Process
Parameters

Exit
Overlay 5

Caill Overlay 4
"\ Input Load

1$TCB
1$BLOCK
Test if Initial
TCB Provided

Call Overlay 3
End-of-Segment

Process Parameters
for Sub-Tasks

1$PUBLIB

Process

1$MP, 1$MS, Parameters
ISML,1$ROOT

@

Test

for Input

Modules
?

Call Overlay 4

yes _Input Load

“$LD | Process Call Overlay 4
Parameters Input Load

|

Indicate
Sequence Error

Figure 47. Overlay 2 Structure

94

Reserve Program
QOV:LOAD Table

< Overlay 3 ‘

Initialize Appro-
priate Base Table
Entries

Root

Processing
?

Write Out the

ber of Sectors

Root Program to Lfnk to Load
an Integral Num- Library Modules

Link to
Overlay 2

Write Out Segment
or Library Portion
of the Root.

Load Modules
Link to
Overlay 4

Order the
Libraries to be
Searched

Are
There
Unsatisfied
REFs?

Match EBCDIC
File Against
Symbol Table
to Build LSCT

Match DEF/REF

File Against LSCT
to Build Module [
Load Table

Figure 48. Overlay 3 Structure

Input Single
Module from
Input File

i

‘ Overlay 4 ’
[

Initialize
Appropriate
Base Table
Entries

O:LDLBMD

Read Input
Oplabel

All
Modules
Loaded

Link to
Overlay 2

no Loading
?

Process Input
Card Images by
Item Types

O:TYPEO

Padding

Relocate on
Execution
Bias

External
Def inition

Address Literal
Chain
Resolution

A
y

es

Unrelocated
Load

Relocdte on
Common
Bias

O:TYPE5

Displacement
Chain

External
Reference

Labeled

Common

Input Library
\ Module

]

Read Input
Library Oplabel

All
Modules

Loaded
?

Link to
Overlay 3

Figure 49. Overlay 4 Structure

95

‘ Overlay 5 '

i

Initialize Ap-
propriate Base
Table Entries

[

Close the ID
File if Needed,
Rewind GO

If Needed,
Generate
Map Headings

Read Root Program
- and Resolve
Forward References

Update
OVLOAD
Table

[

Read Segment and
Associated Symbol
Table from X1

¢

Resolve
Forward
Linkages

%

Map Segment
if Required

[
Write Out

Segment on

OV File

Last
Segment

Create TCB
if Needed

]

Map the Root
Symbol Table
if Needed

- A
Public Library
Program ?

Write Out
Program Section
of the Root (OV)

no]

Update the
OV Header

Sector

Severity Level
Set?

A
Public Library
Program?

\

Write Public
Library on
OV File

[

Read and Update
TVECT Table with
Public Library DEFs

’ .

Write Out New
LIBSYN File with
Public Library DEFs

96

Figure 50. Overlay 5 Structure

The primary function of overlay 2 is to read and interpret control commands subsequent to and including 1$ROOT

or 1$PUBLIB commands. These commands include the !$ROOT, 1$SEG, 1$LD, !$LB, !$INCLUDE, 1$EXCLUDE,
1$MD, !$TCB, !$BLOCK, and !$PUBLIB control commands. If a set of modules are required as input, overlay 4

is called to perform the load. As a new !$SEG is encountered, optional and default libraries are searched to
satisfy the unsatisfied reference. This function is performed by overlay 3, and where library modules are determined
to be required, they are loaded by overlay 4.

When a segment is complete it is written on the OV file and the Segment Table is updated. If a new $SEG card
indicates that the last segment written has completed a path, the Symbol Table eniries for all segments in the path
are written to the X1 file and the Path Segment Table is updated.

The Segment Table is 10(N+1)+1 words in length, where N is the number of segments specified on the !OLOAD
card. The Segment Table is illustrated in Figure 51,

The Symbol Table space just purged becomes available for next path. The Symbol Table entry formats are described
in Figure 52.

If an 'EOD card is encountered in the control command stack, the preceding procedure is followed and overlay 5
(PASS2) is loaded.

PASS2

PASS2 initializes the overlay section of the Base Table. The program section of the root is then read, and forward
references into the library section or to higher level segments are satisfied (this is the only segment fractioned in
this manner). The Permanent and Root Symbol Tables are mapped. PASS2 then reads each segment into core from
OV, reads the appropriate Segment Symbol Table, and satisfies any forward external chain in the segment. Con-
currently, the segment map is output on LO and the completed segment is rewritten to OV. When all segment pro-
cessing has been done, the sector header is reread, updated, and written to OV. OV is closed and normal termina-
tion through M:TERM takes place. Header formats are shown in Figures 53 and 54.

If a Public Library is being created, overlay 4 creates a new Public Library on the RAD. The Public Library just
loaded is written to the PUBLIB file in the System Processor area. The Monitor Services Transfer Vector (TVECT)
file is read from System Processor area, the Public Library section updated, and written to TVECT. A new Public
Library Symbol Table is written to LIBSYM file on the System Data area. The new LIBSYM is incompatible with
the current in-core Public Library. All files are closed and normal termination through M:TERM takes place.

‘Loading a User Program Root Segment

'The technique used by the Overlay Loader in loading the root of a user overlay program is different from the loading
of any other segment. This is because of the special case where a root and its library subroutines will not fit in core-
“with the Loader and its tables. To allow for such a case, a root is loaded by using the general scheme given below.

' Since the temp stack need not occupy core at load time, its presence is indicated by updating the execution loca-
tion by the appropriate amount. Thus, P:EXORG points to the beginning of the temp stack and P:EXLOC points
to the actual origin of the task.

The program section of the root is loaded without resolving any external chains. When a !$SEG card is encountered,
an integral number of sectors is written to OV and the OV pointer is updated. The remaining fractional sector of
the program section of the root is moved to P:SEG (beginning of the loading area of core), pointers in the segment
table updated, and the load bias reset to P:SEG (plus the remainder of the Program segment). The search and load-
-ing of the library now commences. It is assumed that all forward and external REFs in the library section will be
satisfied and chains resolved during the PASS1 loading of the library subroutines.

At the completion of the library loading, the remaining program portion of the root segment is written out onto the
OV file with the required library routines. During PASS2, only the complete program portion of the root segment
is read. External reference chains to the library routines are resolved using the Symbol table and rewritten again
onto the OV file. The library section of the root is not read during PASS2. Only an integral number of sectors
are read and wriften.

The preceding scheme is followed even in cases where both the program segment and library segment could be con-
tained in core with the Loader.

98

(P:SEGTAB)
(P:CSGTAB)

(K:CCBUF)

where

P:SEGTAB

Number of Segments (including root)

Segment Identifier = 0

FWA (execution)

Total Bytes (even)

No. Sectors of Program Code in Root

Entry Point (transfer address)

Address of OV:LOAD

0

0

0

FWA (Load for PASS2)

Segment Identifier (1 £Si < X'FF')

FWA (execution)

No. Bytes (even)

Sector Displacement in OV (this segment)

Entry Point (optional)

Identification of parent segment (node)

Error

Severity }Dlsplacement of Symbol Table in X1

No. Bytes in Symbol Table (X1 file)

FWA Segment Symbol Table

FWA Load

Word

—

— O NV 00 N O AW N

[+ SN S, IR - N VR V)

10

J

s\,

y Root entry

t Segment entry 1

» Segment entry 2

points to word 0 of the table, which contains the number of entries currently in the

table. This may be less than the number of entries specified on the !LOAD card. After
PASST has completed it will specify the actual number of segments loaded (including the root).

Figure 51. Segment Table Format

P:CSGTAB

(P:SEGTAB)+1 for the root and incremented by P:SLEN for each segment entry.

Root Entry
Word Description
1 Segment identifier of the root (olways‘ 0). No segment may have the segment
' identifier O.
2 Address to which M:LOAD will read in the root segment.
3 Number of bytes to read (must be even).
4 During PASS1, the OV:LOAD table is assigned as a reserve at the end of the
' program section of the root, and P:LDLOC and P:EXLOC updated by that amount.
The following is applied:
P:LDLOC_?:SEG = N (sectors) + R (words)
sector size
N sectors of program code are written to OV starting at sector 1, P:OV is
updated to N+1, and N is entered into word 4. R words are moved down to
P:SEG and P:LDBIAS and P:LDLOC is set to P:SEG+R. The library section of
the root is then loaded. This effectively allows a root up to twice the avail-
able load space to be loaded. During PASS2, N+1 sectors of root program
code are loaded, and reference chained to the library portion and to other
segments resolved. During PASS2 the OV:LOAD table is also completed.
5 Last transfer address encountered in loading the root modules.
6 Load time address of OV:LOAD table in the user's program. The table is
completed in PASS2.
7-9 Not used.
10 Load address for N+1 sectors of program code during PASS2 (= P:SEG).

Segment Entry

Word

Description

1-5

Identical 1o entries in the Root Entry.

Corresponds to the Sn parameter on the 1$SEG card. If the segment is attached

to the root, word 6 is zero.

points to the entry for the current segment being loaded. It is initialized to

Figure 51. Segment Table Format (cont.)

99

100

10

Error severity (bit 0 =0 or 1). It is equal to the severity encountered in binary
modules forming this segment.

Displacement of the Symbol table in X1 (bits 1-15). As paths are completed and
new paths started, symbol tables for each segment are written to X1. They are
read during PASS2 to resolve forward references. Word 7 contains the displace-
ment of the Symbol table for this segment in the X1 file. All Symbol tables
begin on sector boundaries.

Number of bytes in this Symbol table (even number). Z, bit 0, is a flag mean-
ing this Symbol table has been written on the RAD.

Location of the Symbol table in core during PASS1. PASS2 does not use this
address during loading.

Load address for this segment during PASS2. The Loader does not output leading
reserves on a segment. Thus word 10 = P:SEG+r, where r is the sum of all re-
serves in the first module of the segment up to the first foadable data. Note
that re-orging data into the leading reserve of a segment will thus cause an

SL abort.

Figure 51. Segment Table Format (cont.)

DD | RS R | SR | SL | US EB P DR | LC Entry Length

Segment ID of Satisfying DEF (or LC) Segment ID of this Symbol Entry

Chain Address (UR); Value (DEF or LC); Zero for LC REF Entry

Value for REF Chain PASS2, Size for LC-DEF, or SYMTAB Link for LC-REF

Character 1 Character 2

Character 3 Character 4 '

Character 5 » ‘ Character 6

Character 7 RE Character 8

"1 72 "3 4 5" 6 7 8 9% 10 11 12

15

Word 1

Word 2

Word 3

Word 4

yWords 5—3

Figure 52. Symbol Table Format

where, if the bit is on

Word Description

1 D = DEF
DD = DEF declared
RS = Satisfied REF
R =Primary REF ~
SR = Secondary REF
SL = Segment or Library (0 = Segment, 1 = Library)

US = User or System (0 = System, 1 = User)

EB = Extended, Basic, or Main Mode (10 = Extended, 01 = Basic, 11 = Main)
P = Public Library

DR = Double Reference

LC = Labeled COMMON

Entry Length =5 to 8 (variable)

2 Segment identifier number (on 1$SEG card).

3 Chain address for unsatisfied references. If the entry is a primary or secondary
reference, this is the last link in the threaded reference chain. If the entry
is a DEF, this is the value. If a labeled COMMON entry, this word is the
block size value for a defining entry, or zero for a reference entry.

4 If entry is a "satisfied" REF (i.e., a DEF has been found) this is its value to
be inserted in the reference chain during PASS2. If an unsatisifed reference
(primary or secondary) is meant to be excluded, then word 4 will be a -1.

If this is a labeled COMMON entry, word 4 is the defined location address
or link to the defining Symbol Table entry.

5-8 Alphanumeric characters of the Symbol Table entry.

Note that if the DEF is in the same segment as the REF, the chain is completed during PASS1 and the

reference item is converted to a definition at that time.

References chained from the program section to the library section of the root are completed during PASS1.

They are inserted as "satisfied" references.

References from the library section of the root to a segment definition will remain an unsatisfied reference

since the library section is not reviewed during PASS2.

Figure 52. Symbol Table Format (cont.)

101

Word

1 Load Address

2 B Number of Words to Load

3 Task Area Length

4 Entry Point

5 FWA of TEMP Area

6 LWA+1 of TEMP Area

7 LWA+1 of Blocking Buffer Pool

8 Number of Blocking Buffers Available

] S Number of OL; to use Blocking Buffers (m)
10 OLy
1 OLy
12
18
19 OlLyo

01 15

where

Word Description

1 Location at which to begin loading (K:BACKBG).

2 (B = 1) bits 1-15 contain the number of words to load for the root segment.

3 Maximum length needed for largest overlay path (including COMMON).

4 Entry point of the ro;at (must be nonzero). The last transfer address encountered in load-

ing the root.
5,6 Contain words 3 and 4 of TCB.

7,8 Contain words 14 and 15 of the TCB. Word 7 is the value of the COMMON base or end
of available memory for this task. Word 8 is calculated by dividing the area between the
end of the largest overlay and beginning of COMMON by the sector size.

9 Number of blocking buffers to allow at execution time or, if word 10 is nonzero, the num-
ber of operational labels in words 10-19 which may use blocking buffers at execution
time. S$=1 indicates that block sharing for packed random files is acceptable.

10-19 Two-character EBCDIC operational labels or binary values of F:xxx FORTRAN operational
labels.

Figure 53. Background Overlay Task Header

102

where

Word

‘ Word

1 Load Address
B Number of Words to Load

Task Area Length

Entry Point

Number of OL; to use Blocking Buffers (m)

oL
OL,

0 N o0 e wN
w

14
15 Ol

Description

6-15

FWA for loading (also word O of TCB).
(B = 0) bits 1-15 contain the number of words in the root segment.
Largest area this task will require, including reserves and COMMON.

If word 4 =0, M:LOAD arms and enables interrupts. If 4 #0, this is the entry point to
initialization routine in the task that will arm and enable interrupts.

14

Number of blocking buffers to allow at execution time or, if word 6 is nonzero, the num-
ber of operational labels to follow in words 6-15 which may require Blocking Buffers

. at execution time. S=1 indicates that block sharing for packed random files is acceptable.

Two-character EBCDIC operational labels or binary values of F:xxx FORTRAN operational
labels.

Since the TCB for foreground task is output as part of the task, the temp storage limits (words 3 and 4)
and the blocking buffer parameters (words 14 and 15) are inserted directly into the TCB before outputting.

Figure 54. Foreground Overlay Task Header

103

104

Public Library

Creating the Public Library

In creating the Public Library, the Loader must insert indicators into each definition item in the Permanent Symbol
table (LIBSYM) to show whether the routine is in Extended, Basic, or Main mode (see below, "Loading the Public
Library”). Since the Loader cannot determine the mode implicitly from the binary module, control information muyst
be input to the Loader through $PUBLIB control commands. By proper use of this command. (optionally followed by
I$LD, !$LB, and !$INCLUDE commands) a Public Library of any combination can be created. The Loader sup-
presses the use of the current LIBSYM in creating a new PUBLIB.

To create the Public Library, the Loader selectively loads the routines, concurrently building a Symbol table with
bits E, B, or M appropriately set. An IEOD completes the input. Nothing is written on the OV file as loading is
completed. Overlay 5 optionally maps the library, writes the Public Library core image onto the System Processor .
file, creates the Public Library portion of the Monitor Transfer Vector file (TVECT) in the System Processor area by
using information from the Symbol table, and writes the new Symbol table into the LIBSYM file of the System
Processor area.

Loading the Public Library

Before searching the User or System Library, the Loader will endeavor to satisfy references from the Public Library.
Definitions from the Public Library are input as part of the Permanent Symbol table in Overlay 1 from the LIBSYM
file in the System Data area of the RAD. Where applicable, the mode (E, B, or M) is checked. If the mode of a
matching Public Library definition is incorrect, the appropriate RAD library searches will be made to load the routine
of correct mode. A Main mode routine in the Public Library may be utilized in both Extended and Basic library
search modes.

System and User Libraries

Library Search Order Tables

The Library Search Order Tables, T:DLIB and T:OLIB contain information as to which libraries are to be searched,
and in what order, at any given time in the load process.

T:OLIB, which defines the optional case, is reset to zero (empty) by O:INIT. It can be set to a temporary nonzero
value only by a 1$LB card. At the completion of the total loading process for that segment, both cells of T:OLIBare
reset to zero. T:DLIB defines the default case library search. It is set initially by overlay 1 to the Basic System
Library. A I$LB card will not override any values in T:DLIB. However, a I$LIB card sets T:DLIB to the new default
case, which remains constant until the termination of the complete load process or until a new 1$LIBis encountered.

T:OLIB is always searched first. If the first entry in T:OLIB is empty, the search continues through T:DLIB. If
T:OLIB contains entries, T:DLIB is not searched. T:DLIB and T:OLIB are contained in the Root Base table.

Structure of the System/User Library Area is shown in Figure 55.

Input/Output

All I/O is done in initiate-wait mode, using operational labels and invoking RBM error recovery procedures. A
generalized 1/0O check routine, R:CHEKIO, checks the return status and outputs diagnostics for such conditions as
end-of-tape, file-protect, etc. Control is refurned to the calling routine only by an EOF or normal return.

Three buffers are allocated in the root segment of the Loader: B:INBLOCK, a single 512-word or double 180-word
blocking buffer and general RAD 1/O buffer; B:OL, a 60-word deblocking buffer; and B:CC, the Loader's control
card buffer. No internal provision is provided for blocked 1/O to the CC, DO or OC operational labels.

Word

! System/User Module Directory
System/User EBCDIC File

System/ User Extended DEF/REF File | Library Area Directory
System/User Basic DEF/REF File (standard directory format)
System/User Main DEF/REF File

System/User Modules

o A oWwWN

File 1
Module Directory File

File 2
EBCDIC File

File 3
Extended DEF/REF File

File 4
Basic DEF/REF File

File 5
Main DEF/REF File

File 6
Library Modules

Figure 55. System/User Library Area Structure
Library Loading

If there are unsatisfied references within an input program, individual libraries will be searched for sahsfymg defini-
tions. In the process, a Library Seaich Criterion Table (LSCT) will be built as shown below:

D N E EBCDIC File Number
0 1 2 15

D=1 indicates the EBCDIC symbol has been defined along the program path.

N=1 indicates the EBCDIC symbol as areference has been added to the table during the current library search.
E=1 indicates the library module having the EBCDIC symbol as a DEF that should be excluded from loading.
EBCDIC File Number is the sequential count of the associated symbol in the EBCDIC file.

The LSCT will be comprised of those symbols defined within the library (System or User) and occurring in the pro-

gram Symbol table. To do so, the EBCDIC file is matched against the program Symbol table to produce LSCT entries
reflecting symbols already defined, those needing satisfaction, and those to be excluded from library loading. This
procedure is shown in the flowchart of Figure 56.

Subsequently, the LSCT is matched against the individual library DEF/REF files to determine those modules to be
loaded. A module to be loaded (i.e., one or more of its DEFs are required by the program) in turn needs its REFs
satisfied. Consequently, the LSCT may be added fo in this process. Should the LSCT exceed 300 entries, the pro-
cess will abort with an "LS" diagnostic.

When an individual DEF/REF file is completely searched without adding new elements to the LSCT, library modules
specified as being required will be loaded. Figure 57 shows the logical flow of this processing.

105

Enter

Fetch Next
EBCDIC
File Entry

Match
EBCDIC
Entry Against
Symbol
Table

Not Found

‘ Continvation ’

yes

Enter Symbol
into LSCT as
Defined

Current
Segment
?

Un-
satisfied
Primary

Un-
satisfied
Secondary
REF?

Enter Symbol
into LSCT]
as o REF

LSCT
Overflow
?

Another
EBCDIC Entry
?

Enter Symbol
into LSCT
as Excluded

yes

SL Abort

Figure 56. Building the Library Search Criterion Table

F

Fetch the Next
DEF of the Module

Change the LSCT Set
Entry to a DEF and Exclude Flag
Set the New REF

Flag

Pick Up REF Count
for Current Module

Is
New REF
Flag Set

?

Enter Mo'dule Skip REFs of
Numbe.r info This Module
Load List

Another
REF?

no

Initialize
Exclude and
New REF Flags

Fetch the

Next REF of

the Module

o
yes
no

Entries in the
LSCT?

Enter REF into
the LSCT with
New Bit Set

Reset New Bit on
All LSCT Entries

Initialize to
L Beginning of
DEF/REF File

End Search

Figure 57. Building the Library Module Load List

107

108

BLOAD

The BLOAD loader facilitates the loading of large load modules by providing a paging mechanism for the core image
of the object programs. BLOAD is syntax-compatible with OLOAD, but it does not have the capability of creating
a Public Library. BLOAD has lower core requirements than OLOAD and is relocatable. BLOAD creates a load mod-
ule one granule at a time, trading speed for the ability to load program segments larger than the available loading
space.

The following discussion and flow charts detail the major differences between BLOAD and OLOAD. The tree struc-
ture of BLOAD is shown in Figure 58 and the flow charts are shown in Figures 59 through 66.

Segment numbering of BLOAD maintains the functional correlation of OLOAD as far as possible; this requires fewer
modifications in the OLOAD sequence of calls to M:SEGLD. Also, BLOAD overlays 1-5 perform the same primary
functions as OLOAD overlays 1-5. The significant differences are discussed below.

OLOAD overlays 1 and 2 contain duplicate code for reading, printing, and scanning control commands. This code
is consolidated in BLOAD overlay 20.

OLOAD overlay 2 is preceded by routines to store load module data and insert symbol table entries required by over~
lays 3 and 4 (3 and 4 are biased high enough to avoid overlaying these routines). These routines are contained in

BLOAD overlay 10.

BLOAD overlay 30 contains M:ASSIGN and M:READ FPTs and loader tables required by overlays 3 and 4 but not by

‘overlay 2. These FPTs and tables in OLOAD are also loaded as part of overlay 2.

BLOAD overlay 6 contains the I/O diagnostic messages contained in OLOAD overlay 1.

Overlay 1 |
Overlay 20

Overlay 10 Overlay2 |
Overlay 30

ROOT
[Overlay 10 Overlay 4]

Overlay 5]

Overlay 6 J

Figure 58. BLOAD Tree Structure

Y

‘ Overlay 1 '
Bring inOverlays
10 and 20
Analyze : $R?OT zirci::rrliader =
Parameters on ') OV File
1OLOAD ‘
Command
Exit
Overlay 2
’ Process
Establish Upper Parameters
End of Symbol
Table
|
Lo:dLiK:S%SJMt I$A!A$LN:S$'MP ::f Alflpropricfe -
an into r° ap Flag .
Symbol Table f
S:RDPTCC
Process o
Read and Print Parameters
Control Cards
(Overlay 20)
Process o
Parameters

Figure 59. BLOAD Overlay 1 Structure

‘ Overlay 2 '

Initialize

Appropriate | Bring in Link to Overlay
Base Table no Overlay 20 3 Call

Entries

yes

Establish P:SEG
Program Load

Read a Control k 1EOD Call Overlay 3
Card and Print () End-of-Segment

'l)$ROOT Cali Overiay 4
rocess Input Load
Parameter
1$INCLUDE,
1$EXCLUDE,
I$RES, 1$LCOM I1$SEG Call Overlay 3
Process Parameters ! - (End-of-Segment),
Process
Parameters
1$LB Process
Parameters
|
Save Appropriate
1$LIB Process Segment SY;‘:’?'
Parameters Tables on
Exit

Overlay 5

Call Overlay 3
"\ Input Load

1$TCB
1$BLOCK
Test if Initial
TCB Provided

Process Parameters
for Sub-Tasks

1$MP,15MS,
ISML,1$ROOT

!

. Process Call Overlay 4
$LD Parameters Input Load

Indicate
Sequence Error

Figure 60. BLOAD Overlay 2 Structure

110

Overlay 3

Bring in
Overlay 30

Overlay 4

Overlay 2

Order the
Libraries to be
Searched

Are
There
no Unsatisfied

REFs?

Root

Processing
?

Reserve Program
OV:LOAD Table

Match EBCDIC

no File Against
Symbol Table
to Build LSCT

[

Exit to Write Residual
Overlay 2 of Segment

More
Libraries

to Search
?

Match DEF/REF
File Against LSCT
to Build Module
Load Table

Load Modules
Link to
Overlay 4

Figure 61. BLOAD Overlay 3 Structure

‘ Overlay 4 }

Initialize
Appropriate
Base Table

Entries

~/ O:LDLBMD
Input Library
\ Module

i

Read Input
Library Oplabel

Library

Input Single \

Modulefrom / no Loag ing yes

Input File

Read Input
Oplabel

Process Input
Card Images by
Item Types

{ O:TYPE1 \

Unrelocated
Load

O:TYPEO

Padding

All
Modules

Loaded
?

Relocate on
Common
Bias

Relocate on
Execution
Bias

o

O:TYPE7 O:TYPES

Load Origin ‘Displacement
Chain

Link to
Overlay 3

Link to
Overlay 2

External
Reference

External
Definition

Address Literal
Chain
Resolution

Labeled
Common

Figure 62. BLOAD Overlay 4 Structure

112

‘ Overlay 5 }

|

Close the ID
File if Needed,
Rewind GO

Read Segment
Symbol Table
from X1

\

If Needed,
Generate
Map Headings

Resolve
Forward
Linkages

|

Update
OVLOAD
Table

Map Segment
if Required

\

Create TCB
if Needed

[

Map the Root
Symbol Table
if Needed

Last

Segment
?

Update the
OV Header
Sector

Is
Severity Level
Set?

or on IBLOAD

M:ABORT

Figure 63. BLOAD Overlay 5 Structure

13

114

‘ S:TOABRT)

Calculate Message
Address from
Status

Write Message
to DO

KP in effect
?

Write Message
to OC

S:ABORT

Call M:ABORT

Figure 64. BLOAD Overlay é Structure

Load Loc

Counter in

Load Space
?

S:RESET

Clean up Load
Space, ResetCTR

Bump Load Loc
and Execution

Counters

‘Swap Out Current,

Swap in Next

|

< S:INSERT ’

Update SYMTAB
Pointers. Transfer
SYMBOL Text

Map
Request
< ?

M:ABORT (TO)

Overflow
?
yes

Set Abort Flag

]

Overlay 5

Figure 65. Overlay 10 Structure

Continue

lnpuf
Request
Type

Start

INIT Counters and
Pointers, Scan to
First non Blank
After Mnemonic

Blank Card?

Return with
E negative

(Blank)

Get Next

Character

Return
(End Scan)

Determine
Parameter Type.
Return with
Indicators Set,

S:RDPTCC

Put 'OC' in
M:READ FPT

Put 'CC' in
M:READ FPT

Did a
CC Image Occur
in Binary?

M:READ

Read Record

| Transfer 40 Bytes
S:CHEKIO from BI to CC
1/O Check
(Root)

I

Set IEOD

Return

M:WRITE

Print CC
to 'LL'

Figure 66. BLOAD Overlay 20 Structure

115

116

9. RADEDIT

Each current file area is defined by an entry in the RBM Master Directory. The relationship of the Master Directory,
the file directory, and their corresponding files is shown in Figure 67.

The first file directory begins in sector 1, relative to the beginning of the disk or disk pack area. Word 2 of the
Master Directory entry for an area contains the sector address of the first (label) sector of the area.

The first two words of every directory sector contain an identification entry, with the form:

0 |cC NEP or NFD
1 NAS
01 15
where
C is the file directory sector for this area (0 = last file directory sector, 1 = not the last file directory

sector).
NEP is the word offset (if C = 0) to the word following the last entry in this directory.
NFD is the sector offset (if C = 1) from the beginning of area to the next file directory sector for this area.

NAS is the next available sector (if C = 0) in the area (relative to the beginning of area) for the addition
of a new file.

Each subsequent nine (K:FDSIZE) words define a file in the area as follows:

0 nl ; n2

1 n3 n4

2 n5 né

3 n7 n8

4 . F l V\'IP CI|T RF | SR

5 l‘ | Record Size

6 BOT (First Sector of File)

7 EOF

8 EOT (Last Sector of File + 1)
0'1'2°'34 567 8 1415

where

nl - n8 is the name of the file (three to eight nonblank EBCDIC characters followed by blank EBCDIC char-
acters to make a total of eight characters).

CORE MEMORY Area AA

0 Label
First File
K:MASTD Directory
Entry M
l_—{ Entry N
File M
- File N
Mnemonic (AA)
Format Word
(Figure 37)
Area
BOT : ZZ
EOT

Length of Directory

Figure 67. RBM File Structure

17

118

F is the format of the file
0 = unblocked.
1 = blocked.
2 = compressed.
3 = packed.

4 = random.

WP is the write-protection code for the file
0 = no protection.
1 = write permitted by background only.
2 = write permitted by fbreground only (unless SY key-in is in effect).

3 = write permitted by RBM only (unless SY key-in is in effect).

C is a cylinder maintenance flag which indicates (if C = 1) that the BOT of the file is to be maintained
on a cylinder boundary.

T is a track maintenance flag which indicates (if T = 1) that the BOT of the file is to be maintained on a
track boundary.

RF is the resident foreground program flag for files in SP, UP, or FP areas. If set, the program is loaded
by RBM at system boot time.

SR is the short record flag (see Disk File Directory).

Record Size is the number of words in a record.

BOT is the absolute sector address of the first sector defined for the file.

EOF is the pointer to the logical or pseudo file mark. If EOF =~1, no file mark has been written.

EOT is the absolute sector address of the last sector plus one defined for the file.

If a directory entry is deleted or empty, every word of the entry contains zeros. No entry extends over a file direc-

‘tory sector boundary.

Library File Formats

The System Library area and User Library area both have the same structure. Each contains six files: the Module
Directory File (MODIR), the Library Module File (MODULE), the main DEF/REF File (MDFRF), the Extended DEF/
REF File (EDFRF), the Basic DEF/REF File (BDFRF), and the EBCDIC File (EBCDIC). These files must be defined
via 1#ADD commands before attempting to generate them via 1fLADD commands.

MODIR File

The MODIR file is rondom access, where each sector contains an integral number of six-word entries.

Entry 0 of the MODIR file contains the following identification entry:

0 Word Count
1 Next Available Module Sector
2
Unused
5.
0 15
where
Word Count is the number of active words in the MODIR file. The word count is én, where n is the number

of entries in the file (including entry 0).

Next Available Module Sector is the relative sector within the MODULE file available for storing the next
object module.

Each subsequent entry of the file contains MODIR entries numbered through n. A MODIR entry contains:

0 Lib MODULE Record Number
1 _ Relocatable Length
2
. ‘ Identification
5 ™
012 15

where

Lib indicates which DEF/REF (xDFRF) file contains the external definitions and references for the module
(11 = MDFRF file, 10 = BDFRF file, 01 = EDFRF file, 00 = entry has been deleted).

MODULE Record Number- is the relative sector within the MODULE file where the object module begins.
Relocatable Length is the relocatable length of the object module in the MODULE file.
Identification is the name from the start item of the object module beginning at MODULE sector number.

A deleted or empty MODIR entry contains all zeros.

MODULE File

The MODULE file is a packed random access file containing object modules. The MODIR file acts as a directory
to the object modules contained in the MODULE file. Each entry in the MODULE file is an object module. The
120-byte card images of the object module are blocked by- RADEDIT.

19

MDFRF, BDFRF, and EDFRF Files

The MDFRF, BDFRF, and EDFRF files (xDFRF files) all have the same format. The files are random access with vari-
able length entries.

Entry O in the file contains an identification entry-as follows:

o o 0

1 Word Count
0 910 15

where Word Count is the number of active words in the file including entry 0. If no entries have been placed in

the file, it is zero. This count can be used to compute the sector access and relative position within that sector
where the next DEF/REF entry can be stored.

The remaining entries in the file are called DEF/REF entries. A DEF/REF entry never extends over a sector boundary .
Empty entries are used to pad sectors. Each entry contains.

0 MODULE Record Number
1 n m
2 DEF 1
3 DEF 2
T+n DEF n
2+n REF 1
3+ REF 2
T+n+m REF
0 7'8 910 15

where

MODULE Record Number ~ is the record number of the first record of the ROM in the MODULE file. If the
MODULE entry number is -1, the entry is empty.

DEF. is the entry number of an external definition symbol in the EBCDIC file.
I

REFi is the entry number of an external reference symbol in the EBCDIC file.

120

An empty or deleted DEF/REF entry contains a MODIR Entry No. of zero, and Entry Slze is the length of
the padding entry. ,

EBCDIC File

The:EBCDIC file is a random access file where _each entry contains four words. Every sector confains an integral
number of entries.

Entry O is an identification entry that contains

0 N
1 Zeros

2

3 Word Count

where Word Count is the number of words in the EBCDIC file (including entry zero). The word count is 4n, where
n is the number of entries in the file (including entry 0).

Each subsequent entry in the file is called an EBCDIC entry. Each contains:

— Symbol

where Symbol is.an external definition or reference in EBCDIC, left-justified with trailing blanks.

Overlay Structure
The RAD Editor consists of a roof“segmenf plus 12 overlay segments. Each segment contains one object module.
Before a command is executed; the appropriate segment(s) -is loaded via M:SEGLD. Confrol is transferred to the

command execuhon segment by the RAD Editor; not by M:SEGLD.

The overlay tree structure showing the function and segment number of each object module is illustrated in
Figure 68.

Control Command Execution

RBM loads and transfers control to the RAD Editor upon reading a IRADEDIT command from CC. The Executive
routine (R:EXEC) of the RAD Editor gains control. It initializes all flags and pointers and reads a control command
from CC and scans it. The Execute Command routine (R:CMDEX) loads the overlay segments needed (if they are not

121

122

Add, Delete, Truncate, Clear, Squeeze (2)

Directory Routines (1) Save (3)

Rebootable Save (4) ~

Restore (5)

Rebootable Restore (6)

Root (Executive) Library Add, Delete, Replace, Copy (8)

Library Routines (7)

Library Squeeze Copy (9)

Dump,
File Copy,
Disk Pack Copy (10) .

Map, Library Map (11)

Initialize Good Track/Bad Track (12)

Figure 68. RADEDIT Tree Structure

already core and transfers control fo the routine to process the command. On encountering a ¥ END command
or an EOF status, (EOD), the RAD Editor terminates by calling the Monitor service routine (M:TERM) which returns
control to the Monitor. A functional flow diagram is shown in Figure 69.

For each command the root segment initializes the base table, reads and scans the control command, loads the seg-
ment(s) required for command segment for command execution (if necessary), and transfers control to the appropriate
segment for command execution. Routines commonly referenced by other segments are also included in theroot. The
base table included in the root segment contains the addresses of the entry points to all routines in the root plus the
addresses of error messages. Storage in the base table is also provided for flags, file entries, directory entries, and
constants.

The entry points to routines included in the root segment and their functions are given in Table 1.

Area Maintenance Commands

The permanent file directories are maintained so that the directory entries in the permanent file directory appear in
the same order as the actual files (i.e., the BOT in each directory entry is greater than the BOT in the previous
entry). This ordering of entries and files facilitates maintenance, particularly execution of the 1#SQUEEZE
command.

To preserve this ordering of entries and files, the 1#ADD, !#DELETE, 1#*CLEAR, !'*TRUNCATE, and !#SQUEEZE
commands must be executed as follows:

#ADD Command

The "area” parameter on the !#ADD command is used to determine the active area to be updated.

The "name", "fsize", "rsize", "format", "wp", "foreground", and "mainfenance" parameters are used to form
words 0, 1, 2, 3, 4, and 5 of a new directory entry. The EOF (word 7) is set to -1. The new entry is added to the

RBM Reads
IRADEDIT

Control Command

e R:EXEC

|

Determine CC,
DO, and OC

Assignments

I

Close and Release
Op Labels X0-X6

R:RDSCAN

‘Read and Scan’
Control
Command

R:CMDEX

Determine Which
Segment Does
Command

Is
Segment
in Core?

M:SEGLD

Load Required
Segments

-1

R:OPCOMM

Write
"LOAD ERR"
Message

Was
Loading
oK?

Transfer
Control To
Segment

M:ABORT

Figure 69. Control Command Execution Flow

123

124

Table 1. RADEDIT Root Segment Entry Points

Entry Point

Routine Name

Function

R:EXEC

R:CHKIO

R:CLOSE

R:CMDEX

R:GDIR

R:GPAR

R:OPCOMM

R:RDSCAN

R:RADR

R:RADW

R:RBI

RADEDIT Executive

Check 1/O

Close

Command Execution

Get Directory Entry

Get Next Parameter

Operator Communication

Read-Scan Command

RAD Read

RAD Write

Read BI

Controls operation of the Editor and isentered
to begin execution of the Editor.

Checks /O status and, if necessary, writes
appropriate error message. This routine is
called after performing every 1/O operation.

Closes the indicated file in order to release
the device file number assigned to it.

Determines which segment(s) are needed for
command execution, loads the required seg-
ments, and calls the appropriate routine for
actual command execution.

Gets the next entry from a permanent file
directory.

Gets the address of the next entry in the pa-
rameter table created by R:RDSCAN.

Writes, solicits, and receives messages on

the OC device.

Reads a control command from CC and creates
a parameter table.

Reads a sector from a random access RAD file
or file directory. This routine is called to
read all RAD files.

Writes and check-writes a sector on a ran-
dom access RAD file or file directory. This
routine is called to write all RAD files.

Reads a standard 120-byte binary card image
from BI.

directory sector having an identification entry with C =0 and is stored in the directory sector at NEP. The BOT
(word 6) of the new entry is set equal to the next available sector (unless C or T is specified as a "maintenance”
parameter). The EOT (word 8) of the new entry is computed from the "record" and "file" parameters. After the
new entry has been added, the next available sector (word 1 of the last file directory sector) is set equal to the EOT
of the new entry. :

If the C or T is specified as a "maintenance” parameter, the BOT is set to the next available cylinder (C) or
track (T) boundary.

To complete the 1#ADD execution, the identification entry of the directory sector is updated. If there is room in
the directory sector for another entry, the address in the identification entry is incremented by 9 (K:FDSIZE). If
there is no room in the directory sector for another entry, the C-bit in the identification entry is set to 1, a new

file directory sector is reserved, the volume sector number of the new file directory sector is stored as NFD, and
the new file directory sector is initialized with the new volume of NAS.

#DELETE Command

The "area" parameter on the 1#DELETE command is used to determine the active area to be updated. The "name"
parameter is used to search the directory for the directory entry to be deleted. The file (defined by the BOT and
EOT parameters) is deleted by zeroing out the directory entry. The space formerly occupied by the files becomes
unused until a 1#SQUEEZE command is executed. The deleted space is automatically recovered if the entry is the
last one in the file directory.

#CLEAR Command

This command clears areas and/or files. Files are cleared by assigning the X0 oplabel to the area and then zeroing
the file with a maximum byte count. Areas are cleared by assigning the X0 oplabel to the area and then zeroing
out the area with a maximum byte count.

#TRUNCATE Command

This command is identical to 1#DELETE, except that instead of the directory entry being zeroed out, the EOF is used

. to compute a minimum EOT value to replace the current EOT. The space between the new EOT and old EOT be-
comes unused until a 1#SQUEEZE command is executed. The truncated space is automatically recovered if the entry
is'the last one in the file directory.

#SQUEEZE Command

The "area" parameters on the 1#SQUEEZE command determine which permanent RAD areas to initialize. Executing
a V¥ DELETE command causes the part of the permanent RAD area where directory entries are files were previously
located to be lost from use (except when the file being deleted is the last file in the area). Executing !#ADD com-
mands causes new entries and files to be added without attempting to regain any unused space. Squeezing eliminates
these unused portions of the permanent RAD area. The directories are compacted and the files themselves are moved
to regain these unused spaces. If C or T (cylinder or track) maintenance is specified for a file, it is moved to the
next available cylinder or track boundary above the previously "squeezed" file. The BOT and EOT in the directory
entries are updated as they are compacted fto indicate the area occupied by the moved file. Figures 70 and 71 show
a file area before and after squeezing. ‘

Area ‘Mainmnance Routines ‘

Segment 1 contains the common routines necessary for execution of area maintenance commands. The entry points,
routine names, and functions are defined in Table 2.

125

First Sector
of Area

Area Label

Identification
Entry (C=1)

First File Directory

File-1

File-1 Directory
Entry

Unused

Zero Directory Entry

File-2

File-2 Directory
Entry

File-3

File-3 Directory
Entry

Files 4 through
n-1 Directory Entries

Files 4 through n-1

File-n Directory
Entry

File-n

Second File Directory

Identification
Entry (C = 0)

File-n+1

File n+1 Directory
Entry

File-n+2

File n+2 Directory
Eniry

Unused

Unused

First
Directory
Sector

Second
Directory
Sector

Figure 70. File Area Before Squeeze

First Sector
of Area

Area Label

First File Directory

File-1

File-2

File-3

Files 4 through n-1

File-n

File-n+1

Second File Directory

File-n+2

Unused

Identification
Entry (C = 1)

File-=1 Directory
Entry

File-2 Directory
Entry

File-3 Directory
Entry

Files 4 through
n-1 Directory Entries

File-n Directory
Entry

File-n+1 Directory
Entry

Identification
Entry (C = 0)

File-n+2 Directory
Entry

Unused

First
Directory
Sector

Second
Directory
Sector

Figure 71. File Area After Squeeze

127

128

Table 2. Area Maintenance Routines

Entry Point Routine Name Function

R:DSRCH Directory Search Searches a permanent file directory for an
entry having a designated name.

PDN Process Directory and Processes the "directory” and "name" pa-

Name Parameters rameters on an !#ADD, I#DELETE command

by utilizing the parameter table created by
R:RDSCAN.

R:SETY Store Entry Completes a directory entry by determining

the BOT and EOT for the file it describes and
stores the entry in the permanent file directory.

R:GNF Get Next File Gets the next "area/filename" from the con-
trol command.

PROTEST Protection Test Tests the current area protection code un-
less an SY key=in is in effect.

Library File Maintenance Commands

The library files are maintained through the execution of 1¥LADD, I#LREPLACE, and I#LDELETE commands. The
entries in the MODIR file, MODULE file, and xDFRF files are all ordered the same way. The ith entry in the
MODTR file identifies the ith object module in the MODULE file. The jth MODIR entry referencing a particular
library corresponds to the jth entry in the xDFRF file for that library. The MODULE file is in a packed random fomat.

To preserve the ordering of these files, the 1#LADD, I#LREPLACE, I#LDELETE, and 1#LSQUEEZE commands rust
be executed as follows:

#LADD Command

The "area" parameter on the !#LADD command determines which active area contains the library files to be updated.
For each object module added the following procedure is used:

e The "library" parameter determines the setting of the "lib" bits (word 0) in the new MODIR entry and which
one of the xDFRF files to update.

e The MODULE record number (word 0) of the new MODIR entry is set equal to the "next available MODULE
record"” (MODIR identification entry). The remaining information stored in the library files is obtained
from the object module read from BI.

e The object module is placed on the MODULE file beginning the "next available MODULE record".

e The identification and relocatable length are obtained from the module and stored to complete the MODIR
entry.

The symbols for each external definition and reference in the object module are extracted and stored as entries in
the EBCDIC file (if they are not already stored there). The entry number of the EBCDIC entry for each extemal
definition and reference is saved to create the "DEF;" and "REF;" words of the DEF/REF entry written on the xDFRF
file. The addition of the object module to the library is completed by updating the identification entries in the
MODR, MODFRF, BDFRF, EDFRF, and EBCDIC files.

#LDELETE Command

The "area" parameter on the ! LDELETE command determines which active area contains the library files to be
updated. The MODIR entry containing the same "identification" indicated on the I#LDELETE command is zeroed
out. The information in the MODR entry is used to zero out the DEF/REF entry in the xDFRF file indicated by the
"library" parameter. No changes are made to the identification entries in the MODIR and xDFRF files. No changes
whatsoever are made to the EBCDIC file or MODULE file as the result of 1# LDELETE command execution.

#LREPLACE Command
The “area” parameter on the 1#LREPLACE command determines which active area contains the library files to be

updated. The procedure followed is identical to executing a ILDELETE command followed by a 1#LADD command,
where both commands have the same parameters.

#LSQUEEZE Command
The "area" parameter on the 1#LSQUEEZE command determines which active area contains the library files to be

squeezed. The command saves the MODIR file in core, clears the MODIR, EBCDIC, and xDFRF files, and then
recreates them by performing a | #LADD function using the old MODULE file as input.

Library File Maintenance Routines
Segment 7 contains the routines necessary for maintaining and referencing the library files via 1#LADD, !'¥LREPLACE,

I#LDELETE, and !#LCOPY commands. Routines in the root segment are referenced. The entry points to the routines
in this segment are shown in Table 3.

Table 3. Library File Maintenance Routines

Entry Point Routine Name Function

) i
R:ASSIGN Assign Library File Assign a designated library file to an opera-
tional label.

R:DRADD DFRF Add Place a new entry in either the MDFRF, BDFRF,
or EDFRF file.

R:DRDELE DFRF Delete Deletes an entry from either the MDFRF,
A BDFRF, or EDFRF file by chaning the entry to
a padding entry.

R:GBIN Get Binary Card | Gets a binary card image froh the MODULE
Image . file by deblocking sector images. S
R:ESRCH EBCDIC Search Searches the EBCDIC file for a designated

DEF or REF symbol. If the symbol is not
found, it is added to the file. The entry
number of the symbol is returned.

R:GMD Get MODR Entry Obtains the next entry from the MODIR
file.
R:MDADD MODR Add -Places a new entry in the MODIR file.

129

Table 3. Library File Maintenance Routines (cont.)

Entry Point Routine Name Function

R:MDDELE MODIR Delete Removes an entry from the MODIR file by
zeroing it out.

R:MDSRCH MODIR Search Searches the MODIR file for an entry having a
matching "IDNT" and library-mode (E, B, or M).

R:MOADD MODULE Add Reads an object module from Bl and writes

it on the MODULE file. From data in the
module it forms or completes entries to add
to the EBCDIC file, MODIR file, and either
the MDFRF, BDFRF, or EDFRF file.

R:PLC Process Library Com- Processes "area", "“identification", and
mand Parameters library parameters on the !#LADD,
I#LDELETE, !#LREPLACE, and 1#LCOPY
commands by utilizing the parameter
table created by R:RDSCAN.

Utility Commands

Utility functions are included in the RAD Editor to allow

e Dumpingrandom access RAD files.

e Copying the contents from one random access RAD file into another.

e Copying a library routine from the System Library or User Library onto BO.
e Mapping the RAD areas.

e Saving contents of permanent RAD areas or files.

e Restoring the RAD using data saved.

o Initialization of new disk packs.

e Messages to the operator.

® Messages with operator response required.

#DUMP Command

The !#DUMP command outputs data on LO. The file must be random access and is read and dumped one sector at
a time. -

130

The format of the dump of each sector is

SECTOR 5855

rrer dddd dddd dddd
rree dddd dddd cee dddd
where
ssss is the relative address (hexadecimal number) of the sector in the file defined by the "oplb" parameter.
rrrr is the relative address (hexadecimal number) of the first data word dumped.
dddd is the image of a data word (a hexadecimal number). The number of data words per line is eight if

LO is assigned to a keyboard/printer. Otherwise, 16 data words per line are output..

#FCOPY Command

The #FCOPY command copies the contents of the random access file assigned to the "input" operational label onto
the random access file assigned to the "output” operational label. The data is read and written one sector at atime.
When EOT is encountered on either file, the copy terminates.

#LCOPY Command

The 1#LCOPY command outputs an object module on the BO device. The object module is found by searching the
MODRR file for an entry having an identification matching the identification requested as a command parameter.
From the MODULE sector number in the entry, the MODULE file is positioned and card images are deblocked and
written on BO.

#MAP Command

The !#MAP command outputs data on LO. The "area" parameters determine which RAD area to map. Each area
mapped may cause up to two items to be output. The items or parts of a map are:

1. Information from Master Directory consisting of the directory area identification, its beginning RAD ad-
dress, and ending RAD address. ‘

2. Information obtained from the permanent file directory about each file in the area, ‘its name, format, write
protection, foreground task indicator, logical record size, beginning RAD address, ending RAD address,
and end-of-file pointer.

For CP or BT areas mapped, only part 1 is printed; for every area, parts 1 and 2 are printed.

Part 1 of the map has the format

AREA aa DEV cc BOT 'bbbb EOT it

where
aa identifies the area.
bbbb is the volume sector address of the beginning of the area. It is in the form of a hexadecimal number.

131

132

cc is the device number.

tHt is the volume sector address of the last sector plus one of the area. It is in the form of a hexadecimal
number.

Part 2 of the map has the format

NAME FORMAT WRITE FORE RECORD CYL TRACK SECT BOT EOF EOT

nnnnnnnn f w i T ccce tit $S58 Bbbb £FFF eeee
where

nnnnnnnn is the name of a file in the permanent RAD area.

f is the file format (U = unblocked; R = random; C = compressed, blocked sequential access; B = blocked

sequential access; P = blocked rondom access).

w is the write protection for the file

SY is write permitted from RBM only.
FG is write permitted from foreground only.
BG is write permitted from background.

NO for no write protection.

i is the foreground task indicator. It is RF if the file contains a resident foreground task (only meaningful
for files in the SP, UP, and FP areas). It is blank if the file does not contain a resident fore-
ground task.

rree is the logical record length, in bytes, represented as a hexadecimal number.

ccce is the hardware cylinder address (if the file is contained on a disk pack) containing the BOT of the
file.

tHt is the hardware track address containing the BOT of the file (included if the file is on o disk pack or
7232 RAD).

ssss is the hardware sector address containing the BOT of the file (included if the file is on a disk pack or
7232 RAD). '

bbbh is the volume sector number of the first sector defined for the file. It is a hexadecimal number.
ffff is the end-of-file pointer. It is a hexadecimal number.

eeee is the volume sector number of the last sector plus one in the file, represented as o hexadecimal

number.

#LMAP Command

The !#LMAP command maps the library files in the area specified by the command. The library map is printed for
each object module in the format.

LIBRARY x IDENT iiiiiiii ~ LENGTH yyyy SECTOR ssss
DEFS REFS

dddddddd rrerrrTT

X indicates the library in which the library object module is located (M = Main, B = Basic, E = Extended).
iiiiiii is the identification (from start module item) of the object module.

yyyy is the relocatable length of the object module.

ss55 is the relative record number of the module within the MODULE file.

dddddddd is the symbol for an external definition in the module.

TEPErTEY is the symbol for an external reference in the module.

For each entry in the Master Directory, the following steps are repeated:

1. If the Master Directory entry is empty, no information is output; otherwise, Part 1 of the map is produced
from the Master Directory entry.

2. If the Master Directory entry is for an active area, the permanent file directory for the area is read
to produce Part 2 of the map. If the area is allocated but contains no permanent files, nothing is
output.

3. If the active area is either the SL or UL, the libraries are mapped in the following order:
a. Basic
b. Extended
c. Main

4. The contents of each library (Basic, Extended, or Main) are mapped by referencing the MDFRF, BDFRF,
or EDFRF file for that library. Each nonpadding entry in the xDFRF file identifies an object module in
the library. The information about the object module is obtained in the following manner:

a. LIBRARY — this is the first character in the file name of the MDFRF, EDFRF, or BDFRF file being
mapped.

b. IDNT and LENGTH — each xDFRF entry contains @ MODIR entry number. The corresponding entry in
the MODIR file contains the identification and relocatable length of the object module.

c. DEFs and REFs — each xDFRF entry contains n DEF; words and m REF words describing the external
definitions and references in the object module. Each DEF; or REF is the entry number of a symbol
in the EBCDIC file. The symbolic representation of each DEF and REF is obtained by referencing the
indicated entry in the EBCDIC file.

133

134

#SAVE Command

The file save tape/deck created by the I#SAVE file commond has the following format:

Control Records

The following records are output if the media is magnetic tape or paper tape:

IBOR nn Where nn is a hexadecimal digit of value 1 for the first reel, 2 for the second reel, etc.
IECR . This record indicates the end of a tape reel and appears at the end of paper tape reels only.
IEOD This record indicates the end of a standard binary file on cards or paper tape.

Data Records

The following format is.used for oll saved files:

F Size (n - 3) for CP or PT
0 For?9
Size (n - 3) for MT
1 Sequence
2 Checksum (3 thru n)
3 First Record Word
n Last Record Word
0 34 78 15

where
For? if the media is cards or paper tape, word O begins with FF or 9F as the first byte. 9F means this is

the last record of the file; FF means this is not the last record. [If the media is magnetic tape, word O
begins with F or 9 as the first digit (9 means this is the last record).

Size is the number of active words in the record. If the media is cards or paper tape, the maximum value
of n is 59; if the media is magnetic tape, the maximum value of n is 4093.

Sequence is the sequence number for the current record.

Checksum is the arithmetic sum (with carry) of the n~3 active words after the record header.
7

File Definition Record

Record 0 of each file contains the directory information necessary to restore the file in words 3 through 12.

3 Area Mnemonic

4 C] C2

5 C3 C4

6 C5 C6

7 C7 C8

8 F Wp |C|T RF SR

9 Record Size

10 1 if Standard Binary

11 Relative EOF

12 Relative EQT (fsize in sectors)

13 First Record of File

n Last Recon:d of File
01234567 8 1415

Standard Binary Files

If the output media is cards or paper tape, file being saved is blocked, the record size is 120, and the first three
words of the first record conform to the format described in Appendix A of the Sigma 2/3 RBM Reference Manual

(90 10 37) the file is simply copied to the BO device; otherwise, the file data is reformatted for output. Any record
within a standard binary file found to have all zeros or all blanks is not saved. ‘

Region of Save

If an EOF has been written on a file it will be saved up to and including the EOF. If no EOF has been written on
the file and the first block or record of the file is all zeros, only the file definition is saved. Otherwise, the file
is saved up to the EOT.

Listing of Saved Files

As each file is saved, it is listed on the LO device. The format of the output is

SAVED: area, filename

135

Rebootable Save Tape Format

The save tape created when the FILE parameter is absent has the following format:

Record Content
1 Bootstrap to read record 2
2 Restore program
3 Area definition record
4 Data records
n End record
Tape mark
Tape mark

Area definition records, data records, and the end record have the following Header Format for words 0-2;

Word Bit Position

0 Type Word Count
[| Sequence Number
2 Checksum
0 1 2 15
where
Type identifies the record (1 = data record, 2 = area definition, 3 = end record).
Word Count is the number of active words in the record, excluding the three-word header.
Sequence Number is the sequential record number, beginning with record number 0, which contains the
tape creation date and time.
Checksum is the arithmetic sum (with carry) of the active words in the record.

136

Area Definition Record

3 Sectors/Record Device Number
4 Words Per Record
5 Seek Address (Sector Number)
6 _ Device Type » Channel Register
7 Area Mnemonic
8
. Date/Time (for record 0 only)
14
0 7'8 15
where
Sectors/Record is the number of sectors in the following data record.
Device Number is the hardware device number.
Words Per Record is the number of words in the following data record.
Seek Address is- the hardware seek address for the following record expressed as a sector number.

Device Type signifies the model number (0 = 7202, 7203, or 7204; 1 =3231; 2 = 3232/33; 3 = 7232;
4 = 7242 or 7246; 5 = 7251 or 7252; 6 = 3203/04; 7 = 7270).

Channel Register is the even-numbered channel register for the device.
Area Mnemonic indicates the area on the first definition record, and is zero on subsequent definition
records.

Date/Time is the dafe/time the tape was created (as given by M:DATIME).

#RESTORE Command

This command restores files that have been saved with a previous !#SAVE command.

As each file is encountered onBl, tests are made to determine
1. If a restore of the file was requested.
2. If the file has an entry in the file directory (an entry is made if one does not already exist).

3. If the proper write authorization for the area is in effect (SY key=in).

137

Files to be restored are read/written using double buffering and 1/O overlap wherever possible. As each file is
restored, the message "RESTORED areq, filename" is output on the LO device.

If the magnetic tape being from Bl is a rebootable save tape, the areas saved on the tape will be restored in their
entirety.

#INITIALIZE Command

This command initializes RAD/disk packs to conform to the requirements of the RBM file-management system. The
command is followed by a set of area definitions, which are used to build a label sector for each disk pack volume
as follows:

For model 7242, sector zero of track 19 of cylinder 202 contains the disk pack label. The format of this label is

Bytes Contents
0-3 Zero.
4-11 Volume serial number (left-justified and blank-filled).
12-19 Directory entry for first area on disk pack.

132-139 Directory entry for 16th area on disk pack.

Each directory entry contains the same information as a Master Directory entry for an areq, i.e.,

Word Bits Contents
0 0-15 Area name or zero if no corresponding area.
1 5-6 Area protection code.
2 0-15 Sector address of first sector of area.
3 0-15 Sector address of last sector of area +1.

For models 725x and 323x, the format of the label is identical, but is written in sector 1 of track 0 of cylinder 0.

#MESSAGE and #PAUSE Commands

#MESSAGE

This command outputs the control command image on the OC device. No RADEDIT overlay is used.

#PAUSE

This command is identical to 1#¥MESSAGE, except that the RBM routine M:WAIT is executed before the next control
command is read. .

#GDTRACKS and #BDTRACKS Commands

138

The HGDTRACKS and 1#BDTRACKS Commands have the format

4

H#GDTRACKS dn, number [, number..].

The flow diagram for 1#GDTRACKS and I#BDTRACKS is given in Figure 72.

PAGE 1

FORMAT HERDERS
FOR ALTERNATE
TRACK

)

R$GDTRACK
R2BDTRACK

-
T SET 1=4000 WRITE
DEVICE HERDERS
NUNBER
ASSION X1 10 FORMAT HEADERS
DEVICE RERD O FLAW
NUNBER HEADER SPECIFIED TRACK
TRRCK-T
WRITE
; HERDERS I
;]
FORMAT HEADERS
TO UNFLAN
PRRAMETER TRACK
WRITE
s |
: o
ROR / |RLTERNATE TRACK
|

Figure 72. GDTRACKS, BDTRACKS Command Flow Diagram

139

140

FRERAIR
REARD BIL
FRON SECTOR2

PAGE 2

READ HERDERS

BTL

PRESET BAD
TRADK _%m T

GDTRACK?

STORE TRACK
NUNBER IN BTL

NORMAL EX1T

Figure 72, GDTRACKS, BDTRACKS Command Flow Diagrom (cont.}

6. CHARACTER-ORIENTED COMMUNICATIONS HANDLER (R:COC)

Introduction

R:COC is a foreground program that serves as an interrupt handler for the Character-Oriented Communications
(COC) Controller, Model 7611, R:COC should be assembled with parameters set to installation-dependent charac—
teristics with regard to channel identity, interrupt address, and number of lines to be serviced. Lines are assumed
to be a contiguous set (0 - n).

The program supports Teletypes (Models 33, 35, and 37) in addition to a Model 7555 keyboard display. Display-
dependent code will be included as an assembly option. Unsupported devices will be serviced within certain
limitations.

R:COC can be established in one of the processor areas and loaded into the foreground either automatically when
the RBM system is loaded, or when called in by user command. When loaded, R:COC provides its own initialization
to link the program to the appropriate interrupt address pair (input and output), establishes linkage for Monitor serv-
ice requests (M:COC), and provides continuous input to a circular buffer within R:COC.

R:COC Input Buffer

The circular buffer for input data coming from the COC is normally 64 words in length but may be enlarged by as-
sembly option. Input flows to the buffer from the COC as initiated by up to 64 communication lines. The COC
transfers a full word to the CPU for each character initiated by a communication line. This word contains the orig-
inating line number (0-63) in the first byte and the generated character (ANSCII) in the second byte. An input
interrupt is provided with each word transferred. '

Once activated by an input interrupt, R:COC processes individual characters and adds to the user message buffer as
appropriate. R:COC maintains an index pointer to identify the next character to be processed and, after processing
a character, replaces it with a mask of all T's. An unprocessed character is identified in the circular buffer by bit
position one (1) being a zero. All input characters that may have been stacked in the circular buffer are processed
individually before exiting the. input interrupt level (see Figure 73).

Character Output

The first character of an output message (or prompt character to elicit input) is initiated outside the handler in

M:COC. Upon completing the transmission of a character, the COC controller will provide an output interrupt.
The inferrupt will be processed by R:COC, which will "read" the line number associated with the interrupt and then
continue the output message by transmission of either the next character from the user buffer or from the appropriate
EOM sequence. After initiating character transmission, the interrupt level is exited to allow subsequent interrupts.
If no further transmission is required on the line, a "stop transmit" is performed before exiting. :

Processing flow of the output interrupt handler is diagrammed in Figure 74.

141

PAGE 1

Clnpuf Interrupt TC B)

ININ Set Input Byte into
ASWORD
Initialize
ECWORD =0
BUFWORD =0
EDITWORD =0

v

Inhibit Interrupts

Parity
Correct
?

Control
Character

Test
if Editing

Set Status to Parity
Error. Set X'2F' into

BUFWORD (D)
Restore ?
Interrupts
Test Line
Limit, 5 INZO
e
good pag! ot
Extract Line Status EDITWORD
Bits as Working page 3
Bits S, H, M, B, P
Line
Mode Input
?
Line
Modi Input N23
) Set Status as Esca
yes page 5 o
Set EOM Sequence
as Break List
page 3

Figure 73. - R:COC Input Interrupt Handler

142

PAGE 2

IN24

Escape
Status Set
?

Set EBWORD as a Reduce Line Byte
Delete: Count

Character a

Set EBWORD to
Line Deletion

Character an

'X'? Character
Is
Character a A !
Delete Reset Line and B

_ Byte Counts

page 3

Separate by
Supported Device

Type

Control
for CR
?

yes

A

Perform Cursor
Manipulation (Return,
™™ Left, Right, Backspace,
Cancel)

IN21

Place ASWORD
into ECWORD

page 3

IN2AA IN28

Set EOM Sequence Set EOM Sequence
as NL List . as CR List

Control NL

or LF
?

Link to
Establish
EOM Sequence

page 3

Figure 73. R:COC Input Interrupt Handler (cont.)

143

144

IN3

Supported
Device?

IN3A

Link to Trigger
Output Echo or
EOM Sequence

yes

Escape
Received

Set ASCWORD
into BUFWORD

yes

Status Set
?

Set EBCWORD
into BUFWORD

yes

PAGE 3

Reset Escape Status
Bit (S)

Set Character into
1 User Buffer And
Adjust Counts

EDITWORD
Sef
?
yes

MSG.
Count Depleted
?

A

A

no Device
?

IN301

Terminate

1. Sef Line Mode
to Message
Complete (5).

2. Set Meéssage
Byte Count
{LINS2).

3. Link to EOM
Receiver (if
any) (LINS4).

4. Clear LINS4.

yes

Editing
?

no

INEOM

Link to Invoke
EOM Sequence

Echo in

Progress

INSA

Link to Trigger

Output

page 5

Figure 73. R:COC Input Interrupt Handler (cont.)

PAGE 4

IN3A

Trigger Echo or
EOM Sequence

Line
Mode "Initiate
EOM"? yes " ¢
page 5

Status Bit
Set (M)
?

yes

Set Delete in
ECWORD

l

Transmit ECWORD

Is
ECWORD
Null ?

y

Set Status to "Echo R.f
in Progress" (H) erum

Figure 73. R:COC Input Interrupt Handler (cont.)

145

146

PAGE 5

Restore Status Bits
S, H, M, B, P,
to Table

 J

Set Buffer
Word to -

X'FFFF'

Increment Buffer
Pointer (Index)

Buffer

Overflow
?

Reset Pointer to
Top of Buffer

page 1

Figure 73. R:COC Input Interrupt Handler (cont.)

PAGE 6

Start EOM

Set Message Byte
Count from Current

Foreign Device?

Set Line Mode to
yes "Initiate EOM" (6)

Half-Duplex
Line?

Null
Sequence for

Device
?

Tumn Off

Receiver

1. Set EOM Se-
quence Address
(Line 1).

2. Add EOM Se-
quence Byte
Count to Total
(Line 2).

'

Reset Current
|| Byte Couni;Set
EOM Status Bit
(M)

Return

Figure 73. R:COC Input Interrupt Handler (cont.)

147

PAGE 1

Byte Count

Output our2
Interrupt TCB o | Increment
A

Read Direct for
Line Number

y

Separate by
Mode of Line
Status Set
M) yes
?
no
Stop Transmit
- of Longspace
2 T/IN : Devi
=0U evice
1 Save Byte Count
Reset to Input U Supported
et ™ et at EOM St

On
Edit Write
?

Set EOM Status (M)
Set EOM Sequence
Address and Byte
—1 4 = Inactive Count in Status Table

5 =Message Complete - : OUT3A

0 =Disconnect

I, {ouToUuTl

page 2

Figure 74. R:COC Output Interrupt Handler

Extract Next
Character Place in
Outbyte

OUT3A

Clear EOM Status (M)
Set Line Mode to
Message Complete (S)

EOM

Receiver

Link to User
Routine

l

OUTOUT!

A

Stop Transmit

Line Bad

?

A

Device
Supported
?

yes

Trans-
lation and not

EOM
?

yes

PAGE 2

y

Pickup ASK11 of
Outbyte

Pickup Outbyte

\

l

and Transmit

Add Line Number

Clear Echo
Status (H) -

[

> EXIT

Figure 74, R:COC Output Interrupt Handler (cont.)

149

150

Monitor Service Request (M:COC)

The user interacts with the communications handler (R:COC) through Monitor service calls (M:COC), which can be
used to connect or disconnect communication lines, initiate message reads and writes, break off a line function, and
check on line or operation status. Coordination between R:COC and M:COC is maintained through status fcble,s in
the handler code (see Figure 75 below). Upon receiving any request, M:COC as a Monitor overlay is acti~
vated and will first shift a specific block (assembly dependent) of COC write directs and status table pointers
from the foreground handler to the Temp Stack of the caller. If connection is required, the appropriate send
and/or receive modules of .the COC are activated, the line status checked, and the status tables for the in-
dicated line are then set to the characteristics prescribed by the caller. Once a line is connected read /write
requests will be serviced. ’

While processing a read or write message, the line mode is set as "busy" until message complete" status is registered
in the status tables by the handler. If need be, a message may be terminated whilein progress through a "break"
call to M:COC, in which case the line mode is forced to output status and a "long-space” is generated. When this
"long-space" is recognized by the output handler, the message will be terminated in a normal fashion with the
appropriate activation of the EOM receiver and EOM sequence. In all cases, the EOM receiver is called from the
R:COC interrupt level (input or output) and should be used in the same manner as prescribed for an AlIO receiver
(see Chapter 5 of the Sigma 2/3 RBM/RT,BP Reference Manual, 90 10 37).

Half-duplex lines, which require switching receiver modules off in order to transmit, are given special attention
when prompting, initiating EOM sequences, or activating an intervening "break” (long-space). A variable time
delay (equipment dependent) is required to complete the tuming off of receiver modules and this delay is always
incurred at the user program leve! (in M:COC) and not at the handler interrupt level.

The processing flow for requests to M:COC is illustrated in Figure 76.

Translation Tables

Conversion between ANSCII and EBCDIC characters is provided by two tables containing 256 words each. Both

tables are resident in R:COC. - EBCDIC to ANSCII translation is performed on a byte-per-character basis, and the
ANSCII to EBCPIC table is built on a word-per~character basis. In the latter case, the first byte of each word is
used to flag the control characteristic of the ANSCII character. Format identification is illustrated in Figure 77.

0123 456 78910111213 15

LINS O ETgTYPESHMBEPLINEDMODE
LINS 1 FWA of User Buffer
LINS 2 Byte Count at EOM| Total Byte Count
LINS 3 Cursor Position | Current Byte Count
LINS 4 EOM Receive Address
where
E= indicates input is to be echoed.
T=1 indicates byte translate required.
CP=1 indicates parity check required.
type =0 identifies device as TTY model 33 or 35.
=1 identifies device as TTY model 37.
=2 identifies device as keyboard display (7555).
=3 identifies device as unknown (unsupporfed).
S=1 indicates previous character was escape (ESC).
H=1 indicates echo in progress.
M=1 indicates EOM sequence being echoed.
B=1 indicates "break" was received.
PE=1 indicates a parity error has been detected.
Line=0 indicates a full duplex line.
=1 indicates a simplex-send line.
=2 indicates a simplex-receive line.
=3 indicates a half-duplex line.
D=1 indicates current request requires editing.
mode =0 indicates line is logically disconnected.
=1 indicates current request is output.
=2 indicates first character is prompt output, then to become input..
=3 indicates current request is input.
=4 indicates line connected but inactive.
=5 indicates message has been completed.
=6 indicates EOM sequence must be initiated by M:COC for a half duplex line,

Figure 75. Line Status Table Format

151

152

‘ M:COC ’

Shift Data from
Handler to Temp
Stack

\

Initialize

Working Cells

Y

Separate by
Request Type

Status Check

|

page 2

Connect

i

page 2

é

page 2

Edit Write

i

page 3

> Write

i

page 3

Edit Read

J

page 4

Read

;

page 4

Break

i

B
K]
'S

Check

;

page 3

PAGE 1

Figure 76. M:COC Request Processing

PAGE 2

Status Check (Disconnect)

y

Sense Status of Send Turn Receiver Off Is
and Receive Lines and Stop Transmit Line
Installed
?

Turn on Receiver
as Applicable

} Turn Off Data Set
Return Receiver and
Transmitter

Set Data in
Status Table,
\Mode Inactive

Lg| Write Message
'TROUBLE LINE '

A

4

Return

Figure 76. M:COC Request Processing (cont.)

153

154

‘ Edit Write)

A

C:MOV

< Write ’

A

Move Data
To Status
Table

C:MOV

A

PAGE 3

(Check ’

A

Move Data
To Status
Tables

Separate by
Line Mode

Edit Out Word
of Double Null
or Blanks

Set Edit
Status in
Table

C:GET

Get First
Character and
Reset Parity Break

l

Transmit
First
Character

Return

Return
Disconnect

C4HDEOM

Initiate EOM
Sequence (Half-
Duplex)

Return=Busy

Set Byte
Count at EOM
into X Register

A

Set Mode
to Inactive

X

Set A Register
to Parity,
Break Status

Return

Figure 76. M:COC Request Processing (cont.)

< Edit Read) ‘ Read ’

Y
C:MOV f
: ' ine
Set Edit Flag > Move Data Disconnected
to Status or Message
no
Flags Complete
?
A
Set Mode to Input

Set Mode to Prompting
Out/In ?
Stop Transmit
Set Status ‘ Set Break Status
»| Mode, Edit, and Line Mode
Reset Parity to Output
and Break
C:TRANS
Transmit Prompting
Prompt ?

TURNLINE

> Sense Line Turn Receiver

Off
Transmit

LNGSPACE

Figure 76. M:COC Request Processing (cont.)

155

156

Sl |3 [N |code | EBCDIC Character
01 2 3 4 5 78 15
where
CC =1 flags a conirol character.
E=1 flags the escape key-in.
SP =1 flags a character appropriate after the escape key-in.
NL=1 flags the NEW LINE character.
CR=1 flags the carriage (error) return character.
Code is a 3-bit identifier for special keyboard display functions as indicated:
=0 ignore.
=1 cancel (CAN).
=2 backspace (BS).
=3 cursor left (EM).
=4 cursor right (HT).
=5 cursor return (CR).
=6 cursor up (BEL).
= 7' cursor down (SUB).

Figure 77. ANSCII to EBCDIC Table Entry Format

1. SYSERR ANALYSIS

Resident SYSERR Routine

The resident routine M:SYSERR is responsible for shutting the system down in an orderly fashion in the event of a
catastrophic system failure. In addition, if the SYSGEN option "ANALYSIS" is selected, the routine must preserve
all hardware context information available for later analysis. M:SYSERR is entirely resident and is completely stand-
alone; i.e., it does not use any zero-table constants or pointers, monitor tables, or monitor service routines.
The calling sequence for the SYSERR routine is as follows:

RCPYT P,A

B *V:SYSERR

DATA SYSERR Code

M:SYSERR will perform the following functions if SYSERR analysis is not selected.
1. Inhibit interrupts.
2. Issue RIO if Sigma 3 or Xerox 530.

3. Halt with SYSERR code in accumulator.

If analysis is selected, M:SYSERR will perform the fol lowing:

1. Inhibit interrupts and save PSD status.
2. Save register contents.
3. Save SYSERR code.
4. Save data switch seftings.
5. Save interrupt-system status if Sigma 3 or Xerox 530.

~ 6. TDV, HIO all devices; save device status. (Note: TDV first.)
7. Save all channel register contents.
8. Save Fault Register contents if Xerox 530.
9. Save contents of location zero; store pointer to data area in location zero.
10. Issue RIO if Sigma 3 or Xerox 530; if Sigma 2, clear all interrupt levels.
11, Call user's error receiver (if any) with error severity = 3.
12. Output " 1ISYSERR xx" message to the console (where xx is the SYSERR code).
13. Copy memory to CP area on RAD or to tape in 512-word blocks.
14, Call user's error receiver (if any) with error severity = 4,
15. Halt with SYSERR code in accumulator.

If SYSERR analysis is selected, location zero of the memory dump will be modified to point to the beginning of the
data saved by M:SYSERR. This data will be organized into six blocks, each of which has a key-word preceding it.

157

The key-word contains a key in the most significant byte position and the number of elements in the block in the
least significant byte position. The organization of the data is as fol lows (asterisked items are preset by SYSGEN):

Key =1, Count =7

*Word 1 - Software version (2-character EBCDIC)
* 2 - Computer type (same as K:CPU)
* 3 - Core size (same as K:UNAVBG)
4 - SYSERR code
5 - Original contents of location zero
6 - Current data switch settings
* 7 = Number of 512-word blocks in SYSERR dump.

Key =2, Count =7
Word 1 - L-register contents
2 - T-register contents
3 - X~register contents
4 - B-register contents
5 - E-register contents
6 - A-register contents

7 - PSD status indicators

Key =3, Count =0, if Sigma 2
Key =3, Count =4, if Sigma 3
Word 1 - Group '0' interrupts enabled
2 - Group ‘0" interrupts armed or waiting
3 - Group '0' interrupts waiting or active

* 4 - Group '0' inferrupts not implemented

Key =3, Count = 12, if Xerox 530
Word 1 - Group ‘0" interrupts enabled
2 - Group '0' interrupts armed or waiting
3 - Group '0' interrupts waiting or active
* 4 - Group '0' interrupts not implemented
5 - Group '5' interrupts enabled
6 - Group '5" interrupts armed or waiting

7 = Group '5' interrupts waiting or active

158

* 8 - Group '5' interrupts not implemented
9 - Group '6' interrupts enabled
10 - Group '6' interrupts armed or waiting
11 = Group '6' interrupts waiting or active
* 12 - Group '6' interrupts not implemented
Key =4, Count = 2n (where n = number of physical devices on the system)
Word (2n-2) + 1 - HIO status byte (0-7), device address *(8-15)
(2n-2) + 2 - TDV status byte (0-7), HIO O, C (12-13), TDV O, C (14-15)
Key = 5, Count = 3m (where m = the number of 1/O channels on the system)
*Word (3m=3) + 1 - Even channel register address
(3m-3) + 2 - Contents of even channel register
(3m-3) + 3 - Contents of odd channel register
Key = 6, Count =0, if Sigma 2 or Sigma 3
Key = 6, Count =2 if Xerox 530
Word 1 - Fault Register, st read direct
2 - Fault Register, 2nd read direct
Key = X'FF', Count =0 Last Key
If memory is saved on disk at SYSERR time, it is written in 512-word blocks regardless of the sector size. Writing
starts in the first sector of the CP area and continues until the CP area is full. Since the first word of the dump is
non-zero (it contains a pointer to the SYSERR-time context save area), it serves as a flag to indicate that a SYSERR
dump resides in the checkpoint area. The CHECKPOINT, RESTORE and SYSLOAD routines store a zero into the
first word of the checkpoint area. - In the case of CHECKPOINT, the first word written is the first word of the back-
ground TCB. This location is cleared prior to the first write operation (this word is unused for background operations).
If a disk error is detected, an error message will be output, and the computer will halt with the seek address in the
E- and A-registers. Clearing the halt will result in resfarting the save process.
If memory is saved on tape at SYSERR time, the operator will be instructed to mount a save tape and insert the de-
vice address of the tape unit in the data switches, and the computer will come to a halt. When the halt is cleared,
writing will begin on the selected tape unit. Tape errors will result in an error message to the console, the tape unit
being rewound, and the save process will be repeated. If the tape unit is not ready or the tape is write-protected

when the halt is cleared, the operator will again be instructed to mount the save tape.

In order to reduce the number of address literals required for calls to M:SYSERR, zero-table location X'6B' contains
an ADRL pointer to the SYSERR routine. This location is labeled V:SYSERR.

If a user's error receiver is provided, its address must be stored in SYSERRXR by the user. (The contents of SYSERRXR
will default to the address of an RCPY L,P instruction.) When the receiver is called, the registers will be set as
follows:

L = Return link

X = Address of context block organized as follows:

Word 0 -~ Error severity

Word 1 -- EBCDIC SYSERR code

159

160

The receiver will be called twice; just before saving the memory image, and just before halting. In the first call,
the error severity will be 3; in the second, the severity will be 4. The second call is to permit a user-written auto-
matic restart routine.

SYSGEN Considerations
The following operations are performed during SYSGEN in order to support the optional SYSERR analysis feature:
1. Determine if SYSERR unalysis is desired (ANALYSIS input parameter).
2. If analysis is not desired, select the abbreviated version of the SYSERR routine.
3. If analysis has been selected, determine whether the SYSERR dump is to go th the CP area on disk or to
tape, and selectthe appropriate extended version of the SYSERR routine. This routine will be failored to

the hardware/software configuration as follows:

a. A skeleton of the data area where the SYSERR-time context information is to be stored will be
constructed.

b. 1fthe dump is to go to disk and the CP area size was not specified, allocate CP area with enough
room to contain all of memory.

c. If the dump is to go to disk, the following information will be stored into the SYSERR disk handler:
o Disk device address.

® Seek address of the first sector of the CP area.

o The number of sectors per 512-word block of memory.

o The number of sectors per track.

® The number of tracks per cylinder.

e The number of bits in the sector field of the seek address.
e The number of bits in the track field of the seek address.

e The number of 512-word blocks to be written. (Function of memory size and CP area
size.)

4. If the dump is to go to disk and a CP area size was specified which is not large enough to contain all of
memory, output an alarm indicating the size problem.

5. Store a pointer to M:SYSERR in zero-table location V:SYSERR.

Operator-Forced SYSERR

If ANALYSIS is selected at SYSGEN time, location zero will contain the address of an operator-SYSERR routine
which allows the operator to force a SYSERR condition via the PCP. This routineis, infact, an alternate entry point
to M:SYSERR which sets a flag to indicate that an operator-forced SYSERR has occurred. In this way, all register
contents can be preserved with a minimum amount of temp space required. The SYSERR routine will test this flag
prior to fetching the SYSERR code and, if found set, will use the default SYSERR code 'OP'.

Background SYSERR-Analysis Program

The background SYSERR-analysis program, ANALYZE, is comprised of a root segment, a number of level-2 overlay
segments, and an assembly-procedure set contained in the S24RBM file. This structure was chosen to minimize the
amount of background space required to perform a SYSERR analysis.

Root Segment

The root segment includes a base table, 1/O buffers, common subroutines, an initialization routine, and control
routines. These components are described in the paragraphs below.

Base Table
The base table contains variables, pointers, and frequently used constants which are used by the several overlay
segments and the common subroutines in the root. In addition, there are temporary storage cells for exclusive use

by the overlay segments and storage cells for use in passing parameters to the overlays.

The base table is created by use of the procedure A:BASE (described later). The B register will be initialized to
point at the stack when ANALYZE is started and is not to be modified. Implicit base-table references are used.

1/O Buffers

All necessary 1/0 is performed by common subroutines (described later) to or from one of seven 1/O buffers located
in the root. All but one of these buffers has an associated base-table pointer. (To facilitate the description of buf-
fer usage, these buffers will be referred to by the label of the base~table location containing the buffer pointer,
rather than by the buffer label itself.)

The significance of six of the seven buffers is as follows:

A:BLKO — A 512-word buffer used to contain the first data block of the SYSERR file if oplabel SI is not assigned

to zero.

INBUF — A 512-word buffer used to contain the current data block being accessed (other than the first).

LINEBUF — A 65-word image buffer used for the construction of formatted output.

TYPEBUF — A 65-word image buffer used for the construction and output of error messages.

HEADER1— A 65-word image buffer used for the construction and storage of an optional header line.

HEADER2 — A 65-word image buffer used for the construction and storage of an optional second header line.
A seventh buffer is used as a "side" buffer for print operations to permit compute-1/O overlapping.

Direct usage of these buffers by overlay segments is discouraged except when absolutely necessary. Data may be
moved into these buffers by use of common subroutines and procedures described later in this chapter.

Common Subroutines

The functions of the common subroutines fall into one of four general categories: (1) data acquisition; (2) display
line construction; (3) display line and error-message output; and (4) control. Subroutine linkage is made through
the base table; all registers but the base register are considered volatile, '

Data Acquisition. To acquire the contents of a particular location of the memory image being analyzed, function
overlays need only to specify an address. Actual location of the data on disk, tape, or in memory will be handled
automatically by common subroutines in the root.

If operational label S1 is assigned to zero, requests for the contents of memory locations will result in the actual
access of the corresponding real memory locations. If SI is assigned to a disk file or to tape, the data will be
fetched from the appropriate device as follows:

o The first 512-word block of the file will be read into A:BLKO at initialization time. All subsequent
references to locations.0 through 511 will result in an access from this area.

161

e Accesses to dump locations higher than 511 result in the determination of the block number containing the
desired address (block number = address/512). If the block is currently contained in INBUF, the data will
be fetched from that buffer. If the block is not currently resident, it will be read from the appropriate
storage device.

The decision to keep block zero of the SYSERR file resident is based on the frequency of accesses to the SYSERR-
dump zero table. Failure to keep this block resident could result in large amounts of time required to perform an
analysis.

Three subroutines are available for accessing data for analysis. They are described below.

GTCTXTWD Get a specified word from the SYSERR context-save area.

Call: LINK A:GTCTXT
DATA block key
DATA displacement from block keyword.

Exit: If no error, carry will be set and value will be in the A-register.
If an error is detected (invalid key, error in context area, no context area pointer, or displacement larger
than the block size), and cell A:CXTERX is zero, the subroutine will return with carry reset. If A:CXTERX
is nonzero, the subroutine will exit to the address contained in that location. (A:CXTERX may be set with
the SETERRX procedure.)

LDWD Fetch the contents of a specified location from the SYSERR file.

Call: LINK A:LDWD

Entry: A-register contains the address.

Exit: A-register contains the contents of the specified address. A:CURADD contains the specified address.
If there is no error encountered while attempting to fetch the requested data, the subroutine will return
to (L) + 1 with carry set. If there is an error, location A:LDERRX will be tested and, if found to contain

zero, return will be made to (L) + 1 with carry reset. If A:LDERRX contains a nonzero value, the sub-
routine will exit to that point.

LONXT Fetch the contents of the next location from the SYSERR file.

Call: LINK A:LDNXT

Entry: A:CURADD contains the last address accessed via LDWD or LDNXT.

Exit: A-register contains the contents of the next consecutive location.
This routine is, in fact, a special entry to the LDWD subroutine. Instead of passing an address to the sub-
routine, the effective address is implicitly (A:CURADD) + 1. Use of this routine can significantly reduce
access time for consecutive locations in the SYSERR file.

The error returns are the same as for the LDWD subroutine.

See Figure 78 for the flow of the LDWD and LDNXT routines.

Display Line Construction. To facilitate the problem of constructing formatted-display lines, four image buffers and
a set of conversion and text-handling common subroutines are provided. The construction of all messages and display
lines is done in the image buffers; conversion and text storage subroutines will deal exclusively with them.

(wnxr)
Y

‘ LDWD ’

\

PAGE 1

A:CURADD+I A — Block =
— A. A:CURADD. A:CURADDR/512.
LDWD Save return

link.

A:CURADD
K:UNAVBG

Is
block in

core
?

yes

Fetch data
word from
appropriate
buffer.

Fetch contents
of real core
location.

—3

[

Normal return

Y RDBLK

Fetch required
data block.

Was
there an
error ?

Special error
return

EXIT *A:LDERRX,

Error refurn

Figure 78. Data Acquisition Subroutines LDWD and LDNXT

163

IsA<

A:MAXBLK
?

A— A:CURBLK
save retun

link.

oplabel Si
assigned to

A:CURBLK — X

M:REA

Read record

X from random
file assigned
to SI.

[

®

0 — A:NXTREC

Was
there an
error

Set error
flag.

PAGE 2
‘ RDBLK ’ Note: rA contains requested block number on entry to RDBLK.
! Reset error
- flag.
A:CURBLK
\
Reset carry to X = A:CURBLK
indicate error. - A:NXTREC.
yes
no page 3
Return
o =X - X
yes
M:CTR M;CTRL
Space back Space fwd
one record.’ one record.
M:CTRL
REWIND
yes yes

®

page 3 e " page 3
X+1 — X X+1 — X
yes Yes
@ no no page 3

164

Figure 78. Data Acquisition Subroutines LDWD and LDNXT (cont.)

‘][M:READ PAGE 3

Read data block

Error? yes »
Y ’
no
End-of-file? 0— A:NXTREC
A:NXTREC =
A:CURBLK + 1
. M:CTRL
’ Rewind
End-of -tape ?
Set carry to
indicate no error
\
) Report error on
Is rewind if any
Return error flag

set?

@

page 2 page 2
Figure 78. Data Acquisition Subroutines LDWD and LDNXT (cont.)

The four buffers are identified as LINEBUF, TYPEBUF, HEADER], and HEADER2. Function overlays, using common
subroutines, may construct display lines in any or all of the image buffers. In general, however, LINEBUF is used
for the construction of the current display line and HEADER1 and HEADER2 are optionally used for construction and
storage of top-of-page and/or bottom-of-page header lines. Use of TYPEBUF should be restricted to error message
construction and output. Unless otherwise indicated, these buffers will not be output automatically — they must be
explicitly output via the subroutines described under " Display~Line and Error-Message Output".

The five subroutines which perform data manipulation and conversion are described below.

BURST Expand a 16-bit word comprised of n nonzero-length fields into n consecutive locations in the temp
stack, starting at A:FLD1 and extending through A:FLDn (where 1< n < 16).

Call: LINK A:BURST

Entry: A-register contains the data word to be expanded.

X-register contains the first-word address of an associated pattern table.
Exit: Contents of the n fields stored into A:FLD1 through A:FLDn (right-justified, no sign extension).

The pattern table must contain n nonzero words (where n is the number of fields in the word), each of which contains
the corresponding field length (in bits). The sum of the field sizes must equal sixteen (16).

165

166

As an example, the contents of FCT1 contains eight fields whose lengths are (from left toright) 1, 1, 1, 5, 1, 1, 1,
and 5 bits. To burst the contents of FCT1 entry, the following pattern table must be used:

DATA ,1,4%514L14L1,5

CVDEC Converts a binary number to packed decimal.
Call: LINK A:CVDEC

Eniry: A-register contains the binary number to converted. The number must be in the range 0 < n < 9999]

o
Exit: A-register contains the number in packed decimal format. '
CVSTORE Convert a binary number to EBCDIC (decimal or hexadecimal) and store it into a specified image buffer.
Call: LINK A:CVSTOR

DATA X'8000'*a + X'4000'*b + X'2000'*c

DATA d
DATA e
DATA f
where
a=1 if number is hexadecimal.
=0 if number is decimal.
b=1 if T contains negative character count.
=0 if character count is in e.
c=1 if X contains starting column.
=0 if starting column is in f.
d= buffer indicator, as follows:
0 = LINEBUF
1 = TYPEBUF
2 = HEADER1
3 = HEADER2

e contains positive character count and is present only if b (above) = 0.
f contains starting column number and is present only if ¢ (above) = 0.
Entry: A-register contains binary number to be stored.
Exit: Number will be stored in appropriate position within specified buffer.

Remarks: Decimal numbers will have leading zeros suppressed.

DELZRO Delete leading zeros from an EBCDIC number contained in the E- and A-registers.
Call: LINK A:DELZRO
Entry: E- and A-registers contain a four-character, EBCDIC number.

Exit: E- and A-registers contain the same number with the first three leading zero characters (X'F0') converted
to blanks (X'40').

NDECCH

Call:
Entry:

Exit:

Calculate the number of characters needed to represent a given binary number in decimal,
LINK A:NDECCH
A-register contains the binary number.

A-register contains the number of decimal EBCDIC characters required.

The above subroutines are used in conjunction with the monitor service routine M:INHEX (binary integer to hexa-
decimal representation in EBCDIC) to aid in data separation and conversion to text.

The fol lowing four subroutines are used to move text strings and characters into image buffers.

- BLANK
Call:
Entry:

Exit:

MOVE

Call:

Entry:

Exit:

Blank-fi!l an image buffer.
LINK A:BLANK
X-register contains the first-word address of an image buffer (obtained from the temp stack).

The indicated buffer will be blank-filled.

Move a text string into an image buffer.

LINK A:MOVE

DATA n

where

n indicates the buffer, as follows:

0 = LINEBUF
1 = TYPEBUF
2 = HEADER1
3 = HEADER2

A-‘fegisfer contdins the first-word address of the message.

X-register contains the column number where the first character is to be stored.

Message will have been moved into the appropriate position within the designated buffer.

" The message must be in. TEXTC format.

The first column printed is in column 1. If the message contains a format control character as the first byte, it must
start in column O. :

STBYTE

Call:

Entry:

Exit:

Store a byte into an image buffer.
LINK A:STBYTE

A-register contains the column number where the character is to be printed (0 for format byte).

E-register contains the total number of bytes in the message (129 for the line printer and 85 for the teletype).

- X-register contains the first-word address of the image buffer (obtained from temp stack).

T-register contains the data byte right-justified.

Data byte will be stored in the appropriate position within the indicated buffer.

167

168

STCHAR Store EBCDIC characters contained in the E- and A-registers into designated positions within an
image buffer.

Call: LINK A:STCHAR
DATA n
where

n indicates image buffer, as follows:

0 = LINEBUF
1 = TYPEBUF
2 = HEADER1
3 = HEADER2

Entry: E- oand A-registers contain the character string right—justified.
T-register contains the negative of the number of characters to be stored (-1 through -4).
X-register contains the cofumn number where the first character is to be stored (0 for format byte).

Exit: The characters will be stored into the appropriate positions within the indicated image buffer.

It should be noted that the above subroutines require the column numbers where characters are to be printed and not
the byte position within the buffer. This is because even/odd byte count adjustmentsaremade within the subroutines.

Two special-purpose subroutines are available which format and output decimal number sequences. They are
described below.

SEQADD Adds a number to the decimal number sequence being constructed in LINEBUF.
Call: LINK A:SEQADD

Entry: A-register contains the binary number to be added. If the number is negative, the sequence will be
terminated.

Exit: The number will be added to the sequence.

The subroutine will construct the sequence in LINEBUF in decimal EBCDIC representation. When the image buffer
is full or when a negative number is input to terminate the siring, the current contents of LINEBUF will be printed
automatically. Printing of partially completed sequences is transparent to the calling program.

The subroutine will determine whether or not a number input is part of a range. If not, the number will be con-
verted to decimal EBCDIC and appended to the current contents of LINEBUF individually. If a number is part of a
range (i.e., a series of consecutive numbers}, the range upper limit will be updated. The entire range will be
added to the sequence (in the form XX-YY) when the first number is input which is not equal to the previous number

" plus one.

Note: Numbers may be added in ony order, but a number range will be constructed only if the numbers are input
in incrementally increasing order.

If the first number input to the subroutine is negative, the message "NONE" will be output in place of a sequence.

The variable A:CURCOL will be used to indicate the column (within LINEBUF) where the next number is fo be stored.
LINEBUF may not be used while a sequence is being consfructed.

SEQST Initialize the decimal number sequence for the SEQADD subroutine.
Call: LINK A:SEQST
Return: LINEBUF will be blank-filled; A:CURCOL will be preset to 4.

This subroutine must be called prior to calling SEQADD to add the first element to a sequence.

Display-Line and Error-~Message Output. To provide for the maximum rate of output, a PRINT subroutine is provided
that handles all display-line output in a manner permitting compute-print overlap. This routine is described below
along with a message-printing subroutine (for LO).

PRINT Output the contents of an image buffer to the LO device.
Call: LINK A:PRINT

Entry: A-register contains the address of the image buffer (obtained from the temp stack).

Exit: Output operation will have been initiated.

A:LINENO will show the line number of the next line to be printed.

If the printer is busy when the subroutine is entered, it will wait until the printer becomes free. The contents of the
designated. buffer will then be moved to a side buffer for output and a write will be initiated with error record re-
covery and without wait. The image buffer will, therefore, be free for use upon return.

If the attempt to initiate the 1/O is unsuccessful, an error message will be output indicating the error-return and
ANALYZE will be aborted with code '1O".

MESSAGE Output a message to the LO device.
Call: LINK A:MSG
DATA message address
DATA Substitute format byte or 0.
The message must be in TEXTC format with a format control character as the first character.
If the second argument is zero, fo\rmafti'ng will be as specified within the message. If the second argument is non-
zerg, it is assumed to contain a valid format byte which is to be substituted for the one in the message. Valid for-

mat bytes are as follows:

EBCDIC Hex Function

0 FO Double-space

1 Fl Top-of~-form

space 40 Single-space

- &0 Inhibit auto upspacing

The subroutine uses LINEBUF,

Two additional subroutines are available for outputting error-diagnostic information. They are described below.

ICERR Format and output an error message to the OC device for 1/O errors.

Call: LINK A:IOERR

Entry: A-, E-, and X-registers contain the status returned from M:READ, M:WRITE, or M:CTRL.
Exit: An error message will have been outéut to the OC device.

The image buffer TYPEBUF will be used for construction and output of the error message. It will be free for use upon
return; original contents will not be preserved. 1/0 is performed with wait.

169

TYPE Qvutput the current contents of TYPEBUF to the OC device.

Call: LINK A:TYPE

Entry: Message in TYPEBUF,

Exit: Message output to OC with wait.

1/0 will be performed with wait and error recovery. If an unrecoverable 1/O error occurs, ANALYZE will be

aborted with code ‘10",

Control Subroutines. Several of the common subroutines are used primarily for control purposes; i.e., selection of
display functions. They are as follows.

CPSTRING Compare o text string with a parameter table entry.
Call: LINK A:CSTRNG

DATA comparison text-string pointer
Entry: X-register points to word one of a parameter table entry.

Exit: Carry indicator will be set if the strings are the same and will be reset if they are different. The sub-
routine call may, therefore, be followed by a BE or BNE instruction. T

X-register contents will be preserved.

" The parameter entry must be a valid, non-null, EBCDIC entry. The comparison text string must be.in TEXTC format;

170

the string lengths must be equal.

GETPAR Get the address of the next entry in the parameter table created by the SCAN subroutine (described
following).

Call: LINK A:GETPAR
{return if no more parameters)
(normal return)
Entry: A:PARE contains the address of the entry to be processed.

Exit: A:PARE unpated to show the address of the following entry. X-register contains the address of word 1 of
the current entry.

E-register contains the number of words in the parameter excluding the key word (word 0).

A-register contains a code indicating the entry type as follows:

A=-1 null

A=0 EBCDIC

A =1 single integer

A =2 integer range

A =3 illegal (syntax error)

A:PAR incremented by one. This variable shows the parameter number currently being processed. (Used
for error messages.) ’ :

The parameter entries are organized as a key word (word 0) followed by n words containing the parameter (n > 0).
Decimal and hexadecimal values will be converted to binary, EBCDIC strings will be stored in consecutive locations

(2 bytes/word) in TEXTC format. EBCDIC strings containing an even number of characters will have a trailing blank
appended. The following examples show the significance and structure of the various entry types:

Null Entry:
0 12 15

Word 0 [o] 0]

EBCDIC Entry:

0 12 7.8 15
Word 0 0 Char. Count + 1
2
Word 1 Char. Count Char. 1
Word 2 Char, 2 Char. 3

Word (n/2) +1 | Char. n-1 Char. n |

Single Integer Entry:

1 2 15
Word 0 1 1
Word 1 Number
Integer Range Entry:
1 2 15
Word 0 2 2
Word 1 First Number
Word 2 Second Number
Illegal Entry:
0 12 15

Word 0 [3] 9}

Last Entry:
0 12 15

Word 0 [3 | X'3FFF" 1

Return will be made to the call plus one if there are no more parameters; otherwise, return will be made to the call
plus two.

SCAN Scan the IANALYZE control card and create a parameter table composed of entries whose formats were
described above.

Call: LINK A:SCAN
(return if no parameters)

{normal return)

171

172

Exit: . A:PARE contains the address of the first entry.

A:PARTBL points to a parcrﬁefer—e’nfry table of n + 1 entries (where n is the number of IANALYZE param-
eters). Each entry is of the form described above for GETPAR.

A:PAR initialized to zero. (This variable contains the number of the parameter currently being processed).

Return will be made to the call plus one if there were no parameters; otherwise, return will be made to the call plus
two. The last entry in the table will always contain a key of ~1.

SEGLD ~ Load and transfer to a display-funcﬁovn overlay.
Call: ~ LINK A:SEGLD

DATA se;.;menf-ID

(error ;etum)

(normal return)

Prior to calling the function overlay, the subroutine will set the LDWD error-transfer address (A:LDERRX) and

GTCTXTWD error-transfer address (A:CXTERX) to exit back to the root.

" Initialization Routine

Thev initialization routine is éntered when ANALYZE is first entered. It willl perform the following funéffons:.
° Iniﬁa.lize base reéi;ter.
. Verify fh;:f the LO oplabel is assigned and set variables dependent upon the output-device type.
e Initialize run-time variables in the base table.
@ Read first data block of SYSERR file into A:BLKO if oplabel SI is not assigned to zero.

The initialization routine is flowcharted in Figure 79.

Control Routines

The central control routine first determines whether there are any parameters on the IANALYZE control card. If
not, all display functions are individually called in a fixed order. If there are parameters, the appropriate group-
control routine is called to set up the parameters and call the individual displays within the group. When the group
is completed, ANALYZE will exit to JCP through M:TERM.

The control routines are flowcharted in Figure 80.

Overlay Segments

The overlay segments contain the code which actually produces the various displays — one display per segment. Re-
gardless of the function of a segment, several rules must be followed in its construction. They are:

e A pseudo base table must be assembled into the beginning of each segment. This may be accomplished
with the procedure A:BASE, having an argument greater than zero.

e Overlays should not do their own I/O — the subroutines provided in the root should be used.

e Upon completion, overlays must exit *A:OVEXIT. This will effect a return to the segment-load subroutine
(SEGLD) which will, in turn, return to the appropriate control routine.

PAGE 1

RDBLK
INIT Read crash file

block #0 into
INBUF,
’ L4 Y
Set up 0- > A:KPFLAG
stack poinfer in 129- > A:MAXCOL
B-register,
Error on
Read?
M:OPFILE
Is 'LO’ 2
Get 'LO' assigned fo pag®
assignment. K/P?
Move data from
l yes INBUF to A:BLKO.
Is 'LO!
assigned ? -1 > A:KPFLAG l
) 85- > A:MAXCOL.
0->1
no -
M:WRITE L5 ’ M:OPFILE -
L6
Set OPLABEL to Output 'LO" Get 'ST
'LO'. not assigned assignment. 1+1->1
MSG
M:WRITE)
Output 'no Was RDBLK
OPLABEL' OPLABEL 'ST' Read crash file
MSG, OPLABEL) found? block #1.

)

Set abort code to Set OPLABEL to
IAEI. 'SI'. Is 'SI' yes
assigned? ‘
aL2 [

abort with

specified
abort code. 0- > A:SIFLAG. I-1->A:MAXBLK.
page 2 page 2

Figure 79. Initialization Routine

173

174

Q

L8 M:WRITE

Output ‘'data
block #0

error message.

|

Set abort
code to 'O,

L7

0 — A:CONTXT

LDWD

C(0) - A:CONTXT

)
GICTXTWD

Get CPU type
from M:SYSERR

context area.

CPU type
— A:CPU.

Context

area error
?

yes

M:WRITE

Ovutput 'con-
text error'
message.

LDWD

K:CPU — A:.CPU

Load error
?

yes

M:WRITE

L |

Output
'Sigma 3 as-
sumed message.

A:SIG3 — A:CPU

115 y

Control

PAGE 2

Figure 79. Initialization Routine (cont.)

‘ ‘ Control ’

\

SCAN

Scan IANALYZE
control card,
build parameter
table.

Any
parameters

on card
?

Parameter=

'status’
?

yes

no

Parameter=

'tables’
?

yes

PAGE 1

Status

page 3

Tables

page 3

page 2 o
GETPAR
Parameter= Files
Get first parameter,| 'fi Ioes' yes
) page 4
no
Is
parameter Parameter=
E BCEIC Ves 'Monitor' Yes Monitor
! ?
' page 5
M:WRITE
Output
'parameter Parameter=
error' message, 'memory’ yes Memory
parameter no. ?
page 6
no v
Parameter = Tasks
no ‘tasks' yes
?
page 5
Figure 80. Control Routines

175

176

PAGE 2

All
\ \ Y
SEGLD SEGLD SEGLD SEGLD
Call SEG #1 Call SEG #6 Call SEG #11 Call SEG #14
(general (Non-RAD (R:RBM, R:SYFG,
information). -10CTS) R:JCP). (RBM Symbols).
\] |]
SEGLD SEGLD SEGLD
G
Call SEG #2 Call SEG #7 (c&l;/‘sgoeim;i]~ APARI
thardware context) (RAD IOCTS) and variables).
\ l Y
SEGLD SEGLD SEGLD
0 — A:PARI
Call SEG #3 Call SEG #8 ' ' — A:PAR2 Call SEG #14
(Channel status (RAD 10CS) 0 — A:PAR3 (PUBLIB symbols).
tables).
\ \ Y
SEGLD SEGLD Y
A:MAXBLK&512
Call SEG #4 Call SEG #9 + 511 —~ End
(device type A:PAR4
(FCT summary). tables).
\] |
SEGLD (3) SEGLD
1 — A:PAR1 Call SEG #10, Call SEG #13
P:FCT — A:PAR2. SEG #15, (core dump).
SEG #16.
[[|
SEGLD SEGLD (2)
Call SEG #5 Call SEG #17 0 — A:PARI
(file control and SEG #18.
tables). :

SEG #10 = Oplabel tables; #15 = Master dictionary; #16 = RBM overlay table; #17 = Interrupt PSDs;

#18 = Active task TCBs.

Figure 80. Control Routines {cont.)

‘ Status ’

GETPAR

Get next parameter

Any more
parameters ?

SEGLD
Call SEG #1

(general
information)

SSI1
assigned

to zero yes

SEGLD

Call SEG #2
(hardware context)

-

SEGLD 2)

Call SEG #4
and SEG #11

End

SEG #4 = FCT summary; #11 = R:RBM, R:JCP, R:SYFG;
#9 = Device type tables, #15 = Master dictionary;

#16 = RBM overlay table.

PAGE 3

‘ Tables ’

|

GETPAR

Get next parameter

Any more
parameters ?

page |

SEGLD

Call SEG #10
(OPLABEL tables)

SEGLD

Call SEG #3
(channel status
tables)

Y

SEGLD

Call SEG #8
(RAD 10CS)

SEGLD (3)

Call SEG #9,
SEG #15,
SEG #16

End

Figure 80. Control Routines (cont.)

177

178

‘ Files)

)

GETPAR

Get next parameter

Any more
parameters?

1->A:PAR1

P:FCT ->A:PAR2

Is
parameter
integer?

Is PAR(1)
valid?

Is
parameter
range ?

Is PAR(1)
=0

yes
M:WRITE

Is PAR(2)
127 2

| yes

M:WRITE

PAGE 4

Is PAR(2)
>P:FCT
?

Output
warning
message

SEGLD

Call SEG #5 (file

control tables)

Output 'second
number too
large' message

PAR(1) ->A:PARI
PAR(1) - >A:PAR2

Output 'first
number too
small' message

128 ->PAR(2)

1->PAR(1)

Is PAR(T)
> PAR(2)?

page 1

PAR(1) - >A:PAR1
PAR(2) - >A:PAR2

SEGLD

Call SEG #6
(non-RAD IOCTS)

SEGLD

Call SEG #7
(RAD IOCTS)

End

L

Figure 80. Control Routines (cont.)

‘ Monitor ’

[

GETPAR

Get next parameter

Any more
parameters?

0->A:PARI]

yes

page 1

PAGE 5

SEGLD

Call SEG #14
(RBM symbols)

1->A:PARI

SEGLD

Call SEG #14
{PUBLIB symbols)

‘ Tasks ,

SEGLD (2)

Call SEG 717
(Interrupt PSDs)
and SEG #18
(Active task TCBs)

Y
End

SEGLD

Call SEG #12 (RBM
pointers and
variables)

End

Figure 80. Control Routines (cont.)

179

180

‘ Memory ’

0->A:PARI]
' '->A:PAR2
0->A:PAR3

[

A:MAXBLK*512
+511 ->A:PAR4

C—

GETPAR

Get next parameter

Any more
parameters?

Is parameter

EBCDIC?

Is parameter
integer?

PAR(1)/512
A:MAXBLK?2

yes

PAGE 6

Test

PAR(1) - >A:PAR3
PAR(T) - >A:PAR4

€D -t

SEGLD

Call SEG #13 (core
dump)

End

Is parameter
range ?

PAR(1)/51
>A:MAXBLK?

page 1

Output 'second
number too
large' message

]

A:MAXBLK*512
+ 511 = >PAR(2)

parameter

page 7

‘—,.<DS :) page 7
MON @ page 7

| PLIB page 7
RFG

@) e
NRFG

6 a7
BKG

80 e

PAR(1) - >A:PAR3
PAR(2) - >A:PAR4

]

Figure 80. Control Routines (cont.)

@D A2 ®
IS MON Y BKG
0->A:PAR3 K:BACKP ->A:PAR3
-1->A:PARI K:PLFWA-1 K:UNAVBG-1
->A:PAR4 ->A:PAR4
page 6
PLIB @?
Is
K:PLFWA - >A.PAR3 Am /512
->A:PAR4 '
DS RFG
AL K:RFFWA - >A:PAR3) A:PAR4/512
0'->A:PAR2 K:NFFWA-1 > A:MAXBLK?
->A:PAR4
page é page 6
NRFG
K:NFFWA ->A:PAR]
K:BACKP-1
->A:PAR4

L

PAGE 7

M:WRITE

Output 'area
not saved'
message

I
End

M:WRITE

Output 'area
partially saved'
message

A:MAXBLK*512
+511-> A:PAR4

page 6

Figure 80. Control Routines (cont.)

181

182

e Overlays may not call other overlays.

e Overlays may use the temp locations A:TEMP1 through A:TEMP20 for their temporary storage. Base table
locations A:PAR1 through A:PARIO are used to pass control information and boundary conditions to over-
lays. These locations may not be changed by the overlays.

e Upon entry to the overlay segments, the base register will point to the base table.

e Upon entry to the overlay segments, the LDWD, LDNXT, and GTCTXTWD error exits contain a pointer
back to the root.

o A transfer address must exist on the END statement for the overlay.

Procedures

The ANALYZE procedure set will be assembled into the S24RBM file if the label FANALYZE is equated with YES
in the source file. Some of these procedures utilize one or more common subroutines to accomplish their function,
others do not. It should be assumed that all procedures that generate executable code will utilize all registers with
the exception of the base register (B). The exceptions are ENTRY (A-register altered), LITERALS (no registers
altered), and SETERRX (A-register altered). The procedures and their descriptions are as follows.

BLANK Blank~fill an image buffer.

Call: [label] BLANK buffer

where buffer = LINEBUF, TYPEBUF, HEADERT1, or HEADER2

BURST Expand the data word in the accumulator into n words in the temp stack starting at A:FLD1.
Call: [label] BURST pattern
where pattern is the first-word address of the burst pattern (see the description of the BURST subroutine
under " Common Subroutines”, above).
CPSTRING Compares a text string (in TEXTC format) with the parameter eniry pointed to by the X-register.
Call: [label] CPSTRING address

where address is the address of a comparison text string if no argument field asterisk (AFA). If an AFA is
present, address contains a poinfer to the text string.

The X-register must point to word 1 of a valid non-null, EBCDIC entry and will not be altered. The pro-
cedure call may be followed by a BE or BNE instruction.
CVSTORE Convert a binary word to printable hexadecimal or decimal and store it into an image buffer.

Call: [label] CVSTORE, cf, [;cf,] af,af ,afy

where
cf2 indicates the output format: DEC or HEX.
cf optionally specifies the address of binary data to be processed. If not present, the current
A-register contents will be used.
af equals the number of characters if no argument field asterisk (AFA). If an AFA is present, of] is

the address of a location containing the number of characters.

of2 indicates the target buffer (LINEBUF, TYPEBUF, HEADER1, or HEADER2).

af specifies the column number where the first character is to be stored if there is no AFA. If there
is an AFA, cF3 specifies the address of a location containing the starting column number.

Exdmple: CVSTORE,DEC,LOC 3, LINEBUF, *ADDR

Convert the binary number contained in LOC to decimal EBCDIC, and store the three least-significant
decimal characters into LINEBUF, starting at the column number contained in ADDR.

DISPLAY Control PROC expansion listing.
Call: DISPLAY value

If value is nonzero, the listing of the PROC expansion will be controlled by the LIST directive currently
in effect. If value is zero, the expansion will not be listed and the location counter will be displayed.

ENTRY Mark the entry to a subroutine and optionally save one or more registers.

Call: [label] ENTRY [loc, rLr, ...rn]]

where
loc is the address where the contents of the first register are to be stored.
r is the register number of the first register to be saved.
r. are the second and subsequent registers to be saved.

Registers will be stored in consecutive locations (beginning at loc) in the order indicated in the call. If
the A-register is to be saved, it must be the first register specified, since storage of other registers requires
use of the accumulator.

GET#CHAR Find the number of characters necessary to represent a binary number in decimal.

Call: [label] GET#CHAR[,cfz] [cf]]

where
cf, is the optional address of the location containing the binary number. If not specified, the current
accumulator contents will be used. -
aof is the optional address of the location where the character count is to be stored. If not supplied,
the count will be returned in the accumulator.
GETPAR Get the pointer to the next parameter in the parameter list.

Call: {label] GETPAR

Return will be to the call plus one if there are no more parameters; otherwise, return will be to the call plus two.
Upon return, registers will be set as described for the GETPAR subroutine (described under "Common Subroutines").

GTCTXTWD Get the contents of a specified word within the M:SYSERR context area.

Call: [label] GTCTXTWD af ,af,

where

af is the key of the desired context block if no AFA. 1If an AFA is specified, af] is the address of the
location containing the key.

183

184

of, is the displacement of the desired word from the top of the eniry if no AFA. If AFA is specified,

af2 is the address of the location containing the displacement.

10ERR Qutput 1/O error status to the OC device (with WAIT).

Call: [label] IOERROR

LITERALS Generate a literal pool with a branch around it.

Call: [label] LITERALS

LOAD Load the contents of a specified location (from the SYSERR file) into the accumulator.
Call: [label] LOAD [[*laddress(, index]]

Computation of the effective address is the same as for a LDA instruction with one exception: "index" is the foca-
tion containing the index value.

If no address is specified, the current contents of the accumulator will be used as the effective address.
At return, A:CURADD will contain the effective address of the LOAD.
Examples: LOAD K:SEGIN
Fetch the contents of K:SEGIN from the SYSERR context.
LDA =5
STA INDEX
LOAD *P.FCT5, INDEX

Fetch the contents of the fifth entry in the table whose pointer is contained in P:FCT5.

LOADNEXT Load the contents of the next consecutive location from the SYSERR dump into the accumulator.
Call: [label}] LOADNEXT

The effective address will be contained in A:CURADD upon return.

LOADSEG Load and fransfer to a display segment.
Call: [label] LOADSEG id

where id is the number of the desired segment.

MESSAGE Output a message to the LO device using LINEBUF.
Call: [label] MESSAGE[,cfz] address
where

cf is the optional address of a format control byte to be substituted (TOF, SS, DS, NS are the stan-
dard format bytes for Top=of-Form, Single=Space, Double-Space, and No-Space).

address is the address of a text string in TEXTC format. The first byte of the message is assumed to be
the format byte. - ‘

MOVE Move a TEXTC message into a designated image buffer.
Call: [label] MOVE [af]],afz[,ufS]
where

af is a TEXTC message address if there is no argument field asterisk (AFA). If an AFA is present, af]
is the address of a location containing the message address.

af2 is the image buffer (LINEBUF, TYPEBUF, HEADERI, or HEADER2).

af is the starting column number if there is no AFA. If an AFA is present, ufs specifies the location
containing the starting column number.

If of. is omitted, the accumulator must contain the message address and c:f3 must be present.

i

If of,, is omitted, the buffer will be first blank-filled and the message will start at column zero (format byte column).

If af3 is present, the buffer will not be initially blank-filled.

The message must be in TEXTC format,

PRINT Output the contents of an image buffer through oplabei LO.
Call: [label] PRINT [buffer]
where buffer is the image buffer to be printed (LINEBUF, HEADER1, or HEADER2). If not specified,
LINEBUF will be printed.
SEQADD Add a number to the decimal number sequence being constructed in, and output from, LINEBUF.
Call: [label] SEQADD [address]
where address (if specified) is the location containing the number to be added. If address is not specified,
the current A-register will be used.
SEQEND Terminate the decimal number sequence constructed by SEQADD.

Call: [label] SEQEND

SEQSTART Initialize a decimal number sequence.
Call: [label] SEQSTART
This PROC must be issued prior to building a decimal sequence with SEQADD. The sequence must be terminated

with SEQEND.

SETERRX Define an error transfer address from the LDWD subroutine.

LOAD
Call: [label] SETERRX {LOADNEXT { [,address]
GTCTXTWD

where address is the address to which the indicated subroutine is to transfer if it encounters an error. If an
AFA is present, address specifies the location containing the transfer address.

If "address" is omitted, the transfer address will be cleared. A subsequent error will cause a return to the subroutine
call plus one with the carry indicator reset.

185

186

SKIPLINE

Call:

Output a blank line to the LO device.

[label] SKIPLINE

This PROC uses LINEBUF.

Store the byte right-justified in the accumulator into the designated buffer.

STBYTE
Call: [label] STBYTE of , af,,
where
af} is the destination buffer (LINEBUF, TYPEBUF, HEADER1, or HEADER2).
of is the column number if no AFA. If an AFA is present, ufz specifies the location containing the
column number.
TYPE Output the current contents of TYPEBUF through oplabel OC (with WAIT).

Call: [label} TYPE

8. ERROR LOGGING AND DEVICE ISOLATION

Error Logging

When error logging is specified at SYSGEN time, the default M:DOW linkage code — simply a callto the diagnostic-
output=writer overlay (Aé) —is replaced by an alternate module (DEF = M:DOWE), and an additional overlay (06)is
included in the monitor. Figure 81 shows the flow of the resident M:DOW code when error logging is specified.
Figure 82 shows the flow of the associated non-resident code (overlay 06), which essentially performs the 1/O be-
tween the resident ("circular") buffer and the error=log file when required.

Also at SYSGEN time, the error-log file is automatically allocated in the SD area with the following attributes:
Name: ERRFILE

Logical record size: 30 if K:BLOCK = 180.
32 if K:BLOCK = 2" (where n is any positive integer).

File size: 16 blocks if K:BLOCK = 180.
6 blocks if K:BLOCK = 512,

(100 records assuming default resident buffer size.)

Error Log Formats

Figures 83 through 94 show the detailed format of Xerox 530 and Sigma 2/3 RBM error=log entries. The following
generalities relating to the formats should be noted:

e Relative time is expressed as milliseconds since midnight and is included only if CLOCK 1 is dedicated to
RBM at SYSGEN time. Otherwise, relative fime will always be that last entered by the operator.

e All system error-log entries are fixed length. The byte length may be either 30 or 32 but only the first 30
bytes are meaningful. Unused words always contain zeros.

e The current release of RBM error logging defines the following entry codes:

Code Entry Type

00 Null entry (byte 0 =0).

18 System startup ("boot").

20 Power on.

23 Date and time ("time stamp").

27 Operator message.

91 SIO rejection.

92 Device timeout (only if CLOCK 1 dedicated).

93 Spurious 1/O interrupt.

95 Device error: any condition where the UE flag is set but some flag other than IL is

also set. Software and hardware write-profect violationswillnotbe logged, however.

9E Lost entries.

Al Configuration.

A2 System identification.
B1 Machine fault interrupt.

187

188

USER

LDX =ARGLST MeDON
RCPYI L L — — — ((MOT AVAILABLE
B8 M:DOMH TO BACKCROUND
ARGLST
WORD O/CODE
NORD 1 CRLL OVERLAY
BUFFER ADD. |- — — — | “R§° FOR
BYTE COUNT, DIAGNOSTIC
FUNCTION,
RE TURN
(RCPY L,P)
RESERVE AN TRIGGER RGN,
ENTRY. OVERLAY 06
(THO 10 WTPUT
INSTRUCTIONS) BUFFER

¥

INHIBIT

INTERRUPTS
RHILE MAKING

ENTRY.

L

Figure 81. Resident Error Log Code

i RBM)
OVERLAY "06°

F——"'—‘W
" CLEAR OVERLAY DUTPUT
FLAG IN CURRENT
* RiRBMa BLOCK.

ADD TIME, DATE
TC

SET ENTRY
CONPLETE.

|
¥

SUSPEND
LOGGING.

!

COMPLETE RESTORE
PRE¥10US LOGGING.
BLOCK.

I——J

Figure 82. Nonresident Error Log Code (Overlay '06')

189

190

System Startup, Code = 18 (Recorded at boot time.)

10

11

12

13

14

15

X'i8 Count = 6
0
Relative time
Relative time
Year — 1900
Julion day
78 15

vi

Figure 83. System=Startup Entry

Power On, Code =20 (Recorded at power—on time.)

11

12

14

15

X'20! 4

K:TCB @ Power failure

Relative time

Time of Power Off

Relative time

vii

Figure 84. Power=-On Entry

191

192

Time and Date (Time Stamp), Code =23 (Recorded at starfup, at half-day, and whenever a D or T key-in is

entered.)

1 X'23! Count = 6

3 Reldtive time

4 Relative time

5 Year — 1900 Binary

6 : Julian day Binary
iii

10

11

12

vi

13

14

vii

15

0 7'8 15

Figure 85. Time-and-Date Entry

Operator Message, Code = 27

10

1

12

13

14

15

X'27 Count =15

K:TCB

-

Relative time

Relative time

s | EBCDIC message,

20 byte
maximum — unused
words will contain

blanks.

vi

vii]

0 78 15

Note: An L key-in will allow the operator to enter an 18-byte message into the Error Log. Excess bytes
will be truncated. Operator messages may also be recorded by user programs via M:DOW.

i

Figure 86. Operator-Message Entry

193

194

SIO Rejection, Code = 91

10

11

12

13

14

15

S10 DSB /O Address

\\ oy comt \\\\\\\

Error Count

I/O count

I/O count

vi

o 1273 677'8 9N10 11112 13"14' 15

vii

DTTF

FCT3+SIO DSB

FCT4

FCT Index

FCT7

FCT2

Figure 87. SIO-Rejection Entry

Device Timeout, Code = 92

10

1

12

13

14

15

X'92! Count = 14
Mode! number
Relative time
Relative time
HIO DSB I/O address
7
oS8 c 7 HIO | TIO | TDV
oC ocC o]@
/!
State
(disk) Order DFN
TIO DSB TDV DSB

Current retry
count

Error count

I/O count
I/O count
PRAD
E g I Byte count residve
R 67787910 1112713114 115

DTTF

FCT3

FCT4

FCT Index

FCT7

FCT2

vi

(FCT6)+5

FCT5

vii

Figure 88. Device-Timeout Entry

195

Spurious 1I/O Interiupt, Code = 93

Rt T —

Recorded by the 1/O interrupt task whenever an AIO interrupt is received from a device which RBM believes
t inactiv i

Figure 89. Spurious-1/O-Interrupt Entry

196

/O Error, Code = 95

10

1

12

13

14

15

X'95' Count = 14
Model number
Relative time
Relative time
AIO DSB 1/O address
oS8 c % AIO TIO DV
oC OoC oC
N
State
(disk) Order DFN
TIO DSB TDV DSB

NI\

Current retry
count

Error count

I/O count
1/O count
PRAD
D .
E C I Byte count residue
o "172"3 67 8 9'10'11'12°13'14" 15

DTTF

FCT3

FCT4

FCT Index

FCT7

FCT2

vi

(FCT6) + 5

FCT5

vii

Figure 90. 1/O-Ervor Entry

197

198

Lost Entries, Code = 9E

1 X'QE* Count = 8
2 Count of lost entries
i
3
Relative time of
last lost entry
4
i
5
Relative time of
first lost entry
6
it
7 Last entry type lost
8 First entry type lost
iv
9
10
v
11
12
vi
13
14
vii
15
0 78 15

Recorded when buffering constraints make error-log recording temporarily impossible.

Figure 91. Lost-Entries Entry

Configuration, Code = Al

XIAT

Count =

2 &\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Relative time

Relative time

* AN\

I/O address

AN

DTT

X

Model number

10

12

13

15

0

78

-

vii

Note: If CLOCK1 is dedicated for accounting at SYSGEN time, one configuration record with model

number = 8111 will be added. (DTT, and I/O address = 0 for 8111).

Recorded as part of the ERRFILE initialization sequence by the 'PURGE, EL,R command.

DTTx and Model Number =0 for devices declared for M:IOEX usage only.

Figure 92. Configuration Entry

199

System Identification, Code = A2

1 X'A2! Count = 6

Relative time resolution

2- Number of 8K-word blocks =1 (2 ms)

3 Relative time

4 Relative time

5 K:VRSION

6 K:CPU

10

11

12

13

14

vii

15

Recorded as part of the ERRFILE initialization sequence by the IPURGE, EL,R command.

Figure 93. System-Identification Eniry

Machine Fault, Code = B1

10

12

13

14

15

XB1 Count =7

K:TCB

Relative time

Relative time

PSD1

PSD2

ase
1

Fault register

0 78 15

For Sigma 2/3, fault register will be 8102 for memory parity error.

For Sigma 3, fault register will be 2020 for any IOP timeout.

For Sigma 3, fault register will be 2010 for watchdog timeout (incorrect DIO address).

For Sigma 3, fault register will be 2030 for watchdog and IOP timeout.

vii

Figure 94. Machine=Fault Entry

201

Glossary for Error-Log Formats

A glossary of terms pertinent to the error~log entry descriptions follows.

AIO DSB an 8-bit valve representing the device status byte as returned by the hardware in response to an AIO
instruction. Device specific, see the appropriate device reference manual.

AIO Oand C a 2-bit value representing the overflow and carry (in that order) as retumed by the hardware in
response to an AlO instruction. Device specific, see the appropriate device reference manual.

byte count residue a 14-bit value representing the number of bytes not transferred in the 1/O operation. This
value is established by the 1/O processor and is available in the odd channel.

C a 1-bit value which indicates whether bits 5-15 of the even I/O channel register were all zeros at time of
AIO (C = 0 if yes; C = 1 if bits 8-15 were non-zero).

code an 8-bit value in the first byte of the error log message indicating message type. A value of zero (0) indi-
cates a null entry.

count an 8-bit value representing the number of useful 16~bit words contained in the error-log message. In-
cludes the first word in the count.

current retry count a 4-bit value representing the retry atfempt at which either the operation was successful or a
value equal to maximum retry count when all allowable retries have been exhausted. Thus, the range of cur-
rent retry count is 1 through maximum retry count. When current retry count exceeds the maximum retry count,
an unrecoverable device error has occurred.

DC a 1-bit valve indicating whether data chaining (1 = yes) was specified for the I/O operation. This is ob-
tained by the I/O interrupt task from bit 1 of the odd channel register.

DFN an 8-bit value representing the device-file number which is used as a file control table index. The value
may be utilized in many cases to determine the task involved in a device-error condition. Ambiguity results
when there is multi-task usage of the same DFN.

DTTy an 8-bit value representing the device type table index. There is one entry in the table for each unique
physical device type in the configuration.

E a 1-bit value indicating a memory fault or data parity error during an 1/O operation. This is obtained by the
I/O interrupt task from bit 0 of the odd channel register.

HIO DSB an 8-bit value representing the device status bytes as retumed by the hardware in response to an HIO
instruction. Device specific, see the appropriate device reference manual.

HIO O and C a 2-bit value representing the overflow and carry (in that order) as returned by the hardware in re-
sponse to an HIO instruction. Device specific, see the appropriate device reference manual.

I a 1-bit value which indicates whether the IOP was requested to interrupt (1 =yes) at the completion of the 1/O.
This is obtained by the 1/O interrupt task from bit 2 of the odd channel register.

1/O address an 8-bit value representing the physical /O address. (E.g., X'92' represents multiunit device 2 on
device-controller 1 on 1/O channel 1; X'C" if EIOP or Xerox 530 IOP-2.)

/O count a 32-bit value which records channel activity. (For F0O, the 32-bit value obtained from the channel-
activity counts.)

Julian day a 16~bit binary value representing the Julian day of year. (E.g., March 1, 1976 would be repre-
sented as X'3D".)

K:TCB a 16-bit value indicating the address of the Task Control Block associated with the task possibly
affected by the fault condition.

K:CPU a 16-bit value which indicates CPU hardware options, as follows:

Bit O set indicates normalized-shift present.

Bit 1set indicates extended-arithmetic present.

Bit 2 set indicates MUL/DIV hardware present.

Bit 3 set indicates floating-point hardware present.
Bit 4 set indicates field~addressing hardware present.
Bits 5-10 are unused.

Bits 11-15= 00010 (2) if Sigma 2.
= 00011 (3) if Sigma 3.
= 11110 (30) if 530.

K:VRSION a 2-byte EBCDIC value, assigned at SYSGEN time, that identifies the system version.

maximum retry count a 4-bit value representing the maximum retry count after which a device error is retumed
to the requester. When current retry count exceeded the maximum retry count, an unrecoverable device error
has occurred.

model number a 16-bit number which uniquely identifies peripheral devices.

order a 5-bit value representing the actual device order which resulted in the device error. Device specific, see
the appropriate device reference manual.

PRAD a 16-bit value representing the absolute sector number at which the latest disk transfer began. The range
is 0 through n-1 where n represents the number of physical sectors on the device. PRAD is meaningless for other
than RAD or disk-pack operations.

relative time a 32-bit value representing milliseconds since midnight. Resolution is 2ms.

SIO DSB an 8-bit value representing the device status byte as returned by the hardware in response fo an SIO
instruction. Device specific, see the appropriate device reference manual.

SIOO and C a 2-bit value representing the overflow and carry (in that order) as returned by the hardware in re-
sponse to an SIO instruction. Device specific, see the appropriate device reference manual.

STATE a 3-bit value for current disk state, as follows:

0 = seek to read flawed header.

2 =read flawed header.

4 = seek for requested operation.

5 =restore.

6 = perform requested operation; ‘order' specifies read or write.
7 = header read following restore.

TDV DSB an 8-bit value representing the device status byte as returned by the hardware in response to a TDV
instruction.

TDV O and C a 2-bit value representing the overflow and carry (in that order) as returned by the hardware in re-
sponse to a TDV instruction. Device specific, see the appropriate device reference manual.

TIO DSB an 8-bit value representing the device status byte as returned by the hardware in response to a TIO in-
struction. Device specific, see the appropriate device reference manual.

TIO O and C a 2-bit value representing the overflow and carry (in that order) as returned by the hardware in re-
sponse o a TIO instruction. Device specific, see the appropriate device reference manual.

year a 16-bit binary value representing current year minus 1900, e.g., 1973 expressed as X'49".

203

204

Device Isolation
Device Key-in Implementation

Three key—-ins are provided for device isolation. They are: DU (Device Unavailable), DA (Device 'Avuilable), and
DS (Device Substitution).

The DU key-in is used to make nonrotating memory devices unavailable for all but special M:IOEX, M:CTRL,
M:READ, and M:WRITE operations. When this key-in is input, KEYIN will obtain the 2-digit hexadecimal device
address included as a parameter of the key=in. First, a check will be made to determine if the input address matches
the address of the operator's console (contained in FCT3(1)). If there is a comparison, KEYIN will output the mes-
sage !!KEY ERR and KEYIN will be reentered. If there is no address comparison, all non-disk File Control Tables
will be tested for device address comparison with the input address. If a match is found, bit 7 of FCT2(DFN) will
be set to a one to indicate that the DFN is unavailable and the search will continue. If a DFN is marked down, a
flag will be set. When the last DFN has been checked, this flag will be tested and, if found reset, a I !KEY ERR
message will be output and KEYIN will be reentered. If the flag was found to be set, KEYIN will exit.

The DA key-in is used to make a previously-unavailable device available for normal usage again. The same actions
will be taken as for the DU key-in described above except that the tests for operator console will be bypassed and
the device-unavailiaility bits will be reset. A IIKEY ERR message will only be output if there is no address
comparison.

Key errors will be generated for both DA and DU key-ins if no address is specified, if the argument contains other
than two characters, or if a nonhexadecimal value is input.

The DS key-in is used to substitute one device address for another in one or more DFNs. KEYIN first checks for the
presence of valid hexadecimal numbers in argument fields one and two of the key-in (old and new device addresses
respectively), converts the fields to binary, and stores them into the stack. If a third argument is present, it also
will be converted to binary, checked for validity, and stored in the stack; if not present, a zero will be stored. If
a syntax error is detected, or the third argument contains a value higher than the number of DFNs or references a
disk DFN, a key error will be generated. If the third argument is present, that DFN will be checked to determine
if the address contained in FCT3 matches the address contained in argument field one of the key~in. If there is no
match, a key error will be generated; if the addresses do compare, the address contained in the second argument
field will be stored in FCT3(DFN) and KEYIN will exit. If there is no third argument in the key-in, all non-disk
DFNs will be checked for an address comparison with argument field one. If found, the address contained in the
second argument field will be stored into FCT3, the message "CHANGED, DFN xx" will be output to the operator's
console, and the search will continue. If no address comparison is found, a key error will be generated. If the file
is found active, however, the message "UNCHANGED, DFN xx" will be output and no action will be taken. This
is necessary to prevent deadlock conditions and the redefinition of device addresses during intermediate I/O oper-
ations. Prior to changing the addresses in the FCT3 entries, a check will be made to determine if the address is
known to the system. If it is a known disk address, a key error will be generated. If the address is known, a check
for device=type comparison will be made. If this test fails, a key error will be indicated. The unavailability bit
will be set according to that of another file referencing the same device, if the address is found, or will be uncon-
ditionally reset if no DFNs reference the new device address.

The ID of the nonoptional overlay that processes the DA, DS, and DU key-ins is '76'. KEYIN, part 1 (overlay ID07)
recognizes these three key-ins and calls overlay ID76 to handle the processing.

Tests for “Down’ Devices

Device~Unavailable status is maintained in the File Control Table for non-disk devices. Bit 7 of FCT2 is used fo in-
dicate the availability of a non-disk device associated with a DFN. If this bit is set, the device will be unavailable
for normal M:READ, M:WRITE, M:CTRL and M:IOEX operations. If bit 7 is reset, access will be permitted. These
service routines will test this bit prior to attempting 1/O operations in conjunction with bit 7 of word 0 of the user's
argument list. If argument list (0) bit 7 is set, device access will be permitted only if the device is unavailable.

If the device is unavailable and argument list (0) bit 7 is reset, or if bit 7 is set and the device is available, device-
unavailable status will be returned.

Special Receiver Group

Several special purpose receivers allow user access to additional RBM services. These are provided for the use of
Xerox application programs and are not intended for general use. The documentation is included here for complete-
ness and should RBM users wish to take advantage of these facilities, they must be aware that these services are sub-
ject to change as future requirements dictate.

The following receivers have been defined:

Name Absolute Location
Global AIO Receiver GAIORXR x'1B8'
Dismissal Receiver DRXR x'189"
M:TERM Receiver TERMRXR x"'1BA'
Q:ROC Receiver QRXR x'1BB'
Keyin Receiver KEYRXR x'1BD"
M:ABORT Receiver ABORTRXR x'1AF'
JOB/FIN Receiver JOBRXR x'1BO’

All receivers connect by first saving the current contents of the receiver location at their entry address -1 and then
storing their entry address into the receiver location.

The delinking process requires a search of the receiver chain for the position within the chain of the delinking task
and a substitution of the delinking's task exit address for that position within the chain.

. It should be noted that interrupts should be inhibited whenever the chain is manipulated. The following code might
be utilized to connect and to delink from the chain.

To connect:

INHIBIT R:PSWI

LDA xxxRXR

STA MYENTRY-1
LDA =MYENTRY
STA xxxRXR
RESTORE R:PSWI

Assuming tasks A, B, and C had connected in that order to the keyin receiver, the keyin receiver chain would be
as follows:

TASK C EXIT
KEYRXR —#1 TASK C ENTRY

— TASK B EXIT
TASK B ENTRY

TASK A EXIT |——— Original valve of KEYRXR
TASK A ENTRY

205

206

To disconnect:

INHIBIT R:PSWI1

LDX =KEYRXR
SEARCH LDA 0,1

Cp =MYENTRY

BNC $+2

B ITSME

RCPY A X

RADD *Z,X

B SEARCH
ITSME LDA MYENTRY-1

STA 0,1

RESTORE R:PSW1

Global AlO Receiver

Location GAIORXP (ref: S24RBM) is a pointer to the global AIO receiver. Just prior to transferring control to
conventional user AIO receivers, RBM will route control through the global AIO receiver chain with the A register
containing AlO status as received from the device and X containing the RBM channel status table index.

The global AIO receiver must always restore the contents of A and X and return by a B *ENTRY-1.

Dismissal Receiver
The dismissal receiver is entered at a dismissal opportunity for either primary or secondary foreground tasks. The
receiver then dictates whether dismissal may occur or, in the case of a software scheduler, may defer service to
another secondary task.
Upon enfry: Interrupis are inhibited, with status in R:PSW1.
B is a pointer fo the M:READ/M:WRITE temp stack.
L is a pointer to the No~Dismiss return.
Upon exit: Register B and register L must be preserved.
If the dismissal receiver opts for normel dismissal, it may branch directly to M:EXIT. This, however, may only be

done for primary tasks; secondary software scheduled tasks cannot undergo normal dismissal. For these tasks, return
must be eventually be made to the 'L’ register after the interrupt status has been restored from R:PSW1.

M:TERM Receiver

The M:TERM receiver is entered upon termination of any background, primary, foreground, or secondary foreground
task. All registers are volatile. The M:TERM receiver must be reentrant.

0:ROC Receiver

The Q:ROC receiver will give notification when an RBM overlay request has been made and when the RBM overlay
area is again free.

Upon entry: 'E' — Pre/Post Flag

E = 0 means overlay requested.
E < 0 means overlay area free.

'B' — Q:ROC temp pointers.
Upon exit: The E register and B register must be preserved.
The Q:ROC receiver must be reentrant.
Note: There will not necessarily be a one fo one correspondence between 'E' negéﬁve and 'E' non-negative entries
to this receiver. The receiver will not be entered for overlays declared as resident at SYSGEN time, but

the receiver may be entered (E = 0) even if no 1/O is required for requested overlays already residing in the
overlay area.

Keyin Receiver

A keyin receiver pointer is contained at location KEYRXR (ref: S24RBM). After RBM examines a keyin and deter-
mines that it is not an RBM keyin, control will be routed through user-connected keyin receivers. In addition, a
foreground task may initiate a command to be processed by the keyin receiver chain. The calling sequence is:

L register = return path.

(L) = command not recognized.
(L) + 1 = command recognized.

X register is a pointer to ARGLST as follows:
ARGLST Word 0 = Word address of buffer containing command in TEXT format.
Word 1 = Byte Count (always K:KEYBUF*2 for RBM keyin subtask).
Word 2 = Deferred Status Reply Address (0 if no reply is desired; always 0 for keyin subtask).
If return is fo (L) + 1, the 'A’ register indicates return status as follows:
A =0 = Command acknowledged (however, processing may be deferred).
A < 0 = Command recognized but cannot be accepted now.
A > 0 =Command recognized but byte count illegal, obvious syntax violation, or immediate processing has de-
tected an error. Error messages if any, must be output by the processing task.
Details:
Location 'KEYRXR' is initialized by SYSGEN to a pointer to a RCPY L, P instruction. A foreground task connects
to the keyin receiver chain by first saving the current contents of location KEYRXR at its entry address -1 and then
storing its entry address at KEYRXR. This will serve as its exit address and provides o procedure for delinking. A
task may pass a command through the keyin receiver chain (i.e., RBM keyin subtask) by first pointing X to the
ARGLST. An RCPYI P, L followed by a branch to the contents of location KEYRXR will cause the request to be

examined by the reentrant keyin receiver chain.

If a receiver acknowledges the request, it will typically move the command to its own buffer and save the other
ARGLST information. The.task fo accomplish the actual processing is then triggered; the A register is set to zero

1207

208

and return is made fo (L) + 1 to inform the initiator that the command has been accepted for processing. Immediate
or deferred processing will report a reply if requested in the ARGLST.

If a receiver recognizes the command but cannot accept it now because of processing constraints, A is set to nega-
tive and a return is made to (L) + 1.

If a receiver recognizes the command but initial {(or complete) processing causes the command to be rejected, A is
set fo a positive value and a return is made to (L) + 1.

If a receiver does not recognize the command, control is transferred to the next receiver (B *ENTRY-1) with the
X register and L register unchanged.

In particular, the RBM keyin subtask will react in the following manner:
1. Returnto (L+ 1)
A=0 Command accepted, exit keyin subtask.
A. <0 Output | IBUSY message on dfn 1.

2. Return to (L); output ! IKEYERR message.

M:ABORT Receiver

The M:ABORT receiver is entered at an abort of a background, primary foreground, or secondary foreground task.

Upon entry: ‘L' — Abort Location.
X — Abort Code.

Upon exit: L and X contain abort location and code (may be modified).

The M:ABORT receiver must be reentrant.

JOB/FIN Receiver

. The JOB/FIN receiver is entered at two points, either before !JOB command processing takes place ('E' register

greater than -1) or after !FIN command processing ('E' register less than zero) but before WAIT. For the second
case (i.e., IFIN), a return of (L) +1 will cause Z:JSAVCC to be set in R:JCP. This will retain the current assign-
ment of ‘CC"* for one 1JOB or !FIN command. A return of (L) +1 for the !JOB command case will have no effect.

File Directory Receiver
DBUF
With the intent to provide support for in~core directory to minimize disk accesses, a Directory Buffer Receiver was
added to FO1. M:ASSIGN and M:CLOSE will link to the address in DBUF (location X'1BC') with the following reg-
ister significance:

L = return address

X=-1 Request has been made for assign to a file.

==2 An assign-to-file request has been satisfied.

X==3 M:CLOSE is about to update the associated file directory to record the new EOF pointer, please up-
date the in-core directory.

The DBUF receiver will have the M:ASSIGN (overlay 'B1'} and M:CLOSE temp stacks at its disposal. In all cases
M:ASSIGN and M:CLOSE will proceed as normal if return is made.

9. BASIC SPOOL SYSTEM [BSS)

The Basic Spool System (BSS) is an independent foreground program that copies data from one foreground oplabel to
another. The data is diverted to a disk file so that the input process can proceed independently of the output. A
typical application for the BSS would be the transfer of data from a fast device to a slow device (i.e., magnetic
tape to line printer). If the input oplabel is a "logical device" (available in GO0) the BSS can, with certain modi-
fications, serve as a line printer symbiont (see description of the #LPSPOOL assembly option).

Loading of the BSS is accomplished by assigning the CC oplabel to the release media containing the JCL and binary
data required for loading BSS. The operator will be queried during the loading process as to the form of the !$TCB
and $ROOT cards, so that the user may specify the priority at which the BSS is to run and the memory location.

Various assembly options control the BSS, as described below. These options must be modified at the source level.
This. is accomplished by acquiring a source copy of the BSS (available in compressed form on the release tape) and
then modifying the appropriate source lines, as given below.

Option Function
+20, 20
#LPSPOOL EQU YES This option, when assembled as a YES, will define the following op-

tions as shown:
#KEYIN EQU NO
#OUTOPLB EQU 'LP'
#INOPLB . EQU 'LD'
#COMPRESS EQU YES
#SUPPRESS EQU YES

With #LPSPOOL on (fFLPSPOOL EQU YES), the BSS will become a
line printer symbiont. The BSS reads from the 'LD' oplabel and writes
to the 'LP' oplabel. All background output otherwise destined for the
same line printer as that referenced by the foreground 'LP' oplabel,
will be directed to the background equivalent of the foreground
'LD* oplabel.

~Other secondary changes will also occur. Primarily, a larger portion
of the spooling file will be maintained so that backspacing may allow
recovery from paper jams. '

NO This option, when assembled as a NO, will define the following options
as shown: :
#KEYIN EQU NO

fouTtorLB EQU '
#INOPLB EQU '
*COMPRESS EQU YES
#SUPPRESS - EQU YES

Modification of these options is possible as described below.

209

Option

+31, 31
#KEYIN " EQU YES
(Default is NO)

NO

+32, 32
#OUTOPLB EQU 'BB
(Default is zero)

+33, 33
#INOPLB EQU ‘aa'

Function

This option, when assembled as a YES will cause the BSS to determine
its input and output operational labels and (optionally) the spooling
file name from a key=-in of the following format

i kkk aato BRIVIA filename [,area]]

where

i is ignored if a one character field (this facilitates use of the

Q key=in).
kkk is ignored (again to facilitate use of the Q key=-in}.
aa is the input oplabel.
BB is the output oplabel.

filename[,area] specifies the spooling file name. ‘area' de-
fauts to 'SD"' if not specified. If the filename is not speci-
fied, this option will be satisfied by the assembly option
#FILNAME, as described below.

The location of the key-in buffer will default to the RBM key~-in buffer
area. In order to facilitate activation by other foreground tasks, the
contents of the DEFed item "KEYBUF' (which resides in the BSS initial-
ization routine) may be used as a pointer to a foreground mailbox lo-
cation which in turn points to a foreground buffer containing o BSS
specification record of the format just described. Thus the 'KEYBUF'
location may be modified by reassembly on a I$MODIFY command to
allow foreground tasks to initiate a BSS copy function completely
without operator intervention.

NO is the default for FKEYIN. If NO is specified, the default values
for the options INOPLB and #OUTOPLB may be specified (see the
#INOPLB and #OUTOPLB assembly options described below).

This assembly option specifies the oplabel which the BSS is to use for
output. BP will default to O which will cause the BSS to query the op-
erator. [If upon accessing g, the BSS determines the oplabel to be in-
valid or assigned to zero, the message "#STOPPED BB " will be output
to the operator console. The operator may then properly assign
through use of an FL key=in or IASSIGN command and enter a "GO
BB" key=in to restart the BSS.

This assembly option specifies the oplabel which the BSS is to use for
input. aawill default to O which will cause the BSS to query the op-
erator. If upon accessing aa, BSS determines the oplabel to be in-

“valid or assigned to zero, the message "#STOPPED aa" will be output

to the operator console. The operator may then properly assign g
through use of an FL key=in or !ASSIGN command and enter a GO
Bp" key~in to restart the BSS.

Option

+34,34
#COMPRES EQU YES
(Default is YES)

NO
435,35
#SUPRESS EQU YES
(Default is NO)

NO
+40, 40
FFILNAME TEXT 'VYYYYYYY'
+41, 41
#AREA EQU 'ss!
(Default is SD)
+42,42
#EVEN EQU YES
(Default is NO)

NO
+43,43
#BYTES EQU X
(Default is 134)
+44, 44
#GRACE EQU X

(Default is 150 but not greater
than 20%)

+45, 45
#EOF
(Default is 2)

DATA =X

Function

When #*COMPRES is YES, the record will be compressed before it is
moved to the spool file. Compression is achieved by replacing two or
more consecutive words which are identical with the value of the word
and a count of the number of words. If the value of the iterative word
is X'4040', the entire field is replaced by only a count of the number
of words.

When #*COMPRES is NO, no compression is performed.

When #SUPRESS is YES, combinations of blanks and/or zeros are re-
moved from the end of the record, with a subsequent reduction in the
record size. Blank/zero suppression occurs before compression if

#COMPRES is also specified.

#SUPRESS should be NO if the record length must be fixed, as for
binary cards.

YYYYYYYY specifies the name of the spooling file. If YYYYYYYY con-
tains leading blanks or zeros {(as in the default case) a file name of
“BBSPOOL" is assumed (BPbeing the output oplabel). If the spooling
file YYYYYYYYdoes not spool, the BSS will attempt to use "BB SPOOL™"
in the 'UD* area. If this file does not exist, the BSS will abort with
code #F,

ss specifies the area name, which contains the spool file. If ssis
zero or blanks (as in the default case) the area will be assumed to be
'uD’.

If #EVEN is YES, records with an odd byte size will be padded with
one byte of zeros.

If #EVEN is NO, no padding will occur.

X indicates the maximum byte size passed to M:READ. The maximum
valve for X is 2"V,

X indicates the number of records which are guaranteed for a #BACK
key=in.

X indicates the number of consecutive EOFs which will terminate the
BSS stream.

As soon as the BSS resolves the parameters specified above, the copy will proceed.

21

Line Printer Symbiont

A copy of the BSS is available on the SYSTEM Release Tape which is suitable for a single device Line Printer
Symbiont. In the process of loading this version of BSS, the user will be queried for

1. Interrupt level.

2. Load location.

3. Permanent file name for that copy of BSS ('OV' file).

4. Spool file size. The name of the spool file will default to 'LPSPOOL' on the SD area.

This version of BSS contains special code which will redirect background output through the spooler. However, for
this process fa be effective, the following conditions must be met.

—

. All of the appropriate background oplabels (i.e., 'LO', 'LL', 'DQ’, etc.) should point at a background
DFN which references a Line Printer (same as existing SYSGEN).

2. The foreground 'LP' oplabel must point at the same background Line Printer via a foreground DFN.

3. The foreground 'LD’ oplabel must point at a foreground DFN which references a logical device, which, in
turn specifies a device address unique from the line printer.

4. The background must also be supplied with a background DFN which references the same device address as
the foreground 'LD* oplabel. This DFN need not have an oplabel assigned to it.

This can be accomplished by adding the following SYSGEN considerations:

1. Assuming that a background DFN for the Line Printer already exists in the SYSGEN deck and defines a Line
Printer of device address 'dn', model 7445, add under "DEVICE FILE INFO"

7445/dn, F DFN =x Foreground Printer
LP/oa,B DFN =y Background Logical Device
LD/ea F DFN =z Foreground Logical Device

where ao is an otherwise unused device address.

Note: The 'LP' mnemonic on the background logical device definition is required by FORTRAN and
COBOL.

2. Assuming that the appropriate background Line Printer oplabels already exist and point at the background
Line Printer DFN (as in the existing SYSGEN deck), add, under "FGD. OP, LBL."

If these requirements are mef, the Line Printer Symbiont will take control automatically of the background Line
Printer whenever the system is rebooted.

212

Blocking/ Compression Scheme

Each record in the spool file will be accompanied with at least two words of control, as follows:

Word O
X'0000'

X'DEOF'
X'0000'

X'0EOF!

X'OEOD!

where

Meaning

End of block.

End of spool file. The output routine will terminate when it encounters this
value.

End of file; this value represents a logical end of file and establishes a backup
point for use in the #BACK key=-in.

This value indicates the end of data for the previous record.

Bit 0 when on, indicates that this record should be written with a write EBCDIC order byte.

Bits 6-15 indicate the total record size, in bytes. If these bits are all zero, the record size is 210

Bits

Word 1

bytes, which is the maximum record size.

1-5 must be zero or the BSS will consider itself lost and search the spool file for the next valid
word 0.

Bit O when on, indicates that this record is not compressed or does not cross a block boundary. Bits 1-5

Bit 1

must be zero, or the BSS will consider itself lost and search for another valid word 0. No X'0EQD!
value will follow a noncompressed record.

when set, indicates that a noncompressed series follows. The length of the series is given in
bits 6-15. Bits 2-5 must be zero or the BSS will consider itself lost, and search for a valid word 0.

When reset, indicates that an iteration follows. The value for this iteration is given in word 2,
unless the iteration value is X'4040'. An iteration value of X'4040' is indicated by bit 2 being set.
Bits 3-5 must be zero or the BSS will consider itself lost and search for a valid word 0.

213

| APPENDIX A. XEROX 16-BIT STANDARD OBJECT LANGUAGE

Introduction

The Xerox 16-bit standard object language provides a means
of expressing the output of a processor in a standard format.
All programs and subprograms in this object format can be
loaded by the Overlay Loader. The complete standard
object language contains 13 load item types.

An object module consists of the ordered set of binary rec-
ords generated by an assembly or compilation for later load~
ing. The Overlay Loader has the facility to load and link
several object modules together to form an executable
program.

The Absolute Loader can load a single module (absolute
subset) to form an executable program. The following load
item types from the standard object language comprise the
absolute subset:

Record Header

Record Padding (type 0, subtype 0)
Repeat Load (type 0, subtype 1)
Unrelocated Load (type 1)

Start Module (type 4)

End Module (type 5)

Absolute Load Origin (type 7, subtype 1)

N, AW~

All load item types are acceptable input to the Overlay
Loader except Absolute Load Origin (type 7, subtype 1).

Description of Object Modules

General Description

Anobject module consists of a setof binary object records,
each containing an integral number of load items after a
standard three-word record header (see Figure A-1). Each
binary record in the module is a 120-byte record.

FF I n
Seq. No. 0
Checksum

Load Items

First Record

Nonactive
Information

FF [n
Seq. No. 1
Checksum

Load Items Second Record

Nonactive
Information

Figure A-1. Typical Object Module of M Records

FF n
Seq. No. M-2
Checksum

Load Items (M-1)th Record

Nonactive
Information

9F J n
Seq. No. M-1
Checksum

Load ltems

Mth Record (Last record of module)

Nonactive
Information

Figure A-1. Typical Object Module of M Records (cont.)

Each load item consists of a header word followed by a
variable number of data words. The first load item in an
object module is a start-module item and the last item (other
than record padding) is an end-module item. There are 15
types of load items, described below.

Binary Object Record Format

Each 120-byte binary record in an object module consists of
these parts: Record Header, Load Items, and Nonactive In-
formation in the following arrangement. The Record Header
and Load Items are considered the "active" portion of the
record.

Record Header 3 words

Load Item 1

Load Item 2

up to 51 words

Load Item n

Nonactive
Information

The “active" portion of the record is that information con-
cerning type, sequence number, checksum and binary data
usually processed by loaders. The "nonactive™ portion may
contain sequence or identification information, or it may be
empty. It is not processed by the loaders.

215

Format of Record Header
The first byte of the record header may be either X*'F' or X'9'.
X'F' denotes that this is a standard record of the object module:
X*9* denotes that this is the last record of the object module.

word 0

Summary of Load Item Formats
RECORD PADDING (Type 0, Subtype 0)

word 0

Control word

0 0 0o oflo o o o|lo o o oJo 0 0 O

Control word
For9 | F IOOnnnnnn

0 3 4 78 9 10111213 1415
word 1
S l C [Record sequence no.
01 2 15
word 2

Checksum
0 15

nnnnnn in the first word is the number of active words in the
record, excluding the record header. "Active" denotesdata
to be processed by a loader. There may be some padding
words or sequence information at the end of the record that
is not included in the “active" count. The maximum value
of n is 51. Note that although the physical record size is
fixed at 120 bytes (80 columns of binary data) the number of
active words may vary from 3 to 54. This effectively stan-
dardizes the reading of binary object records but allows ver-
satility in the generation of active data. The record sequence
number starts at 0 and takes on consecutive integer values
for all the records in one file. The Sbit is a sequence over-
ride. If this is a 1, the loader ignores sequence checking
for the record. The checksum is an arithmetic sum, with
carry, of the n-3 active words after the record header. If
the C bit isa 1, the checksum is ignored.

Load Item Format

Each load item consists of a one-word header and an op-
tional variable-length body of data.

Load Item Header

Load Item

Load Item Data

Format of Load Item Control (Header) Word
Every header word has the same general format:
bits 0-3 Type
bits 4-7 Subtype or control.

bits 8-15 Number of data words in the load item (ex-
cluding item header).

This number plus 1is equal fo the size of the
load item. Afl words of a load item must be
contained in the same physical record.

216

0 34 7 8 11 12 15
There is no body of data. Padding words are ignored by the
loader. The object language allows padding as a conve-
nience for processors.

REPEAT LOAD (Type 0. Subtype 1)

word 0

Control word

0 0 0 ofo o o 1]o 0 0 ofo o0 O 1

0 3 4 7 8 11 12 15
word 1

Repeat count
0 15

This item repeats the next load item a specified number of
times. The load item (type 1, 2, or 3 only) immediately
following the repeat load is repeated (i.e., loaded) in its
entirety the number of times indicated by the data word.

UNRELOCATED LOAD (Type 1)

word 0

Control word

0 0 0 10 0 0 0f0 0 n nln n n n
4 7

0 3 8 11 12 1
word 1

First data word
0 15
word n

Last data word
0 15

This item loads n words without relocation.

RELOCATED LOAD-MODULE BASE (Type 2)

word 0

Control word .
0 0 1 0flo 0 0 0[0 0 n nln n n n
0 3 4 78 11 12 15

word 1

First data word

END MODULE (Type 5)

word 0

word n

Last data word

Control word

0 1 0 1[0 0o 0 rJ0O 0 0 O0JO 0 1 1

0 3 4 7 8 1112 15

word 1

0 15
This item loads n words with module relocation. Thereloca-
tion bias of the currentobject module is added to each data
word in the item.

RELOCATED LOAD-COMMON BASE (Type 3)

word 0

Control word

0 01 1/o0 0 0 0f0 0 n nln n n n

0 3 4 7 8 112 15

word 1

First data word

word n

Last data word

0 15
This item loads n words with a common base relocation.

START MODULE (Type 4)

word 0
; Contro!l word

0 1 0 0fo 0 0 0] n+1

0 3 4 7 8 ‘ 15
word 1

Common size allocation

0 , : ‘ 15

word 2 _
First chdra(_:fer Second character

0 A 7 8 , 15

word n + 1

{2n-1)th character l Last character (or blank)

0 7 8 ‘ 15

This item identifies the start of the object module. The
characters in words 2 through n + 1 are the program name
(identification) for the module.

Starting address

word 2

Severity level

word 3

Relocatable size (or zero)

0 15
This item identifies the end of the object module. In the
control word (word 0), the starting address is defined in

bit 7

where

r =1 indicates absolute starting address.
r =0 indicates relocatable starting address.

The severity level in word 2 is defined as the highest level
reached during processing.

The loader uses the relocatable module size to determine
the starting location for the next relocatable section.

A starting address of absolute O indicatesthere is no starting
address for this module.

LOAD ORIGIN (Type 7)

word 0

) Control word
0 1 1 1/0 o 0o rJo 0 0o oJo 0 0 1
3 4

0 7 8 1112 15
word 1

"Origin address
0 15

This item sets the origin within the object module. In the
control word (word 0), the origin is defined in bit 7

where
r =0 indicates relocatable origin.
r=1

indicates absolute origin.

217

RELATIVE LOCATION POINTER (Type 8)

word 0

Control word
1 00 0/o 00 rfj00O0OIJO O 0 1
0 3 4 7 8 1 12 15

word 1

Chain base address

0 15
This item establishes the chain base for later chain resolu-
tion. In the control word (word 0), the chain base address
is defined in bit 7

where

=0 indicates a relocatable address.
=1

r
r indicates an absolute address.

NAME DEFINITION (Type 9)

word 0
Control word
1 00 1]o 01 ol n+1
0 3 4 7 8 15
word 1
First data word
0 15
word 2
First character | Second character

word n + 1

(2n-1)th character

| Last character (or blank

0 15

This item identifies a name as a definition within the object

module.

All name definitions immediately follow the start-module
item and must precede all other load items. For each name
definition, an address definition should appear later in the
object module.

ADDRESS DEFINITION (Type 9)

word 1

First data word definition - address

0 5

word 2

First character | Second character

0 7 8 15
word n + 1 :

(2n-1)th character l Last character or blanks
0 7 8 15

This item associates a location in the module with a defini-
tion name (characters in words 2 through n + 1) for other
modules to reference. In the control word (word 0), the
definition address is defined in bit 7

where

r =0 indicates relocatable definition address.
r =1 indicates absolute definition address.

EXTERNAL REFERENCE (Type A)

word 0
Control word
1 01 0Jo 0 o0 r] n+1
0 3 4 7 8 15
word 1
Chain address (or zero)
0 15
word 2

First character | Second character

0 7 8 15
word n + 1

(2n-1)th character | Last character (or blank)
0 7 8 15

This item states a name (characters in words 2 throughn + 1),
defined in another module, whose definition address must be
inserted in-a chain of locations within the module. In the
control word (word 0), the chain address is defined in bit 7

where

r =0 indicates a relocatable chain address.
r =1 indicates an absolute chain address.

Note: If there is no chain address, the reference address is

word 0
Control word
1 00 1]0 00 r| n+ 1
0 3 4 7 8 15

zero and is used for library searching purposes only.

SECONDARY REFERENCE (Type B)

word 0
: Control word
1 01 10 0 0 r n+1
0 3 4 7 8 15
word -1
First data word chain address
0 15
word 2
First character 4[Second character
0 78 15
.word n+1
(2n-1th character J Last character (or blank)

0 78 15

This item states a name (characters in words 2through n+1),
defined in another module, whose address may be inserted

in a chain of locations within the module. This item is iden-
tical to type A, above, except that it does not force loading
of the routine from the library. In the control word, the
chain address is defined in bit 7

where

r =0 indicates a relocatable chain address.
r =1 indicates an absolute chain address.

ADDRESS LITERAL CHAIN RESOLUTION (Type C, sub-
types 0, 1, 2, and 3)

word 0

Contro! word
1 1 00J0o 0 q r{f0 0 00JO O 1 0
0 3 4 7 8 15

word 1

Resolution address

Wdrd 2

Chain address

0 15
This item defines a location within the module (called the
resolution address) whose address must be inserted in'a chain

of displacement fields within the module. In the control
~ word, the chain address is defined in bit 6

where

q =0 indicates a relocatable chain address.
q =1 indicates an absolute chain address.

The resolution address is defined in bit 7
where

0 indicates a relocatable resolution address.
1 indicates an absolute resolution address.

P =
r =
An address literal chain is a threaded list of forward refer-
ences to a single location in a program. The definition
value (called the resolution address) can be output as an
address literal chain resolution (Type C, subtypes 0, 1, 2,
and 3). The chain address points to the beginning of the
threaded list which is terminated by an absolute zero value.
The resolution address and the chain address may be absolute
or relocatable.

Note: Because the terminator of the chain is zero, no pro-
gram may have an address literal chain whose last
link is at absolute zero (i.e., the item would refer-
ence zero and would thus appear to terminate the
chain). '

Note that external reference (REF) (type A) and secondary
reference (SREF) (type B) chains are structured in the same
manner, but resolved by the loader using an external defi-
nition value (type 9).

DISPLACEMENT CHAIN RESOLUTION (Type C, subtypes
6,7, A, and B)

word 0

Control word

1 10 0]pp q r|]OOOOJOOT O

0 3 4 78 9 11 12 15

word 1

Resolution address

word 2

Chain address

0 15

This item defines a location (called the resolution address)
within the module whose relative displacement must be in-
serted in a chain of displacement fields within the module.
In the control word, the displacement chain is defined in
bits 4-5

where

pp =01 indicates that an indirect bit is not set in each
instruction in the displacement chain.

pp =10 indicates that an indirect bit is set in each
instruction in the displacement chain.

q=1 always indicates absolute displacement of the
last item in the chain (relative to the chain
base declared in item type 8).

219

The resolution address is defined in bit 7
where

ndicates a relocatable resolution address.

r=0
r =1 indicates an absolute resolution address.

i
i
When forward references occur during one-pass processing,
and. the possibility of resolving the reference by a definition
or literal may occur within 255 locaotions, the 8-bit dis-
placement field of the instruction may be used to form a
displacement chain. The item types 8 (relative location
pointer — establish chain-base) and C (displacement-chain
resolution) must be used together to resolve the chain by
substituting actual displacements determined at load time.

In the creation of a displacement chain, the pointer in the
type 8 item defines the relative location in the program to
be established as the chain base. Each newtype 8 item can
define a new chain base. The values in the displacement
field of the instructions included in any given displacement
chain refer to the absolute displacement of that instruction
relative to the currently established chain base; e.g., if the
chain base is established fo be X'100" and an instruction is
located at X'125', the displacement of that instruction for
purposes of the displacement chain is X'125'-X'100"or X'25".
This point is emphasized since the loader will use this dis-
placement only to determine the final displacement of the in-
struction relative fo the location of literal or target locations.

When the displacement chain connects instructions that ref-
erence a literal or a specific target location within range of
the chain base (e.g., LDA=3 LDA=LAB, B XR), no indirect
bit is set in each instruction (pp =01 in Header — Type C).

When the chain connects references to an external sym-
bol or forward reference whose value will be given in some
literal within range of the chain base, pp is set to 2 in the
type C header, to set the indirect bit in each instruc~

tion in the chain (e.g., LDA X, which will be resolved

as LDA *$+n, where n is the displacement of ADRL X rel~-
ative to the instruction).

The chain base address (in the type 8 item) may be declared
as an absolute or relocatable value. The resolution address
(first dota-wordof a Type C item) is the address of the target
location or literal expressed as a location, and not as a dis-
placement on the chain base. Note that although the reso-
lution address isdefined at this point, the value of the literal
at that resolution may not be defined until later. Infact, it
may be an element of an address-literal chain (type C) or
external reference chain (type A). The address-literal or
external chain resolution is independent of the displacement
chain resolution.

The chain address given in the second data word is the ob-

solute displacement of the last item in the chain, relative

to the chain base declared in type 8 (e.g., if the effective

chain base were X'1000' and the value of the chain address
were X'20', the last item of the displacement chain would
be located at X'1020').

A separate displacement chain will be created for each
unique variable in a given displacement region. Thus, many
displacement chains may be built using the same chain base.
As a matter of fact, the chainbase may notbe changed until
a displacement chain resolution item has been output for
each displacement chain. An unresolved displacement chain
is a serious error condition in the output, and is unaccept-
able for execution.

The format of the displacement chain is described in the
example in Figure A-2.

Example: Let a chain base be declared at 109(R). (Numbers
given are decimal.) It is assumed that the ADRL for XLB

will be ultimately loaded at 140(R). Note that the displace-
ment field of each instruction before resolution is a pointer
to the location of the next item in the threaded list relative

to the chain base.

Relati Disol nt Displacement Displacement
elarive . 'splaceme Field of Instruc- Field of Instruc-
Location Symbolic From Chain tion Before tion After
Counter Base Loading Resolution
110 LDA XLB 1 00 (end of chain) 30 (140-110)
125 STA XLB 16 01 15 (140-125)
134 CP XLB 25 16 06 (140-134)
136 STA XLB 27 25 04 (140-136)
140

Item Type C, Displacement
Chain Resolution

Resolution Address 140(R)

Chain Address 27(A)

Figure A-2. Displacement Chain Format

LABELED COMMON (Type D, Subtypes 0, 1, and 2) Subtype 0 -(k=0)- Labeled COMMON Definition. This
subtype conveys the block size in words and an index value
word 0 for the block being defined. The contents of the load
item designate the alphanumeric name for the Labeled
Control word COMMON block. The index value is relative only to
[o 0 k k]| n+l the module being loaded and is sequenced from the integer
4 7 8 15 one. It is used only to economize on space in the refer-
ence and data subtypes.

1 1.0 1
0 3

This subtype will follow the start module and name defini-
Labeled COMMON index tion items. It must precede the reference and data subtypes
for Labeled COMMON.

Subtype 1 -(k=1)- Labeled COMMON References. This
word 2 subtype carries as content a set of words that continue the
: load program and to which a Labeled COMMON base will
Labeled COMMON size, zero, or displacement be added. The particular base address to be added is in-
dicated by the index value in the load item. The word
0 15 to which the base is added may contain positive or neg-

ative content. Should the index value be zero on this
subtype, then the blank COMMON will be the added

word 3 base value.

Content (first word)

The third word (word 2) of this item is non-functional and is
0 15 carried as zero.

word n+1 Subtype 2 =(k=2)- Labeled COMMON Data. This subtype
will load Labeled COMMON with a set of contiguous
Content (last word) data. Again the COMMON block is identified by an
, index value. The starting displacement from its base is
0 15 identified in the third word (word 2) of the load item.

221

222

APPENDIX B. CRITICAL RBM TIMES

Time
Routine (microseconds)
M:SAVE
Registers Only, No Temp, No Accounting 59
With Accounting, No Temp 99
Without Accounting, No Temp 90
With Accounting and Temp 138
M:EXIT
Registers Only, No Temp 69
With Temp 116
Maximum Interrupt Inhibit by RBM 100
Multiply Simulation (average) 250
Minimum = 81
Maximum = 280
Divide Simulation (average) 310
Minimum = 86
Maximum = 340
Control Panel Interrupt 29
1/O Interrupt
No Command Chaining 315
Command Chaining Without Receiver 457
Command Chaining With Receiver
Keyboard/Printer (per character) 415
Card Punch (per row) 315
Disk Pack (no device waiting) 485
Disk Pack (device waiting) 586
Interrupt on Channel Active min 217
(Seek Overlap; Set Device Waiting) max 557

Note: Figures are given for Sigma 2. For Sigma 3, subtract 15 percent from each figure.

APPENDIX C. MAGNETIC TAPE HANDLING

It is assumed that the reader has a general knowledge of the structure of M:READ/M:WRITE, which is flowcharted
in Figure 24 of this manual.

When an RBM user makes a request for magnetic tape 1/O through M:READ, M:WRITE, or M:CTRL, several different
routines unique to magnetic tape handling may come into play. Which routines are called is a function of the ser-
vice routine used (M:CTRL or M:READ/M:WRITE); the desired function (write binary, read BCD (7T), etc.); the
model of magnetic tape unit being used (9-track or 7-track); and the device status, both before and after the I/O
operation. Some of these routines are resident and others are overlays. With the exception of M:CTRL, all are
SYSGEN optional and are included only when the system has a requirement for the routines.

Magnetic Tape Command Chaining Receiver (Resident)

The command chaining receiver for magnetic tapes has two purposes; to allow mode control for 33xx magnetic tapes,
and to acquire SENSE information from 9-track tape controllers to provide the capability for correctable read error
recovery. The sense must be performed at 1/O interrupt time to prevent the potential loss of track=in-error informa-
tion caused by subsequent intermediate controller operations by tasks of higher priority than the one that initiated
the current operation. To simplify the code within the routine, a SENSE operation is issued to 9-track tapes only

if a transmission error is detected, the E-flag bit is set, if the byte count residue is nonzero, if a timeout occurred
or if any of the 1/O left the overflow or carry indicators set in FCT4, The mode order is command chained to pre-~
cede any reads or writes moving the tape from load point (33xx magnetic tapes only).

Resident Magnetic Tape Pre-1/0 Edit

The resident tape pre-1/O edit routine is called by M:READ/M:WRITE prior to the issuance of the SIO for binary
7-track and all 9-track tape operations. Its purpose is to check for 1/O attempts past end-of-tape, device manual
or unrecognized, and build the command chaining necessary in the IOCT. Write EOF and read or write with error
recovery suppressed are the operation items permitied beyond end-of-tape. In this way, end-of-volume sentinels
can be written or read past the end-of-tape marker. If the 1/O operation cannot be performed because of the posi-
tion of the tape, EOT status will be returned to the user and the SIO will not be attempted.

1-Track BCD Tape Pre-1/0 Edit and BCD Conversion Overlay

This overlay is called from M:READ/M:WRITE or the magnetic tape error recovery overlay for the following
functions:

1. Pre=1/O edit for BCD 7-track tape operations.
2. Post-1/O edit for BCD 7-track fc;pe operations.
3. Post-read edit for BCD card operations.

4. Error recovery for BCD card reader operations.

Only the code pertaining to BCD 7-track tape operations is discussed below.

For all post=1/O operations, the overlay converts any special BCD characters in the user's buffer to EBCDIC and then
exists. If the overlay was called from M:READ/M:WRITE, the return status will be "successful 1/O completion". If

the BCD conversion overlay was called from the magnetic tape error recovery overlay, the return status will be "in-
correct length", which is the only condition for which BCD-EBCDIC translation is performed following an error.

224

For pre-1/O edit operations, code similar to that of the resident tape pre-I/O edit routine is first executed. The
actions taken are the same with two major exceptions:

1. There is no read-backwards order for 7-track tapes, so checks for that condition are not performed.

2. If the operation is to be permitted, special EBCDIC characters in the user's buffer will be converted to BCD.
These special characters will be translated back to EBCDIC when the overlay is called to perform post-1/0O
editing.

For a further discussion of the EBCDIC-BCD translation feature in RBM, see Appendix D.

Magnetic Tape Error Recovery Overlay

The resident magnetic tape error recovery module screens abnormal conditions for simple incorrect length. If any
other conditions exist, the appropriate error recovery overlay is called, depending on the device model number.

One of the magnetic tape error recovery overlays will be called from M:READ/M:WRITE if any of its magnetic tape
operations result in the detection of an abnormal condition. However, an abnormal condition for tapes may or may
not be a "real" error. In addition to real errors, such conditions as end of file, beginning of tape, write protect vi-
olations and incorrect record length may be detected. These conditions are reported to the calling program but are
not treated as real errors. The error recovery overlay will be called to process abnormal device status even if the
calling program does not specify standard error recovery, due to the degree of analysis required to ensure correct
status reporting.

If a genuine error occurs, it is either recoverable or irrecoverable. The conditions under which "irrecoverable-1/0"
status is returned to the calling program are as follows:

1. Error recovery is not specified on the user call.

2. Indeterminate tape position (i.e., the tape position is lost).

3. Ten recovery attempts were performed without success.

4. An error occurred while repositioning tape prior to a retry attempt.
5. The nature of the error makes recovery impossible.

6. Device and/or channel status are in conflict and it is impossible to determine the exact nature of the
problem.

If an error is recoverable, a retry sequence will be initiated. In general, one or more intermediate positioning op-
erations will be attempted (the overlay will not exit while they are in progress). If they are successful, the overlay
will exit back to M:READ/M:WRITE with status which indicates that the original operation is to be retried.

For write operations, two recovery sequences are used, based on the current retry count. If the retry count is less
than three (i.e., 0, 1, or 2), the sequence is

SET CORRECTION — BACKSPACE — BACKSPACE — READ — SET ERASE — RETRY.

The purpose of this sequence is to ensure that the write attempt did not result in the generation of multiple records
due to a bad spot on tape (i.e., generating one record with gaps in its middle). If there is such an error, the second
backspace operation will not position the tape at the beginning of the previous record, but instead will stop in the
middle of a record. The following read operation will then result in the detection of a transmission error. In this
case, a "bad tape" message will be output to the operator's console and the error recovery overlay will exit with
"irrecoverable—1/O" status. If the read operation in the above sequence does not result in the detection of a trans-
mission error but the retry attempts continue to fail (due to an inability to erase past the bad spot on tape), a second
recovery sequence will be attempted. If the retry count is three or greater, the following sequence will be used:

SET CORRECTION — BACKSPACE — SET ERASE — RETRY.

This sequence will allow the tape to erase approximately 25 inches of tape before the retry count is exhausted, If
the operation cannot be performed successfully before the maximum number of retries is reached, the operator will
be notified of a tape fault and "irrecoverable—1/O" status will be returned to the calling program.

For read errors, two recovery sequences are also used, depending upon the type of magnetic tape unit and the nature
of the error. If the read error is correctable, the following recovery sequence will be used:

BACKSPACE — SET CORRECTION — RETRY .

The SENSE data used for the SET CORRECTION operation is that which was gathered at 1/O Interrupt time by the
command chaining receiver. If the error is noncorrectable, the following retry sequence will be used:

BACKSPACE — RETRY .

Noise Record Correction

A maximum of 10 recovery attempts will be made before declaring the error irrecoverable. Under certain circum-
stances, an irrecoverable read error will be ignored. If the retry count becomes exhausted, a transmission error is
reported, and there is an incorrect length with the number of bytes actually transmitted numbering seven or fewer,
the error will be designated a noise record. In this event, the operator will be notified of a noise record and the
next record on tape will be read. (If the user has specified "no error recovery" this sequence is not used.) This
does not mean that the user cannot write and read records of fewer than eight bytes, but does mean that if there are
irrecoverable errors in short records, the records may be ignored.

If the E-flag (bit 0 of the odd 1/O channel register) is set, a memory parity error is indicated. In this case, the
error recovery routine will scan the user's buffer and/or IOCT via LDA instructions. If there is a real memory error,

the Machine Fault interrupt will be triggered and the task (or job) will be aborted. If the MFI is not triggered, a
further analysis will be made to determine if standard recovery techniques may be employed.

M:CTRL Overlay

Status at 1/O interrupt time is analyzed to determine which status to return to the calling program. Table C=1 shows
the various possible combinations and the status returned.

Table C-1. M:CTRL Magnetic Tape Operations Status Returns

Device Status
EOF BOT UE Status Returned to Program
N N Successful - I/O
N Y Irrecoverable - I/O
Y N End-of-File
Y Y Beginning—of-Tape

There is no attempt at error recovery for M:CTRL operations because of the possibility of incomrect tape position.

Recommended Practices

Several general practices are recommended for programs that support magnetic tape 1/O under RBM.
1. Specify standard error recovery on all M:READ and M:WRITE service calls. This permits complete and

automatic recovery from errors whenever possible. This technique also prohibits the calling program from
writing or reading off the end of the reel.

225

226

2.

Maintain a pair of indicators that always contain the current file and record numbers. If "irrecoverable-1/O
status is returned for a tape operation, there is no guarantee that the tape is positioned exactly where the
program assumes it to be. If this status is returned, the recommended procedure is to rewind the tape, posi-
tion to the end of the last known bad record on tape, and continue from that point.

Although the Xerox magnetic tape drives handle a much wider range of record lengths, it is recommended
that values in the range of 16-4096 bytes be used, with record lengths of 1K to 2K considered optimal.
This permits a moderately high packing density with a relatively low probability of errors.

APPENDIX'D. BCD/EBCDIC CODE CONVERSION

Introduction

A feature of the Xerox card equipment and 7-track magnetic tape is hardware conversion of user's BCD inputs to
EBCDIC codes for Sigma computer internal use. The outputs are also hardware converted from EBCDIC to BCD. A
problem arises with the definition of BCD. The tape drives and card equipment are designed with the commercial
(COBOL) character set as the basis for conversion. Most of the Sigma installations operate using the scientific
(FORTRAN) set. Therefore, the RBM 1/O routines provide pre-1/O and post-1/O software conversion for those char-
acters that present conflicts in the two BCD sets when selected by appropriate users options. Note that BCD cards
are produced on an 026 keypunch or equivalent, and EBCDIC cards are produced on an 029 keypunch or equivalent.

SYSGEN Options

RBM performs character conversion when 1/0 ‘is requested on the following device types:

Device Type Name Characteristics

B7 7-track magnetic tape with BCD option.
BR4 400 and 1500 cpm card reader.

BP1 100 cpm card punch.

BP3 ' 300 cpm card punch.

Table D-1 contains those character codes that are modified by the RBM I/O editing routines.

Table D-1. Special Character BCD/EBCDIC Conversions

Internal Code (Hex)

BCD Character I/Ot Progrc:mt EBCDIC‘Ch‘amqter
% or (6C 4D (
I{or) 4C 5D)
#or = 78 7E =
&or + 50 4E : +
@or' - 7C 7D !
< 4E 4C <
> 7E 6E >

7D 7A
? 4A | 6F ?
"The 1I/O value is the hexadecimal value in memory just after input or just before output.
The program value is the actual value used by the user program.

227

228

The characters in Table D-1 are modified as follows:

1.

2.

If any of the BCD codes are encountered when reading from device type B7 or BR4, they are converted to
the corresponding EBCDIC codes by a post-1/O editing routine in RBM (i.e., after the data transfer).

If any of the EBCDIC codes are encountered in an output buffer for devices B7, BP1, or BP3 they are con-
verted to the corresponding BCD codes by a pre-1/O editing routine in RBM (i.e., before the data transfer).
If the output device type is BP3, the output buffer in RBM is converted and the output buffer in the program
is not altered. However, for device types B7 and BP1, the user's buffer is temporarily altered by the pre-
1/O edit routine. After output is complete, the characters are reconverted to their original values. If
/O is performed with wait (for completion) the code conversion is not ordinarily apparent to the user.

Programming Considerations

There are two conditions that will cause the user's buffer to temporarily contain erroneous data.

1.

If output is to device type B7 or BP1 and the argument list specifies "no wait", the user must not initiate
another output operation from the same buffer until a "check" operation is performed after the first opera-
tion is complete. When using UTILITY COPY, the user must not specify more than one device of type B7
or BP1 in a list of operational labels for output. Device type B7 or BP1 may be included in an operational
label list with UTILITY COPY provided that it is the last [abel in the list. For example, if operational
label BO is assigned to device type BP1 and operational label RD is assigned to a RAD file, the following
UTILITY control command must be used:

I*OPLBS RD,BO

However, the following command will cause incorrect data to be written to the RAD file:

*OPLBS BO,RD

If BO is assigned fo device type BP1 and MT is assigned to device type B7, it is improper to copy to both
devices at once, and the following control command must not be used:

1*OPLBS BOMT

The reason for these restrictions is that UTILITY COPY performs 1/O without wait to several devices con-
currently (if several devices are specified).

If output is to device type B7, BP1, or BP3 and the data is to be later input using device type B7 or BR4,
the output buffer must not contain any EBCDIC character codes that do not have corresponding scientific
BCD character codes. For example, if an output buffer contains the EBCDIC character code "&" (X'50%),
this character will be output to tape as an "&" in octal code. When input, the "&" is converted by the
hardware to an X'50'but the BCD post-1/O editing routine will convert this code to X'4E' (+). Therefore,
the programmer must be extremely careful when outputting any of the following EBCDIC characters to de-
vice types B7, BP1, or BP3 (in BCD mode):

Initial EBCDIC Initial EBCDIC Initial BCD | Converted Value After Reading
Character (Memory) Code (Hex) Character Code (Hex) | EBCDIC Character
% ‘ 6C (or % 4D (
7B # 7E =
& 50 &or+ 4E +
@ 7C @or' 7D !
£ 4A £ 6F ?

Other Considerations

All use of standard RBM operations to 7-track tape requires the packed binary option. This is also true of the LOAD
procedure initiated by the processor control panel. The BCD option can be used only for user data in the proper
BCD subset.

The unpacked binary feature is only available using M:1IOEX.

229

APPENDIX E. ERROR SUMMARY ACCOUNTING

Optional assembly code is provided to keep track of the total number of M:READ and M:WRITE operations on each
1/O channel and the number of errors (including retry attempts). These counters provide the operator or Field Engi~
neer with a means of measuring the reliability of the peripheral device (s) on each channel.
To avoid penalizing installations that do not desire this feature, the code is assembled out of the system. To include
it, the #ERRSUM EQU NO source cards must be changed to #ERRSUM EQU YES in both the RBM Monitor and the
S24RBM procedure file. Files that must be reassembled with these switches set are

e RBM Monitor.

e Overlay ID 107 (Unsolicited Key=In Subtask, Part 1).

e Overlay ID #35 (Buffered Line Printer Error Recovery).

e Overlay ID #36 (BCD Card and 7-Track Tape Handler).

e Overlay ID #37 (BCD Low Cost Card Punch Handler).

e Overlay ID #38 (BCD High Speed Card Punch Handler).

These changes will result in an increase in residency of 241 words plus four times the number of I/O channels de-
fined at SYSGEN time. One additional overlay will be included in the SP area on the RAD. '

To display and reset these operation and error counters, two unsolicited operator key~ins are provided if error sum-
mary accounting is assembled in the system; DC (Display Counters) and RC (Reset Counters). - The key~ins are invalid

if the assembly switch is off.

The format of the key=ins is as follows:

CHAN, chan
[DC} DEV,dev
RC } | DFN,dfn
fdun {F}
OPLB'{oplb}[' B]
where
chan is a one= or two-digit hexadecimal number that represents the channel number. The limits on chan
are 0<chan<27._ .
= =10
dev is the two-digit hexadecimal address of the device in question.
dfn is a one~ or two-digit hexadecimal number that indicates a Device File Number.
fdun is a FORTRAN device unit number. If the second parameter begins with "F:" or a numeral, an fdun is
assumed.
oplb is a two-character operational label. It may not start with a numeral.
ForB if present, indicates that the specified operational label or FORTRAN device unit number is for the

foreground or background respectively. If not specified, the oplabel is assumed to be for the background.
If no parameters are specified, all channel error and access counters will be displayed or reset, as appropriate.

If an error is detected while processing a DC or RC key~-in, the message "! | KEY ERROR" will be output to the opera-
tor's console and the Key~In Subtask will be reentered. The following errors will cause a 1 'KEY ERROR message:

1. Syntax errors in key=in statement.

2. Reference to an I/O channel number not defined at SYSGEN time.

3. Reference to a device address not defined at SYSGEN time.
4. Reference to an invalid Device File Number.
5. Reference to an ‘undefined operational label or FORTRAN device unit number.
6. Reference to an oplb or fdun currently assigned to zero.
All error and access counts will be reset to zero if RBM is rebooted.
The format of the message (di;'ecfed to the operator's console) that is output in response to a DC key=in is as follows:
CHAN cc ERRORS eeee ACCESSES aaaaaaaa
All numbers will be displayed in hexadecimal.

After processing a valid DC or RC command, the Key-In Subtask will be called again. At this time, the operator
may elect to key in-another DC or. RC command or else input an "S" key-in to return to the background.

APPENDIX F. LINE PRINTER VFC's (WRITE BINARY)|

PF — Print with format.

F — Format.

A — Printer models 3451, 7440, 7445,

B — Printer models 7441, 7442, 7446, 3461, 3463, 3464, 3465, 3466.

C - Printer model 7450.

Print Data Chained to | Printer
Pseudo VFC Print with Format Definition Real VFC Order | Text (Yes/No) Model
X'60' Print, suppress upspace X'60’ PF Yes A, B, C
X'80' Print, suppress upspace X'60' PF Yes A, B, C
X8y Print, then space 1 line X'Co' PF Yes A, B, C
X'82'-X'8F' | Print, then space n lines (2-15) 1) X'60’ PF Yes A, B C
2) X'CO'+n F No
X'90" - X'9F' Print, then skip to channel n 1) X'60' PF Yes A, B, C
2) X'FO'+n F No
X'AQ" - X'AF' | Space n lines, print and inhibit 1) X'CO'+n F No A
upspace 2) X'60' PF Yes
X'EO'+n PF Yes B, C
X'BO* - X'BF* Skip to channel n, print and 1) X'FO'+n F No A
inhibit upspace 2) X'60' PF Yes
X'DO'+n PF Yes - B, C
X'C0' - X'CF' | Space n lines, print and upspace - X'CO'+n PF Yes A, B, C
X'DO' - X'DF' | Skip to channel n, print and 1) X'F0*+n F No A
inhibit upspace 2) X'60' PF Yes
X'DO' +n PF Yes 8, C
X'EQ* - X'EF' Space n lines, print and inhibit 1) X'CO'+n F No
upspace 2) X'60’ PF Yes A
X'EQ'+n PF Yes B, C
X'FO' - X'FF! Skip to channel n, print and X'F0' +n PF Yes A B, C
upspace
Legend

n — Number of lines to skip or channel number. N is limited by line printer capabilities (e.g., a skip to

channel > 1 for the 7450 line printer will result in a skip to channel 1).

Invalid VFC's result in a single space (X'CO') operation.

APPENDIX G. LOGICAL DEVICES

General

It is assumed that the reader has a general knowledge of the strcuture of M:READ/M:WRITE, which is flowcharted in
Figure 24 of this manual.

An RBM user makes an Input or Output request to a Logical Device (LD) through calls to M:READ and M:WRITE,
respectively.

Overview

The concept of a Logical Device arises from the need to be able to pass information and data between tasks. Logical
Devices are defined at SYSGEN via a two-character mnemonic’ (for model number), and an accompanying pseudo-
device number (which indicates a channel number, preferably unique). The user performs Reads and Writes on DFNs
(or assigned oplabels) associated with the LDs via calls on M:READ and M:WRITE.

Oplabels to be used by tasks for intertask communication may be specified at SYSGEN via the DFNs assigned to the
same pseudo-device number of an LD. Communication between foreground and background tasks is accomplished by
use of the foreground (F)/background (B) SYSGEN option at definition of the LD. One example of possible use would
be where a task receives data from a hardware device via a standard oplabel or DFN. This data may be manipulated
(if desired) by the task and passed on to another task via a pair of DFNs associated with the same LD. The receiving
task may, if desired, pass the data to another DFN of the same LD, a different LD, or to a real physical device.

There are no restrictions as to direction of flow of information. Any DFN associated with an LD may be used to read
_or write to any other DFN associated with the same LD. At least two DFNs must be associated with one pseudo-
device number to define an' LD. Only two DFNs associated with an LD can be involved in any given LD
data fransfer.

SYSGEN Considerations

It is strongly recommended that the system be SYSGENed with the DISMISS option. This is necessary since the 1/O
interrupt task is not triggered for LDs until a READ/WRITE pair of operations is satisfied. -Dismissal prevents a task
* from locking up the system waiting for an 1/O operation to complete which cannot be completed until that task re-
linquishes control.

Similarly, it is recommended that the pseudo~device number (channel) used to specify the LD be unique. RBM can
allow only one data transfer per channel at a time. Since an LD 1/O operation requires both the read and write re-
quests to be completed, the LD handler sets the channel busy when it processes the first request (Read or Write). The
channel will not be available until the corresponding request is handled. The problem with having a physrcal device
on the same channel as the LD is clear: no physical 1/O transfers can be processed until the "handshake" LD request
is processed. Since there is no timeout logic for LD operation, this could present a S|gn|f'cclnl' problem.

A discussion of the action taken by SYSGEN will aid in understanding the LD concept. -

Real device definition at SYSGEN' is implemented by requiring the user to specify the relationship between the
model numbers of his hardware units and the hardware device number for. the unit as follows:

B

F{fr
mode!/dn, DI [,E] [8CD)
DO,

The mnemonic "LD" or any other two-character mnemonic other than RD or XX can be used. This mnemonic may
indicate the 'dev:ce type" the Logical device is fo represent; e.g., LP for line printer as required by the printer
symbiont.

233

Refer to the RBM System Management Reference Manual, 90 30 36, for parameter definition. Té each such definition,
RBM assigns sequentially a DFN (Device File Number).

Logical Device definition at SYSGEN is implemented by requiring the user to spec:fy the distinct logical groupings
representing a Logical Device as follows:

e
model/yy, {FF
where
model can be 'LD' or any other two-character mnemonic other than RD or XX. This mnemonic may indicate

the 'device type' the Logical Device is to represent; e.g., LP for line printer as required by the printer
symbiont. The mnemonic is placed in File Control Table 7 (FCT7) for that DFN and the mnemonic "LD" is
stored in Device Type Table 1 (DTT1) for all Logical Device definitions.

Yy is a pseudo-device number. This pseudo=device number will indicate a channel number that is prefer-
ably unused by any real device, X'00' < yy < X'FF'.

For example, the definition of two Logical Devices might appear as follows:

LD/08, F
LD/08, F

B1/09,B
F1/09,F| LD #2
F2/09,F

} LD #1

To each of the above specifying lines, SYSGEN will assign a unique DFN.

All Logical Device definitions should be grouped in the SYSGEN deck and placed immediately after the real device.
definitions (this is for the sake of clarity). The user makes pseudo-device number assignments within the range yy =
hexadecimal 00 to FF. These device numbers represent channels that are preferably not used by real devices.

For example, a real device assigned a device number from X'91' to X'9F' would be serviced by the same channel
register pair as a device assigned to X'01'. Thus, if a real device were assigned to any of the above device num-
bers, no physical device transfer could be made while the channel was busy with a Logical Device transfer.

Since there is no timeout value for Logical Devices, this could create significant delay problems. Therefore, it is
suggested that the user avoid conflicts between hardware device numbers associated with hardware model numbers

and pseudo-device numbers associated with the LD model specifications.

The number of LDs that can be defined for a given system configuration is suggested to be the maximum number of
available channels (28) less the number of channels occupied by real devices.

In the previous example, SYSGEN would have made DFN assignments for the LD definitions as follows:

Device Definition - DFN
{real devices) model/dn, DFN]
model/dn DFN
n n
(Logical Devices) LD/08, F DFNn £
LD/08, F DFNn+2
B1/09,B DFNn + 3
F1/09,F DFNn+4
F2/09, F DFN

n+5

If desired, the user could specify oplabel association for the LDs as follows:

SYSGEN BCKG. OP. LBL. OP, =DFN

1 n+3

SYSGEN FGD. OP. LBL. OP, =DFN_,
OP3 = DFNn+

OP, =DFN__,

OP, = DFNn+5

where O,P1/ oP 4/OP5 represent one LD and OPZ/ OP3 represent another LD.

Implementation

SYSGEN processes LDs in the same way as other devices. DTT and IOCT entries are established. M:RSVP checks
the DTT for LD and treats such requests as valid but performs no operation for an LD. M:READ/M:WRITE bypass the
‘call to Q:LOADC for LDs.

M:CTRL requests an LD’s receive 'operational not meaningful' status. M:CKREST will ignore active DFNs included
in a Logical Device /O operation when it is allowing 1/O to run down prior to a checkpoint of background.

An Overlay contains a pre-1/O edit routine, a post 1/O edit routine, and an error recovery routine for LDs (see Fig-
ure G=1). This overlay is reentrant and optionally resident.

Pre-1/0 Edit Routine

Since one channel per Logical Device is assigned at SYSGEN, all read/write operations to a member DFN of the
LD share the same channel status table entry. (Note that each DFN has its own FCT and IOCT entry.)

One restriction is imposed when background is involved in a Logical Device operation. All LD transfers involving
background will take place at the background level. Therefore, between background and foreground, the foreground
request will clways claim the channel. Then the background request will be honored and the transfer completed.

If background is the first to issue an LD request, the user will receive an artificial busy return on a NO=WAIT re~
quest or will be held at the system level waiting for the corresponding foreground request if background issued a
WAIT request. '

To describe the "sharing" of a CST entry, consider that the first operational request on an associated inactive chan=
nel will cause the DFN of the requestor to be placed in the CST thus specifying the requestor as the "owner" of the
‘ CST. v

All LDs are specified by the same DTT enfry. 'The pre-1/O edit, post=1/O edit, and error recovery routines speci-
fied in the DTT perform those operations necessary to satisfy the LD requests as indicated in M:READ/M:WRITE calls.

Subsequenr operahonql requests utilizing the same chonnel (i.e., requests on member DFNs of the same LD), which
is now "owned" by the first requestor, are satisfied according to the following rules:

1. If the "owner" of the CST entry is a write request, a subsequent read satisfies the operation. The CST entry
is "frozen" and the data is moved. Completion is posted for both the read and write. Other read requesfs
occurring after the first read request will receive a busy indication. All further write requests will receive
a busy indication.

2. Ifthe ‘owner" of the CST entry is a. reqd request, a subsequent write request will satisfy the operation. At
that time, the CST entry is "frozen , the data is moved, and completion is posted for both the read and

"~ write.

Subsequent read and write requests will receive a busy indication.

235

BYTE COUNT
RESIDUE TO
BsIOCOH!

ARRRGRVIRCL R

SET =5 FOR ICL

CIARKARKISNRARNN

«INHIBLT INTS.

AAREETRATASEARS

ZERQ CHHL
TIMEQUT (C3T18)
CLAIM CHNL
(CST1) SET AID
RECEIVER (CIT2)

!

PL
SET FILE ACTIVE
(FCT1)

RESET EfP
(FCT2)

“RESTORE TNTS.

RASSERNREVANARNKS

D

PREPARE L+1
RETURMN

TO BYPASS
MIRDAWR S
‘8 asLoAnc’

| I

RVIROCK

PAGE 1

‘ Y

TRIGGER
1/0 INTERRUPT
LEVEL

:

ARSABASATRENDS
«RESTORE INTSa

AELTRUAITRIINDY

.

SET-UP FOR
MOVE-BYTE-STRNG
PROCESSING <

|

STORE
WRITE CooE
READ 10CT,S

.y

FREEZE CHNL
{C3T1= DFN}
SET
FILE ACTIVEsaa
RESET EFF

|

EXIT 1/0 LEVEL

ARRIUNRIRAAEDEE

FND
BYTE COUNT

.

Figure G-1. Logical Device Handler

SET B8C RESIDUE
(FCTS)

AND
ICL IN FCT4 1F
NECESSARY

T
(FCT4)

.y

FINAL SET UP
FOR XFER
OF RECORD

Mas

GENERALIZED
MOVE-BYTE-STRNG

ROUTINE
T0 XFER. DATA

.

. S

JINHIBLT INTS.

SET
CHARNEL. TIMEOUT
VALLE =1
(€318

sfssamusNARERAN
+RESTORE INTSa

P '}

L0OP FOR
1/0 INTERRUPT
T GO ACTIVE

I .

PRE-SET
DIRECT TO U3ER
USING ViPOP
X='1, f=0

'——@‘,

PAGE 2

Figure G-1. Logical Device Handler (cont.)

237

238

3. Because there is no real device to operate an 1/O interrupt, a channel timeout for LDs must be simulated
when the pre-1/0 edit routine determines that an 1/O operation is satisfied. The mechanization of this is
documented in the code.

Error Recovery Routine

This routine merely checks the indicators set in the FCT by the pre-1/O edit routine and posts the appropriate com—-
pletion status.

Post-1/0 Edit Routine

The post=1/O edit routine currently stores the byte count residue and returns to the user.

Use of M:READ/M:WRITE

M:READ and M:WRITE are used exactly as for an operation on a real device with the following exceptions:
1. Channel timeout does not apply and will be ignored if specified.
2. Read backward is not meaningful (order X'0C').

3. Read binary and read automatic are not differentiated. Only one record, as specified by buffer address
and byte count, is transferred per request (orders X'02' and X'06").

4. Check write is not meaningful (order X'07").

5. Write binary and write EBCDIC are not differentiated (orders X'01' and X'05").
Coding of M:READ/M:WRITE calls should check for a status return indicating the AIO Receiver, if specified, will
not be entered. If requested, only the AIO Receiver of the channel "owner" will be entered. All other requests to
the channel (as long as the channel is "owned") will return with the X-register set = =1 indicating the AIO Receiver
will not be entered.

All status returns and completion codes retain the same meaning, where applicable, as for real devices.

All no-wait operations should be followed by a CHECK operation as standard. Wait/no-wait 1/O and the dismiss
function are handled as for real device 1/O.

Recommended Practices
1. SYSGEN with the DISMISS option.

2. SYSGEN the LDs with unique pseudo-device numbers; i.e., allow no real devices to co-exist on the same
channel with a Logical Device.

3. Check status on return from M:READ/M:WRITE to determine whether an AlO Receiver, if specified, will
be entered.

4, A CHECK operation should be performed for all no-wait M:READ/M:WRITE calls.

5. The overlay containing the pre-1/O edit, post-1/O edit, and error routines for LDs should be made resident
to facilitate rapid response to M:READ/M:WRITE calls. This overlay is reentrant.

6. Channel timeout is not presently implemented for LDs. If timeout is required for some application, use of
a clock routine combined with checking status could be used.

Xerox Corporation

' d
701 South Aviation Boulevard X ‘OX
El Segundo, California_90245

Reader Comment Form

We would appreciate your comments and suggestions for improving this publication.
Publication No. Rev. Letter | Title

Current Date

How did you use this publication?
Learning Installing Sales) .
D D L D D Fully Covered D Well |llustrated D Well Organized D Clear
D Reference [:l Maintaining D Operating
What is your overall rating of this publication?

D Vvery Good D Fair D Vvery Poor
D Good D Poor
e ———

Is the material presented effectively?

What is your occupation?

Your other comments may be entered here. Please be specific and give page, column, and line number references where
applicable. To report errors, Please use the Xerox Software Improvement or Difficulty Report (1188) instead of this form.

Your Name & Return Address

2190(12/72)

Thank You For Your Interest. (fold & fasten as shown on back, no postage needed if mailed in U.S.A.)

Staple Staple

First Class
Permit No. 229
El Segundo,
California

BUSINESS REPLY MAIL
No postage stamp necessary if mailed in the United States

Postage will be paid by

Xerox Corporation
701 South Aviation Boulevard
El Segundo, California 90245

Attn: Programming Publications

701 South Aviation Boulevard
El Segundo, California 90245
213 679-4511

Rl

XEROX _

XEROX® |s a trademark of XEROX CORPORATION.

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	replyA
	replyB
	xBack

