
~ SIGMR 5/7 BATCH TIME-SHARING MONITOR (BTM)

Xerox Data Systems

User's Guide

Pri ce: $3.50

BATCH TIME·SHARING MONITOR (BTM)
USER'S GUIDE

for

XDS SIGMA 5/7 COMPUTERS

FIRST EDITION

February 1970

90 16 79A

xos
Xerox Data Systemsj701 South Aviation Boulevard/EI Segundo, California 90245

);1970, Xerox Data Systems, Inc. ,Printed in U.S.A.

RELATED PUBLLICATIONS

Title

XDS Sigma 5/7 Batch Time-Sharing Monitor (BTM) Reference Manual

XDS Sigma 5 Computer Reference Manual

XDS Sigma 7 Computer Reference Manual

Mathematical Routines Technical Manual for XDS Sigma Computers

XDS Sigma Symbol and Meta-Symbol Reference Manual

XDS Sigma 5/7 BASIC Reference Manual

XDS Sigma FORTRAN IV Reference Manuai

XDS Sigma FORTRAN IV Operations Manual

XDS Sigma FORTRAN IV Library Technical Manual

XDS Sigma FORTRAN IV-H Reference Manual

XDS Sigma FORTRAN IV-H Operations Manual

XDS Sigma FORTRAN IV-H Library/Run-Time Technical Manual

XDS Sigma 5/7 Batch Processing Monitor Reference Manual

XDS Sigma 5/7 Batch Processing Monitor Operations Manual

XDS Glossary of Computer Terminology

XDS Sigma Multipurpose Keyboard/Display Reference Manual

XDS Sigma Message-Oriented Communications Equipment Reference
Manual

XDS Sigma Character-Oriented Communications Equipment
Reference Manua I

!'lonCE

Publ ication No.

90 15 77

900959

900950

900906

900952

90 1546

900956

90 11 43

90 1524

900966

90 11 44

90 11 38

900954

90 11 98

900957

900982

90 15 68

900981

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features may
depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their XDS sales representative for details.

ii

1. INTRODUCTION

2. TELETYPE OPERATIONS

3. START-UP AND THE EXECUTIVE

4. BASIC SUBSYSTEM

5. EDIT SUBSYSTEM

6. FORTRAN SUBSYSTEM

7. LOADER SUBSYSTEM

8. FERRET SUBSYSTEM

9. SYMBOL SUBSYSTEM

10. BATCH PROCESSING MONITOR (BPM) SUBSYSTEM

11. RUN SUBSYSTEM

•
It

It
It

iii

CONTENTS

1. INTRODUCTION 1-1 PASSWORD (Set/Reset Password) 4-16
ACCOUNT (Set/Reset Account) 4-17

General 1-1 ENTER BASIC (Set/Reset Precision) 4-18
Executive Functions 1-2 WIDTH (Set Print Width) 4-19
Subsystem Services 1-2 STATUS (Give Status) 4-20

Text-Editing Services 1-2 RUN (Compile, Check, and Run) 4-21
BASIC Service 1-3 FAST (Compile and Run) 4-22
FORTRAN IV-H Compiler Service 1-3 BASI C Messages 4-23
FORTRAN Execution Service 1-3
LOADER Subsystem 1-4 5. EDIT SUBSYSTEM 5-1
Assembler Services 1-4
FERRET Subsystem 1-4 GeneiOl 5-1
Termina! Batch Entry Subsystem 1-5 EDIT Commands 5-1

Record Commands 5-1
2. TELETYPE OPERATIONS 2-1 Intra-Record Commands 5-1

Fi Ie Record Format 5-1
General 2-1 EDIT Messages 5-3
Operating Characteristics 2-1 BUILD (Create a New File) 5-4
Activation Characters 2-1 EN D (Exit to Executive) 5-5
Activation Character Effectivity 2-3 COpy (Copy a File) 5-6
Special Teletype Directives 2-3 DELETE (Delete a File) 5-7
Text Symbols 2-5 EDIT (Edit a Fi Ie) 5-8

MERGE (Transfer Records) 5-9
3. START -UP AND THE EXECUTIVE 3-1 CR (Suppress Terminator) 5-10

BP (Set Blank Preservation Mode) 5-11
General 3-1 IN (Insert Records) 5-12
Commanding the Executive 3-1 IS (Insert Records Without Prompt) 5-13
Start-Up and Log-In 3-2 TY (Type Records) 5-14
ASSI GN Command 3-3 TC (Type Compressed) 5-15
Special ID Character 3-5 TS (Type Without Sequence) 5-16
ASSIGN (Assign DCB) 3-6 DE (Delete Records) 5-17
TABS (Set Tabs) . 3-7 FD (Find and Delete) 5-18
SAVE (Save Activity) 3-8 FT (Find and Type) 5-19
RESTORE (Restore Activity) 3-9 MD (Move and Delete Records) 5-20
Escape (Return to Executive) ') ,,, lv1K (Move and Keep) 5-21 v-IV

PROCEED (Resume Processing) 3-11 RN (Renumber Record) 5-22
BYE (End Session) 3-12 CM (Commentary) 5-23

SS (Set and Step) 5-24
4. BASIC SUBSYSTEM 4-1 ST (Set, Step, and Type) 5-25

SE (Set Intra-Record Mode) 5-26
General 4-1 S (Substitute String) 5-27

Edit Mode 4-1 D (Delete String) 5-28
Compi lation and Execution Mode 4-1 E (Overwrite String and Extend Blanks) 5-29

BASIC Operations 4-1 kE (Overwrite Column and Extend Blanks) __ 5-30
Compi lation and Execution 4-1 o (Overwrite String) 5-31
Direct Execution of Statements 4-2 kO (Overwrite Column) 5-32
CLEAR (Erase Text Area) 4-4 P (Precede String) 5-33
DE LETE (Delete Lines) 4-5 kP (Precede Column) 5-34
SYSTEM (Return to Executive) 4-6 F (Follow String) 5-35
LIST (List Lines) 4-7 kF (Follow Column) , 5-36
SAVE ON (Save on Temporary File) 4-8 R or L (Shift at Substring) 5-37
SAVE OVER (Save on Permanent File) 4-9 kR or kL (Shift at Column) 5-38
FILE (Save on Runfile) 4-10 TS (Type Without Sequence) 5-39
LOAD (Load Program) 4-11 TY (Type Including Sequence) 5-40
EXTRACT (Extract Lines) 4-12 JU (Jump) 5-41
RENUMBER (Renumber Lines) 4-13 NO (No Change) 5-42
PROCEED (Continue After Escape) 4-14 RF (Reverse Blank Preservation) 5-43
NAME (Name Runfile) 4-15 EDIT Messages 5-44

iv

6. FORTRAN SUBSYSTEM 6-1 10. BATCH PROCESSING MONITOR (BPM)
SUBSYSTEM 10-1

General 6-1
Com pi ler Input/Output Assignments 6-1 General 10-1
Compi ler Options 6-1 Operation 10-1
Source Language Input 6-2 BPM Status Check 10-4
FORTRAN Debugging Mode 6-2 BPM Messages 10-5

7. LOADER SUBSYSTEM 7-1 1l. RUN SUBSYSTEM 11-1

General 7-1 General 11-1
Operation 7-1 Pre-Execution Debugging 11-1
Element Files 7-1
Loader Options 7-2

ILLUSTRATIONS Error Messages 7-3
Load Map 7-3 1-l. BTM System 1-1
DCB Specifications 7-4 2-l. Keyboard Layout 2-2
Error Severity 7-4 4-l. BASIC Editing Commands 4-3
Reference Satisfaction 7-4

5-l. EDIT Commands 5-2
Debugging 7-4 6-l. FORTRAN Subsystem 6-3
F: (DCB Specifi cation) 7-5 8-l. FERRET Commands 8-2
XEQ? (Execution Request) 7-6 9-l. Symbol Subsystem 9-2
SATISFY EXTERNALS

(Satisfy External References) 7-7 10-1. BPM Subsystem 10-1
10-2. Terminal Input 10-2

SA TISFY INTERNALS 10-3. Disc File Input 10-3
(Satisfy Internal References) 7-8

8. FERRET SUBSYSTEM 8-1 TABLES

General 8-1 2-l. Special Teletype Directives 2-4
Operation 8-1 2-2. Format Symbols 2-5
LIST (list Fi Ie Names) 8-3 3-l. Executive Functions 3-1
TEST (Test File Accessibility) 8-4 3-2. Start-Up and Log-In Procedures 3-2
ACTIVITY (Check File Activity) 8-5 3-3. Fi Ie Options 3-3
MESSAGE (Message to Operator) 8-6 3-4. DCB Default Assignment 3-4
X (Return to Executive) 8-7 3-5. Temporary Output F i I es 3-5
STATISTICS '(Give Statistics) 8-8 5-l. EDIT Message Conventions 5-3
DELETE (Delete File) 8-9 6-l. Compiler Input/Output DCB Assignments __ 6-1
EXAMINE (Examine File) 8-10 6-2. Compiler Options 6-1
COPY (Copy File) 8-11 6-3. Source Language Input From Terminal 6-2
FERRET Messages 8-12 6-4. FORTRAN Debugging Commands 6-3

7-l. Loader Subsystem Operating Steps 7-1
9. SYMBOL SUBSYSTEM 9-1 7-2. Loader Options 7-2

7-3. Loader Messages 7-3
General 9-1 7-4. Load Map Abbreviations 7-3
Input/Output Assignments 9-1 9-l. Input/Output Assignments 9-1
Assembler Options 9-1 9-2. Symbol Options 9-2
listing Format 9-2 10-1. BPM Edit Feature 10-4

v

1. INTRODUCTION

The User1s Guide is intended to introduce the terminal user to the basic functions of the BTM system. Information
is divided into chapters, by subsystem, and presented largely in graphic and tabular format. Simple examples illus­
trate command usage. For additional information, the user should refer to the BTM Reference Manual (90 15 77).

GENERAL
As indicated in Figure 1-1, on-line services are provided by the following subsystems:

• BASI C processor

• EDIT source fi Ie editor

r -
I
I
I
I
I
I
I
I

ASSIGN

TABS

SAVE

RESTORE

START -UP

!LOGIN:

EXECUTIVE
PROMPT(!)

-------- --I r----------

Escape

PROCEED

BYE

I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I

I

I
I
I
I
I
I
I
I
I
I
I
I
I

EDIT

FERRET

FORTRAN

SYMBOL

L ___ '-- ________________ J L __

Figure 1-1. BTM System

~---------

BPM

BASIC

LOAD

RUN

-,
I

I
I
I
I

I
_ __________ J

Introduction 1-1

I

• FERRET file utility subsystem

• FORTRAN IV-H compiler

• SYMBOL assembler

• LOADER object module loader

• BPM batch job controller

• RUN execution and debug subsystem

Batch processi ng servi ces are accessed by:

• Local batch job decks submitted at the computer.

• Remote batch input through a high-speed card
reader.

• Terminal batch input from an on-line Teletype
terminal.

EXECUTIVE FUNCTIONS
The BTM Executive is a supervisory program responding to control commands from the on-I i ne terminal. Such com­
mands provide the user with a means of directing the flow of on-I ine work. In addition to the commands call ing the
BT M subsystems, the foil owi ng commands may be used to perform various Executive functions:

• ASSIGN (controls file assignments)

• TABS (sets Teletype tabs)

• SAVE (saves current work)

• RESTORE (restores saved work)

• Escape (terminates currently activity)

• PROCEED (resumes terminated activity)

• BYE (terminates current work session)

SUBSYSTEM SERVICES
BTM includes subsystems that perform a broad range of text-editing, compiler, loader, assembler, debugging, file
management, and terminal batch entry services.

TEXT-EDITING SERVICES

A powerful text-editing subsystem, called EDIT, enables terminal users to create and modify a source text fi Ie that
can then be used for assembly or compi lation either on-line under Symbol, FORTRAN, or BASIC, or in the batch
mode under Meta-Symbol or other processors. EDIT operates on a line-number basis or by context and permits con­
venient intra-line character string editing. EDIT functions include the following:

• Create new fi les

• Copy files

• Delete files

• Add, delete, insert lines

• Insert comments at specified column position

• Search for specified character string and delete, insert, replace, or list line numbers

• Reorder lines within a file

• Renumber lines

• Perform character editing by line in step mode

1 -2 Introducti on

• List file contents with or without line numbers

• Shift character strings within a line

BASIC SERVICE

The BASIC language developed for BTM is a highly extended version of the original Dartmouth BASIC. It is an easy­
to-use language, developed specifically for on-line use. It includes most features of other BASIC implementations,
in addition to new features not currently available elsewhere. BASIC programs can either be processed on-line at a
terminal or placed into the batch job stream for execution. XDS Sigma 5/7 BASIC includes the following extended
features:

• Alphanumeric variables

• Chaining of sequential BASIC programs

• ON statement (address switch)

• Direct statement execution (calculator mode)

• Matrix functions

• IMAGE statement

• Tab functi on (output format con tro I)

• Fi Ie input/output

• RUN/FAST compile option, which permits checked-out BASIC programs to execute faster without unnecessary
array checking during run time

The execution of Sigma 5/7 BASIC is highly efficient, with an instantaneous compilation rate of 600 statements per
second, and the size of a user program is constrained only by the amount of core space made available to the user.

FORTRAN IV-H COMPILER SERVICE

The FORTRAN IV-H compiler subsystem enables on-line terminal users to compile a FORTRAN source-program file,
thus generating an object-program file. The source file can be created directly on-line with the FORTRAN subsys­
tem, via the on-line EDIT subsystem, or entered through the batch system. When source code is being created on­
line with the FORTRAN compiler, each statement is immediately syntax-checked and the user can correct any errors
without waiting until the end of the entire program input. Users have three compile options: debug run-time func­
tions, source listing output file with object code, and on-line source listing.

All error messages with the error statements are printed out at the user1s terminal. User object programs can also
assign I/o directly to the terminal teletypewriter.

After completing compilation, terminal users can call for either EDIT, to correct source-program errors and recom­
pile, or the FORTRAN loader and run-time subsystem, to execute compiled programs. At the user1s option, the com­
piled FORTRAN program can also be placed into the batch job stack for later execution in the batch mode.

FORTRAN EXECUTION SERVICE

To permit the compiled FORTRAN IV programs to be executed on-line, a FORTRAN loader and run-time subsystem
is provided through the LOADER subsystem. The FORTRAN loader reports loading errors to the terminal user. If
such errors are not serious, the user can call for excecution. Run-time diagnostics are reported to the terminal
during program execution. Debugging output can also be printed at the terminal, it the Debugging option is speci­
fied at compile time. Debugging functions include the ability to:

• Trace source statements reached during execution

• Display values that have been stored into variables as a result of assignment statements

• Stop the program prior to execution of specified source lines

Introduction 1-3

• Step the program one statement at a time

• Request that execution be continued after a stop

During program execution, the user's FORTRAN program can be used "conversationally" if I/o has been assigned
to the terminal.

LOADER SUBSYSTEM

The LOADER subsystem loads XDS standard object-language programs from specified element fi les. It can also load
library modules from specified account files or the public library file. Multiple object modules generated by Sym­
bol, FORTRAN IV-H, and Meta-Symbol can be loaded for execution.

If the user's program has been compiled in the debug mode, the FORTRAN debug run-time package will be loaded
with the object program. For assembly language programs, the user can specify the Debugging option which will
cause the DELTA debug package to be brought in with his program. The LOADER subsystem provides the following
facilities:

• Assignment of input element files

• Library search for unsatisified references option

• Load map opti on

• Specification of temporary storage stack size

• Specification of FORTRAN I/O assignment

• Control of loading error severity alternatives

• Control of execution start

• Debugging option

All activities of the LOADER subsystem are carried on conversationally, and all error messages are directed to the
user's terminal.

ASSEMBLER SERVICES

The Symbol assembly subsystem, provided under BTM, permits terminal users to assemble source text files and to
create user object program modules. Available assembly options include:

• Assembly with or without binary output

• Assembly with or without a listing output file

• Assembly with or without a symbol table for on-line debugging

• Terminal listing

Error messages are printed at the terminal and, after an assembly is completed, control is returned to the Terminal
Executive program.

FERRET SUBSYSTEM

FERRET is a utility subsystem that enables the on-line terminal user to obtain information about his permanent files.
It also provides for limited file manipulation. FERRET performs the following functions:

• List all fi Ie names under specified account number

• Report date of creation and size of files

1-4 Introduction

• Indi cate accessibi I ity of specified fi Ie

• Delete file in user's account

• Copy file

• Examine specified fi Ie for number of records

• Print specified records in file (in EBCDIC or hexadecimal code)

TERMINAL BATCH ENTRY SUBSYSTEM

The BPM Terminal Batch Entry subsystem enables the terminal user to create a job control fi Ie on-I ine and submit it
to the BPM batch job stream. The user is then disconnected from that job and is free to pursue other activities. At
any time, the user can also employ the Terminal Batch Entry subsystem to interrogate the system concerning the sta­
tus of a submitted job. This status may be either (1) waiting to be run, (2) running, or (3) completed.

The output of the job may be directed to standard peripheral output devices or to the user's permanent file storage.
In the latter case, it is then convenient for the user to resume conversational activity at his terminal with the re­
sults of the batch execution.

The Terminal Batch Entry subsystem also provides a convenient editing feature to prepare control commands for job
execution.

Introduction 1-5

-I
CD
CD

-< -c
CD

o
-c

CD a
o
::3
CI>

"T1

<C
C ..,
CD

'" I

A
CD

"'< c­
o a ..,
0...

b
"'< o
S.

000000000000
(US) (NUL)

(:)81:\ E R

~OTRL ~ \V WRU~APE~C2)
Y U lOP LINE RE-QQOG(-)) Q@@

(EM) (NAK) TAB (S1) (DLE) FEED TURN

~ \i:) 000
GHIFl 88888
~~~~~ 

(RS) (GS) 

(ESC) 

O@ 
OOOG 

____ [ ___ SPACE BAR __ --'l ~ G 
IT] These keys are missing on some models. W This key is positioned elsewhere on some models. 



ACTIVATION CHARACTER EFFECTIVITY 

Following is a breakdown showing when the various groups of activation characters are in effect. 

When Under Executive Control 

1. Immediately after the Executive prompt character (1) the activation mode is II activate on every character". 
There may be a delay in the echoing of each character, and no backspacing or correction is possible. This mode 
is in effect when the first two characters of an Executive command are typed; e. g. , 

lAS 

2. When using the ASSIGN command, the remainder of the specification is typed in the mode "activate on @), 0, 
or punctuation". For example, in the command 

.!..ASSIGN M : DO,(HERE)@) 

activation occurs after the typing of: 

a. A 

b. S 

c. M: DO 

d. 

e. HERE 

f. 

3. The other Executive commands that require specifications cause the mode to be "activate on @l or (0 ". 

In the command 

.!..SA~ ALPHA,PERM@l 

activation occurred after the typing of: 

a. S 

b. A 

c. ALPHA,PERM 

When Under Control Of Subsystems 

1. All subsystem input that is read through Data Control Blocks assigned to the user's terminal (such as source lan­
guage input to a compiler) is gathered one line at a time under the mode "activate on @lor 0". This input is 
always prompted by the typing of a colon (:) at the beginning of the line. 

2. BASIC, EDIT, and FERRET subsystems read all input in the mode "activate on @lor 0". The BPM subsystem reads 
input in this mode, except when it expects a Y or N answer; then the mode is, II activate on every character" . 

3. The FORTRAN, LOADER, SYMBOL, and RUN subsystems acquire all option lists and input specifications in the 
II activate on @l or (0 mode" . 

4. The debugging program Delta reads in the "activate on I, ;::::., 8, t ,@),or(0mode". 

SPECIAL TELETYPE DIRECTIVES 
There are a number of simple operations that may be performed during the typing of input to the computer. These 
operations are functions of the program that handles immediate Teletype communication, and are not to be confused 
with Executive or subsystem functions (see Table 2-1). 

Teletype Operations 2-3 



Table 2-1 Special Teletype Directives 

Directive Description Indi cation 

ACKNOWLEDGE Ascertains that the Batch Timesharing Man- BTM operating will produce double excla-
(8 Q) itor is operating at any given time. Used to mation mark (! 1) immediately. 

question a long delay in Teletype response. 

BACKSPACE Causes the last textua I character typed to Each time BACKSPACE is struck, (-) is 
(88) be deleted. echoed, and the carriage is advanced one 

position. 
Additional BACKSPACE causes the next 
previous character to be deleted, and so 
on, until it reaches an activation character. 

I I 
Exampie: I I I 

I I MISPELL - - - - SPELL 

The above, typed at the term i na I, resu I ts 
in corrected spelling of MISSPELL. Back-
spacing over certain control characters will 
cause the next previous textual character to 
be deleted. Attempted backspacing over an 
activation character will be ignored (since 
it is already in processing). 

LOCAL NEW LINE Causes the Teletype to be positioned to a Does not terminate the current logical line. 
@@) new line. 

ERASE Effectively erases all input back to the last Carriage skips to beginning of next I ine, to 
(8 X) activation character. signal that the erasure has been performed. 

It is not possible to erase an activation 

I character or anything typed preceding it. 
I 

RETYPE Causes carriage to skip to the next line and 
,"- n\ retype ail data foiiowing iast activation \ \51 1\) 

character as it now exists in computer buffer. 

Checks results of backspacing, tabbing and 
erasi ng operati ons. 

Example: 

MISPELL - - - - SPELL@R 

Next line: 

MISSPELL 

TAB Causes a skip to the next tabular position Column positions for tabbing are counted 
(@ I or 8) across the page, inserting the proper number starting after the last activation character, 

of blank spaces into the computer input. regardless of whether this begins a new line. 
(Use Executive command TABS to set up col-
umn tabular positions.) The col umn posi ti on count is reduced auto-

I 
matically if backspaced, and reset to one 

Note: If 8 is hit inadvertently, it is nec- if erased. --
essary to backspace the number of 

I I 
times equai to the number of bianks Attempt to tab beyond last tab position set 

I 

inserted in skipping forward. results in an echo of (?) and a one-position 
space input. 

2-4 Teletype Operations 



Table 2-1. Special Teletype Directives (cont.) 

Directive Description Indication 

ECHO CONTROL Causes suppression of the echo return. Printing of the echo return is suppressed by 
an @) E and restored by the same command. @ E Used in half-duplex operations to pre­

vent double printing and in full-duplex 
mode to suppress printing of private 

PUNCH ONLY 
@P 

TEXT SYMBOLS 

i nformati on. 

Example: 

LOGIN: €9E 8E 
(The information between the two €9Ps is 
not printed.) 

Causes output to go to the terminal IS paper 
tape punch only. 

A second €9P restores normal operation. 

Some symbolism is used in the text to describe formats for writing commands and parameter information. Table 2-2 
lists this information. 

Table 2-2. Format Symbols 

Symbol Description and Use 

CApn AL LETTERS Capitals are used for all words that are to be explicitly typed/ such as AS of the 
ASSIGN command r the word FILE in one of the parameters, etc. 

lower case I etters Lower case is used to name values which are to be filled in, such as II dcb namell or 
IIfile name ll in the ASSIGN command. 

[ ] Brackets are never to be typed. They enclose parts of the format which are op-
tional, or which are not always to be filled in. For example, L[IST] indicates 
that the whole word LIST may be typed, or only the letter L. 

( ) - Parentheses, commas, and dashes are separators and are always to be typed in as shown. , 

... Ell ipsis indicates that there may be a series of two or more elements of the same 
type as that which precedes it. 

{ } Braces indicate a required choice. 

- Underlining indicates characters printed by the system. 

Teletype Operations 2-5 



3. START-UP AND THE EXECUTIVE 

GENERAL 

When telephone contact has been made with the on-line system and the user has logged in, it is possible to issue 
commands to the Executive program. The Executive will connect the user with the subsystem employed on on-line 
work. In addition, the Executive permits some specification of set-up conditions, interruption and continuation 
of processing, and sign-off at the end of a work session. 

COMMANDING THE EXECUTIVE 

Whenever the Executive is ready to accept a command,it types an exclamation mark (!). The first two letters of the 
command mnemonic are typed, and the Executive replies by typing the remainder of the word plus one space. Ex- I 
ecutive functions are listed in Table 3-1. 

Table 3-1. Executive Functions 

Function Descri pti on 

ASSIGN Specify or change input/output assignments. 

TABS Set column tabs for terminal input. 

BASIC Enter the BASIC language subsystem. 

BPM Enter the subsystem for scheduling batch jobs from the terminal. 

EDIT Enter the EDIT subsystem for input and modification to files. 

FERRET Enter the FERRET subsystem for accessibility checking and file 
operations. 

FORTRAN Enter the FORTRAN I anguage subsystem. 

LOAD Enter the LOADER subsystem. 

SYMBOL Enter the SYMBOL language subsystem. 

RUN Enter the RUN subsystem. 

SAVE Save the core and register data of the present activity in order to con-
tinue later. 

RESTORE Restore a previously saved activity. 

Escape Interrupt processi ng and return to the Executive. 

PROCEED Resume interrupted processing. 

BYE Sign-off • 

Start-Up and the Executive 3-1 



START -UP AND LOG-IN 

Sequential procedures for activating the terminal and logging in appear in Table 3-2, below 

Table 3-2. Start-Up and Log-In Procedures 

I 

I 

Step 

2 

3 

4 

5 

6 

7 

Description 

Depress "ORIG" or "BREAK" key to activate terminal. 

Dial on-line system number. If there is a busy signal 
or no answer, depress" CLR" to deactivate and try 
again in a few minutes. To establish contact with the 
computer, strike @) @) . 

When contact is made, Executive types message. 
Exclamation point (!) indicates communication 
Executive. Colon (:) indicates that information 
must be typed in (step 4). 

name may be up to 12 characters long, may in-
clude letters, characters, numbers, and blanks. 

acct is up to 8 characters long and may include 
letters, numbers, and blanks. 

pass also up to 8 characters long and may include 
letters, numbers, and blanks, or nonprinting control 
characters. 

Note: Only one password may be validated for each 
name of user with a given acct, but several 
users may have same password. 

Name: account and password are checked for val id­
ity. If not accepted, Executive returns another 
request for log-in information. 

If the name, account, and password are accepted, 
the Executive types an ID character, and on the 
next line, an exclamation mark (I) indicating that 
it is ready to accept a command. 

Note: The special ID character is assigned as a 
means of preventing duplicate names for 
certain temporary files. This is explained 
more fully later in this chapter. 

Type first two letters of the command mnemonic, 
such as AS. Executive replies by typing the 
remainder of the word, plus one space. 

If command requires parameter information, type the 
information and terminate the command with 8. 

There are no bianks in the parameter portion of a 
command. 

3-2 Start-Up and the Executive 

Indication 

Key lights up and remains depressed. 
Dial tone is audible. 

Answering "beep" indicates that con­
nection with computer has been made. 

BTM SYSTEM -x IS UP 
date and ti me 
! LOGIN: 

! LOGIN: name,acct,[pass] e 
t 

IJOHN DOE 3RD,1 

IXDS 123,:1-------' 

lPASS OK e:f---------l 

If the user fails to log in within one 
minute following the! LOGIN: request, 
he is di sconnected from the computer. 

--------------~~-----------I 

? 
!LOGIN: 

ID = X 

!ASSIGN 

~ASSIGN M:SI,(FILE,X),(IN),(TEMP)8 



Table 3-2. Start-Up and Log-In Procedures (cont.) 

Step Descri pt i on Indication 

8 Commands that do not require parameter information ! BASIC 
terminate themselves as soon as the Executive types :> -

-
the remainder of the word, and no carriage return is 
necessary. 

9 If the Executive does not recognize the letters of a !BZ 
command, it replies with a question mark (?). ? -
Retype. 

10 If it is desired to cancel a command during the typ- !ASSIGN M:SI,(F! [BREAK] 
i ng of its parameters, depress the II BREAK II key. T -
The Executive wi II ignore the command, skip to 
the next line, and type an exclamation mark, await-
ing next command. 

ASSIGN COMMAND 

This command changes file assignments and file options. File options, their meaning and description appear 
in Table 3-3. 

An important use of ASSIGN is prior to calling the FORTRAN, LOADER, BPM, and SYMBOL subsystems where 
it is desired to specify fi les of the user as source input, and where it is desired to save listings and compiled binary 
program modules in files of the user. If no special assignments are made, these subsystems make appropriate de­
fault assignments. Refer to Table 3-4. 

Also in the above subsystems M:DO, dignostic output, is initially assigned to the user's terminal but may be 
reassigned. In the case of all the remaining subsystems, fi Ie assignments are made after the subsystems are 
called. 

Table 3-3. File Options 

Option Meaning Descri pti on 

IN Input file. A previously existing fi Ie to be read only. 

OUT Output fi Ie. 
I 

A new file to be written only, not read. 

! 

INOUT Update. i A previously existing file, whose records may be read, then wri tten. 

OUTIN Scratch fi Ie. A new file to be written, then read. 

PERM Permanent. Wi II not be deleted following use. Unless otherwise indicated, 
PERM is applied to all input files. 

TEMP Temporary. Will be deleted at sign-off time. Unless otherwise indicated, TEMP 
is applied by default to all output files. 

Start-Up and the Executive 3-3 



Table 3-3. File Options (cont.) 

Option Meaning Descri pti on 

HERE User's Teletype. This input or output through user's own terminal. 

REL Release. Releases the permanent storage space occupied by a file. Use REL 
when releasing a file that previously was being permanently saved. 

SAVE Save. Obtains permanent storage space for a fi Ie. Specify SAVE wi th 
PERM when it is desired to save a fi Ie after sign-off (it need be 
specified only once per file). 

I READ Specify access. I Limits read access by other accounts to user's fi Ie. Following 

I I READ, up to eight account IDs (separated by commas) may be speci- I 
I 

fied to be permitted to read user's file 

When the READ option is not specified, it is assumed that a II ac-
counts may read the fi Ie. 

READ, NONE Spec i fy access. NONE may be specified to prevent any other account from reading 
the file. 

READ, ALL Speci fy access. ALL may be specified to permit all accounts to read the file. 

WRITE Specify access. Specifies other accounts that are permitted to both write and read 
the file. Following WRITE, up to eight account IDs (separated by 
commas) may be specified to read or write fi Ie. 

lf the WRITE option is omitted, it is assumed that no other accounts 
are permitted write access to the file. 

If there is a conflict between READ and WRITE option specifications, 
WRITE takes precedence. 

WRITE, NONE Specify access. NONE may be specified to prevent any other account from reading 
or writing. 

WRITE,ALL Specify access. ALL may be specified to permit all accounts to read and write. 

Table 3-4. DeB Default Assignment 

Subsystem DeB Name Meaning Default Assignment 

FORTRAN M:SI Source Input Terminal 
M:LO Listed Output Terminal 
M:BO Binary Output Temporary Fi Ie BOTEMPx 
M:SO Source Output Temporary File SOTEMPx 

LOADER M:BI Binary Input Temporary File BOTEMPx 

BPM M:SI Source Input 
I 

Terminal 

SYMBOL I M:SI SOUiCe Input I T • I 
I ermlnal 

M:LO Li sted Output Terminal 
M:BO Binary Output Temporary Fi Ie BOTEMPx 

3-4 Start-Up and the Executive 



SPECIAL ID CHARACTER 

The special ID character is assigned as a means of preventing the occurrence of duplicate names for certain tempo­
rary files automatically created by subsystems, in the event that two or more users are operating simultaneously 
under the same account. The assigned ID will be a letter of the alphabet or one of the digits 1 to 6. This character 
wi II be made a part of the names of these temporary fi les when any of them are created during use of the system. 
The Executive indicates the ID character assigned to the user by typing ID = x after the user logs into the system. 
Table 3-5 lists the subsystems which create temporary output files, with x representing the unique ID character in 
the fi I e names. 

Table 3-5. Temporary Output Files 

Subsystem File Name File Function 

BASIC RUNxFIL Scratch file. 

SYMBOL BOTEMPx Default binary output. 

FORTRAN BOTEMPx Default binary output. 
SOTEMPx Default source language output. 

LOAD BOTEMPx Default binary output. 
SDxFIL Scratch fi Ie for debugging symbol tables. 

Start-Up and the Executive 3-5 



ASSIGN (Assign DeB) 

ASSIGN causes specified changes to be made in the assignment of a given Data Control Block (a table of informa­
tion affecting I/O operations). 

~dcb name is 3-8 alphanumeri c characters. 
It identifies the DeB that is to be reassigned. 
The first two characters of the name are either 
F: (to indicate a user DeB) or M: (to indicate 
a standard system DeB). 

C!)option is any ofthe options I isted in Table 3-3. 
If omitted r the default (if any) for the DeB is 
assumed. 

1 , 
.!.ASSIGN deb name[,(FILE/file name)[Aoption)[I ... J]] 

,~_f 1 
~~------------------------------------------------~--------------------~ W, 

file name is 1-8 alphanumeric characters 
(i.e., A-Z, 0-9, H, $, *, %, :, @, -, or~). 
It identifies the fi Ie to which the DeB is to be 
assigned. If omitted, the default assignment 
and default options for the DeB are assumed. 

~ More than one option may be specified. Each 
option must be enclosed in parentheses and a 
comma must be used to separate each option from 
the preceding one. 

Note that the action of ASSIGN commands is not cumulative; each successive ASSIGN for a given DeB cancels any 
previous ASSIGN completely. 

Example: 

lASSIGN M:SI,(FILE,SIMBOLIK),(IN),(TEMP)~ 
! 

This specifies that a random access device file named SIMBOLIK is to be used as source input. The file may 
be read only, and is not to be saved after sign-off. 

lASSIGN M:BO,(FILE,LOADMODl),(OUT),(PERM),(SAVE),(READ,NONE)~ 
! 

The binary output is to be made a new random access file named LOADMOD1. It is to be saved as a perma­
nent file, and no other account number may read or write on it. 

lASSIGN M:DO, (HERE)@) 
! 

This causes diagnostic output to come out on the Teletype. This command might have been issued some time 
after the diagnostic output had been assigned to another device; however, since the normal default device is 
the Teletype, it would have been sufficient to command 

lASSIGN M:DO €V 

3-6 Start-Up and the Executive 



TABS (Set Tabs) 

TABS causes tab positions to be established for input from the user1s Teletype. 

~t1 is a decimal number 
specifying the first tabular 
position. If omitted, any 
previously establ ished tabs 
are cleared. 

l 

W t2 is a decimal number 
specifying the second tabu­
lar position. It must be a 
larger number than t1. No 
tabular position may be 
specified beyond the last 
character in the input buf­
fer. Input buffer si ze is a 
System Generation variable 
between 80 and 200 charac­
ters (the default is 100). 

1. TA~ [t 1 [,t2]. · . [,t8]] @) 

r.D Up to eight tab positions 
may be specified. Com­
mas are used as separators. 

I 

When Teletype input is typed, the input image is spaced to the next tab position by striking the § key and then 
striking the letter 1. If no tab has been established beyond the present column, a question mark is echoed and 
the input image is spaced by one column. 

Example: 

lTA~5, 10,15,20 @) In this example, tab settings are established 
at columns 5, 10, 15, and 20. The command 
clears any previously established tab settings. 

Start-Up and the Executive 3-7 



SAVE (Save Activity) 

SAVE causes the machine environemnt (i.e., register contents, etc.) and the contents of all core areas used in the 
current session to be saved as a file in secondary storage, so that the present activity may be resumed at a later 
time. 

I 

fi Ie name is 1-8 alphanumeri c characters, 
(i.e., A-Z, 0-9, D, $, *, %, :, @, -, orL-J). 
It is a name selected by the user to identify the 
file in which the current activity is to be saved. 
If the name is that of an existing file, the con- . 
tents of that file are replaced. 

J) TEMP specifies that the fi Ie is not to be 
saved after the user logs out of the system. 

PERM specifies that the file is to be saved 
after the user logs out of the system. 

Prior to saving the current activity, BTM automatically closes and saves all open files. However, the user is re­
sponsible for the positioning of any files before giving the SAVE command. Thus, it usually is not possible to 
successfully resume an assembly, compilation, or load. 

A SAVE command (or any Executive command except Escape) may be given only when the BTM Executive is in con­
trol of the system, as indicated by the II! II prompt character. 

Example: 

lSA~ALL-THISEj In this exampie, the current activify is saved 
in a permanent fi Ie named ALL-THIS. The 
activity can be resumed later by specifying the 
name ALL-THIS in a RESTORE command (see 
description of RESTORE command). 

3-8 Start-Up and the Executive 



RESTORE (Restore Activity) 

RESTORE causes the machine environment and core information of a previously saved activity to be restored (see 
description of SAVE command), so that the previous activity may be resumed. 

~) 
fi I e name is 1 -8 a I phanumeri c characters 
(i.e., A-Z, 0-9, $, *, %, :, @, -, orL.......l). 
It identifies the file containing the saved 
activity. 

I 

~ 

W
TEMP specifies that the file is not to be saved 
after the user logs out of the system. This option 
is omitted if TEMP was specified when the SAVE 
was given, or if the user wants to save the fi Ie 
after logging out and TEMP was not specified in 
the SAVE. 

.!. RES TORE fi Ie name[, TEMP] § 

Example: 

lRESTORE ERSTWILEEV In this example, the activity previously saved 
in file ERSTWILE is restored, and processing can 
be resumed by means of a PROCEED command 
(see description of PROCEED command). 

Start-Up and the Executive 3-9 



Escape (Return to Executive) 

Escape causes control of the system to be returned to the BTM Executive. This is the only Executive command that 
may be given when the Executive is not in control. 

~)S °ko h ak 0 0 0 tn mg t e ~ ey tWIce In successIon returns 
control to the Executive if a BTM subsystem has 
control 0 

1 , 
00 

Ws °ko h ck f 0 0 0 trr Ing t e 1.5' ey our trmes m successIon re-

I , 

turns control to the Executive if a BTM subsystem 
is not in control (e. go, if a user's program is 
executi ng) 0 

r/""""'../""""'.., 
L~~J 

When the Executive gains control of the system, it prompts the user terminal with an exclamation character 0 Any 
Executive command may then be given or any BTM subsystem may be called. 

Example: 

lFERRET 

?D TROP €V 
2:@@ 

3-10 Start-Up and the Executive 

In this example, the user returns control to the 
Executive from the FERRET subsystem by strik­
ing the e key twice. 



PROCEED (Resume Processing) 

PROCEED causes resumption of an activity that has been interrupted by an Escape (see description of Escape 
function). 

!PROCEED 

If the user wants to resume a previously saved activity (see description of SAVE command), he must give a 
RESTORE command followed by a PROCEED command. 

Example: 

lSA:YLTH1S €V 
lRESTORE THIS,TEMP~ 

!PROCEED - --

In this example, an interrupted subsystem activity 
is restored and processing resumed. 

Start-Up and the Executive 3- i 1 



BYE (End Sess ion) 

BYE causes the user to be logged out of the system. 

! BYE 

Following the BYE command, the Executive prints the date and time followed by the number of 512-word RAD 
granules used, minutes of CPU time used, minutes of I/o time used, and minutes of CPU time devoted to Monitor 
service functions. 

Example: 

!BI'E 

10/15/70 8:20 

RAn SPACE 07 

CPU 03.467 

I/O 05.156 

SERVICES 04.315 

3-12 Start-Up and the Executive 



4. BASIC SUBSYSTEM 

GENERAL 

This section outlines the method of writing, compiling, and executing statements and programs in BASIC from the 
user's termi na!. On-line BASIC operates in two distinct modes: edit, and compi lation and execution (see Figure 4-1). 

EDIT MODE 

Programs may be created at the terminal and saved on disc. Previously saved programs may be retrieved and revised 
and/or loaded for further execution. The system is initially in the edit mode with an empty text area. 

COMPILATION AND EXECUTION MODE 

In this mode, the program constructed during the editing phase is compiled and, if no errors exist, executed. If 
compilation errors are found, editing mode is restored automatically, and the text area will contain the program 
text just compiled.-

Program execution may be done immediately, using the on-line system in desk calculator fashion. Direct use is not 
possible in the edit mode. 

BASIC OPERATIONS 

The BASIC subsystem provides for the following operations: 

1. Enter a new program and run. 

2. Load an old program and run. 

3. Enter statements and execute directly. 

The BASIC subsystem is entered by typing BA following the executive prompt character (I). The Executive types the 
rest of the word BASIC, gives a carriage return, and then (after a brief pause) the subsystem types its prompt charac­
ter (» to indicate that it is ready to receive a command. 

If a BASIC statement is typed (beginning with a val id I ine number), or if one of the editing commands is typed, the 
editing mode is entered. Subsequent typing of RUN or FAST will effect the compilation and execution mode. If 
program execution is unsuccessful, corrections can be made in the editing mode and execution retried. The com­
mand CLEAR provides a fresh start, wiping out all previous program statements from the computer memory. It is 
necessary to request RUN or FAST before entering any direct program statements. This may be done upon initial 
entry to BASIC or immediately after a CLEAR command. All BASIC statements to be executed directly are typed 
without I ine numbers. 

Statement I ines of a program may be entered into the computer by typing each I ine following the prompt character 
(». All statements except those executed directly must begin with a line number of up to five numeric digits, with 
the total I ine length not exceeding 85 characters. 

Statements are compiled according to line number. If an existing line has the same number, it will be deleted; fol­
lowing this, the new statement will be syntax-checked and, if valid, inserted. If it is invalid, it will be deleted 
and a BASIC diagnostic message will be typed. 

COMPILATION AND EXECUTION 
Upon the command RUN 8, compilation of the program begins. FAS[T] ® causes compilation in the fast mode with­
out diagnostics. If compi lation is successful, the program is executed. 

Should the program require input from the terminal, the character "?" will be typed during execution to prompt each 
I ine of input. 

BASIC Subsystem 4-1 



When execution has been completed, the subsystem again prompts with ">". At this point, either further editing 
operations may be performed, or a CLEAR command may be given followed by statements for direct "desk calculator" 
operations. 

DIRECT EXECUTION OF STATEMENTS 

Statements for direct execution must be typed without line numbers. Any valid BASIC statement may be used 
except the following. 

DATA PRINTUSING 

DEF FOR 

DIM NEXT 

image Any statement containing ON 

Direct execution is especially useful for on-line debugging and verification. By preceding a BASIC program with a 
STOP instruction and then giving a RUN command, the user may effect compilation and obtain any diagnostic mes­
sages prior to attempting program execution. The user may then test a selected portion of the compiled program, for 
example, by typing a GOTO statement while still in the direct mode. Execution will proceed to the next STOP, 
PAUSE, or END statement {unless execution is aborted due to an error condition}. 

4-2 BASIC Subsystem 



Executive Level 

! BASIC 

Editing Mode 

14-4 
CLEAR 

1 14-5 
DELETE 

I SYSTEM 
4-6 

I SAVE ON 1 SAVE OVER 14-10 
FILE 

4-8 4-9 

1 EXTRACT 
4-12 

I RENUMBER 
4-13 

1 PROCEED 
4-14 

I PASSWORD I ACCOUNT ENTER BASIC 
4-16 4-17 4-18 

1 STATUS I 14-21 
RUN I FAST 

4-20 4-22 

Compilation and Execution Mode 

Di reet Statements 

I ACCOUNT 
4-17 

1 PROCEED 
4-14 

ENTER BASIC 
4-18 

I NAME 
4-15 

1 WIDTH 
4-19 

Figure 4-1. BASIC Editing Commands (and Page Numbers) 

14-7 
LIST 

1 

14-11 
LOAD 

14-15 
NAME 

1 WIDTH 
4-19 

I PASSWORD 
4-16 

I STATUS 
4-20 

BASIC Subsystem 4-3 



CLEAR (Erase Text Area) 

CLEAR causes everything in the text editing area to be erased. It should be used if the current program is to be 
deleted in its entirety. 

Example: 

I .i.BASIC 

2:10 LET X=2 e 
~20 LET Y=3 e 
2:.30 LET Z=5 e 
2:.CLE e 

4-4 BASIC Subsystem 

>CLE[ARJe 

In th is exampl e, the command IIC LE II causes 
lines 10, 20, and 30 to be deleted. 



DELETE (Delete Lines) 

DELETE causes specified lines to be deleted from the text editing area. 

linel specifies the num-
ber of the first line to be 
deleted. 

Example: 

! BAS IC 

>10 LET X=l e 
>20 LET X=2, Y=3 e 

>30 LET Q=x+ye 

>40 PRINT Q e 
>DEL 10 e 

2 
line2 specifies the num-
ber of the last I ine (of a 
series) to be deleted. If 
omitted, only line 1 is 
deleted. 

More than one line, or 
se ri es of lines, may be 
specified. 

>DEL[ETEJ linel[-line2J[, ... J8 

In th is exampl e, the command IJ DE L 10" causes 
line 10 to be deleted. The remainder of the 
program is retained in the text editing area. 

BASIC Subsystem 4-5 



SYSTEM (Return to Executive) 

SYSTEM causes control to be returned to the BTM Executive. 

Example: 

!BASIC 

2:.LOAD SUMPRO@ 

4-6 BASIC Subsystem 

GR 1 

450 
520 
610 
621 
788 

GR 2 

1761 
1981 
2646 
2696 
2786 

>SYS[TEM] e 

In this exampl e, the .. ') Y ') .. command returns 
control to the Executive following comple­
tion of BASIC operations. 



LIST (list lines) 

LIST causes specified lines of a program to be listed on the user terminal. 

line1 specifies the num­
ber of the first I ine to be 
I isted. If omitted, the en­
tire program is listed. 

Example: 

lBASIC 

>10 LET A=18 

2:15 LET A=A+18 

>20 IF A<45 THEN 158 

2:L1ST 5-15(9 

10 LET A=l 

15 LET A=A+1 

2 

I ine2 specifies the num-
ber of the last line (of a 
series) to be I isted. If 
omitted, only line 1 is listed. 

More than one line, or 
series of lines, may be 
specified. 

> LIS[TJ Dine 1 [-line2]][, ... ] e 

In this example, the command IILIST 5-15 11 

causes lines 10 and 15 to be I isted. The con­
tents of the text editing area are unaffected. 

BASIC Subsystem 4-7 



SAVE ON (Save on Temporary File) 

SAVE ON causes specified lines of the current program to be saved in a newly created temporary file. 

Q) 
xname is 1-6 alphanumeric characters en-
closed by single or double quotes, or 1-6 non­
biank characters followed by a blank (or by e 
if no line numbers follow). It identifies the 
new file. 

W 
I ine2 specifies the number of the last line 
(of a series) to be saved. If omitted,only line1 
is saved (if line 1 has been specified). 

> SAVE[E 0] N xname [I ine 1 [-I ine2]J [, ... J e 

W 
line 1 specifies the number of the first line 
to be saved. If no line number is specified, 
the entire program is saved. 

I 
t 

4 

More than one line, or series of lines, may be 
specified. 

Although it is unlikely that the programmer would want to specify a password for a temporary file, a password will 
apply to the fi Ie created by a SAVE ON command if a PASSWORD command is currently in effect (see description 
of PASSWORD command). If an account number has been specified, it is reset prior to execution of a SAVE ON 
command and must be respecified if needed for subsequent file operations. 

Example: 

I lBASIC 

?lO INPUT X e 
>20 INPUT ye 
>30 LET Z=X-Ye 

2:40 PRINT Z e 
2:50 END e 
?:SAVN PROGRM e 

4-8 BASIC Subsystem 

In this example, lines 10 through 50 are saved 
in a temporary fi Ie named PROGRM. The 
contents of the text editing area are unaffected. 



SAVE OVER (Save on Permanent File) 

SAVE OVER causes specified lines of the current program to be saved in a permanent file. The file may have the 
same name as an existing file. 

~ 
xname is 1-6 alphanumeric characters en-
closed by single or double quotes, or 1-6 non­
blank characters followed by a blank (or bye 
if no I ine numbers follow). It identifies the 
file in which the program is to be saved. 

CD 
I ine2 specifies the number of the last I ine (of 
a series) to be saved. If omitted, only line 1 is 
saved (if line 1 has been specified). 

>SAV[E O]VER xname[linel[-line2J] [, ... J e 

2 

linel specifies the number of the first line to 
be saved. If no line number is specified, the 
entire program is saved. 

~ 
t 

More than one line, or series of lines, may be 
specified. 

If a PASSWORD command is currently in effect (see description of PASSWORD command), the password will apply 
to the file specified in a SAVE OVER command. If an account number has been specified, it is reset prior to exe­
cution of a SAVE OVER command and must be respecified if needed for subsequent file operations. 

Example: 

lBASIC 

>10 LET A=2 e 
>20 LET B=3 e 
>30 LET C=4 e 
2:40 LET D=50 e 
>SAVE OVER IIXNAy lI 10-20,30-40 e 

In this example, lines 10 through 20 and 30 
through 40 are saved in a permanent file named 
XNAY. The contents of the text editing area 
are unaffected. 

BASIC Subsystem 4-9 



FILE (Save on Runfile) 

FILE causes the current program to be saved in the IIrunfile ll maintained by the BASIC subsystem. 

> FIL[E] e 

A program saved via a FILE command replaces the previous contents of the runfile, if any. The saved program can 
be retrieved for later use (see description of IILOADII, IIRUNII, and IIFAST II commands). 

Example: 

>10 LET B=58 

>20 LET c=108 

>30 LET D=B+C 8 

>40 PRINT D8 

>50 END8 

;::FILE 8 

4- 10 BASIC Subsystem 

In this example, steps 10 through 50 are saved 
in the runfi Ie. The contents of the text editing 
area are unaffected. 



LOAD (Load Program) 

LOAD causes a specified file, containing a previously saved BASIC program, to be retrieved and placed in the text 
editing area. 

rD 
xname is 1-6 alphanumeric characters en-
closed by single or double quotes, or 1-6 non­
blank characters followed by a blank or 8 
character. It identifies the file to be loaded. 
If omitted, the runfile is assumed. 

~ 
> LOA[D] [xnameJ 6) 

The contents of the specified file are merged with the previous contents of the text editing area, replacing the con­
tents of correspondingly numbered lines, if any. If a LOAD command is used in the compilation and execution mode 
(see description of IIRUN II and IIFAST II commands), the text editing area is cleared prior to loading from the fi Ie. 

Note that no compilation is done in response to a LOAD command, and the file loaded must be in standard BASIC 
source format. 

Example: 

lBASIC 

>LOA OLDPR08 

In this example, the contents of file OLDPRO 
are loaded into the text editing area. 

BASIC Subsystem 4- 11 



EXTRACT (Extract Lines) 

EXTRACT causes everything except specified lines to be deleted from the text editing area. 

~ 
line 1 specifies the num-
ber of the fi rst line to be 
extracted. 

~ine2 specifies the num­
ber of the last line (of a 
series) to be extracted. If 
omitted, only line 1 is 
extracted. 

~. 
More than one I ine, or 
series of I ines, may be 
specified. 

I~--------------~ ! I 

Example: 

!BASIC 

2:.10 LET X=l e 
>20 LET X=2, Y=38 

2:.30 LET Q=X+ye 

::.40 PRINT Q e 
~EXT 20,30-408 

4-12 BASIC Subsystem 

>I:XTrOACT' JO-e' [I·ine'llf 1 Q 
_ L. I ll"n J I i r I I - I L J L' · · · J ~ 

In this example, line 10 is deleted and lines 
20, 30, and 40 are retained in the text editing 
area. 



RENUMBER (Renumber lines) 

RENUMBER causes program steps to be renumbered, starting. with a specified line number and renumbering in speci­
fied increments. 

~ 
step 1 specifies the low-
est new line number. If 
omitted, 100 is assumed. 

I 

W 
step2 specifies the point 
in the program at wh i ch re­
numbering is to begin. It 
may be specified only if 
step 1 is also specified. If 
omitted, I ine number 1 is 
assumed. 

~ 

I 

incr specifies the incre-
ment by which new line 
numbers are to be spaced. 
It may be specified only if 
step 1 and step2 are also 
specified. If omitted, the 
value 10 is assumed. 

>REN[UMBER][stepl [,step2Gincr]]] e 

Example: 

J..BASIC 

>10 INPUT A e 
>20 INPUT B e 
>30 INPUT C e 
~40 LET P=B+C e 
~50 PRINT P 8 

~60 END8 

>REN 10,20,308 

In this example, steps 20 through 60 are renum­
bered as lines 10 through 130. The original step 
10 is not renumbere'd but is replaced by the step 
originally numbered 20. 

BASIC Subsystem 4-13 



PROCEED (Continue After Escape) 

PROCEED causes BASIC processing to continue after being stopped by use of the@ key (see description of Executive 
commands). 

> PRO[CEED] @ 

Since I/O file conditions are not necessarily preserved when processing is interrupted, the resumption of compila­
tion or program execution may not always be successful. 

Example: 

lBASIC 

>10 LET A=18 

>20 PRINT A 8 

>30 LET A=A+18 

;::40 IF A>4 THEN 

;::50 COTO 20(0 

;::60 END8 

;::RUN@ 

1 

2 

-.lee 
2.PRO @ 

4 

4-14 BASIC Subsystem 

608 

In this example, program execution is inter­
rupted by an Escape and then resumed by use 
of the PROCEED command. 



NAME (Name Runfile) 

NAME causes a specified name to be given to the runfile. 

Example: 

lBASIC 

>10 LET C=3 @ 

2.20 PRINT C@ 

2.30 END@ 

2.FILE @ 

2.CLEAR e 
2.NAME "RUNFIL" @ 

.2.LOAD RUNFIL @ 

:i) 
name .is 1-6 alphanumeric characters en-
closed by single or double quotes, or 1-6 non­
blank characters followed by a blank or @ 
character. It specifies the name that is to be 
given to the runfile. If no name is specified, 
any name given to the runfi Ie by a previous 
NAME command may no longer be used to ref­
erence the fi Ie. 

~ 
> NAM[E] [name] e 

In th is exampl e, the program created at the 
console is stored in the runfi Ie, and the text 
editing area is cleared. The runfile is given 
the name RUN FIL and then the program is re­
turned to the text editing area via a LOAD 
command. 

BASIC Subsystem 4-15 



PASSWORD (Set/Reset Password) 

PASSWORD causes a specified password to be established for use in subsequent SAVE ON, SAVE OVER, LOAD, 
RENUMBER, RUN, or FAST file operations. If a null password is specified, any previous password is reset. 

c.ostring is 1-7 nonblank characters. It speci-
fies the password that is to be used in subsequent 
file operations. A null string cancels a previ­
ously establ ished password. 

l 
> PAS[SWORD] [string] e 

A password is not used in runfile operations, and such operations (e. g., FILE or LOAD) cancel any previously es­
tabl i shed password. 

Example: 

I lBASIC 

;:::10 LET C=99@ 

>20 PRINT C@ 

;:::30 END@ 

~PASSWORD SECRIT@ 

~SAVVER AFILE @ 

;:::SYS@ 

lBASIC 

,;:::PAS SECRIT @ 

~LOAD AFILE @ 

4-16 BASIC Subsystem 

In this exampie, the password SECRIT is given 
to file AFILE and a return to the BTM Execu­
tive is made. BASIC is then called and the 
password reestablished to allow AFILE to be 
loaded into the text editing area. 



ACCOUNT (Set/Reset Account) 

ACCOUNT causes a specified account identifier to be established for use in reading files from an account other than 
the current one. If a null identifier is specified, any previously established identifier is reset. 

~ring is 1-7 nonblank characters. It identifies 
the account from which a file is to be read. A null 
string cancels a previously specified identifier. 

> ACC[OUNT] [string] e 

Since BASIC does not allow files to be written outside the log-in account, SAVE ON or SAVE OVER operations re­
set any account identifier. 

Example: 

!BASIC 

~ACC :SYS 8 

~LOAD SUMFIL 8 

~SAVN TFIL 8 

~CLE@_ 

~ACC :sys8 

~LOAD ANOTHR e 

In this example, account :SYS is specified as 
the account from which file information is to 
be read. Since the command II SAVN TFIL" 
resets the account identifier, it must be speci­
fied again before reading another fi Ie. 

BASIC Subsystem 4-17 



ENTER BASIC (Set/Reset Precision) 

ENTER BASIC causes the extended precision print indicator to be set or reset. 

Example: 

2:LOAD PlE@ 

~ENT L@ 

?RUN@ 

3.1415926535897932 

4-18 BASIC Subsystem 

(D 
L specifies that extended (i. e., long) precision 
values are to be output. If L is omitted, the ex­
tended precision print indicator is reset (the default 
condition). 

In th is exampl e,· the output of the program 
PIE is printed with extended precision. 



WIDTH (Set Print Width) 

WIDTH causes the print width to be changed from the default value of 72. 

Example: 

.!.BASIC 

2:LOAD Xyz8 

2:WID 35 e 
2:RUN @ 

~ 
digits .specifies the desired print width. The 
specified value must not be less than 32 or greater 
than 85. 

~ 
>WID[TH]digits e 

In this example, print width is set at 35, 
causing a single text string to be printed 
in two lines. 

'TWAS BRILLIG, AND THE SLITHY TaVES 

DID GYRE AND G IMBLE IN THE WABE; 

BASIC Subsystem 4-19 



STATUS (Give Status) 

STATUS causes the status of the current program to be printed. One of three responses is possible: EDITING, COM­
PILING, or RUNNING. If program execution is in progress, an ESCAPE (i. e., @ @) must be used before the 
STATUS command can be keyed in. The line number of the current statement is printed preceding the RUNNING 
message. 

Example: 

2:10 LET K=18 

2:20 PRINT K@ 

2:30 LET K=K+1@ 

2,.40 IF K>4 608 

2:50 GOTO 208 

2:60 END8 

2,.RUN8 

-.l 
2 

--1 @@ 

2:STA @ 

30 RUNNING 

4 

4-20 BASIC Subsystem 

>STA[TUS] e 

In this example, the message "30 RUNNINGII 
indicates that program execution was inter­
rupted at step 30. 



RUN (Compile, Check, and Run) 

RUN causes BASIC to compile a program from the runfile or from the text editing area if no runfile exists. If no 
errors are found, the program is then executed. 

>RUN8 

If no program exists in the runfile or the text editing area when the RUN command is used, BASIC compiles and exe­
cutes unnumbered statements directly as they are input from the console. However, the following types of BASIC 
statements cannot be executed directly and must not be used in the direct execution mode: 

DATA PRINTUSING 

DEF FOR 

DIM NEXT 

Image Any statement containing liON" 

Compilation takes place in the IIsafe ll mode in which the subscripts of all variables are checked against absolute di­
mensions. If input is required from the console during execution, BASIC types a question mark as a prompt character. 
When program execution is complete, the usual 11)11 prompt is typed. 

Example: 

..LBASIC 

>10 LET A=s9 

>20 PRINT A9 

>30 END9 

~uN9 

In this example, the program in the text editing 
area is executed, causing the character 115 11 to 
be printed. 

BASIC Subsystem 4-21 



FAST (Compile and Run) 

FAST causes BASIC to compile a program from the runfile or from the text editing area if no runfile exists. The 
program is then executed. 

> FAS[r] e 

If no program exists in the runfile or the text editing area when the FAST command is used, BASIC compiles and 
executes unnumbered statements directly as they are input from the console. 

However, The foiiowing types of BASIC statements cannot be executed directly and must not be used in the direct 
execution mode: 

DATA PRINTUSING 

DEF FOR 

DIM NEXT 

Image Any statement containing liON II 

When compilation takes place in the IIfast ll mode, no subscript checking is done (see description of RUN command). 
If input is required from the console during execution, BASIC types a question mark as a prompt character. When 
program execution is complete, the usual ")" prompt is typed. 

Example: 

?:FAST@ 

?:LET B=4e 

?:PRINT Be 

4-22 BASIC Subsystem 

In this example, a program is executed in the 
direct mode as it is input from the console, 
causing the character "4" to be printed. 



BASIC MESSAGES 

Message Meaning 

xxxxxx LINE # ERROR The indicated line number is too long. The line must be retyped 
with a number less than six digits in length. 

LINE TOO LONG More than 85 characters were typed on one line. The line must 
be retyped using fewer characters. 

SPACE LIMIT NEAR Not more than 500 characters may be added to the program in the 
text editing area. 

PROGRAM TOO LARGE No lines may be added to the program in the text editing area. 
The contents of this area may be saved in a file and the text 
editing area may then be cleared to allow more lines to be 
created. (See descriptions of FILE, SAVE ON, SAVE OVER, 
and C LEAR commands. ) 

NO PROGRAM A specified line or series of lines does not exist in the text 
editing area. The user may type in the missing information. 

ILLEGAL LOAD An illegal line has been encountered in loading a program into 
the text editing area. The line, printed prior to thi~ message, 
must be retyped correctly. 

UNABLE TO OPEN A specified fi Ie does not exist or cannot be accessed for some 
other reason (e.g./ incorrect password). 

ILLEGAL A RENUMBER command has been encountered with illegal syntax. 
The command must be retyped with proper syntax. 

RUN? ILLEGAL A direct statement was encountered while in the editing mode. 
The RUN or FAST command may be used to enter the compilation 
and execution mode. 

BASIC Subsystem 4-23 



5. EDIT SUBSYSTEM 

GENERAL 

With the EDIT subsystem, the on-line user may enter data from the terminal and build files on the RAD. Records 
may be added to and deleted from files and changes may be made within records. EDIT may be used with files of 
source language for processors such as BASIC, FORTRAN, Symbol, etc., and with job control statements for termi­
nal batch job entry. The EDIT subsystem enables the following: 

1. Creation of sequence-numbered files on the RAD. 

2. Deletion of one or more records from an existing file. 

3. Insertion of single records or series of records into an existing file. 

4. Replacement of single records or series of records with new records. 

5. Reordering records and record groups within a file. 

6. Changes within any record in a file. To facilitate this, there is a group of commands to substitute, insert, and 
shift strings of characters within a record. 

7. Copying an existing fi Ie. 

EDIT COMMANDS 

The EDIT subsystem is entered through a command to the Executive which, in turn, completes the word, then passes 
control to the subsystem. On the following line, EDIT types an asterisk which is the prompt character for all EDIT 
commands. 

There are three types of EDIT commands, arranged in a hierarchical relationship (see Figure 5-1). 

1. File Commands: Commands that apply to an entire fi Ie. 

2. Record Commands: Commands that act upon one record or a group of records within a file. 

3. Intra-Record Commands: Commands that make changes within an individual record. These generally manipu­
late character strings within a specific record. 

RECORD COMMANDS 

Every record in a file contains a unique sequence number, and sequence numbers are referenced in the execution of 
many commands that operate on records and groups of records. Sequence numbers have an impl ied decimal point and, 
when I isted by the Editor, are displayed with three deci mal pi aces (e. g., 20.000). 

INTRA-RECORD COMMANDS 

Note that before any commands that do operations within individual records may be typed, either SS, ST, or SE 
must be given to specify the starting record sequence number. Also, multiple intra-record commands may be typed 
on a line separated by semicolons (i). 

FILE RECORD FORMAT 

All file records handled by EDIT are from 1 to 140 characters long. All records are ordered in the fi Ie according to 
sequence number, which is the key by which records are specified in EDIT commands. If EDIT is used to bui Id a file, 
successive sequence numbers will be automatically assigned. If it is desired to use EDIT with differently formatted 

EDIT Subsystem 5- 1 

I 



Executive Level 

File Editing Mode 

I BUILD 
15-4 

~ 
~ 

END 
15-5 

~ 
~ 

Record Ed iting Mode 

[2J 5-12 ~ 5-13 

~ 5-18 ~ 5-19 

I" '4 SS I ST 
;)-L 5-25 

l 
t 

Intra-Record Mode 

0 0 
c:LJ r:LJ 5-34 

0 5-39 CU 5-40 

I COpy I I DELETE I I EDIT I I MERGE 
..... 15_-6 __ ....,1 15-7 1 ,-15_-8---r-_....I1 15-9 

c:J 5-14 0 5-15 ~ 5-16 ~ 5-17 

~ 5-20 0 5-21 0 5-22 ~ 5-23 

I " "SE ;)-Lb I 

0 ~ 5-30 0 0 5-32 

D GLJ ~ kR or kL 
5-36 5-37 5-38 

G:2J C2J 5-41 5-42 c:LJ 5-43 

Figure 5-1. EDIT Commands {and Page Numbers} 

5-2 EDIT Subsystem 



files, it is necessary to use the COpy command to create a copy of the file with sequence numbers in correct for­
mat; in the event that this is necessary, a message will be typed. Since EDIT commands make immediate changes 
to the actual records in a file, it is advisable to make a backup copy of any file being updated in the event erro­
neous commands cause loss of data. 

EDIT MESSAGES 

There are a number of messages that the EDIT subsystem may return to the operator in the course of executing com­
mands. Table 5-1 I ists the conventions that are observed with the various messages. 

Table 5-1. EDIT Message Conventions 

Convention Descri pti on Example 

.. (message) Messages preceded by two periods give comments on •• COpy DONE 
the progress of operations. They do not indicate un- A COpy operation has been 
usual or error conditions completed. 

-- (message) Messages preceded by two hyphens indicate an un- --EOF HIT 
expected event of which the operator should be An end-of-fi Ie was 
aware. The command did not abort, but completed encountered. 
operations to whatever extent was possible. 

-(message) A single hyphen indicates an error condition which -C4P1: NO SUCH REC 
causes the present command to be aborted, and no The first parameter of the 
action wi II be taken on further commands typed on fourth command referenced a 
the same line. nonexistent record. 

EDIT Subsystem 5-3 



BUILD (Create a New File) 

BUILD causes the Editor to create a new fi Ie in disc storage. 

~ 
f identifies the file to be created. .It con-
sists of 1-31 alphanumeric characters (i. e., 
A-Z, 0-9, #, $, *, -, %, :, @, or L-J). 

W 
n specifies the sequence number of the first 
record in the new file. If omitted, 1. 000 is 
assumed. 

':'SUILD f[([aJ[,pJ)] [,n[,i]] @) 

,---~tt I 
~~----------------------------------~I~ ~~ __ ~ ________________________________ ~ 
~ specifies the password associated with the ~i specifies the value by which sequence num-

new file. It consists of 1-8 alphanumeric char- bers for the new file are to be incremented. This 
acters. If omitted, no password will be required may be specified only if n is also specified in 
to access the new file. the command. If i is omitted, 1. 000 is assumed. 

Following the BUILD command, the system prompts by typing a sequence number. The user then types in the first 
line of the new file. Each line comprises a record of up to 140 characters and is terminated by a carriage return. 
A null record, consisting of only a carriage return, terminates the action of the BUILD command. 

Example: 

':'BUILD ALPHA-RALPHA, 10,2 § 

10.000 SYSTEM SIG7E!) 

12.000 DEF Be 

14.000 REF AE!) 

16.000 B AE!) 

18.000 END@) 

20.000 @) 

* 

5-4 EDIT Subsystem 

In this example, the user creates file ALPHA­
RALPHA comprising five records numbered 
10. 000 through 18. 000 (null record 20. 000 
does not appear in the file). 



END (Exit to Executive) 

END causes the Editor to close all active files and return control to the Executive. 

*END @) 

Example: 

The exclamation character on the line fol­
lowing the EN D command indicates that the 
Editor subsystem has returned control to the 
Executive. Any Executive command may 
then be given. 

EDIT Subsystem 5-5 



COpy (Copy a File) 

COpy causes the Editor to copy a specified file. 

CD r.D 

I 

I 

2 

fid1 = fl [([a 1][,p1])] fid2 = f2[(,p2)] 

f1 is 1-31 alphanumeric characters (i.e., f2 is 1-31 alphanumeric characters. It iden-
A-Z, 0-9, # , $, * %, -, @, orL-J). It , ., tifies the file to be replaced. 
identifies the file to be copied. 

a1 is 1-8 alphanumeric characters. 
specifies the account containing file fl. 
omitted, the log-in account is assumed. 

pi is i -8 aiphanumeric characters. 

It 
If 

It 

p2 is 1-8 al phanumeric characters. It 
specifies the pass::"'ord of fi Ie f2. If f2 has no 
password, p2 is omitted. 

sped fi es the passwOid of fil e fl • If f1 has 
no password, p1 is omitted. 

ON specifies that a 
new file is to be created 
containing the informa-
ti on copi ed from fl. ON 
may not be specified if a 
fi Ie named f2 exists in the 
log-in account. 

OVER specifies that if 
a file named f2 exists it will 
be deleted and replaced by 
the new file. 

4 
n specifies the sequence 
number of the first record in 
the new file. If omitted, 
1.000 is assumed. 

i specifies the value by 
which sequence numbers for 
the new file are to be in­
cremented. This may be 
specified only if n is also 
specified. If i is omitted, 
1.000 is assumed. 

~I ",------I ____ 
Example: 

*COPY PELION ON OSSA(,HUSH)EV 

•• COPYING 

. . COPY DONE 

5-6 EDIT Subsystem 

In this example, the information from the file 
named PELION is copied to a new file named 
OSSA. The password HUSH is associated with 
the new file . 



DELETE (Delete a File) 

DELETE causes the Editor to delete a specified file from the log-in account. 

~r f identifies the file to be deleted. It con-
sists of 1-31 alphanumeric characters (i.e., 
A-Z, 0-9, #, $, *, -, %, :, @, or L.....J). 

~ p specifies the password associated with the 
file that is to be deleted. It consists of 1-8 
alphanumeric characters. If the fi Ie has no pass­
word, this parameter is omitted; otherwise, it 
must be included. 

*DELETE f[([aJ [tpJ)J ~ 

Example: 

~'(DELETE SUPERNUMERARY( ,COVERT) 8 

DELETED 

In this example, the file SUPERNUMERARY 
having the password COVERT is deleted from 
the log-in account. 

EDIT Subsystem 5-7 



EDIT (Edit a File) 

EDIT causes the Editor to open a specified fi Ie for editing. 

~ 
f identifies the file to be edited. It con- o p specifies the password associated with the 
sists of 1-31 alphanumeric characters (i. e., 
A-Z, 0-9, #, $, *, -, %, :, @, or ~). 

file to be edited. It consists of 1-8 alphanu­
meric characters. If the file has no password, 
this parameter is omitted; otherwise, it must be 
included. 

*C .... f)!T. crt P \1 Q 
- · L\' IJ ~ 

The EDIT command must be used to enter the record editing mode and to identify the file that is to be edited. The 
following commands may be used in the record editing mode: IN, TY, TC, TS, DE, FD, FT, MD, MK, RN, CM, 
55, and ST. Use of any of the following commands terminates the record editing mode: BUILD, DELETE, and 
COPY. If an EDIT command is given while in the record editing mode, the previously open file is closed and the 
specified file is opened. 

Example: 

I 
*EDIT PLOWBOy(,BUCOLIC)~ 

5-8 EDIT Subsystem 

In this example, the file named PLOWBOY 
having the password BUCOLIC is opened for 
editing. Any previously opened file is closed. 



MERGE (Transfer Records) 

MERGE causes the Editor to transfer records between specified files. 

~ 

2 

fi d 1 = f 1 [( [ a 1J [, p 1J)J 
rD 

fid2 = f2 [('p2)J 

f1 is 1-31 alphanumeric characters (i.e., 
# 

f2 is 1-31 alphanumeric characters. Itiden-
A-Z, 0-9, , $, *, 0/0, :, @, -, or L-J). It tifies the fi Ie to whi ch records are to be 
identifies the fi Ie from which records are to transferred. 
be transferred. 

p2 is 1-8 a I phanumeri c characters. It speci-
a1 is 1-8 alphanumeric characters. It fies the password of file f2. If f2 has no pass-
specifies the account containing file flo If word, p2 is omitted. 
omitted, the log-in account is assumed. 

pl is 1-8 al phanumeri c characters. It 
specifies the password of file flo If f1 has 
no password, p 1 is omitted. 

~ 1 
':'MERGE fid1 [,range 1J INTO fid2,range2[,iJ @) 

range 1 = n 1 [-m lJ 

n 1 is the number of the 
first record to be transferred. 
If omitted, the enti re fi I e is 
transferred. 

m 1 is the number of the 
last record to be transferred. 
If omitted, only n 1 (or else 
the entire fi Ie) is transferred. 

t 
~ 

range2 = n2 [-m2J 

n2 is the number of the 
first record to be deleted 
from fi I e f2. This param-
eter must be specified. 

m2 is the number of the 
last record to be deleted 
from fi Ie f2. If omitted, 
only n2 is deleted. 

t 
I 

~ 
t 

i specifies the value by 
which sequence numbers are 
to be incremented. If omit­
ted, 1.000 is assumed. 

If file fl does not exist, contains no records within the specified range, or is not in keyed format, the command is 
aborted. If file f2 does not exist in the log-in account, the Editor creates such a file containing the specified 
records. 

Example: 

~MERGE NULL INTO VOID,100-125~ 

.. MERGE STARTED 

--DONE AT 120 

In this example, file NULL comprising 21 
records is transferred to file VOID beginning 
at sequence number 100.000 and continuing 
through sequence number 120.000. Any 
records in file VOID within the range 120.001 
through 125.000 are deleted. 

EDIT Subsystem 5-9 



CR (Suppress Terminator) 

CR controls the inclusion of the new-line character (XI15 1
) that normally terminates records created by the Editor. 

Example: 

I ~CR OFF@ 

~BUILD NEWFILE~ 

1. 000 HICKORY @! 

2.000 DICKORY@ 

3.000 DOCK ~ 

4.000 C§ 

::,EDIT NEWFILE ~ 

::'TS 1-3 @) 

HICKORY 

DICKORY 

DOCK 

* 

5-10 EDIT Subsystem 

W 
ON specifies that the X'15' terminator is not to 
be suppressed. This is the default condition when­
ever the Editor subsystem is entered. 

((IN) 

*CR ~ O'""'F' r-~~ 
- l IJ-

W 
OFF specifies that the X'15 1 terminator is to 
be suppressed on any records created by the Editor. 

In this exampie, the fiie NEWFiLE is created 
without the inclusion of new-line characters 
at the end of each record. Note that this has 
no effect on the typing of records by the Tele­
type. However, records output to paper tape 
would be affected. 



BP (Set Blank Preservation Mode) 

BP sets the blank preservation mode on or off. 

Example: 

,::EDIT OLDFILE @) 

':'SE 99;TS@) 

B $+3 

':'/B/S/BNEZ/ ;TS @) 

BNEZ $+3 

':'BP ON@) 

"'~SE 99 @) 

'::/Bt-.TEZ/S/B/ ;TS@) 

B $+3 

;':: 

~N specifies that all strings of blanks are to 
be preserved during intra-record operations. 

*BP {ON}e 
OFF 

~ 
OFF specifies that strings of blanks are not to 
be preserved, but are to be compressed to a single 
blank (minimum) or expanded as required to main­
tain the alignment of nonblank fields during edit­
ing operations. This is the default when the 
Editor is entered. 

In thisexample, record 99.000of file OLDFILE 
originally has two blanks between nonblank 
fields. When the string IIBII is replaced by 
IIBNEZ II , string 11$+3 11 is shifted right 2 col­
umns, compressing the intervening blank field 
to a single column. When IIBNEZ II is replaced 
by IIBII with blank preservation in effect, the 
single blank is preserved. 

EDIT Subsystem 5-11 



IN (Insert Records) 

IN causes the Editor to insert records into a file that has been opened for editing (via an EDIT command). 

l!) 
n is the sequence number to be given to the 
first record inserted into the file. 

*11\..1 '"'4 

~ 
i specifies the value by which sequence num-
bers of successive records are to be incremented. 
If omitted, the increment value specified in the 
most recent record editing command is used. If 
no such commands have been given, the value 
1. 000 is assumed. 

New records are inserted beginning with record n. If a record with sequence number n already exists in the file, 
it is replaced by the newly inserted record. Note that existing record n is the only record that may be replaced 
in this way. If a subsequently inserted record would equal or exceed the sequence number of an existing record, 
the IN command is terminated and the console bell is rung. 

The Editor prompts the user console with the sequence number of each record to be inserted. A null record (car­
riage return only) terminates the command. 

Example: 

!:.EDIT ANYFILE @> 

!:.IN 10,.5 @> 

10.000 LI,R3 X'Fl'@> 

10.500 STW,R3 ONE @> 

* 

5-12 EDIT Subsystem 

In this example, existing record 10. 000 of file 
ANYFILE is replaced by a new record typed by 
the user. New record 10.500 is also inserted 
into the file. Because a record with sequence 
number 11. 000 already exists, the command 
terminates and the bell is rung. ANYFILE re­
mains open for further editing. 



IS (Insert Records Without Prompt) 

IS causes the Editor to insert records into a file that has been opened for editing (via an EDIT command). 

~ 
n is the sequence number to be given to the 
first record inserted into the file. 

! 
*IS n[,iJ§ 

t 
~ specifies the value by which sequence num-

bers of successive records are to be incremented. 
If omitted, the increment value specified in the 
most recent record editing command is used. If 
no such commands have been given, the value 
10 000 is assumed. 

New records are inserted beginning with record n. If a record with sequence number n al ready exists in the fi Ie, 
it is replaced by the newly inserted record. Note that existing record n is the only record that may be replaced 
in this way. If a subsequently inserted record would equal or exceed the sequence number of an existing record, 
the command is terminated and the console bell is rung. 

The Editor does not prompt the user console with the sequence number of each record to be inserted. A null record 
(carriage return only) terminates the command. 

Example: 

.2ED IT ANYF ILE @) 

.21S 10,.5 @) 

L1,R3 X'Fl'@) 

STW ,R3 ONE @) 

In this example, existing record 10. 000 of file 
ANYFILE is replaced by a new record typed by 
the user. New record 10.500 is also inserted 
into the file. Because a record with sequence 
number 11. 000 al ready exists, the command 
terminates and the bell is rung. ANYFILE re­
mains open for further editing. 

EDIT Subsystem 5-13 



TV (Type Records) 

TY causes the Editor to type specified columns of one or more records in the currently open file. 

(0n specifies the sequence number of the first c specifies the column number of the first 
character that is to be typed. If omitted, the record to be typed. 

~ 

~ entire record is typed. 

*TY n [-mJ [,c[,d]] @) 

~ t 
--~----------------------------------~~ ~~-------------------------------------, 

~ m specifies the upper I imit of the range of ~ d speci fies the column number of the last 
sequence numbers within which records are to character that is to be typed. It may be in-
be typed. If omitted, only record n is typed. eluded only if c is also specified. If omitted, 

only the character in column c is typed (or 
the entire record, if c is omitted also). 

There is also an intra-record form of this command (see page 5-4). 

Example: 

I ':'EDIT SOURCEFILE 6 

2TY 1-2,4,8 @ 

1.000 EQU 

1.200 SYST 

1.400 REF 

1.600 DEF 

1.800 PAGE 

2.000 ITIAL 

.'. 

5-14 EDIT Subsystem 

in th is exampi e, the characters in col umns 
4 through 8 of all records in the sequence 
number range 1-2 of file SOURCE FILE are 
typed following the sequence number of each 
record. 



TC (Type Compressed) 

TC causes the Editor to type specified columns of one or more records in the currently open file. Any nonblank 
strings within the columns typed are shifted to the left to compress any blank strings to a single blank. This com­
pression affects only the typed output; the records themselves are not affected. 

~n specifies the sequence number of the first o c specifies the column number of the first 
record to be typed. 

*TC 

character that is to be typed. If omitted, the 
entire record is typed. 

I F 
n[-m] [,c[,d]] @) 

~ ______ ~~ ~t ______ __ 
rD m specifies the upper limit of the range of ~ d specifies the column number of the last 

sequence numbers within which records are to character that is to be typed. It may be in-
be typed. If omitted, only record n is typed. eluded only if c is also specified. If omitted, 

only the character in column c is typed {or the 
entire record, if c is omitted also}. 

Example: 

*EDIT SOURCEFILE~ 

2TC 1-2,1, 7 ~ 

1.000 A EQU 

1.200 SYS 

1.400 B REF 

1.600 C DEF 

1.800 PAG 

2. 000 ?'~INITIA 

In this example, character strings found in col­
umns 1 through 7 of records 1 through 2 of fi Ie 
SOURCEFILE are typed, in compressed format, 
following the sequence number of each record. 

EDIT Subsystem 5-15 



TS [Type Without Sequence) 

TS causes the Editor to type specified columns of one or more records in the currently open file. Its function is 
si mi I ar to TY, except that sequence numbers are not typed for each record. 

:..0 n specifies the sequence number of the first 
record to be typed. 

~ m specifies the upper I imit of the range of 
sequence numbers within which records are to 
be typed. If omitted, only record n is typed. 

~ c specifies the column number of the first 

~ 

character that is to be typed. If omitted, the 
entire record is typed. 

1 
d specifies the column number of the last 
character that is to be typed. It may be in­
cluded only if c is also specified. If omitted, 
only the character in column c is typed {or the 
entire record, if c is omitted also}. 

There is also an intra-record form of this command (see page 5-39). 

Example: 

I 
*EDIT SOURCEFlLE§ 

'::TS 1-2,1,7 @l 

A EQU 

SYS 

B REF 

C DEF 

PAG 

*INITIA 

* 

5-16 EDIT Subsystem 

In this exampie, the characters in columns 1 
through 7 of all records in the sequence num­
ber range 1-2 of file SOURCEFILE are typed 
without the sequence number of each record. 



DE (Delete Records) 

DE causes the Editor to delete, in the currently open file, all records whose sequence numbers I ie in a specified 
range. 

Example: 

~'cEDIT SOMEF ILE @J 

::,DE 25-30@ 

~ specifies the lower limit of the range of se-
quence numbers in which records are to be deleted. 
This parameter must be specified. 

~ 
m specifies the upper limit of the range of se-
quence numbers in which records are to be deleted. 
If omitted, only record n is deleted. 

In this example, any records in the range 
25.000 through 30.000 of the file SOMEFILE 
are deleted. The file remains open for further 
editing. 

EDIT Subsystem 5-17 



FD (Find and Delete) 

FD causes the Editor to search a given range of records (in the currently open file) for a specified character string 
between designated columns. Any records within the affected range that contains the specified character string 
within the designated columns is deleted from the file. 

CD . f" I _ _ I r I r" . n speCI les tne sequence numoer or tne first ::.D string is the character string identifying the 
record to be searched. record or records to be deleted. 

! 
*FD n[-m],/string/[,c[,dJJ § 

...----__ --'t t t~_---, 
I 1 

~ ·f" h m speci les t e sequence 
number of the last record to 
be searched. If omitted, only 
record n is searched. 

Example: 

':'EDIT SOHEFILE@) 

::,FD 10-20,ICW,R7/,10,14@ 

--002 RECS DLTED 

5- 18 E OIT Subsystem 

4 
c specifies the first col-
umn of the field to be 
searched. If omitted, col­
umn 1 is assumed. 

CD 
d specifies the last col-
umn of the field to be 
searched. It may be speci­
fied only if c is also speci­
fied. If d is omitted, the 
value 140 is assumed. The 
fiel d c through d must be 
large enough to contain the 
specified string, and the value 
of d must be greater than 
that of c. 

In this exampie, the Editor deietes from Hie 
SOMEFllE two records located within the range 
of sequence numbers 10. 000 through 20. 000 
and containing the string ICW,R7" in columns 
10 through 14. 



FT (Find and Type) 

FT causes the Editor to search a given range of records (in the currently open file) for a specified character string 
between designated columns. The Editor will type the sequence number of each record satisfying the search criteria. 

~) 
n specifies the sequence number of the first ~ string is the character string identifying those 

2 

record to be searched. 

m specifies the sequence 
number of the I ast record to 
be searched. If omitted, 
only record n is searched. 

Example: 

?':EDIT SOMEFILE 9 

2FT 10-20, /BE/ ,10,11 @) 

records whose sequence numbers are to be typed. 

~ 
*FT n[-m],/string/[,c[,d]]@ 

4 
c specifies the first col-
umn of the field to be 
searched. If omitted, col­
umn 1 is assumed. 

5 
d specifies the last col-
umn of the field to be 
searched. It may be speci­
fied only if c is also speci­
fied. If d is omitted, the 
value 140 is assumed. The 
field c through d must be 
large enough to contain the 
specified string, and the 
val ue of d must be greater 
than that of c. 

In this example, the Editor types the sequence 
number 15. 000, indicating that the string "BE" 
in columns 10 through 11 was found only in 
one record within the range 10. 000 through 
20. 000 in file SOMEFILE. 

EDIT Subsystem 5-19 



MD [Move and Delete Records) 

MD causes the Editor to delete all records in a specified range and to then move records in another range into this 
area. The two ranges must not overlap. 

~n specifies the sequence number of the first 
~ 

k specifies the lower limit (i.e., the se-
record that is to be moved. 

j 

quence number) of the range of records to be 
deleted. 

':MD n[-m J,k[-pJ [,iJ§ 

.--------~j t t ______ --. 
I I 

~ Of· h m speci les t e sequence 
of the last record that is to 
be moved. If m is omitted, 
only record n is moved. 

4 
P specifies the upper 
I imit of the rnage of rec­
ords to be deleted. If p is 
omitted, only record k is 
deleted. 

~o Of ° h 0 
I speci les t e Incre-
ment value to be used in re­
numbering recordso If i is 
omitted, the most recent in­
crement value specified in 
a record edit command is 
used (or 1, if no increment 
value has been specified 
thus far). 

The first record (record n) is renumbered as record k. Successive records from the range n through m are renumbered 
consecutively higher, with increment i. As each record from the range n through m is moved, that record is deleted 
from the original area. At the end of this operation, a message is printed specifying the new sequence number of 
the I ast record moved from the range n through m. 

Example: 

I 2MD 5-21,100-101,.02~ 

--DONE AT 100.32 

5-20 EDIT Subsystem 

In this example, records 100 through 101 are 
deleted and records in the range 5 through 21 
are moved to that area. The 17 records moved 
are renumbered 100.000 through 100.320, in 
increments of .020. 



MK (Move and Keep) 

MK causes the Editor to delete, in the currently open file, all records in a specified range and to then move records 
in another range into this area. Its action is similar to MD, except that records in the range n-m are not deleted as 
they are moved. 

~n specifies the sequence number of the first 
~ 

k specifies the sequence number designating 
record that is to be moved 

rD ·f· h m speci les t e se-
quence number of the last 
record that is to be moved. 
If omitted, only record n 
is moved. 

Example: 

!:.EDIT AFILE @l 

!:.MK 1,20@l 

--DONE AT 20.000 

the lower limit of the range of records to be 
deleted. 

I ~ 
*MK n[-m J,k[-p J [,iJ @) 

,----_-----It t~-----, 
I I 

~ °fo h p speci les t e sequence rDo 
I specifies the incre-

number designating the upper 
Ii mi t of the range of records 
to be deleted. If omitted, 
only record k is deleted. 

ment value to be used for 
renumbering records. If 
omitted, the most recent 
increment va I ue speci fi ed 
in a record edit command is 
used (or 1, if no such value 
has been specified). 

In this example, record 1. 000 of file AFILE is 
moved to sequence number 20. 000 but is not 
deleted from its original location. 

EDIT Subsystem 5-21 



RN (Renumber Record) 

RN causes the Editor to renumber a specified record of the currently open file, deleting it from its old location. 

Example: 

*EDIT THISFILE@l 

"kRN 10, 2 a . 1 @) 

* 

5-22 EDIT Subsystem 

~ specifies the sequence number of the record 
that" is to be renumbered. Record n must exist. 

~ 
*RN n,k § 

t 
2 

k specifies the sequence number that is to be 
assigned to the record currently numbered n. Rec­
ord k must not exist prior to this command. 

In this example, record 10. 000 of file THISFILE 
is renumbered 20. 100 and moved to the corre­
sponding location in the file. 



CM (Commentary) 

CM causes the Editor to insert commentary into specified columns of each successive record of the currently open file, 
beginning at a specified sequence number. 

~ specifies the sequence number of the first 
record into which commentary is to be inserted. 

I 
*CM n,c @) 

~ specifies the column number at which the in-
serted commentary is to begin in each record. 

The Editor prompts with the sequence numbers of successive records, beginning with record n. The user types the 
desired commentary following each sequence number. A null record (carriage return onl y) terminates the command. 

Example: 

!:.EDIT AFILE @) 

!:.CM 20,30@) 

2 O. 000 REWRN ADDR @) 

20 .100 SUBR ENTRy@l 

21 • 000 READ NXT RCD @l 

22.000 0V 

In this example, commentary is added to records 
20.000, 20.100, and 21.000 of file AFILE. 
Commentary begins at column 30 in each record. 

EDIT Subsystem 5-23 



SS (Set and Step) 

55 causes the Editor to start at a specified record in the currently open fi Ie and proceed to each record in successiont 

accepting one I ine of intra-record commands to update the current record. 

~ 'f' h n specl les t e sequence 
number of the first record 
to be edited. 

l 

~ 
c specifies the leftmost 
column in which editing may 
be done. If omitted t intra­
record commands will apply 
to columns 1 through 140. 

t t t 
*SS n[/c[/d]] €V 

~ d specifies the rightmost 

I 

column in which editing may 
be done. It may be speci­
fied only if c is also speci­
fied. If omitted, the value 
140 is assumed. 

Intra-record commands are applicable only to characters and strings of characters within the specified column limits 
of each record. Characters outside these limits may not be examined by intra-record commands. 

The Editor prompts by typing the sequence number of each record in succession, followed by a double asterisk. The 
user may then type a line of intra-record commands to be applied to the current record. The 55 command is termi­
nated by typing a null record (carriage return only) following the double asterisk. 

Example: 

~EDIT THISFILEEY 

!:.SS 1§ 

1.000*~'( /BE/S/BEZ/§ 

2.000** /F:/S/M:/~ 

2.500** ® 

* 

5-24 EDIT Subsystem 

In th is exampl e t records 1. 000 and 2.000 of fi Ie 
THI5FILE are edited by intra-record commands 
following use of the 55 command. The SS com­
mand is then terminated by a null record follow­
ing the typing of sequence number 2.500. 



ST (Set, Step, and Type) 

ST causes the Editor to start at a specified record in the currently open file and type each record in succession, ac­
cepting one line of intra-record commands to update the current record. 

~ ·f· h n speci les t e se-
quence number of the 
fi rs t re cord to be ed ited. 

I 

~ specifies the leftmost 
column in which editing 
may be done. If omitted, 
intra-record commands will 
apply to columns 1 through 
140. 

~ ~ 
*5T n[,c[,d]] @) 

~ 
d specifies the rightmost 

I 

column in which editing may 
be done. It may be speci­
fied only if c is also speci­
fied. If omitted, the value 
140 is assumed. 

Intra-record commands are applicable only to characters and strings of characters within the specified column limits 
of each record. Characters outside these limits may not be examined by intra-record commands. 

The Editor types each record in full, following the sequence number, and then prompts by typing a double asterisk 
on the following line. The user may then type a line of intra-record commands to be applied to the current record. 
The action of an ST command is terminated by typing a null record {carriage return only} following the double asterisk. 

Example: 

'::EDIT SOMEFILE @) 

'::ST 6,8,16@) 

6.000 DEL22 BAL,R1S EXNEXT 

** /R1S/S/R10/@) 

7.000 B DEL26 

*"1< NO@) 

8.000 DEL14 BAL,R1S CBINT 

In this example, record 6. 000 of file SOMEFILE 
is edited by an intra-record command following 
use of the ST command. Records 7. 000 and 
8. 000 are also displayed but not altered. The 
ST command is terminated by a null record fol­
lowing the display of record 8. 000. 

EDIT Subsystem 5-25 



SE (Set Intra-Record Mode) 

SE causes the Editor to accept successive lines of intra-record commands that are to be applied to a specified range 
of records in the currently open file. 

~n specifies the lower limit of'the range of W c specifies the leftmost column that may be 
records to be edited. edited. If omitted, column 1 is assumed. 

l I 
*SE n [-m] [,e [,d]] @ 

,J 1 
~~------------------------------------------------------------------------~--, ~~----------------------------------------------------------------------------~ 

~m specifies the upper limit of the range of ~ d specifies the rightmost column that may be 
records to be edited. If omitted, only record edited. It may be specified only if c is also 
n is edited. specified. If omitted, column 140 is assumed. 

Intra-record commands input following an SE command are applied, in order, to each record in the range n through 
m. If several commands are entered on one line, all of the commands on that line are executed and applied to the 
current record before the next record is edited. The first occurrence of a file-oriented or record-oriented command 
terminates the effect of the SE command. 

Intra-record commands are applicable only to characters and strings of characters within the specified column limits 
of each record. Chara,cters outside these limits may not be examined by intra-record commands. 

If the SE command is used in the same line as other intra-record commands, it must be the first command in the line. 

Example: 

,::,ED IT MYF ILE @ 

'::'SE 1-lOO;!=X'OOC4CSD3'!S!=X'D3'!@ 

,::,EDIT ANOTHERFILE@) 

* 

5-26 EDIT Subsystem 

In this example, an S (Substitute String) intra­
record command is applied to all records of file 
MYFIlE that lie within the range 1. 000 through 
100. 000. The second EDIT command terminates 
the SE command. Note that intra-record com­
mands appearing in the same I ine are separated 
by a semicolon. 



S (Substitute String) 

5 causes the Editor to locate a given occurrence of a specified string and replace it with another specified string. 
The records and columns examined by the 5 command depend on the action of the current SE, 55, or ST command. 

~j specifies that the jth 
occurrence of string 1 be­
tween affected columns is 
to be replaced by string2. 
If j =0, all such occur­
rences are replaced. If j 
is omitted, only the first 
occurrence is replaced. 

Example: 

2EDIT AFILE (§ 

I 

*SE l-lO;O/EQU/S/SET/(§ 

2 
I'---- stri ng is the character string2 is the character 

t 

string to be replaced. It 
must lie wholly within col­
umns c and d specified by 
the current SE, 55, or ST 
command. 

stri ng to be substituted for 
stringl. If string2 is longer 
or shorter than string 1, sub­
sequent fields are shifted 
according to the current 
blank preservation mode 
(see description of BP com­
mand). If string2 is longer 
than string 1, it may extend 
beyond column d when in­
serted into a record. 

':'[j]/string 1/S/string2/@ 

In this example, every occurrence of string 
IIEQU II in records 1. 000 through 10. 000 of 
file AFILE is replaced by the string IISETII. 

EDIT Subsystem 5-27 



D (Delete String) 

D causes the Editor to locate a given occurrence of a specified string and delete it. The records and columns ex­
amined by the D command depend on the action of the surrent SE, SS, or ST command. 

CD 
j specifies that the jth occurrence of the speci-
fied string between affected columns is to be deleted. 
If j =0, all such occurrences are deleted. If j is 
omitted, only the first occurrence is deleted. 

W 

1 , 
* r e] / . e /f"'\ -lJ / string u 

I 
string is the character string to be deleted. It 
must lie wholly within columns c and d specified by 
the current SE, SS, or ST command. Subsequent 
fields are shifted according to the current blank 
preservation mode (see description of BP command). 

If a deletion would leave a gap in a nonblank field, the righthand portion of the field is shifted left to close the gap. 

Example: 

I 
!:EDIT ANYFILE@ 

*SE 1-20, 10,15;/PAGE/DEV 

* 

5-28 EDIT Subsystem 

In this example, the first occurrence of string 
"PAGE" within columns 10 through 15 in 
records 1. 000 through 20. 000 of file ANYFILE 
is deleted. 



E (Overwrite String and Extend Blanks) 

E causes the Editor to start at the column occupied by the first character of a given occurrence of a specified string 
and overwrite with another specified string followed by trail ing blanks. 

CV Of ° h h· h J specl les t at t e Jt 
occurrence of string 1 be­
tween affected col umns is 
to be overwritten by string2. 
If j is omitted, only the first 
occurrence is overwritten; 
j =0 may not be specified, 
since blank extension pre­
cludes multiple substitutions 
within the same record. 

I 

Example: 

?'<"EDIT THISFILE @J 

*SE 1-99;1/ LOC1/E/ LOC2/@J 

W 0 1 0 h h string IS t e c aracter 
string to be overwritten. It 
must lie wholly within col­
umns c and d speci fied by 
the current SE, SS, or ST 
command. 

~ I 
':'[j]/string 1/E/string2/§ 

:.Do 2 ·h h stn ng IS t e c aracter 

I 

string that is to be written 
over string 1. If stri ng2 is 
longer than string 1, it may 
extend beyond column do 
Trailing blanks are written 
following string2 through 
column 140 0 

In this example, the first occurrence of the 
string II LOC1 11 in records 1.000 through 
99.000 of file THISFILE is overwritten by 
string" LOC2 11 followed by trailing blanks. 

EDIT Subsystem 5-29 



kE (Overwrite Column and Extend Blanks) 

kE causes the Editor to start at a given column and overwrite with a specified string followed by trai I ing blanks. 

Example: 

I 2.ED1T Sot.1EFILE0j 

*SE 18-20;lSE/R6/Ej 

5-30 EDIT Subsystem 

W 
k specifies that the contents of column k are to 
be overwritten by the specified string. Column k 
must iie within coiumns c and d specified by the 
current SE, 55, or ST command. 

! 
* k E/ str i ng/tR"En - '-.-/ 

1 
~. . h h . b· I string IS t e c aracter string to e written. t 

may extend beyond column d and is followed by 
trailing blanks through column 140. 

In this exampie, the string HR6H, foiiowed by 
trai I ing blanks, is written over the contents of 
column 15 in records 18.000 through 20. 000 of 
file SOMEFILE. 



o (Overwrite String) 

o causes the Editor to start at the column occupied by the first character of a given occurrence of a specified string 
and ov~rwrite with another specified string. 

rDo Of ° h h 0 h J spec) )es t at t e Jt 
occurrence of string 1 be­
tween affected col umns is 
to be overwritten by 
string2. If j is omitted, 
only the first occyrrence 
is overwritten. If j =0, all 
occurrences are overwritten 

I 

2 
'-' stri ng 1 is the character 

string to be overwritten. It 
must lie wholly within col­
umns c and d specified by 
the current SE, 55, or ST 
command. 

~ ~ 
':'[j]/string 1/O/string2/@) 

r!). 2 . h h stn ng IS t e c aracter 

I 

string that is to be written 
over stri ng 1. If stri ng2 is 
longer than string 1, it may 
extend beyond col umn d. 

In the case where j = 0, string2 is not scanned by the Editor after string 1 is overwritten. The Editor begins scanning 
with the column following string2. 

Example: 

~'<"EDIT SOMEFILE @) 

7~SE 1-10;0/ ADR3/0/ ADR4/@) 

In this example, every occurrence of the 
string II ADR3 11 in records 1. 000 through 
10. 000 of file SOMEFILE is overwritten by 
string II ADR411. 

EDIT Subsystem 5-31 



kO (Overwrite Column) 

kO causes the Editor to start at a given column and overwrite with a specified string. 

Example: 

::,EDIT THISFILE 8 

*SE 15-20;110/R3/EV 

* 

5-32 EDIT Subsystem 

~ 
k specifies that the contents of column k are to 
be overwritten by the specified string. Column k 
must lie within columns c and d specified by the 
current SE, 55, or ST command. 

~ 
* kO/string/8 

- 1 
~. . h h . b· I string IS t e c aracter strIng to e written. t 

may extend beyond column d. 

In this example, the string "R3" is written over 
the contents of column 11 in records 15.000 
through 20.000 of fi Ie THISFILE. 



P (Precede String) 

P causes the Editor to insert a specified string at the column occupied by the first character of a given occurrence of 
a specified string, shifting characters of the displaced string to the right as necessary. 

~. ·f· h h· h J specl les t at t e Jt 
occurrence of string 1 be­
tween affected columns is 
to be preceded by string2. 
If j is omitted, only the 
fi rst occurrence is preceded 
by string2. If j = 0, all 
occurrences are preceded by 
string2. 

l 

2 
~string 1 is the character 

that is to be preceded by 
string2. It must lie wholly 
within columns c and d 
specified by the current 
SE, SS, or ST command. 

t ~ 
':'[j]/string liP /string2/§ 

w . 2 . h h stn ng 1St e c aracter 

J 

string that is to precede 
stri ng 1. If string2 is longer 
than string 1, it may extend 
beyond column d. 

In the case where j = 0, the Editor inserts string2 at all occurrences of string 1 between columns c and d. Scanning 
for the next occurrence of string 1 resumes following the last character of the previously shifted string 1. If a given 
occurrence of string 1 is shifted beyond column d, due to previous insertions, it will not be scanned. 

Example: 

"'~ED IT THEF ILE @) 

2SE 25;TS;O/XY/p/,I;TS~ 

XXYXYZWXYZ 

X,XY,XYZW,XYZ 

In this example, a comma is inserted prior to 
each occurrence of the string II XY" in record 
25.000 of file THEFILE. 

EDIT Subsystem 5-33 



kP (Precede Column) 

kP causes the Editor to insert a specified string at a given column, shifting displaced characters to the right as 
necessary. 

Example: 

':'EDIT SOMEFILE 8 

':'SE 6;TS;7P/G/;TSEV 

ABCDEFHIJ 

ABCDEFGHIJ 

* 

5-34 EDIT Subsystem 

~ 
k specifies that the contents of column k are to 
be preceded by the specified string. Column k must 
lie within columns c and d specified by the current 
SE, SS, or ST command. 

I 
: kP /string/S 

~tring is the character string to be inserted. It 
may extend beyond column d. 

In this example, the string "GII is inserted 
prior to the contents of col umn 7 in record 6 
of file SOMEFILE. Displaced characters are 
shifted one column to the right. 



F (Follow String) 

F causes the Editor to insert a specified string following the last character of a given occurrence of a specified string, 
shifting displaced characters to the right as necessary. 

~O Of ° h thO h j speci les tat e Jt 
occurrence of string 1 be­
tween affected columns is 
to be followed by string2. 
If j = 0, all such occur­
rences are followed by 
string2. If j is omitted, 
only the first occurrence is 
followed by string2. 

I 

~ .• 1 0 h h string IS tee aracter 
string to be followed by 
strihg2. It must I ie wholly 
within columns c and d 
specified by the current SE, 
55, or ST command. 

~ • 
':'[j]/string l/F /string2/§ 

3 
stri ng2 is the character 
string that is to follow 
stri ng 1. It may extend be­
yond column d. 

In the case where j = 0, the Editor inserts string2 at all occurrences of string 1 between columns c and d. Scanning 
for the next occurrence of string 1 resumes following the last character of string2. If a given occurrence of string 1 
is shifted beyond column d, due to previous insertions, it will not be scanned. 

Example: 

~'~EDIT THATFILE § 

~'~SE 1; TS; /LOC/F /+1/; TS§ 

LW,4 LOC LOAD MASK FROM LOC 

LW,4 LOC+1 LOAD MASK FROM LOC 

In this example, the string "+1" is inserted fol­
lowing the first occurrence of string "LOC" in 
record 1. 000 of file THATFILE. 

EDIT Subsystem 5-35 



kF (Follow Column) 

kF causes the Editor to insert a specified string following a given column, shifting displaced characters to the right 
as necessary. 

Example: 

::'EDIT OLDFILE@ 

::'SE 5;TS;lOF!B!;TS@ 

AAAAAAAAAABAA 

* 

5-36 EDIT Subsystem 

W. k speci fies that the contents of column k are to 
be followed by the specified string. Column k must 
lie within columns c and d specified by the current 
SE, 55, or ST command. 

I 
t 

* kF/string/~ 

J). ·h h . b· d I strIng IS t e c aracter stnng to e Inserte. t 
may extend beyond column d. 

In this example, the string "B" is inserted fol­
lowing column 10 in record 5 of fi Ie OLDFILE. 
Displaced characters are shifted one column to 
the right. 



R or L (Shift at Substring) 

R or L causes the Editor to shift, to the right or left, a contiguous string of nonblank characters beginning with a 
given occurrence of a specified substring. 

~j specifies that the jth occurrence of the 
specified substring between affected columns 
is to be shifted, together with all subsequent 
contiguous nonblank characters. If j is ~~it­
ted, only the first such occurrence is shifted. 
Note that j = 0 may not be specified for this 
command. 

~ R specifies that the string is to be shifted 
to the right. A shift to the right is equivalent 
to the insertion of blank characters prior to the 
specified string. 

L specifies that the string is to be shifted 
to the left. Columns to the left are' overwritten 
and blanks are placed in vacated columns to 
the right. 

I 
':(jJ/string/{~}s § 

I 

W. . h b' 'd 'f' h b strl ng IS t e su string I enh yl ng t e e-
ginning of the character string to be shifted. 
The substring must lie wholly within columns 
c and d specified by the current SE, 55, or 
ST command. The specified substring may 
contain embedded blanks, but the string to 
be shifted terminates with the first blank fol­
lowing the specified substring. 

Example 

"kEDIT THEFILE 8 

*SE lOO;TS;/IN/L2;TS~ 

THE RAIN IN SPAIN 

THE IN IN SPAIN 

~ s specifies the number of columns by which 
thestringistobeshifted. The shifted string may 
extend below column c or beyond column d 
when the sh i ft has been performed. 

In this example, the first occurrence of the 
string IJIN II in record lOO.OOOoffile THEFILE 
is shifted left by two columns. 

EDIT Subsystem 5-37 



kR or kL (Shift at Column) 

kR or kL causes the Editor to shift, to the right or left, a contiguous string of nonblank characters beginning with 
the character at a specified column. 

WI k specifies the begin-
ning of the character string 
to be shifted. Column k 
must lie within columns c 
and d specified by the cur­
rent SE, 55, or ST com­
mand. The string to be 
sh if ted terminates with the 
first blank following the 
specified column. 

Example: 

"'~EDIT THEFILE @l 

~SE lOl;TS;6R3;TS@l 

LIES MAINLY IN THE 

LIES MAINLY IN THE 

5-38 EDIT Subsystem 

I 

~ R specifies that the 
string is to be shifted to the 
right. A shift to the right 
is equivalent to the inser­
tion of blank characters 
prior to the specified string. 

L specifies that the 
string is to be shifted to the 
left. Columns to the left 
are overwritten and blanks 
are placed in vacated col­
umns to the right. 

s specifies the number of 
columns by which the string 
is to be shifted. The shifted 
string may extend below col­
umn c or beyond column d 
when the sh i ft has been 
perfoimed. 

In this example, the string "/vAINLY" begin­
ning at column 6 in record 101.000 of file 
THEFILE is shifted right by three columns. 
String "IN" is also displaced three columns 
to the right, to maintain a single blank be­
tween nonblank strings, but string "THEil is 
unaffected (blank preservation is assumed to 
be OFF; see description of BP command). 



TS (Type Without Sequence) 

T5 causes the Editor to type the contents of the record currently open for editing under control of an 5E, 55, or 5T 
command. If more than one record is processed by the current 5E, 55, or 5T command, each such record is typed 
after all editing up to the T5 command has been done. Sequence numbers are omitted. 

Example: 

:::EDIT AFILE@) 

:::SEll-13; TS @l 

PRINXT BAL,R15 SPACE 

LI,R8 COMPRT 

BAL , R15 GEXTl 

:9 
Intra-record commands may precede the T5 
command. 

l 
.:. [. · · ;] T5[; ... ] @ 

1 
~ Intra-record commands may follow the T5 

command. 

In this example, records 11. 000 through 
13. 000 of file AFILE are typed without 
sequence numbers. 

EDIT Subsystem 5-39 



TV (Type Including Sequence) 

TY causes the Editor to type the contents of the record currently open for editing under control of an 5E, 55, or 5T 
command. If more than one record is processed by the current 5E, 55, or 5T command, each such record is typed 
after all editing up to the TY command has been done. Each record typed is preceded by its sequence number. 

Example: 

-,':F,DTT FILE @l 

~ lId .1 T'y' mtra-recora commanas may prece e the 
command. 

l 
* r ... ;1 Tyr; ... 1 Q 

- '- .~ L" J ~ 
j 

I 
~ntra-record commands may follow the TY 

command. 

:':SE10; TY; /RERE/P/T/; TY €V 
10.000 RERE BAL,R1 EXIT 

10.000 THERE BAL,R1 EXIT 

In this example, record 10.000 of file FILE is 
typed before and after editing, preceded in 
each case by its sequence number. 

* 

5-40 EDIT Subsystem 



JU (Jump) 

JU causes the Editor to jump to a specified record while under the control of an 55 or ST command, and to continue 
processing records from that point. 

Example: 

-"EDIT SOMEFILE @J 

1.OOO-Jd~ /BSD/S /BAD@J 

2 .OOO-Jd~37E/X/; JUg @) 

9 .OOO-Jd~ 

~ Intra-record commands may precede the JU 
command, but it must be the last command on 
the line. 

~ 
:.: [ ... ;]J Un @) 

rDn speci fies the sequence number of the record 
to be processed next. This may be either forward 
or backward from the most recently processed record. 

In this example, the Editor processes records 
1. 000 and 2. 000 of fi Ie SOME FILE under con­
trol of an 55 command. It then jumps to rec­
ord 9.000 and continues under control of the 
55 command. 

EDIT Subsystem 5-41 



NO (No Change) 

NO causes the Editor to perform no editing on the current record, while under control of an 55 or ST command. 

Example: 

-kED IT THEF ILE e 
2SS U§ 

1.OOO**/$+3!S!LOC22!e 

2 • OOO*-kNO @) 

3 .OOO*"'~ 

5-42 EDIT Subsystem 

**NO@) 

In this example, the Editor performs no edit­
ing on record 2.000 of file THEFILE under con­
trol of an 55 command. Record 3.000 is then 
opened for editing. 



RF (Reverse Blank Preservation) 

RF causes the Editor to reverse the blank preservation state temporarily. Blank preservation is restored to its initial 
state (ON or OFF) when a new prompt character is typed. Thus, RF must be used as part of a compound command 
line. More than one RF command may be used in a single line. 

Example: 

'::'EDIT AFILE @l 

'::'ST 10 @l 

10.000 L5 LW,4 X 

~h'<'RF ;4R2; TY @l 

10.000 L5 LW,4 X 

11.000 STW,4 Y 

~ Intra-record commands may precede the RF 
command but are unaffected by it, since com­
mands are executed from I eft to right. 

! 
~ [ .. · ;] RF; ... @ 

t 
w/ One or more intra-record commands must fol-

low the RF command. 

In this example, record 10. 000 of file AFILE is 
edited with blank preservation (initially OFF) 
reversed, so that two spaces are maintained be­
fore "X" when "LW,4" is shifted to the right. 

EDIT Subsystem 5-43 



EDIT MESSAGES 

Messages Meaning 

· . EDIT STOPPED The record editing mode has been terminated. 

--OVERFLOW More than 140characters have been typed on a line or characters 

I have been shifted past column 1 or 140. Excess characters are lost. 

-FILE EXISTS: CAN'T BUILD An existing file has the same name as that specified in a BUILD 
command. 

· .COPYING A COpy operation has begun. 

• .COPY DONE I A COPY operation has been completed. 

-P2: FILE EXISTS A COpy ON command specified the name of an existing file. 

-Pl: NO SUCH FILE A COPY command has specified that a nonexistent fi Ie is to be 
copied. 

-Pl: FILE NOT KEYED & P3 NULL A fi Ie to be copied has no sequence numbers and no sequencing 
has been spec ified. The COpy operation has been aborted. 

-NO SUCH FILE A specified file does not exist. 

.. DELETED A specified file has been deleted . 

-FILE NOT KEYED: MUST COpy A specified fi Ie has no sequence numbers. The fi Ie must be 
copied with sequencing specified. 

-NOT ON/OFF A parameter other than ON or OFF has been specified in a BP 
or CR command. 

--EOF FiIT One or both sequence numbers specified are higher than the 
highest one in the file. 

--NOTHING TO DE No records (to be deleted) were found in the specified range. 

--xxx RECS DLTED The indicated number of records have been deleted. 

--NONE No records have been deleted as the result of an FD operation. 

--DONE AT x A spec ified operation has been completed. The value x is the 
current sequence number of the last record affected. 

--NOTHING TO MOVE No records (to be moved) were found in the specified range. 

--CUTOFF AT x(y) A specified operation could not be completed because of a 
conflict between an existing sequence number and a new one. 
The value x is the current sequence number of the last record 
affected (formerly record y). 

--RNG OVERLAP Specified ranges of sequence numbers overlap. The command 
has been ignored. 

-Pl: NO SUCH REC 

I 
A specified record does not exist. The command has been 
aborted. 

-P2: REC EXISTS 

I
I 

A specified record already exists. The command has been aborted. 

5-44 EDIT Subsystem 



EDIT MESSAGES (cont.) 

Message Meaning 

-Cn: COMND ILGL HERE The nth command of the current line is invalid and the intra-
record mode has been terminated. 

--Cn: OVERFLOW The nth command of the current line has caused characters to be 
shifted past col umn 140. Processing continues. 

--Cn: NO SUCH STRING A specified string was not found and no substitution was made in 
processing the nth command of the current line. Processing 
continues. 

-MISSING sE No sE, 55, or sT command is currently in effect. The specified 
intra-record task has been aborted. 

--Cn: IALLI IGNORED The value 0 was specified for j. Since this value is not 
meaningful for the command, the value 1 has been assumed. 

EDIT Subsystem 5-45 



6. FORTRAN SUBSYSTEM 

GENERAL 

The FORTRAN subsystem enables the user to write, compi Ie, execute, and save FORTRAN programs from an on-I ine 
terminal. 

COMPILER INPUT/OUTPUT ASSIGNMENTS 
During compilation there are various inputs to the compiler, and various outputs will be produced. The user may set 
up his own I/O assignments by using the Executive command ASSIGN prior to calling the FORTRAN subsystem (refer 
to Chapter 3 of this manual.) Default assignments wi II be made automatically for any input/output assignments not 
specified. Table 6-1 lists the compiler input/output DCBs. 

Table 6-1. Compiler Input/Output DeB Assignments 

DCB Description 

M:BO Binary output of assembled object program. By default this goes into temporary file 
BOTEMPx, where x is the special ID (see Chapter 3) for the user's terminal; or, the oper-
ator may specify a file of his own. Th i sis the fi I e spec i fi ed to the Loader subsystem when 
it is desired to run the program. 

M:DO Diagnostic output. Images of source lines in which errors are found will be printed, along 
wi th error messages. Default assignment is the user's terminal. Also, diagnostic output is 
always included if a program listing is produced; hence if M:LO is assigned to a different 
file than M:DO, the diagnostic will be output to both files. 

M:LO Listing output. Default assignment is the user's terminal. 

M:SI Source language input. Default assignment is the user's terminal. A previously created 
fi Ie may also be specified through use of the EDIT subsystem or through M:SO in a previous 
compi lation. 

M:SO Source Output. This is a means of saving source language that has been typed and cor-
rected. Default assignment is to SOTEMP, a temporary file. 

Note: Refer to Tables 3-4 and 3-5. 

COMPILER OPTIONS 

The subsystem is called by typing FO following the Executive prompt character. The Executive types the rest of the 
word and turns control over to the subsystem which requests a list of options. 

1 FORTRAN 

OPTIONS: 

Any of the options listed in Table 6-2 may be selected, separating them with commas. If a mistake is made, hit 
o X and start the list again. Terminate the list and each line with @). To specify no opt..ion list, simply hit @l. 

Table 6-2. Compiler Options 

Option Description 

BO or NOBO - Binary Output fi Ie. Operator could specify NOBO when he does not expect to be 
able to execute but would like diagnostics. 

LS or NOLS List Source language. Operator might specify NOLS when recompiling a program 
-

which has previously been debugged, if another program listing is not desired. 

FORTRAN Subsystem 6-1 

I 



Table 6-2. Compiler Options {cont.} 

Option Description 

SO or NOSO Source Output. This saves a copy of the source program in a file on the RAD. It -
is a means of saving a program typed in at the terminal. A request for this option 
is ignored if the input is from a disc file. 

DB or NODB Debugg i ng Mode. If this option is specified, then it is possible to stop, start and ---
I 

trace eXecution, and obtain valUeS of piOgram variables during execution of the 
program. 

S or NOS Symbolic machine language instructions may be written within FORTRAN source 
programs. 

Note: The operator may request to have or not have any of the above options. The underl ined alterna-
tives will be assumed when there is no specification. 

SOURCE LANGUAGE INPUT 
During com pi lation, each FORTRAN statement is input and analyzed. Source language may be input from a file on 
the RAD or it may be typed line by line at the user's terminal. For terminal input, the subsystem will prompt the 
user with the I ine number of each successive line. 

When entering FORTRAN statements to the subsystem, the user may type a colon (:) to indicate the end of each 
complete statement and cause the line to be processed immediately. When an error occurs in a line typed at 
the terminal t the operator is given the opportunity to retype the line. Table 6-3 is an example of a FORTRAN 
compi lation. 

Table 6-3. Source Language Input From Terminal 

lFORTRAN Select FORTRAN. 

OPTIONS:8 Default options. 

1 : A=B:8 

2 : c=D:8 

3 : E=F: @) 

4: G=H:8 

5: END@) 

SUBPROGRAMS} 

;ROGRAM END 

FORTRAN DEBUGGING MODE 

Source line 1 by user {with a II no continuation" mark}. 

Source line 2 by user (it may be continued). 

Source line 3 by user {with a II no continuation" mark}. 

Source line 4 by user (it may be continued). 

Source line 5 by user {because it is an END statement, it is 
assumed to have no continuation}. 

Program summary. 

The FORTRAN debugging capabi I ity constitutes a self-contained portion of the compiled FORTRAN object 
module. 

I 

When the program has been loaded and is ready for execution, the program identification is typed by the lV\onitor, 
then an asterisk on the next line. The operator may then type in one or several of the debugging commands appear­
ing in Table 6-4 (see also Figure 6-1). 

6-2 FORTRAN Subsystem 



Table 6-4. FORTRAN Debugging Commands 

Command Function 

S Execute the program in step mode. 

NS Cancel st~p mode. 

T T race source statement I ines reached during program. 

NT Stop tracing execution. 

V Dump variables. 

NV Stop dumping. 

Adddd Stop at dddd. 

NA Cancel stop. (See above). 

G Go. 

R Do not stop at subroutine entries. 

NR Stop at all subroutine entries. 

Hxxxxxx Halt only upon subroutine entry names II XXXXXXIl. 

NH Halt at all subroutine entries. 

r-----.., FORTRAN 

I EXECUTIVE I L __ -, ___ .J 

I 
I 
I L ____ 

EXECUTE 

I 
I 
I S NA I 
I 
I 
I 

r--...l---, NS G 

BO/NOBO 
I LOADER I 

M:BO L _____ -I 

M:DO LS/NOLS T R 
M:LO SO/NOSO Note: All FORTRAN program 
M:SI DB/NODB 
M:SO S/NOS 

execution performed by NT NR 
the loader subsystem. 

V H xxxxxx 

NV NH 

Note: Broken I ines indicate 
direct intra-subsystem 

Adddd 
tie-in. 

Figure 6-1. FORTRAN Subsystem 

FORTRAN Subsystem 6-3 



7. LOADER SUBSYSTEM 

GENERAL 
The Loader subsystem will cause a program to be loaded and executed at the user's on-line request. The program 
wi II consist of one 'Or more relocatable modules of object language coding which have been assembled by BTM 
Symbol, BTM FORTRAN IV-H, Standard Symbol (off-line), Standard Meta-Symbol (off-line), XDS FORTRAN IV 
(off-line), or FORTRAN IV-H (off-line). 

OPERATION 
When the Loader subsystem is called, the operator is requested to specify various information. During operation, 
the Loader subsystem will return some information and diagnostic messages. Table 7-1 lists the various steps in the 
use of the Loader. 

Table 7-1. Loader Subsystem Operating Steps 

Step Procedure 

1 Specify the element file or files that contain the program to be loaded. 

2 Specify the various options to be in effect during program loading and execution. 

3 Subsystem wi II find and load all necessary object modu les. 

4 Subsystem will, if requested in step 2, type a load map containing all references by which 
various loaded modules are related to one another. 

5 Assign or change any assignments of various DeBs for program input-output. 

6 Subsystem types out severity level of errors encountered during loading. Decide whether or not 
to proceed with execution of the program. 

7 If execution is to proceed, specify values for unsatisfied external and internal references (if the 
D option has been specified). 

8 Program is executed. 

ELEMENT FILES 
Input of object modules is through M:BI. Specify what program is to be loaded by designating the elel"l1lent files to 
be input. If an element file is not specified, it will be assumed that the input is from the temporary file BOTEMPx 
which is also the default output file for on-line assemblies. 

If it is desired to specify a single element fi Ie, ASSIGN M:BI before calling the Loader subsystem. After call ing 
the subsystem, it types a request after which the user may type a list of element files. 

Examples: 

!LOAD 

ELEMENT FILES:@) 

Loader Subsyst~m 7-1 

I 



The Loader subsystem was called. As soon as it took control, it typed a request for the list of element files. In the 
example, the user hit the carriage return, indicating no list; therefore, loading will be from the temporary file 

. BOTEMPx. 

lASSIGN M:BI, (FILE,MINE)@l 

!LOAD 

ELEMENT FILES: @l 

Prior to calling the Loader subsystem, the user file MINE was assigned to input DCB M:BI. 

!LOAD 

ELEMENT FILES: MINE,OURS,HIS(ACCT4,PSST)0 

The modules to be loaded are in the files MINE and OURS in the log-in account, and HIS in the account ACCT4 
with password PSST. These modules will all be loaded, and if any of them contain primary external references to 
additionai modules, a library search will be made. All referenced modules will be loaded as they are found. 

LOADER OPTIONS 
The next step is the request by the Loader for specification of desired options, these options are listed in Table 7-2. 

!LOAD 

ELEMENT FILES: @l 

OPTIONS: P ,M,D @l 

In the above example, three options have been specified: program modules will be loaded at hexadecimal addresses 
with two low-order zeros, a load map will be produced, and the debugging feature will be employed. 

Table 7-2. Loader Options 

Option Description 

N Do not search the system I ibrary to satisfy external references. This library is the file :BLIB 

I 

(binary object language library) in the account :BTM, and contains various standard program 
modules for general use. 

M Produce a complete load map containing all external definitions and references. If this option 
is not specified, only a list of unsatisfied references will be typed by the Loader. 

U This specifies those accounts other than the user's own that may be searched to satisfy external 

(acct 1) 
references. After the user's own binary object language library is searched, the file :BLIB 
will be searched in each of the specified accounts. If the reference is still unsatisfied, the 

(acct 2) system library will then be searched (unless the N option has been specified). 

P Specify this option if all program modules are to be loaded starting at hexadecimal hundreds' 
addresses (i. e., at addresses with two low-order zeros). This is useful during debugging, as 
it facilitates locating instructions from their addresses as they appear in an assembly listing. 

D With the D option (the debugging feature), the program will be executed under control of the 
Delta debug program (see BTM Reference Manual). This will enable performance of diagnostic 
and corrective operations on the program. 

L With this option, the load module will be placed in the user's program library. 

7-2 Loader Subsystem 



ERROR MESSAGES 

The next step is that of finding and loading all required program modules. Messages are typed by the Loader for any 
errors that occur. These messages consist of two I ines of information; the first specifies the error, the second lo­
cates the error. Loader error messages with their corresponding meaning appear in Table 7-3. 

Table 7-3. Loader Messages 

Message Meaning 

NO LIB FILE The specified library could not be found. 

NO ELEMENT FILE The specified element file could not be found. 

ILLEGAL ORIGIN An attempt has been made to load outside the available area in the computer 
memory. 

ILLEGAL ROM DATA The Relocatable Object Module being loaded contains illegal object language. 

CHECKSUM ERROR There was a checksum error in the record specified. 

SEQUENCE ERROR A discrepancy was found in the numbering of successive records within an object 
module, or the first record of an object module is missing. 

STACK OVERFLOW There is not enough room in memory to fit the Loader, the program, and associ-
ated areas. 

Note: When each of the above messages is typed/ the next line will contain one of the following (xx and --
yy are hexadecimal numbers): 

l. LOADING ELEMENT FILE (name) SEQ. NO. (xx) OVERALL ROM NO. (yy) 

2. PROCESSING LIBRARY (account) SEQ. NO. (xx) OVERALL ROM NO. (yy) 

3. LOADING FROM BI SEQ. NO (xx) OVERALL ROM NO. (yy) 

LOAD MAP 
If the M option has been specified/ a load map is produced at the completion of loading. The load map lists ex­
ternal definitions, giving the address at which each externally defined program locat.ion has been loaded into com­
puter memory. The locations of the beginnings of all loaded modules are shown, as well as the lowest and highest 
program locations, and all DCBs. In addition, the load map will list unsatisfied external references and unused or 
double definitions. The abbreviations used in the load map are listed in Table 7-4. 

Table 7-4. Load Map Abbreviations 

Abbreviation Meaning 

SREF A secondarl reference. Such a reference cannot be satisfied in on-line operations. 
A secondary reference causes an object module to be found, but delays loading of the 
module until a later overlaying operation. Note: No overlaying can be done when --
operating on-line. 

PREF An unsatisfied primary reference (REF). The indicated name has not been found in any 
of the libraries searched. 

Loader Subsystem 7-3 



Abbreviation 

DEF 

UDEF 

DDEF 

Table 7-4. Load Map Abbreviations (cont.) 

Meaning 

An external definition which was referenced and has been found, with the corresponding 
object coding loaded. The present computer memory address is expressed in hexadecimal 
as xxx x y (xxxx is nearest word, y is byte in word). 

Unused definition. This is an external definition included within that loaded object code 
to which no reference has been made. 

Double definition. More than one definition has been found for this name. The first one 
found has been used. 

Note: When used with the D option, the Loader wi" provide an additional list of undefined internal symbols 
for programs assembled on-line by Symbol, or off-line by Meta-Symbol with the SD option. The un­
defined internal symbols are grouped according to the element files in which they occur. 

DCB SPECIFICATIONS 

Following the load map and undefined internals, the subsystem requests any additional DCB specifications which 
may be needed for program input/output operations. The subsystem prompts with (F:), and the operator may type 
one specification per line. This may be used where individual specifications are needed to cause the Loader to 
build a DCB. 

ERROR SEVERITY 

In the next step, the Loader types the highest error severity level which occurred during loading, then asks whether 
or not it is to proceed. 

REFERENCE SATISFACTION 

If execution is requested, and unsatisfied external references exist, the operator wi" be requested to supply values 
for any references needed (if the D option was specified). The subsystem wi" type: 

**SA TISFY EXTERNALS** 

< 

When running under option D, a list of any undefined internal- references wi" be typed, which the operator will be 
asked to satisfy. 

**SATISFY INTERNALS** 

The name of the element file will be typed on the next line, and on the line following, the prompt character «). 

DEBUGGING 

If option D has been specified, the program wi" be loaded in a special manner and executed under control of the 
debugging program Delta (refer to BTM Reference Manual). Execution may be broken at various points to search, 
inspect, and alter contents of computer memory. 

7-4 Loader Subsystem 



F: (DCB Specification) 

F: prompts the user to specify any required DeBs that are not designated as external REFs in the user's program or 
DeBs for which one or more options are to be changed. Any FORTRAN DeBs for unit numbers other than 101-106 
or 108 fall into this category and must be specified in this way. 

rDdcb is a FORTRAN unit number (for 
FORTRAN programs) or an alphanumeric DeB 
name of 3-8 characters (including the "F:"). 
If no other parameters are specified (no fi Ie 
identifier or options), the DeB is assigned to 
the user's terminal. 

~ More than one option may be specified (up to 
three). Options may appear in any sequential 
order following the file identifier (if any). 

t t 
F :dcb[= fi dJ [,apti on] ... @) 

t 
W=fid consists of an equals sign (=) followed 

by a file identifier (fid) of the form f [([a] [, pJ)]. 

f is 1-11 alphanumeric characters (i.e., A-Z, 
0-9, #, $, *, %, :, @, -, or L-J). It identifies the 
file to which the DeB is to be assigned. 

a is 1-8 alphanumeric characters. It speci-
fies the account containing the file to which 
the DeB is to be assigned. If omitted, the log­
in account is assumed. 

P is 1-8 alphanumeric characters. It speci-
fies the password of the file to which the DeB 
is to be assigned. If the fi Ie has no password, 
p is omitted. Note that p must be preceded by 
a comma. 

is one of three types of options: 

a. The function option, one of the following: 

IN specifies that the file is to be used 
in the input mode only. 

OUT specifies that the file is to be 
used in the output mode only. 

INOUT specifies that the file is to be 
used in the update mode. 

OUTIN specifies that the file is to be 
used in the scratch mode. If no func­
tion is specified, OUTIN is assumed. 

b. The release option, REL, specifying that 
the fi lei s to be re leased when program 
execution terminates. If REL is omitted, 
the file will be saved. 

c. The listing option, L, specifying that the 
file will eventually be output on a listing 
device (FORTRAN programs only). 

The opti ons specified wi II be inserted into the DeB and, thus, wi II act as defaul t parameters that may be overridden by 
ASSIGN commands or procedure calls. The Loaderwill continue to prompt DeB specifications by printing "F:" at the 
beginning of each new line until the user inputs a null specification (carriage return only). 

Example: 

!LOAD 

ELEMENT FILES: MINE § 

OPTIONS: L§ 

F :6=MYFILE § 

F :7=HISFILE(BTM6), IN 0 

SEV.LEV.=O 

In this example, the user specifies that F:5 is 
to be assigned to the user's terminal, F:6 to 
scratch file MYFILE, and F:7 to input file 
HISFILE in account BTM6. A null specification 
then ends the I ist of assignments. 

Loader Subsystem 7-5 



XED? (Execution Request) 

XEQ? prompts the user to specify whether or not the load module just formed is to be executed and, if so, 
allows a start address to be specified. 

Example: 

SEV.LEV=O 

XEQ? S,START+.A3~ 

7-6 Loader Subsystem 

Y specifies that the load module is to be exe­
cuted. The absence of an opti on (carri age return 
only) wi 1/ cause the load module to be executed 
as though a Y had been typed. 

N specifies that the load module is not to be 
executed. The Loader responds by returning con­
trol to the BTM Executive. 

S,adr specifies that the load module is to be 
executed, beginning at location adr (either an 
external definition [±hex. addend] or else a 
signed positive absolute hexadecimal address). 
Hexadecimal numbers are identified as such by 
means of a leading period (the hexadecimal 
equivalent of decimal 26 would be +. 1A). 

XEQ?[~ ]@) 
S,odr 

in this exampie, program execution is to begin 
at a location 163 words higher than external 
definition START. 



* *SATISFY EXTERNALS * * 
(Satisfy External References) 

**SATISFY EXTERNALS**, followed by a "<11 character at the beginning of the next I ine, prompts the user to 
satisfy undefined external references (any symbol listed as a PREF in the load map). 

This feature is provided only if the 'D' option has been specified. 

~ name is 1-63 alpha-
numeri c characters (i. e. , 
A-Z, 0-9, #, $, *, %, :, 
@, -, or L.......J). It specifies 
which external reference 
is being defined. Typing 
a carriage return immedi­
ate�y following the 11<11 
i nd i cates that no further 
PREFs are to be defined. 

Example: 

**SATISFY EXTERNALS** 

I 

:s.SOUBRIQUET>COGNOMEN+.B @l 

**SATISFY EXTERNALS ** 

< [name >valueJ@ 

~ > is used to separate 
the name from the value 
that follows. 

I 

~ 
val ue is an external 
definition [±hex. addend] 
or a signed positive abso­
lute hexadecimal address. 
Hexadecimal numbers are 
identified as such by means 
of a leading period (e.g., 
+.lA). 

In this example, the PREF named SOUBRIQUET 
is defined as the location 11 words higher than 
external definition COGNOMEN. The @) 
following the second prompt indicates that no 
more PREFs are to be defined. 

Loader Subsystem 7-7 



* * SATISFY INTERNALS * * 
(Satisfy Internal References) 

**SATISFY INTERNALS**, followed by a line stating the name of an element file followed by a "<11 character at 
the beginning of the next line, prompts the user to satisfy undefined internal references for the cited element file. 
The user may respond wi th the name and val ue of anyone of the symbol s listed as undefi ned i nterna I s (i n that 
element fi Ie) in the load map. 

This feature is provided only if the IDI option has been specified. 

**SATISFY INTERNALS ** 

*EF-file 
./r> I , 
::::'Lname valueJ 

..----------'1 1<-----_ 
name is 1-63alphanumeric 
characters (i. e., A-Z, 0-9, 
#, $, *, %, :,@,-, or L.....J). It 
specifies which internal re­
ference is being defined. 
Typing a carriage return im­
mediately following the 11<" 
causes the Loader to cite the 
next element file having un­
defined internals, unti I all un­
defined internals have been 
processed. 

Example: 

I **SATISFY>INTERNALS** 

:::AGNOMEN>+ .1A2 B 

*EF-NEXTFILE 

~WHATEVER>THERE-.l 

:s. 

7-8 Loader Subsystem 

CD > is used to separate 
the name from the val ue 
that follows. 

3 
value is an external 
definition [±hex.addendJ 
or a signed positive abso­
lute hexadecimal address. 
Hexadec i ma I numbers are 
identified as such by means 
of a leading period (e. g., 
+.lA). 

in tnlS exampie, the symboi AGNOMEN in 
element file FIRSTFILE is defined as the ab­
solute hexadecimal value lA2B. The@:lfollow­
ing the next prompt causes the Loader to cite 
element fi Ie NEXTFILE. The user then de­
fines the symbol WHATEVER as one word loca­
tion lower than external definition THERE (in 
the same element file). When all unsatisfied 
references have been defined, the console bell 
is rung. 



8. FERRET SUBSYSTEM 

GENERAL 

FERRET is a util ity subsystem that provides a general capabil ity for obtaining information pertaining to entries in the 
file management system. It is a ~seful tool for checking files in storage, and provides functions for file manipulation 
(see Figure 8-1). 

OPERATION 

To call the subsystem, the operator types FE following the (I) prompt character from the Executive. The Executive 
will then reply by finishing the word (FERRET) and will display a prompt character (», ready for the user's command. 

1 FERRET 

> 

Command keywords (e.g., LISn may be spelled out completely, but only the initial letter is mandatory. If some-
th ing is typed that the subsystem does not recognize, the message COMMAND NOT LEGAL is printed. When any 
operation is completed, the prompt character (» is printed again. To exit from the subsystem and return to the Execu­
tive, the operator has only to type an X following the prompt character. It is also possible to exit to the Executive 
at any time, by typing §§. 

FERRET Subsystem 8-1 

I 



Executive Level 

t 
Normal Mode 

I I LIST I TEST I ACTIVITY I MESSAGE x 
I 18-3 18-4 18-5 18-6 18-7 

I STATISTICS I 
8-8 

I DELETE 
8-9 I I EXAMINE 

8-10 I I COpy 
8-11 I 

Statistics Mode Fi Ie Examination Mode 

I ALL 
I 

X 
I N 

I 
X 

I N= I I LOG= I I B I I m I 

RAD= RADS= min 

CPU= 10= 

SERV= 

Figure 8-1. FERRET Commands (and Page Numbers) 

8-2 FERRET Subsystem 



lIST (list File Names] 

LIST causes FERRET to print a list of all files in a specified account. 

Example: 

lFERRET 

?LIST HIS-ACCT @) 

THISFILE 

THATFILE 

SOMEFILE 

~ 
acct is 1-8 alphanumeric characters (i. e., 
A-Z, 0-9, #, $, *, %, :, @, -, or L.......J). It 
identifies the account for which the I isting is 
to be made. If omitted, the log-in account is 
assumed. 

! 
> L[IsrJ [acctJ § 

In this example, FERRET lists "THISFILE ", 
"THATFILE ", and "S0MEFILE II as names of 
files in account HIS-ACCT. 

FERRET Subsystem 8-3 



TEST [Test File Accessibility) 

TEST causes FERRET to determine whether the user may read one or more specified files. 

:D 
fid = f[(a[,p])] 

is 1-8 al phanumeri c characters, (i. e.! A- Z, 
0-9, #, $, *, %, :, @, -, or ~). It identifies 
the file to be tested. 

a is 1-8 al phanumeric characters. It speci­
fies the account containing the file to be tested. 
If omitted, the !og-in account is assumed. 

p is 1-8 alphanumeric characters. It speci-
fies the password of the file to be tested. If 
the file has no password, p is omitted. Note 
that p must be preceded by a comma and ac­
count number. 

2 
More than one fid (fi Ie identifier) may be 
specified. A comma is used to separate 
each tid from the preceding one. 

> r[ESr] fid[, ... ] @) 

Example: 

!FERRET - --
~TEST THIS(MY,FILE),ALSO(ANOTHER)~ 

THIS WAS CREATED 6,30.70 AND HAS 

15 GRANULES IN IT. 

CANNOT ACCESS FILE ALSO 

8-4 FERRET Subsystem 

In this exampie, the user requests a test ot tile 
THIS having the password FILE and fi Ie ALSO 
in account ANOTHER. FERRET indicates that 
the user may access file THIS but not file ALSO. 



ACTIVITY (Check File Activity) 

ACTIVITY causes FERRET to check the current activity of one or more specified files. 

fid = f[(a[,pJ)J 

is 1-8 alphanumeric characters (i. e. ,A-Z, 
0-9, #, $, *, %, :, @, -, or L........J). It identi­
fi es the fi I e to be checked. 

a is 1-8alphanumericcharacters. Itspeci-
fies the account containing the file to be 
checked. If omitted, the log-in account is 
assumed. 

pis 1-8 a I phanumeri c characters. It speci­
fies the password of the file to be checked. If 
the file has no password, p is omitted. Note 
that p must be preceded by a comma and ac­
count number. 

~) More than one fid (file identifier) may be 
specified. A comma is used to separate 
each fid from the preceding one. 

~ 
>A[CTIVITYJ fid[,. · .J @) 

Example: 

lFERRET 

~A FILE(MY,#$*%)~ 

FILE IS INACTIVE 

In this example, the user requests a check of 
file FILE having the password #$*% in the 
log-in account. FERRET indicates that the 
file is inactive and, hence, may be opened. 

FERRET Subsystem 8-5 

, I 



MESSAGE (Message to Operator) 

MESSAGE causes a specified message to be printed on the system operator's console, prefaced by a note identifying 
the originating console. 

~. 
text specifies the message to be output on 
the system console. 

I , 
>M[ESSAGE] text 0 

Example: 

lFERRET 

>M IS BATCH JOB Z9M9Z,SMITH DONE? €V 

In th is exampl e, the user spec Hi es a message to 
the operator and waits for the reply. 

NOT YET 

8-6 FERRET Subsystem 



X (Return to Executive) 

X causes control to be returned to the BTM Executive. 

Example: 

lFERRET 

>DELETE ANYTHING~ 

>X@) 

In this example, the X command is used to re­
turn control to the Executive after completion 
of FERRET operations. The exclamation char­
acter indicates that the Executive is in control. 

FERRET Subsystem 8-7 



STATISTICS (Give Statistics) 

STATISTICS causes FERRET to enter the statisti cs mode. 

>S[TATISTICS] @) 

In this mode, FERRET prompts with a 11#11 character indented 4 spaces to the right. Following this; the user may re­
quest any or all of various statistics: 

#ALL9 

IX@) 

#N= 

#LOG= 

#RAD= 

#RADS= 

#CPU= 

#10= 

#SERV= 

Example: 

J..FERRET 

Return all statistics listed below, then exit from the statistics mode to the normai mode. 

Exit from the statistics mode to the normal mode. 

Return number of users currently logged in. 

Return amount of time current user has been logged in. 

Return number of RAD granules used in current session. 

Return number of RAD granules available at start of current session. 

Return current amount of CPU execution time used in current session. 

Return current amount of 10 wait time used in current session. 

Return current amount of Monitor service time used in current session. 

>COpy THISFILE, THATFILE § 

In th is exampl e, the user requests a I isting of 
RAD space used for the current session. FERRET 
indicates that 50 granules have been used. 

1l.RAD=50 

1l.x @) 

8-8 FERRET Subsystem 



DELETE (Delete File) 

DELETE causes one or more specified files to be deleted from the log-in account. 

~) 
fid = f[(a,p)] 

f is 1-8 alphanumeric characters (i. e., A-Z, 
0-9, #, $, *, %, :, @, -, or\........J). It identifies 
the file to be deleted. 

a is 1-8 alphanumeric characters. It iden-
tifies the log-in account. 

p is 1-8 alphanumeric characters. It speci-
fies the password of the file to be deleted. If 
the file has no password, p is omitted. Note 
that p must be preceded by a comma and ac-
count number. 

W 

I 

~ 

More than one fid (file identifier) may be 
specified. A comma is used to separate each 
fid from the preceding one. 

! 
> D[ELETEJ fid[,. · .J @) 

Example: 

J..FERRET 

>DELETE THISFILE, THATFILE ,ANOTHER @) 

In this example, the user requests FERRET to 
delete fi les THISFILE, THATFILE, and 
ANOTHER from the log-in account. 

FERRET Subsystem 8-9 



EXAMINE (Examine File) 

EXAMINE causes FERRET to enter the file examination mode. 

~id = f[(a[,pJ)] 

f is 1-8 alphanumeric characters (i. e., A-Z, 
0-9, #f $, *, %, :, @, -, orL.......J). It identifies 
the fi Ie to be examined. 

a is 1-8 alphanumeric characters. It speci-
fies the account containing the fi Ie to be 
examined. 

P IS 1-8 alphanumertc characters. It specI­
fies the password of the file to be examined. If 
the file has no password, p is omitted. Note 
that p must be preceded by a comma. 

>E[XAMINE] fid @) 

In the file examination mode, FERRET prompts with a 11#11 character. Following this, the user may request any of 
various actions: 

~[HJ@ 

~B[rr{,nJJ@) 

Itr .. , _ 

:LHJm,n ~ 

Example: 

.l.FERRET 

Exit from file examination mode to the normal mode. 

Display, in decimal, the number of records in the file. 

Print, in EBCDIC (or hex., if H is specified), the contents of all records in the file. 

Print, in decimal, the number of bytes in record m, records m through n, or the 
entire file. 

Print, in EBCDIC (or hex., if H is specified), the contents of record m. 

Print, in EBCDIC (or hex., if H is specified), the contents of records m through n. 

~E PLURIBUS(UNUM)@ 

1l..25@ 

In this example, the user requests FERRET to 
print the contents of record 25 of file PLURIBUS 
in account UNUM. FERRET responds by print­
ing "LOC8 BE $+3 11 and the user then ends 
the file examination mode by typing an X fol­
lowed by a carriage return. 

Loe8 BE $+3 

8-10 FERRET Subsystem 



COpy (Copy File) 

COpy causes FERRET to create a new copy of an existing file. 

l0fid1 =file1[(a1[,p1])] rD fid2 = fi le2 [(a 2[, p2])] 

fi Ie 1 is 1-8 al phanumeri c characters (i. e., 
A-Z, 0-9, #, $, *, %, :, @, -, orL-J). It 

file2 is 1-8 alphanumeric characters. It 
identifies the new fi Ie. 

identifies the fi Ie to be copied. 
a2 is 1-8 alphanumeric characters. It iden-

a1 is 1-8 alphanumeric characters, It speci- tifies the log-in account. 
fies the account containing the fi Ie to be copied. 

p2 is 1-8 alphanumeric characters. It speci-
p1 is 1-8 al phanumeri c characters. It speci- fi es the password of the new fi Ie. If no password 
fies the password of the file to be copied. If is wanted, p2 is omitted. 
the file has no password, p 1 is omitted. 

I 

~ 
>C[OPY] fidl ,fid2 § 

Example: 

!FERRET - --
>c SOMEFILE(:SYS),MYCOPY(MY,XANADU)~ 

In this example, the contents of file SOMEFILE 
are copied from account :SYS into the log-in 
account with the name MYCOPY and having 
the password XANADU. 

FERRET Subsystem 8-11 



FERRET MESSAGES 

Message Meaning 

COMMAND NOT LEGAL FERRET has encountered an illegal command. 
The command must be retyped correctly. 

CANNOT ACCESS FILE xxxxxxxx 
I 

The specified fiie cannot be accessed by the I I 
I user. I 

xxxxxxxx IS INACTIVE The specified file can be opened. 

T 1= I . . f~ .. 
I xxxxxxxx IS ACLV .... The specified lie cannol be opened. 

CANNOT DELETE FILE xxxxxxxx The specified file cannot be deleted by the 

I 
user. 

CANNOT CREATE FILE xxxxxxxx I The specified file cannot be opened in the out-

I 
put mode. 

CANNOT COpy - - RECORDS TOO LARGE I A COpy command has been aborted because a 
record longer than 512 words was encountered. 

RECORD EXCEEDS BUFFER SIZE, 512WORDS GIVEN A record longer than 512 words was encountered 
in the file examination mode. 

FIRST RECORD NON-EXISTENT The first record requested in a file examination 
command was not found in the fi Ie. 

UNEXPECTED EOF AFTER RECORD j An end-of-fi Ie was encountered prior to read-
ing the last record specified in a fi Ie examina-
tion command. 

8-12 FERRET Subsystem 



9. SYMBOL SUBSYSTEM 

GENERAL 

The Symbol subsystem assembles programs in XDS Symbol source language. The language is described in the XDS 
Symbol/Meta-Symbol Reference Manual (90 09 52). Input is source coding, either typed directly at the user's ter­
minal or from a file. Output is a program listing and/or an assembled object program which may be loaded and exe­
cuted by the Loader subsystem (refer to Chapter 7). 

INPUT/OUTPUT ASSIGNMENTS 

Prior to calling the Symbol subsystem, it is possible to make input/output assignments by use of the Executive 
ASSIGN command (refer to Chapter 3). Input/Output assignments are listed in Table 9-1. 

Table 9-1. Input/Output Assignments 

Symbol Description 

M:SI Source language input. The default assignment is to the user's terminal. An alternative 
is for the user to specify a file previously created by use of the EDIT subsystem. 

M:LO Listing output. Default assignment is to the user's terminal. 

M:BO Binary output of assembled object program. By default this goes into temporary file 
I BOTEMPx, where II XII is the special ID for the user's terminal. The user may also specify 

a file of his own. This is the file to be specified to the Loader when it is desired to run 
the program. 

ASSEMBLER OPTIONS 

The subsystem is called following the Executive prompt character by typing SY. The Executive will then type the 
rest of the word and turn control over to the Symbol Subsystem, which then requests a list of options. The operator 
may specify options listed in Table 9-2, separating them with commas. If no options are specified (carriage return 
only), ~ the options listed in Table 9-2 and shown in Figure 9-1 are assumed. 

Table 9-2. Symbol Options 

Symbol Option 

BO Binary output of an assembled object program. 

LO Output a program listing. 

CN I Include a cross-reference list in the program listing. 
I 

SD Include special symbol tables for use by the Loader subsystem's debugging feature at 
run-time. 

The following is an example of a Symbol assembly with source input from a file on the disc, and I isting output to a 
file on the disc. All options are selected with the exception of debugging feature symbol tables (SD) . 

.!.ASSIGN M:LO,(FILE,CMPLO) 

.!..ASSIGN M:SI,(FILE,CMPS) 

!SYMBOL 

OPTIONS: BO, LO, CN 

* * END OF ASSEMBLY * * 

Symbol Subsystem 9-1 

I 



LISTING FORMAT 

If the program listing is typed on the user's terminal, it will automatically be reformatted to fit the carriage width. 
Each listing line will be typed as two lines: 

1. The first line will contain the source image. 

2. The second line will contain the line number and object code portion of the normal listing. In addition, if the 
source file was on disc in EDIT format, the EDIT file sequence number will be typed in decimal format. 

If the assembly I isting is not being displayed at the terminal, any errors found in the assembly are displayed both at 
the terminal and in the listing file. Three lines are typed at the terminal: 

1. The offending source line. 

2. The normal Symbol error indicator (****) and a letter positioned under the image. 

3. The line number, object code produced, and sequence number of the record. 

Symbol 

I 

I I I I 
BO LO CN SD 

(Binary Output) (Line Output) (Cross Ref.) (System Debug) 

Figure 9-1. Symbol Subsystem 

9-2 Symbol Subsystem 



10. BATCH PROCESSING MONITOR [BPM) SUBSYSTEM 

GENERAL 

Batch jobs, complete with control commands, may be entered into the queue of jobs to be processed (see Figure 10-1). 
This batch processing is performed simultaneously with on-I ine operations of the computer system, and independently 
of them. For this reason, the user knows only that when a job is scheduled, it wi II be run in its proper turn sometime 
later. Inquiries are permitted from the on-line terminal pertaining to the status and progress of the job. 

OPERATION 
The BPM Subsystem may be called directly and a job inserted, or the operator may first contruct a fi Ie using the 
EDIT subsystem and have BPM read the file. The BPM subsystem expects that input is to be typed at the user's 
terminal. If it is desired that the input be read from a previously created fi Ie, the assignment is changed (via an 
ASSIGN M:SI) prior to calling BPM. After log-in, the operator types the letters BP for the subsystem, which re­
pi ies with the question, INSERT JOB? The operator types Y if a job is to be entered, or N for status check of 
previously scheduled job, then a carriage return (see Figures 10-2 and 10-3). 

!BPM 

INSERT JOB? {~} @) 

BPM Subsystem 

I I 
Job File Creation Status Check Edit Feature 

Terminal 
-

Input WAIT r-- REPLACE QUEUE 

Disc File 
RUN ~ DELETE TYPE FILE 

Input 

CaMP f--- SWAP TYPE LINE 

APPEND ABORT 

Figure 10-1. BPM Subsystem 

Batch Processing Monitor (BPM) Subsystem 10-1 

I 



Format 

If a job is to be entered from the user's 
term ina I, the subsystem wi II type se­

r-------I 

I 
quence number 1, then on next line, 

I I a colon. 

l 
record no. 1 @l 

• 
I 
I I Operator types (!) then control state-I m~nt such a~ JOB', FORTRAN, etc. @l 

2 Sequence number 2 and colon wi II be 
---------I 

returned. Operator types record no. 2 
then @l as above. Same for n number 
of inputs. 

n Operator hits carriage return immedi­
:@l-------1 ately after colon to terminate input. 

EDIT?----I Subsystem interrogates 

{

YN}-CR-ET---I Type.Y..for Edit feature to make change 
"'" or type out any input (see T abl e I 0-1). 

__ ----I Type .bL for job to be inserted as it is 
into schedul ing queue. 

JOB INSERTED ID=xxxx 

II
I Message states that job has been inserted into queue II 

and gives ID number for status checking. 

I Example 
I 

!BPM 

INSERT JOB? Y @l 

1 

!JOB - 12345, SlviITH,4 @l 

2 

_!ASSIGN M:SI,(FILE,PRIVATE,54321),;@l 

3 

_! (PASS, PSST) @l 

4 

!ASSIGN M:LO,(FILE,PRIVATE),; @l 

2. 

-=-! (SAVE), (READ, 122), (PASS, PSST) @l 

2. 
-=-!RUN(LMN ,RDWRT) @l 

2 

JOB INSERTED. ID=AA 

STATUS CHECK? N 8 

Example above beginswith Executive in control (!) 
and a call is made to BPM. Job is typed in from 
the terminal and inserted with no editing. No 
status check is taken, and subsystem relinquished 
to the Executive (!). 

Figure 10-2. Terminal Input 

10-2 Batch Processing Monitor (BPM) Subsystem 



Format 

DISPLAY FOR EDITING If a file on the disc has 
been assigned as input 

~ ... 
Y 

~@l 

N 
.... ~ 

1 
! ... 
2 
! ... 
3 
! ... 
n 

t 

EDIT? ~~ 

N 
.... ... 

to subsystem, BPM will 
read file then interrogate. 

Type Y if it is desired to have input 
file printed out for operator1s inspec­
tion. Then type @) • 

Type N to insert the job directly into 
batch processing schedul ing queue. 
Then type 8. 

If job is displayed Cf above) job state­
ments will be typed out line by line, 
alternating with sequence numbers un­
til last I ine when EDIT? is asked. 

Type y to use subsystem 
edit feature, then 8. 

Type N to insert job as 
is, then @l. 

JOB INSERTED,ID = xxxx-
Message if tl 
above is typed. 

? -----I Interrogation if yabove is typed. 

Example 

If example in Figure 10-2 had been entered as file 
on disc, and it was desired to inspect the control 
statements: 

lASSIGN M:SI,(FILE,MYJOB),(IN)~ 

1BPM 

INSERT JOB? Y ~ 

DISPLAY FOR EDITING? Y @ 

1 

1JOB 12345,SMITH,4 

2 

1ASSIGN M:SI,(FILE,PRIVATE,54321),; 

l 
1 (PASS, PSST) 

4 

1ASSIGN M:LO,(FILE,PRIVATE),; 

2. 
1 (SAVE), (READ,122), (PASS,PSST) 

§. 

1 RUN (LMN ,'RDWRT) 

EDIT? N 8 

JOB INSERTED. ID=BC 

STATUS CHECK? N 8 

Initially Executive has control and ASSIGN com­
mand makes fi t"e MY JOB input at next subsystem 
called. Upon call BPM reads file. Display is re­
quested and file of job control statements is typed. 
No edit. Job is inserted and given ID number. No 
status check. Control is returned to the Executive. 

Figure 10-3. Disc Fi Ie Input 

Batch Processing Monitor (BPM) Subsystem 10-3 



Table 10-1. BPM Edit Feature 

Command Function to be Performed 

Type file 

?Txx[,yyJ8 Type lines xx [thru yyJ 

Abort current task 

?G8 Go (run current task) 

'iSxx,yy@ Swap I ines xx and yy 

'iDxx[,yyJ @) Delete xx [thru yyJ 

?Axx €) Add the following iines after iine xx 

'iRxx [,yyJ @) Replace xx [thru yyJ with the following lines 

BPM STATUS CHECK 

It is possible to check the status (waiting, running, or completed) of any job previously inserted into the batch pro­
cessing queue. When the subsystem inserts a job, it inquires whether the user wishes to check status, or the user 
may call BPM and enter the status-checking routine by answering N to the question INSERT JOB? The subsystem 
then prints out ID =, and the operator types in the hexadecimal ID number. 

ID =A4 @) 

The subsystem then types out one of the following: 

1. RUNNING 

2. COMPLETED 

3. NON-EXISTENT 

10-4 Batch Processing Monitor (BPM) Subsystem 

4. WAITING ON OUTPUT 

5. WAITING: n AHEAD 
CURRENT ID: x 



BPM MESSAGES 

Message Meaning 

MISSING! JOB COMMAND, OR RECORDS JOB command was not recognized in first line, so job can-
OUT OF ORDER not be scheduled. Either the edit feature to correct the 
EDIT? condition, or X command to abort must be used before it 

is possible to continue. 

IMPROPER JOB PRIORITY An improper job priority value has been given in the job 
EDIT? statement. Hexadecimal numbers 1 to F only are valid. 

This message might result if an attempt was made to con-
tinue the job statement to the second line. This wi II not 
prevent insertion of the job but priority level is automat-
ically set to 1. If the job does not specify a priority level 
at all, level 1 is assumed with no message. 

! FIN CARD IGNORED A FIN command has been discovered in the job and has 
been ignored. Insertion of the job is not prevented. 

BAD 1-0. ABNORMAL CODE - xx An input/output error or malfunction has occurred during 
processi ng by the subsys tem. The I/o system code for the 
fau I t is given. BPM aborts, returning control to the 
Executive. If job has not been inserted, BPM must be 
called. 

FILE TOO LARGE. TASK ABORTED The input job is too large to be handled. Begin with 
smaller job fi Ie. 

NO "INPUT DATA. BYE Nothing in job file. No action, and control returns to 
the Executive. 

NON EXISTENT LINE A line referenced by an Edit command does not exist in 
the job fi Ie. It is possible that the line was inadver-
tently deleted. 

ERRONEOUS COMMAND IGNORED An Edit command has been rejected because the command 
or its operands have been improperly written. No action 
has been taken. Retype the command. 

ILLEGAL CAL The present system monitor is not capable of accepting a 
batch job. The job cannot be inserted. 

INVALID ID An erroneous job ID has been given in a status-check re-
quest. Retype ID. 

IMPROPER JOB ACCOUNT The account number in the job statement does not match 
the account number given at log-in. Use Edit feature to 
correct job statement. 

AUTHORIZATION REQUIRED User is not authorized to enter a job from a terminal. 

Batch Processing Monitor (BPM) Subsystem 10-5 



11. RUN SUBSYSTEM 

GENERAL 

The RUN subsystem allows the on-line user, to execute previously formed load modules. It simulates several BPM 
services that otherwise would not be .available to the on-line user, allowing overlayed modules to be executed. 
Thus, most load modules capable of batch execution will also execute on-line. However, the execution bias must 
be at least one page above the lower limit of the user area. If the module is relocatable, it will be relocated 
automatically. 

All program changes made via the RUN subsystem apply to the current memory image of the program. If the affected 
location lies within the bounds of the segment selected by the most recent SiS command (but not in the root or back­
ward path), the change is also added to a table of modifications to be made each time the segment is brought into 
core. Changes affecting only the current image are destroyed if that image is overlayed as the result of an M:SEGLD. 

Two or more breakpoints may be placed at the same core location, but in different overlay segments. When a break­
point is cleared, it will not be activated unless explicitly restored by an e;B command; if the affected segment is 
currently in core, the replaced instruction is restored in the core image as well as in the load module. 

A load module executed under control of the RUN subsystem must be smaller than the on-line user area minus the 
size of the RUN subsystem itself (which occupies about 2.5K of core). During execution, the user program may ac­
quire dynamic data pages in an amount up to the difference between user area size and load module size. 

If the load module is overlayed, it may have not more than three files open at anyone time. Nonoverlayed pro­
grams may have up to four files open at the same time. All I/O done through DCBs will be output to the user's 
terminal unless an Executive-Level disc-file assignment of the DCB exists or the DCB contains a "built-in" disc­
file assignment. 

In addition to the BPM CALs available to all on-line programs, the RUN subsystem allows the use of the following: 

M:SEGLD M:GL 

M:GP M:GCP 

M:FP M:FCP 

M:SMPRT M:TIME 

The RUN subsystem is entered by the Executive command 

IRUN @l 

On entry, RUN requests load module identification, as follows: 

LOAD MODULE FID: 

The user then supplies the file identifier of the load module in the form 

name [( [acctJ ['passJ)J @l 

For example: 

IRUN@l 
LOAD MODULE FID: SL 1 (:SYS,PASS)@) 

PRE-EXECUTION DEBUGGING 

When the load module has been identified, RUN wi II wait for one or more commands pertaining to execution of the 
program. The following commands, comprising a subset of the Delta debug language, may be used. 

[sJ;S Selects a symbol table by overlay segment name (or root if s is omitted). All REFs and DEFs of the 
specified segment and its backward path are made available to RUN. 

[eJ / Displays the contents of cell e (or register 0 if e is omitted). The cell may then be modified (i. e., it 
is "open"). 

RUN Subsystem 11-1 



e1,e2/ Displays the contents of cells e1 through e2 and opens cell e2. 

@) Closes the currently open cell. 

e @) The expression e is assembled and ,stored in the currently open cell. 

@ Opens the next higher cell. 

e @ Modifies the currently open cell and opens the next higher cell. 

Opens the next lower cell. 

et Modifies the currently open cell and opens the next lower cell. 

8 Displays and opens the cell addressed by the last quantity typed (represented by the symbol ;Q). 

e@l Modifies the currently open cell and then displays and opens the cel! addressed by the last quantity 
typed. 

;G Begins execution at the point determ ined by the contents of the current execution location counter 
(represen ted by the symbol ; I). 

eiG Begins execution at the location specified by the expression e. 

;P Causes execution to proceed from a breakpoint. 

iB Displays all breakpoints as they are encountered during execution. 

eiB Inserts a breakpoint at the location specified by the expression e. 

niB Clears (i. e. f removes) breakpoint n (0< n ~ 8). 

eiI Stores the value of the expression e into the current execution location counter. 

e;C Sets the value of the condition code to that of the expression e. 

iA Causes location values to be displayed in hexadecimal. 

iR Causes !ocation values to be displayed as a symbol plus a hexadecimal offset. 

Expressions in the above commands may comprise any combination of sums and/or differences of symbols and con­
stants. Constants may be either decimal or hexadecimal {indicated by a leading period}. In addition to any 
of the symbols in the symbol table most recently specified by an SiS command, any of the following symbols 
may be used in an expression. 

Symbol Meaning 

Address of most recently opened cell 

iI Value of current execution location counter 

iC Condition code value 

;Q Most recently displayed value 

11-2 RUN Subsystem 


	0000
	001
	002
	003
	004
	005
	01-01
	01-02
	01-03
	01-04
	01-05
	02-02
	02-03
	02-04
	02-05
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	05-44
	05-45
	06-01
	06-02
	06-03
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	09-01
	09-02
	10-01
	10-02
	10-03
	10-04
	10-05
	11-01
	11-02

