
Xerox Control Program-Five (CP-V)

Sigma 6/7 /9 Computers

Time-Sharing

Reference Manual

90 09 07E

June 1973

Price: $5. 75

\.

REVISION

This publication documents the first release (AOO version) of Control Program-Five (CP-V). Because CP-V is an
outgrowth of UTS, the publication is a revision of the Xerox Universal Time-Sharing System (UTS)/TS Reference
Manual, Publication Number 90 09 07D (dated November 1972). A change in text from that of the previous man­
ual is indicated by a vertical line in the margin of the page.

RELATED PUBLICATIONS

Xerox Sigma 6 Computer/Reference Manual
Xerox Sigma 7 Computer/Reference Manual
Xerox Sigma 9 Computer/Reference Manual
Xerox Control Program-Five (CP-V)/OPS Reference Manual
Xerox Control Program-Five (CP-V)/SM Reference Manual
Xerox Control Program-Five (CP-V)/BP Reference Manual
Xerox Control Program-Five (CP-V)/TS User's Guide
Xerox Control Program-Five (CP-V)/RP Reference Manual
Xerox EASY /LN, OPS Reference Manua I
Xerox BASIC/LN, OPS Reference Manual
Xerox FLAG/Reference Manual
Xerox Meta-Symbol/ LN, OPS Reference Manua I
Xerox Extended FORTRAN IV/LN Reference Manual
Xerox Extended FORTRAN IV/OPS Reference Manual
Xerox FORTRAN Debug Package (FDP)/Reference Manual
Xerox ANS COBOL/LN Reference Manual
Xerox ANS COBOL/OPS Reference Manual
Xerox APL/LN, OPS Reference Manual
Xerox Manage/Reference Manual
Xerox Sort-Merge/Reference Manual
Xerox Functional Mathematical Programming System (FMPS)/Reference Manual
Xerox SL- I/Reference Manual
CIRC-AC/Reference Manual and User's Guide
CIRC-DC/Reference Manual and User's Guide
CIRC-TR/Reference Manual and User's Guide
Xerox 1400 Series Simulator/Reference Manual

Publication No.

90 17 13
90 09 50
90 17 33
90 16 75
90 16 74
90 17 64
90 16 92
90 30 26
90 18 73
90 15 46
90 16 54
90 09 52
90 09 56
90 1143
90 16 77
90 15 00
90 15 01
90 19 31
90 16 10
901199
90 16 09
90 16 76
90 16 98
90 16 97
90 17 86
90 15 02

Manual Content Codes: BP - batch processing, LN - language, OPS - operations, RP - remote processing
RT - real time, SM - system management, TS - time-sharing, UT - utilities.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features
may depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their Xerox sales representative
for detai Is.

ii

CONTENTS

PREFACE vii

COMMAND.SYNTAX NOTATION

GLOSSARY

viii

1. INTRODUCTION

Definition of CP-V -----------­
Time-Sharing --------------

Terminal Executive Language ______ _
EASY _____________ _

Edit ----,------------
Xerox Extended FORTRAN IV ______ _

Xerox ANS COBOL ----------
Meta-Symbol ____________ _

BASIC-·-----·--
APL ------·-·--··
FLAG _____________ _

FORTRAN Debug Package _______ _
Delta
Peripheral Conversion Language _____ _

Link---------------­
BATCH-------------
Manage (Program Product) _______ _
Simulation Language (Program Product) __ _
CJRC (Program Product)---------

Batch Processing------------­
Remote Processing ------------

2. TERMINAL OPERATIONS

Introduction --------------
Initiating and Ending On-Line Sessions ___ _
Typing Lines--'--------------

Prompt Characters-----~---'----­
Echoing Characters---------­
Erasing Characters ----------­
Erasing the Current Input Line------
Cancel I ing all Input and Output ____ _
Entering Blank Lines---------­
Retyping the Current Line-------­
Entering Multi line Records-------­
Terminating Lines----------­
Typing Ahead-----------­
Pagination and Lineation -------­
Simulating Tab Stops---------­
Simulating Tab Characters-------­
Inserting Spaces------------
Setting the Tab Relative Mode _____ _
Restricting Input to Upper Case------
Interpreting Upper Case as Lower Case __ _
Exiting the Lower Case Interpret Mode __ _

Typing Commands-----------­
Detecting and Reporting Errors-------
Interrupting CP-V ___________ _

ix

l
l
l
l
2
2
2
3
3
3
3
4
4
4
4
4
4
5
5
5

6

6
6
8
8
8
8
9
9
9
9
9
9
9
9
9

10
10
10
10
10
10
10
11
11

3.

4.

Paper Tape Input _____________ 11
Half Duplex Paper Tape Reading Mode ___ 12

2741 and Teletype Differences 12
Line State 12
Log-On 12
BREAK and ESC 12
Uppercase/Lowercase 12
COC Routine 12
Summary of 2741 and Teletype Differences __ 14

TERMINAL EXECUTIVE LANGUAGE 15

Introduction 15
Major Operations 15

Composing Program and Data Files 16
Assembling or Compiling Programs 16
Linking Object Programs 18
Loading Programs and Initiating Execution __ 20
Initiating Debugging Operations 21
Managing and Backing Up Files 22
Submitting Batch Jobs 22
Ca II i ng Processors 23
Interrupting, Resuming, and Terminating

Execution 23
Minor Operations 24

Logging Off 24
Changing the Log-On Password 24
Checkpointing On-Line Sessions 24
Assigning 1/0 Devices and DCB Parameters __ 24
Modifying Logical Device Definitions 26
Determining On-Line User Status 28
Listing a File Directory 28
Lis ting System Load Parameters 30
Setting Simulated Tab Stops 30
Displaying Simulated Tab Stop Settings 30
Obtaining Terminal Status 31
Changing Terminal Type 31
Changing Terminal Platen Size 31
Displaying Terminal Platen Size 31
Sending Messages to the Operator 32
Printing or Punching Output 32

Error Messages 32
TEL Error Messages 32
Batch Error Messages 32

TEL Command Summary 32
Batch Limitations 32

LANGUAGE PROCESSORS 40

Introduction-------------- 40

~~~·I ~ 
FORTRAN IV 42 
ANS COBOL 45 
APL 45 
CP-V BASIC 46 
CP-V EASY 47 

iii 



5. PERIPHERAL CONVERSION LANGUAGE -48 CM 76 
SE 76 

Introduction 48 SS 76 
Conventions 48 ST 76 

Syntax 48 Intrarecord Editing Commands 76 
PCL Identification Codes 48 s 77 
File and Reel Identification 49 D 77 
Capabilities 50 p 77 
BREAK Function 50 F 78 

File COPY Command 50 0 78 
COPY Command Format (Generalized) 50 E 78 
COPY Command Format (Specific) 51 Rand L 78 
Data Encoding 52 L 79 

Account COPY Command 55 R 79 
Control File COPY Command 58 TS 79 
Other Commands 59 TY 79 

DELETE 59 JU 79 
DELETEALL 59 NO 79 
LIST 60 RF 80 
REVIEW 62 Messages 80 
SPF 63 Edit Command Summary 80 
SPE 63 
WEOF 63 
REW 63 
REMOVE 63 7. DELTA 88 
TABS 63 

Termination of PCL 63 Introduction 88 
Error Messages 63 Calling Delta 88 
PCL Command Summary 66 Exiting Delta 88 

Prerequisites 88 
Saving Program Modifications 89 

6. EDIT 68 Conventions 89 
Command Delimiters 89 

Introduction 68 Correcting Typing Errors 90 
Calling Edit 68 Expressions 90 
Record Formats 68 Constants 90 
Multiline Records 68 Delta Commands 90 
BREAK Function 69 Expression Evaluation 90 

Edit Commands 69 Memory Cell Opening and Display 91 
Command Structure 69 Memory Modification 92 
Fi le Commands 69 Symbol Table Control 93 

EDIT 70 Execution Control 94 
BUILD 70 Breakpoints 95 
COPY 70 Memory Search and Modification 99 
DELETE 70 Memory Clearing 100 
MERGE 71 Display Modes 100 
END 71 Printer Output 100 
CR 71 Executive Delta 101 
TA 71 Writing Programs with Delta 101 
BP 72 Errors and Error Messages 101 

Record Editing Commands 72 Program Exits 102 
IN 73 Delta Command Summary 102 
IS 73 
DE 73 
TY 73 
TC 74 8. LINK PROCESSOR 107 
TS 74 
MD 74 Introduction 107 
MK 75 Load Module Structure 107 
FD 75 Program 107 
FT 75 Global Symbols 108 
FS 75 lnterna I Symbo Is 108 
RN 76 Symbol Tables 108 

iv 



Conventions 109 c. CONVERTING FROM BTM TO CP-V 139 
Link Commands 109 
Error Messages 109 Introduction 139 
Link Command Summary 109 Conversion Procedures 139 

Comparison of CP-V and BTM Services 139 
Teletype Operations 139 

9. MONITOR SERVICES TO USER PROGRAMS 112 Terminal Executive Language (TEL) versus 
BTM EXEC 140 

Introduction 112 Processor Comparisons 145 
On-Line CP-V Service Calls 112 CP-V BASIC and BPMIBTM BASIC 147 

Set Prompt Character _______ _ 112 C P-V Counterparts to FERRET Commands __ 148 
M:PC 112 Miscellaneous Information 148 

Change Terminal Type 112 
M:CT 112 

Obtain Terminal Status 114 
M:TS 114 

Change Activation Characters 114 FIGURES 
M:CAC 114 

On- Line and Batch Differences 114 1. Madel 33 Teletype Terminal Keyboard 7 
Exit Return (M:EXIT) ___________ . --·---- ---~ 

__114 
2 . FORTRAN and Assembly-Language 

Error Return (M:ERR) 115 Programming __ 15 
Abort Return (M:XXX) 115 
Type a Message (M: TYPE) ____________ 115 3. A Multiline Record 69 
Request a Key-In (M:KEYIN) 115 
Connect to Interrupt or BREAK 

Key (M:INT) 115 

TABLES 

10. COMMUNICATION SERVICES TO USER 
1. On- Line User Processors 

PROGRAMS 116 2. Summary of Differences Between 2741 and 
Teletype Services 14 

Introduction 116 
Write Operations 116 

3. DCB Assignment Codes - SET Command ___ 26 

Read Operations 116 4. Device Options - SET Command 27 
Error and Abnormal Control 117 
Break Control 118 

5. File Options - SET Command 27 

Monitor Escape 118 6. LDEV Command Options 29 
SET and Device DCB CALs 118 
Page Control and Headings 118 7. TEL Error Messages 32 

Tab Simulation 120 8. Batch Service Error Messages 34 
Transparent Mode 120 

9. TEL Command Summary 35 

INDEX 149 10. Meta-Symbol Assembly Options 41 

11. FORTRAN IV Compilation Options 43 

12. ANS COBOL Compilation Options 46 

APPENDIXES 13. PCL Identification Codes 49 

14. Data Codes 52 
A. XEROX STANDARD SYMBOLS, CODES, 

15. Data Formats 52 
AND CORRESPONDENCES 121 

16. Mode Codes - COPY Command 52 
Xerox Standard Symbols and Codes 121 
Xerox Standard Character Sets 121 

17. Record Sequencing Options - COPY 

Control Codes 121 
Command 54 

Spec ia I Code Properties 121 18. Account Options - COPY Command 54 

B. MONITOR ERROR MESSAGES 130 
19. ANS Tape Options - COPY Command 54 

20. Valid Option Combinations 57 
Introduction 130 

21. PC L Error Codes 64 
CP-V Labeled Tape Error Handling 137 
ANS Labeled Tape Error Handling 138 22. PCL Command Summary 66 

v 



23. Edit Messages 80 A-4. ANSCII Control-Character Translation 

24. Edit Command Summary 83 
Table 128 

25. Format Codes 89 
A-5. Substitutions for Nonexistent Characters 

on 27 41 Keyboards 129 
26. Spec ia I Symbo Is 90 

B-1. Abnormal Codes - Insufficient or 
27. Delta Command Summary 102 Conflicting Information 130 

28. Link Error Messages 109 B-2. Abnormal Codes - Device Failure or 

29. Link Command Summary 111 
End-of-Data 132 

30. Terminal Type Numbers 112 
B-3. Error Codes - Insufficient or Conflicting 

Information 132 
31. MODE Terminal Attributes 113 

B-4. Error Codes - Device Failure or Erid-
32. MODE2 Terminal Attributes 113 of-Data 134 

33. MODE3 Terminal Attributes 113 B-5. Other Monitor Error Codes 135 

34. M:DEVICE Parameters Acknowledged B-6. ANS Labeled Tape Abnormal Codes 138 
by COC Routines 119 

C-1. Additiona I or Different Teletype Characters 
A-1. CP-V 8-Bit Computer Codes for CP-V 140 

(EBCDIC) 122 
C-2. TEL Command Summary and Equivalent 

A-2. CP-V 7-Bit Communication Codes BTM Command(s) 141 
(ANSCII) 123 

C-3. FERRET Commands and Corresponding 
A-3. CP-V Symbol-Code Correspondences 124 CP-V Commands 148 

vi 



PREFACE 

This manual is the principal source of information for the time-sharing features of CP-V. The purpose of the manual 
is to define the rules for using the Terminal Executive Language and other on-line processors. A closely related 
manual, the CP-V Time-Sharing User's Guide, 90 16 92, describes how to use the various time-sharing features. It 
presents an introductory subset of the features in a format that allows the user to learn the material by using the fea­
tures at a terminal as he reads through the document. 

Manuals describing other features of CP-V are outlined below. 

• The CP-V Batch Processing Reference Manua I, 90 17 64, is the pri nci pa I source of reference information 
for the batch processing features of CP-V (i.e., job control commands, system procedures, 1/0 procedures, 
program loading and execution, debugging aids, and service processors). 

• The CP-V Remote Processing Reference Manual, 90 30 26, is the principal source of information about the 
remote processing features of CP-V. All information about remote processing for a 11 computer personne I 
(remote and local users, system managers, r·emote site operators, and central site operators) is included in 
the manual. 

• The CP-V System Management Reference Manual, 90 16 74, is the principal source of reference informa­
tion for the system management features of CP-V. It defines the rnles for selecting hardware for a CP-V 
system, generating a CP-V system, authorizing users, mai ntai ni ng user accounting records, monitoring 
system performance, and other related functions. 

• The CP-V Operations Reference Manual, 90 16 75, is the principal source of reference information for 
CP-V computer operators. It defines the rules for operator communication (i.e., key-ins and messages), 
system start-up and initialization, job and system control, peripheral device handling, recovery and file 
preservation. 

Information for the language and application processors that operate under CP-V is also described in separate man­
uals. These manuals are listed on the Related Publications page of this manual. 

vii 



viii 

COMMAND SYNTAX NOTATION 

Notation conventions used in command specifications and examples throughout this manual are listed below. 

Notation 

I owercase I etters 

CAPITAL LETTERS 

[ ] 

{ } 

Numbers and 
special characters 

Subscripts 

Superscripts 

Underscore 

Description 

Lowercase letters identify an element that must be replaced with a 
user-selected value. 

CRndd could be entered as CRA03. 

Capital ietters must be entered as shown for input, and will be printed as 
shown in output. 

DPndd means "enter DP followed by the values for ndd". 

An element inside brackets is optional. Several elements placed one under 
the other inside a pair of brackets means that the user may select any one or 
none of those elements. 

(KEYM] means the term "KEYM" may be entered. 

Elements placed one under the other inside a pair of braces identify a re­
quired choice. 

{ ~} means that either the letter A or the value of id must be entered. 

The horizontal ellipsis indicates that a previous bracketed element may be 
repeated, or that elements have been omitted. 

name&nameJ... means that one or more name values may be 
entered, with a comma inserted between each name value. 

The vertical ellipsis indicates that commands or instructions have been 
omitted. 

MASK2 DATA,2 X'lEF' 

BYTE DATA,3 BA(L(59)) 

means that there are one or more state­
ments omitted between the two DATA 
directives. 

Numbers that appear on the line (i.e., not subscripts), special symbols, and 
punctuation marks other than dotted lines, brackets, braces, and underlines 
appear as shown in output messages and must be entered as shown when input. 

(value) means that the proper value must be entered enclosed in 
parentheses; e.g., (234). 

Subscripts indicate a first, second, etc. , representation of a parameter that 
has a different value for each occurrence. 

sysid1 1 sysid2,sysid3 means that three successive values for sysid 
should be entered, separated by commas. 

Superscripts indicate shift keys to be used in combination with terminal keys. 
c is control shift, and s is case shift. 

L cs means press the control and case shift (CONTROL and SHIFT) and 
the L key. 

All terminal output is underscored; terminal input is not. 

!RUN means that the exclamation point was sent to the terminal, but 
RUN was typed by the terminal user. 

These symbols indicate that an ESC (@), carriage return (@)), or line feed 
(0) character has been sent. 

IEDIT@l means that, after typing EDIT, a carriage return character 
has been sent. 



GLOSSARY 

address resolution code a two-bit code that specifies 
whether an associated address is to be used as a byte 
address or is to be converted (by truncating low order 
bits) to a halfword, word, or doubleword address. 

batch job a job that is submitted to the batch job stream 
through the central site card reader, through an on­
line terminal (using the BATCH command), or through 
a remote batch terminal. 

binary input input from the device to which the BI {bin-
ary input) operational label is assigned. 

conflicting reference a reference to a symbolic name 
that has more than one definition. 

cC'lntro I command any contra I message other than a key-in. 
A control command may be input via any device to 
which the system command input function has been 
assigned (normally a card reader). 

control key-in a control message of the type that must 
be input from the operator's console. 

control message any message received by the Monitor 
that is either a control command or a control key-in. 

cooperative a Monitor routine that transfers information 
between a user's program and disk storage. 

data control block (DCB) a table in the user program 
that contains the information used by the Monitor in 
the performance of an 1/0 operation. 

external reference a reference lo a declared symbolic 
name that is not defined within the object module in 
which the reference occurs. An external reference 
can be satisfied only if the referenced name is defined 
by an external load item in another object module. 

file extension a convention that is used when certain 
system output DCBs are opened. Use of this conven­
tion causes the file (RAD, tape, disk pack, etc.) 
connected to the DCB to be positioned to a point just 
following the last record in the file. Thus, when 
additional output is produced through the DCB, it is 
added to the previous contents of the file, thereby 
extending the file. 

function parameter table {FPT) a table through which 
a user's program communicates with a Monitor function 
(such as an 1/0 function). 

ghost job a job that is initiated by the Monitor, the 
operator, or a program that is neither a batch nor an 
on-line program. 

global symbol a symbolic name that is defined in one 
program module and referenced in another. 

GO file a temporary disk storage file created, for ex-
ample, from relocatable object modules formed by a 
processor. Such modules may be retrieved by use of a 
LOAD or RUN control command in batch mode or a 
dollar sign in on-line mode. 

internal symbol a symbolic name that is defined and 
referenced in the same program module. 

job information table (JIT) a table associated with each 
active job. The table contains accounting, memory 
mapping, swapping, terminal DCB (M:UC), and tempo­
rary Monitor information. 

job step a subunit of job processing such as compilation, 
assembly, loading, or execution. Information from 
certain commands (JOB, LIMIT, and ASSIGN) and all 
temporary files created during a job step ore carried 
from one job step to the next but the steps are other­
wise independent. 

key a data item consistingofl-3lcharactersthatuniquely 
identifies a record. 

key-in information entered by the operator via a 
keyboard. 

linking loader a program that is capable of linking and 
loading one or more relocatable object modules and 
load modules. 

load map a listing of loader output showing the location 
or value of all global symbols entering into the load. 
Also shown are symbols that are not defined or have 
multiple definitions. 

load module (LM) an executable program formed by the 
linking loader, using relocatable object modules (ROMs) 
and/or load modules (LMs) as source information. 

logical device a cooperative file which may be attached 
to any symbiont device that the user specifies. 

monitor a program that supervises the processing, loading, 
and execution of other programs. 

object language the standard binary language in which 
the output of a processor is expressed. 

object module the series of records containing the load 
information pertaining to a single program or subpro­
gram (i.e., from the beginning to the end). Object 
modules serve as input to the loader. 

ix 



on-line job a job that is submitted through an on-line 
terminal by a command other than the BATCH command. 

operational label a symbolic name used to identify a 
logical system device. 

option an elective operand in a control command, pro-
cedure call, or on-line command, or an elective pa­
rameter in a Function Parameter Table. 

parameter presence indicator a bit in word l of a Func-
tion Parameter Table that indi cotes whether a particular 
parameter word is present in the remainderofthe table. 

physical device a peripheral device that is referred to 
by a name specifying the device type, 1/0 channel, 
and device number (also see "logical device"). 

program product a com pi I er or a pp Ii cation program that 
has been or wi II be rel eased by Xerox. A program 
product is not required by all Sigma users and is there­
fore made available by Xerox on an optional basis. 
Program products are provided only to those users who 
execute a License Agreement for each applicable Sigma 
installation. 

prompt character a character that is sent to the terminal 
by an on-line language processor to indicate that the 
next line of input may be entered. 

public library a set of library routines declared at SYS-
GEN to be public (i.e., to be used in common by all 
concurrent users). 

reentrant an attribute of a program that al lows the pro-
gram to be shared by several users concurrently. Shared 
processors in CP-V are map reentrant, That is, each 
instance of execution of a single copy of the program's 
instructions has a separate copy of the execution data. 

relative allocation al location of virtual memory to a 
user program starting with the first unallocated page 
available. 

relocatable object module (ROM) a program, or sub-
program, generated by a processor such as Meta-Symbol 
or FORTRAN (in Xerox Sigma object language). 

resident program a program that has been loaded into 
a specific area of core memory. 

secondary storage any rapid-access storage medium other 
than core memory (e.g., RAD storage). 

x 

shared processor a program (e.g., FORTRAN) that is 
shared by al I concurrent users. Shared processors must 
be established by SYSGEN. 

source language a language used to prepare a source 
program suitable for processing by an assembler or 
compiler. 

special shared processor a shared processor that may be 
in core memory concurrently with the user's program 
(e.g., Delta or TEL). 

specific allocation allocation of a specific page of un-
allocated virtual memory to a user program. 

static core module a program module that is in core 
memory but i5 not being executed. 

symbiont a Monitor routine that transfers information 
between disk storage and a peripheral device indepen­
dent of and concurrent with job processing. 

symbolic input input from the device to which the SI 
(symbolic input) operational label is assigned. 

symbolic name an identifier that is associated with some 
particular source program statement or item so that 
symbolic references may be made to it even though its 
value may be subject to redefinition. 

system library a group of standard routines in object-
language format, any of which may be incorporated in 
a program being formed. 

system register a register used by the Monitor to com-
municate information that may be of use to the user 
program (e.g., error codes). System registers SRl, 
SR2, SR3, and SR4 are current general registers 8, 9, 
10, and 11, respective! y. 

task control block (TCB) a table of program control in-
formation built by the loader when a load module is 
formed. The TCB is part of the load module and 
contains the data required to allow reentry of library 
routines during program execution or to allow asyn­
chronous entry to the program in cases of traps, breaks, 
etc. The TCB is program associated and not task 
associated. 

unsatisfied reference a symbolic name that has been 
referenced but not defined. 



1. INTRODUCTION 

DEFINITION OF CP-V 

Control Program-Five (CP-V) is a comprehensive operating 
system designed for use with Sigma 6/7 /9 computers and a 
variety of peripheral devices. The current release of CP-V 
provides for three concurrent modes of operation: 

• 
• 
• 

Time-sharing 

Batch processing 

Remote processing 

Two additional modes (real-time and transaction processing) 
will be incorporated into the system in the near future. 

TIME-SHARING 

CP-V provides a time-shared computing service that allows 
up to 128 on-line terminals to be connected to the central 
computer at one time. There are three general categories 
of time-sharing service provided to on-line users. They are 
on-I ine file management, on-I ine program execution and de­
bugging, and on-I ine entry of jobs into the batch job stream. 
The processors that provide these services are I isted in Table 1 
and are discussed in more detai I in the fol lowing paragraphs. 

TERMINAL EXECUTIVE LANGUAGE 

The Terminal Executive Language (TEL), is the principal 
terminal language for CP-V. Most activities associated 
with FORTRAN and assembly language programming can be 
carried out directly in TEL through requests that take the 

Table 1. On-Line User Processors 

Processor Function 

TEL Executive language control of all terminal 
activities. 

EASY Creation, manipulation, and execution of 
FORTRAN and BASIC programs and data 
files. 

EDIT Composition and modification of programs 
and other bodies of text. 

FORT4 Compi la ti on of Xerox Extended FORTRAN IV 
programs. 

COBOL Compilation of ANS COBOL programs. 

META Assembly of Meta-Symbol programs. 

BASIC Compilation and execution of programs or 
di re ct statements written in an extended 
BASIC language. 

Table 1. On-Line User Processors (cont.) 

Processor 

APL 

FLAG 

FDP 

DELTA 

PCL 

LINK 

BATCH 

Ma nag et 

CIR Ct 

Function 

Interpretation and execution of programs 
written in the APL language. 

Compi lotion of fast "load-and-go" 
FORTRAN programs . 

Debugging of Xerox Extended FORTRAN IV 
programs. 

Debugging of programs at the machine 
language level. 

Tran sf er (and conversion) of data between 
peri phera I devices. 

Linkage of programs for execution. 

Submission of fi le(s) to the batch job stream. 

File retrieval, updating, and reporting. 

Compi lotion of programs written in a lan­
guage designed specifically for digital or 
hybrid simulation. 

Analysis of electronic circuits. 

t 
Program product (see glossary). 

form of single-line commands and declarations. These ac­
tivities include such major operations as composing programs 
and other bodies of text, compilingandassemblingprograms, 
linking object programs, initiating execution, and debug­
ging programs. They also include such minor operations as 
checkpointing on-line sessions, determining program status, 
and setting simulated tab stops. (Reference: Chapter 3.) 

EASY 

EASY is a shared processor that enables the user to create, 
edit, execute, save, and delete program files written in 
BASIC or FORTRAN. EASY also al lows the user to create 
and manipulate EBCDIC data files. Although intended pri­
marily for Teletype© operations, EASY can be used with 
any type of on-line terminal supported by the system. 

EDIT 

The Edit processor is a I ine-at-a-time context editor designed 
for on-line creation, modification, and handling of programs 
and other bodies of information. Al I Edit data is stored on 

©Registered trademark of the Teletype Corporation. 

Introduction 



RAD or disk pack storage in a keyed file structure of 
sequence-numbered variable length records. This structure 
permits Edit to directly access each line or record of data. 

Edit functions are controlled through single-line commands 
supplied by the user. The command language provides for 
insertion, deletion, reordering, and replacement of lines or 
groups of lines of text. It also provides for selective print­
ing, renumbering records, and context editing operations of 
matching, moving, and substituting line-by-line within 
a specified range of text lines. File maintenance commands 
are a I so provided to allow the user to bui Id, copy, and de-
1 ete whole files of text lines. {Reference: Chapter 6.) 

XEROX EXTENDED FORTRAN IV 

The Xerox Extended FORTRAN IV language processor {FORT4) 
consists of a comprehensive algebraic programming language, 
a compiler, and a large library of subroutines. The language 
is a superset of most available FORTRAN languages, contain­
ing many extended language features to facilitate program 
development and checkout. The compiler is designed to 
produce very efficient object code, thus reducing execution 
time and core requirements, and to generate extensive diag­
nostics to reduce debugging time. The library contains over 
180 subprograms and is available in a reentrant version. 
Both the compiler and runtime library for object programs 
are reentrant programs that are shared among a II concurrent 
users to improve the uti Ii zation of the cri ti ca I core resources. 

The principal features of Xerox Extended FORTRAN IV are 
as follows: 

Extended language features to reduce programming 
effort and increase range of applications. 

Extensive meaningful diagnostics to minimize debug­
ging time. 

In-line assembly language code to reduce execution 
time of critical parts of the program. 

Overlay organization for minimal core memory 
uti Ii zation. 

Campi ler produced reentrant programs. 

Full use of CP-V features. 

Availability of reentrant version of library. 

(Reference: Extended FORTRAN IV/LN Reference Manual, 
90 09 56 and Extended FORTRAN IV/OPS Reference Man­
ual, 90 11 43.) 

XEROX ANS COBOL 

COBOL (COmmon Business Oriented Language) is especially 
efficient ;;:;--!-he processing ofbusiness-problems. Such prob­
lems typically involve relatively little algebraic or logical 
processing. Instead, they most often manipulate large fi Jes 

2 Time-Sharing 

of basically similar records in a relatively simple way. This 
means that COBOL mainly emphasizes the description and 
handling of data items and input/output records. 

COBOL looks and reads much like ordinary business English. 
The programmer can use English words and conventional 
arithmetic symbols to direct and control the computer oper­
ations. Two typical COBOL sentences follow: 

ADD NEW-PURCHASES TO TOTAL-CHARGES 

PERFORM FEDERAL-TAX-CALCULATIONS 

{Reference: Xerox ANS COBOVLN Reference Manual, 
90 15 00, and Xerox ANS COBOVOPS Reference Manual, 
901501.) 

META-SYMBOL 

Meta-Symbol is a procedure-oriented macro assembler that 
provides services available in sophisticated macro assemblers 
and has specia I features that permit the user to execute 
dynamic control over the parametric environment of assem­
bly. Meta-Symbol's highly flexible assembly language 
gives users full use of the available Sigma hardware 
capabi Ii ties. 

Under CP-V, Meta-Symbol may be used in batch or on-line 
mode. In on-line mode, the assembler allows programs to 
be assembled and executed on-line but does not allow 
conversational interaction. 

One of Meta-Symbol's features is a highly flexible list 
definition and manipulation capability, Lists and list 
elements may be conveniently redefined, thus changing 
the value of a given element. 

Another Meta-Symbol feature is the macro capability. Xerox 
uses the term "procedure" to emphasize the highly sophisti­
cated and flexible nature of this macro capability. Proce­
dures are assembly-time subroutines that provide the user 
with an extensive function capability. Procedure defini­
tions, references, and recursions may be nested up to 32 
levels. 

Meta-Symbol also has an extensive set of operators to 
facilitate the use of logical and arithmetic expressions. 
These operators facilitate the parametric coding capabilities 
avai Jobie with Meta-Symbol {parametric programming al lows 
for dynamic specification of both "if" and "how" a given 
statement or set of statements is to be assembled). 

Users are also provided with an extensive set of directives. 
These directives, which are commands intrinsic to the 
assembly, fall into three classes: 

1. Directives that involve manipulation of symbols and 
are unconditionally executed. 

2. Directives that allow parametric programming. 

3. Directives that do not allow parametric programming. 



Intrinsic functions are also included in Meta-Symbol. These 
give the user the ability to obtain information on both the 
structure and content of assembly time constructs. For 
example, the user can acquire information on the length of 
a certain list. He can inquire about a specific symbol and 
whether it occurs in a procedure reference. (Reference: 
Meta-Symbol/LN, OPS Reference Manual, 90 09 52.) 

BASIC 

BASIC is a compiler and programming language similar to 
Dartmouth BASIC. It is, by design, easy to teach, learn, 
and use. It allows individuals with little or no programming 
experience to create, debug, and execute programs via an 
on-line terminal. Such programs are usually small to medium 
size, predominantly arithmetic applications. 

BASIC is designed primarily for on-I ine program development 
and execution, or on-line development and batch execution. 
In addition, programs may be developed and executed in 
batch mode. 

BASIC provides two user modes of operation. The editing 
mode is used for creating and modifying programs. The 
compilation/execution mode is used for running completed 
programs. This arrangement simplifies and speeds up the 
program development cycle. 

BASIC statements may be entered via a terminal and immedi­
ately executed. During execution, programsmaybe investi­
gated for loop detection, snapshots of variables may be 
obtained, values of variables may be changed, flow of execu­
tion maybe rerouted, and so on. This unique capability also 
allows an on-line terminal to be used as a "super" desk 
calculator. 

At compile and execute time, the user may specify an array 
dimension check. In the safe mode, statements are checked 
to verify that they do not reference an array beyond its 
dimensions. In the fast mode, this time consuming check is 
not made. The safe mode is used during checkout; the fast 
mode is used when the program reaches the production state, 
to speed up execution. 

BASIC provides an image statement that uses a "picture" of 
the desired output format to perform editing. It also has TAB 
ca pa bi I ity and a precision option to indicate the number of 
significant digits (6 to 16) to be printed. 

BASIC also has an easy-to-use feature al lowing the user to 
read, write, and compare variable alphanumeric data. This 
is particularly important for conversational input processing. 

Chaining per mi ts one BAS JC program to ca II upon another for 
compi la ti on and execution without user intervention. Thus, 
programs that wou Id exceed user core space may be sequenced 
and overlay techniques may be employed via the chaining 
facility. (Reference: BASIC/Reference Manual, 90 15 46.) 

APL 

APL is an acronym for A Programming Language, the lan­
guage invented by Ken-;:;eth Iverson. ff is an interpretive, 
problem-solving language. As an interpretive language, 
APL does not wait until a program is completed to compile 
it into object code and execute it; instead, APL interprets 
each line of input as it is entered to produce code that is 
immediately executed. As a problem-solving language, 
APL requires minimal computer programming knowledge; a 
problem is entered into the computer and an answer is re­
ceived, al I in the APL language. 

Because APL is powerful, concise, easy to learn, and easy 
to use, it is widely used by universities, engineers, and 
statisticians. It also has features that make it attractive 
for business applications where user interaction and rapid 
feedback are key issues. One of APL's major strengths is 
its ability to manipulate vectors and multidimensional arrays 
as easily as it does scalar values. For example, a matrix 
addition that might require a number of statements and sev­
eral loops in other languages can be accomplished as A + B 
in APL. This type of simplification exemplifies APL's con­
cise power. (Reference: APl/LN, OPS Reference Manual, 
90 19 31. ) 

FLAG 

FLAG (FORTRAN Load and Go) is an in-core FORTRAN 
compiler that is compatible with the FORTRAN IV-H class 
of compilers. It can be used in preference to the other 
FORTRAN compilers when users are in the debugging phase 
of program development. FLAG is a one-pass compiler and 
uses the Extended FORTRAN IV library. Included in the 
basic external functions are the Boolean functions IA ND 
(AND), IEOR (exclusive OR), and IOR (OR), which give 
the FORTRAN user a bit manipulation capability. 

If several FLAG jobs are to be run sequentially, they may 
be run in a sub-job mode, thus saving processing time nor­
mally needed for the Control Command Interpreter (CCI) to 
interpret the associated control cards. In this mode, FLAG 
will successively compile and execute any number of sep­
arate programs, thereby reducing Monitor overhead. 

The FLAG debug mode is a user-selected option that gen­
erates extra instructions in the compiled program to enable 
the user, during program execution, to detect errors in pro­
gram logic that might otherwise go undetected or cause un­
explainable program failure. (Reference: FLAG/Reference 
Manual, 90 16 54.) 

FORTRAN DEBUG PACKAGE 

The FORTRAN debug package (FDP) is made up of specia I 
library routines that are called by Xerox Extended FOR­
TRAN IV object programs compiled in the debug mode. 
These routines interact with the program to detect, diagnose, 
and in many cases, temporarily repair program errors. 

Time-Sharing 3 



The debugger can be used in batch and on-line mode. An 
extensive set of debugging commands is available in both 
cases. In batch operation, the debugging commands are 
included in the source input and are used by the debugger 
during execution of the program. In on-line operation, the 
debugging commands are entered through the terminal key­
board when requested by the debugger. Such requests are 
made when execution starts or restarts and for al I execution 
stops in which the debugger has control. The debugger 
normally has control of such stops. 

In addition to the debugging commands, the debugger has a 
few automatic debugging features. One of these features is 
the automatic comparison of standard cal ling and receiving 
sequence arguments for type compatibility. When appli­
cable, the number of arguments in the standard cal ling 
sequence is checked for equality with the number of dum­
mies in the receiving sequence. These calling and receiv­
ing arguments are a I so tested for protection conflicts. 
Another automatic feature is the testing of subprogram dummy 
storage attempts, to determine if they violate the protection 
of the calling argument. (Reference: FORTRAN Debugger/ 
Reference Manual, 90 16 77.) 

DELTA 

Although Delta is designed to aid in the debugging of pro­
grams at the assembly-language or machine-language levels, 
it may be used to debug FORTRAN, COBOL, or any other 
program. It is designed and interfaced with the operating 
system in such a way that it may be called in to aid debug­
ging at any time (even after a program has been loaded). 

Delta operates on object programs and tables of internal 
and global symbols used by the programs but does not require 
the tables to be present. With or without the symbol tables, 
Delta recognizes computer instruction mnemonic codes and 
can assemble machine-language programs on an instruction­
by-instruction basis. The main purpose of Delta, however, 
is to foci litate the activities of debugging by 

1. Examining, inserting, and modifying program elements 
such as instructions, numeric values, coded information 
(i.e., data in all its representations and formats). 

2. Controlling execution, including the insertion of break 
points into a program and requests for breaks on changes 
in elements of data. 

3. Tracing execution by displaying information at desig­
nated points in a program. 

4. Searching programs and data for simple elements or 
elements within a hierarchy. 

To assist the first activity, CP-V assemblers and compilers 
include information identifying the type of data each sym­
bol in the symbol table represents. The type of data includes 
symbolic instructions, decimal integers, floating-point val­
ues, single and double precision values, EBCDIC encoded 
information, and other types. (Reference: Chapter 7.) 

4 Time-Sharing 

PERIPHERAL CONVERSION LANGUAGE 

The Peripheral Conversion Language (PCL) is a utility pro­
cessor designed for operation in a batch or on-line environ­
ment. It provides for information movement among card 
devices, line printers, on-line terminals, magnetic tape 
devices, disk packs, and RAD storage. 

PCL is controlled by single-line commands supplied through 
on-line terminal input, through a file containing PCL com­
mands, or through command card input in the job stream. 
The command language provides for single or multiple file 
transfers with options for selecting, sequencing, formatting, 
and converting data records. Additional file maintenance 
and uti I ity commands are provided. (Reference: Chapter 5. ) 

LINK 

Link is a linking loader that constructs a single entity called 
a load module, which is an executable program formed from 
relocatable object modules. Link is a one-pass linking 
loader that makes full use of mapping hardware. It is not an 
overlay loader. If the need for an overlay loader exists, the 
overlay loader (Load) must be cal led by entering the job in 
the batch stream. (Reference: Chapter 8. ) 

BATCH 

The BATCH processor is used to submit a file or a series of 
files to the batch queue for later execution. The processor 
is called implicitly by the BATCH control command. It may 
be called in either the on-line or the batch mode. (Refer­
ence: Chapter 3 and CP-V /BP Reference Manua I, 90 17 64.) 

MANAGE (PROGRAM PRODucn 

Manage is a generalized file management system. It is de­
signed to al low decision makers to make use of the computer 
to generate and update files, retrieve useful data, and gen­
erate reports without having a knowledge of programming. 
(Reference: Manage/Reference Manual, 90 16 10.) 

SIMULATION LANGUAGE (PROGRAM PROoucn 

The Simulation Language (SL-1) is a simplified, problem­
oriented digital programming language designed specifi­
cally for digital or hybrid simulation. SL-1 is a superset of 
CSSL (Continuous System Simulation Language), the stan­
dard language specified by Simulation Counci Is, Inc., for 
simulation of continuous systems. It exceeds the ca pa bi Ii­
ti es of CSSL and other existing simulation languages by 
providing hybrid and real-time features, interactive debug­
ging features, and a powerful set of conditional translation 
features. 

SL-1 is primarily useful in solving differential equations, a 
fundamental procedure in the simulation of parallel, con­
tinuous systems. To perform this function, SL-1 includes 
six integration methods and the control logic for their use. 



In hybrid operations, SL-1 automatically synchronizes the 
problem solution to real-time and provides for hybrid input 
and output. 

Because of the versatility of Xerox Sigma computing systems 
and the broad applicability of digital ond hybrid simulation 
techniques, applications for SL-1 exist ocross the reol-time 
spectrum. The I ibrary concept of SL-1 al lows the user to 
expand upon the Xerox-supplied macro set and facilitates 
the development of macro libraries oriented to any desired 
application. (Reference: SL-1/Reference Manual, 9016 76.) 

CIRC (PROGRAM PRODUCT) 

CIRC is a set of three computer programs for electronic cir­
cuit analysis of Sigma 5-9 computers: CIRC-DC for de 
circuit analysis, CIRC-AC force circuitanalysis, and CJRC­
TR for transient circuit analysis. The programs are designed 
for use by a circuit engineer at the installation, and re­
quire little or no knowledge of programming for execution. 

CIRC can be executed with three modes of operation possi­
ble: conversational (on-line) mode, terminal batch entry 
mode, and batch processing mode. The system manager 
will determine which of these modes are available to the 
engineer, based on type of computer installation and other 
installation decisions. 

• The on-line mode offers several advantages since it 
provides true conversational interaction between the 
user and computer. Fol lowing CJRC start-up proce­
dures, CIRC requests a control message from the user. 
After the control message is input (e.g., iterateacycle 
of calculations with changed parameters), the computer 
responds (via CIRC) with a detailed request for applica­
tion data. These requests are sufficiently detailed to 
virtual I y eliminate misunderstandings by the engineer. 
This mode is highly useful in a highly interactive en­
vi1anment that produces a low volume of output and 
requires I imited CPU time. 

• 

• 

The terminal batch entry mode allows efficient handling 
of high volume output and large CPU time requirements 
while preserving the advantages of the terminal as an 
input device. Two files are required: one containing 
all CIRC input including a circuit description qnd con­
trol messages, and the other directing the execution of 
CIRC. The job is entered from the terminal into the 
batch queue and treated I ike a batch job. 

The batch mode should generally be used for jobs in­
volving large volumes of computations and outputs. It 
enables the user to concentrate on data preparation with 
virtually no involvement in programming considerations. 

The system manager can provide a set of start-up cards 
that never change, and these wi 11 constitute the entire 
interface between user and executive software. How­
ever, the batch mode offers less flexibility in experi­
menting with a circuit and slower turnaround time in 
obtaining answers. 

(Reference: CJRC-AC/Reference Manual and User's Guide, 
90 16 98, (!RC-DC/Reference Manual and User's Guide, 
90 16 97, and CIRC-TR Reference Manual and User's 
Guide, 90 17 86.) 

BATCH PROCESSING 

Batch processing facilities are described in the CP-V/BP 
Reference Manual, 90 17 64. Although some facilities and 
processors ore reserved for on-I ine use and others for botch 
use, the two classes of service ore complementary. Gener­
ally speaking, anything that con be done in botch mode con 
be done on-line, although sometimes in a curtailed manner. 
In particular, compilers and assemblers ore compatible 
across the two classes of service at source and relocatable 
levels. For example, 

l. Processors for Extended FORTRAN IV, ANS COBOL, 
and Meta-Symbol ore ovoi lab le both in batch and on­
line mode. 

2. Programs compiled or assembled in batch can be linked 
with those produced on-line and can be run and debug­
ged on-line. 

3. Programs compiled or assembled on-line can be linked 
and run in batch mode. 

(Reference: CP-V/BP Reference Manual, 90 17 64.) 

REMOTE PROCESSING 

Remote processing facilities are described in the CP-V/RP 
Reference Manuo I, 90 30 26. The remote processing system 
is an extension of the CP-V symbiont system. Its purpose is 
to provide for very flexible communication between CP-V 
and a variety of remote termina Is. These termino Is can 
range from a simple card reader and line printer combination 
to another computer system with a wide variety of peripheral 
devices. Any CP-V user (batch, on-line, ghost) con com­
municate with any number of devices at one or several re­
mote sites. 

(Reference: CP-V/RP Reference Manual, 90 30 26.) 

Batch Processing/Remote Processing 5 



2. TERMINAL OPERATIONS 

INTRODUCTION 

The following types of on-line terminals may be used with 
CP-V: 

Xerox Model 7015 Keyboard/l>rinter. 

Teletype Models 33, 35, 37, and 38. 

IBM 2741 Terminals. 

© 
Tektronix Models 4010 and 4013. 

Datapoint 3300. 

Any terminal compatible with any of the above. 

The terminal operations described in this chapter apply 
primarily to Teletype and Xerox Model 7015 terminals 
(see Figure l)and to the Terminal Executive Language (TEL). 
Operations that are unique for 2741 terminals are delineated 
at the end of the chapter. Terminal communication services 
to user programs are discussed in Chapter l 0. 

Seven facets of terminal operations are described in this 
chapter. They are 

1. Initiating and ending on-line sessions. 

2. Typing lines. 

3. Typing commands. 

4. Detecting and reporting errors. 

5. Interrupting CP-V. 

6. Paper tape unit. 

7. 2741 and Teletype differences. 

INITIATING AND ENDING ON-LINE SESSIONS 

An on-line user must establish a connection with CP-V 
and identify himself properly before he can use TEL or 

®Registered Trademark of the Tektronix Corporation. 

6 Terminal Operations 

any of the processors. When a connection with CP-V is 
established, CP-V responds by typing 

XEROX CP-V AT YOUR SERVICE 
ON AT (time and date) 
LOGON PLEASE: 

The system then waits for user account, name, optional ex­
tended accounting field, and optional password to be en­
tered in the following format: 

account ,name[(ext. accounting fie ld)][,password] 

The name must be from one to twelve characters in length 
with an optional extended accounting field of up to 24 char­
acters enclosed in parentheses; account and password must 
be from one to eight characters. Any of the fol lowing char­
acters may be used in user account, name and password: 

A-Z a-z 0-9 $ * o/o : # @ - backspace 

Underscores count as characters and print as left-facing 
arrows (- ). Commas are used as separators. After 
name (or password) is entered, the RETURN or LINE FEED 
key is depressed to return the carriage to the left mar­
gin of the next line and to deliver the line to CP-V for 
examination. 

For terminals operated in full-duplex mode, character echo­
ing by the system is normally on but can be turned off(e.g., 
to suppress printing of passwords or other security-related 
information) by striking the @ E keys. Striking the 0 E 
keys a second time turns echoing back on. For terminal 
units operated in half-duplex mode, character echoing by 
the system must be turned off, as above, to suppress dupli­
cate printing of characters. 

If the identification is valid and consistent with CP-V rec­
ords, TEL types its prompt character ( !) at the left margin of 
the top line of the next page and then awaits the first com­
mand. If automatic association of a program or processor 
is specified in the user's log-on record, control passes to 
that program instead of TEL for identification and command 
request. The system sends an error message to the terminal 
and repeats the log-on request if the identification is 
garbled or otherwise invalid. The error messages are 

EH ? (Preceded by a repeat of the input for hardware 
debugging purposes.) 

ACCOUNT/ID account/id? 

PASSWORD? 



S' .... a· 
:::!". 
::J 

(0 

0 
::J 
0... 
m 
::J 
9: 
::J 

(0 

~ 
I 
!:: 
::J 
(J) 

Vl 

m 
"' 
0 
::J 

"' 

'-I 

00, 0000000000-2 3 4 5 6 7 8 9 0 : -

~ '8 
Q 

Q 

(US) (NUL) 

QQCJCDGD 
QQQOOI03 [ \ o· F 6 H I K L • 

RU(ACK) BELL BS VT FORM(FF) ' 

~ 
~ 

(.;;\ 
\.:) 

G GGGGG 
88888 ""~0008 

l "'"... I 

ITJ These keys are missing on some models. 

[]]This key is positioned elsewhere on some models. 

IIJ This is interpreted as I (OR) on Model 7015. 

[!]This is interpreted as...., (NOT) on Model 7015. 

Characters obtained by depressing the SHIFT key are shown at the top of the key and characters obtained by depressing the CTRL key are shown at the bot­
tom of the key. Characters obtained by depressing both SHIFT and CTRL keys are shown above the key. On the actual keyboard, all unparenthesized 
forms appear at the top of the key. 

Figure 1. Model 33 Teletype Terminal Keyboard 



It may not always be possible to log on. If an error 
prevents the reading of the log-on file, the message 
UNRECOVERABLE I/O ON RAD, or ABNORMAL ERROR 
ON LOG ON FI LE wi 11 be typed. Whenever the user 
is unable to log on, he may start over by striking the 
BREAK key and trying again. The system tries five times 
to log each user on before dismissing him. 

Fol lowing a successful log-on, if the user has - in a 
previous session - exhausted his a I located permanent file 
storage space, he receives the following message: 

FI LE STORAGE LIMIT EXCEEDED 

This means that no file storing operations can be performed 
until the user deletes one or more of his files. 

If a MAILBOX file (a message file) exists at log-on time, 
the message CHECK DC/MAILBOX will appear. This 
MAILBOX file can be examined by copying it to the. ter­
minal as follows: 

!COPY MAILBOX [TO ME] 

(The underscored exclamation mark is the "prompt charac­
ter" issued by TEL.) 

The password in the log-on file can be set or changed at 
any time by typing PASSWORD xxxx, where xxxx is a 
character string from one to eight characters in length. 
(See Chapter 3.) Characters that may be used in a pass­
word command are as specified above. 

If the PASSWORD command is used without specifying 
a password (xxxx), a password is no longer required for 
log-on. 

An on-line session is ended by entering the OFF command. 
The system sends the fol lowing use accounting information 
to the terminal when a user logs off: 

CPU=m.mmmm CON,-i:mm INT,-in CHG'7<xxx 

CPU time is expressed in minutes and ten-thousandths of a 
minute. Terminal time (CON) is expressed in hours and 
minutes. INT is the number of terminal interactions during 
the on-line session. CHG is the total number of charge 
units for the on-line session. (Reference: Chapter 4, 
CP-V/SM Reference Manual, 90 16 74.) 

8 Typing Lines 

TYPING LINES 

The rules governing the typing of lines are concerned with 
operations such as erasing characters or I ines, terminating 
lines, pagination, tabbing, and so on. These rules are 
common to TEL, all subsystems, and programs that carry on 
a line-by-line dialogue with the user. 

PROMPT CHARACTERS 

When a connection is first established between a terminal 
and the computer, a message is sent to the terminal request­
ing the user to log on. As soon as the user has logged on, 
TEL types a prompt character at the left margin of the next 
line to indicate that requests may be entered. Thereafter, 
a prompt character is sent to the terminal following a com­
pleted request, an error, or an interruption by the user. If 
the services of a processor are requested, the processor iden­
tifies itself with a different prompt character. 

The prompt characters used byTELand all on-line processors 
are as follows: 

TEL 

FORT4 > 
COBOL $ 
META > 
BASIC > 
EDIT * 

FDP @ 

DELTA bell 

PCL < 
LINK 

Libraries ? 

ECHOING CHARACTERS - ESC E 

For terminals operated in echoplex (full-duplex) mode, 
character echoing - display on the terminal's output device 
of characters typed in - by the system is normally 'on', but 
can be turned off, and on again, etc., at the user's discre­
tion (e.g., to suppress printing of passwords or other security­
related information). Successive uses of the ESC E key 
sequence toggles the echoplexing on/off state. For terminal 
units operated in local-printing (half-duplex) mode, charac­
ters typed at the terminal are automatically printed by the 
terminal. When operating in local-printing mode, the user 
will need to turn echoplexing off to avoid redundant echoing 
by the system. (In half-duplex, a direct electrical connec­
tion exists between the keyboard and printer, via the modem 
unit.) 

ERASING CHARACTERS- RUBOUT OR ESC RUBOUT 

Depressing the RUBOUT key (or the ESC RUBOUT sequence) 
erases the last unerased character. The system responds by 



typing a backslash (\)to indicate that it has effectively 
backspaced and erased. On terminals that can backspace, 
backspacing does not erase. Thus, it is possible to over­
strike characters as we 11 as to erase them. 

ERASING THE CURRENT INPUT LINE - ESC X 

The currentinputmessage (one lineor less) is erased by de­
pressing the two keys ESC and X sequentially. If an input 
operation is pending, the system types a left-facing arrow 
or underscore, returns the carriage to the position at the 
beginning of input on the next line, and returns control to 
the user without further comment. The current message 
may then be entered. 

CANCELLING ALL INPUT AND OUTPUT - CONTROL X 

Depressing the CONTROL and X keys simultaneously will 
cause all input (including messages typed ahead) and all 
output to be deleted. If an input operation was pending, 
additional action is identical to that for ESC X above. 

ENTERING BLANK LINES 

Blank Ii nes are usu a I ly ignored by subsystems. However, 
some subsystems, in certain modes, treat a blank line as a 
command to change to a different program control level. 

RETYPING THE CURRENT LINE - ESC R 

When the ESC R sequence is received, the carriage is 
returned to the position at the beginning of input on 
the next I ine and al I characters accumulated wi 11 be 
retyped by the system. The user is then allowed to complete 
the message. 

ENTERING MULllLINE RECORDS- LDC RET, 
ESC LINE FEED OR ESC RET 

On a terminal unit having an inherent line-width limit of 
less than 140 (e.g., Teletype Models 33, 35, and 37), a 
single, multi line record may be entered in either of two 
ways: 

1. Using the local carriage return key marked LOC RET, 
if present, to "break" the input line without releasing 
it to the system . 

2. Using the simulated local carriage return sequence 
ESC RET or ESC LINE FEED for the same purpose. 

TERMINATING LINES 

When TEL or a processor that carries on a line-by-line 
dialogue is in use, an "end-of-message" is signaled by 
depressing either the RETURN or LINE FEED key. Depress­
ing the CONTROL and L keys simultaneously signals an "end­
of-message" and an "end-of-page". FS, RS, US, and GS (see 
Table A-3) signal "end-of-message" without carriage motion 
or character printing. ESC and then F signals "end-of-file". 
Each read operation at the terminal specifies a maximum 
number of characters to be read (never more than 140). If 
this number is reached, "end-of-message" is signaled. TEL 
read operations are restricted to a maximum of 80 characters. 

TYPING AHEAD 

COC routines allow 'type-ahead' operations. Key strokes 
(or paper tape frames) that are input by the user before the 
system requires them will be retained until an M:READ is 
issued. 

PAGINATION AND LINEATION - CONTROL L 

Pagination and lineation may be controlled so as to pro­
vide 8-1/2 by 11-inch pages with 1-inch margins at the top 
and bottom of each "page". This assumes a 9-1/2 inch 
platen, giving 85 characters to the line on Xerox 7015; Tele­
types provide for 72 characters. The system counts lines to 
give 54 lines per page. Pagination can be requested directly 
by depressing the CONTROL and L keys simultaneously. 
Pagination consists of the following: 

l. Blank lines to the page bottom. 

2. A heading line containing date, time, user identifica­
tion, terminal identification, and page number. 

3. Five additional blank lines. 

4. User heading line, if any. 

Other settings of platen width and page length may be made 
with a TEL command or a CAL. 

SIMULATING TAB STOPS- ESC T 

The user can enter tabulation characters into his terminal in­
put, ei therwith the CONTROL and I key combination or ESC I 
sequence on teletypewriter units, or the TAB key on terminal 
unitsthathave it. The system simulatestabbingby typing 
(echoing) successive blank characters. Tab-stop values for 
th is simulation can be set or changed by the TABS command. 
This tab simulation is under the user's control: it is normally 
'on' at the beginning of a terminal session, but the user can 
turn it off, and back on again, with the ESC T key sequence 
(i.e., successive use of theESC Tsequence has a toggle­
switch effect on tab simulation, each use reversing the previous 
on or off state). With tab simulation on, any tab characters 

Typing Lines 9 



either sent from the terminal or received for transmission to 
the terminal are replaced at the terminal by an appropriate 
string of blanks (in lieu of mechanical tabulation). If no 
tab-stop values are set, each tab character is replaced by 
a single blank. The state of tab simulation does not deter­
mine whether or not blanks are substituted for a tab character 
in the input stream received by the processor or program 
requesting the input. 

Note: The tab simulation is turned off when the APL pro­
--- cessor is called. 

SIMULATING TAB CHARACTERS-ESC I AND CONTROL I 

The ESC I and CONTROL I sequence are treated exactly 
as a tab character. This function is provided for terminals 
that are not equipped with a TAB key. 

INSERTING SPACES - ESC S 

One or more spaces are normally inserted into the terminal 
input stream in place of a tab character (i.e., the tab 
characters themselves are not normally passed to the pro­
cessor or program requesting the input). When space­
insertion mode is on (initial state), each tab character is 
replaced in the input stream by an appropriate number of 
blanks if tab settings are in effect. If there are no tab 
settings, only a single space is inserted. This space inser­
tion is under the user's control. However, he can turn 
space-insertion mode off by use of the ESC S key sequence, 
causing the tab characters to remain in the input stream. 
(This can result in a significant space saving in large files.) 
Successive uses of ESC S toggles the space-insertion mode 
from on to off, off to on, etc. 

Note: The space insertion mode is turned off when the APL 
processor is ca I led. 

SETTING THE TAB RELATIVE MODE - ESC C 

Normally tabs are considered to be physical carriage posi­
tions. If the tab relative mode is active, tabs on input 
are considered to be offset from the position of the carriage 
at the beginning of input. 

The tab relative mode is toggled on or off by the ESC C 
character sequence. The tab relative mode is initially set 
to OFF. 

RESTRICTING INPUT TO UPPER CASE - ESC U 

When the character pair ESC U is received, a flag that 
controls alphabetic characters is toggled. When set, all 

10 Typing Commands 

lower case letters received are translated to their upper 
case counterparts. 

INTERPRETING UPPER CASE AS LOWER CASE - ESC 

Receipt of the ESC ) sequence causes 

1. Al I subsequent upper case alphabetic characters to be 
interpreted as the corresponding lower case alphabetic 
characters. 

2. The terminal characters (QI [ \ ] "' to be interpreted 
as ' { : } ~DEL respectively. 

This remains in effect until the ESC (sequence is received. 
The parentheses are echoed, thus bracketing the characters 
that were interpreted as upper case. This feature is pro­
vided to enable terminals that are upper case only to input 
lower case characters. 

EXITING THE LOWER CASE INTERPRET MODE - ESC ( 

The E SC ( character sequence removes the effect of the 
ESC ) sequence (described previously). 

TYPING COMMANDS 

Except for a few dee laratives, commands take the form of 
imperative sentences. They consist of an imperative verb 
fo I lowed by a direct object or list of objects. Indirect ob­
jects usually follow a preposition but may follow the verb 
with elision of the implied direct objects. Minor variations 
of this structure are expressed as encoded parentheticals 
following either the verb or one of the objects. Individual 
elements of a list of objects are set off from one another by 
commas. 

Common rules of composition are applicable to commands. 
Words of the language, numerals, object identifiers, and 
other textual entities maynotbe broken by spaces. Other­
wise, spaces may be used freely. For purposes of scanning 
commands, both by machine and by human eye, this rule has 
a simple interpretation. Leading spaces are skipped over in 
a left-to-right scan for the next syntactic element of a com­
mand, and trailing spaces are treated as terminators for words, 
numerals, and other textual entities. In terms of machine 
scanning, tabs are treated as spaces. 

Since it is impossible to determine whether or not trailing 
characters in a command are in error, a unique code that 
identifies the end of the command is recognized as a syn­
tactic element. For TEL and processors that carry on a 
line-by-line dialogue, this is either a LINE FEED or 
CARRIAGE RETURN code. 



DETECTING AND REPORTING ERRORS 

The primary object of the error detection procedure is that 
user information shou Id not be destroyed by an attempt to 
execute a command that cannot be carried through to com­
pletion. To ensure that each command is at least formally 
valid, TEL and all subsystems that carry on a line-by-line 
dialogue always parse an entire command before starting an 
operation. 

Error messages sent to a terminal are as terse as possible 
since the majority of errors are easily found once the 
fact that an error exists has been brought to the atten­
tion of the user. 

The error messages and actions initiated by the errors are 
contained at the end of each chapter for the processor to 
which they apply. Many processors use the following 
format for reporting garbled, malformed, or unintelligible 
commands: 

EH ?@n 

where n gives the character position where the confusion 
was first encountered. 

INTERRUPTING CP-V 

CP-V can be interrupted whenever it, one of its processors 
or a user program has control of the keyboard. Subsequent 
control depends on which interrupt keys are used and which 
processor or user program is in control. 

CONTROL Y, ESC Y, OR ESC ESC 

Regardless of what program is in control of the keyboard, 
the operation can always be interrupted by simultaneously 
depressing the CONTROL and Y keys (or by typing the 
ESC Y sequence or the ESC ESC sequence.) The system re­
sponds by stopping the current operation as soon as there is 
a convenient breakpoint and tuming control over to TEL. 
All input received prior to this key-in that has not yet 
been read by the program wi II be erased. 

BREAK 

If CP-V, one of its processors, or a program explicitly re­
questing break control is in control of the keyboard, the 
operation can be interrupted by depressing the BREAK key. 
This action gives control to the program that is currently in 
communication with the terminal. 

A succession of four or more BREAK signals always returns 
control directly to TEL. There are two reasons for this 
retum to TEL. First, some actions can only be stopped at 
points of convenience and others have so much inertia they 

cannot be stopped at all. Second, machine or program 
errors may have disabled the program's response to the 
BREAK signal. However, it must be emphasized that de­
pressing the BREAK key one time does not constitute a 
preemptive request for the services of TEL as does depressing 
the CONTROL and Y keys (or the ESC Y or the ESC ESC 
sequence). 

The precise handling of interruptions by processors is defined 
by the processors. The handling of interrupts by object pro­
grams is defined by the cal Is these programs can make on sys­
tem services. If the user does not have break control, in­
terruption of an object program always causes a retum to 
TEL. In general, interruption of the system or any of its 
processors resu Its in termination of the current operation as 
soon as possible and return of control to the user after the 
appropriate prompt character has been typed. 

ESC Q 

Te le type users may request acknowledgment from the system 
at any time by use of the E SC Q sequence. The system wi II 
respond by sending two exclamation points ( ! !) to the ter­
minal. No other action is taken by the Monitor. 

PAPER TAPE INPUT 

Paper tape may be punched off-line on Teletype terminals 
and subsequently read on-I ine after the user has logged on 
and a prompt for data on the tape has been issued. The 
same characters that are keyed in during on-line input may 
be punched into paper tape. The procedure for reading 
paper tape on-line is as follows: 

1. Insert the paper tape in the paper tape reader. 

2. Depress the X-ON (Qc) key. This wi II start the 
reading of the tape by the paper tape reader under 
control of the computer. 

3. Depress the X-OFF (Sc) key to turn off the paper tape 
mode (read opera ti on). 

Rubout characters are ignored during a paper tape read 
operation. This enables the user to use rubout characters 
to delete unwanted characters as in normal paper tape 
operation. 

The paper tape read mode is set when a DC 1 character . 
(X-ON) is received from the Teletype. It is reset (to nor­
mal processing)when a DC3 character (X-OFF) is received. 
Characters that are input through the keyboard while the 
Teletype is in the paper tape mode are normally received 
after the reader reaches the end of the tape or the tape is 
removed from the reader. 

Detecting and Reporting Errors/Interrupting CP-V /Paper Tape Input 11 



Restrictions: 

1. Line feed (LF) characters received after any other 
activation condition is reached are ignored unless 
Delta is reading. 

2. The full duplex paper tape facility requires the X-ON, 
X-OFF option on the Teletype. 

HALF DUPLEX PAPER TAPE READING MODE 

A special mode is avai I able for half duplex terminals that 
are reading paper tape. While in this mode, no attempt is 
made by the Monitor to turn the tape reader off or on. Input 
is accepted unti I available buffer space is exhausted. No 
program output, prompt characters, or echoes are sent to the 
terminal because the mode renders the terminal incapable of 
accepting output. 

The half duplex paper tape mode is entered upon receipt of 
an ESC P sequence or upon receipt of an X-ON character 
while in the non-echoplex mode (control led by ESC E). The 
mode is exited by a balancing ESC P sequence or by an 
X-OFF character if it was initiated by X-ON. 

2741 AND TELETYPE DIFFERENCES 

In addition to the differing code sets that are translated in 
a straightforward way, certain unique features of 2741 
terminals must be treated in a special way. First, use of 
the 2741 terminal is proprietary. Both computer and user 
must, in turn, explicitly release control of the typewriter 
to the other. Second, two code sets and two keyboard 
arrangements for the 2741 EBCD and Selectric® terminals 
are supported and must be properly identified at log-on 
time. Third, the important functions provided on Tele­
types by the ESC and BREAK keys are combined in the 
27 41 ATTN key. Fourth, both uppercase and lowercase 
letters are available on the 2741. Finally, a line edit­
ing mode that uses backward and forward spacing to posi­
tion the carrier for character replacement by overstriking 
is introduced. 

LINE STATE 

Unlike Teletypes, 2741 terminals cannot transmit and re­
ceive at the same time. The 2741 operator can type only 
when the computer has unlocked the keyboard. The com­
puter can type only when the operator has locked the key­
board by ending his message with a carriage return or at­
tention character. 

®Registered trademark of the IBM Corporation. 

12 27 41 and Te le type Differences 

LOG-ON 

When a Teletype line i.s connected to the system, a log-on 
message is automatically sent to the terminal. Logging on 
from 2741 lines must be handled differently since the key­
board is initiated for user input when the line is connected 
and the code set and keyboard arrangement are unknown to 
the computer at this point. The user at the 2741 terminal 
must identify the code set and type of keyboard before log­
ging on by sending an asterisk (*) followed by a carriage re­
turn character. From this point on, the standard log-on 
sequence is followed. 

BREAK AND ESC 

Separate BREAK and ESC keys are not present on 2741 
keyboards. On these keyboards, the BREAK and ESC func­
tions are performed by the ATTN key. During input, while 
the keyboard is unlocked, depressing the ATTN key sends 
an EO T character to the computer. During output, while 
the keyboard is locked, depressing the ATTN key sends a 
break signal to the computer and deletes any remaining 
output. When an EQT character is input to the computer, 
an escape sequence is performed. The control function 
is represented by the character input just prior to the 
EOT. 

UPPERCASE/LOWERCASE 

Both uppercase and lowercase letters are avai I able on 
the 2741. There are many cases in which lowercase letters 
will not be accepted in lieu of uppercase letters (e.g., any 
letters in id/account for LOGON must be entered in 
uppercase). If lowercase letters are not required, a u ATTN 
maybe entered, causing all letters to be accepted as upper­
case. (This is not applicable for the APL processor.) 

CDC ROUTINE 

A number of functions are performed in the COC routine to 
accommodate 2741 terminals. These functions are outlined 
below. 

LOG-ON PROCEDURE 

The proper translation table is determined by a special 
dial-up procedure for 2741 lines. When the asterisk key is 
depressed, a different code is transmitted for the EBCD and 
Selectric code sets (both APL and standard versions). This 
character (*), followed by a carriage return character, is 
the protocol for 2741 lines to log on with the proper trans­
lation table. If the asterisk character is not entered just 
prior to the carriage return, a space and backspace are 
transmitted to indicate that the line has been connected but 
the translation table has not been determined. The proce­
dure can then be repeated. 



SPECIAL CHARACTERS 

Backspace: The normal mode for processing backspace 
characters is to put the character in the user's buffer and to 
include it in the count of characters received. See below 
for backspace-overstrike editing. 

Tab: Tab characters are processed as for a Teletype except 
that on input, spaces are not echoed to the terminal to posi­
tion the carrier to the next tab stop since actual physical 
tabs are available on the 2741 keyboard. Note that the 
tab settings on the keyboard should correspond to the cur­
rent system tab settings. 

Attention: The ATTN key performs the BREAK and ESC func­
tions of a Teletype terminal (see the section titled "BREAK 
and ESC "). When a character that represents o control 
function is detected by theCOC handler, o backspace and 
underscore ore transmitted to the terminal to identify the 
character as part of an escape sequence. An exception is 
the escape sequence used to retype a line (RATTN) which 
resu Its in on R being typed at the termino I before the 
carrier is returned and the line is retyped. 

Lowercase Carriage Return (Carriage Return): The input 
message is terminated and o carriage return character 
(X'OD') is put in the user's buffer. 

Uppercase Carriage Return (Line Feed): The input message 
is terminated and o line feed character (X' 15') is put in 
the user's buffer. 

CONTROL CHARACTERSt 

Certain terminal characters perform control functions if 
preceded by an ESC on the Teletype or if followed by on 
ATTN (EOT) on the 2741. For the control characters listed 
below, the function performed is the same on both types 
of terminals: 

c 
F 
L 
R 
s 
T 
u 
y 
( 
) 

Toggle tab relative mode. 
End of file. 
Form feed. 
Retype. 
Toggle space insertion. 
Toggle tab simulation. 
Toggle restrict code to upper case. 
Escape to Monitor. 
Upper case shift. 
Lower case shift. 

The functions of the following 27 41 characters do not corre­
spond directly to Teletype characters. 

tWhen the APL processor is used, the control characters ore 
disabled for the 27 41. 

BACKSPACE: A BACKSPACE ATTN sequence on the 2741 
is the same as the Teletype ESC RUBOUT sequence, except 
in the backspace edit mode (which is discussed below). 

T: The tab simulation mode is switched from on to off or 
vice versa with the TA TTN sequence. If the mode is on 
during output, enough blanks are sent to the terminal to 
move the carrier to the next higher tab position. Since 
actual physical tabs ore available on 2741 keyboards, the 
tab-simulation mode state is ignored during input. 

].;_ Since a break signal is sent to the computer only if the 
keyboard is locked, the BA TTN sequence simulates a 
break when the keyboard is unlocked and is treated like a 
break signal on a Teletype during input. 

SPACE: The input line is terminated and the end-of­
message character US (X'lF') is put in the user's buffer 
when the SPACE ATTN sequence is received. 

0: The backspace edit mode is switched from off to on or 
vice versa when the 0 ATTN sequence is received. If on, 
backspace editing is performed inside the COC handler 
(see below). 

~ The X ATTN sequence performs the CONTROL X func­
tion of a Teletype terminal. This causes all input and out­
put to be deleted. Note that this is not equivalent to the 
ESC X sequence on a Teletype terminal which causes only 
the current input line to be deleted. 

N: The N ATTN sequence performs o "local carriage 
return"; i.e., an N carriage return is output to the term i­
na I and the terminal is again selected for input. The N, 
the underscore ( ), and the carriage return are not sent to 
the user's program. The N ATTN function is equivalent to 
the ESC CR or ESC LF function on the Teletype. 

BACKSPACE EDITING 

The standard mode for processing backspace characters is 
to pass the character to the user's buffer and to include it 
in the count of characters received. The backspace edit 
mode is invoked when the character sequence 0 ATTN is 
received. If a backspoce is received in this mode, the 
pointer into the input buffer for the next character is saved 
and then decremented by one character. Characters are 
processed in the following manner until this pointer is in­
cremented to its original position: 

1. Additional backspace characters decrement the 
pointer that points to the current character in the 
input buffer by one. 

2. A space increments the pointer that points to the cur­
rent character in the input buffer by one. 

2741 and Teletype Differences 13 



3. The character sequence BACKSPACE ATTN is an 
explicit blank. The current character in the buffer is 
replaced with a blank and the pointer that points to 
the current character in the input buffer is incremented 
by one. Two SPACE characters are sent to the terminal 
to correct the carriage position. 

4. End of message characters (NL, L ATTN, F ATTN, or 
SPACE ATTN) cause the message to be term i noted and 
the appropriate end of message characters to be placed 
at the end of the current line (after the rightmost 
character). 

Any character other than another backspace, blank, 
or end of message overlays a character in the buffer; 
the pointer that points to the current character in the 
input buffer is incremented by one. 

When the pointer that points to the current character in the 
input buffer becomes equal to its original value, normal pro­
cessing of input characters resumes. 

Note: The backspace edit mode is turned off when the 
APL processor is cal led. 

SUMMARY OF 2741 ANO TELETYPE DIFFERENCES 

Tab le 2 summarizes the differences between 2741 terminals 
and Teletype terminals. (Refer to Table A-5 for substitu­
tions for characters nonexistent on 2741 terminals.) 

Table 2. Summary of Differences Between 2741 and 
Teletype Services 

Function Teletype 2741 

Get log-on BREAK * and CRLF 
message if dialing up. 

ATTN if line 
is already 
connected. 

Erase line ESC X none 

Tab relative ESC C C ATTN 

Suppress ESC U U ATTN 
lowercase 

Uppercase ESC ( (ATTN 
shift 

14 2741 and Teletype Differences 

Table 2. Summary of Differences Between 2741 and· 
Teletype Services (cont.) 

Function Teletype 2741 

Lowercase shift ESC ) ) ATTN 

Erase last RUBOUT BACKSPACE 
character ATTN 

Tab ESC I, TAB 
CONTROL I 

End of input FS, RS, US, sPACE ATTN 
GS(LCS,Ncs, 
ocs,MCS) 

Line continuation ESC CR, N ATTN 
ESC LF, 
LOC CR 

Retype ESC R RATTN 

Toggle tab sim- ESC T T ATTN 
ulation mode 

Toggle space ESC S S ATTN 
insertion mode 

End of file ESC F F ATTN 

Monitor escape ESC ESC, Four A TTNs. 
(to TEL) CONTROL Y, Also, Y ATTN 

ESC Y, or if input. 
4 BREAKs 

Break BREAK B ATTN on input 
or ATTN on 
output. 

Toggle backspace None 0 ATTN 
edit mode 

Form feed ESC L L ATTN 

Half duplex ESC P none 
paper tape 

Toggle ECHO ESC E none 
mode 

Acknowledge ESC Q none 

Erase all input CONTROLX X ATTN 
and output 

End of CONTROL D ATTN 
Transmission 



3. TERMIN'AL EXECUTIVE LANGUAGE 

INTRODUCTION Checkpointing on-I ine sessions. 

The Terminal Executive Language (TEL) is the principal 
terminal language for the system. Most activities associated 
with FORTRAN and assembly language programming can 

Assigning I/O devices and DCB parameters. 
Modifying logical device definitions. 
Determining on-line user status. 
Listing a file directory. 

be carried out directly in TEL. These activities include: Listing system load parameters. 
Setting simulated tab stops. 

Major Operations 

Composing program and data files . 
Assembling and compiling programs. 
Linking object programs. 
Loading programs and initiating execution. 
Initiating debugging operations. 
Managing and backing up files. 
Submitting batch jobs. 
Calling previously submitted batch jobs. 
Ca I Ii ng processors. 

Displaying simulated tab stop settings. 
Obtaining terminal status. 
Changing terminal type. 
Changing terminal platen size. 
Displaying terminal platen size. 
Sending messages to operator. 
Printing or punching output. 

Interrupting, continuing, and terminating execution. 
MAJOR OPERATIONS 

Minor Operations 

Logging off. 
Changing the log-on password. 

EDIT 
BUILD 

FORTRAN Source 
Language Programs 

FORT4 

Interrupt 
Error or Stop 

SAVE 

Figure 2 illustrates the sequence in which major operations 
normally take place. Capitalized words identify TEL com­
mands and CP-V processors that are used to carry out the 
various programming activities. 

User's Terminal 

Relocatable Object 
Modules (ROMs) 

LINK 

Load Modules (LMs) 

START 

EDIT 
BUILD 

Meta-Symbol Source 
Language Programs 

META 

RUN 

Executing Core Module 

Static Core Module 

Changes 
1 and 

Dis la s 

Debugging Subsystems 
(FDP and Delta) 

User's Terminal 

CONTINUE,GO 

I Interrupts, 
I errors, break-

1 
points, and 
stops 

I 
__ _J 

Output and 
responses to 
demands for 
input 

Figure 2. FORTRAN and Assembly-Language Programming 

Terminal Executive Language 15 



A Meta-Symbol or FORTRAN program may be composed 
on-line in one of two ways. It may be composed and filed 
away by the Edit processor, which is called by the EDIT 
or BUILD commands, or entered directly from the terminal 
one I ine at a time after Meta-Symbol or FORTRAN has 
been cal I ed with a MET A or FORT 4 command. In both 
cases, program assembly or compilation is initiated by the 
META or FORT4 command and a relocatable object module 
(ROM) and program listing may be produced. Output is 
directed to the files or devices specified by the user. 

Relocatable object modules that have been assembled or 
compiled separately are put together by the LINK command 
to form a load module (LM). On completion of the link­
ing operation, execution is started by the START command. 
Or, if desired, both linking and execution can be initiated 
by a single RUN command. 

Debugging activities are initiated by starting the execution 
of a load module under control of one of the debugging pro­
cessors, Delta or F DP. Del ta is most appropriate! y used for 
debugging Meta-Symbol programs but may be used for de­
bugging any program. Itmay alwaysbecalledintoassociation 
with an executing user program for aid even after execution 
has begun. FOP is used for debugging FORTRAN programs. 

An executing program becomes a static core module when­
ever it is interrupted or whenever an error occurs. This 
static core module can be stored by the SAVE command 
and retrieved later by the GET command; it can then be 
restarted with the CONTINUE or GO command. 

COMPOSING PROGRAM AND DATA FILES 

The Edit processor provides for line-at-a-time composition 
and editing of files and is cal led in either of two ways: 

E(DIT] fid 

B(UILD] fid 

File identification (fid) has the following format/ 

name . account. password [
account ] 

. . password 
where 

name is the name of the file and may have a maxi-
mum of 31 characters. (TEL, Link, and Load allow 
a maximum of l 0 characters.) 

account is the account number of the file and may 
have a maximum of eight characters. A user may 
not create(BUILD)a file in any account other than 
the one under which he is running. He may not 
EDIT a file in another account unless he has write 
access to the fi I e. 

password is the password for the file and may have 
a maximum of eight characters. 

Account and password are optional, defaulting to the log-on 
account and no password if omitted. The minimum character 

tThis definition of file identification is intended whenever 
fid is used in a command specification; PCL commands al low 
a larger character set, however. 

16 Major Operations 

set allowed in the three elements of a fid for Edit and all 
on-line systems is as follows: 

A-Z a-z 0-9 $ * % : # @ - backspace 

When called by EDIT, the Edit processor opens the specified 
file (fid) for updating, issues the Edit prompt character(*), 
and then waits for input of commands. The commands of 
the Edit processor may then be used to update the file. 
(Reference: Chapter 6.) 

When called by BUILD, Edit assumes that a new file is to be 
entered a line at a time, beginning with line number l. 000 
and continuing in increments of one. Edit responds by print­
ing the number of each line at the left margin and waiting 
for entry of the line. The end of the file is signaled by en­
tering an empty line. Edit is available for corrections and 
other editing operations after the file has been keyed in. 

ASSEMBLING OR COMPILING PROGRAMS 

TEL has three commands that permit a program to be assem­
bled or compiled into a single ROM. These commands are 

META[sp] [g~ER[rom] [,listJ] 

FORT4[sp) [g~ER[rom) (,listJ] 

COBOL (sp] [g~ER [rom ](, listJ] 

where 

sp specifies a source program and may be either a 
file identification (fid) or the terminal identifi­
cation (ME). If no source file is specified, TEL 
assumes input is from the terminal (ME). (sp is 
assigned to the M:SI DCB.) 

ON indicates that ROM output is to be on a new 
file. 

OVER indicates that ROM output is to be over an 
existing file • 

rom specifies that the relocatable object module 
produced by assembly or compi la ti on is to be di­
rected to a specific file (fid). If no ROM is speci­
fied, output is directed to a special file that may 
subsequently be referenced by a dollar sign. (rom 
is assigned to the M:GO DCB.) 

list specifies that listing output is to go to a file 
(fid), a line printer(LP), or the terminal (ME). If 
list is not specified and no previous LIST command 
has been issued, no listing output is produced. 
(list is implicitly assigned to the M:LO DCB.) 

Whenever TEL encounters an input specification (sp) desig­
nating the terminal (ME), the program to be assembled or 
compiled must be entered through the terminal a line at a 
time. The end of program input is signaled by an end-of­
file that is produced at the terminal by the key sequence 
ESC and F. 

Any assignments made ata job step within META, FORT4, and 
COBOL commands apply to all subsequent job steps, except 



- I 

for source input which always reverts to the terminal. These 
assignments may be changed by subsequent assignments 
either by META, FORT4, or COBOL or by the OUTPUT, 
LIST, and COMMENT commands described below. 

CONTROLLING OUTPUTS 

Control over output may be exercised before the FORT 4, 
COBOL and META commands are entered. This is accom­
plished by the commands 

OUTPUT [g~ER rom J 
LIST [g~ER lisj 

COMMENT [g~ER lis~ 
OUTPUT specifies the destination of ROM output and may 
designate a file (fid) only. LIST specifies the destination 
of listing output; COMMENT specifies the destination of 
error commentary. LIST and COMMENT may designate a 
disk storage file (fid), a line printer (LP), or the terminal 
(ME). 

Output parameters set up in this way are valid across job 
steps from the time given until the session is terminated or 
unti I reset. They may be reset by other LIST, OUTPUT, 
COMMENT, and SET commands or by META, FORT4, and 
COBOL commands that specify output. 

Whenever output parameters are specified by the LIST, 
OUTPUT, and COMMENT commands, execution of multi­
ple META, COBOL or FORT4 commands without output 
parameters wi 11 continue to place the output from these 
operations on the same files. This is accomplished by file 
extension (see 11 Extension of Output Fi I es 11 ). 

Examples: 

1. Assume a FORTRAN source program, on file A, is 
to be compiled. The name of the rom file is C, 
the name of the I ist fi I e is D. Both C and D are 
new files. All files have the user's log-on ac­
count and password. 

2. 

!FORT4 A ON C, D 0 

Assume the same conditions as in the previous example 
except that the output files are to be specified by LIST 
and OUTPUT commands. Error commentary is to go to 
the terminal. 

J_ OUTPUT ON C 0 
J_LIST ON D@l 

J_COMMENT ON ME 0 

!FORT4 A 0 

Output from an assembly can be interrupted and turned off 
at any time by one of the following commands: 

DONT LIST 

DONT OUTPUT 

DONT COMMENT 

and turned on again subsequently with LIST, OUTPUT, or 
COMMENT, respectively. 

Output need not be directed to the terminal to be controlled 
by these commands. Error commentary is normally directed 
to the terminal and accompanies listing output, if specified. 

EXTENSION OF OUTPUT FILES 

File extension is a convention by which records are added 
to an output file by successive job steps. Each time the 
file is opened, the file pointer (RAD, disk pack, labeled 
magnetic tape, etc.) is positioned to a point immediately 
fol lowing the last record in the file. Thus, when addi­
tional output is produced it is added to the previous con­
tents of the file, thereby extending it. File extension 
simulates output to physical devices, such as line printers 
or typewriters, when output is actually directed to a file. 

File extension takes effect at the time that system output 
DCBs are opened. The output DCBs that are affected by file 
extension are those that are normally assigned by default 
to devices, either in batch or on-line operation, but that 
are explicitly assigned to a file (e.g., on RAD storage) at 
the time the DCB is opened. These DCBs include M:AL, 
BO, CO, EO, LL, LO, PO, SL, and SO. The M:GO DCB 
is also subject to file extension. 

File extension is discontinued when a file is reassigned 
with a SET or other output-controlling (e.g., OUTPUT) 
command, or when a file is opened with an OPEN proce­
dure call that specifies an explicit file name. In these 
cases, a new file is created. Extension of the GO file is 
terminated following a LINK or RUN command. 

ERROR HANDLING AND END ACTIONS 

Whenever an operation is aborted, either because the oper­
ation cannotbe continuedorbecause a QUIT command is is­
sued, the system restores certain specifications before report­
ing and returning control to the user. In particular, aborts 
occurring outside of TEL (within compilers, assemblers, or 
user programs) result in all previous output specifications 
and file assignments being restored to the specifications in 
effect at the beginning of the job step. 

When syntax errors are encountered in input messages, the 
input is erased and an error message is sent to the terminal. 
An entirely new command must be issued. 

Major Operations 17 



ENTERING PROGRAMS FROM TERMINAL 

Whenever the input designator ME isencountered, such as in 
the processing of META, COBOL or FORT4 commands, the car­
rier is returned to the left margin of the next line and a prompt 
character is sent to the terminal. A program statement can 
then be entered. It is fol lowed by a carriage return or line 
feed character to identify the end of the statement. Error 
commentary, if any, is sent to the terminal immediately 
thereafter. The end of source input is signaled either by the 
ESC and F keys (for META, COBOL, and FORT4) or by the 
appropriate subsystem command (such as END). 

To aid in formatting, print columns on the terminal's platen 
are in a one-to-one correspondence with card columns. 
Trailing blanks are assumed for short lines. The terminal's 
tab stops shou Id be set by the user to conform to the pro­
gramming language being used and will be simulated if 
tab simulation is in effect. For FORTRAN, a single tab 
stop is set at column 7. For Meta-Symbol, tab stops are 
set at columns 10, 19, and 37. 

The handling and simulation of tab stops is described in 
Chapters 2 and 10. Briefly, tab simulation works in the fol­
lowing way. Spaces are sent to the terminal to bring the 
carrier to the position indicated by the next tab position 
that has been set. Tabbing requested when the carrier is 
beyond the last set tab position is simulated by a single 
space. 

DEBUGGING INFORMATION 

The ROM output of a Meta-Symbol assembly contains 
sufficient information for subsequent debugging at 
assembly-language level under Delta. However, for sym­
bo I ic debugging, a symbol tab I e is needed. The user can 
get a symbol table by using the SD option during assembly. 

To debug FORTRAN programs under FDP, additional infor­
mation must accompany the compiled code. This informa­
tion is not normally produced by the compiler since it 
increases the size of object programs and decreases their 
execution speed. To produce the information for a specific 
compilation, the DEBUG option for the FORT4 command 
must be used (Chapter 4). 

LINKING OBJECT PROGRAMS 

The on-line linking and loading of programs is carried out 
by the Link processor. Link constructs a single entity cal led 
a load module (LM) which is an executable program formed 
from relocatable object modules (ROMs). The Link pro­
cessor is called implicitly by a LINK or RUN command 
given at the TEL level. These two commands are discussed 
in detail in this chapter and are summarized again in the 
Link processor chapter. 

ROMs and LMs are both representations of programs and 
data. ROMs are designed so that they can be efficiently 
combined with other ROMs, and LMs are designed so that 

18 Major Operations 

they can be efficiently translated into executable programs 
and I oaded into core. Both may be pictured as bodies of 
potential machine code to which symbol tablesareappended. 
These symbol tables list the correspondence between the 
symbolic identifiers used in the original source program and 
the values of virtual core locations that have been assigned 
to them. Some of these identifiers are defined and refer­
enced within the same module and are internal symbols. 
Others are defined (DEF) and referenced (REF) in separate 
modules and are global symbols. 

Functionally, these modules can be compared with black 
boxes with labeled connectors dangling from them, some 
pointing out and others in. The labeled connectors are the 
global symbols associated with the modules; the internal 
connections have all been sealed and are hidden. In the 
process of linking modules, internal symbols associated 
with the constituent partsof the new load moduleare sealed 
and hidden, but all global symbols are sti II visible. 

Continuing the black box analogy, if a module is split open, 
a jumble of internal connections should be visible. If the 
module has been tested and is ready for production, the in­
ternal connections need not be labeled. However, if the 
module is still in the debugging stage, the labels may be 
necessary. An option is provided in the LINK command to 
indicate that the internal symbols associated with a module 
are to be kept with the resulting load module. 

Note that LINK is a one-pass loader. It is beyond the scope 
of a one-pass loader to handle the multiple use of dummy sec­
tions with code that involves REFs that have not been satisfied. 

SIMPLE LINKAGES 

Most commonplace linkages of ROMs can be carried out 
directly in TEL and are initiated with the LINK command. 
A simplified form of this command is 

LINK rom[,rom] ••• [,romJ[g~ER lmn] 

where 

rom specifies a relocatable object module and may 
be either a file identification (fid) or a dollar 
sign. The dollar sign designates the most recent 
compilation or assembly. 

lmn (load module name) specifies where the load 

Example: 

module is to be placed and may be a file identifi­
cation (fid) or dollar sign. If lmn is omitted, the 
resulting load module is placed in a special file 
and is available for subsequent execution (see 
Initiating Execution}. TEL commands (including 
their abbreviated forms} cannot be used as load 
module names. 

Assume that a load module, F, is to be created for execu­
tion from files A, B, C, and D. 

!LINK A,B,C,D ON F8 
T 



LOAD MODULE SYMBOL TABLES 

A load module consists of three parts: a body of code, a 
table of global symbols, and a table or set of tables of in­
ternal symbols. Each table of internal symbols is associated 
with a specific input module (ROM) and is identified by the 
file name of that module. This identification is used by 
Delta to specify the set of internal symbols to be used for 
debugging. The section titled "Merging Internal Symbol 
Tables" describes what happens to the tables when a ROM 
is linked with other ROMs. 

An optional parameter is used with the LINK command to 
indicate when the internal symbols of an input module are 
to be kept with the resulting load module. The rules 
governing this parameter are as fol lows: 

l. The parenthesized letters "NI" preceding the file 
identification specify that internal symbols for that 
module are not to be included in the load module; 
the parenthesized letter "I" specifies that internal 
symbols are to be included. 

2. Once given, a specification applies to all subsequent 
modules in the command until the occurrence of a new 
specification • 

3. In the absence of any specifications, all internal sym­
bols are retained. 

Example: 

Assume that a load module, F, is to be created from files 
A, B, C, and D. Internal symbol tables are to be created 
for files A and D but not for files B and C. 

.!_LINK A, (NI)B, C, (I)D ON F@) 

MERGING INTERNAL SYMBOL TABLES 

Keeping the internal symbol table for each input module 
uniquely identified in a load module is useful when dupli­
cate names have been used in the programming of the input 
modules. However, if duplicate names have not been used, 
several symbol tables may be merged into a single table in 
the resulting load module by enclosing the list of input 
modules named in the command in parentheses. 

LINK (rom[,rom] ••• [,rom ]) [g~ER Im~ 

Only one level of parentheses is allowed. Multiple 
uses of internal identifiers are resolved by assigning 
them to the object they identify in the first (reading from 
left to right) input module with which they were associated. 
The identification given to the internal symbol table is the 
name of the last input module specified in the merge. 

Example: 

Assume that a load module, F, is to be created from ROMs 
A, B, C, and D. The internal symbols for files D and A 
are to be merged. The internal symbols for B and C are 
not to be included in load module F. 

LLINK (A,D), (NI) B,C ON F@) 

I 
-'-

SEARCHING LIBRARIES 

Unsatisfied external references are resolved by specifying 
the order and identification (lid) of libraries to be searched 
after the input modules have been linked. A list of library 
identifications (lid}, separated by commas, is appended to 
the list of modules in the LINK command and is separated 
from the module list by a semicolon. 

LINKrom [,rom] ••• [,rom] [g~ER lmn] ~lid ~lid]] 

L ... [, lidJ] 

where lid specifies a library file identification (fid). In 
the absence of any other specifications, public library Pl 
is associated with the load module to satisfy external ref­
erences and the system (ROM)libraryissearched if neces­
sary. Optional search codes may be entered anywhere in 
the command except between a preposition and its object. 
For convenience, they are shown below immediately fol­
lowing the command verb. 

LINK [codes]rom[,rom] ••• [,rom] [g~ER lmnJ=i 

LG, id[, lid] ••• [, lid]] 

where codes may be one or more of the fol lowing: 

(L) specifies that the system I ibrary is to be searched 
to satisfy external references that have not been 
satisfied by the program. (Th is is a default option. ) 

(NL) specifies that a system library search is not 

(P.) 
I 

required. 

specifies that the ith public core I ibrary is to be 
associated with the program to satisfy external ref­
erences. Only one public library may be associated 
with a program. PO and Pl are supplied by Xerox; Pl 
contains a subset of the FORTRAN I ibrary sub­
routines; PO includes Pl and the FORTRAN Debug 
Package. Additional public librariesmustbenamed 
P2-P9andJl-J9. (Pl is a default option.) 

equivalent to (PO). (FDP) 

(NP) specifies that a public core library is not 
required. 

The sequence of the library search is as follows: User li­
braries are searched first, the public library is associated, 
and the system library is searched. 

Major Operations 19 



Examples: 

1. Assume that a load module, F, is to be created from 
files A, B, C, and D. Internal symbols for files Band 
Care not to be included in the load module; internal 
symbols for files D and A are to be merged. Two user 
libraries, G and H, are to be searched to satisfy ex­
ternal references. Public library Pl is to be associated 
with the load module but no search of the system 
library is required • 

.!_LINK (D,A), (NI)B, C ON F;G, H@l 

2. Assume the same problem as in the previous example 
except that the system Ii brary is to be searched for 
external references and public library P2 is to be 
associated with the load module. 

! LINK (L)(P2)(D,A), (NI)B,C ON F;G,H@l 

3. Assume the same conditions as in the first example 
except that no Ii brari es are to be searched. 

! LINK (NL)(NP)(D,A),(NI)B,C ON F@l 

END ACTIONS AND ERROR DISPLAYS 

Options governing error displays consist of parenthesized 
codes. These codes may be placed anywhere in the com­
mand except between a preposition and its object in the 
same manner as the Ii brary search options. 

(D) specifies that al I unsatisfied internal and ex-
ternal symbols are to be displayed at the comple­
tion of the linking process (including library 
searches, if specified). The unsatisfied symbols 
are identified as to whether they are internal or 
external and to which module they belong. 

(ND) specifies that the unsatisfied internal and ex-
ternal symbols are not to be displayed. 

(C) specifies that all conflicting internal and ex-
ternal symbols are to be displayed. The symbols 
are displayed with their source (module name) and 
type (internal or external). 

(NC) specifies that the conflicting symbols are not 
to be displayed. 

(M) specifies that the load map is to be displayed 
upon completion of the linking process. The sym­
bols are displayed by source with type resolution 
and value. 

(NM) specifies that the load map is not to be displayed. 

The normal default options are D, C, and NM. 

20 Major Operations 

LOADING PROGRAMS AND INITIATING EXECUTION 

Any stored load module may be loaded into core and started 
by presenting TEL with the name of the load module (lmn) 
as a command verb. Additional parameters may be given 
to specify assignments. The format of the command is 
the same as for FORT4 and MET A commands with a load 
module name replacing the processor name. 

lmn ~p] [g~ER [rom] [,list]] 

where lmn is the load module name and has the following 
format: 

name [ [account][. password]] 

TEL commands (including their abbreviated forms) cannot 
be used as load module names. 

When lmn is used as a command verb, the default account 
is interpreted as follows: 

name implies the system account (i.e., the :SYS 
account). 

name. implies the log-on account. 

name. account specifies an account and no password. 

name. account. password 
password. 

specifies an account and 

name .. password implies the log-on account and 
specifies a password. 

sp is the identification (fid or ME) of the input file 
to be assigned to the M:SI DCB. 

rom is the identification {fid) of the output file to 
be assigned to the M:GO DCB. 

list is the identification (fid, LP, or ME) of the 
output file to be assigned to the M:LO DCB. 

TEL scans the parameters in an attempt to create assign­
ments as it does for the FORT 4 and MET A commands. 
Parameters enclosed in parentheses are ignored. If the 
above syntax is not observed, the scan is not performed. 

Examples: 

! TESTOR@) 

(loads the LM using the system account) 

! TESTOR.@) 

(loads the LM using the log-on account) 



!TESTOR.1234@) 

(loads the LM using account 1234) 

TESTOR •. SECRET@ 

(loads the LM using the log-on account and the pass­
word "SECRET") 

!TESTOR FILEA ON FILEB, FILEC@l 

(loads the LM using the system account - FILEA is as­
signed to the M:SI DCB, FILEB to the M:GO DCB, and 
FILEC to the M:LO DCB) 

.!_TESTOR (ABC(DEF(GHl)JK))@\ 

(loads the LM using the system account and passes the 
line image to the program, starting at JIT word location 
J:CCBUF) 

Two other TEL commands are provided to initiate the execu­
tion of a program. One of these commands (ST ART) loads a 
load module into core and starts execution at its beginning 
address. The other command (RUN) links relocatable object 
modules, loads the resulting load module into core, and 
starts execution. 

The basic format of the ST ART command is 

S(TART] [~mnJ 

where lmn is the name (fid) of the load module to be exe­
cuted. If lmn is omitted or a dollar sign is specified, the 
last load module formed by LINK on the $file is executed. 

The RUN command is a combination of LINK and START. 
It has the following basic format: 

RUN(codes] (rom (,rom ] ••• [,rom]]~~ER lmj----. 

L[;lid(,lid] ••• (,lid]] 

Al I options of the LINK command may be exercised in the 
RUN command in exactly the same manner. A dollar sign 
may be used for rom to designate the most recent assembly 
or compilation. If no rom specification is given, the re­
su It of the last major operation (assembly or com pi lat ion) is 
loaded and executed. 

Examples: 

1. Assume that file A is to be assembled, loaded, and 
executed. 

! META A@ 

.!_RUN@) 

2. Assume there are three modules to be loaded: A, B, 
and C. The interna I symbols for A and B are to be 

. kept with the resulting load module. The internal 
symbols for Care not. User library D and the system 
library are to be searched for external references 
that have not been satis'fied by the program. Public 
library P2 is to be associated with the program. 

.!_RUN (L)(P2)(I)A,B,(NI)C;D8 

INITIATING DEBUGGING OPERATIONS 

Programs can be executed under the control of one of the 
two debugging systems, Delta or FDP. The means by which 
Delta and FDP may be invoked are outlined below. 

DELTA 

1. Delta may be called by appending the words UNDER 
DELTA to either of the following commands: 

RUN ... (UNDER DEL TA] 

S(TART] ••• [U[NDER DELTA]] 

Note that UNDER DELTA may be abbreviated to U in 
the ST ART command. 

2. Delta may be called by using the U command. This 
command causes the words UNDER DELTA to be inferred 
in the command that immediately follows. For example, 
the sequence 

!U@l 
JRUN FILEA @l 

is equivalent to 

lRUN FILEA UNDER DELTA@ 

An important feature of the U command is that it pro­
vides the only means by which the words UNDER DELTA 
may be appended to the following command: 

lmn~pJ[g~ER (rom](,listJ] 

For both of the above methods of invoking Delta, con­
trol passes to De I ta (rather than to the program to be 
executed). Delta sends an identifying message to the 
terminal and awaits commands. 

3. Delta may also be called when execution has been initi­
ated without it. This is usually done after an interruption 
by the user or an error comment by the system. In this 
case, Delta is called by typing the TEL command 

DELTA 

Control passes to Delta and execution of the program can 
be continued in a debugging mode. 

Major Operations 21 



FDP 

l. FDP may be called by appending the words UNDER FDP 
to either of the following commands: 

RUN ... [UNDER FDP] 

LINK ... [UNDER FDP] 

2. FDP may also be initiated by specifying either of the 
library-search codes PO or FDP in a RUN or LINK com­
mand. For example, 

RUN (PO)[rom][,rom] ... [,rom] 

This command associates public library Pl and FDP 
with the user program, thus allowing execution of the 
program under FDP. 

MANAGING AND BACKING UP FILES 

File management and information-transfer capabilities are 
provided by the PCL processor (Chapter 5). PCL can be 
called implicitly, however, at TEL level, via any of the 
fol lowing commands: 

COPY 

DELETE 

L (which is the TEL form of the PCL LIST command). 

COPY and DELETE are discussed in this section. The L 
command is discussed in a later section. 

A very simple form of the COPY command is as fol lows: 

{Tot } 
C[OPY] sf OVER df 

where 

sf specifies an input device or a source file on 
RAD, labeled tape, or disk pack. 

df specifies an output device or a destination file 
on RAD, labeled tape, or disk pack. 

The transfer of information to a printer or to the terminal 
may be aborted by depressing the BREAK key. 

The many additional variations of the COPY command, as 
described in the section on PCL, are also available through 
TEL. 

Files can be deleted with the TEL DELETE command. This 
command has the following format: 

D[ELETE] { ~p~lrial no.]/}fid[,fid] ••• 

where fid is the identification of the file to be deleted. 
Deletions cannot be interrupted after they have been started. 

tWherever TO is specified, ON may be substituted. 

22 Major Operations 

Note that although the COPY and DELETE command mne­
monics may be abbreviated at the TEL level, they may not 
be abbreviated when used as commands while PCL is 
active. 

Files created or modified during an on-I ine session may be 
saved by using the BACKUP command. The format of this 
command is 

BACKUP fid 

where fid (JO-character limit) names the file to be copied 
to the standard system backup tape. Automatic system re­
start includes restoration of all entries on the backup tape 
onto the permanent-file disk. 

The backup process is mechanized by on asynchronous pro­
cess that handles backups for all users. Therefore, there 
may be o delay between the time the backup command is 
issued and the time that the file is placed on tape. Also, 
by rules of simultaneous file access, the file may be un­
available to the user during the time it is being copied by 
BACKUP. The user-requested backup process delivers error 
messages os well os successful completion messages to a 
keyed file {called MAILBOX) in the user's account. The 
user may print his MAILBOX file using the command. 

C[OPY] MAILBOX [ON ME] 

SUBMITIING BATCH JOBS 

Programming functions described earlier in this chapter are 
performed on-line. The user may also compose batch job­
control 'decks' on-line using Edit, and submit these to the 
batch queue for later execution. Optionally, the spec­
ification field of the JOB control command may be left 
blank and the Batch processor (which is implicitly called 
by the command described below) will supply the missing 
subfields before submitting the job. The command used for 
this purpose hos the form 

BATCH fidCfid] ••• 

where fid is the identification of a job file to be submitted 
for batch processing. This command may be executed in 
batch mode as well as on-line mode. 

The system responds to this command by assigning each 
batch job a job identification (jid) and sending one of the 
following messages to the terminal or printer (M:LL) for 
each botch job. 

ID = jid SUBMITTED time-date · 

WAITING: n TO RUN 

or 

ID = jid SUBMITTED time-date 

RUNNING 



The status of one or more jobs submitted to the batch queue 
may be interrogated at any time by typing 

JOB jid[,jid, '. .. I jid) 

where jid is the job identification reported when the job 
was submitted using the BATCH command. Response is one 
of the fol lowing: 

COMPLETE 

EH? 

DOESN'T EXIST 

RUNNING 

WAITING: n TO RUN 

WAITING TO OUTPUT 

if the job has been run. 

if the jid is indecipherable. 

if the job never existed. 

if the job is currently in 
execution. 

if the job is waiting to run 
behind n others. 

if the job has run and sym­
biont output remains to be 
printed or punched. 

A command is provided to cancel previously submitted batch 
jobs. The command has the form 

CANCEL jid 

where jid is the job identification reported when the job 
was submitted using the BATCH command. 

If the file is not an input file or has been processed, the 
following message is issued on the user's console: 

COMPLETED OR NOT INPUT 

If the file is input and waiting to be scheduled, it is de­
leted. If the job is already running, it is aborted. In both 
cases, a message is sent to the operator's console. 

If the specified job was submitted under some other account, 
the following message is output on the user's console: 

NOT YOUR FILE 

CALLING PROCESSORS 

Most processors are called by typing the processor identifi­
cation. The processors respond by identifying themselves 
and then typing their prompt character at the left margin 
of the next line before returning control to the user. The 
processor identification and prompt character for each user 
interactive processor that may be called at the TEL level 
are listed below. 

APL (no prompt) 
FORT4 > 
COBOL$ 
META> 
BASIC> 

Example: 

FLAG> 
EDIT* 
DELTA bell 
PCL < 

Assume that the PCL processor is to be called. 

!PCL@l 
PCL DOO HERE 
< 

INTERRUPTING, RESUMING, AND 
TERMINATING EXECUTION 

There are several courses of action that may be taken when­
ever a major operation, a processor operation, or an execu­
ting user program has been stopped or interrupted and con­
trol hos been returned to TEL. 

l. Any of the following commands may be given: 

BACKUP 
CANCEL 
DELTA 
DISPLAY 
DONT COMMENT 
DONT LIST 
DONT OUTPUT 
JOB 
MESSAGE 

PASSWORD 
PLATEN 
PRINT 
SAVE 
STATUS 
TABS 
TERMINAL 
TERMINAL STATUS 

The interrupted operation may then be resumed by one 
of the fol lowing commands: 

CONTINUE 
GO 
PROCEED 

2. The interrupted operation may be given up completely 
by entering one of the fol lowing: · 

Q[UIT) 
END 
STOP 

In this case, TEL restores certain specifications before 
returning control to the user (see "Error Handling and 
End Actions"). 

3. The interrupted operation may be given up completely 
by entering a request for a load module followed by a 
NEW LINE character (rather than a RETURN character). 
The NEW LINE character is effectively an implicit 
QUIT command. The requested load module is then 
executed. 

4. The interrupted operation may be given up completely 
by entering any of the fol lowing commands: 

APL 
BASIC 
BATCH 
BUILD 

BYE 
COBOL 
COPY 
DELETE 

EDIT 
FORT4 
LINK 
META 

OFF 
PCL 
RUN 
START 

In this case, the effect is the same as if a QUIT, END, 
or STOP command had been given. In addition, op­
eration of the specified command begins. 

5. One of the following commands may be given: 

COMMENT 
GET 
LIST 
lmn (the implicit loading of a program by giving 

its name.) 

Major Operations 23 



OUTPUT 
SET 

TEL wi 11 respond with the message 

QUIT? 

If the user responds to the QUIT? message with a 
RETURN or NEW LINE character by itself, the inter­
rupted operation will be aborted and the command just 
issued will take effect. {The user may respond with a 
QUIT, END, or STOP command and the interrupted 
operation will be aborted, but the user will have to 
reenter the desired command.) If the user responds 
with a GO, CONTINUE, or PROCEED command, the 
interrupted operation wi II be resumed. 

MINOR OPERATIONS 

Minor operations consist of the operations that support on­
line programming. They include checkpointing, assigning 
I/O devices and DCB parameters, determining current user 
status, and so on. 

LOGGING OFF 

The user terminates an on-line session by typing either of 
the following commands: 

OFF 
BYE 

The user is logged off and a summary of accounting informa­
tion for the session is printed. 

CHANGING THE LOG-ON PASSWORD 

A password is an optional part of the information by which 
a user identifies himself when logging onto the system. The 
purpose of a log-on password is to allow a user to protect his 
resources and files by preventing illicit use of his name and 
account number. The PASSWORD command allows the user 
to change his password whenever he wishes so that it will be 
difficult for anyone else to know what the password is. The 
format of the command is 

PASSWORD [password) 

where password is the password to be associated with the 
user's name and account number. It must be one to eight 
characters in length and may consist of any of the following: 

A-Z a-z 0-9 - $ * % : # {v - backspace 

The specified possword must thereafter be used when logging 
on until it is changed or cancelled. If a password is not spec­
ified in the command, the current password is cancelled. 

It is important for the user to remember his password because 
only the system manager can determine what a password is 
when it is forgotten. 

24 Minor Operations 

CHECKPOINTING ON-LINE SESSIONS 

During interruptions of execution, core images of programs 
may be saved on disk storage for subsequent recall and con­
tinuation. The SAVE command is used for this purpose. The 
format of this command is 

where fid is the identification of the file in which the im­
age should be saved. 

A checkpointed core image may be recalled for continua­
tion by either the GET or RESTORE commands. The formats 
of these commands are: 

GET fid 
RESTORE fid 

where fid is the identification of the file to be recalled. 
Th is file must be in the user's log-on account. The pro­
gram may be restarted with a CONTINUE command. 

SAVE is implemented in such a way that execution of a pro­
gram is unaffected by a SAVE-CONTINUE sequence of op­
erations except for the time delay. Especially important is 
the fact that open files are not closed or repositioned. 

A GET or RESTORE operation, however, requires that any 
current execution be terminated and all files using default 
close options be closed. This means that current position in­
formation is lost for IN and I NO UT files {they are effectively 
rewound) and OUT and OUTIN files are released. Thus, 
whenever a GET or RESTORE command is issued, the user 
must take responsibility for repositioning of IN files and re­
creation of OUT files that were open at the time of the save 
in whatever way is appropriate to continuation of his program. 

The collection of I/O assignments made during the job {up to 
the point of SAVE) and collected in the user's assign-merge 
table is not preserved, but the active DCBs are. The effect 
of the current assign-merge activity is therefore carried over 
to the GET or RESTORE operation through DCBs. The assign­
merge table current at GET or RESTORE time has no effect 
on the retrieved DCBs. 

SAVE remembers the names of any shared processors associ­
ated with the program that are to be saved. These same 
named processors are reassociated by the GET or RESTORE 
command. If the shared processor has changed in the elapsed 
time between the SAVE and the GET {or RESTORE), proper 
continuation may not be achieved. 

Symbiont output that has been produced, say for printer or 
punch, is packaged for delivery to the appropriate device 
whenever a SAVE command is given. 

ASSIGNING 1/0 DEVICES AND DCB PARAMETERS 

DCB assignments to files or devices, and many DCB poram­
eters, may be set from an on-line terminal. This includes 
most of the porameters that are set by a batch ASSIGN 



command and many of the parameters that are set by OPEN 
and DEVICE procedure calls in a batch program. The com­
mand that sets these assignments and parameters is the 
SET command. 

The system retains all information supplied by SET commands 
in a permanent table associatedwitheachuser. This table 
is called the assign-merge table and is stored on disk. At 
each job step (i.e., each time a new user program or pro­
cessor is loaded), the information in the assign-merge table 
is merged into the DCBs associated with the program. An 
entry for a DCB that is currently in the assign-merge table 
may be deleted by the command 

SET dcb[O] 

This al lows the default assignment (if any) for the specified 
DCB to take effect. The command 

R[ESET] 

resets a 11 DC Bs back to their system defau I ts. 

Assignments are one of two types: device (printer, punch, 
magnetic tape, etc.) or file (RAD, disk pack, or labeled 
magnetic tape). If a DCB that has already been assigned 
to a device is assigned to a file, the new information re­
places the old information in the assign-merge table. The 
same procedure applies to device assignments for DCBs 
currently assigned to files. Each DCB assignment requires 
an entry in the assign-merge table. The total number of 
DCBs that may be assigned is limited to 12. 

Changes to device parameters are added to DCBs assigned 
to devices. Changes to device parameters for DCBs as­
signed to files yield an error message. 

SET commands may be issued only between job steps, i.e., 
not during interruptions thereof. Once issued, the infor­
mation specified by the command for all but the M:SI DCB 
remains in effect until revoked, regardless of whether one 
or many job steps are included in the session. 

The several formats of the SET command are: 

SET deb [o] 

SET deb device ;dopt[;dopt) ••• [;dopt] [
oplabel ] [ ~ 
tapecode[tapeid] 

ftapecodeltapeid]/fidl [ [ ] [ ]~ 
SET dcblfilecode[packid]/fidj ;fopt ;fopt ••• ;fopt~ 

where 

deb identifies a DCB and is in the form M:x or F:x 
where x is 1 to 9 characters. (Assignments of 
M:UC, M:OC, and M:XX are not allowed.) 

oplabel specifies an operational label (Bl, C, CI, 
etc.). (See Table 3.) 

device specifies a device code (CP, PL, LP) or I 
a logical device name (Cl, Ll, Pl, ... ). (See 
Table 3.) 

tapecode specifies a magnetic tape code (9T, 7T, 
MT). (See Table 3.) 

filecode specifies a secondary storage code (DC 
or DP). (See Table 3.) 

tapeid if followed by /fid, specifies a serial num-
ber for a labeled tape and has the form #serial 
number. The tape is accessed with the serial num­
ber applying as both an INSN and an OUTSN. 
(Serial numbers may contain alphanumeric char­
acters and are 1-4 characters in length.) If not 
fol lowed by /fid, it specifies an external reel 
number for free-form tape. 

packid must be followed by /fid; specifies a serial 
number of a private pack and has the form #serial 
number. 

/fid specifies the name of a file on tape or sec-
ondary storage. A maximum of 11 characters is 
allowed. The form is 

[
.account J 

name .account. password 
•• password 

If not preceded by a tapecode or filecode, fi lecode 
DC is imp I ied. 

dopt specifies a device option. (See Table 4.) 

fopt specifies a file option. (See Table 5.) 

Spaces may be arbitrarily used in a SET command between 
numbers, words, and identifiers but may not be embedded 
within them. 

Examples: 

1. Assume that the Monitor DCB for listing output is to be 
assigned to disk storage file N under account A with 
password P. 

!SET M:LO/N.A.P@J 

2. Assume that the Monitor DCB for source input is to be 
assigned tofileMon magnetic tape serial number 4003. 

!SET M:SI MT#4003/M8 

3. Assume that tab positions 27, 38, 47, and 75 are to be 
added to the listing output DCB. In addition, the first 

Minor Operations 25 



Table 3. DCB Assignment Codes - SET Command 

Type Codes Description 

Opera ti ona I Label BI, BO, C, CI, CO, DO, EI, When the DCB is assigned to one of the system operational labels, 
EO, GO, LL, LO, OC, PO, the actual device connected to the DCB is that implied by the 
SI, SL, SO, UC operational label, if any, for on-line mode. 

NO No assignment, i.e., no default is to be applied. 

Device CP Card punch. 
LP line Printer. 
Pl Plotter. 
ll, Cl, Pl. .• Any of the logical device names defined at SYSGEN. 

Magnetic Tape 9T 9-track tape. } Tape is free-form if no fid is given, 
7T 7-track tape. labeled if it is (e.g., 9T#3/fid is 
MT Any magnetic tape. labeled, but 9T#3 is free-form). 

Secondary DC RAD data file. (This is the default code if no other code is given.) 
DP Disk pack storage. 

character of each record of the listing is to control 
vertical format and the listing is to be double spaced. 

..!_SET M: LO; T AB=27,38,47, 75; VFC;S PACE=2@) 

If the M: LO DCB is not assigned when the above 
changes are made, an error message wi 11 be sent to 
the termi no I. 

DCB ASSIGNMENT CODES 

A device assignment is made whenever a SET command 
contains an expression with an operational label or device 
code, or a tapecode/tapeid not followed by a file identifi­
cation. For each assignment, an assign-merge table entry 
is made or an existing entry is modified. DCB assignments 
are specified by the two-letter codes in Table 3. 

DEVICE OPTIONS 

SET commands specifying device options may be issued only 
between job steps. The device options take effect on sub­
sequent input or output through the DCB. The options are 
then in effect from job step to job step until reset. 

The device options al lowed for the SET commands are listed 
in Table 4. Options corresponding to the M:DEVICE options 
PAGE, FORM, SIZE, and HEADER are not provided. 

FILE OPTIONS 

When a DCB is assigned to a disk storage file or to a labeled 
tape, certain options may be specified. These options are 
the same as those that may be specified by a batch ASSIGN 

26 Minor Operations 

command with a few exceptions. Batch ASSIGN options 
that are not allowed in a SET command include: 

1. READ and WRITE - account numbers (default applies). 

2. Multiple INSN and/or OUTSN - serial numbers. 

3. RECL - record length. 

4. TRIES - recovery tries. 

5. KEYM - key maximum. 

6. VOL - volume number. 

Options that are allowed are listed in Table 5. 

MODIFYING LOGICAL DEVICE DEFINITIONS 

A logical device is a cooperative file that may be attached 
to any symbiont device that the user specifies. (Symbiont 
devices include devices such as the line printer, card 
reader, card punch, plotter, and all devices at remote 
sites that are accessed via remote processing.) At SYSGEN I 
up to 15 logical devices may be defined. Each is given a 
name (e.g., Cl, ll, Pl), each is assigned to a physical 
device, and attributes are defined for the physical device. 
The user may perform I/O through a logical device with 
the default physical device and attributes or he may change 
the physical device assignment and/or attributes to satisfy 
the requirements of his job. He makes any necessary 
changes through use of the LDEV command. The informa­
tion about the logical device is stored in a cooperative 
context block, providing for centralized information about 
the physical device even though 1/0 to that device may 
arise through more than one DCB within a job. 



Table 4. Device Options - SET Command 

Format Description 

BCD, BIN Controls the binary-BCD mode for device read and write operations. BIN used in conjunction 
with DRC will invoke the transparent mode. {See Transparent Mode section of Chapter 10.) 

COUNT =value Turns on page counting and specifies the column number at which the page number is to be 
printed. 

DATA= value Controls the beginning column for printing or punching and is a decimal value. The maximum 
value is 144. 

DRC, NODRC Turns the special formatting of records on and off. DRC specifies that the Monitor is not to do 
special formatting of records on read or write operations. NODRC specifies the Monitor is to 
do special formatting. If neither DRC nor NODRC is specified, NODRC is assumed by default. 
DRC used in conjunction with BIN will invoke the transparent mode. {See Transparent Mode 
section of Chapter 10.) 

FBCD, NOFBCD Controls the automatic conversion between external Hollerith code and internal EBCDIC code 
{FORTRAN BCD conversion). NOFBCD is assumed by default. 

L, NOL Identifies the device type. L specifies that the device must be listing type. NOL specifies 
that it need not be listing type. NOL is assumed by default. 

LINES =value Gives the number of printable lines per page and is a single decimal value. The maximum 
value is 255. 

PACK, UNPACK Controls the packed or unpacked mode of writing 7-track tape. PACK is assumed by default. 

SEQ =value Specifies that sequence numbers are to be punched in columns 77-80 of punched output. Four 
characters of nonblank sequence identification may be given for columns 73-76. Fewer than 
4 characters ore left-justified and filled with blanks. 

SPACE =value Gives the number of lines of space after printing and is a single decimal value. Values of 0 
or 1 result in single spacing. The maximum value is 255. 

TAB= tab~tob] ••• [,tab] Specifies simulated tab stops and is followed by a list of up to 16 decimal numbers, separated 
by commas, giving the column position of the stops. If all 16 stops are not specified, the 
stops given ore assigned to the first stops and the remainder ore reset. 

VFC, NOVFC Controls the formatting of printing by using the first character of each record. VFC specifies 
that the first character of each record is a format-control character. NOVFC specifies that 
records do not contain a format-control character. NOVFC is assumed by default. 

Table 5. File Options - SET Command 

Type Format Description 

Organization CONS EC Consecutive record organizoti on. 
KEYED Keyed record organization. 
RANDOM Contiguous relative - sector addressed organization. 

Access SEQUEN Records will be accessed sequentially. 
DIRECT Records wi 11 be accessed by key. 

Function IN File is read only. 
OUT File is write only. 
IN OUT Fi le is to be updated. 
OUTIN File is scratch. 

Minor Operations 27 



Table S. File Options - SET Command (cont.) 

Type Format Description 

Disposition REL OUT or OUTIN file is to be released on closing. 
SAVE OUT or OUTIN file is to be saved on closing. 

Size RSTORE =value Specifies the number of granules allocated to the RANDOM file. 

Storage Control CYLINDER Specifies that the data blocks of a public file are to be allocated from 
public disk packs having cylinder allocation. 

Key Storage NOSEP Specifies that index blocks of a public file are to be allocated in the same 
manner as data blocks. (Disk pack if possible; otherwise RAD). 

Expiration EXPIRE= ddd 
{ mm,dd,yy} Specifies either an explicit expiration date, the number of days to retain the 

NEVER 
file, or that the file is never to expire. 

The format of the LDEV command is 

LDEV stream-id(,(option)] ••• 

where 

stream-id specifies one of the logical device names 
defined during SYSGEN (e.g., Cl, Ll, Pl). 

options are as defined in Table 6. The options 
may appear in any order. 

Examples: 

l. The following command requests association of L1 with 
the local line printer and specifies that number of 
printable I ines per page is to be 60. All other attri­
butes are to be supplied by default. 

lLDEV L1 ,(DEV ,LP),(LINES,60) @) 

2. The fol lowing command requests association of LS with 
the line printer at remote workstation LAX. All other 
attributes are to be supplied by default. 

! LDEV LS ,(WSN ,LAX) ,(DEV ,LP) @) 

DETERMINING ON-LINE USER STATUS 

The current accounting records applying to an on-line ses­
sion can be displayed by entering the following command 
into a terminal: 

ST(ATUS] 

28 Minor Operations 

Output is similar to that produced at log-on time and 
includes: 

1. CPU time in minutes and ten-thousandths of a minute. 

2. Console time in hours and minutes. 

3. Number of interactions. 

4. Total charge units. 

The format of output is 

CPU=M. MMMM CON=h:mm INT=nn CHG=xxxx 

LISTING A FILE DIRECTORY 

The file directory for RAD, tape, or disk pack may be listed 
using the PCL LIST command at the TEL level. The com­
mand has the following format: 

LT(#reel-id]((s)] 
(DC (.acct]] ((s )] 
LT(#serial noJ ((sll/fidf(s)][,fid((sil ••• ] 

L fid((silLfid((s)] ••• ] 
DP(#reel-id][{s)] 
DP(#serial no.] /fid[(s)](,fid [<sll •.• ] 
FT(#serial noJ[(s)] 

where s may be A, EA, 7T, or 9T. 

Note that at the TEL level, the mnemonic must be L; whereas 
at the PCL level, the mnemonic must be LIST. The various 
specifications listed above are described in detail in the 
PCL chapter. 



Table 6. LDEV Command Options 

Option Description 

AI NIT Specifies that the attributes for the stream are to be initialized with the attributes specified on 
this LDEV command and that system defaults are to be supplied wherever an attribute is not speci-
fied. Any attributes specified for the stream on a previous LDEV command are to be ignored. 
AINIT is the default for the AINIT, ASAVE, and AREL options. 

AREL Specifies that the system table containing the attributes of this stream (which may have been set 
as the result of previous LDEV commands) is to be released and that the attributes are not to be 
reinitialized. Any other options specified (except DELETE) in this command will be ignored. 

----

ASA VE Specifies that the attributes for the stream are to be set only by options explicitly specified on 
this LDEV command. Other LDEV-specifiable attributes (which may have been set as the result 
of previous LDEV commands) are not to be changed. 

COPIES, value Specifies the number of times the file is to be processed to produce multiple copies. The range 
of values that may be specified is 1-255. The default value is 1. 

COUNT,tab Specifies that page counting is to be done and specifies the column in which the most significant 
digit of the page count is to be listed. The value of "tab" must be appropriate for the particular 
physi ca I device. (Note that if COUNT is specified for the LO device and a TITLE control com-
mand is also specified, the page count will be superimposed on the title line.) The default is no 
page counting. 

DELETE Specifies that if an output stream with the same name currently exists, all output for that 
stream wi II be deleted. (If such a stream exists and DELETE is not specified, the output for the 
stream is dispatched for processing.) If an input stream with the same name currently exists, any 
part of the stream that has not been read will automatically be deleted whether or not DELETE is 
specified. 

DEV,type Specifies the stream type, where type is a two-character mnemonic defining the DCB stream con-
nection. Valid mnemonics are either type mnemonics of the central site or of a remote worksta-
ti on. Centro I site mnemonics are those defined for symbiont devices during SYSG EN (e.g., CR, 
LP). Remote mnemonics are those specified when defining a workstation with Super (e.g., OC, LP). 

DRC Requests that Monitor logical record formatting implied by the DEV option not be performed. Any 
record formatting necessary wi II be supplied by the user. If DRC is not specified, the Monitor will 
perform logical record formatting. 

FF ORM, name Specifies the future form name (as below, with FORM) of the form to be used when the form change 
procedure (M:DEVICE (FORM)) is specified in the program for the stream. When M:DEVICE (FORM) 
is encountered, the stream wi II be dispatched for processing and restarted with name as the stream 
form. The default is none. 

FORM, name Specifies the one-to-four character name of an installation-determined paper form or card stock 
and is used in output scheduling for the device. The default is to have no special scheduling 
(i.e., the operator will determine which form to use). 

LINES,value Specifies the number of printable lines per logical page. A maximum of 32, 767 lines per page 
may be specified. The default is determined at SYSGEN. 

NOVFC See VFC, below. 

SEQ(,id] Specifies that punched output is to have decimal sequencing in columns 77-80. If a user-defined 
id is specified, it will be punched in columns 73-76 of each card. Sequencing begins with 0000. 

Minor Operations 29 



Table 6. LDEV Command Options (cont.) 

Option Description 

SPACE,va lue [,top J Specifies the spacing between lines (value) and between the top of each page and the first line 
printed (top). A value of 1 indicates that lines are to be single spaced. The greatest value that 
may be specified (for 'value' and 'top') is 15. 

SRCB Specifies that the user wi II supply a device-dependent control byte as the first byte of each rec-
ord if this is an output stream, or that he wishes to receive it as the first byte of records if the 
stream is input. This is only applicable to remote processing. 

VFC, NOVFC Specifies whether or not vertical format control characters are to be used. (These two options 
are only legal for line printers.) VFC requests that a default vertical format control character 
be added to a 11 records. NOVFC requests that the format character be stripped from the record 
if present. The default is VFC. 

WSN,name Specifies the workstation name of the remote device that is to receive the stream, where name 
can be from one to eight alphanumeric characters. The default is local output. 

LISTING SYSTEM LOAD PARAMETERS 

System load parameters supply information about current 
system operation, such as the number of users currently 
active and the current values of interactive and compute 
response times. The format of the command used to display 
this information is 

DI[SPLAY] 

Output is 

USERS= xxxx 
ETMF = xxxx 
RESPONSE 90% < xxxx MSECS 
RADS = xxxx GRANULES 

where 

USERS is the number of currently active on-I ine users. 

ET MF is the execution multiplier currently relating 
program CPU time to job throughput time. ETMF 
is calculated and updated each minute. It is a 
moving average covering the preceding minute 
calculated by summing the time spent computing 
plus the time spent waiting in high priority 
ready-to-run queues by all users, and dividing 
by the sum of time spent computing. Note that 
since the value is averaged over all users, it is 
only an approximate illeasure of how much slower 
a given process will run due to the time-sharing 
environment. 

RESPONSE gives the number of milliseconds that 
just exceeds the response time of 90 percent of 
the responses to terminal requests. 

30 Minor Operations 

RADS gives the number of unused RAD granules 
that were available in the user's account at the 
time he logged on. 

SETIING SIMULATED TAB STOPS 

Simulated tab stops for a terminal are set by the TABS 
command. The format of this command is 

TABS s[,s]. •• (,s] 

where s is a column position where a tab stop is to be 
placed. 

Up to 16 tabs, in ascending sequence, may be set. When­
ever a tab character is sent to or received from a terminal, 
spaces are sent to the terminal to position the carrier to the 
next stop that is higher than the current position (if tab simu­
lation is in effect). The setting applies until superseded by 
another TABS command or by an M:DEVICE procedure call 
in a program. (The tabs are set in the M:UC DCB.) 

DISPLAYING SIMULATED TAB STOP SETIINGS 

Current tab settings may be displayed by entering the TABS 
command in the following format: 

TABS 

Example: 

!TABS 12,108@) 
lTABS @) 
12, 108 



OBTAINING TERMINAL STATUS 

The parameters that reflect the operational status of the 
terminal may be listed by the following command: 

TERMINAL STATUS 

The information that is output is 

type 

ECHOPLEX state 

TAB SIMULATION state 

UPPER CASE RESTRICT state 

PAPER TAPE state 

SPACE INSERTION state 

LOWER CASE SHIFT state 

PARITY CHECK state 

RELATIVE TABBING state 

BACKSPACE EDIT state 

where 

type is the type of terminal and may be one of the 
following: 

state 

TTY 33 
TTY 35 
TTY 37 
Xerox 7015 
EAPL 
ESTO 
SAPL 
SSTD 

is either ON or OFF. 

CHANGING TERMINAL TYPE 

Whenever the type of terminal used with the system is 
changed from the type specified at SYSGEN time, the sys­
tem must be informed. The system uses this information to 
adjust character tables and in responses to line-delete and 
character-delete options. The format of the command used 
to identify the terminal type is 

TERMINAL type 

where type may be any one of the following: 

33 
35 
37 
7015 
EAPL 
ESTD 
SAPL 
SSTD 

for Model 33 Teletype. 
for Model 35 Teletype. 
for Model 37 Teletype. 
for Xerox Mode I 7015 Keyboard/Printer. 
for Model 2741 EBCD APL terminal. 
for Model 2741 EBCD Standard terminal. 
for Model 2741 Selectric APL terminal. 
for Model 2741 Selectric Standard terminal. 

CHANGING TERMINAL PLATEN SIZE 

The PLATEN command changes the maximum number of 
characters to be written per line on the terminal and the 
number of lines to be printed between each automatic 
page heading. The format of the command is 

PLATEN[w][,1] 

where 

w is the maximum number of characters to be writ-
ten per I ine on the terminal. If more than w char­
acters are written, a I ine feed and carriage 
return character sequence is inserted to break up 
the output into segments no longer than specified 
by w. If w is 11 or less, no line feed and carriage 
return sequence is supplied. If thew field is omit­
ted, the current width setting is retained. 

is the number of lines per page of terminal output 
and must be within the range 0-255. If no I value I 
is given, then the number of I ines per page remains 
unchanged. If I is set to 11 or less, no heading is 
produced and the page length is unlimited. 

The default case when a user logs on is equivalent to 
PLATEN 0,0. This means that no line feed and carriage 
return sequence is supplied, that no heading is produced, 
and that the page length is unlimited. 

Examples: 

! PLATEN 72,54 (£uJ 

!PLATEN ,20 ~"<) 

!PLATEN 278 

!PLATEN ,108 

!PLATEN 2 8 

sets line width to 72; lines per 
page to 54. 

sets printable lines per page to 
20; width remains unchanged. 

sets width to 27; lines remain 
unchanged. 

turns off page heading; width 
remains unchanged. 

prints full line width. 

DISPLAYING TERMINAL PLATEN SIZE 

The current platen size may be displayed by entering the 
PLATEN command in the following format: 

PLATEN 

Example: 

!PLATEN 8 
WIDTH= 012 
LINES= 099 

Minor Operations 31 



SENDING MESSAGES TD THE OPERATOR 

The MESSAGE command causes a message to be sent to the 
machine operator. The format of the command is 

M[ESSAGE] text 

the text may be from l to 44 characters. If the text exceeds 
44 characters, the first 44 characters are transmitted rather 
than reinsertion of the message being required. The ter­
minal user is informed that 44 characters have been ex­
ceeded with the following message: 

MESSG TRUNCATED AT 44 CHARS. 

PRINTING DR PUNCHING OUTPUT 

Normally the output destined for the I ine printer and the 
card punch from al I on-line compilations, assemblies, PCL 
operations, Delta dumps, etc., is accumulated on RAD or 
disk pack until the user logs off. When the user logs off, 
this output is put in the print and punch queues and is 
printed or punched when it becomes first in the queue. The 
PRINT command causes output accumulated for the line 
printer and punch to be placed in the queue at once. The 
format of the command is 

PRINT 

ERROR MESSAGES 

During each on-I ine session, a check is made for a variety 
of error conditions. Some of these error conditions are 
detected by TEL, some by BATCH (the BATCH command 
processor), and some by the Monitor. The messages that 
are output for these error conditions are listed in Tables 7 
and 8, except for Monitor error messages. These are listed 
in Appendix B. 

All error messages are variable and may be changed by the 
management of an installation through a terminal that is 
logged on with a special identification and account. The 
procedure for changing error messages is defined in the 
CP-V/SM Reference Manual, 90 16 74. 

TEL ERROR MESSAGES 

TEL error messages are all syntax messages. They are listed 
in Table 7. 

BATCH ERROR MESSAGES 

Error conditions that may be encountered and reported when 
a user has submitted a job for batch processing are I isted in 
Table 8. Three categories of error conditions may be en­
countered: command, job, or system. 

TEL COMMAND SUMMARY 

Table 9 is a summary of TEL commands. The left-hand col­
umn gives the command format, the right-hand column gives 
the command function and option codes. 

BATCH LIMITATIONS 

The on-I ine user's maximum job priority, as specified in his 
JIT, is the limiting value on the priority he can assign to a 
batch job submitted on-I ine, i.e. , through the Batch pro­
cessor. Also, the maximum values of LIMITS options that he 
can specify in a batch job submitted on-line are controlled, 
by the Batch processor, in relation to the actual priority 
assigned to the job. 

Table 7. TEL Error Messages 

Message Description 

ASSIGN LIMIT EXCEEDED The number of DCBs assigned exceeds 12. 

BAD PUST - RESPECIFY DCB The specified DCB was not properly defined by a previous SET 
command because of a machine software error. For example, the 
second SET command below would yield an error if the first SET 
command failed to assign the DCB. 

lSET M:LO LO@ 

!SET M:LO; TABS = 5, 10@ 

32 Error Messages/TEL Command Summary/Batch Limitations 



Tab I e 7. TEL Error Messages (cont. ) 

Message Description 

CANNOT ACCESS THE FILE If this message is returned for a PASSWORD command, it indicates 
that TEL cannot read the user's file because it is open. If the mes-
sage is returned for a DELETE command, it indicates that no pass-
word was specified or that the file to be deleted is in another 
account. 

COMMAND LEGAL AT JOB STEP ONLY The command can be issued in between job steps only. 
-

CONFLICT WITH DELTA-TRY LATER A conflict in use of the M:XX DCB exists. 
- ·------

CONTINUE WHAT? The CONTINUE command can be issued only when a major opera-
ti on, a processor, or executing user program has been stopped or 
interrupted. An attempt to use it at other times such as between 
job steps will result in an error message. 

DCB NOT ASSIGNED The SET command cannot be used to update a DCB that has not 
been assigned. 

EXPANDED INPUT EXCEEDS 80 CHARACTERS An abbreviated command (D, E, C, B, L) exceeded 80 characters 
when the command mnemonic was expanded. 

FILE DOES NOT EXIST The file specified by the BACKUP command does not exist. 

FILE: ME ILLEGAL The terminal may not be used for the requested purpose. 

GET WHAT? TEL cannot find the GET file. 

IMPROPER FILE 

BAD DCB The specified GET file cannot be used because of illegal format. 

BAD JIT 

BAD LIMITS 

IMPROPER FORMAT FOR SET CMD A format error has been made in the SET command. 

IN PUT ERROR - RETRY TEL received a parity error in the input from the terminal. 

INSUFFICIENT ASSIGN/MERGE ENTRY SIZE The total size of all DCB assignments is too large. 

lmn NOT FOUND The load module specified by the START command does not exist. 

ON FILE fid ILLEGAL The file following the preposition ON already exists. 

dopt OPTION ILLEGAL FOR DEVICES The option named in the SET command is not applicable to the 
device. Only the first non-applicable option is identified (dopt). 

fopt OPTION ILLEGAL FOR FILE The option named in the SET command is not applicable to the 
file. Only the first non-applicable option is identified (fopt). 

PASSWORD CHANGE SUCCESSFUL The change specified by the PASSWORD command has been made. 

PROCESS NOW ACTNE: QUIT OR CONTINUE The last command was issued during a ye interrupt and would abort 
the previous command if executed. For example, assume a LINK 
command is interrupted, 

I LINK A, B ON F @ 
ye 

! FORT4 AA ON BB @) 

Batch Limitations 33 



Table 7. TEL Error Messages (cont.) 

Message Description 

QUIT WHAT? QUIT is legal only in a "break" condition. An error message is 
returned if the command is issued in between job steps. 

SAVE WHAT? TEL cannot find the SAVE file. 

START WHAT? Either the START command did not specify a load module or it 
specified a dollar sign and there was no previous link operation. 

TERMINAL TYPE NOT VALID The TERMINAL command specified a terminal type other than 33, 
35, 37, 7015, EAPL, ESTD, SAPL, or SSTD. 

UNABLE TO READ A/M TABLE TEL could not get the 1/0 devices necessary to read the assign-
merge table during the job step. The message indicates there is 
something wrong with disk storage or the software. 

WHAT FID? The name of the file was not specified by the DELETE command. 

Table 8. Batch Service Error Messages 

Type Message Description 

Command EH? @ n A syntax error exists at character n. 

Job COMMAND REJECTED The file contains a BIN or FIN control command. 

COMPLETED OR NOT INPUT The user attempted to CANCEL a job that is not an input file or has 
already been processed. 

DATA LOST The job expects card image input: 80 characters-per-record maximum, 
EBCDIC; 120 characters-per-record maximum, binary. 

EH? @ n A syntax error exists at character n. 

ILLEGAL PRIORITY The terminal-batch job priority may not exceed the user's maximum on-
line priority. This maximum value is contained in the user's job-
information-table (JIT). 

ILLEGAL NAME The name on the JOB control command must match the user log-on 
name. 

ILLEGAL ACCOUNT The account on the JOB control command must match the user log-on 
account. 

MISSING JOB COMMAND The first record of the job must be a JOB control command. 

34 Batch Limitations 



Tobie 8. Botch Service Error Messages (cont.) 

Type Message Description 

Job NOT YOUR FILE The user attempted to CANCEL a job that was submitted under another 
(cont.) account. 

System BATCH QUEUE FULL No more symbiont space is ovoiloble or the queue is ful I. 

Table 9. TEL Command Summary 

Command Description 

BACKUP fid Saves the specified file on a system tape. In case 
of a crash in which files ore lost, files on the tape 
wi 11 be restored. 

BATCH fid[,fid] ..• Enters the specified file(s) in the botch job stream. 

B[UILD] fid Accepts a new fi I e from the term i no I. 

BYE Disconnects the terminal from the system and pro-
vides on accounting summary. This command is 
equivalent to the OFF command. 

CANCEL jid Cancels a previously submitted botch job. 
I--· 

COBOL [spJ( g~ER (rom][,I istJ] Assembles the specified source program. 

Options: 

sp may be fid or ME. 
rom may be fid only. 
list may be fid, LP, or ME. 

Output may be interrupted and continued by the 
following commands: 

LIST DONT LIST 
OUTPUT DONT OUTPUT 
COMMENT DONT COMMENT 

CONTINUE 

[ON I ist] Directs error commentary to the specified device, COMMENT OVER 
or counteracts the preceding DONT COMMENT 
command. Options: I ist may be fid, LP, or ME. 

CONTINUE Continues processing from the point of interrup-
ti on. This command is equivalent to the GO and 
PROCEED commands. 

{Tot } Copies a file or device input to the specified file C[OPY] sf OVER df 
or device. 

(Simplified format) Options: 

sf may be fid or device code. 
df may be fid or device code. 

(See PCL section for complete description.) 

tWhenever TO is specified, ON may be substituted. 

Batch limitations 35 



Table 9. TEL Command Summary {cont.) 

Command Description 

[ ] {[DC/] } . [ . ] D ELETE DP[# . I b ]/ f1d ,f1d ... seria num er 
Deletes the specified files. 

DELTA Calls the Delta processor. 

Dl[SPLAY] Lists the current values of various system parameters. 

DONT COMMENT Stops error commentary output. 

DONT LIST Stops I isting output. 

DONT OUTPUT Stops object output. 

E[DIT] fid Calls Edit to modify a file. 

END Terminates the current job step. This command is 
equivalent to the STOP and QUIT commands. 

FORT4 [sp] [g~ER [rom][,list]] Compiles a Xerox Extended FORTRAN N source 
program. 

Options: 

sp may be fid or ME. 
rom may be fid only. 
list may be fid, LP, or ME. 

Output may be interrupted and continued by the 
fol lowing commands: 

LIST DONT LIST 
OUTPUT DONT OUTPUT 
COMMENT DONT COMMENT 

CONTINUE 

GET fid Restores the previously saved core image. This 
command is equivalent to the RESTORE command. 

GO Continue processing from the point of interruption. 
This command is equivalent to the CONTINUE and 
PROCEED commands. 

JOB jid Requests the status of remotely entered jobs. 

.., 
LT[# reel-id] [(s)] Lists file names and, optionally, attributes from the 
[DC[. acct]][(s)] account directory, tape, or disk pack. 
L T[#seria I no.] [(s}]/fid [(s)][,fid[ {s)J. .. ] 

L fid[(s)][,fid[(s)] •.. ] Option: s may be A, EA, 7T, or 9T. 
DP[# reel -id] [(s)] 
DP~serial no.] /fid[(s)][,fid[(s)] ... ] 
FT serial no.] [(s)] 

.... ..J 

LDEV stream-id[, (option)]. .. Modifies a logical device definition. 

Options: see Table 6. 

36 Batch Limitations 



Table 9. TEL Command Summary {cont.) 

Command 

LINK (codes)rom[,rom]. .• [,romJ[g~ER lmn] [;lidGlid] ••. =1 

L[,lid]][UNDER FDP] 

lmn [ sp] [g~ER [rom] [,list]] 

M[ESSAGE] text 

OFF 

Description 

Forms the load modules as specified. 

Options: 

library search: (L), (NL), (Pi), (FDP), (NP) 
default: (L). (Pl) 

display: (D), (ND), (C), (NC), (M), (NM) 
default: (D). (C), (NM) 

symbol tables: (I), (NI) 
default: (I) 

rom may be fid or $; parentheses enclosing rems 
cause merge of symbol tables. 

lid must name a file containing one or more rems. 

Directs the listing output to the specified device, or 
counteracts the preceding DONT LIST command. 

Options: list may be fid, LP, or ME. 

Initiates execution of a load module. 

Options: 

I mn has the form: 

name[. [account][. password]] 

absence of period and account specifies system 
account. 

presence of period and absence of account 
specifies log-on account. 

sp is assigned to M:SI DCB. 

rom is assigned to M:GO DCB. 

list is assigned to M:LO DCB. 

Sends the specified message to the operator. 

Assembles the specified source program. 

Options: 

sp may be fid or ME. 
rom may be fid only. 
I ist may be fid, LP, or ME. 

Output may be interrupted and continued by the 
following commands: 

LIST 
OUTPUT 
COMMENT 

DONT LIST 
DONT OUTPUT 
DONT COMMENT 
CONTINUE 

Disconnects the terminal from the system and pro­
vides an accounting summary. This command is 
equivalent to the BYE command. 

Batch Limitations 37 



Table 9. TEL Command Summary {cont.) 

Command Description 

OUTPUT [ g~ER rom J Directs object output to the specified device, or 
counteracts the previous DONT OUTPUT command. 

Options: rom may be fid only. 

PASSWORD xxxx Assigns a new log-on password for the user. xxxx is 
1-8 characters. Any of the following characters may 
be used: A-Z a-z 0-9 _ $ * % : # - CCV backspace. 

PLATEN [ w )[,I) Sets the value of the terminal platen width and 
page length or displays the terminal platen width 
and page length values. 

PRINT Sends print output to the I ine printer and punch 
output to the punch. 

PROCEED Continues processing from the point of interruption. 
This command is equivalent to the GO and 
CONTINUE commands. 

Processor Calls These calls are entered while TEL is in control of 
the terminal. They turn over control of the ter-

APL FLAG mi no I to the processor. 
BASIC FORT4 
COBOL META 
DELTA PCL 
EDIT 

Q[UIT) Terminates the current job step. This command is 
equivalent to the STOP and END commands. 

R[ESET) Resets all DCBs back to their system default values. 

RESTORE fid Restores the previously saved core image. This 
command is equivalent to the GET command. 

RUN [codes] tom ~rom] ••. [,rom~[g~ER lmn] I Loads the specified module and starts execution. 

L[;lid[,lid] ••• [,lidJJ[uNDER ~~~TAJ Options: 

I ibrary search: (L), (NL), (Pi), (FDP), (NP) 
default: (L), (Pl) 

display: (D), (ND), (C), (NC), (M), (NM) 
default: (D), (C), (NM) 

symbol table: (I), (NI) 
default: (I) 

rom may be fid or $; parentheses enclosing roms 
cause merge of symbol tables. 

lid must name a file containing one or more roms. 

SAVE {~~ER}fid Saves the current core image on the designated file. 

38 Batch Limitations 



Table 9. TEL Command Summary (cont.) 

Command Description 

SET deb (OJ Assigns file or device to a DCB or sets DCB 
parameter. 

[oplobol J 
SET deb device (;dopt(;dopt]. •. (;dept]] Options: see Tables 3, 4, and 5. 

tapecode[tapeid] 

[tapecode [tapeid]/fid J [ [ J [ J] 
SET deb filecode(packid]/fid ;fopt ;fopt · · · ;fopt 

S(TART] [~mn] (U(NDER DELTA]] Loads a load module into core and starts execution 
of the program, either with or without an associated 
debugger. 

ST(ATUS] Displays the current accounting values. 

STOP Terminates the current job step. This command is 
equivalent to the END and QUIT commands. 

TABS Displays the simulated tab stop settings. 

TABS s(,s] ••• (,s] Sets the simulated tab stops at the terminal. 

TERMINAL type Sets the terminal type for proper 1/0 translations. 
Type may be 33, 35, 37, 7015, EAPL, ESTO, 
SAPL, or SSTD. 

TERMINAL STATUS Lists the terminal type and the current values of 
parameters associated with its operation. 

u Causes the words UNDER DELTA to be inferred in 
the next command. 

Batch Limitations 39 



4. LANGUAGE PROCESSORS 

INTRODUCTION 

The Meta-Symbol, Extended FORTRAN IV, ANS COBOL, 
APL, and BASIC processors may be used in either the on­
line or batch mode. The command processor EASY operates 
in the on-line mode only. An introduction to the on-line 
operating features of these processors is given in this chap­
ter. Complete descriptions of the processors are given in 
the following manua Is: 

Xerox Meta-Symbol/LN, OPS Reference Manual, 
90 09 52. . 

Xerox Extended FORTRAN IV/LN Reference Manual, 
90 09 56. 

Xerox Extended FORTRAN IV/OPS Reference Manual, 
90 11 43. 

Xerox ANS COBOL/LN Reference Manual, 90 15 00. 

Xerox ANS COBOL/OPS Reference Manual, 90 15 01. 

Xerox APL/LN, OPS Reference Manual, 90 19 31. 

Xerox BASIC/LN, OPS Reference Manual, 90 15 46. 

Xerox EASY/LN, OPS Reference Manual, 90 18 73. 

MET A-SYMBOL 

The Meta-Symbol assembler is called from an on-line 
terminal by the following command: 

META [sp] [g~ER (rom 1 (,list]] 

where 

sp specifies a source program and may be either a 
file identification (fid) or the term ina I identifi­
cation (ME). If no source file is specified, TEL 
assumes input is from the file/device currently 
assigned to the M:SI DCB. If the M:SI DCB is not 
assigned, TEL expects input to come from the ter­
minal (ME). (Note that on-line DCB assignments 
are made explicitly by the SET command and im­
plicitly by the META command. Once set, DCB 
assignments remain in effect unti I reassignment by 
subsequent SET commands or specified META op­
tions except for M:SI, which is reset at each job 
step.) 

ON indicates that ROM output is to be on a 
new file. 

OVER indicates that ROM output is to be over an 
existing file or on a new file. 

rom specifies that the relocatable object module 
produced by assembly is to be directed to a spe­
cific file (fid). If no ROM is specified and no 

40 Language Processors 

previous LIST command has been issued, no listing 
output is produced (list is on implied assignment 
to the M: LO DCB). 

list specifies that listing output is to go to a file 
(fid), a line printer (LP), or the terminal (ME). 
If list is not specified, TEL assumes that the list­
ing output is to go to the file/device currently 
assigned to the M: LO DCB. If the M: LO DCB is 
not assigned, TEL produces no listing output. 

This command replaces the control cards that are needed to 
perform the equivalent operations through batch processing. 
The replaced cards are 

!JOB 
!ASSIGN M:SI. •• 
!ASSIGN M: LO •.. 
!ASSIGN M:G 0 ..• 
!METASYM SI, LO, GO 

When the assembler is entered, it sends a request for options 
(WITH >) to the termina I. If there are no options, a carriage 
return character may be entered fol lowing the request. This 
initiates the assembly, providing additional inputs are not 
required by the assembler. 

Three META options are assumed by default: SI, GO, and 
LO. These options cause reading from source, production 
of ROM output, and listings on the device or file given in 
the MET A command. 

If assembly options are desired, the codes (Table 10) for the 
desired options are entered following the request for options. 
These codes are separated by commas and terminated by a 
carriage return or line feed character which initiates as­
sembly. If a concordance option (CN in Table 10) has been 
specified, additional input is required. Meta-Symbol sends 
a prompt character to the terminal to request each concord­
ance command. Assembly is initiated only after the last 
concordance control command (.END) has been entered. 

Examples: 

1. Assume that file A is to be assembled with ROM out­
put going to B and list output going to the terminal. 
No special assembly options are desired, and no addi­
tional input is required by the assembler. 

!META A ON B@) 

WITH>@) 

* ERROR SEVERITY: 0 

* NO ERROR LINES 



Table 10. Meta-Symbol Assembly Optionst 

Option Description 

AC (ac 1,ac2, ... ,acn) Specifies alternate accounts that are to be searched when the assembler must access system files 
that are not logged either under the system (:SYS) account or under the user's log-on job 
account. The ac items are alternate accounts that are searched first; then by default, the :SYS 
account and finally the log-on account are searched as necessary. 

DC Specifies that a "standard" concordance is to be produced on the LO device. The "standard" 
listing does not include operation code names, but otherwise includes all symbol references, 
including function and command procedure names and intrinsic functions. 

CN Requests that a symbolic cross-reference listing be included with the assembly listing. When this 
option is given, the assembler sends a prompt character to the terminal to indicate that concor-
dance control records identifying special concordance options should be entered. One control 
record, preceded by a period, is entered following each prompt character. The last control 
record must be an END record. 

The concordance control commands are as follows: 

IO Include all or a selected set of operation codes. 

SS Suppress all or a selected set of symbols. 

OS Include only a selected set of symbols. 

DS Produce a modified LS listing, displaying only lines that reference a selected set of 
names. 

END Terminate concordance control commands. 

co Causes the assembler to produce a compressed version of the input program on the file specified 
in the M:CO DCB. This DCB must have previously been assigned by a SET command. 

LU Requests that the assembler include a listing of the Meta-Symbol update records with the program 
I isting. 

NS Requests that no assembly summaries be included with the listing. 

SD Causes the assembler to produce symbolic debugging object code for use with the Delta debug-
ging processor. The object code is included with the standard binary output ROM. 

so Causes the assembler to create a source output file corresponding to the input program. The inpu~ 
program may be Edit-source, compressed, or compressed with updates. The M:SO DCB must have 
been previously assigned. 

CI Causes the assembler to access M:CI for compressed input. Typically it would be specified if the 
user wishes to update the compressed file with the contents of the source file assigned to M:SI 
(via, e.g., the META command). The source input on the M:SI file must be terminated with a 
+END statement. The M:CI DCB must have been previously assigned by a SET command. Con-
suit the Meta-Symbol/LN,OPS Reference Manual, 90 09 52 for a full discussion of the assem-
bier's operation when bot.h SI and CI inputs are specified. 

tFor additional details concerning assembly options, refer to the Meta-Symbol/LN,OPS Reference Manual, 90 09 52. 

Meta-Symbol 41 



2. Assume that a disk storage file, called SOURCE, is to 
be assembled. ROM output is to go to BIN and list out­
put is to go to the line printer. A cross-reference is to 
be included with list output. The cross-reference is to 
exclude symbols Xl and X2 and to include operation 
code CAL3. 

J_MET A SOURCE ON BIN, LP ~·~ 

WITH> CN~·~ 

::_.SS Xl, X2 ,.,e 

>.IO CAL3 8 

>.END~~ 

3. Assume that a source program, cal led SOURCE, is to 
be assembled with ROM output going to BIN and list­
ing output going to the line printer. The following 
assembly options are desired: 

a. A source output file (SOURCEOUT) corresponding 
to SOURCE. 

b. A compressed version of SOURCE. 

c. A symbolic cross-reference. 

d. A symbolic debugging object code for Delta. 

J_SET M:SO DC/SOURCEOUT@) 

!SET M:CO CP r~~ 

.!_META SOURCE ON BIN, LP 8 

WITH> SO, CO, CN, SD 8 

::_.END €-;l 

When input is from a keyed Edit file, a decimal representa­
tion of the sequence number for each record is placed in the 
assembly listing. This representation is placed in the posi­
tion normally occupied by columns 73-80 of an input card. 

It is possible to make use of Meta-Symbol's internal editor 
in conjunction with compressed source files while running 
on-line. The internal editor and source compression facil­
ity are oriented toward card image batch processing but can 
be useful to on-line operation when backup files must be 
kept on cards or when work must be done in strictly a BPM­
compatible fashion. These Meta-Symbol features are de­
scribed in Chapter 12 of the Meta-Symbol/LN,OPS Refer­
ence Manual, 90 09 52. 

If a program in compressed format exists on RAD or disk pack 
storage, either as the output of the assembler or as a result 
of a file management operation, it can be assembled with 
on-line Meta-Symbol simply by specifying it as input (sp) 
in a META command. Meta-Symbol distinguishes between 
the keyed source format of the Edit files and the sequential 
binary format of compressed files. 

Example: 

Assume that CI-FILE is a program file in compressed format. 
This file is to be assembled with ROM output going to 
BO-FILE and list output going to the line printer. 

!META CJ-FILE ON BO-FILE, LP 0;! 

WITH> 8 

42 FORTRAN IV 

It is also possible to maintain an update file through the use 
of Edit and to use the file to modify a compressed file. In 
this case the former would be assigned to M:SI and the latter 
to M:CI, via a SET command and the CJ assembly option. 

Example: 

Assume that an update file (UPDATE-FIL) is being main­
tained under Edit and is to be used to update a CI-FILE on 
labeled tape. ROM output is to go to BIN and list output 
is to go to the line printer. 

! BUILD UPDATE-FIL@ 

1.000 + 4,6 ~~ 

2.000 BANZ EXIT 8 

3.000+ 10,10@) 

4.000 +END 8 

5.000@) 

*END E•9 

.!_SET M:CI LT#12341/CI-FILE 8 

.!_META UPDATE-FILE ON BIN, LP 8 

WITH>CI8 

FORTRAN IV 

The Xerox Extended FORTRAN IV compiler is called from an 
on-line terminal by the following TEL command: 

FORT4 fsp) [g~R [rom) [,list)] 

where 

sp specifies a source program and may be either a 
file identification (fid) or the terminal identifi­
cation (ME). If no source file is specified, TEL 
assumes input is from the terminal (ME). (sp is 
assigned to the M:SI DCB.) 

ON indicates that ROM output is to be on a 
new file. 

OVER indicates that ROM output is to be over 
an existing file or on a new file. 

rom specifies that the relocatable object module 
produced by compilation is to be directed to a 
specified file (fid). If no ROM is specified, out­
put is directed to a special file that may subse­
quently be referenced by a dollar sign. If a rom 
is specified, it is assigned to the M:GO DCB. 



list specifies that listing outputis to go to a file (fid), 
a line printer (LP), or the terminal (ME). If list is 
not specified, ME is assumed, but no listing output 
is produced until a LIST command is issued (list is 
assigned implicitly to the M:LO DCB). 

The naming of files sp, rom, and list can be thought of as 
simple assignments for the DCBs used by the compiler. The 
DCBs M:SI, M:GO, and M:LO are used by FORTRAN for 
its input and output operations and CP-V directs the data to 
and from the respective files. The specifications sp, rom, 
and list are used for these assignment purposes and have no 
effect on the operation of the compiler. The control of the 
compilation restswith the compileroptionsdescribed below. 

In the absence of a specification for rom or list, CP-V will 
direct the data to or from the I ast fi I e or device to which 
GO or LO was assigned. In this way a user may make these 
assignments at the beginning of a job and they will remain 
in effect until changed. If an identifier is not specified for 

ROM, the object program produced by the compi lotion wi 11 
be written on a scratch file which may be referenced later 
by the name $. 

When the FORTRAN IV compiler is entered in the on-line 
mode, it sends a request for options to the terminal by typing 

OPTIONS> 

The user may then enter the option codes (Table 11) to be 
used for this compilation. The codes are separated by 
commas and terminated by a carriage return. If no option 
codes are entered before the terminating carriage return, 
the compilation will be done as thoughthesingle option PS 
had been typed. The PS option ensures that the user is 
aware of the size of his program and the first and last card 
while producing a minimum of output. A source input file 
is always expected and an object program is always produced 
when operating from an on-line terminal. 

Table 11. FORTRAN IV Campi lotion Optionst 

Option Description 

ADP Causes all real operations to be done in double precision and all complex operations to be done in double 
complex. (See Extended FORTRAN IV /LN Reference Manual, 90 09 56.) 

BC [(n)] Permits a number of programs to be compiled from the source file. When this option is used, the compiler 
reads source programs unti I the conditions of the op ti on are met. Thus, a number of different programs may 
be compiled using only one FORT4 command. The suboption, n, allows the BC option to specify 
compilation of the first n programs from the source file. 

BO Causes a binary object deck to be produced (via M:BO). If the BO option is used, the correct assignment 
for M:BO must be ensured. There is no default assignment for this DCB. 

DEBUG Causes the compiler to generate linkages, such as internal symbol tables, to the FORTRAN Debug Package. 

GO This option is redundant. In on-line operation, a binary object deck is produced for all programs via the 
M:GO DCB. 

LO Lists the object program on the LO device. 

LS Lists each source program and compi lotion summary on the LO device. 

NMP Causes the generated code of the object program to be a control section with protection type 00 instead 
of 01. 

NS Eliminates the compilation summary map and the printing of the first and last card of the source program. 
To eliminate the entire listing of a compilation, NS or PS should be specified and LS or LO should not 
be specified. 

t For more detai Is concerning compi lotion options, refer to the Extended FORTRAN IV /OPS Reference Manua I, 90 11 43. 

FORTRAN IV 43 



Table 11. FORTRAN IV Compilation Option/ (cont.) 

Option Description 

PS Causes the first and last cards and a partial summary map of the program to be printed. The partial sum-
mary map includes 

NUMBER OF ERROR MESSAGES'" } 
These are printed only if there were errors in the program. 

NUMBER OF STATEMENTS DELETED:m 

{ 0 (NO ERRORS) } 
HIGHEST ERROR SEVERITY: 4 (NO MAJOR ERRORS) 

7 (MAJOR ERRORS) 
10 (MAJOR ERRORS) 

DEC HEX 
WORDS WORDS 

GENERATED CODE: ddddd xxxxx 

CONSTANTS: ddddd xxxxx 

LOCAL VARIABLES: ddddd xxxxx 

TEMPS: ddddd xxxxx 
----- -----

TOTAL PROGRAM: ddddd xxxxx 

s Specifies that in-line assembly code is to be accepted on cards that have an Sin column 1. For 
information concerning the rules for in-line symbolic code, see the Extended FORTRAN IV/LN 
Reference Manual, 90 09 56. 

SBIT Preserves the integrity of the maximum negative number expressible on a Sigma computer. 

SI Specifies source input. This is unnecessary but is acceptable for compatibility. 

so Reproduces the source program on the source output file (via M:SO). 

x Compiles records with X in column 1. 

t For more details concerning compilation options, refer to the Extended FORTRAN IV/OPS Reference Manual, 90 11 43, 

After the option request has been completed, the compiler 
reads the source program from the sp file. Input continues 
unti I an END statement or end-of-file (ESC F keys) is en­
countered. The program summary and object program are 
then output as requested and control is returned to TEL. If 
the source file contains more than one program, subsequent 
compi lotions can be obtained from it by using the BC option. 

When used from an on-line terminal, the compiler accepts 
horizontal tab characters in source program records. It re­
places each tab character with the correct number of spaces 

44 FORTRAN IV 

to locate the next input character at the position speci­
fied by the next tab stop. At the on-line terminal, this 
positioning is done by the Monitor so that thetypistisaware 
of the tabbing action. Internally, the compiler performs a 
similar action by inserting the correct number of spaces into 
the source record image. Any characters in the record fol­
lowing the tab character are shifted to the right. The listing 
output and source output from the compiler do not contain 
the character. They contain the spaceswhich were inserted 
into the image. As many tab characters as are required may 
be entered but care should be taken to ensure that tab stops 
are provided. If the compiler cannot match a tab character 



with a corresponding tab stop position during its internal 
expansion operation, the tab character will remain in the 
record and wi 11 cause a syntax error. Tab stops may be set 
from the on-line terminal by the TEL commands TABand SET. 

When accepting source input from an on-line terminal, the 
compiler normally checks each record as it is typed and 
immeditaely prints out any diagnostic on the following line. 
However, if a statement is to be continued, this error check­
ing is not done until the continuing statements have al I been 
input. When a statement is to be continued, the last char­
acter preceding the carriage return must be a colon (:) to 
indicate that this record is continued. The next record, the 
continuation record, must follow standard FORTRAN rules 
and have blanks in columns l to 5 and a continuation 
character in column 6. Statements containing errors and 
continued over several records have their error diagnostics 
printed following the last record. The colon used to in­
dicate that a record is continued is removed from the record 
and replaced with a blank character. 

Since the colon is contained in the Extended FORTRAN IV 
standard character set, it is possible to use it in a 
FORTRAN statement. Some difficulty might be expected in 
statements which end with a colon, such as, A = 4HABC:. 
This problem can be overcome by typing an extra blank 
following the colon and before the carriage return. 

Examples: 

Assume a program is to be compiled with the source input 
read from file SOURCE, the relocatable object module 
written onto file DECK, and the I isting written onto the 
user's terminal. 

I FORT4 SOURCE ON DECK,ME @l 

OPTIONS>LS@) 

Since the compiler always expects an SI file and always 
generates a GO file, the only option (LS) is used to cause 
a listing of the source program at the user's terminal. If 
any errors occur they are printed at the terminal. 

ANS COBOL 
The COBOL compiler is cal led from an on-line terminal by 
the fol lowing command: 

where 

sp specifies a source program and may be either a 
file identification (fid) or the terminal identifica­
tion (ME). If no source file is specified, TEL 
assumes input is from the file/device currently as­
signed to the M:SI DCB. If the M:SI DCB is not 
assigned, TEL expects input to come from the ter­
mina I (ME). (Note that on-line DCB assignments 

.. 

are made explicitly by the SET command and im­
plicitly by the COBOL command. Once set, DCB 
assignments remain in effect unti I reassignment by 
subsequent SET commands or specified COBOL op­
tions except for M:SI, which is reset at each job 
step.) 

ON indicates that ROM output is to be on a new 
file. 

OVER indicates that ROM output is to be over an 
existing file or on a new file. 

rom specifies that the relocatable object module 
produced by compilation is to be directed to a 
specific file (fid). 

list specifies that listing output is to go to a file 
(fid), a line printer (LP), or the terminol (ME). 
If list is not specified, TEL assumes that the listing 
output is to go to the file/device currently assigned 
to the M: LO DCB. 

This command replaces the control cards that are needed to 
perform the equivalent operations through batch processing. 
The replaced cards are 

!JOB ... 
!ASSIGN M:SI. .. 
!ASSIGN M:LO ... 
!ASSIGN M:GO •.. 
!COBOL LS, GO 

When the compiler is entered, it sends a request for options 
(OPTIONS?) to the terminal. If compilation options are 
desired, the word COBOL must be entered followed by the 
codes (Table 12) for the desired options. These codes are 
separated by commas and terminated by a carriage return 
or line feed character which initiates compilation. 

Example: 

Assume that file PAYROLL is to be compiled with ROM out­
put going to PAYPROG and the listing going to the line 
printer. 

_!.COBOL PAYROLL ON PAYPROG, LP 8 

OPTIONS? 

! COBOL LS, GO 8 

APL 

The APL processor was designed to be used ata terminal that 
has a special APL typeball. It is possible to use APL at a 
standard terminal, but the user must be aware of a set of 
substitute characters and mnemonics that replace APL char­
acters that are either illegal or missing on his terminal. 
(These characters are documented in Appendix B of the 
APL/LN, OPS Reference Manual, 90 19 31.) 

ANS COBOL/APL 45 



Table 12. ANS COBOL Compi lotion Options 

Option 

BO 

Description 

Specifies that a permanent copy of the ob­
ject program is to be written via M:BO. 

l-----------+-------------------1 

CS(name) 

1------ --- - ---

DEBUG 

DIAG 

1-----------

Specifies the name of the COMMON­
STORAGE SECTION. 

------------------! 

1 Specifies that program debugging state­
ments (e.g., TRACE, EXHIBIT) are to be 
compiled if they exist. 

Specifies that trivia I diagnostic messages 
are to be listed. 

DMAP Causes a data division map to be produced. 
I--------------- -- -- ----------------------! 

DO 

GO 

Specifies that the quote character (in­
stead of a sing I e apostrophe) is to be 
used as the quote character. 

Specifies that a load-and-go copy of 
the object program is to be written via 
M:GO. 

1------------+--------- -----------------l 

LIB(accounts) Specifies library accounts for the COPY 
verb. 

LO 

LS 

MAIN 

MAPS 

PMAP 

SEG 

SE QC HK 

so 

SORT 

SUB 

SYN 

XREF 

Requests an object program listing via 
M:LO. 

Requests a source program listing via 
M:LO. 

Specifies that this is a main program. 

Specifies that both a data division map 
and a procedure division map are to be 
produced. 

Causes a procedure division map to be 
produced. 

Causes priority segments to be honored. 

Requests that the compiler sequence 
check the source progra~. 

Requests source output via M:SO. 

Requests code to be generated to inter­
face with co-resident sort. 

Specifies that this is a subprogram. 

Requests compi lotion for syntax check­
ing only. (No code wi 11 be generated.) 

Requests a cross-reference listing via 
M:LO. 

46 CP-V BASIC 

At an APL terminal, TEL prompts with a small circle (o) 
rather than with the normal exclamation point(!). The 
APL processor is cal led by entering the fol lowing command: 

APL 

APL acknowledges control by typing the message 'APL-date' 
and a message indicating whether a clear workspace is 
available or the CONTINUE workspace has been loaded. 

Example: 

.,APL,;:.) 

APL-03/16/73 

CLEAR WS 

The user can now enter APL assignments, statements, func­
tion definitions, system commands, etc. 

The user exits from APL via any of the following APL sys­
tem commands: 

)OFF 
)CONTINUE 
)OFF HOLD 
)CONTINUE HOLD 

CP-V BASIC 

CP-V BASIC may be operated in on-line or batch mode. The 
on-line mode is the normal mode. Batch operations are lim­
ited to those requiring no user intervention and differ from 
on-line operations primarily in the assignment of input/ 
output devices. 

The BASIC system is called from a terminal in the follow­
ing way: 

!BASIC@ 

> 

When the system is ready to accept input, it prompts with a 
"greater than" character (>). At this point, BASIC is in 
editorial mode with no program text. 

In the on-line mode, BASIC returns to TEL only if terminal 
input failure occurs, the BREAK key is activated twice 
without any intervening terminal input or the SYS [TEM] 
command is typed. In batch mode, exit to the Monitor also 
occurs after a compi lotion that contains errors, or after a 
run-time error. 

While using BASIC in on-line mode, the user fully con­
trols the flow of activity via the terminal. The normal mode 
for doing so is to respond to prompt characters that indicate 
the system is prepared for input. Two prompt characters are 
used: a question mark and a "greater than" symbol. A 
question mark indicates that execution is in progress and 
input data is 'required. A "greater than" symbol indicates 
that the system is ready for editorial input or commands. 



In some instances, such as during the output of an extended 
listing or when a program is suspected of being in a loop, 
it is desirable to acquire terminal control without waiting. 
A foci lity is provided via the BREAK key activation to 
interrupt current ::icti vi ty. 

For additional detai I about BASIC operations, refer to the 
BASIC/Reference Manual, 90 15 46. 

CP-V EASY 

CP-V EASY is an on-line command processor that enables 
the terminal user to create, edit, execute, save, and delete 
program files written in BASIC or FORTRAN. It also allows 
the terminal user to create and manipulate EBCDIC data files. 

CP-V EASY is called from a terminal in the following way: 

!EASY 8 

NEW OR OLD--

The user types NEW if he wishes to create a new file, or 
0 LD if he wishes to access an existing fi I e. 

EASY then asks for the file name, and the user types it. 
The user may begin creating or updating a BASIC or FOR­
TRAN program, or he may wish to utilize one of the EASY 
commands. These commands are described in the Xerox 
EASY/LN, OPS Reference Manual, 90 18 73. 

When the terminal user first calls EASY, it is assumed that 
he wishes to create or modify a BASIC or FORTRAN pro­
gram. If he wishes to deal with a data file, he enters the 
DSM command after naming the file. In addition, programs 
are executed in BASIC unless FORTRAN is requested (via 
the SYSTEM FORTRAN command). 

Since CP-V EASY is a control processor, pressing the BREAK 
key or CONTROL Y returns the terminal user to EASY, not 
to TEL. The only way to return to TEL is to type the TEL 
command. The system responds with the TEL prompt ( ! ) to 
indicate the successful transfer of control to TEL. 

CP-V EASY 47 



5. PERIPHERAL CONVERSION LANGUAGE 

INTRODUCTION 

The Peripheral Conversion Language (PCL) is a utility 
processor designed for operation in a batch or on-line en­
vironment. It provides for information movement among 
card devices, line printers, on-line terminals, magnetic 
tape devices, and RAD or disk pack storage. 

PCL is controlled by commands supplied through on-line 
terminal input, through a file containing PCL commands, or 
through command card input in the batch job stream. The 
command language provides for single or multiple file trans­
fers with options for selection, sequencing, formatting, and 
conversion of data records. Additional file maintenance 
and uti Ii ty commands are provided. The actual input/output 
operations are carried out using standard system CALs. 

For batch operation, PCL is acti voted by a ! PCL control 
command card in the job stream. Once active, PCL reads 
subsequent command cards directly through the M:SI DCB 
unti I termi noted by an END command card or some other 
control command card. Input and output is done through 
the M:EI and M:EO DCBs respectively. Error messages are 
transmitted to the device currently assigned to the M:DO 
DCB. 

For on-line operation, PCL is called by typing "PCL" while 
TEL is in command of the terminal, PCL responds by typing 
"PCL version HERE" followed by a prompt character(<) at 
the left margin of the next line. This indicates that PCL is 
ready to accept a command. 

Example: 

!PCL 

PCL DOO HERE 

< 

When accepting or processing a command on-line, PCL is 
in the command state. Entry to this state is always indi­
cated by the display of the PCL prompt character. Once a 
valid command begins execution, PCL enters the active 
state. In this state, PCL prompts for input, if required, with 
a period(.). This state remains in effect until execution of 
the command terminates, at which time PCL reenters the 
command state, issues a < prompt character, and waits for 
the next command. As in batch operation, user input and 
output is processed through the M:EI and M:EO DCBs; error 
messages go to the M:UC DCB and commands are received 
through the M:SI DCB. 

The user has the option of building a file of PCL commands 
and having the commands executed by preceding the cal I 
to PCL by an ASSIGN or SET command that assigns M:SI to 
the file of commands. In this case, PCL will not prompt the 
on-I ine user for input, but wi 11 print each command, pre­
ceded by a prompt character (<), as it begins execution of 
the command. 

48 Peripheral Conversion Language 

Example: 

J_SET M:SI/CMDFILE @l 

!PCL 1<>•l 

PCL DOO HERE 

< first command 

The following description of PCL is oriented toward the 
on-line user. For the batch user, communication is estab­
lished with input through the job stream and output through 
the M:LO DCB with no user interaction. Thus, all user 
prompting and terminal-specific operations given here may 
be ignored by the batch user. 

CONVENTIONS 
SYNTAX 

PCL is a free form language with a few restrictions imposed 
for simplicity in implementation and use. These restrictions 
are outlined below: 

1. All commands must comply with the general format 
given in the definition. 

2. Blanks preceding or following an argument field are 
permitted; embedded blanks are not permitted except 
within quotes, which delimit a character string. 

3. At least one blank must follow each command verb, 
except REW and REM when followed by a number(#) 
character, and must precede and follow each command 
preposition (TO, ON, or OVER). 

4. A command may becontinuedfromonelinetothenextby 
ending the continued line with a semicolon (i.e., a semi­
colon must be the last non blank character). There is no 
limit on the number of continued lines; however, a com­
mand that contains more than 1024 characters (exclusive 
of the semicolon continuation characters) wi 11 be rejected. 

Example: 

<COPYALL LT#1#2#3#4 TO LT#;§ 
<MB#c#D§ 

5. "End-of-command" is indicated by the end qf the input 
record (column 72) for card input or by a carriage re­
turn or line feed character for either card or on-line 
term ina I input. 

6. Only one input device and only one output device may 
be open at any given time. 

PCL IDENTIFICATION CODES 

PCL identification codes are symbols used to identify sources 
and destinations in PCL commands. These codes are listed 
in Table 13. 



Table 13. PCL Identification Codes 

PCL Code Description 

xx Any logicai device name defined at SYS GEN. 

CR Card reader (not available for on-line oper-
ations). Forbatchoperations, filesaresepar-
ated by two successive EOD control cards. 

CP Card punch. 

LP Line printer. 

ME For time-sharing mode, on-line terminal. 
(Input is termi noted by an ESC F - end-of-
file - code.) For batch processing mode, card 
reader for input and line printer for output. 

DC RAD or public disk pack storage. 

DP Disk pack (normally private). 

LT CP-V labeled tape. 

AT ANS labeled tape. 

FT Free form tape. (Files are separated by an 
EOF mark.) 

Most identification codes correspond to unformatted unit 
record equipment, and the action is very close to direct 
device access. In the case of the codes DC, DP, LT, and 
AT, however, the intent is not to give access to RAD, disk 
pack, and magnetic tape as devices, but to provide a means 
for symbolic reference to files of information created and 
maintained by the Monitor's file management system. 

Through various processors and/or Monitor services, the user 
can create logically connected groups of records called files. 
Each file has a name by which it is known. These files are 
contained on RAD (DC), disk pack (DP), CP-V labeled tape 
(LT), or ANS labeled tape (AT). Labeled tape carries in­
ternally a serial number and the creator's account number, 
in addition to the file names and the file contents. 

The following paragraphs give the conventions to be used 
when creating or otherwise working with files. 

FILE AND REEL IDEN.YIFICATIDN 

A file identifier (fid) has three parts: name, account and 
passwordt. A file name consists for PCL of 1 to 31 char­
acter/t, which in general may be any characters except 
the following PCL delimiters: 

blank ; I I -

However, any character including these delimiters may be 
used in a file name if the name is delimited by single 

tAn ANS tape file identifier consists of a name only. 

ttNote that most on-line subsystems allow a maximum of 
l 0 characters for a fi I e name. ANS tape fi I e names a re 
I imited to 17 characters. 

quotes, e.g., '(A)'. Single quotes within such a file name 
must each be represented by paired quotes. 

A hexadecimal format may be used to represent a file name 
that contains one ar more unprintable characters, e.g., 
X 'OOE7'. 

When PCL outputs a file name, account, or password, it 
prints the string in hexadecimal format if any of the charac­
ters do not belong to the EBCDIC 57-character set. 

Account and password are one to eight characters from the 
same set and may also be written as hexadecimal or charac­
ter strings. The various combinations are written as follows: 

name file in log-on account. 

name.account file in specified account. 

name. password file in log-on account with 
password. 

name.account. password file in specified account, 
with pass ward. 

In general, a job may create, delete, read, or modify files 
in the account in which it is running. However, files in 
different accounts can only be read - not created, deleted, 
or modified. A file identifier is the same whether the file 
is on RAD, disk pack, or labeled tape. However, in order 
to access a file on labeled tape, the physical reel identifier 
must in general also be given. 

To access a file on a private disk pack, the serial number 
of the primary volume must be given. When creating files 
on a disk pack, al I serial numbers for the volume set must 
be specified. The following description of a reel identifier 
applies to disk pack as well as to labeled tape. 

A reel identifier (reel-id) consists of two parts: a serial 
number and an account number. 

The account has the same format as described above, while 
a serial number for devices other than ANS tape is one to 
four alphanumeric characters of the same character set as 
file identifier, except that the number sign (#)may not be 
used. Also, hexadecimal string notation is not allowed and 
character string notation is valid only for ANS tapes. An 
ANS tape serial number must be six alphanumeric or blank 
characters. If blank characters are included, the serial 
number must be enclosed within quotes (e.g., 'ABCD '). 
The two permissible forms fora reel identifierareasfollows: 

#serial no. [#serial no.] ... (#serial no.] 

Reel (s) created, or to be created, in log-on 
account. 

#serial no. (#serial no.] ..• [#serial no.] . account 

Reel(s) created in specific account. (Not a valid 
format for ANS tapes.) 

The# is a syntactic identifier used to introduce the serial 
number, e.g., 

#MEFA 
# MEF 1 #MEF2. C7308300 

The optional serial numbers are used to indicate a multi­
volume file or set of files. A maximum of 135 serial num­
bers is allowed. 

Conventions 49 



In general, a job cannot create files on a labeled tape or 
disk pack in a different account than that in which it is 
executing. However, it may read tapes or disk packs that 
were created in different accounts. 

Therefore, in subsequent command descriptions, the follow­
ing convention is adopted. If a reel identifier is used in 
an input sense, where either of the above representations is 
valid, then it will be symbolized as 11#reel-id". However, 
if it is used in an output sense, where only a serial number 
is valid, then "#serial no." will be used explicitly. In 
either case, up to 135 serial numbers may be specified if a 
multi-volume file is involved. Free form tape (FT) only 
needs to be identified by a serial number. ANS tape may 
optionally be identified with a file name (e.g., AT/ABC), 
but in such case the reel number must be listed on the oper­
ator's job sheet. 

The absence of a reel identifier on a labeled tape or free 
form tape specification implies that a scratch tape is to be 
used. After the first occurrence of a scratch tape specifi­
cation in an output sense, the output serial number of the 
tape is communicated to the on-I ine user in order that this 
tape may be referenced by subsequent commands. However, 
a reel identifier is not actually required by any command. 
If a scratch tape is used for the first time in an input sense, 
an 1/0 error is reported. If a scratch tape has been 
written, a command in the same PCL session that specifies 
a tape without a reel identifier, in either an input or out­
put sense, is interpreted by PCL as referring to the same 
scratch tape. PCL must be reentered if a second scratch 
tape is needed. 

If the file is random, the absence of a reel identifier on a 
disk pack specification indicates that the system disk pack 
is to be used. For other types of files, the absence of a 
reel identifier causes the DP device code to be treated the 
same as DC. 

CAPABILITIES 

The following is a list of available functions in PCL defined 
in terms of the actual command verbs: 

COPY device(s) and/or file(s) TOt device or new file. 

COPY device(s) and/or file(s) OVER device or existing 
file. --

COPYALL files in specified account on RAD or disk 
pack TO labeled tape(s) or to a device. 

COPYALL files in specified account on RAD or disk 
pack TO log-on account on RAD. 

COPY ALL files on labeled tape(s) TO RAD or disk pack. 

COPY ALL files on labeled tape(s) TO files on labeled 
tape(s) or to a device. 

COPYSTD performs a copy of a control file and all 
files indicated within the control file. 

tWherever TO is specified, ON may be substituted. 

50 File COPY Command 

DELETE specified files on RAD or disk pack. 

DELETEALL deletes all or a portion of the user's files 
on RAD or disk pack. 

LIST a file directory for RAD, tape, or disk pack. 

REVIEW user's file directory on RAD or disk pack. 

SPF space file ±n files on free form (unformatted) 
magnetic tape. 

WEOF write end-of-file on current output device. 

REW rewind designated tape. 

SPE space to end of last file on labeled tape. 

REM remove designated tape or disk pack. 

TABS define tab settings for tab expansion. 

BREAK FUNCTION 

The function of the BREAK key under PCL (as under TEL) is 
to interrupt current activities. If the BREAK key is pressed 
while PCL is in the active state, PCL usually terminates what 
it is doing, such as printing or copying, passes control to the 
terminal, and reverts to the command state. If the BREAK 
key is pressed while PCL is in the command state, PCL 
ignores the current command as if xc had been pressed. The 
effect of the interruption or the termination varies with the 
command being executed and is discussed in detail with each 
command, where necessary. If no mention is made of the 
effect, the BREAK key is assumed to have no effect on exe­
cution of the command. 

FILE COPY COMMAND 
The file COPY command permits single or multiple file 
transfers to take place between peripheral devices or 
between file storage and peripheral devices. Options are 
included for selecting, formatting, and converting data 
records. When more than one keyed file is copied to a 
single file, PCL can either merge or concatenate the files 
(see "Record Sequencing", below). 

COPY COMMAND FORMAT (GENERALIZED) 

The COPY command is of the form 

C[OPY] source[, source .•• ] [~~ER destination] 

where 
source may be an input device such as card reader 

(CR), a RAD file (e.g., ALPHA), a fileonprivate 
disk pack, or a file on CP-V or ANS labeled tape 
or free form tape. Fi le concatenation or merging 
may be performed by specifying more than one 
source device or file. 

destination may be anoutputdevicesuchascard 
punch (CP), a public disk file, a file on private 
disk pack, or a file on CP-V or ANS labeled tape 
or free form tape. Absence of a destination speci­
fication is allowed and will normally cause file 
extension to occur. 



If the destination of the COPY is a RAD or disk file cur­
rently existing in the user's account directory, PCL will 
require that the preposition OVER be used in the command. 
That is, COPY TO or COPY OVER will create a file, but 
for the user's prctection only COPY OVER can replace an 
existing file. After this check, PCL opens the source de­
vices and files one at a time in the order given, and copies 
them to the destination device or fife. Source files are 
closed after they have been copied. The destination de­
vice or file is closed at the same time. 

If the BREAK key is pressed during execution of the COPY 
command, PCL responds by typing the message 'ENTER X 
TO ABORT COMMAND'. Any character typed, except X, 
causes continuation of the command. Typing an X aborts 
the command and causes the partially created output file to 
be released. 

Note that the TO or OVER command preposition and the 
destination are optional. If the COPY command contains 
only a source specification, PCL uses the destination device 
or file defined on the most recently issued COPY command 
containing a destination specification. (This is illustrated 
in the sixth COPY example.) It should be noted that file 
extension will occur in this case. Any PCL command except 
COPYALL may be used between the COPY defining the 
destination specification and the COPY with this specifica­
tion omitted, since the output specification will not be 
changed by these commands. 

If a COPY command is used without a destination specifica­
tion and a destination has not been defined by a previous 
command, the default destination is to the terminal. 

The message' •• COPYING' prints at the terminal when the 
copy operation begins if neither the input nor the output 
device is ME. 

COPY COMMAND FORMAT (SPECIFIC) 

The specific format of the COPY command is 

--- Source 1 -

C [OPY] d[(s)][/fid[(s)][,fid[(s)]] ••• ] 

---- Source 2 ---

(;d((sfl[/fid[(s)][, fid [(s)]] ••• ]] ••• 

- Destination -

[~~ER d[(s)][/fid[(s}]]] 

where 

d represents the PCL identification code and has 
the form 

identification code [#serial no.] 

PCL identification codes are defined in Table 13. 
Serial numbers apply only to magentic tapes or 

disk packs(LT, AT, FT, or DP). Absence of a serial 
number for a tape device implies a scratch tape. 

/ separates a PCL identification code from the 
associated file specifications. 

fid represents file identification and has the form 

r[. [ accountJ. password]~ name 
. account 

The DC identification code is optional on a COPY 
command referencing a RAD or public disk file. 
For example, RAD file A may be specified in one 
of two formats: DC/A or A. However, this flexi­
bility makes the codes in Table 13 reserved words. 
For example, file CR must be referred to as DC/ 
CR or 'CR', never simply as CR. 

separates files on the same device. 

separates devices. (Interpreted as a continuation 
character if last nonblank character of a line.) 

(s) represents specifications for data encoding: data 
codes (Table 14), formats (Table 15), modes (Ta­
ble 16), record sequencing (Table 17), accounts 
(Table 18), ANS tape options (Table 19), expira­
tion option, and record selection. It has the form 

(option[, option J ... [,option] ) 

Specifications given at the device level apply to 
all files on that device. Those given at the file 
level apply to that file only and have precedence 
if a conflict occurs between levels. 

Data encoding is discussed in detail below. 

Examples: 

1. Assume that three consecutive files, each terminated 
by a double !EOD mark, are to be copied from a card 
reader to an existing RAD storage file ca lied ALPHA, 
(This would only be allowed in batch.) The PCL com­
mand would be: 

COPY CR;CR;CR OVER ALPHA 

or 

COPY CR OVER ALPHA 

COPY CR 

COPY CR 

2. Assume that a Meta-Symbol source program file, called 
SOURCE, is to be copied from RAD storage to the ter­
minal, The command could be coded as 

:s_COPY SOURCE TO ME 8 

START LW, Rl ALPHA 

Al, Rl 5 

CW, Rl BETA 

File COPY Command 51 



This command could also be typed as 

< C SOURCE TO ME 8 

3. Assume that successive cards are to be copied from the 
card reader to a new RAD storage file with the follow­
ing file identification: KD. 2024. PLEASE. (This would 
only be allowed in batch processing.) Two !EODs are 
used to signal the end of the card file. The COPY 
command would be: 

C CR TO KD. 2024. PLEASE 

4. Assume that files Band C from labeled tape No. 57 
are to be copied, in that order, to a new RAD storage 
file called B •• PASS. 

~ C LT#57/B, C TO B •• PASS 8 

•• COPYING 

5. Assume file A from labeled tape No. 5, file D from 
RAD storage, and all files on free form tape No. 8 up 
to the next double end-of-file are to be copied to 
file A on labeled tape Nos. 6 and 7. Tape No. 7 is 
to be used only if No. 6 overflows. 

~ C LT#5/A;D;FT#8 TO LT#6#7/Alii!J 

•• COPYING 

6. Assume three successive sets of files, each separated 
by a double end-of-file, are to be punched in cards 
from free form tape No. 7236. Two ! EODs are written 
when the output device is closed. 

or 

< C FT#7236 TO CP8 

•• COPYING 

< C FT#72368 

• • COPYING 

< C FT #72368 

•• COPYING 

~ C FT#7236;FT#7236;FT#7236 TO CP 8 

• • COPYING 

DATA ENCODING 

The COPY command may contain various codes and specifi­
cations which either describe certain characteristics of 
input and output files or devices, or which request various 
types of data conversion or format changes in the output to 
be produced. Partial files may be copied by use of record 
selection and output records may have sequence identifica­
tion inserted or deleted. 

52 File COPY Command 

A description of the available codes and specifications 
follows: 

DATA CODES 

Data codes (Table 14) describe the source or destination 
data types to be expected or produced. 

Table 14. Data Codes 

Code Meaning 

E EBCDIC (defau It data code) 

H Hollerith (FORTRAN BCD conversion) 

DAT A FORMATS 

Data formats (Table 15) describe the source or destination 
record formatting to be expected or produced. 

Table 15. Data Formats 

Code Meaning 

x Hexadecimal dump 

c Meta-Symbol compressed 

The X option produces a single-spaced dump on the line 
printer or terminal. The presence of an asterisk fol lowing 
the word count in the dump indicates that omitted I ines are 
identical to the preceding line. If output is to the line 
printer, the EBCDIC equivalent is also printed. 

A C option on an input specification indicates that input is 
in compressed format and is to be decompressed on output • 
A C option on an output specification indicates that input 
is in symbolic form and is to be compressed on output. The 
presence of a C option on both input and output is i nva Ii d • 
Also, record selection is not allowed when compressing or 
decompressing files. The C option is invalid for either in­
put or output on an ANS to ANS tape copy • 

MODES 

Mode codes dictate the control modes for the specified files 
or devices. They are shown in Table 16 • 

Table 16. Mode Codes - COPY Command 

Mode Description 

BCD, BIN Binary-coded decimal or binary mode. 
These codes are valid for cards, paper 
tape, and magnetic tape. 

7T,9T 7-track or 9-track magnetic tape. 

PK,UPK 7-track binary tape packed or unpacked. 



Table 16. Mode Codes - COPY Command (cont.) 

Mode 

SSP,DSP, 
VFC 

NC 

CR 

TX 

FA,NFA 

DEOD 

K 

Examples: 

Description 

Single, double, or variable format con­
trolled spacing on line printer or terminal. 

No carriage return. Removes carriage­
control character (X' 15' or X'OD' ), if pres­
ent, from each record on output. This mode 
is the default mode if input is from the ter­
minal. lnvalidonanANSto ANStapecopy. 

Retains carriage return. Must be specified 
if carriage returns are to be retained when 
copying 'ME' to a file or device. 

Tab expansion. Values specified on a PCL 
TABS command are used. If a PCL TABS 
command was not issued, the tab values in 
the M:UC DCB are used. If no tab values 
arespecified, single spaces replace tabs on 
output. Invalid on an ANS to ANS tape copy. 

File attributes. These codes specify whether 
or not the attributes (i.e., variable-length 
parameter list except name, account, and 
password)ofthesource file are to be carried 
over to the destination file. If the file name 
remains the same from source to destination 
and neither FA nor NFA is specified, the 
attributes are copied. If the names of the 
source and destination files are different, 
the attributes are not normally copied; in­
formation specified in ASSIGN or SET com­
mands takes effect. 

Double end-of-file. Multiple source files 
are copied into a single output file. Thus, 
while COPY FT copies files including single 
end-of-file marks up to a double end-of­
file, COPY FT (DEOD) copies files to a 
double end-of-file without copying the 
single end-of-file marks. 

Print keys. If the file has a 3-byte key, the 
I is ting is not to be in hexadecima I form and 
the destination is a printer or terminal; the 
file is assumed to be an Edit format file. 
The use of the K option on output causes the 
key to be decoded as an Edit line number in 
the form xxxx. xxx and to be printed on the 
same line with the record contents (Edit or 
EDCON listing format). A record sequence 
number precedes the key. For ~ther types of 
keyed files, the key is not decoded and 
prints on the line preceding the record con­
tents. If the file is not keyed, only the re­
cord sequence number precedes the record 
contents. 

1. Assume that file A is to be copied to labeled tape No. 4 
with exactlythesameattributes it had on RAD storage. 

<CA TO LT#4/A@) 
:-.COPYlNG 

2. Assume that RAD storage file A is in compressed form 
and is to be converted to symbolic and I isted on the 
printer with double spacing. 

<CA (C) TO LP(DSP)'~~ 
:-.COPYING 

3. Assume that line images are to be read from RAD storage 
file A, converted from EBCDIC to Hollerith, and written 
on a 7-track scratch tape in BIN mode. 

< C DC/A TO FT(BIN, 7T, H) (~'.'.') 
:-.COPYING 

4. Assume that a source file, SOURCE, containing tab 
characters was created on-line and is to be punched 
with tab characters expanded and carriage return 
characters removed. 

< C SOURCE TO CP(TX, NC) @! 
:-.COPYING 

RECORD SEQUENCING 

Insertion or deletion of sequence identification for output 
data records is accomplished by using record sequencing 
specifications (Table 17). These specifications are avail­
able only as output options. All of these options are mu­
tually exclusive; i.e., if more than one record sequencing 
specification is used in a command, only the last option is 
honored. Record sequencing is not allowed on an ANS to 
ANS tape copy. 

PCL can either merge or concatenate keyed files. If the LN 
option is specified for the output file, concatenation will 
occur with the new keys as specified in the LN option. If 
the NLN option is specified for the output file, concatena­
tion will occur with the output file being a consecutive (not 
keyed) file. If no record sequencing option (i.e., neither 
LN nor NLN) is specified for the output file, a merge wi II 
occur. In this case, if records with duplicate keys exist, 
the record from the first specified input fi I e wi II be rep laced 
(in the output file) with the record from the next specified 
input file. Thus the sequence in which the input files are 
specified will determine which of the identically keyed 
records appears in the output file. When concatenating a 
keyed file and a consecutive (unkeyed) file, the LN or 
NLN option should be used. 

Examples: 

1. Assume that a file called SORC on labeled tape #25 is 
to be sequenced and punched into cards. The card 
identification is SRCE, the initial value is 1, and the 
increment is 1. Thus, logical records are to be given 
sequential identification as follows: SRCEOOOl, 
SRCE0002, SRCE0003, etc. 

< C L T#25/SORC TO C P (C S(SRCE, 1, l)) @) 
:-:coPYING 

2. Assume that PCL is to read successive records from free 
form tape #73, to assign line numbers starting at 5, in 

File COPY Command 53 



increments of 5, and to write the records on RAD stor­
age file A. 

< C fT#73 TO DC/A(LN(5,5)) 09 
:--:coPYING . 

I 3. Assume that two keyed files A and B, are to be con­
catenated into file C and assigned new keys. Default 
keys are to be assigned. 

<CA, B TO C(LN)\'.1_0 
-:. COPYING 

Table 17. Record Sequencing Options - COPY Command 

Code Description 

CS [(id[, n, k])] Card sequencing in columns 73-80. 

NCS 

LN [(n, k)] 

NLN 

id is identification 
(0-4 characters) 

n is initial value 

k is increment 

The identification (id) is left-justified 
in the field (73-80) and is followed 
by the sequence number, which is 
right-justified in the same field. The 
identification may be written as a 
character string containing one to 
four characters; e.g., ' •. XY'. Pre­
cedence is given to the sequence num­
ber if overlapping occurs. The de­
fault values for id, n, and k are null, 
0, and l, respectively. 

No card sequencing. This specifica­
tion strips columns 73-80 from each 
output data record. 

Line numbering. Sets organization to 
keyed. The file starts at n and con­
tinues in sequential steps of k. Line 
number and increment formats are as 
in the Edit subsystem. Line numbers 
must be between l and 9999. Incre­
ments may range from .001 through 
100. 000. The default values for both 
n and k are l. 

No Ii ne numbering. Sets organiza­
tion to consecutive. 

ASSIGNMENT OF ACCOUNTS 

A maximum of eight read accounts and eight write ac­
counts may be added as attributes of the output file as 
shown in Table 18. 

54 File COPY Command 

Table 18. Account Options - COPY Command 

Code Description 

RD(ac 1[,ac2, •.. ]) Adds read account(s) on output. 
A maximum of eight accounts may 
be given. ALL or NONE may be 
specified in place of an account. 

'NR(ac 1[,ac2, ... ]) Adds write account(s) on output. 
A maximum of eight accounts may 
be given. ALL or NONE may be 
specified in place of an account. 

Examples: 

l. Assume that file A is to be copied to labeled tape 
No. 4 with the same attributes it had on RAD storage 
plus the addition of read accounts ONE and T'NO. 

<CA TO LT#4/A(RD(ONE, T'NO))@) 
:-.COPYING 

2. Assume that read account ALPHA and write accounts X 
and Y are to be added as attributes of fi I e SRCE. 

< C SRCE OVER SRCE(RD(ALPHA), 'NR(X,Y))@) 
~.COPYING 

ANS TAPE OPTIONS 

Special options for ANS tapes are described in Table 19. 
These options pertain to record blocking, concatenation of 
files, and changing the record formats. Note that while 
blocking is not normally performed when copying to ANS 
tape, blocking may be requested when copying from a non­
A NS device to ANS tape. Unblocking is always performed 
when copying from an ANS tape to a non-ANS device. 

Table 19. ANS Tape Options - COPY Command 

Code Description 

BLK(n) Output option that causes records copied from 
a non-ANS device to ANS tape to be blocked 
in F (fixed-length) format with a block size 
of n, where l :Sn :S 32, 767. The default is the 
value specified for REC (described below). The 
BLK value must be a multiple of the value 
specified for REC. If n is less than 18, 18 bytes 
are written. 

REC(n) Output option that specifies the size of records 
to be blocked on a non-ANS to ANS tape copy. 
The size is specified by n, where l:S n:S32, 767. 
If BLK is specified and REC is omitted, the de-
fault for REC is the size of the first record in-
put. If n is greater than the input record size 
and the input size is less than 140 bytes, the 
record will be padded with blanks to a maxi-
mum of 140 bytes. Truncation is performed if n 
is less than the input record size. 



- -~------ - . -· ·-··-

Table 19. ANS Tape Options - COPY Command (cont.) 

Code Description 

FMT(n) Outpu~ option to allow change of format on an 
ANS to ANS tape copy. The value of n speci-
fies the format for the output tape and must 
be D (variable specified in decimal) or V (vari-
able specified in binary). This option is per-
mitted only if the input format is Dor V. 

CAT(n) Input option that causes n files of the specified 
name on ANS tape to be concatenated to pro-
duce a sing I e output fi I e or to be output to the 
named device. (All of the input files must have 
the same format.) The value for n may range 
from 2 to 128. 

Examples: 

l. Assume that file ABC is ta be copied to file X on ANS 
tape number 123456. Only the first 72 characters of 
each record are to be copied, and the block size is to 
be 720. 

~ C ABC TO AT#l23456/X(BLK(720;8 

~ ), REC(72))8 

2. Assume that four files named A are to be copied from 
ANS tape number '1 ', '2 ', '3 , 
'4 ', and '5 ' into a single RAD file B. (Un-
blocking is performed if the input is blocked. ) 

< #•5 '/A(CAT(4)) TO BE!> 

EXPIRATION OPTION 

The expiration option specifies an expiration time for the 
output file of the COPY command. It has the format 

EXP (l~;d dd, yy}) 
NEVER 

where 

mm, dd, yy specifies a particular date: mm is month 
and may be one or two digits with a value from 1 
to 12; dd is day and may be one or two digits 
with a value from l to 31; yy is year and may be 
one or two digitSwithavaluefromO to 99. (The 
format mm,dd,yymayalsobewritten mm/dd/yy.) 

ddd specifies the number of days ta retain the file. 
It may be from one to three digits in length with 
a value from 1 to 999. 

NEVER specifies that the file is never to expire 
(i.e., it is to have the maximum expiration period 
as specified at SYSGEN). 

' 

RECORD SELECTION 

This specification permits selection of the logical records 
to be copied by giving the sequential position of the records 
within the file. The specification has the form 

X[-Y] 

All records within the file that have a position, n,satisfying 
the condition XS n SY are selected. Multiple selections 
may be specified if separated by commas (X-Y, U-V, W-Z). 
Selections do not have to be in sequential order (but non­
sequential selection is very slow for tape operations). The 
maximum number of selections is ten for each input file. 

Record selection is not permitted when copying from ANS 
tape to ANS tape. 

Example: 

Assume that sections of two files, N 1 and N2, are to be 
combined to form a third file, N3. Records 20-30 and 40-
100 of N 1 fol lowed by records 50-75 or N2 are to be cop­
ied, in that order, to N3. The job account is assumed for 
files Nl and N3; N2 is from account 34 under password PA. 

~ C N1(20-30, 40-100), N2.34. PA(50-75);8 

~TO DC/N3@J 

.• COPYING 

VALID OPTION COMBINATIONS 

Not all combinations of source and destination devices, 
data types, formats, modes, or sequencing codes are valid. 
Table 20 shows the valid combinations, the invalid com­
binations, and the default provisions for the various possible 
combinations. If an invalid combination is found, an error 
message is produced. Execution of the command may or 
may not continue, depending on the severity of the error 
encountered (see .Error Messages). 

EXTENSIONS USING ASSIGN OR SET 

Not all of the 1/0 facilities available in the system are 
made available through PCL. More complicated data trans­
fers may be specified by ASSIGN cards (batch mode) or SET 
commands (on-line mode). Since PCL reads through M:EI 
and writes through M:EO DCBs, special information, such 
as lists of read and write account numbers, may be prespeci­
fied by assigning either the input or output DCB. 

ACCOUNT COPY COMMAND 
This command allows all files, or a specified subset of files, 
in the log-on or some other account to be copied from a 

Account COPY Command 55 



file-type device (RAD, labeled tape, or disk pack) to any 
valid output device. It has the general form 

COPY ALL files TO device 

where 

files may be one of the following: 

[DC][. acctl [(s)] [/r J 
LT[#reel-id] [(s)][/r J 
DP [#reel-id] [(s)] [Ir J 

If 'files' is not specified, DC is assumed. 

Device may be one of the following: 

DC((a)] 

LT [#serial no.] [(a)] 

DP (#serial no.] [(a)] 

FT (#serial no.] [(7T)] 

LP 

ME 

CP 

L l, Pl, or any other logical device name de­
fined at SYSGEN 

If 'device' is nat specified, DC is assumed. Device 
must be specified if options are specified. 

In the above specification, 

may be KEY to copy keyed files only; or SEQ to 
copy sequential fi I es only; or RAN to copy random 
files only; and/or 7T to copy from a 7-track tape; 
and/or PHY to copy in physical order from tape. 

may be f, t; or f; or , t. 

where 

is l to 31 characters representing the 
beginning of a range of files to be 
copied. 

is l to 31 characters representing the 
end of a range of files to be copied. 

Both f and t are used as sort keys only and gener­
ally do not have to be file names. They may be 
written in character string or hexadecimal nota­
tion (e.g., A, 'A', or X 'Cl ' a II represent A.). 
The t field must be equal to or greater than the f 
field. Files on tape are assumed to be in alpha­
numeric order unless the PHY option is used. 

If PHY is specified, the f and t fields define a 
physical range of files on tape instead of an alpha­
numeric range and therefore must be file names. 
If the f field is nul I, copying begins wherever the 
tape is positioned. If the t field is nul I, copying 
continues to end of tape. If the file in the f field 

56 Account COPY Command 

a 

does not exist, the command is aborted. If the 
file in the t field does not exist, copying contin­
ues to end of tape. 

Note: The introductory slash(/) is optional if no 
codes or options precede it. 

may be one or more of the following: 

RD with one to eight account numbers enclosed 
in parentheses, e.g., RD(XX, YY). 

WR with one to eight account numbers enclosed 
in parentheses as for RD. 

7T to copy to a 7-track tape. 

K to print keys (see COPY command). 

NC to remove carriage returns (see COPY 
command). 

PCL copies all files from the input device to the output 
device. Files protected by passwords cannot be copied with 
this command unless the correct password is placed in the 
M:EI DCB by a SET command or an ASSIGN card. The 
BREAK key terminates execution of this command and causes 
PCL to type the identification of the last file copied. 

A synonym file is copied to RAD or disk pack only if the 
parent file was copied or previously existed on the destina­
tion device. A synonym file is always copied to tape 
regard less of whether the parent file is present on the tape. 
If a range is specified on the command, the synonym files 
within the range are copied if the above conditionsare met. 

A parent file of a synonym file within the range is not 
copied unless it is also within the range. If files are copied 
by organization (KEY, SEQ, or RAN option), synonym 
files are not copied. 

If files are being copied to the terminal or line printer, each 
file copy is preceded by the name of the file. If files are 
being copied to any device other than the terminal, the 
message 

.• COPYING 

prints when the first file copy begins. 

If there are no files present in the specified account, the 
following message prints: 

NO FILES IN DIRECTORY 

If a file cannot be copied, the fol lowing message is printed 
and execution of the command continues: 

CAN NOT COPY FILE xxx dddd 

where dddd is the error or abnormal code and subcode. 

PCL indicates completion of the command by printing a 
message of the form 

. . nnnnnn FILES COPIED 

where nnnnnn is the number of files copied during execu­
tion of the command. 



Table 20. Valid Option Combinations 

Option 

Doto codes 

I---

Codes CR 

E 

H 

d 

x 

Doto formats X 

c x 

x d d d d 

x x x x 

x x x x x 
1------------ ---------+----+----t------t-·--·- -·-. - - . 

Modes 

I 

Sequencing 

Accounts 

None 

BCD 

BIN 

7T 

9T 

PK 

UPK 

SSP 

DSP 

VFC 

NC 

CR 

K 

FA 

NFA 

TX 

DEOD 

None 

cs 
NCS 

LN 

NLN 

RD 

WR 

d d d 

d x 

x d d 

x 

d 

x 

x 

i -

x 

d d d d d d d d d d x 

x x x x x x x 

x x 

x x x x x x x x 
···--·-t-----1 ·- --- t------t-----+----+- -· ----+--·-+- -----+--

d d d d 

x x x d 

d 

x I ~ d 

x 

d 

x 

d 

x 

x 

d d d d 

x x x x 

x x x 

d d 

x x 

x x 

x x x x x x x x x 

x x x .x x x x x x 

x x 

x x x 

x x x 

x x x x x x x x x 

d d d d d d d d d 

x x x x x x x x x 

x x x x x x x x x 

x x x 

x x x 

x x x 

x x x 

~--------1----+----+---l-----+---+---+---1----"'----+---+---+----"'----+---l----l---l---+-~ 

Expiration EXP 

Selection x-y 

Legend: d =default 
x =optional 

x x x x 

- =error, not available, unreasonable 

x x x 

x x x 

Account COPY Command 57 



Examples: 

l. Assume that all files listed in the user's account direc­
tory are to be copied to labeled tape Nos. 3 and 4. 
Tape No. 4 is to be used only if No. 3 overflows. 

< COPYALL TO u#3#4 \;;v 

.. COPYING 

Note that RAD (or disk) storage space previously oc­
cupied by this account can be released for other use 
after the files have been copied. 

2. Assume that files are to be restored on RAD storage under 
the job account from labeled tape Nos. 3 and 4, 
created under account :SYSGEN. 

< COPYALL u#3#4. :SYSGEN \0) 

.. COPYING 

3. Assume thatan exact copy of labeled tape No. 3 is to be 
written on tape No. 4. The record size mustfittheal­
lowable ins ta fiction-set a lfocation of core to a single job. 

< COPYALL u#3 TO u#4 0_9 

.• COPYING 

4. Assume that all keyed files on disk pack #5 are to be 
written to a scratch tape. 

'.:, COPYALL Dp#5 (KEY) TO LT@) 

OUTPUT SERIAL NUMBER = xxxx 

.. COPYING 

5. Assume that al I files on RAD between the sort keys C 
and Lare to be copied to the line printer. Each file 
name will print before the file copy. It is assumed 
that records are in BCD format. 

::.coPYALL c, L TO LP E•9 

••. COPYING 

6. Assume that all files on RAD are to have read ac­
counts 123 and X'OOC6' and write account XY added 
as attributes. 

<COPYALL TO DC(RD(123,X 100C6 1),; 

~WR(XY))@) 

.. COPYING 

CONTROL FILE COPY COMMAND 

The control file copy command allows the copying of files 
whose identifiers appear in a control file. The command 
is ca 11 ed "copy standard" and has the form 

COPYSTD input [TO output] 

where 

input specifies the control file and may be one of 
the following: 

[DC/]fid 

LT [#serial no.] [(7T)]/fid 

DP [#serial no.]/fid 

58 Control Fi le COPY Command 

output may be one of the fol lowing: 

DC (default) 

LT [#serial no.] [(7T)] 

DP [#serial no.] 

FT [#serial no.] [(7T)] 

LP 

ME 

CP 

Ll, Pl, or any other logical device name defined 
at SYSGEN 

PCL opens the control file named in the input specification 
and unless this file is a RAD or disk file in the user's ac­
count and the output device is 'DC', the file wi 11 be copied 
to the specified output device. Subsequently thefilesnamed 
in the control file are copied to the output device using 
the running account and the same fi I e names as appear in 
the standard fi I e for output. 

The format of a control file record is an initial character 
fol lowed by name, account, and password separated by 
periods. For example: 

*NAME. ACCT. PASS 

*NAME.ACCT 

*NAME 

The initial character is unused in the copy operation, If no 
account is specified, then the source account for the file is 
assumed to be the same as the account of the control file 
itself. Commentary may appear on each record. 

Files named with the control file may be from labeled tape, 
disk pack, or RAD; in fact all variations allowed for the 
input specification field of a COPY command are valid for 
these devices except that options are not al lowed, Device 
codes and accounts present in the record override the one 
present on the COPYSTD command. 

When files are copied from tape, their names should be 
listed in the control file in the same order as the files are 
stored on the tape. Otherwise, rewinds will occur between 
files. 

If files are being copied to the terminal or line printer, each 
file copy is preceded by the name of the file. If files are 
being copied to any device other than the terminal, the 
message 

•• COPYING 

prints when the first file copy begins. 

If a file does not exist or can not be opened due to a pass­
word requirement, the fol lowing message prints: 

CAN NOT FIND OR ACCESS FILE xxx 

The file is then bypassed and execution of the command 
continues. 



The BREAK key terminates execution of the COPYSTD com­
mand and causes PCL to type the identification of the last 
file copied. 

PCL indicates completion of the COPYSTD command by 
printing a message of the form 

.. nnnnnn FILES COPIED 

where nnnnnn is the number of the fi I es copied during exe­
cution of the command including the standard file itself. 

Examples: 

1. Assume that all files listed in file STDF on labeled tape 
No. 5 are to be copied to RAD storage. The format of 
file STDF is 

*A COMMENTARY 
*B 
*C 

The command to be used is 

<COPYSTD u#s/STDF 

. . COPYING 

On completion of the command, the files STDF, A, B, 
and C, will have been copied from tape No. 5 to the 
user's RAD account. 

2, Assume that all files listed in file ST in the user's RAD 
account are to be copied to his account. The format 
of file ST is 

• ALPHA. ACCT. PASS,BETA. :SYSGEN 

:LT#5/B,C 

The command to be used is 

< COPYSTD ST ~"V 

•• COPYING 

On completion of the command, four fi !es wi 11 have 
been copied: ALPHA, BETA, B, and C. 

3, Assume that all files listed in file :STD in account 
:SYSGEN are to be copied to the line printer. The 
files listed are all in account :SYSGEN. The format 
of file :STD is 

=ALPHA, BET A,GAMMA 

The command to be used is 

< COPYSTD :STD. :SYS GEN TO LP ~-;;:i 

•• COPYING 

On completion of the command, files :STD, ALPHA, 
BETA, and GAMMA will have been copied from ac­
count :SYSGEN to the printer. 

OTHER COMMANDS 

This group of commands provides file deletion, file 
positioning, and other manipulation and maintenance 
functions. 

DELETE The DELETE command deletes complete files 
and has the form 

D [ELETE] {QDDC[~J . I J /}fid [,fid] ... P ser1a no. 

where fid specifies the identification of the file to be 
deleted. Each of the PCL identification codes listed in 
Table 13 is a reserved word for this command and may not 
be used as a fid unless it is enclosed in single quotes or un­
less a DC or DP identification is specified in the command. 
For example, file DC may be legally specified as 'DC', 
DC/DC, DP/DC, DC/ ABC, XYZ, DC, etc., but never 
simply as DC. 

Example: 

Assume that RAD storage file SOURCE is to be deleted . 
Th is file is assumed to have been set up under the log-on 
account with password PLEASE. 

< D SOURCE .. PLEASE - · 

l FILES DELETED 

Depressing the BREAK key terminates execution of the 
command. The summary message tells how many files 
were deleted . 

DE LETEALL Another delete command deletes a II files, 
or a specified range of files, in the log-on account. The 
form of the command is 

{[DC/] } 
DELETEAL[L] Dp[#serial no.]/ [from] [,to] 

where 'from' and 'to' are sort keys of l to 31 characters 
each that define a range of files to be deleted. Absence 
of a 'from' field indicates that files are to be deleted 
from the beginning of the account, Absence of a 'to' 
field indicates that files are to be deleted through the 
end of the account. Absence of both the 'from' and 'to' 
fields indicates that al I files in the log-on account are 
to be deleted. 

Both 'from' and 'to' are used as sort keys only and do not 
have to be file names. They may be written in character 
string or hexadecimal string notation (e.g., A, 'A', orX'Cl' 
all represent A). The 'to' field must be equal to or greater 
than the 'from' fie Id. 

Each of the PCL identification codes listed in Table 13 is a 
reserved word for this command and may not be used as a 
range specification unless it is enclosed in single quotes or 
unless a DC or DP identification is specified in the com­
mand. For example, key DC may be legally specified as 

Other Commands 59 



'DC', DC/DC, DP/DC, DC/ABC, DC, etc., but never 
simply as DC. The commands 

DELETEALL DC and DELETEALL DP 

delete all the user's files on RAD (or public disk pack). The 
command DELETEALL DP with a serial number specified de­
letes all the user's files on the specified private disk pack. 

A synonym file within the range is deleted only if its parent 
file is within the range. 

A confirmation, YES$, is required in the on-line mode. 
(This is shown in the examples below.) 

If there are no files in the log-on account, PCL responds 
to the command with the following message: 

NO FILES IN DIRECTORY 

If a file cannot be opened due to a password requirement, 
the following message prints: 

CAN NOT ACCESS FILE x xx 

The file is then bypassed and execution of the command 
continues. 

After the delete function is performed, the following 
message prints: 

.. nnnnnn FILES DELETED 

The count (nnnnnn) does not include synonym files which 
were deleted. 

Examples: 

1. Assume that all files in the log-on account are to 
be deleted. 

< DELETEALL@) 

DELETEALL ? 

• YES$ 09 

8 FILES DELETED 

2. Assume that all files in the inclusive range B through H 
are to be deleted. 

< DELETEALL B,H@J 

DELETEALL? 

• YES$8 

4 FILES DELETED 

Depressing the BREAK key terminates execution of the com­
mand and causes PCL to type the identification of the last 
file deleted. 

60 Other Commands 

LIST The LIST command is of the form 

LT(#reel-id][(s)l 

[DC G acct]] [(s)] 

LT(#serial no.] [(s)]/fid[(s)][,fid[(s)] ••• ] 

L[IST] fid[(s))[,fid((s}] ••• ) 

DP[#reel-id][(s)] 

D P(#serial no.] /fid[(s)][, fid [(s)] ••• ] 

FT (#serial no.] [(s)] 

All listed output goes through the M:LO DCB. 

The action for the various specifications is as follows: 

1. LT(# reel-id][(s )] (list file directory) 

Device options may be 7T, 9T, A, or EA. 

PCL scans the labeled tape and lists the names of all 
files contained on it. If option A has been requested, 
the attributes of each file are also listed. These attri­
butes include 

Size in granules. 
Record count. 
Organization (keyed or consecutive). 
Read accounts, if other than 'ALL'. 
Write accounts, if other than 'NONE'. 
Modification date. 

If option EA (extended attributes) has been requested, 
the following attributes are listed in addition to those 
described above: 

Creation date. 
Expiration date. 
Backup date. 
Last access date. 

If a file requires a password or account and none is 
given, this wi II be noted. 

2. LDC[. acct]] [(s)] (list file directory) 

Device option may be A or EA. 

PCL scans the user's RAD or public disk pack file direc­
tory and lists the names of all files. If A or EA has 
been specified, the attributes are listed as in 1. 

3. LT[#serial no.] [(s)]/fid[(s)]~fid[(s)] ••• ] (list file attributes) 

This is a request for the attributes of the indicated files. 
Device options may be 7T or 9T. File options may be 
A (which is the default) or EA. If an account is 
required, it must be included in the file identifier. PCL 
prints an attribute summary for each file, as in 1. 



4, fid[(s)][,fid[(s)] ••• ] (list file attributes) 

This is a request for the attributes of the one or more 
RAD or public disk pack files named. Options may be 
A (which is the default) or EA. PCL prints an attribute 
summary for each file, as in 1. 

5. DP[#reel-id]Us)] (list file directory) 

Device option may be A or EA. 

PCL scans the disk and I is ts the names of all fi I es con­
tained on it. If A or EA has been specified, the attri­
butes are I isted as in 1. 

6. DP[#serial no.]/fid[(s)][,fid[(s)]. •. ] (list file attributes) 

This is a request for the attributes of the indicated fifes 
on disk. File options may be A (which is the default) 
or EA. If an account is required, it must be included 
in the fife identifier. PCL prints an attribute summary 
for each file, as in 1. 

7. FT[#serial no.][{s)] 

Device options al lowed are 7T and 9T. Serial no. can 
be a fake. If the tape conforms to CP-V labeling con­
ventions, PCL prints the serial number, account, and 
contents (file names) of the tape. The tape remains 
positioned after the last file, thus enabling the user to 
add files. 

If only the command LIST is given, and no specification 
follows, then the command executes as though it were LIST 
DC. LIST (A) and LIST. acct are also val id commands. All 
output, except for completion messages, is written through 
the M:LO DCB. 

The BREAK key terminates execution of this command. 

PCL indicates completion of the command by printing a 
message of the form 

• • nnnnnn FILES LISTED 

where nnnnnn is the number of files listed during execution 
of the command. 

If attributes of all files in a RAD or disk pack directory are 
listed, the following message also prints: 

•. xxxxxx TOTAL GRANULES 

Examples: 

1. Assume that all files on RAD under the log-on account 
are to be I isted. 

< L .. 

ALPHA 

BETA 

GAMMA 

ZETA 

4 FILES LISTED 

2. Assume that files on 7-track labeled tape Nos, 3 and 
4 are to be I isted. These tapes were created under the 
account :SYSGEN. 

3. 

~ L u#3#4. :SYSGEN(7T) · 

SOURCE 

ALPHA 

XYZ 

3 FILES LISTED 

Assume that the attributes of files ALPHA and BET A on 
RAD are to be I isted. The attributes I isted have the 
following meaning: 

ORG C =consecutive, K =keyed file, 
R = random file. 

GRAN 

REC 

DATE 

Name 

Number of granules of RAD space 
( 1 granule = 512 words). 

Number of records in file, 

Modification date, 

File name. 

Read and write accounts print on a separate line and 
will print only if they have other than default values • 

: L A LPHA,BET A~~ 

ORG GRAN REC DATE NAME 

c 2 71 22 JUL 71 ALPHA 

K 14 590 1 AUG 71 BETA 

2 FILES LISTED 

Other Commands 61 



4. Assume that the extended attributes of file ABC on 
disk pack No. 2 are to be listed. This file has had 
write account 123 assigned previously. 

~ L DP#2/ABC(EAh"· 

ORG GRAN REC DATE NAME 

c 28 385 16 AUG 71 ABC 

WRlff-' 123 

WILL EXPIRE 31 DEC 71 

CREATED ON 2 AUG 71 

BACKED UP ON 10 AUG 71 

LAST ACCESS ON 18 AUG 71 

1 FILES LISTED 

5. Assume that a tape requires identification. The fake 
serial no. X is used in the command. 

INSN = 8522 

ACCT = :SYSGEN 

ONE 

TWO 

THREE 

FOUR ---

FIVE 

SIX 

. . 6 FIL.ES LISTED 

REVIEW This command lists files in the log-on account 
and waits for a user response after listing each file name 
to allow the option of deleting the file. The format of 
the command is 

{ [DC/] } 
REV[IEW] DP[#serial no.]/ [from][,toJ 

where 'from' and 'to' are sort keys of 1 to 31 charac­
ters each which define a range of files to be reviewed. 
Absence of a 'from' field indicates that the account is 

62 Other Commands 

to be reviewed from the beginning. Absence of a 'to' 
field indicates that the review is to continue to the end 
of the account. Absence of both the 'from' and 'to' 
fields indicates that the entire account is to be reviewed. 

Both 'from' and 'to' are used as sort keys only and do not 
have to be file names. They may be written in character 
string or hexadecimal string notation (e.g., A, 'A', or X'Cl' 
all represent A). The 'to' field must be equal to or greater 
then the 'from' fie Id. 

Each of the PCL identification codes listed in Table 13 is a 
reserved word for this command and may not be used as a 
range specification unless it is enclosed in single quotes or 
unless a DC or DP identification is specified in the com­
mand. For example, key DC may be legally specified as 
1 DC 1 , DC/DC, DP/DC, DC/ABC, DC, etc., but never sim­
ply as DC. 

This command may be used in the batch mode and wi 11 func­
tion identically to 'LIST' except that a range specification 
is permitted. 

The BREAK key terminates execution of this command. 

Example: 

<REV N,X~·v 

--ENTER D TO DELETE FILE. 

~· 
W99 D *DELETED* 

.. 3 FILES LISTED 

Each file name within the inclusive range N through Xis 
listed and a wait occurs. Only one character must be 
typed as a response. If a D is typed, the confirmation mes­
sage *DELETED* prints, and the next file name is listed. 
If any character other than D is typed, including carriage 

return ( :m·) or I ine feed ( (0), the file is not deleted. Note 
that PCL responds immediately to the character that is typed 
(the period (.) and the D in the example above) and that a 
carriage return should not be used if another character is 
typed. (The carriage return that occurred at the end of 
the line 

p. 

was provided by PCL.) 

If a file has a password or is open by another user, this is 
noted by an appropriate message, and the review continues 
without the usual wait. 



SPF This command positions free form tape forward or 
backward a designated number. of files. The form of the 
command is 

SPF FT[#serial no.][(7T)], [ ±]n 

where 

+ specifies forward direction. 

specifies backward direction. 

n is the number of files to be skipped. 

If the direction is not given, forward direction is assumed. 
If an end-of-reel condition is encountered prior to com­
pletion, an error message is sent to the terminal. 

'Example: 

Assume that free form tape No. 2076 is to be positioned 
forward two fi I es. 

~SPF fT#2076,28 

SPE This command skips to the position following the 
last file on labeled tape. The form of the command is 

SPE LT[#serial no.] [(7T)] 

Prior to issuing this command, the user must make sure that 
the tape is not write protected, i.e., the operator must be 
informed to insert a ring in the tape if it is a saved tape. 

If either a syntax or an 1/0 error occurs on the command, 
PCL exits to the Monitor after issuing the message 

PCL ABORT 

Example: 

Assume that labeled tape No. 5 is to be positioned past the 
last file on the tape so that additional files may be added. 

~SPE LT#5@) 

WEOF WEOF writes an end-of-file on the current out­
put device. This is an end-of-file mark for free form tape 
units, !EOD for card or paper tape punches, or top-of-form 
for line printers. The form of the command is 

WEO[F] 

(Note that only one output file wi 11 be open at a time.) 

REW This command rewinds the specified magnetic tape 
reel. It has the form 

~[[LT] :ser~al no.] [(7T)] 1 
REW [FT] serial no. 

AT{#serial no. [(7T)]} 
. . [ (7T)] /fi I ename . 

Example: 

Assume that magnetic tape reel No. 205 is to be rewound. 

REMOVE This command removes a magnetic tape or disk 
pack no longer needed, thus releasing the drive or spindle 
for other purposes. The form of the command is 

[FT] #serial no. {[[LTJ#ser~al no.] [(7T)]} 
REM[OVE] A T{#serial no. [(7T)J} 

[ (7T)] /fi I ename 
DP #serial no. 

If a tape is removed, the tape is rewound and a dismount 
message is sent to the computer operator. If a disk pack is 
removed, the user's interest in that spindle is released; how­
ever, no message is sent to the operator. 

Example: 

Assume that magnetic tape reel No. 2075 is to be rewound 
and removed. 

TABS This command sets tab values to be used in con­
junction with the TX (tab expansion) option. As many as 
16 values may be specified. The form of the command is 

TAB[SJsLsJ •.. [,s] 

wheres is a column position to be used in expanding a line. 

Example: 

Assume that tabs are to be set for expansion in the standard 
Meta-Symbol list format. 

~TABS 10,19,37@) 

TERMINATION OF PCL 

PCL operations are terminated by the END command. This 
command returns control to TEL. 

Example: 

<END§ 

ERROR MESSAGES 

PCL reports two types of error conditions. One type con­
sists of the 1/0 error and abnormal conditions as listed in 
Appendix B. The other type consists of errors arising out 
of the use of PCL commands. These conditions are defined 
in Table 21. 

Termination of PCL/Error Messages 63 



Table 21. PCL Error Codes 

Decimal Severity 
Code Message Level 

01 ARGUMENT GREATER THAN 31 CHARACTERS 2 

02 ILLEGAL IDENTIFICATION CODE 2 

03 INVALID REEL NUMBER SPECIFICATION 2 

04 ILLEGAL FILE NAME SPECIFICATION 2 

05 ILLEGAL ACCOUNT NUMBER SPECIFICATION 2 

06 ILLEGAL PASSWORD SPECIFICATION 2 

07 TOO MANY FIELDS IN A FILE IDENTIFICATION SPECIFICATION 2 

08 INVALID FILE RANGE SPECIFICATION 3 

09 MORE THAN TEN RS FIELDS FOR AN INPUT DEVICEt 2 

10 OVERFLOW ON AN RS VALUE 2 

11 ERROR ON Y VALUE OF RS OPTIONtt 2 

12 CS ID-FIELD GREATER THAN FOUR CHARACTERS l 

13 ERROR ON NORK VALUE OF CS OPTION l 

14 IMPROPER TERMINATION WITHIN RS, LN, OR CS OPTION 3 

15 )) MUST TERMINATE RS, LN, OR CS OPTION 3 

16 SPECIAL ARGUMENTS MUST HAVE) AS TERMINATION CHARACTER 3 

17 EH? 3 

18 UNDEFINED COMMAND 2 

19 ILLEGAL INPUT DEVICE 3 

20 NO DEFINED OUTPUT DEVICE 3 

21 ILLEGAL OUTPUT DEVICE 2 

22 REEL NUMBER SPECIFICATION NOT VALID FOR THIS DEVICE 2 

23 FILE SPECIFICATION NOT VALID FOR THIS DEVICE 2 

24 DATA CODE SPECIFICATION NOT VALID FOR THIS DEVICE 2 

25 MODE SPECIFICATION NOT VALID FOR THIS DEVICE 2 

26 SEQUENCE SPECIFICATION NOT VALID FOR THIS DEVICE 2 

tRS signifies record selection. 

tty signifies the upper limit of a record selection. 

64 Error Messages 



Table 21. PCL Error Codes (cont.) 

Decimal Severity 
Code Message Level 

27 RECORD SELECTION SPECIFICATION NOT VALID FOR THIS DEVICE 2 

28 PK/BIN/7T COMBINATION NOT VALID 2 

29 NULL ARGUMENTS (TWO DELIMITERS IN A ROW) l 

30 IMPROPER TERMINATION OF THE COMMAND l 

31 ONE REEL NUMBER MUST BE SPECIFIED ON THIS COMMAND 2 

32 'TO' OR 'OVER' NOT SPECIFIED 3 

33 RECORD SIZE EXCEEDS AVAILABLE MEMORY 3 

34 INVALID DEVICE TYPE FOR THIS COMMAND 3 

35 TOO MANY REEL NUMBERS SPECIFIED 3 

36 OVERFLOW ON NUMBER OF FILES ON 'SPF' COMMAND 3 

37 INVALID DIRECTION INDICATOR ON 'SPF' COMMAND 3 

38 INPUT RECORD SIZE LARGER THAN 32767 BYTES 3 

39 INVALID OPTION FOR COPYALL 3 

40 ACCOUNT SPECIFICATION NOT VALID ON 1SPE 1 COMMAND 3 

41 RS SPECIFICATION BEYOND END OF FILE 2 

42 ERROR IN COMPRESSED INPUT 3 

.43 C OPTION INVALID ON BOTH INPUT AND OUTPUT 3 

44 RECORD SELECTION INVALID WITH C OPTION 3 

45 INVALID TAB SPECIFICATION 3 

46 OVERFLOW ON EDIT LINE NUMBER 3 

47 ZERO INCREMENTS ON CS OR LN OPTION l 

48 TX OPTION USED WITHOUT TABS COMMAND 1 

49 INVALID OPTION FOR COPYSTD 2 

50 MORE THAN EIGHT READ OR WRITE ACCOUNTS 1 

51 MORE THAN 16 TAB VALUES l 

52 UNABLE TO DISMOUNT 2 

53 TOO MANY CHARACTERS IN THE COMMAND 3 

54 INVALID VALUE FOR ANS OPTION 3 

55 FORMAT CODE INVALID FOR COMMAND 3 

56 INVALID OPTION FOR ANS TO ANS COPY 3 

Error Messages 65 



A severity level of l, 2, or 3, is attached to each error 
and has the fol lowing effect on the execution of the com­
mand in question: 

l. Warning 

PCL continues execution. The message will be printed 
only if a higher error severity level occurs during exe­
cution of a command. 

2. Invalid Syntax or 1/0 Error 

This level terminates execution of the command but 
continues the syntax edit of the command for both on­
line and batch operations. 

3. Format Error 

This level terminates the command. 

In the case where a command is terminated (severity 
level 2 or 3), PCL reverts to the command state if the 

error occurs during on-line operations; it reads the 
next command card if the error occurs during batch 
operations. 

Example: 

Assume that a file is to be copied from RAD storage file A 
to the card punch. In entering the command, the device 
code for the RAD is entered as CC instead of DC. 

:::copy CC/A TO CP~~ 

Error message printout: 

ILLEGAL DEVICE CODE 

PCLCOMMANDSUMMARY 
Table 22 is a summary of PCL commands. The left-hand 
column gives the command formats. The right-hand column 
gives the command function and options. 

Table 22. PCL Command Summary 

Command Description 

C [OPY] d [(s)][/fid[(s)][,fid[(sil] ... ][;d[(s)] J Copies file between devices or between public storage and devices. 

[ [/fid[(s)] ~fid[(s)]] .•. ]] .•. [~~ER Options: 

I d may be CP, CR, DC, FT, LP, LT, AT, ME, or any logical 

[ d [(s}][/fid [(s)]]J 
device name defined at SYSGEN (e.g., Ll, Cl, Pl). 

s may be a data code (E, H); a data format (X, C); a mode (BCD, 
BIN, 7T, 9T, PK, UPK, SSP, DSP, YFC, NC, FA, NFA, TX, 
DEOD, K); a sequence (CS, NCS, LN, NLN); an account (RD, 
WR); an ANS tape option (BLK, REC, FMT, CAT); an expiration 
time (EXP); or selection (x-y). 

[[DC)[. acct)[(.j)IJ•l ] 
C OPYALL L T[#reel-id][(s)][/r] [TO d[(a)]] Copies files from RAD, labeled tape, or disk pack to any output 

DP[# reel-id][{s)][/r] device. 

Options: 

d may be DC, LT, DP, FT, LP, ME, CP, or any logical device 
name defined at SYS GEN (e.g., Ll, Pl). 

s may be KEY, SEQ, RAN, or 7T. 

r is a range specification. 

a may be RD, WR, or 7T. 

[[oc/Jr;d ) 
COPYSTD LT[#serial no.] [(7T)]/fid [TO d[(7T)]] Copies a control file and all files named within the file. 

lDp[#serial no.]/fid 
Option: d may be DC, LT, DP, FT, LP, ME, CP, or any logical 
device name defined at SYS GEN (e.g. 1 L l, Pl). 

D [ELETE]{~Vs~rial no.] ;}fid(,fid] .•• Deletes the specified files. 

66 PCL Command Summary 



Table 22. PCL Command Summary (cont.) 

Command Description 

DELETEAL [L]{~~~s]erial no.] /}[from ][,to] Deletes all files or a specified range of files in the log-on account 
and requires a confirmation: 

DELETEALL? 
------·--

. YES$ 

.. nnnn FILES DELETED 

END Returns control of the terminal to TEL. 
-·---- -----

r ...., 
L T[#reel-idl[(s)] Lists file names and, optionally, attributes from the account 
[DC[. acct] [{s)] dictionary, tape, or disk pock. 
LT[#seriol no.] [(s)]/fid[(s)][,fid[(s)J. .. ] 

L [!ST) fid [(s)][, fi d[(s)]. .. ~ Option: s may be A, EA, 7T, or 9T. 
DPf #reel-id][(s)] 
DP #serial no.]/fid[(s))L",fid[(s)] ... J 

._FT[#seriol noJ[(s)l .... f' r]'••dal na.J [(7T))} 
REM[OVE) 

[FT)#senol no. 

AT{#seriol no. [(7T)J} Removes a magnetic tape or disk pock. 
[(7T)] /fi I enome 

DP #serial no. ··- ---- ··- .. - ... ····------__,_- ---------

REV[IEW] {~(~~rial no.] /}[from][,to] Re vi ev1s a 11 or a portion of fi I es in the I og-on account. 

-· ---··-- - ··-·----f LT):••,;al na.J [(7D)} 
REW [F~ serial no. Rewinds tape reel. 

AT{ serial no. [(7T)J} 
[(7T)]/fi lenome 

SPE LT[#serial no.] [(7T)] Spaces to the end of the lost file on labeled tape. 

SPF FT[#serial no.][(7T)],[±]n Positions free form tape forward or backward a designated number 
of files. 

TAB [s] s[,s] ••• [,s] Sets tab values for tab expansion. 

-----· 

WEO[F] Writes an end-of-file on the current output device. 

PCL Command Summary 67 



6. 

INTRODUCTION 

Edit is a line-at-a-time context editor for on-line creation, 
modification, and manipulation of files of EBCDIC text. 
All Edit data is stared on disk in a keyed file structure of 
sequence-numbered variable-length records, which permits 
Edit to directly access each line or record of data. Edit 
functions are controlled via single-line commands from the 
user. The command language provides for the following: 

1. Creating a sequenced EBCDIC coded text file. 

2, Inserting, reordering, and replacing lines or groups of 
lines of text. 

3. Selective printing and renumbering. 

4. Reordering groups of records within a file. 

5. Merging part of one file into another. 

6. Context editing operations that allow matching, moving 
and substituting character strings within a specified 
range of text lines. 

7. Maintaining files (allowing the user to build, copy, 
and delete whole files of text lines). 

A user may edit files under his own account (i.e., the one 
under which he logged on) or under accounts to which he 
has been granted write-access by the file creator. He may 
copy his own files or those to which he has read-access. 
Under the rules of CP-V file access, a file may not be 
created (i.e., bui It or copied to) under an account num­
ber different than that used for log-on. 

In using Edit, it must be stressed that the edit takes 
place as the commands are given; the file is edited in 
place. Therefore, a backup file should be kept to protect 
against user or machine errors. 

CALLING EDIT 

An on-line user may cal I the Edit processor either directly, 

!EDIT 

or indirectly through one of two executive-level commands: 

_!_ ELDIT] fid (edit an existing file) 

J_B[UILD] fid (build new file) 

The first executive-level command allows the user to call 
Edit for updating an existing file. Edit first opens the speci­
fied file and then prompts for command input by typing its 
identifying mark, the asterisk(*). The second executive­
level command allows the user to call Edit for on-line 

68 Edit 

EDIT 

creation of a text file. Edit opens the specified file and 
prompts for command input by typing the first line number 
at the left margin of a fresh line. The user is expected to 
enter the text lines of the new file. 

If an Edit command is given at the executive level without 
a file identifier, Edit types EDIT HERE and prompts for 
further commands by typing an asterisk(*). 

RECORD FORMATS 

The editing process is based on a sequence number associated 
with each line. Unsequenced files of text lines may be 
sequenced via the Edit COPY command. Sequence numbers 
for inserting new lines may be generated automatically by 
Edit or may be supplied by the user. 

Sequence numbers consist basically of an integer and three 
fractional digits. However, the user may write a sequence 
number with one or more fractional digits omitted and Edit 
will automatically assume sufficient trailing zeros to com­
plete the sequence number. For example: 

Sequence Number Implies 

50 50.000 

50.01 50. 010 

50.5 50. 500 

50.008 50.008 

Edit writes variable-length records, with a maximum record 
size of 140 characters including the@l. Trailing blank char­
acters in a record are not written on the file. 

Edit files are stored on disk as keyed records, with the keys 
being binary representations of the sequence numbers. The 
sequence number DDDD. DDD is taken as a seven-digit deci­
mal integer and converted to binary, giving a key with a 
maximum length of three bytes. For example, the following 
record created in a BUILD operation would have a key value 
of 800010 and a record length of 20 bytes (assuming that@l 
is in column 20): 

8,000 B2 Ll,5 0 @l 

If the @J is preceded by a number of blanks, they will not 
be carried in the output. The record terminator can be 
either@ or and is carried in the record as X'l5'. 

MULTILINE RECORDS 

On a terminal unit having an inherent line-width limit of 
less than 140 (e.g., Teletype models 33, 35, and 37), a 



single, multiline record may be entered into a file {using 
the BUILD or IN c.ommands, for example) in either of two 
ways: 

l. Using the local carriage return key marked LOC CR, if 
present, to "break" the input line without releasing it 
to the system. 

2. Using the simulated local carriage return sequence 
(',:::'l ~,-;, for the same purpose. 

Either method permits entering a record of up to 139 char­
acters plus~,;, on virtually any terminal unit. 

An example of a multi line record is presented in Figure 3. 

BREAK FUNCTION 

The BREAK key always causes an immediate interruption in 
Edit activity, with any partially completed input being dis­
carded and any waiting output being delivered to the ter­
minal. Edit stops any command in progress and reverts to 
accepting co~mand input from the user. 

If the command in progress when an interrupt occurs is a 
display command {for example, TY), the display will stop 
within the next several lines after the interrupt is given. 

For commands that produce no display while operating on a 
range of records, the point of interrupt is reported by a mes­
sage which denotes the sequence number(s) of the record(s) 
being processed at the time of the interrupt. Edit then types 
this message 

--ENTER XTO ABORT COMMAND. ANY OTHER 
CHARACTER CONTINUES. 

and prompts for a single character input. If the user enters 
an X, the operation aborts; if he enters any other character, 
the operation continues. 

If a command is being executed and the BREAK key causes 
an interrupt during an 1/0 operation {e.g., READ, WRITE, 
OPEN, DELETE record), the 1/0 operation is completed. 
After the 1/0 is completed, the user may continue execution 

of the command to normal conclusion or may immediately 
terminate the command. With record or intrarecord com­
mands (see Command Structure), the current Edit file remains 
open. All file commands terminate by closing all files. 

EDIT COMMANDS 

COMMAND STRUCTURE 

Edit commands fall into the following three categories: 

l. File commands: Commands that apply to an entire file. 
These commands may be given at any time. 

2. Record commands: Commands that act upon one record 
or a group of records within a file. These commands 
may be given only after a file hcis been selected for 
editing. 

3. lntrarecord command;: Commands that make changes 
within an individual record. These commands gen­
erally manipulate character strings and may be given 
only after a specific set of records has been selected 
by a command of type 2, above (either the SE, SS, or 
ST command). 

FILE COMMANDS 

The file commands will be discussed in the following order: 

EDIT Select file for editing. 

BUILD Create a new file. 

COPY Copy file l to file 2. 

DELETE Delete file. 

MERGE Merge files. 

END Exit to executive. 

CR Set carriage return mode. 

TA Set tab positions. 

BP Set blank preservation mode. 

Line number 4. 000 is input as a multi line record in the following manner: 

4.000 THIS IS AN EXAMPLE OF A MULTILINE~0(§) 
RECORD. A RECORD CAN CONT A IN UP TO 140 \c?ll0J 
CHARACTERS INCLUDING THE CARRIAGE RETURN.(§) 

If this record were displayed by Edit, it would appear as 

4.000 THIS IS AN EXAMPLE OF A MULTILINERECORD. A RECORD CAN CONTAIN U 
P TO 140 CHARACTERS INCLUDING THE CARRIAGE RETURN. 

Note that the user did not type a space after the word 'multiline' and that Edit did not assume a space. Also, 
the system "folds" the record indiscriminately when the physical line width limit is reached. 

Figure- 3. A Multiline Record 

Edit Commands 69 



EDIT Edit File 

EDIT opens a file to be edited. The EDIT command has the 
format shown be I ow. 

*EDIT fi d 

The EDIT command must be used to enter the record editing 
mode and to identify the file that is to be edited. 

Use of any of the following commands terminates the record 
editing mode: BUILD, DELETE, MERGE, and COPY. If an 
EDIT command is given while in the record editing mode, 
the previously open file is closed and the specified file is 
opened. In both situations, the following message is printed 
by Edit: 

•• EDIT STOPPED 

Edit then processes the new command. 

BUILD Build New File 

The BUILD command enables the user to create a new fi I e. 
The command may be given at the TEL level with the form 

.!_B[UILD] fid 

or it may be given at the Edit processor level with the form 

*BUILD fidGnGiJJ 

where 

fid is the identifier of the file to be created. 

n is the sequence number at which the new file is 
to start. The default value is 1. 

is the value by which sequence numbers for the 
new file are to be incremented. The default value 
is 1. 

The system prompts by typing a sequence number, and 
the user then types in the corresponding line. A null line 
(indicated by @l alone) terminates the build operation and 
closes the file. If the BUILD command is used at the 
executive level, then control returns to the executive level 
after typing a null record (@l alone); and if the BUILD 
command is invoked while in the Edit processor, then con­
trol returns to the Edit processor after typing a null record. 

Example: 

*BUILD SOFILE @l 

1. 000 

2.000 

3.000 

70 Edit Commands 

SYSTEM 

DEF 

REF 

B @l 

A@l 

SIG5 @l 

4.000 

5.000 

6. 000 ('.'0 

* 

COPY Copy File 

B A@l 

END @l 

The null record, consisting of 
only a carriage return, termi­
nates the command and does not 
appear in the output fi I e. 

COPY causes Edit to copy a specified file. The COPY com­
mand has the format shown below. 

where 

identifies the file that is to be copied. 

identifies the file to which fid 1 is to be copied. 

n is the starting sequence number for the new file. 
If omitted, the old seguence numbers of fid 1 are 
retained in the copy. 

is the sequence number increment for the new file . 
The default value is 1. 

If ON is specified, a new file is created (and must not 
already exist). If OVER is specified, fid2 may exist; and if 
it does, it will be deleted and replaced by the copy of fid 1• 

Example: 

*COPY PROG 1 ON PROG2 @l 

• .COPYING 

•• COPY DONE 

DELETE Delete Fi le 

DELETE causes Edit to delete a specified file from the log-on 
account. The DELETE command has the format shown 
below. 

*DELETE fid 

Example: 

*DELETE PROG 1 @l 

.• DELETED The file has been deleted. 



MERGE Merge Files 

MER GE causes Edit to transfer records between specified 
files. The MERGE command has the form shown below. 

Records nl through n2 from file fidl are merged into file 
fid2 where they replace records n3 through n4· In the 
target file the new records are numbered from n3 in steps 
of i. The source file, fidl, must be keyed format or else 
Edit aborts the command. If no range specification is 
attached to fi d 1, a 11 of its records are subject to the move. 
If a range specification exists, Edit checks that at lemtone 
record is contained in it. 

Example: 

*MERGE 

*MERGE 

*MERGE 

INTO 

INTO 

fid 1, 10-12.5 INTO 

Merges all of fid 1. 

Merges record 10.000 
offid 1. 

Merges records 
10.000 through 
12. 500. 

After validity checks are made on fid1, Edit checks for the 
existence of fid2. If fid2 does not exist, Edit creates a 
file identified by fid2 and then moves the appropriate rec­
ord set from fid1 into fid2, resequencing from n3 ond incre­
menting by i. (If no value for i is specified, the value is l 
by default.) This o'peration is similar to a COPY opern­
tion, except for the selection of records from fid1. If fid2 
exists, Edit deletes from it all records in the range n3-n4 
and then replaces them with the appropriate records from 
fid 1, starting at sequence n3 and incrementing by i. 

Example: 

_:MERGE ALPHA.ACCTl,100-120 INTO BETA, 400-440·:· 

•• MERGE STARTED 

--DONE AT 420 420 is the last sequence number as-
signed in BETA. 

If (when fid2 exists) the number of records to be transferred 
at the specified increment causes Edit to equal or exceed 
the next higher existing sequence number above the des­
tination range n3-n4, the merge is stopped with the message 

where 

is the last sequence number assigned in fid2" 

is the sequence number of the last record moved 
from fid 1. 

The user may then give subsequent commands to investigate 
how to move the remaining records. 

END Exit Edit 

END causes Edit to close all active files and return control 
to the terminal executive language (TEL). The END com­
mand has the format: 

*END 

Example: 

*END· 

Any TEL command may now be given. 

CR Set Carri age Return Mode 

The CR command controls the inclusion of the CR (X' 15') 
character at the end of each record in the user's output 
file. The CR command has the form shown below. 

*CR{ON} 
- OFF 

where 

ON includes the X'l5' terminator in the user's out-
put file. 

OFF excludes the X' 15' terminator from the user's 
output file and is the default setting. 

The carriage return is normally not included since this is 
provided by the COC routines. However, if the user wishes 
to reproduce the file on cards or tape (for later use by other 
than CP-V software), he may want the carriage return. In­
clusion of the carriage return character wi 11 have no effect 
on the typing of records on the terminal, however. 

The CR command may be given at any time. 

TA Set Tab Positions 

TA causes Edit to set or reset the terminal tab stops. 

where 

F implies FORTRAN and a tab set at column 7. 

M implies Meta-Symbol and tabs set at columns 10, 

s 

19, and 37. 

implies Meta-Symbol, short-form, and tabs set at 
columns 8, 16, and 30. 

These tab settings correspond to record column numbers and 
are offset to provide for the line number produced at the 
left margin of the user terminal. The TA command may be 
given while an edit operation is in progress without stopping 
the edit operation, but it may not be used as an intrarecord 
command. 

Edit Commands 71 



When the programmer uses the terminal to build a file, he 
can columnarize the instructions as if he were typing them 
on a coding sheet. However, unlike the TAB key on most 
typewriters, the TAB key on many terminals does not move 
the carriage across the page. Therefore, a CP-V service is 
provided to simulate tabbing action when the TAB key is 
struck. To achieve simulation the user must do three things: 

l. Tell the system where the tab stops are by using the 
executive command TABS or the Edit command TA. 

2. Be sure tab simulation is on to cause the appropriate 
number of spaces to be sent on output and echoed on 
input whenever a tab character is detected. (Tab 
simulation is discussed in Chapter 10.) 

3. Set space insertion mode. If space insertion mode is 
on, an appropriate number of spaces will be inserted 
into the input record. If space insertion mode is off, 
the tab character (X'OS')will be inserted into the input 
record. (Space insertion mode is discussed in Chapter 2.) 

Edit puts the actual tab character (X'05') into the file being 
constructed whenever the TAB key is struck, regardless of 
whether simulation is carried out. 

When using intraline commands to edit text that contains tab 
characters, the user must give a TA or TABS command so that 
Edit wi II know how to interpret the tab characters it finds. 
Edit then uses this information to expand the records by 
inserting an appropriate number of blanks for each tab char­
acter it finds. (See the discussion of the blank preservation 
command, BP, later under "Intrarecord Editing Commands".) 
If tab stops have not been set by a TA or TABS command and 
Edit finds a tab character, the user is notified with the 
message 

-TAB CHARACTER FOUND. NO TAB STOPS SET. 

BP Set Blank Preservation Mode 

BP sets the blank preservation mode on or off. The BP com­
mand has the format shown below. 

When "on", all strings of blanks are preserved during intra­
record operations. When "off", blank strings are compressed 
to a single blank or expanded as required to retain column 
alignment of nonblank fields. The default mode is "off". 

When a string is inserted or replaced in a manner that 
changes the number of characters in a record, the record 
format is adjusted as fol lows. 

When the blank preservation mode is off, the blanks between 
two successive strings are not preserved. When a string 
operation causes the first of two strings to be expanded or 
contracted, the number of blanks between the two strings 
are decreased or increased so that the second string stays in 
the same columnar position. (If the first string expands, the 
number of blanks between the two strings decreases; if the 

72 Edit Commands 

first string contracts, the number of blanks increases.) At 
least one blank must be left between strings. 

When the blank preservation mode is on, the blanks between 
the two strings are preserved. That is, when the first string 
expands or contracts, the second string is moved to the left 
or right so that the same number of blanks remains between 
the two strings. 

For example, the following string substitution command 

.:/?/S/LIN K/ i~7;} 

substitutes the string "LINK" for the string 11 8 11 in the 
instruction 

$10 BAL,8 SUB 

adjusting blanks as indicated below: 

old $10 BAL, 8 SUB 
new (BP-OFF) 
new (BP-ON) 

$10 BAL, LINK SUB 
$10 BAL, LINK SUB 

Although the BP command is discussed with the file com­
mands, it may also be used when Edit is in the record mode. 

RECORD EDITING COMMANDS 

The record editing commands may only be given after a file 
has been opened for editing via the EDIT command. If the 
user does not open a file for editing before giving a record 
editing command, Edit prints the message: 

-NO FILE NAMED 

The record editing commands will be discussed in the fol­
lowing order: 

IN} 
IS 

DE 

TY} 
TC 
TS 

MD} 
MK 

FD 

FT 

Insert records. 

Delete records. 

Type individual records. 

Reorder records within a file. 

Delete records containing a' specified 
character string. 

List sequence numbers and contents of records 
containing a specified character string. 



FS 

RN 

CM 

SE 

SS} 
ST 

List sequence numbers of records containing a 
specified character string. 

Renumber record. 

Insert commentary. 

Select a group of records for character 
operations. 

Select records for step mode operation. 

IN Insert New Records 

IN causes Edit to insert new records into a file. The I"! 
command has the format shown below. 

New records are inserted starting at the record with sequence 
number n, with each successive record being sequenced from 
n with increment i. (If i is omitted, the increment size 
specified in the most recent record editing command is used. 
If no such commands have been given, the value l is assumed 
by default.) If a record with sequence number n exists in 
the file, it is replaced by the newly inserted record n. 

Edit prompts the user console with the first sequence to be 
inserted, and repeats the prompt for each subsequent in­
sertion, increasing the sequence number by the increment i. 

The insertion can be terminated in one of three ways. If a 
null record (@l only) is supplied, the insertion terminates. 
An equivalent action takes placeifan incrementedsequence 
equals or exceeds a sequence existing in the file. In the latter 
case, the console bell is rung. The insertion is also 
terminated (and an error message is printed) if an attempt 
is made to insert a record having a record number greater 
than 9999. 999. 

Example: 

*EDIT SOURCEFILE @l 

:_IN 100, • l @l 

100.000 

100. 100 

10 A = 2. 5@ Replaces the existing record. 

s = o.e 

* 

IS Insert New Records 

Record insertion terminates 
because sequence number 
100. 200 existed previously; 
the console bell is rung. 

The IS command is identical to the IN command in function 
and format except that Edit does not prompt with sequence 
numbers. The format of the IS command is: 

:_is n[,i] 

Example: 

*EDIT SOMEFILE ~9 

:_is 100, • l ~ii 

10 A= 2.5 8 
B = O@l 

* 

DE Delete Records 

DE causes Edit to delete al I records whose sequence numbers 
lie in a specified range. The DE command has the form 
shown below. 

*DE n[-m] 

where 

n specifies the number of the first record to be de-
leted. . 

m specifies the number of the last record to be de-
leted. If m is omitted, only record n is deleted. 

Example: 

_:DE 50@) 

_:DE 50-60. 5 ~j 

Deletes record 50. 000 only. 

Deletes all records in the range 
50. 000 through 60. 500, inclu­
sive. 

TY Type Records, Sequence Numbers Included 

TY causes Edit to type the sequence numbers and the con­
tents of specified columns of one or more records. In addi­
tion, it causes Edit to enter the intrarecord mode as though 
an SE command had been given. The TY command has the 
format shown below. 

:_TY n[-m][,c [,d]] 

Edit types records in the range n to m, and types only the 
portions between columns c and d. If m is omitted, only 
record n is typed. If the values for c and dare not given, 
c has a value of 1 and d has a value of 140 by default. 

Example: 

:'.:_EDIT SOURCEFILE@) 

:::_TY 1-2,4,8@) 

1.000 EQU 

1.200 SY.ST 

1.400 REF 

1.600 DEF 

1.800 PAGE 

2.000 ITIAL 

* 

Edit Commands 73 



TC Type Compressed 

TC causes Edit to type the sequence numbers and the contents 
of specified columns of one or more records. Any nonblank 
strings within the columns are shifted to the left to compress 
each blank string to a single blank. This compression affects 
only the typed output; the records themselves are not af­
fected. TC is the same as TY with all blank strings com­
pressed to a I ength of one. Like TY, TC causes Edit to enter 
the intrarecord mode as though an SE command had been 
given. The TC command has the format: 

.:_TC n[-m][,c[,d]] 

Edit types records in the range n to m, and types only 
the portions between columns c and d. If m is omitted, only 
record n is typed. If the values for c and dare not given, 
c has a value of 1 and d has a value of 140 by default. 

Example: 

*EDIT SOURCEFILE @J 

~TC 1-2, 1, 7@) 

1.000 A EQU 

1.200 SYS 

1.400 B REF 

1.600 C DEF 

1.800 PAGE 

2 .000 *UHTIA 

* 

TS Type Records, Sequence Numbers Not Included 

TS causes Edit to type the contents of specified columns of 
one or more records, without accompanying sequence num­
bers. In addition, it causes Edit to enter the intrarecord 
mode as though an SE command had been given. The TS 
command has the format shown below: 

Edit types records in the range n tom, and types only the 
portions between columns c and d. If m is omitted, only 
record n is typed. If the values for c and dare not given, 
c has a value of 1 and d has a value of 140 by default. 

Example: 

~EDIT SOURCEFILE @J 

*TS 1-2,1,S@J 

A EQU 

SYS 

B REF 

C DEF 

PAG 

*IN IT IA 

* 

74 Edit Commands 

MD Move and Delete Records 

MD causes Edit to move records from one specified range 
to another. The original records are deleted as they are 
moved. Records in the destination range are also deleted. 
The MD command has the form shown below. 

~MD n[-m],k[-p](,i] 

where 

n specifies the sequence number of the first record 
that is to be moved and deleted . 

m specifies the sequence number of the last record 
that is to be moved. If omitted, only n is moved 
and deleted. 

k specifies the lower limit {i.e., sequence number) 
of the range of destination records that will be 
deleted. 

p specifies the upper limit of the range of records 
to be deleted. If omitted, only k is deleted. How­
ever, records from the range n-m are still moved 
to record k and following until a record is encoun­
tered, that originally followed record kin the file. 
{When such a record is encountered, no more rec­
ords are moved.) 

specifies the increment value to be used for re­
numbering records. If omitted, the most recent 
increment value specified in a record edit com­
mand is used. If no such commands have been 
given, the default value is 1. 

The first record {n) is renumbered as k. Successive records 
from the range n-m are renumbered consecutively higher, 
incremented by i. 

It is important to note that the ranges n-m and k-p may not 
overlap. 

As each record from the range n-m is moved, it is deleted 
from the original range {n-m). At the end of this operation, 
a message is printed specifying the new sequence number of 
the last record moved from the range n-m. 

Example: 

.:_EDIT BETA@'i 

.:_MD 5-21, 100-101, • 02 @l 

--DONE AT 100. 32 

If the increment is too large to permit all records in the 
range n-m to be moved into the space between k and the 
next record after p, a message is printed specifying the 
sequence numbers, from both ranges, of the last record moved. 

In this case the original contents of range k-p will be lost, 
but only those records in the range n-m that have actually 
been moved will have been deleted. Thus, the user can 
perform another move {with a smaller increment) to move 
the remaining records in the range n-m. 



Example: 

*EDIT BETA§ 

*MD 10-30, 100-110, l 8 

--CUTOFF AT 110. (20.) 20 is the number of the 
last record that was moved. 

MK Move and Keep Records 

MK is identical to MD except that the records in the range 
n-m are not deleted as they are moved; thus a copy of 
records in the range n-m is made. The MK command has the 
form shown be I ow. 

*MK n [-m] ,k[-p][,i] 

FD Find and Delete Records 

FD causes Edit to search for a specified string between 
specified columns. If the string is found, the record con­
taining it is deleted from the file. The FD command has 
the form shown below. 

_:FD n [-m], /stri ng/~c[,d]] 

where 

n specifies the sequence number of the first record 
to be searched. 

m specifies the sequence number of the last record 
to be searched. If omitted, only record n is 
searched. 

/string/ specifies the character string identifying 
the record to be deleted. 

c specifies the lower limit (i.e., column number) of 
the field to be searched. The default value is 1. 

d specifies the upper limit of the field to be 
searched. The default value is 140. 

The specified string must be entirely contained within 
columns c through d to cause deletion. At the end of this 
operation, a message is printed telling how many records 
were deleted. 

· *EDIT FILEA@J 

.:FD 5-20.4,/DATA/, 10, 18@> 

--006 RECS DLTED 

If there are no records in the specified range containing the 
indicated string, Edit prints the following message: 

--NONE 

FT Find and Type Record and Sequence Number 

FT causes Edit to search for a specified string between 
specified ~olumns. If the string is found, Edit types out the 
sequence number and the contents of the record. (The string 
must be entirely contained within the specified columns.) 
The FT command has the format: 

~FT n[-mJ,/string/[,c(,dJ] 

The parameter specifications are the same as those for the 
FD command. 

Example: 

*EDIT SOME FILE 8 

*FT 1-100,/LW/, 108 

5.000 LW,3 DATA 

9.000 LW,2 TABLE,7 

21.480 LW,10 LOC+5,8 

73.000 LW,9 FLAG 

* 

If there are no records in the specified range containing the 
indicated string, Edit prints the message 

--NONE 

FS Find and Type Sequence Number 

FS causes Edit to search a given range of records for a 
specified character string between designated columns. Edit 
wi 11 type the sequence number of each record satisfying the 
search criteria. The FS command has the format: 

.:Fs n[-m],/string/~c~d]] 

The parameter specifications are the same as those for the 
FD command. 

Example: 

*EDIT SOMEFILE @J 

.:Fs 10-20,/BE/, 10, 11 @J 

15.000 

18.000 

* 

If there are no records in the specified range containing the 
indicated string, Edit prints the following message: 

--NONE 

Edit Commands 75 



RN Renumber Record 

RN causes Edit to renumber a specified record. The RN 
.command has the form shown below. 

.:_RN n,k 

This has the same effect as deleting record n and then enter­
ing a new record with sequence number k with the same 
contents as n. Sequence number k must not already exist. 

CM Insert Commentary 

CM causes Edit to insert commentary into specified columns 
of each successive record beginning at a specified sequence 
number. The CM command has the format shown below. 

*CM n,c 

where 

n is the record number. 

c is the column number. 

The sequence number of each record is typed and then the 
user types in the data he wants insertedstartingatcolumnc. 
The data he types in is blank filled to the right through 
column 140, as required. A null record terminates the com­
mand. It is not necessarytodelimitcommentarywithslashes. 

Example: 

*EDIT SOURCEFILE@l 

.:_CM 37.6, 408 

37.600 * COMMENT 18 

37. 800 * COMMENT 2 8 

4o.5oo _:8 
* 

SE Set Intrarecord Mode 

SE causes Edit to accept successive lines of intrarecord 
commands. The St command has the format shown below. 

Each input line of intrarecord commands isapplied, in order, 
to columns c through d of every record in the range n 
through m. If m is missing, only record n is processed. 
The default values for c and d are 1 and 140, respectively. 

If several commands are entered on one line, all commands 
on the line are executed on one record before the next 
record is processed. The first occurrence of a file or record­
edi ting command termi notes the effect of the SE command. 
Al I commands executed in the intrarecord mode apply only 
to the strings lying entirely within columns c through d. 

SE may be used on the same input line with other intrarecord 
commands, but when so used, it must be the first command 
on the line. 

76 Edit Commands 

SS Set and Step 

SS causes Edit to start at a specified record and proceed to 
each record in succession, accepting one line of intrarecord 
commands to update the current record. The SS com­
mand has the format shown be low. 

.:_ss n[,c[,d]] 

The first record to be updated has the sequence number n. 
Intrarecord commands wi 11 only be effective on strings that 
lie wholly within columns c through d. The default values 
for c and dare 1 and 140, respectively. 

Edit prompts for commands for each successive record with 
the sequence number, fol lowed by a double asterisk. The 
SS command is terminated by typing a null record in place 
of an intrarecord command. 

ST Set, Step, and Type Record 

This command is similar to SS except that the content of 
each record is typed, along with its sequence number, prior 
to accepting a command. The ST command has the format 
shown below. 

.:_ST n~cGdJ) 

The parameters of the command and the error messages which 
Edit types are the same as those for the SS command. 

INTRARECORO EDITING COMMANDS 

The intrarecord commands make changes within an individ­
ual record. They generally manipulate character strings . 
These commands may only be given after the user se I ects 
an intrarecord mode with the SE, SS, or ST commands. 

The intrarecord commands will be discussed in the following 
order: 

s 
D 
p 
F 
0 
E 
Rand L 

TS } 
TY 
JU 
NO 
RF 

Substitute string. 
Delete string. 
Insert string preceding. 
Insert string fol lowing. 
Overwrite string. 
Overwrite string; blank fi 11. 
Shift string. 

Type i ndi vidua I records. 

Jump to new sequence. 
No change. 
Reverse blank preservation flag. 

Commands in the intrarecord group may be linked together 
on a single line through use of the semicolon (;). The fol­
lowing command sequence would select a line, type the 
original, edit, and type the new version: 

.:_SE 100; TY; /TEMP/S/B/;/JK/F/+BETA/;TY8 

The following conventions are used with intrarecord 
commands: 

1. j/string/x 

means that command x is to operate on the jth occur­
rence of the i ndi coted string found between co I umns c 



through d as specified by an SE, SS, or ST command. 
If j = 0, this means that the command is to operate on 
al I occurrences of the string between columns c and d. 
If j is missing, the default is 1. A single/ may be in­
cluded in the string by typing two slashes in succession. 

2. k x 

means that command x is to operate on the character 
contained at column k, where k must lie between col­
umns c and d of the SE, SS, or ST command. 

Whenever an S, D, P, F, 0, E, R, or L command is given, 
Edit responds in one of the fol lowing ways: 

1. A bell followed by a carriage return and a prompt in­
dicates that no changes took place as a result of the 
command. 

2. A prompt alone indicates that one change occurred as 
a result of the command. 

3. The message 

x STRINGS CHANGED 

fol lowed by a carriage return and a prompt indicates 
that x changes occurred as a result of the command. 

The fol lowing general errors are possible: 

-MISSING SE No SE command was given. Either 
an SE, SS, or ST command must be given in re­
sponse to this message. 

--Cn:COL > LIMIT The value specified for k is 
greater than d for the nth command. 

--Cn:COL < LIMIT The value specified for k is 
less than c for the nth command. 

Before reading the intrarecord command descriptions, it is 
important to note the fol lowing information: 

Note: In any intrarecord command that seeks a matching 
string in the image, only those strings that lie totally 
within the specified column bounds wi 11 be found. 
Partial matches to a column boundary will be ig­
nored. In subsequent examples, references to col­
umns c and d pertain to the column boundaries given 
in the SE, SS, or ST command. 

s Substitute String 

S causes Edit to locate a specified string (string1} between 
columns specified by an SE, SS, or ST command and replace 
it with another string (strin92). The S command has the 
format shown below. 

.:{ j]/stri ng /S/stri ng/ 

The image to the right of string] is adjusted right or left as 
required, ifthe lengths of string 1 and string2 differ. String2 
may extend past column d if d < 140. 

If j = 0, all occurrences of string] between columns c and d 
are replaced by string2. Otherwise, only the jth occur­
rence is replaced. If j is missing, the default value is l. 

Example: 

Command Effect 

:_/LW/S/CW/ LW,R5 ALPHA+2 old 
CW,R5 ALPHA+2 new 

:_/10/S/5/ LW,RlO B old 
LW,R5 B new 

.:_/$10/S/ENTRY/ $10 LW,R5 ALPHA old 
ENTRY LW,R5 ALPHA new 

.:_/AL PHA/S/B/ LW,R5 ALPHA+2,R6 old 
LW,R5 B+2,R6 new 

.:_2/5/S/55/ 15 C=DISQRT(TEMP+2. 5 
*BASE) old 

15 
C=DSQRT(TEMP+2. 55 

*BASE) new 

D Delete String 

D causes Edit to locate a given occurrence of an indicated 
string, between columns specified by an SE, SS, or ST com­
mand, and delete it. The D command has the format shown 
below. 

:[i]/string/D 

If j = 0, al I occurrences of the string between c and d are 
deleted. Otherwise, only the jth occurrence is deleted. 
If j is omitted, the default value is l. 

Example: 

_:EDIT SOMEFILE @> 

*TY 7 8 
7.000 STW,4 

*SE 7@ 

.:_/ANSWER/DI§ 

*TY 7 8 
7.000 STW,4 

P Precede String 

ALPHA ANSWER 

ALPHA 

P causes Edit to start before the first character of a given 
occurrence of a specified string (string 1} or column k and 
insert another string (string2}, pushing characters of the first 
string to the right as required to make room. The P com­
mand has the format shown below. 

.:.(j]lstri ng /P /string f 
or 

.:_kP/stringf 

Edit Commands 77 



String2 may legally extend beyond column d if d < 140. The 
first character of string2 will occupy the column vacated by 
the first character of string 1, etc. 

If j = 0, Edit wi II insert string2 before all occurrences of 
string l between columns c and d. However, after string l 
has been found once and string2 inserted before it, scanning 
for the next occurrence resumes at the next character after 
string 1, as adjusted by the insertion. If j is not equal to 
zero, the command wi 11 only affect the jth occurrence of 
string]· If j is omitted, the default value is l. 

Example: 

F 

*SE 17. 69 

_:TS;O/AA/P/. /;TS 

AAAAAAA 

.AA.AA. AAA 

Fol low String 

(set intrarecord mode) 

(type; edit; type) 

(original record) 

(edited record) 

F causes Edit to start after the last character of a given 
occurrence of a specified string (string l) or column k and 
insert another string (string 2), pushing everything from this 
column right as required to make room. The F command has 
the format shown below. 

1iJ!string /F/string/ 

or 

_:kF/string/ 

The j specifies that the jth occurrence of string] between 
columns c and d (specified by an SE, SS, or ST command) is 
to be followed by string2. If j is omitted, the default value 
is 1. In the case where j = 0, Edit inserts string2 at 
all occurrences of string] between columns c and d. Scan­
ning for the next occurrence of string] resumes following 
the last character of string2. If a given occurrence of 
string 1 is shifted beyond column d due to previous inser­
tions, it will not be scanned. 

String2 may legally extend past column d if d < 140. 

Example: 

Command Effect 

.~/AB/F/+2/ LW,R6 AB,R2 old 
LW,R6 AB+2,R2 new 

0 Overwrite 

0 causes Edit to start at the column occupied by the first 
character of a given occurrence of a specified string 
(string 1) or column k and overwrite with another string 
(string2). No blank preservation or other adjustment is 

I 

78 Edit Commands 

done and all columns not overwritten remain unchanged. 
The 0 command has the form shown below. 

1iJ!string /O/string2 / 

or 

.:_kO/string 2 / 

String2 may overwrite beyond column d if d < 140. The j 
specifies that the jth occurrence of string] between affected 
columns is to be overwritten by string2. If j is omitted, 
only the first occurrence is overwritten. If j = 0, all occur­
rences are overwritten. In the case where j = 0, string2 is 
not scanned by Edit after string] is overwritten. Edit begins 
scanning with the column following string2. 

E Overwrite and Extend Blanks 

E causes Edit to start at the column occupied by the first 
character of a given occurrence of a specified string (string]) 
or column k and overwrite with another string (string2). The 
E command has the format shown below. 

or 

B Ian ks are extended from the end of stri ng2 through column d 
(where dis the upper limit of the column range selected 
by an SE, SS, or ST command). String2 may overwrite 
beyond column d if d < 140, but blank extension only occurs 
through column d. 

The j specifies that the jth occurrence of stringl between 
affected columns is to be overwritten by strin92. If j is 
omitted, only the first occurrence is overwritten. The spec­
ification j = 0 may not be specified, since blank extension 
precludes multi pie substitutions within the same record. 

Rand L Shift Record Image 

R and L commands cause portions of the record image to be 
shifted right (R) or left (L). The Rand L commands have the 
form shown below . 

.:.[jJ!stri ng/ { ~} s 

or 

The string must lie wholly within columns c and d specified 
by the current SE, SS, or ST command. The specified sub­
string may contain embedded blanks, but the string to be 
shifted terminates with the first blank following the spec­
ified substring. 

The j specifies that the jth occurrence of the specified sub­
string between affected columns is to be shifted, together 
with all subsequent contiguous nonblank characters. If j is 
omitted, only the first such occurrence is shifted. Note 
that j = 0 may not be specified for this command. 



L Shift Left 

The jth field that begins with the indicated string {or col­
umn k) is shifted left s positions. If bl~mk preservation {see 
the BP command) is ON, all of the fields to the right of the 
string are shifted left, intact, and the fields to the left of 
the string are overwritten {i.e., destroyed). If blank pres­
ervation is OFF, blanks are inserted to the right of the jth 
field, and the fields to the left of the string are overwritten 
The shift may legally overwrite below column c. 

R Shift Right 

The jth field that begins with the indicated string {or column k) 
is shifted rights positions. If blank preservation is ON, 
blanks are inserted to the left of the string and al I of the 
fields to the right of the string are shifted right, intact. If 
blank preservation is OFF, blanks are inserted to the left of 
the string and are removed to the right. With blank preser­
vation OFF, the image area to the right of the string may be 
compressed, but at least one blank wi II be left between 
each field; that is, overwriting does not occur in a shift 
right. The shift may legally push characters beyond col­
umn d, if d is less than 140. 

In the following examples, blank preservation is OFF. 

Command Effect 

_:/L/Rl $10 LW,R6 B old 
$10 LW,R6 B new 

_:/L/R9 $10 LW,R6 B old 
LW,R6 B new 

_:/L/L 1 $10 LW,R6 B old 
LW,R6 B new 

TS Type Record, Sequence Number Not Included 

TS causes Edit to type the contents of the record currently 
open for editing under control of an SE, SS, or ST command. 
{Unlike the record-editing version, the intrarecord version 
of TS does not allow column specification.) 

The TS command has the format shown below. 

.:G •. ;] TS(; ••• ] 

The three dots indicate that intrarecord commands may pre­
cede or follow the TS command. 

Example: 

_:SE 5; TS@> 

Ll LW,5 K 

*190/KLB/; TS; 370/GET KLB/; TS@> 

{overwrite, type, overwrite, type) 

Ll LW,5 KLB 

Ll LW,5 KLB GET KLB 

Because al I commands on a single input line are executed 
for the first record before the second record is processed, 
etc., TS will type each line in turn after all editing up to 
the TS command has been done. 

Example: 

*SE 10- 10. 2 8 

.:_2/A/F/,4/;TS ~~ 

DATA,4 X'FF' 

DATA,4 0.5 

DATA,4 GQX,X'OB' 

( 10. 0) 

( 10. 1) 

( 10. 2) 

TY Type Record, Sequence Number Included 

TY is the same as TS, except that each I ine is printed with 
its sequence number. (Uni ike the record-editing ver­
sion, the intrarecord version of TY does not allow column 
specification.) 

The TY command has the format shown below. 

.:_(. • • ;] TY(; • • .] 

JU Jump 

JU causes the SS or ST command to jump to a specified 
record and then continue stepping from that point. JU may 
only be usedwhile in the •:step" mode (i.e., while under 
the control of an SS or ST command). The JU command has 
the form shown below. 

.:_~ .• ;)JUn 

Record n may be forward or backward from the current 
sequence number at the time JU is given. The dots indicate 
that JU may be used on compound lines (i.e., a line with 
more than one command on it), but in such a case JU must 
be the last command on the I ine. 

NO Make No Change 

NO may be used only while in the "step" mode and specifies 
that no editing is desired on the current active I ine under 
the set. The NO command has the format shown below. 

*NO 

Example: 

*ST 27.5 @> 

27.500 LW,6 BLK 

*NO@> 

30.000 STW,6 ALT 

*/ALT/F/+ 19; TY; JU 34 @> 

30.000 STW,6 ALT+ 19 

34.000 AIF X'91' 

* 

Edit Commands 79 



RF Reverse Blank Preservation Mode 

RF causes the current setting of the blank preservation mode 
(see the BP command) to be reversed temporarily. The RF 
command has the form shown below. 

_:~ .. ;J RF ; ••• 

or 

* • • ; RF[; • • .J 

The mode is reversed only for the duration of the input line 
in which RF appears and only for those commands which 
fol low the RF command, and blank preservation is restored 
to its initial setting when a new input line is entered (i.e., 
at the time a new prompt character is given). Thus, to have 
any effect, RF must always be used as part of a compound 
input line and must be followed by other commands. 

Example: 

*SE 10; TY~li\ 

10. 000 L5 LW,4 X GET CURREN MT ADDR 

_:RF;/NM/S/N/;TY 8 
10. 000 L5 LW,4 X GET CURRENT ADDR 

Without using RF in this case (assuming that BP OFF is the 
initial setting), one would get two blanks after CURRENT. 
In all cases, the BP mode is restored to the value it had 
before any RF commands were given. 

MESSAGES 

During the course of executing any command, Edit may 
communicate with the user through a variety of messages. 

Possible messages are summarized in Table 23. The follow­
ing conventions are used in regard to message formats: 

l. A message preceded by two periods is a comment on 
some system-oriented operation. For example, 

2. 

..COPY DONE 

A message preceded by two minus signs indicates the 
occurrence of some event (during the execution of a 
command) of which the user should be aware; the com­
mand is not aborted. For example, 

--EOF HIT AFTER xxxx. xxx 

3. A message preceded by a single minus sign is an error 
message describing a condition that aborts the current 
command and causes any others on the same line to be 
skipped. For example, 

-Pl:NO SUCH REC 

Such a message is particularized as to cause by the following 
prefixes: 

Prefix 

-Ck: 

-Pk: 

-CkPj: 

Cause of Error 

The kth command of the previous line caused 
the error. 

The kth parameter of the first command on 
the previous Ii ne caused the error. 

The jth parameter of the kth command of the 
previous line caused the error. 

EDIT COMMAND SUMMARY 

Table 24 is a summary of Edit commands. The left-hand 
column gives the command formats. The right-hand column 
gives the command functions and options. 

Table 23. Edit Messages 

Message Meaning 

-BAD COL. NO. PAIR The columns specified are not in the range l through 140, or c > d. 

--Cn: 'ALL' IGNORED The value 0 was specified for j. Since this value is not meaningful for the 
command, the value l has been assumed. 

-Cn: CMND ILGL HERE The nth command of the previous line is invalid and the intrarecord mode has 
been terminated. 

-Cn: COL >LIMIT The value specified for k is greater than d for the nth command. 

-Cn: COL< LIMIT The value specified for k is less than c for the nth command. 

-Cn: ILGL SYNTAX Invalid command syntax has been used. 

-Cn: NO SUCH REC The record specified in a JU command (the nth command) does not exist. 

80 Messages/Edit Command Summary 



Table 23. Edit Messages (cont.) 

Message Meaning 

--Cn: OVERFLOW The nth command of the previous line has caused characters to be shifted past 
column 140. Processing continues. 

--Cn: UNDERFLOW Characters were lost to the left of the record. 

-Cn: UNKN CMND The nth command specified is not one recognized by Edit. 

• . COPY DONE A COPY operation has been completed . 

• . COPYING A COPY operation has begun . 

--CUTOFF AT x(y) A specified operation could not be completed because of a conflict between an 
existing sequence number and a new one. The value xis the current sequence 
number of the last record affected (formerly record y). 

. . DELETED A specified file has been deleted • 

--DONE AT x A specified operation has been completed. The va I ue x is the current sequence 
number of the last record affected. 

. . EDIT STOPPED The record editing mode has been terminated . 

--EOF HIT AFTER xxxx. xxx One or both sequence numbers specified are higher than the highest one in 
the file. xxxx. xxx is the last record in the file. 

-FILE EXISTS: CAN'T BUILD An existing file has the same name as that specified in a BUILD command. 

-FILE NOT KEYED: MUST COPY A specified file has no sequence numbers. The file must be copied with 
sequencing specified (via the COPY command). 

-MAX. SEQ. NO. EXCEEDED An attempt was made to insert a record with a record number greater 
than 9999. 999. 

-MERGE DESTINATION NOT KEYED The destination file in a MERGE command is not keyed. The file must be copied 
with sequencing specified. 

-MERGE SOURCE NOT KEYED The source file in a MERGE command is not keyed. The file must be copied 
with sequencing specified. 

. . MERGE STARTED A MERGE operation has begun • 

-MISSING SE No SE, SS, or ST command is currently in effect. The specified intrarecord 
task has been aborted. 

-NO FILE NAMED The command requires a file identification and none was given. 

-NO SUCH FILE A specified file does not exist. 

--NONE There are no records in the specified range containing the indicated string. 

-NOT F/M/S A parameter other than F, M, or S h_as been specified in a TA command. 

-NOT ON/OFF A parameter other than ON or OFF has been specified in a BP or CR command. 

Messages 81 



Table 23. Edit Messages (cont.) 

Message Meaning 

--NOTHING TO MOVE No records (to be moved) were found in the specified range. 

--OVERFLOW More than 140 characters hove been typed on a line or characters have been 
shifted past column 1 or 140. Excess characters are lost. 

-Pl: FILE NOT KEYED & P3 NULL A file to be copied has no sequence numbers and no sequencing has been 
specified. The COPY operation has been aborted. 

-Pl: NO SUCH FILE A COPY command has specified that a nonexistent file is to be copied. 

-Pl: NO SUCH REC A specified record does not exist. The command has been aborted. 

-P2: COL ERROR Column c is greater than 140. 

-P2: FILE EXISTS A COPY ON command specified the name of an existing file. 

-P2: REC EXISTS A specified record already exists. The command has been aborted. 

-P3: NOT !NCR An invalid increment has been used in a BUILD command. 

-Pn: BAD FID An invalid fid identification has been used. 

-Pn: ILGL SEQ# A required sequence number is missing or contains more than three fractional 
digits. 

-Pn: ILGL STRG The specified string is too long. 

-Pn: ILGL SYNTAX An invalid syntax has been specified for a parameter. 

-Pn: NOT CNT An invalid occurrence count (j) has been specified in an intrarecord command. 

-Pn: NOT COL# An invalid column number has been specified. 

-Pn: NOT SEQ# A required sequence number is invalid. 

-Pn: NOT STRG An invalid character string has been specified. 

-Pn: NULL STRG A nul I character string has been specified. 

-Pn: PARAM MISSING A required parameter has not been specified. 

-Pn: SEQ2<SEQ1 The second sequence number is less than the first in a range specification. 

xxxxxxx RECORDS DELETED xxxxxxx specifies the number of records deleted as the result of either a DE 
or MD command. 

--RNG OVERLAP Specified ranges of sequence numbers overlap. The command has been ignored. 

-SORRY ••. NO PASSWORD A fid in a COPY OVER command may not have a password. 
ALLOWED HERE 

x STRINGS CHANGED As the result of an i ntrarecord command, x strings have been changed. 

82 Messages 



Command 

B(UILD] fid (, n (, i]] 

CM n,c 

nYstring/D 

DE n(-m] 

DELETE fid 

Table 24. Edit Command Summary 

Description 

Sets the blank preservation mode. When "on", all strings of blanks are preserved 
during. intrarecord operations. When "off", blank strings are compressed to a single 
blank or expanded as required to retain column alignment of nonblank fields. The 
default mode is "off". 

Enables the user to create a new file. 

Options: 

n is the sequence number at which the new file is ta start. The default value 
is 1. 

i is the value by which the sequence number< are to be incremented. The 
default value is 1. 

Causes Edit to insert commentary (given by the user) into specified columns (starting 
at column number c) of each successive record beginning at the specified sequence 
number n. 

Copies a file. Fid 2 identifies the file to which the file identified by fid 1 is to be 
copied. 

Options: 

n is the starting sequence number for the new file. If omitted, the sequence 
numbers of fid 1 are retained in the copy. 

i is the sequence number increment for the new file. The default value is 1. 

Controls the inclusion of the carriage return character (X' 15') at the end of each 
record in the user's output file. ON includes the X' 15' terminator in the output file. 
OFF excludes the X' 15' terminator from the output file and is the default setting. 

Locates a given occurrence of the indicated string, between columns specified by an 
SE, ·ss, or ST command, and deletes it. 

Option: 

j specifies that only a particular occurrence (the jth occurrence) of the 
string in the specified columns is to be deleted. If j equals zero, all 
occurrences of the string in the specified columns are to be deleted. If j 
is omitted, the default value is 1. 

Deletes all records whose sequence numbers lie in a specified range beginning at n. 

Option: 

m indicates the number of the last record to be deleted. If m is omitted, 
only record n will be deleted. 

Deletes the file specified by fid from the log-on account. 

Edit Command Summary 83 



Command 

[jystring l /E/string2 / 

or 

EDIT fid 

END 

[jystring l /F/string2 / 

or 

FD n[-mJ,/string/[,c~dJJ 

FS n [-m],/string/[,c[,d]J 

FT n[-ni),/string/[,c[,d]J 

IN n[, i] 

84 Edit Command Summary 

Table 24. Edit Command Summary (cont.) 

Description 

Starts at a column occupied by the first character of a given occurrence of a specified 
string (string 1) or column k and overwrites with another string (string2). Blanks are 
extended from the end of string2 through column d (which is specified in an SE, SS, or 
ST command.) 

Option: 

j specifies that the jth occurrence of string 1 between affected columns is to be 
overwritten by string2. If j is omitted, only the first occurrence is over­
written; j may not be zero. 

Opens a file to be edited and enters the record editing mode. 

Closes all active files and returns control to the terminal executive language (TEL). 

Starts after the last character of a given occurrence of a specified string (string 1) or 
column k and inserts another string (string2), pushing everything from this column right 
as required to make room. 

Option: 

j specifies that the jth occurrence of string] between columns c and d 
(specified by an SE, SS, or ST command) is to be followed by string2. If j is 
omitted, the default value isl. If j equals zero, string2 is inserted at all 
occurrences of string 1 between columns c and d. 

Searches for the specified string between specified columns in a specified range of 
records beginning at record n. If the string is found, the record containing it is deleted 
from the fi I e. 

Options: 

m specifies the sequence number of the last record to be searched. If omitted, 
only record n is searched. 

c specifies the lowest column number of the field to be searched. The default 
value is l. 

d specifies the highest column number of the field to be searched. The 
default value is 140. 

Searches for the specified string between specified columns in a specified range of 
records beginning at record n. Each time the string is found, the sequence number of 
the record is printed. 

Options: 

Same as for FD. 

Searches for the specified string between specified columns in a specified range of 
records beginning at record n. Each time the string is found, the sequence number and 
the contents of the record are printed. 

Options: 

Same as for FD. 

Inserts new records into a file starting at record n. Edit prompts the user with the 
sequence number of each record ta be inserted. 

Option: 

i specifies an increment amount for successive record numbers. If i is omitted, 
the increment size specified in the most recent record editing command is used. 
If no such command has been given, the default value is l. 



Command 

[ ••• ;] JU n 

MD n[-m],k[-p][,i] 

MERGE fidl [,n 1[-n2J]INTO "] 

Lfld2' n3[-nJ,iJ 

MK n[-m],k[-p]Gi] 

NO 

or 

Table 24, Edit Command Summary (cont.) 

Description 

Inserts new records into a file starting at record n. Edit does not prompt with sequence 
numbers of the records to be inserted. 

Option: 

i specifies an increment amount for successive record numbers. If i is omitted, 
the increment size specified in the most recent record editing command is used. 
If no such commands have been given, the default value is 1. 

Causes the SS or ST command to jump to the specified record n and then continues 
stepping from that point. 

Option: 

The dots indicate that JU may be used on a line with more than one command 
on it, but in such a case JU must be the last command on the line. 

Moves records within a file from a range beginning at n to a range beginning at k. 
The original records ore deleted. 

Options: 

m specifies the sequence number of the last record that is t'o be moved. If 
omitted, only record n is moved. 

p specifies the upper limit of the range of records to be deleted. If omitted, 
only record k is deleted. However, records from the range n-m are still · 
moved to record k and following. 

i specifies the increment value to be used for renumbering records. If 
omitted, the most recent value specified in a record edit command is used. 
If no such commands have been given, the default value is 1. 

Merges records from fid 1 into fid 2• The records are numbered beginning at n3 in fid 2• 

Options: 

n1 specifies the number of the first record in fid 1 to be merged. If omitted, 
all records of fid 1 are to be merged. 

n2 specifies the number of the last record in fid 1 to be merged. If omitted, 
only record n1 is merged. 

n4 specifies the number of the last record in fid2 which is to be replaced by 
merged records. If omitted, only record n3 is replaced by a merged record. 

i specifies an increment amount for resequencing from n3• The default value 
is 1. 

MK is identical to MD except that the records in the range n-m are not deleted as they 
are moved. 

Options: 

Same as for MD. 

Specifies that no editing is to be performed on the current active line. 

Starts at the column occupied by the first character of a given occurrence of a specified 
string (string 1) or column {k) and overwrites with another string (string2). 

Option: 

j specifies that only a particular occurrence (the jth occurrence) of the string 
. is to .be overwritten. If j equals zero, al I occurrences of the string are to be 
overwritten. If j is omitted, the default value is 1. 

Edit Command Summary 85 



Command 

[jystring 1 /P /string2/ 

or 

[jystring/ { ~} s 

or 

[· • • ; ] RF ; • • • 

or 

; RF~ ••• ] 

RN n,k 

[iYstri ng l /S/string 2 / 

SE n[-m]~c~d]] 

ST n[,c[,d]J 

86 Edit Command Summary 

Table 24. Edit Command Summary (cont.) 

Description 

Starts before the first character of a given occurrence of a specified string (string1) or 
column k and inserts another string, pushing characters of the first string to the right as 
required to make room. 

Option: 

Same as for the 0 command. 

Shifts portions of the record right (R) or left (L) the number of positions indicated bys. 
The field to be shifted begins with the indicated string or column k. 

Option: 

j specifies that the jth occurrence of the specified substring between affected 
columns is to be shifted, together with al I subsequent contiguous nonblank 
characters. If j is omitted, only the first such occurrence is shifted. Note 
that j = 0 may not be specified for this command. 

Causes the current setting of the blank preservation mode ("on" or "off") to be reversed 
temporarily (for the current line only). 

Option: 

The dots indicate that other commands are present on the Ii ne. 

Renumbers a specified record from number n to number k. 

Locates a specified string (string 1) between columns specified by an SE, SS, or ST 
command and replaces it with another string (string2). 

Option: 

j specifies that only a particular occurrence (the jth occurrence) of string 1 is 
to be replaced. If j equals zero, all occurrences of string] are to be replaced. 
If j is omitted, the default value is 1. 

Causes Edit to accept successive I ines of intrarecord commands to be applied to records 
beginning at record n. 

Options: 

m specifies the number of the last record to which the intrarecord commands 
are to be applied. If omitted, the intrarecord commands are only applied to 
record n. 

c specifies the smallest column number of the range of columns to which the 
intrarecord commands are to be applied. The default value is 1. 

d specifies the largest column number of the range of columns to which the 
intrarecord commands are to be applied. The default value is 140. 

Causes Edit to start at a specified record (record n) and proceed to each record in 
succession, accepting one line of intrarecord commands to update the current record. 

Options: 

c specifies the smallest column number of the range of columns to which the 
intrarecord commands are to be applied. The default value is 1. 

d specifies the largest column number af the range af columns to which the 
intrarecord commands are to be applied. The default value is 140. 

Causes Edit to start at a specified record (record n) and proceed to each record in 
succession, accepting one line of intrarecord commands to update the current record. 



Command 

ST n(,cGdJ] (cont.) 

[ ••• ;] TS[; ••• ] 

TS n[-m]Gc[,d]] 

~ •• ;] TY~ •• ·] 

TY n[-m]~cGd]] 

Table 24. Edit Command Summary (cont.) 

Description 

The sequence number and contents of each record are typed prior to accepting a 
command. 

Options: 

Same as for the SS command. 

Causes Edit to set or reset the terminal tab stops. F implies FORTRAN and a tab set at 
column 7. M implies Meta-Symbol and tabs set at columns 10, 19, and 37. S implies 
Meta-Symbol, short form, and tabs set at columns 8, 16, and 30. 

Types the sequence numbers and the contents of specified columns of one or more 
records beginning at record n. Any nonblank strings within the columns typed are 
shifted to the left to compress each blank string to a single blank. 

Options: 

m specifies the number of the last record to be typed. If omitted, only 
record n is typed. 

c specifies the smallest column number of the range of columns to be typed. 
The default value is 1. 

d specifies the largest column number of the range of columns to be typed. 
The default value is 140. 

Types the contents of the record currently open for editing under control of an SE, SS, 
or ST command. 

Option: 

The dots indicate that other commands may be present on the line. 

Types the contents of specified columns of one or more records beginning at record n. 

Options: 

Same as for the TC command. 

Types the sequence number and contents of the record currently open for editing under 
control of an SE, SS, or ST command. 

Option: 

The dots indicate that other commands may be present on the line. 

Types the sequence numbers and the contents of specified columns of one or more 
records beginning at record n. 

Options: 

Same as for the TC command. 

Edit Command Summary 87 



7. DELTA 

INTRODUCTION 

Delta is designed to aid in the on-line debugging of 
programs at the assembly-language or machine-language 
level. It operates on object programs and tables of inter­
nal and global symbols used by the program but does not 
require that the tables be at hand. With or without the 
symbol tables, Delta recognizes computer instruction 
mnemonic codes and can assemble machine-language pro­
grams on an instruction-by-instruction basis. The main 
purpose of Delta, however, is to facilitate the activities of 
debugging by 

l. Examining, inserting, and modifying such program 
elements as instructions, numeric values, and coded 
information (i.e., data in all its representations and 
formats). 

2. Controlling execution, including the insertion of 
breakpoints into a program and requests for breaks on 
changes in elements of data. 

3. Tracing execution by displaying information at 
designated points in a program. 

4. Searching programs.and data for specific values. 

Although Delta is specifically tailored to machine language 
programs, it may be used to debug programs written in 
FORTRAN, COBOL, or any other language. Delta is de­
signed and interfaced to the operating system in such a way 
that it may be called into aid debuggingatany time, even 
after a program has been loaded and execution has begun. 

The command language of Delta is cryptic and highly 
encoded, but is easily learned and used by the professional 
programmer. It is similar to the DDT (Dynamic Digital 
Debugging Tool) language family that has been used on a 
variety of machines for the last decade. 

There are two versions of Delta: 

l. A user version with codes and restrictions appropriate 
to multiple on-line users operating in the slave mode 
from on-line terminals. 

2, An executive version for system debugging that operates 
in executive mode under control of one of the operator's 
consoles. 

Differences in the language syntax of the two versions are 
few and are noted in this chapter. The main orientation 
of the chapter, however, is towards the user version of 
Delta. Instructions for calling the executive version of 
Delta are given in the UTS/Reliability and Maintain­
ability Technical Manual, 90 19 90. 

88 Delta 

CALLING DELTA 

The user version of Delta may be brought in at the time the 
user loads his program into core for execution or by direct 
call after execution begins. Delta also may be brought in 
without prior program loading for writing and checking short 
Meta-Symbol or machine language programs. In al I cases, 
TEL commands are used to call Delta. The commands are 
outlined briefly below. 

l. To bring in Delta at program load time, the user gives 
the command "RUN rom UNDER DELTA" or the command 
"START lmn UNDER DEL.TA". The user may also call 
Delta at program load timebyprecedinga RUN, START, 
or lmn command with the command U. The U command 
causes the words UNDER DE LT A to be inferred in the 
RUN, START, or lmn command that immediately fol­
lows. When Delta is brought in at program load time, 
control goes to Delta and the user may examine and 
modify his program before passing control to it. 

2. To bring in Delta after a program has started, the user 
returns to the TEL level by using the terminal command 
ye (by simultaneously pressing the control shift and the 
Y keys) and then giving the TEL command DELTA. 

Note: Attempting this approach may result in the 
message: 

A 100 DON'T TRY TO DEBUG A SHARED PROCESSOR 

This means that execution of the user's program had not 
actually begun when the ye command was given and a 
processor such as LINK was operational instead. If this 
happens, the user may either retry this approach and 
wait for execution of this program to actually begin or 
use the approach outlined in l (bringing Delta in at 
program load time). 

3. To bring in Delta without prior program loading, the user 
simply gives the TEL command DEL TA. Writing programs 
with Delta is discussed at the end of this chapter. 

Delta responds to these commands by typing "DELTA HERE". 
In the user version, it fol lows this by its prompt character, the 
bell. (The executive version ofDeltadoes nothave a prompt 
character, nor does the user version when connected to a key­
board display.) Delta is then ready to accept a command. 

EXITING DELTA 

There is no De I ta command that cone ludes Delta and returns 
control to TEL. Therefore, the ye control combination must 
be used to return control to TEL. 

PREREQUISITES 

There are three Delta restrictions the user must be aware of 
when he writes a program that wil I be run under Del ta: 

l. All assembly language mnemonics are reserved words in 
Delta and may not be used as symbols for instruction or 
data tags. 



2. The symbols used for the program must not exceed eight 
characters and must otherwise fol low the rules for sym­
bols in Meta-Symbol, except that the first seven 
characters of all the symbols must be unique. This is 
necessary because symbo Is are carried in Delta's symbol 
table as seven characters. Symbols with more then seven 
characters are truncated to include only the first seven. 
Thus, symbols that originally were longer than seven char­
acters are indistinguishable from each other if the first 
seven arethe same. (If this happens, only the lastdefi­
nition is retained.) 

3. A Meta-Symbol program should be assembled with the 
option SD if the user wishes to use internal symbolic 
references while debugging. (The SD op ti on causes 
the assembler to produce debugging object code for 
internal symbols for use with Delta.) Also, at run time 
the user must request that the interna I symbol table 
with this code be made available to Delta by using the 
Delta command s;S where s is the name of the file. 
(See the section "Symbol Table Control".) 

SAVING PROGRAM MODIFICATIONS 

When a user debugs a program under Delta, he may make 
modifications to the program code and symbol tables. These 
modifications only affect the core image of the program and 
are not saved unless the user returns control to TEL (by issu­
ing the ye command or by depressing the break key four 
times) and then issues a SAVE command. (See SAVE com­
mand in Chapter 3.) A program that contains overlays 
cannot be saved as one intact program and therefore this 
approach to making the modifications permanent is not 
applicable. 

CONVENTIONS 

The following conventions are used in explaining the format 
of, the commands typed by the user: 

1. Special characters, numbers, and uppercase letters 
stand for themselves. Thus, in the command e;G the 
user actually fypes the semicolon and the G. 

2. Lowercase letters are used to indicate places where the 
user has a choice of things to type. The letter e, alone 
or postscripted, is used to represent any expression con­
sisting of syl}'lbols, special symbols, instruction mnemonics 
constants, the operators plus(+) and minus (-) and 
space ( ). At times, other lowercase letters are used 
to stand for expressions when some additional mnemonic 
content seems desirable (e.g., n, foe, val, m). 

3. The letter f stands for one of the format characters. 
(The format codes are listed in Table 25.) 

4. Abbreviations for user keystrokes are as fol lows: 

Characters 
Used in Text 

RET 

LF 

User Delta 
Keystroke 

RETURN 

LINE FEED 

Executive Delta 
Keystroke 

RETURN 

EOM 

Characters 
Used in Text 

\ 
TAB 

BRK 

User Delta Executive Delta 
Keystroke Keystroke 

SHIFT and N & 

SHIFT and L i 
CTRL and I TAB 

BREAK Sigma INTERRUPT 
Switch 

Table 25. Format Codes 

Code Meaning 

F Symbol table specified format. 

x Hexadecimal word. 

I Signed decimal integer. 

c EBCDIC characters. 

R Symbolic instructions with symbolic addresses. 

A Symbolic instructions with hexadecimal addresses. 

s Short floating-point number, t 

L Lo11g floating-point number. t 

t User version only; both have the format xxxxx E ±yy 

COMMAND DELIMITERS 

The characters I isted below are used as end-of-message 
characters and, in most cases, as commands in the Delta 
language. Each has a particular meaning that will be 
discussed in detail with the commands to which it applies. 

I 

RET 

LF (This character is represented by the EOM key 
in the executive version of Del ta.) 

TAB 

(This character is represented by the & key in 
executive Delta.) 

With the exception of the slash (/) and equal (=) characters, 
which interact immediately within a single typed line, these 
characters cause a carrioge return and a I ine feed. 

More than one command can be input on a command line by 
separating the commands with spaces. The following line 
contains five commands: 

PROG;S TAGl;B TAG2;B ;B ;D@) 

However, it is important to note that any command that 
changes the contents of a cell should be the last command 
on a multiple-command line. 

Conventions 89 



CORRECTING TYPING ERRORS 

Correcting typing errors while using Delta requires special 
consideration because the = and /characters cause imme­
diate interaction with the system without proceeding to a new 
line. The RUBOUT key will not affect a/ or= character 
nor any information which precedes it on a line. Canceling 
a line by simultaneously pressing the CONTROL and X keys 
or sequentially pressing the ESC and X keys may only cancel 
a partial line. If a/ or= character appears in the line, 
that character and al I characters preceding it wil I not be 
canceled. 

In the executive version of Delta, the question mark (?) 
cancels the command line and the at sign (0') is the rubout 
command. 

EXPRESSIONS 

Expressions are typed by the user for location value, for 
parameter value, and for assembly into an instruction. 
Expressions are composed of 

Program symbols. 

Special symbols (see Table 26). 

Assembly language mnemonics. 

Explicit constants. 

The operators plus(+) and minus(-). 

Space ( ). 

Examples: 

;I 

• 1E07 

A 

A+3 

A+3-B 

AI, 1 2 

STW,7 *LOC 

LW,7 TAB,5 

CAL 1,3 LIST 

Table 26. Special Symbols 

Symbol Meaning 

$or Last opened eel I address. 
;I Instruction counter} As set by the last entry 
;C Condition code to Delta or as changed 
;F Floating controls by the user. 
;M Search mask. 
;l Lower search bound. 
;2 Upper search bound. 
;Q Last quantity typed. 

90 De I ta Commands 

The space character is used to i ntrcx:luce the address field 
in expressions to be assembled into instructions. 

CONSTANTS 

Constants must be input in the fol lowing formats: 

1. Hexadecimal - hexadecimal numbers preceded by a 
period. 

• 1C28 

• BE3 

. FFFFFFFF 

2. EBCDIC - EBCDIC characters surrounded by single 
quotes. (EBCDIC text strings must consist of no more 
than four characters. If fewer than four characters are 
specified, the characters are right-justified and zero­
fil led.) 

'%ERR' 

'LOC2' 

'TOM' 

3. Decimal - numerics only. 

1234 

-250 

10 

Hexadecimal and decimal constants are output in the same 
format that they are input. EBCDIC constants are output as 
EBCDIC characters without the surrounding single quotes • 
Non-printing EBCDIC characters may also be output, includ­
ing the EOT (end of transmission (04)) character, which will 
turn off some types of terminals. 

DELTA COMMANDS 

EXPRESSION EVALUATION: THE = COMMAND 

Expressions consisting of program symbols, special symbols, 
assembly language mnemonics, explicit constants, and the 
operators plus(+) and minus(-), and space ( ) may be 
evaluated by use of the= command. When a program symbol 
is evaluated, the result is its absolute address. When a 
special symbol is evaluated, the result is the value that the 
symbol is set to. When an explicit constant is evaluated, 
the result is its numeric equivalent. When an assembly 
language instruction is evaluated, the result is its machine 
language equivalent. 

The basic = command is 

e= 

Note that no carriage return is given. Delta responds im­
mediately to the= character and evaluates the expression e. 



In this command, no format is specified for typing the 
expression evaluation, so the default format is used, Usually 
the default format is X (hexadecimal), but the default can 
be changed by one of the variations of the = command 
{which will be discussed shortly). 

Examples: 

2+2 = .4 

5+5 =.A 

TOT=.C12E 

AI,6 1 = • 20600001 

The user may temporarily change the output format with the 
following= command: 

e(f = 

where f specifies a particular format code selected from 
those listed in Table 25, "Format Codes". The temporary 
change only affects the= command in which it is given. 

The default format for output can be changed by the 
command: 

(f; = 

where f specifies a particular format code selected from 
those listed in Table 25, "Format Codes". The new default 
will be retained until another (f;= command is given. The 
original default setting of the output conversion format is X. 

Example: 

5+5 =:.A_@) 

(I; = 6+7 = 13 (The default format is changed 
to integer.) 

The last expression typed by Delta may be evaluated simply 
by typing the = character. In the example below, Delta 
types the expression BAL,5 SUB as a result of the command 
ALPHA/ (which is discussed in the next section). Then the 
entire expression BAL,5 SUB is evaluated and the results are 
typed as a result of the = command. 

ALPHA/ BAL,5 SUB = • 6A5006B3 

MEMORY CELL OPENING AND DISPlAY: 
THE /, TAB, and \ COMMANDS 

The slash (/) character is a command to Delta to open a 
memory cell and display its contents. There are several 
variations of the slash command and these will be discussed 
below. In each command the cell to be opened and dis­
played is indicated by an expression (designated by an e in 
the instruction formats) 

The basic/ command is 

e/ 

Note that no carriage return is given. Delta responds 
immediately to the /character and opens the cell, displaying 
its contents on the same line. In this command, no format 
is used. Usually this default format is F (symbol table speci­
fied format), but the default can be changed by one of the 
variations of the slash command (which wi 11 be discussed 
shortly). If the default is F, then the symbol table is 
searched to find a symbol at the same or at the closest 
smaller location (within a hexadecimal offset that may be 
specified by the Delta ;R command discussed later) than the 
indicated address and the data type associated with the 
symbol found is used to control output. If no symbol is found 
within the range, the default is R (symbolic instruction). 

Examples: 

.C125/ .34 

Al/ BAL,6 ALPHA 

A+l/ STW,5 BETA 

BETA/ ABCD 

The user may temporarily change the output format with the 
following slash command: 

e(f I 

where f specifies a particular format code selected from 
those listed in Table 25, "Format Codes". The temporary 
conversion type is retained for al I slash commands until the 
next RET command is given or another format change is 
specified. (The temporary conversion type is retained over 
any following LF, I,/, and TAB commands.) 

Examples: 

X(X/ 

X(C/ 

.Cl (hexadecimal conversion) 

A (EBCDIC character conversion) 

X(I/ 193 (decimal integer conversion) 

Below is an example which shows that temporary conversion 
types are retained until the next RET command is given: 

D(X/ 

Y/ 
• 3230C122 

• 2030C 122 @) 

Z/ AI,3 AA@) 

(D, V, and Z are locations 
of program instructions) 

The default format for output can be changed by the command 

(f;/ 

where f specifies a particular format code selected from 
those listed in Table 25, "Format Codes". The- new default 
will be retained until another (f;/ command is given. The 
original default setting of the output conversion format is F. 

Example: 

X/ 
(C;/ 

.Cl @l 

X/ A 

Delta Commands 91 



The eel I addressed by the last expression typed by Delta 
may be opened and displayed by typing a TAB (produced by 
simultaneously pressing the CTRL and the I keys for the user 
version or by pressing the TAB key for executive Delta). 

In the example below, the cell DCT8 is opened and 
displayed. 

LW,5 DCT8 8 ALPHA/ 

DCT8/ . 32 (The carriage return was automatically 
provided by Delta.) 

The format for display is by default only and is the same 
default as for the slash command. 

If the user types a slash by itself, the cell addressed by the 
last expression typed by Delta is displayed but not opened. 
In the example below, ALPHA remains the open cell even 
though the contents of cell DCT8 are displayed. 

ALPHA/ LW,5 DCT8 I . 32 

Conversely, a cell may be opened without displaying its 
contents by the use of the\ command (produced by simul­
taneously pressing the SHIFT and the L keys for the user 
version or by using the i key for executive Delta). The 
format of the command is 

e\ 

In the example below, the cell SUM is opened but not 
displayed. Then SUM is set to zero. 

SUM\ 0@) 

Opening a cell without displaying its contents is convenient 
when the user wishes to insert new contents in memory and 
is not interested in the current contents. 

If the user wishes to store data into a page that is not 
assigned to his program, the\ command wi II request that 
the Monitor assign the page. (This is particularly useful 
when using Delta to write new programs.) For example: 

. 18000\ 

If the page at . 18000 is not assigned to the program, the 
Monitor wil I assign it (if possible). Also, the eel I at 
. 18000 wi II be opened. 

More than one cell may be displayed by using the following 
command: 

e l,e2/ 

where 

el is an expression which identifies the lower 
address of a range of cells to be displayed. 

e2 is an expression which identifies the upper 
address of a range of eel Is to be displayed. 

92 De Ito Commands 

Following the display of these cells, the upper limit cell is 
open for change. In the following example, ALPHA+ 2 is 
open for change. 

ALPHA,ALPHA+2/ BAL,4 SUB 
ALPHA+. l/ STW,5 DCT2 
ALPHA+. 2/ AJ,6 . 100 

Note that Delta types the word increments as hexadecimal 
numbers. 

Temporary change in the output format may be added to the 
above command as shown below: 

el,e2 {f/ 

where f specifies a particular format code selected from 
those listed in Table 25, "Format Codes". 

Example: 

100, 101 (X/ 
101/ 

.58000100 

.68000200 

If the user wishes to interrupt a display that is too long, he 
presses the BREAK key and the remaining output is discarded. 
The last displayed cell is opened. The INTERRUPT switch 
on the Sigma Processor Control Panel accomplishes this in 
the executive version of Delta. 

MEMORY MODIFICATION: 
THE RET, LF, f, AND TAB COMMANDS 

These four commands al low the user to store a typed expres­
sion for word value into the currently open memory loca­
tion -- opened by/,\, or one of the modification commands 
LF, f, or TAB. If no expression precedes the command char­
acter, the action taken is as described, except that the open 
cell remains unchanged. 

The RET command causes an expression to be assembled and 
stored in the open memory cell. Carriage return (RET) and 
new line {LF) characters are sent to the terminal, and tem­
porary display modes are reset to default values. The format 
of the RET command is 

Example: 

A/ BAL,4 JWS BAL,4 GEB@l 
A/ BAL,4 GEB @l 

{The expression BAL,4 GEB is assembled and stored into A). 

JED/ EXU LS (X/ . 68000643/ . 78C @l 

(The contents of JED are typed. Then the contents of LS 
are typed in hexadecimal. JED remains the open cell. 
Then the contents of .0643 are typed.) 

./ EXU LS 

(The contents of JED are typed. The . is a special 
symbol {see Table 26) that specifies the last opened cell 
address.) 



Note that a temporary display format was established by the 
(X/ which carried over unti I reset by the carriage return 
(RET) command. 

When the user terminates an expression with the new line 
(LF) command, the value of the expression is stored in the 
currently open cell, that eel I is closed, a new I ine is pro­
duced at the terminal, and the cell with the next higher 
location value is opened. The type of command used for 
initial cell opening is preserved and carried forward on 
succeeding openings as is the display format. 

The format of the new line (LF) command is: 

e0 

Example: 

A(V 

A+.1/ 

435 436 0 

763 0 

(A+. 1 is displayed but remains unchanged.) 

(A+. 2/ 7689 7000@ 

EM\ STM,4 ERS 0 
EM+. 1\ 

EM+. 2\ 

BAL,6 LP0 

BGE GAP@ 

For the executive version the EOM (end-of-message) key 
replaces the LF key. 

The e f command is the same as the LF command except that 
the cell with the next lower location value is opened. For 
the executive version, & replaces f • 

Example: 

EM+4/ _Q_ B GWf 

EM+. 3/ 0 AI,3 1 @) 

The TAB command causes the typed expression to be stored 
in the currently open cell, and that eel I is closed. Fol low­
ing output of a carriage return, the cell addressed by the 
most recently closed cell is opened and displayed (only the 
address is displayed in the\ mode). The effect is like that 
of a RET command followed by a ;Q/ command(seeTable26, 
Special Symbols). The format of the TAB command is: 

e 

The TAB command is useful for patches: 

A/ BAL,5 SUB 0 
A+.1/ STW,6 BETA B PATCH 8 
(The carriage return is performed as.part of the TAB 
command.) 

PATCH/ .0 AI,6 1@ 

PATCH+.1/ .0 STW,6 BETA@ 

PATCH+.2/ .0 B A+2@) 

SYMBOL TABLE CONTROL: 
THE ;U, ;K, :S, !, AND<>COMMANOS 

There are two types of symbol tables in Delta: 

1. Constant (Internal to Delta). 

.2. User associated or defined. 

The first type of table is always present in Delta and consists 
of the Meta-Symbol instruction mnemonics and a list of 
special symbols (see Table 26) associated with program 
debugging. 

The second type of table consists of a set of global symbols 
(those defined by DEF directives) and a set of internal sym­
bol tables, one for each ROM loaded (although some may be 
combined by Link). (See Chapter 8 on Link.) The internal 
symbol tables are filed under the name of the file from which 
the ROM was loaded. 

The user must specify that the internal symbol table is to be 
loaded if he wishes to debug using internal symbolic tags. 
The command for specifying this is 

s;S 

where s is the name of the file from which the ROM was 
loaded. This command causes Delta to load the internal 
symbols from the program loaded from file s, and these 
internal symbols replace, for reference purposes, any previ­
ously selected internal symbol set. An example of the s;S 
command is 

C= 

?2 

(Delta is confused because no internal symbol table 
had been previously loaded. The internal symbol C 
is not recognized.) 

BIN;S@ 

(The internal symbol table is loaded.) 

C=.C125 

(The symbol C is now recognized.) 

The ;S command alone loads the global symbol table. The 
user must specify this command if he wishes to debug using 
global symbolic references. · 

The user may wish to release to the system the pages used 
for symbolic tables. The command ;K releases the pages 
containing the global and internal symbol tables. The 
command ;KG releases only pages containing the global 
symbol table and the command ;Kl releases only pages 
containing the internal symbol table. Other uses of the ;K 
command are 

s;K prevents use of the symbol s in constructing 
output. The symbol is still recognized when typed 
in. Symbol s is returned to use if the user reloads 
the symbol table. 

Delta Commands 93 



;K removes all symbols from the symbol table. The 
lists of instruction mnemonics and special symbols 
are not erased. Individual internal symbol tables 
are recoverable using the s;S command. Global 
symbo Is are restored by ;S. 

Undefined symbo Is in the loaded programs are printed by 
Delta when the ;U command is given. Undefined symbols 
within the range of an assembler LOCAL directive are lost. 
They are given a value of zero in the loaded code and do not 
appear when the ;U command is given. (In the executive 
version of Delta, the;Ucommandtogglesthe mapbit in the 
currentPSD. Thus it controls whether executive Delta ref­
erences refer to mapped or unmapped mode. 

Symbols may be defined by the user at any time during his 
debugging session. Symbols so defined are added to the 
global symbols associated with the program load. Commands 
for adding symbols to the global symbol table are 

s(f! adds the symbols to the global symbol table 
with the location value of the currently open cell 
and format type f. (See Table 25, "Format Codes".) 
If format type f is omitted, symbolic instruction (R) 
type is assumed. For example, 

C+l/ 0 LOC ! LW,4 TAB@> 

In this example, location C+l is given the name 
LOC. Then the contents of LOC are changed to 
contain the assembled instruction LW,4 TAB. 

Note that if a format code is specified for a slash 
command ( e(f/ ), it is retained unti I the next 
carriage return and meanwhile the format specified 
is applied to any command. 

Example: 

INST/ CI,2 . 4 @> 

JNST(X/ . 21200004 SYM ! @> 

INST/ CI,2 . 4 SYM/ . 21200004 

The cell INST was displayed in its default format. 
The instruction at INST was then displayed in 
hexadecimal format and then the cell INST was 
assigned an additional name, SYM, with the dis­
play format for SYM being X. 

e(f<s>[K] adds the symbols to the global symbol 
table with value defined by the expression e and 
format code f. In addition to the format codes of 
Table 23, the letter K may be used to indicate 
value is to be a constant. If f is omitted, R is 
assumed. If the final angle bracket is followed 
by a K, the symbol is flagged as a control section 
type symbol in the symbol table. K may not be 
used as the format code if K is specified following 
the final angle bracket. 

SINGLE LINE MACROS 

Since the symbol table definition gives a 32-bit value to 
constant symbols, it may be used as a macro-definition 
facility for single-word values. 

94 Delta Commands 

Example: 

LI,3 O(K<CLEAR>@J 

AA\ CLEAR@> 

MM\ CLEAR@) 

The symbol CLEAR now 
represents the instruction 
LI,3 0. 

The cell AA is opened and 
its content is set to the 
instruction LI,3 0. 

The content of MM is also 
set to the instruction LI,3 0. 

EXECUTION CONTROL 
THE ;G, ;P, ;X,,ANO\) COMMANDS 

The four commands described in this section allow the user 
to begin execution of his program and to resume execution 
of the program if it is interrupted. 

Execution is started by typing the [e];G command,where e 
is an expression which identifies the starting location. The 
expression e may be omitted, in which case execution will 
begin at the first instruction of the program. 

Example: 

BEGIN;G@J 

;G§ 

Execution can be stopped in four ways: 

1. A breakpoint. (Breakpoints are discussed in the next 
section.) 

2. A user interruption via the BRK key (INTERRUPT key in 
executive Delta.) 

3. An error causing a machine trap (illegal instruction, 
memory protection violation, etc.). 

4. A normal program exit. 

In each case the values of ;I, ;C, and ;F (See Table 24 on 
Special Symbols) are set, the cause of the stop is reported 
by an appropriate message, and terminal control returns to 
the user. 

Example: 

BRK AT .5C3 

PRIVIL INSTR AT . 77B 

;I= . 77B 

Proceeding from a stop condition is accomplished by typing 
the ;P or ;G command. Execution continues from the loca­
tion specified by the current value of ;I (i.e., where 
execution left off). The ;P command has an optional special 
format for use with instruction breakpoints. This is discussed 
in the section on breakpoints. For user interruptions via the 



BRK key, the ;P and ;G commands cause execution to 
continue as if the interruption had not occurred. 

BR)( at. 68C 

;P8 

Proceeding from a machine trap causes reexecution of the 
violating instruction and another trap. 

MEM PROTECT FAULT AT. 74B 

;PE9 

MEM PROTECT FAULT AT .74B 

The e;X command assembles and executes. the expression e. 
The expression e must be an assembly-language instruction. 

Examples: 

LH,3 T ABLE+4;X 

STB,6 *LOC;X 

If the expression does nofresult in a legitimate instruction, 
an error message is typed. 

In most cases the instruction is executed and then terminal 
control returns to the user. However, if the expression is 
a branch instruction, control goes to the user's program (or 
causes a memory violation). Thus, the commands B GO;X 
and GO;G are equivalent. If the expression is a subroutine 
jump, the subroutine is entered. If the subroutine returns 
normally (Le., to the calling location plus 1, 2, or 3), 
control returns to Delta and terminal control returns to the 
user. If the return is to other than the calling location 
plus 1, 2, or 3, the results are unpredictable. 

The ) command controls step mode execution. It executes 
the instruction in the currently open cell and opens and 
displays the next program step. If the instruction executed 
by ) causes a branch, the effective branch' address specifies 
the location to be opened and displayed. By using the/ 
command to open and display a location and repeatedly 
issuing the ) command, the user can proceed step-by-step 
through his program. 

BREAKPOINTS: THE ;8, ;T, ;D, AND ;Y COMMANDS 

Delta provides the user with multiple breakpoints of three 
types: 

1. Instruction breakpoints. 

.2. Databreakpoints. 

3. Transfer breakpoints. 

The BRK key also causes a break in execution and is dis­
cussed in this section. 

Eight instructions and eight data breakpoints are available 
to the user.· Tri;insfer breakpoints are l.imited only by op­
tions within the transfer breakpoint comm~nd. 

As each. breakpoint is reached, a small amount of information 
is printed out, giving the breakpoint location c11:id an associ­
ated value. An optional "trace" mode allows execution to 
continue automatically after the breakpoint report to provide 
a flow-trace of both execution control and variation of data 
values. 

INSTRUCTION BREAKPOINTS 

Instruction breakpoints allow the user to halt execution at 
specified locations in the logical flow of his program. Eight 
instruction breakpoints, numbered 1 to 8 may be set. The 
command has the format 

where 

e specifies the location of an instruction. The 
breakpoint stop occurs just before execution of 
the instruction at e. 

n specifies the number of the breakpoint. If n is 
not specified, Delta assigns the next available 
breakpoint. If all instruction breakpoints are used, 
the error message NONE is typed. The user may 
then release one of the eight instruction breakpoints 
he has set and try again. (Releasing breakpoints 
wi II be discussed short I y.) 

loc specifies a location, the contents of which are 
to be displayed when the breakpoint is reached. 
Registers as well as core locations can be displayed. 

The following list shows the format of the command when 
various parameters are omitted: 

e;B 

e,n;B 

e,,loc;B 

The breakpoint stop occurs just before execution of the 
instruction at e. When the breakpoint is reached; Delta 
prints the number and type of breakpoint, itS location, and 
optionally the contents of the location specified by loc. 

Examples: 

A+3,1;B A;G@l 

l;B>A+.3 

A+8,1,FF;B ;G@l 

l;B>A+.8 FF/ .54 

When stopped at a breakpoint, the user may examine and 
modify his program as appropriate and then continue from 
the point of i~terruption by giving the command 

;P 
o.r 

n;P 

Delta Commands 95 



For instruction breakpoints, the ;G command wi II cause the 
break to reoccur and execution wi 11 not proceed. The ;P 
command bypasses the special breakpoint code at the point 
of interrupt and execution of the program can proceed. If 
the command n;P is given, program execution resumes as 
with the ;P command but the breakpoint that caused the 
interrupt wi 11 be passed n ti mes before the break occurs 
again. 

Example: 

PH+8,2,R2;B PH:G@ 

2;B>PH+8 R2/ .4 ;P@) 

2;B>PH+8 R2/ .5 ;P@ 

2;B>PH+8 R2/ .6 5;P@l 

2;B>PH+8 R2/ . 12 

(The breakpoint was passed five times before it caused this 
interrupt.) 

If the user wishes to trace a particular instruction, he may 
give any of the four forms of the breakpoint command and 
specify the trace mode with a T following the B. That is, 

e,n;BT 

e;BT 

e,n,loc;BT 

e,,loc;BT 

In this mode when the instruction e is reached, the break­
point reporting information is printed and execution con­
tinues automatically. 

Example: 

A+3,4,5;BT A;G@ 

4;B> A+3 5/ 54 

4;B>A+3 5/ -1 

4;B>A+3 5/ -175 

The trace mode may be set after a breakpoint occurs with 
the ;T command, which sets the trace mode at the current 
breakpoint instruction. 

Instruction breakpoints may be removed by 

1. Giving an instruction breakpoint command that speci­
fies the same breakpoint number as the instruction 
breakpoint to be removed. 

Example: 

AA,2;B@ 

FF,2;B@ 

96 De I ta Commands 

(There is no longer a breakpoint 
at AA.) 

2. Giving the command n;B that specifies that the nth 
instruction breakpoint is to be removed. 

3. Giving the command O;B that specifies that all instrl' 
tion breakpoints are to be removed. 

The current instruction breakpoints may be listed for inspec­
tion with the ;B command. The list has the following form 
for each established breakpoint: 

n[T]loc display 

where 

n is the breakpoint number 

T indicates that the trace mode is set for that 
breakpoint . 

loc is the breakpoint location. 

display is the address to be displayed when the 
breakpoint occurs. 

CALs, XPSDs, or LPSDs that depend on following calling 
sequences wil I not operate properly if they have an instruc­
tion breakpoint on them. BALs are not limited in this way. 

DATA BREAKPOINTS 

Data breakpoints al low the user to halt execution when a 
specified memory location changes value in a specified wa, 
Eight data breakpoints {numbered 1 through 8) may be set. 
The command has the format 

eGnJ[,val][,m];D(r] 

where 

e specifies a memory location. When the contents 
of this location change, a break will occur (unless 
other optionally specified requirements are not met). 

n specifies the number of the breakpoint. If n is 
not specified, Delta assigns the next available 
breakpoint. If all data breakpoints are used, the 
error message NONE is typed. The user may then 
release one of the eight data breakpoints he has 
set and try again. {Releasing breakpoints wi II be 
discussed shortly.) 

val specifies a value that is compared with the 
value in e. The parameters val and r must bath 
be present if either one is present. The parameter 
val wil I be discussed further when r is discussed. 

specifies a relationship s1:1ch as less than or equal 
to. When r and val are specified, a breakpoint 
wi II occur only whenever the contents of the 
memory location at e is in relation r to val. If 
no r and val specifications are given, a breakpoint 
occurs for all changes in the data and if a mask m 
is specified, it is ignored. 



The letters used for r and their meanings are 

LS (e) < val Contents of e under m 
c 

are I ess than va I ue. 

EQ (e) =val Contents of e under m c 
are equal to value. 

GR (e) >val Contents of. e under m 
c 

are greater than value. 

GQ (e)c 2:: val Contents of e under m 
are greater than or 
equal to value. 

LQ (e)c S val Contents of e under m 
are less than or equal to 
value. 

NQ (e) I val Contents of e under m 
c 

are not equal to value. 

m specifies a mask. If m is specified, the contents 
of e are masked under m before being compared 
with val. The default mask is all one's. 

Some specific variants of data breakpoint commands are 
given below. 

e,n;D Sets data breakpoint n. Terminal control 
returns to the user after each change in the con­
tents of e and printing of the data breakpoint 
message. 

e;D Sets next available data breakpoint. If all 
data breakpoints are used, the error message 
NONE is typed. Terminal control returns to the 
user immediately after each change in the contents 
of e and printing of the data breakpoint message. 

e,,val;Dr Sets next available data breakpoint with 
value, val, and relation, r. Terminal control 
returns to the user when the contents of e stand in 
relation r to the value val and the data breakpoint 
message has been printed. 

e,,val,m;Dr Same as above except that the contents 
of e are masked by the mask m before being com­
pared with val. 

Some sample breakpoint settings are: 

A, l,3;DGR 

A+5,2,. FF,. FF;DEQ 

AB,3;D 

SDS,4,CSC;DGE 

AT or trace parameter applies to all data breakpoint com­
mands in the same way and with the same effects as described 
above for instruction breakpoints. For example, 

A, l,3;DTGR 

Also the command ;T may be given to set the trace mode at 
the current breakpoint (which just caused an interrupt.) 

The output resulting from a data breakpoint has the form 

n;D > loc e/cont 

where 

n is the number of the breakpoint. 

loc is the location of the data modifying instruction. 

e is the data address in question. 

cont is the new value as just modified. 

Example: 

4;D >ADD SUM/.14 

When stopped at a data breakpoint, the user may examine 
and modify his program as appropriate and then continue 
from the point of interruption by giving the command 

;G 
or 

;P 
or 

n;P 

These commands are discussed in the previous section, 
"Instruction Breakpoints". (For data breakpoints, the ;G 
command is effectively the same as the ;P command.) 

Data breakpoints may be removed by 

1. Giving a data breakpoint command that specifies the 
same breakpoint number as the data breakpoint to be 
removed. 

2. Giving the command n;D that specifies that the nth 
data breakpoint is to be removed. 

3. Giving the command O;D that specifies that all data 
breakpoints are to be removed. 

The current data breakpoints may be listed for inspection 
with the command ;D. The list has the following form for 
each established breakpoint: 

n[T]loc cond value mask 

where 

n is the breakpoint number. 

T indicates that the trace mode is set. 

loc is the breakpoint location. 

cond is the breakpoint condition relation. 

value is the breakpoint value. 

mask is the mask under which the data is tested. 

Delta Commands 97 



The data breakpoint does not detect changes caused by 
direct hardware I/O transfers into the user's area nor does 
it detect changes in a temp stack caused by a push instruc­
tion (PSM, PSW). It does detect the change to the stack 
pointer doubleword. 

TRANSFER BREAKPOINTS AND INTERPRETIVE EXECUTION 

Transfer breakpoints al low the user to halt or trace execu­
tion when a branch instruction is encountered that branches 
when executed. This command differs from the other two 
breakpoint commands in that it initiates execution as soon 
as the command is decoded and processed. The format of 
the transfer breakpoint command is 

[lac ][,option 1][,opti on2];Y 

where 

lac specifies a location at which to begin execu-
tion of the program. The default value is the 
value of the current location counter. 

option1 indicates whether or not an interrupt should 
be allowed to occur at the branches specified in 
the special action table (SAT) which will be de­
scribed below. If option1 = 0, then all branches 
except those specified in the SAT are to be pro­
cessed as possible transfer breakpoints. If option 1 
= l, then only those branches specified in the 
SAT are to be processed as possible transfer break­
points. If this option is omitted and the SAT con­
tains no entries, then all branches are processed 
as possible transfer breakpoints. If the option is 
omitted and the SAT does contain entries, then the 
default value for the option is zero (so that all 
branches except those specified in the SAT are to 
be processed as possible transfer breakpoints). 

option2 indicates whether or not BDR and BIR 
branches are to be processed as possible transfer 
breakpoints. If option2 = 0, then BDR/BIR branches 
are not to be processed as possible transfer break­
points. If option2 = 1, then BDR/BIR branches are 
to be processed as possible transfer breakpoints. 
The default value is 0. 

The fol lowing list shows the format of the command when 
various parameters are omitted: 

;Y 

loc;Y 

loc,option1 ;Y 

loc,,option2 ;Y 

,option1 ;Y 

,,option2;Y 

,option1 ,option2;Y 

98 Delta Commands 

When a break occurs as the result of the transfer breakpoint 
command, the following message is output: 

locl - loc2 

where 

locl is the address of the branch instruction that 
just branched. 

loc2 is the address of the instruction to which the 
program branched. 

Execution may be continued with the ;P or ;G command. 
The ;P command with a proceed count (n;P) is not meaning­
ful in the transfer breakpoint mode. 

If the user wishes to use the trace mode with the transfer 
breakpoint command, he may give any of the forms of the 
command and specify the trace mode with a T following 
the Y. For example: 

;YT 

loc,,option2;YT 

loc,option 1,option2;YT 

In this mode, when a breakpoint occurs, the breakpoint 
reporting information is printed and execution continues 
automatically. 

The trace mode for al I transfer breakpoints may be ~et after 
a transfer breakpoint break occurs. The command which seh 
the trace mode is ;T. 

The transfer breakpoint mode may be turned off with the 
command: 

O;Y 

Special Action Table (SAT). The special action table lists 
up to eight locations in the user's program. These locations 
are meaningful only if they contain branch type instructions. 
The action to be taken depends on option 1 of the transfer 
breakpoint command. 

The following command enables the user to set entries in 
the SAT: 

I oc 1 [, I oc2(, I oc3[, I oc4]]]; YS 

The command enters the specified locations in the SAT if 
space is avai I able. 

T:1e command 

loc 1[, loc2(, loc3(,loc4]]}YR 

releases specified locations from the SAT. 

The command ;YR releases all SAT entries. The command 
;YD displays the SAT. 



BRK KEY BREAKPOINTS 

At any time during program execution the user may halt his 
program by pressing the BRK key. A message is printed for 
;he user, giving the location of the breakpoint. If the user 
hits the BRK key while his program is in execution, the 
message is: 

BRK AT loc 

After such a breakpoint, the ;P or ;G command continues 
execution. 

If the breakpoint occurs while Delta is executing, the 
message is 

BRK IN DELTA 

The user may then give any of the Delta commands. 

MEMORY SEARCH AND MODIFICATION: 
THE ;W, ;N, ;M, AND ;L COMMANDS 

There are two search commands, e;W and e;N. The e;W 
command searches for values which match the expression e 
and displays the location and contents of each cell contain­
ing the value. lhe e;N command searches for cells that 
do not contain the expression e and displays their location 
and contents. 

The search is carried out between the limits determined by 
the symbol table values of ;l and ;2. The special symbols 
;l and ;2 identify the lower and upper search bounds respec­
tively. The initial value of ;l is the lowest current user 
data area address, and the initial value of ;2 is the highest 
current user data area address. Usually the initial value 
of ;2 is greater than the last address of the user's program 
and this causes a trap to occur when a search is requested. 
Therefore, the user should always set limits on the area in 
which the search is to be done by using the e;l and e;2 
commands. The field e is an expression which specifies 
the bound location. An example is given below: 

AA;l EE;2 'ABCD';W@ 

In the example, each eel I between AA and EE wil I be 
searched for the EBCDIC value ABCD. The location and 
contents of each cell containing that value will be 
displayed. 

Both bounds may be set by one command, the ;L command. 
The format of the ;L command is 

e 1,e2;L 

where el specifies a value for ;l and e2 specifies a value 
for ;2. The example above might also be written 

AA,EE;L 'ABCD';W@ 

When the user sets the search bounds, they remain set at 
the specified value until they are reset by the user. The 

bounds do not revert back to their initial values after a 
s8'1rch has been performed. 

The search may examine entire cells or portions of eel Is. 
This is determined by a mask which is identified by the 
special symbol ;M. The initial value of ;Mis all ones, so 
that entire cells will be examined. The mask ;M may be 
reset by the ;M command which has the format 

e;M 

The expression e is used to set the bits of ;M to a particular 
pattern of ones and zeros. Only those bits corresponding 
to the one bi ts of the mask wi 11 be examined when a search 
is performed. For example: 

. FFOOOOOO;M 

The mask wi II be set so that only the first eight bits of each 
cell will be examined to see if they match the value being 
searched for. 

Like the search bounds, the value of the mask ;M wi II not 
be changed until another ;M command is given. 

In the following example, only the last byte of the cells AA 
through EE will be examined. Those containing the EBCDIC 
value 'D' will be displayed. 

AA,EE;L . OOOOOOFF;M 'D';W@ 

(In the . OOOOOOFF;M command, the leading zeros are not 
required.) 

The user may express values to be searched for in their 
assembly-language format or in their machine-language 
format. In the example below, all words between ABC 
and ABC+. 100 with the last 17 bits equal to the address of 
the ERR wi II be displayed as shown. 

. lFFFF;M ABC,ABC+. lOO;L ERR;W@ 

ABC+.3/ BAL,4 ERR 

ABC+.A/ BAL,4 ERR 

ABC+. DL'. BALt4 ERR 

ABC+.6A/ AWM,1 ERR 

A second value may be specified in the ;Wand ;N commands 
so that the formats of the commands are 

el,e2;W and el,e2;N 

The e2 field specifies a value which will be stored through 
the mask ;Minto all locations that meet the specified con­
dition (i.e., match or mismatch). Locations meeting the 
conditions will be displayed after the substitution has taken 
place. The fol lowing example is the same as the example 
above, except that the symbo I OUT wi 11 be substituted for 
ERR. (OUT must be a defined symbol within the program.) 

De I ta Commands 99 



Example: 

• lFFFF;M ABC,ABC+. lOO;L ERR,OUT;W~ 

ABC+.3/ BAL,4 OUT 

ABC+.A/ BAL,4 OUT 

ABC+.D/ BAL,4 OUT 

ABC+.6A/ AWM,l OUT 

The user may interrupt an in-progress search by pressing the 
BRK key. Delta halts the search and returns terminal con­
trol to the user. 

MEMORY CLEARING: THE :Z COMMAND 

The ;Z command is basically used to clear (i.e., set to 
zeros) specified areas of memory. The basic format of the 
;Z command is 

e l,e2;Z 

where expression el is the lower limit and expression e2 is 
the upper limit of the memory area to be cleared. An error 
results if the value of e2 is less than that of el. Also el 
and e2 must not specify addresses outside of the user's area 
in memory. 

A third field may be added to the ;Z command so that the 
format is 

e l,e2,v;Z 

The field v specifies a value to be stored into each of the 
memory cells in the area delimited by el and e2. In this 
way, the ;Z command may be used for purposes other than 
clearing memory. 

Examples: 

A,A+5;Z@) 

• lCEO,. lCFO;Z@) {(St th I l ' t th ores e va ue in o e 
ALPHA,ALPHA+2, l;Z@> three memory cells ALPHA, 

ALPHA+ l, and ALPHA+2). 

DISPLAY MODES: THE ;A, :R. AND :RK COMMANDS 

The ;R and ;A commands control the way in which Delta 
displays location values when typing the contents of eel Is. 
The mode display is either relative (;R} or absolute (;A}. 
When in the relative mode, Delta looks up location values 
in the symbol table and displays the symbol if one corres­
ponds exactly to the value. If no exact correspondence is 
found, Delta displays the symbol with the next smaller value 
followed by a word offset in hexadecimal. If the mode is 
absolute (;A}, then location values are displayed as hexa­
decimal numbers. Note that these commands control the 
display of location values but not the display of the address 

l 00 De I ta Commands 

portion of instructions contained in those locations. Examples 
of the ;R and ;A commands are shown below: 

;R Display Example: 

A,A+5/ LI, l • 10 

A+. l/ CW, l K45 

A+.2/ BGE zzz 
A+.3/ AI, l l 

A+.4/ B Al7 

ZZZ/ STW,2 BR13 

;A Display Example: 

A,A+5/ LI, l • 10 

.5CD/ CW,l K45 

.5CE/ BGE zzz 

.5CF/ AI, l 

.5DO/ B Al7 

.5Dl/ STW,2 BR13 

The ;R command may be preceded by a value (n;R) that sets 
the maxi mum offset to be used in address output. If no sym­
bo I lies within "offset" of the value, the address is printed 
as absolute hexadecimal. Thus, lO;R causes Delta to display 
symbol plus relative offset only when a symbol lies within 
10 locations of the display address. 

The ;RK command sets relative address output mode, using 
only control section type symbols for output unless there is 
an exact match between the symbol value and output value 
(for a discussion of setting the control section type, see 
"Symbol Table Control: The ;U, ;K, ;S, !, and<> Commands" 
earlier in this chapter}. If there are no control section sym­
bols, the output is hexadecimal. Thus, output is "control 
section plus hexadecimal offset", "symbol", or "hexadeci­
mal constant". 

;RK Display Example: 

A,A+5/ LI, l 10 

.5CD/ CW, l K45 

.5CE/ BGE zzz 

.5CF/ AI, l 

.5DO/ B Al7 

ZZZ/ STW,2 BR13 

PRINTER OUTPUT: THE :0 AND ;J COMMANDS 

These two commands provide for output (via symbionts) to 
the line printer. The ;O command produces hexadecimal 
dumps on the I ine printer, while the ; J command directs 
all Delta output to the line printer. This is particularly 



usefu I in the cases of lcuge ,formatted displays and output 
from tracing breakpoi~ts. ·•· · ,. 

The printer and tape 1/0 routines ,are completely self­
contained in the executive version with no dependence on 
system 1/0 routines. The executive version of Delta oper­
ates with all interrupts except console interrupts disabled. 
Examples of the ;O and ;J commands are 

el ,e2;0(header] contents of memory from location 
el through location e2 are printed on the line 
printer, single-spaced, eight hexadecimal words 
with initial hexadecimal location value per line. 
Duplicate.lines are suppressed. If any input fol­
lows the 0, it is printed as a header. Each dump 
begins at the top of a fresh page with the contents 
of the genera I registers printed first. 

;J toggles the output location switch that alter-
nates between the terminal and the line printer 
each time the command is given. Output from 
the equal command, from nontracing breaks, from 
trap, abort, and error returns, and from syntax and 
other error conditions in Delta are always directed 
to the terminal. Examples are 

A, l;B 

X,2,3;DLS ;J B;G 

Note: The output that would have appeared here 
from data break 2 goes to the line printer. 

EXECUTIVE DELTA 

Executive Delta does not honor the fol lowing commands: 

;Y 

;S 

;R 

;D 
Al I other Delta commands may be used. Special executive 
Delta restrictions have been noted throughout this chapter. 

In addition, executive Delta has the fol lowing command to 
provide a disk dump capability: 

{ da,ndd,ns;O} 
fda,,ns;O 

where 

da specifies the starting disk address, the format 
of which is device dependent. 

fda specifies the file management disk address. 
The address is comprised of the DCT index in the 
first halfword and the relative sector number in 
the second halfword. 

ndd specifies the actual device address. Note that 
this f,ield is empty if the fda format is used. 

ns specifies the number of sectors to dump. 

Assuming a system RAD or disk pack address of .1 FO and a 
DCT index of7, either ofthe following .examples could be 
used to dumpthefirstten sectors oftbeHGPs.contained in 
ALLOCAT: 

8, .1 FO, 10;0 
.70008, , 10;0 

WRITING PROGRAMS WITH DELTA 

The user may write and check short Meta-Symbol or machine 
language programs using Delta. The following two com­
mands are especially helpful for writing programs: 

1. Symbolic tags may be defined at a specific address using 
the command 

e(f<s>(K] 

(See the section."Symbol Table Control".). Each sym­
bolic tag should be defined with this instruction before 
it is used in the program. The range of addresses 
available to the user is . COOO-. l BFFF. 

2. Pages for the program may be requested from the Mon­
itor by using the command 

e\ 
(See the section "Memory Cell Opening and Display".) 
This command also opens the specified cell so that the 
user may store an instruction or data into it. 

Example: 

• lOOOO(R< BEGIN>K@) defines the tag 
BEGIN at location .10000. 

BEGIN Ll,2 O@ opens the cell at 
BEGIN and requests the page from the Monitor 
(if it is not already assigned to the user). The 
instruction LI,2 0 is then stored into the cell 
at BEGIN. 

ERRORS AND ERROR MESSAGES 

Errors that result in machine traps are reported to the user, 
and console control is returned to the user to await further 
commands. Each message is accompanied by the location~ 
symbolically if possible, of the offending instruction. The 
messages are 

NONEXIST INSTR AT 

NONEXIST MEM REF AT 

PRIVIL INSTR AT 

MEM PROTECT FAULT AT 

STACK LIMIT FAULT AT 

UNIMP INSTR AT 

FIXED ARITH OVFLW AT 

FLOAT FAULT AT 

DECIMAL FAULT AT 

Syntax errors are reported by the message "?n", where n i~ 
the number. qf the character in the command line that Delta 

Executive Delta}Nriting Programs with Delta;l:rrors arid Error Messages 101 



was processing when the error was detected. Th is message 
is sent to the user whenever Delta cannot understand the 
user's command syntax. Because the commands are brief 
(i.e., requiring few keystrokes) and most errors can be 
spotted easily by eye, only a few syntax errors are explic­
itly commented. Example errors and Delta's response to 
them are listed below: 

PROGRAM EXITS 

When called, Delta takes control of program exits via 
the CAL M:SXC. Delta reports execution of exit CAL 
with a message of the form 

EXIT n AT loc 

'ABCDE'= 
? 6 

ABC;K@l 
? 5 

Constant value larger than 
one word. 

Symbol not in symbol table. 

where 

n is the exit code as defined in the table below. 

loc is the address of theCALor instruction causing 
exit. 

Code Type of Exit Example 
FF;M 100,XY;L .6B;W@l Symbol value not found. 

0 Normal M:EXIT. 
?13 Remainder of command string 

ignored. Trap error Decimal or floating trap. 

A,5;E('.0 
? 5 

LW*5 ALPHA= 
? 3 

.3ACR/ 
? 5 

(B;/ 
? 2 

LOC,,3;DNE@ 
? 10 

;T® 
? 2 

Command 

Expression Evaluation 

e= 

e(f= 

(f;= 

Command unknown. 
2 I/O error No error address. 

4 Limits Maximum time; maximum 

Asterisk in the wrong place. 
pages output. 

II legal character in a 
hexadec ima I number. 

Illegal format control 
character. 

II legal relation. 

10 

20 

40 

80 

Termination Operator aborted job. 

Termination Operator errored job. 

Abnormal M:XXX. 

Job errored M:ERR. 

DELTA COMMAND SUMMARY 

No break in an attempt to 
set trace mode on. 

The Delta commands are summarized in Table 27. They are 
listed by groups according to the type of function they 
perform. 

Table 27. Delta Command Summary 

Function 

Evaluates and types the value of the expression e in the most 
appropriate format. 

Evaluates and types the value of e in format f. 

Following a display, evaluates and types the value of the last expression 
typed by De I ta. 

Changes the default format for output for the =command to the format 
specified by f. 

Memory Cell Opening and Display 

e/ Displays the contents of cell e in the most appropriate format, and 
opens the cell in preparation for change. 

e(f/ 

el ,e2/ 
el ,e2(f/ 

e\ 

I 

102 Program Exits/Delta Command Summary 

Opens and displays the contents of cell e in format f. 

Displays the contents of cell el through e2 in the most appropriate 
format or in the specified format f, and opens cell e2. 

Opens but does not display cell e. Also may be used to request pages 
from the Monitor. (The\ command is replaced by i in the executive 
version.) 

Following a display, displays but does not open the last cell addressed 
by the display. The new display is in the default format. 



Table 27. Delta Command Summary (cont.) 

l Command 

Memory Cell Opening and Display (cont.) 

(f;/ 

Memory Modification 

e@ 

ef 

Symbol Table Control 

s;S 

;S 

;U 

e(f <s>[K] 

s(f ! 

s;K 

;K 

;Kl 

;KG 

Execution Control 

e;G 

;G 

;P 

n;P 

e;X 

Function 

Following a display, displays and opens the lost cell addressed by 
the display. 

Changes the default format for output for the slash command to the 
format specified by f. 

Assembles the expression specified bye, stores it in the currently open 
cell, and closes the cell. 

Stores e in the currently open cell, closes it, and opens and displays 
the next higher addressed cell. {The LF is replaced by EOM in the 
executive version.) 

Stores e in the currently open cell, closes it, and opens and displays 
the next lower addressed eel I. (The tis replaced by & in the executive 
version.) 

Displays and opens the eel I addressed by the last quantity typed. If an 
expression precedes the TAB, the expression is stored in the open eel I 
and that cell is closed. 

Selects internal symbol table s. 

Loads global symbol table. 

Displays undefined symbols {In executive Delta, ;U toggles the map 
bit in the current PSD.) 

Assigns to symbol s the value e and the format f. 

Assigns to symbols the value of the currently open cell and the format 
code f. 

Flags symbols in the symbol table. It will not be used in output ex­
pressions, but it can still be used in input expressions. 

Removes all symbols except instruction mnemonics and special symbols. 

Removes the current internal symbol table. 

Removes the global symbol table and any symbols defined from the console. 

Begins execution at e. 

Begins execution at the address specified by the current location 
counter value. 

Begins execution at the address specified by the current location 
counter value. 

Proceeds with no output the next n times the current instruction 
breakpoint is encountered. 

Executes the instruction e. 

Executes the current instruction and displays the next one. 

De I ta Command ·Summary l 03 



Command 

Instruction Breakpoints 

e,n;B 

e,n;BT 

e;B 

e;BT 

e,n, loc;B 

e,n,loc;BT 

e,,loc;B 

e,,loc;BT 

;T 

n;B 

O;B 

;B 

Data Breakpoints 

e,n,val,m;Dr 

e,,val,m;Dr 

e,n,val,m;DTr 
e,,val,m;DTr 

e,n;D 

e;D 

e,n;DT 
e;DT 

e,,val; Dr 

e,,val,m;Dr 

e,,val;DTr 
e,,val,m;DTr 

l 04 De I ta Command Summary 

Table 27. Delta Command Summary (cont.) 

Function 

BREAKPOINTS 

Sets the nth instruction breakpoint at location e. 

Same as above, but the program automatically proceeds from the 
breakpoint after the breakpoint message is printed (trace mode). 

Sets the next available breakpoint at location e. 

Same as above, but the program automatically proceeds from the 
breakpoint after the breakpoint message is printed (trace mode). 

l 

Sets the nth instruction breakpoint at location e and causes the contents 
of lac to be displayed when the break occurs. 

Same as above, but the program automatically proceeds from the 
breakpoint after the breakpoint message is printed (trace mode). 

Sets the next available breakpoint at location e and causes the contents 
of lac to be displayed when the break occurs. 

Same as above, but the program automatically proceeds from the 
breakpoint after the breakpoint message is printed (trace mode). 

Sets the trace mode at the current breakpoint (which just caused a 
breakpoint interrupt). 

Removes the nth instruction breakpoint. 

Removes a 11 instruction breakpoints. 

Displays all active instruction breakpoints. 

Causes data break n to occur whenever the contents of eel I e, masked 
by m, are in relation r to val. The relations are 

LS e <val 
EQ e =val 
GR e >val 
GQ e ~val 
NQ e I val 
LQ e ~val 

Same as above, but uses the next available data breakpoint number. 

Same as the two above, but the program automatically proceeds from 
the breakpoint after the breakpoint message is printed (trace mode). 

Causes data breakpoint n to occur whenever the contents of cell e 
are changed. 

Same as above, but uses the next available data breakpoint number. 

Same as the two above, but the program automatically proceeds from 
the breakpoint after the breakpoint message is printed (trace mode). 

Sets the next available data breakpoint. A break will occur whenever 
the contents of e are in relation r to val. 

Same as above except that the contents of e are masked by the mask m. 

Same as the two above, but the program automatically proceeds from 
the breakpoint after the breakpoint message is printed (trace mode). 

I 



Command 

Data Breakpoints (cont.) 

;T 

n;D 

O;D 

;D 

Table 27. Delta Command Summary {cont.) 

Function 

Sets the trace mode at the current breakpoint (which just caused a 
breakpoint ·interrupt). · · 

Removes the nth data breakpoint. 

Removes all data breakpoints. 

Displays al I active data breakpoints. 

Transfer Breakpoints and Interpretive Execution 

;Y 

loc;Y 

;YT 
loc;YT 

,optionl;Y 

loc,option l;Y 

,optionl;YT 
loc,option l;YT 

,,op ti on2; Y 

loc,,option2;Y 

,,option2;YT 
loc,,option2;YT 

,option 1,opti on2; Y 

loc,option 1,option2; Y 

,option 1,option2;YT 
loc~option 1,option2; YT 

;T 
O;Y 

I oc 1(, I oc2(, I oc~._,I oc4]]]; VS 

loc1(,loc2~1oc3Glo~4]];YR 

;YR 

;YD 

Starts execution at the current location counter in the transfer 
breakpoint mode. Does not display branches specified in the SAT. 
Does not display BDR and BIR branches. 

Same as above except that execution begins at loc. 

Same as the two above, except that the trace mode is also set. 

Starts execution at the current location counter in the transfer 
breakpoint mode. Does not display branches specified in the SAT if 
optionl = 0. Displays only those branches specified in the SAT if 
option 1 = 1. Does not display BDR and BIR branches. 

Same as above except that execution begins at loc, 

Same as the two above, except that the trace mode is also set. 

Starts execution at the current location counter in the transfer 
breakpoint-mode. Does not display branches specified in the SAT. 
Displays BDR and BIR branches if option2 = 1. Does not display BDR 
and BIR branches if option2 = O. 

Same as above except that execution begins at loc. 

Same as the two above, except that the trace mode is also set. 

Starts execution at the current location counter in the transfer 
breakpoint mode. Does not display branches specified in the SAT if 
option 1 = O. Displays only those branches specified in the SAT if 
optionl = 1. Displays BDR and BIR branches if option2 = 1. Does not 
display BDR and BIR branches if option2 = O. 

Same as above except that execution begins at loc. 

Same as the two above, except that the trace mode is also set. 

Sets the trace mode for al I transfer breakpoints. 

Turns off the transfer breakpoint mode. 

Sets one to four'entries in the SAT (Special Action Table). 

Releases one to four entries in the SAT. 

Releases all entries in the SAT. 

Displays the SAT. 

Delta Command Summary 105 



Table 27. Delta Command Summary (cont.) 

Command Function I 
t----------'-------~--

Memory Search and Modification 

Memory between the bounds specified in ;1 and ;2 (initially set to the lower and upper limits of memory assigned for 
user data) is searched under the mask in ;M (initially all ones). If field e2 is specified in the search command, the 
value in that field is stored through mask ;M into each location that meets the specified condition. 

e;W 

el,e2;W 

e;N 

el,e2;N 

e;l 

e;2 

e l,e2; L 

e;M 

Memory CI earing 

e l,e2;Z 

e 1,e2,v;Z 

Display Modes 

;R 

n;R 

;RK 

;A 

Printer Output 

el,e2;0 [header] 

;J 

Disk Dumps 

{ da,ndd,ns;O} 
fda,,ns;O 

106 Delta Command Summary 

Searches for and displays words that match e under the mask ;M. 

Stores e2 through mask ;M in locations that match el through the mask. 

Searches for and displays words that do not match e. 

Stores e2 through mask ;M in locations that do not match e 1 through 
the mask. 

Sets the memory search lower bound to e. 

Sets the memory search upper bound to e. 

Sets ; l to e 1 and ;2 to e2. 

Sets the search mask to e. 

Zeros memory from e 1 through e2. 

Stores the value v in memory from el through e2. 

Sets the display mode in memory addresses to symbol plus relative 
hexadecimal offset. 

Same as above, but sets the maximum hexadecimal offset to n. 

Displays addresses as control section type symbol pl us any hexadecimal 
offset. If the value displayed is equal to that of any symbol, then the 
symbol is displayed. If there is no control section type symbol, then a 
hexadecimal constant is displayed. 

Sets the display mode for locations to hexadecimal numbers. 

Prints the contents of memory from location el through location e2 on 
the line printer in the standard core memory dump format. If any input 
fol lows the 0, it is printed as a header. 

Toggles the output location switch which alternates between the 
terminal and the line printer each time the command is given. 

Prints the contents of the disk from the area specified. (This command 
is only available in executive Delta.) 



8. LINK PROCESSOR 

INTRODUCTION 
Link is a one-pass linking loader that makes ful I use of 
mapping hardware. It is available in the on-line and batch 
modes. It is not an overlay loader. If the needfor overlays 
exists, the over lay loader (Load) must be used. Load is 
available only in the batch mode. 

Link constructs a single entity called a load module (LM), 
which is an executable program formed from relocatable ob­
ject modules (ROMs). Link also provides the necessary data 
space and program linkages for the association of public 
libraries. 

The final program resulting from a linking operation has 
three protection types, one for data, one for pure proce­
dure, and one for DCBs. Static data and nonaccess infor­
mation, if specified, are loaded with the pure procedure. 

The access protection types provided by Sigma 6, 7, or 9 
hardware are 

00 read, write, and execute access permitted (data). 

01 read and execute accesspermitted (pure procedure). 

02 read access permitted (static data). 

03 no read or write permitted (no access). 

LOAD MODULE STRUCTURE 

A load module formed by Link is composed of three parts: 
program, global symbol table, and internal symbol table. 
Each of these parts is described in the following sections. 

PROGRAM 

A program may be sectioned into six parts: pure procedure, 
data, common, DCBs, public libraries, system library. 

1 • Pure Procedure 

This section of code contains machine instructions and 
is generated by compilers and assemblers with protec­
tion type 01 (read and execute access). Sections with 
a nondata protection type (static data and no access) 
are also included here. 

2. Data or Program Context 

This section is generated by the compilers and assem­
blers with protection type 00 (read, write, and execute 
access). 

3. Common 

This blank common storage is generated by compilers 
and assemblers as a dummy section with the name F4:COM. 
The size of blank common storage is determined by the 

first size declared. All subsequent F4:COM declara­
tions must be less than or equal to that size. 

4. DCBs 

A data control block (DCB) is a table containing the 
information used by the Monitor in performance of an 
I/O operation. At the end of a link operation, Link 
constructs a DCB corresponding to each outstanding 
external reference with names beginning with F: and M:. 

The M:UC DCB, which is the DCB most commonly used 
for terminal I/0, is supplied as a portion of the user's 
JIT (job information table); any M:UC reference is 
automatically satisfied thereby. The default assignment 
of M:UC to the user's terminal is unalterable. (Outpu 
operations via M:UC are treated specially by the Mon· 
itor; see Chapter 10.) If the program being I inked does 
not contain a reference to M:DO, a reference to it is 
supplied by Link, since diagnostic output is generally 
written via this DCB. If the user does not want this 
DCB to be constructed, due to space considerations, 
he can explicitly reference M:DO and satisfy the ref­
erence (vacuously) within his program. (Some diag­
nostic output is likely to be lost.) 

A DCB name of the form M:ab, where ab correspands 
to an operational label, is considered a reference to a 
standard system DCB. The standard system DCBs are 
discussed in terms of operational labels and default 
assignments in CP-V/BP Reference Manual, 90 17 64. 

DCBs constructed by Link are 51 words long and con­
sist of 

a. A 22-word standard initial segment, containing a 
standard default operational label if the DCB is 
one of the system DCBs. 

b. Five variable length items including a control word 
for each, with space for 

• A three-word file name. 

• A two-word account number. 

• A two-word password. 

• A three-word block for three input serial 
numbers. 

• A three-word block for three output serial 
numbers. 

• A two-word block for expiration date. 

c. An eight-word key buffer. 

The standard system DCBs also exist in ROM form on 
files in the system account; in this form they differ from 
Link-constructed DCBs in size and composition, as de­
scribed in CP-V /BP Reference Manual, 90 17 64. These 
ROMs can be explicitly named in a LINK or RUN 
command to satisfy corresponding references. 

Link Processor 107 



While allocating, constructing, and combining DCBs, 
Link guarantees that each DCB is contained within a 
page. This allows the operating system to access DCBs 
in either mapped or unmapped mode. User-supplied 
DCBs (i.e., DSECTs with names beginning M: or F:) 
are placed in the DCB record, in user-context space, 
together with those constructed by Link. All are given 
protection type 02. 

5. Public Libraries 

Any CP-V instal lotion can define a set of subroutines 
that constitute a public library. The installation may 
specify several different public libraries containing 
collections of routines that are useful in various envi­
ronments. Only one library may be associated with an 
executing program. DEF stacks for public libraries are 
stored under special names in the system account and 
are used to link programs to them. See the CP-V /SM 
Reference Manual, 90 16 74, Chapter 6, for more 
detailed information on the structure and creation of 
public libraries. 

Only one block of core memory is required for the 
public library no matter how many users are using it. 
However, use of just one routine in the public library 
requires core for the entire packoge. The reentrant 
portion of each library is shared among users (on-line 
and batch), thus saving physical core memory and 
allowing for more efficient system operation. User­
dependent data storage for each library routine is allo­
cated by Link at a fixed virtual address. Thus, each 
public library is constructed in two parts: reentrant 
procedure and direct access data. By forming the li­
brary in this manner, a speed advantage of from 5 to 20 
percent over push-down storage reentrancy is obtained. 

CP-V provides three public libraries: PO, Pl, and JO 
(only the first two are of general interest). Library Pl 
contains the most commonly required routines from the 
Extended FORTRAN IV run-time and mathematical 
library (about 65 routines). Library PO includes 
library Pl plus the FORTRAN Debug Package (FDP). 
These two Ii brari es wi 11 satisfy the requirements of the 
majority of users for program execution and debugging, 
respectively. (The remainder of the run-time and 
mathematical routines comprising the entire Extended 
FORTRAN IV subprogram I ibrary reside on the system 
library, described below.) Public library JO contains 
the user-JIT Definition Package. (See Chapter 6 of the 
CP-V/SM Reference Manual, 90 16 74, also for more 
detailed descriptions of libraries PO, Pl, and JO.) 
Additional public libraries created by a user-installation 
may be named P2-P9. 

6. System Library 

The system library consists of approximately 170 
FORTRAN IV library routines in ROM form, on file 
:BUB in the :SYS account. Searching of this library is 
implied by the default library-search code Lin a LINK 
or RUN command. This Ii brary is always searched last if 
any unsatisfied references remain unless the NL option is 

108 Symbol Tables 

specified. Routines that are obtained from the system 
Ii brary become part of the user program and are not 
shared. Thus, core is required for each system library 
routine. The speed advantage is still maintained since 
each routine includes any necessary data. 

GLOBAL SYMBOLS 

While performing the linking process, Link constructs a 
global symbol table. This table is a list of correspondences 
between symbolic identifiers (labels) used in the original 
source program and the values or virtual core addresses that 
have been assigned to them by Link. The global symbols 
define(DEF)objects within a modulethatmaybereferenced 
(REF) in other modules. This table is available to Delta for 
use in debugging. 

INTERNAL SYMBOLS 

An internal symbol table is a list of correspondences similar 
to the global symbol table but applies only to symbols 
defined within the module. Each internal symbol table 
constructed by Link is associated with a specific input file 
and is identified by its name. This table is also available 
to Delta for debugging. 

When an internal symbol is equated to an external symbol 
with an addend, and the module containing the external def­
inition is in a different file from the module containing the 
external reference, the file containing the definition must 
appear on the LINK or RUN command before the file con­
taining the external reference. Furthermore, an internal 
symbol should not be equated to an external reference with 
an addend satisfied from a library. 

No internal symbol table is generated for a named library 
(one with a fid). 

SYMBOL TABLES 

Delta makes it possible to reference both global and internal 
symbols at the time programs are debugged. Programs formed 
by loaders, together with the tables of global and internal 
symbols, are operated on in a code similar to assembly lan­
guage symbolic code. 

Global and internal symbol tables, as formed by Link and 
used by Delta, consist of three word entries. Symbolic 
identifiers (labels) are limited to seven characters. Symbols 
originally longer than seven are truncated, leaving the ini­
tial seven characters, although the original count is retained. 
Thus, symbols that are identical in their first seven charac­
ters and are of equal length occupy one position in the sym­
bol table. The value retained for multi-defined symbols 
is the first one encounteredduringthe linking process. Each 
symbol entered into the table has an internal resolution and 
a type classification. Internal resolutions are: byte, half­
word, word, doubleword, and constant. Symbol types are: 
instruction, integer, EBCDICtext, shortfloating-point, long 
floating-point, decimal, packed decimal, and hexadecimal. 



Object language code produced by CP-V assemblers and 
compilers provides internal symbols with internal resolution 

. and type classification. CP-V loaders retain this informa­
tion in processing object language code. 

CONVENTIONS 

The terminal and language conventions for Link are the same 
as for TEL except the function of the BREAK key. If the 
BREAK key is depressed while a LINK command is being 
entered, the command is ignored and a new command must 
be typed (as if Xe had been pressed). 

LINK COMMANDS 

The Link processor is called implicitly by a LINK or RUN 
command given at TEL level, as described in Chapter 3. 

Example: 

Assume there are two relocatable object modules. The in­
ternal symbols for the first module(MFLl)are to be left out 
of the resulting load module, but the internal symbols for 
the second module (MFL2) are to be included. The result­
ing load module is called LMl. 

.!_LINK (NI) MFLl,(I) MFL2 ON LMl@) 

If Link needs additional information, it will identify the 
problem, and then prompt(:) for input. 

Example: 

Assume the same example as above except that Link cannot 
find MFL2 because it was supposed to be MFL3. 

.!_LINK (NI) MFLl,(I) MFL2 ON LMl@) 

CANT FIND: RETYPE MFL2 

: MFL3 i§l 

Note that the ROM specification indicated as unfound (e.g., 
MFL2) can, alternatively, be bypassed by responding with 
carriage-return only. 

Example: 

Assume that modules A and Bare to be linked, with merging 
of internal symbol tables, to form output module C. In the 
linking process, one double definition (Z) and one internal 
unsatisfied definition (Y) are found. 

.!_LINK (A,B) ON C 8 

LINKING A 

LINKING B 

.f._ (internal double definition) 

IUSAT Y (internal unsatisfied reference) 

ERROR MESSAGES 

Whenever an error occurs during a linking operation, 
Link sends an error message to the terminal. Some of 
these messages are for syntax errors, others are for errors 
arising out of the linking operation. They are listed in 
Table 28. Most of these errors terminate the linking op­
eration prematurely. 

LINK COMMAND SUMMARY 

Table 29 is a summary of the LINK and RUN commands. The 
left-hand column gives the command format, the right-hand 
column gives the command function and options. Note that 
the format of the two commands differ only in the UNDER­
clause options. 

Table 28. Link Error Messages 

Message Des er i pti on 

CANT FIND :RETYPE rom The specified relocatable object module cannot be found. 

CARD CKS/COMPUTED CKS/cd/cp/ This message is sent to the terminal along with the 
CHECKSUM ERROR message. It specifies the card 
checksum (cd) and the computed checksum (cp). 

CHECKSUM ERROR A checksum error has occurred. The CARD C KS/ 
COMPUTED CKS/cd/cp/ message specifies the difference. 

CORE LIBRARY OVERLAPS PURE PROCEDURE There is insufficient virtual memory to contain the pure 
procedure and the core I ibrary REF /DEF stack. 

Conventions/Link Commands/Error Messages/Link Command Summary 109 



Table 28. Link Error Messages (cont.) 

Message Description l 
DUMMY SECTION LARGER THAN PREVIOUS DEF The dummy section initially defined was not the largest 

dummy section. 

GLOBAL SYMBOL TABLE OVERLAPS PURE There is insufficient virtual memory to contain the pure 
PROCEDURE· procedure and the symbol tables. 

ILLEGAL DATA FORMAT Input modules did not contain ROM data. 

ILLEGAL LOAD ADDRESS An attempt was made to load outside the limits of the 
program. 

ILLEGAL LOAD ITEM TYPE ROM input data is i llega I (e.g., it is load module 
data instead). 

INSUFFICIENT PHYSICAL MEMORY TO CONTINUE A request for a memory page has been refused. 

I/O ERROR LINKING SYSTEM LIBRARY This message usually indicates there is no system library. 

I/O ERROR OPENING OUTPUT FILE An I/O error occurred during the opening of an output 
file. 

I/O ERROR READING ASSIGN MERGE RECORD This message usually indicates there is no assign-merge 
record. 

I/O ERROR READING CORE LIBRARY This message usually indicates there is no core library. 

MODULE #/SEQUENCE# /md/sq/ This message accompanies most other messages. It 
identifies the module number (md) and sequence num-
ber (sq) of the last card before the error. Both num-
bers start at zero. 

MORE THAN 2 PAGES REQUESTED FOR DCBs This message indicates that the limit of two pages for 
DCBs has been exceeded. 

NO PROGRAM START ADDRESS The program has no start address. 

ON FILE fid ILLEGAL ON was specified and the output file (fid) already 
exists. 

SEQUENCE ERROR A sequence error has occurred. 

SEVERITY x The severity level associated with the ROM is speci-
fied by x. 

STACK OVERFLOW An internal storage overflow has occurred. 

UNEXPECTED END OF ROM DATA EOF encountered before last card of ROM. 

Note: All errors, except CANT FIND, cause abnormal termination of Link. 

110 Error Messages 



Command Description 

LINK (codes]rom[,rom].;. (,rom] [g~ER lm~(;lidl Forms the load module as specified. 

L [,lid] ... [,lid]] [UNDER FDP] Options (codes}: 

library search: 

(L} search system library 

(NL) do not search system library 
default: (L) 

(Ji) or(Pi) associate ith public library 
where i = 0-9 

(FDP) associate public library PO 

(NP) do not associate any public library 
default: Pl 

display: 

(D) display undefined internal and 
external symbols 

(ND) do not display undefined internal 
and external symbols 

(C) display conflicting internal and 
external symbols 

(NC) do not display conflicting internal 
and external symbols 

(M) display load map 

(NM) do not display load map 
default: (D), (C), (NM) 

Options (symbol table): 

(I) include symbol table with LM 

(NI) do not include symbol table with LM 
default: (I) 

rom may be fid or $;parentheses enclosing roms cause 
merge of symbol tables. 

lid must name a file containing one or more roms. 

RUN (codeijfom(,rom] •.• [,romJ][g~ER lmn] (;lidl Loads a specified load module and starts execution. 

LLlid] .•. [,lid]] [uNDER ~~~rAJ Options: (see LINK command) 

Link Command Summary 111 



9. MONITOR SERVICES TO USER PROGRAMS 

INTRODUCTION 

Al I Monitor services available to batch and on-line programs 
are described in the CP-V/BP Reference Manual, 90 17 64. 
Those servicesthatare available only to on-line programs 
are discussed in this chapter. In addition, a description of 
differences between on-I ine and batch responses to certain 
procedures is provided. 

ON-LINE CP-V SERVICE CALLS 

SET PROMPT CHARACTER 

M:PC Ordinarily, when control is turned over to an on-
line program, a null prompt character is assigned. The PC 
routine allows an on-line program to set a prompt character. 
This character, if non.:null, is typed (usually at the left 
margin) whenever input is requested from the terminal (UC 
device). If M:PC is used in a batch program, it is ignored. 

The procedure ca II is of the form 

M:PC 'character' 

where character specifies the EBCDIC prompt character that 
is to be associated with the user program (an EBCDIC 00 or 
null character means that no prompt character is desired.) 

Illegal EBCDIC characters and lower case ANSCII charac­
ters are not a II owed. If there is an i llega I character, no 
change in the prompt character will be made and CCl will 
be set on return. 

Cal Is generated by the M:PC procedure have the form 

CALl I l fpt 

where fpt points to the FPT shown below. 

X'2C' 0-----------Q EBC~~~ra:;:;pt 

0 l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 :LS 26 27 28 29 30 jl 

CHANGE TERMINAL TYPE 

M:CT The CT routine allows an on-line program to 
switch among the terminal translations provided by the 
COC 1/0 routines. Tables related to each terminal type 
control the translation of characters transferred between 
the computer and the terminal. 

The CT routine also affects other functions treated differen­
tially by terminal type. These functions include certain 
line editing and terminal control functions. 

The procedure cal I is of the form 

M:CT number 

112 Monitor Services to User Programs 

where number specifies the number of the desired table (th 
range of the number is currently 0 S number S 11.) 

Calls generated by the M:CT procedure have the form 

CALl,8 fpt 

where fpt points to the FPT shown below. 

X'06' Terminal Type 

o 1 2 J " 5 6 1 a 9 10 11 12 13 14 rs 16 17 1a 19 20 21 n 23 24 25 26 21 2a 29 JO 31 

The currenttablestranslateforModels 33, 35, and37 Tele­
types, the Xerox 7015 Keyboard/Printer, and the IBM 2741. 

Available terminal type numbers are listed in Table 30. 

Table 30. Terminal Type Numbers 

Number Meaning 

0 Teletype Model 33. 

l Teletype Model 35. 

2 Teletype Model 37. 

3 Xerox Model 7015 Keyboard/Printer. 

4(-5)t IBM 2741 Terminal EBCD Standard. 

6(-7)t IBM 2741 Terminal EBCD APL. 

8(-9)t IBM 2741 Terminal Selectric Standard. 

10(-11/ IBM 2741 Terminal Selectric APL. 

t For M: TS, the terminal number is even if the terminal 
is in lowercase and odd if the terminal is in uppercase. 

CCl is set if there is an illegal type code or M:CT is not in 
an on-line program. 

CAL CONTROL OF TERMINAL MODES 

An extension of the above CAL provides the user with a 
means of controlling certain terminal attributes. This ex­
tension does not apply to the M:CT procedure. The form of 
the CAL is 

CAL l, 8 fpt 

where fpt points to word 0 of the FPT shown below. 

word 0 

X'06' 
0 1 2 3 14 

word 

The first three bits of word l indicate which of the following 
words will follow in the FPT. 



- I Bit values Selection mask 
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ;:5 2o 27 2£; 2.: JO Jl 

Set MODE2 (P 2) 

H · . Bit v~lue.s I . Selecti~n mask I 
o 1 2 314 s 6 1a 9 10 11112 13 14 1s16 11,1e 19120 21 22 23 ~' 2s 26 21lie 29.JO 31 

Bit values Selection mask 
2 3 4 ~- 6 7 8 9 10 11 12 13 14 15 16 17 18 ~9 20 21 22 23 24. 25 26 27 28, 29 30 31 

For example, if P1 and P3 are set to l and P2 is set to zero, 
then the MODE and MODE3 words will be words2 and 3 of 
the FPT. 

The "selection mask" indicates which bits in the specified 
table (MODE, MODE2, or MODE3) are to be set. (The 
bits in the tables control and/or reflect the terminal attri­
butes.) The "bit values" specify the desired setting for the 
bits selected by the "selection mask". A one means the 
attribute should be turned ''on"; a zero means the attribute 
should be turned "off". 

Only the attributes preceded by ar:i asteri~k. in Table.s 31, 
32, and 33 may be set by the user. Any other attributes 
speci~ied are ignored by the Monitor. (The other attributes 
are listed for reference in the discussion of the M:TS pro­
cedure.) The user specifies which attributes he would like 
to set (i.e., turn on or off) by setting the appropri cite bit in 
the· selection mask to or:ie. 

Set P.l~ten Width (P 4) 

----------~--~----,.--0 width 
3 -4 5 6 7 B 9 10 11 12 13 14 15 16·11·19 19 20.21"'22 23 24 25 26 27 28 29 

Width is the maximum number of characters to be written 
per line on a terminal and must be in the range of 0-255. 
If more char.acters are written for q line, a line feed 
and carriage return sequence is inserted. If the width 
is 11. or less,. no line feed and carriqge return sequence 
is supplied. . 

Set Page Length (P5) 

--------------0 length 
3 4 s 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Length is the maximum number of lines per page of terminal 
output and must be within the range 0-255; If the length 
is 11 or less·, no heading is produced and the page length 
is unlimited. 

Table 31. MODE Terminal Attributes 

Selection Hexadecimal 
Mask Bit _Value Attribute 

*24 80 Echoplex (full-duplex). 

40 Escape ( ;8\) sequence in 
progress. 

20. Transparent mode. 

10 Read pending (Oread ahead). 

*28 08 Tab simulation. 

*29 04 Restrict code to upper case. 

02 Break count. 

01 Break count. .. 

Table 32. MODE2 Terminal Attributes 

Selection Hexadecimal 
Mask Bit Value ·Attribute 

80 Line reported off. 

*25 40 Fu I l-d up I ex paper tape mode • 

*26 20 Space insertion. 

10 2741 line. 

*28 08 Shift to lowercase. 

*29 04 Check parity mode. 

*30 02 Break set. 

*31 01 Break set. 

Table 33. MODE3 Terminal Attributes 

Selection Hexadecimal 
Mask Bit Value Attribute 

*24 80 Tab relative to beginning of 
input. 

*25 40 Half-duplex paper tape mode. 

*26 20 Backspace edit (2741 only). 

10 2741 keyboard locked. 

08 Lost input (insufficient 
buffers). 

04 Unused. 

02 Number of lines upspaced 
during input. 

01 Unused~ 

On-Line CP-V Service Calls ll3 



Example: 

If word 1 of the FPT contains 

10000000000000000000000000000000 

and word 2 contains 

00000000100000000000000010001000 
0 1 2 J 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 2'i 26 27 28 29 30 J\ 

then the echoplex mode wi 11 be turned on and the tab simu­
lation mode will be turned off. 

OBTAIN TERMINAL STATUS 

M:TS The TS routine provides an on-line program with 
the current status of data used by the COC 1/0 routines to 
control the functional characteristics of the terminal. 

The procedure ca 11 is of the form 

M:TS 

The call generated by the M:TS procedure has the form 

CALl,8 fpt 

where fpt points to the FPT shown below. 

X 106 1 01000-----------0 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 JO 31 

Upon return to the caller, SRl and SR2 contain the 
following 

SRl 

SR2 

CPOS cococ BUFCNT LB:UN 
0 1 2 3 4 5 6 7 B 9 10 1 l 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

The meanings of the values in COCTERM, MODE, MODE2, 
and MODE3 are listed in Tables 30, 31, 32, and 33 respec­
tively. CPOS contains the current carrier position. 
COCOC contains the current number of characters remain­
ing for output. BUFC NT contains the current number of 
buffers of input typed ahead. LB:UN contains the user 
number associated with this line. 

CHANGE ACTIVATION CHARACTERS 

M:CAC A variation of the cal I corresponding to the 
M :CT procedure a I lows the ca 11 i ng program to choose among 
three sets of message-terminating, or activation, characters 
for terminal input. The normal set of activation characters 
is: CR, LF, FF, FS, RS, US, GS, EOT, SUB, and ESC F. 

114 On-Line and Batch Differences 

Two additiona I activation sets are available that augment 
the normal activation set. They are: 

1. "All" special graphics and control characters. 

2. "Al I" control characters. 

Character-count-satisfied is also an activation condition 
for all sets. (Activation on every character can be 
achieved by requesting one-character read operations.) 

The procedure call is of the form 

M:CAC number 

where number specifies the activation set. (Number may 
be any value between 0 and 2.) 

Cal Is generated by the M:CAC procedure have the form 

CAL 1,8 fpt 

where fpt points to the FPT shown below. 

X'06'. 1 0--0 n 0 --------- 0 

0 1 2 J 4 5 6 7 8 ? 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

where 

n = 0 for normal activation set. 

n = 1 for the special graphics and Teletype control 
characters defined below. 

n = 2 for the Teletype control characters defined below 
and for EQT activation on 274 ls. 

The special graphics characters are 

] [} { \II ='@ # : ? > % 'A I - -.;) * $ ! & 
l+(<.fi' 

The control characters are 

SOH, STX, ETX, HT, ACK, BEL, BS, ENQ, NAK, 
VT, SO, SI, DLE, DC2, DC4, SYN, ETB, CAN 

All characters are transmitted to a reading program in their 
Xerox Standard EBCDIC value (see Appendix A). Note that 
the control characters EM, ESC NUL (ignore), and DEL 
(RUBOUT) are not included in any set. 

ON-LINE AND BATCH DIFFERENCES 

The UTS Monitor responds differently to certain procedures 
depending on whether an on-line or a batch program 
issued the call. These differences are outlined below. 
(The procedures are discussed in the CP-V/BP Reference 
Manual, 90 17 64.) 

EXIT RETURN (M:EXIT) 

Batch: The Monitor performs any PMDI dumps that have 
been specified for the program. It then reads the C device, 
ignoring everything up to the next contro I card. 



On-line: The Monitor returns control to the on-line execu­
tive program (TEL) and, after sending a message, sends a 
prompt(!) character to the terminal. It then awaits addi­
tional commands. 

ERROR RETURN (M:ERR) 

Batch: The Monitor I is ts the message 

! ! JOB id ERRORED BY USER AT xxxx 

where xxxx is the address of the last instruction executed in 
the program. The message plus the contents of the current 
register block and program status doubleword (PSD) are listed 
on the LL and DO devices. Postmortem dumps are performed 
and the C device is read; everything up to the next control 
command is ignored. 

On-line: The Monitor lists the message 

ASOO YOU ISSUED AN ERROR OR ABORT CAL 

The Monitor then returns control to the on-I ine executive 
(TEL), which sends a prompt character ( !) to the terminal 
and awaits commands. 

ABORT RETURN (M:XXX.) 

Batch: The Monitor lists the message 

! ! JOB id ABORTED BY USER AT xxxx 

where xxxx is the address of the last instruction executed. 
This message plus the contents of the current register block 
and program status doubleword (PSD) are listed on the LL 
and DO device. 

When a job is aborted, all specified postmortem dumps are 
performed but no further control commands are honored until 
a JOB or FIN control command is encountered. 

On-line: The Monitor lists the message 

ASOO YOU ISSUED AN ERROR OR ABORT CALL 

This message is listed on the UC device. The Monitor 
then returns control to the on-line executive, which 

sends a prompt character (!) to the terminal and awaits 
ad di ti on a I commands. 

TYPE A MESSAGE (M:TYPE) 

Batch: The Monitor lists the specified message on the OC 
device. 

On-line: The Monitor lists the specified message on the 
UC device. 

A variant of M:TYPE is M:MESSAGE which unconditionally 
lists a message on the operator's console (OC device). The 
format of M:MESSAGE is identical to that of M:TYPE except 
for the FPT code which is zero. 

REQUEST A KEY-IN (M:KEYIN) 

Batch: The Monitor lists the specified message on the OC 
device and enables the operator's reply to be returned to 
the user program. The ECB flag is set to zero when the 
reply is completed. 

On-line: The Monitor lists the specified message on the UC 
device and enables the user's reply to be returned to the user 
program. A prompt character is sent to the terminal if it 
was specified by an M:PC. The ECB flag is set to zero 
when the reply is completed. 

CONN,ECT TO INTERRUPT OR BREAK KEY (M:INT) 

Batch: The purpose of th is procedure is to set the address 
of a routine to be entered when the INTERRUPT button is 
depressed at the operator's console. When control is given 
to the INT routine as a result of an interrupt, the Monitor 
pushes the PSD and general registers into a 19-word block 
of user's memory (the user's TCB) on a doubleword boundary 
and places a pointer to word 0 of the PSD in register l. 
The TRTN routine may be used to restore control to the user 
program. 

On-line: The purpose of this procedure is to set the address 
of a routine to be entered when an interrupt is generated at 
an on-line terminal. When the BREAK key is depressed, 
the Monitor pushes the PSD and general registers into a 
19-word block of user's memory (the user's TCB) on a double­
word boundary and places a pointer to word 0 of the PSD in 
register 1. The TRTN routine may be used to restore control 
to the user program. 

On-Line and Batch Differences 115 



10. COMMUNICATIONS SERVICES TO USER PROGRAMS 

INTRODUCTION 

Communication services are the functions performed by 
character-oriented communication (COC) routines for user 
programs. COC routines control the operation of input/ 
output terminals, such as Teletype and 2741 terminals, that 
communicate with the computer a character at a time. The 
functions performed by COC routines include 

1. Device handling for Xerox Model 7611 Character­
Oriented Communication hardware. 

2. Character translation (unless suppressed) to and from in­
ternal EBCDIC codes and the external codes of the var­
ious types of termi na Is that may be attached to the system. 
Terminal types include: Teletype Models 33, 35, 37, 
and 38; Xerox Model 7015 Teletypewriters; IBM 2741, 
Tektronix Models 4010 and 4013, Datapoint 3300, and 
any others compatible with any of the above. 

3. Parity generation and detection by character for those 
terminals requiring it. 

4, Division of input character strings into messages as 
defined by receipt of activation characters (usually 
carriage return, line feed, form feed, and count com­
plete, but other sets are specially available). 

5. Communication with the system scheduler on break, read, 
read complete, output blocked, output unblocked, and 
other events that effect swap and execution scheduling. 

6. Special interpretation of certain characters for intra­
line editing and software control functions. 

Input and output from COC terminals is stored in four-word 
blocks, each containing 14 characters plus a halfword link 
to the next related block. After a read operation is com­
plete, the input message is moved from these buffers directly 
to the user's buffer area (BUF in M:READ). The actual num­
ber of characters received is reported in ARS (actual record 
size) of the DCB. On a write operation, the user output 
message (BUF in M:WRITE) is moved to COC buffers to await 
transmission. Unused COC buffers are held in an available 
pool. The user program is blocked appropriately when re­
quired buffers are not available for output and is restarted 
when they become available. 

WRITE OPERATIONS 

Records are written on a COC terminal using the M:WRITE 
procedure call. The WRITE routine moves the specified 
number of bytes from the user's buffer to a buffer in the COC 
routines. The write operation is always a "wait" operation. 
This means that control is returned to the user program after 
the character string has been transferred to the COC buffer 
but before it has been completely transmitted to the termi­
nal. If record keys are specified, they are ignored. 

116 Communications Services to User Programs 

Output in excess of 140 bytes from a single write CAL is 
ignored. If the specified record size is zero, no action is 
taken and no characters are transmitted. If more than three 
trailing blanks occur in an output record, all are suppressed. 

If the output contains a NUL character (X'OO') the write 
operation is terminated at that point; i.e., the zero byte 
and all remaining characters in the record are ignored. 

Characters are transmitted to the terminal exactly as sup­
plied, with the following exceptions. Certain characters 
such as FF and SUB are modified (see Table A-4). When­
ever either a carriage return or line feed character is de­
tected, the appropriate character pair (carriage return and 
line feed) is sent to the terminal to return the carrier. 

If the write operation is through a DCB other than the M: UC 
DCB, say the M:LO or M:DO DCB, the COC routines auto­
matically supply carriage return and line feed characters at 
the end of the character string un I ess a carriage return, 
SYNC, or line feed were the last characters in the buffer 
(see VFC in "Device and DCB calls" for special format con­
trol). This means that the number of bytes specified in the 
function parameter table is moved from the user's buffer area 
to COC buffers and the carriage return and line feed char­
acters are appended in the COC buffers. 

If the write is through the M: UC DCB, the carriage return 
and I ine feed characters are not automatically supplied. 
The user may therefore make up single lines through a series 
of writes (without carriage return characters) or may produce 
several lines at the terminal with a single write (by inserting 
several carriage return characters in the buffer). 

For a 11 write operations, a count of characters between car­
riage returns is maintained. This count is compared with the 
maximum for the physical terminal as specified with the 
PLATEN command. If the line is too long, additional car­
riage return and Ii ne feed characters are inserted to break 
the line unless the platen width is less than 12 characters. 
Line length is a parameter supplied at system generation time 
and is retained in the job information table (JIT). It may 
be altered with the TEL PLATEN command. A count of the 
lines on a page is also maintained and a page heading line 
is sup·plied to the terminal as outlined in the section "Page 
Control and Page Headings". 

READ OPERATIONS 

Records are read from a COC terminal using the M:READ 
procedure call. The READ routine causes the COC routines 
to accept input characters from the terminal. If a prompt 
character has been specified, it is sent to the terminal to 
signal that the COC routines are ready to accept input 



characters. If characters have been typed ahead, they are 
echoed after the prompt is issued. 

·The read operation is always a "wait" operation. This 
means that the complete input message is transferred to the 
user's buffer area before control passes to the next instruc­
tion. Messages are completed on receipt of 

1. The number of characters requested. 

2. A carriage return character. 

3. A line feed character. 

4. A form feed character. 

5. The FS, RS, GS, and US codes (L cs, Mes, Ncs
1 

and ocs keys). 

6. 
c c 

The EOT and SUB codes (D and Z keys). 

7. The end-of-file convention, ESC F. 

The activation character (any item in 2-6 above) is the last 
character in the buffer. Additional special activation or 
termination characters are supplied when Delta initiates a 
read operation. They are 

tab 

I 

The actual number of characters in the message received, 
including the activation character, is returned in word 4 
(ARS) of the DCB. No more characters than specified in 
the M:READ functional parameter table are transferred to 
the user's buffer area. Read requests for zero bytes yields 
an abnormal code of lD. 

The response of COC routines to receipt of various end-of­
message characters from a terminal is as follows: 

Characters 

Carriage return 
or line feed 

Form feed 

Response 

The appropriate characters are sent 
to the terminal to ensure a carrier 
return. However, the actual char­
acter received is placed in the 
buffer. 

The code FF (EBCDIC OC) is placed 
in the buffer, a carriage return and 
line feed character pair is sent to 
the terminal, followed by page 
heading output. 

FS,RS,GS,US,EOT The carrier is not moved. The 
character is placed in the buffer, 
arid the message is terminated. 

Characters 

Break 

ESC F 

Response 

An underscore (left arrow on TTYs) 
is sent to the terminal, the carrier 
is returned, the message is deleted, 
ond the break entry of the program, 
if any, is taken. 

The end-of-file exit from the read 
CAL is taken. Any characters 
preceding the ESC F are delivered 
to the reading program and ap­
pended with a carriage return 
character. 

Other characters may act as message terminators if special 
activation sets are requested; see Change Activation 
Characters, Chapter 9. 

Characters received with parity errors for terminals in the 
parity checking mode are identified by the SUB code 
(EBCDIC lA) which is placed in the buffer. For these 
characters, a number character, #, is returned to the 
terminal. 

Bad information, such as a character parity error, isreported 
via the lost-data (07) code to the abnormal CAL exit, if it 
exists. If no abnormal exit is specified, then the bad infor­
mation is not reported. 

In addition to the line cancel, which may be initialized by 
the ESC X keys, individual characters may be deleted by the 
RUBOUT key. In this case, the last character typed is re­
moved from the COC buffer and a backslash character(\) 
is sent to the terminal. A number of characters, n, may be 
deleted by typing the rubout character n times. If the first 
character of a line is deleted, the response is as if ESC X 
were received. 

The user program or processor may set up a prompt character 
to be delivered to the terminal just prior to each read. The 
prompt character is set by using the M:PC procedure call 
described in Chapter 9. Any valid EBCDIC character may 
be specified. A null character (EBCDIC 00) turns off the 
prompt action. 

Since the prompt character is carried in JIT for each user, 
the TEL and Delta processors do not prompt via this mecha­
nism. They prompt by writing single character records before 
issuing a read. 

ERROR ANP ABNORMAL CONTROL 

Error returns occur in the fol lowing cases: 

1. Bad DCB address (CAL error return) 

2. Bad buffer address (DCB error return) 

Error and Abnormal Control 117 



CAL abnormal returns are taken for 

1. Lost data (TYC=2) - parity errors in received message 
or insufficient COC buffers. 

2. Beginning-of-tape (TYC=3) - CAL not read or write, 
bad line number, or zero byte count. 

3. End-of-file (TYC=7) - ESC F character pair received. 

If no error return is specified, control is returned to TEL 
and an error message is typed on the terminal. 

BREAK CONTROL 

Action on receipt of the break character depends on whether 
the terminal is reading or not. If reading, the carrier is 
returned and the message, if any, is deleted. The current 
read operation is terminated. 

Whether reading or writing, control goes to an alternate 
address associated with the user program, and the user pro­
gram status doubleword (PSD) and registers, as of the point 
of interrupt, are placed in the users task control block (TCB) 
temporary stack. The program may be continued from the 
point of interrupt by giving a trap return (M:TRTN or 
CAL 1,9 5). The actual alternate address used depends on 
the user program and associated processors in the following 
order: 

1. If the user has issued a M:INT CAL, the address speci­
fied by that CAL is used. A zero or invalid address 
resets break control. 

2. If Delta is associated with the program, then control 
goes to Delta. 

3. If neither 1 nor 2 apply, then control goes to TEL. A 
message is typed and TEL issues a request for commands 
from the terminal. 

In al I of the above cases, all current output is transferred 
to the terminal; none is lost. Because of the blocking 
action of the COC routines, this output is not usually longer 
than four seconds or four seconds pl us one I ine. 

Break signals are counted by the COC handler. This is done 
to provide fail-safe operation against program errors in the 
user break handling routine, to allow special subprocessor 
action on multiple break signals and to provide compatible 
operation with future communication equipment that does 
not have full-duplex lines. If four break signals are re­
ceived from a terminal without intervening characters, con­
trol is given to TEL as if a Monitor escape (YC) character 
had been received. 

MONITOR ESCAPE 

A terminal may always be put in communication with TEL 
by input of the ye character, No current output is lost 

but the current input line is canceled (characters for a 
left-facing arrow, a carriage return, and a line feed are 
sent and the carrier is returned) if the terminal is in read 
status. If the user program is restarted (via the CONTINL' 
or GO command) from the point of escape and the termina1 
was previously reading, the read is reissued. 

SET AND DEVICE DCB CALs 

The M:SETDCB CAL may be used to set abnormal and error 
addresses in a DCB associated with a terminal. Error codes 
and other information communicated to the user program is 
as specified in Appendix B. If no error address is specified 
in the DCB, control is transferred to TEL and a message is 
sent to the terminal. 

Only certain M:DEVICE CALs are acknowledged by the 
COC routines. These CALs are listed in Table 34. All 
other CALs that set parameters in a DCB associated with a 
COC terminal are ignored without comment. In general, 
any CAL may be used and will result in the specified modi­
fication to the DCB but only the parameters listed in 
Table 34 are used by COC routines. 

PAGE CONTROL AND HEADINGS 

COC routines count the lines transmitted to and from a 
terminal. Whenever a read or write operation is initiated, 
this line count is compared with the limit for the terminal. 
If the maximum has been exceeded, a new page heading is 
produced. (The maximum may be exceeded by several lines 
if several input lines have been canceled via the xc keys 
at the bottom of the page before the next read or write call 
is issued. If this occurs an appropriate adjustment is made 
in the heading.) 

Page headings are also produced whenever an M:DEVICE 
call specifying PAGE is issued by a user program or the 
characters "FF" (LC) are entered into the terminal. This 
case is similar to page overflow in that heading information 
is not produced unti I the associated user program or processor 
issues its next read or write cal I. 

Two kinds of page headings are produced: 

1. The standard page heading. 

2. A user heading as specified by HEADER and COUNT in 
a device cal I. 

Heading information is taken from the DCB associated with 
the read or write call. Thus, if write calls are issued through 
several DCBs, the heading printed will depend on the DCB 
associated with the call that produced the page overflow. 

The standard page heading includes current time, date, 
user account number, scheduler's job identification and 
line number, page number, and possibly an administrative 
message. The heading is typed on the top line of the form 
just under the fold (if any). The heading information is 
preceded by six blank I ines (fewer if excess I ines were printed 

118 Break Control/Monitor Escape/Set and Device DCB CALs;Page Control and Headings 



Table 34. M:DEVICE Parameters Acknowledged by COC Routines 

Parameter Set by 
M:DEVICE CAL COC Action 

PAGE Page heading is typed on the terminal (see "Page Control and Page Heading"). 

LINES Number of printable lines per page is set. 

NUNES The current number of lines on the terminal page is contained in the JIT {byte JB:LC). 

SIZE Record size (in bytes) used by read and write CALs for which no size is specified. If record size is 
not specified in either the CAL FPT or the DCB, no characters are transmitted and return is 
immediate. 

SPACE Number of indicated spaces minus one are inserted before each write if VFC is not on and SPACE is 
set. Counts 0 and 1 result in single spacing {no spaces are inserted before each write). 

VFC COC routines simulate the printer's vertical format control as specified in the first character of the 
text line if VFC is set. The simulation is limited to the following cases: 

Hex Code Action 

Cl - CF COC routines insert 1-15 spaces before the print line. 
{Page check on each insert.) 

Fl COC routines skip to top of page and print the heading information followed 
by the print line. 

60, EO COC routines do not insert carriage return and line feed characters after 
print line. 

In all cases except the latter, the print line is followed by a carriage return and line feed characters 
and a check for page overflow. 

DRC/NORDC Used to inhibit automatic page heading if the mode is BCD. Used to control transparent mode if BIN 
is specified. {See "Transparent Mode" section.) 

COUNT See Page Control and Page Headings section. 

HEADER See Page Control and Page Headings section. 

TABS See TABS section. 

on the preceding page). It is followed by five blank lines. 
With 54 printed lines ta a page, this spacing produces 
11-inch pages with one-inch margins at top and bottom. 
The standard heading I ine may be omitted, if desired, by 
setting DRC in the DCB or by setting the page length less 
than 11 lines. 

4. Scheduler's job identification (ID) and line number of 
COC line. 

5. Page number, enclosed in brackets, centered for a 
platen 72 characters wide. 

Example: 

12:01 12/12/69 ACCT lA-03[36) Administrative Message 

2 3 4 5 6 

1. Time the page heading was issued (24-hour clock). 

2. Current date. 

3, Log-on account. 

6. Administrative message (I imited to 64 characters) supplied 
to all terminals by system operator via this mechanism. 

User headings, which ore specified in the DCB of the read 
or write call, are provided following the automatic heading. 
The position, text, and page numbers of these headings are 
as specified in the CP-V /BP Reference Manual, 90 17 64. 
The page count in this heading is that carried in the DCB and 
and is reset with each COUNT device call while page count 
for the standard heading is carried in the JIT and is never 
reset. 

Page Control and Headings 119 



TAB SIMULATION 

TAB stops that are set in output DCBs by a device call 
specifying TAB, by a SET command, or by the TEL command 
TABS, cause spaces to be sent to the terminal. These spaces 
bring the current position of the carrier to that indicated by 
the next higher tab stop in the DCB. The platen width test 
is still in effect and the carrier is returned if the count-on­
line exceeds the platen width. If tab simulation is not in 
effect, the tab character is sent directly to the terminal. 
If tab simulation is on but no tab stops are set, one space is 
sent for each tab character. 

Tabs received in the input stream are handled similarly, 
except that a tab is always echoed by at least one space 
(if echoplexing is on). 

Three things are necessary for tab simulation to take effect: 

1. Tab simulation must be on (ESC and T control). 

2. Tab stops must be set in the M:UC DCB or the DCB 
controlling read or write. 

3. Tab characters must be sent or received. 

Simulation of tab stops is turned off and on by the user via 
the character pair ESC T. These characters are not trans­
mitted to the reading program and each pair switches tab 
simulation flag from on to off or vice versa. When the flag 
is on and a tab character (ANSCII 09) is received, enough 
blanks are sent to the terminal to move the carrier to the 
next higher tab position. When reading, the tab character 
is replaced by one or more spaces, as appropriate, in the 
input buffer if space-insertion mode is on; if off, the tab 

120 Tab Simulation/rransparent Mode 

character is placed in the input buffer for the reading 
program. Space-insertion mode is toggled by the ESC S 
character pair. Carriage returns are not inserted to split 
extra long input lines created this way. 

When in effect, the tab stops used for simulation are 
obtained in the following order: 

Output 

1. If tab stops are set in the ca 11 i ng DCB, they are used. 

2. If tab stops are set in M:UC DCB, they are used. 

3. Tabs are replaced with a single space. 

Input 

1. If tab stops are set in the M:UC DCB, they are used. 

2. A single space is echoed for each tab. 

In al I cases in which tabs are set but the current carrier 
position is beyond any tab stop that is set, the tab is replaced 
with a single space. 

TRANSPARENT MODE 
The transparent mode for input or output is controlled by 
setting the DRC and BIN mode flags in the DCB. If DRC 
and BIN are set, the transparent mode is in effect. This 
will cause all input and output through that DCB to be 
passed I iteral ly {i.e. , no translation or interpretation wi 11 
be done). The transparent mode may be escaped from by 
depressing BREAK. This mode of operation is not al lowed 
for 2741 terminals. 



APPENDIX A. XEROX STANDARD SYMBOLS, CODES AND CORRESPONDENCES 

XEROX STANDARD SYMBOLS AND CODES 
The symbols listed here include two types: graphic symbols 
and control characters. Graphic symbols are displayable 
and printable; control characters are not. Hybrids are SP 
{the symbol for a blank space), and DEL {the delete code) 
which is not considered a control command. 

Two types of code are also shown: (l)the 8-bit Xerox Stan­
dard Computer Code, i.e., the Xerox Extended Binary­
Coded-Interchange Code (EBCDIC); and (2) the 7-bit Amer­
ican National Standard Code for information Interchange 
(ANSCII), i.e., the Xerox Standard Communication Code. 

XEROX STANDARD CHARACTER SETS 

1. EBCDIC 

57-character set: uppercase letters, numerals, space, 
and & / < > ( ) + I $ * 
% # @ ' 

63-character set: same as above plus r/ ? 
" .., 

89-character set: same as 63-character set plus lower­
case letters 

2. ANSCII 

64-character set: uppercase letters, numerals, space, 
and ! $ % & ( ) * + / \ 

= < > ? ~r;, - [ ] r. 'u I ~ 

95-character set: same as above plus lowercase letters 
and { ~ : - ' 

CONTROL CODES 
In addition to the standard character sets listed above, the 
Xerox symbol repertoire includes 37 control codes and the 
hybrid code DEL (hybrid code SP is considered part of all 
character sets). These are listed in the table titled CP-V 
Symbo I-Code Correspondences. 

SPECIAL CODE PROPERTIES 
The following two properties of all Xerox standard codes 
will be retained for future standard code extensions: 

1. Al I control codes, and only the control codes, have 
their two high-order bits equal to "00". DEL is not 
considered a control code. 

2. No two graphic EBCDIC codes have their seven low­
order bits equal. 

Appendix A 121 



Table A-1. CP-V 8-Bit Computer Codes (EBCDIC) 

Most Significant Digits 

Hexadec ima I 0 2 3 4 5 6 7 8 9 A B C D E F 

Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 

0 0000 NUL OLE LF ESC SP ''A 
only F & SP 0 

0001 

2 0010 

3 0011 

4 0100 

5 0101 

c 
8 7 0111 

i;:: 

.2> 8 1000 
V'I -~ 9 1001 
...... 

A 1010 

B 1011 

c 1100 

D 1101 

E lllO 

F 1111 

SOH -ON FS CAN 1 / a \ A J 

STX GS E~C J. f b k { B K 

EOT DC4 US ESC l u 

BEL ETB /\ ESC 
T 

EOM CAN 
BS 

ENQ EM 

ESC 
s 

CR ESC 
onl 

NAK SUB EOT 
ESC 
c 

VT ESC BS 
ESC 

LF 

2 , 
FF FS *ON < 

CR GS HT 'X-OFF 

so LF ESC 
RS only R + 

SI 
ESC 

US SUB CR 

6 

a 

$ 

* 

2 .., 

4,7 

c c L 

d m u D M 

N 

g p x G p 

h q y H Q 

v z 

...... I 

(I 

% @ 

> 

? s I 

5 

s 2 

T 3 

u 4 

5 

x 7 

y 8 

The characters"'\ { } [] are ANSCII characters that do not appear in any of the Xerox EBCDIC-based 
character sets, though they are shown in the EBCDIC table. 

2 The characters i I -, appear in the Xerox 63- and 89-character EBCDIC sets but not in either of the Xerox 
ANSCII-based sets. However, Xerox software translates the characters i I..., into ANSCII characters as 
follows: 

EBCDIC , 
I 

....., 

AN SC II 

\ (6-0) 
1 (7-12> 

- (7-14) 

3 The EBCDIC control codes in columns 0 and l and their binary representation are exactly the same as those 
in the ANSCII table, except for two interchanges: LF/NL with NAK, and HT with ENQ. 

4 Characters enclosed in heavy lines are included only in the Xerox standard 63- and 89-character EBCDIC sets. 

5 These characters are included only in the Xerox standard 89-character EBCDIC set. 

6 The EBCDIC codes in column 3 are used by COC to perfonn special functions. The EBCDIC codes in 
column 2 and positions AF and BC through BF are used by COC for output only. 

7 APL characters are assigned EBCDIC values that fall within the shaded area of the CP-V code set. These 
assignments are for APL internal use and are only reflected in 2741-APL translation tables. 

8 Placing a SYN code as the last position of a nontransparent message will prevent the normal message ap­
pendage of the CR/LF pair. This allows a user to continue writing more than one message on the same line 
without affecting the carrier position. The EBCDIC SYN code is translated to an idle (IL) on output 
to 2741 terminals. 

122 Appendix A 



Table A-2. CP-V 7-Bit Communication Codes (ANSCII) 

Most Significant Digits 
Decimal 

0 l 2 3 4 5 6 7 {rows) {eel's.)-

I Binary xOOO xOOl xOlO xOll xlOO xlOl xllO xl 11 

0 0000 NUL DLE SP 0 ]21 p ' p 

5 
l 0001 SOH DCl ! 1 A Q 0 q 

2 0010 STX DC2 " 2 B R b r 

3 0011 ETX DC3 # 3 c s c s 

4 0100 EOT DC4 $ 4 D T d t 

5 0101 ENQ NAK % 5 E u e u 
~ 
~ 

Ol 6 0110 ACK SYN & 6 F v f v 0 
c 

7 0111 BEL ETB ' 7 G w 0 g w 
u 

<;:; 
c B 1000 BS CAN ( B H x h x .Q> 

Vl 

~ 9 1001 HT EM ) 9 I y i y 0 
Cl> 
-' LF 

10 1010 SUB * J z j NL : z 

11 1011 VT ESC + ; K 
4 [ 5 

k { 

12 1100 FF FS I < L \ I 
I 
I 

4 ] 5 } 
4 

13 1101 CR GS - = M m 

4..-.. 5 4 
14 1101 so RS > N n -

I 
4 

15 1111 SI us ? 0 - 0 DEL 
_A 

2 

Most significant bit, added for 8-bit format, is either 0 or an even-parity bit for the remaining 7 bits. 

2 Columns 0-1 are control codes. 

3 Columns 2-5 correspond to the Xerox 64-character ANSCII set. 
Columns 2-7 correspond to the Xerox 95-character ANSCII set. 

4 On many current teletypes, the symbol 

,,..,, is t (5-14) 
_is-(5-15) 
- is ESC or ALTMODE control (7-14) 
} is ESC or ALTMODE control (7-13) 

and none of the symbols appearing in columns 6-7 are provided, Except for the four symbol differences 
noted above, therefore, such teletypes provide all the characters in the Xerox 64-character ANSCII set. 
{The Xerox 7015 Remote Keyboard Printer provides the 64-character ANSCII set also, but prints r. as I\. 
It also interprets the [] characters as I ---, . ) 

5 On the Xerox 7670 Remote Batch Terminal, the symbol 

! is I (2-1) 
[ is i (5-11) 

J is ! (5-13) 
r.. is-, (5-14) 

and none of the symbols appearing in columns 6-7 are provided. Except for the four symbol differences noted 
above, therefore, this terminal provides all the characters in the Xerox 64-character ANSCll set. 

Appendix A 123 



Table A-3. CP-V Symbol-Code Correspondences 

EBCDJCt 
Hex. Dec. Symbol Card Code ANSCJJtt Meaning Remarks 

00 0 NUL 12-0-9-8-1 0-0 null 00 through 1 F are control codes. 
01 1 SOH 12-9-1 0-1 start af header On 2741 terminals, SOH is PRE. 
02 2 STX 12-9-2 0-2 start of text On 2741 terminals, STX is BY. 
03 3 ETX 12-9-3 0-3 end of text On 2741 terminals, ETX is RES. 
04 4 EOT 12-9-4 0-4 end of transmission On 2741 terminals, EOT is ATTN. 
05 5 HT 12-9-5 0-9 hori zonta I tab 00, 06, 07, 09-0B, ond OE-OF 
06 6 ACK 12-9-6 0-6 acknowledge (positive) ore idles for 2741 terminals. 
07 7 BEL 12-9-7 0-7 bell 
08 8 BS or EOM 12-9-8 0-8 backspace or end of message EOM is used only on XDS Keyboard/ 
09 9 ENQ 12-9-8-1 0-5 enquiry Printers Models 7012, 7020, 8091, 
OA 10 NAK 12-9-8-2 1-5 negative acknowledge and 8092. 
OB 11 VT 12-9-8-3 0-11 vertical tab 
oc 12 FF 12-9-8-4 0:-12 form feed 
OD 13 CR 12-9-8-5 0-13 carriage return CR outputs CR and LF. 
OE 14 so 12-9-8-6 0-14 shift out 
OF 15 SJ 12-9-8-7 0-15 shift in 

10 16 DLE 12-11-9-8-1 1-0 data link escape 
11 17 DCl 11-9-1 1-1 device control 1 On Teletype terminals, DCl is X-ON. 
12 18 DC2 11-9-2 1-2 device control 2 On 2741 terminals, DC2 is PN. 
13 19 DC3 11-9-3 1-3 device control 3 DC3 isRSon 2741s, X-OFFonTeletypes. 
14 20 DC4 11-9-4 1-4 device control 4 On 2741 terminals, DC4 is PF. 
15 21 LF or NL 11-9-5 0-10 line feed or new line LF outputs CR and LF. 
16 22 SYN 11-9-6 1-6 sync 
17 23 ETB 11-9-7 1-7 end of transmission block On 2741 terminals, ETB is EOB. 
18 24 CAN 11-9-8 1-8 cancel 
19 25 EM 11-9-8-1 1-9 end of medium 
lA 26 SUB 11-9-8-2 1-10 substitute Replaces characters with parity error. 
lB 27 ESC 11-9-8-3 1-11 escape 
lC 28 FS 11-9-8-4 1-12 file separator 
lD 29 GS 11-9-8-5 1-13 group separator 10, 11, 16, 18, 19, and lB-lE are 
lE 30 RS 11-9-8-6 1-14 record separator idles for 2741 terminals. 
lF 31 us 11-9-8-7 1-15 unit separator 

20 32 LF only 11-0-9-8-1 1-5 line feed anly 20 through 2F are used by COC for 
21 33 FS 0-9-1 1-12 output only. These codes are 
22 34 GS 0-9-2 1-13 duplicates of the label entries 
23 35 RS 0-9-3 1-14 that caused activation. The 
24 36 us 0-9-4 1-15 20-2F entries output a single code 
25 37 EM 0-9-5 1-9 only and are not affected by any 
26 38 I 0-9-6 2-15 special COC functional processing. 
27 39 I 0-9-7 5-14 
28 40 = 0-9-8 3-13 
29 41 CR only 0-9-8-1 0-13 carriage return only 
2A 42 EOT 0-9-8-2 0-4 
28 43 BS 0-9-8-3 0-8 
2C 44 ) 0-9-8-4 2-9 
2D 45 HT 0-9-8-5 0-9 tab code only 
2E 46 LF only 0-9-8-6 1-5 line feed only 
2F 47 SUB 0-9-8-7 1-10 

30 48 ESC F 12-11-0-9-8-1 end of file 30 through 3F cause COC to perform 
31 49 CANCEL 9-1 delete all input and output special functions. 
32 50 ESC X 9-2 delete input line 
33 51 ESC P 9-3 toggle half-duplex paper tape mode 
34 52 ESC U 9-4 toggle restrict upper case 
35 53 ESC ( 9-5 upper case shift 
36 54 ESC) 9-6 lower case shift 
37 55 ESC T 9-7 toggle tab simulation mode 
38 56 ESC S 9-8 togg I e space insertion mode 
39 57 ESC E 9-8-1 toggle echo mode 
3A 58 ESC C 9-8-2 toggle tab re la ti ve mode 
3B 59 ESC LF 9-8-3 line continuation 38 toggles the backspace edit mode 
3C 60 X-ON 9-8-4 start paper tape for 2741 terminals. 
3D 61 X-OFF 9-8-5 stop paper tape 
3E 62 ESC R 9-8-6 retype 
3F 63 ESC CR 9-8-7 line continuation 

tHexadecimal and decimal notation. 

tt Decimal notation (column-row). 

124 Appendix A 



Table A-3. CP-V Symbol-Code Correspondences (cont.) 

EBCDICt 
Hex. Dec. 

40 64 
41 65 
42 66 
43 67 
44 68 
45 69 
46 70 
47 71 
48 72 
49 73 
4A 74 
4B 75 
4C 76 
4D 77 
4E 78 
4F 79 

50 80 
51 81 
52 82 
53 83 
54 84 
55 85 
56 86 
57 87 
58 88 
59 89 
5A 90 
5B 91 
5C 92 
5D 93 
5E 94 
5F 95 

60 96 
61 97 
62 98 
63 99 
64 100 
65 101 
66 102 
67 103 
68 104 
69 105 
6A 106 
68 107 
6C 108 
6D 109 
6E 110 
6F 111 

70 112 
71 113 
72 114 
73 115 
74 116 
75 117 
76 118 
77 119 
78 120 
79 121 
7A 122 
7B 123 
7C 124 
7D 1.25 
7E 1~6 
7F 127 

Symbol 

SP 

.l 

L 

Cl 

I 

/,or' 

< 
( 
I 

I or: 

& 

0 

T 
0 

I 
$ 

....... or--, 

I 
r 

I 

"' " 

I 

% 

> 
? 

" 

v 

* @ 

Cord Code 

blank 
12-0-9-1 
12-0-9-2 
12-0-9-3 
12-0-9-4 
12-0-9-5 
12-0-9-6 
12-0-9-7 
12-0-9-8 
12-8-1 
12-8-2 
12-8-3 
12-8-4 
12-8-5 
12-8-6 
12-8-7 

12 
12-11-9-1 
12-11-9-2 
12-11-9-3 
12-11-9-4 
12-11-9-5 
12-11-9-6 
12-11-9-1 
12-11-9-8 
11-8-1 
11-8-2 
11-8-3 
11-8-4 
11-8-5 
11-8-6 
11-8-7 

11 
0-1 
11-0-9-2 
11-0-9-3 
11-0-9-4 
11-0-9-5 
11-0-9-6 
11-.0-9-7 
11-0-9-'8 
0-8-1 
12-11 
0-8-3 
0-8-4 
(l;.5_5 
0-8-6 
0-8-7 

12-11-0 
12-11-0-9-1 
12-11-0-9-2 
12-11-0-9-3 
12-11-0-9-4 
12-11.-0-9-5 
12-11-0-9-6 
12-11-0-9-7 
12-11-0-9-8 
8-1 
8-2 
8-3 
8-4 
8".'5 
8-6 
8-7 

tHexodecimol and decimal notation. 

tt Decimal notation (column-row). 

ANscutt Meaning 

2-0 

6-0 
2-14 
3-12 
2-8 
2-11 
7-12 

2-6 

2-1 
2-4 
2-10 
2-9 
3-11 
7-14 

2-13 
2-15 

5-14 
2-12 
2-5 
5-15 
3-14 
3-15 

3-10 
2-3 
4-0 
2-7 
3-13 
2-2 

blank 

decode 

minimum 
epsilon 

delta 
index 
cent or accent grave 
period 
less than 
left porenthesi• 
plus 
vertical bar or broken bar 

ampersand 

quad 

encode 
circular 

exclamation point 
dollars 
asterisk 
right parenthesis 
semicolon 
ti Ide or logical not 

minus, dash, hyphen 
slosh 
maximum 

down arrow 

ome110 
superset 

circumflex 
comma 
percent 
underline 
greater than 
question mark 

APL 
APL quote mark 
overs core 

I ess than or equa I 

greater than or equal 

down delta 
colon 
nu.mber 
at 
apostrophe (right single quote) 
equals 
quota ti on mark 

Remarks 

41, 43, 46, and 47 ore unassigned. 

42, 44, 45, 48, and 49 ore APL 
characters for 2741 APL use only. 

Accent grove used for left single 
quote. On Model 7670, ' not 
ovoi lab le, and /, ~ A NSCII 5-11. 

On 2741 APL, /,is c (subset). 

On Model 7670,: not available, 
and I= ANSCII 2-1. 

On 2741 APL, & is n (intersection). 
51, 52, 54, 57, 58, and 59 ore 
unossi gned. 

53, 55, and 56 ore APL characters 
for 2741 APL use only. 

On Model 7670, ! is I. On 2741 
APL, I is o (degree). On 2741 
APL, $ is U (union). 

On Model 7670, - is not available, 
and-i= ANSCII 5-14. 

62, 64, 66, and 67 ore APL characters 
for 2741 APL use only. 

63, 65, 68, and 69 ore unassigned. 

On Model 7670" is-,. On Model 
7015"'is A (caret). On 2741 APL, 
"is I. On 2741 APL, % is P. 

Underline is sometimes called "break 
character"; may be printed along 
bottom of character line. 

70-72, 74, 76, and 79 are APt 
characters for 2741 APL use only. 

73, 75, 77, and 78 ore unassigned. 

Appendix A 125 



Table A-3. CP-V Symbol-Code Correspondences (cont.) 

EBCD!Ct 
Hex. Dec. Symbol Card Cade ANSCll11 Meaning Remarks 

so 12S 12-0-S-1 SO is unassigned. 
Sl 129 a 12-0-1 6-1 Sl-S9, 91-99, A2-A9 comprise the 
S2 130 b 12-0-2 6-2 lowercase alphabet. Available 
S3 131 c 12-0-3 6-3 only in Xerox standard S9- and 95-
S4 132 d 12-0-4 6-4 character sets. 
SS 133 e 12-0-5 6-5 
S6 134 f 12-0-6 6-6 
S7 135 g 12-0-7 6-7 
SS 136 h 12-0-S 6-S 
S9 137 i 12-0-9 6-9 
SA 13S 12-0-S-2 SA through 90 are unassigned. 
SB 139 12-0-S-3 
SC 140 12-0-S-4 
SD 141 12-0-S-5 
SE 142 12-0-S-6 
SF 143 12-0-S-7 

90 144 12-11-S-1 
91 145 j 12-11-1 6-10 
92 146 k 12-11-2 6-11 
93 147 I 12-11-3 6-12 
94 14S m 12-11-4 6-13 
95 149 n 12-11-5 6-14 
96 150 0 12-11-6 6-15 
97 151 p 12-11-7 7-0 
9S 152 q 12-11-S 7-1 
99 153 r 12-11-9 7-2 
9A 154 12-11-S-2 9A through A 1 are unassigned. 
96 155 12-11-S-3 
9C 156 12-11-S-4 
9D 157 12-11-S-5 
9E 15S 12-11-S-6 
9F 159 12-11-S-7 

AO 160 11-0-S-l 
Al 161 11-0-1 
A2 162 s 11-0-2 7-3 
A3 163 t 11-0-3 7-4 
A4 164 u 11-0-4 7-5 
AS 165 v 11-0-5 7-6 
A6 166 w 11-0-6 7-7 
A7 167 x 11-0-7 7-S 
AS 16S y 11-0-S 7-9 
A9 169 z 11-0-9 7-10 
AA 170 11-0-S-2 AA through AE are unassigned. 
AB 171 11-0-S-3 
AC 172 11-0-S-4 
AD 173 11-0-S-5 
AE 174 11-0-8-6 
AF 175 I 11-0-S-7 logical and AF is used by COC for output of 

an ANSC::JI 7-12 code only. 

BO 176 
\ 

12-11-0-S- l 
Bl 177 12-11-0-1 5-12 backslash 
B2 17S 

t 
12-11-0-2 7-11 left brace On 2741 terminals, l is output as (. 

B3 179 12-11-0-3 7-13 right brace On 2741 terminals, } is output as ). 
B4 lSO [ 12-11-0-4 5-11 left bracket On Model 7670, [is/. On Model 
B5 lSl ] 12-11-0-5 5-13 right bracket 7015, [is I. 
B6 1S2 12-11-0-6 On Model 7670, ) is I. On Model 
B7 1S3 12-11-0-7 7015, ] is-,. 
BS 184 12-11-0-S BO and B6 through BB are unassigned. 
B9 1S5 12-11-0-9 
BA 186 12-11-0-S-2 
BB 1S7 12-11-0-S-3 
BC lSS [ 12-11-0-S-4 left bracket BC, BD, and BF are used by COC far 
BD 1S9 ] 12-11-0-S-5 right bracket output of ANSCll 5-11, 5-13, and 
BE 190 lost data 12-11-0-S-5 lost data 7-14, respectively. 
BF 191 -, 12-11-0-S-7 logical not On 2741 Selectric and EBCD Standard 

Keyboards, [ is output as ( and ] 
is output as ). 

tHexadecimal and decimal notation. 

tt Decimal notation (column-row). 

126 Appendix A 



Table A-3. CP-V Symbol-Code Correspondences (cont.) 

EBCDIC1 

Hex. Dec. Symbol Card Code ANSCJJ11 Meaning Remarks 

co J92 SP J2-0 2-0 blank Output only. 
CJ 193 A 12-1 4-1 C1-C9, D1-D9, E2-E9 comprise the 
C2 194 B 12-2 4-2 uppercase olphabet. 
C3 J95 c 12-3 4-3 
C4 J96 D J2-4 4-4 
C5 J97 E J2-5 4-5 
C6 J98 F J2-6 4-6 
C7 J99 G J2-7 4-7 
cs 200 H J2-8 4-8 
C9 20J I J2-9 4-9 
CA 202 J2-0-9-B-2 CA through CF are unassigned. 
CB 203 J2-0-9-B-3 
cc 204 J2-0-9-B-4 
CD 205 J2-0-9-B-5 
CE 206 J2-0-9-B-6 
CF 207 J 2-0-9-B-7 

DO 20B J J-0 DO is unassigned. 
DJ 209 J J 1-1 4-10 
D2 210 K 11-2 4-11 
D3 211 L J J-3 4-J2 
D4 212 M 11-4 4-13 
D5 213 N 11-5 4-14 
D6 214 0 J 1-6 4-15 
D7 215 p J J-7 5-0 
DB 216 Q J 1-B 5-1 
D9 217 R 11-9 5-2 
DA 2JB 12-Jl-9-B-2 DA through DF are unassigned. 
DB 2J9 J 2-11-9-B-3 
DC 220 12-11-9-B-4 
DD 22J J2-JJ-9-B-5 
DE 222 J2-1J-9-B-6 
DF 223 J2-1J-9-B-7 

EO 224 - O-B-2 2-J3 minus Output only. El is unassigned. 
El 225 J J-0-9-1 
E2 226 s 0-2 5-3 
E3 227 T 0-3 5-4 
E4 228 u 0-4 5-5 
E5 229 v 0-5 5-6 
E6 230 w 0-6 5-7 
E7 231 x 0-7 5-B 
EB 232 y 0-B 5-9 
E9 233 z 0-9 5-10 
EA 234 J J-0-9-B-2 EA through EF are unassigned. 
EB 235 11-0-9-B-3 
EC 236 J J-0-9-B-4 
ED 237 Jl-0-9-B-5 
EE 23B 11-0-9-B-6 
EF 239 1 J-0-9-B-7 

FO 240 0 0 3-0 
Fl 24J 1 J 3-1 
F2 242 2 2 3-2 
F3 243 3 3 3-3 
F4 244 4 4 3-4 
F5 245 5 5 3-5 
F6 246 6 6 3-6 
F7 247 7 7 3-7 
FB 24B B B 3-B 
F9 249 9 9 3-9 
FA 250 x J2-ll-0-9-B-2 multiply FA through FF are APL characters 
FB 251 12-11-0-9-B-3 divide for 2741 APL use only. 
FC 252 - 12-11-0-9-B-4 right arrow 
FD 253 - 12-JJ-0-9-B-5 left arrow 
FE 254 J2-JJ-0-9-8-6 FE is not assigned. 
FF 255 DEL J2-JJ-0-9-B-7 delete Special - neither graphic nor 

contro I symbo I. 

1Hexadecimal and decimal notation. 

11Decimal notation {column-row). 

Appendix A 127 



Table A-4. ANSCII Control-Character Translation Table 

Input Output 

TTY Prog. Receives Transmitted 
ANSCII Key Echoed (EBCDIC) Process EBCDIC (ANSCII) 

NUL (OO) pcs None None None NUL (00) Nothing (end of 
output message). 

SOH (Ol)t Ac SOH SOH None SOH (01) SOH 

STX (02)t BC STX STX None STX (02) STX 

ETX (03}t cc ETX ETX None ETX (03) ETX 

EOT (04)t DC EOT EOT None EOT (04) EOT 

ENQ (05)t EC ENQ ENQ (09) None HT (05) Space(s) if tab 
simulation on, or 
HT (09) if not. 

ACK (06)t Fe ACK ACK None ACK (06) ACK 

BEL (07) GC BEL BEL None BEL (07) BEL 

BS (08) He BS BS None BS (08) BS 

HT (09) JC Space to tab stop Spaces to tab stop, None ENQ (09) ENQ (05) 
if tab simulation or one space, or tab 
on, or 1 space if (05) depending on 
not. space insertion mode 

LF/NL (OA) NL CR and LF LF (15) Input Complete NAK (OA) NAK (15) 

VT (OB) Kc VT VT None VT (OB) VT 

FF (OC) LC None FF Page Header FF (OC) Page Header 

CR (OD) CR CR and LF CR (OD) Input Complete CR (OD) CR and LF (OA) 

SO (OE) NC so so None SO (OE) so 

SI (OF) QC SI SI None SI (OF) SI 

DLE (lO)t pc DLE DLE None DLE (10) DLE 

DCl (11) QC DCl DCl None DCl (11) DCl 

DC2 (12) RC DC2 DC2 None DC2 (12) DC2 

DC3 (13) sc DC3 DC3 None DC3 (13) DC3 

DC4 (14)t Tc DC4 DC4 None DC4 (14) DC4 

NAK (15)t uc NAK NAK (15) None LF/NL (15) CR and LF (OA) 

SYN (16)t vc SYN SYN None SYN (16) SYN 

ETB (17)t WC ETB ETB None ETB (17) ETB 

CAN (18) xc Back-arrow None Cancel input CAN (18) CAN 
andCR/LF or output 

message. 

EM (19) ye Back-arrow None Monitor Escape/ EM (19) EM 
andCR/LF Control to TEL 

SUB (lA) zc SUB SUB None SUB (lA) # (A3) 

ESC (.1 B) KCS None None Initiate escape ESC (1 B) ESC 
ESC sequence mode. 
PREFIX 

FS (lC) Les FS FS Input Complete FS (1 C) FS 

GS (1 D) MCS GS GS Input Complete GS (JD) GS 

128 Append ix A 



Table A-4. ANSCII Control-Character Translation Table (cont.) 

Input Output 

TTY Prog. Receives Transmitted 
ANSCII Key Echoed (EBCDIC) Process EBCDIC (ANSCII) 

RS ( 1 E) NCS RS RS Input Complete RS (1 E) RS 

US (lF) OCS us us Input Complete US (lF) us 
} (7D) ALT- } or None } or None } if model 37; as } (B3) } (7E) 

MODE ESC if model 33, 
35, or 7015. 

-(7E) ESC -or None -or None - if model 37; as ...., (SF) -(7E) 
(7015) ESC if model 33, 

35, or 7015. 

DEL (7F) Rubout \ None Rubout last DEL (FF) None 
character. 

All ANSCII upper and lower case alphabetics are translated on input into the Alphabetic and symbol output trans-
corresponding EBCDIC graphics as shown in Tables A-1 and A-2. All special lation is also as shown in Tables A-1 
graphics map as shown, allowing for Table A-1, Note 2, and the exceptions and A-2; for Models 33 and 35, and 
above for model 33 and 35. Lower case alphabetics map into corresponding 7015 terminals, however, lower case 
EBCDIC upper case if the ESC U mode is set. Upper case alphabetics map alphabetics are automatically trans-
into corresponding EBCDIC lower case if ESC) is set. lated to upper case. 

t These characters are communication control characters reserved for use by hardware. Any other use of them risks in -
compatibility with future hardware developments and is done so by the user at his own risk. 

Table A-5. Substitutions for Nonexistent Characters on 2741 Keyboards 

EBCDIC APL Selectric EBCD 
Character Keyboard Keyboard Keyboard 

> > , (upper case) > 

< < (upper case) < 

A. t r/. r/. 

I I 0 
(degree) I 

....., - ± ....., 

# I # # 

% p % % 

r/. c I I 

@ a @ @ 

II 'V II II 

! 0 ! I 

& n & & 

$ u $ $ 

Appendix A 129 



APPENDIX B. MONITOR ERROR MESSAGES 

INTRODUCTION 

Two groups of Monitor error codes ore defined in this sec­
tion. They ore 1/0 error and abnormal codes (Tables Bl-B4) 
and other Monitor codes (Tobie B5). In both coses, a mes­
sage is printed only if the Monitor hos control. If the user 
asks for control, the error codes ore returned to him. Other­
wise, the Monitor tokes unilateral action and prints the 
message corresponding to the code or the code itself if no 
message is in the ERRMSG file. Users who hove token con­
trol may return it for Monitor disposition by using M:MERC. 

The error and abnormal addresses specified in a function 
parameter table (FPT) for a Read, Check, or Write function 
ore temporary and are not retained by the Monitor between 
calls. Those addresses specified in an FPT for an Open 
function are retained in the specified data control block 
(DCB). 

1/0 error and abnormal conditions foll into two general 
categories: 

1. Those associated with insufficient or conflicting 
information. 

2. Those associated with device failures or end-of-data 
conditions. 

The Monitor responds to conditions of the first category by 
honoring the error and abnormal addresses in the associated 
DCB. The Monitor responds to conditions of the second 

category by honoring the error and abnormal addresses in 
the FPT for the associated Read, Check, or Write functions. 

The error and abnormal codes for insufficient or conflicting 
information ore I isted in Tables B-1 and B-3. Those for 
device failure or end-of-data ore listed in Tables B-2 
and B-4. 

The Monitor communicates the error or abnormal code and 
the DCB address in SR3, and the location following the 
associated CAL 1 in SRl. The code is contained in byte 0 
of the word in SR3, a subcode is contained in bits 8-14, 
and the DCB address is contained in the rightmost 17 bits. 

SR3 

Error Code Subcode DCB Address 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Note that the subcode field contains seven bits and an error 
code of 75/13 would appear as X'7526' in bits 0-15. (The 
first digit of the subcode is contained in bit positions 8, 9, 
and 10. Hence, it may have a value of 0-7.) The previous 
contents of SRl and SR3 are lost. The meaningofeacherror 
and abnormal code is shown in Tables B-1 to B-4. 

Certain errorsorealso reported inthe TYC fieldof the DCB. 
The correspondence between error/abnormal codes and 
TYC codes is given in Appendix A of the CP-V/BP Reference 
Manual, 901764. 

Tobie B-1. Abnormal Codes - Insufficient or Conflicting Information 

Abnor- Originating 
ma! Sub- Monitor 
Code code Routine 

01 00 OPEN 

01 OB OPEN 

02 00 OPEN 

02 01 OPEN 

03 00 OPEN 

08 00 OPEN 

09 00 OPEN 

01 OPEN 

02 OPEN 

03 OPEN 

130 Append ix B 

Meaning of Code 

An attempt was made to open a DCB with insufficient information. 

A number of contiguous granules (in random files) has been requested, but they are not 
available. 

An attempt was made to open the next file with NXTF specified in the DCB but there are 
no more files. 

The end of all accounts has been encountered, and NXTA is specified in the DCB. 

The input or update file does not exist. 

An attempt was made to open the next file but the name of the next file is a synonym 
for the primary name of the file. 

The user privilege level was not high enough to allow issuing a direct device OPEN. 

The device 1/0 address was not that of a symbiont device (card punch, card reader or 
line printer). 

The device was already in use by another diagnostic program. 

The device was currently in use by a symbiont. The operator must be asked to suspend 
the symbiont. The program should wait for this action before re-issuing the call. 



Abnor-
mal 
Code 

OA 

OB 

oc 
OD 

OF 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

2F 

3F 

Sub-
code 

00 

00 

00 

00 

00 

00 

00 

01 

02 

03 

00 

00 

00 

00 

00 

01 

02 

03 

04 

00 

00 

00 

37 

38 

39 

3A 

3B 

3C 

Table B-1. Abnormal Codes - Insuffi5=ient or Conflicting Information (cont.) 

Originating 
Monitor 
Routine 

CLOSE 

OPEN, READ 
CVOL 

OPEN 

OPEN 

OPEN 

DELREC or 
WRITE 

OPEN 

OPEN 

OPEN 

OPNL 

DELREC or 
WRITE 

WRITE 

WRITE 

WRITE 

OPEN/ 
CLOSE 

READ 

READ 

READ 

READ 

OPEN/ 
CLOSE 

OPEN 

OPEN 

JOBE NT 

JOBE NT 

JOBE NT 

JOBE NT 

JOBE NT 

JOBE NT 

Meaning of Code 

An attempt was made to close a DCB that is already closed. 

Unrecognized sentinel on labeled tape. 

II legal SY NON operation. 

Insufficient room exists in the variable length parameter section of the DCB for the 
private pack serial number. 

There are 127 DCBs open to the file. Access is denied. 

The specified key was not found for an update file and the option is not NEWKEY. 

Any of the following may have occurred: (1) the Monitor has not received all information 
required to access the file, (2) access permission (read/write account numbers or password) 
has been violated for an existing file, (3) the file name length has been greater than 31 
or less than 1, or (4) open NXTF was specified without room for synonymous file name in 
the DCB. 

An attempt was made to open a file for output and another user or DCB has the file open 
for input or output. 

Bad FPARAM location. 

The BREAK key was depressed or CONTROL Y was entered while waiting for a mount to 
be completed. The open was not performed. 

An improper sequence of operations has been requested for an update file, or the FPARAM 
address did not belong to the user. For example, a WRITE or DELREC was issued for a 
keyed file and there is no key given on the WRITE or DELREC. 

The NEWKEY option was specified, but the key already exists. 

The NEWKEY option was not specified for an output or scratch file. 

An attempt was made to write a keyed file sequentially with an out-of-order key. 

II lega I operation on M:UC DCB. 

A private pack is locked out. 

An attempt was made to use a private pack that is for exclusive use of another user. 

A private pack was not properly requested. 

A request was made for a private pack and it caused the system limit on the number of 
packs a I lowed to be exceeded. 

Private pack consistency check failure. 

An error occurred on a private pack while trying to open an existing file. 

An attempt was made to open a DCB that is already open. 

The user is not a I lowed to use the service he requested. 

A function inconsistency exists. 

The id requested for deletion is not valid. 

It is too late to delete job. Either the job is scheduled to run, is running, or has been 
completed. 

No more symbiont space is available or the queue is full. 

The user is not allowed to use job entry service. 

Appendix B 131 



Table B-1. Abnormal Codes - Insufficient or Conflicting Information (cont.) 

Ab nor- Originating 
mal Sub- Monitor 
Code code Routine Meaning of Code 

3F 3D JOBE NT The system is nonsymbiont, or the LL device is not a symbiont printer or is not defined as 
cont. a symbiont device. 

3E JO BENT A DCB has been specified and it is already open. 

3F JOBE NT The specified buffer address is not in the user's program. 

Note: In a 11 of the above cases, return is made to the user's program for continuation of execution if no abnormal address --
is specified in the DCB. 

Table B-2. Abnormal Codes - Device Failure or End-of-Data 

Ab nor-
mal Originating Monitor 
Code Routine Meaning of Code 

04 PRECORD or READ The beg inn i ng-of-fi I e has been encountered. 

05 PRECORD or READ The end-of-data has been encountered. 

06 READ The end-of-file has been encountered (or first read of ! card). 

07 READ Data has been lost because the buffer was smaller than the record read, or a parity 
error was detected. 

lC READ, WRITE or The end-of-tape has been encountered. 
PRE CORD 

lD READ or PRECORD The beginning-of-tape has been encountered or a bad command has been sent to the 
terminal. 

Note: In all of the above cases, return is made to the user's program for continued execution if no abnormal address 
--

is specified in the I/O CAL FPT. 

Table B-3. Error Codes - Insufficient or Conflicting Information 

Originating 
Error Sub- Monitor 
Code code Routine Meaning of Code 

40 00 READ A request was made to read an output file. 

42 00 READ, WRITE The key was not valid. The key length was zero or greater than the key maximum for 
or RANDOM the file or a random file granule number is out of legal range. 

43 00 READ No record having the specified key was found. 

44 . 00 WRITE A request was made to write in an input file. 

46 xx READ The DCB contains insufficient information to open a closed DCB on a Read operation. 
Subcodes corresponding to the OPEN abnormal codes above describe why the implicit 
OPEN failed. 

21 READ or WRITE A private disk pack logic inconsistency exists. 

132 Appendix B 



Table B-3. Error Codes - Insufficient or Conflicting Information (cont.) 

Originating 
Error Sub- Monitor 
Code code Routine Meaning of Code 

46 22 READ or A private disk pack error occurred trying to open an existing file. 
cont. WRITE 

2E READ Cannot open the DCB for a Read because it is already open. 

48 READ On-line user is not allowed to access the card reader. 

47 xx WRITE The DCB contains insufficient information to open a closed DCB on a Write operation. 
Subcodes corresponding to the OPEN abnormal codes above describe why the implicit 
OPEN failed. 

2B OPEN The DCB contains an invalid oplabel. 

2E WRITE Cannot open the DCB for a Write because it is already open. 

48 WRITE The symbiont use flag was not set for on-I ine user. 

48 00 OPEN The symbiont use flag was not set for the given device. 

01 OPEN On-line user is not allowed to access the card reader. 

49 00 OPEN The user's peripheral use flags do not permit the use of tapes. 

01 OPEN No tape drives are available (on-line maximum exceeded or all drives in use). This 
error only occurs for on-I ine or ghost jobs. 

02 OPEN The user's tape drive limit from LIMIT card is exceeded. 

4A 00 READ or Either the specified buffer or the indirect address in FPT does not belong to user. 
WRITE 

4B 00 READ or An attempt was made to open a file that the user already has opened. 
WRITE 

4C 00 READ or An attempt was made to open a file that another user already has opened. 
WRITE 

4D 00 CLOSE An attempt was made to close and release a file that someone else is reading. 

4E 00 READorCVOL An ANS block count error exists and end-of-tape has been encountered. 

07 READorCVOL An ANS block count error exists and end-of-file has been encountered. 

51 00 OPEN This file is still open in the input mode through another DCB. 

54 00 READ The user has tried to read a control command via the control input (C) device more than 
once through the same DCB. 

55 00 ·OPEN Too many files are open simultaneously (the Monitor's file-use tables cannot handle that 
many files). 

56 00 CLOSE or Public secondary storage is exhausted, or the system is unable to switch to the next tape 
CVOL volume because the reel number has not been specified. 

75 00 CLOSE The free sector pool contains erroneous information. 

01 READ Data records were lost due to a bad disk address in master index. 

Appendix B 133 



Error Sub-
Code code 

75 02 
cont. 

03 

04 

05 

06 

07 

4x 

7F 

Table B-3. Error Codes - Insufficient or Conflicting Information (cont.) 

Originating 
Monitor 
Routine 

READ 

OPEN 

OPEN 

OPEN 

OPEN 

OPEN 

File 
Management 

Meaning of Code 

The master index is inaccessible due to bad disk address in preceding master index. 

The entire file is inaccessible due to bad disk address in file directory or file information 
table or bad information in file information table. 

The file directory (and all files therein) is inaccessible due to a bad disk address in 
file directory. 

All files in account were lost due to bad disk address in account directory. 

A bad disk address link to next account directory exists. The current account and other 
accounts are gone. 

An error exists in the pyramid. (This message only appears in ERRLOG.) 

75/40-75/47 are the same as 75/00-75/07 except that in addition, a hardware error has 
been detected. 

File inconsistency corrected by software. (This message only appears in ERRLOG.) 

Note: In all of the above cases, the job is aborted if no error address is specified in the DCB. In batch mode, 
the Monitor skips to the next job; in on-line mode, control is returned to TEL which prints the message and awaits 
further user commands. For error code 54, the job is aborted in all cases. 

Error 
Code 

41 

45 

57 

Originating 
Sub- Monitor 
code Routine 

00 READ 

01 COOP 

02 READ 

03 READ 

04 READ 

00 WRITE 

00 READ or 
WRITE 

44 RANDOM 

Table B-4. Error Codes - Device Failure or End-of-Data 

Meaning of Code 

An irrecoverable read error has occurred. 

A bad disk address was detected by the input cooperative when reading the input 
symbiont file. 

Labeled tape read error encountered on block in which requested record was contained. 
Byte 0 of SR l contains the number of records in the block. 

Labeled tape read error encountered on block in which requested record was contained. 
Requested record not transmitted to the user. 

Partial record transmitted following Error 41/03. 

An irrecoverable write error has occurred. 

Public secondary storage is exhausted, or the system is unable to switch to the next tape 
volume because the reel number has not been specified. 

There has been a Write request with a specified byte count, and not enough granules 
remain in a random file to satisfy the Write request, or the beginning relative granule 
number on a Read request is valid but the specified byte count extends beyond the 
end-of-file. 

In all of the above cases, the job is aborted if no error address is specified in the I/O CAL FPT. 
the Monitor skips to the next job; in the on-line mode, control is returned to TEL which prints 
awaits further user commands. 

In batch mode, 
the message and 

134 Appendix B 



Table B-5. Other Monitor Error Codes 

Originating 
Error Sub- Monitor 
Code code Routine Meaning of Code 

AO 00 ASP An attempt was made to RUN under an invalid debugger name, or a request for an 
invalid debugger through TEL. 

Al 00 ASP An attempt was made to associate a debugger with a shared processor. 

A2 00 ASP An attempt was made to access a processor for which the user is not authorized 
(e.g., an on-line call to CCI). 

A3 00 TRAP Trap control cannot be given to the user because his task control block (TCB) does not 
exist or is full, or his pointer has been destroyed. 

01 TRAPC No environment present for return. 

A4 01 TRAP Trap 40 - Nonexistent instruction. 

02 TRAP Trap 40- Nonexistent memory reference. 

03 TRAP Trap 40 - Privileged instruction. 

04 TRAP Trap 40 - Memory protect violation. 

05 TRAP Trap 41 - Unimplemented instruction. 

06 TRAP Trap 42- Stack overflow. 

07 TRAP Trap 43- Fixed point overflow. 

08 TRAP Trap 44- Floating point fault. 

09 TRAP Trap 45 - Decimal arithmetic fault. 

OA TRAP Trap 46 - Watchdog timer. 

OB TRAP Trap 47 - Storage. 

oc TRAP Trap 4C - Parity error. 

A5 00 STEP User's load module exceeds virtual core size limit. 

A6 03 STEP Specified load module does not exist. 

30 STEP Bad DCBs or DCB table. 

31 STEP Bad head record. 

32 STEP Load module bias not on page boundary. 

33 STEP Pure procedure not on page boundary. 

34 STEP DCBs not on page boundary. 

35 STEP Head record is incomplete. 

36 STEP Tree record is incomplete. 

37 STEP No debugs allowed with link-built LMNs. 

38 STEP Program too big for user area. 

39 STEP File not keyed, not a LMN. 

3A STEP DCB links bad or circular. 

42 STEP The module exists but it is not a load module. 

xx STEP The xx sub code specifies the reason the DCB cou Id not be opened and wi 11 be the 
abnorma I/ error codes given in Tables B-1 through B-5. 

A7 Ob TEL A program in progress was erased to make room for the latest user request. 

Appendix B 135 



Table B-5. Other Monitor Error Codes (cont.) 

Originating 
Error Sub- Monitor 
Code code Routine Meaning of Code 

AB 00 STEP An error or abort CAL was issued. (RNST bits are also set.) 

A9 00 UCAL An error on a read or write of the A/M record occurred. 

AA 00 STEP A request was made for core I ibrary that does not exist. 

AB 00 OPEN An invalid operational label was found in the DCB. 

AC 00 An attempt was made to read the card reader by an on-line user. 

AD 00 STEP Extending processing limits were exceeded. 

AE 00 CALPROC The user issued a CAL with unknown codes. 
AL TCP 

AF 00 CALPROC A CALl instruction referenced a non-DCB. 

BO 00 DUMP The program specified snapshot dumps but did not have an M:DO DCB. 

01 DUMP The program attempted snapshot dump of inaccessible or nonexistent memory. 

02 DUMP Inaccessible flag address given on conditional debug command. 

03 DUMP Illegal parameter in DEBUG CAL. 

Bl 00 SEGLOAD Monitor cannot find the segment named in the user M:SEGLD DCB. 

01 SEGLOAD Bad tree tab le. 

02 SEGLOAD Circular tree table encountered. 

03 SEGLOAD Data size specified in tree is too large. 

04 SEGLOAD Procedure size specified in tree is too large. 

05 SEGLOAD Bias specified in the tree table on segment is illegal. 

06 SEGLOAD Unable to get a page for segloading. 

07 SEGLOAD Page obtained by M:CVM procedure encountered. 

B2 00 ENTRY The user issued a CAL2, CAL3, or CAL4. 

B3 00 WRTD Limit exceeded. 

01 WRTD Punch. 

02 WRTD Pages by processors. 

03 WRTD Pages by user. 

04 WRTD Pages through M:DO. 

B4 00 STEP Exit. 

. 01 STEP User issued M:ERR • 

02 STEP User issued M:XXX. 

03 STEP Operator E (error) key-in. 

04 STEP Operator X (abort) key-in or user abort. 

B5 Load and link (M:LINK) and load and transfer control (M:LDTRC) error messages: 

xx LDLNK See STEP (error code A6) subcodes and 1/0 error codes. 

136 Appendix B 



Table B-5. Other Monitor Error Codes {cont.) 

Originating 
Error Sub- Monitor 
Code code Routine Meaning of Code 

BS 61 LDLNK M:LINK and M:LDTRC are not permitted under Delta. 
cont. 

62 LDLNK M:LINK and M:LDTRC are not permitted when a shared processor is associated with 
the user program. 

63 LDLNK The program must not be loaded with Link. 

64 LDLNK The user must own all memory from data through dynamic data. 

65 LDLNK The DCB is not in the DCB area. 

66 LDLNK The user cannot get a blocking buffer. 

67 LDLNK A logically impossible exit to Load and Link has occurred. 

68 LDLNK Illegal information supplied in transfer file. 

69 LDLNK A Load and Link cleanup occurred without a previous Load and Link operation. 

B6 00 STEP M:LINK: Not SEGLOAD DCB. 

01 STEP The DCB name chain must be in the DCB record. 

02 STEP The DCB name chain may not be linked. 

03 STEP The DCB name chain is irregular. 

04 STEP The DCB has no name. 

05 STEP A user can not have more than 509 DCBs. 

06 STEP The DCB is outside of the buffer. 

07 STEP A DCB may not cross a page boundary. 

08 STEP A DCB must be at least 22 words long. 

09 STEP KBUF must lie within the DCB. 

OA STEP FLP must lie within the DCB. 

OB STEP The FLPs overlap into KBUF. 

oc STEP M:SEGLD DCB needs 10 words for variable length parameters. 

B7 00 OPNLDEV Unrecognized stream id. 

01 OPNLDEV Unrecognized DEV specification. 

02 OPNLDEV The function specified (IN or OUT) is not legal for this device. 

03 OPNLDEV A nonzero wsn is specified for an unauthorized user (i.e., the processor is not a shared 
processor and the privilege level of the user is less than X1C01). 

co 00 STEP Too many buffers requested on POOL card. 

CP-V LABELED TAPE ERROR HANDLING 
After a block is read from labeled tape and an error {after 
normal retries) is encountered, the tape remains positioned 
after the last record read. The Monitor then performs a 
consistency check on the record control information in 
the block. If the record control information is judged 

valid, the record is transferred to the user's buffer, as 
requested, and an error code 41/02 is returned. Byte 0 
of SRl will contain the number of records in the block. 
These records, although of questionable quality, are 
available to the user if he requests them. If the record 
control information is invalid, the user will receive an 
error return 41/03 and no information from the block is 

Appendix B 137 



transmitted. The block is available to the user; the 
address is in the BUFl field (word 9) of the DCB. This 
data can only be relied upon until another 1/0 opera­
tion is performed. 

was contained in the block in error) to be transmitted, 
an error return of 41/04 is given. 

ANS LABELED TAPE ERROR HANDLING 

If after error condition 41/03 the following read causes 
a partial record (continuation of a record whose first part 

The abnorma I codes that qre returned for ANS labeled tapes I -· 
are listed in Table B-6. 

Table B-6. ANS Labeled Tape Abnormal Codes 

Abnormal Sub- Originating 
Code code Monitor Routine Meaning of Code 

30 01 LBLT The user label is bad. Al I ANS labels must be 80 bytes in length. User header 
labels must begin with UHLl and user trailer labels must begin with the characters 
UTLl. (The byte count is not part of the label because all ANS labels are 80 bytes 
long; however, it is automatically restored in the first byte of the label buffer when 
a label is read.) 

03 LBLT The file name is greater than 17 characters in length or is equal to zero. 

04 LBLT EXPIRE, NEVER was specified. 

05 LBLT The format code is illegal. 

138 Appendix B 



APPENDIX C. CONVERTING FROM BTM TO CP-V 

INTRODUCTION 
Converting an installation from BTM to CP-V is a relatively 
simple matter because of the compatibility of the file system 
and the processors. This appendix lists the procedures that 
must be used to accomplish the conversion. It then com­
pares the time-sharing services of CP-V with those of BTM. 
The common processors of the two systems are compared and 
the differences of use, including added facilities offered 
by CP-V, are outlined where they exist for the assembler, 
FORTRAN, loaders, Edit, Delta, BASIC, and FERRET/PCL. 
Finally, a listofmiscellaneous differences of detail is given. 

CONVERSION PROCEDURES 

Because the file systems are compatible and most processors 
are identical, changeover from BTM to CP-V is relatively 
simple. Three main steps are required. 

l. Files recorded on FAST SAVE tapes in BTM must be 
entered into CP-V. This is done simply by a standard 
FRES restore. 

2. Load modules of BTM 
since they are biased 
reloaded from ROMs. 
recreated. 

are not compatible with CP-V 
differently. Each must be 

Similarly, SAVE files must be 

3. Any installation produced on-line processors using CAL3 
calls must be modified to use the equivalent CP-V 
services. This is usually a simple matter using Delta. 
Batch programs and on-line programs using standard 
BPM CALs will run without change. 

COMPARISON OF CP-V AND BTM SERVICES 

The following is a detailed comparison of the time-sharing 
services of CP-V with those of BTM from the terminal user's 
point of view. It is assumed that the reader is familiar with 
BTM on-line capabilities described in the BTM/TS Reference 
Manual, 90 15 77. 

TELETYPE OPERATIONS 

The CP-V terminal is activated with the same procedure used 
for BTM. Once the terminal is operational under CP-V, the 
system responds by typing 

XEROX CP-V AT YOUR SERVICE 
ON AT (date and time) 
LOGON PLEASE: 

The user inputs his account, name, and an optional password 
(in that order) as he would for BTM. There will be a short 
delay before CP-V responds; the LOGON data must be 
printed on the operator's console first. 

If the LOGON sequence is correct, the CP-V response 
is quite elaborate compared to BTM. Several lines on the 
terminal are skipped, a line or two of information is printed, 
several more lines are skipped, and finally, a prompt char­
acter(!) is printed. This response is due to the pagination 
feature of CP-V; that is, the terminal paper can be treated 
as if it were segmented into 8-l/2 by 11 inch pages with 
1-inch margins at the top and bottom of each page. A TEL 
command (PLATEN 72,54) will accomplish this, causing 
CP-V to assume each page to be 54 lines long with 72 char­
acters per line. Each page begins with a header. The 
header consists of the date, time, user's account, terminal 
id, page number, and operator's messages. 

To terminate an on-line session, the user types the OFF com­
mand. This serves the same function as the BT M BYE com­
mand. CP-V responds by typing the following statistics: 

CPU= m.mmm CON= h:mm INT= nn CHG= xxxx 

where 

CPU is the CPU time, in minutes. 

CON is the terminal connect time, in hours and 
minutes. 

INT is the number of terminal interactions during 
the session. 

CHG is the number of charge units for the session. 

Unlike BTM, the number of RAD and disk granules used 
during the on-line session is not printed. The number of 
granules remaining at any time can be determined with the 
DISPLAY command. 

If the user wants to log on again while the line is still con­
nected to CP-V, he does not have to hit the BREAK key as 
he would for BTM. All he need do is wait for a few seconds 
and CP-V will type the LOGON request again. 

Several special Teletype characters for CP-V have differ­
ent (or new) meanings from their BTM counterparts. These 
characters are listed in Table C-1. In addition, CP-V 
supports 2741-compatible terminals with all combinations 
of Selectric and EBCD code sets with APL and standard 
keyboards. 

Appendix C 139 



Table C-1. Additional or Different Teletype Characters for CP-V 

CP-V Character BTM Character Meaning 

RUBOUT or ESC RUBOUT ESC RUBOUT Erase last character. 

ESC ESC, 4 BREAKS, or ye ESC ESC Return to executive. 

ESC T (none) Toggle tab simulation. 

L c or ESC L (none) End of page; go to top of next 

ESC F !EOD End of file 

ESC U (none) Toggle upper/lowercase 

ESC C (none) Toggle tab relative mode 

ESC S (none) Toggle space insertion mode 

ESC ( (none) Uppercase shift 

ESC) (none) Lowercase shift 

Qc (X-ON) (none) Turn on paper tape reader 

Sc (X-OFF) (none) Turn off paper tape reader 

Notes: 1. In all cases, CP-V responds to an ESC character pair with the character followed by a 
backslash (\). 

2. The superscript c indicates that the CONTROL key is to be depressed. 

3. The meaning of the excape sequences X, R, P, I, E, CR, LF, and Qare identical in 
CP-V and BTM. 

PROGRAMMING CONVENTIONS 

The special CAL3s for terminal 1/0 in BTM are not imple­
mented in CP-V. Most of the services these cal Is provide, 
however, are available to the CP-V on-line user in other 
forms, as follows: 

CAL3,0 

CAL3, 1 

CAL3,4 

CAL3,5 

CAL3,6 

CAL3, 10 

CAL3, 14 

M:READ, M:KEYIN 

M:TYPE, M:WRITE, M:PRINT 

M:LINK, M:LDTRC, M:SEGLD 

M:ASP I M:DSP 

M:EXIT (to TEL) 

(Error messages available in 
ERRFILE) 

M:GL 

CAL3, 15 M:DATE, M:TIME 

CAL3,7,8,9,11,13 Are not required in CP-V since the 
services are provided automatica I ly. 

CP-V presents a uniform programming interface to the user 
program regardless of whether the program is run in on-line 
or batch mode; the same CA Ls execute in the same way. 
The difference between batch and on-line environments is 
that the operational labels for on-line are directed to the 
user's terminal rather than the central site card reader and 
line printer. 

140 Appendix C 

TERMINAL EXECUTIVE LANGUAGE (TEL) VERSUS BTM EXEC 

Some of the new or different features provided by TEL 
as compared to BTM are 

1. All TEL commands are terminated by a RETURN or LINE 
FEED. There is no system activation on two characters 
of a name or on punctuation as in BTM. 

2. Many functions that had to be accomplished via a sub­
system parameter in BTM can be accomplished by a 
single TEL command under CP-V. Either such a func­
tion is carried out directly by TEL (e.g., the SET 
command) or an implicit call is made to the proper pro­
cessor (e.g., the TEL command BUILD results in an im­
plicit call to Edit). 

3. In contrast to the BTM processors FORTRAN, Symbol, 
and Loader, the on-line user does not have to preassign 
his files to source input, binary output, and listing out­
put for the corresponding CP-V processors (FORT4, 
META, anc;l LINK). In fact, all of the control com­
mands needed to perform assembly or load (assignment 
of DCBs, processor call, processor options) are com­
bined into one TEL command. 

4. CP-V allows a properly-authorized user on-line access 
to peripheral devices (printer, punch, paper tape, card 
reader) and magnetic tape. Such capabilities do not 
exist for the BTM user. 



5. Any load module under CP-V may be called for execu­
tio·n by an on-line user via TEL. This includes load 
modules under any account (not just :SYS).·· 

6. Whereas BTM recognizes the word HE~E to meari the 
user's terminal, CP-V recognizes. the word ME. 

7. I~·CP-V, a dollar sign may be usedto refer t~ a pro­
gram just assembled, compiled, or loaded during the 
current on-line session. 

8. Under BTM, the only device-type assignment permitted 
is the assignment of a DCB to the user's terminal. With 
the CP-V SET command, it is possible to set most of the 
DCB parameters that are set by the batch ASSIGN com­
mand and many of the parameters that are set by BPM 
OPEN and DEVICE procedures. The LDEV command 
allows the user to assign an 1/0 stream to a particular 
device and to define attributes of the device. 

9. TAB characters are handled somewhat differently in 
CP-V. The effect of a tab character on input and out­
put is dependent upon the .DCB tab settings, the space 
insertion mode (ESC S), the tab simulation mode (ESC T), 
and the tab relative mode (ESC C). 

ESC T controls whether or not tabs are to be simulated 
at the terminal. Normally, the ESCT switch is ON, 
i.e., tabs are simulated. When a tab character, JC or 
ESC I, is encountered either on input or for output, 
spaces are sent to the termi.nal to bring the carrier to 
the proper position as defined by tab stop settings and 
the nominal beginning of the line (see below). When 
the mode is off, the terminal is assumed to have a real 
physical tab mechanism anq the tab character itself is 
sent. 

Tab stops are set in the DCB for locating the simulated 
tab stops via either the TABS TEL command for the 

M:UC DCB or an M:DEVICE CAL for some other 
input or output DCB. 

ESC C, the Tab Relative Mode, controls whether 
counting for simulated tab stops begins at the left mar­
gin(as would physical tab stops) or is offset by any mes­
sage just output (the physical position when the M:READ 
was issued). This latter is useful when providing input 
to a processor that reads with a prompt character or 
with a prompt sequence, such as the line number prompt 
used by Edit. 

ESC S, the Space Insertion Mode, controls whether a 
series .of spaces (normal) or the tab character itself 
is sent from the terminal to the reading program. This 
is usefu I for processors that do not norma I ly expect the 
tab character. The number of spaces sent is controlled 
by the tab stop settings and the ESC C mode. 

In all cases where tab simulation is required and no tab 
stops are specified, a single space is sent. 

A summary of TEL commands and the comparable BTM com­
mands appears in Table C-2. The first column contains the 
TEL command format; the middle column contains the cor­
responding BTM command(s) required to achieve the same 
function. The command function is described in the third 
column. File identification is designated by "fid" and has 
the format 

CP-V 

~ account J 
name account. password 

• password 

BTM 

(
(account) j 

name (account,password) 
(,password) 

The prompt character ( ! ) has been I eft off the TEL and BT M 
EXEC commands. Prompt characters for processors, however, 
are indicated. 

···Table C-2. TEL Command Summary and Equivalent BTM Command(s) 

TEL Command BTM Command(s) Description 

BACKUP fid (none) Saves the specified file on a system tape. 

BATCH fid ASSIGN M:SI, (FILE, file) Enters the specified file in the batch 
BPM job stream. 
INSERT JOB?Y 

B(UILD] fid EDIT Accepts a new file from the terminal. 
*BUILD fid -

BYE or OFF BYE Disconnects terminal from systems and - provides accounting directory. 

CANCEL jid BPM Cancels a previously submitted batch job. 
DELETE JOBY 
ID =jid 

Appendix C 141 



Table C-2. TEL Command Summary and Equivalent BTM Command(s) (cont.) 

TEL Command BTM Command(s) Description 

COMMENT{g~ER}list ASSIGN M:DO, (list) Directs error commentary (from an on-
where list= FILE, name or HERE line assembler or compiler) to the speci-

where list is fid, LP, or ME 
fled device. 

CONTINUE, GO, or PROCEED PROCEED Continues processing from the point of 
termination. 

C (OPY] sf{6~}df FERRET Copies a file to the specified device. 
?:_C (OPY] fid l' fi~2 

where sf = (DC/]fid 
df = (DC/]fid, LP, or ME 

or 

?:_E (XAMINE] fid 

D (ELETE] fid FERRET Deletes the specified file. 
?:_D (ELETE] fid 

DI (SPLAY] FERRET Lists the current values of various system 
?:_S (TA TISTICS] parameters. 

DONT COMMENT (none) Stops error commentary output. 

DONT LIST (none) Stops listing output. 

DONT OUTPUT (none) Stops object output. 

E (DIT] fid EDIT Calls Edit to modify a file. 
*EDIT fid -

FORT4(sp] ... [,sp] I ASSIGN M:SI, (FILE, file) Compiles the specified FORTRAN 

L[g~R(rom] (,list]] 

ASSIGN M:BO, (FILE, file) program. 
ASSIGN M:LO, (FILE, file) 
FORTRAN 

where sp = fid or ME 
rom = fid 
list = fid, LP, or ME 

GET fid RESTORE fid Restores the previously saved core 
image. 

or 

RESTORE fid 

GO, CONTINUE, or PROCEED PROCEED Continues processing from the point of ---
termination. 

JOB jid BPM Requests the status of a previously 
STATUS CHECK ?Y entered batch job. 
ID= jid 

.- -
L T(#reel-id] ((s)] (none) Lists file names and, optionally, 

[DC(. accfilffs~ attributes from the account dictionary, 
L T(#seria I no. ((s )]/fid ((s )] [, fid ((s)] .•• ] tape, or disk pack. 

L fi d~(s )] L fid ((s )] ... ] 
DP 11reel-id]((s)] 
D P[.Wserial no.] /fi d ((s)] [, fid [(s)] ... ] 
FT[#serial noJ[(s)] -L. 

142 Appendix C 



Table C-2. TEL Command Summary and Equivalent BTM Command(s) (cont.) 

TEL Command · BTM Coriimand(s)" Description 

LDEV stream-id [~(option)]' ••• (none) Attaches a cooperative stream to a 
physical device and/or defines attributes 
of the physical device. 

LINK[cod~s]roll'! [, rom] [ .•. , romJ-=iJ LOAD Forms a load module as specified. 

L[g~R lmn][;lid[, lid] ..• 

ELEMENT FILES:[fid). .. 

L[fid] 

I 
L[, lid]] 

where rom = fid or $ SAVE lmn 
lid= library fid 

codes include (L), (NL), (D), 
(ND), (C), (NC), (M), (NM) 

LIST {g~ER}list ASSIGN M:LO, (list) Directs the listing output to the 
where list =FILE, name or HERE specified device. 

where I ist = fid, LP, or ME 

lmn~p] •.. [,sp] ... (none) Initiates execution of a load module 
I 

L[g~R[rom][, list]] 

where sp is assigned to M:SI; rom is 
assigned to M:GO; list is assigned 
to M:LO. 

M(ESSAGE] text FERRET Sends the specified message to the 
~M(ESSAGE]text operator. 

META(sp) •.. ~ sp J ASSIGN M:SI, (FILE, name) Assembles the specified source I 
[LoN· · . ~· 

ASSIGN M:BO, (FILE, name) program. 
ASSIGN M:LO, (FILE, name) 

OVER[roml[, list] SYMBOL 
.. 

where sp = fid or ME 
rom = fid 
list= fid, LP, or ME 

OFF or BYE BYE Disconnects terminal from system and - provides accounting di rectory . 

. {ON } OUTPUT OVER rom ASSIGN M:BO, (FILE, name) Directs rom output to a specified file. 

PASSWORD xxxx (none) Assigns a new log-on password for the 
user. 

PLATEN, I MESSAGE OFF Inhibits operator messages (no page --where I $ l l header is printed for CP-V). 

PLATEN(w](, I] (none) Sets the value of the terminal platen 
width and page length or displays the 

; 
current platen size. 

PRINT (none) Sends output to the line printer and card 
punch without waiting for the user to 
log off. 

Appendix C 143 



Table C-2. TEL Command Summary and Equivalent BTM Command(s) (cont.) 

TEL Command BTM Command(s) Description 

PROCEED, CONTINUE, or GO PROCEED Continues processing from the point of 
termination. 

Processor Ca 11 s Turn over control of the terminal execu-
tive to the processor. 

APL (none) 
BASIC BASIC 
COBOL (none) 
DELTA DELTA 
E[DIT] EDIT 
FDP (none) 
FORT4 FORTRAN 
LINK LOAD 
META SYMBOL 
PCL FERRET 
lmn (user's program) (none) 

BPM 
RU.t:! 

ESC ESC, ye, or 4 BREAKs Escape Command Terminates the current job step. 
fol lowed by (ESC ESC) 
QUIT 

R[ESET] or SET dcb[O] ASSIGN deb Clears DCB of previous parameters. --
RESTORE fid or GET fid RESTORE fid Restores the saved core image. 

RUN [ code~rom [, rom J ... [rom J] LOAD Loads the specified load module and 
ELEMENT FILES:~id]... I starts execution (optionally under a 

[g~ER lmn] [;lid[, lid]... J 

debugging processor). 
L[fid] 

[[, lidJ][UNDER ~~~TAJ 
parameters same as in LINK XEQ?Y 

SA VE {~~ER} fid SAVE fid Saves the current core image on the 
des !_g_nated fi I e. 

SET deb [O] or R[ESET) ASSIGN deb CI ears DCB of previous parameters. 

[oplobel ~ 
SET deb device [tapeid] =1 ASSIGN deb (HERE) Assigns device to a DCB or sets a DCB 

parameter. tapecode 

L[;opt) .•. [;opt] 

where opt= device options 

SET d b eapecode [tape id] 
c filecode[packid] J ASSIGN deb (FILE, fid) I Assigns file to a DCB or sets a DCB 

L[, (option) •.. ] 
parameter. 

L/fid] [;opt] ... [;opt] 

where opt= file options 

144 Appendix C 



Table C-2. TEL Command Summary and Equivalent BTM Command(s) (cont.) 

TEL Command BTM Command(s) Description 

RUN Begins execution of a load module, S[TARTJ[~mnJ[u[NDER DELTA]] 
LOAD MODULE FID:lmn either with or without an associated 
(executed under a subset debugger. 
of BTM DELTA) 

ST[ATUS) FERRET 
>S[T A TISTICS) 

TABS (none) 

TABS s [,s) •.• [,s) TABS [s) ••• [,s) 
(maximum= 16) (maximum= 8) 

TERMINAL type (none) 
where type= 33, 35, 37, 7015, 

EAPL, ESTD, SAPL, 
or SSTD. 

TERMINAL STATUS (none) 

PROCESSOR COMPARISONS 

In several cases, the BTM on-line subsystems are toned­
down versions of more powerful processors available to batch 
users. In contrast, the CP-V system allows both batch and 
on-I ine users access to the same processors. Differences 
between the CP-V and BTM processors are described below. 

CP-V META AND BTM SYMBOL ASSEMBLERS 

The on-line Meta-Symbol assembler for CP-V (META) has 
several advantages over the BTM Symbol assembler. 

1. The limitations imposed by the Symbol language are 
lifted for the CP-V on-line user. He can form as 
sophisticated assembly language programs as the CP-V 
(and BPM) batch user. 

Displays the current accounting values. 

Displays the simulated tab stop settings. 

Sets the simulated tab stops at the 
terminal. 

Sets the term i no I type for proper 
1/0 translations. 

Lists current values used in controlling 
the terminal operation. 

2. The META subsystem recognizes more assemblv options 
than the BTM Symbo I subsystem. 

AC 
Bd 
Cit 
CN 
co 
DC 
Gd 
LO 
LU 
NS 

(ac., ••• ,acn) 
Binary ROM output 
Compressed input 
Concordance commands 
Compressed output 
Default concordance 
Binary output on GO file 
Listing output 
List update 
No symbol 

3. The parameters CJ, SI, LO, BO, and GO do not need to 
be preassigned before calling META. 

tlmplicitly specified in the META command. 

Append ix C 145 



4. An on-line user can update a CI file with a source file 
bui It under Edit simply by specifying both files as output. 

JSET M:CI DC/comp. 
JMETA update ON bin, LP 
WITH> CI 

CP-V FORT4 AND BTM FORTRAN 

The CP-V FORT4 processor is an Extended FORTRAN IV 
compiler. The BTM FORTRAN processor is an Extended 
FORTRAN IV-H compiler. Since FORTRAN IV-His a sub­
set of FORTRAN IV, the CP-V user can compile FORTRAN 
programs on-line which in BTM would have to be compiled 
in batch mode. 

CP-V does not create SOTEMP files of source statements 
when input is directly to FORTRAN and SYMBOL from the 
terminal. 

When entering FORTRAN programs a line at a time, syntax 
checking is performed after each line is received. If a 
statement is to be continued, each continued line must end 
with a colon {:) and each continuation line must use col­
umn 6. This is the exact opposite of BTM, where the colon 
indicates no continuation. 

CP-V LINK LOADER AND BTM LOADER 

Both CP-V LINK and BTM Loader subsystems form nonover­
layed, ready-to-run program images in core memory from 
ROMs and libraries. In addition, LINK forms a load module 
for later execution. Several options are also available 
under LOAD. 

Take, for instance, internal symbol tables {ISTs). Consid­
erable flexibility exists with regard to the construction of 
ISTs by LINK for use under DELTA. The user can specify 
whether or not he wants an !ST to be built for each input 
file. Also, the ISTs for several input files can be merged. 
These capabilities contrast to the BTM Loader subsystem, 
whereby the D {debug) option allows only all-or-none !ST 
construction. 

In addition to the load map option (M), (available in both 
on-line loaders), LINK recognizes two other display options. 
The (D) option produces a list of al I unsatisfied external and 
internal symbols at the completion of the linking process. 
The (C) option results in a display of all conflicting internal 
and external symbols. These displays may be inhibited by 
the (ND) and (NC) options. (BTM always outputs an unde­
fined external symbol map. It outputs the undefined, inter­
nal symbol map if debug is specified.) 

Both on-line loaders search libraries to resolve unsatisfied 
external references. (Such a library is a file containing 
ROMs "linked" together.) LINK, however, does not re­
strict its search to the :BUB file of any account, as does 
the BTM Loader subsystem. Instead, it searches any file 
specified in the library (lid) portion of the LINK command. 
In this way, the CP-V user is relieved of maintaining all 
of his library-type ROMs in one unique file. 

146 Appendix C 

LINK places code in the 00 and 01 protection-type sections 
according to the dictates of the input ROMs. It does not 
force the entire load module into protection-type 00, as 
does the BTM Loader. 

CP-V EDIT AND BTM EDIT 

Features of CP-V Edit that are different from those of BTM 
are I isted below. 

1. The following edit commands may be given via TEL: 

BUILD fid 
EDIT fid 
DELETE fid 

2. The file identification (fid) must follow the CP-V file 
identification structure. 

3. CP-V terminates the entire command if the BREAK key 
is depressed. 

4. A new command is available, TA. It sets the tab posi­
tions and has the fol lowing format: 

where 

F implies FORTRAN; tab set at column 7. 

M implies Meta-Symbol; tabs set at columns 10, 
19, and 37. 

S implies Meta-Symbol, short form; tabs set at 
columns 8, 16, and 30. 

The actual tab simulation is carried out exactly like the 
TABS command. 

CP-V DELTA AND BTM DELTA 

Features of CP-V Delta that are different from those of BTM 
Delta are listed below: 

1. Delta may be called by the following means: 

a. To load and execute a program under Delta, give 
the TEL command 

RUN rom UNDER DELTA 

b. To execute a load module under Delta, give the 
TEL command 

START lmn UNDER DELTA 

c. To call Delta aftera program has already started 
executing, strike the CONTROL and Y keys si­
multaneously to return to TEL. Then give the TEL 
command DELTA. 



d. To call Delta to write and check a short program, 
give the TEL command DELTA. 

2. Symbol tables can be manipulated at load time (see 
Chapter 8). 

3. The following new commands are available: 

a. Symbol table control 

;U Display undefined symbols. 

;KI Remove current internal symbol tables. 

;KG Remove global symbol table and any 
symbols defined at terminal. 

b. Execution control 

Execute current instruction and display 
next one. 

c. Memory searching and modification 

el,e2;W Store e2 through mask in loca­
tions that match e 1 through 
the mask •. 

d. Breakpoint control (data and transfer) 

e,r,val,m;DR Data breakpoint whenever 
contents of e, masked by m, 
are in relation r to val (r op­
tions are LS, EQ, GR, GQ, 
NQ, LQ). 

e,r,val,m;DTr Same as above in trace mode. 

n;D Remove nth data breakpoint. 

O;D Remove al I data breakpoints. 

;D Display list of active data 
breakpoints. 

;Y Set transfer breakpoint mode. 

;YT Same as above in trace mode. 

O;Y Turn off transfer breakpoint 
mode. 

loc;Y 

loc;YT 

l,m,n,o;YS 

l,m,n,o;YR 

;YR 

;YD 

loc,opt 1, --, 

Lopt2;Y 

Start transfer breakpoint exe­
cution mode at loc. 

Same as above in trace mode. 

Set entries in SAT. 

Release entries in SAT. 

Release all entries in SAT. 

Display SAT. 

Set transfer breakpoints as 
follows: 

optl =O all branches except 
those in SAT. 

optl =l only SAT branches. 
opt2 =O no trace on BIR/BDR. 
opt2=1 trace BIR/BDR. 

e. Printer output 

;J 

a,b;O 

Divert DELTA output to line 
printer. 

Print hex dump from a to b on line 
printer. A header for the dump 
may be appended to 0. 

f. Miscellaneous 

el ,e2,v;Z Store v in memory from e 1 through 
e2. 

;RK Display addresses as CSECT type 
symbol plus any hex offset. 

CP-V BASIC AND BPM/BTM BASIC 

The fol lowing differences are completely described in 
Chapter 5 of the BASIC/Reference Manual, 90 15 46 -
Revision B or later. 

1 • Language extensions 

a. String capability 

String variables (scalars, matrices, substrings). 
String expressions. 
Character strings. 
Length and value assignments (LEN, VAL). 
Numeric-to-string conversion (STR). 
Assignment and concatenation. 
Comporison. 
1/0. 
String-to-alphanumeric constant conversion. 

b. New intrinsic functions - CSC, SEC, COT, ASN, 
ACS, HSN, HCS, HTN, LTW, DEG, RAD. 

c. CHAIN LINK statement 

2. New edit mode commands 

a. CLEAR 

ARRAYS 
STRINGS 

b. NULL 

ARRAYS 
STRINGS 
SIM VARS 

c. FILE PACK 

d. SET 

e. EXECUTE 

Appendix C 147 



3. Increased edit mode-execute mode commands 

a. Changes in BREAK-PROCEED logic 

b. Changes in direct statement capability 

(l) Smaller number of nondirect statements 
(2) Direct capability in edit mode 

CP-V COUNTERPARTS TO FERRET COMMANDS 

4. CP-V does not set ASN in the DCB to 5 if the DCB is 
assigned to a Teletype as in BTM. CP-V sets ASN 
to 3, DEVF to l, and TYPE to l 0. TYPE is not set 
unti I the DCB is opened. Prior to the opening of the 
DCB, it may contain an OPLB code or the EBCDIC 
representation of that OPLB. 

5. InCP-V, all input/output throughCOCroutines(M:UC) 
is restricted to l40characters perM:WRITEor M:READ. 

Most of the functions of the BTM FERRET subsystem can be 
accomplished withCP-V TELand PCLcommands. The FERRET 
commands and theirCP-V counterparts are listed in Table C-3. 

6. CP-Vincludes an elaborate checking algorithm for vali­
dating DCBs. Either theM:DCBprocedure or the DCBs 
in the library should be used to assure correct DCBs. 

7. No op label index assignments or DCT index assign­
ments to devices are permitted in CP-V. Rather, the 
TEXT oplabel assignment should be used, i.e., 

MISCELLANEOUS INFORMATION 

Miscellaneous differences between BTM and CP-V are 
listed below: 

l. In CP-V, read operations, through a DCB assigned to 
the NO operational label return an end-of-file code, 

2. BTM and CP-V load modules have different formats. 
Therefore, load modules currently running under BTM 
must be reformed under CP-V before they will execute 
correctly. ROMs are compatible between BTM and 
CP-V. 

M:O?EN M:EO, (DEVICE, '9T') 

not 

M:OPEN M:EO, (DEVICE, 9T) 

8. On batch ASSIGN cards, device assignments are inter­
preted as oplabel assignments, i.e., 

!ASSIGN M:Sl,(DEVICE,CRA03) 

is assumed to mean 

!ASSIGN M:Sl, (DEVICE, CR) 

3. Under BPM/BTM, X'l5' corresponds to a carriage 
return and X'25' corresponds to a line feed. Under 
CP-V, X'l5' corresponds to a line feed and X'OD' cor­
responds to a carriage return; X'25' is unassigned. 

9. Number of on-line DCBs is increased from the BTM 
limit of four to a limit constrained only by the size of 
combined DCB and buffer POOL area which must total 
less than l OK. 

Table C-3. FERRET Commands and Corresponding CP-V Commands 

FERRET Command CP-V Command Description 

~Lf!ST][acctJ _!_L C acct] Lists the specified account directory. 

~T(EST] file !L fid Tests file accessibility. -
>A(CTIVITY] file (none) Checks file activity, 
~S[T A TIS TICS] _!_ST[A TUS] Displays accounting statistics for this on-line session. 

>LOG 
)RAD 
)RADS 
XPU 
>10 
)SERV 

~S [TATIS TICS] _!_Dl[SPLA Y] Displays system load parameters. 
>N 

>D[ELETE] file _!_D[ELETE]fi le Deletes specified file. 

~C [OPY] file 11 file2 } J_C[OPY]fi~l to fid 2 
Copies file1 to file2. 

?_K~OPY] file J ,fi le2 Copies file1 to file2 retaining keys. 
?_E XAMINE]fid} 

.!_C[OPY] fid[TO ME] 
Examines a file . 

>I(NSPECT~ fid Examines a file and displays keys. 
)M[ESSAGE] text !M(ESSAGE] text Sends message to operator. 
)P[UNCH] fid \none) Punches file to paper tape. 
)G[RANULES)[(acct)] (none) Displays number of granules. 
~R[EVIEW] !PCL Lists and selectively keeps or deletes all files in account. 

::_REVIEW fid 1 (,fid2J 

148 Appendix C 



INDEX 

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in 
numerical sequence. 

2741 and Teletype differences, 12 

A 
accounting information, 8 
address resolution code, ix 
ANS COBOL, 45, 2 
APL, 45, 3 
assembling or compiling programs, 16 
assigning I/O devices and DCB parameters, 24 

B 
BASIC, 46,3 
batch job, 22, ix 
batch processing, 5 
BATCH processor, 4 
binary input, ix 
break contro I, 118 
BREAK, 11 

c 
calling processors, 23 
checkpointing on-line sessions, 24 
CIRC, 5 
COBOL, 45,2 
command summaries 

Delta, 102 
Edit, 80 
Link, 109 
PCL, 66 
TEL, 32 

command syntax notation, v111 
communications services to user programs, 116 
composing program and data files, 16 
conflicting reference, ix 
control command, ix 
CONTROL I, 10 
control key-in, ix 
CONTROL L, 9 
control message, ix 
CONTROL X, 9 
CONTROL Y, 11 
cooperative, ix 
CP-V, 1 

D 
data control block, 107, ix 
DCB, 107, ix 
debugging operations, 21 
Delta, 88, 4, 21 

calling, 88 
command delimiters, 89 
command summary, 102 
constants, 90 
conventions, 89 
correcting typing errors, 90 
error messages, 101 
executive, 101 
exiting, 88 
expressions, 90 
prerequisites, 88 
program exits, 102 
saving program modifications, 89 
special symbols, 90 
writing programs with, 101 

Delta commands 
breakpoints, 95 
display modes, 100 
execution control, 94 
expression evaluation, 90 
LINE FEED, 92 
memory cell opening and display, 91 
memory clearing, 100 
memory modification, 92 
memory search and modification, 99 
printer output, 100 
RETURN, 92 
symbol table control, 93 
TAB, 91, 92 
;A, 100 
;B, 95 
;D, 95 
;G, 94 
;J, 100 
;K, 93 
;L, 99 
;M, 99 
;N, 99 
;O, 100 
;P, 94 
;R, 100 
;RK, 100 
;S, 93 
;T, 95 
;U, 93 
;W, 99 
;X, 94 
;Y, 95 
;Z, 100 
I, 93 

Index 149 



Note: For each entry in this index, the number of the most ,sign(ficant page is listed first. Any pages thereafter are listed in 
numerical sequence. 

<>, 93 
=, 90 
/, 91 
\, 91 
), 94 
f, 92 

DEVICE DCB CAL, 118 

E 

EASY, 47, 1 
echoing characters, 8 
Edit, 68, 1 

break function, 69 
calling, 68 
command structure, 69 
command summary, 80 
file commands, 69 
intrarecord editing commands, 76 
messages, 80 
multiline records, 68 
record editing commands, 72 
record formats, 68 

Edit commands 
BP, 72 
BUILD, 70 
CM, 76 
COPY, 70 
CR, 71 
D, 77 
DE, 73 
DELETE, 70 
E, 78 
EDIT, 70 
END, 71 
F, 78 
FD, 75 
FS, 75 
FT, 75 
IN, 73 
IS, 73 
JU, 79 
L, 78 
MD, 74 
MERGE, 71 
MK, 75 
NO, 79 
0, 78 
P, 77 
R, 78 
RF, 80 
RN, 76 
S, 77 
SE, 76 
SS, 76 
ST, 76 
TA, 71 
TC, 74 

150 Index 

TS; 74, 79 
TY, 73,79 

end actions, 20 
entering blank lines, 9 
entering programs from terminal, 18 
erasing characters, 8 
erasing the current input line, 9 
error and abnormal control, 117 
error displays, 20 
error handling and end actions, 17 
error messages 

Delta, 101 
Edit, 80 
Link, 109 
PCL, 63 
TEL, 32 

ESC (, 10 
ESC ), 10 
ESC C, 10 
ESC E, 8 
ESC ESC 11 
ESC I, 10 
ESC LINE FEED, 9 
ESC Q, 11 
ESC R, 9 
ESC RET, 9 
ESC RUBOUT, 8 
ESC S, 10 
ESC T, 9 
ESC U, 10 
ESC X, 9 
ESC Y, 11 
Extended FORTRAN IV, 2 
extension of output files, 17 
external reference, ix 

F 
FDP, 22, 3 
file back-up, 22 
file directory, listing, 28 
file extension, ix 
FLAG, 3 
FORTRAN Debug Package, 22, 3 
FORTRAN IV, 42, 2 
FORTRAN load and go, . 3 
FPT, ix 
function parameter tab le, ix 

6 
ghost job, ix 
global symbol, ix 
global symbols, 108 
GO file, ix 



Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in 
numeriCal sequence. 

H 
half-duplex paper tape reading mode, 12 

initiating and ending on-line sessions, 6 
initiating execution, 20 
internal symbol tables, 19 
internal symbol, ix 
internal symbols, 108 
interrupting CP-V, 11 
interrupting, resuming, and terminating execution, 23 

J 
JIT, ix 
job information table, ix 
job step, ix 

K 
key-in, ix 
key, ix 

L 
language proce$Sors, 40 
LDEV command options, 29 
libraries, 108 

searching, 19 
lineation, 9 
Link, 107,4 

command summary, 109 
error messages, 109 

Link commands 
LINK, 109 
RUN, 109 

linking loader, ix 
linking object programs, 18 
LM, 18, ix 
load map, ix 
load module structure, 107 
load module symbol tables, 19 
load module, ix 
loading program, 20 
LOC RET, 9 
log-on, 6 
logging off, 24 
logical device, ix 

M 
M:CAC, 114 
M:CT, 112 
M:ERR, 115 
M:EXIT, 114 
M:INT, 115 
M:KEYIN, 115 
M:PC, 112 
M:TS, 114 
M:TYPE, 115 
M:XXX, 115 
MAILBOX file, 8 
MANAGE, 4 
messages to the operator, 32 
Meta-Symbol, 40, 2 
modifying logical device definitions, 26 
monitor escape, 118 
monitor services to user programs, 112 
monitor, ix 

0 
object language, ix 
object module, ix 
on-line job, x 
on-line user status, 28 
operational label, x 
option, x 
outputs, controlling, 17 

p 

page control and headings, 118 
pagination, 9 
paper tape input, 11 
parameter presence indicator, x 
password, changing, 24 
PCL, 48,4 

account COPY command, 56 
break function, 50 
capabilities, 50 
command summary, 66 
control file COPY command, 58 
conventions, 48 
error codes, 63 
error messages, 63 
file and reel identification, 49 
file COPY command, 50 
macro-definition facility, 89 
PCL identification codes, 48 

PC L commands 
COPY, 50 
COPYALL, 56 
COPYSTD, 58 
DELETE, 59 

Index 151 



Note: For each entry in this index, the number of the most significant page is fisted first. Any pagE!s thereafter are listed in 
numerical sequence. 

DELETEALL, 59 
END, 63 
LIST, 60 
REMOVE, 63 
REVIEW, 62 
REW, 63 
SPE, 63 
SPF, 63 
TABS, 63 
WEOF, 63 

PCL COPY command 
ANS tape options, 54 
assignment of accounts, 54 
data codes, 52 
data encoding, 52 
data formats, 52 
expiration option, 55 
extensions using ASSIGN or SET, 55 
mode codes, 52 
record selection, 55 
record sequencing, 53 
valid option combinations, 55 

Peripheral Conversion Language (see PCL), 48 
physical device, x 
printing output, 32 
procedures, 112 

on-line and batch differences, 114 
program product, x 
prompt characters, 8, x 
public libraries, 108,x 
punching output, 32 

R 
read operations, 116 
reentrant, x 
relative allocation, x 
relocatable object module, x 
remote processing, 5 
resident program, x 
ROM, 18,x 
RUBOUT, 8 

s 
secondary storage, x 
SET command, 25 

DCB assignment codes, 26 
device options, 27 
file options, 27 

SET DCB CAL, 118 
shared processor, x 
simulated tab stops, 30 
simulation language, 4 
SL-1, 4 
source language, x 

152 Index 

special shared processor, x 
specific al location, x 
static core module, x 
symbiont, x 
symbol tables, 19, 108 
symbolic input, x 
symbolic name, x 
symbols, 108 
syntax notation, viii 
system library, 108, x 
system load parameters, 30 
system register, x 

T 
tab simulation, 120, 9, 10 
task control block, x 
TCB, x 
TEL, 15, l 

batch limitations, 32 
command summary, 30 
error messages, 30 

TEL commands 
APL, 45 
BACKUP, 22 
BASIC, 46 
BATCH, 22 
BUILD, 16 
BYE, 24 
CANCEL, 23 
COBOL, 16,45 
COMMENT, 17 
COPY, 22 
DELETE, 22 
DELTA, 21 
DISPLAY, 30 
DONT COMMENT, 17 
DONT LIST, 17 
DONT OUTPUT, 17 
EASY, 47 
EDIT, 16,70 
FORT4, 16,42 
GET, 24 
JOB, 23 
L, 28 
LDEV, 26 
LINK, 18 
LIST, 17 
lmn, 20 
MESSAGE, 32 
META, 16,40 
OFF, 24 
OUTPUT, 17 
PASSWORD, 24 
PLATEN, 31 
PRINT, 32 
RESET, 25 
RESTORE, 24 



Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in 
numerical sequence. 

RUN, 21 
SAVE, 24 
SET, 25 
START, 21 
STATUS, 28 
TERMINAL, 31 
TERMINAL STATUS, 31 

Terminal Executive Language (see TEL}, 15 
terminal operations, 6 
terminal type, changing, 31 
terminals, 6 
terminating I ines, 9 
time-sharing, 1 
transparent mode, 120 

typing ahead, 9 
typing commands, 10 
typing I ines, 8 

u 
unsatisfied reference, x 

w 
write operations, 116 

Index 153 






