Xerox Control Program-Five (CP-V)
560 and Sigma 5/6/7/9 Computers

Batch Processing
Reference Manual

B - ROXEROXEROXEROXEROXEROXEROX

OXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXER(
ROXEROXEROXEROXEROXEROXEROXE
FROXEROXEROXEROXEROXEROXEROXE
IXEROXEROXEROXEROXEROXEROXERO
DXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXER
ROXEROXEROXEROXEROXEROXEROXE
KEROXEROXEROXEROXEROXEROXEROX
XEROXEROXEROXEROXEROXEROXERO
OXEROXEROXEROXEROXEROXEROXER(
ROXEROXEROXEROXEROXEROXEROXET
EROXEROXEROXEROXEROXEROXEROXE
IXEROXEROXEROXEROXEROXEROXEROX
OXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXER
8 ROXEROXEROXEROXEROXEROXEROXE
FROXEROXEROXEROXEROXEROXEROX]

CAL1-TO-FUNCTION INDEX

EPT FPT

Call Code Function Page Call Code Function Page
- M:DCB 97 CAL1,3 X'00' M:SNAP 174
- M:PT 57 X'01' M:SNAPC 174
- M:DDCB® - X'02' M:JF 175

X'03' M:AND 176

CALI,T X'01' MREW 121 X'04' M:OR 176
X'02' M:WEOF 121 X'05' M:COUNT 177
X'03' M:CVOL 120
X'04' M:DEVICE (PAGE) 123 CAL1,4 X'02' Save 89
X'05' M:DEVICE (VFC/NOVFC) 125 X'03' Get 89
X'06' M:SETDCB 112 X'04' Associate Public Library 90
X'0B' M:DEVICE (DRG/NODRC) 124 X'05' Disassociate Public Library 90
X'0D' M:DELREC 119 X'06' Reset Error. Flags -
X'0E' M:MOVE 118
X'OF! M:TFILE 113 CAL1, 5 X'07' M:SLAVE 90
X'10' M:READ 114 X'08' M:MASTER 90
X'11' M:WRITE 116 X1 M:sTOoPIO@ -
X'12' M:TRUNC 119 X'1D' M:STARTIO® -
X'14' Adjust DCB 79 X'1E' M:IOEX (SI0)@ -
X'14' M:OPEN 102 X'IF' M:IOEX (TIO/TDV/HIO)® -
X'15' M:CLOSE 110 X'20' M:GJOBCONO® -
X'1C' M:PFIL 120 X'21' M:CONNECT® -
X'ID' M:PRECORD 119 X'22' M:DISCONNECT® -
X'20' M:DEVICE (LINES) 124 X'23' M:INTCONQ -
X'21' M:DEVICE (FORM/FNAME) 126 X'24' M:QF1® -
X'22' M:DEVICE (SIZE) 126 X'25' M:HOLD® -
X'23' M:DEVICE (DATA) 127 X'26' M:CLOCK® -
X'24'" M:DEVICE (COUNT) 125 X'27' M:INSTAT® -
X'25' M:DEVICE (SPACE) 124 X'28' M:EXUQ 93
X'26' M:DEVICE (HEADER) 127 -
X'27' M:DEVICE (SEQ) 127 CALL 6 X'00' Read Error Log® -
X'28' M:DEVICE (TAB) 123 X'01' Write Error Log@ =
X'29' M:CHECK - X'02' M:MAPQ® -
X'2A' M:DEVICE (NLINES) 128 X'03' M:SIOQ -
X'28' M:DEVICE (CORRES) 128 X'04'" M:LOCK® -
X'2C' M:PC @ - X'05' M:DOPEND® 93
X'2D' M:RAMR 79 X'06' Initiate Ghost Job -
X'2E' M:WAMR 79 X'07' M:DCLOSEQ 90
X'2F' M:JOB . X'08' M:SYS -

X'09' M:BLIST® -

CALI, 2 X'00' M:MESSAGE 40 X'0A'® M:DMOD#® -
X'01' M:PRINT 62 X'0A'® M:DPART® " -
X'02' M:TYPE 60 X'0A'® M:DRET @
X'04' M:KEYIN 61 -
X'08' M:ENQ 77 CAL1,7 X'00' M:GETLINE -
X'09' M:DEQ 78 X'01' M:RLSLINE -
X'10' M:MERC 71 X'02' M:BUFSTAT - -

@ These procedures are described in detail in the CP~V/SP Reference Manual, 90 31 13,

> This procedure is for on~line use and is described in detail in the CP-V/TS Reference Manual, 90 09 07.

@ The diagnostic routine associated with this procedure determines which of the three procedures (M:DMOD¥,
M:DPART, or M:DRET) was called.

® These procedures are described in detail in the CP/SM Reference Manual, 90 16 74,

XEROX

XEROX CONTROL PROGRAM-FIVE (CP-V)

Xerox 560 and Sigma 5/6/7/9 Computers

Batch Processing

Reference Manual

90 17 64H
90 17 64H-1

September 1978

File No.: 1X13
XL89A, Rev, O

© Xerox Corporation, 1974, 1975, 1976, 1978 Printed in U S A.
© 1978, Honeywell infocmation Systems Inc.

REVISION

This publication documents the FOO version of Control Program Five (CP-V). The publication consists of the
H edition of this manual (90 17 64H, dated November 1976) and the revision package numbered 90 17 64H-1
(dated September 1978). Vertical lines in the margins of pages labeled 90 17 64H-1(9/78) indicate technical
changes that reflect the FOO version of CP-V. Vertical lines in the margins of other pages indicate changes
that occurred in a previous release of the system.

RELATED PUBLICATIONS

Title Publication No.
Xerox Sigma 6 Computer/Reference Manual 901713
Xerox Sigma 7 Computer/Reference Manual 90 09 50
Xerox Sigma 9 Computer/Reference Manual 90 17 33
Xerox 560 Computer/Reference Manual 90 30 76
Xwerox Remote Batch Terminal /Reference Manual 90 16 02
Xerox Remote Batch Terminal /Operator's Manual 90 16 26
Xerox Control Program-Five (CP-V)/TS Reference Manual 90 09 07
Xerox Control Program—Five (CP-V)/OPS Reference Manual 90 16 75
Xerox Control Program-Five (CP-V)/SM Reference Manual 901674
Xerox Control Program—Five (CP-V)/SP Reference Manual 903113
Xerox Control Program=Five (CP-V)/TS User's Guide 90 16 92
Xerox Control Program-Five (CP-V)/RP Reference Manual 90 30 26
Xerox Control Program-Five (CP-V)/TP Reference Manual 903112
Xerox Control Program-Five (CP-V)/Common Index 90 30 80
Xerox EASY/LN, OPS Reference Manual 9018 73
Xerox BASIC/LN, OPS Reference Manual 90 15 46
Xerox Meta-Symbol/LN, OPS Reference Manual 90 09 52
Xerox Assembly Program/Reference Manual 90 30 00
Xerox Extended FORTRAN IV/LN Reference Manual 90 09 56
Xerox Extended FORTRAN 1V/Library Technical Manual 90 15 24
Xerox Extended FORTRAN 1V/OPS Reference Manual 90 11 43
Xerox F ORTRAN Debug Package (FDP)/Reference Manual 9016 77
Xerox FLAG/Reference Manual 90 16 54
Xerox ANS COBOL/LN Reference Manual 90 15 00
Xerox ANS COBOL/OPS Reference Manual 90 15 01
Xerox ANS COBOL/On-Line Debugger Reference Manual 90 30 60
Xerox Report Program Generator (RPG)/Reference Manual 90 19 99
Xerox APL/LN, OPS Reference Manual 90 19 31
Xerox Manage/Reference Manual 90 16 10
Xerox Sort-Merge/Reference Manual 90 11 99
Xerox General Purpose Discrete Simulator (GPDS)/Reference Manual 90 17 58
Xerox Data Management System (DMS)/Reference Manual 90 17 38
Xerox SL-1/Reference Manual . 901676
Xerox 1400 Series Simulator/Reference Manual 90 15 02
Xerox Mathematical Routines/Technical Manual 90 09 06
Xerox CIRC-AC/Reference Manual 90 16 98
Xerox CIRC-DC/Reference Manual 90 16 97
Xerox CIRC-TR/Reference Manual 90 17 86

Manual Content Codes: BP - batch processing, LN ~ language, OPS -~ operations, RP - remote processing,
RT = real-time, SM - system management, SP - system programming, TP - transaction
processing, TS - time-sharing, UT - utilities.

The specifications of the software system described in this publication are subiect to change without notice. The availability or performance of some features
may depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consuit their sales representative for details.

i 90 17 64H-1(9/78)

CONTENTS

3.

PREFACE viii
“OMMAND SYNTAX NOTATION ix
SLOSSARY x
1. INTRODUCTION 1
Operating System 1
Philosophy of Operation 1
Batch Processing 2
Time-Shared Processing 2
Remote Processing 2
Real-Time Processing 2
Transaction Processing 3
Processors 3
Command Processors 3
Language Processors 4
Execution (Control Processors 6
Service Processors 7
Application Processors 8
User Processors 9
Monitor 9
System Commands 10
2. FILES AND FILE USAGE 15
Introduction 15
File Organization 15
Keyed Files 15
Consecutive Files 18
Random Files 19
File Function and File Disposition 19
File Access 20
Direct Access 20
Sequential Access 21
Simultaneous File Usage 22
Requirements for Multiple Access to a
Single File 22
Tape Files 22
Disk Files 22
Coordinating Multiple Access to a
Single File 23.1
Protocol Requirements 23.1
Extensions to M:DCB, M:OPEN,
ASSIGN and SET 23.2
Hashing Queve Names 23.2
Data Encryption 24
File Storage Devices 24
Disk Storage 24
Labeled Tape 25
Physical Devices 27
Formatted Data Records 27
M:READ 27
M:WRITE 28
M:WEOF 28
M:CLOSE (output mode) 28
M:CLOSE (input mode) . 28
Direct Data Records 28
M:READ 28
M:WRITE 28
M:WEOF 28
M:CLOSE 28
Synonymous Files 28
Opennext 28
Explicit Open 28

90 17 64H-1(9/78)

MONITOR CONTROL COMMANDS

Introduction

System Control Commands

JOB

LIMIT

STEP

POOL

MESSAGE

TITLE

ASSIGN

SET

LDEV

XEQ

Input Control Commands
BIN

BCD

DATA

EOD

FIN

Utility Control Commands

PFIL

REW

WEOF

SWITCH

SYSTEM PROCEDURES

Introduction

General-Purpose Procedures

Set FPT Protection Type

M:PT

Lead Overlay Segment
M:SEGLD

Link to a Load Module

M:LINK

Load and Transfer Control

M:LDTRC

Give Time and Date

M:TIME

Type a Message

M:TYPE }
M:MESSAGE
Request a Key~In

M:KEYIN

Write to Listing Log’
M:PRINT

Suspend Program

M:WAIT

Exceptional Condition Centrol Procedures

Set Traps
M:TRAP

Simulate a Trap

M:STRAP

Set Interval Timer

M:STIMER

Test.Interval Timer

M:TTIMER

Connect Console Interrupt
M:INT

29

29

31
32
32
33

33

51
53
54

54
54
54
54
54

55
55
55

SRR R R RR R RS

Data Memory Management

Other CP=V Service Calls

Exit Control

M:XCON
Exits to the Monitor

M:EXIT

M:ERR

M: XXX

Exit from Trap, Interrupt, Timer or Exit

Control Routine

M:TRTN

Monitor Error Control

M:MERC

Get Common Limits

M:GL

Get Dynamic Data Limits
M:GDDL

Get Common Pages
M:GCP

Free Common Pages
M:FCP

Get Dynamic Pages
M:GP

Free Dynamic Pages
M:FP

Get Virtual Page
M:GVP

Free Virtual Page
M:FVP

Set Memory Protect
M:SMPRT

Change Virtual Map
M:CVM

Enqueue/Dequeue Resources

M:ENQ

M:DEQ

Adjust DCB CAL

Specify Logical Device /O Streams

M:LDEV

Read and Write Assign/Merge Record

M:RAMR

M:WAMR

Report System Load Parameters
M:DISPLAY

Release Resource CAL

SAVE CAL

GET CAL

Enter Master Mode

M:SYS

M:CAL

M:MASTER

Enter Slave Mode
M:SLAVE

Associate or Disassociate Public Library

Check Event Control Block(s) for

Completion
M:CHECKECB

Initiate Ghost Job

Execute Privileged Instructions
M:EXU

On-Line and Batch Differences

Exit Return (M:EXIT)

Error Return (M:ERR)

Abort Return (M:XXX)

72

Introduction
File Maintenance Procedures

Data Record Manipulation

File Manipulation

Special Device Procedures

Type a Message (M:TYPE)

Request Key=In (M:KEYIN)
Connect to Interrupt or BREAK
Key (M:INT)

1/0 PROCEDURES

Create a Data Control Block

M:DCB

Open a File (Initialize a DCB)
M:OPEN

Close a File (Terminate 1/O Through o DCB) _

M:CLOSE

Set Error or Abnormal Address
"~ M:SETDCB

Check 1/0O Completion

M:CHECK

Declare a Temporary File
M:TFILE

Read a Data Record

M:READ

Write a Data Record

M:WRITE

Copy All Data Records

M:MOVE

Delete a Data Record

M:DELREC

Truncate Blocking Buffer

M:TRUNC

Position n Records

+ M:PRECORD

Position File

M:PFIL

Close Volume

M:CVOL

Rewind

M:REW

Write End-of-File

M:WEOF

Insert or Delete Symbiont File
M:JOB

M:DEVICE

Set Listing Tabs

Skip to Top of Form
Set Number of Printable Lines
Set Line Spacing

Specify Direct Formatting

Specify Vertical Format Control

Specify Page Count
Change Output Form

Change Device Mode or Record Size
Specify Beginning Column

Specify Output Header
Specify Card Punch Sequencing
Number of Lines Remaining

94
94

94

95

95

96

96
196
102
102
110
110
112
112
13
13

‘13

113
114
114
114
116
116
118
118
119
119
119
119
19
119
ne
120
120
120
120
121
121
121
121
121
121
123
123
123
123
124

124

124
125
125
126
126
127
127
127
128

Check Correspondence of DCB Assignments __ * 128

90 17 64H-1(9/78)

PROGRAM LOAD AND EXECUTION

Introduction

Load Processor

Control Commands

LOAD, OVERLAY, CLAY.

TREE

PTREE

INCL

RUN

MODIFY

Libraries

Types of Libraries

Public Libraries

User Libraries

Diagnostic Messages

LYNX Processor

LYNX

Command Continuation

Command File Input

LYNX Commands

Mapping Existing Load Modules
:TREE

LYNX Example

Error Messages

Link Processor

Link Control Commands

Link

Load Module Structure

Symbol Tables

Diagnostic Messages

LEMUR Processor

Calling LEMUR

LEMUR Concepts

LEMUR Commands

LIBRARY.

BUILD

DELETE

COPY.

CARRY.

END

Error Messages

Command Summary.

Task Control Block

Data Control Blocks

Memory Protection

Virtual Memory

Virtual Memory Layout

Load Maps
Accounting

PROGRAM DEBUGGING AIDS

Introduction

Postmortem Dumps

PMD

Snapshot Dumps

SNAP

SNAPC

IF

AND

OR

COUNT

Debug Error Messages

129

129
129
129
129
134
135
135
136
136
137
137
137
137
139
143
143
143
143
143
147
147
148
148
150
150
150
151

153
153
154

154

155

155

155

155

156
156
157
157
158
159

160

161

1162
163

163
163

i 166

170

170
170
172
172
173
174
174
176
176
176
177

PREPARING THE PROGRAM DECK 179
Introduction 179
Symbolic Deck to Program Listing 179
Compressed Deck Update 179
Symbolic Deck to Binary Deck 179
Symbolic Deck to Binary Fileon Disk__________ 179
Process, Load, and Execute 180
Create File for Use by Another Program _________ 180
Update File, Object Module, and Load
Module of User's Program 180
Execute Program from User's Account, Using
Debug Feature 181
Create and Execute a Temporary Program ______f 181
Create a File with Password £181
Create a File Having Privileged Read Access 181
Read a File Having Privileged Read Access 181
PROCESSORS 182
Introduction 182
Processor Control Commands 182
Peripheral Conversion Language 182
Introduction 182
Syntax Conventions 182
Source and Destination Specification 183
Capabilities 185
Mode Option Compatibility 185
File COPY Command 186
Account COPY Command 191
Control File COPY Command 194
Other Commands 195
DELETE 195
DELETEALL 195
LIST 196
REVIEW 197
PRINT 198
ERRORS 198
SPF, SPR 198
SPE 198
WEOF 198
REW 198
REMOVE 199
TABS 199
Termination of PCL _ 199
PCL Error Messages 199
PCL Command Summary 199
Batch Processor 204
Introduction 204
Data Replacement 204
Command Continuation 205
Batch Commands 205
BATCH 205
DEFAULT 206
EOF 206
EXEC 206
EOF EXEC 207
Batch Error Messages 207
Show Processor 208
DEFCOM Processor 208
SYMCON Processor 209
Introduction 209
Conventions 209

Calling SYMCON 209 FIGURES

SYMCON Commands 210
LIST 210 1. Operating System 1
DELETE 210
KEEP 210 2, CP-V Operating System :
RETAIN m
CHANGE 211 3. Example of Multilevel Index Structure 16
BUILD 12N
DISCARD 211 4. Labeled Tape Format for Variable-Length
END 211 Blocked Records 26
SYMCON Error Messages 21
5. TCB Stack Contents on Exceptional Condition 63
INDEX
6. Memory Allocation 72
7. Basic FPT 80
APPENDIXES
8. Device-Oriented FPT 81
A. DATA CONTROL BLOCK FORMATS 213
9. Task Control Block Format 160
File DCB 213
Device DCB 227 10. DCBTAB (Name Table) 161
Xerox Labeled Tape DCB 234
ANS Labeled Tape DCB 242 11. Virtual Memory Layout 163
12. User Virtual Memory Layout, Load
Processor 164
B. MONITOR ERROR MESSAGES 250 13. User Virtual Memory Layout, Link
Processor 165
Introduction 250 . .
Xerox Labeled Tape Error Handling 262 . Sqmp'l,e Load Map Printout for the Link
rocessor 16

Enqueue/Dequeue Abnormal and Error Codes ____ 262
15. Sample Load Map Printout for the Load

Processor 167
16. Format of a Dump Printout 171
C. XEROX STANDARD SYMBOLS, CODES 264

AND CORRESPONDENCES A-1. Format of File DCB 213
Xerox Standard Symbols and Codes — 264, A-2. Format of FPARAM Table 225

Xerox Standard Character Set 2
Control Codes racter sets 2:: A=3. Format of Device DCB 228

Special Code P ti

peclal Tode Troperties 264 A-4, Format of Xerox Labeled Tape DCB 235
A-5. Format of ANS Lobeled Tape DCB_____________ 243

E-1. Informgtion Flow through Cooperative

D. USE OF TEMPORARY STORAGE BY LIBRARY 274 and Symbionts 275

TINES
ROU E-2. Symbiont File Buffer Format 278

E. COOPERATIVES AND SYMBIONTS 275
Cooperative 276 TABLES
Symbionts 276
Symbiont-Cooperative Housekeeping 276 1. Simultaneous File Usage — Keyed or
Symbiont Buffers 277 Consecutive v
2. Standard Operational Labels, Device Types,
| F. Deleted 279 and Physical Device Name 41

g 90 17 641-1(9/78)

17.
18.
19.
20.
21.
22.
23.
24,
25.

26.

27,

28.

29,
30.
31.
32,
33.
34,

Operational Label Conventions

Line Printer Format Control Codes ___

DCB Assignment Codes - Set Command

Device Options - Set Command

File Options - Set Command
Exits to the Monitor

Register Contents for Exit Control

Variable Length Parameter List

Storage of Service Functions

Standard |/O Device Type Codes
IOP Designation Codes

Device Designation Codes

File Defaults

Tape Positioning for Output, Update,
and Scratch Tapes

Standard Load Module Format

Library Dictionary Format

Library Load Module Format

Library ROM Module Format

Monitor Error Messages

Load Error Messages

LYNX Error Messages

Link Error Messages

LEMUR Error Messages

LEMUR Command Summary

Data Control Block Size

Accounting Printout for Batch Jobs

Debug Error Messages

PCL Device Types

PCL Organization Types

Data Codes

Data Formats

Mode Codes — COPY Command

1

43

45
46
47
67
69
81
88
95
95
926
104

m
129

138
138
138
139
140
148
153
158
159

162

168

178

183
183
187
187

188

35,
36.
37.
38,
39.
40,
41.

42,

B-1.

B-2,

Record Sequencing Options — COPY Command .

Account Options - COPY Command __
ANS Tape Options — COPY Command

Valid Option Combinations

PCL Error Codes

PCL Command Summary

Batch Processor Error Messages

SYMCON Error Messages

. Variable Length Parameter Codes

. Variable Length Parameter Codes for

ANS Labeled Tapes

Abnormal Codes — Insufficient or
Conflicting Information

Abnormal Codes ~ Device Failure or
End-of-Data

Error Codes — Insufficient or Conflicting
Information

Error Codes — Device Failure or
End-of-Data

Other Monitor Error Codes

Enqueue/Dequeue Abnormal Codes

Enqueue/Dequeue Error Codes

. CP-V 8-Bit Computer Codes (EBCDIC)
. CP-V 7-Bit Communication Codes (ANSCII)____
. CP-V Symbol-Code Correspondences

. ANSCII Control=Character Translation.

Table

. Substitutions for Nonexistent Characters

on 2741 Keyboards

Cooperative and Symbionts Descriptions

189
189
190
192
200
202
207
212

223

249

250

254

255

257
258
263
263
265
266

267

271

273

276

vii

PREFACE

Control Program-Five (CP-V) is a general-purpose system that operates on a Xerox 560 or Sigma 5, 6, 7, or 9
computer and a variety of peripheral devices. The system provides for five concurrent modes of operation.

e Batch processing

o Time-sharing

e Remote processing

e Real-time processing
e Transaction processing

This manual is the principal source of reference information for the batch processing features (i.e., job control com-
mands, system procedures, 1/O procedures, program loading and execution, debugging aids, and service processors).
The purpose of the manual is to define the rules for using the batch processing features. Manuals describing other
features of CP-V are outlined below,

o The CP-V Time-Sharing Reference Manual, 90 09 07, is the principal source of information for the time-
sharing features, Itdefines the rules for using the Terminal Executive Language and other terminal processors.

o The CP-V Time-Sharing User's Guide, 90 16 92, describes how to use the various time=sharing features. It
presents an introductory subset of the features in a format that allows the user tolearn the material by using
the features at a terminal as he reads through the document,

o The CP-V System Programming Reference Manual, 90 31 13, describes the CP-V features that are designed
to aid the system programmer in the development, maintenance, and modification of the CP-V system.

e The CP-V System Management Reference Manual, 90 16 74, is the principal source of reference information
for the system management features of CP-V. It defines the rules for generating a CP-V system (SYSGEN),
authorizing users, maintaining user accounting records, maintaining the file system, monitoring system per-
formance, and other related functions.

o The CP-V Operations Reference Manual, 90 16 75, is the principal source of reference information for
CP-V computer operators. It defines the rules for operator communication (i.e., key-ins and messages),
system start-up and initialization, job and system control, peripheral device handling, recovery, and file
preservation,

e The CP-V Remote Processing Reference Manual, 90 30 26, is the principal source of information about the
remote processing features of CP~V, All information about remote processing for all computer personnel
(local and remote users, system managers, remote site operators, and central site operators) is included in
the manual,

o The CP-V Transaction Processing Reference Manual, 90 31 12, provides information about dynamically
modifying and querying a central database in a transaction processing environment. The manual is addressed
to system managers, database administrators, applications progrommers, and computer operators,

e The CP-V Common Index (90 30 80) is an index to all of the above CP=V manuals,

Information for the language and application processors that operate under CP-V is also described in separate man-
vals. These manuals are listed on the Related Publications page of this manual.

90 17 64H-1(9/78)

COMMAND SYNTAX NOTATION

Notation conventions uséd in command specifications and examples throughout this manual are listed below.

Notation

Description

lowercase letters

CAPITAL LETTERS

()

Numbers and
special characters

Subscripts

Lowercase letters identify an element that must be replaced with a
user-selected value.

CRndd could be entered as CRAO3.

Capital letters must be entered as shown for input, and will be printed as
shown in output.

DPndd means "enter DP followed by the values for ndd".
An element inside brackets is optional. Several elements placed one under
the other inside a pair of brackets means that the user may select any one or
none of those elements.

[KEYM] means the term "KEYM" may be entered.

Elements placed one under the other inside a pair of braces identify a re-
quired choice.

{ 'ﬁ;} means that either the letter A or the value of id must be entered.

The horizontal ellipsis indicates that a previous bracketed element may be
repeated, or that elements have been omitted.

name[,name]. .. means that one or more name values may be
entered, with a comma inserted between each name value.

The vertical ellipsis indicates that commands or instructions have been
omitted.

MASK2 DATA,2 X'IEF'

. means that there are one or more state-
BYTE DATA,3 BA(L(59)) ;nier:Lsﬁc:g;Hed between the two DATA.

Numbers that appear on the line (i.e., not subscripts), special symbols, and
punctuation marks other than dotted lines, brackets, braces, and underlines
appear as shown in output messages and must be entered as shown when input.

. (value) means that the proper value must be entered enclosed in
porentheses; e.g., (234).

Subscripts indicate a first, second, etc., representation of a parameter that
has a different value for each occurrence.

sysid1,sysid2,sysid3 means that three successive values for sysid
should be entered, separated by commas.

1. INTRODUCTION

OPERATING SYSTEM

The CP-V monitor functions as the major control element in
an installation's operating system. The operating system

consists of the monitor and a number of processing programs:

language processors, execution control processors, service
processors, application processors, and user processors, In
general, the monitor governs the order in which programs

are executed and provides common services to all of them
" (see Figure 1).

The number, types and versions of the programs in an oper=
ating system vary, depending upon the exact requirements
at a particular installation. Each operating system consists
of a selection of monitor routines and processing programs

thatare closely integrated for a given range of applications.

The operating system required for a particular installa-
tion is generated through use of the System Generation
programs, which are described in the CP~V/SM Reference
Manual, 90 16 74.°

As the requirements of an installation increase, the oper-
ating system can easily be enlarged, modified, or updated,
The ability to adapt conveniently to new requirements is
inherent in the system design. Once a system is generated,
it can be quickly expanded to include user's programs,
data, and system libraries, User's programs and the stan-
dard system processors are equivalent in that they are
stored, cataloged, and referred to within the system in the
same way. They are also written using the same conven-
tions for communicating with the monitor.

The operating system is self-confained and requires opera-
tor intervention only under exceptional conditions.

PHILOSOPHY OF OPERATION

The monitor uses sophisticated techniques for efficient
machine operation in.a production environment. The ability
to process a continuous series of jobs with little or no oper-
ator intervention is one of the most important features of the
system. By reducing the need for operator participation,
the operating system ensures faster throughput, and opera-
tions are less subject to error, For the most part, the oper-
ator should only have to perform routine tasks such as loading
and unloading tape reels, ‘

Complete and easy-to-use 1/O services are available to
user programs, thus relieving the programmer of many co-
ding chores. Device assignment is general and automatic,
enabling the user's program to exploit the complete flexi-
bility of peripheral units.

I/O service is comprehensively organized to simplify pro-
gramming and make machine utilization efficient. 1/O
transfers are automatically buffered, and 1/O peripherals
are serviced on a queue basis (by job). Jobs can thus be
executed sequentially even though they might normally be
I/O-bound and delay use of the CPU or other 1/O devices.

The job scheduler permits selective job operation based on
job type or administrative priority to maximize throughput
efficiency or environmental needs. The computer operator

Monitor Processing Programs
Fe—-m = rm = m—— - —— = 1 = r=m=— == 1
: I \ |
]

' L i ' Language
Operator —"—’: System Control ! : Translator i

I i ! i
Job Input —— 1 | i ! !

' | Job Scheduler || H ! Service !
Job Output ~——1— o ! : :

| .g) ! |

' z | i |

| [| i |

] R Batch User

\ A | ! |

' . | ! |

\ |- ! |

' : i Time=Sharing :

1 i]

I Symbionts | ™1 Users !

1 1 '

1 t |

S 4 L e e F]

Figure 1. Operating Sysfém

Introduction 1

GLOSSARY

addend value o hexadecimal constant to be added to
the value of a relocatable address. The constant is
expressed as o signed integer appended to the address;
e.g., START+12 or HERE-F1,

address resolution code a two=bit code that specifies
whether an associated address is to be used as a byte
address or is to be converted (by truncating low order
bits) to a halfword, word, or doubleword address.

ANS tape o tape that has labels written in American
National Standard format.

batch job a job that is submitted to the batch job stream
through the central site card reader, through an on-
line terminal (using the Batch processor), or through
a remote terminal. :

binary input input from the device to which the BI (bin=
ary input) operational label is assigned.

common page a page of core storage that is available
to the user's program and in which stored data is re-
tained until the current job is terminated or until the
page is released by the user's program.

concatenation a process whereby a number of files with
the same filename and format e treated as one logi~
cal file. Concateration is oniy applicable to ANS
tapes.

conflicting reference a refere .ce to a symbolic name
that has more than one definition.

control command any control message other than a
key-in. A control command may be input via any de-
vice to which the system command input function has
been assigned (normally a card reader).

control command interpreter (CCI) a monitor routine

that interprets control commands.

control function any monitor function initiated by a
control command or control key-in,

control key-in a control message of the type that must
be input from the operator's console.

control message any message received by the monitor
that is either a control command or a control key=in,

cooperative a monitor routine that transfers information
between a user's program and disk storage {(also see
llsmbionrll)'

data control block (DCB) a table in the user's program
that contains information used by the monitor in the
performance of an 1/O operation.

disk pack a secondary storage system of removable ro-
tating memory,

dummy section a type of program section that provides
a means by which more than one subroutine may refer-
ence the same data (via an external definition used as
a label for the dummy section).

element file a user's file consisting of program elements,
such as relocatable object modules or library load
modules.

error severity level code a four=bit code indicating the
severity of errors noted by the processor. This code is
contained in the final byte of an object module.

external definition a load item that assigns a specific
value to the symbolic name associated with a particu-
lar external definition name number. An external de-
finition allows the specified symbolic name to be used
in external references (see below).

external reference a reference to a declared symbolic
name that is not defined within the object module in
which the reference occurs. An external reference
can be satisfied only if the referenced name is defined
by an external load item in another object module.

file extension a convention that is used when certain
system output DCBs are opened. Use of this convention
causes thefile (on RAD, tape, disk pack, etc.)connected
to the DCB to be positioned to a point just following
the last record in the file. When additional output is
produced through the DCB, it is added to the previous
confents of the file, thereby extending the file.

file management routines monitor routines that interpret
" and perform 1/O functions.

function parameter table (FPT) a table through which a
user's program communicates with a monitor function
(such as an 1/O function).

ghost job a job that is neither a batch nor an on-
line program. It is initiated and logged on by the
monitor, the operator, or another job and consists
of a single job step. When the ghost program ex-
its, the ghost is logged off.

global symbol a symbolic name that is defined in one
program module and referenced in another.

GO file a temporary secondary storage file consisting
of relocatable object modules formed by a processor.

granule a block of disk sectors large enough to contain
512 words (a page, or 2048 bytes) of stored information.

job control language (JCL) a language consisting of
control commands that provide job specifications to
the monitor.

job information table (JIT) a table associated with each
active job. The table contains accounting, memory
mapping, swapping, terminal DCB (M:UC), and tem-
porary monitor information.

job step a subunit of job processing such as compila=
tion, assembly, loading, or execution. Information
from certain commands (JOB, LIMIT, and ASSIGN)
and all temporary files created during a job step are
carried from one job step to the next but the steps are
otherwise independent.

key a data item that uniquely identifies a record.

key=-in information entered by the operator via a
keyboard.,

library load module a load module that may be com-
bined with relocatable object modules, or other li-
brary load modules, to form a new executable load
module.

linking loader a program that is capable of linking and
loading one or more relocatable object modules and
load modules.

load information information (i.e., control informa=
tion, data, and instructions) generated by a processor
and contained in one or more modules capable of be-
ing linked to form an executable program.

load location counter a counter established and main-
tained by the monitor to contain the address of the
next location into which information is to be loaded.

load map a listing of loader output showing the loca-
tion or value of all global symbols entering into the
load. Also shown are symbols that are not defined or
have multiple definitions.

load module (LM) an executable program formed by
the linking loader, using relocatable object modules
(ROMs) and/or loadmodules (LMs) as input information,

logical device a peripheral device that is represented
in a program by an operational label (i.e., Bl or PO)
rather than by specific physical device name.

logical device stream an information stream that may
be used when performing input from or output to a sym-
biont device. At SYSGEN, up to 15 logical device
streams are defined. Each logical device stream is
given a name (e.g., L1, P1, Cl), each is assigned
to a default physical device, and each is given de-
fault attributes. The user may perform 1/O through
a logical device stream with the default physical de-
vice and attributes or-he may change the physical
device and/or attributes to satisfy the requirements

of his job.

monitor a program that supervises the processing loading,
and execution of other programs.

object language the standard binary language in which
the output of a processor is expressed.

object module the series of records containing the load
information pertaining to a single program or sub-
program (i.e., from the beginning to the end). Ob-
ject modules serve as input to the Load processor or the
Link processor.

operational label a symbolic name used to identify a
logical system device.

option an elective operand in a control command or
procedure call, or an elective parameter in a func~
tion parameter table.

overlay loader a monitor routine that loads and links
elements of overlay programs.

overlay program a segmented program in which the ele~
ment (i.e., segment) currently being executed may
overlay the core storage area occupied by a previously
executed element.

parameter presence indicator a bit in word 1 of a func-
tion parameter table that indicates whether a parti-
cular parameter word is present in the remainder of
the table.

physical device a peripheral device that is referred to
by a name specifying the device type, 1/O channel,
and device number (also see "logical device").

postmortem dump a listing of the contents of a speci-
fied area of core memory, usually following the abor-
tive execution of a program.

program product a compiler or application program that
has been or will be released by Xerox. A program pro-
duct is not required by all users and is therefore made
available by Xerox on an optional basis. Program pro-
ducts are provided only to those users who execute a
License Agreement for each applicable installation,

protective mode @ mode of tape protection in which only
ANS expired tapes may be written on through an ANS
DCB; no unexpired ANS tape may be written on through
a non-ANS DCB; all ANS tapes must be initialized by
the Label processor; no tape serial number specification
is allowed at the operator's console; specification of an
output serial number in an ANS DCB forces processing
to be done only oh a tape already having that serial
number; tapes mounted as IN may not be written; and
tapes mounted as other than IN must have a write ring.
(See "semiprotective mode".)

pseudo file name a symbolic name used to identify a
logical device in a user's program.

xi

public library a set of library routines declared during
system generation to be public (i.e., to be used in
common by all concurrent users).

rapid access data (RAD) storage system
age system of rotating memory.

reentrant an attiibute of a program that allows the pro-
gram to be shared by several users concurrently. Shared
processors in CP=V are map reentrant. That is, each
instance of execution of the single copy of the pro-
gram's instructions has a separately mapped copy of
the execution data.

relative allocation allocation of virtual memory to a
user program starting with the first unallocated page
available.

relocatable object module (ROM) a program or sub-
program in object language generated by a processor
such as Meta=Symbol or FORTRAN.

relocating loader a program capable of loading one or
more object modules and linking them to form an
executable program.

remote processing an extension of the symbiont sys-
tem that provides flexible communication between
CP=V and a variety of remote terminals.

resident program a program tiat has been loaded into
a dedicated area of core n. :mory.

response time the time between the completion of ter~
minal input and the first r ogram activation.

scheduler a monitor routine that controls the initiation
and termination of all jobs, job steps, and time slice
quanta,

secondary storage any rapid-access storage medium
other than core memory (e.g., RAD storage).

segment loader a monitor routine that loads overlay
segments from disk storage at execution time.

semi-protective mode a mode of tape protection inwhich
a warning is posted to the operator when an ANS DCB
attempts output on a non-ANS tape or an unexpired
ANS tape, when a non-ANS DCB attempts output on
an unexpired ANS tape, or when a tape mounted as
INOUT has no write ring. The operator can authorize
the overwriting of the tape or the override of INOUT
through a key-in (OVER and READ). ' ANS tapes may
be initialized by the Label processor or may be given
labels as the result of an operator key=in; tape serial
number specification is allowed at the operator's con-
. sole;and specification of an output serial number in an
ANS DCB forces processing to be done only on a tape
already having that serial number unless the operator
authorizes an overwrite, (See "protective mode".)

xii

a secondary stor=

shared processor a program (e.g., FORTRAN) that is
shared by all concurrent users. Shared processors must
be established af SYSGEN.

source language a language used to prepare a sourc
program suitable for processing by an assembler or
complier.

special shared processor a shared processor that may be
in core memory concurrently with the user's program
(e.g., Delta, TEL, or the FORTRAN library).

specific allocation allocation of a specific page of
unallocated virtual memory to a user program.

SR1, SR2, SR3, and SR4 see "system register", below.

star file a file created by the system containing tempo-
rary user context. The system may create up to five
star files for each batch job or on-line session. These
files ‘are transparent to the user, are not cataloged in
the File Directory, and always cease to exist at the
end of the batch job or on-line session.

static core module a program module that is in core
memory but is not being executed.

symbiont a monitor routine that transfers information
between disk storage and a peripheral device indepen-
dent of and concurrent with job processing.

symbolic input input from the device to which the SI
(symbolic input) operational label is assigned.

symbolic name an identifier that is associated with some
particular source program statement or item sothat sym-
bolic references may be made to it even though its
value may be subject to redefinition.

SYSGEN

see “"system generation", below.

system generation (SYSGEN) the process of creating an
operating system that is tailored to the specific require-
ments of an installation. The major SYSGEN steps in-
clude: gathering the relevant programs, generating
specific monitor tables, loading monitor and system
processors, and writing a bootable system tape.

system library a group of standard routines in object-
language format, any of which may be incorporated
in a program being formed.

system register a reigster used by the monitor to com-
municate information that may be of use to the user
program (e.g., error codes). System registers SR1,
SR2, SR3, and SR4 are current general registers 8, 9,
10, and 11, respectively.

task control block (TCB) a table of program control
information built by the loader when a load module
is formed. The TCB is part of the load module and
contains the data required to allow reentry of library

rountines during program execution or to allow entry
to the program in cases of traps, brecks, etc. The
TCB is job-step assiciated.

TEXT format an EBCDIC character string that begins and
ends at word boundaries, The character string is left-
justified in the field and is padded with trailing blanks.

TEXTC format a character string preceded by a byte that
contains the number of characters in the character
string. (The count byte does not include itself in the
count.) For many CP-V functions, the character string
need not consist of printable characters.

TSS temp stack a push-down stack established by the
monitor for use by an executing program (unless NOTCB
was specified for the load module.)

unsatisfied reference a symbolic name that has been
referenced but not defined.

user-identification banner an identifying prescript and/or
postscript for output through a logical device stream.
Line printer and card punch device streams are given user-
identification banners; other device streams are not. A
punch stream receives a one-card prescript. A printer
stream receives a one-page prescript and, provided that
it has not been given a FORM name, a one-page post-
script. A prescript card and each line of a prescript
page contains the user's account number and name.

maintains complete control over the job stack on secondary -
storage. Jobs can be suspended or initiated on a priority
basis,

Rapid access data (RAD) and disk pack (DP) storage devices
are used for secondary storage. Secondary storage manage-
ment is essential to efficient operation of the monitor, since
such storage is fully exploited in various ways, It is used
for system storage to overlay portions of the monitor, min-
imizing core memory residency, Service processors (com=-
pilers, assemblers, etc,) are contained on secondary storage
for immediate access and they, too, capitalize on rapid
overlay techniques to minimize core memory requirements
at execution time. Scratch storage for service processors
and user programs is available onsecondary storage. Finally,
the secondary storage accommodates permanent and tempo-
rary user files,

User files may be stored onpublic RAD or disk packs or on
private disk packs or magnetic tape. Three file structures
are available: random (direct), consecutive, and key-
indexed (indexed-sequential). Access may be either di-
rect (keyed) or sequential. Programs coded to access the
simpler consecutive files may correctly access the more
complex keyed files sequentially without program change.
Files are protected from unauthorized use by passwords and
by explicit lists of users authorized fo read or to update them,

User programs can avail themselves of the secondary stor-
age and the overlay service of the monitor. With these
facilities, user programs that require more operating core
memory storage than is physically ivailable can be easily
segmented and controlled so that unly part occupies avail-
able core memory at any one time The monitor accepts
the overlay stricture of the user's program and ensures
proper sequencing and transfer ag of program elements,
It also detects inconsistencies in the logical overlay struc-
ture and log. them as a diagnostic message to the user.

The monitor provides for complete accounting of user -
job activity on the computer. Because of the system's
multiusage capability, the accounting information indi-
cates both elapsed time and actual machine facility utili-
zation of each job.

The monitor provides job accounting and validation of
each user's job dctivity:

e Validity or authorization checks are made on the user's
" name and account number combination. Jobs are
aborted where the name and account number are not
previously validated by the installation manager.

e A discrete accounting record is written at the termina-
tion of each batch job.

e Standard accounting can be supplemented by the user
supplying initiation and termination routines for a job.

The monitor's loader function relocates user programs into
the currently available core memory space, satisfies all
library subroutine references, and links all program ele-~
ments called for by the user. In addition, run-time debug-
ging calls are recognized and established for the binary
programs,

2 Philosophy of Operation

The full multiuse capability of the monitor provides for five
concurrent modes of operation:

1. Batch processing.

2, Interactive time=shared processing.
3. Remote processing.

4. Real-time processing.

5

Transaction processing.

BATCH- PROCESSING

Batch jobs may be submitted to the batch job stream through
the central site card reader, through an on-line terminal
(using the Batch processor), or through remote processing.
Batch processing facilities are described in this document,

TIME-SHARED PROCESSING

CP-V allows multiple on=line terminal users to concurrently
create, debug, and execute programs. Although some facili-
ties and processors are reserved for on=line use and others
for batch use, the two classes of service are complementary,
Generally speaking, anything that can be done in batch
mode can be done on-line, although somefimes in a cur-
tailed manner. In particular, compilers and assemblers are
compatible across the two classes of service at source and
relocatable levels, For example,

1. Processors for Extended FORTRAN IV, ANS COBOL,
and Meta~Symbol are available both in batch and on-
line mode. g

2. Programs compiled or assembled in batch can be linked
with those produced on-line and can be run and de-
bugged on-line.

3. Programs compiled or assembled on-line can be linked
and run in batch mode.

(Reference: CP-V/TS Reference Manual, 90 09 07.)

REMOTE PROCESSING

' The remote processing system is an extension of the CP-V

symbiont system. Its purpose is to provide for very flexible
communication between CP-V and a variety of remote ter~
minals, These terminals can range from a simple card reader

. and line printer combination to another computer system

with a wide variety of peripheral devices. Any CP-V user
(batch, on=line, or ghost)can communicate with any number
of devices at one or several remote sites, (Reference:

. CP-V/RP Reference Manual, 90 30 26.)

REAL-TIME PROCESSING

The real-time services provided by CP-V allow users to
connect interrupts to mapped programs, control the state of

. interrupts (e.g., trigger, arm/disarm, enable/disable),

clear interrupts either at the time of occurrence or upon
completion of processing, and disconnect interrupts no

longer required. Users may also request that a mapped
program.be held in core in order to reduce the time required
to respond to an external event (via an interrupt) or to
allow various forms of special 1/O to occur. Programs may
be connected to one of the monitor's clocks such that after
a specified period of time, a specified routine is entered.

In addition, dedicated foreground memory may be used as
inter-program communication buffers or as dedicated memory
for unmapped, master mode programs which may be directly
connected to external interrupts or real=-time clocks,
(Reference: CP-V/SP Reference Manual, 90 31 13.)

TRANSACTION PROCESSING

The transaction processing feature of CP-V is an efficient
and economical approach to centralized information pro-
cessing and is a generalized package that is designed to
meet the requirements of a variety of business applications.
Transaction processing facilities provide an environment in
which several users at remote terminals may enter business
transactions, simultaneously utilizing a common data base. -

The transactions are processed immediately, as they are
received, by application programs written especially for
the particular installation. (Reference: CP-V/TP Refer-
ence Manual, 90 31 12,)

PROCESSORS

The CP-V system is illustrated in Figure 2 at two levels.
The upper level represents the monitor and its various rou-
tines. The lower level lists the various processors. These
processors are described in the following paragraphs.

COMMAND PROCESSORS

The four processors in this group are: LOGON/LOGOFF,
EASY, TEL, and CCI, The first of these processors is avail-
able to on-line and batch users, the second and third are
available to on=line users only, and the last is available
to batch users only,

Monitor

Basic Control

Scheduling and Swapping
Memory Management

Job Step Control

Terminal 1/0

Symbionts and Cooperatives
File Management

System Integrity
Initialization and Start-Up
Operator Communication
Batch Debugging

System Debugging

Load and Link

Public and System Libraries

'Progrum product (see glossary).

Command - System Language Execution Service Application User Processors
Processors Management Processors Control Processors Processors —
Processors ——————eeeer Processors (OBG)
LOGON/ EEE— ANS FORTRAN (OB) Edit (OG) Sort/Merge (B)
LOGOFF (OB) Super (OBG) FORTRAN |V (OB} Link (OB) PCL (OB) EDMS (B)t
TEL (O) Control (OBG) Meta-Symbol (OB) Load (B) LEMUR (OB) GPDS (B)f
EASY (O) Rates (O) AP (OB) LYNX (0OB) SYSGEN (OB) CIRC (OB)t
cCl (8) FILL (OG) BASIC (OB) Delta (O) DEFCOM (OB) Manage (OB)t
FSAVE (OB) ey (o8) FDP (OB) SYMCON (OB) Transaction Pro-
FRES (OB) APL (OB) COBOL ANLZ (OBG) cessing (OB)
Fix (OBG) RPG (B) On-Line Batch (OBG)
VOLINIT (OBGS5) sL-1 (OB)* Debugger (O) DRSP (OB)
Label (B) ELLA (OBG)
STATS (OBG) Show (OB)
Summary (OB)
SYSCON (OG)
GAC (OBG)
DEVDMP (S)
ONLIST (OBG) .
PPS (G)
Note: O on-line
B batch
G ghost
S stand-alone

Figure 2. CP=-V Operating System

Processors

3

LOGON/LOGOFF

LOGON admits on-line users to the system. LOGOFF
disconnects a user (on-line or batch) from the system and
does the final cleanup and accounting,

EASY

EASY is o shared processor that enables the user to create, _
edit, execute, and delete program files written in BASIC or
FORTRAN. EASYalso allows the user to create and manip-
ulate EBCDIC data files, Although intended primarily for
Teletype operations, EASY can be used with any type of
on-line terminal supported by CP-V, (Reference: EASY/
LN, OPS Reference Manual, 90 18 73.)

TERMINAL EXECUTIVE LANGUAGE

TEL is the default command processor for time=sharing and
serves as the terminal user's interface to the various services
of CP-V. TEL is functionally equivalent to the batch mode
Control Command Interpreter. Some of the functions per-
formed by TEL are:

1. Calling user programs and system processors,

2, Changing the log-on password.

3. Assigning 1/O devices and DUB parameters.

4. Requesting ~xte~ded memory mode.

5. Determining on-line user status,

6. Changing terminal platen size,

7. Sending messages to the operator,

8. Logging off,

(Reference: CP-V/TS Reference Manual, 90 09 07,) -

CONTROL COMMAND INTERPRETER

The Control Command Interpreter is the batch counterpart
of TEL., It provides the batch user with control over the
processing of batch programs just as TEL provides on-line
users with control over the processing of on-line programs.

LANGUAGE PROCESSORS

Language processors translate high=level source code into

machine object code. Nine processors of special importance
aredescribed below, Eightof these (Extended FORTRAN 1V,
Meta-Symbol, BASIC, FLAG, ANS COBOL, APL, Manage,
and SL-1) can be used in both on-line and batch modes,

The other. one (RPG) can be used in batch mode only.

4 Processors

ANS FORTRAN

The ANS FORTRAN compiler is compatible with most
features of the forthcomong (new) American National
Standard Institute FORTRAN language, which includes
many extensions to the 1966 ANS FORTRAN Standard
Language. [t is operable under CP-V as a shared
processor, offering services to both the batch user and
the on-line user. The user may request, as an option,
that the compiler produce either ROM

output or program execution (LOAD and GO)

Advantageous features of the ANS FORTRAN compiler are:

o Compiler speed on the order of 2K-3K lines per minute,
o Compressed input/output capability.
e Addition of INCLUDE (system) capability.
e Conversational characteristics for time-sharing.
o New ANS FORTRAN compatibility:
CHARACTER variables
Expanded READ/WRITE capabilities

OPEN and CLOSE statements

(Reference: ANS FORTRAN/LN Reference Manual ,
90 32 00, and the ANS FORTRAN /OPS Reference
Manual, 90 32 01,)

XEROX EXTENDED FORTRAN IV

The Xerox Extended FORTRAN IV language processor consists
of a comprehensive algebraic programming language, a
compiler, and a large library of subroutines. The lan-
guage is a superset of most available FORTRAN languages,
containing many extended language features to facilitate
program development and checkout. The compiler is de-
signed to produce very efficient object code, thus reducing
execution time and core requirements, and to generate ex-
tensive diagnostics fo reduce debugging time. The library
contains over 235 subprograms and is available in a reen-

“trant version. Both the compiler and run=time library are

reentrant programs that are shared among all concurrent
users to reduce the utilization of critical core resources. *
(Reference: Extended FORTRAN IV/LN Reference Man-
val, 90 09 56, and Extended FORTRAN IV/OPS Reference
Manual, 90 11 43,)

META-SYMBOL

Meta-Symbol is a procedure-oriented macro assembler, It

- has services that are available only in sophisticated macro

assemblers and a number of special features designed to per-

‘mit the user to exercise dynamic control over the parametric

‘environment of assembly. It provides users with a highly
flexible language with which to make full use of the avail-
able Xerox 560 and Sigma hardware capabilities. (Reference:
Meta=Symbol/LN,OPS Reference Manual, 90 09 52.)

AP

Assembly Program (AP) isu four-phase assembler that reads
source language programs and converts them to object
language programs. AP outputs the object language pro=-
gram, dan assembly listing, and.a cross reference (or con-
cordance) listing. AP is available in both the on-line and
batch modes.

The following list summarizes AP's more important features
for the programmer:

® Self-defining constants that facilitate use of hexa-
decimal, decimal, octal, floating=point, scaled fixed~
point, and text string values,

o The facility for writing large programs in segments
or modules. The assembler will provide information
necessary for the loader to complete the linkage be-
tween modules when they are loaded into memory,

¢ The label, command, and drgument fields may contain
both arithmetic and logical expressions, using constant
or variable quantities,

o Full use of lists and subscripted elements is provided.

e The DO, DOI1, and GOTO directives allow selective
generation of areas of code, with parametric constants
or expressions evaluated at assembly time,

e Command procedures allow the capability of generating
many units of code for a given procedure call line,

e Function procedures return values to the procedure call
line. They also provide the capability of generating
many units of code for a given procedure call line.

e, Individual parameters on a procedure call line can be
tested both arithmetically and logically.

e Procedures may call other procedures, and may call
procedures recursively,

(Reference: Xerox Assembly Program/Reference Man-
val, 9030 00.)

BASIC

BASIC is a compiler and programming language based on

Dartmouth BASIC, It is, by design, easy to teach, learn,
and use. Itallowsindividuals with little or no programming
experience to create, debug, and execute programs via an
on-line terminal. Such programs are usually small to me-
dium size applications of a computational nature.

BASIC is designed primarily for on-line program develop-
ment and execution, or on-line development and batch
execution, In addition, programs may be developed and
executed in batch mode. (Reference: BASIC/LN, OPS
Reference Manual, 90 15 46,)

FLAG

FLAG (FORTRAN Load and Go) is an in-core FORTRAN

compiler that is compatible with the FORTRAN IV=H class

of compilers, It can be used in preference to the other
FORTRAN compilers when users are in the debugging phase
of program development, FLAG is a one-pass compiler and
uses the Extended FORTRAN 1V library, Included in the

basic external functions are the Boolean functions IAND

(AND), IEOR (exclusive OR), and IOR (OR), which give

the FORTRAN user a bit manipulation capability,

If several FLAG jobs are to be run sequentially, they may
be run in a sub-job mode, thus saving processing time nor-
mally needed for the Control Command Interpreter (CCI) to
interpret the associated control cards. In this mode, FLAG
will successively compile and execute any number of sepa-
rate programs, thereby reducing monitor overhead,

The FLAG debug mode is a user-selected option that gen-
erates extra instructions in the compiled program to enable
the user, during program execution, to detect errors in pro-
gram logic that might otherwise go undetected or cause un-
explainable program failure. (Reference: FLAG/Reference
Manual, 90 16 54,)

ANS COBOL

The Xerox ANS COBOL compiler offers the user a powerful
and convenient programming language facility for the im-
plementation of business or commercial applications. The
language specifications fully conform to the ANSI standard
for the various functional processing modules, The com-
piler's design takes full advantage of the Xerox 560 and
Sigma unique hardware features, resulting in rapid compi-
lation of source code, rapid execution of the resulting ob-
ject code, and the generation of compact programs. The
result is a highly efficient programming system requiring

a minimum amount of storage. (Reference: ANS COBOL/
LN Reference Manual, 90 15 00,)

RPG

Xerox RPG (Report Program Generator) is a convenient
means of preparing reports from information available in
computer-readable forms, such as punched cards, magnetic
tape, and magnetic disks, In addition, it is a means of
establishing and updating files of information, usually in
conjunction with preparation of reports,

RPG provides its capabilities through generation (compila=~
tion) of object programs, each of which is tailored to
produce a different sef of reporting results and/or file
processing desired by the user. The RPG object programs
are capable of accepting input data, retrieving data from
existing files, performing calculations, changing formats of
data, updating existing files, creating new files, comparing

" data values to one another and to specified constants to de=-

termine appropriate handling, using user-defined processing
subroutines, using system library subroutines, and printing
reports derived from the input and file data,

Processors 5

Xerox RPG has several advantages over the more traditional
- method of writing object programs in a symbolic programming
language, The RPG language is oriented toward the user's
problem, describing reporting requirements, rather than
toward the mechanics and manipulations of computer usage.
The language and specification techniques are easily
learned. A user can become proficient in RPG after writ=-
ing only a few programs, whereas an equal facility in
symbolic programming would require considerable experi-
ence. (Reference: RPG/Reference Manual, 90 19 99.)

APL

Xerox APL (A Programming Language) is a processor and
_programming language based on Kenneth Iverson's APL. It
is an interpretive, time-sharing, problem-solving language.
As an interpretive language, APL interprets each line of
input as it is entered and produces code that is immediately
executed. As a problem-solving language, APL requires
minimal computer programming knowledge.

Because APL is powerful, concise, easy to learn, and easy
to use, it is widely used by universities, engineers, statis-
ticians, and businessmen. One of APL's major strengths is
its ability to manipulate vectors and multidimensional
arrays as easily as it does scalar values,

Xerox APL has been designed to be compatible with
competitive APL systems, In addition, it has many salient
features not generally found in other APLsystems. Some of
these features are: both on=line ar batch operation, oper-
ation from terminals without APL :characters, fast for-
matted output, file input/output, ompound statements,
unequally spaced tab settings, and so on. (Reference:
APL/LN, OPS Reference Manual, 70 19 31.)

SIMULATION LANGUAGE (PROGRAM PRODUCT)

The Simulation Language (SL-1) is a simplified, problem-
oriented digital programming language designed spscifi~
cally for digital or hybrid simulation. SL=1is a superset
of CSSL (Continuous System Simulation Language), the stan~
dard language specified by Simulation Councils, Inc., for
simulation of continuous systems, It exceeds the capa-
bilities of CSSL and other existing simulation languages by
providing hybrid and real-time features, interactive de-
bugging features, and a powerful set of conditional trans-
lation features.

SL-1 is primarily useful in solving differential equations, «
fundamental procedure in the simulation of parallel, con-
tinuous systems. To perform this function, SL=1 includes
six integration methods and the control logic for their use,
In hybrid operations, SL-1 automatically synchronizes the
problem solution to real-time and provides for hybrid input
and output,

Because of the versatility of Xerox 560 and Sigma comput-
ing systems and the broad applicability of digital and hy=
brid simulation techniques, applications for SL-1 exist ac~
ross the real=time spectrum, The library concept of SL-1
allows the user to expand upon the Xerox supplied macro
set and facilitates the development of macro libraries
oriented to any desired application. (Reference: SL-1/
Reference Manual, 90 16 76.)

6 Processors

EXECUTION CONTROL PROCESSORS

Processors in this group control the execution of object pro~
grams, Load canbe used in batch mode only. Link and FDP
can be used in either batch or on-line mode. Delta and

the COBOL On-Line Debugger can only be used in the

on=line mode.

LINK

Link is a one-pass linking loader that constructs a single

entity called a load module, which is an executable pro-
gram formed from relocatable object modules (ROMs), Link
is designed to make full use of mapping hardware, It is not

an overlay loader, If the need for an overlay loader exists,
the overlay loader (Load) must be called by entering the job
in the batch stream. (Reference: CP-V/TS Reference Man-
val, 90 09 07, and Chapter 6 of this manual.)

LOAD
Load is a two-pass overlay loader. The first pass processes
1. All relocatable object modules (ROMs),

2. Protection types and sizes for control and dummy sec-
tions of the ROMs,

3. Expressions for definitions and references (primary,
secondary, and forward references),

The second pass forms the actual core image and its reloca-
tion dictionary. (Reference: Chapter 6.)

LYNX

LYNX is a load processor that is available in both the on-
line and batch modes. LYNX has most of the capabilities
of the Load loader and also provides the same control over
internal and global symbol table construction which is avail-
able in the Link loader. LYNX may be viewed as a pre-
processor for the Load loader, After it analyzes the user's
commands, it constructs a table of loader control information
which it then passes to the Load loader. It is the Load
loader which actually performs the loading processor. (Ref=~

erence: Chapter 6.)

DELTA

Delta is designed to aid in the on-line debugging of pro-~-

grams at the assembly-language or machine-language levels.
It operates on object programs and tables of internal and
global symbols used by the programs but does not require

- that the tables be at hand. With or without the sym-

bol tables, Delta recognizes computer instruction mnemonic
codes and can assemble machine=language programs on an
instruction=by=instruction basis. (Reference: CP-V/TS Ref-
erence Manual, 90 09 07,)

FORTRAN DEBUG PACKAGE

" The FORTRAN Debug Package (FDP)is made up of special
< library routines that are called by Xerox Extended FOR-

TRAN 1V object programs compiled in the debug mode.
These routines interact with the program to detect, diagnose,
and in many cases, repair program errors,

The debugger canbe used inbatch and on-line modes. An

" extensive set of debugging commands is available in both
cases, In batch operation, the debugging commands are
included in the source input and are used by the debugger
during execution of the program, In on-line operations,
the debugging commands are entered through the terminal
keyboard when requested by the debugger. Such requests
are made when execution starts, stops, or restarts. The de-
bugger normally has control of suchstops. (Reference: FDP/
Reference Manual, 90 16 77.)

COBOL ON-LINE DEBUGGER

The COBOL On-Line Debugger is designed to be used with
Xerox ANS COBOL. The debugger is a special COBOL
run=time library routine that is called by programs compiled
in the TEST mode, This routine allows the programmer to
monitor and control both the execution of the program and
the contents of data items during on-line execution. The
debugger also allows the COBOL source program to be ex-
amined and modified,

The debugger can only be used during on=line execution;
however, programs that have been compiled for use with the
debugger may be run in the batch mode. This is not recom-
mended, though, because of the increased program size
when the TEST mode is specified, (Reference: ANS COBOL/
Ci)n-Line Debugger Reference Manual, 90 30 60.)

{

SERVICE PROCESSORS

The processors in this group perform such functions as editing
and transferring data between RAD storage and central site
peripheral devices, Four of the processors (SYSGEN,
ANLZ, DRSP, and ELLA) are for system management or sys=
tem programming use only and are not described in the fol-
lowing paragraphs.

EDIT

The Edit processor is a line-at~a-time context editor de-
signed for on-line creation, modification, and handling
of programs and other bodies of information. All Edit
data is stored on disk storage in o keyed file structure
of sequence numbered, variable length records. This
structure permits Edit to directly access each line or rec-
ord of data. (Reference: CP-V/TS Reference Manual,
90 09 07.)

PERIPHERAL CONVERSION LANGUAGE

The Peripheral Conversion Language (PCL) is a utility
processor designed for operation in abatch or on-line en-
vironment. It provides for information movement among
card devices, line printers, on=line terminals, magnetic
tape devices, disk pack, and RAD storage,

PCL is controlled by single-line commands supplied through
on=line terminal input or through command card input in the
job stream, The command language provides for single or
multiple file transfers with options for selecting, sequenc-
ing, formatting, and converting data records, Additional

file maintenance and utility commands are provided, ' (Ref-

erence: Chapter 9.)

LEMUR

LEMUR (Library Editor and Maintenance Utility Routine)
is a processor that builds and manipulates ROM and load
module libraries. The libraries thus built are accessed by
LYNX or Load when constructing user load modules which

-require library routines. LEMUR is available in both on-

line and batch modes. (Reference: Chapter 6 and CP-V/TS
Reference Manual, 90 09 07.)

DEFCOM

DEFCOM makes the DEFs and their associated values in one
load module available to another load modute. It accom-
plishes this by using a load module as input and by pro-
ducing another load module that contains only the DEFs and
DEF values from the input module. The resultant load mod- .
ule of DEFs can then be combined with other load mod-
ules, DEFCOM is used extensively in constructing the
CP=V monitor and the shared run-time libraries. (Ref-
erence: Chapter 9.)

SYMCON

The Symbol Control Processor (SYMCON) provides a means
of controlling external symbols in a load module and of
building a global symbol table, Is primary function is to
give the programmer a means of preventing double defini-
tions of external symbols. It may also be used to reduce
the number of external symbols, For example, if certain
load modules cannot be combined because their control
tables are too large, the tables may be reduced in size by

deleting all but essential external symbols, (Reference:
Chapter 9.)

BATCH

The Batch processor is used to submit a file or a series
of files to the batch queue for execution. Through
Batch processor commands, the following capabilities are
available:

1. A file may be inserted info a file being submitted for
execution, thus bringing together more than one file
to create a single job,

2. Selected strings and fields existing in files being sub=
mitted for execution may be replaced by new strings
and fields,

3. The results of string and field replacements can be
examined before the ‘job is submitted to the batch

stream,

4, Files to be submitted for execution may reside on tape
or on private disk pack.

5. Jobs may be submitted fo run in an account other than
the account from which the job is submitted.

The Batch processor may be called in either the on=line or
batch mode. (Reference: Chapter 9.)

Processors 7

SHOW

- The Show processor allows the user to display his current
maximum system services and resources, the peripheral de=
vices that he has been authorized to use, and several other
system user parameters, (Reference: Chapter 9.)

APPLICATION PROCESSORS

The processors in this group perform such functions as sort-
ing, simulation, and data management, They all operate
in the batch mode only.

SORT/MERGE

The Xerox Sort/Merge processor provides the user with a
fast, highly efficient method of sequencing a nonordered
file. Sort may be called as a subroutine from within a user's
program or as a batch processing job by control cards. It
is designed to operate efficiently in a minimum hardware
environment. Sorting can take place on from one to sixteen
keys and each individual key fieldmay be sorted in ascend-
ing or descending sequence. The sorting technique used is
that of replacement selection tournamen! and offers the user
the flexibility of changing the blocking und logical record
lengths in explicitly structurer' files to different values
in the output file. (Referenc :: Sort-Merge/Reference
Manual, 90 11 99.)

GPDS (PROGRAM PRODUCT)

The General Purpose Discrete Simulator provides engineers
and administrators, whose programming experience is min-
imal, with o system for experimenting with and evaluating
system methods, processes, and designs. Providing a means
for developing a broad range of simulation models, it allows
organizing, modeling, and analyzing the structure of a sys-
tem, observing the flow of traffic, etc. (Reference: GPDS/
Reference Manual, 90 17 58.)

EDMS (PROGRAM PRODUCT)

EDMS is a generalized data management system that enables
the user to create anintegrated data base, It is designed to
be used with COBOL, FORTRAN, and Meta-Symbol proces~
sors, Itsimplifies programming by performing most of the /O
logic and data base management for'the application program-
mer, (Reference: EDMS/Reference Manual, 90 30 12,)

MANAGE (PROGRAM PRODUCT)

Manage is a generalized file management system, It
is designed to allow decision makers to make use of the

8 Processors

computer to generate and update files, retrieve useful
data, and generate reports without having a knowledge
of programming.

Manage consists of four subprograms: Dictionary, Fileup,
Retrieve, and Report, The Dictionary subprogram is a data
file and is the central control element in the Manage sys~
tem. It consists of definitions and control and formatting
parameters. that precisely describe the characteristics of a
data file. The Fileup subprogram initially creates and then
maintains a data file, The Retrieve subprogram extracts data
from a data base file according to user-specified criteria.
The Report subprogram automatically prepares printed reports
from data extracted by the Manage retrieval program, (Ref-
erence: Manage/Reference Manual, 90 16 10.)

TRANSACTION PROCESSING

Transaction Processing is designed for applications that re=-
quire the entry and processing of on-line fransactions, It

is a collection of general~purpose components and support-
ing monitor services available under the CP~V operating
system. Transaction Processing (TP) enables business to move
from cyclic batch processing to remote on~line operations,
where transactions are entered directly from their point of
origin, The Xerox system consists of

e The CP-V monitor and standard processors such as
COBOL, Meta-Symbol, and FORTRAN.

o Terminal Interface Controller.

e Utility processors that create files for external system
control.

e Transaction Processing Controller.
e Extended Data Management System (EDMS),

(Reference: CP-V/TP Reference Manual, 90 31 12,)

CIRC (PROGRAM PRODUCT)

CIRC is a set of three computer programs for electronic
circuit analysis on Xerox 560 and Sigma 5-9 computers:
CIRC-DC for dc circuit analysis, CIRC=AC for ac circuit
analysis, and CIRC-TR for transient circuit analysis. The

- programs are designed for use by a circuit engineer at the

installation, and require little or no knowledge of program-
ming for execution,

CIRC can be executed in any of three modes of operation:

_ conversational (on-line) mode, terminal batch entry mode,
and batch processing mode, The system manager will de-
termine which of these modes are available to the engineer,
based on type of computer installation and other install-

ation decisions.

e The on-line mode offers several advantages since it
provides true conversational interaction between the
user and computer. Following CIRC start-up procedures,
CIRC requests a control message from the user. After
the control message is input (e.g., iterate a cycle of
calculations with changed parameters) the computer
responds (via CIRC) with detailed request for applica=
tion data. These requests are sufficiently detailed to
virtually eliminate misunderstandings by the engineer.
This mode is highly useful in a highly interactive envi-
ronment that produces a low volume of output and re-
quires limited CPU time.

e The terminal batch entry mode aliows efficient hand~
ling of high volume output and large CPU time require~
ments while preserving the advantages of the terminal
as an input device. Two files are required: one con-
taining a!l CIRC input including a circuit description
and control messages, and the other directing the ex~
ecution of CIRC. The job is entered from the terminal
into the batch queue and treated like a batch job.

o The batch mode should generally be used for jobs in-
volving large volumes of computations and outputs. It
enables the user to concentrate on data preparation
with virtually no involvement in programming consid-

" erations. The system manager can provide a set of
start=up cards that never change, and these will con-
stitute the entire interface between user and executive
software. However, the batch mode offers less flexi=-
bility in experimenting with a circuit and slower turn-
around time in obtaining answers.

(Reference: CIRC~-AC/Reference Manual and User's Guide,
90 16 98, CIRC~DC/Reference Manual and User's Guide,
90 16 97, and CIRC-TR/Reference Manual and User's
Guide, 90 17 86.)

USER PROCESSORS

Users may write their own processors and add them to CP-V
or replace CP-V processors, The rules governing the crea=
tion and modification of processors are described in the
CP-V/SP Reference Manual, 90 31 13,

MONITOR

The monitor responds to the moment=by-moment require-
ments of controlling machine operation, switching between
programs requiring service, and providing services at the
explicit request of the user's program, The monitor pro-
cesses that perform these functions are listed below:

1. Basic Control.

2, Scheduling and Swapping.
3. Memory Management,

4, File Management,

5. Multibatch Job Scheduling,
6. Job Step Control,

7. Terminal I/O Handling.

8. Symbionts and Cooperatives.
9. System Integrity.

10. Inifializ&ﬁon and Start=Up.
11. Operator Communications,
12, Batch Debugging.

13. Load-and-Link.

14, System Debugging.

The basic control system is an I/O interrupt service and
handling routine. It includes trap and interrupt handlers,
routines that place requests for 1/O in a queue, and basic
device I/O handling routines.

The scheduling and swapping module makes the decision to
swap, selects the users to swap in and out, sets up the 1/O
command chains for swap transfers, and selects the next
user(s) for execution. Italso ensures that any associated, but
not currently resident, shared processors are brought in with
each user. Special algorithms control 1/O scheduling and
the balance of machine use between on-line and batch.

The memory management module controls the use of core
and disk storage. Specifically, it controls the allocation
of physical core memory, maintains the map and access

" images for each user, services the "get" and "free" service

calls for memory pages, and manages the swapping disk
space.

Monitor 9

File management routines control the content and access to
physical files of information. These routines perform such
functions as indexing, blocking and deblocking, managing
of pools of granules on RADs and disk packs, labeling, label
checking and positioning of magnetic tape, formatting for
printer and card equipment, and controlling access to and
simultaneous use of a hierarchy of files.

The multi-batch job scheduling routines select jobs to be
run from the waiting input queue depending on priority, po-
sition in queue, and rasources available within partitions
defined by the installation.

Job step control routines are entered between major seg-
ments of a job or an on-line session. They perform the
monitor functions required between job steps such as

1. Processing error, exit, and abort CALs.
2. Handling monitor aborts.

3. Processing interpretive exits to associate shared pro-
cessors or to load program modules,

4. Merging DCB assignments for execution.

Terminal 1/O handling routines pe orm read-write buffering
and external interrupt handling for /O directed to user ter-
minals. These routinas also translate character codes, insert
page headers ana VFC control che acters, simulate tabs,
and perforni other formatting tasks.

Symbiont routines transfer data from the card reader to disk
storage and from disk storage to the card punch or line prin-
ter. Input cooperatives intercept card read commands in
user programs and transfer data from disk storage where it
has been stored by the symbiont routines. OQutput cooper-
ative routines intercept output directed from a user program
to a line printer or card punch and transfer the data to disk
storage.

System integrity facilities provide error detection and re-
covery capabilities. This includes security to user files
and automatic high-speed restart in case of system failure.
Sufficient information is recorded to isolate errors and
failures caused by hardware or software.

Initialization and start=up routines are stored on tape
and are booted into core storage. After they are in core,
they load the monitor root into core and turn control
over to the root. The monitor root then completes the
initialization of the monitor by starting and running the
program called GHOST1 which completes the patching
of the system and the initialization of the swappingdisk
and hardware.

10 System Commands

Operator communication routines provide for communica~

tion between the monitor and the operator. They transmit
messages to the operator and process key-ins received
from the operator.

Batch debugging routines provide batch programs with de-

bugging capability through the use of procedure calls.
Any batch program may take a snapshot dump of a specified
segment of memory, either on an unconditional or a con-
ditional basis.

‘ System debugging routines provide debugging services to

system programmers.,

Load-and-link routines give batch programs three types of
loading and linking capability. Through the use of proce=
dure calls, a batch program may:

1. Load an overlay segment into core storage.

2. Store the calling program on disk storage, load the
called program into core storage, and transfer control
to the called program.

3. Load a program into core storage, transfer control to
the called program, and release the core area used
by the calling program.

CP-V has two FORTRAN libraries.. One is a public library
and the other is a system library. In the standard release of
CP-V, the public library contains two sets of programs. One
set (P1) contains a useful set of Extended FORTRAN 1V run-
time library routines, the other set (PO) contains P1 and the
FORTRAN Debug package. These two libraries are so con-
structed that a single copy is shared among all concurrent
users, The system library contains a collection of routines
that are less frequently used than the public library rou-
tines. They are in library load module form and are loaded
only with programs that reference them,

SYSTEM COMMANDS

Control Command Definitions

Control

Command Definition

ASSIGN Relates an operational label or a pseudo file
name to a device. A pseudo file name may be
assigned to an operational label.

INCL Directs the overlay loader to allocate public

library routines in a segment,

Control
_Command

JOB

LDEV

LIMIT

LINK

LOAD

MESSAGE

OLAY

OVERLAY

POOL

processor
name

PTREE

RUN

SET

STEP

Definition

Signals the completion of a previous job
and the beginning of a new one. All jobs
must have a JOB control command.

Attaches an information stream to a phys-
ical device (identified by a logical device
stream name) and defines attributes of the
physical device.

Estimates the system job parameters (i.e.,
number of pages of output, number of
cards to be output, time job is to run,
etc.) for the job.

Directs the Link lcader to form a reloca-
table load module and enters it in the
user's element file if a load module name
is specified,

Directs the Load loader to form a reloca-
table load module and enters it in the
user's element file if a load module name
is specified,

Causes the specified message to be typed
to the operator at the time that it is en-
countered by the system,

Equivalent to LOAD control command.

Equivalent to LOAD control command.

Tells the monitor the number of core pages
to be allocated for buffers and tables as~-
sociated with /O operations.

Tells the monitor which processor is to op=
erate and what options the processor is
to execute.

Tells the monitor that a tree control com=
mand is to be read from the user's file.

Tells the monitor to transfer control to
the user's program,

Performs the same function as the
ASSIGN control command.

Provides conditional execution of job
steps.

Control
Command

Definition

TITLE

TREE

XEQ

Debug

Control

AND

COUNT

MODIFY .

OR

PMD

PMDE

PMDI

Causes the specified title to be output at
the beginning of each logical page of out-
put on the LO device,

Specifies the symbolic representation of
the overlay structure.

Initiates processing of control com-
mands from a command file.

Definition

Causes a specified test to be made at a

specified location. Only if the condition
is true and the specified test identifier is
set does it remain set; otherwise, it is re-
set (see SNAPC control command),

Specifies the range and the steps within
the range where the test identifier is set
(see SNAPC control command),

Causes a specified test to be made at a
specified location. The specified test
identifier is set only if the condition
is true; otherwise, the identifier is reset
or remains reset (see SNAPC control
command), :

Allows the user to insert a modification
into a user program before execution.

Causes a specified test to be made at a
specified location (if a specified test iden=
tifier is reset). If the condition is true,
the specified test identifier is set; other-
wise, it remains unchanged (see SNAPC
control command).

Causes the monitor to dump the selected
area of memory, in hexadecimal form, if
an error occurs during execution.

Causes the monitor to dump (in addition to
the information obtainable by PMD) the
PSD, registers, etc.

Causes the monitor to dump-the selected
area of memory, in hexadecimal form,
regardless of whether errors have been
detected.

System Commands 11

Debug

 Control Definition

SNAP Causes a snapshot of the specified memory
and registers at the location specified to
be performed.

SNAPC Causes a snapshot of the specified memory
and registers at the location specified to
be performed only when the specified test
identifier is set,

SWITCH Produces the initial settings of the pseudo
sense switches,

Input

Control Definition

BCD Serves as a terminator for a binary input
source,

BIN Informs the monitor that the information to
follow is binary,

DATA Informs the monitor that the information to
follow is data,

EOD Cruses an end-oi -data abnormal refurn fo
the monitor, indcating the end of a series
of data records,

FIN Specifies the end of a stack of jobs.

NCTL Allows noncontrol input filesto be entered
from the card reader,

PFIL Position n files on unlabeled magnetic tape.

REW Rewinds the specified tape,

WEOF Writes a physical end-of-file on magnetic

tape.

Procedure Definitions

Procedure Definition

M:AND Causes a specified test to be made at a
specified location. Only if the condi-
tion is true and the specified test iden=-
tifier is set does it remain set; otherwise,
it is reset or remains reset (see M:SNAPC

procedure).

12 System Commands

Procedure

Definition

M:CHECK

M:CHECKECB

M:CLOSE

M:COUNT

M:CT

M:CVM

M:CVOL

M:DCB

M:DELREC

M:DEQ

M:DEVICE

M:DISPLAY

M:ENQ

M:ERR

M:EXIT

M:EXU

Checks type of I/O completion.

Checks for the completion of an event or
a set of events,

Terminates all 17O associated with a given
Data Control-Block (DCB),

Specifies the range and the steps within
the range where a specified test identi-
fier is set (-ee M:SNAPC procedure).

Changes terminal type, (This procedure
is for or~line use only and is described
in the CP-V/TS Reference Manual,

90 09 07.)

Changes Virtual Map.

Causes the control program to advance to
the next volume of a data set before
the physical end of the current volume
is detected, This call is meaningful only
for tapes,

Defines a Data Control Block.

Specifies that a data record is to be de-
leted from the file,

Dequeues resources,

Allows the user to set special device
procedures,

Reports system load parameters,
Enqueues resources,

Returns control to the monitor and the
monitor honors all PMD and ASSIGN
control commands while ignoring all
other control commands until it encoun-
ters a FIN, JOB, or a processor name
conirol command.

Returns confrol to the monitor which then
honors all output control commands of the

form IPMDI.

Requests that the monitor execufe a priv=
ileged instruction for the user,

Procedure

- M:FP

M:FCP

M:FVP

M:GCP

M:GDDL

M:GL

M:GP

M:GVP

M:IF

M:INT

M:JOB

M:KEYIN

M:LDEV

M:LDTRC

M:LINK

Definition

Frees page of main storage owned by a
given task.

Frees common page.

Frees virtual page.

Gets common pages.

Gets dynamic data limits,

Gets common limits,

Allocates pages of main storage to the
requesting task.

Gets virtual page.

Causes a specified test to be made at
a specified location, Only if the spec=
ified test condition is true is the test
identifier set; otherwise, it is reset or
remains reset (see M:SNAPC procedure).

Connects a console interrupt.

Inserts a file into or deletes a file from
an existing symbiont file.

Writes the specified message to the op-
erator on the operator's console and re=-
turns the operator's reply to the program
issuing the procedure,

Attaches an information stream to a
physical device (identified by a logi-
cal device name) and defines attributes
of the physical device.

Loads the specified load module if a re-
enterable copy is notavailable in memory,
deletes the callingmodule, and transfers
control to theloaded load module.

Loads the specified load module if a re-
enterable copy is not available in mem-
ory and links to it,

Procedure

Definition

M:MASTER

M:MERC

M:MESSAGE

M:MOVE

M:OPEN

M:OR

M:PC

M:PT

M:PFIL

M:PRECORD

M:PRINT

M:RAMR

M:READ

M:REW

Allows a special processor to operate in the
master (and master protected) mode.

Allows the user to have the monitor pro-
cess any system abnormal or error code,
overriding an ABN or ERR exit,

Writes the specified message on the Op-
erator Console,

Copies a file, record by record.

Causes the specified file associated with
the specified DCB to be opened for use.

Causes a specified fest to be made at
a specified location (if a specified test
identifier is reset)., If the condition is
true, the specified test identifier is set;
otherwise, it remains unchanged (see

M:SNAPC procedure).

Sets prompt character. (This procedure
is for on-line use only and is described
in the CP-V/TS Reference Manual,

90 09 07.)

Allows the user to generate FPTs in either
protected or unprotected storage,

Causes the specified tape to be posi-
tioned past the number of end-of-files
specified and in the direction specified.

Causes the tape specified by the DCB to
be positioned in the direction specified by
the specified number of records,

Writes the specified message on the listing
log (LL) output media.

Reads the assign/merge record,

Causes the next data record to be read
into the location specified by the user.

Rewinds a tape specified by the DCB.

System Commands 13

Loads a specified overlay segment into

Sets error or abnormal addresses in a

Allows any master mode program to re-
turn to the slave mode.

Sets memory protection,

Causes a snapshot of the registers and mem=-
ory specified to be performed.

Causes a snapshot of the registers and mem-
ory specified to be performed if the specified
test identifier is set. Whether the test iden-
tifier is setor not is dependent on the M:IF,

“M:AND, M:OR, and M:COUNT procedures,

Sets the interval timer with a specified

Allows speci- | processors to use privi-

Causes a specified DCB to be closed,
on return to the user's program, and
the associated file to be registered as

Procedure Definition
" M:SEGLD

memory.
M:SETDCB

specified DCB,
M:SLAVE
M:SMPRT
M:SNAP
M:SNAPC
M:STIMER

interval,
M:STRAP Simulates a trup.
M:SYS

leged services,
M:TFILE

a scratch file.
M:TIME

Communicates the time of day and the
current date to the executing program.

14 System Commands

Procedure

Definition

M:TRAP

M:TRTN

M:TRUNC

M:TTIMER

M:TYPE

M:WAIT

M:WAMR

M:WEOF

M:WRITE

M:XCON

M:XXX

Sets andresets the traps to go to a user ro-
tine or the standard system routine, Als
sets and resets the maskable traps.

Restores control to the executing program
from a trap or timer routine,

Causes the blocking buffer reserved for a
specified DCB to be released,

Gives the time remaining in the interval
that was previously set by M:STIMER pro-
cedure and optionally cancels the interval
in effect,

Writes the specified message to the oper-
ator on the operator's console.

Suspends program.
Writes the assign/merge record.

Writes an end-of~file mark on an unlabeled
tape specified by the DCB.

Causes the contents of a specified buffer to
be transmitted to an output device or file.

Allows a program to regain control after
termination.

Causes the monitor to terminate the job
and not honor any further commands un-
til it reads another JOB or FIN control
command,

2. FILES AND FILE USAGE

INTRODUCTION

A general understanding of files and the way that the
monitor deals with them will help the user to obtain the
high level of performance available,

A file is an organized collection of information, This col-
lection of information may consist of one or more programs,
one or more sets of data, or some combination of programs
and data. Under CP-V, a user always accesses files through
the monitor — never directly. An option does exist, how-
ever, that allows a user to deal with a file {(e.g., a non-
standard set of data on an unlabeled magnetic tape) as
though he were accessing it directly,

A file has one base name but may have other names synony=-
mous with it. Information is retrieved from a file by speci-
fying the file name (or its synonym), its password and
account, and the desired record within the file,

The monitor maintains a directory of accounts having files
maintained between jobs. This is called an Account
Directory, and contains, with each account number, an
address of a directory of files (termed a File Directory) for
that account. A File Directory contains, with each file
name, an address of a table containing file attributes and
disk locations for that file. The table is called a File
Information Table, To summarize, the monitor has a single
Account Directory, which in turn points to a File Directory
for each account. Each File Directory,:in turn, points to
a File Information Table (FIT) for each file, !

Each file has associated with it (in the FIT) information
controlling who may access the file and how it may be
accessed, This information can include both a password
and a list of which accounts may read or update the file,
To access a file, a user must be running under an account
which is authorized to access the file and provide the
proper password, In addition to access control information,
the FIT also contains the file's creation date, date of last
modification, date of last access, and expiration date.

A file may be shared among several users if none of them
updates the file or attempts to replace the file. A job
cannot, however, create a file in an account other than
its own, :

Three prime concerns of the user in regard to files are

i

1. File organization — the way in which a file is logi-
cally constructed.

rFor each batch job and on-line session, the system may
create up to five special files containing temporary user
context. These files, known as "star files", are transparent
to the user, are not cataloged in the File Directory, and
always cease to exist at the end of the batch job or on-line
session.

2. The methods that a user can apply to find, extract, in-
sert or delete information from a file.

3. The way that a file is stored on specific devices.

FILE ORGANIZATION

Each file is identified by a file name. In addition, access to
each file is controlled by the account number of the user
who created it and a password, if he chose to include one.

The information contained in a file may be structured in
one of three ways. It may be a keyed, consecutive, or
random file.

KEYED FILES

Keyed files are those in which each record has an identify-
ing key associated with it. A key consists of a byte string,
the first byte of which statesthe number of bytes inthe string.
The contents of each byte may be abinary number or a char-
acter. A key may consist of up to 31 characters.

As the file is being created, a master index is also created
with an entry for each keyed record in the file. The entry
contains such information as the key, disk address of the
record, size of the record, and position of the record within
the blocking buffer.

The records are automatically packed into blocking buffers
with the last portion of the last record extending into an-
other buffer us necessary. If the record is large, it is written
directly from the user's area instead of being packed into a
buffer. Keyed files may be accessed by direct or sequential
access.

Keyed fileshave a multilevel index structure. A multilevel
index structure is a collection of hierarchical levels of index
blocks, where the entries in a higher level point to index
blocks at the next lower level and the entries in the lowest
level (called level 0) point to data records. This is best il-
lustrated by an example as shown in Figure 3. The multi-
level structure is initially built during a CLOSE if a keyed
file has more than three level 0 index blocks.

In the example shown in Figure 3, the keyed file has

o 31,150 records and the keys at level 0 point to these
data records. Based on an 11-byte maximum key
length, there are 80 keys in each level O block and
127 keys in each higher-level block.

e 390 index blocks at level 0, four index blocks at
level 1, and one index block at level 2. The next
higher-level is built if the last level has more than
three index blocks.

Files and Filé Usage 15

Level 0
390 Index Blocks
= KEY 1
KEY 2
Level 1] |
4 Index Blocks
Data Blocks
»1 KEY 1
KEY 80 Record 1
Key 81
FIT
F ‘ Record 2
KEY 10081 KEY 81
Record 3
KEY 82
Record 4
Level 2 KEY 10161 | J
1 Index Block 1
KEY 10241
KEY 1 Record 5
- KEY 160
KEY 10161 1 :
KEY 20241
KEY 20161 KEY 161
KEY 30321 N Record 81
KEY 162
1 L
17 KEY 20241
[A " Record 82
KEY 20321 ’
J KEY 240
4 l
KEY 30241 [
I Record 31120
KEY 30321 l Record 31121
KEY 30401 |
| Record 31122
l l |
4 4 j
KEY 31121 p+————={ KEY 31121 Record 31123
KEY 31122
1 (
KEY 31150

Figure 3. Example of Multilevel Index Structure

16 File Organization

Each entry in a higher-level index block contains the disk
- address of an index block at the next lower level, and the
key of the first key in that block.

The multilevel index structure can considerably speed up
the direct access of a large keyed file, at only a small
cost of secondary storage space. Since the keys are
ordered in ascending sequence, at most it would take
three index block accesses to locate a data record as
shown in the example. Without the higher-level struc-
ture, it could take up to 390 index block accesses.

The user has control over the initial creation of the multi-
level index structure and he can specify when and if the
higher-level structure should be rebuilt. This can be
specified by using the NEWX option on the ASSIGN
control command or the M:OPEN and M:DCB procedures.

The space required to hold a given file can be estimated
by applying the following rules: ’

Data Blocks

1. Each data block contains 2048 bytes.
2. Each data granule contains one data block.

3. Each data block is compact, except that all records
start on word boundaries.

4. Each record or record segment (if a record resides in
more than one data block) has a level 0 index "entry
associated with it.

Level O Index Blocks

1. Each index block contains 2048 bytes.

2. Each index block is compact except that 12 bytes are
preempted and spare space may be reserved at user
request.

3. Each index entry occupies key size (KEYM) plus
14 bytes.

Higher-Level Index Blocks

1. Each higher-ievel index block contains 204é bytes.

2. Each higher-level index block is compact except that
12 bytes are reserved.

3. Each higher-level index entry occupies KEYM plus
five bytes.

¢
The following formulas can be used to estimate the disk
space requirement of keyed and consecutive files. The
first formula calculates the number of keys per index block
at level 0 (KL). The second formula calculates the total
disk storage in granules.

N = number of records in the file.
R = record size in bytes.

SS = spare space expressed as a decimal number (e.g.,
20% = .2).

K = key length in bytes.

_2048+%(1-55)-12
KL=""1ax
. . _N*R (N
Total disk storage (in granules) = 2048 +(KL) +
(k1) zoss)
KL)(2036

Note that:

N*R
204

(

(%—)(—25&;) is the number of Level 1 Index
granules.

is the number of data granules.

Zlz

) is the number of Level 0 Index granules.

The following two examples show the cost to build the
multilevel index structure, i.e., disk accesses to build

it and disk storage required to contain it, and the saving
in time when accessing it.

Example 1
Number of records N = 40,000
Record size R = 60 bytes
Key size (KEYM) K = 3 bytes

-File Organization 17

$5=10% (= .1)

Spare space

Keys/Level 0Indexblock (KL)= 2048;4:(55 -12=

2048*(1-.1)-12 _
1443 108

N*R _ 40,000*60

2048 =~ 2048 V2

Data granules =

Level OIndex granules (IL\‘L) (M) =371

108
NY/5+K
Level 1 Index granules = (KL)(20)

(5
108 /\2036

This file requires a total of 1545 (1172 + 371 + 2) granules
of storage of which two are required to store the multi=-
level index. It would cost 373 disk accesses to build the
structure when the file is closed. With the multilevel
structure, each random record fetch requires 3-1/2 de-
vice accesses, whereas without it each fetch would be
186 accesses.

Example 2

Number of data records = maximum for each device
(see below).

Record size R = 1024 bytes

Ke); size (KEYM) K = 15 bytes

Spare space $S=0

Keys/Level 0 Index block (KL) = —0—‘@—]%*?55&
meen

Level 0 Index granules = (%) =(7Nb) .

Level 1 Index granules = (KL

(__N_) (5+15)= 20N
70) \2036) ~ 142,520

18 File Organization

Item 7232 RAD | 7242 Disk Packs
Number of data records. 6144 24000
Level O granules. 88 343
Level 1 granules. 1 4
Level 2 granules. I

The cost to build the multilevel structure in the 7242
example is 348 device accesses. Without the multi-
level structure a random fetch could take 344 device
accesses in the worst case; with it, four accesses are
required,

CONSECUTIVE FILES

Consecutive files are files whose records are organized in
a consecutive manner; i.e., the user is aware of no iden-
tifying keys associated with the records. The records may
only be accessed sequentially.

The principal benefit of consecutive files to system op-
eration is q reduction in the number of granules required
for the files on disk and RAD and a consequent reduction
in the time required to process the files. This is most
dramatic for files containing short records. A file of
1000 eighty~character records réquires 49 granules for
keyed files. For consecutive files, this requirement is
reduced to 42, a savings of over 14 percent. For twenty-
character records, the requirement of 1000 records drops
from 19 to 12 granules, a reduction of over 36 percent.
For large records there is still a small reduction. For
example, 1000 2048-byte records requires 1002 granules
for consecutive files as opposed to 1009 for keyed files.
Traversing a file of 1000 2048-byte records requires 1002
disk reads for consecutive files as opposed to 1017 disk
reads for keyed files. For 1000 eighty-character records,
the reduction is from 57 reads to 42 reads (over 26 per-
cent). For 1000 twenty-character records, the drop is
from 27 to 12 reads (a 55 percent reduction).

All position operations for consecutive files is done without
I/O. Positioning operations are PRECORD, PFIL, and
OPEN with extension. The positioning is only effected
when a data transfer operation is about to take place. At
that time, there will be three known points in the file that
can be used as a starting point (beginning of file, end of
file, and the position reflected by the DCB). The starting
position chosen will be the one that requires the fewest
record skips to be made.

" For consecutive files, the FIT is maintained in words 4

through 83 of the first granule of the file.

RANDOM FILES

Random files provide an organization for those users
desiring to manage their own files or who do not wish to
incur the overhead imposed by system file management.

Random organization differs from keyed and consecutive
organization as follows:

1. A random file is simply a collection of contiguous
granules on the specified device type. The num-
ber of granules is specified at the time the file is
created (and may not be expanded after it has been
created). If the requested number of granules are
not available contiguously, an abnormal code (ma-
jor code X'01', subcode X'OB') is returned to the
user and the file is not opened.

2, The user must specify arelative startinggranule num-
ber with each read or write and a byte count (the
default byte count in the DCB may be used). If the
starting granule number does not fall between 0 and
the total number of granules allocated at"OPEN"-1,
inclusive, an error code of X'42' is then returned to
the user. If the byte count exceeds granule size,
the operation will continue in the next contiguous
granule(s) until all requested bytes have been trans-
ferred. The system will return the next available
relative granule number to the user (in the KBUF
field of the DCB) at the completion of each read/
write. If there are not sufficient granules to ac-
commodate the specified byte count, an error code
(major code X'57', subcode X'44') is returned to
the user and the actual number of bytes transmitted
is placed in the RWS and ARS fields of the DCB.

3. Each write/read consumes the entire specified granule.
The contents of the granule include no system informa=
tion. Management of the user's data is the responsibi=
ity of that user.

4. Function has the following meaning for random files:
when any random file is opened it is first checked for
existence.

e If the file does not exist and function is IN or
INOUT, an abnormal code of X'03' is given. If
the file does not exist and OUT or OUTIN is
specified, a new random file is allocated unless
the associated account number differs from the
user's account number (in this case, the file will
not be opened and an abnormal code of X'14'
will be returned).

e If the file does exist, the user is checked for
appropriate access permission (read/write ac-
count numbers, password), and an abnormal
code X'l4' is returned if there is a violation.

If there is no violation, the user may proceed
to read (unless opened OUT) or write (unless
opened IN). [f the file is opened OUT or
QUTIN, the function is changed to INOUT,
Note that the user may write in a granule in
which he has already written, and may also
read a granule in which he has not written.
A random file that is in existence may not be
replaced or extended by reopening that file,
If the user wishes to replace or extend an ex-
isting file, the existing version must be re-
leased prior to such action.

5. If a file is opened OUT and a file of the same name
already exists, an 1/O abnormal code 14-00 will occur
if one but not both of the files is random.

6. If a random file is opened OUT, and a random file of
the same name already exists, the mode of the open
will be changed to INOUT. This change occurs even
if the open specifies an RSTORE value that is different
from the size of the existing file.

7. Ifafile is opened OUT on private pack and a file of
the same name already exists on the pack, an 1/0O ab~-
normal 14-00 will occur if both files do not have the
same organization,

Thus, the monitor provides allocation of granules, security
checks and normal 1/0 queuing service and clean up. The
user is responsible for record management.

FILE FUNCTION AND FILE DISPOSITION

A file may be opened in one of four modes: two of these,
IN or input and INOUT or update, access a file that existed
prior to this open; the other two, OUT or output and OUTIN
or scratch, create a new data aggregate that had not existed
prior to this open. There are three possible specifications
for the file disposition option: REL or release, SAVE, and
JOB. Any one of the three may be specified at open time
and either REL or SAVE may be specified at close time. The
impact of each of these options and several significant com-
binations of them is described below.

To create a new file, specify OUT or OUTIN. If the REL
disposition option is used or implied (see below) with such an
open, it indicates that the file to be created must be re-
leased when it is closed; thus, it is an obvious error to com-
bine OUT with REL, and such an open is rejected with an
abnormal 14-07. The other combination, OUTIN with REL,
results in a true scratch file which is never to be entered
into the file directory and thus has no identification other
than the device control block with which it is associated.
Storage space requirements for such a file are accounted for
against the user's temporary granule authorization,

If a file opened OUT or OUTIN is closed with an explicit

specification of SAVE, it will be entered into the file direc-

tory unless the open process failed to explicitly specify
SAVE or JOB, in which case the file is unconditionally

File Function and File Disposition 19

‘released at close time and the file directory contents are
not altered, If an explicit SAVE specification is not made
when an OUT or OUTIN file is closed, again the file is
released and the file directory contents are not altered,
Note that when a job step is completed, all open device
control blocks are closed with no explicit disposition speci-
fication, and so all open output files are released at that
time. The only exception to this is M:DO, which is closed
with explicit SAVE in order to ensure that diagnostic output
will be received.

Consider the cases of files opened OUT or OUTIN with

either SAVE or JOB disposition. All such combinations
indicate the intent to create a new file which will probably
be entered into the file directory. (See the above paragraph
for a discussion of how to overcome this intent.) Unless a
job is executing at a high privilege level of X'CO" or greater,
it cannot create a new file in an account other than the

one under which the job is logged on with one exception.

If a file already exists with the same idéntification as that
desired for the new file; if, further, the already existing

file permits WRITE access to the user in question; and if,
finally, the already existing file is not currently open, then
the user may create a new copy of such a file. When an
OUT or OUTIN file with SAVE or JOB is closed with explicit
SAVE, the name is entered into the file directory; and any
previously existing file with the same identification is re-
leased. In addition, if JOB has been specified on the open,
the file identification is given the s~ ne treatment as though
it had been mentioned in a M:TFILL procedure call. All
files which have had their identification mentioned in such

a procedure call are released when the creating user logs

off. A JOB file may only be accersed by the creating user
or a user with at least X'CO"' privilege. Storage space re-
quirements for JOB files are again accounted for against

the user's temporary granule authorization. All storage space
requirements for files other than true scratch or JOB files

are accounted for against the user's permanent granule
authorization.

The file disposition option at open time for input and update
opens is essentially insignificant and the disposition is com-
pletely controlled by the specification on the close. (There
is a name substitution option available for locating JOB
files which is only operative in the event of explicit JOB
disposition specification at open time.) If the specification
is explicitly REL, the file is released and the identification
is erased from the file directory; otherwise, the file is re-
tained and no change is made to the file directory. When
an existing JOB file is reopened in the update mode, the
disposition in the device control block is forced to JOB so
that granule accounting may be correctly handled.

FILE ACCESS

Records may be accessed within a file by either of two
means, direct or sequential access, The interaction of
the type of access used for a given operation and the
mode in which the file is opened results in some rules,
or limitations. These rules are listed below for each

20 File Access

type of access and each mode in which a file may be
opened,

DIRECT ACCESS

For consecutive files, the only effect of direct access
is to inhibit read-ahead. For keyed files, the follow-
ing rules apply.

OUTPUT FILES (OUT)

When a WRITE is given, a key must be specified. The keys
do not need to be given in a sorted order, They will be
ordered as they are stored on disk.

Unlike sequential output files, a WRITE never causes forward
information to be deleted.

Reading is not allowed.

SCRATCH FILES (OUTIN)

A scratch file is identical to an output file, except that
reading is permitted before the file is closed. As for out-
put files, a key must be specified on each WRITE. The
keyed record is merged into the file.

A READ may or may not specify a key. If akey is speci-~
fied, a search is made of the file until the key is found
and the record is then read. If the key is not found, an
error retum is executed. If a key is not specified, the
next sequential record is read.

The FWD and REV options apply on read operations not
specifying a key. If a key is specified, these options are
ignored. PRECORD operations are performed in the same
way as for sequential output files. A WRITE does not
cause forward information to be deleted. A READ before
the first WRITE returns an X'06' abnormal code.

INPUT FILES (IN)
Records may only be read; writing is not allowed. The

READ function is the same as that for scratch files. PRE-
CORD operations are allowed.

UPDATE FILES (INOUT)

The READ function is the same as for scratch files. PRE-
CORD operations are allowed.

The WRITE function may or may not have a key speci-
fied. If a key is not specified, the WRITE function

nust have been preceded by a READ. If it is, the rec~
ord just read is updated; if not, an X'15' abnormal code
is signaled.

New records may be added to the file. The NEWKEY
or ONEWKEY option must be specified, and a search
of the keys will be made to locate the proper place to
merge the new key. If the key already exists, and the
NEWKEY option only was specified, an abnormal code
X'16' is returned.

Records may also be replaced. The NEWKEY option must
not be specified in this case. Thus, the NEWKEY option
is used when adding new records to the file and notification
of an attempted duplication of a key is desired.

The ONEWKEY option is used when adding new records
and replacing old records. No notification is given when
an existing record is replaced by a new record with the
same key.

The absence of either a ONEWKEY or NEWKEY parameter
implies that the record to be written already exists and is
to be replaced. If the record does not already exist, an
abnormal notification will be given and the record will
not be written.

The DELETE function may be used. If a key is specified,
a search of the directory is made to find the specified key.
The record is then deleted. If a key is not specified, the
DELETE operation must have been preceded by a READ,
and the key just read will then be deleted.

SEQUENTIAL ACCESS

Sequential access may be used when accessing records
with keyed or consecutive organization.

OUTPUT FILES (OUT)

When a file is opened in the OUT mode, records may only
be written; reading is not allowed, If the file has been de-
clered a keyed file, a key must be given with each write
operation and this key must be a new key (i.e., it must

not have been used before). If the key has already been
used, no information is written and an abnormal X'16' is
returned. The keys must be given in a sorted order. For
example, if the user writes records with keys A, C, and D,

respectively, and then writes a record with key B, the
record will not be written and an X'18" error return will
be executed.

The PRECORD FWD (position record forward)and PRECORD
REV (position record backward) operations are allowed on
both keyed and consecutive files. A BOF is given when
the beginning-of-file is reached, and an EOF is given
when the end-of-file is reached. Otherwise, for keyed
files, the pointer to the current entry in the master index is
decremented or incremented. For consecutive files, a
directional count of records to skipfromthe current position
is established. Positioning will not occur until the next
read, write, or delete operation. A WRITE operation fol-
lowing PRECORD causes all forward records to be deleted.

When closing the file, the SAVE option must be specified
in both an explicit CLOSE statement and in the OPEN
sfatement if the file is to be saved.

SCRATCH FILES (OUTIN)

The same rules that apply to output files also apply to
scratch files, except that reading is allowed, following a
write. Reading may be directional; either forward or
reverse. A READ with REV implies that the record pre-
ceding the current position is to be read. If no direc-
tion is specified, FWD is assumed. A READ order issued
prior to the first WRITE will result in an X'06' abnormal
return.

When reading a keyed file, a key may or may not be speci-
fied. If a key is specified, a search is made for the speci-
fied key. The FWD and REV options are ignored when a
key is specified. If a key is not specified, READ FWD im-
plies that the next record in sequence is to be read. READ
with REV implies that the record immediately preceding the
current record is to be read. Whenever a keyed file is
read, the KBUF field of the DCB contains \the address at
which the key of the record just read is stored.

Reading a consecutive file is the same as reading a keyed
file without specifying a key.

A WRITE deletes all forward information.

INPUT FILES (IN)

This is the same as for direct access input files.

UPDATE FILES (INOUT)
For a keyed file, this is the same as for direct access up~

date files. For a consecutive file, a WRITE deletes all
forward information.

File Access 21

SIMULTANEOUS FILE USAGE

REQUIREMENTS FOR MULTIPLE ACCESS TO A SINGLE FILE

Under some conditions, a file may be accessed by more
than one DCB at the same time,

TAPE FILES

Single-File Tapes. Only one DCB may be open to the file

at a time. If an attempt is made to open a tape file that is
already referenced by another DCB, an abnormal return
will be executed.

Multi=File Tapes. Only one DCB may be opened to the
tape at a time. The user may not reference another file on
the tape until the previous file is closed. To do so will
cause an abnormal return.

DISK FILES

Random Files (SHARE mode not specified). Any number of
DCBs can be opened to the same file in the input mode.
Only one DCB may be opened to a file in the update mode.
However, one update DCB and one or more input DCBs may
be open to the same file at the same time. The order in
which DCBs are opened or closed, when sharing the same
file, does not make any difference. Only one DCB may be
opened in the output or scratch mode and it may only be
opened if no file of the same name already exists.

Keyed and Consecutive Files (SHARE mode not specified).
Several users may simultaneously access a file, Some kinds
of simultaneous uses are allowed and some are not, The
rules governing such usage are described below and are sum-
marized in Table 1.

If a file exists, it may be opened once in output mode and
any number of times in input mode. Furthermore, the user
must open the file for output first. All referencing DCBs in
input mode must be closed before the output DCB may be
closed. (If the input DCBs are not closed first, the output
file will be discarded.)

A scratch file is not considered an output file in the
above sense. Since the scratch attribute (OPEN, OUTIN,
REL) is declared at the time a file is opened and all file
information is local to the using DCB, multiple scratch
files of the same name may be open. Remember, however,
that scratch files are automatically released at the end
of each job step or when the DCB is closed, whichever
is sooner,

If a file is successfully opened for output, the effect is
that no other users may have the file open in any mode
(except scratch) and they will not be allowed access until
it is finally closed,

22 Simultaneous File Usage

A file opened as OUT or OUTIN with a save disposition
does not replace an already existing file of the same name
until the former is saved via a CLOSE operation. Thus, tw'
files of that name exist during the creation of the newer
one,

Several DCBs may be simultaneously opened to the same
file if the proper protocol is observed, as follows, A file
may be opened as OUT, INOUT, or OUTIN only if not
already open. If a file is already open as IN, OUT, or
OUTIN, it may be opened again as IN only, No simul-
taneous usage of an INOUT file is allowed. A file opened
as OUT or OUTIN may be closed and saved only if it is
not also open as IN, If the above protocol is violated, an
abnormal code is returned from the OPEN or CLOSE oper-
ation. In the latter case (CLOSE), the OUT or ‘OUTIN

file is released, also.

Since a file may be opened up to 127 times in the in-

put mode, a user may attempt to release it upon closing
if he is unaware of other usage. If this occurs, the request

is not honored.

An OUTIN file that has been opened without a specific
save disposition is a scratch file. Operations on a scratch
file are always local to the DCB and are unaffected by the
operations of any job on files with the same name. Any
attempt to open a filein INor INOUT mode with a release
disposition is the same as if the M:OPEN has specified a
save disposition. Table | summarizes the rules for opening
and closing files with the same name. It also shows the
error codes generated,

To open an OUT file with o release disposition is useless
and wasteful

Random and Keyed Files (SHARE mode specified). Up
to 127 updaters and up to 127 readers may simultaneously
have access to a keyed or random file, In this case, all
DCBs must specify the SHARE mode. The order of open-
ing is not significant in this case and there are no re-
strictions on the order of closing. When the last DCB
which has a shared keyed file open is being closed, the
mode is switched to EXClusive to assure that a file in-
formation table is posted before the file is reopened. A
close with release is treated as a close with save for
DCBs opened in the SHARE mode.

90 17 64H-1(9/78)

Table 1. Simultaneous File Usage - Keyed or Consecutive

New File Operation Result
Open~=File Status (different DCB)
Outin
Mode Operation Disposition In Out Inout
SAVE \ \ E(14/01)
OPEN)
REL
IN
SAVE \ \ I
CLOSE
REL does not REL Y I
SAVE E(14/01) E(14/01) E(14/01)
OPEN 3
REL L L L
ourt 2
OUTIN SAVE REL ! I
’ CLOSE OPEN = SAVE Vv 1 I
REL
OPEN = REL L L L
SAVE E(14/01) E(14/01) E(14/01)
OPEN]
REL
INOUT
(UPDATE)
SAVE I I I
CLOSE
REL I 1 |
Notes:

1. When IN and INOUT files are opened, SAVE is forced.

2. SAVE must have been specified when the file was opened, If not, REL is forced.

3. If modeis OUTIN and disposition is REL, the fileis a scratch file and is local to the opening DCB. The file is re-
leased at the end of the job step and is never shared. If mode is OUT, REL is illegal and 1/O error 14-07 results.

File Status Letters

E indicates an error or abnormal operation and is followed by an error code (Appendix B) in parentheses.
I indicates an impossible situation,
V indicates an allowed operation,

L indicates the file is local and the operation is allowed.

Simultaneous File Usage 23

COORDINATING MULTIPLE ACCESS TO A SINGLE FILE

The SHARE mode feature extends the use of keyed and
random files by permitting simultaneous access to a file by
up to 127 updaters and up to 127 readers. Thus several user
programs executing concurrently in separate jobs may be
generating reports from a data file while other user programs
are concurrently modifying data items within the file.

Responsibility for coordinating concurrent update activity is
divided into two parts, one controlled and provided by the
operoting system and the other by the application programs
via use of the system's enqueue/dequeue services. The oper-
ating system guarantees the physical integrity of the file so
that it remains properly connected regardless of the update
activity and also assures that readers are provided with the
most up-to~date information in response to their requests.

Coordinating and guaranteeing logical integrity of the file
(primarily the data content) is the responsibility of the ap-
plication programs, since for the keyed file organization any
connection of the data in one record of a file with that in
another record of the same or another file is carried in the
application program, notinthe file itself. A single example
will serve to illustrate this.

Suppose that a file contains records recording a parts in-
ventory — each containing the available number of bolts,
washers, nuts, etc., in various sizes. Without any special
coordination, the number of any given item can be deter-
mined by querying the file even in the face of additions and
removals by a concurrent updater. If, however, the appli-
cation needs to first determine the available number and
then remove a quantity from stock, then the record must be
locked between the read and the update to preclude the
possibility of the stock being taken by another updater.

More elaborate record locking requirements may exist de—
pending on the application. For example if a fastener must
be made up of a bolt, a nut and a lock washer, then these
three 1ecords must be acquired and locked prior to making
the needed updates.

Applications use the system's enqueue/dequeve facility to
gain exclusive access to the records. Enqueue/dequeue is
a generalized service and guarantees exclusive or shared
access to named items as required and requested. It is the
responsibility of all users of the service to agree on the
meaning of the names — for example the names of the rec-~
ords containing inventory count of nuts, bolts, and washers.

PROTOCOL REQUIREMENTS

In a shared update environment, there are four broad
classes of operation to be considered (some have interest-
ing variations):

1. Statistical read — the process of reading without con-
cern as to whether the current record, or other records
associated with the current record because of applica-
tion considerations are being updated.

23.1 Simultaneous File Usage

2. Exact read — the process of reading with the assurance
that the current record and possibly other application
associated records are not in the process of an update
which is only partially complete.

3. Update — changing the data content of a record or a
group of application associated records.

4. Positioning — execution of M:PRECORD, M:PFIL, or
sequential (not specifying a key) M:READ CALs.

To accomplish a statistical read or to execute a M:PFIL

CAL, there are no special protocol requirements; however,
for the other operations above, it is necessary to obtain

some protection from other use of the record(s) in question.
The enqueue/dequeve facility has been provided for this
purpose .

In order to process an exact read, it is necessary to obtain
shared use of the record(s) in question, while, to process an
update, exclusive use is a requirement. It is notanticipated
that M:PRECORD CALs specifying more than a single record
move will be a common occurrence in the shared update
mode; but if they are required, then a shared use of the en-
tire file is required. Sequential reads and one position
moves can be accomplished without protection if they are
for statistical purposes only. If any other use is required
though, the key presented in KBUF (in the DCB) after the
move should be enqueued appropriately. It is suggested
that sequential reads be effected with a zero length buffer
and then a reread can be accomplished after the enqueuve
has been accomplished.

In addition, once an operation has been completed, the en=
queued items should be dequeued promptly. It is essential
that all users conform to the above described protocol or in-
efficient operations and data damage may ensue. CP-V does
not enforce a correct enqueue/dequeue sequence, but only
assures that:

1. The master index structure of a keyed file will not be

modified so as to produce a permanent process error
(75-02) situation.

2. The processing of an M:WRITE or M:DELREC CAL for a
shared keyed file will not proceed until the completion
of any other such CAL on the same file, if any, is in
progress.

3. If a 75-02 error is about to be reported on a shared
keyed file during the processing of an M:READ or
M:PRECORD CAL because of the failure to pass a spec-
ified link test, a check will be made to see if any mod-
ification has been made to the master index linking
structure since the inception of processing of the CAL
in question. If so, the operation will be terminated
with a 15-01 abnormal; and no error log entry will be
made.

90 17 64H-1(9/78)

EXTENSIONS TO M:DCB, M:OPEN, ASSIGN AND SET
The function option of the M:OPEN, M:DCB procedures and

of the ASSIGN and SET commands include the following
options:

SHARE
'N[' EXCL }]

SHARE
'NOUT[' EXCL }]

(for readers)

(for updaters)

where EXCL guarantees exclusive access to the file and
SHARE permits sharing. If neither is specified, the option
used is that from the DCB — either from the M:DCB process
or remaining from a previous operation on the DCB. If no
specification is then made by M:DCB, ASSIGN, or M:OPEN,
then EXCL results.

The SHARE option'is valid only for keyed and random files
and permits updaters and readers to have the file open
concurrently.

As a final note on processing, when the final user of a
shared update keyed file is closing the file, the CFU mode
is changed to exclusive during the close process of finding
and updating the File Information Toble. Thus, until the

close is completed, any attempt to reopen the file will re-
sult in an 14-01 abnormal. In addition, for shared keyed
files, a release specification on a M:CLOSE CAL will be

treated as no release. To delete a keyed file, it is neces-
sary to open the file in the exclusive mode and then issue

a M:CLOSE CAL with the REL specification.

HASHING QUEUE NAMES

Examples in the Enqueue/Dequeue Resources section of

Chapter 4 tllustrate a common technique which an applica-
tion may use to ensure data integrity: Enqueue for the file
and subqueve for the record or records of interest by name.

The queueing may use the actual file name and account -

and the actual record keys or some agreed upon abbrevia=
tion for them, however, it must be unique.

Since there is the possibility of an extensive monitor data

area for enqueve tables if long names are used, it is appro-
priate to compress the queue and subqueue names by hashing

90 17 64H-1(9/78)

techniques. The EDMS routines use a hash of the file
identifier which results in a 24 bit value for any file name/
account pair (because ENQ/DEQ carries names in TEXTC
and rounds up to full words). The following program dis-
plays the hashing algorithm used. Tests on several large file
sets indicate an incidence of duplicate hashes of consider-
ably less than one percent.

LI,1 BA(FILENAME)
LI,3 0
LB,2 0,1
*TEXTC COUNT
ST1 AI,l 1
LB,4 0,1
AW,3 4
sCs,3 6
BDR, 2 ST1
LI,1 BA(ACCT)
LI,2 8
*8 CHARACTERS IN AN ACCT
ST2 LB,4 0,1
AW, 3 4
sCS,3 6
Al,1 1
BDR,2 ST2
*REGISTER 2 CONTAINS ZERO
DW,2 PRIME
STW,2 HASH

*REMAINDER IS HASH VALUE

PRIME DATA 16777213

It is suggested that this algorithm can be used effectively
and that a similar hashing technique be used on keys when
the key max for the file is greater than three.

Whether hashing techniques are used or not, it should be
emphasized that the above described protocol must be fol-
lowed by all shared update users of a keyed file to obtain
desired results. Also, If hashing is used by any shared up-
date user for his calls to enqueue/dequeue, the identical
hashing algorithm must be used by all users of the file.
When using any hashing technique, the user must be pre-
pared for the X'3101' and X'3102' abnormal returns from an
enqueue CAL since more than one element may produce
identical hash values.

Simultaneous File Usage 23.2

DATA ENCRYPTION

A data encryption facility is provided for keyed and consec-
vtive files. This service is not designed to provide facilities
sufficiently secure for highly secret and classified material,
but rather is designed to moke sensitive information not readily
readable (i.e., to put it into ciphered form). For example,
buffers of data from encrypted files that appear in dumps

taken by system analysts will not be understandable without

a non-trivial code cracking exercise. In this manner, files
which contain information such as employee salaries can be
srotected,

To initiate data encryption for keyed and consecutive files,
the user must issue an M:SETDCB for the file's DCB after

it has been opened to the file. An option of the M:SETDCB
procedure allows the user to specify the address of a location
which contains a data encryption seed or to specify that data
encryption is to be turned off. The seed is used by a pseudo
random number generation process for both data encryption or
decryption. (Even if the content of the location is zero,
encryption/decryption will occur.)

It is very important to note that the seed(s) for data encryption
process are not carried in the file, nor anywhere else within
the file system. Thus, even users with high privilege who do
not know the seed(s) are unable to read anything but gibberish
without a significant code cracking process. The other side of

this coin is that a_user who forgets or cannot reconstruct the
encryption seed(s) that were used has essentially lost the

encrypted file.

Data encryption is different for keyed and consecutive files,
as the keys are used in the encryption process. If an
encrypted keyed file is stripped of its keys, the file cannot
be decrypted.

FILE STORAGE DEVICES

The three general types of storage media available for user
files are (1) disk, (2) labeled magnetic tape, and (3) other
physical devices (e.g., cards, unlabeled magnetic tape,
etc.).

DISK STORAGE

Both RAD and disk pack devices are used for secondary
storage. Any combination of these devices can be de-
fined at SYSGEN time. A disk pack device has dis-
mountable volumes and can be declared either a public
or private device at SYSGEN time, while a RAD device,
not having dismountable volumes, can only be declared
a public device.

A public disk pack device has only one volume that can

be recognized by the monitor and that volume must be
mounted at all times while the system is active.

24 Data Encryption/File Storage Devices

A private disk pack device has any number of dismountable
volumes that can be recognized by the monitor. The op-
erating system requires that only those volumes needed
for execution of the user's job be made available and
be mounted.

STORAGE ALLOCATION UNITS

For allocation purposes a disk pack device is partitioned
into logical units, either granule or cylinder. RADs are
partitioned and allocated in granule units only. A granule
unit equals 512 words and is equivalent to two sectors.

FILE ALLOCATION

Keyed and consecutive file space is allocated on a demand
basis as the file is being created or updated. Therefore the
file does not necessarily exist in contiguous areas on a
RAD or disk pack device and can exist on many different
physical devices. Random file space is contiguous and
is allocated when the file is opened.

A public file resides on a public device RAD and/or
disk pack); a private file resides on private disk pack
volumes. A public file can be allocated in granule
or cylinder units; a private file is always allocated in
cylinder units.

Files on Public RAD and Disk Pack. Allocation of
space for files on RAD and/or disk pack follows a set
of rules that may be altered and controlled by both
the user for individual files and by the system manager
on an account or system-wide basis. The scheme pro-
vides for best system performance, in absence of speci-
fication by the user or system manager, or for good
performance of individual jobs by careful selection of

disk pack (DP) or RAD (DC) to optimize the program's
performance.

Although the rules stated below control the preferred
allocation, the system will continue to look for space
on other devices on request as long as the user-allowed
limit is not exceeded and the space physically exists.

In the absence of other specifications, the monitor uses the
following rules to determine the placement of files on RAD
or disk pack:

1. All permanent files (opened INOUT or OUTIN and
SAVE) prefer disk pack.

2. All temporary files (opened OUT or OUTIN and
RELease) prefer RAD.

3. All account directories (AD), file directories (FD),

and file information tables (FIT) prefer RAD,

4, All star files (system temporary files for ROMs, LMs,

debuggers, etc.) prefer RAD.

90 17 64H-1(9/78)

Two methods are available to thesystem manager for control
of file space allocation.

i. Using ANLZ and its subcommand DELTA, the system
cell RADIST may be set nonzero. In this case, the
normal preference is overridden and all space requests
(except explicit CYLINDER allocation) prefer RAD.

2. Using SUPER, the system manager may separately limit
the amount of space on RAD or on disk pack available
to an individual user. For example, by setting the
disk pack allowance to zero, all files of that user will
be forced to RAD. An error to the user program results
if no RAD space is available,

A user program or job may control the allocation of files
to RAD or disk pack using either ASSIGN control com-
mands or the M:OPEN program procedure. The required
specifications are NOSEP and DEVICE, DP or DEVICE,DC
for preferring disk pack or RAD, respectively. If CYL-
INDER is specified, cylinder-allocated disk packs are
preferred.

Public Random Files. A public random file is allocated

| ‘on a public device by the default rules or by the type
specified, either RAD (DC) or disk pack (DP). If disk pack
was specified, the monitor attempts to allocate in cylinder
units before allocating in granule units.

Private Files. All the index and data blocks of a keyed
or consecutive private file are allocated from one or more
private disk pack volumes. A keyed, consecutive, orran-
dom file can extend beyond volume boundaries.

RECORD BLOCKING

The system will automatically block records for keyed
and consecutive files in 512-word blocks to provide more
efficient use of disk space. The user has no knowledge
of this blocking and, when reading, will receive the
appropriate record within the block and not the entire
block.

When updating a keyed file, the user may rewrite a record
in a size larger or smaller than the original record size. If
necessary, the monitor will allocate additional disk space
to accommodate the larger size.

A write with a 0 byte count to a keyed file will result in a
master index entry for the record with fields in the entry
pertaining to disk address, record size, and displacement
into the blocking buffer all set to zero. A write with a
0 byte count to a consecutive or random file will be ignored.

LABELED TAPE

CP-V handles two types of labeled tape, Xerox labeled
tape and ANS labeled tape. Xerox tape labels and ANS

90 17 64H-1(9/78)

tape labels are described in the UTS File Management Tech-
nical Manual, 90 19 89. (Xerox tape labels are currently
referred to as UTS tape labels in the technical manual.)

XEROX LABELED TAPE

A Xerox labeled tape is given standard Xerox labels when
1/0 is first performed on the tape. No tape initialization
is required.

For labeled tapes, record blocking is performed similarly
to blocking disk records. In BACKSPACE or FORESPACE
operations, the correct tape positioning is accomplished by
reading each block and determining the number of records
within the block (see Figure 4).

ANS LABELED TAPE

An ANS labeled tape is given standard ANS format labels
either through the ANS tape initialization processor (Label)
or as the result of an operator key=in.

Important features of ANS labeled tapes include

1. When an input operation is performed, files may be
processed by filename and volume sequence number,
thereby eliminating the requirement of having enough
serial number storage space in the DCB for all volumes
to be processed.

2. The nondestruction of an unexpired tape can be, to
some extent, guaranteed. There are two modes of
tape protection that are applicable to ANS tapes:

The protective mode, in which only ANS expired tapes
may be written on through an ANS DCB, no unexpired
ANS tape may be written on through a non-ANS DCB,
all ANS tapes must be initialized by the Label pro-
. cessor, no tape serial number specification is allowed
at the operator's console, specification of an output
serial number in an ANS DCB forces processing to be
done only on a tape already having that serial number,
tapes mounted as IN may not be written, and tapes
mounted as other than IN must have a write ring.

The semi-protective mode, inwhich a warning is posted
to the operator when an ANS DCB attempts output on a
non-ANS fape or an unexpired ANS tape when a

non~-ANS DCB attempts output on an unexpired ANS

File Storage Devices 25

1 5 6 7,8 15,16 23, 24 31
PBS NKY

SKEY) KEY)

KEY, V/////////////////

Inter-record gap

RECORDg
(unblocked)

PBS contains previous block size.

NKY contains number of entries in block.
SKEY contains size of key (maximum = 31).
KEY contains key.

P3 = 1 means record is unblocked.

P3 = 0 means record is blocked.

P, = 1 means record continued into next block.
P, = 0 means not continued.

Py = 1 means first part of record.

Py = 0 means not first part.

RWS contains size of record in block.

Figure 4. Labeled Tape Format for Variuble-i.ength Blocked Records

26 File Storage Devices

tape, or when a tape mounted as INOUT has no write
ring. Theoperator can authorize the overwritingof the
tapeor theoverrideof INOUTwith the OVER and READ
key-ins. ANS tapes may be initialized by the Label
processor or may be given labels as the result of an op~
erator key-in. Tape serial number specification is al-
lowed at the operator's console, and specification of
an output serial number in an ANS DCB forces process-
ing to be done only on a tape already having that ser-
ial number unless the operator authorizes an overwrite,

The mode of ANS tape protection is determined at
SYSGEN.

3. A number of files with the same filename and format
may be treated as one logical file. This process is
known as concatenation of files. Files may be con-
catenated in either of two ways.

a. The number of files to be concatenated is speci-
fied using the CONCAT keyword and the serial
numbers are specified, in order, using the SN
keyword.

b. The number of files to be concatenated is specified
using the CONCAT keyword but no serial numbers
are specified. In this case, exactly n files will
be processed regardless of volume serial numbers.
(The value n is specified following the CONCAT
keyword.) The files will be concatenated in the
order in which they are mounted.

The concatenation feature is highly useful in situations
where several portions of one logical file have been
generated asynchronously, but the effect is transparent
for input operations.

The user should be aware of the following restrictions for
ANS labeled tapes:

1. Tape cataloging is not available in CP-V. Therefore,
Generation Data Groups are not applicable.

2. Blocking and deblocking is the responsibility of the
user or the run-time subroutines of the processors.

3. Multifiletape sets are processed via serial number only.

EXCLUSIVE USE OF TAPE FILES

Single-File Tapes. Once a user has opened a file, no
other user may access the file until the original user
closes it.

Multifile Tapes. Once a user has opened a file on a
multifile tape, no other user may access the tape until
the original user has closed the file. If the REW option
is specified, the tape is rewound and a message is typed
requesting the operator to dismount the reel. Otherwise,
the tape remains at the current position and, if a DCB is
opened using tape, one of two actions occurs:

1. On input or update, the tape is scanned forward for
the desired file.

2. On output, the tape is positioned to the end of the
current file and the new file is written at that
position.

PHYSICAL DEVICES

On physical devices (unlabeled magnetic tape, punched
cards, and typewriter output) it is frequently desirable for
an operating system to intersperse certain contro!l informo~
tion with user data, to maintain system control, device in-
dependence (to user), etc. On the other hand, users
occasionally desire to control a specific device entirely
as if they were doing the 1/O themselves.

These requirements give rise to the need for several formats
for external media.

FORMATTED DATA RECORDS

These records are formatted and/or interpreted by the
monitor. The mode is specified by the NODRC option of
the M:DCB procedure. Exact actions are listed below.

1. Cards — Each binary record is represented on one card.
An EBCDIC record can be represented as one or two
cards. When the mode is changed (between two rec-
ords), a mode control card is interjected (IBCDsignals
that an EBCDIC card follows; IBIN signals that a bi-
nary card follows). End-of-data is signaled by an
IEOD card.

2. Typewriter — Eachrecord is made up of data of a speci-
fied size and terminated by an NL (151¢) byte. End-
of-data is signaled by an !EOD record.

3. Unlabeled Magnetic Tape — Records do not contain
any formatted information. End-of=-data is signaled
by a physical EOF mark.

The actions resulting from various monitor 1/O requests are
as follows:

M:READ Read the next record and transfer either the
byte count requested or the number of bytes in the record,
whichever is smaller, eliminating the format information.
Set the mode in the DCB according to the mode of the rec-
ord. Position to read the following record.

File Storage Devices 27

M:WRITE Write the specified record as formatted data.

M:WEOF Output a physical EOF mark, if unlabeled
tape; an IEOD, if card punch or typewriter; and a top-of-
form, if line printer,

M:CLOSE {output mode) If unlabeled tape, output two
physical EOF marks and position the tape between them.
If card punch, output an IEQD,

M:CLOSE (input mode) No action.

DIRECT DATA RECORDS

These records are not formatted. Direct is specified by the
DRC option of the M:DCB procedure. The user's 1/O re-
quest is performed exactly as if he had control of the de~
vice. The data records are represented exactly as user
specified in all cases. End-of-data is signaled by a physi-
cal EOF mark on magnetic tape and by !EOD on cards or
typewriter. The C device cannot be read with DRC
specified.

The actions resulting from various monitor 1/0O requests
are as follows:

M:READ Reads as follows:

1. Unlabeled Magnetic Tape — Readthe nextrecordor the
specified number of bytes, whichever is smaller. Posi-
tion to read the following record. The specified
number of bytes is limited to 32767.

2. Cards — Read the next card in the mode specified by
the DCB (EBCDIC or binary) and transfers either the en-
tire record or the number of bytes requested, which-
ever is smaller,

3. Typewriter — Read the specified number of bytes.

M:WRITE Output the specified record intact. If punched
cards, use mode specified in the DCB.

M:WEOF Output a physical EOF mark, if unlabeled
magnetic tape; an 1EOD, if punched card or typewriter;
and a top-of-form, if line printer,

M:CLOSE

No action.

SYNONYMOUS FILES

Synonymous files are null files used to connect several
names to one file. They are used in practice almost exclu-
sively by the loader to handle libraries. System and utility
processors that copy file to file should be able to handle
these files, which exhibit unusual characteristics when they
are opened or read. Here is how they work.

28 Synonymous Files

OPENNEXT

When an attempt is made to open a synonymous file in an
opennext operation, an abnormal retum with code X'08' is
made. The file parameters are returned if requested and are
indeed those of the synonymous file itself. Only the X'01'
(name) and X'0B' (parent name) variable length parameter |
fields are present, If 'TEST FILE' is specified, the return is
not abnormal, and if there is an X'11' variable length pa-
rameter field in the DCB, its data word has bit 17 set.

To copy the file, the output DCBshould be opened with these
file parameters and then immediately closed since there are
no records to read. It is imperative that the parent file (the
file the synonymous file is synonymous to — the name in the
X'0B' field) exist where the file is being copied to, and the
usual technique is fo make fwo passes of opennext — the first
ignoring synonymous files, and the second copyingonly them,

EXPLICIT OPEN

When a synonymous file is opened by name, no abnormal re~
turn is given, but the file that is opened is the parent rather
than the synonym. The file parameters returned to the user
are those of the parent while the name field in the DCB is
that of the synonym. The X'0B' field in the DCB s not filled
in with the parent name. If it is necessary to copy thesynonym
rather than the parent, several steps are required.

1. Firstitis necessary to detect whether the file that was
opened is synonymous or not. The best way to do this is
to compare the file name used in the open fo the one
returned in the file parameters. If they differ, the file
is synonymous.

2, In order to copy a synonymous file once it is detected,
a special open FPT is necessary. F1 should be set, and
there should be at least X'01' (name) and X'OB’ (parent
name) variable length parameter fields. For example:

OPENSYNON GEN,8,24 X'14',M:EO

DATA X'41000001'
DATA ABN ABN
DATA 4 INOUT
DATA X'01000808'
PARENT RES 8
DATA X'0B010808'
SYNONYM RES 8

3. To copy the file, the name field from the file param-
eters should be moved to PARENT and the name field
from the DCB to SYNONYM. The output DCB should,
be opened with this FPT and then closed since there
are no records to read. This comples the copy.

4. Once the synonymous file has been created, the
SYNON name must be turned off in the DCB in order
to output non-synonymous files through that DCB. This
can be accomplished by including X'0B000001' in the
variable parameters list of the open or adjust DCBFPT.

Again it should be remembered that the parent must be present
in the account to which the synonym s being copied. It may
be necessary to copy the file whose name is in theoriginal file
parameters before proceeding with the synonymous file copy.

190 17 64H-1(9/78)

3. MONITOR CONTROL COMMANDS

INTRODUCTION

The operating system is directed by means of a job control
language (JCL) consisting of control commands. These com-
mands control the construction and execution 6f programs
and provide communication between a program and its en-
vironment. The environment includes the monitor and pro-
cessors (such as Meta-Symbol, COBOL, and FORTRAN 1V),
the operator, and the peripheral equipment,

Monitor control commands discussed in this manual may be
categorized as follows:

System Input Utility
JOB BIN PFIL
LIMIT BCD REW
STEP DATA WEOF
POOL EOD SWITCH
MESSAGE FIN

TITLE

ASSIGN

LDEV

XEQ

Program Load

and Execution Debug
LINK PMD
LOAD PMDE
LYNX PMDI
OVERLAY SNAP
OLAY SNAPC
INCL IF

TREE AND
PTREE OR
RUN COUNT
MODIFY

System, Input, and Utility control commands are described

in this chapter. Program Load and Execution control com-
mands are described in Chapter 6, and Debug control com=
mands are described in Chapter 7.

The term "alphanumeric" when used in conjunction with any
of the following control commands is defined as any combi=-
nation of the following characters:

A-Z a=-z 0-9 — $ * %

t@ -+

except where explicitly noted otherwise.

Monitor control commands have the general form

Imnemonic specification

where

! in column 1, optionally followed by none or one
or more spaces, identifies the beginning of a

control command or a control key=in function. No
spaces, however, are allowed between | and JOB
or any of the input control commands. Note that
to avoid problems, any processor control command
or continuation to a monitor control command whose
first few characters match any of the input control
commands or JOB should be used with spaces fol-
lowing ! and preceding the term.

mnemonic is the mnemonic code name of a control
function or the name of a processor. If it is
the name of a processor, it may consist of up to
eight alphanumeric characters with no embedded
blanks. If it is the name of a function, it must
be spelled exactly as shown in this manual, with
no embedded blanks.

specification is a listing of required or optional
specification subfields. This may include key-
word operands (shown in this manual in upper-
case letters), labels, or numeric values appropriate
to the specific command. The specification field
may begin one or more spaces after the mnemonic
field, but spaces (blanks) may not be embedded
within options.

The required or optional specifications of a command func-
tion are identified in this manual in the following ways.

Commas are used to separate fields and subfields and are
required where shown, as in

DEVICE, name

Parentheses are used to indicate the subfield groupings and
are required, as in

(SN, value, value)

Brackets are used to indicate selective options. They are
not to be used in the control command and the operations

shown need not appear in any particular sequence relative
to each other in a specific control command. For example:

[(option 1], (option 2)]...[, (option n)]

Braces are used to enclose options vertically, thus indicat-
ing a choice can be made, as in

LOAD
I1{QVERLAY}. . .
OLAY

Single quotations are used in the specification field as
constant delimiters (see Meta=-Symbol/LN, OPS Reference
Manual, 90 09 52), and are to be used when shown. For
example:

'ALL' or 'value’

Monitor Control Commands 29

A period may be used after the specification field (or after
the mnemonic field if the command is one with no specifi-

cations) as an explicit command terminator. A period is not
required if no comment is to follow the specification field.

A period may also be used in place of the mnemonic field
(i.e., in column 2) to indicate that the "command" con-
tains @ comment only,

A semicolon is used as a continuation indicator for the
specification field or for comments to be continued from
one record to the next. (Processor calls cannot be con-
tinved.) For example:

Ification

Imnemonic speci;

Note the ! in column 1 of the continuation card. Annota-
tional comments detailing the specific purpose of a com-
mand may be written following the command terminator.
(Generally o period is used as the command terminator.
However, if the command consists of a mnemonic alone,
one or more blanks may be used as the command terminator.)
Comments in a control command record may not contain a
semicolon (except as a continuation character),

Communication between the operator and the monitor is
accomplished through control commands, key-ins, and mes-
sages. Control key~ins are always input through the opera-
tor's console. Control commands are usually input to the
monitor via punched cards; however, any input device(s)
may be designated for these functions (see "ASSIGN",
below). All control commands and monitor messages are
listed on the output device designated as the listing log
(normally a line printer). In this manner, the monitor keeps
the operator informed about the progress of each job.

SYSTEM CONTROL COMMANDS

JOB Signals the beginning of a new job.

e Must be the first control command in each job.

e No spaces are allowed between | and JOB.

e May not be continued from one record to the next.
e Subfields must be separated by a comma.

® Must specify a legal account and name combination

and (optionally) a priority authorized for that user.

20 System Control Commands

The form of the JOB control command is

1JOB account,name[(ext. actg.)]{,priority [,wsn —

L [password]]]

account specifies an authorized batch processing
account number of from one to eight characters.

name identifies the user. The name may consist of
from one to more than 12 alphanumeric characters,
but only the first 12 will be used.

ext, actg. identifies the user's accounting informa-
tion as a subset of the user's name. It may consist
of from one to more than 24 characters, but only
the first 24 will be used. Legal values are any
alphanumeric characters except commas (,) and
parentheses (()).

priority specifies the priority of the job. Legal
values are

0 (hold in job queue until priority is
changed by a PRIORITY key-in).

1-F16 (lowest to highest priority).
The default value is 1.

wsn specifies o workstation name and is only ap-
plicable to remote processing (see the CP-V/RP
Reference Manual, 90 30 26). If the workstation
name is present and valid, the job's output will be
* assigned to the specified workstation, If it is not
present, the job's output is returned to the work-
station at which the job originated.

password specifies a user password which may con-
sist of one to eight characters and is only applicable
to remote batch or locally submitted batch jobs.
The printing of the password is suppressed when the
JOB control command is listed.

Example:

1JOB C6400314,SMITH-1234(3211-XY 2Z), F.3211,3291

This example specifies that the account number of the job
is C6400314, the user is SMITH-1234 with extended ac-
counting 3211-XYZ (employee 1234 named Smith with ex-
tended accounting information specifying 3211-XYZ), and
the job has priority F (the highest possible). The period
following the specification fields indicates that the re-
mainder of the record consists of comments.

90 17 64H-1(9/78)

LT Specifies (in decimal integers) maximum values
for various system resources required by the job.

LIMIT control commands are optional, and, if included,
must follow the JOB control command.

Job aborts when limit for any system resource is exceeded.

LIMIT commands cannot be continued, However, mul-
tiple LIMIT commands are allowed in a job.

The form of the LIMIT control command is

[LIMIT (opﬁon)[,(opﬁon)l. ..

where the parameter options are

ACCOUNT specifies that no other batch job with this
account isto be run concurrently. The defaultis to
allow the execution of concurrent batch jobs under
the same account, Specification of ACCOUNT
has no effect on on-line jobs,

CORE,value specifies, in K units where K = 1024
words, the maximum amount of core required for
the user's data, DCBs, and procedure. The core
space for shared processor procedure called by the
user and context items required by the monitor (such
as JITs and buffers) is not included in this limit,

DO,value specifies the maximum number of printed

pages that may be output for diagnostics in the cur-
rent job. (Output is via the M:DO DCB.) The maxi-

mum value that may be specified is 32,767. Note
that {PMD output is not subject to this limitation.

LO,value specifies the maximum number of printed
pages (excluding diagnostic output) that may be
listed by shared processors for the current job. The
maximum valve that may be specified is 32,767,

MOUNT, ([;((['J]]] P [E;((['l::ll],sn,...]

specifies whlch packs are required and whether
they are to be shared or are to have exclusive
use, where

X indicates thatthe referenced disk packs
are not to be shared (i.e., they are to
have exclusive use).

S indicates that the referenced disk packs
are to be shared.

sn specifies the serial number of the disk
pack., :

specifies the type of disk pack, such as
SP. If ij is omitted, the type is assumed
to be SP.

-
—

NORDER specifies that this job is not dependent
upon the outcome of any previously submitted
jobs.

90 17 64H-1(9/78)

ORDER specifies this job is to be run only after all
previously entered jobs with the same account
number have been run,

PDISK,value specifies, in decimal, the maximum
number of public (disk pack)storage granules that
are to be allocated for permanent files by the cur-
rent job.

PO,valve specifies the maximum number of punched
cards that may be produced in the current job. The
maximum value that may be specified is 32,767.

PSTORE,value specifies, in decimal, the maximum
number of public (RAD) storage granules that are
to be allocated for permanent files by the current

job.

RERUN requests that in the event of a system fail-
ure while the job is running, the job be rerun
after the recovery. The request will be honored
unless the job is suspected (by the system) of
causing the failure. Note that RERUN is not ap-
propriate for all jobs. For example, it could be
disastrous to rerun an interrupted job that updates
a data base.

resource name,value specifies the maximum number
of resources, where resource name is a system man-
agement defined label such as

9T in which case the value specifies
the maximum number of 9-track tape
drives,

7T in which case the value specifies
the maximum number of 7-track tape
drives.

SP in which case the value specifies the
maximum number of spindles required ex-
clusively for disk pack use. This value
determines which partitions are available
for the current job. Shared spindles are
not counted for partition fit and are not
included in the SP count.

For example, (9T,5)declares that a maximum
of five 9-track tapes are required for the
current job.

TDISK,value specifies, in decimal, the maximum
number of public (disk pack)storage granules that
are to be allocated for temporary files by the cur-
rent job.

TIME, value specifies, in minufes, the maximum ex-
ecution time for the current job.

TSTORE,value specifies, in decimal, the maximum
number of public (RAD) storage granules that are
to be allocated for temporary files by the current

job.

System Control Commands 31

UO,value specifies the maximum number of printed
pages that may be output byan executing user pro-
gram (nonshared processor) in the current job. The
maximum value that may be specified is 32,766.

Example:

ILIMIT (TIME,10),(LO, 100),(PO,2500),(DO,50), (UO,75)

The above example specifies that the current job may require
no more than 10 minutes of execution time, 100 pages of ob-
ject listings, 2500 object cards, 50 pages of diagnostics out-
put, and 75 pages of output produced by the execution
program,

STEP Provides conditional execution of job steps. It
operates on and tests the value of the step condition code
(SCC), a monitor item that is located in the JIT. At the
beginning of a job, the SCC is set to zero. During the job,
the SCC may be modified in one of two ways:

1. The SCC may be set at the end of a job step to reflect
the manner of completion. The following values are
used:

2 — the step was skipped
4 — the step was errored
6 — the step was aborted
The SCC will only be set if the job step did not execute
successfully and if the new value is greater than the current
value in the SCC,
2. The SCC may be set as the result of a STEP control
command to any hexadecimal value in the range O-F.
The value is specified in the STEP control command
and is only used to set the SCC under certain con-

ditions (described below).

The STEP control command has the form

ISTEP op,vifrvsp]

where

op specifies the type of comparison to be made.
Possible specifications are

GT — greater than
LT — less than
EQ — equal to

GE — greater than or equal to

32 System Control Commands

LE — less than or equal to

NE - not equal

v specifies the hexadecimal value to be compared
T with the SCC.

v specifies the hexadecimal value (in the range 0-F)
used to reset the SCC.

If the logical expression (SCC op v]) is true, the next job
step is executed and the SCC is set fo the value specified
by v2. (If vais not specified, the SCC remains unchanged.)
If the logical expression is false and the current value of the
SCC is less than 2, control commands are skipped up to the
next STEP control command (or to the end of job if there is
not a subsequent STEP control command) and the SCC is set
to indicate that the step was skipped.

The STEP control command may be placed anywhere in a
job except in the middle of debug control commands. The
STEP control command will not be honored and the entire
job will be aborted if any of the following conditions is
encountered:

1. Invalid JOB or LIMIT control command (e.g., invalid
syntax in command).

2, Operator abort key=in.

3. Violation of values specified in LIMIT control command
(e.g., specified execution time exceeded).

Example:

ISTEP LE, 2,0

The above example tests the results of previous job steps
as recorded in the SCC. If the SCC is less than or equal
to 2, the SCC is set to 0 and the next job step is executed.
Otherwise, the SCC remains unchanged and all control com-
mands are skipped up to the next STEP contro! command or
until the end of job.

pooL specifies the number of buffers to be allocated to
the monitor for file indexes and file data. A POOL control

command may appear anywhere except between the JOBand
LIMIT commands or within a series of debug commands,

If POOL is not specified, system limits are assumed. The
maximum number of buffers allocated will never exceed
available storage.

The form of the POOL control command is

IPOOL (FPOOL,value)

where value specifies the number of 512-word buffers to be
allocated for file management. The value specification
must be in the range 4 to 22, For optimum performance,
each DCB open to a labeled tape or disk file should have
the following number of buffers: .

labeled tape i
consecutive disk file 1
keyed disk file 2
random disk file 0

If fewer than the optimum number of buffers are available,
the buffers will be shared,

MESSAGE sends a message fo the operator console
(OC device) and listing log (LL device) at the time that
it is encountered by the monitor,

e May not continue from one record to the next,

e More than one MESSAGE control command in succes-
sion is permissible.

The form of the MESSAGE control command is

IMESSAGE message string

where message string specifies the message to be typed,

Legal values are all chargcters, including blanks.

Example:

IMESSAGE SEND ALL SAVE TAPES TO BEN NEVIS

The above example causes the following message to be out~
put on the LL and OC devices.
*id: MESSAGE SEND ALL SAVE TAPES TO BEN NEVIS

where id specifies the user's job identification,

TITLE inserts a heading at the beginning of each
logical page listed on the LO device.

e May not continue from one record to the next.

e Has no effect if a header has been specified for LO
output (see M:DEVICE procedure under "Specify Out-
put Header"), or if LO output is not assigned to a
listing type device,

o Within a job, the most recent TITLE control command
is in effect, and page numbering begins at 1 when
each TITLE control command occurs.

The form of the TITLE control command is

ITITLE title string

where title string specifies the title that is to appear on
each page.

Legal values are all characters, including blanks,

Example:

ITITLE*STRESS-ENERGY TENSOR ANALYSIS*

The above example causes the title string to be output at
the top of each logical page listed on the LO device by
the executing program.

ASSIGN An ASSIGN control command can be used to
assign a user's logical 1/O device to a system logical

or physical device, A logical device in a user's program
is controlled by a data control block and is referred to
symbolically by a name beginning with the characters "F:"
or "M:",

If a DCB contains all necessary information when assem-
bled into the load module of the user's program, then no
ASSIGN command is needed, However, if the DCB is
incomplete or if the user wishes to use an ASSIGN com-
mand to alter one or more of the parameters, this may
be done at any time in the job prior to execution of the
program containing the DCB. Any parameters altered in
this way will remain altered throughout execution of the
user's program unless explicitly changed by a call to a
system function (see "M:OPEN" and "M:CLOSE" proce-
dures). If a series of ASSIGN commands is given speci-
fying the same DCB name, each successive commandcan-
cels all effects of the previous one. The DCB param-
eters then reflect the explicit options of the most recent

System Control Commands 33

ASSIGN command for that DCB; parameters not included
in the most recent command revert to the valves of the
DCB established when the user's program was assembled,

The total number of words (the assign/merge information)
required to express ASSIGNs (or SETs) for a job, whether
on-line or batch, may not exceed 512 words (an error mes-
sage results if it does). Each assignment requires a mini-
mum of four words, plus the number of words in the DCB
name, plus the number of words in the open FPT for the
requested assignments. Assignments may be replaced or
deleted during the course of the job.

The parameters required in a DCB depend on the types

of 1/O operations to be performed and the types of devices
and/or files to which the DCB may be assigned. In gen-
eral, o DCB must contain at least the following parameters
at the time that 1/0 is to be done:

1. Device or file name defining the assignment of the
DCB.

2, File function (IN, OUT, etc).
3. Buffer address (if data is to be read or written).

4, Number of bytes to be transferred (if data is to be
read or written).

The above parameters may be assembled into the DCB via
the M:DCB procedure or may be specified in an M:OPEN
procedure call. The first two may also be specified by an
ASSIGN command, ond the last two may be specified in
an M:READ or M:WRITE procedure call.

Output to a labeled tape or disk file through a monitor
DCB such as M:BO, M:LO, etc., will exist as a single
file provided that the DCB is not reassigned between job
steps via an ASSIGN control command or an M:OPEN
procedure call.

Note: The following restrictions exist. The M:C DCB,
i.e., the C device, is normally assigned to the
card reader. It cannot be reassigned with the
ASSIGN control command. In addition, the fol-
lowing system DCBs cannot be reassigned with the
ASSIGN control command: M:=, M:*, F:CF, and
M:OC.

When the M:GO DCB is assigned to a file, that file
is automatically deleted at job termination.

Disk pack devices are declared either public or private at
SYSGEN time. The volume on a public disk pack device
becomes part of the system's secondary storage and must be

34 System Control Commands

in place at all times while the system is active. A file
residing on a public device (or devices) is called a public

file. The dismountable volumes on a private disk pack de-
vice are used in much the same way that tape reelsare used.

A file residing on a private volume is called a private file.
A private volume=-set is defined as a collection of remov-
able volumes that the user has grouped together containing
any number of files with ony type of organization (consec-
utive, keyed, or random).

A private volume=set is identified by the volume serial
numbers specified in the SN option of the ASSIGN com-
mand when the first file is written on the set. Volumes
may be added to the set by the addition of a new volume
serial number in the SN list, but a volume may not be
removed. The system builds both an Account Directory and
a File Directory (containing information about all files in
the account) on each private volume-set so that a set of
volumes is a self-contained entity and can be transported
from one computer site to another,

There are four general types of assignments that can be
made via the ASSIGN control command: disk files, Xerox
labeled tape files, ANS labeled tape files, and files on
other devices, Described below are four types of ASSIGN
control commands, one for each type of assignment. In
each case, only the options that are normally oppropriate
to the specific type of assignment are listed. Deleting
assignments is discussed after the description of the four
types of ASSIGN commands.

DISK FILE ASSIGN COMMAND

The form of the ASSIGN control command for disk files is

IASSIGN dcb name,(FILE,name [,account])—]

‘—[, (option)]. ..

where

dcb name specifies the name (not exceeding
31 characters in length) of the DCB to be refer-
enced. This must be the first subfield following
ASSIGN, and must be followed by the FILE key-
word. The first two characters of a user's DCB
name must be "F:" (e.g., F:PRINT or F:BI). The
first two characters of a monitor DCB' name are
"M:" (e.g., M:LO).

FlLE,nome[,account] specifies the name of the
public or private disk file that is to be assigned
to the DCB. The name may consist of up to
31 alphanumeric characters. The named file
will be maintained on RAD or DP storage. If

90 17 64H-1(9/78)

the file belongs to a different account than that
of the current job, the file's account number must
be given. Otherwise, the file's account number
is defaulted to the user's account. If the file is
private, the SN option must be used to specify the
serial number(s) of the private volume-set.

The options are as follows:

Physical Device

DEVICE,name specifies the type of physical device to
be used for file storage (e.g., DC, DP). Name may
be any disk device which was declared at SYSGEN,
Use of the DP device type causes the system to request
the default disk type that was defined at SYSGEN.
The DEVICE option on an ASSIGN command is nor-
mally used only when ASSIGNing a file on a pri-
vate volume set.

If device type is not specified for public files, space
for the file will be allocated on any available RAD
and/or public disk pack devices. Otherwise, space
for the file will only be allocated on the type of de-
vice specified,

Organization (one of the three types given below)

CONSEC specifies that the records in the file are
consecutively organized and each record is to be
processed in order, This is the default if no organ-
ization is specified,

If a private file has consecutive organization, the
system only requires that one volume in the private
volume-set be mounted at any time. As another vol-
ume is required, the system will request that it be
mounted,

KEYED specifies that the location of each record in
the file is determined by an explicit identifier (key).
If a private file has keyed organization, all volumes
in the set must be mounted when the file is openedand
remain mounted until the file is closed,

RANDOM specifies that the data in the file is to be
written in contiguous areas of a random access de-
vice and accessed by specifying the starting block
number. If device type is not specified, the file
will be allocated on RAD or disk pack, whichever
is available. :

If a private file has random organization, all volumes
in the set must be mounted when the file is openedand
remain mounted until the file is closed.

90 17 64H-1(9/78)

Access (one of the two access means given below)

SEQUEN specifies that records in the file are to be
accessed in the order in which they appear within the
file. This is the default if neither SEQUEN nor
DIRECT (see below) is specified.

DIRECT specifies that the next record to be accessed is
to be determined by a key.

Function (one of the four modes given below)

IN[’:;IQEE] specifies the input mode, This is the de-

! fault if function is notspecified, SHARE
specifies share mode for the DCB which allows more
than one IN and/or INOUT user to access the file
concurrently, EXCL specifies exclusive mode for the
DCB which means that the user must have exclusive
use of the file. The default is EXCL.

OUT specifies the output mode.

INOUT [,él)-l(éli!i] specifies the input and output mode

4 (i.e., the update mode). SHARE
specifies share mode for the DCB which allows more
than one IN and/or INOUT user to access the file
concurrently, EXCL specifies exclusive mode for the
DCB which means that the user must have exclusive
use of the file. The default is EXCL.

OUTIN specifies the output and input mode (i.e., the
scratch mode).

File Disposition (one of the two specifications given below ;
meaningful only for OQUT or OUTIN files),

REL specifies that the secondary storage allocated to
this file is to be released when the file is closed,
See FILES, in the discussion of M:CLOSE,

SAVE specifies that the secondary storage allocated to
this file is not to be released when the file is closed,
unless specified otherwise by an M:CLOSE procedure
call. If SAVE is not also specified in the M:CLOSE,
the secondary storage allocated to this file will be
released.

JOB specifies that the file is temporary. It is to be
saved across job steps but is to be released when the
job ends.

Qther Options
CYLINDER specifies that the public file is to be allo-

cated from public devices having cylinder allocation
units. If CYLINDER is not specified, the public file

System Control Commands 35

| EXECUTE[,valuel. . .

EXPIRE,

KEYM,value

NEWX, slides[, consecutive slides)

36

is allocated from public devices having granule allo-~
cation units. In either case, the file will only be
allocated on the type of device specified with the
DEVICE option. If the DEVICE option is not specified,
the system looks for space on public disk packs first
and RADs last. If space is not available in the units
requested, the file will be allocated in the available
units from public devices of the type requested.
CYLINDER only has meaning for public files.

specifies the account numbers
of those accounts that may execute the file. Up to
aight account numbers may be specified. The value
ALL may be used to specify that any account may
execute the file. The value NONE may be used to
specify that no other account may execute the file.
This option is valid only for OUT and OUTIN files.
if no value is specified, all execute account entries
in the DCB are reset.

mm,dd,yy
ddd] specifies either an explicit expi-
NEVER ration date (mm,dd,yy), the num-

ber of days to retain the file (ddd), or that the file

is never to expire (NEVER). If not specified, the de-
fault value as established in the authorization rec-
ord for the user will determine the expiration date.
Files will be automatically purged from the public
file system if they have expired whenever secondary
storage space passes below a SYSGEN=established
threshold,

The value specified may not exceed the maximum ex-
piration period authorized for the user. If the maxi-
mum expiration period is exceeded or unspecified, the
default expiration period authorized for that user will
be used. If this option is omitted from the M:DCB
procedure call it will not appear in the DCB and, con-
sequently, may notbe used in an ASSIGN control com=
mand or M:OPEN procedure call referencing the DCB,
If EXPIRE is specified but no value given in the
M:DCB call, two words are reserved for the value
(to be inserted via an ASSIGN control command or
M:OPEN procedure call),

specifies the maximum length, in bytes,
of the keys associated with records within the file. A
key may consist of up to 31 characters. The default
value is 11,

allows the user to
specify "when" and "if" a keyed file's higher-level
index structure should be built (or rebuilt). Un-
less otherwise specified, the higher-level index
structure is built for the first time when a keyed
file that has more than three level O index blocks
is closed.

System Control Commands

NOSEP

PASS,name

READ[,value]. . .

RECL,value

slides specifies the number of blocks that can be
added to the file'sindex since the current higher-
level index structure was built; if the specified
value is exceeded, the higher-level index struc-
ture will be rebuilt when the file is closed. If
a value of 255 is specified, the higher=level in=
dex structure will not be built (or rebuilt). If
NEWX is not specified, the value 254 is used in
default.

consecutive slides specifies the number of contigu=-
ous blocks that can be added to the file's index
since the current higher-level index structure was
created; if the specified number is exceeded, the
higher-level index structure will be rebuilt when
the file is closed, If the number is not specified,
2 is used in default,

specifies that the index blocks of a public file
are to be allocated in the same way that the data
blocks are allocated. (Note that only keyed files
have index blocks.) If NOSEP is not specified, the

- index blocks of a public file are allocated from pub-

lic devices having granule allocation units, In either
case, the file will only be allocated on the type of de-
vice specified with the DEVICE option. If the DEVICE
option is not specified, the system looks for available
granules on public disk packs first and RADs last, If
space is not available in granule units, the system looks
for space on public disk packs with cylinder allocation
units. NOSEP only has meaning for public files with
keyed or consecutive organization.

specifies the password that will allow ac-
cess to a password protected file (after ony other
security checks have been made). The possword may
be from one to eight characters in length and will be
omitted from the listing of the ASSIGN commands.

specifies, for OUT or OUTIN files
only, the account number of those accounts that may
read but not write the file. The value ALL may be
used to specify that any account may read the file
(e.g., READ,ALL). The value NONE may be used
to specify that no other account may read the file, If
no value is specified, or if READ (and WRITE, see be-
low) is omitted, ALL or NONE, as specified in the
authorization record for that user, is assumed by de-
fault. The total number of accounts explicitly speci-
fied in the READ and WRITE options must not exceed 16,
READ is applicable to OUT or OUTIN files only.
Also see WRITE and EXECUTE.

specifies the default record length, in
bytes. The greatest value that may be specified
is 32,767. 1f RECL is not specified, a standard value
(appropriate to the type of device used) will apply.

90 17 64H-1(9/78)

The value specified in an ASSIGN command will
override that assembled into the DCB but will not
override the RECL specification of an M:OPEN call
or the SIZE specification of an M:READ or M:WRITE
precedure call,

RSTORE, limit specifies, in decimal, the number of

granules to be allocated to a RANDOM file. RSTORE
is only honored when the file is first created.

| SNI,serial number]. . . specifies the serial numbers of

the private disk pack volumes that are to be used for
file input or output. The serial number may be from
one to four alphanumeric ¢haracters and a maximum of
three serial numbers may be specified for system DCBs.
If SN is not specified (by ASSIGN, M:DCB or
M:OPEN), the file is assumed to be on public devices,
If no serial number is specified, all serial number
entries in the DCB are reset.

For a file on a private volume=-set:

1. When the first file on a private volume=set is
created, all serial numbers in the set must be
specified and the first volume in the set will be~
come the primary volume

2, If the private volume-set has been established,
only the serial number of the primary volume need
be specified. Theprimary volume contains alist
of all serial numbers in the set,

3. If one or more volumes are to be added to the set,
the serial numbers of the new volume(s) must be
specified following the primary volume.

The SN option must be specified in the M:DCB pro-
cedure call for it to appear in the DCB so that it may
be used by the ASSIGN control command or the
M:OPEN procedure call. When SN is specified in
the M:DCB procedure call but no serial numbers are
given, three words are reserved for the serial numbers

which con be inserted through ASSIGN or M:OPEN.

The INSN and OUTSN options used in the previous
version of the monitor were replaced with the SN op-
tion. For compatibility, the INSN and OUTSN op-
tions are acceptable in lieu of SN.

SPARE,n specifies in bytes the amount of spare space to

be left unused at the end of each index block while a
keyed file is being created or updated with sequential
access. The value specified may not exceed 255 bytes;
if it does, it is treated modulo 256, If SPARE is not

90 17 64H-1(9/78)

WRITE(,value]. . .

UNDER[, name]

specified or is zero, it is set to 102 bytes by default,
This spare space is used so that additional keys can be
inserted in @ minimum time when updating the file with
direct access (as in EDIT), If the file will never be
updated with direct access, a spare value of one should
be specified,

TRIES,value specifies the maximum number of recovery

tries to be performed for any 1/O operation. The
greatest value that may be specified is 255. The
default value is 10,

specifies, for OUT or OUTIN files

only, the account number of those accounts that may
have both read and write access to the file. The values
ALL and NONE maybe used, as with the READ option;
and, if a conflict exists between READ and WRITE

specifications, those of the WRITE option take prece-
dence, NONE is assumed by default.

The READ and WRITE option must be specified in the
M:DCB procedure call for it to appear in the DCB so
that it may be used by the ASSIGN control command
or the M:OPEN procedure call, When READ or
WRITE are specified in the M:DCB procedure call but
no account numbers are given, 16 words are reserved
for either READ or WRITE and can subsequently be
filled by ASSIGN or M:OPEN.

specifies the name of the only processor |
that may access this file if the user does not own the
file. The name may be from one to ten characters.
The processor may be any shared processor or any load
module in the :SYS account. If EXECUTE accounts
are specified and UNDER is not specified, the file is
presumed to be a load module and UNDER, FETCH is
implied by default. FETCH is the name of the moni-
tor routine that places a program into execution. If
no name is specified, the processor entries in the
DCB are reset.

XEROX LABELED TAPE ASSIGN COMMAND

The form of the ASSIGN control command for Xerox labeled
magnetic tape files is

IASSIGN dcb name, (LABEL,name[,account]) —

L—[, (option)]...

where

dcb name specifies the name (not exceeding 31 char-
acters in length) of the DCB to be referenced. This
must be the first subfield following ASSIGN, and
must be followed by the LABEL keyword. The first
two characters of a user's DCB name must be "F:"
(e.g., F:PRINT or F:BI), The first two characters
of a monitor DCB name are "M:" (e.g., M:LO).

System Control Commands 37

LABEL,name[,account] specifies the name of the
magnetic tape file that is to be assigned to the
DCB. The name may consist of up to 31 alpha-
numeric characters. If the file belongs to a dif-
ferent account than that of the current job, the
file's account number must be given. Otherwise,
the file'saccount number is defaulted to the user's
account. If the file is to be input, the SN option
must be used to specify th e tapes containing thefile.

The options are os follows:

Physical Device

DEVICE,name specifies the type of tape drive to be used
for file input or output. Name may be any tape device
which was declared at SYSGEN.

The standard tape devices are:

7T = 7-track tape drive,

9T =800 bpi 9-track tape drive.

BT

1600 bpi 9-track tape drive.

MT = installation dependent (see below).

Use of the MT device type causes the sysfem to request
the default tape type that was defined at SYSGEN.

Organization (one of the two types given below)

CONSEC specifies that the records in the file are
consecutively organized and each record is to be pro-
cessed in order. This is the default if no organization
is specified.

KEYED specifies that the location of each record in the
file is determined by an explicit identifier (key).

Access (one of the two access means given below)

SEQUEN specifies that records in the file are to be
accessed in the order in which they appear within the
file. This is the default if neither SEQUEN nor
DIRECT (see below) is specified.

DIRECT specifies that the next record to be accessed
is to be determined by a key.

Function (one of the four modes given below)
IN specifies the input mode,

ourt

specifies the output mode.

38 System Control Commands

INOUT specifies the input and output mode (i.e., the
update mode),
OUTIN specifies the output andinput mode (i.e., the

scratch mode),

Other Options

KEYM,value specifies the maximum length, in bytes
of the keys associated with records within the file. A
key may consist of up to 31 alphanumeric characters.
The default value is T1.

PASS,name specifies the password that will allow access
to a password protected file (ofter any other security
checks have been made). The password may be from
one to eight characters in length and will be omitted
from the listing of the ASSIGN command.

READ[,value]. .. specifies the account numbers of
those accounts that may read but not write the file,
The value ALL may be used to specify that any account
may read the file (e.g., READ,ALL). The value NONE
may be used to specify that no other account may read
the file. If no value is specified, or if READ (and
WRITE, see below) is omitted, ALL or NONE, as spec-
ified in the authorization record for that user, is as-
sumed by default, The total number of accounts
explicitly specified in the READ and WRITE options
must not exceed 16. READ is applicable to OUT or
OUTIN files only.

RECL,value specifies the defoult record length, in
bytes. The greatest value that may be specified is
32,767. If RECL is not specified, a standard value
(appropriate to the type of device used) will apply.
The value specified in an ASSIGN command will
override that assembled into the DCB but will not
override the RECL specification of an M:OPEN call
or the SIZE specification of an M:READ or M:WRITE
procedure call,

SN[, serial number]. . . specifies the serial numbers of
the tape reels that are to be used for file input or
output. The serial number may be from one to four
alphanumeric characters and a maximum of three serial
numbers may be specified for system DCBs.

For a file on labeled tape:

1. Serial numbers must be ordered in the proper se-
quence for a file to be opened in the IN or INOUT
mode. If SN is not specified (by ASSIGN, M:DCB
or M:OPEN), the DCB is not opened and an ab-
normal code of X'14' is refurned.

2, The file will be written in the order in which the
serial numbers are specified for a file to be opened
in the OUT or OUTIN mode. If SN is not speci-
fied (by ASSIGN, M:DCB or M:OPEN), available
scratch tape(s) of the type specified in the DEVICE
option (or by default, any type available)will be
used.

90 17 64H-1(9/78)

l

The INSN and QUTSN options used in the previous
versions of the monitor were replaced with the SN op-
tion. For compatibility, the INSN and OUTSN op-
tions are acceptable in liev of SN. If no serial number
is specified, serial number entries in the DCB are

reset.

TRIES, value specifies the maximum number of recovery
tries to be performed for any 1/O operation. The
greatest value that may be specified is 255. The de-
fault value is 10.

VOL,value specifies which tape reel in the SN list is to
be used initially. A value of 1 designates the first (in
the list), a value of 2 designates the second, etc. If
VOL is omitted, a value of 1 is assumed by default,

WRITE[, value] . .. specifies the account number of
those accounts that may have both read and write
access to the file. The values ALL and NONE may
be used, as with the READ option; and, if a conflict
exists between READ and WRITE specifications, those
of the WRITE option toke precedence. NONE is as-
sumed by default. WRITE is applicable to OUT or
OUTIN files only.

The READ or WRITE option must be specified in the
M:DCB procedure call for it to appear in the DCB so
that it may be used by the ASSIGN control command
or the M:OPEN procedure call. When READ or WRITE
is specified in the M:DCB procedure call but no ac-
count numbers are given, 16 words are reserved for
either READ or WRITE and can subsequently be filled
by ASSIGN or M:OPEN.

DEN,valve specifies the density at which a magnetic
tape is to be read or written, Only values of 800 or
1600 are acceptable,

ASCII specifies that conversion of code between
EBCDIC in core and ASCII on tape is to be performed.
ASCII is legal only for tape drives having this feature,

EBCDIC specifies that no conversion of code isto take
place (see ASCII above) and that the tape is to be
read and written in EBCDIC,

ANS LABELED TAPE ASSIGN COMMAND

The form of the ASSIGN control command for ANS labeled
magnetic tape files is

IASSIGN dcb name, (ANSLBL,name)[, (option)]. . .

where

dcb name specifies the name of the DCB to be ref-
erenced, This must be the first subfield follow-
ing ASSIGN, and must be followed by the
ANSLBL keyword. The first two characters of a
user's DCB name must be "F:" (e.g., F:PRINT or
F:BI). The first two characters of a monitor DCB
name are "M:" (e.g., M:LO).

90 17 64H-1(9/78)

ANSLBL,name specifies the name of the magnetic
tape file that is to be assigned to the DCB. The
name may consist of up to 17 characters. If the
file name contains special characters, it must be
enclosed by single quotation marks, When a
single quotation mark is to be used as part of the
file name, it must be coded as two successive
quotation marks. There should be no blanks be-
tween the last character and the terminating quo-
tation mark.

The options are as follows:

Physical Device

DEVICE,name specifies the type of tape drive to be used
for file input or output. Name may be any tape device
which was declared at SYSGEN.

The standard tape devices are:

7T = 7-track tape drive,

9T = 800 bpi P-track tape drive.

BT = 1600 bpi 9-track tape drive.

MT = installation dependent (see below).

Use of the MT device type causesthe systemto request
the default tape type that was defined ot SYSGEN.

Function (one of the four modes given below)

IN specifies the input mode.
ourt specifies the output mode,
INOUT specifies the input and output mode (i.e., the

update mode),

OUTIN specifies the output and input mode (i.e., the

scratch mode).

Other Options

ABCERR specifies that block count errors (inconsisiencies
between the tape~specified and the system-accumulated
block counts)are not to result in program abortion,

BLKL,value specifiesblocksize inbytes. The value may
be in the range 1 to 32,767, If a value less than 18
bytes is specified, 18 bytes are written,

CONCAT,value specifies the number of identically named
files that are to be read as one logical file (concaten-
ated), The value maybe in the range 2 through 255,

EXPIRE, {::;,dd,yy} specifies either an explicit expir-
ation date (mm,dd,yy) or the num~-
ber of days to retain the file (ddd). If not specified,
the default value as established in the authorization
record for the user will determine the expiration date,
Fileswill be automatically purged from the public file
system if they have expired whenever secondary stor-
age passes below a SYSGEN-established threshold.

System Control Commands 39

The value specified may not exceed the maximum
expiration period authorized for the user. If the max-
imum expiration period is exceeded or unspecified, the
default expiration period authorized for that user will
be used. If this option is omitted from the M:DCB pro=-
cedure call it will not appear in the DCB and, conse-~
quently, may not be used in an ASSIGN control
command or M:OPEN procedure call referencing the
DCB. If EXPIRE is specified but no value given in the
M:DCB call, two words are reserved for the value
(to be inserted via an ASSIGN control command or
M:OPEN procedure call).

FORMAT, character
character may be

specifies the record formats. The

F — fixed length.
D — variable specified in decimal.
V — variable specified in binary.

U — undefined.

LRECL,value specifies the logical record size in bytes.
The value may be in the range 1 to 32,767,

SNI, serial number]... specifies the serial numbers of
the tape reels that are to be used for file input or
output. The serial number must consist of six alpha-
numeric characters (blanks are permissible) and a
maximum of three serial numbers may be specified by
system DCBs. |f blanks are used, the serial numbers
must be enclosed within quote marks, ANS serial
numbers are stored in encoded format so that they will
fit within 32 bits,

The INSN and OUTSN options used in the previous
versions of the monitor were replaced with the SN
option. For compatibility, the INSN and OUTSN
options are acceptable in liev of SN. [f no serial
number is specified, serial number entries in the DCB
are reset.

TRIES,value specifies the maximum number of recovery
triesto be performed forany I/O operation. The great-
est value that may be specified is 255. The default
value is 10, :

VOL,value specifies which tape reel in the SN list is
to be used initially. A value of 1 designates the first
(in the list), the value 2 designates the second, etc.
If VOL is omitted, a value of 1 is assumed by default.

DEN,value specifies the density at which a magnetic
tape is to be read or written. Only values of 800
or 1600 are acceptable.

ASCIl specifies that conversion of code between EBCDIC
in core and ASCII on tape is to be performed. ASCII
is legal only for tape drives having this feature.

40 System Control Commands

EBCDIC specifies that no conversion of code is to take
place (see ASCII above) and that the tape is to be
read and written in EBCDIC.

JOURNAL ASSIGN COMMAND

The form of the ASSIGN control command for a common
journal file is

IASSIGN dcb name, (JRNL,name[,account])

where

dcb name specifies the name (not exceeding

31 characters in length) of the DCB to be refer-
enced. This must be the first subfield following
ASSIGN, and must be followed by the JRNL key-
word. The first two characters of a user's DCB
name must be "F:" (e.g., F:PRINT or F:BI), The
first two characters of a monitor DCB name are
"M:" (e.g., M:LO),

JRNL,name[,account] specifies the name of the
common journal that is to be assigned to the DCB.
The name may consist of up to 31 alphanumeric
characters. If the file belongs to a different ac-
count than that of the current job, the file's ac-
count number must be given.

DEVICE ASSIGN COMMAND

The form of the ASSIGN control command for devices other
than disk or labeled magnetic tape file is

IASSIGN dcb name, (DEVICE,name)(, (option)]...

where

dcb name specifies the name (not exceeding
31 characters in length) of the DCB to be refer-
enced. This must be the first subfield following
ASSIGN, and must be followed by the DEVICE
keyword. The first two characters of a user's DCB
name must be "F:" (e.g., F:PRINT or F:BI). The
first two characters of a monitor DCB name are

"M:" (e.g., M:LO).

DEVICE,name specifies the system physical device
name, device type, operational label, or logical
device stream that is to be assigned to the DCB.
These labels are defined by the installation man
ager at SYSGEN. Tables 2 and 3 list the stan-
dard assignments.

90 17 64H-1(9/78)

Table 2.

Standard Operational Labels, Device Types, and Physical Device Name

Type

Code

Description

Operational Label

BI, BO, C, CI, CO,

DO, ElI, EOQ, LL, LO,
OC, PO, SI, SL, SO,
UC (see Table 3).

When the DCB is assigned to one of the system
operational labels, the actual device connected
to the DCB is that implied by the operational
label, if any, for the batch mode.

NO No assignment, i.e., no default, is to be applied.
Read operations through this DCB will return an
end-of-file. Write operations will be ignored.
Standard Device Types CP Card punch
CR Card reader
LP Line printer
TY Typewriter
9T 9-track tape
7T 7-track tape
BT 1600 bpi 9-track tape
MT Default magnetic tape type (defined at SYSGEN)
DP Default disk type (defined at SYSGEN)
Physical Device Name yyndd yy specifies the device type as indicated above.

(the ndd portion is
ignored but is allowed
for compatibility with
previous versions of
the system)

n specifies the IOP letter (A-H corresponding to
unit address 0-7).

dd specifies the device number in hexadecimal,
where:

00 =£dd<7F Refers to a device number.

80 <dd <FF Refers to a device con~
troller number (8-F)
followed by a device

number.
Logical Device Stream L1 Line printer
C1 Card reader
P1 Card punch
(and others defined
at SYSGEN)
Table 3. Operational Label Conventions
Typical Batch Device
Label Reference Comments Assignment!
BI Binary Binary coded input will be received from the device CR
input to which this label is assigned.
BO Binary Binary coded output will be transmitted to the de- Ccp
output vice to which this label is assigned.
C Control Input from the device to which this label is assigned CR
input will be monitored, so that all control commands will
be recognized by the monitor.

System Control Commands

41

Table 3. Operational Label Conventions (cont.)

Typical Batch
Label Reference Comments Device Assignment!
CI Compressed Compressed symbolic input will be received from the device to CR
input which this label is assigned.
CcO Compressed Compressed symbolic output will be transmitted to the device to cp
output which this label is assigned.
DO Diagnostic Diagnostic program dumps will be output on the device to which LP
output this label is assigned.
El Element Element file input will be received from the device to which CR
input this label is assigned.
EO Element Element file output will be transmitted o the device to which Ccp
output this label is assigned.
LL Listing All control commands and system messages, including accounting LP
log information for the job, will be output on the device to which
this label is assigned.
LO Listing Source and object listings for assemblies and compilations will LP
output be output on the device to which this label is assigned.
OC Operator's All JOB, MESSAGE, and FIN control commands, and all job TY
console terminatic. messages will be output on the device to which this
labe is assigned. OC may not be assigned to another operational
" ibel, but may be assigned to another physical device.
PO Punch FCD or binary coded output will be transmitted to the device to CP
output which this label is assigned (normally o card punch). ‘
SI Source Symbolic (source language) input will be received from the de- CR
input vice to which this label is assigned.
SL Source A listing of symbolic (source language) input will be transmitted LP
listing to the device to which this label is assigned.
SO Source Symbolic (source language) output will be transmitted to the cp
output device to which this label is assigned.
ucC User's This is for on=line use (see the CP-V/TS Reference Manual, TY
console 90 09 07). The batch mode defaults to OC (operator's console).
Mhese device assignments are standard in CP-V but may be changed af SYSGEN.,

The options are as follows:

Function (one of the four modes given below)
IN specifies the input mode,

ourt specifies the output mode.

INOUT specifies the input and output mode (i.e., the
update mode).

OUTIN specifies the output and input mode (i.e., the
scratch mode).

42 System Control Commands

Format Control (one of the following two options)

VFC specifies that the first character of each record is
a format=control character for printing (see Table 4),

NOVFC specifies that the records do not contain format-
control characters.

Mode (any of the following seven options for a device 1/0
mode)

BCD specifies that EBCDIC mode is to be used.
BIN specifies that the binary device mode is to be used.

Table 4. Line Printer Format Control Codes

Code

(hexadecimal) Action

Co, 40 Space no additional lines.

60, EO Inhibit space after printing.

C1 Space 1 additional line before
printing.

C2 Space 2 additional lines before
printing.

C3 Space 3 additional lines before
printing.

CF Space 15 additional lines before
printing.

FO Skip to Channel O (bottom of
page) before printing.

F1 Skip to Channel 1 (top of page)
before printing.

F2 Skip to Channel 2 before printing.

FF Skip to Channel 15 before printing.

FBCD specifies that FORTRAN BCD conversion is to be
used. Note that this does not preclude use of the
binary mode.

NOFBCD specifies that FORTRAN BCD conversion is
not to be used,

PACK specifies that the packed binary mode (7-track
tape) is to be used. PACK is not valid unless BIN is
specified.

UNPACK specifies that the unpacked binary mode
(7-track tape) is to be used. UNPACK is not valid
unless BIN is specified.

L specifies that a listing~type device is to be used
(FORTRAN programs).

SEQ[,id]

Notes: BIN/BCD controls the mode of writing to CP
or 7T, and reading from 7T. It also controls
the mode of reading from CR if DRC has been
specified.

FBCD causes conversion from the FORTRAN
BCD set to EBCDIC on reading from CR or

7T and the opposite conversion when writing
to CP or 7T,

PACK/UNPACK specifies packed or unpacked
binary on 7T if BIN is also specified.

If no mode is specified, the current mode established
for the Data Control Block (DCB) is used.

Other Options

RECL,value specifies the default record length, inbytes.
The greatest value that may be specified is 32,767, If
RECL is not specified, a standard value (appropriate to
type of device used) will apply. The value specified
in an ASSIGN command will override that assembled
into the DCB but will not override the RECL specifica-
tions of an M:OPEN call or the SIZE specification of
an M:READ or M:WRITE procedure call,

TRIES, value specifies the maximum number of recovery
tries to be performed for any 1/O operation. The
greatest value that may be specified is 255. The
default value is 10,

The following options are device-dependent and will be
ignored by the monitor if not applicable to the device type
used,

COUNT, tab specifies that a page count is to appear at
the top of each page, beginning in the column speci-
fied by "tab". If COUNT is specified for the LO de-
vice and a TITLE control command is also specified,
the page count will be superimposed on the title line.

Example:
COUNT, 60

The above example specifies that the most significant
digit of the page count is to appear in column 60 at’
the top of each page.

DATA, col specifies that output is to begin on each page
(or card, if EBCDIC) in the column specified by "col".

LINES,value specifies the number of printable lines per
logical page. The greatest value that may be specified
is 32,767, 1If LINES is not specified, the value estab-
lished at SYSGEN time will apply.

specifies that the punched output is to have
decimal sequencing in columns 77-80. If id is spec~
ified, it will appear in columns 73-76 of the punched
output. Sequencing begins with 0000,

System Control Commands 43

SN,serial numberf,serial number]. . specifies the serial
numbers of tape reels that are to be used for file input
or output. The serial number may be from one to four
alphanumeric characters and a maximum of three serial
numbers may be specified for system DCBs.

The SN option must be specified in the M:DCB proce-
dure call for it to appear in the DCB so that it may be
used by the ASSIGN control command or the M: OPEN
procedure call., When SN is specified in the M:DCB
procedure call but no serial numbers are given, three
words are reserved for the serial numbers which can

be inserted through ASSIGN or M:OPEN.

The INSN and OUTSN options used in the previous
versions of the monitor were replaced with the SN op-
tion, For compatibility, the INSN and OUTSN op-
tions are acceptable in lieu of SN.

SPACE, value specifies the spacing between lines. A
value of one indicates that lines are to be single-
spaced. The greatest value that may be specified
is 15, '

TAB,value[,value]. .. specifies the values of up to
eight tab settings for an output device. The values
must be in ascending order.

DEN,value specifies the density at which a magnetic
tape is to be read or written, Only values of 800 or
1600 are acceptable,

ASCIl specifies thut conversion of code between EBCDIC
in core and ASCII on tape is .o be performed by the
system, ASC'lis legal only for drives having this
feature,

EBCDIC specifies that no conversion of code is to take

place (see ASCII above) and that the tape is to be
read and written in EBCDIC,

Example:

IASSIGN F:OUT,(DEVICE,LO),(SEQ,OUT)

This example specifies that the user's DCB name F:OUT is
to be assigned to the output device to which the opera-
tional label LO is assigned (normally a line printer).
Sequence numbers are to be printed in columns 77-80 and
the identification "OUT" is to be printed in columns 73-76
of each record.

DELETING AN ASSIGNMENT

The form of an ASSIGN command used to delete an assign-
ment is

[ASSIGN dcb name [0]

where dcb name specifies the name (not exceeding 31 charac-

ters in length) of the DCB for which the assignment is to be
deleted.

44 System Control Commands

SET DCB assignments may also be made through the SET
command in much the same manner as the ASSIGN command.
The batch mode SET command has the same format as the
on-line mode SET command.

ASSIGNING 1/0 DEVICES AND DCB PARAMETERS

The system retains all information supplied by SET commands
in a permanent table associated with each user. This table
is called the assign/merge table and is stored on disk. At
each job step (i.e., each time a new user program or proc-
essor is loaded), the information in the assign/merge table
is merged into the DCBs associated with the program. An
eniry for a DCB that is currently in the assign/merge table
may be deleted by the command

SET dcb [0]

This allows the default assignment (if any) for the specified
DCB to take effect.

DCB assignments are either to a device or to a file. If a
DCB that has already been assigned to a device is assigned
to a file, the new information replaces the old information

in the assign/merge table. The same procedure applies to
device assignments for DCBs currently assigned to files. Eact
DCB assignment requires an entry in the assign/merge table.
The total number of DCBs that may be assigned is limited

to 12, :

Changes to device parameters are added to DCBs assigned to
devices. Changes to device parameters for DCBs assigned to
files yield an error message.

The several formats of the SET command are:

SET deb [0]

—oplabel

device
SET deb stream-id

|_fapecode [fopeid]

[;dopt]...

—

tapecode [tqpeid][-rf] Al
SET dcb [filecode [rf] /fid|[;fopt .

SET decb JR/Fid
where
dcb identifies a DCB and is in the form M:x or F:x

where x is 1 to 31 characters. (Assignments of
M:C, M:UC, M:OC, and M:XX are not allowed.)

oplabel specifies an operational label (BI, C, CI,
etc.). (See Table 5.)

device specifies a device code (CP, PL, LP, etc.).
(See Table 5.)

stream~id specifies the name of a logical device

stream (C1, L1, P1, etc.). (See Table 5.)

tapecode specifies a magnetic tape code (LT, AT,
or FT). (See Table 5.)

filecode specifies a secondary storage code (DP),
(See Table 5.)

tapeid if followed by /fid, specifies a serial num-
ber for a labeled tape and has the form #serial
number. The tape is accessed with the serial
number applying as both an INSN and an OUTSN,
(Serial numbers may contain alphanumeric charac-
ters. Xerox labeled tape serial numbers are 1-4
characters in length. ANS labeled tape serial
numbers must be six characters in length.) If not
followed by /fid, it specifies an external reel
number for free-form tape.

JR specifies a common journal. (Refer to the

CP-V/TP Reference Manual, 90 31 12.)

rt specifies the 2-character identifier of a mount-
able device that was defined at SYSGEN to be a
resource (e.g., 7T, 9T, 5P, etc.).

/fid specifies the name of a file on tape or

secondary storage. A maximum of 11 characters

is allowed. The form is

.account
.account, password
. . password

name

If not preceded by a tapecode or filecode, /fid

implies public disk storage by default.

dopt

fopt specifies a file option. (See Table 7,)

specifies a device option. (See Table 6.)

Spaces may be arbitrarily used in a SET command between
numbers, words, and identifiers but may not be embedded

within them.

Example:

1. Assume that the monitor DCB for listing output is to be
assigned to disk storage file N under account A with

password P,
LISET M:LO/N.A.P. &

!

2. Assume that F:IN1 (a user constructed DCB) is to be
assigned to file M on a Xerox labeled tape with the
serial number 4003. .

SET F:IN 1 LT#4003/M @

Table 5. DCB Assignment Codes — SET Command

Type Codes

Description

BI, BO, C, Ci, CO, DO, El,
EQ, LL, LO, OC, PO,

S1, SL, SO, UC (see Table 3)
(and others defined at SYSGEN)

Operational Label

When the DCB is assigned to one of the system operational

labels, the actual device connected to the DCB is that jm~

plied by the operational label, if any, for on-line mode.

NO No assignment, i.e., no default is to be applied.
Device Cp Card punch,

LP - Line printer,

PL ‘ Plotter.

(and others defined at SYSGEN)
Logical Device L1 Line printer,
Stream C1 Card reader.

P1 Card punch,

(and others defined at SYSGEN)

Magnetic Tape LT Xerox labeled tape.
AT ANS labeled tape.
FT Free form tape.
Secondary DP Disk pack storage. This requests the default disk device

type defined at SYSGEN if the rt field is not specified.

System Control Commands

MY RN

45

3. Assume that the monitor DCB for compressed input DCB ASSIGNMENT CODES
(M:Cl) is to be assigned to file JJ on an ANS labeled
tape with the serial number B12345, Also, the tape A device assignment is made whenever a SET command
was recorded at 1600 bpi on a device known to the contains an expression with an operational label or device
system as BT and the BT device was defined at SYS- code, or a tapecode/tapeid not followed by a file identifi-
GEN to be a resource. cation. For each assignment, an assign/merge table entry
is made or an existing entry is modified, DCB assignments
ISET M:CI AT#B12345-BT/JJ = are specified by the two-letter codes in Table 5,
L DEVICE OPTIONS
4. Aszurge fhc}:f fi:.b ?osiﬁons 27, 38, 47, on.d‘75 are fo'be SET commands specifying device options may be issued only
ah edfot ? |stng °UfSUf DCB'I. h:' ad.dmon, the first between job steps, The device options take effect on sub-
c cr‘oci"e; of eac (;ecl::)r |°°f' rhe. |shgg is fclllconh‘ol sequent input or output through the DCB. The options are
vertical format and the listing is to be double spaced. then in effect from job step to job step until reset,
ISET M:LO;TAB=27,38,47,75;VFC;SPACE=2 «:
The device options allowed for the SET commands are listed
4 in Table 6. Options corresponding to the M:DEVICE options
PAGE, FORM, SIZE, and HEADER are not provided.
If the M:LO DCB is not assigned when the above changes
are made, an error message will be sent to the terminal. FILE OPTIONS
5. Assume that DCB F:1 is to be assigned to an output file When a DCB is assigned to a d.iSk file, Xerox I.cbeled tape,
XXXX which spans private disk volumes A2, A3, and or ANS labeled tape, any options that are valid for the
A4, An expiration date of NEVER is to be assigned. ASSIGN command are also valid for the SET command,
Table 7 contains the list of file options.
ISET F:1 DPFA2/XXXX; OUT;SN=A3, A4;
Alternatively, PCL compatible keywords (as shown in Table 6)
RD=F14 F22)XGEXPIRE=NEVER & may also be used. As an example, FORMAT is a valid ANS
! ! labeled tape option in the ASSIGN command and the SET
or the equivalent command will honor either the keyword FORMAT or the PCL -
form of the keyword FMT.
. # . . =| RED
LSET F:? DPFA2/XXXX; OUT,EXPIRE=NEVER However, the keyword PASSWORD is not recognized by the
ISET F:1,5N=A3,A4;RD=F14,F22X ~ SET command because fhe. password is obtained from the file-
name, account., password field.
Table 6. Device Options — SET Command
Format Description
ASCI[i] ASCII1] specifies code conversion (between ASCI| on tape and EBCDIC in core).
EBCIDIC] EBC[DIC] specifies no code conversion. EBDIC is assumed by default and ASCII is legal
only for tapes having this feature.
BCD, BIN Controls the binary-BCD mode for device read and write operations. BIN used in conjunc-
tion with DRC will invoke the transparent mode.
COUNT = value Turns on page counting and specifies the column number at which the page number is to be
printed.
DATA = value Controls the beginning column for printing or punching and is a decimal value. The maxi-
mum value is 144,
_ 800 -
DEN—~“ 400 Specifies the density that will be used on a dual density tape device.
DRC, NODRC Turns the special formatting of records on and off. DRC specifies that the monitor is not to
do special formatting of records on read or write operations. NODRC specifies the monitor
is to do special formatting. If neither DRC nor NODRC is specified, NODRC is assumed by
default. DRC used in conjunction with BIN will invoke the transparent mode.
46 System Control Commands

Table 6. Device Options — SET Command (cont.)

Format

Description

FBCD, NOFBCD

Controls the automatic conversion between external Hollerith code and internal EBCDIC
code (FORTRAN BCD conversion). NOFBCD is assumed by default.

IN Specifies the input mode,

ouTt Specifies the output mode.

INOUT Specifies the input and output mode (i.e., the update mode).

OUTIN Specifies the output and input mode (i.e., the scratch mode).

L, NOL Identifies the device type. L specifies that the device must be listing type, NOL specifies
that it need not be listing type. NOL is assumed by default.

LINES = value Specifies the number of printable lines per page and is a single decimal valve. The maximum

value is 255,

PACK, UNPACK

Controls the packed or unpacked mode of writing 7-track tape. PACK is assumed by default.

RECL = valuve

Specifies the default record length, in bytes. The greatest value that may be specified is
32,767. If RECL is not specified, a standard value (appropriate to the type of device used)
will apply. The value specified in a SET command will override that assembled into the

DCB but will not override the RECL specification of an M: OPEN call or the SIZE specification
of an M:READ or M:WRITE procedure call.

SEQ[= value]

Specifies that sequence numbers are to be punched in columns 77-80 of punched output.
Four characters of nonblank sequence identification may be given for columns 73-76, Fewer
than 4 characters are left-justified and blank filled,

SN[= value [, value%|

L——(,v«::lue]]

Specifies the serial numbers of volumes that are to be used for input or output. The serial
number may be from 1 to 4 characters except for ANS labeled tape serial numbers which must
be 6 characters. A maximum of 3 serial numbers may be specified. If a serial number is
specified with, the tapeid, it is included in the 3 allowed. An existing list of serial numbers
may be removed by specifying the SN option with no arguments,

SPACE = value

Specifies the number of lines of space after printing and is a single decimal value. Values
of 0 or 1 result in single spacing. The maximum value is 255.

TAB = tab [, tab] ...

Specifies simulated tab stops and is followed by a list of up to 16 decimal numbers, separated
by commas, giving the column position of the stops. [f all 16 stops are not specified, the
stops given are assigned to the first stops and the remainder are reset.

TRIES = value

Specifies the maximum number of recovery tries to be performed for any /O operation. The
greatest value that may be specified is 255. The default value is 10.

VFC, NOVFC Controls the formatting of printing by using the first character of each record. VFC specifies
that the first character of each record is a format-control character, NOVFC specifies that
records do not contain a format-control character, NOVFC is assumed by default.

Table 7. File Options — SET Command
Xerox | ANS
Type Format Disk | Tape Tape | Description
Organization CONSEC X X Consecutive record organization,
KEYED X X Keyed record organization,
RANDOM X _ Contiguous relative-sector addressed
organization,

System Control Commands

47

Table 7. File Options = SET Command (cont.)

Type

Format

Disk

Xerox
Tape

ANS
Tape

Description

Access

SEQUEN
DIRECT

X
X

Records will be accessed sequentially,
Records will be accessed by key,

Function

SHARE
N [EXCL (]

File is read only. SHARE specifies the share
mode for the DCB which allows more than
one IN user of the file. EXCL specifies the
exclusive mode for the DCB which prohibits
more than one IN user of the file. EXCL

is assumed by default,

ouTt

File is write only.

SHARE
INOUT [, ;EXCL s]

File is to be updated. SHARE specifies the
share mode for the DCB which allows more
than one INOUT user of the file, EXCL
specifies the exclusive mode for the DCB
which prohibits more than one INOUT

user of the file. EXCL is assumed by
default.

OUTIN

File is scratch.

Record Length

RECL = value

Specifies the default record length, in bytes,
The greatest value that may be specified is
32,767. |If RECL is not specified, a standard
value (appropriate to the type of device used)
will apply. The value specified in a SET
command will override that assembled into
the DCB but will not override the RECL
specification of an M:OPEN call or the

SIZE specification of an M:READ or
M:WRITE procedure call,

;LRECLz = value
REC

Specifies the logical record size in bytes,
The value may be in the range 1 through
32,767.

Block Size

BLK[L] = value

Specifies block size in bytes. The value may
be in the range 1 through 32,767. If a value
less than 18 bytes is specified, 18 bytes are
written,

Recovery Tries

TRIEs = value

Specifies in decimal the maximum number
of recovery tries to be performed for any
1/O operation, The greatest value that may
be specified is 255, The default value is 10.

Disposition

REL

OUT or OUTIN file is to be released on
closing.

SAVE

OUT or OUTIN file is to be saved on closing.

JOB

Temporary file persisting across job steps.

48 System Control Commands

90 17 64H-1(9/78)

Table 7. File Options — SET Command (cont.)

Type

Format

Disk

Xerox
Tape

ANS
Tape

Description

Size

RSTORE = value

X

Specifies the number of granules allocated
to the RANDOM file. The value must be in
the range 1 through 16,777,215 (224 - 1),

Storage Control

CYLINDER

Specifies that the data blocks of a public
file are to be allocated from public disk
packs having cylinder allocation.

Key Length

KEYM = value

Specifies the maximum length, in bytes, of
the keys associated with records within the
file. A key may consist of up to 31 char-

acters, The default value is 11,

Key Storage

NOSEP

Specifies that index blocks of a public file
are to be allocated in the same manner as
data blocks. (Disk pack if possible; other-
wise RAD.)

Additional
Key Space

SPARE = value

Specifies in bytes the amount of spare space
to be left unused at the end of each index

block while a keyed file is being created or
updated with sequential access. Value may
not exceed 255 and the default is 102 bytes,

Expirafion

EXP [IRE] ={ ddd

NEVER

mm,dd,yyr

Specifies either an explicit expiration date,
the number of days to retain the file, or that
the file is never to expire.

Index
Structure

NEWX = slides———

E——-—E consecutive sliélés]

The "slides" argument specifies the number
of blocks that can be added to the file's
index since the current higher-level index
structure was built; if the specified value is
exceeded, the higher-level index structure
will be rebuilt when the file is closed. If a
value of 255 is specified, the higher-level
index structure will not be built (or rebuilt),
If NEWX is not specified, the value 254 is
used in default,

The "consecutive slides" argument specifies
the number of contiguous blocks that can be -
added to the file's index since the current
higher-level index structure was created; if
the specified number is exceeded, the higher-
level ‘index structure will be rebuilt when the
file is closed. if the number is not specified,
2 is used in default.

Execute
Accounts

EX [ECUTE]

NONE

acct [,accf]..‘

Specifies the account numbers of the accounts
that may execufe the load module. A maxi-
mum of 8 accounts may be specified. The
value ALL may be used to specify that any
account may execute the file. The value
NONE may be used to specify that no other
account may execute the file. In all of the
above cases, READ, NONE is implied in the
absence of any READ specification. This
option with no arguments resets all previous
execute account entries in the DCB.

System Control Commands 49

A

Table 7. File Options — SET Command (cont.)

Type

Format

Disk

Xerox
Tape

ANS
Tape

Description

Read

Accounts

R[EA]D

acct[,acct]...
ALL

NONE

X

Specifies the account numbers of those ac-
counts that may read but not write the file,
This option is applicable to OUT and OUTIN
files. A maximum of 8 read accounts may
be specified, The value ALL may be used

to specify that any account may read the
file, The value NONE may be used to
specify that no other account may read the
file. This option with no arguments resets
all previous read account entries,

Write

Accounts

WRLITE]

ALL
NONE

acct[,acct]. . {

Specifies the account numbers of those ac~
counts that may have both read and write
access to the file. This option is applicable
to OUT and QUTIN files, A maximum of 8
write accounts may be specified. The value
ALL may be used to specify that any account
may have write access to the file, The value
NONE may be used to specify that no other
account may have write access to the file,
This option with no arguments resets all pre-
vious write account entries.

Volume Serial

Number

SN[= value[, value] [,value]]

Specifies the serial number of volumes that
are to be used for input or output. The
serial number may be from 1 to 4 characters,
except for ANS labeled tape serial numbers
which must be 6 characters. A maximum of
3 serial numbers may be specified. If serial
number is specified with tapeid, it is in-
cluded in the 3 allowed. An existing list of
serial numbers may be removed by specify-
ing the SN option with no arguments.

Code
Conversion

o

ASCII specifies code conversion between
ASCII on tape and EBCDIC in core. EBCDIC
specifies no code conversion. EBCDIC is the
default. ASCII is legal only for tapes having
the code conversion feature,

Recording
Density

_ {800

DEN= 11600

Specifies the density that will be used on the
dual density tape device, ’

Initial
Volume

VOL = value

Specifies which tape reel in the SN list is

to be used initially. A value of 1 designates
the first, a value of 2 the second, etc. If
VOL is omitted, a value of 1 is assumed,

Concatenate
Tape Files

[CON]CAT=value

Specifies the number of identically named
files that are to be read as one logical file
(concatenated). The value may be in the

range of 2 through 255,

Tape Format

FORMAT
FMT

2 = character

Specifies the record format. The character
may be: F = fixed length; D = variable
specified in decimal; V = variable specified
in binary; or U = undefined.

50

System Confrol Commands

Table 7. File Options — SET Command (cont.)

Type Format Disk

Xerox | ANS
Tape Tape

Description

Block Count ABCERR

Errors

X Specifies that block count errors for ANS
labeled tapes are not to result in an un-
conditional abort.

UNI[DER]){=name] X

Execution
Vehicle

Specifies the name of the only processor
that may access this file if the user does
not own the file. The name may be from
one to ten characters. The processor may
be any shared processor or any load module
in the : SYS account, If EXECUTE accounts
are specified and UNDER is not specified,
the file is presumed to be a load module and
UNDER = FETCH is implied by default.
FETCH is the name of the monitor routine
that places a program into execution.

LDEV A logical device stream is an information stream
that may be attached to any symbiont device that the user
specifies. (Symbiont devices include devices such as the
line printer, card reader, card punch, plotter, and all
devices at remote sites that are accessed via remote pro-
cessing.) At SYSGEN, up to 15 logical device streams
may be defined. Eoch is given @ name (e.g., C1, L1, P1),
each is assigned to a default physical device, and attribtues
are defined for the physical device. The user may perform
1/O through a logical device stream with the default physi-
cal device and attributes or he may change the physical de-
vice and/or attributes to satisfy the requirements of his job.
He makes any necessary changes through use of the LDEV
command or the M:LDEV procedure. Information about the
logical device stream is stored in a cooperative context
block, providing for centralized information about the phys-
ical device even though 1/O to that device may arise
through more than one DCB within a job.

The LDEV control command can almost be viewed as another
level of the ASSIGN control command, If the DCB has
been ASSIGNed to a logical device stream, the LDEV
command can be used to attach the logical device stream
to a physical device (if the default physical device for the
stream is inappropriate). ASSIGN stores information in a
DCB, while LDEV stores information in a cooperative con-
text block.

The LDEV control command has the form

ILDEV stream~id[, (option)]. ..

where

stream=id specifies the two-character name of the
stream to be referenced, This must be the name

90 17 64H-1(9/78)

of one of the logical device streams defined during
SYSGEN (for example, C1, L1, P1).

options specify the device streams attributes, such
as device type, stream direction, form, format
control, workstation name, etc. The options are
as described below; they may appear in any order,

Options

AINIT specifies that the attributes for the stream are to
be initialized with the attributes specified on this LDEV
command and that system defaults are to be supplied
wherever an attribute is not specified. Any attribute:
specified for the stream on a previous LDEV command
are to be ignored. AINIT is the default for the AIN{T,
ASAVE, and AREL options.

AREL specifies that the system table containing the at-
tributes of this stream (which may have been set as the
result of previous LDEV commands) is to be released and
that the attributes are nottobe reinitialized. Anyother
options specified (except DELETE) in this command wil'
be ignored.

ASAVE specifies that the attributes for the stream are o
be set only by options explicitly specified on this LDEV
command. Other LDEV-specifiable attributes (which
may have beén set as the result of previous LDEV com~
mands) are not to be changed. ASAVE cannot be used
for the LABEL option. DEV and WSN are subject to the

'restrictions noted in the Remote Processing Reference
| Manual 90 30 26.

COPIES, value specifies the number of times the file is
to be processed to produce multiple copies. The value
can be any integer from 1 to 255 inclusive. The de~
fault value is 1,

COUNT,tab specifies that page counting is to be done
and specifies the column in which the most significant

System Control Commands 51

digit of the page count is to be listed. The value of
"tab" must be appropriate for the particular device.
(Note that if COUNT is specified for the LO device
and a TITLE control command is also specified, the page
count will be superimposed on the title line.) The de-
fault is no page counting.

OELETE specifies that if output currently exists for this
stream but has not yet been dispatched for processing,
itis to be deleted. (If such a stream exists and
DELETE is not specified, the output for the stream is
dispatched for processing.) If an input stream with
the same name currently exists, any part of the stream
that has not been read will automatically be deleted
whether or not DELETE is specified.

DEV, type specifies the device type where type is the
two-character mnemonic of the device to be asso-
ciated with the stream. Valid mnemonics are either
type mnemonics of the central site or of a remote
workstation, Central site menmonics are those de-
fined for symbiont devices during SYSGEN (for ex-
ample, CR, LP). Remote mnemonics are those specified
when defining a workstation with Super (for exam-

ple, OC, CR).

DRC requests that monitor logical record formatting
implied by the DEV option not be performed. Any
record formatting necessary will be supplied by the
user, If DRC is not specified, the monitor will per-
form logical record formatting.

FFORM,name specifies the future form name (as below,
with FORM) of the form to be used when the form
change procedure (M:DEVICE (FORM/FNAME)) is spec-
ified in the program for the stream. When M:DEVICE
(FORM/FNAME) is encountered, the stream will be
dispatched for processing and restarted with the name
as the stream form. The default is none.

FORM,name specifies the one- to four-character name
of an installation-determined paper form or card stock
and is used in output scheduling for the device. The
default is to have no special scheduling (i.e., the op-
erator will determine which form to use). If used on
input, name specifies the one~- to four-character name
of a noncontrol input file. (FORM and NAME may be
used interchangeably.)

FPC,name specifies the one=- to four-character name of
an installation-determined form overlay and is used in
output scheduling for the Xerox 1200 or a similar de-
vice. The default is to have no special scheduling
(i.e., the operator will determine which overlay to
use if any).

IN and OUT specifies the direction of the stream. The
default is OUT.

JDE,value specifies the job descriptor entry to be used

in output scheduling for the device. The value must
be in the range 0-89 and specifies an installation

52 System Control Commands

defined procedure describing printer setup attributes
(e.g., VFC tape).

LABEL, text specifies a text string to be appended
to the stream's user-identification banner lines
(see "user-identification banner" in glossary).
The text may not include period, semicolon, or
right parenthesis characters. Up to 255 characters
of text may be specified. However, the length
of the text that will be used is limited by the
size of a line on the device.

LINES, value specifies the number of printable lines
per logical page. The greatest value that may be
specified is 255 lines per page. If this option is not
specified, the value established at SYSGEN time

will apply.

NOBANNER specifies that no user-identification
banner is to be associated with output for this
stream, A FORM name must also be specified for
NOBANNIER to be operative.

NAME,name specifies the one- to four-character name
of a noncontrol input file (see below, "Noncontrol
Input Files"). If used on output, name specifies
the one= to four-character name of an installation-
determined paper form or card stock and is used in
output scheduling for the device. (NAME and FORM
may be used interchangeably.)

NOVFC see VFC below.

ouTt see IN above.

SEQ[,id] specifies that punched output is to have deci-
mal sequencing in columns 77-80, If a user-defined
id is specified, it will be punched in columns73-76
of each card. Sequencing begins with 0000,

SPACE, value[, top] specifies the spacing between lines
(value) and between the top of each page and the first
line printed. A value of 0 or 1 results in single spac-
ing. The greatest value that may be specified is 15,
The default is single spacing.

SRCB specifies that the user will supply a' device-
dependent control byte as the first byte of each
record if this is an output stream, or that he wishes
to receive it as the first byte of records if this is
an input stream, This option is used only for re-
mote processing.

VFC and NOVFC specifies whether or not vertical for-
mat control characters are to be used. (These two op-
tions are legal only for line printers.) VFC requests
that a default vertical format control character be
added to all records. NOVFC requests that the format
character be stripped from the record if present. The
default is VFC,

CONCURR places the symbiont output stream in con=-
current output mode, a mode in which output is broken
into groups ("chunks") and released to the symbiont
stream for output. Once this stream has been selected

by the symbiont for printing or punching, then the
particular device is held until all output produced by
the job has been processed, exceptasotherwise directed
by an operator key-in. If CONCURR is not the only
option specified, then already prepared output will
be packaged for printing in its entirety and a newly
bannered stream will be created for subsequent output.
The COPIES option may not be specified when CON-
CURR is specified.

WSN, {na;ne} specifies the workstation name of the
remote device that is to receive the

stream, where name can be from one to eight alpha-
numeric characters. The default is local output, If
a dollar sign (3) is specified, the name of the work-
station on the JOB command (if one is specified) ef~
fectively replaces the dollar sign. If no workstation
name was specified on the JOB command or if no
JOB command was used, the name of the workstation
from which the job was submitted effectively replaces
the dollar sign. (The dollar sign option allows a job
to be run from more than one workstation without nec-
essitating respecification of the workstation name on
the LDEV command.)

Examples:

1. The following command requests association of L1 with
the local line printer and specifies that the number of
printable lines per page is to be 60, All other attri-
butes are to be supplied by default.

ILDEV L1,(DEV,LP),(LINES,60)

2. The following command requests association of L5 with
the line printer at remote workstation LAX, All other
attributes are to be supplied by default,

ILDEV L5,(WSN,LAX),(DEV,LP)

NONCONTROL INPUT FILES

There are two types of symbiont input: that which is a job
control stream and that which is not, Card readers are
usually defined to be control-type devices and are used to
input job control streams. However, noncontrol input
streams may be entered from the card reader if the first
card of the input deck is

1INCTL [name]

where name specifies the one- to four-character name of
the noncontrol input stream.

90 17 64H-1(9/78)

In this case, the input deck is read until a IFIN is en-
countered. If any job control cards exist in the deck,
they are treated as noncontrol information. That is, the
entire deck is simply read into the input symbiont. This
feature provides, among other things, a means of inputting
jobs that are to be run at a later time,

A file created in this manner must be accessed Via the
LDEV command or M:LDEV procedure using any logical
device stream except Cl, If the user specifies a name
or requests the operator to do so, the user can access
the file using the NAME, xxxx or FORM, xxxx option.
(The operator gives the file a name using the key-in
Syyndd, F'xxxx' where xxxx must be identical to xxxx
on the FORM or NAME option.) If the file is not
given a name by the operator, the next noncontrol file
in the queue that has no name will be returned to the
user,

XEG The XEQ command inltiates the execution of
control commands read from a keyed or consecutive file
called a command file. It provides a convenient method
of executing a frequently used sequence of commands.
The format of the command is

I/!XEQ (FILE ,name[, account(,password]])[, (REC,value)]
where

FILE,name [,account [,password]]specifies the comniand
file. The name cannot exceed 11 characters in length.

REC,value specifies an optional starting record number.
The records are (logically) numbered consecutively
beginning with 1 for purposes of this command. (Even if
the record has Edit keys, for example, the keys do not
apply when specifying the beginning record number.)

If a record number is not specified, command execution
begins with the first record of the command file.

As each command in the file is executed, it is output on
the line printer preceded by its record number.

Example:
IXEQ (FILE,ABJOB)
%% ABJOB EXECUTED AT RECORD 0001 **
0001 - ASSIGN F:IN, (FILE, PAYROLL)

0009 - ASSIGN F:11, (FILE, EMPS)
x*ABJOB TERMINATED AT RECORD 0009 **

Upon termination of command file processing, the system
resumes reading control commands from the card reader.

Command files executed by XEQ must consist of valid
control commands with a ! character in the first
position of the record, The ! character is not printed on
the line printer, however. Also, the user must provide
assignments for all DCBs through which the program

or processor will read data. Note that M:C cannot be
assigned in the batch mode.

System Control Commands 53

Command file processing will be terminated when any of
the following conditions occur:

1. An end-of-file occurs for the command file.
2. A EOD or FIN command is encountered.

3. A syntax error occurs while processing a command
in the command file.

4. Anillegal command is encountered. There are
three illegal commands: JOB, BIN, and BCD,

5. Another XEQ command is encountered within the
command file. The second XEQ terminates the
current command file and processes the newly
specified command file.

INPUT CONTROL COMMANDS

Input control commands must not have any spaces between
the exclamation character and the mnemonic. Input
control commands are not listed on the LL device.

BIN The BIN control command informs the monitor
that the information to follow will be in binary. Thetermi-
nation of the binary information is specified by a BCD con-
trol command (see "BCD", below).

The form of the BIN control command is

1BIN

Binary decks punched by monitor processors are identified
as binary by means of a code in the first column of each
card, Therefore, such decks need not be preceded by a
BIN command., However, all user-formatted binary decks
must be identified as binary by means of the BIN control
command; otherwise, read-check errors may cause the job
to be aborted.

BCD The BCD control command is used as a terminator
for binary input, i.e., it causes the monitor to revert to its
normal EBCDIC input mode.

The form of the BCD control command is

18CD

DATA The DATA control command is used to inform the
monitor that no more debug control commands are to follow.
It is required immediately after the last debug command
following a RUN control command (or after the RUN com-
mand itself if there are no debug commands) unless no data
deck is to be read from the C device (in which case the
monitor assumes that no debug commands are to follow).

54 Input Control Commands/Utility Control Commands

The DATA control command has the form

IDATA

EOD The EOD (i.e., end of data)control command may
be used to define data blocks in a data deck. This is ac-
complished by inserting EOD control commands at the end
of each block of data. When an EOD command is en-
countered, the monitor returns an abnormal code of 05 in
SR3 (if the user has specified an abnormal address in the
M:READ procedure).

The EOD control command has the form

IEOD

Any number of EOD control commands may be usedin a job.

FiN The FIN control command is used to inform the
monitor that there are no more jobs to be processed.

The FIN control command has the form

IFIN

On encountering a FIN control command, the monitor auto-
matically suspends symbiont activity for that input device.

UTILITY CONTROL COMMANDS

The utility control commands described below allow the
user to manipulate magnetic tape files. These commands
are only valid when used with library DCBs (of the form
M:xxx).

PFIL The PFIL (i.e., position file) control command
may be used to cause a designated number of physical files
on unlabeled tape to be moved (i.e., skipped) in a speci-
fied direction. For unlabeled tape, the tape will be posi-
tioned after the end-of=file in the direction skipped.

The form of the PFIL control command is

IPFIL dcb name[,(BACK)][, (files)]

where

dcb name specifies the name of the DCB associated
with the files to be skipped.

90 17 64H-1(9/78)

BACK specifies that skipping will take place in
the reverse direction (the default option is skip-
ping in the forward direction).

files specifies the (decimal) number of files to be
skipped. If the files option is not specified, 1 is
assumed.

"REW The REW control command may be used to cause the
tape associated with a specified DCB to be rewound,

The form of the REW control command is

IREW dcb name

where dcb name specifies the name of the DCB associated
with the tape to be rewound.

WEOF The WEOF control command may be used to
cause a physical end-of-file fo be written on unlabeled
tape (see M:WEOF procedure).

The form of the WEOF control command is

IWEOF deb name

where dcb name specifies the name of the DCB associated
. with the tape on which the end-of=file is to be written,

SWITCH Any of six pseudo sense switches may be set
or reset by means of the SWITCH control command.

The form of the SWITCH control command is

ISWITCH [(SET,value [,value]...)] —]

L_ [(RESET,value [,value]...)]

where

SET,value specifies which pseudo sense switches are
to be set. The "value" may be from 1 o 4, and
more than one value may be specified. If ALL is
specified, all pseudo sense switches will be set.

RESET,value specifies which pseudo sense switches
are to be reset. The "value" may be from 1 to 6,
and more than one value may be specified. If
ALL is specified, all pseudo sense switches will
be resef.

If a conflict exists between the SET and RESET options, the
last setting specified in the command will apply, since
the monitor processes the options in sequence (i.e., left
to right),

Three library routines (L:TSS, L:SSS and L:RSS) are also
provided to allow processors and user programs to set, reset,
and test specified pseudo sense switches. The entire sense
switch simulation is based on the use of a pseudo sense
switch register contained in a Task Control Block (TCB)
established and maintained by the monitor. The first
two words of the TCB comprise a Stack Pointer Double-
word (SPD), and the subsequent words contain additional
information used by the monitor to control the current task,
When the monitor transfers control to a user's program (or
a processor), it places the word address of the TCB in
general register 0,

When a user's program calls any of the sense switch library
routines, general register O must contain the word address
of the TCB. General register 6 is used for passing the num-
ber of the specified sense switch. The link register is
general register 11, and general registers 6-10 are volatile
(not preserved by the library routine).

The linkage
BAL, 11 L:TSS

causes the sense switch specified in general register 6 to be
tested. If the switch is set, the condition codes are all set
(to 1); otherwise, the condition codes are reset (to 0).

The linkage
BAL, 11 L:SSS

causes the sense switch specified in general register 6 to be
set. If the number of the specified switch is not within the
range 1-6, the routine will ignore the request.

The linkage
BAL, 11 L:RSS

causes the sense switch specified in general register 6 to be
reset. If the number of the specified switch is not within

_the range 1-6, the routine will ignore the request.

Utility Control Commands 55

P
(o

L

4. SYSTEM PROCEDURES

INTRODUCTION

Monitor procedures enable the user's symbolic Meta=Symbol
program to request a variety of monitor functions. When

a procedure call is encountered during the processing of a
program, the processor responds by retrieving a symbolic
calling sequence from the procedure library, modifying it
according to the parameters specified in the procedure
call, and inserting the modified symbolic code into the
user's source program (to be translated into object code
during a subsequent processing phase).

At execution time, the calling sequence calls an appro-
priate monitor routine that, in turn, performs the desired
function. In this manual, the monitor routine called at
execution time, as the end result of a procedure call
having a command mnemonic of the form M:XYZ, is re-
ferred to as monitor routine XYZ,

When using Meta=Symbol, the monitor procedure library
is invoked via the directive

SYSTEM BPM

This directive defines all of the monitor procedures. The
Sigma computer instruction set is invoked by the directive

SYSTEM S1G7(F](D}{P]

where F specifies the floating point option, D specifies
the decimal option, and P specifies privileged instructions,

The Xerox 560 and Sigma 9 computer instruction sets are
invoked by the directive

SYSTEM SIG9[P]

-where P specifies the privileged instruction set.

Thus, both the SYSTEM BPM and the SYSTEM SIG direc-
tives should be used. When the SYSTEM BPM directive is
processed, two control sections are declared for use in
generating function parameter lists for monitor procedures
subsequently used. Normally, FPTs are generated in un-
protected storage (protection type 0). The M:PT procedure
allows the user to generate FPTs in either unprotected stor=
age {profection type 0) or protected storage (protection
type 1).

BPM procedures are of three forms: standard, list, and
execute., The standard form results in both executable code
and FPT generation during procedure expansion with FPTs
being placed in an internal CSECT exclusive to System
BPM.

56 System Procedures

-

Example:

SYSTEM BPM

M:OPEN F:ANS, IN Generate OPEN CAL and

OPEN FPT,
The execute form results in only executable code generated
during procedure expansion with the argument field inter=
preted as the FPT address.

Example:

M:OPEN,E OPENFPT Generate OPEN CAL using
OPENEFPT.

The list form results in only FPT generation during pro-
cedure expansion.

Example:

OPENFPT M:OPEN,L F:ANS,IN Generate
OPENFPT.

Often it is desirable to be able to symbolically reference
the parameter list associated with a particular procedure.
The second element of the label field list is used for this
purpose.

For example, assume the user wanted to use the label RD

to identify the address of the CAL generated for the read
function on the C device, and also wanted to use the label
RDFPT to identify the address of the Function Parameter
Table (FPT) for the same function. He could do so by means
of the following Meta-Symbol procedure reference in his
program:

Label Command Argument

RD, RDFPT M:READ M:C, (BUF, ALPHA)

Examples:
WR M:WRITE arglst
, OPNFPT M:OPEN arglst

. In the first example, above, the label WR identifies the

address of the CAL generated for the write function speci-
fied by the argument list (represented here by "arglst").

In the second example, the label OPNFPT identifies the
address of the first word of the FPT generated for the OPEN
function specified by the argument list (the associated CAL,
in this example, is not given a label; hence, the comma
preceding OPNFPT).

Because code generated for system procedures is placed in
a different control section than the user's program, the $
symbol should not be used in procedure calls to repre~
sent the "present location",

The format conventions used by the procedure calls is of
the same form as previously defined for control commands
{see Chapter 3). In addition, an asterisk (*) is used in pro-
cedure calls to denote indirect addressing (* address) or to
show that the indirect addressing technique can be used
where a variable (* value or * limit) is the address of a
location containing the variable, The terms SR1, SR2, and
SR3 are used to refer to system registers 1, 2, and 3 (which
are more commonly knownas general registers 8, 9, and 10).

Each procedure call described in this chapter shows the
Function Parameter Table (FPT) it generates. In the formats
given, an asterisk in bit one of a word indicates that indi-
rect addressing may be used. (Indirect addressing wiil be

used if the bit is set to one.)

GENERAL-PURPOSE PROCEDURES

/SET FPT PROTECTION TYPE

M:PT Normally, FPTs are generated in unprotected
storage (protection type 0). The M:PT procedure allows
the user to generate FPTs in either unprotected storage
(protection type 0) or protected storage (protection type 1).
The procedure has the form

[labe!1)[,(labelZ)[,label3]] M:PT type
where

label is set to the current value of the location
counter ($).

label2 is set to the address of the beginning of the

protection type O (unprotected) control section
used for generating SYSTEM BPM FPTs.

label3 is set to the address of the beginning of the
protection type 1 (protected) control section used
for generating SYSTEM BPM FPTs.

type sets the new protection type (0 or 1) to be
used when generating SYSTEM BPM FPTs in all
subsequent procedure reference lines until the
next M:PT is encountered.

Example

SYSTEM BPM

, PTO, PT1 M:PT 1
DEF PTO, PT1
M:OPEN M:E]
M:READ M:EI, (BUF, X)
M:PT 0
M:CLOSE M:EI

In this example PTO is the address of the beginning of the
unprotected control section and PT1 is the address of the
beginning of the protected control section used for genera-
ting SYSTEM BPM FPTs. The FPTs generated by M:OPEN

90 17 64H-1(9/78)

and M:READ are protected (type 1) and the FPT generated
by M:CLOSE, along with all FPTs generated until the next
M:PT, is unprotected (type 0).

The M:PT procedure does not generate an FPT or any ex-
ecutable code.

Caution: Through the use of the Meta=Symbol USECT direc~
tive together with the label field of the M:PT
procedure, the user can direct generation of code
into the confrol section intended for the exclusive
use of the BPM system procedures. Thiscanlead to
unpredictable results and is therefore discouraged.

LOAD OVERLAY SEGMENT

M:SEGLD The monitor routine SEGLD causes a speci-
fied overlay segment to be loaded into core storage. If
an 1/O error occurs in executing the SEGLD routine, or if
the specified segment is not found, the job is aborted. The
routine brings in both the data and procedure segments,
unless they are already resident in core.

The M:SEGLD procedure call has the form

M:SEGLD [Jaddress]
'segment name'
where
address specifies the address of the first word of a

byte string containing the name (in TEXTC format)
of the overlay segment to be loaded.

'segment name' specifies the name of the overlay
segment to be loaded.

Calls generated by the M:SEGLD procedure have the form
CAL1,8 fpt
where fpt points to word 0 of the FPT shown below.

word 0
X'o1' 0

0 I
0 1 2 304 5 6 718 9 10 11712 13 14 15716 17 18 ¥] 4 25 F:) Kl
Caution: If bit 8 is not set, control returns to the word fol-
lowing the FPT, rather than the word following
the CAL.

word 1
*|0 0 Address of byte string

T 7 7 314 5 6 718 ¢ 101112 13 14 15116 17 18 #1021 27 D13 235 % D17 ® EJED

If 'segment name' is specified in the procedure call, the
following words are also generatedas partof the FPT. They
contain the segment name in TEXTC format. The address in
word 1 points to word 2 in this case.

word 2

Byte count character string =

T 3Ta S e 718 5 0 itz 13 14 15Tie 17 18 WM I 22 B3 25 % DI H B3
word n

character string

T 23145 ¢ AR TITiZ 13 14 15116 17 18 19120 21 22 23124 25 26 27128 ¥ 0 31

General-Purpose Procedures 57

LINK TO A LOAD MODULE

MiLINK The monitor LINK routine causes the calling
load module's core information (i.e., program and data,
except common dynamic data) to be saved in disk storage.
The calling module's core area is made available to the
called module. The called module is then loaded into
core storage (overlaying the calling program) and control
is transferred to it. If there is no transfer address associ-
 ated with the called module, the job is aborted. The
user's temporary and permanent load module libraries are
searched for the specified load module. If it is not found
or an 1I/O error occurs in executing the LINK routine, the
job is aborted, A return to the calling module may be
effected in one of two ways:

1. The called module may return explicitly by making use
of the monitor's M:LDTRC procedure,

2. The EXIT or ERROR options may be used in M:LINK by
the calling program, causing the called module to re-
turn implicitly when it exits, errors, or aborts,

Any communication between the calling and called load
modules must be accomplished through the general registers
or common dynamic storage.

The monitor-assigned file name of the calling program is
contained in SR1, allowing the called module to return to
the calling location + 1 (via M:LDTRC, returning control
to the overlaid program), If a program is entered via a
RUN command, however, SR1 is set to zero. (Remember
that SR1 is system register 1, or general register 8.)

Programs to be linked to or transferred to must have been
loaded by Load or LYNX, but not by Link. M:LINK cannot
be used to link to a command processor.

Pages obtained by M:GVP must have been freed before an
M:LINK or M:LDTRC is issued or an error will result,
Pages released from the user's assembled data area must
have been restored before an M:LINK or M:LDTRC is is-
sued or an error will result. That is, the virtual memory
area that includes assembled data, program, and dynamic
data must be continuous. Note that when DELTA has not
been associated by "START...UNDER", the pages required
for DELTA's symbols are acquired via M:GVP and must be
released by ;k under DELTA.

If exit control has been established in the calling pro-
gram, the issuing of an M:LINK procedure will cause
control to be passed to the effective exit control routine
(see M:XCON), Specifying EXIT or ERROR on the M:LINK
procedure has no effect on either the exit control that®
may have been established in the calling program or
any exit control that may be established by the called

program,

58 General-Purpose Procedures

word 1

The M:LINK procedure call has the form

M:LINK ‘name'[, ['account'][, 'password']]——-]
l—[, (cMD, [[+ chdr])]l}(gfg?k)] ;

where

‘name’ specifies the name of the load module to
which control is to be transferred. The name is
limited to 11 characters not including the quotes.

‘account' specifies the account from which the
load module is to be obtained.

‘password’ specifies the password associated with
the load module.

CMD,[[*laddr] is the address of a TEXTC string to be |
passed (via J:CCBUF, the control command buffer
confained in the JIT) to the called program. When
in the on-line mode, the text string begins in |
byte zero of J:CCBUF and has a carriage return
character (X'0D') appended to it. The character
count of the resulting string is passed in JB:CCARS.
In the batch mode, byte zero of J:CCBUF is a
blank (X'40'), the string begins in byte one, and
the remainder of J:CCBUF is blank filled. Text
strings are limited to 79 characters. If longer
strings are given, they are truncated to 79 char-
acters. |f CMD is specified but addr is not speci-
fied, then 'name' is placed in J:CCBUF following
the above conventions. If CMD is not specified,
J:CCBUF is not altered.

EXIT specifies that return should be made to the
calling program following the M:LINK CAL when
the linked-to program exits normally.

ERROR specifies that return should be made if the
linked -to program errors or aborts (via M:ERR or

M:XXX). ERROR also implies EXIT.

Calls generated by the M:LINK procedure have the form
CAL1,8 fpt

where fpt points to word O of the FPT shown below.

word 0

X'02' |0 sexHAIP i

0 1 2 3T4 5 6 718 910 nl2 13 14 15718 17 18 19120 21 22 23724 25 26 27128 29 30 31

first word of name ('‘name' is in TEXTC format)

.01 2 314 s Q] 718 9 10 Nz 13 1415718 17 18 Wtm 21 2 23'24 25?627‘2829303]
.

.

word n

last word of name
0 1 2 314 5 &6 778 9 10 N2 13 4 |5ﬁ6 7 Ii WINZI 5’55242556552'5&3!‘

90 17 64H-1(9/78)

word n+1

first word of account {(account is in TEXT format)
.0 T2 314 5 6 718 9 10 11112 13 14 15116 17 16 19120 21 22 23124 25 26 27128 29 30 31

word n+2

last word of account

0 1 2 314 5 6 778 9 10 1112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

word n+3

first word of password (password is in TEXT format)
T T T T T T O T R M U R U R T T B B w T B

word n +4
last word of password
1 5 6 7 ? W nh2 4 15116 17 18 1 21 23024 25 26 27128 N
word n +5
* CMD string address

0 1 2 314 576 73!8 9 10 112 13 7415716717 18 19120 21 22 23124 25 26 27128 29 30 31

where

S is set if CMD was specified and the command
string address was NOT specified.

E is set if ERROR was specified.

X is set if EXIT was specified.
Cc is set if CMD was specified.
A is set if the account was specified.
P is set if the password was specified.
LOAD AND TRANSFER CONTROL
M:LDTRC The monitor routine LDTRC loads a specified

load module (either one that had been partially executed
and then saved as the result of an M:LINK procedure call,
or else a "new" one), releases the core area used by the
calling module, and transfers control to the starting ad-
dress of the called module, If the called module was a
previously saved program, it will be entered at a point
immediately following the original M:LINK call, provided
that the monitor-assigned file name of the previously
saved program (communicated to the user via SR1) was
stored into word 1 of the FPT associated with the M:LDTRC
call prior to executing the M:LDTRC call.

The user's temporary and permanent load module libraries
are searched for the specified loact module, If it is not
found or an 1/O error occurs in executing the LDTRC rou-
tine, the job is aborted.

90 17 64H-1(9/78)

Any communication from the calling module to the called
module must be accomplished through the general registers
or common dynamic storage.

Programs to be linked to, or transferred to, must have been
loaded by Load or LYNX, but not by Link.

Pages obtained by M:GVP must have been freed before an
M:LINK or M:LDTRC is issued or an error will result.

Pages released from the user's assembled data area must
have been restored before an M:LINK or M:LDTRC is issued
or an error will result, That is, the virtual memory area
that includes assembled data, program, and dynamic data
must be continuous., Note that when DELTA has not been
associated by "START... UNDER", the pages required for
DELTA's symbols are acquired via M:GVP and must be
released by ;k under DELTA.

If exit control has been established in the calling program,
the issuing of an M:LDTRC procedure will cause control
to be passed to the effective exit control routine (see

M:XCON).

No special shared processors other than public libraries
may be associated with the programat the time an M:LDTRC
is issued.

Shared processors may use M:LDTRC; however, special
shared processors may not use M:LDTRC. M:LDTRC may

also be used to initiate the processing of a TEL or CC|
command (\XEQ) file. No special options need be specified
on the M:LDTRC procedure call. If the following condi-
tions are met, the system will terminate the current

program and simulate an . XEQ command:

1. The file specified in the M:LDTRC procedure call must
be either unkeyed (consecutive) or Edit keyed
(KEYM = 3).

2. The program issuing the M:LDTRC must not have been
loaded by an M:LINK, either directly or indirectly.

3. Command file processing must not be in effect at the
time of the M:LDTRC.

This feature may be disallowed by the installation manager.

The M:LDTRC procedure call has the form

M:LDTRC 'name’[, ['account'], 'password']
where
‘name’ specifies the name of the load module or

command file to which control is to be trans-
ferred. The name is limited to 11 characters
not including quotes.

'account’ specifies the account from which the
load module is to be obtained,

'password' specifies the password associated with
the load module,

Calls generated by the M:LDTRC procedure have the form
CAL1,8 fpt

General-Purpose Procedures 59

where fpt points to word 0 of the FPT shown below.

word 0

X'03' 0 olalP

minute, and number of 2-millisecond units since
last thousandth of a minute, and SR3 will contain
thousandths of a minute since last minute, as:

R AR A S AT] BT T At T R T DR S BB e PN

where A, P, and the subsequent words of the FPT are of the
same form as shown previously for M:LINK.

GIVE TIME AND DATE

M:TIME The monitor TIME routine gives the time of
day and the current date,

The M:TIME procedure call has the form
M:TIME [*laddress[,TMS]
where

address specifies the address of a four-word block
where the time and date are to be stored. The
four-word block where the time and the date are
to be stored cannot lie within registers. (I/O
buffers cannot lie within general registers and
space for the time and the date is considered an
1/O buffer,) The (EBCDIC) byte format of this
block is shown below.

word 0

h h : m

word 1

word 2

word 3

where

hh is the hour (00 < hh < 23),
mm is the minute (00 € mm < 59).
mon is the month (standard 3-letter abbr,).
dd s the day (01 <dd < 31).
yy s the year (005 yy < 99).
TMS indicates that the date and time (including
resolution down to basic timer units) are to be re-
turned in binary. If TMS is specified, SR1 will

contain the year and Julian days, SR2 will con-
tain the hour of day, minute of hour, second of

, 60 General-Purpose Procedures

SR1
Year Day
5T 7 3Te s e TIe S o nhiz 13 st 17 16 Wi 21 27 12 15 26 D1 W/ T
SR2
Hour Min L Sec TN'S
L B R R S F R T T) R R RN NP AT F O TR RN E] F7OF ERE TN A PN T
SR3
1/1000 of a min

T 1 2 14 5 & 718 9 10 11112 13 14 15116 17 16 19120 2t 22 23124 25 26 22128 29 30 N

where

Year is a binary value, for example, 1970
is represented as X'46',

Day is the Julian day of year represented
in binary; for example, September 14 is
represented as X' 101",

Hour is the hour of day (0-23).

Min is the minute of hour (0-59).

Sec is the second of minute (0-59).

TMS is the number of two millisecond units
since the last 1/1000 of a minute (0-29).

1/1000 min is the thousandths of minute
since last minute. This is supplied
because the monitor records time in
1/1000 minutes as the smallest increment
in job accounting.

Calls generated by the M:TIME procedure have the form
CAL1,8 fpt
where fpt points to word 0 of the FPT shown below.

word 0

, * Address of block to
* L] 1
X'10 B 0 0 receive time and date
113f4567l7|0l|121314|lb\la 1 24 25 26 28 3"

If TMS is specified, bit 8 is set to 1

TYPE A MESSAGE

M:TYPE] The monitor TYPE and MESSAGE routines
M:MESSAGE cee

output a specified message to the opera-
tor, on the operator's console typewriter. In batch opera-
tions, the two routines are equivalent.

The M:TYPE and M:MESSAGE procedure calls have the
form

90 17 64H-1(9/78)

M:TYPE }

M:MESSAGE (MESS, [*Jaddress)

where MESS, [*] address specifies the word address of the
beginning of the message to be typed. The first byte of
the message must specify the number of characters in the
message. The message may consist of not more than 136
alphanumeric characters. The address can be indirect to

a register; however, the message cannot be in registers,

Calls generated by the M:TYPE and M:MESSAGE procedures
have the form

CAL1,2 fpt
where fpt points to word O of the FPT shown below.

word 0
4 |
Code 0
T T T T e T I T T Tt T TRt T B s Tt E T

word 1 (parameter-presence-indi cator word)

02 3i4 5 6 718 9 10 FRERD Isllb 17 1B 19120 21 22 23124 25 26 27!2829303

word 2)
*0 0 Message address

0 1 2 314 5 6 718 ¢ 10 11112 13 14 1511 17 18 19120 21 22 23124 25 26 Z7|2829.’m3|\

Code equals X'02' for M:TYPE FPTs, and zero for
M:MESSAGE,

Py must be equal to 1, indicating that the following param-
eter word (word 2) is present.

The M:TYPE procedure supplies REFs for M:LL and M:OC.

REQUEST A KEY-IN

M:KEYIN The monitor KEYIN routine types a specified
message to the operator and enables the operator's reply to
be returned to the user's program.

The M:KEYIN procedure call has the form

M:KEYIN (MESS,[*laddress)[, (REPLY ,[*]address)]
E, (SIZE, value)][, (ECB, [*address)]
[, (OC)]

where

MESS, [Jaddress specifies the word address of the
beginning of the message to be output to the oper-
ator. The first byte of the word must specify the
number of characters in the message. The address
can be indirect to a register, however the message
cannot be in registers. The message may consist
of not more than 136 alphunumeric characters.

REPLY, [*]address specifies the word address of the
location at which the beginning of the operator's
reply is to be stored. The first byte of the word
will {outomatically) contain the number of char-
acters in the reply. Indirect addressing can be
made to a register; however, the message may not
be in registers. If REPLY is not specified, the
operator's reply is stored at the address specified
by the MESS parameter.

90 17 64H-1(9/78)

S{ZE, value specifies the maximum number of
alphanumeric characters to be accepted from the
operator's key-in and stored. If SIZE is not
specified, a size of 60 characters is assumed.

ECB, [*]address specifies the word address of the
Event Contro! Block (ECB) to be posted when a
reply has been received. Bit O of the ECB is set
to 1 until the reply has been received, then it is
set to 0. Indirect addressing can be made to o
register- however, the word may not be in a register.

ocC specifies that the message is to go to the oper-
ator's console and that the reply isto be received
from the operator's console. (In the on-line mode,
the message goes to the user's console and the reply
is received from the user's console if this option is
not specified.)

Calls generated by the M:KEYIN procedure have the form
CAL1,2 fpt
where fpt points to word 0 of the fpt shown below.

word 0

X'04' 0 0

0 v 2 3T4a 5 677718 9% 10 N2 13 14 15116 17 18 wfﬁ 2122 23124 25 26 22128 29 30 3

word 1

PlPlP f

12 34{0 ofhj0—o0
0) 2 34 5 6 7‘|0 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 2 (Pl)

*0 0 Message address

01T 2 38 3 578 v 0 MZn Wi 7T BRI B BRI R

word 3 (P2)) »
*0 0 Reply address '
01 2)ﬁ 5 6 7 is 9 10 11112 13714 15118 17 18 19120 21 22 23124 25 26 27(28 29 30 31
word 4 (P3)

*10 0 Message size

0 1 2 314 5 6 718 9 101111213 1415116 17 18 I9'202I 22 23124 25 26 FAr

word 5 (P4)

*10 0 ECB address
0 1V 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 252627'28 29 30 3

P; must be set to 1, indicating that word 2 is present. If
fy is set, the OC option was specified.

The M:KEYIN procedure supplies REFs for M:LL and
M:OC.

General-Purpose Procedures 61

WRITE TO LISTING LOG

M:PRINT The monitor PRINT routine outputs a specified
message on the listing log (LL) device.

The M:PRINT procedure call has the form

M:PRINT (MESS, [*Jaddress)

where MESS, [*laddress specifies the word address of the
location containing the beginning of the message to be out-
put. The first byte must specify the number of characters
in the message. The message may consist of not more than
136 alphanumeric characters (132 if LL is assigned to a
line printer). Indirect addressing can be made to a register,
however, the message may not be in registers.

Calls generated by the M:PRINT procedure have the form
CALI,2 fpt

where fpt points to word 0 of the FPT shown below.

word 0

X'on 0 0
T Tyt sy v o o unstv v e Wi T otn s s ot e

ko 0
G B S8 T [1 KO T3 AT VA T 12 - R T 5 5 70 L0 TR A b I i O
word 2

*10 0 Message address
0 1 2 304 5 6 7i5 9 10 1nl12 13 14 |5i|6 17 18 19120 21 22232425361728293031

Pl must be equal to 1,

The M:PRINT procedure supplies REFs for M:LL and M:OC.

SUSPEND PROGRAM

M:WAIT The WAIT routine causes the specified number
of units of real-time to elapse before the next instruction
in sequence is executed. It is used by programs that are to
be executed periodically or must wait for files in use by
another program. When execution of a program has been
suspended by this CAL, it is resumed at a priority just
higher than the current compute bound users.

The procedure call is of the form
M:WAIT units
where units specifies the number of 1, 2-second intervals to

elopse before the next instruction is executed and is
treated modulo 24 hours.

62 Exceptional Condition Control Procedures

Calls generated by the M:WAIT procedure have the form
CAL1,8 fpt

where fpt points to the FPT shown below.

* X'OF! Number of 1.2-second intervals to wait

T T T O TGE T eI T e R B O e R

EXCEPTIONAL CONDITION CONTROL PROCEDURES

The procedures described in this section allow the user pro-
gram to take program control to a specific location for pro-
cessing whenever one of the exceptional conditions occurs.
Also described in this section are procedures that allow the
program to return after processing the exceptional condi-

tions, to exit completely from the program, and to simulate
and test certain of the exceptional conditions.

Exceptional conditions may be divided into two categories:
1/O related and the rest. They are distinguished both by
the method of requesting control and by the difference in
the environment available to the routine taking control.

I/O related conditions are requested by establishing error
and abnormal addresses in the DCB, usually using the
M:OPEN procedure, or by establishing them with each
M:READ or M:WRITE. The resulting four types of conditions
are described in Appendix B, "Monitor Error Messages".
This appendix also describes the contents of the general
registers when the error or abnormal routine takes control.
Certain registers are made to contain the error codes and
the DCB address and no environment is saved, as is the case
with the rest of the exceptional conditions described below
in this section. Two procedures in this section relate to
1/O errors: M:MERC which allows an error or abnomal
processing routine to return control of the error to the moni-
tor, and M:XCON which takes control of all exceptional
conditions including 1I/O errors.

Four of the pracedures are used to request exceptional con-
dition control:

M:TRAP to take control of machine traps.

M:STIMER to take control after a time interval.

-M:INT to take control of the console interrupt
or terminal break key.

M:XCON to take control of all exceptional

conditions.

These routines simply establish the address of a program

routine to be entered when the condition occurs. The First

three take precedence over the last — that is, if both TRAP
and XCON are requested and a trap .occurs, control will go
to the address specified by M:TRAP.

M:XCON allows control to be taken in several cases not
otherwise available: exceeding LIMIT card specifications,

“operator aborts, line hangups, and program exits (M:EXIT,
M:ERR, M:XXX).

When the exceptional condition processing routine specified
by any of the above four procedures is entered, a common
environment is established as described below. This consists
of two parts:

1. The contents of the general registers on entry to the
routine.

2. The machine environment at the time the exceptional
condition occurred, which is stored in the pushdown
stack in the user's task confrol block (TCB). (See
Chapter 6 for other details of the TCB.)

Exceptional Condition Registers

On entry to exceptional condition procéssing routines the
general registers have the contents shown below. For
M:XCON processing only, additional registers are set as
specified later in this chapter in Table 9. Unspecified
registers have arbitrary contents.

Register 0 contains the address of the stack pointer
doubleword in the TCB.
Register 1 contains the address of the PSD within

the TCB stack.

When running on the Xerox 560, register 7 contains the
contents of the internal control register Q30 decremented
by one, which is effectively the address of the last success~
ful branching type instruction executed by the machine
immediately prior fo the user's trap. If the address is below
A000, the user has not executed a successful branch type
instruction yet and the address reported is meaningless.
(Q30 is described in detail in the Xerox 560 Computer/
Reference Manual, 90 30 76.)

Exceptional Condition TCB Stack Contents

On entry to an exceptional condition processing routine,
the program environment at the time of occurrence of the
condition may be found in the user's TCB pushdown stack.
The environment consists of 20 or 21 words as shown in
Figure 5.

SET TRAPS

M:TRAP The monitor TRAP routine sets and resets the
trap conditions. Any trap condition that occurs while in
the "trap" state causes control to go to a user's routine;
any trap condition that occurs while in the "abort" state
causes the user's program to be aborfed. Maskable traps
(i.e., fixed=-point and decimal arithmetic) may be masked
off so they do not occur, by placing them in the "ignore"
state.

Possible spacer word to ensure that the PSD
will be on a double word boundary.

: :

Minus one if space word required; zero if not.

| User's PSD at time of occurrence of the
exceptional condition,

/Contenrs of 16 general registers at the time of/

occurrence of the exceptional condition.

Trap location for traps; arbitrary otherwise.

Figure 5. TCB Stack Contents on Exceptional Condition

Each time the monitor TRAP routine isentered, the previous
contents of the Program Trap Conditions (PTC) become

" available. The PTC always contains the current trap set-

tings. Prior to the first M:TRAP, the mask bits are all zero.
The first word of the PTC (returned in SR1) indicates which
traps are in the "trap" or "abort" state and which mask-
able traps are in the "ignore" state,

The second word of the PTC (returned in SR2) contains the
transfer address of the previous trap condition. Using the
RESTORE option (see below) and some previous PTC, the
trap settings can be restored to a previous setting.
The M:TRAP procedure call has the form

M:TRAP[transfer address) [, (ABORT, traps)]

[, (TRAP, traps)][, (IGNORE, mask traps))

[, (PERMIT, mask traps)]
or

M:TRAP (RESTORE, ptc address)

‘where

transfer address specifies the address of a user's
routine to handle any traps caused by the TRAP
option (see below).

Exceptional Condition Control Procedures 63

ABORT ,traps specifies the traps fo be set to the
"abort" state. Any combination of the following
(separated by commas) mdy be specified:

Trap Designdted Trap(s)

ALL All traps listed below.

CAL Bad CAL.

DEC Decimal arithmetic,

FP Floating=point arithmetic.

FX Fixed=-point arithmetic,

NAO Nonallowed operation,

PS Push-down stack limit,

Ul Unimplemented instruction,
TRAP fraps specifies the traps to be set to the

"trap" state. Any combination of the above may
be specified.

IGNORE,mask traps specifies which maskable
traps are to be set to the "! nore" state. Any of
the following may be specified.

Mask

T aps Designated Trap(s)

FX Fixed-point arithmetic,
DEC Decimal arithmetic.
BOTH Both of the above,

PERMIT ,mask traps specifies which maskable traps
are to be set to the "permit" state. Any of the
traps shown may be specified.

RESTORE,ptc address
previous PTC.

specifies the address of a

Calls generated by the M:TRAP procedure have the form
CALT,8 fpt
where fpt points to word 0 of the FPT shown below.

word 0

‘M:STRAP

X'14! 0— 0| Exit address or PTC address

0 1 27374 5 6 718 9 10 11112 13 14 15[16 17 18 19120 21 22 23124 25 26 27128 29 30 31

4 Exceptional Condition Control Procedures

d 1 .
wer Permit Ignore

2 23124 25 26 27128 29 30 31

F] Abort Tlrap

012 3i4 5 6 718 9 10 112 13 14]Silb

where control bits are shown below and Fy specifies whether
to restore (F] = 1) or to set new trap conditions (F] =0).

2 3 4 5 &6 7 8 22 23
Abort bits| [N{U|P|F|D|F|C|] Permitbits |D|F
AT [S|PIE|X|A E|X
@) C L C
Trap bits Ignore bits
10 11 12 13 14 15 16 30 31

When a user's trap routine is to be entered, due to the
occurrence of a trap condition for a set=trap, the informa-
tion stored in the user's stack and the contents of registers
are as described at the beginning of this section. The top
word of the stdck contains the trap location (X'40' - X'4B").,
The condition codes are those set by the hardware trap, so

- the user may defermine which type of nonallowed operation

caused the trap.

The trap return function (see "M:TRTN") can be used to
return to the trapped program. The monitor does not in-
crement the PSD when a trap occurs, If the PSD for the
trapped program is to be changed, the user must change
the PSD (in the user's stack) before control is returned to
the trapped program,

Trap conditions are accumulated from one M:TRAP to suc~-
ceeding ones, and the most recent transfer address is used
regardless of which trap occurs.

SIMULATE A TRAP

The monitor STRAP routine simulates the
occurrence of a trap condition. The frap condition and
environment are specified by a block of temporary storage
at the top of the user's TCB temp stack as described above
under "Exceptional Condition TCB Stack Contents". The
traps that may be simulated are locations X'40' through

X'45' and X'48' through X'4B'. The monitor pulls the
environment from the user's stack and simulates the occur-
rence of the specified frap with that environment.

The M:STRAP procedure call has the form

M:STRAP

Calls generated by the M:STRAP procedure have the form
CAL1,9 4

No FPT is required by M:STRAP.

SET INTERVAL TIMER

The interval timeris manipulated by the two monitor proce-
dures M:STIMER and M:TTIMER. M:STIMER sets the inter-
val timer and M:TTIMER tests the interval timer.

The basic timing unit used by CP-V is 2 milliseconds and it
refers to user execution time. Thus, M:STIMER is used to
give the user program control at a specified address after
the specified amount of execution time has elapsed. 1/O
time does not count, nor does time spent in the monitor or
executing other user programs.

The time calculation is made each time o time-slice is
required (each QUAN if compute bound and running
alone). Thus, the actual time of the STIMER transfer

of control will vary from the time specified to later than
that by an amount no greater than QUAN. The user may
determine the exact elapsed interval by examining JIT
cells that contain the exact time.

In summary, all M:STIMER and M:TTIMER calls are based
on the closest number of interval timer units (2 milliseconds)
with accuracy of -0 to +QUAN.

‘M:STIMER The monitor STIMER routine sets the interval
timer with the specified value and specifies what action

is to be taken. The interval is to be decremented only

when the job issuing the M:STIMER procedure is operating,

and only one such timing function may be in progress at any
one time. An M:STIMER must be issued for each interval

to be timed.

When the time expires, the PSD ond registers are stored in
the user's TCB stack as described in Figure 5. The user's
program is entered at "exit address” with registers 0 and 1
set as described above. The interrupted program may be
reinstated by use of the M:TRTN procedure.

The M:STIMER procedure call has the form

(MIN, value)
M:STIMER {(SEC, value)],[*Jexn address
A(TUN, value)
where
MIN, value specifies (in minutes) the interval to

which the timer is to be set.

SEC,value specifies (in seconds) the interval to
which the timer is to be set.

TUN, value specifies (in interval timer units) the
interval to which the timer is to be set.

[*lexit address specifies the address of a routine
to be entered when the specified interval ends.
If omitted, zero is assumed.

Calls generated by the M:STIMER procedure have the
form

CALL8 fpt

where fpt points to word 0 of the FPT shown below.

90 17 64H-1(9/78)

i T 1 2 314 5 6 718 9 10 11112 13 14 15116 17 16 19120 21 22 23124 5 26 27178 20 %0 31

word 0
* X 0 oV Exit address
R B S ¢S B /R 8 PR R TR A TR VAT A R R %) § T T TR A R
word 1
Interval value

where U specifies the type of units represented by the in-
terval (0 means seconds, 1 means minutes, 2 means interval
timer units).

TEST INTERVAL TIMER

M:TTIMER The monitor TTIMER routine causes an indi~
cation of the time remaining in the time interval (pre-
viously set by the STIMER routine) to be returned to SR1,
and optionally allows the interval currently in effect to
be canceled,

The M:TTIMER procedure call has the form
M:TTIMER [unif)[, CANCEL]
where
unit specifies the units in which the time indica-
tion is to be returned to SR1, Unit may be either
SEC, MIN, or TUN {(see M:STIMER procedure);

if omitted, TUN is assumed.

CANCEL specifies that the interval currently in
effect is to be canceled. The exit address (see
M:STIMER procedure) is ignored.

Calls generated by the M:TTIMER procedure have the form
CALL, 8 fpt

where fpt points to word 0 of the FPT shown below.

word 0

X'12 0 o|(clo o|uU
ot 2 36‘ 5 6 788 9 10 1112 13 14 15016 17 18 9120 21 22 23024 25 26 27126 29 XK 2
where

C specifies whether the interval in effect is (C = 1)
or is not (C =0) to be concluded.

u specifies the units in which the time indication
is to be returned to SR1 (0 means seconds, 1 means
minutes, 2 means interval timer units).

CONNECT CONSOLE INTERRUPT
M:ANT The monitor INT routine may be called to con-

nect a console interrupt (via the INT key=-in) to a user's

Exceptional Condition Control Procedures 65

program, allowing execution of the program tobe controlled
from the operator's console. When control is given to the
INT routine, the information stored in the user's TCB stack
is as described in Figure 5.

When a user's interrupt routine is entered, the condition
codes are those loaded by the execution of the interrupt.
The TRTN routine (see M:TRTN) may be used to restore
control from a console interrupt.

The M:INT procedure call has the form

M:INT address

where address specifies the location of the entry to the user's
console interrupt routine.

Calls generated by the M:INT procedure have the form
CALL S8 fpt

where fpt points to word 0 of the FPT shown below.

word 0

X'0OE' 0—————0| Address of interrupt routine I
0 1T 23T4 5 6 718 9 10 nil12 13 14 1516 17 18 l’l?o 21 22 23124 25 26 27128 0N

EXIT CONTROL

This facility allows o user program to gain CPU control
following on exit, abort, or line disconnect. This is usu-
ally for the purpose of cleanup or postmortems in the event
of an unexpected problem.

Control is established via the M:XCON procedure. When
an exit or abort occurs, control is passed to the location
which was specified in M:XCON., In oddition, the reason
for the exit or abort is passed to the specified routine,
Limits on output and time are reestablished to control the
exit routine., Exit contro! entries may be nested by the
user.

M:XCON Exit control is established with the M:XCON
procedure, which has the form

M:XCON address [, LAST]
where
address specifies the address of a routine or a.loc-

ation to be entered upon exit of the current pro-
gram whether normal or abnormal. No indirect
address is allowed.

LAST specifies that this exit control request is in-
tended to be the last one and subsequently no other
exit control request will be honored unless issued
while processing an exit. Thus, the program speci-
fying LAST will be the first to receive control on
exit,

66 Exceptional Condition Control Procedures

Calls generated by the M:XCON procedure have the form
CAL1, 8 fpt

where fpt points to word 0 of the FPT shown below;

X119 L0 0| exit control routine address

0 1 2 Jil 56 718 9 10 1111213 14 15716 17 18 19120 21 22 23124 25 26 27128 29 30 3!

where bit 8 is set if the LAST option is specified.

The exit control request may be unsuccessful if some
previous M:XCON has specified the LAST option. In this
case, exit control is not established and CC1 is set on re-
turn from the CAL. If a preceding part of the program has
established exit control, the exit control routine address is
returned in SR1 as is done for the M:TRAP CAL. This ad-
dress may be saved so that the exit contro! routine may
reestablish exit control to its previous entry point after
performing the desired cleanup. The exit control may be
nested.

The absence of the LAST option will imply that. the exit
control is no longer intended to be the last request even

if it has been previously designated to be such. If the exit
routine address is zero, exit control is reset. Thus, there is
an inherent difference between the procedures M:XCON 0
and M:XCON 0, LAST, although the application of the
latter should be directed with special purpose in mind.

Returns from the exit control routine may be performed via
the M:TRTN service with the XCON option specified. Al-
though exit control is similar to trap control, the two are
kept separate to provide the user the convenience of dif-
ferent addresses for each function and to eliminate need to
pass through one exit control routine to get to the other
(e.g., through the trap control to obtain the exit control
address).

Entry to the Exit Control Routine. Conditions that cause
control to be passed to the established exit control routine
are described in Table 8,

1/O errors are treated first by established error and abnormal
routines associated with the I/O. The exit control routine
is entered only if the program would have exited — that is,
the error is not taken care of by a program error routine.

If a progrom processes only some of the errors and returns
control via M:MERC, then control will pass through an
established exit control routine.

Trap control is similar. A program establishing control via
M:TRAP obtains control when a trap occurs for all requested
traps. Those not requested will result in an error exit and
be passed to exit control, if established.

The exit control facility imposes some restrictions on the
linking process to a load module from a calling program.

If an exit control has been established in the calling
program, the issuing of a M:LINK procedure will cause con-
trol to be passed to the effective exit control routine. In the

Table 8. Exits to the Monitor

Condition

Monitor Action

Norma!l exit from user program (M:EXIT).

Abnormal exit from user program (M:ERR or M:XXX).
Transfer to another load module (M:LINK, M:LDTRC).
1/ O error not handled by the user.,

Operator errored the user.

Monitor detected error,

User program trap.

Users current limits are not modified. No time
limit is imposed.

Class 11

A resource limit has been exceeded (RAD, time, etfc.).

Users current limits are incremented by a fixed
amount (SYSGEN specified),

Time limit is imposed for batch:jobs, none for
on-line jobs.

Class 111

Line disconnect or operator abort,

Users current limits are incremented by o fixed
amount (SYSGEN specified).

Time limit is imposed for both batch and on=~line
jobs.

exit control roufine, desired actions can be taken upon
determining the fact that entry to the routine is caused by a
linking call. If the linking process is still deemed nec-
essary, the M:LINK procedure can be reissued (by employ-
ing the EXU instruction) in the exit control routine. The
Monitor will detect such a situation and will cause the
linking process to occur. Exit control is then automatically
reset before the transfer to the called program. This new
level of control in the usage of linking to a load module
can be regarded as a potentially powerful feature for a li-
brary routine where the necessary supervisory tasks can be
performed upon a user program. Once the linking process
is underway, the currently applicable restrictions are in
effect. That is to say, if the called process is not success-
fully completed (for example, a limit is exceeded while
executing the called routine), control will not be passed
to the exit control routine in the called program. If the
called program correctly executes a M:LDTRC procedure
to return control to the caller, control will return to the
exit control routine (which previously intercepted and then
reexecuted the original M:LINK). The exit control routine
must then reestablish exit control via M:XCON, if so de-
sired. User programming conventions can be adopted to
maximize security and reliability through the use of exit

control, For instance, programs which are linked to should
take exit control and always return to the caller in abort
or abnormal situations.

Once exit control is in effect, previously established timer
and break controls (i.e., by M:STIMER and M:INT) are
reset. They can be reestablished in the exit control routine
if so desired. .

Limits; Standard system exit control limit increments are

established by SYSGEN. When an unconditional abort

event occurs (Classes I and Il — limit exceeded, line dis-
connect, or operator abort), the users current limits are
incremented by the exit control values. An exception is
the time limit, which is not treated as an increment. When
maximum time must be set (see Table 8), the exit control
default is stored as the new maximum run-time limit. Be-
cause the limits are established only for the exit control
entry first encountered, the system is protected from looping
exit control routines by the SYSGEN established limits for
exit routines since some limit will eventually be exceeded.

If an exit condition should again occur while the user is
processing the exit control routine, different actions,

Exceptional Condition Control Procedures 67

depending on the current and existing conditions, are
_dictated by the monitor as follows:

I. A Class I type exit, while the user is processing a
Class I, Class I, or Class I exit condition, will cause
control tobe passed to the currently effective exit con-
trol routine without establishing the processing limits.

2. A Class II type exit, while the user is processing a
Class I exit condition, will cause contro! to be passed
to the currently effective exit control routine.

A Class I type exit, while the user is processing a
Class IT exit condition, will cause the batch user to
be unconditionally logged off. In the case of an on-
line user, control will be passed to the current com-
mand processor, This is the case where the user has
exhausted the extended processing capabilities granted
to him by the system. A Class II type exit, while the
user is processing a Class 11l exit condition, will cause
the user, whether batch or on-line, to be uncondi-
tionally logged off.

3. A Class Il type exit, while the user is processing a
Class T'or Class 1l exit condition will cause control to
be passed to the currently effective exit control rou-
tine. In the case of processing a Class I exit con—
dition, the extended processing limits will be appro-
priately set up.

A Class I type exit, while the user is processing o
Class 11l exit condition will cause the user to be un-
conditionally logged off.

Information Provided the Exit Ccatrol Routine. On entry
to the exit ccatro! routine, registers are set to indicate the
cause of the exit. In additiol, several values are returned,
each. right-justified in an otherwise zero register. Register
contents are described. in Table 9.

Bits that are set correspond to the bits currently established
in JIT. Other bits may be assigned meaning from time-to-
time so no code should be written that depends explicitly
on zero values,

Before control is passed to the exit control routine, the
run status, error code, and error subcode are cleared in the
JIT.

Three cases will cause the exit control routine to be entered
with zero run status — M:EXIT, M:LINK, and M:LDTRC.
The specific cause may be identified by examining the in-
struction pointed to by the exit control environment.

When the exit control routine is entered, the PSD and gen-
eral registers of the user program are placed in the TCB
temp stack as described in Figure 5. The exit control rou-
tine is entered in the slave mode with decimal and fixed~
point traps inhibited.

The environment may be returned to for additional execu-

tion via the M:TRTN procedure. For example, if a print
limit is exceeded, it may be desirable to return to the

68 Exceptional Condition Conirol Procedures

program to finish a current page of output before taking
final exif. Returning to the users environment has ques-
tionable meaning if the user program has issued M:EXIT,

M:ERR, or M:XXX CAL.

To resume execution of a program after receiving exit con-
trol, the M:TRTN service with the XCON option specified
should be used. This will serve to signal that exit control
is no longer in process and will ensure the proper use of
the LAST option on the M:XCON CAL,

If there is no TCB stack or if it is full, the exit control
routine is enftered without placement of the user's environ-
ment, with bit zero of register 12 set to 1, and with the
PSD from the environment placed in registers 2 and 3.

If an exit control routine wishes to exit unconditionally
from the current job step, it can issue an exit, error, or
abort CAL. If communication to other steps in the same
job is desirable, the step condition code may be set via
an option on the M:EXIT, M:ERR, or M:XXX procedure.

EXITS TO THE MONITOR

To enable the monitor to provide continuous system opera-
tion, control of the system must be returned to the monitor
by each user's program when it has terminated execution of
its operations for any reason. The monitor provides three
exit returns by which a user's program may relinquish con-
trol after termination. The monitor performs an implicit
"Close" for any DCBs that are open when a program termin-
ates via one of the three exit returns.

M:EXIT An EXIT return should be used when the user's
program has completed its operations in a normal manner.
When control is returned via the EXIT routine, the monitor
either returns to the exit contro! routine in the user's pro-
gram or performs any PMDI dumps that have been specified
for the program and proceeds to the next control command.
Return to the user's program occurs only if exit control has
been established in the user’s program.

The M:EXIT procedure call has the form

scc
M:EXIT [*address]

where
scc specifies a new value for the step condition
code (see STEP Contro! Command).
*address specifies the address of a location in

which the step condition code and the exit type
are contained.

Calls generated by the M:EXIT procedure with no options
specified have the form

CALL9 1

Table 9. Register Contfents for Exit Conirol

Register Name Contents
8 Run Status If exit was normal, following bits reset; otherwise, appropriate bit is
set as follows:

24 An M:ERR was issued by the program or processor.

25 An M:XXX was issued by the program or processor; or an on-line
user program with exit control entered TEL via Control Y, then
implicitly aborted (e.g., by calling PCL).

26 The operator errored the program (ERROR or E key-in).

27 The operator aborted the program (ABORT or X key=-in).

28 Terminal has hung up or line has disconnected.

29 Some limit was exceeded (see Register 9).

30 - I/O Error (see Registers 10 and 11),

31 Trap (see Registers 10 and 11).

9 Limits If bit 29 of Register 8 is set, then the limit exceeded is identified by

23 Disk granule allocation (net permanent).

24 CPU time.

25 Scratch fapes.

26 Temporary disk granules acquired.

27 Permanent disk granules acquired.

28 Diagnostic print pages output,

29 User-generated print pages output,

30 Processor-generated print pages output.

31 Punch cards output.

10 Error Code See Appendix B,
1 Error Subcode. See Appendix B.
12 Stack Flag Bit O reset if environment is placed in the stack; set if not.

Bit 1 set if the exif is from M:LINK or M:LDTRC,

0 TCB Address User's TCB address.
1 PSD Address PSD address (in user's TCB),
2,3 PSD PSD at exit point if environment is not placed in TCB,

Exceptional Condition Control Procedures

69

The CAL code generated by the M:EXIT procedure with sce
" specified is of the form of a CAL1,9, as follows:

0 X'o4 ? |0—01 SCC X'or

07172 3T4 576 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

The CAL code generated by the M:EXIT procedure with
*address specified is of the form of a CAL1,9, as follows:

-+

1 X'04 9 [0—0 address

0 1 2 ﬁtl 5 & 718 9 10 11F12 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

with the location pointed to by the specified address con-
taining the following:

0 0 SCC X'or

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Bit 15 in the address field, if set, indicates that the step
condition code value is to be established.

No FPT is required by M:EXIT.

M:ERR An ERR return is used when an error has occurred
during program execution and the user wants the monitor
to discontinue execution of the current program. When
control is returned via the ERR routine, the monitor outputs
the message

JOB ERRORED BY JSER AT xxxxx

where xxxxx is the address of the last instruction executed
in the prcgrom.

This message plus the contfents of the current register block
and Program Status Doubleword (PSD) are listed on the
LL device. The PSD contains the address of the last in-
struction executed in the errored program. The step condi-
tion code is set to 4.

The monitor then either returns to the exit conirol routine
in the user's program or performs any specified postmortem
dumps and proceeds to the next job step. Return to the
user's program occurs only if exit control has been estab~
lished in the user's program.

The M:ERR procedure call has the form

scc
M:ERR [*address]

where

sce specifies a new value for the step condition
code (see STEP Control Command).

*address specifies the address of a location in

which the step condition code and the exit type
are contained.

70 Exceptional Condition Control Procedures

Calls generated by the M:ERR procedure with no options
specified have the form

CALT,? 2

The CAL code generated by the M:ERR procedure with scc
specified is of the form of a CAL1,9, as follows:

0| X'04' 9 |0—0f1 SCC X'02!

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

The CAL code generated by the M:ERR procedure with
*address specified is of the form of a CAL1,9, as follows:

1 X'04' 9 10—0 address

0 1 2 314 5 6 718 9 10 11112 13 14 15016 17 18 19120 21 22 23724 25 26 27128 29 30 31

with the location pointed to by the specified address con-
taining the following:

0 0 SCC X'02'

0 v 2 3145 6 718 9 10 1012 13 14 15716 17 18 19720 21 22 23124 25 26 27128 29 30 31

Bit 15 in the address field, if set, indicates that the step
condition code value is to be established.

No FPT is required by M:ERR.

M: XXX The XXX (abort) return is used when an jrre-
coverable error has occurred and the current job step is to
be aborted. When a job step is aborted, the monitor lists
the message

JCB ABORTED BY USER AT xxxxx

where xxxxx is the address of the last instruction executed
in the program.

This message plus the contents of the current register block
and Program Status Doubleword (PSD) are listed on the
LL device. The PSD contains the address of the last in-
struction executed in the aborted program. The step con-
dition code is set fo 6.

The monitor then either returns to the exit control routine
in the user's program (if exit control has been established
in the user's program) or performs any specified postmortem
dumps and proceeds to the next job step.

The M:XXX procedure call has the form

M: XXX [SCC]

*address

- where

scc specifies a new value for the step condition
code (see STEP Control Command),

*address specifies the address of a location in
which the step condition code and the exit type
are contained.

Calls generated by the M:XXX procedure with no options
specified have the form

CALT,9 3

The CAL code generated by the M:XXX procedure with scc
specified is of the form of a CAL1,9, as follows:

0 X'04' 9 {0—01 SCC X'03'

0 12 BiA 36 718 9 0 N2 13 14 7506 17 18 19120 21 22 23124 25 26 27128729 30 31

The CAL code generated by the M:XXX procedure with
*address specified is of the form of a CAL1,9, as follows:

11 X'04 9 [0—0 address

. L \
v ol E W NNZ G N6 18 19120 21 22 25124 25 2o 27128 29 30 31

with the location pointed to by the specified address con-
taining the following:

0 0 SsCC X'03'

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3)

Bit 15 in the address field, if set, indicates that the step
condition code value is to be established.

No FPT is required by M:XXX.

EXIT FROM TRAP, INTERRUPT, TIMER, OR
EXIT CONTROL ROUTINE

M:TRTN The monitor TRTN routine restores control
fo a trapped program.

" The M:TRTN procedure call has the form
M:TRTN [*](XCON]

where XCON identifies an exit control return.

Calls generated by the M:TRTN procedure with no options
specified have the form ’

CALL 9 5

The CAL gde generated by M:TRTN, with the XCON op-
tion specified, has the form of a CAL1,9, as follows:

* o X'04" 9 ; XCON 5

+
|
1
|

s H !

0 1| 2 314 5 6 718 9 10 11012 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

where XCON specifies a normal M:TRTN (XCON = 0), or
an exit control return (XCON = 1).

M:TRTN pulls the last standard environment from the users
TCB, as described under "Exceptional Condition TCB Stack
Contents". The user shouldnote that he may effect M: TRTN
himself (so long as the XCON option is not required) by
loading the 16 registers from the TCB, adjusting the stack
poinfer appropriately, loading condition codes from the
PSD, and branching to the location specified in the PSD.
This can be a lot faster than using M:TRTN. If a trap re-
turn, M:TRTN, is attempted with no environment in the
stack, then the usual error code, A301, results and exit
control takes effect.

If M:TRTN XCON is used when not in an exit control rou-
tine, return is to the program at CAL+1 with CC1 set.

MONITOR ERROR CONTROL

M:MERC The monitor MERC routine enables the user's
program to specify an error or abnormal code and subcode
(see Appendix B) in SR3 and have the monitor handle it,
overriding any user's abnormal or error routines that might
otherwise apply.

The call can also be used to return control to the monitor
from a user's error or abnormal routine if that routine can
handle only certain codes. If a user's error or abnormal
routine is called to handle an abnormal or error condition
beyond its capability, it must leave the contents of com-
munication registers SR1 and SR3 intact and call the MERC
routine to handle the condition. -

The M:MERC procedure call is of the form
M:MERC

Although no parameters are specified in this call, com-
munication register SR3 must contain the error or abnormal
code in bit positions 0=7 and subcode in bit positions 8-14
when MERC is entered. For I/O error or abnormal condi-
tions, the address of the associated DCB must also be con-
tained in SR3, in bit positions 15-31. This information is
placed in SR3 by the monitor, when an error or abnormal
condition is detected. When bit positions 0-7 of SR3 con-
tain X'40'-X'FF', the current job is aborted and the error
code is used to obtain the appropriate error message from-
the system error message file. It should be noted that SR1
will contain the address + 1 of the offending CAL when the
error or abnormal address is entered. It must also be pre-
served so that MERC can return properly.

Calls generated by the M:MERC procedure have the form

CAL1,2 fpt

where fpt points to word O of the FPT shown below.

X'10' 0 0

O 7 2 313 5 6 718 9 1011112 13 14 15176 17 18 w120 31 22 55123 25 2% 5128 29 30 31

Exceptional Condition Control Procedures 71

DATA MEMORY MANAGEMENT

CP-V permits either relative or specific allocation of core
memory in the data area of @ user program. When this type
of allocation is used, pages may be allocated sequentially
from either end of unallocated virtual memory (Figure 6).

Pages allocated from the lowest toward the highest unallo-

cated page address are called dynamic pages. Pages allo-

cated from the highest toward the lowest unallocated page

address are called common dynamic pages or simply common
pages. Dynamic and common pages may not overlap. If
there is an attempt to overlap these pages, an error indica-
tion will result.

[——-A| location request

| allocated allocated
dynamic | n | unallocated virtual | common
pages 1 memory pages
U T L (U
} Bottom common
page (BCP)
New TDP following
request
Top dynamic page (1 DP)

prior to request

Last available
virtual page

First available
virtual page

Data pages affectea by memory

,-(-——- management routines (available ——»I

virtual memory pages)

Figure 6. Memory Allocation

Specific allocation allows a user program to get or release
any page in the data area by reference to the address of

the first word on the page. If an attempt is made to get
pages that have been allocated or to release pages that have
been released, an error indication will result.

Relative-allocation CALs may not be used to allocate a
page already allocated by a specific allocation CAL.
Specific-allocation CALs may not be used to release pages
allocated by a relative allocation CAL.

The number of physical pages that may be allocated for all
purposes is limited. This limit is initially set by SYSGEN
and may be modified by the performance control program
(see CP-V/SM Reference Manual, 90 16 74).

No program may acquire more than 1385 pages of physical
memory in addition to JIT. This limit includes space for
the program, assembled data, dynamically obtained pages,

72 Data Memory Management

v

blocking, index, cooperative buffers, and DCBs. Not
included in this limit are associated libraries or shared pro-
cessors (e.g., compilers, debuggers).

No program may acquire more pages than the number of
pages on the machine minus the size of the monitor (in-
cluding any overlay required by the program). This limit
includes space required for shared processors and libraries.

In addition, users are constrained by the authorized user file
and the LIMIT control command.

GET COMMON LIMITS

MiGL The GL routine returns the lowest and highest
word addresses of the common data area presently allocated.
The lowest address is returned in SR1 and the highest
address is returned in SR2. If no pages have been requested
before, or if all pages requested have been returned, SR1
and SR2 are equal.

The M:GL procedure call is of the form

M:GL

Calls generated by the M:GL procedure have the form

CAL1,8 fpt

where fpt points to the FPT (function parameter table)
shown below.

xopt |0 0

0 1 2 314 5 6 718 9 10 Ili!2 13 14 15016 17 18 19120 21 22 23124 25 26 27128 29 30 31

GET DYNAMIC DATA LIMITS

M:GDDL The GDDL routine returns several limiting
values of the dynamic data area. The dynamic data area’
is the region of memory from which dynamic, common
dynamic, and, sometimes, virtual pages are allocated.
The address of the first word of this area is returned in SR1
and the address of the last word in SR2. Returned in SR3

is the maximum number of pages that a user could obtain
through the M:GP, M:GCP, and M:GVP CALs. This value
does not include those pages already allocated (for example,
if the user already obtained all but one page, a value
of 1 would be returned).

t . s .
Hexadecimal numbers in this manual are expressed in the
form X'n', where n is the hexadecimal number.

The M;GDDL procedure is of the form
M:GDDL

Calls generated by the M:GDDL procedure have the form
CAL1,8 fpt

where the fpt points fo the FPT shown below:

X'1B! 0 0

T 7 314 5 6 718 ¢ 10 NIz 13 14 15116 17 T8 19126 21 27 73174 25 26 27128 29 30 31

GET COMMON PAGES

Mm:GCP The GCP routine allocates a specified number
of pages at successively lower addresses of common storage
starting with the next lower page (BCP). It also decre-

ments that page number.

Pages are obtained and allocated at successively lower
addresses beginning with that of BCP until

1. The required number of pages are obtained.
2. The installation-set or user-set limit on the number of
physical core pages is reached or a page already allo-

cated via M:GP or M:GVP is encountered.

This information returned for each of the two cases is

Case CCl1 SRI SR2
1 0 Number of pages allocated | address of
lowest word
2 1 Number of pages allocated] allocated

In each case, BCP is the page number of the next lower
page yet to be allocated.

Access codes for the allocated pages are set to 00 (read,
write, and execute).

The M:GCP procedure call is of the form
M:GCP [*] pages

where pages specifies the number of memory pages by which
common storage is to be extended.

Calls generated by the M:GCP procedure have the form
CAL1, 8 fpt

where fpt points to the FPT shown below

* X'0C' 0————0| Number of pagefs required

n " s M "
O ' 2 314 5 6 718 9 10 11112 13 14 15016 17 18 19120 21 22 23124 25 26 27128 29 30 31

FREE COMMON PAGES
M:iFCP The FCP routine releases a specified number of
pages af successively higher addresses of common storage

beginning with the current lowest page (BCP+1). It also
increments that page number.

Pages are released beginning at BCP+1 toward successively
higher addresses until

1. The requested number of pages have been released.

2. The last available virtual page is released.

In the first case, CC1 is set to zero. In the second case,
CC1 isset to one. The number of pages released is re~
turned in SR1,

Pages released by FCP have access codes set to 11 (no ac-
cess). Any subsequent reference to these pages will result
in a frap.
The M:FCP procedure call is of the form

M:FCP [*] pages

where pages specifies the number of pages to be freed.

Calls generated by the M:FCP procedure have the form
CAL1,8 fpt

where fpt points to the FPT shown below.

*| X'0D' 0— 0| Number of pa.ges to be freed

0 1 2 314 5 6 718 9 10 ISP RERD lﬁlé 17 18 19120 21 22 23124 25 26 27128 29 30 31

GET DYNAMIC PAGES
M:GP The GP routine allocates a specified number of
pages beginning with the next higher page (TDP) of dynamic
storage. It also increments that page number until
1. The required number of pages are allo cated.
2. The installation-set or user-set limit on the number of
physical core pages is reached or a page already allo-

cated via M:GCP or M:GVP is encountered.

The information returned for the two cases is

Case CCl1 SRI SR2
1 0 Number of pages allocated | address of
lowest word
2 1 Number of pages allocated | allocated

In each case, TDP is the page number of the next higher
page yet to be allocated.

Data Memory Management 73

Access codes for all allocated pages are set to 00 (read,
write, and execute).

The M:GP procedure call is of the form
M:GP [*] pages

where pages specifies the number of additional pages
requested.

Calls generated by the M:GP procedure have the form
CAL1,8 fpt

where fpt points to the FPT shown below.

* X'08' 0——0| Number of pages required

4 —
0 1 2 374 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

FREE DYNAMIC PAGES

M:FP The FP routine releases a specified number of
pages at successively lower addresses of dynamic storage
beginning with the current highest page (TDP-1). It also
decrements that page number until

1. The requested number of pages have been released.

2. The first available virtual pag is released.

In the first case, CC1 is set to zerc. In the second case,
CC1is set to or~. The number of pages released is re-
turned in SR1.
Pages releaseu have their access codes set to 11 (no access)
and any subsequent reference to these pages will result in
a trap.
The M:FP procedure call is of the form

M:FP [*] pages

where pages specifies the number of pages to be freed from
use by the user program.

Calls generated by the M:FP procedure have the form

where fpt points to the FPT shown below.

1 X'09' |0———— 0| Number of pqges: to be freed

i
0 1 2 304 5 6 718 9 10 11112713 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

GET VIRTUAL PAGE

M:GVP The GVP routine allocates a specific page of
virtual memory to the user program. If the request is

74 Data Memory Management

allowed, access for the page is set to 00 (read, write,
or execute) and CC1 is set to zero. The result is dis-
allowed if

1. The installation-set or user-set limit on number of
pages allowed would be exceeded.

2. The page has already been allocated.

3. The page requested is outside the limits of unallocated
virtual memory.

In all three cases, CC1 is set to one and no page is
atlocated.

The M:GVP procedure call is of the form
M:GVP [*] virtual address

where virtual address specifies the address of the first word
in the virtual page desired.

Calls generated by the M:GVP procedure have the form
CAL1,8 fpt

where fpt points to the FPT shown below.

* X'04' 0——0 . Virtual address

0 1 2 317 5 & 718 5 10 1111213 14 13116 17 18 Wi 21 22 73124 25 26 27128 29 20 31

FREE VIRTUAL PAGE

M:FVP The FVP routine is called to release a specific
page of virtual memory. The indicated page is released
and CC1is set to zero except when the request is for a page
that does not belong to the user, in which case, CC1 is set
to one and no page is released. The number of pages re-
leased (0 or 1) is returned in SR1, Pages of data that are
loaded with the program or processor (those assembled with
the program) may be released using this mechanism. These
are the pages below the first available virtual page.

The M:FVP procedure is of the form
M:FVP [*] virtual address

where virtual address specifies the address of the first word
in the virtual page to be released.

Calls generated by the M:FVP procedure have the form
CAL1,8 fpt

where fpt points to the FPT shown below.

* X'05' 0—90 Virtual address

L T O SR S R IO N B B O ¥ N 3 BT VN - B R ¥] W7 B L TR VA R

SET MEMORY PROTECT

M:SMPRT The SMPRT routine sets the access codes on
pages owned by the user. It does not affect write locks.

The M:SMPRT procedure call is of the form

M:SMPRT value, [*] from[,[*]to]
where
value specifies the value of the requested memory
protection setting and may be any one of the
following:
Value Access
0 Read, Write, Execute
1 Read, Execute
2 Read
3 No access
from specifies the address of the first page to which

the specified setting is to apply. If no "to" is
specified, only this page will be affected.

to specifies the address of the last page to which
the specified setting is to apply.

This procedure call may not be used to reduce the amount
of protection on a given page from its initial value. Thus,
data areas may be given any protection value and program
areas may be given any protection value except 0. JITs
and DCBs may not be set to a value lower than two.

Calls generated by the M:SMPRT procedure have the form
CAL1,8 fpt
where fpt points to word 0 of the FPT shown below.

word 0

* X'0A' [0———0 Address of first page
3

o1 2 4 56 708 9 10 Ili‘l 13 14 !STIO 1718 19120 21 22 23124 25 26 27128 29 30 3

word 1

*| Value 0— 0 Address of last page

0 1t 2 314 5 6 708 9 10 nlzZ 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
CHANGE VIRTUAL MAP

M:CVM The CVM routine allows certain processors and

privileged programs, such as those of the system programmer,
to examine, display, or change data portions of real physical
core.

Restrictions

1. The user issuing this CAL must have the proper privi-
lege level: X'80' for read access and X'B0O' for store
access (see CP-V/SM Reference Manual, 90 16 74).

90 17 64H-1(9/78)

2. The virtual address (VA) must not already be as-
signed to the calling program.

3. The real-core page must exist.

If any of these restrictions are violated, CC]1 is set and
control is returned to the user without action.

The number of the real-core page requested is placed in
the specified virtual-page entry in the memory map of the
calling program. The user specifies both in terms of
addresses, however.

Access for the page is set to read or data depending on the
user privilege, unless PROT is specified. When PROT is
specified, access is set to read.

The M:CVM procedure call is of the form

M:CVM [*] rpa,[*Iva [, PROT]

where
rpa is the address of the real-core page to be
placed in the user's map.
va is the virtual-page address in the calling

program onto which rpo is to be mapped.
PROT specifies that the virtual-page is to have
read and execute access, regardless of the user's

privilege level.

Calls, generated by the M:CVM procedure to change the
map, must have the form

CAL1,8 fpt

where fpt points to word O of the FPT shown below.

word 0

* X'07' PlO—0 RPA

0 1V 2 314 5 6 708 9 10 11012 13 ta 15016 17 18 19120 21 22 20124 25 26 27128 29 30 31
word 1

*|0 0 VA

0 1 2 3ta 5 6 718 9 10 N2 1374 15716 17 18 I9i20 21 22 23124 25 26 27128 29 30)

If P is set, the access code for the virtual page is to be

set to 01 (read and access instructions), If P is not set,

the access code is to be set to 00 (read, access instructions,
and write).

ENQUEUE/DEQUEUE RESOURCES

The enqueue/dequeue feature permits users to coordinate
the use of a resource among themselves. This includes, but
is not limited to, coordinating shared use of random files
for simultaneous update by several jobs.

Data Memory Management 75

The use of enqueue/dequeue presumes the existence of a
resource that may (or may not) contain elements and that
both the resource and its elementshave namesthat are known
to all programs using that resource. For example, the re-
source might be a random file called DATAFILE and the
elements of the resource might be the granules in the file,
the granules being referred to as 001, 002, 003, etc.

The use of enqueuve/dequeue does not allocate any real,
physical resource. The resource and element names have no
meaning to the monitor other than to identify the pseudo-
resources and elements that are being queued upon. How-
ever, properly used, the enqueue/dequeue feature permits
programs to coordinate the use of real, physical resources.

When a user enqueues on a particular resource/element, he
is effectively put in a queue to wait for availability of the
resource element. He remains in the queue until he spe-
cifically dequeues on the particular resource/element or
until the monitor automatically dequeues him (either at the
end of the job step or at the end of the job, dependent upon
options he has specified).

An option is provided in the enqueue service that allowsthe
user to enqueue simply to obtain a position inthe queue even
though he is not ready to use the resource/element. This
generally ensures him of priority in the queue over sub-
sequent users who want the entire resource.

A resource/element may be requested either for EXCLusive
use or SHAREd use. If it is requested for EXCLusive use, no
other user may access the resource/element while the
EXClusive user has it. If it is SHAREd, all users requesting
SHAREd use of the resource/element may have simultaneous
access.

When o user enqueues on a particular resource/element,
either the user will be put to sleep until the resource/
element is available to him or an Event Control Block (ECB)
is flagged to mark when the resource/element becomes
available to that user. In the latter case, the user can use
the M:CHECKECB service to determine when the resource/
element has become available. Once the resource/element
becomes available to the user, it remains available to him

until he dequeues or is dequeved by the monitor (as de-
scribed above).

The following examples use a data management application
with a random file data base as the resource and the granules
of that file as the elements. Assume the data base is in file
DATAFILE in account THATACCT. Further, assume that all
data management users of DATAFILE. THATACCT refer to
that file for enqueue purposes, as QFILE, and the granules
of DATAFILE. THATACCT are referred to as 001, 002, 003,
etc. Before reading any data that is contained on granules
5 and 11, then, the program would enqueue on QFILE, 005
and QFILE, 011 with SHARE specified. If at the same time
another user wanted data from granules 8 and 11, his copy
of the program would enqueve on QFILE, 008 and QFILE,
011 with SHARE specified. Both readers would then pro-
ceed and when finished reading they would dequeue those
resource/elements.

76 Data Memory Management

In the above sequence, no problems exist and the enqueue/
dequeue feature was not needed. However, if, during the
same period another user tried to update data, some of the
data retrieved would not match other data retrieved (a se-
quence such as read 5, write 5, write 11, read 11 could
occur, making the two reads be of different data). The
updating program, therefore, would enqueue on QFILE,
005 and QFILE, 011 with EXClusive specified. If the first
user requested SHARE and the second requested EXCLusive,
the second user would not be given access until the first
user dequeuved. But, if both the first and the second user
were SHARE and the third user was EXCLusive, the first and
the second would have simultaneous access and the third
user wouldhave to wait until both the others had dequeved.

On the other hand, assume a reader wanted granules 20
and 23 of DATAFILE. THATACCT and an updater wanted to
change granules 12 and 18. The reader would enqueue on
QFILE, 020 and QFILE, 023 with SHARE specified while the
updater would enqueve on QFILE, 012 and QFILE, 018 with
EXCLlusive specified. Since these sub-queues do not con-
flict, both reader and updater could operate simultaneously.

If it were necessary to rebuild the file, the rebuilder would
enqueue on the entire file with EXClusive specified. The
rebuilder would then have to wait until all current users
dequeued and any new users would be blocked until after
the rebuilder dequeued.

Two types of deadlock are possible with enqueuve/dequeve:
multi-queve and single-queve. A multi-queue deadlock
occurs when two or more users have at least one resource/
element and are waiting for at least one resource/element
such that none of the users involved can ever get the
resource/element they are waiting for. For example, user 1
has element ‘A and is waiting for element B, user 2 has ele-
ment B and is waiting for C, and user 3 has C and is wait-
ing for A. Assuming that user 3 was the last to request an
element, CP-V would detect this multi-queue deadlock
when user 3 enqueued on A. At that point, user 3 would
be given an error return (or aborted if no ERR address were
given), and the enqueue request would be ignored. Nor-
mally, user 3 would then dequeue on element C, permitting
user 2 to finish; user 2 would then dequeue on element B
and C, permitting user 1 to proceed, etc. A possible alter-
native is that user 3 might be able to use element D, an
alternate, complete his work and dequeue on C and D. In
any event, user 3 is given the error indication and, there-
fore, user 3 is responsible for unblocking the deadlock.

The single-queue deadlock occurs when two or more users
have been granted SHARE access to an element and two of
the users are attempting to upgrade their access to EXClusive.
Since they cannot get EXClusive access as long as thereare
SHARE users of the element, and since they have not relin-
quished their existing SHARE positions in the queve, dead-
lock is created. In this situation, the error is attributed to
the second user requesting the upgrade to EXCLusive and
that user is responsible for unblocking the deadlock. As
with the multi-queuve deadlock, the user receiving the error
has his enqueuve request ignored.

A third type of deadlock is possible when there are no
remaining empty entries in the monitor's enqueue table.
However, strictly speaking, this is not a deadlock because
it is possible for the queues to unwind without special

handling. This condition results in an error return, but
with a different sub-code than a true deadfock.

Additional information on simultaneous file usage is given
in Appendix F,

M:ENQ The M:ENQ procedure call allows a user to
enqueue on a particular resource/element or test a particu-
lar resource/element for availability. It has the following
format;

M:ENQ ([*])'gname’, [*]'sncme'[' jg;][’ EXCL

ATEST, [Fech address

L WAIT ‘
(NOWAIT, [Jecb address) [, (ERR, [*]oddress)]—l

l—— [, (ABN, [*]address)]

where

'‘gname’ specifies the name of the queue (resource).

"sname' specifies the name of the sub-queue (ele-
ment) of the queue or specifies one of the follow-
ing (not in quotes):

ALL specifies that all sub-queues (elements)
of the queue (resource) are to be enqueued.

NULL specifies that the user wants to queue
on the resource but not on a particular ele-
ment of the resource. The NULL specifica-
tion essentially just reserves a place in the
queue for the user. At a later time, the user
may queue on an element or elements of the
resource. Meanwhile, he has established
priority over subsequent users that request ALL.

STEP specifies that use of this resource/element
(gname/sname) applies only during this job step or
during execution of this job. If STEP is specified,
theresource element will automatically be dequeued
by the monifor at the endof the job step or program
execution unless it has already been dequeued by
the user. If neither STEP nor JOB is specified,
STEP is assumed.

JOB specifies that use of this resource/element
(gname/sname) may continue throughout the job or
on-line session. The resource/element will not be
automatically dequeued at the end of the program's
execution.

EXCL specifies exclusive use. No other user may
use this resource/element until it is dequeued by
this user. If neither EXCL nor SHARE is specified,
EXCL is assumed.

,SHARE])—j

SHARE specifies that the resource/element may be
shared with other users that do not require exclu-
sive use.

WAIT specifies that the program is not to resume
execution until the resource/element has been made
available to this user. WAIT, NOWAIT, and TEST
are mutually exclusive. Ifneither WAIT, NOWAIT,
nor TEST is specified, WAIT is assumed.

NOWAIT, [Jech address specifies that program
execution is to continue regardless of whether or
not the resource/element is available. It also
specifies the address of the ECB to be associated
with this MiENQ procedure call. When the
resource/element becomes available, the ECBP flag
of the ECB will be set to one. (ECBs are described
in the discussion of M:CHECKECB.)

TEST,[*]ecb address specifies that the resource/
element is not to be queued, but rather is to be
tested for availability. It also specifies the add-
ress of the ECB fo be associated with this M:ENQ
procedure call. (ECBs are described in the dis-
cussion of M;CHECKECB.) The return from an
M:ENQ procedure that has TEST specified reflects
whether or not the resource/element is available
and whether or not the user has already enqueued
on the resource/element. The ECBP bit of the ECB
reflects whether or not the resource/element is
available. If the resource/element is not available
or if the user has already enqueued on the resource/
element, the return is an abnormal return.

ERR, (Jaddress specifies the address at which exe-
cution resumes if an error condition is detected.
Error codes for M:ENQ are listed in Table B-3,
Appendix B.

ABN, {*Jaddress specifies the address at which
execution resumes if an abnormal condition is de-
tected. Abnormal codes for M:ENQ are listed in
Table B-7, Appendix B.

Calls generated by the M:ENQ procedure have the form

CALT1,2 fpt

where fpt points to word 0 of the FPT shown below.

word 0
X'08' 0 0
0 1 2 3 i4 5 6 718 9 10 nNii2 13 14 VSilé 7 18 19i20 21 22 23124 25 26 27128 29 30 31
word 1
PP, |P. 5
1230 0 [2lf
ol 2 3 i 4 5 6 7 i 8 5 10 11z 13 HTS'T 17 18 19120 21 22 23724 25 26 27028 29 30 31

Data Memory Management 77

word 2 (P1)
*0 0 ERR address
0 1 2 314 5 6 7i3 0 Hi|2 13 14 15716 17 18 19120 21 22 23124 25 26 27128 29 30 31
word 3 (P2)
*0 0 ABN address
Y R T A R A R R N R A A A R ALV S A O S
word 4 (P3)
*10 0 ECB address
T Tz 314 5 ¢ 718 0 T 12 13 14 15116 17 18 19130 21 22 23124 35 38 1w B 0
word 5
Queue code Xon
0 1 2 3t4 5 6 718 10 I]il2 1314 15116 17 18 19120 20 22 23124 25 26 27128 29 30 31
word 6
* Qname
0 1 2 34 5 6 718 10 1111Z 13 14 15116 17 18 19120 21 22 23[24 25 26 27128 29 30 31
word n
* Sname
T T T T T T BT T B R T N T S s DI T o
where
f] is set to one if the NOWAIT option was specified.
F2 is set to one if the TEST option was specified.

Queue code

has the following meanings:

X'01* for an EXCL, STEP request

X'03' for a SHARE, STEP request

X'05' for an EXCL, JOB request

X'07' for a SHARE, JOB request

NDW

contains the number of words reserved to con-

tain the gname and sname names (in words é and
following).

Qname

78

specifies the gname in TEXTC format.

Data Memory Management

Sname specifies the sname in TEXTC format. The
sname starts in the first word following gname (or
the indirect address specification of gname). If
the count byte of this field is set to X'7F', the
ALL option was specified. If the count byte is set
to X'40', the NULL option was specified.

M:DEQ The M:DEQ procedure call allows a user fo
dequeue a particular resource/elementor agroup of resource
elements. It has the following format:

STEP

M:DEQ ([*]'qncme',[*]'sname' [:JOB])_j

C [, (ERR, [address)J[, (ABN , [*}address)]
where

'qname’ specifies the name of a queue (resource).
A gname of ALL (without quotes) specifies that all
resource/elements currently enqueued for this job
are to be dequeued, the only exceptions being
those resource/elements that are queued for the
entire job if JOB is not specified in this M:DEQ.
If ALL is specified, the sname field should also
contain ALL.

'sname’ specifies the name of the sub-queue (ele-
ment) or specifies one of the following (not in
quotes):

ALL specifies that all elements of the resource
that are enqueued are to be dequeued, the
only exceptions being those elements that are
queved for the entire job if JOB is not spe-

cified in this M:DEQ.

RES specifies that all elements of the resource
that are enqueuved are to be dequeued with the
exception of those elements that are queued
for the entire job if JOB is not specified in
this M:DEQ. RES does not dequeue (i.e.,
cancel) any previous M:ENQ that had NULL
specified. If ALL was specified in the gname
field, RES can be used but it is meaningless.

NULL specifies that a previous NULL enqueue
for the resource is to be dequeued.

STEP has meaning in conjunction with a qname or
sname of ALLand specifies that just those resource/
elements enqueuved for this step only are to be de-
queued. If neither STEP nor JOB is specified,
STEP is assumed.
JOB has meaning in conjunction with a gname or
sname of ALL and specifies that all enqueued
resource/elements are to be dequeued, both those
flagged for this step only and those flagged for the
entire job.

ERR, [*]address specifies the address at which exe-
cution resumes if an error condition is detected.
Error codes for M:DEQ are listed in Table B-8,
Appendix B.

ABN, []address

specifies the address at which exe-

cution resumes if an abnormal condition isdetected.

Abnormal codes for M:DEQ are listed inTable B-7,
Appendix B.

‘Calls generated by the M:DEQ procedure have the form
CAL1,2 fpt
where fpt points to word 0 of the FPT shown below.

word 0

X'09' 0 0

10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

~of

0 1 2 314 5 6 718

word 1

PP

120 0
TIT 7 314 5 ¢ 718 5 0 1111z 13 14 15116 7718 W20 01 32 BIsa 55 % B8 B 05

word 2 (Pl)

1*|0 0 ERR address

01V 2 314 5 6 7i3 9 10 niu 13 14 15116 17 18 19120 21 22 23724 25 26 27128 29 30 31

word 3 (P2)

*10 0 ABN address

8 9 10 NT1213 4 l5ilé 1718 I9i20 21 22 23124 25 26 27i_2_0 29 30 31

01 2 3145 6 7

word 4
Queue code X'01' NDW
0 1 2 314 5 6 718 9 10 111213 1415016 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 5

* Qname

0 1 2 374 5 6 7?8 9 10 12 13 14 15i|6 17 18 I9i2021 22 23124 2526 27128 29 30 31

“word n

£l

Sname
0t 2 3l4 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 2324 25 26 27128 29 30 31

where
Queue code
X'01' for STEP request
X'05' for JOB request

has the following meanings:

NDW contains the number of words reserved to
contain the gname and sname names (in words 6
and following).

Qname specifies the gname in TEXTC format. If
the count byte of this field contains X'7F', ALL
was specified.

Sname - specifies the sname in TEXTC format. The
sname starts in the first word following gname
(or the indirect address specification of gname).
If the count byte is set to X'7F', the ALL op~
tion was specified. If the count byte is set to
X'7E', the RES option was specified. If the
first byte is set to X'40', the NULL option was
specified.

OTHER CP-V SERVICE CALLS

There are several additional service calls that are available
primarily for use by special system processors, but are also
available for use by user programs. These service calls are
described in the following paragraphs.

. ADJUST DCB CAL
The Adjust DCB CAL merges information from an FPT into
a DCB but does not actually open the DCB. The informa-=
tion merged is a combination of that from M:OPEN and
M:DEVICE CALs. If the DCB is already open, no adjust-
ments are made.
The format of this call is

CALI,1 fpt

where fpt points to word 0 of the FPT described in detail
below.

OVERALL STRUCTURE OF FPT

There are three parts fo the FPT:

1. Basic FPT (required)

2. Variable length parameter list (optional)

3. Device-oriented FPT (optional)

The three parts are contiguous and occur in the order given
above, Figure 7 describes the basic FPT and Figure 8 the
device-oriented FPT, Table 10 lists the variable length
parameter list entries.

_ Other CP-V Service Calls 79

Word P1

P2

P3

P4

P5

Pé

P7

P8

P10

Pl

P12

P13

Pi4

Not }
both
P14

P15

P14

P17 |

P18

P20

P21

P22

0 1 2 3 4 5 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23, 24 25 26 27 28 29 30 31
N A [v v
‘Nlg|cl B .
X C E
. x4 1 % T E 3 00 DCB address
1lv|it|Dp|o]|F2lo0]lo|lo|o0of0o]o ASN
PLIP2|P3|P4|P5|PS 0 |P1O|PIT|PI2 P13 |P14|PI5[PI&|PI7 |P1B | O [P20|P21|P22] O} O | O 0|0 oo 0] 0} 0
* Error address
* Abnormal address
* Buffer address
T
[Maximum reﬁrd_lengrh _____
* :— Block size
I
* | Maximum recovery tries
|
| ORG
) :_ FORMAT
[: I i
. tris| I acc
1 I 1
* Mode
T
. : REL/
J;SAVE
* FPARAM address
* TLABEL address
I
. l Maximum key length
T I
o
" 1 :MT| L Type
h |
|
* 1] : Operational labe!
1 I
|
- | BTD
|
* VOLUME
* SLIDES : CONSECUTIVE SLIDES
L o ;e — SPARE __ __]
* CONCAT
T ’
1 RSTORE
. e e e -2 —— e e]
. i LRECL
¥ DSF
. CSF
L L I
6 1 2 3 4 5 "8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3

20

Other CP-V Service Calls

Figure 7. Basic FPT

/
0 1 2 3 4 5 & 7.8 9,10 11 12 13 14 15 16 17 18 19 20 21 22 23,24 25 26 27 28 29 30 31
allazja3|a4 [as|as|a7|as| as
.
Ql Tab 1 Tab 2 Tab 3 Tab 4
All are Tab 5 Tab 6 Tab 7 Tab 8
present
if any
present Tab 9 Tab 10 Tab 11 Tab 12
{ Tab 13 Tab 14 Tab 15 Tab 16
Q2 Sequence identification
[
Q3] * : Data tab
I 1
f
Q4] * i Count tab
. |
Q5] Header tab Header address
[
Qé) * : Lines per page
1
[
Q7| * : Space
.
diltlsls] A tlos |
o I Elalslel
|
Qe | Starting line
Il " l
0 ' 2 3 4 5 & 7'8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23'24 25 26 27 28 29 30 3l
Figure 8. Device-Oriented FPT
Table 10. Variable Length Parameter List
Entry No. Description Maximum No. of Subentries’ Length of Subentries
1 File Name 1 1-8 words (TEXTC)
2 Account Name 1 2 words
3 Password 1 2 words
4 Expiration Date 1 2 words
5 Read account numbers 19 2 words
6 Write account numbers 19 2 words
SN
7 { reel numbers 255 1 word
INSN

t . .
The maximum number of subentries is limited to the space reserved in the DCB,

Other CP-V Service Calls

81

Table 10. Variable Length Parameter List (cont.)

Entry No. Description Maximum No, of Subentries’ Length of Subentries
8 OUTSN reel numbers 255 1 word

9,C,D FPARAM output only Not valid in parameter list

A Modification date 1 3 words

B SYNON name 1 1-8 words (TEXTC)
E Creation date 1 2 words

F Access date 1 2 words

10 Backup date 1 2 words
n File descriptors 1 1 word

14 Execute account numbers 19 2 words

15 "Execute UNDER" processor 10 3 words (TEXTC)

or module name L .
Mhe maximum number of subentri s is limited to the space reserved in the DCB,

If o word Pi is present in an FPT, the corresponding presence

bit is set in word 2 (the third word) No gaps may be left
for words that are not effectively present (e.g., if P2 and
P5 are set and F3 and P4 are reset, then words P2 and P5
must be contiguous). Similarly for Qi in Figure 8. Also

in Figure 8, word Q8, bits 9-15 are the presence bits for
items in positions 25-31.

Several values in FPT word 1 are:
V=1 indicates that a variable length parameter
list follows the FPT.

D=1 indicates that following this FPT (or the
variable length parameter list of this FPT)
is a device-oriented FPT,

The field ASN defines the type of DCB assignment:

000 do not change DCB assignment.

001 assigned to FILE.

010 assigned to XEROX labeled tape.

011 assigned to a device, operational label, or

logical device stream,

101 assigned to ANS labeled tape.

- Other CP-V Service Calls

VARIABLE LENGTH PARAMETER LIST

Entries have the general form:

1if last ent Number of | Number of
Entry No. ll gs entry Significant | Actual
else Words Words

Subentries

The entries must be contiguous. Note that an FPT entry of
this fype may have space reserved (number of actual words
> 0) but none used in the current call (number of significant
words = 0), Such an entry will cause the number of signifi-
cant words in the corresponding DCB entry to be set to zero.
An eniry number of zero can be used fo cause an entry to
be ignored.

THE EFFECT OF ASSIGN OPTIONS ON THE ADJUST
DCB FPT

Because of the similarity of this CAL to M:OPEN and
M:DEVICE, and because the user must generate the FPT
without a system PROC, the following three lists show all

options allowed, and the effect of each option on the
Adjust DCB FPT. Options are grouped by the part of the
FPT they affect, and are given in the form used in M:OPEN
and M:DEVICE CAL. Names of the FPT items set are those
given in Figures 7 and 8,

1.

Basic FPT Options

Option

ABCERR

RECL,value

BLKL,value
TRIES, value
CONSEC
KEYED
RANDOM

FORMAT,
character

SEQUEN
DIRECT

, SHARE
IN [EXCL]
our

lNOUT[’

OUTIN
REL
SAVE
FPARAM

TLABEL
KEYM, value

DEVICE, X

LL)

BTD, value
VOL, value
NEWX, slides

[, consecutive

slides]

SHARE
+EXCL

FPT Items S_(i

Word 0, Bit 11 =1

P4=1; MAX RECORD LENGTH

= valve
P4=1; BLOCK SIZE = value

P5=1; MAX RECOV TRIES = value

P6=1; ORG = 1|
P6=1; ORG =2
P6=1; ORG =3

P6=1; FORMAT = value

P7=1; ACC =1
P7=1; ACC =2

1. _.[P=1; 8=1
P8=1; MODE =1 jp=1: s = 0]
P8=1; MODE =2

_ _, [iP=1;5=1
P8=1; MODE =4 p=1; s = 0]

P8=1; MODE =8

P10=1; REL/SAVE =

P10=1; REL/SAVE =2

P11=1; address of buffer for file
parameters

P12=1; address of tape label buffer

P13=1; MAX KEY LENGTH
=value (1-31)

P14=1; OP-LABEL=X; F11=1;
F12=1

see Figure 8 for L
P15=1; BTD=value
P16=1; VOLUME=value
P17=1; SLIDES=value

consecutive slides=value

Option

SPARE, value

CONCAT, value

RESTORE, valve

LRECL, value

oo, 122
EBCDIC
ASCII

NXTF

FPT Items Set

P18=1; percent of spare space=value

P18=1; number of concatenated
files=value

P20=1; RESTORE=value
P20=1; LRECL=value

p21=1; DSF={‘]’}

P22=1; CSF=0
P22=1; CSF=1
F2=1

Variable Parameter Options

Option

FILE,
name

[, account]

LABEL
name

[» account]

PASS, password

READ,

accounfl, ses

WRITE

occountl, cee

INSN,

serial no

OUTSN,

serial LCIVRRE

EXECUTE,

account

UNDER,

account

.]"

1

FPT Items Set

v=1; ASN=1

create entry 01; subentry=name
create entry 02; subentry=account
V=1; ASN=2

create entry 01; subentry=name

create entry 02;
subentry=account

V=1; create entry 03;
subentry=password

v=l;

create entry 05 for each account ;
subentry =account

V=l;

create entry 06 for each account ;
subentry =account

v=l;

. create entry 07 for each serial no ;

subentry =serial
n n

v=l;

create entry 08 for each serial no ;
subenrryn=seriul no_

v=l;

create entry 14 for each account ;
subenfry =account

v=l;

create entry 15;
subentry=processor or load module
name

Other CP-V Service Calls 83

3. Device Oriented FPT Options

Option FPT Items Set

TAB,valuej,... D=1; Q1=]; for each value,,
TAB, =vq|uen (16 max.)

SEQ see below
[.id] D=1; Q2=1; SEQUENCE ID=id
DATA,value D=1; Q3=1; DATA TAB=value

COUNT,value D=1; Q4=1; COUNT=value

HEADER, D=1, Q5=1

value, HEADER TAB=value

[Jaddress HEADER ADDRESS = [*]address
LINES, D=1; Q6=1;

value LINES PER PAGE=value
SPACE, D=1; Q7=1;

value SPACE=value
DRC D=I; Q8=1; PDRC=1; DRC=1
NODRC D=1; Q8=1; PDRC=1; DRC=0
BIN D=1; Q8=1; PBIN=1; BIN=1
BCD D=1; @8=1; PBIN=1; BIN=0
PACK D=1, @8=1; PPACK=1; PACK=1
UNPACK D=1; Q8=1; PPACK=1; PACK=0
SEQ D=1; Q8=1; PSEQ=I; SEQ=I

[id] see above
NOSEQ D=1; Q8=1; PSEQ=1; SEQ=0
FBCD D=1; Q8=1; PFBCD=1; FBCD=1
NOFBCD D=1; Q8=1; PFBCD=1; FBCD=0
VFC D=1; Q8=1; PVFC=1; VFC=1
NOVFC D=1; Q8=1; PVFC=]; VFC=0
L D=1; Q8=1; PL=1; L=1
NOL D=1; Q8=1; PL=1; L=0
DEVICE, X see Figure 7 for OP-LABEL

Ay D=1; Q8=1; PL=]; L=]

Also see Table 11, this chapter, for storage of some
of the Adjust DCB options.

84 Other CP-V Service Calls l _

SPECIFY LOGICAL DEVICE 1/0 STREAMS

M:LDEV The monitor LDEV routine attaches a logical
device stream to a physical dévice and defines attributes of
the logical device stream. LDEV stores the information in a
cooperative context block, providing for centralized infor-
mation about the physical device even though 1/0 to that
device may arise through more than one DCB within a job.

A logical device stream is an information stream that may be
attached to any symbiont device that the user specifies.
(Symbiont devices include devices such as the line printer,
card reader, card punch, plotter, and all devices at remote
sites that are accessed via remote processing.) At SYSGEN,
up to 15 logical device streams may be defined. Each is
given a name(e.g., C1, L1, P1), each is assigned to a physi-
cal device, and attributes are defined for the physical de-
vice. The user may perform 1/O through a logical device
stream with the default physical device and attributes or he
may change the physical device and/or attributes to satisfy
the requirements of his job. He makes any necessary changes
through use of the LDEV command or the M:LDEV procedure.

The M:LDEV procedure call has the form
M: LDEV 'sfream-id'[,(opﬁon)], ..

where

stream~id specifies the two-character name of the
stream to be referenced. This must be the name of
one of the logical device streams defined during

SYSGEN (for example, C1, L1, P1).

options specify the attributes of the device, such as
device type, stream direction, form, format con-
trol, etc. The options are as described below;
they may appear in any order.

Options

AINIT specifies that the attributes for the stream are
to be initialized with the attributes specified in this
M:LDEV procedure and that system defaults are to
be supplied wherever an attribute is not specified.
Any attributes specified for the stream in a previous
M:LDEV procedure are to be ignored. AINIT is the
default for the AINIT, ASAVE, and AREL options.

AREL specifies that the system table containing the
attributes of this stream (which may have been set
as the result of previous M:LDEV procedures) is to
be released and that the attributes are not to be
reinitialized. Any other options specified (except
DELETE) in this procedure will be ignored.

ASAVE specifies that the attributes for the stream
are to be set only by options explicitly specified
in this M:LDEV procedure. Other M:LDEV-
specifiable attributes (which may have been set as
the result of previous M:LDEV procedures) are not
to be changed. ASAVE cannot be used for the
LABEL option. DEV and WSN are subject to restric-
tions noted in the Remote Processing Reference

Manual, 90 30 26,

90 17 64H-1(9/78)

COPIES, value specifies the number of times the
file is to be processed to produce multiple copies.
The value specified can be an integer from 1 to
255 inclusive. The default value is 1.

COUNT, tab specifies that page counting is to be
done and specifies the column in which the most
significant digit of the page count is to be [isted.
The value of "tab" must be appropriate for the
particular device. (Note that if COUNT is spe~
cified for the LO device and o TITLE control com-
mand is also specified, the page count will be
superimposed on the title line.) The default is no
page counting.

DELETE specifies that if output currently exists for
this stream but has not yet been dispatched for
processing, it is to be deleted. (If such a stream
exists and DELETE is not specified, the output for
the stream is dispatched for processing.) If an in-
put stream with the same name currently exists,
any part of the stream that has not been read will
automatically be deleted whether or not DELETE
is specified.

DEV, 'type' specifies the device type, where type
is the two-charocter mnemonic of the device to
be associated with the stream. Valid mnemonics
are type mnemonics of the central site (that is,
mnemonics defined for symbiont devices during
SYSGEN — for example, CR, LP).

ORC requests that monitor logical record formatting
implied by the DEV option not be performed. Any
record formatting necessary will be supplied by the
user. If DRC is not specified, the monitor will
perform logical record formatting.

FFORM, 'name’ specifies the future form name (as
below, with FORM) of the form to be used when
the form change procedure M:DEVICE(FORM/
FNAME) is specified in the program for the stream,
When M:DEVICE(FORM/FNAME) is encountered,
the stream will be dispatched for processing and
restarted with the designated name as the stream
form, The default is none.

FORM, 'name’ specifies the one~ to four~character
name of an installation-determined paper form or
card stock and is used in output scheduling for the
device. The default is to have no special schedul -
ing (i.e., the operator will determine which form
to use), If used on input, name specifies the one-
to four-character name of a noncontrol input file,
(See "Noncontrol Input Files" below.)

FPC, 'name' specifies the one~ to four-character
name of an installation~determined form overlay
and is used in output scheduling for the Xerox 1200
or a similar device. The default is to have no
special scheduling (i.e., the operator will deter=
mine which overlay to use if any).

90 17 64H-1(9/78)

IN and OUT specifies the direction of the stream,
The default is OUT.

JDE, value specifies the job descriptor entry to be
used in output scheduling for the device. The
value must be in the range 0-89 and specifies an
installation defined procedure describing printer
setup attributes (e.g., VFC tape).

LABEL, [*]address specifies the address of a TEXTC
string to be appended to the stream's user-
identification banner lines (see "user-identification
banner" in glossary).

LINES, value specifies the number of printable lines
per logical page. The greatest value that may be
specified is 255 lines per page. If this option is not
specified the value established at SYSGEN time

will apply.

NOBANNER specifier that no user-identification
banner is to be associated with output for this
stream. A FORM name must also be specified for
NOBANNER to be operative.

NOVFC see VFC below.
our see IN above,

SEQ, ['id"] specifies that punched output is to have
decimal sequencing in columns 77-80, If a user-
defined id is specified, it will be punched in col-
umns 73-76 of each card. Sequencing begins
with 0000.

SPACE, value[, top] specifies the spacing between
lines (value) and between the top of each page and
the first line printered (top). A value of 0 or 1 re~
sults in single spacing. The greatest value that
may be specifiedis 15. The default is single
spacing.

VFC and NOVFC specifies whether or not vertical
format control characters are to be used. (These
two options are legal only for line printers,) VFC
requests that a default vertical format control
character be added to all records. NOVFC re-
quests that the format character be stripped from
the record if present, The default is VFC.

CONCURR places the symbiont output stream in
concurrent output mode, a mode in which output
is broken into groups ("chunks") and released to
the symbiont stream for output. Once this stream
has been selected by the symbiont for printing or
punching, then the particular device is held until
all output produced by the job has been processed,
except as otherwise directed by an operator

Other CP-V Service Calls

85

key-in. If CONCURR is not the only option spec= option IN/OUT (P4)

ified, then already prepared output will be pack=- * T
aged for printing in its entirety and a newly *10 0 A =
bannered stream will be created for subsequent Tr T T T wtT e e 7 -
output, The COPIES option may not be specified
when CONCURR is specified. option LINES (P5)
T +
I*lo o] | Lines per page
NONCONTROL INPUT FILES BCI R ALR AN BULA RN A B ey e Ay
There are two types of symbiont input: that which is a job option COUNT (P6)
control stream and that which is not. Card readers are
usually defined to be control-type devices and are used to
input job control streams. However, noncontrol input *|0 0 II Page count
streams may be entered from the card reader if the first card TT IR IRy RME G R BeV A PR A BB n BB DA B w5
of the input deck is option SPACE (P7)
TINCTL [mme] 0 OI ‘ Line spacing |
vrryitrrT iy

where name specifies the one- to four-character name .
of the noncontrol input stream, option JDE (P8)

. - 1 ' |
In this case, the input deck is read until a IFIN is en- *0 0 : JDE value I
countered. [f any job control cards exist in the deck, they L AL L L »a

are treated as noncontrol information. That is, the entire i
deck is simply read into the input symbiont. This feature option COPIES (P?)

provides, among other things, a means of inputting jobs N ’ Number of
that are to be run at a later time. 0 - - Y coples
oV 2 3143 & 718 ¥ N

(A file created in this manner must be accessed via the LDEV tion SEQ (P10)
‘command or M:LDEV procedure using any logical device optio
stream except Cl. If the user gives the file a name or re- , e .
quests the operator to do so, the user can access the file Sequence identification

using the FORM, xxxx option. (The operator gives the file LA R LR e !
a name using the key-in Syyndd, F'xxxx' where xxxx must .

be identical to xxxx oﬁ the l):'{f)nRM option.) If the file is not option FPC (P11)
given a name by the operator, the next noncontrol file in
the queue that has no name will be retumed to the user.

FPC name (overlay)

1 10 112 13 1415718 17 18 19720 21 M 25 N

Calls generated by the M:LDEV procedure have the form option FORM (P12)

CALL,8 fpt
Form name
where fpt points to word O of the FPT shown below. e i 0Tz WsTe e z 3
word 0 | option FFORMI (P13)
Future form name
V2 314 5 6 718 9 10 1il1Z2 13 14 1% 17 1819 1 3124 25 26 Ell
. VFC }
word 1 o _ N option {NOVFC (P17)
’, r,ob‘ Py Py Py P P Pio Py P2 Py 00"70'"'”000'06"’ [ol +
T V3134 5 ¢ 78 9 10 T[i7131413] 14 17 18 1920 11 2223]24 15 26 7] 78 9 3031 *10 0 ‘:
T2 31436718 5 Bt s W ohe o iwT T TR
stream-id (P1) option SPACE (P19) suboption top
. . , . .
*o 0 : Stream-id . I';einc
T I T ST T T R A B T W R N BN E B E % O EREICNG ICRC TS [RTE) "R s o 1) 1)
option DEV (P2) tion LABEL (P20)
1 .
*10 0 i Device type mnemonic . Lebel TEXTC Address
T 71 3ts 56 ﬁ_e) NI E I O T T I E R TR P Y TR O GO VAN L 2 L o1 23as erfa v 10 n[uRuiBslerE W0 a0 e seeRn

86 Other CP-V Service Calls 90 17 64H-1(9/78)

where

P' through Pg (in word 1) specify which of the
succeeding words are present; that is, which
of certain options have been specified (1 means
the word is present, 0 means the word is not
present). For example, a 1 in bit 11 of word 1
indicates that the word for the FORM option (see
word P12) is present.

fo through f7 (in word 1) specify whether the
DELETE, AREL, ASAVE, and DRC options are
present (0 means the option is not present,
1 meons it is):

fo is for the NOBANNER option.
f.' is for the DELETE option.

f2 is for the AREL option.

f3 is for the ASAVE option.

f4 is for the CONCURR option.
f7 is for the DRC option.

Forexample, a 1 in bit 31 of word 1 specifies the
DRC option.

fen (in word P4) specifies the directionof the stream
(0 means IN, 1 means OUT).

fc (in word P17) specifies vertical format control
override (0 means VFC, 1 means NOVFC).

If an inconsistency is detected in the FPT parameter, return
is made to CAL+} with CC1 set and the error code in SR3
(see Appendix B, Table B-5). Otherwise CC1 is reset.

Table 11 lists most of the service functions (i.e., options)
that apply to logical device streams and indicates, for each
requesting method, the place where the function information
is stored — Data Control Block (DCB) or Stream Context
Block (SCB). Null table entries indicate that the particular
service option is not allowed for that request method. If
the table entry specifies DCB, then presence or absence of
the request is stored in the DCBand only operations through
that DCB receive the service. [f the table entry specifies
SCB, then the presence or absence of the request is stored
in the SCB and will affect all operations on that stream
through any DCB. The importance of Table 11 lies in the
fact that when 1/O is performed for a logical device stream
and the DCB conflicts with the SCB, the DCB takes prece-
dence. Also, when conflicting options are specified for
the same DCB or for the same SCB, the last one encountered
during execution is used.

READ AND WRITE ASSIGN/MERGE RECORD

Throughout a job or on-line session, 1/O service and file
assignment information is retained ond merged into user or
processor DCBs at each job step. This information is main-
tained in an assign/merge record on disk storage, with one

90 17 64H-1(9/78)

record location assigned to each user by the log-on proce-
dure that places the disk storage aoddress of the assign/
merge record in JIT. '

Special procedures are used to read (M:RAMR) and write
(M:WAMR) this record. Use of M:RAMR and M:WAMR is
governed by the following rules:

1. Any program may read an assign/merge record.

2. Only command processors and processors with JIT
access may write an assign/merge record,

3. The buffer size should be 2048 bytes.
4, The DCB must be closed and ot least 8 words long.

5. Error codes are set to report to the address set in the
DCB, os described in Appendix B. Errors in the call
may be as follows:

Code Meaning

X'06' No record exists (read operation).

X'57' No granule can be obtained (write
operation).

X'2E' The DCB is open.

Code Meaning

X'4A' The buffer address is outside the user's data
area or the size is greater than 2048 bytes.

X'14' A write has been attempted by a processor that
is not a command processor or doesn't have
special JIT access.

6. If a read or write error was encountered when access-
ing the assign/merge record, the user is aborted and
logged off the system with the following error code.
Code Meaning

X'A9' Error on read or write of assign/merge record.

The M:RAMR and M:WAMR procedures are described in the
following paragraphs.

M:RAMR The RAMR routine reads the assign/merge
record and has the following format:

M:RAMR [*] DCB name [, (option)]...
The options are as follows:

BUF, [*] address specifies the address of the user's
buffer into which the record is to be read. An
asterisk may be used to indicate that the address
is the address of a location containing the buffer
address.

SIZE, [*] value specifies the size in bytes of the
user's buffer. The buffer should be 2048 bytes.
An asterisk may be used to indicate that the value
is the address of a location containing the buffer
size,

Calls generated by the M:RAMR procedure have the form
CALL,1 fpt

where fpt points to word 0 of the FPT shown below.

Other CP-V Service Calls 87

Table 11. Storage of Service Functions

Request Method

gz:l::;:n M:DEVICE Adjust DCB M:DCB ASSIGN M:LDEV LDEV
BCD DCB DCB DCB DCB - -
BIN DCB DCB DCB DCB - -
COPIES - - - - SCB SCB
COUNT DCB DCB DCB DCB SCB SCB
DATA DCB DCB DCB DCB - -
DEV or DEVICE - Both Both Both Both Both
DRC DCB DCB DCB - SCB SCB
FBCD DCB DCB DCB DCB - -
FFORM - - - - SCB SCB
FORM SCB - - - SCB SCB
FPC - - - - SCB. SCB
HEADER SCB SCB SCB - - -
IN - Both Both Both Both Both
JDE - - - - SCB SCB
LINES SCB SCB SCB SCB SCB SCB
NLINES SCB - - - - -
NODRC DCB DCB DCB - SCB SCB
NOFBCD DCB DCB DCB DCB - -
NOVFC DCB DCB DCB DCB SCB SCB
ourt - Both Both Both Both Both
PAGE DCB - - - - -
SEQ DCB DCB DCB DCB SCB SCB
SPACE DCB DCB DCB DCB SCB SCB
SRCB - - - - - SCB
TAB DCB DCB DCB - - -
VFC DCB DCB DCB DCB SCB SCB
WSN - - - - - SCB

88

Other CP-V Service Calls

word 0

o X'2D! DCB address

0T 27374 5 6 708 9 10 NI12 13 14 15118 7 18 19130 21 22 ZJILN 25 26 27128 29 30 31

word 1

0{0]%{%{0}0 0

0 7 2 304 5 6 718 9 1011112 13 14 15116 17 10 19120 =1 27 23124725 26 2°T28 29 30 31

-

Buffer address

word 3

M:WAMR The WAMR routine writes the assign/merge
record and has the following format:

M:WAMR [*] DCB name [, (option)]. ..
The options are as follows:

BUF, [*] address specifies the address of the user’s
buffer into which the record is to be read. An
asterisk may be used to indicate that the address
is the address of a location containing the buffer
address.

SIZE, [*] value specifies the size in bytes of the
user's buffer. The buffer should be 2048 bytes.
An asterisk may be used to indicate that the value
is the address of a location containing the buffer

size.
Calls generated by the M:WAMR procedure have the form
CALI1, 1 fpt

where fpt points to word 0 of the FPT shown for M:RAMR
with the exception that the code in the first byte of word 0
is X'2E' instead of X'2D'.

REPORT SYSTEM LOAD PARAMETERS

M:DISPLAY The DISPLAY routine returns the current
values of three system load parameters. The three system
load parameters are

1. The execution time multiplication factor (ETMF).

2. The median value of terminal response time in seconds.
3. The current number of active users.

Integer values for these parameters are returned in regis-
ters 5, 6, and 7, respectively. ETMF and response time

values apply to all operations during the last full minute
of system usage.

The procedure M:DISPLAY has no parameters and generates
a CAL of the form
CALIL, 8 fpt

where fpt points to the FPT shown below

X"13' 0 0
ST T T e tT v o O W e v R o B 5 B PR R B

RELEASE RESOURCE CAL

There is one CAL that is used to release job resources back
to the operating system under program control. 1t may be
used, for example, to release tape drives used in the first
job step of a stream, but not required for the rest of the

job. Its format is

CAL1, 8 fpt
where fpt points to the FPT shown below

. . 0 0] Resource ¥
X'15'
0 0] Text resource name
0 i 2 314 5 & 708 9 10 11112 15 14 15016 17 18 19120 21 22 23124 25 26 27126 29 30 31
where
resource # is the resource type index and may be

obtained from the type field in the DCB (right
seven bits of byte 2 of word 1). (See Appendix A.)

text resource name isthe name of the resource being
released. The .ame corresponds to the name

specified on the LIMIT card (for example, 9T, DP).

In addition, the user must specify in SR1 the number of re-
sources to be released.

The following error conditions are possible:

CCl1 =1 If resources released exceed amount origi-
nally ailocated or remaining allocated
(none are released).

cC2=1 If an odd number of core pages is specified
for release, and no pages are released.

CC3=1 If an index is outside the range of the

Resource Allocation Table.

SAVE CAL

The SAVE CAL stores in the user's JIT the current values of
the user's tables for the following: associated processor
root, associated processor overlay, associated special
processor, associated debugger, and user flags. This infor-
mation is stored as follows:

J:CPROCS
(UB:APR) (UB:APO) (UB:ASP) (UB:DB)
0 1 2 314 5 & 708 9 10 190112 13 14 15406 17 V8 19120 21 22 23024 25 26 2.12€ 29 3C 2
J:CFLGS
0 0 (UH:FLG)
G 1 2 314 5 6 718 9 10 101213 w4 15016 17 18 19720 21 22 23724 25 26 27128 29 3C Y

The format of the SAVE CAL is
CALL 4 fpt

where fpt points to the FPT shown below.

Other CP-V Service Calls 89

X'02' 0

- + .
T 1 2 314 5 6 718 5 10z 13 14 15116 17 18 517 21 !223'5‘25265'2829”.’"

There are no restrictions on the use of the SAVE CAL. It
always returns with CC1 =0.

GET CAL

The GET CAL can be invoked only by TEL or CCL. [If TIC
(TEL-in-control flag) is not set, the return is to CAL + 1
with CC1 set to one. Otherwise, the debugger-associated
and debugger-in-control bitsfrom the saved flags (J:CFLGS)
are stored in the user's current flags and the saved pro-
cessor values are transferred from J:CPROCS to the appro-

priate user tables. The return in this case is to CAL +1
with CC1 =0.

The format of the GET CAL is
CALl, 4 fpt
where fpt points to the FPT shown below

X'03' 0 OI
V2 34 5 & 7V8 9 10 11112 13 14 15116 ¥ 2 2 a

ENTER MASTER MODE

'MiSYS The M:SYS procedure allows processors that
have a sufficient privilege level (CO or higher) to op-
erate in master mode with a write key of 0. The calling
program is also given the addresses of the monitor's I/O
routines, insystem-communication registers SR1~SR3. M:SYS
does not set the Sigma 9 or Xerox 560 master-protected bit.

The M:SYS procedure has no parameters, and generates a
CAL of the form

CAL1,6 fpt
where fpt points to the FPT shown below.
x'08' 0

01 2 lil 5 6 718 9 10 N2 13 14 l."ilb 17718 l"nl‘ﬂﬁ'f‘ﬂ’d;’ﬁ;ﬁh

On return from this procedure, the calling program is oper-
ating in master mode with a write key of 0. Register SR1
will contain the address of QUEUE, the monitor routine
for 1/0 through a DCB with no end-action; SR2 the address
of QUEUE], for 1/0 through a DCB with end-action; and
SR3 the address of NEWQ, for 1/O with no DCB. (User
programs generally may not specify end action. End action
routines must be in the resident monitor.) If the caller's
privilege level is not sufficient, return is to CAL+1 with
CC1 set.

,M:CAL The M:CAL procedure allows user control over
the CAL3 trap, thus allowing the user to specify a target
Program Status Double word (PSD) for the CALS trap.

Ability to modify the bits in the PSD is controlled by privi-
lege level. The user with less than CO privilege can alter
the instruction address (which will be entered slave mapped),
as well as the arithmetic and floating mask bits. The user
with CO or greater privilege can alter any portion of the

PSD with the exception of the register block, the write

key, or the map bit.

90 Other CP-V Service Calls

The M:CAL procedure has the form

M:CAL (IA, addr) ,pb-...
where

addr specifies either O or the user handler address,
above JBUPVPA,

pb specifies a two character identifier for various
PSD bits. The options are listed below.
c Counter interrupt group inhibit
Tl Input/output interrupt group inhibit
El External interrupt inhibit
FS Significance trap mask
FZ Zero trap mask
FN Normalize trap mask

DM Decimal arithmetic fault trap mask

AM Fixed-point arithmetic overflow trap mask

MM Set master mode, write key = 0

MP Set master protect mode, write key = 1
(Sigma 9 and 560 only)

The CALI1,5 that is generated points to word 0 of the
following FPT:

word 0
f X'06' 0 0
012345678 31
words 1 and 2

New PSD
0 31

Upon issuing the CAL1, the following CC bits are returned
to the user:

CCl1 SET - bad oddress given, no action taken,
RESET - connect request satisfied.

CC2 SET - user not privileged to specify MM, MP,
or inhibit bits.

M:MASTER The M:MASTER procedure allows a user
with sufficient privilege level (CO or higher) to operate in
the master mode (master-protected mode if running on a
Sigma 9 or Xerox 560) with a write key of 1. The format
of the procedure call is

M:MASTER
Calls generated by the M:MASTER procedure have the form
CAL1,5 fpt

where fpt points to the FPT shown below.

X'08' 0 Ol
LI L O A L N 1) 7 T T) ol T PO T R T 7 B R

If the caller’s privilege level is not sufficient, return is to
CAL+1 with CC1 set.

90 17 64H-1(9/78)

ENTER SLAVE MODE

- M:SLAVE The M:SLAVE procedure allows any master
(and master-protected) mode program to return to the slave
" mode. The format of the procedure call is
M:SLAVE
Calls generated by the M:SLAVE procedure have the form
CAL1, 5 fpt

where fpt points to the FPT shown below.

X7 0 v OI

0 1 2 314 5 6 718 9 10 11712 13 14 15716 17 18 19120 21 22 23124 25 26 27128 29 30 3)

ASSOCIATE OR DISASSOCIATE PUBLIC LIBRARY

Two CALs allow the userto control the association of shared
public libraries with his program. Both CALs are of the form

CALL4 fpt

‘where fpt points to word O of the fpt shown below.

word 0
Code 0 0
0 1 2 374 5 6 708 9 10 H112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

90 17 64H-1(9/78)

word 1

n
Count 1 n, ng
0 1 2 314 s 6 718 5 13 W2 :3 ¢ 15818 7 8 190120 2z 22 2304 28 2¢ 27° 28 2% 30 3
word 2
n4 n5 né n7
0 1 2 jil 5% & 9 10 HILI) T3 14 15016 '~ 18 19120 21 22 23824 25 26 27126 20 3C 3

where

code is X'04' for associate and X'05' for disas-

sociate.
count is the number of characters in the name.
n: are the characters in the name of the public

i
library. Names are limited to 7 characters and

must have trailing blanks.

If no library with the specified name can be found, CC1

is set and no further action is taken. An attempt to dis-
associate when there is no association will cause CC2 to be
set. If association of one library requires disassociation of
a current library, both disassociation and association will
take place and CC3 will be set. If either the virtual core
or the physical core is not available, CC4 is set and no
further action is taken.

Other CP-V Service Calls 90.1

(This page intentionally left blank.)

90.2 Other CP-V Service Calls 90 17 64H-1(9/78)

CHECK EVENT CONTROL BLOGK(S) FOR COMPLETION

M:CHECKECB The M:CHECKECB procedure allows ¢

user program to check for the completion of an event or of
a set of events and, if necessary, to enter the wait state to
await the completion of the event(s).

There are two event-driven services in CP-V, enqueue
(M:ENQ) and dequeue (M:DEQ). When one of these services
is requested, the user program may allocate a two-word
block to be used as an event contro!l block (ECB). The access
protection for the ECB must be 00 — all access. When the
address of the event control block is specified in the service
call, it is saved by the monitor. Upon entry to the service
procedure, the system initiates the required action, sets the
event control block toan 'in-use' status, andreturns control
to the user program. More than one event-driven service
may be in action at the same time. The user program con-
tinues to process until it requires that the action(s) requested
be completed. At this time the user program may issue the
M:CHECKECB procedure call which, if necessary, will place
the user program in a wait state until the action(s) specified
within the M:CHECKECB procedure call have completed.

An event control block consists of two words:

word 0
HHH
pfsls Reserved
G 1 2 314 5 & 716 9 10 11112 13 t4 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
word 1
Reserved
T T 2 314 5 & 7 8 90 iz 13 14 15116 17 18 613 37 22 33154 25 26 H18 B B0 3
where
ECBP is set to one when the event has completed.
ECBW is set to one when the event has been refer-

enced in an M:CHECKECB request.

ECBI is set when the ECB has been assigned to an
action to be completed by an enqueue or dequeue
service. ECBI indicates that a read or write has
been issued and is waiting for completion of non-
enqueue/dequeue operations.,

90 17 64H-1(9/78)

The settings of the bits ECBP, EDBW, and ECBI are murn:
exclusive. That is, only one of these bitc may be se* ¢
one at any given time. Since the ECB exi within th
user program's virtual storage, the state of tre TCB woy
be examined at any time by fhe user program,

The format of the M:CHECKECB procedure call is
M:CHECKECB (option}{, (option)!. . .

where the options are:

EC B,[*]oddress[, [*]volue] specifies the addres: ¢
set of contiguous event control blocks. Vaiue s
cifies the number of contiguous event control iz
The default for value is 1. A value of zero e
cifies that the set of ECBs is null.

ECBL, [Jaddress , [value specifies the address ..°
the first word of a list of words, each of whia-
contains a pointerto an event control block. Va:c..
specifies the number of words containing event
control block pointers. The default for value i}
A value of zero specifies that the set of pointers
to ECBs is null.

EVENTS, E)value specifies the number of event
contro! blocks that must be posted complete beior:
control is returned to the user program. The de-
fault is 1.

TIME, [#units specifies the number of 1.2-second
time units that may elapse before control iz re-~
turned to the user event if the value specified fo-
EVENTS has not been satisfied. The maximum
number of units that may be specified is 65,535,
If this option is not specified, then time is not a
factor in the completion of the procedure cat!.

At least one occurrence of ECB or ECBL must be pre::~t in

the specification of M:CHECKECB. ECB and ECBL may ve
stated a multiple number of times to combine nonconiiguous
ECB areas for one M;CHECKECB request.

Other CP-V Service Calls 1

The M:CHECKECB procedure allows a user to wait for the
completion of a specified number of events. To determine
which event or events were actually completed, the user
should examine the ECBPbit of each ECB that was specified
in the list(s). Since there exist certain actions which un-
conditionally end the M: CHECKECB wait state, the user
should always determine the setting of the ECBP bit after
the wait state ends. This is true even if the ECB or ECBL
parameters specifiedonly one ECBto wait upon. The actions
which unconditionally terminate the M:CHECKECB wait
state (changing the user's environment to the M:CHECKECB
CAL1+1 location) are:

BREAK
vS

INT key=in (operator key=-in)

E key-in (operator key=-in)

X key=in (operator key=in)

ZAP key=in (operator key=in)

TIME value has elapsed
The ECBP bit may not be set correctly if access protection
for the ECB is not 00. The monitor makes a security check
at the time that an ECB is selected to be posted complete.
If access to the ECB is not 00, the portion of the posting
operation which would have transferred information to the
ECB is omitted.
Callsgenerated by the M: CHECKECB procedure have the form

CAL1,7 fpt

where fpt points to word 0 of the FPT shown below.

word 0
x05 |ol———0f NECB NECBL
|zalaso7avmvo||lmztzsm
word 1
Ao 0

V2 314 5 8 7i! ® 10 11012 13 4 15716 17 18 19120 21 22 23124 25 26 27128 29 30 I

i option EVENTS (P1)

* EVENTS value

T VT 314 5 6 718 9 1011112 13 14 15116 17 18 R R AN]

ption TIME (P2)

.
* TIME units
S R O NI A D A R L A R R R AR T O N TR A O

option ECB

o

*|0 0 Address of first ECB area

V2 314 5 6 778 9 10 NT12 13 i4 l!iTol? 18 19120 21 22 23124 35 26 27126 B B 31

92 Other CP-V Service Calls

* Length of first ECB area
O %V 2 314 5 6 716 9 10 11112 13 14 15078 17 18 l’iﬁ 71 22 23124 25 2 D128 ¥ 0 3

Addresses and lengths of additional ECB areas (one
pair for each ECB specified)

option ECBL

*10 0 Address of first ECBL area
] ﬁ‘ 5 6 7218 9 10 N2 13 14 lﬁlb 17 18 WIN 21 22 23'2‘ 25 26 17'“2’ 0 N

* Length of first ECBL area

Ty Ty

Addresses and lengths of additional ECB areas (one
pair for each ECB specified)

where

NECB specifies the number of ECB options in the
procedure call.

NECBL specifies the number of ECBL options in the
procedure call.

Note that for each ECB and each ECBL option, two words
are generated.

Condition code settings resulting from an M:CHECKECB
CAL are:

The M: CHECKECB procedure call
was completed with no errors.

The TIME specification is greater
than 65,535.

The ECB is not in the proper state.
(Either ECBW is set or ECBI is not
reset.)

An infinite wait condition has

occurred. The number of EChs

specified is less than the EVENTS
specification.

There was not enough monitor work-
space to process the M:CHECKECS
procedure call at this time.

The ECB does not have an access
protection of 00.

INITIATE GHDST JOB

The following CAL can be used to initiate a ghost job.
CAL1, 6 fpt

where fpt points to an FPT having the following format:

word 0

X'06' 0 0

0 ¥V 2 214 5 6 758 % 10 11112 1314 15716 1718 19720 21 22 ﬁ‘ 25 26 27128 29 30 31

words 1 and 2 (Name of job to be initiated)

n a a2 a3

a a a a
n-3 n-2 n-1 n
1T 2 314 5 6 718 % 10 1213 1415016 17 18 19120 21 22 23724 25 26 27128 29 30 31

{Name of job must be in TEXTC format.)

If the program to be initiated is already in execution at the
time of the request and is not in a waiting state (WAIT CAL
with unexpired time), the normal return is made (CCI = 0).
If the program is in a waiting state, it will be activated
immediately at the WAIT CAL plus 1 and a normal return is
made to the initiating program. A privilege level of CO or
higher is required to utilize this CAL.

EXECUTE PRIVILEGED INSTRUCTIONS

MEXU The M:EXU procedure allows o user with
sufficient privilege level (CO or higher) to request that the
monitor execute a privileged instruction for the user so that
the program does not have to run in the master mode.
The procedure has the following format:

M:EXU [*Jaddress

where address specifies the address of the privileged instruc~
tion to be executed. The op code of the instruction must
be one of the following:

X'4C' S1O
X'4D' TIO
X'4E’ TDV
X'4F' HIO
X'6C! RD

X'6D' wD

Calls generated by the M:EXU procedure have the form
CALIL, 5 fpt

where fpt points to the FPT shown below.

* X'28! 0—0 Instruction address

o 12 '31L4 TG 71E 7 10 11112 13 14 15114 17 (& 191z 21 22 2:124 25 24 77126 77 3 31

The instruction may invoke indirect addressing. Since the
condition codes returned are those of the executed instruc-
tion, the following abnormal conditions are reported via
a program abort (which may be intercepted by the user's
trap control routine by specifying the CAL keyword in the
M:TRAP procedure).

Code Subcode Meaning

B9 01 Insufficient privilege.

B9 04 Illegal op code in referenced
instruction.

B9 05 Referenced instruction is in

protected memory.

ON-LINE AND BATCH DIFFERENCES

The monitor responds differently to certain CALs depending
on whether an on-line or a batch program issued the call.
These differences are outlined below.

EXIT RETURN (M:EXIT)

Batch: The monitor performs any PMDI dumps that have
been specified for the program. It then reads the Cdevice,
ignoring everything up to the next control cord.

On-line: The monitor returns control to the on-line exec-
utive program (TEL) and, after sending a message, sends

a prompt (!) character to the terminal. It then awaits ad-
ditional commands.

ERROR RETURN (M:ERR)

Batch: The monitor lists the message

JOB id ERRORED BY USER AT xxxx

where xxxx is the address of the last instruction executed
in the program. The message plus the contents of the
current register block and program status doubleword (PSD)
are listed on the LL and DO devices. Postmortem dumps
are performed and the C device is read; everything up to
the next control command is ignored.

On-line: The monitor lists the message

A800 YOU ISSUED AN ERROR OR ABORT CAL

Online and Batch Differences 93

The message is listed on the UC device. The monitor
then returns contro! to the on-line executive (TEL), which
sends a prompt character (1) to the terminal and awaits
commands.

ABORT RETURN {(M:XXX)

Batch: The monitor lists the message

JOB id ABORTED BY USER AT xxxx

where xxxx is the address of the last instruction executed.
This message plus the contents of the current register block
and program status doubleword (PSD) are listed or the LL
and DO device.

When a job is aborted, all specified postmortem dumps are
performed but no further control commands are honored

until a JOB or FIN control command is encountered.

On-line: The monitor lists the messcge

A800 YOU ISSUED AN ERROR OR ABORT CAL

This message is listed on the UC device. The monitor then:
returns control to the on-line executive (TEL), which
sends a prompt character (!) to the terminal and awaits
additional commands.

TYPE A MESSAGE (M:TYPE)

Batch: The monitor lists the specified message on the QC
device.

On-line: The monitor lists the specified message on the UC
device.

A variant of M:TYPE is M:MESSAGE which unconditionally
lists a message on the operator's console (OC device). The
format of M:MESSAGE isidentical to that of M:TYPE except
for the FPT code which is zero.

94 Online and Batch Differences

REQUEST KEY-IN (M:KEYIN)

Batch: The monitor lists the specified message on the OC
device and enables the operator's reply to be returned to
the user program.

On-line: The monitor lists the specified message on the

UCdevice and enables the user's reply to be returned to the
user program. If the OC option of the procedure is speci-

fied, the message is listed on the OC device and the reply

is received from the OC device.

CONNECT TO INTERRUPT OR BREAK KEY (M:INT)

Batch: The purpose of this procedure is to set the address
of a routine to be entered when the INTERRUPT key-in
is invoked at the operator's console. When control is
given to the INT routine as ¢ result of an interrupt, the
monitor pushes the PSD and genera! registers into the
user's temp stack. The TRTN routine may be used to re-
store control to the user program.

On-line: The purpose of this procedure is to set the ad-
dress of a routine to be entered when an interrupt is gen-
erated at an on-line terminal. When the BREAK key is
depressed, the monitor pushes the PSD and general registers
into the user's temp stack. The TRTN routine may be used
to restore control to the user program.

The procedure call is of the form

M:INT address

where address specifies the location of the entry to the
program's BREAK response routine. A zero oddress re-
sets break control. If the address specified is in the range
of virtual addresses assigned to the monitor, then zero is
substituted (break control is reset).

90 17 64H-1(9/78)

9. 1/0 PROCEDURES

INTRGDUCTION

All 1/O operctions are performed by the monitor for the
user (i.e., the user's program never directly accesses an
1/O device, but rather requests that the monitor do so).
Each request for 1/O service from the monitor is made by
inclusion of an 1/O call in the user's program. This call
generates a Function Parameter Table (FPT), which in turn
refers to a Data Control Block (DCB). The combination of
the 1/O call, the FPT and the DCB provides the infor-
mation that the monitor needs to perform the requested
operation.

Generally, the DCB contains the kind of information that
is specific to a device (e.g., for output to a line printer,
number of lines per page is one value in the DCB), The
FPT contains a far smaller set of information that is spe-
cific to the operation to be performed (e.g., the location
and size of the buffer that is to be output to the printer
in this specific operation). Separation of information into
the DCB and the FPT allows the user to create one DCB
for a type of I/O and reference that DCB throughout his
program, whenever he requires that type of [/O. Each
time that he references that DCB, he generates an FPT
with the specific information required for that particular
I/O operation.

In addition to serving as a source of information for the
monitor to use in an I/O operation, the DCB also provides
a place for the monitor to store information while it is
performing an /O operation, Some of the information
stored in the DCB by the monitor may be of some use to
the user, and some is of meaning only to the monitor.

The user is responsible for providing the address of a prop-
erly initialized DCB with every call to the monitor re-
questing an 1/O operation.

The user may obtain a DCB by

1. Including a copy of one or more preconstructed stan=-
dard monitor DCBs that are available for most common
I/O operations (via an external reference to the
appropriate DCB name in his program).

2, Explicitly creating his own DCB at assembly time.

Monitor calls are provided to permit the user fo initialize
or alter DCBs. ‘

/O operations involving symbiont devices do not require
different procedures. Aside from faster completion, the
user is not aware that a device is a symbiont device,

Each DCB is assigned to a physical device either directly,
by entry of a device code in the DCB, or indirectly, by
entry of an operational label or a resource name in the
DCB. Physical devices may be identified by a code
of the form yyndd, where yy =device type, n =10P

designation, and dd =device designation. (The ndd portion
is ignoredbut is allowed for compatability with previous ver-
sions of the system.) Values for each are listed inTables 12
through 14, Table 12lists only the 1/C device type codes thot
are standard in CP-V., Other levice fypes may be defined at
SYSGEN. The operaiional labei is the name of a logical
system device. The assignme:i of DCBs to devices through
operational labels gives users the capability of changing de-
vice assignments for a particular input/output classby chang-
ing the normal assignment of the operational labels.

The standard monitor DCBs have names containing the let~
rers of the operational labels to which they are normally
assigned. For exomple, the standard monitor DCB assigned
to the SI operationai label by default has the name M:SI.

Table 12. Standard 1/O Device Type Codes

Device {yy) Physical Device Name

MT Default magnetic tape type
(defined at SYSGEN)

77 7-track magnetic tape

9T 800 bpi 9-track magnetic
tape

BT 1600 bpi 9=track magnetic
tape

cp Card punch

CR Card reader

TY Typewriter

LpP Line printer

DC Magnetic disk

DP Default disk pack type (de-
fined at SYSGEN)

NO No device

Table 13. IOP Designation Codes

Corresponding Decimal
Digit of Unit Address

Specified Channel
Letter (n)

A

I o m M OoONn®
N oo b w N = O

1/O Procedures 95

Table 14, Device Designation Codes '

gzszd(iiijl)mal Device Designation

00 < dd < 7F Refers to a device number
(00 through 7F).

80 < dd < FF Refers to a device controller

number (8 through F) fol-
lowed by a device number

(0 through F),

General registers may not be used as I/O buffers.

I/O procedures are provided for the following 1/0O
functions:

1. File Maintenance

Create a Data Control Block
Open a File

Close a File

Set Error or Abnormal Address
Check I/O Completion

Declare Temporary File

2, Data Record Manipulation

Read a Data Record
Write a Data Record
Delete a Data Record

Truncate a Blocking Buffer

3. File Manipulation

Position n Records
Position File
Close Volume
Rewind

Write End-of=File

Insert or delete a Symbiont File

' 96 File Maintenance Procedures _

4, Special Device

Set Listing Tabs

Skip to Top of Form

Set Number of Printable Lines

Set Line Spacing

Specify Direct Formatting

Specify Vertical Format Control
Specify Page Count

Change Output Form

Change Device Mode or Record Size
Specify Output Header

Specify Card Punch Sequencing
Determine Number of Lines Remaining

Check Correspondence of DCB Assignments

FILE MAINTENANCE PROCEDURES

All procedure calls except M:DCB described in this chap-
ter generate a Function Parameter Table (FPT) of the same
general form, consisting of a function identifier, param-
eter and file option flags, and data.

CREATE A DATA CONTROL BLOCK

If the user's program is written in ANS COBOL or Extended
FORTRAN 1V, the processor will automatically include in
the object modules generated for the program all necessary
I/O calls and references to DCBs that the loader will sat=
isfy. However, if the user's program is written in Meta-
Symbol, he must provide all necessary I/O procedure calls
in his symbolic program.

The user may use copies of monitor DCBs by declaring them
as external references in his Meta-Symbol program; other-
wise, he must create his own DCBs by means of explicit
symbolic code or via M:DCB procedure calls,

When a load module is loaded for execution, any ASSIGN
parameters for DCBs contained in that load module are
merged, Thus, an option contained in a DCB created ex-
plicitly or via M:DCB or contained in a system DCB may
be overridden by an ASSIGN control command,

DCB formats are described in the appendix titled "Data
Control Block Formats",

m:DCB The M:DCB procedure generates nonexecutable
code (i.e., it creates only a data area in the user's pro-
gram) which must have a label. The label is the name by
which the DCB is to be referenced.

The M:DCB procedure call is of the form

dcb name M:DCB [(option)] [, (option)] . . .

90 17 64H-1(9/78)

where dcb name specifies the name of the user's DCB. The
name may consist of from 3 to 31 alphanumeric characters,
the first two of which must be "F:" or "M:". The "dcb name"
must previously have been declared a dummy section, via a
statement of the form

dcb name DSECT 1
The options are as follows:

(one or two of the four keyword operands given
below).

name

DEVICE, 'name’ specifies a device type, a system oper-
ational label, or a logical device stream name. Ac-
ceptable forms of the name specifications are (1) for
a device type — 'CR', 'LP', '7T', '9T', etc.; (2) for an
operational label — 'LO’, 'EQ!, 'LL', 'C", etc.; (3) for
a logical stream —'P1', 'C1', 'L1'. DEVICE may be
used in conjunction with FILE, LABEL, or ANSLBL.

FILE[, 'name'[, ‘account']][,n) specifies the name of the
public or private file that is to be assigned to the
DCB. The name may consist of up to 31 alphanumeric
characters. The named file will be maintained on
RAD or DP storage. If the file is private, the SN
option must be used to specify the serial number(s) of
the private volume set.

If the named file belongs to a different account than
that of the current job, the file's account number must
be given (either in the M:DCB call or in an ASSIGN
control command or M:OPEN call). If the name and
account number are both omitted and n is not specified,
eight words are reserved for the name (to be inserted
via an ASSIGN control command or M:OPEN call) and
two words for the account number. If n is specified,
n words will be reserved for the file name. If neither
FILE nor LABEL (see below) is specified in the M:DCB
call, the DCB may only be assigned to files defined by
a system operational label (for example, GO), or to a
device.

The following examples illustrate use of the file option:

(FILE) reserves eight words for the file name.

(FILE,n) reserves n wonds for the file name.

(FILE,'name’,n) reserves n words and puts
'name’ as the filename.

(FILE, 'name’, 'account’,n) reserves n words and
puts 'name’ as the filename and 'account' as
the account,

All correct forms reserve two words for the account.

Also see the description of the FILE option for the M:OPEN
procedure.

LABEL[, 'name'[, 'account']];n] specifies the name of
a file on Xerox labeled mognetic tape. The tape may
consist of up to 31 alphanumeric characters. If LABEL
is specified, the SN option must be used to specify the
reel(s) containing the file. If the named file belongs
to a different account than that of the current job, the
file's account number must be given (either in the
M:DCB call or in an ASSIGN control command or
M:OPEN call). If the name and account number are
both omitted and n is not specified, eight words are

90 17 64H-1(9/78)

reserved for the name {to be inserted via an ASSIGN
control command or M:OPEN call) and two words for
the account number. If n is specified’, n words will be
reserved for the file name.

ANSLBL, 'name' specifies the name of a file on ANS
labeled magnetic tape that is to be assigned to the
DCB. The name may consist of up to 17 alphanumeric
characters, If the file name contains a special char~
acter, it must be enclosed by single quotation marks,
When a single quotation mark is to be used as part of
the file name, it must be coded as two successive quo-
tation marks, There must be no blanks between the
last character and the terminating quotation mark.

FILE
LABEL

ASN,{ DEVICE specifies the value for the ASN field
JRNL of the FPT. This value will override
ANSLBL the default value created by other key-

words such as FILE. For example, this option is useful
in creating a device DCB which has space reserved for
a file name:

....(FILE,8),(DEVICE,'LO"),(ASN,DEVICE). ..
The ASN values are

- FILE

- LABEL
DEVICE
- JRNL
ANSLBL

X AWK —
]

lAI

org (one of the four file organization types given below.
Not applicable to ANS labeled tapes.)

CONSEC specifies that the records in the file are con-
secutively organized and each record is to be pro-
cessed in order,

If a private file has consecutive organization, only
one volume in the private volume set need be mounted

~at any time. As another volume is required, the sys—
tem will request that it be mounted.

KEYED specifies that the location of each record in
the file is determined by an explicit identifier (key)
that may be used to access the record, Akey maycon-
sist of up to 31 characters.

If a private file has keyed organization, all volumes
in the set must be mounted when the file is opened
and remain mounted until the file is closed,

RANDOM specifies that the records in the file are a
collection of contiguous granules on the specified
device type that are devoid of any system informa-
tion, and whose internal structure is the responsibility
of the user. If device type is not specified, the
file is allocated on RAD or disk pack, whichever
is available.

File Maintenance Procedures 97

If a private file has random organization, all volumes
in the set must be mounted when the file is opened
and remain mounted until the file is closed,

UNDEF specifies that Xerox labeled tape records are
all unblocked and without headers, i.e., equivalent
to device format. BLOCK access is forced for this
organization. (Applicable only to Xerox labeledtape.)

access {(one of the three record access means given be-
low.) Not applicable to ANS labeled tapes un-
less otherwise noted.

SEQUEN specifies that records in the file are to be ac-

cessed in the order in which they appear within the file.

DIRECT specifies that the next record to be accessed is
determined by an explicit identifier (key). If specified
for consecutive or keyed disk files, read ahead will be
disabled.

8LOCK specifies that data blocks are transferred di-
rectly between tape and the user's buffer. (Applicable
only to Xerox and ANS labeled tape.) This access is
forced for UNDEF organization and for ANS tape.

function (one of the four modes given below).
IN ’SE'-;(A&‘:_E] specifies the input mode. SHARE speci-
! fies share mode for the DCBwhich allows

more than one IN and/or INOUT user to access the

file concurrently, EXCL specifies exclusive mode for
the DCB which means that the user must have exclu-
sive use of the file, The default is EXCL,

ourt specifies the output mode.
INOUT ['é;‘éEE] specifies the input and output mode
’ (i.e., the update mode). SHARE

specifies share mode for the DCB which allows more
than one IN and/or INOUT user to access the file
concurrently, EXCL specifies exclusive mode for the
DCB which means that the user must have exclusive
use of the file. The default is EXCL.

OUTIN specifies the output and input mode (i.e., the
scratch mode).

file disposition (one of the two specifications given

- below).

REL specifies that the secondary storage allocated to
this file is to be released when the file is closed. REL
is significant only for OUT and OUTIN files and is
assumed if file disposition is unspecified, See FILES,
in the discussion of M:CLOSE.

SAVE specifies that the secondary storage allocated to
this file is to be saved when the file is closed, unless
otherwise specified by an M:CLOSE procedure call,

98 File Maintenance Procedures

If SAVE is not also specified in the M:CLOSE, the sec-
ondary storage allocated to this file will be released,

JOB specifies that the file is temporary and is to be
kept across job steps but is to be released at the end of
the job. (See M:TFILE ond M:CLOSE.) This option is
not available for private packs.

Other options

ABCERR specifies that block count errors are not to
force an unconditional abort; i.e., that in the case
of inconsistency between the tape-specified and the
system=accumulated block counts, return is to the ERR
address in the DCB — an abort is to occur only if there
is no ERR address in the DCB. ABCERR is applicable
for ANS labeled tapes only.

ABN, address specifies the symbolic address of o user's
routine that is to be used to analyze any abnormal con-
ditions associated with the makeup of the DCB. Allows
the user to handle errors (such as end-of=file) him-
self rather than having the monitor handle them.

BLKL, value specifies block size in bytes, The value
may be in the range 1 to 32,767, If a value less than
18 bytes is specified, 18 bytes are written. BLKL is
applicable for ANS labeled tapes only.

BTD, value specifies the byte displacement (0-3) in the
user's buffer from which 1/0 is to take place (i.e., at
which byte in the buffer the data begins).

BUF,address specifies the symbolic address of a buffer that
is to be used in the transfer of data or trailer labels.

CONCAT, value specifies the number of identically
named files that are to be read as one logical file
(concatenated). The value may be in the range 2
through 128. The default value is 0. CONCAT is
applicable for ANS labeled tapes only.

CYLINDER specifies that the data blocks of a public
file are to be allocated from public devices having
cylinder allocation units. If CYLINDER is not speci-
fied, the data blocks of a public file are allocated
from public devices having granule allocation units.
In either case, the file will only be allocated on the
type of device specified with the DEVICE option. If
the DEVICE option is not specified, the system looks
for space on public disk packs first and RADs last. If
space is not available in the units requested, the file's
data blocks will be allocated in the available units
from public devices of the type requested. CYLINDER
only has meaning for public files with keyed or con-
secutive organization.

ERR, address specifies the symbolic location of a user's
routine that is to be used to analyze any error condi-
tions associated with the makeup of the DCB (see the
appendix titled " Monitor Error Messages"). Allows the
user to handle ‘errors himself rather than having the
monitor handle them.

90 17 64H-1(9/78)

|
|

EXECUTE[,'value'[,'value']...] /]

EXPIRE,

FORMAT,character

FPARAM, address

specifies the ac-
count numbers of those accounts that may execute the
file. Up to eight account numbers may be specified.
The value 'ALL' may be used to specify that any account
may execute the file. The value "NONE' may be used
to specify that no other account may execute the file.
This option is not checked for any user who would have
reserved access to the file by an explicit READ or
WRITE specification. If n is specified, n words will
be reserved in the variable length parameters for
EXECUTE accounts. [|f EXECUTE is not specified, the
default is no execute.

If this option is omitted from the M:DCB procedure
call, it will not appear in the DCB and, consequently,
will be ignored in the ASSIGN control command or
M:OPEN procedure call. If EXECUTE is specified

but no values are given, 16 words are reserved for
EXECUTE account numbers (to be inserted via an
ASSIGN control command or M:OPEN call). EXECUTE
is applicable only to files,

mm,dd,yy
ddd] specifies either an explicit ex~
NEVER piration date (mm,dd,yy), the

number of days to retain the file (ddd), or that the file
is never to expire (NEVER). NEVER is not applicable
for ANS labeled tapes. If not specified, the default
value, as established in the authorization record for
the user, will determine the expiration date. Files
will be automatically purged from the public file sys~
tem if they have expired whenever secondary storage
space passes below a SYSGEN established threshold.

The value specified may not exceed the maximum ex=
piration period authorized for the user. If the maxi-
mum expiration period is exceeded or unspecified, the
default expiration period authorized for that user will
be used. If this option is omitted from the M:DCB pro-
cedure call it will not appear in the DCB and, con-
‘sequently, may not be used in an ASSIGN control
command or M:OPEN procedure call referencing the
DCB. If EXPIRE is specified but no value given in the
M:DCB call, two words are reserved for the value
(to be inserted via an ASSIGN control command or
M:OPEN procedure call).

specifies the record formats. The

character may be
F — fixed length.
D — variable specified in decimal.
V — variable specified in binary.
U — undefined.

The default character is F. FORMAT is applicable for

ANS labeled tapes only.

specifies that the monitor is to pass
the file parameters, in the sume format as the variable-
length parameters, to the user's program, beginning at
the specified "address". The area in the user's program
that is to receive the file parameters must be 90 words

90 17 64H-1(9/78)

KEYM,value

LRECL, value

NEWX, slides[, consecutive slides]

fNO

PASS[, 'value']

in length. Only the variable-length parameters are
passed to the user's program. The account number is not
returned, but other permanent file parameters are re-
turned. FPARAMis not applicable for ANS labeled tapes.

specifies the maximum length, in bytes,
of the keys associated with records within the file. If
KEYM is not specified, the value 11 is assumed. A
key may consist of up to 31 characters. KEYM is not
applicable for ANS labeled tapes.

specifies the logical record size in bytes,
The value may be in the range 1 to 32,767. LRECL is

applicable for ANS labeled tapes only. The defaul!

value is the BLKL value.

allows the user to
specify "when" and "if" a keyed file's higher-level
index structure should be rebuilt. The higher-level
index structure is built for the first time when a keyed
filed that has more than three level 0 index blocks

is closed.

slides specifies the number of blocks that can be

added to the fii.'s index since the current higher-
level index structure was built; if the specified
value is exceeded, the higher-level index struc-
ture will be rebuilt when the file is closed. If
a value of 255 is specified, the higher-leve! index
structure will never be rebuilt. If NEWX is not
specified, the value 254 is used in default,

consecutive slides specifies the number of contigu~-
ous blocks that can be added to the file's index
since the current higher-level index structure was
created; if the specified number is exceeded, the
higher-level index structure will be rebuilt when
the file is closed. If the number is not specified,
2 is used in default.

NEWX is not applicable for ANS labeled tapes.

SEP specifies that the index blocks of o public
keyed file are to be allocated in the same way that
the data blocks are allocated. If NOSEP is not speci~
fied, the index blocks of a public file are allocated
from public devices having granule allocation units.
In either case, the file will only be allocated on the
type of device specified with the DEVICE option.
If the DEVICE option is not specified, the system
looks for available granules on public disk packs first
and RADs last. If space is not available in granule
units, the system looks for space on public disk packs
with cylinder allocation units. NOSEP only has
meaning for public files with keyed organization.

specifies the password that is to allow
access to a classified data file. The value may be
from 1 through 8 alphanumeric characters. If this op-
tion is omitted from the M:DCB procedure call it

File Maintenance Procedures 99

I

READ[,'value']...[,n]

RECL, value

RSTORE, limit

will not appear in the DCB and, consequently, may
not be used in an ASSIGN control command or M: OPEN
procedure call referencing the DCB. If PASS is speci-
fied but no value given in the M:DCB call, two words
are reserved for the value (to be inserted via an
ASSIGN control command or M:OPEN call). PASS is
not.applicable for ANS labeled tapes.

specifies the account numbers of
those accounts that may read but not write the file. The
value 'ALL' may be used to specify that any account may
read the file (e.g., READ, 'ALL') provided the user has
X'40' privilege or greater. The value ‘PUBL' may be
used to specify that any user may read the file. Files
cataloged under : SYS are accessible to any user as de-
scribed without regard to privilege. The Value '"NONE'
may be used to specify that no other account may read
the file. If no value is specified, or if READ is omitted,
ALL or NONE, as specified in the user's authorization
record, is assumed by default. The total number of
accounts explicitly specified in the READ or WRITE
options must not exceed 16. If n is specified, n words
will be reserved in the variable length parameters for
read accounts. 'ALL' need not be specified unless it is
desired to specifically override o default 'NONE' from
the user's authorization.

If this option is omitted from the M:DCB procedure call
it will not appear in the DCB and, consequently, may
not be used in an ASSIGN control command or M:OPEN
procedure call. If READ is specified but no values
given, 16 words are reserved for READ account numbers
(to be inserted via an ASSIGN control command or
M:OPEN call). READ is not applicable for ANS
labeled tapes.

specifies the default record length, in bytes.
The greatest value that may be specified is 32,767 if
the count starts at 0, or 32,768 if the count starts at 1,
If RECL is not specified, a standard value (appropriate
to the type of device used) will apply by default.

RECL is not applicable for ANS labeled tapes.

specifies, in decimal, the number of gran-
vles to be allocated to a RANDOM file. RSTORE is
only honored when the fileisfirst created. 1f no RSTORE
value is given for a RANDOM file, M:DCB procedure
generates one as a value. Unless changed by the time
the DCB is opened, a file of one granule is created.
RSTORE is not applicable for ANS labeled tapes.
RSTORE must be in the rarige of 1 to 224,

n

SN [,[‘serial number’, ... [,n]}] specifies the numbers of

100

words to be reserved for
serial numbers or the serial numbers to be used for
file input or output. Space may be reserved for more
serial numbers than are explicitly specified by serial
number.

SN, 'serial number!, ...[,n) specifies the serial num=
bers of the volumes (tape reels or disk packs) that
are to be used for file input or output. The serial
number may be from one to four alphanumeric char-
acters for disk packs and Xerox labeled tapes.

File Maintenance Procedures

The serial numbers must consist of six alphanumeric
characters for ANS labeled tapes. A maximum of
three serial numbers may be specified for system
DCBs. If n is specified, n words will be reserved
in the variable length parameters (if n is greater
than the number of listed serial numbers).

SN specifies that three words will be reserved in
the variable length parameters for serial numbers
that can be inserted through an ASSIGN control
command or M:OPEN.

SN,n specifies that n words will be reserved in var-
iable length parameters for serial numbers which
can be inserted through the ASSIGN control com-
mand or M:OPEN. This will cause the third byte
(byte 2)of the VLP control word for SN to be X'00'
to allow the DCB to be used interchangeably as a
labeled tape or file DCB. n must not exceed 50.

The SN option must be specified in the M:DCB proce-
dure call for it to appear in the DCB so that it may be
used by the ASSIGN control command or the M:OPEN
procedure call.

For a file on a labeled tape:

1. Serial numbers must be ordered in the proper se-
quence. If SN is not specified (by ASSIGN,
M:DCB or M:OPEN) for a file to be opened in
the IN or INOUT mode, the DCB is not opened
and an abnormal code of X'14' is returned.

2. The file will be written in the order in which the
serial numbers are specified for a file to be
opened in the OUT or OUTIN mode. If SN is not
specified (by ASSIGN, M:DCB or M:OPEN), ~
available scratch volume(s) of the type specified
in the DEVICE option (or by default, any type
available) will be used.

For a file on a private volume set:

1. When the first file on a private volume set is
created, all serial numbers in the set must be
specified and the first volume in the set will be-
come the primary volume.

2. If the private volume set has been established,
only the serial number of the primary volume need
be specified. The primary volume contains a list
of all serial numbers in the set.

3. If one or more volumes are to be added to the set,
the serial numbers of the new volume(s) must be
specified following the primary volume.

4. 1f SN is not specified (by ASSIGN, M:DCB or
M:OPEN) for a file on RAD or DP, the file is
assumed to be on public devices.

90 17 64H-1(5/78)

The INSN and OUTSN options used in the previous
versions of the monitor were replaced with the SN op-
tion, For compatibility, the INSN and OUTSN op-~
tions are acceptable in lieu of SN.

SPARE, n specifies in bytes the amount of spare space to
be left unused at the end of each index block while a
keyed file is being created or updated with sequential
access. The value specified may not exceed 255 bytes;
if it does, it is treated modulo 256. If SPARE is not
specified or is zero, it is set to 1 byte by default.

This spare space is used so that additional keys can be
inserted in a minimum time when updating the file with
direct access (as in EDIT), If the file will never be
updated with direct access, a spare value of 1 should
be specified. SPARE is not applicable for tapes.

SYNON, ' filename' specifies that the "name" given in
the FILE option (see above) is to be considered synony-
mous with the designated filename. The filename must
exist in the file directory of the account specified for
"name". This option is used to create a synonym for a
file name. It forces the DCBto beopened in the update
mode. If SYNON is not specified in the M:DCB pro-
cedure call, it will not appear in the DCB and, there-
fore, may not be used in an M:OPEN procedure call
referencing the DCB. If SYNON is specified but no
value given, eight words are reserved for the file name
(to be inserted via an M:OPEN call). SYNON is not
applicable for ANS labeled tapes.

TLABEL, address specifies the symbolic address of a user's
buffer into which a label is to be read, or from which
a label is to be written upon opening a tape file. The
first byte of the label information must contain the
length (i. e., number of bytes) of the buffer. For ANS
labeled tapes, the count must be 80 and the next
four bytes of the buffer must contain UHL1.

TRIES, value specifies the maximum number of recovery
tries to be performed for any 1/O operation. The
greatest value that may be specified is 255. The de~
fault value is 10.

UNDER[,'name']. .. [,n] specifies the name(s) of the
processor(s) that may access this file if the user does not
own the file. The name(s) may be fromone to ten char-
acters enclosed within single quotes ('). The processor(s)
may be any shared processor or any load module in the
:SYS account, If EXECUTE accounts are specified and
UNDER is not specified, the file is presumed to be a
load module and UNDER,'FETCH' is implied by default.
FETCH is the name of the monitor routine that places a
program into execution. If n is specified, n words will
be reserved in the variable length parameters for UNDER
names, Fetch must not be used explicitly.

VOL,value specifies which volume in the SN list is to be
used initially. A value of 1 designates the first reel (in
the list), the value 2 designates the second reel, etc. If
VOL isomitted, a value of 1is assumed by default. The
VOLloptiononly has meaning for tapes and private disk
packs.

90 17 84H-1(9/78)

WRITE[, 'value']...[,n] specifies the account numbers of
those accounts that may have both read and write ac-
cess to the file, The values ‘PUBL', 'ALL' and 'NONE’
may be used, as with the READ option (see above); and
if a conflict exists between READ and WRITE specifi-
cations, those of the WRITE option take precedence.

If no WRITEaccounts are specified, NONE is assumed.
If n is specified, n words will be reserved in the
variable length parameters for WRITE accounts.

If the WRITE is omitted from the M:DCB procedure call
it will not appear in the DCB and, consequently, may
not be used in an ASSIGN contro! command or M: OPEN
procedure call. If WRITE is specified but no values
given, 16 words are reserved for WRITE account num-
bers (to be inserted via an ASSIGN control command
or M:OPEN call). WRITE is not applicable for ANS
labeled tapes.

The following options are device~dependent, and will be
ignored by the monitor in all cases where they are not ap-
plicable to the device used.

ASCII specifies that the data is to be converted between
EBCDIC characters in core and ASCII characters on
tape. Applies-only to ANS labeled tape and unlabeled
tape. Causes error code 1413 if used for Xerox labeled
tape. Causes error code 1411 if used for drives not
having the code conversion feature,

COUNT,tab specifies that apage count isto appear at the
top of each page, beginning in the column specified
by "fOb".

Example:
COUNT,60

The above example specifies that the most singificant
digit of the page count is to appear in column 60 at
the top of each page.

DATA, tab specifies that output is to begin on each page
(or card, if EBCDIC) in the column specified by "tab".

DENS,value specifies the density for writing a tape on
a dual density tape drive. The value must be either
800 or 1600, The default is 1600, Specification of
800 for a drive not having the dual density feature
causes abnormal code 1412,

EBCDIC specifies that EBCDIC is to be used when read-
ing and writing a tape (i.e., conversion to ASCII is
not to occur).

HEADER, tab,address specifies that the [/Ohandler is to
output a header (heading)on eachpage. Tab specifies
the column at which the header is to begin. Address
specifies the symbolic location of the header; the first
byte of the header must contain the number of bytes,

LINES, value specifies the number of printable lines per
page. The greatest value that may be specified is
32,767. 1f LINES is not specified, the value estab-
lished at system generation time will apply.

File Maintenance Procedures 101

SEQ(, 'id'] specifies that the punched output is to have
sequencing in columns 77-80. If 'id' is specified, it
will appear in columns 7376 of the punched output.
Sequencing begins with 0000.

SPACE, value[,top] specifies the spacing between lines
(value) and the number of the first printed line on the
page (top). A value of 1 indicates that lines are to
be single spaced. The greatest value that may be
specified is 15.

TAB,value [,value]... specifies the values of tab stop
settings (for an output device). The values must be in
ascending order,

format (any of the following specifications).

VFC specifies that the first character of each record is
a format-control character for printing (see Table 4).

NOVFC specifies that the records do not contain format-
control characters.

DRC specifies that the monitor is not to do special for-
matting of records on read or write operations.

NODRC specifies that the monitor is to do record for-

matting on read or write operations. If neither DRCnor
NODRC is specified, NODRC is assumed by default.

mode (any of the following specifications for a device
1/O mode).

BCD specifies that the EBCDIC device mode is to be used.
BIN specifies that the binary device mode is to be used,

FBCD specifies that FORTRAN BCD conversion is to be
used.

L specifies that a listing type of device is to be used.

NOFBCD specifies that FORTRAN BCD conversion is
not to be used.

PACK specifies that the packed binary mode (7-track
tape) is to be used. PACK is not valid unless BIN is
specified.

UNPACK specifies that the unpacked binary mode (7-
track tape) is to be used. UNPACK is not valid unless
BIN is specified.

If no mode is specified, BCD is assumed.

The formats of the file, Xerox labeled tape, ANS labeled
tape, and device DCBs are shown in the appendix titled
"Data Control Block Formats".

SPECIAL NOTE

After generating the DCB, Meta-Symbol will resume assem-
bly in whatever control dummy section was in effect when
the M:DCB procedure reference line was encountered. In
order to prevent the statements fol lowing the M:DCB procedure
reference line from being assembled in the same control /dummy
section as the DCB, one of the following is recommended:

102 File Maintenance Procedures

1. The control section directive preceding an M:DCB pro-
cedure reference line should be a CSECT, and the DSECT
associated with an M:DCB should precede the CSECT.

2. The statement immediately following an M:DCB proce-.
dure reference line should be either a CSECT or a
USECT referencing a prior CSECT.

OPEN A FILE (Initialize a DCB)

M:OPEN The monitor OPEN routine initializes speci-
fied parameters of a designated DCB.

Files (on RAD, DP, or labeled tape) are normally positioned
to the beginning of file, except when file extension is
required. File extension will occur when a system output
DCB (e.g., M:BO) is opened more than once during the
same job, without an intervening ASSIGN control command
referencing the DCB. File extension will occur because the
second, or subsequent, OPEN will cause the file to be po~
sitioned at the end of the last data record to permit addi-
tional output to be appended at the end.

Files that are assigned via user DCBs or system input DCBs
cannot be extended.

If a READ or WRITE 1/O routine is called (see M:READ and
M:WRITE procedures) when the DCB has not been opened,
the monitor storesthe call temporarily and calls the OPEN
routine automatically. If the DCB does not get opened,
the requested read or write operation is not executed. The
DCB will not be opened if the information in the DCB is
insufficient, inaccurate, or contradictory, and the result-
ing abnormal or error code will be returned in byte 0 of
SR3. If the OPEN is made with no parameters, the existing
parameters in the DCB are used,

The READ or WRITE option must be specified in the M:DCB
procedure call for it to appear in the DCB so that it may be
used by the ASSIGN control command or the M:OPEN pro-
cedure call. When READ or WRITE are specified in the
M:DCB procedure call but no account numbers are given,
16 words are reserved for either READ or WRITE and can
subsequently be filled by ASSIGN or M:OPEN.

If the specified DCB is already open when the OPEN rou-
tine is explicitly called, an abnormal condition is signaled
(see the appendix titled "Monitor Error Messages"). If the
DCB is not open when the OPEN routine is called, the DCB
is reinitialized according to the parameters specified in the
M:OPEN procedure call.

In a multiprogramming environment like CP=V, files may
not be available on request because of current use by an-
other program. An error code reports this condition (code
14, subcode 01) and programs may need special routines to
handle it. A common solution is to use the WAIT CAL for
a minute or so and then repeat the request.

In addition, the number of CFUs (current file usage) limits
the number of files that may be opened by all active users
and batch jobs at a given time since a CFU dota recording

block is required for each open file. CFUs take up 19
words. The space required for CFUs is core resident in the
monitor at all times.

"he M:OPEN procedure call is of the form

M:OPEN [*]dcb name, [(option)](, (option)]. . .

where dcb name specifies the name of the DCB that is to

be opened. The options specified in the OPEN call over-
ride those previously specified. If no options are specified,
the existing ones are used, The optional asterisk (*) can be
used for indirect addressing.

The third element of the label field list in the OPEN call
is used to set a symbol to the address of the VLP list that is
generated by the M:OPEN,

Example:
OPN, OPNFPT, VLPLOC M:OPEN M:El, (FILE, 'A’')
The M:OPEN options are as follows:

(one or two of the four keyword operands given
below).

DEVICE, ‘name’ specifies a device type, a system oper-
ational label, or a logical device stream. Acceptable
forms of the name specifications are (1) for a device
type — 'CR', 'LP', '7T', '9T', etc.; (2) for an oper-
ational label - 'LO*, 'EQ", 'LL', 'C', etc.; (3) for a
logical device stream — 'P1', 'C1', 'L1'. DEVICE may
beused in conjunction with FILE, LABEL or ANSLBL.

name

FILE, ‘name', 'account'] specifies the name of the pub-
lic or private file that is to be assigned to the DCB.
The name may consist of up to 31 alphanumeric char-
acters. The named file will be maintained on RAD or
DP storage. If the file is private, the SN option must
be used’to specify the serial number(s) of the private
volume set. If the named file belongs to'a different ac-
count than that of the current job, the file's account
number (not exceeding 8 characters), must be given.
If the file is public and is (or is to be) cataloged under
the log-on account, and if the second and third ¢har-
acters of the name are both colons, then for DCBs with
the JOB file disposition (see below), the colons are
replaced by the system identification number of the
current user. This feature allows a processor to be
written such that it may be executed concurrently by
more than one user logged on wnder the same account
without file conflict.

LABEL, 'name'[,'account’'] specifies the name (not ex-
ceeding 31 characters) of a file on Xerox labeled tape.
The SN option must be used to specify the particular
tape reel(s) containing an input file. If the named file
belongs to a different account that that of the current
job, the file's account number (not exceeding 8 char-
acters) must be given.

ANSLBL, 'name’ specifies the name of o file on ANS
labeled magnetic tape that is to be assigned to the
DCB. The name may consist of up to 17 alphanumeric
characters. If the file name contains a special char-
acter, it must be enclosed by single quotation marks.
When a single quotation mark is to be used as part of

90 17 64H-1(9/78)

the file name, it must be coded as two successive quo-
tation marks. There should be no blanks between the
last character and the terminating quotation marks,

FILE

ASN, LABEL specifies the value for the ASN field
DEVICE of the FPT. This value will override
ANSLBL :

the default value created by other key-
words such as FILE. The ASN values are:

- FILE

- LABEL
DEVICE
- ANSLBL

G WN —
1

(one of the four file organization types given be-
low. Not applicable to ANS labeled tapes).

org

CONSEC specifies that the records in the file are con~
secutively organized and each record is to be pro-
cessed in order.

If a private file has consecutive organization, only
one volume in the private volume set need be mounted

at any time. As another volume is required, the sys-
tem will request that it be mounted.

KEYED specifies that the location of each record in the
file is determined by an explicit identifier (key) that
may be used to address the device containing the file.
A key may consist of up to 31 characters.

If a private file has keyed organization, all volumes in
the set must be mounted when the file is opened and
remain mounted until the file is closed.

RANDOM specifies that the contents of the file comprise
a collection of contiguous granules on the specified
device type. Datais accessed by relativegranule num-
ber and byte count. If device type is not specified,
the file will be allocated on RAD or disk pack, which-
ever is available.

If a private file has random organization, all volumes
in the set must be mounted when the file is opened and
remain mounted until the file is closed.

If an organization type is omitted and there is no value

in the DCB, CONSEC is assumed.

UNDEF specifies that Xerox labeled tape records are all
unblocked and without headers, i.e., equivalent to de-
vice format. BLOCK access is forced for this organi-

zation. (Applicable only to Xerox labeled tape.)
access (one of the three record access means given

below. Not applicable to ANS labeled tapes
unless otherwise noted.)

SEQUEN specifies that records in the file are to be ac-
cessed in the order in which they appear in the file.

File Maintenance Procedures 103

DIRECT specifies that the next record to be accessed is
to be determined by an explicit identifier (key). If
specified for consecutive or keyed disk files, read
ahead will be disabled.

If an access option is omitted and there is no value in
the DCB, SEQUEN is assumed. The common defaults
for access and organization are shown in Table 15.

BLOCK specifies that data blocks are transferred directly
between tape and the user's buffer. (Applicable only
to Xerox and ANS labeled tape.) This access is forced
for UNDEF organization and for ANS tape.

function (one of the four modes given below.)
", SHARE

IN ’EXCL specifies the input mode. SHARE specifies
L share mode for the DCB which allows more

than one IN and/or INOUT user to access the file con-
currently. EXCL specifies exclusive mode for the DCB
which means that any number of IN but no INOUT users
may access the file concurrently. The default is EXCL.

ouT specifies the output mode.

specifies the input and output mode
(i.e., the update mode). SHARE
specifies share mode for the DCB which allows more
than one IN and/or INOUT user to access the file con=

,SHARE
INOUT [,EXCL]

which means that the user must have exclusive use of
the file. The default is EXCL.

OUTIN specifies the output and input mode (i.e., the
scratch mode).

(one of the two specifications given

file disposition
below.)

REL specifies that the secondary storage allocated to this
file is to be released when the file is closed. REL is
significant only for OUT and OUTIN files and is as-
sumed if file disposition is unspecified. See FILES, in
the discussion of M:CLOSE.

SAVE specifies that the secondary storage allocated to
this file is not to be released when the file is closed,
unless otherwise specified by an M:CLOSE procedure
call, If REL is specified in the M:CLOSE, the sec-
ondary storage allocated to this file will be released,
SAVE is assumed for IN or INOUT if file disposition
is unspecified, (See M:CLOSE procedure, below,)

JOB specifies that the file is temporary and is to be kept
across JOB steps but is to be released at the end of the
job. (See M:TFILE and M:CLOSE.) Job files may only
be opened by the creating user or a user with CO or
greater privilege. This option is not available for pri-

currently. EXCL specifies exclusive mode for the DCB vate packs.
Table 15. File Defaults
DCB M:OPEN OQutcome (in DCB)

org access org access org access
Null Null Null Null CONSEC SEQUEN
Null Null Null SEQUEN CONSEC SEQUEN
Null Null CONSEC Null CONSEC SEQUEN
Null Null Null DIRECT KEYED DIRECT
Null Null KEYED Null KEYED DIRECT
CONSEC SEQUEN Null Null CONSEC SEQUEN
CONSEC SEQUEN Null DIRECT CONSEC DIRECT
CONSEC SEQUEN KEYED Null KEYED SEQUEN
KEYED DIRECT Null Null KEYED DIRECT
KEYED DIRECT Null SEQUEN KEYED SEQUEN
KEYED DIRECT CONSEC Null ’ CONSEC SEQUEN

104 File Maintenance Procedures

Other Options

ABCERR specifies that block count errors are not to
force an unconditional abort; i.e., that in the case
of inconsistency between the tape-specified and the
system-accumulated block counts, return is to the ERR
address in the DCB — an abort occurs only if there is
no ERR address in the DCB, ABCERR is only appli-
cable for ANS labeled tapes.

ABN, [*Jaddress specifies the symbolic location of auser's
routine that is to be used to analyze any abnormal con-
ditions associated with the makeup of the DCB (see the
appendix titled "Monitor Error Messages"). The address
specified must lie within the user's program.

ASCII specifies that the data is tobe converted between
EBCDIC characters in core and ASCI] characters on
tape, Applies onlyto ANS labeled tape and unlabeled
tape. Causes error code 1413 if used for Xerox labeled
tape. Causes error code 1411 if used for drives not
having the code conversion feature.

BLKL, value specifies block size in bytes, The value
may be in the range 1 to 32,767, If a value less
than 18 bytes is specified, 18 bytes are written. BLKL
is only applicable for ANS labeled tapes.

BTD,value specifies the byte displacement (0~3) in the
user's buffer from which 1/C is to take place (i.e., at
which byte in the buffer the data begins).

BUF, [*]address specifies the symbolic address of a buffer
that is to be used in the transfer of data (the buffer may
not include a general register).

CONCAT,value specifies the number of identically
named files that are to be read as one logical file
(concatenated). The value may be in the range 2
through 128. CONCAT is only applicable for ANS
labeled tapes.,

CYLINDER specifies that the public file is to be allo-
catedon public deviceshaving cylinderallocation units.
If CYLINDER is not specified, the public file is to be
allocated from public devices having granule allocation
units, In either case, the file will only be allocated
on the type of device specified with the DEVICE option.
If the DEVICE option is not specified, the system looks
for space on public disk packs first and RADs last. If
space is not available in the units requested, the file
will be allocated in the available units from public
devices of the type requested. CYLINDER only has
meaning for public files.

DENS, value specifies the density for writing a tapeon a
dual density tape drive. The value must be either 800
or 1600. Specification of 800 for a drive not having
the dual density feature causes error code 1412,

EBCDIC specifies that EBCDIC is to be used wher: read-
ing and writing a tape (i.e., conversion to ASCII is
not to occur).

ERR, '*] address specifies the symbolic locationofa user's
routine that is to be used to analyze any error condi-
tions associated with the makeup of the DCB (see the
appendix titled ""Monitor Error Messages"). The address
specified must lie within the user's program.

mm, dd, yy
EXPIRE, {ddd l specifies either an explicit expi=-
NEVER ration date (mm,dd,yy), the num-

ber of days to retain the file (ddd), or that the file is
never to expire (NEVER). NEVER is not applicable for
ANS labeled tapes. If not specified, the default value
as established in the authorization record for the user
will determine the expiration date. Files will be auto-
matically purged from the public file system if they
have expired whenever secondary storage space passes
below a SYSGEN established threshold.

The value specified may not exceed the maximum ex-

piration period authorized for the user. If the maxi-
mum expiration period is exceeded or unspecified, the
default expiration period.authorized for that user will
be used. If this option is omitted from the M:DCB

procedure call it will not gppear in the DCB and, con-
sequently, may not be used in an ASSIGN control com~
mand or M:OPEN procedure call referencing the DCB.

If EXPIRE is specified but no value given in the M:DCB
call, two words are reserved for the value (to be in~
serted via an ASSIGN control command or M:OPEN
procedure call),

FORMAT,character specifies the record formats for ANS
labeled tapes. The character may be

F - fixed length.
D - variable specified in decimal.
V = variable specified in binary.

U - undefined.

FPARAM, address specifies that the monitor is to pass the
file parameters from the FIT to the memory location be-
ginning at the specified address. The area of the user's
program that is to receive the file parameters must be
90 words in length. The format of the file parameters is
given in Appendix A andinternally is similar to the for-
mat of variable length parameters of both M:OPEN and
a DCB. FPARAM s not applicable to ANS labeled tapes.
Once specified, FPARAMremains in effect until changed.
An address of zero must be specified to halt the passing
of file parameters.

KEYM,value specifies the maximum length, in bytes,
of the keys associated with records within the file. If
KEYM is omitted, the value 11 is assumed. KEYM ap-
plies to OUT or OUTIN files only and is not applicable

* File Maintenance Procedures 105

to ANS labeled tapes. A key may consist of up to
31 characters.

1RECL,value specifies the logical record size in bytes,

The value may be in the range 1to 32,767. LRECL is
only applicable for ANS labeled tapes.

NEWX, slides |, consecutive slides] allows the user to

specify "when'" and "if" a keyed file's higher-level
index-structure should be rebuilt. The higher-level
index structure is built for the first time when a
keyed file that has more than three level 0 index
blocks is closed.

slides specifies the number of blocks that can be
added to the file's index since the current higher-
level index structure was built; if the specified
value is exceeded, the higher-level index struc-
ture will be rebuilt when the file is closed. If a
value of 255 is specified, the higher-level index
structure will never be rebuilt. If a NEWX is not
specified, the value 254 is used in default.

consecutive slides specifies the number of contig-
vous blocks that can be added to the file's index
since the current higher-level index structure was
created; if the specified number is exceeded, the
higher-level index structure will be rebuilt when
the file is closed. If the number is not specified,
2 is used in default.

NEWX is not applicable for tapes.

MOSEP spécifies that the index blocks of a public

keyed file are to be allocated in the same way that the
data blocks are allocated. If NOSEP is not specified,
the index blocks of a public keyed file are allocated
from public devices having granule allocation units.
In either case, the file will only be allocated on the
type of device specified with the DEVICE option. If
the DEVICE option is not specified, the system looks
for available granules on public disk packs first and
RADs last. If space is not available in granule units,
the system looks for space on public disk packs with
cylinder allocation units. NOSEP only has meaning
for public files with keyed organization.

NXTA specifies that when the DCB is opened, the next

account in the public file's system account directory
following the account specified in the DCB is to be*
accessed. If there is no account specified in the DCB,
the first account in the account directory is put in the
DCB. If the NXTF option is also specified, the first
file in the account is assigned to the DCB and if the
file security checks are satisfied, the DCB is opened.
If the NXTF option is not specified along with the
NXTA option, the requested account number is put in
the DCB and returned to the user with the DCB not
opened. If there are no more accounts available, an
abnormal code of X'02' with a subcode of X'01' is re-
turned. NXTA only has meaning for DCBs assigned to
public files. A privilege level of at least '80' is re-
quired to use this option.

File Maintenance Procedures

NXTF specifies that when the DCB is opened for RAD

or DP files or Xerox labeled tape, the monitor is to ac-
cess the next file in sequence (following the one
most recently accessed via the DCB), If no file name
is specified (currently) in the DCB, the first file on
the tape or in the DCB's account file directory is ac-
cessed. If the next file is a synonymous file, an ab-
normal code of X'08' is returned and the DCB is not
opened. If there are no more files available, an ab=
normal code of X'02' is returned and the DCB is not
opened. If the file name variable length parameter

in the DCB is not 8 words long, abnormal code 1406
is returned.

PASS, 'value' specifies the password that allows access

to a classified data file. The 'value' may be from

1 through 8 alphanumeric characters in length. (PASS
is not applicable to ANS labeled tapes.) The refer-
enced DCB must have room to hold the password.

READ{, 'value’,...] specifies the account numbers of

those accounts that may read but not write the file.
The value 'ALL' may be used to specify thot any ac-
count may read the file (e.g., READ, 'ALL') provided
the user has X '40' privilege or greater. The valee
'PUBL' may be used to specify that any user may read
the file. Files cataloged under :SYS are available to
any user as described without regard to privilege. The
value 'NONE' may be used to specify that no other
account may read the file. [f no value is specified,
or if READ is omitted, ALL or NONE, as specified in
the user's authorization record, is assumed by default,
The total number of accounts explicitly specified in
the READ and WRITE options together must not exceed 16
{a maximum of 8 READ and 8 WRITE).READ applies to

OUT or OUTIN files only and is not applicable to ANS

labeled tapes. The referenced DCB must have room to
hold the READ list. (Also see WRITE, below.)

RECL, value specifies the default record length, inbytes.

The greatest value that may be specifiedis 32,767, If
RECL is not specified, a standard value (appropriate to
the type of device used) will apply by default, RECL
is not applicable to ANS labeled tapes.

RSTORE,[iim“ } specifies in decimal the

address of limit number of granules to be

allocated to a random file. RSTORE is meaningful only
when a file is first created. The RSTORE value is
required to be in the range 1 to 2241, RSTORE is
not applicable to ANS labeled tapes.

SN, 'serial number,...] specifies the serial numbers

of the volumes (tape reels or disk packs) that are to be
used for file input or output. The serial number may
be from one to four alphanumeric characters for Xerox
labeled tapes and disk packs. The serial number must
be six alphanumeric characters for ANS labeled tapes.
A maximum of three seriol numbers may be specified
for system DCBs.

90 17 64H-1(9/78)

The SN option must be specified in the M:DCB proce-
dure call for it to appear in the DCB so that it may be
used by the ASSIGN control command or the M: OPEN
procedure call. When SN is specified in the M:DCB
procedure call but no serial numbers are given, three
words are reserved for the serial numbers which can be
inserted through ASSIGN or M:OPEN,

For a file on labeled tape:

1. Serial numbers must be ordered in the proper se-
quence for a file to be opened in the IN or INOUT
mode. If SN is not specified (by ASSIGN, M:DCB
or M:OPEN) the DCB is not opened and an abnor~
mal code of X'14' is returned.

2. The file is written in the order in which the serial
numbers are specified for a file to be opened in the
OUT or OUTIN mode. If SN is not specified (by
ASSIGN, M:DCB or M:OPEN), available scratch
volume(s) of the type specified in the DEVICE op-
tion (or by default, any type available) will be
used.

For a file on a private volume set:

1. If the first file on a private volume set is being
output, all serial numbers in the set must be speci-
fied and the first volume in the set will become
the primary volume.

2. If the private volume set has been established, only
the serial number of the primary volume need be
specified, The primary volume contains a list of
all serial numbers in the set.

3. If one or more volumes are to be added to the set,
the serial numbers of the new volume(s) must be
specified following the primary volume,

4, If SN is not specified (by ASSIGN, M:DCB or
M:OPEN) for a file on RAD or DP, the file is

assumed to be on public devices.

The INSN and OUTSN options used in previous ver—
sions of the monitor were replaced with the SN option.
For compatibility, the INSN and OUTSN options are
acceptable in lieu of SN,

SPARE, n specifies in bytes the amount of spare space

to be left unused at the end of each index block while
a keyed file is being created or updated with sequen-
tial access. The value specified may not exceed 255
bytes; if it does, it is.treated modulo 256. If SPARE is
not specified or is zero, it is set to 1 byte by default.
This spare space is used so that additional keys can be
inserted in @ minimum time when updating the file with
direct access (as in EDIT). If the file will never be
updated with direct access, a spare value of 1 should
be specified. SPARE is not applicable for tapes.

EXECUTE[, 'value'] . . . specifies the account numbers

of accounts that may execute the file. The value
'ALL' allows any account to execute the file. The
value '"NONE' prohibits execution of the file by any
account except the creator. The value 'PUBL' is
meaningless here. The EXECUTE option is not checked
for users that would have received READ or WRITE

access.

90 17 64H-1(9/78)

SYNON, 'filename' specifies that the "name” yiven in

the FILE option name ottribute is to be considered syn-
onymous with the designated "filename". The filename
must currently apply to a file that exists on RAD or DP
This option is used to create a synonym for a RAD or
DP filename. It forces the function mode in the DCR
to INOUT.

TEST specifies that this is a test file operation. The D{F

is not opened and subsequently does not require «
CLOSE. TEST is normally used in conjunction with the
NXTA and NXTF options to return informaticn regara-
ing files via the DCB variable length parameters anc
FPARAM. Use of TEST will force the function to 1<
regardless of what is specified in the DCBor FPT. TE%i
is not applicable for tapes. If FPARAM is specifies,
security checks will be made and error 14-00 returnec
if the user does not have access to the file. Under n.
circumstances will error 14=01 (file busy) be returnec
when TEST is specified.

TLABEL, [*Jaddress specifies the symbolic address of th:

user's buffer into which o label is to be written. T:
first byte of the label information must contain ti.-
length (i.e., number of bytes) of the buffer. For Al -
labeled tapes, the count must be 80 and the first fou
bytes of the label must contain UHL1.

TRIES,value specifies the maximum number of recover,

tries to be performed for any 1/O operation. Th:
greatest value that may be specified is 255. The
default value is 10.

UNDER, ['name']. .. specifies the name(s) of the or:

processor(s) that may access this file if the use: dov.
not own the file. The name(s) may be from one o *-
characters enclosed within single quotes (', The
processor(s) may be any shared processor oi wny o
module in the :SYS account. If EXECUTE ac-oomiss
specified and UNDER is not specified, the fiic s o
sumed to be a load module and UNDER, 'FETCH'
implied by default. FETCH is the name of the monit
routine that places a program into execution. FETC'
must not be stated explicitly.

VOL,value specifies which tape ree! in the Si' jist

to be used initially. A value of 1 designate: the

first reel (in this list), the value 2 designates the

second reel, etc. If VOL is omitted, a value of :
is assumed by default.

'WRITE [,'value']... specifies the account numbers o

those accounts that may have both read and write ac -
cess to the file, The values 'PUBL', 'ALL' and '"NON:
may be used, as with the READ option; and, if a
conflict exists between READ and WRITE specifications,
those of the WRITE option take precedence. If no
WRITE accounts are specified, 'NONE' is assumed.
WRITE applies to OUT or OUTIN files only and is
not applicable to ANS labeled tapes, The refer-
enced DCB must have room to hold the WRITE list.

‘File Maintenance Procedures 107

Calls generated by the M:OPEN procedure have the form
CAL, 1 fpt

where fpt points to word 0 of the FPT shown below.

word 0
N A
NiglC 1 X
o IS A NN HE DCB address
" il L4 ! L N
T ¢ 374 5 6 7108 9 10 Tiv12 13 14 15718 17 1 4 6

If XFPT= 0 (see word 0, bit 14),

word 1

L]
R S % |7 [% [0 ot malhl%al%s %] 11 %6]O1 ! % {0]' |010[0] 0Ol |ASN

71 22 23124 15 26 D138 B B 7

0 1 2 314 5 & 718 9 10 11112 13 14 15716 17 18 19720

If XFPT = 1 (see word 0, bit 14).

word 1

0/%|0]o|olo]ol%|5|ASN

0y 2 J‘LJ S 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23724 25 26 27128 29 30 A

word 2
PpIPIP{PIPIP P]P PlPiP|P|PIP|P PP PP |P
1| 2§3fafsfjoel7is o tof nfi23tatishefiz s o 20{21{22
O 1 2 314 5 & 718 9 10 11112 13 ta 15118 17 18 19120 21 22 23124 25 26 27128 29 30 3t

option ERR (P1)

*10 0 Error address

IR B A R R R R R A N R I e T R A

option ABN (P2)

*0 0 Abnormal address

T 1 2 J14 5 6 716 9 10 niiz 13w 15116 17 18 19120 2t 22 23124 25 26 FAFON I TE]

option TRIES (P5)

*0 0} Maximum recovery tries
T T s T T T A R R Rt T BRI RN

CONSEC
KEYED
option | RANDOM (P6)
UNDEF
value
ORG, { *Iocofion]
0 ol%
G

T 2 ﬁl 5 46 7i8 T 10 11112 13 14 15116 17 18 0120 21 22 55'54 25 26 7128 2 30 0

where ORG specifies the file organization type (1 means
consecutive, 2 means keyed, 3 means random, 4 means un-
defined). If this option is omitted, consecutive is assumed
by default.

option FORMAT (P6) alternate form

*|0 0

T 1 2 3Te 5 6718 o 0zl anlie T BRR RSB Iss o

where FORMAT specifies the record format for ANS labeled
tapes: 1=F (fixed length), 2 =D (variable, expressed in deci-
mal), 3=V (variable, expressed in binary), 4 =U (undefined).

FORMAT

SEQUEN
DIRECT
option | BLOCK (P7)
valve
ACC, {*locafion}
*lo 0 <
V2 314 5 6 718 5 10 11112 13 14 1516 17 18 19120 21 22 23124 25 26 27128 &5 30 3!

where ACC specifies the record access method (1 means se-
quential, 2 means direct, 3 means block).

option BUF (P3)

*|0 0

Buffer address

© 17 374 5 & 718 9 10 1il12 13 14 15016 17 18 19120 21 22 23124 25 26 27128 29 30 31

option RECL (P4)

«10 0

Default record length

G 1 2 314 5 & 718 ¢ 10 11112 13 14 15116

option BLKL (P4) altemate form

17 18 19020 21 22 23124 25 26 27128 29 30 31

10 0

Block size

IN
out , SHARE
.| INouT (P8)
t
OPTON Y QUTIN , EXCL
value
MODE, {*locoﬁon] J
+lo 0 pls IMODE
: T 2 314 5 6 7078 ¢ 10 11112 1314 15116 17 18 10120 21 22 23124 25 26 D18 B 3 3

where
MODE specifies the file function mode (1 means
IN, 2- OUT, 4-1INOUT, 8 - OUTIN).
P is a presence bit to indicate whether or not the

D 1 2 314 5 8 1R v 1o 1iliz 13 w4 =sT1a 1718 19120 2v 22 23124 25 26 22128 29 30 1

Block size is only applicable for ANS labeled tapes.

108 File Maintenance Procedures

S field is significant.
nificant.

If P issettoone, S issig-
If P is set to zero, S is not significant.

S specifies SHARE (S = 1) or EXCLUSIVE (S =0).
For RANDOM and KEYED files only, more than
one user may open the file in the INOUT mode,
if, and only if, all such open requests specify
SHARE. If a RANDOM or KEYED file is already
open OUTIN, all requests to open the file in the
IN mode must specify SHARE or EXCLUSIVE ex-
actly as the QUTIN open request did. If a RAN-
DOM or KEYED file is already open in the IN
mode, all requests to open the file in the OUTIN
mode must specify SHARE or EXCLUSIVE exactly
as the IN open request did.

option device code (P14) alternate form

*10 0f{10|L{0 0

0 1 2 314 5 6 718 ¢ 10 nl1213 14 1516 17 18 79120 21 22 23724 25 26 27128 29 30 3)

causes the DCB to be opened to any listing type device,
i.e., any LP device. The L bit will be set in the DCB as it
is set here.

option BTD (P15)

T
|0 0]
RELEASE T T3 TT 5 5 T 1e o 0 N2 13 1a 1516 17 18 19130 2 22 23134 35 26 27128 7530 31
AVE ‘ .
option io\é (P10) Byte displacement
lue
DISP, {yroe .
*'°°°"°“} option VOL (P16)
‘ : . ‘ ,
*lo 0 . VY *10 0 i Volume
T

where OPT specifies REL/SAVE/JOB option (I means
RELEASE, 2 means SAVE), 3 means JOB).

option FPARAM (P11)

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 1€ 19120 21 22 23124 25 26 27128 29 30 31

}
01 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

option NEWX (P17)

*[0 0|! Slides | Consec

*10 0 FPARAM address

T T 3tT 5 6 s v W Tz 3 5t 1716 B0 2T 22 BIHE 558 T B w0

option TLABEL (P12)

*[0 0 TLABEL address

T T Z 314 5 6 7189 BT B U BIE 7 BH a0 ZBRS 5o HHHa

option KEYM (P13)

G T2 314 56 715 T 0 Tz 13 4 15116 7 18 19120 21 22 23134 25 % 218 H B N

where Slides and Consec are as described in NEWX.

option SPARE (P18)

*10 0 Spare

07 2 3i4 5 6 718 9 10 Nz 3141516 17 18 19720 21 22 23124 25726 27128 29 30 3

option CONCAT (P18) alternate form

*10 0 i KEYM

*| 0 0| CONCAT

0 1 2 3l4 5 6 718 9 101111213 14 15116 17 10 19120 21 22 23124 25 26 27128 29 30 31

where KEYM specifies the maximurn key length.

option device code (P14)

G 1 2 314 5 6 718 9 10 1111213 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

where CONCAT specifies the number of identically named
files that are to be read as one logical file (concatenated).
CONCAT is only applicable for ANS labeled tapes.

option RSTORE (P20)

where DEV CODE is the device type code set in the DCB.

If the assignment mode currently in effect is file and neither
DC nor DP is specified, the monitor will allocate files on
either device. DP or DC are only meaningful when the
function mode is OUT or OUTIN.

option device code (P14) alternate form

1*(0 00 TEXT OPLABEL

12 3i4 5 6 718 9 10 121314 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

where TEXT OPLABEL is the device name in TEXT format.

DEV | '
#|0 0[11|L]0 0| copg | 0————0 *10 0! RSTORE value
0 1 2 3t4 5 6 7 ‘TB 9 10 N2 13 74 15016 17 18 19020 21 22 23124 25 26 27128 29 30 31 4] bl 2 3 i4 5 6 7 i8 9 10 Ilil? 13 14 ISI[lé 17 18 19120 21 22 23124 25 26 27i29 29 30 31

option LRECL (P20) alternate form

*| 0 0 LRECL value

T T3 tE T ey e e iz 131 15HE 17 18 Bt o TS % DB s 0N

LRECL (logical record length) is only applicable for ANS
labeled tapes.

Parameters 21 and 22 are available only if the extended
format FPT (XFPT = 1) is used.

_option DENS (P21)

+ + + =
*10 Oi
S
37

0 1 2 314 5 6 718 9 10 11112713 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30

File Maintenance Procedures 109

where DENS has the following meanings: 0 = 1600 bpi;
-1 = 800 bpi.

. EBCDIC
option {ASCII } (P22)

§
* b

; . " £
0 1 2 314 5 & 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

where CODE is 0 for EBCDIC, 1 for ASCII.

Entries for any variable-length parameters follow those for
the fixed-length parameters previously discussed. The
variable-length entries are identical in format to those
of a DCB (see Appendix A).

Flags fy through fg in word 1 of the FPT have the signifi-
cance indicated below (when f; = 1).

Flag | Significance (when set to 1)

f2 The next file of the account is to be opened, If
there is no name specified in the DCB currently
open, the first file of the account is to be opened.

9 VLPs are present.

ASN |] Athree=bit field indicating the assignment type:

000 = null

001 =file

010 = CP=V labeled tape
011 =device

101 = ANS labeled tape

CLOSE A FILE (Terminate 1/0 Through a DCB)

M:CLOSE The monitor CLOSE routine terminates and
inhibits 1/O through a specified DCB, until the DCB is
again opened.

I addition, unique positioning and updating operations
occur for the following devices and files,

CARD PUNCH DEVICES

If the direct device format option DRC was not specified in
the DCB, an |EOD record is output to the devicé indicating
an end-of-file. ‘

TAPE UPDATING

For unlabeled tape, if the last operation performed was a
write and the direct device format option DRC was not
specified in the DCB, two end-of=-file marks are written
and the tape is positioned between them.

110 File Maintenance Procedures

For labeled tape, if the last operation performed was «
write, an end-of-file and an end-of-reel sentinel are writ=-
ten. If the LABEL option in the M:CLOSE is specified,
a trailer label is also written as a part of the end-of=file
sentinel. If the function mode specified in the DCB is OUT
ot OUTIN and the SAVE option of M:CLOSE is not speci=
fied, the tape will be unconditionally rewound. The SAVE
option must be specified if the tape is to have more than
one file. The REM option should not be specified until the
last file on the tape is closed.

TAPE POSITIONING

Input tapes closed by the monitor CLOSE routine are al-
ways saved, The REM (remove) option, if specified, is
honored on both labeled and unlabeled tapes; the PTL
(position to label) option is honored on labeled tapes only.
Qutput, update, and scratch tapes closed by the monitor
CLOSE routine are handled as indicated in Table 16.

FILES

If the file's function mode in the DCB is OUT or OUTIN,
and the SAVE option of M:CLOSE is not specified, REL is
assumed. The monitor will release all secondary storage
allocated to the file and no record of the file will be
maintained.

If the file's function mode is OUT or OUTIN and the SAVE
option is specified in both the DCB and M:CLOSE, an en~
try for the file will be created in the account's file direc-
tory. If there is already a file in the user's account with
the same file name, the new file will replace the old, and
the secondary storage allocated to the old file will be
released. In this case, if the JOB option was specified

in the DCB, the file name will be processed through the
M:TFILE procedure.

If the file's function is IN or INOUT SHAREd and the REL
option of M:CLOSE is specified, the file is treated as though
SAVE had been specified.

If the file's function mode is IN or INOUT EXClLusive and
the REL option of M:CLOSE is specified, the monitor will

release all secondary storage allocated to the file and de-
lete the file's name from the account's file directory. All,
files synonymous to the file being released will also be de-
leted from the file directory.

If the file's function mode is IN or INOUT and the REL op=
tion of M:CLOSE is not specified, SAVE is assumed and no
further action is required (there are already entries in the
file directory).

If the file's function is INOUT EXCLusive, SAVE is spe-

cified (either implicitly or explicitly), and the file is not
synonymous, file attributes may be altered by specifying
any of the following options on M:CLOSE: FILE, PASS,

READ, WRITE, EXECUTE, UNDER.

The M:CLOSE procedure call is of the form

M:CLOSE [*]deb name[, (option)]. ..

Table 16. Tape Positioning for Qutput, Update, and Scratch Tapes

SAVE option Unlabeled Assigned to OPLABEL | The tape is rewound and SAVE message is output.

is specified tapes Assigned to device If REM is specified, the tape is rewound and the drive is taken
off-line; otherwise, no action is taken. SAVE message is output.

SAVE option Labeled REM is specified The tape is rewound and the drive is taken off-line. SAVE mes-

is specified tapes sage is output.

PTL is specified The file is positioned to the label at the beginning=of-file; (posi~
tioned in front of tape mark preceding :EOF sentinel); if the label
is on another tape, SAVE message is output (PTL is ignored for
ANS tapes.)

PTV is specified (Applicable for ANS tapes only.) The tape is positioned as if an
AVR sequence has been specified.

No options; ANS; If the file is contained on one volume, PTV is performed. If the

no SN specified file is multivolume, REM is performed.

No options No action is taken. Tape head is somewhere between tape marks
surrounding records, depending on last record read or written, and
direction.

SAVE option is | Unlabeled SN is not specified | The tape is rewound and remains a scratch tape.

not specified fapes SN is specified If REM is specified, the tape is rewound; otherwise, no action is
taken.

SAVE option is | Labeled SN is not specified | The tape is rewound and remains a scratch tape. Any other scratch

not specified | tapes tapes saved (due to CVOL) for the files are released for other use.

SN is specified The tape is rewound. If REM is specified, DISMOUNT message is
output.

where dcb name specifies the name of the DCBto be closed. The following options are meaningful only for disk files but
may not be applied to star files (see glossary). Further, they
are not effective for shared opens or files opened via a

synonymous name,

The options are as foliows:

REL applies to files, as described above.
FILE[, 'name'] specifies that the file is to be renomed.
SAVE applies to files or labeled tape, as described The name may consist of up to 31 alphanumeric char-
above. acters and must not be the same as the name of an
already existing file. In order to use this option, there
REM applies to labeled and unlabeled tape, as de~ must be a minimum of five file buffers associated with
scribed above. the job. (See the POOL control command.)
PTL applies to Xerox labeled tape, as described above. PASS [,'VG'UC'] specifies a new password that is to be
PTL is ignored for ANS tapes. associated with the file. The value may be from 1 to 8
alphanumeric characters. If PASS is specified but no
PTV applies to ANS tapes only and will cause an ANS value given, the current password for the file is deleted.
M:REW,
READ[, 'value'] ... specifies a new set of account
LABEL, [*](address) specifies the address of a trailer label numbers that may read but not write the file. The value

(in TEXTC format) to be added as a record following
an :EOF sentinel. See "Tape Updating" above. An
ANS trailer label is 80 bytes in length and the first
four bytes must contain UTLI.

ABN, [*] address specifies the locationof theuser routine
to be entered if an abnormal condition occurs.

ERR, [*] address specifies the location of the user routine
to be entered if an error condition occurs.

'ALL' may be used to specify that any account may
read the file (e.g., READ,'ALL'). The value 'NONE'
may be used to specify that no other account may read
the file. If no value is specified, any existing read
accounts will be removed and 'ALL' will be assumed by
default.

WRITE [,'volvue'] v specifies a new set of account
numbers that may have both read and write access to
the file. The values 'ALL' and 'NONE' may be used,

File Maintenance Procedures 11

as with the READ option (see above); and if a conflict
exists between READ and WRITE specifications, those
of the WRITE option take precedence. If no value is
specified, any existing write accounts will be removed
and 'NONE" will be assumed by default.

EXECUTE[, 'value'] ... specifies the account numbers of
those accounts that may execute the file. Up to eight
account numbers may be specified. The value 'ALL'
may be used to specify that any account may execute
the file. The value '"NONE' may be used to specify
that no other account may execute the file. 1f READ,
"NONE' is not specified, the EXECUTE option will be
ignored. If value is not specified, any existing execute
accounts will be removed and 'ALL' will be assumed by
default.

UNDER[, 'name']. .. specifies the name(s) of the only
processor(s) that may access this file if the user does not
own the file. The name(s) may be from one to ten char-
acters enclosed within single quotes. The processor(s)
may be any shared processor or any load module in the
:SYS account, If UNDER s specified, without a name,
the current UNDER name(s) are deleted from the file
attributes.

Calls generated by the M:CLOSE procedure have the form
CALI, 1 fpt

where fpt points to word 0 of the FPT shown below.

word 0

where OPT specifies REL/SAVE option (1 means release,
2 means SAVE), This option is not significant when cios-
ing a DCB opened with SHARE mode.

option LABEL (P2)
*10 0 LABEL address

0 1 2 314 5 6 7178 9 10 111412 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

option ERR (P3)

*0 0 ERR address

] il 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 27 23124 25 26 27128 29 30 31
option ABN (P4)

*10 0 ABN address

* X5 0———~—-»~—-—0l DCB address

1 2 313 T T T T B T e W T ST S % T R X T

word 1, options PTL and REM

o =0

Pk

4 5 6 718 9 19 l)!LV2 13 14 T2¥i6 V; 18 19120 21 22 23124 25 26 27128 29 30 3

where

P specifies that the PTV option (see above) has
(P=1) or has not (P=0) been requested.

R specifies that the REM option (see above) has
(R = 1) or has not (R = 0) been requested.

E specifies that the PTL option (see above) has
(E = 1) or has not (E = 0) been requested.

\% specifies that variable length parameters are
(V = 1) or are not (V = 0) present.

. [REL
ophon[SAVE] (2))

*10 0 E
1

0 1 2 314 5 6 778 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

-w0

112 File Maintenance Procedures

%o 0 [VIP|0[R|E[0——0]
K]

O 1 2 314 5 & 718 9 10 11112 13 14 15116 17 18 19120 21 22 23(24 25 26 27128 29 30 N

For further details on the action of the Open and Close
functions, see Chapter 2, "Files and File Usage".

SET ERROR OR ABNORMAL ADDRESS

M:SETOCB The monitor SETDCB routine allows the
user's program to set the error or abnormal address in a
designated DCB; the call may be made while the DCB is
either open or closed.

The M:SETDCB procedure call is of the form

M:SETDCB [*] dcb name[, (ERR, [*] address)];
[, (ABN, [*]address)] [, (CRPT, [*]address)]

where the optional parameters are of the same form as those
given for ERR and ABN in "M:DCB", earlier in this chapter.
CRPT specifies the address of a word to be used as the seed
for a data encryption process for keyed or consecutive files.
If the effective encryption address is zero (e.g., CRPT,O
is specified), the encryption process is turned off. This
option is only effective for open DCBs because the open
process turns data encryption off, (This is done so that a
user will not inadvertently get unwanted data encryption.)

Calls generated by the M:SETDCB procedure have the form
CAL1L, 1 fpt

where fpt points to word O of the FPT shown below.

word 0

* X'06 0——0 DCB address

0 1 2 374 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 20 30 31

word 1

RB(8lo 0

0 1 2 314 5 6 718 ¢ 10 11112 13 14 15116 17 18 19120 21 27 23124 25 26 27128 29 30 3)

option ERR (P1)

*10 - 0 Error address

0 1 2 314 5 6 718 9 10 11012 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3

90 17 64H-1(9/78)

option ABN (P2)

*10 0 Abnormal address

012 3i4 5 6 7i3 9 10 11112 13 14 15116 17 18 19120 21 22 23|24_25 26 27128 29 30 31

option CRPT (P3)

*#0-—r () Encryption address

L S + . i
0 1 2 314 5 6 718 9 10 11112 13 14 15016 17 8 19120 21 22 23124 25 26 271286 29 30 31

CHECK 1/0 COMPIETION

M:CHECK The monitor CHECK routine checks the
completion~type indicator (TYC) of a specified DCB. If
the completion type is other than normal and error or ab-
normal addresses were specified in the procedure call, an
appropriate error or abnormal code is returned to the user's
program via SR3 (i. e., system register 3, or general regis-
ter 10). If the M:READ or M:WRITE procedure call speci-
fied an error or abnormal address, then a normal return to
the user's program will be made by the CHECK routine. If
1/0 is currently active, it will be completed before con-
trol is returned to the user's program. If no error address
or abnormal address was specified in the procedure call,
no error or abnormal code is refurned fo the user's program.
The check applies only to the most recent 1/O operation
done via the DCB (see the appendix titled " Monitor Error
Messages"). The monitor waits for an M:CHECK or an-
other use of the DCB before taking action on an 1/O error.

The M:CHECK procedure call is of the form
M:CHECK "]dcb name_, (option)]. . .

where dcb name specifies the name of the DCB to be
checked for type of completion.

The options are as follows:

ERR, [*Joddress specifies the address of a user's routine
that will handle error conditions for 1/O operations
performed via the DCB.

ABN, "Jaddress specifies the address of a user's routine
that will handle abnormal conditions for 1/O opera-
tions performed via the DCB.

Calls generated by the M:CHECK procedﬁre have the form
CALT, 1 fpt
where fpt points to word 0 of the FPT shown below.

word 0

* X'29! 0——0 DCB address

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 1

RiBpo : 0

0 1 2 314 5 6 718 9 10 N2 13 14 15176 17 18 19120 21 22 23124 25 26 27128 29 30 3)

option ERR (P1)

*10 0 Error address

R R S B R N S T TR A - O VR 1 2R R TR L B Y

option ABN (P2)

*10 0 Abnormal address

" 4 N : . _
0 1 2 314 5 6 718 9 1017172 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29730 31

DECLARE A TEMPORARY FILE

M:TFILE The monitor TFILE routine causes the specified
DCB's associated file to be registered with the monitor for
release at the end of the job. Error and abnormal addresses
may be specified, to allow the user's program to take appro-
priate action if the monitor is unable to register the file

as temporary. The file should be closed and saved prior to
the M:TFILE call. If the DCB is open, it will be closed
with default options, Files declared by means of this call
will be released at the end of the job, unless otherwise
explicitly released. Thus, M:TFILE execution during a job
step causes a file to be saved between subsequent job steps
and yet be released on completion of the job. This pro-
cedure cannot be used for files on private disk packs.

The M:TFILE procedure call is of the form

M:TFILE [*)dcb name, (TFILE, [*]address);
[(ERR, [#laddress)|[, (ABN, [*]address)]

where
(*]dcb name specifies the nome of the DCB asso-
ciated with the file to be declared temporary.

TFILE, [*Jaddress specifies the address of the name
of the file to be declared temporary. The name
of the file must be in TEXTC format.

ERR, [*]address specifies the address of a user's
routine that will handle error conditions for I/O
operations performed via the DCB.

ABN, [Jaddress specifies the address of a user's
routine that will handle abnormal conditions for
1/O operations performed via the DCB.
Calls generated by the M:TFILE procedure have the form
CAL1,1 fpt

where fpt points to word 0 of the FPT shown below.

word 0

* X'OF! 0—0 DCB address

O 1 2 314 5 6 718 9 10 ||i'|2 13 14 153016 17 18 19i20 21 22 23‘24 25 26 27128 29 30 31
“word 1

BBlofi[1o olt[oft [olojojo

01 2 314 5 647|L8 9 10 11112 13 14 lelé 17 18 19120 21 22 23124 25 26 27128 29 30 31

... File Maintenance Procedures 113

a

_option ERR (P1)

*10 0 Error address

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

option ABN (P2)

*10 0 Abnormal address

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

required for TFILE
0 0

0 1 2 374 5 6 7108 9 10 11213 14 15116 17 18 19120 21 22 23724 25 26 27128 29 30 3

required for TFILE

*10 0 File name address

C 1 2 314 5 6 718 9 10 11112 13 14 15016 17 18 19120 21 22 23[24 25 26 27128 29 30 31

DATA RECORD MANIPULATION

READ A DATA RECORD

M:READ The monitor READ routine causes a specified
data record to be read into a buffer in core storage. If
the record is larger than the specified buffer, part of the
record is lost and this fact is communicated to the user's
program (see the appendix titled "Monitor Error Messages").
All records of a length less than 18 bytes read from ANS
formatted tapes are bypassed as noise records.

It is not necessary for the user's program to explicitly call
the monitor OPEN routine prior to reading or writing a
record, since the monitor generates such a call automati-
cally if the DCB is not open. However, the options speci-
fied on the Read/Write call are used for the Read/Write
only, and are not used as parameters for the OPEN call.

Both EBCDIC and binary decks may be used in the same job,
but nonstandard binary information must be preceded by a
BIN control command and must end with a BCD control com-
mand if the device is a cardreader. On encountering a BIN
control command, the monitor switches the device mode and
automatically reads the next record in binary. Subsequent
records are also read in binary until a BCD control command
is encountered. The monitor then changes the device mode
and automatically reads subsequent records in EBCDIC.

The mode flag (MOD), in the DCB associated with the read
operation, is set to a 0 if a record is read in EBCDIC and
is set to a 1 if a record is read in binary.

A BCD control command encountered when reading in the
EBCDIC mode causes no change in the device mode. When
the C device is read, any record having an | in column 1
(except for a BIN, BCD, or EOD control command) causes
a code of 06 to be placed in byte 0 of SR3. The record is
placed in the monitor's control command buffer and, if an
attempt is made to read that record again via the some
DCB, the job is aborted and the user is notified (via the
LL device) of the reason for aborting the job.

114 Data Record Manipulation

Whenever an EOD control command is encountered (when
reading from the C device), a code of 05 is returned
to the user's program in byte 0 of SR3 if an abnormal
address is specified,

The M:READ procedure call is of the form

M:READ [Jdeb name[, (option)]. ..
where dcb name specifies the name of the DCB to be asso-
ciated with the read operation.

The options are as follows:

ABN, [*]address specifies the address of a user's rou-
tine that will handle abnormal conditions for the read
operation (see the appendix titled "Monitor Error Mes-
sages"). The address specified must lie within the
user's program,

BLOCK, [*] number applicable to random files only and
specifies the granule number of the block at which the
I/O transfer is to be made. Granule blocks within a
random file are numbered O to n-1, where n equals the
number of granules in the file.

The word pointed to by the KBUF field of the random
file DCB is set equal to zero when a file is opened and
is incremented by one after each granule is read or
written, whether BLOCK is specified or not, When
the BLOCK option is specified, it overrides the gran-
ule number in the word pointed to by the KBUF field
and causes the word pointed to by KBUF to be reset
equal to that value. If the BLOCK option is not speci-
fied, the granule number in the word pointed to by the
KBUF field is used.

BTD, [*]value specifies the byte displacement (0-3), in
the user's buffer, into which data is to be read; i.e.,
the byte into which the first data byte is to be read.
This value is inserted into the BTD field of the DCB
and will be default for subsequent read or write re-
quests if the BTD option is not specified.

BUF,[*]address specifies the address of the user's buf-
fer into which data is to be read, This value is in=
serted into the BUF field of the DCB and will be the
default for subsequent read or write requests if the BUF
option is not specified.

COC, [*]opHons specifies the options unique to a char-
acter oriented communications device, and will be
ignored for any other device, If indirect addressing is
specified, all option flags and values will come from
the indirectly addressed word. The options are sepa-
rated by commas. The options for the COC keyword
are:

CONDITIONAL specifies that if no input is present
(typed-ahead) when the read is issued an abnormal
return (code X'24') will occur. Otherwise, the
read proceeds normally.

DELETEIN specifies that all input present (typed-
ahead) is to be deleted.

DELETEOUT specifies that all output present but
not yet transmitted is to be deleted.

(TIMEOUT [, value]) specifies the timeout interval
for the read, in 1.2second units. If the interval
expires without an activation condition being met
an abnormal condition occurs (code X'23'). What-
ever input was typed will be transferred to the
user's buffer. 1f a TIMEOUT of 0 is specified, the
abnormal retum will be taken after transferring
any partial or complete input record.

’

(OACS, value) specifies an over-riding activation
character set to be used in determining the end of
the input message for this M:READ request only.
Value must be in the range of 0 to 3. See M:CAC
in the CP-V/TS Reference Manual, 900907

REREAD specifies that the input message in the pro-
gram's buffer is to be reread. The message will
be transferred back to the monitor's input buffers,
and echoed as if the user had just retyped the
message. The user may then edit the message and
again release it to the reading program. Reread
handles the transfer in the following manner:

1. When a read is issued to the terminal, the user buffer
is inspected. (ESC D forces the read to be reissued.)

2. Trailing blanks are ignored.

3. Characters are transferred from the program's buffer to
the monitor's input buffers until either an activation
character is found or a character is found that the
monitor would not have placed there.

4, Any typed-ahead input is placed after the reread
characters.

5. The characters in the input buffer are echoed,
See ESCD in the CP-V/TS Reference Manual 900907.

ECB, [*]address specifies the address of a two-word event
control block (ECB). (See the M:CHECKECB procedure
description for an explanation of ECBs.) The ECB will
be set to "in-use" status when the operation is started
and will be posted on completion of the operation,
Posted information consists of TYC in byte 0, and ARS
in bytes 2 and 3 of Word 1 of the ECB. (See DCB
description in Appendix A.) If an "insufficient or con-
flicting information" error or abnormal condition occurs
(refer to Appendix B), the contents of the ECB are
undefined.

ERR,[*]address specifies the address of a user's routine
that will handle error conditions for the read operation
(see the appendix titled "Monitor Error Messages").

The address specified must lie within the user's program.

FWD specifies that the record is to be read in the
forward direction.

KEY,[*Jaddress specifies the address containing the key
(identifier)associated with the record to be read. The

90 17 64H-1(9/78)

key may be up to 31 bytes in length and must be pre-
ceded by a byte that contains the length of the key in
number of bytes. Indirect addressing can be made to a
register; however, the key may not be in registers. The
KEY option is valid for keyed files only.

REV specifies that the record is to be read in the re=-
verse direction.

If neither FWD nor REV is specified, FWD is used
in default,

SIZE, [*)value specifies the size, in bytes, of the user's
buffer. If O is specified, a record is skipped. An as-
terisk may be used to indicate that the value is the
address of a location containing the buffer size. If
this option is not specified, the default value in the
DCB (RSZ) will be used.

ULBL specifies a user trailer label. Bit 28 (f}) in FPT
word 1 will be set. If ULBL is specified and an end~
of-volume (EOV) or end-of-file (EOF) sentinel is en-
countered on labeled tape, the trailer label written by
aprevious M:CVOL or M:CLOSE will be transferred to
the user buffer in TEXTC format where the data record
would have been transferred and an end-of-tape (1C)
or end-of-file (06) abnormal code wilil be returned to
the user. The user must explicitly request volume
switch if ULBL is specified and an EOV sentinel is
encountered. If label is larger than the area available
for the label in the buffer, only the portion of the labe!
that can be contained in the buffer will be transmitted.
If ULBL is not specified, the end-of-volume (EOV)
sentinel will cause automatic volume switching.

WAIT specifies that the operation is to be completed
before control is returned to the user's program. WAIT
is implied if either ERR or ABN is specified. If WAIT
is neither specified nor implied, no wait is assumed.

Calls generated by the M:READ procedure have the form
CAL1, 1 fpt

where fpt points to word 0 of the FPT shown below.
word 0

* X110’ 0—0 DCB address
0 U 2 314 5 6 718 9 10 NNz 13 14 15116 17 18 19120 21 22 23[24 25 26 27128 29 30 3
word 1
HIER AL LY (11] 0 |2j'34{000
(O BN T SR R 0 B IR P) BTN VAT B L R T B 5L TR L T B L I

option ERR (PT)

*0 0

R B B N R AT K PO A 7S P TR - R L 51 7 S TR T B

Error address

option ABN (P2)

*10 : 0 Abnormal address

R R A T R A E R R R L R R NS S A R I I A L S A I

Data Record Manipulation 115

option BUF (P3)

*10 0 Buffer address
0 1 2 314 5 6 7716 9 10 nil12 13 14 15116 17 18 l"?o 222 23‘24 25 26 27128 29 30 N

option SIZE (P4)

d—

-+

]

*Q———01 Buffer size

n
0 12 314 5 6 718 9 10 ME12 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 21

option KEY (P5)

*lo 0 Key address

— — "
0 1 2 31475 & 718 9 10 11112 13 14 15116 17 18 19120 2t 22 23124 25 26 27128 29 30 31

option BTD (P6)

*10 0

T T I AT TS TR T I I Bl TR BRI G B Bn e

8
T
D
30 31

option ECB (P7)

*

ECB Address

Tz 3Ta 56 71E F w0 Tz 54 5lis 7 18 B0 01 2 B3 B % HIEH BT

option BLOCK (P8)

*|) ———— 0; Block number

R LA D 970 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

option COC (P9)

“51S|S[S| j0———0[5 | ¢ [0 TIMEOUT period

2 3Ta 5 s T 2 10 iz vy 4 1sTg 1T 18 19120 21 22 23124 25 26 27128 29 30 31

o e o)

C' set indicates TIMEOUT is specified.

C2 set indicates CONDITIONAL is specified.
4 set indicates DELETEIN is specified.

C4 set indicates DELETEOUT is specified.
5 set indicates REREAD was specified.

CI3 set indicates OACS was specified.

OACS specifies the OACS value.

Flag Significance

f2 0 means read in the forward direction.

1 means read in the reverse direction.

f3 0 means return control to the user's program
immediately.

1 means wait until 1/0 is complete before
returning control to the user's program,

fl 1 means ULBL option selected.

17¢ Data Record Manipulation

WRITE A DATA RECORD

M:WRITE: The monitor WRITE routine causes a specified
data record to be written from a buffer in core storage.
The format of the output depends on the type of physical
device associated with the DCB,

If the DCB is assigned to a card punch, the monitor will
cause IBIN and IBCD records to be punched on the card
punch where appropriate.

For example, if the user'sprogram needs to punch a binary
record and the previous record was punched in EBCDIC, a
IBIN record is punched automatically before the binary
record is punched. Similarly, a !BCD record is punched
automatically before a record is punched in EBCDIC, if
the previous record was punched in binary.

On a binary record a maximum of 120 bytes are punched.
On an EBCDIC record, a maximum of 160 bytes are punched,
but the data is broken into two records, the first of which
contains no more than 80 bytes.

For a line printer, vertical spacing is determined by the first
output character in the vertical-format=control byte if the
associated VFC flag in the DCB is set to a 1. A maximum of
132 characters per line may be printed on a line printer.

If the associated DCB is assigned to a typewriter (or to OC),
a maximum of 256 characters per write operation is allowed.
The user's program must include appropriate carriage return
characters in the record to be written. If the DCB is
assigned to LO, LL, or DO, a maximum of two lines per
write operation is allowed.

If the DCB is assigned to PO or BO, the monitor will break
the output data into two records. The first record will be
80 characters in length (EBCDIC) or 120 characters (BIN),

A request for output of an ANS tape record containing less
than 18 bytes is written as an 18-byte record. The trailing
bytes contain the data that follows the requested data in

core. Output to an unlabeled tape is limited to 32767 bytes. |

It is not necessary for the user's program to explicitly call

the monitor OPEN routine prior to readingor writing arecord,
since the monitor generates such a call automatically if the

DCB is not open. However, the options specified on the

Read/Write call are used for the Read/Write only, and are

not used as parameters for the OPEN call.

The M:WRITE procedure call is of the form
M:WRITE [*]dcb name[, (option)]. . .

where dcb name specifies the name of the DCB to be asso-
ciated with the write operation.

The options are as follows:

ABN, [*]address specifies the address of a user's routine
that will handle abnormal conditions for the write op-
eration (see the appendix titled "Monitor Error Mes-
sages"). The address specified must lie within the
user's program.

90 17 64H-1(9/78)

If an abnormal address is specified and an end-of-tape
is encountered, a X'1C' abnormal code will be gener-
ated so that the user can issue a M:CVOL procedure.
Also, for a Xerox or ANS labeled tape the record has
not yet been written, and the user can issue another
M:WRITE with no preceding M:CVOLto cause an auto=~
matic change of volume to be executed. For device
tape, the record has alreacly been written and automatis
M:CVOL is not performed.

BLOCK, [*]number applicable to random files only and
specifies the granule number of the block at which
the 1/O transfer is to begin. Granule blocks within
a random file are numbered 0 to n=1, where n equals the
number of granules in the file.

The word pointed to by the KBUF field of the random
file DCB is set equal to zero when a file is opened
and is incremented by one after each granule is read or
written whether BLOCK is specified or not. When
the BLOCK option is specified, it overrides the gran-
ule number in the word pointed to by the KBUF field
and causes the word pointed to by KBUF to be re-
set equal to that value. If the BLOCK option is
not specified, the granule number in the word pointed
to by the KBUF field is used.

BTD, [*]value specifies the byte displacement (0-3) in
the user's buffer from which data is to be writtén. The
value used is inserted into the BTD field of the DCB and
becomes the default value for subsequent read/write op-
erations for which the BTD option is not specified.

BUF, [Jaddress specifies the address of the user's buffer
from which data is to be written. This value is inser-
ted into the BUF field of the DCB and can be used on
subsequent M:WRITE procedure calls.

COC, [*Joptions specifies the options unique to a char-
acter oriented communications device, and will be
ignored for any other device. If indirect addressing is
specified, all option flags and values will come from
the indirectly addressed word. The options are sepa-
rated by commas. The options for the COC keyword
are:

DELETEIN specifies that all input present (typed-
ahead) is to be deleted.

DELETEOUT specifies that all output present but not
yet transmitted is to be deleted.

ECB,[*]oddress specifies the address of a two-word event
control block (ECB). (See the M:CHECKECB procedure
description for an explanation of ECBs.) The ECB will
be set to "in~use" status when the operation is started
and will be posted on completion of the operation.
Posted information consists of TYC in byte 0, and ARS
in bytes 2 and 3 of word 1 in the ECB. (See DCB
description in Appendix A.} If an "insufficient or con-
flicting information" error or abnormal condition occurs
(refer to Appendix B), the contents of the ECB are
undefined,

90 17 64H-1(9/78)

ERR, [*Jaddress specifies the address of a user's routine
that will handle error conditions for the write operation
(see the appendix titled "Monitor Error Messages").
The address specified must lie within the user's program.

KEY, [Jaddress specifies the address containing the key
(identifier) associated with the recordtobewritten. The
key may be up to 31bytes in length and must be pre-
ceded by a byte that contains the length of the key in
number of bytes. Indirect addressing can be made to a
register; however, the key may not be in registers. The
KEY option is valid for keyed files only.

NEWKEY specifies that the KEY is a new key in the file
index. That is, the key of the record to be written
must not already exist; if it does exist, an abnormal
return is given (see the appendix titled "Monitor
Error Messages"), NEWKEY must be used for files in
the output mode; if NEWKEY is not used, an X'17'
abnormal condition code is returned.

ONEWKEY specifies that the NEWKEY option is to
be overridden. That is, a record will be written
with the specified key whether it existed previously or
not.

SIZE, [*]value spécifies the size, in bytes, of the user's
buffer. If O is specified, the operation is ignored un-
less records are being written into a keyed file; the
key is retained, but the record length is zero. If this
option is not specified, the default value in the DCB
(RSZ) is used.

WAIT specifies that the operation is to be completed
before control is returned to the user's program. WAIT
is implied if either ERR or ABN is specified. If WAIT
is neither specified nor implied, no wait is assumed.

Calls generated by the M:WRITE procedure have the form
CALL 1 fpt

where fpt points to word 0 of the FPT shown below

word 0

' ox1n |0o———0 DCB oddress

0 1 2 314 5 & 718 © 10 11112 13 14 15116 17 18 19120 2V 22 23124 25 26 27128 29 30 31

word 1

eleleirle e le

1[72] 3" |%| % |'s|"]0] O 0lfff2|h| 0—0
0 1 2 314 5 6 718 10 NT12 13 14 15116 17 18 19120 21 22 23124 35 26 27128 29 X0 31

option ERR (P1)

*0 0 Error address
[U T B B SO S N N VLT K TR 1 KT T T i

Data Record Manipulation 117

option ABN (P2)

*0 0 Abnormal address

0 1 2 3T4 56 718 9 10 11112 13 14 15116 17 18 19120 21 27 23124 25 26 27128 29 30 31

option BUF (P3)

*0 0 Buffer address

0 V2 314 5 6 718 9 10 NT12 13 14 15116 17 18 19120 21 22 23124 25 26 27 28 29 30 AN

option SIZE (P4)

*0——0 Buffer size

0 v 2 314 5 6 7

option KEY (P5)

*
0 0 Key address I
0 1 2 3Ta"s & 778 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27126 0 AN

option BTD (P6)

+-
1]
]
1
4
LE]

G 10 11112 13 14 15016 17 18 19120 21 22 23124 25 26 27128 29 30 3!

T
' B
*10 0 i
[
0 1 2 3Ta 5 & 778 9 10 U213 14 15718 17 18 19120 21 22 23124 25 26 27128 29 30 31
option ECB (P7)
i
* i ECB address
T ey Tt R st Rt TR
option BLOCK (P8)
: —
*10 ———— 0! Block number
|
0 12 37475 & 7V8 9 10 11112 13 14 15016 17 18 19126 21 22 23124 25 26 27128 29 30 31
option COC (P9)
«lolols,[s 0 0
L R N S SO N T B B RTINS AR VAT W b R TR I XL B R T A N L)

where
Cg set indicates DELETEIN is specified
Cy set indicates DELETEOUT is specified

Flag Significance (when sef to 1)

f The WAIT option has been specified.
fa The NEWKEY option has been specified.
f3 The ONEWKEY option has been specified.

COPY ALL DATA RECORDS

M:MOVE The monitor MOVE routine is designed to
speed file copies. It treats a file as alogical unit rather
than as a collection of records. This permits reduction in
the number of CALls required to copy a file, significantly
reducing monitor overhead. The MOVE routine first reads
a record through the input DCB (DCB1) and then writes it
through the output DCB (DCB2). It then returns to the read

118 Data Record Manipulation

cycle and continues this process until an error or abnormal
condition occurs. When an error or abnormal condition oc-
curs, control returns to the user at the user specified error/
abnormal return location. The MOVE routine leaves the
DCBs as they were so that the CAL may be reissued to con-
tinue where it left off. It is the user's responsibility to per~
form any necessary repositioning within the DCBs. The
MOVE cycle always begins with a read. Therefore, if a
write error occurs, both DCBs may need to be repositioned.
On a read error, DCB2 is left in the state it was in at the
end of the last successful write.

The M:MOVE procedure call has the form
M:MOVE [*)dcb1 name, (OUT, [¥]dcb2 name),_]

L €RR, [*Jaddress), (ABN, [*]address)[, (BUF,—]

L [“address N[, (S1ZE, [}value))
where

dcb 1 name specifies the name of the input DCB, It
must be a file or labeled tape DCB and must be
opened IN or INOUT prior to execution on the
MOVE CAL.

OUT, [*]dcb2 name specifies the name of the output
DCB. It must be a file or labeled tape DCB and
must be opened OUT or OUTIN prior to execution
of the MOVE CAL.

ERR, [*Jaddress specifies the address to which control
is to be returned when an error condition occurs.

ABN, [¥Jaddress specifies the address to which control
is to be returned when an abnormal condition occurs.

BUF, [*]address specifies the address of the buffer that
is to be used for both input and output in the proces-
sing of the MOVE CAL, If this option is not used, the
buffer specified in the input DCB will be used. The
buffer is always common for input and output.

S1ZE, [Jvalue specifies the size, in bytes, of the
buffer. If this option is not used, the default rec-
ord size of the input DCB will be assumed. The
size of the output record is always set equal to the
actual record size of the preceding read.

Calls generated by the M:MOVE procedure have the form
CALI, 1 fpt

where fpt points to word 0 of the FPT shown below,

word 0

* X'0E' 0——0 DCB81 address

T 2 314 5 6 718 9 10 112713 14 15014 17 18 19120 21 22 23124 25 26 27128 29 30 I

B30 0

0 1 2 3T4 5 6 778 % 10 0112 13 1415716 17 18 19120 21 22 23(24 2% 26 27128 29 30 31

word 2 (P1)
1*0 0 ERR address

o 1 2 3i4 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27i28 29 30 31
word 3 (P2)

*10 0 ABN address

0 1 2 314 5 6 718 9 10 11112 73 14 15116 17 13 19120 21 22 23124 25 26 27128 29 30 31

word 4 (P3)

*0 0

DCB2 address
A N IR S S N Y O K RN VAN T NT I P I 1) o R TR P R K 7 M T T v T T
word 5 (P4)
* 0 0 Buffer address

0 1 2 314 5 6 718 9 10 1112 13 14 15116 17 18 19120 21 22 23124 25 24 27128 29 30 21

word 6 (P5)

Buffer size
BB) NP AN FRNT B BTNV L 2 b O AR) BT L TR 1A R)

i
* 1
t
T

L R B

DELETE A DATA RECORD

M:DELREC The monitor DELREC routine causes a data
reocrd to be deleted from a keyed or consecutive file.
The INOUT (update)function mode must be indicated in the
DCB associated with the file.

The M:DELREC procedure call is of the form
M:DELREC [*]dch name[, (KEY, [] address)]
where

dcb name specifies the name of the DCB associated
with the file containing the record to be deleted.

KEY,address specifies the address of the key that
identifies the data record. The first byte of the
key specifies the number of bytesin thekey. A
kéy may consist of up to 31 characters. If KEY is
omitted, the last record read through the specified
DCB is deleted.

Calls generated by the M:DELREC procedure have the form
CALL 1T fpt
where fpt points to word 0 of the FPT shown below.

word 0

* X'0D' 0——0 DCB address

N A B B S A -) R O P N T VA U TR Y S T B T A R T

option KEY (P1)

Key address

* 10 0

0 1 2 314 5 &6 7018 9 10 b2 13 1415116 17 18 19120 21 22 23124 25 26 27128 29 30 31

TRUNCATE BLOCKING BUFFER

M:TRUNC The monitor TRUNC routine causes the
monitor to wait for the completion of any outstanding I/O
associated with a specified DCB and then to release the
blocking buffer (if any is reserved for the DCB) back to
the system for other use. The next read or write will be
assigned a buffer automatically, as needed. This call
applies only to DCBs assigned to files.

The M:TRUNC procedure call is of the form
M:TRUNC [*dcb name
where dcb name specifies the name of the DCB associated
with the blocking buffer to be released.
Calls generated by the M:TRUNC procedure have the form
CALI, 1 fpf
where fpt points to word O of the FPT shown below.

word 0

* X112 0———0 DCB address

T T 3T ST Y T 13 14 15116 17 18 Wi 21 22 B BB T B WS
word 1

0 0

word 1 o
0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

+ —
0 1 2 314 5 6 718 9 10 11172 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3)

FILE MANIPULATION

POSITION N RECORDS

M:PRECORD The monitor PRECORD routine causes a
specified number of logical records of a keyed or consecu-
tive file on secondary storage or magnetfic tape to be skip-
ped in the direction specified. M:PRECORD is not ap-
plicable for ANS tapes and is ignored.

The M:PRECORD procedure call is of the form
M:PRECORD [*]dcb name[, (N, [*]value)][, (option)];—‘

‘:— [, (option)]

where

dcb name specifies the name of the DCB associated
with the file (in secondary storage or on labeled
or unlabeled magnetic tape).

N, [F]value specifies the number of records fo be
skipped. The default value is 1.

ABN, [*]address specifies the address of a user's
routine to be entered if any of the following ab-
normal conditions occur: end-of-file, end-of-
tape, beginning-of-file, beginning-of-tape. The
number of records yet to be skipped is placed in

‘the ARS field of the associated DCB.

File Manipulation 119

FWD specifies that skipping is to take place in the
forward direction.

REV specifies that skipping is to take place in the
reverse direction.

Calls generated by the M:PRECORD procedure have the
form

CALL 1 fpr

where fpt points to word 0 of the FPT shown below.
word 0

EOF specifies that the file is to be positioned at
its end for Xerox labeled tapes or for ANS labeled
tapes. For unlabeled magnetic tape, one end-of-
file mark is skipped in the forward direction and
the tape is positioned immediately after that end-
of-file mark.

Calls generated by the M:PFIL procedure have the form
CALL 1 fpt.

where fpt points to word 0 of the FPT shown below.

word 0
* X"1D! 0-———0 DCB add
aadress
* 1 '
Tz 314 5 6 7Te v itz g Be 78 19120 21 22 23124 25 26 27128 29 30 31 X]C 0 0 DCB cddress
0 1 2 3145 ¢ 718 9 10 IIiIZ 13 14 15116 17 18 l9‘|20 21 22 23?24 25 26 27i28 29 30 3
word 1 word 1
p%)) flo—
1500 olfilo—o 0 0[1/0——0
0 1 2 3[4 5 6 718 9 10 vit12 13 14 15076 17 18 19120 21 22 23124 25 26 27128 2930 31 0 1 2 314 5 6 718 9 10 11213 14 15116 17 18 W12 27 22 B0 3 % FI® B T
ophon N (P1)
+ v +
*0 ol Number'of records Flag Significance
)) . ! to be SkIE?ed .
T T 314 5 5 7 TE o e Tz 3 14 15t 7 et 3124 25 26 27128 29 30 31 f] 0 means posifion to the end_of_f”e.
option ABN (P2) 1 means position to the beginning-of-file.
* 10 0 Abnormal address
T 23 s s s MM T U B 7 B B0 0 B RSB TBE Ha
— CLOSE VOLUME
Flag Significance
f 0 means skip in the forward direction, micvoL . The monitor CVOL routine causes the mon-

1

1 means skip in the reverse direction,

POSITION FILE

M:PFIL The monitor PFIL routine causes the device
associated with a specified DCB to move to the begin-
ning or end of the current file (for keyed or consecutive
files on disk storage or on labeled or unlabeled magnetic
tape).

The M:PFIL procedure call is of the form

M:PFIL [¥]dcb name, {Eggg}
where
deb name specifies the name of the DCB associated

with the file that is to be positioned.

BOF specifies that the file is to be positioned at
its beginning. For unlabeled magnetic tape, one
end-of-file mark is skipped in the reverse direc-
tion and the tape is positioned immediately before
that end~of=file mark. M:PFIL with the BOF op-
tion is ignored for an ANS labeled tape.

" 120 File Manipulation

itor to terminate the reading or writing of data in the mag-
netic tape reel currently associated with a specified DCB,
and to advance to the next reel of the data set.

Unlabeled tapes are positioned at the beginning of the
next input reel; output files are positioned at the beginning
of a new scratch tape (or output reel, if any). The DCB
is closed on the last reel.

For output files on labeled tape, end of volume and end of
reel are written, and label and account sentinels are writ-
ten on the next reel in the set.

For input tapes, the tape is advanced to the next reel of
the data set and the file currently open is located on the
next reel.

Volumes closed on labeled tapes cause the tape to be re-
wound and a DISMOUNT message to be output., For out-

- put, update, and scratch files, a SAVE message is also

output. Volumes closed on unlabeled tape also cause the
tape to be rewound. However, for unlabeled tape, the
user's program must output any SAVE and DISMOUNT
messages.

The M:CVOL procedure call is of the form
M:CVOL [*]dcb name [(LABEL, [*Jaddress)]
where

dcb name specifies the nome of the DCB associated
with the volume to be closed.

LABEL, [*]address specifies the address of a label
to be added as a record following the :EOF or
:EQV sentinel. The label must be in TEXTC for-
mat. An ANS label is 80 bytes long with 'UTLY'
as the first four bytes.

Calls generated by the M:CVOL procedure have the
form

CALL 1 fpt
where fpt points to word 0 of the FPT shown below.

word 0

* X'03 0—————0 DCB address

0 1 2 3V4 5 6 778 9 10 112 13 14 15716 17 18 19120 21 22 23124 25 26 27128 29 30 3}

word 1,

o]Pz 0 0

T T 7T 3t 5 6 715 5 10 11z 13 14 15116 1718 9120 2122 23134 55 26 126 5 30 31

option LABEL (P2)

LABEL address

*10 0

T T T 3 T 5 ¢ 71 v 0T T BT R Wil o 2 BB % Im om0
REWIND

M:REW The monitor REW routine causes the monitor to

perform a rewind function under the following conditions:

o If the associated DCB is assigned to unlabeled tape,
the DCB is opened (if it was closed)and the tape reel
is rewound.

e If the associated DCB is open and is assigned to a
keyed or consecutive file on a Xerox labeled tape,
RAD or disk pack, the file is positioned to its
beginning~of-file. However, if the associated DCB
is closed, no action is taken.

o If the associated DCB is assigned to an ANS labeled
tape, the DCB is closed with the PTV option; i.e.,
the tape is positioned as if an AVR sequence had been
performed.

The M:REW procedure call is of the form

MREW [*dcb name

90 17 64H-1(9/78)

where dcb name specifies the name of the DCB associated
with the file that is to be rewound.

Calls generated by the M:REW procedure have the form
CALL T fpt

where fpt points to word 0 of the FPT shown below.

word 0
¥ X'o1 0—0 DCB address

R I R B B LA F B KRN S) WY R P o BT B 0 3 BT B R TR 7 T o]

WRITE END-OF-FILE

M:WEOF The monitor WEOF routine causes an end-
of-file to be written on the unlabeled tape associated
with a specified DCB, an IEOD to be output to card
punch, and a top-of-form to be output to the line
printer.

The M:WEOF procedure call is of the form
MWEOF [*Jdcb name

where deb name specifies the name of the DCB asso-
ciated with the tape on which the end-of-file is to be
written.

Calls generated by the M:WEOF procedure have the
form

CALL 1 fpt

where fpt points to word 0 of the FPT shown below.

word 0

* X'02' 0—————0 DCB address

0 t 2 3[4 5 6 718 9 10 1112 13 14 15016 17 18 19120 21 22 23124 25 26 27128 29 30 31

INSERT OR DELETE SYMBIONT FILE

M:JOB The Job Entry (JOBENT) procedure call is
restricted to use by system processors. It permits a file
(@ block at a time) to be inserted into or deleted from an
existing symbiont file residing on secondary storage.
JOBENT ‘operates under monitor control to perform the fol-
lowing functions:

File Manipulation 121

o Insert a print block into an output symbiont.
e Insert a job block into an input symbiont.

® Check status of the particular block (job) that has
been inserted.

o Delete a job waiting in the input symbiont.

The M:JOB procedure call is of the form

M08 [*)dcb address[, (option)]. . .

where dcb address specifies the address of the DCB that
will be used to write the block. The DCB may be any
system DCB (for example, M:El or M:BO) or it may be
a user DCB.

Options are as follows:

BUF, [*Jaddress specifies the core storage address of
the block to be inserted or deleted.

ABN, [*]address specifies an address in the user's pro-
gram to be entered in the event this block cannot be
inserted or deleted. If the block cannot be entered or
deleted, the system returns an abnormal code 3F/39,
3A, 38, 3C, 3D, 3E, or 3F to the user (see the ap-
pendix titled "Monitor Error Messages").

IN or OUT specifies the function mode to be per=-
formed. IN = insert into input symbiont (0, 1),
OUT = insert into output symbiont (2).

DEL [(Jaddress specifies either the system ID address or
a pointer to the ID itself of the job to be deleted.

ACCT, [*] address specifies the address of a two-word
area that contains the account number under which
the job was submitted. This option is only meaning-
ful in association with a DEL request. If not speci-
fied, the current user's account number is assumed.
The user must have CO privilege or greater to delete
a job submitted under another account number.

LAST, [*]address specifies this is the last block of
the file to be entered into the symbiont and the ad-
dress is either the priority itself or a pointer to the
priority to be used for the current job to be submitted.

If LAST is specified, zeros are placed in word 0 of

the block, the previous block’s disk address is placed
in the last word of the block, and the block is written
to the symbiont on secondary storage. Following in-
sertion of this block, SR1 will contain the system iden=
tification. (right-adjusted) and is available to the user
when control is returned following M:JOB,

122 File Manipulation

If LAST is not specified, the system determines the disk
address of the next block to follow and places this
address in word 0 of the present block and the pre-
vious block's disk address in the last word of the pre-
sent block. The block is then written to the symbiont
on the secondary storage.

Calls generated by the M:JOB procedure have the form
CALI fpt

where fpt points to word 0 of the FPT shown below.

word 0

* X'2F' 0——0 DCB address I
1 2 314 5 6 7278 9 w0 nhizu |4|Si|6 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 1

P I

1 [P}

3

%[%s[7s| O 0

et + e
T 2 314 5 6 718 9 10 nl12 13 14 15016 17 18 19720 21 22 23124 25 26 27128 29 30 31

option ABN (P1)

"0 0

0 1t 2 3la - & 7Te 9 10 11712 13 14 15016 17 g 19720 21 22 23124 27 2o 20126 20 3T ::

Abnormal address

option BUF (P2)

*10 0 Buffer address

9 v 2 314 AL R R I N N T R O D R O

option {lcl)\lUT] (P3)

1F

*l0 0 Py

v 2 314 35 6 "V& S ¢ 1011z 12 14 1alte 17 I8 19120 21 2. 23124 2% 26 o- L% :CL)(‘ 3
where FUN specifies function (0 or 1 means IN, 2
means OUT).
option LAST (P4)
*10 0 , PRI
0 1 2 34 7 & TTR S TN O Y e 10 R Wty ooor st o _-~::n T

where PRI specifies priority only for output. The only valid
values are 0-15. N

option DEL (P5)

*10 0 Address of sysid

0 1T 2 JV4a 5 6 7178 9 10 11112 13 14 15818 17 18 19020 21 22 23124 25 26 27128 29 30 31

option ACCT (P6)

* Address of account number

K] = Te .- T g vl da s ap ety

The organization of records and the format of the input and

output file symbiont buffers is described in the appendix

titled "Cooperatives and Symbionts".

‘ If none of the first five parameters (P, to P.) are specified

in M: JOB, the M: JOB call is interpreted as a status check.

The status of the file whose identification is specified in
SR 1 is returned as a code in SR1, with

0 = completed.

1 = running.

2 = waiting for execution.
3 = never existed.

4 = waiting to output or job is waiting in the output
queve.

If code 2 is returned, SR3 contains the number of jobs
dahead of the checked job.

SPECIAL DEVICE PROCEDURES

M:DEVICE The monitor DEVICE routine is capable of
performing a variety of functions. The function performed
is determined by the keyword specified in the procedure
call. In all cases where the M:DEVICE call is not compat-
ible with the device associated with the specified DCB,
the call is ignored and no error or abnormal return is given.
(The DCB must be assigned to a DEVICE file,) For sym-
biont devices, all actions affecting any device (e.g., skip
to top of form) are delayed until the 1/O actually takes
place,

SET LISTING TABS

This call allows the user's program to set listing tabs for
designated columns of data output listed via a specified

DCB.

The procedure call is of the form

M:DEVICE [*ldcb name, (TAB, value[,valuel...)
where
dcb name specifies the name of the DCB associated

with the device on which data is to be listed.

TAB, value [,valueL .. specifies the values (column
numbers) of desired tab positions. As many as
16 tab values may be specified, The tab values
are stored in the TAB fields of the specified DCB
in the sequence in which they are specified in
the procedure call. A value of O specified at
TAB; causes TAB; through TAB 16 to be set to 0O,
indicating null tabs.

Calls generated by the M:DEVICE (TAB) procedure have
the form

CALL, 1 fpt

where fpt points to word 0 of the FPT shown below.

word 0

* X'28' 0——0 DCB address
0 V2 3T4 5 6 718 9 10 11012 13714 15116 17 18 W‘E ,I ;”3’(’5!6!"55”351

word 1

0 1 7 374 35 6 718 9 10 1111213 14 15116 17 18 19120 21 22 23124 25 26 D128 B B 31

For this FPT, PI must be set to 1.

option TAB (P1)

n f' l’2 t3
rr Tty vrhroa
last word
t t t
n-3 n-2 n-1 tn
T T I T T s T s BT T W BT BB T A s O T

When the user's program requires tab spacing in the output
buffer, this is indicated in the character string by an
EBCDIC code of 05. The monitor responds to such a code
by inserting the subsequent character (in the character
string) at the column indicated by TAB, (where TAB, , was
the most recent tab setting used in formatting the current
line),

Note that unless the value of TAB; > TAB;_{, data may be
lost by being overlapped in the output buffer.

Example:
The procedure call
M:DEVICE M:LO, (TAB, 5, 20, 35)

would result in the following entries in word 15 of the asso-
ciated DCB:

TABl =5
TAB2 = 20
TAB3 = 35

TAB4 = unchanged

With these tab settings, the EBCDIC (hexadecimal) string
05C3D6D3E4D4D540F 105C3D6D3E4D4D540F2

would result in the following typeout:
(col. 5) {col. 20)

I

COLUMN 1 COLUMN 2

SKIP TO TOP OF FORM

This call allows the user's program to cause the printer or
typewriter associated with a specified DCB to skip to the
top of a new physical page. If the printer is already
positioned at the top-of-form, no action takes place.

Special Device Procedures 123

The procedure call is of the form

M:DEVICE [*]dcb name, (PAGE)
where
deb name specifies the name of the DCB associated

with the device that is to be positioned.

PAGE specifies that the device associated with the
specified DCB is to skip to the top of the next

page.

Calls generated by the M:DEVICE (PAGE) procedure have
the form

CALILI fpt
where fpt points to word 0 of the FPT shown below.

word 0
[X'04' 0———0 DCB address
0 ' 2 314 5 & 7108 9 10 11112 13 14 15116 17 18 19120 21 22 23'2‘ 25 26 27128 29 X0 It

SET NUMBER OF PRINTABLE LINES
This call allows the user's program to set the number of

printable lines per page, for the listing device associated
with a specified DCB,

The procedure call is of the form

M:DEVICE T*]dcb name, (LINES, value)
where
dcb name specifies the name of the DCB associated

with the device for which the number of printable
lines is to be set,

LINES, value specifies the number of printable
lines per page. A maximum of 32,767 lines per
page may be specified. The value includes any

header and after-header spacing. A blank header
line is used if no header is specified.

Calls generated by the M:DEVICE (LINES) procedure have
the form

CALL 1 fpt
where fpt points to word 0 of the FPT shown below.

word 0

option LINES (P1)

1)
*10 0 E Printable lines per poge

* X'20' 0——0 DCB address

01 2 314 5 6 718 9 10 nl1213 14 15716 17 18 19120, 21 22 23124 25 26 27128 29 20 N

word 1

T 1 2 314 5 6 J16 5 10 Titi2 13 14 15116 17 18 9120 21 22 23124 25 2 27128 T 0 N

P] must be equal to 1.

124 Special Device Procedures

T2 3T4 5 6 778 9 10 11712 13 14 15118 17 18 19120 21 22 23128 25 26 27128 29 30 31

SET LINE SPACING

This call allows the user's program to set the number of
spaces between lines and the number of spaces between
the page header and the first line printed. It is valid
only for listing devices. Between-lines spacing takes
effect only if the VFC flag in the DCB is 0.

The procedure call is of the form
M:DEVICE
[*] dcb name, (SPACE, [*] value 1[, [*] value 2))

where

dcb name specifies the name of the DCB associated
with the device for which the line spacing is to
be set.

value 1 specifies the number of lines to be
spaced after printing a line. (A value of either 0
or 1 results in single spacing.)

value 2 specifies the line number (with the header
line number being 0) of the first line,

Calls generated by the M:DEVICE (SPACE) procedure have
the form

CAL1, 1 fpt
where fpt points to word 0 of the FPT shown below.

word 0
* X'25 0——0 DCB address

A O A LR R R A R ARG I O T A D

word 1

RiPlo 0
0

vo2 314 5 6 716 9 10 11112 13714 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3!

P] must be equal to 1.

option SPACE (P1)

*| 0 : O|Line spacing

0t 2 3L4 5 6 278 9 10 1T12 13 14 15116 17 18 9120 21 27 73724 75 26 D138 2% 30 N

option SPACE (P2)

+

* {Header spacing

N N + t
0t 2 3014 5 6 718 9 10 11112 13 14 15118 17 18 19120 21 22 23124 25 26 27128 29 20 3}

SPECIFY DIRECT FORMATTING

This call allows the user's program to specify whether or not
special record formatting is to be done by the monitor.

90 17 64H-1(9/78)

The procedure call is of the form

. (DRC) }
M:DEVICE [*ldeb nqme’{(NODRC)
where
deb name specifies the name of the DCB associated

with the device for which the special formatting
is or is not to be done.

DRC specifies that no special record formatting is
to be done for the device associated with the
designated DCB (inhibit monitor formatting).

NODRC specifies that the normal mode of monitor

formatting is to be reinstated for the device asso=
ciated with the designated DCB,

Calls generated by the M:DEVICE (DRC/NODRC) pro-
cedure have the form

CAL1, 1 fpt
where fpt points to word 0 of the FFT shown below.

word 0

NOVFC specifies that the user has not inserted a
control character in his print image.

‘ Calls generated by the M:DEVICE (VFC/NOVFC) procedure

have the form

CALT, 1 fpt
where fpt poi‘nfs to word O of the FPT shown below,
word 0

*

X'05! 0————0 DCB address
T T 2 313 5 6 718 5 10 11z 13 14 15116 17 18 19120 27 22 33124 BB % H1B B B3
word 1
0 0/fjlo—o
T T 2 314 5 6 718 9 10 Tz 3 4 6116 17 T8 6 0 2 B2 B 2 T8 B B 5

Flag | Significance

fl 0 means no vertical format control is to be
performed.

1 means vertical format control is to be
performed.

* X'0B' 0—————0 DCB address
0 1 2 314 5 6 7718 9 10 lli]? 13 14]5i16 17 18 19120 21 22 23124 25 26 27128 29 30 31
word 1

0 o|flo—o

0 1 2 314 5 6 718 9 10 111121314 15116 17 16 19120 21 22 23i2425 26 27128 29 30 31

Flag | Significance

Fl 0 means monitor formatting is not to be
inhibited.

1 means monitor formatting (for card devices) is
to be inhibited.

SPECIFY VERTICAL FORMAT CONTROL

This call allows the user's program to specify whether or
not the monitor is to interpret the first character of each
output image as a vertical format control character.

The procedure call is of the form

) i~ (VFC)
M:DEVICE [*ldcb name, {(N ovic)
where
dcb name specifies the name of the DCB asso-

ciated with the listing device that is (or is not)
to operate under vertical format control,

VFC specifies that the user has inserted a control
character in his print image.

SPECIFY PAGE COUNT

This call allows the user's program to request that the
monitor count output pages, and also to specify to which
column this count is to be listed on the output device.
The page count will appear at the top of the form, if no
header has been specified (see "Specify Output Header");
otherwise, the page count will appear on the same line as
the header. The count will be expressed in decimal form,
from 1 to 9999.

The procedure call is of the form

M:DEVICE [¥dcb name, (COUNT, tab)
where
dcb name specifies the name of the DCB asso-

with the listing device on which the page count
is to be listed.

COUNT.tab specifies the column in which the
most significant digit of the page count is to be
listed. The value of "tab" must be appropriate
for the physical device associated with the DCB,

Calls generated by the M:DEVICE (COUNT) procedure have
the form

CAL1, 1 fpt
where fpt points to word 0 of the FPT shown below,

~word 0

* X'24! 00— 0 DCB address

T T 3 T e 1 S 0 Tz 03 1 16 17 18 B30 21 22 23128 35 2 178 B 30 31

¢, Special Device Procedures 125

.- 126

-word 1

0 1 2 314 5 6 718 9 10 11213 1415116 17 18 19720 21 22 23124 25 26 2728 29 30 31

P] must be equal to 1.

option COUNT (P1)

1
+o 0 ! COUNT tab |

0 1 Z 314 56 718 5 10 Nz 13 14 5116 7 18 B2 27 22 B2 5526 5138 55 36 30

CHANGE OUTPUT FORM

This call allows the user's program to requesta change in the
form used on the output device (e.g., cdrd punch, typewriter,
lineprinter, etc.), The monitor informs the operator of the
chahge thdt is to be mdade. When the operator has changed
the form, he informs the monitor by an appropriate key-in.

The procedure call is of the form

" M:DEVICE

(+]deb name, (option)
where
deb name specifies the name of the DCB associated

with the device for which the change of form is to
be requested.

FORM, [*address specifies the address of the mes-
sage (that is to be output to the operator) con-
cerning a change of cards or paper. The first byte
of the message must specify the numbér of bytes in
the message.

FNAME, 'name’ specifies the one-tofour-character
name of dn installation~determined form or card
stock. If'NONE'is specified for 'name', the de-
fault form or card stock of the installation is required.

Calls generated by the M:DEVICE (FORM/FNAME) pro-
cedure have the form
CALT, 1 fpt
where fpt points to word 0 of the FPT shown below.
wov;d 0

DCB address

* X'21" 0—0

T I s s TIE T MM B N BB v BRI S BB E PN
word 1)
Ao 0

0 1 2 374 5 6 708 9 10 1112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3

option FORM (P1)
*0 0 Message address

S -
0 1 2 314 5 6 718 9 10 1112 13 14 1501617 18 19720 21 22 23724 25 26 27128 29 30 31

option FNAME (P2)

Form name
0 Y 2 314 5 & 7?5 9 10 112 13 14 lSilb 17 18 19620 21 22 23124 25 26 27i28 29 30 N

Special Device Procedures

CHANGE DEVICE MODE OR RECORD SIZE

This call allows the user's program to change the mode of
the device associated with a specified DCB, or to change
the logical record size entry (RSZ) in the specified DCB,

The procedure call is of the form
M:DEVICE

where dcb name specifies the name of the DCB associated
with the device for which the change in mode or record
size is fo be made.

[Jdcb name, (option)

The options are

BCD specifies the EBCDIC mode.

BIN specifies the binary mode.
FBCD specifies FORTRAN BCD conversion,

PACK
tape) is to be used,
BIN is specified,

specifies the packed binary mode (7-track
PACK is not valid unless

UNPACK specifies the unpacked binary mode
(7-track tape) is to be used. UNPACK is not
valid unless BIN is specified,

SIZE, value

specifies the default record size, in
bytes. :

Calls generated by this procedure have the form
CALT,1 fpt

where fpt points to word 0 of the FPT shown below.

* X'22 0——0 DCB address

01 2 ﬁl 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

(]

word 0

i ol

T T 2 314 5 6 718 7 10 11112 13 74 15116 17 18 19120 21 22 23124 25 26 27128 5 50 31

option SIZE (P1)

Default record size

0 of 1

Flag Significance
f] 0 means BCD mode.
1 means binary mode.
F2 0 means no FBCD.
1 means FBCD.
f3 0 means packed.
1 means unpacked.

0 72 314 5 6 F18 5 10 N2 1314 15116 7 18 120 0 22 BI2h 25 26 D18 % %031

SPECIFY BEGINNING COLUMN

This call allows the user's program to specify that all data
output by the card punch (EBCDIC only), typewriter, or other

sting device associated with a designated system DCB is to
vegin in a specified column,

The procedure call is of the form

M:DEVICE *idcb name, (DATA, tab)
where
dcb name specifies the name of the DCB associated

with the output device for which the beginning
column is to be specified.

DATA, tab specifies the column in which the first
character of the data output is to appear.

Calls generated by the M:DEVICE (DATA) procedure have
the form

CALL 1 fpt

where fpt points to word 0 of the FPT shown below.

word 0
)

* X'23' 0———————O0 DCB address

0 1 2 374 5 & 718 9 10 11612 13 14015 16 17 18 19120 2V 22 23124 25 26 27128 29 30 31
word 1

Ip

10 0
0 1 2 3al4 5 6 718 9 10 nl12 13 14 15116 17 18 19120 21 22 23124 25 26 77r2_ﬁ”1)31

P' must be equal to 1.

option DATA (P1)

0 0| Data tab col.
Y Ty s vt Rt Z)

SPECIFY OUTPUT HEADER

This call allows the user's program to specify an output
header (heading) that is to appear at the top of each form.

The procedure call is of the form

M:DEVICE [*Jdcb hame, (HEADER, tab, [*Jaddress)
where
dcb name specifies the name of the DCB associated

with the device on which the header is to appear.

HEADER, tab, "*laddress specifies the column num-
ber (tab) at which the header is to begin, and the
address of the header. Thefirst byte of the header
must specify the number of bytes it contains.

Calls generated by the M:DEVICE (HEADER) procedure
ave the form

where fpt points to word 0 of the FPT shown below.

word 0

* X'26' 0———0 DCB address

T T T 3ti s e e s vt T B v B BB T IOl G B ORI
word 1

P|P

112 0

0 7 Jil 56 778 9 10 N2 13 14 15716 177 10 19120 21 22 23124 25 26 27728 29 30 3t
PI and P2 must be equal to 1,
option HEADER address (P1)

*0 0 HEADER address

0 ¥ 2 3T4 5 6 778 9 10 11712 13 14 15116 17 16 19120 21 22 23124 25 26 27128 29 30 31

option HEADER column (P2)

0 0| HEADER tab

0 V 2 314 5 6 716 ¢ 10 11112 13 14 15016 17 18 19120 21 22 23024 25 26 27128 29 30 1

SPECIFY CARD PUNCH SEQUENCING
This call allows the user's program to specify that sequence
numbers are to be punched on cards output by the card

punch associated with a designated DCB,

The procedure call is of the form

M:DEVICE [*ldeb name, (SEQ[,'id])
where
dcb name specifies the name of the DCBassociated

with the card punch that is to output cards with
sequence numbers,

SEQ[,'id"] specifies that sequence numbers are to
be punched in columns 77-80 of each card. If a
user-defined id is specified, it will be punched in
columns 73-76 of each card.

Calls generated by the M:DEVICE (SEQ) procedure have
the form

CALL, 1 fpt

where fpt points to word 0 of the FPT shown below.

word 0

* X'27' 0——————O0 DCB address

0 1 2 374 5 6 7218 9 10 11112 13 14 35716 17 18 19120 21 22 23124 25 26 27128 29 30 3

word 1

Plo 0

© 1 2 314 5 & 7186 9§ 10 11112 13 14 15716 17 16 19120 21 22 23124 25 26 27728 29 30 }i

option SEQ (P1)

Identification characters

T 7 2 314 5 & 716 9 10 11112 13 74 15116 17 18 19120 21 27 23124 435 26 29128 20 2 31

Special Device Procedures 127

NUMBER OF LINES REMAINING

This call allows the user's program to determine the number
of printable lines remaining on a page.

The procedure call is of the form

M:DEVICE [*dcb name, (NLINES)
where
deb name specifies the name of the DCB associated

with the device for which the number of lines re-
maining on a page is to be obtained.

NLINES keyword designating what the procedure
call is requesting.

Calls generated have the form
CALI 1 fpt

where fpt points to the FPT shown below,

word 0

* X'2A! 0O——0 DCB address I
(R R S S T T} RFRN KT O) ST VA T F R SR Y K] 6 TR R TR A B Q]

Upon return to the caller, SRI contains O if not applicable.
SR1 contains the number of lines remaining on the current
page only if the user indicated top of page and set the
value of LVA with M:DEVICE [*] dcbname, (LINES, value).

128 Special Device Procedures

CHECK CORRESPONDENCE OF DCB ASSIGNMENTS

This call allows the user's program a means of determining
if two DCBs have been assigned to the same physical de-
vice, Both DCBs must have been opened,

M:DEVICE dcb]name,(CORRES,dcbzname)
where

dcbyname specifies the name of a DCB which is to
be checked for assignment correspondence with
dcbyname.

CORRES,dcbyname specifies the name of a DCB
which is to be checked for assignment correspon-
dence with dcbjname.

Calls generated have the form

CALI, 1 fpt
where fpt points to the FPT shown below.
word 0
X'28' jo——0 deby
G 1 2 314 5 6 718 § 16 1111213 14 15116 17 16 19120 21 22 % 25 26 27128 K1l
word 1
0 0 decbp

0 1 2 314 s 6 778 9 10 nT12 13 14 15176 17 18 19120 21 22 23124 25 26 27128 2% 30 31

If the assignments of the two DCBs correspond, a 1 is
returned in SR1; otherwise, a 0 is returned.

90 17 64H-1(9/78)

6. PROGRAM LOAD EXECUTION

INTRODUCTION

There are three processors that can be used in the batch
mode to control loading and execution of object programs:
the Load processor, the LYNX processor, and the Link
processor,

Load is a two-pass overlay loader. The first pass processes
not only ROMs but previously formed load modules or a
combination of both (For example, Load processes dummy
sections from library load modules as well as from ROMs.)
The first pass also processes expressions for definitions and
references (primary, secondary, and forward references).
The second pass forms theactual core image and its reloca=
tion dictionary.

LYNX has most of the capabilities of the overlay loader,
Load, and also provides the same control over internal and
global symbol table construction which is available in the
linking loader, Link. LYNX may be viewed as a prepro-
cessor for the Load loader. After it analyzes the user's
commands, it constructs a table of loader control information
which it then passes to the Load loader. It is Load which
actually performs the loading process.

Link is a loader that is now supplied only for compatibility
with previous versions of CP-V, Although Link is described
in full detail in this manual, it is recommended that the
LYNX loader be used.

The LEMUR processor is also described in this chapter
although it is not a loader. LEMUR (Library Editor and
Maintenance Utility Routine) is o processor that builds and
manipulates ROM and load module libraries. The libraries
thus built are accessed by LYNX or Load when constructing
user load modules.

The final sections of this chapter describe task control
blocks, data control blocks, memory protection, virtual
memory, and job accounting.

LOAD PROCESSOR

The purpose of the Load processor is to translate and unite
its input (ROMs and libraries) into such a form that its out-
put (a load module) may be executed under the CP-V
operating system. The TREE, PTREE, and INCL control
commands are used to provide overlay information to the
loader. Program execution is initiated by the RUN com-
mand, which is described below after the description of
the Load processor. The accounting summary generated at
the end of each job is described at the end of this chapter.

The loader performs the following functions:

® Process relocatable object modules (ROMs) producing
continuous sections of data, procedure, and DCBs (or
static data) ensuring a page boundary for the three
protection types (00, 01, and 10, respectively).

e Satisfy REFs among the ROMs.

e Access libraries to satisfy PREFs.

e Build Data Control Blocks (DCBs).

® Build o DCB name table for monitor use.

e Build Task Control Blocks (TCBs).

e Produce a load map printout for a newly built or pre=-

viously formed load module.

The loader produces a load module, which is a keyed file
having the format shown in Table 17,

Table 17. Standard Load Module Format

Key Record Contents
C'HEAD' Basic load module information
C'TREE' i Tree Table

X'00' REF/DEF stack

X'o1' Expression stack

LMN name X'02'
concatenated) X'03'

00 Relocation Dictionary
) 00 Control Sections
with X'04' 01 Relocation Dictionary
X'05' 01 Control Sections
X'06' 10 Relocation Dictionary
(X'07* 10 Control Sections

A loader control command normally follows a processor
command (and is read after all specified inputs have been
received and processed) so that the processor's output will
be translated into an executable load module.

The object modules or load modules may be input to the
loader from one or more Bl files, GO files, element files,
or libraries.

Note that if the first few characters of any continuation to a
LOAD, OVERLAY, OLAY, or TREE command match any of
the input control commands or JOB, those commands must
have at least one blank between ! and the first alpha
character,

CONTROL COMMANDS

LOAD,OVERLAY,OLAY The loader which is invoked
by a LOAD, OVERLAY or OLAY control command processes
relocatable object modules, previously formed load modules,
or a combination of both, The resulting load module is a
keyed file which is placed in the user's account, Execution
of the load module is triggered by the RUN control command
which brings the load module into core storage and transfers
control to it. (A load module may also be called internally
by an executing program via the M:LINK procedure.)

The special characteristics of the Overlay Loader are as
follows:

Program Load ond Execution 129

1. Overlaid programs. The overlaid program is one that
has only one segment resident in core permanently.
The other segments are called for by the M:SEGLD
procedure call and brought in as needed, They may
reside (at different times) in the same core area, thus
reducing the amount of core storage required to house
the entire program.

Since a program may consist of three areas (protection
types), each beginning on a page boundary, the Over-
lay Loader has the aobility to create the three struc-
tures, each beginning on a page boundary.

2. Reference lLoading. If the user does not choose to
maintain responsibility for calling inthe segments of an
overlaid program (by explicitly using the M:SEGLD),
he may direct the loader to insert the M:SEGLD code
into his program by specifying REF or BREF on the
LOAD command. This code is built wherever there is
a branch type instryuction to a DEF in a higher segment
(BREF mode) or wherever there is an expression involv-
ing a DEF from a higher segment (REF mode).

3. Load Module Libraries. It is desirable to maintain
libraries of frequently used routines that are themselves
already in load module form, since subsequent inclu-
sion of a library module is faster than processing the
original ROM language. Library load modules are of a
less general nature since they must be of one protec-
tion type, relocatable, and not overlaid.

4. Relocatable Load Modules. The loader creates a relo-
cation dictionary that allows subsequent placement
of the load module into a core area other than the
one at which it was originally biased. This is required
for library load modules.

There is no functional difference between the LOAD, OLAY,
and OVERLAY commands. The load parameters must be
specified in either a LOAD, OVERLAY, or OLAY com-
mand and the overlay structure must then be specified
in a TREE control command.

The forms of the loader control commands are

LOAD '

HOVERLAY {{(option)][, (option)]. ..
OLAY

where the options are as follows:

Options that determine input to the loader

BI specifies that the Bl input device is to be used to
read unspecified relocatable object modules. Ob-
ject modules will be loaded from the BI device
until either two end-of-data codes (05) or one end-
of-file code (06) is encountered, If neither BI,

EF, nor GO are specified as input sources, BI

130 Load Processor

is assumed by default. Normally, the Bl and
C operational labels are both assigned to the same
device. If a control command is read, the moni-
tor generates an end-of-file code and terminates
the binary input. '

GO specifies that data from the user's temporary
GO file is to be included in the root of the load
module (see TREE). If GO has been assigned to
a labeled file, the GO option cannot be used to
load the program (see the "EF" option below).

EF, (name [,account [,password])) [, .. .] specifies
that the named modules (either object or load)
from an element file of the designated account
are to be included in the load module. If no ac-
count number is specified, that of the current job
is assumed. If o password is associated with a
named module, it and the account number must be
included in this option. More than one module
may be specified in an EF option. An invalid
password will cause the job to be aborted. The
named elements will be loaded in the order in
which they are specified (if no TREE control com-
mand is used). The element file name must not be
greater than 10 characters.

UNSAT, (account |, password]) , (:Pn)] [, (account

[, pcssword]])&, (:Pn)][,...] specifies that the

library of the designated account is to be searched
for external definitions required for the load mod-
ule (i.e., corresponding to primary external refer-
ences). More than one account may be specified
in an UNSAT option. The library password (if any)
for each account must be included, although list-
ing of the password is suppressed. The total num~
berof accounts must not exceed eight. :Pn may be
used tospecify apublic library inthe :SYS account,
(See note 18 under overlay Loader Restrictions.)

NOSYSLIB specifies that the system library is not
to be searched. If NOSYSLIB is omitted, the sys-
tem library will be searched to satisfy any external
references that are unsatisfied after loading has
been accomplished from all other specified sources.

LMN,name[,password] specifies the name of a pre-
viously formed load module file which is to be
mapped only. If this option is used to denote
input, the only acceptable options are MAP, LIB,
UDEF, LDEF, RDEF, VALUE, and NAME (see
below).

Options affecting future access to the load module file

LMN,name[,password] specifies the name that is to
be given to the load module. The name may con-
sist of from 1 to 10 alphanumeric characters (ex-
cept for shared processor names which may only
have up to eight alphanumeric characters). If no
name is specified for a load module, it is consid=
ered temporary, even if PERM is specified. A pass-
word to be associated with the load module may
be specified.

90 17 64H-1(9/78)

If PERM and LIB are specified, the password
specified for the first library load module entered
in the library becomes the password of the library.
Any subsequent load modules to be added to the
account's library must specify the same password.
The library password may be changed only by de-
leting files :LIB and :DIC and then reentering load
modules with a new password.

PERM specifies that the load module is to be retained

LIB

on the disk as a permanent element file. If PERM
is omitted, and LIB (see below) is not specified, the
load module will be a temporary file. If a pre-
viously formed load module of the same name (see
LMN, above) exists, it will be replaced by the
newly formed one. If PERM and LIB are specified,
any external definitions or external references in
the load module will be added to the account's
library table of external definitions and the lood
module will be inserted into the account's ele-
ment file library (:LIB). If LIB is specified, the
load module must comprise a single control

section of uniform memory access type. (See
Note 18 under Overlay Loader Restrictions.)

specifies that the input is a library load module.
If LIB is specified in conjunction with the MAP op~
tion and PERM is omitted, the loader will print the
DEF and DSECT names only. (See note 18 under
Overlay Loader Restrictions.)

READ[,valueJ. .o specifies the account numbers of

those accounts that may read but not write the file.
The value ALL may be used to specify that any ac-
count may read but not write the file (e.g., READ,
ALL). The value NONE may be used to specify
that no other account may read the file. If no value
is specified, or is READ and EXECUTE is omitted,
ALL or NONE as specified in the user's authoriza-
tion record is assumed by default. The total
number of accounts explicitly specified in a READ
or WRITE specification must not exceed eight.

WRITE[,value]. .. specifies the account numbers of

those accounts that may have both read and write
access to the file. The values ALL and NONE may
be used, as with the READ option (see above); and,
if a conflict exists between READ and WRITE speci-
fications, those of the WRITE option take prece-
dence. NONE is assumed by default.

mm, dd, yy
EXPIRE,{ddd] specifies either an explicit
NEVER expiration date (mm, dd, yy),

the number of days to retain the file (ddd), or that
the file is never to expire (NEVER), If not speci-
fied, the default value as established in the au-
thorization record for the user will determine the
expiration date. Files will be automatically
purged from the public file system if they have
expired whenever secondary storage space passes

below a SYSGEN established threshold.

90 17 64H-1(9/78)

The value specified may not exceed the maximum
expiration period authorized for the user. If the
maximum expiration period is exceeded or un-
specified, the default expiration period authorized
for that user will be used.

EXECUTE, value[,value]. .. specifies the account
numbers of those accounts that may execute the
file. Up to eight account numbers may be spec-
ified. The value ALL may be used to specify that
any account maoy execute the file. The value
NONE may be used to specify that no other ac-
count may execute the file. In all of the above
cases, READ, NONE is implied in the absence of
any READ specification.

UNDER,name specifies the name of the only pro-
cessor that may access this file if the user does
not own the file, The name may be from one to
ten characters. The processor may be any shared
processor or any load module in the :5YS account.
If EXECUTE accounts are specified and UNDER is
not specified, the file is presumed to be a load
module and UNDER, FETCH is implied by default.
FETCH is the name of the monitor routine that
places a program into execution.

Options affecting the location of the program at execution

time

BIAS, value specifies (in hexadecimal) the load
bias, in word locations. If the value is not
a page boundary, the next lower page boundary
is used. If no bias is specified, the program will
be loaded at location X'A000'.

CORELIB specifies that when the load module is
brought into core for execution, virtual core is to
be allocated with the special shared processor
area held in reserve. This permits the association
of a core library at run time and linkage (via
M:LINK/M:LDTRC) to another load module that
is associated with a core library.

CSECI specifies that the load module is to be
formed with a protection type of 01, except
for the TCB and blank COMMON (which have
a code of 00) and except for any type 10 control
sections input in load module form (including li-
brary input).

MI10 specifies that each control or dummy section is
to be loaded at the next greater multiple of 10,.

M100 same as M10, above, except that loading
starts at the next greater multiple of 100, .

Load Processor

131

Options determining how overlay segments will be brought

into core at execution time

SEG specifies that the overlay structure is to be
set up for the segment loading mode. In this
mode, it is the user's responsibility to explicitly
load each segment from disk storage to core stor-
age (e.g., by means of the M:SEGLD procedure)
before it is referenced by the executing program.
This mode is faster in operation than the reference
mode (see below) but less convenient.

REF[,num] specifies that the overlay structure is to
be set up for the reference loading mode. In this
mode, the execution of any instruction referencing
an external definition in another segment on a
lower overlay level will cause that segment and
all its backward path (see "TREE" command) to be
loaded if not already in core (even if the refer-
ence is an unsatisfied conditional branch). The
external reference must not be in an instruction
that may be changed or replaced during program
execufion.

The decimal value "num", if present, specifies
the maximum number of interbranch references
within the program. If "num" is absent or zero,
the loader will reserve a total of 22 words per seg-
ment (four words are required for each interbranch
reference) in its reference loading table.

BREF[,num] specifies that the overlay structure is to
be set up for the branch referencing loading mode.
In this mode, any permissible branching reference
(in another segment of the program) to an external
definition within a given segment will cause that
segment and all its backward path to be loaded, if
it is not already in core storage. If a nonbranch
reference is made to an external definition within
a given segment, the BREF mode will assume that
segment to be in core. BREF should be used for all
overlaid FORTRAN or COBOL programs. A branch
reference causes register 0 to be changed.

The optional value "num" has the same meaning
as for the reference loading mode (see "REF",
above). If "num" is absent or zero, a total of

11 words per segment are reserved in the reference
loading table (two words per reference).

If neither REF, BREF, nor SEG is specified, SEG is assumed.
Only one may be specified.

Options concerning the loader=built Task Control Block

TSS,size specifies the maximum size, in hexadeci-
mal number of words, of the Temporary Storage
Stack (TSS) for the current job. If TSS is omitted,
the maximum size is set at X'40' words. The
greatest size that may be specified is limited to
available core storage and may not exceed 7FFF
words regardless of core size.

132 Load Processor

ERTABLE size specifies the size, in hexadecimal
number of words, of the library error table (see
the Mathematical Routines/Technical Manual,
90 09 06). The default is ten words.

ERSTACK size specifies the size, in hexadecimal
number of words, of the library error stack. The
default is ten words.

NOTCB specifies that no Task Control Block (TCB)
is to be created by the loader. This option should
not be used for FORTRAN jobs, since FORTRAN
requires a TCB.

Options concerning symbol tables

NI specifies that internal symbol tables are not to
be built. (They are normally built by default.)

G specifies that a global symbol table is to be
built for this load module. A global symbol table
contains all symbols which were declared extemal
(via a DEF) in one module to be referenced in an-
other (via a REF).

Additional options

ABS specifies that a relocation dictionary is not to
be formed for the load module.

REL specifies that a relocation dictionary is to be
formed for the load module, and the load module
will be treated as "semiabsolute" (i.e., executable
but capable of being relocated).

If neither ABS nor REL is specified, ABS is assumed.
Only one may be specified.

MAP[, NAME][,VALUE] specifies that a complete
listing of external references and definitions for
the load module is to be output on the LL device.
VALUE specifies that the DEFs (and control sec~
tions) within each segment are to be sorted by
value. NAME specifies that the DEFs within each
segment are to be sorted by name, and that the

control sections are to be sorted separately by
valve.

MAPONLY[,NAME](,VALUE] specifies that an ex-
isting load module is to be mapped. The output
is the same as that described for MAP above,

LDEF is used in conjunction with the MAP option
and requests that a listing be produced that in-

cludes all the used library DEFs for the load
module.

UDEF is used in conjunction with the MAP and
LDEF options and requests that a listing be pro-
duced. that includes all the library DEFs defined
in the load module.

90 17 64H-1(9/78)

RDEF specifies that all unused DEFs are to be re-
moved from the load module's REF/DEF stack, A
shortened REF/DEF stack is created for the load
module.

SL, value specifies the error severity level that will
be tolerated by the loader in forming a load mod-
ule. The value may range from O through F. The
default value is 4,

PAGE specifies that those portions of the load mod-
ule that will be loaded info core at execution time
are to be developed in page-size records. The
load module formed fs called a paged load module.
The load module is formed in extended memory
mode. More time is required to form the load
module, but since uninitialized pages do not get
written as part of the load module, programs
that have large areas of uninitialized data will
occupy fewer granules.

OSP specifies that any control sections of protec-
tion type 00 in an overlay segment should be
forced to the root of the load module. This option
is intended primarily for loading overlaid shared
processors written in FORTRAN and is only valid
for programs having one level of overlay structure.

DREF when used in conjunction with the LIB option,
causes all dummy section definitionsto be changed
to PREFs. This allows a library to be builtin which
all references to a particular named DSECT will
be linked to a single copy of that DSECT (e.g., a
FORTRAN BLOCK DATA subprogram). Such ini-
tialized dummy sections should be contained in
the only library load module loaded without the
DREF option.

PRIV, Fﬂ[,.]] [, M [, x] sets the privileged processor
flags for the load module. One to four flag letters
may be specified in any order. The flag letters
have the following meanings:

P - processor accounting. (Execution time
is to be tallied as processor rather than
user execution time in the accounting
record.)

J - special JIT access.
M - maximum memory protection.

X - execute M:SYS CALs.

These flags have no meaning unless the load mod-
ule resides in the :SYS account,

Overlay Loader Restrictions

1.

A load module acceptable for combination with ROMs

to form a new load module must be of one protection
type, relocatable, and not overlaid. DSECTs in such a
load module are allowed only if the entire load mod-
ule consists of one DSECT. Note that library load

modules are subject to these restrictions.

If a DEF in a library load module is >11 characters,
the corresponding entry in the :DIC file is forced to
11 characters. (The DEF entry in the library load mod-
vle itself is not changed.)

The REL option will be overridden and the load module
will be set ABS under any of the following conditions:

a. REF or BREF has been specified on the LOAD cord.

b. The program contains a relocatable field not
ending on a halfword boundary.

c. It contains an expression of mixed resolution,

d. The program is loaded in the extended memory
mode. The loader enters this mode when it does
not have enough core to build the core imoge of
each segment in its entirety.

Segments may communicate with each other via REFs
and DEFs only if they lie in the some path.

Load items of a DSECT are placed in the corresponding
DSECT of the root segment. That is, there must be a
DSECT by the same name in the root. The following
case is not permitted.

A DSECT 0
DATA 1,23

A DSECT 0
RES 3

Root

MODIFY control cards will be ignored if a library load
module is being formed or if extended memory mode is
entered.

If a low segment references a DEF name that is both in
a higher segment and a library, the library DEF will be

used.

A program containing a relative address preceded by a
minus sign (e.g., -BA(ADDR)) is not relocatable,

Load Processor 133

9. The load module name and input file names must be no
greater than 10 characters in length, The element file
names must-be no greater than 8 characters in length.

10. No two segments on the TREE control command may
begin with the same ROM name, since the first ROM
named in a segment becomes the name of that segment.

11. If a low segment common to two or more paths refer-
ences a DEF name that is in a higher segment of more
than one path, that name will be doubly defined. The
following case is not permitted:

DEF A

REF A
Root ‘ DEF A

12. If extended memory mode is entered, the load module
being built must have no more than 256 segments,

13. Programs loaded in branch reference loading mode
(see the BREF option) cannot contain BALs on register 0
because the loader uses register 0 in the BREF code
which it supplies.

14. A library dummy section containing multiple defined
locations must be loaded in a segment of an overlaid
program below any segment referencing those locations.

15. Library DCBs may not be referenced solely from overlay
segments,

16. DEFCOM output may not be included in a library load
module.

17. Under certain rare conditions, it is not possible for the
loader to accurately predict its core requirements by
the end of its first pass. This may result in situations
in which the loader will not automatically enter ex-
tended memory mode to produce a large load module,
resulting in the "Insufficient Physical Memory" error
message following the loader's allocation summary. The
use of the PAGE option fo force extended memory mode
will alleviate this situation.

18. LYNX and LEMUR allow the assignment of a library
name to the library that is being built. This is
accomplished in LEMUR with the LIBRARY command
and in LYNX with the (LIB, libname) option.
Omission of either of these will default to the
name :LIB for both library creation ond usage. A
library other than :LIB must be created by LYNX
or LEMUR. Usage of a library other than :LIB must
be invoked through LYNX (not LOAD).

Examples

/! LOAD

This example specifies that loading is to be accomplished
from the Bl device, Default conditions are assumed.

134 Load Processor

1(TSS, 3E8), (BIAS, 10000),(BI),(M100)

I(LMN, MOD), (PERM), (WRITE, NONE), (SL, 2);

ILOAD (EF, (FIL, ACCT123, PAS)), (UNSAT, (1235)), ;

This example specifies that

1. No load information is to be taken from the GO file,
since GO is not specified.

2, Element FIL, having the password PAS associated with
it, is to be loaded from the account ACCT123,

3. The library of account 1235 is to be searched for ex-
ternal definitions corresponding to unsatisfied primary
references (if any exist after loading has been accom-
plished from all other specified sources).

4. The name MOD is to be associated with the load
module.

5. The load module is to be a permanent file in the user's
account,

6. Assuming that the user was authorized with a default
read access of 'ALL', any account may read the load
module, but none may write into it,

7. Errors of severity level 2 are acceptable.

8. Up to 3EBj¢ words of temporary storage may be used.
9. A relocation bias of 1000014 is to be used.

10. No load map is to be output,

11. Relocatable object modules are to be loaded from the
BI device.

12, Each control section or dummy section is fo be loaded
starting at a multiple of 100}4.

TREE If a program is to be overlaid, a TREE control com=
mand must be the next control command following the as~
sociated OVERLAY (OLAY or LOAD) command. It must
specify the overlay structure of the load module to be formed
as a result of the preceding OVERLAY, OLAY, or LOAD
command, so that the logical segments of the program will
be loaded from secondary storage into core storage as re-
quired, It is the user's responsibility to plan the relation-
ship of these segments. If Bl relocatable object modules
(ROMs) are to be loaded from the C-device, they must be
placed after the LOAD, OVERLAY, or OLAY command

and must precede the TREE command.

90 17 64H-1(9/78)

- The relationship of the segments that comprise an overlay
program can be represented graphically by means of a tree
diagram, as in the example shown below. The horizontal
coordinate of the diagram denotes increasing core storage
(address) allocation, from left to right. The vertical coordi-
nate denotes overlays. The leftmost segment, or "root", is
that portion of the program that resides in core storage
through program execution. A "path" of an overlay con-
sists of those segments that may occupy core storage at the
same fime. The portion of a path that extends from the
start of the program (i.e., the root) fo a given segment is
termed the "backward path" of that segment.

The following example consists of four paths, any one of
which may be present in core storage at any given time.
Segment A, below, is the root of the program and is never
overlaid by another segment. Any path may be loaded into
core storage and overlaid as many times as required by the
program. All segments of the load module are saved in
disk storage and, when a segment that has been overlaid is
called again by the executing program, the original copy
is loaded from the disk. Therefore, any communication
between two overlay segments (e.g., D and E, below) must
be done in a part of the backward path common to both.

Example:

[£]

F |

The form of the TREE control command is

ITREE specification

where specification specifies the tree structure by use of
the symbology given below.

name specifies the name of an element file, The
name (1-10 characters) must not contain any special
delimiters (e.g., =) embedded in it.

- indicates that two named relocatable object mod-
ules are to be contiguous in core storage.

, indicates that two segments are to overlay one
another (i.e., begin at the same core storage
location).

() indicates a new (lower) level of overlay.

No two segments may begin with the same EF name, since
the name of the first EF becomes the name of the segment.

Example:
ITREE A - (C - (E,D),B - (G, F))

The above example is a symbolic representation of the over-
lay structure of the preceding graphic example.

PTREE A PTREE control command may be used to obtain
a TREE control command from the user's file (useful in jobs
involving COBOL programs).

The form of the PTREE control command is

IPTREE (name[,account[,password]))

where

name specifies the name of the file containing the
TREE control command.

account specifies the account containing the desig-~
nated file.

password specifies the password associated with the
designated file. If the file has an associated pass-
word, both it and the account number must be
given in the command.

INCL An INCL (include) control command may be used,
following a TREE or PTREE command, to include a named
library routine in a specified overlay segment (e.g., to
satisfy a secondary external reference).

Tﬁe form of the’ INCL control command is

1INCL,segment name [,name]. ..

where

segment specifies the name of the segment to which
the named library load module-or ROM is to be
appended. Each segment takes the name of the
first element file named in the segment specified
on the TREE card.

name specifies the name of a library load module
or ROM that is to be appended to the specified
segment,

Any number of library load modules and/or ROMs may be
specified in a single INCL command.

Load Processor 135

Example:

An example of the control card sequence used to specify
the structure of an overlay program is given below,

ITREE DEF - (GHI, JKL - ABC)

1 1234), (WRITE, NONE), (BI), (REF), (MAP)

I (1236), (1237)), (LMN, FILEX), (PERM), (READ, ;

TOVERLAY (EF, (ABC), (DEF), (GHI), (JKL)), (UNSAT,;

The above example specifies that

1. Elements ABC, DEF, GHI, and JKL are to be loaded

from the element file of the present account.

2. The libraries of accounts 1236 and 1237 are to be
searched if unsatisfied primary references exist after
loading has been accomplished for all other sources
specified.

3. The name FILEX is to be associated with the load mod-
vle being formed.

4, The load module is to be a permanent file in the user's
account,

5. Account 1234 may read the load module, but no ac-
count (other than that of the current job) may write
info it,

6. Relocatable object modules are to be loaded from the
BI input device and placed in the root segment,

7. The overlay structure is to be sef up for loading in the
reference mode.

8. A load map is to be output.

9. The system library is to be searched for external defi-
nitions corresponding to unsafisfied primary external
references (if any).

10. The overlay program is to consist of 3 segments, namely
DEF, GHI, and JKL.

RUN The RUN confrol command specifies that a desig-
nated program (or the program most recently formed by the
loader or Link) is to be executed, provided that the execu-
tion error severity level (see XSL option) has not been
exceeded by the program (i.e., the load module).

136 Load Processor

The form of the RUN control command is

IRUN [(opfion)][, (opﬁon)]. -

where the options are as follows:

LMN,name [,accounf[,password]] specifies the name
(account number and associated password, if any)
of the load module that is to be executed. The
name may consist of from 1 to 10 alphanumeric
characters (except for shared processor names which
may only have up to 8 characters). If this option
is omitted, the job's most recently formed load
module will be executed.

START,address specifies the location at which pro-
gram execution is to begin. The "address" may be
either an external definition (optionally followed
by a hexadecimal addend value) or a signed abso-~
lute hexadecimal address. This address overrides
that specified in the load module. The external
definition must not contain any embedded
addend value (e.g., plus (+) or minus (-)).

If no start address is specified in the RUN com-
mand or in the load module, the program is entered
at its lowest core location, which is register 0,
and causes a trap and the job to abort,

XSL,value specifies a value fo be placed in the
Task Control Block (TCB) for examination at exe-
cution time by the user or run~time library routines,
The default value is 8. XSL is used as the "cur-
rent abort severity" by the FORTRAN 1V run-time
routines,

-

MODIFY The MODIFY control command allows the
user to insert or modify words of a program in core storage.
Library load modules cannot be modified by this command.

The form of the MODIFY control command is

IMODIFY([,segment] loc,word[,word]. . .

where

segment specifies the name of an overlay segment,
This parameter is omitted if the load module is not
overlaid,

loc specifies a relative hexadecimal location (i.e.,
an external definition followed by an optional
hexadecimal addend value) or a signed positive
absolute hexadecimal address where the modifica-
tion is to be made, If an external definifion is
used, and the modification is to be made to an
overlay segment, the definition must not have been
referenced in a "lower" segment of the overlay
tree. This restriction applies only if the MODIFY
command appears after the OVERLAY, LOAD, or

o

OLAY control command. The total number of
locations to be modified cannot exceed 255.
The external definition must not contain any
embedded addend value (e.g., plus (+) or
minus (-)).

word specifies the word tobe inserted (right-justified)
at the designated location (see "loc", above). The
word must be expressed as an unsigned hexadeci-
mal (i.e., value + name). If it is desired to spec-
ify an address resolution for the external definition
(following the value), the name of the external
definition must be enclosed in parentheses (i.e.,
value + res (name)).

res Resolution
BA Byte

HA Halfword
WA Word

DA Doubleword

If no resolution is specified, word resolution is
assumed.

The MODIFY control command may be used either following
a LOAD command or a RUN command. If used following a
LOAD command, the inserted words become a permanent
part of the program; otherwise, they are a temporary "patch”
'sed only during the current execution of the program. If
the load module is overlaid and the patch is to be perma-

nent, the MODIFY command must follow the TREE command.

Example:

IMODIFY LOC1+A1,1234E

This example specifies that the hexadecimal value 1234E is
to be inserted at a location whose address is 161 words

higher than that of LOC1.

LIBRARIES
The purpose of a library is to collect frequently-used

routines in a form that expedites their inclusion into other
programs.

TYPES OF LIBRARIES

There are basically two types of libraries: public and user,
A public library can be viewed as code that resides in a
fixed part of memory for usage by many concurrent users;

it does not need to be loaded. Public library routines do
not become a permanent part of a user's program,

90 17 64H-1(9/78)

A user library is a keyed file residing in an account, The
file contains several modules, each of which is a named
collection of routines. A library module becomes a per-
manent part of a user's program; consequently each user
has a separate copy of a pertinent module. Collecting
these modules into a single file (rather than making each
module a separate file) minimizes the number of opens
and closes that the loader must perform to process several
such modules from one account,

PUBLIC LIBRARIES

The loader associates a public library with a program pro-
vided one of the following conditions exists:

1. The program contains an unsatisfied PREF to a
module in the public library.

2. The public library (:Pn) is named in the UNSAT
list on the LOAD card.

Either of these conditions causes the loader to allocate
the public library's context area at the beginning of the
user's virtual memory (normally X'A000').

To illustrate: the FORTRAN library subroutines reside in
public libraries :PO (FORTRAN library with FDP), :P1
(FORTRAN library without FDP), and :P4 (FORTRAN real-
time library). A FORTRAN program contains an unsatisfied
PREF to INITIAL or 9DBINIT which causes the loader to
associate :P1 or :PO, respectively. If the real-time version
of FORTRAN is required, :P4 is named in the UNSAT list.
(The real-time system account, e.g., :SYSRT, must also
be named.)

USER LIBRARIES

User libraries are formed by LYNX, Load, or LEMUR. The
creation of a user library is triggered by the presence of
the LIB option when LYNX or Load is used, or by the
BUILD command when LEMUR is used. The name of the
library is supplied by one of two methods: 1) by the
LIBRARY command in LEMUR, or 2) by the secondary
option libname, with LIB in LYNX. If neither of these
are used, or if LOAD is used, the default library

name is :LIB. If the named library does not exist in

the running account, the "skeleton" of the file is
created by opening to the library name.

STRUCTURE OF A USER LIBRARY

A user library can be viewed as having two sections: the
dictionary section and the library module section. -.

The first part of a library is the dictionary section, com-
prising all the DEF names defined in that library and the
names of the library modules in which those DEFs occur,
The key of a dictionary record is a DEF name prefixed by

a blank (X'40') to ensure its primary placement within the
file. The dictionary record is the TEXTC name of the mod-
ule within which the DEF occurs. (Table 18 shows the dic-
tionary format.) The DEF is limited to 15 characters; the
module name is limited to 10 characters,

Load Processor 137

The second part of the library contains the library modules,
in either library load module or ROM form (as shown in
Tables 19 and 20 respectively). The keys and records of a
library load module are identical to those of a nonlibrary
load module except that the keys HEAD and TREE are con-
catenated with the TEXT load module name to ensure the
uniqueness of the record.

USER LIBRARY MODULES

Library modules are in library load module form if built by
the overlay loader (via Load, LYNX, or LEMUR) or they
are left as ROMs if built by LEMUR with the ROM option
specified. The load module form offers the advantage that
the user's target program can be built faster since the loader
can process an input file in load module form much faster
than in ROM form. Library load modules must be non-
overlaid, relocatable, and of one protection type. The
ROM module form does not have a restriction on protection
type; the user may therefore include any ROM in a library
without regard to protection type.

The loader creates library load modules by opening the
library with "file name = LMN name" (where LMN name
is the name of the library load module) and "synonym =
library name". This synonymity allows inclusion of a
library load module via explicit mention of its name in the

element file list, rather than implicit inclusion via an un-
satisfied reference.

When LEMUR is used to create a library ROM module, the
nome of the ROM module is supplied by the name field of
the BUILD command. ROM modules are not synonymous to
the library name,

Assuming the fibrary does not already contain a module with
the same name as the module being created, the loader or
LEMUR writes a dictionary record for each DEF encountered
in the new module. Depending on library type, this in-
volves a scan of the REF/DEF stack (for load modules) or the
ROM codes (for ROM modules). The library module re-
cords are then written,

If a module with the same name as the new one already
exists within the library, the loader or LEMUR deletes all
old dictionary entries containing DEFs that occurred in the
old version. This is done by scanning the old version's
REF/DEF stack (loader) or dictionary records (LEMUR). The
new version (dictionary and module records) is then
written,

(Determination of whether a module exists within o library
is made by attempting to read a module record from the
library using the name of the new module.)

Table 18. Library Dictionary Format

Key

Record Contents

X'40' {fext of DEF}

textc name of library module

Table 19. Library Load Module Format

Key Record Contents
C'HEAD' Basic information
C'TREE’ Tree Table
LMN name ") 540 REF /DEF stack
concatenated o X
with X'01 Expression stack
X'On' 00, 01, or 10 Relocation Dictionary
X'0(n + 1) 00, 01, or 10 Control Sections
(same protection type as re-
location dictionary)
Table 20. Library ROM Module Format
Key Record
X'0000' library ROM module records
module name X'0001'
from LEMUR
BUILD
concatenated
with .
X 'FFFF'

138 Load Processor

Af a pre-existing module with a different name contains a
DEF identical to a DEF in the new module being added or
replaced, the dictionary record corresponding to this DEF
is replaced by a record pointing to the new module. Thus,
there is only one dictionary record per DEF, and it contains
the name of the library module most recently entered that
defines the corresponding DEF,

Note: Individual library modules cannot be accessed by
PCL, since a library module is really a logically
related set of records within a file. Functions
such as copying and deleting library modules must
be performed by LEMUR, not PCL.

USER LIBRARY REFEKENCE PROCESSING

The loader associates a library module with the program the
loader is processing if that module contains a DEF that
satisfies an undefined PREF in the program. To accomplish
this, the loader performs a library search by doing a keyed
READ to the dictionary, using the name of an unsatisfied
PREF os the key; a successful READ returns the name of the
library module defining the PREF. The loader then reads
the library module records into core and merges them with
the program.

For an overlay program, the loader conducts a library
search each time it finishes processing the external refer-
ences in an entire segment. The segments are processed in
the order specified in the following illustration:

e
Seg 3
©)
Seg 1
® ®
Seg O (root) Seg 4
®

Seg 2

Note that the loader aftempts to satisfy all the PREFs in a
lower segment before processing the DEFs to a higher seg~
ment, so that if a low segment has a PREF whose correspond-
ing DEF is located in both a higher segment and one of the
libraries specified in the UNSAT list, the library DEF will
be used. (Otherwise, the high segment and all its back-
ward path would be brought into core each time the lower
segment needed that DEF.)

DIAGNOSTIC MESSAGES

Diagnostic (error) messages are output on the LL device.
Table 21 lists the messages that are produced by the monitor

when bringing o program into core storage for execution
(running a load module).

Table 21, Monitor Error Messages

Message Description

ABS CANNOT REL The monitor cannot relocate pro-

gram because it is absolute.

STACK OVERFLOW

1O ERROR or 10 ABN | An 1/O error or abnormal con-
dition has occurred.

NO LOAD MODULE | The load module named is not
available.

The program will not fit in core.

LOAD DIAGNOSTIC MESSAGES

The Load processor uses a keyed file provided by the Error
Message File Write program (ERRMWR) for its error message
records. Upon finding a load error, the Load processor
obtains a message record from an ERRMSG file using an
error-key.

The message record, the error~key, and additional informa-
tion are printed according to the following format:

Line 1 error key message record

Line 2 INPUT FILE SEQ NO. CODE/SIZE/SL

Line 3 file name number var. data

where

file name specifies the name of the last input file
processed by the loader.

number specifies the hexadecimal sequence number
of the last binary record read.

var, data specifies variable information, the
meaning of which depends on the particular error
that occurred. When the contents of the variable
data field is SR3, the message is preceded by the
monitor error/abnormal code and its meaning.

The message records, their corresponding error-keys, and
the significance of the CODE/SIZE/SL field are shown in
Table 22,

If for any reason access to o message record is denied

the loader, the following message is printed.
xxxxxx BAD ERROR MESSAGE FILE

where xxxxxx is a hexadecimal number for the key.

Load Processor 139

Table 22. Load Error Messages

Key Message Description CODE/SIZE/SL Field
020001 UNEXPECTED EOF An end-of~file was encountered before the end SR3
of an object module was reached (incomplete
object module).
020002 | ILLEGAL RECORD 1.D. The type of record read was neither X'3C' nor Record I.D.
X'1C' (object module) nor X'81', X'82', or
X'83' (load module).
020003 | SEQUENCE ERROR The cards of an object module were out of (None)
sequence.
020004 | ILLEGAL RECORD SIZE The number of bytes in an object module card Record Size
was less than five or greater than X'6C".
020005 | CHECKSUM ERROR A bit (or bits) was dropped in punching or (None)
reading the object module.
020006 | ABNORMAL 1/O An abnormal return was encountered while SR3
reading a library load module or ROM.
020007 | CANNOT OPEN E.F. An element file could not be opened. (It does SR3
not exist, it has a password, efc.)
020008 | STACK OVERFLOW Insufficient memory in which to load. If no SR3
map has been partially printed, the module is
too large. If a map has been partially printed,
some unsatisfied primary references have caused
the stack to grow to excessive size, (See mes-
sages with keys 020015 through 020023,)
020009 | BIAS TOO LARGE At the given bias, the load module will exceed Bias
131K of memory.
02000A | ILL. ROM LANGUAGE The object language in a relocatable object Object module control
module was not translatable (assembler or byte
compiler error).,
02000B | BAD START ADDRESS A start address was given which is either not on a Start address
word boundary or is not within the load module.
02000C | UNEXPECTED ROM END Module end was given on some card of the object (None)
module other than the last card (assembler or
compiler error),
02000D | REPEAT LOAD IS ZERO An assembler or compiler generated a repeat load (None)
item with a0 count (assembier or compiler error).
02000E | IMPROPER BOUND A'short- or long-relocatable item was not on a Byte address of load
word boundary. relocatable item
02000F | ILLEGAL ORG An origin was generated having no resolution or SR4 (for debugging
was not within the load module (assembler or purposes)
compiler error or violation of loader DSECT
restrictions).

140 Load Processor

Table 22. Load Error Messages (cont,)

Key Message Description CODE/SIZE/SL Field
020010 | BAD I/O RETURN FROM The load module file could not be opened. SR3
M:LM DCB
020011 SEV. LEV. EXCEEDED The severity level specified in the LOAD card was | Computed severity
less than that encountered in some object module level
or that generated by the Loader (a DDEF yields a
severity level of 4, a PREF yields 7).
020012 | ILL. LIB. LOAD MOD. (PERM) and (LIB) were specified and the load (None)
module had one of the following:
1. More than one protection type.
2. No relocation dictionary (ABS was specified
or forced by the Loader due to nonstandard
relocatable fields).
3. More than one segment.
020013 NO ROOM TO ROUND DCBs | The DCBs and DCB Name Table exceed High address of DCBs
TO PAGE BOUNDARIES. 1024 words,
TRY FORCING XMEM,
020014 | ILL. DSECT Two dummy sections having the same name but First 4 characters of
different protection types were encountered. DSECT name
020015 | ROOT SEGMENT TOQO Number of words
LARGE TO LOAD exceeding available
core
020016 | TOO MANY CORE Only one core library (named :PO, :P1, :P2, (None)
LIBRARIES etc.) is permitted.
020017 | CANNOT ENTER XMEM, Number of words that
STACKS TOO LARGE stacks exceed avail-
able core
020018 | NOT ENOUGH ROOM TO Number of words ex-
CONCATENATE XMEM ceeding available
PAGES core
020019 | NO ROOM TO READ LIBRARY Size of library
CORE IMAGE Imn's core image
0200TA | NO ROOM TO READ LIBRARY Size of relocation
RELOCATION DICTIONARY dictionary
020018 | NO ROOM FOR NEW (None)
EXPRESSION
02001C | NO ROOM TO BUILD DCB (None)

TABLE. TRY FORCING XMEM.

Load Processor

141

Table 22. Load Error Messages (cont.)

Key Message Description CODE/SIZE/SL Field
020010 | NO ROOM TO BUILD DCB Size of DCB table
02001E LIBRARY LOAD MODULE REF/ (None)
DEF STACK TOO LARGE TO
UPDATE
02001F INSUFFICIENT PHYSICAL See "Stack Overflow" description RO (for debugging)
MEMORY (Key 020008).
020020 | BAD ASSIGN/MERGE SR3
RECORD
020021 NO ROOM TO ADD LIBRARY Top of REF/DEF Stack
LOAD MODULE TO ROM
TABLE
020022 | NO ROOM TO READ LIBRARY Size of library Imn's
REF/DEF STACK REF/DEF Stack
020023 NO ROOM TO UPDATE REF/DEF Stack size of
LIBRARY old version of this Imn,
020024 | INVALID KEY SUPPLIED FOR | Cannot update :DIC for this library load Key size
DELETE RECORD ON M:DIC module,
020025 | 1O ERROR ON M:DIC IN Cannot update :DIC for this library load SR3
WRITESEG module.
020026 | ILLEGAL LIBRARY LOAD The name is > 12 characters. Number of characters
MODULE NAME in name
020028 | INVALID DECLARATION An expression in a relocatable object module The bad declaration
NUMBER REFERENCE (BAD contains a reference to an unassigned declara- number
ROM) tion name number (assembler or compiler error),
020029 | INVALID KEY SUPPLIED A DEF name in a library load module was not in Key size
FOR WRITE RECORD ON the legal range of 1-63 characters.
M:DIC
02002A | ILLEGAL LOADER TRAP Loader error. When such errors occur, the loader Register 0
takes memory snapshots for use in identifying the
error,
020028 | ABNORMAL I/O IN The :LIB file could not be opened. SR3
WRITELIB .
02002C | CANNOT FIND REF/DEF The loader encountered @ new REF/DEF name Byte count and first
NAME IN STACK during its second pass, 3 characters of name
02002D | LIB. LOAD MODULE TOO Extended memory mode has been entered (because (None)
BIG — CANNOT USE the core image is too large to be formed in
EXTENDED MEMORY one piece) and the load module has been forced
ABS (illegal for library Imn's),
142 Load Processor

it

Table 22. Load Error Messages (cont.)

Key Message Description CODE/SIZE/SL Field
02002F | ABNORMAL 1/O READING An abnormal return was encountered while reading | SR3
LIB LMN a library load module during the loader's second
pass.
020030 PAGED LMN MUST NOT Number of segments
HAVE MORE THAN specified
256 SEGMENTS
020031 LMN'S SIZE TOO BIG The size (in doublewords) of a protection type of (None)
the load module does not fit in the halfword al-
lowed for it in the tree.
020032 [THAT'S NOT A (MAPPABLE) Specified file has no '"HEAD' or 'TREE' record. Byte count and first
LOAD MODULE three characters of name
020033 BAD ENTRY IN LIBRARY The loader detected a malformed library (None)
REF/DEF STACK REF/DEF stack. (The user may have violated
rules for library load modules.)
020034 | BAL TO AN OVERLAY ON BAL, O to an overlay segment is not allowed (None)
REGISTER ZERO DETECTED in BREF mode.
WHILE IN BREF MODE

LYNX PROCESSOR

LYNX is a load processor that is available in both the
online and batch modes. LYNX has the capabilities

of the overlay loader, load, and also provides the same
control over internal and global symbol table construction
which is available in the linking loader, Link. LYNX is
speed-competitive with the Link loader, and in many cases
will run faster than Link. In addition, on-line load maps
are formatted taking into account the platen width of

the terminal,

LYNX may be viewed as a preprocessor for the Load loader.
After it analyzes the user's commands, it constructs a table
of loader control information which it then passes to the
overlay loader, 1t is the Load loader which actually per=
forms the loading process. Therefore LYNX is a load
module as shown in Table 17,

The batch made LYNX processor recognizes two com-
mands, LYNX and :TREE. Since the LYNX command
is a control command which calls the LYNX processor,
it must be preceded by a ! character. These two com-
mands will be described in detail later,

COMMAND CONTINUATION

The presence of a semicolon as the last character on an
input line indicates that the command is to be continued.
LYNX will perform another read of the SI device, prompt-
ing the user with a > character if Sl is assigned to an on-
line terminal.

90 17 64H-1(9/78)

COMMAND FILE INPUT

In order to have LYNX read its commands from a file, the
following command should be given:

ILYNX fid

where fid identifies the file.

LYNX will examine the indicated file to determine whether
or not it is a ROM. If the file is not a ROM, it will be
treated as input commands for LYNX. If the file is a ROM,
it will be loaded, creating (as in the case of Link) o tem-
porary load module file which can then be run using the

ISTART $
command in the on-line mode, or the

IRUN

command in the batch mode.

LYNX COMMANDS

LYNX The LYNX command has a syntax which is gener-
ally compatible with that of the LINK command. This per-
mits a LINK command to be run under the LYNX processor
by simply changing the command name from LINK to LYNX.
However, there are some restrictions. These are listedbelow:

1. ROMnames may not be enclosed in parenthesis to merge
their internal symbol tables. If the construction of in-
ternal symbol tables is specified (via the I option), one
table will be built for each ROM,

LYNX Processor 143

2. The D and ND options concerning the displaying of
undefined symbols will not be meaningful. Undefined
symbols will always be displayed.

3. The C and NC options concerning the displaying of
conflicting internal symbols will not be meaningful since
internal symbol tables cannot be merged. Conflicting
(doubly defined) external symbols will always be
displayed.

4. The options Ji, Pi, FDP, and NP options for associating
or not associating public libraries will not be necessary.
The libraries will automatically be associated in the
case of PO and P1. For JO, J1, and J2, the load mod-
ules :J0, :J1, and :J2 from :SYS can now be specified
as element files. However, the presence of either JO,
J1, or J2 as an option will produce the desired results
(i.e., loading of the appropriate library module with
the other element files). Note that if a load module
using any of these libraries is overlaid, the appropriate
module name(s) must appear on the :TREE command.

The general format of the LYNX command is:

LLYNX eff,ef]. . '[8\'7ER lmn] [opﬁons]—l

l-[;ilibname] {.[libacct] [.password]]]. . .

where

ef may be the file identification (fid) of a ROM, a
library load module, a DEFCOM=-build load mod-
ule, or a SYSGEN-built load module, or simply a
dollar sign ($).

Imn (load module name) specifies where the load
module is to be placed and may be a file identifica-
tion (fid) or dollar sign. If Imn is omitted, the re-
sulting load module is placed in a special file and is
availablesfor subsequent execution via the RUN
command.,

libname specifies the name of a library. :LIB.:SYS is
the default library if no library name, account, or
possword is specified and if the NL option is not spec-
ified, If libacct is specified, but libname is not
specified, then the default libname is :LIB.

libacct specifies the account from which the library
is to be obtained. If libname is specified but no
libacct is specified, the default account is :SYS.

password specifies the password for the library if one
exists,
options specify loading gnd [inking options. These

options are described below. Most options may be

144 LYNX Processor

specified anywhere in the command except between
a preposition and its object. For convenience they
are shown immediately following the command verb.
All options must be specified within parentheses.

As with the LINK command, the options may actually
appear anywhere in the command string and must be pre-
ceded by a left parenthesis or enclosed within parentheses.
The options are described below.

Options that determine input to the loader

BI specifies that the Blinput device is to be used to
read unspecified relocatable object modules.
Object modules will be loaded from the Bl device
until either two end-of-data codes (05)or one end-
of-file code (06) is encountered.

L specifies that the system library is to be searched.
(L is assumed by default if NL is not specified.)

NL specifies that the system library is not to be
searched.

Jo specifies that :JO (which contains all JIT defini-
tions) is to be included as an element file.

N specifies that the monitor's REF/DEF stack is to
be included as an element file.

Options affecting future access to the load module file

T specifies that the named load module is to be
created as a temporary file,

LIB [,libname] specifies that a library load module is to
be built (provided that the T option is not specified).
If LIB is specified, any external definjtions or external
references in the load module will be added to the
library's table of external definitions and the load
module will be inserted into the account's element
file library (libname). If LIB is specified, the load
module must consist of a single control section of
uniform memory access type.

NDIC prevents modification of the library's dictionary
tables. This option may only be used in conjunction
with the LIB option.

90 17 64H-1(9/78)

RD[, value]. .. specifies the account numbers of Cl specifies that the load module is to be formed
those accounts that may read but not write the file. with a protection type of 01, except for the TCB
The value ALL may be used to specify that any’ and blank COMMON (which have a code of 00)
account may read but not write the file (e.g., and except for any type 10 control sections input

RD,ALL). The value NONE may be used to in load module form.
specify that no other account may read the file.
If no value is specified, or if RD is omitted, ALL MI10 specifies that each control or dummy section is

or NONE as specified in the user's authorization

to be loaded at the next greater multiple of 10;.
record is assumed by default. The total number of

accounts explicitly specifiedin a RD specification M100 specifies that each control or dummy section
may not exceed eight, is to be loaded at the next greater multiple of
1004 4.
16

WR[, value]. .. specifies the account numbers of
those accounts that may have both read and write
access to the file. The values ALL and NONE
may be used as described for the RD option above, TSS, size specifies (in hexadecimal) the maximum

Options concerning the loader-built Task Control Block

except that NONE is assumed by default. If a
conflict exists between RD and WR specifications,
those of the WR option take precedence. The total
number of accounts explicitly specified in a WR

size, in words, of the load module's Temporary

Storage Stack. If TSS is omitted, the maximum
size is set at X'40' words. The greatest size that
may be specified is limited to available core stor-

age and may not exceed 7FFF words regardless of
core size,

specification may not exceed eight.

EX, value [, value]. .. specifies the account num- ERT, size
bers of those accounts that may execute the file.
Up to eight account numbers may be specified.
The value ALL may be used to specify that any
account may execute the file. The value NONE ERS, size
may be used to specify that no other account may
execute the file. In all of the above cases,
RD,NONE is implied in the absence of any RD
specification. NTCB

specifies the size, in hexadecimal number
of words, of the library error table. The default is
ten words,

specifies the size, in hexadecimal number
of words, of the library error stack. The default is
ten words.

specifies that no Task Control Block is to be
created by the loader.

mm,dd,yy
EXP, {ddd g specifies either an explicit
NEVER expiration date (mm,dd,yy),
a life in days (ddd), or that the file is never to
expire (NEVER). The default value is that in the I specifies that an internal symbol table is to be
user's authorization record. The value specified built for each ROM which was assembled or com-
may not exceed the maximum expiration period piled to contain internal symbol tables.
authorized for the user. If the maximum expira-

Options concerning symbol tables

tion period is exceeded or if EXP is not specified, _ NI specifies that internal symbol tables are not to
the default expiration period authorized for the be built. NI is the default if neither I nor NI is
user will be used. v specified.

G specifies thata global symbol table is to be built
for this load module. A global symbol table con-
tains all symbols which were declared external

time (via a DEF) in one module to be referenced in an=

other (via a REF). This is the default if neither

Options affecting the location of the program at execution

LB, value specifies the load bias (as a hexadecimal G nor NG is specified.
word location). Ifthe valueis not a page boundary,
the next lower page boundary is used. If no bias NG specifies that a global symbol table is not to
is specified, the program will be loaded ot loca- be built for this load module.
tion X'A000'.

CL specifies that when the load module is brought
into core for execution, virtual core is to be allo-~
cated with the special shared processor area held
in reserve. This permits the association of a core
library at run time and linkage (via M:LINK/ {OS } specifies that the overlay structure is to be set
M:LDTRC) to another load module that is associated SEGS up for the segment loading mode. In this mode, it
with a core library. is the user's responsibility to explicitly load each

Options determining how overlay segments will be brought
into core at execution time

LYNX Processor 145

segment from disk storage to core storage (e.g.,
by means of the M:SEGLD procedure) before it is
referenced by the executing program. This mode
is faster in operation than the reference mode (see
below) but less convenient.

{OR } [,num] specifies that the overlay structure is'to

SEGS be set up for the reference loading mode. In this
mode, the execution of any instruction referencing
an external definition in another segment on a
lower overlay level will cause that segment and
all its backward path (see the :TREE command) to
be loaded if not already in core (even if the refer-
ence is an unsatisfied conditional branch). The
external reference must not be in an instruction
that may be changed or replaced during program
execution.

The decimal value "num", if present, specifies
the maximum number of interbranch references
within the program, If "num" is absent or zero,
the loader will reservea total of 22 words per seg-
ment (four words are required for each interbranch
reference) in its reference loading table.

jOB }[,num] specifies that the overlay structure is to

{BREF
In this mode, any permissible branching reference
(in another segment of the program) to an extemal
definition within a given segment will cause that
segment and all its backward path to be loaded, if
it is not already in core storage. If a nonbranch
reference is made to an external definition within
a given segment, the OB mode will assume that
segment to be in core. OB should be used for all
overlaid FORTRAN or COBOL programs. A
branch reference causes register 0 to be changed.

The optional value "num" has the same meaning
as for the reference loading mode (see OR, above).
If "num" is absent or zero, a total of 11 words per

segment are reserved in the reference loading table

(two words per reference).

One of these options must be specified if the load module
being formed is to be overlaid. The presence ofone of these
options in the command string will cause LYNX to read the
SI device one more time following the end of the LYNX
command string, looking for a :TREE command.

Additional options

A specifies that no relocation dictionary is to be
formed for the load module (i.e., the load module
is absolute).

R specifies that a relocation dictionary is to be

formed for the load module, and the load module
will be treated as semiabsolute (i.e., executable
but capable of being relocated). If neither Anor R
is specified, A is assumed.

146 LYNX Processor

be set up for the branch referencing loading mode.

M[N] specifies that a load map is to be output on
the LL device and that the DEFs within each seg-
ment are to be sorted by name,

MV specifies that a load map is to be output on the
LL device and that the DEFs within each segment
are to be sorted by value.

specifies that a load map is to be output on
the LL device and that the DEFs within each seg-
ment are to be sorted by name and value.

vt

NM specifies that no load map is to be output. NM
is assumed if neither MN, MV, nor MNV is
specified.

MO specifies that only a map of an existing load
module is to be produced. The map is to be sorted
by name,

MOV specifies that only a map of an existing load
module is to be produced. The map is to be sorted

by value.
{MOVN}
MONYV specifies that only a map of an existing

load module is to be produced. The map is to be
sorted by name and valve.

LDEF is used in conjunction with the M or MO op-
tion and requests that a listing be produced that
includes all the used library DEFs for the load
module.

UDEF is used in conjunction with the M or MO
option and the LDEF option and requests that a
listing be produced that includes all the library
DEFs defined in the load module.

RDEF specifies that all unused DEFs are to be re-
moved from the load module's REF/DEF stack. A
shortened REF/DEF stack is created for the load
module. :

SS specifies that a size summary for each segment
detailing the memory allocation for each protec-
tion type is to be output. SS is assumed if any
type of load map is requested.

SL, value specifies the error severity level that will
be tolerated by the loader in forming a load mod-
ule. The value may range from O to F. The de~
fault is 4.

PA specifies that those portions of the load module
that will be loaded into core at execution time
are to be developed in page-size records. The
load module formed is called a paged load module.
The .load module is formed in extended memory
mode. More time is required to form the load

90 17 64H-1(9/78)

module, but since uninitialized pages do not get

written as part of the load module, programs that
have large areas of uninitialized data will occupy
fewer granules.

NBS specifies that the loader is not to use a sort table
to speed up stack searches. The core required for this
table is then available for creating very large core
images (>40K) without using extended memory mode.

| NBS and MNV cannot both be specified,

osp specifies that any control sections of protec~
tion type 00 in an overlay segment should be
forced to the root of the load module. This option
is intended primarily for loading overlaid shared
processors written in FORTRAN and is only valid
for programs havingone level of overlay structure.

DREF when used in conjunction with the LIB option,
causes all dummy section definitions to be changed
to PREFs. Thisallows alibrary to be builtin which
all references to a particular named DESECT will be
linked to a single copy of that DSECT (e.g., a
FORTRAN BLOCK DATA subprogram). Such ini-
tialized dummy sections should be contained in
the only library load module loaded without the
DREF option.

PRIV[, P] LALLM x] sets the privileged processor
flags for the load module. One to four flag letters
may be specified in any order. The flag letters
have the following meanings:

P =~ processor accounting. (Execution time
is to be tallied as processor rather than
user execution time in the accounting
record.)

J - special JIT access.
M - maximum memory allocation.

X - execute MSYS CAlLs.

These flags have no meaning unless the load module
resides in the :SYS account.

LDR, name [.[account] [.password]] directs LYNX
to be a preprocessor for a loader other than
LOADER. :SYS. The default account is :SYS. The
function performed by this option can also be per-
formed by assigning the F:LOADER DCB to the desired
loader.

NASN instructs the loader to ignore any F:number
DCB assignments specified via ISET or |ASSIGN
commands when constructing DCBs for the load
module being built; i.e., any such DCBs will not
be included in the load module if NASN is
specified.

MAPPING EXISTING LOAD MODULES

In order to produce a map of an existing load module, the
format of the LYNX command must be:

90 17 64H~1(9/78)

(MO)
ILYNX fid [(MOV)]
(MONV)

where fidspecifies the file identification of the load module.
The LDEF and UDEF options are also valid in this context.
All other options will be ignored.

ATREE If a program is to be overlaid, a :TREE command

must be the next command following LYNX command. It
must specify the overlay structure of the load module to be

formed, so that the logical segments of the program will be
loaded from secondary storage into core storage as required.
Itis the user'sresponsibility to plan the relationshipof these
segments. If Bl relocatable object modules (ROMs) are to

be loaded from the C~device, they must be placed after the
LYNX command and must precede the :TREE command.

The relationship of the segments that comprise an overlay
program can be represented graphically by means of a tree
diagram, as in the example shown below. The horizontal
coordinate of the diagram denotes increasing core storage
(address) allocation, from left to right. The vertical coordi-
nate denotes overlays. The leftmost segment, or "root", is
that portion of the program that resides in core storage
through program execution. A "path" of an overlay con-
sists of those segments that may occupy core storage at the
same time. The portion of a path that extends fom the
start of the program (i.e., the root) to a given segment is
termed the "backward path" of that segment.

The following example consists of four paths, any one of
which may be present in core storage at any given time.
Segment A, below, is the root of the program and is never
overlaid by another segment. Any path may be loaded into
core storage and overlaid as many times as required by the
program. All segments of the load module are saved in
disk storage and, when a segment that has been overlaid is
called again by the executing program, the original copy
is loaded from the disk. Therefore, any communication
between two overlay segments (e.g., D and E, below) must
be done in a part of the backward path common to both.

Example:

LYNX Processor 147

The form of the :TREE command is
:TREE specification

where specification specifies the tree structure by use of
the symbology given below.

name specifies the name of an element file (EF).
The name (1-10 characters) must not contain any

special delimiters (e.g., -) embedded in it.

- indicates that two named relocatable object mod-
ules are to be contiguous in core storage.

indicates that two segments are to overlay one
another (i.e., begin at the same core storage
location).

() indicates a new (lower) level of overlay.

No two segments may begin with the same EF name, since
the name of the first EF becomes the name of the segment.

Example:
:TREE A - (C - (E, D), B - (G,F))

The above example is a symbolic representation of the over-
lay structure of the preceding graphic example.

LYNX EXAMPLE
The following is an on-line example of LYNX usage.
JLYNX X, Y, Z OVER LMS(M)(I1)(G);
>(0s); .ACCNT

>:TREE X~(Y, Z)

This example specifies that an overlaid load module 'LMS'
is to be produced from element files X, Y, and Z in the
running account. A map sorted by name is desired, internal
and global symbol tables are to be built, and overlaying
will be done explicitly within the program via MSEGLD
CALs. The default library in ACCNT1 will be searched to -
satisfy any primary external references (PREFs). The load
module will have the tree structure:

[v]
|z]

The load module can be executed by one of the following
two commands in the on~line mode:

ISTART LM5

ILMS5,

It can be executed by the following command in the batch
mode:

IRUN (LMN, LM5)

ERROR MESSAGES

Error messages are output on the terminal in the on-line
mode and on the LL device in the batch mode. They are
preceded by a portion of the command line, ending at the
point of error detection. The LYNX error messages are
listed in Table 23.

Table 23. LYNX Error Messages

Message

Description

*** BAD: TREE COMMAND

LYNX is completely unable to make sense of the :TREE command,
or the :TREE command is missing but an overlay option was
specified on the LYNX command.

*** CONFLICTING OPTIONS

The user specified two conflicting options (e.g., |, Nl)or the
same option twice,

*** ELEMENT FILES IN E.F. LIST NOT IN TREE

The user specified element files in the LYNX command which
did not appear anywhere in the :TREE command.

*** ELEMENT FILE IN TREE NOT IN E.F, LIST

An element file appeared in the :TREE command which was not
specified in the element file list.

*** FILE NAME IS TOO LONG

The file name must be no more than 10 characters in length.

148 LYNX Processor

Table 23. LYNX Error Messages (cont,)

Message

Description

¥+ ILLEGAL DECIMAL NUMBER

An illegal decimal digit was detected in one of the LYNX
options,

*** ILLEGAL HEXADECIMAL NUMBER

An illegal hexadecimal digit was detected in one of the LYNX
options.

**+ INSUFFICIENT MEMORY AVAILABLE

The user's core allocation is so low that LYNX is unable to
obtain the memory it requires for constructing tables.

*** NOT BACK TO LEVEL 0 OF TREE

At the conclusion of scanning the :TREE command, it was
apparent that the overlay structure has not been completely
defined. The user probably omitted a closing parenthesis
somewhere, '

*** NUMBER TOO LARGE

The numerical value specified on an option is beyond the legal
range. :

**% 1 ON' ILLEGAL -- LOAD MODULE EXISTS

The user attempted to use the ON preposition to build a load
module which already exists.

*** ROOT WOULD BE OVERLAID-BAD TREE
STRUCTURE

The user misplaced a parenthesis or misused the :TREE
specification,

*** SYNTAX ERROR

The user made a syntactical error in the LYNX command about
which LYNX is unable to be more specific.

*** TOO MANY ACCESS ACCOUNTS

More than eight read accounts, write accounts, execute
accounts, or libraries have been specified,

*** UNABLE TO COPY BI INPUT

An error other than end-of-data or end-of-file has occurred
whilé reading M:Bl for the Bl option.

*** UNBALANCED PARENTHESIS - BAD TREE
STRUCTURE

The user probably supplied an unexpected or superfluous closing
parenthesis.

*xx UNEXPECTED END OF COMMAND

A closing parenthesis is absent, or an expected final field in
the LYNX command is missing.

*** JNRECOGNIZED OPTION

The user specified an option which LYNX is unable to identify.

90 17 64H-1(9/78)

LYNX Processor 149

LINK PROCESSOR

The Link Processor operates in the batch mode or in the
on-line mode. It constructs a single entity called a load
module (LM) which is an executable program formed from
relocatable object modules (ROMs). Link also provides the
necessary data space and program linkages for the associa-
tion of public libraries. Program execution is initiated by
the RUN command described below under "Control Com~
mands". (Note: The batch-mode RUN command has a dif-
ferent format than the on-line RUN command used to initiate
execution. The batch mode RUN command is described in
the Load processor description. However, it may be used
to execute a load module formed by either the Link or Load
processors. The accounting summary generated at the end
of each job is described at the end of this chapter.

As previously mentioned, Link is a one-pass linking loader
that makes full use of mapping hardware. It is not an over-
lay loader. The Load processor must be used if an overlay
loader is needed.

The access protection types provided by Sigma 6, 7, or 9
hardware are

00 read, write, and execute access permitted
(data).

o1 read and execute access permitted (pure
procedure),

02 read access permitted (static data).

03 no read or write permitted (no access).

The final program resulting from o linking operation has
three protection types, one for data, one for pure procedure,
and one for DCBs. Static data and nonaccess information,
if specified, are loaded with the pure procedure.

LINK CONTROL COMMAND

LINK The loader that is invoked by a LINK control
command processes relocatable object modules. The resulting
load module is a keyed file that is placed in the user's
account, Execution of the load module is triggered by the
RUN control command (described below) which brings the
load module into core storage and transfers control to it.
(A load module may also be called internally by an exe-
cuting program via the M:LINK procedure.)

The LINK control command has the form

ON

!LlNK[opHons]rom [,rom]... [OVER lmn] [;Iid—_I
|—[,Iid]. ».] [UNDER FDP]

where
rom specifies a relocatable object module and may

be either a file identification (fid) or a dollar sign.
(The name portion of the fid may consist of from

150 Link Processor

1to 10 alphanumeric characters, except for shared
processor names which may only have up to 8 al-
phanumeric characters.) The dollar sign designates
the most recent compilation or assembly. Paren-
theses enclosing roms cause merge of symbol tables

Imn (load module name) specifies where the load
module is to be placed and may be a file identifi-
cation (fid) or dollar sign. (The name portion of
the fid may consist of from 1 to 10 alphanumeric
characters, except for shared processor names which
may only have up to 8 alphanumeric characters.)

If Imn is omitted, the resulting load module is
placed in a special file and is available for sub-
sequent execution.

lid specifies alibrary file identification. Unsatisfied
external references are resolved by specifying the
order and identification (lid) of libraries to be
searched after the input modules have been linked.
A list of library identifications (lid), separated by
commas, is appended to the list of modules in the
LINK command ond is separated from the module
list by a semicolon.

codes are optional codes used to specify a library
search, a display, or inclusion of a symbol table.
The optional codes are described below; they may
be entered anywhere in the command except be-
tween a preposition and its object.

Options specifying library search

(L) specifies that the system library is to be searched to
satisfy external references that have not been satisfied
by the program. (This is a default option.)

(NL) specifies that a system library search is not required.

(Pi)(Ji}) specifies that the ith public core library is to be
associated with the program to satisfy external refer-
ences. Only one public library of each type (J or P)
may be associated with a program. PO, P1, and P4
are supplied by Xerox; P1 contains a subset of the
FORTRAN library subroutines; PO includes P1 and the
FORTRAN Debug Package; P4 includes P1 and the
FORTRAN real-time features. JO contains JIT defini-
tions and J1 contains the monitor definitions. (These
two libraries are generally only used by system ana=
lysts.) Additional public libraries must be named P2,
P3, P5-P9, and J2-J9. (P1 is a default option.)

(FDP) equivalent to (PO).
(NP) specifies that a public core library is not required.

The sequence of the library search is as follows: User li=
braries are searched first, the public library is associated,
and the system library is searched. In the absence of any
other specifications, public [ibrary P1 is associated with
the load module to satisfy external references, and the sys-
tem (ROM) library is searched if necessary.

Options affecting end actions and error displays

(D) specifies that all unsatisfied internal and external
symbols are to be displayed at the completion of the
linking process (including library searches, if speci=
fied). The unsatisfied symbols are identified as to
whether they are internal or external and to which
module they belong. (This is a default option.)

(ND) specifies that the unsatisfied internal and external
symbols are not to be displayed.

(9] specifies that all conflicting internal and external
symbols are to be displayed. The symbols are displayed
with their source (module name) and type (internal or
external). (This is a default option.)

(NC) specifies that the conflicting symbols are not to
be displayed.

(M) specifies that the load map is to be displayed upon
completion of the linking process. The symbols are

displayed by source with type resolution and value.

(NM) specifies that the load map is not to be displayed.
(This is a default option.)

Options affecting inclusion of the symbol table.
n include symbol table with LM.

(NI) do not include symbol table with LM, (This is a
default option.)

Option affecting execution of the load module

(EX,acct[,acct]...) specifies those accounts which may
execute this Imn. Up to 8 accounts may be specified.
The value ALL may be used to specify that any account
may execute the Imn (This is the default when no EX op-
tion is specified). The value NONE may be used to
-specify that no other account may execute the Imn.

Examples

1. Assume that a load module, F, is to be created from
ROMs A, B, C, and D, The internal symbols for files D
and A are to be merged. The internal symbols for B and
C are not to be included in load module F.

ILINK (A,D), (NI) B,C ONF

"2, Assume that a load module, F, is to be created from
files A, B, C, and D. Internal symbols for files 8 and
C are not to be included in the load module; internal
symbols for files D and A are to be merged. Two user
libraries, G and H, are to be searched to satisfy exter-
nal references. Public library P1 is to be associated
with the load module but no search of the system li-
brary is required.

YA VR]

ILINK (D,A), (NI)B,C ONF;G,H

3. Assume the same problem as in the previous example
except that the system library is to be searched for ex~
ternal references and public library P2 is to be associ=
ated with the load module. ’

ILINK (L)(P2)(D,A), (NI)B,C ON I':;G, H

4, Assume the same conditions as in the second example
except that no libraries are to be searched.

(l LINK (NL){NP)(D,A),(NI)B,C ON F

5. Assume there are two relocatable object modules. The
internal symbols for the first module (MFL1) are to be
left out of the resulting load module, but the internal
symbols for the second module (MFL2) are to be
included. The resulting load module is called LM1.

ILINK (NI) MFL1,(I) MFL2 ON LMI1

If the Link processor needs additional information, the
job will be aborted with the appropriate message output
to the line printer. For instance, using the same ex-
ample, suppose that Link cannot find MFL2 because it
was supposed to be MFL3. The job will be aborted
and the following message will be output to the line
printer:

CANT FIND: RETYPE MFL2

CONTINUED COMMANDS

The LINK command may be continued from one card to the
next by putting a 'less than' symbol (<) in column 80 of the
card to be continued. This symbol cannot be embedded
within a word or between a preposition and its object.

LOAD MODULE STHUCTI.IHE

A load module formed by Link is composed of three parts:
progtam, global symbol table, and infernal symbol table.
Each of these parts is described in the following sections.

Link Processor 151

PROGRAM

A program may be sectioned into six parts: pure procedure,
data, common, DCBs, public libraries, system library.

1. Pure Procedure

This section of code contains machine instructions and
is generated by compilers and assemblers with protec-
tion type 01 (read and execute access). Sections with
a nondata protection type (static data and no access)

are also included here.

2. Data or Program Context

This section is generated by the compilers and assem=
blers with protection type 00 (read, wrife, and execute
dccess),

3. Common

This blank common storage is generated by compilers
and assemblers as a dummy section with the name
F4:COM. The size of blank common storage is deter-
mined by the first size declared. All subsequent
F4:COM declarations must be less than or equal to
that size,

4, DCBs

A data control block (DCB) is a table containing the
information used by the monitor in performance of an
1/O operation. At the end of a link operation, Link
constructs o DCB corresponding to each outstanding ex=
ternal reference with names beginning with F: and M:,

Qutput is via the M:LO DCB. If the program being
linked does not contain a reference to M:DO, a refer-
ence to it is supplied by Link, since diagnostic output
is generally written via this DCB. If the user does not
want this DCB to be constructed due to space consider-
ations, he can explicitly reference M:DO and satisfy
the reference (vacuously) within his program. (Some
diagnostic output is likely to be lost.) All the DCBs
cannot exceed two pages when the Link processor is
used.

A DCB name of the form M:ab, where ab corresponds
to an operational label, is considered a reference to a
standard system DCB. The standard system DCBs are
discussed in terms of operational labels and default
assignments later in this chapter under "Data Control
Blocks".

5. Public Libraries ‘

Any CP=V installation can define a set of subroutines
that constitute a public library. The installation may
specify several different public libraries containing
collections of routines that are useful in various envi-
ronments. Only one library of fype 'P' and one of
type 'J' may be associated with an executing program.
DEF stacks for public libraries are stored under special

152 Link Processor

names in the system account and are used to link pro=~
grams to them. See the CP-V/SP Reference Manual,
90 31 13, for more detailed information on the structure
and creation of public libraries.

Only one block of core memory is required for the
public library no matter how many users are using it.
However, use of just one routine in the public library
requires core for the entire package. The reentrant
portion of each library is shared among users (on=line
and batch), thus saving physical core memory and
allowing for more efficient system operation. User-
dependent data storage for each library routine is allo-
cated by Link at a fixed virtual address, Thus, each
public library is constructued in two parts: reentrant
procedure and direct access data. By forming the
library in this manner, a speed advantage of from 5 to
20 percent over push-down storage reentrancy is
obtained.

Four public libraries are available: PO, P1, P4, and JO
(only the first three are of general interest). Library
P1 contains the most commonly required routines from
the Extended FORTRAN IV run-time and mathematical
library (about 60 routines). Library PO includes library
P1 plus the FORTRAN Debug Package (FDP). Library
P4 includes library P1 plus the FORTRAN real-time
features. These three libraries will satisfy the require-
ments of the majority of users for program execution,
debugging, and real-time services, respectively. (The
remainder of the run-time and mathematical routines
comprising the entire Extended FORTRAN IV subpro-
gram library reside on the system library, described
below.) Public library JO contains the user=JIT Defini-
tion Package. (See the CP-V/SP Reference Manual,
90 31 13 also for more detailed descriptions of libraries
PO, P1, P4, and JO.) Additional public libraries cre-
ated by a user~installation may be names P2, P3, or
P5 through P9,

Use of the real=time public library, P4, requires speci=
fication on the LINK command of the file :BLIB in the
real=time system account (e.g., :SYSRT) as a library
file identification. This library file will be searched
before the public library is searched.

System Library

The system library consists of approximately 190
FORTRAN IV library routines in ROM form, in file
:BLIB in the :SYS account. Searching of this library
is implied by the default library=search code L ina
LINK command. This library is always searched last if
any unsatisfied references remain unless the NL option
is specified. Routines that are obtained from the sys-
tem library become part of the user program and are
not shared. Thus, core is required for each system li-
brary routine. The speed advantage is still maintained
since each routine includes any necessary data.

-~
/5

GLOBAL SYMBOLS

While performing the linking process, Link constructs a
global symbol table. This table is a list of correspondences
between symbolic identifiers (labels) used in the original
source program and the values or virtual core addresses that
have been assigned to them by Link. The global symbols
define (DEF) objects within a module that may be refer-
enced (REF) in other modules. This table is available to
Delta for use in debugging.

INTERNAL SYMBOLS

An internal symbol table is a list of correspondences similar
to the global symbol table but applies only to symbols
defined within the module. Each internal symbol table con-
structed by Link is associated with a specific input file and
is identified by its name, This table is also available

to Delta for debugging.

When an internal symbol is equated to an external symbol
with an addend, and the module containing the external
definition is in a different file from the module containing
the external reference, the file containing the definition
must appear on the LINK command before the file contain-
ing the external reference. Furthermore, an internal sym-
bol should not be equated to an external reference with an
addend satisfied from a library.

No internal symbol table is generated for a named library
(one with a fid).

SYMBOL TABLES

Delta makes it possible to reference both global and inter-
nal symbols at the time programs are debugged. Programs

Table 24.

formed by loaders, together with the tables of global and
internal symbols, are operated on in a code similar to as-
sembly language symbolic code.

Global and internal symbol tables, as formed by Link and
used by Delta, consist of three word entries. Symbolic
identifiers (labels) are limited to seven characters. Symbols
originally longer than seven are truncated, leaving the ini-
tial seven characters, although the original count is retained.
Thus, symbols that are identical in their first seven charac-
ters and are of equal length occupy one position in the sym=
bol table. The value retained for multi-defined symbols is
the first one encountered during the linking process. Each
symbol entered into the table has an internal resolution and
a type classification. Internal resolutions are: byte, half-
word, word, doubleword, and constant. Symbol types are:
instruction, integer, EBCDIC text, short floating-point, long
floating-point, decimal, packed decimal, and hexadecimal.

Object language code produced by CP-V assemblers and
compilers provide internal symbols with internal resolution
and type classification. The loaders retain this information
in processing object language code.

DIAGNOSTIC MESSAGES

Diagnostic (error) messages are output on the LL device.
Table 14 lists the messages that are produced by the monitor
during a link operation. Some of these messages are for
syntax errors, and others are for errors arising out of the
link operation. Most of these errors terminate the link op-
eration prematurely.

Link Error Messages

Message

Description

CANT FIND :RETYPE rom

The specified relocatable object module cannot be found.

CARD CKS/COMPUTED CKS/cd/cp/

This message is sent to the LL device along with the CHECKSUM
ERROR message, It specifies the card checksum (cd) and the
computed checksum (cp).

CHECKSUM ERROR

A checksum error has occurred. The CARD CKS/COMPUTED .
CKS/cd/cp/ message specifies the difference.

CORE LIBRARY OVERLAPS PURE PROCEDURE

There is insufficient virtual memory to contain the pure pro-
cedure and the core library REF/DEF stack.

DATA LIMIT EXCEEDED

The data area is so large that it overlays the pure procedure.

DONT TRY TO USE TWO J OR TWO P LIBRARIES
AT ONCE

Only one library of each type is allowed.

DUMMY SECTION LARGER THAN PREVIOUS DEF

The dummy section initially defined was not the largest dummy
section,

Link Processor 153

Table 24.

Link Error Messages (cont.)

Message

Description

GLOBAL SYMBOL TABLE OVERLAPS PURE
PROCEDURE

There is insufficient virtual memory to contain the pure pro-
cedure and the symbol tables.

ILLEGAL DATA FORMAT

Input modules did not contain ROM data.

ILLEGAL LOAD ADDRESS

An attempt was made to load outside the limits of the program.

ILLEGAL LOAD ITEM TYPE

ROM inputdata is illegal (e.g., it is load module data instead).

INSUFFICIENT PHYSICAL MEMORY TO CONTINUE

A request for a memory page has been refused,

/O ERROR LINKING SYSTEM LIBRARY

This message usually indicates there is no system library.

I/O ERROR OPENING OUTPUT FILE

An 1/0 error occurred during the opening of an output file.

I/O ERROR READING ASSIGN MERGE RECORD

This message usually indicates there is no assign/merge record.

I/O ERROR READING CORE LIBRARY

This message usually indicates there is no core library,

MODULE #/SEQUENCE# /md/sq/

This message accompanies most other messages. It identifies the
module number (md) and sequence number (sq) of the last card
before the error. Both numbers start at zero.

MORE THAN 2 PAGES REQUESTED FOR DCBS

This message indicates that the limit of two pages for DCBs has
been exceeded.

NO PROGRAM START ADDRESS

The program has no start address. The load module is still formed.

ON FILE fid ILLEGAL

ON was specified and the output file (fid) already exists.

SEQUENCE ERROR

A sequence error has occurred,

STACK OVERFLOW

An internal storage overflow has occurred.

UNEXPECTED END OF ROM DATA

EOF encountered before last card of ROM.

Note: All errors, except CANT FIND and NO PROGRAM START ADDRESS cause abnormal termination of Link.

LEMUR PROCESSOR

LEMUR (Library Editor and Maintenance Utility Routine) is
a processor that builds and manipulates ROM and load mod-

ule libraries. The libraries thus built are accessed by

LYNX or Load when constructing user programs (load mod-
ules) that require library routines. LEMUR is available in

both on-line and batch modes.
LEMUR allows the user to

e Construct a library ROM module out of specified
ROMs.

o Construct a library load module out of specified

ROMs. (A library load module must be of one pro-

tection type.)

e Have more than one library per account.

154 Lemur Processor

e Delete a specified portion of a library and all refer-
ences to that portion in the dictionary.

e Delete a library.
® Copy a library module from one library to another.

e Copy a library to another library.

CALLING LEMUR

LEMUR is invoked in the batch mode by the control
command

ILEMUR

All commands are read through the M:SI DCB and output
is through the M:LL DCB.

90 17 64H-1(9/78)

Commands are relatively free-format; i.e., blanks are

_ ignored except as delimiters, If a semicolon is encountered
in a command line, all subsequent characters in that line
are ignored and the next input line is treated as a con-
tinuation line. A command line beginning with an aster-
isk (*) is treated as a comment,

LEMUR CONCEPTS
The following conventions are used in LEMUR:

1. Nomes of library modules and DEFs consist of a string
of any of the following characters:

AZ az 09 §$* %:@*

They may also consist of a string of the above charac-
ters enclosed within single quotes. A library load
module name cannot exceed 10 characters. A DEF
cannot exceed 14 characters,

2, A file identification has the standard format with the
exception that the name, account, or password may be
a string of characters enclosed within single quotes.
The name portion of a file identification cannot exceed
10 characters if it identifies « ROM which is to bepart
of a library load module.

3. A rom-id is the file identification of a ROM,
4. A lib-id is the file identification of a library,

5. The term "destination library” is defined to be the
library specified by the LIBRARY command, This is the
library on which the user wishes to work.

6. The term "default library" implies the :LIB library.
If library name is missing from a command in which
lib-id is optional, then :LIB is assumed by default.
Also, if the LIBRARY command is not used in a
LEMUR session, the default and the destination
library are the same (:LIB).

7. The term "library module" refers to a named collection
of one or more ROMs or a load module which has been
entered into the library via a BUILD or a CARRY com-
mand. The module gets its "name" when it is entered
in this manner.

LEMUR COMMANDS

LIBRARY The library command specifies the destination
library (i.e., the library on which the user wishes to work).
The format of the command is

LIBRARY li’lame] [.[occoun'r] [pqssword]]

where name, account and password have their usual
meanings. |f name is omitted, the default is :LIB. If
account is omitted, the default is the user's account.

(SL, value)

BUILD The BUILD command constructs a library module
and enters it info the destination library. The library mod-
ule constructed may either be a load module or @ ROM
module, depending on specifications within the command.
The format of the command is

BUILD name FROM rom-id[,rom-id]. .

[(option)](option)]...]

where

name specifies the name of the library module
to be constructed. f the module name already
exists in the destination library, it is deleted and
the new version is constructed and entered.

rom=-id specifies the name of a ROM to be used in
the construction of the load module or ROM
library module.

If the name already exists, all old dictionary entries which
point to it are deleted. New dictionary eniries are then
made for each symbol within the new version of the module
specified by name, If a dictionary entry for a symbol de-
fined in name already exists in the dictionary (because it is
DEFed in some other module with a different name), the
entry is changed to point to name. .

A library module is either a ROM module (one or more
ROMs) or a library load module. The option (ROM) or its
absence specifies the type. If the (ROM) option is speci-
fied, the module being constructed will consist of the
ROMs specified by the rom-id's in ROM form. This allows
subroutines with more than one protection type to be in-
cluded in the library accessed by the loader. Omission of
the (ROM) option implies that the library module is to be
a load module. In case, LEMUR invokes the loader to
perform the load using the specified ROMs as element files

Options for the BUILD command

ROM module options:

The following options are used if the module being con-
structed is to be a ROM module. (Load module options
have no meaning for ROM modules and will cause an error
message if used.,)

(ROM) specifies that the module is to be a ROM mod-
ule consisting of the ROMs specified on the BUILD
command.

(M) or
(MN) produces a list of REFs and DEFs in the module,
sorted by name, .

specifies the ROM severity level that is fo
be tolerated by LEMUR in forming the library module.

The value may range from O to F, The default is 7.
(The severity level is presented by the ROM,)

Lemur Processor 155

Load module options:

The following options are used if the module being con-
structed is to be a library load module.

(C1H) specifies that the library load module is to be
formed with protection type 01, regardless of the
protection type specified in the ROM,

(M) or
(MN) specifies that a load map is fo be output on the
LL device and that the DEFs are to be sorted by name.

(MV) specifies that a load map is to be output on the

LL device and that the DEFs are to be sorted by value,

(MNV) specifies that a load map is to be output on the
LL device and that the DEFs are to be sorted by both
name and value.

(SS) specifies that a size summary detailing the amount
of memory allocated is to be output.

(SL, value) specifies the ROM severity level that is to
be tolerated by LEMUR in forming the library load
module. The value may range from 0 to F. The

" default is 7. (The severity level is presented by the
ROM.)

(DREF) specifies that all dummy section definitions
should be changed to PREFs. This allows a library
to be built in which all references to a particular
nomed DSECT will be linked to a single copy of that

DSECT (e.g., a FORTRAN BLOCK DATA subprogram).

Such initialized dummy sections should be contained
in a library ROM module or in a library load module
loaded without the DREF option.

(X) specifies that LEMUR should abort if any error
is detected in creating the load module. If (X) is
not specified in the batch mode, a warning message
is issued and LEMUR executes the next command,
(Note: The (X) option is meaningful only for running
LEMUR in the batch mode, If specified in the on-line
mode, the (X) option is ignored.)

Examples:

1. Assume that the user is logged on in account A55 and
that the user wishes to:

e Create a new library called LIB5 in account A55.
e Include R1 as a ROM module.

e Include R2 and R3 as one ROM module.%

e Include R4 as a load module,

e Include R5 and Ré as one load module.

(All these modules are in account A55.)

156 Lemur Processor

ILEMUR

LIBRARY LIB5

BUILD LR1 FROM R1 (ROM) (M)
BUILD LR2 FROM R2, R3 (ROM)
BUILD LR3 FROM R3 (SL,4) (C1)
BUILD LR4 FROM R5, R6 (SL,4) (M)
END

2. Assume that the user is logged on in account A55 and
that the user wishes to replace LR3 in the example
above with a load module rebuilt from R4, OTHERACT:

TLEMUR

LIBRARY LIB5

BUILD LR3 FROM R4.OTHERACT(SL,4)(C1)
END

DELETE The DELETE command deletes either the
destination library (i.e., the library named on the
LIBRARY command or :LIB by default) or deletes one or
more named modules from the destination library. In the
latter case, all entries in the dictionary thet point to the
deleted module are removed. The format of the command is

DELETE [name[,name]]. ..

where name specifies the name of a library module. If
no name is specified, the entire destination library is
deleted,

Examples:

1. Assume that the user is logged onto account A55 and
wishes to delete modules X, Y, and Z from the
library :LIB.A55 and to delete module A from the
library LIB6.A55.

ILEMUR
DELETE X,Y,Z
LIBRARY LIB6
DELETE A
END

2. Assume that the user is logged onto account A55
and wishes to delete the library :LIB,A55,

TLEMUR
DELETE
END

copy " The COPY command copies the source library
to the destination library, The format of the command is

COPY lib-id

where lib-id specifies the source library. (The destination
library was either specified on a LIBRARY command or is
:LIB by default,)

The source and destination libraries must be different
(i.e., different accounts or different library: names in
the same account).

-

/S5

_Examples: v

I3
1. Assume that the user is logged onto account A55 and
wishes to copy the library LIBA from account 1234
to library LIBB in account A55.

ILEMUR

LIBRARY LIBB
COPY LIBA.1234
END

2. Assume that the user is logged onto account A55 and
wishes to copy library LIB from account B36 to the
:LIB library in account A55.

I'LEMUR
COPY .B36
END

CARRY The CARRY command copies a library module
from one library (source library) to another library (des-
tination library). The format of the command is

CARRY name, FROM lib-id[/nameg

where

name] specifies the module name in the destination
library,

lib=id" specifies the source library. (The destination
library was either specified on a LIBRARY com-
mand or is :LIB by default,)

name, specifies the module name in the source
library. If it is omitted, the source module name
is assumed to be the same as name,; by default.

The source and destination libraries must be different
(i.e., different accounts or different library names in the
same account),

If a module with the name specified by name) already exists
in the destination library, then the original name] module
records and dictionary records which point to it are deleted
from the destination library, with all namey module and
dictionary records being copied from the source library

and entered into the destination library.

If @ symbol in the namey module already exists as a dic-
tionary entry in the destination library and it points to a
module other than namey, it will be replaced by the new
entry pointing fo name 1.

[
Johir

Examples:

(In all these examples, assume that the user is logged onto
account A55.)

1. The user wishes to carry module ZAP from NEWLIB.:SYS
to ZAP in NEWLIB, A55,

I'LEMUR

LIBRARY NEWLIB

CARRY ZAP FROM NEWLIB.:SYS
END

(Omission of the source module name (name,) implies
that ZAP is the source module name.)

2. The user wishes to carry module ZAP from LIB2.ACN2
to module MAP in LIB2,A55.

ILEMUR

LIBRARY LIB2

CARRY MAP FROM LIB2.ACN2/ZAP
END

3. The user wishes to carry module SQRT from :LIB.:SYS
to SQRT in :LIB.A55. .

ILEMUR
CARRY SQRT FROM .:SYS
END

(Omission of a LIBRARY command implies that the
destination library is to be :LIB.A55 by default.
Onmission of the source library name implies :LIB by
default.)

4, The user violates the rule that the source and destina-
tion libraries must be different,

ILEMUR
CARRY ZAP FROM :LIB/MAP
END

An error message is issued and the command is aborted.

END The END command terminates LEMUR and returns
‘control to CCl. The format of the command is

END

Lemur Processor 157

Error messages for LEMUR are listed in Table 25,

ERROR MESSAGES

Table 25, LEMUR Error Messages

Message

Meaning

")* MISSING AFTER OPTION

Self-explanatory.

ACCOUNT NAME TOO LONG

The account name exceeds eight characters,

BAD FILE [.D.

Self-explanatory.

BAD QUOTE STRING

An illegal character occurred with a string.

CAN'T CREATE LIBRARY

An 1/O error occurred when frying to create a new library.

CAN'T OPEN FILE

Either the ROM id doesn't exist, the module doesn't exist
(DELETE), or the source module doesn't exist (CARRY).

CAN'T OPEN LIBRARY

An 1/O error occurred when trying to open an existing library.

COMMAND TOO LONG

A command (including continuations) is too long for LEMUR's
command buffer of 256 characters,)

EH?

A command is malformed.

FILE NAME TOO LONG

A file name exceeds ten characters,

GARBAGE AT END OF LINE

A command contains unrecognizable characters.

I/O ERROR

Self-explanatory.

ILLEGAL CONTINUATION LINE

Self-explanatory.

ILLEGAL LIBRARY FORMAT

A reference to a file which is supposed to. contain a library
was made in a LEMUR command, but the file is not in
library format.

ILLEGAL OPTION FOR THIS COMMENT

Self-explanatory.

ILLEGAL ROM LANGUAGE

The ROM is malformed,

ILLEGAL ROM RECORD HEADER

The ROM is malformed.

ILLEGAL ROM RECORD LENGTH

The ROM is malformed,

LIBRARY NAME MISSING

A required library name is missing in a command.

LIBRARY NAME TOO LONG

A library load module name exceeds 10 characters.

MALFORMED OPTION

Self-explanatory.

-‘MAXIMUM SEVERITY LEVEL EXCEEDED

The severity level specified by the SL option has been exceeded.

158

Lemur Processor

Table 25. LEMUR Error Messages (cont.)

Message

Meaning

MISSING FILE NAME

A required file name is missing in @ command.

MODULE NAME MISSING

A required module name is missing in a command.

NOT ENOUGH CORE

There is insufficient common or virtual memory to satisfy the
requirements for 1/O buffers used in the COPY and CARRY

commands.

NOT ENOUGH SYMBOL SPACE

The space required by LEMUR to construct the dictionary is
insufficient,

PASSWORD TOO LONG

The password exceeds eight characters.

SOURCE SAME AS DESTINATION
LIBRARY

The requirement that the source and destination libraries be
different on the COPY and CARRY commands has been
violated,

UNEXPECTED END OF ROM

The ROM is malformed.

UNKNOWN COMMAND

Self-explanatory.

UNKNOWN OPTION

Self-explanatory.

- YOU USED THE SAME OPTION TWICE

Self-explanatory.

COMMAND SUMMARY

The LEMUR commands are summarized in Table 24,

Table 26. LEMUR Command Summary

Command’

Function

BUILD name FROM rom-id ,rom--id:l. ..
[(option)[, (option]...

Creates and enters a ROM module or library load module into
the destination library.

-

CARRY name; FROM |ib-id['/nome2]

Copies a library module from a source library to the destination
library.

COPY lib-id Copies a source library fo the destination library.

DELETE Deletes either the entire destination library or one or more -
modules from the destination library.

END Terminates LEMUR.

LIBRARY [name] [[occounr][. p<:|ssword]

Defines the destination.

*

Indicates that the line is a comment line.

Lemur Processor

159

TASK CONTROL BLOCK

The format of the Task Control Block (TCB) generated by
" loader for the user's program is shown in Figure 9.

The fields of the TCB are as follows:

TSTACK is the address of the current top of the
user's temp stack,

TSS indicates the size, in words, of the user's temp
stack (maximum size is 7FFF),

TSA is the address of the temp stack used by the
library error package.

TSASIZ indicates the size, in words, of the temp
stack used by the library error package.

ERTSIZ indicates the size, in words, of the error
table used by the library error package.

ERT is the address of the error table used by the
library error package.

010 0 TSTACK-1 Stack Pointer
1o 1SS 0 0 Doubleword (SPD)
2

3 For use by GL-1 (Graphics Language)

‘ These words for use by a processor

5

610 0 TSA-1

7 TSASIZ 0 0

8 ERTSIZ ERT

9 ERTSIZ-2 TSA
1010 0 DCBTAB
1110 0 TREE
12{0 0| Ssw
13 - For use by a processor
14 XSL specified on RUN control command
15 For use by Monitor

TSA . Library error temp stack :‘:} TSASIZ
ERT Library error table %:} ERTSIZ
TSTACK User's temp stack %} TSS
0 , 141156 25'26 31

Figure 9. Task Control Block Format

160 Task Control Block

DCBTAB is the address of a table of names and
addresses of all of the user's DCBs. This table has
the form shown in Figure 10.

TREE is a pointer to the location of the user's over=
lay structure.

SSW contains the user's sense switch settings
{(bits 26=31 contain the settings of switches 1-6).

On transferring control to o user's program or to a pro-
cessor, the monitor communicates the TCB address through
general register 0,

DATA CONTROL BLOCKS

The loader constructs DCBs to be included in the load mod=-
ules. The Load and Link processors build a DCB only if any
PREFs exist that begin with either M: or F:. DCBs are not
built, however, if the LIB option was specified in the LOAD
command. Specifically, the Link and Load processors build
DCBs when

o The Control Card Interpreter (CCI) assign/merge record
contains an F: (for example, F:108) entry,

® The user has a REF DCB name and has no relocatable
object modules (ROMs) or libraries in the element file

list which satisfied this REF. The load processor does
not search libraries of accounts in the UNSAT list to
satisfy PREFs to M: and F: names. To include a library
DCB in the output load module built by the LOAD pro-
cessor, put the library load module name containing

the DCB in the EF list.

e An M:DO DCB is generated in the absence of o
NOTCB option. (The Link processor will always build
an M:DO DCB.)

e An M:SEGLD is generdted if a TREE control command
is present.

Library DCBs are summarized in Table 27 together with
the composition of DCBs generated by the loader and by
COBOL.

The detailed format of DCBs for files, devices, and labeled
tape is shown in the appendix titled "Data Control Block
Formats",

All loader generated system DCBs are 51 words long. The
first 22 words (0 through 21) are standard and allocated for
the fixed portion of the DCB. Each variable length pa-
rameter (words 22 through 40) is preceded by a control word,
three words for file name, two words for account, two words
for password, two words for an expire date, three words for
INSN (SN), and three words for OUTSN (SN). Words 41-48
are reserved.

DCBTAB —»- > >
enfry] enfry.' enfry]
eni'ry2 enfry2 enfry2
entryi enl‘ryi enfryi
LINKADR [* LINKADR 0 0]

Notes:

1. Each entry contains a variable length DCB
name and DCBLOC word as follows:

DCBLOC

2, LINKADR is the location of another block of
the DCB name table. If LINKADR contains
zero, the current block is the last one of the
DCB name table.

3. DCBLOC is the address of the first word of the
DCB.

Figure 10. DCBTAB (Name Table)

Data Control Blocks 161

Table 27. Data Control Block Size

Expiration | Read Write Synony- Key Total
DCB Device | Name | Account| Password | Date Accounts | Accounts| INSNs [OUTSNs | mous Name | Buffer | Words
M:C 22 22
M:OC | 22 22
M:BI 22 9 3 3 3 4 8 52
M:C1 22 9 3 3 3 4 8 52
‘ M:SI 22 9 3 3 3 4 8 52
M:El 22 9 3 3 3 4 9 8 61
M:BO | 22 9 3 3 3 17 17 4 8 86
M:CO | 22 9 3 3 3 17 17 4 8 86
M:SO | 22 9 3 3 3 17 17 4 8 86
M:PO | 22 9 3 3 3 4 8 52
M:LO |22 9 3 3 3 4 8 52
M:LL 22 9 3 3 3 4 ' 8 52
M:DO | 22 9 3 3 3 4 8 52
M:GO | 22 9 3 3 3 8 48
M:EO | 22 9 |3 3 3 17 17 4 9 8 45
M:SL 22 4 3 3 3 8 43
M:AL | 22 4 3 3 3 8 43
Loader | 22 4 3 3 3 4 4 8 51
COBOLj 22 9 3 3 3 17 17 4 4 9 8 99

If the user requires a DCB with any field larger than those
constructed by a loader, he must use the LOAD processor.
He can then either construct the DCB with an M:DCB pro~
cedure call or, if it is an M: type DCB, request it explic=~
itly from the :SYS account by including the DCB name as
an element file in a LOAD, OVERLAY, or OLAY control
command. For example: ’

(EF,(M:EQ,:SYS),(M:LL,:SYS))

Total space for DCBs and buffers for a single job step is
limited to 10,752 words (21 pages) including a one-word
link for the DCBname chain and enough words to carry the
DCBnames. Each DCBmust be contained entirely within one
page to facilitate unmapped access. This usually results in
less spacedue to "breakage". However, the amount of space
provided is adequate in nearly all situations. When the
allocated space is insufficient, the job is aborted with

a code of X'CO'.

162 Memory Protection

If a file is openedin the output mode through asystem DCB,
a flag is set in the Job Information Table (JIT). If the DCB
is not reassigned before the DCBis opened again in the out-
put mode for the same job, all records output through this
DCB are appended to the end of this file.

MEMORY PROTECTION

Monitor pages and unallocated virtual pages are protected
against access by user programs with the map access pro-
tection. Thus, programs that either deliberately or in-
advertently access the monitor (by reading it or branching
into it) will trap. The same restriction also applies to other
areas of the machine that were not owned by the program
(e.g., read access to unobtained common or dynamic data
pages). The first page of core memory is an exception to
these rules; its access is always set to read only. A trap

/

will occur on a conditional branch command for whi¢h the
condition is not satisfied and the address of the brednch is
indirect through a protected memory address. '

VIRTUAL MEMORY

The user's 96K words of virtual space are divided as follows:

1. 8K words for monitor overlays and user context (JITs
and buffers).

2. 88K words for user procedure, DCBs, and data unless
the user program requires the use of a special shared
processor or a public library. In this case, the user
area is 72K words and the special processor area is
16K words.

With the exception of a fixed minimum requirement of six
pages for monitor overlays, one page for JIT, and three
pages for the file buffers, the 96K words of user area is
demand allocated.

The Link and Load loaders place ROM data, including any
data overlays, in memory beginning at 40K then directly

follow this with the DCBs, procedure, and procedure over-

lays. When a BIAS is specified, the load module is created
at the specified location even though it may not be possible
to run the load module there.

Load modules are constructed from ROMs composed of con-
trol sections. A control section is of type 00, 01, or 10.
All control sections of type 00 are gathered together by the
loader and designated as DATA. Similarly, all control sec~
tions of type 01 and type 10 are gathered together and de-
signed as PROCEDURE and STATIC DATA, respectively.

Except for DCBs, DSECTs or CSECTs with value 2 or 3 are
changed to 1. That is, no-access and read-only data are
loaded with pure procedure. Any DSECT that has a name
beginning with M: or F: is assumed to be a DCB and is re-

Internal symbol tables are generated for use by a debug
processor (e.g., Delta) if a program is assembled with the
SD option. An internal symbol table is built for each load
‘module and is included in the load module as a keyed
record consisting of the element file name appended with
an X'10'. A symbol table can be loaded by a debug pro-
cessor for an overlay or a nonoverlay program by specifying
its element file name. If the element file contains more
than one ROM then only the symbol table for the last ROM
is produced. A symbol table that is generated during a load
from the GO file cannot be accessed by a debug processor.
No internal symbol tables are generated for library load
modules.

VIRTUAL MEMORY LAYOUT

Figure 11 gives the layout of virtual memory for a program
loaded by Load or Link. Ordinary shared processors follow
this layout.

Figures 12 and 13 show the actual background memory lay~-
out at execution time for the Load and Link processors.

LOAD MAPS

If a listing of o load map is specified — MAP option of LOAD
(OVERLAY or OLAY) control command or M option of LINK
control command — a listing of external references and def-
initions for the load modules is output on the LL device.

A general allocation summary, indicating the total amount
of memory allocated to each protection type for the entire
program, appears after the LOAD or LINK control command.
Next appears the severity level for this load module if it is
nonzero. This severity level is actually the maximum of
any severity levels inherited from the ROMs and those gen-
erated by the loader. Internal loader-generated severity
levels are as follows:

moved to the DCB area and listed in the DCB table. Type Severity
DCBs and the DCBname table are allocated in the user con- PREF 7
text area (10 protection) rather than in the root procedure DDEF 4
area (01 protection). Because of the differences in alloca-
tion (DCBs) and the HEAD format, load modules formed REF or BREF load table exceeded F
under the BPM overlay loader will not execute (RUN) under Nonbranching REFs found while 3
CP=V and vice versa. in BREF mode

0 32K 40K

Load or Link : 112K 128K

Public

, User Context: librar User data
Monitor |1JITs, buffers and Y root and User
imonitor overlays context overlays | DCBs
! (if any)

User program | Dynamic | Common | Processors:
root and e -+ TEL, LINK, Delta
overlays Data Data Public Library

Special Shared

FDP
(if required)

Figure 11. Virtual Memory Layout

Vertual Memory/Load Maps 163

Access protection of 00 <

Access protection of 01 5

Access protection of 00
(may be changed by
M:SMPRT)

Public Library's Context Area

Blank COMMON

TCB

Root Control Sections of type 00

Overlay Control Sections of type 00

unused

Beginning of user's

Y virtual memory (X'A000")
3
> Root
A DATA (00)
J
y

Control Sections of type 10

TREE Tables

REF/BREF Tables (1 page)

Root Control Sections of type 01

Overlay Control Sections of type 01

unused

,Page Boundary
)

DCB(10)
; /Page Boimdary

> Root

> PROCEDURE (0T1)

Debug Tables (1 page)

} Page Boundary
t

Global and internal symbol tables

-«— Page Boundary

User's Dynamic Data i

M:GP | f

M:GCP

«e——- End of user virtual

t L
Formed by monitor when load module is brought info core.

”Acquired for symbol tables when associated with Delta.

memory (X'1BFFF'
or X'TFFFF')

164 Load Maps

Figure 12. User Virtual Memory Layout, Load Processor:

Beginning of user's
r virtual memory (X'AQ00')

Public Library's Context Area

Blank COMMON

TCB
Access protection of 00 <
> Data (00)
M:GP
User's Dynamic Data
M:GCP

. ~—(X'16C00")

Access protection of 10 DCBs DCB(10)
(X*'17000")

Access protection of 01 1 Program Pure Procedure , Procedure (01)
> y 7
Global Symbol Table
Access protection of 00 4 Al
Internal Symbol Table
L J End of user virtual

memory (X'1BFFF')

fAcc}uired for symbol tables when associated with Delta.

Figure 13. User Virtual Memory Layout, Link Processor

. Load Maps 165

Figures 14 and 15 show sample load map printouts for the
Link and Load processors respectively. The sample Link pro-
cessor load map (Figure 14) is simple and self-explanatory.
_ The sample Load processor load map (Figure 15), however,
is more complex and requires further explanation,

ILINK LINKBO,VDCB (M) OVER LMN
LINKING LINKBO

SEVERITY 0
LINKING VDCB

SEVERITY 0

"P1' ASSOCTATED.

YOU DO NOT NEED

Pl
PREF J :CCBUF

PREF J:AMR

PREF J:JIT

DEF 8C2D 0 M:UC

DEF 16C00 0 VDCB

DSEC 16C00 0 F:LINK

DEF 16C28 0 M:DO

DEF 16C5C 0 F:LINKIN

DEF 16C90 0 M:GO

DEF 16CC4 0 M:LO

DEF 16CF8 0 M:C

DEF 16C2C 0 M:LL

DEF A400 0 VIC

UDEF A400 0 DATA ORG

DSEC A52E 0 LINK

UDEF A730 0 DATA MAX(TCB ORG)
DEF 17000 0 VPP

DSEC 17000 0 PLSECT

UDEF 17000 0 PURE PROC ORG
DSEC 17044 O PPLINK

UDEF 17DD9 O PURE PROC MAX
DEF 1C000 0 VDP

Figure 14. Sample Load Map Printout
for the Link Processor

For the Load processor, the load map for each segment starts
on a new page. The map consists of a header, anallocation
surmary for this segment, and a series of lists of external
definitions and control sections. Separdate lists of PREFs,
SREFs, DDEFs, and ADEFs (absolute DEFs) are generated
only if such items exist in this segment. Then fhe relocat-
able DEFs(i.e., an external DEF whose value is an address
as opposed to a constant) and control sections are listed, If
(MAP) or (MAP,NAME) was specified on the LOAD card,
the control sections (and the first DEF in each section)
are listed first, then the relocatable DEFs are generated
in alphanumeric order. Library DEFs will not be listed

166 Accounting

unless LDEF and/or UDEF are specified on the command
in conjunction with the MAP option. For the (MAP,VALUE)
option, the DEFs and control sections are listed in the order
of increasing value, with the information for each control
section serving as a header for the DEFs within that section.

Control sections are presented in the format

value type prof. type
where
valve specifies the hexadecimal address of the be-

ginning of the section.

type specifies LDCB (loader-built DCB), DSECT,
or CSECT.

prot. type specifies O (Data), 1 (Procedure), or
2 (Static).

For DEFs, the format is

value byte disp. name

where
value specifies the hexadecimal value of the DEF.
byte disp. specifies the byte displacement (0, 1,

2, or 3) for relocatable DEFs only.

name specifies the symbolic name of the DEF.

All addresses (and control section sizes) are expressed in
word resolution.

ACCOUNTING

A comprehensive accounting summary is generated at the
end of each job. This summary includes both a detailed
list of facility usage and an item called "Charge Units",
which is a weighted sum of the other accounting variables,
(e.g., total CPU Time, Cards Read, etc.). The weighting
for each accounting variable are installation dependent and
can be set or modified by the installation manager. 1/O
wait operations are not charged to the user, nor are they
accrued as part of the time specified on a LIMIT control
command. Table 28 shows the accounting summary for

batch jobs. Items for which the value is zero are not

printed in the summary.

LOAD (LMN,EXAMP),(EF,(ROM)),(UNSAT,(C8908314)),(MAP§D,(LDEF;D,(UDEF}D,(NOSYSLIB),(ABS),(SL,F)

% % ALLOCATION SUMMARY *

PROTECT ION LOCATION PAGES
DATA (00) A000 1
PROCEDURE (01) A400 1
DCB (10) A200 1
@ SEV. LEV. 7 1

dededededelodededededededededededededeieledededededededetedededek . STGMA 5/6/7/9 LOAD MODULE MADP ededededededesiedodededededededodededededededededededededededededde
dededededededededededodrdedodedeledededededededededededededede ACN= F5608307 ROOT START= AQGA Fede
dededededededededededededededededelededededekdededelekdede TMN= EXAMP BIAS= AQQQ de
Jededededededededededededevededeedededededededededeeede ke SGN= EXAMP SIZE=000.6K Fedededededededode

+ =DBLE DEF - =LIB DEF * =UNUSED DEF
Fekedededededede. PROTECTION TYPES: 00 DATA 01 PROCEDURE 10 STATIC

SEGHI-O AO8D SEGHI-1 A4l7 SEGHI-2 A3FF@D
SEGLO-0 AQ000 SEGLO-1 A400 SEGLO-2 A200

00 SIZE= 8E Ol SIZE= 18 10 SIZE= 200

Jdesedesekdeke PREF - PRIMARY REFERENCES NOT LOCATED edckeicdiek
FINISH MODE TYPE

Fededededededed SREF - SECONDARY REFERENCES NOT LOADED eddededededede

OPTION
Fededededededede ADEF - ABSOLUTE SYMBOL VALUES dededededededede
7 "@fROMSIZE 3E8 *SEGSIZE 2 *TREEDIS
dedededededede SECT - PROGRAM SECTIONS MAP Fededededede

@A206 LDCB 2 A206 0 M:DO
A064 DSECT 0O A064 0 DUM
AO6A CSECT 0 AO6A O *START
AQ7E CSECT O AOQ7E O -D
A40C CSECT 1

Jedcdesekdede RELOCATABLE DEFINTITIONS SORTED BY NAME ik

A074 0 B AO7E 0 =D A064 0 DUM A089 0 -G
A206 0 M:DO 8C3C 0 -M:UC 8CF6 0 =M:XX AO6A O *START
AO7C 0 Y58 ©

1. Specification of "MAP" implies "MAP, NAME"; i.e., the DEFs are sorted by symbolic name.
The used library DEFs for the load module are listed on the map.
The unusued library DEFs defined in the load module are listed on the map.

The loader assigned a severity level of 7 to this load module because it contained unsatisfied PREFs,

The protection type boundaries and sizes are expressed in word resolution.

> ooa o

7. M:DO (a loader-built DCB) has protection type 10 (21() and begins at X'A206'.

34 WDS
6 WDS
14 WDS
10 WDS
A WDS

The external definitions D, G, M:UC, and M:XXare defined in library load modules. START, ROMSIZE, SEGSIZE,
and TREEDIS are unused DEFs (i. e., the loader did not encounter an SREF or PREF corresponding to any of these names).

Figure 15. Sample Load Map Printout for the Load Processor

Accounting

167

Table 28, Accounting Printout for Batch Jobs

Printed Format

Explanation

(Time and Date)
ELAPSED JOB TIME

PARTITION NUMBER

TOTAL CPU TIME

PROCESSOR EXECUTION TIME
PROCESSOR SERVICE TIME
USER EXECUTION TIME

USER SERVICE TIME

CARDS: CARDS READ

CARDS PUNCHED

PAGES: PROCESSOR PAGES
USER PAGES

DIAGNOSTIC
PAGES

TAPES: DRIVES ALLOCATED

TAPES MOUNTED

PACKS: SPINDLES ALLOCATED

PACKS MOUNTED

CORE: PEAK CORE (PAGES)

PAGE. MINUTES

1/0: OPERATIONS

CALS

FILE SPACE
PEAK RAD TEMPORARY
NET RAD PERMANENT

AVAILABLE RAD PERMANENT

hh:mm:ss

XX

X, XXXX

X XXXX
X. XXXX
Xo XXXX

KXo XXXX

XXXX

XXXX.

XXXX

XXXX

XXXX

xX

XX

XX

XX

XXX

XXXXXX

XXXXX

KXXXXX

IXXXX

XXXX

XXXX

Clock time in hours, minutes, and seconds for job or terminal session.

Partition number in which the job ran.

Sum of all execution time (in minutes).

| Shared processor execution time (e.g., FORTRAN)(in minutes).

Monitor time for CALs issued by shared processors (in minutes).
User program execution (in minutes).

Monitor time for user issued CALs (in minutes).

Number of cards read.

Number of cards punched.

Number of pages printed by shared processors.
Number of pages prinfed by user programs.

Number of pages printed through M:DO.

Number of tape drives allocated.

Number of tapes mounted.

Number of disk spindles allocated.

Number of disk packs mounted,

Maximum number of core pages used af any one time.

Amount of core time used.

Number of physical 1/O actions except terminal and swap I/O.

Number of CAL, 1 operations.

Peak value of temporary RAD granules used.
Net change in accumulated RAD storage (in granules).

Amount of RAD space available for permanent storage (in granules).

168 Accounting

Table 28, Accounting Printout for Batch Jobs (cont.)

Printed Format

Explanation

PEAK DISK TEMPORARY XXXX
NET DISK PERMANENT XXXX
AVAILABLE DISK PERMANENT XXXX
NUMBER OF SWAPS XXXX
RESOURCES ALLOCATED

CO=xxx 9T=xxx 7T=xxx (etc.)
CHARGE UNITS XXXXXXKK

Peak value of temporary public disk pack granules used.
Net changes in accumulated public disk pack storage (in granules).

Amount of public disk pack space available for permanent storage
(in granules).

Number of times user was swapped.

Valuves for resources allocated,

Total charge units.

Accounting 169

: LPROGRAM DEBUGGING AIDS

INTRODUCTION

Batch program errors are reported via either a default
mechanism or through explicit dump and snap commands
supplied by the user in his JCL deck or internally within
his program. These debug commands are described in this
chapter.

Errors occurring during the execution of a batch user pro-
gram are reported to the user via the error codes and sub-
codes detailed in Appendix B. If the user does not choose
to handle these errors himself (i. e., does not use the debug
commands), the monifor aborts the job and interprets the
codes for him by accessing the error message file for an
appropriate message. This message is printed together with
the location of the error, the PSD, the general registers,
and, if the error is DCB-related, the contents of the DCB.
For example: '

4000 CAN'T READ AN OUTPUT FILE

AT C065

ON DCB M:EO

WHICH CONTAINS

(contents of DCB)

USER's PROGRAM STATUS DOUBLEWORD
(contents of PSD)

USER's GENERAL REGISTERS

(contents of registers)

The memory dumps performed by debug commands may be
either conditional (dependent on whether errors occurred
during program execution) or unconditional. All dumps are
taken before the DCBs are closed and are output through

the user's M:DO DCB. If M:DO does not exist or cannot

be opened, a postmortem dump is output to the LP device;

the user's program is aborted if there is no M:DO/ DCB for

a snapshot dump. "

Postmortem dump (PMD) and snapshot (SNAP) control com-
mands may only be used following a RUN control command
for the program to which they apply. They are not allowed
for load modules created by the LINK command. The PMD
and SNAP control commands may appear in any sequence.

170 Program Debugging Aids

The dump routines list the current Program Status Double-
word (PSD) and registers, followed by the requested memory
areas. In the case of PMD and PMDI, any pages gotten by
M:GP and M:GCP are also listed. Figure 16 shows the for-
mat of a dump printout.

Onlyone page of storage is reserved for debug control com-
mand Functional Parameter Tables (FPTs) generated by the
program loaders, If this limit is exceeded, the following
error message is listed:

TOO MANY DEBUG COMMANDS

A location appearing in a debug control command may be
listed as a hexadecimal address, an external definition, or
an object module name. Addresses relative to external
definitions consist of the label of the definition optionally
followed by a signed hexadecimal addend value, for ex~
ample: LOC+B.

All dynamic debug commands (i.e., SNAP, SNAPC, IF,
AND, OR, COUNT) cause the specified instruction to be
replaced by a monitor call. The replaced instruction will
be executed after the specified action takes place.

POSTMORTEM DUMPS

A postmortem dump control command requests the monitor
to dump a selected area of memory. Such a dump is
termed "postmortem' because it is performed after the pro-
gram has been executed or terminated due to error (i.e.,
"errored"). If an error is detected during program exe-
cution, the monitor lists an appropriate error message .
on the LL device, in addition to listing the dump output
on the DO device,

Any number of separate program areas may be specified
for a program, in one or more postmortem dump commands.
If no program areas are specified, all areas having a pro=-
tection code of 00 will be dumped. If a single job includes
several programs to be loaded and executed separately,

each such program may have one or more associated post-
mortem dump control commands. The dump printout is in

. hexadecimal and BCD.

Postmortem dumps are requested by the PMD control com-
mands, PMD, PMDE, and PMDI.

USERS PROGRAM STATUS DOUBLEWORD

XXXXXXXX — XXXXXXXX *eeeeee®

where
x equals the hexadecimal representation of the PSD,

e equals the EBCDIC representation, if printable.

USERS GENERAL REGISTERS

XXXXXXXK XXXXXXXX ces XXXXKXXXX *eeecee®
XXXXXXXK XXXXXXXX el XXXXXXXX *eeeeee*
where
x equals the hexadecimal representation (eight words per line) of the general registers.

e equals the EBCDIC representation, if printable.

THE FOLLOWING SEGMENTS ARE PRESENTLY IN CORE

List of the segments in core if the program is an overlaid program.
ALL USERS DCBS FOLLOW

List of user's DCBs,
SYSTEM CFU FOR ABOVE DCB

List of the CFU if the PMDE control command was used and the DCB is open to a file,
SYSTEM INDEX BUFFER FOR ABOVE DCB

List of the index buffer if the PMDE control command was used and the DCB has an index buffer assigned.
SYSTEM BLOCKING BUFFER FOR ABOVE DCB

List of the blocking buffer if the PMDE control command was used and the DCB has a blocking buffer assigned.
USER~-SPECIFIED DUMP LIMITS FOLLOW

List of any user-specified dump limits or profection types.
USERS DYNAMIC PAGES FOLLOW

List of any presently allocated pages obtained by an M: GP procedure call.
USERS COMMON DYNAMIC PAGES FOLLOW

List of any presently allocated pages obtained by an M: GCP procedure call.

Figure 16. Format of a Dump Printout

Postmortem Dumps 171

PMD The PMD control commands cause a specified dump
to occur, These control commands must follow the RUN
control command for the program to which they apply.

The form of the PMD control command is

PMD
PMDE [,segment][(from, to), A0 (pP)]
PMD
where
PMD causes the PSD, registers, the segment names

presently in core (if an overlaid program), all
DCBs, the specified dreas, user's dynamic pages,
and user's common dynamic pages to be dumped,

PMDE causes (in addition to the information dumped
by PMD) the system Job Information Table (JIT)and
for each DCB that is open to a file, the system
Control File Unit (CFU), and the system FPOOLs

to be dumped.

Both PMD and PMDE cause a specified dump to
occur only if an error occurred during program
execution or if the program has returned control
to the monitor through an M:ERR or M:XXX

procedure,

PMDI causes a specified dump to occur whether or
not any errors have been detected. All areas to
be dumped must lie within the designated overlay
segment,

segment specifies the name of an overlay segment
containing the areas to be dumped. If the segment
name is omitted, the specified area currently in
core will be dumped. To dump only the root, the
name of the root segment is specified. If the spec-
ified segment is not in core, no dump will occur.

from, to specifies the location of the beginning
(from) and end (to) of an area to be dumped.
Either "from" or "to" may be expressed as a rela=
tive hexadecimal location (i.e., an external defi-
nition followed by an optional hexadecimal addend
value) or a positive (preceded by a "+" character)
absolute hexadecimal address.

pp specifies the memory=-access class that is to be
dumped.

where
00 =Read, write, or access from.
01 = Read or access from.

10 = Read only.

172 Snapshot Dumps

and where
Read = Program can obtain information from.
Write = Program can store information into.

Access = The computer can execute instruc=
tions stored in the protected area.

Examples:

(1 PMD

This example specifies that the data areas of the program
currently in core are to be dumped. It is equivalent to

!PMD (00).

(PMD, UNO (10)

This example specifies that all areas of overlay segment
UNO that have a memory-access code of 10 (i.e., memory
access 10) are to be dumped.

KPMD, EIN (LOC1+5, LOC2-A)

This example specifies that the area to be dumped is that
part of overlay segment EIN beginning five words higher
than location LOC1 and ending ten words lower than LOC2.

(PMD (10), (00)

This example specifies that all areas of the program root
segment that have a memory~access code of 10 or 00 are
to be dumped.

SNAPSHOT DUMPS

A memory snapshot dump provides an instantaneous "picture"
of program conditions existing at a particular point in time
during program execution. Such a dump can be obtained
just prior to the execution of any specified instruction in a
user's program. Six control commands and six equivalent
procedures are provided for specifying the circumstances
that will produce a snapshot dump and the portion of mem-
ory that the dump will include.

Differences between using a control command and an equi-
valent procedure are: (1) there is no limit to the number

of program areas that can be dumped by a single control
command, while the procedures can dump only one; (2) the
segment and loc fields are used only for control commands;

',.,/

1'/1‘
and (3) the loc specified in the control commands must
contain an executable instruction that is not altered or
replaced during program execution. This final resfruction
" is necessary because the monitor replaces the contents of
the location with a trap to the monitor's snapshot dump
@utine. The initiating location may contain any type of
executable instruction (e.g., o BAL, LAD, MSP, FDS,
or EXU instruction). In addition, the procedures may not
be the target of an EXU instruction because word 6 of the
FPT contains a branch instruction to the location following
the procedure CAL. For example, following execution of
the instruction at EP, control would be returned to the user
at TAB+1 instead of at EP+1,

EP EXU TAB
TAB M:SNAP 'SNAPT', (HERE+14, THERE-1)

If the M:DO DCB has not been REFed or defined prior to
an M:SNAP or M:SNAPC procedure reference line, it will
be REFed by the procedure.

SNAP The SNAP control command (and M:SNAP, the
corresponding procedure) requests the monitor to take an
unconditional memory snapshot.

The form of the SNAP control command is

ISNAP[,segment]loc,com|, (from[,to])]. . .

where

segment specifies the name of an overlay segment
containing the location initiating the dump and
also the areas to be dumped. If omitted, the root
is assumed,

loc specifies the location at which the dump is to
be initiated. That is, the specified dump is to
oceur just prior to the execution of the instruction
at "loc". Note that "loc" (and either "from" or
"to", below) may be expressed as a relative
hexadecimal location (i.e., an external definition
followed by an optional hexadecimal addend
value) or a positive absolute hexadecimal address
preceded by a + character,

com specifies a string of up to eight alphanumeric
comment characters that are to be printed with the
dump oufput. Note that at least one such comment
character must be specified in the command.

from specifies the location of the beginning of an
area to be dumped,

to specifies the location of the end (i.e., highest
core location) of an area to be dumped.

The form of the M:SNAP procedure is

M:SNAP 'com' , (from[,t0]) [, NREGS]
where com, from and to are as specified above in the SNAP
control command.
NREGS, if specified, suppresses the printing of the PSD
and the registers in the map; this feature is only available
with the M:SNAP procedure.
Calls generated by the M:SNAP procedure have the form

CAL1,3 fpt

where fpt points to word 0 of the FPT shown below.

word 0

X'00' 0 0|P, Chained FPT

0 1 2 314 5 6 7018 9 10 |'Ii|2 1314 |5i16 17 18 19120 21 22 23124 25 26 27128 29 30 31

Chained FPT is the address of an FPT for some other CALI, 3
that is to be executed immediately following the current
CAL1,3. |If it is zero, FPT is not chained.

P, specifies whether the snap of the user's PSD and regis-
ters is to be suppressed; if set, they are not printed.

word 1

*10 0| First address to be dumped

O 7 7 314 5 6 718 9 10 1111z 13 14 15116 7 18 120 21 22 73124 %5 26 7128 25 0 31
word 2

*0 0| Last address to be dumped
0T Z 314 56 718 5 10 iz 13 1 15116 17 18 120 21 22 B2 35 2 T3 B 30 3
word 3

First four characters of identifier

T 1 Z 014 5 6 718 9 10 1111z 1314 15116 17 18 19120 27 22 23124 75 26 27128 5 30 31
word 4

Last four characters of identifier

0 1 2 314 5 6 7&8 9 10 11112 13 14 |5i|6 17 18 19120 21 22 23124 25 26 27128 29 30 31

This is an optional 1-8 characters the user wants printed
with his dump, if it occurs,

word 5

Code for NOP or replaced instruction
01 2 3i4 5 6 7i8 9 10 N2 13 14 15i|6 17 18 |9i20 21 22 23124 25 26 27128 29 30 31

If the CALI, 3 is to be executed as the result of a debug

- control command (SNAP, eic.), this is the instruction

from the user's program that was replaced by the CALI1, 3,

Snapshot Dumps 173

word 6

Code for "BCR,0 Z+1" where Z is loc, of CALI,3

R BREEEENLEEE

W T iE e a7 a8 el 32 25T 25 20 2128 29 30 31

Examples:

ISNAP TAB, SNAPIT, (HERE+14, THERE-T)

This example specifies that the area beginning twenty word
locations higher (in address) than location HERE and ending
one word location lower than THERE is to be dumped just
prior to the execution of the instruction at location TAB,
The message "SNAP1" is to be printed with the dump, Since
segment is not specified, the root is assumed.

M:SNAP 'SNAP1', (HERE+14, THERE-T)

The call generated by this procedure, if located at TAB in
the user's program, would produce the same dump as the
SNAP control card example above.

SNAPC The SNAPC control command (and M:SNAPC,
the corresponding procedure) requests the monitor to take
a conditional memory snapshot.

The form of the SNAPC control command is

ISNAPC[,segment] flag,specification

where
segment specifies the name of an overlay segment
(see SNAP),
flag specifies the name of the test identifier, It

may consist of any character string from one to
eight characters in length, Since the monitor
does not associate the flag with the user's program,
no confusion with program symbols can arise, The
normal state of the flag bit associated with a flag
(in a table established and maintained by the
monitor) is the set state, It is set and reset by
means of the IF, AND, OR, and COUNT control
commands. Unless the flag bit is set, the spec-
ified dump cannot take place.

specification must include both of the required
parameters of a SNAP control command (i.e.,
initiating location and comment string) and may
also include any or all of the optional specifica-
tions (see SNAP),

The form of the M:SNAPC procedure is

M:SNAPC flag, 'com’, (from,to) [, NREGS]

174 Snapshot Dumps

where com, from,to, and NREGS are specified above in the |

SNAP control command, and flag is as specified above in

the SNAPC control command, except that the test identifier

must be the name of a location within the user's program.

Calls generated by the M:SNAPC procedure have the form
CAL1,3 fpt

where fpt points to word 0 of the FPT shown below.

word 0

~+— —t

X'o1t 10 0 P] Chained FPT

[R I S-S I VR ¥ B O F Y TSV 7 O N) 7 0 7 S R R

where P] has the same meaning as in M:SNAP above.

words 1 through 6 of the FPT have the same form as shown
above for the M:SNAP procedure.

word 7

*10 0 Flag address

T B R S - TV F) R A RS 7N) WV P T Y TR T ¥ 1 7 M ER T A PR Ml

Examples:

ISNAPC, NIM AT5, LUP+1, TP33

This example specifies that, if flag AT5 is in the set state
just prior to the execution of the instruction whose memory
address is one (word) greater than that of LUP (in overlay
segment NIM), then all general registers and the PSD are
to be dumped. If the dump occurs, the message "TP33" is
printed with the dump.

M:SNAPC AT5, 'TP33'

The call generated by this procedure, if located at LUP in
the user's program, would produce the same dump as the
SNAPC control card example above.

IF The IF control command (and M:IF, the corresponding
procedure) may be used in conjunction with a conditional
snapshot command (see SNAPC). It requests the monitor to
make a specified test at a designated location and, if the
test condition is found to be true, to set the flag bit asso-
ciated with the conditional snapshot, If the test condition
is found to be false, the flag bit is reset by the monitor,

Since the IF contfrol command may be used in conjunction
with other dynamic debug commands (see AND and OR),
the relative sequence of such commands may affect the

~ performance or inhibition of the dump. It is the user's

responsibility to sequence such commands in the order
dictated by the-logical requirements of the conditional
dump.

,,/
S
/
Note that the instruction at the test location specifigd in
a dynamic debug command must be executed pnor*ﬁ the
execution of the instruction at the location that:initiates

" the dump.

The IF control command is of the form

11F[,segment] flag, loc, (> x][,b]] ey I2, xz[, b2])

where

segment specifies the name of an overlay segment.

flag specifies the name of the test identifier (see
SNAPC).

loc specifies the absolute or relative (external def-
inition “taddend]) hexadecimal location at which
the test is to take place. That is, the specified
test is to occur just prior to the execution of the
instruction af "loc".

and | specify locations that are to be compared

as specified by "r" (see r option). They may be
either absolute or relative and may be lndlrec’r
(*1.).

x1 and xo specify index registers to be used to
modify the addresses specified by (1 and g,
respectively. A zero may be used to specify that
indexing is not to be used.

by and by specify the number of bytes to be com-
pared, The permissible values and their meanings
are

Value Meaning

Byte O
Halfword 0

Ful lword

SO A N -

Doubleword

The values of by and by are normally the same but
may be different, If omitted, the value 4 (j.e.,
fullword) is assumed.

specifies the type of comparison to be made. The
permissible values and their meanings are

Value Meaning
GT Greater than
LT Less than
EQ Equal to
GE Greater than or equal fo
LE Less than or equal to
NE Not equal

The form of the M:IF.procedure is

M:IF flag, (I],x b,)

]I 'Ilrl 2IX21

where flag, 1, x, b, and r are as specified above in the
IF control command,

Calls generated by the M:IF procedure have the form
CAL1, 3 fpt

where fpt points to word 0 of the FPT shown below.

word 0
X'02' 0—0 Chained FPT
Tz 314 5 6 718 T W 5 B8 T 18 Wi 2T 22 B % T o
word 1
%

Instruction to load I] data info register 0
0 1 2 3'4 5 6 7i8 9 10 11112 13 14 15116 17 18 19120 21 22 23[24 25 26 27123 29 30 31

word 2

* Instruction to load |9 data into register 0

T T 31i 5 6 718 9 10 Nz 13 14 5116 17 18 W12 27 27 3124 55 7 27128 25 30 31

word 3

~+

Instruction to branch if specified relation (r) is true
0 1 2 314 5 6 718 9 10]]ilz 13 14 |5-i]6 17 18 19(20 21 22 23124 25 26 27128 29 30 31

r Instruction
GT BCS, 1 0
LT BCS, 2 0
EQ BCR, 3 0
GE © BCR, 2 0
LE BCR, 1 0
NE BCS, 3 0
word 4
0 0

0T Z 314 5 6 718 9 10 11z 13 14 15116 17 16 Wi 21 22 B124 25 26 77158 5 303

word 5

‘NOP instruction or replacement instruction

T 7 2 314 3 & 718 5 10 111213 14 1511617 18 15120 21 22 B 2A 55 B DB B 5 3t

word 6

Code for "BCR,0 Z+1" where Z is loc, of CALI,3

T 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 7

1+lo 0

Flag address

.
R R S T B UL R O T) RN VA T) O R A M 7 B K 2 W R A i T

Snapshot Dumps 175

Examples:

IIF TAU, ETA+1, RHO+A, 4, EQ, PSI-5, 5)

This example specifies that two words in core storage are to
be tested to determine whether they are equal (i.e.,
identical). One of these two words has an address that is
ten word locations greater than that of external definition
RHO, plus the contents of index register 4, The other word
to be compared has an address that is five word locations
less than that of external definition PSI, plus the contents
of index register 5. The example also specifies that the
test is to occur just prior to the execution of the instruction
that is one word location higher than external definition
ETA. If the specified test gives a true result, the flag
named TAU is to be set; otherwise, the flag is to be reset,

M:IF TAU, (RHO+A, 4, EQ, PSI-5, 5)

The call generated by this procedure, located at ETA+1,
would result in the same test as the IF control command
above.

AND The AND control command {and M:AND, the
corresponding procedure) may be used in conjunction with
a conditional snapshot command. It requests the monitor
to make o specified test at a designated location, but only
if the flag bit for the associated snapshot is in the set state
when the test is to be made. If the test condition is found
to be true, the flag bit remains set; otherwise, the flag bit
is reset. If the flag bit is in the reset state when the test
is to be made, the test is not performed and, unless the flag
bit is set as a result of some subsequent command, the as-
sociated snapshot does not occur.

The AND control command has the form

IAND[,segment] specification

where

segment specifies the name of an overlay segment.

specification (see IF contro! command).

The M:AND procedure has the form

M:AND specification

where specification is the same as M:IF,

176 Snapshot Dumps

Calls generated by the M:AND procedure have the form
CAL1,3 fpt
where fpt points to word 0 of the FPT shown below,

word 0

X'03' 0—0 Chained FPT

L B R B R [O N B 7 W 1) N T VN -1 Y Y B YU T T v T o

Words 1 through 7 of the FPT have the same form as shown
above for the M:IF procedure,

OR The OR control command (and M:OR, the correspond-
ing procedure) may be used in conjunction with a condi-
tional snapshot command, It requests the monitor to make
a specified test at a designated location, but only if the
flag bit for the associated snapshot is in the reset state when
the test is fo be made. If the test condition is found to be
true, the flag bit is set; otherwise, the flag bit remains
reset and, unless the flag bit is set as a result of some sub-
sequent command, the associated snapshot does not occur.

The OR control command has the form

10R[,segment] specification

where
segment specifies the name of an overlay segment.
specification (see IF control command).

The form of the M:OR procedure is
M:OR specification

where specification is the same as M:IF,

Calls generated by the M:OR procedure have the form
CAL1,3 fpt

where fpt points to word 0 of the FPT shown below.

word 0

X'04' 0—0 Chained FPT

: " " — n
0 1 2 314 56 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Words 1 through 7 of the FPT have the same form as shown
above for the M:IF procedure,

COUNT The COUNT control command (and M:COUNT,
the corresponding procedure) allows the user to specify an
iteration range (and steps within that range) in which a
designated test identifier (i.e., a flag for a snapshot dump)

'

e

s

will be set, A separate internal counter is established by
the monitor for each COUNT command and the.‘count is
incremented by one whenever (i.e., just beforg] an instruc-
tion at a specified location is executed, The iteration
count is then tested to determine whether the flag for the
specified dump will be set or reset. COUNT operates in-
dependently of any OR, IF, or AND commands.

The flag for the designated dump will be set if the current
count is within the range of the specified start and end
count, and if the quotient "(count-start)/step" is an integer.
Otherwise, the flag will be reset,

The COUNT control command has the form

ICOUNT [,segment] flag, loc, start, end, step

where

segment specifies the name of an overlay segment,

specifies the name of the test identifier (see
SNAPC).

flag

loc specifies the absolute or relative (external
definition [+addend]) hexadecimal location at
which the count is to be incremented by one.
start specifies the decimal count atwhich the testing
of the count is to begin, When the count equals
“start", the flagisset (evenif "start" isequal to zero),

end specifies the decimal count at which the in-
crementing of the count is to cease. A maximum

value of 2,147,483,647 may be specified. -

step specifies the decimal count increment that

determines the intervals (within the range desig-
nated by "start" and "end") at which the flag can
be sef so that conditional dumps can be taken,
Both "step" and "start" must be less than "end".
The format of the M:COUNT procedure is
M:COUNT flag, start, end, step

where flag, start, end and step are as specified above in
the COUNT control command,

Calls generated by the M:COUNT procedure have the form
CAL1, 3 fpt
where fpt points to word 0 of the FPT shown below.

word 0

X'05' 0————0 Chained FPT

01 2 3145 6 718 9 1011012 13 14 15i|6 17 18 19120 21 22 23724 25 26 27128 29 30 31

word 1

Binary number to start count

0 1 2 314 5 6 718 9 10 nl12 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 a1

word 2

Binary number to end count

T 1 2z 314 5 6 718 9 10 IIilZ 13 14 15016 17 18 19120 21 22 23124 25 26 2728 29 30 31

word 3

Binary number specifying step intervals
0 1 2 3i4 5 6 7J|8 910 112 13 14 15116 17 18 19120 21 22 231’21&25 26 27128729 30 31

word 4

0 0

01 2 3i4 5 6 7JIB 9 10 112 13 14 15716 17 18 I9T20 21 22 23i24 25 26 27128 29 30 31

word 5

NOP instruction or replacement instruction

0 1 2 314 5 6 718 9 10 1213 1415116 17 18 19120 21 22 23124 25 26 2728 29 30 31

word 6

Code for "BCR,0 Z+1" where Z is loc, of CALI,3

01 2 3i4 5 6 7i8 9 10 Hil2 13 14 liilé 17 18 19i20 21 22 23|l24 75 26 27128 25 30 a1

word 7

*0— 0 Flag address

T T 3Ta 5 6 718 T 0 Tz 13 14 516 17 18 B0 21 22 B2 35 26 77128 B 0 7

Examples:

ICOUNT FLG26, HERE+$, 1, 10, 1

This example specifies that the name of the flag to be set
is FLG26, the count is to be incremented by one just prior
to executing the instruction located six word locations -
higher than external definition HERE, the count range
within which the count is to be tested (to determine if
"count=start/step" is an integer) is from 1 to 10, and the
flag is to be set whenever the count is incremented by one.
Note that, in this example, the flag is set when the count
reaches 1,

M:COUNT FLG26, 1,10, 1
The call generated by this procedure, if located at HERE+6,

would produce the same results as the COUNT control com-
mand in the prior example.

'DEBUG ERROR MESSAGES

" Table 29 lists the self-explanatory error messages that may

occur when debug commands are used.

Debug Error Message 177

Table 29. Debug Error Messages

Key Message

040358 BAD DEBUG LOCATION NAME -

040359 BAD IF/AND/OR TEST NAME —

04035A BAD SNAP FROM/TO NAME —

040358 BAD PMD FROM/TO NAME -

04035C BAD MODIFY NAME —

04035E TOO MANY DEBUG COMMANDS

04035F INVALID DEBUG RECORD TYPE

040360 RUNNER RECEIVED ABOVE 1/O ERROR READING LOAD MODULE WITH KEY =
040362 RUNNER RECEIVED ABOVE 1/O ERROR READING DEBUG FILE

040363 BAD START ADDRESS NAME— .

040364 MODIFY LOCATION NOT WITHIN PROGRAM —

040365 START ADDRESS NOT WITHIN PROGRAM —

040366 BAD SEGMENT NAME IN DEBUG COMMAND —

040367 CAN'T GET PAGE AFTER PURE-PROCEDURE EOR DEBUG AND CLOBBER TABLE
040368 PMD FROM/TO ADDRESS NOT WITHIN USER AREA —

040369 DEBUG LOCATION NOT WITHIN PROGRAM —

04036A SNAP FROM/TO ADDRESS NOT WITHIN USER AREA —

04036C PMDS AND DEBUGS NOT ALLOWED FOR LOAD MODULES BUILT BY LINK
04036D NOT ENOUGH CORE TO PROCESS DEBUG COMMANDS

04036E MALFORMED LOAD MODULE HEAD OR TREE RECORD

178

Debug Error Message

8. PREPARING THE PROGRAM DECK

INTRODUCTION

The following examples show some of the ways that program
decks may be prepared for monitor operation. Standard
system assignments are normally assumed,

SYMBOLIC DECK TO PROGRAM LISTING

Next Card

Symbolic Program Unit
l IProcessor Name SI,LO
1JOB 1234, USER, 5

As indicated in the example, a program listing can be ob-
tained even though no binary (object) output is requested.

In this and subsequent examples of program decks, the "next

card" could be any appropriate conirol command cord such
as JOB or FIN.

COMPRESSED DECK UPDATE

Next Card

Compressed Program Unit

Symbolic Correction
IMETASYM $I,CI1,CO, LO

1JOB 1234, USER, 5

This example shows how a compressed symbolic deck can be
updated using uncompressed symbolic corrections.

SYMBOLIC DECK TO BINARY DECK

Next Card

' Symbolic Program Unit
I IProcessor Name SI, BO
1JOB 1234, USER, 5

This excmple shows how a binary deck can be output using

an uncompressed symbolic deck as input. A deck produced
in this way will be in standard Sigma object language and

may be loaded from a card reader, subsequently, as a bi-
nary object module.

SYMBOLIC DECK TO BINARY FILE ON DISK

Next Card

Symbolic Program Unit
IProcessor Name SI,LO,BO
IASSIGN M:BO, (FILE, ABC) -
1JOB 1234, USER, 5

This example shows how a binary (object) file on disk can
be formed from the output of a processor. The disk file
thus formed may be accessed thereafter by means of the file
name ABC. The example specifies that a program listing
is to be output also; but this is optional.

The file becomes a permanent user's file. That is, it is
placed in the disk area allocated to permanent storage,
since all processor output is treated by the monitor as a.
SAVE file (see ASSIGN control command).

. Preparing the Program Deck 179 .

PROCESS, LOAD, AND EXECUTE

This example shows how a program can be input in symbolic
form; then processed, loaded, and executed under .monitor
control. If assembly and run-time are in excess of 15minutes,
the job is aborted. The title "SAMPLE JOB" is printed at
the top of each page of the assembly listing.

rNext Card

I Data De:l:
| 1DATA
| !PMD (LOC, LOC+3E7)
IRUN (LMN, SAMPL), (START, LOC)W

[1LOAD (LMN, SAMPL), (GO)
| IProcessor Name SI, LO, GO, CO

———— ITITLE SAMPLE JOB

| ILIMIT (TIME, 15)
1JOB 1234,USER, 5

The processor accepts symbolic input from the SI device
(in this example, a card reader) and produces compressed
symbolic output as well as binary object code and a
program listing on the system devices to which such
functions are currently assigned (by standard system
assignments).

The name SAMPL is associated with the load module,
and no load map is output. After being loaded into
core storage, the program is executed beginning with the
instruction at symbolic’ location LOC. If-an error is de-
tected during execution of the user's program, a post-
mortem dump is taken of the 1000 words of the program
starting at location LOC.

CREATE FILE FOR USE BY ANOTHER PROGRAM

This example shows how an output file (SHARE) can be
“created by one executing program (WRITE) in a user's

180 Preparing the Program Deck

job and then used by another executing program (READ)
in the same job.

l Next Card \
{ IRUN (LMN,READ)
| IASSIGN M:EI, (FILE, SHARE)
| IRUN (LM, WRITE)

| 1(SAVE)
[TASSIGN™ M:EO, (FILE, SHARE), ;

Preceding Card

UPDATE FILE, OBJECT MODULE, AND LOAD
MODULE OF USER'S PROGRAM

l Next Card
[IRUN (LMN, PROG)
[1 eF (ROM))

Symbolic Update Deck
IMETASYM $I,CO, BO, CI

[ISOURC2), (SAVE) '
[1ASSIGN M:CO, (FILE, ; .
1 1 ASSIGN M:SI, (DEVICE, C)
| 1ASSIGN M:CL, (FILE, SOURC1)
| {(SAVE)
IASSIGN M:BO, (FILE,ROM), ;
Preceding Card

This example shows how a user can accomplish the following:
1. Update a symbolic file (SOURC1 becoming SOURC2)

in the user's account.

2. Create a new relocatable object module (ROM) and
place it in the user's account,

3. Execute the program so formed.

EXECUTE PROGRAM FROM USER'S ACCOUNT,
USING DEBUG FEATURE
rNexf Card
[1SNAP LOOP, 1,(TEMP,XTEMP)
| IRUN' (LMN, PROGRAM)
Preceding Card

This example shows how a program (PROGRAM) from the
user's account can be executed, and a snapshot dump of a
specified program area (from TEMP to XTEMP) taken.

CREATE AND EXECUTE A TEMPORARY PROGRAM

I Next Card
r!RUN (LMN, NOSAVE)

Binary Deck
[ILOAD (LMN, NOSAVE)
Preceding Card

This example shows one way in which a user can create
a temporary load module (NOSAVE) that can be executed
but is released at the end of the job, because the PERM
option is absent from the LOAD control card.

CREATE A FILE WITH PASSWORD

Next Card
IRUN (LMN, WRITE)
1(SAVE), (PASS, SECRET)

| 1ASSIGN M:EO, (FILE, JOBI),;
1JOB 123,HAS, 4

This example illustrates how a user can create a file
(JOBT) having a password (SECRET). It assumes that a
user's program (WRITE) capable of writing into the file
(e.g., via an M:WRITE procedure call referencing the
M:EQ DCB) has been loaded previously.

CREATE A FILE HAVING PRIVILEGED READ ACCESS

l Next Card
| IRUN (LMN, WRITE)
| 1(SAVE), READ, 122), (PASS,PSST)
[IASSIGN M:EO, (FILE, PRIVATE), ;

1JOB 123,SCAN, 4

Here, a user creates a file (PRIVATE) having a password
(PSST), specifying also that other jobs with account num-
ber 122 may read the file (but may not write on it).

READ A FILE HAVING PRIVILEGED READ ACCESS

I Next Card
[IRUN (LMN, READ)
| 1(PASS, PSST)
- | JIASSIGN M:EJ, (FILE, JOB2, 123), ;
1JOB 122,HEY,3

This illustrates how a user can read a file (JOB2) having
a password (PSST) for which privileged read access has
been established, Note that the account number asso-
ciated with the file (123) must be given as well as a
password.

Preparing H'\e~ I"rograrﬁw[‘)mec’k —ig;

9. PROCESSORS

INTRODUCTION

A variety of processors are available to batch users. Four
of these processors are described in this chapter. Others
are described in their own reference manuals (se¢ Chap~
ter 1). All are called, if available in a particular instal-
lation, by the processor control commands described below.

PROCESSOR CONTROL COMMANDS

Processor control commands indicate to the monitor that
control is to be transferred to a specified processor. They
specify the types of input to be accepted and the types of
oufput to be produced. '

There are no restrictions as to how many or what kind of
processors may be added to the operating system. Processors
may be created, updated or deleted under normal batch

operations. System processors (programs) must be inserted
in the operating system under the monitor's :SYS system
account number.

All processors * ;he :SYS account may be called by Inante,
where name is the name of o processor or isthe ndme of the
load module specified in a processor control command. User
programs (processors) are called by IRUN (LMN,name).

The form of a monitor (:SYS) account control command is

Iname [options)

where
name is the name of aprocessor in the :SYSaccount.
options is a listing of input and output options for

the processor.

For an explanation of the options available for a specific
processor hot described in this chapter, see the separate
manual for the particular processor.

PERIPHERAL CONVERSION LANGUAGE
! INTRODUCTION

The Peripheral Conversion Language (PCL) is a utility
processor designed for operation in a batch or on-line en-
vironment. It provides for information movement among
card devices, line printers, on=line terminals, magnetic

, tape devices, and RAD or disk pack storage.

—léé - Pl’OéeSSOI’S .

PCL is controlled by commands supplied through on-line
terminal input, through a file containing PCL commands,

or through command card input in the batch job stream.
The command language provides for single or multiple file
transfers with options for selection, sequencing, formatting,
and conversion of data records. Additional file mainte-
nance and utility commands are provided. The actual input/

- output operations are carried outusing standard system CAlLs.

The following description of PCL is oriented toward the
batch user. However, descriptions of PCL command op-
tions include on-line as well as batch options.

For batch operatfion, PCL is activated by a IPCL control
command card in the job stream. Once active, PCL reads
subsequent command cards directly through the M:SI DCB
until terminated by an END command card or some other
control command card. Input and output is done through
the M:EI and M:EO DCBs, respectively. Error messages are
transmitted to the device currently assigned to the M:DO
DCB. The user has the option of building a file of PCLcom-
mands and having the commands executed, by preceding the
call to PCL by an ASSIGN command that assigns M:SI to
the file of commands.

SYNTAX CONVENTIONS

PCL is a free form language with a few restrictions imposed
for simplicity in implementation and use. These restrictions
are outlined below:

1. Blanks preceding or following an argument field are
. permitted; embedded blanks are not permitted except
within quotes, which delimit a character string.

2. At least one blank must follow each command verb,
except REW and REM when followed by a number (*)
character, and must precede and follow each command
preposition (TO, ON, INTO, or OVER).

3. A PCL command may be continued from one card to the
next by ending the continued card with a semicolon
(i.e., a semicolon must be the last nonblank character.) |
There is no limit on the number of continued cards; how-
ever, a command that contains more than 1024 charac~
ters (exclusive of the semicolon continuation charac-
ters) will be rejected.

Example:

COPYALL LT#1#2#3#4 1o LT#,
AfB#CH#D

4. "End-of-command" is indicated by the end of the
input record (column 72) for card input or by a car-
riage return or line feed character for either card or
on=line terminal input.

5. Only one input device and only one ocutput device may
be open at any given time.

6. Any command that begins with an asterisk is treated
as a comment line and is output through the M:LL
DCB.

SOURCE AND DESTINATION SPECIFICATION

Most PCL commands require the specification either of a
source alone or of a source and a destination, These speci-
fications can take one of two forms: simple or complex.

A simple specification consists of a device type, a logical
device stream=id, or an operational label.

Device types that are known and checked by PCL are listed
in Table 30. Other device type codes may be specified and
are checked for validity by the monitor. These device type
codes correspond to unformatted unit record equipment and
their use results in action that is very close to direct device
access.

Any logical device stream that vvas defined at SYSGEN may
be specified and is identified by its stream-id (e.g., L1,
C1, P1).

Any operational label that was defined at SYSGEN may be

specified. The standard system operational labels and their
default device assignments are listed in Table 2.

Table 30. PCL Devize Types

Device

Type Description

CR Card reader (not available for on=line oper-
ations). For batch operations, files are sep-~
arated by two successive EOD control cards.

cp Card punch.

LP Line printer.

ME For time-sharing mode, on-line terminal.
(Input is terminated by an ESC F — end-of-
file — code.) For batch processing mode, card
reader for input and line printer for output.

A complex specification is required for devices with mount-
able volumes (magnetic tapes and private disk packs) or for
devices which may hold logically connected groups of rec-
ords called files. In most cases, each file has a name by
which it is known to the system. Files with names may be
contained on RAD, public disk pack, private disk pack,
Xerox labeled tape, or ANS labeled tape. Files without
names may exist on mangetic tape. Mountable volumes
carry internally a serial number and the creator's account
number,

Complex specifications allow the user to uniquely identify

device and file combinations by organization type, volume
identification, resource type, and file identification. When

90 17 64H-1(9/78)

a complex specification is required the user needs only to

provide enough information to uniquely identify the source

or destination of the data.

The general form of a complex specification is:
otfvol-id[-rt][/fid]
ot[*vol-id] [-rt){/fid] for destinations

where each of the fields are described briefly below and in
detail in the sections that follow:

for sources

ot is the organization type.
vol-id is the volume identification.
rt specifies a resource type and is the 2=character

identifier of adevice that was defined at SYSGEN
to be a resource.

fid is a file identification.

There are some exceptions to this general format. Some
PCL commands allow options to be specified which are
specific to the particular command. In most cases, the
options follow the complete source or destination speci-
fications. However, in some cases, the option may be em-
bedded in the complex specification. In addition, some
commands allow multiple volume=-ids and lists of files to
be specified.

ANS tape specifications are a special case. They have
the format

AT[#serial no.] [-rt] [/filename)

The serial number is optional if the file name is present.
Normally, both the file name and serial number are
specified. The serial number may be omitted only when
the file name specified is that of the first file on the tape.
In this case, the serial number of the tape should be com-
municated to the operator (e.g., on the job sheet or via
a MESSAGE command).

ORGANIZATION TYPE

The organization type specifies the type of disk or magnetic
fape that the data resides on. Valid organization types for
PCL are listed in Table 31.

Table 31. PCL Organization Types

Organization Description

Type

DC RAD storage. (See Default Disk
Pack, page 184,)

Dp Disk pack storage. (See Default
Disk Pack, page 184.)

LT Xerox labeled tape.

AT ANS labeled tape.

FT Free form tape. (Files are separated

by an EOF mark.) Note: When keyed
files are copied to free form tape, the
keys are lost,

Peripheral Conversion Language 183

FILE AND VOLUME IDENTIFICATION

A file identifier (fid) has three parts: name, account, and
pc:ssword.t A file name consists for PCL of 1 to 31 char-
acters,t which in general may be any characters except
the following PCL delimiters:

Blank . () ; / .

However, any character including these delimiters may be
used in a file nome if the name is delimited by single
quotes, e.g., '(A)'. Single quotes within such a file name
must each be represented by paired quotes.

A hexadecimal format may be used to represent a file name
that contains one or more unprintable characters, e.g.,
X'00E7'.

PCL translates any two-character names that start with an *
into three~character names. The first two characters (of

the three-character name), which replace the *, are the
user's job id. For example, *G is the GO file.

When PCL outputs a file name, account, or password, it
prints the string in hexadecimal format if any of the charac-
ters do not belong to the EBCDIC 57-character set, unless
such characters have been read as input to PCL.

Account and password are one to eight characters from the
same set and may also be written as hexadecimal or char-
acter strings. The various combinations are written as
follows:
name file in current job account,
name.account file in specified account,

file in current job account
with password.,

name. . password

name.account,password file in specified account,
with password.

In general, a job may create, delete, read, or modify
files in the account in which it is running. However, files
in different accounts can only be read — not created, de-
leted, or modified. A file identifier is the same whether
the file is on RAD, disk pack, or labeled tape. However,
in order to access a file on labeled tape, the physical vol-
ume identifier must in general also be given.

To access a file on a private disk pack, the volume identi-
fier of the primary volume must be given. When creating
files on a disk pack, all volume identifiers for the volume
set must be specified. The following description of a vol-
ume identifier applies to disk pack as well as to labeled
tape.

A volume identifier (vol-id) consists of two parts: a serial
number and an account number.

fAn ANS tape file identifier consists of a name only.

MNote that most on-line processors allow a maximum of
10 characters for a file name. ANS tape file names are
limited to 17 charocters.

184 Peripheral Conversion Language

The account has the same format as described above, while
a serial number for devices other than ANS tape is one to
four alphanumeric characters of the same character set as
file identifier, except that the number sign () may not be
used unless the serial number is contained in quotes. An
ANS tape serial number may be up to six alphanumeric or
blank characters. The two permissible forms for a volume
identifier are as follows:

#serial no. [#seriul noJ ... [*serial no.)

volume(s) created, or to be created, in job
account.

#serial no. [#serial no) ... [#serial noJ.account

volume(s) created in specific account.

The # is a syntactic identifier used to introduce the serial
number, e.g.,

MEFA
#MEF 1#MEF2. C7308300

The optional serial numbers are used to indicate a multi-
volume file or set of files. A maximum of 50 serial num-
bers is allowed.

In general, o job cannot create files on a labeled tape or
disk pack in a different account than that in which it is
executing. However, it may read tapes or disk packs that
were created in different account.

Therefore, in subsequent command descriptions, the follow-
ing convention is adopted. If a volume identifier is used in
an input sense, where either of the above representations is
valid, then it will be symbolized as "#reel-id". However,
if it is used in an output sense, where only a serial number
is valid, then "#serial no." will be used explicitly. In
either case, up to 50 serial numbers may be specified if

a multi-volume file is involved. Free form tape (FT) only
needs to be identified by a serial number.

Scratch Tapes. Although it is not shown in the syntax des-
criptions of the PCL commands, a volume identifier is never
actually required for any command. The absence of a volume
identifier on a labeled tape or free form tape specification
implies that a scratch tape is to be used. If a scratch tape
is used for the first time in an input sense, an 1/O error is
reported. If a scratch tape has been written, a command
in the same PCL session that specifies a tape without a
volume identifier, in either an input or output sense, is
interpreted by PCL as referring to the same scratch tape.
PCL must be reentered if a second scratch tape is needed.

Default Disk Pack. Although it is not shown in the syntax
descriptions of the PCL commands, a volume identifier is
not required if the organization type code is DP. If the file

90 17 64H-1(9/78)

is random, the absence of o reel identifier on a disk pack
specification indicates that the public disk pack is to be
used. For other types of files, the absence of a volume
identifier causes the DP organization type code to be

A user wishes to list the disk pack in example 4. The
pack was created in account F65426QL, which is
not the user's account.

DPFPAK 1. F65426QL - DA

treated the same as DC.

CAPABILITIES

RESOURCE TYPE
The following is a list of available functions in PCL defined

in terms of the actual command verbs:

COPY device(s) and/or file(s) E_f or INTO device or

new file.

COPY device(s) and/or file(s) OVER or INTO device
or existing file,

COPYALL files in specified account on RAD or disk
pack TO labeled tape(s) or to a device.

COPYALL files in specified account on RAD or disk
pack TO job account on RAD,

COPYALL files on labeled tape(s) TO RAD or disk pack.

COPYALL files on labeled tape(s) TO files on labeled
tape(s) or to a device.

COPYSTD copy control file and all files indicated
within the control file,

DELETE specified files on RAD or disk pack.

DELETEALL deletes all or a portion of the user's RAD
files on RAD or disk pack.

ERRORS SAVE/REL controls the disposition of output
files when errors occur during copying commands.

The resource type must be a valid 2-character mnemonic for
a device which was defined at SYSGEN to be a resource.
Resource type is a qualifier to the organization type and is
necessary in order to uniquely identify the device. It is
needed only for devices with mountable volumes when more
than one type of device of the same organization type are
present on the system. Thus, when a system has only
800 bpi 9-track tape drives, the organization type LT, FT,
or AT uniquely identifies the device type and the resource
type specification is unnecessary. However, if the system
has, for example, both 9-track and 7-track tapes, then the
resource type must be specified.

SPECIFICATION EXAMPLES

The following examples illustrate simple and complex
specifications. The user should remember that a source or
destination specification requires only the minimum in-
formation necessary to uniquely identify the source or
destination.

1. A file called MYFILE in the user's account with the

password SECRET LIST a file directory for RAD, tape, or disk pack.

PRINT sends any waiting output for symbiont devices
DC/MYFILE. . SECRET to them,

REVIEW user's file directory on RAD or disk pack.

In most cases, "DC/" is not needed to identify the
file. However, it is required when specifying a file
name which could be confused with a PCL or CP-V
reserved name, Thus, DC/LP is a file; LP is a line
printer.

SPF space file #n files on free form (unformatted) mag-
netic tape.

SPR skip records tn records on free form (unformatted)
magnetic tape.

WEOF write end-of-file on current output device.

2. Afile called MYFILE contained on a two-volume REW rewind designated tape.
Xerox labeled tape set whose volume ids are 123 and SPE to end of last fil
456. The tapes are 1600 bpi, and the tape device space fo end of last file on tape.
identification was SYSGENed as BT. REM remove designated tape or disk pack.
LT#123#456 - BT /MYFILE TABS define tab settings for tab expansion.
MOUNT causes designated tape or disk pack to be
3. The same file as 2 above, on an ANS tape. mounted.
MODE OPTION COMPATIBILITY
ATH 123" # 456" - BT/ MYFILE
In the current version PCL, 7T and 9T are resource types
and are no longer used as mode options. However, for
4. The same file on a private disk pack whose device

identification was SYSGENed as DA,

DP*PAK1 - DA/MYFILE

90 17 64H-1(9/78)

"Wherever TO is specified, ON may be substituted.

Peripheral Conversion Language 185

compatability with previous versions of PCL, 7T and 9T
may still be specified as mode options in all of the com-
mands for which they were previously applicable. If 7T or
9T is specified as mode options, it will be treated exactly
as though it had been specified as a resource type.

FILE COPY COMMAND

The file COPY command permits single or multiple file
transfers to take place between peripheral devices or be-
tween file storage and peripheral devices. Options are
included for selecting, formatting, and converting data
records. When more than one keyed file is copied to a
single file, PCL can either merge or concatenate the files
(see "Record Sequencing" below).

COPY COMMAND FORMAT (GENERALIZED)

The COPY command is of the form

COPY sourcel[, source. .. destination

TO
OVER
INTO

where

source may be an input device such as card reader
(CR), a RAD file (e.g., ALPHA), a file on
private disk pack, or a file on Xerox or ANS
labeled tape or free form tape. File concatena-
tion or merging may be performed by specifying
more than one source device or file.

destination may be an output device such as card
punch (CP), a public disk file, a file on private
disk pack, or a file on Xerox or ANS labeled tape
or free form tape. Absence of a destination
specification is allowed and will normally cause
file extension to occur.

If the purpose of the COPY is to replace a RAD or disk file
currently existing in the user's account directory, PCL

requires that the preposition OVER be used in the command.

That is, COPY TO, OVER, or INTO creates a file, but
for the user's protection only COPY OVER can replace an
existing file. After this check, PCL opens the source de-
vices and files one at a time in the order given, and copies
them to the destination device or file. Source files are
closed after they have been copied. The destination device
or file is closed at the same time.

Note that the TO or OVER command preposition and the
destination are optional. If the COPY command contains
only a source specification, PCL uses the destination de-
vice or file defined on the most recently issued COPY
command containing a destination specification. (This is
illustrated in the sixth COPY example.) It should be noted
that file extension will occur in this case. Any PCL com-
mand except COPYALL may be used between the COPY
defining the destination specification and the COPY with
this specification omitted, since the output specification
will not be changed by these commands.

186 Peripheral Conversion Language

File extension may also be accomplished by using the
INTO preposition in the command.

COPY COMMAND FORMAT (SPECIFIC)

The specific format of the COPY command is

Source | —4mM =

clory] sd [(9)[/Fid [(s][, fid[(s)]]. -]

Source 2 —————

Gsdl)[/Fid (5] (i) . .10 -

Destination ——— M =

[ngR a1 /reoN)]

. where

sd represents the device portion of a source speci-
fication and may be aninput device type (Table 30),
a logical device stream-id, an operational label,
or one of the following:

DP

DC

DP#serial no. [-rt]
LT#serial no. [-rf]
AT [#serial no.] [-rt)
FT#serial no. [-rt]

where rt is the 2-character identifier of a device
that was defined at SYSGEN to be a resource.

/ separates a PCL identification code from the as-
sociated file specifications. The slash is only re-
quired if both device (sd or dd) and file (fid) speci-
fications are given.

fid represents file identification and has the form

. [account]. password
name

. account

The DC identification code is optional on o COPY
command referencing a RAD or public disk file.
For example, RAD file A may be specified in one
of two formats: DC/A or A. However, this flex-
ibility makes the codes in Table 30 reserved words.
For example, file CR must be referred to as DC/CR
or 'CR', never simply as CR. The fid is not op~
tional for ANS tapes.

P separates files on the same device.

; separates devices. (Interpreted as a continuation
character if it is the last nonblank character of a
card.)

(s) represents specifications for data encoding:

data codes (Table 32), formats (Table 33), modes

90 17 64H-1(3/78)

(Table 34), record sequencing (Table 35), ac-
counts (Table 36), ANS tape options (Table 37),
expiration time, and record selection. It has the
form

(option [, opﬁon]. o)

Specifications given at the device level apply to
all files on that device. Those given at the file

level apply to that file only and have precedence
if a conflict occurs between levels.

Data enceding is discussed in detail below.

dd represents the device portion of a destination
specification and may be an output device type
(Table 29), a logical device stream=-id, an op-
erational label, or one of the following:

pbp

DC

DP#serial no. [-rt]

LT[*serial no. (~rt]
AT[*serial no.][-rt
FT|#serial no._]'[-ri']J

where rt is the 2-character identifier of a device
that was defined at SYSGEN to be a resource.

Examples:

1. Assume that three consecutive files, each terminated
by a double |EQD mark, are to be copied from a card
reader to an existing RAD storage file called ALPHA,
(This would only be allowed in batch.) The PCL
command would be:)

COPY CR;CR;CR OVER ALPHA

or

COPY CR OVER ALPHA
COPY CR

COPY CR

2. Assume that a Meta-Symbol source program file, called
SOURCE, is to be copied from RAD storage to the line
printer. The command could be coded as

COPY SOURCE TO LP
This command could also be written as
C SOURCE TO LP

Assume that successive cards are to be copied from the
card reader to a new RAD storage file with the follow=
ing file identification: KD.2024.PLEASE. (This would
only be allowed in batch processing.) Two 1EODs are
used 1o signal the end of the card file. The COPY
command would be:

C CR TO KD. 2024. PLEASE

90 17 64H-1(3/78)

4. Assume that files B and C from 1600 bpi labeled tape

No. 57 are to be copied, in that order, to a new RAD
storage file called B. . PASS.

C LT#57-B1/B, C TO B..PASS

5. Assume file A from labeled tape No. 5, file D from
RAD storage, and all files on free form tape No. 8 up
to the next double end-of-file are to be copied to
file A on labeled tape Nos. 6 and 7. Tape No. 7 is to
be used only if No. 6 overflows.

C LT#5/A;D;FT#8 TO LT#647/A

6. Assume three successive sets of files, each separated
by a double end-of-file, are to be punched in cards
from free form tape No. 7236. Two !EODs are writ-
ten when the output device is closed.

C FT#7236 TO CP
C FT#7236
C FT#7236

or

C F1#7236;FT#7236;F T#7236 TO CP

DATA ENCODING

The COPY command may contain various codes and speci-
fications which either describe certain characteristics of
input and output files or devices, or which request various
types of data conversion or format changes in the output to
be produced. Partial files may be copied by use of record
selection and output records may have sequence identifica-
tion inserted or deleted.

A description of the available codes and specifications
follows:

Data Codes. Data codes (Table 32) describe the source or
destination data types to be expected or produced for de-
vices only.

Table 32. Data Codes

Code Meaning

E EBCDIC (default data code)

H Hollerith (FORTRAN BCD conversion)

Data Formats. Data formats (Table 33) describe the source
or destination record formatting to be expected or produced.

Table 33. Data Formats

Code Meaning

X Hexadecimal dump

C Meta-Symbol compressed

CRPT | Encryption seed
(seed)

Peripheral Conversion Language 187

The X option produces a single-spaced dump on the line
printer or terminal. The presence of an asterisk following

the word count in the dump indicates that omitted lines are

identical to the preceding line.

A C option on an input specification indicates that input is

in compressed format and is to be decompressed on output,
A C option on an output specification indicates that input
is in symbolic form and is to be compressed on output.

The CRPT option is followed by from one to eight hexa-

decimal characters which specify the seed for data encryp-

tion for keyed and consecutive files. Separate algorithms
are employed for keyed and consecutive files. A keyed
file that is encrypted cannot be decrypted if its keys are
stripped. Data encryption is described in Chapter 2.

Modes. Mode codes dictate the control modes for the
specified files or devices. They are shown in Table 34,

Table 34. Mode Codes — COPY Command

Table 34, Mode Codes — COPY Command (cont.)

Mode

Description

Mode

Description

BCD,BIN

Binary-coded decimal or binary mode.
These codes are valid for cards, poper tape,
and magnetic tape.

PK,UPK

7-track binary tape packed or unpacked.

SSp,DSP,
VFC

Single, double or variable format control-
led spacing on line printer or terminal.

NC

No carriage return. Removes carriage-
control character (X'15' or X'0D'), if
present, from each record on output. This
mode is the default mode if input is from
the terminal.

NB

No trailing blanks. Removes trailing blanks
(X'40'), if present, from each record on
output. This operation is performed after
NC, if specified.

VOL(n)

Volume number. The value n specifies the
volume to use for a multi-volume tape set.

CR

Retains carriage return, Must be specified
if carriage returns are to be retained when
copying 'ME' to a file or device.

TX

Tab expansion. Values specified on a PCL
TABS commond are used. If a PCL TABS
command was not issued, the tab values in
the M:UC DCB are used. If no tab values
are specified, single spaces replace tabs on
output.

LC.ucC

Translate alphabetic characters to lower
(LC) or upper (UC) case.

NF

No formatting. PCL does not produce any
output that is not in the input data (e.g.,
file nome to LP or separation of files to

LP/UC).

188 Peripheral Conversion Language

FA,NFA

File attributes. These codes specify whether
or not the attributes (i.e., variable-length
parameter list except name, account, and
password) of the source file are to be car-
ried over to the destination file, If the file
name remains the same from source to
destination and neither FA nor NFA is speci-
fied, the attributes are copied. [f the names
of the source and destination files are dif-
ferent, the attributes are not normally
copied; information specified in ASSIGN

or SET commands takes effect.

DEOD

Double end-of-file. Multiple source files
are copied into a single output file. Thus,
while COPY FT copies files including

single end-of-file marks up to a double end-
of-file, COPY FT (DEOD) copies files to

a double end-of-file without copying the
single end-of-file marks.

Print keys, If the file has a 3-byte key, the
listing is not to be in hexadecimal form and
the destination is a printer or terminal; the
file is assumed to be an Edit format file, The
use of the K option on output causes the key
to be decoded as an Edit line number in the
form xxxx,xxx and to be printed on the same
line with the record contents (Edit listing
format). A record sequence number pre-
cedes the key. For other types of keyed
files, the key is not decoded and prints on
the line preceding the record contents. If
the file is not keyed, only the record se-
quence number preceds the record contents.

DEN(800)

Dual density drive is to be written at

800 bpi.

DEN(1600)

Dual density drive is to be written at

1600 bpi .

ASCI

Conversion of code between EBCDIC in
core and ASCI! on tape is to be done.

EBCD

No code conversion is to take place.
EBCDIC code is used on tape,

JOB

Specifies that the file is temporary; it is to
be kept across JOB steps but released at

job termination. If the second and third
characters of the file name are colons (e.g.,
A::AFILE), the double colons are replaced
by the user's sysid,

Examples:

1. Assume that file A is to be copied to labeled tape
No. 4 on a dual density drive at 1600 bpi with
exactly the same attributes it had on RAD storage.

C A TO LT#4/A (DEN(1600))

90 17 64H-1(9/78)

2. Assume that RAD storage file A is in compressed form
and is to be converted to symbolic and listed on the
printer with double spacing.

C A(C) TO LLP(DSP)

3. Assume that line images are to be read from RAD stor-
age file A, converted from EBCDIC to Hollerith, and
written on a 7-track scratch tape in BIN mode.

C DC/A TO FT-7T (BIN,H)

4. Assume that a source file, SOURCE, containing tab
characters was created on-line and is to be punched
with tab characters expanded and carriage return
characters removed.

C SOURCE TO CP(TX,NC)

Record Sequencing. Insertion or deletion of sequence
identification for output data records is accomplished by
using record sequencing specifications (Table 35). These
specifications are available only as output options, All of
these options are mutually exclusive,

Table 35. Record Sequencing Options — COPY Command

Code Description

CS[(id[,n,k])] | Card sequencing in columns 73-80.

id is identification
(0-4 characters)

n is initial value
k is increment

The identification (id) is left-justified
in the field (73-80) and is followed by
the sequence number, which is right-
justified in the same field. The identi-
fication may be written as a character
string containing one to four characters;
e.g., '..XY'. Precedence is given to
the sequence number if overlapping
occurs, The default values for id, n,
and k are null, 0, and 1, respectively.

NCS No card sequencing. This specification
strips columns73-80 from each output
dota record.

LN[(n,k)] Line numbering. Sets organization to
keyed. The file starts at n and continues
in sequential steps of k. Line number
and increment formats are as in the Edit
processor, Line numbers must be between
1 and 9999, Increments may range from
.001 through 100,000, The default

values for both nand k are 1.

NLN No line numbering. Sets organization
to consecutive.

PCL can either merge or concatenate keyed files. If the
LN option is specified for the output file, concatenation
will occur with the new keys as specified in the LN option.
If the NLN option is specified for the output file, concate~
nation will occur with the output file being a consecutive
(not keyed) file. If no record sequencing option (i.e.,

90 17 64H-1(9/78)

neither LN nor NLN) is specified for the output file, a
merge will occur. In this case, if records with duplicate
keys exist, the record from the first specified input file
will be replaced (in the output file) with the record from
the next specified input file. Thus the sequence in which
the input files are specified will determine which of the
identically keyed records appears in the output file, When
concatenating a keyed file and a consecutive (unkeyed)
file, the LN or NLN option should be used.

Examples:

1. Assume that a file called SORC on labeled tape #25 is
to be sequenced and punched into cards. The card
identification is SRCE, the initial value is 1, and the
increment is 1, Thus, logical records are to be given
sequential identification as follows: SRCEQ0OI1,
SRCE0002, SRCE0003, etc.

C LT#25/SORC TO CP (CS(SRCE, 1,1))

2. Assume that PCL is to read successive records from free
form tape #73, to assign line numbers starting at 5 in
increments of 5, and to write the records on RAD stor-
age file A,

C FT#73 TO A(LN(5, 5))
3. Assume that two keyed files A and B, are to be con-

catenated into file C and assigned new keys. Default
keys are to be assigned.

CA, BTO C(LN)

4. Assume that files A ond B are to be merged into a new

keyed file C with the output records alternately coming
from A and B.
C ATO C(LN(1,2))
C BINTO C(LN(2,2))
Assignment of Accounts. A combined list (not to exceed
16 entries) of read accounts, write accounts, execute ac—
counts, and the name of a processor under which the file is

to be run. may be added as attributes of the output files as
shown in Table 36.

Table 36. Account Options — COPY Command

Code Description

RD(ac 1 [, ac,, .-] } | Adds read account(s) on output.
ALL or NONE may be specified
in place of an account.

WR(dc][,acz, ...))| Adds write account(s) on output,
ALL or NONE may be specified
in place of an account,

EX(ac][,dcz,. . I_]) Specifies the account numbers of
those accounts that may execute
the file, The value ALL may be
used to specify that any account
may execute the file. The value
NONE may be used to specify that
no other account may execute the
file. In all of the above cases,
RD(NONE) is implied in the
absence of any RD specification.

Peripheral Conversion Language 189

Table 36. Account Options — COPY Command (cont.)

Code Description

UN(name
[,name] eed)

Specifies the name(s) of the proc-
essor(s) that may access this file if
the user does not own the file. The
name may be from one to ten char-
acters in length. The processor may
be any shared processor or any load
module in the :SYS account. If
EXecute accounts are specified and
UN is not specified, the file is pre-
sumed to be a load module and may
be executed by any user running
under an EXecute account but not
under Delta.

Examples:

1.

Assume that A is to be copied to labeled tape No. 4
with the same attributes it had on RAD storage plus the
addition of read accounts ONE and TWO.

C A TO LT#4/A(RD(ONE,TWO))

Assume that read account ALPHA, write accounts X
and Y, execute accounts ONE, TWO, and THREE,
and the name of a load module BETA under which the
file SRCE is to be run are to be added as attributes of
file SRCE.

C SRCE OVER SRCE(RD(ALPHA), WR(X,Y), ;
EX (ONE, TWO, THREE), UN(BETA))

ANS Tape Options. Special options for ANS tapes are de-

scribed in Table 37, These options pertain to blocking,
concatenation of files, and changing the record formats.
Unblocking is always performed when copying from an
ANS input tape. FMT, BLK, and REC may be specified for
any input or output device to perform ANS-type blocking/
deblocking. REC alone causes all records to be truncated
or padded (with blanks up to 140 characters) to the
specified length,

Table 37.

ANS Tape Options — COPY Command (cont.)

Code

Description

BLK(n)

Block size. The value n specifies the maxi-
mum block size to be built for FMT(F), FMT
(D), and FMT(V), where 1<n < 32,767
bytes. The default is 2048 and if n is less
than 18, 18 will be used. The default for
ANS input is the value from the input file.

REC(n)

Record size. The value n specifies the

size of records for FMT(F) only, where

1< n< 32,767 bytes, Records will be
truncated or padded to conform, but padding
with blanks will extend only for 140 bytes.
The default is 128 except for ANS input
with F format, for which the value from the
input file is used. The block size must be a
multiple of the record size.

CAT(n)

Input option that causes n files of the
specified name on ANS tape to be concate~
nated to produce a single output file or
to be output to the named device. (All
of the input files must have the same for-
mat.) The value for n may range from 2

to 128.

Examples:

Table 37. ANS Tape Options — COPY Command

Code Description

FMT(f) | Output format. The value of f must be:

F - fixed-length records, blocked,

D - variable length records, decimal
size word, blocked.

V - variable length, binary size half-
word, blocked.

U - unblocked.
The default is U unless input is from ANS

tape, in which case the input's format is
used.

190 Peripheral Conversion Language

Assume that a card deck is to be copied to file X
on ANS tape number 123456. The tape is to be on
a BT drive. Only the first 72 characters of each
card are to be copied and the block size is to be
720,

C CR TO AT#123456-BT/X(FMT(F),;
BLK(720),REC(72))

Assume that four files named A are to be copied from
ANS tape numbers 1, 2, 3, 4, and § into a single
RAD file B. (Unblocking is performed if the input

is blocked.)

C ATH1#2#344#5/A(CAT(4)) TO B

90 17 64H-1(9/78)

Expiration Option. The expiration option specifies an
expiration time for the output file of the COPY command.
It has the format

mm, dd, yy
Exp(add])

NEVER
where

mm, dd, yy specifies a particular date: mm is month
and may be one or two digits with a value from
1 to 12; dd is day ond may be one or two digits
with a value from 1 to 31; yy is year and may be
one or two digits with a value from 0 to 99. (The
format mm,dd, yy may also be written mm/dd/yy.)

ddd specifies the number of days to retain the file.
It may be from one to three digits in length with
a value from 1 to 999.

NEVER specifies that the file is never to expire
(i.e., it is to have the maximum expiration period
as specified at SYSGEN),

Record Selection. This specification permits selection of
the logical records to be copied by giving the sequential
position of the records within the file. The specification
has the form

x[~Y]

All records within the file that have a position, n, satis-
fying the condition x < n <y are selected. Multiple selec-
tions may be specified if separated by commas (e.g., 1-5,
10, 20-21). Selections do not have to be in sequential
order (but nonsequential selection is very slow for tape op-
erations). The maximum number of selections is tenfor each
input file

Example:

Assume that sections of two files, N1 and N2, are to be
combined to form a third file, N3. Records 20-30 and
40-100 of N1 followed by tecords 50~75 of N2 are to be
copied, in that order, to N3.. The job account is assumed
for files N1 and N3; N2 is from account 34 under pass-
word PA.

C N1 (20-30, 40-100), N2. 34, PA (50-75);
TO N3

Valid Option Combinations. Not all combinations of source
and destination devices, data types, formats, modes, or
sequencing codes are valid. Table 38 shows the valid
combinations, the invalid combinations, and the default
provisions for the various possible combinations that are
checked by PCL. Other combinations are allowed, parti-
cularly for resource types, and are checked for validity by

90 17 64H-1(9/78)

the monitor. If an invalid combination is found, an error
message is produced. Execution of the command may or
may not continue, depending on the severity of the error
encountered (see Error Messages).

ACCOUNT COPY COMMAND

This command allows all files, or a specified subset of
files, in the current job account or some other account
to be copied from a file-type device (RAD, labeled tape,
or disk pack) to any valid output device. It has the
general form

COPYALL[files)[TO device]

where

files may be one of the following:
[oP] [-acet] [(s)] [/r]
(DA acetl (1) /r)
DP*reel-id[~rt][(s))[/1]
LT#reeI—id[-rf][(S)][/’]

If 'files' not specified, DC is assumed.
device may be one of the following:

DP{(a)]

DC[(a)]

DP#serial no.[-rt]{(a)]
LT[#serial no.] [-rf][(o)]
FT[*serial no.](-rt][(a)]
LP

ME

cpP

L1,P1, or any other logical device stream name
defined at SYSGEN

If 'device' is not specified, DC is assumed. De-
vice must be specified if options are specified.

In the above specification,

s may be KEY to copy keyed files only; or SEQ
to copy sequential files only; or RAN to copy

Peripheral Conversion Language 191

Table 38, Valid Option Combination

Source Device Destination Device

Option Codes CR | PRIDC]| LT } DP|FT | AT ME| DC | LT|DP| FT | AT{ME| LP | CP| PP

d {dld |d |d |d {dld |d {dfd [d]d

H x - |- - - |x - - - - |- x - |- - x -

m
Q
X

Q.

Data codes

Data formats | X — - |- - - |- - - - - 1= - - |x x - -

X X X X X X X X X
CRPT S T U AT RV R SR U RN ISR VR I NS DU R A

Mades None -
BCD d -
x

Q.
Q.
|
[+ 1
1
[}
[~
1
[
|
]

1
1
1

BIN
71t
o1t - - |-
PK - - |-
UPK - - |-
SSP - - |-
LC - - |-
DSP - - |- - -
VFC - - |- - - |- - -
uc - - |- - - - - -
NC - - |- - - - - -
NB - - |- - - |- - -
NF - - |- - - |- - -

]

1
X X

)

1 QQx O
i
1 X @ 0x O x
1 X Q0 X QO x
1
1
1 QA Xx O
1
X Q. X Q X
1 X OO X QX
'
1
i
1

t
t
|
1
1
X
x
[
1 X

1 X X X

1 X X X

I X X X
I X X X X X X X X Q|
I X X X X X X X X o

1 X 1 x X X
X 1 X X X

O
b
1
1
]
|
|
1
|
1

[

1 X

vVOL - - |~ x - |Ix x -

X X 1 X X X
X X 1 X X X

I X X

bay
]
1
'
|
|
1
|
1
[
1

1 X
I X
I
1

FA - - |- - - 1- - -
NFA - - |- - - |- - -
TX - - 1-
DEOD - - |- - -
ASCI - - |-
EBCD - - |-
DEN - - |-
JOB - - |x

1
]
[}
]
]
I X %X X
I X X X
X X X
1
]
]
1
1

x
1 X
x

1 QX
[
1 Qo x X
1 QX
[]
[
1 X QX
[
1 X QX
1 X O x
]
1
]
]

1
X
1
1
1
X

Sequencing None - - |- - - |- - -
cs - - |- - - - |- -
NCS - - |- - - |- - -
LN - - |- - - |- - -
NLN - - |- - - |- - -

X X X x Q
X X X X Q
X X X X
1 1 X X Q
11X X Q
)
t
1
1

Accounts RD - - |- - - |- - -
WR - - |- - - |- - -
EX - - |- - - |- - -
UN - - |- - - |- - -

X X X X
X X X X
X X X X

[}

[}

1

]

'

!

Expiration EXP - - |- - - |- - - x x | x - x |- - - -

Selection X=y x x [x X x |x x x - - |- - - |- - - -

Legend: d = default x = optional - = error, not available, unreasonable

YFor compatibility with previous versions of PCL.,

192 Peripheral Conversion Language 90 17 64H-1(9/78)

random files only; ond/or PHY to copy in physical

order from tape. All input options valid for COPY-

ing from DC, LT, or DP are also permitted here,
r may beb, e; or b; or ,e.
where

b is a fid (see COPY command) repre-
senting the beginning of a range of files
to be copied.

e is a fid (see COPY command) repre-
senting the end of a range of files to be
copied.

Both b and e are used as sort keys only and gen-
erally do not have to name an existing file. They
may be written in character string or hexadecimal

notation (e.g., A, 'A', or X'C1' all represent A).

The e field must be equal to or greater than the b
field. Files on tape are assumed to be in alpha-
numeric order unless the PHY option is used.

If PHY is specified, the b and e fields define a

physical range of files on tape instead of an alpha-

numeric range and therefore must be file names.

If the b field is null, copying begins wherever the
tape is positioned, If the e field is null, copying
continues to end of tape. If the file in the b field
does not exist, the command is aborted. If the file
in the e field does not exist, copying continues to
end of tape.

Each of the PCL identification codes listed in
Table 31 is a reserved word and may not be
used as a range specification unless it is
enclosed in single quotes or unless a DC or
DP identification is specified in the com-
mand. For example, key DC may be legally
specified as "DC', DC/DC, DP/DC,
DC/ABC,DC, etc., but never simply as DC.

Note: The introductory slash (/) is optional if no
codes or options precede it.

rt isthe 2-character identifier of a device that was
defined at SYSGEN to be a resource.

a may be any output option valid for the COPY
command,

PCL copies all files from the input device to the output
device. Files protected by passwords cannot be copied
with this command unless the correct password is specified
in the range specification.

A synonym file is copied to RAD or disk pack only if

the parent file was copied or previously existed on the
destination device. A synonym file is always copied to
tape regordless of whether the parent file is present on
the tape. If a range is specified on the command, the
synonym files within the range are copied if the above

90 17 64H-1(9/78)

conditions are met. A parent file of a synonym file within
the range is not copied unless it is also within the range.
If files are copied by organization (KEY, SEQ, or RAN
option), synonym files are not copied.

If files are being copied to the line printer, each file copy
is preceded by the name of the file.

If there are no files present in the specified account, the
following message prints:

NO FILES IN DIRECTORY

As each file is copied, its name is listed through M:LL. If
a file cannot be copied, the file name is followed by an
error or abnormal code and subcode,

PCL indicates completion of the command by printing a
message of the form

. .nnnnnn FILES COPIED
. .ssssss FILES SKIPPED

where nnnnnn is the number of files copied during execu-
tion of the command and ssssss is the number of files that
could not be copied.

Examples:

1. Assume that all files listed in the user's account
directory are to be copied to labeled tape Nos. 3
and 4. Tape No. 4 is to be used only if No. 3
overflows.

COPYALL TO LT#3#4

Note that RAD or disk storage space previously occu-

pied by this account can be released for other use after

the files have been copied.

2. Assume that files are to be restored on RAD storage
under the job account from labeled tape Nos. 3 and 4,
created under account :SYSGEN.

COPYALL LT#3#4,:SYSGEN
3. Assume that an exact copy of labeled tape No. 3 is
to be written on tape No. 4. The record size must

fit the allowable installation-set allocation of core to
a single job.

COPYALL LT#3 TO LT#4

4, Assume that all keyed files on disk pack #5 are to be
written to a scratch tape.

COPYALL DP#5 (KEY) TO LT

5. Assume that all files on RAD between the sort keys C
and L are to be copied to the line printer. Each file
name will print before the file copy. It is assumed
that records are in BCD format.

COPYALLC,L TOLP

Peripheral Conversion Language 193

6. Assume that all files on RAD ar= to have read ac-
counts 123 and X'00C6' and write account XY added

as attributes.

COPYALL TO DC(RD(123, X'00C6'), ;
WR(XY))

CONTROL FILE COPY COMMAND

The control file copy command allows the copying of files
whose identifiers appear in a contro! file. The command
is called "copy standard" and has the form

COPYSTD input [TO output]

where

input specifies the control file and may be one of the
following:

[op/]

[pc/fid

DP#serial no. [-rt] /fid

LT# serial no. [-rt]/fid
output may be one of the following:

DC

DP#serial no. [-rt]

LT [#serial no.) [-rf]

FT[#serial no.) [-rt]

LP

ME

cP

L1, P1, or any other logical device stream name
defined at SYSGEN,

rt is the 2-character identifier of a device that was
defined at SYSGEN to be a resource.

PCL opens the control file named in the input specification
and unless this file is a RAD or disk file in the user's ac-
count and the output device is 'DC', the file will be copied
to the specified output device. Subsequently, the files
named in the control file are copied to the output device
using the job account and the same file names as appear in
the control file for output.

The format of a control file record is an initial character
followed by name, account, and password separated by
periods. For example:

*NAME. ACCT. PASS
*NAME, ACCT
*NAME

194 Peripheral Conversion Language

The initial character is unused in the copy operation. If
no account is specified, then the source account for the
file is assumed to be the same as the account of the control
file itself. Commentary may appear on each record.

Files named within the control file may be from labeled
tape, disk pack, or RAD; in fact all variations allowed for
the input specification field of a COPY command are valid
for these devices except that options are not allowed. De-
vice codes and accounts present in the record override
the one present on the COPYSTD command.

When files are copied from tape, their names should be
listed in the control file in the same order as the files are
stored on the tape. Otherwise, rewinds will occur be-
tween files.

If files are being copied to the line printer, each file copy
is preceded by the name of the file.

As each file is copied its name is listed through M:LL. If o
file cannot be copied, the file name is followed by an error
or abnormal code and subcode.

PCL indicates completion of the COPYSTD command by
printing o message of the form

. .nnnnnn FILES COPIED
. .ssssss FILES SKIPPED

where nnnnnn is the number of the filed copied during
execution of the command including the control file itself,
and ssssss is the number of files that could not be copied.

Examples:

1. Assume that all files listed in file STDF on labeled
tape No. 5 are to be copied to RAD storage. The for-
mat of file STDF is

*A COMMENTARY
*B
*C

The command to be used is

COPYSTD LT#5/STDF

On completion of the command, the files STDF, A, B,
and C, will have been copied from tape No. 5 to the
user's RAD account.

2. Assume that all files listed in the file ST in the user's
RAD account are to be copied to his account. The for-
mat of file ST is

. ALPHA. ACCT. PASS, BETA. ;SYSGEN
:LT#5/8, C

90 17 64H-1(9/78)

The command to be used is
COPYSTD ST

On completion of the command four files will have
been copied: ALPHA, BETA, B, and C.

3. Assume that all files listed in file :STD in account
:SYSGEN are to be copied to the line printer. The
files listed are all in account :SYSGEN. The format
of file :STD is

=ALPHA, BETA, GAMMA
The command to be used is
COPYSTD :STD. :SYSGEN TO LP
On completion of the command, files :STD, ALPHA,

BETA, and GAMMA will have been copied from ac-
count :SYSGEN to the printer.

OTHER COMMANDS

This group of commands provides file deletion, file posi-
tioning, and other manipulation and maintenance functions.

DELETE The DELETE command deletes complete files
and has the form

D[ELETE]

[DP/ i
[DCA fid[, fid]. ..
DP#serial no.[-rtl/

where

rt is the 2~character identifier of a device that was
defined at SYSGEN to be a resource.

fid specifies the identification of the file to be de-
leted. Each of the PCL identification codes listed
in Table 3! is a reserved word for this command
and may not be used as a fid unless it is enclosed
in single quotes or unless a DC or DP identifica-
tion is specified in the command. For example,
file DC may be specifiedas'DC', DC/DC, DP/DC,
DC/ABC, XYZ, DC, etc., but never simply as
DC.

Example:

Assume that RAD storage file SOURCE is to be deleted.
This file is assumed to have been set up under job account
with password PLEASE.

D SOURCE. . PLEASE

The message
1 FILES DELETED, 2 TOTAL GRANULES

90 17 64H-1(9/78)

is printed on the LO device following execution of the
command,

DELETEALL Another delete command deletes all files,
or a specified range of files, in the job account. The form
of the command is

[DP/]
DELETEAL[L]) | [(DC/] [range]
DP#seriai no.[-rtl/
where
rt is the two-character identifier of a device that

was defined at SYSGEN to be a resource.

range specifies a range of files to be deleted
and is described in detail for the COPY-
ALL command.

Each of the PCL identification codes listed in Table 3i is
a reserved word for this command and may not be used as a
range specification unless it is enclosed in single quotes or
unless a DC or DP identification is specified in the com=
mand. For example, key DC may be legally specified as
'DC', DC/DC, DP/DC, DC/ABC,DC, etc., but never
simply as DC.

The commands

DELETEALL DC and DELETEALL DP

delete all the user's files from public storage. The
command DELETEALL DP with a serial number speci-
fied deletes all the user's files on the specified private
disk pack.

If there are no files in the job account. PCL responds to
the command with the following message:

NO FILES IN DIRECTORY

As each file is deleted, its name is listed through M:LL. If
a file cannot be deleted, the file name is followed by an
error or abnormal code and subcode,

Peripheral Conversion Language 195

After the delete function is performed, the following
message is printed:

.nnnnnn FILES DELETED
.ssssss FILES SKIPPED
dttttt TOTAL GRANULES

The count (nnnnnn) does not include synonym files which
were deleted.

Examples:

1. Assume that all files in the job account are to be
deleted.

DELETEALL

A message such as
8 FILES DELETED
is printed on the LO device following execution of
the command,
2. Assume that allfiles in the inclusive range B through H

are to be deleted,

DELETEALL B,H
A message such as

4 FILES DELETED

is printed on the LO device following execution of the
command,

LIST The LIST command is of the form

'_

U

[DC][acet][(s)][range]

{A }reel id[-rt][(s)][range]
L[IST] {

}serml no. [-rtl[(s)]/fid[(s)](, Fid[(s)]]. .

fid{ ()1, fid(s)1]. .
L FT#serial no.[- rf][(s)]

All listed output goes through the M:LO DCB.

The first two formats of this command allow a range speci-
fication, which designates a range of files to be listed, The
format of the range specification is the same as for the
COPYALL command. If a range is specified, R must be
specified in the S specification.

1. (Dp
{LT }#reel-id[-rt][(s)] (list file directory)
AT

Resource type (rt) is the 2-character identifier of a de-
vice that was defined at SYSGEN to be a resource.

196 Peripheral Conversion Language

Device option (s) may be A, EA, Cn, or R (separated |
by commas).

PCL scans the tape or private pack and lists the names of !
all files contained on it. If option A has been requested,
the attributes of each file are also listed. These attri-
butes include for LT and DP: I

Size in granules.
Record count.
Organization (keyed, random, or consecutive).
Read accounts, if other than 'ALL'.
Write accounts, if other than 'NONE',
Modification time and date.
Parent name of synonyms.
Maximum key length (for keyed files only).
Execute accounts (if other than 'ALL').
Read accounts (if other than 'ALL').
Execute vehicles (if present).
If option EA (extended attributes) has been requested,

the following attributes are listed in addition to those
described above:

Expiration date.

Creation date.

Backup date.

Last access date.
For ANS tape (AT), options A and EA are equivalent
and list:

Format (F, D, V, or U)

Block length

Record length (F format)

Block count

File sequence number

The Cn option controls the list format for a name-only
list. CO indicates that each nome is to be listed on a
separate line. The value 1< n<9 specifies the number
of four~character columns to be occupied by each
name. The default is C3, Names longer than the
allotted space will occupy more than one space.

The R option specifies that a range specification will
be given in the command.

If a file requires a password or account and none is
given, this will be noted.

[DC. acet]((s)]

Device option (s) may be A, EA, Cn, or R (separated
by commas).

(list file directory)

PCL scans the user's RAD or public disk pack file
directory and lists the names of all files. If device
options have been specified, the files are |
listed as in 1,

90 17 64H-1(9/78)

3. LT
{ DP }#sericl no.[~-rtl[(s)}/Fid[(s)1[, Fid[(s)]]. ..
AT
(iist file attributes)

This is a request for the attributes of the indicated files,
Resource type (rt) is the 2-character identifier of a de-
vice that was defined at SYSGEN to be a resource.
File options (s) may be A or EA. If an account is re~
quired, it must be included in the file identifier. PCL
prints an attribute summary for each file, asin 1.

4. fid(s)]0, fidls). ..

This is a request for the attributes of the one or more
RAD or public disk pack files named. Option (s) may be
A or EA, PCL prints an attribute summary for each
file, asin 1.

(list file attributes)

5. FT#serial no.[-rt][(s)]

Resource type (rt) is the 2-character identifier of a de-
vice that was defined at SYSGEN to be a resource.
Serial no. can be a fake. If the tape conforms to Xerox
labeling conventions, PCL prints the serial number,
account, and contents (file names) of the tape.

Option (s) may be A, EA, Cn, or R (separated by
commas).

If only the command LIST is given, and no specification
follows, then the command executes as though it were LIST
DC. LIST (A) and LIST. acct are also valid commands, All
output, except for completion messages, is written through

the M:LO DCB,

PCL indicates completion of the command by printing a
message of the form

. nnnnnn FILES LISTED

where nnnnnn is the number of files listed during execution
of the command.

If attributes of all files in a directory are listed, one of the
following messages also prints:

90 17 64H-1(9/78)

.o xxxxxx TOTAL GRANULES (DC or DP)
.. xxxxxx TOTAL RECORDS (LT)
..xxxxxx TOTAL BLOCKS (AT)

Examples:

—

Assume that all files on RAD under the current job
account are to be listed.

L
2, Assume that files on 7-track labeled tape Nos. 3 and 4
are to be listed. These tapes were created under the
account :SYSGEN.

L LT#3%4, :SYSGEN-7T
3. Assume that the attributes of files ALPHA and BETA on

RAD are to be listed. The attributes listed have the
following meaning:

ORG C = consecutive, Knn = keyed file
(nn specifies the maximum key
length)

R = random file.

GRAN Number of granules of RAD space
(1 granule = 512 words).

REC Number of records in file.

LAST Modification time and date.

MODIFIED

Name File name.

Read and write accounts print on a separate line if
necessary and will print only if they have other
than default values.

L ALPHA, BETA
4. Assume that the extended attributes of file ABC on disk
pack No. 2 are to be listed. This file has had write
account 123 assigned previously.

L DP#2/ABC(EA)

5. Assume that a tape requires identification. The fake
serial no, X is used in the command,

LFT#X

6. Assume that the files A through B of account X are to
be listed with attributes,

L (R,A) A. X,B

REVIEW In the batch mode, this command functions
identically to LIST. The format of this command is:

[DC/]
REV[IEW] [op#seraol no.[-rt]/] [(s))[rangel]

.account

Peripheral Conversion Language 197

where

rt is the two-character identifier of a device that
was defined at SYSGEN to be a resource.

range specifies a range of files to be reviewed
and is described in detail for the COPY-ALL
command .

s may be either A or EA (as in LIST command).

Example:
REV N, X

Each file name within the inclusive range N through X is
listed.

If a file has a password or is open by another user, this is
noted by an appropriate message.

PRINT This command causes output accumulated for
symbiont devices to be placed in the output queue to be
output immediately. (Normally, the output destined for
symbiont devices is nof output until the user logs off or
issues a TEL PRINT command.) The format of the command
is

PRINT

ERRORS The ERRORS command controls the disposition
of output files when a fatal error occurs during a copy oper-
ation. [t has the form

SAVIE]
ERR[ORS] { REL[EASE]}
hhhhhh

where

SAVE causes all subsequent output files to be saved
even if a fatal error occurs during their creation,

RELEASE causes all subsequent copy operations
which abort to release the output file. RELEASE
is in effect when PCL is first entered.

I hhhhhh is a hexidecimal error code whose value
is to be printed.
SPF ’
SPR These command(s) position free form tape forward

or backward a designated number of files (SPF) or records
(SPR). The form of the command is

{ SPF }
SPRS FTserial no.[-rt][,]n

where

rt is the 2-character identifier of a device that was
defined at SYSGEN to be a resource.

198 Peripheral Conversion Language

+ specifies forward direction.
- specifies backward direction.
n is the number of files or records to be skipped.

If the direction is not given, forward direction is assumed.
If an error condition is encountered prior to completion,
an error message is sent to the terminal. If n is not speci-
fied, the value 1 is assumed.

Example:

Assume that free form tape No. 2076 is to be positioned
forward two files.

SPT FT#2076,2

SPE This command skips to the position following the
last file on (Xerox) labeled, free form, or ANS labeled
tape. The form of the command is

LT
SPE{ FT } #serial no.[-rt]
AT

where rt is the 2-character identifier of a device that was
defined at SYSGEN to be a resource.

Prior to issuing this command, the user must make sure that
the tape is not write protected, i.e., the operator must be
informed to insert a ring in the tape if it is a saved tape.

If an error occurs on the command, PCL aborts the job after’
printing the message

PCL ABORT
Example:

Assume that labeled tape No. 5 is to be positioned past the
last file on the tape so that additional files may be added.

SPE LT#5

WEOF WEOF writes an end-of-file. This is an end-of-
file mark for free form tape units, 'EOD for card or paper
tape punches, or top-of-form for the line printers. The
form of the command is

FT# serial no. [-rt]
LP
Ccp
PP

WEOIF]

(Note that only one output will be open at a time.)

If no output device is specified, the current output device
is used.

REW . This command rewinds the specified magnetic tape
reel. It has the form

\

REW\._{[:;I]’/serial no. [-rt] }
' AT[#serial no.] [-rt] [/filename]

v

£

90 17 64H-1(9/78)

where rt is the 2-character identifier of a device that was
defined at SYSGEN to be a resource.

Example:
Assume that magnetic tape reel No. 205 is to be rewound.
REW#205

MOUNT This command mounts a magnetic tape or disk
pack. The form of the command is:

[LT]# serial no.[-rt]
FT

AT¥ serial no.[-rtl{/filename]
DP# serial no.[-rt][.account]

MOUI[NT] [(RING)]

where rt is the 2-character identifier of a device that was
defined at SYSGEN to be a resource and RING specifies
that the device is to be mounted with write access.

Example:

Assume that a tape reel #2075 is to be mounted with a write
ring.

MOUNT #2075 (RING)

REMOVE This command removes a magnetic tape or
disk pack no longer needed, thus releasing the drive or
spindle for other purposes. The form of the command is

LT}# . .
[FT serial no,[-rt]

AT[#serial no.]| [~rt]l/filename]
DP#serial no. [~rt][~account]

REM[OVE]

where rt is the 2-character identifier of a device that was
defined at SYSGEN to be a resource.

If a tape is removed, the tape is rewound and a dismount
message is sent to the computer operator, If a disk pack is
removed, the user's interest in that spindle is released;
however, no message is sent to the operator.

Example:

Assume that magnetic tape reel No, 2075 is to be rewound
and removed.

REM#2075

TABS This command sets tab volues to be used in con-
junction with the TX (tab expansion) option. As many as
16 values may be specified. The form of the command is

TAB[S)s [,s). . .

where s is a column position to be used in expanding a
line, The moaximum value for s is 255.

90 17 64H-1(9/78)

Example:

Assume that tabs are to be set for expansior. in the standard
Meta~-Symbol list format.

TABS 10,19,37

TERMINATION OF PCL

PCL operations are terminated by the END command. This
command returns control to the monitor. The form of the
command is

(e

When PCL is terminated by an END command, the following
message is output

PCL PROCESSING TERMINATED

PCL ERROR MESSAGES

PCL reports two types of error conditions. One type consists
of the 1/O error and abnormal conditions as listed in Appen-
dix B. The other type consists of errors arising out of
the use of PCL commands, These conditions are defined

in Table 39.

A severity level of 1, 2, 3, or 4 is attached to each error
and has the following effect on the execution of the com-
mand in question:

—
.

Warning

PCL continues execution. The message will be printed
only if a higher error severity level occurs during exe-
cution of a command.

2. Invalid Syntax or 1/O Error

This level terminates execution of the command but
continues the syntax edit of the command for both on~
line and batch operations.

3. Format Error
This level terminates the command.
In the case where a command is terminated (severity
level 2 or 3), PCL reverts to the command state if the
error occurs during on-line operations; it reads the

next command card if the error occurs during batch
operations,

4. Fatal Error

This level causes PCL to abort the job.

PCL COMMAND SUMMARY
Table 40 is a summary of PCL commands. The left-hand

column gives the command formats. The right-hand column
gives the command function and options,

Peripheral Conversion Language 199

Table 39. PCL Error Codes

Hexadecimal Severity

Code Message Level
10100 ARGUMENT GREATER THAN 31 CHARACTERS. 2
10200 ILLEGAL IDENTIFICATION CODE, 2
10300 INVALID REEL NUMBER SPECIF ICATION, 2
10400 ILLEGAL FILE NAME SPECIFICATION. 2
10500 ILLEGAL ACCOUNT NUMBER SPECIFICATION. 2
10600 ILLEGAL PASSWORD SPECIFICATION., 2
10700 TOO MANY FIELDS IN A FILE IDENTIFICATION SPECIFICATION. 2
10800 INVALID FILE RANGE SPECIFICATION, 3
10900 MORE THAN TEN RS FIELDS'. 2
10A00 VOLUME NUMBER BEYOND END OF SNS 2
10800 ILLEGAL DECIMAL NUMBER 2
10C00 CS ID-FIELD GREATER THAN FOUR CHARACTERS. 2
10D00 ERROR ON N OR K VALUE OF CS OPTION. 2
10E00 IMPROPER TERMINATION WITHIN RS, LN, OR CS OPTION, 3
10F00)) MUST TERMINATE RS, LN, OR CS OPTION. 3
11000 SPECIAL ARGUMENTS MUST HAVE) AS TERMINATION CHARACTER. 3
11100 EH? 3
11200 UNDEFINED COMMAND . 2
11300 ILLEGAL INPUT DEVICE, 3
11400 NO DEFINED OUTPUT DEVICE. 3
11500 ILLEGAL OUTPUT DEVICE. 2
11600 REEL NUMBER SPECIFICATION NOT VALID. 2
11700 FILE SPECIFICATION NOT VALID, 2
11800 DATA CODE SPECIFICATION NOT VALID, 2
11900 A&ODE SPECIFICATION NOT VALID. 2
11A00 SEly(?UENCE SPECIFICATION NOT VALID. 2
11800 RE&.}K’DRD SELECTION SPECIFICATION NOT VALID. 2

'RS signifies record selec“on.

\

200

A

Y

. . §
Peripheral Conversion Languije
\e

'
LN
s

90 17 64H-1(9/78)

Table 39. PCL Error Codes (cont.)

Hexadecimal Severity

Code Message Level
11C00 PK/BIN/7T COMBINATION NOT VALID, 2
11D00 NULL ARGUMENT (TWO DELIMITERS IN A ROW), 2
11E00 IMPROPER TERMINATION OF THE COMMAND . 1
11F00 ONE REEL NUMBER MUST BE SPECIFIED ON THIS COMMAND , 2
12000 ‘TO!, 'INTO' OR 'OVER' NOT SPECIFIED. 3
12100 RECORD SIZE EXCEEDS AVAILABLE MEMORY . 3
12200 INVALID DEVICE TYPE FOR THIS COMMAND. 3
12300 TOO MANY REEL NUMBERS SPECIFIED. 3
12400 ‘TO' FILE EXISTS 3
12500 INVALID DIRECTION INDICATOR. 3
12600 INPUT RECORD SIZE LARGER THAN 32767 BYTES. 3
12700 INVALID OPTION FOR THIS COMMAND. 2
12800 TOO MANY SN, RD, WR, EX, UN SPECIFICATIONS. 3
12900 RS SPECIFICATION BEYOND END OF FILE. 2
12A00 ERROR IN COMPRESSED INPUT. 3
12800 PCL NEEDS AT LEAST TWO DATA PAGES TO RUN. 4
12C00 TOO MANY ERRORS - PROCESS ABORTED. 4
12000 INVALID TAB SPECIFICATION. 3
12E00 OVERFLOW ON EDIT LINE NUMBER. 3
12F00 ZERO INCREMENT ON CS OR LN OPTION. 2
13000 TX OPTION USED WITHOUT TABS COMMAND . 2
13200 CONFLICTING OR DUPLICATE OPTION. 2
13300 MORE THAN 16 TAB VALUES. 2
13500 TOO MANY CHARACTERS IN THE COMMAND ., 3
13600 INVALID VALUE FOR ANS OPTION. 2
13900 TAPE DENSITY SPECIFICATION IS IN ERROR. 2

90 17 64H-1(9/78)

Peripheral Conversion Language

201

Table 40. PCL Command Summary

Command

Description

clopy] sdl(s)][/fid[&], Fid(9]). . J [;sd[(5)) n

L[/fidl(S)][SHidl11...0. ..

TO
OVER

INTO

L dd[(s)][/fid[(s)]]]

Copies file(s) between devices or between public storage and devices.

Options:
sd may be DC, CR, ME, operational label, stream-id, or:
DP¥serial no.[-rt)
LT#serial no.[-rt]
AT[#seriol no.] [-rt]
FT#serial no. .[-rt]

where rt identifies a device that was defined at SYSGEN to
be a resource.

s may be a data code (E,H); a data format (X,C); a mode
(BCD, BIN, PK, UPK, SSP, DSP, VFC, NC, CR, FA, NFA,
LC, UC, NF, TX, DEOD, ASCI, EBCD, DEN); a sequence
(CS, NCS, LN, NLN); an account (RD, WR, EX, UN);
an ANS tape option (BLK, REC, FMT, CAT); an expiration
time (EXP, JOB); or selection (x~y).

dd may be DC, CP, LP, ME, operational label, stream-id or:

DP#serial no. [-rt]

LT[*serial no,)[-rt]
AT[#serial no.] [-rf]
FT(*#serial no.) [—rf]

where rt identifies a device that is defined to be a resource.

[DC”] [-acet)(sN[)

COPYALL { DP reel-id[—rf][(s)]

[/} ——

LT#reel-id [-rt]{(s)][/7]

(DC[(a))

ME
Cp

| stream~id

DP7serial no.[-rt][(o)]
LTFserial no 1l -rt][(a)]

10 EL #serial no.] [—rl‘][(a)]

Copies files from RAD, labeled tape, or disk pack to any output
device.

Options:
s may be KEY, SEQ, RAN, PHY, and COPY input options,
r is a range specification.

rt identifies a device that is defined to be a resource.

a may be COPY output options.

[DC/ Jfid

COPYSTD{LT#serial no. [-rt] /fid]
DP#serial no. [-rt]/Fid

{ DC
DP*serial no. [-rt]
LT(#serial noJ[-rt]
10 El;[”sericl no.J[=rt]
ME

cep

L { stream-id

Copies a control file and all files named within the file.
Option:

rt is the 2-character identifier of a devfce that was defined at
SYSGEN to be a resource.

202 Peripheral Conversion Language

90 17 64H-1(9/78)

Table 40, PCL Command Summary (cont.)

Command

Description

piecere) {1PG)

DP¥serial no.[-rt]/} fidl, fidl. ..

Deletes the specified files
Option:

rt is the 2-character identifier of a device that was defined
at SYSGEN to be a resource.

[DC/
DELETEALIL] {Dp#serzal no.[-rt]/} [range]

Deletes all files or a specified range of files.
Option:

rt is the 2-character identifier of a device that was defined
at SYSGEN to be a resource.

E[ND]

Returns control to the monitor.

REL[EASE]

ERR[ORS] {SAV[E] }
khhhhh

Controls the disposition of aborted copy output. The default is
RELEASE. The hhhhhh option is a hexadecimal error code whose
value is to be printed.

[LT#reel-id[-rt][(s)][range)

[DCI[.acet]{(s)][range]
DPFreel-id[-rt][(s){{range]
DP#serial no.[-rt]/fid[(s)][, fid[(s)]]. ..
LT#serial no.[-rt[(s)I/Fid ()IL, Fid[(s)]]. ..
fid[(s)IL, Fid[(s)11. . .

_FT#serial no.[-rt]((s)]

L[IST]

List file names and, optionally, attributes from the account
directory, tape, or disk pack.

Options:

rt is the 2-character identifier of a device that was defined
at SYSGEN to be a resource.

s may be A, EA, R, or Cn.

¥ serial no.[-rt]

L
FT

Mounts a magnetic tape or disk pack,

AT? serial no.[-rt]. .. Options:
MOUINT] [/filename] [(RING)] .
DP# serial no.[-rt]... rt is the 2-character identifier of a device that was defined
[.account] at SYSGEN as a resource.
RING specifies the device is to be mounted with write
access.
PRINT Sends accumulated symbiont output to the output device.
HJ #serial no.[-rt] Removes a magnetic tape or disk pack.
REM[OVE] AT[”serial no.][~rt] [filename] Option:
DP#serial no.[~rt]
rt is the 2-character identifier of a device that was defined

at SYSGEN to be a resource.

90 17 64H-1(9/78)

Peripheral Conversion Language 203

Table 40. PCL Command Summary (cont.)

Command Description
[DC/] Reviews all or a specified range of files.
REVIIEW] | DP#serial no.[-rt)/ | [(s)l[rongel
.account Option;
rt is the 2-character identifier of a device that was defined
at SYSGEN to be a resource.
REW [II;::'J #serial no. [-rt] Rewinds tape reel.
ATl #serial no.][~rt][filename] Option:
rt is the 2-character identifier of a device that was defined
at SYSGEN to be a resource.
SPE (LT) #serial no.[-rt] Spaces to the end of the last file on (Xerox) labeled, free form, or
FT } ANS labeled tape.
AT
Option:
rt is the 2-character identifier of a device that was defined
at SYSGEN to be a resource.
SPF{ FT#serial no.[-rt],[n] Positions free form tape forward or backward a designated number of
SPR files (SPF) or records (SPR).
Option:
rt is the 2-character identifier of a device that was defined
at SYSGEN to be a resource.
TAB[S] s,sl... Sets tab values for tab expansion,
WEO[F] [FT#serial no.[-rt] Writes an end-of-file on the specified output device.
LP
cep
PP
X Returns control to the monitor.

203.1 Peripheral Conversion Language 90 17 64H-1(9/78)

(This page intentionally left blank.)

90 17 64H-1(9/78) 203.2

BATCH PROCESSOR

INTRODUCTION

The Batch processor is used to submit a file or a series of
files to the batch queue for execution. Through Batch pro-
cessor commands, the following capabilities are available:

1, Files may be inserted into a file being submitted for
execution, thus bringing together more than one file
to create a single job.

Selected strings and fields existing in files being sub-
mitted for execution may be replaced by new strings
and fields.

3. The results of string and field replacements can be
examined before the job is submitted to the batch
stream.

4, Files to be submitted for execution may reside on tape
or private disk pack.

5. Jobs may be submitted to run in an account other than
the account from which the job is submitted.

The Batch processor may be called in the on-line, batch,
or ghost mode. The file to be submitted must include all
appropriate batch control commands that would be needed
for normal batch job submission. However, the specifica-
tion field on the JOB control command may optionally be
left blank and the Batch processor will supply the missing
subfields before submitting the job to the batch queue.
Each record in the file must not exceed 80 characters,

Any user with at least CO privilege may enter jobs to run
in accounts other than the account through which the job
is submitted.

When a job is submitted through the Batch processor, the
system responds by assigning the job a job identification
(jid) and sending one of the following messages to the
terminal or printer (via M:LL):

ID = jid SUBMITTED time-date

WAITING: n TO RUN

or

ID = jid SUBMITTED time-date

RUNNING

If the user is an on-line user, he may check the status
of the job by using the JOB command or may cancel the
job using the CANCEL command. These two commands

204 Batch Processor

are described in Chapter 3 of CP-V/TS Reference Man-
val, 90 09 07.

DATA REPLACEMENT

There are five Batch processor commands. Three of the five
commands allow the user to request data replacements. As
each record from the input file is read, it is examined to
see if any data replacement requests apply to it. If so, the
appropriate substitutions are made and the resulting record
is placed in the job stream (except when the "test" mode
has been requested).

Data replacement requests have the same format regardless
of which command they appear in. The general format of
data replacement specifications is discussed in the follow-
ing paragraphs. The specific effect of data replacement
requests is discussed in the descriptions of the individual
commands.

There are two types of data that may be replaced: fields
and strings.

A field is defined to be a contiguous set of nondelimiters
bounded on either side by a delimiter or by the left or right
record boundary. The nondelimiters are:

A-Z
0-9
#

@

$

In the following two lines, the fields are underscored.

IASSIGN F:INPUT, (LABEL,MYTAPE,ACCT#6),(SN, IN)

A string is defined to be part of a field or of a set of
contiguous fields. Any part of a record may be treated as

a string. In fact, the entire record may be treated as one
string. The only limitation on string replacement is that
the string may not contain a quote character (because a
quote character is used to specify a string in a data replace-
ment specification).

The general format of a data replacement specification

(i)-me)

The left side specifies what is to be replaced and the right
side specifies the replacement. The format allows fields
and strings to replace each other interchangeably. It also
allows a replacement string to be a null string.

Examples:

In the examples below, the replacement specification will
be applied to the following record:

1ASSIGN F:IN, (LABEL, A123, ACCT#6)

Each example is to be regarded as independent of the other
examples.

Replacement Specification Result

a. Al123=B456 IASSIGN F:IN, (LABEL,
B456, ACCT#6)

b. 'IN'=INPUT' YASSIGN F:INPUT,
(LABEL, A123,
ACCT?6)

c. 'Al123, ACCT#6'=NEWTAPE !ASSIGN F:IN, (LABEL,
NEWTAPE)
d. ', AcCTte'=" 1 IASSIGN F:IN, (LABEL,
A123)

The last example illustrates that string data replacement
requests can be used to eliminate characters.

Note that the user must specify data replacement requests
very carefully. For example, the specification 'A' = 'C!
would have the following effect:

ICSSIGN F:IN, (LCBEL, C123, CCCT#6)

The request ACCT=ACCOUNT would have no effect be-
cause in this example ACCT is not a field by itself. To

change ACCT to ACCOUNT, the specification might be
*ACCT'='ACCOUNT".

The following restrictions are placed on data replacement
specifications. No more than 50 data replacement re-
quests may be made for one file. There may be no more
than 470 characters in the data replacement requests for
one file (including the left and right sides, the equal sign,
and quote characters).

Precedence of data replacement requests is in the order of
appearance within the Batch processor commands. When
replacement of the same field or string is requested more
than once, only the first request is honored."

COMMAND CONTINUATION

Due to data replacement specifications, Batch processor
commands can sometimes be quite lengthy. Any Batch pro=
cessor command can be continued from one card or line to
the next simply by using a semi-colon at the end of the
card or line to be continued. If a semi-colon is present

on a card or line, the first character of the next card or
line effectively overlays the semicolon. A command can-

| not exceed 255 characters in length.

90 17 64H-1(9/78)

When a command is continued in the on-line mode, the
Batch processor prompts for a continuation line with a
dollar sign (3).

Example:

IBATCH FILE1, FILE2,; ®
$P1=224,;
$'XXX, VVV'=FFF @

As will be seen later, the blank after FILE2 is mandatory.
The user must ensure that such blanks are not left out when
continuing a command from one line to the next.

BATCH COMMANDS
There are five Batch processor commands. They are:

BATCH
DEFAULT
EOF

EXEC

EOF EXEC

The BATCH command is a control command that (among
other things) calls the Batch processor. The remaining com-
mands must be embedded within the file being submitted for
execution. Their location within the file determines what
portion of the file they affect.

All Batch processor commands begin with an exclamation
point, even those that appear within the input deck.

BATCH The BATCH command calls the Batch processor,
specifies the files that are to be submitted for execution,
specifies Batch processor options to be used, and specifies
data replacement. The format of the command is:

1BATCH[([PI(EISIT) [Fd][.fid)...] [rep[,rep)..]
where

P specifies the "print" mode. In this mode, every
record that is submitted for execution is printed
through the F:BATCH DCB. (The F:BATCH DCB
is discussed briefly in the section "Batch Error
Messages . ")

E specifies that EXEC commands are to be honored.
An EXEC command is a Batch processor command
and is described below. If E is not specified,
EXEC commands are treated simply as data records.

S specifies that the input file is not named on the
BATCH command. Instead, the user has issued a
SET or ASSIGN command that has assigned the
M:EI DCB to the input file. For example:

ISET M:EI/INFILE (on-line mode)
IASSIGN M:El, (FILE, INFILE) (batch mode)

Batch Processor 205

T specifies the "test" mode. In this mode, the
Batch processor prints (through the FiBATCH
DCB) each record it alters because of data re-~
placement requests and does not submit the job
to the batch queue for execution. This allows
the user to examine the effects of data replace-
ment requests before submitting the job for ex-
ecution, The original file is not modified, thus
allowing the user to experiment.

fid identifies a file in one of the formats below

name
name. account

name. . password

name. account. password

rep is a data replacement specification in the for-
mat described previously. '

Example:

Assume that the following file (FILEA) exists in swap
storage:

1JOB MYNAME, MYACCT(SUBACCT#88)
1ASSIGN M:LO, (DEVICE, LP), (VFC)

and that the following BATCH command is used to submit
FILEA:

IBATCH FILEA '88'='89', VFC=NOVFC
The following changes would be made:

1JOB MYNAME, MYACCT(SUBACCT#§_9_)
LASSIGN M:LO, (DEVICE, LP), (NOVFC)

DEFAULT The DEFAULT command allows data re-
placement requests to be made within the input file. The
DEFAULT command may appear any number of times and
anywhere within the file being submitted and is effective
on subsequent records of that file. If a data replacement
request on a DEFAULT command is made fora field or string
for which a data replacement request was also made on
the BATCH command, the BATCH request overrides the
DEFAULT request. The format of the DEFAULT command is

IDEFAULT rep[,rep)...

where rep is a data replacement specification in the format
described previously.

EOF The EOF command specifies that all dato re-
placement requests made on the previous DEFAULT command
are not to be effective on subsequent records of the file.

206 Batch Processor

The DEFAULT and EQF command functions may be consid-
ered to operate in pairs. This is shown schematically as
follows:

{DEFAULT
_____ data record(s)
IDEFAULT
..... data record(s)
| ieor
[IDEFAULT
_____ data record(s)
|DEFAULT
..... data record(s)
1EOF
_____ data record(s)
|EOF
| IEOF

The EOF command does not affect data replacement re-
quests that were made on the BATCH command. The format
of the EOF command is:

|EOF

EXEC The EXEC command allows the user to insert
one file within another file. The EXEC command has the
following format:

1EXEC fid [rep[,rep]...]
where

fid identifies the file to be inserted in one of the
formats below:

name

name. account

name. ., password

name. account. password

rep is a data replacement specification in the for-
mat described previously.

The EXEC command is replaced by the entire file named on
the EXEC command. The EXEC command can appear any
number of times and anywhere within the user's file. If the
E option is not specified on the BATCH command, the EXEC
commands are treated as ordinary data records andare moved
to the job stream. EXEC commands within EXEC files are
also treated as ordinary data records and are moved to the
job stream; however, their presence in the file will cause
an error at a later time.

The data replacement requests on the EXEC command apply
only to the EXEC file. All previous data replacement
requests on the BATCH command or on DEFAULT commands
do not apply to the EXEC file. (Such data replacement
requests resume their effect after the EXEC file has been
completely'inserted.) However, itisimportant to note that an

EXEC command is subjected to data replacements specified
on the BATCH command and on previous DEFAULT commands
before the EXEC command is processed.

DEFAULT and EOF commands within the EXEC file apply
only to that file and function as previously described.

EOF EXEC The EOF EXEC command specifies that
all data replacement requests made on either the BATCH
command or an EXEC command (if the EOF EXEC com-
mand appears within an EXEC file) are not to affect sub-
sequent records of the file. The EOF EXEC command may
appear anywhere within the user's file. (If does not affect

requests that were made on a DEFAULT command.) The
format of the command is:

IEOF EXEC

BATCH ERROR MESSAGES

Error conditions that may be encountered and reported by '
the Batch processor are listed in Table 41, These messages

are output through the F:BATCH DCB. In addition to these

error messages, there are several self-explanatory messages

which may be issued by the monitor's file management rou-

tines to report such things as the file does not exist or the
file has a password which was not specified.

Table 41. Batch Processor Error Messages

Message Description

BATCH QUEUE FULL

No more symbiont space is available or the queue is full,

BATCH WHAT?

afile.

No file was specified on the BATCH command and the M:EI DCB was not assigned to

BLANK NOT ALLOWED
IN XACCT FIELD

A blank is not allowed in the extended accounting field on the JOB command.

*sxCAN'T GET
DYNAMIC PAGE

There is a problem in the system. Notify the system analyst,

COMMAND REJECTED

The file contains a BIN or FIN control command. The BIN or FIN command was ignored.

** %% *COMMAND TOO
LONG

A BATCH, DEFAULT, or EXEC command (with its continuations) has exceeded 255 bytes.

DATA LOST ON RECORD

The job expects card image input: 80 characters-per-record maximum, EBCDIC;
nnnn 120 characters-per~-record maximum, binary.

EH? @n

A syntax error exists at character n,

ILLEGAL ACCOUNT

The account on the JOB control command must match the user log=on account,

ILLEGAL NAME

The name on the JOB conirol command must match the user log-on name.

ILLEGAL PRIORITY

The terminal-batch job priority may not exceed the user's maximum on-line priority.
This maximum value is contained in the user's job information table (JIT).

***%*)JOB ABORTED

Due to syntax errors listed previously, the job was aborted.

**#x%JOB NOT SUBMITTED
BECAUSE OF ERRORS -

Due to syntax errors listed previously, the remainder of the file was processed for

syntax errors (without data replacement) but the job was not submitted for execution.

MISSING JOB COMMAND

The first record of the job must be a JOB control command.

Batch Processor

207

Table 41, Batch Processor Error Messages (cont,)

Message Description

**x*x*MODIFIED DATA
RECORD EXCEEDS
80 BYTES

Data replacement for the record listed below this message has caused the length of the
record to exceed 80 bytes. The remainder of the file is processed for syntax errors
(without data replacement) but the job is not submitted for execution,

NO REPLACEMENT

The user specified replacement requests but no matches were found. The job is sub-
MADE mitted for execution unless the "test" mode is specified.

*Ex%EGYNTAX ERROR IN
ABOVE LINE

Self-explanatory. The remainder of the file is processed for syntax errors (without
data replacement) but the job is not submitted for execution.

#7000 MANY
REPLACEMENT REQUESTS

Either more than 50 data replacement requests have been made for one file or the
number of replacement requests for one file exceeds 470 characters.

wxxx*WHILE PROCESSING
FILE filename '

The above errors occurred while processing this file,

XACCT FIELD NOT
TERM. BY RT. PAREN.

Either o comma or a left parenthesis in an extended accounting field. (The extended
accounting field must be terminated by a right parenthesis or the end of the command.)

SHOW PROCESSOR

The Show processor allows the user to display his current
maximum system services and resources, the peripheral de-
vices that he has been authorized to use, and several other
system user parameters. Show is called by a ISHOW com-
mand or by CCIwhen ajob is aborted for exceeding a limit.
The values displayed by Show are the maximum values that
a user can legally request on a LIMIT command,

The form of the SHOW command is:
SHOW [option[,option]. .]
The legal options are:

USER displays the log-on account, name, auto-
call processor, and user accumulated space

on both RAD and disk,

PRIV displays the user accumulated space on both
RAD and disk, the default and maximum file
retention periods, the extended accounting
field, service limits, resource limits, and
device and feature authorization for both
batch and on-line operation.

DCBS displays all the user DCB assignments in SET
command format,

208 Show Processor/DEFCOM

M:xx displays the individual DCB requested in SET
or F:xx command format,

ALL displays all of the informaticn requested by
the USER, PRIV, and DCBS options and is
assumed if no options are specified.

If for any reason SHOW is not able to access the system
default tables, only the user specific values are displayed
and the message

CAN'T GIVE YOU SYSTEM DEFAULT VALUES

is output. Show's output is directed through the M:LO DCB.

DEFCOM PROCESSOR

The DEFCOM processor provides users a means of accessing
core resident data and routines in one load module by an-
other load module. This is accomplished by using a speci-
fied load module as input and producing another load module
that contains only the DEFs and their values, which can
then be combined with other load modules to give them
access to core resident data and routines,

Thus the DEFCOM processor may be used to provide the user
with a common data pool or library. This can be done in the
following way. A load module consisting of DEFs for the
data or the actual routines is produced by the loader, and
the DEFCOM processor is run using the load module as
input, producing another load module which contains only
the DEFs and the DEF values of the input load module.
When other load modules are created by the loader, the
load module containing only the DEFs can be included by
specifying the name of the DEF load module on the EF op-
tion of the LOAD control command.

The format of the control command is

IDEFCOM

The input load module name is specified by assigning the
DCB of M:E!l to the file containing the load module. The
name of the load module to be formed by DEFCOM is
specified by assigning the DCB of M:EO to a file with
that name.

Example:
IASSIGN M:EI, (FILE, M:MON)
IASSIGN M:EO, (FILE, MONSTK)
IDEFCOM

The input load module must not contain any REFs or dummy
sections and must not have been generated with the PERM,
LI8 option in the LOAD command used to generate it.

SYMCON PROCESSOR

INTRODUCTION

The Symbol Control Processor (SYMCON)provides a means
of controlling the external symbols in a load module. Its
primary function is to give the programmer a means of pre-
venting double definitions of external symbols. A programmer
who is working on one section of a large system need be
concerned only with the external symbols that will even-
tually be used to communicate with other sections of the
system. He need nof be concerned with symbols internal
to a group of ROMs once they have been loaded together.
If someone else uses the same name in another section,
either one or both of the programmers can delete the name
with SYMCON before the sections are combined.

Thus, with the aid of SYMCON, a programmer need only
decide what symbols are to be referenced by external pro-
grams. Then except for these symbols, he may use any
symbols he wants in the various relocatable object modules
that make up the load module.

Another use of SYMCON is to reduce external symbols. If
certain load modules cannot be combined because their

tables of control information are too large, the tables may
be reduced in size by deleting all but the essential exter-

nal symbols.

SYMCON may also be used to provide the load module
with a global symbol table in Delta symbol table format
for use by Delta during a run. Conversely, a global symbol
table may be discarded from a load module.

Printed output from SYMCON goes to the LO device.

CONVENTIONS

Blanks may be used within SYMCON commands but may not
be embedded within a command verb or symbol. A command
is terminated by the end of the input record or by a period,
and may be continued from record to record by use of a
semicolon, in which case the continuation record begins
with the first character.

CALLING SYMCON

SYMCON is called by the following processor control
command,

ISYMCON

However, before SYMCON can be called, the load module
file must be assigned to the element input DCB. This is
done by an ASSIGN control command.

JASSIGN M:EI, (FILE, lmn), (INOUT)

where
M:EI specifies the element input DCB.
Imn is the name of the load module.

INOUT specifies file use in the update mode.

SYMCON reads the load module, processes each command
independently, then rewrites the load module, providing
no major errors are encountered. Note that the old load
module is overwritten unless an abort occurs.

SYMCON may be used as an on-line processor by including
it in the :SYS account. When used in this way, it may be
entered with a SYMCON command in response to a TEL
prompt. When entered, SYMCON will type SYMCON

HERE and accept commands from the terminal, prompting

for each with an asterisk. The identify of the load module

‘SYMCON Processor 209

is established prior to calling SYMCON, with a SET command
of the form

ISET M:EI DC/Imn

The END command terminates SYMCON.

SYMCON COMMANDS

There are eight SYMCON commands: LIST, DELETE, KEEP,
RETAIN, CHANGE, BUILD, DISCARD, and END. The

function of these commands is to

1. Produce a load map (LIST).

2.' Delete specified symbols (DELETE).

3. Delete all symbols but those specified (KEEP).

4, Delete all but a specified range of symbols (RETAIN).
5. Rename a symbol (CHANGE).

6. Build a Delta~format global symbol table (BUILD).

7. Discard a Delta~format global symbol table (DISCARD).

8. Exit from SYMCON (END).

The execution of each command is independent of any
other command. Thus, after the configuration of the load
module after the execution of one command is what is acted
on by the next command. This serial nature of operation is
useful for certain kinds of symbol manipulation, such as that
for the DELETE command.

Five SYMCON commands — LIST, DELETE, KEEP, RETAIN,
CHANGE — do not operate on the global symbol table built
by the BUILD command. Hence a BUILD command must be

" executed after a DELETE, KEEP, RETAIN, or CHANGE
command is executed in order for the global symbol table
to accurately reflect the load module.

LiST

This command lists the external symbols of the laad module
in the same format as the load map. The ordering of items

will usually be somewhat different from that produced by
the loader and there may be some additional control sec-
tions (CSECs) listed corresponding to items (such as DCBs)

obtained from the library. Forward references do not ap-
pear in the load map. The LIST command has the form

LIST

210 SYMCON Processor

DELETE
This command deletes the specified symbols. Any DEF sym-
bol in the module load map may be deleted unless it enters

into the definition of a DEF symbol or a forward reference
that is not yet completely defined.

The general form of the DELETE command is
DELETE name[,name]...

where name is the name of a symbol to be deleted.

Example:

Assume the following Meta~Symbol code.

DEF A,B
REF C

A EQU B+C

B EQU 2

If the external reference C is not satisfied when the load
module is formed, then A is not completely defined. Thus
any attempt to delete B will be ignored and an error mes-
sage will result.

If A can be deleted, the DELETE B will work because A no
longer exists after the DELETE A has been executed.

KEEP

This command deletes all DEFed symbols except those that
fall into the following categories.

1. DEFs listed in the command,
2, DEFsthathelp define the symbols listed in the command.

3. DEFs defined in terms of unsatisfied references (and
used).

The form of the KEEP command is
KEEP name[, name]...

where name is the name of a DEF symbol to be deleted.

Example:

Assume two ROMs are loaded to form a load module. They
are

DEF A, B,C
REF D.E,F

A EQU 297
B EQU E+3
C EQU Fo1

and

DEF D, E
REF A.C

D EQU A

E EQU 6

C

LW, R7

After these ROMs are in the form of a load module, the.

following command is issued.
KEEP B, A

DEF symbols A ond B are listed in the command, Eis used to
define B, and C is defined in unsatisfied terms (namely F).
Thus, A, B, C, and E are not deleted but D is. DEFs in
the unsatisfied reference category are not deleted if they
help define a core location in the object code (i.e., they
are used)but are deleted otherwise. In the adbove example,
C would have been deleted had it not been used in the
LW instruction.

RETAIN

This command deletes all but a specified range of DEFed
symbols with the constraints specified for KEEP. The form
of the RETAIN commoand is :

RETAIN name, ,name,,

The symbols name; and name, delimit a range of symbols
as they appear within the load module's REF/DEF stack.
Note that they do not refer to an alphabetical range of
symbols, but rather to the actual physical order in which
symbols appear within the REF/DEF stack.

Note: This command is intended primarily for use in sys-
tem development and modification and should be
used with caution.

CHANGE

This command renames symbols. Unlike DELETE and KEEP,
the CHANGE command may be used to operate on any item
with a name (DEF, SREF, PREF, DSEC). The form of the

command is

v

CHANGE name]/nc;lme2 [name]/namez]. ..

where
name, is the name of the symbol to be changed.,
name is the name to be given to the symbol iden-

tified by name,.

The only restriction is that nome; must be in the module
and name,, must not.

BUILD

This command builds a Delta-format global symbol table.
The form of the command is

BUILD [(LIB)]

If the (LIB) option is specified, library DEFs are included
in the global symbol table along with the load module DEFs.
Since Delta symbols are truncated to seven characters in
length, any set of symbols that are alike in the first seven
characters are treated as a multiple DEF and only the one
that appears first is retained in the Delta symbol table. The
Delta symbol table type associated with the symbol is "con-
stant" for DEFs with constant values and is "instruction ad-
dress" for all others.

DISCARD
This command is used to discard a Delta-format global sym-
bol table from a load module that includes one. The form

of the command is

DISCARD

This command terminates SYMCON. The form of the com-
mand s

END

* SYMCON ERROR MESSAGES

SYMCON checks for a number of error conditions. Table 42
lists SYMCON error messages.

SYMCON Processor 211

Table 42, SYMCON Error Messages

Message

Description

name ALREADY IN STACK, CHANGE NOT MADE

An attempt was made to change the name of an item fo a name
currently used by another item.

name APPEARS AS TYPE OTHER THAN DEF, NO

ACTION

The symbol was a PREF, SREF, or DSEC and could not be
deleted.

CAN'T USE SYMCON ON LINK OR LIBRARY
LOAD MODULES

An attempt was made to use SYMCON on a load module library
or a Link-built load module.

COMMAND CONTAINS ILLEGAL CHARACTER

The command contained a character not in the character set
defined for Meta-Symbol. The job is aborted.

DELTA SYMBOL TABLE ALREADY IN LOAD
MODULE, NO ACTION TAKEN

A BUILD command was given and a global symbol table is already
included in the load module. The command is ignored.

EH?

SYMCON does not recognize the command.

ILLEGAL OPTION

An option other than (LIB) was specified on a BUILD command.

ILLEGAL SYNTAX

Command syntax was incorrect. The job is aborted.

INCOMPLETE COMMAND LOAD MODULE
UNCHANGED

This message indicates that a continuation was specified (with
a semicolon) but the end of the file was encountered when an
attempt was made fo read another card. The job is aborted.

INPUT M:EI FILE IS NOT A LOAD MODULE

The M:EI file is either not keyed or is not a properly formed
load module.

M:EI 1/O ERR: xxxx xxxx

An 1/0 error occurred accessing M:E1. The content of SR3 is
displayed following this message.

NO DELETIONS RESULTED FROM THIS
COMMAND

None of the symbols listed caused any deletions. The load
module is unchanged,

NO DELTA SYMBOL TABLE TO DISCARD, NO
ACTION TAKEN

A DISCARD command was given, but there is no global symbol
table included in the load module. The command is ignored.

NO SYMBOLS FOR DELTA SYMBOL TABLE,
TABLE NOT BUILT

A BUILD command was given, but there are no nonlibrary DEFs
in this load module, hence no Delta symbol table can be built.
The command is ignored.

name NOT FOUND IN REF/DEF STACK

The identified symbol did not exist as an external symbol in the
load module.

OVERLAY PROGRAM, DELTA SYMBOL TABLE
BUILT FOR ROOT ONLY

A symbol table was built only for the root of the overlay.

REQUIRED CORE SPACE NOT AVAILABLE

This message indicates that the M:GP procedure failed to supply
enough operating space for the processor. The job is dborted.

THESE SYMBOLS. WERE DELETED ;

name, name, . . name

This message includes all deleted symbols, including deletions
caused by other deletions.

name USED IN UNEVALUATED EXPRESSION,
NOT DELETED

This message indicates that the symbol was used to define an
item that depended on an external reference. The item may
have been a DEF, a forward reference, or a core location of
the object code.

212 SYMCON Processor

APPENDIX A. DATA CONTROL BLOCK FORMATS

This appendix contains the formats for the three kinds of DCBs created by the monitor: files, devices, and labeled
tape. Following each format, the parameter fields of the DCB are described in alphabetical sequence by their
mnemonic. All referenced addresses have word resolution unless otherwise specified.

FILE DCB

Figure A-1 shows the format of the DCB for consecutive, keyed, and random files. All single fields are applicable
to the three kinds of files, Fields shown with a heavy border depict differences between consecutive, keyed, and
random, Shaded fields are not used by the DCB,

Word 0
W cle [alul [E[RIDIS]X] & Y
AJEOP |Y|X|x]|S Gli|1 |zl 1 7 | ASN=1
T L{T|v|REHV|IVIR]|e]P] D | D
11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
Word 1
FUN CFUA
T0 111712 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
Word 2 , .
NRA TYC BUF
0 1 2 314 5 6 718 T0 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
Word 3 , . .
RSZ ERA
0 1 2 314 5 6 718 0 111712 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
Word 4 . , .
ARS ABA
0 1 2 314 5 6 718 0 11112 13 14 15176 17 18 19120 21 22 23124 25 26 27128 25 30 31
Word 5
OfNfs R TIN
FL [w Wl E]S [R|F RAX RNDEV ORG ACS
K{K|o]" IN}F , .
0 1 2 314 5 6 718 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
Figure A-1, Format of File DCB

Appendix A

213

Word 6

BLK FLP
0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
Word 7 . :

ECN QBUF
5T 2 3173 1513 74 15176 17 T8 120 2T 22 23124 35 28 1B B 0
Word 8 ; . :

CDA
5 T 2 314 5 8 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27126 25 30 31
Word 9 4 .

. —t ,

VSND AGE : BUFX :
T T T e T R e T S e s T
Word 10 . : ,

VDCT KBUF
0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
Word 11 ; '

VNO ove FPARAM
5 1 2 314 5 6 718 9 10 17112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
Word 12 : ;

. KEYM CLK
o 7 2 314 5 6 718 9 10 11112 13 14 15176 17 18 19120 21 22 23124 25 26 27128 25 30 31
Word 13 — : :
RWS or TCFU
o T2 314 5 6 718 5 10 71112 13 14 15176 17 18 19120 21 22 23124 25 26 27128 29 30 31

214

Appendix A

Figure A-1, Format of File DCB (cont.)

Word 14

CRECNO or ADDER

9 10 11112 13

0 1 2 314 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
Word 15 . .)
BCDA
0 1 2 314 718 6 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
RlBlm NN o
A LR FEER
slulul BIR|TY CRPT
LIDfD| TS |AIR] | .
55 70 Tz 13 T4 15176 17 18 1910 21 22 18 B 2% 18 B 30 0
Word 17] ,
DESC ' '
(for private files) PAT
SCR PAT
DESC
4 — i L [f
0 1 2 314 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
Word 18 \ . .
CBD KAD
01 2 3132 515570 71172 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
Word 19
RDLO LSLIDES LRDLO SPARE
PRECNO
01 2 314 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
Word 20 , ,
CMD PBD or RSTORE
0 1 2z 3132 7185 70 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
Word 21 N .
ACD FLD
DCBCDAM
0 1 2 314 718 9 10 11112 13 14 15016 17 18 19120 21 22 23124 25 26 27128 29 30 31

Words 22 — n are used for variable length parameters.

Figure A-1.

Format of File DCB (cont.)

Appendix A

215

216

In the following field descriptions, the Control column signifies who specifies the contents of the field — the monitor
(M) or the user (U).

Field

ABA

ACD

ACS

ADDER

AGE

ARS

ASN

BBUD

BCDA

BLK

BRS

Appendix A

Description

Contains the address of the user's routine that will handle abnormal conditions
resulting from insufficient or conflicting information. (The monitor returns to
ABA in the FPT if the abnormal condition is the result of a device abnormality.)

Contains the word displacement to the user's account number in the DCB relative
to the start of the variable length parameters. (FLP+ACD = FWA of the EBCDIC
account number,) (Meaningful only during an open or close.)

is the file access indicator (0 = none specified and is treated as sequential,

1 = sequential, 2 = direct). ACS is only meaningful when a file is first written
in the OUT or OUTIN mode. If a file has keyed organization and sequential
access is specified, the keys written must be in ascending order. However, if
the organization is keyed and direct access is specified, the keys can be written
in any order (the monitor sorts them into ascending order).

ACS is not used by random files.

contains the size of a single entry in the master index structure or directory for
operations on keyed files or directories.

is used to measure the most recent activity on the DCB so that buffer truncation
can be made more efficiently.

contains

1. the actual number of data bytes transferred to or from the user following a
read or write.

2. the number of records remaining to be skipped following @ PRECORD opera=
tion that has terminated due to an end-of-file or a beginning-of-file condition.

indicates the assignment type currently in effect for the DCB (0 = null, 1 = file,
2 = Xerox labeled tape, 3 =device, X'A' = ANS labeled tape).

indicates whether or not the blocking buffer (BUF1) has been changed since it
was last read or initialized (0 = unchanged, 1= changed). This flag is used to

determine whether or not BUF1 needs to be written out to the data granule spe-~
cified in BCDA before truncating the buffer.

BBUD is not used by random files.

contains the disk address of the data granule currently in the blocking buffer (BUF1).
BCDA is not used by random files,

contains

1. the byte count of the record segment pointed to by either CBD or PBD, depend-
ing upon the point in time. Not applicable to random files.

2, the number of bytes foébe transferred by the 1/0 routines whenever called.

indicates whether or not the record segment pointed to be CBD or PBD, depending
upon the point in time, is blocked (0 = unblocked, 1 = blocked).

BRS is not used by random files.

During an open BRS, indicates whether the 'TEST' option was indicated in the
open FPT (0 = not test, 1= test).

Word Control

4 U
21 M
5 U
14 M
9 M
4 um
0 u
16 M
15 M
6 M
16 M

Field Description Word Control

BUF contains the address of the user's buffer where the data record is to be read or 2 U
written,
BUFX contains three 5-bit subfields used to index into the table of pooled buffers 9 M

available to the file management system. These indexes have varying signifi-
cance depending on the current operation being performed.

CBD contains the current byte displacement within the blocking buffer (BUF1). CBD 18 M
specifies where the record segment associated with the key pointed to by CMD
begins. When writing on the file, CBD = 0 if a data granule other than the lost
is being updated.

CBD is not used by random files.
CDA contains 8 M
1. the disk address to be used by the 1/O routines whenever called.

2. a counter indicating the number of records to skip. Not applicable to
random files.

CFUA contains the address of the CFU associated with the file, During open or close 1 M
operations, CFUA contains the address of the ACNCFU and FILCFU.

CLK contains 12 M

1. the net number of data and Master Index granules allocated to or released
from the file during this OPEN. Applicable to keyed and consecutive files.
The field is a 23~bit signed integer with a guard bit 8 that is used to pre-
vent overflow into the KEYM field.

2. the number of granules allocated to the file. Applicable to random files.

CMD contains 20 M

1. the byte displacement to the current key entry in the Master Index Buffer
(BUF2) for keyed files. CMD, along with TRN and DCBCDAM, points to
the current position in the file. For consecutive files, CMD contains a
word position in the granule pointed to by DCBCDAM. None of this is
applicable to random files.

2. the byte displacement to the current entry in the Account Directory or
File Directory index buffer (BUF2) when the file is being opened or closed.

CRECNO contains the current record number. |t is set to 14 M
1. 0 if at the beginning of the file.

2. the number of records in the file (obtained from TDA in the CFU) if at the
end of the file.

3. the sequential record number of the record most recently read or written,

CRECNO is only used for consecutive files.

CRPT specifies the address of a word to be used as the seed for a data encryption 16 U
process. This field applies to keyed and consecutive files only.

CYL specifies whether the file assigned to the DCB is to be allocated by granules or 0 M
cylinders (0 = granule allocation, 1 = cylinder allocation). Only meaningful
for public files. N

Appendix A 217

218

Field

DCBCDAM

DESC

DIR

EGV

EOP

ERA

EXT

EXTRND

FCD

FCI

FCN

FIL1

FLD

FLP

FPARAM

FUN

Appendix A

Description

is used when CFUA points to a user CFU for keyed or random files and contains
the disk address of the current index granule in the Master Index Buffer (BUF2).

If CFUA points to the Account or File Directory CFU, CDAM in FILCFU or
ACNCFU contains the disk address of the current granule in BUF2, For consec-
utive files, DCBCDAM contains a disk address of a granule, reflecting (in con=
junction with CMD) the location in the file at which the most recent data transfer
operation took place.

is used as storage for file descriptors. For private files, DESC resides in bits 8=14.

indicates the direction of the read operation (0 = forward, 1 = reverse).

DIR is not used by random files.

is the event~given flag and indicates whether or not the completion code posted
in the TYC field has been communicated to the user's program by the CHECK
routine (0 =no, 1 = yes),

The CHECK routine is called either directly by the user or indirectly by the
monitor, depending upon the WAIT, ERR, and ABN options in the FPT,

is the ending operation indicator (0 = other, e.g. ,. rewind, 1 =read, 2= write).
Specifies the type of 1/O operation currently or last performed.

EOP is not used by random files.

contains the address of the user's routine that will handle error conditions re-
sulting from insufficient or conflicting information. (The monitor returns to the
ERA in the FPT if the error condition is the result of a device failure.)

is the file extension flag and indicates whether OPEN is to position to the
beginning or end of a specified file (0 = beginning-of-file, 1 = end=of-file),

is set to one if the RAX field is to be logically appended to the RSTORE field
(RAX being the most significant field) for a random file. Otherwise, it is set
fo zero.

indicates whether the DCB is opened or closed (0 = closed, 1 = opened).

indicates whether the DCB has ever been closed. This flag is set when the DCB
is first closed and then never reset (0 = DCB has never been closed, 1 = DCB has
been previously opened and closed).

indicates the current number of 1/0 opera'ridns that have been initiated but not
completed, for this DCB,

indicates the file option last specified (0 = none specified and is treated as
release, 1 =release, 2 = save, 3 = JOB).

contains the word displacement to the file name in the bCB relative to the start
of the variable length parameters (FLD + FLP = FWA of the EBCDIC file name).
{Meaningful only during open and close.)

contains the address of the start of the variable length parameters in the DCB
(called the file list~pointer).

contains the receiving address of the user's 90-word buffer to which the variable
length parameters from the file's FIT are to be passed.

indicates the file mode function (0=null, 1=1IN, 2= OUT, 4=INOUT,
8 = OUTIN).

&

Word

21

17

0

21

11

Control

M

is the 1/O handler's byte displacement indicator and is used whenever the 1/0
routines are called to specify the byte displacement within QBUF into which the
data transfer is to begin.

1. the address of the key specified by the user in the read or write FPT,

2. the addressof the account number or file name whenopening or closing the file.

1. the address of the buffer containing the key most recently accessed in the
Master Index or File Directory. The field is set up by the M:DCB procedure
and points to an 8-word buffer following the VLPs. Not applicable to ran-
dom files except during open,

the address of the word buffer containing the relative granule number of the
first sector to be used in the 1/O transfer. Applicable to random files only.

3. the address of an 8-word buffer in the DCB that contains the TEXTC key of
records read sequentially from a keyed file,

contains the maximum length, in bytes, of the keys in the file pointed to by the
DCB. Applicable to keyed files. Maximum value is 31,

contains the [imiting number of contiguous index granules that can be allocated
in level 0 and not be reflected in level 1 before the flag, which signals CLOSE
to reconstruct the higher level index structure, is set (i.e., before SLIDES in
the CFU is set equal to 255),

LRDLO is only used for keyed files.
only has meaning if a multilevel index exists and contains

1. the limiting number of index granules that can be allocated in level 0 and
not be reflected in level 1 before the flag, which signals CLOSE to recon=
struct the higher level index structure, is set.

2. the value 255, which means that once a higher level index structure exists,
it is not to be reconstructed,

LSLIDES is only used for keyed files.

indicates whether or not the Master Index Buffer (BUF2) has been changed since
it was last read or initialized (0 = unchanged, 1= changed). This flag is used
to determine whether or not BUF2 needs to be written out to the granule spe-
cified in either DCBCDAM or CDAM in FILCFU or ACNCFU before truncating

indicates whether the file's descriptors indicate that the last access date is not
to be updated {0 = may be updated, 1 = may not be updated).

indicates whether or not the record segment pointed to by CBD is the first record
in a continued data record (0 = second or nth record segment, 1 = first or only
record segment), NLR is only meaningful during a WRITE operation,

Field Description
HBTD
KAD contains
KBUF contains
2,
KEYM
LRDLO
LSLIDES
MIUD
the buffer.
NACUP
NLR
NOSEP

specifies whether or not granules are to be allocated from RAD (0 = no, 1 = yes).
Normally, granules are allocated on DP. However, if all the devices of the nor-
mally allocated type are saturated, the system attempts fo allocate on an alternate
device. The order of allocation is DP and RAD if the NOSEP flag is reset. If the

Word

0

18

10

12

19

16

16

Appendix A .

Control

M

220

Field

NOSEP
(cont.)

NRA

NWK

NXTA

NXTF

ONWK

ORG

ovC

PAT

PBD

PRECNO

Appendix A

Description Word

Control

NOSEP flag is set, granules will be allocated from RAD if DEVICE, DC was
specified. This flag has no meaning for private files.

NOSEP is not used by random files.

indicates the number of recovery tries that may be attempted before a device 2
error message is fo be logged.

indicates whether or not NEWKEY was specified in the M:!WRITE FPT (0 = replace 5
an existing key, if the key does not exist, take an abnormal return; 1 = write a

new key, if the key already exists, take an abnormal return). If ONWK is set,

the NWK flag is ignored.

NWK is only used for keyed files.

is the next account indicator and specifies whether this account (i.e., the 16
account number in the DCB/JIT) or the next account in the Account Directory

(i.e., the one following the account named in the DCB) is to be assigned to the

DCB at OPEN (0 = this account, 1 =the next account). If an account number

is not specified in the DCB and the NXTA indicafor is set, the first account in

the Account Directory is put in the DCB and nothing more is done unless NXTF

is also set. After a file is open, the bit is set to 1 if the DCB is open to a star

file (see Glossary); otherwise, it is set to 0.

is the next file indicator and specifies whether this file (i.e., the file named in 5
the DCB/FPT) or the next file in the File Directory (i.e,, the one following the

file named in the DCB) is to be assigned to the DCB at OPEN., If a file name is

not specified (in either the DCB or FPT), the first name in the File Directory is

put in the DCB and- assigned (0 = this file, 1 = next file).

indicates whether or not ONEKEY was specified in the M:WRITE FPT (0 = check 5

NWK flag, 1 = if the key already exists, replace the corresponding record,
otherwise write a new record).

ONWK is only used for keyed files.

is the file organization indicator (0 = none specified and is treated as consecutive, 5
1 = consecutive, 2 = keyed, 3 = random).

is the open volume count and only has meaning for private files. 11

1. for consecutive private files, OVC indicates whether or not the volume
pointed to by VNO is opened or not (0 = no, 1 = yes).

2, for keyed or random private files, OVC contains a count of the numbers of
volumes that have been opened.

contains the allocation table address of the private volume pointed to by VNO. 17
Only has meaning for private files.

is the previous buffer displacement indicator, specifying at which byte in the 20
blocking buffer (BUF1) the previous record segment begins.

PBD is not used by random files.

contains the direction (+ or =) and the number of records that must be skipped 19
from the position indicated in CRECNO prior to a data transfer operation (read,
write, or delete),

PRECNO is only used for consecutive files.

Field Description Word Control

PRIV indicates whether the file assigned to the DCB is public or private (0 = public, 0 M
| = private), Public files reside on public devices and private files reside on
private volume sets.

QBUF contains 7 M
1. the buffer address to be used by the /O routines whenever called.
2. the address within the user's buffer where the next record segment begins.
QBUF, 2 is not applicable to random files.

RAX controls read ahead. If set to X'FF', no read ahead is possible. If set to zero, 5 M
no read ahead is in progress. Otherwise, RAX contains an index into read
ahead tables.

RBBI is the release blocking buffer inhibit flag and indicates whether or not the 16 M
blocking buffer (BUFT) should be released during end-action after the data
granule has been read into (BUF1) and the record segment has been transferred
to the user's buffer, (0 = release BUF1, 1 = do not release BUF1.)

RBBI is not used by random files.

RDLO contains a tally (up to 255) of the number of index granules that are read or 19 M
inserted at level O to locate the position of a user-specified key entry at level 0,
If RDLO is greater than LRDLO, the flag, which signals CLOSE to reconstruct
the higher level index structure, is set.

RDLO is only used for keyed files.

RNDEV contains the type of device requested for file allocation (0 = none specified and 5 u
for private files gets changed to X'B', 7 = RAD, and X'B' = DP).

RSTORE contains the number of granules to be allocated to the file, 20 U

RSTORE is used by random files only. If RSTORE value is zero when a random
file is created, an abnormal return is made with a code of X'14', Bits 8-15 of
word 5 are used by random files as a high order extension of this field if the
EXTRAND bit is set,

RSZ indicates the default record size, in bytes.’ 3 u
RWS indicates ’ 13 M

1. the requested number of bytes to be read or written from the user's buffer
(BUF). During the 1/O operation, RWS is decremented by the value in BLK
each time that a record segment is either output or blocked. At the termi-
nation of the /O operation, RWS is set equal to ARS. Applicable to keyed
and consecutive files.

2. the requested number of bytes to be read or written from the user's buffer
(BUF). At the termination of the 1/O operation, RWS is set equal to ARS.
Applicable to random files.

S contains the value of the S field from the mode specification in the Open Cal FPT. 7 u
S = 1 means SHARE; S = 0 means EXCLUSIVE.

SCR indicates the byte length of the key portion of the entries in the Master Index 17 M

currently referenced by the DCB. This can be the Master Index for the Account
Directory, the File Directory, or the user's file.

Appendix A 221

222

Field Description Word Control
SPARE contains the number of spare byte positions to be left unused in the end of the 19 U
current index granule in the event that the key to be added is the last key in
the file.
SPARE is only used for keyed files.
SWXv is the switch volume flag and indicates whether or not the current volume is to 0 M
be switched to the next volume after all updated buffers have been output to the
current volume (0 =no, 1 =yes). Only used for consecutive private files.
TBT not meaningfully used for files; however, the flag does get set and reset. 16 M
TCFU contains the address of the user CFU during CLOSE. 13 M
TRN indicates, for keyed files, whether the file is positioned before or after the 5 M
data record whose key entry is pointed to by CMD (0 = after, 1 = before). For
consecutive files, this bit is set only if the most recently executed operation
on the file was o read backwards.
TYC indicates the type of completion of an 1/O operation. 2 M
Corresponding Error/
TYC Code Abnormal Code Meaning
0 0 normal without device 1/O transfer
1 0 normal with a device 1/0 transfer
2 7 lost data
3 1D beginning-of-tape
4 4 beginning-of-file
5 1C end-of-reel
) 5 end-of-data
7 6 - end-of-file
8 4] read error
9 45 write error
A 57 public devices/private volume-set
saturated
B 0 SLIDES is 255
C 0 partial higher level index built
UBTD is the byte displacement indicator, specifying at which byte in the user's buffer 0 U
(BUF) the data record begins.
USR indicates whether the JOB account number is the same as the account number 0 M
specified in the DCB (0 = yes, 1 = no).
VDCT contains the DCT index of the device on which the volume (in a private volume 10 M

Appendix A

set) pointed to by VNO is mounted. Only meaningful for private files.

90 17 64H-1(9/78)

Field Description

VNO contains the volume number of the private volume currently being referenced
via the DCB. Volume number is the position (starting with one) of a volume
within the DCB's SN list. The SN list in the DCB has a fixed order and comes
from the serial number table on the primary volume of a private volume set.
Only meaningful for private files.

VSND contains the word displacement to the serial number table of the private volume
set (i.e., the SN list) in the DCB relative to the start of the Variable Length
Parameters (FLP + VSND = the control word of the SN Ilist).

WAT is the wait flag and indicates whether or not WAIT was specified in the FPT
(0 =no, 1=yes).

XUP indicates whether or not a higher level index structure is in the process of being
reconstructed or constructed (0 = either that there is no higher level index or

that the higher level index is complete, 1 = that the higher level index is being
built). Only meaningful for keyed files.

VARIABLE LENGTH PARAMETERS
Each variable length parameter entry is preceded by a control word of the following form:

Byte 0 = a code number (sze Table A-1) identifying the parameter which follows.

Word Control

11 M

9 M

0 U

0 M
22 —+n

Byte 1 = code for the entry position (00 = more parameter entries to follow, 01 = last parameter entry).

Byte 2 = number of significant data words in the parameter entry.

Byte 3 = total number of words reserved for the entry, not including the control word (that is, maxi-

mum entry length).

Table A-1. Variable Length Parameter Codes

Code _ Parameter Type
01 File name (in TEXTC format).
02 Account number,
03 Password.
04 ; ‘ Expiration date.
05 READ account numbers.
06 WRITE account numbers,
07 SN/INSN serial numbers.
08 OUTSN serial numbers.
09 File information (see Figure A=2).
0A Modification date.
0B SYNON name.

Appendix A

223

Table A-1. Variable Length Parameter Codes (cont.)

Code Parameter Type
oC File information (see Figure A-2),
0D File size,
OE Creation date.
OF Lost access date.
10 Backup date.
11 The X'11' VLP is used to control disk file status. It consists of one data word. The

meanings of the bits are:

Bit Meaning

8 If set, bits 12-15 will be moved from the data word into the file

descriptor.

12 If set, the file has been modified since last backed up by Fill.

13 If set, the file has been modified since the last INCREMENTAL.

14 . If set, the file has been modified since the last SAVEALL.

15 If set, the file has been modified since the last FILL.

20 If set, the file is not to be backed up.

21 If set, the access date is not to be updated,

22 If set, the file is not fo be deleted by the PURGE operation of Fill.

This bit is only looked at if the user has a privilege that is greater
than or equal to X'AQ' or is a ghost.

23 Must be set if bits 20-22 are to be looked at.
12 On line diagnostics; used to hold user's I/O command list.
14 Execute account numbers.
15 Names of the processors that may access this file. The names are in TEXTC format.

Each name begins three words beyond the beginning of the previous name.

FIT FILE PARAMETERS (FPARAM TABLE)

The format of the file parameters that are passed from the FIT to the memory location specified by the FPARAM pa-
rameter of M:OPEN is given in Figure A-2, "Format of the FPARAM Table". A description of the fields of the table
follows. Note that each variable length parameter is preceded by a control word of the form described in the section
above, "Variable Length Parameters".

Field Description
ACN is an account number. There can be a maximum of 16 total Read and Write ACNs. Each ACN is an

eight-byte EBCDIC entry with trailing blanks. If there is no Read ACN entry, any ACN can read the
file. If there is no Write ACN entry, no one can write in the file except the ACN that created the file.

224 Appendix A

X'01" | 0 N 9 | 9

Z (8 words) FNE (in TEXTC format) (
WA

X'03" | 0 | 2] 2
Password (2 words))
X'15' | 0 | NDW | NAW
Z TEXTC name of processor that can access this file (up to three words) /
These coded entries
X'14' | 0 L NDW l NAW “are optional; presence
of the entry is indi-
/ Execute ACNs (2 words each) / + cated by the byte 0
) hex code.
X'05' | 0 i NDW | NAW
Z Read ACNs (2 words each) /
X'06' | 0 | NDW | NAW
/ Write ACNs (2 words each)
J
X'04" | 0 | 2 | 2 -
Expiration Date
X 'OF" | 0 1 2 | 2
Access date
X'10' | 0 | 2 | 2
Backup date
X '0F" | 0 [2 | 2
Creation date
X'0A' | 0 l 3 | 3
Modification date
X'0D" I 0 | 1 | 1
File size
X'0C"' | 0 | 7 | 7
FDA
TDA
NGAVAL | GAVAL
ccBD V777777772 sues
0
SREC
LDA
X'09' 1 3 | - 3
T e T
77,] LSLIDEs LRDLO | SPARE
NSF - DESC

*For synonymous files opened via the NXTF option, the nine words immediately following the unused tenth word
- contain an X'0B' entry specifying the name of the primary file. .

Figure A-2. Format of FPARAM Table

Appendix A 225

226

Field

Description

CCBD

CYL

Date

DESC
FDA

File size
FNE

GAVAL

KEYM

LDA

LRDLO

LSLIDES

NAW

contains, for keyed files, either the byte displacement to the next availdble byte in the last data granule
of the file (SREC), which means that the blocking buffer was truncated; or 0, which means that the last
data granule in the file (SREC) contains 512 words,

specifies whether the file assigned to the DCB is to be allocated by granules or cylinders (0 = granule al-
location, 1= cylinder allocation). It is only meaningful for public files.

is of the form mmddhhyy, where

mm is numerical month.

dd is day of month,

hh is hour of day.

Yy is last two digits of the year, all in EBCDIC bytes.

Expiration date may contain the word NEVER followed by three blanks, which indicates that the file
does not have an expiration date.

The modification date contains three words. The third word is of the form hhmm, where

hh is a repeat of the hour.

mm is the minute.
contains the settings of the file descriptions.
contains the disk address of the file's first index granule at level 0.
contains the current number of 512-word granules allocated to the file.
is the EBCDIC name of the file in TEXTC format,

contains the disk address of the next available granule in the last cylinder allocated to the file; zero if
none.
contains

1. the maximum length, in bytes, of the keys in the file. Applicable to keyed files, Maximum value
is 31.

2, the type of device that the random file is to be allocated on (0 = allocate on either RAD or DP,
X'7' = allocate on RAD, X'B' = allocate on DP). Applicable to random files,

contains the disk address of the file's last index granule at level 0,

contains the limiting number of contiguous index granules that can be allocated in level 0 and not be
reflected in level 1 before the flag, which signals CLOSE to reconstruct the higher level index structure,
is set (i.e., before SLIDES in the CFU is set equal to 255),

LRDLO is only used for keyed files.
has meaning only if a multilevel index exists and contains
1. the limiting number of index granules that can be allocated in level 0 and not be reflected inlevel 1

before the flag, which signals CLOSE to reconstruct the higher level index structure, is set.

]
|

2. the value 255, which means that once a higher level index structure exists, it is not to be
reconstructed.

LSLIDES is only used for keyed files.

is the number of available words in the entry (not including the control word).

Appendix A

Field

Description

NDW

NGAVAL

NOSEP

NSF

ORG

Password

SLIDES

SPARE

SREC

TDA

is the number of significant daté words in the entry (not including the control word).

is the number of available granules in the last cylinder allocated to the file.

specifies whether or not granules are to be allocated from RAD (0 =no, 1= yes). Normally, granules
are allocated on DP. However, if all the devices of the normally allocated type are saturated, the
system attempts to allocate on an alternate device. The order of allocation is DP and RAD if the NOSEP
flag is reset. If the NOSEP flag is set, granules will be allocated from RAD if DEVICE, DC was spe-
cified, This flag has no meaning for private files.

NOSEP is not used by random files.
is the number of files synonymous with this file.
is a level 1 flag indicating whether or not a level 1 index exists in a keyed file (0 = no, 1 = yes).

is the file organization indicator (0 = none specified and is treated as consecutive, 1 =consecutive,
2 = keyed, 3 = random).

is an eight-byte EBCDIC entry with trailing blanks.

contains, for keyed files, either

1. atally of the number of index granules allocated at level 0 since the current multilevel index
structure was created, or if none exists, since the file was first opened.

. 2, a tally of the number of index granules allocated at the current level while the multilevel index

structure is being (re)created.

3. the value 255, which means that a new multilevel index structure should be built when the file is
closed (unless LSLIDES in the DCB equals 255 and a level=1 index exists).

contains the number of spare byte positions to be left unused in the end of the current index granule
in the event that the key to be added is the last key in the file.

SPARE is only used for keyed files.
contains the disk address of the last data granule in the file. It is only used in the output mode.

contains, for keyed files, either
1. the disk address of the first index granule at the top of the multilevel structure, if one exists.

2. the disk address of the middle index granule, if there are three level-0 index granules and
the file is keyed. :

3. 0, which means that either the file is consecutive, or that the file is keyed and there are at the
most two index granules,

For consecutive files, TDA contains the number of records in the file.

DEVICE DCB

Figure A-3 shows the format of the DCB for a device. Shaded fields are not used by the DCB.

Appendix A 227

FF|wW MTD;AE’S"DPV'; v
C|c|A| EOP |O|O|R|E|G|G|R|T {UF| 1 | B ASN =3
I |D|T D|FIC|D|V|V]|E|R|N|C] D | D
9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
T|o
FUN OLE 1L TYPE DEV
1 F F s N
8 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
Word 2 . .
NRA TYC BUF
0 T 2 314 5 6 718 5 1011112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
Word 3 . . .
RSZ ERA
0 1 314 5 6 718 9 10 11112 13 14 15176 17 18 19120 21 22 23124 25 26 27126 25 30 31
Word 4 . , ,
ARS ABA
0 1 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 25 30 31

Ak
A E D RNDEV
2 G Q F 2 1
314 5 18 19120 21 22 23
Word 6 . . .
BLK FLP
01 2 3 'F4 5 6 7 i 8 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
Word 7 .)
FCN QBUF
. 1 L 1
0 1 2 3 i4 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

228

Appendix A

Figure A-3.

Format of Device DCB

Word 8

NVA

0 1 2 314 5 6 718 9 10 112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29

30 31

AGE BUFX

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29

Word 10 , , .

30 3

. LVA KBUF

0 1 2 314 5 6 718 9 10 1111213 14 15116 17 18 19i20 21 22 23124 25 26 27128 29

Word 11 '

30 AN

COS or CIS PKTC ADR:1

0 1 2 314 5 6 718 9 1011112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29

30 31

ACCTG CLK

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29

Word 13 . . .

30 31

0 1 2 314 5 6 718 9. 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29

Word 14

30 31

CsC ADR:2

15116 17 18 19120 21 22 23(24 25 26 27128 29

30 31

Figure A-3., Format of Device DCB (cont,)

_ Appendix A

229’

Word 15

TABI TAB2 TAB3 TAB4
0 1 2 312 0 11112 13 14 15176 17 18 19120 21 22 23124 25 26 27128 29 30 31
Word 16

TAB5 TAB6 TAB7 TABS

1 1 .
T 37137 0 T2 3 745176 17 78 10130 27 22 D124 5 26 27128 B 30 30

Word 17

TAB9 TABIO TABII TABI2
o1 2 313 0 T2 13 14 75176 17 18 19120 27 22 23124 25 26 27128 29 30 31
Word 18

TABI3 TAB14 TABI15 TABI6
01 2 314 0 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
Word 19 , N

DSC SVA HLC
51 2 312 T0 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 25 30 31
Word 20 . ,

HSC FVA CVA or SQS
51 2z 314 0 11112 13 74 15176 17 18 19120 21 22 23124 25 26 27128 29 30 31
Word 21

SID or VAL:1

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17

Words 22 —n are used for variable length parameters

18 '|9i20 21 22 23124 25 26 27128 29 30 31

230

Appendix A

Figure A-3. Format of Device DCB (coﬁt.) ,

In the following field descriptions, the Control column signifies who specifies the contents of the field — the monitor
(M) or the user (U).

Field

Description

ABA

ACCT

ADR:1
ADR:2

AGE

AGvV

ARS

ASN

ASNE

BLK

BUF

BUEX

CCF

CIS

CLK

COs

CsC

CVA

'DEV

contains the address of the user's routine that will handle abnormal conditions
resulting from insufficient or conflicting information, (The monitor returns to
ABA in the FPT if the abnormal condition is the result of a device abnormality.)

contains an index signifying the accounting type of the DCB corresponding to the
service limit options on the |LIMIT command. (0 = no accounting, 1 - DO, 2 - PO,
3-U0, 4-10.)

contains an address used internally by the monitor in transaction processing.

contains an address used internally by the monitor in transaction processing.

is a field common to all DCBs and contains J:CALCNT/4 which determines how
recently the user used this DCB.

is the abnormal given flag and indicates whether or not an end-of-file completion
code has been returned to the user because a control command was encountered

when reading from the C device, (0 = no, 1 = yes).

contains the actual number of data bytes transferred to or from the user in the
1/O operation.

indicates the assignment type currently in effect for the DCB (0 = null, 1 = file,
2 = Xerox labeled tape, 3 = device, X'A' = ANS labeled tape).

is an ASN extension bit and is used internally by the monitor in transaction
processing.

contains the number of bytes to be transferred by the 1/O routines whenever called.

contains the address of the user's buffer where the data record is to be read or
written.

is a field common to all DCBs and is cleared to zero by the monitor for device DCBs.

specifies whether code conversion is to take place between ASCII on tape and
EBCDIC in core (0 =no, 1= yes),

contains the relative position of the serial number (in the SN list) of the magnetic
tape reel used for current file input. When the DCB is open, this field is always
zero if not assigned to tape.

for a nonsymbiont device, contains 0. For a symbiont device, contains the ac-
counting type in bits 20-23 (0 = none, 1=DO, 2=PO, 3=UQO, 4=L0) and
the logical device index in bits 24-31,

contains the relative position of the serial number (in the SN list) of the magnetic
tape reel used for current file output. When the DCB is open, this field is always
zero if not assigned to tape.

indicates the number of the column at which the page count is to begin (for printer
or typewriter). The most significant digit of the count will be printed in this column
on the page. ‘

indicates the current value of the page count (for printer or typewriter),

contains the DCT index of the device assigned to the DCB. DEV is only meaningful
if DEVF equals 1.

Word Control

4 u
12 M
11

14

9 M
0 M
4 M
0 u
0 M
6 M
2

9 M
5

11 M
12 M
1 M
14 v
20 M
1 M

. Aﬁpendix A

231

232

Field

Description

DEVF

DIAG
DIR

DRC

DSC

EGV

EOP

ERA

FBCD

FCD

FCI

FCN

FLP

FUN

FVA

HBTD

HLC

HSC

KBUF

indicates whether the DCB is assigned to a device or an operational ldabel
(0 = operational label, 1 =device).

signifies that the DCB is being used for diagnostic purposes.
indicates the direction of the read operation (0 = forward, 1 = reverse).

is the format control flag and indicates whether or not the monitor is to do special
formatting of records on read or write operations (0 = yes, 1=no).

indicates the column number at which the output record is to begin (for a card
punch, typewriter, or printer).

is the event-given flag and indicates whether or not the completion code posted
in the TYC field has been communicated to the user's program by M:CHECK
(1 =yes, 0 =no). M:CHECK is called either directly by the user or indirectly
by monitor, depending upon the WAIT, ERR, and ABN options in the FPT.

is the ending operation indicator (0 = other, e.g., rewind, 1 =read, 2 = write).
Specifies the type of I/O operation currently or last performed.

contains the address of the user's routine that will handle error conditions result-
ing from insufficient or conflicting information. (The monitor retumns to the ERA
in the FPT if the error condition is the result of a device failure.)

is the FORTRAN BCD flag and indicates whether or not BCD is to be converted fo
EBCDIC on input, or EBCDIC is to be converted to BCD on output, (0=no conver-

Z)iofr;:, 1=conversion.) On write operations, conversion is performed in the user's
uffer.

indicates whether the DCB is opened or closed (0 = closed, 1 = opened).

indicates whether the DCB has ever been closed, This flag is set when the DCB
is first closed, and then never reset (0 = DCB has never been closed, 1 = DCB has
been previously opened and closed).

indicates the current number of 1/O operations that have been initiated but not
completed, for this DCB.

contains the address of the variable length parameters in the DCB (called the file
list-pointer) or zero if no space was reserved.

contains the file mode function (0 =null, 1 =1IN, 2=0UT, 3 =1IN and OUT,
4 =INOUT, 8 = OUTIN).

indicates the first line on which printing is to begin (for printer or typewriter).

is the 1/O handler's byte indicator and is used whenever the 1/0 routines are
called to specify the byte displacement within QBUF into which the data transfer
is to begin.

contains the address of the user's page header that is to be output at the beginning
of each listing page (the first byte of the page header contains the byte count).

indicates the column number at which the user's page header is to begin (for
printer or typewriter), '

contains the address of buffer for the DCB which is reserved beyond the end of
the variable length parameters (8 words). If no space was reserved, KBUF con-
tains zero.

Appendix A

Word

1

19

20

19

20

Control

M

Field Description Word Control

L indicates whether or not the user specified that the DCB was assigned to a listing] u
type device. (0 =no, 1 =yes.) This flag is only used by the FORTRAN I/O
routines. The monitor automatically sets this flag when the DCB is assigned to a
listing type device {(such as the line printer).

LVA indicates the number of printable lines per logical page (for printer or typewriter). 10 U
The value = 0 if the stieam default is selected.

MBG is the monitor buffer~flag ond indicates whether or not a 34-word output buffer 0 M
has been allocated to the DCB from the monitor's buffer pool. (0 = the actual
1/0 operation will take place directly from the user's buffer, 1 = the output
record will be transferred from the user's buffer to the monitor's buffer and that
the actual 1/0 operation will take place using the monitor’s buffer.)

MOD is the mode flag and indicates the device mode to be used in the 1/0 operation. 0 V]
(0 = EBCDIC, 1 =binary.) This flag is only used when

1. the DCB is assigned to a card punch or 7-track magnetic tape.
2. the DCB is assigned to a card reader and DRC has been specified.

NRA indicates the number of recovery tries that may be attempted before a device 2 U
error message is to be logged.

NVA contains a counter indicating the number of records to skip on magnetic tape. It 8 M
is also used as an indicator. If NVA is negative, the last operation performed
was a rewind,

PKTC is used internally by the monitor to handle line cornering and unit record devices. " M
Line comering is the simulation of a typewriter wherein one record is broken into
small records which fit on the platen.

PUN indicates whether a 7-track tape is to be read or written in the packed or unpacked 0 u
mode (0 = unpacked, 1 = packed). PUN is only meaningful when MOD is set.

QBUF contains the buffer address to be used by the 1/0 routines whenever called. 7 M
RNDEV same as TYPE field. 5 u
RSZ indicates the default record size, in bytes, - 3

RWS indicates the requested number of bytes to be read or written from the user's 13 M

buffer (BUF).

SEQ is the sequence option flag and indicate whether or not punched output is to have 5 U
sequencing in columns 77-80 (0 = no, 1 = yes).

SIDF 1. if the DCB is not assigned to tape, SIDF is the sequence identification (ID) 5 U
flag and indicates whether or not punched output is to have sequence identi-
fication in columns 73-76 (0 = no, 1 = yes),

2. if the DCB is assigned to tape, SIDF is the density selection flag for dual
density tape drives (0 = 1600 bpi, 1 = 800 bpi).

SID contains the 4-byte EBCDIC identification to be output in the sequencing identi- 2] U
fication field (columns 73-76) of punched card output.

SQS indicates the next sequence number to be output in columns 77-80 (for punched 20 M
card output).

90 17 64H-1(9/78) Appendix A 233

234

Field Description

SVA indicates the number of lines to be spaced between printed lines (for typewriter
or printer). A 0 means SPACE was not specified; the output will be single spaced.

TAB1-16 indicates the column numbers for the tab-stop settings (for output devices).

TOF is used by the monitor to remember that the last operation through this DCB
occurred at the top~of-page.

TOLF if 1, bits 16-31 of DCB are TEXT OPLABEL. 1f 0, DEVF is meaningful.

TYC indicates the type of completion of an I/O operation.

Corresponding Error/
TYC Code Abnormal Code Meaning
0 0 normal without device 1/O transfer
1 0 normal with device 1/0O transfer
2 7 lost data
3 1D beginning-of-tape
4 4 beginning-of-file
5 1C end-of-reel
6 5 end-of-data
7 6 end-of-file
8 41 read error
9 45 write error

TYPE contains the device-type code assigned to the DCB. This field is set whether the
DCB is assigned directly to a device or indirectly through an operational label.

UBTD is the type displacement indicator, specifying af which byte in the user's buffer
(BUF) the data record begins.

VAL:1 contains a value used interally by the monitor in transaction processing.

VFC is the vertical format control-flag and indicates whether or not the first byte of
the output is a format control character (0 = no, 1 =yes). This flag is only used
for printer output,

WAT is the wait flag and indicates whether or not WAIT was specified in the FPT

(0 =no, 1 = yes).

VARIABLE LENGTH PARAMETERS

Word Control

19 U
15-18
0 M
1 U
2 M
1 u
0 U
21 M
0
0 U
22—n

Each variable length parameter entry is preceded by a control word of the form shown for File DCB and in

Table A-1.

XEROX LABELED TAPE DCB

Figure A=4 shows the format of the DCB for Xerox labeled tape files. Shaded fields are not used by the DCB.

Appendix A

Word 0

C |A | EOP Ul | B | B | AsN=2
DT NEL DD

N
N
Y ==
[%)

10 11112 13 ‘]4 15116 17 18 19 20421 24 25 26 27128 29 30 31

FUN 0 0 TYPE DEV

10 11i12 13 14 15016 17 18 19120 21 22 23124 25 26 27128 29 30 31

Word 2 , ,

NRA TYC BUF

0 1 2 314 5 ¢ 718 9 10 11i12 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3%

b 3 "l
T T T

RSZ ERA

0 1 2 314 5 6 718 9 10 11112 13 14 15016 17 18 19120 21 22 23124 25 26 27128 29 30 31

ARS ABA

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Word 5
E|E E DT
FILT |1 |V B S IR RNDEV ORG ACS
C|C|L|FIN
0 1 2 314 5 6 18 19120 21 22 23124 25 26 27128 29 30 31
Word 6

BLK : FLP

0 1 2 314 5 6 718 9 10 11112 13 14 15016 17 18 19120 21 22 23124 25 26 27128 29 30 31

Word 7

FCN

T 7 313 53

Figure A-4, Format of Xerox Labeled Tape DCB

. Appendix A 235.

Word 8

-+
-

Word 9

718 9 10 11112 13 14 15i16 17 18]9|20 21 22 2§|24 25 26 27'28 29 30 31

CVO or CVI

AGE BUFX

Word 10

8 9 10 11112 13 14 15176 17 18 19120 21 22 23124 25 26 27128 29 30 31

L ' I
T

KBUF

Word 11

18 19120 21 22 23124 25 26 27128 29 30 31

L

COS or CIS

FPARAM

Word 12

18 19120 21 22 23124 25 26 27128 29 30 31

—l
L

SND or DEVICE

18 19120 21 22 23124 25 26 27128 29 30 31

718 9 101112 13 14 15116 17 18 l9i20 21 22 23124 25 26 27128 29 30 31

TLB

18 19120 21 22 23124 25 26 27128 29 30 31

- 236

Appendix A

Figure A~4. Format of Xerox Labeled Tape DCB (cont.)

Word 15

i 3 Il

BCDA

0 1 2 314 5 6 718 9 10 1111213 14 15116 17 18 19120 21 22 23124 25 26

Word 16
R{B[RIT |AIE [N
RNR g Blefg|PrlofL
f [D|VIT | F|T (R
1
0 1 2 314 5 6 718 9 10 11112 13 14

Word 17

Word 18

27128 25 30 31

KAD

18 19120 21 22 23124 25 26

27128 29 30 31

0 1 2 314 5 6 718 9 10 1111213 14 15116 17 18 19120 21 22 23124 25 26

Word 20 . ,

27128 29 30 31

CMD PBD

0 1 2 314 5 6 718 9. 101111213 14 15116 17 18 19120 21 22 23124 25 26

Word 21

27128 29 30 31

ACD FLD

0 1 2 314 5 6 718 9 10 1111213 14 15116 17 18 19120 21 22 23124 25 26

Words 22 — n are used for variable length parameters,

27128 29 30 31

Figure A-4, Format of Xerox Labeled Tape DCB (cont,)

Appendix A

237

In the following field descriptions, the Control column signifies who specifies the contents of the field — the monitor
(M) or the user (U).

Field Description Word Confrol
ABA contains the address of the user's routine that will handle abnormal conditions 4 U

resulting from insufficient or conflicting information. (The monitor returns to
ABA in the FPT if the abnormal condition is the result of a device abnormality.)

ACD contains the word displacement to the users account number in the DCB relative 21 M
to the start of the variable length parameters. (FLP + ACD = FWA of the EBCDIC
account number.)

ACS is the file access indicator (0 = none specified and is treated as sequential, 1= 5 u
sequential, 2 =direct). If a file has keyed organization, the keys written must
be in ascending order regardless of the access specified.

AGE is used to measure the most recent activity on the DCB so that buffer truncation 9 M
can be made more efficiently.

APF contains the ANS post flag. If set, it indicates that post processing of a block 16 M
accessed record has not yet been done.

ARS contains 4 U,mM

1. the actual number of data bytes transferred to or from the user following a
read or write.

2. the number of records remaining to be skipped following a PRECORD opera-
tion that has terminated due fo an end-of-file or a beginning-of-file condition,

ASN indicates the assignment type currently in effect for the DCB (0 = null, 1 = file, 0 u
2 = Xerox labeled tape, 3 = device, X'A' = ANS labeled tape).

BBUD indicates whether or not the blocking buffer (BUF1) has been changed since it 16 M
was last read or initialized (0 = unchanged, 1= changed). The monitor uses this
flag to determine whether or not BUF1 needs to be written out to the data granule
specified in BCDA before truncating the buffer.

BCDA contains the number of either the current or last accessed entry in the blocking 15 M
buffer (BUF1), depending upon the point in time. An entry in a Labeled Tape
block consists of a key, control information, and the associated record segment,
Entries are numbered from 1 to n.

BLK contains 6 M

1. the byte count of the record segment pomfed to by either CBD or PBD, de-
pending upon the point in time.

2. the number of bytes to be transferred by the 1/O routines whenever called.

BUF contains the address of the user's buffer where the data record is to be read or 2 U
written, or where user trailer labels are to be read.

BUFX contains the index of the bloc!king buffer, 9 M

CIS contains the relative position of the serial number (in the SN list) of the magnetic 11 M
tape reel used for current file input.

CMD contains the byte displacement to the current entry in the blocking buffer (BUF1). 20 M

An entry in a Labeled Tape block consists of a key, control information, and the
associated record segment,

238 Appendix A

Field

Description

COs

CVvi

CvO

DEV

DEVF

DEVICE

DIR

DSF

EGV

EIC

EOP

EOT

ERA

EVC

EXT

FCD

FCI

contains the relative position of the serial number (in the SN list) of the magnetic
tape reel used for current file output.

indicates the relative volume number of the current input tape within the current
file. CVI is taken from the beginning-of-file sentinel, which appears at the be~
ginning of file and at the beginning of each reel, if the file is continued on more
than one reel.

indicates the relative volume number of the current output tape with respect to
the current file, CVO is recorded in the beginning-of-file sentinel which is
written at the beginning of the file and at the beginning of each reel, if the file
is continued on more than one reel.

contains the DCT index of the device assigned to the DCT. DEV is only mean-
ingful if DEVF = 1, When DEVF = 0, the field is defined as OPLB.

indicates whether the DCB is assigned to a device or an operational label.
(0 = operational label, 1 =device.)

contains the EBCDIC name specified on the DEVICE option in the M:OPEN call.
This use is only transient, and the field is later overlaid by SND.

indicates the direction of the read operations (0 = forward, 1 = rreverse),

indicates whether a dual density tape drive is to be written at 1600 bpi or 800 bpi.

(0=1600, 1=800.)

is the event-given flag and indicates whether or not the completion code posted
in the TYC field has been communicated to the user's program by the CHECK
routine (0 =no, 1=yes). The CHECK routine is called either directly by the
user or indirectly by the monitor, depending upon the WAIT, ERR, and ABN op-
tions in the FPT.

indicates whether or not the last block read from a consecutive file was in error
and that a validity check on the control information revealed inconsistencies
(0=no, 1= yes).

is the ending operation indicator (0 = other, e.g., rewind, 1=read, 2 = write).
Specifies the type of I/O operation currently or last performed.

indicates whether or not the physical end-of-tape mark has been encountered
(0=no, 1=yes).

contains the address of the user's routine that will handle error conditions result-
ing from insufficient or conflicting information. (The monitor returns to the ERA
in the FPT if the error condition is the result of the device failure.)

indicates whether or not the last block read from a consecutive file was in error

but a validity checkon control information revealed no inconsistencies (0 =no, 1=yes).

is the file extension flag and indicates whether OPEN is to position a tape at the
beginning or end of a specified file (0 = beginning~of-file, 1= end-of-file).

indicates whether the DCB is opened or closed (0= closed, 1= opened).
indicates whether the DCB has ever been closed. This flag is set when the DCB

is first closed and then never reset (0 = DCB has never been closed, 1= DCB has
been previously open and closed). :

Word Control

11 M
9 M
9 M
1 u
1 U

12 u
0 u
5 v
0 M
5 M
0 M

16 M
3 U
5 M
0 M
0
0 M

Appendix A

239

240

Field

Description

FCN

FILT

FLD

FLP

FPARAM

FUN

HBTD

KAD

KBUF

KEYM

NLR

NRA

NXTF

NVA

ORG

PBD

indicates the current number of 1/O operations that have been initiated but not
completed, for this DCB.

indicates the file option specified when the DCB was last opened (0 = none
specified, 1 =reledse, 2 =save).

contains the word displacement to the file name in the DCB relative to the start
of the variable length parameters (FLD + FLP = FWA of the EBCDIC file name).

contains the address of the variable length parameters in the DCB (called the file
list=pointer).

contains the receiving address of the user's 90-word buffer to which the variable
length parameters from the file's FIT are to be passed.

indicates the file mode funciion (0 =null, 1=1IN, 2= 0UT, 4=INOUT,
8 = OUTIN}).

is the 1/O handler's byte indicator and is used whenever the 1/0O routines are
called to specify the byte displacement within QBUF into which the data transfer
is to begin.

contains the address of the key specified by the user in the read or write FPT, If
a consecutive file is being written, KAD poinfs to the dummy key, If a consecu=
tive file is being read, KAD contains 0.

contains the address of the buffer containing the key associated with the data
record last accessed in the blocking buffer.

contains the maximum length, in bytes, of the keys in the file pointed to by the
DCB. Only meaningful for keyed files. Maximum value is 31.

indicates whether or not the record segment pointed to by CMD is the first record
in a continued data record (0 = second or nth record segment, 1 = first or only
record segment). NLR is only meaningful during a write and is reset to zero when
the first record segment is output.

indicates the number of recovery tries that may be attempted before a device error
message is fo be logged.

is the next file indicator and specifies whether this file (i.e., the file named in
the DCB/FPT) or the next file in the File Directory (i.e., the one following the
file named in the DCB) is to be assigned to the DCB at OPEN. If a file name is
not specified (in either the DCB or FPT), the first name in the File Directory is
put in the DCB and assigned (0 = this file, 1= next file).

contains a counter indicating the number of records to skip. It is also used as an
indicator. If NVA is negative, the last operation performed was a rewind.

is the file organization indicator (0 = none specified, and is treated as consecutive,

1 = consecutive, 2 = keyed). '

contains

T. a counter used by M:OPEN to determine how many volumes remain to be
searched for the specified file.

2. the number of bytes in the previous labeled tape block. PBD is only meaning-

ful on a read operation and is taken from the PBS field of a labeled block.

Appendix A

Word

7

21

11

18

10

12

16

20

Control

M

Field Description Word
PUN indicates whether a 7-track tape is to be read/written in the packed or unpacked 0
mode (0 = unpacked, 1 = packed).
QBUF contains 7
1. the buffer address to be used by the 1/O routines whenever called.
2. the address within the user's buffer where the next record segment begins.
RBBI indicates whether or not the blocking buffer should be released at end-action 16
(0 = release blocking buffer, 1 = do not release blocking buffer because the buffer
will be reused to read in the next block). RBBI is set during a read operation when
a data record is continued and more than-one read request will be initiated.
REV indicates whether the Labeled Tape block currently in the blocking buffer (BUFT) 16
was read in the forward or reverse direction (0 = forward, 1 =reverse).
RNDEV contains the type of device specified (0 = none specified, 8 =9T, 9 = 7T, 5
X'A' = MT).
RNR is a transient flag used by the system to defer error reporting for a tape block 16
read by the monitor in anticipation of a read not yet requested by the user
(0 = user requested read, 1= user read not requested).
RSZ indicates the default record size, in bytes. 3
RWS indicates the requested number of bytes to be read or written from the user's 13
buffer (BUF). At the termination of the [/O operation, RWS is set equal to ARS.
SCR indicates the byte length of the key portion of the entries in the Labeled Tape block. 17
SND contains the word displacement to the tape serial number (SN list) in the DCB 12
relative to the start of the variable length parameters (FLP + SND = FWA of the
EBCDIC serial numbers).
TBT indicates whether or not the Labeled Tape blocking buffer has been truncated 16
(0 =no, 1=yes). Truncation means that monitor has taken the blocking buffer
and, if necessary, written the block on tape.
TLB contains the address of a user's label that is fo be written on a tape file when 14
the file is output.
TRN indicates whether the file is positioned before or after the data record whose key 5
entry is pointed to by CMD (0 = after, 1 = before).
TYC indicates the type of completion of an 1/0 operation. 2
Corresponding Error/
TYC Code Abnormal Code Meaning
0 0 normal without device 1/O transfer
1 0 . normal with a device 1/0 transfer
2 7 lost data
3 1D beginning=of-tape
4 4 beginning-of-file
5 1C end-of-reel
6 5 end-of-data
7 6 end-of-file
8 41 read error
9 45 write error

Control

u

M

Appendix A

241, .

242

Field
TYPE

UBTD

ULBL

USR

WAT

Description

contains the device=type code for the tape assigned to this DCB.

is the byte displacement indicator, specifying at which byte in the user's buffer
(BUF) the data record begins.

indicates whether or not the ULBL option was specified in the FPT of M:READ
(0 =no, 1= yes).

indicates whether or not the job account number is the same as the account
number specified in the DCB (0 = yes, 1 =no).

is the wait flog and indicates whether or not WAIT was specified in the FPT
(0 =no, 1= yes).

VARIABLE LENGTH PARAMETERS

Word

1

0

22—n

Control

Each variable length parameter entry is preceded by a control word of the form shown for File DCB and in Table A-1.

ANS LABELED TAPE DCB

Figure A-5 shows the format of the DCB for ANS Labeled Tape files. Shaded fields are not used by the DCB.

In the following field descriptions, the Control column signifies who specifies the contents of the field — the monitor
(M) or the user (U).

Field

ABA

ABCERR

ACS

APF

ARS

ASN

BCERR

BLK

BLKCNT

Descriefion

contains the address of the user's routine that will handle abnormal conditions
resulting from insufficient or conflicting information. (The monitor returns to
ABA in the FPT if the abnormal condition is the result of a device abnormality.)
indicates whether or not block count errors are to be accepted; i.e., whether
or not processing is fo continue in the case of inconsistency between the tape-
specified and system=accumulated block counts (0 = no, 1= yes).

is the file access indicator (only 3, block, is possible for ANS tape).

contains the ANS post flag, If set to 1, it indicates that ANS post-processing
of an 1/O operation has not yet been done.

contains

1. the actual number of data bytes transferred to or from the user following
a read or write, -

2. the number of records remaining fo be skipped following a PRECORD opera-

tion that has terminated due to an end-of-file or a beginning-of-file condition.

indicates the assignment type currently in effect for the DCB (0 = null, 1= file,
2 = Xerox labeled tape, 3 = device, X'A' = ANS labeled tape).

indicates whether or not a block count error has been detected during EOF/EOT
processing (0 =no, 1=yes). Always cleared before returning to user.

contains the number of bytes to be transferred by the 1/0 routines whenever called.

specifies the number of blocks in the file.

Appendix A

Word

4

16

Control

U

UM

Word 0

FIF (W S E H U
c|C |A | EOP IEI G B B ASN = X'A!
1|p|T I v S S
718 9 10 11112 13 14 9 24 25 26 27128 29 30 31
Word 1
2
FUN Ofy|O TYPE DEV
F
9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
NRA TYC BUF
0 1 2 314 5 6 718 9 1011112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
Word 3 . . .
BLKSZ ERA
0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
Word 4 . .)
ARS ABA
0 1 2 314 5 6 718 9 10 11112 13 14 15[16 17 18 19120 21 22 23124 25 26 27128 29 30 31

9 10 11112

RNDEV

C
C | FMT
F

ACS

13 14 15116 17 18 19120 21

22 23124 25 26 27128 29 30 31

FLP

9 10 11112

17 18 19120 21

22 23124 25 26 27128 29 30 31

Figure A-5.

Format of ANS Lobeled Tape DCB

- Appehdix A

243

Word 8

Word 9

CVO or CVI

0 1 2 314 5

Word 11

6 718 9 10 11112 13 14 15016 17 18 19120 21 22 23124 25 26 27128 29 30 31

6 718 9 10 1112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

COS or CIS

01 2 314 5

Word 12

01 2 314 5

Word 13

6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

A 4
1 1

SND or DEVICE

6 718 9 10 11112 13 14 15016 17 18 19120 21 22 23124 25 26 27128 29 30 31

RWS

6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

CONCAT

L
4=

TLB

01 2 314 5

6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

244

Appendix A

Figure A=5. Format of ANS Labeled Tape DCB (cont.)

Word 15

0 1 2 314 5 6 718 9 1011112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Word 16

FSN

15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

BLKCNT

10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Word 18 .

LRCSZ

0 1 2 314 5 6 718 9 10 11112

SETID

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Word 20 , ,

CMD PBD

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Word 21

FLD

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Words 22 — n are used for variable length parameters.

Figure A-5. Format of ANS Labeled Tape DCB (cont.)

Appendix A 245

246

Field

Description

BLKSZ

BUF

CCF

CIS

CMD

CONCAT

cos

CVl

CcvVo

DEV

DEVF

DEVICE

DIR

DSF

EGV

EOP

EOT

ERA

FCD

specifies the block size in bytes.

contains the address of the, user's buffer where the data record is to be read or
written, or where user trailer labels are to be read.

specifies whether code conversion is to take place between ASCII on tape and
EBCDIC in core (0 =no, 1 = yes).

contains the relative position of the serial number (in the SN list) of the magnetic
tape reel used for current file input.

contains the number of tape marks that may be pessed during an OPEN while
searching the last tape of a set.

specifies the number of identically named files that are to be read as one logical
file (concatendtion.)

contains the relative position of the serial number (in the SN list) of the magnetic
tape reel used for current file output.

indicates the relative volume number of the current input tape within the current
file. CVI is taken from the beginning-of-file sentinel, which appears at the
beginning of file and at the beginning of each reel, if the file is continued on
more than one reel,

indicates the relative volume number of the current output tape with respect to
the current file. CVO is recorded in the beginning=-of-file sentinel which is
written at the beginning of the file and at the beginning of each reel, if the file
is continued on more than one reel.

contains the DCT index of the device assigned to the DCT. DEV is only meaning-
ful if DEVF =1. When DEVF =0, the field is defined as OPLB.

indicates whether the DCB is assigned to a device or an operational label.
(0 = operational label, 1 =device.)

contains the EBCDIC name specified on the DEVICE option in the M:OPEN call.
This use is only transient, and the field is later overlaid by SND.

indicates the direction of the read operations (0 = forward, .1 = reverse).

indicates whether a dual density tape drive is to be written at 1600 bpi or. 800 bpi
(0 =1600, 1 =800).

is the event-given flag and indicates whether or not the completion code posted
in the TYC field has been communicated to the user's program by the CHECK
routine (0 =no, 1 =yes). The CHECK routine is called either directly by the
user or indirectly by the monitor, depending upon the WAIT, ERR, and ABN
options in the FPT.

is the ending operation indicator (0 = other, e.g., rewind, 1 =read, 2 =write).
Specifies the type of 1/O operation currently or last performed.

indicates whether or not the physical end-of-tape mark has been encountered
(0 =no, 1=yes).

contains the address of the user's routine that will handle error conditions result-
ing from insufficient or conflicting information. (The monitor returns to the ERA in
the FPT if the error condition is the result of the device failure.)

indicates whether the DCB is opened or closed (0 = closed, 1 =opened).

Appendix A

Word Control.

3 u
2 u
5 U
11 M
20 M
14 u
11 M
9 M
9 M
1 u
1 u
12 U
0 u
5 u
0 M
0 M
16 M
3 U
0 M

Field

Description

FC1

FCN

FIL1

FLD

FLP

FMT

FSN

FUN

HBTD

LRCSZ

NRA

PBD

QBUF

RNDEV

RWS

indicates whether the DCB has ever been closed, This flag is set when the DCB
is first closed and then never reset (0 = DCB has never been closed, 1 =DCB has
been previously open and closed),

indicates the current number of 1/0 operations that have been initiated but not
completed, for this DCB.

indicates the file option specified when the DCB was last opened (0 = none
specified, 1 =release, 2 =save).

contains the word displacement to the file name in the DCB relative to the start
of the variable length parameters (FLD + FLP = FWA of the EBCDIC file name).

contains the address of the variable length parameters in the DCB (called the
file list-pointer).

indicates the record format, where
1 =F (fixed length)
2 =D (variable, expressed in decimal)
3 =V (variable, expressed in binary)

4 = U (undefined)
specifies the file sequence number,

indicates the file mode function (0 =null, 1 =1IN, 2 = 0OUT, 4 =INOUT,
8 = QUTIN), :

is the 1/0 handler's byte indicator and is used whenever the 1/O routines are

called to specify the byte displacement within QBUF into which the data transfer
is to begin.

specifies the logical record size in bytes,

indicates the number of recovery fries that may be attempted before a device
error message is to be logged.

contains

1. o counter used by M:OPEN to determine how many volumes remain to be
searched for the specified file.

2. the block count according to EOF1 or EQVI1,

contains

1. fhe.buffer address to be used by the 1/0 routines whenever called,

2. the address within the user's buffer where the next record segment begins.

contains the type of device specified (0 = none specified, 8 =9T, 9 =7T,
X'A' = MT).

indicates the requested number of bytes to be read or written from the user’s buffer
(BUF). At the termination of the 1/O operation, RWS is set equal to ARS,

Word Control

0 M
7 M
5 U
21 M
6 M
5 U
16 u
1 U
0 M
18 U
2 u
20 M
7 M
5 M
13 M

Appendix A

247

248

Field Description Word Control
SEFID spécifies the file set identification. 19 U
SND confains the word displacement to the tape serial number (SN list) in the DCB 12 M
relative to the starf of the variable length parameters (FLP + SND = FWA of the
EBCDIC serial numbers).
SNFN indicdfes the access method (0 =serial number, 1 = filename). 0 M
TLB contains the address of o user's label that is to be written on o tape file when 14 u
the file is output.
TYC indicates the type of completion of an 1/O operation. 2 M
Corresponding Error/
TYC Code Abnormdl Code Meaning
0 0 normal without device 1/0 transfer
1 0 normal with a device 1/0 transfer
2 7 lost da'r'a
3 1D beginning-of-tape
4 4 beginning~of-file
5 1C end-of-reel
6 _ 5 end-of-data
7 6 end-of-file
8 41 read error
9 45 write error
TYPE contains the device-type code for the tape assigned to this DCB, 1 M
UBTD is the byte displacement indicator, specifying at which byte in the user's buffer 0
(BUF) the data record begins.
ULBL indicates whether or not the ULBL option was specified in the FPT of M:READ 5 U
(0 =no, 1=yes).
WAT is the wait flag and indicates whether or not WAIT was specified in the FPT 0 U
(0 =no, 1=yes).
VARIABLE LENGTH PARAMETERS 22—n

Each variable length parameter entry for ANS labeled tapes is preceded by a control word of the following form:

Byte 0 = a code number (see Table A-2) identifying the parameter which follows.

Byte 1 = code for the entry position (00 = more parameter entries to follow, 01 = last parameter entry).

Byte 2 = number of significant data words in the parameter entry,

Byte 3 =total number of words reserved for the entry, not including the control word (that is, maximum entry

length).

Appeﬁdix A’

Table A-2, Variable Length Parameter Codes for ANS Labeled Tapes

Code Parameter Type
01 File name (the first byte of which contains the number of characters in the name).
04 Expiration date.
07 SN/INSN serial numbers. (ANS serial numbers are encoded to fit in 32 bits.)
08

OUTSN serial numbers. (ANS serial numbers are encoded to fit in 32 bits.)

Appendix A

249

APPENDIX B. MONITOR ERROR MESSAGES

INTRODUCTION

Four groups of monitor error codes are defined in this
section. They are 1/O error and abnormal codes (Tables B-1
through B-4), other monitor codes (Table B-5), and Enqueve/
Dequeue abnormal and error codes (Table B=6 and B-7). In
all cases, a message is printed only if the monitor has con~
trol. If the user asks for control, the error codes are returned
to him. Otherwise, the monitor takes unilateral action and
prints the message ¢orresponding to the code or the code it-
self if no message is in the ERRMSG file. Users who have
taken control may return it for monitor disposition by using
M:MERC.

The error and abnormal addresses specified in a function
parameter table (FPT) for a Read, Check, or Write function
are temporary and are not retained by the monitor between
calls. Those addresses specified in an FPT for an Open
function are retained in the specified data control block
(DCB).

1/O error and abnormal conditions fall into two general
categories:

1. Those associated with insufficient or conflicting
information.

2, Those associated with device failures or end-of-data
conditions.

The monitor responds to conditions of the first category by
honoring the error and abnormal addresses in the associated

DCB. The monitor responds to conditions of the second
category by honoring the error and abnormal addresses in
the FPT for the associated Read, Check, or Write functions,

The error and abnormal codes for insufficient or conflicting
information are listed ih Tables B~1 and B-3, Those for
device failure or end-of-data are listed in Tables B-2 and

B-4.

The monitor communicates the error or abnormal code and
the DCB address in SR3, and the address following the in-
struction which caused the CALI trap is in SR1. The code
is contained in byte 0 of the word in SR3, a subcode is con-
tained in bits 8-14, and the DCB address is contained in the
rightmost 17 bits.

SR3

Error Code Subcode DCB Address

T 2 314 5 &6 708 9 10 11132 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Note that the subcode field contains seven bits and an error
code of 75/13 would appear as X'7526" in bits 0-15, (The
first digit of the subcode is contained in bit positions 8, 9,
and 10, Hence, it may have a value of 0=7.) The previous
contents of SR1 and SR3 are lost. The meaning of each
error and abnormal code is shown in Tables B~1 to B-4,

Certain errors are also reported in the TYC field of the
DCB. The correspondence between error/abnormal codes
and TYC codes is given in Appendix A,

Table B-1. Abnormal Codes = Insufficient or Conflicting Information

Abnor- Originating

mal Sub- | Monitor

Code code | Routine Meaning of Code

01 .| 00 OPEN An attempt was made to open a DCB with insufficient information.

01 0B OPEN A number of contiguous granules (in random files) has been requested, but they are not
available,

02 00 OPEN An attempt was made to open the next file with NXTF specified in the DCB but there
are no more files.

02 01 OPEN The end of all accounts has been encountered, and NXTA is specified in the DCB,

03 00 OPEN The input or update file does not exist,

08 00 OPEN An attempt was made to open the next file but the name of the next file is a synonym
for the primary name of the file.

09 00 'RDERLOG , An attempt wos made to close and retum a device which was not partitioned or a

' ' device within a partitioned controller,
09 01 RDERLOG The device referenced in the Diagnostic DCB is a nonexistent device.
09 02 'RDERLOG | ' The device referenced in the Diagnostic DCB is currently in use.

250 Appendix B

Table B~1,

Abnormal Codes — Insufficient or Conflicting Information (cont.)

Abnor- Originating

mal Sub- | Monitor

Code code | Routine Meaning of Code

09 03 RDERLOG The device referenced in the Diagnostic DCB is currently in use by a symbiont.

09 04 RDERLOG The Diagnostic DCB does not contain a command list,

09 05 RDERLOG The command list was invalidated by a swap,

09 06 RDERLOG There are more than 12 1/0 command doublewords (10CDs).

09 07 RDERLOG The 1/0 command list is invalid. This includes invalid flags, invalid TIC address, in-
valid command list address specified by user, or insufficient room in the DDCB for the
command list,

09 08 RDERLOG Error during BLIST CAL. An invalid page found during PTV or VTP conversion, the
status address is in error, the byte count is illegal in the IOCD, or an IOCD overlaps
a page boundary.

09 09 RDERLOG A buffer crosses a page boundary,

09 0A RDERLOG The user's ID does not match the ID specified on the last operator DIAG key-in or the
user privilege level was less than AQ.

09 08 RDERLOG The amount of core is not sufficient to allow the diagnostic program to lock itself in
core,

09 ocC RDERLOG The requested controller is not partitioned.

09 0D RDERLOG The device specifically requested on open is not partitioned.

09 OE RDERLOG A MAP CAL error due to an invalid page number during a PTV or VTP conversion.

09 OF RDERLOG Cannot get MPOOL for use in processing command list or MPOOL is less than 13 words
long.

09 10 RDERLOG A TIO, TDV, or HIO was requested with an invalid FPT,

09 1 RDERLOG A CHAN option on an M:OPEN to a device type or op label is illegal.

0A 00 CLOSE An attempt was made to close a DCB that is already closed.

0A 01 CLOSE Illegal VLP code on M:CLOSE CAL.

0A 02 CLOSE Not enough room in FIT for requested change.

0A 08 CLOSE Illegal file name,

0A 09 CLOSE New file name already exists.

0A 0A CLOSE Can't modify a synonymous file.

0B 00 OPEN, READ | Unrecognized sentinel on labeled tape,

CvOoL
0C 00 OPEN Illegal SYNON operation.
oD 00 OPEN Insufficient room exists in the variable length parameter section of the DCB for the

private pack serial number,

Appendix B

251

Table B~1. Abnormal Codes — Insufficient or Conflicting Information (cont.)

Abnor- Originating

mal Sub~ | Monitor

Code code | Routine Meaning of Code

0D 01 OPEN The private pack serial number list cannot be moved to the DCB because of an 1/0 error.

OE 00 OPEN 127 DCBs are open to the file, Access is denied,

13 00 DELREC or The specified key was not found for an update file and the option is not NEWKEY,

WRITE

14 00 OPEN Access has been denied for one of the following reasons: (1) password missing or incor-
rect, (2) the file is execute-only and the wrong execute vehicle is accessing it, (3) there
is a read or write account restriction, (4) a tape or private pack is being accessed with
the wrong account in the DCB, (5) an attempt is being made to create a file in an
account different from the log-on account, (6) an open OUT or OUTIN was attempted
for an existing file on a private disk pack and the organization of the file is different
from the organization in the open FPT or DCB, or (7) the first non-input open to tape
did not occur at load point.

14 01 OPEN An attempt was made to open a file for output and another user or DCB has the file open
for input or output.

14 02 OPEN Bad FPARAM location.

14 03 OPNL The BREAK key was depressed or CONTROL Y was entered while waiting for a mount
to be completed, The open was not performed.

14 04 ?QSC;ECAL User escape from random file cleaning operation on a M:MOVE CAL.

14 05 OPND Invalid op label in DCB.

14 06 OPND Conflicting or missing DCB information. Probably either no file name is specified or the
file name TEXTC count is illegal.

14 07 OPND Cannot open file DCB OUT with REL,

14 08 OPEN Illegal private pack device type.

14 i OPEN Code conversion was requested for a tape drive not having that feature.

14 12 OPEN 800 bpi was requested for a tape drive not having the dual density feature.

14 13 OPEN Code conversion option requested for an ANS tape not at the load point or code con-
version requested for Xerox labeled tape.

14 14 OPNF Access has been granted to an execute-only file because of the execute authorization,

15 00 DELREC or An improper sequence of operations has been requested for an update file, or the

WRITE FPARAM address did not belong to the user. For example, a WRITE or DELREC was

issued for a keyed file and there is no key given on the WRITE or DELREC,

15 01 ';[E(?goo;[) Improper operation sequence on a shared keyed file.

16 00 WRITE The NEWKEY option was specified, but the key already exists.

17 00 WRITE The NEWKEY option was not specified for an output or scratch file.

18 00 WRITE An attempt was made to write a keyed file sequentially with an out-of-order key.

252 Appendix B 90 17 64H-1(9/78)

Table Bl. Abnormal Codes — Insufficient or Conflicting Information (cont.)

Abnor- Originating
mal Sub- | Monitor
Code code | Routine Meaning of Code
19 00 OPEN/ Il egal operation on M:UC DCB.
CLOSE

1A 00 MOVECAL No error or abnormal address specified in the MOVE CAL FPT,
(RDL)

1A 01 MOVECAL The output DCB is missing.
(RDL)

1A 02 MOVECAL One or both DCBs are not open.
(RDL)

1A 03 MOVECAL The input DCB is not open IN or the output DCB is not open OUT.
(RDL)

1A 04 MOVECAL The MOVE CAL is not allowed for device or ANS DCBs.
(RDL)

1A 05 MOVECAL The MOVE CAL was aborted by BREAK, Yc, or operator abort,
(RDL)

1A 42 MOVECAL KMAX of input DCB is greater than KMAX of output DCB.
(RDL)

1A 4A MOVECAL The specified buffer does not belong to the user,
(ROL)

20 01 READ A private pack is locked out.

20 02 READ An attempt was made to use a private pack that is for exclusive use of another user.

20 03 READ A private pack was not properly requested.

20 04 OPEN An on-line user has requested ¢ spindle which is down but which was previously allo-
cated to him and was not in use.

20 05 OPEN A private pack set contains multiple primary volumes.

21 00 OPEN/ Private pack consistency check failure.

CLOSE

22 00 OPEN An error occurred on a private pack while trying to open an existing file.

2E 00 OPEN An attempt was made to open a DCB that is already open,

30 01 LBLT The user label is bad. All ANS labels must be 80 bytes in length. User header labels
must begin with UHL1 and user trailer labels must begin with the characters UTL1, (The
byte count is not part of the label because all ANS labels are 80 bytes long; however,
it is automatically restored in the first byte of the label buffer when a label is read.)

30 03 LBLT The file name is greater than 17 characters in length or is equal to zero.

30 04 LBLT EXPIRE, NEVER wes specified.

30 05 LBLT The format code is illegal.

3F 35 JOBENT The user tried to enter a job with an illegal account or priority.

3F 36 JOBENT Job entry has been disallowed by the operator.

90 17 64H-1(9/78) Appendix B 253

Table B~1. Abnormal Codes — Insufficient or Conflicting Information (cont.)

Abnor- Originating

mal Sub- | Monitor

Code code | Routine Meaning of Code

3F 37 JOBENT The user is not allowed to use the service he requested.

3F 38 JOBENT A function inconsistency exists.

3F 39 JOBENT The id requested for deletion is not valid.

3F 3A JOBENT It is too late to delete job. Either the job is scheduled to run, is running, or has been
completed.

3F 3B JOBENT No more symbiont space is available or the queue is full.

3F 3C JOBENT The user is not allowed to use job entry service.

3F 3D JOBENT The system is nonsymbiont, or the LL device is not a symbiont printer or is not defined
as a symbiont device.

3F 3E JOBENT A DCB has been specified and it is already open.

3F 3F JOBENT The specified buffer address is not in the user's program.

Note: In all of the above cases, return is made to the user's program for continuation of execution if no abnormal address

is specified in the DCB.

Table B-2. Abnormal Codes — Device Failure or End-of-Data

Abnor= Originating

mal Sub~- | Monitor

Code code | Routine Meaning of Code

04 00 PRECORD or READ The beginning-of-file has been encountered.

05 00 PRECORD or READ The end-of-data has been encountered.

06 00 READ The end-of-file has been encountered (or first read of | card).

07 00 READ Data has been lost because the buffer was smaller than the record read,
or a parity error was detected,

1C 00 READ, WRITE or PRECORD The end-of~tape has been encountered.

1C 01 WRITE The end-of-tape has been encountered on a common journal.

1D 00 READ or PRECORD The beginning-of-tape has been encountered, a bad command has been
sent to the terminal, or a 0 byte COC read has been issued.

IF 00 WRT/10D/10ORT BIN (or VFC) is not valid for this device.

23 00 CcocC On=-line terminal read timed out.

24 00 coC On-line conditional read issued with no type-ahead.

Note: In all of the above cases, return is made to the user's program for continued execution if no abnormal address is

specified in the 1/0 CAL FPT,

254 Appendix B 90 17 64H-1(9/78)

Table B-3. Error Codes — Insufficient or Conflicting Information

Error Sub-

Code code | Originating Monitor Routine| Meaning of Code

40 00 READ A request was made to read an output file.

42 00 READ, WRITE or RANDOM | The key was not valid. The key length was zero or greater than the key
maximum for the file or a random file granule number is out of legal
range.

42 01 STPNR llegal buffer size on assign/merge read or write.

43 00 READ No record having the specified key was found.

44 00 WRITE A request waos made to write in an input file.

46 XX READ The DCB contains insufficient information to open a closed DCB on a
Read operation. Subcodes corresponding to the OPEN abnommal codes
above describe why the implicit OPEN failed.

46 21 READ or WRITE A private disk pack logic inconsistency exists.

46 22 READ or WRITE A private disk pack error occurred trying to open an existing file.

46 48 READ On-line user is not allowed to access the card reader.

47 XX WRITE The DCB contains insufficient information to open a closed DCB on a
Write operation. Subcodes corresponding to the OPEN abnormal codes
above describe why the implicit OPEN failed.

47 2B OPEN Invalid Op label in DCB.

47 48 WRITE The symbiont use flag was not set for on-line user.

48 00 OPEN The symbiont use flag was not set for the given device.

48 01 OPEN On-line user is not allowed to access the card reader.

49 00 PV The user's peripheral use flags do not permit the use of tapes.

49 01 OPEN No tape drives or disk spindles are available (on-line maximum ex-
ceeded or all drives or spindles in use). This error only occurs for
on-line or ghost jobs.

49 02 OPEN The user's tape drive or disk spindle limit from LIMIT card is exceeded,

49 03 OPEN There is insufficient DCB space for the requested serial numbers.

4A 00 READ, WRITE, or ENQ Either the specified buffer or the indirect address in FPT does not belong
to user.

4A 01 IOCHECK Time parameter too large on M:CHECKECB.

4A 02 IOCHECK ECB in wrong state.

4A 03 IOCHECK Infinite wait condition,

4A 04 IOCHECK No monitor work space.

4A 05 IOCHECK Wrong access code for ECB address.

48 00 READ or WRITE An attempt was made to open a file that the user already has opened.

4C 00 READ or WRITE An attempt was made to open a file that another user already has opened.

4D 00 CLOSE An attempt was made to close and release a file that someone else is
reading.

4E 00 ARDL ANS block count error and no ABCERR specified.

4E o1 READ or CVOL A volume sequence number error occurred on an ANS tape.

4E 04 LBLT A BOF encountered on ANS tape with no block count error.

4E 05 READ or CVOL An ANS block count error exists and end of tape and end of file has been
encountered.

4E 07 READ or CVOL An ANS block count error exists and end of file has been encountered.

90 17 64H-1(9/78)

Appendix B 255

Table B-3. Error Codes — Insufficient or Conflicting Information (cont.)

Error Sub~-

Code code | Originating Monitor Routine Meaning of Code

51 00 CLOSE The file is still open in the input mode through another DCB. The file
being closed is deleted.

52 00 OPEN Insufficient privilege to use this CAL.

54 00 READ The user has tried to read a control command via the control input (C)
device more than once through the same DCB.

55 00 OPEN Too many files are open simultaneously (the monitor's file-use tables
cannot handle that many files).

56 00 CLOSE or CVOL The system is unable to complete a tape volume switch because the reel
number has not been specified or an error occurred opening the new
volume.

75 00 CLOSE The free sector pool contains erroneous information. (This message
appears only in ERR-LOG.)

75 01 READ Data records were lost due to a bad disk address in master index.

75 02 READ The master index is inaccessible due to bad disk address in preceding
master index.

75 03 OPEN The entire file is inaccessible due to bad disk address in file directory
or bad information in file information table.

75 04 OPEN or CLOSE One or more files are inaccessible due to an error in the file directory,

75 05 OPEN All files in account were lost due to bad disk address in account
directory.

75 06 OPEN A bad disk address link to next account directory exists. The current
account and other accounts are gone.

75 07 OPEN An error exists in the pyramid. (This message only appears in ERRLOG.)

75 4x 75/40 — 75/47 are the same as 75/00 — 75/07 except that in addition, a
hardware error has been detected.

75 7D OPEN An error has been detected while trying to perform a fast open. The
open will be retried, (This message only appears in ERRLOG.)

75 7E RDF Error in main directory granule. The dual granule will be read. (This
message only appears in ERRLOG.)

75 7F RDF File inconsistency corrected by software. (This message only appears
in ERRLOG.)

Note: In all of the above cases, the job is aborted if no error address is specified in the DCB, In batch mode, the

monitor skips to the next job; in on~line mode, control is retumed to TEL which prints the message and awaits
further user commands. For error code 54, the job is aborted in all cases.

256

Appendix B

90 17 64H-1(9/78)

Table B-4. Error Codes — Device Failure or End-of-Data

Error Sub~ | Originating

Code code | Monltor Routine Meaning of Code

41 00 READ An irrecoverable read error has occurred.

41 01 coor A bad disk address was detected by the input cooperative when reading the input
symbiont file.

4] 02 READ Labeled tape read error encountered on block in which requested record was con-
tained. Byte O of SR contains the number of records in the block.

41 03 READ Labeled tape read error encountered on block in which requested record was con-
tained. Requested record not transmitted to the user.

41 04 READ Partial record transmitted following Error 41/03.

45 00 WRITE An irrecoverable write error has occurred.

45 01 WRITE An irrecoverable write error has occurred on a common journal .

4F 00 WRITE There was an unrecoverable error after the reflector on a tape.

57 00 READ or WRITE Public secondary storage is exhausted, or the user has exceeded his secondary
storage authorization.

57 44 RANDOM There has been a Write request with a specified byte count, and not enough
granules remain in a random file to satisfy the Write request, or the beginning
relative granule number on a Read request is valid but the specified byte count
extends beyond the end-of-file.

Note: In all of the above cases, the job is aborted if no error address is specified in the /O CAL FPT. In batch mode,
the monitor skips to the next job; in the on~line mode, control is returned to TEL which prints the message and
awaits further user commands.

Appendix B

257

Table B-5, Other Monitor Error Codes

Originating

Ervor Sub- | Monitor

Code code | Routine Meaning of Code

7F 1D INITRCVR Single user abort due to software check 1D.

7F 21 INITRCVR Single user abort due to software check 21.

7F 22 INITRCVR Single user abort due to software check 22.

7F 31 INITRCVR Single user cbort due to software check 31.

7F 32 INITRCVR Single user abort due to software check 32.

7F 49 INITRCVR Single user abort due to software check 49.

7F 60 TEL TEL couldn't get a page.

7F 61 INITRCVR Single user abort due to software check 61.

7F 6A INITRCVR Single user abort due to software check 6A.

7F 79 INITRCVR Single user abort due to software check 79.

7F 7C INITRCVR Single user abort due to software check 7C.

7F 7E INITRCVR Single user abort due to software check 7E.

A0 00 ASP An attempt was made to RUN under an invalid debugger name, or a request for an invalid
debugger through TEL.

Al 00 ASP An attempt was made to associate a debugger with a shared processor.

Al 01 ASP An attempt was made to debug an execute-only load module.

Al 02 ASP Conflict between library's overlays and debugger's data,

A2 00 ASP An attempt was made to access a processor for which the user is not authorized (e.g., an
on-line call to CCl),

A2 01 STEP Access to non-system proc.essor denied.

A2 02 STEP Access to processor denied by processor restriction list,

A2 XX STEP Access to processor denied. (xx is the error code indicating why the system processor
restriction file could not be read and is one of the error/abnomal codes given in
Tables B-1 through B-5.

A3 00 TRAP Trap control cannot be given to the user because his task control block (TCB) does not
exist or is full, or his pointer has been destroyed.

A3 01 TRAPC No environment present for return,

A3 02 TRAPC User should not simulate that trap,

A4 00 User is trapped.

A4 01 TRAP Trap 40 - Nonexistent instruction,

Ad 02 TRAP Trap 40 - Nonexistent memory reference.

258 Appendix B 90 17 64H-1(9/78)

Table B~5. Other Monitor Error Codes (cont.)

Originating
Error Sub- | Monitor
Code code | Routine Meaning of Code
A4 03 TRAP Trap 40 - Privilege instruction,
Ad 04 TRAP Trap 40 - Memory protect violation,
A4 05 TRAP Trap 41 ~ Unimplemented instruction,
A4 06 TRAP Trap 42 - Stack overflow.
A4 07 TRAP Trap 43 - Fixed point overflow.
Ad 08 TRAP Trap 44 - Floating point fault,
A4 09 TRAP Trap 45 - Decimal arithmetic foult.
A4 0A TRAP Trap 46 - Watchdog timer.
Ad 08 TRAP Trap 47 - Programmed trap.
A4 0D CSEHAND Trap 4D - Instruction exception trap,
A5 00 STEP User's [oad module exceeds user limit or available core.
A5 02 STEP Virtual core is not available for special shared processor.
AS 04 STEP While in the extended memory mode, the current job step was aborted so that TEL could
be accessed.
A5 06 STEP Current specia) shared processor was aborted so that TEL could be accessed.
A5 07 STEP Procedure overlaps currently allocated common pages.
AS 08 STEP Physical core is not available for special shared processor.
AS 09 STEP Eilther virtual core or physical core was not available to obtain a buffer for a cooperative
ile.
A5 51 STEP Bad data bias for core library. The load module is pre-B0O,
Aé 03 STEP Specified load module does not exist.
Ab 14 STEP Load module access denied.
Ab 30 STEP Bad DCBs or DCB table,
A6 31 STEP Bad head record.)
Aé 32 STEP Load module bias not on page boundary.
Aéb 33 STEP Pure procedure not on page boundary,
Ab 34 STEP DCBs not on page boundary.
Aéb 35 STEP Head record is incomplete.
Ab 36 STEP Tree record is incomplete.
Ab 37 STEP No debugs allowed with link-built LMNs.
Ab 38 STEP Program too big for user area.
A6 39 STEP File not keyed, not a LMN.
Ab 3A STEP DCB links bad or circular,
Aé 38 STEP TCB address is not within the data area.
Ab 42 STEP The module exists but it is not a load module,
A6 43 STEP The module exists but it is not a load module.
A6 50 STEP The DCBs are biased below the user area. The load module is pre-B00.
A6 51 STEP PMD/SNAP/MODIFY not allowed with an execute only load module,

90 17 64H-1(9/78)

Appendix B

259

Table B-5. Other Monitor Error Codes (cont.)

Originating
Error Sub~ | Monitor
Code code | Routine Meaning of Code
A6 xx STEP The xx subcode specifies the reason the DCB could not be opened and will be the
abnormal /error codes given in Tables B1-B5,
A8 00 STEP An error or abort CAL was issued. (RNST bits are also set,)
A9 00 UCAL An error on a read or write of the assign/merge record occurred.
AA 00 STEP A request was made for core library that does not exist,
AC An attempt was made to read the card reader by an on-line user,
AD 00 STEP Extending processing limits were exceeded,
AE 00 CALPROC The user issued a CAL with unknown codes,
ALTCP
AF 00 CALPROC A CAL! instruction referenced a non=-DCB.
BO 00 DUMP The program specified snapshot dumps but did not have an M:DO DCB,
B8O 01 DUMP The program attempted snapshot dump of inaccessible or nonexistent memory.
BO 02 DUMP Inaccessible flag address given on conditional debug command.
BO 03 DUMP Illegal parameter in DEBUG CAL,
B1 00 SEGLOAD Monitor cannot find the segment named in the user M:SEGLD DCB,
B1 01 SEGLOAD Bad tree table,
B1 02 SEGLOAD Circular tree table encountered.
B1 03 SEGLOAD Data size specified in tree is too large.
Bi 04 SEGLOAD Procedure size specified in tree is too large.
81 05 SEGLOAD Overlay limits as defined in TREE area lie outside of limits defined in HEAD record.
B1 06 SEGLOAD Unable to get a page for segloading. (System error,)
81 07 | SEGLOAD | Page obtained by M:CVM procedure encountered.
81 08 SEGLOAD The paged load module is greater than 255 segments.
B2 00 ENTRY The user issued a CAL2, CAL3, or CAL4,
B3 00 WRTD Limit exceeded.
B3 01 WRTD Punch limit. (PO)
83 02 WRTD Printer page limit for processor, (LO)
83 03 WRTD Printer page limit for user, (UO)
B3 04 WRTD . Printer page limit for debugging. (DO)
B3 08 WRTD Execution time limit,
B4 00 STEP Exit,
B4 01 STEP User issued M:ERR,
B4 02 STEP User issued M:XXX,
B4 03 STEP Operator E (error) key-in,
B4 04 STEP Operator X (abort) key-in or user abort.
85 xx LDLNK See STEP (error code A5 and A6) subcodes and 1/O error codes,

260 Appendix B 90 17 64H-1(9/78)

Table B-5. Other Monitor Error Codes (cont.)

Originating

Error Sub- | Monitor

Code code | Routine Meaning of Code

BS 62 LDLNK M:LINK and M:LDTRC are not permitted when a shared processor is associated with the
user program,

B5 63 LDLNK The program must not be loaded with Link.

B85 64 LDLNK The user must own all memory from data through dynamic data.

B5 65 LNKTRC Page aquired by CVM encountered.

B5 66 LNKTRC Qut of pages. (System error.)

B5 67 LDLNK A logically impossible exit to Load and Link has occurred,

B5 68 LDLNK Illegal information supplied in transfer file.

B5 69 LDLNK A Load and Link cleanup occurred without a previous Load and Link operation.

B5 6A LNKTRC l.oad and Link to command processor not allowed.

B5 6B STEP A load and link to a linked program is not allowed.

BS 6C STEP A load and link to a special shared processor is not allowed.

BS 6D LNKTRC Insufficient physical core exists for core library following LNKTRC.

BS 6E LNKTRC M:LINK/LDTRC illegal for programs with transaction processing CALs outstanding.

BS 6F LNKTRC M:LDTRC attempt to execute a previously executed load module.

B5 70 LNKTRC M:LINK/M:LD TRC illegal for programs with real-time {CBs associated.

B6 00 STEP M:LINK: Not SEGLOAD DCB.

B6 01 STEP The DCB name chain must be in the DCB record.

B6 02 STEP The DCB name chain may not be linked.

B6 03 STEP The DCB name chain is irregular.

Bé 04 STEP The DCB has no name,

B6 05 STEP A user cannot have more than 509 DCBs,

Bé 06 STEP The DCB is outside of the buffer.

B6 07 STEP A DCB may not cross a page boundary.

B6 08 STEP A DCB must be at least 22 words long.

Bé 09 STEP | KBUF must lie within the DCB.

B6 0A STEP FLP must lie within the DCB.

B6 0B STEP The FLPs overlap into KBUF,

B6 oC STEP M:SEGLD DCB needs 10 words for variable length parameters.

B7 00 OPNLD Unrecognized stream=id.

B7 o1 OPNLD Unrecognized DEV specification.

B7 02 OPNLD The function specified (IN or OUT) is not legal for this device.

B7 03 OPNLD A nonzero workstation name is specified for an unauthorized user (i.e., the processor is
not a shared processor and the privilege level of the user is less than X'CO0').

B7 04 OPNLD The peripheral use flag is not set for this DCB.

B7 05 OPNLD Multiple copies are not allowed in concurrent output mode.

B7 06 OPNLD Concurrent output mode is illegal for an IRBT,

B7 07 OPNLD User is not authorized for concurrent output mode.

90 17 64H-1(9/78)

Appendix B

261

Table B-5. Other Monitor Error Codes (cont.)

Originating
Error Sub- | Monitor
Code code | Routine Meaning of Code
B8 01 RTROOT M:QF! was attempted when no ICBs were associated with the user.
B8 02 RTROOT M:INTRTN was aottempted and there were no active interrupts associated with the user,
B8 - 03 RTROOT A real-time user has issued a restricted CAL after having locked himself in core (with
M:HOLD).)
B8 04 RTNR A real-time user provided an illegal interrupt address or an unknown interrupt label.
B8 05 RTNR A real-time user provided an FPT that is illegal because it is missing a required
parameter.
88 06 RTNR The user did not specify a time value on an M:CLOCK request.
B8 07 T:JOBENT/ | A real-time user has requested a service from a system ghost job after having blocked the
GRAN ghost job by locking himself in core (with M:HOLD).
B9 01 ALTCP/ User has insufficient privilege to issue this CAL1,5.
RTROOT
B9 02 RTROOT The device specified via M:IOEX doesn't exist or is not preempted, or the specified DCB
is not opened properly.
B9 04 ALTCP The effective address of an M:EXU CAL is in protected memory.
B9 05 ALTCP The instruction to be executed via M:EXU has an invalid op code.

XEROX LABELED TAPE ERROR HANDLING

After a block is read from labeled tape and an error (after
normal retries) is encountered, the tape remains positioned
after the last record read. The monitor then performs a
consistency check on the record control information in
the block. If the record control information is judged
valid, the record is transferred to the user's buffer, as
requested, and an error code 41/02 is returned, Byte 0
of SR1 will contain the number of records in the block.
These records, although of questionable quality, are avail-
able to the user if he requests them, If the record control
information is invalid, the user will receive an error return
41/03 and no information from the block is transmitted.

If after error condition 41/03 the following read causes a
partial record (continuation of a record whose first part was
contained in the block error) to be transmitted, an error re-
turn of 41/04 is given.

262 Appendix B

ENQUEUE /DEQUEUE ABNORMAL AND ERROR CODES

When an abnormal condition is encountered, return is made
to the instruction following the CAL if no ABN address was
supplied. 1f an ABN address was supplied, return is made
to the ABN address and the user's register 10 is set to the
appropriate abnormal code (see Table B-6). In either case,
when an ECB address is supplied, the ECB is set to reflect
the queue state.

When an error condition is encountered, the program is
aborted if no ERR address was supplied. If an ERR address
was supplied, return is to the ERR address and the user's reg-
ister 10 is set to the appropriate error code (see Table B-7).
In the latter case, when an ECB address is supplied, the
ECB is set fo reflect the queue state.

If an M:ENQ or M:DEQ procedure call is issued in a system

that was' generated without these services, the user is aborted
with the error code as defined in Table B-7.

90 17 64H-1(9/78)

Table B=6. Enqueue/Dequeue Abnormal Codes

Abnor- Originating

mal Sub- | Monitor

Code | code | Routine Meaning of Code

31 00 ENQ A dequeue was attempted on a resource/element for which the user was not queued.

31 01 ENQ An enqueue was attempted on resource /element for which the user was already queved.
If an ECB address was given, the ECBP bit is reset to O if the user is still waiting for the
resource/element or is set to 1 if the user has control of the resource/element.

31 02 ENQ An enqueue SHARE was attempted on a resource/element for which the user was already
queved as EXCLusive. The SHARE request is ignored and the EXCLusive request remains
in the queue. If an ECB address was given, the ECBP bit is reset to O if the user is still
waiting for the resource/element or is set to 1 if the user had control of the resource/
element.

31 03 ENQ The requested resource/element is not presently available on an enqueue TEST or enqueue
NOWAIT request. If it is an enqueue NOWAIT request, the user is queuved for the
resource/element. The ECB is reset to 0.

31 04 ENQ The enqueue request was aborted by a BREAK or CONTROL Y. The request is not
queued.

Table B~7. Enqueue/Dequeue Error Codes
Originating

Error Sub= | Monitor

Code | code | Routine Meaning of Code

4A 00 ENQ An address in the FPT is not in the user's area or some other inconsistency was detected
in the FPT.

58 00 ENQ The request would result in a deadlock. Not only is the request rejected, but the user
should dequeue all elements to allow other users to complete their operations, thus
freeing the elements.

58 01 ENQ There are no more empty entries in the monitor's enqueue tables. Not only is the re-
quest rejected, but the user should dequeue all resource/elements to permit other users
to proceed.

58 02 ENQ The enqueue request is for ALL and the user has sub-queues other than NULL, thus
creating a deadlock.

58 03 ENQ The user is not authorized to use the enqueue service.

AE 00 CALPROC An M:ENQ or M:DEQ procedure call was issued in a system that does not include the

enqueue/dequeue optional feature. The job step is aborted.

Appendix B 263

APPENDIX C. XEROX STANDARD SYMBOLS, CODES AND CORRESPONDENCES

XEROX STANDARD SYMBOLS AND CODES

The symbols listed here include two types: graphic symbols
and control characters, Graphic symbols are displayable
and printable; control characters are not, Hybrids are SP
(the symbol for a blank space), and DEL (the delete code)
which is not considered a control command.

Two types of code are also shown: (1)the 8-bit Xerox Stan-
dard Computer Code, i.e., the Xerox Extended Binary-
Coded-Interchange Code (EBCDIC); and (2) the 7=bit Amer=
ican National Standard Code for information Interchange
(ANSCII), i.e., the Xerox Standard Communication Code.

XEROX STANDARD CHARACTER SETS
1. EBCDIC

57-character set: uppercase letters, numerals, space,
and & - / . < > ()Y + &% .,
% *t @ ' =

63-character set: same as above plus ¢ | ?

II_'

89-character set: same as 63-character set plus lower-
case letters

264 Appendix C

2. ANSCII

64-character set: uppercase letters, numerals, space,
and! " $ % & ' () * 4+, - . /N
=< > 2@ _[]~ *| =

;

95-character set: same as above plus lowercase letters

and{}'l~‘

CONTROL CODES

In addition to the standard character sets listed above, the
Xerox symbol repertoire includes 37 control codes and the
hybrid code DEL (hybrid code SP is considered part of all
character sets), These are listed in the table titled CP-V
Symbol-Code Correspondences.

SPECIAL CODE PROPERTIES

The following two properties of all Xerox standard codes
will be retained for future standard code extensions:

1. All control codes, and only the control codes, have
their two high-order bits equal to "00". DEL is not
considered a control code.

2. No two graphic EBCDIC codes have their seven low-
order bits equal.

Table C-1. CP-V 8-Bit Computer Codes (EBCDIC)

Most Significant Digits
Hexadecimal 0 1 2 3 4 5 6 7 8 9 A B C D E F
Binary 0000 {0001{0010t0011{0100{0701{ 011010111 117000 {1001{1010;1011)1100| 1101 j1110{ 1111
LF |ESC
0 {0000 NUL | DLE |ony |7 [SP | 8| - | A FF | sp -]o
1
1 {0001 SOH [XON| FS |CAN 7E§C /e | N A 1
- - 1
2 | o010 stx [pc2 | os B5C| o [BRC| T bk | s |48 | k| 5|2
3 oo ETx peorr| ks |C [EXCT O et el L]t
1
4 {0100 EOTDC4USEZCLE%C15dmu[DMU4
ESC 1
RERD HT (L (e | o] < | T e |n|v]|1le | N|V]s
5 8 ESC
216 o110 ACK | SYN| / | o lw 2 f | o | wINUF | O]W]|s6
§|7 (o peL [eTB | A [E3C > g | p | x G| P | x|7

s

Sl 8 | 1000 FOMican| = |B¢| & hola |y Hlal|v|s

wv

- CR [ESC

g9 | 1001 ENQ| EM |only | ¢ ¢ A2 I B I R | 2|9
- ESC 2 ! 7
A {1010 NAK | SUB | EOT | ¢ ¢ 1o : X
ESC .
B | 1011 VT |ESC|{BS | o | - $ | . # *
6
C | 1100 FElFS|) [ON| < | * | % | @ (—
. . : :
D |1101 CR| GS| HT [OFF (|) | _ | ' J —
LF }ESC 6
E | 1110 SO| RS only| R | * |7 | >] - oo
E 2
Folmm st us [suslon | 1 Y=Y 2] RN DEL
- A\ e v /N ~— V)
3 6 4,1 5
Notes:

1 The characters ™\ { } [] are ANSCII characters that do not appear in any of the Xerox EBCDIC-based
character sets, though they are shown in the EBCDIC table.

2 The characters £ | — appear in the Xerox 63- and 89-character EBCDIC sets but not in either of the Xerox
ANSCII-based sets. However, Xerox software translates the characters £ | = into ANSCII characters as
follows:

EBCDIC = ANSCII
¢ ' (6-0)
I | (7-12)
- ~ (7-14)

3 The EBCDIC control codes in columns 0 and 1 and their binary representation are exactly the same as those
in the ANSCII table, except for two interchanges: LF/NL with NAK, and HT with ENQ.

4 Characters enclosed in heavy lines are included only in the Xerox standard 63- and 89-character EBCDIC sets.

5 These characters are included only in the Xerox standard 89-character EBCDIC set.

6 The EBCDIC codes in column 3 are used by COC.to perform special functions. The EBCDIC codes in
column 2 and positions AF and BC through BF are used by COC for output only.

1 APL characters (and some ESC sequences) are assigned EBCDIC values that fall within the shaded area of the CP-V
code set, These assignments are for APL internal use and are only reflected in 2741-APL translation tables.

8 Placing a SYN code as the last position of a nontransparent message will prevent the transmission of the SYN and

the normal message appendage of the CR/LF pair. This allows a user to continue writing more than one message
on the same line without affecting the carrier position. The EBCDIC SYN code is translated to an idle (IL) on
output to 2741 terminals,

Appendix C 265

Notes:

Table -C-2, CP-V 7-Bit-Communication Codes (ANSCII)

Most - Significant-Digits
Decimal ' ’ .
Jrows) (eol's.)—] O | ! 213 |4 |5 |6 |7
[' Binary -|x0001x001 |x010 [x011 |x100 |x107 [x110 [x111
0| 0000 ANUL|DLE [P |0 [@ | P-| v | p
T
_ 5
1| 0001 isoHlpci| 1711 | Al Q)a|q
2| 0010 Jstx jpc2 | " |2 | B | R | b |+
3| oon ETX [DC3 | # 3 c|s c s
4| 0100 |eotlpca] $ | 4 D | T | d | ¢
7 51 0101 ENQINAK| % {5 | E J U] e | v
Ig’ 6| 0110 lackisyN| & |6 | F | v]| | v
[§] 7| om BEL [ETB | * |7 |G |[W | g | w-
5| 8| 1000 BS |CAN| ((8 | H | X | h | x
%]
9| 100 HT [EM |) 9 I Y | y
> LF
0] 1010 NL |SUB || J |z | z
7.5
n| o1on vT {ESC | + | : K [k ||
12| 1100 FF |FS , < L \] |
4 _ 5 4
13 1101 CR {6S | - | =M |1 mil
] 4.5 4
14| 1101 SO |RS .l > I N no| o~
3
15| 1M st Jus |/ | ?] o | - o |DEL
- - I\, J
2 3

Most significant bit, added for 8-bit format, is either O or an even=-parity bit for the remaining 7 bits.
Columns C~1 are control codes.

Columns 2-5 correspond to the Xerox 64-character ANSCII set.
Columns 2-7 correspond to the Xerox 95-character ANSCII set.

On many current teletypes, the symbol

~is t (5-14)

_ is=—(5-15))

~is ESC or ALTMODE control (7-14)
} is ESC or ALTMODE control (7-13)

and none of the symbols appearing in columns 6-7 are provided. Except for the four symbol differences
noted above, therefore, suchteletypes provide all the characters in the Xerox 64-character ANSCII set.
(The Xerox 7015 Remote Keyboard Printer provides the 64-character ANSCII set also, but prints MasA,
It also interprets the [] characters as| —)

On the Xerox 7670 Remote Batch Terminal, the symbol

Lis | (2-1) Jis 1 (5-13)

[is £ (5-11) ~is — (5-14)
and none of the symbols appearing in columns 6-7 are provided. Except for the four symbo! differences noted
above, therefore, this terminal provides all the characters in the Xerox 64-character ANSCII set.

266 Appendix C

Table C-3. CP-V Symbol-Code Correspondences

EscpIct

Hex. | Dec. Symbol Card Code ANSCII | Meaning Remarks

00 0 NUL 12-0-9-8-1 0-0 null 00 through 1F are control codes,

01 1 SOH 12-9-1 0-1 start of header On 274) terminals, SOH is PRE,

02 2 STX 12-9-2 0-2 start of text On 2741 terminals, STX is BY.

03 3 ETX 12-9-3 0-3 end of text On 2741 terminals, ETX is RES,

04 4 EOT 12-9-4 0-4 end of transmission

05 5 HT 12-9-5 0-9 horizontal tab 00, 06, 07, 09-0B, and OE-OF

06 6 ACK 12-9-6 0-6 acknowledge (positive) are idles for 2741 terminals.

07 7 BEL 12-9-7 0-7 bell
08 8 BS or EOM | 12-9-8 0-8 backspace or end of message EOM is used only on Xerox Keyboard/
09 9 ENQ 12-9-8-1 0-5 enquiry Printers Models 7012, 7020, 8091,
0A |10 NAK 12-9-8-2 1-5 negative acknowledge and 8092,

08 N vT 12-9-8-3 0-11 vertical tab

oc |12 FF 12-9-8-4 0-12 form feed

oD |13 CR 12-9-8-5 0-13 carriage return CR outputs CR and LF.

0E |14 SO 12-9-8-6 0-14 shift out

OF |15 SI 12-9-8-7 0-15 shift in

10 (16 DLE 12-11-9~8-1 1-0 data link escape

1 17 DC1 11-9-1 1-1 device control 1 On Teletype terminals, DC1 is X-ON,
12 |18 DC2 11-9-2 1-2 device control 2 On 2741 terminals, DC2 is PN,

13 {19 DC3 11-9-3 1-3 device control 3 DC3 is RS on 2741s and X-OFF on
14 |20 DC4 11-9-4 1-4 device confrol 4 Teletypes.

15 |21 LF or NL 11-9-5 0-10 line feed or new line On 2741 terminals, DC4 is PF,

16 |22 SYN 11-9-6 1-6 sync LF outputs CR and LF,

17 123 ETB 11-9-7 1-7 end of transmission block On 2741 terminals, ETB is EOB,

18 |24 CAN 11-9-8 1-8 cancel

19 25 EM 11-9-8-1 1-9 end of medium

1A |26 SUB 11-9-8-2 1-10 substitute Replaces characters with parity error.
1B |27 ESC 11-9-8-3 1-11 escape

1C (28 FS 11-9-8-4 1-12 file separator

1D |29 GS 11-9-8-5 1-13 group separator 10, 11, 16, 18, 19, and 1B-1E are
1E |30 RS 11-9-8-6 1-14 record separator idles for 2741 terminals,

1F |31 us 11-9-8-7 1-15 unit separator

20 |32 LF only 11-0-9-8-1 1-5 line feed only 20 through 2F are used by COC for
21 |33 FS 0-9-1 1-12 output only. These codes are

22 |34 GS 0-9-2 1-13 duplicates of the label entries

23 |35 RS 0-9-3 1-14 that caused activation, The

24 |36 us 0-9-4 1-15 20-2F entries output a single code
25 |37 EM 0-9-5 1-9 only and are not affected by any
2 |38 / 0-9-6 2-15 special COC functional processing.
27 |39 t 0-9-7 5-14

28 (40 = 0-9-8 3-13

29 |41 CR only 0-9-8-1 0-13 carriage return only

2A |42 EOT 0-9-8-2 0-4

2B |43 BS 0-9-8-3 0-8

2C |44) 0-9-8-4 2-9

2D |45 HT 0-9-8-5 0-9 tab code only

28 |46 LF only 0-9-8-6 1-5 line feed only

2F |47 SUB 0-9-8-7 1-10

30 |48 ESCF 12-11-0-9-8-1 end of file . 30 through 3F cause COC to perform
31 |49 CANCEL | 9-1 delete all input and output special functions,

32 |50 ESC X 9-2 delete input line

33 |51 ESC P 9-3 toggle half-duplex paper tape mode

34 |52 ESC U 9-4 toggle restrict upper case

35 |53 ESC (9-5 upper case shift

36 |54 ESC) 9-6 lower case shift

37 |55 ESCT 9-7 toggle tab simulation mode

38 |56 ESC S 9-8 toggle space insertion mode

39 |57 ESCE 9-8-1 toggle echo mode

3A |58 ESC C 9-8-2 toggle tab relative mode

38 |59 ESCO 9-8-3 toggle backspace edit mode

3C |60 X-ON 9-8-4 start paper tape

3D |61 X-OFF 9-8-5 stop paper tape

3E |62 ESC R 9-8-6 retype

3F |63 ESC CR 9-8-7 line continuation

t
Hexadecimal and decimal notation.

tt . .
Decimal notation (column-row).

Appendix C 267

Table C-3, CP-V Symbol-Code Correspondences {(cont.)

EBCDICT
Hex, | Dec. Symbol Card Code ANSCIM | Meaning Remarks
40 64 - SP blank 2-0 blank
41 65 ESC J 12-0-9-1 toggle insert mode 46 and 47 are unassigned.
42 66 1 L 12-0-9-2 decode
. 43 67 ESC LF 12-0-9-3 line continuation
44 | 68 L 12-0-9-4 minimum 42, 44, 45, 48, and 49 are APL
45 69 € 12-0-9-5 . epsilon characters
46 70 12-0-9-6
47 71 i 12-0-9-7
48 72 A 12-0-9-8 delta
49 73 ¢ 12-8-1 index
4A 74 £ort 12-8-2 6-0: cent or accent grave Accent grave used for left single
4B 75 . 12-8-3 2-14 period quote. OnModel 7670, * not
4C 76 < 12-8-4 3-12 less than available, and £ = ANSCII'5-11,
| 4D 77 (12-8-5 2-8 left parenthesis On 2741 APL, £ is C (subset),
4E 78 + 12-8-6 2-11 plus
4F 79 | or | 12-8-7 7-1 vertical bar or broken bar On Mode! 7670, | not available,
and | = ANSCII 2-1,
50 80 & 12 2-6 gmpersand On 2741 APL, & is N (intersection).
51 81 12-11-9-1 51, 57, 58, and 59 are
52 82 ESC D 12-11-9-2 request re-read unassigned.
53 83 O 12-11-9-3 quad 53, 55, and 56 are APL characters.
54 84 ESC Z 12-11-9-4 toggle input ignore mode
55 85 T 12-11-9-5 encode
56 86 (@) 12-11-9-6 circular
57 87 12-11-9-7
58 88 12-11-9-8
59 89 11-8~1
5A 90 ! 11-8-2 2-1 exclamation point On Mode! 7670, 1is|. Cn 2741
5B 1 $ 11-8-3 2-4 dollars APL, lis© (degree). On 2741
5C 92 * 11-8-4 2-10 asterisk APL, $is U (union).
5D 93) 11-8-5 2-9 right parenthesis
5E 94 ; 11-8-6 3-1 semicolon
5F 95 ~or 11-8-7 7-14 tilde or logical not On Model 7670, ~ is not available,
and—= ANSCH 5-14,
60 96 - 1 2-13 minus, dash, hyphen
61 97 / 0-1 2-15 slash
62 98 r 11-0-9-2 maximum 62, 64, 66, and 67 are APL characters,
63 99 11-0~9=3
64 100 i 11-0-9-4 down arrow
65 101 11-0-9-5
66 102 w 11-0-9-6 omega 63, 65, 68, and 69 are unassigned.
67 103 > 11-0-9-7 superset
68 | 104 11-0-9-8
69 (105 0-8-1
6A {106 ~ 12-1 5-14 circumflex On Mode! 7670 ™ is—. Cn Model
68 1107 , 0-8-3 2-12 comma 7015 s A (caret)., On 2741 APL,
6C 108 % 0-8-4 2-5 percent ~ist. On 2741 APL, % is P.
6D 109 - 0-8-5 5-15 underline Underline is sometimes called "break
6E {110 > 0-8-6 3-14 greater than character"; may be printed along
6F 1N ? 0-8-7 3-15 question mark . bottom of character line,
70 | 112 A 12-11-0 ’ APL 70-72, 74, 76, and 79 are APL
71 113 . 12-11-0-9-1 APL quote mark characters,
72 (114 - 12-11-0-9-2 overscore
73 |115 12-11-0-9-3
74 (116 < 12-11-0-9-4 less than or equal 73, 75, 77, and 78 are unassigned.
75 (N7 12-11-0-9-5
76 1118 Ed 12-11-0-9-6 greater than or equal
77 119 12-11-0-9-7 l
78 |120 12-11-0-9-8
79 1121 v’ 8-1 down delta
7A (122 : 8-2 3-10 colon
78 123 4 8-3 2-3 number
7C {124 @ 8-4 4-0 at
7D |125 ! 8-5 2-7 apostrophe (right single quote)
7E 1126 = 8-6 3-13 equals
7F 127 " 8-7 2-2 quotation mark
fHexctdecimc.ul and decimal notation,
tt
Decimal notation (column-row).

268 Appendix C

Table C-3, CP-V Symbol-Code Correspondences (cont.)

EBCDICY

Hex.| Dec. Symbol Card Code ANscII™t Meaning Remarks

80 [.128 12-0-8-1 80 is unassigned.

81 129 a 12-0-1 6-1 81-89, 91-99, A2-A9 comprise the

82 | 130 b 12-0-2 6-2 . lowercase alphabet, Available

83 [13 c 2-0-3 6-3 only in Xerox standard 89- and 95-

84 | 132 d 12-0-4 6-4 character sets.

85 | 133 e 12-0-5 6-5

86 | 134 f 12-0-6 6-6

87 | 135 g - 12-0-7 6-7

88 | 136 h 12-0-8 6-8

89 (137 i 12-0-9 6-9

8A | 138 12-0-8-2 8A through 90 are unassigned.

88 (139 12-0-8-3

8C | 140 12-0-8-4

8D | 141 12-0-8-5

8E | 142 12-0-8-6

8F | 143 12-0-8-7

90 | 144 12-11-8-1

91 | 145 i 12-11-1 6-10

92 | 146 k 12-11-2 6-11

93 | 147 | 12-11-3 6-12

94 148 m 12-11-4 6-13

95 | 149 n 12-11-5 6-14

96 | 150 o 12-11-6 6-15

97 | 151 P 12-11-7 7-0

98 | 152 q 12-11-8 7-1

99 1153 r 12-11-9 7-2

9A | 154 12-11-8-2 9A through Al are unassigned.

98B | 155 12-11-8-3

9C | 156 12-11-8-4

9D | 157 12-11-8-5

9t | 158 12-11-8-6

9F | 159 12-11-8-7

A0 | 160 11-0-8-1

Al [161 11-0-1

A2 162 s 11-0-2 7-3

A3 | 163 t 11-0-3 7-4

A4 164 U 11-0-4 7-5

A5 | 165 v 11-0-5 7-6

A6 .| 166 w 11-0-6 7-7

A7 | 167 x 11-0-7 7-8

A8 | 168 y 11-0-8 7-9

A9 | 169 z 11-0-9 7-10

AA | 170 11-0-8-2 AA through AE are unassigned.

AB | 171 11-0-8-3

AC | 172 11-0-8-4

AD {173 11-0-8-5

AE 1174 11-0-8-6

AF [175 11-0-8-7 logical and AF is used by COC for output of
an ANSCII 7-12 code orly.

BO {176 FF 12-11-0-8-1 0-12 form feed

81 | 177) 12-11-0-1 5-12 backslash

B2 |178 { 12-11-0-2 7-11 left brace On 2741 terminals, { is output as (.

B3 179 l 12-11-0-3 7-13 right brace On 2741 terminals, }is output as),

B4 | 180 [12-11-0-4 5-11 left bracket On Model 7670, [is £. On Model

B5 | 181] 12-11-0-5 5-13 right bracket 7015, [is 1.

B6 | 182 NUL 12-11-0-6 0-0 null On Model 7670,]is 1. On Model

B7 | 183 12-11-0-7 7015,] is—.

B8 | 184 12-11-0-8 BO and B7through BB are unassigned,

B9 185 12-11-0-9

BA | 186 12-11-0-8-2

BB | 187 12-11-0-8-3

BC | 188 [12-11-0-8-4 left bracket BC, BD, and BF are used by COC for

BD | 189 12-11-0-8-5 right bracket output of ANSCII 5-11, 5-12, and

BE | 190 lost data | 12-11-0-8-5 lost data 7-14, respectively.

BF | 191 = 12-11-0-8-7 logical not On 2741 Selectric and EBCD Standard
Keyboards, [is output as (and
is output as).

t . . .
Hexadecimal and decimal notation,

tt . "
Decimal notation (column=-row).

. Appendix C 269

Table C-3. CP-V Symbol-Cod’e C‘o'rrespondénéés (cont.)

EBC DLC"A“_ s ’7
Hex, | Dec, Symbol Card Code ANSCII' | Meaning . C e | Remarks
Cco 192 SP 12-0 2-0 blank Output only, - :
cr 193 A 12-1 4-] C1-C9, D1-D9, .E2-E9 comprise the
C2 | 194 B 12-2 4-2 uppercase alphabet,
C3 |195 C 12-3 4-3
C4 {196 o] 12-4 4-4
C5 197 E 12-5 4-5
C6 198 F 12-6 4-6
C7 {199 G 12-7 4-7.
C8 | 200 H 12-8 4-8
co |201 1 12-9 : 4-9 L
CA 202 12-0-9-8-2 CA through CF are unassigned.
C8 |203 12-0-9-8-3
CC |204 12-0-9-8-4
CD |205 12-0-9-8-5
CE 1206 12-0-9-8-6
CF |207 12-0-9-8-7
DO | 208 11-0 . DO is unassigned.
D1 | 209 J 11-1 4-10
D2 1210 K 11-2 4-11
D3 211 L 11-3 4-12
D4 (212 M 11-4 4-13
D5 |213 N 11-5 4-14
D6 | 214 O 11-6 4-15
D7 |215 P 11-7 5-0
D8 |216 Q 11-8 5-1
Dy |217 R 11-9 5-2 .
DA |218 12-11-9-8-2 DA through DF are unassigned.
DB |219 12-11-9-8-3
DC | 220 12-11-9-8-4
DD | 221 12-11-9-8-5
DE |222 12-11-9-8-6
DF |223 12-11-9-8-7
E0 |224 - 0-8-2 2-13 minus Output only. El is unassigned.
E1 225 11-0-9-1
E2 226 S 0-2 5-3
E3 |227 T 0-3 5-4
E4 228 U 0-4 5-5
E5 |229 \ 0-5 5-6
Eé 230 \ 0-6 5-7
E7 | 231 X 0-7 5-8
E8 232 Y 0-8 5-9
E9 |233 Zz 0-9 5-10 .
EA | 234 11-0-9-8-2 EA through EF are unassigned.
EB |235 11-0-9-8-3
EC | 236 11-0-9-8-4
ED 237 11-0-9-8-5
EE |238 11-0-9-8-6
EF 239 11-0-9-8-7
FO 240 0 0 3-0
F1 241 1 1 3-1
F2 242 2 2 3-2
F3 243 3 3 3-3
F4 | 244 4 4 3-4
F5 | 245 5 5 3-5
Fé 246 6 [-) 3-6
F7 | 247 7 7 3-7
F8 |248 8 8 3-8
F9 1249 9 9 3-9 .
FA 250 X 12-11-0-9-8-2 multiply FA through FF are APL characters
F8 251 + 12-11-0-9-8-3 divide
FC |252 i 12-11-0-9-8-4 right arrow
FD {253 - 12-11-0-9-8-5 left arrow
FE 254 ’ 12-11-0-9-8-6 FE is not assigned.
FF | 255 DEL 12-11-0-9-8-7 delete Special — neither graphic nor
control symbol.
rHexadecimql and decimal notation.
" Decimal notation (column-row).

270 Appendix C

Table C-4, ANSCII Control-Character Translation Table

Input Output
TTY Prog. Receives Transmitted
ANSCII Key Echoed (EBCDIC) Process EBCDIC (ANSCII)
NUL (00) pcs None None None NUL (00) Nothing (end of
output message)
SOH (1) AS SOH SOH None SOH (01) SOH
STX (02)f B® STX STX None STX (02) STX
EXT (03)' c® ETX ETX None ETX (03) ETX
EOT (04)' D° EOT EOT Input Complete. | EOT (04) EOT
ENG (05)" £ ENQ ENQ (09) None HT (05) Space(s) if tab
simulation on, or
HT (09) if not..
ACK (06) Fe ACK ACK None ACK (06) ACK
BEL (07) G© BEL BEL None BEL (07) BEL
BS (08) H® BS BS None BS (08) BS
HT (09) I° Space to tab stop | Spacestotabstop, | None ENQ (09) ENQ (05)
if tabsimulation or one space, or tab
on, or lspace if (05) depending on
not. space insertion mode.
LF/NL (0A) NL CR and LF LF (15) Input Complete. | NAK (0A) NAK (15)
VT (0B) K€ VT VT None VT (0B) VT
FF (0C) L¢ None FF Page Headerand | FF (0C) Page Header
Input Complete.
CR (0D) CR CRand LF CR (OD) Input Complete. | CR (OD) CRand LF (0A)
SO (OF) NN SO SO None SO (OF) 5O
SI (OF) o° S Sl None SI (OF) SI
DLE (10)' P DLE DLE None DLE (10) DLE
DCI (11) Q° DCI None Paper Tape On. | DC1 (11) DCI
per Tap
DC2 (12) R® DC2 DC2 None DC2 (12) DC2
DC3 (13) ¢ DC3 None Paper Tape Off. | DC3 (13) DC3
pC4 (14)f T° DC4 DC4 None DC4 (14) DC4
NAK (15) u© NAK NAK (0A) None LF/NL (15) CR and LF (0A)

t . .
These characters are communication control characters reserved for use by hardware.

Any other use of them risks in=-

compatibility with future hardware developments and is done so by the user at his own risk.

‘Appendix C 271

Table C-4, ANSCII Control=Character Translation Table (cont.)

Input Output
L
TTY Prog. Receives Transmitted
ANSCII Key Echoed (EBCDIC) » Process EBCDIC (ANSCII)
sYN (16)' Ve [sYN SYN None sYN' (16) SYN (not trans-
mitted if last
character in
user's buffer).
ETB (]7)t we ETB ETB None ETB (17) ETB
CAN (18) x° Back=-arrow None Cancel input CAN (18) CAN
and CR/LF or output
message.
EM (19) Y© Back=-arrow None Monitor Escape/ | EM (19) EM
and CR/LF Control to TEL
SUB (1A) z° suB SUB Input Complete | SUB (1A) # (A3)
ESC (1B) K None None Initiate escape | ESC (1B) ESC
ESC sequence mode,
PREFIX
FS (1C) L FS FS Input Complete | FS (1C) FS
GS (1D) M® 1 Gs GS Input Complete | GS (1D) GS
RS (1E) N |RS RS Input Complete | RS (1E) RS
us (1F) o® |us us Input Complete | US (IF) us
} 7D) ALT- | }or None } or None } if model 37;as | }(83) }(7D)
MODE ESC if model 33,
35, or 7015,
~(7E) ESC ~or None ~or None ~if model 37;as | —(5F) ~(7E)
(7015) ESC if model 33,
35, or 7015
DEL (7F) Rubout |\ None Rubout last DEL (FF) None
character,
Al ANSCII upper and lower case alphabetics are translated on input into the Alphabetic and symbol output trans-
corresponding EBCDIC graphics as shown in Tdbles C=1and C-2. All special lation is also as shown in Tables C-1
graphics map as shown, allowing for Table C-1, Note 2, and the exceptions and C-2; for Models 33 and 35, and
above for model 33 and 35, Lower case alphabetics map into corresponding 7015 terminals, however, lowercase
EBCDIC upper case if the ESC U mode is set, Upper case alphabetics map alphabetics are automatically trans=-
into corresponding EBCDIC lower case if ESC) is set, lated to upper case.
Hhese characters are communication control characters reserved for use by hardware. Any other use of them risks in-
compatibility with future hardware developments and is done so by the user at his own risk.

272 Appendix C

Table C=5. Substitutions for Nonexistent Characters on 2741 Keyboards

EBCDIC APL Selectric EBCD
Character Keyboard Keyboard Keyboard
> > , (upper case) >
< < . (upper case) <
~ ! ¢ ¢
| ° (degree) |
- ~ + -
#
% P % %
¢ c ¢ ¢
@ a @ @
" v " "
!) ! !
& n & &
$ U $ $

Appendix C

273

APPENDIX D. USE OF TEMPORARY STORAGE BY LIBRARY ROUTINES

All standard system library routines are entered by a. BAL
instruction, using current general register 11 as a link reg-
ister. Arguments are. passed to the library routine through
currept general registers 6 through 9. Current general. reg-
ister 0 contains a pointer to a Task Control Block (TCB)

established and maintained by the monitor. The first two
words of-a TCB comprise a stack pointer doubleword, and
the subsequent words. contajn additional information used
by the monitor to control the current task.

The library routine can make register contents available
for use by pushing them into the temp stack set by the
monjtor for the current job. Other kinds 6f temporary data
also can be saved in the temp stack (e.g., trap return
information).

One means of storing data in the temp stack is_to push the
data into the stack, by means. of push instructions: (PSM and

PSW); another is to set aside a block of storage inthe stack,

by using an MSP instruction, so that data can thenbestored
in the block by the use of store instructions.

All storage used in the temp.stack must be released before
the associated routine exits. Storage can be released by.a
pull (PLM.or PLW) or MSP instruction. All registers except
those used to return output information must, remain un~-
changed. Note that all push, pull, and MSP instructions
must be done indirectly, through current general register 0.

The following examples show two different methods of
placing data in temporary storage.

274 Appendix D - -

RO EQU 0

R6 EQU 6
LCI 4
PSM, R6 *RO

The preceding example causes the contents of current gen-
eral registers 6, 7, 8, and: 9 to be pushed into the temp stack.

R7 EQU 7
BLOCK! EQU 100
LI, Ré BLOCKT
MSP, R6 *RO
LW, R7 *RO

The preceding; example reserves a- 100-word. block in the
temp stack. Theaddress of the top of the block is contained
in R7. When. the block has been-reserved, data canthenbe
stored in it, using the method illustrated below.

R3 EQU 3
BLWI EQU -99
STW,R3 BLWI,R7

In the example given above, the contents of current general
register 3 are stored in the first word of the reserved block.

The.area reserved for use by the temp stack is established
by a LOAD control command TSS specification or is set at
64 words by default,

APPENDIX E. COOPERATIVES AND SYMBIONTS

In CP=V the routines fo perform peripheral operations for
unit=record peripherals operate concurrently with the jobs
being run. The peripheral system is composed of a "coop~
erative" and a "symbiont" or symbionts. The cooperative
is a monitor routine called as result of a user's 1/O re-
quest, whereas a symbiont is a monitor routine that is ini-
tiated either by the action of the cooperative or by operator
command from the system console. The cooperative is used
to transfer information between the user's program and
secondary (disk) storage, and symbionts are used to transfer

information between secondary storage and peripheral devices
(see Figure E-1 and Table E-1),

The symbiont-cooperative system provides for complete buf-
fering between /O devices and the user's program, There-
fore, a user's program never has to wait for an 1/O device to
complete an action, Also, the current job may be running
while the output of the previous job and the job file for the
following job are being handled by symbiont operation.

Card Reader
or RBT
Jr KEYIN Ghost
f t
] 1S] 152
\
Input Con=-
Symbiont Buffer trol v
t f
e 1 By 3
JIT RBBAT Ghost (W/MBS) Secondary
Y 1c t ¢ Storage
: ! 3
Resident
Monitor
T Batch User (or on=line, output only) _—)
t
< X Licf :
— 4 OC]
' oc,’
OC, 1
JIT RBBAT Ghost (W/MBS)
t
Os]r OS2
Ovutput Con-
Symbiont Buffer trol:
' LP
053 cP Output
PL devices
PP
' : RBT
This item is explained in Table E-1,

Figure E-1. Information Flow Through Cooperative and Symbionts

Appendix E 275

Table E-1, Cooperative and Symbionts Descriptions

Name In ‘

Figure E-1 Type Description ,

IS] Input Symbionf Tnput symbiont activated by KEYIN or RBBAT via resident tables,

IS2 Input Symbiont Card images read into symbiont buffer.

153 Input Symbiont When buffer is full, contents are written to secondary storage and linked to
- previous blocks of the same file,

IS4 | Input Symbionf Continues until end-of-file or IFIN, then notifies RBBAT and terminates.

IC, Input Cooperative RBBAT/MBS selects job to run by putting job information into resident tables, .

IC2 Input Cooperative When JOB card read, job information is transferred to JIT.

IC, Input Cooperative Input symbiont file blocks are read into user's cooperative buffer,

IC4 Input Coopérative Records are transferred, orie at a time, in response to user reads,

o¢, Output Cooperative User symbiont output is intercepted and put into cooperative buffers,

OC2 Output Cooperative When buffer is full, contents are written to secondary storage.

'OC3 Output Cooperative User issues 'superclose' and file is queued by RBBAT,

05, Output Symbiont RBBAT initiates output symbiont.

052 Output .Symbionr Output symbiont blocks are read into symbiont buffer.

053 Output Symbiont Records are transferred, one at a time, to output device. Continues pro-

cessing blocks until end-of=file, then starts another file or terminates,

COOPERATIVE
A single cooperative is provided for handling both user in-

put and output files, It is reenterable and can handle any
number of device-type files (printer, punch, etc.) per job.

SYMBIONTS

A symbiont is a small, reenterable routine that controls the
action of a symbiont dedicated 1/O device having a lower
transfer rate than secondary storage. Core storage as well
as secondary storage will be used by the symbiont to pro-
duce a continuous flow of information fo or from these de-
vices., Symbionts will transfer information from a peripheral
deviceto the disk and from the disk to a peripheral device.

Unlike the user's program, which is directed primarily by
control commands, symbionts = once initiated - receive
all their control from the operator’s console. An input
symbiont device can be initiated only by the console oper-
ator, while an output symbiont device can be initiated
either by the operator or the cooperative.

For each device, a symbiont performs only one 1/O opera-

tion at a time (chdining is not used) dnd is inactive from
the time that it initiates a request for I/O until the /O

276 Appendix E

operation is complete. The symbiont regains control by
stipulating an 1/O end-action return to itself,

Since symbionts are reenterable, a single symbiont may
drive several types of devices. For example, the same
symbiont may be used to drive many printers and card
punches, All the peripheral-dependent information is con-
tained in a context buffer. The location of this buffer is
made known to the symbiont whenever it is operating on
the associated device.

Two symbionts are provided in the monitor system: one for
driving all standard input devices, and one for driving all
standard output devices,

SYMBIONT-COOPERATIVE HOUSEKEEPING

Two monitor subroutines are provided for automatic main-
tenahce of core storage. One is used fo release a core
buffer after use by the symbionts, and the other is used to
obtain a core buffer,

If a core buffer is requested by a symbiont and none is
available, an entry is made in asymbiont core-buffer queue.
When one becomes available for symbiont use, control is
returned to the requesting symbiont.

As edach buffer is emptied, either by reading from or storing
into secondary storage, itisreleased. Thisprocedure allows
for efficient utilization of core buffers,

The symbiont routines themselves will be executed in resi-
dent monitor space. After starting an I/O operation on a
peripheral device, with an end-actionreturn specified, the
symbiont relinquishes control to the monitor system,

An area of secondary storage is set aside for symbiont files.
The size of this area is an installation variable set up at
System Generation time. A secondary storage allocation
table is maintained by the monitor to indicate which disk
areas are available, Two monitor subroutines are also pro-~
vided for maintenance of secondary storage. One of these
requests storage; the other releases it. Ifsecondarystorage
is requested and none is available, an entry is made in a
symbiont secondary storage queue, Where subsequent 1/O
information is read by the cooperative or a symbiont (oper~
ating on another device), secondary storage is released and
control is returned to the symbiont requesting secondary
storage.

Secondary storage holds the files produced by, or committed
to a peripheral device, Each disk block of secondary stor-
age contains the disk address of the next disk block in the
file, and a table of job files is maintained by the monitor.
Monitor subroutines are provided for symbiont input and
output file maintenance. One removes a file; the other
inserts a new file into the file table.

When preparing fo output a file, the output cooperative
places an appropriate entry in the file directory.

SYMBIONT BUFFERS

There are two symbiont file buffers:
1. Input symbiont file buffer,
2, Output symbiont file buffer,

In CP-V, both input and output symbiont file buffers have
the same format (Figure E-2), Each such block contains
256 words, and two blocks reside in a granule of file stor-
age. Word 0 of the block is used for the forward link ad-
dress that is inserted by the system when the file is created.
A value of zero implies no forward address (i.e., end of
file). Word 255 is used for the backward link address, again
inserted when the file is created. A value of zero implies
no backward address (that is, beginning of file). Each re-
cord in the block is preceded by four bytes of control infor-
mation. Neither the regord nor the control information
~need start on a word boundary except the first control string,
Each control string must immediately follow the preceding
record. The first two bytes of a control string are the byte
count (BC) of the following record. BC must be greater
than zero and less than 1008. No record may be split be-
tween blocks. If a block does not have space remaining
for a block end control string, a record control string, and
a record, the next record must begin in a new block, The
third byte of a control siring is the record control character

(RCC) which defines the record. RCC may have the follow-
ing values:

0 =a BCD record (e.g., card).
1 =an EOD record (e.g., !EOD),
2 = a binary record (BIN),

4 or 5 =a PRINT record without a vertical format con-
trol character.

6 or 7 = a PRINT record, the first byte of which is a
vertical format control character,

X'40' = a block ending control string (e.g., no more
records this block).

X'86' = a nonbatch banner. (The record will usually
be repeated enough times to fill two print pages.)
When the RCC value is X'86' the symbiont file buffer
has three additional fields that are not shown in Fig-
ure E-1. They are each one byte in length and are:

RPTC specifies the number of times this record
is to be printed plus one,

SVFC specifies the secondary VFC character,
The character is used for the second and each
succeeding repeated print (e.g., X'C1' for
doublespace).

PVFC specifies the primary VFC character
to be used on the first print (e.g., X'F1' for

top~of-form).

For Example:

BC RCC=X'86' SK=3

RPTC SVFC PVFC

.

Other values for RCC are reserved for future enhancement
and should not be used, The fourth byte of a control string
is the skip byte (SK) defined for the convenience and effi-
ciency of the block encoder. SK may have the value 1
through 4 inclusive,

The next SK-1 bytes following the confrol sequence have
no significance and are skipped before the start of data,
The skipped bytes are provided to allow a byte-aligned
MBS instruction (the most efficient execution) to move

‘the bytes into the symbiont block or to allow placement

of the record on a word boundary for record construction
ease, The final control string of a block must have BC=0,
RCC=X'40', and SK=0.

Appendix E 277

0 78 15,16 23,24 31

Forward Link Disk Address

BC RCC : SK=1

Record 1

BC

RCC SK=2 Unused

Record 2

Record n-1

BC

BC RCC SK=3 Unused

Unused

Record n

Backward Link Disk Address

End of data this buffer

If forward link disk address = 0, this is EOF,
If not, file is continued at forward link,

Records are never split between blocks.

278

Figure E-2, Symbiont File Buffer Format

Appendix E

Appendix F has been deleted. Information regarding simultaneous
file usage is contained in Section 2, Files and File Usage.

90 17 64H-1(9/78) Appendix F 279

(This page intentionally left blank.)

90 17 64H-1(9/78) Appendix F 280

* INDEX

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical sequence.

2741 terminal,
substitutions for nonexistent characters, 273

A

A Programming Language, 6
abnormal address, setting, 112
abnormal codes
device failure or end-of-data, 254
enqueue/dequeue, 263
insufficient or conflicting information, 250
abort return, 70,94
account, user, 30
account directory, 15
accounting, 166,2
accounting output, 168
addend value, x
address resolution code, x
adjust DCB CAL, 79
AND control command, 176
ANS COBOL, 5
ANS labeled tape, 25,x
DCB format, 242
ANS FORTRAN, 4
ANSCII, 266,264,271
AP, 5
APL, 6
application processors, 8
Assembly Program, 5
ASSIGN control command, 33,82
ANS labeled tape, 39
device, 40
disk file, 34
journal, 40
Xerox labeled tape, 37
assign/merge table, reading and writing, 87
authorization checks, 2

banner xiii
BASIC, 5 .
Batch (processor), 204,7
Batch, command continuation, 205
Batch, commands, 205

BATCH, 205

DEFAULT, 206

EOF, 206

EOF EXEC, 207

EXEC, 206
Batch, data replacement, 204
Batch, error messages, 207

BATCH command, Batch, 205

batch job, x

batch processing, 2

BCD control command, 54

beginning column, specifying, (M:DEVICE), 127
BIN control command, 54

binary input, x

blocking buffer, truncating, 119

BREAK key, connecting to, 94

BUILD command, SYMCON, 211

C

card punch sequencing, specifying, (M:DEVICE), 12

CCI, 4,x
CHANGE command, SYMCON, 211
character sets, 264
CIRC, 8
close a file, 110
close a volume, 120
COBOL, 5
COBOL On-Line Debugger, 7
codes and correspondences, 264
column, specifying beginning, (M:DEVICE), 127
command processors, 3
command syntax notation, ix
commands, confrol, (see control commands)
common limits, obtaining, 72
common pages, X

freeing, 73

obtaining, 73
common storage, 152
concatenation, 189,x
conflicting information,

abnormal codes, 250

error codes, 255
conflicting reference, x
consecutive files, 18
console interrupts, connecting to, 65
control codes, 264
control commands, 29,x, 10

AND, 176

ASSIGN, 33,82

BCD, 54

BIN, 54

COUNT, 176

DATA, 54

EOD, 54

FIN, 54

IF, 174

INCL, 135

JOB, 30

LDEV, 51

LIMIT, 31

Index

281

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical sequence. ‘

LINK, 120

LOAD, 129

MESSAGE, 33

MODIFY, 136

OLAY, 129

OR, 176

OVERLAY, 129

PFIL, 54

PMD, 172

PMDE, 172

PMDI, 172

POOL, 32

PTREE, 135

REW, 55

RUN, 136

SET, 44

SNAP, 173

SNAPC, 174

STEP, 32

SWITCH, 55

TITLE, 33

TREE, 134

WEOF, 55

XEQ, 53
control function, x
control key-in, x
control message, x
cooperative, 275,x
COPY command, PCL, 186
COPYALL command, PCL, 1921
COPYSTD command, PCL, 194
COUNT control command, 176
CP-V operating system, 1

DATA control command, 54
data encryption, 24
data memory management, 72
data record manipulation, 114
date, obtaining, 60
DCB, 96,x,17,22,25,123,161,213
assignments, checking correspondence of,
(M:DEVICE), 128
closing, 110
creating, 96
formats,
ANS labeled tape, 242
device DCB, 235
file DCB, 213
Xerox labeled tape, 234
initializing, 102
opening, 102
size, 161
DCBTAB (Name Table), 161
debug error messages, 178,177
debugging aids, 170
(see FDP)
(see Delta)

282 Index

DEFAULT command, Batch, 206
DEFCOM, 208,7
DELETE command,

PCL, 195

SYMCON, 210
DELETEALL command, PCL, 195
Delta, 6
dequeve resources, 78
device DCB format, 227
device designation codes, 96
device failure abnormal codes, 254
device failure error codes, 257
device mode, changing, (M:DEVICE), 126
device names, 95
device type codes, 95
device-oriented FPT, 81
direct access of files, 20
direct formatting, specifying, (M:DEVICE), 124
DISCARD command, SYMCON, 211
disk storage, 24
dummy section, x
dumps, postmortem, 170, xi
dumps, snapshot, 172
dynamic data limits, obtaining, 72
dynamic pages,

freeing, 74

obtaining, 73

E

EASY, 4
EBCDIC, 265,264
ECB, checking for completion, 21
Edit (processor), 7
EDMS, 8
element file, x
encryption, 24
END command,
PCL, 199
SYMCON, 210
end-of -data abnormal codes, 254
end-of~data error codes, 257
end-of-file, writing, 121,55
enqueue/dequeue abnormal and error codes, 263
enqueue/dequeue resources, 75,279
EOD control command, 54
EOF command, Batch, 206
EOF EXEC command, Batch, 207
error address, setting, 112
error codes,
device failure or end-of-data, 258
enqueue/dequeuve, 254
insufficient or conflicting information, 255
miscellaneous, 258
Xerox labeled tape, 254
error control, monitor, 71
error messages,
Batch processor, 207
debug, 178,177

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical sequence.

Link, 153
Load, 139
LYNX, 148
monitor, 250
PCL, 200,199
SYMCON, 212,211
error return, 70,93
error severity level code, x
ERRORS command, PCL, 198
event control blocks, checking for completion, 91
exceptional condition control procedures, 62
EXEC command, Batch, 206
execution control processors, 6
exit control, 66

exit from trap, interrupt, timer, or exit control routine, 71

exit return, 85,68,93

exits to the monitor, 68

explicit open, 28

extension of output files (see files, extension)
external definition, x

external reference, x

F

FDP, 6
fid (see files, identification)
file DCB format, 213
file directory, 15
file function and disposition, 19
File Information Table (see FiT)
file maintenance procedures, user, 96
file management routines, x
file manipulation procedures, 120
files,
access, 20
consecutive, 18
defaults, 104
direct access, 20
extension, x
identification, 184
keyed, 15
manipulation, 120
multiple access to a single file, 22
noncontrol input, 86,53
organization, 15
positioning, 120
random, 19
sequential access, 21
simultaneous usage, 22
storage devices, 24
structure, 15
synonymous, 28
FIN control command, 54
FIT, 15
FIT file parameters, 224
FLAG, 5
formatting, specifying direct, (M:DEVICE), 124

90 17 64H-1(9/78)

forms, changing, (M:DEVICE), 126
FORTRAN, 4
FORTRAN Debug Package, 6
FORTRAN Load and Go, 5
FPARAM table, 224
FPT, 80,x,56

setting protection type, 57
function parameter table (see FPT)

General Purpose Discrete Simulator, 8
GET CAL, 90

ghost job, x

ghost job, initiating, 93

global symbol, 153,x

GO file, x

GPDS, 8

granule, x

header, specifying, (M:DEVICE), 127

1/O completion, checking, 113

1/O devices, assigning, (see ASSIGN command)
1/O procedures, 95

IF control command, 174

INCL control command, 135

index structure, 15

input control commands, 54

insufficient information, abnormal codes, 250
insufficient information, error codes, 255
internal symbols, 153

interrupt, connecting, to, 65,94

interval timer, setting, 64

interval timer, testing, 65

IOP designation codes, 95

J

JCL, 29

JIT, xi

JOB control command, 30
job decks, sample, 179
job step, xi

Index

283

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical sequence.

KEEP command, SYMCON, 210
key, xi
keyed files, 15
key~-in, xi
requesting, 61,94

L

labeled tape, 25
(see ANS labeled tape)
(see Xerox labeled tape)
language processors, 4
LDEV control command, 51
LEMUR (processor), 154,8
calling LEMUR, 154
commands,
BUILD, 155
CARRY, 157
COPY, 156
DELETE, 155
END, 157
LIBRARY, 155
concepts, 155
error messages, 158
:LIB file, 134
libraries, 137,10
routines, 274
library load module, xi
LIMIT control command, 31
limits, obtaining common, 72
line printer format control codes, 43
line spacing, setting (M:DEVICE), 124

lines, determining number remaining (M:DEVICE), 128
lines, setting number of printable (M:DEVICE), 124

Link (processor), 150,6
Link, commands,

LINK, 150
Link, error messages, 153
LINK command, Link, 150
link to a load module (M:LINK), 58
linking loader, xi
LIST command,

PCL, 196

SYMCON, 210
listing log, writing to, 62
Load (processor), 129,6
Load, commands,

INCL, 135

LOAD, 129

MODIFY, 136

OLAY, 129

OVERLAY, 129

PTREE, 135

RUN, 136

TREE, 134

284 Index

Load, error messages, 139
Load, restrictions, 133
load and transfer control, 59
LOAD control command, 129
load information, xi
load location counter, xi
load map, 163,xi
load module,
linking to, 58
structure, 151
logical device stream, 51,xi,84
logical device, xi
LOGON/LOGOFF, 4
LYNX (processor), 143,6
command file input, 143
error messages, 148
example, 148
LYNX command, 143
mapping existing load modules, 147
:TREE command, 147

M:AND, 176
M:CAL, 90
M:CHECK, 113
M:CHECKECB, 91
M:CLOSE, 110
M:COUNT, 177
M:CVM, 75
M:CVOL, 120
M:DCB, 97,96
M:DELREC, 119
M:DEQ, 78
M:DEVICE, 123
M:DISPLAY, 89
MENQ, 77
M:ERR, 70,93
M:EXIT, 68,93
M:EXU, 93
M:FCP, 73
M:FP, 74
M:FVP, 74
M:GCP, 73
M:GDDL, 72
M:GL, 72
M:GP, 73
M:GVP, 74
M:IF, 175
M:INT, 65,94
M:JOB, 121
M:KEYIN, 61,94
M:LDEV, 84
M:LDTRC, 59
M:LINK, 58
M:MASTER, 90
M:MERC, 71

90 17 64H-1(9/78)

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical sequence.

M:MESSAGE, 60
M:MOVE, 118

M:OPEN, 102

M:OR, 176

M:PFIL, 120

M:PRECORD, 119
M:PRINT, 62

M:PT, 57

M:RAMR, 87

M:READ, 114

M:REW, 121

M:SEGLD, 57

M:SETDCB, 112

M:SLAVE, 90.1

M:SMPRT, 75

M:SNAP, 174

M:SNAPC, 174
M:STIMER, 65,64
M:STRAP, 64

M:SYS, 90

M:TFILE, 113

M:TIME, 60

M:TRAP, 63

M:TRTN, 71

M:TRUNC, 119

M:TIMER, 65,64

M:TYPE, 60,94

M:WAIT, 62

M:WAMR, 89

M:WEOF, 121

M:WRITE, 116

M:XCON, 66

M:XXX, 70,94

magnetic tapes (see tape)
Manage, 8

master mode, entering, 90
memory allocation, 72
memory management, 72
memory protect, setting, 75
memory protection, 162
memory, virtual, 163
MESSAGE control command, 33
messages (see error messages)
messages to operator, 60
Meta-Symbol, 4

MODIFY control command, 136
monitor, 9,1,xi

monitor error control, 71
monitor error messages, 250
monitor routines, ¢
multilevel index structure, 15

name, user, 30
HNCTL command, 86,53
noncontrol input file, 86,53

90 17 64H-1(9/78)

object language, xi

object module, xi

OLAY control command, 129

open a file, 102

open, explicit, 28

opennext operation, 28

operational label, 41,xi

operator, messages to (from users), 33,60
option, xi

OR control command, 176

output form, changing, (M:DEVICE), 126
output header, specifying, (M:DEVICE), 127
OVERLAY control command, 129
overlay loader, (see Load processor)
overlay segment, loading, 57

P

page count, specifying, (M:DEVICE), 125
pages, freeing, 72
pages, obtaining, 71,72
parameter presence indicator, xi
PCL, 182,7
PCL, capabilities, 185
PCL, command summary, 203, 199
PCL, commands,

COPY, 186

COPYALL, 191

COPYSTD, 194

DELETE, 195

DELETEALL, 195

END, 199

ERRORS, 198

LIST, 196

PRINT, 198

REMOVE, 199

REVIEW, 197

REW, 198

SPE, 198

SPF, 198

SPR, 198

TABS, 199

WEOF, 198
PCL, device types, 183
PCL, disk pack default, 184
PCL, error messages, 200,199
PCL, file identification, 184
PCL, mode option compatibility, 185
PCL, organization types, 183
PCL, resource type, 185
PCL, scraich types, 199
PCL, source and destination specification, 183
PCL, specification examples, 185
PCL, syntax conventions, 182
PCL, termination of, 199

Index

285

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical sequence.

PCL, volume identification, 184
Peripheral Conversion Language (see PCL)
peripheral device (see device)
PFIL control command, 54
physical device, 27,xi
PMD control command, 172
PMDE control command, 172
PMPDI control command, 172
POOL control command, 32
position file, 120
postmortem dumps, 170, xi
PRINT command, PCL, 198
privileged instructions, executing, 93
procedures, 56,12

exceptional condition control, 62

file maintenance, 96

file manipulation, 120

general purpose, 57

I/0, 95

M:AND, 176

M:CHECK, 113

M:CHECKECSB, 91

M:CLOSE, 110

M:COUNT, 177

M:DVM, 75

M:CVOL, 120

M:DCB, 97,96

M:DELREC, 119

M:DEQ, 78

M:DEVICE, 123

M:DISPLAY, 89

M:ENQ, 77

M:ERR, 70,93

M:EXIT, 68,93

M:EXU, 93

M:FCP, 73

M:FP, 74

M:FVP, 74

M:GCP, 73

M:GDDL, 72

M:GL, 72

M:GP, 73

M:GVP, 74

M:IF, 175

M:INT, 65,94

M:JOB, 121

M:KEYIN, 61,94

M:LDEV, 84

M:LDTRC, 59

M:LINK, 58

M:MASTER, 90

M:MERC, 71

M:MESSAGE, 60

M:MOVE, 118

M:OPEN, 102

M:OR, 176

M:PFIL, 120

M:PRECORD, 119

M:PRINT, 62

M:PT, 57

286 Index

M:RAMR, 87

M:READ, 114

M:REW, 121

M:SEGLD, 57

M:SETDCB, 112

M:SLAVE, 90

M:SMPRT, 75

M:SNAP, 174

M:SNAPC, 174

M:STIMER, 65,64

M:STRAP, 64

M:SYS, 90

M:TFILE, 113

M:TIME, 60

M:TRAP, 63

M:TRTN, 71

M:TRUNC, 119

M:TTIMER, 65,64

M:TYPE, 60,94

M:WAIT, 62

M:WAMR, 89

M:WEOF, 121

M:WRITE, 116

M:XCON, 66

M:XXX, 70,94

on-line and batch differences, 93

special device, 123
processor control commands, 182
processor name control command, 182
processors,

application, 8

command, 3

execution control, 6

language, 4

service, 7

user, 9
program decks, samples, 179
program load and execution, 129
program product, xi
protective mode, 25,xi
pseudo file name, xi
PTREE control command, 135
public library, 137,xii,90
public library, associate or disassociate, 90

RAD, 24,xii,2
random files, 19
real-time processing, 2
record, deleting, 119
record, manipulation, 114
record, reading, 114
record, size,

changing, (M:DEVICE), 126
record, writing, 116
records, copying all, 118
records, formatted, 27

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical sequence.

records, positioning, 119
reentrant, xii

relative allocation, xii

release resource CAL, 89
relocatable object module (ROM), xii
relocating loader, xii

remote processing, 2,xii

REMOVE command, PCL, 199
Report Program Generator, 5
resident program, xii

response time, xii

RETAIN command, SYMCON, 211
REVIEW command, PCL, 197

REW command, PCL, 198

REW control command, 55

rewind, 121,55

ROM, xii

RPG, 5

RUN control command, Load, 136

)

SAVE CAL, 89

scheduler, xii

secondary storage, 2,xii
segment loader, xii
semi-protective mode, 25,xii
sequencing, specifying, (M:DEVICE), 127
sequential access of files, 21
service processors, 7

SET command, 44

shared processor, xii

Show processor, 208
Simulation Language, 6
simultaneous file usage, 22
SL-1, 6

slave mode, entering, 90
SNAP control command, 173
SNAPC control command, 174
snapshot dumps, 172
Sort/Merge, 8

source language, xii

SPE command, PCL, 198
special shared processor, xii
specific allocation, xii

SPF command, PCL, 198

SPR command, PCL, 198
SR1, SR2, SR3 and SR4, xii
star file, xii

static core module, xii

STEP control command, 32
storage devices, 24

SWITCH control command, 55
symbiont, 275, xii

symbiont file, inserting or deleting, 121

symbol tables,
global, 153
internal, 153
symbol-code correspondences, 267
symbolic input, xii
symbolic name, xii
symbols (symbolic identifiers), 153
symbols, graphic, 264
SYMCON, 209,7
SYMCON, commands,
BUILD, 211
CHANGE, 211
DELETE, 210
DISCARD, 211
END, 211
KEEP, 210
LIST, 210
RETAIN, 211
SYMCON, error messages, 212,211
synonymous files, 28
SYSGEN, xii
SYSTEM BPM, 56
system load parameters, listing, 89
system register, xii
SYSTEM SIG7, 56
SYSTEM SIG9, 56

T

tab stops (M:DEVICE), 123
tape,
(see ANS labeled tape)
(see Xerox labeled tape)
labeled, 25
positioning (M:CLOSE), 110
types of, 25
updating (M:CLOSE), 110
task control block (TCB), 160,xii, 63
TEL, 4
temporary file, declaring, 113
TEXT format, xiii
TEXTC format, xiii
time, obtaining, 60
time-sharing, 2
timer, setting, 64
timer, testing, 65
TITLE control command, 33
top of form skipping to, (M:DEVICE), 120
transaction processing, 3,
traps, setting, 63 :

* traps, simulating, 64

:TREE command, LYNX, 147
TREE control command, 134
TSS temp stack, xiii

TYC codes, 222,234,241,248

Index

287

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter dre listed in
numerical sequence.

] W

Unsatisfied reference, xiii WEOF command, PCL, 197
user processors, 9 WEOF control command, 55
user-identification banner, xiii write end-of-file, 116,55

utility control commdnds, 54

X

XEQ control command, 53

v,

variable length parameters, 81,223,248 Xerox labeled tape, 25

vertical format control, specifying, (M:DEVICE), 125 DCB format, 234

virtual map, changing, 75 error handling, 254 .
virtual. memory, 163 Xerox standard: symbols, codes, and correspondences, 264

virtual memory layout,
Link processor, 164
Load processor, 165

virtual page, freeing, 74

virtual page, obtaining, 74 Y
volume, closing, 120
volume, identification, 184 yyndd; 95

288 Index

XEROX Publication Revision Sheet

September 1978

CORRECTIONS TO CP-V/BATCH PROCESSING REFERENCE MANUAL

PUBLICATION NO. 90 17 64H-1(9/78)

The attached pages contain changes which reflect the FOO version of Control Program-Five (CP-V). Pages in the

H edition (11/76) of the manual that are to be replaced are: title page/ii, iii through viii, 21/22,23/23.1, 23.2/24,
25 through 40, 47/48, 51 through 54, 57 through 62, 65/66, 75/76, 83 through 90, 91 through 108, 111/112,

115 through 118, 121 through 124, 127 through 134, 137/138, 143 through 150, 153/154, 183 through 202,
203/203.1, 203.2/204, 205/206, 221/222, 233/234, 251 through 262, 279/280, and 283 through 286. (Pages
23.1, 23.2, 203.1, and 203. 2 are new pages.)

Pages that are to be inserted are: 90.1/90. 2,

Revision bars in the margins of replacement pages identify changes. Pages without the publication number
90 17 64H-1(9/78) at the bottom are included only as backup pages; revision bars appearing on such pages
identify changes made in a previous revision, A revision bar adjacent to a page number indicates that the
material on the page has been reorganized without the content being changed.

408
’?’279 File No.: 1X13
Printed in U.S.A. XL89A, Rev. 0

XEROX“ is a trademark of XEROX CORPORATION 90 17 64H‘](9/78)

Reader Comment Form

XEROX

|

We would appreciate your comments and suggestions for improving this publication

Publication No.

Rev. Letter

Title

Current Date

! D lLLearning

D Reference

How did you use this publication?

D Installing

D Maintaining

ts the material presented effectively?

D Sales

Fully Covered Well IHustrated Well organized Cle.
D Operating D D D ¢ D 2

D Very Good

D Good

[J Fair
D Poor

What is your overall rating of this publication?

F What is your occupation?
D Very Poor

Your other comments may be entered here. Please be specific and give page, column, and line number references where
applicable. To report errors, please use the Xerox Software Improvement or Difficulty Report (1188) instead of this form.

Your name & Return Address

Thank You For Your Interest (fold & tasten as shown on back, no postage needed f mailed in U S A))

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO, 59153 LOS ANGELES,CA 90045

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
5250 W. CENTURY BOULEVARD
LOS ANGELES, CA 90045

ATTN: PROGRAMMING PUBLICATIONS

Honeywell

FOLD ALONG LINE

—_———————————— e —_—_—_—————————_—— e~~~ —— = — — . CUTALONG LINf — — —— — — — —
FOLD ALONG LINE

Honexwell information Systems
Inthe U.S.A.: 200 Smith Street, MS 486, Wailtham, Massachusetts 02154
In Canada: 2025 She d Avenue East, Willowdale, Ontario M2J 1W5
Inthe U.K.: Great West Road, Brentford, Middlesex TW8 9DH
In Australia: 124 Walker Street, North Sydney, N.S.W. 2060
In Mexico: Avenida Nuevo Lean 250, Mexico 11, D.F.

27994, 3.5C880, Printed in U.S.A.

XL89, Rev. O

	000001
	000002
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	001
	0010
	0011
	0012
	0013
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023.0
	023.1
	023.2
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090.0
	090.1
	090.2
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203.0
	203.1
	203.2
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	_01
	replyA
	replyB
	xBack

