
Xerox Control Program-Five (CP-V)
Xerox 580 and Sigma 6/7/9 Computers

Time-Sharing
User's Guide

Xerox Control Program-Five (CP-V)

© Xerox Corporation, 1971,1972, 1975

Xerox 560 and Sigma 6/7/9 Computers

Time-Sharing

User's Guide

90 16 92D
90 16 92D-1
90 16 92D-2
90 16 92D-3
90 16 92D-4

December 1975

XEROX

Printed in U.S.A.

REVISION

Information contained within Xerox Control Program-Five (CP-V)/TS User's Guide, Publication Number 90 06 920
(dated June 1973) with revised pages labeled 90 16 920-1(2/74), 90 16920-2(10/74), and 90 16920-3(5/75) is
modified by information contained in revised replacement pages labeled 90 16 920-4(12/75), Vertical I ines in outer
margins of pages labeled 90 16 920-4(12/75) indicate changes in text to reflect the 000 version of CP-V. Vertical
lines on other pages indicate changes from a prior revision.

RELATED PUBLICATIONS

Xerox Sigma 6 Computer/Reference Manual

Xerox Sigma 7 Computer/Reference Manual

Xerox Sigma 9 Computer/Reference Manual

Xerox 560 Computer/Reference Manual

Xerox Control Program-Five (CP-V)/TS Reference Manual

Xerox Control Program-Five (CP-V)/SM Reference Manual

Xerox Control Program-Five (CP-V)/OPS Reference Manual

Xerox Control Program-Five (CP-V)/BP Reference Manual

Xerox Control Program-Five (CP-V)/RP Reference Manual

Xerox Control Program-Five (CP-V)/Sp Reference Manual

Xerox Control Program-Five (CP-V)/TP Reference Manual

Xerox Control Program-Five (CP-V)/Common Index

Xerox EASy/tN, OPS Reference Manual

Xerox Meta-Symbol/LN, OPS Reference Manual

Xerox BASIC/LN, OPS Reference Manual

Xerox APL/LN, OPS Reference Manual

Xerox Sort-Merge/Reference Manual

Xerox Manage/Reference Manual

Xerox FORTRAN Debug Package (FOP)/Reference Manual

Xerox Extended FORTRAN IV/LN Reference Manual

Xerox Extended FORTRAN IV lOPS Reference Manual

Xerox FLAG/Reference Manual

Xerox ANS COBOL/LN Reference Manual

Xerox ANS C OBOL/OPS Reference Manual

Xerox ANS COBOL/On-Line Debugger Reference Manual

Xerox 1400 Series Simulator/Reference Manual

Publication No.

90 17 13

900950

90 1733

9030 76

900907

90 16 74

90 16 75

90 1764

9030 26

90 31 13

90 31 12

903080

90 18 73

90 09 52

90 15 46

90 19 31

901199

90 16 10

90 1677

90 0956

901143

90 1654

90 1500

90 15 01

90 30 60

90 15 02

;Aanual_c;_~ntent Codes: BP - batch processing, LN - language, OPS - operations, RP - remote processing,
RT - real-time, SM - system management, SP - system programming, TP - transaction
processing, TS - time-sharing, UT - util ities.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some feature.
may depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their Xerox sales representative
for details.

ii 90 16 920-4(12/75)

CONTENTS

PREFACE vi 6. LOADING AND EXECUTING OBJECT
PROGRAMS 57

COMMAND SYNTAX NOTATION vii LINK Processor 57
RUN Command 57
LINK Command 58

l. INTRODUCTION START Command 59

Control Program-Five _____
Scope of this Manual 7. DEBUGGING USER PROGRAMS 61
Terminal Executive Language_

Assembly Language Debugging (Delta) 61
Executing in Debug Mode 61

2. LOGGING ON AND OFF 4 Using Delta in Nondebug Mode 63
Using Delta to Write Programs 65

Dial ing the Computer 4 FORTRAN Debugging (FDP) 66
Logging On and Off 4
PASSWORD Command 6

8. EXECUTING USER PROGRAMS 72

3. TERMINAL INTERFACE 9

Introduction 9
9. GETTING IN AND OUT OF PROCESSORS 76

Editing of Terminal Input ___ 9
General 76 TERMINAL Command ___ 10

PLATE N Command 10
BREAK, CONTROL Y, ESC Y, and ESC ESC __ 76
QUIT and CONTINUE Commands 78

TABS Command 13 Program Aborts 80

4. MANIPULATING FILES 15
10. ASSIGNING DCBs 82

Files in CP-V 15
Edit 17 Data Control Blocks 82

How Edit Works 17 Means of Fi Ie/Device Assignment 82
File Editing Commands ___ 17 Standard System DCBs 82
Record Editing Commands __ 18 Assign/Merge Table 83
Intrarecord Command Usage 26 OUTPUT, LIST, and COMMENT Commands 83
TEL Editing Commands vs. Edit Commands __ 29 SET Command 85

PCL 29 General Usage Rules 87
PC L Comm(mds 30 BASIC Processor Requirements 88

5. USING LANGUAGE PROCESSORS 36
1l. CONTROLLING OUTPUT 89

Introduction 36
General 89

BASIC 36
Program Building, Editing, and Execution __ 36

Discontinuing and Resuming Standard

Program Saving, Loading, and Renaming 38
Outputs 89

PRINT Command 91
Additional Editing Facilities 39
Temporary Saving, RenaminH, and

Renumbering of Current Program 40
Direct Statement Execution and Desk- 12. SAVING/RESTORING CORE IMAGES

Calculator Mode ___ 42 AND FILES 92
Abbreviations of BASIC Command Verbs 44

FORTRAN IV (FORT4) 45 General 92
Controlling the Compilation Process 45 SAVE and GET Commands 92

COBOL 49 BAC KUP Command 95
Meta-Symbol (META) _____ 51 COpy ALL and COpy Commands 96
APL 53 Saving on Tape 96

iLi

13. SUBMITTING BATCH JOBS 99 EXAMPLES

BATCH Command 99 l. Logging On and Off 5
CANCEL Command 100

2. Logging On with a Wrong Account Number __
JOB Command 100

6

3. Inabi I ity to Log On Due to Error in
Logon File 6

14. COMMUNICATION WITH THE OPERATOR 101
4. Setting a Password 7

MESSAGE Command 101 5. Logging On with Password and then Cancelling
Messages from the Operator 101 Password 7

INDEX 119
6. Setting a Password and Suppressing Its

Printing 8

7. Making Corrections to TEL Commands 9

8. Use of TERMINAL Command 10

9. Using PLATE N Command to Change Page
APPENDIXES Width 11

A. TEL COMMAND SUMMARY 103
10. Using PLATEN Command to Change Page

Length 12
B. FILE IDENTIFIERS AND THEIR PARTS 108

1l. Using the TABS Command 13
C. SET COMMAND CODES 109

12. Using EDIT to Bui Id and Display a
D. LINK AND RU N COMMAND CODES 112 Source Fi Ie 18

E. SPECIAL TERMINAL KEYS 113 13. Using EDIT to Modify a Source Fi Ie 20

F. USE OF THE 2741 TERMINAL 114 14. Using String-Search Commands and Local-

Control Characters 114
Carriage- Return 25

Logging On 115 15. Using Intrarecord Commands 27
Suppressing Lowercase Letters 115

Keyed-File Update and Display,
Correcting Typing Errors 116

16. Using
PCL COpy 31

Using Tabulation 117
17. Keyed-Fi Ie Update and Display (Further

Examples) 33

18. Building and Concatenating Unkeyed Files __ 34

FIGURES 19. BASIC Program Building, Editing, and
Execution 37

l. Teletype Keyboard 3 20. Program Modification, Saving, and

2. Typical Dialing Unit 4
Reloading 39

2l. Temporary Fi I ing, Reloading, and Renaming __ 41

22. Use of Direct Statements - "Desk-Calculator
Mode" 43

TABLES 23. Using the EXECUTE Command 44

A-l. TE L Command Summary 103
24. Compiling and Executing FORTRAN Input

from a Fi Ie 46
B-l. Fi Ie Identifiers and Their Parts 108

25. Submitting Terminal Input for FORTRAN
C-l. DCB Assignment Codes - SET Command 109 Compi lation 48

C-2. Device Options - SET Command 109 26. Bui Iding and Executing a COBOL Program __ 50

C-3. Fi Ie Options - SET Command 110 27. Using META to Assemble Terminal Input 52

D-l. library Search Codes 112 28. Using APL in the Desk Calculator Mode 53

D-2. Error Displays n2 29. Using APL in the Function Definition and

E-l. Special Terminal Keys 113
Function Editing Modes 54

F-l. Summary of Differences between
30. Using the RUN Command 57

2741 and Teletype Services 114 3l. Using the LINK Command 59

iv

32. Using the START Command ___ 59 44. Setting DCB Assignments and Parameters
with the SET Command 87

33. Assembling and loading in the DElbug Mode __ 62

34. Calling Delta after Assembling and
45. Discontinuing and Resuming Output by OUTPUT,

LIST, and COMMENT Commands 89
Executing in Nondebug Mode 63

35. Using Delta to Wri'te a Program 65
46. Causing Printer or Punch Output to be Queued

by Issuing a PRINT Command 91

36. Use of FDP ON and PRINT Commands 67 47. Saving a Core Image of a Program (SAVE
37. Further Uses of FDP Commands ___ 69 Command) 92

38. Using Load-Module-Name as Command 48. Restoring a Checkpointed Program (GET
Verb (Meta-Symbol Program) 73 Command) 95

39. Using Load-Modu le- Name as Command 49. Saving a File on the Standard System

Verb (FORTRAN Program) ____ 74 Backup Tape 95

40. Using CONTROL Y and the BREAK Key 76 50. Transfer of All Fi les in User's Account to
labeled Tape 96

4l. Interrupting, Continuing, and Quitting 51. Submitting a Job via BATCH Subsystem
Execution 78 for Execution 99

42. System Handling of an Abort during
52. Using the JOB Command 100

Execution 80

43. Controlling the Destination of Processor
53. Sending a Message to the Operator 101

Output 83 54. Receiving a Message from the Operator 101

v

vi

PREfACE

This manual describes how to use the various time-sharing features of CP-V. It presents an introductory subset of the
features in a format that allows the user to learn the material by using the features at a terminal as he reads through
the manual. A closely related manual, the CP-V Time-Sharing Reference Manual, 900907, is the principal source
of information for the time-sharing features of CP-V. It defines the rules for using the Terminal Executive Language
and other on-line processors.

Manuals describing other features of CP-V are outlined below:

• The CP-V Batch Reference Manual, 90 17 64, is the principal source of reference information for the batch pro
cessing features of CP-V (i .e., job control commands, system procedures, I/o procedures, program loading and
execution, debugging aids, and service processors).

• The CP-V Remote Processing Reference Manual, 90 30 26, is the principal source of information about the re
mote processing features of CP-V. All information about remote processing for all computer personnel (on-line
and batch users, system managers, remote site operators, and central site operators) is included in the manual.

o The CP-V Transaction Processing Reference Manual, 9031 12, provides information about dynamically modify
ing and querying a central database in a transaction processing environment. The manual is addressed to system
managers, database administrators, applications programmers, and computer operators.

• The CP-V System Programming Reference Manua I, 90 31 13, describes the CP-V features that are designed to
aid the system programmer in the development, maintenance, and modification of the CP-V system.

• The CP-V System Management Reference Manual, 90 16 74, is the principal source of reference information
for the system management features of CP-V. It defines the rules for generating a CP-V system (SYSGEN),
authorizing users, maintaining user accounting records, maintaining the fi Ie system, monitoring system per
formance, and other related functions.

• The CP-V Operations Reference Manual, 90 16 75, is the principal source of reference information for CP-V
computer operators. It defines the .rules for operator communication (i. e., key-ins and messages), sys
tem start-up and initialization, job and system control, peripheral device handling, recovery and fi Ie
preservation.

• The CP-V Common Index (90 30 80) is an index to all of the above CP-V manuals.

Information for the language and application processors that operate under CP-V is also described in separate man
uals. These manuals are listed on the Related Publications page of this manual.

90 16 920-2(10/74)

COMMAND SYNTAX NOTATION

Notation conventions used in c:ommand specifications and examples throughout this manual are I isted below.

Notation

lowercase letters

CAPITAL LETTERS

~]

{}

Numbers and
special characters

Subscripts

Superscripts

Underscore

Description

Lowercase letters identify an element that must be replaced with a user
selected value.

CRndd could be entered as CRA03.

Capital letters must be entered as shown for input, and will be printed as shown
in output.

DPndd means "enter DP followed by the values for ndd ".

An element inside brackets is optional. Several elements placed one under the
other inside a pair of brackets means that the user may select anyone or none
of those elements.

[KEYM] means the term II KEYM II may be entered.

Elements placed one under the other inside a pair of braces identify a required
choice.

{~} means that either the letter A or the value of id must be entered.

The horizontal ell ipsis indicates that a previous bracketed element may be
repeated, or that elements have been om i tted.

name [,name] • • • means that one or more name va lues may be entered,
with a comma inserted between each name value.

The vertical ellipsis indicates that commands or instructions have been
omitted.

MASK 2 DATA,2 Xil EFI

BYTE DATA,3 BA(L(59))

means that there are one or more statements
omitted between the two DATA directives.

Numbers that appear on the line (i .e., not subscripts), special symbols, and
punctuation marks other than dotted lines, brackets, braces, and underlines
appear as shown in output messages and must be entered as shown when input.

(value) means that the proper value must be entered enclosed in
parentheses; e.g., (234).

Subscripts indicate a first, second, etc., representation of a parameter that
has a different value for each occurrence.

sysidl,sysid2,sysid3 means that three successive values for sysid should
be entered, separated by commas.

Supercripts indicate shift keys to be used in combination with terminal keys.
c is control shift, and s is case shift.

L cs means press the control and case shift (CONTROL and SHIFT) and
the L key.

All terminal output is underscored; terminal input is not.

lRU N means that the exclamation point was sent to the terminal, but RU N
was typed by the terminal user.

These symbols indicate that an ESC (@)), carriage return (@)), or line feed (0)
character has been sent.

lEDIT @) means that, after typing EDIT, a carriage return character has
been sent.

vii

1. INTRODUCTION

~ONTROL PROGRAM-FIVE

Control Program-Five (CP-V) is 01 genera I purpose system that operates on a Sigma 6, 7, 9 or Xerox 560 computer
and a variety of peripheral devices. CP-V provides for five concurrent modes of operation:

• Time-sharing.

• Mu Itiprogrammed batch processing.

• Remote processing.

• Real-time.

• Transaction processing

SCOPE OF THIS MANUAL

This manual is designed as a basic guide for using CP-V in the time-sharing mode only. It is not intended as a guide
to "sophisticated" usage, nor as a complete reference to TE l and other processors. Please refer to CP-V ITS Refer
ence Manual, 900907, and applicable language reference manuals for complete command formats and descriptions.
However, Appendix A of this manual presents a summary of TEL commands in reference format.

The command formats shown in the text are not necessarily complete, as for example in the case of PCl COPY.
Only the more commonly used forms are given and explained. Also, knowledge of the programming languages avai 1-
able under CP-V is required for full understanding of this manual.

The examples throughout this manual are written for Teletype® terminals (see Figure 1 for layout of a typical key
board). 2741 terminal users should read Appendix F, "Use of the 2741 Terminal", before reading further in the manual.

TERMINAL EXECUTIVE LANGUAGE

The Terminal Executive language (TEL) is the on-line command language for CP-V, a concise natural language for
performing on-line functions and calling on-line processors. It also provides information services, such as account
ing charges and status of available system resources.

Some of the functions performed as the result of TEL commands are:

• Building a file.

• Initiating a processor.

• loading and executing a program ..

• Quitting or continuing an interrupted processor.

• Copying a fi Ie.

• Deleting a file.

• Controlling output.

• Setting IDCB assignments.

• Submitting batch jobs.

• Checking the status of Ibatch jobs.

• Saving and restoring files.

• Queuing output for symbiont devices.

®Registered trademark of the Teletype Corporation.

90 16 92D-4(12/75} Introduction

2

• Setting tab stops for terminal I/O.

• Controll ing the terminal interface (e.g., page width and length).

• Setti ng the log-on password.

• Communicating with the operator.

On-line processors available to the user through TEL include

COBOL

FORT4

META

AP

BASIC

APL

FLAG

Edit

PCL

Delta

FDP

COBOL On-line
Debugger

link

LYNX

Batch

Show

ANS COBOl.

Extended version of FORTRAN IV.

Assembler with powerful procedure (macro) capability: Meta-Symbol.

Assembler which permits programs to be written in segments and to contain command and
functi on proced ures.

Processor for creating, executing, and maintaining programs written in a simple mathe
matical language.

Processor for interactive problem solving with a minimum of programming effort.

Fast "Ioad and go" FORTRAN compiler.

line/text editor.

Language for copying and deleting files, listing directories, and manipulating tapes.

Debugging processor used primarily for assembly-language programs.

Debugging package for FORTRAN programs.

Debugging package for COBOL programs.

Processor that constructs an executable program (load module) from object-program
modules.

Processor that combines the capabilities of link and the batch load processor.

Processor that submits a batch job file to the batch job stream.

Processor that displays the user1s system parameters.

Processors are usually called"explicitly by name but may also be called implicitly by certain TEL commands. For
example:

BUILD Calls Edit to build a file.

COpy Calls PCL to copy files.

RUN Calls link to link a program and causes the program to be loaded and executed.

When a processor is called in this manner, control returns to TEL (rather than to the called processor) immediately
after execution of the command.

Terminal EXecutive Language 90 16 920-4(12/75)

~
(I)

3
::::s
c

~
(I)
o
C
-to

~.

r
C
::::s co
c
c

co
(I)

O· 0' OOOYO 0000000-12 3 4 5 6 7 8 9 0 : -

IT] These keys are missing on some models.

m This key is positioned elsewhere on some models.

(uS) (NUL)

t.:'\
\::J

O·~ '~

OOOG
SPACE BAR

1

ITJ This is interpreted as I (OR) on Model 7015.

[IJ This is interpreted as -, (NOT) on Model 7015.

Figure 1. Teletype Keyboard

2. LOGGING ON AND OFF

DIALING THE COMPUTER

To establish connection with the computer, proceed as follows:

1. Turn on power switch for terminal and for acoustical coupler (or II modemll), as necessary.

2. Pick up telephone handset, wait for dial tone, and dial computer. A high-pitched tone will be heard
if a communication line is available.

3. Place handset on acoustic coupler (see Figure 2).

TEL (Terminal Executive Language) now responds with the following message:

XEROX CP-V AT YOUR SERVICE

ON AT (time and date)

LOGON PLEASE:

You can now log onto the system (provided you have been enrolled on the system by the system manager).

LOGGING ON AND OFF

To log on, you must have an account number, a name, and possibly a password. The account is your billing
number and the name is your personal, or group identification. Both are assigned by the system manager.
Password is an account-protection feature that is assigned either by the system manager or by yourself {see
PASSWORD Command, below}. It can be modified periodically for security purposes.

Upon receipt of the message LOGON PLEASE:, enter your account, name, and password, in that order, separated
by commas. The password and preceding comma are omitted if no password has been assigned.

Figure 2. Typical Dialing Unit

4 Logging On and Off

Account number and password rnay each be from one to eight characters in length. The name may consist of one to
12 characters. None of the following characters may be used in the user name, account, or password:

I,;<>./=?

and all control characters acted upon by the COCo

The graphic representation of certain special characters, such as the left arrow, is terminal-device dependent, as is
the availabil ity of the lowercase alphabetics. The character set shown above should be regarded as representative
only in this respect.

For terminals operated in indirect printing mode, character echoing by the system is normally on but can be turned off
{e. g., to suppress printing of passwords or other security-related information} by striking the @ E keys. Striking
the@) E keys a second time turns echoing back on. For terminal units operated in direct printing mode, character
echoing by the system must be turned off, as above, to suppress dupl icate printing of characters.

It may not always be possible to log on. If an error prevents the reading of the logon file, the message UNRECOV
ERABLE I/O ON RAD, or ABNORMAL ERROR ON LOGON FILE will be typed. Whenever you are unable to log
on, start over by striking the BREAK key and try again. The system tries five times to log you on before dis
missing you.

If a MAILBOX file (a message file) exists at log-on time, the message CHECK DC/MAILBOX will appear. You may
examine this MAILBOX file by copying it to your terminal as follows:

! COpy MAILBOX e

(The underscored exel amation mark is the "prompt character II issued by TE L.)

Example 1. Logging On and Off.

XEROX CP-V AT YOUR SERVICE

ON AT 12:30 MAR 12, '75

LOGON PLEASE: 2232,HALL ,8

12 :30 03/12/75 2232 15-9llJ

!OFF e

CPU .0124 CON :01 INT 2 CRG 10

The user dia Is the computer.

The system identifies itself, states the time and date,
and requests that the user log on.

In response, the user types in his account number (2232)
and name (HALL). He does not use a password be-
cause the system manager has not assigned him one.

A page heading is printed by the system; the items of
Information in the heading are, in order: time, date,
account number, two internal identifiers, and
page number (enclosed in square brackets).

The Terminal Executive types its prompt character (!)
indicating that the system is ready to process a TEL
command. Since this was just an experiment for the
user, he logs off.

Summary of accounting information for session.

In Example 1, the user used. 0124 minutes of central processor time (CPU =.0124); he was connected to the terminal
(from dialing up to end of accounting summary) .01 hour (CON = :01); he interacted with the system twice
(INT = 2), logging on and the OFF command. His charge was 10 charge units, an installation-dependent value.

90 16 920-4(12/75) Logging On and Off 5

Example 2. Logging On with a Wrong Account Number

XEROX CP-V AT YOUR SERVICE

ON AT 02:30 MAR 12, '75

LOGON PLEASE: 223L,HALL ~

ACCOUNT/ID 223L/HALL ?

LOGON PLEASE: 2232,HALL E9

-page heading-

!OFF 8

-accounting summary-

Example 3. Inability to log On Due to Error in Logon File

XEROX CP-V AT YOUR SERVICE

ON AT 12:42 MAR 17, '75

LOGON PLEASE: C37-105,HALLE9

The user tries to log on.

ABNORMAL ERROR ON LOGON FILE

SORRY,UNABLE TO LOG YOU ON

The system cannot log him on and so informs him.

CPU = .0024 CON = :01 INT = 1 CRG = 10

The accounting summary is presented.

XEROX CP-V AT YOUR SERVICE

The system repeats its logon sequence.

ON AT 12:43 MAR 17, '75

LOGON PLEASE: C37-105 t HALL ~

This time the user's logon is accepted.

-page heading-

10FFe
He now logs off.

CPU - .0024 CON = :01 INT - 2 CRG - 15

PASSWORD COMMAND

The user dials the computer.

He types in the right name but the wrong account number.

The system questions the incorrect account number, and
asks the user to log on again, which he does.

He then logs off.

The purpose of the logon password is to protect your resources and files by preventing illicit use of your name and
account number. The PASSWORD command allows you to change your password frequently to make it difficult for

6 PASSWORD Command

anyone else to know what it is. You can also use the command to cancel your password if you wish. The format of
the command is

PASSWORD, old -password, new-password

where old-password is the current password associated with the user and new-password is the password to be asso
ciated with the user's name arud account. To assign a password when none exists already, the format of the com
mand is

PASSWORD" new-password

To cancel the current password, the command format is

PASSWORD, old-password,

It is important to remember your password because only the system manager is able to establ ish a new password when
the old one is forgotten.

Example 4. Setting a Password

XEROX CP-V AT YOUR SERVICE

ON AT 12:49 MAR 17, '75

LOGON PLEASE: 2232 ,HALL ED

The user logs on, wi th no password set.

lPASSWORD"SECRET ~0

PASSWORD CHANGE SUCCESSFUL

The Terminal Executive types its prompt character (!) indicating it is ready to process a TEL command.
The user sets his password to SECRET and must now use it whenever logging on until he or the system
manager changes it.

-page heading-

lOFF @;

The Terminal Executive types its prompt character and the user logs off. Password SECRET remains set.

-accounting summary-

Example 5. logging On with Password and then Cancelling Password

XEROX CP-V AT YOUR SERVICE

ON AT 14:45 MAR 17, '75

LOGON PLEASE: 2232,HALL @)

The user logs on but forgets to use his new password.

PASSWORD ?

The system indicates that the password was not entered.

LOGON PLEASE: 2232,HALL,SECERT.E0

The user logs on with an incorrect password.

PASSWORD SECRET?

The system indicates that the password is invalid.

90 16 92D-4(12/75) PASSWORD Command 7

8

LOGON PLEASE: 2232, HALL, SECRET @

The user now logs on with the correct password.

-page heading-

lPASSWORD.SECRET.

He cancels his password by typing the PASSWORD with the old password and the required commas.

PASSWORD CHANGE SUCCESSFUL

lOFF @l

He then logs off. Next time he logs on, no password wi II be required.

-accounting summary-

Example 6. Setting a Password and Suppressing Its Printing

XEROX CP-V AT YOUR SERVICE

ON AT 09:05 MAR 20, '75

LOGON PLEASE: 2232,HALL @

The user logs on.

-page heading-

l PASSWORD @ E @ E @)

The Terminal Executive types its prompt character (J) indicating it is ready to process a TEL command.
The user sets his password with the remainder of the PASSWORD command but suppresses its printing by
typing@ E before the old-password (the first E is not actually echoed), then turns echoing on again.
He must now use the password he has just set whenever logging on, until he or the system manager
changes it. Any sequence of 1-8 permissible characters may be used as a password.

PASSWORD CHANGE SUCCESSFUL

The Terminal Executive types its prompt character indicating it is again ready for a TEL command.
The user logs off. The next time he logs on, he must use the password just set.

-accounting summary-

PASSWORD ~ommand 90 16 92D-4(12/75)

3. TERMINAL INTERFACE

INTRODUCTION

This chapter describes methods for correcting, modifying, and deleting terminal input and the use of the TERMINAL,
PLATEN, and TABS commands.

EDITING OF TERMINAL INPUT

A line of tenninal input may bE~ corrected, modified, or deleted, before the line is released to the system (with @)).
This may be done by way of either character or line deletion:

1. Editing by Character Deletion: On detecting a typing error within a few characters of the point of error,
you may delete the last characters typed by typing a corresponding number of rubout 9 characters (echoed
with a \ character), and continuing the line from the (deleted) point of error. (Any n successive 9 char
acters effectively del,ete the n successive characters immediately preceding the firstS character.)

2. Editing by Line Deletion: To delete a complete line of input - before giving a carriage return, strike the
ESCAPEandXk~ys or simultaneouslydepresstheCONTROLandXkeys(@X or Xc in conventional notation}.
The system responds with a - (I eft arrow), effectively deletes the I ine, gives a carriage-return;1 ine-feed,
and positions the carriage to the beginning of input. (The previous prompt character, if any, is notrepeated.)
The input can then be, repeated in correct form. The Xc command will delete not only the current input
line, but all lines typed ahead and all pending output.

These editing features apply to any untransmitted I ine of terminal input, under TEL or any other processor except Delta.

Example 7. Making Corrections to TEL Commands

XEROX CP-V AT YOUR SERV:~~
ON AT 15:30 MAR 22,'71
LOGON PLEASE: 2232 ,HALK\L @)

Whi Ie logging on, the user hits a K instead of an L. To delete K, he strikes the rubout key which echoes
back to the tenninal (lS a backslash. Then he types L and completes the logon sequence. (Note that the
characters printed at the terminal are those echoed back to the terminal and are not necessarily the same
ones typed, as for example \ for 9.)

- page heading -

The user then types in a password command but notices an error (password misspelled) before striking the
carriage return key. Instead he depresses CONTROL and X simultaneously, which the system echoes
back as a left arrow (or possibly an underline). This causes the line to be cancelled and a carriage
return.

PASTWO\\\SWORD Y07@)

PASSWORD CHANGE SUCCESSFUL

The user notices sti II another error. This time he deletes three characters and then completes the
command successfully'. Note that prompt character (!) is not repeated.

lOFF @)

He then logs off.

- accounti ng summary -

Terminal Interface 9

10

TERMINAL COMMAND

The TERMINAL command is used to inform the system of the type of terminal used, and is required only if the
terminal differs from a type of terminal unit specified as standard by the system. (This information can be obtained
from the installation manager.)

Format:

TERMINAL type~algorithm]

where

type specifies the terminal type and may be any type from the list below:

33

35

37

7015

DATA [POINT]

EAPL

ESTD

EXEC[UPORT]

ME MO[REX]

SAPL

SSTD

TI

Translation

Tel etype Mode I 33

Teletype Model 35

Teletype Model 37

Xerox 7015 Keyboard Printer

Tel etype Mode I 33

IBM 2741 EBCD APL

IBM 2741 EBCD Standard

Teletype Model 33

Teletype Mode! 37

IBM 2741 Selectric APL

IBM 2741 Selectric Standard

Teletype Model 37 (TI is Texas Instrument's Model 725)

algorithm specifies the timing algorithm number for the terminal. The value may be in the range 0-7. lts
meaning is discussed in detail in the cp-v/Ts Reference Manual, 900907.

Example 8. Use of TERMINAL Command

XEROX CP-V AT YOUR SERVICE
ON AT 11:45 MAR 23,'71
LOGON PLEASE: 2232,HALL,Y07

- page head i n9 -

lTERMINAL 37 <§

Indicates a Model 37 Teletype. The system will use this information to modify response to input/
output for different types of terminals, as necessary. For the rest of the session, the Monitor recog
nizes the terminal as a Model 37 Teletype.

lOFF8

- accounti ng summary -

Editing of Terminal Input 90 16 92D-2(10/74)

PlATEN COMMAND

The PLATE N c()mmand can be! used to change the page width and/or page length for terminal input and output. The
format of the command is:

PLATEN [w] [,1]

where

w is the maximum number of characters to be written per line on the terminal. If more than w characters
are written, a line feed and carriage return character sequence is inserted to break up the output into seg
ments no longer than specified by w. If w is 11 or less, no line feed and carriage return sequence is sup
plied. In this case, the width of the line is limited only by the physical constraints of the device on which
the line is produced (up to a maximum of 140 characters). If the w field is omitted, the current width set
ting is retained.

is the number of lines per page of terminal output (exclusive of the header) and must be within the
range 0-255. If the I field is om itted, then the number of I ines per page remains unchanged. If I is set
to 11 or less, no heading is produced and the page length is unlimited. Note that a heading occupies
11 lines.

90 16 92D-3(5/75) Editing of Terminal Input 10-1

The default case when a user logs on is equivalent to PLATEN 0,0. This means that no line feed and carriage
retvrn sequence is supplied, tho,t no heading is produced, and that the page length is unlimited.

Example 9 shows how PLATE N CCIn be used to change page width. The example contains four job steps, i.e. , major
functions during a session that cCluse the invoking of processors such as EDIT, PCl, or META.

Example 9. Us.ing PLATEN Command to Change Page Width

XEROX CP-V AT YOUR SERVICE
ON AT 17:24 APR 15.'71
LOGON PLEA3E: 14777 ,HALL @)

17:24 04/15/71 14777 23-7 [1]

lBUILD TEST1 @)

1.000 1234567890123456789012345678901234567890 @)
2.000 @)

The user enters the BUILD command to build file TESTl. File building is described in detail in Chapter 4.
(This is the first job step of the session.) The @) alone on line 2.000 term inates the build operation and
control returns to TE L.

lPLATEN 20 @)

The page width is set to 20.

lCOPY TEST1 TO ME @)
12345678901234567890
12345678901234567890

File TESTl is printed at the terminal. The page width is now 20. (The COpy command, which implicitly
invokes the PCl processor, is the second job step.)

lPLATEN 39 §

The page width is set to :39.

lCOPY TESTl @)
1234567890123456789012345~7890123456789

o
Fi Ie TESTl is printed aga in but with 39 characters per line. (This COpy constitutes a third job step. Note
that the output specification TO ME is omitted. PCl assumes ME as a destination device by default.)

lPLATEN 12 @)

The page width is set to 12.

lCOPY TEST1 ~0
123456789012
345678901234
567890123456
7890

File TESTl is printed again but now has 12 characters per line. (This is the fourth and last job step.)

lOFF §

The user logs off. Note i'hat the last PLATEN command is still in effect. (However, the page width and
length is always set to the default case, equivalent to PLATEN 0,0, when a user logs on.)

CPU = .0097
CON= :03 INT
= 13 CRG =

42

Editing of Terminal Input 11

Example 10 shows how PLATEN is lIsed to change page I ength. (This example also contains four job steps.) Note
that the page-length specification refers to the number of single-spaced lines in the body of the page, i.e., exclud
ing top-of-page heading and spacing. Each line of double-spaced output, where double spacing occurs, counts as
two I ines. Therefore, if n double-spaced print I ines are desired, the page-length must be specified as nx2. Oc
casionally, only n-1 I ines, or less, will be printed due to various circumstances, e. g., an intervening single
spaced command line.

Example 10. Using PLATEN Command to Change Page Length

XEROX CP-V AT YOUR SERVICE
ON AT 17:29 APR 15, '71
LOGON PLEASE: 14777 ,HALL @)

17:30 04/15/71 14777

J..BUILD TEST2 @)

1.000 1 @)
2.000 2 @)
3.000 3 €V
4.000 4 @)
5.000 5 €V
6.000 6 @)
7.000 7 €V
8.0008€V
9.000 9 €V

10.000 10 €V
11.000 11 €V
12.000 12 €V
13.000 13 @)
14.000 14 @)
15.000 15 @)
16.000 @)

21-9 [1 J

The user builds file TEST2. (The @alone on line 16.000 terminates the build operation and control
returns to TE L.)

J..PLATEN 72,12 ®

The PLATEN command sets page width to 72 ;haracters and the length to 12 lines.

17:30 04/15/71 14777 HALL 21-9[2J

The system prints the second page heading, on overflow of newly set page length.

lCOPY TEST2 TO ME @)
1

~
1
~
2-
Q

I
§.

2-
10

11.
A copy of file TEST2 is printed at the terminal.

17:31 04/15/71 14777 21-9 [3J

The third page heading prints.

12 Editing of Terminal Input

The 12-1 ine page is sti II in effect.

CPU=.0129 CON=:05 INT 1~ CRG 55

TABS COMMAND

The TABS command is used to simulate typewriter-like tab stops for terminal input and output. TABS supplies the
tab-setting values that are to be used by the system when it encounters a 'tab character' in the input or output line.

You can then tabulate by typing I
C

(CONTROL and I), or @lI (ESCAPE followed by I), in your input wherever you
desire a tab in both the input and corresponding output. However, in order to cause tab characters to be inserted
whenever the IC or @I sequence is typed, the space-insertion mode must be turned off by typing @S (ESCAPE fol
lowed by S).

The tab settings CCIn be changed by another TABS command. Tab simulation can also be turned off, and then back
on, with the key sequence @T.

Example 11. Using the TABS Command

XEROX CP-V AT YOUR SERVICE
ON AT 17:35 APR 15.'71
LOGON PLEASE:. 14777,HALL~~

- page headi ng -

lTABS 8,22,37,45,52 @

The user sets tab-stop vailues for terminal input and output.

l@Si,<§

Space insertion mode is turned off.

! BUILD TEST3 ~0

1.000 THIS8 EXAMPLEE~ ILLUSTRATES8 USE8 OF8 TABS@
2.000 @>

File TEST3 is built using tabulation (8 = IC
or @I).

lCOPY TEST3 €V
THIS EXAMPLE ILLUSTRATES USE OF TABS

This file is printed with t'ob simulation on.

The user now turns off tab simulation with the sequence @IT.

Editing of Terminal Input 13

leopy TEST3 @
THIS EXAMPLE ILLUSTRATES USE OF TABS

,-

The file now prints with no tabbing. Note that single spaces are inserted in place of tab characters .

.!..OFF @)

- accounting summary -

14 Editing of Terminal Input

4. MANIPULATING FILES

FILES IN CP-V

Almost from the moment you become a user, you start accumulating data - the information upon which the system
must operate to provide the answers to the problems you pose. All of the processors mentioned in Chapter 1 produce
some kind of data; for example:

• Edit allows you to create the collection of statements necessary to phrase a problem-solving procedure in
the language of an assembler or compiler, called a source program, and to create input data for
such programs.

• BASIC, FORTRAN, and META allow you to translate a source program, which is only a model of the
external idea, into a form suitable for execution by the machine. This translation produces object code
as the result of either CI "compilation" or "assembli' process.

• LINK prepares the relocatable object code for machine execution, in the form of a load moduie.

These different kinds of data have at least one characteristic in common: each must be stored in some retrievable
form, both belween the steps of an information-processing operation, and between executions of the same operation.

Conventional batch systems provide the user with several ways of storing data, principally on punched cards or
magnetic tape. Although these media provide low cost, long-term storage, they require operator intervention at
the central computer site when '~he stored information is to be accessed or updated. This intervention may be
merely inconvenient for batch operation when the information is used frequently, but it is generally infeasible for
on-line use of a t'ime-sharing system.

The system's file management cupabilities provide an alternative and remarkably versatile medium for maintaining
your working datu - a medium which greatly lessens your dependence on conventional external forms of storage, and
increases the flexibility with which the data can be manipulated. File storage is implemented through use of the
Xerox Rapid Access Data Storage System (RAD) and/or through use of public disk packs. Generally speaking, a RAD
is a nonremov(Jble rotating-disk memory device containing approximately 6 million characters (or bytes) of storage,
any portion of which can be accessed within a very short time. Public disk packs provide approximately 24 million
characters of storage. (The system allows you, the on-line user, to access conventional peripheral-storage devices
and private disk packs a Iso, if you are so authorized.)

The Monitor, through its file-management system, allows informationtobe stored on RADand/or disk packs and identi
fied symbolically, simply by a file name chosen by the user. The files are segregated by account number (your iden
tifying number assigned by the installation manager). Therefore, you cannot inadvertently generate fi Ie names that
conflict with those of other users outside your account. Certain other information about the file, such as restrictions
on access by other users, is also kept with the file.

Files can be used to store any kind of information. They can contain source-language programs built with Edit or
BASIC, transloted source programs produced by a compiler (relocatable object code), or object code in executable
form (a load module) produced by the link-loader. They can also contain collections of alphanumeric data, and
natural-Ianguoge text.

A file is identified by a name of 1-10 characters constructed from a prescribed set of characters. (Some processors,
such as Edit, (II/ow up to 31-character file names for special purposes.) The permissible character set contains all
of the alphabetic and numeric characters plus most of the commonly used special symbols. Typica"y, you wi" need
no more than the alphabetic and numeric characters. In the command-language formats given throughout this man
ual, the symbol most commonly used to indicate a "file name" is fid, which stands for £ile-!ientification. A file
identification actually can include an explicit account number and password, as we" as the file name. But in our
examples, and in most actual usage, fid is interpreted simply as a file name. Complete rules for the structure of
file-identifications are given in Appendix B.

Having created a file of information, you are completely free to access or delete it, replace it, or modify it, through
on-line servic'3s, without any operator intervention. A general rule is that you may not delete or modify files not
in your account, though often you may access such files.

Manipulating Fi les 15

Sometimes files are created automatically for you by the system. It is possible to call a processor such as FORTRAN
to translate a source program without specifying a file in which to store the object code. In this case, the system
creates a unique temporary file, associated with your account, for output storage. You may refer to this file with
the single character $ under certain subsystems. The $ file is temporary in the sense that when you log off, the file
is automatically released. This is useful when creating test programs where nothing of permanent value is being
created as output.

Any file that is explicitly named for output is permanent, i.e., retained in the file-management system across the
periods between on-line sessions. All files explicitly created with BUILD and COpy commands are also permanent.
Permanent-file content is maintained and updated solely by the user. However, file storage space is a chargeable
resource, and it is in your interest to delete unneeded files whenever possible.

When working with files, there are two command modifiers of importance: ON and OVER. ON implies that the
named file does not yet exist. If such a file does indeed exist and ON is used, an error message is sent to the user.
(In general, the word TO may be substituted for ON, with the same effect.)

OVER implies that the fi Ie may exist already and, if so, is to be reused for the new operation. Using OVER also
results in a completely new version of the file; any old data in the file is lost. If the file does not exist and OVER
is specified, no error is noted, and the file is automatically created. There is no limit to the number of operations
that may be performed OVER a file.

Informa·tion about the immediate intended use of a file is called a file specification. These specifications are made
impl ic itly by the use of several commands, particu larly COMMENT, LIST, and OUTPUT. An expl icit specification
can be made by the use of the SET command. (See Chapter 10, "DCB Assignments".) For our present purposes, file
spec ificati ons may be considered to indicate that a fj Ie is an input or an output fi Ie, and if an output fi Ie, what
type(s) of output the particular file is to receive.

Once a file specification has been made, it remains in effect throughout a terminal session until changed or deleted
by another specification - the one exception concerns source-input files (operational label SI), which always default
to the user1s terminal at each job step. If, for example, listing output is directed to the fi Ie "DATA", then all listing
output generaf'ed by a series of assemblies or compilations are placed on this file, one behind the other. This con
vention is known as "file extension" and is automatically in effect for output operations on standard system-assigned
files - or more precisely, through certain system-created Data Control Blocks (DCBs). (DCBs are described in the
CP-V/BP Reference Manual, 90 1764, and discussed further in the TEL chapter of the CP-V/TS Reference Manual,
90 09 07.) References to DCBs are gradually introduced further along in this manual, and they are treated specifi
cally in Chapter 10, "DCB Assignments".

File extension is an important feature to keep in mi d when operating at the terminal, especially when it is not
desirable to stack any output during multiple-job-step operations. File extension is reset to the beginning of the file
upon any new specification, even if the specification refers to an already existent file. For example:

!LIST 0'" GRUNCH

! OUTPUT ON RUNFILE

!META SOURCE

!META ME

!META TESTY

Listing output directed to fi Ie GRUNCH.

Object-code output directed to fi Ie RUNFILE.

Read input-file and assemble (job step 1).

Assemble from terminal (job step 2).

Read input-file and assemble (job step 3).

This sequence of commands resul ts in a" output being stacked on thei r respective fi les, GRUNCH or RUNFILE.

The new listing-output specification and further job step

! LIST OVER GRUNCH

!META (job step 4)

has the effect of replacing the old contents of GRUNCH with the new assembly listing as the source input is entered
from the user1s terminal. The object-code output would still be stacked at the end of file RUNFILE. This basic use
of file extension logic applies independent of the manner in which file specifications are made, i.e., through the SET
command or through commands implying a specification.

16 Fi les in CP-V

To understand certain error comments you may encounter, you will need some knowledge of file organization. This
refers to the way the file's contents, i.e., its individual ~cords, are ordered. Three possibleorganizations are

• Consecutive, where the records can be accessed in sequential order only.

• Keyed, where the records may be accessed directly (randomly) or sequentially.

• Rando"!1 where the H Ie is simply a collection of contiguous storage.

Files built with the Edit processor, having a line number associated with each record (line), are an example of a
kind of keyed fi Ie. Most fi les you wi II use wi II probably be keyed, but you may see a system comment stating
" ••• file not keyed ••• ". CertCiin processors are not keyed-file oriented, e.g., BASIC and PCl, though they handle
keyed files properly in most cases. later we indicate what you can do in other cases.

EDIT

The Edit processor is a general--purpose, I ine-number oriented text editor. It may be used to create or modify source
programs, dal"a files, reports, etc. for other CP-V processors, specifically for the FORTRAN, Meta-Symbol, BASIC,
COBOL, and BATCH processors.

Edit provides file editing capability, i.e., the ability to build, delete, copy, or merge files; to edit within a line
of a file; and to do a complex editing operation on each line in a specified range of lines.

The examples in this section illustrate how Edit is used to perform file editing, and to access a file and perform
record (line) editing functions :such as displaying (TY), inserting (IN), and deleting (DE).

One example of intrarecord, or multiline editing is also given, as a basis for general use of the intrarecord-command
group. Edit commands not covered here are described in the CP-V ITS Reference Manual, 90 09 07.

In the command descriptions that follow, the word Iline" refers to a line typed by the user; the word "record" refers
to a line that has already been transmitted to the system and exists on some file. Thus, we can say " ..• the line
numbered n replaces any identically numbered record .•. II (i.e., already on the file) without ambiguity. The ex
amples are-intended to illustrate usage of the vari ous commands and do not necessari Iy show the most appropriate way
of dealing with a particular kind of file content. More appropriate means may become apparent in later chapters,
especially in regard to manipulation of BASIC program text.

HOW EDIT WORKS

Edit is a line··number oriented editor in that it automatically associates a line-sequence number with each line of a
file built under Edit. All record and intrarecord editing is performed with reference to these sequence numbers.
That is, one or more sequence numbers must be specified for record and intrarecord editing commands and also in
certain usages of the fi Ie editing commands.

To edit a file thot does not have sequence numbers associated with it (e.g., a file built under BASIC or under certain
batch-mode fl]ciiities), you can add the numbers by copying the file with "resequencing" (see Example Copy and
Resequence).

Edit prompts with an asterisk (*) character to indicate that it is ready to accept a command. For file-building or
line-insertion input, it prompts with a sequence number.

FILE EDITING COMMANDS

All file editing commands explicitly name one or more files. The Edit and TEL/Edit commands at the file-editing
level are:

• J. ED IT [fid]

Calls the Edit processor and optionally names a file to be edited, at TEL level (!).

• *EDIT fid

Names a file to be edited, at Edit processor level (*).

Edit 17

• J.BUILD fid[, nJ

Calls Edit and names a fi Ie to be built at the TEL level (!).

• ':'BUILD fid[, nJ

•

Names a file to be built at the Edit processor level (*). The optional number (n) specifies the sequence
number with which the fi Ie is to begin. If not specified, 1 is assumed by Edit.

Copies contents of fid 1 either ON a new file or OVER an existing file, fid2i and, optionally, resequences
(i.e., renumbers) fid2 starting with sequence-number n. COpy can also be used to produce a sequence
numbered (keyed) version of an unkeyed file, in which case n must be specified.

• *DE LETE fid

Deletes the named file from the system.

• ':'MERGE fid 1 [,n 1-n2J INTO fid 2, n3 -n 4

Replaces records n3 through n4 of fid2 with the contents of (or record n1 through n2 of) fidp the merged
records - from fid 1 - are renumbered in fid2 starting with sequence-number n3. Note: If fid2 does not
already exist, the specified records on fid1 are copied to the new file and numbered starting with n3 (i.e.,
a "selective copy" operation is performed).

• *END

Terminates execution of Edit and returns control to the system (TEL) level.

RECORD EDITING COMMANDS

To use any of the record or intrarecord editing commands, the applicable file mus! first be specified with an EDIT
fid command either at the TEL or the Edit level. None of the record and intrarecord-Ievel commands themselves can
specify a file.

A useful record-editing command is TY - Type Rec f d(s), Including Sequence Number - which displays one, several,
or all of the mcords in a file:

where

n 1 is the sequence number of the first or only I ine to be typed.

n2 is the optional ending sequence number of a range of lines to be typed.

More record-editing commands are described following the next exam pi e.

tWherever TO is specified, ON may be substituted.

Example 12. Using EDIT to Build and Display a Source File

In this example, the user builds a BASIC program file, copies it to another file, displays the copy, and
deletes the original file.

XEROX CP-V AT YOUR SERVICE
ON AT 15:12 MAR 28,'71
LOGON PLEASE: 2232,HALL ~

18 Edit'

- page heading -

..!..BUILD PRIME @

The user wants to create a file called PRIME. Edit is called implicitly.

1.000 10 REM GENERATE PRIMES GR THAN 3 @

Edit prompts for inpu'~ by printing 1.000. The user types the first line, then types lines 2-10 in response
to more prompts by Edit.

2.000 20 P=l @)
3.000 30 P=P+4, S=O @~
4.000 40 FOR I = 5 TO SQR(P) + 1 STEP 2 @
5.000 50 Q=INT(P II) @)
6.000 60 IF Q*I=P THEN 80 @l
7.000 70 PRINT P'ITAB(O)@~
8.000 80 IF S=l THEN 30 @) ,
9.000 90 S=l, P=P+2 @)

10.000 100 . GOTO 40 @)
11.000 (~

The user types a carriage return immediately following the prompt for line 11.000 to indicate end-of
file, that is, that the- last line of the file has been entered. (Control returns directly to TEL, rather
than to Edit, because BUILD was given at the TEL level.)

lEDIT @)

TEL prompts for another command. The user calls Edit again, explicitly this time, to use a command
not avclilable at TEL level.

EDIT HERE
~COPY PRIME ON PRIMES e

Edit acknowledges its presence, and prompts. The user decides to change the name of his program file
from PRIME to PRIMES, so he copies it to a new file named PRIMES •

•• COPYING
•• COPY DONE
~EDIT PRIMES e

He then indicates that he wants to edit (actually only display) file PRIMES.

!:.TY 1-10 @)

He indicates that he wants the whole file, lines 1 through 10, typed. (A larger ending number,
e.g., TY 1-99, would do the same job.)

1.000 10 REM GENERATE PRIMES GR THAN 3
2.000 20 P=l
3.000 30 P=P+4 zS=0

4.000 40 FOR I = 5 T9 SQR{P2 + 1 STEP 2

5.000 50 Q=INT{P/IL
6.000 60 IF Q"kI=P }'HEN 80
7.000 70 PRINT pI I TA~ill

8.000 80 IF S=l THEN 30

9.000 90 S=l z P=P+2
10.000 100 GOTO 40

"'(DELETE PRIME @)

Edit displays the COPYl and prompts. The user sees that the copy is OK and decides to delete the
original file, PRIME, so as not to tie up disk space unnecessarily.

Edit 19

•• EDIT STOPPED

The record editing mode is terminated for file PRIMES because file PRIME is to be processed. The
above message is printed to indicate th is .

• • DELETED.
~END @)

He then indicates that he is finished with Edit.

lOFF @)

and logs off.

- accounting summary -

MORE RECORD EDITING COMMANDS

Two more commonly used record-level commands are IN (Insert Records) and DE (Delete Records). The IN command
is used to insert one or more lines between two records of a file or, alternatively, to replace one record of the file
with the first (or only) insert line. (The IN command can be used to replace only one record, though more records
may be inserted immediately following the replacement.) The IN command format is

IN nL iJ

where

n is the sequence number of the first or only line to be inserted.

is the optional increment value that Edit is to add to succeeding insertion-line sequence numbers.

Detai led rules for the use of IN are given following the next example.

The DE command deletes one or more (successive) records from the fi Ie. It has the format

DE n[-mJ

where

n is the sequence number of the first or only record to be deleted.

m is the optional end sequence number of a range of records to be deleted.

Example 13. Using EDIT to Modify a Source Fi Ie

In this example, the user (after IIdesk-checking" his initial source program) sees that a logically required
BASIC statement (NEXT) is missing, and inserts it. He then realizes that this original program will produce
an endless listing of prime numbers, and prepares a different version, using MERGE to excerpt a portion of
the original program for modification, and then to recombine this portion, after modification, with a copy
of the original (thus, retaining the original version also).

XEROX CP-V AT YOUR SERVICE
ON AT 15:28 MAR 28, '71
LOGON PLEASE: 2232,HALL EJ

- page heading -

lPLATEN 72,10 ~

20 Edit

The user suppresses further page headings by giving a page length of less than 12. (This practice is not
recommended for normal production work, where the page headings delimit a uniform document size
and provide useful identification: name, date, time, page number.)

lEDIT PRIMES @

He then indicates he wants to edit PRIMES.

EDIT HERE
~~Y 6-99 @)

He asks for display of' lines 6 through end-of-program, i. e., line number 99 is in this case sufficiently
large to i nelude the whole fi Ie. (Note that "6-99" is equiva lent to "6.0-99.0" or "6.000-99.000", etc.)

6.000 60 IF Q*I=P THEN 80
7.000 70 PRINT P"TAB~
8.000 80 IF S=l THEN 30
9.000 90 S=l, P=P+2

10.000 100 GOTO 40
--EOF HIT AFTER 10.

This message means: II End-of-fiIe was found following line 10".

-kIN 6.5 @)

The user asks to insert a line numbered 6.5, to add the missing statement.

6 . 5 00 65 NEXT I @)

Edit prompts for the insertion-line with the line number. It then prompts for another command with
an asteri sk.

The user requests a display of lines 6 through 7, to see if the insert really worked.

6. 000 60 IF Q~"I:=P THEN 80
6.500 65 NEXT I
7 . 000 70 PRINT p" ~~AB (0)

':'MERGE PRIME S, 6. 1-10 INTO NEWEND, 7 @l

He then asks for a portion of PRIMES to be copied on a new, empty file, NEWEND, and for the lines
to be renumbered, stclrting with 7 .

• . EDIT STOPPED
•. MERGE STARTED
--DONE AT 11.
")"EDIT NEWEND
*TY 1-11 @

He requests a display to see if 7-11 was II excerpted II all right.

7.000 65 NEXT I
8.00C 70 PRINT P"TA1UQL
9.000 80 IF S=l THEN 30

10.000 90 S=l, P=P+2
11.000 100 GOTO 40

~"IN 7.5 @)

He requests an insert numbered 7.5, enters the insertion as shown below, and then requests an insert
at the end of the filel' i.e., line 12.

Edit 21

7.500 66 IF P > 1000 GOTO 110EV
2IN 12 @

12.00CL110 END EV
13 .OOCL@>

Edit prompts for another insertion, line 13; the user replies with an immediate @), signifying "done",

He then requests display of lines 7-12 (no line lower than 7 should exist).

7.000 65 NEXT I
7.500 66 IF P > 1000 GOTO 110
8.000 70 PRINT P"TAB(O)
9.000 80 IF S=l THEN 30

10.000 90 S=l, P=P+2
11.000 100 GOTO 40
12.000 110 END

2COPY PRIMES TO LOPRIM @)

He requests an extra copy of PRIMES on new fi Ie LOPRIM.

· .EDIT STOPPED
• .COPYINq
• .COPY DONE

2.':,MERGE NEWEND, 7 -12 INTO LOPRIM, 6 . 1-10 @)

He then asks for a replacement of the ori ginal program lines 6.1-10, with the modified program end
ing from NEWEND.

• . MERGE STARTED
--DONE AT 12.1
2.':,EDIT LOPRIM@
2.':,TY 5-13 I§

He requests display of lines 5 through end-of-fi Ie on LOPRIM.

5.000 50 Q=INT{P/I}
6.000 60 IF Q~'(I=P THEN 80
6.100 65 NEXT I
7.100 66 IF P > 1000 GO TO 110
8.100 70 PRINT p' 'TAB{O}
9.100 80 IF S=l THEN 30

10.100 90 S=1 2 P=P+2
11.100 100 GOTO 40
12.100 110 END

--EOF HIT AFTER 12.1
2DELETE NEWEND@)

Since NEWEND is now appended, he deletes the file for the sake of economy.

• .EDIT STOPPED
· .DELETED
~'(IN 1, .1 @

22 Edit'

He then decides to replace the original 'remarks' line (1.000), and specifies a small increment to
allow room for further insertion lines before line 2.

1.000 REM GENERATE PRIMES OVER 3 AND UNDER 1000
1.100 REM (THIS PROGRAM IS A LIMITED VERSION OF
1.200 REM MY PROGRAM "PRIMES", WHICH HAS NO
1.300 REM UPPER L1MIT BUILT IN.)
1.400

~"'TY 1-15 f§

He requests display of result.

1.000 REM GENERATE PRIMES OVER 3 AND UNDER 1000
1.100 llliM (THIS PROG~M IS A LIMITED VERSION OF
1.200 REM MY PROGRAM "PRIMES", WHICH HAS NO,
1.300 REM UPPER LIM~T BUILT IN.)
2.000 20 P=l
3.000 30 P=P+4,S=O

10.100 90 S=l, P=P+2
11.100 100 GOTO 40
12.100 110 END

--EOF HIT AFTER 12.1
?'(END@)

lOFF @)

- accounti ng summary -

RULES FOR USE OF IN

The rules applicable to the IN command are summarized below. For ease of reference, the IN command format
is repeated:

IN n [,i]

1. If n matches a sequence number already in the fi Ie, the first (or only) insertion I ine replaces the identi
cally numbered line in the file.

2. If n does not match a sequence number in the file, the first {or only} insertion line n is inserted immedi
ately following the next lower-numbered line (or at the beginning of the file if a lower line number does
not exist).

3. If the insertion sequence number increment, i, is not specified, Edit assumes as a default value for i either
the increment specified in the most recent record-level command given during the current Edit session, or
the value 1 if no increment has been previously specified.

4. Following each record insertion, Edit prompts for further insertion lines with incremented sequence num
bers, unti I either the incremented sequence number equals or exceeds a sequence number already existi ng
in the file, or the user responds with a carriage return only. (In the first case, Edit rings the console bell
and returns immediatedy to command-input mode, issuing an asterisk.)

RULES FOR USE OF MERGE

A more complete form of the MERGE command than initially presented is

MERGE fid 1 [,n 1 [-nillINTO fid 2,n3[-n4] Ei]

The optional increment value, i, was not previously presented. It is used to control renumbering of merged records.
For example, by specifying a small fractional (decimal) increment it is possible to pack more records into the desti
nation fi Ie than might otherwise be possible. The rules for MERGE are as follows:

1. The sequence numbers n3 - n4 specify the range of records to be deleted from the destination file (fid2),
whether or not a one-for-one replacement occurs. (If n

4
is omitted only record n3 is deleted, i. e., n3 is

assumed as the value for n4')

Edit 23

2. Sequence numbers n1 - n2 specify the maximum range of I ines to be transmitted from the source fi Ie (fid 1)i
default value of nl-n2 is 1 through EOF. If n2 is omitted, only record n

1
is merged. (The actual number

of records moved is controlled by the next sequence value above n4; see rule 4 below.)

3. Renumbering of the records from fid
1

in fid
2

proceeds from n
3

, incrementing either by i or the default
value, 1.

4. Records n1 through n2 are moved into the interval n3 - n4 on fid 2, renumbered, until either the incre
mented sequence number of a moved record equals or exceeds the sequence number of the successor of n

4
,

or the range of records n
1

- n
2

is exhausted.

5. Value n
2

may equal n
1i n

4
may equal n

3
.

Note these characteristics of MERGE: (1) the number of fid 1 records moved is largely independent of the number of
fid2 records deleted; (2) sequence number discontinuities may be introduced into fid2i and (3) by adjusting the in
crement value, the set of deleted records may be replaced by a much larger set of records. Note also that though it
is a file-level command, MERGE has record-editing capabilities.

The rules for IN and MERGE can be used as a general guide to the operation of other record-level commands with
simi lar formats.

STRING SEARCH COMMANDS

The string-search type of command involves an automatic search by Edit for the occurrence of a certain string of
characters within specified columns of a range of records. The records are searched one at a time and, if a "hit" is
made on one or more of the records, the action specified by the command is performed (type or delete record). You
specify the rctnge of records to be searched, the string to search for, and the record columns within which the search
is to be made ("all" by default). Edit does the rest. Note that the line number is not considered a part of the rec
ord and that column 1 is the first character of the record.

Two string-search commands are available at the record-editing level.

• Find and Type Records.

• Find and Delete Records.

The command formats are

and

where

n
1

is the sequence number of the first or only record to be searched.

n
2

is the sequence number of the last of a range of records to be searched (default value = n
1
).

string delimited by slashes V .. . /), is any sequence of characters that may exist in the file.

c
1

is the number of the column at which the search is to start in each record (default value = 1).

c
2

is the number of the column (inclusive) at which the search is to end in each record (default value = 140).

The specified string must be found entirely with;:~ the columns specified. The columns of a record (or line) are
numbered from 1 through 140, and though 72 is the upper limit for a Teletype I ine, columns 73-140 may exist in
a record, as discussed below. (Other stri ng-search commands are avai lable at the intrarecord-editing level, and
are generally more useful and efficient than those described above.)

24 Edit

HOW TO ENTER MULTILINE RECORDS

On a terminal unit having an iinherent line-width limit of less than 140 (e. g., Te letype mode Is 33, 35, and 37),
a single, multiline record may be entered into a file (using the BUILD or IN commands, for example) in either of
two ways:

1. Using i'he local-carriage-return key marked LOC CR, if present, to "break" the input line without releasing
it to the system.

2. Using the simulated local-carriage-return sequence @ ~Hor the same purpose.

Either method permits entering a record of up to 139 characters plus @) on virtually any termina I unit.

Example 14. Using String-Search Commands and Local-Carriage-Return

lEDIT @)
EDIT HERI~
*COPY LOPRIM TO SCRATCH @)

The user copies his program to a new file in order to experiment with FT, FD, and IN.

*EDIT SCRATCH @)
*FT 2-15 /p::/ @) - ,

He requests a search of records 2 through 15, all columns, for the character stri ng "P=", with the
record displayed on each hit.

2.000 20 P=l
3.000 30 P=P+4.S=0

10.100 90 S=l. P=P+2
--EOF HIT AFTER 12.1
:::,FT 1-13 1 /=P/ @)

He then asks for a search on "=P" in lines 1 through 13.

3.000 30 P=P+4.S=0
6.000 ..§.Q IF Q~'~ I=P J;:HEN 80

10.100 90 S=l. P=P+2
--EOF HIT A1i'TER 12.1
:::,FT 1-2, /PR/@)

He now asks for a search on "PR" in lines 1 through 2.

1.000 REM GENERATE PRIMES OVER 3 AND UNDER 1000
1.100 REM (THIS PROGRAM IS A LIMITED VERSION OF
1.200 REM MY PROGRAM "PRIMES". WHICH HAS NO.

:::,FT 1-2, /REM/ ,4,60 @>

He tries a "negative" test of the col umn-del imiti ng capabi lities,

--NONE
*FD 1.1-2,/REM/@)

then a Find-and-delet'e of records 1.1 through 2, inclusive, containing" REM".

--003 RECS DLTED
:::,TY 1-4 @)

He requests display of results.

Edit 25

1.000 REM GENERATE PRIMES OVER 3 AND UNDER 1000
2.000 20 P=1

3.000 30 P=P+4.S=0

4.000 40 FOR 1= 5 TO SQR(P)+1 STEP 2.
~lqN 1.58

- 1.500 REM (THIS PROGRAM IS A LIMITED VERSION oF€98

PROGRAM "PRIMES", WHICH HAS NO SET UPPER LIMIT.) 8

He tries to reenter former lines 1.1 and 1.2 as one record, with a local line-break (@'l@)).

)\-FT 1-3, /REM/@)

1.000 REM GENERATE PRIMES OVER 3 AND UNDER 1000

1.500 REM (THIS PROGRAM IS A LIMITED VERSION OFPROGRAM "PRIMES"! WHIC

H HAS NO SET UPPER LIMIT.)

Note, (1) that the user neglected to supply a blank (or space) following 110£1
1 prior to or after the

local carriage-return, and (2) that the system "folds ll the record indiscriminately when the physical
line-width limit is reached.

2:END 8

INTRARECORD COMMAND USAGE

The intrarecord commands make changes within an individual record. They generally manipulate character strings.
Intrarecord commands may only be given after the user selects an intrarecord mode with the SE, SS, or ST command.
The SE command will be discussed below as an example of selecting an intrarecord mode.

The SE (Select Intrarecord Mode) command simply selects a range of records, and optionally a field within each rec
ord, for subsequent intrarecord "processing" commands to operate on. The selection remains in effect for any number
of subsequent commands until a new selection is made or a record editing command is given.

After the SE is given, Edit prompts for further commands. You can then issue one processing command or several
commands separated by semicolons (i) on the same input Ii ne.

If one command is issued per line, the processing sr-cified by that command is performed against each record in the
range specified by the SE. However, if more than one command is issued per line the whole set of commands wi II be
processed successively against the first record, then against the second record, etc. (Obviously, if the range selected
is only one record, the result is the same in either case.)

The format of the SE command is

where the meanings and defaults of the record and column selection parameters are the same as for the FT and FD
string-searching commands.

Two very useful and similar processing commands are S (String Substitution) and D (Delete String). The S command
format is

where

string
1

is the stri ng to be searched for.

stri ng
2

is the string to be substituted in place of string
1

.

26 Edit

is an integer that indicates that only the jth occurrence of string I within the search field of each record
is to be replaced by string2 (default va lue = 1). If all occurrences of string

1
are to be replaced, j must be

specified as zero.

The D command format is

[j]/string/D

where

string is the string to be deleted.

has the same meanin~l as in the S command.

Note that when substituting a longer string for a shorter string, the remainder of the line (if any) is moved right only
as far as needed to preserve a single-blank separator if at least one blank existed to the right of the original string.
That is, in certain cases multiple blanks to the right of the insert may be lost. (This is useful in preserving columnar
alignment.)

In this regard, you may includEl initial, embedded, or terminal blanks (i. e., spaces) in either string. Edit treats the
blank in general like any other printing character, the major exception being the suppression of multiple blanks in
certain cases of string substituti'on and deletion. (A Blank-Preservation-Mode command, BP, in intrarecord opera
tions provides for cases where multiple blanks must not be lost, as in "quoted" character-string literals.)

A number of other very useful, more specialized intrarecord commands exist for record modifications, but most of
these are logical shortcuts to results that can usually be achieved with Sand D commands only.

The two intrarecord display commands, TY (Type, Including Sequence Number) and TS (Type, Suppressing Sequence
Number) are analogous to their record-level counterparts, but do not specify record numbers (i. e., you enter TY or
TS only). With or without sequence numbers, the commands display the currently active record(s}, as illustrated by
the following example.

Example 15. Using Intrarecord Commands

lEDIT SCRA.TCH @)
EDIT HERE
*FT 1-2,/PROG/@)

The user enters the FT command to find and type lines containingPROG, within the range 1 through 2,
inclusive. (Only line 1.5 should satisfy the requirement.)

1.500 REM (THIS PROG]M.M IS A LIMITED VERSION OF PROGRAM "PRIMES", WHIC
H HAS NO SET UPPER LIMIT~
,'(SE 1.5@)

He then enters the intrarecord mode selection command, which is required to fix the error in the line
by string substitution.

"!:.../OFPRO/S/OF PRof @)

He substitutes OF PRO for OFPRO (first instance only: j = 1 by default).

"!:...TY @)
1.500 REM (THIS PROGRAM IS A LIMITED VERSION OF PROGRAM "PRIMES", WHI

CH HAS NO SET UPPER LIM~~
"!:...TS@)

To see if the line-breclk problem in line 1.5 would disappear if the line were displayed without its se
quence number (as wi II happen under the BASIC subsystem), he uses the TS command.

Edit 27

REM (THIS PROGRAM IS A LIMITED VERSION OF PROGRAM "PRIMES", WHICH HAS NO
SET UPPER LIMIT.)

"!:..O/P/S/N/ @)

This does in fact solve the problem. Now he wants to change all program variables named P to Ns.
(This wi II have no effect on the program, since we have no variables named N.)

"!:..Tye
1.500 REM (THIS NROGRAM IS A LIMITED VERSION OF NROGRAM "NRlMES", WHI

CH HAS NO SET UNNER LIMIT.)

He forgot to reset the range selection (SE).

i,O/N/S/P/ @)
~SE 2-13 e
"!:..O/P/S/N/ e

He reverses the N for P substitution in line 1.5, then sets proper range, and tries his original substi
tution again;

9 STRINGS CHANGED
--EOF HIT AFTER 12.1
"!:..TY@J

and checks the result.

2.000 20 N=l
3.000 30 N=N+4,S=0
4.000 40 FOR 1=5 TO SQR(N)+l STEN 2
5.000 50 Q=INT(N/I)
6.000 60 IF Q*I=N THEN 80
6.100 65 NEXT I
7.100 66 IF N > 1000 GOTO 110
8.100 70 NRINT N"TAB(O)
9.100 80 IF S=l THEN 30

10.100 90 S=l, N=N+2
11.100 100 GOTO 40
12.100 110 END

--EOF HIT AFTER 12.1

The substitution worked, except that it was not possible to delimit the search string narrowly enough;
STEP to STEN, and PRINT to NRINT, were changed as well.

::-'/STEN/S/STEP/; /NRI/S/PRI @)

Th is reverses the change.

*SE 4 ;TY@)

The user requests a display of line 4 and, below, of line 8.1.

28 Edit

4.000 40 FOR 1=5 TO SQR(N)+l STEP2

:. S E 8. 1 ; TY §

8.100 70 PRINT N' 'TA1}ill

:::,DELETE SCRATCH @)

Since he did not actually need this file, he deletes it .

• • EDIT STOPPED

•• DELETED

:::'END@)

lOFF@)

- accounting summary -

TEL EDITING COMMANDS VS EmT COMMANDS

The TEL command !EDIT fid implies the sequence

!EDIT

*EDIT fid

The TEL command fBUIlD implies the sequence

!EDIT

*BUIlD

*END
T

Both are, therefore, shortcuts provided for your convenience. However, note that the TEL EDIT command must
be given before the Edit COpy command can be used, as distinct from the TEL COpy command. The TEL COPY
command implies a call to the PCl subsystem; the COpy command under PCl is different from the Edit COpy
command in scope, intent, and format.

TEL/PCl COPY and other PCL. commands are described in the next section.

pel
The Peripheral Conversion language, PCl, provides you with on-line facil ities for initiating and controll ing:

• Movement of files between peripheral storage devices.

• Movement of files between peripheral storage devices and RAD or disk pack storage (or other forms of sec
ondary storage).

• Movement of files within disk storage.

• Concatenation of files and selection of records from files during file movement.

• Data-record formatting and code conversion during file movement.

• Deletion of fi les.

• File building on any type of device or storage media from an on-line terminal.

PCl 29

30

• Display of peripheral input-device files or RAD or disk pack files on an on-line terminal.

• Listing of a RAD or disk pack fi Ie directory or of fi Ie names on a labeled magnetic tape.

• Positioning (and releasing) of magnetic-tape volumes.

The peripheral storage devices referred to may be

1. Magnetic-tape drives: Xerox labeled, ANS labeled, or unlabeled tape.

2. Unit-record devices: card punch and line printer (card reader cannot be requested on-line).

As mentioned before, one common characteristic of peripheral devices is that they generally require operator inter
vention, e. g., for the mounting and dismounting of physical fi Ie volumes. Therefore, an on-line user must be specially
authorized in order to be able to use these devices via PCl (or any other on-line means); otherwise he will simply
receive an error message on any attempt to do so.

Many of the facilities listed above are mainly of interest to the experienced on-line user doing the kinds of pro
gramming that were heretofore necessarily restricted to central-site batch operations: commercial and large-scale
scientific applications involving large volumes of input and output data, system development, etc. Actually, the
complete set of PCl facilities, plus the TEL SET command and direct user-to-operator messages, provide control of
total system resources ana logous to that obtai nable only wi th "hands onll, central-site batch operations under pre
vi ous systems.

We will describe only the PCl functions commonly used by all on-line users. These include keyed-file merging,
building of unkeyed files, concatenation of unkeyed files, terminal display of either type of file, listing of file
names, and fi Ie deletion.

PCl COMMANDS

The PCl COPY, l (which is the TEL form of the PCl LIST command), and DELETE commands may be given at TEL
level, but PCl must be called explicitly (!PCl) for all other PCl commands. PCl prompts for command input with
the less-than «) character, and for file input and responses to questions with a period.

The PCl commands covered here are COPY, LIST, DELETE, and DElETEAlL. COpy allows a vast array of options in
its variable field; it is the workhorse of the PCl language. Therefore, only a subset of the possible variations of the
command is described here.

The COpy command format is

c[opyJ sdllfid['fidJ ... J [~~R ddllfidJ]

where

sd may be DC, CR, ME, operational label, stream-id, or:

D P#serial no. [-rt]

LT#serial no[-rt]

AT[#serial no.] [-rt]

FT#serial no.[-rtJ

where rt is the 2-character identifier of a device that was defined at SYSGE N to be a resource.

fid is a file identification, for DC, DP, IT, or AT files only; normally only a file name.

tWherever TO is specified, ON may be substituted.

PCl 90 16 92D-1(2/74)

dd may be DC, CP, lP, ME, operational label, stream-id, or:

DP#serial no.[·-rtJ

LT [#serial no.J[~rtJ

AT[#serial no.] [-rtJ

FT[#serial no.J[-rt]

where rt is the 2-character identifier of a device that was defined at SYSGEN to be a resource.

Each PCl identification can be followed immediately by one or more special options in parentheses: i.e., d (option)
or d/fid (option). If the default device code DC is not explicitly specified, the slash (/) preceding fid 1 may be
omitted; see the following example.

If TO is specified, a new file is created (and must not already exist). If OVER is specified, the output file may
exist; and if it does it will be deleted and replaced by a copy of the input fi Ie. The TO/OVER clause is optional
following a prior COpy specifying a TO/OVER destination file or device (during the same session with PCl). If
the TO/OVER clause is omitted under these circumstances, the last-named file will be extended according to the
fi Ie-convention. A subsequent TO/OVER clause or an exit from PCl terminates fi Ie extension.

If multiple source files - e.g., FILA, FIlB, FIlC - are specified, the several file contents are either concatenated,
i. e., joined end to end, on the destination fi Ie in the case of unkeyed fi les, or merged on the basis of record-key
values in the case of keyed fi les. Both cases are illustrated in the following examples.

The remaining commands to be discussed in this introduction to PCl are LIST, DELETE, and DElETEAlL.

l[IST] lists all your disk-file names (i.e., all names in your account directory). This is the simplified form
of the LIST command. Additional specifications allow the user to list the files that are on a particular
device.

D[ElETE] IDO)P~/J. I [tJ/} fid[,fidJ •.• . sena no. -r

GE N to be a resource.

deletes the specified files. The rt option specifies the
2-character identifier of a device that was defined at SYS-

[{
[DC/])

DElETEAl L.] Dp# . I [tJ/ [fromJ[,toJ sena no. -r
deletes all files in the log-on account if I from I and/or Ito l

are not specified. Deletes a range of fi les in the log-on
account if Ifrom l and/or Ito l are specified. IFrom l and Itol are sort keys or file names. The rt option
specifi es the 2-character identifier of a device that was defined at SYSGE N to be a resource. With this
command, PC l asks for a confi rmati on:

DElETEAll?
.:.. YES$ @l (IIYES$II is the onl y correct positi ve response.)

Example 16. Keyed-Fi Ie U pd(lte and Display, Using PCl COpy

The user wants to produce another version of the PRIMES program that wi II allow him to set, via the terminal,
the range of the prime numbers produced during each run. He creates the modification files using Edit BUILD,
but uses PCl COpy to achieve the actual file updating •

.!..BUILD MOD1,1, .125 @l

The user wants to bui Id a fi Ie starting with sequence number 1 and incrementing by only. 125, instead
of the standard (default) increment of 1. Note that we have added an i parameter (.125) to BUILD
that corresponds to that of MERGE and INsert.

90 16 92D-1 (2/74) PCl 31

1.000 10 REM GENERATE PRIME NUMBERS (>3) WITHIN USER-SET LIMITS @

1.125 11 PRINT 'ENTER LOWER BOUND FOR PRIMES'@

1.250 12 INPUT L @

1.375 13 PRINT 'ENTER UPPER BOUND FOR PRIMES'@

1.500 14 INPUT U @

1.625 @

l BD ILD MOD2, 7 • 1 , .5 @

He requests a second new file, starting with sequence number 7.1, but incrementing by.5 in this case.

7.100 67 IF P<L THEN 80@

7.600 68 IF P<U THEN 1100

8.100 @
leopy LOPRIM,MOD1,MOD2 TO VPRIM@

He requests PCl to copy files lOPRIM, MOD1, and MOD2, in succession to form new file VPRIM.
Note that these are keyed fi les, and as such are not simply linked together end-to-end on VPRIM.
MOD1 is merged with lOPRIM, records from MODl replacing any records from lOPRIM having
matching keys, and all nonmatching records falling into their natural sequence. The same process is
repeated between MOD2 and the results of lOPRIM,MODl - and so on if more fi les were specified.
(The source files themselves are not modified in any way.) However, the three input files may be con
catenated without loss of any records by using the IN option (after VPRIM in the command) to assign new
keys.

31-1 PCl

leoPY VPRIM TO ME €V

He displays the resu Its directly, using the PC l COpy command. Note that ME is a PC l identification
code, not a name; VPRIM, not being a PC l identification code, is understood by defau It as DC/VPRIM.

10 REM GENERATE PRIME NUMBERS ~>3~ WITHIN USER-SET
11 PR INT 'ENTER LOWER
12 INPUT L
l3 PRINT 'ENTER UPPER
14 INPUT U

65 NEXT I
67 IF P<L THEN 80
68 IF P>U THEN 110
70 PRINT P"TAB(O)

110 END

J..EDIT VPRIM (§l
EDIT HERE
~TY 1-l3 €V

BOUND FOR PRIMES'

BOUND FOR PRIMES'

The user then displays the same results using Edit.

LIMITS

1.000 10 REM GENERATE PRIME NUMBERS ~>32 WITHIN USER-SET
1.125 11 PRINT 'ENTER LOWER
1.250 12 INPUT L
1.375 13 PRINT 'ENTER UPPER
1.500 14 INPUT U
2.000 20 P=l
3.000 30 P=P+4 I S=0
4.000 40 FOR 1=5 TO SQR~P2+1
5.000 50 Q=INT~P/I2
6.000 60 IF g-:q=p THEN
6.100 65 NEXT I
7.100 67 IF P<L THEN 80
7.600 68 IF P>U THEN 110
8.100 79 PRINT p' 'TAB~02
9.100 80 IF S=l THEN

10.100 90 S=l, P=P+2
11.100 100 GOTO 40
12.100 110 END

--EOF HIT AFTER 12.1
,::END (§l

30

80

BOUND FOR PRIMES'

BOUND FOR PRIMES'

STEP 2

LIMITS

The last example points to several differences between the Edit COpy and the PCl COpy: The Edit COpy can only
specify disk filenames; the PCl COpy can specify or imply devices (e.g., ME, DC, IT)and filenames, either singly or
in combination as appropriate. Note that the specification DC/ME is possible and results in no ambiguity, though in
th is case II DC/II must be specified or the file name may be written as 'ME'. A second difference is that the PCl COpy
TO ME, though it accepts keyed files, does not display the keys as sequence numbers as does Edit TY; it is function
ally the same as Edit TS in this respect.

The output option K must be used to display keys (in addition to the record sequence numbers) in a format comparable
to the Edit TY display.

32 PCl

The next example is designed simply to illustrate these differences as well as to further clarify the merging action
of pel COpy on keyed fi les.

Example 17. Keyed-Fi Ie Updclte and Display {Further Examples}

lBUILD FILA @)
1.000 LINE 1 IN FILA @
2.000 LINE 2 IN FILA @)
3.000 LINE 3 IN FILA @
4.000 LINE 4 IN FILA @)
5.000 @)

lBUILD FILB,.5,.5 @)

Here the user requests a new file starting with sequence number .5 and incrementing by .5 also

0.500 LINE 1 IN B@
1.000 LINE 2 IN B@)
1.500 LINE 3 IN B@

2.000 LINE 4 IN B@)

2.500 LINE 5 IN B@
3.000 LINE 6 IN B @>
3.500 LINE 7 IN B @
4.000 @

lBUILD FILC,2,. 75 @)

and a new fi Ie starting at 2 and incrementing by .75.

2.000 LINE 1 IN C@

2.750 LINE 2 IN C @)
3.500 LINE 3 IN C@

4.250 LINE 4 IN C@

5.000 LINE 5 IN C@

5.750 LINE 6 IN C@

6.500 @
lCOPY FILA,FILB,FILC TO DC/ME @)

He combines the three fi les on new disk fi Ie ME.

lCOPY DC/ME @)

With pel COpy he displays fi Ie ME on device ME.

LINE 1 IN B
LINE 2 IN B
LINE 3 IN B
LINE 1 IN C
LINE 5 IN B
LINE 2 IN C
LINE 6 IN B.
LINE 3 IN C
LINE 4 IN FILA
LINE 4 IN C
LINE 5 IN C
LINE 6 IN C

lEDIT ME @)
EDIT HERE
,\-TY .5-6 @)

Then he displays it with Edit.

pel 33

0.500 LINE 1 IN B
1.000 LINE 2 IN B
1.500 LINE 3 IN B
2.000 LINE 1 IN C
2.500 LINE 5 IN B
2.750 LINE 2 IN C
3.000 LINE 6 IN B
3.500 LINE 3 IN C
4.000 LINE 4 IN FILA
4.250 LINE 4 IN C
5.000 LINE 5 IN C
5.750 LINE 6 IN C

--EOF HIT AFTER 5.75
:::'END@)

Note that the merging action of the multiple-file PCl COpy eliminates duplicately keyed records on
file ME by successive replacement: record n from FILS replaces record n from FILA, and is in turn re
placed by record n (if any} from FIlC. Only record 4.000 survives from FILA, for example. If the IN
option had been used on output, all records in the three input files would have been kept, and the rec
ords in file ME would be assigned new keys.

lPCL@l
PCL DOO HERE
~LIST @)

Now he asks for a listing of current disk-file names, to see which are deletable.

FILA
FILB
FILC
LOPRIM
ME
MOD 1
MOD 2
PRIMES
VPRIM
<DELETE FILA,FILB,FILC, 'ME' ,MODl,MOD28

6 FILES DELETED
~END @l

Example 18. Sui Idi ng and Concatenati ng Unk~yed Fi les

In this example, the user creates two unkeyed files using PCl COpy; in most real instances of file concatena
tion, however, the files are outputs of other processors, e. g., FORTRAN. The user copies the fi les in the
desired order to a si ngle new fi Ie. A display of the resultant fi Ie shows the orderi ng of records produced by a
multiple unkeyed-file copy. This example also shows how to copy a file to the system line printer. (Note
that permission for such use of central-site peripherals requires explicit installation authorization; the system
carries a record of this authorization.)

lPCL@J
PCL DOO HERE

~COpy ME TO A @)

The user requests a copy of terminal input to file A.

34 PCl

.!.1ST LINE IN A @)
.!.2ND LINE IN Ae
.!.3RD LINE IN A @)
.!.4TH LINE IN A e
.!.@F

He enters input to new file A from the terminal. PCl prompts for input of each data line. An Escape F
sequence ends the dClta input, i. e., indicates end-of-file.

~eopy ME TO B @)
.!,.1ST LINE IN Be
.!.2ND LINE IN Be
.!.3RD LINE IN Be
.!.4TH LINE IN Be

.!.@F

He enters input to new fi Ie B from the terminal.

~eopy De/A,B TO Dele ~

He copies files A and B in succession to form new file C, incidentally showing the syntax of explicit
device identification (optional) in the case of multiple-fi Ie specification.

~eopy e TO ME @)

He now copies the c()ntents of fi Ie C to the term ina I.

1ST LINE IN A
2ND LINE IN A
3RD LINE IN A
4TH LINE IN A
1ST LINE IN B
2ND LINE IN B
3RD LINE IN B
4TH LINE IN B

~eopy A TO LP e
He then asks PCl to print file A on the system printer.

~DELETE A0v
.-...;;.._....;;;1,-",-FlLES DELETED
'~ENDe

1.

pel 35

5. USING LANGUAGE PROCESSORS

INTRODUCTION

The term IIlanguage processor ll refers to a processor that processes a specific programming language. Such processing
consists essentially of some form of translation of the source language to the internal language of the computer, or
machine language. (This mach ine-Ianguage translation is also commonly referred to as 1I 0 bject code II .)

The most frequently used language processors available underCP-Vin on-line mode are BASIC, Extended FORTRAN IV,
ANS COBOL, Meta-Symbol, and APL. Although these processors are also available for batch-mode operations, this
guide is limited to a description of their on-line usage.

It is important at this point to distinguish between a programming language and the on-line command language asso
ciated with it. You use statements (i .e., sentences) of the programming language to form a program, whereas the
commands are used to control what is done to or with that program. This chapter is intended to illustrate elementary
uses of the command languages. (Succeeding chapters cover increasingly complex usages.) Therefore, to understand
the program content of any of the following examples, knowledge of the relevant programming languages is necessary.

The following manuals contain descriptions of the language processors:

BASIC/LN,OPS Reference Manual, 90 1546.

Extended FORTRAN IV/LN Reference Manual, 90 09 56.

Extended FORTRAN Iv/oPS Reference Manual, 90 11 43.

ANS COBOL/LN Reference Manual, 90 15 00.

ANS COBOL/OPS Reference Manual, 90 1501.

Meta- Symbo I/L N, OPS Reference Manua I, 90 09 52.

APL/LN,OPS Reference Manual, 90 19 31.

BASIC

The CP-V BASIC processor is a compiler for a significantly extended and enhanced Xerox version of the standard
BASIC language (Beginner's All-Purpose Symbolic Instruction Code), a mathematical language designed specifically
for time-sharing uSage. - - - -

BASIC is particularly suited to small and medium s<...ale computational applications. The outstanding advantage of
BASIC is that it is easy to learn and simple to use. It is an ideal IIstarter ll language, even though it does offer
sophisticated problem-solving capabilities.

The BASIC processor is called with the TEL command BASIC. The processor then prompts for either BASIC program
statements or BASIC commands with a IIgreater than!l (» character. During program execution, it prompts for program
requested terminal input (if any) with a question mark (?). When you have finished using BASIC, you exit back to
TEL by giving the SYSTEM command.

Since BASIC includes a program-building and editing facility, a program file need not be built under EDIT (as is the
general case for FORTRAN and Meta-Symbol programs).

A useful Xerox enhancement of BASIC is its capability for direct execution of individual statements. This allows you
to operate BASIC in the IIdesk-calculator modell, without building a program; it also provides a powerful on-line de
bugging feature. These topics are discussed in a later section of this chapter.

PROGRAM BUILDING, EDITING, AND EXECUTION

Having called BASIC, you bui Id a source program simply by entering BASIC program statements - each beginning
with the required one to five digit step number (see following example)- in response to the prompt character (».

c
Typing error corrections can be made before the line is released with the S, @X, or X controls as usual. Program
statements entered in this fashion reside in an internal program-text area and constitute the current program.

36 Using Language Processors

The complete set of statements that are to constitute a given program need not be entered consecutively {e.g.,
BASIC commands may intervene) and need not be entered in a sequence corresponding to their step numbers. The step
numbers of the individual statements completely control the logical ordering of the statements within the program,
providing for automatic insertion, replacement, and delef'ion of single statements on the basis of relative step num
bers, as follows:

• Insertion - A statement entered with a step number falling in numerical sequence between the step numbers
of two previously entered statements is automatically inserted between those two statements.

• Replacement - A statement entered with a step number matching the step number of a previously entered
statement automaticcd Iy replaces that previously entered statement.

• Deletion - A step number followed immediately bye, i.e., a "null statement ", causes any previously
entered statement having a matching step number to be deleted.

(Expl icit editing commands thctt can affect more than one statement are covered in a subsequent section.)

After entering a program in this manner, you can have it compiled, error-checked, and executed (if no detectable
errors exist) by issuing the RUN command. Syntax (i.e., language) errors, if any, will be reported by BASIC, and
a prompt character (» issued. You may at this point correct these errors, via statement insertion, replacement, or
deletion as described above. Note that when terminal input is requested by your program during its execution, a
question mark (?) is issued as a prompt character.

Once a program has been tested and is known to be working correctly, you can request subsequent execution with
the command FAST instead of RUN. FAST bypasses the checking of indices for subscripted variables.

The following example illustrates three intrinsic - or buil t in - functions· DEG (x) - convert x from radians to
degrees; AS N(x) - calcu late arcsin of x, in radians; and ABS(x) - use absolute va lue of x. The first two,
DEG and ASN, are specific CP-V additions to the standard BASIC language.

Example 19. BASIC Program Building, Editing, and Execution

J..BASIC@)

The user calls the BASIC subsystem, and begins to build a program, entering a BASIC statement in
response to each prompt character.

> 1 0 REM SAMPLE PROGRAM @)
.,::15 REM $A IN STMr 20 IS A STRING VARIABLE @)

.,::20 $A = "COMPUTE ARCSINE OF X, IN DEGREES" ®
2.30 PRINT $A @l
~40 FOR I ,-\= 1 TO 5 @i

After typing the minus-sign (or dash) character by mistake - i.e., by forgetting to sh ift - he uses a S,
echoed as \, to erase it and continues.

~50

:::...60

INPUT X @

PRINT DEG (ASN(X» "

~70 NEXT I @)
~80 END (0)
.,::RUN@

ARCSIN OF "X €V

He enters the final statement (step 80) and then requests compilation and execution with the RUN
command.

BASIC 37

16: 18 NOV 09 RUNIDAA ••.
COMPUTE ARCSINE OF X, IN DEGREES
1...001 @)

5.72958E-02 = ARCSIN OF 1.00000E-03
1...707 @)

44.9913 = ARCSIN OF .707000
1.-0 .707 @)
-44.9913 = ARCSIN OF -.707000
1.3 .246 8

He now tri es a va I ue that is much too large.

60 ASN-ACS ARG ERROR

He gets an error message, and a return to editing/command level (where he will enter additional
program statements for detecting the out-of-range condition).

~55 IF ABS(X) > 1 THEN 90 @)
~90 PRINT X; "VALUE OUT OF RANGE" @
~95 GOTO 70·@
~RUN @

After inserting steps 55, 90, and 95, he tests again.

16:27 NOV 09 RUNIDAA •••
COMPUTE ARCSINE OF X, IN DEGREES
1.1.5 8

1.50000 VALUE OUT OF RANGE
1.@)~

He gets the desired result on the exception condition, and terminates execution.

PROGRAM SAVING, LOADING, AND RENAMING

A program created under BASIC can be saved on a pp-manent fi Ie with the SAVE command, and can be subsequently
reloaded for execution with the lOAD command. The command form SAVE ON fi lename (where fi lename does
not name an already-existing file) creates a file named as specified, on which your current program is copied.
If, on the other hand, you use the command SAVE OVER filename, your current program is copied on the
named file. If the specified name is not that of an already existing fi Ie, a new permanent fi Ie is created.

To retrieve a saved program, you use the command lOAD filename. In general, the lOAD command causes
loading of the named program into the program-text area, but the resu Its of this loading wi II depend upon the
state of this area at the time the command is given. If the program-text area is empty, i. e., no current pro
gram has been entered or loaded during the current BASIC session, the saved program simply becomes the current
program.

If, however, the program-text area is not empty at the time of the lOAD, the result depends on the current
operating mode, or status. If the status is not "running ", i. e., not execution mode, then the statements of the
saved program are "woven II into the current program, on the basis of step numbers. This "weaving II process is
analogous to a linked-file PCl COpy f

1
,f

2
to f

3
.

The result is not usually the one desired; it can be circumvented by using the command CLEAR, prior to the
lOAD. The CLEAR command clears the contents of the program-text area, i.e., the current program. This
command may be given at any time. If BASIC is in execution mode, or "running II, the program-text area
is automatically clear prior to loading. The operating mode can be ascertained at any time by use of the

38 BASIC

STATUS commclnd. Use it frequently to become familiar with mode tran~itions. (The responses to STATUS are
EDITING, COMPILING, or RU NNING.)

ADDITIONAL EDITING FACILITIES

Two BASIC editing commands that facilitate the display and deletion of current-program statements are LIST and
DELETE, respectively. These two commands have identical formats; LIST is shown:

where s. is a step number.
I

If one or more pairs of dash-separated step numbers (sl-s2, etc.) are specified, the corresponding range(s) of state
ments are I isted or deleted. If only sl (,s3, etc.) is specified, only the corresponding individual statement(s)
is I isted or deleted. If no step number is specified in a LIST command, the entire current program is listed.
Note: The command form DELETE @) is ignored; to delete the entire program you must use the CLEAR command.

Example 20. Program Modification, Saving, and Reloading

(This example takes up at the point at which we left Example 19.)

~10 @)
~15 @

The user deletes the two REM statements (wh ich are not necessary to the program's operation) and,
below, requests a display (LIST) of the current program.

~LIST @
20 $A· = "C:gMPUTE ARCSIN OF X, IN DEGREES"

30 PRINT ~A

40 FOR I ==_ 1 TO 5

50 INPU1:"'.K
55 IF ABS(X) > 1 THEN 90

60 PRINT DEG (ASN(X) >. " = ARCSIN OF "X

70 NEXT I

80 END

90 PR INT)(j "VALUE OUT 9F RANGE II

95 GOTO 70
2:,25 REM NEXT STMT SHOWS STRING CONCATENATION (+) @)
>30 PRINT $A + ", TESTING FOR OUT-OF-RANGE VALUES" @)

~40 FOR I =1 TO 2 @)
;:LIST 20-40 @)

He inserts step 25, r,eplaces steps 30 and 40, and I ists steps 20 through 40 to observe the resul ts.

20 $A = "COMPUTE ARCSIN OF X, IN DEGREES"

25 REM NEXT STMT SHOWS STRING CONCATENATION (+)
30 PRINT $A + ", TESTING FOR OUT-OF-RANGE VALUES"

40 FOR I = 1 TO 2

;:RUN @)

14 :53 NOV 10 RUNIDAA .•••
COMPUTE ARCSIN OF X, IN DEGREES, TESTING FOR OUT-OF-RANGE VALUES

1.253877 ~0
14.7071 = ARCSIN OF .253877

1-.00000009 @)
-5.15662E-06 = ARCSIN OF -9.00000E-08

BASIC 39

.::45 PRINT "ENTER SINE VALUE, PLEASE" @l

He inserts a final modification, then saves the program on new permanent fi Ie ARCSINE.

~SAVE OVER ARCSINE @l
~CLEAR @)
~LOAD ARCSINE @l

After clearing the program-text area, he loads the saved copy back in, and tries it once more (note
the new current-program name when he executes it again).

2:.RUN @)
15:04 NOV 10 ARCSINE •••
COMPUTE ARCSIN OF X, IN DEGREES, TESTING FOR OUT-OF-RANGE VALUES
ENTER S HIE VALUE, PLEASE
1.001 @l

5.72958E-02 = ARCSIN OF 1.00000E-03
ENTER SINE VALUE, PLEASE
1. 002 @)

.114592 = ARCSIN OF 2.00000E-03

80 HALT

TEMPORARY SAVING, RENAMING, AND RENUMBERING OF CURRENT PROGRAM

The FILE and NAME commands, used in con junction with C LEAR and LOAD, t-1rovide a convenient short-cut
means of temporari Iy saving the current program, e. g., for "backup" purposes prior to extensive modification,
and of renaming the current program for the execution -report heading. (You will have noticed a default pro
gram name, i. e., RU NIDAA, in the previous exarY';:,,jes - this defau It name varies from session to session.)

The command FILE simply causes the current program to be copied onto a temporary fi Ie {known as the "runfile" in
other Xerox operating-system environments}. This copy of the program can be explicitly named by using the com-
mand NAME newname prior to the FILE command. If the NAME command is not used (or no name is specified) the
defauli' program name applies. At any point after a program has been FILEd, a CLEAR and then a LOAD, with no
filename, reestablishes the field copy as the current program. The copy will remain on file during the whole termi
nal session until another program is FILEd over it.

When using FILE and LOAD (no name), it is important to remember that these commands always refer to the last
runfile referred to with a NAME command, if one or more have been issued. If not, the default runfile name is
"current". (The defau It<runfile name can be reestablished with a nu" NAME command, i. e., simply NAME 8 .)
Multiple runfiles can exist concurrently, resulting from multiple pairs of NAME newname and FILE commands having
been issued; they can be selectively retrieved by a LOAD ~ command. Note: If NAME newname is used,
newname may not a Iso be used as the name of a permanent fi Ie during the same term ina I session.

The command sequence for changing the execution name of a current program would be

>NAME newname
>FILE
>CLEAR
>LOAD

40 BASIC

Note that in this instance the CLEAR command that precedes the LOAD is functionally unnecessary since the
current program and the filed program are identical, but it is included because of resultant savings in proces
sing time and space.

At any time you can cause your current program to be automatically renumbered by giving a RENUMBER (or
REN) command. Its format is

REN [UMBER] [sl [,s2 [,ii]]l

where

s 1 is the initial new step number (default value = 100).

s2 is the old step number at which to begin renumbering (default value = 1, i.e., IIfirst statement").

is the increment by which successive new step numbers are to be increased (default value = 10).

(For example, REN alone is equivalent to RENUMBER 100, 1, 10; REN, 10 equivalent to RENUMBER 100, la, 10;
REN" 5 to RENUMBER 100, 1, 5.)

This command allows you to dean up, or regularize, the numbering of your program with full control over the
starting value, the point in the program at which to begin, and the step-value spacing. During the renumbering
process, proper replacements are made for a" step-number references, i. e., in GOTO statements, THEN clauses,
etc., within the program. If the renumbered program was loaded from a permanent file, simply resaving it over
the same fi Ie wi" make the renumbering "permanent".

Example 21. Temporary Fi ling, Reloading, and Renaming

(Continued from previous example.)

~FlLE 8

The user files the current program (ARCSINE) on a temporary "runfi Ie ", under the default "runfile II
name - whatever that is.

~CLEAR E~

He then clears the current program, to play safe.

~LOAD VPRIM 8

~RUN8

He loads and executes the program VPRIM, previously bui It under Edit. (If it were now to be resaved
over VPRIM, that file would no longer be keyed, as BASIC is not a keyed-file oriented processor
BAS IC step numbers are part of the file records, not record keys.)

BASIC 41

18 :30 NOV 12 VPRIM •••
ENTER LOWER BOUND FOR PRIMES
1.100 @'
ENTER UPPER BOUND FOR PRIMES
1.250 §

101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191

193 197 199 211 223 227 229 233 239 241
180 HALT

.:::.STATUS €,)

Following a successful execution of VPRIM, he requests the current status of BASIC.

RUNNING
.:::.LOAD §

He now loads the default-named temporary file, without a preceding CLEAR, since clearing is
automatic in execution mode •

.:::.RUN§
18:05 NOV 12 RUNIDAA •••
COMPUTE ARCSIN OF X, IN DEGREES, TESTING FOR OUT-OF-RANGE VALUES
ENTER SINE VALUE, PLEASE

1.8~
.:::.NAME ARC §

He breaks off execution, names another temporary "runfile", and (below) files the current
program on it.

':"FILE §
.:::.CLEAR §
.:::.LOAD §

Note here that LOAD with no name specified wi" refer to the last-named "runfi Ie" (if any
otherwise to the defau It-named "runfi Ie").

':"RUN @)
18 :09 NOV 12 ARC •••
COMPUTE ARCSIN OF X, IN DEGREES, TESTING FOR OUT-OF-RANGE VALUES
ENTER S INE VALUE, PLEASE

23.5782 = ARCSIN OF X
ENTER SINE VALUE, PLEASE

1.9~
.:::.SYS @

This command, SYS, causes an exit from BASIC and a return to TEL.

lOFF @l

DIRECT STATEMENT EXECUnON AND DESK-CALCULATOR MODE

Direct statements are BASIC statements entered without a step number either in editing or execution mode.
They can be executed either with or without a current program - the latter being called IIdesk-calculator
mode ll

• In normal execution mode, i.e., with a current program, direct statements are used for on-line de
bugging, or program verification.

42 BASIC

Direct statements are recognized as such by BASIC and are executed (if possible) immediately. The most commonly
used forms of direct statements in editing or desk-calculator mode are PRINT statements containing an arithmetic ex
pression, and one or more LET statements followed by a PRINT statement. For on-line debugging, GOTO, LET, and
PRINT are commonly used, singly or in combination, referring to variables and statements in the current program.

Most BASIC statements can be issued as direct statements; the few exceptions, e.g., FOR, NEXT, are statements
that cannot be expected to "execute" by themselves in any meaningful way.

A further enhancement of the direct-statement execution capability is the EXECUTE (or EXE) command, which
is provided specifically for c:onvenience in on -I ine debugging and verification. The command format is

where sl and s2 refer to step numbers in the current program.

In either editing or execution mode, a step number reference causes one statement or a range of statements of the
current program to be executed. Note that if a range is specified, the last statement in the range, s2' is not
executed. (You can achieve the same effect by combinations of direct statements, but the EXECUTE command is
significantly faster and more c:onvenient.)

Example 22. Use of Direct Statements - "Desk-Calculator Mode"

.!..BASIC @J
~PRINT DEG(ASN(.5)) @J

The user calls BASIC and immediately enters a direct statement, i.e., one with no line number.
Note that (1) there is no current program, and (2) the user doesn't have to be in execution mode.

30.0000
>PRINT DEG(ASN(l.l)) EV

Now he tries one theft should result in" an error comment.

ASN-ACS ARG ERROR
>LET X=SQR(2)/2 ~

Then he tries a sequence of two statements with a common variable •

.;::PRINT DEG(ASN(X)) ~0
45.0000

>SYS ~

.!..OFF @J

-accounting summary-

BASIC 43

ABBREVIATIONS OF BASIC COMMAND VERBS

All of the BASIC command verbs may be shortened to the first three letters, i.e., CLE(ar), DEL(ete), LOA(d), etc.
In addition, you may use the following short forms of the SAVE command: SA V N for SAVE ON, and SA V VE R for
SAVE OVER.

Another direct-statement execution example follows, illustrating EXECUTE command usage.

Example 23. Using the EXECUTE Command

.!..BASIC @)
2. LOAD VPR 1M @)
2.1 PRINT 'P='P; '1='1; 'Q='Q; 'S='S @)

The user inserts a statement that facilitates inspection of variable values as he executes selected
portions of it below.

,::LIST @)
1 PRINT 'P='P;'I='I;'Q='Q; 'S='S
10 REM GENERATE PRIME NUMBERS (>3) WITHIN USER-SET LIMITS
20 PRINT 'ENTER LOWER BOUND FOR PRIMES'
30 INPUT L
40 PRINT 'ENTER UPPER BOUND FOR PRIMES'
50 INPUT U
60 P=l
70 P=P+4.S=0
80 FOR 1=5 TO SQR(P)+l STEP 2
90 Q=INT (PiI)
100 IF Q*I=P THEN 150
110 NEXT I
120 IF P<L THEN 150
130 IF P>U THEN 180
140 PRINT P' 'TAB{02
150 IF S=1 THEN 70
160 S=1 2 P=P+2
170 GOTO 80
180 END
>RUN @)
13:02 NOV 18 VPRIM •••
P=O 1=0 Q=O S=O

ENTER LOWER BOUND FOR PRIMES
117 @)
ENTER UPPER BOUND FOR PRIMES
1.17 @)

11
180 HALT

>EXE 1 @)
P= 19 1= 5 Q= 3 S= 1
>EXE 70-120 @)

120 -EXEC- HALT
,::EXE 1 @)
P= 23 1= 5 Q= 4 S= 0
,::LET U=50 @)

Here the user enters a direct statement to change the upper-bound parameter.

~EXE 110-150 @)
23

150 -EXEC- HALT

44 BASIC

~EXE 150-180 @)
29 31 37 41 43 47

.180 -EXEC- HALT
>S'YS @)

!OFF @)

-accounting summary-

FORTRAN IV (FORT4)

The Extended FORTRAN IV processor is a mathematical-language compiler that processes an extended version of
the standard FORTRAN IV language. It is appropriate to the solution of medium-to-Iarge sca Ie computationa I
problems, and offers full file input/output capabilities. Unlike BASIC - compile-and-execute processor - it
produces savable and reusable object programs, eliminating the need to recompile frequently used programs.

A related facility, the FORTRAN Debug Package (FDP), permits on-line debugging during program development and
checkout. Use of FDP is covered in Chapter 7, "Debugg ing User Programs ". FORT 4 accepts source-program input
either from a previously built source file or directly from the user's terminal, a line at a time. Normally, the
former method is employed, the file having been built with the Edit processor.

The line-at-a-time method has an advantage for novice FORTRAN users in that "conversational" syntax-error diag
nostic comments are issued immediately following input of the I ine to wh ich they refer, an effective learn ing device.
(When using this method, a source fi Ie can be preserved for subsequent modification and recompilation by means of
the special compilation option SO, and an appropriate !SET command, as shown in a subsequent example.)

The standard outputs of the compilation process are the compiled object program, called the relocatable object
module (ROM), and error comments. A listing of the source program may be (and generally is) requested, with the
LS compilation option, described below.

CONTROLLING THE COMPILATIO~1 PROCESS

FORT4 is called with the TEL command FORT4. The format of this command is:

I FORT 4 [source] rON rrom' [,Iist]l
. ME LOVER ~ Ij ~

where

source specifies a disk fi Ie containing the source program.

ME indicates source input from the user's terminal (the default assumption for this field).

rom specifies that the relocatable object module produced by the compilation is to be directed to a speci-
fied file (fid), a logical device stream (stream-icl), the card punch (CP), or no file or device (NO). If
no rom specification is given, output is directed to a special file that may subsequently be referenced by
a dollar sign.

list specifies the destination of source-listing output: either a disk file (fid), a logical device stream
(stream-id), the terminal (ME), central-site line printer (LP), or no file or device (NO).

Note that the ON or OVER qualifier refers only to the rom, but one of the two must be given if either rom or
list is specified. For example: FORT4 ME ON ,LISTFIL.

This command, then, serves to call FORT4, identify the input source, and direct the compiler outputs.

Note that you can direct the compiler ou~puts prior to giving the FORT4 command with the !OUTPUT, !LIST, and
!COMMENT commands (the lotter allows a separation of source-I isting and error-commentary destination). If the
OUTPUT command is used, the default value for the rom given above does not apply.

90 16 92D-1 (2/74) FORTRAN IV (FORT4) 45

After the FORT4command, the processor responds with the question OPTIONS>, at which point you may enter one or
more compilation options. These control the compilation process and are used primarily to request optional outputs or
suppress standard outputs. The options controlling listing of outputs are:

LS - Produce source-program I isting and full com pi lation summary.

LO - Produce source- and object-program listing, and full compilation summary.

PS - Produce partial instead of full compilation summary (default option).

NS - Suppress compi lation summary.

Note that if none of the above are specified, a partial summary only is produced, as if the PS option were specified.
The PS or NS option can be used in conjunction with LS or LO, or NS alone may be specified (no listing, no summary).
If you use the LS or LO option, a destination for this output must be specified in the FORT4 command.

There are many other options, mostl y having to do with the nature of the source input and the object output.
These are described in the CP-V/TS Reference Manual, 900907, and the FORTRAN IV/OPS Reference Man
ual, 90 11 43.

If you enter source lines directly from the term ina I (i .e., FORT 4 ME .•.), you may want to use the SO option, which
requests that the source program be reproduced as an output; in this case you must assign this output (the M:SO DCB)
to a fi Ie with a ! SET command (see Chapter 11, "DCB Assignments "). Several examples are given below.

Following a successful compilation, link-loading and execution of the resulting object program can be requested with
the !RUN command. This command, as well as the related !LINK and !START commands are described in Chapter 6,
"Loading and ExecuHng Object Pr' <)(qms". Simple uses of !RUN are shown in the following examples.

In the following example, the user employs Edit to create a fi Ie, INPUT, containing the source program. Note that the
source lines contain a tab character: for FORT4, only one tab per line is accepted, and its value is fixed by the com
piler as column 7 (regardless of specified setting). The example program computes the length of a three-dimensional
vector, D, for input values of X, V, and Z. E 'ecution-time input to the program is initia IIy from fi Ie DATA; input
is terminated by a zero value for X. Output is initially directed to the terminal.

The user then decides to execute again with new X, V, and Z values from the terminal. Accordingly, he changes
the DCB assignments for FORTRAN I/O units 5 and 6 so that data input is from the terminal and program output goes
to the disk file VALUES. To examine this output, he issues a !COPVcommand to copy this file to the terminal.

Example 24. Compiling and Executing FORTRAN Input from a File

lTABS 7 @)

The user sets a tab value of 7, so that he can see the tab effect as he builds the file.

lBUILD INPUT €V
1.000 @ WRITE (6,100) @)
2.000 io@ READ (5,200) X,Y,Z @)
3.000 @ IF (X) 20,50,20 §
4.000 20 @ D = SQRT(X*~'(2+Y~'('*2+Z~h'(2) @)
5.000 @ WRITE (6,300)X,Y,Z,D §
6.000 @ GO TO 10 @)
7.000 50 @ STOP €V
8.000 100 @ FORMAT (lX, 1HX, 11X, 1HY, 11X, 1HZ, 11X, lHD) @
9.000 200 @ FORMAT (3E) @)

10.000 300 @ FORMAT (4(lX,E11.3» §
11.000 @> END §
12.000 §

He builds a file of source input, named INPUT.

46 FORTRAN IV (FORT4)

lBUILD DATA @)
1.000 1.0,2.0,3.0 @)
2 .000 1. 0 , 1. 0 , 1. 0 @)
3.000 O.O~
4.000 @)

He builds a program-data file.

1. COMMENT ON ME @)

and requests error commentary at the terminal.

l FORT4 INPUT ON BIN @)

He asks for a compilation of INPUT, with ROM output on BIN.

EXT.FORTRAN IV,VERSION .DOO

OPTIONS> @)

and accepts the default option, partial summary.

I : WRITE (WQQl
11: END

HIGHEST ERROR SEVERITY: 0 (NO ERRORS)

The partial summary prints at the terminal.

1.SET F: 5 /DATA; IN ~

The user assigns the file DATA to the F:5 DCB, and defines it as an input file. (This is a IIfile
ass ignment ".)

lSET F:6 lJC @)

He assigns the user's terminal to the F:6 DCB, via the operational label UC. (This is a "device
assignment ".)

lRUN ~

He requests a run, i. e., I ink-load and execution, of the program. Since the RUN command assumes
as its input the results of the latest compilation or assembly if no input file is specified, he does not
need to specify BIN.

LINKINU
PI ASSOCIATED

The loader's messages print.

X

.IOOE+OI

.IOOE+OI
~'c'STOP~'c' 0

Y Z D
.200E+QI .300E+OI .374E+Ol
.100E+Q~1 _____ .~1~0~0~E~+~0~1 ____ ~.1~7~3~E~+~0~1

Then the program's, output appears, and a normal program-halt is indicated.

lSET F:5 ec ~

The user resets the input unit to the terminal

lSET F:6 /OUTPUT;OUT §

and the output unit to a file, named OUTPUT.

FORTRAN IV (FORT4) 47

l.RUN BIN @l

He reruns, this time specifying the ROM name (not actually required in this case, as explained
above).

LINKING BIN
PI ASSOCIATED
14.4,5.5,6.6 @l
10 .0 @l

The program-input-request prompt is given, and the user enters a set of values and a zero value to
indicate end of data.

-kSTOP* 0

A normal program halt is indicated.

lCOPY OUTPUT @l

The user requests a copy of the output fi I e to the term ina I.

x Y z D

.440E+OI .550E+OI .660E+OI .965E+OI

l

The next example shows a very simple program entered directly from the term inal. The user requests the source pro
gram to be reproduced (SO), and uses a !SET command to assign a source-output file, SOURCE. He also uses the
! SET command to assign FORTRAN unit 6, the program output, to the terminal.

Example 25. Submitting Terminal Input for FORTRAN Compilation

! SET M:SO !SOURCE @l

The user sets the DCB for source output produced by the compiler, M:SO, to the file SOURCE. Here,
since he does not specify a file function (e. g., IN, OUT), OUT is assumed by default.

J..€Slc ~ @)

This :;equence will cause the FORT4 prompt character (» to be excluded as part of the input line
when tabbing. The backslash prints automatica lIy as a resu It of the @) C sequence.

lFORT4 ME @)

He asks for a compilation of direct terminal input.

EXT. FORTRAN IV, VERSION DOO
OPT IONS> NS , SO @)

He suppresses the partial summary (NS), and requests source output (SO).

>C THIS EXAMPLE ILLUSTRATES HOW SOURCE LINES ARE ENTERED@)
>C DIRECTLY FROM THE TERMINAL, AND HOW A LINE IS CONTINUED. ~
.::.@ WRITE (6,100) @)
~1008 FORMAT (lX,: @)
> C25HTHIS IS A CONTINUED LINE.)@)
~@ END @

FORTRAN prompts for source input with >. Note that the C in the fifth line is in column 6, the rest
following a tab starting in column 7. (The user assumes that the tab setting of 7 from the previous
example is still in effect.)

48 FORTRAN IV (FORT4)

The user turns off the tab relative mode.

J..SET F:6 UC @)

He sets the output unit to the terminal (operational label UC),

J..RUN @)

and requests a run.

LINKING $
P1 ASSOCIATED

THIS IS A CONTINUED LINE.
~(STO~(0

lCOPY SOURCE TO ME @)

He displays the reproduced source file.

C THIS EXAMPLE ILLUSTRATES HOW SOURCE LINES ARE ENTERED
C DIRECTLY FROM THE TERMINAL, AND HOW A LINE IS CONTINUED.

WRITE (6,100)
100 FORMAT (lX,

C25HTHIS IS A CONTINUED LINE.)
END

Nol'e that the lito be continued II marker (:) in the fourth line has been stripped off by FORT4.

lOFF @

-accounting summary-

COBOL

COBOL (COmmon Business Oriented Language) is a language that is especially efficient in the processing of business
problems.Such problems tyPically in~lve relatively little algebraic or logical processing. Instead, they most often
manipulate large files of basically simi lar records in a relatively simple way. This means that COBOL mainly em-
phasizes the description and handling of data items and input/output records. .

The COBOL compi ler is called from an on-line terminal by the following command:

rsourceJ [ON [,l[.]~ COBOLL ME OVER romJ ,lIst J

where

source specifi es a disk fi Ie containing the source program.

ME indicates source input from the user1s terminal (the default assumption for this field).

ON indicates that ROM output is to be on a new file.

OVER indicates that ROM output is to be over an existing file or on a new file.

90 16 92D-l (2/74) COBOL 49

50

rom specifies that the relocatable object module produced by the compilation is to be directed to a specified
fi Ie (fid), a logical device stream (stream-id), the card punch (CP), or no fi Ie or device (NO). If no rom
specification is given, output is directed to a speci al fi Ie that may subsequently be referenced by a dollar
sign.

list specifies that listing output is to go to a fi Ie (fid), a logical device stream (stream-id), a line printer (LP),
the terminal (ME), or no devi ce or fi Ie (NO).

When the compiler is entered, it sends a request for options to the terminal.

OPTIONS?

If no options are desired, a carriage return may be entered following the request. This initiates the compi lation.

If compilation options are desired, the word COBOL must be entered followed by the codes for the desired options.
These codes are separated by commas and terminated by a carriage return or line feed character which initiates the
compi lation. A few of the options that are avai lable are

GO - Specifies that a load-and-go copy of the object program is to be written via M:GO.

LO - Requests an object program listing via M:LO.

LS - Requests a source program listing via M:LO.

SO - Requests source output via M:SO.

Example 26 shows how to build and execute a COBOL program using the COBOL compiler.

Example 26. Bui Iding and Executing a COBOL Program

..!.TABS 9,13 @)

The user sets the simulated tab stops for his terminal to columns 9 and 13. Since the COBOL prompt
character wi II print in column 1 of his terminal, COBOL wi II interpret these tabs as being set in 8 and 12 •

..!.SET M:SO DC/SOURCE @)

The user wants the source output fi Ie (SO) to be named SOURCE •

..!.COBOL ME ON ROM ~

The user calls the COBOL compiler and specifies that source input is to be read from the terminal.

coo COBOL
OPTIONS?

The compiler identifies itself and requests compiler options.

iCOBOL GO, SO @)

The user enters a COBOL control command, specifying that he wants source output and a load-and-go
copy of the ob ject program.

i IDENTIFICATION DIVISION.@)
i PROGRAM-ID. SIMPLE.@)
i DATA DIVISION.EV
i PROCEDURE DIVISION.@)
i PARA-l. DISPLAY 'A.O.K' UPON PRINTER.EV
i STOP RUN.@)
i§F

COBOL 90 1692D-1 (2/74)

The programmer enters a COBOL program and then enters ESCAPE F to indicate that the program is ready
for compilation. The program is compiled and the following diagnostic message is output:

";hb'~NUMBER OF DIAGNOSTIC MESSAGES O";h'~";'~HIGHEST

SEVERITY LEVEL O";'d~·k

.lRUN ROM(NL) (NP) OVER LMN; BLIB: .COBLIB @)

Since there were no errors in the program, the user decides to execute it. The RU N command specifies
that an executable load module named LMN is to be built using the object module named ROM, no public
libraries or core libmries are to be searched, the BUB: library in the COBUB account is to be used to
satisfy any external references, and the load module is to be executed.

LINKING ROM

LINKING BLIB:

A.O.K.

The message A.O.K. is printed on the terminal because the terminal is the default LO device when
COBOL is run in the on-line mode.

META-SYMBOL (META)

Meta-Symbol is a macro-assembler that processes an assembly language, Symbol, (which is a symbolic representation
of the machine language) and macro-procedure language, Meta-Symbol (which is a powerful logical extension of
the assembly Icmguage). Assembly language is the "Iowest level II language normally used for programming.

The advantage of Meta-Symbol programming is the maximum speed and efficiency that is possible in the resultant
object programs. Its disadvantage is that it is more time-consuming to learn and to use than "higher-Ievel" lan
guages such as FORTRAN.

Also avai lable is an extensivl2l and sophisticated debugging processor, Delta, designed specifically - though not
exclusively - for debugging Meta-Symbol object programs. Its use is covered in Chapter 7 and in Example 47.

The META processor is called by the TEL command META. There are many examples throughout the following chap
ters that illustrate the use of META:

Example ~-I8 shows an assemb Iy and execution.

Example 43 shows use of OUTPUT, LIST, and COMMENT commands.

Example 44 shows use of SET commands before calling META.

Example 45 shows disconti nuation and resumption of output wh i Ie assembl ing with META.

These examples all illustrate the use of META to assemble from a source file. META can also be used to assemble
source lines directly from thEl terminal, as shown in the following example. Unlike the FORT4 processor however,
diagnostics are not produced until after the END statement is received. ("Diagnostic" is a general term for the
warning and error commentaries resulting from the error checking performed by the assembler.)

Meta-Symbol (META) 51

52

The format of the MET A command is

[
source] [ON [1 [. J~

META ME OVER romJ ,lIst ~

where

source specifies a disk file containing the source program.

ME indicates source input from the terminal (the default assumption for this field).

rom specifies that the relocatable object module produced by the assembly is to be directed to a specified
file (fid), a logical device stream (stream-id), the card punch (CP), or no file or device (NO). If no rom
specification is given, output is directed to a special file that may subsequently be referenced by a dol
lar sign.

list specifies the destination of the source-program listing: either a disk file (fid), a logical device stream
(stream-id), the terminal (ME), the line printer (LP), or no device or file (NO).

Note that the ON or OVER qual ifier refers only to the rom fi Ie, but one of the two must be given if either rom or
list is specified.

The effect of the META command variable field is to assign the M:SI (source input) DCB, the M:GO ("go", or object
output) DCB, and the M: LO (I isting output) DCB to the source, rom, and I ist specifications, or to their defau Its.
Note also that if these DCBs have been assigned previously in the session, either by an OUTPUT, LIST, FORT4, or
prior META command, the corresponding defau It values given above do not apply. (The effect of the COMME NT
command is to explicitly assign the M:DO (diagnostic output) DCB; i.e., to specify a destination for diagnostics
separate from the source listing, if any.)

After the META command is given, the processor asks for assembly options: WITH>. A description of these options
for on-line usage can be found in the CP-V/TS Reference Manual, 900907, Chapter 4. The only options we need
mention here are SO (source output), which functions exactly as in a FORTRAN compilation - shown in the previous
section - and SD (symbol ic-debugging), wh ich is covered in Chapter 7. Note that source-I isting output is implic
itly requested or suppressed by the I ist parameter in the META command, unless a LIST command is given before the
META command.

Note also that the format of the assembler source listing is not very suitable for display at the terminal, and is best
directed to the line printer (LP), or omitted. Comments go to the terminal (by default) in either case.

Example 27. Using META to Assemble Terminal Input

1}1ETA ME @)

The user asks for an assembly of terminal input, with no source listing.

He doesn't request any assembly options and, below, begins to type in the source lines following
META's prompt character (». (A tab setting and tab characters could be used to achieve the desired
starting columns as shown in later examples.)

~*THIS EXAMPLE ILLUSTRATES DIRECT INPUT FROM TERMINAL. @)
..::~qT ALSO SHOWS HOW TO CONTINUE A LINE. @J

SYSTEM BPM @)
SYSTEM SIG7 @)
REF M:UC @
M:WRITE M:UC,(BUF,M;

Meta-Symbol (META)

(CONTINUED LINE) @)

90 16 92D-1 (2/74)

2:. ES),(SIZE,26) (CONTINUATION) €V
2:. M:EXIT €V
2:.MES TEXT 'EXAMPLE OF CONT' ,; @)
~ 'INUED LINE.' @)
2- END START €V

*NO UNDEFINED SYMBOLS
* ERROR SEVERITY LEyEL: 0
-Ie NO ERROR LINES

lRUN (NP)@)

Here the library-search option NP is used to suppress association of the default public library, P1, by
the loader, as it is only required for FORTRAN programs.

LINKING $
EXAMPLE OF CONTINUED LINE.

The program executes, printing its output, and control returns to TEL.

lOFF @)

APL

APL is an acronym for A 'programming hanguage, the language invented by Kenneth Iverson. APL is an interpretive,
problem-solving language. As an interpretive language, APL does not wait until a program is completed to compile
it into object code and execul'e it; instead, APL interprets each line of input as it is entered to produce code that
is immediately executed. As (] problem-solving language, APL requires minimal computer programming knowledge;
a problem is enl'ered into the computer and an answer is received, all in the APL language.

APL operates in three modes. In the Desk Calculator Mode, expressions may be entered for immediate execution.
In the Function Definition Mode, expressions may be combined into programs and stored for futu re use. In the
Function Editi ng Mode, funcHons that were previously stored may be modified.

The APL examples in this manual are written for operation on a standard 2741 APL terminal (that is, a 2741 terminal
with an APL typeball). See Appendix B of the Xerox APL/LN, OPS Reference Manual, 90 19 31, for a description
of how to use APL with other terminals.

Example 28 provides an example of logging on to CP-V with an APL terminal, call ing APL, using APL in the Desk
Calculator Mode, and logging off. In Example 29, APL is used in the Function Definition Mode and the Function
Editing Mode.

Example 28. Using APL in the Desk Calculator Mode

The user identifies the 2741 terminal to the system.

XEROX CP-V AT YOUR SERVICE
ON AT 10:16 MAY 16. '73
LOGON PLEASE: 2466,SMITH 8

The CP-V system identifies itself and the user logs on.

10:17 05/16/73 2466 50-37 [1]

oAPL @)
jfPL-03/16/73
CLEAR WS

APL 53

Note that TEL prompts with a 0 character at an APL terminal. The user calls APL and APL
acknowledges control and prints the workspace status.

456+2095+74 §

The user begins using APL in the Desk Calculator Mode by adding three numbers together. Note that
APL provides the indentation but does not use a prompt character.

L05*.58
UNDEFINED

L05*0.5
~

The user then unsuccessfu lIy attempts to take the squa re root of 105.

105*.5 0:9
10.24695077

The square root operation is now successfu I.

6 15 8 495 *20:9
36 225 64 245025

In the above operation, the user requests the square of the numbers 6, 15, 8, and 495.

)OFF §

CPU ~ .0069 CON= :08 INT = 13 CllG = 0

The user logs off from both APL and CP-V. If the command had been)OFF HOLD, the user would have
been logged off from APL and control wou Id have returned to TEL.

Example 29. Using APL in the Function Definition and Function Editing Modes

XEROX CP-V AT YOUR SERVICE
ON AT 09:44 MAY 17,'73
LOGON PLEASE: 356101,KEYS~

09 :45 05/17/73 356101 22-39 [1]

::..APL 0)

APL-03/16/73
CLEAR WS

The user logs on and ca lis the AP L processor.

lIC-+-A HYP B 8

He decides to define a function that will calculate the length of the hypotenuse of a right triangle,
given the lengths of the two sides. The del (\7) character signals function definition and is followed
by the function name.

[1] C -+- «A*2)+B*2)*0.5 §

[2] \7 §

54 APL

The system responds with [l J and waits for the first program line. Each successive line is also numbered'
until the routine is closed by another IJ. (The user cou Id have closed the function by placing the IJ char
acter at the end of line 1.)

3 HYP 4 @l'
5

92 HYP 3 @)
92.04890005

The user tries a few examples.

VA GEOMETRY B @l
[1 J 'FUNCTION W BITTEN BY M. W. SMITH' @)
[2J 'GIVEN A RECTANGLE OF ' @)
[3J 'SIZE' ;A;' BY iB @)
[4J 'PERIMETER: 'iA+B @)
[5 J 'AREA: ' ;A xB @)
[6 J 'DIAGONAL: ';A HYP B V @)

The user writes a second function - one to calculate the perimeter, areal and diagonal of a rectangle.
Note that he makes use of the previously defined HYP function within this function. He also made a
mistake which wiJl loter need to be corrected.

10 GEOMETRY 12 @)

The user tries to use the GEOMETRY function and receives the printout I isted below.

FUNCTION WRITTEN BY M. W. SMITH
GIVEN A RECTANGLE OF
SIZE 10 BY 12

PERIMETER: 22
AREA: 120
DIAGONAL: 15.62049935

After examining the printout, the user notes that the perimeter was not calculated correctly. The value
should be twice the sum of the two sides.

VGEOMETRY[4D22J @)

The user indicates that he would liketo modify line 4 of the GEOMETRY function beginning at column 22.

[4 J t PERIMETER: ';A+B
/ / / @)

[4] I PERIMETER: '; 2xA+B §
[5] V@)

APL types line 4, performs a carriage return and spaces to column 22. The user types three slashes indi
cating that he wants the characters in columns 22 through 24 deleted. APL then retypes the I ine and
waits, allowing the IUser to add new characters to the line if he so desires. The user types in 2xA+B.
APL responds with the next I ine number, allowing the user to perform further modification to the func
tion if he so desires. The user has completed the modification that he planned and indicates this with
a IJ character.

10 GEOMETRY 12 @)
FUNCTION WRITTEN BY M. W. SMITH
GIVEN A RECTANGLE OF
SIZE 10 BY 12 .

PERIMETER: 44
AREA: 120
DIAGONAL: 15.62049935

APL 55

The user tries the function again to see if it is working correctly and sees that it is. However, now he
has second thoughts about the line that says "FUNCTION WRITTEN BY M. W. SMITH" and decides to
delete that line.

VGEOMETRY[1] 8

He opens the function and directs the system to line 1.

[1]88
v

The system prompts with [lJ and the user presses the ATTN key followed by the RETURN key.

The user closes the function because no further editing is to be performed.

10 GEOMETRY 12 8
GIVEN A RECTANGLE OF
SIZE 10 BY 12

PERIMETER: 44
AREA: 120
DIAGONAL: 15.62039935

The user executes the function again and is pleased with the results. He lists the function definition
for future reference, saves the 'workspace ' containing HYP and GEOMETRY, and then logs off.

\t;EOMETRY[OJ@)
V.A GEOMETRY B

[1] 'GIVEN A RECTANGLE OF '
[2] , S I Z E '; A " BY' ;8
[3] 'PERIMETER: ';2xA+B
[4] 'AREA: ' ;AxB
[5] f DIAGONAL: ';A HYP B

V
[6] -v8

)SA VE MYMATH @)
MYMATH SAVEB 10: 00 MAY 17, '73

56 APL

)OFF @)

In later sessions, the user can access HYP and GEOMETRY by using a)LOAD or)COPY command on
the workspace named MYMATH which has been saved as a file.

6. LOADING AND EXECUTING OBJECT PROGRAMS

LINK PROCESSOR

The LINK processor consists of a one-pass link-editor/loader, or linking loader. The essential functions of the
linking loader are to combine a number of separate program elements into a single executable entity called a load
module (LM), and to load it for execution. You can request these two functions together with the RUN command,
or separately with the LINK and START commands, respectively. In its I inking operation, LINK merges
internal symbol tables of several relocatable object modules (ROMs) presented to it and searches one or more sub
routine libraries to satisfy e>cternal references, where required. It makes full use of the CP-V Sigma hardware
memory-mapping, allocating virtual data space as needed for association of a publ ic core I ibrary such as the
FORTRAN PO or P1 libraries ..

The linking loader must be used both to I ink-edit and load one ROM, i. e., the output of one compi lation or as
sembly, along with any necElssary system-suppl ied service procedures and I ibrary subroutines, or to I ink two or more
ROMs from ~;eparate compilations or assembl ies, with their combined system-related references, into one load
module.

RUN COMMAND

The TEL command RUN requests linking, loading, and executing of one or more ROMs. Forms of the RUN command
are as follows:

1. RUN (or RUN $)

These forms simply request that the ROM created by the last compi lation or assembl y be'l inked, loaded,
and executed. The two forms shown are synonymous. (Input is taken from the file last assigned to the
M: GO DCB; LM ou'tput is placed on a special temporary fi Ie.)

2. RUN rom

The ROM stored on the disk file specified by rom is to be I inked, loaded, and executed. (LM output is
placed on a special temporary file.)

3. RUN [rom] {~~ER} Imn

ROM input maybe specified as in 2, above, but the LM output mayalso be directed to the file named Imn.

In each case, the LM output is available for a subsequent reexecution via the START command. In all three cases,
the public core library Pl is implicitly associated with the object program to satisfy any external references, if
possible.

The general formats of the RUN and LINK commands are identical; thus the more complicated form shown for LIN K
in the next section is equa">, appl icable to RUN, and vice versa.

Example 30. Using the RUN Command

lEDIT §

The user calls Edit.

EDIT HERE

~TA M §

He uses the Edit Tabs command (T A) and specifies the Meta-Symbol (M) tab setting (10, 19, and 37). (Other
. sets are available;see CP-V/TS Reference Manual, 900907.) He then builds a source file, INPUT.

Loading and Executing Object Programs 57

2.BUILD INPUT §

1.000 @
2.000 @
3.000 @
4.000 BEGIN @
5.000 @
6.000 MESS @
7.000 8
8.000 8
9.000 @

10.000 @

2::.END@

SYSTEM @
SYSTEM @
REF 9
M:WRITE @
M:EXIT @)
TEXT @)
'PRINT AT
DATA @
END @

lMETA INPUT ON BIN @

SIG7 @

BPM@

M:UC @

M:UC,(BUF,MESS),(SIZE,45)§

'THIS MESSAGE SHOULD ',; @) ,
THE TERMINAL.' @)
X'15000000' @ NEW LINE CHARACTER @

BEGIN @)

META is called to assemble source file INPUT with ROM output going to file BIN and no assembly
I isting produced.

No assembly options are desired.

lRUN @)

A run is requested from the last compilation/assembly output, i. e., BIN in this case.

LINKING $

The system acknowledges the LIN K function (the LINK processor is implicitly called).

DEFAULT CORE LIBRARY IS NOT NEEDED

See Example 31 for meaning of this message.

THIS MESSAGE SHOULD PRINT AT THE TERMINAL.

lOFF @)

The program's output is printed.

The user logs off. The temporary file containing the load-module output of RUN is now lost. (The
ROM fi Ie BIN is permanent, however.)

LINK COMMAND

The LINK command requests link-editing, as does RUN, but does not cause loading and execution of the resulting
load module. A more complex variable-field format than those shown in the previous section for RUN is given here:

where

rom. specifies a disk file containing a ROM.
I

Imn specifies a disk file for the LM output.

lid. specifies a disk file containing a user's subroutine-library.
I

In the format above, the several ROMs specified will be I inked into one LM, with user's I ibraries I idl through I idn
searched (prior to any public or system libraries) to satisfy external references, and the result placed ON or OVER
Imn if specified.

58 LI N K Processor

In addition to the above, CI parenthesized library-search code may be given. It is conventionally placed after the
command verb, as in LIN K (code) . .. • These codes request or suppress searching of system-suppl ied I ibraries, and
are listed in Appendix D. Also, internal symbol tables for several ROMs may be merged or selectively deleted in
the load module (see the CP-V/TS Reference Manual, 900907, for these formats).

Example 31. Using the LIN K Command

ILINK BIN ON LOAD ~

A I ink-edit of ,the ROM on file BIN is requested, with the resultant LM placed on LOAD.

LINKING BIN

The system responds to the LINK command.

DEFAULT CORE LIBRARY IS NOT NEEDED

The absence of a I ibrary search code (see Appendix D) in the LIN K command causes this message if
the default library (Pl) is not required. The specification of search code NP will suppress associa
tion of P1 and also suppress this message.

IOFF @)

Since the user does not want to execute the program at this time, he logs off. Files BIN and LOAD
are permanent ctnd can be accessed in subsequent sessions.

- accounting summary -

START C

The (START command can be used to load and execute (] load module produced by a prior LIN K command, or to
reexecute an LM already RUN (or STARTed). Three forms are applicable:

1. START

This form causes thE~ last LM produced, either via a LIN K or RUN, to be loaded and executed. Note that
the prior LINK or RUN must have been given during the current terminal session; the load-module file may
have been expl icitiy named (Imn), or named by default ($).

2. START $

This form causes th~:!! last LM produced on the temporary file $ to be loaded and executed; the load-module
file must have been named by default ($).

3. START Imn

This form causes the load module contained on the specified file to be loaded and executed. The LM may
have been the resul,t of either a LINK or RUN operation.

See Chapter 8, User Programs, for an alternate way of loading and executing user-developed object
programs:

Example 32. Using the START Command

II START LOAD 8

The load module LOAD created in Example 31 is loaded into core and execution begun.

LI NK, Processor 59

THIS MESSAGE SHOULD PRINT AT THE TERMINAL.

The program's output is printed.

lOFF ®

- accounting summary -

60 LINK Processor

7. DEBUGGING USER PROGRAMS

Two dynamic debugging facilities are available for on-line use:

• Delta processor for debugging Meta-Symbol programs.

• FORTRAN Debug Package (FDP) for debugging Extended FORTRAN IV programs.

IIDebuggingll is a general term for program-error detection and correction; dynamic debugging impl ies that the de
bugging process is carried out during the execution of an assembled or compiled program (as opposed to IIdesk
checking ll). Both Delta and FDP allow symbolic, i. e., source-program level references to elements of the object
program.

ASSEMBLY LANGUAGE DEBUGGING (DELTA)

Delta provides conversational debugging capability for checkout and modification of Meta-Symbol programs at exe
cution time. Delta allows full use of symbolic references to elements of the object program, and enables you to

• Control program execution, i. e., stop and restart it at any point, by means of breakpoints that you may
insert in the program at your discretion. These breakpoints may be unconditional (llaiways stop "), condi
tiona� ("stop under certain circumstances II), or based on changes in data values.

• Examine, modify, clnd insert various program elements: instructions, constants, variable values, and en
coded data of all types and formats. This can be done both prior to execution and during any hal t in
execution (e.g., due to a breakpoint).

• Trace continuous program execution by requesting a repeated display of specified sets of related informa
tion: register contents, switches, data values, etc., at specified points in the program.

• Search programs and data for specific elements and values.

Delta may also be used to write and check short Meta-Symbol or machine language programs.

Please refer to the CP-V/TS Reference Manual, 900907, for a comprehensive description and explanation of the
commands available under Delta.

EXECUTING IN DEBUG MODE

To initiate execution of a program in debug mode, you must append the clause UNDER DELTA to your RUN or
START command. Also, you must specify the SD (symbol ic debugging) assembly option in response to WITH> to
preserve the internal symbol table(s} of your program, if you want to refer to internal symbols with Delta commands -
the normal case. (Internal symbols are those whose point of definition and points of use are entirely within one
ROM.)

Note that the global (or external) symbols of your program are always available for reference (see the following
section).

When UNDER DELTA has been specified, Delta intervenes between program loading and initial execution. At this
point you can issue debugging commands to examine or modify locations, insert breakpoints, start execution at a
specified point, etc. Delta (llso assumes control at any halt in execution.

The following example illustmtes the usual method of using Delta in the debug mode of execution. A simple pro
gram is assembled with the SD option, run UNDER DELTA, and patched to create a missing M: EXIT statement. Note
that before you refer to internal symbols you must tell Delta the name(s) of the desired symbol table(s} by ROM-file
name (even though only one ROM may have been assembled).

To leave Delta and return to TEL, you issue a yC control combination.

Debugging User Programs 61

Example 33. Assembling and Loading in the Debug Mode

lMETA ME ON BFILE @)
WITH> SD @)

The user calls META to assemble statements from the terminal. He uses the SD option to cause an
internal symbol table to be produced.

2: SYSTEM SIG7 @)
,.:: SYSTEM BPM @
~ REF M:UC @
,.::BEGIN M:WRITE M:UC,(BUF,MES),(SIZE,9)~
~MES TEXT 'GREETINGS' @
~ END BEGIN @)

* NO UNDEFINED SYMBOLS
* ERROR SEVERITY LEVEL: 0
* NO ERROR LINES

Although there are no assembly errors, the user notes that he forgot to include an M:EXIT in the
program and decides to make this correction with patches.

lRUN BFILE UNDER DELTA (NP) @)
LINKING BFILE

He I inks and loads UNDER DELTA, suppressing loading of the default library with the code NP.

DELTA HERE

"ring"

Delta identifies itself and prompts with a ring of the console bell.

BFILE;S @)

The user selects the internal symbol table associated with ROM BFILE.

BEGIN/ CALI.I MES+.3 @)

This command opens the cell at local ,on BEGIN and displays its contents.

BEGIN(X/ .410C004 ~

A command is now entered to cause the contents of BEGIN to be displayed in hexadecimal format.
The user terminates the command wit~ the tab-key sequence, CONTROL I, which causes the cell
addressed by this command (location C004) to be opened and displayed.

MES+.3/ .11008C3C GV
MES+.4/ .30000000 @
MES+.5/ .COOI @
=.:;ME==.,S+......:....;. 6~/_~ • ..:...9 @

The contents of the function parameter table (FPT) referenced by the M:WRITE (at location BEGIN) are
displayed. Note that location C004 is shown symbol ically as MES+. 3. A I ine feed causes the next
cell to be opened and displayed. A carriage return terminates the sequence. Note that the hexa
decimal conversion format is maintained over the ~and 6.

BEGIN \ B MES+20 €V

The user issues a command to open the cell at BEGIN and enters a branch to location MES+20, a
patch area he has chosen that is well beyond the main program and the FPT displayed above.

62 Assembly Language Debugging (Delta)

MES+20\ CALI, I MES+3 0

He enters symbol ic code for the M:WRITE instruction (as originally contained in BEGIN, displayed
above). The I ine ~eed causes the next cell to be opened for modification.

MES+.15\ CALI,9 l(§

The next location prints with a hexadecimal displacement. He then enters symbolic code
corresponding to an M: EXIT. He has now entered all his patches.

BEGIN;G @)

He in itiates execution.

GREETINGS_

EXIT AT MES+.15

The output message prints, and Delta reports execution of the M:EXIT, stating the location of the
M:EXIT (MES + . 15).

c
Y +-

lOFF@)

The user interrupts with yC and then logs off.

The system infolrms him that Delta was terminated.

- accounting summary -

USING DELTA IN NONDEBUG MODE

Delta may also be called for use when you have not initially executed in debug mode, i. e., you did not specify
UNDER DELTA in your RUN or START command. The next example illustrates this type of usage.

Note that only the global symbol table is available, and that the user's first Delta command must be ;S to cause
this symbol table - associated with the load module as a whole - to be loaded. Otherwise, no symbols will be
available for reference. (If rom;S is specified, as was possible in the preceding example, the global table is loaded
impl icitly.)

Example 34. Calling Delta clfter Assembling and Executing in Nondebug Mode

The user wants to assemble I ines from the terminal and to defaul t all options.

lMETA ME @
WITH> @
~ SYSTEM SIG7 E)
~ SYSTEM BPM @)
~ DEF START @)
~ REF M:UC @)
~START 1.1,3 55 §
~ M:STIMER (SEC,5) ,XY @)

~AB LI,4 0 @)

~ STW,4 X @)

Assembly Language Debugging (Delta) 63

2: LW,4 X @
~ CI,4 0 @
~ BE $-2 @
~ M:STIMER (SEC,5),XY @
~ M:WRITE M:UC,(BUF,MES),(SIZE,17)~
2: BDR,3 AB 8
~ M:EXIT @
~XY LI,4 1 @)
~ STW,4X@)
~ M:TRTN @)
.:!.X RES 1 @
.=::.MES TEXT' 5-SEC INTERVAL' @)
.:::. DATA, 1 X' 15' @)
> END START@

*NO UNDEFINED SYMBOLS
* ERROR SEVERITY LEVEL: 0
* NO ERROR LINES

lRUN (NP) @)

5-SEC
5-SEC
5-SEC
5-SEC
5-SEC
5-SEC
5-SEC

LINKING $

He initiates loading and execution of the program.

INTERVAL
INTERVAL
INTERVAL
INTERVAL
INTERVAL
INTERVAL
INTERVAL

The program output begins to print.

The user notes that the program is looping more than was intended, and notices that an error was
made in the first statement (he typed 55 instead of 5), and decides to interrupt with yC and call
Delta to enter a patch. (The system did not echo a left arrow since it was in output mode.)

IDELTA @)

Control goes to TEL. The user calls the Delta processor.

DELTA HERE

"ring ll

;S @)

Delta identifies itself and prompts with a bell.

The user loads the global symbol table. The only symbol that can be referred to is START which is
the only DEF in the program.

START(X/ .22300037 .22300005 @)

He enters a Delta command to display the contents of START in hexadecimal format, and changes
this value to the hexadecimal equivalent of LI,3 5.

START;G @)

He directs execution to the beginning of the program (location START).

64 Assembly Language Debugging (Delta)

5-SEC INTERVAL
5-SEC INTERVAL
5-SEC INTERVAL
5-SEC INTERVAL
5-SEC INTERVAL

This time the program executes as was intended.

EXIT AT START + .A

Delta reports execution of the M: EXIT, i. e., normal termination.

CONTROL and Y interrupts Delta and returns control to TEL.

The user logs off.

- accounting summary -

USING DELTA TO WRITE PROGRAMS

The user may write and check short Meta-Symbol or machine language programs using Delta. Example 35 illustrates
the method by which this is done. In the example, a table TAB with ten numeric entries is created and a program is
written to find the sum of the numbers and to store the resul t in location SUM. It would be hel pful to review the
commands:

e\
and

e{f <5 >[K]

in Chapter 7 of the CP-V/TS Reference Manual, 900907, before studying the example.

Example 35. Using Delta to Write a Program

lDELTA €V

DELTA HERE
.10000(X<TAB>K @)

The user begins creating the data for his program by defining the global symbol TAB at location. 10000.
(The range of addresses available to the user is .AOOO - . IBFFF.)

TAB\S @

The page at . 10000 is obtained from the Mon itor with the command TAB \. AI so, the cell at . 10000 is
opened. The user then loads ten values into the table TAB, the first value being the 5 above.

TAB+.1 \
TAB+.2\
TAB+.3\
TAB+.4\

60
23 @
410
900

90 16 92D-1 (2/74) Using Delta to Write Programs 65

TAB+.5\
TAB+.6\
TAB+.7\

-2 (0
57 C0
-34 0

TAB+.8\ 20
TAB+.9\ 588 €V
TAB+.A(I<SUM>K@)

The global symbol SUM is defined at the next available location.

TAB+.B(R<BEGIN>K 8

BEGIN\ LI,2 00
BEGIN+.1\ LI,3 08

The global symbol BEGIN is defined at the next available location and the first two instructions of the
program are wri tten.

BEG IN+. 2 (R < RETURN> K 8

RETURN AW,3

RETURN+.1\
RETURN+.2\
RETURN+.3\
RETURN+.4\
RETURN+.5\

TAB,2(0

AI,2 10
CI,2 10 ®
BNE RETURN (0

STW,3 SUM C0
CAL1,9 1@

The global symbol RETURN is defined at the next available location and the remaining instructions of
the program are written.

BEGIN;G @

The user executes the program.

EXIT AT RETURN+.5

SUM/ill

The user obtains the answer by displaying the contents of SUM.

FORTRAN DEBUGGING (FOP)

The FORTRAN Debug Package provides a powerful conversational faci I ity for convenient and rapid checkout of
FORTRAN IV programs. The debugging features provided are dynamicallycontrollable from the terminal at program
execution time, and inc I ude the following:

• Statement stepping.

• Conditional breakpoints.

• Data-change breakpoints.

• Execution-flow tracing and event-history recording.

• Display and modification of scalar and array-element values.

• Branching.

• Program restart.

• Statement skipping and deletion.

• Automatic calling-argument display.

66 FORTRAN Debugging (FDP)

You may refer t·o variables by name and to statements by source-I ine number or statement label. These references
may be further qual ified by subprogram name.

The FDP facility consists of a sublibrary of run-time subroutines (a portion of public library PO), plus the necessary
symbol tables and in-line coding generated by the compiler when debug-mode is requested. (FDP can be used only
when debug-mode compilation has been performed.) Programs compiled in debug mode should not be used indis
criminately, as they require approximately 2.5 times the amount of memory required for nondebug runs and may
even double normal execution times.

In order to use F DP, you must do the foil ow i ng:

1. Specify the DEBUG compilation option when FORT4 prompts for options.

2. Specify in the RUN or LINK command either one of the library-search options (FDP or PO), or the clause
UN DE R F DP (the three forms are synonymous).

The two examples given here illustrate, in addition to TEL command usage, some of the more commonly used FDPcom
mands. Seethe FDP/ReferenceManual, 901677, fora complete description of the FDP commands, and a full explana
tion of their use.

In the following example, the- user compiles file INPUT, created in a previous example, in debug mode. Values
for X, Y, and Z are read from file DATA (also created in the prior example). The 0 N debugging command causes
values of D, X, Y, and Z to be displayed whenever D is computed.

Example 36. Use of FDP ON and PRINT Commands

!FORT4 INPUT ON ,ME ~

The user compiles file INPUTand directs the listing and compilation summary to the terminal.

EXT. FORTRAN IV. VERSION~COO
OPTIONS >DEBUG,LS~

Note the specification of DEBUG as an option"

1: WRITE (6,100)
2 : 10 READ (5,2qO) X,Y,Z
3 : IF (X) 20,50,20
4: 20 D = SQRT(X'k*2+Y*~'(2+Z~'d(2)

5 : WRITE (6,.:300) X,Y,Z,D
6: GO TO 10
7 : 50 STOP
8 : 100 FORMAT (7X, 1HX, 11X, IHY, 11X, 1HZ, 11X, 1HD)
9 : 200 FORMAT (3E11.3)

10: 300 FORMAT (4(1X,E11.3))
11: END

HEX DEC HEX
NAME TYPE pLASS ~ __ WORDS LOC

D

X

Z

R SCALR 00003 V 1 SQRT R SPROG INTRIN
R SCALR 00000 -'=V---::1-----::Y~-'------::R;:--;:S;-;C,.ATL-;;R-, -O~01"\'iO"'0'\'11I""T;"'V

R SCALR 00002 V 1 ,----

HEX HEX HEX HEX
LABEL LOC LABEL . LOC LABEL LOC LABEL LOC

10 00008 20 00017 50 00036 100 0003A
200 00043 300 00046

LOCAL VARIABLES (4 WORDS_~

00000 X 00001 Y 00002 Z 00003 D

DEC

1

/

FORTRAN Debugging (FDP) 67

BLANK COMMON (0 WORDS)

INTRINSIC SUBPROGRAMS USED:

SQRT

EXTERNAL SUBPROGRAMS REQUIRED:

F:UF F:I08 M:DO M:OC M:SI 9 BCDREAD
9 BCDWRIT 9DBDCKIN 9DBFHGO 9DBFHIF 9DBINIT 9DBSCKIN
9ENDIOL 9 IODATA 9SQRT 9STOP

HIGHEST ERROR SEVERITY: 0 (NO ERRORS)

DEC HEX
WORDS WORDS

GENERATED CODE: 119 00077
CONSTANTS: 0 00000

LOCAL VARIABLES: 4 00004
TEMPS: 4 00004

TOTAL PROGRAM: 127 0007F

The program I isting and compi lation summary is printed.

lSET F:6 /VECTORS;OUT E9

The user directs the program output to file VECTORS.

lSET F:5 /DATA;IN ~

Program input will be read from file DATA.

lRUN (FDP) @)

The user loads and executes in the debug mode. Alternatively he could have specified:

lRUN UNDER FDP or
lRUN (PO)

LINKING $

The loader's message prints.

@ON D; PR INT X, Y ,Z E9

FDP prompts with @. The user enters commands to cause the value for D to be displayed each time it
is stored into, and at the same time to display values for X, Y, and Z.

The user does not want to enter any more debug commands at this point and issues a GO command to
start execution.

14(20S): D=3.74166
Y=2.00000
Z=3.00000

68 FORTRAN Debugging (FDP)

X=1.00000

4(20S): D=I.73205

Y=I.00000,
Z=I.00000.

X=I.00000

Values for D, X, Y, and Z are displayed. The slash (/) indicates main program and is followed
by I ine number and statement number (if present) in parentheses.

Th is message is produced by the I ibrary subroutine STOP.

7(50S): RDY TO. STap

This message is produced by the debugger.

~QUIT @>

The QUIT command causes return to the monitor.

laFF @>

- accounting summary -

In the next example, the user enters a FORTRAN source program from the terminal without initializing variables,
setting loop control, and providing for I/O. He runs in the debug mode and issues FDP commands to provide the
omitted functions.

This program generates a Fibonacci sequence, in which the value of any number (beyond the second) in the sequence
is equal to the sum of the val ues of the two precedi ng numbers, e. g., 1, 1, 2, 3, 5; 8, 13,21,34,55,

Example 37. Further Uses of FDP Commands

lFaRT4 ME aN ,LP @>

aPTIaNS > DEBUG @)

.=::,10. 1==I+J @>

.::.20 J==I+J @)

.=::,30 Go. TO. 10 @)

.::.40 END @)

HIGHEST ERRaR SEVERITY~: 0 (NO. ERRaRS)

lRUN UNDER FDP @>

Th is command cCluses the user's program to be loaded and executed, with publ ic library FDP associated.

LINKING $

~I=O 8
~J=1 @>

~aN I @)
~aN J @)

FDP prompts with @. The user initializes I and J.

These ON commandswillcausevaluesfor land J tobedisplayedwhenthesevariablesarestored into.

FORTRAN Debugging (FDP) 69

~STOP AT 3#5 @J

This command causes execution to halt the fifth time that statement 3 (the GO TO statement) is encountered.

~GO@

Execution is now begun with the above commands in effect.

/lP082 :
2~2082:

1POS2 :
2~2082 :
1POS2 :
2~20S2:

1~1082:
2~20S2:

1POS2 :
2~20S2:

3(308 2 :

1=1
J=2
1=3
J=5
1=8
J=13
1=21
J=34
1=55
J=89

Values for I and J are displayed. The slash (/) indicates main program and is followed by line
number and statement number (in parentheses).

The program halts the fifth time that statement 3 is reached.

~K1LL @J

FDP prompts for a command. This KILL cancels all previous FDP commands.

~8TOP ON 1>500 ®

A conditional stop, or breakpoint, is set.

~AT 3; PRINT I,J @J

These commands will cause values of I and J to print each time statement 3 is reached.

~RE8TART @)

Th is specifies restart of program from beginning.

~GO @)

The user resumes execution.

/3(3082: [=144
J=233

3(3082: [=377
J=610

Volues for I and J are displayed each time statement 3 is reached.

1 (l08 2: 1:=987

At, statement 1, the value for I exceeds 500 and the program halts.

~KILL ON I @)

This command cancels the last ON I, effectively the last STOP command issued.

~8TOP ON J>10000 @)

Another conditional stop is issued.

70 FORTRAN Debugging (FDP)

Execution is resumed at statement 3, which is where the previous stop occurred.

/3(30S) : 1=987
J=1597
3(30S): 1=2584

J=4181
2(20S): J=10946

Values for I and .J print until J exceeds 10000 which occurs at statement 2.

~PR1NT I @)
6765

Since statement 3 was not reached to cause the current value for I to be displayed, the user gives
a PRINT command to cause this value to print.

~QU1T @>

The user now leaves FDP and returns to TEL.

lOFF @)

- accounting summary -

FORTRAN Debugging (FDP) 71

8. EXECUTING USER PROGRAMS

An object program stored on a file in load-module form may be called by its load-module name (lmn) used as a TEL
command verb. The load-module file may be stored either in your own account, someone elsels account, or the
system account. Thus far, the Imn-as-verb command is synonymous to the ISTART Imn command (except for a dif
ference in account-number defaults). Within the limn command, however, you can also very conveniently make
file or device assignments for three standard system DeBs: M:SI, M:GO, and M:LO.

The format of the variable field of the command is analogous to that of the FORT4 and META commands; the full
format is

limn [input] [g~ER [output 1][, output 2J]

where

Imn is the fid of an LM that can take the full form:

name [. [accountJ [. passwordJ]

(see below for special defaults)

input may be a fid or ME to be assigned to the input DeB M:SI.

output
1

may be a fid to be assigned to the output DeB M:GO.

output
2

may be a fid, ME, or LP to be assigned to the output DeB M:LO.

(Normal default assignments apply. That is, the M:SI and M: LO DeBs, if referenced, default to the userls terminal,
and M: GO to a temporary fi I e named $.)

The called program must, of course, directly or indirectly utilize one or more of the above-mentioned DeBs for any
of these assignments to make sense.

You can imply or specify the account number under which the LM file is stored, a'1d specify a password, as follows:

1. filename - (alone, with no period) implies the system account.

2. filename~ - implies your account (i.e., the log-on account value).

3. filename.account - specifies an account .Iumber.

4. filename.account.password - specifies an account number and password.

5. filename .. password - implies your account and a password.

Note that this particular convention of default account number values is not the standard one that applies to most
fid specification in TEL and other commands, as described in Appendix B. The reason for the system account de
fault in particular is that installations may want to include, at system generation time, certain user-developed
"production II programs in the system account; special forms of these may then be accorded preferential disk -storage
and loading, depending upon frequency of use and programming characteristics. (META and FORT 4 commands, for
example, are actually special instances of limn commands.)

The two examples following show very simple programs, developed wholly within the example for purposes of illus
tration. Actual uses of the command may, of course, call a program developed some time in the past, and possibly
by another programmer.

The program 'in Example 38 reads a Meta-Symbol source program via M:SI, and writes out any comment lines (asterisk
in column l}contained in the program via M:LO. The input file and output device are assigned within the calling
command. As a test, the user specifies as input th~~ source program from which the ca lied object-program was assembled.

Example 39 merely shows a simple FORTRAN IV program call by its load-module name. Since the compiler automati
cally provides (indirectly) program-file DeBs identified with names of the form F:n, file/device assignments cannot
also be made within the limn command for FORTRAN object programs.

72 Executing User Programs

Example 38. Using Load-Module-Name as Command Verb (Meta-Symbol Program)

! EDIT @>
EDIT HERE

::,TA M @)

The user sets tabs for META. Then he builds a Meta-Symbol Program to extract comments lines from
Meta-Symbol source programs. (Usage of tab control not shown.)

::'BUILD SOURCE @)
1.000 * "k*"kUTILITY PROGRAM "EXTRACT"*~'(* @)

2.000 * THIS ROUTINE LISTS ONLY THE COMMENTS LINES, IF ANY, FROM 8
3.000 "k A META SOURCE-PROGRAM FILE. IT ISSUES A BLANK@)

4.000 "k LINE TO INDICATE ONE OR MORE CODING LINES@)

S .000 "/(INTERVENING BETWEEN COMMENTS. IT READS ITS INPUT @)

6.000 * FROM M:SI, AND WRITES TO M:LO. @
7 .000 SYSTEM BPM @)

8.000 SYSTEM SIG7 @)
9.000 REF M:SI,M:LO @

10.000 * ~'("/("/(INPUT BUFFER"/("/(~'~ @
11.000 INN RES 20 @
12.000 "/(~"'**80 BIANKS*** §
13 .000 BLANKS EQU $ @)
14.000 DOl 20 @)
lS.000 TEXT I@)

16.000)'(WE GIVE A TOP-OF-PAGE AT BEGINNING (AND END) @)

17.000 START M:DEVICE M:LO,(PAGE)

18.000)'(SWITCH: "HAVE WE ISSUED A BLANK LINE 7": 0 = YES/1 = NO €0
19.000 LW,4 =0
20.000 RDNXT(M : READ M:S I, (BUF , INN) , (SIZE, 80) , (ABN , EXIT)

21.000 LB,S INN
CI,S '*'

BE PRINT

CI,4 0
BE RDNXT

M:WRITE M:LO,(BUF,BLANKS),(SIZE,72)

22.000

23.000

24.000

2S.000

26.000
27.000 "/(

28.000)\-

WE SET THE SWITCH: "BLANK LINE ISSUED SINCE LAST

COMMENT"

29.000 LI,4 0

30.000 B RDNXT
31.000 ~.(WE RESET THE SWITCH: "BLANK LINE NOT ISSUED SINCE THE

32.000 * LAST COMMENT"

33.000 PRINT LI,4 1

34.000
3S.000

36.000

37.000

38.000 EXIT

39.000

40.000

41.000

J..META SOURCE @)

WITH> @)

LW,l M:SI+4

SLS,l -17
M:WRITE M:LO,(BUF,INN),(SIZE,*l)

B RDNXT
M :DEVICE M: LO, (PAGE)

M:CLOSE M:LO,(SAVE)

M:EXIT

END START

* NO UNDEFINED SYMBOL~

ERROR SEVERITY ~VEL: 0
~.(NO ERROR LINES

.!..LINK (NP) ON EXTRACT @)

LINKING $

Executing User Programs 73

lCOPY SOURCE TO SORCNC(NC)~
•• COPYING

The user copies the source file using the NC option to strip the carriage-return off each record;
otherwise the output below would be double spaced.

lEXTRACT. SORCNC ON ,ME @)

Here he calls the LM EXTRACT, with a following period to indicate limy account", and assigns the
input file, SORCNC, and directs M:LO output to the terminal.

ok *-Jd(UTILITY PROGRAM "EXTRACT",'d("k

ok THIS ROUTINE LISTS ONLY THE COMMENTS LINES, IF ANY, FROM

i(A META SOURCE-PROGRAM FILE. IT ISSUES A BLANK

?'(LINE TO INDICATE ONE OR MORE CODING LINES

?'(INTERVENING BETWEEN COMMENTS. IT READS ITS INPUT

* FROM M:SI, AND WRITES TO M:LO.

* ***80 BLANKS***

?'(WE GIVE A TOP-OF-PAGE AT BEGINNING (AND END)

?'(SWITCH: "HAVE WE ISSUED A BLANK LINE ?": a = YES/l NO

?'(WE SET THE SWITCH: "BLANK LINE ISSUED SINCE LAST
i(COMMENT"

i(WE RESET THE SWITCH: "BLANK LINE NOT ISSUED SINCE THE

i(LAST COMMENT"

The program's output has printed and control reverts to TEL.

Example 39. Using Load-Module-Name as Command Verb (FORTRAN Program)

-page heading-

lTABS 7@J

The user sets a tab stop for term i na I input.

J..BUILD FILEI @)

1.000 @

2.000 @

3.000 @

4.000 @

5.000 10@

6.000 20@

7.000 30@'

8,000 @

9.000 @)

I=l@)

WRITE (6,20) @)

DO 10 J=l, 10 ~
I=Ii(3@)

WRITE (6,30) I@J

FORMAT (lX,15HPOWERS OF THREE)@)

FORMAT (5X, 17) @)

END@)

lCOMMENT ON ME @)

74 Executing User Programs

lFORT4 FILEI ON OUTFIU~~

FORT4 is called to compile source program FILE1, with ROM output going to OUTFILE.

EXT. FORTRAN IV. VERSION C02
. OPTIONS>NS ®

FORT4 prompts for .options. The user suppresses the partial-summary output.

lSET F:6 UC §

This command will cause output to device 6 to be directed to the terminal.

lLINK OUTFILE ON POW3 ~,)

Call LINK to create load module POW3.

LINKING OUTFlLE

The LINK processor responds.

PI ASSOCIATED

IPOW3. §

Load module POW3 is loaded into core and executed. The log-on account is used.

·POWERS OF THREE
_____ 3_

9

8]:.

243

2187
6561

19683
59049

~'(STOP* 0

The program's output is printed.

lOFF @)

-accounting summary-

Executing User Programs 75

9a GETTING IN AND OUT OF PROCESSORS

GENERAL
Once having logged on, you are always in one of three states of processing:

1. In a Job Step: You are in a system (or user) processor, i.e., in II norma I II user-program execution.

2. In an Interrupt of a Step: You are at TEL level but have an interrupted processor associated.

3. Between Steps: You are at TEL level with no processor associated.

If you are in a processor, you can return control to TEL by depressing certain terminal keys (discussed shortly). Cer
tain TEL commands can then be issued to perform minor operations after which control can be returned to the proces
sor that was interrupted. The issuance of other TEL commands will cause either an abort of the previous job step or
a diagnostic message. For example, interrupti ng META to issue a DONT COMMENT command does not cause an
abort and allows return of control to META; interrupting META to call Edit will result in an abort of META; inter
rupting META to issue a SET command wi II resu I t in the message "QUIT ?", at which point the user may choose be
tween quitting or continuing the META processor. A complete description of the TEL commands and their effect
when used during a job step interrupt is given in Chapter 3 of the CP-V ITS Reference Manua I, 90 09 07.

BREAK, CONTROL Y, ESC Y, AND ESC ESC

Any CP-V processor or user's object program can be interrupted by depressing the BREAK key. Use of the BREAK
causes one of the following to occur:

1. If you are in a processor that has no command language (e.g., assembling with META), control is given to
TEL whenever a convenient interrupt point is reached. TEL then prompts for a command.

2. If you are in communication with a processor that has break control (e.g., Edit, BASIC), and in a sub
process such as I isting or copying, control is given to the processor, wh ich prompts for its next command
or possib Iy issues an interrupt message.

3. If an object program or processor is in a process that does not have break)ntrol (i .e., has not used the
M:INT Monitor service) control is given to TEL.

The CONTROL Y combination or the ESC Y or ESC ESC sequences always return control to TEL. This type of inter
rupt can also be caused by depressing the BREAK kev more than three times. (Certain processors may take special
action on receipt of two or three break signals.) Examples of interrupting a processor are given in Example 40.

Example 40. Using CONTROL Y and the BREAK Key

LEDIT FILES (§)

EDIT HERE

The user decides to make changes to FILES.

o{~IN 7 l@) , c
7.000 Y ~

He starts to modify the file but changes his mind and interrupts by hitting CONTROL and Y simulta
neously. The system echoes a left arrow.

Control returns to TEL. The user calls PCL.

, 76 Getting In and Out of Processors

PCL BOO HERE

PCL identifies itself.

$LIST§

ARCSINE

CONWAY

DATA

FILES

INPUT

The user asks to hqve the names of the files that are currently in his disk directory listed.

5 FILES LISTED

He does riot want :to see the entire I ist, so he hits BREAK to stop the output.

$ COpy FILES TO LP§

'$. END §

Return is made to the command state of PCl. The user issues a COpy command to copy file
FILES to the line printer.

He leaves PCL.

l.EDIT FILES §

EDIT HERE

~TYl-7@>

He calls Edit and issues commands to type lines in file FILES.

1.000 * THIS PROGRAM SEARCHES NAME/ADDRESS-RECORD FILES ORDERED BY

2. 000 ?'(ZIP-CODE LOCALITIES. IT ALSO INSERTS AND DELETES N / A RECORDS. THE

3. 000 ~'(CALLING SEQ 8 (§ 8 8 ~

He does not want to see the entire file, so he returns to TEL by hitting BREAK four times. He
could also have returned to TEL by depressing CONTROL and Yor @ @.

--ENTER X TO ABORT COMMAND. ANY OTHER CHARACTER CONTINUES.

1.0FF@>

The Edit processor has break control and types this message in response to the first break. The
subsequent breaks cause direct return to TEL.

- accounting summary-

BREAK, CONTROL Y, ESC Y, and ESC ESC 77

QUIT AND CONTINUE COMMANDS

After you have interrupted a processor and have optionally issued one or more commands, you have three alternative
courses of action if the interrupted processor has not been aborted during the interrupt:

1. Return to the interrupted processor by issuing a CONTINUE command.

2. Discontinue use of the current processor by issuing a QUIT command.

3. Call another processor, which has the effect of aborting the previous operation.

Each of these actions is illustrated in the following example ~

Note that both END and STOP are equivalent to QUIT, and that GO is equivalent to CONTINUE.

Example 41. Interrupting, Continuing, and Quitting Execution

! BU ILD INPUT §
- c
1. 000 SYSTEM Y .:!:.

The user wishes to bui Id fi Ie INPUT but forgot to set tab stops before bui Iding the fi Ie. So he
now interrupts Edit by simultaneously depressing CONTROL and Y which the system echoes as
a left arrow. Control is given to TEL.

1. TAB S la, 19 , 37 §

He now sets tab stops for the term i na I I/O.

J..CONTINUE @)

He issues a CONTINUE command which takes him back to Edit (with no prompt). He retypes
h is first I ine, since he interrupted whi Ie typing this line.

SYSTEM@ SIG7 §

SYSTEM @ BPM @)

3.000 START@M:PRINT @ (MESS,MES) @)

M:EXIT §

5.000 MES 8 TEXT @

6.0008

7.000 @)

END@

'MESSAGE TO TERMINAL'@)

START §

J..META INPUT ON BOFILE, LP @)

l·HTH> §
c

y =.

He calls META to assemble the program, but then spots an error in the program and interrupts
with yC.

J..EDIT @)

He calls Edit to correct the error. META is automatically aborted.

EDIT HERE

2:EDIT INPUT @)

He wants to retype line 5 to change TEXT to TEXTC.

78 QUIT and CONTINUE Commands

He issues an insert command (IN) to correct the line. (Note that a space is not required between
the command and the line number.)

5.000 MES@ TEXTC@ 'MESSAGE TO TERMINAL'@)
!:.END @)
.!..META INPUT OVER BOFILE, LIST@)
WITH>@)

He again calls META to assemble file INPUT and request an output listing. Note use of
?VER to :eset file extension, ensuring that any output from the previous aborted assembly
IS overwrrtten.

''<-NO UNDEF INED SYMBOLS
"/(ERROR SEVERITY LEVEL: 0
"(NO ERROR LINES

l.LINK (NP) BOFILE ON MES @)

LINK is called to create load module MES.

LINKING BOFILE

!EDIT INPUT @)

EDIT HERE

!:.TYl-6 €V

He now wishes to see the corrected source and calls Edit to display the file. (Note that a space
is not required between the command and the I ine number.)

~1~.~0~0~0 __________ ~S~Y~S~TE~M~, ___ ~S~I~G~7

~2~.~00~0~ ________ ~SY~ST~E~M~, ___ ~B~P=M

c
Y~

.!..QUIT @)

J.NES .@)

c
y~

He decides he does not want to see the entire file after all, so he simultaneously depresses
CONTROL and Y to interrupt Edit and return control to TEL. The system did not echo a left
arrow since it WCJS in the output mode .

He then issues a QUIT command so that use of the Edit processor wi" be discontinued.

He now wants to load and execute program MES (but misspells the program name).

He rea I izes that MES is misspelled and that NES (wh ich happens to be another val id program
name) is now operating, so he returns control to TEL and types in the correct name.

QUIT and CONTINUE Commands 79

lMES.§

The system informs him that the program cannot be loaded without quitting the previous process
(NES), and that he must issue either a QUIT or a CONTINUE command. An implied QUIT may
be issued by entering a RETURN or LINE FEED character by itself. (This message would not have
appeared had the user preceded the MES. command with a QUIT command.)

The implied QUIT command causes the processor previously specified (MES) to be loaded and
executed.

MESSAGE TO TERMINAL

The program output prints.

lOFF@l

- accounting summary -

PROGRAM ABORTS
Many conditions can cause your program to be aborted, e. g., an inval id operation code. When an abort occurs,
the system prints an abnormal or error code (e. g., 4AOO) followed by a message tell ing you the reason for the abort.
The CP-V/TS Reference Manual, 90 09 07, Appendix B, contains listings and explanations of the Monitor error
messages.

The following example shows a program that wi" simply read two records of predetermined size from a file and print
them at the terminal. However, a misspelled label in line 8 (BUF instead of BUFF - not a syntax error) causes an
attempt at execution time to read into relative location 12. Since this location is in a write-protected procedure
area of the program (i. e., the area cannot be stored into), the program is aborted and an appropriate message issued
by the system. (Note that the program in this example is not intended to be realistic, but is designed solely to
illustrate as simply as possible the "bug", and thereby the point of the example.)

Example 42. System Handl ing of an Abort during Execution
--~

.!..BUILD READ @)

The user builds files READ and LINES (following line 14).

1.000 SYSTEM SIG7 @)

2.000 SYSTEM BPM @

3.000 REF M:SI8

4.000 REF M:UC@

5.000 BUF EQU 1O@)

6.000 START M:READ M:SI, (BUF ,BUFF), (SIZE, 16) @)

7.000 M:WRITE M:UC,(BUF,BUFF),(SIZE,17)~

80 Program Aborts

8,000

9,000

10,000

1l.000 BUFF

12,000

13 ,000

14,000 (£0

1.BUILD LINES e

M:READ

M:WRITE

M:EXIT <§

RES

DATA91

END

1.000 HELLO, TERMINAL! (§

2,000 GOODBYE! e
3 ,000 (.~

!COMMENT ON ME €V

1. ME TA READ @)

WITH> (§

M: SI, (BUF, BUF+2) ,(SIZE, 8) @)

M:UC, (BUF, BUFF+2) ,(SIZE, 9) <§)

4 €v
X' 15' <§

START <§

**** ILLEGAL BUF/PARAM-REWRN ADDRESS

* NO UNDEFINED SYMBOLS
"/(ERROR SEVERITY LEVEL: 3

* ERROR LI,;:.;.NE=S=--_

He calls META to assemble the source file. META produces summary messages indicating that there
was an assembly error. However, the user decides to run the program anyway.

! SET M:SI DC/LINES; IN @

He sets M:SI to the input file.

!RUN (NP) (§

LINKING2

HELLO. TERMINAL!

The first record os written,

4AOO SPECIFIED BUFFER DOES NOT BELONG TO THE USER

The system returns an abort message with an error code when the user tries to read the second record
into location 12, which is in a protected area.

Program Aborts 81

10. ASSIGNING DeBs

DATA CONTROL BLOCKS

A data control block (DCB) is a standardized table of information about the characteristi cs of an existent data-fi Ie
or one to be created. The system's file-management service routines use the DCBs essentially to obtain detailed
information both about the file, 0. e., the data) and the physical storage media assigned to it. This, combined
with information supplied in a given service request, completely defines the requested operation. These routines
also use the DCB to post or update dynamically-variable "historical" information concerning the data fi Ie (specific
results of the last I/O operation performed, for example) t.o which the user's program and other system routines may
refer.

The DCB also is, effectively, the connecting link between the user's input/output service requests, file-management
commands, etc., and the actual disk storage space or peripheral device from which or on which a given data file
is to be read, written, copied, saved, deleted, and so on. Sometimes the reference to this "Iink" is explicit at
the user's level, as for example in an M:READ or M:WRITE Monitor procedure in a Meta-Symbol program, or in a
SET command when the user needs to assign or reassign program input or output DCBs to specific disk fi les or devices.

MEANS OF FILE/DEVICE ASSIGNMENT

The !SET command may be used to explicitly assign any DCB (excepting M:UC, M:OC, and M:XX) to a file or .
device, as seen in a number of preceding examples. (SET can also be used for setting and resetting various param
eters, or relatively fixed items of information in a DeB, e. g., file options, but a general discussion of this usage
does not concern us here.)

The lOUTPUT, 1 LIST, and lCOMMENT commands can be used to implicitly assign several standard system DCBs
commonly used by system processors: M: GO, M: LO, and M: DO, respectively. Usage of these commands was also
shown and described for specific cases in preceding chapters. And, summarizing topics covered in Chapters 5
and 8, the source, rom, and list parameters of META, FORT4, and 1m-name commands implicitly assign the M:SI,
M: GO, and M: LO DCBs.

In general, the SET command need only be used to assign user-program files for DCBs that have no default assign
ment (or an undesired one), or to assign standard system DCBs, other than the ones named above, for special-option
processor outputs, e. g., the CO, BO, and SO options and the corresponding M.":'O, M:BO, and M:SO DCBs. To
assign M:SI, M: GO, M: LO, and M: DO, the choice between the several means described above is simply a matter
of the user's convenience, as they each lido the same job", excepting that SET cannot be used in a job-step inter
ruption. (See SET Command below, for specific information concerning BASIC.)

STANDARD SYSTEM DCBs

The system incl udes an extensive set of standard DCBs that provide for the majority of system- and user-program
needs. The I ink-loader suppl ies a uniform loader-constructed copy of these DCBs to the user's program as required
to satisfy references thereto. These DCBs all have names of the form M:xy, where xy generally corresponds to a
system-defined operational label (discussed under SET Command below). These DCBs, when used on-line, have the
on-I ine default assignment (if any) defined by the system for the corresponding operational label. Note that the
default assignments for M:UC and M:OC, the user's terminal in both cases, are really fixed assignments, i. e., you
cannot change them. (The default assignments can vary with individual installations, and most of them differ for
batch operations.)

Although a number of system DCBs default to the user's terminal, the M: UC DCB is unique because (l) its fixed
assignment is to the terminal - I ike M:OC, and (2) output through it is treated differently by the Mon itor than out
put to the terminal via any other DCB - unlike M:OC. For terminal output via any DCB other than M:UC, the
Monitor's COC (Character-Oriented Communications) routines automatically append a carriage-return/I ine-feed
combination to each record written without a te,l1inating carriage return. The COC routines do not append
such a combination to output written via M:UC; it wi II substitute that character combination, however, for any
carriage-return or I ine-feed character in the record. This difference allows you, when using M: UC, to produce one
physical I ine at the terminal with a series of records. (See CP-V /TS Reference Manual, 90 09 07, Chapter 10,
for details.)

82 Assigning DCBs

In addition to the standard system DCBs, the link-loaJer wi" supply a uniform loader-constructed DCBfor any M:ab
DCB reference where M:ab is not known to the system, and for any DCB reference of the form F:ab, such as pro
duced by FORTRAN IV for program files, where ab corresponds to the FORTRAN unit number. In these cases, the
DCBs neither have a default assignment nor are they automatically defined for input or output - excepting F: 101
through F: 108, the FORTRAN standard units. They are a Iso not defined for final disposition, and an I/O function
and disposition parameter (e.g., IN, SAVE) may need to be set.as well if the assignment is to a fi Ie or labeled tape.
(These settings are described below.)

ASSIGN/MERGE TABLE

DCB assignments, excepting those for M:SI, automatically remain in effect across job steps until reset or negated.
Assignments can be reset or negated between job steps. The mechan ism for setting and resetting assignments is the
assign/merge table, during an on-line session. An M:Slassignment is effective only for a single job step; following
that step it always reverts to its default assignment, the user's terminal.

Any assignment made by any of the means described above causes an entry to be made in your assign/merge table.
At the beginning of any job step involving a processor (including LINK) or a user's program, the entries in the
assign/merge table are merged into the corresponding DCBs. (An entry in the table is deleted by a ! SET dcb 0.)

If an error occurs when accessing the ASSIG N/MERGE record, the user wi II be logged off. He must log back into the
system to continue.

The apparent negation of an (lssignment achieved specifically by means of a DONI. •. command, e.g., DONT LIST,
bypasses the assign/merge table and affects only a switch in the user's JIT (job information table}at the time the com
mand is issued, whether between job steps or during a job-·step interruption. (The implied DCB is notaffected.) Only
the standard processor outputs written via M:GO (OUTPUT), M:LO (LIST, and M:DO (COMMENT) DCBs can be
affected in this way.

OUTPUT, LIST, AND COMMENT COMMANDS
Control over output from META, or FORT4, or a standardized user-processor may be exercised with the following
commands before the processor command is issued:

• OUTPUT ON or OUTPUT OVER followed by a file name. This command specifies the destination of the
reloccltable-object output (ROM) from the processor via the M: GO DCB. M: GO defaults to a special
file, which you may refer to in some cases with a dollar sign ($).

• LIST ON or LIST OVER followed by ME, LP, or file names. This command specifies the destination of the
listing output from the processor, via the M: LO DCB. For META and FORT4, M: LO effectively has no
default assignment. Either an expl icit assignment must be made or the! LIST command given to turn on the
LO-output switch in the user's JIT' Apart from META and FORT4, M: LO defaul ts to the terminal.

• COMMENT ON or COMMENT OVER followed by ME, LP, or file name. This command specifies the
destination of error commentary from the processor, via the M: DO DCB. M: DO defaults to the user's
terminal. Therefore" COMMENT need not be used unless you want to direct error commentary to a
destination other than your term ina I.

In the following example, we specify destination fi les for the META output by using the LIST and OUTPUT com
mands, and (for purposes of illustration only) turn off the diagnostic output. We then assemble and execute the
subprogram, but trap. We do not detect any errors in the source program, so in order to find out if we have as
sembly errors (which do show on the listing, however) we issue a COMMENT command to turn error commentary back
on. We reassemble, find that we have a syntax error, and correct the line before reassembling again.

Example 43. Controlling the Destination of Processor Output

! BUILD COUNTER @)
1.000 SYSTEM SIG7 @)
2. 000 SYSTEM BPM @)
3.000 BEG LI,l 100 @l

OOTiF\H" USl,and COMMENfComm·ands 83

4.000 STW1,X@)

5.000 M:EXIT @)

6.000 X RES 1@J

7.000 END BEG @)

8.000 @)

! LIST ON LOFILE €V

Before call ing META, the user directs I isting output to fi Ie LOFILE.

! OUTPUT ON B IN €V

He specifies that the ROM output is to go to file BIN.

lDONT COMMENT @)

He overconfidently turns off error commentary.

lMETA COUNTER @)

lRUN BIN ON CNTR100 @)

He requests load module output on file CNTR100.

LIl\KING BIN

DEFAULT CORE LIBRARY IS NOT NEEDED

A400 YOU TRAPPED

An abort message prints indicating the program would not execute properly.

lCOMMENT @)

The user does not spot any errors in the source, so he issues a COMMENT command to cause
error commentary from META to appear '"it the terminal.

lMETA COUNTER OVER BIN ,LOFILE @)

He calls META again. Files BIN ar.d LOFILE were created when META was previously called,
so they must be respecified in order to be recreated or written over, rather than extended. This
time the error commentary prints at the terminal and indicates that statement 4 is in error.

4 01 0000 1

~b'dd(ILLEGAL CF

~.(NO UNDEF INED SYMBOLS

~.(ERROR SEVERITY LEVEL: 3

~.(ERROR LINE S

4
lEDIT COUNTER @)
EDIT HERE

'::IN 4 @)

35060001 N STW 1.X

He wants to change line 4 and uses the Insert (IN) command to enter a corrected statement.

84 OUTPUT, LIST, and COMMENT Commands

STW,l X S

~ENDe

lMETA COUNTER OVER BIN" LOFILE @)

He calls META again. Error commentary will still be directed to the terminal, since the previous
COMMENT command is still in effect.

*NO UNDEFINED SYMBOLS

* ERROR SEVERITY LEyEL: 0

* NO ERROR LINES

lRUN (NP) BIN OVER CNTRIOO e

LINKING BIN

Since there are 1110 errors in the assembly, h~~ reloads and reexecutes the program, to recheck and
get an updated load module.

Normal execution is indicated by Ci return to TEL with no message.

lOFF @)

- accounting summary -

SETCIMI1AND
The general form of the ISET command is given in the Cp-v/TS Reference Manual, 90 09 07, with descriptions of
its many options and varied examples of its use. It is a complex command. Several forms, selected for particular
uses, are as follows:

• To Assign a public disk File

SET dcb /fid(ifilopt ..• ifilopt]

where

fnlopt is one of the file-option parameters given in Appendix C, Table C-3. Some of these are

IN[{SHARE}]
, EXCL. input file

OUT output file

INOUT[{:SHARE}]
function

update file , IEXCl

OUTIN scratch fi Ie

REl release on close] disposition
SAVE save on close

The defaults for the function and disposition parameters ~re interrelated, as fol lows: for IN or INOUT
files, SAVE is the default; for OUT or OUTIN files, REL is the default. (Note that for an OUT or OUTIN

90 16 920-2(10/74) SET Command 85

86

fi Ie the SAVE parameter does not actually cause the fi Ie to be permanently saved, but merely allows
SA VE to be effectively specified in an M:CLOSE operation.)

• To Assign a Labeled-Tape Fi Ie or Private Disk Pack

SET dcb dc[*nnnn][-rt]/fid[;filopt] •••

where

dc is a device code: DP-disk pack; LT-Xerox labeled tape; AT-ANS labeled tape; FT-free form
tape.

'nnnn is a tape or.disk pack serial number (i.e., an internal reel number).

rt is the 2-character identifier of a device that was defined at SYSGEN to be a resource.

fid is the file identification of a file on the tape or pack.

filopt is as above, under disk file assignment.

Note that the disposition fi Ie options, SAVE and RE L, have specialized meanings for tape operations, as
described in the CP-V/BP Reference Manual, 90 17 64.

• To Assign a Peripheral. Device (Other Than Magnetic Tape or Private Disk Pack)

SET dcb {:t~;am-idl[;devoPt] •••
oplb

where

dev is a symbiont-output device code (e.g., LP - line pr!nter, CP - card punch).

stream-id is the name of a logical device stream (e. g., Ll, PI, C1).

oplb is a system-defined operational label. These are given in Appendix C, Table C-l (see
also below).

devopt is a device-dependent device option; these are given in Appendix C, Table C-2, and
mainly concern format control and read/write codes and modes.

The system-default value of an operational label, e.g., SI, LO, or CO, is set by the individual installa
tion, and normally will differ from on-line to batch mode. In CP-V as distributed, the following opera
tional labels and correspondingly named DeBs default on-line to the user's terminal: e, DO, EI, LL, LO,
OC, SI, SL, and UC. Excepting the special label NO, all other operational labels have no "as-directed"
default value. The operational label NO has the fixed meaning "no assignment", and while it is in force,
effectively prevents any default assignment from being applied. This causes any output via a so-assigned
DeB to be lost, and an immediate end-of-file return on input.

• To Clear a User-Set Assignment

SET dcb[a]

This form causes any prior assign/merge table entry for the named DeB to be deleted from the table. Thus,
any system-default assignments are allowed to take effect in subsequent job steps.

• To Clear All User-Set Assignments

R[ESET]

This form delet~s all previously assigned entries from the assign/merge table. All system defau It assign
ments for all standard system DCBs are in effect for subsequent steps.

SET Command 90 16 92D-1(2/74)

GENERAL USAGE RULES

The following usage rules applly in general:

1. File or device options can be added or respecified, between job steps, for an already assigned DCB if the
assignment was made by a previous SET, OUTPUT, LIST, or COMMENT command, or a processor-call
parameter.

2. As stated earlier in this chapter, when assigning a file to any nonsystem-defined, loader-constructed DCB
(excluding F:101, F:l02, ••• F:106 for FORTRAN standard units) you must also specify one of the file
option function parameters (IN, OUT, INOUT, OUTIN), and also the disposition parameter unless the
default is desired. lrhus, an output-file assignment for, say, FORTRAN unit 6 would be as follows:

I SET F:6 /OUTFI L;OUT; SAVE

Example 44. Setting DeB As:iignments and Parameters with the SET Command

This example illustrates use of the SET command to direct input to and output from an assembly. The user
obtains source output on tClpe, a compressed-output deck, a double-spaced output listing on the printer, and
ROM output on a disk fi Ie.

lSET M:SO LT#A123-9T/Z€9

This command wi II c:ause the source output from META to go to fi Ie Z on the 9-track magnetic tape
having the serial number A 123.

lSET M:LO LO;SPACE=2 @I

The user wants the output listing double-spaced. Note that he must first assign M:LO. (But, see the
META command below, where this assignment i:s changed.)

lSET M:GO /BINOUT e
He wants the binary' output to go to disk file BINOUT. He could alternatively have used the command:

IOUTPUT ON BINOUT

lSET M :CO PI e
This command assigns the OCB for compressed output to logical device stream Pl. Uti Iization
privilege is required when Pl is associated with the card punch (its default association).

lMETA INFlLE ON ,LP@

WITH>SO, CO @)

The ~ser now ca!lls META to assemble a source file. He requests a source listing on the line printer
(privilege required) and a compressed output deck.

90 169.20-2(10/74) SET Command 87

.!..RUN (NP) BINOUT (~I~

He now ca II s RUN to load and execute the program.

LINKING BINOUT

.!..

Control returns to TEL, with no error messages having been issued.

BASIC PROCESSOR REDUIREMEITS

The BASIC processor uses the following DCBs for its I/O:

DCB

M:SI

M:EI

M:EO

M:CI

M:LO

M:DO

M:SO

Definition

Source input.

Stream 1.

Stream 2.

Stream 3.

Stream 4.

Diagnostic output and out
put that resu Its from a
PRINT statement or a LIST
command.

Output that results from a
SAVE, FILE, LOAD,
RENUM BER, or CHAIN
command.

Default Assignment

User's console (on-line job)
Card reader (batch job)

File

File

File

File

User's console (on-line job)
line printer (batch job)

File

The assignments for any of these DCBs may be changed via the SET command. For example, the assignment for the
M:DO DCB for an on-line job may be changed to line printer by the command

ISET M:DO LP

If either the M:SI or M:DO DCB has been affected inappropriately by previous processing during the on-line ses
sion, it may be reset to the BASIC default assignment by means of the SET dcb command. Both of them may be reset
at the same time via the RESET command. All other DCBs are reset to their BASIC default assignments automatically
by the BASIC processor.

88 SET Command

11. CONTROLLING OUTPUT

GENERAL
The several outputs from a compi lation or assern'bly (or "standardized" user processor) can be selectively turned off
by a DONT LIST, DONT OUTPUT, or DONT COMMENT command, either before calling a processor or during an
interrupt of the processor. These specifications retain their effect across job steps, unti I reset or negated. Outputs
may be resumed by a LIST, OUTPUT, or COMMENT command, or by specifying output destinations in a MET A,
FORT4, or user-processor command. LIST affects the M:LO DCB, normally used for listing output; OUTPUT affects
the M:GO DCB, normally used for ROM output, and COMMENT affects the M:DO DCB, normally used for diagnostic
output. (M: DO cannot be affected with the META, FORT4, etc., command parameters.)

If you have assigned output to a "symbiont device", such as I ine printer or card punch, the output is stored on disk
until you give an explicit or implicit indication that it is complete and ready to be printed or punched. You do this
explicitly by issuing the TEL command PRINT, or implicitly by lo~ging off. (Note that utilization privilege is
required for these central-site units, however.)

DISCONTINUING AND RESUMING STANDARD OUTPUTS

You may interrupt META or FORT4 and turn off output by one of the following commands:

• DONT LIST turns off list output.

• DONT OUTPUT turns off binary output.

• DONT COMMENT turns off error commentary.

The DONT LIST and DONT OUTPUT commands may also be given before call ing META or FORT4 if these outputs
are not desired.

Output may be resumed by one of the following commands:

• LIST resumes lisf" output as previously specified.

• OUTPUT resumes binary output as previously specified.

• COMMENT resumes error commentary as previously specified, or at the terminal by default.

Each of the above commands remains in effect during a session until you issue another command to redirect output.

The forms of these commands for explicitly directing or redirecting outputs are given in Chapter 10.

Example 45. Discontinuing and Resuming Output by OUTPUT, LIST, and COMMENT Commands

! BUILD INFILE 8

The user bui Ids a source fi Ie of Meta-Symbol statements.

1.000 SYSTEM BPM 8

2.000 SYSTEM SIG7 ®

3.000 START LI,R1 18

4.000 SLS,Rl 240

5.000 LW,R2 R18

6.000 STW,R2 Y ~~

Control I jng Output 89

M:EXIT@l

8.000 y RES

END

10.000 @

l.0UTPUT ON OUTFILE @l

l.LIST ON LFILE @)

START @)

The user specifies the destination files for binary output and object listing.

! DONT OUTPUT @)

!DONT LIST @)

For his first assembly, he only wants to test for assembly errors, and so he turns off the OUTPUT and
LIST options.

l.META INFILE @l

He calls META to assemble the source file.

3 01 00000 22000001 N START LIaR1 1

3.000
-{dd(-{(UNDEF SYM

4 01 00001 25000018 N SLS zR1 24

4.000

~'ddd(UNDEF SYM

5 01 00002 32000000 N LW,R2 Rl

5.000
c
y~

lQUIT @)

The user notices that he forgot to define Rl and R2, and so he interrupts by depressing yc and aborts
META by typing a QUIT command.

l.EDIT INFILE @l

EDIT HERE

He cellis Edit to insert definitions into the source file.

!:.IN2.5, .1 @l

2.500 R1

2.600 .R2

2.700 @J

!:.END @

EQU

EQU

He then leaves Edit.

90 General

10UTPUT ~0

lLIST §

This time he believes that the program is error-,free, and so he now resets the OUTPUT and LIST options.

lMETA INFILE @

He now reassembles. File INFILE must be respecified since M:SI defaults to the terminal at each new
job step.

WITH> 8

ok NO UNDEFINED SYMBOL!?
~'(ERROR SEVERITY L1~VEL: 0
~'(NO ERROR LINES

1

PRINT COMMAND

Output directed to the symbiont output devices (card punch and printer) is normally not queued for actual output
on those devi ces until you log off. Th is feature has the advantage of caus ing a II 0 f the output for one job to come
out together.

However, yOJ may want somE} of your output printed or punched immediately. The PRINT command causes your
symbiont fi les to be closed and queued for output at once (if you have the required uti I ization permission).

Example 46. Causing Printer or Punch Output to be Queued by Issuing a PRINT Command

!COPY ME TO LP 8

The user wants to enter lines at the terminal to be copied to the line printer .

...:.THESE LINES ARE DIRECTED TO THE LINE PRINTER §

..!..THEY ARE NORMALLY NOT QUEUED FOR PRINTING UNTIL THE USER LOGS OFF.@

.THE FOLLOWING PRINT COMMAND WILL CAUSE THEM TO BE PRINTED.@)

The Escape F signals end-of-input.

!PRINT @)

This command causes the line printer output to be queued immediately.

The session continues.

General 91

12. SAVING/RESTORING CORE IMAGES AND FILES

GENERAL

A core image of a program in process, along with relevant program context, can be saved on a disk file during an
interruption of execution. You might often want to save the core image of a patched program at one or severa I
stages of a complex debugging process, e.g., to ensure against errors in ensuing patches. The saving and reloading
of core images is ach ieved with the ! SAVE and ! GET commands, shown in the first two examples to follow.

Although program-I/O file identification information is saved along with the core image, file-positioning information
is not saved (and the fi les themselves may not be saved if closed automatically by the system). If, however, a given
program is not sensitive to these considerations, then SAVE/GET can also be used as a production checkpoint-restart
mechanism.

Disk (i.e., RAD or disk pack) storage is the predominant fi Ie -storage medi um for the on -I ine user, because of the nature
of remote on -I ine operation and the central role played by this type of storage in integrated batch/time-sharing op
erating systems such as CP-V. The advantages of disk storage over other types of fi Ie media were discussed briefly in
Chapter 4. Disk files are, however, susceptible to loss in certain types of catastrophic 5ystem fai lures, or "crashes ", that
sometimes occur. Although the system provides extensive, automatic protection against complete file loss (as
described below), generally on an "all files" basis, you can selectively create backup files anytime you feel this
action is indicated. (For example, after creating an important file when working with a relatively new installation
that has not yet ironed out all the wrinkles.)

Files may be saved or backed up either on the standard system save/restore magnetic tape by means of the TEL
BACKUP command, or on your own private tape, pac:::k, or on punched cards by means of the PCl COPYAll or
COpy command.

Another characteristic of disk storage is that its capacity is fixed in a sense that magnetic-tape or punched-card
storage is not, and that you can easily misuse it: (1) by not promptly deleting unneeded files (you are normally
charged for permanent disk space actually used, not the total extent allowed for your use), and (2) by allowing
little-used files to remain on disk. You can transfer files of the latter class to tapes by the same means used to
create backup copies - 'but do not forget to delete them from disk after verification of the copying!

SAVE AND GET COMMANDS

You can take a "checkpoint" of a core image at some desired point by interrupting the execution and issuing a
SA VE command. The core image of the program and othPr information that enables the system to reconstruct the
program IS environment (other than I/O-file positioni,,~) are then saved on disk. After you issue the SAVE command,
the interrupted program can be resumed by a GO 0 ":::ONTINUE command.

later you can restore the checkpointed program to core by issuing a GET command. Following the GET command
bya GO or CONTINUE command causes processing to be resumed at the point at wh ich the checkpo int was taken.

In the next example, we assemble a program witf-. META but discover coding errors when it does not execute prop
erly. Instead of editing the source file and reassembl ing, we choose to enter patches with DELTA (see Chapter 7).
To preserve a patched version of the program, we interrupt prior to execution and issue a SAVE command. The
patched version is restored by a GET command in Example 48 and executed again.

Example 47. Saving a Core Image of a Program (SAVE Command)

lBUILD INPUT @)

1.000 SYSTEM BPM @)

2.000 SYSTEM SIG7 @)

92 Saving/Restoring Core Images and Fi les

3.000 REF M:UC @)

4.000 START LI,1 RETURN @)

5.000 STW,l EXIT @)

6.000 LCI O®

7.000 STM,O REGS @)

8.000 B SUBR @)

9.000 RETURN cw,15 REGS+15 @)

10.000 BNE ERROR @)

11.000 CW,14 REGS+14 @)

12.000 BNE ERROR @)

13 .000 LI, 1t~ BA(REGS) @)

14.000 LI,15 56 @)

15.000 8LS,15 24 @)

16.000 CB8,14 O@)

17.000 BNE ERROR @)

18.000 M:EXIT @)

19.000 ERROR LB,2 ERR @)

20.000 M:WRITE M:UC,(BUF,ERR),(SIZE,*2),(BTD,1)@)

21.000 M:EXIT @)

22.000 ERR TEXTC 'REGISTERS NOT PRESERVED IN SUBR' @)

23.000 REGS RES 16 @)

24.000 SUBR LI,2 100 @)

25.000 BDR,2 $, @)

26.000 B "~EXIT @l

27.000 EXIT RES I@)

28.000 END START @l

29.000 ~~

l.META INPUT ON BO @l

WITH>SD @)

The user assembles the program, and asks for symbolic debugging code to be produced.

,'~ NO UNDEF INED SYMBOLS
,'~ ERROR SEVERITY LEVEL: 0
,'~ NO ERROR LINES

!RUN BO @l

LINKING BO

REGISTERS NOT PRESERVED IN SUBR

The program error message prints.

SAVE and GET Commands 93

lRUN BO UNDER DELTA @)

The user now runs under Delta because he wants to add patches to the program before executing again.

LINKING BO

DELTA HERE

"ring"

The Delta debugging processor identifies itself and prompts with a bell.

BO;S @)

The user identifies the symbol table associated with the ROM (BO).

EXIT+20\ STW, 1 EXIT+19 @

EXIT+.1S\ LI,l 100 @

EXIT+.16\ BDR,l $ @)

EXIT+.17\ LW,l EXIT+19 GV

EXIT+.18\ B *EXIT @)

SUBR\ B EXIT+20@)

He enters patches into the program (see Example 33 for meaning of these commands).

He depresses CONTROL and Y after the prompt to interrupt Delta. The system echoes a left arrow.

lSAVE MYJOB @)

He issues a SAVE command to save the patched program on fi Ie MY JOB.

lGO @)

The GO command takes him back to Delta.

START;G @)

He issues a Delta command to start execution of the program. (No prompt is given.)

EXIT AT RETURN + .9

Delta prints this message on execution of an M:EXIT.

The user now leaves Delta.

94 SAVE and GET Commands

Example 48. Restoring a Checkpointed Program (GET Command)

.!.GET MYJOB @

The user restores the checkpointed core image (the patched program on file MY JOB). This fi Ie was
created by the SAVE command in Example 47.

The GO command causes a return to Delta, the processor that was interrupted to perform the SAVE.

START;G @)

The user initiates execution. (No prompt is given for this line.)

EXIT AT RETURN + .9

The program completes execution.

BACKUP COMMAND

The BACKUP command provides a means of creating backup fi les. Fi les are copied to the standard system backup
tape. Note that the usage of BACKUP may be subject to rules and restrictions conditioned by specific installation
practices concerning the saving/restoring of fi les.

A keyed fi Ie co lied MAILBOX in the userUs account wi" contain completion messages resulting from the backup process.

The next example illustrates use of the BACKUP command. This example also shows that we must wait for the backup
process to com pi ete before finding out what is in the MAILBOX fi I e.

Example 49. Saving a Fi Ie on the Standard System Backup Tape

lBUILD MYFILE @)

The user builds file MYFILE.

lBACKUP MYFILE @)

He issues a BACKUP command to copy the file on the system backup tape.

lCOPY MAILBOX @)

300 FILE DOES NOT EX~IST.

He wants to see what is in the MAILBOX file, but this file does not yet exist because the backup process
is not complete.

lCOPY MAILBOX @

He waits a minute or so for the backup process to complete then issues the COpy command again.

16: 18 MAY 25, '71 BY AF~CD ON SN45Al BACKED UP FILE MYFILE

The completion messoge in file MAILBOX now prints.

BAC KUP Command 95

COPYALL AND COpy COMMANDS

SAVING ON TAPE

Many times you wi II want to save one, several, or all of your fi les on magnetic tape, in addition to those impl ied
by the IIproper usage ll guideline offered near the beginning of this chapter. For instance, if you were going on
an extended vacation, you might want to copy all your disk files to tape and thus save disk storage charges. Or,
if you are making many versions of a file, perhaps many assemblies, you may want to back up the original file on
tape. In the next example, the user transfers all the files in his account to tape and pulls them off as needed in
the session. He <;Ilso transfers a single, additional file to the tape. The example shows the use of CP-V labeled t,ape
rather than free-form tape. Using labeled tape, the user can request his files by name from the tape, as he would
call them by name from his disk directory. With free-form tape, he would have to know the ordinal positions of
the files on tt,e tape, and space forward or backward the appropriate number of files before he could read or write
the fi les he wanted. (Th is example is illustrative of what can be done, but not necessari Iy of what may norma lIy
be done, since it implies usage of a central-site resource in a manner that mayor may not be allowed in a given
installation.) Note that copying one file or the entire account to tape does not automatically delete the file(s)
from disk; disk files must be explicitly deleted by command. Also, tape files are no longer lIin the system 11 • That
is, the system IIknows ll only of files in the user's account on disk; the user is responsible for knowing the tape's
label or number, and for notifying the central-site operator of the same (see Chapter 14).

Remember that any utilization of magnetic tape, as well as any other central-site resource, requires a prior
permission by the installation.

See the CP-V/TS Reference Manual, 900907, Chapter 5, for a description of the Rewind (REW) and Space
to-EaT (SPE) commands shown in the next example.

Example 50. Transfer of All Fi les in User's Account to Labeled Tape

lPCL @)

PCL DOD HERE

:s.LIST @)

ARCSINE

DATAFIL

JOBFIL

ROMFIL

SOURCE

VPRIME

The user lists the names of the files ir. his disk account.

<REW #3B96 @)

He rewinds the tape (#3B96) he is going to write on, to be certain it is positioned to start of tape.
Th is assumes, of course, that the tape has been mounted a t the computer si te. See Chapter 14 on
user-operator communication. If the tape already contained files he wanted to keep, he would
instead want to skip to the position following the last fi Ie on the tape by issuing the command
,SSPE LT#3B96.

:s.COPYALL '!~O LTif:3B96 @)

He copies all the files in his account, in <;uccession, to labeled tape (LT) #3B96.

~REW if:3B96 @)

He rewinds tape #3B96 that he has just written on before listing it. He visually compares the list with
the one he received when he I isted the disk directory.

96 COpy ALL and COpy Commands

.::.LIST LTifo3B96 @>

ARCSINE

DATAFIL

JOBFIL

ROMFIL

SOURCE

VPRIME

<COPY ME TO NEW @>

..!.

The user creates a new file from the terminal.

~SPE LTifo3B96 @

He spaces labeled tape #3B96 to the mark following the last fi Ie on the tape.

~COPY NEW TO LTifo3B96/NEW ®

He adds fi Ie NEW to labeled tape #3B96 •

.s,.REW ifo3B96 @)

.::.LIST LTifo3B96 @)

ARCSINE

DATAFIL

JOBFIL

ROMFIL

SOURCE

VPRlME

NEW

He rewinds tape #3B96 and lists the names of its files. PCl has successfully added file NEW after the
last fi Ie written to tape, VPRIME •

.::.DELETEALL @)

DELETEALL?

.::.YES$ @)

..;.....;..._....;.7---,,-F.,;;;ILES DELETED

Satisfied that his files are safely stored on tape, he now deletes all files in his disk account. PCl
requires a "YES$" verification of the DElETEAll request, and upon its receipt, PCl deletes all of the
user's fi les and so not"ifies him.

COpy All and COpy Commands 97

:s.REW #3B96 @)

:s.COPY LT#3B96/NEW TO INPUT @

The user wishes to use file NEW as input to a processor later in the session. He calls it from the tape
back to h is account with a new name, INPUT.

:s.REM ifo3B96 @

He issues the REMOVE command, wh ich rewinds the tape and automatically issues a IIdismount ll message
to the control-site operator.

98 COpy ALL and COpy Commands

13" SUBMITTING BATCH JOBS

BATCH COMMAND

The BATCH command is used to submit a batch job deck stored on a fi Ie to the batch input stream. This job deck
must include all appropriate batch control cards that would be needed for normal batch job submission.

Example 51. Submitting a Job via BATCH Subsystem for Execution

-'-EDIT §

EDIT HERE

~BUILD BATCHIN §

The user builds a source program that he wishes to assemble in the batch environment.

1.000

2.000

3.000

4.000 START

5.000

6.000

7.000 MES

8.000

9.000 0:D

~BUILD JOBA@)

SYSTEM

SYSTEM

REF

M:WRITE

M:EXIT @)

ERROR

TEXT

END

SIG7 §

BPM @)

M:LO §

M:LO,(BUF,MES),(SIZE,9)§

THIS LINE CONTAINS AN ERROR ~

'IT WORKS.' §

START @)

He builds a file containing a batch job-control deck that will assemble the file called BATCHIN.

1.000 ! JOB @)

2.000 !ASSIGN M:SI, (FILE, BATCHIN) §

3.000 !ASSIGN M:BO, (FILE, BINARY) §

4.000 !ASSIGN M:DO, (FILE, ERRORS) §

5.000 !METASYM SI, BO, LO §

6.000 @)

~END @)

-'-BATCH JOBA @)

ID=0028 SUBMITTED _9:13 MAY 26. '71

He submits the batch job he has just created. The job identification (ID) prints as a hexadecimal value.
Note that the JOB Gommand did not specify an account, user name, or priority. When these parameters
are omitted, they are supplied by the system and default to the logged-on account, user name, and the
highest priority authorized that user.

Submitting Batch Jobs 99

CANCEL COMMAND

If the user wishes to cancel a job previously submitted by the BATCH command, he may do so by using the CANCEL
command.

CANCEL jid

where jid is the job identification that printed just after the job was submitted.

JOB COMMAND
The JOB command is used to ask for the status of a batch job. The system responds that the job is either completed,
running, or still waiting to be run. The format of the command is

JOB jid

where jid is the job identification that printed just after the job was submitted.

Example 52. Using the JOB Command

lJOB 28 @J

The user requests the status of the job submitted in the previous example. The job identification 0028
is the same as the one reported when the job was submitted using the BATCH command.

WAITING: 1 TO RUN

The system answers that there is one batch still to be run before this job is run.

!JOB 28 €V

Later the user asks again.

COMPLETED

Now the job is complete.

lCOPY ERRORS ON ME €V

The user displays the diagnostics from the job at the terminal. Note that M:DO was assigned to file
ERRORS in the job-deck JOBA.

6 ERROR THIS LINE CONTAINS AN ERROR

"ki~''k~'(UNDEF SYM
~'ddd(ILLEGAL AF
1(i(~l("k

~'(UNDEFINED SYMBOLS
THIS

-k ERROR SEVERITY LEVEL: 3
if(ERROR LINES

6
!

100 CANCEL Command/JOB Command

'14. COMMUNICATION WITH THE OPERATOR

MESSAGE COMMAND

The MESSAGE command causes a message to be sent to the central-site computer operator. The message may be
from 1 to 72 characters in length.

The format of the command is

IM[ESSAGE] message-text

If the message-text exceeds 44 characters, the first 44 characters are printed on one line at the operator IS console
and the remaining characters are printed on a second line.

In the next example, the user informs the operator that he needs a scratch tape.

Example 53. Sending a Mes:sage to the Operator

J..MESSAGE READY SCRATCH TAPE TO BECOME 119055. @

The lJser sends a message to the computer operal'or requesting that he be ready to mount a scratch tape.

J..BUILD DATAPOINTS @

He builds file DATAPOINTS.

J..COPY DATAPOINTS TO FTI19055 @

He requests that the: file to be copied to a free-form tape with the serial number 9055. The system
informs the operator where to mount the requested scratch tape.

MESSAGES FROM THE OPERATOR

The computer operator can send a message to an individual terminal or broadcast a message to all users. When he
broadcasts a message, the message is placed into the right-hand part of the page title for the terminals and it will be
seen by a user when he receives a new page heading. A message sent to an individual terminal may appear anywhere
in the user's output.

Note: If the PLATEN command was used to turn page headings off, the broadcast message will not appear.

In the next example, the user receives a message informing him that the system will soon go off. He issues a BACKUP
command before logging off to insure that his latest files will be saved. This action may not really be necessary, de
pending on installation practice; the system normally will save all files automatically before going off.

Example 54. Receiving a Me'ssage from the Operator

J..BUILD XYZ @

The user builds a source file.

90 16 92D-1 (2/74) Communication with the Operator 101

1.000

2.000

3.000

SYSTEM

SYSTEM

REF

BPM @)

SIG7 @)

M:UC ,M:LO @)

He wants to continue fi Ie bui Iding (or processing) on a new page, so he simultaneously depresses
CONTROL and L to cause a page eject.

(page eject)

23:45 OS/26/71 JONES ABC 1BB-F[17] CP-V WILL GO OFF AT 2400

Included as part of the page heading is the message from the operator CP-V WILL GO OFF AT 2400.
This message has been sent to a" users.

J...BACKUP XYZ @)

The user decides to terminate his processing at this time, and he uses a BACKUP command to save his
last fi Ie.

J...OFF @)

-accounting summary-

102 Messages from the Operator

APPENDIX A. TEL COMMAND SUMMARY

Table A-l is a SLlmmary of TEL commands. The first column gives the command format, the second column gives the
command's function and option codes. For the structure of file names (fid, rom, Imn) see Table B-l,

Table A-l. TEL Command Summary

Command

BACKUP fid

BATCH fid [,fid]. •. (Simpl ified format)

B[UILD] fid

BVE

~ANCEL jidLjid] •.•

COBOL[sp] [~~ER [rom][,list]]

COMMEN T[g~ER list]

CONTINUE

{
Tot }

C[OPV]sf OVER df

(Simpl ified formclt)

Descri pti on

Saves the specified file on a system tape. In case of a crash
in which files are lost, files on the tape will be restored.

Enters the specified file(s) in the batch job stream.

Allows a new fi Ie to be created from the terminal using the
Ed i t processor.

Disconnects the terminal from the system and provides an ac
counting summary. This command is equivalent to the OFF
command.

Cancels previously submitted batch jobs.

Compiles an ANS COBOL source program.

Options:

sp may be fid or ME.

rom may be fid, stream-id, CP, or NO.

li:st may be fid, stream-id, LP, ME, or NO.

Output may be interrupted and continued by the following
commands:

LIST
OUTPUT
COMMENT

DONT LIST
DONT OUTPUT

DONT COMMENT
CONTINUE

Directs error commentary to the specified device, or counter
acts the preceding DONT COMMENT command. Option:
list may be fid, LP, ME, or stream-id.

Continues processing from the point of interruption. This
command is equivalent to the GO and PROCEED commands.

Copie!i a file or device input to the specified file or device.

Options:

sf may be fid or device code.

df may be fid or device code.

(See PCl section for complete description.)

tWhenever TO is specified, ON may be substituted.

90 16 92D-4(12/75) Appendix A 103

Table A-l. TEL Command Summary (cont.)

Command Description

COUPLE Allows other terminals to couple to this terminal.

COUPLE line Establishes a link between the user's terminal and the terminal
specified by line.

DECOUPLE Releases the coupl ing between two terminals.

D[ELETE] {[DC/] }
Dp# serial number[-rt]/ I Deletes the specified file{s}.

L fid [, fid] ...
Option: rt is the 2-character identifier of a device that was

defined at SYSGEN to be a resource.

DELTA Ca II s the De I ta processor.

DI[SPLAY] Lists the current values of various system parameters.
--

DONT COMMENT Stops error commentary output.

DONT COUPLE Causes attempts to couple to the terminal to be rejected.

DONT LIST Stops listing output.

DONT OUTPUT Stops object output.

DONT SEND Disallows messages from the machine operator to the user's
terminal. Global broadcasts are deferred until TEL is in
control. Also disallows the MESSAGE command.

E[DIT] [fid] Calls Edit to modify a file.

END Terminates the current job step. This command is equivalent
to the STOP and QUIT commands.

ERASE Deletes the accumulated output for the I ine printer.

EXTEND Sets the extended memory mode; i. e., appends the special
processor area to the available user area.

FORT4[sp][g~ER [rom][,listJ] Compiles a Xerox Extended FORTRAN IV source program.

Options:

sp may be fid or ME.

rom may be fid, stream-id, CP, or NO.

list may be fid, stream-id, LP, ME, or NO~

Output may be interrupted and continued by the following
commands:

. LIST DONT LIST DO NT COMMEN T
OUTPUT DONT OUTPUT CONTINUE
COMMENT

GET fid Restores the previously saved core image. This command is
equivalent to the RESTORE command.

104 Appendix A 90 16 920-4(11/75)

Table A-1. TEL Command Summary (cont.)

Command

GO

JOB jid[,jid]. ..

~ -
L T# reel-id [-rt] [(s)]
[DC][. acct][(s)J
L T# seria I no. [-:-rtJ [(s)J /fid [(s)][, fid [(s)JJ. ..

L fid [(5)][, fid [(s)J] ...
DpH reel-id [-rt] [(s)]
DP#serial no. [-rtJ/fid [(s)J[,fid [(s)]J. .•
FT#serial no. [-rt][(s)]
~ - -

LDEV stream-id [, (option)J ..•

Description

Continues processing from the point of interruption. This
command is equivalent to the CONTINUE and PROCEED
commands.

Requests the status of jobs that were submitted to the batch
queue via the Batch processor.

Lists file names and, optionally, attributes from the account
directory, tape, or disk pack.

Options:

s may be A or EA.

rt specifies the 2-character identifier of a device that
was defined at SYSGEN to be a resource.

Modifies a logical device definition.

Options: see CP-V/TS Reference Manual, 90 09 07.

LIN K [opti ons]rom Lrom ... J[g ~ER I mn] ~ Forms the load modul es as spec ified.

L [[] JIi:l Options: ilid ,lid ..• LUNDER FDPJ

90 16 92D-4(12/72)

library search: (L), (NL), (Pi), (Ji), (FDP), (NP)
default: (L), (P1)

display: (D), (N D), (C), (NC), (M), (NM)
default: (D), (C), (NM)

symbol tables: (I), (N I)
default: (I)

E~xecute accounts: (EX, acct [,acct] ..•)

rom may be fid or $; parentheses enclosing roms cause merge
of symbol tables.

lid must name a file containing one or more roms.

Directs the I isting output to the specified device, or counter
acts t-he preceding DONT LIST command.

Option: list may be fid, LP, ME, or stream-ide

Appendix A 105

106

Table A-l. TEL Command Summary (cont.)

Command

M[ESSAGE] text

META[SP][g~ER [rom][,1 ist]]

OFF

PAGE n

PASSWORD, old-password, new-password
PASSWORD" new-password
PASSWORD, old-password,

Appendix A

Description

Initiates execution of a load module.

Options:

I mn has the form:

name[. [account][. password]]

absence of period and account specifies system account.

presence of period and absence of account specifies
log-on account.

sp is assigned to M:SI DCB.

rom is assigned to M :GO DCB.

list is assigned to M:LO DCB.

Sends the specified message to the operator. The first char
acter of the message may not be a period (.).

Assembles the specified Meta-Symbol source program.
I

Options:

sp may be fid or ME.

rom may be fid, stream-id, CP, or NO.

list may be fid, . stream-id, LP, ME, or NO.

Output may be interrupted and continued by the following
commands:

L-IST
OUTPUT
COMMENT

DONT LIST
DONT OUTPUT

DONT COMMENT
CONTINUE

Disconnects the terminal from the system and provides an ac
counting summary. This command is equivalent to the BYE
command.

Directs object output to the specified file, or counteracts the
previous DONT OUTPUT command.

Resets the terminal header page number to the value specified
by n.

Assigns, changes, or deletes a log-on password for the user.
The password is 1-8 characters and cannot contain

I,;<>./=?

and all COC control characters. A null field is used to
specify non-existence of either an old or new password.

90 16 92D-4(12/75)

Table A-l. TEL Command Summary (cont.)

Command

PLA TEN[w][,I]

PRINT

PROCEED

Description

Sets the value of the terminal platen width and/or page
length if wand/or I are specified; or displays the terminal
platen width and page length val ues if neither w nor I is
specified. (Page length does not include header.)

Sends accumulated symbiont output, such as output for the
Une printer or the card punch, to the output device.

Continues processing from the point of interruption. This
command is equivalent to the GO and CONTINUE
commands.

~------------------------,--------------~---.---

Processor Ca II s

Q[UIT]

R[ESET]

RESTORE fid

RUN [options] [rom [,rom] •.• :~[g~ER Imn]~

L [;lid[,lid] •••] ~NDER ~~~ TAJ

SEND

90 16 92D-4(12/75)

These calls are entered while TEL is in control of the terminal.
They turn over control of the terminal to the processor.
Examples are:

APL
BASIC
FLAG

LYNX
PCL

Terminates the current job step. This command is equivalent
to the STOP and END commands.

Resets all DCBs back to their system default values.

Restores the previously saved core image. This command is
equivalent to the GET command.

Loads the specified module and starts execution.

Options:

library search: (L), (NL), (Pi), (FDP), (NP)
default: (L), (Pl)

display: (D), (ND), (C), (NC), (M), (NM)
default: (D), (C), (NM)

symbol table: (I), (N I)
default: (I)

rom may be fid or S; parentheses enclosing roms cause merge
of symbol tables.

lid must name a file containing one or more roms.

Saves the current core image on the designated file.

Allows messages from the machine operator to be printed on
the user's terminal.

Appendix A 107

Tdble A-1. TEL Command Summary (cont.)

Command Description

SET dcb[O] Assigns file or device to a DCB or sets DCB parameter.

[OPlabel 1 Options:
device

SET dcb t'd [;dopt] ••• rt is the 2-character identifier of a device that was de-s ream-I
tapecode[tapeid] fined at SYSGEN to be a resource.

SET d b [tapecode[tapeid] [-rt~ /f"d[of] other options, see Tables C-1 through C-4.
c f I od [t] I ,opt •.• ,ec e -r .

SET dcb JR/fid

SHOW [option [,option] ...] Displays information about currently logged-on user.
Options: USER, PRIV, DCBS, M:xx or F:xx, or ALL.

S[TART][~mr1 [U[NDER DEL TA]] Loads a load module into core and starts execution of the
program, either with or without an associated debugger.

STrATUS] Displays the current accounting values.

STOP Terminates the current job step. This command is equivalent
to the END and QUIT commands.

J

SWITCH [SET = nLn] ... [RESET = nLn] .••]] Controls setting and resetting of the user's pseudo sense
switches, where n ranges from 1 to 6. With no arguments the
command displays the pseudo sense switch settings. This
command is the equivalent of tlie batch !SWITCH command.

TABS [s[,s] .•.] Sets simulated tab stops for the terminal if s values are spec-
ified; or displays the simulated tab stop settings if no s value
is specified.

T[ERMINAL]type[,algorithm] Sets the terminal type for proper I/O translations. Type may
be 33, 35, 37, 7015, DATAfPOINT], EAPL, ESTD,
EXEC[UPORT], MEMO[REX , SAPL, SSTD, or n. Algorithm
may be 0-7.

T[ERMINAL] STAT[US] lists the terminal type and the current val ues of parameters
associated with its operation.

TP This command logs off a time-sharing terminal and makes it
available as a slave Transaction Processing terminal.

U Causes the words UN DER DELTA to be inferred in the next
command.

WHERE account, name Returns the line number of the specified user (if the user is
logged on).

107-1 Appendix A 90 16 92D-4(12/75)

108

APPENDIX B. FILE IDENTIFIERS AND THEIR PARTS

A file identification (fid) consists of a file name and optionally an account and/or a password. Special types of
files are an Imn (load module) which is produced as a result of a LINK or RUI'J command, and a rom {relocatable
object module} which is produced by an assembler or compiler. Table B-1 illustrates the structure of a fid.

Symbol

Imn

rom

fid

name

account

password

X character set

Table B-1. File Identifiers and Their Parts

Structure

a file identifier (fid) that names a load module.

a file identifier (fid) that names a relocatable object module.

t
name [.[account] [. password]]

1 to 12 characters of the X character set.

1 to 8 characters of the X character set.

1 to 8 characters; the following characters may not be used: I , ;
< > . / = ? and all control characters acted upon by the COCo

A-Z a-z 0-9 - $ * %

tThe usage "name. " is valid only when the fid is an Imn used as a command verb (see Chapter 8).

Appendix B 90 16 92D-3(5/75)

APPENDIX C. SET COMMAND CODES

Tables C-1 through C-4 define the codes which may be used' as options in the SET command.

Tobie C-1. DCB Assignment Codes - SET Command

Type Codes Description

Operational Label BI, BO, C, CI, CO When the DCB is assigned to one of the system op-
DO, EI, EO, LL, LO, erational labels, the actual device connected to
OC, PO, SI, SL, SO, the DCB is that implied by the operational label,
UC, and others de- if any, for on-line mode.
fined at SYSGEN.

NO No assignment, i. e., no default is to be applied.

Device CP Card punch.
LP line printer.
PL Plotter.
(and others defined at
SYSGEN)

Logical Device Stream Ll line printer.
C1 Card reader.
P1 Card punch.
(and others defined at
SYSGEN)

Magnetic Tape (topecode) LT Xerox labeled tape.
AT ANS labeled tape.
FT Free form tape.

Secondary Storage (fi lecode) DP Disk pack storage.

Table C-2. Device Options - SET Command

Format Descri pti on

ASC[II] ASC[II] specifies code conversion (between ASCII on tape and EBCDIC in core).

EBC[DIC]
EBC[DIC] specifies no code conversion. EBCDIC is assumed by default and ASCII is
legal only for tapes having this feature.

BCD, BIN Contro~s the binary-BCD mode for device read and write operations. BIN used in con-
junction with DRC wi II invoke the transparent mode. (See Transparent Mode section of
Chapter 11.)

COUNT = va lue Turns on page counting and specifies the column number at which the page number is to
be printed.

DATA = value Controls the beginning column for printing or punching and is a decimal value. The
maximum value is 144.

{ 800}
DEN= 1600 Specifies the density that will be used on a dual density tape device.

90 16 92D-4(12/75) Appendix C 109

Table C-2. Device Options - SET Command (cont.)

Format Descri pti on

DRC, NODRC Turns the specia I formatting of records on and off. DRC specifies that the monitor is
not to do specia I formatting of records on read or write operations. NODRC specifies
the monitor is to do special formatting. If neither DRC nor NODRC is specified,
NODRC is assumed by default. DRC used in conjunction with BIN will invoke the
transparent mode. (See Transparent Mode section of Chapter 11.)

FBCD, NOFBCD Controls the automatic conversion between external Hollerith code and internal
EBCDIC code (FORTRAN BCD conversion). NOFBCD is assumed by default.

--

IN Specifies the input mode.
OUT Specifies the output mode.
INOUT Specifies the input and output mode (i.e., the upda te mode).
OUTIN Specifies the output and input mode (i. e., the scratch mode).

l, NOl Identifies the device type. l specifies that the device must be listing type. NOl spec-
ifies that it need not be listing type. NOl is assumed by default.

UNES = va lue Specifies the number of printable lines per page and is a single decimal value. The
maximum value is 255.

PACK, UNPACK Controls the packed or unpacked mode of writing 7-track tape. PACK is assumed by
default.

RECl = value Specifies the default record length, in bytes. The greatest value that may be spec-
ified is 32,767. If RECl is not specified, a standard value (appropriate to the type
of device used) will apply. The va lue specified in a SET command wi II override
that assembled into the DCB but will not override the RECl specification of an
M:OPEN call or the SIZE specification of an M:READ or M:WRITE procedure call.

SEQ(= value] Specifies that sequence numbers are to be punched in columns 77-80 of punched output.
Four characters of nonblank sequence identification may be given for columns 73-76.
Fewer than 4 characters are left-justified and blank filled.

SN(= value I Specifies the serial numbers of volumes that are to be used for input or output. The serial

L[, value] [, value]]
number may be from 1 to 4 characters except for ANS labeled tape serial numbers which
must be 6 characters. A maximum of 3serial numbers may be specified. If a serial num-
ber is specified with the tapeid, it is included in the 3 allowed. An existing list of
serial numbers may be removed by specifying the SN option with no arguments.

SPACE = va lue Specifies the number of lines of space after printing and is a single decimal value.
Values of 0 or 1 result in single spacing. The maximum value is 255.

TAB = tab[, tab •..] Specifies simulated tab stops and is followed by a list of up to 16 decimal numbers,
separated by commas, giving the column pOSition of the stops. If all 16 stops are not
specified, the stops given are assigned to the first stops and the remainder are reset.

TRIES = value Specifies the maximum number of recovery tries to be performed for any I/O operation.
The greatest value that may be specified is 255. The default value is 10.

VFC, NOVFC Controls the formatting of printing by using the first character of each record. VFC
specifies that the first character of each record is a format-control character.
NOVFC specifies that records do not contain a format-control character. NOVFC
is assumed by defau It .

109-1 Appendix C 90 16 92D-3(5/75}

110

Type

Organization

Access

Format

CONSEC

KEYED

RANDOM

DIRECT

Table C-3. File Options - SET Command

Xerox ANS
IDisk Tope Tape Description

x
X

X

X

x

X

X

x

x

Consecutive record organization.

Keyed record organi zation.

Contiguous relative-sector ad
dressed organizution.

Records wi II be accessed
sequentially.

Records wi II be accessed by
key.

~------------4------------------------~'----~------~--~r---------------------------~

Function IN [{SHARE}]
, EXCL x

OUT x

IN OUI [{ SHARE}]
, EXCl x

OUTIN x

Re cord Lel1g th REC l::value X

{
LREC:l}
REC =value

Appendix C

X X

x x

X x

x x

x

x

File is read only. The "SHARE"
argument specifies the share mode
for the DCB which admits the pos
sibi lity of more than one IN user of
the file. The IEXCl" argument
specifies the exclusive mode for
the DCB which prohibits more thon
one IN user of the file. SHARE is
assumed by defou It .

File is write only.

File is to be updated. The "SHARE"
argument specifies the share mode
for the DCB which admits the pos
si bi Ii ty of more than one IN OUT
user of the fi Ie. The "EXCl"
argument specifies the exclusive
mode for the DCB which prohibits
more than one INOUT user of the
fi Ie. EXCl is assumed by default.

File is scratch.

Specifies the default record length,
in bytes. The greatest value that
may be specified is 32,767. If
RECl is not specified, a standard
value (appropriate to the type of
device used) will apply. The
value specified in a SET command
wi II override that assembled into
the DCB but wi II not override the
RECl specification of an M;OPEN
call or the SIZE specifj cation of
on M:READ or M:WRITE procedure·
call.

Specifies the logical record size
in bytes. The value moy be in the
range 1 through 32,767.

90 16 920-2(10/74)

Table C-3. Fi Ie Options - SET Command (cont.)

Xerox ANS
Type Format Disk Tape Tape Description

Block Size BLK[L]=va lue X Specifies block size in bytes. The
value may be in the range
1 through 32,767. If a value less
than 18 bytes is spec ified, 18 bytes
are wri tten.

-

Recovery Tries TRIES=volue X X X Specifies in decimal the maximum
number of recovery tries to be per-
formed for any I/O operation. The
greatest value that may be spec ified
is 255. The default value is 10.

--1------

Disposition REL X OUT or OUlIN fi Ie is to be re-
leased on closing.

SAVE X OUT or OUlIN fi Ie is to be saved
on closing.

Size RSTORE==value X Specifies the number of granules
a IIocated to the RANDOM fi Ie.
The value must be in the range
1 through 16,777,215 (224 - 1).

-

Storage Contro I CYLINDER X Specifies that the data blocks of a
public fi Ie are to be allocated from
public disk packs having cylinder
allocation.

- -- ------

Key Length KEYM=value X X Specifies the maximum length, in
bytes, of the keys associated with
records within the fi Ie. A key
may consist of up to 31 characters.
The default value is 11.

Key Storage NOSEP X Specifies that index blocks of a
public file are to be allocated in
the same manner as data blocks.
(Disk pack if possible; otherwise
RAD.)

Additional SPARE=va lue X Specifies in bytes the amount of
Key Space spare space to be I eft unused at

the end of each index block whi Ie
a keyed file is being created or
updated with sequentia I access.
Value may not exceed 255 and the
default is 102 bytes.

rm,dd, yy!
Expiration EXP[IRE]= ddd X X Specifies either an explicit expi-

NEVER ration date, the number of days
to retain the fi Ie, or that the fi Ie
is never to expire.

90 16 92D-3(5/75) Appendix C 110-1

Type

Index
Structure

Execute
Accounts

Table C-3. Fi Ie Options - SET Command (cont.)

Format

NEWX:::slides -----.,

L [, consecutive slides]

Disk

X

x

Xerox
Tape

ANS
Tape Description

The "slides" argument specifies the
number of blocks that can be added
to the fi Ie's index since the current
higher-I eve I index structure was
bui It; if the specified value is ex
ceeded, the higher-level index
structure wi II be rebui It when the
fi Ie is closed. If a value of 255
is specified, the higher-level
index structure will not be built
(or rebui It). If NEWX is not
specified, the value 254 is used
in default.

The "consecutive slides" argument
specifies the number of contiguous
blocks that can be added to the
fi Ie's index since the current
higher-level index structure was
created; if the specified number
is exceeded, the higher-level
index structure wi II be rebui It
when the file is closed. If the
number is not specified, 2 is used
in default.

Specifies the account numbers of
the accounts that may execute the
load module. A maximum of 8 ac
counts may be specified. The
value ALL may be used to specify
that any account may execute the
fi Ie. The value N ONE may be
used to specify that no other ac
count may execute the file. In all
of the above cases, READ, NONE
is implied in the absence of any
READ specification. This option
with no arguments resets all pre
vious execute account entries in
the DCB.

I---------+---~~-~---~-------~-----~--~-~---_+----+_--_+_------------------1

110-2

Read
Accounts

Appendix C

x X Specifies the account number of
those accounts that may read but
not write the fi Ie. This option is
applicable to OUT and OUlIN
files. A maximum of 8 read ac
counts may be specified. The
value ALL may be used to specify
that any account may read the
file. The value NONE may be
used to specify that no other ac
count may read the fi Ie. This
option with no arguments resets
a II previous read account entries.

90 16 92D-3(5/75)

Type

Write
Accounts

Volume Serial
Number

Code
Conversion

Recording
Density

Initial
Volume

Table C-3. File Options - SET Command (cont.)

Format

WR[ITE] [=!~~lcLt [, acctJ .• '1]
"JONE

SN[=value[, val-ue][, value]]

Asc[n]
EBC[DICl

{ 800}
DEN= 1600

VOL=value

Xerox ANS
Disk Tape Tape Description

X X

X X x

x X

X X

X X

Specifies the account numbers of
those accounts that may have both
read and write access to the fi Ie.
This option is applicable to OUT
and OUTIN fi les. A maximum of
8 write accounts may be specified.
The va lue ALL may be used to
specify that any account may have
write access to thefile. The value
NONE may be used to specify
that no other account may have
write access to the file. This
option with no arguments resets
all previous write account entries.

Spec ifies the seria I number of vol
umes that are to be used for input
or output. The serial number may
be from 1 to 4 characters, except
for ANS labeled tape serial num
bers which must be 6 characters.
A maximum of 3 serial numbers may
be specified. If serial number is
specified with tapeid, it is included
in the 3 allowed. An existing list
of serial numbers may be removed
by specifying the SN option with
no arguments.

ASCII specifies code conversion be
tween ASCII on tape and EBCDIC in
core. EBCDIC specifies no code con
version. EBCDIC is the default.
ASCII is legal only for tapes having
the code convers i on feature.

Spec ifies the density that will be
used on the dual density tape device.

Spec ifies which tape reel in the S N
listis to be usedinitiolly. A value
of 1 designates the first, a value
of 2 the second, etc. If VOL is
om itted, a value of 1 is assumed.

~-----------4--------------------------~----4------+------------------.-----------------~

Concatenate
Tape Fi les

[CON]CAT=value X Specifies the number of identically
named fi les that are to be read as
one logi ca I fi Ie (concatenated).
The value may be in the range
of 2 through 255.

~ _________ --+ ________ --------------+-----4.-----~----------.----------------__I

Tape Format {
FORMAT} FM T =character

90 16 92D-3(5/75)

X Specifies the record format. The
character may be: F = fixed
length; D = variable specified in
decimal; V = variable specified in
binary; or U = undefined.

Appendix C 110-3

Table C-3. File Options - SET Command (cont.)

Xerox ANS

Tape Format Disk Tape Tape Description

Block Count ABCERR X Specifies that block count errors

Errors for ANS labeled tapes are not to
result in an unconditional abort.

Execution UN[DER] [=name] X Spec ifies the name of the only

Vehicle processor that may access this
file if the user does not own the
file. The name may be from one
to ten characters. The processor
may be any shared processor or
any load module in the :SYS
account. If EXECUTE accounts
are specified and UNDER is not
specified, the file is presumed
to be a load module and
UNDER = FETCH is implied by
default. FETCH is the name of
the monitor routine that places
a program into execution.

Table C-4. Operational Label Conventions

Typical On-Line
Label Reference Comments Devi ce Assignrnentt

BI Binary input Binary coded input will be received from the NO
device to which this label is assigned.

BO Binary output Binary coded output will be transmitted to the NO
device to which this label is assigned.

C Control input Input from the device to which this label is as- ME
signed will be monitored, so that all control
commands will be recognized by the monitor.

CI Compressed input Compressed symbolic input will be received NO
from the device to which this label is assigned.

CO Compressed output Compressed symbol ic output will be transmitted NO
to the device to which this label is assigned.

DO Diagnostic output Diagnostic program dumps will be output on the ME
device to which this label is assigned.

EI Element input Element file input will be received from the de- ME
vice to which this label is assigned.

EO Element output Element file output will be transmitted to the de- NO
vice to which this label is assigned.

tThese device assignments are standard in CP-V but may be changed at SYSGEN.

110-4 Appendix C 90 16 920-4(12/75)

Table C-4. Operational Label Conventions (cont.)

Typical On-Line
Label Reference Comments Device Assignmentt

LL Li sti n~~ log All control commands and system messages, ME
incl uding accounting information for the job,
will be output on the device to which this label
is assigned.

LO Listing output Source and object listings for assemblies and ME
compila tions will be output on the device to
which this label is assigned.

OC Operator's console All JOB, MESSAGE, and FIN control commands, ME
and all job termination messages will be output on
the device to which this label is assigned. OC
may not be assigned to another operational label,
but may be assigned to another physical device.

PO Punch output BCD or binary coded output will be transmitted NO
to the device to which this label is assigned
(normally a card punch).

SI Source input Symbol ic (source language) input will be received ME
from the device to which this label is assigned.

SL Source listing A listing of symbolic (source language) input will ME
be transmitted to the device to which this label is
assigned.

SO Source output Symbolic (source language) output will be trans- NO
mitted to the device to which this label is assigned.

UC User's console This is for on-I ine use. The batch mode defaults ME
to OC (operator1s console).

tThese device assignments are standard in CP-V but may be changed at SYSGEN.

90 16 920-4(12/75) Appendix C 111

APPENDIX D. LINK AND RUN COMMANDS CODES

Tables D-l through D-4define the codes that may be used in the LINK and RUN commands.

Table D-l. Library Search Codes

Code Meaning

(L) Spec ifies that the system I ibrary is to be searched to satisfy external references that
have not been satisfied by the program. (This is the default option.)

(NL) Specifies that a system library search is not required.

(Pi) or (Ji) Specifies that the ith publ ic core library is to be searched for unsatisfied external
references. Default is to Pl if no other public core library is specified. Only one
publ ic I ibrary of each type (J and P) may be associated with a program.

(FDP) or (PO) Spec ifies that the FORTRAN Subprogram I ibrary PO, that includes the Debug rou-
tines, is required.

(NP) Spec ifies that a publ ic core I ibrary is not requ ired.

Note: The sequence of the I ibrary search is as follows: User I ibraries are searched first, the publ ic library
is assoc iated, then the system I ibrary is searched.

Table D-2. Error Displays

Code Meaning

(D) Spec ifies that all unsatisfied internal and external symbols are to be displayed at
the completion of the linking process (including library searches, if specified). The
unsatisfied symbols are identified as to whether they are internal or external and to
which module they belong.

(ND) Specifies that the unsatisfied internal and external symbols are not to be displayed.

(C) Specifies that all conflicting intemal and external symbols are to be displayed. The
symbols are displayed with their source (module name) and type (internal or external).

(NC) Spec ifies that the confl icting symbols are not to be displayed.

(M) Specifies that the load map is to be displayed upon completion of the I inking process.
The symbols are displayed by source with type resolution and value.

(NM) Specifies that the load map is not to be displayed.

Note: The normal default options are D, C, and NM.

112 Appendix D, 90 16 92D-3(5/75)

Table D-3. Symbol Table

Code Meaning

(I) Specifies that internal symbols of the next module specified are to be included in the
load module. (This is the default option.)

-- --

(NI) Specifies that internal symbols of the next module specified are not to be included in
the load module.

Table D-4. Execution

Code Meaning

(E X, acct [, acct] ...) Specifies those accounts which may execute this load module. Up to 8 accounts may
be spec ified. The val ue ALL may be used to spec ify that any account may execute
the load module. The value NONE may be used to specify that no other account may
execute the load module.

90 16 92D-3(5/75) Appendix D 112-1

APPENDIX E. SPECIAL TERMINAL KEYS

Certain terminal keys, key sequences, and key combinations cause action to be taken other than simple transmission
of the character. Table E-l illustrates these key sequences and the action produced.

Key Sequence

(9 E

f:9 F

,- I or IC

@0 or @0

@S

0T

0u

@x

60r@B

C0 or 0

yc

@C

@)

@(

§Q

@o

0Z

@w

§H

90 16 920-4(12/75)

Table E-l. Special Terminal Keys

Action Produced

Sets or resets the flag that control s the echo and no-echo modes.

Causes end-of-file action on input.

Functions as a tab key.

Causes spacing to a new page and printing of new page heading.

Simulates CI local line feed. No activation occurs.

Sets or resets the flag that controls space-insertion mode.

Sets or resets the flag that control s tab simulation.

Sets or resets the flag that control s translation of lower case characters.

Erases current partial input line.

Erases all pending input and output including messages typed ahead.

Causes an interrupt and return of control to processor, if processor has break control;
otherwise control goes to TEL. More than three BREAKs cause return of control to TEL.

Causes a cf:miage return.

Deletes thEI last character received.

Causes an 'interrupt and return of control to TEL.

Sets or resElts a flag that controls tab relative mode. Input messages are adjusted to
compensatEl for carriage offset at beginning of input.

Shifts to lower case. All subsequent input is translated as lower case until instructed to
sh i ft to upper case.

Shifts to upper case. All subsequent input is translated as upper case until instructed to
sh i ft to lower case.

Requests system acknowledgement. The system will respond immediately with two
exclamation points (! I).

Toggles thIS backspace edit mode.

Allows coupled terminals to converse without feeding any input to running programs or
processors.

Causes all pending output to be deleted and all future output to be discarded until a read
request is issued to the terminal for which a complete record has not been typed ahead.

Causes out'put processing to halt immediately.

Appendix E ·113

114

APPENDIX F. USE OF THE 2741 TERMINAL

This appendix is intended for the person who would I ike to use the CP-V Time-Sharing User's Guide, but can not
because his terminal is a 2741 terminal or a terminal that is designed to operate like a 2741. Not all features of
the 2741 are discussed - only those that are needed to do the examples in the User's Guide. For a more detai led
discussion of the differences between the 2741 and Te letype terminals, see the cP-v /fs Reference Manual, 90 09 07.

It is recommended that you do each of the examples in this appendix at your terminal to be sure that you understand
them. Then turn back to the front of this User's Guide. When doing the examples, use the 2741 equivalent where
needed instead of the Teletype entry. Differences between Teletype and 2741 control characters are summarized in
the cp-v/fS Reference Manual, 900907.

CONTROL CHARACTERS

All time-sharing terminal devices have at least one key on their keyboard that allows them to send special control
messages to the Monitor. These messages are called control characters. On the 2741 terminal, most control char
acters are sent by first pressing an alphabetic key and then pressing the ATTN key. The Monitor signals the user
that it has received the control character by backspacing and underscoring the letter he typed. It then performs
whatever function the user has asked for.

For the remainder of this appendix, the sending of a control character will be described by specifying the letter,
followed by the symbol that represents the ATTN key (9). For example, the user may request that his current line
of input be retyped by entering the letter r, followed by ATTN. This is presented here as the r 9 sequence.

Table F-l summarizes the differences between 2741 terminals and Teletype terminals. You wi II find this table helpful
throughout the manual. As you encounter each Teletype control character in the text, you will be able to choose
the appropriate 2741 equivalent.

Table F-1. Summary of Differences Between 2741 and Teletype Services

Function Teletype 2741

Get log-on message BREAK (if hardwired line) * and CRLF if dialing up. ATTN if
line is already connected.

Erase line ESC X None

Tab relative ESC C C ATTN

Suppress lowercase ESC U U ATTN

Uppercase sh ift ESC ((ATTN

Lowercase shift ESC)) ATTN

Erase last character RUBOUT BAC KS PACE ATTN

Tab ESC I, CONTROL I TAB

End of input FS, RS, US, GS (L
cs

, N
Cs

, SPACE ATTN
ocs, MCS)

Line continuation ESC CR, ESC LF, LaC CR NAnN

Retype ESC R RATTN

Toggle tab simulation mode ESC T T ATTN

Toggle space insertion mode ESC S S ATTN

Appendix F 90 16 920-4(12/75)

Table F-1. Summary of Differences between 2741 and Teletype Services (cont.)

Function Teletype 2741

End of file ESC F F ATTN

Monitor escape (t() TEL) ESC ESC, CONTROL V, ESC V, Four ATTNs. Also, V ATTN if input.
ow 4 BREAKs

Break BREAK B ATTN on input or A TTN on output.

Toggle backspace edif ESC 0 o ATTN
mode

Form feed ESC L L ATTN

Half duplex paper tape ESC P None

Toggle ECHO mode ESC E None

Acknowledge ESC Q None

Erase all input and CONTROL X X ATTN
output

End of transmission CONTROL D ATTN

Halt output ESC H None

Ignore output ESC W None

Ignore input ESC Z None

LOGGING ON

To log on to CP-V on a 2741 terminal, you must first dial the phone and place the handset in the audio-coupling
device. When you have established contact with the computer (in most cases, this is signaled by the unlocking of
the keyboard) you must identify your terminal's specific character set by typing an asterisk, followed by a carriage
return. CP-V will then be able to communicate meaningfully with your terminal. CP-V responds to your terminal
identification with a request for you to log on.

XEROX CP-V AT YOUR SERVICE._

ON AT 22:29 SEP 26, '72

LOGON PLEASE: 1234, JONES @l

Note that Jones was typed with all uppercase letters. This is required unless you inform the system that you wish
all alphabetic characters to be treolted as uppercase. The exclamation point indicates that your log-on has been
accepted and the system is now ready to accept TEL commands.

90 16 92D-4(12/75) Appendix F 115

SUPPRESSING LOWERCASE LmERS

There are many cases where lowercase letters will not be accepted in lieu of uppercase letters. The log-on sequence
described above is one example. If lowercase letters are used when logging on, an error message is output. To
avoid this problem the user must either remember to use uppercase letters when required or enter the u e sequence,
which suppresses the lowercase letter capability and causes the system to treat all letters as if they were uppercase.

XEROX CP-V AT YOUR SERVICE
ON AT 22:57 SEP 26~ 172

LOGON PLEASE: 1~34 ,jones @

ACCOUNT/ID 1234/jones?

LOGON PLEASE: ~1234, jones @)

AppendIx F 115-1

In this example, the user forgot to use uppercase letters when he logged on. The system responded with an error
message and asked the user once again to log on. This time the user entered the u e sequence, requesting that all
letters typed be accepted as uppercase letters. He then reentered his account and id, and it didnlt matter whether
he used uppercase or lowercase letters. If he wished to use lowercase letters later in the session, he could reset
the lowercase suppression by entering another u e sequence.

The u ~ sequence was entered by typing the letter u, and then pressing the ATTN key. The system acknowledged
receipt of the sequence by backspacing and underscoring the u.

CORRECTING TYPING ERRORS

Each character that you type while logged on to CP-V is sent when you press the key. However, in most cases CP-V
simply stores what you type until you press the carriage return. At that point, the entire line of information is pro
cessed. As a resu It, corrections can easi Iy be made at any point in a I ine of input prior to pressing the carriage
return •

The backspace @ sequence most often is used to make single corrections to typing errors. To correct the last
character typed, press the backspace key, then the ATTN key. The letter you now type will replace the letter that
you are typing over.

lbuild sample @

1 • 000 ooooodl @

2.000 @

lcopy sample 8
000001

In this example, a fi Ie name usample II is created using the TE L BUILD command. The file contains one record, and
was typed originally as six letter OIS. A backspace sequence was entered, and the last 0 replaced with an i.
When the TEL COpy command was used to copy the file to the terminal, the filewas printed in all uppercase letters.
This happened because we had used the u 9 sequence earl ier to cause all letters to be treated as uppercase. If you
wish to delete more than one character, simply enter the backspace e sequence once for each character to be
deleted.

!build samplel @
L.QQQ ooodldldl @

hQ.Q.Q @)

..!..copy samplel @

In this example, six letter OIS were entered in the only record of a file named "sample 1". Before entering a carriage
return, however, three successive backspace sequences were entered. Three letter ils were then typed to re
place the deleted characters. Again when the file was output at the terminal by the TEL COpy command, all upper-
case letters were typed since the earlier u sequence was still in effect.

!uBUILD newfile 8
L.QQQ ooccodl @

L.Q.QQ @

..!..eopy newfile 8

1
Appendix F 116

At this point, a u 9 sequence was entered so that typed lowercase letters would no longer be converted to
uppercase. As a result, the TEL BUILD command had to be typed in uppercase. Also, it is important to note that
the name of this file is IInewHle li and that it can only be referred to in lowercase letters. In the only record in
this file, six letter o·s were typed, then four backspace sequences were entered. Two uppercase I·s were typed,
followed by a space, one lowercase i, and a carriage return. The result was a record containing ooll i.

USING TABULATION'

The TAB key on the 2741 terminal operates in the same way as the TAB key on a standard typewriter. Each time the
TAB key is pressed, the carrier moves to the next tab stop. The place where the carrier stops is determined by the
physical tab se·tting on the mClchine itself. In addition to this typical typewriter feature, the 2741 also sends a tab
character to CP-V each time the TAB key is pressed. When information is being typed from a fi Ie, a tab character
causes the carder to move to the next tab stop on the machine just as pressing the TAB key would do.

!build sample3 @)

1.000 one @l two@l three @l four @)

2.000 @l

..!..copy sample3 @)

ONE TWO THREE FOUR

In this example, a file named IIsample3 11 is created. The physical tabs on the terminal were set to every five posi
tions (i.e., 5 f 10, ••.). The file was then copied back to the terminal. If we change the physical tab stops on
the terminal to every fifteen positions (i.e., 15, 30, •..) and copied the file again, the following would result:

..!..copy sample3 @)

ONE TWO THREE FOUR

In this example, the file named IIsample3 11 was copied to a 2741 terminal with physical tab settings at every fifteenth
position.

The TEL TABS command is used to inform the system of the tab settings that the user has at his terminal. If you plan
to use tab settings, you should inform CP-V of the settings you plan to use.

! TAB 5, 10 ,45 @)

In this example, tab settings of 5, 10, and 45 were specified for this terminal. If you wish to specify or change tab
settings, enter them any time t'hat the system prints an exclamation point at your terminal.

Appendix F 117

INDEX

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

2741 terminal, use of, 114

A
APl, 53
APl command, TEL, 53
assign/merge table, 83

B
BACKUP command, TEL, 95
BASIC, 36
BASIC,

abbreviations of command verbs, 44
DCB requirements, 88
desk-calculator mode, 42
direct statement execution, 42

BASIC command, TEL, 36
BASIC commands,

CLEAR, 38,40
EXECUTE, 43
FILE, 40
LIST, 39
lOAD, 38,40
NAME, 40
PRINT, 43
RENUMBER, 41
SAVE, 38
STATUS, 39

BATCH command, TEL, 99
batch jobs, 99
BP command, Edit, 27
BREAK, 76
BUILD command,

c

Edit, 18,29
TEL, 18,29

CANCEL command, TEL, 100
character deletion, 9
character echoing, 5
C lEAR command, BASIC, 38,40
COBOL, 49
COBOL command, TEL, 49
command syntax notation, vii
COMMENT command, TEL, 83,89
connection with the computer, 4
CONTINUE command, TEL, 78,9:2
CONTROL I, 13
Control Program-Five,
CONTROL X, 9
CONTROL y, 76
controlling output, 89

COpy command,
Edit, 18
PCl, 30,96

COPYAll command, PCl, 96
correcting terminal input, 9
CP-V, 1

o
D command, Edit, 27
Data Control Blocks, 82
DCBs, 82
DCBs, standard system, 82
DE command, Edit, 20
debugging user programs, 61
DELETE command,

Edit, 18
PCl, 31

DElETEAll command, PCl, 31
deleting terminal input, 9
Delta, 61

debug mode, 61
nondebug mode, 63
writing programs, 65

dialing the computer, 4
DONT COMMENT command, TEL, 89
DONT LIST command, TEL, 89
DONT OUTPUT command, TEL, 89

E
Edit, 17, 15

file editing commands, 17
intrarecord editing commands, 26
record editing commands, 18

EDIT command,
Edit, 17,29
TEL, 17,29

Edit commands,
BP, 27
BUILD, 18,29
COpy, 18
D, 27
DE, 20
DELETE, 18
EDIT, 17,29
END, 18
FD, 24
FT, 24
IN, 20
MERGE, 18,23
S, 26
SE, 26

Index 119

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

TS, 27
TY, 18,27

END command, Edit, 18
error displays, 112
ESC E, 5
ESC ESC, 76
ESC I, 13
ESC RET, 25
ESC S, 13
ESC T, 13
ESC X, 9
ESC y, 76
EXECUTE command, BASIC, 43
executing object programs, 57
executing user programs, 72

F
FD command, Edit, 24
FDP, 66
fid, 15
FILE command, BASIC, 40
fi Ie extension, 16
fi Ie identification, 15
fi Ie identifiers, 108
file organization, 16
fi Ie storage, 15
fi Ie/device assignment, 82
files, 15
FORT4 command, TEL, 45
FORTRAN, 45
FORTRAN Debug Package, 66
FT command, Edit, 24

G
GET command, TEL, 92
GO command, TEL, 92

IN command, Edit, 20
input data, 15

J
JOB command, TE L, 100

L
language processors, using, 36
library search codes, 112
line deletion, 9
LINK, 57

120 Index

LINK command codes, 112
LINK command, TEL, 57
linking loader, 57
LIST command,

BASIC, 39
PCL, 31
TEL, 83, 16,89

Imn command, TEL, 72
LOAD command, BASIC, 38,40
load module, 15
loading object programs, 57
LOC CR, 25
logging on and off, 4

M

MAILBOX fi Ie, 5,95
MERGE command, Edit, 18,23
MESSAGE command, TEL, 101
messages from operator, 101
META command, TE L, 51
Meta-Symbol, 51
modifying terminal input, 9
multiline records, entering, 25

N
NAME command, BASIC, 40

o
object code, 15
o N mod i fi e r, 16, 18
operator, communication with, 101
OUTPUT command, TEL, 83, 16,89
output, controlling, 89
OVER modifier, 16

p
page width and length, changing, 10
PASSWORD command, TEL, 6
PCL, 29
PC L commands,

COPY, 30,96
DELETE, 31
DELETEALL, 31
LIST, 31

Peripheral Conversion Language (see PCL), 29
PLATEN command, TEL, 10
PRI NT command,

BASIC, 43
TEL, 91

printing, suppressing, 5

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

processors, getting in and out of, 76
processors, on-line, 2
program aborts, 80
programs, executing, 72

Q
QU IT comma nd, TEL, 78

R

RENUMBER commcmd, BASIC, 41
restoring fi les and core images, 92
rubout character, 9
RU N command codes, 112
RUN command, TEL, 57

s
S command, Edit, 26
SAVE command, BASIC, 38
SAVE command, TEL, 92
saving files and core images, 92
SE command, Edit, 26
SET command codes, 109
SET command,

DCB assignment codes, 109
device options, 109
fi Ie options, 110
TEL, 85

sou rce program, 15
spec ia I term ina I keys, 113
standard system DeBs, 82
START command, TEL, 59,72
STATUS command, BASIC, 39
syntax notation, vi i

T
tabbing, 13
TABS command, TEL, 13
TEL, 1
TEL command summary, 103
TEL commands,

APL, 53
BACKUP, 95
BASIC, 36
BATCH, 99
BUILD, 18,29
CANCEL, 100
COBOL, 49
COMMENT, 83,89
CONTINU E, 78,92
DONT COMMENT, 89
DONT LIST, 89
DONT OUTPUT, 89
EDIT, 17,29
FORT4, 45
GET, 92
GO, 92
JOB, 100
LINK, 57
LIST, 83, 16,89
Imn, 72
MESSAGE, 101
META, 51
OUTPUT, 83, 89
PASSWORD, 6
PLATEN, 10
PRINT, 91
QUIT, 78
RU N, 57
SAVE, 92
SET, 85
START, 59,72
TABS, 13
TERMINAL, 10

Teletype keyboard, 3
TERMINAL command, TEL, 10
Termina I Executive Language, 1
TO modifier, 18
TS command, Edit, 27
TY command, Edi t, 18, 27

Index 121

XEROX Publication Revision Sheet

CORRECTIONS TO XEROX: CONTROL PROGRAM-FIVE (CP-V)/TIME-SHARING
USER1S GUIDE (Sigma 6/7/9 Computers)

PUBLICATION NO. 90 16 920, JUNE, 1973

FEBRUARY, 1974

The attached pages contain changes for the BOO version of CP-V. Pages in the 0 edition of the manual that are to
be replaced ore: 1, 2, 5, 6, 9, 10, 29-32, 45, 46, 49-52, 65, 66, 85-88, and 101-112. New pages to be in
serted are: 10-1, 31-1, and 107-1.

These changes will be incorporated into the next edition of the manual.

Revision bars in the margins of replacement pages identify changes. Pages without the publication number
90 16 920-1 (2/74) at the bottom are inc luded only as backup pages; revision bars appearing on such pages identify
changes made in a previous revision.

XEROXQI> Is a trademark of XEROX CORPORATION. 90 16 920-1 (2/74)

XEROX Publication Revision Sheet

CORRECTIONS TO XEROX CONTROL PROGRAM-FIVE (CP-V)/TiME-SHARING USER'S GUIDE
(Xerox 560 and Sigma 6/7 /9 Computer~)

PUBLICATION NO. 90 16 920, JUNE, 1973

SEPTEMBER, 1974

The attached p(]ges contain changes for the COO version of CP-V. Pages in the 0 edition of the manual with re
vised pages labeled 90 16 92D-l (2/74) that are to be replaced are: front cover, title page, ii, v, vi, 1, 2, 5,
6, 9, 10, 85-88, 107, 109, and 110. New pages to be inserted are: 107-1, 109-1, and 110-1 through 110-4.

These changes, as well as those contained on pages labeled 90 16 920-1 (2/74), wi" be incorporated into the next
edition of the manual.

Vertical bars in the outer margins of replacement pages indicate portions (one or more lines) of text changed to re
flect COO version of CP-V. Vertical bars on pages not labeled 90 16 920-2(10/74) indicate portions oftext changed
by previous revisions.

22229
5C1178
Printed in U.S.A.

XEROX'" is a trademark 01 XEROX CORPORATION.

File No.: 1 X23

XL34B. Rev. 0

90 16 920-2(10/74)

XEROX Publication Revision Sheet

CORRECTION S TO CP-V /TIME-SHARING USER'S GUIDE

PUBLICATION NO. 90 16 92D

MAY, 1975

The attached pages contain changes that reflect the COl version of Control Program-Five (CP-V). Pages in the
D edition of the manual (which has previously been revised by the D-l and D-2 revision packages) that are to be
replaced are: i, ii, 10-1, 105 through 109-1, and 110-1 through 112. A new page to be inserted is 112-1.

These changes wnl be incorporated in the next edition of the manual.

Revision bars in the margins of replacement pages identify changes. Pages without the publication number
90 16 92D-3{5/75) at the bottom are included only as backup pages; revision bars appearing on such pages identify
changes made in c] previous revision.

17873
1477
Printed in U.S.A.

XEROX. Ie a Irademark of XEROX CORPORATION.

File No.: 1 XI3

XL34C, Rev. 0

90 16 92D-3{5/75)

XEROX Publication Revision Sheet

17933
1477

DECEMBER 1975

CORRECTIONS TO XEROX CP-V/TIME-SHARING USER'S GUIDE (Xerox 560 and Sigma 6/7/9 Computers)

PUBLICATION NO. 90 16 92D, NOVEMBER 1971

The attached pages contain changes for the DOD version of CP-V. Pages in the D edition of the manual with revision
pages labeled 9016 92D-1 (2/74), 9016 92D-2(1O/74), and 90 16 92D-3(5/75) that are to be replaced are: title page
ii, 1,2,5-8, 103-107, 107-1, 109, 109-1, 110-3, 110-4, and 111-116. A new page to be inserted is 115-1.

These changes, as well as those contained in previous revision packages, will be incorporated into the next edition
of the manual.

Vertical bars in the outer rnarginsof replacement pages labeled 90 16 92D-4(12/75) indicate portions of text changed
to reflect the DOO version of CP-V. Vertical bars on other pages indicate text changed as the result of previous
revisions.

File y~.: 1 X13

XL34D, Rev. 0

90 169204112/751
Printed in U.S.A.

XEROX~ il a tradamark of XEROX CORPORATION.

XEROX

Jader Comment Form
We would appreciate your comments and suggestions for improving this publication.

Publ ication No. I Rev. Letter I Tit Ie I Current Dille

How did you use this publication? Is the material presented effect ively?

o Leilrning [J Instilll ing 0 Sales o Fully Covered OWnl1 DWell D Cll~,H IlluSlrilted Organi zed o Reference [J Malnt,llnlng 0 Oper ilt I ng
-

What is your overall rating of this publication? What is your occupat ion?

0 Very Good 0 Fair o Very Poor

o Good o Poor

Your other comments may be entered here. Please be specific and give page, column. and line number references where
applicable. To report errors. Please use the Xerox Software Improvement or Difficulty Report (1188) instead of this form.

;

-
Your N aflle & RI'll1ll1 Addr"~~

I
!

Tllii'H\ • C!,j F 01 ~'0U' :l1terest. ;told & fasten as shown on back. no postage needed If mailed In U.S.A.:

PLEASE FOLD AND TAPE -
NOTE: U. S. Postal Service will not deliver stapled forms

Attn: Programmmg PublIcatIons

t::OIC!

BUSINESS REPLY MAIL
No postage stamp necessary If mailed in the United States

Postage will be paid by

Honeywell Information Systems
5250 W. Century Boulevard
Los Angeles, CA 90045

First Class
Permit No. 59153
Los Angeles, CA

Honey\yell Information Systems
In the U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1 W5

In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

23406, 5C579, Printed in U.S.A. XL34, Rev. 0

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010-0
	010-1
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031-0
	031-1
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107-0
	107-1
	108
	109-0
	109-1
	110-0
	110-1
	110-2
	110-3
	110-4
	111
	112-0
	112-1
	113
	114
	115-0
	115-1
	116
	117
	118
	119
	120
	121
	_01
	_02
	_03
	_04
	replyA
	replyB
	xBack

