
SJ015 SIGMA 5/7 BATCH TIME-SHARING MONITOR (BTM)

Reference Manual

SCIENTIFIC CATA SYSTEMS

SYSTEM CALs

BPM CAls Call FPT Code Function Comments

Call FPT Code Function Comments CALl,1 X'29' M:CHECK Allowed
X'2A' M:DEVICE (LINES) Ignored

CALl,I X'OI' M:REW Allowed CALl,2 Illegal
X'02' M:WEOF Ignored CALl,3 Illegal
X'03' M:CVOL Ignored CAL1,4 Illegal
X'04' M:DEVICE (PAGE) Ignored CALl,5 Illegal
X'05' MiDEVICE (VFe)t Allowed
X'06' M:SETDCB Allowed Teletype Input CAls Page
X'OB' M:DEVICE (DRe) Ignored
X'OC' M:RELREC Allowed CAL3,0 (Return next character) 56
X'OD' M:DELREC Allowed CAL3,2 (Change activation type) 56
X'OF' M:TFILE Allowed CAL3,3 (Set CC on activation) 56
X'10' M:READt AII~wed

X'II' M:WRITEt Allowed Teletype Output CAL
X'12' M:TRUNC Allowed
X'14' M:OPEN Allowed CAL3, 1 (Print character) 58
X'l5' M:CLOSE Allowed
X'lC' M:PFIL Allowed BTM CALs
X'lD' M:PRECORD Allowed
X'20' M:DEVICE (LINES) Ignored CAL3,4 {Fetch subsystem} 59
X'21' M:DEVICE (FORM) Ignored CAL3,5 {Fetch subsystem or user program} 59
X'22' M:DEVICE (SIZE) Allowed CAL3,6 (Return to next higher level) 59
X'23' M:DEVICE (DATA) Ignored CAL3,7 (Swap memory pages) 59
X'24' M:DEVICE (COUNT) Ignored CAL3,8 (Return TCB address) 60
X'25' M:DEVICE (SPACE) Ignored CAL3,9 (Return PSD) 60
X'26' M:DEVICE (HEADER) Ignored CAL3,10 (T ransfer error message) 60
X'27 M:DEVICE (SEQ) Ignored CAL3, ll} (Describe memory allocation) 60
X'28' M:DEVICE (TAB) Ignored CAL3,13

CAL3,14 (Return maximum memory pages) 60
t Available on console I/O. CAL3,15 (Return date and time) 61

FREQUENTLY-USED COMMANDSt

Teletype Operations Page

Code Function

(§a

(§x

0§
(§ R

@!

Executive

Acknowledge

Backspace

Erase

Local new line

Retype

Tob

.!.ASSIGN dcb name [,(FILE,file name)] [,(option) ...]

lTA~~Jtl [,t2] ... [,t8]]

!.SA~ile name t~~~~]
lRESTORE file name [, TEMP]

!PROCEED - ---
lBYL

lBA~

.!.BP~

!EDIT

!FERRET

lFORTRAN

!LOAD

!SYMBOL

! SUPER

BASIC Operations

~CLE[AR]

~DEL[ETE]linel [-line2] [,Iinel [-line2]] [. ..]

~LIS (T] Dine I [-line2] (,line 1 [-line2]] [. ..]

~SAV[E 0] {~ER} aconst [linel [-line2]]Glinel [-line2]] [...]

~LOA[D] aeonst

~EXT[RACT] linel [-line2][,linel [-line2]](...]

{
RUN }

~ FAS [T]

~PRO(CEED]

~NAME [E] aconst

{
PAS [SWORD] .}

~ ACC [OUNT] stnng

:::ENT(ER BASIC] [L]

~WID [TH] digit string

:::STA[ruS]

tDelta commands are indexed on page 52 of this manual.

8

9

9

9

9

9

5

6

6

6

7

7

11

15

18

29

31

37

53

54

II

J1

12

12

12

12

12

13

13

13

13

13

13

EDIT Operations

:BUILD fid [,n[,i]]

"END

*COPY fidl {g~ER} fid2 Ln[,i]]

'::'DELETE fid

'::'EDIT fid

*BP {ON}
- OFF

~IN n,i

'::IS n,i

'::TY n [-m]

'::TS n [-m]

'::DE n [-m]

':'FD n [-m],/string/ [,c Gd]]

~FT n [-m], /string/['c Ld]]

~MD n [-m],k [-p] [,i]
:MK n [-m],k [-p](,i]

:RN n,k

:CM n,c

~SS n [,c [,d]]

':ST n [,c[,dJ]

~SE n [-m] ['c[,d]]

:[jJ /string l/S/stri ng2/

~[j] /string/D

! ':[j] /string 1/E/string2/1

:kE/string2/

1.:.[i]/string l/o/string2/1

l':'kO/strlng2/ J

! :(j]/string I/p /string2/1

:kP/string2/

! '::[j]/string I/F /string2/ 1

:kF /string2/

I :[n /string/ {~} s I
.::.k {~} s

.:[... ;] TS[; ...]

.:~ .. ;] lY[; ...]

:.: [.•. ,] JUn

.:.: NO

! ~J .. ;] RF; .. '1
~ .. ·iRF [; .. .]

FERRET Operations

>X

~L[IST] acct

~T[ESTJ file(acct,pass,) L.,.J
.::A[CTIVITY] file(occt,pass.)[, ...]

'::D[ELETE] file(acct,poss.)[, ...]

~C [OPY] file(occt,pass.)[, ..•]

~E[XAMINE] file(acct,poss.}

Page

19

19

19

20

20

20

21

21

21

21

21

22

22

22

23

23

23

23

24

24

25

25

25

25

25

26

26

26

27

27

27

27

29

29

29

29

29

29

30

Price: $3.50

BATCH TIME-SHARING MONITOR

REFERENCE MANUAL

for

50S SIGMA 5/7 COMPUTERS

PRELIMINARY EDITION

90 15 77A

February 1969

SCIENTIFIC DATA SYSTEMS/70 1 South Aviation Boul evard/EI Segundo, Cal ifornia 90245

© 1969, Scientific Data Systems, Inc. Printed in U.S.A.

RELATED PUBLICATIONS

Title

SDS Sigma 5 Computer Reference Manual

SDS Sigma 7 Computer Reference Manual

Mathematical Routines Technical Manual for SDS Sigma Computers

SDS Sigma Symbol and Meta-Symbol Refere~ce Manual

SDS Sigma 5/7 BASIC Reference Manual

SDS Sigma FORTRAN IV Reference Manual

SDS Sigma FORTRAN IV Operations Manual

SDS Sigma FORTRAN IV Library Technical Manual

SDS Sigma FORTRAN IV-H Reference Manual

SDS Sigma FORTRAN IV-H Operations Manual

SDS Sigma FORTRAN IV-H Library/Run-Time Technical Manual

SDS Sigma 5/7 Batch Processing Monitor Reference Manual

SDS Sigma 5/7 Batch Processing Monitor Operations Manual

SDS Glossary of Computer Terminology

SDS Sigma Multipurpose Keyboard/Display Reference Manual

SDS Sigma Message-Oriented Communications Equipment Reference
Manual

SDS Sigma Character-Oriented Communications Equipment
Reference Manual

NOTICE

Publication No.

900959

900950

900906

900952

90 1546

900956

90 11 43

90 15 24

900966

900644

90 11 38

900954

90 11 98

900957

900982

90 15 68

9009 81

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features may
depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their SDS sales representative for details.

ii

CONTENTS

1. INTRODUCTION 6. TERMINAL BATCH ENTRY (BTM) SUBSYSTEM 15

User Terminal Functions Job File Creation 15
Console Input 15

2. START -UP PROCEDURE 4 Disc File Input 15
Job Fi Ie Editing 16

Activation Procedure 4 Status Checking 16
Log-In Procedure 4 Error Conditions 16

3. BTM EXECUTIVE 5 7. EDIT SUBSYSTEM 18

RAD Fi Ie Assignment 5 Introduction 18
ASSIGN Command 5 Record Formats 18

TAB Setting 6 Command Structure 18
TABS Command 6 Messages 18

Subsystem Calls 6 Fi Ie Commands 19
Fi Ie Assignment 6 BUILD (Bui Id new fi Ie) 19
Calls 6 END (Exit) 19

Save and Restore 6 COpy (Copy fi Ie) 19
SA VE . Command 6 DELETE (Delete fi Ie) 20
RESTORE Command 6 EDIT (Edit fi Ie) 20

Escape and Proceed 7 BP (Set blank preservation mode) 20
§ Key 7 Record Editing Commands 21
Proceed Command 7 IN (Insert new records) 21

Log-Out Procedure 7 TY (Type records) 21
BYE Command 7 DE (Delete records) 21

FD (Find and delete) 22

4. TE LETYPE OPE RA TI ON S 8 FT (Find and type) 22
MD (Move and delete records) 22

Speci al Editing Features 8 MK (Move and keep records) 23

Acknowledge (0 Q) 8 RN (Renumber records) 23
CM (Commentary) 23

Backspace (§ @)) 9
SS (Set and step) 23

Erase «(§ X) 9
ST (Set, step, and type record) 24

Local New Line (@ @ 9
Retype (§ R) 9

Intra-Record Operations 24
SE (Set intra-record mode) 24 Tab ((§ 1) 9
S (String substitutions) 25

Standard Input Modes 9
D (Delete string) 25
E (Overwrite and extend blanks) 25

5. BASIC SUBSYSTEM 11 o (Overwrite) 25
P (Precede by) 25

Editing Modes 11 F (Follow by) 26
Li ne Inserti on 11 Rand L (I mage sh ifti ng) 26
Line Deletion 11 TS (Type, suppressing sequence number) 26
Text Listing 12 TY (Type, including sequence number) 27
Text Saving 12 JU (Jump) 27
Program Loading 12 NO (No change) 27
Logical Inverse of Line Deletion 12 RF (Reverse blank preservation flag) 27

Compi lation and Execution Mode 12 Edit Command Summary 27
Miscellaneous 13

Escape and Proceed 13 8. FERRET SUBSYSTEM 29
Direct Statements 13
Fi Ie Operations 13 Ferret Commands 29
Precision of Output 13 LIST (List account contents) 29
Printer Width 13 TEST (Test fi Ie accessibi I ity) 29
Status 13 ACTIVITY (Check file activity) 29
Sign Off 14 DELETE (File deletion) 29

Mode Switching 14 COpy (Copy file) 29
Batch Contro I and Operati on 14 EXAMINE (Examine fi Ie) 30

iii

9. FORTRAN IV-H SUBSYSTEM 31

FORTRAN Options ____________ 31
r _ ,, ___ £ CT'\DTDAI..I D_______ ,),4 execuTIon or rVI'\JI'\/",\I"'I rJU!::jlUIII:> _______ oJ"T

FORTRAN Execution with Debug Option ____ 35
FORTRAN Library ;Run-Time Description 35

10. LOADER SUBSYSTEM 37

Loader Options 37
Loader Error Messages 39
Undefined Symbols in Load Map 41
Satisfying Undefined Symbols 41
Execution and System Interface Under the

"D" Option 42
Debugg i ng 43
De I ta Commands 44

Expression Evaluation 44
Displaying and Opening Memory Cells 44
Storing in Open Memory Cells 44
Format Codes for / and = Commands 44
Input Conversions and Expressions 44
Special Symbols 44
Symbol Table Control 45
Execution Control 45
Breakpoints 45
Memory Searching 45
Misce Ilaneous Commands 45

Syntax Description 45
Command Delimiters 45
Symbols 46
Special Symbols __ . __ .. __ 46
Input of Expl i ci t Constants 46
Expressions 47

Command Description 47
Memory Location Display: The / Command __ 47
Expression Evaluation: The = Command 48
Memory Modification: The €V: @: t f

and ([3 Commands 48
Output Format Control 48
Executi on Control: The ;G iP and ;X

Commands ____________ 49
Breakpoints the ;B Command 49
Memory Searching: The iW and iN

Commands ____________ 50

Symbol Table Control: The ;K is and
< > Commands __________ 51

Miscellaneous Commands: The iA ;R and
iZ Commands ___________ 51

Errors and Error Messages 52
Index to Delta Commands 52

11. SYMBOL SUBSYSTEM 53

12. SUPERVISORY SUBSYSTEM (SUPER) 54

Super Commands _____________ 54
U [SERS] (Authorize on-line users) 54
K [lLLUSERS] (Cancel on-line access) 54
S [TATS] (Summarize accounting totals) 54

iv

D [ELSTATS] (Initialize statistics) ______ 54
L [1ST] [acct] (List users) 54
P [ASSWORDS] acct (File summary) 54
J Cr\,", fc_.J :_L\ t::A
;'-'-'LJ \'-IIU IUU/ oJ-r

INDEX 86

APPENDIXES

A. BPM SYSTEM CALs 55

Error Codes from File Operations _______ 55

B. SUBSYSTEM CONVENTIONS FOR TELETYPE
INPUT

C. SUBSYSTEM CONVENTIONS FOR TELETYPE
OUTPUT

D. BTM SYSTEM CALs

E. SUBSYSTEM INTERFACE

56

58

59

62

Coding Requirements ___________ 62
Loading Requirements 64

F. BTM SCHEDULING 65

G. BTM MACHINE OPERATION 67

Key-Ins ________________ 67
! BTMM text 67
! BTMX [xx] _____________ 67
!BTMS 67

Terminal Job Insertion ___________ 67
System Save for Restart 67
System Error Recovery 68

H. TIMING 69

I. USASCII TO EBCDIC CONVERSION 70

J. EBCDIC TO USASCII CONVERSION 72

K. BTM SYSTEM GENERATION 74

General Information ___________ 74
Sysgen Operational Information 75

Pass 1 75
Pass 2 75
Load and Overlay Cards 76
DEF Card 76
System Boot and Initialization 76
Job Command 76
Creating Subsystems ___________ 76

Component Sizes in a BTM System ______ 77
Fixed Overhead 77
Variable Overhead 77
Background and On-Line Areas 77

Sysgen Deck Setup 77
65K System Generation 78
32K System Generation 82

ILLUSTRATIONS TABLES

l. Teletype Keyboard Configuration 2 l. Debug Codes 35

2. User Terminal Control Panel 3 2. Loader Error Messages 39

E-l. DCB Name Table 62 3. Loader Error Comments 40

E-2. TCB Format 63 B-l. Conventions for Activation Types 0 and 1 56

F-l. On-Line Time-Sharing 65 B-2. Conventions for Activation Types 2, 3, and 4 57

v

1. INTRODUCTION

The SDS Sigma 5/7 Batch Time-Sharing Monitor (BTM) is an
extension of the Sigma 5/7 Batch Processing Monitor (BPM) t.
The BTM time-sharing system offers efficient, comprehen­
sive, and compatible batch processing service concurrently
with conversational time-sharing.

On-I ine services are provided by the following subsystems:

• BASIC processor

• EDIT source file editor

• FERRET file utility subsystem

• FORTRAN IV-H compiler

• SYMBOL assembler

• LOADER object module loader

• BPM batch job controller

• DELTA debug package

Batch processing services are accessed by:

• Local batch submitted at the central computer

• Remote batch through high-speed terminals

• Terminal batch for on-line users

BTM users may choose between any of the avai lable system
services with ease and flexibi lity, in either the on-I ine or
batch mode, because:

• Batch mode equivalents are provided for the on-line
FORTRAN IV-H, BASIC, and SYMBOL processors

• A common file-management system provides compati­
ble file structures

• Comprehensive and compatible accounting information
is provided for both modes of operation

Installation management may control job processing by:

• Specifying which remote terminals may have access to
the batch processing background

• Permitting system access only to those users whose
name and account number are recognized

tSee the SDS Sigma 5/7 Batch Processing Monitor Reference
Manual, publication number 90 09 54.

• Broadcasting messages to all terminal users from the
central computer

• Shutting down user terminals, from the central com­
puter, to re~over the on-line core memory space for
batch process i ng

• Specifyi-ng the highest batch job priority allowed for
each individual terminal user

• Altering the priorities of jobs in the batch stream

Typical hardware configuration requirements for use of BTM
are as foHows:

• CPU (Sigma 5 or 7) with memory protection, floating­
point arithmeticl' and two each of the following: reg­
ister blocks, external interrupt levels, and real-time
clocks

• 48K core memory

• Card reader

• Typewriter

• 6MB RAD storage (system and fi Ie storage)

• High-speed RAD and Selector lOP (swap storage for
24-user system)

• Two magnetic tape units

• Line printer

• Character-oriented-communication controller (line
interface units, send/receive modules, and format tim­
ing group as required)

• Teletype unit for each on-line user

Recommended in addition to the above are:

• Card punch

• Decimal arithmetic option

• 16K core memory

USER TERMINAL FUNCTIONS

The user terminal consists of an ASR Teletype (with paper
tape capability) or KSR Teletype (keyboard only). The
Teletype provides the communication link between the user
and the computer. Input is typed in by the user and out­
put is printed by the BTM system. Figure 1 shows the
Teletype keyboard and Figure 2 the control panel.

Introduction

000000000000
(US) (NUL)

~QQ G)QQCDm@~)
'8Q G)QG)OO (ESCn (F$) OG)

(RS) (GS)

GG)QQQQ OOOG
~) cp I----. __ S_;PAC_E BAR ____ 1 G

ED These keys or·, missing on some models. rn This key is positioned elsewhere on some models.

Figure 1. Teletype- Keyboard Configuration

In this diagram, characters obtained by depressing the SHIFT key are shown at the top of the key and characters obtained by depressing the
CTRL key are shown at the bottom of the key. Characters obtained by depressing both SHIFT and CTRL keys are shown above the character
key. On the actual keyboard, all unparenthesized forms appear at the top of the key.

u:w·'
1,oIOU1'
~

Figure 2. User Terminal Control Panel

Appendix A describes the functions of the operating con­
trols and special keys.

ON-LINE OPERATIONS

Time-sharing, or more precisely resource sharing, in the
BTM system is achieved by alternately processing part of a
batch job and part of an on-line job. Batch and on-line
processing modes are each allocated a specified time slice
or IIquantumli. When the current batch quantum expires,
the next active on-l ine user1s job is processed. The corel
disc swapping of on-l ine jobs is typically performed during
the batch time quantum. The area of core memory dedi­
cated to batch processing is not swapped to disc storage.

I/O FILES

I/O files for on-line users are maintained on the RAD. The
terminal user may request that these files be copied to card
punches, line printers, and magnetic tapes at the central
computer or to his terminal. Fi les input from punched cards
or magnetic or paper tape may be saved on the RAD for
later access by the terminal user. Complete fi Ie security is
provided by the comprehensive file management system.

OFF-LINE t OPERATIONS

Batch jobs may be entered from a user terminal through use
of the BPM subsystem (see Chapter 6), thus affording the
terminal user full capabilities of batch processing.

All of the BPM processors (e. g., COBOL, SORT, MERGE,
SDS FORTRAN IV, 1401 Simulator, Meta-Symbol, etc.)
are available to the on-line user in the batch mode.

Batch jobs submitted in this manner are then merged into
the background job stream on the RAD and are queued for
execution (during the batch quantum) according to their
relative priorities.

The on-line user may, at any time, query the system to
determine the current status (i. e., waiting, running, or
completed) of any specified batch job.

tlJ Off-l ine lJ usually refers to operations performed by per­
ipheral devices not controlled by a CPU. For conven­
ience in this manual, however, lIoff-line li is used exten­
sively to identify all operations not performed by the on-line
BTM system.

Introduction 3

2. START-UP PROCEDURE

On-I ine service is obtained from BTM by activating the
user terminal and logging into the system as outl ined below.

ACTIVATION PROCEDURE

The user terminal is activated by depressing the "0RIG"
key (see Figure 2, Teletype Control Panel). The key
tatches in the depressed position and is illuminated; it re­
mains in this condition until the user deactivates the termi­
nal (see II BYE Command ll

, Chapter 3).

LOG-IN PROCEDURE

After the terminal is operational, the user alerts the BTM
system by momentarily depressing the BREAK key or @ @
(see Figure 1, Teletype Keyboard). When the system is
operative, the following messages will be printed:t

BTM SYSTEM IS UP
date and time
!LOGIN:

The exclamation character in the last line of the above
message informs the user that he is communicating with the
BTM Executive; the colon signifies a request for data. In
this instance, the data required from the user is as follows:

! LOGIN: name,acct&pass] @l

where

name is any 1 - 12-byte name.

acct is any 1 - a-byte account ID.

pass is any 1 - a-byte password.

E> is the Carriage Return key.

Embedded blanks are possible in any of the specifications.
Only one password is legal for each unique name-account
pair. The same password can be associated with several
users and several names may be used with the same account.
The password may be made up of nonprinting control
characterstt if the user so desires.

t Messages output by BTM are underl ined throughout this
manual, although in an actual session such Teletype output
is not underl ined.

tt A control character is produced by holding down the CTRL
key and then depressing a key for any character on the user
console.

4 Start-up Procedure

After the user responds to the log-in request, his name, ac­
count, and password combination is checked for validity.
If valid, that is, if the name-account-password combination
is in the accounting file, he is logged in and Executive ser­
vices are at his disposal. If invalid, a new log-in request
is issued. If no accounting file is in existence, anyone may
log-in under an arbitrary name-account pair.

After LOGIN, the system prints on the user's console:

ID = a

where a is A, B, ... ,Z, 1, ... ,6 depending on the COC line
number of the user's terminal which may range from 0-3l.
Higher line numbers recycle through the characters A through
6. For instance, a terminal connected to line number 3 re­
ceives the message:

ID = D

In any of the subsystems that provide built-in output or
scratch files, this ID letter is made part of the name in or­
der to provide unique file names for simultaneous users under
the same account.

These subsystems and file names are:

Subsystem File Name Fi I e Functi on

BASIC RUNaFIL scratch file

SYMBOL BOTEMP a default binary out

FORTRAN BOTEMPa defau It binary out

SOTEMPa default source out

LOAD BOTEMPa default binary input

SDaFIL scratch file for de-
bugging symbol tables

When the user logs out (BYE), his running statistics are up­
dated and his statistics for the current session are displayed,
along with the amount of disc space still available to him.
The accumulated totals are available only to the installation
supervisor (see Chapter 12, "Supervisory Subsystem II).

Following the log-in procedure, BTM outputs an excl ama­
tion character, indicating that the Executive is ready to
accept commands.

If BTM prints an exclamation character as soon as the BREAK
key is depressed, this indicates that a previous user of the
terminal has failed to log out. In such a case, the user
snouid key in a DYE command before logging in.

The following exampl e shows the proper log-in procedure.

BTM SYSTEM IS UP
10/15/69 09.42
! LOGIN: SMITH, SDS 123, PASSOK @

1.

3. BTM EXECUTIVE

The BTM Executive responds to control commands that direct
the flow of the user's on-I ine work. There are 14 such
commands:

l. ASSIGN 8. LOAD
2. TABS 9. SYMBOL

3. BASIC 10. SUPER

4. BPM (Terminal Batch Entry) 1l. SAVE
5. EDIT 12. RESTORE
6. FERRET 13. PROCEED
7. FORTRAN 14. BYE

ASSIGN allows the user to specify RAD I/O file assignments.
TABS enables tab stops to be set for the Teletype at the user
terminal. BASIC, BPM, EDIT, FERRET, FORTRAN, LOAD,
SUPER and SYMBOL are subsystem calls. SAVE and RE­
STORE allow the user to interrupt his on-line work and re­
sume the session at a later time. PROCEED permits an in­
terrupted subsystem to continue operation. BYE is used to
terminate an on-line session.

Executive commands may be given only when the Executive
is in control, as indicated by the printing of an exclamation
character on the Teletype. The user types in the first two
letters of the mnemonic and the Executive prints the re­
maining letters. If the Executive does not recognize a
command, it informs the user by printing a question mark.
It then begins a new command line with an exclamation
character, so that the user may repeat the command.

After the Executive has completed the command mnemonic,
the user suppl ies any necessary parameters and terminates
the command by giving a carriage return. Commands that
never include parameters following the mnemonic (e.g.,
all subsystem calls) are terminated automatically by the
Executive: the user should not supply the @. At any time
prior to the termination of a command, the user may cancel
the command by depressing the BREAK key momentarily.
The Executive ignores a canceled command and begins a
new command line.

Discussions of the use of Executive commands and the BREAK
key are given below.

RAD FILE ASSIGNMENT

ASSIGN COMMAND

The ASSIGN command controls all RAD file assignments for
BTM users, with the exception of assignments made automat­
ically by subsystems. The format of this command is similar
to that of the ASSIGN command of the BPM. The general
form of the command is shown below. Items shown in capital
letters are required; those in lower case represent parameters.
Optional items are denoted by brackets, although no brack­
ets are actually used in ASSIG N commands.

~ASSIGN dcb name ~(FILE,file name)] G(option) •• ~

where

dcb name is a DCB name of up to eight alphanu-
meri c characters. The fi rst two characters must
be either F: or M: (F: denotes user DCBs and M:
denotes system DCBs).

fi Ie name is a user-sel ected identifi er of up to
eight I etters and/or digits.

Files can be saved for future use through the PERM option
(see below). The various ASSIGN options recognized by the
BTM Executive are listed below. Each option may be en­
closed in parentheses, and options must be separated by
commas. No blanks are allowed within the specification
field. If only the DeB name is specified, default values
are assumed for all option parameters and the default assign­
ment (if any) for the DeB is assumed also.

Option Meaning Comment

IN Input fi I e Existing file to be read only.

OUT Output file New file to be written only.

INOUT Update file Existing file to be read and
written.

OUTIN Scratch fi Ie New fi I e to be written and
read.

PERM Permanent Defauit for input Hies.

TEMP Temporary Defaul t for output fil es.

HERE Teletype Assign the DeB to the user
Teletype.

REL Release r....

SAVE Don't release

PASS Password
Same meaning as in BPM
ASSIGN command.

READ Read accts.

WRITE Wri te accts.

Sample ASSIGN commands are shown below:

! ASSIGN M:SI,(FILE,SIMBOLIK),(IN), (TEMP)

The above command specifies that the RAD file named
I'SIMBOLIK" is to be used as a source input file. It may
only be read, and is not to be saved when the user logs out.

L ASSIGN M:DO, (HERE)

This command specifies that the user terminal is to be used
for d i agnosti c outpu t.

!ASSIGN M:BO

This command specifies that the M:BO DeB is to be returned
to its default assignment.

BTM Executive 5

TAB SETTING

TABS COMMAND

The TABS command sets up a tab sequence for the input from
the user's Teletype. The form of the command is shown below.

_!.TA~[tlt t2}·· tta]]
where

t.
I

specify the tab positions desired. A blank speci­
fication will cause all existing tabs to be deleted.

A TABS command has the effect of clearing any previous tab
settings. Thus, a maximum of eight tabs may be used in any
one line of input. While keying in a line, a previously set
tab is employed by depressing the ESCAPE key followed by
the letter I. At this point, the input image is spaced to the
next tab posi ti on, if any. If no tab exi sts beyond the present
column, a "?" is echoed and the input image is spaced by
one column.

SUBSYSTEM CALLS

FILE ASSIGNMENT

With the exception of calls to the FORTRAN, LOADER,
BPM, and SYMBOL subsystems, all file assignments are made
after the subsystem is called. The user terminal is the de­
fault assignment for DO, but it may be reassigned. In the
case of FORTRAN and SYMBOL, the user may assign SI, LO,
and BO to suit his own requirements. In the case of BPM,
SI may be assigned to meet user requirements. The user ter­
minal is the default assignment for SI and LO, and BO is
assigned to the file IBOTEMPa" unless reassigned by the
user. BOTEMPa is also the default assignment for BI, the
default input to the LOADER subsystem.

CALLS

Subsystem calls may be made whenever the BTM Executive
is in control, assuming that proper file assignments have
been made. The forms of the seven subsystem calls are
shown below.

! BASIC - --
!BPM

!EDIT

!FERRET

!FORTRAN

!LOAD

!SYMBOL

! SUPER

Once a subsystem call has been made, control is transferred
to the called subsystem and the Executive remains inactive
until control is returned to it by the subsystem or by the user
(see IIESCAPE and PROCEED", below).

6 Tab Setting/Subsystem Calls/SAVE and RESTORE

SAVE AND RESTORE

The SAVE and RESTORE functions are Executive services
that permit the user to interrupt his on-I ine task and resurne
it at a later time.

SAVE COMMAND

The SAVE function causes the user's context block (i. e., ma­
chine environment), subsystem area, and user area to be writ­
ten to a discfileunder a user-specified filename. TheSAVEd
fi I e can then be retri eved from the RAD at a later ti me dur­
ing the same session or during a future on-line session.

The user may want to retrieve the SAVEd file from the RAD
prior to logging out, but may not wish to SAVE it permanent­
ly, in which case he may choose to declare the file tem­
porary (i. e., to be released at log-out time). This may be
done by means of the TEMP option (see below).

Prior to saving the environment, BTM automati cally closes
all active files. The user is responsible for any required
file positioning, etc. Hence, it usually is not possible to
successfully resume a compilation, assembly, or load.

As with any Executive command, a SAVE command may be
given only when the BTM Executive is in control of the
system. The@ key (see below) can be used to return con­
trol to the Executive.

The SAVE command has the form shown below.

where

file name specifies a user-selected name of up to
eight letters and/or digits.

TEMP specifies that the SAVEd file is to be re-
leased when the user logs out. If TEMP is speci­
fied, the file cannot be RESTOREd (see below)
after logging out, but may be RESTOREd at any
time prior to logging out.

PERM specifies that an existing TEMPorary file is
to be changed to PERManent.

RESTORE COMMAND

The RESTORE function reloads and restarts the activity rep­
resented in a fil e previously created in response to a SAVE
command. If the specified file does not exist, was not
SAVEd, or cannot be accessed for any other reason, a
question mark will be printed. If the TEMP option (see
below) is specified in the RESTORE command, the file will
be released at the next log-out time.

The form of the RESTORE command is shown below.

.!.RESTORE file name[,TEMP]

where

file name specifies the name previously assigned
to a SAVEd file.

TEMP specifies that the file is to be released at
log-out time.

The user is returned to the Executive level. The PROCEED
command may be used to restart a process interrupted by
@ @ (see below).

ESCAPE AND PROCEED

The ESCAPE and PROCEED functions are Executive services
that permit the user to interrupt a subsystem or user1s pro­
gram and·return to it from the Executive level.

@ KEY

The €>key returns control to the BTM Executive. If a sub­
system is in control, a single ESCAPEt is sufficient; if the
user1s program is being executed, two successive ESCAPEs
are required.

Once the Executive has gained control, any Executive
command can be given. However, if the user wishes to
return to the interrupted activity without restarting it, he
must not give any subsystem calls before returning control
to the interrupted subsystem or program by means of a
PROCEED command (see below).

tEach ESCAPE requires the @key to be depressed twice,
which reduces the I ikel ihood of accidental ESCAPEs.

PROCEED COMMAND

The PROCEED command continues a subsystem or program
that has been interrupted by a previous ESCAPE (see above).

The PROCEED command has the form shown below.

!PROCEED

lOG-OUT PROCEDURE

An on-line work session is terminated by giving the Execu­
tive command BYE.

BYE COMMAND

The BYE command informs the Executive that the user is
logging out of the system. The Executive responds by
printing the time and date on the line following the com­
mand. It then prints a summary of statistics for the current
session (see below).

The BYE command has the form shown below.

!BYE
time-date
RAD SPACE xx
CPU xX.xxx
I/O xx. xxx
OVERHEAD xX.xxx

(Granules of disc space used)
(Minutes of CPU time used)
(Minutes of I/O time used)
(Minutes of CPU overhead time
used)

The user terminal is disconnected from the computer auto­
matically, following a BYE command.

ESCAPE and PROCEED/Log-out Procedure 7

4. TELETYPE OPERATIONS

All Teletypes used in conjunction with the BTM system are
required to operate in the full-duplex mode. In this mode,
the input keyboard and the output printing mechanism are
completely decoupled, so that depressing a key on the key­
board does not, in itself, cause the corresponding graphic
to be printed. Printing can be achieved only by direct com­
mand of the attached computer. In the normal mode, the
interrupt routine which processes the input character will
immediately transmit back to the Teletype printing mechan­
ism each such input character, thus causing it to be lIechoed ll

•

Should there be any delay in retransmitting the character,
the echo may fall behind the input - a disconcerting situa­
tion, at first. Moreover, since the input and output opera­
tions are entirely distinct, one may even type input while
a subsystem is printing output.

Under BTM, a subsystem is "activated" whenever a suffi­
cient amount of Teletype input has been accumulated for
it to process, and it is "dismissed ll if it requires further in­
put when none is available. Because there is a substantial
amount of overhead involved in activating one subsystem
(and thereby dismissing another subsystem), it is desirable
to allow as much Teletype input as possible to accumulate
before activating the subsystem to process it. As the re­
quirements for activation differ among subsystems, BTM
provides each subsystem with the capabi lity to specify what
conditions constitute sufficient Teletype input. There are
four such sufficient conditions (comprising the II activation
classes ll

), as follows:

1. Input of a I ine feed, 0 or carriage return, @) only.

2. Input of one of the characters /, =, @I, t, @),
or0.

3. Input of a punctuation character (see Appendix AJ, or
of@or9.

4. Input of any character whatever.

Clearly, condition 4 is the most severe, in that it requires
the subsystem to be activated after each character is typed;
whereas condition 1 is the most desirable, in that it requires
activation only after each complete line of input.

The primary effect of this on the user results from the fact
that BTM will stop echoing input immediately after an acti­
vation character is typed in and wi II not resume echoing ,
unti I the subsystem has been activated and has read from
BTM all the accumulated input, throughthe first character
of the current message string. (This procedure is necessary
to keep input and output correctly sequenced, since the
subsystem may type out after each activation character.)
Thus, echoing always stops unti I the subsystem has complete Iy
read the last activation image from BTM. Because some sub­
systems may change activation classes as they run, it is
sometimes difficult to know at a given point what the cur­
rent activation class is. Basically, when the Teletype stops
echoing input, an activation character has been typed and
the subsystem has not yet been called.

8 Teletype Operations

SPECIAL EDITING FEATURES

BTM provides the Teletype user with several in-line editing
capabilities, including the ability to backspace over char­
acters and to erase lines. However, editing may only be
performed on those characters typed in since the last acti­
vation character was typed. That is to say, one cannot
edit input across the boundaries defined by activation char­
acters. When using the editing features described herein,
the user must be aware of the activation class of the sub­
system being executed to make correct use of these features;
although trying to edit across an activation character bound­
ary wi II never cause any unintended change to the input,
but wi II rather cause part or all of the effect of the edit to
be lost.

Because the Teletype is a low-speed device, all Teletype
I/O must be buffered, raising the possibi I ity of I/O buffer
overflow. Whenever the input buffer gets within ten char­
acters of being full, each further input character will cause
the Teletype bell to be rung immediately, to signal the im­
pending buffer overflow. When the bell rings in this manner,
the user should wait a few seconds before typing further.
When the bell rings to signal impending buffer overflow, a
control S (XOFF) is generated to turn off the paper tape
reader (if in use). Later, when BTM requires input, a con­
trol Q (XON) is generated to turn the paper tape reader
back on. When the active subsystem has processed some of
the data from the input buffer, the bell will no longer ring
when input is entered. If, despite this warning, the input
buffer becomes completely filled, each overflow character
will be entered into the buffer as a @)(which always causes
activation) and will be echoed as a question mark. The
actual input character is lost, and the @)replaces the last
character in the buffer.

Should the output buffer approach overflow while a subsys­
tem is doing Teletype output, that subsystem will be dis­
missed for a while to allow the buffer to empty. Because
the input echo is placed in the output buffer the same as any
other output, it is possible for the user, by typing ahead of
the echo, to overflow the output buffer with echo characters.
In such a case, some echo characters wi" be lost. The
actual input is not lost and will be correctly passed to the
subsystem. Due to the way BTM sequences teletype I/O,
such a loss of echoing can occur whenever the sum of the
number of characters output by a subsystem and the number
of characters the user has typed ahead of the echo exceeds
the output buffer size (normally, one hundred characters).

This code does not perform an editing function but is rather
a device for letting the user know if BTM is still operating.
This is especially useful when the Teletype becomes inactive
for a long period and it is not clear whether the system has
gone down or whether the subsystem is slow in respond­
ing. Typing this character will thus result in a double

exclamation point (! !) being printed immediately (not in
echo seqtJence) if BTM is still operating.

BACKSPACE (@ 9)

This code causes the last deletable
t

character typed in to
'be lie rased II . Generally, this wi II be the character immed­
iately preceding the backspace code, but in cases in which
the preceding character is one which cannot be backspaced
over, the backspace wi II erase the I ast character wh i ch can
be backspaced over. Multiple backspaces are cumulative
in that two successive backspace codes wi II erase the last
two deletable characters, etc. Backspacing can be per­
formed only back to (but not including) the last activation
character. Any attempt to backspace over or beyond the
activation character is ignored. A -- is echoed to signal
that the backspace has been performed.

ERASE (@X)

Typing this character causes all input from the @ X code
back to (but not including) the last activation character to
be erased. It is not possible to erase the activation char­
acter or beyond, and any attempt to do so wi II be ignored.
A (0 and €V echoed to signal that the erase has been
performed.

LOCAL NEW LINE (@ @))

Typing this code causes a (0 and @>to be echoed, but no
character is passed to the user subsystem. This permits the
Te!etype to be positioned physically to a new line without
logically terminating the current input line.

RETYPE (@R)

Typing this code causes all input from the last activation
character through the @R to be retyped with all editing
correctly performed (namely, backspacing, tabbing, and
erasing.) Thus, the retyped image will be exactly identical
to the image that the subsystem sees. This retyped image
starts on a new line.

TAB (@ I)

This code is used in conjunction with the TABS command.
With the TABS command, the user may set or reset up to
8 tab stops on his Teletype. When tab stops are set, the
user may type in the tab code at any point, to skip over to
the next tab stop. When entered, the tab code wi II echo
the appropriate number of spaces to the next tab stop to
produce the same effect as on a normal typewriter. If an
attempt is made to tab beyond the last tab stop set, a ques­
tion mark (?) wi II be echoed to signal this fact to the user,
but a single space will be passed to the subsystem (and re­
typed) for this tab.

tSee Appendix A for a complete listing of characters that
may not be backspaced over.

The input line is numbered from 1 to n for the purpose of
tabbing. Position 1 is always the position of the first char­
acter after the last activation character. Thus, all tab
stops are measured relative to the last activation character,
not the beginning of the physical line; tabbing is tberefore
primari Iy of value when the activation class is @or @). In
addition, the line is numbered according to the edited input
image, not the image as echoed on the Teletype. Giving
a tab, even after assorted backspaces, erases, or other such
editing functions, wi II always result in the correct number
of spaces bei ng echoed and transferred to the subsystem.

For the purposes of backspacing, typing an <§I code is the
same as typing the n spaces that the tab generates. Thus,
each backspace after a tab will erase one of the n spaces
of the tab, not the entire tab. To erase all n spaces, n
backspace characters must be typed.

STANDARD INPUT MODES

To allow the user to relate the information on Teletype oper­
ation to actual subsystem usage, the activation classes for
most standard console operations are summarized below.
Note that the majority of I/O is done under the activation
class: lIactivate on e or@) II. This is desirable because the
special editing features are easiest to use in this mode.

At the Executive level:

1. Immediately after typing the Executive IIpromptli char­
acter (!), the activation class is: lIactivate on every
characterll. In this mode, no editing whatever is possi­
ble and any editing character typed will be passed to
the Teletype command processor unchanged. Thus, in
the sequence

! C@e B,

not only is the effect of the backspace lost, but BTM
will receive the four characters, IC @9 BI, rather
than the two it expects.

2. After entering the ASSIGN processor, the remainder
of the command is read under the class: lIactivate on
punctuation, @or @)II. That is,

!ASSIGN M:LO, etc. ------ \ ..

activate on activate on
every character punctuation, etc.

3. All the remaining Executive level command processors
read the rest of the command under class: lIactivate
on e or @) II. For example,

!SAVE ----
activate on
every character

ALPHA, PERM@)
...

activate on

e or @)

I

Standard Input Modes 9

At the subsystem/user level:

1. All subsystem input that is read through DCBs assigned
to the consoie is gathered under the activation class:
"activate on @or @lll, and is prompted by a colon (:).

2. The BPM, BASIC, EDIT, FERRET and SUPER subsystems
read all input under the class: lIactivate on @or @)II,
with the following exception:

10 Standard Input Modes

a. When the BPM subsystem expects a Y or N answer,
it reads this character in the lIactivate on every
characterll mode.

3. The FORTRAN, LOAD, and SYMBOL subsystems ac­
quire all option lists and input specifications in the
lIactivate on @or @ II mode.

4. The machine language debugger, Delta, reads in the
"activate on I, =, @I, t ' @, or 0" mode.

5. BASIC SUBSYSTEM

The BASIC sub-system is called by the Executive Command

!BASIC - --

When ready to accept input, BASIC prompts the console
with the 11>11 character.

BASIC runs in two distinct modes:

1. Editing - In this mode programs may be created at the
consol e. A program, once created, may be saved on
the disc fi Ie, and any previously saved program may
be loaded for further editing or execution. The sys­
tem is initially in the editing mode with an empty
text area.

2. Compilation and execution - In this mode, the pro­
gram developed during the editing phase is compiled
and, if no errors are detected, executed. If com­
pilation errors are found, editing mode is restored
automatically, and the text area will contain the pro­
gram text just compi led.

EDITING MODE
LINE INSERTION

If, following the prompt character (», the user types a
val id BASIC I ine number, followed by any non-numeri c
characte/, and if the line contains less than 86 char­
acters, the I ine wi II be entered into the text edit area.
Any line with the same line number previously entered
into the text area wi II be deleted. Following this, a
syntax check is made on the I ine; and, if it is not legal,
the line is deleted.

If more than five leading numeric digits (the first of which
is not 0) are typed, the message

LINE II ERROR

will be typed preceded by the first six characters encount­
ered in acanning the line.

If more than 85 characters are typed on the line, the
message

LINE TOO LONG

will be typed. The line will be completely ignored.

If the syntax check uncovers any errors, the appropriate
diagnostic message (as described in the reference manual)
will be typed at the console. The prompt character is
then issued and the system waits for input. Lines cannot
be inserted when only 150 bytes of core storage remain.

tBlanks are never significant to BASIC unless they are with­
in a pair of quotes to form a valid alphanumeric constant
or text string, or in Image statements.

If one tries, he gets the error message

PROGRAM TOO LARGE

When 500 bytes or less remain, the message

SPACE LIMIT NEAR

resu Its.

LINE DELETION

If following the prompt, the user types a valid BASIC line
number followed by a carriage return, the I ine (in the text
editing area with that line number will be output with the
error message:

NO PROGRAM

If the user wishes to start with a fresh text editing area, he
should type CLE [AR] followed by a carriage return. This
wi II put the user level in the editing mode with an empty
text area. Items enclosed in brackets [] are optional.

The user may also type

DEL[ETE] Ine , me It @ {I ' II }[I' II J
line It 1 - line It 2 ' line It 1 - line 2 ••• {@}

after the prompt, and the indicated lines wi II be deleted.
The ellipsis indicates an optional multiple occurrence of
the preceding item. If the upper form is used, and the
designated line number(s) does not exist, the line number(s}
will be retyped preceding the error message:

NO PROGRAM

If the lower form is used, all statements whose I ine numbers,
n, ore such that

line#l ~ n ~ line #2

will be deleted from the text area if at least one such line
exists. If no statement numbers exist in the bounded area,
the subsystem responds with

line # - line II NO PROGRAM
1 2

The printing of the NO PROGRAM error message does not
inhibit continued processing of the line. The absence of
such a message indicates that the specified line(s} has been
deleted.

If an illegal line number is encountered, i. e., one whose
format is incorrect, the error message

LINE # ERROR

is printed preceded by the characters, up to six, that make
up the line number. In this event, further processing of
the line is inhibited.

Basic Subsystem 11

If the user wishes to delete the entire program, he should
use the CLEAR method rather than DEL fol lowed by line
numbers or groups that give the same result, e. g.,
DEL i -99999. The CLEAR provides a compiete recovery
of the text space in minimum CPU time, while the latter
method does not clean up the text edit area and requires
much more CPU time.

TEXT LISTING

The user may type

LIS [T][line
N 1, lineN] {<§}

lineN l-line# ~I lineN l-line'2 ••• @

This will cause a listing of the appropriate lines from the
text editing area. Error messages identical to those de­
scribed under "Line Deletion" are output, as appropriate.
If the user types LI ST @> I th i simp lies that he wants a II
lines in the text area to be listed. If none exist, the
error message

NO PROGRAM

will be output.

TEXT SAVING

The user may type

{N } [line #]
SAV[E 0] VER aconst line # 1 - line # 2

(followed by) F Ii ne Ii J- {@>} l' line tI 1 - line 112 ••• @

where "aconstl1 is a 1-6 character string enclosed by single
quotes or double quotes, or 1-6 non-blank characters fol­
lowed by a blank or @) if no line numbers are given. If
the SAVE ON form is used, a check will be made to see
that no other file exists with the same name before opening
the file for output. A file created by the SAVE ON me­
thod is declared to be a TFILE and is released when the
user logs off.

The SAVE OVER option unconditionally writes the file,
whether a previous file exists or not. The SAVE OVER
option creates a permanent file provided there was no
previously executed SAVE ON command using the same
file.

Both of these commands reset the account information, if
any exists.

PROGRAM LOADING

The user may type

LOA [D] [aconst] {S}
G

This cause~ the file indicated by "aconst" or the runfile
(see below) if no "aconst" is specified to be opened and

12 Compil ation and Execution Mode

read completely. The processing of the information is per­
formed exactly as previously specified for typed input
under line insertion. Also, if the user level is in the ex­
ecution mode lust prior to typing the above iine, actions
equivalent to those following typing of CLEAR are per­
formed after opening the file and prior to reading any
records. If a record which constitutes an illegal line is
loaded, the error message

ILLEGAL LOAD

will be output.

If no such file exists, the error message

UNABLE TO OPEN

wi II be output.

LOGICAL INVERSE OF LINE DELETION

The user may type

EXT RACT me , me @> [I ' # J~ I' II] U] line N
1

-lineN , line tI 1 - lineN 2 {@}

This causes the deletion of all lines in the text editing area
except for those specified by the line numbers or line num­
ber groups. If no line numbers are specified, no opera­
tion takes place and the prompt is issued.

COMPILA TION AND EXECUTION MODE

While in editing mode, the user may type

{RUN } {@)}
FAS[T] G

This causes the entire text editing area to be copied onto
the runfi Ie (see below). The subsystem then enters the
compilation mode, and the compiler is directed to compile
from the runfi Ie (in the safe mode, if RUN was specified;
and in the fast mode otherwise).

If compilation is successful, the user level is set to execu­
tion mode; and the compiled program will be executed.

If the compilati on contained errors, the subsystem re-enters
the editing mode, and the prompt is issued after the text
area is restored to what was put in the runfile.

If a FAST or RUN command is given in editing mode prior
to the creation of any program, the subsystem will enter
execution mode, and allow direct execution of statements
from the console, as described below.

Should the user's BASIC program require input from the
user, it will prompt the console with a question mark.·

When execution is complete, the subsystem prompts with
the character >. At this time, statements may be directly
executed (see below) or the user may revert to editing

mode by typing an editing command.

Both of these commands reset the account information, if
any exists; and, if the standard runfile is used the pass­
word information wi II be reset, if any has been set.

MISCELLANEOUS

ESCAPE AND PROCEED

An @@ unconditionally causes the input and output
buffers to be empti ed and a BREAK i ndi cator to be set.
Following this, the prompt is issued. If any character
is typed at this time, the BREAK indicator is reset; how­
ever, if the §@ is given again before any character
is typed, the subsystem wi II return to the BTM Executive.
The ESCAPE is inhibited for the first activation tempor­
ari Iy during updates of the I ine table maintained by the
Editor and while a file is being written because of SAVE
requests. A second @@ activation wi II never be in­
hibited.

Following the prompt, the user may type

> PRO [CEED] {@}
- @

In this event, the user level will be restarted with the
core (not file) conditions in effect immediately preced­
ing the most recent ESCAPE. This service cannot be
effective in all instances.

DIRECT STATEMENTS

If the user level is in the execution mode, any val id BASIC
statement except for CLOSE, DATA, DEF, PUT, GET, MAT
PUT, MAT GET, END, PAUSE, STOP, OPEN, DIM,
Image, PRINT USING, FOR, NEXT, and any statement
containing ON may be typed without a leading line
number. This wi II indicate that the statement should be
executed immediately.

When the subsystem is in the editing mode, attempted use
of the direct statement capability will result in the error
message

RUN? ILLEGAL

The occurrence of I/O errors, or random machine or pro­
gram failure, will cause the subsystem to print

IRRECOVERABLE ERROR

and revert to editing mode with a clean text area.

FILE OPERATIONS

For each user, there exists a preset default file name
consisting of the characters RUNaFIL (where a repre­
sents one of the 32 characters A, B, ••• , Z, 1, 2, 3, 4,
5, 6); a will be different for each terminal, provided
no more than 32 consoles are attached to the communica­
tions controller. Initially the name of the runfile referred

to above is set to this seven character stri ng. However,
the user may change the name of his fi Ie by typing

NAM [E] [aconst] {~}

If an aconst appears, the name of the runfi Ie is changed
to the aconst. If no aconst appears, the defau I t name is
restored.

In all file operations (SAVE, LOAD, RUN, and FAST), file
name, account number, and password logic of the Batch
Processing Monitor file management system is employed.
Originally, the password and account number are empty.

To establ ish the password or account information, the pro­
grammer types

{
PAS [SWORD]} {e}
ACC COUNT] [string] (0

where "string" extends from the first nonblank character
up to seven characters preceding the New Line character.
Once set, an account or password will be used in every
operation that requires the opening of a file, except as
specified above under "Text Saving" and "Compilation
and Execution Modell. Also note that execution of an
OPEN or CHAIN statement by the object program wi II
resu I t in modifi cation of the account and password infor­
mation.

PRECISION OF OUTPUT

If the programmer types

ENT [ER BASIC] [L] {~}

the extended precision print indicator will be set or reset,
depending on whether the optional L is or is not typed,
respectively.

PRINTER WIDTH

To change the width of the printer from its default value
of 72, the programmer types

WID [TH] digits {~}

where the value of the digit string, interpreted as a decimal
integer, must be within the allowed maximum and minimum
values of 85 and 32, respectively.

STATUS

To determine the status of his program at any time, the pro­
grammer types

{9} STA [TUS] @

The system will respond with one of three messages: EDIT­
ING, COMPILING, or RUNNING, as appropriate. To
facilitate loop detection, the RUNNING message will be
preceded by an appropriate line number if execution was

Miscellaneous 13

interrupted while one of the instructions in the loop
was being executed.

SiGN OFF

To exit from BASIC, the user should depress the @ key
four times and wait for the Executive level prompt { !}.
At this point, he may invoke another processor {e. g.,
FERRET, to allow copying of TFILE's to permanent status},
or he may vacate the terminal by typing

! BYE

MODE SWITCHING

To enter execution mode, the user must execute a RUN
command or FAST command which produces no diagnosis
at compilation time. Execution time diagnostics or break
activations wi II be followed by a > prompt whi Ie sti II in
the execution mode.

The user may switch to editing mode by typing (after a >
prompt has been issued) a non-direct BASIC line or any
command that results in line deletion, text listing, text
saving, program loading, or I ine extraction.

To enter the desk calculator mode, the user may type
CLEAR followed by RUN or FAST.

BATCH CONTROL AND OPERATION

To operate a BASIC batch job, the following setup in-
structicns should be cbser/ed:

1. The first record in the M:C file must be a Monitor
!JOB card.

2. Optionally, other batch control cards (e. g., ! LIMIT,
!STDLB, !MESSAGE, !TITLE, !ASSIGN, etc.) may
follow in the M:C file. In particular, since any pro­
grams that are to be invoked by execution of a CHAIN
statement must exist as named sequential files on the
disc, it wi II be natural to accomplish this setup by
use of the FMGE system at this point.

3. Next, the processor control card ! BASIC must appear
in the M:C file.

4. Optionally, the next (first) card in the M:SI fi Ie may
be an option declaration card. This card must have

14 Mode Switching/Batch Control and Operation

an * character in column 1, and column 2 must be
blank. Column 3 may contain the character S, in­
dicating the safe mode for array references, or any
other aiphabetic character, which wi i i cause the
fast mode for array references. Column 4 may con­
tain the character D, indicating default printer line
width which is an assembly parameter (currently 100),
or column 4 may contain a digit. If neither a digit
nor the character D is in column 4, further processing
of the card is inhibited. If a digit appears in column
4, successive columns of the card are scanned unti I
a non-digit character is encountered. The digits are
interpreted as a decimal integer specifying the print-
er line width subject to maximum and minimum width
assembly parameters (currently 131 and 32 respectively).
The character following the D or the last digit of the
digit string is ignored and may be any character. If
the next character is an L, the contents of the M:SI
file will be listed on the M:LO file. This listing will
contain all records that follow the option declaration
card until an end of file or a !EOD record is encoun­
tered, or a card with the characters *RUN in columns
1-4 is encountered. The !EOD will not be listed, but
the *.RUN wi II.

5. The next cards in the M:SI file must constitute a
BASIC program, i. e., a set of BASIC I ines in line
number order.

6. If the BASIC program is followed by an ! EOD record
or a card with the characters *RUN in columns 1
through 4, and if the compiler detects no errors, the
resultant object program \·,,;I! be executed starting
with the statement with the lowest line number.

7. Optionally, the next records in the M:SI file may
contain information to be processed in response to
execution of INPUT statements. The end of this in­
formation is indicated by an end of file, ! EOD re­
cord, or a record with the character * in byte 1.
Attempting to input when no more information exists
will result in termination of execution with the OUT
OF DATA diagnostic message.

8. The next cards in the M:C file may be other Batch con­
trol cards (e. g., !ASSIGN, ! FMGE, etc.). In particu­
lar, since all files created by execution of OPEN state­
ments with the 0 option are declared to be temporary
files (M:TFILE), the user must convert such files to per­
manent fi les if he wishes to retain the information
contained.

6. TERMINAL BATCH ENTRY (BPM] SUBSYSTEM

The Terminal Batch Entry (BPM) subsystem controls inser­
tion of jobs into the batch job queue, and is available
only when BTM is operating in a symbiont BPM environ­
ment.

The Executive command for this subsystem is

!BPM

The subsystem wi II transfer a fi I e of control and data re­
cords from M:SI to the batch job stream. Normally, this
fi Ie will be created at the console so that M:SI need nor
be assigned; default assignment is the user console. How­
ever, if a job is to be repeatedly executed, the control
records themselves may be made up as a permanent disc
file by using the EDIT subsystem.

The control records are formatted exactly as the control
cards for a normal batch job. In general, any sequence
of control and/or data records that wi II execute properly
when submitted by normal means through a single device
may be submitted through the console. A FIN control
command, however, wi II be rejected. BIN control com­
mands will be ignored, and should not be used.

A job inserted from a terminal must be set up to run under
the terminal IS log-in account. That is, the account num­
ber on the !JOB card must be the same as the account the
user has logged in with.

When the job is inserted, the job 10, priority, and COC
line number of the originating console are printed on the
operatorls log.

Output fi les from background jobs may not be assigned
directly to Teletypes, and input will normally come from
disc or tape.

MESSAGE Monitor control commands may be used to con­
vey any unusual operating procedures to the operator.

Immediately after entry, the BPM subsystem inquires

INSERT JOB? {~}

An affirmative reply (Y) causes the subsystem to prepare
to enter a job fi Ie, as described in the following sections
on job fi Ie creation. A negative reply (N) causes the sub­
system to go immediately to the status checking portion of
the program.

JOB FILE CHEA liON

Input to the BPM subsystem can be from the console or
from an existing disc file. In either case, the subsystem
wi II allow some editing of the job file. These editing
functions are intended only to provide recovery from err­
ors of omission committed while composing a small job file
at the console. It is strongly recommended that the user

prepare large job fi les through use of the EDIT subsystem
(see Chapter 7) prior to insertion by the BPM subsystem.

CONSOLE INPUT

The BPM subsystem prompts each record with a record num­
ber. Therefore, the user creates a dialogue much like the
following when giving commands from the console:

!BPM
1
;'ecord no. 1 (for example, !JOB 85025, BPM, 1) €)
2
.:..!"ecord no. 2 §

n
;:ecord no. n @)
~+1
.=.@)(A null record terminates input.)

The subsystem then inquires

EDIT? {~}
If the reply is negative, the file is transferred to the batch
job queue and the subsystem types the message

JOB INSERTED. ID = xxxx

An affirmative reply allows the user to modify his job file
prior to batch insertion.

DISC FILE INPUT

After BPM is called, it will respond with the following
request:

DISPLAY FOR EDITING? {~}

The user responds with Y or N. If the reply is negative
(N), no further communication between user and subsystem
takes place. The fi I e is transferred to batch and the sub­
system types the message

JOB INSERTED. ID = xxxx

The file input process may be interrupted with the <§ key,
which wi II return the user to the Executive level. The user
may then restart the process, or enter another subsystem.

Should the user reply Y, the contents of the file will be
read and displayed in the following format:

lBPM..,.
DISPLAY FOR EDITING? Y
1
record no.

£.

Terminal Batch Entry (BPM) Subsystem 15

record no. 2

n

record no. n

When the fi Ie is completely displayed, the subsystem
prompts:

As before, a negative reply causes job insertion. An af­
firmative reply allows the changes described in the follow­
ing section.

JOB FILE EDITING

Prior to insertion of the file, the following functions may
be performed:

1. Deleting any record or sequence of records.

2. Interchanging any two records.

3. Inserting a sequence of records.

4. Replacing a sequence of records.

5. Retyping any record or sequence of records.

When the user responds affirmatively to a request to edit
the fi Iw, the subsystem prompts with a question mark:

EDIT? Y

1.

At this point, the use~ may respond as follows, where xx
and yy are record numbers as displayed on the console.

Function Command

Replace xx through yy .1 Rxx; yy §

Swap xx and yy 1 Dxx, yy @>

Append after xx 1 Sxx, yy @>

Term i nate update, insert job file lG §

Type file .1T §

Type xx through yy 1 Txx, yy §

Abort the task lX §

When a request is made to append or replace records,
the program prompts with the next record number it
expects.

For Example:

iO
:. (§
EDIT? Y
l.A4
5

Records are inserted unti I a null record is suppl ied.

16 Job File Editing/Status Checking/Error Conditions

After insertion or deletion of records, subsequent requests
must take into account the number of records added or
taken away. Edit requests are syntax checked prior to any
action, end rejected if erroneous; however, the change to
the job file is made immediately thereafter.

STATUS CHECKING

After any job has been inserted, the subsystem inquires:

STATUS CHECK? {~}

If the reply is negative, the subsystem returns to the Execu­
tive level. Otherwise, the program inquires:

!Q. = xxxx @)

The user responds with the four hexadecimal digits of a
previously inserted job. If fewer than four digits are
entered, leading zeros are supplied. If only a carriage
return is entered, the subsystem returns to the Executive
level.

After receiving a valid job ID, the program will print one
of the following three status indicators:

WAITING,

RUNNING,

COMPLETED.

The program then issues another ID request. It should be
noted that if a hexadecimal number is suppl ied that does
not correspond to a job ID for the current symbiont run,
the status wi II be as though a val id job were complete.
There will be no error indication; therefore, the user must
be careful to supply the proper ID.

ERROR CONDITIONS

Error conditions are indicated by the following messages.

MISSING !JOB COMMAND, OR RECORDS
OUT OF ORDER.
EDIT?

A JOB command must be the first record transferred. After
this message, the user should abort the task or supply the
necessary JOB command.

IMPROPER JOB PRIORITY; LEVEL 1 ASSIGNED

The JOB command may not have statement continuation.
If it contains a priority field, the priority must be expressed
as a single character ranging from O-F. If the JOB com­
mand does not contain a priority field, level 1 priority
wi II be assigned, with no message to the user.

!FIN CARD IGNORED

The job file contains a FIN command.

BAD 1-0. ABNORMAL CODE - xx

An I/O error or malfunction has been detected. The sys­
tem is returned to the Executive level.

FILE TOO LARGE. TASK ABORTED

The number of records that may be transmitted is limited
only by user memory size, at 20 words per record. In a
16K user area, this would amount-to approximately 700
records.

NO INPUT DATA. BYE

The file to be transferred contains no input data. The sys­
tem is returned to the Executive level.

NONEXISTENT LINE

An edit command references a nonexistent line.

ERRONEOUS COMMAND IGNORED ~]
An edit command contains improper parameters.

ILLEGAL CAL

If the BPM subsystem is used with a non-symbiont monitor,
the insertion of the job will abort with an erroneous CAL3
notifi cation.

INVALID ID

An erroneous job ID has been suppl ied. A job ID must be
a hexadecimal number followed by a blank or carriage
return.

IMPROPER JOB ACCOUNT

The job account does not match the log-in account.

AUTHORIZATION REQUIRED

The user is not authorized to enter a job from the terminal.

Error Conditions 17

7. EDIT SUBSYSTEM

INTRODUCTION

The EDIT subsystem allows the user to create or modify disc
resident source files. The user has the ability to:

1 • Create a sequenced source fi Ie.

2. Delete a record or sequence of records from an existing
file.

3. Insert a record or sequence of records into an existing
file.

4. Replace a record or sequence of records in an existing
fi I e with a new set of records.

5. Reorder groups of records within a file.

6. Perform intra-record character string substitution and
manipulation.

7. Copy a spec ifi ed fi Ie.

A summary of commands by function is included at the end
of this chapter.

The Executive command for the subsystem is

! EDIT

The subsystem then prompts command input with the "* II
character.

RECORD FORMATS

The editing process is based on a sequence number associ­
ated with each record. Such sequence numbers may be
automatically generated by the Editor if not initially pres­
ent on the file.

Each source record is assumed to contain an EBCDIC se­
quence number in columns 74-80. For purposes of editing,
this sequence number has an implied decimal point between
columns 77-78. Thus, if columns 74-80 contain 1234567,
the sequence number is expressed as 1234.567.

In later examples, any reference to a sequence number
without a decimal point implies three trailing zeros. Any
sequence number with a decimal point is assumed to have
sufficient trailing zeros to make up three fractional digits.
For example:

I
Sequence Number Impi ies

50 50.000

50.01 50.010

50.5 50.500

50.008 50.008

18 Edit Subsystem

Edit files are kept on disc with keyed organization, the
keys being derived from the above sequence number. Since
the Editor uses a keyed file structure, files introduced by
BPM FMGE commands wi II have to be copied by the Editor
before any editing may be performed. The user will be
notified if this is necessary.

In using the Editor, it mast be stressed that the edit takes
place as the commands are given; the fi Ie is edited in place.
Therefore, a backup fi Ie should always be kept.

COMMAND STRUCTURE

EDIT commands fall into the following three catagories:

1. File oriented commands that may be given at any time.

2. Record editing commands that may only be given after
a file has been selected for editing.

3. Intra-record (usually character string) editing com­
mands that may only be given after a specific set of
records has been se I ected by- a command of type 2,
above.

In those commands that select files for editing, copying,
etc., the input and output fi les are identified by one of
the following constructs, called a "fid" or fi Ie identifier.

file-name

file-name (account)

Default log-in account

Specific account

fi Ie-name (account, password) Account and password

file-name (, password) Password only

However, in any edit operation that writes into the speci­
fied fj Ie, the fi Ie must be under the log-in account. The
account specification is primarily of value for copying a
fi Ie from a differenct account. The user is only able to
delete files in his log-in account.

For example:

:. DELETE BPMS (,MK)

The command shown above specifies that the fi Ie "BPMS",
having the password "MK", is to be deleted from the
user's log-in account.

Commands that reference character strings within a record
require that the user identify the string by delimiting it
with the II /" character. For example, the character string
A+2 is made into a strina identifier by typinq /A+2). A
single / may be included in the strin~ by' typi~g tw~ slashes
in succession. That is, /A/ /2/ identifies the string A/2.

MESSAGES

During the course of executing any command, the Editor
may communicate with the user through a variety of

messages. Possible messages are summarized with the de­
scription of each edit command.

The following conventions are used in regard to message
formats:

1. A message preceded by two periods is a comment on
some system-oriented operation. For example:

•. COPY DONE

2. A message preceded by two minus signs indicates the
occurrence of some event (during the execution of a
command) of which the user should be aware; the com­
mand is not aborted, however. For example:

--EOF HIT

3. A message preceded by a single minus sign is an error
message describing a condition which aborts the cur­
rent command and causes any others on the same line
to be skipped.

Such a message may be particularized as to cause, by
the following prefixes:

Prefix Cause of Error

-C
k

: The kth command of the previous line
caused the error.

-P
k

: The kth parameter of the first command
on the previous line caused the error.

-CkP j: The jth parameter of the kth command
of the previous line caused the error.

For example:

-Pl: NO SUCH REC

In addition to the particular errors discussed with commands,
a large number of self-explanatory syntax messages are
given when errors occur.

FILE COMMANDS

BUILD (Build new file)

BUILD causes the Editor to create a new file on disc. The
BUILD command has the form shown below.

* BUILD fid tn [,i]]

where

fid is the identifier (see IICommand Structure ll
,

above) of the fi Ie that is to be created.

n is the sequence number at which the new fi Ie is
to start. The default value is 1.

is the value by which sequence numbers for the
new file are to be incremented. The default
value is 1.

The system prompts by typing a sequence number; the user
then types in the corresponding line. A null line terminates
the build operation and closes the file. Files created with
BUILD are automatically permanent.

Example:

* BUILD SOFILE

1.000

2.000

3.000

4.000B

5.000

6.000 @

Comments:

SYSTEM SIG5 @

DEF B9

REF A@

B A@

END@

The null record, consisting of only
a carriage return, terminates the
command and does not appear in
the output file.

.. EDIT STOPPED An EDIT was active when the
BUILD command was given and
has been terminated.

Errors:

--OVERFLOW

-FILE EXISTS:
CAN'T BUILD

More than 72 nonblank characters
were entered.

A file with the same fid already
exists.

END (Exit)

END causes the Editor to close all active files and return
control to the Executive. The END command has the form
shown below.

*END

COpy (Copy file)

Copy causes the Editor to copy a specified fi Ie. The COpy
command has the format shown below.

where

identifies the file that is to be copied.

fid
2

identifies the file to which the file identified
by fid

1
is to be copied.

n see II BUILD II above.

see IIBUILD II above.

If ON is specified, a new file is created (and must not al­
ready exist). If OVER is specified, fid 2 may exist and if it

File Commands 19

does it wi II be deleted and replaced by the copy of fid1 .
If n is omitted, the old sequence numbers on fid1 are re­
tained in the copy. If n is present, fid 2 is resequenced
starting at n and incrementing by i.

Comments:

· . EDIT STOPPED

· .COPYING

· .COPY DONE

Errors:

-P2: FILE EXISTS

-P1: NO SUCH
FILE

-P1: FILE NOT
SEQD & P3 NULL

An edit was active when COpy
was given and has been terminated.

The COpy has been started.

The COpy is done.

A COPY ONE has been given
but fid 2 exists.

The file identified by fid1 does
not exist.

There are no sequence numbers
on the file identified by fid2
and resequencing has not been
specified; thus, if copied, the
resultant file could not be
edited.

DELETE (Delete file)

DELETE causes the Editor to delete a specified file. The
DELETE command has the format shown beiow.

* DELETE fid

Comments:

.. DELETED The specifi ed fi Ie has been
deleted.

.. EDIT STOPPED An edit fi Ie was active when
the DELETE command was given.

Error:

-NO SUCH FILE The specified fi Ie does not exist.

EDIT (Edit file)

EDIT specifies that a specified fi Ie is to be edited. The
EDIT command has the format shown below.

* EDIT fid

This command must be given before any record oriented
commands can be executed. The effect of the EDIT com­
mand is terminated whenever a BUILD, DELETE, or COpy
is given. Giving an EDIT command while a previous EDIT
is active will cause the previous file to be closed and edit­
ing to be begun on the new file.

20 File Commands

Errors:

-NO SUCH FILE The specified fi Ie does not exist.

-FILE NOT KEYED; The file is not in the correct
MUST COpy keyed format needed by the

Editor and must first be copied
before it can be edited.

BP (Set blank preservation mode)

BP sets the blank preservation mode on or off. The BP com­
mand has the format shown below.

When "on", all strings of blanks are preserved during intra­
record operations. When II off II , blank strings are com­
pressed to a single blank or expanded as required to retain
column alignment of nonblank fields. As discussed in
"Intra-record Operations ", below, a group of commands is
provided that allows substitution and insertion of character
strings within a record. This can be of great value, for
example, when correcting a complicated FORTRAN expres­
sion or changing the name of a variable in a program.

However, when a string is inserted or replaced in a manner
that changes the number of characters in a record, a prob­
lem arises in how to adjust the record format.

When the blank preservation mode is off, any string opera­
tion that expands or contracts a nonblank string causes the
blank count between the target string and the next non­
blank string to the right of the image to be increased or
decreased as necessary to preserve the columnar position
of the righthand string. Nonblank strings are never con­
nected, however; one blank will always be left between
strings.

When the blank preservation mode is on, the blank counts
are preserved, as one would wish in a FORMAT or TEXT
statement.

For example, the following string substitution command
(these commands are discussed later in this chapter)

:.. /8/S/LINK/

substitutes the string "LINK" for the string "8" in the
ins tructi on

$10 BAL, 8 SUB

adjusting blanks as indicated below:

old $ 1 0 BA L I 8 SUB

BP-OFF, new $10 BAL, LINK SUB

BP-ON, new $10 BAL, LINK SUB

Errors:

-NOT ON/OFF A parameter other than ON or
OFF was specified (the default
is OFF).

RECORD EDITING COMMANDS

IN (Insert new records)

IN causes the Editor to insert new records into a file. The
IN command has the format shown below.

New records are inserted starting at the record with sequence
number n, with each successive record being sequenced from
n with increment i. If a record with sequence number n
exists in the fi Ie, it is replaced by the newly inserted rec­
cord n.

The Editor will prompt the user console with the first se­
quence to be inserted, and repeats the requests for each
subsequent insertion, increasing the sequence number by
the increment i. (If i is omitted, the increment size speci­
fied in the most recent record editing command is used. If
no such commands have been given, the value 1 is assumed
by default.)

The insertion can be terminated in either of two ways. If
a null record is supplied, the insertion terminates. An equi­
valent action takes place if an incremented sequence equals
or exceeds a sequence existing in fi Ie. In the latter case,
the consol e be II is rung.

For example:

:'IN 100.,1

100. 000 10 A = 2. 5

100. 100 B=O.

*

Errors:

--OVERFLOW

Replaces the existing
record.

Record insertion terminates
because sequence number
100.200 existed previouslYi
the console bell is rung.

More than 72 nonblank
characters were typed.

The user wishing to insert records may use a variant of this
command by typing IS. The action is equivalent to IN ex­
cept the Editor does not prompt with sequence numbers.

For example:

:. IS 100, . 1

10 A=2.5

B =0.

*

TY (Type records)

TY causes the Editor to type each record lying within a
specified range of sequence numbers, together with its se­
quence number. The TY command has the form shown
below.

* TY n [-mJ

If m is omitted, only n wi II be typed. If the entire record
wi II not fit on the same I ine with the sequence number, the
sequence number is typed first on a separate line. Once
the editor shifts to two-line format it will continue iOn that
mode for the remai nder of the range of the TY command.

Error:

--EOF HIT The range m-n passes beyond the
end-of-fi Ie.

TS (Type records, suppressing sequence number)

TS causes the Editor to type each record in a specified
range, but without an accompanying sequence number. The
TS command has the form shown below.

* TS n [-mJ

Error:

--EOF HIT The range n-m passes beyond the
end-of-fi Ie.

DE (Delete records)

DE causes the Editor to delete all records whose sequence
numbers lie in a specified range. The DE command has the
form shown below.

:. DE n [-mJ

If m is omitted, only record n is deleted.

For example:

* DE 50

* DE 50-60.5

Comments:

Deletes record 50.000 only.

De I etes a II records in the range
50.000 through 60.500,
inclusive.

--NOTHING TO DE No records were found in the
specified rang-e.

Error:

--EOF HIT The range n-m passes beyond the
end-of-fi Ie.

Record Editing Commands 21

FD (Find and delete)

FD causes the Editor to search for a specified string between
specified columns. If the string is found; the record is de­
leted from the file. The FD command has the form shown
below.

where

n

m

specifies the sequence number of the first record
to be searched.

specifies the sequence number of the last rec­
ord to be searched. If omitted, only record n
is searched.

/ string/ specifies the character string identifying

c

d

the record to be de leted.

specifies the lower limit (i. e., column number)
of the field to be searched. The default value
is 1.

specifies the upper limit of the field to be
searched. The default value is 72.

The specified string must be entirely contained within col­
umns c through d to cause deletion. At the end of this
operation, a message is printed telling how many records
were deleted.

Example:

~ FD 5-2004,/DATA/, 10, 18

--006 RECS DLTED

Comments:

--NONE

Errors:

--EOF HIT

There were no records (in the
specified range) containing the
indicated string.

The specified range passes beyond
the end-of-file.

FT (Find and type)

FT causes the Editor to search for a specified string between
"0,...:+:.0,.1 ,..."I .. ~~~ u: 1oL.~ ~Io~:~~ :~ .c~ .. ~..J 1oL.~ t:..J:Io~~ Io .. _~_
""',..,,, """ ""'.Ulllll~. 11 III~ '")II'II~ • .> IVUIIU, 1I1e; LoYIIUI 11t.n::;;)

out the sequence number of the record. The FT command
has the form shown below.

.: FT n [-m] ,/ string/ ~c [,d]]

The specified string must be entirely contained within col­
umns c through d (see "FD" above).

22 Record Editing Commands

Example:

* FT 1-100, /LW/, 10

5.000

9.000

210480

73.000

*

Comments:

--NONE There were no records in the
specified range containing the
indicated string.

Errors:

--EOF HIT The specified range passes be­
yond the end-of-file.

MD (Move and delete records)

MD causes the Editor to delete all records in a specified
range and to then move records in another range into this
area. The MD command has the form shown below.

~ MD n [-m], k [-p] [,i]

where

n

m

k

p

specifies the sequence number of the first record
that is to be moved.

specifies the sequence number of the last record
that is to be moved. If omitted, n only is moved.

specifies the lower limit (i. e., sequence number)
of the range of records to be de I eted.

specifies the upper limit of the range of records
to be deleted. If omitted, k only is deleted.

specifies the increment value to be used for re­
numbering records. If omitted, the most recent
increment value specified in a record edit com­
mand is used (or 1, if no increment value has
bee n spec ifi ed) .

The first record (n) is renumbered as k. Successive records
from the range n-m are renumbered consecutively higher,
with increment i.

As each record from the range n-m is moved, it is deleted
from the original range (n-m). At the end of this operation,
a message is printed out specifying the new sequence num­
ber of the last record moved from the range n-m.

Example:

:'MD 5-21, 100-101, .02

--DONE AT 100.28

If the increment is too large to permit all records in the
range n -m to be moved into the space between k and the
next record after p, a message is printed out specifying the
sequence numbers, from both ranges, of the last record
moved.

In this case the original contents of range k-p will be lost,
but only those records in the range n-m which have actually
been moved will have been deleted. Thus the user can per­
form another move (with a smaller increment) to move the
remaining records in the range n-m.

Example:

* MD 10-30, 100-110, 1

--CUTOFF AT 110. (20.)

The ranges n-m and k-p may not overlap.

Errors:

--NOTHING TO MOVE

--RNG OVERLAP

--EOF HIT

No records exist in the
range n-m.

Ranges n-m and k-p
overlap.

Range n-mpasses beyond
the end-of-file.

MK (Move and keep records)

MK acts simi larly to MD except that the records in the
range n-m are not deleted as they are moved, rather a
second copy of the range n-m is made.

The MK command has the form shown below.

:MK n [-m], k [-p] [,i]

RN (Renumber record)

RN causes the Editor to renumber specified records. The RN
command has the form shown below.

::.. RN n,k

This has the same effect as deleting record n and then enter­
ing a new record with sequence number k with the same con­
tents as n. Sequence number k must not already exist.

Errors:

-Pl: NO SUCH REC

-P2: REC EXISTS

Record n does not exist.

Record k already exists.

eM (Commentary)

CM causes the Editor to insert commentary into specified
columns of each successive record beginning at a specified

sequence number. The CM command has the format shown
below.

* CM n,c

where

n is the record number.

c is the column number.

The sequence number of each record is typed and then the
user types in the data he wants inserted starting at column
c. The data he types in is blank filled to the right through
column 72, as required. A null record terminates the com­
mand. It is not necessary to delimit commentary with slashes.

Example:

:.. CM 37.6, 40 @)

37.600 COMMENT 1 @)

37.800 COMMENT 2 @)

40.500 @)

Errors:

-P2: COL>72 Column c > 72.

-Pl: NO SUCH REC Record n does not exist.

--EOF HIT

--OVERFLOW

The end-of-fi Ie has been
encountered.

Commentary typed in has over­
flowed past column 72 with non­
blank characters.

SS (Set and step)

SS causes the Editor to start at a specified record and pro­
ceed to each record in succession, accepting one line of
intra-record commands to update the current record. The
SS command has the format shown below.

~ SS n ~c [,d]]

Intra-record commands wi lion Iy be effective on strings that
lie wholly within columns c through d.

The Editor prompts commands for each successive record with
the sequence number, followed by a double asterisk.

The SS command is terminated by typing a null record in
place of an intra-record command.

Example (to interpret this example in detail, see the com­
mands discussed in "Intra-Record Operations ", below):

:.. SS 300.5, 37 @)

300.500** /BSD/S/BAD/ @)

301.000**37E/X/ @)

303.450** @)

Record Editi ng Commands 23

Errors:

-P1: NO SUCH REC

--EOF HIT

-Cn: COMND
ILGL HERE

Record n does not exist.

The end-of-fi Ie was
encountered.

The nth command of the input
line is not an intra-record com­
mand; the "set and step" mode
is terminated.

ST (Set, step, and type record)

This command is similar to SS except that the contents of
each record are typed, along with its sequence number,
prior to accepting a command. The ST command has the
format shown below.

Example:

* ST 50@)

50.000 XQl LW,5 AGRD,6

~NO@)

51.000 STW,5 *KX9

~/X/F 11/; TS @)

STW,5 *KX19

52.000 MW,8 BQ

INTRA-RECORD OPERATIONS

Commands in the intra-record group may be concatenated
on a single line through use of the 11;" character. The fol­
lowing command sequence would select a line, type the
original, edit, and type the new version:

:SE 100; TY iITEMP/s/B/i/JK/F/+BETA/;TY @>

Prior to performing any of the operations described in this
section, the user must either give an SS or ST command
(which provide for step mode modification of successive
images) or the following SE command which allows repeated
modification of the same range of images.

SE (Set intra-record mode)

SE causes the Editor to accept successive lines of intra­
record commands. The SE command has the format shown
below.

* SE n [-m] [,c [,d]]

24 Intra-Record Operations

Commands input will be applied, in order, to each record
in the range n through m. If several commands are entered
on one line, a II commands on the line are executed on one
record before the next record is processed.
rence of a file or record oriented command (e.g., IN) ter­
minates the effect of the SE command.

All commands executed in the intra-record mode apply only
to the strings lying entirely within columns c through d.
Each new input line of commands will be applied to the
whole range (n-m).

SE may be used on the same input line with other intra­
record commands, but when so used it must be the first
command on the line.

Errors:

--EOF HIT

-Pl: NO SUCH REC

The range n-m passes beyond
the end-of-file.

Record n does not exit.

The following conventions are used with intra-record
commands:

1 • jl stri ng/x

means that command x is to operate on the jth occur­
rence of the indicated string found between columns c
through d as specified by an SE, SS, or ST command.
If j = 0 this means that the command x is to operate on
all occurrences of the string between columns c and d.
If j is missing, the default is 1.

2. k x

means that command x is to operate on the character
contained at column k, where k must lie between col­
umns c and d of the SE, 55, or ST command.

The following general errors are possible:

-MISSING SE No SE command was given.

--Cn: NO SUCH STRG The string referred to by the
nth command of the input
line does not exist between
columns c and d. When the
SE command operates on a
range of lines, this message
wi" be given once, should
the condition occur at any
time during scanningoftiie
range.

--Cn: COL>LIMIi The vaiue specified for k is
greater than d for the nth
command.

--Cn: COL<LIMIT The value specified for k is
less than c for the nth
command.

In any intra-record command that seeks a matching string in
the image, only those strings that lie totally within the spe­
cified column bounds wi II be found. Partial matches to a
column boundary wi II be ignored. In subsequent examples,
references to columns c and d pertain to the column bound­
aries given in the SE, SS, or ST command.

S (String substitution)

S causes the Editor to locate a given occurrence of a speci­
fied string between columns specified by an SE, SS, or ST
command and replace it with another string. The S command
has the format shown below.

The image to the right of string1 is adjusted right or left as
required, if the lengths of string1 and string2 differ. String2
may extend past column d if d < 72.

If j = 0 is used, all occurrences of string1 between columns
c and d are replaced by string2i otherwise, only the jth
occurrence is replaced.

Error:

--Cn: OVERFLOW

For example:

Command Result

:/LW/S/CW

:/10/S/5/

Y$10/S/ENTRY $10
ENTRY

':'/ALPHA/S/B/

':'2/5/S/55/ 15

15

Nonblank characters have been
pushed off the right end of the
card image by the action of the
nth command.

LW,R5 ALPHA+2 old
CW,R5 ALPHA+2 new

LW,RlO B old
LW,R5 B new

LW,R5 ALPHA old
LW,R5 ALPHA new

LW,R5 ALPHA+2,R6 old
LW,R5 B+2,R6 new

C=DSQRT(TEMP+
2.5*BASE) old

C=DSQRT(TEMP+
2.55*BASE) new

D (Delete string)

D causes the Editor to locate a given occurrence of an indi­
cated string, between columns specified by an SE, SS, or ST
command, and delete it. The D command has the format
shown be I ow.

!:. [jJ/ string/D

If j = 0, all occurrences between c and d are deleted.

E (Overwrite and extend blanks)

E causes the Editor to start at the column occupied by the
1 st character of a given occurrence of a specified string or
column and overwrite with another string. The E command
has the format shown be low.

!:.DJ/string 1/E/string2 /

or

Blanks are extended from the end of string2 through column
d. String2 may overwrite beyond column d if d < 72, but
blank extension only occurs through column d.

Error:

--Cn: IALLI IGNORED The specification j = 0 was
used, but since it was not
meaningful for E, j = 1 was
substituted.

--Cn: OVERFLOW String2 overflowed past column
72 with nonblank characters.

o (Overwrite)

o causes the Editor to start at the column occupied by the
first character of a given occurrence of a specified string
(or column) and overwrite with another string. No blank
preservation or other adjustment is done and all columns not
overwritten remain unchanged. The 0 command has the
form shown below.

:. [j]/ stri ng 1/0/ stringl

or

String2 may overwrite beyond column d if d < 72. If j = 0
all occurrences of string1 between columns c and d are over­
written, but string2 is not scanned while searching for oc­
currences of the first string.

Error:

--Cn: OVERFLOW Nonblank characters have
overflowed beyond column 72.

P (Precede by)

P causes the Editor to start before the first character of a
given occurrence of a specified string (or column) and in­
sert another stri ng, push i ng characters of the fi rst stri ng to
the right as required to make room. The P command has
the form shown below.

:. (j]/string1/P/stringl

or

Intra-Record Operations 25

String2 may legally extend beyond column d if d < 72. The
first character of string2 will occupy the column vacated by
the first character of string1' etc.

If j = 0, the Editor will insert string2 before all occurrences
of -string1 between columns c and d. However, after string1
has been found once and string2 inserted before it, scanning
for the next occurrence resumes at the next character after
string1, as adjusted by the in~ertion.

Example:

* SE 17.69 @)

::.. TSiO/AA/P /./;TS §

AAAAAAA

.AA.AA.AAA

Errors:

--Cn: OVERFLOW A nonblank character has been
pushed off the right of the card
image.

F (Follow by)

F causes the Editor to start after the last character of a
given occurrence of a specified string (or column) and insert
another string, pushing everything from this column right as
required to make room. The F command has the format

or

::.. kF / string!

String2 may legally extend past column d if d < 72. String2
is not scanned when searching for all occurrences of the
first string. Furthermore, insertion is made from left to right,
so that an occurrence of stringl which was between columns
c and d before F was executed may no longer be in this
range by the time it is scanned, if previous insertions have
taken place.

For example:

Command

:'/AB/F /+2/

Errors:

Result

LW,R6

LW,R6

--Cn: OVERFLOW

AB,R2

AB+2, R2

old

new

Nonblank characters were
pushed off the right-hand end
of the record image.

26 Intra-Record Operations

Rand L (Image shifting)

Rand L commands cause portions of the image to be shifted
right (R) or left (L). The Rand L commands hc\!e the form
shown below.

':[j]/ string/ {~} s

or

SHIFT LEFT

The nonblank field to the right of the first character of the
jth occurrence of the indicated string (or column k) is
shifted left s positions. Blanks are supplied on the right,
and columns to the left are overwritten. The shift may
legally overwrite below column c.

SHIFT RIGHT

The nonblank field to the right of the first character of the
indicated string is shifted right s positions. Blanks are in­
serted into vacated positions and absorbed on the right if
blank preservation is OFF. The shift may legally push
characters beyond column d, if d is less than 72.

For example:

Command

':/L/R2 $10 LW,R6 B old

$10 LW,R6 B new

':/L/RlO $10 LW,R6 B old

$10 LW, R6B new

':/L/L2 $10 LW,R6 B old

$10 LW,R6 B new

Errors:

--Cn: IALL I IGNORED The value j =0 was specified,
but j = 1 was substituted.

--Cn: UNDERFLOW

--Cn: OVERFLOW

Characters were lost to the
left of the record.

Characters were lost to the
right of the record.

TS (Type; suppressing sequence number)

TS causes the Editor to type the contents of the current
active line of the SE, 55, or ST command.

The T5 command has the form shown below.

Example:

* SE 5 . TS §
- '

Ll LW,5 K

~ 190/KLB/; TS; 370/GET KLB/ ; TS §

Ll LW,5 KLB

Ll LW,5 KLB GET KLB

Because all commands on a single input line are executed
for the first record before the second record is processed,
etc., TS will type each I ine in turn after all editing up to
the TS command has been done.

Example:

* SE 10-10.2 @)

(10.0)

DATA, 4 0,5 (10.1)

DATA, 4 (10.2)

TY (Type, including sequence number)

TY is the same as TS, except that each line is printed with
its sequence number.

JU (Jump)

JU may only be used whi Ie in the "step" mode (i. e., while
under the control of an SS or ST command). JU causes the
SS or ST command to jump to a specified record and then
continue stepping from that point. The JU command has
the form shown below.

Record n may be forward or backward from the current
sequence number at the time JU is given. JU may be used
on compound lines (i.e., a line with more than one com­
mand on it), but in such a case JU must be the last com-
mand on the line. --

Error:

--Cn: NO SUCH REC Record n does not exist.

NO (No change)

NO may be used only while in the IIstepll mode and speci­
fies that no editing is desired on the current active line
under the set. The NO command has the form shown below.

** NO

Example:

.:.. ST 27.5 @)

27.500 LW,6 BLK

** NO €V

30.000 STW,6 ALT

~/ALT/F/+/19/; TY ; JU34 @)

30.000 STW,6 ALT+19

34.000 AI, F

**

RF (Reverse blank preservation flag)

RF causes the current setting of the blank preservation flag
(lIon" or lIoffll) to be reversed temporarily. The RF com­
mand has the form shown below.

~t .. ;] RF ; ...

or

~ ... ; RF D ...]
The flag is reversed only for the duration of the input line
in which RF appears,ood blank preservation is restored to
its initial setting when a new input line is entered (i. e., at
the time a new prompt character is given). Thus, RF must
always be used as part of a compound input iine to have
any effect.

Example:

* SE 10; TY

10.000 L5 LW,4 X GET CURRENMT ADDR

~ RF;/NM/S/N/;TY

10.000 L5 LW,4 X GET CURRENT ADDR

Without using RF in this case (assuming that BP OFF is the
initial setting), one would get two blanks after CURRENT.
In all cases, the BP flag is restored to the value it had
before any RF commands were given.

EDIT COMMAND SUMMARY

A summary of EDIT commands is given below.

Command Page Function

BP 20 Select character insertion mode

BUILD 19 Create new fi Ie

COpy 19 Copy file 1 to file 2

DELETE 20 Delete fi Ie

EDIT 20 Select file for editing

Edit Command Summary 27

Command Page Function Command Page Function

END 19 Exit to Executive ST (also SS) 24 Perform character operations on
_____ ..1_ ~ _ _ L __ ___ ..I_
I C~UI u::> III ::>ICI-' IIIUUC

CM 23 Insert commentary
TY (also TS) 21 Type individual records

DE 21 De I ete records
SE 24 Perform character operations on

FD 22 Delete records containing group of records
specified character string

R or L 26 Sh ift string
FT 22 List sequence numbers of

specified character string S 25 Substitute string

IN (also IS) 21 Insert records D 25 Delete string

MD (also MK) 22,23 Reorder records within fi Ie o (also E) 25 Alter string

RN 23 Renumber record F, P 25,26 Insert string

28 Edi t Command Summary

8. FERRET SUBSYSTEM

FERRET is a utility subsystem providing a general capability
for obtaining information about entries in the file manage­
ment system. The subsystem also provides for limited file
manipul ation.

FERRET is call ed with the Executive command

!FERRET

and when ready to accept input, prompts with the II> II
character.

Any FERRET commands may then be given. If the subsystem
does not recognize a command, it responds with

COMMAND NOT LEGAL.

The user may exit to the Executive by typing an X, i. e.,

>X

At any time, @@ may be used to exit to the Executive
I evel. The PROCEED command, at that point, wi II con­
tinue the previous operation.

FERRET COMMANDS

LIST (list account contents)

LIST causes the program to list all file names in the
specified account. If no account number is specified,
the log-on account is used. The LIST command has the
form shown below.

~ L[IST] [acct.] @)

TEST (Test file accessibility)

TEST checks whether the user may read the specified file(s)
under his log-in account.

The TEST command has the format shown below.

? T[EST]file[,file, ••• ,file] e
where

file may have any of the three following formats:

1. name User's acct. assumed.

2. name (acct.) Specified acct.

3. name (acct., pass.) Specifi ed acct. and pass.

If the file is accessible, the following message is printed:

file name WAS CREATED month,day,year,AND HAS
xxxx GRANULES IN IT.

If the fi Ie does not exist or cannot be accessed under the
user's account or the password specified, the following
message is given:

CANNOT ACCESS FILE file

ACTIVITY (Check file activity)

The file specification formats are as in "TEST", above. These
files are checked for current activity by attempting to open
them in the INOUT mode. A discussion of such modes is
contained in the BPM Reference Manual, 90 09 54. If the
file can be opened, it is inactive and the program prints

fi Ie IS INACTIVE

The ACTIVITY command has the format shown below.

2.. A [CTIVITV] fi le['fi Ie, ... ,fi Ie] @)

If the fi Ie cannot be opened, it is either currently open
or the user does not have write access to the fi Ie, and in
either case the fi Ie is considered active. The program prints

fi I e IS ACTIVE

Should any of the indicated files not be accessible to the
user as described under file accessibility, the CANNOT
ACCESS FILE message wi II be given.

DELETE (File deletion)

If the user may access the file (see "TEST", above)and it is
in his log-in account, the file will be deleted.

> D [ELETE]file[,file, ••• ,file] @)

If the user may not access the file, or it is not in his log-in
account, the file will not be deleted and the following mes­
sage is given.

CANNOT DELETE FILE file

COpy (Copy file)

COpy copies file1 to file2' It has the format shown below.

~ C [OPY]file1,file2 @)

If file1 is not accessible to the user(see "TEST", above}, the
CANNOT ACCESS FILE message is given. If file2 cannot
be opened in the output mode, the following message is given.

CANNOT CREATE FILE file

Ferret Subsystem 29

FERRET can copy records up to 512 words in length. A
larger record causes the copy to be aborted with the message

CANNOT COpy - - RECORDS TOO LARGE

EXAMINE (Examine file)

Should the file not be accessible (see IITESTII, above), the
appropriate message will be given. EXAMINE has the for­
mat shown below.

~ E [XAMINE] file @)

Since a number of actions are possible in connection with
EXAMINE, the subsystem wi II prompt with the # character.
For example,

~ E ALPHA @>(examine file ALPHA)

The following characters cause the indicated action.

@l

Exit from file examination mode.

Display, in decimal, the number of
records in the file.

Print all records in the fi Ie in EBCDIC.

30 Ferret Commands

Print record m in EBCDIC.

m,n @) Print records m through n in EBCDIC.

In any of the print commands, above, typing H as a first
character causes the print to be in hexadecimal, with four
words of the record per line. Lines of zeros wi II be sup­
pressed. For example,

causes a hexadecimal dump of record 20.

Records I arger than 512 words wi II be truncated to 512wi th
the following message.

RECORD EXCEEDS BUFFER SIZE, 512 WORDS GIVEN

If the first record requested is not in the fi Ie, the following
message is given.

FIRST RECORD NON-EXISTENT

If an end-of-file occurs before the last record requested,
the dump is terminated with the mes~age

UNEXPECTED EOF AFTER RECORD j

where j is the highest record number read.

9. FORTRAN IV-H SUBSYSTEM

The FORTRAN compiler processes FORTRAN source lines
(see SDS Sigma 5/7 FORTRAN IV-H Reference Manual,
90 09 66) in the order in which they are read. It is im­
portant that the source program (input through M:SI) be in
an order acceptable to the compi ler.

FORTRAN OPTIONS

When the FORTRAN subsystem is called, it responds with
a request for options. The user types an option list in
which the options are separated by commas, and the list is
terminated by a carriage return. Any time prior to typing
the carriage return, a user may enter @X to erase the
entire option list, and then enter a new one.

The following table lists all the forms of each option. The
underl ined options are the default options, used when only
a @is given in response to the OPTIONS request. Should
the user type an option reque~t, he receives only those he
requests.

Option Form

Wanted Not Wanted

BO NOBO

LS NOlS

SO NOSO

DB NODB

S NOS

Description

Binary Output file. Ouput
through -M:BO.

List Source. Each source
~ate~ent is output through
M:LO.

Source Output. Source card
images will be output through
M:SO. The SO option allows
the creation of a permanent
source file while compiling
from the console. It is not
honored when input is from
the RAD.

Debug, Basic. Causes the
binary o~tput (BO) to be cre­
ated with links to the basic
run-time debug package (see
"FORTRAN Execution with
Debug Option"). If DB is re­
quested, BO is assumed and
need not be requested.

Symbolic machine language
'instructions may be written
within FORTRAN source pro­
grams. (For detai Is on format
and usage, see Appendix B,
SDS Sigma 5/7 FORTRAN
IV-H Operations Manual).

Note that if any errors are encountered during compilation,
they will unconditionally be printed along with the offend­
ing source lines, through M:DO. If M:LO is assigned to a
different file than M:DO, the error lines and messages
wi II also be output through M:LO (even if no listing was
req uested) .

The default assignments of all the DCBs used during com­
pi lation are as follows:

DCB

M:BO

M:DO

M:LO

M:SI

M:SO

Default Assignment

File named BOTEMPa.

The user terminal.

The user terminal.

The user terminal. This means that a user
should be careful to type his source in the
proper columns. The TABS Executive com­
mand greatly simplifies this.

File named SOTEMPa.

The sequence of events during compilation is:

1. The source lines comprising a statement are input
through M:SI and scanned.

2. If an error is found in the statement, the statement,
followed by an error message, is uncondition"ally
printed through M:DO and also output on M:LO (if
different from M:DO).

3. If no error is found and the listing option has been
given, the source statements will be printed through
M:LO.

4. For each source statement free of error, the compiler
will generate the code in SDS standard object language
and output through M:BO. If DB has been requested,
each statement will also have a link generated to the
run-time debug package.

5. When an END statement is encountered, the compi ler
prints a program summary (if LS was requested) and
completes generation of the relocatable object module
through M:BO.

6. When compilation is complete, the compiler returns to
the BTM Executive. A compi lation may be interrupted
via @@ if the user desires to change ASSIGNments or
options. To continue the compilation, give the Execu­
tive command PROCEED. Upon re-entering the com­
piler, the user wi II receive another request for options.
If he does not wish to change from his previous selec­
tion of options, he merely types a @(the assumed

FORTRAN IV-H Subsystem 31

options become whatever he chose at the beginning of
the compilation). However, any changes desired in
options may be made at this time. Users should not try
to select either BO or DB in the middle of compi lo­
tion when NOBO and/or NODB were requested
initially, because the resultant object module will not
be executable.

7. The normal manner in which to create and debug FOR­
TRAN programs is to use the Editor to first create the
source file; then compile, load, and execute.

However, it is possible to type a program directly to
the compiler, a line at a time, while using SO to cre­
ate the source file. The following error recovery pro­
cedure exists in the compiler for use by the experienced
FORTRAN programmer wishing to create a small program
directly from the console.

Since the FORTRAN language denotes continuation by
putting the continuation flag in the card that ~ the
continuation, a compiler must always read ahead one
card to see if the source line it just read was continued.
For the on-line user compi ling from the console, this
causes him to have to input a I ine following any com­
plete statement to denote the end of that previous state­
ment thus getting any diagnostics a line later. When
using the compiler in this direct manner, a user should
(but need not necessari Iy) type a colon as the last non­
blank character before his @). The colon wi II signify
that ~ continuation lines follow, so analysis will take

Example 1.

place immediately and diagnostics will be output as
follows, without the user having to type in another line.

a. After the error is printed, and if M:SI is assigned
to the console, a retry request is given to the user.
If he does not wish to re-enter his erroneous state­
ment, then compilation will continue.

b. If the user wishes to retry, he may input a new set
of lines comprising the replacement for the state­
ment. Upon termination of this set of lines, the
statement(s} are compi led.

c. If the retry statement(s} has no errors, then the
compiler will check to see if a source line was
input after the last line of the original statement.
If so, the line will be output on the Teletype and
the user wi II be requested to accept or reject it.
If he accepts it, compilation continues; if he re­
jects it, a new record is read from the console and
compiled. If there was no source line input after
the original statement due to the ":" convention,
regular compilation will continue.

d. If the retry statement(s} contains errors, the series
of events is exactly the same as (a) - (c) above.

When obtaining source output from the compiler, the edit
sequence number is implicitly k.OOO; where k is the state­
ment number of a I ine typed to the compiler.

!FORTRAN Select FORTRAN.

OPTIONS: @l

1 : A=o: 9

2: C=D 9

3: E = F: @)

4: G= H @)

5: END @)

SUBPROGRAMS

PROGRAM END

Example 2.

!FORTRAN

OPTIONS: @)

1: A = B, P: @l

32 FORTRAN Options

Default options - BO, LS, SO, NODB, NOS.

Source line i by user (with a !l no continuation!! mark).

Source line 2 by user (it may be continued).

Source line 3 by user (with a "no continuation ll mark).

Source line 4 by user (it may be continued).

Source line 5 by user (because it is an END statement, it is assumed
to have no continuation).

J Program summary.

Select FORTRAN.

Default options

Source line 1, with error.

1: A = B,P

$

****SYNTAX

RETRY? 1: A = B*P @) -----
MORE? @)

2: C = D @)

3: END @)

Example 3.

!FORTRAN - ---
OPTIONS: @)

1 : A = B,P @

2: C = D @)

1: A = B,P

$

****SYNTAX

RETRY? 1 : A = B*P @)

MORE? 2: @ -----
ACCEPT? 2: C=D @

3: END @

SUBPROGRAMS

PROGRAM END

Example 4

!FORTRAN

OPTIONS: @)

1 : A = B,P @)

2: A = B*P @)

1: A = B,P

$

****SYNTAX

} Diagnostic

User retries

End of user retry

Continue normal input

Standard options - LS, BO, SO, NODB, NOS.

Source line 1 by user.

Source line 2 by user.

} Diagnostic on source line 1.

Retry request for source line 1, user retries.

Request for additional source lines on retry, but user has none.

User asked to accept previously input line. Y @)or @)means yes;
N @is no.

End of program.

} Program summary.

Standard options.

Source line 1 by user.

Source line 2 by user.

} Diognastic on source line I.

FORTRAN Options 33

RETRY? 1 : B=l.@) Retry request for source line 1, user retries.

MORE? 2: P = 3.7 @) User types additional line in retry mode.

MORE? 3: @J No more retry lines.

ACCEPT? 3: A = B*P @) User accepts previous input (resequenced as source line 3).

4: C = A*P @) Source line 4 by user.

5:

SUBPROGRAMS

PROGRAM END

END@) Source line 5 by user.

} Progrom summory.

EXECUTION OF FORTRAN PROGRAMS

All object modules (BO) created by the FORTRAN compi ler
must be loaded by the Loader subsystem. The Loader will
build DCBs for the SDS standard unit numbers (101, 102, 103,
104, 105, 106, and 108) and for any other DCBs that have
been referenced by an ASSIGN command prior to entering
the Loader subsystem.

SDS Standard Correspond- Default
Unit Number ing DCB Assignment

101 F: 101 Users term i na I

102 F:102 Users terminal

103 F:103 Users terminal

104 F:I04 Users terminal

105 F:I05 Users terminal

106 F:106 Users terminal

108 F:108 Users terminal

All FORTRAN I/O statements refer to unit numbers, and
there must be a DCB (F:u, where u = unit number) for each
unit number used. If I/O is performed only via the FORTRAN
II type READ/PUNCH/PRINT statements, then all DCBs will
be provided (READ references F: 1 05, PUNCH references
F:106, and PRINT references F:108). However, if a user
writes on any unit besides SDS standard units, he will have
to make a request during loading of his program to define
the corresponding DCB.

Example:

(F ORTRAN statements)

WRITE (6, 10) A, B, C

10 FORMAT (3Fl O. 4)

34 Execution of FORTRAN Programs

When the Loader has completed loading the program it will
issue a request for the user to give the name of any nonstan­
dard DCBs to be used. The user might respond

F:6 = MINE @)

This causes the DCB, F:6, to be bui It and included with the
user1s program. F:6 is assigned to a file name MINE. The
second line beginning with F: terminates the requesting of
DCBs (see Loader subsystem for a discussion of DCB requests).

Example:

(FORTRAN statements)

READ (2, 10)

READ (3, 12)

READ (4, 10)

READ (5, 11)

WRITE (6, 13)

WRITE (7, 14)

WRITE (8. 15)

10 FORMAT (I 1 0)

11 FORMAT (614)

12 FORMAT (317)

13 FORMAT (2HI=, 110)

14 FORMAT (1 H 1,515)

15 FORMAT (6120)

(l:nrrpc:nnnrli nn rpn IIPc::tc: fnr I)C Rc:) \ -_ .. --r-··_···", . -.,--_.- . _. - ---,

f;2 @)

F:3 = DATA1,IN @)

.!:.:4 = DATA2 (ACCT3), IN @)

f;5 = DATAl, IN @)

J

K

L,M

J

K, L,M

F:6 = OUTl, L @

~7 = OUT2 (ACCT3), OUT, L €V

The result of these assignments is as follows:

F:2

F:3

F:4

F:5

F:6

F:7

is assigned to the userl·s console.

is assigned to an input file named DATAl.

is assigned to an input file, DATA2, in the
account ACCT3.

is assigned to the input file DATA 1 (same as
F:3).

is assigned to the file OUT1, which is a
listing (L) file.

is assigned to the fi Ie OUT2, in the account
ACCT3, which is an output (OUT) listing (L)
fi Ie.

F:8 is assigned to the user1s console.

F: €V terminates the list of DCB definitions.

FORTRAN EXECUTION WITH DEBUG OPTION

The FORTRAN compi ler offers two kinds of source-language
debugging capabilities. One capability provides a trace of
the numbers of source lines reached duri ng executi on of a
program. The other capability traces the values stored into
variables as the result of assignment statements. A special
code wi II be generated into the user1s program to provide
these debugging features if the option is selected.

The DB (debug) option, specified in the FORTRAN option
list, causes FORTRAN to generate the necessary linkage to
allow the debugging capabi I ities. At run time, a program
compiled in debug mode enables the user to trace program

execution, request a snapshot dump, halt execution at a
particular statement, and to execute this program in the step
mode (i. e., the program wi II halt after the execution of
each statement). The following discussion assumes that the
object program was compi led in the debug mode.

After the program has been loaded into core storage for
execution, the program identification is typed by BTM:

#MAIN

B TM then types an asteri sk on a new line. The debug codes
given in Table 1 will be accepted as input. In this table
default values for the debug codes are underlined.

Each acceptable input code is acknowledged by a @. If an
input code cannot be recognized, a question mark (?) is
typed instead of the @l.

The size of FORTRAN programs that may be loaded and exe­
cuted is limited only by the size of the time-sharing envi­
ronment. Since the Loader must be able to fit in core with
the user program during load, the total loadable FORTRAN
program size in a 16K on-line area is approximately 800010
words, not including the library. Total program size of
FORTRAN programs is printed on each compi lation summary.

The diagnostic comments at compi lation time are described
in Chapter 2 of the SDS Sigma 5/7 FORTRAN IV-H opera­
tions Manual (90 11 44).

FORTRAN-LIBRARY /RUN-TIME DESCRIPTION

All basi c external functions and subprograms avai lable in the
FORTRAN IV-H library are described in the SDS Sigma 5/7
FORTRAN IV-H Operations Manual (90 11 44).

Whenever an error is detected during execution, a diagnos­
tic message is written through M:DO (and M:LO, if a dif­
ferent file). For a list of all possible diagnostics and their
meaning, see the SDS Sigma 5/7 FORTRAN IV-H Operations
Manual (90 11 44).

Table 1. Debug Codes

Code

S@

NS @l

T@

NT @

Meaning

Step. The program is to be executed in the step mode. Before each statement is executed, its statement
number is typed. This is followed by a carriage return and asterisk, and an input code is expected.

No ~tep. This input code terminates the step mode.

Trace. Trace the sburce lines reached during program execution. Before being executed, the statement
;umbers are printed, through M:DO, across the line (up to column 80) and are separated by blanks.

No trace. This input code terminates the trace.

FORTRAN Execution with Debug Option/FORTRAN-Library/Run-Time Description 35

Code

V9

NV 9

Adddd S

G@J

RS

Table 1. Debug Codes (cont.)

Meaning

Snapshot. A snapshot displays the values tored into variables as the result of assignment statements.

A snapshot is of the form:

variable name =constant (for scalars)

variable name (element number) = constant (for arrays)

The value of the constant is printed through M:DO in a format that corresponds to the type of the
variable.

No snapshot. This input code terminates the snapshot.

Stop. The program is to stop each time it reaches line #dddd. When line #dddd is reached, the program
types:

STOP AT dddd

and halts. On a new line, an asterisk is printed and any of the Debug input codes may be entered. When
a G code (see below) is entered, program execution proceeds, beginning with statement dddd.

No stop. The program will no longer stop at the statements previously designated by the A (stop) code.

Go. The program begins execution, and the indicated debug function are performed at the appropriate
times. This code is the only one that does not result in a new input request.

Do not stop at lower levels of subroutine entry. Suppresses printing of subroutine name.

Stop at subrouti ne entry.

Halt only upon entry to the subiOutine Oi function named "nnnnnn" (as opposed to all subpiOgiOms).

Halt at all subprograms.

36 FORTRAN-Library/Run-Time Description

10. LOADER SUBSYSTEM

The Loader subsystem loads SDS Sigma 5/7 Standard Object
Language programs comprising Relocatable Object Modules
(ROMs) from specified element files and/or through M:BI.
It may also load library load modules from the file :BUB in
any specified account and also the :BTM account. The
Loader will load one or more object modules that have been
assembled by BTM Symbol, BTM FORTRAN IV-H, standard
Symbol (off-line), standard Meta-Symbol (off-line), SDS
FORTRAN IV (off-line), or FORTRAN IV-H (off-line). It
will not build overlay structures, and always loads modules
as protection type 00 (regardless of the type specified).

To enter the Loader subsystem, the following command is
used:

!LOAD

LOADER OPTIONS

When the Loader subsystem is entered, it responds first with
a request for the names of all element fi les from which the
user wishes to load. If no element files are named, the
Loader will assume input is through M:BI. (The default
assignment of M:BI is the fi Ie BOTEMPa.)

ELEMENT FILES:

Upon typing the request for element files (above), the
Loader expects a user to list his element file names with a
comma separating the names and a carriage return termi­
nating the list.

fi I e name[{account, pass)], fi Ie name[(account,pass)]. .. , @)

The total number of characters in "file name ", II (account,
pass.) ", and ", II may not exceed 100.

Each fi I e name consists of 1 - 11 al phanumeri c characters
and may optionally be fol lowed by the account number and
password in parentheses. If the user has assigned M:BI to his
file of object modules or if he is using the default assignment
of M:BI, then his element file list is just a carriage return.
Any time prior to typing the carriage return, a user may
enter@X to erase the entire element file list.

Example:

.!.ASSIGN M:BI,{FILE,MINE) @

!LOAD

E LEME NT FILES: @

In the above example, M:BI was assigned to the user fi Ie
MINE and was the only element file needed during loading.

Example:

!LOAD

ELEMENT FILES: MINE, OURS, HIS (ACCT4) @

This example shows the user of several different element
files during load. The files MINE and OURS are both in
the userls account, but the file HIS is in account ACCT4.

Upon accepting the element file list, the Loader issues a
request for options:

OPTIONS:

This request expects an option I ist consisting of the following
options separated by commas and terminated by a carriage
return.

option ~option] .•• ['optionJ @)

Any time prior to typing the carriage return, a user may
enter @ X to erase the entire option list.

Options

N

M

P

Descri pti on

No system I ibrary search wi II be made
for unsatisfied primary references.
Unless this option is specified the
:BLIB file in the BTM system account
(:BTM) will be searched for unsatisfied
primary references.

A load mapt of all DEFs and REFs will
be outp~t through M:LO when loading
is completed. If this option is not
specified, only SREFs (secondary ref­
erences) and PREFs (primary references)
wi II be output through M:DO (and
M:LO if it is assigned to a different
fi Ie).

1:!nsatisfied references should cause a
search of the :BLIBfile in each of the
accounts specified before the optional
search of : BUB in the BT M system
(:BTM) account. If this option is not
speci fi ed, no search of nonsystem ac­
counts will be made to satisfy primary
references.

When option P is specified, all pro­
grams defined by separate modules
will be started on the next highest
XI 1001 word boundary. The starting
bi as for a program is XI200 1 in the
on-line memory area.

Specifying the P option simplifies the
task of relating assembly listings to
memory locations while debugging. It
should be noted however that separate
control sections within each module
wi II be contiguous and wi II not be
started on any parti cu I ar boundary,
other than doubleword.

t See sample load map at the end of this chapter.

Loader Subsystem 37

Options Description

D Option D provides for execution of
programs under control of 0 debug
program, and is primarily of use in
checking out assembly language pro­
grams; however, it may be put in con­
trol, with no ill effect, during the
execution of any program that can be
run using the LOAD subsystem.

When the option list has been accepted, the loader loads
the specified ROMs. If any errors are encountered during
loading, an error message is output through M:DO (and
M:LO if it is assigned to a different file). The following
section, "Loader Error Messages", describes each message
in detail. For any unsatisfied REFs to DeBs (F:alpha,
where alpha is a name consisting of 1 to 8 alphanumeric
characters), the DeBs will be built by the Loader and
the default assignment will be to the user terminal.

The Loader will also request that the user specify any DeBs
he will need for which there are no REFs or for which to
change the assignment. (Any FORTRAN unit numbers
aside from 101, 102, 103, 104, 105, 106, 108 fall into
this category. See IIFORTRAN IV-H Subsystemll for de-
tai Is.) The request is of the form:

F: En] [=name [{account, pass)]] [,option] .•• [,option]

where

F:

n

nromntc; thF! nc R r/F!c;rri nti on ,-- _._-,--- ---- - -- ----- -r-----

is the unit nUmber (for FORTRAN users) or an
alphanumeric ·name (up to eight characters).

=name indicates the name of the file to which the
DCB is assigned. If a carriage return has been
given right after IInll, the Loader would have
assumed the DCB was assigned to the users
terminal.

{account, pass) specifies the account and password
in which the file IIname" (above) exists if it is not
in this user's account.

options: there are three possible types of options
that may be requested aside from the file name
(the file name must be the first item mentioned
after the II = ", but these options may be in any
order following the file name):

1. The function option may be any of the
following:

IN

OUT

INOUT

OUTIN

38 Loader Options

where

IN specifies the file is only to be
used for input.

OUT specifies the file is only to be
used for output.

INOUT specifies the file is to be used
in an update mode.

OUTIN specifies the file is to be used
as a scratch file. This is the default
option.

2. The release option is

REL

which specifies the file is to be released at
the end of this execution (the default option
is that it will be saved).

3. The listing file option. This specifies that
the file will eventually be listed on a listing
device. The option is

L

Note: When assigning an input disc file, it is important
that the IN option be given. The default assign­
ment in all Sigma loaders is OUTIN, meaning a
scratch file. Attempting to read before writing
will cause the Monitor to create a new file of the
same name.

Example:

F@)

The user does not wi sh to have any DC Bs assi gned to fi I es.
This is also the way a user ends his DeB requests (see next
example).

Example:

F:5 @)
F:6 = MINE @)
F:7 = YOURS (BTM1),IN E>
F: @)

The user wanted F:5 assigned to his terminal and F:6 assigned
to the scratch file MINE, which is to be saved at the end of
the job. F:7 is assigned to an input file, YOURS, in ac­
count BTMl. The E! @)ends the list of assignments.

When the load has been completed, the Loader wi II
issue a message denoting the highest error severity level
encountered.

SEVe LEV. = n

where

n is a hexadecimal digit.

Then the Loader requests the user to specify whether or not
the load module just formed should be executed:

XEQ ?{~ } @)
S,adr

where

Yor @) means res, execute the load module.

N means no, do not execute the load module and
exit to the Executive.

S means yes, execute the load module and use the
following address {adr} as a ~tart address for
execution.

adr is either an external definition (optionally fol-
lowed by a hexadecimal addend value) or a signed
absolute hexadecimal address.

The first digit in the absolute hexadecimal constant must
be a ". II (e.g., S, .1AC).

Example:

SEVe LEV. = 0

XEQ? Y @)

In this example, there were no load errors and the user re­
quested execution of his program.

Example:

SEVe LEV. = 3

XEQ? S,MYPROG +. A3 @)

This load module has a severity level of 3, but the user
wishes to execute it anyway. A start address of MYPROG
+ A3 16 is given. MYPROG is an external definition (i. e.,
appears in a DEF statement in a Symbol or Meta-Symbol
program or is a subroutine or function name in a FORTRAN
program).

Example:

SEVe LEV. = C

XEQ? N

There were serious errors encountered (in the above example)
and the user decided not to try to execute his load module.

EXECUTION

When a user program is in execution, the Load subsystem
mon i tors the process and wi II respond to any errors, such as
a nonexistent instruction, with an appropriate message.

Should the terminal user key in § @, the Load subsystem
is put back in control and it will inquire

PROCEED?

If the user responds with

Y

execution will continue. Any other response causes the
Executive to be put in control.

Keying in the @@ command twice while a user program is
in execution wi II cause the Executive to be put directly in
control. Should the Executive PROCEED command be given,
the Load subsystem wi" sti II inquire as above, whether
user-program-Ievel execution is to continue.

LOADER ERROR MESSAGES

If a user specifies a nonexistent option in his option list
(see "Loader Options" above) the Loader issues the
message:

ILLEGAL OPTION

and regenerates a request for opti ons.

During the load process, any errors are output through M:DO
(and M:LO if it is assigned to a different file). The form
of the error messages is as follows:

error statement 1 (any message in Table 2)

error statement 2 (any set of comments in Table 3)

T abl e 2. Loader Error Messages

Message

NO LIB FILE

NO ELEMENT FILE

ILLEGAL ORIGIN

ILLEGAL ROM DATA

CHECKSUM ERROR

SEQUENCE ERROR

STACK OVERFLOW

Description

The specified library could
not be found.

The requested element file
could not be found.

An attempt was made to
load outside the available
area.

The ROM contained illegal
object language.

There was a checksum error
in the specified record.

The sequence of the record
following the specified one
was not equal to the current
sequen-ce plus one, and the
currentreoord is not the '-ast
record in a ROM, or the first
record in a ROM is missing.

There is not sufficient room
in memory for the Loader,
the program, and the loader"
stacks.

Loader Error Messages 39

T abl e 3. Loader Error Comments

I Comment I Description

PROCESSING LIBRARY

account SEQ. NO. xx

OVERALL ROM NO. yy

LOADING FROM BI

SEQ. NO. xx

OVERALL ROM NO. yy

LOADING ELEMENT FILE

name SEQ. NO. xx

OVERALL ROM NO. yy

Example:

ILLEGAL ORIGIN

LOADING FROM BI

SEQ. NO. lA

OVERALL ROM NO. 1A

Example:

SEQUENCE ERROR

PROCESSING LIBRARY

MY ACCT SEQ. NO. 4E

OVERALL ROM NO. 31

Example:

The error document in error
statement 1 (see T abl e 2)
occurred after the Loader
had processed all the ROMs
contained in the specified
element files. This error
was encountered in the
"account" named in line 2
ofthis comment. It occurred
in record "xx" of the "yyllth
ROM encountered in this en­
tire load operation ("XX"
and lIyyll are hexadecimal
numbers).

The loader was processing
ROMs through M:BI when the
error occurred in the IIxxllth

, record of the lIyy"th ROM
(IIXXII and "yyll are hexa­
decimal numbers).

The loader was processing
ROMs from the file, "namell,
and the error occurred in the
record sequenced "xx" in the
" yy llth ROM encountered in
enti re load operation {"XXII
and " yy ll are hexadecimal

I numbers}.

CHECKSUM ERROR

LOADING ELEMENT FILE

MINE SEQ. NO. 1C

OVERALL ROM NO. 2B

40 Loader Error Messages

LOAD MAP EXAMPLE

type
(see below) I

1
PREF
PREF
PREF
PREF
PREF
PREF
SREF
UDEF 2800 0
UDEF 2864 0
UDEF 2864 0
UDEF 2868 0
UDEF 2868 0
UDEF 286C 0
UDEF 2870 0
UDEF 2870 0
UDEF 2874 0
UDEF 2878 0
UDEF 2878 0
UDEF 287C 0
UDEF 287C 0
UDEF 2880 0
UDEF 2880 0
DEF 2884 0
DEF 2886 0
DEF 2898 0
DEF 289A 0
DEF 289C 0
DEF 28B6 0
DEF 28B8 0
DEF 28BA 0
DEF 28D60
UDEF 3559 0
UDEF 355C 0
UDEF 355E 0
UDEF 357F 0
UDEF 3582 0
DEF 3660 0
UDEF 3668 0
UDEF 3673 0
UDEF 3680 0
UDEF 368D 0
UDEF 36E4 0
DEF 3BDO 0
DEF 3BAO 0
DEF 3B70 0
DEF 3B40 0
DEF 3BlO 0
DEF 3AEO 0
DEF 3ABO 0
DEF 3A80 0
I"\t:t:
IJL.I 3A50 0
DEF 3A20 0

t

label of DEFs or

I REFs

l
9DATAN2
8MSGBUF
8TALPHA
8ABORTEX
8ABRTSEV
8TERROR
BF:BUFF
LOWEST LOC-Iowest
ATAN location for
ATANF user program
COS
COSF
ALOG10
SQRT
SQRTF
ALOG
EXP
EXPF
SIN
SINF
TANH
TANHF
BF:SETlI
BF:SET1 R
BF:SETlC
BF:SETDC
BF:SETlD
BF:SET2D
BF:SET21
BF:SET2R
BF:SDIAG
7ERRINIT
7BUFOUTC
7BUFOUT
BF:RUNIO
DCBSETUP
BF:TYPE
BF:KEYIN
BF:SE
BF:ST
BF:SB
HIGHEST LOC - highest 10-
M:DO cation for
M:LL user program
M:OC
F: 101
F: 102

DCBs for user program F: 103
F: 104
F:105
t:.l{\.t..

~: ~~~ J
first byte (within word)
of DEF

word address of DEF

where "type" is:

SREF (Secondary REFerence.) The label specified
on thi71 ine was referenced only as a secondary
reference (see Symbol and Meta-Symbol manual
90 09 52).

PREF (Primary REFerence.) The label specified was
a pri~ary refe~ce, but no corresponding definition
was made for that I abel.

DEF (External DEFinition.) The label has been both
defined and referenced.

UDEF (~nused DEFinition) The label has been
defined but not referenced.

DDEF (Double DEFinition) The label has been
encourrtered m-;;;:; than once during loading. The
first definition is used.

UNDEFINED SYMBOLS IN LOAD MAP

When the D option has been specified, the load map will
also include undefined internal symbols for each element
file included in the loading process. For example:

!LOAD

ELEMENT FILES: SO 1, S02

OPTIONS: D, P

PREF ALPHA

PREF SETA

UNDEFINED INTERNALS

* EF - SOl

USYM

USYM

* EF - S02

USYM

F:

GAMMA

DELTA

ZAP

only with IDI option

The undefined-symbol map wi II always directly folloY>. the
normal map produced by the Loader. Undefined internal
symbols can be detected only for those object modules as­
sembled on-line by Symbol, or in the background by Meta­
Symbol, with the SD option.

The loader also builds tables of internal symbols for those
modules containing symbolic debugging information. "In­
ternal symbols" are those symbols in an assembly that are
not made external through use of the DEF/REF directives,
nor defined under control of a LOCAL directive. That is,
they are the "global" symbols of the particular assembly.

An internal symbol table is built for each element file in­
cI uded in the load process, for I ater use by the debug pro­
gram and to provide values for undefined symbols displayed
in the load map. Only seven characters of any symbol are

retained, along with its value and type/resolution codes.
Should symbols in the element file have duplicate initial
characters and I ength, the first such symbol encountered
will be retained. The same name length restriction applies
to element file names; therefore, they should be restricted
to seven characters when creating the binary input.

SATISFYING UNDEFINED SYMBOLS

After any DCB assignments have been made and the severity
level printed, the user will be requested to satisfy undefined
symbols.

If any PREFs were detected, the Loader wi II prompt with

**SA TIS FY EXTERNALS **

<

The user may respond by typing the name of a PREF and its
satisfying value, after which he will receive another "<"
prompt. The PREF name being satisfied is terminated with
the character ">". For exampl e:

<PREF>value

where

"value" is an expression of the form

DEF name

DEF name ± hex. constant

hex. constant (identified by a leading ".")

The following error messages are possible:

-NAME ERROR (Improper external name.)

-CONSTANT ERROR (Error in hex. constant.)

-VALUE ERROR (Error occurred in val ue fi el d.)

At any time the user may enter a carriage return only, sig­
nifying that no further PREFs are to be satisfied. When this
is done, the Loader will place Delta in control - unless there
were undefined internal symbols. In the latter case, the
subsystem prompts with

SA TISY INTERNALS

* EF - SOl

<

The user may respond with a va I ue for any of the symbo I s listed
as undefined for this element file. A carriage return alone
causes the Loader to go to the next el ement fi I e unti I all
those that contain undefined symbols have been processed.

When satisfying internal symbol values, the user may also
mention an existing internal symbol in the concerned ele­
ment file. The only time this will be prohibited is when
the combined size of the Loader, the loaded program, the
internal symbol tables, and the DEF/REF stack exceeds the
size of the on-line memory area; when this is the case, it
wi II be noted by a consol e message.

Undefined Symbols in Load Map/Satisfying Undefined Symbols 41

EXECUTION AND SYSTEM INTERFACE UNDER
THE "0" OPTION

\"/han the loading process is complete, the De!ta debug pro­
gram is put in control and it will prompt input with the con­
sole bell. A~ this point, the user's program is completely
initialized and ready to start execution. The iG command
with no expression will start the program at its normal entry;
however, any of the debugging commands may be used to
al ter the program, insert break poi nts or start executi on at
any location.

The user wi II find this an excellent point at which to break
to Executive level and execute the SAVE command. This will
provide the ability to restart the program from scratch with­
out having to go through a rather lengthy loading process.

When the Loader has completed its task, the user's program
is set up for execution in the following manner:

The first page ot memory is used for system functions. It
contains

1. The user's TCB (Task Control Block).

2. System storage for registers, breakpoint control, and
error messages.

3. The user's temp stack {containing 156 words}.

4. A pre-allocated patch area of 256 words.

0,......--------_,
registers 16 words

breakpoint control 16 words

system storage 32 words

base page TCB 36 words
of on-line
memory TSTACK 156 words

511 I PATCH AREA I 256 words

A special symbol, %P, is built into Delta to give the base of
the patch area. It may be displayed by the debug command

%P = .ClOO

The user's program is loaded starting at X'200' of the on­
line memory area and continues to an even page boundary.
If the P option was specified, individual ROMs will be
loaded on X'lOO' word boundaries. Beyond the user pro­
gram, the loader reserves two pages of memory into which
it builds the DCB name table and any M: and F: DCBs the
user may require. The last word of this area is associated
with the symbol %H, in the debug program.

The entire range of the program is considered to be program
data, and accordingly will be swapped in and out during
execution.

A sel f-contained program, i. e., one that does not require
any memory cells external to itself, will have little necessity
for interface with the BTM Executive.

42 Execution and System Interface Under the "D" Option

On entry, register zero contains the TCB address and the
user may push and pull indtrectly through this address to
make use of the pre-allocated temp stack (156 words).

It is possible to do disc file I/O using the standard BPM
CALls for the OPEN/CLOSE, READ/WRITE, and positioning
functions. The only other functions normally required would
be the Tel etype I/O and exi t CALst for use under BT M.

Wi th these, the program can

1. Read characters (CAL3,O) from the console.

2. Write characters (CAL3,1) to the console.

3. Set activation class (CAL3,2).

4. Exit to the Executive (CAL3,6).

The following example is a simple program to write a mes­
sage to the user console and exit.

t

! BTM SYSTEM IS UP
2/1/69 12:02
! LOGIN:NAME,85066
! TABS 8,16

!EDIT
*BUILD TEXT

1.000 DEF AA,ENTRY, TEXT
2.000 AA EQU
3.000 TEXT TEXTC
4.000 ENTRY LI, 1
5.000 LB,2
6.000 LB,O
.., ""'" ,... A' ~ 1
I.VVV I...I-\L0, I

8.000 AI, 1
9.000 BDR,2

10.000 CAL3,6
11.000 END

*END

!ASSIGN M:SI,{FILE, TEXT}

!SYMBOL
OPTIONS: BO
** END OF ASSEMBLY **

!LOAD
ELEMENT FILES:
OPTIONS: P, M, D
UDEF 5 AA
UDEF C2000 TEXT
UDEF C200 0 LOWEST LOC
UDEF C202 0 ENTRY
UDEF C20A 0 HIGHEST LOC
DEF C7DOO M:DO
F:

SEVe LEV. = 0

5
'HELLO!'
1
TEXT
TEXT, 1

" U

1
$-3
0
ENTRY

** NO UNDEFINED INTERNALS**

;G
HELLO!
XIT AT ENTRY +.6

These CALs are described in "Teletype Operations",
Chapter 4.

Programs that must build tables external to themselves have
a slightly more difficult time, because the burden of noti­
fying the Monitor about a change of program size rests with
the user.

Initially, the swap size of the program is set to include the
base page, the program pages, and the Loader-built DCB
pages. Additional space will always be available in the
on-line memory area, however, an attempt to use it with­
out expanding the swap size would almost certainly be
doomed to fai I.

It is possibl e for the program to obtain the maximum number
of pages available (CAL3,14)t, and then set the swap size
to this value (CAL3,14)t. However, this is poor practice
since it may produce an unnecessarily large amount or swap
I/o and should be done only when complex data structures
require it.

In the ideal case, the program requiring additional data
storage will start building its tables extending upward in
memory from the DCB pages, expanding its swap size by a
page at a time as necessary. The format of the CAL3, 13
also allows a separate data area at the high end of core
memory. When building expanding tables in this manner,
the user must ensure that the data handl i ng subroutines de­
tect the necessity for expansion of swap size prior to inser­
tion of data. It is possible (although not likely) that the
program could be swapped out between the insertion of data
into an inactive page and a subsequently given CAL3, 13.

The following computations will be of interest for programs
of the above type:

1.

2.

3.

4.

On entry, RO contains the TCB address in the base page.
The start of the on-line memory area can be obtained
as: START = TCB address and X10001FEOO I

•

If the CAL3, 13 is given with RO negative, the Monitor
returns, in RO and R 1, the byte pattern currently
describing the program structure (see Appendix D).
The following instruction sequence thus obtains the
page count of the program (since it starts as all program
data).

LI,O -1
CAL3,13 0
STW,O PO

The first available data address of the first inactive
page is then egual to

START + (PD**9) = 01

CAL3,14 returns in register zero the maximum number
of pages (MP). The highest available address is then

START + (MP**9) -1 = TOP

From these basic values, a program can perform all necessary
computations for use with the memory management CALs.

t These CALs are discussed under II BTM System CALs", below.

DEBUGGING

Delta is specifically designed for the debugging of programs
at the assembly-language and machine-language level. It
operates on object programs and the tables of internal and
global symbols accompanying them, but does not demand
that the tables be at hand. With or without symbol tables,
it recognizes machine instruction mnemonics and can as­
semble, on an instruction-by-instruction basis, machine
language programs. Its main purpose, however, is to
facilitate the activities of debugging. These are

1. The examination, insertion and modification of elements
of programs: instructions, numeric values, encoded
information, etc.

2. Control of execution, including the insertion of break­
points into a program.

3. Tracing execution by displaying information at des­
ignated breakpoints.

4. Searching programs and data for specific values.

To assist in the first activity, the assemblers will include
in a program1s table of symbols information about what type
of data each symbol represents: symbolic instructions, deci­
mal integers, floating-point values, single and double pre­
cision values, EBCDIC encoded information, and others.

The following summary lists the Delta commands and facilities
in eleven broad groupings. Delta commands are discussed
briefly in HDelta Commands", below, and in greater detail
under "Command Descriptions ll

•

1. Evaluati on of expressions consisting of symbols, constants,
special symbols, and the operators plus and minus (+-).

2. Commands for printing the contents of memory cells and
opening them in preparation for change.

3. Format codes that enabl e the user to control the output
format used in the evaluation a'nd display commands of
groups 1 and 2 above.

4. Commands for storing new contents in open memory
cells.

5. Format codes that control the conversion of input con-
stants typed by the user. --

6. Special symbols used to examine machine flags and to
control operating bounds for Delta.

7. Commands to insert into, delete from, change com­
pletely, and otherwise control the symbol tables used
by Delta.

8. Commands to initiate and continue execution.

9. Commands to insert, delete, and control breakpoints.

10. Commands for searching memory.

11. Miscellaneous commands.

Debugging 43

In outlining the commands, the following conventions are
used in depi cti ng the format of the orders typed by the user:

1. Special characters numbers, and upper case letters
stand for themselves. Thus, in the command le;G"
the user actually types the semicolon and the G.

2. Lower case I etters are pi aced where the user has a
choice of things to type. The letter e alone or post­
scripted is used to stand for any expression consisting
of symbols, special symbols, constants, and the oper­
ators plus and minus (+-). At times, other lower case
letters are used to stand for expressions when some ad­
ditional mnemonic content seems desirable.

3. Examples are n, loc, val, m.

4. The letter f stands for one of the format characters.

5. Abbreviations for user key strokes are:

Letters used in text User Keystroke

@> @)

@ @

SHIFT and N

\ SHIFT and L

9 CTRL and I

Most of the Delta commands are terminated (and thus de­
livered to Delta from the resident cac handler) by the
carriage return @) character; however, certain other
characters also delimit commands to allow dialog within
a single typed line. The command terminating characters
of Delta are €f)! 0! t! @l! \! and =.

e=

e(f=

e/

e(f/

DELTA COMMANDS
EXPRESSION EVALUATION

Evaiuates and types the vaiue of the expression e
in the most appropri ate format.

Evaluates and types the value of e in format f
(see format codes listed below).

DISPLAYING AND OPENING MEMORY CELLS

Displays the contents of a cell e in the most ap­
propriate format. The cell is opened; that is, it
may now be changed.

D i spl ays th e con ten ts of ce II e in format f.

e1,e2/ Displays the contents of cells e1 through e2 in
e1,e2(f/ the most appropriate format or in the specified

format. Cell e2 is opened.

e Opens, but does not dispiay, ceii e.

/ A slash alone, following a display, displays but
does not open the cell addressed by the display.
(Displays the cell addressed by the last quantity
typed (iQ)).

Tab alone, following a display, displays and opens
the cell addressed by the display.

44 Delta Commands

e@)

e@

e

F

STORING IN OPEN MEMORY CELLS

Stores the word specified by e in the currently
open ee!! and closes the ee!!.

Stores e in the currently open cell, closes it, and
opens and displays the next higher addressed cell.

Stores e in the currently open cell, closes it, and
opens and di spl ays the next lower addressed cell.

Displays and opens the cell addressed by the last
quantity typed (;Q). If an expression precedes
the 9 it is stored in the previously open cell.

FORMAT CODES FOR / AND = COMMANDS

Symbol table format type

X Hexadeci mal word

Signed decimal integer

C EBCDIC characters

R Symbolic instructions with symbolic addresses

A Symbolic instructions with hexadecimal addresses

D Double word decimal integer

S Short floating-point number

L Long floating-point number

(f;/ Sets the defau I t format for / commands to f

(f;= Sets the default format for = commands to f

INPUT CONVERSIONS AND EXPRESSIONS

Expressions for evaluation, display, and storage are formed
from the program symbol s, expl i ci t constants, and speci al
symbols using the operators plus and minus (+-).

The conversions that may be specified for explicit constants
are: 1) hexadecimal when introduced by a period (e. g.,
.BAD), 2} EBCDIC characters when surrounded by single
quotes (e. g., 'BAD'), and 3) decimal when the constant c
consists only of numerics (e. g., 1234).

SPECIAL SYMBOLS

Special symbols are recognized by Delta and may by used in
expressions. Used as commands, they set the value of the
corresponding symbol table entry.

$ or .

;1

;C

iF

iM

;1

;2

iQ

Last opened cell address

Instruction counter 1 A t b th I s se yeast
Condition code entry to Delta or

Floating Controls J cha~ged by the user

Search mask.

Lower search bound.

Upper search bound.

Last quantity typed.

SiS

e(f<s>

s(f!

siK

i K

eiG

eiX

niP

e,ni B

ei B

e,n,loc(Fi B
e,n,loci B
enloc;B
e"loc(Fi B

e,n,loci BT

1
J

SYMBOL TABLE CONTROL

Sel ect internal table s.

The symbol s is assigned val ue e and
format f.

The symbol s is assigned the value of the
currently open cell ($) and format code f.

Symbol s is removed from the symbol table.

Remove all global symbols except in­
struction mnemonics.

EXECUTION CONTROL

Begin execution at e.

Execute the instruction e.

Proceed with execution n times.

BREAKPOINTS

Set the nth instruction breakpoint at
location e.

Set the next available breakpoint at
location e.

Same as above but display contents of loc
when the break occurs. Display is in de­
fauit format or that specified.

e,n,loc(FiBT }
Same as above but proceed from the break
after printing (trace mode). Display is in
format given by (F, or default format.

niB

DiB

iB

iP

niP

iT

@@

Remove the nth instruction breakpoint.

Remove all instruction breakpoints.

Display all active instruction breakpoints.

Proceed from the break.

Proceed and do not break unti I the break­
point has been passed n times.

Proceed automati call y from the break after
printing (set trace mode).

Break at the current execution point (anal­
ogous to the machine's RUN-IDLE switch).

Output produced when a br~akpoint is reached is

niB>loc

where

n

loc

is the breakpoint number.

is its location.

If a display is specified, the output produced is

niB> loc addr/contents

MEMORY SEARCHING

Memory between the bounds specified in i 1 and ,2 (initially
set to the lower and upper limits of the user's program) is
searched under the mask in iM (initially all ones).

eiW

eiN

ei 1

e;2

e 1,e2;L

e;M

;R

;A

e 1,e2;Z

Search for and display words that match e
under the mask iM.

Search for and display words that do not
match e. -

Set the memory search lower bound to e.

Set the memory search upper bound to e.

Set i 1 to eland i2 to e2.

Set the search mask to e.

MISCELLANEOUS COMMANDS

Display locations of displayed cells as sym­
bol plus relative hexadecimal offset.

Display locations as hexadecimal numbers.

Zeros memory from e 1 through e2.

SYNTAX DESCRIPTION

The language of Delta follows the formula of simplified
expressions end single (or a few) letter commands, which
minimizes the number of keystrokes required. Because
every keystroke counts, and users can fi nd most errors
easily by eye, only a few error conditions are explicitly
commented. The most common commands have been as­
signed to lower case keys in order to simplify typing.

COMMAND DELIMITERS

In order to interface efficiently with the time-sharing system,
Delta has been made IImessage ll oriented. That is, only
certain characters are recognized as command line de­
limiters (end-of-message characters) and cause the COC
handler to del iver the command I ine to Delta for inter­
pretati on. The characters used as command line del i miters
are:

/ The open and display command.

The expression evaluation command.

The store command and del imiter of other
commands.

The store and open next command.

The store and open previous command

The store and open indirect command

With the exception of / and =, the commands above cause
a carriage return and line feed. The slash (/) and equal (=)
commands interact within a single typed line.

Syntax Description 45

More than one command can be input on a command line.
The command delimiter within a command I ine is the space
character. For example:

TAG liB TAG5" .15 ;BT

SYMBOLS

The symbols used by Delta for reference to memory locations,
computing values, and formatted displays are those supplied
from the assembl y of the program pi us any add~d from the
terminal by the user. They are carried in D-elta's symbol
table as seven characters plus count. Symbols longer than
seven characters are truncated to include only the first
seven, al though the count of characters is retained. Thus,
symbols that were originally longer than seven characters
are indistinguishable from each other; only the last received
definition is retained.

The symbols used by Delta follow the same rules as those for
Symbol and Meta-Symbol - they are made up of the alpha­
betic characters A - Z, the numerics 0 - 9, and the specials
$, @, #,:, tithe first of which must be nonnumeric, and
the number of characters must be less than 8.

Symbols have an associated type code which allows Delta
to use a conversion for display that matches the symbols
original use. Symbols have either a constant value or are
associated with a memory location. If the latter is the case,
then the type code describes the contents of the location.
Symbol types are:

1. Instruction.

2. Integer.

3. EBCDIC Text.

4. Short floating-point number.

5. Long floating-point number.

6. Hexadecimal.

SPECIAL SYMBOLS

The initial contents of the symbol table include the mnemonic
names of machine instructions and a list of special symbols
associated with program debugging. The special symbols may
be used in expressions for values. The special symbols and
values associated are given as follows:

$ or .

;1

;C

iF

iM

; 1

Value

Memory location of the last opened cell.

Instruction counter contents at program
interrupt.

Condition code contents at program
interrupt.

Floating control contents at program
interrupt.

The mask used in memory searches.

The lower bound used in memory searches.

46 Syntax Description

Symbol

;2

Value

The upper bound used in memory searches.

The lost quontity typed by De! to, or the
val ue stored by the user wi th the commands
@, 0, and 9.

The following values are initial ized in the debug program
on entry from the loader:

Symbol

i 1

;2

; I

%P

%H

Value

Lowest user program location - excluding
base page used for TCB, TSTACK and
system storage.

Highest program location. This corresponds
to the last cell of the page containing
Loader-built DCBs.

Start address of the user program.

Fi'rst location of the patch area.

Address of first word of the next page
above the Loader-built DCBs.

Except for 11$", ". ", and II;QII, the value of these symbols
table entries can be set by using a special command form in
which a defining expression is given followed by the special
symbol to be set and a carriage return:

.C46B;1

.FFFiM

Set iI to hex.C46B

Set iM to hex.FFF

The value of all special symbols may be displayed using the
= command.

iC=4

;1=.C3BD

;F=2

The symbols $ and. always have the location of the last
opened cell as their common vaiue. The shorthand is con­
venient in the same way as in symbolic assembly code.

A/ LW,4 K4S $(X=.C 105 $/ LWt 4 K4S

The ;Q shorthand for the last thing typed is similarly con­
venient in special situations:

ALPHA/AI,S 7 iQ + 2

. /AI,S 9

INPUT OF EXPLICIT CONSTANTS

When the user wishes to type in numbers, hoe must speci­
fy the conversion that he wishes made on his input. Three
conversion types are provided by Delta; hexadecimal, ob­
tained by introducing the constant with a period (.);
EBCDIC, obtained by enclosing the characters in single
quotes (')i and decimal, the conversion used on strings
of numerals. EBCDIC character strings follow the same
rules as symbols used by Delta except that the maximum
length is four characters.

Some examples of input constants in various formats are;

.ACE 100 .100 14 .A

IEBCD I IAI

Note that the single quote C) is required to terminate the
EBCDIC text string, and that the string must consist of no
more than four characters. If fewer than four, they are
right-justified and zero fi lied.

EXPRESSIONS

Expressions are typed -by the user to represent a location
value, parameter value, or a value to be assembled into a
machine instruction. Expressions are composed of symbols,
explicit constants, and the operators plus (+), minus (-),
and space (). Multiplication, division, and other opera­
tions are not allowed and, in fact, the characters usually
used to indicate them are used for other things - the asterisk
to indicate addressing in instructions and the slash as the
command for display.

The user should have little trouble constructing legitimate
and correct expressions for the values he wishes, as can be
seen from the examples below:

A
A+3
A+3-B
AI, 1 2
STW,7 *LOC
LW,7 TAB, 5
CAL 1,3 LIST

The space character, in addition to its use to introduce the ad­
dress field in expressions to be assembled into instructions, is
also used to mean pi us (+). This convention is convenient for
typing, as a space does not require the caseshiftthata plus
does. Thus, some equivalent expressions and commands are:

A 3 and A+3

LW,5 ALPHA+3 and LW,5 ALPHA 3

COMMAND DESCRIPTION

MEMORY LOCATION DISPLAY: THE / COMMAND

The I character is a command to Delta to open a memory
cell and display its contents. The cell is indicated by an
expression preceding the I character. The expression is
evaluated and the word address portion is used as a memory
address. If no format is given and the default is F (the nor­
mal case), then the symbol table is searched to find a sym­
bol at the next smaller location than the indicated address,
and the data type associated with the symbol found is used
to control outpu t formatti ng. The foil owi ng are exampl es
of printout that might result from various slash commands:

1001 .34

All BAL,6 ALPHA

A+l1 STW,5 BETA

BETAI ABCD

The user may either temporarily or permanently override
this output format control by the symbol table code. Tem­
porary change is accomplished by indicating the desired
format in the command. The expression for the location is
followed by a left parenthesis character, then by one of the
format codes (see "0utput Format Control II below for a
complete list), and finally by the slash (I) command.

x (Xl

X(CI

X(V

.Cl

193

hexadecimal conversion

EBCDIC character conversion

decimal integer conversion

Permanent change in output format is achieved by the com­
mand ll(f;/1l where f is the desired format code.

xl .Cl

(c;1 xl A

If a slash is typed without preceding typing by the user, the
cell addressed by the last item printed by the computer is
examined but not opened. This allows the user to look
at the indirect contents of a cell. In the example below,
ALPHA remains the open cell even though the contents of
cell DCT8 are displayed.

ALPHAI LW,5 DCT8 I .32

A cell may be opened without displaying its contents, by the
use of the \ command. (\ is produced by pressing SHIFT and
L keys together)" This mode is convenient when the user
wishes to insert new contents in memory and is not interested
in the current contents. Delta remembers the mode of
open i ng for ce II s and on @ and t commands opens rnem In
the remembered mode.

ALPHA \ BAL,4 SUB @

ALPHA +. 1 \ STW,5 DCT2 @

ALPHA + • 2 \ AI,6 • 100 @)

More than one cell may be displayed using a single / com­
mand. Two expressions separated by a comma define the
limits of display. They are the word address of the lower
limit followed by that of the upper limit. Following dis­
play of the upper I imit cell, it is open for change.

ALPHA,ALPHA+2/ BAL,4 SUB

ALPHA+.1/ STW,5 DCT2

ALPHA + . 21 AI,6 . 100

Format codes may be specified with "('1 as in the basic "1"
command.

100,101 (Xl .58000100

10 11 .68000200

Command Description 47

EXPRESSION EVALUATION: THE = COMMAND

Expressions consisting of program symbols, expl icit con­
dnnts_ sop.cinl svmbols. and the ooerators olus and minus
(~-~)-~~;;- b~ ~v;luated' by use of the = co~mand. The

expression may be that just typed by the user or the last
one typed by Del tao

2+2=.4

5 + 5 = .A

ALPHAI BAL,5 SUB = .6A5006B3

5 + 5 =~

5 + 5 (I = !Q

The user can set the default format type by using the com­
mand II (f;=, II where f is the desired format type. The initial
default format is X for hexadecimal.

MEMORY MODIFICATION: THE @), G, t,
AND @) COMMANDS

Four commands allow the user to store a value into a memory
location - the one opened by a I, \, or one of the modi­
fication commands @, t , or 8. If no expression preceded
the command character, the action taken is as described
except that nothing is stored in the open cell.

e@ The expression e is assembled and stored in the
open memory ce II. Carri age return and new line
codes are sent to the user terminal and display
modes are reset to defciul t values.

AI BAL,4 JWS BAL,4 GEB @)

AI BALl4 GEB @)

JEDI EXU LS (Xl .68000643 I .78C @)

.1 EXU LS

Note in the preceding that a temporary display format was
established by the II (Xl II which carried over until the
command reset it.

e@

48

When the user terminates an expression with the
e command, the value of the expression is stored
in the currently open cell, that cell is closed, a
new line is produced at the terminal, and the cell
with the next higher location value is opened. The
mode of the initial cell opening is preserved and
carried forward on succeeding openings as is the
display format.

A (1/ 435 4350

A+.l/ 7630

A+.21 7689 @)

EM \ STM,4 ERS@

EM+.1 \ BAL,6 LP 0
EM+.2\ BGE BB @

Command Description

The action is exactly the same as for e 0 except
that the cell within the next lower location value
is opened.

EM+41

EM+.3/

.0

.0

B

AI,3

JH t

The 8 command causes the typed expression to be
stored in a currently open cell. Following output
of -a carriage return, the cell addressed by the
most recently closed cell is opened and displayed.
The effect is I ike that of a @) command followed
by a ;Q/. The 8command is useful for patches:

AI BAL,5 SUB 0

A+.l/ STW,6 BETA B PATCH 8

PATCHI 0 AI,6 10

PATCH+.l/ 0 STW,6 BETA0

PATCH+.21 0 B A+2 @)

OUTPUT FORMAT CONTROL

Displays of the contents of memory locations via the I com­
mand and expression evaluation via the = command have
their output format controlled by codes given with the I or
= command or by the default format as set using the {f;1
and (f; = commands. The original default setting of the out­
put conversion format is hexadecimal (X) for = commands and
under control of the nearest symbol table type (F) for I com­
mands. Temporary conversion type settings set by using e{fl
or e(f= are retained until the next @)command is given. In
parti cu I ar, the temporary convers i on type is reta i ned over
successive <0, t , / , =, and @l commands.

(I;I

A (Xl .c0
A+.l/ .D0

A+.21 .E @)

A+31 15

The codes that provide for directing output formatting and
conversion are given be'low. In all conversions, leading
zeros in the printout are suppressed.

X The word (contents of memory or expression) is
typed out as a hexadecimal number. Hexadecimal
numbers are always typed with a leading period
(.). X (hexadecimal) is the original default code

F

for = commands.

Conversion is according to the format code given
in the symbol table for the location displayed
or that for the next lower valued location sym­
bol if no symbol occurs at the location in ques­
tion. For = commands, F conversion is equivalent
to X conversion. F conversion is the default code
for I commands.

C

R

A

S

L

The word is converted as a signed decimal integer.

The word is converted to EBCDIC characters; that
is, it is sent to the terminal directly. Non­
printing characters may be output in this way,
including the EOT (04) character, which will
turn off some types of terminals.

The word is converted to a symbol ic instruction.
Output has the form OPt R, ADDR, X (similar to
assembler symbolic machine instruction format).
OP is the symbol table value of the operation code
part of the word (bits 0-7) - %XX is printed if
the operation code value (XX) of the word is not
an instruction. R is the value of the register field
(bits 8-11) and (if nonzero) is printed as a deci­
mal integer. If zero, it is suppressed along with
the preceding comma. ADDR, the address field, is
printed with a leading 11*" if bit 0 is a 1 and is
followed by the symbol obtained from lookup of
value in bits 15-31. If no symbol corresponds to
the value, then the next lower location symbol
plus a relative hexadecimal offset is printed.
Values less than the base address of the on-line
memory area are always printed in hexadecimal.

If the index field (bits 12-14) is nonzero, it is
printed as a decimal integer (1-7), following
the address and a comma. If OP, R, and X are
zero, only the address is printed.

The word is converted in exactly the same way
as for R format, except that the address field is
always given as a hexadecimal number.

Short floating-point number. The word is con­
verted from internal floating-point format to.the
form XXXXX E± YY.

Long floating-point number. Same as s except
the current word pi us the next highest addressed
word are converted (same as S for = command).

D Double word decimal integer. The current word
plus the next word are converted as a 64-bit
decimal integer with sign (same as I for =
command).

EXECUTION CONTROL: THE ;G,;P AND ;X COMMANDS

The three commands described in this section allow the
user to begin and continue execution of his program. Each
of the commands is terminated by a carriage return (or a
space, if it is in a multi-command line). Execution is
started by typing lIeiG" where e is an expression for the
starting location. (The value of the expression is masked
to form a word address.)

BEGIN;G

Execution can be stopped in any of three ways:

1. Encountering a breakpoint.

2. A user interruption via the 8key (depressed twice).

3. An error causing a machine trap (illegal instruction,
memory protect violation, etc).

In each case, the cause of the stoprs reported by an appro­
priate message, the values of ;1, iC, and iF are set, and
terminal control returns to the user.

BRK AT .C5C3

PRIVIl INSTR AT .C778

iI= .C77B

The user may proceed from a stop condition caused by error
or manual intervention, by typing the ;P or the iG command
without a preceding address expression. The effect is to
continue execution from the location specified by the cur­
rent value of iI (i. e., where execution left off, or a loca­
tion specified by the user). The use of ;P for instruction
breakpoints is covered in the next section. For user inter­
ruptions via the 8 key, execution continues as if the inter­
ruption had not occurred.

BRKAT .C68C

;P

Proceeding from a machine trap will, in general, cause re­
execution of the violating instruction and another trap.

MEM PROTECT FAULT AT .C74B

;G

MEM PROTECT FAULT AT .C748

{In either of the above cases any expression typed before
the ;P is ignored.} The;X command assembles and executes
the expression just preceding the ;X.

LH,3 TABLE+4;X

STB,6 *LOCiX

If the expression does not result in a legitimate instruction,
the illegal instruction message results just as if the error
had been in an executing program. If the expression is a
branch, instruction control goes to the user1s program (or
causes a memory violation). Thus, the commands liB GO;XII
and IIGOiGII are equivalent. If the expression is a sub­
routine jump, the subroutine is entered and if it returns
normally (to the calling location plus 1,2, or 3), CPU con­
trol returns to Del ta and terminal control is returned to the
user. If the return is to other than the call ing location
plus 1,2, or 3, the results are unpredictable.

BREAKPOINTS: THE;B COMMAND

Del ta provides the user with eight separate breakpoints on
instruction execution. As each breakpoint is reached, a
small amount of information is printed out, giving the break
location and an associated value. A special mode allows
execution to continue automatically after the breakpoint
report to provide a limited kind of trace of the flow of
execution control.

Command Descri ption 49

Instruction Breakpoints

e,niB The nth breakpoint {there are eiight, numbered
1 0\ ~ ___ __ .. ___ .• __ ~ ____ ..I __ _____ .. __ 1
I-VI I:' :'0:;:;1 IU :'IU!-' CAC\..UIIUII UIIU ICIUIII \..UIIIIUI

of the terminal to the user when the instruction
at location e is reached. If n is not specified,
Delta will assign the next available break num­
ber. If none are available, Delta produces the
message "NONE". The user may then release
one of the breakpoints he has set and try again.
The breakpoint stop occurs before execution of
the instruction at e. When the breakpoint is
reached, Delta prints the number and type of
breakpoint and its location.

A+3, liB A;G

1;B>A+.3

A third field of the breakpoint command may be used to
specify a location to be displayed when the breakpoint is
reached. Registers as well as core locations can be dis­
played in this way:

A+ 3, 1,R5iB A;G

1iB>A+.3 5/ .54

A particular display format other than the default can be
specified by giving the break command in the format e, n,
loc {fiB.

If the execution has stopped at a breakpoint, the user may
examine and modify his program as appropriate and then
continue from the point of interruption by giving the com­
mand ;P. A count may be given with the iP command. If
the count is n, the breakpoint will be passed n times before
the break occurs. Execution can also be continued by the
;G command; however: the proceed count cannot be input
with the iG.

PH + 8,2,R2(IiB PH;G

1;B>PH+8 R2/ 4 iPoriG
~----------~----

1iB>PH+8 R2/ 5 iP or iG
~----------~----

-.'-1 ;_B_>_P_H_+_8_R_2..:.../ __ 6_ 5iP

liB>PH+8 R2/ 11

The breakpoint is an interruption logically prior to execution
of the instruction. A break at a particular location followed
by immediate modifi cation of the break location wi II cause
the modified contents of the break location to be executed
when the iP is given. This is true even if the active break
is released before or after the modification of the break
location.

The nth breakpoint may be removed by the command niB.
All breakpoints can be removed by the command O;B.
H the user wishes to trace a particular instruction, he may
give either of the forms above (display or no display) and

50 Command Description

specify the T mode: e,n,loc{FiBT. In this mode, when the
instruction at e is reached, the breakpoint reporting informa­
tion is prihted and exec'ution continues.

A+ 3,4,5{IiBTAiG

4iB>A+3 5/' 54

4;B>A+3 5/ -1

4iB>A+3 5/ -175

The trace mode can be set after a break occurs by spec­
ifying iT.

The currently valid instruction breakpoints may be listed for
inspection with the command iB. The list has the form

n{T}loc display

for each established breakpoint, where: "n" is the breakpoint
number, a "T" is printed if the trace mode is set for that
breakpoint, "loc" is the break location, and Iidisplay" is
the address to be displayed when the break occurs.

MEMORY SEARCHING: THE;W AND;N COMMANDS

The two acti've search commands, le;W" and l e ;N",
search memory for a match or no match with expression e.
Display of all matching cells (biHor bit identically) occurs
in the case of iWand of all nonmatching cells in the case
of iN. The search is carried out in the closed interval de­
fined by the symbol table values of ; 1 and ;2. The initial
val ue of i 1 is the lowesr, and;2 the highest current user
data area address. Before the test for a match is made, the
word from memory is masked with a word that is the symbol
table value of ;M. The initial value of ;M is all ones.

The values of i 1, i2, and iM are set by the commands ei 1,
ei2, and eiM (each fol lowed by @»). In addition, the limits
may be set with the single command e 1, e2;L which sets i 1
to eland i2 to e2.

A·1 }
B6;2

2i M }
2iW

A+.2/

A+.3/

A, BB;L is equivalent

Mask bit 30 of the words between A and BB
which have a 1 in bit 30.

2

3

A+.6/ 6

A+.7/ 7

A+.A/ .A

BB/ .B

.1FFFFiM L,L+.100iL ERR;W

L + .3/ BAL,4 ERR}

L+ .A/ BAL,4 ERR All words between L

L+ .D/ ERR and L+. 100 with ad-
BAL,4 dress equal to ERR.

L+.6A/ AWM,l ERR
----~--------~----

SYMBOL TABLE CONTROL:

THE ;K ;S ! AND <>COMMANDS

The symbol table available to Delta after a load is completed
consists of the global symbols (those defined by DEF directives)
and a set of internal symbol tabl es (one for each elementfi Ie
loaded) which are stored under the element file name.

During debugging, the user always has the global symbols
of the load and he may select one of the internal symbol
tables by using the SiS command. It replaces, for reference
purposes, any previously selected internal symbol set.

. B73/ LW,4 IOP+ .A7 C0

IOP+ .CB/ BAL,6 10+. 17F IOPF;S t

IOPT2+.6/ LW,4 K34

Symbols may be defined by the user at any time during his
debugging session. Symbols so defined are added to the set
of global symbols associated with the program load.

SiS

s(f!

e(f<s>

s;K

;K

Select the internal symbol table corresponding
to EF name "S".

Adds the symbol s to the global symbol tabl e with
the location value of the currently open cell
($ or .) and format type f. If f is omitted, sym­
bol ic instruction (R) type is assumed.

Adds the symbol s to the global symbol table,
with the value defined by the expression e and
format code f. In addition to the normal codes,
the letter K may be used to indicate constant
value. If f is omitted, R is assumed.

Removes the symbol s from the symbol table. The
removal is permanent if s is in the global table
and temporary if s is in an internal symbol table.
(It will return if the user switches to another in­
ternal symbol table and back again.)

Is used to remove all symbol s from the symbol
table. Symbols defining instruction codes are
not erased. Individual internal symbol tables
are recoverable using an SiS command.

MISCELLANEOUS COMMANDS:
THE ;A ;R AND ;Z COMMANDS

The commands discussed in this section cause Delta to change
its normal or default modes for display and to clear specified
areas of memory. All commands in this section are termi­
nated by a carriage return.

The commands ;Rand ;A are complementary to one another;
they control how Delta displays location values when typing
the contents of cells. The mode of display is either relative
(;R) or absolute (;A). When in the relative mode, Delta
looks up the location value in the symbol table and displays
the symbol if one corresponds to the value; if not, it displays
the symbol with next smaller value and a word offset in

hexadecimal. The form value;R may be used to specify a
maximum offset "value" that may be displayed in the rela­
tive mode. Offsets in excess of this will cause the display
to revert to the absolute mode. If the mode is absol ute (;A),
then all location values are displayed as hexadecimal num­
bers. Note that these commands control the display of loca­
tion values and not the display of the address parts of instruc­
tions contained in those locations.

;R Display Example:

A,A+5/ LI,l .10 -----
A+.l/ CW,l K45

A+.2/ BGE ZZZ

A+.3/ AI, 1

A+.4/ B A17

ZZZ/ STW,2 BR13

;A Display Example:

A,A+5/ LI,l .10

.5CD/ CW,l K45

.5CE/ BGE ZZZ

.5CF/ AI, 1

.5DO/ B A17

.5Dl/ STW,2 BR13

The command for zeroing memory takes the form

a,b;Z

where

a is the lower limit

b is the upper limit of memory to be zeroed. Ex-

Example:

pressions may be used for a and b. An error re­
sults if the value of b is less than that of a, or if
the range does not lie within the on-line memory
area.

A,A+5;Z

100,1;Z

? 7

The last I ine of this example is a syntax error message re­
ferring to the previous command. The upper limit was less
than the lower I imit and the error was discovered when
Delta processed the seventh character in the command line
(see "syntax errors lJ in the following section).

Command Descri pti on 51

ERRORS AND ERROR MESSAGES

Errors resulting in machine traps are reported explicitly to
the user and COiiSO!e contio! is isfuiiiSd to him to uvvait fUi=

ther commands. Each message is accompanied by the loca­
tion (symbolic if possible) of the offending instruction. The
messages are:

NONEXIST INSTR AT

NONEXIST MEM REF AT

PRIVIL INSTR AT _

MEM PROTECT FAULT AT

I/O ERR AT _

UNIMP INSTR AT

FIXED ARITH OVFLW AT

FLOAT FAULT AT _

DECIMAL FAULT AT

BAD CAL AT

Syntax errors are reported by the message "? n". Where
n is the number of characters in the command line that
Delta was processing when the error occurred. This mes­
sage is sent to the user whenever Del ta cannot understand
the user's command syntax. It is usually simpler for the
user to identify the error than for Delta to be specific about
it. Some errors and the reasons for them are shown below:

/

\

X, Y, Z, 2, 7/ ? 8

'ABCDE' = ? 6

ABC;K
? 5

FF;M 100,XYiL .6B;W

? 13

A,5iE
? 5

LW*5 ALPHA=? 3

.3ACR/

{Bi/

iT
?2

? 5

? 2

(Too many commas)

(Constant value larger than
one word)

} (Symbol not in symbol tabl e)

1
(Symbol value not found.
Remai nder of command
string ignored.)

} (Command unknown)

(Asterisk misplaced)

(Illegal character in hexa­
decimal number)

(Illegal format character)

}
(No break in effect on
which to set trace mode)

INDEX TO DELTA ClltlMNDS

Open cell, print contents

Open cell, no print

Store in currently open cell

Page

47

47

48

52 Errors and Error Messages/Index to Delta Commands

Store in currently open cell, open next cell

Store in currently open cell, open previous
cell

Store in currently open cell, open cell last
named

Evaluate and print expression

< ... > Defi ne symbol

i 1

i2

i/

i=

iA

iB

iC

iF

;G

iI

iK

;L

iM

iN

iP

;Q

;R

is

iT

iW

iX

iZ

Define symbol

Set lower limit

Set upper limit

Set default display conversion mode

Set default display conversion mode

Display location values as hexadecimal

Set {or clear instruction breakpointi BT set
trace modei display break table.

Set condition code

Set floating controls

Begin execution

Set i nstructi on counter

Remove (ki II) symbol table entry

Set upper and lower limits for search

Set the search mask

Search for word mismatch

Proceed from breakpoint

Last quanti ty typed

Display location values as symbol plus
hexadecimal offset

Select internal symbol table

Set trace mode

Search for word match

Execution instruction

Zero Memory

Page

48

48

48

48

51

51

50

50

47

48

51

49

46

46

AO
"1"1'

46

51

50

50

50

49

46

51

51

50

50

49

51

11. SYMBOL SUBSYSTEM

The BTM Symbol assembler is an extended version of SDS
Sigma 5/7 Symbol, described in the Symbol/Meta-Symbol
Reference Manual (90 09 52). The assembler accepts
source images through M:SI and creates binary and listing
files through M:BO and M:LO.

Default assignments for these files are:

M:SI

M:LO

M:BO

User1s console

User1s console

File BOTEMPa

The Executive command for entering the SYMBOL Sub­
system is:

!SYMBOL

The assembler then requests options.

OPTIONS:

The user should then enter a list of options selected from
the following set.

Options Purpose

BO Write binary output through M:BO.

LO Write listing output through J\A.:LO.

CN Include cross-reference listing in LO.

SD Include on-line debug symbol tables
in BO.

A carriage return alone requests all of the above options.
If any individual options are stated, only those are used.

The following example shows a Symbol assembly with I ist­
ing output to a disc file, and binary output to the default
file, BOTEMP a

.!..ASSIGN M:LO, (FILE, CMPLO)

.!..ASSIGN M:SI, (FILE, CMPS)

!SYMBOL

OPTIONS: BO, LO, CN

END OF ASSEMBLY

The default assignment for the assembly listing is the user
terminal. The listing is reformatted in this instance due
to the width of the console carriage. Each source line pro­
duces two I isting lines:

1. The source image.

2. The line number and the object code portion of the
normal listing.

If the source input file is sequenced according to EDIT con­
ventions, the sequence number will also be displayed in
decimal format on the second line.

If the assembly listing is not being displayed on the console,
any errors found in the assembly are displayed on both the
console and the I isting file. The console display is in the
form of

1. The offending source line.

2. The normal Symbol error indicator, positioned under
the image.

3. The I ine number, obi ect code produced, and sequence
number of the record (if it had one).

Symbol Subsystem 53

12. SUPERVISORY SUBSYSTEM (SUPER)

SUPER is available as a batch processor and as an on-I ine
subsystem. It provides the capability to add or delete legal
users, list atl legal users, and to obtain the passwords for
air files in a specified account. SUPER can only be ac­
cessed whi Ie running with account :BTM.

The commands to SUPER are described below. Records con­
taining commands must begin in column 1. Some of the com­
mand records can be followed by records specifying con­
cerned 'accounts or users. Records specifying users begin in
column 2 and each group of records is terminated by an
E OD. These records have the genera I format:

1Sname ,acet, pass,d i sc

Name,acct, and pass have the same meaning as in LOGIN;
disc is a hexadecimal number specifying the maximum disc
space that may be used (in granu les). Functions that do not
require pass or disc parameters may omit them. SUPER reads
the control device (Teletype if on-line) and outputs to
M:LO. The batch version I ists all of the input records.

SUPER COMMANDS
U[SERS] (Authorize on-line users)

The specification records that follow cause the indicated
"name,acct,pass" combinations to be added to the account­
ing log. Should such a user already be in the log, the fact
is noted and the specification record is ignored. If a password
is not specified at this time, it wi II not be required for log-in.

KOLLUSERS] (Cancel on-line access)

All users mentioned on subsequent specification records are
removed from the accounting log and wi II thus be denied
access to the system. If a summary of the user1s statisti cs is
desired, it should be requested prior to the command remov­
ing his entry from the accounting log.

S[TATS] (Summarize accounting totals)

The pass and disc options are not meaningful on this com­
mand. Specification records should be of one of the follow­
i ng formats:

-nname,acct

1),acet

54 Supervisory Subsystem (SUPER)

The first form summarizes the statistics for the individual
user, while the second form summarizes the statistics for
all users in the account. These summaries are output to the
M:LO device.

Should the STATS command not be followed by any speci­
fication records, the entire accounting log wi II be summar­
i zed by account.

D[ELSTATS] (Initialize statistics)

For all account or name-account specifications following,
the statistics are cleared to zero, with the exception of
maximum disc space and disc space used.

L[tST] [acctJ (list users)

This command does not require subsequent specification
records. If the LIST command specifies an account, all
users outhorized under that account are summarized. If
the LIST command does not specify an account, the pro­
gram summarizes all users authorized for access to the
system.

P[ASSWORDSJ Qcct (File summary)

This command requires no specification records. On en­
countering this command, the processor will list all file
names, with their passwords, that are in the specified ac­
count. This capabi I ity allows the installation super­
visor to remove entries in the file management system.
If a file has no password, ***NONE*** is listed. If the
password cannot be represented by printable graphics, it is
listed in hexadecimal format. Synonymous fi les are
ignored.

!EOD (End job)

Processing terminates when an IEOD record is encountered
whi Ie the program is expecting a control record.

APPENDIX A. BPM SYSTEM CALs

Programs executing at subsystem and user levels may do RAD or console I/O through use of standard CAL 1 operations as des­
cribed in the BPM Reference Manual (90 0954). The following table summarizes the CALs available to BTM use.rs.

Call FPT Code Function

CAL 1, 1 X'Ol l M:REW
X' 021 M:WEOF
X'03 1 M:CVOL
X'041 M:DEVICE (PAGE)
X'051 M:DEVICE (VFC)t
X'06 1 M:SETDCB
X'OB' M:DEVICE (DRC)
XIOC M:RELREC
X'OD ' M:DELREC
X'OF ' M:TFILE
X' l0 ' M:READt
X' 1P M:WRITEt
X' 12 1 M:TRUNC
X' 141 M:OPEN

X' 151 M:CLOSE
X' 1C M:PFIL
X' 1D ' M:PRECORD
X'20' M:DEVICE (LINES)
X'21 1 M:DEVICE (FORM)
X'221 M:DEVICE (SIZE)
X'23 1 M:DEVICE (DATA)
X'241 M:DEVICE (COUNT)
X'251 M:DEVICE (SPACE)
X'261 M:DEVICE (HEADER)
X'271 M:DEVICE (SEQ)
X'281 M:DEVICE (TAB)
X'291 M:CHECK
X'2A' M:DEVICE (LINES)
X'2B' M:DEVICE (CORRES)

CALl,2
CALl,3
CALl,4
CAL 1,5
CALl,8 X'141 M:TRAP
CAL1,95 M:TRTN
CALl,9 1-3 Exit to Executive

t Avai lable on console I/O.

ERROR CODES FROM FILE OPERATIONS
All error codes applicable to BPM have their normal mean­
ings. The following additional errors are possible:

Code Error

101 Invalid DCB address.
102 Invalid FPT address.
103 Invalid FPT operation code.
104 Invalid address in FPT (e.g., illegal key

buffer address).
105 Invalid error or abnormal address.
106 Invalid buffer address.

Comments

Allowed
Ignored
Ignored
Ignored
Allowed
Allowed
Ignored
Allowed
Allowed
Allowed
Allowed (wait is implied)
Allowed (wait is implied)
Allowed
Allowed. The ASSIGN image, if given, overrides

any DCB options. Parameters from the FPT, in
turn, override these. Only four files may be open
at one time.

Allowed
Allowed
Allowed
Ignored
Ignored
Allowed
Ignored
Ignored
Ignored
Ignored
Ignored
Ignored
Allowed
Ignored
Allowed
Illegal
Illegal
Illegal
Illegal
Allowed
Allowed
Allowed

107
108
109
lOA
lOB
10C
10D
lOE
10F
110
111

112

No terminator on file parameter list.
Invalid entry in variable parameter list.
Inval id DCB table address.
Too many files open.
Invalid TCB address.
Malformed DCB table.
DCB address not in DCB table.
Variable file parameter list too large.
Improper "file" option in an Open or Close.
Improper "function" option in DCB.
User attempted to use more than his available
disc space.
Key too long.

Appendix A 55

APPENDIX B. SUBSYSTEM CONVENTIONS FOR TELETYPE INPUT

There are three CALs associated with Teletype input:

CAL3,O

CA CAL3,2

CAL3,3

Returns in register 0 (in EBCDIC format)
the next character in the Teletype input
buffer. If there is no activation charac­
ter in the buffer, the call ing subsystem
is dismissed until an activation charac­
ter is typed, at which time the CAL then
completes and the subsystem resumes nor­
mall/.

Changes the activation type to the value
contained in register O.

Sets the Condition Codes to xx 10 if an
activation character has been read into
the Teletype input buffer; otherwise, it
sets the condition codes to xxOO.

The action of BTM on Teletype input is dependent upon
the activation type in force and the type of character in­
put. Tables B-1 and B-2 contain a complete summary of
these relationships. In all cases, however, should the in­
put buffer become almost full, the bell will ring for each
character input until the buffer is sufficiently emptied.
Should the buffer become completely full, each charac­
ter input will sti II ring the bell, but the input character
will be lost and instead a @> will be placed over the last
choracter in the buffer: This character will echo as a
"?" and will always cause activation. The bell always
rings immediately rather than in echo sequence.

Depressing the BREAK key causes any Teletype output in
progress to be terminated immediately and any untyped
output is lost. Any unprocessed input waiting in the Tele­
type input buffer is also lost.

The subsystem activation type specifies which class of char­
acters wili cause activation, as follows:

o Activate on all characters. Do not echo.

Activate on all characters. Echo.

2 Activate only on punctuation, control code, 0,
or @>. Echo.

3 Activate only on control code, 0, @I, t, / I

or ®. Echo.

4 Activate only on @ or @>. Echo.

t"Normally" means in accordance with Tables B-1 and B-2.

56 Appendix B

The echo and type of a character (see Table B-2) specifies
to which activation class a character belongs and whether
it is echoable. The five basic types are:

o Nonexistent character (i. e., a character that can­
not be typed in).

Nonactivating character.

2 Punctuation.

3 €) I, t, / , or

4 00r (§. t

A basic type with the symbol # added means that the
character is echoable; without a II added, the charac­
ter is not echoable.

An echo type of the form @ + j, where j is an integer,
means that the associated character is a special control
code known to BTM. There are nine such special codes.

Table B-1. Conventions for Activation Types 0 and 1

Input
Echo
(if any)

Character
User Gets

Letter or digit Same os input Same os input

$: @·15 Same as input Same as input

Punctuation
t

Same as input Same as input

Contra! code I Note I Same as input It

@ or @ Same as j nput Same as j nput

Any other
charactertt

None None

Notes

Character
is ignored

t"Punctuation" means: ! " % & I () * + -,
/ i < = > ? [\] t or -.

tt
"Any other character" normally means only those

characters that cannot be typed in on a standard Tele­
type (see Appendix I).

tEcho type 4 is used only internally by BTM.

Echo
Input Type

Letter or digit # + 1

$: @1J # + 1

Punctuationt #+2

/=t #+3

§ R @+ 1

@ Q @+O

09 @+2

@ I @+3

0@) @+4

(§ X @+6

Any other con- 3
trol character

@ @+7

9 @+7

Any other 0

til Punctuation" means:

Table B-2. Conventions for Activation Types 2, 3, and 4

Function Erasable? Echo User Gets

- Yes Same as input Same as input

- Yes Same as input Same as input

- Yesttt Same as input Same as input

- Yesttt Same as input Same as input

Retype No @@) None

Acknowl edge No ! ! None

Backspace ttt No - None

Tab Yestttt n spacestttt n spacestttt

Local new line No 09 None

Erasettt No (09 None

- Yesttt ? or nonettttt Same as input

Line feed No @§ ®€l

Carriage return No ®§ 9

- No None None

! % & I () * +, _ . ; < > ? [\] or _.

Notes

Retypes from last acti­
vation character

Each is returned i mme­
diately rather than in
echo sequence

Erases to last acti va-
tion character

User gets (0 fOi activa-
tion types 2 and 3, §
for activation type 4

Character is ignored

tt
Any other character" normally means only those characters that cannot be typed in on a standard Teletype (see

Appendix I).

tHAn activation character cannot be backspaced over {or erased}; thus an @@) immediately after an activation character
is ignored.

ttttIf no tab stop is set, a ? is echoed. The user will get a single space if he reads such an illegal tab. Each backspace
erases one space of the tab; thus to erase the tab completely, n backspaces must be given.

tttttIf the activation type is 4, a ? is echoed; otherwise, there is no echo. The user always gets the actual input charac­
ter regardless of the echo.

Append i x B 57

APPENDIX C. SUBSYSTEM CONVENTIONS FOR TELETYPE OUTPUT

There is one CAL associated with Teletype output:

CAL3, 1 This CAL takes a character (in EBCDIC for­
mat) from the lower 8 bits of register 0 and
places it into the Teletype output buffer.

Associated with every possible EBCDIC character is a
7-bit USASCII conversion code and a l-bit control flag,
as follows:

Flag Meaning

o The corresponding USASCII character is
unprintable on a standard Teletype.

58 Appendix C

Flag Meaning

The corresponding USASCII character is
printable.

The code is the USASCII equivalent of the EBCDIC char­
acter, or O.

Any character whose flag is 0 or whose conversion code is
o is ignored by CAL3, 1. A conversion code of 0 implies
that the EBCDIC character has no corresponding USASCII
equivalent, See Appendix J for a complete I ist of EBCDIC­
USASCII correspondences - any character that has a blank
entry in the IIprints as" column of this table has a 0 con­
version code and thus is not printed.

APPENDIX D. 8TM SYSTEM CALs

Whi Ie in operation, a subsystem has a variety of ways in
which it can communicate with the terminal user, the BPM
file management system, and the resident BTM Executive.

BTM provides for two levels of program execution. Both
use the same memory area, so they may not run concurrently;
however, for each terminal in the system, an area of RAD
swap storoge is allocated for each type of program.

The first area, called subsystem storage, is used to maintain
the current state of the particular subsystem the user has
called, for example, EDIT, as it is time-sliced on the way
to completion of the task.

The second area, called user storage, is used to maintain an
image of the terminal user1s object program after it has been
loaded by the Load subsystem, and during its execution.
The user level is also where the BASIC subsystem compi les
and executes BASIC programs. In both these cases, while
the user1s programs are in execution the subsystem level mon­
itors all abnormal conditions, thus maintaining effective
control.

The resident Executive is aware at all times of the level
applicable to the job being executed by any terminal. A
program may only be started at user level by a subsystem;
a program running at user level will always be interrupted
and control given to the initiating subsystem on any occur­
rence of an invalid operation, trap, etc.

All of the console I/O capability set forth in the section on
Teletype operation is available to both subsystems and user
level programs.

The following CAL3 calls are available at the levels indi­
cated to perform system control and memory management
functions.

CAL3,4 (Executive and Subsystems)

This CAL fetches a subsystem in absolute format from a
dedicated RAD area and transfers control to it.

For Executive calls, R 1 contains the subsystem name table
index. For subsystem ca lis, R 1 contai ns the test of the sub­
system name.

The subsystem name table and start address table are bui It
at boot time when the subsystem storage area of the RAD is
initial ized.

CAL3, 5 (Executive and Subsystems)

This CAL starts a new (user or subsystem) process on the next
lower level. Register 0 must contain the first half of the PSD
to be used when the new process is initial ized; the format of
register 0 contents must be:

Bits Contents

0-3
4-7
15-16

Condition Code (CC)
Floating Controls (FC)
Instruction Address (IA)

Return from the level invoked by the CAL3,5 is to the in­
struction following the CAL3,5 (or the instruction following
the first EXU of any chain of execute instructions resulting
in the execution of a CAL3,5).

(Subsystem and User Level)

This CAL performs a normal return to the next higher level
process (same results as !§ @ .

CAL3,7 (Subsystems Only)

CAL3, 7 is used to swap pages between the subsystem area of
memory and user-level swap storage. This allows a subsys­
tem to initialize a user-level process, or examine particular
pages of the user level program in the event that control has
been returned due to error. Swapping is controlled by reg­
isters 0, 1, and 2 which must be in the following format.

RO

R1

R2

o 78 15 16 31

SPI 1 WP RP

N-1 SSP

MODE

ssP Initial page number of subsystem area
which is involved in the swap

SPI Swap consecutive pages after SSP (SPI=O)
or swap SSP repeatedly (SPI=l).

N Number of pages to be transmitted.

WP Initial page number of user swap storage
into which page SSP of subsystem memory will
be written.

RP Initi al page number of user level swap
storage which is to be read into memory start­
ing at page SSP.

With the above parameters, the CAL allows one-way trans­
mission between memory and swap area and vice versa, or
two way transmissions between groups of pages in memory
and on RAD. This is controlled by the MODE parameter:

MODE
Value

<0

=0

>0

Transmission Mode

User level swap area to subsystem memory.
User pages RP through RP+N -1 overwrite
subsystem pages SSP through SSP+N -1 .

Two way transmission. Pages SSP through
SSP+N -1 of memory are written to pages WP
through WP+N-1 of user level swap storage;
then pages RP through RP+N -1 of swap stor­
age overwrite pages SSP through SSP+N-1 of
subsystem memory.

Subsystem memory to user level swap storage.
Subsystem pages SSP through SSP+N-1 over­
wri te pages WP through WP+N -1 on the RAD.

Appendix D 59

Example 1:

(0) = 00030006, (1) = 0002000A, (2) = 0

Write pages A: B: C of subsystem to pages 3: 4: 5 of user
level swap storage, then read pages 6,7,8 of user level
swap storage into pages A, B,C of the subsystem memory.

Example 2:

(0) = 01000000 (1) = 01 FOOOF (2) = 1

Write page F of the subsystem to pages 0 through 1 F of
user level storage (clear user memory if page F is
cleared).

CAL3,8 (Subsystems only)

This CAL specifies (in register 0) to BTM the address of the
Leve I 2 TCB address.

CAL3,9 (Executive and Subsystems)

This CAL calls the past or current program status doubleword
(PSD) for the desired level. Whenever a process is restarted
via CAL3,5 the old "current" value is saved as PAST and the
new value in register 0 is entered as current. Registers 2
and 3 must contain the following:

Reg. Contents

R2 Leve I number

R3

R3

Even (bit 31 =0) if past PSD is desired

Odd if current PSD is desired

CAL3,9 returns results in registers 0 and 1 as follows:

Reg.

RO

Contents

CC, FC,-IA (same as in CAL3,5)

R 1 Error code (see table below)

Error Code I Meaning

0 Normal return caused by ®€> or
CAL3,6

1 Nonexistent instruction

2

I
Nonexistent memory address

3 Privi leged instruction

4 Memory protection violation

5 Unimplemented instruction

6 Push-down stack limit reached

7 Fixed-point arithmetic overflow

8 1=1,....,,+;n,,_n,....;n+ f""I+ .. __ ;:, -..... __ ..
9 Decimal arithmetic fault

10 Improper arguments to a call

11 Illegal call

12 Read error on RAD during transfer

60 Appendix D

CAL3,10 (Subsystems)

This CAL transfers the error message associated with the
most recent CAll error into words 2016 through 3716 of sub­
system memory.

CAL3.r 14 (Subsystem and User Level)

If RO is positive or zero, this CAL returns the maximum num­
ber of pages that can be activated in user memory (and sub­
system memory), in register O. This enables users and sub­
systems to allocate memory appropriately.

CAL3, 11 (Subsystems) and

CAL3,13 (User Level Programs)

I nese two CALs have the same functions for the two levels
of operation. They allow a subsystem or subsystem-initiated
user level program to describe memory in such a way as to
make swapping most efficient.

CAL3, 14 will supply a program with the total amount of
memory it may use. Initially, the Monitor will only swap
in and out the actual amount of memory needed to contain
the program. At any time the program may change its swap
size within the maximum allowed, through use of CAL3, 11
or CAL3. 13.

A program describes itself in one of the two following ways:

Low Core

Available
Memory

1
High Core

where

a.

Area Contents

or b.

l-

f PD

1 PP

} DD

} INACT

} CDP

PD 2: 1 Program data pages swapped in and out.

PP 2: 0 Pure procedure pages (unmodified during
execution), swapped in only.

DD 2: 0 Dynamic data pages swapped in and out.

INACT 2: 0 Inactive pages, not swapped.

CDP 2: 0 Common data pages, building down from
top of available memory; swapped in and
out.

a. This is the simplest case and exists when a sub­
system is started. Size may be changed by appro­
priate CAL with PD communicated in RO. INACT
is, by default, everything other than PD.

(RO) RO

0 78 31 0 15 16 31

I 0 I PD I I M I D I
b. This case allows the most efficient description of R1

the program. Page counts of the various types are 0 15 16 31
computed, and communicated to the Monitor in

I I I registers 0 and 1 as follows: B Y

(RO)

0 78 15 16 2324 31
R2

I -10 I 0 I 0 I PD I 0 15 16 31

I I I H MIN

(R 1)

0 78 15 16 2324 31 where

I PP I DD I INACT I CDP I
M = month 1 -12 }
D=dayl-21

CAL3,15 (Subsystem and User Level) B = blanks Two EDCBIC digits
Y = last two digits of year each

This CAL returns the date and time in registers 0-2 in the H = hour 0-23
following format: MIN = minute 0-59

Appendix D 61

APPENDIX E. SUBSYSTEM INTERFACE

There are several simple rules that BTM expects each
subsystem to follow. These rules apply to the way a
subsystem is coded and the way a subsystem is loaded
into the BTM system.

CODING REQUIREMENTS
The first 40]6 locations in any subsystem should con­
tain the folrowing data.

Location Data Description

0 Contains the word address of the first
word of the subsystem1s TCB (Task Con-
trol Block).

1 =0

.

8 =0

9 Contains the word address of the normal
entry point for the subsystem. The entry
point for a IIPROCEED II is assumed to be
this address plus one.

A
16

=0

Location Data Description

F
16

=0

10
16

Reserved for use by Monitor.

.
3F

16
Reserved for use by Monitor.

When a subsystem is entered, R1 contains the COC line
number (in binary), R4 and R5 contain the log-in account
designation (in EBCDIC, left-justified and blank filled),
and R2 contains the terminal job entry flag (0 indicates that
the console is excluded from the system, and a value of
1 - F indicates the maximum priority).

Included with the ROMs that constitute a subsystem
there must appear a DCB name table (see Figure E-l)
pointed to by word 10 of the TCB (see Figure E-2), and
all the necessary DCBs assembled with protection type
00.

DCBTAB 0 -----------

N

B
n-3

B
n-2

DCBLOC
1

DCBLOC
n

B
n-l

LINKADDR 0

o 23
1
24

where

LINKADDR is the address of the location provided for storing a return address.

N indicates the number of characters in the DeB name.

B -B
1 n

indicates the EBCDIC name of the DCB.

DCBLOC is the address of the first word location of the DCB.

Figure E-l, DCB Name Table

62 Appendix E

B
n

o

31

where

TSTACK

TSS

TSWC

TSA

TSASIZ

ERTSIZ

ERT

DCBTAB

o

2

3

4

5

6

7

8

9

10

11

12

13

14

15

o
0

0

0

14 15 16 31

0 TSTACK

TSS
I TSWC

These words for use by processor

0 TSA

TSASIZ I TSAWC

ERTSIZ ERT

ERTSIZ-2 TSA + 1

0 DCBTAB

These words for use by Monitor

TSA

ERT

Library error temp stack

Library error table

} TSASIZ

} ERTSIZ

TSTACK

User's temp stack

o 15 16

is the address of the current top of the user's temp stack.

indicates the size, in words, of the user's temp stack.

} TSS

31

is the temp stack word count giving the current number of words in the user's temp stack.

is the address of the temp stack used by the I ibrary error package.

indicates the size, in words, of the temp stack used by the library error package.

indicates the isze, in words, of the error table used by the I ibrary error package.

is the address of the error table used by the library error package.

is the address of a table of names and addresses of all of the user's DCBs. This table has thE" form
shown in Figure E-l.

Figure E-2. TCB Format

Appendix E 63

There are several CALs avai I abl e (for use by a subsystem
only) to provide service for the subsystems. These CALs
mainly deal with changing the size of swap areas for sub­
systems and users, finding out the amount of core currently
being used by subsystem and user, and performing swaps be­
tween user and subsystem memory. They are described in
Appendix D, IIBTM System CALs".

The format for DCBs is essentially the same as described in
the BPM Reference Manual, 90 09 54. The one difference
is the abil ity to assign DCBs to a user's console. This is
done by setting the ASN (bits 28-31) in word 0 of a DCB
to 5 (ASN is the file assignment type indicator - 0 means
null, 1 means FILE, 2 means LABEL, 3 means DEVICE, 4
means CORE, 5 means user's console).

LOADING REQUIREMENTS

The ROMs that comprise the subsystem should be loaded into
the system by running the following job under BPM.

64 Append i x E

!JOB

!LOAD

!FIN

where

:SYS,user,l

(ABS), (BIAS, loc), (NOTC B), (PERM), i

II .. j lI... I \
\'-/VII'I, name:J

subsystem ROMs

name is the subsystem name to which console users
will refer.

loc is the hexadecimal value of the base of the on-
line memory area.

When the system is booted from the RAD, the load module
will be initialized in absolute swap storage as a subsystem
callable by the first two characters of the name.

APPENDIX F. 81M SCHEDULING

The BTM resident Executive is an extension of the Batch
Processing Monitor. It is not organized as a real-time task,
but is essentially a subroutine called by the BPM at inter­
vals governed by one of the hardware clocks. The following
is a short discussion of the manner in which the machine is
shared.

Interrupts generated by the COC are always handled by the
BTM Executive, and it is the receipt of the initial break
character that causes the BTM system to start accepting in­
put from a terminal. Input characters for all terminals are
buffered in the resident Executive, until the on-line userls
job is able to fetch them.

When no consoles are actively processing on-I ine jobs, the
clock guarantees that the BTM Executive will be allowed to
scan the active I ines once every batch quantum to determine
whether any user requires the services of a nonresident BTM
function. If so, the swap-in of that processor is started and
batch processing continues.

After this point, and while several on-line users are sharing
the machine, the scheduling of on-line and batch jobs is
performed in an asynchronous manner, with the clock only
enforcing certain maximum and minimum time intervals.
Figure F-l illustrates this, and assumes that the swap-in of
an on-line job has just been completed, and that several
on-line users exist and are being serviced.

Time

The on-line quantum (OLQ) is a SYSGEN parameter (default
100 ms) which specifies the maximum length that a subsystem
may run before a batch job is serviced. The on-line task
may not be dismissed in the middle of a RAD I/O action
through the fi Ie management system, and therefore under
certain circumstances may run slightly longer. Should the
subsystem request Teletype input when none is available, it
is dismissed immediately. An actual on-line time slice may
vary from a minimum of 2 or 3 ms (if dismissed at once) to a
few ms more than the specified quantum (to allow I/O to be
completed). Receipt of the necessary Teletype input marks
the subsystem [or activation.

At dismissal time, all I/O actions necessary to complete the
swapout are queued up as direct access, and the batch job
is started. (If, at the end of a userls on-line quantum, no
other user in the system is ready for execution, the swap-out
I/O is not started. The user IS task in memory will receive
subsequent on-I ine quanta, as it is able to use them, unti I
another on-line user requires service. In this single-
user case, successive batch quanta would be terminated
by the clock.)

The completion of of the SIOl operation triggers SI02. The
swap-in I/O requests are queued up and the batch job con­
tinues. (From the diagram, it is seen that if the swapping
RAD and the batch file management RAD have the same

RAD
Swapping

f--------I SIOl)(5102
1

.:.. ________
1

5101)(5102 I

On-line
Tasks

File Manage
System
and RAD

Background

User 1
OLQ

~

User 2
OLQ

tL

r r'
I~------+I----------I-I ------II----------~

Serving OL Serving BG Serving OL Serving BG ,-..... __ ~tL __ __ ~",------~tL------~'r~------~~~----~'r~ -----~'-----~,
1

BGQ BGQ , ... , , ...

1-----------+1--------11------------,1-1-------1

active OLQ

5101

On-line quantum. SI02 Swap-in time for the user
in line for service.

__________ inactive
Swap-out time for the on­
line task being dismissed BGQ Background quantum.

Figure F-l.. On-Line Time-Sharing

Appendix F 65

controller, there is a severe conflict when the batch job re­
quires RAD I/O or Monitor overlays.)

The background quantum (BGQ) is a SYSGEN parameter
(default 200 ms) that specifies the length of time a batch
job may run before servicing the next on-I ine task. How­
ever, it is almost always the case in practice that the back­
ground quantum is set by the length of 5101 and 5102.
Batch processing will never be interrupted before the swap
is done, and with the 7204 RADs this is on the order of .8-1
second.

The intervals 5101 and 5102 vary greatly for each subsystem,
depending on size and on how the subsystem has described
itself with the memory management CALs. This variance is

66 Appendix F

greatest with the Model 7204 and 7232 RADs, because of
their lower transfer rates.

When the high-speed RAD is in the system for swapping, the
background quantum is used as the minimum time during
which batch jobs must run, to prevent batch jobs from being
effectively locked out by on-line jobs with short swap and
long execution times.

With the high-speed RAD, it is seen that the most that can
be done for optimizing response time is to set the SYSGEN
value of the background quantum very low, so that the on­
line programs run on a demand basis. In this case, batch
jobs would utilize no more than the "busy time" of the swap­
ping RAD.

APPENDIX G. BTM MACHINE OPERATION

Machine operation with BTM is virtually identical to that
of the standard BPM system. Perhaps the most noticeable
difference occurs when the system is booted from disc, for
example, to start operation after loading the disc from
tape.

After the normal BPM header information is typed, the
BTM Executive must find all of the on-I ine processors in
the system account and initialize them in absolute swap
storage. This wi II typically take 4-5 seconds, after which
the resident Executive types a second message:

BTM SWAP AREA IS FROMxxxx TO END OF DISC ndd.

where

xxxx is the first disc address of absolute swap area.

ndd is the channel and device designator of the
swapping RAD.

It is not necessary to wait for the second message before
initiating batch operations. Although batch jobs may be
started immediately, consoles wi II not respond to the @
€) input until the second message has been typed.

As on-line users enter the system, this will be noted on the
operator's console by a message simi lar to the following:

* CONSOLE xx LOG ON.

where

xx is the hexadecimal representation of the user's
COC I ine number.

If the BTM accounting package is implemented in the sys­
tem, the log-in message will be accompanied by the user's
name and account number identification.

When a user leaves the system, the fact wi II be noted on
the operator's console by the message

* CONSOLE xx LOG OFF.

KEY-INS
The machine operator exercises ultimate control over the
system with the following key-ins, which are given in the
standard BPM fashion.

!BTMM ~xx] text

This key-in causes the text message to be printed on all
consoles (or console xx) without affecting their current op­
eration. For example:

! BTMM SYSTEM DOWN IN FIVE MIN UTES.

!BTMX[xx]

This key-in terminates the activity of the indicated console.
If no specification is given, all active consoles are deacti­
vated. The message

BTM HALTED BY OPERATOR
time date

is output to all consoles currently active. Background
operations are started if not al ready activei this ensures
that a quiescent state will be reached (see "System Save
for Restare'). This key-in, when used to deactivate all
consoles, also disables the time-sharing portion of the sys­
tem. Attempts to activate consoles are met by the message

BTMQ

!BTMS

When -the system is first booted from disc, the time-sharing
portion of the system is active. If the! BTMX key-in has
been used to terminate operations, they may be restarted
with this key-in. Following the key-in, the consoles re­
sume service, and the message

BTM IS OPERATIONAL

is broadcast to all consoles still connected to the system.

TERMINAL JOB INSERTION

When BTM is being supported by a symbiont BPM system,
on-I ine users are able to insert jobs into the batch queue.
The machine operator will be alerted, when this occurs,
by the message

* JOB yyy (p) FROM CONSOLE xx.

where

yyy is the JOB ID, and p the priority.

This will aid him in dispatching output.

SYSTEM SAVE FOR RESTART

In order to save user's files and provide a restart position,
it is good policy to dump the file area of secondary storage
onto tape periodically. This is also necessary whenever the
system is to be shut down and the RAD will not be kept in­
tact (e. g., preventive maintenance or use of another oper­
ating system). If the system is to be shut down but RAD
storage will be preserved, it is not necessary to perform a
dump; the system can be initiated from secondary storage
with the standard boot procedure.

Appendix G 67

Either of the above operator actions, booting from RAD or
dumping to tape, can be done only when the entire system
is quiescent.

Conditions required for the system to become quiescent are:

1. BPM must be in the "wait state".

2. No symbiont may be active.

3. No symbiont files can exist (input or output).

4. All consoles must be logged off. This can be assured
with the BTMX key-in.

When these conditions are met, the Monitor prints the
message

SYSTEM IS QUIESCENT.

This must be the last entry on the operator's log if there
is to be a restartable system. Dumping to tape or booting
from disc under any other circumstances cripples the sys­
tem.

The portions of the system that must be saved so the system
may be restarted are PSA (Permanent System Area) and PFA
(Permanent File Area). Neither PER (symbiont storage) nor
swap storage need be saved, since they are scratch areas.

SYSTEM ERROR RECOVERY

From the above discussion, it is obvious that in the event
of failure (for any reason) the system may not be initiated
from the RAD via a standUid boot PiOC€SS. If the machine
is hung up due to an irrecoverable error in the middle of
a job, it is impossible for the Monitor to attain quiescence.

It is possible to recover permanent fi les and symbiont out­
put for all but the jobs that were executing at the time of
failure, using the recovery procedure provided with the

68 Appendix G

Power-on/Power-off routing. This procedure does the
following:

1. <:;nvpc: rrllrinl nnrtc; ("If HGP (clic;c. allocation mao) and -_.-- _. __ ._. r-··- _ .. --- ,----- ------- .. --- -I'

ACNCFU (pointer to account directory) on disc.

2. Stores the symbiont file directory in high memory.

3. Simulates a disc boot.

4. Moves the symbiont file directory from high memory
back to its proper place.

If symbionts were active at the time of the fai lure, the
following precautions should be taken before attempting
recovery:

1. Do a DISPLAY key-in.

2. If any output files still exist for the batch job that was
executing at the time of failure, delete them. If any
input files were partially created by input symbionts.
delete them by means of a DELETE key-in.

3. Do an S key-in (see BPM Reference Manual) to process
outstanding input files. Do not initiate input symbionts
until these jobs are processed, as job IDs assigned by
the system start with 0 and confl icts may occur.

Some disc space is lost in the recovery procedure. Per­
manent file area for all currently open output files will be
lost. Symbiont disc storage for symbiont files currently
being output, and for symbiont files currently being read by
the system wi II be lost.

To initiate the recovery procedure, the operator simply
presses SYSTEM RESET and moves the RUN-IDLE switch to
RUN (the reset vviI! have put the machine in the idle state).

APPENDIX H. TIMING

The time required to process a single Teletype input char­
acter is as follows:

1. If the character can be echoed immediately, the
processing time is

2.

177.0 + Q + R + 17.5/n J-ls}

(min: 257.4 J-lS - max: 300.5 J-ls)

If the echo must be deferred, the processing time
is

219.6 + Q + R + 27. 9/m J-ls

(min: 310.4 J-lS - max: 353.5 J-ls)

where

and

. . At the time
Q = {31. 8 If the buffer IS empty } f h .

43.6 if the buffer is not empty ~ t e Input
Interrupt

At the time
R = {31. 1 if the buffer is empty } of the input

62.4 if the buffer is not empty
interrupt

n = The number of characters input simul taneously
by all Teletypes.

m = The number of characters input since the last
activation character but not echoed.

Appendix H 69

APPENDIX I. USASCII TO EBCDIC CONVERSION

USASCII J Teletype I EBCDIC 'I USASCII . II Teletype I EBCDIC
Code Character Character 4 Code Character Character

~--~----4_----~-----+----~----~1 Echo ~--~----~----~----__ ----~--~ Echo4
and
Type

1 2
I Prints i and !

Hex. I as3 I Type Hex. Octal Char 1 Key2
Prints

Hex. as3 Hex. Octal Char Key

00 00 (NUL) pcs 00 0 1E

01 01 (SOH) A C 01 1 1F

36
!

I (RS)

37 I (US)

1E

OCs ! 1 F
l

02 02 (STX) BC 02 1
~--4-----4-----~----~----+_----~--~ 20 40 blank SPACE i

BAR
40 blank

03 03 (ETX) CC 03 [1
~---+-----+------+------+----+-------!------I 21 41 ! 15 5A (I) # + 2

04 04 EOT DC 04 1 ~---+------+-----+-----+-----+---' ---+------1
22 42 II i I 7F (") #+ 2

WRU EC 09 1
(ENQ) 23 43 i # 35 7B # #+ 1 05 05

RU 24 44 Ii $ 45 5B $ # + 1
06 06 FC 06 1

~--__1_--_ __1_-(A-C-K-)4_ __ --+----+------+-------I 25 45 I % 55 I 6C % #+ 2
BE LL G C 07 be II # + 1 1--26---+-4-6----+1-&----+--6-5----+-; --5-0--+-i' -&-----1---#+----12
(BEL)

~--_t_---_t_----~---~----+_----_t_-~ 27 47 I ~ 7D I #+ 2
08 10 (B5) HC 08 1 t----+---+--------i----t----+---;-----t

1---__1_---__1_---_+_----+----+-----_!_------I 28 50 (85 I 4D I (# + 2
,TAB IC 05 i 3 ~---!-------!-I~---+-----+· -----1

1
- ----1,------1

(H T) 29 51) 95 I 5 D I) # + 2

07 07

09 11

LINE line 2A 52 * .5 5C * #+ 2
OA 12 LF 25 @+7 I----;------+-----+------+-----+-------f------I

~---+------+------+-F-E-E-D-_I__---+-fe-e-d--__+_-_I 2B 53 + i
s I 4E + # + 2

OB 13 VT K C OB 1 I--_t_---+---+----+----+-------f------I
~--_t_---_t_----+-----~---+_--_t_-~ 2C 54 !, , 6B, #+ 2

I---;-----+-----+------+-----+-------f-----I
oc I 14 OC

OE 16 OE 30 60 0 0 I FO 0 #+ 1

OF 17 OF i 31 61 11 ill F1 1 #+1

10 20 (DLE) I pC 10 32 62 I 2 I 2 F2 2 #+ 1
i

11 21 11

TAPE 34 64 4 4 F4 I 4 #+ 1
(DC 2) R C 12 1 I #

~--_+_---4_---+------+----+------__1_--I 35 65 5 5 F5 5 +1
12 22

23
1----;------+-----+-----+-----+------1------1

X-OFF SC 13 1 36 66 6 6 F6 6 #+ 1
(DC3)

~--_+_---_+_----+-----~----+------_t_-_I 37 67 7 7 F7 7 # + 1
14 24 (DC4) TC 14 1 t--4_---t--------i----I----+--_!_-------I

38 70 8 8 F8 8 #+ 1
15 25 (NAK) UC OA 1

1---4_---__1_---_+_------+---+------+-------1 39 71 9 9 F9 9 # + 1
16 26 (SYN) vC 16 1 1----;-----_+_----+-----+------+------1------1

1----__1_---__1_----4_------+---+------+------i 3A 72 : : 7A: #+ 1
17 27 (E TB) W

C
17 1 1-----+-----_+_----+-----+-----+-----1--------4

t---~----_+_-----+------+----+------_t_-----I 3B 73 ; ; 5E,· # + 2
18 30 (CAN) XC 18 1

13

3C 74 < , 5 4C < # + 2
19 31 (EM) yC 19 1

1A 32 (S5) ZC 1A 1 3D 75 7E =

1 B 33 (ESC) KCS 1 B 1 3E 76 > I s 6E >

1C 34 (FS) LCS 1C 1 3F 77 ? /5 6F (?)

1 D 35 (G S) M cs 1 D 1 40 100 @ ps 7C I @

70 Appendix I

USASCII Teletype EBCDIC USASCII Teletype EBCDIC
Code Character Character 4 Code Character Character 4 Echo Echo

Prints and Prints and
Hex. Octal Charl Key2 Hex. as3 Type Hex. Octal Char l Key2 Hex. as3 Type

41 101 A A Cl A #+ 1 55 125 U U E4 U #+ 1

42 102 B B C2 B #+ 1 56 126 V V E5 V #+ 1

43 103 C C C3 C #+ 1 57 127 W W E6 W #+ 1

44 104 D D C4 D #+ 1 58 130 X X E7 X #+ 1

45 105 E E C5 E #+ 1 59 131 Y Y E8 Y #+ 1

46 106 F F C6 F #+ 1 5A 132 Z Z E9 Z #+ 1

47 107 G G C7 G #+ 1
5B 133

{[}
K

S
4F I #+ 2

48 110 H H C8 H #+ 1
(I)

{\}
49 111 I I C9 I #+ 1 5C 134 (\) L

S 4A (tJ #+ 2

4A 112 J J Dl J #+ 1 {]}
4B 113 K K D2 K #+ 1 5D 135 (-,) MS 5F (-,) #+ 2

4C 114 L L D3 L #+ 1 t
N

S
5E 136 (A) 6A #+ 3

4D 115 M M D4 M #+ 1 -
4E 116 N N D5 N #+ 1 5F 137 (..) as 6D (-) #+ 2

4F 117 a a D6 a #+ 1

50 120 P P D7 P #+ 1
0

51 121 Q Q D8 Q #+ 1

52 122 R R D9 R #+ 1

53 123 S S E2 S #+ 1 7E 176 ESC ESCAPE lB 0

54 124 T T E3 T #+ 1 7F 177 DEL RUBOUT FF 0

Notes: --
l. The forms in parentheses appear only on SDS Teletype 3. The forms in parentheses are contained in the SDS 63-

#70151 whereas the unparenthesized forms appear on and 89-graphic character sets but not in the standard
the specified keys of all standard model Teletypes. 57-graphi c character set. On printers equipped with
(Some models lack the ESCAPE key). The forms in on Iy the standard character set 1 these forms wi II pri nt
braces print when the specified key is depressed, but as blanks.
they do not appear on the keys.

4. The echo and type specifies the echoabi I ity and acti-
2. Superscript c indicates use of the CTRL keYi super- vation type of a character. See Appendix B for a

script s indicates use of the SHIFT key. more complete description.

The Teletype character mnemonics have the following meanings:

ACK Acknowledge ENQ Enquire NAK Negative acknowledge
BEL Bell EM End of medium NUL Null
BS Backspace EaT End of transmission RS Record separator
CAN Cancel ESC Escape SI Shift in
CR Carriage return ETB End of transmission block SO Shift out
DCl Device control 1 ETX End of text SOH Start of header
DC2 Device control 2 FF Form feed SS Start of special sequence
DC3 Devi ce control 3 FS F i I e separator STX Start of text
DC4 Device control 4 GS Grou p separator SYN Synchronize
DEL Delete HT Horizontal tab US Unit separator
DLE Data link escape LF Line feed VT Vertical tab

Appendix I 71

APPENDIX J. EBCDIC TO USASCII CONVERSION

EBCDIC I Teletype I USASCII EBCDIC
!

Teletype USASCII
Code , Character

i
Code Code Character Code

Prints T
I I Prints

Hex. as3 Char1 Key2 Hex. i Octal Hex. as 3 Char1 Key2 Hex. Octal
i

i I I .

:
(NUL) 1 i I I

00 pcs
i 00 i 00 1D (GS) i MCS 1D 35
I

•

(SOH) !
, ,

I 01 AC 01 01 1E
!

(RS) NCS 1E 36

02 (STX) i BC 02 02 1F ! (US)
I

OCS 1F
i

37 I
I I

03 (ETX) CC 03 03 I

!

04 EOT DC 04 i 04 I

i

line LINE TAB I 25 LF OA 12 05 (HT) IC 09 11 feed FEED

! 06 RU FC 06 06 (ACK) i

I I I
I BELL 40 blank blank SPACE 20 40 07 bell GC 07 07 BAR I

(BEL) I i

I I I OS (BS) HC OS 10 I
i i i i I I

I
i

I
WRU

I

, i i I

09 EC 05 05 {\} 1 I I

LS I

(ENQ) 4A (/) i 5C 134
(\) I

I
I I

OA (NAK) UC 15 I 25 4B I I ! 2E 56
I I

OB VT
I

KC OB 13 4C I < I < 5 ! 3C 74 I
r.l"""\nl AI i

I
I DC I

rVI\/V\ LC OC 14 4D ((SS 2S 50 (FF) i

I I 4E + + .5 2B 53 carriage , I

OD CR RETURN OD 15 {[} I
i

I return 4F I K5 5B 133
(I) I

! OE (SO) NC OE 16 I

OF (51) OC OF 17 50 & &
i

6s
I 26 46

i

I I I 10
I (DLE) pC 10 20 i .! I

! !

(DCl) I QC 11 I 11 21 5A (I) I ! 15 21 41 I

12 TAPE RC 12 22 5B $ I $ 45 24 44 (DC2)
5C * * :5 2A 52 X-OFF SC 13 (DC3) 13 23 5D)) 95 29 51

14 (DC4) TC 14 24 5E i i i 3B 73

15 carriage CR RETURN OD 15 5F (,) {]} M5 5D 135 return (-,)

16 (SYN) VC 16 26 60 - - - 2D 55

17 (ETB) WC 17 27 61 / / / 2F 57

I I
... - ... -

lS (CAN) XC lS 30

19 (EM) yC 19 31
I 1 t

1A (55) I ZC 1A 32 6A i ("') N5 5E 136
i

1B (ESC) KCS 1B 33 6B I I I I 2C 54

lC (FS) L cs 1C 34 6C % % ! i/ 25 45
I I

72 Appendix J

EBCDIC Teletype USASCII
Code Character Code

Prints
1 Hex. as3 Char Key2 Hex. Octal

6D (-) - OS 5F 137
(-)

6E > > s 3E 76

6F (?) ? /s 3F 77

7A : : : 3A 72

7B # # 3s 23 43

7C @ @ pS 40 100

7D I I i 27 47

7E
s

3D 75 = = -
7F (") II i 22 42

Cl A A A 41 101

C2 B B B 42 102

C3 C C C 43 103

C4 D D D 44 104

C5 E E E 45 105

C6 F F F 46 106

C7 G G G 47 107

C8 H H H 48 110

C9 I I I 49 111
-

Dl J J J 4A 112

D2 K K K 4B 113

D3 L L L 4C 114

D4 M M M 4D 115

D5 N N N 4E 116

Codes X'81 1 through X'A9I, which represent the lower case
letters, are exactly congruent to X IC 11 through X 'E91 and
may be used interchangeably. All wi II print as capital let­
ters on standard Tel etypes.

Notes:

1. The forms in parentheses appear only on SDS Teletype
#7015, whereas the unparenthesized forms appear on
the specified keys of all standard model Teletypes.
(Some models lack the ESCAPE key.) The forms shown

EBCDIC Teletype USASCII
Code Character Code

Pr~nts
Hex. as Char l Key2 Hex. Octal

D6 0 0 0 4F 117

D7 P P P 50 120

D8 Q Q Q 51 121

D9 R R R 52 122

E2 S S S 53 123

E3 T T T 54 124"

E4 U U U 55 125

E5 V V V 56 126

E6 W W W 57 127

E7 X X X 58 130

E8 Y Y Y 59 131

E9 Z Z Z 5A 132

FO 0 0 0 30 60

Fl 1 1 1 31 61

F2 2 2 2 32 62

F3 3 3 3 33 63

F4 4 4 4 34 64

F5 5 5 5 35 65

F6 6 6 6 36 66

F7 7 7 7 37 67

F8 8 8 8 38 70

F9 9 9 9 39 71

FF CD RUBOUT 7F 177

in braces print when the specified key is depressed, but
they do not appear on the keys.

2. Superscript c indicates use of the CTRL key; superscript
s indicates use of the SHIFT key.

3. The forms in parentheses are contained in the SDS 63-
and 89-graphic-character sets but not in the standard
57-graphic-character set. On printers equipped with
only the standard character set, these forms will print
as blanks.

Appendix J 73

APPENDIX K. 8TM SYSTEM GENERATION

GENERAL INFORMATION on a standard BPM BI tape the ROMs required to provide
the BTM functions.

This discussion is intended only as a supplement to the
SYSGEN documentation in the 'BPM Reference Manual,
Chapters 10 and 11, to aid a person already familiar with
the SYSGEN process.

The: BTM card allows the specification of system parameters
that are installation dependent. It has the form:

: BTM (option), (option), ••• , (option),;
The principal change in system generation has been the
addition of the :BTM card, and the necessity for inc! uding (option), etc.

Option Meaning Default

NUMUSERS, n Total number of time-sharing consoles that 8
may be in use at one time.

USERSIZE, n Size, in words, of the time-sharing memory 16384
area. The size must be a multiple of 512
(one page).

NUMSYSTS, n Thi$ provides an upper limit on the number of 12
subsystems that can be in the system. It is pru-
dent to provide for more than the standard set,
so they can be added after the system is gen-
erated. This should also be taken into account
when allocating swap area.

BPMQTM, n The minimum amount of time BPM runs before 200
time-sharing users are scheduled.

BTMQTM, n The maximim amount of time an on-line user 200
may run before BPM receives another quantum.

IBUFSIZE, n COC input buffer size. The number of bytes 100
that may be typed ahead before data is lost.
This is also the maximum number of characters
that may be typed before an activiation char-
acter is typed.

OBUFSIZE, n The number of characters which can be held in 100
each user's COC output buffer without further
program intervention.

lINT, n The location of the COC input interrupt. 60

OINT, n The location of the COC output interrupt. 61

74 Appendix K

limits

1-64

12288-
65536

10-30

10-500

50-500

80-200

80-400

60-13F

60-13F

Units

Dec.

Dec.

Dec.

ms

ms

Dec.

Dec.

Hex.

Hex.

The BI tape must have all the normal BPM modules pi us the
following fi les:

File

BTMBO

BTM:BLIB

BTMFLINT

BTMFORT

BTMLOAD

BTMEDIT

BTMSYMB

BTMFER

BTMBPM

BTMBASIC

BTM

Contents (ROMs)

BTM power on/off, initialization, and
Executive routines.

On-line FORTRAN run-time and math
library .

On-line FORTRAN interface program.

On-line FORTRAN compiler (cat. no.
704176).

LOAD subsystem (cat. no. 705260).

EDIT subsystem.

On-line SYMBOL (cat. no. 704158).

FERRET subsystem.

BPM subsystem.

on-line BASIC.

SYSGEN :BTM card interpreter.

The PASS2 processor has had the segment "BTM" added to it
to process the :BTM system Generation control card. The
tree of the PASS2 processor is now

! TREE CCLOAD - PASS2CCI-MODIFY-DECBS-(DEVICE,
SDEVICE, ;

!MONITOR, DLIMIT, RJITGEN-(RESERVE, INTSR),;

!CLOCK,ABS,BTM)

SYSGEN OPERATIONAL INFORMATION

PASS 1

The :SELECT cards should select the additional modules
needed for the particular system being generated:

BTMBO is required for any BTM system

BTM:BLIB is required for FORTRAN

BTM is required only if a PASS2 processor is to be part
of the object system.

Note: The BASIC subsystem requires both floating­
point and convert instructions, and FORTRAN
requires floating-point, so the appropriate
simulators must be included in the absence of
the hardware options.

PASS 2

:STDLB and :DEVICE cards should be set up as in BPM except
as discussed below.

The last :DEVICE card specifying a DC device will be used
as the swap device. The last part of this device wi II be
used for swap storage and is not available for other alloca­
tion. In addition, this RAD must have large enough capac­
ity to provide all swap storage required. The amount of
swap storage may be computed as the sum of:

Subsystem Storage

FORTRAN 15 granules

LOAD 7 granules

EDIT 7 granules

SYMBOL 9 granules

FERRET 3 granules

BPM 3 granules

BASIC 17 granules

Temporary swap area, in granules, may be computed as:

(2*(U SERSIZE/512)+4) * (NUMUSERS)

For example, 680 granuies are needed for iO users with a
16K on-line area. The definition of a granule is the BPM
definition, i. e., that number of sections needed to make
up one page (512 words).

The user's allocation of swap area can be checked after the
system is booted. The system types out

BTM SWAP AREA IS FROM aaaa TO END OF DISC ndd.

An installation desiring to add subsystems subsequent to
SYSGEN should allow ample USERSIZE when generating the
system.

A card defining the communications controller address
should be included as follows:

:DEVICE COndd, (HAND, COC)

:SDEVICE, :DLIMIT, :RESERVE, and :ABS cards are identi­
cal to those used with normal BPM.

:MONITOR card is identical. However, the following
recommendations are made:

TSTACK,300 for symbiont system (250 for nonsymbiont).

SPOOL, CPOOL, MPOOL, SFIL, no change.

CORE The correct size must be specified; the sys-
tem cannot be patched to run on a different size
machine.

Appendix K 75

QUEUE This ,parameter depends upon the type of
RAD used as the swap device.

Cat. No. 7204 - QUEUE, 80

Cat. No. 7212 or 7232 - QUEUE, 20

CFU If none is specified, 10 are suppl ied. With
BTM, the number should be NUMUSER * 2 + 10.

Note: If CFU is specified, M:CPU must precede 10
or IOSYM on the TREE card for M:MON.

:RESERVE should not include a RESDF specification.

:INTS, :INTR, and :TIME should not be used.

A :BTM card must be included to generate a BTM system.
It generates tables that are dependent upon user area size,
number of users, etc. It may appear anywhere after the
:DEVICE and :SDEVICE cards.

The interpretation of the :BTM card produces a load module
named M:BTM, which contains all of the variable storage
needed by the resident Executive. The resident Executive
(BTMBO) and M:BTM are included in the generation of the
Monitor.

LOAD AND OVERLAY CARDS

M:MON should have BTMBO and M:BTM added to the list
of element fi les. These should be added to the tree speci­
fication immediately before IORT and COOP (if included).
The remai nder of the tree structure is unchanged, except
that the element file, PFSR should be deleted.

BPM processor control cards are unchanged.

BTM Subsystems. The LOAD cards for the BTM subsystems
take the following form:

I LOAD (MAP), (NOTCB), (PERM), (ABS),;

I(BIAS,bias), ;bias = CORE - USERSIZE in hex.

i(LMN,name), (EF, (ef))

The module name and element file entries have the follow­
ing values for each of the subsystems:

Subsystem LMN EF(s)

FORTRAN FORTRAN: BTMFINT,BTMFORT

LOAD LOAD: BTMLOAD

C/",\TT C/",\TT. OTA.AC/"'\TT
I... V1 I 1... 1 I ; U I 'V\I... 1 I

SYMBOL SYMBOL: BTMSYMB

SUPER SUPER: BTMSUPER

FERRET FERRET: BTMFER

BPM BPM: BTMBPM

BASIC BASIC: BTMBASIC

76 Appendix K

DEF CARD

The format of the DEF card is exactly as in BPM. If on-I ine
FORTRAN is to be used, BTM:BLIB should be specified in
the (INCL, ...) list.

SYSTEM BOOT AND INITIALIZATION

System boot and initialization is exactly as in BPM. The
two initialization links are preempted for special BTM ini­
tialization.

USRINIT1 initial izes the C OC hardware, and the
swap storage and BTM tables.

USRINIT2 initializes the links to the power on/off
routines, and the recovery routine.

JOB COMMAND

After the system has been generated, the first of the follow­
ing two jobs must be run if on-line FORTRAN is to be used.
The second JOB command is optional but is recommended,
as it maximizes available disc space.

!JOB :BTM, ON LINELIB, F }
IASSIGN M:BI, (FILE,BTM: BLIB,:SYS)

Creates :BLIB
fi Ie under
account :BTM ILOPE (PERM,LIB)

!J OB : SYS, DELETE
IASSIGN M:EI, (FILE,BTM:BLIB) l Deletes BTM:

BLIB in :SYS

The :BLIB fi Ie in the :BTM account is used as the standard
library fi Ie by the LOAD subsystem.

CREATING SUBSYSTEMS

All subsystems and libraries peculiar to BTM are introduced
through use of the BPM fi Ie manage and load functions, and
are independent of the actual SYSGEN process in the sense
that they can be added at any time.

The user must create a :BLIB fi Ie under the :BTM account.

The LOAD subsystem uses the :BLIB fi Ie in the :BTM account
as the library, although an option exists for specifying
others. Currently, the library file contains only the on­
line version of the FORTRAN IV-H run-time, along with
the standard mathematical routines.

The on-line version of the FORTRAN IV-H run-time is ob­
tained by replacing the following routines in the standard
deck set=up (which assemble either for BHA, BC~A, RBfv~"

or BPM) with the BTM versions.

Cat. No.

704216
704293
704294
704295

Module

BF:SV
BF:SC
BF:SW
BF:GCOMS

Cat. No.

704305
704306
704307
704308
704309
704310
704334
704387
705293

Module

BF:DIAG
EXIT
BF:SP
BF:SO
BF:MXXX
BF:TSNUM
BF:NLOC
BF:RUNIO
BF:EXIT

A user wish i ng to create a I ibrary that wi II be used by the
LOAD subsystem can do so by using LOPE to create a :BLIB
fi Ie in his account.

For example:

!JOB ACCT,A, 1

!ASSIGN M:EO, (FILE, NEWLIB)

! FMGE (ENTER)

ROMs

!ASSIGN M:BI, (FILE, NEWLIB)

! LOPE (PERM, LIB)

!FIN

The LOAD subsystem can then be directed to use this library
by including the following library specification in the op­
tion list.

OPTIONS: 6(ACCT)

A subsystem is defined by loading it under the BPM system
account (:SYS) and forming a load module with the name
ending in a colon (:). For example:

(LMN, SYMBOL:)

The load module must conform to the interface rules laid
down under "Subsystem Interface" .

When the BTM Monitor is booted from disc, it searches the
system account for all load modules with this naming con­
vention and incorporates them as on-I ine subsystems.

The first two characters of the name become the Executive
command by which the subsystem may be called, and the
remainder of the name (excl usive of the colon) is echoed
by the Executive. For example:

!SY MBOL

When the system is booted, the subsystem load modules are
copied to a dedicated area of the RAD and referenced from
there in abso I ute format.

The Executive service routines called by the ASSIGN,
RESTORE, SAVE, and TABS commands are part of the resi­
dent Monitor and therefore do not have corresponding load
modules.

COMPONENT SIZES IN A BTM SYSTEM

FIXED OVERHEAD

Fixed overhead is as follows:

BPM (BOO) 7K (Nonsymbiont) - 10K (Symbiont)

BTM Exec. 4.5K

VARIAB LE OVERHEAD

Tables are generated at SYSGEN time which vary with the
number of users and subsystems. The formula for the num­
ber of words required is:

(NU (IB+OB)+3)/4+(9NS+8)/2+23 (NU+ 1)+(5(5NU+ 12»/

4+(3(NS+2))/4

where

IB input buffer size in characters

OB output buffer size in characters

NU = number of users

NS = number of subsystems

Figures for three typical systems are:

IB = 100, OB = 100, NS = 12

NU = 8 NU = 16 NU = 24
1 K (735 words) 1.5K(1369 words) 2K(2003 words)

For safety, the numbers are rounded up to the nearest page,
then combined with the fixed overhead figures. Therefore,
residentrequirementsforan 8-user symbiont system are 17K.

BACKGROUND AND ON-LINE AREAS

These memory areas must be allocated from the remainder.

on-line USERSIZE

background (core size less on-line area)

2K of context area must be allocated from the on-line area.

Monitor blocking buffers, normally 1.5K-2K are allocated
from the background area.

SYSGEN DECK SETUP
The following listings show system generation deck setups
for two representative systems. The first deck generates a
65K, 24-user symbiont system. The second deck generates
a 32K, 4-user system that permits either batch or on-I ine
processing, but not both running concurrently.

Appendix K 77

65K SYSTEM GENERATION

* ;GENDC6 (M:SI,;SySGEN,CiNSN,BTMB)
END
JaB :SYS,~AKERB6~
ASSIGN ~:Er,CrILE,M:M6N)
PMGE (DELETE)
JaB :SYSGEN,SYSGEN
ASSIGN M:er,(INSN,BTMB)
PASSl

:SELECT (~IlE,ReeT,'TAP,F8CD,IeRT,HANDLERS'TePRT,Ie,)
:PRGMLOR,TYPR,IBO,DEBUG,DUMP,EXIT,M:15, M:16,M:17,KEYIN/M:14,~
:M:18,M:1A,M:1B,M:1C,M:1D,ROr,J
:6PNL,BBSE,M:1E,6FN,CLS,M6DIFY,CLS1,SEGLBAO,LDPRG,MEMAL6C,CALPR6C"
:WRTF,WRTD,DUMMYCCL,LBLT,M:19,pas,ALTcP)
:SELECT (FILE,CRDBUT,PTAP,D~BCO)
:SELECT (FILE,IBSYM,CeBP,CCLBSE)
:SELECT (FJLE,M:CDCB,M:BIDCB,M:CIDC8,M:EIDCB,M:SIDCB,M:B6DCB,M:ce~CB'J
:M:06DCB,M:E60CB,M:LBDCB,M:SBDCB,M:PBDCB,M:ALDCB,M:LLOCB,M:SLDC8,~
:M:BCOCB,H:LIDCB,M:G6DCB)
:SELECT (FILE,M:CKOCB)
:SELECT cFILE,SSSRBM,BDBRBM)
.SELEcT tFTLE,SIGMET,SIG7FDP,BPM)
:SELECT (FILE,L6PER6M,:BLIS)
:SELECT cFILE,BTM:BLIB,BTHFINT,BTMFBRT,BTMLBAD,BTMEDIT,
: BTMSYMB,8TMOESG,BTMFER,BTM8PM,BTMBASIC,BTMBB>
ISELECT (FILE,BTMNRES)
:SELECT (FILE,BPMSUPER,BTMSUPER)
:SELECT (FILE,BTMOELTA)
:SELECT (FrLEJCCIReeT/J6B,LIMIT,ASSIG~,LeAD,TREE'J
:TELSCPE,RUN,CCID8UG,READBI,ENDJ6B,ABSRT)
:sELECT (F!LE,LOR,IN1,PSt,IN2,PS2,ALL,EVL,WRT)
:SELECT (FILE,FILEMNGE,TPEC~ST,~MGEDCBS)
ISELECT (FILE,~BRTRAN)
:SELECT (FILE,~REN)
:SE~ECT (FtLEITAP~~CN)
:SELECT (FILE,C~KPTR6M)
:SELECT (FILE,SVMBL)
:SELECT (~tLE,$M:PASSO,$M:ASSEM,$M:RBeT)

:SELECT (FILE,8PM8ASIC)
Eeo
PASS2

:STOLB (C;CRA03); (AC,TYA01)/(Le,LPA02)~(LL,LPA02)/(De/~PA02)
:STDLB (PBICPAO~),CBB,CPA04),(LJ,CRA03)
:STDLB (SY'CRA03),CBI,CRAQ3),(SL,LPA02)

STOLB (SB,CPAO~),(CI,CRA03),(Ce,CPAO~)
STDLB CAL,CPAO~',(Er,CRA03',(E6,CPAO~)
DEVICE TYA01,(HAND,KBTIB)
DEvICE CRA03'(~AND,CRDIN)
DEvICE CPAO~,(HA~D,CRDeUT)
DEvICE PPA05,CHAND,PTAP)
DEVICE PRA05,(HAND,PTAP)
DEvICE L~A02'(HAND,PRTBUT),(PAPER,26'132)
DEVICE 9TA80,CHA~D,MTAP)

:DEvICE 9TAs1,tHAND,MTAP)
:DEvICE 9TAR2,(HA~D,MTAP)
:DEvICE 9TAR3,(HAND,MTAP)
:DEvICE 7TAEO,CHAND,MTAP)
:DEvICE 7TAE1,(HA~D,MTAP)
:DEvICE DCAFOICHAND,DISCIB),(SS,5A),(PSA/SO),(PFA,lBO),CPER,OO)
:OEVICE DCAF1,CHA'.D,OISCIB>,(SS,5A),CPSA,OO),(PFA,200),(PER,O0)
:DEVICE DCAF21(HA~D,DISCleJj'SS,5A),(PSA,OO),(PFA;100):(PER;10C)
:DEVICE DCBFO,(HA\D,DISCIO),CSS,lQO),(PSA,O),(PFA,O),(PER,O)
:DEVICE CBA10,(HAND,cec)
:SOEVICE (LMN,ISSEG~CRA03)/(LMN,eSSEG,LPA02,CPAO~)
:MBNlrBR (TSTACK,300)/(GUEUE,20),(CeRE,64)/J

(SPseL,8),(cpe6L,6),;
(SFYL,30'"
(MP88L,lQ),(CFU,30)

:DLIMI'1' (TTME,lS), (LB,lOO), (D6,100), (UB,60), (P8,500)J;

78 Appendi x K

: (TstBRE,512),(PSTBRE,2QQ),(FPB6L,2),(IPB6L/2)
:RESE~VE (MPATCH,044)
:ASS,1024 CLBADER),CCCI)J(METASVM),C SYMBBL)J(FMGE),CF6RTRANH)/;
: (PFIL), (WEBF), (REy;), (L.8PE), (F6RTRAt-.;), (ceBeL), (BASIC)
:STM (NUMUSERS,24)

BVERLAY (L~N,M:MeN),J
(EF,(R6eTl,J
(M:RESDF),;
(CRDBUT),;
(FBCD),J
(BTMBe)/J
(BTMNRES)'J
(M:BTM)J;
(M:A8S)JJ
(?TAP),J
(PTAP),J
(CCLeSE),;
(ceep),;
(M;SDEV),J
CI6SVM),;
(M:CFU),(~:JIT),(IeTA8LE) ,(teRT),;
(HANDLERS),CT6PRT), (PRGMLDR),(TYPR),C!60),CDEBUG)/(OUMP),J
(M:1Cl,(M:l0),(RDF),CBPNL),(8BSE,,(M:1E),(6PN),(CLS),(M60IFY),J
(Ex IT) , (KE YIN) , (M : 14) , (M : 15) , (M: 16), (M : 17) .. (M: 18) , (M: 1 A)., (M: 1 B) , ;
(CLS1),CSEGLB AO"CLDPRG),CMEMALeC)/CCALPRBC),CWRTF),(WRTD)/S
(LBLT)/(M:19)'(P~s,/(ALTCF»'J
(BIAS/O),(NBTrB),(MAP),(ABS)/(SL/Fl,(NBSySLIB),(PERM)
TREE ReeT-;
MIRESDF-J
M;ABS-J
M:SDEV-J
M:CPU·M:JIT.IBTABLE-i
HANDLERS"J
rBSYM-J
CRD6uT"J
FBCD-s
PTAP.,
7TAP.;
BTMBe·J
M:STM·;
reep.;
IBRT.T6PRT.J
(PRGMLDR / TYPR,I8D.BTMNRES/J

DEBUG.DUMP,EXIT-DUMP,M:15,M:16,M:17/KEYIN,M:14'J
M:18,M:1A,M:1B,M:1C,M:1D,MEMALeC,ROP.CCALPRec-,
(6PNL.e8SE,M:1E~8RSEJePN·6BSE,C(S.MeDIFY-J

CLS1,SEGLeAD·eBSE,#
WRTF,WRTD-CCLBSE ,LBLT,M:19,PBS,;

AL rep) I LDPRG))
BVERLAY (LMN,CCI),J
(EF/(CCIRBeT)iCJ8B),CLIMIT),(ASSIGN),cLBAD),(TREE)/(TELSCPE)/J
C RUN) I (CC I DBUG), C READS I), (ENDJ8B) I(ABeRT), (M: DL I MIT) I (M hJI T))
(BIAS/4I+QO),J

(NBTCS), (MAP),(PERM),CSL,F)/CNeSYSLIB)
ASSIGN M:Et,cFILE,M:RESDF)
FMGE (DELETE)
ASSIGN M:EI,(FILE,M:DLIMIT)
FMGE (DELETE)
ASSIGN M:EY,CFILE,M:FC6M)
FMGE (DELETE)
ASSIGN M:ET,(FtLE,M:JIT)
FMGE (DELETE)
ASSIGN M:EI,(FILE,M:CPU)
F"'GE (DELETE)
ASSIGN M:EI,(FILE,IBTABLE)
FMGE (DELETE)
ASSIGN M:EI,CFILE,M:SDEv)
FMGE (DEl.ETE)
ASSIGN M:E!,CFILE,M:8rM)
FMGE (DELETE)
ASSIGN M:EI,cFILE,M:ABS)
FMGE (DELETE)

Appendix K 79

LeAD (SL/r)/(MAP),(NeTCB),(~ERM)/{ABS)/J
(BIAS,COOO),;
(LMN, ~eRTRAN:),(EF, (BTMFINT),(BTMFeRT»
I AAr"I I~I _C\. ,MAO\ _,.uA",r-R\ _/O~O"'" a I ARC::" t
.,.-"..... \ ... "11 .. " ,"",""",' '"\'''V'~''''1'r'''''''I''trl''~'''''''''

(BIASICQOO)"
(LMN, LeAD:) ,(Er, (BTML6AD»
LeAD (SL,F)/(MAP),(NBTCB,,(PERM)'(ABS),~
(BIAS/COCOl,S
(LMN, EDIT:) ,eEr, (BTMEDIT»
LeAD (SL,F),(MAP),CNBTCB),(PERM),(ABS),I
(BtAS,COOC),;
(~MNI SV~BeL:) I(EF, (8TMSYMB»
~BAD (SL/r),(MAp),(NBTCB),CPERM),(ASS)/;
(BIAS,COOO),J
(LMN, FERRET:, ,eEr" (BTMFER»
LeAD (SL,F)/(MAP),(NBTCB),CPERM),(ABS)'l
(BIAS"COCO)"
(LMN, BP~:) ,eEr, (BTMBPM»
LBAD (SL,F)/(MAP),(NerCB)"CPERM),(ABS)"
(BIAS"COOO),1
(LMN, BASIC:) ,eEF, (BTMBASIC»
LBAD (MAP),(NBTCB),(PERM)/(ABS)/I
(8IASICOOC)"
(LMN,SUPER:),CEF,(BTMSUPER»
LBAD (SL,F),(MAP),(NBTCB),(PERM),(ABS),;
(BIAS,COOO)"
(LMN, DELTA:) ,eEr, (BTMDELTA»
JBB :SYS,DELETE,F
ASSIGN M:EI,CFILE,PASS2)
FMGE (DELETE)
ASSIGN M:Et,(FILE,PASS1)
FMGE (DELETE)
JBB :SYSGEN,SVSGEN
BVERLAY eLMN,FMGE),J
(EF,(FILE~NGE),(TPECHST)/(FMGEDCBS»'J
(BIAS,4~OO),J

'MAP),'S~,F),(NeSYSLIB),(PERM)
eVERLAY (LMN,LBAOER)"

,(TSS,100)

(EF, (ALL), (EVL), (IN1), (J~2), (LDR)
(BIAS/4400),;

,(PSt), (PS2), (WRT», J

(NBrC8),(MAP), (PERM),(SL,F),(NBSYSLIB)
LeAD (LMN,LBPE),(~AP),(NBTCB),(EF,(LePER9M»,J

(BIAS'~400',J
(PERM)
LeAD (L~N,SUPER)ICNeTCB),(MAP),(ABS),(EF,(BPMSUPER»/1
(BIAS/4400),1
(PERM)
LeAD (LMN,SY~8eL)J(PERM)J(MAP),;
(BIAS,4400),J
(EF,CSYMBL),J
CH:6CDCB)/(M:DBDCB),(M:GeDCB),(M:SIDCB),cM:eSDCB)/(M:LBDCB),(M:CUCS)
(SL,F)
eVERLAY (E~,(tM:ReeT),($M:PASSO),($M:ASSEM),;
(M:D8DCB)/(M:CDC~),(M:LeDC8),(M:BeDC8),(M:GeDCB),

(M:seDCS)'J
(M:CIDCB) .. (~:ceDCB)/(M:LLDCB),(M:6CDCB»J

, (ABS'" (PERM), (SL,F)/I
(BIAS,~40C)"
(LMN,METASVM), cTSS,SOl,CMAP),(UNSAT,(:SySGEN»
TREE $M:R6~T.~:8~DCB~~:CDCB .M:CIDCB-M:CaDC8.M:DeDCB~M:GBDCB.:
MISBDCB.;
MILLDCBwM:LBDCB.M:BCDCB.M:SIDCB-($M:PASSO,$M;ASSEM)
ASSIGN M:EI,(FIL~, $M:ASSEM)
FMGE (DELETE)
ASSIGN M:EI,CFILE, $M:PASSO)
FMGE (DELETE)
ASSIGN M:EI,(FILE, $M:RB8T)
FMGE (DELETE)
LeAD (LMN,reRTRAN~),(PERM),(EF,(FBRTRAN),(M:CDCB),(M:SIDCB) II
(M:DeDCB)"
{M:8eDC8),(M:L6DCS»,1
(SL,F)"

80 Appendix K

(BIAS'4~OO)"
(MAP)
ASSIGN M:EI,(FILE, F8RTRAN)
FMGE (DELETE)
ASSIGN M:EI,(FILE,BTMFeRT)
FMGE (DELETE)
ASSIGN M:EI,(FILE,BTMBASIC,
FMGE (DELETE) .
ASSIGN M:EI,(FILt,BTMOEBG)
FMGE (DELETE)
ASSIGN M:Et,(FIlE,BTMSYMB)
FMGE (DELETE)
ASSIGN M:Ey,(FILE,BTMLeAD)
FMGE (DELETE)
LeAD CLMN,FRAN),(EF,(FREN»,(NBTCS),(MAP)'CPERM1,J
(8IAS/4~OC)'1
(ABS)
LeAD (LMN,BASIC),(MAP),(EF,(BPMBASIC),(M:EIDCB),(M;E60CB),(M;DeO~B) ,I
(M:SIDCB),(M:L60C8»IJ
(81AS,'+'+00)"
(PERM)
LeAD (LMN,6DB),CEF,(60BReM »,(MAP),(PERM,LIB)
LeAD (LMNI~:AL),(EF,(M:ALDCB»/(MAP)/(PERM,LIB)
LeAD (LMN,M:BI),(EF,(M:BIDCB»,CMAP),CPERM,LIB)
LeAD (LMN,~:8e),(EF,(M;BeDCB»,(MAP),(PERM,LIB)
LeAD (LMN,M:CIl,CEF,(M:CIDcB»,(MAP),(PERM,LIB)
LeAD (LMN,M:C),(EF,(M:CDCB»,(MAP),(PERM,LIB)
LeAD (LMN,M:CK),(EF,(M;CKDCB»,(MAP),CPERM,LIB)
LeAD (LMN/~:ce),(EP,CM:ceDCB»,(MAP),(PERM,LIB)
LeAD (LMN,M:DB),CEF,(M:D8DCB»,(MAP),cPERM,LIB)
LeAD (LMN,M:EI),CEr,(M:EIDcB»,CMAP),(PERM,LtB)
LeAD (LMN,MtGB),CEF,(M:GeDCB»,(MAP),CPERM,LIB)
LeAD (LMN,M:E8),CEF,CM;EeDCB»,CMAP),CPERM,LIB)
LeAD (LMN,~:LI),(EF,(M:LIDCB»/(MAP)/(PERM/LIB)
LeAD (LMN'M:LL),(EF/(~:LLDcB»/(MAP),(PERM,LIB)
LeAD (LMN,M:L9),CEF,(M:LBDCS»,(MAP),(PERM,LIB)
LeAD (LMN,M:aC),CEF,(M:eCDCB»,(MAP),(PERM,LIB)
LeAD (LM.~,M:pe),(EF,(M:peDCB»,(MAP),(PERM,LIB'
LeAD (LMN,M:SI),CEF,CM:S1DcB»,(MAP),(PERM,LIB)
LeAD (LMN,M:SL),CEF,(M:SLDCS»,(MAP),(PERM,LIS)
LeAD CLMN,M:se),eEF,CM:seDCB»,(MAP),(PERM,LIB)
LeAD (LM~,SSS),(EF,(SSSReM »,(MAP),(PERM,LIB)

,(NeSYSLIB)
I(NeSySLIB)

I(NeSVSLIB)
,(N6SYSLIB)
,CNeSYSLIB)

,(NeSYSLIS)
,(NeSYSLIB)

,CN6SVSLIB)
I (NeSYSl.I6)

J(NeSYSt..IB)
,CN6SYSLIB)
,(N6SYSLIB)

, (N6SVSLIB)
, (NeSYSL..IB)

,(N6SYSLIB)
,CN6SYSl.lt3)

I(NeSYSLIB)
,(NBSVSLI8)

,CNeSYSLIB)
,(N6SYSI...IB)

,(NeSYSLIS)
eVERLAY (l~NIREw)/;
(EF,CTAPEFCN)J(TPECHST),(M:eCDCB),(M:CDCB),(M:BIDCB),(M:~8DC6)'J
(M:StDC8),(M:EIDCS),CM;LLDCB),(M:L60CB),(M;peOCB),(M;E6DCB),s
(M:CSOCB),(M:nBDCB),CM;CIDCB),(M:SLDCB),(M:ALDCB),(M:SBDCB),1
(M:LtDC8)J'(M:GBDC8»,}
(BIAS'lt~Oa),;

(MAP),(SL,F),(N6SYSLI8),(PERM) ,(TSS,lOO)
TREE TAPEFCN-TPEQHST"M:eCDCS-M:CDCB"M:BtDCB-M:B60ca"M:SIDCB I
.M:EIDC8.M:LLDCB.~:LeDCB.M:peOCB.M:EeDCB.M:ceDCB.M;DeDCB-M:CIoCBI
.M:SLDC8.M:ALDCB.M:seDC8~M:LIDCBwM:GeDCB
ASSIGN M:EI,(FILE,REW)
ASSIGN M:Ee,(FILE,WE8F)
FMGE (ENTER,PERM)
ASSIGN M:E8,(FILE,PFIL)
FMGE CENTER, PERM)
eVERlAY (LMN,9LAY)"
(EF,(ALLl,(EVl),(INll,(IN2),CLDR) ,(PS1),CPS2),(WRT»"
(BIAS,'+,+OO),I

(N6TCS),(MAP), (PERM),CSl/~)/(NeSYSLIB'
TREE LOR.C!N1JPS1/IN2,PS2-(ALL,EV\",WRT »
JeB :SYSGEN,DEFIT
ASSIGN M:~a,(DEVICE,9T),(6UTSN,PeSS)
OEF CINCLjSrGMET/SIG1FDP,BPM,:BLIB,BTM;BLIB)
FIN

Appendix K 81

32K SYSTEM GENERATION

* ;GENDCB (M;BI,;SVSGEN,{iNSN,BTMBi)
END
JaB :SYS,~AKER6BM
ASSIGN M:Ef,eFILE,M:M6N)
FMGE (DELETE)
JaB :SYSGEN,SYSGEN
ASSIGN M:BI,(INS~,BTM8)
PASS!

:SELECT (FILE,8TM:BLIB,BT~FINTJBTMFeRT,8TML6AD/8TMEDlT,
: BTMSYMB,BTMDEBG,RTMFER,BTMBPM,BTMBASIC,BTMB6>
:SELECT (FILE,8TMNRES)
:SELECT (FILE,BPMSUPER,BTMSUPER)
:SELEcT (FILE,8T~DELTA)
:SELECT CFILE,RBeT,7TAP,FBCD,IeRT/HANDLERS,TePRT'Ie,~
:PRGMLDR,TYPR,IBD,DEBUG,DUMP,EXIT,M:15, M:16,M:17,KEYIN/M;1~/;
:M:18,M:1A,M:18,M:1C,M:1D,RDF,J
:BPNL,6BSE,M:1E,BPN,CLS,MBDIFY,CLS1,SEGL6AD,LDPRG,MEMAL6C,CALPR6C'I
:WRTF,WRTD,DuMMYCCL,LBLT,M:19,P6S,ALTCP)
:SELECT (FILE,CRD6UT,PTAP,DFBCD)
:SELECT (FILE,r6SYM,C6BP,CCLBSE)
:SELECT (FILE,CCIRSST,J6B,LIMIT,ASSIGN,LBAD,TREE,J
:TELSCPE,RUN,CCID8UG,READBI,ENDJBB,AB6RT)
:sELECT (FILE/LDR/IN1'PSt,I~2,PS2/ALL,EVL,WRT)
:SELECT (FILE,FILEMNGE,TPECHST,FMGEDCBS)
:SELECT (FILE,F6RTRAN)
;SELECT CFILE,StG~ET,SIG7FDP,BPM)
:SELECT (FILE,FREN)
:SELECT (FILE,LSPFRBM,:BLIB)
:SELEcT (~JlE/TAPE~CN)
:SELECT (~ILEIM:CDCB,M:BIDce,M:CIDCRJ~l:EIDCB,M:SIDCB,M:BBDCB,M:CBDC8Ij
:M:DBDcB,~:[eDC8,~:L8DC8,M:S6DCB,M:peDCB,M:ALDCBJM:LL~CB,M;SLDCB,i
:M:eCDCB,M:LI~C8,~:GBDCB)
:SELECT (~ILE,M:(KrCB)
:SELECT (FILE/SSS~BM~8DBReM)
:SELECT (~ILE,CHKPTRBM)
:SELE(T (FILE,SYMeL)
:SELECT.~~ILE,~M:FASSO,$M:ASSEM/$~:ReeT)
:SELECT CFILf,BPMPASIC)
:SELECT CFILE,CN7C4363,C~704364JCN704365,CN704366)

EBD
PASS2

:STDL8 (C,C~A03), (BC,TYA01),(L8,LPA02),(LL,LPA02),(Del~PA02)
:STDLB (PB,CPA04)ICEB,CPA04)/(LI,CRA03)
:STDLe (SI/CRA03),(RI/CRA03),(SL/LPA02)
:STDL8 (SB,CPA04),(CIICRA03),(CBICPA04)
:STD~B (AL/CPA04),(EI,CRA03)/(EB,CPA04)
:DEVICE TYA01,(~AND,K8Tle)
:DEVICE CPA03,CHAND,CRDIN)
:DEvICE CPA04,CHAND,CRDeUT)
:DEVICE LPA02,(HA~D,PRTBUT)/(PAPER,26J132)
:DEvICE 9TAgO,CHAND/MTAP)
:DEVICE 9TA8l,(HAND,MTAP)
:DEvICE DCAFO,(HAND,DISCIB),(SS,5A),(PSA,50)/(PFA,lBO)/(PER,OO)
'DEVIcE DCAFt,CHAND,DISCIB),(SS,5A)/(PSA,OO)J(PFA,140)J(PERJCO)
DEVICE DCADOJ(~AND,DISCI8),(SS,05A),(PSA,O),CPFA,O),(PER,O)
DEvICE CBA10,CHAND,cec)
SDEVICE (LMN,ISSEG,CRA03),(LMN,BSSEG,LPAQ2)
MBNITBR (TSTACK,250),(GUEUE,10)/(CBRE,32)1 (SFIL/30)IJ

(SP6BL,6),(CP8BL,4),;
(MP66L,05i

.D~IMIT (TIME,lS),(LB,100),(DB,100)J(UB,60)J(PB,500)J;
(TSTBRE~512)/(PSTBREJ200),(FPeBLI2)J(IPeeL/2)

:RESERVE (~PATC~,020)
:ABS/l024 (LBADER),(CCI),(~ETASYM)J(SY~BeL),(FMGE)/(FeRTRANH)JJ

(PFIL),(WEB~)'(RE~),(LBPE), (BASIC)
:BTM (NUMUSERS,4),euSERSIZE,15872)

eVERLAY (L~N/M:MeN),;
(EFI(RB6T),J

82 . Appendix K

(M:RESDF),J
(DFBCD) ,IJ

(CN 704364),(CN7C4365),CCN7C4366)/1
(STMBe),;
(M:BiM)"J
(Bn·~f\RES), J
(M:ABS),J
(CCLeSE),)
Cceep),;
(M:SDEV),;
(IBSYM),J
(M:CPU),(M:JIT),tIBTABLE) ,(teRT),;
(CRD~UT)JI
(HANDLERs),cTePRT), (PRGMLDR),CTYPR),(I6D),(DEBUG)ICOUMP),l
(M:1C),(M:1D),(RD~),(6PNL),(6BSE),(M:1E),(ePN),(C~S),(MeOIFY),1
(EXIT),(~EYrN),(M:14)'(M:15)'(M:16)'(M:17)/(M:18)/(M;1A),(M:1B),1
CCLS1),(SEGLBAD)J(LDPRG),(MEMALeC),(CALPReC),(WRTF),(wRiO),)
(LBLT), 0"":19), (P~S), (ALTep)),1
(BIAS,O),(N6TCB),(MAP),(A8S),(SL,F),(NBSYSLIS),(PERM)
TREE ReeT.J
M:RESDF.J
IeSY"1.J
M:ABS·;
M:SDEV"'J
M:CPU-M:JIT.IBTABLE-;
HANDLERSIJO)
CRDeUT.,
DFBCD-;
CN704364~CN704365·CN704366.J
BTMBS·;
M:STM-J
ceep.)
IeRT.TePRT.;
(PRGMLDR,TYPR,I8C.STMNRES'J

DEBUG~DUMP,EXIT.DUMP'M:15IM:16IM;17'KEYIN/M:1411
M:18,M:IAIM:1B,M:1C,M:1D,MEMALBC,RDF.(CALPR6C·j

(BPNL.eBSE,M:1E-esSE,ePN.essE,CLS.MGOIFY-;
CLS1,SEGLeAD~e8SE/J

~RTFI~RTD.CCLesE ILBLT,M:19/pes,;
ALTCP)),lDPRG)
eVERLAY CLMN,CCI),I
(EF,(CCIReeT),eJAe),(LIMIT),CASSIGN),CL6AO),(TREE),(TELSCPE)'J
(RUN)'CCCIDBUG)/CREADBI),CENOJ6B),(ASeRT),(M:DLIMIT)/(M:JIT»
(BIAS,3800),;

(NeTCS), (MAP),ePERM),(SL,Fl,CN6SYSLIB)
ASSIGN M:Er,(~ILE,M:RESDF)
FMGE (DELETE)
ASSIGN M:EI,tFILE,M:DLIMIT)
FMGE (DELETE)
ASSIGN M:EI,(FILt,M:FCBM)
FMGE (DELETE)
ASSIGN M:EI,CFILE/M:JIT)
FMGE (DELrTE)
ASSIGN M:EI/(rILE,M:CPU)
FMGE (DELETE)
ASSIGN M:EI/(FILE,IeTABLE)
FMGE (DELETE)
ASSIGN M:E!,CFILE,M:SOEV)
FMGE (DELETE)
ASSIGN M:EI,(~ILEIM:8TM)
FMGE (DELETE)
ASSIGN M:EI,(FILE,M:ABS)
FMGE (DELETE)
LeAD (SL,F),(MAP),(NeTCB),CPERM),(ABS)'1
(BIAS,4200),J
(LMN, FeRTRAN:),(EF, (BTMFI~T)J(8TMFeRT»
LeAD (SL/F)/(MAP),(NBrCB),(PERM),(ABS)'J
(BIASII+2C'lO),J
(LMN, LeAD:) I(EF, (BTMLSAD»
LeAD CSL,F),(MAP),(NBTCB),CPERM),CABS),A
(SIAS,420C),J
CLMN, EDli:) ,eEF, (STMEDIT»

Appendix K 83

LeAD
(8IAS,~200"J
(~MN, SYMB8L:) ,(EF, (BTMSYMB»
LeAD (SL,r)/(MAP),(NeTCB),(PERM),(ABS)"
(eIAS .. ~200)/'
(LMN, ~ERRET:, ,(EF, (BTMFER»
LeAD (SL,F)I (MAP)., (NBTCS), (PERM), (ABS),~
(SIAS'~200),'
(LMN, 8PM:'
1...6 AD
(BIAS,~200),'

,(Er, (8TMBP~»
(SL,F),(MAP),(NBTCB),CPERM),(ABS),i

(LMN, BASIC~' ,eEr, CBTMSASIC»
LeAD (MAP).,CN8Tce"cPERM1J(ABS)"
(BIAS,4200)JJ
(LMN/SUPER:',(EF,(BTMSUPfR»
LeAD (SL/r)I(MAp),(NBTCB),CPERM),(ABS),}
(BIASJ4200),J
C~MNJ DELTA:) ,(Er, (BTMDELTA»
BVERLAY (LMN,FMGE),J
(EF,(FILE~NGE),(TPECHST',(FMGEDCBS»'J
(BIAS/3800)"

(MAP),CSL,F),(NBSYSLIB',CPERM) ,(TSS,100)
8VERLAY (L~NIL8ADER),J
(Er, CALL), (EvL), (IN!), (IN2), (LDR) , (PS!), (PS2), (WRT»,;
(BIAS,38De)"

(NBTC8).,(MAP), (PERH),CSL,F),(NBSYSLIB)
JBB :SYS,DELETE,F
ASSIGN M:EI,(FILE,PASS2)
FMGE (DELETE)
ASSIGN M:EI,CFILE,PASS!)
FMGE (DELETE)
JBB :SYSGEN,SYSGEN
LeAD (LMN,SUPER),(NBTCB),(MAP),(AAS),(EF,(BPMSUPER»,l
(BIAS,3800),J
(PERI''!)
LeAD (LMN,SYMBBL),(PERM),(MAP),J
(8IAS"3BOO),~
(EFJ(SVM8L)/J
(M:BCDCS),(M:DBDCB)/(M:GeDCB)"cM:SIOC8),(M:SBDCB),(M:LBDCS',CM:COCB) >,;
(SLIF)
BVERLAY CEP,($M:RSST),($M:PASSO),($M:ASSEM),;
(M:DeOCB"(M:CDCe)/(M:LBDCB),CM:SBOCB,,cM:GBDCB), (M:SIDC~)'J
(M:seDCB}'J
(M:CIDCB), (M:CBDCB),(M:LLDCB),(M:BCDCB»J

; CABS); (PERM): (Sl..sF,I'
(BIAS,3800"J
(LMN,METASVM), (TSS,80),(MAP),(UNSAT,C:SYSGEN»
TREE $M:RBBTw~:BeDCB~M:CDce .M:CIDCB.M:caDce.M:DBDCS·M:G6DC8-,
M:SBDCB"J
M:~LDCB.M:LBDCB.~:ecDCB.M:SIDCB-($M:PASSO,$M:ASSEM)
ASSIGN M:EI,(FILE, $M:ASSEM)
FMGE (DELETE)
ASSIGN M:EI,(FILE, $M:PASSO)
FMGE (DELETE)
ASSIGN M:EJ,(FILE, $M:R8BT)
rMGE (DELETE)
LeAD (LMN,rBRTRANH),(PERM),(EF,(FBRTRAN),(M:CDCS),(M;SIDCB) ,i
(M:DeDCB),J
(M:BeDCB), CM:LBDCB», J
(SL,F),J
(BIASI3800),~
(MAP)
~eAD (LMN,LBPE),(~AP),,(NeTCB),(Er,(LePEReM»,~

(8IAS,3800J,i
(PERM)
ASSIGN M:EII(~ILE, FBRTRA~)
FMGE (OELETE)
ASSIGN M:F!,CrILE,8TMFBRT)
F'MGE (DELETE)
ASSIGN M:EI,(FILE,BTMBASIC)
FMGE (DELETE)
ASSIGN M:EJ,(FILE,BTMDEBG)

84 Append i x K

FMGE (DELETE)
ASSIGN M:EI,(FILE,8TMSYM8;
FMGE (DELETE)
ASSIGN M:Et,(FILE,BTMLeAD)
FMGE (DELETE)
LeAD (LMN,FRAN),(EF,(FREN»,(N8TCB)/(~AP)/(PERM)/J
(BIAS/3800),J
(ABS)
LeAD CLMN,BASIC),(MAP),(EF,CBPMBASIC),cM:EIDCB),(M:EBDCB),(M:DeDC~) ,s
(M:SIDCB), CM:L8D(8», J
(BIAS,3800)"
(PERM)
LeAD (LMN,8DB),CEF/(8DBReM »,(MAP),(PERM,LIB)
LeAD (LMN,M:AL),CEF,CM:ALDCB»,(MAP),(PERM,LIB)
LeAD (LMN,M:BI), (EF, (M:BIDCB», (MAP), CPERM,LIB)
LeAD (LMN,M:8B), (EF, (~:BeDCB», (MAP), (PERM,"LIB)
LeAD (LMN,M:CI),CEF,(M:CID(B»,(MAP),(PERM,LIB)

I (N6SYSI..IB)
I (NeSySI..IB)

,(NeSYSLIB)
,(NeSYSLIB)
I(N6SYSLIB)

L8AD (LMN,M:C)/CEF,(M:CDCB»/(MAP)/CPERM/LI8)
L8AD (LMN/M C~),(EF,(M:CKDCB»,(MAP),(PERM/LIB)
LeAD (LMN/~ CB),(EF,(M:ceDCB»,CMAP),(PERM,LIB)
L8AD (LMN,M De)/CEF,(M:D8DCB),(MAP),(PERM,LIB)

I(NeSYSLlb)
,(N8SYSLIB)

,(N19SYSLIB)

LeAD (LMN,M EI),CEF,(M:EIDr.8»,CMAP),CPERM,LIB)
L8AD (LMN/M GB),CEF,(M:GBDCB»,CMAP)/CPERM,LIB)
LeAD (LMN,M E~),(EF,(M:E6DCB»,(MAP)/(PERM,LIB)
LeAD (LMN,M. L!), (EF, (M:LIDCB», (MAP), (PERM,LIB)

I (N8SYSLIt:S)
I(NeSYSLtB)

I (NBSYSLIB)
,(N8SYSLIB)

,(NeSYSLIB)
LeAD (LMN,M:LL),CEF,(M:LLDCB)},(MAP),(PERM,LIB)
LeAD (LMN,M:LB),CEF,CM:LeDCB»/CMAP),(PERM,LIB)
L8AD (LMN,M:eC),CEF,(M:ecDCB»,CMAP)/(PERM,LIB)
LeAD (LMN/M:pe),(EF,(M:PBDCB»,(MAP),cPERM,LIB)
LeAD (LMN,~:SI),(EF/(M:SIDcB»/(MAP)/(PERM/LIB)
LeAD (LMN,M:SL),CEF,(M:SLDC8»,(MAP)/(PERM,LI~)
LeAD (LMN,M:SB),CEF,(M:seDCB»,(MAP),CPERM,LIB)
L8AD (LMN,SSS),CEF,(SSSReM »,(MAP),cPERM,LIB)

, (N19sYsLlt:;)
I(NeSYSLIB)
,CNeSYSl.I8)

I(N6SYSLIB)
,(N8SYSt..IB)

, Cf'..JeSYSLIB)
, (N19SYSL.IS)

,(N8SySLIB)
8VERLAY (L~NIREw)/'
(EF/(TAPEFCN)/CTPECHST),c M :eCDCB),(M:CDC8),(M:BIDCB),(M:~80CB)/S
(M:SIDCB) I (M:EIDC8), (M:LLDCB), (M:LeDC8), (M:PGDCB), (M:EfjDCB), i
(M:C8DC8)/(M:DBDC8),(M:CIDCBl/{M;SLDC8)J(M:ALDCB)J(M:SBDCB),s
(M;LIDCB), (M:G8DCB»,;
(BIAS,380C)"

(MAP),(S~/F)/(NeSYSLIB),(PERM) I(TSS/l00)
TREE TAPEFCN.TPECHST.M:eCDCB"M:CDCB.M:BIDCB~M:BeDCB.M:SIDCB;
-M:EIDCB-~:LLDC8·~:L8DCB~M:P8DCB.M:E6DCB.M:C3DCB.M:DeDca-M;CIDCBi
.M:SLOCB·~:ALDCB·M:seDCB.M:LIDCB.M:GBDCB
ASSIGN M:EI,(FILE,REW)
ASSIGN M:E9,(FtLE,WE8F)
FMGE (ENTER,PERM)
ASSIGN M:Es,(FIl.F/PFII..)
FMGE (ENTER,PERM)
eVERLAy (L~N/ALAY),;
(E F , (ALL) I (E v L), (! N 1') I (I N 2) , (L DR) , (P S 1) , (P S 2) , (W R T)) , i
(8IAS,38('lC),J

(N8TCB),(MAP), (PERM),(SL,F)/(NBSYSLIB)
TREE LDR.(!Nl/PS1'IN2,PS2~(ALLIEVL,WRT »
J6B :SYSGEN,DEFIT
ASSIGN M:P9,cDEVICE,9T),(eUrsN,pess)
DEF (INCL,SIG~ET,SIG7FDp,BpM,:8LI8/BTM:BLIB)

Appendix K 85

! EOD record (BASIC subsystem), 14,54
!J OB card (BASIC subsystem), 14
!JOB card (BPM subsystem), 15
:BLIB fi Ie, 76
:BTM account, 37,76
:BTM card, 74,76
:DEVICE cards, 75
:MONITOR card, 75
:RESERVE card, 76
:SELECT cards, 75
:STDLB cards, 75

A
account, 13
account number, 13
accounting fi Ie, 4
accounting log, 54
acknowledge code (Teletype), 8
activation character, 8, 9
activation class, 8,9, 10
activation procedure, 4
ACTIVITY command (FERRET subsystem), 29
allocation of swap area, 75
ASSIGN command (Executive), 5
asterisk (FORTRAN IV-H subsystem), 35
asterisk in column 1 (BASIC subsystem), 14
authorize on-line users Jsupervisory subsystem), 54

B
background and on-I ine areas, 77
background jobs, 15
backspace code (Teletype), 9
backup fi Ie (EDIT subsystem), 18
BASIC subsystem, 11, 59
batch control and operation (BASIC subsystem), 14
batch control cards (BASIC subsystem), 14
batch jobs, 3
batch processi ng, 3
batch queue, 67
BIN control commands (BPM subsystem), 15
blank extension (EDIT subsystem)f 25
blank preservation flag (EDIT subsystem)f 27
blank preservation mode (EDIT subsystem), 20
blanks in ASSIGN commands, 5
blanks (BASIC subsystem), 11
booting from RAD, 68
BOTEMPO', 6
BP command (EDIT subsystem), 20
BPM header information, 67
BPM system account, 77
BPM system CALs, 55
break i nd i cator, 13
BREAK key, 4, 56
breakpoints, 45,49
BTM Executive, 5,6,7,13,31,42,59,65,67
BTM machine operation, 67

86 Index

INDEX

BTM scheduling, 65
BTM system CALs, 59
BTM system generation, 74
Bl,MM key-in, 67
BTMQ message, 67
BTMS key-in, 67
BTMX key-in, 67
buffer overflow, 8
buffer size, 8
BUILD command (EDIT subsystem), 19
bui Id new fi Ie (EDIT subsystem), 19
BYE command (Executive), 7

c
cancel on-line access, 54
character strings (EDIT subsystem), 18,20
check file activity (FERRET subsystem), 29
CLEAR command (BASIC subsystem), 11, 14
CM command (EDIT subsystem), 23
coding requirements, 62
colon as the last non-blank character (FORTRAN IV-H

subsystem), 32
commentary (EDIT subsystem), 23
communications controller address, 75
compi lotion and execution mode (BASIC subsystem), 12
compi lotion summary (FORTRAN IV -H subsystem), 35
compi! ing from the console (FORTRAt'~ 1\1 =H subsystem), 32

component sizes in a BTM sys-tem, 77
condition code, 44
console input (BPM subsystem), 15
continuation (FORTRAN IV-H subsystem), 32
control commands, 5
conventions for activation types 0 and 1, 56
conventions for activation types 2, 3, and 4, 57
COPY command (E DIT subsystem), 19
COPY command (FERRET subsystem), 29
copy fi Ie (EDIT subsystem), 19
copy fi Ie (FERRET subsystem), 29
creating subsystems, 76
current status, 3

o
D command (EDIT subsystem), 25
D option (LOADER subsystem), 41
data type, 47
date and time, 61
DC B format, 64
DCB name table, 62
DE command (EDIT subsystem), 21
debug codes (FORTRAN IV-H subsystem), 35,36
debugging, 43
DEF card, 76
default assignment (LOADER subsystem), 38
default options (FORTRAN IV-H subsystem), 31
default values, 5

deletable characters, 9
DELETE command (BASIC subsystem), 11
DELETE command (EDIT subsystem), 20
DELETE command (FERRET subsystem), 29
delete file (EDIT subsystem), 20
de I ete records (E DIT subsystem), 21
delete string (EDIT subsystem), 25
deleting any record (BPM subsystem), 16
DELSTATS command (supervisory subsystem), 54
Delta command delimiters, 45
Delta command description, 47
Delta commands, 44
Delta debug program, 42
Delta display modes, 51
Delta symbols, 46
Delta syntax description, 45
desk calculator mode (BASIC subsystem), 14
direct statements (BASIC subsystem), 13
disc allocation map, 68
disc fi Ie input (BPM subsystem), 15
displaying and opening memory cells, 44
double asterisk (EDIT subsystem), 23
dumping to tape, 68

E
E command (EDIT subsystem), 25
EBCDIC to USASCII conversion, 72
echo, 8, 56
EDIT command (EDIT subsystem), 20
EDIT command structure (E DIT subsystem), 18
EDIT command summary (EDIT subsystem), 27
edit fi Ie (EDIT subsystem), 20
EDIT messages (EDIT subsystem), 18
EDIT subsystem, 18
editing mode (BASIC subsystem), 11, 12, 13, 14
element fi les (LOADER subsystem), 37, 41
embedded blanks, 4
END command (EDIT subsystem), 19
ENTER BASIC command (BASIC subsystem), 13
erase code (Teletype), 9
error codes from fi Ie operations, 55
error conditions (BPM subsystem), 16
error severity level (LOADER subsyste,m), 38
errors and error messages, 52
ESCAPE and PROCEED functions (Executive), 7, 13
EXAMINE command (FERRET subsystem), 30
examine fi Ie (FERRET subsystem), 30
execution (BASIC subsystem), 12
execution (LOADER subsystem), 39
execution and system interface under the IIDII

option (LOADER subsystem), 42
execution control, 45, 49
execution of FORTRAN programs, 34
execution time diagnostics (BASIC subsystem), 14
executive services, 7
exit (EDIT subsystem), 19
expression evaluation, 44,48
expressions, 47
EXTRACT command (BASIC subsystem), 12

F
F command (EDIT subsystem), 26
FAST command (BASIC subsystem), 12, 14

fast mode for array references (BASIC subsystem), 14
FD command (EDIT subsystem), 22
FERRET subsystem, 29
fi Ie accessibi I ity (FERRET subsystem), 29
fi Ie assignments, 6
fi Ie commands (EDIT subsystem), 19
fi Ie deletion (FERRET subsystem), 29
fi Ie identifier (EDIT subsystem), 18
fi Ie name, 37
fi Ie names, 4
fi Ie operations (BASIC subsystem), 13
fi Ie oriented commands (EDIT subsystem), 18
file security, 3
file summary, 54
FIN control command (BPM subsystem), 14
find and delete (EDIT subsystem), 22
find and type (EDIT subsystem), 22
fixed overhead, 77
floating controls, 44
follow by (EDIT subsystem), 26
format codes for / and = commands, 44
format control, 47
format for DCBs, 64
FORTRAN execution with debug option, 35
FORTRAN IV-H run-time, 76
FORTRAN IV-H subsystem, 31
FORTRAN options, 31
FORTRAN-library/run-time description, 35
FT command (EDIT subsystem), 22
full-duplex mode, 8

G
global symbols, 51

H
hardware configuration,

ID letter, 4
illegal line (BASIC subsystem), 4
illegal line number (BASIC subsystem), 11
image shifting (EDIT subsystem), 26
IN command (EDIT subsystem), 21
in-line editing, 8
index to Delta commands, 52
initial ize statistics, 54
input buffer, 8, 56
input conversions and expressions, 44
input of expl icit constants, 46
INPUT statements (BASIC subsystem), 14
input symbionts, 68
insert new records (EDIT subsystem), 21
inserting a sequence of records (BPM subsystem), 16
instruction counter, 44
interchanging any two records (BPM subsystem), 16
internal symbols (LOADER subsystem), 41
intra-record commands (EDIT subsystem), 23
intra-record editing commands (EDIT subsystem), 18
intra-record operations (EDIT subsystem), 24
irrecoverable error, 68

Index 87

job file creation (BPM subsystem), 14
job Hie editing (BPM subsystem), i6
job ID (BPM subsystem), 16
job queue, 14
JU command (EDIT subsystem), 27
jump (EDIT subsystem), 27

K
key-ins, 67
keyed format (EDIT subsystem), 20
KILLUSERS command (supervisory subsystem), 54

L
L command (EDIT subsystem), 26
last opened ce II address, 44
last quantity typed, 44
left shift (EDIT subsystem), 26
levels of program execution, 59
library file, 76
line deletion (BASIC subsystem), 11
line insertion (BASIC subsystem), 11
line number, 11
LIST command (BASIC subsystem), 12
LIST command (FERRET subsystem), 29
LIST command (supervisory subsystem), 54
list account contents (FERRET subsystem), 29
list users (supervisory subsystem); 54
L9AD command (BASIC subsystem), 12
load map example (LOADER subsystem), 40,41
loader error messages, 39,40
loader options (LOADER subsystem), 37
loader subsystem, 37
loading requirements, 64
local new line code (Teletype), 9
log-in procedure, 4
log-out procedure, 7
logical inverse of line deletion (BASIC subsystem), 12
loop detection (BASIC subsystem), 13
LOPE loader, 77
lower search bound, 44

M
M:C fi Ie (BASIC subsystem), 14
M:LO file (BASIC subsystem), 14
M:SI file (BASIC subsystem), 14
MD command (EDIT subsystem), 22
memory location display, 47
memory modification, 48
memory searching, 45,50
message preceded byasingleminus sign (EDIT subsystem}, 19
message preceded by two minus signs (EDIT subsystem), 19
message preceded by two periods (EDIT subsystem), 19
message prefixes (E DIT subsystem), 19
miscellaneous Delta commands, 45,51
MK command (EDIT subsystem), 51

88 Index

mode switching (BASIC subsystem), 14
move and de lete records (EDIT subsystem), 22
move and keep records (EDIT subsystem), 23
muitipie backspaces, 9

N
NAME command (BASIC subsystem), 13
name length restriction (LOADER subsystem), 41
new records, 21
NO command (EDIT subsystem), 27
no change (EDIT subsystem), 27
nonstandard DCBs (FORTRAN IV-H subsystem), 34
null line (EDIT subsystem), 19
null record, 16,19,21,23

o
o command (EDIT subsystem), 25
on-line FORTRAN, 76
on-line processing, 3
on-line subsystems, 77
on-line time-sharing, 65
OPEN or CHAIN statement (BASIC subsystem), 13
operator's log, 15,68
option declaration card (BASIC subsystem), 14
option list (FORTRAN IV-H subsystem), 31
opti ona I items, 5
output buffer, 8
output fi I es (BPM subsystem), 15
output format: 47: 48
outstanding input fi les, 68
overlay structures (LOADER subsystem), 37
overwrite (EDIT subsystem), 25
overwrite and extend blanks (EDIT subsystem), 25

p
•

paper tape reader, 8
password, 4, 13,54
PASSWORDS command (supervisory subsystem), 54
patches, 48
permanent fi Ie area, 68
permanent system area, 68
pointer to account directory, 68
printer width (BASIC subsystem), 13
PROCEED command (Executive), 7, 13
program identification (FORTRAN IV-H subsystem), 35
program loading (BASIC subsystem), 12
protection type (LOADER subsystem), 37

o
question mark, 6,8,9, i2, i6
quiescent state, 67,68

R
R command (EDIT subsystem), 26
RAD fi Ie assignment, 5
record editing commands (EDIT subsystem), 18,21

record formats (EDIT subsystem), 18
record numbers (BPM subsystem), 16
record oriented commands (EDIT subsystem), 20
recovery procedure, 68
renumber record (EDIT subsystem), 23
replacing a sequence of records (BPM subsystem), 16
request for data, 4
request for options (FORTRAN IV-H subsystem), 31
request for options (LOADER subsystem), 37
restart, 67
RESTORE command (Executiv.e), 6
retry request (FORTRAN IV-H subsystem), 32
retype code (Teletype), 9
retyping any record (BPM subsystem), 16
reverse blank preservation flag (EDIT subsystem), 27
RF command (EDIT subsystem), 27
right shift (EDIT subsystem), 26
RN command, (EDIT subsystem), 23
RU N command (BASIC subsystem), 12, 14
run-time debug package (FORTRAN IV-H

subsystem), 31
runfile (BASIC subsystem), 12, 13

s
S command (EDIT subsystem), 25
safe mode for array references (BASIC subsystem), 14
satisfying undefined symbols (LOADER subsystem), 41
SAVE command (Executive), 6
SAVE ON command (BASIC subsystem), 12
SAVE OVER command (BASIC subsystem), 12
scratch areas, 68
SDS standard units (FORTRAN IV-H subsystem), 34
SE command (EDIT subsystem), 24
search commands, 50
search mask, 44
sequence number, 18,19,21,22,23,32
sequence numbers, 20
set and step (EDIT subsystem), 23
set blank preservation mode (EDIT subsystem), 20
set intra-record mode (EDIT subsystem), 24
set, step, and type record (EDIT subsystem), 24
sign off (BASIC subsystem), 14
single quote, 47
size of FORTRAN programs, 35
slash commands, 47
source fi Ie (EDIT subsystem), 18
source record (EDIT subsystem), 18
source-language debugging (FORTRAN IV-H

subsystem), 35
special editing features (Teletype), 8
special symbols, 44, 46
SS command (EDIT subsystem), 23
ST command (EDIT subsystem), 24
standard input modes (Teletype), 9
statisti cs, 4,54
STATS command (supervision subsystem), 54
STATUS command (BASIC subsystem), 13
status checki ng (BPM subsystem) f 16
storing in open memory cells, 44
string identifier (EDIT subsystem), 18
string substitution (EDIT subsystem), 25

subsystem calls, 6,7
subsystem conventions for Teletype input, 56
subsystem conventions for Teletype output, 58
subsystem input, 10
subsystem interface, 62
subsystem storage, 59
summarize accounting totals, 54
summary of statistics, 7
supervisory subsystem, 54
swap devi ce, 75
swap storage, 68,75
symbiont fi Ie directory, 68
Symbol subsystem, 53
symbol table (LOADER subsystem), 41
symbol table control, 45,51
syntax check, 11
syntax errors, 52
syntax messages (EDIT subsystem), 19
SYSGEN deck setup, 77
SYSGEN load and overlay cards, 76
SYSGEN operational information, 75
system boot and initial ization, 76
system error recovery, 68
system save for restart, 67

T
tab code (Teletype), 9
tab setting, 6
tab stops, 9
TABS command, 6,9
TCB format, 63
temporary display format, 48
temporary swap area, 75
terminal batch entry, 15
terminal job insertion, 67
termination of a command, 5
TEST command (FERRET subsystem), 29
test fi Ie accessibi I ity (FERRET subsystem), 29
text area, 11
text editing (BASIC subsystem), 12
text listing (BASIC subsystem), 12
text saving (BASIC subsystem), 12
timing, 69
trace mode, 50
trai I ing zeros (E DIT subsystem), 18
TS command (EDIT subsystem), 21,26
two-line format (EDIT subsystem), 21
TY command (EDIT subsystem), 21,27
type records (EDIT subsystem), 21
type records, suppressing sequence number

(EDIT subsystem), 21
type, including sequence number (EDIT subsystem), 27
type, suppressing sequence number (EDIT subsystem), 26

u
undefined symbols in load map, 41
unit numbers (FORTRAN IV-H subsystem), 34
unusual operating procedures (BPM subsystem), 14
upper search bound, 44

Index 89

USASCII to EBCDIC conversion, 40
use r storage, 59
user terminal, 1,3,4,7
USERS command (supervisory subsystem), 54

v
variable overhead, 77

90 Index

w
WIDTH command (BASIC subsystem), 13

z
zeroing memory, 51

701 South Aviation Blvd'/EI Segundo, California 90245

	0001
	0002
	0003
	001
	002
	003
	004
	005
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	xBack

