Xerox Control Program for Real-Time (CP-R)

Xerox 550 and Sigma 9 Computers

System
Technical Manual

XQ43, Rev. 0
90 30 88C

February 1977

File No.: 1X13
& Xerox Cerporatior, 1874,1975,1976,1977 Printed in U.S.A.

This publication is a major revision of the Xerox Control Program for Real-Time (CP-R)/System Technical Manual,
Publication Number 90 30 888 (dated February]1975). This edition documents changes that reflect both the D00
and EOO versions of CP-R. A change in text from that of the previous manual is indicated by a vertical line in the

margin of the page.

RELATED PUBLICATIONS

Title

Xerox 550 Computer/Reference Manual

Xerox Sigma 9 Computer/Reference Manual

Xerox Control Program for Real-Time (CP-R)/RT,BP Reference Manual
Xerox Control Program for Real-Time (CP-R)/OPS Reference Manual
Xerox Control Program for Real-Time (CP-R)/RT,BP User's Guide
Xerox CP-R Availability Features Reference Manual

Xerox Sigma Character-Oriented Communications Equipment/Reference Manual
(Models 7611-7616/7620-7623)

Xerox Sigma Multipurpose Keyboard Display/Reference Manual
(Models 7550/7555)

Xerox Mathematical Routines/Technical Manual

Xerox Assembly Program (AP)/LN, OPS Reference Manual
Xerox SL-1/Reference Manual

Xerox Extended FORTRAN IV/LN Reference Manual
Xerox Extended FORTRAN IV/OPS Reference Manual

Xerox Extended FORTRAN /Library Technical Manual

Publication No.

90 30 77
90 17 33
A

90 30 85
90 30 86
90 30 87

903110
90 09 81

90 09 82
90 09 06
90 30 00
90 16 76
90 09 56
90 11 43

90 15 24

Manval Content Codes: BP - batch processing, LN - language, OPS - operations, RP - remote processing,
RT - real-time, SM - system management, TS ~ time=sharing, UT - utilities.

The specificatiom of *he software system described in this publicotion are subject to change without notice. The availability or perf

of some fe

moy depend on a specific configurntion of equipment such os odditional tape units or lorger memory . Customers shouid consult their Xerox sales representotive

for detoils.

—~

PREFACE x READ/WRITE 39
: PRINT 4]
TYPE 41
1. CP-R INITIALIZATION ROUTINE 1 DFM 4
DVF 41
DRC 41
2, CP-R CONTROL TASK 3 DEVICE (Set Device) 41
DEVICE (Get Device) 41
Structure 3 CORRES 41
Function and Implementation 3 REWIND 41
Resident Control Task 3 WEOF 42
Key-In Processor 4 PREC ' 42
Load Module Control 4 PFILE 42
Background Sequencing 5 ALLOT . 43
Control Task Dump 6 DELETE) 43
Periodic Scheduler é TRUNCATE , 43
3. /O HANDLING METHODS 7 4. ERROR LOGGING 45
Channel Concept 7 Error log Record Formats 45
Handling Devices 7
Single Interrupt Mode 7
Interrupt=to~Interrupt Mode 7 5. JOB CONTROL PROCESSOR 54
System Tables 7
10Q 7 Overview 54
DCT 7 ASSIGN Command Processing 54
cIT 8 JCP Loader 70
Handler Tables 8 Job Accounting 72
DOT 8 Background TEMP Area Allocation 73
CLST 8 '
/O Control System Overview 9
Interfaces 9 6. FOREGROUND SERVICES 75
Register Conventions 31
QUEUE 31 Implementation 75
CALLSD 3 RUN 75
SERDEV 31 RLS 75
RIPOFF 31 MASTER/SLAVE 75
STARTIO 32 STOPIO/STARTIO 75
CLEANUP/1I0SCU 32 DEACTIVATE/ACTIVATE 76
REQCOM 33 IOEX 76
1/0 Error logging 33 TRIGGER, DISABLE, ENABLE, ARM,
1/O Statistics 33 DISARM, CONNECT, DISCONNECT 76
Side Buffering 34 Task Control Block 76
Output Side Buffering 34
Input Side Buffering 34
Virtua! 1/O Buffering R 34 7. MONITOR INTERNAL SERVICES 79
IOEX 37
Queved I0EX 37 CP=-R Overlays 79
Dedicated IOEX 37 Entry and Exit Point Inventory 81
Disk Pack Track-by-Track Logic 37 Overlay Inventory 2 8l
Disk Pack Seek Separation 37 Event Control Block and Event Control Services 82
Disk Pack Arm=Position Queue Optimization 37 Overview of ECB Usage 82
Disk Angular-Position Queue Optimization 38 ECB and Data-Area Formats 83
Deferred SIO 38 Dynamic Space (SPACE) 88
Logical Devices 38 Dynamic-Space Service Calls 88
User 1/O Services 39 GETTEMP 88
OPEN 39 RELTEMP 88

CLOSE 39 SYSGEN Considerations ' 88

C PREFACE

g w———

CP-R INITIALIZATION ROUTINE

2. CP-R CONTROL TASK

Structure

Function and Implementation
Resident Contro! Task
Key=In Processor
Load Module Control
Background Sequencing
Control Task Dump
Periodic Scheduler

I/O HANDLING METHODS

Channe! Concept
Handling Devices
Single Interrupt Mode
Interrupt=to-Interrupt Mode
System Tables
10Q
DCT
CIT
Handler Tables
DOT
CLsT
1/0 Control System Overview
Interfaces
Register Conventions
QUEUE
CALLSD
SERDEV
RIPOFF
STARTIO
CLEANUP/IOSCU
REQCOM
1/O Error logging
1/0 Statistics
Side Buffering
Output Side Buffering
Input Side Buffering
Virtual 1/O Buffering
I0EX
Queved IOEX
Dedicated IOEX
Disk Pack Track-by-Track Logic
Disk Pack Seek Separation

Disk Pack Arm-Position Queue Optimization
Disk Angular-Position Queue Optimization

Deferred SIO
Logical Devices
User 1/O Services
OPEN
CLOSE

P e it S . -

OO dbWWLWW w

~4

O N0 000000 00N NNNNNN

37

4,

READ/WRITE

PRINT

TYPE

DFM

DVF

DRC

DEVICE (Set Device)
DEVICE (Get Device)
CORRES

REWIND

WEOF

PREC

PFILE

ALLOT

DELETE

TRUNCATE

ERROR LOGGING

Error Log Record Formats

JOB CONTROL PROCESSOR

Overview

ASSIGN Command Processing

JCP Loader
Job Accounting

Background TEMP Area Allocation

FOREGROUND SERVICES

Implementation
RUN
RLS
MASTER/SLAVE
STOPIO/STARTIO
DEACTIVATE/ACTIVATE
10EX

TRIGGER, DISABLE, ENABLE, ARM,
DISARM, CONNECT, DISCONNECT

Task Control Block

MONITOR INTERNAL SERVICES

CP-R Overlays
Entry and Exit Point Inventory

Overlay Inventory

Event Control Block and Event Contiol Services

Overview of ECB Usage
ECB and Dota-Area Formats
Dynamic Space (SPACE)
Dynamic-Space Service Calls
GETTEMP
RELTEMP
SYSGEN Considerations

70
72
73

75

75
75
75
75
75
76
76

76
76

79

79
8l
81
82
82
83
88
88
8e

86 -

88

ess
i

GAN
SCAN
GETIOID
GETFID, GETDEV, GETOPLSB,
GETANY
GETFSTSD
GETNXTSD
GETAX
GETISFIL and GETNXFIL
UNPKDIRE
PACKDIRE
Control Commands
:ALLOT
:DELETE
:TRUNCATE
:SQUEEZE
Library File Maintenance
Library File Formats
Command Execution
:ALLOT
:COPY
:DELETE
:SQUEEZE
Bad Sector Handling
Command Execution
:BDSECTOR
:GDSECTOR
Utility Functions
:MAP
:LMAP
:SMAP
CATALOG
:CLEAR
:COPY
:DPCOPY
:DUMP
:XDMP
Access Control Image
:SAVE
:RESTORE

12. TERMINAL JOB ENTRY

TJE COC Tables
TJE Commands
TJE Structure
Account Maintenance
TEX Operation
TEL Operation
Time Slicing

13. MEDIA

14. EDIT SUBSYSTEM

Functional Overview

Operational Overview

Module Analysis
BEGINEDITOR
MASTERPARSER1

195
195
195

195
195
195
196
196
196
196
196
196
196
197

199
200
202
202
202
202
202
203
203
203
203
203
204
206
207
207
208
208
208
208
209
210
211
212

246

246
246
250
250
251

15.

1.
2,
3.
4,
5.
6.
7.
8.

9.

10.
1.
12.
13.
14,
15.
16.
17.
18.

MASTEREXECUTIVE Routine
Indexed Scratch File Management
Indexed File Structure

SYSTEM GENERATION

Overview

SYSGEN/SYSLOAD Flow

Loading Simulation Routines, CP-R and
CP-R Overlays

Rebootable Deck Format

Stand-Alone SYSGEN Loader

SYSGEN LOADER LOADER

APPENDIXES
CP-R SYSTEM FLAGS AND POINTERS

XEROX STANDARD OBJECT LANGUAGE

Introduction
Generul
Source Code Translation
Object Longuage Format
Record Control Information
Load Items
Declarations
Definitions
Expression Evaluation
Fomation of Intemal Symbol Tables
Loading
Miscellaneous Load Items
Object Module Example

XEROX STANDARD COMPRESSED
LANGUAGE

SYSTEM OVERLAY ENTRY POINTS

FIGURES

Initialize Routine Core Layout
CP-R Initialize Routine Overall Flow
Overoll IOCS Orgonization
I0CS: QUEUE Routine
IOCS: SERDEV Routine
10CS: CLOCKIO Routine
I0CS: RIPOFF Subroutine
IOCS: STARTIO Routine
10CS: IOINT Routine
JOCS: IOALT Routine
JOCS: CLEANUP Routine -
10CS: REQCOM Routine
I0CS: ENDAC Subroutine
10CS: IOERROR Subroutine
I0CS: IOLOG Subroutine
I0CS: PUSHLOG Subroutine
Logical Flow of ALLOT
Initialize JCP

265
317
318

362
362

363
372
373
373

375
380

380
380
380
381
381
382
382
384
385
388
389
390

396

397

19.
20
21,
22,

24
25,
26.
27.
28

.

.

30.
31.

33.
35.

37.
38,

39.
41,

42,
43.

51.

vi

Read ond Process JCP Commands
Wait for JCP Command

Process JCP Command Errors
JOB Command Flow

. FIN Command Flow

ASSIGN Command Flow
DAL Command Flow
ATTEND Command Flow
MESSAGE Command Flow
PAUSE Command Flow

. €C Command Flow

LIMIT Command Fiow
STDLB Command Flow

. NAME Command Flow

RUN Command Fiow

. ROV Command Fiow

INIT, SJOB, or BATCH Command Flow

. ALLOBT Command Flow

PMD Commoand Flow

PFIL, PREC, SFIL, REWIND and UNLOAD
Command Flows

WEOF Command Flow

. Pre=PASS] Core Layout

ARM, DISARM and CONNECT Function Flow

Arrangement of SYSLOAD Input ROMs

ECB Format and Chained Data Areas

Relationship of Task Controlled Data

Relationship between a Primary Task Control
Block and Other Control Blocks

. Relationship between Secondary Task Control

Block and Other System Control Data

. Relationship of AST to Other System Tables
. Relationship of Job-Associated Contro! Tables
. Enqueue/Dequeue Table Relationship

Overlay Structure of the Overlay Loader

Overlay loader Core Layout

LIB Reorganization of Dynamic Table Areo

PASSTWO Reorganization of Dynamic
Table Area

MAP Table Reference

Progrom File Formot

. Overlay loader Flow, OLOAD

Overlay loader Flow, CCl

. Overloy loader Flow, PASSONE

Overlay loader Flow, PASSTWO

. Overlay Loader Flow, MAP

Overlay loader Flow, RDIAG

. Overlay Loader Flow, RDIAGX

Overlay loader Flow, DIAG

. RADEDIT Functional Flow

RADEDIT Flow, ALLOT
RADEDIT Flow, TRUNCATE
RADEDIT Flow, COPY
RADEDIT Flow, SQUEEZE
RADEDIT Flow, SAVE

Field and Indicator Definitions
Memory Allocation EDIT

. Command Description Table (CDT)
. Overall Flow Diagram of EDIT

Flow Diagram of MASTERPARSER
Flow Diagram of PARSE:I:CMNDSSTRG ond
PARSE:I:CMNDSINTG

59
60
61
62
62
62
63
63
63
64
65
67
67
67
68
69

69
71
80
120
131

133
137
144
149
155
156
169

172
175
180
184
184
185
188

76.

78.
79.
80.

81,

82.
83.
84,
85.
86.
87.

89.
90.
91.
92,
93.
94.
95.
96.
97.
98.

100.
101.
102.
103.
104.

105.

106.

9.
10.

Flow Diagram of MASTEREXECUTIVE

Flow Diogram of F:EDIT

Flow Diagrom of F:END

Flow Diogram of SAVE Command '

Flow Diagram of R:FINDSSEQUENCE,
R:FINDSDELETE, ond R:FINDSTYPE

Flow Diogram of R:MOVESDELETE and
R:MOVESKEEP

Flow Diagram of GETNEXTNAME

Flow Diagram of GETNEXTPARAM

Flow Diagram of SHIFTRIGHT

Flow Diagram of OPENSCR

Flow Diagram of CLOSESCR

Flow Diagram of WRGRANS

. Flow Diagram of OPENSCRI

Flow Diagram of READD

Flow Diagram of READX

Flow Diagram of FINDX

Flow Diagrom of FINDNXX

Flow Diagram of GETX

Flow Diagram of GETREC vy
Flow Diagram of PUTREC

Flow Diagram of GETRBYTE/PUTRBYTE
Flow Diagrom of DELETERECORD

Flow Diagram of WRITERANDOM

. Flow Diagram of WRITENEWRANDOM

Flow Diagram of READRANDOM

Flow Diagram of READSEQUEN

Flow Diagram of BUILDSCR

Flow Diagram of SAVESCR

SYSGEN and SYSLOAD Layout before
Execution

SYSGEN and SYSLOAD Layout after
Execution

SYSGEN/SYSLOAD Flow

TABLES

ASSIGN Toble Description

RAD File Table Allocation for a Disk File
RAD File Table Allocation for a Block Tape
DCT Subtable Fomats

10Q Allocation and Initialization

Overlay Loader Segment Functions ™
T:DCBF Entries

Bockground Scratch Files

Command Number Table

Standard System Modules

A-1. CP-R System Flogs and Printers
D-1. System Overlay Entry Points

272
274

276 __)

280
298
301
312
321
323
325
327
328
330
333
335
336
340
342

348
350
351
353
355

362

363)
34

70
101 -
102
103

155
176
178
249

375.
397

PREFACE

The primary purpose of this manual is to provide a guide for better comprehension of the program listings supplied
with the Xerox Control Program for Real-Time (CP-R) operating system. The programs and processors included are
the System Generation program and the Monitor and all its associated tasks and subprocessors.

The manual is intended for CP-R users who require an in-depth knowledge of the structure and internal functions of
the operating system for system maintenance purposes. Since the CP-R System Technical Manual and program list-
ings are complementary, it is recommended that the listings be readily available when referencing this manual.
Manuals offering other levels of information regarding CP-R features are outlined below.

Control Program for Real-Time/RT,BP Reference Manual, 90 30 85, is the principal source of reference
information for the real-time and batch processing features of CP-R; (i.e., job control commands, system
procedures, |/O procedures, program loading and execution, hardware interrupt and software interface,
and service processors). The purpose of the manual is to define the rules for using background processing
and real-time features.

Contro! Program for Real-Time/OPS Reference Manual, 90 30 86, is the principal source of reference in-
formation for CP-R computer operators. |t defines the rules for operator communication with the system
(i.e., key-ins and messages), system start-up and initialization, job and system control, peripheral device
handling, and recovery procedures.

The Contro! Program for Real-Time/RT,BP User's Guide, 90 30 87, describes how to use the various batch
and real-time features that are basic to most installations. It presents the information in a semitutorial
format that offers the user a job-oriented approach toward learning the features of the operating system.

CP-R Availability Features Reference Manual, 90 31 10, describes the available techniques to rapidly
identify a system problem as either a hardware or software malfunction that has already occurred, or to
anticipate a potential system alarm. It also describes the techniques to further define the problem via
software diagnostic criteria, including the Error Log Lister (ELLA), ANALYZE processor, On-Line Ex-
ercisers, and system alarm procedures. The manual is primarily addressed fo computer operators, local
system programmers and analysts, and Xerox Customer Service personnel,

Information for the language and applications processors that operate under CP-R is also described in sepa-
rate manuals. These manuals are listed in the Related Publications page of this manual.

vii

1. CP-R INITIALIZATION ROUTINE ‘

The CP-R Initialize routine sefs up core prior to the execution of CP-R. It is entered from the CP-R Bootstrap every
time the system is booted from the disk. It also modifies the resident CP-R system (including all system tables), the
CP-R overlays, and the Job Control Processor. Modifications may be made from the C or OC device that is selected
by a corresponding sense switch setting SSW1-3, If sense switch 4 is reset, the Initialize routine loads all progroms
on the FP area of the disk designoted os resident foreground. The Initialize routine may extend into the background
and can be overwritten by background programs, since it executes only once. In Figure 1 below, the background
first word address is the first page boundary after RBMEND (the end of resident CP-R). The Initialize routine termi-
nates by entering the CP=R Control Task.

The general flow of the Initialize routine from CP-R Bootstrap entry to triggering the Control Task interrupt is illus-
trated in Figure 2.

Resident CP-R o

RBMEND

CP-R Initialize
Routine

Figure 1. Initialize Routine Core Layout

Enter
from Disk
BOOT

L Process quick patches. J

Set up FGD ond BCKG
blocking buffer pools.

|

Set up DCB and RFT entries
used to read in RBM overlays.

o

I Set write locks.]

]

Set 1/0 handler’'s start ond
cleanup addresses.

et

Set up and ARM/ENABLE 1/0,
Control Panel, Control Task,
and Counter 4 interrupts.

o

Set up Control Task and
CP-R job controls.

-

Change fo secondary task, i.e.,
continue under control of
dispatcher,

i

Type “XEROX CP-R
VERSION XXXX*,

Lo

Process |MODIFY commends

i

Set up simulator
control locations.

hett—4

If sense switch 4 is reset,
do RUN CAL to lood in
ony resident foreground
progrom.

I

Type DT key-in
request message.,

ht—

Trigger Control Task Interrupt
exiting to Control Task.

—

Type olarm if cannot trigger
Control Task interrupt.

Figure 2. CP-R Initialize Routine Overall Flow

~

2. CP-R CONTROL TASK

The CP-R Control Task is connected to the lowest priority system interrupt. Among the functions performed by the
Control Task are

e Key-in processing e Real memory dump

e Primary program run e Deferred I/O processing

e Primary program release e Periodic service of all devices
e Background program load e Crash data handling

e Background sequencing e /O error log handling

e Background dump initiation e Periodic scheduling

In facilities where there are no system interrupts, the Control Task is connected to the Control Panel interrupt (see
"Key~In Processor” later in this chapter).

Structure

The Control Task consists of a resident portion and a number of monitor overlays. The overiays are

o Load module release (FGL1) o Error logger (LOG)

e Load module run (FGL2) e Error summary (ESUM)

o Load module loader (FGL3) e Crash saver (CRS, CRS2)

e Background program initiation (BKL1) e Crash-save dumper (CRD)

e Background Abort/Exit/Dump (ABEX) o Direct crash dumper (CKD1,CKD2)

e Key=-in Processor (KEY1-KEY7) ® Periodic scheduler (SCHED, SCMSG)

Function and Implementation

Resident Centrel Task

The resident portion of the Control Task functions os a scheduler for the various subtasks, The priority of the subtasks
is determined by the order in which the resident Control Task tests the signol bits,

Key-in Pracesser PR
When the Control Panel interrupt is triggered, its handler sets the flag in K:CTST to run KEY1 and triggers the
interrupt for the Control Task dispatcher. '

When KEY1 is entered, it determines whether an operator key=-in must be read or has just been read. If the key-in
has not yet been read, KEY1 prompts the OC device with a "~ and queues a read request to the same device. It
then sets a flag indicating that key-in input is in process, ond exits to the Control Task without clearing its run flag
in K:CTST.

The combination of the flags mentioned forces the Control Task to skip KEY1 but to continue cycling through its
scan until the key=in input is complete. It then enters KEY1.

When KEY]1 is entered aofter a key-in hos been read, it analyzes the input and branches to the appropriate processor
in one of the key-in overlays. If the key-in is unrecognized, KEY1 outputs the message

LIKEY ERR

and repeats the attempt to read o key-in. iy

Lsad Module Contrel (Formerly “Fereground Leader”)

Load Module Control consists of three monitor overlays: FGL1 (Load Module Release), FGL2 (Load Module Run),
and FGL3 (Load Module Loader). Monitor services that require o primary load module to be initiated or released
set the appropriote status indicators in the LMI entry, set the flag for Load Module Control in K:CTST, and trigger
the Control Task dispatcher interrupt.

Lood Module Control is entered in the FGL1 overlay, which first searches the Load Module Inventory (LMI) for
primary lood modules to be released. If o releasoble load module is found, FGLI releeses it. The System Task
Inventory (STI) is searched for entries identifying tasks in the lood module. If any are found, they are released, ond
the associated interrupts are disarmed and set to MTW, 0 0. For clock-connected tasks, both the clock pulse and the
corresponding count-equals-zero interrupts are treated. 1f the load module used PUBLIBs, their use counts are
decremented, ond the PUBLIB LMI entry is released if the use count becomes zero.

While searching for releasable primary load modules, FGL1 also finds all primary load modules that are waiting on
memory in order to run ("run queued") and sets flags indicating that their looding is to be attempted again.

When all lood module releases have been performed, FGLI1 calls FGL2.

FGL2 searches the LMI for a primary lood module entry flagged for loading. If the "run—queueing" option is not
specified, the first loadable entry is selected. Otherwise, the loadable entry with the highest priority is chosen.
(If there is none, FGL2 returns to the Control Task, clearing the Load Module Control flag from K:CTST.)

When an entry is found, the Job Program Tabie (JPT) for the job in which the load module will run is searched. If
the task name from the LMI entry motches a task name in a JPT entry, the load module file name is provided by the
JPT entry. If no such match is found, the task name is used as the file name. FGL2 calls FGL3 to load the load
module. If FGL3 is successful, FGL2 sets up certain LMI entry values which are obtained from the load module
header and allots Associative Enqueue Table (AET) space from the monitor's dynamic memory pool. The load mod-
vle initialization sequence is executed. Normal completion posting is effected for the originating RUN or INIT
request. -

-
If FGL3 is unsuccessful at loading because the required memory was in use, FGL2 leaves the LMI entry for o later
attempt at loading. If the load failed for another reason, the tables are deleted, and the originating request is
posted as abnormally completed.

FGL3 acquires dynamic memory for load module header input. The header is read, and it is determined whether the
memory between the program bounds is free of foreground programs. If it is not, the lood terminates unsuccessfully.
The root segments of the load module are read into their execution locations. If any PUBLIB is required, the LMI is

(.

’

searched. If o PUBLIB is already loaded, its use count is incremented. If the required PUBLIB has no LMI entry, its
header is read and its space requirement is determined. If the PUBLIB does not overlap on existing program or
PUBLIB, the PUBLIB is loaded and given an LMl entry. If memory space is not availdble, the loading of the original
program load module is terminated unsuccessfully,

. When the root segments ond PUBLIBs for a load module are all loaded, FGL3 returns'wccesfully to FGL2.

Background Sequencing

Background sequencing is provided by two monitor overlays: Background Progrom Initiation (BKL1, formerly "Bock-
ground Looder part 1") and Background Abort/Exit (ABEX).

Background sequencing is begun by a "C" keyin received while the background is inactive. The key-in causes flags
to be set in K:CTST indicating that BKL1 must run and the Job Control Processor (JCP) is to be loaded.

There are three main poths through BKL1: one for initiating JCP, one for initiating a processor or user program, and
one for completing the initiation process after Lood Module Control has loaded the background. BKLI may also exit
without doing anything, if it is entered without the indicator set for any of its three functions. In this case, the
flag in K:CTST for BKL1 execution is cleared. At this point, background sequencing hos terminated.

When BKL1 is called to initiate either JCP or another background program, the general process is to associate the
task name “BKG" with the lood module file nome using a SETNAME CAL, and request task initiation with a no-
wait INIT CAL. BKL1 then exits to the Control Task to allow the task initiation to proceed in the background
context.

ASSIGNs are done as indicated in the ASSIGN table during task initiation.

The final path through BKL1 is taken after completion of the INIT service requested in either of the first two paths.
Task initiation, on completing a background INIT request, sets the flag in K:CTST for BKL1 execution. When BKL1
is entered, it performs a CHECK on the INIT request. If an abnormal completion code is returned, flags are set to
run ABEX to abort the background. BKL1 notifies the operator and exits. If the completion is normal, BKL1 then
clears flags that block background execution and exits. Background can then run,

When a service requests that the background task be terminated (e.g., EXIT or ABORT CAls, trap processing abort),
task termination is deferred. Instead, a flag is set in K:CTST indicating that ABEX must run, and another flag is set

in K:JCP indicating whether the temination is an exit or an abort. The Control Task dispatcher is then triggered.

* ABEX first determines what is to be run next in the background sequence on the basis of what was just run, and how

it terminated. If o normal termination occurred, there are three clternatives: K o progrom other than JCP was

" running, ABEX indicates that JCP will run next, If JCP woas running, ond a IFIN commond was received, nothing
. isto follow, If JCP was running and exited without [FIN, it was the result of some variety of IRUN command,

ond the next program to run is indicoted by a file area and name in K:BAREA and K:BFILE, respectively. ABEX
indicates that o user progrom is to be looded next. If the previous background program aborted, ABEX indicates
that JCP will run next. Additionally, ABEX sends an abort notification to the OC and LL devices, and sets a flag
which forces JCP to skip control cards until a 1JOB or IFIN is encountered.

If o postmortem dump is required, ABEX dispatches the background to the background dump routine, resets its own
flag, and exits. When the dump is complete, an EXIT is executed, cousing ABEX to be reentered. If there is no
dump, or upon reentry after a dump, ABEX calls the TMLM monitor routine, which forces the bockground to execute
termination. ABEX then exits, clearing its execution flag.

The background task then executes Task Termination, which closes files, waits out or stops 1/O (the former in on
EXIT, the latter in an ABORT), and releases toble space. Termination ends by setting the K:CTST flag to run
BKL1, ond triggering the Control Task.

When BKL] runs, os described earlier, it initiotes the next lood module, or, if there is none, terminotes background
sequencing.

Contrel Task Dump

«

A Control Task dump Is requested by @ DF or DM key=in. Therequired dump control block is obtained from the system
dynamic space pool, and initiclized for the required oddress range to ha dumped to the DO oplabel. Also specified
is a post-print routine address, to be executed after the Dump routine prints each line. The Dump routine is then
called. 1t returns ofter performing the required dump. The Control Task dump flag is then reset, and the control
tesk scheduling loop is reentered,

The post=print routine specified in the dump control block accomplishes two functions.
1. It causes a delay, followed by a retry if a device~monual error is returned from the print request.

2. 1t enters the Control Task scheduling loop in order to allow other Control Task functions to procede during
the dump. (However, a DF or DM key-in will be rejected while a dump is executing.)

Periodic Scheduler

The Periodic Scheduler is divided into two major monitor overlay sections and two small sections of monitor root-
resident code. The overlay sections are the CAL processor and the Scheduling Processor. The resident sections are
in the clock 5-second timing code and an end-action receiver for on INIT call.

The CAL processor builds a chain of linked tspace entries with a monitor root word, SC:LIST, pointing to the oldest
entry. These entries contain information required to create an appropriate INIT FPT as derived from the SCHED FPT,
Upon entry, the CAL processor will create new TSPACE entries, delete entries if appropriate, set a bit in K:CTST,
call CTRIG, and exit.

The Scheduling Processor, when called by the Control Task, resets the scheduler bit in K:CTST, opens the file SCHED
in area SP, and examines the chained TSPACE entries pointed to by SC:LIST. If such entries exist, the SCHEDFIL
entries will be created or deleted as appropriate. As the datain each TSPACE entry is entered in a SCHEDFIL record,
that TSPACE is released and the chain pointer repositioned,

A monitor root word, SC:INIT, may point to a previously scheduled INIT FPT in TSPACE. If so, a CHECK call is
issued. If the INIT is complete, its TSPACE is released and the completion status is analyzed, Any error code is
added to the scheduled task's SCHED record and appropriate messages are output if this is the first time such status
has been encountered. Some error codes cause automatic deletion of the entry,

1f no INIT's are necessary, the Scheduling Procestor exomines the SCHEDFIL entries fo see if the current time of day
hos exceeded the "next-time-to-run" value for a porticular task. If a task is due fo run, an INIT FPT is built in
TSPACE ond its address placed in SC:INIT, The task's next-time-to-run value in SCHEDFIL is incremented by its
interval value and the INIT call is issued, with a 30-second timeout value to prevent blockage.

The Scheduling Processor then searches the SCHEDFIL for the lowest value of "next-time=to-run", which is posted in
a root block of three words headed by SC:YEAR. The Scheduling Processor exits after resetting the K:CTST bit.

Logic in the 5-second count code of the CLOCK routine examines the three~word block SC:YEAR. If the current
date/time has exceeded this value, the scheduler bit in K:CTST is set ond CTRIG is called.

I3

3. 1/0 HANDLING METHODS

Channel Concept

A "channel" is defined os o dato path, connecting one or more devices to memory, only one of which may
be transmitting data (to or from memory) at any given time.

Thus, @ magnetic tape controller connected to an MIOP is a channe! but one connected to an SIOP is not, since
in this case, the SIOP itself fits the definition. Other examples of channels are a card reader on an MIOP, a
keyboard/printer on an MIOP, or a disk controller on an MIOP.

Input/output requests made on the system will be queued by channel to facilitate starting a new request on the chan-
nel when the previous one has completed. The single exception to this rule is the "off-line” type of operation,
such as the rewinding of magnetic tape or the arm movement of certain moving arm devices. For this type of opera-
tion, an attempt is always made fo also start a data transfer operation to keep the channel busy if possible.

Handling Devices .
The CP-R system offers the capability of multiple-step operations by providing an interrupt-to~-interrupt mode in
addition to the standard single interrupt mode.

Single Interrupt Mode

On the lowest level the 1/0 handier is supplied a function code and device type. These coordinates are used to
access information from tables used by the handler to construct the list of command doublewords necessary to per-
form the indicated operation. Included will be o dummy (nonexecuted) command containing information pertinent
to device identification, recovery procedure, and follow-on operations (see below).

interrupt-to-interrupt Mode

A function code for a follow=-on operation may be included in the dummy command. This causes the request to be
reactivated and resume its normal position in the channel queuve, but with a different operation to be performed. It
will be started by the scheduler in the normal manner as if it were any other request in the queve. The process may
be cascaded indefinitely.

Error recovery may be specified at any point within a series of follow-on operations and will be itself treated by the
system as a type of follow-on operation. It should be noted that follow-ons may be intermixed with other operations
on the same channel or even on the same device if the situation warrants. Thus, a series of recovery frieson a disk
may be interrupted to honor higher priority requests, or on a tape for higher priority requests on other drives (but not
on the same drive).

System Tables

Information pertoining to requests, devices, and channels is maintained in o series of parallel tables produced at
System Generation time. A definition of these tables is presented here as reference for the remainder of this man-
val. The first entry (index=0) in each table is reserved for special use by the system. ‘See Chapter 10 for a more
complete description of these tables.

-_
-~

10Q {Request Information)

These tables contain all information necessary to perform an input/output operation on a device. When a request is
made on the system, a queue entry is built that completely describes the request. The entry is then linked into the
channe! queue below other requests of either higher or the same priority.

DCT (Device Contrel) BN

iRl Lt

The Device Control Tables contain fixed information about each system device (unit level) and variable information
about the operation currently being performed on the device.

CIT (Channel lnformation)

These tables are used primarily to define the "head" ond "tail" of entries that represent the queue for given channel
at any time. A channel queue may have more than one entry active atany time (e.g., several tapes rewinding while
another entry reads or writes).

Handler Tables

Associated with each hand'er are two tables: the Device Offset Table (DOT), and the Command List Pointer Table
(CLST).

DOT (Device Offset Table)

A
The DOT table is a word table that begins on a doubleword boundary and contains:
Byte 0 A byte offset from the beginning of the DOT table to the corresponding CLST entry,

Byte 1 The time-out value, which is an integer that represents the number of five~second intervals that
are allowed to pass between the SIO and the 1/O interrupt before the interrupt is considered
lost. The value X'FF' indicates the operation should not be timed out.

Byte 2 The retry function code. This is the function code to be used for automatic eror recovery,

Byte 3 The continuation function code. This is the function code to be used for multiple interrupt re-
quests, For example, a forward space record on magnetic tape can be performed n times by
the basic 1/0 using the same queued request. Zero is used for no continuation.

The function code is used os the index to reference this table.

CLST (Command List Pointer Table)

The CLST toble is a byte table containing the doubleword displacement from the beginning of the corresponding DOT
table to the appropriate skeletal command doubleword,

The general method for constructing the command doublewords for an 1/O request is to access the DOT table using
the function code as index, and then find the skeletal commend doubleword offset by using the contents of byte 0
of the DOT entry os index to the CLST table. The skeletal command doubleword has the form

Order X
Flags o | v [z

where
Y=0 if the command is complete and to be used as is. This implies X is the address and Z is the byte count.

Y=1 if a seek address contained in IOQ12 is to be placed in the first word, In this cose, the value of X
is irrelevant, b

Y=2 if a regular data tronsfer is to be performed. In this case, the buffer address is taken from IOQ8 and
placed in the first word, and the byte count is taken from 10Q9 ond placed in the second word (byte 1).

Y=3 if the request represents an 1/0 error message. This will cause the proper N/L!lyyndd to be chained
to the pointed message.

Y =4 if a special handler function is to be performed. In this case, X is the address of the entry fo
the function.

-~

When the building of the command doubleword is completed, a test is performed for commoand-chaining (command’

doubleword flag field bits O or 2 are on). If another command doubleword is to be chained, it is accomplished by
accessing the next successive entry in the CLST table to find the offset of the skeletal command doubleword that is
fo be used to create the next command doubleword. This commond doubleword is constructed in the same fashion as

the first, and the process may continue to the limits imposed by the size of the command list area allocated at
SYSGEN.

1/0 Control System Overview

The 1/O Control System (I0CS) is based oround three major concepts. They are device dependent variables, channel
dependent variables, and request dependent variables. The device dependent variables include the device oddress,
device state flags, pointers to channel ond request voriables, pointers to pre- and post-handlers ond storoge for
hordwore 1/O status, The channels are software logical chonnels defined by the SYSGEN process. Only one data
fransmission can occur on a channel at any given time (two in the case of device pooling hordware). Channel vari-
ables include the state of the channel (busy, held, etc.) and queue head and tail pointers for the request queues.
Request variables contain the information supplied by the IOCS user (file manogement, overlay manager, utility
routines, etc.), indicating which I/O operation is to be performed ond how completion is to be signaled. Request
variables include buffer address, byte count, function code, maximum error retry count, end-action information,
device pointer, priority, and others. There ore also entries for forwards and backwards pointers in’the channel
queves.

All device-dependent code is in device pre- and post-hondlers that are colled before the 1/O is storted and after
the 1/O interrupt is received, respectively. They are dependent not only on the gross device type (i.e., cardreoder
or magnetic tape unit), but also on the exact mode! of device ond controller.

Figue 3 shows the overall organization of the 10CS.

interfaces
There are only two program interfaces into the 10CS. The first is QUEUE which is called with the request param-
eters in order to odd o request to the proper queve. It identifies the proper channel and adds the entry in priority

position. The second is SERDEV (Service Device) which, while colled with o device pointer, identifies the asso-
ciated channel and checks it for a possible state change.

The only interface out of the IOCS is IOSCU. When any 1/O is finally terminated, JOSCU colls REQCOM which
signals the requestor based on the clean-up code and/or end-action control word supplied with the original request.

The 10CS interfaces are described in further detail below, together with an 1/O control sequence example for o
simple case.

Figures 4 through 16 show the detailed control flow for the individual 1OCS routines and subroutines,

Interfaces into the 1OCS

QUEUE. This subroutine is called by the monitor to enter an 1/O request into the JOCS. It must be supplied with
mony parameters such as:

® Byte oddress of the buffer

e Byte count -
Logical function code (read, write, rewind, etc.)

Priority

Device ID

End=-action control data

Maximum number of recovery attempts

FPT
FUNCTION
PARAMETER TRALE
CALL PRRAMETERS
AND DCB PTR

ocB
DATA CONTROL

OcK
DATA SET
PARAMETERS

RFT
RAD FILE TRABLE
oPLBL
LOGICAL LABEL
TRBLE

10Q
170 OUEUE
ENNTRY
REAL CALL
PARAMETERS

CIT
CHANNEL INFO
TRBLE
QUEUE PTRS AND
CHANNEL. FLAGS

oct
DEVICE CONTROL
TABLES
DEVICE
PARAMETERS

REQUEST
COMPLETE
POST STATUS IN

Oc8
DO END RCTION

MEREAD 2CHECK
PARRMETERS IN PRARAMETERS IN
FPT AND DCB FPT AND OCB

FILE AND osv:ce
MANAGEMENT
CONVERT TO RERL
PRARAMETERS
CALL QUELE INTSIN
PUT PARANETERS 170 TIMEBUT
IN REGISTERS HIO DEVICE AND
FOR OQUELE BLLECT STATUS
BUILDQI&EENTRY
CONTROL TRSK 1/0 INTERRUPT
DEFERED CLEANUP AND PUT IT ON RIO DEVICE AND
EVERY 30 SEC RIGHT CIT BLLECT STRATUS
SERYICE DEVICE CLEANUP
TRY TD STRRT (p INTERFRCE TO
1/0 OR DO POST MANDLER
CLEANUP ERROR LOG
PRE HANDLER RETRY COUNT
PRE~HANDLER
DO INITIAL
SETUP AND CET
PTR 70 RIGHT
1/0 TRBLE
st
COMLIST BUMP RETRY = POST-HANDLER
BUILD CON'S SETUP FDR KEY[N wore EXANINE STRTUS 4
BASED ON 1/0 AND RETURN
TRBLE CODES AND FLAGS
1051 AI!
Sto
SETUP TIMEOUT
SET FLAGS
CHECK MANUAL

by

Figure 3. Overall 1OCS Orgonization

~

P

nterface out of the IOCS

1OSCU. This routine, when final completion of an 1/O request occurs, can signal that completion in two ways:

A post word may be posted with the Actual Record Size (ARS) and type-of-completion (TYC) code.

A monitor subroutine may be entered with the ARS, type-of-completion code and user end-action informa-
tion in registers.

JOCS Control Sequence/Example

The sequence followed when a single 1/0 request is made to IOCS for an idle channel is as follows:

10.

11

The monitor makes a call on QUEUE with the request parameters. QUEUE places the request on the proper
channel queue in the proper priority order.

The monitor calls SERDEV to start the channel.
SERDEYV finds the channel idle and a startable entry in the queve. It calls STARTIO for that queue entry.

STARTIO calls a device dependent pre-handler which builds the proper channel program based on the queue
entries. The 1/O is started on the device and STARTIO returns through SERDEV to the monitor,

While the 1/O is proceeding, the task for which the 1/O is being done may get blocked and be waiting
for the 1/0 to complete. The monitor then makes successive calls on SERDEV while it is waiting for the
task. If SERDEV finds the device busy, it checks the elapsed time for the [/O in progress to see if it is
taking too long.

(SERDEYV is also called every 30 seconds for all devices. This makes sure that the system does not hang up.)
When the 1/O operation completes, or errors, an 1/O intertupt is generated. IOINT is entered.

IOINT collects all the status about the 1/O operation ond marks the device as needing clean-up. TOINT
then either calls SERDEV itself or stacks the device ID and triggers another interrupt level which will call
SERDEYV for all the device IDs in the stack.

SERDEYV finds the channel blocked by a device requiring clean-up and thus calls 10SCU.

10SCU calls a device-dependent post-handler which analyzes the status saved by IOINT. The post-handler
retums to IOSCU with parameters indicating what action to take. The possibilities are:

Output an operator message.
Request an operator key-in.
Follow~-on to a new function.
Decrement the retry count,

Post some type of completion code.
10SCU then re-enters SERDEV in order to get the channel started again (step 3).

This sequence goes on, round and round, until some type of 1/O completion is posted.

n

12

OUEUE
ENTER AN 1/0
REQUEST

DEVICE
106X
DCTS BIT?
SET

DEV ILE\,,ES

Yanz
o

>

$047
PUSH ByRD

X117 FRON
(" (ERROR)

Cmr——— &——
IN{J[%}Z&TRI SERDEV
N ATTEMPT TO
BIFZUEX AND DRIVE A REQUEST
KGROUND T0 COMPLETION
PRIORITY AND FREE R O J
82 m2
DISRBLE PULL 15,R
DECREYERT R

S THISN_

ND _~THE LAST U >

1S
BKGRND 100
CNT MAXIHUM

ENABLE
PUSH 15gR4 ‘

[ST
INCREMENT
BACKGROUND (00
COUNT

0040

DE-CHAIN 100
ENTRY FROM FREE
CMAIN

FILL-IN 10O
ENTRY FROM
REGISTERS SET
INITAL ACCESS
KEY IN 1003

PUT BYTE CNT [N
POST WORD JF
FPT POSTING R
IN OCB-ARS [F
DCB POSTING

GET NEXT O
ENTRY
<
et

Figure 4. 1OCS: QUEUE Routine

PUT REQUEST ON
END OF O

PUT REQUEST IN
0 HERE

ml

ENRBLE

P D Emam—

ADD REQUEST T
FRONT OF Q

ol

PUT REQUEST DCT
INDEX RAND
PRIDRITY IN RL

!

SERDEV

ATTEMPT TO
START A REQUEST
FOR THIS DEVICE

.k

PULL B,RD

1P EXIT FROM
QUEUE (NDRNAL)

Figure 4. 1OCS: QUEUE Routine (cont.)

13

14

D1

GET PRIDRITY
FROM Ri, BYTE 0
DCT INDEX IS
Br7E i-3

QRIVEID Y
PUT LINK IN RIS
GET CIT INDEX
IN R2

CHECK
PRIDRITY OF
REQUEST

% IRT

SAVE O ENTRY
PTK [N RLO

CHECK
DEVICE
STATUS

Figure 5. JOCS: SERDEV Routine

GET Q PTR OF
INTER-OP
REQUEST

L5

PUT RACCESS KEY
IN R4

KEINSTR

GET 100 ENTRY
SAVED IN R1U

[HENALK

MIDIFY CHAN

AVRILABILITY
FLRGS

—© .

NEXTH

GET NEXT O
ENTRY

I0INC

CRASH
1/0
INCONSISTANCY
GET PTR 70
HOLDING REQUEST
SET SOHEDHOLD
FLAG
-

Figure 5. IOCS: SERDEV Routine (cont.)

15

16

CLOCKID
CHETK FOR
TIMERIT, £7C.

SERDEV

v

TIMED
/\T .
< T YE »

l’e"‘ SERDEV

LLOCKOUT

SET TIME-DUT
FLAG

™ L

AECRTIO

RBORTIO
STOP AN ACTIVE
1/0

SET 1/0 RBORT
FLAC

CONSTRUCT NEW TYPEMMSE

TIMECUT VALUE
AND TIC DEVICE

TYPEMMSG
TYPE MANURL MSG

Lsmur
Is BuUTPUT
VICE STILLNYES MESSAEE
MANURL

‘ ND

02
SERDEV

RESET OEVICE
MANLUAL FLRG

ERDEV

=

HID DEVICE

T0v DEVICE

CONSTRUCT
STRIUS

CLOCKX]T
INTSIM

SIMULATE 1/0
INTERRUPT

SERDEV

INTSIH

INTSIM
SIMULATE 1

R

RESET DEVICE
BUSY

SET CLEAN-UP
PENDING

RESET PROPER
CHANNEL BUSY
FLRGS

Figure 6. 10CS: CLOCKIO Routine

RIPOFF
RIPOFF
REMOVES ANY U
ENTRY

SAVE LINK
DISABLE

HIO DEVICE

lves

NO

RESET CHANNEL
BUsY

RIPDFFQEL£

RESET CHANNEL
HBLD IF IT WAS
SET

l

CLEAR OCTS
CLEAR BITS 3
4, DR S OF OCT3

TPEEITY

GET FIRST/NEXT
ENTRY FROM FREE
100 CHRIN

IPDFE30

SET UP
REGISTERS FOR

REQCOM

REQUEST
COMPLETE

j B

oV

RESTORE LINK

290

Figure 7.

1OCS: RIPOFF Subroutine

17

18

ST P

ST

Y e acmea®

B T I T

STRRTIO
STARTIO
[peenAND W
ENRBLE DEVICE
SET UP PRE-HANDLER
REGISTERS SETS P
COMNAND
CHAIN

ZERD RETRY
CODES

b SV

GET TIME-OUT
INCREMENT

I

ASSIGN RCCESS
KEY TD EITHER
FREE S-C

L

I TRIL W
SET UP DEVICE
TABLES
GET DEVILE
ADDRESS

muren STO sesres

ND

O FORLES. W

FORCE RCCESS
KEY TO S-C P

PUT ACTIVE
DEVICE AODRESS
IN OCTL

1S
DEVICE
AUTOMATIC

IRT2

SET DEVICE
MANUAL
SET MANUAL MSG

FLAG
SET 1S SEC TIME

|

BSIRI3 W
SET TIME-OUT
VALUE,
SET DEVICE BUYSY

1S s-C
RELEASE FLAG™JES
SET

SET HOLD FLAGS
INCIT3
SAYE HOLD O PTR

\ IN CITS/6

(ALY l

SET CHANNEL (S)
)

SET DATA
TRANSFER BIT

OSIEX2 L

STORE ALL FLAGS
IN CIT3, DCTS,
AND DCTE
SET 100 BUSY

Figure 8

JOCS: STARTIO Routine

SAVE SLD STATUS
IN DCT13
HID DEVICE

CHANGE RCCESS
KEY T0O USE
OTHER S-C

3)N

SET S10 FAIL
FLAG
SET CLEPAN-UP

AND DATA
TRANSFER FLAGS

STORE [DO3
FLAGS
BUMP RESENT CTR
ENABLE

D

Figure 8. 10CS: STARTIO Routine (cont.)

19

IBINT

IBINT
1/0 INTERRUPT
RECE[VER

PUSH ALL
REGISTERS INTO D?éégﬁ
LG DCTS BIT?
SET

SHITCH KERTS

l

PPN ENDRC
AID
Mt
SAVE AID CC B%E%N%Nﬁt&l'rul%

'

SAVE ALD STRTUS
AND PICK UP
END-ACTION

Di4
COLLECT DEVICE
STATUS
RESET DEVICE
MANUAL ANG BUSY

FLAG SET

RESET PROPER
S-C BUSY FLAGS

17

STORE OCT
SWITCHES HITH
NEW SETTINGS

b 38

Figure 9. 10CS: IOINT Routine

CONTROL WORD
INTD CTIDSTK

STACK
YES " OVERFLOW

NO

¥ ,
PULL R WORD PICK P XK2I0G.
FRON CTIBSTK Aos
LTRIG 00
STACK TRIGGER TRIGGER élsFERED
CONTROL. T 1/0 LEVEL
UNDERFLOW ~\JES iRl
NG 4
a 10
SERBEV @ RESTORE
REGISTERS AND
SERVICE DEVICE d 3TERS
]
X1T AND CLEFR
INTERRUFT
E
Figure 9. 10CS: IOINT Routine (cont.)

21

22

I0ALT
ALTERNATE 1/D
LEVEL

PUSH ALL
REGISTERS INTOD
TSTACK
SWITCH KSRTS

PULL A WORD
FROM CTIBSTK

o0

RESTORE
REGISTERS AND
STACK

SERDEV
EXIT AND
SERVICE DEVICE CLEAR
INTERRUPT
|

Figure 10. 10CS: T0ALT Routine

PROCESS!

SET-UP
REGISTERS
ENRBLE
SET UP N3
A 18 ves MESSAGE, TYC =
RBORTE — ABORT, RBC = O

08 DEVICE
POST-
PRCCESSING

1 |

COMPUTE RBC IF
~———— 3 DATA CHAINING

| I

1Excy

SETUP TYC 0K
AND RBC

|

SET UP MSG4
KEY-IN NO C

’
’
p RBC =0

——

SET UP MSG3,
KEY-IN ND C,

F RBC = 0

DISABLE

HA
RE SENTRANCE
COUN

1S s-C
ALRERDY nELD

“

SHOULD
IT BE
RELERSED

~

%Ié

)Ia

RELERSE HOLD
FLAGS

1

1000 ¥

ANY
TRY FOLLOWNC
OF KEYIN ED
lYES REQCOM
YES

RESET [0Q BUSY
GET RETRY AND
FOLLOW-ON BITS

|
VaER
CREATE AND
COLLECT
STATUS FOR
18 ERROR LOG

|

DECREMENT RETRY
COUNT

=0

L

Figure 11, 10CS: CLEANUP Routine

23

24

-

SET TYC 70 4

REQCOM

POSITION RETRY
FUNCTION RS
NEXT FUNCTION

£6 o
SAVE
RETRY/FOLLOW
FUNCTION RS
NEXT FUNCTION

15
INTER-OP
REQUESTED

SET INTER-OP
FLAG

CLERR ANY
MESSAGE PTR

S TIME-OUT

KEYINOK

SET-UP DEVICE
ENTRIES FOR

| m*san/

STORE DEVICE
SH1TCHES

ENABLE

G7

ENABLE

I

I
RESTORE R

SERDEV

s

Figure 11. 10CS: CLEANUP Routine (cont.)

REQERR
REQUEST ERROR

SET TYC 1O
ERROR

I

RE UTERM
REQUEST
TERNINATION

o

CLEAR MSG PTR

SET INTER OP
FLAG IN BCT5

15

SAVE DEVICE
SHITCHES
SET RETURN LINK
TO IOCUEXTT

E—

LOG ANY [0
ERRORS HERE

DECHAIN I00
ENTRY AND ADD
IT 10 FREE
CHAIN

DECREMENT
BACKGROUND IO
COUNT

-

CLEAR IDO3

PUSH 9,R13
PUT RBC IN R13
PICK UP END
ACTION + €CB

] —

ENABLE

ENDAC

DB END ACTION
FOR [D BASED ON
10013

Figure 12. 10CS: REQCOM Routine

26

i
i

YES

<

S FIRS
BYTE R "t°

5

MOVE RECORD 7O
CC BUFFER
SET CFLAG

|

RESET CFLAG

Oy

COMPUTE ARS
FROM 1BC IN
POST WORD AND
RBC FROM IO

PBST STATUS IN
FPT WORD

COMPUTE ARS
FROM IBC IN DCB
AND RBC FROM IO

POST ARS IN OCB
RESET DCB BUSY
PUT TYC IN OB

—

N
CLEAN-UP
TYPE

B

TYPEL

®

i

TYFES

@

TYEE

J@

@

v

"BAL,R14" TO
END-RCTION

(ENDAC)

I

e

PULL 9,R13

CLEANUP

Figure 12, 10CS: REQCOM Routine (cont.)

TRIGGER LEVEL
INDICATED IN
END-RACTION

1S 17
CENTRALY
CONNECTED

SET BIT O IN
WORD 6 DF 1CB

RC4B
SAVE ALL REGS
EXECUTE BAL
TYPE END ACTION
RESTORE ALL
REGS

STORE AID
STATUS IN
SIGNAL ADDR

| I
TR ¥

RETURN DN LINK

~

Figure 13. 1OCS: ENDAC Subroutine

28

1DERROR
1/0 ERR STATUS

BUMP DEVICE
ERROR COUNT

GET BUFFER PTR
fRON IDDERR

2ERT
LWEIP

GET A SPACE
BUFFER

NONE

RORS

BUMP LOST LOG
COUNT

RETURN DN LINK

BLOCK FOR e

LERROR1

PUT BUFFER PTR
IN_IOCERR,

—_— GATHER

EVANESCENT
STRTUS

RETURN ON LINK

~ s

j ¥

Figure 14,]OCS:

JTOERROR Subroutine

10L0G
1/0 ERR LOGGING

13
100ERR
POSITIVE

10ERROR

START A NEW
170 ERRDR
LoG

A0G10 l‘ ‘

PICK P BUFFER
PTR FROM IDOERR phys

RETURN DN LINK

AND ZERD IDOERR [—

FILL IN FIXED
1/0 LOG STATUS

PUSHLOG

Figure 15. JOCS: 10LOG Subroutine

30

(PUSHLOG ' TO LOG STACK ADD A LOG BUFFER

FILL IN TIME
STAMP

PLISH! 81 £

PLISHL G5
PUSH LOG BUFFER BUMP GOOO LOG
PTR INTD LOG dx COBUNTER
STACK
o n
PUSHL 0G2
PULL AN ENTRY
FRON LOG STACK gLsE
RETURN DN LINK
oK
BUMP LOST LOG
COUNT
RELTEMP
RELERSE LOG
BUFFER SPARCE

~

Figure 16. 10CS: PUSHLOG Subroutine

—

Routine returns +1 if device is IOEX or down; +2 otherwise

At entry:
R2 ECB ID or zero
R4 1/0 Function code
R5 Link
R6 Number of retries
R7 DCTindex
R8 CLEANUP Information Word 1

R9 CLEANUP Information Word 2

R10 I/O buffer oddress (byte oddress)

R I/O length (in bytes)

R12 Disk seek address or number of records to pass {(magnetic tape)
R13 Priority

Registers RO ~ R7 preserved; contents of R8 ~ R15 are lost

CALLSD

At entry:
R1 FPT code
R2 DCB address
R3 FPT address
RS Link

R1 - R7 preserved; contents of RO, R8 - R15 are lost

SERDEV

At entry:
R1 DCT Index
R2 Link

Contents of all registers are lost

RIPOFF

At entry:
R2 Task priority
R3 10Q: pointer for Q entry to be removed
RS Link

Contents of all registers are lost,

F Y

31

STARTIO

At entry: There is a stortoble request in R3. The device activity counter is set in R14 and interrupts ore enoi:led.
The 1/O handler preprocessor is called unless user command list is specified. Handler return is to '1OSST',

Registers, after pre~handler return:

RO Doubleword address of command list

R1 Priority, CIT check mask, DCT index (8, 4, 20)
R2 Flags, SERDEV exit, CIT index (3, 10, 19)

R3 Request IOQ index

R4 Handler flags, subchannel allocation code (8, 24)

R10 Device operation table (‘DOT') for '10OSST'

R14 Device activity count for re=entrancy check
R15 Link for service device
CLEANUP/IOSCY

Normal register usage:

R1 Priority, DCT index (8, 24)
R2 Flags, SERDEV exit, CIT index (3, 10, 19)
R3 Scratch, [OQ index (8, 24)

R11 Remaining byte count (RBC) from post-handler

R12 Flags retumed from post-handler:

Bit 16 Retry sequence

Bit 17 Follow=on sequence

Bit 18 Inter—operative request

Bit 19 Key=-in pending (normal) "
Bit 20 Key=-in pending (special) h
Bit 21 Continue channel hold

Bit 22 Force message print

Byte 3 Type of completion

R13 Maessage to be typed (0 if none)

R14 Device activity count N
R15 Not used - reserved for future systems.
REQCOM
At entry
R1 DCT and priority
R3 10Q pointer
RS Link
R11 RBC
R12 TYC

R13 - R15, RO - R4 preserved; contents of R5 - R12 are lost

1/0 Error Logging

Optionally, an 1I/O error-logging capability is provided. Whenever an 1/O error is indicoted by the device
post=handler (by requesting o retry), IOSCU gets space for an error-log record, soves all evanescent I/O status,
ond puts the space pointer in IOQERR. Subsequent retries use the same space ogain,

In ‘REQCOM, when the 1/O completion is done, IOQERR is checked. If o log was started, the error-log record is
completed and the pointer is stacked for loter filing. Also, if on error completion code is indicated and no error-
log record hod been started, i.e., no retries were done, one is storted and treated as above.

This assures that for any 1/O request, no more than one error log will be generated. The error log wiil always in-
dicate the status of the last error in a retry sequence,

The error log records relating to 1/O errors are as follows:
o SIO failure

e Device timeout
e Unexpected interrupt
o Device error

® Secondary record for device sense data

The formats for these error logging records are given in Chapter 4, "Error Logging".

1/0 Statistics

-
Optionally, with error logging, 1/O statistics ore maintained. These may be displayed using the ESUM key=-in.
The total number of SIOs issued for each device since system boot is kept in DCTF1O (word). The total number of
I/O errors, counted when 1/O error-log status is collected, for each device since system boot is kept in DCTfERR
(word).

The number of Log records successfully filed since system boot is kept in GOODLOGS (word). The number of Log
records lost, because of space or time overruns, since system boot is kept in LOSTLOGS.

Side Buffering

Both input ond output side-buffering are optionally available for certain unit record devices. These allow effective
double-buffered I/O for processors which do not themselves do double buffering.

DCTSDBUF is a word entry for all cevices which points to a post word followed by a buffer space for each side buf-
fered device.

Output Side Buffering

Output side buffering is done for all line printer, card punch ond teletype output except for PRINT and TYPE CALs.
The WRITE CAL waits for previous I/O to complete and the side buffer to be free. It then copies the users data into
the side buffer. A request is made to output the side buffer. The caoller is posted with the completion code of the
previous output and oll appropriote posting and end-action done.

Input Side Buffering ,

Input side buffering is done only for the card reader. If the side buffer is free ond a 'wait' READ CAL is issued, o
side buffer read is started. Then this or any other READ CAL will wait for the side buffer read to complete. The
input dota will be copied into the user's buffer and posting/end-action will be done. If the record read is not a
'y r:r ':' cord ond the read was 'automatic’, not binary, another side buffer read will be started before returning
to the user.

Virtual I/0 Buffering

When service calls are initiated in mappedtasks that involve /O, the monitor subroutines, FMGETRAD and FMLOCK
convert the virtual buffer oddress to a real buffer address by performing one of the following functions as defined by
the data area attached to the 1/0 ECB:

o Obtain a side buffer in CP-R TSPACE for unit record devices (i.e., CR, CP, LP, TY). If the request is a write
operation, the user's data record is moved to the side buffer in TSPACE and is output from there. If the request
is an input operation, the record is read into the buffer in TSPACE and moved to the user's buffer at the con-
clusion of the 1/0 operation.

e Set poge locks if the user's buffer is contained within a single page or within contiguous real pages.
o Build a skeleton 10OCD list of real buffer locations and sizes in CP~R TSPACE if the user’s buffer is contained i;l

two or more noncontiguous real pages, and set the poge locks. The size and location of the IOCD list are input
to QUEUE in place of buffer size and location.

The FMGETRAD routine obtains and initializes the data area which has one of the following formats:

Format 1

Word 0 o Length Dota area address

Word 1 10D =1 o————0 BUF

Word2 |© Y

0 31 .
Word 3 0 0
0 31

where
Word 0 contains the size and word address of the CP-R TSPACE obtained for the 1/0 request.

~ Word 1 IOD =1 means that the 1/0 buffer is located in the TSPACE pointed to from word 0 and the 1/0
request is a WRITE. The user's data record is moved to the buffer in TSPACE before the QUEUE subroutine
is called.

BUF is the byte address of the 1/O buffer in TSPACE.
Words 2 and 3 are not used.

Format 2
_— ';/
Word 0 0 Length Data area address
01 78 31
Word 1 IOD =2 0—0 BUF
(4] 78 1516 31
Word 2 0 4] UBUF
0 1516 31
Word 3 0 ::J
where

Word 0 contains the size and word address of the CP-R TSPACE obtained for the 1/0 request.

Word 1 10D = 2 means that the I/O is a READ request and the data record is to be read into a buffer in the
TSPACE pointed to from word 0. The data record is moved to the user's virtual buffer address ot CHECK time.

BUF is the real byte address of the buffer in TSPACE that will be used for the READ request.
Word 2 UBUF is the virtual byte oddress of the 1/0 buffer supplied by the user in the FPT or DCB.
-«
Word 3 is not used.

Format 3

Word 0 0 0

Word 1 10D =3 o k (1<k<33)

Word 2

of ez~
- O
o
o
.l
x

15

Word n P2 Py

where
Word 0 is not used.

Word 1 10D = 3 means that the 1/O request will use the specified number (K) of real pages that contain the
user's buffer.

Words 2 through n INP =0 if the real Pages (P;) have been locked; 1 if the pages have not been locked. P,
are the real pages that contain the user's 1/O buffer.

Format 4
Word 0 0 Length Dato area address
01 78 31
Word 1 IOD =4 k (1<k<33)
0 78 31
Word 2 [%|0 0 Pk
01 15716 31
Word n P2 P
0 1516 31
where
Word 0 is a pointer to the data area in TSPACE that contains the IOCD list, -

Word 1 10D = 4 means that the 1/0 request will use the specified number (K) of real pages that contain the
user's buffer and Word 0 contains a pointer to the data area in TSPACE that contains the IOCD list. Note
that 10D = 4 meons that the buffer is in noncontiguous real pages.

Words 2 through n are as shown in Format 3.

——

10EX
Two forms of IOEX are supported by the 10CS.

Queued 10EX

Queved IOEX allows IOEX requests to be added to the queuves just as any other request. They will be performed
like any other request, but will not invoke either the pre= or post-device hondler. Both queued IOEX requests and
nomal requests may be made on a device at the some time.

Dedicated 10EX

Dedicated 1OEX requires that all 1/O management for the channel must be done by the user himself. Thedevice must
be dedicated either at SYSGEN or by a STOPIO call to IOEX, and no normal (queued) requests will be honored while
it is dedicated.

Disk Pack Track-by-Track Logic

All disk pack requests are initially attempted unchanged. If returming status indicates that either a cylinder crossing
or a flawed track was encountered, the operation is retried with the data transfer broken into operations not larger
than one track. Flawed tracks then encountered will be processed using the altemate track address in the header.
This requires that packs be properly initialized with valid altemates in the headers.

The track-by-track parsing is wholly contained in the disk handler and uses only the original IOQ entry. No I/O
time or execution time overhead is used if flawed tracks and cylinder crossings are avoided.

Disk Pack Seek Separation

For all disk-pack operations, o separate seek order is issued without a data tronsfer. This takes advantage of two
hardware features available on all disk packs. First, such seek operations do not tie up the channel and all disk packs
may be seeking and therefore arm-moving at the same time. Second, the disk pack interrupts only when its am
motion is complete and when it is rotationally positioned in the sector previous to the indicated seek address.

This allows both arm=motion time as well as rotational=latency time to be overlapped with data transfers when disk-
pack 1/0 traffic gets high.

Disk Pack Arm-Position Queue Optimization

Optionally, on arm-positioning optimizer is used to minimize am positioning time on all disk packs. No rotational-
position optimization is intended or performed except that achieved on a multipack controller by virtue of multiseek
operations which interrupt ot @ minimum rotational latency time.

The optimizing algorithm is intended to minimize disk arm-movement time by ordering disk-1/O~queue requests by
am position. No account is taken of request priority or order of time of request. The only guarantee is that two or
more requests with the same seek address will be run in FIFO order.

The algorithm is as follows: At the end of any disk 1/O operation, the current seek address is noted. The disk I/O
queue is searched, in priority order, for the request which has the closest seek address in a forward direction.
Requests which have seek addresses before the current position have their seek oddress biased so as to be forward,
beyond any nomal forward position. A queue entry with the same seek oddress is considered to be the farthest-away
seek address. This guarantees that all requests will be eventually reached.

The result of this algorithm is to guarantee service to oll requests. The arm motion tends to sweep from low to high
am position and then snap back to a low position. The algorithm offers up to 25% improvement in the time required
to service short, random seek requests.

This snop-back or cyclic sweeping was chosen over an ‘elevator' algorithm; i.e., two-woy sweep, to minimize - .
wait-time dispersion.

The code required for implementation of this olgoriﬂ;m is wholly contained in one piece at the logical end of the disk
post-hardler. It is 38 words long and is conditional on the assembly switch #DISQING.

Disk Angular-Position Queue Optimization

Optionally, an angular-position queue optimizer is used to select the "best" disk-1/O-queve entry to run. This is
done to minimize rotational latency time without precluding priority queuing considerations.

At the end of any disk 1/O option, the current rotational position is computed from the 1/O start seek address and
the byte count transferred. A tolerance is allowed for 1/O~interrupt processing time, on the order of 1 ms.

The disk 1/0 queue is searched, in priority order, to determine if any lower priority request can be run entirely
(including interrupt processing time) cheod of the nomally selected high-priority request. As each one is found,
it becomes the selected high-priority request. When the end of the queue is reached or when a request is elected
which starts in the next avoilable rotational position, 1/O system flags are set to cause that request to be the next
one started. This algorithm offers up to a 50% improvement in the time required to service many short, random seek,
requests, -

The code required for implementation of this algorithm is wholly contained in one piece at the logical end of the disk
post-handler. It is 73 words long and is conditional on the assembly switch fRADQING.

Deferred SI0

In a dual-redundant multi-processor system, where a pool of devices (i.e,, disk packs or magnetic tape units), are
shared, the 1/0 system allows limited concurrent use of these devices. 1f both processors try fo use the same device,
one will receive busy status from the device and the other will obtain use of the device. The 1/O system, upon re-~
ceiving the busy status, defers the S1IO attempt for 5 seconds and then tries again.

In certain cases, such as on interruption between a seek and a read or write on a disk pack, recovergble errors maybe
reported by the hardware. The user of the deferred 510 capability should allow areasonabl e number of retry attempts
on his 1/0 requests,

Logical Devices

Provision is made in SYSGEN to include logical devices. These are pseudo-devices which form a logical connection
between Read and Write or Write File Mark 1/0 requests. They are SYSGENed as if they were real devices (includ-
ing fictitious device addresses), and may be used like any other 1/0 device.

Read and Write requests are entered into the 1/0 queve normally. When the logical device finds @ match between a
Read and a Write request, the data transfer is made directly from the write buffer to the read buffer. Requests are
handled on a first in, first out basis within priority ond otherwise in order by priority. Actual record sizes are posted
as usual. Write File Mark requests result in an EOF TYC and abnormal code being posted for the Read request,

Logical devices supply the capability of communicating between tasks via normal Read/Write services. It also pro-
vides the capability of intercepting or monitoring a data stream. -

The user should be aware that 1/0 buffers are locked in main memory during any 1/0 operation, and that where very
large buffers or very many outstanding 1/0 requests are used, this may result in a deadlock. This is particularly true
of logical device requests which must be satisfied by another 1/0 request and not by independent action by a per-
ipheral. Similarly, 1/0 queue entries may be tied up and result in a deadlock condition.

Logical device requests are not subject to 1/O timeouts. The user must supply atime interval parameter on the service
request (P13). This will cancel the request after the specified time period and post an FPT error code of X'67'.

User 1/0 Services

OPEN This function opens a DCB that results in opening a disk file when the DCB is assigned to a disk file. If
the Error and/or Abnormal address is given in the function call, the addresses are set in the DCB.

Opening a disk file involves constructing an RFT (RAD File Table) entry for the file, If the file is a permanent file,
the arec file directory is searched to locate the parameters that describe the file. These parameters are formatted
ond entered into the RFT. If the "file” is on entire area, the parameters used to construct the RFT entry are taken
from the Master Dictionary. If the file is a background temporary file, the RFT entry must already have been con-
structed by the JCP, If the file is on a disk pack and a DED DPndd, R key=in is in effect, an abnormal code (X'2F')
is posted in the DCB,

Blocking buffers or user-provided buffers are used for the directory search, Background requests use background buf-
fers; foreground requests use foreground buffers,

CLOSE This function closes a DCB that may result in the closing of a disk file. Closing a permanent disk file
involves updating the file directory if ony of the directory parameters have been changed by accessing the file.

Among such parameters that may change ore file size (odding records to the file), record size (by Device File Mode
call), etc.

If the file is extensible, all extents numerically higher than the one currently positioned in are deletetl,
Disk files are closed only when (1) the DCB being closed is the last open DCB essigned to the file and (2) no opera~
tional labels are assigned to the file. Blocking buffers or user-provided buffers are used for the directory update as

in the case of OPEN, If the file being closed is on a disk pack, a DED DPndd,R key-in is in effect, and this is the
last open file on device ndd, the message !1DPndd IDLE will be output.

READ/WRITE A READ or WRITE function call will cause the addressed DCB to be opened if it is closed, READ/
WRITE checks for legitimacy of the request by determining whether or not the following conditions are present:

1. For type 1 requests, the DCB is not busy with another type 1 request.
2. The assigned device or op label exists,
3. The user buffer lies in o legitimate region of core memory,

4. The type of operation (input or output) is legitimate on the device (e.g., output to the card reader is not
allowed.

For device 1/0, READ/WRITE builds a partial QUEUE calling sequence and calls o device routine that performs
device~-dependent testing such as:

1. Mode flag in DCB (BIN, AUTO) for devices that recognize it.

2. Testing byte count against physical record size for fixed-record-length devices,
3. Testing for PACK bit in DCB for 7T magnetic tape.

4. Testing for VFC for line printer or keyboard/printer.

The device routines set up the proper function code in the QUEUE calling sequence and tronsfer control to a routine
called GETNRT. GETNRT completes the QUEUE calling sequence by obtaining the number of retries, setting up the
user's end-action ond building an ECB. GETNRT then calls QUEUE. When the request has been queued, control is
transferred to the TESTWAIT routine which checks the wait indicator for the request. No-wait requegs transfer to
CALEXIT. Otherwise, requests transfer control fo the CHECK logic at FMCK1 which waits for the /O to complete.

For disk file 1/0O, READ/WRITE calls the routine labeled RWFILE. RWFILE tests for write protection violation on
write requests, end-of-file on sequential read requests, and end-of-tape on all requests. The different types of re-
quests are handled as follows,

Direct Access. The disk seek address is computed from the granule number provided in the FPT, and a QUEUE call-
ing sequence is constructed that will queue up the request. Control then transfers to the CHECK logic.

Device Access. When the DCB associated with the READ/WRITE call is assigned directly to a disk, the disk device
routine is entered. The disk device routine computes the disk seek address from the sector number provided in the

FPT (Key parameter), obtains the proper function code ond completes the queue colling sequence by bmnchmg to
GETNRT,

Sequential Access (Unblocked). The disk seek address is computed from the file position parameters and a QUEUE
call is made. Control then transfers to the CHECK logic.

Sequential Access (Blocked). The next record is moved from/to the blocking buffer ond blocks are read/written as
required to allow the record transfer. For example, the first read request results in the first block being read ond
the first record in the block being deblocked info the user buffer. Successive read requests will not require actual
input from the disk until oll records in the blocking buffer have been read. The blocks are always 256 words long
and contain an integral number of fixed length records; that is, no record crosses a block boundary,

Sequential Access (Compressed Files). Compressed files aore treated in o manner similar to blocked files with the
following exceptions:

1. The records are compressed/decompressed on the way to/from the blocking buffer.

2, The buffer does not contain a fixed number of records since the records are no longer of ﬂxed length after
compression. However, no compressed record crosses a biock boundary,

To compress a record, the following EBCDIC codes are used:
X'FA' End-of-Block code
X'FB' End-of-Record code
X'FC' Blank Flag code

X'FD' Control character code

All occurrences of two or more successive blank codes (X'40') are replaced by a Blank Flag code (X'FC') followed
by a byte containing the length of the blank string. An End-of-Record code follows each record, and an End-of-
Block code appears after the last record in a block. ’

The control character code (X'FD') allows a record to be compressed and decompressed without restrictions on the
individual characters within the record. In the blocking routine, when a data character is detected which is a con-
trol character (i.e., X'FA', X'FB', X'FC', X'FD'), the data character is preceded by on X'FD' character. True
control characters are not preceded by an X'FD' character. The deblocking routine removes X'FD' characters from
the data record.

When compressing records into the blocking buffer, a length of the compressed record is first computed and o test
performed to determine whether the record will fit in the block. If so, it is ploced in the buffer. 1f not, an End-
of-Block code is written in the buffer and the buffer is written to the file.

If the disk file is extensible, special handling is done as follows:

Sequential Access Write. The write routines for unblocked, blocked and compressed format files automatically allo~
cate on extension file when on end-of-file condition is detected, The appropriate RFT entries are updated fo reflect
any characteristics which may be different from those of the previous extent and then the write continues using the
new file extent,

Due fo repositioning a file, it is possible to detect an end-of-file on an extent and find that the nexfexient already
exists. When this happens, the procedure is the same as outlined above except that the previously allocated extent
is used,

Sequential Access Read. When an EOD is detected in the READ routines for unblocked, blocked and compressed

format files, the file directory is searched for the next extent in sequence. When it is found the RFT is updated to
reflect any characteristics which may be different from those of the previous extent and the READ continues using
the new extent.

Direct Access Write. Direct access files automatically extend o described for sequential access files. In oddifioﬁ,

writing records which are larger than one granule is permitted. In order fo accomplish this, the direct access write
routine con

e Allocate one extent large enough for the record if the file was originally allotted without the "fix" option.

e Allocate two or more extents if the record will not fit in one extent and the file was originally allotted
with the "fix" option specified. The record will be written in two or more sections if it is too large to be
contained within a single extent, If the request is with no-wait, only the last portion of the record will be
written without wait, Extents between the first and last extent will appear to have been written even if
they have not been in order to simulate the characteristics of nonextensible files.

Direct Access Read. Automatic switching to the next extent will occur for direct occess files os described for se-
quential access files. In addition, the direct access read routine can reod more than one granule even if the record
crosses two or more extents. This is accomplished by breaking up the read into sections where each section is equal
to or smaller than the extent size. If the READ request is with no-wait, only the last section is read without wait,

At the conclusion of the file access, the status is posted in the user DCB or FPT and contro! is transferred to the
CHECK logic.

PRINT This function builds the QUEUE calling sequence to perform the output on LL. After calling QUEUE, the
routine either waits for completion, if wait was requested in the system call, or returns control to the user.

TYPE This function builds the QUEUE calling sequence by using code contained in the PRINT function. As in
PRINT, o wait or return is performed as requested by the user.

DFM This function sets the MOD and PACK indicator in the addressed DCB to values given in the system call.
If the DCB is assigned to o disk file, the record size (RFT5), the organization (RFT7), end/or the granule size (RFT4)

are set if requested by the user. The corresponding parameters on the file directory ore updated when the file is
closed.

DVF This function sets the DVF bit in the oddressed DCB to the value (0 or 1) specified by the user.

DRC This function sets the DRC bit in the oddressed DCB to the value (0 or 1) specified by the user.

DEVICE (Set Device/File/Oplb Index.) This function assigns a DCB to the specified device or file. The assign-
ment is accomplished by setting one or more of the following parameters in the addressed DCB: ASN, DEVF, TYPE,
DEV/OPLB/RFILE, or disk file name.

DEVICE (Get Device/File/Oplb Name.) This function returns requested information regarding the assignment
of a DCB. The information is in EBCDIC form. The request is fulfilled when it is consistent with the actual ossign-
ment of the DCB. Otherwise, a word, or words, of zero will be substituted for the EBCDIC information.

CORRES This function determines if the two specified DCBs have corresponding assignments. If the assignments
are the same, upon return to the user, register 8 will contain a value of 1. Otherwise, register 8 will contain a
value of 0.

REWIND This function rewinds magnetic tapes and disk files. No action is token if the addressed ECB is as-
signed to any other type of device. i

Magnetic fapes are rewound by building a QUEUE calling sequence with the Rewind function code and calling
QUEUE.

Disk files are rewound by zeroing the file position (RFT11), current record number (RFT12), blocking buffer position
(RFT10), and blocking buffer control word oddress (RFT17) ond using job (RFT14) parameters. Extensible files are
positioned at the first record of extent 0,

4]

42

WEOF This function writes an “end-of-file” on paper tape punch, cord punch, magnetic tape, and disk files. -
A request addressing o DCB assigned to some other type of device results in no action. -

An “end-of-file" is written on paper tape by calling QUEUE with a request to write an EBCDIC *1EOD’ record.
An "end-of-file" is written on a card by calling QUEUE with a request to write an EBCDIC '{EOD' record.
An “end-of-file" is written on magnetic tope by calling QUEUE with a request to write a tape mark.

An “end-of-file" on a disk file is “written" by copying the current record number minus 1 (RFT12) to the file size
(RFTb) ond setting an indicator so that the file directory will be updated when the file is closed.

PREC This function positions magnetic tapes and disk files by moving some specified number of records either
backward or forward. It does not affect other devices. Positioning is performed as follows:

1. A magnetic tape QUEUE call is constructed that specifies through the function code the direction of the
motion, and through the “seek-address" parameter the number of records to move. The basic 1/O system
then moves the tape. ,,

2. The new position within the file of an unblocked disk file is computed as a function of the record size and
the sector size. File position (RFT11) and current record number (RFT12) parameters are set to indicote
the new position.

3. The new position of a blocked disk file is computed as a function of the current record number, record size,
block size, current blocking buffer position, current file position, and disk sector size. The blocking buf-
fer position (RFT10), file position (RFT11), and current record number (RFT12) are set to indicate the new
position.

4. The new current record number of a compressed disk file is computed ond subroutine PCFIL is called. This
subroutine positions a compressed disk file at the specified record by counting records from the beginning
of the file until the desired position is found. PCFIL sets the blocking buffer position (RFT10), file position
(RFT11), and current record numbes (RFT12) parameters to indicate the new position.

PFILE This function positions magnetic tope and disk files at the beginning or end of files. It does not affect
other devices. Positioning is performed as follows:

Magnetic Tape, A QUEUE call is constructed with function code to “space file" either backwards or forwards. This
results in the tape being positioned past the tape mark in the specified direction. If a skip was not requested, the
tape is positioned on the other side (neor side) of the tape mark through ¢ QUEUE call for a position one record
opposite in direction to the space file,

Disk File Backward. A rewind is done (see description for REWIND),

Disk File Forward.

Unblocked Disk File, Current file position is computed as a function of the file size, the record size, ond the
disk sector size. The current file position (RFT11) and the current record number (RFT12) ore set to indicate the
new position.

Blocked Disk Fll? Current file position (RFT11) ond the Blocking Buffer Position (RFT10) are computed os o
function of the file size, record size, block size, and disk sector size. These parameters and fhe current record
number (RFT12) are set to indicate the new position.

Compressed Disk File. Subroutine PCFIL is called with file size plus one as the record number, This subroutine
positions the file ot the start of the specified record.

Extensible disk files are positioned os described above within the last extent.

ALLOT This function defines a file in c-Wmt disk area. The input parometers are used fo form a new ﬁie
directory entry,

The directory of the specified area is searched to insure that the file is not o duplicate. If it is not a duplicate, it
is allotted as a new file, The logical flow of the allot algorithm is shown in Figure 17. In general, naw files are
allocated the next free space in the area if there is room for the entry in the last directory sector. When the lost
directory sector is filled, deleted file space is reused, if possible, before o new directory sector is created,

When a deleted entry is reused, the entry having the smallest size large enough for the new file is used. Disk space
is lost if the deleted file containd more space than the new entry requires. This space and the space held by other
deleted files can be reclaimed by executing o RADEDIT :SQUEEZE command.

The number of sectors to allocate for a file is calculated using the formulas

~ FSIZE . \ , (256
c= (%% +r)

_ 256 , 256
B= ((FS'ZE/ Rsxzs)+ ') :

4
U= ((RSIZE/s)+r)*FSIZE
where

r =1 ifremainder # 0, and 0 if remainder = 0.

s equal disk sector size in words.

DELETE This function deletes a file in the specified permanent disk aorea. The input file name is used to search
the file directory for the entry o be deleted. When the entry has been located, the first two words of the file
directory entry are zeroed out. The BOT and EOT remain unaltered. If the file is extensible each extent is deleted
as described above starting with the last extent and proceeding to the first extent (extent 0). The space formerly
allocated by the entry becomes unused until either a RADEDIT :SQUEEZE command is executed, or an ALLOT com~-
mond or call is executed with insufficient space at the end of the specified area. Space is then allocated by using a
deleted entry.

TRUNCATE This function uses the specified area and file name to search the file directory for the entry to be
truncated. The actual size of the file is calculated and the EOT of the file directory entry is updated accordingly.

The actual file size for blocked and unblocked files is determined by using the FSIZE and RSIZE of an entry; for com~
pressed files, an RFT entry (RFT11) containing the current record number is used. The space formerly allocated be~-
tween the EOT of an entry and the BOT of the next entry becomes lost and is not available until aRADEDIT :SQUEEZE
command is executed.

If the file is extensible, the last extent is determined by a directory search ond when located, it is truncated s
described for nonextensible files.

Room in
last directory sector
for new entry?

Room at
area end for the
new file?

yes

Was o
large enough deleted
entry found

no

Was a
large enough deleted
entry found?

Use deleted entry:

BOT=old BOT.

EOT-=- number of sectors
required

RETURN OK

area end for the new

Error X'72!

RETURN

T Y

Add new entry to last
directory sector

\

Allocate file:

BOT—- first free sector;

EOT— BOT plus number
of sectors required; first
free sector— EOT + 1.

file plus direc

Create a new empty
directory sector at first
free sector. Increment
ficst free sector.

'

Mark old last directory
sector as linked to new
sector

Figure 17. Llogical Flow of ALLOT

4. ERROR LOGGING

The detection of a system, device, or software error will cause CP-R to acquire information about the error, generate
a log record, post the log record, and perform some form of recovery. Upon finding o stacked error-log record
pointer, the Control Task will call the LOG overlay to file the log.

The LOG overlay unstacks the log record and writes it to the ER oplabe! in 16~word records. Nomally, the ER op-
label should be directed to a file in the SP area named ERRFILE with a record size of 16 words and blocked format.
However, the ER oplabel can also be directed to a card or tape device.

It should be noted that if ERRFILE does exist in the SP areq, the ER oplabel will be connected to if by default at sys-
tem boot time.

Error Log Record Formats
The following error logs can be generated by CP=R:
Code Code :
11 S10 Failure 22 System Identification
12 Device Timeout 23 Time Stamp
13 Unexpected Interrupt 27 Operator Message
15 Device Error 28 I/O Activity Count
16 Secondary Record for Device Sense Data 30 PF1 Primary Record
17 Hardware Error 31 MFI Primary Record
18 System Startup 32 Processor Poll Record
19 Watchdog Timer 41 550 Processor Configuration
1D Instruction Exception 42 550 Memory Parity Secondary Record
2] Configuration Record 43 Memory Poll Record

The formats for these error log records are given below consecutively:

SIO FAILURE The SIO failure is emitted when the

following SIO CC are returned:

x Count=6 Model Number DCTMODX 010x
100x
110x

Milliseconds Since Midnight

SIO Status /O Address DCT21,DCTI
MFI if SIO DV \\\ - DCT19. DCT20
Z6or7| CC cc \\ ’ ’ <
Subchanne! TDV Current
Status \\ Command DA
DCT13

TDV Status ' Bytes Remaining

The 1/O sequence is SIO, TDV.

DEVICE TIMEQUT

X'12'

Count =

D

Mode!l Number

Milliseconds Since Midnight

HIO Status I/O Address
§ HIO DV TIO
\ ccC cC CcC
Subchannel \ TDV Current
Status & Command DA
TDV Status Bytes Remaining

Current Command Doubleword

Retry Retries
TIO Status Request { Remaining
I/O Count

N

Seek Address

UNEXPECTED INTERRUPT

xl]sl

Count = 4

Model Number
(0 if unknown)

Milliseconds Since Midnight

AlO Status

I/O Address

N Ei

PCTMODX

DCT12

-, DCT19, DCT20, DCT20A

DCT13

DCT21, 10Q10, I0QI

DCT25

10Q12

DCTMODX

DCTI2

-, DCT19, -, -

34

DEVICE ERROR

X'15' | Count=D Mode! Number
Milliseconds Since Midnight
A]O Status 1/O Address
\\\ AIO DV TIo
& < cc cc ccC
N B
TDV Status Bytes Remaining

Current Command Doubleword

Mos | M, [
1/0 Count
\
.

SECONDARY RECORD FOR DEVICE SENSE DATA

X'16'

Count as
Needed

1/0 Address

Milliseconds Since Midnight

Sense
(Up to 16 bytes)

DCTMODX

DCTI12

-, DCT19, DCT20, DCT20A

DCT13

DCT21, 10Q10, IOQMN

DCT25

10Q12

Note: The 1/O address links the
secondary record to the cor-
responding device error entry.

SYSTEM STARTUP

0 78 1516 23 24 31

Startup Type| Recovery
=3 Count =0

X'18' [Count=4

Milliseconds Since Midnight

Year - 1900 Julian Day

Aimmmmm

HARDWARE ERROR

w

0 78 1516 23 24 31

Code Count=10 |0 0| Trap CC

Milliseconds Since Midnight

PSD Word 1

PSD Word 2

0 (reserved)

0 (reserved)

Real Address of Tropped Instruction

Trapped Instruction

Ao

ATCHDOG TIMER

0 78 1516 23 24 31

Code Count=10 {0 0| Trep CC

Milliseconds Since Midnight

PSD Word 1

PSD Word 2

0 (reserved)

0 (reserved)

Real Address of Trapped Instruction

Trapped Instruction

A

Generated by trap 4C,

Generated by Trap 46,

INSTRUCTION EXCEPTION

0

78 15 16 23 24 31

Code Count= 10{ 0

0| Trap CC

Milliseconds Since Midnight

PSD Word 1

PSD Word 2

0 (reserved)

0 (reserved)

Real Address of Trapped Instruction

Trapped Instruction

MMM

CONFIGURATION

RECORD

S AN

Milliseconds Since Midnight

Model Number N DCT Index

Alternate 1/O Address | Primary 1/0 Address

{

f

SYSTEM IDENTIFICATION

x'22' | Count=5 | §2"yoize in | Relative
Blocks Resolution

Milliseconds Since Midnight

System Version Flags

Site Identification

Generated by Trap 4D

Entered at system STARTUP

One pair of words per device in DCT
order; multiple records may occur
(maximum five devices per record).

Recorded at system STARTUP

Relative Time Resolution is expressed
as a value of n such that actual rela-
tive time resolution = 2" msec. The
value of n for the most likely resolu-
tions are

n=0 when the timing spaceais
supplied by a frequency 21 KHZ

n=1 500 HZ
n=4 60HZ
For CP=R, n= 1.

49

System, Version, Flags

The format of system, version, flags and site identification is operating system specific. For the CP-R system, wersion
and flags are formatted at location X'2B'.

0 34 78 1516 31

28 Monitor \\‘ Version Parameters

Location 2B contains three items:

1. Monitor - This field contains the code number of the monitor. The codes are as follows:

Code Monitor

0 None or indeterminate
1 BCM

2 RBM !
3 RBM-2

4 BPM

5 BTM/BPM

6 uTs

7 CpP-v

8 CP-R

9-F Reserved for future use

2, Version - This is the version code of the monitor and is coded to ﬁotrespond to the common designation for
versions. The alphabetic count of the version designation is the high-order part of the code and the version
number is the low-order part. For example, AOO is coded X'10' and D02 is coded X'42'.

3. Parometers - The bits in this field are used to indicate suboptions of the monitor.

3 Symbiont routines included.

29 Real-time routines included.

28 Unused.

27 Reserved.

26 * Reserved,

24-25 Field defining CPU. -

Bit 24 Bit 25 Meaning

0 1 Sigma 5-7
0 Sigma 9
1 1 Xerox 550

TIME STAMP

e aaImmubnmn
Milliseconds Since Midnight
Year - 1900 Julian Day
OPERATOR MESSAGE
Sl RN
__ Milliseconds Since Midnight
Count
[s e
L
/O ACTIVITY COUNT
al EZN\\iE
Relative Time
/O Address, \\Nw index|
VO Count,
/O Address, \\\N T Index,
1/O County

This record entered once sach hour on the

hour.

Binary integers

A facility is provided to inject messages
from the computer operator (or diagnostic
program) into the error log. The operator
may enter these messages from the operator
console via the ERRSEND key~-in.

Recorded once per hour and at recovery,
Maximum of 5 entries per record, Counts
are reset to zero at Boot.

51

52

RE D

X'30'

Count=2

DA\

Milliseconds Since Midnight

MFI PRIMARY RECORD

X'31

Count = 2

MIMDIDIY

Milliseconds Since Midnight

PROCESSOR POLL RECORD

X'32

Count =3

DA\

Milliseconds Since Midnight

Unit
Address

Poll | Unit

cc TYPe PO“ Status

012

78 1112 1516

550 PROCESSOR CONFIG URATION

Type Code :\23 3 L U3N POLR Results

{

One entry for sach unit in
the cluster (maximum 8),

/

550 MEMORY PARITY SECON DARY RECORD

42

Count = 4

AN\

Relative Time

Memory Status Word 0

Memory Status Word 1

One record produced per nonzero poll
status received.

One record per cluster defined in SYSGEN.

CL = cluster ¥
UN = unitf
TYPE = unit type
Type Code Unit Name
1 CPU
2 MI
3 Pl
4 MIOP
7 SU

MEMORY POLL RECORD

xl43l

Milliseconds Since Midnight

Memory Status Word 0

Memory Status Word 1

Memory Status Word 2

5. JOB CONTROL PROCESSOR

Overview

The Job Control Processor (JCP) is assembled as a Relocatable Object Module (ROM) and is loaded at SYSGEN time
by the SYSLOAD phase of SYSGEN. The JCP is absolutized to execute at the start of background and is loaded
into the JCP file on the disk. The JCP is looded from disk for execution by the Background Loader upon the initial
"C" key=-in; and thereafter, is loaded following the termination of execution of each processor or user program in
background memory.

The JCP executes with special privileges since it runs in Master Mode with a skeleton key. Master Mode rather than
Slave Mode is essential to the JCP since, at appropriate times, it executes a Write Direct instruction to trigger the
CP-R Control Task. A skeleton key instead of the background key is also essential to the JCP since it sets flags for
itself and the Monitor in the resident Monitor portion of memory. Bit zero of system cell K:JCP1 is set to 1 to inform
the Monitor that the JCP is executing.

The JCP controls the execution of background jobs by reading and interpreting control commands. All cards read
from the "C" device that contain an exclamation mark in column one (except for an IEOD command), gre defined
as JCP control commands. The 1/O portion of the Monitor will not allow any background program except the JCP
toread a JCP control command. The JCP runs until a command is read that requires the execution of a processor
or user program, or until a IFIN command is encountered.

The JCP presently requires a minimum of about 4K of core to execute, which means that the smallest possible core
space allocated to the background must be at least 4K,

The flowchart illustrated in Figures 18-21 depict the overall flow of the JCP, and Figures 22 through 39 illustrate
the JCP commands. The labels used in the flowcharts correspond to the labels in the program listing.

ASSIGN Command Processing

The ASSIGN commands are read from the "C" device by the JCP, and are primarily used to define or change the
I/O devices used by a program. The IASSIGN command can also be used to change parameters in @ DCB. Since
all JASSIGN commands must be input prior to the RUN or Name command (where Name is the name of a processor
or user program file in the SP area) to which they apply, the information from each IASSIGN command is saved in
core by the JCP, The JCP builds an ASSIGN table containing the information from each IASSIGN command. This
table consists of ten words for each 1ASSIGN, plus one word specifying the number of ten-word entries. The table
remains in a job-reserved page and is passed to the Background Loader. After the Bockground Loader initiates the
program, it makes the appropriate changes to the program's DCBs from the information in the ASSIGN table. The
ASSIGN table can then be destroyed as the program executes; therefore, IASSIGN commands take effect only for a
job step and not an entire job. The ASSIGN table has the format shown in Table 1,

Get Master mode,
unprotected.

i

Set prompt for type~
writer input,

ASSIGN
table
acquired ?

no 1

Get a job-reserved
poge. Initialize for
ASSIGN table and
Control Command

buffer.
Purge all BT files
hich are not SAVEd,
yes 1
Output message:
SCHING FOR JOB
COMND.

Figure18. Initialize JCP

53

Al5

Read C without wait,

| busy
Check the C Read | _retum
without wait.

E SCAN \ SCAN error
Get first field ("1 ~"~~~
required).

Cancel COC key=-in

if in effeq?.

A038

1

Process command.

Treat as processor
name.

AO03

Figure 19. Read and Process JCP Commands

2-second STIMER
without wait,

l

WAITANY,

C
assignment
changed?

STIMER
finished?

Delete STIMER Delete Read C
request. request.

Figure 20. Wait for JCP Command

Log current command

A08

Select error message

Log error message

Current
command begins
" l LU ?

Log current command

Set flag: skip to
next job
. ‘Output message:
Identify error to op-
erator then WAIT (S:COHAIATA%ﬁ(D)R J08

yes

Change C to OC

3

Figure 21. Process JCP Command Errors

. A oA b - e RPN,

0

Do accounting
for prior job.

Clean up job and
task resources.

Clear PMD
requests .,

Y

Set default account,
user name, priority.

Y

Get specified
account, user
nome, priority.

¥

Get job number if
specifieq.

Get default job
number.

Initialize flags,
pointers, and GO
and OV sizes.

!

Purge all X: files.

B176

¥

Initialize ALLOBT
control tables.

Break
DCB uses a
typewriter?

Output break page

Break
DCB uses
LO?

Set break DCB
to LO.

Set break DCB
toll.

Y

Log JOB command

site, and date/time.

Z SEARCHAI \

Validate account
\ ond user nome.

account,
user name

ok?

Select error message.]

A08B

L ¥

Figure 22, JOB Command Flow

60

Wait for unfinished
services

C20

Do accounting

Log FIN command

Finalize flags

Release job-reserved
page used for
ASSIGN table and
contre! command
buffer

Figure 23. FIN Command Flow

Get 1/0 medium
specification

File
assignment ?

D02
Save /0O medium
specification
D04
no Get next field and
save value
D05

Pack next ASSIGN
table entry. Update
ASSIGN table size

and address

33

.

Figure 24. ASSIGN Command Flow

@ l

Format and print
accounting log
on LO device.

11 Enter here when
i EOF returned from
yAccounting Log

If purge option,
purge ALfileby
rewinding AL ond
write an EOF.

Exit from DAL command

~ .

Figure 25. DAL Command Flow

7

Set attend
mode flag.
Exit from ATTEND command

Figure 26. ATTEND Command Flow

—(®

Set flag not to
wait after mes-~
sage is output.

@ t ' Exit if

Output message
on"OC"device. MESSAGE -

PAUSE command ommand

A

Set idle bit.
Execute STOP CAL.

Figure 27. MESSAGE Command Flow

Set flag to wait
after message
is output.

Figure 28. PAUSE Command Flow

—2)

Set "C" op label
to previous
assighment.

[}
Clear flag that

TY key-in was
active.

Exit from CC command

OF

Figure 29, CC Command Flow

Set time limit into

K:LIMIT.

Set page limit into
K:BPGLIM halfword 1.
L

35

Figure 30. LIMIT Command Flow

63

M02

yes, exit

/ SCAN

Get op label to
change assignment.
/ c;mono

Get new assignment
for op label.

Set new assignment
for op label.

Figure 31. STDLB Command Flow

-

N02

Rescan file name. Set area
to system processor alter-
nate area. Set account to
system. Assign DCB to

load module.

&

public library

Save file name in alarm
messages.

Do READ CAL to read in
file header of program
to execute.

y

Output “file nonexist”
alarm and take error exit

Get

A

Select error alarm since
illegal to execute a
public library.

take error exit

AQ8B

NS

type of
secondary @
i

Go through tables set by
ALLOBT command and
set up oll Bekg. Temp
Files input on ALLOBT,

Error if no "FG" key-in.
Error if program in BT area
and not on OV file.

-
@ ’

Figure 32. NAME Command Fiow

65

Is
program
AP
?

no
Go to N8O SBR to Do RUN CAL so

do special check foreground progrom
ond allocation for will be loaded and ,
AP, started. ,

Are
there any
Background Temp Files
to get default
allocation

program load
OK or glready

@ Inspect status posted

there enough ond output an alarm
space left to > if appropriate.
allocate files no ‘ take error exit
? Output '
"BT OVERFLOW*"
alorm. A0BA

toke error exit

Set upall Bckg. Temp

Files that get default AOBA
allocation.

@ A

Save file nome
and area for
Bckg. Loader

(&

LY

Figure 32, NAME Command Flow (cont.)

A

Get priority and/or
DEBUG if specified

Set default priority @

Figure 33. RUN Command Flow

R

Assign F:DC to file OV in

area BT

Figure 34, ROV Command Flow

Set up defoult FPT for CAL

¥

Set specified parameters
into appropriate FPT fields

T

CAL error
Execute the CAL -~ =-=--—-
Set CAL address and error
code in message
A08B

Figure 35. INIT, SJOB, or BATCH Command Flow

Scan command and
save all parameters
in temporary cells.

O——

If format not input by
user, set fo un-
blocked. If GO
file, set to blocked.

RO5 >

If file size not in-
put, set defaultto
1000 records.

v

Calculate number
sectors needed for
file based on for-
mat of file.

&

DOGOOV

Set up GO or
OV file

ere enough
room in BT area for

file
Output alarm
"CC ERR, BT
- P— OVERFLOW"
ve info. about file
inperm. JCP tobles pie
(CFORM, RSIZE,
GSIZE, SAVE). AOSA

A .-

Figure 36. ALLOBT Command Flow

te

Set up cells to dump
in K:PMD for Post-
mortem Dump
routine.

(=)

Figure 37. PMD Command Flow

© 9000

Do proper CAL
to position device
to proper place.

(=)

Figure 38. PFIL, PREC, SFIL, REWIND, and UNLOAD Command Flows

Do write EOF CAL
to write proper num-
ber of EOFs.

exit

()

Figure 39. WEOF Command Flow

69

70

-

= =~ 7 ‘Table 1, ASSIGN Table Description

Word Description -

0 Contains number of entries in table. Must fal | on an odd virtual address. Is pointed
at by K:ASSIGN.

10n+1 thru Entry number n, described in more detail below.

10n+10

10n+1, 10n+2 EBCDIC name of DCB associated with entry n.

10n+3 Flags controlling 1/O medium name representation, Bit 1 is set for an oplabel name,

right-cligned in word 10n+4. Bit 2 is set for a device name [eft-aligned in words
10n+4, 10n+5, Bit 3 is set for a disk area name right-aligned in word 10n+4, and a
file name left-aligned in words 10n+5, 10n+6. If a file name is all blank or all zero,
a whole disk area is indicated. Bit 13 is set for a disk file account name in words

10n+7, 10n+8, _
10n+4 thru The EBCDIC name of an 1/O medium, formatted as indicated by flags in word 10n+3.
10n+8 : Ry
10n+9, 10n+10 Indicator flags and volues for changes to DCB fields other than those identifying the
1/O medium,
10n+9 11112(213134[4]5[5[4\ |6 7v 7\\\\\\\\\\\\\\
viclviciviciviclvic] ®Y]c NN
10n+10 eV g \
kC: if reset kV is unused; if set, kV is to be inserted.
1V: wvalue for MOD field
2V: value for ASC field
3V: value for DRC field
4V: wvalue for D/P field
5V: walue for VFC field
6V: wvalue for BTD field
7V: wvalue for NRT field
8V: wvalue for RSZ field
ICP Loader

The JCP Loader loads Relocatable Object Modules (ROMs) or groups of object modules that use a subset & the Xerox
Sigma 5/7 Object Language. Initially, the Loader processes all parameters on the ILOAD command and sets up the
appropriate DCBs and flags. If the program being loaded has overlays, space is reserved for the program's OVLOAD
table at the end of the JCP Loader. The OVLOAD table contoins 11 words for each overlay; the first word of
OVLOAD contains the number of entries in the table. The exact format of the OVLOAD fable is given in the "CP-R
Table Formats" chapter. Note that words 2 through 10 of the OVLOAD table have the same format as the Read FPT
that is needed to read an overlay into core. Next, the first word addresses of the Symbol tablé (SYMT1 and SYMT2)
are set up, The diagram in Figure 40 depicts the core layout before PASS1 of the JCP Loader.

@

4———— K:BACKBC t
JCP Loader Code

OVLOAD
(Spoce for OVLOAD Table
if program has overlays)

I SMT1
SYMTI

SYMT2

«———————— K:BCKEND

The JCP Loader uses Simplified Memory Management

Figure 40. Pre~PASS1 Core Layout

The JCP Loader is a two—pass loader. In PASS1, the ROMs are input from the Bl op label and copied onto the X1
file on the disk. The X1 file is set up to use all of the Background Temp area of the disk that is available for scratch
storage. The main function of PASS]1 is to build the symbol table (SYMT1 and SYMT2) containing all DEF items,
and to assign a value to each DEF. The symbol table has the following format:

SYMTI o doubleword-entry table containing the names, in EBCDIC, of each DEF item in the program being
loaded. The first entry is not used.

SYMT2 a doubleword-entry table. The first word of the table contains the total number of DEFs in the
fable. The subsequent entries have the following format:

Value of DEF as a byte aoddress

4 “ % . % S 81 6,

\ Declaration number
) R T TR T e B TR IR R

“1 ©

where bit 8 = 1 if this is o duplicate DEF,

At the end of PASS1, the size of the symbol table is fixed so the remainder of core caon be used as a load orea in
PASS2. After loading the program root in PASS1, space is allocated for the M:SL DCB (if the progrom hafoverlcys),
the DCB table, and the OVLOAD table (if the progrom has overlays). These items ore allocated in the following
order:

| Progrom Root | M:SL DCB [DCB Table | OVLOAD Table |
li I 7 words I 3 words/DCB I 11 words/overlay
Start of Program
Overlay Area

7

The DCB fable is built in an internal table In the JCP Loader in PASS| after looding the program root. The DCB
table is made up of all M: and F: DEFs in the root, including the value of each DEF. The complete OVLOAD table -
is also built during PASS1; each overlay's entry being mode after the overiay is loaded. Hence, PASS) completely
allocates all space for the progam, ~

After the last ROM is loaded at the end of PASS], the file header is written to the appropriate disk file. The re-
mainder of core not used by the Symbol table is then rounded down to an even multiple of disk granules and set up
as the lood area for PASS2. There must be enough room to hold at least one disk granule, plus 12 extra words, or

the load will be aborted at this point. The X1 file is then rewound and PASS2 commences. The following diagrom
depicts the core setup at the start of PASS2:

| JCPloaderCode | OVIOAD | SYMTI | LocdArecfor | symrz |

| I Pass Two l
K:BACKBG End of JCP Loader K:BCKEND

PASS2 inputs the ROMs from the X1 file, satisfies all external REFs by finding the value of the corresponding DEF in
the Symbol table, and then writes the progrom in core image format to the proper disk filein a multiple of granules
af o time. Between 8 and 12 extra words are looded each time at the end of the load area in case a define field load
item requires that the load location be backed up 6 maximum of 8 words. This prevents having to read o granule
back into core after it has been written in the event a word has to be changed because of o define field item.

These 12 words are copied from the bottom of the load area to the top of the load area after the granules are
written on the disk. The previous 8 words are therefore always available in core to satisfy a define field item.

After the root has been loaded in PASS2, the M:SL DCB (if appropricte), the DCB table, and the OVLOAD tables
are attached in that order to the end of the root and written on the disk, After all ROMs have been loaded, the
JCP Loader outputs the map if requested, closes all files, and exits to JCP.

Job Accounting

Job accounting is an option selected ot SYSGEN time. An accounting file will be kept on the disk by the JCP if
the accounting option was chosen, The accounting file is nomed AL, ond resides in area D1. It is automatically
alloted by INIT,

Whenever a 1JOB or IFIN command is read by the JCP, the JCP will update the AL file for the previous job. The
format and record size of the AL file is outomatically set by the JCP via a File Mode CAL, The JCP defines the AL
file as a blocked file with a record size of 32 bytes, The AL file on the disk consists of a series of eight~word rec-
ords, where a new eight-word record is added for each job. The format of each record in the AL file is as
follows:

Word Description

1,2 Account number in EBCDIC

3,4,5 Name in EBCDIC

6 -Leff halfword = (year - 1900) in binary, Right halfword = date as day of year (1 - 365)
7 Start time of job in seconds (0 - 84399)

-
8 Elopsed time of job in seconds -

Whenever an entry is added to the AL file, the file is opened and o file skip performed so that the new entry can be
mode at the end of the existing entries. No attempt is mode to combine entries in any woy. The contents of the AL
file can be listed via the DAL commond, (Dump Accounting Log), and the option exists for the user to purge the file
ofter the dump is completed. The AL file is purged by rewinding it and writing an EOF.

Background TEMP Area Allocatien

The JCP allocates and sets up the files in the Background Temp (BT) orea (X1-X%, GO, OV) before exiting .to the
Background Loader to load a processor or user program. The BT files needed by the user are defined either via
IALLOBT commands or through defoult by the JCP from inspection of the user's DCBs. The GO and OV files are
set up at the start of each job and remain intact for an entire job; the required files X1 through X? are nomally set
up for each job step only.

Information for files X1-X9 read in from IALLOBT commands is stored in tables (GSIZE, FSIZE, FORM, SAVE,
RSIZE) that are internal to the JCP. If the GO or OV file is changed via an |IALLOBT command, the file is re-
defined at the time the command is processed.

The files in the BT area are allocated so that files remaining intact only for that job step are allocated ot the front
of ‘the BT area. Files that remain intact for the entire job are allocated at the bock of the BT area. Nomally, this
means that X1 through X9 are allocated at the front of the BT area, and GO ond OV at the opposite end. If the
SAVE option is used on an I ALLOBT command for an Xi file, the Xi file will be allocated at the opposite end of the
BT areq, as will GO and OV. The following diograms illustrate the BT allocation:

BT allocation without |ALLOBT Commands:

Xn | ... X4 X3 x2] X ov GO
| !] i I i
Intact only for a job step Intact for entire job

The proper Xi file is allocated for each M:Xi DCB in the user progrom. The remainder of the BT arec after GO and
OV have been allocated is evenly divided among the Xi files.

BT allocation with JALLOBT Commond:

Xn | ‘x4|x2|x1 X3 [ov | GO
] 1 { i | J

Intact only for a job step Intact for entire job

The above diagrom illustrates how BT would be allocated if an |ALLOBT command was input to save the X3 file.
Note that X3 is allocated ot the opposite end of the area with OV and GO.

Allocation of the Xi (1<ix<9) files is performed in the following sequence: First, any files input on an ALLOBT com-
mand are allocated at the proper end of the BT area. Next any Xi files that were not input on an ALLOBT command
are allocated by default in the remaining area. Note that if the "ALL" option is used for file size in the ALLOBT
command, there will be no room remaining for default allocations.

The following example depicts the allocation of BT as previously described:

Example 1:

1. An JALLOBT command for X1 file with SAVE option.

2, An ALLOBT command for X2 file.

3. The system was SYSGENed with (BT, 6) on the RESERVE command. -
In this case, the BT area would be allocated as
X2 X6 X5 X4 X3 X1 | ov | GO |
T 1 1 ¥ 1 T D,

Intact only for a job step Intact for entire job

74

~

In this example, the X1 and X2 files would receive the sizes input on the IALLOBT command, while the X3, X4,
X5, and X6 files would be evently distributed over the remoining area.

The JCP does special allocation of the BT area for the AP and MACRSY M processors, since the scratch space require-
ments of these processors depend on the parameters of their calls and the spoce is unevenly divided omong files
involved. This special allocation is done by the use of nonstandard aflocation=contro! tables when JCP is invoked to
run either the AP or MACRSYM processor in the background. Other special allocation tables could be odded for
other processors requiring nonstandard allocations.

o

TS

PR e P R A

T laA - = Sl Tl on v

6. FOREGROUND SERVICES

Foreground services are those service functions restricted to foreground utilization. In general, they are associated
with the control 'of system interrupts, the handling of foreground tasks, and direct L/O (IOEX). The following ser-
vice functions fall in this category:

RUN/INIT

RLS/EXTM

MASTER/SLAVE

STOPIO/STARTIO

" I0EX

TRIGGER

ENABLE/DISABLE

ARM/DISARM

CONNECT/DISCONNECT

In terms of the functions os part of the resident CPR, the resident function sets indicators for RUN and RLS, and the
Control Task actually performs the function.

implementation

RUN If an entry for the specified program does not already exist in the LMI table, an entry is built. The LMIsub~
tables are set as follows:

M1 Program nome

LMI2 Group code for interrupt to be triggered at conclusion of initialization by Control Task
LMI3 Group level for said interrupt

LMI4 Signal oddress and (optionally) priority

LMI5 Switches

K:FGLD is set nonzero, the Control Task is triggered and control is retumed to the user program.
If an entry does exist in the table for the program, o code is placed in the signal oddress. The codes used ore

3 Progrom olready looded
4 Program waiting to be looded

If no entry exists for the progrom and there are no free entries in the LMItable, o code of 5 is placed in the signal
address. Sufficient reentrance testing is performed (for details, see the program listing).

RLS If an LMI entry does not exist for the specified program, control is returned to the user.
If an entry exists and the progrom is not loaded, LMI1 and LMIS are zeroed, and control is returned to the user.

If an entry exists and the program is looded, a flag in LMIS is set, K:FGLD is set nonzero, the Contro! Task is trig-
gered, and control is returned to the user (for details of reentrance testing, see the progrom listing).

MASTER/SLAVE The mode bit in the PSD saved in the user Temp Stack is set to the proper state and control is re-
turned to the user. When returning control, CALEXIT executes an LPSD that establishes the proper mode for the user.

STOPIO/STARTIO The specified device is determined and oll other devices associated with it (all other devices
on a multidevice controller or all devices on the 10P if the call so requests) have their proper STOPIO counts in-
cremented or decremented. The count is either in DCT14 or DCTI15 as specified by the call.

75

76

An HIO is performed on these devices i requested by the c;".
If a DCT15 count goes to zero as a result of a decrement, the 1OEX busy bit in DCT5 (bit 7)is reset for the device.

.DEACTIVATE/ACTIVATE The specified device is Jetermined, and it and all oflier devices associated with it

(all other devices on a multidevice controller, or all devices on the IOP if the call so requests) are marked "down"
{Deactivate) or marked operational (Activate). An HIOis always performed on these devices for a Deactivate request.

I0EX For TIO and TDV instructions, the instruction is executed and the status is placed in the copies of R8 ond
R9. The condition code field of the saved PSD is placed in the Temp Stack. Then ot CALEXIT, these copies are
placed in R8, R9, and the PSD, and retumed to the user.

For S10, the IOEX bit (DCTS5, bit 7) is tested. If the JOEX bit is set the SIO is executed ond status and condition

codes are returned to the user. If the IOEX bit is not set, the request is queued and status is retumed to the user

indicating that the SIO was occepted. The user obtains octual status by specifying end-action. Various registers
contain pertinent status at that time.

For HIO, the IOEX bit (DCTS5, bit 7) is tested. If the bit is set, the HIO is executed and status ond condition codes

aore retumed to the user. If the IOEX bit is not set, the monitor routine RIPOFF is called which will eliminate any
ongoing or queued requests for the device. The user receives status ond condition code settings which indicate the
HIO request was occepted.

’

pe

TRIGGER, DISABLE, ENABLE, ARM, DISARM, CONNECT, DISCONNECT These functions are similar in that
they involve the execution of a Write Direct after determining the group code and group level of the specified interrupt.

In addition, a task connection is performed if requested by ARM, DISARM, and CONNECT requests. Note that the
CONNECT call is a special case of the ARM call. The logic for ARM, DISARM, and for CONNECT functions is
illustrated in Figure 41.

Task Centrel Block (TCB)

The CONNECT function initializes words 2-9 of the user-allocated TCB for interrupts and CALs that are to be cen~
trally connected. The format of the TCB is shown below:

0
————————— Soved PSD — — —— — — — —]
I ’
2 e Intermediate PSD to transfer _ __ __ __ _|
3 to TCB+4 with skeleton key
4 STM,0 TCB+10
5 BAL,RI RBMSAVE
6 {T{0 0 PCB oddress
7 Priority J|0———0] TCB oddress
8 | _PSD to transfer to task entry in proper _ __ _ |
9 state (mode, write key, etc.).
10
-
/ 16 words for register saving
25)

01 78 1516 31

Get group code and
level bit.

ARM
or DISARM
?

Is
start address
present ?

Is
start address
valid?

Is
it central

connection
2

Is
TCB address
OK?

Disable the interrupt.

»

Set up words 2-9 of TCB.

Q)

CON

{

Store XPSD in interrupt .
or trap cell and make

INTTAB entry.

Store clock counter values
ond "MTW,-1" instruction.

y

Issue proper "WD" instruc~
tion to count pulse interrupt.

Py

NS5

<

Set index to enable or
disable as appropriate.

Issue "WO" instruction
to interrupt.

b3

Figure 41. ARM, DISARM, ond CONNECT Function Flow

78

&

Mcke INTTAB entry
for direct connection.

\

Store the 'XPSD!

Store the 'XPSD'

Is it
a clock

interrupt?

Get "MTW" instruction
from FPT and store in
count pulse location.

S

—

Figure 41. ARM, DISARM, and CONNECT Function Flow (cont.)

7. 'MONITOR INTERNAL SERVICES

CP-R Overlays

All CP-R overlays may be declored to be resident or nonresident ot SYSGEN time, in order to increase performance
of a particular function or to reduce monitor size, respectively. This is done by means of the :MONITOR control
command.

The overlay technique allows a user call for such functions as OPEN and REWIND to bring in an overlay to perform
the function. The structure is reentront (allows multiple users at different priorities to use the overlay area), recur-
sive (allows an overlay to call an overlay), ond usable for any monitor function (allows overlays ot the control-task
level to use the some area as those for user services). The overlay technique employed requires no explicit calls for
overlays. When an overlay is needed all that is necessary is a branch to a REF:

REF OEP (overloy ENTRY point)

B OEP

’

SYSLOAD will fulfill these references by having them branch to the Overlay Manager (OMAN) which will load the
overlay.

In order to create an overlay the programmer must include DEF's in the overlay ROM for all possible ENTRY points
ond all possible EXIT points. An ENTRY point is defined as a point at which one would enter the overlay via any
type of branching instruction (BAL, BCR, BCS, LPSD, etc.). An EXIT point is defined as a point at which one
would exit the overlay with no intention of retuming to this overlay without first going through an ENTRY point.
For instonce, o BAL to a resident subroutine from the overlay would not be considered an EXIT point since o return
to the overlay will toke place. All EXIT point instructions must be unconditional branch instructions, either B*Rx
or B address. This is due to the fact that the EXIT point instructions will be replaced by unconditional branches to
the Overlay Manager which may replace the overlay with a previously active overlay and then execute the EXIT
point instruction.

An overlay will be named by the first DEF in the module, which must be the first BO-generative statement. As the
CP-R ROMand the overlay ROM:s are read by SYSLOAD all unsatisfied REFs are assumed to be overlay-load requests
and thus are satisfied by creating an entry in the Entry Point Inventory (EP1), described below, and usingthat address
to satisfy the REF.

As the overlays are reod, all DEFs are checked for possible ENTRY points or EXIT points. A DEF wifl be considered
an ENTRY point if a previous REF for that nome has been located. If o previous REF has not been encountered the
DEF will be considered an EXIT point. This algorithm implies that the order of the overlay ROMs as read by SYS-
LOAD is significant. All overlays which call overlays should do so with forward references.

As each overlay is encountered, its name (the first DEF) is compared aogainst the list of resident or nonresident over-
lays os defined by the user on the :MONITOR SYSGEN command. If found to be nonresident, the overlayis linked
to run in the overlay area and written out to the SP area. ¥ found to be resident, it is linked at the end of the pre-
sent monitor end and, or course, is written out with the monitor. The last ROMs on the SYSLOAD medium must be
the subsystem overlays (currently TEL, LOAD, and JCP) preceded by INIT. Figure 42 shows the general arrange-
ment of the SYSLOAD=input ROMs.

OMAN uses the EPI and OVI tables to make sure the proper overlay is in core ot all times. OMAN is activated by
o reference to the EPIEP os set up by SYSLOAD. EPIEP contains a CAL1 instruction. OMAN is entered from the
CAL processor with inhibits set, and examines the address of the CAL1 to calculate the index for EPI if it is an
OMAN call. If the oddress is in the EPIEP table this is o request for an overlay load. If it is in the ovgrlay orea
and of the form : -

04 Address in EPIEP I
0 1 2 314 5 & 710 ¢ W0 N 12 % 15T06 17 18 010 2 12 24 25 1

then it is an EXIT.

79

80

Direction of read

ALlhinimmm

Simulators

CP-R resident

MMM

System Overlays

IIIHIHHIIHIIMITITITY

Device handlers

AIIIMIHITHITHIITIMY

INIT

IIIIIIIHIIHIH THTI

Subsystem Overlays

AMIMHIDINIDIDOIWDOIN

For entries, the previously overlay information is stacked, the new overlay is loaded, and control is transferred to
the ENTRY oddress. For an EXIT, previous overlay information is unstacked, thz last overlay is reloaded if neces-

Figure 42. Arrangement of SYSLOAD Input ROMs

sary, and the instruction in EPIEP is executed.

After every activation the active overlay ID (OVI index) is placed in the STIOV field. When an exit takes place
the STIOV field is cleared. EXIT checks STIOV to see if the task to which it is exiting has on active overlay. If it
does and the presently active overlay for the system is not the some, EXIT forces an entry to OMAN to reload the
active overlay for the task. (This is done at the level of the task which is being exited to.)

This overlay technique has several unique aspects which should be noted:

Any reentrant piece of code which is entered via a branching type instruction and exited via an uncondi~
tional branch may be converted to on overlay simply by

® Assembling it os a separate ROM.

o Placing a REF where a branch to it takes place.
o Placing a DEF for the ENTRY point in the ROM (first DEF also used as overlay name).
e Placing a DEF for the EXIT points in the ROM.

The system overhead incurred by this conversion is only one instruction when the resultant overlay is de-
clared resident.

No registers are destroyed in loading ond transferring control.

Many such pieces of code may be placed into one overlay.

Entry and Exit Peint lnventery (EPI)

Purpose: The EP] is used to intercept all entries to overlays and to save all exit instructions from overlo’ys in
order that the Overlay Manager (OMAN) con load the proper overlay.

Type: Parallel in CP-R table space with a fixed number of entries, Generated by SYSLOAD,

Logical The EPI index is, in essence, generated by SYSLOAD. When SYSLOAD encounters a reference to an

Access: entry point,the address is replaced by the address of an EPI entry (EPIEP). When an exit point is en~
countered the entire instruction is replaced by a CAL! instruction.

EPIEP: An EPI table entry con have one of three forms. If the entry is an ENTRY point to a resident overlay:

68 Address of entry l
IR 3 C RN I 4 RT3 e ste ¥ T]
If the entry is on ENTRY point to a nonresident overlay:
s
04 OVI index Address of entry
T T I S e YTy R T e B Y T 7
If the entry is an exit point:
Replaced instruction '
0 1 2 314 5 & TTB 9 10 1112 13 V4 15116 17 16 WI20 21 22 D134 25 6 D128 n
(This is the actual instruction that was in the overlay and has been replaced by a CAL1 with an effec-
tive oddress of the replaced instruction.)

Overlay (nventory (OVI)

Purpose: The OVI replaces the table previously defined as OVLOAD. 1t is used by OMAN to load overlays
for both primary and secondary tasks. For each overlay it contains the sector address, length, and
name,

Type: Parallel in CP-R tuble space with o fixed number of entries. Generated by SYSLOAD.

Logical The EPI (Entry and Exit Point Inventory) has a subfield of EPIEP which indexes the proper overlay for

Access: that Entry Point.

Entries:

OVISK Seek address l

-
OVILG
(exOVLOAD1)| Number of bytes
1 4 [} 1 13 S
Z,Yc])r:l/To AD2) 4~Charocter EBCDIC name

OVIMA Poge address I

ovICcT Count

T Ty

OVIECE Heod of pseudo-ECB chain I

where

OVIsK is the seek address of the overlay on the device containing the SP area.
OVILG is the length of this overlay in bytes (<2048).

OVINM ° s a 4=character EBCDIC name representing the first DEF in the overlay. This is the
name used in the SYSLOAD map and the name to be used for all communications about the
overlay.

/

OVIMA s the page address of the overlay if it is in core. The value is zero if it s not in
core.

OVICT s the use~count field used to determine which overlays should remain in core in roll-
out circumstances.

OVIECB chain head of a list of two word pseudo ECBs. The first word contains the forward
link. The second word contains the ID of the task which is waiting for receipt of the overlay.

Event Control Block and Event Control Services

Purpose: Event Control Blocks (ECBs) provide task manogement and CAL processors with the mechanism for con-
trolling system services explicitly requested by tasks or invoked by CP-R.

Type and ECBs are eight-word serial control blocks in TSPACE, with chained data areas also in TSPACE.

Location:
Logical ECBs are members of two chains and can be located only via one or the other of these chains. The
Access: chains are as follows:

Solicited ECB chain — A chain headed in the LMI entry corresponding to the task for which the
event is being performed. The chain head is in LMISECB.

Request ECB chain — A chain generally headed in the LMI entry corresponding to the task per-
forming the service. If no one specific task is responsible for posting, the R- chain is either not
used or is headed elsewhere.

Overview of ECB Usage

Asynchronous or synchronous (vs. immediate) service requests must create ECBs to control the event processing.
Asynchronous or synchronous service calls are those performing functions which require waits for some other logic
within the processor or external event to complete prior to completing the originol request. They are as follows:

RUN SEGLOAD UNLOAD TYPE DFM <
INIT OPEN WEOF ALLOT DEVN

ENQ CLOSE PFIL TRUNCATE ACTIVATE (MM)

SIGNAL READ PREC DELETE

STIMER WRITE DEVICE STDLB

POLL REW PRINT GETPAGE

In oddition fo the above CAL processors, CP-R tasks n moy create anduse ECBs to control their own scheduling ond
communicate with other modules. These tasks are as follows:

Tosk Initiation \
Task Termination
Key-in Processors

Memory Management executive including ROLL~IN and ROLL-OUT

CAL Processor Usoge

The CAL processor will create ond initialize the ECB. If the service is requested with wait, the CAL processor
will loop waiting for the ECB to be posted if the caller is primary, or set the ECB and dispatcher controls for
secondary tasks and return to the dispotcher. A posting phase is executed when the ECB is posted. A checking
phase is performed following the post. The completion data is returned to the user ond the ECB deleted. The CAL
processor then exists, K

If services are requested without wait by the user, the CAL processor creates and initializes the ECB ond starts the
service to the extent possible until a wait would occur. The CAL then returns to the caller. Some time latera post-
ing phase is executed. The caller must eventually issue a CHECK on the service. Failure to do so would cause the
ECB to remain 'active' until task termination. When the CHECK call is performed, the service is processed until a
roadblocked condition occurs or the service is done. If the service completes, the cleanup is done as above and
control returned to the caller. If the service is still not complete, the busy exit will be taken if it was provided.

If no busy exit was provided, the system waits for the service to complete as described above, then does the cleanup
and exits.

Note that the order of posting and checking is varicble. A post may precede the execution of a check.

Task=Termination Usage

Task termination keys on the ECBs during its initial phases. Eoch ECB must be posted before the task is allowed to
terminate and release its core resources. The termination routines drive the ECBs to completion as rapidly as pos-
sible by calling special subroutines for each ECB type. It then does a WAITALL on the ECBs.

ECB and Data-Area Formats

Figure 43 shows the detailed format of an ECB and gives an example of chained data areas.

Description of the individual data elements follow.

ECBDATA (Word 0)

Length: The length of the first data area in the chain, in words. =

Data areo oddress: The address of the first data area. Initially, this word is set to zero. If a data area is added to

the ECB, the length and oddress (as returned from the GETTEMP) are stored here, and the first word of the data area
is zeroed. Subsequent data area additions continue to store this word into the first word of the newest data area and
put the new control in the first word of the ECB. Data area deletions do the inverse, namely, move the first word of
the dotc area being deleted (always the first in the chain) into this word.

83

Word 0 |0 Length Data area address —

|..l Ilv|D (’) T

LIS [H LM slo FPT/DCB oddress
Y

2 S~task ID S-ECB chain next

3 R-task ID R-ECB chain next

4 Priority Class

5 EA Type/ End action oddress (BAL or Signal) |

Group | Address-X'4F'| Level bits

6 b— —— Timeout |
Type compl. TBT Completion status -

7 {0 0 ECB type

01'2'3'4'5'6'78'9 1516 3

|— 0 Length Data area address T

Newest data area

01 7'8 _ k]|

Oldest dato area

01 3l

Figure 43. ECB Format and Chained Data Areas

ECBFPT (Word 1) -
Flog bits as follows: -
-
Bit 0 Reserved

BUSY (bit 1) =1 if the ECB has not been posted. This means that word 6 contains the timeout threshold, if
any.

=0 if the ECB has been posted. This means that the type of completion and completion status
have been stored over the timeout threshold in word 6.

——

INP (bit 2) =1 ifthe ECBis 'in-process’. This bit is set during a POLL, check phase, fo avoid subsequent
polls from acquiring the same ECB. .

=0 if the ECB octivity has not been initiated.

In-process may be set by internal CP-R tasks which do not use a POLL to indicate that the
ECB is being operated upon.

WD (bit 3) =1 The wait count in the STI entry of the S-task is to be decremented by one (if it is not al-
ready zero) when the ECB is posted. If the count becomes zero due to the post, the dis-
patcher should be triggered and the task entered if the S-task is a higher priority than the
posting task. If it is lower, the dispatching is deferred.

=0 Do not alter ony dispatch controls at posting. The tosk is not waiting for the ECB.

WD is set by the EMWAIT subroutine and WAITANY, and WAITALL calls. It is reset by
posting. It is also reset by WAITANY ofter gaining control on a multivoluec{ wait,

DP (bit 4) =1 Delete the ECB as soon as the posting logic is complete. The user does not expect to
check the FPT nor does he require feedback of the type of completion.

=0 Do not delete the ECB until after the checking/cleanup phase is complete.

DP is set on service calls with Delete-on-Post set (F8 = 1), and on service colls that gen-
erate ECBs but are not CHECKable. On all other ECBs, it is reset.

CHK (bit5) =1 Checking is in process on this ECB by some task, and other checking phases are not to be
allowed. This bit is set by service call processors when requested with wait. It is set by
CHECK CAL entry before going to the ECB-type-dependent checking routine. It is set
by TEST, WAITANY and WAITALL when processing the ECB through checking phases. It
is reset by EMWAIT when taking a busy exit. CHECK tests the bit prior to setting it. If
nonzero, the CHECK is rejected os invalid and the busy exit is taken if provided. If not
provided, the calling task will be trapped. TEST, WAITANY and WAITALL ignore ECBs
in the S-chain with the CHK bit set.

POST (bit 6) =1 Posting is in process on this ECB. Other posting operations are not allowed. This bit is
set by the posting subroutine entry prior fo entering the ECB type-dependent logic. If
POST is olready set, on error exit is given to the caller. POST is reset by checking
phases if the ECB is 'unposted’ to allow additional processing phases.

Note that if POST = 1 when an ECB is creoted, no posting operation will be allowed. If CHK =1 when an
ECB is created, no checking operations will be allowed.

TO (it 7) =1 Timeout of the ECB is in process and other timeout operations are not allowed. The
proper ECB posting routine will be called.

FPT/DCB address: This is the address of the caller's original FPT (or DCB in the case of Type-1 1/0). On all CHECK
or DELFPT service calls, this serves as the control field to locate the ECB which represents the service being checked.
It also allows the WAITANY, WAITALL and TEST calls to know the location of the original FPT or DCB in order to
build an internal check FPT. An FPT/DCB oddress must be stored in all ECBs at creation. If the FPT wils in regis-
ters, the register address (0=F) is stored.

ECBSECB (Word 2)

S-Task ID: The task=ID of the task that solicited the service or that is checking the service.

S-ECB Chain Next: The address of the next ECB in the solicited-ECB chain of the S-task.

As a task requests asynchronous services, the ECBs crected are odded to the end of a chain which is headed in the
LMI entry corresponding to the task. This provides the system with knowledge of all the outstanding service requests
for a load module. On checks or deletes, this chain is used to search the S-ECBs. It is also used by Task Termina~
tion, WAITANY, WAITALL and TEST to define all the services in process. The S-chain is maintained as ECBs are
created and deleted. The S~task ID tells the chaining logic, indirectly, in which LMI S-chain to place the ECB.

More importantly, ot posting time, it tells the EMPOSTYC subroutine, whose task controls, to updote if wait de-
crement is set.

ECBRECB (Word 3)

R-Task ID: The task ID of the task that is to provide the requested service and that will post the ECB, if any.
R-ECB Chain Next: The oddress of the next ECB in the request-ECB choin of the R-tusk.

Some events are directed to one CP-R task or user lood module that is to provide the service ond post the ECB. This
task is called the responsible task and has a chain (R-chain) through all ECBs currently directed to him, which is
headed in the LMI entry corresponding to the task. CP-Rtasks will have a load-module-inventory entry to heod
these chains. The chain is in priority order, with the newest requests ot the beginning of their priority group. The
chain is used by POLL to locate requests and give them to the task for processing. It is also used by POST to vali-
date the ECB identification in the FPT. Intemal CP-Rtosks may use the R-chain directly to locate and operate on
request ECBs. The R-chain is maintained as ECBs are created and posted. The R-task ID telis the stondard R-chain
maintenance routine, indirectly, in which R-chain the ECB is to be placed, or removed.

In the following cases, an R-task can be identified:
e INIT requests — Task Initiation on behalf of the initioted task.
o SIGNAL requests — The task signalled.
o ACTIVATE/GETPAGE ~ Memory Management Executive.

In some cases, the service is provided in such o way that a specific task cannot be identified which provides the
service. In these coses, the R-chain is either not used, or is headed in some other control table, not an LMI. The
following ECBs are this type:

o ENQ requests — Service provided by the DEQ CAL processor. The R-chain is headed in on EDT.
e STIMER requests — Service provided by the clock-4 interrupt processing. No R-chain is used.
e POLL requests — Service provided by the SIGNAL CAL processor. The R—chain is not used.
e 1/O requests — Service provided by the 1/O — interrupt processing. Instead of containing R-task informa-
tion, bits 0-7 contain the service—call FPT code ond bits 15-31 contain the byte count.
ECBPC (Word 4)
Priority: The priority of the ECB as requested by the caller. Generolly it will default to the caller's priority. Pri-

ority is used to determine the order of the R-chain. It also will become the execution priority of tasks which poll
for the R-ECBs according to the description in the POLL specification. Priority is set when the ECB is cregted.

-

Class: The class mask that is set when the ECB is created. Generally the class will be the default value of X'FFFF'.
On polls, this field is logically ANDed with the class specified in the POLL (default is also X'FFFF'). If the result
is nonzero, the ECB qualifies for the poll.

Note that for 1/O requests, word 4 instead contains clean-up information (see IOQ13, word 1).

Memory Management ECB's contain control information in bits 16-31 of word 4.

ECBENDAC (Word 5)

The end oction for posting, os follows:
Word = 0 No-end action for service.
Byte 0 = 00-0F End-action confains interrupt-trigger data. The interrupt group is the volue in byte 0.
Byte 0= 7F End-action contains a completion signal address.
Byte 0 = FF End-action contains an oddress to be BALed to at post time.
End-Action Address: The entry location for BAL-type end action or signal address.
End-Action Address and Level: The address of the interrupt — X'4F' — ond level bits for o write direct on trigger-

type end action.

ECBTIME/ECBCOMPL (Word 6)

Timeout: The timeout threshold for busy ECBs. When the value (K:UTIME — timeout) is greater than or'equal to
zero, the ECB has ‘timed out' and CP-Rwill do a post with the timeout code (X'67'). The posting logic which is a
function of ECB type will be entered. If timeouts require special logic, the posting routines must test for the X'67"
type of completion and take the appropriate action.

Type Compl.: The type-of-completion code set by the caller posting.

B(Busy): This bit will always be zero aofter posting.

Completion Status: Actual record size (ARS) for READ/WRITE requests.

ECBCTLS (Word 7)

ECB Type: An integer which represents the type of service which is being provided. This value is set symbolically
{for flexibifity) by the creator of the ECB and can be cltered by the processing logic during the life of the ECB. The
system uses the ECB type to control the service-dependent logic as follows:

e When an ECB is to be posted, the routine that wishes to do the post will BAL,R8 EMPOST with the ECB
identification in R2. EMPOST will use the ECB type as on index into the byte~table EMPOSTX which pro-
vides an index into the word table EMPOSTB. The EMPOSTB entry thus located is a branch to the posting
logic for that ECB type, ond will be executed. EMPOST uses R7 for the indexing.

o When a CHECK call or DELFPT call is issued, the check service call branches to the check processing for
the service type. This entry is derived os above, with EMCHKX + ECB type providing on index to the
EMCHKSB branch table to the entry point. The ECB identification is in R2. R8 is the retum register.

e When o wait occurs for a primdry task on on event control block, the ECB type is used as an index to the
bit-table EMWAITF. If the bit thus located is 1, the primary-task wait is illegal on the ECB, and the task
will be cborted. A zero indicates that the wait is valid and the waiting routine will loop, calling SERDEV
and waiting for the Busy bit in the ECB to be reset.

e When DELFPT or termination occurs, the ECB type will ogain be used as on index into the byte-toble

EMABNX which will provide on index into the word-table EMABNB. The word thus located contains a
branch to the logic to handle abnormal conditions for the ECB type. A

Values for the ECB type are

1 /O service calls 5 INIT
2 SIGNAL 6 ENQ
3 STIMER 7 Memory Management activities
4 POLL 8 STDLB for an exclusive device

87

Dynamic Space (TSPACE)

Such routines as error logging and monitor crash analysis as well as the reentrant overlays require temporary .‘spcce,
which they may obtain, hold for a pericd of time,and then release.

The space is monaged by use of on algorithm that requires space to be parcelled out in powers of two (2, 4, 8, 16,
32, 64, 128, 256) only. Thus if a routine asks for 19 words it will be given 32. The reason for chosing this method
is its minimal processing time for obtaining ond releasing space.

The algorithm is as follows:
1. When obtaining space, if the smallest power of two needed is not available the next higher power of two
will be examined. If space is available ot that level the block is split into two blocks of the size needed.
This is o recursive technique which may be repeated until the maximum power (8) is reached.
2. When releasing space, an attempt is made to find the released block's complement (the other half of the

original split block) and if found they are joined and the procedure repeated for the next hlgher power of 2
until 8 is reached.

Dynamic-Space Service Calls ‘ ,f-
GETTEMP Get Space

Inputs:
R7 = number of words (1 through 255)
R8 = link

Output if space available:

R7 = byte 1/number of words
byte 2, 3, 4/address of space
R8 = link
Return to link + 1,
Output if no space:
R7 = number of words
R8 = link
R15 = X'66' (no~space TYC)

Return to link,

RELTEMP Release Space

Input:

R7 = bﬁe 1/number of words
byte 2, 3, 4/oddress of spoce

R8 = link

Ovutput:
R7 = number of words
R8 = link

Return to link.

s

SYSGEN Considerations
The number of words needed may be specified ot SYSGEN by use of the TSPACE option on the :RESERVE card:
:RESERVE (option), (TSPACE, n), ...

where n is number of words for temporary space (a default is provided by SYSGEN).

Dispatcher)
Each dispatcher in CP-R possesses a queuve whose head may be found in RDLISTI. (RDLI is o poralle! table with
one set of entries per dispatcher.) The queue pointers chain secondary STI entries (through STIDNXT) for the dis-
patcher in order of priority.
To enter a dispatcher level, the higher of the two interrupt levels ossociated with the dispatcher is triggered. Upon
being entered, the dispatcher searches its queuve from the heod down for the highest priority task that is ready to
run.
A task is ready to run when

e It is not waiting (STICOUNT = 0).

e It is not suspended.

e It is not stopped.

e It is not rolled out.

If such a task is not located, the next lower dispatcher level is triggered with the final dispatcher waiting in an
idle loop.

If a task is found, the lower dispatcher level is entered. At the lower level, the map for the secondary task is
loaded and control is given to RBMEXIT. This causes control to be given to the secondary task, or to the Overlay
Manager if an overlay reload is necessary.

It should be noted that the lowest dispatcher level requires only one interrupt level since the null level is used as
its second level,

See the Terminal Job Entry chapter for description of time-slicing and swapping. '
Symbionts

The monitor cells shown below contain information about the symbionts that is not related to a particular device.

Device related information may be found in the DCTRBM, DCTSYM1, DCTSYM2 and DCTSYMS3 tables. |
SYMB

SYMB is a word in the resident portion of the symbiont task that contains general information about the symbionts.

The format of SYMB is

0 15 16 28293031
S|o

Current Job 0 ol|4lf[2
C [+]

where

Current Job is a number that will be used in naming the next job file in the IS area. The number is main-
tained and used by the M:JOB service call. .

SYMBC=0 means do not start background automatically; SYMBC =1 means start background when the first
file for a new job has been closed by the input symbiont.

-
-

This indicator is set by the "CS" keyin and reset by the "C O" keyin.

OFLO is an indicator set by the output cooperative when the OS disk area is full and background can no
longer execute. The output symbiont automatically switches to DO mode when this indicator is set.

DO=0 the symbiont task will delete a job's files in the OS area when all of the files associated with this
job have been output. This is the default mode.

89

DO=1 the symbiont task will delete a job's files in the OS area as they are cutput. This mode prevents
overflow of the OS area by a job which has o lorge omount of output. If this mode is not in effect and a
single job overflows the OS orea, a switch to DO mode will automatically occur. This mode does not

allow backspacing of files in the OS area since prior data records may have been in files that were
deleted.

The DO bit is set by the DO key~in and reset by the RDO key=in.

JoBPRI

JOBPRI is a word in the resident portion of the monitor that contains the priority of the running task. This cell is
used only in a symbiont system and is maintained by the input cooperative.

Jopf
JOB? is a word in the root of the monitor that contains the number of the running background job.

In a symbiont system, the value is used in the naming of files in the OS orea and is maintained by the Job Contro!
Processor.

s

8. MISCELLANEOUS SERVICES

Miscellaneous services are functions available to both foreground and background programs but which do not directly
involve 1/O services.

SEGLOAD

This function loads explicitly requested overlay segments of o program into memory for execution. The user's M:SL
DCB (aliocated by the Overlay Loader) is used to perform the input operation.

For an FPT for READWRIT, the system uses the entry in the program OVLOAD table that corresponds to the segment.
The OVLOAD taoble is constructed by the Overlay Loader.

The function locates the proper entry in the OVLOAD table and places the user-provided error address in both the
OVLOAD entry (FPT) and in the M:SL DCB. If end-action was requested, the FPT is set to cause end-action at
conclusion of the segment input.

If the calling program has requested that the segment be entered (at its entry point), the PSD at the top of the user
Temp Stack is altered so that upon CALEXIT, control goes to the segment entry oddress.

The function then sets R3 to point at the FPT in the OVLOAD table and transfers to READWRIT. The segment input

is then trected as a READ request with possible end-action, and at the user's option, contro!l is returned either fol-
lowing the SEGLOAD CAL1, or to the segment entry address.

Trap Handling

Trap CAL and JTrap CAL

The Trap function sets up the trap control field and TRAPADD field in o user's PCB and sets the Decimal Mask (DM)
and Arithmetic Mask (AM) bits in the user PSD to mask out occurrences of these traps. PSD bits are modified by
changing them in the user PSD at the top of the Temp Stack and in the PSD contained in the user's TCB.

The JTRAP function has the same effect on the DM and AM bits, but stores the trap controls and trap address in the
Job Control Block.

If the user-provided trap address is invalid or if the user specifies that he is fo receive occurrences of some trap and
no trap address is provided, contro!l is transferred to TRAPX. This results in the message

ERR xx ON CAL @yyyyy 1D =task name

where
xx is the Error Code in hexadecimal (00 if none).
YYYYY is the oddress of the CAL.

being output on OC and LL. 2

Trap Processing

Traps are either handled by the user, cause simulation of the instruction where possible, or result in an abort con=
dition. If the user is to handle traps, task-level trap handling tokes precedence over job=leve! trap handling.

The registers and PSD are soved in the user Temp Stack in the following format:

X X] Top of stack before trap
0 0
This word appears only if the
1 1 |{ above zeros are in an even
word address.
PSD Word 0
PSD Word 1
Register 0
(Registers 1 through 14) y
Register 15
Working Cell Top of stack after trap

If the trap is either o nonexistent instruction or unimplemented instruction, the instruction causing the trap is

analyzed to determine whether the proper simulation package (if any) is in the system. If so, the simulation is
called; if not, it is treated like any other trop.

A test is performed o determine whether the user is to process this particulor trop. If so, the trop oddress (X'40',
X'41', etc.) is placed in the top word of the stack and the user's trap handling routine is entered by LPSD, eight of
the user PSD, with the trap hondler substituted for the address where the trap occurred.

Traps not handled by instruction simulation or by the user result in one of the following messoges being output
to OC and LL:

MEM. PROT. ERR AT XXXXX

PRIVILEGE INST. AT XXXXX

NONEXIST. ADD. AT XXXXX

»h

NONEXIST. INST. AT XXXXX

UNIMPLE. INST. AT XXXXX

-

STACK OVERFLOW AT XXXXX

ARITH. FAULT AT XXXXX

WDOG TIMER RNOUT AT XXXXX

MEM. PARITY ERR AT XXXXX

BREAK ERROR AT XXXXX

ERRxx ON CAL @yyyyy ID = task name i

Note that the last message results from the simulation of a trap (called Trap X'50'). This is done by the system
when a system call cannot be processed because of incorrect parameters being input or an error having occurred

in the processing of @ system call with no error address provided in the caller's FPT, After the message is output,
the task will be aborted unless the user has provided a handler for this trap. If the user has provided a handler for
this trap, the message will not be output and the trap handler will be entered.

TRTN (Trap Retumn)

This function returns control following the instruction which caused a trap and is employed by the user to return
contro! ofter processing a trap.

At the time of the TRTN call, the user Temp Stack is set as described previously under "Trap Processing”. The

TRTN function strips the stack of the context placed there by the CAL processing (from the TRTN CAL). It then
clears the stack by the Trap processor and returns control to the instruction that follows the one causing the trap.

TRTY (Trap Retry)

This function is similar to TRTN, but returns to the instruction causing the trap.

TEXIT (Trap Exit)

This function removes the trap information from the user Temp Stack and exits the trapped task. Note that an EXIT
CAL if executed from a user trap handler would leave this data in the user Temp Stack.

£y Y

93

9. CP-R TABLE FORMATS

General System Tables

The tables shown in the subsection are either not job or task controlled, or relate equally to both jobs and tosks.
The index 0 entries of the tables are not used as true entries.

.550 Processor Configuration Tables

These are parallel tables that contain data pertaining to Processor Polling,

CNFGADDR

Address

This contains the address of the processor.

CNFGTYPE

Type

This contains the type code for the processor,

where
1 = CPU.
2 = Memory Interface (MI).

3 = Processor Interface (PI).
4 = MIOP.

7 = System Unit (SU).

CNFGSTAT

Status
0 31 -

This is used for temporary storage of processor status and condition codes during the logging process.

CNFGADDR and CNFGTYPE are initialized by SYSGEN based on :PROC cards,

These tables are used to control Processor Polling and are primarily used to provide information for the error
log.

Volume Table of Contents (VTOC)

Information describing the allocation of areas on a private disk pack is maintained in this date structure, which
begins in sector 0 of the device. Its length depends on the number of areas defined, and is specified in the
structure. The VTOC may be extended by RADETIT : ADD commands after the original initialization. Such
extension may proceed to the end of the last VTOC sector. Additional VTOC sectors can be obtained from the
first area on the pack only if it is o skipped area.

Devices with Sysgened areas are not private devices. They have no VTOC:; and their structural information per-
manently resides in the Master Dictionary.

The Format of the VTOC follows:

section 0 word 0 l bootstrap]

20 1 vsn i
21 i
22 vioc
23 1 init date t
24 y
25 41 moddate | :
26
27 wps
28 spt
29 tpc
30 boa
31 eoa
32 nds
33 naa
packet 1
JL 4L
packet i

T

(o]

L

sector n last word

where

bootstrap is a defoult boostrap program that will type a message indicating this is not a
system device and then go into an idle state.

vTOC is the character string 'VTOC' that identifies the disk as have been initialized
and allocated by the :INIT command.

vsn is the 8 EBCDIC character identification of the disk. It may beany 1to 8

character string composed of letters and/or digits, left justified, space filled. .

init date is the date on which the disk pack was originally initialized, in the form
mmmdd yy.

mod date is the date on which the allocation of the pack was most recently modified,
in the form mmmdd yy.

95

§ 9 % 3

3

packet 1

packet i

wﬁere

name

wp

it

96

is the words per secfor of the disk.
is the number of sectors per track of the disk.
is the number of tracks per cylinder of the disk.

is the sector number of the first sector on the disk available for data.
It normally is initialized to 1 (see nds below).

is the sector number of the last sector on the disk.

is the number of directory sectors required to hold the directory. Nomally
this will be a 1, meaning all area allocation information is contained in this,
the first sector on the disk, and data area may begin on the next sector
(sector 1), However, if o large number of areas and skipped areas are
specified, there may be insufficient space in one sector for the directory.
For this case, the directory will be continued on subsequent sectors, nds

set to indicate this number, and boa set to begin on the next sector.

is the number of allocated areas. It is the total number of areas currently
active on the disk. It does not include any "SKIP" ped areas or unallocated
space at the end of the disk.

is o group of data describing o contiguous block of sectors of like use. Such

use may be one of three types: allocated for a file area, skipped, or unallocated
remainder. There is always one packet describing the unallocated remainder,
even if its size is zero. There is one packet in addition for each file area

and each explicitly skipped area on the pack. Packets are grouped by type,

first file area packets, then skipped area packets, then the unallocated
remainder packet. Within groups, packets are ordered by ascending start
address. The format of a packet follows.

byte 0 1 2 3
word 0 name pr
1 0 it
2 ssec
3 esec

is a two-charocter EBCDIC area name for a file area, x'FFFF' for a skipped areq,
or numeric O for the unallocated remainder.

is the write protection:

numeric O for public;
1 for background;
2 for foreground;
3 for system;
4 for 10EX.

is the initialization type code:

numeric 0 for OVR;
1 for FAST;
2 for ALL.

I)

RAD File Table (RFT)
Parameters describing the file are taken from the directory entry for the file. These parameters include:
File name, area index, and account name
Beginning sector address (relative to beginning of the area)
Ending sector address (relative to beginning of the area)
Granule size
Record size
File size (number of records)
Organization (blocked, unblocked, compressed)
The parameters specifying the physical characteristics of the disk, the boundaries of the disk or;a, ond the Write
Protection key are in the Master Dictionary. To enable access to these, the RFT contains a Master Dictionary Index
(specifying the area), .
For manipulation of the file, the RFT contains the following items:

Blocking buffer control word address

Blocking buffer position

Position within the file (sector last accessed — used for blocked and unblocked)
Current record number

Number of DCBs open to the file,

These parameters are entered in the RFT by the OPEN function. The parallel table concept is used for the RFT,
and the tobles are allocated and initialized as given in Table 2,

In Table 2:

File name all O Signifies entry not in use.

RFT4 index 0 Entry contains the total number of RFT entries,

RFT13 index 0 Entry contains the maximum number of RFT entries allowed for background use.

RFT14 index 0 Entry contains the current number of background file entries,

RFT15 index 0 Entry contains the number of temp files allocated.
-
-

Other index 0 Entries are not used.

The Job Control Processor builds the RFT entries for the Background Temp Files., These entries are the first n + 2 in
the table (n is the number of Xi files), where entry 1 is for the OV file, entry 2 is for the GO file, entry 3 is for
the X1 file, etc.

97

98

FILE DIRECTORY

The information concerning allocated files is contained in a file directory entry. The file directory entries for files
in each area are kept in directory sectors within that area.

The first sector (sector zero) of an area containing files is always the first directory sector. There may be more than
one directory sector if there are more files than can be held in the first directory sector. The subsequent sectors are
linked together starting from the first sector.

The format of all directory sectors is identical. It is

Index
0

1

255

where

%

Index

Sector

File directory 1D code word 1

File directory ID code word 2

File directory entry 1

File directory entry 2

File directory entry n

Unused directory entries or unusable
space at end of sector

flag is end of directory indicator.

0 means this is the last directory sector.

1 means directory continued on another sector.

index is the index to the next unused word in the sector.

sector depends on the value of FLAG.

Word ¥

3

FLAG=0 means this is the next free, unassigned sector in the area.

FLAG=1 means this is the sector number of the next directory sector.

file directory code words are two words containing identifying codes used to verify that the sector is actually
a directory sector. These words are: - i

X'AAAAAAAA')
X'55555555" ‘
There are two possible formats of the first directory sector which both mean the area contains no files, The first four
worids may be all zeroes, which is its condition if it has been cleared by SYSGEN (FAST or ALL options), or it has
been cleared by the :CLEAR command in RADEDIT,

The first four words may also be

Index Word ¥
0 0 4 1
1 1 2
2 Code word 1 3
3 Code word 2 4

A
’

The all zero format will be converted to the normal format when the first file is allocated in the area.

Permanent File Directery Entry

A file directory defines and describes a file. It contains the information needed by the system to access and use the
file. There is one entry for each file or file extension in an area. The fixed portion ofan entry is identical in format
for all files. It contains the file's name, size, orgonization and position in the areq.

If the File Account option is not used, entries are 9 words long; if the option is used, the entries are 11 words long.
An entry will not cross a directory sector boundary.

The format of an entry is:

Index Word #
0 F I L E 1
1 N A M E 2
2 FLAG) FLAG2 |RESERVED | LEN 3
3 GSIZE RSIZE 4
4 FSIZE 5
5 BOT 6
6 EOT 7
7 XTNT 8
8 ESIZE 9
-
9 A C 0 10 -
10 u N T ¢ n

100

Fiagt = [s[p]Rr]",[R[R[ORG]
01 2 34506 7
FLAG2 = [Priormy Jo]o[o]rF]

where

FILENAME is the 8 character EBCDIC name, left justified and spoce filled, of on active file. A nome of
all binary zeroes indicates a deleted file, and a name of oll binary ones indicates o bad sectors entry (space
that is not to be allocoted to an active file).

FLAGI
R reserved.
S file was last written sequentially.
Maintained by the monitor; initially set 1o 0.
D file was last written directly. !

FIX if the flag is set, extended files will not be combined into one large file during o RADEDIT
:SQUEEZE operation.

ORG file organization (same as in ALLOT CAL).
00 = unblocked
01 = blocked
10 = compressed
FLAG2 '
PRIORITY for files in IS ond OS areas, the job's priority; for other files, zeroes.
RF RF =1 means resident foreground p;rogrum if in FP area.
RF=0 for all other files and oreas.
LEN number of words in this directory entry.
GSIZE the granule size, in bytes; used for direct access.
RSIZE the number of bytes per logical record for UNBLOCKED and BLOCKED files.

FSIZE the number of records in the file if the file is not extended; the number of records in this extension
if it is extended.

:8-” the area relative first and last sector of the file or extension.

XTNT the extent number indicating the position of this extent in the file. This word is zero if fis is the
first or only extent of o file.

ESIZE the number of sectors to allocate to the next extension if file extension occurs. This word is zero
if the file is not to be extended.

ACCOUNT/ the 8 character EBCDIC name, left justified ond space filled, under which this file was
allocated.

Address Contents Initial Value Length °
RFT) File Name 0 Doubleword
RFT2 Beginning Sector Address (Relative fo orea) X Werd
RFT3 Ending Sector Address (Relative to area) X Word
RFT4 Granule size (in bytes) X Hal fword
RFT5 Record size (in bytes) X Hal fword
RFTé File Size (in records for sequential access files; in X Word
granules for direct access files)
RFT7 Switches X Byte
where
Bit 0 = 1 means sequentially written
Bit 1 = 1 means directly written
Bit 3 = 1 means extents are fixed in size
Bit 6 = | means compressed
Bit 7 = 1 means blocked
RFT8 Master Dictionary Index X Byte
RFT9 Job Identification X Byte
RFT10 Blocking Buffer Position (in bytes) X Halfword
RFTHI File Position (in sectors) X Word
RFT12 Current Record Number X Word
RFT13 Number of Open DCBs (total) X Byte
RFT14 If RFT17 is nonzero, this entry identifies the job that X Byte
obtained the blocking buffer
RFT15 Number of OPEN background DCBs X Byte
RFT16 Status (bit 0 on for sequential write, bit 1 on for direct X Byte
access write)
RFT17 Blocking Buffer Control Word Address Word
RFTE# Number of current extent (extensible files only) 0 Hal fword
RFTESZ Number of sectors per extent. Derived from extent size Word
given when file wos ollotted,
RFTACNT EBCDIC disk file account name X Doubleword

The RFT is also used to maintain data controlling access to a tape drive open In blocked mode. The deta in an
RFT entry used for blocked tape is described in Table 2A. It is deliberately similar to that maintained for a

blocked file, so that common processing is more frequently possible.

101

Table 3. RAD File Table Allocation for a Block Tape

Address Contontrol
RFT1 The device nome as in DCT16:
' NL yyndd'
RFT2 (not used)
RFT3 {not used)
RFT4 Size in bytes of current block on input
RFT5 Logical record size in bytes
RFT6 {not used)
RFT7 Switches, where
Bits 0,1 = 10 always (indicates sequential use)
Bit 6 = | means compressed
Bit 7 = 1 means blocked
RFT8 DCT index for drive
RFT? Job ID (maintained but not used)
RFT10 Blocking buffer position in bytes
RFT11 (not used)
RFT12 Current record number (maintained but not used)
RFT13 Number of open DCBs (total)
RFT14 Job ID of job which obtained the current blocking buffer
RFT15 Number of open background DCBs (maintained but not used)
RFT16 Bit 0 = 1 indicates the tape hos been written since it wos opened.
RFT17 Blocking buffer control word address
RFT# (not used)
RFTSZ (not used)
] RFTACNT (not used)
Device Control Table (DCT)

DCT Format

L

The Device Control Table (DCT) is composed of several parallel subtables (see Table 4). The various entries

associated with a given device are occessed using the DCT index of the device and addressing the tables

DCT1 through DCT19. For example DCT1 would be occessed by
LHR,R DCT1, X

DCT2 would be accessed by
L8R DCT2,X

where Register X contains the DCT index value for the device.

102

—

Table 4. DCT Subtable Formats

Subtable)
Address Contents Length
DCTI Active I/O addrass for device Halfword
DCTIP Primary (P) device address 0——0/| IOP |0] Device Holfword
DCTIA Alternate (A) device address 0 23 789 15 Halfword
DCT12 Channel Information Table Index ~ A pointer to the CIT entry for the Byte
channe! associated with the device.
DCT3 Bit 0 = 1 means output is legal for this device. Byte
Bit 1 = 1 means input is legal for this device.
Bit 2 = 1 means device has been marked down and is inoperative.
Bit 3 = 1 means device timed out.
Bit 4 = | means SIO has failed.
Bit 5 = 1 means the 1/O has aborted.
Bits 6/7 = 00 - "Busy " both subchannels.
=01 - Use the P subchannel only.
= 10 = Use the A subchanne! only.
= 11 - Use either subchannel,
DCT4 Device Type Byte
0 = NO (IOEX) 14 = DP
1=TY 15 = Reserved
2=Pm 16 = 9T (550)
3=pp 17 = Reserved
4=CR 18 = Special user devices
5=CpP 19=1D
6=1LP
7=DC
8=9T
9=7T
10 = CP (Low Cost)
11 =LP (Low Cost)
12 = DP (7242/46, 7270)
13 =PL
DCTS Status Switches Byte
Bit 0 = device busy. :

Bit 1 = waiting for cleanup.
Bit 2 = between inseparable operations,

Bit 3 = data being transferred,

103

104

-

Table 4. DCT Subtable Formats (cont.)

Subtable ‘
Address Contents Length
DCTS Bit 4 = error message given (key=-in pending).
{cont.)

Bit 5 = deferred 510 pending

Bit 6 = SIO was given while device was in manual mode.

Bit 7 = Unqueued IOEX on this device.
DCT6 Pointer to queue entry representing current request, Byte
DCT7 Command list doubleword address, Halfword
DCT8 Handler start oddress, Word
DCT? Handler cleanup address. Word
DCT10 Device activity count (used for I/O Service reentrance testing). Word
DCTI Timeout value (used to abort request when no interrupt occurs). Word
DCTI12 AIlO status (or end action control word for unqueued 10EX). Word
DCT13 TDV status, Doubleword
DCT14 STOPIO (background only) count, Byte
DCTI15 STOPIO (all system [/O) count. Byte
DCTi6 The five-character device name (e.g., CRAO3) preceded by the three Doubleword

characters "@11",
DCT17 Retry function code (for error recovery) and continuation code. Halfword
DCT19 AlO condition codes. Byte
DCT20 TDV condition codes, Byte
DCT20A TIO condition codes. Byte
DCT21 TIO status. Hao!fword
DCTSDBUF Side-buffer address. Word
DCTMOD Device model number, EBCDIC. Word
DCTMODX Device model number, decimal. Hal fuord
DCT#ERR Number of 1/0 errors. Word
pcrtio Number of 1/O starts. Word
DCTJID Job ID for reserved devices. Byte

Table 4. DCT Subtable Formats (cont.)

Subtable
Address

Contents

Length

DCTTJE

TJE flags (see TJE Chapter)

Byte

DCTSYMI

Bit 0 = 1 means the device is on-line. Symbiont activity is to start when
possible, is active or is in o suspended state. The bit is set by
the Syyndd, I key-in or the output cooperative. The bit is reset
by the symbiont task when o IFIN card is read. The bit may olso
by reset by o 1JOB card if the Syyndd, L or Syyndd, T key=-in is
in effect.

Bit 1 =1 means the device is locked out. Symbiont 1/0 will cease when the
current job hos completed. 1If exclusive use of the device has been
obtained by the symbiont task, the device will be released.

The Syyndd,L key=in sets this bit. The Syyndd,l key-in will
reset the bit and start symbiont 1/O on the device.

Bit 2 = 1 means the same as bit 1 except that the device is removed from
use by the symbionts when the current job hos completed if it
is not dedicated to symbionts,

The "T" bit is set by the Syyndd, T key-in. The Syyndd, I key-in
will reset the bit, ocquire the device (if necessary), and start
symbiont 1/O on the device.

Bit 3 = 1 means symbiont activity has been suspended on this device. The bit
is set by the Syyndd, S key-in. The C,B or R options of the Syyndd
key-in will reset the bit and restart symbiont 1/O on the device.

Bit 4 = 1 means the device was dedicoted to symbionts at SYSGEN. This bit
is set by SYSGEN and is never reset.

Bit 5 = 1 means the device is in use by symbionts. If the device is dedicated
to symbionts, the bit is set by SYSGEN and will not be reset. Other-
wise the bit is set by the Syyndd, I key~in and reset by the symbiont
task if the "T" bit is set when the current symbiont file has completed.

Bit 6 = 1 means the current job is to be released. Symbiont activity for the
specified device will be terminated and associated symbiont files
will bedeleted.

Bit 7 = 1 means save the current output file and terminate. What remains of
the file is retumed to the output queue and the symbiont is locked
immediately. The entire file is saved if the symbiont device is not
in DO mode.

Byte

DCTSYM2

The oddress of o TSPACE block which contains the address of the context block
for a symbiont device.

This entry is zero if the device is not in use by symbionts.

Word

DCTSYM3

Bit 7 = 1 means the operator has requested that an output symbiont file be
rewound (R) or backspaced (B).

]

Byte

DCTRBM

Bit 0 = 1 means the device is being requested by the SYMBIONT task.

Bit 1 =1 means the device is in use by the MEDIA task. When the device is
no longer needed by MEDIA, this bit will be reset if bit 0 is set.
This will allow the symbiont task to obtain the device.

Byte

105

106

chlo‘[._ DCT Subtable Formats (cont.)

Subtable :
Address Contents Length
DCTRBM Bit 2 = 1 means the device is in use by the symbiont task. When the device Byte
is no longer needed by SYMBIONTS, this bit will be reset if bit 3
Is set. This will allow the MEDIA task to obtain the device.
Bit 3 = 1 means the device is being requested by the MEDIA task.
Bit 6 = 1 means DED DPndd,R key-in is in effect.
DCTCD The DCT index of o device which cannot be operated concurrently. Used Byte
only for 3243 devices that share arm position mechanism.
DCTDISCI The disk type index. Used only for disk devices. This points to disk chor- Byte
octeristics in the DISC tables.
DCTDCB Number of DCBs OPEN to this device. Byte
DCTRFT Nonzero only for a tape drive open in blocked mode. If DCTRFT = x '80* Byf;
an RFT entry is not currently assigned. If DCTRF + x '80', it is the index
of the RFT entry containing the blocking controls.

System Generation allocates the space for the DCT subtables. Initial values are defined for the following entries

SYSGEN DCT Consideration

(all other entries are initially zero):

PCTI
DCTIP
DCTIA
DCT2

DCT3

DCT4

DCT7
DCTi4
DCT15
DCT16
DCTDEBUG
DCTSDBUG
DCTMOD
DCTMODX
DCTJID
DCTCD

-
The index 0 entry of each subtable is not used as a true table entry because of the nature of the BDR instruction.

DCT1, index O,
DCT7, index O,

DCT7 contains the DW address of space allocated by SYSGEN for the command list for each device. These areas are

on a doubleword

As specified by :DEVICE command
As specified by :DEVICE and :CHAN commands.
As specified by :DEVICE and :CHAN commands.
As specified by :DEVICE and :CHAN commands.
As specified by :DEVICE command.
As specified by :DEVICE command.
Pointer to SYSGEN allocated space for command list.
1 if (DEDICATE, F); otherwise, zero.
1 if (DEDICATE, X); otherwise, zero.
" @ | lyyndd" where yyndd comes from the :DEVICE command.
External interrupt location minum X'4F‘, (Used for BREAK logic.)
Pointer to side buffer.
EBCDIC mode! number,
Decimal model number.
" X'FF* if reserved device; otherwise, zero.

Initialized for adjocent 3243 devices.

contains the number of non=-TJE devices.

contains the total number of devices including TJE devices.

boundary.

-

DISC Tables

The DISC tobles are o series of parallel subtables with on entry for each different disk type. They are built by

SYSGEN based on :DEVICE commands. The index value used with these tables is obtained from DCTDISCI.

Address Usage Size
DISCNSPT Number of sectors per track Byte
DISCNWPS Number of words per sector Halfword
DISCMAXS Last relative sector number ' Word
DISCMINS First relative sector number Word
DISCSSFT Sector number shift to build seek address Byte
DISCTSFT Track number shift to build seek address Byte
DISCCSFT Cylinder number shift to build seek address Byte
DISCNTPC Number of tracks per cylinder Halfword
DISCNCYL Number of cylinders total Halfword

Channel Information Table (CIT)

The Chonnel Information Table consists of parallel subtables, each with an entry per chonnel. There is one channel
per controller connected to a MIOP, and one channel per SIOP, The "channel" concept is used since there cannot
be more than one data fransfer operation in process per channel. 1/0 device requests are queved on a per-channel
basis. System Generation allocates these subtables as shown below:

CITi Queve head Byte
CIT2 Queve tail Byte
CIT3 Switches: Byte

Bit 0 - Subchannel P busy

Bit 1 = Subchannel A busy

Bit 2 = Subchannel P held

Bit 3 - Subchannel A held

Bit 4 - Dual=-access channel

Bit 5 - Preferred channel (0=P; 1 =A)

CIT5 Holding Request Q pointer for subchannel P Byte

CITé Holding Request Q pointer for subchannel A Byte

The CIT subtable entries are accessed by using
LB,R CITN, X
where Register X contains the index (1-N),

The index O entry is not used because of the nature of the BDR instruction,

1/0 Queve Table (10Q)

The I/0 Queue Table consists of parallel subtables each with an entry per queue entry. These tables are accessed
in the some manner s DCT and CIT by using an index. As is true for DCT ond CIT, the index 0 entry of each sub~
table is not used as a true queue entry.

System Generation allocates and initializes the IOQ tables as given in Table 5.

107

108

Notice that IOQ2 index 0 is initialized by SYSGEN. This byte is used and maintained by the I/0 system os the
“free entry pool " pointer, ' By initializing IOQ2 as shown, SYSGEN links all entries into this pool.

I0Q1 index 0 is initialized by SYSGEN to the maximum number of queue entries allowed to the background.

I0Q3 index 0 is initialized to 0, since this byte is used and maintained by the [/O system as the current number of

queue entries in use by background., 10Q4 (index 0) is the total number of IOQ entries.

Table 5. 10Q Allocation and Initialization

Address Contents Initial Value Length
10Q1 Backward Link 0 Byte
10Q2 Forward Link Entry M contains M + 1 for Byte
N>M 20, Entry N contains 0.
N is the number of queue entries,
10Q3 Switches 0 Byte
Bit 0 = 1 = request busy.
Bit = 5-7:
= 000 — Both subchannels required,
= 001 — Subchannel P only.
= 010 — Subchannel A only,
= 100 — Use either subchannel.
10Q4 Function Code (:DOT table index) 0 Byte
I0Q5 Current Function Step 0 Byte
10Q7 Device Index 0 Byte
10Q8 Bits 0, 1= 0 - byte address of 0 Word
buffer.
Bit 0 = 1 ~ DW address of a data
chain,
Bit 1 = 1 — DW address of command
chain (Queuved 10EX).
)
10Q9 IOQ8 bits 0, 1=0-Byte countof buffer. | 0 Haifword
10Q8 bit 0 = 1 = number of DWs in
__data chain,
IOQ8 bit 1 = 1~ timeout value for
command chain,

Table 5. 10Q Allocation and Initialization (cont.)

Address

Contents

Initial Value

Length

o

10Q10

Maximum retry Count

0

Byte

10Q11

Retry Count

Byte

10Q12

Seek Address

Word

10Q13

End~Action data

Word 1

Byte O is cleanup code where value:
1 = Post status in FPT,
2 = Post status in DCB.

3 = Transfer to address specified
in bits 15 = 31,

4 = No end action (only available
to the menitor).

Bit 8 = control device read,
Bit 9 = end action data in word 2,

Bits 15-31 = FPT completion=status
word address for cleanup-code 1;
DCB address for cleanup-code 2,

Word 2.
If word 2 = 0, parameter not present,

If byte 0 = X'7F', bits 15-31 are
user's signal address,

If byte 0 = X'FF’, bits 15-31 are
user's endaction address,

If word 2 # 0, and byte 0 # X'FF' or
X'7F', byte 0 = end-action interrupt
group code, byte 1 =interrupt address
X'4F*, bits 15=31 contain level bit
for interrupt,

Doubleword

10Q14

Priority

Byte =

10QECB

ECB Pointer

Word

TOQERROR

Error-log buffer pointer

Word

109

110

Since the Oth entry is never used in subtables whose entires are words or doublewords, it is not necessary to allocate
space for this entry. [If the 2N words for IOQ 13 are allocated beginning at location ALPHA, 1OQ13 is given value
ALPHA-2, Thus, IOQ13 may actually point into another table but presents no problem because IOQ13 will never
be accessed with index 0,

It should be noted that none of the subtables need be positioned in any particular relationship to each other, They
may be allocated anywhere in core with the restriction that Doubleword Tabels being on doubleword boundaries,

Blocking Buffers

Blocking buffers are 256-word buffers that are directly accessible only by the monitor, They are primarily used for
blocked and compressed file 1/O and for accessing file directories in OPEN/CLOSE service calls,

Each blocking buffer pool is controlled by means of a Blocking Buffer Control Word Table (BBCWT) that contains a
one-word entry for each blocking buffer. The BBCWT has the format shown below. ‘

’

Number of blocking buffers

Blocking buffer 1 entry

Blocking buffer 2 entry

Blocking Buffer n entry

Each entry is of the form

Blocking buffer start
address

0 789 14 15 31

RFT w(0———0

where

RFT is the index of the RFT entry for the file currently using this buffer, 0 signifies that the buffer & not
in use. X'FF' means the buffer is in use, but not by any particular file,

w is set if the blocking buffer has been written in.

Primary and secondary tasks are kept in different blocking buffer pools and, therefore, have different BBCW tables,
K:FPOOL contains a real address pointer to the BBCW table used by all primary tasks in the system. The numberand

location of blocking buffers available to primary tasks is determined at SYSGEN by the FFPOOL parameter and
cannot be changed except by SYSGEN. The primary-task blocking buffer structure is shown below:

K:FPOOL ——= N

Entry 1

Entry 2

BBCWT

Entry N

Blocking
buffer 1

Blocking
buffer 2

Blocking
buffer n

In addition, @ maximum of twelve pages will be made available to each job for blocking buffers from the
job's Reserved Pages. Secondary tasks will be allocated blocking buffers from these pages as they are needed.
The BBCW table is kept in the job's JCB and is constructed and maintained os blocking buffers are required

" and released.
-

-

Master Dictionary
The Master Dictionary contains all the information needed to define an area for use by the system. It consists of six

parallel subtables which are allocated and initialized by SYSGEN from information given by the :RESERVE and
:DEVICE commands.

m

112

"

The entries for an orea are accessed by the area index. This lndox corresponds to the position of the area's name in
the MDNAME table. The tables are:

Subtable Name Contents Length
MDNAME The two EBCDIC character name of the area. Hal fword
MDFLAG Control flags A N RIRIR wp Byte
0 1 2 3 4 5 6 7
where:
A 1 meaons the area is defined and allocated.
R Reserved.
wp The write protection assigned to the area.
0 P Public (no protection)
1 B Background
2 F Foreground
3 S Systemonly without "SY" keyin
5 X IOEX
MDDCTI The index to the DCT table for the device on which the area resides. Byte
MDBOA The stort sector address of the area relative to sector zero of the disk. Word
MDEOA The end sector address of the area relative to sector zero of the disk. Word
MDDISCI The index to the DISC table for the device on which the orea resides. Byte
-MDVSN ,fhe Volume Serial Number of the dispack if the area is on @ " Double~'
- | private pack. word

The Master Dictionary is accessable to user progroms through the following K: cells:

Name
K:MDNAME

K:MASTD

K:MDBOA
K:MDEOA
K:MDDCTI
K:NUMDA

A sample of a Master Dictionary created by a SYSGEN in which the stondard areas SP, FP, ...,

Location Contents

X212 Address of MDNAME table. Byte O contains the number of entries allocated
in the tables,

X'14A" Address of MDFLAG table.

x'218' Address of MDBOA table.

X'219 Address of MDEOA table.

X'21A' Address of MDDCTI table,

X'148' The highest valid index for the Dictionary,

areas D2 and D3 symbiont areas IS and OS, and three user defined areas were specified os:

Index
index

ON oA WN—~O

Name

MDFLAG Comments

sP
FP
BP
BT
XA
cK
D1

D2
D3

IS
Os

n
u2
U3

Background) Fixed areas

— e O N

-0 0O
[NSSIE— gt

(Foreground)
(Public)

SYSGEN

>>> »>> >> PBP>>>>>
5853 35 335 38333333

IS and OS symbiont areas

D1, plus dota

User defined area naomes specified during

Operatienal Label Toble (OPLBS)
The Operational Label! table i a parallel table with the format

OPLBS1 z z halfword
0 78 15
where ZZ is the operational label in EBCDIC
OPLBS2 Y Byte
0 7

where Y is the DCT or RFT index of the permanent assignment (bit 0 =0 if DCT index; bit 0 = 1 if RFT index).
There is an OPLBS2 table for each active job, which is accessed by an address pointer in the associated job's JCB.
The OPLBS2 table for the CP-R job contains the permanent assignment of each operational label. When a new job
is activated, the OPLBS2 table it receives is a copy of the OPLBS2 table for the CP=R job at that time. The number

of entries in OPLBS is in the first halfword of OPLBSI,

OVLOAD Tabie (for CP-R Overlays Only)

The OVLOAD Table is a paralle! table with the format

word

OVLOADI Byte Size of Overlay halfword
0 15
OVLOAD2 z z z
0 31
where ZZZZ = first four characters of name of overlay in EBCDIC
OVLOAD3 Granule Number | byte
0 7

where the specified Granule Number is in the file CP-R.

The number of entries in OVLOAD is in first halfword of OVLOADI1.

Write Lock Table (WLOCK)

WLOCK contains write locks for the current core allocation. The table contains one entry for each real page of

memory.

WLOCK +0 No. entries for allocaoted core

+1 |WLiWL|. - .

+2 |wLiwlLj* - -

16 {wiwi] {

01234 1516

31

13

114

CP-R Dispatcher Lovel laventery (RDLI)

RDLIPRIO Priority ,
0 7 ‘
RDLISTI STI Index
0 7
RDLITCB STI Index TCB Address
0 78 31
- RDLIADD RDL Interrupt location
0 15
ROLILVLY Leve! Bits (RDL)
0 15
RDLIGRP] 000101110000 Group v
0 15 3
RDLILVL2 Level Bits (STL) Zero if null
0 15
RDLIGRP2 000101110000 GRP Zero if null
0 15

where

RDLIPRIO is the priority, in internal byte format, to which RDL is connected, This is the RDL inter=-
rupt location X'4F', Entry O of RDLIPRIO is 0. Priority is set by SYSGEN and is not altered dur-
ing execution,

RDLISTI s the task ID of the highest priority task operating within the level. Entry zero contains the over-
all STI head of the dispatcher chain. Each subsequent entry contains the subchain head that enters the
dispatcher chain at the first task within the level. All entries are set to the first permonent CP-R fask
STl by SYSGEN.

RDLITCB is the STI index ond TCB address for the dispatcher level.

RDLIADD is the core address of the RDL interrupt location in which to store the XPSD. It is setby SYSGEN
and is not altered during execution, RDLIADD entry 0 contains the number of RDLI entries,

RDLILVL1 are the level bits for the RDL to be used on Write Direct commands,

-
-

RDLIGRP1 is the address field for a Write Direct interrupt control to trigger the RDL, including the trigger
and group codes.

RDLILVL2, RDLIGRP2 are the level and group codes to trigger STL in the same format as RDLILVL] and
RDLIGRP1. All level and group codes are set by SYSGEN and are not altered during execution.

Associstive Enquene Table (AET)

Purpose

The AET provides a record of the enqueues done for controlled items by system services. [t is used in conjunction
with the Enqueue Definition table to contro! access to enqueued itams.

Type

Serial in the JCB or linked from the JCB depending on space requirements for job level ENQs. For task level ENQs
linked from the LMI. Low-memory cell K:JAET contains the number of nonsharable devices in the Device Contro!
table. This is used as the default number of AET entries allowed.

Logical Access

The AET is located via a pointer in a fixed position in the JCB or through a pointer in the LM1. Byte zero of the
pointer word contains the number of words in AET.

4
’

Overview of Usage

The job level AET table may be included in the JCB fixed portion or may be acquired separately from TSPACE and
linked from the JCB depending on space requirements at the time the JCBis created. The task level AET is acquired
from TSPACE at task initiation and is linked from the LMI. Byte zero of the pointer word contains the number of
_ words in the AET and bytes 1-3 contain the real address of the start of the table,

At task or job termination, a flag in the JCB will indicate which usage applies and will release space appropriately.

Associotive Enqueue Table (AET) Format

word 0 Flags EDT Address

word 1 Job ID ECB Address .
0 78 v 31

where

Flags: bit0=1 Job level AET
=0 Task level AET

bit 1=1 System level EDT

= Job level EDT
bit2=1 ECB is for immediate enqueve
=0 ECB is for an asynchronous enqueue
bit3=1 Sharable enqueve
=0 Exclusive enqueve
bit 4 = Enqueve granted by
= Enqueue pending
bit5=1 AET entry in use
=0 AET entry free
bit 6 = Dequeue CAL in progress

bit7=1 Enqueue CAL in progress

115

116

ECB Address The location of the ECB created to wait for an ENQ. At check time, this address is set to
zero, ENQ is set to 1 if the post is normal. The AET is freed if the post is not normal.

EDT Address The location of the EDT of the controlled item which was enqueuved.

Job ID The identification of the job in which the item was enqueued.
Real Memory Partition Table (RMPT)
Purpose
The RMPT is used to describe and control all real memory resources. [t contains one entry for each defined memory

partition.

Type

Serial consecutive doubleword entries in CP-R table space. ‘

gical Access

The RMPT is pointed to by the system pointer K:RMPT. The RMPT starts on a doubleword boundary. The number
of entries in the RMPT is contained in byte 0 of K:RMPT. The index O entry is not used as a table entry.

Overview of Usage

The RMPT space is allocated, and partition entries are initially set by SYSGEN.

Real Memory Partition Table (RMPT) Format

0—————0 Partition FWA Doubleword
b-————— 0 Partition LWA
0 78 31
where Partition FWA and LWA define the real address limits of the partition.
Partition Peintsr Table (PPT)
Purpose
Describes Partition attributes and points to Partition Control Tables.
Type
-l
-

Serial consecutive word entries in CP-R table space. Paralle! to RMPT,

Logical Access

The PPT is pointed to from K:PPT. Entries are located by index correspondence to an entry in the RMPT. Alter-
natively, a search can be made on the type field of the flag byte to identify a particular partition type, The number
of table entries is contained in byte 0 of K:RMPT. The index O entry is not used as a true entry,

Overview of Usage

The PPT is accessed each time a request for memory in a preferred partition is made. Additionally this table in
conjunction with the RMPT is used fo verify thatprimary load modules will be loaded into Foreground Private Partitions,

Partition Pointer Table (PPT) Format

Flag | Value PCT address Word
0 34 7'8 31

where

Flag contains control information as follows:

Bits
0123
x x x 0 = perferred partition is no STM mode.
x x x 1 = preferred partition is STM mode.
Velue indicates the type of partition according to values as follows: /

0 - System (not allocatable)

1 - Private

2 - Foreground mailbox

3 - Foreground blocking buffers
4 - Preferred

5 - Secondary Task Memory

6 = 15 - Not used

PCT address is the address of the partition's control table. It has a O value if the partition does not have
a PCT.

Partition Control Table (PCT)

Purpose

The PCT serves as o repository of information used in controlling allocation and access into Foreground Preferred
and STM Memory Partition. One PCT exists for each of these defined memory partitions. The PCT also contains
chain headers for controlling free pages in Secondary Task Memory (STM).

Type

Serial table located in CP-R table space.

Logical Access

Each PCT table is pointed to from the Partition Pointer Table (PPT), Information in the PCT identifies the pages in
the partition that have been allocated and those that are free, or points tochain headers that control STM,

Overview of Usage

The PCT is aliocated by SYSGEN based on the “size" parameter on the PMEM option of the :RESERVE Command.
The STM chain headers are filled in at system boot time when the free pages are established.

Partition Contro] Table (PCT) Format -0

The PCT has one of two formats, If the PCT contains an STM chain header, the format is

Word 0 Chain Head, Free Pages

Word 1 Number of Free Pages

117

otherwise, the PCT has H\e format

Word
(0 No. pages |0 0| Stort page
1 . e - - - NOP]
AWM, RO MMTPAGES
2
Page allocation map
3
4 Flags Page 1 locator
5 Flegs Page 2 locator
! !

3+n Flags Poge n locator P

0 78 2324 31

where

Word 0

No. pages is a count of the number of pages in the partition. Set by SYSGEN.

Start page is the page address of the start of this partition. Set by SYSGEN,

Word 1 is an instruction used to maintain the total number of free pages.

Words 2 and 3

Poge allocation map is a doubleword bit table used to indicate the availability of a given page in this par-
tition. A value of 0 indicates that the page is available, a value of 1, that the page has beenaliocated.
Bit O represents the first page in the partition, bit 1 the second page, etc.

This entry is initialized to all zeros by SYSGEN.

Words 4 through (3 +n)

Page locator flags:

Bit 0 - always 0.
Bit 1 - (P/S) set to 1 if this page acquired by primary task; set to O if secondary task,

-
Bit 2 - (S) set to 1 if memory management is swapping this page for some other real page; set to Qif swap=
ping is not in progress,

Bit 3 ~ (STM) set to 1 if the page has been released to secondary Task Management; 0 if not.
Bits 4-7 - Unused,
Page locator ifP/S (bit 1)is O, this is the real word address of the segment descriptor where this page isalloco-

ted, IFP/S is 1, this is the LMIindex of the primary load module that acquired this page. These entries are
used by memory management in swapping real pages and by task termination when freeing real memory.

118

/0 Leck Table (I0LOCK)

Purpose

The table maintains a count of the number of ongoing /O activities in each page of real memory. It is used by
Memory Management to prevent roll~out of 1/0 active pages.

Type

Serial consecutive entries in CP-R table space.

Logical Access

The location of IOLOCK is established by SYSGEN via DEF. The Real Memory Page Number is used as an index

to find the corresponding lock entry,

Overview of Usage "

The IOLOCK table, created by SYSGEN, reserves sufficient space to accommodate n one=byte entries, where n is
the number of real memory pages specified on the CORE option of the :MONITOR Command.

Prior to calling 10CS, File Management increments by 1 the IOLOCK entry that corresponds to the real page(s)
that will be effected by the I/O operation. At POST time the entry will be decremented by 1.

Prior to rolling out a segment Memory Management inspects the IOLOCK table so as not to roll out those pages
with ongoing 1/O activity,

I/O Lock Table 1OLOCK) Format

Page O Page 1 Page 2 Poge 3
Page 4 Page 5 Page 6 Page 7
Page 8 Page 9 Page 10 Page 11
Page 12 Page 13 Page 14 Page 15
Page n-11 Page n-10 Poge n-9 Page n-8
Page n-7 Page n-6 Page n=5 Page n-4
Page n-3 Page n-2 Page n-1 Page n

where n is the number of real memory pages.

'Y)

Task-Controlled Tables

The tables shown in the subsection are task controlled, i.e., contain task related data. Figure 44 shows the over-
all relationship of the task~controlled tables and data.

19

120

PCBPOINT %
. '

PCB

uTS

Fi
g OVLOAD

>~ catee =14 e

F>— ! STCB

TCBPOINT

DCBTAB

i
=S
]
—

efc. DCB

RDLI
(CP-R
Dispatcher

Level Inventory)

ACI

l l ovi
STI Overlay entry

.

(>_) 1 in monitor
o ——

i

—L S fosk
» chains

AST —— SDT's

Task entry
____.L TSPACE TSPACE |---—

AT = P0F

S-ECB = — s~chain

r fasks

!,.

T =
L F-{eo}~{eoT}ete. E I m,e | ‘ s~tasks

SDT SDT etc.

> ors'or 0
p primary publibs

K:RMPT RMPT
S| H—---
Partition Table)
1
, D—- Publib entry
K:PPT PPT [
Pol:hhon PCT's
Pointer sJ1
Table
Job entry
ic
T~

[> Interrupt loc D Address of STCB

[> cALtploc [£> stiindex (Task 1D)
(B> Address of pcB [[> st index (Job 1D)

'on an arrow indicates an entry other than the one shown

[B> LMl index (Lood ModulmID)
LMI index (Rublib ID)
[} JCB Address

Figure 44, Relationship of Task Controlled Data

—_

Load Module inventery (LMI)

LMIMAXR (LMI9) entry O contains the number of entries in the LMI tables.

Usage for a Program

Usage for o PUBLIB

LMINAME (LMI1) (Doubleword)
Load module
nome
0 31
Publib
name
0 31
LMIPCB, LMIFWA (LMI2) (Word)
Flogs PCB Address/fwa
0 78 31
0 0 fwa
0 78 31
LMLJID, LMILWA (LMI3) (Word)
Job ID lwa
0 78 31
0 0 twa
0 78 31
LMIPL, LMICTXT (LMI4) (Word)
PLI PL2 PL3 PL4
0 7'8 1516 23 24 31
0 0
0 31
LMISTAT (LMI5) (Halfword)
Flags
0 15
Flags 0 0
0 78 15
LMISDT (LMI6) (Word)
Task ID 0 0
0 7 31
0
0 31

121

122

M for o Prmm

LMIRTS (LMTI7) (Doubleword)

RTS Stack Control DW

Usage for o PUBLIB

0 . 1516 3i
0 0
0 0
0 31
LMIMAXS (LMI8) (Byte)
S-ECB
0 7
0
7
LMIMAXR, LMIUSE (LMI9) (Byte)
R-ECB
0 7
Users
0 7
LMIAET (Word
AETS AET Address
0 78 31
0
0 31
LMISECB (Word)
Count S-ECB Head
0 7'8 31
0 0
0 31
LMIRECB (Word)
Count R-ECB Head
0 78 31
0
. 0 3!
LMIRFT (Word) -
Size Address of File Activity Table
0 78 31
0 0
0 31

LMINAME (LMI1)

For user lood modules — Task Name: User lood module name, as received on the INIT or RUN call. N

For Publibs — Publib Name: The file name of the Publib load module. The task or Publib name is stored by task
ini.iation and remains unaltered during task execution.

LMIPCB, LMIFWA (LMI2)

Flags:

Bit Meaning if Set (1)

Task has CP-R priveleges
Task is background

Task is secondary

W N -~ O

Task is mapped
4-6 Not used ‘
7 Task is running with DEBUG
PCB Address/fwa:
For user load modules — PCB Address: The location of the load module’s PCB. This is also the first word address of
the load module. The PCB aoddress is stored by task initialization and remains unaltered during the task's execution.

When central CONNECTs are requested to a primary load module, the PCB address and flags in the LMI entry are
used for the TCB. The fwa is used for memory management during loter task loads.

For Publibs — fwa: The first word address of the Publib load module. Fwa is set by task initiation when the Publib
is loaded and remains unaltered during the Publib life,

LMLJID, LMILWA (LMI3)

For primary load modules —Job ID: The identification of the job to which the load module belongs; also the index of the
job's entry in SJI. Load modules can only exist once within a job. This value is set by task initiation and remains
unaltered during task execution.

For both User and Publib Load Modules — lwa: The last location used. The lwa is set by tusk initiation and remains
unaltered during task execution. It is used fo manoge memory during later task loads.

LMIPL, LMICTXT-(LMI4)

For primary load modules—PL1, PL2, PL3, and PL4: These bytes each contain a load module ID (index into LMI) of
the Publibs being used by the load module. A zero indicates that the byte is not used. They are set by task initia=
tion, remain unaltered during task execution, and are used by task termination to decrement Publib use counts and
eventually release Publibs.

LMI STAT (LMI5)

Status Flogs: v

it Meaning if Set (1)

Termination has begun (TTFINAL entered).
Connected to CAL2.

Connected to CAL3.

Connected to CAL4,

QN—-OI

123

124

Bit _Meaning if Set (1)

4 Background load module.

5 Secondary (dispatcher scheduled) load module.

6 Abnormal termination requested,

7 For a module being loaded, load was requested by INIT, not RUN,

8 Load module is being loaded.

9 PUéLIB that may be used by primary tasks.

10 PUBLIB that may be used by secondary tasks.

11 Termination (normal or not) requested.

12 Control "Y" sequence to be performed.

13 Load module that is running, ’
14 Primary load module that is waiting for memory to load (Run queued).

15 Break has occurred,

LMISDT (LMI6)

For user load modules — Task ID: STl index for the secondary tasks; otherwise, zero.

LMIRTS (LMI7)

For user load modules — RTS Stack Control DW: The stack control doubleword for the load module's CP-R temp
stack. Set up during loading, from information in the load module header. Used as a stack control doubleword by
monitor services executing in the task's context, Accessed indirectly through K:RTS for dispatched and centrally
connected tasks,

LMIMAXS (LMIS)

For user load modules — S-ECB: The maximum number of solicited ECBs to allow any single task running in the load
module to have simultaneously, This is set at task initiation from the program header. As new S-ECBs are created,
and the current S-ECB count incremented, it is compared to this limit and the load module aborted if the maximum
is exceeded,

LMIMAXR (LMI9)

For user load modules — R-ECB: The maximum number of request ECBs to allow any single task running in the load
module to queuve, Used as S-ECB maximum above.

LMIAET -

AETS (byte 0): The length of the Associative Enqueue Table, in entries.

AET Address: The first word address of the Associative Enqueue Table for job level controlled items. The AET
space is reserved as each load module is initialized, Enough space is acquired to hold the maximum number of
ENQs as specified in the task's load module header. This control word does not change during task executions.
At task termination, the AET space is released.

LMISECB
Count (byte 0): Current count of the number of ECBs in the solicited ECB chain.

S-ECB chain head: Address of the oldest solicited ECB in the S-chain, When a load module is initially loaded,
the solicited ECB chain is empty. As service requests are made which create S-ECBs, they are cdded to the S-chain,
and the count is incremented, If the current count exceeds the maximum allowed as specified in LMIMAXS, ex-
ecution of all the tasks in the load module is immediately suspended {primary tasks are discounnected), and the
load module is abnormally terminated. As services are checked, the S-ECB is de-linked from the chain and the
count is decremented,

LMIRECB

Count (byte 0): Current count of the number of ECBs in the request ECB chain.

R-ECB choin head: Address of the highest-priority request ECB in the R-chain. When a load module is initially
loaded, the request ECB chain is empty. As service requests are made of the load module (signals if user load
module), they are added to the request chain in priority sequence, with the last request being placed at the end
of its priority group. The current R-ECB count is incremented and compared to the maximum allowed in LMIMAXR.

If it is greater, all member tasks are suspended and the load module is obnormclly terminated. As the R—ECBs are
posted by the R-task, they are delinked from the R-chain and the current count is decremented.

’

LMIRFT
Size: Size of the File Activity Table (in words)
Address of File Activity Table: Address of a byte table in TSPACE which is parallel to the RFT and contains the same

number of entries as the RFT, The table is used to maintain the number of DCBs open to disk files by a particular
load module.

System Task inventory (STi)

Purpose
The System Task Inventory is the key to all controls for tasks, It contains an entry for all primary and secondary,

user and CP-Rtasks currently defined. For each task, it contains the identificationof the task's joband load module,
priority, and linkage to other control blocks.

Type

Parallel in CP=R Table Space

Logical Access

An STI entry is addressed using the task ID as an STI index into each of the paralle! subtables,
If a task is in execution, the task ID is in byte 0 of TCB POINT,

If a task is not in execution and the task ID is not known, then:

Primary tasks can be uniquely identified by a search for equality on the interrupt priority to which they are
connected,

Secondary tasks must be located by searching the LMI for a task name/job 1D match, The LMISDT cqﬂ'ums the
secondary task ID,

Overview of Usage

The STI fable space is allocated by SYSGEN, reserving enough entries in each subtable to satisfy the TASKS option
on the :RESERVE command, plus o fixed number for internal CP=R tasks, The CP-R task entries are initally set by
SYSGEN/IPL, The user entries are all zero.

125

126

STILMID entry 0 contains the number of entries in the ST tables.

STISPCE

STIXRTS

STIRTSB

STUID

STILMID

STIPRIO -

STITCB

STIOVID

STICOUNT

STITIME

STISTAT

STIDNXT

STIRNXT

STITICK

STIQMIN

Length Link to first temp space area
0 78 31
Interrupted tasks K:RTS pointer
0 31
0 31
K:RTS of last CAL
for nested CALs
32 63
SJ1 index
0 7
LM! index
0 7
Hardware Software
Fority oriority 0]§ L DSO RDLIDX
0 78 1516171819 2324 31
ult L L 1
JH ylw ¢ls £§ TCB/STCB Address
012345678 3
|l Active OVID
012 15
Wait
count
0 7
Critical timeout threshold
0 31
p(R[S 5 1($ f
HY SR
01234567
Disp, chain
0 7
Roll-out chain
0 7
Time Ticks
0 15
Time Quantum
0 7

—~

STIQMAX Time Quantum
0 7

STIQSWAP Time Quantum
0 7

STISPCE

Head of the TSPACE chain. The chain represents all of the temp space that has been obtained by the task,

STIXRTS

Location in which the task's RTS pointer is saved when interrupted by a higher-priority centrally connected task.
STIRTSB
RTS Contro! Doubleword at the last entry to a CAL1 processor. This address is the STIRTS value after CAL1 entry
has stored the caller's RO=R15, PSD and context. It is used by the monitor to quickly locate the register values for
effective address resolution or error value setting, and by CALIEXIT to ignore residual data in RTS. STIRTSB is set
to O at task initiation and should always be O except when the task is within CAL1 processing.
STID
Identification of the job to which the task belongs, and index into the SJI. This is set when the task is defined,
and is not altered during execution,
STILMID
Identification of the load module to which the task belongs, and index into the LMI. This is set when the task is
defined, and is not altered during execution.
STIPRIO
Priorities (bits 0 = 15):
If the task is primary:
Byte 0 is the address corresponding to the interrupt level, -X'4F'; byte 1 = X'00".
If the task is secondary:
Byte O is the address =X'4F* of the CP-R dispatcher level at which the task is dispatched and executed.
Byte 1 is the software priority within the dispatcher level (X'01' through X'FF', where X'FE' = control

task and X'FF' = background). -

-«
This value is set when the tosk is defined. If the task is secondary, it will be altered as the task's priority is altered
by MODIFY calls or internal CP=R priority=changing logic.

START (start pending on task):

The secondary task has been STARTed, and the start has not been honored. This bit is set by the START CAL
processor and reset by the dispatcher when it causes the reversing of the STOP bit in STISTAT.

127

ALY (Dispatch using the olternate PSD):

The secondary task will be dispatched using on alternate PSD the next time. The current PSD will be found
in the Alternate PSD ofter dispatch and Alt will be reset,

DSO (Dispetcher Skip Override):

The task is in o CAL processor modifying a shared segment marked DS (Dispatcher Skip). This value, if non-
zero, prevents rollout of the task so that the CAL processor can complete the service while holding up other
users of the shared segment,

RDLIDX (RDLI index): Dispatcher ID.

¥ s

Used bit (bit 1) = 1 if entry is being used.

0 if entry is free.

non

TINP bit (bit 2) = 0 if task is not waiting for terminal input.

1 if task is waiting for terminal input,

LW bit (bit 3)

1 if task is in o long-wait.
0 if tosk is not waiting or is in a normal wait,

"won

Lock bit (bit 4) = 1 if task has locked itself in memory.

CA (bit 5) = 1 if the task is to be chained after its priority group when returning to the dispatcher.

0 if the task is to be placed at the beginning of its priority group. CA is reset to 0 on every
requeue.

Term (it 6) = 1 if the task is executing in the Task Termination phase.
Block (bit 7) = 1 if the task has executed a non-1/O service with wait (including STOP).

TCB/STCB address is TCB real address if task is primary STCB 1-1 address if task is secondary.

Task initiation ond CONNECT acquire STI entries ond store the TCB address or STCB address. These fields are con-
stant throughout the task's life, The remaining indicator bits are initialized to zero and are modified during execu-
tion by service calls. Task termination resets STITCB to zero, releasing all task control information.

STIoVID
ACT bit = 1 if the overlay is active,
PEN bit = 1 if the overlay is being read from the disk.

Active OVID is the index into the Monitor Overlay Inventory.

STICOUNT

Wait count: The number of ECBs in the S-ECB chain, which must be posted prior to the task leaving thevait state.
Only ECBs with the WD (Wait Decrement) bit set will decrement the wait count at posting time. If the wait count
is nonzero, the task is roadblocked. STICOUNT is zeroed at task initialization, is set nonzero by the CALs that
cause waits and task termination, and is decremented by the ECB posting logic.

STITIME

Critical Timeout Threshold: When placing any task into @ roadblocked or wait state, the ECBs being checked
(WD = 1) are sconned and the most critical time threshold is extracted and placed in STITIME. On subsequent

128

o~

timeout passes, the threshold is compared to the valve of K:UTIME to detect timeouts. [If o timeout has occurred,
the ECB chain is sconned again to locate any or all timed-out events, and the posting is done with o completion’
code of X'67'. If wait count is still not zero, the setting of the critical time is repeated.

KETISTAT

Status flags that inhibit dispatching of the task, as described below.

The dispatcher examines the status of all tasks in the dispatch chain. If the content is nonzero, the task is con-
sidered ineligible for dispatching.

Primary tasks alwoys have a status of X'80', as set by CONNECT. Secondary tasks will have an initial status of
X'00' or X'20'. The secondary task status bits are altered during execution as described below:

Status Bit Setby Reset by

Primary 0 Connect CAL Task Termination

Rolled Qut 1 Roll-Out Roll-In S

Stopped 2 STOP, EXIT task initiation START, task initiation with execution
without execution

In execution 3 Dispatcher when dispatching, Dispatcher when returning PSD and registers
loading PSD and registers

In initialization 4 Task initiation Task initiation

Suspended 5 WAIT CAL Any event affecting task status

Slice 6 Task initiation Task termination

Swapped 7 Memory Management Dispatcher

STIDNXT

Dispatcher Chain —the STI index of the next task in the dispatch chain. Entry 0 contains the chain head to the
highest priority task in the system, primary or secondary.

This chain continues through all tasks in the system. It is used by the dispatcher to locate the next secondary task
to execute and the timeout routines to locate those primory services that need timeout.

As each task is created, it is added to the dispatcher chain and remains as a member of the chain until termination.
Its position within the chain is changed os it changes priority or enters o wait state. A value of X'00' is the
end of the chain.

STIRNXT

Roll-out Chain — the STI index of the next task in the roli-out chain. Entry O is the head of the roli-out chain and
contains the first task to be rolled~out. The chain continues through all tasks until the highest priority ta8k, which
is the last task to be rolled out. A value of X'00' is the end of the chain.

The chain is strictly in order of priority. As each task is created, it is added to the roll-out chain and remains os
a member of the chain until termination. Its position within the chain is changed as it changes priority or enters
o wait state. The roll-out chain is the exact inverse of the dispatcher chain, and each serves as a backward link
for the other.

129

130

STITICK
Task Execution Time —~ contains a count of the number of clock ticks of execution time this task has received. For

secondary tasks, the CP-R dispatcher converts this value to milliseconds and accumulates the total execution time
in a one-word entry in the tasks Job Control Block.

STIGMIN

Execution time-quontum remaining — contains @ count of the number of clock ticks remaining before this task must
give up control of the CPU. The count is decremented by the CP-R clock routines and refreshed by the CP-R
dispatcher,

STIGMAX

In-core execution time used — contains a count of the number of clock ticks of execution time this task has used
since ths task was last rolled-out. The count is incremented by the CP-R clock routines and is used by the CP-R
dispatch:r und memory management executive fo control memory use between time=sliced tasks.

STIQSWAP

Swap time threshold — contains a count of the number of clock ticks that a swapped out task must remain swapped
out. The count is decremented by the CP-R clock routines and is referenced by the CP-R dispatcher.

Task Control Block (TCB)
Purpose
The TCB provides the context save area, system pointers, partial entry linkage and entry PSD for centrally con-

nected primary tasks. Each primary task has its own TCB,

Type and Location

A TCB is a serial table in the users memory at a locaticn provided by the user in the connect call.

Logical Access
The TCB for a primary task is pointed to by:
e The XPSD in the interrupt location,
e TCBPOINT during the task’s execution,
e The STl entry corresponding to the primary task.

Figure 45 illustrates the logical links between the TCB and other system control data,

Overview of Usage

2

The TCB content is initialized by the CONNECT service routine. When the primary task is entered, the context of
the interrupted task is saved in the TCB, including the interrupted=tasks TCB and PCB pointers which are swapped
with those of the primary tosk that is being entered. When exiting the level, the central exit logic swaps the TCB
and PCB pointers which restores the TCB to the original values. The registers and PSD are also restored.

TCBPOINT

ST1

—o-} Tasks Entry

TCB

PCB

.

Interrupt location

Figure 45. Relationship between a Primary Task Control Block and Other Control Blocks

Task Control Block (TCB) Formet

’

’

Word 0
— Saved PSD —
1
2
— Intermediate PSD —
3
4 STM, 0 7CB+ 10
5 BAL, Rl RBMSAVE
é Flags PCB Address (real)
7 Task ID TCB Address (real)
8
—~— Entry PSD —
9
10
n Register Save Area
25

131

132

where
Saved PSD (words 0, 1) is the PSD of the task the primry‘tosrk interrupted at its last entry,

Intermediate PSD (words 2, 3) is the PSD loaded by the XPSD command at entry. The contents of this PSD
are set by CONNECT to all zeros with these exceptions:

Instruction address — TCB + 4

Condition Code = the number of registers to be saved with the STM command in TCB + 4. CC =0 if the
CONNECT command specified that all 16 registers be saved via the central connection.

Since the XPSD does not alter the register block value in the PSD but leaves that of the interrupted task
(LP = 0), the Register Block Pointer = 0,

STM, BAL commands (words 4, 5) are commands executed as part of the central connection entry logic.
STM causes the number of registers requested to be saved, and BAL enters the remainder of the central
connection logic (RBMSAVE),

Flags (word 6) have the following meaning: ‘

Bit 0 = 0 for user task
=] for CP=R task

1 = 0 for foreground task
= 1 for background task

2 =0 for primary task
= 1 for secondary task

3 = 0 for real addressing
= 1 for virtual addressing

4 =0 if reserved
5= 1if the task is to be reentered instead of exited at EXIT. This bit is transient. It is set when end-
action triggers are performed, and reset during RBMSAVE and when reentry occurs. It can exist

only in TCB + 6.

PCB Address (word 6) is the real address of the PCB in the load module to which the task belongs.

Task 1D (word 7) is the index into STI of the task's entry.
TCB Address is the real address of the first word of the TCB.

Note: When a task is active, flags, PCB oddress, task ID and TCB address contain the values for the inter-
rupted task versus the primary task corresponding to the TCB.

Entry PSD (words 8, 9) is the PSD to be loaded when entering the primary task. All bits are zero except
those specified otherwise on the CONNECT call as follows:

Master/Slave — as specified

Decimal and Arithmetic Masks — as specified -
Instruction Address — callers start address

Write Key — 10 (foreground)

Cl, II, ElI = inhibits os specified

Register Save Area (words 10 through 25) are the save area for the registers of the interrupted task.

Secendery Task Contrel Bleck (STCB)

Purpose

The STCB contains all controls for software scheduled secondary tasks which reflect the execution status and memory
usage of the task.

Location and Type

The STCB is a serial control block in TSPACE.

Logical Access
The STCB is pointed to by the following:
TCBPOINT (during task's execution only)
STI entry corresponding to the secondary task .

/

The XPSD in the interrupt location corresponding to the CP=R Dispatcher Level (RDL) immediately above the Task
Level (STL) (during execution only).

Figure 46 illustrates the logical links between the STCB and other system control data.

Overview of Usage

A user STCB is created by task initialization if the load module requested is secondary. CP-R task STCBs are in-
cluded in the resident portion of the task's code, as are all control blocks "lower than" the STCB. The initial STCB
content set by task initiation is described for each data element, as is the element usage. The STCB is used by the
CP=R control functions, dispatcher, memory management services and roll=in/roll=out during the life of the task.
STCB space is released by task termination.

TCBPOINT STCB PCB
STI AST

— Tasks Entry
\/\ ACI

XPSD of Dispatch Leve!

Figure 46. Relationship between Secondary Task Control Block and Other System Control Data

133

134

Secondary Task Control Block (STCB) Format

10
1

25
26

27
28

29

31

where

— Current PSD, Secondary Task (R or V)]
— Intermediate PSD (R) —
STM, 0 STCB+ 10 (R)
BAL, Rl RBMSAVE (R)
Flags PCB Address (RORV)
Task ID STCB Address (1-1))
L Entry PSD to Post Dispatch (R) f—

Processing

\—

Current Registers, Secondary Task

ﬁ
Length AST Address (1-1)
Length AC! Address (1-1)
RDL Group Code RDL Level Bit
— Alternate PSD —]

Current PSD of the secondary task (words 0,1) either the PSD to be loaded on the next dispatch (if not in
execution), or that loaded on the last dispatch (if in execution).

Task initiation resets the initial PSD to all zeros except:

MS =0 if master mode.
=1 if slave mode.

MM =0 if unmapped,
=1 if mapped.

-
-

JIA load module entry address unless run with Debug, in which case IA is the Debug entry address.
Address is real or virtual os per mode of execution.

Write Key = 01 if foreground secondary task.

Entries to RDL subsequent to dispatching the task save the current PSD,

Intermediate PSD (words 2, 3) a PSD to transfer control to real address STCB + 4, All other intermediate
PSD bits are zero. Task initiation sets the intermediate PSD address which remains unaltered,

STM and BAL commands (words 4, 5) stored by task initiation to cause context saving and swapping via
RBMSAVE after a task has been executing. These commands are set by task initiation, real addresses, and
are not altered,

Flags (word 6) the task flags set by task initiation as follows:

Bit 0 = 0 for user task
=1 for CP-R task

1 = 0 for foreground task
=1 for background task

2 = 1 for secondary task

3 = 0 for real memory, unmapped
=1 for virtual memory, mapped

4 Reserved
5 Reserved

The flags are not altered during the task's life.

PCB Address the address of the task's Program Control Block, which is set by task initiation and not al=
tered. Mapped secondary tasks will have the PCB Address in virtual. Unmapped secondary tasks (CP=-R
or primary initiation tasks) will have the PCB Address in real,

Task ID (word 7) the identification of the secondary task and index into the task's STl entry. This ID is
set by task initiation and not altered,

STCB Address the 1-1 address of the STCB, set by task initiation and not altered,

Note: Words 6 and 7 are swapped with PCBPOINT and TCBPOINT when a task is executing, as is done with
primary tasks. Therefore, between the time a task is dispatched (in execution) and its status is returned
to the STCB by an RDL entry, words 6 oand 7 contain the dispatchers PCBPOINT and TCBPOINT values.
When a tosk is not dispatched, its own values appear. One secondary task can be "in execution" for
each CT pair in the system, "In-execution" is equivalent to a hardware level being active. The task
is either executing, or waiting for higher task to drop its interrupt level and return to the lower prior-

ity task.

L13

Entry PSD (words 8, 9) a PSD to transfer control to clean-up processing for tasks returning from an "in-
execution” state. After RDL is triggered and has saved context vioc RBMSAVE this PSD is loaded. It
is all zeros except for IA which is the real address of RDLRTRN, is set by task initiation, and re-
mains unaltered.

Current Registers (words 10-25) the registers to be loaded on the next dispatch (if not in execution), or
those loaded on the last dispatch (if in execution). They are set randomly by task initiation and, saved
on all entries to RDL subsequent to the task being dispatched. -

Length (word 26) the number of words in the Associative Segment Table (AST).

AST Address the first word address (1-1) of the AST. AST space is allocated by task initiation and the
address and length are set in the STCB. This word is not altered.

135

136

ACI Address (word 27) The first word address (1-1) of the A;:cess Control Image. The ACI space is
allocated by task initiation and the oddress is stored in the STCB. This word is not altered.

RDL Group and Level (word 28) The group and level bits of the RDL Level under which the secondary task
is currently queued. Set by the dispatcher queue maintenance routines.

Word 29 Spare.

Words 30, 31 Alternate Program Status Doubleword or alternate PSD to be used the next time the task is dis~
patched if ALT is in the STI=1. When ALT is honored by the dispatcher, this PSD and the current PSD
in words 0 and 1 are swapped.

Associative Segment Table (AST)

Purpose
The AST provides the Task Dispatcher with a list of all segments whose map image must be loaded into the hardware

map before the task can be dispatched. It is used by roll-out to record that an active segment was rolled out and
task execution suspended; by roll-in to reactivate deactivated roll-out segments.

Type

Serial consecutive entries in CP-R TSPACE,

Logical Access

The AST is pointed to from the STCB, containing an entry for every segment defined in a Secondary Task Load
Module including Root Port two. In addition CP-R adds a segment for Job Reserved Pages and Task Reserved Pages.
The AST entries are ordered with respect to the segment's virtua! starting address (i, e., the next higher adjacent AST
entry represents a segment with a starting virtual address that is equal to or larger than the preceding AST entry.) AST
is typica'ly accessed by scanning for active entires that point to Segment Descriptors, which contain all information
necessary to describe the segment.

Figure 47 shows the AST and its relationship to other system tables,

Overview of Usage

The AST is established by task initiation from information in the task's load module header, and deleted by Task
Termination.

-
When it dispatches a task, Task Management will scan the AST for entries that are active and will use the pointer
to the SD to access the information necessary to load the task's map.

Memory Management uses the AST when performing segment operations for the user, The information contained in
the AST and the SD is used to maintain the status of the task's segments for ACTIVATE, DEACTIVATE, and page
operations (GETPAGE, RELPAGE).

Memory Management also uses the AST and SD information when performing roli-out and roll=in functions.

S

TN

STCB

AST Pointer

AST

Root Part
One

User
Segment
Orne

User
Segment

Root Part

Job
Reserved
Pages

Task
Reserved

Poges

‘b

Figure 47. Relationship of AST to Other System Tables

137

Associative Segment Table (AST) Format

where
Flags
bit O
bit 1(A)
bit 2(FA)
bit 3(RD)
bit 4 (DS)
bit 5-7
SD address
bits 8-31
Segment Descriptor (SD)
Purpose

P——
Flags SD address (Root part one)
Flags SD address (first user segment)
P2
Flags SD address (last user segment)
Flags SD address (Root part two)
Flags SD address (JOB reserved pages)
Flags SD address (TASK reserved pages) ‘,

is always zero.

= 0 if this segment is not currently active to this task; = 1 if it is octive. Set by
ACTIVATE, GETPAGE. May also be set by roll-in routines. Reset by DEACTIVATE,
ERASE or RELPAGE routines.

is first activate flag. Set by Memory Management when the segment is first activated to
prevent decrementing segment erase count before an ACTIVATE. Reset by ERASE.

is Roll=-Out Deactivated flag. Set by roll-out task when rolling out an active segment,
Reset by roll=in task.

is Dispatcher Skip flag. If set, the Dispatcher, Skip (DS) flag in the Segment
Descriptor (SD) oddressed in bits 8-31 wos set by the task owning this AST. See
the description of the DS flog in a SD for dispatcher implications.

are unused.

is the real word oddress of the corresponding Segment Descriptor established by task
initiation.

-
-

The SD contains all segment-associated controls. It contains the access protection image, map image, the roll-
out file position information and information relative to the status of each real page allocated to the segment. The
SD is used by Task Management and Memory Management.,

Type

Serial with four paralle! subtables in TSPACE.

138

Logical Access

The SD is pointed to from the AST. Alternatively, SDs may be accessed through the appropriate SD chain (fosk
level (LMISDT), job level (JCBSDT), system level (5:SD).

Overview of Usage

The SD is created by task initiation from information contained in the task's load module, Task initiation obtains
sufficient space for the access image, map image, file image and page flags based on the size of the segment. When
the segment is activated (by task initiation or later by the task itself), Memory Management obtains real memory
resources for the segment filling in the access and map image and loading the images into the hardware map.

The file imoge is initialized when the segment is being ro!led-out. The initial file assignment remains with the
segment until the segment is terminated.

Memory Management controls the acquisition and release of real memory pages in response to segment or page oper=-
ation calls. Additionally, memory pages may be freed by the roll=out process.

The SD is deleted at task termination time by Task Management.

Segment Descriptor (SD) Format

012 345678 4 i 31
0 2SS "M Map Image Address
1 Count Control Start (S)
2 ‘ Segment Flags Segment Number
3 LMI SDT FLINK Address

4 Tasks Active | Tasks Erased Tasks Using Tasks Locked
Real Page Virtual Page ACI Count No,. Pages

> | Count Count (n) Rolled=Out
ACIAC|ACIACIAC]ACIAC|ACIAC|ACJACIAC]ACIACIAC]AC
Access Image 4 .ﬁ‘
L AC|AC!AC|AC|AC|ACIACIAC|AC]AC|AC{AC|AC|ACIACIAC
Page Flags (S) |Page Flags (S+1)|Page Flags (5+2)|Page Flags (S+3)
Page Flags ﬁL <
Page Flags Page Flags Page Flags Page Flags
| (S+n=4) (Sm=3) (S+n=2) (Stn=-1)
File Address (S) File Address (S+1)
File Image > 4 >
{ File Address (S+n=2) File Address (S+m-=1) 2
' Page(S) Real Address Page (5+1) Real Address
Map Image 1’
Page (S+n=2) Real Address Page (S+n-1) Real Address

139

where
Word 0

Bit 0 is the dispatcher skip (DS) flag. The DS flag indicates that o change of state of the segment is in
progress. A task will not be dispatched if any of its segment descriptors have DS set, unless DS is set

in the task's AST entry for the segment, also, indicating that the task is responsible for the stote
chonge.

Bits 1,2 indicate segment status:

00 — normal
01 — abort all using tasks

0_ not assigned

11

Set by Memory Management when major errors are discovered in the composition of the Segment
Descriptor.

Bits 3-5 Always zero.

Bits 6,7 is a 2-bit index (APM) into a mask table used by Task Management to load the hdrdware
Access Protection registers. Set by task initiation.

Bits 8-31 is the real word address of the first word of the map image subtable. Initialized by task
initiation,

Word 1

Bits 0-7 is a count of the number of words in the map image subtable, equivalent to the integer portion
of the expression,

Virtual Page Count +)
2

(Count is set by task initiation.)

Bits 8-14 always zero.

Bits 15-22 control start — the virtual page oddress of the first page of this segment. Set by task
initiation,

Bits 23-31 always zero,

Note: Words 0 and 1 form the control doubleword used by an MMC instruction for loading the hardware
map.

Word 2
Bits 0~15 Segment flags:

bit 0 unused.

1 indicates that real address correspondence (RAC) is required for thissegment. Set by task initiator.
2 indicates that only secondary task memory (STM) is used for this segment. Set by.dask initiator.
Bits 3,4 is the access protection code (APC) for this segment:
00 — all access
01 - read and execute
10 — read only

11 - no access

Set by initiator.

140

Word 2 (cont.)
Bit 5 not assigned.
Bits 6~8 indicate segment type:

000 — task level

001 — job level

010 — system level

011 - Public Library

100 — not assigned

101 —~ task=-reserved pages
110 — job-reserved pages
111 — system overlay

Set by task initiator.

Bits 9-11 indicate segment state — o code representing the current state and remaining dynamic through-

out the life of the segment:

000 — being initiated or erased P
001 — erased .
010 — inactive

011 — active

100 — being rolled out

101 — rolled out

110 — being rolled in

111 — being loaded

Initially set by task initiator and manipulated by Memory Management.
Bits 12=15 not assigned.
Bits 16-31 represent segment number.

bit 16 = 0 if this is a user-numbered segment.
= 1 if this is a special system=numbered segment as follows:
bits 17-19:

000 — system overlay
001 - special system use
010 - PUBLIB

o1

. not assigned
"
bits 20-31 — system segment number.
This field is established by task initiator.

Word 3

Bits 0-7 are the Load Module Inventory (LMI) entry index for a Public Library segment (type = 010).
Set by task initiator.

Bits 8-31 are the real word address of the next SD in this leve! SD chain. Set by task initietor.
-

Word 4

Bits 0~7 contain a count of the number of tasks that have this segment active. Initially set to zero,
count is incremented by 1 for each ACTIVATE directed to this segment, Decremented by 1 for each
DEACTIVATE. When 0, the segment is o candidate for roll-out.

141

142

Word 4 (cont.)

Bits 8~15 contain a count of the number of tasks that have erosed this segment. Initially zero, count
is incremented by 1 for every first ACTIVATE and decremented by 1 for each ERASE. When this count
goes to O, the real memory that has been allocated to this segment will be released,

Bits 16-23 contain a count of the number of tasks using this segment. Initially set to 1 by task initi-
ation when the segment is defined; thereafter incremented by 1 for each task sharing the segment,

Decremented by 1 when using tasks terminate. When the count goes to 0, the segment descriptor is
deleted,

Bits 24-31 contain a count of the number of tasks thot have locked this segment. Initially 0, count is

incremented by 1 for LOCK and decremented by 1 for UNLOCK. The segment will not be rolled out
if the count is greater than zero.

Word 5

Bits 07 contain a count of the number of real memory pages currently in use by this segment. Main-
tained by Memory Management.,

4

Bits 8=15 contain a count of the number of virtual pages required for thissegment. Set by task initiation.

Bits 16-23 contain a count of the number of words in the Access Image Table. Used by Task Dispatcher
when constructing the ACI table, the count is set by Task Initiation.

Bits 24-31 contains a count of the number of pages that have been rolled out,
Access Image Bits 0~31 s a parallel word table with two=bits per entry that contains an image of the
access protection for this segment. Each word controls 16 pages of access protection. However, all

2-bit entries need not be used for any given segment depending on its starting virtual oddress and
length; unused entries are set to no-access.

Page Flags Bits 0-31 is a paralle! byte table that contains the status of each page in this segment:

bit 0 FFP, Foreground Preferred Page. A real poge from aForeground Preferred Parition. Set by Mem~
ory Management.

bit 1 FSA, File Space Allocated. Indicates that roll=out file space has been allocated to this vir-
tual page. Set by Memory Management.

bit 2 RPP, Real Poge Present. Indicates that o real memory poge has been allocated to this virtual
page. Set by Memory Management.

bit 3 PRO, Page Request Qutstanding. Indicates that a request for this virtual page has been made
but could not be satisfied immediately.

bit 4 ROL. Indicates that this page has been rolled out.
bit 5 not assigned.

bits 6,7 APC, Access Protection Code. Used to control access to reserved pages and fherefo;, present
only if segment type is 101 or 110 (reserved poges). Set by Memory Management,

File Image Bits 0-31 is a paralle! halfword table that contains the roll-out file granule displacement
that corresponds to the particular virtual page address controlled by this segment,

Map Image 0-31 is a paraliel halfword table that contains the real page address that corresponds to
the particular virtual page addresses controlied by this segment. The last entry of this table may or
may not be used depending on control start.

Job-Controlied Tables

The tables shown in this subsection are job controlled, i.e., contain data associated with the job level of control.
Figure 48 shows the overall relationship of the |ob-ussoc|cred tables and data. (Note that the OPLBS and AET tables
were described in the "General System Tables" subsection, being both job and task related.)

System Job Inventory (SJ1) Table

Purpose

All jobs are known to the system by means of the SJI. It contains one permanent entry for the CP=R job, one per-
manent entry for the background and one temporary entry for each foreground job active at a given time. For each
job, it contains the EBCDIC job name, the JCB address, a bit indicating whether the SJI entry is in the process of
being created, and length of the Job Contro! Block (fixed portion) in words.

Type
Parallel; in CP-R system table space with a fixed number of entries.

Logical Access

The SJI table location is known via a DEF on the subtable names. The job ID is the SJI index into each of the par-
allel subtables. If the job ID is known, job name and JCB location are obtained by using the job ID as,an index
into the appropriate subtable, If job name is known, table lookup will produce the job ID and JCB location. The
SJ1 entry for CP-R is the first entry. The SJI entry for the background is the second entry (i.e., the CP-R SJI
index is 1; the background SJI index is 2),

Overview of Usage

The SJI space is allocated by SYSGEN from CP=R system table space. Space is reserved for the maximum length
specified by a SYSGEN parameter that limits the total number of jobs that can exist at any one time. This limit is
some number less than 31, where one of the number is for background. In addition, one entry is made for the CP=R
system job (not one of the number specified). The background entry is also always made and is the default (1 entry
plus the CP=R entry) if no limit is specified.

P

143

D—-— JCB address

SJ1

—

JCB

Job ID —{>

--——=4 AET | (option of job initiation)

AET Pointer

JPT Pointer L ———=f JpT | (option)

BBCT Pointer

OPLB1 Pointer OPLBS1}{ (System table)

OPLB2 Pointer

EDT Pointers EDT |-~ EDT

SDT Pointer sDT SDT |- — —etc.

OPLB2 Table

BBCT Table

JPT Table

AET Table

Note: (The entry order is arranged for illustrative purposes only.)

Figure 48. Relationship of Job~Associated Control Tables

The CP-R and background entries are initialized by CP-R INIT, All other entries are initialized to zero. SJOB
requests cause job management to make new entries for foreground jobs. KJOB requests and requests from fask man-
agement couse job management to delete eniries. The JOBS option of the SYSGEN :RESERVE command specifies
the number of user (background plus foreground) SJI entries.

System Job Inventory (SJ1) Table Format

Name Content
sJ11 o| MNo: of words JCB Address
0 78 3
3]
SJ12
EBCDIC job name ——
32 63
SJI3 olL o 0 '
012 Vi

where L = 1 indicates job~initiotion is in progress.

(SJI3, index 0 contains the maximum number of jobs allowed to be active at o given time, i.e., length
of SJI.)

Job Control Block (JCB)

Purpose

The JCB contains information sharable or common to all tasks in the job. Each job has one JCB pointed to from the
SJ1. It contains job ID, trap controls, pointers to JCB tables, chain headers for job-related chained tables, and
JCB tables. The JCB is comprised of a fixed length portion and two variable length subtables: The JPT and the AET.
The JPT length is o SYSGEN parameter and may be long, and the AET length is dynaomic. Therefore, at job
creation, the job initiation routines may elect to exclude one or both of these two tables (which are themseives
serial tables) from the fixed portion of the JCB. Two JCB flags are provided to indicate their presence in the fixed
portion or linking from the JCB. If present in the fixed portion of the JCB, the respective flag is zero and the table
pointer contains the number of words in the table in byte zero and the address in the JCB in bytes 1-3. If linked
from the JCB, the respective flag is set to one and the table pointer contains the number of words of TSPACE in byte
zero and the address of the table in bytes 1-3,

Type

Serial; in CP-R TSPACE with consecutive entries and linked entries,

Logical Access -

JCBs are pointed to from the SJI. Job ID is the index into the SJI. JCB data elements occupy fixed pos;;ions in
the JCB or are linked from pointers in fixed positions in the JCB. The Job Operational Label Table (OPLB), and
the Blocking Buffer Control Table (BBCT) are part of the fixed portion of the JCB and are located by pointers in
fixed locations in the JCB. The Enqueue Definition Table (EDT) and the Segment Descriptor Table (SDT) are tables
whose entries are acquired as needed by tasks in the job. They are linked from pointers in fixed positions in the
JCB. The Job Progrom Table (JPT) and the Associative Enqueue Table (AET) may be in the fixed portion of the
JCB or may be linked from the JCB.

145

146

Overview of e

The JCBs are allocated by job management from CP-R TSPACE. Space is acquired when the job is initiated ond
released when the job is terminated. The JCBs for the CP-R job and the background are established in CP-R INIT
and are never released. The EDT and SDT entries are each linked in a chain from the JCB, EDT entries are ac-
quired and released by resource management. ’

Job Control Block Format

Word

13
14
15
16

17
18

s U
Content ! 11"5;‘)/
: RV SR
012345678 1314]5,16 23 24 n Vo
opjAlJi0 0pIS|0 0IT(s| Job Priority Jobid
0 0
Trap
Flags JTrap Address (Secondary)
Trap -
Flags JTrap Address (Primary)
. OPLBSI X
0| No. Entries OPLBI Table Pointer b_—syltom roble
0| No. Entries OPLB2 Table Pointer .
0| No. Entries BECWT Pointer ¥ soi e v
0| Max. length JPT Pointer
0| Max, length AET Pointer
0 0 EDT Pointer — heod
0 0 EDT Pointer — tail) ‘ b‘“ff}‘\}
. o~ : S
Prompt Char. SDT Chain Head Pointer =49 {,7 w Sl
S
Debug Control Word 1 _
Debug Control Word 2 - o .
(g e 3T e
~ ik o
Task ID J Breck Receiver Address SAA 56”5’%_ D
Nwg L. o L
TJE BBCW Address
Size TJE Tab Settings Addres ‘\‘}2 ;4)
Size Next LM Nome Address s ‘\A'jf" . L
s 7o o ‘%
et VRG> LD
Account and User Nomes J X) B
o\ oy [
 words) ST oY
N ‘ _/\,l)-' ‘/ . Q-
PRV X ~A e
Job Time Accounting ALY '
Blocking Buffer Control Word Table (BBCWT) <
1 (25 words)
)
p OPLB2 Table I - -
} Job Progrom Table (JPT) 1 These tables may not
{quadruple-word entries, DW bound) 1 be contiguous to the
T JPT or to each other,
1 in order that dynomic
Enqueue Table (AET) for job level space may be more
I enqueues (DW entries, DW bound) efficiently used. —
0

31

where

Word 0
8it 1 (D) = 1 for job running under DEBUG. *
= 0 for normal run,
Bit 2 (A) =0 if AET is in fixed portion of JCB,
=1 if AET is linked from JCB.
Bit 3 (J) =0 if JPT is in fixed portion of JCB.

i =1 if JPT is linked from JCB,
Bits 6,7 (DIS) ore debug initialization status bits:

=00 No DEBUG,

=01 Needs initiclization stortup.
= 10 In initialization.

=11 Fully initialized.

Bit 14 (T) is job-being~terminated bit,
Bit 15 (S) is job=being-initiated bit,
Words 12,13 P
contain Debug Oplabel device msignment before initialization, BBCWT pointer after initialization.
Word 14

Bits 0-7 Id of task that will field break conditions.
Bits 8-31 Address of Break handler.

Note: Word 14 is zero if no Break handler is specified.

Word 15

contains the oddress of the Blocking Buffer Control Word for the TEL context blocking buffer.
Word 16

contains the TSPACE control word for the TSPACE block containing tab settings for a TJE line.

Word 17

contains the TSPACE control word for @ TSPACE block containing the area name, file name, and account
name for the next lood module to load (for TJE) and background sequencing.

Words 18-22

words 18 and 19 contain the occount name field. Words 20-22 contain the user name field.

Word 23

contains the total amount of CPU time that has been used by all secondary tasks in this job. The value is
in milliseconds.

Job Program Table (JPT)

Purpose

The JPT allows the user to specify the name of a lood module fo be used for execution of a task.

sh

Type

Serial; in the JCB or linked from the SCB (depending on space requirements)with the maximum number of entries fixed
at SYSGEN by the JPT option of the :RESERVE command. Default is zero entries. S$:JPT contains the maximum
number of entries specified. (The maximum that may be specified is 63 entries.)

147

Logical Access

The JPT is located from a pointer in a fixed position in the JCB, It is composed of doubleword pairs of EBCDIC
task-nome load-module-name equivalences. Table lookup on task name is used fo determine which lood module is
to be used for the task. (Byte O of the pointer, JCBJPT, contains the total number of words in the JPT table.)

Overview of Usage

Space may be provided in the JCB for the JPT, or the JPT may be linked from the JCB, depending on space require-
ments ot the time the JCB is created. If it is included in the fixed portion of the JCB, it will be on & doubleword
boundary pointed to from a fixed location in the JCB. If it is linked from the JCB, it will be on a doubleword
boundary ond will contain the number of entries specified ot SYSGEN (space acquired os a power of 2). In either
case, byte zero of the pointer word contains the number of words in the table and bytes 1-3 contain the address of
the start of the table. On job termination, a flog (J) in the JCB will indicate which linkoge applies and will re-
lease space appropriately. S:JPT contains the maximum number of entries allowed in the JPT.

Entries ore moade by tasks via the SETNAME system function call. SETNAME may be used across jobs. The default
JCB is the calling task's job. SETNAME specifies o task-nome/load-module-name pair of doublewords which are
entered in the JPT. Tesk initiation uses table lookup on task name to determine if any entry exists for the specified
task name. If no entry exists, the task name is assumed to be the desired lood module name. If on entry exists, task
initiation uses the corresponding load module for task execution. SETNAME is also used to delete JPT entries by
providing a task name and blanks in place of the load module nome. Duplicate task nomes are not allpwed, so a
replacement will occur if a SETNAME call uses a task name which is olready represented in the JPT, ~

JPT Table Format

Nome Content Size
JPT EBCDIC w
—~——————1 } Ist doubleword
Task Name 1 J
EBCDIC Load-Module
2nd doubleword
Name 1)
EBCDIC
b———— ————— | 15t doubleword
Task Name 2
)
EBCDIC Load=-Module
| EEEEEE—— ————1 } 2nd doubleword
Nome 2
(etc.)

where the EBCDIC Task Name characters and EBCDIC Load-Module Name characters are left-justified and blank filled.
Enqueue Definition Table (EDT)
Purpose

The Enqueue Definition Table defines the current controlled items and resources in the system, and provides a mechanism
for queuing outstonding requests for the item. This table is used in conjunction with the Associative Enqueue table.
- -

Type and Location
Each EDT is o serial table in TSPACE,

Logical Access

Each EDT is a member of a chain whose head is either in CP-R location S:EDT {system level ENQs and all device ___
resources) or in the JCB (job level ENQs). Figure 49 shows the overall relationship between system tables that
directly or indirectly affect the EDT.

148

veve Definition Tables (EDT's
= !

AET (System level)

- | e —o

l JCBEDT }

-

AETEDT ECB
AETECB
Item
EDTEDT
EDTECB
ECB
—— 4
Item
— EDTEDT E
EDTECB
k{
[-°4
ECB
e
——
ftem
AET (Job level)
a—
AETEDT | —{ EDTEDT
AETECB | EDTECE
ECB
AETEDT }—|—|—
AETECB |—|—
=i EDTEDT
EDTECB ——
AET (Job level) | ECB
AETEDT
AETECB
AETEDT
AETECB
_

Figure 49. Enqueue/Dequeue Table Relationship

150

Overview of Usage

The first acquisition of any resource causes a new EDT to be created and added to the appropriate chain. This allows
later ENQs to know that the item is in use and check for conflicts, When conflicts do occur, ECBs are created to
provide o waiting mechanism. The R-chain in the ECBs are used to connect the ECBs to the EDT for which they
are woiting. This chain is in order of time within priority as are normal R-chains, When DEQ updates the EDT and
detects that the item hos been freed, it checks for the existence of waiting ECBs, If none exist, the EDT is re~-
moved from the EDT chain and deleted. If ECBs do exist, the DEQ assigns access to the item to the highest priority
ECB in the chain and all lower priority ECBs which do not conflict, posting the ECBs as it does so.

Engueue Definition Table (EDT) Format

0 31
word 0 ‘ Resource name EDTNAME
r——- ——. — —— — — —— S—— S——— e ——— —— ———
word 1 (8 EBCDIC characters)
32 63
word 2 Flags €8¢ cow EDT forword link address EDTEDT |,
0 34 78 31
word 3 Use count Waiting ECB chain head EDTRECB
0 78 31
EDTEDT
Flags:

bit 0 = 1 This EDT is held by a job~level AET.
=0 This EDT is held by a task-level AET.

bit 1 =1 This is a system-level EDT,
=0 This is a job-level EDT,

bit 2 Unused.

bit 3 =1 This EDT is held by a sharable enqueve.
=0 This EDT is held by an exclusive enqueue.

EDT forward link address: A pointer to the next EDT in the system or job level chain. Zero signifies the end of the
chain.

EDTRECB

Use Count: The number of tasks which currently have ocquired use of the item. 1f the ENQ is exclusive this count
will be 1, If the ENQ is sharable, the count will be 2 1,

Waiting ECB Chain Head: The address of the ECB representing the highest priority outstanding ENQ for the item.
‘R-ECB' of zero indicates no ENQs are waiting.

-
EDTNAME -

Nome: The name of the controlled item from the original ENQ coll, or the device index, right-justified in the
first word of the doubleword.

Load-Module Data Structures

The control blocks and table shown in this subsection relate to load=module files,

*

Load Module Headers
The first sector of a load module file contains a block of information used to control the loading of the module and

the allocation of system table spoce to it. This block is the lood module header, and is written by the JCP Loader
or Overlay Loader when the load module is created. A similar header is associated with each PUBLIB file.

Task Load Module Header

Word byte 0 1 , 2 . 3
|
0 FiB|R|L T 0|0 Task First Word Address
1 MSECB Task Last Word Address
2 MRECB Task Entry Word Address
3 MENQ Root Part one VM BL
4 NSEGS Root Part one VM WO
5 0 Root Part one LM BL .
6 Root Part two VM BL
7 Root Part two VM WO
8 Root Part two LM BL
9 Root Part two LM GO
A 0 0
B 0 0 0
C Stack control doubleword prototype
D for the CP-Rtemp stack
J
Names of PUBLIB load modules required
{(up to 5 ot 8 bytes each)
E 1 1
0 0
; Remainder of granule 0 3
is unused
where
-
F=0 for a background task. -
=1 for a foreground task,
B=0 for a program not linked for Simplified Memory Management (SMM).
=1 for a background program linked for SMM.
R=0 ifa program is not restricted from using foreground Preferred Memory.
=1 if it is restricted.

151

L=0 for a task module (not a PUBLIB load module).

P =01 for a secondary task,

=10 for a primary task,
MSECB = maximum permitted number of solicted ECBs; 5'FF' if system default is to be supplied.
MRECB = maximum permitted number of received ECBs; X'FF' if system default is to be supplied.
MENQ = maximum permitted number of resource enqueues; X'FF' if system default is to be supplied.
NSEGS = number of segments in task, to include both parts of root, PUBLIBs and DEBUG.

Legend:

BL Byte length
GO Granule origin
LM Load module
VM Virtual memory
WO Word origin

PUBLIB Lood Module Header

Word byte 0 1 2 3

0 Flo[r|L 15 olo PUBLIB First Word Address (FWA)

] fo————o0 PUBLIB Last Word Address (LWA)

2 0 olo 0

3 —Y PUBLIB VM BL

4 NSEGS PUBLIB VM WO

5 0 PUBLIB LM BL

é Context VM BL

7 Context VM WO

8 Context LM BL

9 Context LM GO

A , T:SYMBOL LM BL

B 0 T:SYMBOL LM GO

c T:VALUE LM BL

D T:VALUE LM GO

E lo 0
l Remainder of granule 0) "
I is unused

F=1 for a foreground load module.

0 if the PUBLIB is not restricted from occupying foreground preferred memory.
1 if it is restricted,

152

L=1

P =01
=10

NSEGS =1
=2

Legend:

BL Byte length
GO Granule origin
LM Load module
VM Virtual memory
WO Word origin

for @ PUBLIB load module (not a task load module).

for a secondary PUBLIB.
for a primary PUBLIB.

for PUBLIB only.
for PUBLIB with context segment,

Notes: FWA=-LWA refers only to the PUBLIB segment, not the context. FWA = PUBLIB VM WO.

OVLOAD Table (for Load Modules)

’
a

In the root of every load module (root part 2 if there is one) is the OVLOAD table for that module. This table
provides information about the size and nature of each segment, its segment identification number, and the READ

FPT to load it.

There is one entry for each segment, except for the root, PUBLIB, and PUBLIB~context segments, which are omitted.

Word

(11n)-10

(11n)-9

(11n)-5
(11n)-4

(11n)-3

11n

byte 0 1 2

I A

Number of entries

\

M IX|P{S|I|F VM PL

Segment number

Word address of M:SL

0

VM WO for segment

LM BL for segment

LM GO for segment

Word cddress of segment entry, or zero

A\

Entry
n
(11 words)

153

154

—
nn
—_O

— O

VM
BL

wO

PL

GO

nonon
o
s28

for any access

for read/execute

for read only

for no access

(reserved for Memory Management)
segment image is in this load module
segment is sharable and must be pre-loaded by another task, since its image was omitted from this
load module (PRELOAD)

for non-sharable

for job=sharable

for system-sharable

for explicit activation required
for initial activation with root (ILOAD)

if real=-virtual oddress correspondence not required
if required (FIX) :

Virtual Memory
Byte Length
Word Origin
Lood Module
Page Length

Granule Origin

.

e e P . - D s T I R e A TR . f .

~
o

10. OVERLAY LOADER

Overlay Structure

The Overlay Loader is itself an overlayed progrom with a root and the six segments as illustrated in Figure 50. The
functions of the Root and segments is given in Table 6.

CCl

PASSONE

LI1B

ROOT PASSTWO

MAP

DIAG

Figure 50. Overlay Structure of the Overlay Loader

Table 6. Overlay Loader Segment Functions

Segment Function

ROOT Calls in the first segment (CCI) but thereafter, the segments call in other segments.
ROOT is a collection of subroutines, tables, buffers, FPTs, DCBs, flags, pointers,
variables, and temp storage cells. Root is resident at all times,

CCi1 Reads and interprets all Looder control commands.

PASSONE Makes the First pass over the Relocatable Object Modules, satisfies DEF/REF linkages be-
tween ROMs in the some path, links references to Public Library routines, ond cllo-
cates the looded progrom's control and dummy sections (e.g., assigns absolute core
oddresses).

LIB Searches the library tables for routines to satisfy primary references left unsatisfied
at segment end.

PASSTWO Madkes the second pass over the ROMs, creates absolute core images of segmen?s\,
provides the necessary CP-R interfoce (PCB, Temp Stack, REFd DCBs, DCBTAB, INITTAB,
and OVLOAD), ond writes the absolute load module on the output file.

MAP Ovutputs the requested information about the looded program.

DIAG

Ovutputs all Loader diognostic messages.

155

Overlay Loader Execution

The Root of the Overlay Looder is read info the background when the Job Control Processor (JCP) encounters
an | OLOAD control command on the "C" Device. The JCP allocates six scratch files (X1, X2, X3, X4, X5, and X6)
in the Background Temp area of the disk unless otherwise specified on a Monitor 1 ALLOBT commond, and three
blocking buffers unless otherwise specified on @ Moniter IPOOL command. The core layout of the Overlay Loader

is illustrated in Figure 51,

- FWA of Background (K:BACKBG)
PCB : ’
Temp Stacks
/
Root
Segment
Root Code
DCBTAB
L OVLOAD
Segment Overlay Area
LWA+] of Overlay Loader (P:END)
Dynomic Table Area
LWA of Background (K:BCKEND)
Figure 51. Overlay Looder Core Layout
Dynamic Table Area

The Dynomic Table Area is an area of core beginning ot the LWA+1 of the Overlay Loader's code and extending to
the beginning of the background blocking buffer pool. That is, the Looder uses the remaining core in backgfound

for a work area.

The Dynamic Table Area is divided into 16 table oreas with boundaries that can change, subject to the length of the
tables. The tables are built by CCl and PASSONE from information on the control commands and ROMs, ond are
therefore only dynomic until the beginning of PASSTWO, when the table areas ore fixed. Since these tables are an
essential part of the lood process, it is important to understand the function of the tables.

156

Dynamic Table Order

During the first pass over the object modules, the 16 table areas have a fixed order as follows:
FWA of Dynomic Table Area (P:END)

T:PUBVAL
T:PUéSYM
T:VA:LUE
T:SEG
T:DC‘BV
T:DC:B
T:ROMI
T:MO‘DIFY
T:MO‘DULE
B:MT:
T:DE(‘:L
T:CSE'CT
T:FWD
T:FWI‘)X
T:SYI:ABOL

T:VALX

LWA+1 of the Dynamic Table Area (K:BCKEND)

For better recder comprehension, the table area descriptions given below ore given in a logical order rather than
the progrom listing sequence.

T:SYMBOL and T-VALUE

The program's external table is o collection of DEFs, PREFs, SREFs, and DSECTs (excluding DCBs). The external
table is divided into two ports: one containing the EBCDIC name of the external (T:SYMBOL), and the other
containing the value (T:VALUE). Eoch table is divided into segment subtables that overlay each other in core
in the some way that the segments themselves are overlayed. For exomple, the external tables of a program with
the overlay structure

.
i
L3
0
4
would exist in core (for both PASSONE and PASSTWO) as follows: -
For For For For For
Root Seg | Seg 2 Seg 3 Seg 4

lo 0 0 0 0
) 1 1 4
2 3

157

158

%

Segments in different paths cannot communicate (i.e., the subtables of segments in different paths are never.in core *
at the some time). A segment's T:SYMBOL ond T:VALUE subtables are built by CCI and PASSONE and saved on a
disk scratch file ot path end (i.e., when the next segment storts o new path). However, only tables overlayed by
the new segment ot path end get written out. For example, at the end of path (0, 1,2), segment 2 would be written
out; at the end of path 0,1,3), segments 3 and 1 would get written out; ond at the end of the progrom, segments 4
and 0 would get written out.

A segment's subtable consists of oll DEFs in the segment, DSECTs not allocated in o previous segment of the path,

ond any REFs not satisfied by DEFs in o previous segment of the path. Since the DEF/REF links are oll satisfied by
PASSONE, T:SYMBOL is not used by PASSTWO.,

T:VALUE ENTRY FORMATS

T:VALUE entries are numbered from | fo n and have a fixed size of 5 bytes, with the format

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4
v |p|Vic|FlLe Value
012345678 1516 2324 3132 39

where

TY is the entry type

TY =00 DEF
TY =01 DSECT
TY =10 SREF
TY =11 PREF

D s a flog specifying whether or not the external is defined/allocated/satisfied.
D=1 external has been defined/allocated/satisfied.
D=0 external is undefined/unallocated/unsatisfied.

\ is a flag specifying the type of value (meaningful only if D = 1),
V=1 volue is the value of the external.
V=0 value is the byte oddress of the expression defining or satisfying the external in T:VALX.

C is o constant (meaningful only if V = 1),
C=1 value is a 32-bit constant.

C=0 value is a positive or negative address with byte resolution.

F is a flog specifying whether the external is a duplicate or an original.
F=1 external is o duplicate.

F=0 external is an original.

LB specifies source of external. -
LB=00 external from input ROM or CC.
LB =01 external from System Librory.
LB=10 external from User Library.

Value is initially set to zero; usoge is dependent upon D, V, and C flags.

Since fhe T:VALUE entries are kept as small as possible, unused bit combinations are reserved todefine the fo!lowmg
two intermediate external types:

\

1. K TY=PREF, C=0,and V =1, the external is an "excluded pref which means that the PREF will cause neither
library loading nor linkage (including the Public Library). Instead, the PREF will be satisfied by o DEF ina
segment further up the path.

2. IfTY=DSECT, D=1, and V =0, the external was input from the :RES control command and is to be aliocated
at the end of the segment.

T:SYMBOL ENTRY FORMATS

T:SYMBOL is a byte table with variable sized entries that are numbered from 1 to n. There are three types of
enfries: EBCDIC, "continuation", and "pseudo”. The EBCDIC entry contains the name of the external. The

“continuation” entry contains the size of a DSECT and only follows a DSECT entry. The "pseudo” entry is a FWD
or CSECT entry that has been added to T:SYMBOL because the entry was referenced in a T:VALX expression that
could not be resolved at "module end". The entry formats are as follows:

EBCDIC entry: byte 0f0] N+ 1 (Range =X'02' to X'40)
1| EBCDIC Chary .
01 7

n| EBCDIC Char,,

0 7
“Continuation"
entry: byte 0f1J0000100 =X'84'
1 Byte A byte size of ~1 indicates that the entry is a reference to a DSECT
2 size of allocated in a later segment.
3 DSECT
01 7
"PSeUdO"
entry: byte 0[(0{0000001 = X'0r
01 7

Note that the first byte contains the byte count of the entry (in bits 1-7).

T:PUBVAL and T:PUBSYM

Each Public Library file has an external table of DEFs (there are no DSECTs or umsatisfied REFs in a Public Library)
that is divided into two parts; VALUE and SYMBOL. T:PUBVAL contains the VALUE tables for each public library
specified in the PUBLIB option of the |OLOAD control command, and T:PUBSYM contains the corresponding SYMBOL
tables. Since the sizes of the table areas are fixed once T:PUBVAL and T:PUBSYM have been input, there are only
14 dynamic table areas.

T:PUBVAL ENTRY FORMATS

T:PUBVALentries are numbered from 1 to n oand have a fixed size of fivebytes. Since the size of T:PUBVALdoes not
change, T:PUBSYM is located at the next doubleword boundary following T:PUBVAL. T:PUBVAL entries hav::he format

Byte 0 Byte 1 Byte2 Byte 3 , Byte 4
TY [p{vic| |8 - Value
012345678 1576 2324 3132 3
where
TY =00 = DEF

D=1 the DEF has been defined.

159

160

il
O O = =

value is the value of the DEF.
value is a 32-bit constont,

value is o positive or negative address with byte resolution,

moNn <L
]

not a duplicate DEF,
LB=11 PUBLIB

Note that the T:VALUE and T:PUBVAL entries have the same formats even though the T:PUBVAL entries are a subset
of the T:VALUE format.

T:PUBSYM ENTRY FORMATS

T:PUBSYM is a byte table with varioble sized entries that are numbered from 1 to n. Since the size of T:PUBSYM
does not change, the table following is located at the next doubleword boundary after T:PUBSYM. T:PUBSYMentries
have the format

byte 0 N+ 1
byte 1 EBCDIC Chary
0 7

.
.
.

byte n EBCDIC Char,,
0 7

T:VAIX

External definitions are defined with expressions. If the expression can be resolved, ifs value is stored in the DEFs
T:VALUE entry. If the expression cannot be resolved, it is saved in T:VALX and the byte address of the expression
is stored in the DEFs T:VALUE entry.

Once an expression is resolved, its entry is zeroed out. The T:VALXentries cannot be packed toregain space, since
the T:VALUE entries contain address pointers, however, empty entries are reused where passible.

Expressions have a variable size and are made up of expression bytes, combined in any order. The formats for the
T:VALX expression bytes (slightly different than the object language) are

Add Constant (X'01')

Byte 0 Byte 1 Byte 2 . Byted Byted
00000001 32-bit value
0 78 1516 2324 3132 39

This item causes the specified four-byte constant to be added to the Loader's expression accumulator, Negative con-
stants are represented in two's complement form:

Add/Subt Value (X'2N')

Byte 0 Byte 1 . Byte 2
FWD Number -
00| 10 [S|F{RR 18 I Entry :
012345678910 1516 23
where
S$= subtract value.

$=0 add valve.

F=1 add/subtract. value of T:FWD entry where the FWD rwmber is in bytes |1 and 2.

F=0 odd/subtract value of TABLE entry where '
T8 = 00 Entry points to T:DCB.
T8 =01 Entry points to T:VALUE/T:SYMBOL.
T8=10 Entry points to T:CSECT,
=1 Entry points to T:PUBVAL/T:PUBSYM.
RR=00 byte address resolution.
RR =01 halfword address resolution.
RR =10 word address resolution.
RR =11 doubleword address resolution.
This item causes the value of the FWD or TABLE entry to be converted to the specified address resolution (only if the
value is an oddress) and added to the Loader's expression accumulator. Note that expressions involving T:FWD and
T:CSECT entries point to the current ROM's FWD and CSECT tables. If these expressions are not resolved at module
end, the Loader createsdummy T:SYMBOL and T:VALUE entries from the FWD or CSECT entry and changes the pointer

in the expression to point to the dummy entry in T:VALUE. However, unresolved expressions rarely happen.

Address Resolution (X'3N')

Byte 0

@] o [&]

01234567

where
ID=00 changes the partially resolved expression (if an address) to the specified resolution.

ID =01 identifies the expression as a positive absolute address with the specified resolution (odd absolute
section),

ID =10 identifies the expression as a negative absolute address with the specified resolution (subtract abso-
lute section).

RR =00 byte address resolution.
RR =01 halfword address resolution,
RR=10 word address resolution.

RR=11 doubleword address resolution.

Expression End (X'02')

-

This item identifies the end of an expression (the value of which is contained in the Loader's expression accumulator).

T:DCB

T:DCB contains the DEFs and REFs that are recognized as either system (M:) or user (F:) DCBs. DCBs declared as
external definitions must exist in the Root segment. The Loader allocates space in part two of the Root for DCBs

161

-

that are declared extema! references, .and supplies defoult copies of system DCBs. T:DCB is resident ot all times.
Entries have o fixed size of three words and have the format

word 0 [TYOIVIF T B RN Byte Address o
| El E2 E3 E4
2 E5 E6, E7 E8
012345678 1213 1516 2324 31
where
Word 0

TY =00 DEF (coded in the Root by the user).

-TY =11 PREF (allocated in Root part 2 by Loader).

D=1 defined or allocated.

D=0 undefined/unallocoted.

v=1 address is the byte volue of the DCB, only meaningful if D =1,
v=0 oddress points to an expression in T:VALX, only meaningful ifD =1,
c=1

the DCB was defined with a value that is either a constant or an illegal oddress (i.e., negative or
mixed resolution), only meaningful if V=1.

the value of the DCB is an address, only meoningful if V= 1.

DCB cannot be a duplicote (duplicates are put in T:SYMBOL/T:VALUE).
LB =00 the DCB was input from a nonlibrary ROM.

LB =01 the DCB was input from the System Library.

LB =10 the DCB was input from the User Library.

El1 ~ E8 is the EBCDIC name of the DCB, padded with blanks if necessary.

T-SEG

T:SEG contains information about the program's segments and is resident at all times. One entry is allocated per
segment. Entries have a fixed size of ten words and have the fomat

Word 0 Segment Ident Link Ident

1 |Gran no. of T:VALUE(l)on X4 | Gran no. of T:MODIFY/
T:MODULE on X3

2 Gran no. of T:SYMBOL (I)on Gran no. of core image on
X5 Program File

BD of T:VALUE (I)in T:VALUE Byte length of T:VALUE (1)

BD of T:SYMBOL(I) in Byte length of T:SYMBOL (1)
T:SYMBOL

Byte length of T:MODIFY Byte length of T:MODULE
DW EXLOC of SEG DW length of SEG
RiLWIF[iI[M] s[e] Je a] Entry Address

Byte Length of Library Routines in SEG

~ Byte length of load=module image of segment “Aa
0'1'23456789 1213141516 3l

0 ® Ny O O

where

Gron no. the gronule number in the disk file where the table begins. If the disk file overflows, Gran No.
will equal X'FFFF'. Gronules are numbered from O to n.

162

m

BD

EXLOC

DW

segment's subtable,

byte displacement,

execution location,

doubleword.

error severity level set on at least one ROM in the segment,

error severity level reset on every ROM in the segment,

load error (duplicate DEFs, unsatisfied REFs, etc.).

no loading errors in SEG.
T:VALUE (I) and T:SYMBOL (1) output on X4, X5,

T:VALUE (I) and T:SYMBOL (I) not output on X4, X5,

segment is fixed in real memory (FIX option).

segment may be mapped onto any available real memory.

segment is to be initially loaded with the root (ILOAD option).

segment will be loaded only on explicit request.

segment is any-access,

segment is read-and-execute.

segment is read-only.

segment is no—access,

segment is non=sharable.

segment is job=level sharable.

segment is system=level sharable,

unused,

163

164

P=1 segment must be pr;loodod sharable (PRELOAD option).

P=0 segment may be loaded from the load module being built.

EA =00 value in bits 15-31 (if nonzero) is last entry address (in words) encountered on non~-Lib ROW,
EA =01 unused.

EA =10 SEG's entry address input from CC and value in bits 15-31 is the entry address (in words).

EA = 11 SEG's entry address input from CC and value in bits 15-31 is the entry number of the T:SYMBOL/
T:VALUE DEF specified on the CC,

B:MT P

There are four tables associated with each ROM loaded (including library ROMs): T:DECL, T:CSECT, T:FWD, and
T:FDX. The size of these tables can be extremely large or small, depending upon which processor produced the ROM
and the content of the program. To conserve time and space, these tables are packed into the Module Tables buffer
(B:MT) at module end, and output to the X2 Temp File on the disk only when either the buffer is full or at segment
end. The size allocated for B:MT is dependent upon the size of the Dynamic Tables area and is made a multiple of
the sector size of the X2 disk file, '

T:DECL

DEFs, PREFs, SREFs, DSECTs, and CSECTs are referenced in the object language bydeclaration number. Therefore,
associated with each ROM is o table of declarations whose entries point to DEF, REF, DSECT, and CSECT entries in
other tables.

According to the object language convention, entry zero points to the standard control section declaration, Enrnes
are numbered from O to n; have a fixed size of two bytes; and have the format

TB Entry
012 15

where

TB=00 Entry points to T:DCB,

TB =01 Entry points to T:SYMBOL/T:VALUE,

T8 =10 Entry points to T:CSECT (associated with current ROM). -

T8 =11 Entry points to T:PUBSYM/T:PUBVAL.

Entry Table entry number, The range is 1 through 16, 383,

TP, S U PUIUEPU PGP S S i

T-CSECT

Associated with each ROM is a table of standard and nonstandard control sections. A nomstandard control section
is allocated by the Loader when the declaration is encountered. The standard control section is allocated when the
first reference to decleration 0 is encountered in an expression defining the origin load item. T:CSECT entries are
numbered from 1 to n; have a fixed size of two words; and have the format

word 0 NPV RN Byte address
word 1 RN Size

012345 1213 31

where -

Word 0

D=1 allocated.
v=1 value, .’
C=0 address.

Byte address first byte address of the control section.

Word 1

Size Number of bytes in the control section.

T:FWD

Associated with each ROM is a table of forword reference definitions (forwards). Each forward is identified by a
random two-byte reference number. Thus, when a forward is referenced in an expression, the T:FWD table for that
ROM must be searched for a matching number. T:FWD entries have a fixed size of two words with the format

Word 0 Forward number ‘&\\\\\\\\\\N D IV lC N\\

Word 1 Value L
T 1 T ¥
0 1516 262728 31

where
D=1 defined.
v=1 value is the value of the resolved expression.
v=0 value is a byte displacement pointer to the expression in T:FWDX.
C=1 value is a constant (only meaningful if V = 1),

Cc=0 value is a positive or negotive address with byte resolution (only meaningful if V = 1),
-

T:FWDX

Forwards are defined with expressions and are of two types: the first is defined with an expression that can be re-
solved by module end; the second type is defined with an expression that involves an external DEF, REF, or DSECT
(many of these cannot be resolved ot module end). Associated with each ROM is a table containing all unresolved
expressions defining FWDs. When a T:FWDX expression is resolved, its entry is zeroed out and the spoce reused, if
passible. T:FWDX entries have the same format as T:VALX entries.

165

T:MODULE)
Each segment has o T:MODULE table. T:MODUWLE contoins information about a segment's Relocatable Object
Modules (ROMs). One entry is allocated per ROM. Entries have a fixed size of five words and have the fOI"I‘mf

0,1 1213141516,1718 31
Word 0 |V Entry no. G| LB \\ %] Record Displacerient

Gran no. of B:MT on X2, or n
1| BD of T:DECL (J) in B:MT Byte length of T:DECL (J)

2 BD of T:CSECT (J) in B:MT Byte length of T:CSECT (J)
3 BD of T:FWD (J) in B:MT Byte length of T:FWD (J)
4 BD of T:FWDX (J) in B:MT Byte length of T:FWDX (J)

where

v=1 Entry no. in bits 1=12 points to T:DCBV,

V=0 Entry no, in bits 1-12 points to T:DCBF, or is zero,

Entry no, the entry number of the DCB (in either T:DCBV or T:DCBF) that points to the disk fil; where the
ROM is located, or zero, to load another ROM from the previous source.

G=1 T:DECL (J) begins ot byte zero in B:MT and HWO (halfword zero) in word 1 contains the granule no,
::'sijMT on X2, Jf the Granule no. equals X'FFFF', X2 has overflowed and B:MT did not get saved on the

G=0 T:DECL (J) is located in B:MT at the byte displacement specified in HWO of word 1.

LB=00 not Library ROM,

LB =01 ROM from System Library (SP area of disk).

LB=10 ROM from User Library (FP area of disk).

Record displacement in the MODUWLE file (only meaningful for library ROMs),

Pack = 1 if the PACK input option was associated with this ROM,

T-ROMI

T:ROMI contains the information necessary for PASSONE to load o segment's ROMs. T:ROMI is built by CCl from
the input options specified on the segment's :ROOT, :SEG, or :PUBLIB control command, or by :LIB to point to the
library routines required for the segment, At the beginning of PASSTWO, the area size for T:ROMI is set to zero,
There are three types of T:ROMI entries, as illustrated below, and entries have a fixed size of one word,

Entry for ROMs input from user files (built by CCI):

P
NROM N % v| Entry No.
0 1516171819 20 31

where

NROM is the number of ROMs to input or contains -5, which means fo input until 1EOD is encountered.
This halfword is used os a decreasing counter by PASSONE and eventually equals zero.

Bits 16-23 always equal zero to specify entry type.

P S PSR TR T e T e

v=1 Entry no. in bits 20~31 points to T:DCBV,
v=0 Entry no. in bits 20-31 points to T:DCBF,

Entry no, is the entry number of the DCB in T:DCBF or assignment in T:DCBV that points to the medium
where the ROM is located.

PACK =1 if the PACK input option was associated with this ROM,

Entry for the NONE option (built by CCI):

0 0
0 3
Entry for ROMs input from the System or User Library (built by LIB):
NROM Record displacement
0 1516 31 K]

where
NROM is described above.

Record displacement is the record displacement of the ROM in the MODULE file of the area specified by
FL:LBLD.

Library ROM entries are distinguished from the other two entry types by the Loader flag FL:LBLD. The flag is always
reset when the other entry types are in T:ROMI.

T:DCBV

T:DCBV is a toble of DCB assignments for the various ROM media specified (other than GO) on the input options of
the :ROOT and :SEG, or :PUBLIB control commands. One entry is created for each input option specified. T:DCBV
is resident at all times. T:DCBV entries are numbered from 1 to n, and have the following format:

0123 B 31

Word 0 [o/n/F R AT

1

3 EBCDIC I/O Medium Name (5 words)

where
-

O=1 if word 1 contains a right-oligned operational label name. The remaining flags are ignored.

0=0,D=1 if words 1 and 2 confain a left-aligned device name. The remaining flags are ignored.

O=D=0, F=1 if word 1 contains a right-aligned disk area name or blanks, and words 2 and 3 contain a
left-aligned file name.

O=D=0,F=1, A= if words 4 and 5 contain a left-aligned disk file account name,

167

168

te

T-MODIFY

Each segment's :MODIFY commands are tronslated into object language lood items and stored in the segment's
T:MODIFY table, and each :MODIFY command is translated into a T:MODULE entry. Entriesbegin with an "origin"
load item and are terminated by either the next "origin" load item or o "module end" load item. Entries are made
up of the load items described below and expressions in the T:VALX/T:FWDX format:

Origin (X'04')

This one~byte item sets the load-location counter to the value designated by the expression (in T:VALX format)
immediately following the origin control byte. The value of the expression equals the location specified on the
:MODIFY command.

Load Absolute (X'44')

This one~-byte item causes the next four bytes to be loaded absolutely and the load-location counter advanced
appropriately.

Define Field (X'07') ot
(X'FF')
(field length)

This three-byte item defines an expression value to be added to the oddress field of the previously loaded four-
byte word, The expression is in T:VALX format and immediately follows the 'field length' byte.

Load Expression (X'60')

This one-byte item causes an expression value to be loaded absolutely and the load-location counter advanced
appropriately. The expression to be loaded is in T:VALX format and immediately follows the 'load expression'
control byte.

Module End (X'OE')

This one~byte item terminates the load items in T:-MODIFY.

Use of the Dynamic Table Area During LIB

During the library search, LIB temporarily reorganizes the Dynamic Table area by packing the 16 tables together at
the top of the area. LIB uses the remaining space for its tables, The core layout of these tables and their formats
are illustrated in Figure 52,

T:LDEF

-
-t

T:LDEF is located in the Dynamic Table area only when the LIB segment is executing and is used by LIB to satisfy
REFs to library routines. Initially, T:LDEF contains the following items:

1. All unsatisfied REFs from the current segment's T:VALUE subtable,

2. All excluded PREFs from the current segment’s T:VALUE subtable.

FWA of
[T:PUBVAL Dynamic Toble Area T:PUBVAL
T:PU.BSYM T:PUPSYM
T:VALUE T:LDEF
Overlays
g"‘"“’. T:VALUE
ynamic
Tables i
(tables 1
listed are
used by T:SYMBOL)
LIB)
T:SYMBOL
K
L T:LDEF
Moved to
the end of
T:LDEF, if
necessary.
TLROM T:LROM
EBCDIC EBCDIC
DEFREF DEFREF
MODIR MODIR
files' buffer files' buffer
{ LWA+T of the
Dynamic Table Area
Core layout of the Area if the Core layout of the Area if the
packed tables remain in core, packed tables are saved on Xé.

Figure 52. LIB Reorganization of Dynamic Table Area

N

3. All DEFs and DSECTs in the path T:VALUE table that are from the same library as the one being searched.

4, All Public Library (T:PUBVAL) DEFs. -

The Library DEFs are included so that library routines loaded in previous segments of the Public Library will not be
duplicoted. The excluded PREFs (that inhibit library looding)are treated as DEFs. Since library routines may them-
selves reference other library routines, the set of DEFs and REFs associated with a library routine are included in
T:LDEF if, and only if, at least one of the DEFs satisfies a REF in T:LDEF, When o REF is satisfied it is changed
to a DEF. Eventually, T:LDEF contains library DEFs, any REFs that connot be satisfied in the Library, andthe
excluded PREFs,

169

170

T:LDEF hos a variable number of entries with the covnt kept in c;fry 0. Entries have a fixed size of two bytes with
the format .

entry 0 L T:LDEF entry count

. 0 . 15
entry n LDR] Value 1
012 15

where

DR =00 null entry,

DR = 01 DEF or excluded PREF.
DR =10 unsotisfied PREF.
DR=1 DSECT.

Value entry number in the T:SYMBOL, that is later changed to the corresponding entry's byte offset in
the EBCDIC file.

T:LROM

T:LROM is located in the Dynamic Table area only when the LIB segment is executing and contains pointers to li-
brary routines whose DEFs have satisfied REFs in T:LDEF, That is, T:LROM points to the library routines that are to
be loaded along with the segment,

T:LROM entries initially point to a library ROM's entry in the MODIR file and then get changed to point to the cor-

responding ROM's location in the MODULE file, T:LROM has o variable number of entries, with the count kept in
entry 0. T:LROM is built backwards but has forward entries. Entries have a fixed size of two bytes with the format

entry n L Value]
f 0 ? 15

entry 0 l T:LROM entry count —I
0 15

where

value halfword offset of the library ROM's entry in the MODIR file, which is later changed to the starting
record number of the ROM in the MODULE file.

*

MODULE File

The MODULE file is o blocked sequential file, with 120 bytes per record, that contains the Library's ROMs,

U

ac - . - . . . -
PRI PRI SO S SRS R L. PR -

The EBCDIC file is an unblocked sequential file consisting of one variable length record. The EBCDIC file contains
the unique EBCDIC names of all DEFs and REFs declared in the ROMs in the MODULE file. Entries have a variable
number of bytes with the format :

byte 0 N+1
1 EBCDIC Char)
0 7

n | EBCDIC Char, |
0 7

MODIR File

The MODIR file is an unblocked sequential file consisting of one variable fength record. Each MODIR file entry
cofresponds to a ROM on the MODULE file and contains the name of the ROM, its location on the MODULE file,
and the number of records in the ROM, Entries have o fixed size of three words with the format

word 0 MODULE file record no. L ROM's no. of records
word 1 First four bytes of EBCDIC name
word 2 Last four bytes of EBCDIC name
0 lSelé 31

DEFREF File

The DEFREF file is an unblocked sequential file consisting of one variable length record. Each entry in the DEFREF
file corresponds to a ROM in the MODULE file and contains all the external DEFs and REFs declared in the ROM,
plus a pointer to the ROM's entry in the MODIR file. Entries have a variable number of halfwords with the format

halfword 0 Entry size r DEF;
halfword 1 MODIR file index DEF2
halfword 2 | DR| EBCDIC file index DEF
012 15 "

) . REF]

: 4
REFZ
halfword n [DRJ EBCDIC file index | :

012 15 | REF,

where
Entry size number of halfwords in the entry (including itself),

MODIR file index relative halfword of the ROM's corresponding entry in the MODIR file, X'B&FF' means
that the entry hos been deleted,

DR =00 not used.

DR =01 DEF.)
DR=10 PREF,
DR=11 DSECT.

EBCDIC file index relative byte of the external name entry in the EBCDIC file.

171

172

Use of Dynamic Table Arsa Dering PASSTWO y

PASSTWO reorganizes the Dynamic Table area by moving the resident tables T:SEG, T:DCBV, and T:DCB to the
end of T:PUBVAL., PASSTWO uses the remaining space to read in the necessary tables bui It during PASSONE to build

its own tables and to create the core image of the segment. The core loyout of these tables and their format
is illustrated in Figure 53.

T:GRAN

Since the Work area has a finite size that varies according to the size of B:MT, it may not be large enough to con-
tain a segment's total core image at all times, Therefore, before a segment is created, its core image length is
divided into granule size partitions, where the granule size equals the sector size of the program file. T:GRAN

FWA of -
T:PUBVAL Dynamic Table Area T:PUBVAL
[

T:SE‘G T:SEP

T:D(iBV T:D(';'.BV

T:DCiB T:D(}B

T:VA‘LUE T:AS’SN

T:G?AN T:GRlAN

Work Area Work Area

\

B:M’l;

T:M?DIFY

T:MODULE

T:VALX LWA+1 of the T:VALX -

- Dynamic Table Area

Core layout of the Area while Core layout of the Area while
the segments are being looded. part two of the Root is being built,

—p—

Figure 53. PASSTWO Reorganization of Dynamic Table Area

enfries point to the location of a segment's partition (if created) either in core or on the program file, T:GRAN
has the following format:) '

entry 0 n = No. of granule partitions in the seg.
1 Granule partition 1
0 31
n Granule partition n
0 k]|

T:GRAN entries have a fixed size of one word with three different formats.

If the granule partition exists in the Work Area:

0 0 WA of granule partition in the
N Work area

0 12131415 31

If the granule partition exists on its corresponding granule in the Program File:

b 1o - 0| = X'FFF80000"
0 1213 3

If the granule partition has not been allocated; and data has not yet been loaded into that area of the segment:

o o]

0 31

T:ASSN

T:ASSN contains the information necessary to reassign DCBs as specified on :ASSIGN commands. T:ASSN is located
in the Dynamic Table area during PASSTWO (after all the segments have been loaded) and is built by CCI. Each
:ASSIGN command is translated into a T:ASSN entry. Entries have a fixed size of ten words with the format

Word 0 Byte address of DCB's execution location

0 31
! Word address of DCB's entry in T:DCB

0 31

92/ ;MM AIIHiHT

0123 31
3 -
4 EBCDIC 1/O Medium Name
5 (format indicated by word 2)

(5 words)

é
7

0 31

173

174

sfdlieiedadedd OO
9 Bv ZAANNMNIINININN

where
O=1 if word 1 confains a right-aligned operational label name, The remaining flags are ignored.
0=0, D=1 if words 1 ond 2 contain a left-aligned device name, The remaining flags are ignored.

O0=D=0, F=1 if word 1 contains o right-aligned disk area name or blanks, and words 2 and 3 contain
a left-aligned file name.

O=D=0,F=1 A=1 if words 4 and 5 contain a left-aligned disk file account name. o

kC:
1V:
2V:
3V:
4V:
5V:
6V:
7V:

8V:

if reset kV is unused; if set, kV is to be inserted.
value for MOD field.

value for ASC field.

value for DRC field.,

value for D/P field,

value for VFC field.

value for BTD field.

value for NRT field.

value for RSZ field.

MAP Use of Dynamic Table Area

MAP moves the resident tables T:SEG and T:DCB to the top of the area, and uses the remaining space to read in and
reference the tables necessary for the MAP output. MAP does not build any tables. The core layout of the table
referenced by MAP is illustrated in Figure 54,

DIAG Use of Dynamic Table Area

DIAG only uses the Dynamic Table area to reference TSEG and T:MODULE.

ROOT TABL

Two tables in the Root, T:PL and T:DCBF, have a fixed size and are referenced by other fables. Their format and
use is given below., The usage and format of other fables in the Root are well documented in the Overlay Loader's
listing and are not defailed in this manual.

FWA of
Dynamic Table Area

T:SE? T:SE(;,
T:MODIFY T:SYMBOL
B:MT T:VALUE

LWA+] of the
Dynamic Table Area

Core layout of the Area while Core layout of the Area while
the program's control sections the externals are being listed.
are being listed,

-

Figure 54, MAP Table Reference

175

176

TPL

T:PL contains the information necessary to create T:PUBSYM and T:PUBVAL and to load the Public Libraries speci~
fied on the IOLOAD control command. T:PL exists in the Root and has a maximum of three entries. Table end is
indicated by a word of zeros. Entries have a fixed size of eight words with the format

Word 0

First four EBCDIC bytes of PUBLIB name

Last four EBCDIC bytes of PUBLIB name

Word address of PUBLIB's execution location

Number of bytes in the PUBLIB

Granule no. of PUBLIB's symbol table

Number of bytes in PUBLIB's symbol table

Granule no. of PUBLIB's value table

N O AN

Number of bytes in PUBLIB's value table

31

.

Word at
last

Zeros I

entry+1 0

T:DCBF

T:DCBF contains the set of fixed DCis that are required by the Loader,
o fixed number of entries and exists in the Root.

order given in Table 7,

31

Each entry contains one DCB. T:DCBF has
T:DCBF entries are numbered from 1 to 18, and have the fixed

Table 7. T:DCBF Entries

Entry Mnemonic Pointer To

1 F:PUBL Files specified in the PUBLIB option of IOLOAD.

2 F:DEVICE Devices specified in the DEVICE and OPLB input options.

3 M:GO GO file in the Background Temp area.

4 M:0V Either OV or the file specified in the FILE option of ! OLOAD.
5 M: X1 X1 in the Background Temp area.

6 M:X2 X2 in the Background Temp area .

7 M:X3 X3 in the Background Temp area.

8 M: X4 X4 in the Background Temp area.

9 M: X5 X5 in the Background Temp area.
10 M: X6 X6 in the Background Temp area.
n F:MODIR MODIR file in either the SP or FP area,

12 F:EBCDIC EBCDIC file in either the SP or FP area.
13 F:DEFREF DEFREF file in either the SP or FP area.
14 F:MODULE MODULE file in either the SP or FP area. -
15 M:C C operational label.

16 M:LL LL operational label.
17 M:0C OC operational label.
18 M:LO LO operational label,

1t

[N S T Ry e

e

’

All T:DCBF entries have the standard 11-word DCB format, with two exceptions: OFLOW and NIO, that are used

only for the M:OV, M:X1, M:X2, M:X3, M:X4, M:X5, and M:X6 DCBs. The 11-word DCB format is

0 » N
Word0] TTL=7 RNEAN "%\\ﬁ‘g§‘c‘ TN BTD|ASSN
0 7 10 14 19 2223 262728 31
NN
i NRT No tlo| Tvee DEVR{:OPLB/
¥ ILE

0 78 1415161718 2324 31
2 OFLOW \\\\\\ BUF

0 7 1415 31
3 RSZ ERA

0 1415 31
4 NIO ABA

0 1415 3]
5 El E2 E3 E4

0 78 1516 2324 31
6 £5 E6 £7 E8

0 78 1516 2324 31

N\ N

plelp N
7112 MAmlinmumonsnn

01 2 3l

MINN

8 \\\\\\\\\ AREA] AREA2

0 16 2324 3
9 ACNTI ACNT2 ACNT3 ACNT4

0 78 1516 2324 31
10 ACNT5 ACNT6 ACNT? ACNTS

0 78 1516 2324 3l

where

OFLOW =0

OFLOW =1

NIO

EOT not encountered.

EOT encountered.

number of records (for X1) or granules required.

177

178

Scratch Files

The six scratch files in the Background Temp area of the disk are used by the Loader as temporary storage and are
written during the first pass over the object modules. The number of granules required by each scratch file is col-
culated (whether the file overflows or not)and saved in the DCB assigned to the file. If any of these files overflows
(e.g., if the EOT is encountered during a Write operation), the Loader continues PASSONE, skips PASSTWO, then
calls the MAP to communicate the number of granules required for each scratch file to the user. The Loader's use

of these files is defined in Table 8,

Table 8. Background Scratch Files

File Name

Loader Use

X1

A sequentia! file with blocked record format, Record size equals 120 bytes; granule
size equals 256 words. ROMs input from non-RAD devices are copied onto X1,

A direct access file with the granule size set equal to the sector size. The module's
tables (T:DECL, T:CSECT, T:FWD, ond T:WDX) are output on X2 when either B:MT is
full or at segment end.

X3

A direct access file with the granule size set equal to the sector size. A segment's
T:MODIFY and T:MODULE tables are packed together at segment end and output
on X3.

X4

A direct access file with the granule size set equal to the sector size. A segment's

T:VALUE subtable is output on X4 when the end of a path is encountered and the seg-
ment is being overlayed by another segment.

X5

A direct access file with the granule size set equal to the sector size. A segment’s
T:SYMBOL subtable is output on X5 when the end of a path is encountered and the
segment is being overlayed by another segment,

X6

A direct access file with the granule size set equal to the sector size. The LIB over-
lay packs the 16 Dynamic Tables at the top of the Dynamic Table area and outputs the
"pack" on X6 only if the remaining area will not confain the tables required for the
library search,

Program File Format

The format for the Program File is illustroted in Figure 55.

The foreground/background program-header format is described in the "CP-R Tables Format" chapter. The Public

Library (PUBLIB) header format is also described in that chapter.

3

:ROOT, :SEG, and :PUBLIB Commonds. CCI creates an entry in T:SEG; builds T:ROM!] and T:DCBV entries from
the specitied input options; allocates space for the PCB in the Root segment; and for the :SEG command, calls the
PATHEND subroutine. PATHEND determines if the segment starts a different path; if so, writes out the T:SYMBOL
and T:VALUE subtables for the overlaid part of the prior path on the disk scratch files; and sets and byte displace-
ment pointers for the new segment's T:5YMBOL and T:VALUE subtables,

Legical Flow of PASSONE

PASSONE branches to process T:MODIFY if CCl has just been previously called by PASSONE to input :MODIFY
commands, Otherwise, PASSONE processes T:ROMI which has been built by either CCl or LIB, PASSONE inputs
the ROMs from the devices specified in T:ROMI; builds T:MODULE entries for each ROM input; saves ROMs input
from non-disk devices onto the X1 scratch file; and scans the ROM:s for pass-one type load items. It then builds the
following entries:

1. Parallel T:SYMBOL and T:VALUE entries from extemal DEF, PREF, SREF, and DSECT declarations, Entries
in T:VALX are built when expressions defining DEFs cannot be resolved. Except for blank COMMON,
a DSECT is allocated when first encountered, and its address is stored in the T:VALUE entry.

2, T:DCB entries from external DEF and REF declarations that begin with either M: or F:. The oddress of the
DCB is either defined with an expression (for DEFs), or allocated by PASSTWO (for REFs) and stored in the
T:DCB entry,

3. T:CSECT entries and allocates CSECTs when encountered.

4, T:FWD entries when FWDs are defined. Entries in T:FWDX are built when expressions defining FWDs can-
not be resolved,

5. Entries in T:DECL whenever a DEF, REF, SREF, CSECT, or DSECT declaration is encountered.

At module end, the four module tables (T:DECL, T:CSECT, T:FWD, and T:FWDX)are packed together and moved to
B:MT. If the buffer is full, the tables are output on X2.

When all the entries in T:ROMI have been processed, PASSONE determines whether the librariesspecified have been
searched. If not, PASSONE calls LIB to search the library specified. Note that the library is searched and the
ROM:s from the library are loaded before the next library is searched.

If there are any :MODIFY commands for the segment, PASSONE calls CCl, After CCl recalls PASSONE, control is
returned to this point where T:MODIFY and T:MODULE are packed together and output on X3.

If there is a :SEG command in B:C, PASSONE calls CCI. Otherwise, the end of PASSONE is signaled. Blank
COMMON is allocated at the end of the longest path (if not allocated previously) and the remaining T:SYMBOL,
T:VALUE subtables are output. The resident table areas (T:DCB, T:SEG, T:DCBV, T:VALX) are set equal to the
actual lengths of the data in the tables. The T:ROMI area length is set to zero (since it is not used by PASSTWO)
and an end-of-file is written on X1. If any of the six scratch files overflowed, MAP is called; otherwise, PASSTWO

is called. -

Legical Flow of LIB

The LIB segment first packs the 16 Dynamic Tables together at the top of the Dynamic Table area. The remaining
space will be used for the L1B's tables. (Whenever enough room does not exist for the LIB's tables, the "pack" is
written on the disk scratch file, X6.) LIB then creates T:LDEF, starting from the end of the "pack".

179

GRANULE Order in which written ;

\

0 Progrom Heaoder last
1 Root Port | Ist
2 Root Part 1 {continued)
/\’
—A
End of Root Part 1

i Segment 1 2nd
k Segment 2 3rd
1 Segment n last=-2
m Root Part 2 last=1

Unused

EOT

Figure 55. Program File Format

Logical Flow of the Overlay Loader

After the Root segment has been loaded by the JCP, the Root calls the Monitor SEGLOAD function to read CCl into
the overlay area and then transfers control to CCI to process the IOLOAD control command.

Logical Flow of CCI

When CCI is called, there is usually a control command in the control command buffer (B:C). If not, CCI reads the
next command into B:C and logs it onto LO, If the command terminates a :ROOT, :SEG, or :MODIFY substack,

PASSONE is called; if it terminates an :ASSIGN substack, PASSTWO is called. If the command does not terminate
a substack, CCI scans the options specified and performs the following functions for the different control 44mmands.

JOLOAD Command. CCI sets flags; puts the program file name in M:OV DCB; builds T:PL, T:PUBVAL, and
T:PUBSYM from files specified in the PUBLIB option; allocates the 14 remaining Dynamic Table areas; and if the
GO option has been specified, builds T:ROMI,

The FWA of the EBCDIC, DEFREF, and MODIR files' buffer is calculated by subtracting the length of the longest file
from the end of the Dynamic Table area. The EBCDIC file is read into the buffer and the entries in T:LDEF are con-
verted to point from T:SYMBOL to entries in the EBCDIC file, T:LDEF entries not having corresponding EBCDIC
entries are changed to null entries.

The DEFREF file is then read into the buffer. LIB uses the DEFREF file to satisfy PREFs in T:LDEF. Allthe DEFs and
REFs from an entry in the DEFREF file are odded to T:LDEF if at least one of the DEFs satisfies a PREF in T:LDEF
The pointer to the ROM's MODIR file entry is saved in T:LROM, which is built backwards, beginning from the top
of the DEFREF buffer. The DEFREF search is finished when all the PREFs in T:LDEF, that can be, are satisfied.
T:LROM now contains pointers to all the library ROMs, and T:LDEF is no longer required.

The MODIR file is read into the buffer and the T:LROM entries are changed to point to the ROM's starting record
number in the MODULE file,

The packed tables are read from the disk (if they were saved in X6), and T:LROM is moved to the temporary buffer
(TEMPBUF) inside the LIB overlay while the Dynamic Tables are being unpacked. Note that if the DIAG segment
were to be colled at this point, TEMPBUF would be destroyed. T:LROM entries are converted into T:ROMI format
and added to T:ROMI in the Dynamic Table area. PASSONE is then called to input the ROMs specified in T:ROMI.

!

Logical Flow of PASSTWO

PASSTWO branches to process T:ASSIGN if CCI has just been previously called by PASSTWO to input :ASSIGN
commands. Otherwise, it reorganizes the Dynamic Table area and moves the resident tables T:SEG, T:DCBV, and
T:DCB to the end of T:PUBVAL and locates T:VALUE at the end of T:DCB. PASSTWO then allocates part two of the
Root either at the end of the longest path or where specified on a :ROOT card.

PASSTWO is now ready to process the segments. It points to the first/next T:SEG entry; reads the segment's T:VALUE
subtable into T:VALUE; calculates the number of granules required for the segment on the Program File; creates
T:GRAN at the end of T:VALUE; reads the segment's T:MODIFY and T:MODULE tables at the top of T:VALX; and
allocates the Work area (which is divided into granule partitions and contains all or part of the segment's partitioned
core image)at the end of T:GRAN. The Work area extends to the Module Tables Buffer (B:MT), which varies insize,
and is allocated backwards from the top of T:MODIFY. The Work area is dynamic and changes in size either when
tables in B:MT are no longer required, or when another set of Module Tables is input.

PASSTWO is now ready to process the segment's ROMs. It points to the first/next T:MODULE entry; reads in the
first/next set of Module Tables into B:MT if necessary; points to the current module's T:DECL, T:CSECT, T:FWD,
and T:FWDX table; inputs the ROM; scans the load items; creates the absolute core image in the Work area using
T:GRAN to locate the granules; and if the Work area gets full, outputs the necessary granules to the Program File.

PASSTWO repeats this cycle until all the modules in the segment have been input and then writes the granules re-
maining in core onto the program file. It then points to the next T:SEG entry and repeats the outer cycle until all
the segments in the program have been created.

If a Public Library is not being created, PASSTWO builds T:GRAN for part two of the Root, located at the end of
T:DCB. If there is an :ASSIGN command in B:C, PASSTWO allocates T:ASSN from the end of T:GRAN to the be-
ginning of T:VALX and calls CCI to build T:ASSN. After CCl recalls PASSTWO, control is returned to this point.
PASSTWO allocates the Work area at the end of T:ASSN (which may be of zero length); creates OVLOAD, DCBTAB,
INTTAB, ond the referenced DCBs; reassigns DCBs referenced in T:ASSN; writes part two of the Root on the Program
File; creates the program header; and writes it on the Program File. If a Public Library is being created, T:SYMBOL
and T:VALUE are output on the Program File, PASSTWO then exits by calling the MAP,

-

Logical Flow of MAP

MAP moves T:SEG and T:DCB to the top of the Dynamic Table area, and unless "no MAP" was specified, outputs the
program header information.

181

182

L4

MARP points to the first/next T:SEG entry, and unless "no MAP" was specified, outputs the segment's header informa-
tion. If either the PROGRAM or ALL option wos specified, MAP reads the segment’'s T:MODIFY and T:MODULE
tables into core at the end of T:DCB; locates B:MT at the end of T:MODULE; uses T:MODULE to read in the Module
Tables associated with the segment; maps the segment's control sections (including Library CSECTs if ALL specified);
and if this is the Root segment, lists T:DCB.

Regardless of the option specified, MAP reads the segment's T:SYMSOL and T:VALUE subtables into core at the end
of T:DCB. If the ALL option was specified, MAP reads T:PUBSYM and T:PUBVAL in as part of the root's external
table and lists all the symbols in the external table. If the PROGRAM option was specified, MAP lists all the non-
library symbols in the external table. If either the SHORT or "no MAP" option was specified, MAP lists only the
duplicate DEFs, undefined DEFs, unsatisfied REFs, and duplicate REFs.

This cycle is repeated until all the entries in T:SEG have been mapped. If a disk file used by the Loader overflowed,
the number of granules used or needed for all files is listed. Otherwise, this information is output only if either the
PROGRAM o ALL option was specified.

MARP terminctes the Overlay Loader by either calling the Monitor EXIT function or ABORT function. MAP aborts
and destroys the Program File if either a disk file overflowed or there were loading errors when a Public Library
was being created,

Logical Flow of DIAG

When the DIAG overlay is called, the environment of the calling program is unchanged. Since the DIAG segment
overlays the calling segment, all the temporary and permanent storage cells used by the calling segment are located
in either the Root or the Dynamic Table area. DIAG is called by the RDIAG subroutine which exists in the Root.
When RDIAG is called, it saves the 16 registers and then calls in DIAG via the Monitor SEGLOAD function. DIAG
outputs the specified diegnostic and depending upon the exit code associated with the diagnostic, either aborts, re-
turns to RDIAG, or calls the Monitor WAIT function. If control is returned from the WAIT function, DIAG returns
to RDIAG. RDIAG then reloads the calling segment via the Monitor SEGLOAD function, restores the 16 registers,
and returns to the calling segment at the address following the RDIAG call,

Loader-Generated Table Formats

The Loader creates the program's Program Control Block (PCB), DCB Table (DCBTAB), and Segment Loading
Table (OVLOAD).

PCB

The PCB exists as part of the Root segment and is initialized as shown below by PASSTWO, when the Root segment is
created.

Word 0 [0 0] TSTACK-1
1 1S5S lo 0
2 [o 0} OVLOAD
3 Unused
4 Unused
5 jo———0 MSLADD
6 o ———0 Entry Address
0 78 141516 3
Undised
10 jo 0 DCBTAB &
n Unused
12 Unused .
0 141516 252 31

where
TSTACK is the address of the current top of the user's Temp Stack.
TSS indicates the size, in words, of the user's Temp Stack.

OVLOAD is the oddress of the table used by the SEGLOAD function to read in overlay segments or zero.
MSLADD is the oddress of the M:SL DCB used to lood overlay segments.

DCBTAB is the oddress of o table of names and addresses of all of the user's DCBs. This table has the form
given below.

DCBTAB

DCBTAB is built from T:DCB, and is located in part two of the Root. DCBTAB has the format

Word 0 Total number of entries
1 El E2 E3 E4
Entryn §2 ES E6 E7 E8
3 FWA of DCB's execution location -
0 78 1516 2324 31

where

E1-E8 is the EBCDIC name of the DCB (left-justified with trailing blanks).

OVLOAD

The OVLOAD table contains the information necessary for the Monitor SEGLOAD function to read in overlay seg-
ments at execution time. One entry is created for each overlay segment. Thus, a progrom consisting only of a Root
would not have an OVLOAD Table.

OVLOAD is locatedin part two of the Root. The format of an entry is such that it canbe used as an FPT by SEGLOAD to
read inthe requestedsegment. OVLOAD is formatted asdescribed inthe "CP-R Tables Fomat" chapter.

Loading Overlay Loader

Before the Overlay Loader can be loaded, the OLOAD file in the SP area must be previously allocated by RADEDIT.
It is loaded by the JCP Loader with the ILOAD command. It is critical that the ROMs of the Overlay Loader's seg-
ments be ordered correctly, so that the segment's idents assigned by the JCP Loader coincide with the idents used
within the program. The segment idents are listed below:

SEG IDENT

ROOT 0

ccl |

PASSONE 2 -
PASSTWO 3

MAP 4

DIAG 5

L8 3

The overall flow of the Overlay Loader is illustrated in Figures 56 through 63.

184

i T i i

Overlay
Looder

[LOADSEG —\

Load CCI to process
the {OLOAD CC,

Figure 56. Overlay Loader Flow, 10LOAD

there an
unprocessed CC

CC teminate a
:ROOT, :SEG, or
:MODIFY sub-

CC teminate an

:ASSIGN substack

Is

P!

RDCC

in B:C

stack?
LOADSEG

no
Read next CC
into B:C.
ye

s
Load PASSONE to
process T:ROMI.

yes
/ LOADSEG

?

R N P

Load PASSTWO to

Process control command.

process T:ASSN.

~

[y

Figure 57. Overlay Looder Flow, CCI

R s L T S,

Was
CC just called
to input :MODIFY
commands ?

End
of T:ROMI
?

Get first/next entry
in T:ROMI.

Have
ROM:s spec. in
T:ROMI entry been
input
?

no

Build T:MODULE
entry for ROM.

L

Input ROM and scan for
PASSONE type lood items.

:

Allocate CSECTS and
D SECTS when encountered

‘

Build Module tables
(T:DECL, T:CSECT,
T:FWD, and T:FWDX).

!

Either link or add DEFs,
REFs, DSECTS to
T:PUBSYM, T:DCB or
T:SYMBOL or T:VALUE

'

Add DEF definitions to
T:VALUE and T:VALX.

3

Move Module Tables to
B:MT and write on X2
if the buffer is full.

Figure 58. Overlay Loader Flow, PASSONE

Wasao

library search

specified
?

yes

none

second library
been searched

yes

Is
there o
:MODIFY command
in B:C?

[LOADSEG X

yes
Load LIB to search
/ LOADSEG X specified library. / ,
L LOADSEG \
Call CClI to build
T:MODIFY. / Load LIB to search
specified Iibmry/

T:MODULE together
and output on X3.

there a :SEG

command in

yes 4
/ LOADSEG \

Load CCI to process
next segment's
substack.

Write B:MT on X2.

)
f PATHEND \

Write remaining
T:SYMBOL, T:VALUE
subtables onto X4
and X5.

Did
any RAD scratch
files over- yes ‘

flow ?
no / LOADSEG \

/ LoADSEG \ \Load MAP to output

Load PASSTWO to partial map-
create the load
module.

186

speci

ified

Pack T:MODIFY and
ONE

720

Figure 58. Overloy Loader Flow, PASSONE (cont.)

e S

at the top of the area.

Pack the 16 Dynamic Tables

Y

Build T:LDEF at the end
of the packed tables.

k!

and MODIR files' buffer.

Allocate EBCDIC, DEFREF,

will
buffer overlap
T:LDEF

WRITE

Write packed
tables on X6.

A

PU——

Read EBCDIC file
into the buffer.

R

Change T:LDEF entries to
point from T:SYMBOL and
T:PUBSYM entries to
EBCDIC entries.

T

Read DEFREF file
into buffer.

T

Allocate T:LROMtobegin
at the end of the buffer,

!

Use DEFREF entries to
satisfy REFs in T:LDEF,

(&)

T:LDEF REFs.

Built T:LROM to point to
library ROMs that satisfy

Y

Read MODIR file
into the buffer.

Y

Convert T:LROM entries
to point from MODIR
file entries to MODULE
file record numbers.

tables from
X6é.

Move T:LROM to TEMPBUF
(inside LIB overlay).

¥

Unpack the 16
Dynamic Tables.

Y

Convert T:LROM entries
to T:ROMI entries and

add to T:ROMI.

©

Z LOADSEG \

Lood PASSONE to
process T:ROMI,

Figure 58. Overlay Looder Flow, PASSONE (cont.)

187

188

Cl justcalledto
input :ASSIGN

Move T:SEG, T:DCBV,
and T:DCB to the end of
T:PUBVAL and ollocate
T:VALUE at the end of
T:DCB.

Allocate part two
of the Root.

Point to first/next
T:SEG entry.

Y

Read segment's T:VALUE
subtable into T:VALUE.

—

Create T:GRAN ot
the end of T:VALUE.

Read segment's T:MODIFY

ond T:MODULE at top of
T:VALX.

j

Allocate Work area
at end of T:GRAN.

3

Allocate B:MT ot
top of T:MODIFY.

\ J

Read in the segment's
ROMs and associated
Module Tables.

!

Scan PASSTWO type load
items and create absolute
core image.

Write segment's core
image on Program File,

“<“~—

Figure 59. Overlay Loader Flow, PASSTWO'

~—

Is
@ PUBLIB being
created
?

Create T:GRAN at
end of T:DCB for
port 2 of the Root and
allocate T:ASSN at
end of T:GRAN.

Is
there an

LOADSEG

Load CCI to
build T:ASSN.

yes

Allocote Work
area ot the end
of T:ASSN,

/

Create part 2 of the
Root and reassign
DCBs referenced in
T:ASSN.

y

Write part 2 of
the Root on
Program File.

Write T:SYMBOL
ond T:VALUE on
load module file,

>
\

Create program
header and write
it on Program File.

yes

Iso
PUBLIB being
created
?

LOADSEG

Load MAP to
output map.

Figure 59. Overlay Loader Flow, PASSTWO (cont.)

189

MAP
specified
?

yes

List progl;om, Root,
ond segment header
information. -

no

190

>

ALL

or PROGRA
map speci-
ied?

yes

List DCBs, program
CSECTS, and

program DEFs.

List information
about RAD file

usage.

List library CSECTS,
library DEFs, and
Public Library DEFs,

>

_y

Is
2 PUBLIBbeing
created

loading errors
?

List unsatisfied REFs,
duplicate DEFs,
duplicate REFs, ond
undefined DEFs.

K
/ EXIT
Take normal
Monitorexit

yes

Destroy ProgramFile

and take Monitor
ABORT exit.

Figure 60. Overlay Loader Flow, MAP

S

Save the 16
registers in the
Temp Stack.

SEGLOAD \

Load DIAG

overlay.

Figure 61. Overlay Loader Flow, RDIAG

SEGLOAD

Load callingover
loy segment

\

Restore the 16
registers,

Figure 62. Overlay Loader Flow, RDIAGX

191

192

Create text ond
output diagnostic
on LO and OC.

Toke
the exit asso-
ciated with the
diagnostic.

RABORT

response.

'C’ response

Figure 63. Overlay Loader Flow, DIAG

1. RADEDIT

The RADEDIT processor provides a convenient means for the creation and maintenance of filesin the various permanent
disk areas defined by SYSGEN. In particular, it provides job stream and terminal access to the system calls that
create and delete files in these areas, to functions that reclaim space lost to deleted files, and to a means of initial=
izing an area to its unused space.

It also provides utility functions that produce listings of active files, enter data into a file, and save areas on mag~
netic tape.

RADEDIT executes as @ norma! program in the background job stream. When called from TEL, using the name MUST,
it executes as a foreground secondary task.

Functional Flow

Upon being loaded, RADEDIT performs one~time initialization to acquire memory for use as buffers and work space.
This was created during OLOAD as a defined segment 20,000 words long. How much space is actually acquired, in
poges, is determined by

N = max-path=bgn

where
path is the number of pages in the longest segment path of RADEDIT.
bgn is the page address of the start of RADEDIT.
max is the page address of the end of the range permitted to an SMM program (considered as a good estimate

at how big a variable-sized program should try to be).

The last value is taken from K:FSMM if RADEDIT is executing in foreground (under TJE), or from K:BCKEND if it is
in background.

The layout of RADEDIT in memory is then:

SEG. ROOT SEG. 1000 SEG. 999
Yoo .. N \
ROOT RADEDIT § COMMON \ OVERLAY BUFFERS and \ ROOT
PART ROOT \ cobE RN e WORK AREA PART
1 (Reoon) R (Rs1000) \ \ \ 2
1 t t t t t
6000 600E 8000 8800 10000 15000

After the one~time initialization is completed, the normal command processing loop is entered. The functional flow
of this loop is shown in Figure 64. “

-

Permanent Disk Area Maintenance

RADEDIT creates and maintains files and file directories on any of the areas defined in the Master Dictionary except
the BT, XA, or CK areas. (See Chapter 8 for a description of the Master Dictionary.) It uses the system service calls
ALLOT, DELETE ond TRUNCATE to perform these functions.

193

194

/ CP-R \
Read IRADEDIT control
command. Load and

transfer control to
RADEDIT.

Do one-time initilization:
Get memory for buffers. If
called from TJE, ossign
inout DCB to Sl oplabel.

EXECH

y

Initialize DCBs and the
Scan Routine parameters.

Read next commond
from C device.

Jcp
control command

?

yes

IEOD
following
:COPY
?

Lood appropriate segment
if not already in core and
branch fo routine.

Retum to Monitor.

Vol b

TO THE PROCESSORS FOR THE VARIOUS COMMANDS

Figure 64. RADEDIT Functional Fiow

g

Utility Rewtines

In order to simplify processing and reduce dependencies on system table formats, a set of utility subroutines have
been implemented. These routines are colled whenever any of the information they process is required. In the
description of the individua! commands that follow in the next section, some of these routines are explicitly men-
tioned as being called. However, almost every command processer will call one or more whether mentioned or not.

UNPKMASD This routine gets information on the area whose index is in the cell AREA. If the area is allocated,
the F:BI DCB is assigned to the area and a GETASN CAL is issued to get such information as device address, begin
of area, end of area, and write protection code. All information is stored in the MASDxxxx table inthe context
segment. AREA < ff specifies any public areq; this is accepted by setting the area name to blanks and bypassing
the GETASN CAL. A valid area is indicated by returning to the link address + 1, unallocated areas cause a return
to the link address.

GAN This routine processes a list of area names (as for exomple in a :MAP command) and marks those given in
the AREASWS byte table. Each area requested explicitly is marked with on X'FF'; areas requested by the 'ALL' op~
tion are marked with X'BF'. The 'ALL' option may or may not include the BT, CK, IS and OS areas depending upon
the setting of the switch passed to GAN in the link register + 1 (RLNK + 1), If no errors are detected, the retum

is fo the link address + 1, If any errors, invalid area names, or no area nomes given, are found, the return is to
the link address and the address of an error message is in R15 (link register + 1).

SCAN This is a general routine used to scan all nomes, numbers, etc. It is identical to the SCAN routines in
the CP-R KEYSCN module.

GETION The general routine to scan an input identifier, which may be any of a file, device, or oplabel. The
routine determines which is given, and builds a table in the form required by the ASSIGN CAL, supplying any de-
faults requested or implied. It also generates the appropriate P-bits for ORing into the P=bit word of an ASSIGN
CAL.

GETFID, GETDEV, GETOPLB, GETANY These routines are used to call GETIOID to get a file identifier, de-
vice name, oplabel name, or any of these three, respectively.

GETFSTSD This routine reads the first directory sector (sector §) of the area assigned to the F:BI DCB into BUFF1
and does some preliminary determination of the status of the area. Return condition codes indicate:

cC=g¢ Directory continued (st word < £)

v
CC=4 Directory empty (Ist word = ff)
CcC=8 Directory's last sector (1st word > f)
GETNXTSD This routine reads the next sector of the directory whose current sector is in BUFF1 by accessing the

directory link address. It reads both old style (pre-DE~CP-R) as well as new style (DB and on) directories based
on the setting of the MASDFRMT cell. (See GETISFIL below.)

195

GETAX This routine converts a symbolic area name into an area index. The input name is left justified in RS;
the area index is retumed in AREA and R1. An undefined area name resuits in an error being indicated by retuming
to the link address. A valid area retumns the link address + 1. An area name of zeros or blanks is treated as the
specification of any public area and is indicated by an index of - 1. ’ ‘

GETISFIL and GETNXFIL These routines are used whenever on area's directory is to be searched or processed
one file at a time in their order in the directory. GETISFIL is called initially. It colls GETFSTSD to read directory
sector zero and test for a cleared area. It then tests the header field to detemine if it has an old (pre-DZF-CP-R)
or a new (DA and on) style directory and sets MASDFRMT to 1 or # accordingly.

The address of the first or next directory entry (in the BUFF1 buffer) is retumed on each call in R5. GETNXTSD

is called to read the next directory sector as needed. The routines retum relative to the link address according to
what is found

LINK + @: Error in directory
LINK + 1: Directory empty (GETISFIL), no more entries (GETNXFIL)

LINK +2: Next entry address in RS

’

UNPKDIRE This routine will unpack a directory entry into the DIRExxxx table in the context segment. It will
process old and new style formats according to the setting of MASDFRMT. It supplies blank account names for
entries which do not have them. For old style entries it also supplies zero for extent information and the length of
the entry. The address of the entry to process is in R5.

This routine and PACKDIRE are the only two routines in RADEDIT that know, or should know, the actual format of
a directory entry.

PACKDIRE This routine will form a new style directory entry from the information in the DIRExxxx table and
store it in memory starting at the oddress in R6. The name that is stored in the entry is a function of the celi
DIRESTAT, as follows.

DIRESTAT = @ => deleted file ==> name of oll zeros

DIRESTAT = 1 => bad sector entry ==> name of all F's

DIRESTAT = 2 => good file ==> name in DIRENAME
Contrel Commands

The creation and maintenance of files in the disk areas is done through the :ALLOT, :DELETE, :TRUNCATE and
:SQUEEZE commands. All but :SQUEEZE use the monitor service call to do their function.

<ALLOT The utility subroutine GETFID is used to get the file nome, and area and account name if given., The
other parameters are scanned and validated, and stored in the DIRExxxx table entries. RF is only allowed if the FP
area is specified. Specifying a library file in the SP or FP areas forces organization, and RSIZE (if MODULE), to
the needed values. See ALLOT under LIBRARY FILE MAINTENANCE.

An ALLOT FPT is then constructed based on the parameters present in the command and the monitor servige called
to actually perform the allocation.

See also the description of the ALLOT service in Chapter 3.

DELETE The file name and area and/or account name is scanned using the GETFID utility routine. A DELETE
FPT is constructed specifying the appropriate area and account if present, and the monitor service called to delete
the file. Multiple files can be deleted with one :DELETE command by repeating the FILE, fid parameters.

196

TRUNCATE This command can truncate either a specific file or oll files in an area. If the keyword "FILE" is
scanned, an individual file is assumed, and the utility routine GETFID is called to get its nome, area, and dccount.
A TRUNCATE FPT is formed from the parameters obtained by GETFID and the monitor service TRUNCATE called.

If the keyword "FILE" is not scanned first, it is assumed what was scanned was an area name. The utility routine
GETAX is called to validate it as on area name, and then UNPKMASD to get its Master Dictionary information.
The routines GETISFIL and GETNXFIL are used to get each entry in the directory, UNPKDIRE is used to determine
if it is an active file entry and get its name if so. A TRUNCATE FPT is built and the monitor service called for each
active file that has a file size greater than zero. After each file or area, :TRUNCATE loops back to accept another
file or area.

$SQUEEZE The :SQUEEZE command list the areas to be processed. The list is scanned using the GAN routine to
set flags in the AREASWS table for each area specified. SQUEEZE serves two purposes: 1) it ollows the reclaiming
of space that hos been last due to truncations and reallocation of deleted files or that is allocated to deleted files;
and 2) it provides a means of collecting the extents of extensible files fogether into contiguous space on the disk,
and, if not inhibited by a FIX when allotted, merging the extents into a single entry in the directory,. Figure 65
illustrates the disk areas before and after squeezing to reclaim space. ’ -

The :SQUEEZE processor uses UNPKMASD to get the area's BOA and EOA sector addresses and the sector size, and
GETISFIL/GETNXFIL to get each active or Bad Sector entry in the directory. It uses UNPKDIRE/PACKDIRE to get
all information from afiles entry and to move an entry to and from the directory sectors.

To process each area, the directory is read and each active entry is copied to a linked list in the background buffer.
This list is linked, both forward and backwards in the order in which it appeared in the directory. This is also the
order in which they are allocated space in the area. Aiso, extended files are linked by extents in ascending order.
Thereafter, the directory on disk is no longer used.

The algorithm used to relocate files and extents in order combine extents of normal extended files and juxtapose
extents if files marked by "FIX" is described in greater detail in Figure 69. Basically, however, each file is pro-
cessed as it occurs in the directory. If it is not an extended file it is moved down to the next sector to be allocated
in the squeezed area. When the first occurrence of a file is extent @, it is processed initially as a normal file. When
the first occurrence of a file is not extent f, the lowest numbered extent thot has not been squeezed is found and

it is moved to the next sector to be allocated in the squeezed area.

After an extent of an extended file has been squeezed, non=-FIXed extents are combined with the previous extent,
if any, ond the next extent chosen as the file entry to be squeezed next.

Whenever there is insufficient space between the lost squeezed file (extent) and the next nonsqueezed entry to
insert the next extent; space is made by trying, in order 1) move the next entry and its file to free space at the end
of the area; 2) move the file to the best fit space not used (either a deleted file or truncated space); or 3) rotate
the next extent and all intervening entries up on the disk: the entry immediately before the next extent will be
moved up over where the next extent was, the eniry before it will be moved over it, etc., and the next extent will
then follow the previous.

These attempts to create enough space for the next extent will fail if the next entry is c BADSECTORs entry, or if
there is such an entry in the range of files fo be rotated. In these cases, the extent chain is broken and the two
pieces are processed as two separate files. -

Space before BADSECTOR entries are filled with 1) the largest nonextended file that will fit; then 2) the smallest
extent @ of an extended file — this will be foliowed by as many of its extensions as will fit; and finally 3) o deleted
file entry that exactly fills the space.

Note that for areas containing BADSECTOR entries, it is possible for the SQUEEZED area to require more space
than before. This is a function of where the BADSECTOR entry is in the area and whether a large deleted file entry
has to be formed.

197

-
-

Disk Area Before SQUEEZE

o |[o] 70 0 Directory
1 51 1 file 1
>
2 X'AAAAAAAA' 10
3 X'55555555"' ll* deleted file
4 file] 14
BOT =1 EOT =10 15 lost space
15 deleted 16 file 2
BOT =11 EOT =14 20
26 file 2 (truncated) %; lost space
BOT =16 EOT =20 23 file 3
37 file 3 (truncated) | 28
BOT =23 EOT =28 g“? lost space
48 bad sectors 32’ bad sector space
BOT =32 EOT =47 47
59 file 4 48’ file 4
BOT =48 EOT =50
50
70 | 51
n i [m L free space]
word sector
Disk Area After SQUEEZE
0 Ol 70 0 Directory
1 48] . file 1
2 X'AAAAAAAA' 10
3 X'55555555"' 11 file 2
—>
4 file 1 15
BOT=1 EOT=10 16’ file 3
15 file 2 21
BOT =11 EOT =15 22 file 4
2 file 3 2
BOT =16 EOT = 21} 25 deleted file
—_—
37 file 4 3
BOT =22 EOT = 24 32 bod sector space
——————
48 deleted file 47
BOT =25 EOT =31 48
59 bad sectors
BOT =32 EOT = 47 4 free space 1
70 ~
n m
word sector

198

Library File Maintenance

Both the System Librory files residing in the SP arec and the User Library files residing in the FP area have ;the same
file structure. Each library consists of one blocked Module File (MODULE) and three unblocked files: the Module
Directory File (MODIR), EBCDIC File (EBCDIC), and DEFREF File (DEFREF).

The MODIR File contains general information about each library module, including its name, where inthe MODULE
File it is locoted, ond its size. The MODULE File contains the object modules. The EBCDIC File contains only the
DEFs and REFs of the library modules. The DEFREF File contains indices to the DEFs and REFs in the EBCDIC File for
eoch module. These files must be defined via the :ALLOT command before aottempting to generate them vio the
:COPY command.

Algorithms for Computing Library File Lengths
The following algorithms may. be used to determine the approximate lengths of the four files in a librory. It

is not crucial that the file lengths be exact, since any unused spoce con be recovered via the :TRUNCATE"
command, The approximate number of sectors (nMODIR) required in the MODIR File is

230
"MODIR™ 5~

where
i is the number of modules to be placed in the library.
s is the disk sector size in words.

3 words is the length of a MODIR File entry.

N
L~
o

)=2
EBCDIC s

The approximate number of sectors (n

where

d is the unique number of DEFs in the library,
s is the disk sector size in words.

2 words is the average length of an EBCDIC File entry,

The approximate number of records (nMODULE) required in the MODULE File is

n
"MODULE ~ iZ, < -

where

n is the total number of modules in the library.

Ci is the number of card .3mages in the ith library routine.

199

The approximate number of sectors (nDEFREF) required in the DEFREF File is

n d _r
i+ i
20 1+
i=1

"DEFREF ~ s

where

is the total number of routines in the library.
is the number of DEFs in the ith library routine.
r is the number of REFs in the ith library routine.

‘$ is the disk sector size in words.

Library File Formats

The library file formats are described below. These files are generated from object modules read in via the
:COPY command.

4

MODIR File

The MODIR File is an unblocked, sequential access file and octs as a directory to the MODULE File. The file al-
ways consists of one variable length record that increases in size as object modules are added to the library. There
is one entry in the MODIR File for each object module, with each entry consisting of three words.

Words 0 MODULE File record no. Records per module
1 Module name (first DEF)
2 Module nome
3 MODULE Fife record no. Records per module
4 Module name » .
5 Module name
6
7 :
8
9
10 :
n)
12 -
0 I5116 31
where

MODULE File record no. is the relative record within the MODULE File where the object module (corres-
ponding to this entry) begins.

records per module is the number of records in the object module.

module name is the name of the object module that is the first DEF in an object module.

A deleted entry contains zeros in all three words.

MODULE File

The MODULE File is a blocked, sequential access file and contains the object modules. The location of the object
module within the file and the size is indicated by the MODIR File entry.

EBCDIC File

The EBCDIC File is an unblocked, sequential access file. The file always consists of one voriable length record
that increases in size as object modules are added to the library. The EBCDIC File contains all the unique DEFs

and REFs in the library object modules. w
0 n e e e -
1 e n e e
2 e e e e
3 e e
where

n s the number of bytes in entry (including itself).

e is an external definition or reference in EBCDIC.

DEFREF File

The DEFREF File is an unblocked, sequential access file. The file always consists of one variable length record that
increases in size os object modules are added to the library. For eoch module there is one entry that varies in size
according to the number of DEFs, DSECTs, and REFs. DEFs and DSECTs always precede the REFs in the entry.

Entry size (no. 1) MODIR File index
d DEF 1 d DEF 2

rid DSECT 1 r REF 1

r REF 2 Entry size (no. 2)
MODIRFile index d DEF 1

r REF 1 r REF 2 *

01 15161718 31

where
entry size is the number of halfword entries (including itself) for the object module. 3 sentry size <32,767.

MODIR File index

is the relative halfword in the MODIR File that identifies the object module. 0<MODIR
File index32,767. -1 means a deleted entry.

201

202

d ifd =1, the entry is a DEF

ifd ond r both = 1, the entry is a DSECT.
r if r = 1, the entry is a REF Lo

DEF n is the byte index of an external definition in the EBCDIC File.
REF n is the byte index of an external reference in the EBCDIC File.
DSECT n is the byte index of a DSECT in the EBCDIC file.

A deleted DEFREF entry contains a MODIR File index of -1, with the rest of the entry remaining the same.

Command Execution

The library files are maintained through the execution of :ALLOT, :COPY, :DELETE, ond :SQUEEZE commands. The
entries in the MODIR File, MODULE File, and DEFREF File are in the some sequential order. The ith entry in the

MODIR File identifies the ith object module in the MODULE File, and corresponds to the ith entry in the DEFREF
File. The ordering of these files is olways preserved.

WALLOT Library files are allocated in the same general manner as other files described previously, but with
certain specific differences. When area SP or FP is specified, a check is made to determine if the file nome is
MODIR, MODULE, DEFREF, or EBCDIC. If MODULE is specified, RSIZE is set to be 30 words and FORMAT set to
be blocked, If MODIR, DEFREF or EBCDIC is specified, FORMAT is set to unblocked. RSIZE can be any value
for the unblocked files and is used solely for calculating the amount of space to allocate for the file. The record
size for these three files is set to 0 when allocated. GSIZE on all library files is ignored, and is always set equal
to disk sector size by RADEDIT.

{COPY The permanent disk area specified on the :COPY command determines which library a module(s) is to be
added to. For each object module added, the following procedure is followed:

1. An object module is read from the input device specified on the command. The module is added to the end
of the MODULE File as it is being scanned for external definitions and references. The MODULE File
record number for the MODIR File is obtained from RFT12 (current record no. of file). The MODIR File
index is obtained from RFT5 (record length).

2. As DEFs and REFs are encountered, they are added as entries to the end of the EBCDIC File. The first DEF
encountered is used as the MODULE File name. However, REFs are added to the EBCDIC File if they are
not in duplicate.

3. The indices to the EBCDIC File entries are saved to create the DEF n and REF n words of the entry to the
DEFREF File. -

4. The addition of the object module to the library is completed by updating the "records per module” in the

MODIR File entry; "entry size" in the DEFREF File entry; and writing the MODULE, DEFREF, and EBCDIC
Files to the disk.

‘DELETE The permanent disk area on the :DELETE command is used to determine which ares contains the library
object module to be deleted. The MODIR File entry containing the same module name as that appearingon the com-
mand is zeroed out. The corresponding DEFREF File entry is located and the halfword contoining the MODIR File
index is set to =1. No other changes ore made to the EBCDIC and MODULE Files as o result of the :DELETE
command. - -

All unused space resulting from o module deletion is recovered when a :SQUEEZE command is executed.

SQUEEZE The area containing the library is determined from the subparameter fo "LIB" from the SQUEEZE
command. Only the library will be squeezed by this form of the command. A search is made of MODIR for any
deleted entries. If none are found, there is no space to be reclaimed and squeeze terminates. If there are deleted
entries, all remaining modules are copied from the MODULE file to the Temporary File X1.BT. Then, using X1.87

as the source input, the library files are recreated by a nomal library build.

P SO K Tt . a ek
RS Uy S dee CI TR S DU S U o SO SR e S S A

Bad Secter Handling

Bad sectors within permanent file areas on o disk are removed from use by making special entries to the oppropriate
file directory. All bad sectors can be handled in this manner except these that contain a sector of the file
directory. These cannot be removed from use as it would make accessing of certain files impossible.

t

Command Exscution
Bad sectors are handled through execution of :BDSECTOR and :GDSECTOR commands. The BDSECTOR commond

removes the sectors from use by ollocating a BADSECTOR entry equal to the limits of the bad sectors. The
:GDSECTOR command returns the sectors for use by deleting the entry made by :BDSECTOR.

tBDSECTOR The permanent disk orea containing the bad sectors is determined from the disk address and sector
limit on the command and the BOA and EOA limits of the areas in the Master Dictionary. Specifying sector zero

of the area is not allowed, and doing so will cause the command to abort. If any other directory sectr is specified,
an attempt will be made to move its data fo another sector. The directory is searched for ali files that fall within
the bod sector limits. Files that begin within the limits are deleted and messages are produced to indicate which
files they were. Files that terminate in, or completely contain, the bad sectors are truncated at the last good sec-
tor, and message(s) produced to warn of this condition. For extended files, all extents beyond the truncated or de-
leted extent are also deleted.

A BADSECTOR entry is created, either from one of the deleted files or an entirely new entry, whose name is set
to ~1 (X'FFFFFFFF*, X'FFFFFFFF') and BOT and EOT to the bad sector limits.

tGDSECTOR The area fo process is determined in the same way as for :BDSECTOR. The appropricte area's
directory is searched for all BADSECTOR entries included within the sector limits. Entries completely within the
limits are converted to deleted file entries; others are adjusted to reflect their new BOT's and EOT's.

Utility Functions
The following utility functions are performed by RADEDIT.
s Maps permanent disk areas,
® Maps libraries.
e Clears permanent disk areas,
o Enters data onto permanent disk files.
o Appends records to the end of an existing permanent disk file.
e Copies permanent disk files,
e Copies library object modules.
e Copies the contents of a disk pack to another disk pack.
e Dumps the contents of disk files or entire disk areas,
e Saves the contents of disk areas in self-reloadable form,

® Restores disk areas previously saved,

203

g

MAP The permanent disk area(s) to be mapped is indicated on the :MAP Command, with the map information -
being output to the device assigned to the M:LO DCB.

Each map consists of up to three sections: one section when disk areas CK, XA, or BT are mapped; three sections
if any other areas are mapped. The three sections of the map are as follows:

1. Information from the Master Directory identifying the permanent disk area, storting and ending disk od-
dresses, write protection, and device number of the disk from the Device Control Tables.

2. Information obtained from the permanent file directories concerning each file in the areqa; its name, format,
granule size, record size, file size, beginning of file, and ending of file.

3. Information about the space remaining in the area.

Section 1 of the map has the format

AREA DEVICE- WORDS/ SECTORS/ BEGIN END WRITE
ADDRESS SECTOR TRACK SECTOR SECTOR PROTECT
zz yyndd sssss tHtt bbbbb eeece w
t
where

zz identifies the permanent disk area.
yyndd is the disk that contains the permanent disk area.
585§ is the words per sector in decimal.
titt is the sectors per track in decimal.
bbbbb is the absolute disk address of the first sector of the area in decimal.
eeeee is the absolute disk address of the last sector of the area in decimal..
w is the write protection for the file.
P is no write protection.
F is write-pemmitted by foreground only unless SY key=-in.
B is write-permitted by background only unless SY key-in.
S is write-permitted only if SY key-in.

X is write=pemitted by IOEX only.

Section 2 of the map has the format

FLGS AREAL KELATIVr GRANULE FKECCRL FILE APPROX EXTRALL

rILLiAME JACCOUMT XTHT REG1l ELD SICE S1ZE SIZE neE CORLS SI1IZE)
ORC SECTCH SECTuUN (EYTES) (PYTES) (FrCS) ReRAIN (SECTR)
nnonnnnn.asaazaa2 Xxx o fff &s©ssss ttttt PCFER rrrrr 11111 uuuuu VAAA'AY
N I : R
where

npnnnnnn is the name of a file in the permanent disk area.

acagaaca is the account number under which the file was allotted. It is not printed if it is all zeros
or blanks.

%0 is the number ofﬂ;lsoxfent if fhe A‘fivl'é }s'cmfulbie.
o is the file organization. S .

U specifies unblocked.

B specifies blocked.

C specifies compressed,
f are the flags.

F for FIX specified.

R if Resident Foreground.

S if written Sequentially.

D if written Directly. o

99999 is the granule size in bytes in decimal.

rrrrr i the record size in bytes in decimal.
Hin is the number of records in file in decimal.
$885S is the relative disk address of the first sector defined for the file in decimal.

tHtt is the relative disk address of the last sector defined for the file in decimal.
uuLuU is the approximate number of additional records the file can contain.

vvvvy is the number of sectors to be allotted to any extension to this file.

Section 3 of the map gives statistics on the use of the area and has the format

NUMBER OF FILES: nnnnn
REMAINING SECTORS: XXX
SECTORS RECOVERABLE: YYYYY
where
nnnnn is the number of directory entries listed.

XXXXX is the number of unused sectors in the area; those between the end of the last allocated file and the
end of the area.

YYYYY is the number of additional sectors that will become available if a SQUEEZE is performed.

The mapping of an area is performed as follows: <

1. Information is obtained from the Master Directory for Section 1 of the map and output to the LO device.
If an area is not allocated, the mapping of that area is ignored.

2. Information is then obtained from the permanent file directory for Section 2 and output fo the LO device.
If an area other than CK, XA, or BT does not contain files, o message will be output to that effect. When
— a bad sectors entry is encountered, * BADSECS" is printed as the name of the file.

3. As the information for each file is printed, sectors contained in deleted files or between the end of one
file and the beginning of the next (truncated areas) are counted for reporting in Section 3.

The information on the Master Dictionary is unpccke& by the subroutine UNPKMASD into a table. All subsequent
references to MASTD information during @ MAP operation then use this table. UNPKMASD also computes the num=

ber of sectors in the area and initializes values used in occounting for free space, used space, ond lost space for
Section 3 output. N

Each file's entry in the directory is unpacked into a table as it is scanned. This table, rather than the actual entry
in the directory, is used to print the information for Section 2,

As each area's map is produced, checks are made for a valid directory., Conditions tested are

1. The "Address" portion of the last directory sector is larger than a sector,
2. The "Next Available Sector" portion of a directory sector points out of the area.
3. The End sector of a file entry is beyond the end of the area,

4, The size of a file (EOF - BOF) < 4. Lo

Whenever any of these conditions are found, the processing of the area is terminated by the message

AREA HAS AN INVALID DIRECTORY

ILMAP This command functions only on libraries in the SP and FP areas.
The output map has the format

MAP OF LIBRARY IN AREA aa

MODULE NAME LOCATION DEFS REFS
mmmmmmmm 1 dddddddd dddddddd FrTTTITT TYTTOrT
where

aa is the permanent disk area that contains the library.
mmmmmmmm is the object module name.
] is the relative sector oddress of the first sector of the object module.
dddddddd is the name of an external definition (up to three per line).
e is the nome of an external reference (up to three per line). 4 - -

If the area contoins no library, the messoge

AREA CONTAINS NO LIBRARY

is output.

tSMAP This command functions similarly to the :MAP function except that the output is greatly abbreviated for
output to a temminal.

Section 1 of the map has the format
AREA: zz
Section 2 of the map has the format

fRECS FILENAME .ACCOUNT

THIT nNnNNNnNn . aaaaaaaa

The mapping of the area is performed in the same steps described under :MAP.

:CATALOG The :CATALOG command uses the utility routine GETFID to get its input parameter and decide
what type of :CATALOG command is given. If a file nome is given, it is assumed to be the first of a list
of individual files, specifically named, that are to be processed. This is Format "A" catalog. If no file name is
given, it is Format "B" wherein files to be processed are selected based on area and/or account.

Format "A" processing.

Immediately on determining that it is a Format "A" command, the header
ORG #RECS NAME

is output.

For each file listed, the total number of records in the file and all its extents is determined and the files organiza~
tion, number of records and FILENAME.AREA .ACCOUNT output.

Fomat "B" processing.

This format may select all accounts in a particular area, (TYPE 2) o particular account in all areas, (TYPE 1), ora
particular account in a particular area (TYPE 0). Based upon which is requested, o list of all areas to be scanned
is built in the AREASWS table.

All areas specified are scanned in order of ascending area index. Area information is gathered by UNPKMASD,
each file entry in the directory by GETISFIL/GETNXFIL, and the status and information in an entry by UNPKDIRE.
As each new file name in the proper area, account and file name limits is found, it is added to o linked bit of files
created in the background buffer space. This list is created and kept in order alphabetized by file name by account
and then by area index. As each extent of an extended file is found, its file size is added to the accumulated total
in the list.

A list entry has the format

Word Index

] 4
- File Name —

2 1

3 2
L— Account Name —

4 3 -

5 Area Index ORG 4

é FSIZE 5

7 Back Link 6

8 Forward Link 7

207

208

-

The output produced varies according to the type of :CATALOG requested, the type is maintained in the cell -
MAPSW. It is used to branch to the proper code fo produce the required header, and again to decide whether the
area and/or account is to be displayed.

:CLEAR The pzrmanent disk area on the :CLEAR command is used to determine the area to be cleared (set to
zero). The area is cleared using the direct access method. The granule size is set equal to the amount of unused
background space available, which is zeroed out and written to the disk.

:COPY The parameters on the :COPY command are used to set up the F:SI and F:SO DCBs. Files are copied
sequentially. When an IEOD, :EOD, or EOT is encountered, the number of files to copy is decremented. If there
are no more files to copy, the request is terminated; otherwise, the next file~copy is started. When an object
module is copied to an output device, the COPY is terminated when the module end load item is encountered.

:DPCOPY The parameters in the :DPCOPY command are used to set up input and output DCBs which are assigned
directly to the specified disk packs. The copy is double buffered on input and output using buffers that are as large
as the background work space will allow. The copy continues until the specified number of sectors have been
copied.

:DUMP The permanent disk area or file to be dumped is indicated on the :DUMP command. The information is
dumped to the device assigned to the M:LO DCB. The file dump has the format

DUMP OF FILE nnnnnnnn IN AREA AA
RECORD rrrr

WD 0000 dddddddd dddddddd .. .dddddddd

WD 0008 .
WD 0016 .
where
npnnnNnN is the name of the file.
AA identifies the permanent disk area (area BT inclusive).
rrer is the relative record number and begins with 1.

dddddddd is o data word in hexadecimal.

The area dump has the format
DUMP OF AREA ZZ
SECTOR ssss
WD0000 dddddddd dddddddd ...dddddddd
wDO0008
wD0016 . .
where |
Y4 identifies the disk area.
$88S is the relative sector number,‘ and begins with 0.

dddddddd is a data word in hexadecimal.

Access Centrel image (ACI)

Purpose

The ACI contains an image of the access protection codes for a given secondary task.
Type
Serial consecutive entries in TSPACE,

Logical Access

The ACI is pointed to from the STCB. Entries are accessed by index displacement with entry 0 representing virtual
page 0.

Overview of Usage

The ACI is created by task initiation and is filled in by the Task Dispatcher before each dispatch operation from
information in the tasks segment descriptors. The ACI is also manipulated by Memory Management routines.

Access Control Image (ACI) Format

word
01 23 456 26 27 28 29 30 31
0 1% A A cee A Ay A
v [A, .. As;
2 A, ... A,
P >
15 | Ay) Agss
where

Ai is the 2-bit occess protection code for virtual page i.

210

The dumping of an area or file is performed as follows:

1. The directive is scanned to determine whether an area or file is to be dumped. If a value for SREC is not speci-
fied, O is assumed. [f o value for EREC is not specified, the last record of the file or area is assumed.

2. The record(s) to be dumped is accessed sequentially. Within a record, if a word is duplicated more than sixteen
times in order, it is output only once in the message

'WDxxx THRU xxx CONTAIN xxxxxxxx'

If records are duplicated, the message

'RECORDxxx THRU xxx CONTAIN xxxxxxxx'

is output.

If sectors ore duplicated, the message ’
'SECTOR xxx THRU xxx CONTAIN xxxxxxxx'

is output.

3. The dump is terminated when the specified number of records have been dumped or when a complete file or area
has been dumped.

:XDMP The specified input is displayed on the device assigned to the M:LO DCB. The input may be o file, a
disk, o tape, a card reader, or any other valid input device. Files and disks are read in a sector by sector mode;
tapes by physical blocks; and other devices by records. For input coming from a disk, the read is limited to sector
size. Forall other input, the read is for 65536 bytes (the maximum possible in READ CAL) or the size of the back-
ground buffer space, which ever is smaller.

Each XDMP output starts on a new page. FEoch page of output is headed by a title line that gives the name of the
device, file or area being processed, and the oplabel if accessed through one. Each sector or record is processed
individually. A sample of the output is given below. The two addresses on the left are the byte (and word) dis-
placement from the beginning of the block to the first byte (word) on that line.

Example: XDMP output

¥l BNX rh 76 AUG 17
SECIDR 0 LENGTH @ 102¢ { 8001 BYIES
BYTL IwWOND} D I0/R) 8 (A/Y) w2740 L LI/8) 10 (4/C) 164 (8700 ¥R 1&/L) 1€ (2/F)

00UCe OpNUY PEEEREFE BFEFRMEF OOUGOVOD UUODOIER 00000400 0A00000U 0O7DONNO0 0%0A0A00
00020 VOOUS YUOONBAR 000VO04IS DALUVUOD Ut ADODOO O+1E0A0D0 QOMDI3IRA QOVDD428 CGACOO000
9nge0 00010 17700000 ©W3IZ0AVO 00

UgUs0 DOOLIS 0 VLVLOV000 00000000 Beseessaraas tessceeessrrarnnene seev
BYTES OUOBU TO VOJOF IDENTILAL 10 ABDYE LIMEJ 00R6s (0NI6D) BYTES, DUP16 (0UCOS) WORDS.
GOJEC ©OO0O0FB vovy Beeeosrussece ssetaresene fesvee seev

END OF xunP

When there are three or more lines of output having the same contents, only the first line is displayed. The other
lines are replaced by the "identical to above line" message seen in the sample output. The first two numbers are
byte displacements of the first and last bytes of the duplicate line. The length of the duplicate information is given
in decimal and hexadecimal bytes, then in decimal and hexadecimal words.

SAVE . The area(s) to be saved is specified on the :SAVE command. The data is dumped to the device assigned to

the M:BO DCB, and consists of the fol lowing:

v

1. A small 88-byte bootstrap that loads the large bootstrap when booted from the console.

2. A lorge bootstrap that restores the disk from magnetic tape.

3. An 88-byte RBM bootstrap used for booting the disk.

4. Records containing data to be saved.

Each record to be restored is preceded by a six-word header with the format:

0 f18 15161718 19 20 23 24 31
LIL|MID
WPS RIRIR|P SEQ Area index
AITIT LA
SPR Device address
TPC FWA
SPT Area name
NSZ
CKSM

where
WPS
LRA
LRT

MRT

DPA
SEQ

Area index

SPR

Device address

TPC

FWA

SPT

Area Nome
NSZ

CKSM

is the number of words per sector,
is a flag to indicate this is the last record of an area.
is a flag to indicate this is the lost record of the tape.
is a flag to indicate the save data is continued on another volume. (The LRT flag will
also be set, and SPR and NSZ will be zero. It is followed immediately by double
tapemarks.)
is a flag to indicate the area is on a disk pack.
is the volume sequence number. It starts with zero and counts modulo 16.

is the Master Dictionary index of the arec to which the record belongs.

is the number of sectors of data in the record that follows this header. If zero, there
is no following data record,

is the physical device address from which the data was read.

is the number of tracks per cylinder for the device. It is used for restoring areas to
disks by the bootstrap.

is the absolute disk sector number where the data records should begin being regtored.

is the number of sectors per track for the device. It is used for restoring areas to disk
by the bootstrap.

is the two character EBCDIC name of the area to which the data record belongs.

is the number of sectors of zeros to write preceding the data record (if any) that follows.

is the checksum of this record in 2's complement form.

21

212

The saving of an area for subsequent restoration is performed as follows:
1. A small and large bootstrap are written with their checksums.

2. A header for the CP-R disk bootstrap is written, The FWA and device number for the header is obtained
from K:RDBOOT.

3. The image of the CP-R disk bootstrap is read from the file RADBOOT in the SP area, and written,

4. Data records are written with each record being preceded by a header and followed by a checksum.
Leading and trailing zeros of a record are not written. Size of the data records depends upon the amount

of available background space used as a buffer.

5. After all the specified areas are saved, the tape is verified by using the checksum word of each header
and data record. If no checksum errors are found, the message 'SAVE TAPE OK' is printed.

Since :SAVE makes no attempt to interpret the directory in an area, it will attempt to read and save bad sectors
even if they have been removed from use by a :BDSECTOR command. Nomally :SAVE reads as many sectors at a

time as will fit in the background buffer and processes these as a unit and writes the non-zero data to the tape. If

the READ service call reports an unrecoverable error, :SAVE enters the error mode for that group of segtors. In
this mode, all the background buffer is first filled with the doubleword data string C'LOSTDATA', ond then each
sector is read individually one behind the other. If no errors are detected, :SAVE leaves the error mode with no
message . If errors are detected again, the first and last sector numbers getting errors are saved until the read-by
sector is complete. One of the messages below output to M:LO.

DATA IN SECTOR xxxxx MAY BE LOST IN AREA zz

DATA IN SECTOR xxxxx TO xxxxx MAY BE LOST IN AREA zz
At the end of the save tape build, if any such messages have been printed, the message

WARNING: ERRORS WRITING SAVETAPE. CHECK LISTING

is output to M:LL and to M:OC in an ATTEND symbiont system. These messages do not cause processing to stop.

:RESTORE The area(s) to be restored is specified on the :RESTORE command. The data is read using the device
assigned to the M:Bl DCB. The small bootstrap, large bootstrap, and CP-R disk bootstrap are skipped. Data records
are read and restored using the headers that precede them with all leading and trailing zeros of a record also being

restored. Restoration has to be made to the same type of disk as that from which the records were saved.

The names of all areas to be restored are stored in the AREASWS table. The input tape is read once. As each area

i on the tape is found, it is looked up in the AREASWS table and, if requested, restored and marked as such in the

{table. Areas on tape are identified by name, not index. If the area index on tape does not match the current index

| for the area name, a waming is generated, but the restore is done for the named area onyway. Whenever all re-
| quested areas have been found, RESTORE terminates. When the end of the tape is reached, the table is scanned
| to ensure all explicitly named areas were restored. If any were not, an error message is given. Areas requested
' by ALL do not produce an error message if they are not found.

| The :RESTORE processor is also able to process pre EQ0 format :SAVE tapes. These format tapes are distinguished by

“having a 5 word header record rather than a 6 word header.

~~

This header has the fonn‘

8 15161718 19 20 2223 24 3
LiL D D
WPS RIR}olP|l o0-0 [P Area index
AlT A A
SPR Device address
TPC FWA
SPT NSZ

CKSM

where the fields are the same as in the 6 word header. Whenever :RESTORE reads a 5 word header, it will re-
format it to the six word form, The area name currently having "Area index" will be inserted as the‘name;
therefore changes in the index value for an ares will not be detected.

Flowcharts of various RADEDIT commands are illustrated in Figures 65 through 70.

213

ALLOT

GETFID

Get filename, areq,
and account.

ALLOTI

Store parameters in
DIRExxxx table,

ALLOTIO

ERROROS ALLOTI!

Is
area SPor
FP?

file a library
file?

yes

ALLOTI4 ¢

Set ORG and RSIZE
as required for the
file.

ALLOT30

Form FPT and issue
ALLOT CAL.

Figure 65. RADEDIT Flow, ALLOT

214

TRUNCATE

TRUNCI g

Scan keyword

yes

GETFID

Get filename, areq,
and account,

Area
allocated

ERRORO4

TRUNC5

Form FPT and issue
truncate CAL.

@

Listed
parameters

Figure 66. RADEDIT Flow, TRUNCATE

81
(TRUNCATE)

TRUNCI2

Area
allocated

-

TRUNCI8 y
GETISFIL AGETNXFIL

Get next file in
directory,

TRUNCI15

Last entry
in directory

TRUNCI5

Form FPT and issue
truncate CAL.

215

216

copry

@ A

Initialize COPY
routine.

y

Scan command
(from field).

Is
input from
device or op

label
?

Input From File

Setup F:S1 DCB
and FPT (areq, file
name, ASN record

size).
!

Scan command

(to field).

Copying
to another disk
file
?

Copying

to output device

orop label
?

y

lllegal use of COPY.
Return to Monitor
or EXECI.

Figure 67. RADEDIT Flow, COPY

CcopY
58

copy
68

COPY
55

Setup F:S1 DCB and
FPT (area, record
size, file name =
Module).

y

Scan command
(to field).

to output device
or op label
?

yes

IHegal use of COPY!
Return to Monitor

or EXECI.

Setup F:SO DCB
(ASN, DCT Index,
op Label Table
Index).

¥

Read MODIR file
into Background
Buffer.

\

Get location of
module in MODULE
file by searching
MODIR file.

¥

Skip out tomodule
on MODULE file.

Copy module to
output device.

-Figure 67. RADEDIT Flow, COPY (cont.)

217

COPY
22

(&

Setup F:S1 DCB (ASN,
DCT Index, Op Label
Table Index.)

Y

Scan command (to field).

Copying
to a library ?_Ayes

Copying
to a file?

Setup F:5O DCB and FPT
(area, file name, ASN,
record size),

v

Process options if any.

If add option, skip to EOF
on output file.

Assign C device to 0,

T

Copy to disk file.

[}

Reassign C device to
standard assign.

Figure 67. RADEDIT Flow, COPY (cont.)

218

——

Al

?

&

Setup F:SI, F:SO
DCBs and FPTs.

Module add
2

yes

\

Read EBCDIC file
into Background
Buffer.

Set record
length =0 for

all library files.

Y

Invert EBCDIC in
Background Buffer
starting at highest
core location.

i

Read DEFREF File
into Background
Buffer starting ot
Lowest Core Locat.

\

Scan module for

DEFs and REFs.

COPY
38

COPY
38

COoPY
46

Write out DEFREF
filewith new entry
to DEFREF file.

4

Invert EBCDIC
in background.

!

Write out EBCDIC
file with new entry

to EBCDIC file.

y

Read MODIR
file into
background.

Write out MODIR
file including
entry for this

module.

Figure 67. RADEDIT Flow, COPY (cont.)

219

&

Set up F:5O DCB

(areq, file name,

ASN).
!

Process options
if any.

&

If add option, skip
to EOF on output
file.

Setup F:SO DCB
(ASN, DCT Index,
Op Label Toble,
Index).

Process options
if any.

Copy input file
to output file.

y

Write EOF on

output file.

220

Figure 67. RADEDIT Flow, COPY (cont.)

l

GAN

Get areas to
be squeezed

Set index to
process SP first,

Step index to
next area.

Read area's
directory, build
linked cbain.

Area empty
? yes

Compute size of
background copy
buffer, build copy
FDT's and DCB.

Figure 68, RADEDIT Flow, SQUEEZE

221

222

UNPKDIRE

Unpack intormation
for next entry on
chain.

BADSECTOR
entry?

Ist
extent in g
list
?

Is file in
place?

SQ MOV FILE

Move file to its
squeezed location.

A

S« S +file length
set next sector to
squeeze a file into

Is file

extensible
?

previous file alsd
previous
extent?

Combine extents.

Another
extent in file
follow

Another

entry on chain

Figure 68. RADEDIT Flow, SQUEEZE (cont.)

thing in area or
directory changed

Write new
directory out to
area.

()

CLRAREA
Clear any sectors
recovered and now
not used.

Figure 68. RADEDIT Flow, SQUEEZE (cont.)

223

Find first unsquee-
Step to next zed extent in this
entry on chain. file.

E3

Is
next entry next
extent

?

it same extent

as next to squeeze
?

Room
or next extent at

sector S
?

Move chain entry
to after last
squeezed entry and
make next entry.

Move next chain
entry and file
(extent) to free
space at end of
area.

Room
for next entry and
file ot area
end?

Move next entry
and file (extent)
to deleted file yes

space.

file or lost space
big enough for next

Figure 68. RADEDIT Flow, SQUEEZE (cont.)

TN
/

Any
space after last
squeezed
file?

Any
bad sector entries
between next extent
and next file

Rotate entries
from next entry to
next extent up,
make next extent
new next entry.

Search unsqueezed

files for largest that

will fit in hole

after last squeezed
file.

Create a deleted
file entry exact
size of hole.

Break extent chain.
Make next extent
number one larger
than previous.

Move file's
directory entry to
next entry in
chain.

Figure 68. RADEDIT Flow, SQUEEZE (cont.)

226

Move small and
large boot to BKG
buffer.

A

Insert date in
large boot.

GAN

Build list of
area fo save
in AREASWS.

TAPEID

present
?

SAVEIA

Scan up to 40
characters of MSG
and move to large

boot.

AVES

Checksum and
write small boot
program.

Set paper/mag tape
read order, check-
sum and write large
boot program.

Figure 69. RADEDIT Flow, SAVE

82

Get device info for
SP area's device.
Form, checksuma
write header for
RADBOOT.

Read RADBOOT. SP
file, checksum, and
and write to tape.

SAVE4

Find index to first
area marked in
AREASWS table.

SAVE6

Another
area after this
one?

Error: Save

not done.

SAVE7

Set flag: last
area on tape.

Figure 69. RADEDIT Flow, SAVE (cont.)

227

228

Cc2

SAVE!

Insert device and
area dependent
data into header.

Accumulate count
of sectors of lead-
ing zeros,

SAVEL6

Read in next
buffer's worth of
dato from area.

Buffer
all zeros

sectors of leading
zeros. Add and ac-
cumvulate count,
store in header.

Calculate and save
number of sectors
of trailing zeros.

Calculate numberof

Figure 69. RADEDIT Flow, SAVE (cont.)

Store size of
remaining block
in header,

SAVE24

Trailing
zeros in this

record
?

yes

End of area

? yes

Set end of area
flag in header.

This
last area to

save
?

no

| Set end of tape

flag in header,

SAVE26

Checksum and
write header.

Figure 69. RADEDIT Flow, SAVE (cont.)

229

230

Checksum and
write data.

l

Step area index to
next area to be

saved,

Set trailing zeros as
accumulated count
of leading zeros.

SAVE30

Close DCB to
area.

Write double
EOF's on tape
and rewind.

A

Verify tape by
reading each block
and checking
checksum .

Rewind and
unkad tape.

Figure 69, RADEDIT Flow, SAVE (cont.)

TIE COC Tables

T PR

12. TERMINAL JOB ENTRY

In order to treat a communication line as a device, the extensions given below exist for the DCT tables, These DCT
entries are extended according to the number of communication lines declared on the :COC command.

Size
Label (Words)
DCT2 1/4
DCT3 1/4
DCT4 1/4
DCT5 1/4
DCT6 1/4
DCT14 1/4
DCT16 2
DCTI8 1/4
DCTMOD 1
DCTJID 1/4
pcTTIEr 14

Length

No. lines
No. lines
No. lines
No. lines
No. lines
No. lines

No. lines

No. lines
No. lines
No. lines

No. lines

Contents

COC index (begins at zero)
X'CO' for all entries

X'01" for all entries

Zero

Input queues

Line index (begins at zero)

‘nl HLNxxx', where 'xxx' is the EBCDIC representation of the
decimal line number beginning at '000',

Output queues
'7611" for all entries
Zero

X'04' = INIT to be performed
X'08' = active line

X'01’ = logon to be performed
X'10' = logoff to be performed
X'20' = INIT with debug
X'02' = logon being performed

In addition, a new index is kept in the Oth entry of DCT7. This index represents the total number of DCT entries
DCT1 entry zero will continue to represent the total number of noncommunication

including communication lines.
type equipment,

Upon completion of SYSGEN, K:DCT1 points to DCT7 instead of DCT1.

The following tables and values are generated at SYSGEN from the parameters on the :COC control commands.

Size
Label (Words)
LCOC value
COD:LPC 2*
COD:HWL 2%
t .
New field.

Number

cocC

cOoC

Contents.

Number of COCs-1

Each double word represents the range of logical line Mumbers for
the COC (e.g., COCO has 7 lines; COC1 has 8 lines; DBLWRD1
0, & DBLWRD2 7, 14).

Each double word is a bit mask representing HARDWIRED lines
with a bit set.

23

232

Size

Label (Words)
COH:DN 1/2
CO:AIIL 1
CO:AOQIL 1
CO:IL 1
CO:0IL 1
COA:IIG value
COA:0IG value
CO:STAT 1
CO:OUTRS 1
CO:RCVON 1
CO:XDATA 1
CO:RCVDO 1
CO:TRNDO 1
CO:XSTOP 1
CO:LST 1
CORINGE 1
COH:RBS 1/2
CO:INO 4
CO:INN 7
CO:0UT0]
CO:0uUT 1
CO:CMND 4
COH:II 1/2
COH:IO 1/2
COCBUF 4
COCHPB 1
HRBA value
LNOL value
cococ 1/4

Number

cocC

coC

coC
coC
cocC
coc
cocC
coC
coc
coc

coC

(LCOC>0)
cocC
cocC
cocC
cocC
coC

total
BUFFERS

" Contents

Device address

All input interrupt levels

All output interrupt levels
Input interrupt level-COCO
Output interrupt level-COCO
Input interrupt group number
Output interrupt group number

WD, 10 X'30n0' when n begins at 0 and is incremented by 1 for
each successive entry

RD,7 X'30n0'

WD, 7 X'30nl'

WD, 6 X'30n5'

WD, 7 X'30n3'

WD, 7 X'30n7'

WD, 7 X'30nE'

Offset to next RING buffer character
Pointer to last word of RING buffer + 1
Size of RING buffer

COC input PSD

COC n input PSD

COC output PSD

Address of output PSD

COC command list

Address of input interrupt

Address of output interrupt

Used for input and output buffers

Head pointer for COC buffers -
4x(total BUFFERS-1)
Total lines for all COCs

~—

Output character count

Size

Label (Words)
LB:UN 1/4
ARSZ 1/4
BUFCNT 1/4
MODE 1/4
MODE2 /4

MODE3 1/4

MODE4 1/4

MODECPR 1/4

COCTERM 1/4
RSZ 1/4
CPI 1/4
CPOS 1/4
cocll 1/2
COCIR 1/2
COcCol 1/2
COCOR 1/2
L 1/2
EOMTIME 1/2
TJE Commands

Number
LNOL
LNOL
LNOL

LNOL

LNOL

LNOL

LNOL

LNOL
LNOL

LNOL
LNOL
LNOL
LNOL
LNOL
LNOL
LNOL
LNOL
LNOL

Contents

DCT index if in use

Actual record size

Number of buffers in use

X'80*
X'40'
X'10'
X'08'

X'80'
X'40'
X'20'
X'08'
X'04'

X'80'
X'40'

= echoplex

= escape sequence
= read pending

= tab simulation

= turnoff signal

= paper tape mode (XON =1, XOFF = 0)
= space insertion (esc 5)

= shift to lower case (esc(, esc))

= check parity

= tab relative
= paper tape mode (escP)

X'08' = input lost (insufficient buffers)
if RATE
0-10=18
1M-15=19
16 -30=1A
31-60=18B
60~ =1C
X'80" = non-TJE line

0 = M33 Teletype
1 = M35 Teletype
2 = M37 Teletype
3 = Xerox Model 7015

Record size

Input carriage position

Present carriage position

Input

insertion point

Input removal point

Output insertion point

Output removal point

Tab link

Time out value

The following TEL commands translate to service calls:

Command
MESSAGE

STDLB

Service Call

TYPE with id

STDLB

233

Command Service Call

MEDIA MEDIA
BATCH JOB

JOB JOB
CANCEL JOB
SETNAME SETNAME
INIT INIT
DEBUG DEBUG, WAIT
EXIT WAIT
EXTM EXTM
STOP STOP
START START

Each of the other TJE commands is treated as follows:

TABS obtains a four-word piece of temp space, fills it with the indicated tabs, and attaches it to the JCB
through JCBTABS.

OFF sets bit TJEOFF of DCTTJE and executes a TERM service call,

RUN does a SETNAME of TEL to the taskname, sets bit TJEDBG if DEBUG is specified and executes a
TERM service call,

QuIT must execute a TERM service call.

CONTINUE or GO must execute a TRTN service call,

TIE Structure

Account Maintenance

The structure of the Al file in the SP area is as follows:
e The file is created with EDIT; thus, columns 73-80 will contain the line numbers,
e The file contains one account record per account and multiple subaccount records per account record.
® An account record contains the account number (e.g., K1514201),

-

e A subaccount record which must immediately follow the account record contains the account and sub-
account {e.g., K1514201, CRO107143151).

More parameters will be added to each type of record later.

Since the file is a fixed length record, blocked file, a binary search may be used to locate and verify logon data.

234

TEX Operation

When the COC handier recognizes a new line to be logged on, bit TJEON of DCTTJE is set and the terminal ex-
ecutive (TEX) will be started. Upon activation, TEX scans DCTTJE using DCT7 entry zero as the index to determine
what is to be done, The following operations are performed if the indicated bit is set:

TJEON causes TEX to output the logon message. If time-out occurs, COC sets TIEOFF and starts TEX, If
input is successful within five tries, and the Al file contains the matching account and subaccount, TEX
creates a job with jobname equivalent to the controlling device (DCT16, bytes 3-7). TEX executes a

SETNAME TEL =TEL, outputs the logon message to the user and the operator, resets TJEON, sets TJEACT
and TJEINIT and continues.

TJEOFF causes TEX to KJOB the job, clears DCTTJE, and writes a logoff message to the terminal and the
operator and continues,

TJEINIT causes TEX to reset TJEINIT and TJEDBG, and to INIT TEL within the indicated job with
DEBUG if TJEDBG is set.

All ECB operations execute with no wait, ’
TEX uses WAIT whenever it is at an idle state. WAIT will return when an ECB is posted or a START is received,

In all error cases, appropriate messages are produced and if fatal, TEX sets TJEOFF, Therefore, the order of bit
checking by TEX is important and is as follows:

TJEOFF, TJEON, TJEINIT

TEX is a mapped secondary task that runs in the CP-R job. It exists as monitor overlays, and calls SCAN to break
apart the logon accounts. It is in part a PROLAY that processes an RTS stack and other needed data,

TEL Operation

TEL existsas both NROLAY (s) and an SSOLAY. The SSOLAY is used to provide context (stacks) in which to run
TEL when no user's load module is being run, The actual executable code of TEL is available as NROLAY (s) which
run in either the user's or TEL's load module, The toggling between TEL and the user in a synchronous environment
{one task) is actually accomplished by TEX toggling between TEL and the user, TEL may therefore be entered in
fwo ways:

1. By a direct branch to TEL from the TEL load module,

2. By an entry to TELCNTL when a CONTROL sequence occurs (identical to BREAK) from a user load mod-
ule. In this case, TEL will eventually do a TRTN if GO or CONTINUE is input.

Upon initially (job creation) gaining control, TEL obtains a blocking buffer, places the pointer in JCB word JCBT
JEBB, assign default operational labels, assign default tabs, and begins operation. At any point in its operation,
TEL is prepared to receive a CONTROL sequence, Its action at any time other than that initial CONTROL from a
user load module is to execute a TRTN, since this is simply used to activate TEL after o WAIT.

TEL takes its input through the C operational label and directs its output to the LL oplabel. TEL uses the blocking
buffer to construct its FPTs, DCBs, and buffers. This information is constructed for each TEL command. All asyn=
chronous operations are executed with wait.

TEL uses read with prompt (1) for command input, When input is complete, it uses SCAN to parse the ingut. If an
error is discovered during parsing a (?) is output beneath the offending field, [f no error occurs during parsing, but
instead on the service call generated as a result of the input, TEL generates a question mark in column 0 and then
prompts with a new cycle.

Job management and task management are altered as follows to accommodate TJE:

o Task termination recognizes the TEL task, upon termination sets TJEINIT in DCTTJE, and starts TEX,

o Job termination recognizes terminal jobs and does not allow job termination until TJEACT is reset.

235

236

Time Shcing

Time slicing in CP-R is available for non=TJE systems since the implementation is not terminal dependent.

The algorithm used for time=slicing in CP~R must be predicated upon the following guidelines:

1.

2,

Scheduler thrashing (inefficient context changing) must be avoided.
Swapper thrashing (inefficient rolling in and out) must be avoided,
Background must run at nearly full speed,

Symbionts and media must run at full speed,

The aigorithm should fit nicely into CP-R's present structure and be easily expandable if the need arises.
The algorithm and its implementation follow:

a. Three variables exist, all of which will be fixed at SYSGEN, depending on the swapping device.

10 ms SQMIN <140 ms is the minimum time a time=sliced task will be allowed to run when sched-
uled before being interrupted to service other time-sliced tasks, '

150 ms < QSWAP < 400 ms is the minimum time an unblocked time=sliced task must remain in core
before being considered a candidate for swap out. Unblocked means either compute or 1/O bound.
(Each /O operation is equivalent to 10 ms compute time. Terminal input is not considered as [/O

bound.)

500 ms < QMAX is the amount of time an unblocked time-sliced task will run before being consid-
ered for exchange with another user who was rolled out in an unblocked state,

b. Time slicing is specified by bit F5 in the INIT service call and indicated by bit TSLICE of LMISTAT.
Default priority is X'FFFF', which is equivalent to the priority of background; thus all TEL and TEL
INITed tasks will run at a priority equivalent to background.

c. The dispatcher searches its queue to find the highest priority candidate to run, If the task is time-
sliced, CLOCK 4 will be set up to interrupt after QMIN. The task is then given control and may only

be interrupted at its dispatcher level for rescheduling by the occurrence of QMIN or a higher priority
nontime=sliced task.

d. When the dispatcher again gains control, it examines the last dispatched task. If the task is time-
sliced, it is requeved to the bottom of its priority.

e, Inorder to give background improved response, the posting logic moves background to the top of
its priority queue when it comes off a wait condition.

f. MMEXEC's roll=out search is as follows:

W/OTJE With TJE

BKGRD INACTIVE TIME SLICED TERMINAL INPUT
BKGRD ACTIVE TIME SLICED BLOCKED

LONG WAIT INACTIVE

LONG WAIT ACTIVE LONG WAIT INACTIVE

LONG WAIT ACTIVE

TIME SLICED EXCEED QSWAP

BLOCKED is defined as anything other than UNBLOCKED (I/O or compute bound) or terminal input.

Terminal input and BLOCKED tasks are treated similarly to long wait tasks, Higher priority tasks
in these states may be rolled out, The roll ECB will be added to the R-chain when it becomes
executable,

Since OSWAP tasks are placed in MMEXEC's R-chain upon rol{=-out (thus being immediate ccndldafes
for roll=in), the search for QSWAP tasks applies only to equal or lower priority.)

g. MMEXEC continues to run until no candidates are found to satisfy R-chain requests or until the R=chain
— is exhcusted and then executes a WAIT. Whenever a time=sliced task is awaiting terminal input, be-
comes blocked, or exceeds QMAX, the MMEXEC is started,

h. - In order to keep MMEXEC above the time=sliced tasks, the following rule applies:

Whenever time=sliced and nontime=sliced tasks are queued at the same priority, the nontime~sliced
tasks are queued above the time-sliced tasks, By way of example, a typical CP-R task structure may
appear at a given moment as follows:

Symbiont Executive
Media

. _ Terminal Executive
DISP

Contro! Task

MMEXEC (floats)

| TEL (time=sliced)

TEL (time-sliced) .. .
[BKGRD (time=sliced) [Priority X'FFFF!
TEL (time=sliced)

TEL (time=sliced)

237

SRR

13. MEDIA.

The MEDIA processor consists of three parts:

1. Key-in processor
2. CAL service call processor
3. The MEDIA fosk. This task is subdivided into two parts: an overlay section and a resident section.
The MEDIA key-in processor forms a 13-word table containing the information from the parameters specified, This

table is then sent to the MEDIA task as a signol dota packet to be processed. The signal to the MEDIA task is sent
with a class flag of

X'8000'

to indicate a key~in signal. The format and contents of a key-in packet are os follows:

o
~

8 15,16 21.ﬁ24]

Area Name Input

Sm”"‘

or»Q0r-ZC—

MASN
Sfile Count 0— 0

Input
Specification

Input Nlame

Input Name

Input Account Name

Input Account Name

Spare

Spare

Spare

O o>
mToms
EmM=Q0

O»Q0"ZCO

Area Name Output

AT<Z

Space WEOF
Count Count

mr
mMoP>ow

Output
Sfile Count 0—0 Specification

Output Name

Output Name

Output Account Name

Output Account Name -

where

IFILE }
OFILE

=f device name specified.

2 area and file name specified.

i}

238

ALL =g

DEL =g
=1
IREW =g
=1
IUNLOAD =g
=1
MASN

Arec Name,
Input (Qutput)
Name, Account
Nome

SPACE =0
=1
NVFC =0
=1
ADD =0
=1
WEOF =0
=1
OREW =0

OUNLOAD =0

Space Count

WEOF Count

SFILE Count

copy only the specified file.

on magnetic tape, copy all files up to an end-of-file double tapemark.
retain the file after the copy.

delete the file after the copy.

leave magnetic tape positioned aofter file copied.

rewind the tape to BOT after the copy.

same as IREW = 0.

tape is rewound "off-line" after the copy.

the MEDIA Action Sequence Number to identify the action request. The next number in
sequence is assigned to each MEDIA request.

when IFILE (OFILE) = 2, the corresponding Area Name contains the two-letter EBCDIC
name of the area, Input (QOutput) Name contains the filename to copy from (to), and

Input (Output) Account contains the account name.

when IFILE (OFILE) = 0, the device name is left-justified and blank filled in the Input
(Output) Name field. The corresponding AREANAME contains zeros or the SFILE count.

for printer destined files, the printer is spaced according to the VFC byte (NVFC = 0),
or is to be single spaced (NVFC = 1),

the printer is to be spaced "Space Count" lines between each line output (NVFC = 1),
This field is not used when NVFC = 0.

for printer destined files, the printer is to operate with VFC, and the first byte of every
record contfains the VFC information.

for printer destined files, the printer is to operate without VFC, and the first byte in
every record is data.

the output tape is to be positioned according to the SFILE count before the copy
commences.

the output file will follow the last file on magnetic tape or be added to the end of an
existing disk file.

two end-of-files are to be written to the output tape after the copy.

"WEOF Count" end-of-files are to be written to the tape after the copy.

the output tape is to be left positioned after the file.

the output tape is to be rewound after the copy and end-of-files (if any) are written.
same as OREW = 0.

-
the output tape is rewound "off-line" after the copy and end-of-files (if any) are
written.

the number of lines to space the printer between each line of output when NVFC =]
SPACE=1,

the number of end-of-files to write to the output tape after the copy when WEOF = 1.

the number of files @ magnetic tape is to be forward skipped before the copy is started.

239

240

MEDIA key-ins specifying the control functions C, L, I, X communicate directly with the MEDIA task, setting or
resetting the appropriate indicators in the resident portion of the MEDIA task .

The MEDIA service call forms a nine-word table from the call's FPT, job name and task name. This table is sent
to the MEDIA task as the data packet of a Signal call. A closs mask of

X'4000'

is used for the Signal to identify it as a service call packet. The contents of a service call packet are as follows:

where-
File

DS

NVFC

DEL

MASN

MASN Area Name

nTm<z
m
(=]
o
[}

File Name

File Name

e —

Account Name

- — ,— ,— e . — e — e —— e, . — ——— — o ——]

the file is specified by the area and file nome.

printer destined files will be printed single spaced (NVFC = 1), or according to the
VFC byte in the record (NVFC = f).

printer destined files will be double spaced (NVFC = 1), This field is ignored when
NVFC = 4.

printer destined files will be printed with VFC, and the first byte of each record will be
used as the VFC byte.

printer destined files will be printed without VFC; the first byte of each record is
printed.

do not delete the file after the copy.
delete the file after the copy.

the MEDIA Action Sequence Number. The next number in sequence is assigned to each
request as an identification number.

Area Name : ’ :
File Nome the area, file and account name as specified in the MEDIA call (FILE = 2).
Account Name

the task- and job-name of the task that issued the service call. These will be printed

Task Name}
on the burst page of a printer~destined file.

Job Name

The resident section of the task contfains all permanent areos the task requires and o short segment of code that is the
main loop of the copy. The contents and structure are as follows:

MASN one byte counter; next number is assigned to each new MEDIA request as an identification number.

Label Contents
s
MEDRCTRL MASN 0o—————a0j0|00|0|¥|¢] 0|0 Status
MEDRQINF 0j0 0j0 0|0
MEDRJOB Job Name (8 characters)
MEDRTASK Task Name (8 characters)
MEDRITMP Input device 154 Input Device Control Info.
index, or zero
Ovutput device .
MEDROTMP . 0—— 0 Output Device Control Info.
index, or zero
First blocking buffer control word temp
MEDRBS] (zero if no blocking buffer)
Second blocking buffer control word temp
MEDRBE2 (zero if no blocking buffer)
MEDRERRS Error indicator/error code (4 characters)
TYC code if device eror; otherwise, 0
MEDRIDCB Input DCB
MEDRODCB Output DCB
MEDRRA
MEDRRB
MEDRWA
MEDRWB FPTs to read and write "A" and "B" buffers, check Reads and
Writes, open and close DCBs; miscellaneous services
MEDRCHKR
MEDRCHKW
MEDROC
MEDRFPTX
MEDR%00 No-operation Error Processor
MEDRLOOP Copy code
MEDRSTCB STCB -
MEDRSTAK Temp Stack
where

End when END = 1, do not initiate a new copy operation. Set by MEDIA control function "L".

241

242

-

Stop =1 suspend the current copy. Set by control function “S".
=0 continue or resume the current copy.
Status set by MEDIA when operator intervention is required or when execution must be suspended to control

where processing is to be resumed. Values and meanings are:

(@]

idle.

1 device manual during pre-copy processing.

in a copy, stopped by S key-in.

device manual during copy.

waiting device from Symbionts, exclusive use.

waiting tape mount and operator okay.

(= S & N O A T N

printing break pages in part 2.

Abort when ABORT =1, abort the current copy operation. Set by control function X.

Job Name

Task

} the 8-character job and task names of the current copy.
Name

Input/Output the DCT index of the input and output devices, or zero (0)if to adisk file or null device,
Index and

Control Words the Control Information halfword has the format:

AR Sl
plaftlofofofz|y RECL
“le|f %
Bit 0 1 2 3 4 5 ¢6 7 8 15
where

SWITCH switchable device; other devices of the same type may be substituted,
PRINTER line printer device ~any model.

TAPE magnetic tape device — any model.

OUTOK valid output device.

INOK valid input device.

RECL maximum record length in words, minus 1,

Input, Output prototype DCBs for the input and output files,
DCBs

FPTs

two each Read and Write FPTs and two Check FPTs. Input and output are doubled buffered, plus an
FPT to OPEN/CLOSE the DCBs and space for pre=processing FPTs.

Copy code the resident copy code,

STCB secondary Task Control Block for the MEDIA task.

Temp Stack push down stack.

The overlay section contains the functions necessary to process the MEDIA CALs and key-ins, effect the MEDIA
control functions, acquire the specified input/output devices, open and close the files, and to do any pre- or
post-processing.

.

For each copy, the next operation is selected by searching for a signal, first with a class mask of X'8000" to select
the highest priority keyin request and then, if none exists, with a class mask of X'4000' to select a CAL service
request.)

Having selected o request, the DCBs for both files are formed. Conflict with the SYMBIONT processor is then
checked and a delayed request process is initiated if it exists (see below). The input DCB is then opened. An error
due to unavailability goes to the delayed request process.

Successful opening of the input allows a similar process to start in the output file. When both files are successfully
opened pre-copy preparation can begin.

If it is impossible to obtain both the input and output devices, due either to symbiont conflict or device unavail-
ability, delayed request processing is initiated. This is done by closing the input file, if open, to free the device
and avoid deadlock conditions. The "Requested by MEDIA" bits (bit 1) are set in each device's DCTRBM byte.
Then, if either device is in conflict with the SYMBIONT processor, the MEDIA task does o foreground WAIT to
await a start from the other task when it is finished with the devices. If they are unavailable for any other reason,
a five=second timer is initiated and then a foreground WAIT is done. In either case an internal status indicator is
set to "acquiring devices".

When the foreground WAIT returns and the "acquiring devices" indicator is set, processing continues as above with
checks for input device Symbiont conflicts. This process is repeated until both devices are successfully acquired.

After successfully opening the two files, any pre-copy positioning is done first for the input and then the out-
put file. The resident copy loop is prepared to perform the requested NVFC or SPACE,n processing and the
copy initiated,

At copy completion, postcopy processing and positioning are done. Then for both normal and abnormal or abort
terminations, the DCBs are closed and the SYMBIONT task started if it has requested either device.

-

The MEDIA internal status is set to "idle" and o SUPERWAIT with a short timeout is done. When the wait returns,
the next copy request is polled as above.

Figure 70 shows the definitions of the field and indicator symbolis are defined in the CPREQU System.

243

244

LAbeL
WAME

MEDKEYCL
MEDCALCL

MEDRGU
MEDREND
MEDRSTOP
MEDRABRT
MEDHRMCTL

MEDSIDLE
MEDSIMOP
MEDSCOPY
MEDSICPY
MEDSAQIR
MEDSTAPE
MEDSHEDR

MEDASW
MEDAPANT
MEDATAPE
MEDAGUOK
MEDAINOK
MEDA#WRD
MEDRSSZ

MEDPLEWN

MEDPLASE
MEDPICTL
MEDPIFIL
MEDPOCTL
MEDPJOBN
MEDPOFIL
MEDPTSKN
MEDPIACN
MEDPOACK
MEDPMASH
MEDPISFL
MEDFOSFL
MEDPICFT
MEDPLAK

MEUPOGPT
MEDPOAR

EQU
EQU

ECU
ECU
ECU
ECQU
EQU

ECU
EQU
tQU
£QU
EQU
EQU
EQU

QU
EQU
EQU
EQU
EQU
EQU
EQU

EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
QU
EQU
EQU
EQU

VALUE

X'0000"
X'4000"'

X'6000'
X'0000"
X'0400"
X'o001°
b5

INDEX

TYPE

CCHMERNT

ECb CLASS FLAGS

A KeY-Iuw RECUESIT
& CAL KECUEST

MEDIA COWTROL FLAGS

START Uk COnTIwue A CUOPY UPERATIOw
END COPY, DO WOT STAKT A wew COPY
STOP (SUSPEwD) COPY IMMEUIATELY
ABCRT CUKKENT COPY OPERATION

MASK FOR STunlwG CUnwTROL FLAGS

STATUS INDICATOKRS FOR MEDIA AFTER STARTS

00
Ly
2%e |
3*'|
haw
SE
e

IDLE

DEVICE INOP, AwWAITING KEADY

IN A CUPY; PROCESS wWAS STUFPED
In A CuPY;, DLEVICE 1nGOP

ACGQUIRING DEVICES FROM SYwibIOnTS
wAITING TAPE MUUNT, 'I' KEY-IN
PRINTING BREAK PAGES IN PART 2

DEVICE CHARACTERISTIC IWDICATOKS

X'8000°"

X'4000"

X'2000°

X'0200"

X'o100!

X'OOFF'
145

OK TO SwITCH TO SIMILAR DEVICer
LEVICe IS A PRINTER

DEVICE IS A TAPE

DEVICE LEGAL FGK OUTPUT DEVICE
DEVICE LEGAL FOR IwPUT DEVICE
NUMBER OF WORDS In MAX.LEN.REC.
SIZE OF STACK AREA IN ROOT

EAP rOR COPY REQUEST SIGWAL PACKETS

[op}

COEWNELOAUINECD OWON — O

LENGTH OF A SIGnNAL PACKET

HEADER wORD / BASE OF PACKET
I#PUT CONTROL WORD / AKEA NANME
INPUT FILE-, DEVICE- NAME
OUTPUT COnTKOL WORD / AREA NAkMb
JOB NAME OF REQUESTING TASK
OUTPUT FILE-, DEVICE- NAME

TASK NAME OF REQUESTING TASK
INPUT FILE ACCOUNT nAME

OUTPUT FILE ACCOUNT NAME
SEQUENCE / ID NUMBER

SFILE COUNT, INPUT

SFILE CuUunT, OUTPUT

INPUT CPIIONS Hw

INPUT AREA NAME

OUTPUT OPTIONS Hw

UUTPUT AREA NAMEL

Figure 70. Field and Indicator Definitions

LAEEL
NAME

MEUVOFILE
KEUDOALL
MEDODEL
HEDOSPAC
MEUORVFC

MELUADD
MEDOWEOF
MEDUREW
MeDOUNLD

MEDHFILE
MEDHALL
MEDHDEL
MEUHAEW
MEDHUJLD
MEUHSPAC
MEDHNVFC
MELDHADD
MEDHWEOF

MEDRSHN

MEDRSTAT
MEDR#CAL
MEDRCFIN
MEDR#KEY
MEDRKFIN
MEDRFLAG

MEDRRBUF
MEDRWBUF
MEDRRBYT
MEDRWBYT
MEDKRBTD
HMEDR#BYT

ECU

ECU

EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU

InDEX

VALuE 1YPE

COMMERT

OPTION IRLICATORS AS EYTE VALUES

Xto0®
Xtio’
X'0b"
X'20"'
Xxrio!'

X'06"
X'04
Xto02'
ol

FILE IS SPECIFIED

ALL FILES ON INPUT TO bE COUPIEL
DELETE INPUT FILE AFTER COPY

SPACE CuunT SPECIFIED FOR PRIWTEhR
LG NO VFC; IST DATA BYTE IS LATA
IF VFC, IST DATA BYTE IS VFC BYTt
ADD FILES TU EXISTInG FILE Un YAPE
WRITe EOrS AFTER COPY

RewIWND INPUT/OUTPUT AFTER COPY
UNLOAD INPUT/OUTPUT AFTeR COPIX

OPTIONS AS HALF-wORDS

MEDOFILE#*%*¢o
MEDOALL¥*%*g
MEDODEL##g
MEDOREwW*#j
MEDOUNLD*#b
MEDOSPACH*#p
MEDUNVFCR® ¥y
MEDQOADD*#p
MEDOWEQOF®#5

OFFSETS TO INFORNATION

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
Hw

—_— oMW O

IN RESILENT TABLES

NEXT ID NUMBER TO BE ASSIGNED
STATUS INDICATORS

NUMBER OF CAL REQUESTS QURUED
LAST CAL ID PROCESSED

NUMBER OF KEY-IN REQUESTS QUEUED
LAST KEY-In ID PROCESSED

CONTROL FLAGS / STATUS INDICATOHS

OFFSETS INTO READ/WRITE FPTS

Fin
Fw
Fi
Fu
Fh
Fi

~NoOUnWU E e

BUFFER ADDRESS, KREAD FPT
BUFFER ADDRESS, WRITE FPT
NUMEER OF BYTES TO READ
NUMBER OF BYTES TO WRITE

BYTE DISPLACEMENT IN IST WOHD
ACTUAL wnUMBEK OF BYTES READ

‘Figure 70. Field and Indicator Definitions {cont.)

245

246

14, EDIT SUBSYSTEM

Functional Overview

The EDIT processor is a line~at-a-time text file manipulation utility available to the CP-R user either in the
background stream or under control of the Terminal Job Entry system executive.

EDIT operates in one of two states: the command state or the active state, The commandstate is defined as the time
in which EDIT is accepting or processing @ command. This state is entered when EDIT types its identifying prompt
character(s), * or **, requests input, and awaits the next command, On the other hand, the active state is defined
as that time in which EDIT is executing commands, processing text, or accepting text, This state is entered when a
command starts execution and terminates at the completion of the command,

EDIT is assembled as fwo modules, one of which is considered as context (writable) and the other as procedure (read
and execute). The context module is linked into the processor root. The procedure module is linked as a segment
with the characteristics ILOAD, (SHARE, SYSTEM), and (ACCESS,RX). The user may chose to omit the sharability
option, but if he includes it (recommended in a multi-usage environment), he must assign a segment number which
does not conflict with other system=sharable segments defined at his installation. EDIT should be linked as a
secondary foreground task since this permits both foreground and background execution.

The memory allocation for EDIT is shown in Figure 7],

Monitor | EDIT Load Module Unused Virtual
Memory
| ROOTI ‘ SEGMENT l ROOT2 l
x'6000' x'6400' x'7800' x'7A00'
(context) {(procedure) (automaﬁc
context

Figure 71. Memory Allocation EDIT

EDIT files are stored on disk as keyed records with the sequence number used as a key. It is assumed to have an
implied decimal point such that when the key is converted to EBCDIC for printout purposes the sequence number
1234567 appearsas 1234 .567 . The largest sequence number allowed is 9999.999.

Operational Overview

EDIT is organized in a highly modular fashion. Upon entry, BEGINEDITOR performs subsystem initialization after
which MASTERPARSER controls input commandscan of a line of user commands. From aline of input command(s) the
Command Description Table (CDT) is built. Error checks are made and warnings given to the user if necessary,
MASTERPARSER uses a number of subroutines to build the Command Description Table: GETNEXTNAME and
GETNEXTPARAM to break down text strings; PARSE::CMNDS$INTG to process integer strings; PARSE:[:CMNDS$STRG
to process alphabetic strings in slashes; and routines of the form PARSE: emnd for command processing. The format
of the Command Description Table is given in Figure 72,

On completion of a command line (with possible extension), control is passed to the MASTERE XECUTIVE routine
to perform the commands which then reside in the CDT. Figure 73 shows the general processing flow of EDIT.
MASTEREXECUTIVE serves as a driver for command processing using F: routines for file commands, R: routines for
record commands and I: routines for intra=record command processing.

CcDT 0 Number of Command Entries
—_—
Start of 1
First Entry,
If any n End-of-CDT Marker
0 31
Notes:
1. Entry Format
Word Byte 0) 2 3
0 .Number of words Command number (_)rder ofoccun:rence Number of items
in entry (see Table 8.) in command line
Item 1 Text Ttem Z Text
1 Item 1 type Pointer Item 2 type Pointer ’
m Item 1 (TEXTC form)
1. X
n Item 2 (TEXTC form)
1
{ 1
where
Item type = 0 for END, carriage return,
1 for NAME, a file name, e.g., (EXAMFLE.D3).
2 for SEQ, a sequence number, e.g., 1.23.
3 for SEQ2, two sequence numbers or two sequence numbers separated by a dash,
e.g., 1.2-2,
4 for INTG, a numeric string whose value is less than 1000; e.g., 123,
5 for STRG, a character string enclosed in slashes; e.g., /BUILD/.
6 for ALPH, a character string not enclosed in slashes; e.g., BUILD.
7 for COM, comma.
8 for SCOL, semicolon,
9 for LPAR, left parenthesis,
10 for RPAR, right parenthesis,
11 for PERIOD.
12 for BLANK,

2,

3.

Text pointer

is word address of TEXTC form in entry; e.g., for item 1, Text pointer is n,

CDT+100=CDTADR, address of current command in CDT.

PARAMPSN = next available slot in CDT. -

4, PRMBUFSZ = number of words in PARAMBUF to be added.

5.

6.

CHARPSN = number of next character to scan.

End=-of=CDT Marker = X'00000100',

Figure 72, Command Description Table (CDT)

247

248

ENTER

MASTER-
PARSER

—

'Read Command from TTY or scratch file

Legal no
?

yes

Print Error

Message

Go to Proper Routine to Build CDT

R

PARSE: routine

Build CDT

B

MASTER-
EXECUTIVE

- ¥

Print Error
Message

Analyze CDT and go to
Proper Routine

F:, R:, I: routine

1

Call workhorse subroutines to
Execute Commands in CDT

Exit from
EDIT
END

All Other

Figure 73, Overall Flow Diagram of EDIT

Table 9. Command Number Table

Command
Number Command CDT Builder CDT Executor
1 BP PARSE :BP F:BLANK SPRESERV
2 BUILD or PARSE:BUILD F:BUILD IF
SAVE PARSE :SAVE F:SAVE L
3 copy PARSE:COPY F:COPY E
4 DELETE PARSE:DELETE F:DELETE <
5 EDIT PARSE:EDIT F:EDIT M
6 END PARSE:END F:END "
8 CR or PARSE:CR F:CR N
SEQ PARSE:SEQ F:SEQ 0
9 MERGE PARSE:MERGE F:MERGE
10 M PARSE:CM R:COMMENTARY
1 DE PARSE:DE R:DELETE
12 FD PARSE:FD R:FINDSDELETE
13 FT PARSE:FT R:FINDSTYPE .
14 IN PARSE:IN R:INSERT E
15 15 PARSE:IS RINSERTSSUPSSEG g
16 MD PARSE:MD R:MOVES$DELETE R
17 MK PARSE :MK R:MOVE$KEEP D
18 RN PARSE:RN RRENUMBER C
19 55 PARSE:SS RSSETSSTEP M
20 ST PARSE:ST R:SETSSTEPSTYPE M
21 TS PARSE:TS R:TYPESSUPSSEQ a
22 Y PARSE:TY R:TYPE D
23 TC PARSE:TC R:TYPESCOMPRESSED
2 Fs PARSE:FS R:FIND$SSEQUENCE
25 GO PARSE:GO R:GO
2 RET PARSERET RRET
30 SE PARSE :SE L:SET
31 D] 1:DELETE
32 E LLOVERWRSEXTEND I C
33 F PARSE:I:CMNDSSTRG | 1:FOLLOWSBY N M
34 L o 1:SHIFTSLEFT R M
35 o 1:OVERWRITE e
2) PARSEL:CMNDSINTG | | oo oo A
37 R L:SHIFTSRIGHT NS
38 s ‘ 1:SUBSTITUTE
39 Ju PARSE:JU 1:JUMP

249

Table 9. Command Number Table (cont,)

Command
Number Command CDT Builder CDT Executor
40 NO PARSE:NO [:NOSCHANGE
4] RF PARSE:RF I-REVERSESBPFLAG
42 T8 PARSE:TS [:TYPESSUPSSEQ
43 TY PARSE:TY I:TYPE
44 A .
PARSE:1:CMNDS$STRG LALIGN
45 Y I:YESSCONTINUE
or
46 N I:NOSCONTINUE
PARSE:I:CMNDSINTG %
47 DE [:DEL$REC
48 C PARSE:C [:COPY$REC
Module Analysis

The routine and subroutine descriptions which follow are organized such that the initialization routine BEGINEDITOR
appears first followed by MASTERPARSER and its associated PARSE: subroutines in alphabetical order, MASTER-
EXECUTIVE and its associated F:, R:, and I: command executor routines in alphabetical order, and lastly the gen~
eral subroutines in alphabetical order.

In the descriptions which follow register notations have the following meaning:

Symbol is Register Symbol is Register
X3 1 T2 9
X4 2 P3 10
X1 3 R1 n
X2 4 R2 12
P1 5 F:LNK 13
P2 6 R:LNK 13
LNK 7 I:LNK 13
Ti 8

BEGINEDITOR
1. Purpose

Performs initialization of EDIT,

2, Entry:

-

This is the routine whose address is entered in the TCB for EDIT causing it to be the beginning point of
execution when control is passed to the EDIT subsystem by Task Initiation,

3. Exit:

There is no formal exit; it merely branches to next routine, MASTERPARSERT,

MASTERPARSER!

1.

Purpose:

Serves as the driver for the command text scanning. It performs initialization of flags, the CDT, ond
TSTACK. (Alternate entry MASTERPARSER is used to restart after certain types of error,)

Entry:

Initially, execution branches to MASTERPARSER] from BEGINEDITOR; thereafter it is entered via
B MASTERPARSER1 or B MASTERPARSER,

Exit:

If item type (Figure 71) of the first string found is one of the four shown below, the branchisto the indicated
CDT builder routine.

Item Type CDT Builder Routine

INTG PARSE:I:CMNDSINTG

STRG PARSE:I:CMND$STRG

CR CMND$CONT

ALPH PARSE: (routine)
Operation:

After initialization, one or two asterisks are typed for prompt characters depending on whether EDIT is in
step mode. READTELETYPE2 is used to read one line of commands, MASTERPARSER increments CDTADR
and the count of CDT entries and resets PARAMPSN., GETNEXTPARAM is used to test command type for
one of the following: INTG, STRG, CR and ALPH, If it is none of them, the error message "CI:ILGL
SYNTAX" is typed and branch is made to MASTERPARSER, If the command type is ALPH but the command
is not one of those shown in Table 9, the message 'C1:UNKN CMND' is typed and branch is made to
MASTERPARSER.

The flow of MASTERPARSER is given in Figure 74,

PARSE:CM
1. Purpose:
Adds an entry to the CDT for CM n, ¢, “
2, Entry:
B PARSE:CM

This subroutine is invoked via the CBRCHTBL of MASTERPARSER after a command has been identified,

251

252

Entry -
MASTERPARSER

ZAP TSTACK
0¥ of commands

O-next char. to scor

i

Set start of command

table; set end
indicator in first

commandlof CDT

Set to print

all error messages

In
Step
Mode

?
no

Type one
asterisk (*)

RESUMESPARSING

Increment

CDTADR to next
(first) entry

¥

Set position of
next parameter
to 1

1

Increment count
of entries in

cDT

Type two

yes asterisks (**)

| GeTnexT

PARAM

READTE

TYPE2

Read TTY for

a command

!

no. of characters
less

— TTYIMGSZ

Get field from

command

yes

PARSE:I:CMNDS$INTG

PARSE:mMNDsST@

Pg. 2

_ CMNDSCONT)

Figure 74. Flow Diagram of MASTERPARSER

o~
|
.ot

TYPEMSG
A ILGL
SYNTAX' ‘ MASTERPARSER
no
yes
Search for
command
in table
TYPEMSG

'UNKN
CMND' | MASTERPARSER

o to Proper
ROUTINE

Figure 74, Flow Diagram of MASTERPARSER (cont.)

253

3. Exit: v
Normal return is to MASTEREXECUTIVE upon finding a carriage return, Error exits are:
to ILGL$SEQ2 on finding o second sequence number;
to ILGL$SEMICOLON on finding @ ";";

to MASTERPARSER via TYPEPERR on finding any other character in which case it prints one of the
following:

'-Pn:NOT SEQ #',
'=Pn:ILGL SYNTAX',
'-Pn:NOT COL ¥,
or
'=Pn:PARAM MISSING',
4. Operation:
This subroutine uses NEWCDTENTRY to build new CDT entry, CHECK 1CDTENTRY to make sure "CM" is

first command, and GETNEXT PARAM to SCAN command text.

PARSE:DE, PARSE:SE

1. Purpose:’

Adds an entry to the CDT for DE n[-m] or SE n [-m]}[, <[, d]].

2, Entry:
B PARSE:DE for DE
B PARSE:SE for SE

This subroutine is invoked via the CBRCHTBL of MASTERPARSER after a command has been identified.,

3. Exit:
Normal return destination (MASTEREXECUTIVE) is given in the calling sequence o NXTPRM and will be
used upon recognition of a carriage return in the input command buffer,

Alternate normal return is to RESUME$PARSING if semicolon is encountered after the SE command.

Error exits: to ILGL$SEMICOLON if semicolon found; ofter DE command: to MASTERPARSER via TYPE-
PERR after printing one of the following:
i
‘“Pn:NOT SEQ ¥,
'=Pn:ILGL SYNTAX',

or

"-Pn:NOT COL #,

4, Operation:
This subroutine uses:
NEWCDTENTRY to establish an entry in the CDT for this command;
GETNEXTPARAM to scan the input text;
ADJINT to format sequence number as integer * 1000;
REPSEQ to duplicate sequence number if only one given;
CHECK ICDTENTRY to make sure this is the only entry in the CDT;

and ADDCDTPARAM to add to the CDT,

PARSE:EDIT

1. Purpose:

Adds an entry to the CDT for EDIT fid,

2, Entry:
B PARSE:EDIT

This subroutine is invoked via the CBRCHTBL of MASTERPARSER after a command has been identified.

3. Exit:
Normal return is to MASTEREXECUTIVE upon finding a carriage return. Error returns:
to ILGL$SEMICOLON on finding a ";";

to MASTERPARSER via TYPEPERR on finding any other character where it prints '=Pn:ILGL SYNTAX',

4, Operation:
This subroutine uses:
NEWCDTENTRY to build new CDT entry;
CHECK 1CDTENTRY to ensure that EDIT is first command in CDT;
GETFILEID;
ADDCDTPARAM to add entry to CDT;

and GETNEXTPARAM to scan for carriage return,
-
The scan may be extended to obtain an additional file name and a sequence number and increment.

PARSE:END
1. Purpose:

Adds an entry to the CDT for END,

255

256

2. Entry:
B PARSE:END

This subroutine is invoked via the CBRCHTBL of MASTERPARSER after a command has been identified,

3. Exit:
Normal return is to MASTEREXECUTIVE on finding a carriage return, Error returns are:
to ILGL$SEMICOLON on finding a semi-colon (;);
to finding MASTERPARSER via TYPEPERR

on finding another character where it prints '=Cn:ILGL SYNTAX',

4. Operation:
This subroutine uses:
NEWCDTENTRY to build a new CDT entry;
CHECK ICDENTRY to ensure END is first command;
ADDCDTPARAM to put the "NS" keyword in the CDT;

and get GETNEXTPARAM to scan for carriage return or the "NS" keyword.

PARSE:NO

1. Purpose:

Adds an entry to the CDT for END or NO.

2, Entry:
B PARSE:NO

This subroutine is invoked via the CBRCHTBL of MASTERPARSER after a command has been identified.

3. Exit:
Normal return is to MASTEREXECUTIVE on finding a carriage return, Error returns are:
to ILGL$SEMICOLON on finding a semi~colon (;);

to MASTERPARSER via TYPEPERR on finding another character where it prints '=Cn:ILGL SYNTAX',

4, Operation:
This subroutine uses:
NEWCDTENTRY to build a new CDT entry:
CHECK 1CDTENTRY to make sure NO is first command;

and GETNEXTPARAM to scan for carriage return.

PARSE:FD, PARSE:FS and PARSE:FT

Purpose: : '
FD

Adds an entry to the CDT for {ﬁ] n [-m}),/STRG/ Leld])

Entry:

B PARSE:FD

B PARSE:FS

B PARSE:FT

This subroutine is invoked via the CBRCHTBL of MASTERPARSER after a command has been identified,

Exit:

Normal return is to MASTEREXECUTIVE upon recognition of a carriage return in the input command buffer.
Error exits are: to ILGL$SEMICOLON on finding a semi-colon;

to MASTERPARSER via TYPEPERR after printing one of the following:
'-Pn:NOT SEQ ',
'=Pn:ILGL SYNTAX',
'-Pn:NOT STRG',
'-Pn:NOTCOL ¥,
or

'=Pn:PARAM MISSING',

Operation:

The following subroutines are used:
NEWCDTENTRY to build a new CDT entry;
CHECK ICDTENTRY to ensure that there is only one CDT entry;
ADJINT to format sequence number as an integer * 1000;
REPSEQ to duplicate sequence number if only one given;
ADDCDTPARAM to add to the CDT;
GETNEXTPARAM to scan the input text;

and TYPEPERR to type error message if second parameter is missing.

PARSE:[:CMNDS$STRG, PARSE:I.CMNDSINTG

1.

Purpose:

Process intraline commands.

258

Entry:

This subroutine is used by GETNEXTPARAM to process an intraline command of the form STRG (a character
string enclosed in slashes) or INTG (a numeric string whose value is less than 1000). The entry point ad-
dresses PARSE:1:CMNDS$STRG for a character string and PARSE:I:CMNDS$INTG for a numeric string are
passedto GETNEXTPARAM in its calling sequence as the addresses to be branched to on finding such a
recognizable string.

Exit:

Branch is made to: On finding: Prints message:

MASTERPARSER No match '-Cn:UNKN CMND'

MASTERPARSER Cmnds not in order '~Cn:ILGL SYNTAX'

MASTERPARSER Order improper '-Cn:NOT CNT'

MASTERPARSER String not of form/ST1/ '=Cn:NOT STRG'
where expected

RESUMES$PARSING Semi-colon

MASTEREXECUTIVE Carriage return

Operation:

This subroutine calls NEWCDTENTRY to build new CDT entry (character or integer), It calls
ADDCDTPARAM to add the new parameter (character or integer). It searches table of intraline commands
to find a match; if found, it processes appropriate command following the string. It uses GETNEXTPARAM
for commands that require further scanning.

The flow of PARSE:I, CMND$STRG, and PARSE:ICMNDSINTG is given in Figure 76.

PARSE:IN, PARSE:IS

1.

Purpose:

Adds an entry to the CDT for IN n[,i] or IS n[,i].

Entry:
B PARSE:IN
B PARSE:IS

This subroutine is invoked via the CBRCHTBL of MASTERPARSER after a command has been identified.

Exit:

B GETS$SEQSINCR to process the n[,i]portion of the command.

Operation:

This subroutine us;s NEWCDTENTRY to build new CDT entry and CHECKICDTENTRY to make sure IN
or IS is first command,

Entry
ARSE:I:CMND$STRG
__

NEWCDTENTRY

Build new
CDT entry
CMND=0

!

ADDCDTPARAM

in CDT

Put string

!

GETNEXTPARAM

from co

Get field

mmand

1CS50 ,i NEWCDTENTRY

Pg. 1
G Entry \
PARSE:1:CMNDS$INTG
— J/

TYPE

'-CreILGL
SYNTAX'

(MASTERPARSER)

[
TYPEPERR B
-CreILGL
ICS10
SYNTAX' Y
Search for
command
TYPECERR in table
v '-Cn:UNKN
@STERPARSER >< CMND!

m‘
1C520 yes

Put CMND
type in
CDT entry

GETNEXTPARAM
Build new Get field
CDT entry from
CMND =0 command
J ADDCDTPARAM
Put INTG
in CDT

NEWCDTENTRY

Build new
CDT entry
CMND =0

X

Initialize
PARAMBUF and
PRMBUFSZ

} ApDcpTPARAM

Put INTG
in CDT

y ADDC

DTPARAM

Put String
in CDT

¥ GETNEXTPARAM

Get field
from
command

Figure 75. Flow Diagram of PARSE:I:CMNDS$STRG and PARSE:I:CMNDSINTG

259

Pg. 2

TYPESBETA GETNEXTPARAM

Get field
from
Command
TYPEPERR:
1 '=Pn: NOT
~Cn;
nILGL no [CNT®
SYNTAX'
yes
MASTERPARSER
¢y TYPECERR ADDCDTPARAM
'PreNOT Put count
in CDT
ASTERPARSER STRG ! 1

TYPESALPHA GETNEXTPARAM y GETNEXTPARAM

Get field Get field
from from

Command Command

- TYPEPERR
'-PreNOT
— STRG' RESUMES$PARSING
ves
ADDCDTPARAM

Put String

A MASTEREXECUTIVE)

l GETNEXTPARAM

¥ _TYPEPERR
. -Pn: ILGL
Get field ASTERPARSER
from SYNTAX!
Command

TYPEPERR

Y| -Pn:ILGL
MASTERPARSER SYNTAX'

Figure 75. Flow Diagram of PARSE:I:CMND$STRG and PARSE:I:CMNDSINTG (cont.)

Pg. 3

'Pn: NOT
STRNG*

MASTERPARSER

1CS%0 GETNEXTPARAM

Get field

from command

RESUMES$PARSING

IYPEPERR

'-Pn:ILGL
SYNTAX'

)
(MASTERPARSER)

MASTEREXECUTIVE)

Figure 75. Flow Diagram of PARSE:I:CMNDS$STRG and PARSE:I:CMNDSINTG (cont.)

261

262

PARSE:MD, PARSE:MK

I.

Purpose:

Adds an entry to the CDT for MD n [-m], k[-p][i] or MK n [-m], k[~p](,i].

2, Entry:
B PARSE:MD
B PARSE:MK
This subroutine is invoked via the CBRCHTBL of MASTERPARSER after a command has been identified.
3. Exit:
Normal return is B GET$INCREMENT. Error exit is to MASTERPARSER via TYPEPERR after printing one
of the following:
'~Pn:NOT SEQ #'.
'=Pn:ILGL SYNTAX',
4, Operation:
This subroutine uses:
NEWCDTENTRY to add a new entry to the CDT;
CHECK ICDTENTRY to make sure this is the first CDT entry;
ADJINT to format sequence number as an integer * 1000; ~!
REPSEQ to duplicate sequence number if only one given;
ADDCDTPARAM to add to the CDT;
and GETNEXTPARAM to scan the input text,
PARSERF
1. Purpose:
Adds an entry to the CDT for RF.
2, Entry:
B PARSE:RF
This subroutine is invoked via the CBRCHTBL of MASTERPARSER after a command has been identified.
3. Exit: -
Normal return is to MASTEREXECUTIVE upon finding a carriage return or to RESUMESPARSING on find-
ing a ";". Error return is to MASTERPARSER via TYPEPERR on finding another character,
4, Operation: ~

It uses NEWCDTENTRY to build a new CDT entry and GETNEXTPARAM to scan command text.

PARSE:RN
1. Purpose:

Adds an entry to the CDT for the command RN, renumber.

2. Entry:
B PARSE-RN
This subroutine is invoked via the CBRCHTBL of MASTERPARSER after a command has been identified.
3. Exit:
Normal return is to MASTEREXECUTIVE upon recognition of a carriage return in the input command buffer.
Error exit: to ILGL$SEMICOLON on finding o semi-colon;
to MASTERPARSER via TYPEPERR after printing one of the following:
'-Pn:NOT SEQ #!,
'=Pn:1LGL SYNTAX',
or
'=Pn:PARAM MISSING'.
4, Operation:
This subroutine uses:
NEWCDTENTRY to build a new CDT entry;
CHECKICDTENTRY to make sure RN is the first command;
ADDCDTPARAM to add to the CDT;
GETNEXTPARAM to scan the input text;
ADJINT to format sequence number as integer * 1000; and

TYPEPERR to type error message.

PARSE:SS, PARSE:ST and PARSE:JU

1. Purpose:

Adds an entry to the CDT for S n [,c[,d]Jor ST n{,c[,d]Jor JUn.
2, Entry:

B PARSE:SS

B PARSE:ST

B PARSE:JU

This subroutine is invoked via the CBRCHTBL of MASTERPARSER after a command has been identified.

263

264

3. Exit:

Normal return is to MASTEREXECUTIVE on finding a carriage return for JU or to GET$SCOL¥PAIR for
SS or ST. Error returns are: :

to ILGL$SEQ2 on finding a second sequence number;
to ILGLS$SEMICOLON on finding a semi-colon;
to MASTERPARSER via TYPEPERR after printing:
'=Pn:NOT SEQ #'
or

'=Pn:ILGL SYNTAX',

4. Operation:
This subroutine uses:
NEWCDTENTRY to build a new CDT entry;
GETNEXTPARAM to scan the input text;
ADJINT to format sequence number as integer * 1000;
CHECKICDTENTRY to make sure this is the only entry in the CDT (if not JU); and

ADDCDTPARAM to add to the CDT.

PARSE:TC, PARSE:TS and PARSE:TY

1. Purpose:

Adds an entry to the CDT for TS [n=m][,c[,d]} TY[n-m](,c[,d]], or TC n[-m][,c[,d]}

2, Entry:
B PARSE:TC
B PARSE:TS

B PARSE:TY

This subroutine is invoked via the CBRCHTBL of MASTERPARSER after a command has been identified.

3. Exit:

For TC: a record number must be specified; normal exit is a B GET$COL?$PAIR; error exit is to
MASTERPARSER via TYPEPERR on finding no record number in which case it prints '=Pn:NOT SEQ¥'.

For TS and TY: normal exit is either to MASTEREXECUTIVE on finding a carriage retum or to
GETSCOL¥$PAIR to process record range; error exit is to MASTERPARSER via TYPEPERR on finding illegal
character, in which case it prints '=Cn:ILGL SYNTAX',

4,

Operation:

This subroutine uses:
NEWCDTENTRY to build new CDT entry;
CHECKICDTENTRY to ensure that TS, TY or TC is first command to be added to CDT;
ADJINT to form sequence number as integer * 1000;
REPSEQ to repeat "n" as "m" if only “n" given; and

ADDCDTPARAM to add to CDT.

MASTEREXECUTIVE Routine

Purpose:
This is the master routine to execute commands in the CDT. It resets CDTADR to point to start of

CDT, gets command from start of CDT, checks whether the proper mode is being used for this com-
mand, and calls it if so.

Entry:

B MASTEREXECUTIVE

This routine's address is given to NXTPRM! as the branch location following identification of a carriage
return in the input command buffer,

Exit:

B MASTERPARSER after finding erroneous data in CDT or after properly executing all commands in CDT.

Operation:

MASTEREXECUTIVE performs the following functions: restores last default value of blank perservation
flag; sets ALLOK flag to show that "ALL" mode is potentially legal; if a file command, ensures that
input file is present and keyed; if intra-record command, ensures that set mode is in effect; executes
command from CDT via F: , R:, or I: routines; if all-flog set ond command is intra-record, repeats
for all occurrences. This routine, in effect, controls execution of the set and step commands in addi-
tion to serving as driver for CDT command execution,

The flow for MASTEREXECUTIVE is given in Figure 76.

F:BLANKS$PRESERY

1.

2,

Purpose:

Sets SUBFLAG for blank preservation mode.

Entry:

F:LNK is the linkage register. This subroutine is entered via BAL, F:LNK F:BLANKS$PRESERV,

A procedure that generates a calling sequence to GETNEXTPARAM.

265

ol

RESTART$EXEC UTIVF‘L

(E@AE?‘EER&ECUWD
|

Initialize to first

entry in CDT

Set new BP
flag; set EDIT-
In-Execution flag

Indicate that
all is O.K,

Y

Get first
(next)
command

EXC40

TYPEMSG

'NO FILE
NAMED'

Pg. 1

Record
command

TYPEMSG

'MISSING
SET'

1
(MASTERPARSER >

MASTERPARSER

Figure 76. Flow Diagram of MASTEREXECUTIVE

Tum off
set flag

XC10

Call proper
subroutines to
execute command

Did
ommand set
all flag

EXC15

Pick up
command again

EXC30

TYPECERR

'CMND

ILGL HERE'

(MASTERPARSER)

in CDTV

Increment to
next command

Pg. 1

3
(MASTERPARSER)

EXC55

Pg. 2

TYPEMSG

‘NULL
CMND'

(MASTERPARSER)

Figure 76. Flow Diagram of MASTEREXECUTIVE (cont.)

267

Pg. 3

EXC20

In
Step Mode
? Pg. 2

1—=-SETFLAG to
indicate set has
been initialized

!

Save address of
corrent location

in CDT
Set Error
Count =1
|
READRANDOM
Read First
Record
SETEOD
Set Ending
Column
Pg. 2

Figure 76. Flow Diagram of MASTEREXECUTIVE (cont.)

3.

F:END

Exit is via B *F:LNK which results in return to MASTEREXECUTIVE. |

Operation:

If mode neither on or off it types "=NOT ON/OFF"; otherwise it sets SUBFLAG to current mode.

Purpose:

Performs initialization in preparation for editing a file.

Entry:

F:LNK is the linkage register. This subroutine is entered via BAL, F:LNK F:EDIT,

Exit:

B *F:LNK, which results in return to MASTEREXECUTIVE.

Operation:

If an EDIT command is already in effect, the scratch file is closed after a SAVE is performed on the subject
file if it exists. If only a scratch file is specified for the new EDIT operation, it is reopened (on the as~
sumption that it has been built previously as an EDIT scratch file) using routine OPENSCR. If a subject
file is specified, the method of indexing (specified key start and step, default key start and step, or key
contained in each subject file record) is determined, and routine BUILDSCR is called to build the scratch
file from the records in the subject file,

The flow for F:EDIT is given in Figure 77,

Purpose:

Closes scrotch file if open and causes return to the monitor.
Entry:
F:LNK is the linkage register, This subroutine is entered via BAL, F:LNK F:END.

Exit:

It returns to the monitor via CAL3, 6 0.

-y
Operation:

1f an EDIT command is not yet in effect, F:END does an EXIT service call. If an EDIT command is in effect
and the NS option of END was not specified, F:END calls SAVESCR to save the subject file. It then closes
the scratch file and performs the EXIT call. If NS was specified, the save operation is omitted.

The flow for F:END is given in Figure 78.

269

270

FIEDIT

FLEODIT

PREVIDUS

GET FILE
JIDENTIFIER 1
FROM COMMAND

DIT COMMAND

LINE

SET MSEQ TO
SUB JECT FILE

1S THE
AFILE
DENTIFIER 2

SAVESCR

SET MZEI TO
FILE]IINTIF]ER

SAVE THE
SCRATCH FILE
CONTENTS

DEERSL

REOPEN THE
SCRATCH FILE

£ OSESCR

CLOSE THE
SCRATCH FILE

Jj B

SET FLAG
INDICATING EOIT
COMMAND
RECEIVED

‘ EXIT

SET M3EO 10
FILE IDENTIFIER
2. OPEN 1T,

GENERATE AN
ERROR MESSAGE

GET NEXT
COMMAND

Figure 77. Flow Diagram of F:EDIT

@—

SET SEQUENC ING
STHRTngm SIEP
1

RERD FIRST
- RECORD OF
SUBECT FILE

SET _START AND
STEP AS
SPECIFIED

SET FLAG: KEY
IN RECORD NOT
REQUIRED

KEY h
NO__~LAST ELGHT

BYTES

YeEs

SET FLAG: KEY
IN RECORD
REQUIRED

3 0

T M2E] T
FILE]EENT!F]ER

¢RILDSE

BUILD THE
SCRATCH FILE

FROH THE
SUBJECT FILE

RECEIVED

SET FLAG
INDICATING EDIT
COHMAND

’ ExIT)

‘Figure 77. Flow Diagram of F:EDIT (cont.)

7

272

CLOSESCR

CLOSE Tl -

4 . 9 Pf A
NS' OPTIONJES SCRATCH FILE ———)LL)

SET SAVE FILE
TO SUBJECT FILE

SEY]

SAVE THE
CONTENTS OF
THE SCRATCH

FILE

L |

Figure 78. Flow Diagram of F:END

TS

R:COMMENTARY

1.

F:SAVE

Purpose:

Executes the insert commentary command, CM.

Entry:

R:LNK is the linkage register. This subroutine is entered via BAL, R:LNK R:COMMENTARY, from
MASTEREXECUTIVE.

Exit:

B MASTERPARSER

Operation:

If column number exceeds 140, it prints '-P2:COL ERROR' via TYPEMSG and exits. It uses READRANDOM
to read specified record: if not found, it prints '=Pn:NO SUCH REC' via TYPEMSG and exits,

It uses: TYPESEQ to type sequence number prompt and READTELETYPE2 to read commentary (if CR, it exits).

It moves commentary into record: if extends beyond 140 characters in all it types '--OVERFLOW' via
TYPEMSG and goes on to next record; commentary is blank — filled to the right.

It uses: SETEOD to insert carriage return if CR ON;
WRITERANDOM to write the record; and READSEQUEN to read next record.

It types "=-EQF HIT' if EOF found and exits,

It repeats sequence number prompt ond continues as previously described until a record having only CR is
found or until EOF is encountered,

Purpose:
Executes the SAVE command,

See Figure 79,

R:DELETE

1.

Purpose:

Performs a request to delete records.

Entry:

R:LNK is the linkage register.

Note: F:LNK ond R:LNK are synonymous. This subroutine is entered via BAL,R:LNK R:DELETE in
MASTEREXECUTIVE,

273

274

SET FLAG NDT TO
FORCE SAVE IF
SAVE FF[‘LE 100

SE1 FLAG FOR ON
OR DVER AS
SPECIFIED

SET SAVE FILE
1DENTIFIER TO
SUBECT fILE

SET FLAG TO
FORCE SAVE IF
SAYE FILE 70O

SMALL

SET SAVE FILE
IDENTIFIER AS
SPECIFIED

AVESCR
SAVE THE
CONTENTS OF
THE SCRATCH
FILE

=

Figure 79. Flow Diagram of SAVE Command

3.

Exit:

B *R:LNK

Operation:
It sets: P1 = first sequence number and P2 = last sequence number,

It uses DELETE to perform deletion of records specified by the range. If nothingisdeleted ituses TYPEMSG
to type '-NOTHING TO DE'.

R:FIND$SEQUENCE, R:FINDSDELETE and R:FIND$TYPE

1.

Purpose:

Processes the record commands FS, FD, and FT,

Entry:

R:LNK is the linkage register. This subroutine is entered via BAL, R:LNK
R:FIND$SEQUENCE
R:FIND$DELETE
R:FINDS$TYPE

from MASTEREXECUTIVE,

Exit:

B *R:LNK

Operation:
It sets: FIRSTSET = first sequence number in CDT and LASTSET = second sequence number in CDT.

It uses PROCESSCOLFPAIR to process the column number parameters and READNXTRANDOM to read first
sequence number specified or next highest.

It uses: FINDMATCH to scan the record for the specified string and READSEQUEN to read further if string
not in record read via READNXTRANDOM,

For: FS it uses TYPESEQ to type sequence number of record;
FT it uses SETEOD to insert @ if CR ON;
FD it uses DELETERECORD to delete the record,
It repeats the scan for the desired record range. -

It wraps up: for all three command types TYPEMSG is used to type '==NONE' if no matches found for FD
TYPEMSG is used to type '==XXX RECS DLTED'.

If EOF is reached during search, '==EOF HIT' is typed via TYPEMSG.

The flow of R:FIND$SEQUENCE, R:FINDSDELETE, and R:FINDSTYPE is given in Figure 80,

275

276

Pg. 1

ENTRY-
ENTRY- ENTRY-
GFINMSEQUENC} R:FIND$DELETE R:FINDSTYPE
I

X4 =2 X4 =0 X4 =1
For FS For FD For FT

P3=0=
Count of matches
found J‘

Y
FIRSTSET=
Ist seq. no.
in CDT

¥

LASTSET=
last seq. no.
in CDT

{ PROCESSCOLFPARR

Process column
no, parameters

+READNXTRAND OM

Read record
(either Ist seq.
no, or next

: : highest)
FND20

FND70 TYPEMSG

'--EOF
HIT! ‘
9. 2

Figure 80. Flow Diagram of R:FIND$SEQUENCE, R:FINDSDELETE, and R:FINDS$TYPE

o Pg. 2

FND50 TYPEMSG
X4 = ‘==nnn RECS
n> 0 1
LASTSET ? yes \ DLTED
o 2
FIRSTSET = FND&SA RETURN
New Seq. FNDéS
No. '--NONE'
yFINDMATCH yes T
Search rec. for
specified string RETURN
in columns
C-D DELETERECORD
X4= 1 GOTO DELETE
Increment 0 ‘
Match RECORD
1 connector E
Count
2
IYPESEQ
Type SETEQD
Seq. VN°‘ Mark end
of record
READSEQUEN
Read TYPECARD
Next Type
Record Record
Contents
Pg. 1
-y

Figure 80. Flow Diagram of R:FIND$SEQUENCE, R:FINDSDELETE, and R:FINDSTYPE (cont.)

277

278

R:INSERT$SUPSSEQ, R:INSERT

Purpose:

Inserts records with or without sequence number prompting.

Entry:

R:LNK is the linkage register, This subroutine is entered via BAL,R:LNK R:INSERT (Sets X4=0) or
BAL, R:LNK R:INSERT$SUPSSEQ (Sets X4=2) in MASTEREXECUTIVE.

Exit:

B *R:LNK

Operation:
The CDT is examined to pick up starting sequence number and, if present, increment it,

The subroutine resets DFLTINCR and new default increment, A record is read using READNXTRANDOM.
If the record read is the sequence number requested, the next highest record is read via READSEQUEN, If
IN command, TYPESEQ is used to prompt with sequence number. The record to be inserted is read via
READTELETYPE. If none existed, normal exit occurs, The record terminator is set to blank.

RECSIZE is set. If record size exceeds 140, '=-OVERFLOW!' is printed via TYPEMSG. SETEOD is used
to insert carriage return if CR ON,

WRITERANDOM is used to write the new card image. The current sequence number is incremented, If
more records will fit in the range, process is repeated starting with sequence number prompting above.
Otherwise, the Teletype bell is rung twice via TYPEMSG and normal exit is taken.

If a record to be inserted has sequence number greater than 9999.999, the message '=MAX. SEQ. NO.
EXCEEDED' is printed and command processing is stopped.

R:MOVESDELETE, R:MOVESKEEP

Purpose:

Processes the commands Move and Delete (MD) and Move and Keep (MK).

Entry:

R:LNK is the linkage register. This subroutine is entered via BAL, R:LNK R:MOVESDELETE or BAL, R:LNK
R:MOVE$KEEP from MASTEREXECUTIVE or via B MVES8, B MVE56, or B MVE40 from F:MERGE.

Exit:
B *R:LNK
Operation: -

This subroutine examines the CDT to get parameters from command form
MD :
{Mk} L) kERLD.

It sets DFLTINCR =i, or if i not specified = the most recent increment used (1 if none).

1.

«

It checks both ranges; errors are: '--EOF HIT' and '-RNG OVERLAP' typed via TYPEMSG. (Ranges must’
be mutually exclusive).

It uses READNXTRANDOM to attempt to read record n: (at MVES8)if not found it types '-NOTHING to
MOVE' via TYPEMSG and exits.

It uses DELETE to delete all records in range k~p. If it was possible to find all of them, it reads ahead
using READSEQUEN to mark sequence number of next record,

If record n cannot be found, it types '==EOF HIT', At MVES6 if record m hit or passed: and if m>p, it
types '==CUTOFF AT XXX.X (XX.XX)' and if MD, it deletes records n-m, and then exits,

It reads records from range n-m one by one and writes them with sequence number (key) k-p. At MVE40
normal termination yields message '-=-DONE AT XX.XX' and for MD, source records in range n-m are

deleted before exiting.

The flow of R:MOVESDELETE and R:MOVESKEEP is given in Figure 81.

R:RENUMBER

Purpose:

Reads old records having sequence numbers specified and writes them with new sequence numbers, de-
leteing old records where the sequence number already existed.

Entry:

R:LNK is the linkage register. This subroutine is entered via BAL,R:LNK R:RENUMBER in
MASTEREXECUTIVE.

Exit:

B *R:LNK

Operation:

It sets P1 = old sequence number; T1 = new sequence number

It uses: READRANDOM to read old record; WRITENEWRANDOM to write new record with new sequence
number; DELETERECORD to delete old record should sequence number already exist; and TYPEMSG to type
'«P1:NO SUCH REC' if old record does not exist and '=P2:REC EXISTS' if new record already exists.

R:SET$STEP, R:SET$STEPSTYPE

1.

Purpose:

Executes the SS (Set and Step) or ST (Set, Step and Type) command.

Entry:
R:LNK is the linkage register. This subroutine is entered via BAL,R:LNK R:SET$STEP or BAL, R:LNK
R:SET$STEP$TYPE in MASTEREXECUTIVE,

Auxiliary entry points: FINISH$STEPSLOOP, which is the entry point from I:JUMP, and STEPSLOOP,
which is the entry point from MASTEREXECUTIVE if in a step loop.

279

280

ENTFY-
R:MOVESDELETE

X4=0
For MD

ENTRY-
R:MOVE$ KEEP

READNXTRANDOM
Attempt to
Read
X4=1
For MK Record K
R MVE58 TYPEMSG &F
'-NOTHING Reached
TO MOVE! yes ?
FIRSTDEL=1
no
MVE10 ‘
Tl=n) ecord
T2=m | From yes ead > P
Pi=k CcDT Pg. 4 ?
P2=p
Y Y _DELET
P3 = DFLTINCR Delete
(Default Records
Increment) K-P
v Obtain
P3=1i from
yes cDT
MVYESQ IYPEMSG
RNG
OVERLAP!
READNXTRANDOM
Read Record
. n or next
Pg. 4 highest

Pg. 2 -

Figure 81. Flow Diagram of R:MOVESDELETE and R:MOVESKEEP

Rec. Read
>m?

Pl=Pl+i

MVES3 TYPEMSG

'--EOF HIT
AFTER
YYYY.YYY'

Pg. 3

FIRSTDEL =
R1, Seq. No.
Just Read

T

yes

LASTFROM =
Last Rec,
Read

LASTDEL =
LASTKEY

WRITERAND OM

Write record
having new seq.
no. P1

Pg. 3

Figure 81. Flow Diagram of R:MOVESDELETE and R:MOVESKEEP (cont.)

281

282

{ READRANDOM

Reread Rec.
LASTFROM to
Position DCB

READSEQUEN

Read Record
P1 (Next “from"
Rec.)

Pg. 2

Rec. Read
<m?

MVE40

MOVESEQ

Format Message
'«-DONE AT
bD.D!'

FRSTDEL =
Rec. Read

{ TYPEMSG

'-~DONE
AT DD, D'

Pg. 4

H PI=Pl+i

LASTDEL =
LASTKEY

WRITER

ANDOM |

Write Record
having new
Seq. No. P1

Figure 81. Flow Diagram of R:MOVES$SDELETE and R:MOVESKEEP (cont.)

MVES6 MOVESEQ

Format MSG
'~-CUTOFF AT
DDD.D* using list
"TO"

 MOVESEQ
Format Seq. No.
(DD.DDD) using
lost "FROM™"

TYPEMSG

'-~CUTOFF AT
DDD.D
(DD.DD)'

LASTDEL = -1
(Clear Byte
Count)

DELETE

A
DELETE

RECORDS

P1 - P2

(RETRN)

RETURN

Pg. 4

Figure 81. Flow Diagram of R:MOVESDELETE and R:MOVESKEEP (cont.)

283

3. Exit:

B MASTERPARSER in preparation for accepting intra=record commands to update the current record.

4. Operation:
This subroutine sets STEPFLAG = 1 for SS and SETFLAG =1 for ST.

This CDT is examined to pick up record number and, if present, column number(s). FIRSTSET is set equal
to the first sequence number, The column number parameters are processed via PROCESSCOL¥PAIR,

An attempt is made to read the record via READRANDOM, At FINISH$STEPSLOOP the following tests are
performed: If the record existed: SETEOD is used to insert carriage return if CR ON; record is typed via

TYPECARD for ST, or only sequence number is typed via TYPESEQ for SS; and normal exit is made to

MASTERPARSER.

If it did not exist: it types '=Pn:NO SUCH REC' via TYPEMSG, It sets STEPFLAG and SETFLAG to zero
and exits to MASTEREXECUTIVE. ‘

At STEPSLOOP it writes record via WRITERANDOM (unless command was NO); it exists if null commaond;
otherwise it reads the next record via READSEQUEN, It exits if EOF was hit after typing '--EOF HIT'
via TYPEMSG; if not hit, it saves new sequence number in FIRSTSET and proceeds with tests at
FINISHS$STEPSLOOP.

R:TYPESCOMPRESSED, R:TYPE and R:TYPESSUPSSEQ

1. Purpose:

Executes commands: TC (type records compressed), TY (type records), TS (type, suppressing sequence number).

154 TS .
Command forms are: {TC}n [—m][,c][,d] Y for intra=record mode,
TS ,

2. Entry:

R:LNK is the linkage register, This subroutine is entered via

BAL, R:LNK R:TYPESCOMPRESSED,
BAL, R:LNK R:TYPE,
BAL, R:LNK R:TYPE$SUPSSEQ in MASTEREXECUTIVE.
3. Exit:
B *R:LNK
-
4, Operation:

This subroutine examinesthe CDT to find sequence numbers. It uses PROCESSCOLY PAIRto prepare for process=
ing columns c-d and READNXTRANDOM for reading record n. It readsand types records in the range using:

SETEOD to insert carriage return if CR ON, TYPECARD to type record, and READSEQUEN to read
next record, 1f EOF was hit, it types '==EOD HIT' and exits.

The technique for handling typing of column bounds and the compressing of blanks is at TYP40 as a
subroutine within this routine. Using FRSTCLMN, LASTCLMN (set by PROCESSCOL¥PAIR) it shifts the
image in CARDIMG to compress blanks if TC, ‘

I:DELETE

1.

Purpose:

Executes the intraline Delete string command D,

Entry:

I:LNK is the linkage register. This subroutine is entered via BAL, I:LNK I:DELETE in MASTEREXECUTIVE.

Exit:

B *I:LNK

Operation:

This subroutine uses: FINDCOLUMN to find column corresponding to the first paorameter, SHIFTLEFT to
delete string, ADJUSTALLFLAG to set column 1 at which to resume matching, and SETOD to reset the
EOD marker.

I:FOLLOW$BY

1.

L:JUMP

Purpose:

Executes the intraline command F (follow X by Y).

Entry:

I:LNK is the linkage register, This subroutine is entered via BAL,:LNK I:FOLLOWSBY in
MASTEREXECUTIVE,

Exit:

B *I:LNK

Operation:

This subroutine calls: FINDCOLUMN to find column corresponding to the first parameter, SHIFTRIGHT to

make room for second string, MOVESTRING to move string into hole, ADJUSTALLFLAG to set ALL-
FLAG = column at which to resume matching (if ALLFLAG on), and SETEOD to reset EOD marker,

Purpose:

Executes the Jump command, JU (format JU n).

Entry:

I:LNK is the linkage register. This subroutine is entered via BAL, I:.LNK I:JUMP in MASTEREXECUTIVE.

286

1.

Exit:

Normal exit is B FINISH$STEP$SLOOP. Error exit is B *I:LNK,

4, Operation:
If user is not in step mode, this subroutine uses TYPECERR to type and exits to MASTEREXECUTIVE, 1t
uses WRITERANDOM to write record. It examines CDT to get record number n and uses READRANDOM
to read it, If record not found, it uses TYPECERR to type '-Cn:NO SUCH REC', uses READRANDOM to
restore old record to the buffer, and exits to MASTEREXECUTIVE,
If record found, it saves sequence number in FIRSTSET and exits to FINISH$STEPSLOOP,

I:NOSCHANGE

1. Purpose:
Sets NOCHGFLG flag in response to the NO command while in step mode,

2, Eniry:
I:LNK is the linkage register. This subroutine entered via BAL,:LNK I:NO$CHANGE in
MASTEREXECUTIVE,

3. Exit:
B *I:LNK

4, Operation:

If user is not in step mode this subroutine types '=Cn:CMND ILGL HERE' via TYPECERR and returns.
Otherwise, it sets NOCHGFLG=1 and returns.

I: OVERWRITE

Purpose:

Executes the intraline command O, overwrite X by Y.

Entry:

I:LNK is the linkage register. This subroutine is entered via BAL, :LNK I:OVERWRITE in
MASTEREXECUTIVE.

Exit:

B *L:LNK

Operation:

This subroutine uses: FINDCOLUMN to find column corresponding to the first parameter, MOVESTRING to
overwrite string X with string Y, ADJUSTALLFLAG to set column number at which to resume matching, and
SETEQD to set the EOD marker.

I:OVERWRSEXTEND

1.

Purpose:
Executes the overwrite and extend blanks command, E. This command has two forms:

[j]/sfring]/E/sfringz/ or kE/sfringz/.

Entry:

I:LNK is the linkage register. This subroutine is entered via BAL, I:LNK I:OVERWRS$EXTEND in
MASTEREXECUTIVE.

Exit:

B *I:LNK

Operation:

This subroutine sets ALLOK # 0 to show "ALL" is not valid at this point; uses FINDCOLUMN to find col-

umn which corresponds to the first parameter; examines CDT to find address of stringy; uses MOVESTRING
to place new string in record; updates P to point to the column after the last new character; stores blanks
in remainder of record; uses SETEOD to insert carriage return if CR ON; and exits to MASTEREXECUTIVE,

I:PRECEDE$BY

1. Purpose:
Executes the intraline string command P, precede X by Y.

2, Entry:
I:LNK is the linkage register, This subroutine is entered via BAL, I:LNK I:PRECEDE$BY in
MASTEREXECUTIVE,

3. Exit:
B *I:LNK

4. Operation:
This subroutine uses: FINDCOLUMN to find column corresponding to the first parameters, SHIFTRIGHT to
make room for second string, MOVESTRING to move string Y into hold, ADJUSTALLFLAG to set column
number at which to resume matching, and SETEOD to reset the EOD marker,

I:REVERSE$BPFLAG

1. Purpose: -
Execute the RF command.

2, Entry:

LLLNK is the linkage register, This subroutine is entered via BAL, :LNK I:REVERSE$BPFLAG in
MASTEREXECUTIVE. .

287

283

3.

Exit:

B *I:LNK

Operation:

This subroutine reverses BPFLAG and returns.

Purpose:

Executes the intraline command SE.

Entfry:

I:LNK is the linkage register. This subroutine is entered via BAL, I:LNK I:SET in MASTEREXECUTIVE. Its
auxiliary entry is SETSLOOP from MASTEREXECUTIVE if in SET loop.

Exit:

B *I:LNK is normal exit. If entered via SETSLOOP, normal exit is B RESTART$EXECUTIVE, Error exit
is B MASTERPARSER,

Operation:

It sets SETFLAG = 1. The CDT is examined to pick up first and last sequence numbers. It stores first
sequence number in FIRSTSET, and last one in LASTSET. If range covers more than one record it
sets ERRORCNT =1,

PROCESSCOL#PAIR is used toprocess the column numbers, SETADR is initialized to address in CDT which
follows the SE command, An attempt is made to read the record viaREADRANDOM: ifnot found, '=Pn:NO
SUCH REC' is typed via TYPEMSG, SETFLAG is set to zero, and exit is made to MASTERPARSER; if found,
SETEOD is used to insert carriage return if CR ON, and exit is to MASTEREXECUTIVE via B *I:LNK,

If entered at SETSLOOP and the last record has been processed, it uses WRITERANDOM to write it, sets
SETFLAG =1 so that loop will be restarted if another :CMND follows and exits to MASTERPARSER, If it
has not, it uses WRITERANDOM to write current record and READSEQUEN to read next one: if sequence
is past range, it sets SETFLAG = 1 and exits; if not past range it puts new sequence number in FIRSTSET,
puts contents of SETADR in CDTADR to start I:CMND loop at beginning, uses SETEOD to insert carriage
return if needed, and exits to RESTART$EXECUTIVE.

If EOF encountered it uses TYPEMSG to print '=-EOF HIT', sets SETFLAG = !, and exits to MASTERPARSER,

I:SHIFTSLEFT

1.

2,

Purpose:

Executes the intraline command L, shift X lef* oy N.

Entry:

I:LNK is the linkage register. It is entered via BAL, :LNK I:SHIFT$LEFT in MASTEREXECUTIVE.

1.

1.

Exit:

B *I:LNK : !4

Operation:

This subroutine uses: FINDCOLUMN to find column corresponding to the first parameter, SHIFTLEFT to
shift string left N places, and SETEOD to reset the EOD marker.

[:SHIFTSRIGHT

Purpose:

Executes the intraline string command R, shift X right by N,

Entry:

I:LNK is the linkage register. This subroutine is entered via BAL, LLNK L:SHIFT$RIGHT from
MASTEREXECUTIVE.

Exit:

B *I:LNK which results in a return to MASTEREXECUTIVE.

Operation:

This subroutine uses: FINDCOLUMN to find the column corresponding to the first parameter, SHIFTRIGHT
to shift string X right N spaces, and SETEQOD to set the EOD markers.

1:SUBSTITUTE

Purpose:

Executes the substitute command, S whose format is[j]/sfring]/S/sfringz/.

Entry:

I:LNK is the linkage register. This subroutine is entered via BAL, :LNK I:SUBSTITUTE in
MASTEREXECUTIVE.

Exit:

B *I:LNK

Operation:
This subroutine performs the following functions:

a. Uses FINDCOLUMN to find column corresponding to the first parameter.
b. Exits if it is not found,
c. Examines CDT to get address of string,.

289

290

1.

d. Sets P1 = character following string;.
e. Uses SHIFTRIGHT to shift rightmost characters to the right if new string is shorter than old, .
f. Uses MOVESTRING to put the new string in place.

g. Uses ADJUSTALLFLAG to reset ALLFLAG to the column number at which matching is to be re-
sumed (if ALLFLAG #0).

h. Uses SETEQOD to insert carriage return if CR ON.

i. Exits to MASTEREXECUTIVE.

Purpose:

Type records in response to intraline commands,

Entry:
I:LNK is the linkage register. This subroutine is entered vic BAL from MASTEREXECUTIVE; in re-

sponse to TY command, via BAL, :LNK I:TYPE; or in response to TS command, via BAL, I:LNK
I:TYPESSUPSSEQ.

Exit:

B *I:LNK

Operation:

For I:TYPE FIRSTSET is set equal to sequence number. TYPECARD is used to type card image with se-
quence number. For I:TYPESUPSEQ it sets Pl =1 to indicate sequence number suppression. It uses
TYPECARD to type card image without sequence number.

General Purpose Subroutines

ADDCDTPARAM

Purpose:

Adds a new parameter to the Command Description Table (see Figure 71).

Entry:

LNK is linkage register used. This subroutine is entered via BAL,LNK ADDCDTPARAM from: several
PARSE:routines when it is desired to add to the CDT. Upon entry P1, PARAMPSN, and PRMBUFSZ
are as shown below.

Exit:

B 0, LNK with expanded CDT entry,

4,

ADJINT

1.

Operation:

Words are added to the CDT from PARAMBUF according to the format shown previously in Figure 71
using the following input parameters:

Pl = type of parameter,
PARAMPSN = next available slot in CDT.

PRMBUFSZ= number of words to be added.

Purpose:

Forms a sequence number as an integer * 1000,

2, Entry:
LNK is the linkage register. This subroutine is entered via BAL, LNK ADJINT,
3. Exit:
B *LNK
4, Operation:
This routine muitiplies the sequence number in PARAMBUF by 1000 and stores it back in PARAMBUF,
ADJUSTALLFLAG
1. Purpose:
Sets ALLFLAG.
2, Entry:
LNK is the linkage register. This subroutine is used by a number of the I:routines in processing intraline
commands. Upon entry P1 = column number at which to resume matching.
3. Exit:
B 0, LNK to calling routine.
4, Operation:
-~
No action is taken if ALLFLAG < 0. Otherwise this subroutine sets ALLFLAG = PI1,
ANLZRIGHT
1. Purpose:

Analyzes the composition of a field to the right.

21 .

2, Entry:

LNK is the linkage register. This routine is entered via BAL, LNK ANLZRIGHT from either the SHIFTLEFT
or SHIFTRIGHT routine, Upon entry, Pl = column at which to begin analyzing.

3. Exit:
If BO OFF: R1 = number of nonblanks to first blank. R2 = number of blanks — 1 from first blank to
next nonblank. If BP ON: R1 = number of characters to last nonblank on card. R2 = number of trailing
blanks on card, CC1 =1 if initial Pl > end of buffer, CC1 = 0 otherwise. ANLZRIGHT returns to cali~
ing routine via B 0, LNK,

4, Operation:

If start of field falls past end of buffer, it sets R1 and R2 = 0, clears stack of P1, P2, sets CCl and exits,
EODCLMN is column number containing last nonblank character.

BPFLAG =1 if BP ON,
BPFLAG = 0 if BP OFF.
MAXCLMN points to the end of buffer.

This subroutine performs character scan based on blank preservation mode to set R1 and R2 as shown above.
It sets CC1 and returns to calling routine.

BINTODEC
1. Purpose:
Converts a binary number to decimal.
2, Entry:

LNK is the linkage register, P1 contains binary number, P2 contains byte address where decimal string
is to be stored {right=most byte). This subroutine is used by MOVESEQ and TYPESEQ.

3. Exit:
Return is to calling routine via B 0, LNK with decimal quantity properly stored.

4, Operation:

BINTODEC divides binary number by 10, adds zone bits to remainder (i.e., X'FO'), stores it, moves
pointer one to left in output string and repeats until seven digits have been converted,

BLANKBUF
1. Purpose:
Stores blanks in CARDIMG.
2, Entry:
LNK is the linkage register. This subroutine is used by READRANDOM and READSEQUEN, It is

called using BAL, LNK BLANKBUF,

292

3.

Exit:

Upon exit blanks are stored in CARDIMG. Return is made to calling routine via B 0, LNK.

— CHECK ICDTENTRY

1.

Purpose:

Ensures there is only one entry in the CDT.

Entry:

LNK is the linkage register, This subroutine is entered via BAL, LNK CHECKICDTENTRY.

Exit:

Normal return is to calling routine (only one entry was present). Error exit is to MASTERPARSER via
TYPECERR after printing: '-Cn:CMND ILGL HERE'. '

Operation:

This subroutine checks entry count in word 1 of CDT; it should be 1.

Purpose:

Deletes records in a specified range,

Entry:

LNK is the linkage register, This routine is used by R:DELETE, and R:MOVESDELETE. Calling sequence
is BAL, LNK DELETE and assumes:

P1 contains sequence number of first record to delete.
P2 contains sequence number of last record to delete.
R1 contains sequence number of last record read.

R2 contains number of records deleted,

Exit:

CC1 =1 if last sequence number was passed, CC1 =0 otherwise. Return to calling routine using B 0, LNK,
Message upon hitting end-of-file is '==EOF HIT',

Operation:

Reads and deletes record i,

It continues until P2 is reached or passed, or EOF hit,

293

294

BADIO!1

1. Purpose:

Prints abnormal I/O message.

2, Entry:
At BADIO, an error code is loaded into X1 from D1, At BADIOI, the error code is assumed to be in X1.

Entry is with branch because there is no return to calling routine. BADIO1 is calied by various open, read
and write routines,

3. Exit:

It returns to the monitor via the EXIT CAL.

4, Operation:

It sets up error code in message line and prints message.

FINDCOLUMN
1. Purpose:

Evaluates the first parameters for intraline commands.

2, Entry:

LNK is the linkage register, This subroutine is entered via BAL,LNK FINDCOLUMN from one of
the following routines:

I:DELETE
I:OVERWRSEXTEND
1:FOLLOW$BY
I:SHIFTSLEFT
[:OVERWRITE
1:PRECEDE$BY
I:SHIFTSRIGHT
I:SUBSTITUTE

Upon entry CDTADR contains address of current command in CDT,

3. Exit:
Upon exit: P1 = column computed from parameters,
P2 = width of field at this column,

X1=position of next CDT control byte.

CC1 =1 if no column found.
CC1 =0 otherwise.

Exit is B 0, LNK

4. Operation:
If not in "ALL" mode: and < 3 parameters: if command form K cmnd , it ensures that FRSTCLMN < K <
LASTCLMN. [f/string/ cmnd , it uses FINDMATCH to search for string, and = 3 parameters: it sets
occurrence count = 1 if it is illegal at this point, and it uses FINDMATCH to search for string. Error mes-
sages (printed via TYPECERR) are:
'-=Cn:'QLL'IGNORED',
'==Cn:NO SUCH STRING"',
'--Cn:COL>LIMIT',
'==Cn:COLLLIMIT',
FINDMATCH
1. Purpose:
Finds matching string in record,
2, Entry:
LNK is the linkage register. This subroutine is entered via BAL, LNK FINDMATCH from one of the
following routines:
R:FIND$SEQUENCE,
R:FIND $DELETE,
R:FINDS$TYPE,
FINDCOLUMN.
Upon entry: Pl = column number,
P2 = address of TEXTC string to be matched.
3. Exit:

Upon exit: R1 = column number at which match occurred,
CC1 =0 if match found.
CC1 =1 if match not found,

Exit is via B O, LNK,

295

4. Operation:

This subroutine:
sets TEXTCADR = C(P2), and)

sets STOPCLMN (last column number at which a match can take place) =C(LASTCLMN) =string length.

If P} < STOPCLMN, it exits with CC1 =1, It scans record for match with TEXTC string.

GETFILEID
1. Purpose:

Checks syntax of FID and if good, sets PARAMBUF and PRMBUFSZ.

2, Entry:

LNK is the linkage register. This subroutine is entered via BAL, LNK GETFILEID from PARSE:SAVE and
:EDIT to obtain the file ID so it can be placed in the Command Description Table.

The file ID is assumed to be in the Teletype input buffer,

3. Exit:
File ID is now in PARAMBUF as follows:
PARAMBUF)
TEXTC filename
TEXTC area name
and it has been checked for proper format.
Return is to calling routine via BAL 0, LNK.
Error returns are via GETNEXTNAME: messages include
'~P1:BAD FID'
'=Cn:CMND ILGL HERE'

'-PLILGL SYNTAX',

4, Operation:

This routine rejects a file name which islonger than eight characters. It uses GETNEXTNAME first to build
file name in PARAMBUF. Tt thenpushes the area name, ifpresent. It thenpulls the entries from the stack
and stores them in PARAMBUF and stores in PRMBUFSZ the length in words of the entries in PARAMBUF.

GETNEXTNAME
1. Purpose:

Gets the next name from the Teletype input buffer (TTYIMG) and places it in PARAMBUF.

296

2,

1.

Entry:

LNK is the linkage register. This subroutine is entered by invoking the NXTNAM command procedure
resulting in the calling sequence:

BAL, LNK GETNEXTNAME,

GEN, 8, 24 # of branches, address of error message,
GEN, 8,24 type 1, branch oddress 1.

.GEN, 8,24 i"ype n , branch address n.

Exit:

Upon exit, a name (file or area) resides in PARAMBUF in TEXTC format.

Return is to the branch address in bits 8=31 of the word in the calling sequence of which a match was
found on bits 0-7. Error return is to MASTERPARSER,

Operation:

Input characters from TTYIMG are scanned and tested to determine whether they are part of a name,
They are placed in PARAMBUF in TEXTC format, When a terminator is found (e.g., comma or right
parenthesis) the scan is stopped, and the name is padded to the right with three blanks. If an error
is found, the error message given in the calling sequence is printed and return is made to MASTER-

PARSER via TYPECERR.

The flow of GETNEXTNAME is given in Figure 82,

GETNEXTPARAM

Purpose:

Scans the Teletype input buffer to isolate recognizable character strings which comprise EDIT commands
and places them in PARAMBUF.

Entry:

This routine is called by various PARSE: routines, LNK is the linkage register, The routine is invoked
by the NXTPRM procedure which sets up a calling sequence as follows:

BAL, LNK GETNEXTPARAM,
GEN, 8,24 # of branches, address of error message.

GEN, 8, 24 completion type, branch address 1.
GEN, 8,24 completion type, branch address n,

Exit:

Upon exit, a parameter is in PARAMBUF in TEXTC format. Return is to the branch address in bits 8~31
of the word in the calling sequence of which a match was found on bits 0-7, Error return is to
MASTERPARSER via TYPEPERR.

297

298

Save
R3 -R6

¥

Pick up current
character position

Y

Get next
non-blank
character

&
LD

no

Set index to first
char. in buffer
where name will

be built

or letter

Store
character in
name

character blank
?

yes

GNS50

Get type of
completion so we

know where to
branch

Put 3 trailing blanks
on name; store true
count for

TEXTC

!

Pg. 2

Get f of
words for

text
|

Set type to
name for branch
target

)

Set to RESCAN
last character

Pg. 2

Figure 82. Flow Diagram of GETNEXTNAME

GETNEXTSFINISHy

Store wordsize
of entry

¥

Get * of branches
to check from
BAL

Get branch
address; restore
R3 -R6

Go To
Routine

GETNEXT$SERROR

Get address of
error msg, from

BAL

Pg. 2

Decremen
position

Decrement

By 1

J

| Store error

msg. in dummy
call

T

DMYS$TYPECERR

Figure 82. Flow Diagram of GETNEXTNAME (cont.)

Operation:

A scan is made character-by-character, with tests being performed to detect invalid command format.

Examples: slash (/) must not be the last character of a command; a sequence number must not exceed three

digits; the second sequence number in a range must not be greater than the first, Error messages include:

'-Pn:ILGL STRG'
'-Pn:NULL STRG'
'-Pn:ILGL SEQf
'-Pn:SEQ2<SEQ1"

in addition to that given in the calling sequence.

The fiow of GETNEXTPARAM is given in Figure 83,

ILGL$SEMICOLON

1.

Purpose:

OQutput an error message when semi-colon is found following F: or R: CMND (should only be used in
intrarecord operations).

2, Entry:
The address of this routine is entered via the NXTPRM procedure into the calling sequence of a branch
to routine GETNEXTPARAM when it is desired that the SCOL (semicolon) type of entry be flagged as
an error, When entered it is done via B *D1 ot GN45 of GETNEXT$FINISH,
3. Exit:
Branches to MASTERPARSER,
4, Operation:
It increments byte 3 of CDT containing CMND #. It uses TYPECERR to type '=Cn:CMND ILGL HERE',
MOVESEQ
1. Purpose:
Formats sequence number in EBCDIC as ' XXXX.XXX' having four characters from calling sequences appended,
2, Entry:

-
LNK is the linkage register, This subroutine is entered via BAL, LNK MOVESEQ from one of the fol-
lawing routines:

R:MOVESDELETE
R:MOVESKEEP

READSEQUEN

ENTRY-
GETNEXTPARA

Get current
character
position

¥

Skip to next
non-blank

GP20

Pg. 1

GP30

character

] |
Get next ‘

Get type of

completion to

know where to
anch

Set index to first
character in buffer
to build

parameter

GP45 TYPEPERR

ILGL,
STRG'

Y

(MASTERPARSER)

GP35

Get next

character
GP30A
Store

Character | yes
no
Pg. 2
-y

Figure 83. Flow Diagram of GETNEXTPARAM

301

Pg. 2

Set PIO .
Completion Store

o String Character

GP40
Y

Store 3 trailing

blanks Get next

character

GP43 TYPEPERR

'NULL i
STRNG a letter ? J
yes
y
Store count for MASTERPARSER
TEXTC; get word or
count; set to .
RESCAN last completion type
to alpha

302

y
@TNEXTSFINISH)

Figure 83, Flow Diagram of GETNEXTPARAM (cont,)

—

GP50 ;

0-X1 to show 1st
seq.

1=X2 to show
INTG,

0~D1 accumulator

GP52
Is it
a digit ? o
yes
GP52A

Add digit Set to check for
fo previous sum 3 digits
maximum
{orss (F)
Ts it Get next
> 10000 X character
yes
?
no

Is it

Get next
a digit

?

character

yes
Add the 7
necessary A‘?d to
trailing previous sum
Zero:
CG/' >
GP53A | 7= TYPEPERR
LeL
SEQ #

(MASTERPARSER)

Figure 83. Flow Diagram of GETNEXTPARAM (cont.)

303

304

Adjust for
trailing
zeroes

3 digits

Set to check

Multiply by 1000
to convert to
seq,

]

Save value
in

PARAMBUF

1=X1 to show 2nd

seq. ¥; Reset X2,
D1 as above

Y

Get next
character

Set finish

type to
INTG

Set finish
type to seq.

Set PARAMBUF
size to RESCAN
last character

l

Store value
in

PARAMBUF

| (GETNEXTSFINISH)

Figure 83. Flow Diagram of GETNEXTPARAM (cont.)

Multiply by
1000 to convert
to Seq. ¥ format

4

Store value

in PARAMBUF
+1

|

Set finish type to
SEQ2;
Set PARAMBUFSZ

7
Set to RESCAN

last
character

no
TYPEPERR

'SEQ2 < SEQT!

Y
(MASTERPARSER)

GETNEXT$FIN[SE

Pg. 5

Figure 83, Flow Diagram of GETNEXTPARAM (cont.)

305

-

Upon entry: P1 =sequence number to be converted to EBCDIC; P2 = byte address at which to put the
string. Word following the BAL contains four characters to be appended to the sequence number.

3. Exit:
Upon exit, R1 contains the number of characters in the resultant string. Exit is B 1, LNK,

4, Operation:
It uses BINTODEC to convert sequence number to EBCDIC, places string in TEMPBLCK with leading
zeros blanked and the requested characters appended at the right,

MOVESTRING

1. Purpose:
Moves a character string into the output buffer,

2, Entry:
LNK is the linkage register. This subroutine is entered via BAL, LNK MOVESTRING from several
I: routines. Upon entry P1 = column at which string is to be placed; P2 = address of TEXTC string
which is to be inserted.

3. Exit:
B 0, LNK

4. Operation:
If starting column is beyond end of record and any character of string is nonblank, it types '~Cn:OVERFLOW!
via TYPECERR and exits; otherwise, it exits, If not beyond end of record it moves TEXTC string into buf-
fer, one character ot a time, [f end of buffer is reached, it types message as above and exits,

NEWCDTENTRY

1. Purpose:
Sets up room in the CDT for a new entry,

2, Entry:
LNK is the linkage register, This subroutine is entered from several PARSE: routines. Upoff entry:
Pl contains the number of the command type to be added; word following the BAL contains the num=
ber of parameters,

3. Exit:

Return is made to @ + 2 with CDT entry initialized.

4, Operation:
CDT entry is initialized as follows:

word 0: byte 0 contains length of entry (= 0 initially); byte 1 contains command type (or number) e.g.,
0 for carriage return, 1 for file name, etc. Byte 2 contains number of this entry in the CDT; byte 3

contains number of parameters, Words (1 — ¥ of parameters/2) : zeroes. Word ¥ of parameters/
2 +1: X'00000100',

PROCESSCOL¥PAIR

1. Purpose:
Performs internal housekeeping required in processing a pair of column numbers in a record or an intra-
record command,

2, Entry:

LNK is the linkage register, This subroutine is entered via BAL, LNK PROCESSCOL#PAIR from the
following routines:

R:FIND$SEQUENCE
R:FIND$DELETE
R:FINDS$TYPE
R:SETSSTEP
R:SET$STEPSTYPE
R:TYPESCOMPRESSED
R:TYPE
R:TYPESSUPSSEQ
I.SET

Upon entry, X1 points to the location of the next parameter control byte in the CDT.

3. Exit:
Normal exit is B 0, LNK. Error exit is B MASTERPARSER after printing '-BAD COL.NO, PAIR' via
TYPEMSG and setting SETFLAG and STEPFLAG = 0.

4, Operation:
It sets starting and stopping columns as follows:

FRSTCLMN = 0 if no starting column given, -
= column number ¢ - 1 from commond if input,

LASTCLMN = 140 if no stopping column given,
= column number d + 1 from command if input.

If ¢ 2d it prints error message and exits,

If d 2140 it prints error message and exits.

307

READNXTRANDOM

1. Purpose:

Reads random record or next highest one,

2, Entry:

LNK is the linkage register, This subroutine is entered via BAL, LNK READNXTRANDOM from the fol-
lowing routines:

R:FIND$SEQUENCE
R:FINDS$DELETE
R:FINDS$TYPE
R:INSERTSSUPSSEQ
R:INSERT
R:MOVES$DELETE
R:MOVE $KEEP
R:TYPESSUPSSEQ
R:TYPESC OMPRESSED

DELETE
Upon entry, P1 =sequence number of record to be read.

3. Exit:
R1 = sequence number of record actually read,
CC1 = 0 if record existed,
CC1 = 1 otherwise.

Return is to calling routine via B 0, LNK,
4, Operation:

This subroutine uses READRANDOM to issue read. [f read wos successful it sets R1 = sequence num-
ber and CC1 =0, Otherwise it sets CC1 = 1 and returns. -

READTELETYPE, READTELETYPE2

1. Purpose:

Reads an input line. -

308

Entry:

LNK is the linkage register. This subroutine is entered via BAL, LNK TELETYPE from one of the
following:

R:INSERT
R:INSERT$SUPSSEQ

It is entered via BAL, LNK TELETYPE2 from MASTERPARSER or R:COMMENTARY and stores characters
into TTYIMG.

3. Exit:
R1 = number of characters read. It returns via B 0, LNK to calling routine,
4, Operation:
It sets buffer to CARDIMG or TTYIMG, stores blanks in buffer, reads up to the length of the buffer and setsR1.
If the value in GOSEQ is negative (EDIT is not in GO mode), the input is taken from M:SI, the control
stream, If the value in GOSEQ is non-negative (EDIT is in GO mode), the input is taken from the edit file
at the first sequence number greater than the value in GOSEQ.
SETEOD
1. Purpose:
Scans active card image to locate the rightmost nonblank character,
2, Entry:
LNK is the linkage register. This subroutine is used by a number of routines such as MASTEREXECUTIVE
and several R: and I: routines. It is called using BAL, LNK SETEOD.
3. Exit:
- EODCLMN contains column of last nonblank character or ~1 if all blanks. RECSIZE contains a byte count
of zero if all blanks, Return is to calling routine using B 0, LNK.
4, Operation:
This subroutine scans record image from right looking for all blank words (up to word 0), If no nonblanks
are found, it sets flag to check word zero, byte-by-byte. Otherwise, it sets flag to indicate byte-
by-byte checking in the word where a nonblank character was found.
SETLASTKEY
1. Purpose: -
Stores key of last record read read in LASTKEY and stores record size in RECSIZE.
2, Entry:

LNK is the linkage register, This subroutine is entered via BAL, LNK SETLASTKEY from READRANDOM
and READSEQUEN,

310

3.

Exit:

It returns to calling routine via B 0, LNK with LASTKEY and RECSIZE set.

4. Operation:
It sets LASTKEY and RECSIZE, removes carriage return, if any, and uses SETEOD to append carriage
return if CR ON,
SHIFTLEFT
1. Purpose:
Shifts a character string to the left,
2, Entry:
LNK is the linkage register. This subroutine is entered via BAL,LNK SHIFTLEFT from one 'of the
following routines:
1:DELETE
I:SHIFTSLEFT
1:SUBSTITUTE
Upon entry: Pl = column number at which to start the shift,
P2 = width of field starting at this column.
P3 = number of spaces to shift left.
3. Exit:
B O, LNK
4. Operation:
This subroutine uses ANLZRIGHT to analyze field at P1. If field extends beyond end of card, it prepares
to shift in blanks. If shift will push data off beginning of record, it prints '==Cn:UNDERFLOW"' via
TYPECERR and prepares to shift only to column 0, If width of 0, it bypasses shift. It performs shift,
blanking out the cleared characters on the right.
SHIFTRIGHT
1. Purpose:
Shifts a character string to the right,
-
2, Entry:

LNK is the linkage register, This subroutine is entered via BAL, LNK SHIFTRIGHT from the following
routines:

I:FOLLOWSBY

1:PRECEDES$BY

I:SHIFTSRIGHT
1:SUBSTITUTE
Upon entry: Pl = column at which to start shift.
P2 = width of field starting at this column.

P3 = number of places to shift.

3. Exit:
B 0, LNK
4. Operation:

It exits if P1 > MAXCLMN,

It initializes FIELDCNT =number of fields to compress and BLANKCNT =number of blanks to ;:ompress. If
field] extends to end of record it types pointers prior to shifting. If field extends beyond end of record, in
addition to message, it blanks out P2 characters and exits.

For normal shifts:

It uses ANLZRIGHT to compute R1 =column atend of nonblanks and R2 =number of nonblanks -1 =num-
ber to shift for each space to be filled (just rightmost portion of record if BP ON),

The R1 and R2 quantities computed by each entry to ANLZRIGHT are pushed into a stack to be pulled
from to perform the shifting or compressing. When all fields have been compressed, blank-fill is per-
formed on the original fields at left in record.

Special coses:

If fieldp-n is found to spill off end of card: message is output via TYPECERR: '=-Cn: OVERFLOW';
and BLANKCNT gets set to the appropriate number of nonblanks to destroy.

It performs special process of compressing fields that do fit until reaching the one which does not,
where it then computes a special R1 and R2. This covers cases in which part of a nonblank field

gets destroyed,

The flow of SHIFTRIGHT is given in Figure 84.

TYPECARD

1. Purpose:

Types a card image.

2, Entry:

-
LNK is the linkage register. This subroutine is entered via BAL, LNK TYPECARD from one of the fol-
lowing routines:

R:FINDS$SSEQUENCE
R:FIND $DELETE

R:FINDS$TYPE

3N

ENTRY-
SHIFTRIGHT

starting col.
beyond end of

Save
Registers
3-12

¥

FIELDCNT=0
BLANKCNT=0

¥
Move pointer P1 to’
Ist character past
field to be moved

R1=RHPI to point
to char. position
at end of non-blanks

¥

Add 1 to
FIELDCNT ’

Save R1 and R2
(R2 = no, of trailing
blanks in rec.)

-

Increment Pl

5 Y ANLZRIGHT

Analyze
composition of
field to right

312

Add no. of blanks
to be compressed
to BLANKCNT

to point fo next
field

Figure 84,

Flow Diagram of SHIFTRIGHT

SR8

P3=P3 -
BLANKCNT
(P3=no. of places to

shift right) L

R2=R2+P3

(:) SREA 1

X1=R1

X2 =R2

(Save R1 & R2

Temporarily)
K

BLANKCNT =0

Y

FIELDCNT =
FIELDCNT-1

X1=end of "from"
field
X2=end of "to"

field

SR10

FIELDCNT=
FIELDCNT=-1

shifts done
?

Pg. 2

SR20

yes

BLANKCNT=no.
| of chars. to
blank out

SR20A |

X2=X2+P2-1 (Add
length of original

field to no. of non
blanks)

Pull next field
block from stack

Blank out shifted
chars. on left

<0

R12 V

TI= X20-15

11=no, ot char, in
field fo shift
{incl, preceding
blank)

SRI2A

Add X2 to
BLANKCNT
(BLANKCNT=no, of
blanks compressed out)

first field
?

R

Restore
Registers3-12

RETURN

Figure 84. Flow Diagram of SHIFTRIGHT (cont.)

313

SRSO___§ TYPECERR

'e=Cn:OVERFLOW!
t
Pull next field
BLANKCNT=0 block from stack
1 |
T1=<P3 R1=R1+1
] I
Pull last field Increment no, of
block from stack non-blanks to be
shifted in R2
SR52 A SR58
T1 =T1 + position "
Add width of field
at end of non-blan starting at this
column to T1
SR52A
R1 =char. positio?]
at end of non-blanks
not destroyed
SR55 R2 ¢
BLANKCNT= [= no. of non-
BLANKCNT + blanks not R1=RI-R2
portion of next dsfroyed, i.e. not
field fo be destroyed (% shift 1
R2= width of field
starting at this
FIELDCNT= | column
FIELDCNT-1

Pg. 2

Figure 84, Flow Diagram of SHIFTRIGHT (cont.)

314

BLANKCNT=
BLANKCNT+P2

Set X2 so that all
fields will be
blanked (i.e., push-
ed off card)

Pg. 2

SR70 vy TYPECERR

'==Cn:
OVERFLOW'

!

P2 = P2 - no, of
places to shift
right

SR72

T1 = no. of
characters to
blank out

BLANKCNT = no,
of characters
to blank out

!

X1 = end of "from"
field

'

X2 = last column
on card

Y

T1 = no, of chars.
to shift

Pg. 2

!

X2 = last column
on card

Pg. 2

Pg. 4

‘FEurre 84. Flow Diagram of SHIFTRIGHT (cont.)

315

R:SET$STEP
R:SETSSTEPSTYPE
R:TYPESCOMPRESSED
R:TYPESSUPSSEQ
I:TYPE
L:TYPESSUPSSEQ

Upon entry Pl = sequence number to be typed (< O if sequence number is not to by typed).

3. Exit:

Return is to calling routine via B 0, LNK.

4. Operation:

It calls MOVESEQ if sequence number is to be typed and calls TYPEMSG to type card contents,

TYPECERR, TYPEPERR

1. Purpose:

Types a command error message (TYPECERR) or parameter error message (TYPEPERR).

2, Entry:

LNK is the linkage register. This subroutine is entered via BAL, LNK TYPECERR or BAL, LNK TYPEPERR
from many routines. The word following BAL contains address of message to be printed.

3. Exit:

B 1,LNK

4, Operation:

If maximum error messages allowed have been printed it returns. It sets command or parameter number to
agree with its place in the command: e.g., '==C2=~=<'_ [t types message using TYPEMSG.

TYPEMSG
1. Purpose:
Remove trailing zeroes and types a message.
2, Entry:
LNK is the linkage register, This subroutine is entered via BAL, LNK TYPEMSG with next word = word ad-

dress of TEXTC string.

316

3. Exit:

Return is to cafling routine via B 1, LNK '

4. Operation:

The Monitor WRITE CAL is used. The DRC mode is normally off, resulting in trailing carriage return and
line feed. If the last character of the message is EOM, the mode is changed to suppress carriage control,

TYPESEQ
1. Purpose:

Types1 the sequence number 'XXXX.XXX',

2, Entry:
LNK is the linkage register. This routine is called via BAL, LNK TYPESEQ from the following routines:
R:COMMENTARY
R:FIND$SEQUENCE
R:FIND$DELETE
R:INSERT
R:INSERT$SUPSSEQ
R:SETS$STEP
R:SET$STEPSTYPE
TYPECARD

Upon entry, P1 =sequence number to be typed. The address after the CAL contains four characters to ap-
pend to sequence number.

3. Exit:

Return is to calling routine via V 1, LNK,

4. Operation:
This subroutine calls BINTODEC to convert binary sequence number to decimal; it puts a period between
the fourth and fifth digits; it appends the four characters in the calling sequence to the end of sequence

number; it suppresses leading zeros in the first three digit positions and it calls TYPEMSG tg print
sequence number,

Indexed Scratch File Management

Since the Control Program for Real-time (CP-R) does not support an indexed access method, EDIT provides its own
indexed file management when assembled for use under CP-R.

317

318

Indexed File Structure

In the indexing structure used for the CP-R Edit scratch file, the key length is fixed and the data record length is
implicit in the data representation, The file is given a granule size of 256 words, Any granule of the file will be
unused, used entirely as index, or used entirely as data. The first granule of the file is always an index granule,
Whenever more storage is needed for either index or data, the next unused granule of the file is assigned. It will
retain this assignment until the indexing structure is discarded.

For each record in the file, the index contains an entry that relates the key and the address of the record, The en-
tries are ordered by key value, The granules of the index are linked by pointers in each granule containing the
granule numbers of its predecessor and successor,

Data granules of the file are composed of CP-R compressed format records, Data is accessed only viaindex pointers,
so no order relationship or linkage is maintained between data records or granules,

The index entry for each record indicates whether the record is continued or deleted. If a record is continued, it is
actually only a fragment of a record. lts index entry is followed by another that describes another record fragment
to be appended. Continuation never occurs across an index granule boundary. Instead, all index entries dre moved
to the next granule, or to an inserted granule, if the next granule has too few available entries. Any service on a
record involves all of its fragments treated as a single record. Record continuation is used to provide for the case
where a record is overwritten by a longer record, If a record is deleted, it will not be recognized by any indexed
file services. Both the index entry and the data space will be reassigned if it is necessary to build a new entry
(either original or continuation) at the same point in the index, Otherwise, neither the index nor the data space
will be recovered, If a record is deleted, the index entries for all its fragments are marked as deleted.

The formats for the index granule and index entry are given below,

INDEX GRANULE FORMAT

Word

0 BLINK

1 FLINK

2 NAV Flags

3 } Used index entries -‘I'

255 T Available index entries 1
where

BLINK backwards link, which is the granule number in the file of the previous index granule. BLINK is -1
for the granule containing the smallest key value,

FLINK forwards link, which is the granule number in the file of the next index granule. FLINK i1 for
the granule containing the largest key value,

NAV entry number of the first available index entry. The first entry is number zero.

Flags not currently used.

INDEX ENTRY FORMAT

Byte
0 Key
4 - Pointer
8 L
9 Flags
where
Key is the value of the key for the associated record.

Pointer bits 0-21 is the granule number of the record in the file and bits 22-31 is the byte number of the
record in the granule,

L is the length of the record fragment in bytes.

Flags bit 6 indicates the entry is deleted and bit 7 indicates the record is continued in the next entry.

OPENSCR
1. Purpose:

Opens the CP-R indexed scratch file,

2, Call:

BAL, LNK OPENSCR

3. Input:

DCB F:EI must be assigned to the scratch file.

4. Output:
None.

5. Stack: -
Six.

6. Subroutines:

READX, OPENSCRI, CLOSESCR, UPKENTRY

319

7. Operation:
This subroutine is used when a file is specified for use as the EDIT scratch file but no subject file is named,
In this case, it is assumed that the file is either empty or that its contents were generated by previous use

as an EDIT scratch file, In the former case, it is initialized as an empty indexed file. In the latter case,
its contents are validated, and its next available data byte and next available granule are determined,

The flow of OPENSCR is given in Figure 85.

CLOSESCR
1. Purpose:

Closes the CP-R indexed scratch file,

2. Call:

BAL, LNK CLOSESCR

3. Input:

DCB F:EI must be assigned to the scratch file,

4. Output:
None.

5. Stack:
Two.

6. Subroutines:

WRGRANS

7. Operation:

This subroutine writes the current index and data granules to the scratch file if they have been modified.
It then closes the F:EI DCB.

The flow of CLOSESCR is given in Figure 86.

WRGRANS
1. Purpose: Y

Writes out index and data granules for CP<R indexed scratch file.

2, Call:

BAL, LNK WRGRANS

OFENICE Y

BT FIRGT
UNUSED GRAN TO
2

SEY NEZT DATA
RYTE 10 0,
LAST DATA GRAN
ol

SET NEXT iNDEX
CRAN TO 0, FLAG
DRTR FAND INDEX

L

OPEN THE
SPETIFIED FILE

GRANS NOT IN

{—

\
GET STRUCTURE
OF <PECIFIED
SCRATCH FILE

P

N

GENERATE AN

/

7 COLSISTENT ™D -
“a STRUCTUR > EKROR MESSACE

E_-

GET KEXT
———%1 COMMANG

TFIRST
GRANLLE

{
v

(~

,"/I »
R
. ENCOUNT

) The .

__OPENSCE

~..

T YES CLOSE THE
Epy—, SCRATCH FILE

OFEN AND
INITIAL1ZE
SCRATCH FILE

——
SET NEXT UNUSED
GRAN TD INDEX
GRAN +1
¢Q>—_i:::y
~
-~ INDEX .
CRAN .CE. (ES
UNUSED ka
o
WERERDX
READ INDEX GENERATE &N
GRAN ERROR MESSAGE

INDEX ™

N N,
GRAN HEADRER MO
CONSISTENT

pd

YES

SET NEXT INDEX
ENTE'C MAMBER TO
n

=

GET NEXT
COMMAND }

Figure 85. Flow Diagram of OPENSCR

321

2

SET LA3T DATA
GRAN AND NEXT
DATR BYTE

SET LAST GRAN
To LAST DATA
GRAN + |

GENERATE AN

ERROR

MESSAGE

L

GET
COH

NEXT
MAND

Figure 85. Flow Diagram of OPENSCR (cont.)

—

.

(CLO%ESCR)

—_—

C DSES[F‘l AL

HWRITE OUT
INDEX FAND
DATA GRANS

A

/

CLOSE_ SCRATCH
FILE

Figure 86. Flow Diagram of CLOSESCR

323

3. [Input:

None.
4, Output:

None.
5, Stack:

One.

6. Subroutines:

None.

7. Operation:

For both the current index and current data granule, this subroutine writes the granule to the scratch file
if the granule has been modified since it was last read.

The flow of WRGRANS is given in Figure 87,

OPENSCRI
1. Purpose:

Opens and initializes the CP-R indexed scratch file,

2. Cadll:

BAL, LNK OPENSCRI

3. Input:

DCB F:El must be assigned to the scratch file.

4. Output:
None,

5. Stack: -
Two.

6. Subroutines:

WRGRANS

324

HFGRANS \k

A5

_FLAG:
LTRIR c,m“ NULESNO
|

N
.
JES

FLAG: ™
<4 GRANULENND
- ALTEREC -~ A
Ircs

WRITE OUT DATA
GRANULE

SET FLAG: DATA

RS
A B 0
K\, WE IN }“
L
£S
TN

“FLAGE
~TNDES CRANSNO
ULE ﬂLTERE/D,/

-

IYES

WRITE OUT INDEX
GRANULE

SET FLAGS INDEX

GRANULE NOT GRANULE NOT
ALTERED AL TERED
|
. A
(EXIT)
Ne—

Figure 87. Flow Diagram of WRGRANS

325

326

7.

READX

Operation:
DCB F:El is opened, A rewind and a write-end-of-file are issued to the file. The index granule buffer
is set to the contents of granule zero of an empty scratch file. Indicators are set such that scratch file

granule zero is in the buffer and modified, that byte 0 of granule 1 is the next available data byte, and
that granule 2 is the next available granule.

The flow of OPENSCRI is given in Figure 88,

Purpose:

Reads in a data granule from CP-R scratch file,

Call:

BAL, LNK READD

Input:

P1 = granule number,

Output:
Normal: 10 =0,

Scratch file overflow: X'IC' in register 10 byte O,

Stack:

Two.

Subroutines:

WRGRANS

Operation:
If the required data granule is already in the data granule buffer, this routine returns immediately, If it

is not, WRGRANS is called to write out any altered data or index information and the required granule is
read into the data granule buffer. Overflow is reported if the required granule is past the file EOT,

The flow of READD is given in Figure 9.

Purpose:

Reads in an index granule from CP-R scratch file,

Pani

—

=D

NSCRI

BUILD AN EMPTY
INDEX BLOCK IN
THE INDEX
BUFFER

SET THE CURRENT
INDEX GRANULE
TO ZERO

SET FLAGS?
INDEX GRAN IN
ALTERED. DATA
GRAN NOT 1N,

DPEN, REWIND
WRITE EOF ON
SCRATCH FILE.
SET GRew S1ZE

| I

 pe—"

SET NEXT
AVAILFBLE GRAN
0 2

SEL LAST DATH

WRITE OUT
THE INDEX
GRANULE

EXIT ‘

Figure 88, Flow Diagram of OPENSCRI

327

P
ADRRENT
GRANLLE 15
REQUESTED
ANULE

HEGRANS

WRITE OUT
lNC’E)(T AND

DATRA
GRANULES

SET FLAGE: DATA
GRANULE NOT IN

READ REQUESTED
DATA GRANULE

SE1 FLAGS: DATA
GRANLLE IN, NOT
ALTERED

SET CURRENT
ATA GRANULE
NUMBER

Ex17

Figure 89. Flow Diagram of READD

2. Call:

BAL, LNK READX

3. Input:

P1 = granule number,

4. Output:
Normal: 10=0,

Scratch file overflow: X'IC' in register 10 byte 0,

5. Stack:

Two.

6. Subroutines:

WRGRANS

7. Operation:

If the required granule is already in the index granule buffer, this routine returns immediately. If it is
not, WRGRANS is called to write out any modified data or index information, and the required granule is
read into the index granule buffer, Overflow is reported if the required granule is beyond the file EOD,

The flow of READX is given in Figure 90.

UPKENTRY
1. Purpose:

Unpacks an index entry from the CP-R scratch file,

2, Call:

BAL,LNK UPKENTRY

3. Input:

P1 = entry number in granule.

-
4, Output:
None.
5. Stack:

Two.

URREN
CRANULE 1S
REQUESTED

RANULE

WR1TE OUT
INDEX AND
DA

TR
GRANWLES

SET FLAG: INDEX
GRANULE NOT IN

READ REQUESTED
INDEX GRANULE

SET FLAGSS
INDEX GRANULE
IN, NOT ALTERED

SET CURRENT
INBEX GRANULE
NUMBER

‘ X371

Figure 90. Flow Diagram of READX

-~

Bach field of the indicated entry in the current index granule is moved into a full-word area in the

Packs an index entry into the CP-R scratch file index buffer.

Each field of the indicated entry in the current index granule is overwritten with the data from a full-word

Finds index entry for specified key in CP-R scratch file,

6. Subroutines:
None.
7. Operation:
EDITOR context,
PKENTRY
1. Purpose:
2. Call:
BAL, LNK PKENTRY
3. Input:
P1 = entry number in granule,
4, Output:
None.
5. Stack:
Two.
6. Subroutines:
None.
7. Operation:
area in the EDITOR context,
FINDX
1. Purpose:
2, Call:
BAL, LNK FINDX
3. Input:

P1 = key value,

331

332

Output:

R1 = entry number of entry returned.

If key is found, entry for key is returned, and unpacked; 10 =0,

If key found but deleted, entry for key is returned and unpacked; 10 = X'43',

Entry not found; not past end of file; entry for first key following specified one is returned and un-
packed; 10 = '43',

Entry not found and past EOF; next available entry in iast index granule is returned, not unpacked (since
not yet written); 10 = X'43',

5. Stack:
Six.
6. Subroutines:
READX, UPKENTRY
7. Operation:
The index granule chain is scanned in reverse from the current granule until a granule is found that is the
first index granule or does not entirely follow the given key. Then the chain is scanned forward until a
granule is found which is the last index granule or does not entirely precede the given key. Then the en-
tries of this granule are searched forward until one is found which is equal to or past the given key.
This entry is returned.
The flow of FINDX is given in Figure 91.
FINDNXX
1. Purpose:
Finds index entry for next key after specified one. If none, indicates entry for last key in file,
2, Input:
P1 = key for which to find successor.
3. Output:
Successor found:
R1 = entry number of successor; XBUFF contains correct index granule; 10 = 0,
-
Successor not found; R1 = entry number of last key of file; XBUFF contains its index granule; 10=X"'06"'
in byte zero.
4. Stack:
Four.

‘ FINDX ’
—

SET FLAG:
BRACKWARD SCAN

WRERDX
/’? ,
7 FLAGSE SET 10 ZERO THE READ INDEX
< rAnt v IND% (R}E%ULE GRANULE
YES l
¥ S
s - SET INDEX GRAN-
Brru??rms JES YES rt;RLEﬁvEHRo o %5?} D, = UL%’R]%RPEG?JE "
GRANWLE SCﬂN/ GRANULE IN/ o°
Fi ’
]’6 T

KEY
AFTER THIS \YES
GRANULE

0

Fl

POINT TO FIRST
ENTRY IN
GRANMAE

SET INDEX GRAN-
ULE TO READ TO

SK1P. THE ENTRY

EQUAL TO 0

GIVEN KEY -~ ——>

YES

SET RETURN COGE
FOR REQUESTED .
KEY NOT FOUND

Figure 91, Flow Diagram of FINDX

Subroutines:

FINDX, READX, UPKENTRY

Operation:
FINDX is called for the specified key. If the returned key is the same or is deleted, the index is
scanned forward to the first nondeleted entry. If at any time the end of the index is encountered, end-

of-file is reported, and the index is scanned in reverse until the first undeleted entry is found, This
is the returned entry,

The flow of FINDNXX is given in Figure 92,

Purpose:

Gets the necessary index entries for writing a record to the CP-R scratch file, It uses existing and de-
leted entries, when possible to ensure that the entries obtained include enough attached data space.

Call:

BAL, LNK GETX

Input:

P1 = key value. Record text is in the buffer labeled CARDIMG.

Output:

Normal: 10 = 0 if key previously existed; = X'43" if not correct index granule read in. R1 = entry num=-
ber for first entry obtained.

Scratch file overflow; 10 = X'06' in byte zero.

Stack:

Six.

Subroutines:

FINDX, READX, WRGRANS, PKENTRY

Operation:

The amount of data space needed is determined. Any existing entries for the key are assigned. ‘[f more
space is needed, adjacent deleted entries are also assigned. If still more space is needed, a new index
entry is inserted at the front of the assigned set of entries, and the balance of the data space needed is
attached to it. To make room for the new entry, other entries may be shifted to the following index gran-
ule or a new index granule may be created,

The flow of GETX is given in Figure 93.

‘ FINDNXX ’

) AR
TRY 10 FIND !
SKIP THE INDEX ENTRY
CURRENT [NDEX FOR
. ENTRY SPECIFIED
KEY
READX
Rs&o
GRANULE Fm}'#nf)im
GRANULE
INDICATE EOF.
POINT TO LAST POINT AT FIRST
RECORD INDEXED ENTRY [N
IN FILE. GRANULE
S |
(EXIT)
~——

Figure 92. Flow Diagram of FINDNXX

1335

336

GETx
DETEFMINE (OM-
PRESSED SIZE OF

FINDY

s

/ b
5 < EX1STS JES
\\

FIND THE

INDICATE THAT
1TS INDEX
ENTRIES ARE 10
BE USED

OF ACCUMUILATED
USRBLE RECORD |

RECORD TO SPECIFIED
INSERT INDEX ENTRY
—
DETERMINE S1ZE N -
JACEN

B16 ENOUGH SN0 JES

SET FLAG: INDEX
GRRANULE AL TERED

‘ EXIT)

NECESSARY DATA
SPACE FROM LRST
GRANLLE IN USE

INDICATE THAT
172 INDEX
ENTRIES ARE TC
BE USED

MARK 17 USED.
GET DATA SPACE
FROM 17.

)

-
e

00M FOR™_
ENTRY IN -
THIS INDEX
HNUE f3)
s o 2

G3

INSERT NENW
ENTRY AS FIRST"
ENTRY TO USE

L7

FRAGMENTS SPAC
vES I —
\ 2 / P
PUT KEY RND O RGN
ONT INUE FLAGS o~ ENOUGH ™.
CN ENTFIES P CEne i e oo
N - « FJ - R
NEEDED \.‘GRHNULE// 2 L :*\
SN T~ 7 W2
£ ‘l/vcs a,é)_
MBIRIN

Figure 93. Flow Diagram of GETX

A

SAVE GRANULE
NUMBERS OF
CURFENT AND
NEXT INDEX
GRANULES

SET NR OF
ENIRIES 10 MDVE
TO Nk FOR LAST

RECORD OF

GRANULE

REAQX

READ NEXT
INDEX
GRANULE

: ’ /NTRY$

LI N A
RAN E

NGOV TRD

N

0oM F
ENTRIES TD
MOVE

SET NR OF
ENTRIE3 TO MOVE
TO NR OETARINED

PLUS ONE

S

EEADX

READ IN THE
ORI GINAL
INDEX ENTRY

INDICATE EOT
ERROR 1 EXIT

SET FLAGS:
INDEX CRANULE
IN AND ALTERED

ALLOCATE NEW
WRITE OUT INDEX GRANULE.
TNDEX £0 ET 1T P
LINK FFTER
GRARULES CURRENT ONE.
)\(\{ z
S THER
i ‘(N(E‘{T THOEX-YES ':,EEH\(DY ﬂ’,‘&“yﬁ
e FRANLE GRANLLE
N

SET (TS BACK-
HAPD L1tk TO)

SET FLAG: INDEX
ALTERED

THE NEH GRANULE

EADX

READ THE
ORIGINAL
INDEX
GRANULE

SET 175 FORE-
WARD LINK 10

THE NEW GRANULE

SET FLAG: INDEX
ALTERED

]

A

SET FLAG: DATA
GRAN NOT 1IN

NEH
ENTRY CON- “NJES
TINUES TO

AN

DECREMENT NR OF
ENTRIES TO MOVE
TO DISCOUNT ONE

SET ENTR]ES 10
USE TO THE
START Cf THE

NOT BUILT YET

NEXT GRANULE

|

PUT ENTRIES TO

MIVE IN DRIA
BUFFER

SET FLAG: INDEX
GRAN ALTERED

R,

Figure 93. Flow Diagram of GETX (cont.)

337

Eii VREADX

RERD MEXT
INDEX
© GRANULE

INSERT ENTRIES
FROM DATA
BUFFER

SET FLAG: INDEX
GRANULE AL TERED

FERDX

READ JNDE X
GRANULE FOR
NEW ENTRY

=

PRE |

Figure 93. Flow Diagram of GETX {(cont.)

DATA PACK/UNPACK CONVENTIONS ; ’

The following definitions describe register use conventions in the subroutines used to move and pack/unpack data
between the user buffers and the data granule buffer, These subroutines are GETREC, PUTREC, GETRBYTE and
PUTRBYTE.

The conventions are as follows:

BLANKCT = P2 Blank count for multiple blank expansion/compression.

NEXTX = P1 Next index entry to access when current data area used up.

STRPTR = X1 Pointer to next byte in user I/O byte string.

STRCT = X2 Remaining byte count for user I/O byte string.

RECPTR = X3 Pointer to next byte in data granule buffer,

RECCT = X4 Remaining byte count for current block of data in data granule buffer.
GETREC

1. Purpose:

Gefts a data record given its index entries,

2. Call:

BAL, LNK GETREC

3. Input:

P1 = NEXTX = entry number for first index entry to use,

4, Output:
None.

5. Stack:
Eight.

6. Subroutines:
GETRBYTE

Note: See Data Pack/Unpack Conventions above.

7. Operation:
The registers are set up by the Data Pack/Unpack Conventions. The routine then loops calling GETRBYTE
to get bytes from the record, expanding multiple blank string representations, and storing the results in the
record buffer until the requested count is exhausted or an end~of-record character is obtained.

The flow of GETREC is given in Figure 94.

339

340

(GETREC)
~——

GEIREC
SET STRING BYTE
CININT AND
POINTER AS

SET MEXT INDEX
ENTRY TQY

REDUESTED

CURRENT INDEX
ENTRY

. SET
RECNRD POINTER
PECORD COUNT

AND BLANK COUNT
T0 ZERG

l

by

-~
15 STRING ~JES

-

Ny

= "
</ 15 BLANK YES BC;'ETTE "FERDTM
\(\:\OUNT ZERO RECORD
\ ‘

o

MISEY]

PUT BLANK IN
DATR STRING

CEIRBYIE

GETFRYTE

GET NEXT
BYTE FROM
RECORD

DECREMENT BLANK SET BLANK COUNT
COUNT TO VALUE FROM
RECORD
L T

'Es,ﬂn-BELﬁnx

. -

\\ //

f c
PUTSBYT.

PUT BYTE IN
DATA STRING

L 7

EXIT

)

Figure 94. Flow Diagram of GETREC

PUTREC

Purpose:

Puts a data record into the CP-R indexed scratch file, given tie index entries for the record.

2, Call:
BAL, LNK PUTREC
3. Input:
P1 = NEXTX = entry number for first index entry to use.
4, Output:
None,
5. Stack:
Eight.
6. Subroutines:
PUTRBYTE
See Data Pack/Unpack Conventions above,
7. Operation:
The registers are set up by the Data Pack/Unpack Conventions. Characters are obtained from the
record buffer, multiple blank strings are compressed, and the results are inserted in the data buffer
using PUTRBYTE, until the requested character count is exhausted. Finally, an end-of-record char-
acter is inserted,
The flow of PUTREC is given in Figure 95.
GETRBYTE/PUTRBYTE
1. Purpose:
Gets/puts byte of CP-R indexed file data.
2. Call:
BAL, LNK GETRBYTE
-
or
BAL, LNK PUTRBYTE
3. Input:

Registers set up as in Data Pack/Unpack Conventions. For PUTRBYTE only; T1 = byte to insert,

341

342

(PUTREC)
N

PUTEELC
SET STRING BYTE
COUNT AND

POINTER RS
REQUESTED

SET NEXT INDEX
ENTRY TO CUR-

RENT INDEX
ENTRY

SET
RECORD COHINT
RECORD POINTER
AND BLANK COUNT

ZERD

]

N

(//’Ts STRING “NJES
COUNT ZERD

e 2
(]

CETSBYIE

GET NEXT
BYTE FROM
DATA STRING

INCREMENT BLANK
COUNT

N,
chond Rk X
e

PUT BYTE
‘INTO RECORD

PUTRBYTE.

PUT
MULTI-BLANK
CODE INTO
RECORD

PUIRBYTE

PUT BLANK
COUNT INTO
RECORD

PUTRBYTE

PUT BLANK
INTD RECORD

SET BLANK COUNT
T0 ZERD

L]

Figure 95. Flow Diagram of PUTREC

|

‘]/EJTEBY

1S BLANK
COUNT ONE

JPUJRBIF

PUT BLANK
INTO RECORD

PUT
MUL T I~BLANK
CODE INTO
RECORD

FUIRBYT

PUT BLANK
COUNT INTO
RECORD

WYEBYIE

FUT EOR CODE
INTO RECORD

EXIT

Figure 95. Flow Diagram of PUTREC (cont,)

343

Output:
For GETRBYTE only; T1 = byte obtained.

5. Stack:
One.
6. Subroutines:
READD.
7. Operation:
When no data remains in the current data block either routine accesses the next index entry, and reads the
indicated data granule to get the next block of data for a record. It then transfers the data in the block,
one character per call, until the block is exhausted,
The flow of GETRBYTE/PUTRBYTE is given in Figure 96.
DELETERECORD
1. Purpose:
Deletes the most recently read record.
2, Cadll:
BAL,LNK DELETERECORD
3. Input:
None.
4, Owvtput:
None.
5. Stack:
Four.
6. Subroutines:
FINDX, UPKENTRY, PKENTRY
-
7. Operation:

Sets the "DELETED" flag in all index entries for the record, and indicates that the current index granule
has been altered,

The flow of DELETERECORD is given in Figure 97.

GETRBYTE |
~—————

IRBYTE

SET FLRG: GET
BYTE FROM
RECORD

‘ PUTRBYTE ’

PUTRBYTE

SET FLAG: PUT
BYTE INTO
RECORD

v

|

GET NEXT INDEX
ENTRY

RERD THE
INDEXED DATA
GRANULE

FL&

GET BYTE MO

GET BYTE FROM
RECORD

PUT BYTE INTD
RECORD

UPDATE THE
POINTER TO NEXT
INDEX ENTRY

SET FLAG: DATA
GRANULE ALTERED

INCREMENT
RECORD POINTER

. DECREMENT
RECORD BYTE
COUNT

N

Figure 96. Flow Diagram of GETRBYTE/PUTRBYTE

Q.EELETERECDRD '

EIEK
GET SEQUENCE NR
OF MOST
RECENTLY READ

RECOR|

FINDX

FIND THE
INDEX ENTRY
FOR THE
RECORD

MARK THE ENTRY
A5 DELETED

SET FLAG: INDEX
GRANULE ALTERED

POINT TO NEXT
INDEX ENTRY

Figure 97. Flow Diagram of DELETERECORD

WRITERANDOM -~

1.

Purpose: ,

Writes a record into the CP-R indexed scratch file,

Call:

BAL, LNK WRITERANDOM

Input:

P1 = key. Data to write in CARDIMG. Record length in RECSIZE,

Qutput:

None,

Stack:

Four,

Subroutines:

GETX, PUTREC, SCROFLO

Operation:
This routine calls GETX to get an index entry(ies) for the record to be written. If the scratch file does

not overflow, WRITERANDOM uses PUTREC to move the record into the data space attached to the
entry(ies) obtained,

The flow of WRITERANDOM is given in Figure 98,

WRITENEWRANDOM

Purpose:

Writes a new record into the CP-R indexed scratch file.

Call:

BAL, LNK WRITENEWRANDOM

Input:

P1 =key. Data to write in CARDIMG. Record length in RECSIZE,

Output:

New entry; CC = 0. Not new entry; CC =8,

347

‘ WR | TERANDON ’

XITERAN WOETX

GET AN INDEX
ENTRY

GENERATE AN
ERROR MESSAGE
PUT THE GET NEXT
RECORD INTO MAND
THE FILE Cow

EXIT

Figure 98. Flow Diagram of WRITERANDOM

5.

Stack:

Four.

Subroutines:

FINDX, GETX, PUTREC, SCROFLO

Operation: '
This routine first calls FINDX to determine if the specified routine already exists, If it does not, WRITE-

NEWRANDOM calls GETX to get an index entry for the record, and PUTREC to move the record into the
data space obtained with the index entry,

The flow of WRITENEWRANDOM is given in Figure 99,

READRANDOM

1.

Purpose:

Reads o record from the CP=-R indexed scratch file,

Call:

BAL, LNK READRANDOM

Input:

P1 = key. Data byte length in RECSIZE,

Output:

Key found:
cC=0,
Data in CARDIMG.

Key not found:
CC=8.

Stack:

Four.

Subroutines:

BLANKBUF, FINDX, GETREC, SETLASTKEY

Operation:

This routine calls FINDX to determine the location of the record. If the record exists, READRANDOM
moves it into the record buffer by calling GETREC.

The flow of READRANDOM is given in Figure 100.

9

350

t WR I TENERMRANDOM ’

FIND THE

INDEX ENTRY
FOR THE
RECORD

GET AN INDEX
ENTRY

" PUT THE
RECORD INTO.
THE FILE

LC1 o

l EXIT

i s

EXIT

GENERATE AN
ERROR MESSAGE

GET NEXT
COMMAND

Figure 99. Flow Diagram of WRITENEWRANDOM

BLANK THE
INFUT
BUFFERS

EINDX

ND THE

FIND
SPECIFIED
INDEX ENTRY.

ENTRY

EX15TS Lrs

ES

GETEEL
RELoRD ERoM ()
ROM
BUFFER. Exit

SET LAST
SEQUENCE NUMBER
T0 THAT OF
RECORD RERD

Lct o

EXIT l

Figure 100. Flow Diagram of READRANDOM

READSEQUEN
1. Purpose:

Reads sequentially a CP-R indexed scratch file.

2, Call:

BAL,LNK READSEQUEN

3. Input:

Data byte length in RECSIZE.

4, Output:

Data in CARDIMG, RI = key of record read.

5, Stack:

Six.

6. ‘ Subroutines:

BLANKBUF, FINDNXX, GETREC, SETLASTKEY

7. Operation:

This routine uses FINDNXX to locate the record that succeeds the last one read or written, If there is
a successor, READSEQUEN moves it into the record buffer by calling GETREC. If there is no suc-
cessor, READSEQUEN indicates an end=-of-file.

The flow of READSEQUEN is given in Figure 101.
BUILDSCR

1. Purpose:

Builds the CP-R indexed scratch file from the subject file.

2., Call:

BAL, LNK BUILDSCR

3. Input: -

M:EI set to scratch file, M:EO set to subject file. Both DCBs closed.

4. Output:

None.

-

READSEQUE N

BLANK THE
INFUT
BUFFER.

FIND NEXT

INDEX ENTRY
OR LAST ONE
IN FILE.

EINDNXX

GET INDEYED
RECORD FROM
BUFFER

SET LAST
SEQUENCE NUMBER
T0 THAT OF
RECORD READ

SET RETURN
PARAMETER 10
SEQUENCE NR OF
RECORD READ

EXiT

SET LAST
SEQUENCE NUMBER
TO LAST IN
FILE.

SET LAST
SEMEMNCE NE OF
FILE INTO EOD

MESSAGE

SET RETURN
PRRAMETER 10
16,000,000 (EOD

FLAG

U
‘ ExIT ' ’

Figure 101. Flow Diagram of READSEQUEN

353

5.

Stack:

Seven.

Subroutines:

OPENSCRI, WRITENEWRANDOM, WRITERANDOM

Operation:

This routine reads the subject file sequentially, indexes the records read, and writes them (using WRITE-

NEWRANDOM and WRITERANDOM) into the scratch file, The key value for each record is determined
either by the trailing eight bytes of the record, or by a fixed increment applied to the prior key written.
If the save file sequencing mode is on, a key in the last eight bytes of any record is removed.

The flow of BUILDSCR is given in Figure 102.

INSEQNR

1.

Purpose:

Translates a line number in a subject file record,

Call:

BAL, LNK INSEQNR

Input:

None.

Output:

If found:
10=0,
R1 = value times 1000,

If not found:
10=1.
Stack:

Three.

Subroutines

Internal only.

Operation:

Starting with the eighth byte from the end of the record, the routine skips leading blanks, skips leading zeros,
accumulates the integer part of a key up to four characters, and tests for a decimal point. If none is found,

—

&UJ[;’?L [CF!I’E")

CORDS

BUILDSCR ot ORERED
RECOROS

O—=

SET FLAGS: NO

OPEN THE
SUBECT FILE

__OPENSCR

OPEN FND
INITIALIZE
SCRATCH FILE

READ NEXT
SUB ECT FILE
RECORD

FILE EN—
COUNTERED

CLOSE THE
CLOSESCR.
CENERATE AN CLOSE THE
ERROR MESSAGE SCRATCH FILE
INCREMENT
DUTPUT SEGUENCE CLOSE THE
NR SUBECT FILE
=®
GENERATE AN’ GET NEXT
ERROR MESSAGE COMMAND
| E——
GENERATE A SET FLAG:
WARNING NESSAGE RECORDS
RE ORDERED

SET NEXT OUTPUT
SEQUENCE NR TO
CURRENT INFUT

SEQUENCE NR

I:)(@

Figure 102. Flow Diagrom of BUILDSCR

356

Al

REOQUCE RECORD
SI1ZE TQ OMIT
SEQUENCE NR

WRITE DIRECT
A NEW
SCRRTCH
RECORD

|

DUFLICATE
SEQ gENCE

GENERRATE
HARNING MESSAGE

SET FLAG:
OUPL ICATE
SEQUENCE NR

SET ERROR
INDICATORS

F.

NRITE DIRECT
AN OLD
SCRATCH
RECORD

S

Figure 102. Flow Diagram of BUILDSCR (cont.)

1.

the routine then skips blanks, If a decimal point is found, the routine accumulates the fractional part of
the key up to three characters and then skips blanks. If no digits were encountered, or if the scan did not
reach the end of the record, the routine reports that no sequence number was found.

SAVESCR

Purpose:

Builds a standard CP-R file from the CP-R indexed scratch file,

Call:

BAL, LNK SAVESCR,

Input:

M:EI and M:EO assigned; M:EI open.

Output:

None.

Stack:

Ten,

Subroutines:

READSEQUEN, READX, UPKENTRY

Operation:

By counting the number of records in the scratch file and considering the structure of the save file, the
routine determines how big the save file must be. Using this estimate, the routine can allot the save file
or abort a save on an inadequate save file before it is altered, The save is conducted by reading the
scratch file sequentially (using READSEQUEN) and writing to the save file until an end-of-file condition

is reported for the scratch file, If the save file sequencing mode is on, each record will have its key
inserted in its last eight bytes,

The flow of SAVESCR is given in Figure 103.

Purpose:

Determines the nature of the EQ file.

Call:

BAL,LNK GETEO

357

358

‘ " SAVESCR . ’
e’

ESCK

READ FIRS T/NEXT

INDEX GRANWLE.

SET FLAG! INDEX
GRANULE IN

|

COUNT INDEX
ENTRIES HHICH
FRE NOT
CONTINUED OR
DELETED.

5 THER
FNOTHER
INDEX GRAN

SET STRUCTURE
TO COMPRESSED

CONPUTE REQUIR-
ED SAVE FILE
SIZE (TRERAT

COMPRESSEDS RS
BLOCKED!

PRCE 2

GET ITS
STRUCTURE

Figure 103. Flow Diagram of SAVESCR

®@——

OPEN THE SAVE
FILE

DOES
SAVE FILE
EXI5T

ALLOT THE SAVE
FILE QVER
N (L
PREE 5

GENERATE AN
ERRDR MESSRGE

GENERATE AN GET NEXT

ERROR MESSRGE COMMAND

(GET NEXT - :
COMMAND

Figure 103. Flow Diagram of SAVESCR (cont.)

359

N

/ruw: ~\‘5

FORCE SARVE

READ SECRIEN-
TIALLY THE
SCRATCH FILE

LOSE THE

0

-
SEOQ

INSERT SEQUENCE
LAG: YES NUMBER [N
°N/ RECORD
.]

HWEITE THE
RECDRD TO THE
SAVE FILE

—

GENERATE AN CLOSE THE GET NEXT
ERROR MESSAGE SAVE FILE 1 COMNAND

Figure 103. Flow Diagram of SAVESCR (cont,)

E N

Input:

M:EO assigned to a file.

Output:

If file and area exist, R1 = File organization code; = 0 for unblocked; = 1 for blocked; = 2 for compressed.
R2 =record size if R1 = 1,

R3 = file size in sectors,

If file or area nonexistent, R3 = 0.

Stack:

One.

Subroutines:

None.

Operation:

The CP-R "GET DEVICE/FILE/OPLABEL INDEX" service is used to obtain the required information. If the
device involved is a 720X, the number of sectors is divided by three to reflect an assumed 256~word gran-
ule size on a device with 90-word sectors,

361

362

15. SYSTEM GENERATION

Overview

The System Generation program is assembled in absolute, using the ASECT directive, and is ORG'd (origined) at
two locations:

1. The first ORG at location X'140' allocates and defines the system flags and pointers. It is the first location
that cannot be used for an external interrupt. The system flags and pointers are a group of cells that pro-
vide communication between SYSGEN, all portions of the Monitor, and the system processors and service
routines. Since these cells are in fixed, predetermined locations, they are defined via the EQU directive
in all programs that reference them. Note that these cells must not be changed, deleted, or altered in any
way in the SYSGEN listing unless the EQU directives are also changed in all programs that reference the
cells. The system flags and pointers are followed by a skeleton of the Master Dictionary. The Master
Dictionary is not necessarily fixed at its assembled location since it may be moved to the unused interrupt
cells if sufficient space exists.

2. The next ORG (based on assembly parameters) fixes the start of the SYSGEN program. SYSGEN is ORG'd
such that the program will occupy the highest address portion in memory. This provides the SYSGEN
Loader with the maximum amount of room to load the Monitor and its overlays in the lower address portion
of memory. If a user adds a significant amount of code to the Monitor, this ORG may have to be moved
to a higher location to prevent the Monitor from overflowing SYSGEN during the load.

The System Generation program is divided into two sections designated as SYSGEN and SYSLOAD. SYSGEN pro-
cesses all the SYSGEN control commonds and allocates and initializes all the Monitor tables from the information
on the control commands. It also builds a symbol table for SYSLOAD that contains the name and absolute address
of all the Monitor tables. Optionally, SYSGEN will output on a rebootable deck containing the Monitor tables
and SYSLOAD on cards, paper tape, or magnetic tape. The SYSGEN phase can be overwritten during the loading
of the Monitor, and terminates by exiting to SYSLOAD.

SYSLOAD loads the Monitor, all optional resident routines, the CP-R overlays, the Job Control Processor, and then
writes these in to the CP-R file in the SP area. A map containing the CP-R table allocation and disk aliocation is
output upon request. SYSLOAD terminates by reading in the RAD Bootstrap and exiting to it, simulating a booting
of the system from the disk.

Figure 104 illustrates the core layout of SYSGEN and SYSLOAD ofter the absolute object module is loaded by the
Stand-Alone SYSGEN Loader.

Unchanged X'140"
System Flags and Pointers X'208"
Skeleton of Master Dictionary X1236"
Unchanged X'400"
Stand-Alone SYSGEN Loader
Unchanged #FMEMSIZE-FSYSGEN
SYSGEN Processing Routines
Subroutines Unique to SYSGEN
SYSLOAD
Subroutines Used by SYSGEN and SYSLOAD -
#MEMSIZE
Note: #MEMSIZE and #SYSGEN are assembly parameters.

Figure 104. SYSGEN and SYSLOAD Layout before Execution

Figure 106 depicts a typical core fayout after SYSGEN and SYSLOAD have executed.

Unchanged

XI40I
MTW, O Instruction Stored in all Used
Interrupt Locations

Dispatcher Int. Lloc.
Unused Interrupt Locations Used for
Monitor Tables

X'140'
System Flags and Pointers

X216
Remainder of Monitor Tables

CP-R Overlay Area page boundary

Used to link resident
CP-R and JCP, aond to
consolidate CPRMAP
file (must be as large
as the largest module

+255 words)

SYSLOAD #MEMSIZE

Figure 105. SYSGEN and SYSLOAD Layout after Execution

SYSGEN/SYSLOAD Flow

The flowcharts inFigure 106 depict the overall flow of SYSGEN and SYSLOAD. The labels used correspond to the
labels in the program listing.

Loading Simulation Routines, CP-R, and CP-R Overlays
SYSGEN/SYSLOAD contains a loader that loads the instruction simulation packages, CP=-R, the CP-R overlays,

and the Job Control Processor (JCP). Each object module loaded must have one DEF directive that identifies the
object module to the loader,! The DEFs listed in Table 10 are recognized by the Loader. -

t'I'his DEF must be the first load item in the ROM.

363

Initialize SYSGEN flags.

sense switches

yes

Go type "CP-RSYSGEN"
"IN, OUT DEVICES".

!

Assume input of :SYS
CRAO03, LPADF.

Store input, output devices
for Read/Write routine.

READ

Go to READ for input
of next control comman

y

Decode control cmd and go
to proper processing region.

DO1
STDLB
cmd
BO!
CHAN
cmd

EO1 GOl Jo1
Monitor CTINT ALLOT
cmd cmd cmd

Figure 106.

SYSGEN/SYSLOAD Flow

Set up group code and level
bit for Control Task int,

I

Set all used interrupt
locations to MTW, 0.

f

Change no. TRKS for GO,
QV files to sector number,

I

Move Master Dict. to
unused int. cells if room.

I

Allocate and preset all
CP-R tables. DCT, 10Q,
RFT, etc. Set OLAFWA to
X'100' boundary if oll
SENSE switches are set.

!

Save FWA of tables in
Symbol Table for SYSLOAD.

I

Set FGD FWA, BCKG
FWA, FPOOL FWA, etc.

<

Go output map
if requested.

Figure 106. SYSGEN/SYSLOAD Flow (cont.)

Output rebootable
deck of SYSLOAD,

if requested.

Was
a :SYSLD ecmd
input?

Go Type "CP-R
SYSLOAD".

. "INPUT OPTIONS",
Process :SYSLD cmd

and set up flags and

. 1/O devices.

. A
Zero out all defined

disk areas (First sec-
tor only if fast

option),

Figure 106, SYSGEN/SYSLOAD Flow (cont.)

Reod In disk boot-
strap from existing
CP-R.

f

Get RAD address
for existing CP-R,
and read in first
400 words of CP-R.

Y

Compare old Master
Dict. with new Mas-
ter Dict. to see
which areas moved.

y

Type reload alarms
for all areas that
moved.

R28

Zero out first sector
of all areas that
moved.

I

Initialize cells for
loading of CP-R
object modules.

i

Load FPSIM and
DECSIMroutines, if
required, to core.

y

Load CP-R to core and
write to CP-R file on
disk. Load the CP-R
overlays and the JCP
to the CP-R disk file,

I

Set background FWA
and Simulation
routine's FWA.

'7Fiigure 106. SYSGEN/SYSLOAD Flow (cont,)

368

Adjust size of
checkpoint area
if necessary.

A

Move CP-R OVLOAD
table to its resident
location.

y

Output map
if requested.

A

Write CP-R tables
onto CP-R file,

)

Write disk Boot
onto BOOT file.

. Type "RELOAD SPAREA"

and "RELOAD BCKG
PROGRAMS", if

appropriate.

!

Write out SP
directory if
appropriate.

A

Write disk boot-
strap onto sector 0

of disk.

Y

Punch hard copy
of disk bootstrap
if required.

Exit
to disk
Boot

Figure 106.

SYSGEN/SYSLOAD Flow (cont,)

Table 10. Standard System Modules

DEF Name Program

ABEX Background Abort/Exit
ALLOT ALLOT Service Calls
ARM ARM/DISARM/CONNECT/DISCONNECT
BKL1 Background Loader
CHECK Check service calls

CKD Crash dump to LP

CKD2 Crash KDUMP to LP
CLOSEX Close a DCB

COCIO 1/0 routines for COC
CPR Main CP-R module

CRD Crash dump to Bl

CRS Crash SAVE

CRS2 Crash SAVE

DBC1 Debug functions

DBC2 Debug functions

DBC3 Debug functions

DBDW Debug data and entries
DBS1 Debug scan

DBS2 Debug functions

DBS3 Debug scan

DELETE Service call

DEVI Device service calls
DISC Disk handlers

DUMP Postmortem dump

ENQ Enqueue/dequeve a resource
ESU Error summary

EXTM Temmination service calls
FGLI Run-time Loader

FGL2 Run-time Loader

369

Table 10. Standard System Modules (cont.)

DEF Name Program

FGL3 Run-time Loader

GETNRT 1/O subroutines

INIT Boot-time initialization

10EX 10EX service calls

IPLMM Memory Management Initialization
IPLSYM SYMBIONT Initialization

JOBI Job service calls

JOB2 Job service calls

KEYSCN Command syntax scanners

KEY1 Keyin processor

KEY2 Keyin processor

KEY3 Keyin processor

KEY4 Keyin processor

KEYS Keyin processor

KEY6 Keyin processor

KEY7 Keyin processor

KEY8 Keyin processor

LOG Error Logger

LP Line Printer Handlers

MEDIA Media service calls

MED!1 Media service calls

MED2 Media service calls

MMROOT Memory Management data and subroutines
MMOI Memory Management service calls
MMO?2 Memory Management service calls
MMQO3 Memory Management subroutines
MMO4 Memory Management exec
MMO5 Memory Management subroutines
MMOé6 Memory Management service calls
OPENX Open a DCB

PINIT INIT service calls

PLO1 Public libraries

370

A~

Table 10. Standard System Modules (cont)

DEF Naome Program

PRINT Print service calls
READWR Read/Write service calls
REWDEV Rewind on devices
REWIND Rewind service calls

RUN Run service calls

RWBFIL Blocked File 1/0

RWDEV Read/Write device 1/O
RWFILE Read/Write file I/0
SCHED Periodic Scheduler
SCMSG Periodic Scheduler Subroutines
SDBUF Side buffering routines
SEX Symbiont Exec

SIGNAL Signal handler

SJOB SJOB/KJOB service calls
SNAM SETNAME service calls
STDLB STDLB service calls
SYMI1 Symbiont routines

SYm2 Symbiont routines

SYM3 Symbiont routines

TAPE Magnetic Tape handlers
TEL Teminal Executive Language
TEL] TEL routines

TEL2 TEL routines

TERM Task Temination

TEX Terminal Exec

TEX1 Terminal Exec routines
TEX2 Terminal Exec routines
TIO1 Secondary Task Initiation
TIO2 Secondary Task Initiation
TIO3 Task Initiation Data and subroutines
TMGETP Task/ECB subroutines
TMTYC Task/ECB subroutines
TRAPS Trap handling

17 Task termination

WAIT Wait service calls

N

372

~

Rebootable Deck Format

If a :PUNCH control command is read by SYSGEN, a rebootable deck is output that includes the CP-R tables with
their initialized values, SYSLOAD, and the CP-R Symbol Table.! This deck con be used to load a new version of
CP-R without re-inputting all the SYSGEN control commonds.

The first card in the rebootable deck consists of o one~card bootstrap progrom that loads the next two cards in the
deck. These next two cards consist of o progrom that loods the remainder of the deck, consisting essentially of the
CP-R Table, SYSLOAD, and the CP-R Symbo! Table in core imoge format.

The two cards containing the Core Imoge Loader have the following format:

_Byf_e_hﬁ Contents
1] X'FF' (for card 1) X'9F' (for card 2)
1,2,3 Unused (all zeros)
4,5,6,7 Complement checksum of entire card (carry out
of bit O is ignored in computing checksum)
8,9 Unused (all zeros))
10,11 Load address, minus one, for following data ‘
12-119 Looder in absolute core image format

The core image format of the Two-Card Looder is

word 1 X'FF' or X'9F'
word 2 Complement checksum of entire 29 words on card

word 3 I Lood address ~ 1
word 4

(words 4-30
contain the
Two-Card
Loader in abso~
lute core image
format,)

word 30

|
1+

0 78 1516 31

The CPR Tables, SYSLOAD, and the CPR Symbol Table are output in the core image format

word 1 ' X'FF* or X'9F* Sequence number (0-n)

Complement checksum
word 2 Lood address - 1 (not incl. halfword 0)

word 3

(words 3-30
contain the
above-mentioned
dato in core
image format.))

word 30 i b
t +
0 78 1516 K|

'k the rebootable deck is output to paper tape, there are no special additional charocters, That is, the poper tape
contains on exact cord image.

All cards contain an X'FF' in byte 0 except the lost card. The last cord contains on X'9F' in byte 0 ond the
SYSLOAD entry address in place of the load address in word 1. The last card contains no data other that the
SYSLOAD entry address, the sequence number, and checksum, .

Stand-Alone SYSGEN Loader

The Stand-Alone SYSGEN Loader is a small loader specifically created to load the SYSGEN absolute object module,

Since SYSGEN is assembled in absolute, the SYSGEN Loader will only load absolute load items and handles only
the small subset of the Sigma Object Language required to load SYSGEN.

The SYSGEN Loader I/O routine is similar to the SYSGEN 1/O, with the code performing the actual loading being
similar to the code in the SYSGEN Loader.

SYSGEN LOADER LOADER

Each BI tape/deck is preceded with a 26~record bootstrap that loads the SYSGEN Loader into memory from the same
device it was booted from,

373

e

APPENDIX A. CP-P SYSTEM FLAGS AND POINTERS

Table A-1. CP-R System Flags and Pointers

Name Location Description
K:SYSTEM xX'28’ Monitor Identification (RBMIDENT) have the following
meaning:
Bits 0-7 System-identification (X'80' = CPR),
Bits 8-11 Version (C=3, D=4, etc.).
Bits 12-15 Update (1, 2, 3, etc.).
Bits 16-23 Reserved.
Bits 24-25 00 - Sigma 5.
01 - Sigma 6/7.
10 - Sigma 9
11 - Xerox 550
Bit 26 Reserved.
Bit 27 Reserved.
Bit 28 Reserved.
Bit 29 Real-Time Routines.
Bit 30 Reserved.
Bit 31 Symbionts included.
K:BACKBG X'140’ Beginning address of background.
K:BCKEND X471 Ending address of SMM background.
K:FGDBG1 X'142 Beginning address of non-monitor real memory.
K:FGDEND X'143' Ending address of addressable real memory.,
K:CCBUF X'144' Address of Control Card Buffer.
K:BPOOL X'145' Unused in mapped system.
K:FGDBG2 X'146' Unused in mapped system.
K:FMBOX X'147' Start address of FGD Mailboxes.
K:FPOOL X'148' Start address of FGD Blocking Buffer Pool.
K2UNAVBG X'149' Memory size + 1,
K:MASTD X'14A" Start address of MDFLAG table in Master Dictionary.
K:NUMDA X'148* Highest valid index for Master Dictionary.
K:VRSION X'14C' CP-R version.
K:ACCNT X'14D* Job Accounting flag.
K:0OV X'14€' Permanent and current sizes of OV.
K:KEYST X'14F' Post status of key=in read here.
K:JCP1 X'150* JCP and Control Task.
Bits have the following meaning:
Bit 0=1, JCPis executing. -
Bit 1=1, Background is active.
Bit 2=1, Background is checkpointed on the disk.
Bit 3=1, Background is being used by Foreground
but was not checkpointed.
Bit 4=1, Waiting for key-in response.
Bit 5=1, Skip to next JOB card.
Bit 6=1, Setby ABORT for CALEXIT.
Bit 7=1, Setby CALEXIT for ABORT.

375

376

Toble A-1, CP-R System Flags ond Pointers (cont.)

location

Name Description ,
K:JCP1 (cont.) Bits 8-15, Previous assign. of C device (for TY °
key=-in).
Bits 16-21, Unused.
Bit 22= 1, System processor executing.
Bit 23= 1, Execute BKGD Debug.
Bits 24-25, 0 means no PMD requested.
1 means conditional PMD.
2 means unconditional PMD,
Bit 26, Flog for CKPT that alarm typed.
_Bit 27= 1, CP-R Initialize routine is running.
Bit 28= 1, FG key=-in active.
Bit 29= 1, TY key-in active.
Bit 30= 1, Attend command was input.
Bit 31= 1, JOB command was input.
K:CTST X151 Flags to execute Control Task subtask. Bits have the
following meaning:)
B8it 0= 1, Execute CHECKPOINT.
Bit 1= 1, Execute FGD Loader/Releaser.
Bit 2= 1, BExecute Restart.
Bit 3= 1, Time to service all devices.
Bit 4= 1, Execute ABORT/EXIT.
Bit = 1, Execute key=in.
Bit =1, Bxecute PMD,
Bit = 1, BCKG is IDLE.
Bit = 1, Execute BCKG load.
Bit 9= 1, Lood JCP. :
Bit 10= 1, Load BCKG (Program not JCP).
Bit 11= 1, Key-in required by higher priority subtask.
Bit 12= 1, Recycle FGL1/2 to FGL1 for possible RLS.
Bit 13= 1, Execute error logger.
Bit 14= 1, CKPT deferred during BCKG abort.
Bit 15= 1, BCKG in wait following attended mode
abort,
Bit 26= 1, KEY2doing STDLBRAD file OPEN/CLOSE.
Bit 27= 1, FGL] called from FGL2.
Bit = 1, Control Task is operating.
Bit 29= 0, Execute ABORT part of ABORT/EXIT.
Bit = 1, Bxecute EXIT part of ABORT/EXIT.
Bit = 1, PMD from key-in request.
Bit 31= 1, PMD from PMD command.
K:sSY X'152' Nonzero if SY key-in active.
K:BPEND X153 End of load area for SMM BCKG program.
K:CTWD X154 "WD code for Control Task. Byte 0 nonzero means CT
was triggered.
K:LTGL X155 Group level for Control Task.
K:B8LOAD X'156' Name in BCD of BCK program to load (two words). o
K:BAREA X'158' Index of area to load BCK program from. -
K:ASSIGN X'159' Address of ASSIGN table.
K:RUNF X'15A" Post run status here for FGD IRUN or IROV command.
K:HIINT X'158' HWO = Control task interrupt number.

HW1 = Highest address used for interupt.

PaamiaN

Table A~1. .CP-R System Flags and Pointers (cont.)

Name Location Description ‘
K:FGDBC3 X'15C' Unused in mapped system.
K:PMD X'15D' Cells to dump for PMD as DW address (5 words).
K:DCB X'162' DCB for Control Task to load in overlays (7 words).
Always assigned to RBM File.
K:KEYIN X'169’ Key=in control words.
K:FGDBG4 X' 16F Unused in mapped system.
K:DELTA X'170 Entry point for Delta.
K:QUEUE X7 Address of Queue routine. Byte 0 = Nonzero, Stop I/0O
on BCKG.
K:BTFILE X172 Status of BT Files
Bits 0~ 8, 1bit for each X1 file. Bit set to
1 means SAVE file.
Bits 16 -~ 31, LWA to use for non-SAVE files.
K:GO X173 Permanent and current sizes of GO.
K:PAGE X'174' Byte 0 = Number of lines per page.
K:RDBOOT X'175* FWA and device Number of RADBOOT.
K:DCT1 X'176' Addresses of tables.
K:DCT16 X177
K:OPLBS1 X'178
K:OPLBS3 X179
K:RFT4 X"17A!
K:RFT5 X'178'
K:SERDEV x1zce Address of SERDEV,
K:REQCOM X"17D’ Address of REQCOM.
K:INITX X"17g' Address to return to after INIT runs.
K:FGLD X'17F' Byte 0= Nonzero, XEQ FGD load/RLS.
K:PMD1 X'180' Flags for dumps.
K:CTDR7 X'181' Location to save context pointer during Control
Task dump.
K:DBTS X'182' Context pointer for background PMD.
K:KEYDCB X'183'-X'187" DCB to read operator key=ins.
K:CLK1 X'188' Clock cells must start on @ DW boundary: there are
counters for 4 clocks — 2 words/clock. t
-
K:CLK2 X'18A" Word 2 gets stored into word 1 when Counter =0,
K:CLK3 X'18C'

))
The user never needs to access Clock 4.

377

-

-

Table A-1. CP-R System Flags and Pointers {cont.)

Name Location Description
K:ABTLOC X'18€’ Abort location.

K:MSG1 X'190' KEY=-IN.

K:MSG2 X'193 KEY ERR.

K:MSG3 X196 RLS NAME NA.

K:MSG4 X'19A" FILE NAME ERR.

K:MSG5 X' 19€' FGD AREA ACTIVE.

K:MSGé6 X'1A3' NOT ENUF BCKG SPACE.

K:MSG7 X'1A9 UNABLE TO DO ASSIGN.

K:M5G8 X'1AF' BCKG CKPT.

K:MSG?9 X'182' BCKG IN USE BY FGD.

K:M3G10 X'1g7" BCKG RESTART. .
K:MSG11 X'188' CK AREA TOO SMALL. '
K:M5G 12 x'ico 1/O ERR ON CKPT,

K:MSG13 X'1c5! JOB ABORTED AT xsooxx.

K:MSG 14 X'1CB' LOADED PROG NAME.

K:MSG15 X'ICF! UNABLE TO LOAD BCKG PUB LIB.

K:MSG 16 xX"p7 CKPT WAITING FOR BCKG 1/0 RUNDOWN.
K:XITSIM X'1ES Unimplemented instruction nomal retum.

K:TRPSIM X'E7" Unimplemented instruction trap retum.

K:PPGMOT X'1E8" Unimplemented instruction memory=-protection error retum.
K:MONTH X'1EA’ Table of days/month and BCD names.

K:DATE1 X'IF6" Number days in current year; current year = 1900,
K:DATE2 X'1F7° Day of year.

K:TIME X'1F8' Time of day in seconds.

K:ELTIM1 X'1F9 FGD saves BCKG elapsed time here.

K:LIMIT X'IFA! Maximum execution time for BCKG.

K:ACCNAM X'IFB’ Account entry for AL file (8 words).

K:ELTIM2 X'202' Last word of account entry (elapsed time).

K:PTCH X'207* Beginning address of patch area.

K:PTCHND X'208' Ending address of patch area.

K:1OWD X'209' ‘ 1/0 trigger values.

K:IOGL X'20A"

K:CPWD X'208' CP trigger values.

K:CPGL X'20C* -
K:IOLOCK X'20D* *
K:RMPT X'20E’ RMPT location and length.

K:BMEM _ X'20F" Maximum number of BCKG pages.

K<JAET X210 Number of allocatable DCT entries.

K:RTS X2 CP=R stack pointer.

Table A-1.

CP-R System Flags ond Pointers (cont.)

Name Location Description

K:MDNAME X'212 Byte 0: Number of Master Dictionary entries.
Bytes 1-3: Address of MDNAME table.

K:DCT1X X'213' Address of DCT1 table.

K:RBMEND X214 LWA of resident CP-R.

K:RUNJ X'215' Status from JCP run CAL.

K:DEBUG X'216' Debug communication LOC.

K:FSMM X'217! Pages, end address for foreground SMM.

K:MDBOA X'218' Address of MDBOA table.

K:MDEOA X'219' Address of MDEOA table.

K:MDDCTI X'21A" Address of MDDCTI table.

379

APPENDIX B.- XEROX STANDARD OBJECT LANGUAGE ’

INTRODUCTION

GENERAL

The Xerox standard object language provides a means of
expressing the output of any language processor in standord
format. All programs and subprograms in this object format
can be looded by the Monitor's relocating loader.! Such a
loader is capable of providing the program linkages needed
to form an executable progrom in core storage. The object
languoge is designed to be both computer-independent and
medium-independent; i.e., it is opplicable to any Xerox
computer having a 32-bit word length, and the same format
is used for any output medium.

SOURCE CODE TRANSLATION

Before a program can be executed by the computer, it must
be translated from symbolic form to binary dotc words and
machine instructions, The primary stoges of source program
translation are accomplished by a processor. However, under
certain circumstances, the processor may not be able to trans-
late the entire source programdirectly into machine languoge
form,

If o source progiam contains symbolic forward references, o
single-pass processor such as the Xerox Symbol assembler can
not resol ve such references into machine language. Thisisbe-
cause the machine language value for the referenced symbol
is not established by a one-pass processor until ofter the state-
ment containing the forward reference has been processed.

A three-passprocessor, such as the Xerox Assembly Program
(AP), is copable of making “retroactive" changes in the
object progrom before the object code is output. Therefore,
@ two~pass processor does not have to output any special
object codes for forward references. An example of a for-
ward reference in a Symbol source program is given below,

Y EQU $+3
fc1,5 z

z fEQU 2
.

R éQU Z+1

'Alrhough a discussion of the object language is not directly
pertinent to the CP=R, it is included in this manual because
it applies to all processors operating under CP=R,

380

x

In this example the operand $ + 3 is not a forword reference

‘because the assembler can evaluate it when processing the

source statement in which it appears, However, the oper-
ond Z in the stotement —

CL5 z

is a forward reference because it appears before Z has been
defined. In processing the statement, the assembler outputs
the machine-language code for C1,5, assigns o forward ref-
erence number (e.g., 12) to the symbol Z, and outputs that
forward reference number. The forward reference number
and the symbol Z are also retained in the assembler's symbol
table.

When the assembler processes the source stotement
LR Z

it outputs the machine-language code for LI, assigns a for-
ward reference number (e.g., 18) to the symbol R, outputs
that number, and agein outputs forward reference number
12 for symbol Z.

On processing the source statement
Z EQU 2

the assembler again outputs symbol Z's forward reference
number and also outputs the value, which defines symbol Z,
so that the relocoting looder will be able to satisfy refer-
ences to Z in statements C1,5 Z and LI,R Z. At this time, —
symbol Z's forward reference number (i.e., 12) may be
deleted from the ossembler's symbol table and the defined
value of Z equated with the symbol Z (in the symbol table).
Then, subsequent references to Z, as in source statement

G Z

would not constitute forward references, since the assembler
could resolve them immediately by consulting its symbol
table,

If a program contains symbolic references to extemolly
defined symbols in one or more separately processed subpro-
grams or library routines, the processor will be unable to
generate the necessory progrom linkages.

An example of an extemnal reference in a Symbol source pro-
gram is shown below.
REF ALPH

U,3 ALPH

When the assembler processes the source statement

REF ALPH

it outputs the symbol ALPH, in symbolic (EBCDIC) form, in
a declaration specifying that the symbol is an external ref-
erence, At this time, the assembler also assigns a declara-
tion name number to the symbol ALPH but does not output
the number. The symbol and name number are retained in
the assembler's symbol table.

After a symbol has been declared an external reference, it
may appear any number of times in the symbolic subprogrom
in which it was declared. Thus, the use of the symbol
ALPH in the source statement

LI,3 ALPH

in the above example, is valid even though ALPH is not
defined in the subprogram in which it is referenced.

The relocating loader is able to generate interprogram link-
ages for any symbol that is declared an external definition
in the subprogram in which that symbol is defined. Shown
below is an example of an external definition in o Symbol
source program,

DEF ALPH

LI,3 ALPH

ALPH Al 4 X'F2!

When the assembler processes the source statement
DEF ALPH

it outputs the symbol ALPH, in symbolic (EBCDIC) form, in
a declaration specifying that the symbol is on external defi-
nition, At this time, the assembler also assigns a declaration
name number to the symbol ALPH but does not output the
number. The symbol and name number are retained in the
assembler's symbol table.

After a symbol has been declared an external definition it
may be used (in the subprogram in which it was declared) in
the same way as any other symbol. Thus, if ALPH is used as
a forward reference, as in the source statement

L3 ALPH

above, the assembler assigns a forward reference number to
ALPH, in addition to the declaration name number assigned
previously. (A symbol may be both a forward reference and
an external definition.)

On processing the source statement
ALPH Al, 4 X'F2

the assembler outputs the declaration name number of the
label ALPH (and an expression for its value) and also outputs
the machine-language code for Al,4 and the constant X'F2',

OBJECT LANGUAGE FORMAT

An object language program generated by o processor is out-
put as a string of bytes representing "load items". A load
item consists of an item type code followed by the specific
load information pertaining to that item. (The detailed format
of each type of load item is given later in this appendix.)
The individual load items require varying numbers of bytes

for their representation, depending on the type and specific
content of each item. A group of 108 bytes, or fewer, com-
prises a logical record. A load item may be continued from
one logical record to the next.

The ordered set of logical records that a processor generates
for a program or subprogram is termed an "object module".
The end of an object module is indicated by a module-end
type code followed by the error severity level assigned to
the module by the processor.

RECORD CONTROL INFORMATION

Each record of an object module consists of 4 bytes of con-
trol information followed by a maximum of 104 bytes of load
information. That is, each record, with the possible excep-
tion of the end record, normmally consists of 108 bytes of
information (i.e., 72 card columns),

The 4 bytes of control information for each record have the
form and sequence shown below,

Byte O
Record Type Mode Format
1 1 1 0
0 1 2 3 4 5 6
Byte 1
Sequence Number
0 7
Byte 2
Checksum
0 7
Byte 3
Record Size
0 7
Record Type specifies whether this record is the last

record of the module:

000 means last
001 means not last

Mode specifies that the loader is to read binary infor-
mation, This code is always 11.

Format specifies object language format. This code is
always 100.

Sequence Number is O for the first record of the module
and is incremented by 1 for each record thereafter,
until it recycles to 0 ofter reaching 255.

Checksum is the computed sum of the bytes comprising
the record. Carries out of the most significant bit
position of the sum are ignored.

Record Size is the number of bytes (including the record
control bytes) comprising the logical record (5 < record

381

size < 108). The recordsize will normally be 108 bytes”
for all records except the last one, which may be fewer.
Any excess bytes in a physical record are ignored.

LOAD ITEMS

Each lood item begins with a control byte that indicates the
item type. In some instances, certain parameters are also
provided in the load item control byte. Inthe following dis~
cussion, lood items are categorized according to their function:

1. Declarations identify to the loader the external and
control section labels that are to be defined in the
object module being loaded.

2. Definitions define the value of forward references,
external definitions, the origin of the subprogram being
loaded, and the starting address (e.g., as provided in
the AP END directive),

3. Expression evaluation load items within a definition
provide the values (such as constants, forward refer-
ences, etc.) that are to be combined to form the final
value of the definition.

4. Loading items cause specified information to be stored
into core memory.

5. Miscellaneous items comprise padding bytes and the
module-end indicator,

DECLARATIONS

In order for the loader to provide the linkage between subpro-
groms, the processor must generate for each external refer-
ence ordefinition aload item, referred to as o "declaration",
containing the EBCDIC code representation of the symbol
and the information that the symbol is either an external ref-
erence or a definition (thus, the loader will have access to
the octual symbolic name).

Forward references are always internal references within an
object module. (External references are never considered
forward references.) The processor does not generate o dec-
loration for a forward reference as it does for externals; how-
ever, it does assign nome numbers to the symbols referenced.

Declaration name numbers (for control sections ond external
labels) and forword reference nome numbers apply only within
the object module in which they are assigned. They have no «
significance in establishing interprogram linkages, since
external references and definitions are correlated by match-
ing symbollc names, Hence, name numbers used in any
expressions in a given object module always refer to symbols
that have been declared within that module.

The processor must generate a declaration for each symbol
that identifies a programsection. Although the Xerox Symbol
assembler used with the Monitor allows only o stondard con-
trol section (i.e., program section), the standard object
language includes provision for other types of control sec-
tions (such as dummy control sections). Eoch object module
produced by the Symbol processor is considered to consist of
at least one control section. If no section is explicitly iden~
tified in o Symbol source program, the assembler assumes it
to be o stendard control section (discussed below). The stan-
dard control section is always assigned a declaration name

382

number of 0. All other control sections (i.e., produced by

o processor capable of declaring other control sections) ere
assigned declaration nome numbers (1, 2, 3, efc.) in the
order of their appearance in the source progrom.’

In the load items discussed below, the access code, pp, des-

ignates the memory protection class that is to be associoted —

with the control section. The meaning of this code is given
below.

t

PP Memory Protection Feature

00 Read, write, or access instructions from,
o1 Read or access instructions from.

10 Read only.

n No access.

Control sections are always allocated on a doubleword
boundary. The size specification designates the number of
bytes to be allocated for the section.

Declare Standard Control Section

Byte O
Control byte]
0 0 0 1 0 K
2 3 4 5 6 7
Byte 1
Access code Size (bifs | through 4) |
P P 0
0 1 2 3 4 5 6 7
Byte 2
Size (bits 5 through 12)
0 7
Byte 3
Size (bits 13 through 20)
0 7

“This item declares the standard control section for the object

module. There may be no more than one standard control
section in each object module. The origin of the standord
control section is effectively defined when the first reference
to the stondard control section occurs, althoygh the declara-
tion item might not occur until much later in ghe object
module.

tuRead" means o program can obtain information from the
protected area; “write” means a program can store informa-
tion into a protected area; and, “access" means the compu~ _
ter con execute instructions stored in the protected area.

)

(

This capability is required by one-pass processors, since
the size of a section cannot be determined until all of
the load information for that section has been generated by
the processor.

Declare Nonstandard Control Section

Byte O
Control byte
0 0 0 1 1 0 0
1 2 3 4 5
Byte 1
Access code Size (bits 1 through 4)
P P 0 0
0 1 2 3 4 7
Byte 2
Size (bits 5 through 12)
0 7
Byte 3
Size (bits 13 through 20)
0 7

This item declares a control section other than standard con-
trol section (see above), The loader is capable of loading
object modules (produced by other processors, such as as-
semblers or compilers) that do contain this item,

Declare Page-Bounded Control Section

Byte O
Control Byte
0 0 | 1 1 1 0
2 3 4 5 6 7
Byte 1
Access code Size (bits 1 through 4)
P P 0
0 1 2 3 4 5 6 7
Byte 2

Size (bits 5 through 12)

Byte 3

Size (bits 13 through 20)

— dhis item declares a nonstandard control section beginning

on a memory page boundary.

Declare Dummy Section

Byte 0
Control byte
0 0 0 0 1 0 0 1
1 2 3 4 5 6 7
Byte 1
First byte of name number
0 7
Byte 2
Second byte of name numbert

0 7
Byte 3

Access code Size (bits 1 through 4)

P P 0 0

0 i 2 3 4 7
Byte 4

Size (bits 5 through 12)

Byte 5

Size (bits 13 through 20)

0 7

This item comprises a declaration for a dummy control sec~
tion. It results in the allocation of the specified dummy
section, if that section has not been allocated previously
by another object module. The label that is to be ossoci-
ated with the first location of the allocated section must be
a previously declared external definition name. (Even
though the source program may not be required to explicitly
designate the label as an external definition, the processor
must generate an extemnal definition name declaration for
that label prior to generating this load item.)

Declare External Definition Name

Byte O
Control byte)
0 0 0 0 0 1 j]
0 1 2 3 4 5 6 7
Byte 1 N
Nome length, in bytes (K)
0 7

'If the module has fewer than 256 previously assigned name
numbers, this byte is absent.

383

Byte 2 Byte 1
First byte of name Nome length, in bytes (K)
0 7 0 7
Byte K+1 Byte 2
Last byte of name First byte of name
0 7 0 . 7
Byte K+1
This item declares a label (in EBCDIC code) that is an exter- Lost bvte of
nal definition within the current object module. The name st byte of name
may not exceed 63 bytes in length,
0 7

Declare Primary External Reference Name

Byte O
Control byte
0 0 0 0 0 1 0 1
0] 2 3 4 5 é 7
Byte 1
Name length (K), in bytes
0 7
Byte 2
First byte of nome
0 . 7
Byte K+1
Lost byte of name
0 7

This item declares a symbol (in EBCDIC code) that is a pri-
mary external reference within the current object module.
The name may not exceed 63 bytes in length,

A primary external reference is capable of causing the loader
to search the system library for a corresponding external
definition, Ifa corresponding external definition is not found
in another load module of the program or in the system li-
brary, a load error message is output and the job is errored,

This item declares a symbo! (in EBCDIC code) that is o pri-
mary external reference within the current object module.
The name may not exceed 63 bytes in {ength,

A secondary external reference is not capable of causing the
loader to search the system library for a corresponding exter~
nal definition, If a corresponding external definition is not
found in another lood module of the program, the job is not
errored and no error or abnormal message is output.

Secondary external references often appear in library routines
that contain optional or al ternative subroutines, some of which
may not be required by the user's program. By the use of pri-
mary external references in the user's progrom, the user con
specify that only those subroutines that are actually required by
the current job are to be loaded. Althoughsecondary external
references do not cause loading from the library, they do cause
linkages to be made between routines that are looded.

DEFINITIONS

When a source language symbol is to be defined (i.e., equa-
ted with a value), the processor provides for such a value by
generating an object language expression to be evaluated by
the loader. Expressions are of variable length, and termi-
nate with on expression-end control byte (see Section 4 of
this appendix). An expression is evaluated by the addition

" or subtraction of values specified by the expression.

Since the loader must derive values for the origin and start-

ing address of o program, these also require definition.
-

-
Declare Secondary External Reference Name Origin
Byte 0 Byte 0
Control byte Control byte
0 0 0 0 0 1 0 0 0 0 1 0 0
2 3 4 S [1 2 3 4 5 [} 7

This item sets the loader's load-location counter to the

value designated by the expression immediately following
the origin control byte, This expression must not contain
any elements that cannot be evaluated by the loader (see

Expression Evaluation which follows).

Forward Reference Definition

Byte O
Control byte
0 0 0 1 0
2 3 4 5

Byte 1

First byte of reference number
0 7
Byte 2

Second byte of reference number
0 7

This item defines the value (expression) for a forward refer-
ence, The referenced expression is the one immediately
following byte 2 of this load item, and must not contain
any elements that cannot be evaluated by the loader (see
Expression Evaluation which follows).

Forward Reference Definition and Hold

Byte O
Control byte
0 0 1 0 0 0 0
1 2 3 4
Byte 1
First byte of reference number
0 7
Byte 2
Second byte of reference number
0 7

This item defines the value (expression) for a forward refer-
ence and notifies the loader that this value is to be retained

in the loader's symbol table until the module end is encoun~
tered. The referenced expression is the one immediately
following the name number. It may contain viblues that have
not been defined previously, but all such values must be
available to the loader prior to the module end.

After generating this load item, the processor need not retain
the value for the forward reference, since that responsibility
is then assumed by the loader. However, the processor must
retain the symbolic nome and forward reference number
assigned to the forward reference (until module end).

External Definition

Byte 0
Control byte
0 0 0 1 0]
0 1 2 3 4 5 6
Byte 1
First byte of name number
0 7
Byte 2
Second byte of name number!
0 7

This item defines the value (expression) for an external
definition name. The name number refers to a previously
declared definition name. The referenced expression is
the one immediately following the name number.

Define Start

Byte O

Control byte
0 0 0 1 i 0 1

1 2 3 4 5 6 7

This item defines the starting address (expression) to be used
at the completion of loading. The referenced expression is
the one immediately following the control byte.

EXPRESSION EVALUATION

A processor must generate an object language expression
whenever it needs to communicate to the loader one of
the following:

1. A program load origin.
2. A program starting address,

'If the module has fewer than 256 previously assigned name
numbers, this byte is absent,

385

3. An external definition value.
4. A forward reference value.
5. A field definition valuve.

Such expressions may include sums and differences of con-
stonts, oddresses, and external or forward reference values
that, when defined, will themselves be constants or oddresses.

After initiation of the expression mode, by the use of a con-
trol byte designating one of the five items described above,
the value of an expression is expressed as foliows:

1. An address value is represented by an offset from the
control section base plus the value of the contro! sec-
tion base.

2. The volue of a constant is added to the accumulated
sum by generating an Add Constant (see below) control
byte followed by the value, right-justified in fourbytes,

The offset from the control section base is given as o
constant representing the number of units of disploce-
ment from the control section base, ot the resolution
of the address of the item. That is, a word oddress
would have its constant portion expressed as a count of
the number of words offset from the base, while the
constant portion of a byte address would be expressed
as the number of bytes offset from the base.

The control section base value is accumulated by means
of an Add Value of Declaration (see below) or Subtract
Value of Declaration lood item specifying the desired
resolution and the declaration number of the control
section base, The loader adjusts the base value to the
specified address resolution before adding it to the cur-
rent partial sum for the expression.

In the case of an absolute address, an Add Absolute
Section (see below) or Subtract Absolute Section con-
trol byte must be included in the expression to identify
the volue as an address and to specify its resolution.

3. An external definition or forward reference value is
included in an expression by means of a load item add-
ing or subtracting the appropriate declaration or forward
reference value. If the value is an oddress, the reso-
lution specified in the control byte is used to align the
value before odding it to the current partial sum for the
expression, If the value is a constont, no alignment is
necessory.

Expressions are not evaluated by the loader until all required
values are available. In evaluating an expression, the
loader maintains a count of the number of values added or
subtracted at each of the four possible resolutions. A sepa-
rate counter is used for each resolution, and each counter

is incremented or decremented by 1 whenever a volue of the
corresponding resolution is added to or subtracted from the
loader's expression accumulator. The final sccumulated sum
is a constant, rather than an oddress value, if the final count
in all four counters is equal to 0. If the final count inone
(ond only one) of the four counters is equal to +1 or =1, the

386

occumuloted sum is o "simple address" having the resolution
of the nonzero counter. If more than one of the four counters
have a nonzero final count, the accumuloted sum is termed
a "mixed-resolution expression” and is treated os o constant
rather than an oddress. K

The resolution of a simple oddress may be altered by means
of a Change Expression Resolution (see below) control byte.
However, if the current partial sum is either a constant or
o mixed-resolution value when the Change Expression Reso-
lution control byte occurs, then the expression resolution

is unaffected.

Note that the expression for a program load origin or start-
ing address must resolve to a simple address, and the single
nonzero resolution counter must have a final count of +1
when such expressions are evaluated.

In converting a byte address to a word address, the two least
significant bits of the address ore truncated. Thus, if the
resulting word oddress is later chonged back to byte resolu-
tion, the referenced byte location will then be the first byte

(byte 0) of the word.

After an expression has been evaluated, its final value is
associaoted with the oppropriate lood item.

In the following diagrams of load item formats, RR refers to
the address resolution code. The meaning of this code
is given in the table below.

RR Address Resolution
00 Byte

01 Halfword

10 Word

1" Doubleword

The load items discussed in this oppendix, “Expression
Evaluation", may appear only in expressions,

Add Constont

Byte O
Control byte
0 0 0 0 0 0 1
2 3 4 5 6 7
Byte 1
First byte of constont
0 - 7
Byte 2
Second byte of constant
0 7

Byte 3

Third byte of constant

Byte 4

Fourth byte of constant

0 7
This item causes the specified 4-byte constant to be added
to the loader's expression accumulator. Negative constants

are represented in two's complement form,

Add Absolute Section

Byte O

Control byte

0 1 I 0 1 R

1 2 3 4 5 6 7
This item identifies the associated value (expression) as a
positive absolute address, The address resolution code, RR,

designates the desired resolution,

Subtract Absolute Section

Byte 0

Control byte

0 1 1 1 0 R R

1 2 3 4 5 6 7
This item identifies the associated value (expression) as a
negative absolute address. The address resolution code,

RR, designates the desired resolution.

Add Value of Declaration

Byte O
Control byte

0 1 0 0 0 R

1 2 3 4 5 6 7
Byte 1

First byte of name number
0 7
Byte 2
Second byte of name number'

0 7

~If the module has fewer than 256 previously assigned name
numbers, this byte is absent.

This item causes the value of the specified declaration tobe
added to the loader's expression accumulator. - The address
resolution code, RR, designates the desired resolution, and
the name number refers to a previously declared definition
nome that is to be ossociated with the first location of the
allocated section,

One such item must appear in each expression for a reloca-
toble address occurring within a control section, adding the
value of the specified control section declaration (i.e.,
adding the byte oddress of the first location of the control
section),

Add Vaolue of Forward Reference

Byte O
Control byte

0 0 1 0 0 1 R R

1 2 3 4 5 6 7
Byte 1

First byte of forward reference number
0 7
Byte 2

Second byte of forward reference number

0 7
This item causes the value of the specified forward reference
to be added to the loader's expression accumulator, The
address resolution code, RR, designates the desired resolu~-
tion, and the designated forward reference must not have
been defined previously.

Subtract Value of Declaration

Byte O
Control byte

0 1 0 1 0 R R
0 1 2 3 4 5 6 7
Byte 1

First byte of name number
0 7
Byte 2
Second byte of name number!

This item causes the value of the specified declaration to
be subtracted from the loader's expression accumulator,
The oddress resolution code, RR, designates the desired
resolution, and the name number refers to a previously de-
clared definition name that is to be associated with the
first location of the allocated section,

"If the module has fewer than 256 previously assigned nome
numbers, this byte is absent.

387

Subtract Value of Forward Reference

Byte O
Control byte
0 0 1 0 1 1 R R
0 1 2 3 4 5 é 7
Byte 1
First byte of forword reference number
0 7
Byte 2
Second byte of forward reference number
0 7

This item causes the value of the specified forward reference
to be subtracted from the loader's expression accumulator,
The address resolution code, RR, designates the desired reso-
lution, and the designated forward reference must not have
been defined previously.

Change Expression Resolution

Byte 0

Symbol Types
Type Meaning of 5-Bit Code ‘
00000 Instruction N
00001 Integer
00010 Short floating point
00011 Long floating point
00110 Hexadecimal (clso for pocked decimal)
001 EBCDIC text (olso for unpocked decimal)
01001 Integer orroy
01010 Short flooting-point array
oon Long floating-complex array
01000 Logical array
10000 Undefined symbol

Internal Resolution

IR Address Resolution
000 Byte

001 Halfword

010 Word

on Doubleword

Type Information for External Symbol

Byte O

Control byte Control byte
0 0 ! L 0 0 R__R 0 0 0 1 o0 o 1
0 1 2 3 4 5 6 7 2 3 4 5 6 7
This item causes the address resolution in the expression to
be changed to that designated by RR. Byte 1

Type field | IRfield
Expression End
T

Byte 0 0 4 5 7

Control byte
0 0 0 0 0 0] 0 Byte 2
0 i 2 3 4 5 é 7 Declaration number
This item identifies the end of an expression (the value of o 2

which is contained in the looder's expression accumulator).

FORMATION OF INTERNAL SYMBOL TABLES

The three object code contro! bytes described below are re-~
quired to supply the information necessary in the formation
of Internal Symbol Tables.

In the following diagrams of lood item formats, Type refers
to the symbol types supplied by the object language ond
maintained in the symbol table. IR refers to the internal
resolution code. Type and resolution are meoningful only
when the valuve of a symbol is on oddress. In this case, it
is highly likely that the processor knows the type of value
that is in the associated memory location, and the type field
identifies it. The resolution field indicates the resolution
of the location counter at the time the symbol was defined.
The following tables summarize the combinations of value
and meaning.

388

Byte 3 (if required)

Declaration number {(continued)

0 7

This item provides type information for external symbols.
The Type and IR fields are defined above. The declaration
number field consists of one or two bytes (depending on the
current declarotion count) which specifies the declaration
number of the externcal definition.

-
Type ond EBCDIC for Intemal Symbol -
Byte O
Control byte
0 0 1 0 0 1 0
2 3 4 5 6

Byte 1
Type field | IR field
0 4 5 7
Byte 2
Length of name (EBCDIC characters)
0 7
Byte 3
First byte of name in EBCDIC
0 7
Byte n
Last byte of name in EBCDIC
0 7
Byte n + 1
Expression defining value of internal symbol
0 7

This item supplies type and EBCDIC for an internal symbol . The
load items for Type and IR are s above . Lengfh of name speci-
fies the length of the EBCDIC name in characters. The name, in
EBCDIC, isspecified in the required number of bytes, followed

LOADING

Load Absolute
Byte O
Control byte

0 1 0 0 N N N N
0 1 2 3 4 5 6 7
Byte 1

First byte to be loaded
0 7
Byte NNNN

Last byte to be loaded

0) 7

This item causes the next NNNN bytes to be loaded abso-
lutely (NNNN is expressed in natural binary form, except
that 0000 is interpreted as 16 rather than 0). The load loca-
tion counter is advanced appropriately.

Load Relocatable (Long Form)

Byt
by abyte containing the expression defining the internal symbol yte 0
Control byte
EBCDIC for an Undefined Symbol : 5 l S =
Byte 0 1 2 3 4 5 6 7
Control byte
0 0 0 1 0 0 1] Byte 1
0 1 2 3 4 5 6 7 First byte of name number
Byte 1
Length of name (EBCDIC characters) 0 7
Byte 2
0 7 Second byte of name numbert
Byte 2
First byte of name in EBCDIC 0 7
This item causes a 4-byte word (immediately foliowing this
Y 7 load item) to be loaded, and relocotes the address field
Byte n according to the address resolution code, RR. Control bit
Last byte of name in EBCDIC C designates whether relocation is to be relative to a for-
ward reference (C = 1) or relative to a declaration (C = 0).
Control bit Q designates whether a 1-byte (Q = 1) or a
0 7 2-byte (Q = 0) name number follows the control byte of
8 this load item,
yte n + 1

First byte of symbol associated forward reference number

0 7

This item is used to associate a symbol with a forward reference.
The length of name and name in EBCDIC are the sameasin the
above item. The last two bytes specify the forward reference
number with which the above symbol is to be associated.

If relocation is to be relative to a forward reference, the
forward reference must not have been defifted previously.
When this load item is encountered by the loader, the load
location counter can be aligned with a word boundary by
loading the appropriate number of bytes containing all zeros
(e.g., by means of a load absolute item),

*If the module has fewer than 256 previously ossigned name
numbers, this byte is absent,

389

Load Relocatable (Short Form)

Byte O
Control byte
} C D D D D D D
0 1 2 3 4 5 é 7

This item couses o 4-byte word (immediately following this
load item) to be looded, and relocates the oddress field
(word resolution). Control bit C designates whether reloco-
tion is to be relative to a forward reference (C = 1) or rela-
tive to o declaration (C = 0). The binory number DDDDDD
is the forward reference number or declaration number by
which relocation is to be accomplished.

If relocation is to be relative to o forward reference, the
forward reference must not have been defined previously.
When this load item is encountered by the loader, the load
location counter must be on a word boundary (see "Load
Relocatable (Long Form)", above),

Repeat Load
Byte O
Control byte
0 0 0 1 1 [1
1 2 3 4 5 é 7
Byte 1
First byte of repeat count
0 7
Byte 2
Second byte of repeat count
0 7

This item causes the loader to repeat (i.e., perform) the
subsequent load item a specified number of times. The re-
peat count must be greater than 0, and the load item to
be repeated must follow the repeat load item immediately.

Define Field
Byte O
Control byte
0 0 0 0 0 1 1]
2 3 4 5 6 7
Byte 1

Field location constant, in bits (K)

Byte 2

Field length, in bits (L)

0 7
This item defines a value (expression) to be odded to o field
in previously loaded information. The field is of length L

(1 = L = 255) and terminates in bit position T, where:

T = current load bit position =256 +K.

. The field location constant, K, may have any value from

1 to 255, The expression to be added to the specified field
is the one immediately following byte 2 of this load item.

MISCELLANEOUS LOAD ITEMS

Padding
Byte O
Control byte
0 0 i 0 0
i 2 3 4 5

Padding bytes are ignored by the loader. The object lan=
guage alliows padding as a convenience for processors,

Module End
Byte O
Control byte
0 0 0 0 i 1 1 0
1 2 3 4 5 6
Byte 1
Severity level
0 0 0 E E E E
1 2 3 4 5 6 7

This item identifies the end of the object module. The
value EEEE is the error severity level assigned to the mod-
ule by the processor,

-t
OBJECT MODULE EXAMPLE

The following example shows the correspondence between
the statements of @ Symbol source program and the string
of object bytes output for that program by the assembler,
The program, listed below, has no significance other than
illustrating typical object code sequences.

Example

1 DEF AA,BB,CC CC IS UNDEFINED Ble CAUSES
NO ERROR
2 REF RZ,RTN EXTERNAL REFERENCES DECLARED
3 00000 ALPHA CSECT DEFINE CONTROL SECTION
ALPHA
4 000C8 ORG 200 DEFINE ORIGIN
5 000C8 22000000 N AA LI, CNT 0 DEFINES EXTERNAL AA; CNT IS
A FWD REF
6 000C? 32000000 N LW, R RZ R IS A FORWARD REFERENCE;
7 * { RZ IS AN EXTERI;JAL REFERENCE,
8 * | AS DECLARED IN LINE 2
9 000CA 50000000 N RPT AH,R KON [DEFINES RPT; R AND KON ARE
10 * [FORWARD REFERENCES
11 000CB 69200000 F BCS, 2 BB BB IS AN EXTERNAL DEFINITION
12 * USED AS A FORWARD REFERENCE
13 000CC 20000001 N Al CNT 1 CNT IS A FORWARD REFERENCE
14 000CD 680000CA B RPT RPT IS A BACKWARD REFERENCE
15 000CE 68000000 X B RTN RTN IS AN EXTERNAL REFERENCE
16 000CF © 0001 A KON DATA, 2 1 DEFINES KON
17 00000003 R EQU 3 DEFINES R
18 00000004 CNT EQU 4 DEFINES CNT
19 000D0 224FFFFF A BB LI, CNT -1 DEFINES EXTERNAL BB THAT HAS
20 * ALSO BEEN USED‘RS A FORWARD
2] * REFERENCE
22 000C8 END AA END OF PROGRAM -

3N

CONTROL BYTES (in Binary) - .

Begin Record Record number: 0

00111100 Record type: not lost, Mode binary, Format: object language.

00000000 | Sequence number O Record control
01100011 Checksum: 99 n ‘;"":}'”“’ not
01101100] Record size: 108 port of oad item
03020101 (hexadecimal code comprising the load item) 3
00000011 Declore external definition name (2 bytes) Name: AA Declaration number: 1
03020202 .
00000011 Declare external definition nome (2 bytes) Name: BB Decloration number: 2 L Source Line 1
03020303
00000011 Declare external definition name (2 bytes) Name: CC Declaration number: 3 J
0502D9E9)
00000101 Declare primary reference nome (2 bytes) Nome RZ Declaration number: 4
b Sousce Line 2
0503D9E3DS
00000101 Declare primary reference name (3 butes) Nome: RTN Decloration number: 5)
0A010100000320200002 \
00001010) Define external definition
Number 1 R
00000001 { Add constont: 800 X'320' b Source Line 5
00100000 Add volue of declaration (byte resolution)
Number 0
00000010 J Expression end » J
. 040100000320200002 R
00000100 Origin
00000001 Add constant: 800 X'320' .
00100000 } Add value of declaration (byte resolution) b Source Line 4
Number 0
00000010) Expression end) y
4422000000)
01000100 Load absolute the following 4 bytes: X'22000000" :
07EB80424000002
00000111 Define field
Field location constant: 235 bits P Source Line 5

Field length: 4 bits
Add the following expression to the above field:

00100110 Add value of forward reference (word resolution)
Number 0 '
00000010 Expression end J

»

'No object code is generated for source lines 3 (define control section) or 4 (define origin) ot the time they are encountered.
The control section is declared at the end of the program after Symbol has determined the number of bytes the program requires,
The origin definition is generated prior to the first instruction.

392

10000100

00000111

00100110

00000010

11001100

00000111

00100110

00000010

11010010

01000100

0000011

00100110

00000010

10000000

10000101

00001000

8432000000
Load relocatable (short form). Relocate address field (word resolution)
Relative to declaration number 4

The following 4 bytes: X'32000000"

07EB0426000602

Define field

Field location constant: 235 bits

Field length: 4 bits

Add the following expression to the above field:
Add value of forward reference (word resolution)
Number 6

Expression end

CC50000000
Load relocatable (short form). Relocate address field (word resolution)
Relative to forward reference number 12

The following 4 bytes: X'50000000'

07EB0426000602

Define field

Field location constant: 235 bits

Field length: 4 bits

Add the following expression to the above field:
Add value of forward reference (word resolution)
Number 6

Expression end

D269200000

Load relocatable (short form). Relocate oddress field (word resclution)
Relative to forward reference number 18

The following 4 bytes: X'69200000’

4420000001
Load absolute the following 4 bytes: X'20000001"

07EB0426000002

Define field

Field location constant: 235 bits

Field length: 4 bits

Add the following expression to the above field:
Add value of forward reference (word resolution)
Number 0

Expression end

80680000CA
Load relocatable (short form). Relocate address field (word resolution)
Relative to declaration number 0

The following 4 bytes: X'680000CA"

8568000000

Load relocatable (short form). Relocate address field (word resolution)
Relative to declaration number 5

The following 4 bytes: X'68000000'

08

Define forward reference (continued in record 1)

Source Line 6

Source Line ¢

Source Line 11

Source Line 13

Source Line 14

Source Line 15

-

Source Line 16

393

Begin Record Record number 1

00011100
00000001
11101100
01010001

00000001
00100000

00000010
01000010

00001000
00000001
00000010
00001000

00000001
00000010

00001111

01000001

00001000

00000001
00000010
00001010
00000001
00100000

00000010

01000100

0000”0\>

00000001
00100000

00000010

394

Record type: last, Mode: binary, Formot: object languoge.
Sequence number |

Checksum: 236

Record size: 81

000C010000033C 200002 (continued from record 0)
Number 12

Add constant: 828 X'33C'

Add value of declaration (byte resolution)
Number 0

Expression end

42001
Load absolute the following 2 bytes: X'0001"

0800060 10000000302
Define forward reference
Number 6

Add constant: 3 X'3'
Expression end

0800000 10000000402
Define forward reference
Number 0

Add constqnt: 4 X'4'
Expression end

OF00024100

Repeat lood

Repeat count: 2

Load absolute the following 1 bytes: X'00’

0800 120100000340200002

Define forward reference

Number 18

Add constant: 832 X'340'

Add value of declaration (byte resolution)
Number 0

Expression end

0A020100000340200002

Define external definition

Number 2

Add constant: 832 X' 340'

Add value of declaration (byte resolution)
Number 0

Expression end

44224FFFFF
Load absolute the following 4 bytes: X'224FFFFF'

0D0100000320200002

Define start

Add constant: 800 X'320'

Add value of declaration (byte resolution)
Number 0

Expression end

Record Control
Information -)

Source Line 16

Sourcé Line 17

Source Line 18

Advance to Word
Boundary

Source Line 19

4

Source Line 22

~—

08000344

00001011 Declare standard control section declaration number: 0
Access code: Full access.

QEQ0
00001110 Module end

Severity level: X'0'

Size 836 X'344'

A table summarizing control byte codes for object language load items is given below.

Object Code Control Byte

Type of Load Item

0 0 0 o 0 o0
0 0 0 0o 0 O
0o 0 0 0 0 O
0 0 0 0 0 O
0o 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 1 o0
6o 0 0 0 1 ©
0o 0 0 0 1 O
0 6 0 0 1 0
o 0 0 0 1 1
0o 0 0 0 1 1
0 0 0 0 1 1
0o 0 0 0 1 1
0o 0 0 1 0 ©
o 0 o0 1 0 0
0 0 0 1 0 ©
0O 0 0 1 0 O
0 0 o0 1 1 1
o 6 1 0 0 O
o o t 0 0 1
o 0 1 0 1 O
o o 1 0 1 i
o 0 1 1 0 O
o 0o 1 1 0 1
o o 1 1 1 0
0 1 0 0 N N
o 1 0 Q C
1 ¢ b D D D

O ®™® Z ® ™I X RN D -~

szxmxxx:u’oo

Padding

Add constant

Expression end

Declare external definition name

Origin

Declare primary reference name

Declare secondary reference name

Define field

Define forward reference

Declare dummy section

Define external definition

Declare standard control section

Declare nonstandard control section

Define start

Module end

Repeat load

Define forward reference and hold

Provide type information for external symbol
Provide type and EBCDIC for internal symbol
EBCDIC and forward reference number for undefined symbol
Declare page-bounded control section

Add value of declaration

Add value of forward reference

Subtract value of declaration

Subtract value of forward reference

Change expression resolution

Add absolute section

Subtract absolute section

Load absolute

Load relocatable (long form)

Load relocatable (short form)

395

APPENDIX C. XEROX STANDARD COMPRESSED LANGUAGE

The Xerox Standard Compressed Language is used to rep-
resent source EBCDIC information in a highly compressed
form,

Several Xerox processors will accept this form as input or
output, will accept updates to the compressed input, and
will regenerate source when requested. No information is
destroyed in the compression or decompression.

Records may not exceed 108 bytes in length. Compressed
records are punched in the binary mode when represented on
card media. Therefore, on cards, columns 73 through 80
are not used and are available for comment or identification
information. This form of compressed language should not
be output to "compressed" files since the 1/0O compression
may cause loss of data.

The first four bytes of each record are for checking purposes.
They are as follows:

Byte 1 Identification (00L11000). L =1 for each
record except the last record, in which case

L=0.
Byte 2 Sequence number (0 to 255 ond recycles).

Byte 3 Checksum, which is the least significant
eight bits of the sum of all bytes in the rec-
ord exceptthe checksumbyte itself. Carries
out of the most significant bit are ignored.
If the checksum byte is all 1's, do not
checksum the record.

Byte 4 Number of bytes comprising the record, in~
cluding the checking bytes (<108).

The rest of the record consists of a string of six-bit and
eight-bit items. Any partial item at the end of a record
is ignored.

The following six=bit items (decimal number assigned) com-
prise the string control:

Six-Bit
Decimal
Item Function

Ignore.
Not currently assigned.
End of line.
End of file.
Use eight-bit character which follows.
Use n + 1 blanks, next six-bit item is n.
Use n + 65 blonks, next six-bit item isn.
Blank.
0
1
0 2

-0 ONONBWN O

396

Six-Bit
Decimal
Item

Function

n
12

nre Vi g N1 vt ~Ar NKXECCHAVPIPTIOZTICALTIOTMONTPIOONOCNAIW

Y3

-

Table D-1.

APPENDIX D. SYSTEM OVERLAY ENTRY POINTS

System Overlay Entry Points

Entry Point Name

Overlay Name

Description

FALTENT
#ASSGN
:#BRNCH
#CALENT
:#*CONSG
:#DMPRET
:¥DODMP
:#DOINIT
#DORET
:#DOSNAP
#DOTRAP
:#¥DOVAL
#DUMP
#EXCT
FINSRT
#LO0OK
:*MODFY
#FNAME
:#PATCH
Aquir
#REMOV
#RERCHK
#SCAN
:#SCNDR

#SCNLCX

DBDW
DBC2
DBS3
D8DW
DBC2
DBC1
DBC3
DBS2
DBS2
DBS2
DBs2
DBC3
DBC!
DBS3
DBC1
DBCI
DBC3
DBCI
DBC3
DBS3
DBC2
DBC3
DBS1
DBC3

DBS3

Enter debug from alternate PSD
Process debug assign command
Branch into user program from debug
Enter debug from CAL exit

Process debug connect seg. command
Retum from single dump request

Do a dump request

Entry for initialization

Prepare for user return

Entry for snap execution

Entry after trap

Do evaluation of name

Process debug dump command
Process debug exec. control command
Process debug insert command
Process debug look command
Process debug modify command
Process debug name command
Process debug patch command
Process debug quit command

Process debug remove command
Process read error check

Scan the input command

Scan a dump request

Scan location forms

Table D~1 is a list of all entry points into the various overlays, the overlay containing each entry point, and a brief
description of the function of the entry point.

397

398

-

Table D-1. "System Overlay Entry Points (cont.)

Entry Point Name Overlay Name Description .
#SCNLWX DBS3 Scan for location or word
#SCNWDX DBS3 Scan ford forms
FSNAP DBCI Process debug snap command
#SNAPIT DBCI1 Execute snap command
ATINDT DBC2 Trap initialization processing
' #FTRAPEX DBS2 Exit from debug trap processing
#TRAPIN DBC2 Process trap control
:fwksQz DBSI Squeeze unused space from debug work space
ABEX ABEX Process abort and exit CALs for background
ABORT TERM Process all abort CALs
ACTV IOEX Process activate CALs
ALLOT ALLOT Process allot CALs
ANALYSE TEX1 Analyse erors of TEX
ARM ARM Process connect,am,disconnect,disarm CALs
ASSIGN ASSIGN Process assign CAL
BKGSEQ ABEX Initiate background sequencing (‘C' from IDLE)
BKLASSN BKL) Does backgmt.;nd DCB assignments
BKL1 BKL1} Perform background loading functions
BREAK SNAM Process INT CALs -
CALLQ Sub to CALL QUEUE and wait for I/O completion
CALLQP Entry to CALLQ with preset priority
CFUPDIR CLOSEX :Jp:ate directory entry for altered file and write it to
is
CHECK CHECK Process CHECK CALs
CHECKA CHECK Second-CHECK routine
CHKBAL CHECK Entry to CHECK via BAL
CHKBALA CHECK Altemate internal entry o CHECK, vic o BA‘E“
CKD CKD Crash dump from CK area
CKD2 CKD2 Crash dump from CK area, continued
CKENACT TMTYC Get and test end-action

Table D-1. System Overlay Entry Points (cont.)

Entry Point Name

Overlay Name

Description

CKENACTS
CKENACTI
CKENACT2
CKINTADR
CKINTLAB
CLOSE
CLOSEDCB
CLOSEX
CLOSRFIL
CocCIOo
COCRIP
COCSRDV
COCTIME

coor

CORRES
CRD
CRFIL
CRS

CRS2
CSEARCH
DBDW
DBKG
DCBBUSY
DEACTV
DEBUG
DELETE
DELFPT
DEQ

DEVI

TMTYC
TMTYC
TMTYC
TMTYC
TMTYC
READWR
READWR
CLOSEX
CLOSEX
COoCIo
COCIO
COcCIO
CocClIO

GETNRT

DEVI
CRD
CLOSEX
CRS
CRS2
DBS2
DBDW
ABEX
READWR
IOEX
DBDW
DELETE
CHECK
ENQ

DEVI

Get and test end=-action in standard FPT
Test and convert end-action parameter
Same as CKENACTI(TMTYC)

Test and convert interrupt address

Test and convert interrupt label

Process CLOSE CALs

Entry to close via BAL

Routine to close DCBs

Routine to close a DCB assigned to a RAD Firle
Quevue equivalent for COC 1/0
RIPOFF equivalent for COC 1/O
SERDEV equivalent for COC I/O

Five second line checking routine

Intercept BKG 1/O requests to symbiont dedicated
devices

Process correspondence CALs

Crash dump from SE op~label

Release blocking buffer and RFT entry for closing a file
Crash save to SE op=label from CK area
Continuation of CRS

Debug scan routine to search for commands
Start of data/workspace for debug

Background dump driver

SUB to check for an 1/O request to a busy DCB
Process deactivate CALs

Debug CAL processor

Process DELETE CALs

Same as CHECK(SIGNAL) entry point

Process DEQUEUE CALs

Process 'set' portion of device CALs

399

Table D-1. System Overlay Entry Points (cont.)

Entry Point Name Overlay Name Description

DEVN DEVI Process 'get' portion of device CALs

DFGD DUMP CT retum to CT dump after break

DFGDBAL DUMP DUMP break to check for other CT work

DFM DEVI Process device file mode CALs

DISARM ARM Same entry point as ARM(ARM)

DRC DEVI Process device DIR. Record format CALs

DUMP DUMP Performs a memory DUMP

DVF DEVI Process device verﬂou.I format CALs

EMARECB TMGETP Sub. to chain an ECB to the R-task

EMARECBX TMGETP Sub. to chain an ECB to the R-task in reverse priority
EMBLDECB TMGETP 'Sub. to build an ECB from a standard FPT
EMDATAI TMGETP Sub. to process a data area into an ECB

EMDATAO TMGETP Sub. to remove o data area to users receiving area
EMGETECB TMTYC Sub. to create a new ECB linked fo the current task
EMGETEM TMTYC Sub. to create a new ECB linked to any task
EMGETFPT TMTYC Sub. to get an original FPT address

EMSETR3 CHECK Set R3 to an FPT addr based on FPT addr in an ECB
EMSETR3A CHECK Set R3 to an FPT addr based on FPT addr in R3
EMWAIT TMTYC Sub. fo control wait states

ENQ ENQ Process ENQUEUE CALs

ENQABNM ENQ Abnormal condition sub. for ENQUEUE ECBs
ENQCHK ENQ Sub. to check ENQUEUE ECBs

ERRSEND LOG Routine to put an operator message into the Error Log
ESU ESU Process error summary key-in

EXTM EXTM Process exterminate CAls

FGLBADLM FGL2 Abort primary load module initiation -
FGLMEMCK FGL3 Check availability of unmapped memory regi:n
FGLMSG FGLI Output a message for the primary loader
FGLOKLM FGL2 Complete primary load module initiation

Table D-1. System Overlay Entry Points (cont.)

Entry Point Name

Overlay Name

Description :

FGLI

FGL2

FGL3
FINDBB
FINDDIR
FINDDIRX
FMBLDECB
FMCHECK
FMCKWP
FMCKI1
FMCK2
FMCK3
FMDELETE
FMGETEXT
FMJCL
FMMASTX
FMOPL2AD
FMTCL
FPTBSY
GENCHARS
GETANAME
GETDCBAD
GETDCTX
GETIOID
GETNRT
GETOPT
GETTIME
HOURLOG

IBBPARAM

FGLI!
FGL2
FGL3
FINDBB
FINDBB
FINDBB
GETNRT
CHECK
RWFILE
CHECK
CHECK
CHECK
DELETE
RWEXT
TTJOB
RWFILE
GETNRT
17T
READWR
PRINT
ESU
GETNRT
GETNRT
KEYSCN

GETNRT

SIGNAL
LOG

RWBFIL

Primary program release

Primary program load (initialize tables)

Primary program load (read in root and PUBLIBS)
Get a blocking buffer

FIND (or allot) extent O of a file

FIND (or allot) extent N of a file

Build an 1/O ECB

Process I/O CHECK CALs

Check for write protection violations

Intemal entry to FMCHECK

Intemal entry to FMCHECK

Intemal entry to FMCHECK

DELETE file (extent) entries from permanent directory
Get next extent of an extended file

Clean up RFT and DCT entries at job termination
Determine MASTD index for an area

Get caller's OPLBS2 table address

Cleanup files for a terminating task

Check for an I/O request to o busy FPT

PRINT expanded text for break pages

Subroutine to get account name

Get DCB address from FPT

Get device index from DCB

Scan an I/O designator (FILE, OPLABEL, or DEVICE)
Interal entry to read/write processing

Get options for key=ins, in KEY3 - KEY7 =
Process GETTIME CALs

Log hourly timestomp

Sub fo increment the file position in a blocked file

401

402

Table D-1. System Overlay Entry Points (cont.)

Entry Point Nome Overlay Nome Description -

INIT Perform boot-time initialization of CPR

INITLOG LOG Routine to initialize the emor log file when DT keyin
is done

INSDBUF SDBUF Input side buffering logic

IOEX 10EX Process oll IOEX CALs

IPLMM IPLMM Do memory management initialization at boot time

IPLSYM IPLSYM Initialize symbiont oreas and job number

JMTENQ TTJOB Clean up job level ENQs

JMTERM T1JOB Destroy a job when last task has terminated)

JOBDLTE JOB2 Sub. to delete a job's files in an area

JOBDLTEA JOB2 Sub. to selectively delete a job's files in an area

JOBMSG JoB2 Sub. to output messages to OC device

JOBSCAN JOBI Validate @ JOB cord for symbiont input

Josl JOB! Process a M:JOB CAL, Part 1 |

JOB2 JoB2 Process a M:JOB CAL, Part 2

JSCAN Josl Validate and format a JOB card

JTRAP TRAPS Process job trap CAL

KEY1 KEY1 Decode key=-in keyword, branch to proper overlay
for processing

KEY1A04 KEY1 Process key-err message typeouts

KEY2 KEY2 Process key=ins in KEY2 overloy

KEY3 KEY3 Process key=ins in KEY3 overloy

KEY4 KEY4 Process key=ins in KEY4 overlay

KEYS KEYS Process key=ins in KEY5 overlay

KEY6 KEY6 Process key-ins in KEY‘6 overlay

KEY7 KEY?7 Process key=-ins in KEY7 overlay

KJOB EXTM Process KJOB CALs -

LOAD Entry to JCP loader *

LOADACI MMROOT Sub. to load ACI for a task

LOADMAP MMROOT Sub. to load MAP and ACE for o task

Table D-1. System Overlay Entry Points (cont.)

Entry Point Nome

Overlay Name

Description N

LOG
MEDIA
MEDIACAL
MEDIATSK
MEDRLOOP
MEDRLOPA
MEDR?00

MEDOEXIT

MEDO%0
MEDO%4
MEDO9?
MEDI
MED2
MED600
MED8C0
MED810
MED820
MED830
MEDB840

MEDB880

MMABNM
MMACT
MMCAL
MMCHECK
MMDEACT
MMERASE
MMEXEC

MMFETCH

LOG

MEDIA
SNAM
MEDI

MEDIA
MEDIA
MEDIA

MEDI1

MEDI
MEDI
MED!1
MED!1
MED2<
MED2
MED2
MED2
MED2
MED2
MED2

MED2

MMO5
MMO1
MMO1
MMO04
MMO2
MMO02
MMO4

MMROOT

Move error log records from log stack to ER OP label
Resident copy loop code and DCB's, FPT's

Media CAL processor

Start of media task

Start of main copy loop in resident module

Alt. entry to main loop for 'ALL' copies

Common CAL error outine (do nothing routine)

Entry info MED1 module from resident copy loop if
no errors

Error routine, reading input file

Error routine, writing output file

Error routine, DCB abnormal and reading shared files
Part 1 of media task; request selection and initiation
Part 2 of media task; post processing clean-up

Entry to Part 2 of media task

Convert media ID number to EBCDIC in output line
Acquire a device for media use

Copy preample (printer break page print)

Copy postamble (printer clean-up)

Copy postamble (tape positioning)

Wait routine for device manual, symbiont device
conflict

Sub. to process abnormal ECB exits

Process activate CALs

Process all memory management CALs

Sub. to check memory management ECBs
Process deactivate CALs -
Process erase CAlLs

Memory management executive task

Sub. to fetch one word from any real address

Table D-1. System Overlay Entry Point (cont.)

Entry Point Name Overlay Name Description

MMFMP MMROOT Sub. fo find a memory partition

MMFOV MMO1 Sub. to find the OVLOAD entry for a segment
MMGETP MMO2 Process GETPAGE CALs

MMG JRP MMO3 Subroutine to get job reserved poges

MMGP MMO1 Sub. to get pages for a segment

MMGPPS MMO3 Sub. to get preferred partition pages
MMGSTM MMROOT Sub. to get one page of real memory

MMGTRP MMO3 Sub. to get task reserved pages

MMICHK MMO0O4 Intemal entry into MMCHECK ’
MMLOCK MMOS Process LOCK CALs

MMMOVE MMROOT Move contents of a real page to another real page
MMOMFPP MMROOT Call overlay manager to release pages
MMPOST MMO4 Sub. to post a memory management ECB
MMRDS MMO1 Reset disp skip flag and RLS exclu. use of a SD
MMRECB MM0O4 Sub. fo create a memory management ECB
MMRELP MMO2 Process RELPAGE CALs

MMRELS MMO02 Sub. to clean up mapped task at temination
MMRELSD MMO2 Sub. to free up SD space at termination
MMRFILE MMO5 Sub. to get roll out file space

MMRILW MMROOT Sub. to start roll in of a long wait task
MMRISEG MM0O4 Sub. to request roll-in of a segment

MMRJIRP MMO3 Sub. fo release job reserved pages

MMROLL MMO4 Sub. fo request memory pages from the memory exec
MMROLLIN MMO5 Sub. to roll in o segment

MMROOT MMROOT Context block for memory management
MMROUT MMO5 Sub. to roll out a segment -
MMRP MMO2 Sub. to release pages ina SD b
MMRPPS MMO3 Sub. to release preferred partition pages
MMRPPSI MMO3 Intemal entry into sub. MMRPPS

Table D-1. System Overlay Entry Point (cont.)

Entry Point Nome

Overlay Name

Description

MMRPREF
MMRREAD
MMRRFILE
MMRSTM
MMRTRP
MMRWRITE
MMSAC
MMSDS
MMSEGCK
MMSETVPN
MMSTART
MMSTOP
MMSTORE
MMSWAP
MMSWLK
MMTJOB
MMTPRIM
MMTSEC
MMUNLOCK
MMVVPN
MODIFY
OFFVERBG
ONOFFMSG
OPEN
OPENDCB
OPENX
OSEARCH
OUTSDBUF

PFIL

MMO6
MMO5
MMO05
MMROOT
MMO3
MMO5
MMO1
MMO1
MMO1
MMO1
MMO1
MMO4
MMROOT
MMROOT
MMO3
MMO02
MMO3
MMmO2
MMO6
MMO1
EXTM
TEX]
TEX2
READWR
READWR
OPENX
DBS2
SDBUF

REWIND

Sub. to recover preferred partitions pages

Sub. to read a segment from the roll out file

Sub. to release roll out file space

Sub. to release one page of real memory

Sub. to release task reserved pages

Sub. to write a segment to the roll out file

Sub. to set access codes

Set disp skip flag and wait for exclu. use of a SD
Sub. to verify a segment number

Sub. to generate virtual page number arguments
Sub. to start the memory management executive
Sub. to stop the memory management executive
Sub. fo store one word info any real address
Memory management swap control

Sub. to set write locks

Sub. to do job level cleanup at termination

Sub. to free pages acquired by a primary task
Sub. to release ACI and AST space at termination
Process unlock CALs

Sub. to verify a virtual page number

Same entry as status

Construct OFF message verbage

Write out OFF messages

Process OPEN CALs

Routine to open a DCB

Intemal entry to OPENDCB -
Debug scan routine fo search for machine operations
Output side buffering logic

Process all PFIL CALs

405

SUL - U S UV SRS S S

. Table D=1, System Overlay Entry Point {cont.)

Entry Point Nome Overlay Name Description ' .

PFILDEV REWDEV Position file on tape devices

PINIT PINIT Process INIT CALs

PINTABNM PINIT Sub. fo process abnormal ECB exits

PLO} PLO! Routine processes all PUBLIBS

PMD ABEX " Dispatch BKGD 1o dump itself

POLL SIGNAL Process all POLL CALs

POLLABNM SIGNAL Routine to process POLL ECB abnormal conditions

POLLCHK SIGNAL Routine to process checks on POLL services

PPOST SIGNAL Process POST CALs ’

PRECDEV REWDEV Position records on fape devices

PRECORD " REWIND Process PRECORD CALs

PREFMODE MMO6 Process PREFMODE CALs

PRINT PRINT Process PRINT CALs

PROMPT DEVI Process set PROMPT character CALs

PUBLIB ‘ PLOI Same as PLO1

RBLOCK RWBFIL Sub. to read a block into a blocking buffer

RCCUPF SYM5 Clean up previous job's input files for the COOP

RCCUPJ SYMS Clean up previous job's input files for the COOP,
Part 2

RCEXU SYM3 Process EXU command in the input COOP

RCFEOD SYM3 Process EOD command in the input COOP

RCGETF ' SYM3 Sub. fo get next file for the input COOP

RCJOB - SYM3 Sub. to process a JOB card in the input COOP

RCOOP SYM4 Process input requests fo a symbiont dedicated device

READDIR FINDBB Sub. to read a directory sector

READWR READWR Process Read/Write CALs ‘

RECALARM CRS ALARM Receiver CAL b

RELADBUF RWBFIL Release a Blocking Buffer

RETELING TEL2

REWDEV REWDEV | Process REWIND CALs on devices

N S—

Table D-1. System Overlay Entry Point (cont.)

Entry Point Name

Overlay Name

Description .

REWIND
RLS

RUN
RWBFIL
RWDEV

RWEXTDIR

RWEXTSEQ

RWFILE
SCAN
SCEMPTY
SCFIND
SCHED
SCHEDC
SCMSG
SCNEXT
SCUPDATE
SDBUF
SEARCHAI
SEGLOAD
SETNAME
SETOVR
SETPRI
SETUP
SEX
SIGABNM
SIGCHK
SIGNAL

SIGNALI

REWIND
EXTM
RUN
RWBFIL
RWDEV

RWEXT

RWEXT

RWFILE
KEYSCN
SCNEXT
SCNEXT
SCHED
RUN
SCNEXT
SCNEXT
SCNEXT
SDBUF
ESU
EXTM
SNAM
GETNRT
JOB2
REWIND
SEX
SIGNAL
SIGNAL
SIGNAL

SIGNAL

Process REWIND CALs

Process RELEASE CALs

Process all RUN CALs

Read/Write blocked or compressed RAD files
Process Read/Write to devices

Get next extent while processing a direct access
Read/Write

Get next extent while processing a sequential
Read/Write

Read/Write processor for disk file

Common scan routine for all key=in routines
SCHED sub. to find next empty SCHED file entry
SCHED sub. to find match SCHED file entry
Confrol task entrance to periodic scheduler

CAL processing for periodic scheduling

SCHED sub. for output of messages

SCHED sub. to find next executable candidate
SCHED sub. to change SCHED file

Side buffering processor prolay dummy entry point
Initiate Al file search

Process SEGLOAD CALs

Process SETNAME CALs

Subr. to test/set abort override in I/O CALs
Sub. to set a job's priority in the directory

Sub. to open a DCB and get its assignment
Symbiont executive resident code and context
Routine to process SIGNAL ECB abnormal ¢8nditions
Routine to process checks on signal services
Process SIGNAL CALs

Internal SIGNAL CAL processor entry point

408

Table D-1. System 6nrby Entry Points (cont.)

Entry Point Nome OQerloy Name Description

SIMIKEY SYM3 Simulate 'SCRYDD,I' key=in for symbionts

SJOB SJbB Process SJOB CALs

SMBACKUP SYM5 Perform 'R' and 'B' symbiont key=-in options functions

SMBCDHEX SYM4 Convert number from EBCDIC to hex

SMBSYF SYM3 Process a 'busy file' error return in symbiont processor

SMCLOSF SYmM2 Sub. to close a symbiont file

SMDEVERR SYM2 Sub. to process unrecoverable /O errors in symbionts

SMDFIS JOB2 Sub. to delete a job's files in the 'IS' area

SMDFOS JOB2 Sub. to delete a job's files in the 'OS' area’

SMFEOD SYM2 Sub. to handle EOD in output symbiont

SMFINDF SYM3 Sub. fo check for a busy file

SMGETF SYM2 Sub. to get next file for SYMB/COOP to read

SMGETOF SYM2 Sub. o get next file for output symbiont to process

SMGETQF SYM2 Sub. to find a file associated with 'SYYNDD, Q"
key-in

SMHEXBCD SYM4 Convert number from hex o EBCDIC

SMINIT SYM3 Sub. to initialize context for o symbiont device

SMJOBFIN SYM3 Sub. to process JOB/ FIN in input symbiont

SMWMSG SYM2 Format and output symbiont messoges to OC

SMXKEY SYM2 Sub. to process the 'SYYNDD, X' key=in

SMXTND SYMS5 Allot a symbiont extension file

SNAM SNAM Process setname CAls

SNAP CRS SNAP key=in processing

START SIGNAL Process START CALs

STATUS EXIM Process STATUS CALs

STDLB STDLB Process STDLB CALs

STIMABNM SIGNAL Routine to process STIMER ECB abnomal con;iﬁons

STIMER SIGNAL Process STIMER CALs

STLBCHK STDLB Routine to process checks on STDLB services

STOP SIGNAL Process STOP CALs

Table D-1. System Qverlay Entry Points (cont.)

Entry Point Name

Overlay Name

Description

STPIOI
STPIO2
STRTION
STRTIO2
SYMCUP
SYMI1
TAPE
TDLOAD
TELCNTRL
TELERROR
TELEXEC
TELREAD
TEL3

TERM

TEST
TESTBUF
TESTLOOP
TESTWT4
TEX
TEXBUFFR
TEXEXEC
TEXIT

Tl
TICRASH
TIME
TIO2ABEN
TIO3DBUG
TIRFT

TISAST

IOEX
IOEX
IOEX
IOEX
SYM2
SYMI
TAPE
MMROOT
TEL2
TELI
TEL
TEL2
TEL3
TERM
WAIT
GETNRT
TEX2
GETNRT
TEX
TEX1
TEX2
TRAPS
TIO1
TIO2
WAIT
TiOo2
TIO3
TIO3

Ti02

Process STOPIC /STARTIO CALs

Same entry as STPIO1(IO EX)

Same entry as STPIO1(IOEX)

Some entry as STPIO1(IOEX)

Sub. to do symbiont device clean-up

Symbiont executive

Tape handler prolay dummy entry point

Sub. to do actual loading of map and ACI

Entry for TEL control/break ,
Common TEL error processing

Execution of a TEL command

Reads a TEL command

Initialize TEL work area

Process TERM CALs

Process TEST CALs

Sub. to test the validity of caller's Read/Write buffer
Initiates TEX line testing

Routine to test for delete=on=-post 1/O request
Terminal executive context

Gets BLK. BUF. for TEX workspace

Initiates TJE/TEX processing

Process trap exit CALs

Secondary task initiation Part 1

Secondary task initiation crash routine

Process TIME CALs

Sub. for abnomal end conditions during sec# task INIT
Routine sets up DEBUG controls before task entry
Sub. to initialize LIRFT table

Sub. to sort and store an AST entry

410

Table D-1. -System Overloy Entry Points (cont.)

Entry Point Nome Overlay Nome Description .

TISCHN TIO3 Sub. to dechain chained temp space

TISD TIO3 Sub. to build a segment descriptor

TISDECHN TIO3 Sub. to chain a segment descriptor

TISEARCH TIO3 Sub. to search for shared segments

TISREAD TiO2 Sub. to perform all file reads for task initiation

TIS15 TiIO2 Secondary task initiation Part 2

TIS21 TI02 Entry point from TIO1 for tasks with no segments

TMABORT TERM Sub. to abort a foreground task

TMABRTT TERM Sub. to abort a load module

TMCKADP TMTYC Sub. to check a range of addresses

TMCKADR TMTYC Sub. to check an address and convert to real if virtual

TMDCBERR EXTM Sub. to process DCB errors

TMDELAET ENQ Sub. to free an AET and the EDT if idle

TMDEQ ENQ Sub. to dequeue an item

TMENQ ENQ Sub. fo enqueue an item

TMFINDJ TMGETP Sub. to get job ID by JOBNAME

TMFINDT TMGETP Sub. fo get task ID by task name

TMGETIDS TMGETP Sub. fo get job and task identification

TMGETJID TMGETP Sub. to get job ID from P11 and P12 in FPT

TMGETP TMGETP Sub. to fetch priority from an FPT

TMGETTID TMGETP Sub. to get task ID from P3 and P4 in FPT

TMGRA TMTYC Get the real address and protection for a virtual add
address

TMIM TERM Subroutine to terminate or abort one load module

TMSETE EXT™M Sub. to set R8 and R10 in RTS if CAL processing error

TMSETPSD CHECK Sub. to alter PSD in RTS

TMSETREG CHECK Sub. fo alfer R8 and R10 in RTS £

TMSTOP SIGNAL Intemal entry into STOP CAL processor

TMTERM TERM Sub. to teminate a foreground task

TMTRMJ TERM Subroutine to terminate all load modules in o job

Table D=1, System Overlay Entry Points {cont.) ’

Entry Point Name Overlay Nome Description K
TMTRMT TERM Sub. to teminate uv load module

TMTYC TMTYC Sub. to SFT FPT type completion word parameter
TMTYCB TMTYC Sub. to set FPT type completion word busy

TMTYCS TMTYC Sbroutine fo set FPT type completion in stand, FPT
TMTYC15 TMTYC Sub. to set TYC in R15 into FPT TYC word
TMTYCI15S TMTYC Sub. to set TYC in R15 into TYC word in stand, FPT
TMVADR TMTYC Sub. to check a virtual address (no conversion)
TMWALL WAIT Sub. to do wait all on SECBS

TRAPCRSH TRAPS Trap crash entry

TRAPS TRAPS Trap handler entry

TRAPS TRAPS Intemal entry for trap handling

TRAP70 TRAPS Process TRAP CAL

TRTN TRAPS Process TRAP return CAL

TRTY TRAPS Process TRAP retry CALs

TRUNCATE DELETE Process TRUNCATE CALs

1T 17 Sub. to do secondary task terminations

TIDEBUG DBsl1 Task termination cleanup for DEBUG

TTJOB TTJOB Sub. to clean job contrls for task termination
TTLN TT Subroutine to determine if this is a TJE job

TTPRIM 1T Sub. to do misc. task cleanup for primary teminations
TYPE PRINT Process all TYPE CALs

USEARCH DBS2 Debug scan routine to search for user name symbols
VERACCNT TEX1 Verify account format

WAIT WAIT Process WAIT CALs

WAITALL WAIT Process WAITALL CALs

WAITANY WAIT Process WAITANY CALs -
WBLOCK RWBFIL Sub. to write out a blocking buffer

WCGETJOB SYM3 Sub. to define next job file for output COOP
WCOOP SYm4 Process output requests to a symbiont dedicated device

Fs

411

412

Toble D-1. System Overloy Entry Points (cont.)

Entry Point Nome Overlay Name Description

WCSTSYM SYM3 Sub. to free file space for output COOP

WEOF REWIND Process WEOF CALs

WEOFDEV REWDEV Process WEOF fo devices

WLBLOCK RWBFIL Sub. to write the current block of a RAD file
FINDBB Sub. to write o directory sector

WRITDIR

Y}

{ Seader Comment Form

L —

We would sppreciate your commaents and suggestions for improving this publication

Publication No.

Rev. Letter

Title

Current Date

D Learning

How did you use this publication?

D installing

E] Sales

is the material presented effectively?

D Fully Covered D Well Hiustrated D Well organized D Clear

E] Good

D Poor

[Reference [maintaining [J operating
What is your overall rating of this publication? What is your occupation?
E] Very Good D Fair D Very Poor

Your other comments may be entered here. Please be specific and give page, column, and line number references where
applicable. To report errors, please use the Xerox Software Improvement or Difficuity Report (1188) instead of this form.

p—

Your name & Return Address

Thank You For Your Interest. (fold & fasten as shown on back, no postage needed if mailed in US.A.)

PLEASE FOLD AND TAPE —
NOTE: U. S. Postal Service will not deliver stapled forms

- e e Em ee e E e e e e e E R W e e e e e e em e e em e @ e e Eh W e G em e e em e me S e e wm e o em e e e

|

First Class
Permit No. 59153
Los Angeles, CA

BUSINESS REPLY MAIL
No postage stamp necessary if mailed in the United States

Postage will be paid by

Honeywell Information Systems
5250 W. Century Boulevard
Los Angeles, CA 90045

Attn: Programming Publications

- e wr wm e Wm m e e wn em em e e e e Ee e S E e e e G e W e e e ee em Em e em e e e e e @e e e o = .

