
Xerox Control Program-Five (CP-V)
Xerox 560 and Sigma 5/6/7/9 Computers

Batch Processing
Reference Manual

~IO 17 64H-1 (9178)

CAL1-TO-FUNCTION INDEX

FPT FPT
Call Code Function Page Coli Code Function Page

- M:DCB 97 CAll, 3 X'OQ' M:SNAP 174
- M:PT 57 X'Ol' M:SNAPC 174
- M:DDCB<D - X'02' M:IF 175

X'03' M:AND 176
CAll, 1 X'Ol' M:REW 121 X'04' M:~ 176

X'02' M:WEOF 121 X'05' M:COUNT 177
X'03' M:CVOL 120
X'04' M:D EVICE (PAGE) 123 CALl,4 X'02' Save 89
X'05' M:DEVICE (VFC/NOVFC) 125 X'03' Get 89
X'06' M:SETDCB 112 X'04' Associate Public Library 90
X'OB' M:DEVICE (DRC/NODRC) 124 X'05' Disassociate Public Library 90
X'OD' M:DELREC 119 X'06' Reset Error· Flags -
X'OE' M:MOVE 118
X'OF' M:TFILE 113 CALl,5 X'07' M:SLAVE 90

X'lO' M:READ 114 X'08' M:MASTER 90

X'll' M:WRITE 116 X'lC' M:STOPIOCD -
X'12' M:TRUNC 119 X'lD' M:STARTIO<D -
X'14' Adjust DCB 79 X'lE' M:IOEX (SIO)<D -
X'14' M:OPEN 102 X'lF' M:IOEX (TIO/TDV /HIO)<D -
X'15' M:CLOSE 110 X'20' M:GJOBCON<D -
X'lC' M:PFIL 120 X'21' M:CONNECT<D -
X'lD' M:PRECORD 119 X'22' M:D ISC ON NE CT CD -
X'20' M:DEVICE (LINES) 124 X'23' M:INTCON<D -
X'21' M:DEVICE (FORM/FNAME) 126 X'24' M:QFI<D -
X'22' M:DEVICE (SIZE) 126 X'25' M:HOLD<D -
X'23' M:DEVICE (DATA) 127 X'26' M:CLOCK<D -
X'24' M:D EVICE (COUNT) 125 X'27' M:INSTAT<D -
X'25' M:DEVICE (SPACE) 124 X'28' M:EXU<D 93

X'26' M:DEVICE (HEADER) 127 -
X'27' M:DEVICE (SEQ) 127 CAL 1,6 X'DO' Read Error Log <D -
X'28' M:DEVICE (TAB) 123 X'Ol' Write Error Log <D -
X'29' M:CHECK - X'02' M:MAp<D -
X'2A' M:DEVICE (NLINES) 128 X'03' M:SIO<D -
X'2B' M:DEVICE (CORRES) 128 X'04' M:LOCK<D -
X'2C' M:PC~ - X'05' M:DOPEN<D 93

X'2D' M:RAMR 79 X'06' Initiate Ghost Job -
X'2E' M:WAMR 79 X'07' M:DCLOSE<D 90
X'2F' M:JOB X'08' M:SYS -

X'09' M:BLIST<D -
CAll, 2 X'OO' M:MESSAGE 60 X'OA,Q) M:DMOD#<D -

X'Ol' M:PRINT 62 X'OA,Q) M:DPART@ , -
X'02' M:TYPE 60 X'OA,Q) M:DRET @
X'04' M:KEYIN 61 -
X'08' M:ENQ 77 CAll, 7 X'OQ' M:GETLINE -
X'09' M:DEQ 78 X'Ol' M:RLSLINE -
X'10' M:MERC 71 X'02' M:BUFSTAT' -

<D These procedures are described in detai I in the CP-V /SP Reference Manual, 90 31 13.

11 This procedure is for on-line use and is described in detail i'n the CP-V ITs Reference Manual, 90 09 07.

a> The diagnostic routine associated with this procedure determines which of the three procedures (M:DMO[)#,
M:DPART, or M:DRET) was called.

@ These procedures are described in detai I in the CP/SM Reference Manual, 90 1674.

XEROX CONTROL PROGRAM-FIVE (CP-V)
Xerox 560 and Sigma 5/6/7/9 Computers

© Xerox Corporation, 1974, 1975, 1976, 197El

~ 197a, Honeywell InfoCMneion syseems Inc.

Batch Processing

Reference Manual

90 17 64H
90 17 64H-1

September 1978

XEROX

FileNo.: 1X13
XL89A, Rev. 0

Printed in U.S.A

REVISION

This publication documents the FOO version of Control Program Five (CP-V). The publication consists of the
H edition of this manual (90 17 64H, dated November 1976) and the revision package numbered 90 17 64H-1
(dated September 1978). Vertical lines in the margins of pages labeled 90 17 64H-l (9;78) indicate technical
changes that reflect the FOO version of CP-V. Vertical lines in the margins of other pages indicate changes
that occurred in a previous release of the system.

RELATED PUBLICATIONS

Title

Xerox Sigma 6 Computer/Reference Manual
Xerox Sigma 7 Computer/Reference Manual
Xerox Sigma 9 Computer/Reference Manual
Xerox 560 Computer/Reference Manual
X'::!fOX Remote Batch Terminal/Reference Manual
Xerox Remote Batch Terminal/Operator's Manual
Xerox Control Program-F ive (CP-V)/fs Reference Manual
Xerox Control Program-Five (CP-V)/OPS Reference Manual
Xerox Control Program-Five (CP-V)/SM Reference Manual
Xerox Control Program-Five (CP-V)/SP Reference Manual
Xerox Control Program-F ive (CP-V)/fS User's Guide
Xerox Control Program-Five (CP-V)/RP Reference Manual
Xerox Control Program-F ive (CP-V)!T P Reference Manual
Xerox Control Program-F ive (CP-V)/Common Index
Xerox EASY /LN, OPS Reference Manual
Xerox BASIC/LN, OPS Reference Manual
Xerox Meta-Symbol/LN, OPS Reference Manual
Xerox Assembl y Program/Reference Manua I
Xerox Extended FORTRAN IV/LN Reference Manual
Xerox Extended FORTRAN IV/library Technical Manual
Xerox Extended FORTRAN IV/OPS Reference Manual
Xerox FORTRAN Debug Package (FDP)/Reference Manual
Xerox F LAG/Reference Manual
Xerox ANS COBOL/LN Reference Manual
Xerox ANS COBOL/OPS Reference Manual
Xerox ANS COBOL/On-line Debugger Reference Manual
Xerox Report Program Generator (RPG)/Reference Manual
Xerox APL/LN, OPS Reference Manual
Xerox Manage/Reference Manual
Xerox Sort-Merge/Reference Manual
Xerox General Purpose Discrete Simulator (GPDS)/Reference Manual
Xerox Data Management System (DMS)/Reference Manual
Xerox SL-1/Reference Manual
Xerox 1400 Series Simulator/Reference Manual
Xerox Mathematical Routines/Technical Manual
Xerox CIRC-AC/Reference tv\anual
Xerox eIRC-DC/Reference Manual
Xerox CIRC-TR/Reference Manual

Publication No.

90 17 13
900950
90 1733
903076
90 1602
90 1626
900907
90 1675
90 1674
90 31 13
90 1692
903026
9031 12
903080
90 18 73
90 15 46
900952
903000
900956
90 15 24
90 11 43
90 1677
90 1654
90 1500
90 15 01
903060
90 1999
90 1931
90 16 10
90 11 99
90 1758
90 1738
90 1676
90 15 02
900906
90 1698
90 1697
90 1786

Manual Content Codes: BP - batch processing, LN - language, OPS - operations, RP - remote processing,
RT - real-time, SM - system management, SP - system programming, TP - transaction
processing, TS - time-sharing, UT - uti lities.

The specifications of the software system described in this publication are subiect to change without notice. The availability or performance of some features
may depend on a specific configuration of eouipment such as additional tape units or larger memory. Customers should consult their 1111 .. reprelllntative for details.

ii 90 17 64H-' (9/78)

CONTENTS
PREFACE viii 3. MONITOR CONTROL COMMANDS 29
':OMMAND SYNTAX NOTATION ix

jlOSSARY
Introduction 29

x
System Control Commands· 30

1. INTRODUCTION 1 JOB 30
Operating System ____ I

LIMIT 31
STEP 32 Philosophy of Operation __ I
POOL 32 Batch Processing 2
MESSAGE 33 Time-Shared Processing _. 2
TITLE 33 Remote Processi ng ___ 2
ASSIGN 33 Real-TIme Processing __ 2

Transaction Processing __ 3 SET 44

Processors 3 LDEV 51
Command Processors ___ 3 XEQ 53
Language Processors ___ 4 Input Control Commands 54
Execution Control Processors 6 BIN 54

Servi ce Processors ___ 7 BCD 54
Application Processors 8 DATA 54
User Processors 9 EOD 54

Monitor 9 FIN 54
System Commands ____ 10 Utility Control Commands 54

PFIL 54
2. FILES AND FilE USAGE 15 REW 55

Introduction 15 WEOF 55
File Organization ____ 15 SWITCH 55

Keyed Files 15
Consecutive Fi les 18
Random Fi les 19

File Function and Fi Ie Disposition 19 4. SYS TEM PROCE DURES 56
File Access 20

Direct Access 20 Introduction 56
Sequential Access 21 General-Purpose Procedures 57

Simultaneous File Usage __ - 22 Set FPT Protection Type 57
Requirements for Multiple Access to a M:PT 57

Single File 22 Load Overlay Segment 57
Tape Files 22 M:SEGLD 57
Disk Files 22 Link to a Load Module 58

Coordinating Multiple Access to a M:L1NK 58
Single File 23.1 Load and Transfer Control 59

Protocol Requi rements 23.1 M:LDTRC 59
Extensions to M:DCB, M:OPEN, Give Time and Date 60

ASSIGN and SET _ 23.2 M:TIME 60
Hashing Queue Names _. 23.2 Type a Message 60

Data Encryption 24 M:TYPE } 60
Fi I e Storage Dev ices 24 M:MESSAGE

Disk Storage 24 Request a Key-In 61
labeled Tape 25 M:KEYIN 61
Physical Devices ____ 27 Write to Listing log· 62

Formatted Data Records .. 27 M:PRINT 62
M:READ 27 Suspend Program 62
M:WRITE 28 M:WAIT 62 ,.,

M:WEOF 28 Exceptiona I Condi tion Control Procedures ___ 62
M:ClOSE (output mode) 28 Set Traps 63
M:ClOSE (input mode) .28 M:TRAP 63

Direct Data Records __ 28 Simulate a Trap 64
M:REAI) 28 M:STRAP 64
M:WRITE 28 Set Interval Timer 64
M:WEOF 28 M:STIMER 65
M:ClOSE 28 Test.Interval Timer 65

Synonymous Fi les 28 M:TTIMER 65
Opennext 28 Connect Console Interrupt 65
Exp Ii ci t Open 28 M:INT 65

90 1164H-l (9,118) iii

Exit Control 66 Type a Message (M: TYPE) 94
M:XCON 66 Request Key-In (M:KEYIN) 94

Exits to the Wtonitor 68 Connect to Interrupt or BREAK
M:EXIT 68 Key (M:INT) 94
M:ERR 70
M:XXX 70·

Exit from Trap, Interrupt, Timer or Exit
Control Routine 71

M:TRTN 71 5. I/O P~OCEDURES 95
Monitor Error Control 71

M:MERC 71 Introduction 95
Data Memory Management 72 File Maintenance Procedures 96

Get Common Limits 72 Create a Data Control Block 96
M:GL 72' M:DCB ,96

Get Dynamic Data Limits 72 Open a File (Initialize a DCB) 102
M:GDDL 72 M:OPEN 102

Get Common Pages 73 Close a File (Terminate I/O Through a DCB)_ 110
M:GCP 73 M:CLOSE 110

Free Common Pages 73 Set Error or Abnormal Address 112
M:FCP 73 M:SETDCB 112

Get Dynamic Pages 73 Check I/O Completion 113
M:GP 73 M:CHECK 113

Free Dynamic Pages 74 Declare a Temporary File 113
M:FP 74 M:TFILE 113

Get Virtual Page 74 Data Record Manipulation 114
M:GVP 74 Read a Da ta Record 114

Free Virtual Page 74 M:READ 114
M:FVP 74 Wri te a Data Record 116

Set Memory Protect 75 M:WRITE 116
M:SMPRT 75 Copy A II Da ta Records 118

Change Virtual Map 75 M:MOVE 118
M:CVM 75 De I ete a Da ta Record 119

Enqueue/Dequeue Resources 75 M:DELREC 119
M:ENQ 77 Truncate Blocking Buffer 119
M:DEQ 78 M:TRUNC 119

Other CP-V Service Calls 79 File Manipulation 119
Adjust DCB CAL 79 Position n Records 119
Spec ify Logical Device I/O Streams 84 M:PRECORD 119

M:LDEV 84 Position File 120
Read and Write Assign/Merge Record 87 M:PFIL 120

M:RAMR 87 Close Volume 120
M:WAMR 89 M:CVOL J2Q

Report System Load Parameters 89 Rewind 121
M:DISPLAY 89 M:REW 121

Release Resource CAL 89 Write End-of-File 121
SAVE CAL 89 M:WEOF 121
GET CAL 90 Insert or Delete Symbiont File 121
Enter Master Mode 90 M:JOB 121

M:SYS 90 Special Device Procedures 123
M:CAL 90 M:DEVICE 123
M:MASTER 90 Set Listing Tabs 123

Enter Slave Mode 90 Skip to Top of Form 123
M:SLAVE 90 Set Number 'of Printable Lines 124

Associate or Disassociate Public Library __ 90 Set Line Spacing 124
Check Event Control Block(s) for Specify Direct Formatting 124

Completion 91 Specify Vertical Format Control 125
M:CHECKECB 91 Specify Page Count 125

Initiate Ghost Job 93 Change Output Form 126
Execute Privileged Instructions 93 Change Deyice Wtode or Record Size 126

M:EXU 93 Specify Beginning Column 127
On-Line and Batch Differences 93 Specify Output Header 127

Exit Return (M:EXIT) 93 Specify Card Punch Sequencing 127
Error Return (M:ERR) 93 Number of Lines Remaining 128
Abort Return (M:XXX) 94 Check Correspondence of DCB Assignments _ . 128

iv 90 17 64H-l (9/78)

6. PROGRAM LOAD AND EXECUTION 129 8. PREPARING THE PROGRAM DECK 179

Introduction _ 129 Introduct ion 179
Load Processor 129 Symbol ic Deck to Program Listing 179

Contro I Commands 129 Compressed Deck Update 179
LOAD, OVERLAY, OLAY 129 Symbolic Deck to Binary Deck 179
TREE 134 Symbolic Deck to Binary File on Disk 179 PTREE _ 135 Process, Load, and Execute 180
INCL 135 Create Fil e for Use by Another Program 180
RUN 136 Update File, Object fv4odule, and load
MODIFY 136 Module of User's Program 180

Libraries 137 Execute Program from User's Account, Using
Types of Libraries ___ 137 Debug Feature 181
Public libraries ___ 137 Create and Execute a Temporary Program 1

181
User Libraries 137 Create a Fil e with Password ! 181

Diagnostic Messages 139 Create a File Having Privileged Read Access 181
LYNX Processor 143 Read a File Having Privileged Read Access ___ 181

LYNX_ 143
Command Continuation 143 9. PROCESSORS 182
Command File Input 143
LYNX Commands 143 In troduct ion 182
Mapping Existing Load Modules 147 Processor Control Commands 182

:TREE 147 Peripheral Conversion language 182
LYNX Example 148 Introduct ion __ 182
Error Messages 148 Syntax Conventions 182

Link Processor 150 Source and Destination Specification 183
Link Contrc>1 Commands 150 Capabil ities 185

Link 150 Mode Option Compatibility 185
Load Module Structure 151 File COpy Command 186
Symbol Tables 153 Account COpy Command 191
Diagnostic Messages 153 Control File COpy Command 194

LEMUR Processor 154 Other Commands 195
Calling LEMUR 154

DELETE 195
LEMUR Concepts 155

DELETEALl 195
LEMUR Commands 155

LIST 196
LIBRARY 155 REVIEW 197
BUILD 155 PRINT 198
DELETE 156 ERRORS 198
COpy 156 SPF, SPR 198
CARRY 157 SPE 198
END 157 WEOF 198

Error Messages 158 REW 198
Command Summary ____ 159 REMOVE 199

Task Control Block 160 TABS 199
Data Control Blocks 161 Termination of PCL 199
Memory Protection 162 PCL Error Messages 199
Virtual Memor>, . 163 PCL Command Summary 199

Virtual Memory Layout __ 163 Botch Processor 204
Load Maps 163 Introduction 204
Accounting i 166 Data Replacement 204

7. PROGRAM DEBUGGING AI[)S 170 Command Continuation 205
Botch Commands 205

Introduction 170 BATCH 205
Postmortem Dumps 170 DEFAULT 206

172 EOF 206 PMD
Snapshot Dumps 172 EXEC 206

173 EOF EXEC 207 SNAP
SNAPC 174 Botch Error Messages 207
IF 174 Show Processor 208
AND 176 DEFCOM Processor 208
OR 176 S YMCON Processor 209
COUNT 176 Int roduct ion 209

Debug Error Messages In Convent ions 209

v

Calling SYMCON 209 FIGURES
S YMCON Commands 210

LIST 210 1. Operating System
DELETE 210
KEEP 210 2. CP-V Operating System
RETAIN III
CHANGE 211 3. Example of Multilevei Index Structure 16

i

BUILD 1211
DISCARD 211 4. Labeled Tape Format for Variable-Length i

END 211 Blocked Records 26
S YMCON Error Messages 211

5. TCB Stack Contents on Exceptional Condition_ 63
INDEX

6. Memory A II oca ti on 72

7. Basic FPT 80
APPENDIXES

8. Device-Oriented FPT 81
A. DATA CONTROL BLOCK FORMATS 213

9. Task Control Block Format 160
File DCB 213
Device DCB 227 10. DCBTAB (Name Table) 161
Xerox Labeled Tape DCB 234
ANS Label ed Tape DC B 247 11. Virtual Memory Layout 163

12. User Virtual Memory Layout, Load
Processor 164

B. MONITOR ERROR MESSAGES 250 13. User Virtual Memory Layout, Link
Processor 165

Introduction 250
Xerox Labeled Tape Error Handling 262 14. Sample load Map Printout for the Link

Enqueue/Dequeue Abnormal and Error Codes __ 262 Processor 16

15. Sample Load Map Printout for the Load
Processor 167

16. Format of a Dump Printout 171

C. XEROX STANDARD SYMBOLS, CODES 264
AND CORRESPONDENCES A-l. Format of File DCB 213

Xerox Standard Symbols and Codes 264. A-2. Format of FPARAM Table 225

Xerox Standard Character Sets 264
Control Codes 264 A-3. Format of Device DCB 228

Special Code Properties 264
A-4. Format of Xerox Labeled Tape DCB 235

A-5. Format of ANS Labeled Tape DCB 243

E-l. Inforrnqtion Flow through Cooperative

D. USE OF TEMPORARY STORAGE BY LIBRARY 274 and Symb ionts 275

ROUTINES
E-2. Symbiont File Buffer Format 278

E. COOPERA TIVES AND SYMBIONTS 275

Cooperative 276 TABLES
Symbionts 276
Symbiont-Cooperative Housekeeping 'Z16 1. Simultaneous File Usage - Keyed or
Symbiont Buffers 277 Consecuti ve 2:'

I F. Deleted 279
2. Standard Operational Labels, Device Types,

and Physical Device Name 41

vi 90 .764 1 (9,h8)

3. Operational Label Conventions 41 35. Record Sequencing Options - COpy Command_ 189

4. Line Printer Format Controll Codes ______ 43 36. Account Options - COpy Command_ 189

5. DCB Assignment Codes - Set Command 45 37. ANS Tape Options - COpy Command 190
6. Device Options - Set Command 46

38. Valid Option Combinations 192
7. File Options - Set Command 47

8. Exits to the Monitor ___ 67 39. PC L Error Codes 200

9. Register Contents for Exit Control 69 40. PC L Command Summary 202
10. Variable length Parameter List 81

41. Batch Processor Error Messages 207
11. Storage of Service Functions 88

12. Standard I/O Device Type Codes 95 42. S YMCON Error Messages 212

13. lOP Designation Codes __ 95 A-1. Variabl e Length Parameter Codes 223
14. Device Designation Codes. 96

15. File Defaults 104
A-2. Variabl e Length Parameter Codes for

A NS Label ed Tapes 249
16. Tape Positioning for Output, Update,

and Scratch Tapes __ 111 B-1. Abnormal Codes - Insufficient or
17. Standard Load Module Format 129 Confl icting Information 250
18. Library Dictionary Format._ 138

19. Library Load fv40dule Format 138 B-2. Abnormal Codes - Device Failure or
End-of-Data 254

20. Library ROM Module Format 138

21. Mon i tor Errc:>r Messages __ 139 B-3. Error Codes - Insufficient or Confl icting

22. load Error Messages 140
Information 255

23. lYNX Error Messages 148 B-4. Error Codes - Device Failure or

24. Link Error Messages ___ 153 End-of- Data 257

25. lEMUR Error Messages 158 B-5. Other fv4onitor Error Codes 258

26. LEMUR Command Summar)' 159
B-6. Enqueue/Dequeue Abnormal Codes 263

27. Data Control Block Size __ 162 B-7. Enqueue/Dequeue Error Codes 263

28. Accounting Printout for Batch Jobs 168 C-1. CP-V 8-Bit Computer Codes (EBCDIC) 265

29. Debug Error Messages ___ 178 C-2. CP-V 7-Bit Communication Codes (ANSCII) __ 266

30. PCl Device Types _____ 183 C-3. CP-V Symbol-Code Correspondences 267

31. PCl Organization Types __ 183 C-4. ANSCII Control-Character Translation.
Table 271

32. Data Codes 187
C-5. Substitutions for Nonexistent Characters

33. Data Formats 187 on 2741 Keyboards 273

34. Mode Codes - COpy Command 188 E-1. Cooperative and Symbionts Descriptions 276

vii

viii

PREFACE

Control Program-Five (CP-V) is a general-purpose system that operates on a Xerox 560 or Sigma 5, 6, 7, or 9
computer and a variety of peripheral devices. The system provides for five concurrent modes of operation.

• Batch processing

• Time-sharing

• Remote processing

• Real-time processing

• Transaction processing

This manual is the principal source of reference information for the batch processing features (i.e., job control com­
mands, system procedures, I/O procedures, program loading and execution, debugging aids, and service processors).
The purpose of the manual is to define the rules for using the batch processing features. Manuals describing other
features of CP-V are outlined below.

• The CP-V Time-Sharing Reference Manual, 90 09 07, is the principal source of information for the time­
sharing features. It defines the rules for using the Terminal Executive Language and other terminal processors.

• The CP-V Time-Sharing User's Guide, 90 16 92, describes how to use the various time-sharing features. It
presents an introductory subset of the features in a format that allows the user to learn the material by using
the features at a terminal as he reads through the document.

• The CP-V System Programming Reference Manual, 9031 13, describes the CP-V features that are designed
to aid the system programmer in the development, maintenance, and modification of the CP-V system.

• The CP-V System Management Reference Manual, 90 16 74, is the principal source of reference information
for the system management features of CP-V. It defines the rules for generating a CP-V system (SYSGEN),
authorizing users, maintaining user accounting records, maintaining the file system, monitoring system per­
formance, and other related functions.

• The CP-V Operations Reference Manual, 90 1675, is the principal source of reference information for
CP-V computer operators. It defines the rules for operator communication (i. e., key-ins and messages),
system start-up and initialization, job and system control, peripheral device handling, recovery, and file
preservation.

• The CP-V Remote Processing Reference Manual; 90 30 26, is the principal source of information about the
remote processing features of CP-V. All information about remote processing for a" computer personnel
(local and remote users, system managers, remote site operators, and central site operators) is included in
the manual.

• The CP-V Transaction Processing Reference Manual, 9031 12, provides information about dynamically
modifying and querying a central database in a transaction processing environment. Tha manual is addressed
to system managers, database administrators, applications programmers, and computer operators.

• The CP-V Common Index (9030 80) is an index to all of the above CP-V manuals.

Information for the language and application processors that operate under CP-V is also described in separate man­
uals. These manuals are listed on the Related Publications page of this manual.

90 17 64H-1(9/18)

COMMAND SYNTAX NOTATION

Notation conventions used in c()mmand specifications and e)(amples throughout this manual are listed below.

Notation

lowercase I etters

CAPITAL LETTERS

[]

{ }

Numbers and
speciQI characters

Subscripts

Description

Lowercase letters identify an element that must be replaced with a
user-se I ected va I ue.

CRndd could be entered as CRA03.

Capital letters must be entered as shown for input, and will be printed as
shown in output.

DPndd means "enter DP followed by the values for ndd".

An element inside brackets is optional. Several elements placed one under
the other inside a pair of brackets means that the user may select anyone or
n'one of those elements.

[KEYM] means the term "KEYM" may be entered.

Elements placed one under the other inside a pair of braces identify a re­
quired choice.

{ ~} means that either the letter A or the value of id must be entered.

The horizontal ell ipsis indicates that a previous bracketed element may be
repeated, or that elements have been omitted.

name [, name]. • • means that one or more name va I ues may be
entered, with a c()mma inserted between each name value.

The vertical ellipsis indicates that commands or instructions have been
omitted.

MASK2 DATA,2 X' 1EF '

BYTE DATA,3 BA(L(59))

means that there are one or more state­
ments omitted between the two DATA
directives.

Numbers that appear on the line (i.e., not subscripts), special symbols, and
punctuation marks other than dotted lines, brackets, braces, and underlines
appear as shown in output messages and must be entered as shown when input.

(value) means that the proper value must be entered enclosed in
parentheses; e. g. f (234).

Subscripts indicate a first, second, etc., representation of a parameter that
has a different value for each occurrence.

sysidl,sysid2,sysid3 means that three successive values for sysid
should be entered j, separated by commas.

ix

1. INTRODUCTION

OPERATING SYSTEM

The CP-V monitor functions as the major control element in
an installation's operating system. The operating system
consists of the monitor and a number of processing programs:
language processors, execution control processors, service
processors, appl ication processors, and user processors. In
genera I, the monitor governs the order in wh i ch programs
are executed and provides common services to all of them

. (see Figure 1).

The number~ types and versions of the programs in an oper­
ating system vary, depending upon the exact requirements
at a particular installation. Each operating system consists
of a selection of monitor routines and processing programs
thatare closely integrated for a giv(m range of applications.

The operating system required for a ·particular installa­
tion is generated through use of the System Generation
programs, which are described in the CP-V/SM Reference
Manual, 90 16 74.·

As the requirements of an installation increase, the oper­
ating system can easily be enlarged, modified, or updated.
The ability to adapt conveniently to new requirements is
inherent in the system design. Once a system is generated,
it can be quickly expanded to include user's programs,
data, and system I ibraries. User's programs and the stan­
dard system processors are equ i va lent in that they are
stored, cataloged, and referred to within the system in the
same way. They are also written using the same conven­
tions for communicating with the monitor.

Monitor

The operating system is self-contained and requires opera­
tor intervention only under exceptional conditions.

PHILOSOPHY OF OPERATION

The monitor uses sophisticated techniques for efficient
machine operation in:a production environment. The abi I ity
to process a continuous series of jobs with little or no oper­
ator intervention is one of the most important features of the
system. By reducing the need for operator participation,
the operating system ensures faster throughput, and opera­
tions are less subject to error. For the most part, the oper­
ator should only have to perform routine tasks such as loading
and unloading tape reels.

Complete and easy-to-use I/O services are avai lable to
user programs, thus relieving the programmer of many co­
ding chores. Device assignment is general and automatic,
enabl ing the user's program to exploit the complete flexi­
bi�ity of peripheral units.

I/O service is comprehensively organized to simplify pro­
gramming and make machine utilization effici.ent. I/O
transfers are automatically buffered, and I/o peripherals
are serviced on a queue basis (by job). Jobs can thus be
executed sequentially even though they might normally be
I/O-bound and delay use of the CPU or other I/O devices.

The job scheduler permits selective job operation based on
job type or administrative priority to maximize throughput
efficiency or environmental needs. The computer operator

Processing Programs

r r-------- ------ ----, r-----------,
. Operator --

I Job Input

Job Output ---L

System Control

Job Scheduler

Symbionts

1..---------- _.;.., _______ _

Figure 1. Operating System

Language
Translator

Service

Batch User

Time-Sharing
Users

____________ J

Introduction

GLOSSARY

addend value a hexadecimal constant to be added to
the value of a reJocatable address. The constant is
expressed as a signed integer appended to the address;
e.g., START+12 or HERE-Flo

address resolution code a two-bit code that specifies
whether an associated address is to be used as a byte
address or is to be converted (by truncating low order
bits) to a halfword, word, or doubleword address.

ANS tape a tape that has labels written in American
National Standard format.

batch job a job that is submitted to the batch job stream
through the central site card reader, through an on­
line terminal (using the Batch processor), or through
a remote terminal.

bi"nary input input from the device to which the BI (bin-
ary input) operational label is assigned.

common page a' page of core storage that is available
to the user's program and in which stored data is re­
tained until the current job is terminated or until the
page is released by the user's program.

concatenation a process whereby a number of files with
the same fi I ename and format e treated as one log i­
cal file. Concatenation is only applicable to ANS
tapes.

conflicting reference a refere .ce to a symbolic name
that has more than one definition.

control command any control message other than a
key-in. A control command may be input via any de­
vice to which the system command input function has
been assigned (normally a card reader).

control command interpreter (CCI) a monitor routine
that interprets control commands.

control function any monitor function initiated by a
control command or control key-in.

control key-in a control message of the type that must
be input from the operator's console.

control message any message received by the monitor
that is either a control command or a control key-in.

cooperative a monitor routine that transfers information
between a user's program and disk storage (also see
"symbiont").

data control block (DCB) a table in the user's program

x

that contains information used by the monitor in the
performance of an Vd operation.

disk pack a secondary storage system of removable ro-
tating memory.

dummy section a type of program section that provides
a means by which more than one subroutine may refer­
ence the same data (via an external definition used as
a label for the dummy section).

element fi Ie a user's fi Ie consisting of program elements,
such as relocatable object modules or library load
modules.

error severity level code a four-bit code indicating the
severity of errors noted by the processor. This code is
contained in the final byte of an object module.

external definition a load item that assigns a specific
value to the symbolic name associated with a particu­
lar external definition name number. An external de­
finition allows the specified symbolic name to be used
in external references (see below).

external reference a reference to a declared symbolic
name that is not defined within the object module in
which the reference occurs. An external reference
can be satisfied only if the referenced name is defined
by an e.xternal load item in another object module.

fi Ie extension a convention that is used when certain
system output DCBs are open.ed. Use of this convention
causes the fi Ie (on RAD, tape, disk pack, etc.) connected
to the DCB to be positioned to a point just following
the last record in the file. When additional output is
produced through the DCB, it is added to the previous
contents of the file, thereby extending the file.

fi Ie management routines monitor routines .that interpret
and perform I/O functions.

function parameter table (FPT) a table through which a
user's program communicates with a monitor function
(such as an I/O function).

ghost job a job that is neither a batch nor an on-
line program. It is initiated and logged on by the
monitor, the operator, or another job and consists
of a sing Ie job step. When the ghost program ex­
its, the ghost is logged off.

global symbol a symbolic name that is defined in one
program module and referenced in another.

GO file a temporary secondary storage file consisting
of relocatable object modules formed by a processor.

granule a block of disk sectors large enough to contain
512 words {a page, or 2048 bytes) of stored information.

job control language (JCL) a language consisting of
control commands that provide job specifications to
the mon i tor.

job information table (JIT) a table associated with each
active job. The table contains accounting, memory
mapping, swapping, terminal DCB (M:UC), and tem­
porary monitor information.

job step a subunit of job process.ing such as compila-
tion, assembly, loading, or eXlecution. Information
from certain commands (JOB, LIMIT, and ASSIGN)
and all temporary files created during a job step are
carried from one job step to thEl next but the steps are
otherwise independent.

key a data item that uniquely identifies a record.

key-in information entered by the operator via a
keyboard.

library load module a load module that may be com-
bined with relocatable object modules, or other li­
brary load modules, to form a new executable load
module.

linking loader a program that is capable of linking and
loading one or more relocatablo object modules and
load modules.

load information information (i. e., control informa-
tion, data, and instructions) generated by a processor
and contained in one or more modules capable of be­
ing linked to form an executable program.

load location counter a counter established and main-
tained by the monitor to contain the address of the
next location into which information is to be loaded.

load map a listing of loader output showing the loca-
tion or value of all global symbols entering into the
Joad. Also shown are symbols tlhat are not defined or
have multiple definitions.

load module (LM), an executable program formed by
the linking loader, using relocatable object modules
(ROMs) and/or load modules (LMs)as input information.

logical device a peripheral device that is represented
in a program by an operational label (i. e., BIor PO)
rather than by specific physical device name.

logical device stream an information stream that may
be used when performing input from or output to a sym­
biont device. At SYSGEN, up to 15 logical device
streams are defined. Each loglical device stream is
given a name (e.g., L1, P1, C1), each is assigned
to a defau It physical device, and each is given de­
fault attributes. The user may' perform I/o through
a logical device stream with the default physical de­
vice and attributes or· he may change the physical
device and/or attributes to satiisfy the requirements
of his job.

monitor a program that supervises the processing loading,
and execution of other programs.

object language the standard binary language in which
the output of a processor is expressed.

object module the series of records 'containing the load
information pertaining to a single program or sub­
program (i. e., from the beginning to the end). Ob­
ject modules serve as input to the Load processor or the
link processor.

operational label a symboli c name used to identify a
logical system device.

option an elective operand in a control command or
procedure call, or an elective parameter in a func ...
tion parameter table.

overlay loader a monitor routine that loads and I inks
elements of overlay programs.

overlay program a segmented program in which the ele-
ment (i .e., segment) currently being executed may
overlay the core storage area occupied by a previously
executed element.

parameter presence indicator a bit in word 1 of a func-
tion parameter table that indicates whether a parti­
cular parameter word is present in the remainder of
the table.

physi cal device a peripheral d'evice that is referred to
by a name specifying the device type, I/o channel,
and device number (also see "logical device").

postmortem dump a listing of the contents of a speci-
fied area of core memory, usually following the abor­
tive execution of a program.

program product a compiler or application program that
has been or will be released by Xerox. A program pro­
duct is not required by all users and is therefore made
available by Xerox on an optional basis. Program pro­
ducts are provided only to those users who execute a
License Agreement for each applicable installation.

protective mode a mode of tape protection in which only
ANS expired tapes may be written on through an ANS
DCB; no unexpired ANS tape may be written on through
a non-ANS DCB; all ANS tapes must be initialized by
the Lqbel processor; no tape serial number specification
is allowed at the operator's console; specification of an
output serial number in an ANS DCB forces processing
to be done only on a tape already having that serial
number; tapes mounted as IN may not be written; and
tapes mounted as other than IN must have a write ring.
(See "semiprotective mode II •)

pseudo fil'e name a symbolic name used to identify a
logical device in a user's program.

xi

public library a set of library routines declared during
system generation to be public (i.e., to be used in
common by all concurrent users).

rapid access data (RAD) storage system
age system of rotating memory.

a secondary stor-

reentrant an attribute of a program that allows the pro-
gram to be shared by several users concurrently. Shared
processors in CP-V are map reentrant. That is, each
instance of execution of the single copy of the pro­
gram's instructions has a separately mapped copy of
the execution data.

relative allocation allocation of virtual memory to a
user program starting with the first unallocated page
available.

relocatable object module (ROM) a program or sub-
program in object language generated by a processor
such as Meta-Symbol or FORrRA~.

relocating loader a program capable of loading one or
more object modules and linking them to form an
executable program.

remote processing an extension of the symbiont sys-
tem that provides flexible communication between
CP-V and a variety of remote terminals.

resident program a program t lat has been loaded into
a dedicated area of core n. :mory.

response time the time between the completion of ter-
minal input and the first r ogram activation.

scheduler a monitor routine that controls the initiation
and termination of all jobs, job steps, and time slice
quanta.

secondary storage any rapid-access storage medium
other than core memory (e. g., RAD storage).

segment loader a monitor routine that loads overlay
segments f~om disk storage at execution time.

semi-protective mode a mode of tape protection in which

xii

a warning is posted to the operator when an ANS DCB
attempts output on a non-ANS tape or an unexpired
ANS tape, when a non-ANS DCB attempts output on
an unexpired ANS tape, or when a tape mounted as
INOUr has no write ring. The operator can authorize
the overwriting of the tape or the override of INOUT
through a key-in (OVER and READ). ~ ANS tapes may
be initialized by the Label processor (,r may be given
labels as the result of an operator key-in; tape serial
number specification is allowed at the operator's con­
sole; and specification of an output seria I number in an
ANS DCB forces processing to be done only on a tape
already having that serial number unless the operator
authorizes an overw.rite. (See "protective mode".)

shared processor a program (e.g., FORTRAN) that is
shared by a II concu rrent users. Shared processors must
be establ ished at S YS GE N.

source language a language used to prepare a sourc
program suitable for processing by an assembler or
complier.

special shared processor a shared processor that may be
in core memory concurrently with the user's program
(e.g., Delta, TEL, or the FORTRAN library).

specific allocation al location of a specific page of
unallocated virtual memory to a user program.

SR 1, SR2, SR3, and SR4 see "system register", below.

star file a file created by the system containing tempo-
rary user context. The system may create up to five
star files for each batch job or on-line session. These
files are transparent to the user, are not cataloged in
the File Directory, and always cease to exist at the
end of the batch job or on-line session.

static core module a program module that is in core
memory but is not being executed.

symbiont a monitor routine that transfers information
between disk storage and a peripheral device indepen­
dent of and concurrent with job processing.

symbolic fnput input from the device to which the 51
(symbolic input) operational label is assigned.

symbolic name an identifi er that is associated with some
particu lar source program statement or item so that sym­
bol ic references may be made to it even though its
value may be subject to redefinition.

SYSGEN see IIsystem generation", below.

system generation (SYSGEN) the process of creating an
operating system that is tailored to the specific require­
ments of an installation. The major SYSGEN steps in­
clude: gathering the relevant programs, generating
specific monitor tables, loading monitor and system
processors, and writing a bootable system tape.

system library a group of standard routines in object-
language format, any of which may be incorporated
in a program being formed.

system register a reigster used by the monitor to com-
municate information that may be of use to the user
program (e.g., error codes). System registers SR 1,
SR2, SR3, and SR4 are current general registers 8, 9,
10, and 11, respectively.

task control block (TCB) a table of program control
information bui It by the loader when a load module
is formed. The TCB is part of the load module and
c~ntains the data required to allow reentry of library

rountines during program execution or to allow entry
to the program incases of traps I breaks, etc. The
TCB is job-step assiciated.

TEXT format an EBCDIC character string that begins and
ends at word boundaries. The character string is left­
justified in the field and is padded with trailing blanks.

TEXTC format a character string preceded by a byte that
contains the number of characters in the character
string. (The count byte does not include itself in the
count.) For many CP-V functions, the character string
need not consist of printabl e characters.

TSS temp stack a push-down stack establ ished by the
monitor for use by an executing program (unless NOTCB
was specified for the load modul e.)

unsatisfied reference a symbol ic name that has been
referenced but not defined.

user-identification banner an identifying prescript and/or
postscript for output through a logical device stream.
Line printer and card punch device streams are given user­
identification banners; other device streams are not. A
punch stream receives a one-card prescript. A printer
stream receives a one-page prescript and, provided that
it has not been given a FORM name, a one-page post­
script. A prescript card and each I ine of a prescript
page contains the user's account number and name.

xiii

maintains complete control over the job stack on secondary
storage. Jobs can be suspended or initiated on a priority

. basis.

Rapid access data (RAD) and disk pack (DP) storage devices
are used for secondary storage. Secondary storage manage­
ment is essential to efficient operation of the monitor, since
such storage is fully exploited in various ways. It is used
for system storage to overlay portions of the monitor, min­
imizing core memory residency. Service processors (com-
pi lers, assemblers, etc.) are contained on secondary storage
for immediate access and they, too, capitalize on rapid
overlay techniques to minimize core memory requirements
at execution time. Scratch storage for service processors
and user programs is available on secondary storage. Finally,
the secondary storage accommodates permanent and tempo­
~ary user fi I es.

User files may be stored on public RAD or disk packs or on
private disk packs or magnetic tape. Three file structures
are available: random (direct), consecutive, and key­
indexed (indexed-sequential). Access may be either di­
rect (keyed) or sequential. Programs coded to access the
simpler consecutive fi les may correctly access the more
complex keyed files sequentially without program change.
Fi I es are protected from unauthori zed use by passwords and
byexplicit lists of users authorized to read or to update them.

User programs can avai I themselves of the secondary stor­
age and the overlay servi ce of the monitor, With these
faci lities, user programs that require more operating core
memory storage than is physicall,' Nai lable can be easi Iy
segmented and controlled so thClt unly part occupies avail­
able core memory at anyone time The monitor accepts
the overlay stp 'dur~ of the user's program and ensures
proper sequencing and transfer .1g of program elements.
It also detects inconsistencies in the logical overlay struc­
ture and log .. them as a diagnosti c message to the user.

The monitor provides for complete accounting of user,
job activity on the computer. Because of the system's
multiusage capabi lity, the accounting information indi­
cates both elapsed time and actual machine faci lity uti li­
zation of each job.

The monitor provides job accounting and validation of
each user's job activity:

• Validity or authorization checks are made on the user's
name and account number combination. Jobs are
aborted where the name and account number are not
previously validated by the installation manager.

• A discrete accounting record is written at the termina­
ti on of each batch job.

• Standard accounting can be supplemented by the user
supplying initiation and termination routi~es for a job.

The monitor's loader function relocates user programs into
the currently avai lable core memory space, satisfies all
library subroutine references, and links all program ele­
ments called for by the user. In addition, run-time debug­
ging calls are recognized and established for the binary
programs.

2 Phi losophy of Operation

The full multiuse capabi I ity of the monitor provides for five
concurrent modes of operation:

1. Batch processing.

2. Interactive time-shared processing.

3. Remote process i ng •

4. Real-time processing.

5. Transaction processing.

BATCH PROCESSING

Batch jobs may be submi tted to the batch job stream through
the central site card reader, through an on-I ine terminal
(using the Batch processor), or through remote processing.
Batch processing faci I ities are described in this document.

TI ME-SHARED PROCESSING

CP-V allows multiple on-line terminal users to concurrently
create, debug, and execute programs. Although some faci li­
ties and processors are reserved for on-I ine use and others
for batch use, the two classes of service are complementary.
Generally speakin'g, anything that can be done in batch
mode can be done on-line, although sometimes in a cur­
tailed manner. In particular, compilers and assemblers are
compatible across the two classes of service at source and
relocatable" levels. For example,

1. Processors for Extended FORTRAN IV, ANS COBOL,
and Meta-Symbol are available both in batch and on­
line mode.

2. Programs compi led or assembled in batch can be linked
with those produced on-line and can be run and de­
bugged on-I i ne.

3. Programs compiled or assembled on-line can be linked
and run in batch mode.

(Reference: CP-V/TS Reference Manual, 900907.)

REMOTE PROCESSING

The remote processing system is an extension of the CP-V
symbiont system. Its purpose is to provide for very flexible
communication between CP-V and a variety of remote ter­
minals. These terminals can range from a simple card reader
and line pr inter combi nati on to another computer system
with a wide variety of peripheral devices. Any CP-V user
(batch, on-line, or ghost) can communicate with any number
of devices at one or several remote sites. (Reference:
CP-V/RP Reference Manual, 903026.)

I
REAL-TIME PROCESSING

The real-time services provided by CP-V allow users to
connect interrupts to mapped programs, control the state of
interrupts (e. g., trigger, arm/disarm, enable/disable),
clear interrupts either at the time of occurrence or upon
completion of processing, and disconnect interrupts no

longer required. Users may also request that a mapped
program.be held in core in order to reduce the time required
to respond to an external event (via an interrupt) or to
allow various forms of special I/o to occur. Programs may
be connected to one of the monitor's clocks such that after
a specified period of time, a specified routine is entered.
In addition, dedicated foreground memory may be used as
inter-program communication buffers or as dedicated memory
for unmapped, master mode programs which may be directly
connected to external interrupts or real-time clocks.
(Reference: Cp-V/Sp Reference Manual, 9031 13.)

TRANSACTION PROCE:SSING

The transaction processing feature of CP-V is an efficient
and economical approach to centralized information pro­
cessing and is a generalized package that is designed to
meet the requirements ofa variety of business applications.
Transaction processing faci I ities provide an environment ih
which several users at remote terminals may enter business
transactions, simultaneously utilizing a common data base.

Basic Control
Scheduling and Swapping
Memory Management
Jab Step Control
Terminal I/O

Monitor

Symbionts and Cooperatives
File Management

I I I
Command· System languoge Executio"
Processors Manogement Processors Control

Processors Processors

The transactions are processed immediately, as they are
received, by appl ication programs written especia Ily for
the particular installation. (Reference: C P-V /TP Refer­
ence Manual, 90 31 12.)

PROCESSORS
The CP-V system is illustrated in Figure 2 at two levels.
The upper level represents the monitor and its various rou­
tines. The lower level lists the various processors. These
processors are described in the fo IIowi ng paragraphs.

COMMAND' PROCESSORS

The four processors in this group are: LOGON/LOGOFF,
EASY, TEL, and CCI. The first of these processors is avail­
able to on-line and batch users, the second and third are
available to on-line users only, and the last is available
to batch users on I y.

System Integrity
Initialization and St9rt-Up
Operator Communication
Batch Debugging
System Debugging
Lood and Link
Public and System Libraries

I I I
Service Application User Processors
Processors Processors

(OBG)
LOGON/ ANS FORTRAN (OB) ----- Edit (OG) Sort/Merge (B)

LOGOFF (OB) Super (OBG) FORTRAN IV (OB) Link (OB) PCL (OB) EDMS (B)t
TEL (0) Control (OBG) Meta-Symbol (OB) Load (B) LEMUR (OB) GPDS (B)t
EASY (0) Rates (0) AP (OB) LYNX (OB) SYSGEN (OB) CIRC (OB)t
CCI (B) FILL (OG) BASIC (OB) Delta (0) DEFCOM (OB) Manage (OB)t

FSAVE (OB) FLAG (OB) FOP (OB) SYMCON (OB) Transaction Pro-
FRES (OB)

ANS COBOL (OB)
COBOL ANLZ (OBG) cessing (OB)

Fix (OBG)
APL (OB)

On-Line Batch (OBG)
RPG (B)

VOLIN IT (OBG5) SL-l (OB)+ Debugger (0) DRSP (OB)

Label (B) ELLA (OBG)

STATS (OBG) Show (OB)

Summary (OB)
SYSCON (OG)
GAC(OBG)
DEVDMP (S)
ONLIST (OBG)
PPS (G)

Note: 0 on-line

botch

G ghost

stand-alone

t
Prog~am product (see glossary),

Figure 2. CP-V Operating System

Processors 3

LOGON/LOGOFF

LOGON admits on-line users to the system. LOGOFF
disconnects a user (on-line or batch) from the system and
does the final cleanup and accounting.

EASY

EASY is a shared processor that enables the user to 'create, .
edit, execute, and delete program files written in BASIC or
FORTRAN. EASY also al lows the user to create and manip­
ulate EBCDIC data fi les. Although intended primari Iy for
Teletype operations, EASY can be used with any type of
on-I i ne termi na I supported by C P-V • (Reference: EASY /
LN, OPS Reference Manual, 90 18 73.)

TERMINAL EXECUTIVE LANGUAGE

TEL is the defaul t command processor for time-sharing and
serves as the terminal user's interface to the various services
of CP-V. TEL is functionally equivalent to the batch mode
Control Command Interpreter. Some of the functions per­
formed by TEL are:'

1. Ca"ing user programs and system processors.

2. Changing the log-on password.

3. Assigning I/O de'vices and DLB parameters.

4. Requesting -xte"'ded memory mode.

5. Determining on-line user status.

6. Changing terminal platen size.

7. Sending messages to the operator.

8. Logging off.

(Reference: CP-V/TS Reference Iv\anual, 900907.) -

CONTROL COMMAND INTERPRETER

The Control Command Interpreter is the batch counterpart
of TEL. It provides the batch user with control over the
processing of batch programs just as TEL provides on-line
users with control over the processing of on-line programs.

LANGUAGE PROCESSORS

Language processors translate high-level source code into
machine object code. Nine processors of special importance
are described below. Eightof these (Extended FORTRAN IV,
Meta-Symbol, BASIC, FLAG, ANS COBOL, APL, Manage,
and SL-l) can be used in both on-line and batch modes.
The other one (RPG) can be used in batch mode only.

4 Processors

ANS FORTRAN

The ANS FORTRAN compi ler is compatible with most
features of the forthcomong (new) American National
Standard Institute FORTRAN language, which includes
many extensions to the 1966 ANS FORTRAN Standard
Language. It is operable under CP-V as a shared
processor, offering services to both the batch user and
the on-line user. The user may request, as an option,
that the compiler produce either ROM
output or program execution (LOAD and GO)

Advantageous features of the ANS FORTRAN compiler are:

• Compiler speed on the order of2K-3K lines per minute.

• Compressed input/output capabil ity.

• Addition of INCLUDE (system) capabil ity.

• Conversational characteristics for time-sharing_

• New ANS FORTRAN compatibility:

CHARACTER variables

Expanded READ/WRITE capabilities

OPE Nand CL OSE statements

(Reference: ANS FORTRAN;\.N Reference Iv\anual,
9032 00, aod the ANS FORTRAN/OPS Reference
Iv\anual, 90 32 01.)

XEROX EXTENDED FORTRAN IX'

The Xerox Extended FORTRAN IV language processor consists
of a comprehensive algebraic programming language, a
compiler, and a large library of subroutines. The lan­
guage is a superset of most avai lable FORTRAN languages,
conta i n i ng many extended language features to fac iii tate
program development and checkout. The compi lar is ~e­
signed to produce very efficient object code, thus reducing
execution time and core requirements, and to generate ex­
tensive diagnostics to reduce debugging time. The library
contains over 235 subprograms and is avai lable in a reen-

. trant version. Both the compiler and run-time library are
reentrant programs that are shared among all concurrent
users to reduce the utilization of critical core resources •.
(Reference: Extended FORTRAN IV/LN Reference Man­
ual, 90 09 56, and Extended FORTRAN IV/OPS Reference
Manual, 90 11 43.)

META-SYMBOL

Meta-Symbol is a procedure-oriented macro assembler. It
. has services that are avai lable only in sophisticated macro

assemblers and a number of spec ia I features des igned to per-
. mit the user to exercise dynamic control over the parametric
'environment of assembly. It provides users with a highly
flexible language with which to make full use of the avail­
able Xerpx560and Sigmahcirdwar~ c~Pabilities. (Reference:
M~ta-Symbol/LN,OPS Reference Manual, 9009 52.)

AP

Assembl y Program (AP) is'O four-phclse assembler that reads
source language programs and converts them to object
language programs. AP outputs the obiec~ language pro­
gram, an assembly I isting, and ,a cross reference (or con­
cordance) listing. AP is available in both the on-line and
batch modes.

The following I ist summarizes AP's more important features
for the programmer:

• Self-defining constants that facilitate use of hexa­
decimal, decimal, octal, floating-point, scaled fixed­
point, and text string val ues.

• The facil ity for writing large programs in segments
or modules., The assembler will provide information
necessary for the loader to c()mplete the I inkage be­
tween modules when they are loaded into memory.

• The label, command, and argument fields may contain
both arithmetic and logical expressions, using constant
or variable quantities.

• Full use of I ists and subscripted elements is provided.

• The DO, DOl, and GOTO directives allow selective
generation of areas of code, with parametric constants
or expressions evaluated at assombly time.

• Command procedures allow the capability of generating
many units of code for a given procedure call line.

• Function procedures return val lies to the procedure call
line. They also provide the cClpability of generating
many units of code for a given procedure call line.

., Individual parameters on a procedure call line can be
tested both arithmetically and iogically.

• Procedures may call other procedures, and may call
procedures recursively.

(Reference: Xerox Assembl y Prog"] m/Reference Man­
ua�, 9030 OO.)

BASIC

BASIC is a compi ler and programming language based on
Dartmouth BASIC. It is, by design, easy to teach, learn,
and use. It allows individuals with little or no programming
experience to create, debug, and execute programs via an
on-line terminal. Such programs are usually small to me­
dium size applications of a computational nature.

BASIC is designed primari Iy for on-line program develop­
ment and execution, or on-line development and batch
execution. In addition, programs may be developed and
executed in batch mode. (Reference: BASIC/LN,OPS
Reference Manual, 90 15 46.)

FLAG

FLAG (FORTRAN Load and Go) is an in-core FORTRAN
compi ler that is compatible with the FORTRAN IV-H class
of compilers. It can be used in preference to the other
FORTRAN compi lers when users are in the debugging phase
of program development. FLAG is a one-pass compi ler and
uses the Extended FORTRAN IV library. Inc I uded in the
basic external functions are the Boolean functions lAND
(AND), IEOR {exclusive OR}, and lOR (OR), which give
the FORTRAN user a bit manipulation capabi I ity.

If several FLAG jobs are to be run sequentially, they may
be run in a sub-job mode, thus saving processing time nor­
mally needed for the Control Command Interpreter (CC I) to
interpret the associated control cards. In this mode, FLAG
wi II successively compi Ie and execute any number of sepa­
rate programs, thereby reducing monitor overhead.

The FLAG debug mode is a user-selected option that gen­
erates extra instructions in the compiled program to enable
the user, during program execution, to detect errors in pro­
gram logic that might otherwise go undetected or cause un­
explainable program failure. (Reference: FLAG/Reference
Manual, 90 16 54.)

ANS COBOL

The Xerox ANS COBOL compi ler offers the user a powerful
and convenient programming language facility for the im­
plementation of business or commercial applicati,ons. The
language specifications fully conform to the ANSI standard
for the various functional processing modules. The com­
pi ler's design takes full advantage of the Xerox 560 and
Sigma unique hardware features, resulting in rapid compi­
lation of source code, rapid execution of the resulting ob­
ject code, and the generation of compact programs. The
result is a highly efficient programming system requiring
a minimum amount of storage. (Reference: ANS COBOL/
LN Reference Manual, 90 15 00.)

RPG

Xerox RPG (Report Program Generator) is a convenient
means of preparing reports from information available in
computer-readable forms, such as punched cards, magnetic
tape, and magnetic disks. In addition, it is a means of
establishing and updating files of information, usually in
conjunction with preparation of reports.

RPG provides its capabilities through generation (compila­
tion) of object programs, each of which is tailored to
produce' a different set of reporting results and/or file
processing desired by the user. The RPG object programs
are capable of accepting input data, retrieving data from
existing fi les, performing calculations, changing formats of
data, updating existing fi les, creating new files, comparing
data values to one another and to specified constants to de­
termine appropriate handling, using user-defined processing
subroutines, using system library subroutines, and printing
reports derived from the input and file data.

Processors 5

Xerox RPG has several advantages over the more traditional
methodofwritingobjectprograms in a symbolic programming
language. The RPG language is oriented toward the user's
problem, describing reporting requirements, rather than
toward the mechanics and manipulations of computer usage.
The language and specification techniques are easily .
learned. A user can become proficient in RPG after writ­
ing only a few programs, whereas an equal facility in
symbolic programming would require considerable experi­
ence. (Reference: RPG/Reference Manual, 90 19 99.)

APL

Xerox APL (A Programming Language) is a processor and
programming language based on Kenneth Iverson's APL. It

. is an interpretive, time-sharing, problem-solving language.
As an i nterpreti ve language, A PL interprets each line of
input as it is entered and produces code that is immediately
executed. As a problem-solving language, APL requires
minimal computer programming knowledge.

Because APL is powerful, concise, easy to learn, and easy
to use, it is widely used by universities, engineers, statis­
ticians, and businessmen. One of APL's major strengths is
its ability to manipulate vectors and multidimensional
arrays as easily as it does scalar values.

Xerox APL has been designed to be compatible with
competitive APL systems. In addition, it ha;, many salient
features not generally found in other APL systems. Some of
these features are: both on-line ar batch operation, oper­
ation from terminals w:thout APL ,;haracters, fast for­
matted output, fi Ie input/output, ompound statements,
unequally spacer! tab settings, and so on. (Reference:
APL/LN, OPS Reference Manual, ;0 1931.)

SIMULA TIO". LANGUAGE (PROGRAM PRODUCT)

The Simulation Language (SL-1) is a simpl Hied, problem­
oriented digital programming language designed specifi­
cally for digital or hybrid simulation. SL-1 is a superset
of CSSL (Continuous System Simulation Language), the stan­
dard language specified by Simulation Councils, Inc., for
simulation of continuous systems. It exceeds the capa­
bilities of CSSL and other existing simulation languages by
providing hybrid and real-time features, interactive de­
bugging features, and a powerful set of conditional trans­
lation features.

SL-1 is primarily useful in solving differential equations, a
fundamental procedure in the simulation of parallel, con­
tinuous systems. To perform this function, SL-l includes
six integration methods and the control logic for their use.
In hybrid operations, SL-1 automatically synchronizes the
problem solution to real-time and provides for hybrid input
and output.

Because of the versatility of Xerox 560 and Sigma comput­
ing systems and the broad applicability of digital and hy­
brid simulation techniques, applications for SL-1 exist ac­
ross the real-time spectrum. The library concept of SL-1
allows the user to expand upon the Xerox supplied macro
set and facilitates the development of macro libraries
oriented to any desired application. (Reference: SL-1/
Reference Manual, 90 1676.)

6 Processors

EXEcunON CONTROL PROCESSORS

Processors in this group control the execution of object pro­
grams. Load can be used in batch mode only. Link and FDP
can be used in either batch or on-line mode. Delta and
the COBOL On-Line Debugger can only be used in the
on-line mode.

LINK

Link is a one-pass linking loader that constructs a single
entity called a load module, which is an executable pro­
gram formed from relocatable object modules (ROMs). Link
is designed to make full use of mapping hardware. It is not
an overlay loader. If the need for an overlay loader exists,
the overlay loader (Load) must be called byentering the job
in the batch stream. (Reference: C P- V /TS Reference Man­
ual, 90 09 07, and Chapter 6 of this manual.)

LOAD

Load is a two-pass overlay loader. The first pass processes

1. All ,relocatable object modules (ROMs).

2. Protection types and sizes for control and dummy sec­
tions of the ROMs.

3. Expressions for definitions and references (primary,
secondary, and forward references).

The second pass forms the actual core image and its reloca­
tion dictionary. (Reference: Chapter 6.)

LYNX

LYNX is a load processor that is available in both the on­
line and batch modes. LYNX has most of the capabilities
of the Load loader and also provides the same control over
internal and global symbol table construction which is avail­
able in the Link loader. LYNX may be viewed as a pre­
processor for the Load loader. After it analyzes the user's
commands, it constructs a table of loader control information
which it then passes to the Load loader. It is the Load
loader which actually performs the loading processor. (Ref­
erence: Chapter 6.)

DELTA

Delta is designed to aid in the on-line debugging of pro-·
grams at the assembly-language or machine-language levels.
It operates on object programs and tables of internal and
global symbols used by the programs but does not require
that the tables be at hand. With or without the sym­
bol tables, Delta recognizes computer instruction mnemonic
codes and ·can assemble machine-language programs on an
instruction-by-instruction basis. (Reference: CP-V/TS Ref­
erence Manua I, 90 09 07.)

FORTRAN DEBUG PACKAGE

The FORTRAN Debug Package (FDP) is made up of special
library routines that are called by Xerox Extended FOR­
TRAN IV object programs compiled in the debug mode.
These routines interactwith the program to detect, diagnose,
and in many cases, repair program errors.

The debugger can be used in batch clnd on-line modes. An
- extensive set of debugging commands is avai lable in both

cases. In batch operation, the debugging commands are
included in the source input and are used by the debugger
during execution of the program. In on-line operations,
the debugging commands are entered through the terminal
keyboard when requested by the debugger. Such requests
are made when execution starts, stops, or .restarts. The de­
bugger normally has control of such stops. (Reference: FDPI
Reference Manual, 90 1677.)

COBOL ON-LINE DEBUGGER

The COBOL On-Line Debugger is designed to be used with
Xerox ANS COBOL. The debugger is a special COBOL
run-time library routine that is called by programs compi led
in the TEST mode. This routine allows the programmer to
monitor and control both the execution of the program and
the contents of data items during on-line execution. The
debugger also allows the COBOL s()urce program to be ex­
amined and modified.

The debugger can only be used during on-line execution;
however, programs that have been compi led for use with the
debugger may be run in the batch mode. This is not recom­
mended, though, because of the increased program size
when the TEST mode is specified. (Reference: ANS COBOLI
On-Line Debugger Reference Manual, 90 3060.)

I

SERVICE PROCESSORS

The processors in this group perform :such functions as editing
and transferring data between RAD storage 'and central site
peripheral devices. Four of the processors (SYSGEN,
ANLZ, DRSP, and ELLA) are for sY$tem management or sys­
tem programming use only and are not described in the fol­
lowing paragraphs.

EDIT

The Edit processor is a I ine-at-a-tirne context editor de­
signed for on-line creation, modification, and handling
of programs and other bodies of information. All Edit
data is stored on disk storage in CI keyed file structure
of sequence numbered, variable I(~ngth records. This
structure permits Edit to directly (lccess each I ine or rec­
ord of data. (Reference: C P-V ITS Reference Manua I,
90 09 07.)

PERIPHERAL CONVERSION LANGUAGE

The Peripheral Conversion Language (PCL) is a utility
processor designed for operation in a batch or on-line en­
vironment. It provi des for i nforma'~i on movement among
card devices, line printers, on-line terminals, magnetic
tape devices, disk pack, and RAD storage.

peL is controlled by single-line commands supplied through
on-I ine terminal input or through command card input in the
job stream. The command language provides for single or
multiple fi Ie transfers with options for selecting, sequenc­
ing, formatting, and converting data records. Additional
fi Ie maintenance and uti lity commands are provided. '(Ref­
erence: Chapter 9.)

LEMUR

LEMUR (Library Editor and Maintenance Util ity Routine)
is a processor that builds and manipulates ROM and load
module libraries. The libraries thus built are accessed by
LYNX or Load when constructing user load modules which

. require library routines. LEMUR is available in both on-
I ine and batch modes. (Reference: Chapter 6 and CP-V ITS
Reference Manual, 90 09 07.)

DEFCOM

DEFCOM makes the DEFs and their associated values in one
load module available to another load module. It accom­
plishes this by using a load module as input and by pro­
ducing another load module that contains only the DEFs and
DEF values from the input module. The resultant load mod- ,
ule of DEFs can then be combined with other load mod­
ules. DEFCOM is used extensively in constructing the
CP-V monitor and the shared run-time libraries. (Ref­
erence: Chapter 9.)

SYMCON

The Symbol Control Processor (SYMCON) provides a means
of controlling external symbols in a load module and of
building a global symbol table. Its .primary function is to
gi ve the programmer a means of preventi ng doubl e defi n i­
tions of external symbols. It may also be used to reduce
the number 6f external symbols. For example, if certain
load modules cannot be combined because their control
tables are too large, the tables may be reduced in size by
deleting all but essential exter~al symbols. (Reference:
Chapter 9.)

BATCH

The Batch processor is used to submit a fi Ie or a series
of fi les to the batch queue for execution. Through
Batch processor commands, the following capabilities are
available:

1. A file may be inserted into a file being submitted for
execution, thus bringing together more than one file
to create a single job.

2. Selected strings and fields existing in files being sub~
mitted for execution may be replaced by new strings
and fields.

3. The results of string and field replacements can be
examined before the 'job is submitted to the batch
stream.

4. Files to be submitted for execution may reside on tape
or on private disk pack.

5. Jobs may be submitted to run in an account other than
the account from which the job is submitted.

The Batch processor may be called in either the on-I ine or
batch mode. (Reference: Chapter 9.)

Proc essors 7

SHOW

- The Show processor allows the user to display his current
maximum system services and resources, the peripheral de­
vices that he has been authorized to use, and several other
system user para meters. (Reference: Chapter 9.)

APPLICATION PROCESSORS

The processors in this group perform such functions as sort­
ing, simulation, and data management. They all operate
in the batch mode only.

SORT/MERGE

The Xerox Sort/Merge processor provides the user with a
fast, highly efficient method of sequencing a nonordered
fi Ie. Sort may be called as a subroutine from within a user's
program or as a batch processing job by control cards. It
is designed to operate efficiently in a minimum hardware
environment. Sorting can take place on from one to sixteen
keys and each individual key field may be sorted in ascend­
ing or descending sequence. The sorting technique used is
that of replacement selection tournamen! -Jnd offers the user
the flexibility of changing the blocking and logical record
lengths in' explicitly structure'-' fi les to different values
in the output file. (Referent!: Sort-Merge/Reference
Manual, 90 11 99.)

GPDS (PROGRAM PRODUCT)

The General Purpo$e Discrete Simulator provides engineers
and administrators, whose programming experience is min­
imal, with a system for experimenting with and evaluating
system methods, processes, and designs. Providing a means
for developing a broad range of simulation models, it allows
organizing, modeling, and analyzing the structure of a sys­
tem, observing the flow of traffic, etc. (Reference: GPDS/
Reference Manual, 90 1758.)

EDMS (PROGRAM PRODUCT)

EDMS is a genera I i zed data management system that enabl es
the user to create an integrated data base. It is designed to
be used with COBOL, FORTRAN, and Meta-Symbol proces­
sors. It simpl ifies programming by performing most of the I/O
logic and data base management for'the appl ication program­
mer. (Reference: EDMS/Reference Manual, 90 30 12.)

MANAGE (PROGRAM PRODUCT)

Manage is a general i:z;ed file management system. It
is designed to allow decision makers to make use of the

8 Processors

computer to generate and update files, retrieve useful
d«;lta, and generate reports without having a knowledge
of programming.

Manage consists of four subprograms: Dictionary, Fileup,
Retrieve, and Report. The Dictionary subprogram is a data
file and is the central control element in the Manage sys­
tem. It consists of definitions and control and formatting
parameters. that precisely describe the characteristics of a
data file. The Fileup subprogram initially creates and then
maintains a data file. The Retrieve subprogram extracts data
from a data base file according to user-specified criteria.
The Report subprogram automatically prepares printed reports
from data extracted by the Manage retrieval program. (Ref­
erence: Manage/Reference Manual, 90 16 10.)

TRANSACTION PROCESSING

Transaction Processing is designed for applications that re­
quire the entry and processing of on-I ine transactions. It
is a collection of general-purpose components and support­
ing monitor services available under the CP-V operating
system. Transaction Processing (TP) enables business to move
from cyclic batch processing to remote on-line operations,
where transactions are entered directly from their point of
origin. The Xerox system consists of

• The CP-V monitor and standard processors such as
COBOL, Meta-Symbol, and FORTRAN.

• Terminal Interface Controller.

• Util i ty processors tho t crea te fi I es for externa I system
control.

• Transaction Processing Controller.

• Extended Data Management System (EDMS).

(Reference: CP-V/TP Reference Manual, 9031 12.)

CIRC .(PROGRAM PRODUCT)

CIRC is a set of three computer programs for electronic
circuit analysis on Xerox 560 and Sigma 5-9 computers:
CIRC-DC for dc circuit analysis, CIRC-AC for ac circuit
analysis, and CIRC-TR for transient circuit analysis. The

. programs are designed for use by a circuit engineer at the
installation, and require I ittle or no knowledge of program­
ming 'for execution.

eIRC can be executed in any of three modes of operation:
conversational (on-line) mode, terminal batch entry mode,
and batch processing mode. The system manager wi" de­
termine which of these modes are avai lable to the engineer,
based on type of computer instal/aHon and other install­
ation decisions.

• The on-line mode offers several advantages since it
provides true conversational interaction between the
user and computer. Following C IRC start-up procedures,
C IRC requests a control message from the user. After
the control message is input (e.g., iterate a cycle of
calculations with changed parameters) the computer
responds (via CIRe) with detailed request for applica­
tion data. These requests are sufficiently detailed to
virtually eliminate misunderstandings by the engineer.
This mode is highly useful in a highly interactive envi­
ronment that produces a low volume of output and re­
quires limited CPU time.

• The terminal batch entry mode aliows efficient hand­
ling of high volume output and Iclrge CPU time require­
ments whi Ie preserving the advantages of the terminal
as an input device. Two fi les am required: one con­
taining all CIRC input including a circuit description
and control messages, and the other directing the ex­
ecution of C IRC. The job is entered from the term i na I
into the batch queue and treated like a batch job.

• The batch mode should genera IIy be used for jobs in­
volving large volumes of computations and outputs. It
enables the user to concentrate em data preparation
with virtually no involvement in programming consid­
erations. The system manager can provide a set of
start-up cards that never change, and these wi II con­
stitute the entire interface between user and executive
software. However, the batch mode offers less flexi­
bility in experimenting with a cirt:uit and slower turn­
around time in obtaining answers.

(Reference: CIRC-AC/Reference Manual and User's Guide,
90 16 98, CIRC-DC/Reference Manual and User's Guide,
90 16 97, and C IRC- TR/Reference Manual and User's
Guide, 90 17 86.)

USER PROCESSORS

Users may write their own processors and add them to CP-V
or replace CP-V processors. The rules governing the crea­
tion and modification of processors are described in the
CP-V/SP Reference Manual, 9031 13.

MONITOR
The monitor responds to the moment-by-moment require­
ments of controlling machine operation, switching between
programs requiring service, and providing services at the
explicit request of the user's program. The monitor pro­
cesses that perform these functions are I isted below:

1. Basic Control.

2. Scheduling and Swapping.

3. Memory Management.

4. File Management.

5. Multibatch Job Scheduling.

6. Job Step Control.

7. Terminal I/O Handling.

8. Symbionts and Cooperatives.

9. System Integrity.

10. Initialization and Start-Up.

11. Operator Communications.

12. Batch Debuggi ng.

13. Load-and-Link.

14. System Debugging.

The basic control system is an I/o interrupt service and
handling routine. It includes trap and interrupt handlers,
routines that place requests for I/O in a queue, and basic
device I/O handling routines.

The scheduling and swapping module makes the decision to
swap, selects the users to swap in and out, sets up the I/O
command chains for swap transfers, and selects the next
user(s} for execution. Italso ensures that any associated, but
not currently resident, shared processors are brought in with
each user. Specia I a Igorithms control I/O schedul i ng and
the balance of machine use between on-line and batch.

The memory management module controls the use of core
and disk storage. Specifically, it controls the allocation
of physical core memory, maintains the map and access

. images for each user, services the "get" and "free" service
calls for memory pages, and manages the swapping disk
space.

Monitor 9

File management routines control the content and access to
physical files of information. These routines perform such
functions as indexing, blocking and deblocking, managing
of pools of granules on RADs and disk packs, labeling, label
checking and positioning of magnetic tape, formatting for
printer and card equipment, and controlling access to and
simultaneous use of a hierarchy of fi les.

!~~~Iti-b~tch job scheduling routines select jobs to be
run from the waiting input queue depending on priority, po­
sition in queue, and r3sources available within partitions
defined by the installation.

Job ~ control routines are entered between major seg­
ments of a job or an on-line session. They perform the
monitor functions required between job steps such as

1. Processing error, exit, and abort CALs.

2. Handling monitor aborts.

3. Processing interpretive exits to associate shared pro­
cessors or to load program modules.

4. Merging DCB assignments for execution.

Terminal I/O handling routines pe orm read-writ~ buffering
and external interrupt handling for T/O directed to user ter­
minals. These routin ~s also translate character codes, insert
page headers onel VFc. control chr .Jcters, simulate tabs,
and perform other formatting tasks.

Symbiont routines transfer data from the card reader to disk
storage and from disk storage to the card punch or line prin­
ter. Input cooperati ves intercept card read commands in
user programs and transfer data from disk storage where it
has been stored by the symb iont routi nes. Output cooper­
ative routines intercept output directed from a user program
to a I ine printer or card punch and transfer the data to disk
storage.

System integrity faci lities provide error detection and re­
covery capabilities. This includes security to user files
and automatic high-speed restart in case of system failure.
Sufficient information is recorded to isolate errors and
fai lures caused by hardware or software.

Initialization and start-uE-routines are stored on tape
and are booted into core storage. After they are in core,
they load the monitor root into core and turn control
over to the root. The monitor root then completes the
initialization of the monitor by starting and running the
program called GHOSTl which completes the patching
of the system and the initialization of the swapping disk
and hardware.

10 System Commands

Operator communication routines provide for communica­
tion between the monitor and the operator. They transmit
messages to the operator and process key-ins received
from the operator.

Batch debugging routines provide batch programs with de­
bugging capability through the use of procedure calls.
Any batch program may take a snapshot dump of a specified
segment of memory, either on an unconditional or a con­
ditional basis.

System debugging routines provide debugging services to
system programmers.

Load-and-link routines give batch programs three types of
loading and linking capability. Through the use of proce­
dure ca II s, a ba tch program may:

1. Load an overlay segment into core storage.

2. Store the calling program on disk storage, load the
called program into core storage, and transfer control
to the ca II ed program.

3. Load a program into core storage, transfer control to
the called program, and release the core area used
by the calling program.

CP-V has two FORTRAN libraries.< One is a public library
and the other is a system library. In the standard release of
CP-V, the public library contains two sets of programs. One
set (Pl) contains a useful set of Extended FORTRAN IV run­
time I ibrary routines, the other set (PO) contains Pl and the
FORTRAN Debug package. These two libraries are so con­
structed that a single copy is shared among all concurrent
users. The system library contains a collection of routines
that are less frequently used than the publ ic I ibrary rou­
tines. They are in I ibrary load module form and are loaded
only with programs that reference them.

SYSTEM COMMANDS

Control Command Definitions

Control
Command

ASSIGN

INCL

Definition

Relates an operational label or a pseudo file
name to a device. A pseudo file name may be
assigned to an operational label.

Directs the overlay loader to allocate public
I ibrary routines in a segment.

Control
Command

JOB

LDEV

LIMIT

LINK

LOAD

MESSAGE

OLAY

OVERLAY

POOL

processor
name

PTREE

RUN

SET

STEP

Definition

Signals the completion of a previous job
and the beginning of a new one. All jobs
must have a JOB control command.

Attaches an information stream to a phys­
ical device (ident'ified by a logical device
stream name) and defines attributes of the
physical device.

Estimates the system job parameters (i .e.,
number of pages of output, number of
cards to be output,. time job is to run,
etc.) for the job.

Directs the Link loader to form a reloca­
table load module and enters it in the
user's element file if a load module name
is specifi ed.

Directs the Load loader to form a reloca­
table load module and enters it in the
user's element file if a load module name
is specified.

Causes the speci fi E!d message to be typed
to the operator at 'the time that it is en­
countered by the system.

Equivalent to LOA.D control command.

Equivalent to LOA.D control command.

Tells the monitor the number of core pages
to be allocated for buffers and tables as­
sociated with I/O operations.

Tells the monitor which processor is to op­
erate and what options the processor is
to execute.

Tells the monitor that a tree control com­
mand is to be read from the user's fi Ie.

Tells the monitor to transfer control to
the user's program"

Performs the same function as the
ASSIGN control command.

Provides conditional execution of job
steps.

Control
Command

TITLE

TREE

XEQ

Debug
Control

AND

COUNT

IF

MODIFY,

OR

PMD

PMDE

PMDI

Definition

Causes the specified-title to be output at
the beginning of each logical page of out­
put on the LO device.

Specifies the symbolic representation of
the overlay structure.

Initiates processing of control com­
mands from a command fi Ie.

Definition

Causes a specified test to be made at a
specified location. Only if the condition
is true and the spec i fi ed test i denti fi er is
set does it remain set; otherwise, it is re­
set (see SNAPC control command).

Specifies the range and the steps within
the range where the test identiHer is set
(see SNAPC control command).

Causes a speci fied test to be made at a
specified location. The specified test
identifier is set only if the condition
is true; otherwise, the identifier is reset
or remains reset (see SNAPC control
command).

Allows the user to insert a modification
into a user program before execution.

Causes a specified test to be made at a
specified location (if a .specified test iden­
tifier is reset). If the condition is true,
the specified test identifier is set; other­
wise, it remains unchanged (see SNAPC
control command).

Causes the monitor to dump the selected
area of memory, in hexadecimal form, if
an error occurs duri ng executi on.

Causes the monitor to dump (in addition to
the information obtainable by PMD) the
PSD, registers, etc.

CausE:s tha monitor to dump the selected
area of memory, in hexadecimal form,
regardless of whether errors have been
detected.

System Commands 11

Debug
Control

SNAP

SNAPC

SWITCH

Input
Control

BCD

BIN

DATA

EOD

FIN

NCTL

PFIL

REW

WEOF

Definition

Causes a snapshot of the spec i fi ed memory
and registers at the location specified to
be performed.

Causes a snapshot of the spec ified memory
and registers at the location specified to
be performed on I y when the spec i fi ed test
ide,ltifier is set.

Produces the initial settings of the pseudo
sense swi tches.

Definition

Serves as a terminator for a binary input
source.

Informs the monitor that the information to
follow is binary.

Informs the monihr that the information to
follow is data.

C"luses an end-oi -data abnormal return to
Ttlt monitor, incl:cating the end of a series
of data records.

Specifies the end of a stack of jobs.

Allows noncontrol input files to be entered
from the card reader.

Position n fi les on unlabeled magnetic tape.

Rewinds the specified tape.

Writes a physical end-of-fi Ie on magnetic
tape.

Pro~edure Defi n i.tions

M:AND Causes a specified test to be made at a
specified location. Only if the condi­
tion is true and the specified test iden­
tifier is set does it remain set; otherwise,
it is reset or remains reset (see M:SNAPC
procedure).

12 System Commands

Procedure Definition

M:CHECK Checks type of I/O completion.

M:CHECKECB Checks for the completion of an event 01

a set of events.

M:CLOSE Terminates all I/O associated with a given
Data Control Block (DC Bl.

M:COUNT Specifies the range and the steps within
the range where a specified test identi­
fier is set b~e M:SNAPC procedure).

M:CT Changes termi nal type. (This procedure
is for ot,-line use only and is described
in the CP-V/TS Reference Manual,
90 09 07.)

M:CVM Changes Virtual Map.

M:CVOL

M:DCB

M:DELREC

M:DEQ

M:DEVICE

M:DISPLAY

M:ENQ

M:ERR

M:EXIT

M:EXU

Causes the control program to advance to
the next vol ume of a data set before
the physical end of the current volume
is detected. This call is meaningful only
for tapes.

Defines a Data Control Block.

Specifies that a data record is to be de­
leted from the file.

Dequeues resources.

Allows the user to set special device
procedures.

Reports system load parameters.

Enqueues resources.

Returns control to the monitor and the
monitor honors all PMD and ASSIGN
control commands whi Ie ignoring all
other control commands unti I it encoun­
ters a FIN, JOB, or a processor name
control command.

Returns control to the monitor which then
honors all output control commands of the
form I PMDI.

Requests that the monitor execute a priv­
i leged instruction for the user.

Procedure

- M:FP

M:FCP

M:FVP

M:GCP

M:GDDL

M:GL

M:GP

M:GVP

M:IF

M:INT

M:JOB

M:KEYIN

M:LDEV

M:LDTRC

M:LlNK

Definition

Frees page of main storage owned by a
given task.

Frees common page.

Frees virtual page.

Gets common page:).

Gets dynamic data limits.

Gets common limits.

Allocates pages of main storage to the
requesting task.

Gets virtual page.

Causes a speci fi eel test to be made at
a specified location. Only if the spec­
ified test condition is true is the test
identifier set; otherwise, it is reset or
remains reset (see M:SNAPC procedure).

Connects a console interrupt.

Inserts a fi Ie into or deletes a fi Ie from
an existing symbiont fi Ie.

Writes the specified message to the op­
erator on the operator's consol e and re­
turns the operator's reply to the program
issuing the procedure.

Attaches an information stream to a
physical device (identified by a logi­
cal device name) and defines attributes
of the physica I device.

Loads the specified load module if a re­
enterable copy is not avai lable in memory,
de letes the ca II i ng modu I e, and transfers
control to the loaded load module.

Loads the specified load module if a re­
enterable copy is not available in mem­
ory and links to it.

Procedure

M:MASTER

M:MERC

M:MESSAGE

M:MOVE

M:OPEN

M:OR

M:PC

M:PT

M:PFIL

M:PRECORD

M:PRINT

M:RAMR

M:READ

M:REW

Definition

Allows a special processor to operate in the
master (and master protected) mode.

Allows the user to have the monitor pro­
cess any system abnormal or error code,
overriding an ABN or ERR exit.

Writes the specified message on the Op­
era tor Conso Ie.

Copies a file, record by record.

Causes the spec ified fi Ie associated with
the speci fi ed DC B to be opened for use.

Causes a spec ifi ed test to be made at
a specified location (if a specified test
identifier is reset). If the condition is
true, the specified test identifier is set;
otherwise, it remains unchanged (see
M:SNAPC procedure).

Sets prompt character. (This procedure
is for on-line use only and is described
in the CP-V/TS Reference Manual,
900907.)

Allows the user to generate FPTs in either
protected or unprotected storage.

Causes the specified tape to be posi­
tioned past the number of end-of-fi les
specified and in the direction specified.

Causes the tape spec i fi ed by the DC B to
be positioned in the direction specified by
the specified number of records.

Writes the specified message on the listing
log (LL) output media.

Reads the assign/merge record.

Causes the next data record to be read
into the location specified by the user.

Rewinds a tape specified by the DCB.

System Commands 13

Procedure

M:SEGLD

M:SETDCB

M:SLAVE

M:SMPRT

M:SNAP

M:SNAPC

M:STIMER

M:STRAP

M:SYS

M:TFILE

M:TIME

Definition

Loads a specified overlay segment into
memory.

Sets error or abnormal addresses in a
spec i fi ed DC B.

Allows any master mode program to re­
turn to the slave mode.

Sets memory protection.

Causes a snapshot of the reg i sters and mem­
ory specified to be performed.

Causes a snapshot of the registers and mem­
ory spec i fi ed to be performed if the spec i fi ed
test identifier is set. Whether the test iden­
tifieris setor not is dependent on theM:IF,

. M:AND, M:OR, and M:COUNTprocedures.

Sets the interval timer with a specified
interval.

Simulates a tr ... ,p.

Allows spec i r: processors to use pri vi­
leged services.

Causes a specified DCB to be closed,
on return to the user's program, and
the associated fi Ie to be registered as
a scratch fi Ie.

Communicates the time of day and the
current date to the executing program.

14 System Comn:tands

Procedure

M:TRAP

M:TRTN

M:TRUNC

M:TTIMER

M:TYPE

M:WAIT

M:WAMR

M:WEOF'

M:WRITE

M:XCON

M:XXX

Definition

Sets and resets the traps to go to a user rC""­
tine or the standard system routine. Als'
sets and resets the maskable traps.

Restores control to the executing program
from a trap or timer routine.

Causes the blocki ng buffer reserved for a
specified DCB to be released.

Gives the time remaining in the interval
that was previously set by M:STIMER pro­
cedure and optionally cancels the interval
in effect.

Wri tes the spec i fi ed message to the oper­
ator on the operator's console.

Suspends program.

Wri tes the ass i gn/ merge record.

Writes an end-of-file mark on an unlabeled
tape specified by the DCB.

Causes the contents of a specified buffer to
be transmitted to an output device or file.

Allows a program to regain control after
termination.

Causes the monitor to terminate the job
and not honor any further commands un­
til it reads another JOB or FIN control
command.

2. FILES AND FILE USAGE

INTRODUCTION

A general understanding of fi les and the way that the
monitor deals with them will help the user to obtain the
high level of performance available.

A file is an organized collection of information. This col­
lection of information may consist of one or more programs,
one or more sets of data, or some combi nati on of programs
and data. UnderCP-V, a user always accessesfiles through
the monitor - never directly. An option does exist, how­
ever, that allows a user to deal with a fi Ie (e. g., a non­
standard set of data on an unlabeled/magnetic tape) as
though he were accessing it directly.

A fi Ie has one base name but may have other names synony­
mous with it. Information is retrieveel from a file by spec!­
fying the file name (or its synonym), its password and
account, and the desired record wit'hin the file.

The monitor maintains a directory of accounts having file's
maintained between jobs. This is called an Account
Directory, and contains, with each account number, an
address of a directory of fi les (termed a Fi Ie Directory) for
that account. A Fi Ie Directory contains, with each fi Ie
name, an address of a table containing file attributes and
disk locations for that file. The table is called a File
Information Table. To'Summarize, the monitor has a single
Account Directory, which in turn points to a File Directory
for each account. Each File Directory,; in turn, points to
a File Information Table (FIT) for each file. t

Each file has associated with it (in the FIT) information
controlling who may access the file and how it may be
accessed. This information can include hoth a password
and a I ist of which accounts may read or update the file.
To access a file, a user must be running under an account
which is authorized to access the file and provide the
proper password. In addition to access control information,
the FIT also contains the file's creation date, date of last
modification, date of last access, and expiration date.

A fi Ie may be shared among several users if none of them
updates the file or attempts to replace the file. A job
cannot, however, create a file in an account other than
its own.

Three prime concerns of the user in regard to fi les are

1. Fi Ie organization - the way in which a fi Ie is logi-
ca lIy constructed.

tFor each batch job and on-line session, the syste'm may
create up to five special files contclining temporary user
context. These fi les, known as "star fi les", are transparent
to the user, are not cataloged in the File Directory, and
always cease to exist at tHe end of the batch job or on-line
session.

2. The methods that a user can apply to find, extract, in­
sert or delete information from a file.

3. The way that a file is stored on specific devices.

FILE ORGANIZATION

Each file is identified by a file name. In addition, access to
each fi Ie is controlled by the account number of the user
who created it and a password, if he chose to include one.

The information contained in a file may be structured in
one of three ways. It may be a keyed, consecutive, or
random fi Ie.

KEYED FILES

Keyed fi les are those in which each record has an identify­
ing key associated with it. A key consists of a byte string,
the first byte of which states the number of bytes in the string.
The contents of each byte may be a binary number or a char­
acter. A key may consist of up to 31 characters.

As the file is being created, a master index is also created
with an entry for each keyed record in the file. The entry
contains such information as the key, disk address of the
record, size of the record, and position of the record withi n
the blocking buffer.

The records are automatically packed into blocking buffers
with the last portion of the last record extending into an­
other buffer as necessary. If the record is large, it is written
directly from the user's area instead of being packed into a
buffer. Keyed files may be accessed by direct or sequentia I
access.

Keyed files have a multilevel index structure. A multilevel
index structure is a collection of hierarch ical levels of index
blocks, where the entries in a higher level point to index
blocks at the next lower level and the entries in the lowest
level (called level 0) point to data records. This is best'il­
lustrated by an example as shown in Figure 3. The multi­
level structure is initially built during a CLOSE if a keyed
fi Ie has more than three level 0 index blocks.

In the example shown in Figure 3, the keyed file has

• 31, 150 records and the keys at level 0 point to these
data records. Based on an I1-byte maximum key
length, there are 80 keys in each level 0 block and
127 keys in each higher-level block.

• 390 index blocks at level 0, four index blocks at
levell, and one index block at level 2. The next
hig~er-Ievel is built if the last level has more than
three index blocks.

Files and File Usage 15'

Level 0

390 Index Blocks

~ KEY 1

KEY2 I---

Level 1

4 Index Blocks
Data Blocks

KEY 1
KEY 80 Record 1

Key 81 I---- ~

I FIT
Record 2

t U KEY 10081 -----.... KEY 81

~
Record 3

KEY 82 r--

Record 4
Level 2 --.. KEY 10161 U 1 Index Block

KEY 10241
KEY 1 - Record 5

KEY 160

KEY 10161

t KEY 20241
KEY 20161 KEY 161

KEY 30321 ---, Record 81

+
KEY 1~2 ---- I

r r ---- KEY 20241

~
~ Record 82

KEY 20321

I
KEY 30241 I

t I Record 31120

KEY 30321 I Record 31121

KEY 30401
I I
I Record 31122

I ~

I • KEY 31121 - KEY 31121 - Record 31123

KEY 31122

~
Figure 3. Example of Multi level Inde'x Structure

16 Fi Ie Organization

Each entry in a higher-level index block contains the disk
- address of an index block at the next lower level, and the
key of the first key in that block.

The mu Iti level index structure can considerably speed up
the direct access of a large keyed file, at only a small
cost of secondary storage space. Since the keys are
ordered in ascendi ng sequence, ot most it wou Id take
three index block accesses to locate a data record as
shown in the example. Without the higher-level struc­
t'ure, it could take up to 390 index block accesses.

The user has control over the initial creation of the multi­
level index structure and he can specify when and if the
higher-level structure shou Id be rebui It. This can be
specified by using the NEWX option on the ASSIGN
control command or the M:OPEN and M:DCB procedures.

The space required to hold a given fi Ie can be estimated
by applying the following ru les:

Data Blocks

1. Each data block contains 2048 bytes.

2. Each data granule contains one data block.

3. Each data block is compact, except that all records
start on word boundaries.

4. Each record or record segment (if a record resides in
more than one data b lock) has a level 0 index entry
associated with it.

. Level 0 Index Blocks

1. Each index block contains 2048 bytes.

2. Each index block is compact except that 12 bytes are
preempted and spare space may be reserved at user
request.

3. Each index entry occupies key size (KEY M) plus
14 bytes.

Higher-Level Index Blocks

1. Each higher-level index block contains 2048 bytes.

2. Each higher-level index block is compact except that
12 bytes are reserved.

3. Each higher-level index entry occupies KEYM plus
five bytes.

The following formu las can be used to estimate the disk
space requirement of keyed and consecutive fi les. The
first formula calculates the number of keys per index block
at level 0 '(KL). The second formula calculates the total
di sk storage in g ranu I es .

N = number of records in the fi Ie.

R =: record si ze in bytes.

SS = spare space expressed as a decimal number (e. g. ,
20% == .2).

K = key length in bytes.

_ 2048*(1-SS)-12
KL - 14+K

Total disk storage (in granules) = 2~;~ + (K~) +

Note that:

N*R
2048 is the number of data granu les.

(~L) is the number of Level 0 Index granules .

is the number of Levell Index
granules.

The following two examples show the cost to bui Id the
multi level index structure, i. e., disk accesses to bui Id
it and disk storage required to contain it, and the saving
in time when accessing it.

Example 1

Number of records N = 40,000

Record size R = 60 bytes

Key si ze (KEYM) K = 3 bytes

File Organization 17

Spare space SS = 10% (= .1)

2048*(1-SS)-12 ==
Keys/Level 0 Index block (KL) = 14+K

2048 * (1-.1)-12 = 108
14+3

N *R 40,000*60
Data granu les = 2048 = 2048 1172

(N) (40000) Level o Index granules = Kl = ~ = 371

Level 1 Index granu les = (~L)(;;3~) =

(40,000) (5+3) = 2
108 . 2036

This file requires a total of 1545 (1172 + 371 + 2) granules
of storage of which two are required to store the multi­
level index. It wou Id cost 373 disk accesses to bui Id the
structure when the fi Ie is closed. With the multi level
structure, each random record fetch requires 3-1/2 de­
vice accesses, whereas without it each fetch would be
186 accesses.

Example 2

Number of data records = maximum for each device
(see be low).

Record size R 1024 bytes

Key size (KEYM) K = 15 bytes

Spare space SS = 0

Keys/Level 0 Index block (KL)
2048*(1-SS)-12 _

14+K -

2048*(1-0)-12 _
14+15 - 70

Level 0 Index granules = (~L) =(~O)

Level 1 Index granules = (~L) (2~~~) =

(li) (5+15)
70 2036

18 File Organization

20N
142,520

Item 7232 RAD 7242 Disk Pocks

Number of data records. 6144- 24000

Level 0 granules. 88 343

Level 1 granules. 1 4

Level 2 granules. 1

The cost to build the multilevel structure in the 7242
example is 348 device accesses. Without the mu Iti­
level structure a random fetch cou Id take 344 device
accesses in the worst case; with it, four accesses are
required.

CONSEcunVE FILES

Consecutive fi les are fi les whose records are organized in
a consecutive manner; i. e., the user is aware of no iden­
tifying keys associated with the records. The records may
only be accessed sequentially.

The principal benefit of consecutive fi les to system op­
eration is a. reduction in the number of granules required
for the fi les' on disk and RAD and a consequent reduction
in the time required to process the files. This is most
dramati c for fi I es contai n i ng short records. A fi I e of
1000 eighty-character records requires 49 granu les for
keyed files. For consecutive fi les, this requirement is
reduced to 42, a savings of over 14 percent. For twenty­
character records, the requirement of 1000 records drops
from 19 to 12 granu les, a reduction of over 36 percent.
For large records there is sti II a small reduction. For
example, 1000 2048-byte records requi res 1002 granu les
for consecutive fi les as opposed to 1009 for keyed fj les.
Traversing a file of 1000 2048-byte records requires 1002
disk reads for consecutive fi les as opposed to 1017 disk
reads for keyed files. For 1000 eighty-character records,
the reduction is from 57 reads to 42 reads (over 26 per­
cent). For 1000 twenty-character records, the drop is
from 27 to 12 reads (a 55 percent reduction).

A" position operations for consecutive fi les is done without
I/O. Positioning operations are PRECORD, PFIL, and
OPEN with extension. The positioning is on Iy effected
when a data transfer operation is about to take place. At
that time; there wi" be three known points in the file that
can be used as a starting point (beginning of fi Ie, end of
fi Ie, and the position reflected by the DCB). The starting
position chosen will be the one that requires the fewest
record skips to be made.

For cons~cutive fi les, the FIT is maintained in words 4
through 83 of the first granule of the fi Ie.

RANDOM FILES

Random files provide an organization for those users
desiring to manage their own files or who do not wish to
incur the overhead imposed by system file management.

Random organ i zat ion differs from keyed and consecut i ve
organ ization as follows:

1. A random file is simply a collection of contiguous
granul es on the specified device type. The num­
ber of granules is specified at the time the file is
created (and may not be expanded after it has been
created). If the requested number of granul es are
not available contiguously, an abnormal code (ma­
jor code X'O 1', subcode X'OS') is returned to the
user and the fi I e is not opened.

2. The user must speci fy a relat ive starting granu Ie num­
ber with each read or write and a byte count (the
defau It byte count in the DCB may be used). If the
starting granu Ie number does not fall between 0 and
the total number of granu les a! located at "OPEN "-1,
inclusive, an error code of X'42' is then returned to
the user. If the byte count exceeds granule size,
the operation wi II continue in the next contiguous
granule(s) until all requested bytes have been trans­
ferred. The system wi II return the next available
relative granu Ie number to the user (in the KBUF
fi eld of the DCB) at the completion of each read/
write. If there are not sufficient granules to ac­
commodate the specified byte count, an error code
(major code X '57', subcode X '44') is returned to
the user and the actual number of bytes transmitted
is placed in the RWS and ARS fields of the DeB.

3. Each write/read consumes the entire specified granu Ie.
The contents of the granule include no system informa­
tion. Management of the user's data is the responsibi­
ity of that user.

4. Function has the following meaning for random fi les:
when any random file is opened it is first checked for
existence.

• If the fi Ie does not exist and fun~tion is I N or
INOUT, an abnormal code of X'03' is given. If
the file does not exist and OUT or OUTIN is
specified, a new random file is allocated unless
the associated account number differs from the
user's account number (in this case, the fi Ie wi II
not be opened and an abnormal code of X'14'
will be returned).

• If the file does exist, the user is checked for
appropriate access permissi()n (read/write ac­
count numbers, password), and an abnormal
code X'14' is returned if there is a violation.

If there is no violation, the user may proceed
to read (unless opened OUT) or write (unless
opened IN). If the fi Ie is opened OUT or
aUTIN, the function is changed to IN OUT.
Note that the user may write in a granule in
which he has already written, and may also
read a granule in which he has not written.
A random file that is in existence may not be
replaced or extended by reopening that file.
If the user wishes to replace or extend an ex­
isting file, the existing version must be re­
leased prior to such action.

5. If a file is opened OUT and a file of the same name
already exists, an I/O abnormal code 14-00 will occur
if one but not both of the files is random.

6. If a random fil e is opened OUT, and a random fil e of
the same name al ready exists, the mode of the open
will be changed to INOUr. This change occurs even
if the open specifies an RSTORE value that is different
from the size of the existing file.

7. If a file is opened OUT on private pack and a fil e of
the same name already exists on the pack, an I/O ab­
normal 14-00 will occur if both fil es do not have the
same organ i zat ion.

Thus, the monitor provides allocation of granul es, security
checks and nQrmal I/O queuing service and cI ean up. The
user is responsible for record management.

FILE FUNCTION AND FILE DISPOSITION

A fi Ie may be opened in one of four modes: two of these,
IN or input and INOUT or update, access a file that existed
prior to this open; the other two, OUT or output and OUTIN
or scratch, create a new data aggregate that had not existed
prior to this open. There are three possible specifications
for the file disposition option: REL or release, SAVE, and
JOB. Anyone of the three may be specified at open time
and either REL or SAVE may be specified at close time. The
impact of each of these options and several significant com­
binations of them is described below.

To create a new file, specify OUT or OUTIN. If the REL.
disposition option is used or implied (see below) with such an
open, it indicates that the file to be created must be re­
leased when it is closed; thus, it is an obvious error to com­
bine OUT with REL, and such an open is rejected with an
abnormal 14-07. The other combination, OUTI N with REL,
results in a true scratch file which is never to be entered
into the file directory and thus has no identification other
than the device control block with which it is associated.
Storage space requirements for such a file are accounted for
against the user's temporary granule authorization.

If a file opened OUT or OUTIN is closed with an explicit
'specification of SAVE, it will be entered into the file direc­
tory unless the open process failed to explicitly specify
SAVE or J.OB, in which case the file is unconditionally

File Function and File Disposition 19

-released at close time and the file directory contents are
not altered. If an explicit SAVE specification is not made
when an OUT or OUTI N file is closed, again the file is
released and the fil e directory contents are not al tered.
Note that when a job step is completed, all open device
control blocks are closed with no explicit disposition speci­
fication, and so all open output files are released at that
time. The only exception to this is M: DO, which is closed
with explicit SAVE in order to ensure that diagnostic output
will be received.

Consider the cases of files opened OUT or OUTIN with
either SAVE or JOB disposition. All such combinations
indicate the intent to create a new file which will probably
be entered into the file directory. (See the above paragraph
for a discussion of how to overcome this intent.) Unless a
job is executing at a high privilege level of X'CO' or greater j

it cannot create a new file in an account other than the
one under wh ich the job is logged on with one exception.
If a file already exists with the same identification as that
desired for the new file; if, further, the al ready existing
file permits WRITE access to the user in question; and if,
finally, the already existing file is not currently open, then
the user may create a new copy of such a file. When an
OUT or OUTIN file with SAVE or JOB is closed with explicit
SAVE, the name is entered into the file directory; and any
previously existing file with the same identification is re­
leased. In addition, if JOB has been specified on the open,
the fi Ie identification is given the sr ne treatment as though
it had been mentioned in a M:TFILl procedure call. All
files which have had their identifica"ion mentioned in such
a procedure call are released when the creating user logs
off. A JOB file may only be accer-;ed by the creating user
or a user with at least X'CO' privilege. Storage space re­
quirements for JOB files are again accounted for against
the user's temporary gr~nule authorization. All storage space
requirements for files other than true scratch or JOB files
are accounted for against the user's permanent granule
authorization.

The file disposition option at open time for input and update
opens is essentially insignificant and the disposition is com­
pletely controlled by the specification on the close. (There
is a name substitution option available for locating JOB
files which is only operative in the event of explicit JOB
disposition specification at open time.) If the specification
is explicitly REL, the file is released and the identification
is erased from the file directory; otherwise, the file is re­
tained and no change is made to the file directory. When
an existing JOB file is reopened in the update mode, the
disposition in the device control block is forced to JOB so
that granule accounting may be correctly handled.

FILE ACCESS

Records may be accessed within a file by either of two
means, direct or sequential access. The interaction of
the type of access used for a given operation and the
mode in which the fi Ie is opened results in some rules,
or limitations. These rules are listed below for each

20 File Access

type of access and each mode in which a fi Ie may be
opened.

DIRECT ACCESS

For consecutive fi les, the only effect of direct access
is to inhibit read-ahead. For keyed files, the follow­
ing rules apply.

OUTPUT FILES (OUT)

When a WRITE is given, a key must be specified. The keys
do not need to be given in a sorted order. They will be
ordered as they are stored on disk.

Unlike sequential output fil es, a WRITE never causes forward
information to be deleted.

Reading is not allowed.

SCRA TCH FI LE S (OUTIN)

A scratch fi Ie is identical to an output fi Ie, except that
reading is permitted before the fi Ie i's closed. As for out­
put files, ak!!y must be specified on each WRITE. The
keyed record is merged into the fi Ie.

A READ mayor may not specify a key. If a key is speci­
fi ed, a search is made of the fi Ie unti I the key is found
and the record is then read. If the key is not found, an
error return is executed. If a key is not specified, the
next sequential record is read.

The FWD and REV options apply on read operations not
specifying a key. If a key is specified, these options are
ignored. PRECORD operations are performed in the same
way as for sequential output fi les. A WRITE does not
cause forward information to be deleted. A READ before
the first WRITE returns an X'061 abnormal code.

INPUT FILES (IN)

Records may only be read; writing is not allowed. The
READ function is the same as that for scratch fi les. PRE­
CORD operations are allowed.

UPDATE FILES (INOUT)

The READ -function is the same as for scratch fi les. PRE­
CORD operations are allowed.

The WRITE function mayor may not have a key speci­
fied. If a key i~) not specified, the WRITE function
Ylust have been preceded by a _READ. If it is, the rec­

..>rd just read is updated; if not, an X'15' abnormal code
is signaled.

New records may be added to the fi Ie. The NEWKEY
or ONEWKEY opt-ion must be specified, and Q search
of the keys wi II be made to locate the proper place to
merge the new key. If the key already exists, and the
NEWKEY option only was specified, an abnormal code
X'16' is returned.

Records may also be replaced. The NEWKEY option must
not be specified in this case. Thus, the NEW KEY option
is used when adding new records to the fi Ie and notifi cation
of an attempted duplication of a key is desired.

The ONEWKEY option is used when adding new records
and replacing old records. No notification is given when
an existing record is replaced by a new record with the
same key.

The absence of either a ONEWKEY or NEWKEY parameter
implies that the record to be written already exists and is
to be replaced. If the record does not already exist, an
abnormal notification wi" be given and the record wi"
not be written.

The DELETE function may be used. If a key is specified,
a search of the di rectory is made to find the specifi ed key.
The record is then deleted. If a key is not specified, the
DELETE operation must have beel1l preceded by a READ,
and the key just read wi I I then be deleted.

SEQUENTIAL ACCESS

Sequential access may be used when accessing records
with keyed or consecutive organization.

OUTPUT FILES (OUT)

When a file is opened in the OUT mode, records may only
be written; reading is not allowed,. If the fi Ie has been de­
clared a keyed file, a key must bEl given with each write
operation and this key must be a new key (i. e., it must
not have been used before). If the key has already been
used, no information is written and! an abnormal X'16' is
returned. The keys must be given in a sorted order. For
example, if the user writes records with keys A, C, and D,_

respectively, and then writes a record with key B, the
record will not be written and an X'18' error return will
be executed.

The PRECORD FWD (position record forward)and PRECORD
REV (positi on record backward) operations are a IIowed on
both keyed and consecutive fi les. A BOF is given when
the beginning-of-fi Ie is reached, and an EOF is given
when the end-of-fi Ie is reached. Otherwise, for keyed
fi les, the pointer to the current entry in the master index is
decremented or incremented. For consecuti ve files, a
directional count of records to skip from the current position
is established. Positioning wi II not occur unti I the next
read, write, or delete operation. A WRITE operation fol­
lowing PRECORD causes all forward records to be deleted.

When closing the file, the SAVE option must be specified
in both an explicit CLOSE statement and in the OPEN
sfatement if the fi Ie is to be saved.

SCRATCH FILES (OUTI N)

The same ru les that apply to output fi les also apply to
scratch fi les, except that reading is allowed, following a
write. Reading may be directional; either forward or
reverse. A READ with REV implies that the record pre­
ceding the current position is to be read. If no direc­
tion is specified, FWD is assumed. A READ order issued
prior to the first WRITE will result in an X'06' abnormal
return.

When reading a keyed fi Ie, a key mayor may not be speci­
fied. If a key is specified, a search is made for the speci­
fied key. The FWD and REV options are ignored when a
key is specified. If a key is not specified, READ FWD im­
plies that the next record in sequence is to be read. READ
with REV implies that the record immediately preceding the
current record is to be read. Whenever a keyed fi Ie is
read, the KBUF field of the DCB contains ,the address at
which the key of the record just read is stored.

Reading a consecutive file is the same as reading a keyed
file without specifying a key.

A WRITE deletes all forward information.

INPUT FILES (IN)

Th is is the same as for direct access input fil es.

UPDATE FILES (INOUT)

For a keyed fi Ie, this is the same as for direct access up­
date files. For a consecutive file, a WRITE deletes all
forward information.

File Access 21

SIMULTANEOUS FILE USAGE

REQUIREMENTS FOR MULTIPLE ACCESS TO A SINGLE FILE

Under some conditions, a fi Ie may be accessed by more
than one DC B at the same time.

TAPE FILES

Single-fi Ie Tapes. Only one DCB may be open to the fi Ie
at a time. If an attempt is made to open a tape fi Ie that is
already referenced by another DCB, an abnormal return
wi II be executed.

Multi-File Tapes. Only one DCB may be opened to the
tape at a time. The user may not reference another fi Ie on
the tape unti I the previous fi Ie is closed. To do so wi II
cause an abnormal return.

DISK FILES

Random Files (SHARE mode not specified). Any number of
DCBs can be opened to the same fil e in the input mode.
Only one DCB may be opened to a file in the update mode.
However, one update DCB and one or more input DCBs may
be open to the same file at the same time. The order in
which DCBs are opened or closed, when sharing the same
file, does not make any difference. Only one DCB may be
opened in the output or scratch mode and it may only be
opened if no file of the same name already exists.

. Keyed and Consecutive Files (SHARE mode not specified).
Several users may simultaneously access a file. Some kinds
of simultaneous uses are allowed and some are not. The
rules governing such usage are described below and are sum­
marized in Table 1.

If a fi Ie exists, it may be opened once in output mode and
any number of times in input mode. Furthermore, the user
must open the fi Ie for output first. A II referencing DCBs in
input mode must be closed before the output DCB may be
closed. (If the input DCBs are not closed first, the output
fi Ie wi II be discarded.)

A scratch fi Ie is not considered an output fi Ie in the
above sense. Since the scratch attribute (OPEN, aUTIN,
REL) is declared at the time a file is opened and all file
information is local to the using DCB, mu Itiple scratch
fi les of the same name may be open. Remember, however,
that scratch fi les are automatically released at the end
of each job step or when the DCB is closed, whichever
is sooner.

If a file is successfully opened for output, the effect is
that no other users may have the fi Ie open in any mode
(except scratch) and they will not be allowed access until
it is finally closed.

Simultaneous File Usoge

A fi Ie opened as OUT or OUTIN with a sove disposition
does not replace an already existing file of the same name
until the former is saved via a CLOSE operation. Thus, tw'
files of that name exist during the crea.tion of the newer
one.

Several DCBs may be simultaneously opened to the same
file if the proper protocol is observed, as follows. A file
may be opened as OUT, INOUT, or OUTIN only if not
already open. If a fi Ie is already open as IN, OUT, or
aUTIN, it may be opened again as IN only. No simul­
taneous usage of an IN OUT file is allowed. A file opened
as OUT or OUTIN may be closed and saved only if it is
not also open as IN. If the above protocol is violated, an
abnormal code is returned from the OPEN or CLOSE oper­
ation. In the latter case (CLOSE), the OUT or . OUTIN
fi Ie is released, also.

Since a file may be opened up to 127 times in the in­
put mode, a user may attempt to release it upon closing
if he is unaware of other usage. If this occurs, the request
is not honored.

An OUTIN file that has been opened without a specific
save disposition is a scratch fiI e. Operations on a scratch
file are always local to the DCB and are unaffected by the
operations of any job on files with the same name. Any
attempt to open a file in INor INOUT mode with a release
disposition is the same as if the M:OPEN has specified a
save disposition. Table 1 summarizes the rules for opening
and closing fil es with the same name. It also shows the
error codes generated.

To open an OUT fi Ie with a release disposition i~ useless
and wastefu I •

Random and Keyed Files (SHARE mode specified). Up
to 127 updaters and up to 127 readers may simultaneously
have access to a keyed or random file. In this case, all
DCBs must specify the SHARE mode. The order of open­
ing is not significant in this case and there are no re­
strictions on the order of closing. When the last DCB
which has a shared keyed file open is being closed, the
mode is switched to EXClusive to assure that a file in­
formation table is posted before the fi Ie is reopened. A
close with release is treated as a close with save for
DCBs opened in the SHARE mode.

90 17 MH-1 (9/18)

Table 1. Simultaneous Fi Ie Usage - Keyed or Consecutive

New File Operation Result

Open-File Status (different DCB)

Outin
Mode Operation Disposition In Out Inout

SAVE V V E(14/01)
OPEN

REll

IN
SAVE V V I

CLOSE
REt does not REL V I

SAVE E(14/01) E(14/01) E(14/01)
OPEN

REL3 L L L
OUT

SAVE
2

OUTIN REL I I
CLOSE

OPEN = SAVE V I I
REI.

OPEN = REL L L L

SAVE E(14/01) E(14/01) E(14/01)
OPEN

REt
1

INOUT ----
(UPDATE)

SAVE I I I
CLOSE

REL. I I I

Notes:

1. When IN and INOUT fi les are opened, SAVE is forced.

2. SAVE must have been specified when the fi Ie was opened. If not, REL is forced.

3. If mode is OUTIN and disposition is REL, the file is a scratch file and is local to the opening DCB. The file is re-
leased at the end of the job step and is never shared. If mode is OUT, REL is illegal and I/O error 14-07 results.

Fi Ie Status Letters

E indicates an error or abnormal operation and is followed by an error code (Appendix B) in parentheses.

I indicates an impossible ~iituation.

V indicates an allowed operation.

L indicates the file is local and the operation is allowed.

Simultaneous File Usage 23

COORDINATING MULTIPLE ACCESS TO A SINGLE FILE

The SHARE mode feature extends the use of keyed and
random files by permitting simultaneous access to a file by
up to 127updaters and up to 127 readers. Thus several user
programs executing concurrently in separate jobs may be
generating reports from a data file while other user programs
are concurrently modifying data items within the file.

Responsibility for coordinating concurrent update activity is
divided into two parts, one controlled and provided by the
operating system and the other by the application programs
via use of the system's enqueue/dequeue services. The oper­
ating system guarantees the physical integrity of the file so
that it remains properly connected regardless of the update
activity and also assures that readers are provided with the
most up-to-date information in response to their requests.

Coordinating and guaranteeing logical integrity of the fi Ie
(primarily the data content) is the responsibility of the ap­
pi ication programs, since for the keyed file organization any
connection of the data in one record of a file with that in
another record of the same or another file is carried in the
application program, not in the fi Ie itself. A single example
will se rve to i" us tra te th is.

Suppose that a file contains records recording a parts in­
ventory - each containing the available number of bolts,
washers, nuts, etc., in various sizes. Without any special
coordination, the number of any given item can be deter­
mined by querying the file even in the face of additions and
removals by a concurrent updater. If, however, the appli­
cation needs to first determine the available number and
then remove a quantity from stock, then the record must be
locked between the read and the update to preclude the
possibility of the stock being taken by another updater.

More elaborate record locking requirements may exist de­
pending on the application. For example if a fastener must
be made up of a bolt, a nut and a lock washer, then these
three records must be acquired and locked prior to making
the needed upda tes •

Applications use the system's enqueue/dequeue facility to
gain exclusive access to the records. Enqueue/dequeue is
a generalized service and guarantees exclusive or shared
access to named items as required and requested. It is the
responsibility of all us~rs of the service to agree on the
meaning of the names - for example the names of the rec­
ords containing inventory count of nuts, bolts, and washers.

PROTOCOL REQUIREMENTS

In a shared update envi ronment, there are four broad
classes of operation to be considered (some have interest­
ing variations):

1. Statistical read - the process of reading without con­
cern as to whether the current record, or other records
associated with the current record because of applica­
tion considerations are being updated.

23.1 Simultaneous File Usage

2. Exact read - the process of reading with the assurance
that the current record and possibly other application
associated records are not in the process of an update
which is only partially complete.

3. Update - changing the data content of a record or a
group of application associated records.

4. Positioning - execution of M:PRECORD, M:PFIL, or
sequential (not specifying a key) M:READ CALs.

To accomplish a statistical read or to execute a M:PFIL
CAL, there are no special protocol requirements; however,
for the other operations above, it is necessary to obtain
some protection from other use of the record{s) in question.
The enqueue/dequeue facility has been provided for this
purpose.

In order to process an ~ read, it is necessary to obtai n
shared use of the record(s} in question, whi Ie, to process an
update, exclusive use is a requirement. It is notanticipated
that M:PRECORD CALs specifying more than a single record
move wi II be a common occurrence in the shared update
mode; but if they are required, then a shared use of the en­
tire file is required. Sequential reads and one position
moves can be accompl ished wi thout protection if they are
for statistical purposes only. If any other use is required
though, the key presented in KBUF (in the DCB) after the
move shou Id be enqueued appropriate Iy. It is suggested
that sequential reads be effected with a zero length buffer
and then a reread can be accomplished after the enqueue
has been accomplished.

In addition, once an operation has been completed, the en­
queued items should be dequeued promptly. It is essential
that all users conform to the above described protocol or in­
efficient operations and data damage may ensue. CP-V does
not enforce a correct enqueue/dequeue sequence, but only
assures that:

1. The master index structure of a keyed file will not be
modified so as to produce a permanent process error
(75-02) si tuation.

2. The processing of an M:WRITE or M:DELREC CAL for a
shared keyedfi Ie wi II not proceed unti I the completion
of any other such CAL on the same file, if any, is in
progress.

3. If a 75-02 error is about to be reported on a shared
keyed file during the processing of an M:READ or
M:PRECORD CAL because of the failure to pass a spec­
ified link test, a check will be made to see if any mod­
ification has been made to the master index linking
structure since the inception of processing of the CAL
in question. If so, the operation will be terminated
with a 15-01 abnormal; and no error log entry will be
made •.

90 17 MH-l(9/78)

EXTENSIONS TO M:DCB, M:OPEN, ASSIGN AND SET

Th. function option of the M:OPEN, M:DCB procedures and
of the ASSIGN and SET commands include the following
options:

IN r {SHARE}] t EXCL

INOUT r {SHARE}] t EXCL

(for readers)

(for updaters)

where EXCL guarantees exclusive access to the fi Ie and
SHARE permits sharing. If neither is specified, the option
used Is that from the DCB - either from the M:DCB process
or remaining from a previous operation on the DCB. If no
specification is then made by M:DCB, ASSIGN, or M:OPEN,
then EXCL results.

The SHARE option'is: valid only for keyed and random files
and permits updaters and readers to have the file open
concurrently.

As a final note on processing, when the final user of a
shared update keyed file is closing the file, the CFU mode
is changed to exclusive during the close process of finding
and updating the File Information 'Table. Thus, unti I the
close is completed, any attempt to reopen the file will re­
sult in an 14-01 abnormal. In addition, for shared keyed
files, a release specification on a M:CLOSE CAL will be
treated as no release. To delete a keyed file, it is neces­
sary to open the file in the exclusive mode and then issue
a M:CLOSE CAL with the REL specification.

HASHING QUEUE NAMES

Examples in the Enqueue/Dequeue Resources section of
Chapter4 Illustrate a common technique which an applica­
tion may use to ensure data integrity: Enqueue for the file
and subqueue for the record or rec()rds of i nteres t by name.
'The queueing may IUse the actual file name and account
and the actual record keys or some agreed upon abbrevia­
tion for them, however, it must be unique.

Since there is the possibility of an extensive monitor data
area for enqueue tables if long naMes are used, it is appro­
priate to compress the queue and subqueue names by hashing

90 17 MH-1 (9/78)

techniques. The EDMS routines use a hash of the file
identifier which results in a 24 bit value for any file name/
account pair (because ENQ/DEQ carries names in TEXTC
and rounds up to full words). The following program dis­
plays the hashing algorithm used. Tests on several large ftle
sets indicate an incidence of duplicate hashes of consider­
ably less than one percent.

LI,l BA(FILENAME)
LI,3 ° LB,2 0,1

'':TEXTC COUNT
STI AI,l 1

LB,4 0,1
AW,3 4
SCS,3 6
BDR,2 STI
LI,l BA(ACCT)
LI,2 8

*8 CHARACTERS IN AN ACCT
ST2 LB,4 0,1

AW,3 4
SCS,3 6
AI,l 1
BDR,2 ST2

*REGISTER 2 CONTAINS ZERO
DW,2 PRIME
STW,2 HASH

*REMAINDER IS HASH VALUE

PRIME DATA 16777213

It is suggested that this algorithm can be used effectively
and that a similar hashing technique be used on keys when
the key max for the fi Ie is greater than three.

Whether hashing techniques are used or not, it should be
emphasized that the above described protocol must be fol­
lowed by all shared update users of a keyed file to obtain
desired results. Also, If hashing is used by any shared up­
date user for his calls to enqueue/dequeue, the identical
hashing algorithm must be used by all users of the file.
When using any hashing technique, the user must be pre­
pared for the X'3101' and X'3102' abnormal returns from an
enqueue CAL since more than one element may produce
identical hash values.

Simultaneous File Usage 23.2

DATA ENCRYPTION

A data encryption facility is provided for keyed and consec­
utive files. This service is not designed to provide facilities
sufficiently secure for highly secret and classified material,
but rather is designed to make sensitive information not readily
readable (i .e., to put it into ciphered form). For ,example,
buffers of data from encrypted fi les that appear in dumps
taken by system analysts will not be understandable without
a non-trivial code cracking exercise. In this manner, fi les
which contain information such as employee salaries can be
lfotected.

To initiate data encryption for keyed and consecutive files,
the user must issue an M: SETDCB for the file's DCB after
it has been opened to the file. An option of the M:SETDCB
procedure allows the user to specify the address of a location
which contains a data encryption seed or to specify that data
encryption is to be turned off. The seed is used by a pseudo
random number generation process for both data encryption or
decryption. (Even if the content of the location is zero,
encryption/decryption wi" occur.)

I t is very important to note that the seed(s) for data encryption
process are not carried in the file, nor anywhere else within
the file system. Thus, even users with high privilege who do
not know the seed(s} are unable to read anything but gibberish
without a significant code cracking process. The other side of
this coin is that a user who forgets or cannot reconstruct the
encryption seed(s) that were used has essentially lost the
encrypted fj Ie.

Data encryption is different for keyed and consecutive files,
as the keys are used in the encryption process. If an
encrypted keyed file is stripped of its keys, the file cannot
be decrypted .

FILE STORAGE DEVICES

The three general types of storage media avai lable for user
files are (1) disk, (2) labeled magnetic tape, and (3) other
physical devices (e. g., cards, unlabeled magnetic tape,
etc.).

DISK STORAGE

Both RAD and disk pack devices are used for secondary
storage. Any combination of these devi ces can be de­
fined at SYSGEN time. A disk pack device has dis­
mountable volumes and can be declared either a public
or private device at SYSGEN time, while a RAD device,
not having dismountable volumes, can only be declared
a public device.

A publ ic disk pack device has onl y one volume that can
be recogn ized by the mon itor and that vol ume must be
mounted at all times whil e the system is active.

24 Data Encryption/Fi Ie Storage Devices

A private disk pack device has any number of dismountable
volumes that can be recognized by the monitor. The op­
erating system requin~s that only those volumes needed
for execution of the user's job be made available and
be mounted.

STORAGE ALLOCATION UNITS

For allocation purposes a disk pack device is partitioned
into logical units, either granule or cylinder. RADs are
partitioned and allocated in granule units only. A granule
unit equals 512 words and is equivalent to two sectors.

FILE ALLOCATION

Keyed and consecutive fiI e space is allocated on a demand
basis as the file is being created or updated. Therefore the
file does not necessarily exist in contiguous areas on a
RAD or disk pack device and can exist on many different
physical devices. Random file space is contiguous and
is allocated when the file is opened.

A public fi Ie resides on a public device (RAD and/or
disk pack); a private fi Ie resides on private disk pack
volumes. A public file can be allocated in granule
or cylinder units; a private fi Ie is always allocated in
cylinder units.

Fi les on Public RAD and Disk Pack. Allocation of
space for fi les on RAD and/or disk pack follows a set
of rules that may be altered and controlled by both
the user for individual files and by the system manager
on an account or system-wide basis. The scheme pro­
vides for best system performance, in absence of speci­
fication by the user or system manager, or for good
performance of individual jobs by careful selection of
disk pack (DP) or RAD (DC) to optimize the program's
performance.

Although the ru les stated below control the preferred
allocation, the system will continue to look for space
on other devices on request as long as the user-allowed
limit is not exceeded and the space physically exists.

In the absence of other specifications, the monitor uses the
following rules to determine the placement of files on RAD
or disk pack:

1. All permanent files (opened INOUT or OUTIN end
SAVE) prefer disk pack.

2. All temporary files (opened OUT or OUTIN and
RELease) prefer RAD.

3. All account directories (AD), file directories (FD),
and file information tables (FIT) prefer RAD.

4. All star files (system temporary files for ROMs, LMs,
debuggers, etc.) prefer RAD.

90 17 MH-l (9/'18)

Two methodsareavailable to thesystem managerfor control
of file space allocation.

j. Using ANLZ and its subcommand DELTA, the system
cell RADIST may be set nonzero. In this case, the
normal preference is overridden and all space requests
(except expl i cit CYLI NDER u"ocat ion) prefer RAD.

2. Using SUPER, the system manager may separately limit
the amount of $pace on RAD or on disk pack available
to an individuul user. For example, by setting the
disk pack allowance to zero, all files of that user will
be forced to RAD. An error ~o the user program results
if no RAD space is available.

A user program or job may control the allocation of files
to RAD or nisk pack using either ASSIGN control com­
mands or the M:OPE N program procedure. The required
specifications are NOSE P and DEVICE, DP or DEVICE,DC
for preferring disk pack or RAD, respectively. If CYL­
INDER is specified, cylinder-a"ocated disk packs are
preferred.

Public Random Fi let- A public random file is allocated

I, ,on a public device by the default rules or by the type
specified, either RAD (DC) or disk pack (DP). If di.sk pack
was specified, the monitor attempts to allocate in cylinder
units before allocating in granule units.

l'rivate Files. All the index and data blocks of a keyed
or consecutive private fi Ie are allocated from one or more
private disk pack volumes. A keyed, consecutive, or ran­
dom file can extend beyond volume boundaries.

RECORD BLOCKING

The system wi" automatic911y block records for keyed
and consecutive fi les in 512-word blocks to provide more
effi cient use of disk space. The user has no knowledge
of this blocking and, when reading, wi II receive the
appropriate record within the block and not the entire
block.

When updating a keyed fi I e,' the user may rewrite a record
in a size larger or smaller than the! original record size. If
necessary, the monitor wi" allocaire additional disk space
to accommodate the larger size.

A write with a 0 byt'e count to a keyed file will result in a
master index entry for the record with fields in the entry
pertaining to disk address, record size, and displacement
into the blocking buffer all set to zero. A write with a
o byte count toaconsecutive or random file will be ignored.

LABELED TAPIE

CP-V handles two t'ypes of 'abel.~d tape, Xerox labeled
tape and ANS 'abeled tape. Xerox tape labels and ANS

90 17 MH-l (9/18)

tape labe Is are described in the UTS Fi Ie Management Tecli­
nical Manual, 90 1989. (Xerox tape labels are currently
referred to as UTS tape labels in the technical manual.)

XEROX LABELED TAPE

A Xerox labeled tape is given standard Xerox 'abe's when
I/o is first performed on the tape. No tape initialization
is requ ired.

For labeled tapes, record blocking is performed simi larly
to blocking disk records. In BACKSPACE or FORESPACE
operations, the correct tape positioning is accomplished by
reading each block and determining the number of records
within the block (see Figure 4).

ANS LABELED TAPE

An ANS labeled tape is given standard ANS format labels
either through the ANS tape initialization processor (Label)
or as the resu It of an operator key-in.

Important features of ANS labeled tapes include

1. When an input operation is performed, files may be
processed by fi lename and volume sequence number,
thereby eliminating the requirement of having enough
serial number storage space in the DCB for a" volumes
to be processed.

, 2. The nondestruction of an unexpired tape can be, to
some extent, guaranteed. There are two modes of
tape protection that are applicable to ANS tapes:

The protective mode, in which only ANS expired tapes
may be written on through an ANS DCB, no unexpired
ANS tape may be written on through a non-ANS DCB,
a" ANS tapes must be initialized by the Label pro­
cessor, no tape serial number specification is allowed
at the operator's console, specification of an output
serial number in an ANS DCB forces processing to be
done only on a tape already having that serial number,
tapes mounted as IN may not be written, and tapes
mounted as other than I N must have a write ri ng.

The semi-protective mode, inwhicha warning is posted
to the operator when an ANS DCBattempts output on a
non-ANS tape or an unexpired ANS tape when a
non-ANS DCB attempts output on an unexpired ANS

File Storage Devices 25

5 6 7 8 15 16

PBS

SKEY1 KEY1

~---

SKEY2

PBS

SKEY3

PBS contains previous block size.

NKY contains number of entries in block.

SKEY contains size of key (maximum = 31).

KEY contains key.

P3 = 1 means record is unblocked.

P3 = 0 means record is blocked.

RECORD
1

RECCRD2

etc.

Inter-record gap

Inter-record gap

RECORD3
(unblocked)

P2 = 1 mean's record continued into next block.

P2 = 0 means not continued.

P1 = 1 means first part of record.

Pl = 0 means not first part.

RWS contains size of record in block.

KEY2

KEY3

23 24

NKY

RWS 1

RWS2

NKY

Figure 4. labeled Tape Format for Variable-Length Blocked Records

26 File Storage Devices

31

tape, or when a tape mounted as INOUT has no write
ring. Theoperator can authorize the overwrit ing of the
tapeor theoverrideofINOUTwith the OVER and READ
key-ins. ANS tapes may be initial ized by the Label
processor or may be given I(lbels as the result of an op­
erator key-in. Tape serial number specification is al­
lowed at the operator's console, and specification of
an output serial number in an ANS DCB forces process­
ing to be done onl yon a tape 01 ready having that ser­
ial number unless the operator authorizes an overwrite.

The mode of ANS tape protection is determined at
SYSGEN.

3. A number of fi les with the same fi lename and format
may be treated as one logical file. This process is
known as concatenation of files. Files may be con­
catenated in either of two ways.

a. The number of fi les to be concatenated is speci­
fied using the CONCAT keyword and the serial
numbers are specified, in order, using the SN
keyword.

b. The number of fi les to b,e concatenated is specifi ed
using the CONCAT keyword but no serial numbers
are specified. In this case, exactly n files will
be processed regardless of volume serial numbers.
(The value n is specified following the CONCAT
keyword.) The fi les wi" be concatenated in the
order in which they are mounted.

The concatenation feature is highly useful in situations
where several portions of one logical fi Ie have been
generated asynchronously, but the effect is transparent
for input operations.

The user should be aware of the f()lIowing restrictions for
ANS labeled tapes~

1. Tape cataloging is not available in CP-V. Therefore,
Generation Data Groups are not applicable.

2. Blocking and deblocking is the responsibility of the
user or the run-time subroutines of the processors.

3. M.J Itifi Ie tape sets are processed via serial number only.

EXCLUSIVE USE OF TAPE FILES

Single-File Tapes. Once a user has opened a file, no
other user may access the file until the original user
closes it.

Multifile Tapes. Once a user has opened a file on a
multifi Ie tape, no other user may access the tape unti I
the original user has closed the fi Ie. If the REW option
is specified, the tape is rewound and a message is typed
requesting the operator to dismount the reel. Otherwise,
the tape remains at the current position and, if a DCB is
opened using tape, one of two actions occurs:

1. On input or update, the tape is scanned forward fo:
the desired file.

2. On output, the tape is positioned to the end of the
current fi Ie and the new fi Ie is written at that
position.

PHYSICAL DEVICES

On physical devices (unlabeled magnetic tape, punched
cards, and typewriter output) it is frequently desirable for
an operating system to intersperse certain control informa­
tion with user data, to maintain system control, device in­
dependence (to user), etc. On the other hand, users
occasionally desire to control a specific device entirely
as if they were doing the I/O themselves.

These requirements give rise to the need for several formats
for external media.

FORMATTED DATA RECORDS

These records are formatted and/or interpreted by the
monitor. The mode is specified by the NODRC option of
the M:DCB procedure. Exact actions are listed below.

1. Cards - Each binary record is represented on one card.
An EBCDIC record can be represented as one or two
cards. When the mode is changed (between two rec­
ords), a mode control card is interjected (IBCD signals
that an EBCDIC card follows; ! BIN signals that a bi­
nary card follows). End-of-data is signaled by an
lEaD card.

2. Typewriter - Each record is made up of data of a speci­
fied size and terminated by an NL (1516) byte. End­
of-data is signaled by an !EOD record.

3. Unlabeled Magnetic Tape - Records do not contain
any formatted information. End-of-data is signaled
by a physical EOF mark.

The actions resu Iting from various monitor I/o requests are
as follows:

M:READ Read the next record and transfer either the
byte count requested or the number of bytes in the record,
whichever is smaller, eliminating the format information.
Set the'mode in the DCB according to the mode of the rec­
ord. Position to read the following record.

File Storage Devices 27

M:WRITE Write the specified record as formatted data.

M:WEOF Output a physical EOF mark, if unlabeled
tape; an IEOD, if card punch or typewriter; and a top-of­
form, if I ine printer.

M:CLOSE (output mode) If unlabeled tape, output two
physical EOF marks and position the tape between them.
If card punch, output an ! EOD.

M:CLOSE (input mode) No action.

DIRECT DATA RECORDS

These records are not formatted. Direct is specified by the
DRC option of the M:DCB procedure. The user's I/O re­
quest is performed exactly as if he had control of the de­
vice. The data records are represented exactly as user
specified in all cases. End-of-data is signaled by a physi­
cal EOF mark on magnetic tape and by ! EOD on cards or
typewriter. The C device cannot be read with DRC
specified.

The actions resulting from various mon itor I/O requests
are as follows:

M:READ Reads as follows:

1. Unlabeled Magnetic Tape - Read the next record or the
specified number of bytes, whichever is smaller. Posi­
t i on to read the fo II ow i ng record. The spec ifi ed
number of bytes is limited to 32767.

2. Cards - Read the next card in the mode specified by
the DCB (EBCDIC or binary)and transfers either the en­
tire record or the number of bytes requested, which­
ever is small er.

3. Typewriter - Read the specified number of bytes.

M:WRITE Output the specified record intact. If punched
cards, use mode specified in the DCB.

M:WEOF Output a physi,caI EOF mark, if unlabeled
magnetic tape; an I EOD, if punched card or typewriter;
and a top-of-form, if I ine printer.

M:CLOSE No action.

SYNONYMOUS FILES
Synonymous files are null files used to connect several
names to one file. They are used in practice almost exclu­
sively by the loader to handle libraries. System and utility
processors that copy file to file should be able to handle
these files, which exhibit unusual characteristics when they
are opened or read. Here is how they work.

28 Synonymous Fi les

OPEIIEXT

When an attempt is made to open a synonymous file in an
opennext operation, an abnormal return with cade X'OS' is
made. The file parameters are returned if requested and are
indeed those of the synonymous file itself. Only the X'Ol'
(name) and X'OB' (parent name) variable length parameter I
fields are present. If 'TEST FILE' is specified, the return is
not abnormal, and if there is an X'l1' variable length pa­
rameter field in the DCB, its data word has bit 17 set.

To copy the file, theoutput DCBshould be opened with these
file parameters and then immediately closed since there are
no records to read. It is imperative that the parent file (the
file the synonymous file is synonymous to - the name in the
X'OB' field) exist where the file is being copied to, and the
usual technique is to make two passes of opennext - the first
ignoring synonymous files, and the second copying only them.

EXPLICIT OPEN

When a synonymous file is opened by name, noabnormal re­
turn is given, but the file that is opened is the parent rather
than the synonym. The file parameters returned to the user
are those of the parent while the nome field in the DCB is
that of the synonym. The X'OB' field in the DCB is not filled
in with the parent name. If it is necessary to copy the synonym
rather than the parent, several steps are required.

1. First it is necessary to detect whether the file that was
opened is synonymous or not. The best way to do this is
to compare the fi I e name used in the open to the one
returned in the file parameters. If they differ, the file
is synonymous.

2. In order to copy a synonymous file once it is detected,
a special open FPT is necessary. Fl should be set, and
there should be at least),('01' (name) and X'OB' (parent
name) variable length parameter fields. For example:

OPENSYNON GEN,8,24 X'14',M:EO
DATA X '41000001 ,
DATA ABN ABN
DATA 4 INOUT
DATA X '01000808'

PARENT RES 8
DATA X'OB010808'

SYNONYM RES 8

3. To copy the file, the name field from the file param­
eters should be moved to PARENT and the name field
from the DCB to SYNONYM. The output DCB should.
be opened with this FPT and then closed since there
are no records to read. Th is comples the copy.

4. Once the synonymous file has been created, the
S YNON name must be turned off in the DCB in order
to output non-synonymous fil es through that DCB. This
can be accomplished by including X'OBOOOOO1' in the
variable parameters list of the open or adjust DCBFPT.

Again it should be remembered that the parent must be present
in the account to which the synonym is being copied. It may
be necessary.to copy the file whose name is in the original file
parameters before proceeding with the synonymous file copy.

. 90 17 64H-l (9/18)

3. MONITOR CONTROL COMMANDS

INTRODUC'TlON

The operating system is directed Iby means of a job control
language (JCL) consisting of control commands. These com­
mands control the construction and execution Of programs
and provide communication between a program and its en­
vironment. The environment includes the monitor and pro­
cessors (such as Meta-Symbol, COBOL, and FORTRAN IV),
the operator, and the peripheral equipment.

Monitor control commands discussed in this manual may be
categorized as follows:

System

JOB
LIMIT
STEP
POOL
MESSAGE
TITLE
ASSIGN
LDEV
XEQ

Prog ram Load
and Execution

LINK
LOAD
LYNX
OVERLAY
OLAY
INCL
TREE
PTREE
RUN
MODIFY

Input

BIN
BCD
DATA
EOD
FIN

Uti lity

PFIL
REW
WEOF
SWITCH

Debug

PMD
PMDE
PMDI
SNAP
SNAPC
IF
AND
OR
COUNT

System, Input, and Utility control commands are described
in this chapter. Program Load and Execution control com­
mands are described in Chapter.6, and Debug control com­
mands are described in Chapter 7.

The term "alphanumeric" when us'ed in conjunction with any
of the following control command:!i is defined as any combi­
nation of the following characters:

A-Z a-z 0-9 - $ * '0/0 : II @ - +

except where explicitly noted otherwise.

Monitor control commands have the general form

!mnemonic specification

where

in column I, optionally followed by none or one
or more spaces, identifi'es the beginning of a

control command or a control key-in function. No
spaces, however, are allowed between! and JOB
or any of the input control commands. Note that
to avoid problems, any processor control command
or continuation to a monitor control command whose
first few characters match any of the input control
commands or JOB should be used with spaces fol­
lowing! and preceding the term.

mnemonic is the mnemonic code name of a control
function or the name of a processor. If it is
the name of a processor, it may consist of up to
eight alphanumeric characters with no embedded
blanks. If it is the name of a function, it must
be spelled exactly as shown in this manual, with
no embedded blanks.

specification is a listing of required or optional
specification subfields. This may include key­
word operands (shown in this manual in upper­
case letters), labels, or numeric values appropriate
to the specific command. The specification field
may begin one or more spaces after the mnemonic
field, but spaces (blanks) may not be embedded
within options.

The required or optional specifications of a command func­
tion are identified in this manual in the following ways.

Commas are used to separate fields and subfields and are
required where shown, as in

DEVICE, name

Parentheses are used to indicate the subfield groupings and
are required, as in

(SN, value, value)

Brackets are used to indicate selective options. They are
not to be used in the control command and the operations
shown need not appear in any particular sequence relative
to each other in a specific control command. For example:

[(option 1)J[, (option 2)] ••• [, (option n)]

Braces are used to enclose options vertically, thus indicat­
ing a choice can be made, as in

ILOAD J
J OVERLAY •••

o LAY

Single quotations are used in the specification field as
constant delimiters (see Meta-Symbol/LN, OPS Reference
Manual, 900952), and are to be used when shown. For
example:

'ALL' or 'value '

Mon i tor Control Commands 29

A period may be used after the specification field (or after
the mnemonic field if the command is one with no specifi­
cations) as an explicit command terminator. A period is not
required if no comment is to follow the specification field.
A period may also be used in place of the mnemonic field
(i. e., in column 2) to indicate that the "command" con­
tains a comment only.

A semicolon is used as a continuation indicator for the
specification field or for comments to be continued from
one record to the next. (Processor calls cannot be con­
tinued.) For example:

!fication

I mnemon i c speci;

Note the! in column 1 of the continuation card. Annota­
tional comments detailing the specific purpose of a com­
mand may be written following the command terminator.
(Generally a period is used as the command terminator.
However, if the command consists of a mnemonic alone,
one or more blanks may be used as the command termi nator.)
Comments in a control command record may not contain a
semicolon (except as a continuation character).

Communi cation between the operator and the monitor is
accomplished through control commands, key-ins, and mes­
sages. Control key-ins are always input through the opera­
tor's console. Control commands are usually input to the
monitor via punched cards; however, any input device{s)
may be designated for these functions (see "ASSIGN ",
below). All control commands and monitor messages are
listed on the output device designated as the listing log
(normally a line printer). In this manner, the monitor keeps
the operator informed about the progress of each job.

SYSTEM CONTROL COMMANDS

JOB Signals the beginning of a new job.

• Must be the first control command in each job.

• No spaces are allowed between! and JOB.

• May not be continued from one record to the next.

• Subfields must be separated by a comma.

• Must specify a legal account and name combination
and (optionally) a priority authorized for that user.

30 System Control Commands

The form of the JOB control command is

I JOB account ,name[(ext. actg. }] [,priority ~wsn ==:J

C[,;ossword JJ]
where

account specifies an authorized batch processing
account number of from one to eight characters.

name identifies the user. The name may consist of
from one to more than 12 alphanumerk characters,
but only the first 12 will be used.

ext. actg. identifies the user's accounting informa-
tion as a subset of the user's name. It may consist
of from one to more than 24 characters, but only
the first 24 will be used. Legal values are any
alphanumeri c characters except commas (,) and
parentheses (0).

priority specifies the priority of the job. Legal
values are

o

l-F16

(hold in job queue unti I priority is
changed by a PRIORITY key-in).

(lowest to highest priority).

The defaul t value is 1.

wsn specifies a workstation name ond is only ap-
plicable to remote processing (see the CP-V/RP
Reference Manual, 90 30 26). If the workstation
name is present and valid, the job's output will be

. assigned to the specified workstation. If it is not
present, the job's output is returned to the work­
station at which the job originated.

password specifies a user password which may con-

Example:

sist of one to eight characters and is onl y appl icable
to remote batch or locally submitted batch jobs.
The printing of the password is suppressed when the
JOB control command is listed.

!JOB C6400314,SMITH-1234(3211-XYZ}, F .3211,3291

This example specifies that the account number of the job
is C6400314, the user is SMITH-1234 with extended ac­
counting 3211-XYZ (employee" 1234 named Smith with ex­
tended accounting information specifying 3211-XYZ), and
the job has priority F (the highest possible). The period
following the specification fields indicates that the re­
mainder of the record consists of comments.

90 17 64H-l (9/78)

.LIMIT Specifies (in decimal integers) maximum values
for various system resources required by the job.

• LIMIT control commands arlS! optional, and, if included,
must follow the JOB control command.

• Job aborts when Ii mi t for any system resource is exceeded.

• LIMIT commands cannot be continued. However, mul­
tiple LIMIT c:ommands are allowed in a job.

The form of the LIMIT control command is rMIT (option)[,(option)i ••.

where the parameter options are

ACCOUNT specifies tholt no other batch job with this
account is to be run concurrently. The defaul t is to
allow the execution of concurrent batch jobs under
the same account. Specification of ACCOUNT
has no effect on on-line jobs.

CORE,value specifies, ;in K units where K = 1024
words, the maximum amount of core required for
the user's data, DCBs, and procedure. The core
space fOil" shared processor procedure called by the
user and context items required by the monitor (such
as JITs and buffers) is not included in this limit.

DO,value specifies the rnaximum number of printed
pages that may be outplut for diagnosti cs in the cur-'
rent job. (Output is viI) the M:DO DCB.) The maxi­
mum value that may be specified is 32,767. Note
that ~ PMD output is not subj ect to thi~ limitation.

LO,value specifies the maximum number of printed
pages (excluding diagnc)stic output) that may be
Ii sted by shared processors for the current job. The
maximum value that may be specified is 32,767.

{xn']} [{XP']}] MOUNT,(S[i[] ,sn, •••) ,(SO[] ,sn, •••) •••

specifies which packs are required an~ whether
they are to be shared 011" are to have exclusive
use, where

X indicates that the referenced disk packs
are not to be shared (i. e. I they are to
have exclusive use).

S indicates tha~ the referenced disk packs
are to be shared.

sn specifies the serial number of the disk
pock.

ij specifies the type of disk pack, such as
SP. If ij is omitted, the type is assumed
to be SP.

NORDER specifies that this job is not dependent
upon the outcome of any previously submitted
jobs.

90 17 MH-l(9/18)

ORDER specifies this job is to be run only after all
previously entered jobs with the same account
number have been run.

PDISK,value specifies, in decimal, the maximum
number of publ ic (disk pack) storage granules that
are to be allocated for permanent files by the cur­
rent job.

PO,value specifies the maximum numberof punched
cards that may be produced in the current job. The
maximum value that may be specified is 32,767.

PSTORE,value specifies, in decimal, the maximum
number of publ ic (RAD) storage granules that are
to be allocated for permanent files by the current
job.

RERUN requests that in the event of a system fail-
ure wh i Ie the job is runn ing, the job be rerun
after the recovery. The request will be honored
unless the job is suspected (by the system) of
causing the failure. Note that RERUN is not ap­
propriate for all jobs. For example, it could be
disastrous to rerun an interrupted job that updates
a data base.

resource name,value specifies the maximum number
of resources, where resource name is a system man­
agement defined label such as

9T in which case the value specifies
the maximum number of 9-track tape
drives.

7T in which case the value specifies
the maximum number of 7-track tape
drives.

SP in which case the value specifies the
maximum number of spindl es required ex­
clusively for disk pack use. This value
determines which partitions are available
for the current job. Shared spindles are
not counted for partition fit and are not
included in the SP count.

For example, (9T,S)declares that a maximum
of five 9-track tapes are required for the
current job.

TDISK,value specifies, in decimal, the maximum
number of publ ic (disk pack)storage granules that
are to be allocated for temporary files by the cur­
rent job.

TIME,value specifies, in minutes, the maximum ex-
ecution time for the current job.

TSTORE,value specifies, in decimal, the maximum
number of public (RAD) storage granules that are
to be allocated for temporary fil es by the current

job.

System Control Commands 31

UO,value specifies the maximum number of printed

Example:

pages that may be output byan executing user pro­
gram (nonshared processor) in the current job. The
maximum value that may be specified is 32,766.

I LIMIT (TIME, 10),{LO, 1 00), (PO,2500),{DO,50),(UO,75)

The above example specifies that the current job may require
no more than 10 minutes of execution time, 100 pages of ob­
ject listings, 2500 object cards, 50 pages of diagnostics out­
put, and 75 pages of output produced by the execution
program.

STEP Provides conditional execution of job steps. It
operates on and tests the value of the step condition code
(SCC), a monitor item that is located in the JIT. At the
beginning of a job, the SCC is set to zero. During the job,
the SCC may be modified in one of two ways:

1. The SCC may be set at the end of a job step to refl ect
the manner of completion. The following values are
used:

2 - the step was skipped

4 - the step was errored

6 - the step was aborted

The SCC will only be set if the job step did not execute
successfully and if the new value is greater than the current
value in the SCC.

2. The SCC may be set as the result of a STEP control
command to any hexadecimal value in the range O-F.
The value is specified in the STEP control command
and is only used to set the SCC under certain con­
ditions (described below).

The STEP control command has the form

(STEP op,vl~v2]

where

op specifies the type of comparison to be made.
Possible specifications are

G T - greater than

LT - less than

EQ - equal to

GE - greater than or equal to

32 System Control Commands

LE - less than or equal to

N E - not equal

specifies the hexadecimal value to be compared
with the SCC.

v2 specifies the hexadecimal value (in the range O-F)
used to reset the SCC.

If the logical expression (SCC op vI) is true, the next job
step is executed and the SCC is set to the value specified
by V2. (If v2 is not specified, the SCC remains unchanged.)
If the logical expression is false and the current value of the
SCC is less than 2, control commands are skipped up to the
next STEP control command (or to the end of job if there is
not a subsequent STEP control command) and the SCC is set
to indicate that the step was skipped.

The STEP control command may be placed anywhere in a
job except in the middle of debug control commands. The
S TE P contro I command wi II not be honored and the entire
job wi II be aborted if any of the following conditions is
encountered:

1. Invalid JOB or LIMIT control command (e.g., invalid
syntax in command).

2. Operator abort key-in.

3. Violation of values specified in LIMIT control command
(e. g., specified execution time exceeded).

Example:

(STEP LE,2, 0

The above example tests the results of previous job steps
as recorded in the SCC. If the SCC is less than or equal
to 2, the SCC is set to 0 and the next job step is executed.
Otherwise, the SCC remains unchanged and all control com­
mands are skipped up to the next STEP control command or
unti I the end of job.

POOL specifies the number of buffers to be allocated to
the monitor for file indexes and file data. A POOL control
command may appear anywhere except between the JOB and
LIMIT commands or within a series of debug commands.

If POOL is not specified, system limits are assumed. The
maximum number of buffers allocated wi" never exceed
available storage.

The form of the POOL control command is

!POOL (FPOOL,value)

where va I ue spec i fi es the number of 512-word buffers to be
allocated for file management. The value specification
must be in the range 4 to 22. For opti mum performance,
each DCB open to a labe led tape or disk fi Ie shou Id have
the following number of buffers:

labeled tape

consecutive disk fi Ie

keyed disk file 2

random disk file o

If fewer than the optimum number of buffers are available,
the buffers wi" be shared.

MESSAGE sends a message I~o the operator console
(OC device) and listing log (Ll. device) at the time that
it is encountered by the monitor.

• May not continue from one record to the next.

• More than one MESSAGE control command in succes­
sion is permissible.

The form of the MESSAGE control command is

IMESSAGE message string

where message string specifies the message to be typed.

Legal values are all characters, including blanks.

Example:

IMESSAGE SEND ALL SAVE TAPES TO BEN NEVIS

The above examp~e causes the following message to be out­
put on the LL and OC devices.

·id: MESSAGE SEND ALL SAVE TAPES TO BEN NEVIS

where id specifies the user's job identification.

TITLE inserts a heading at the beginning of each
logical page listed on the LO device.

• May not continue from one record to the next.

• Has no effect if a header has been specified for LO
output (see M:DEVICE procedure under IISpecify Out­
put Header ll

), or if LO output is not assigned to a
I isting type device.

• Within a job, the most recent TITLE control command
is in effect, and page numbering begins at 1 when
each TITLE control command occurs.

The form of the TITLE control command is

(!TITLE title string

where title string specifies the title that is to appear on
each page.

Legal values are all characters, including blanks.

Example:

ITITLE*STRESS-ENERGY TENSOR ANALYSIS*

The above example causes the title string to be output at
the top of each logical page listed on the LO device by
the exec uti ng program.

'ASSIGN An ASSIGN control command can be used to
assign a user's logical I/O device to a system logical
or physical device. A logical device in a user's program
is controlled by a data control block and is referred to
symbolically by a name beginning with the characters IIF: II
or 11M: II.

If a DCB contains all necessary information when assem­
bled into the load module of the user's program, then no
ASSIGN command is needed. However, if the DCB is
incomplete or if the user wishes to use an ASSIGN com­
mand to alter one or more of the parameters, this may
be done at any time in the job prior to execution of the
program containing the DCB. Any parameters altered in
this way will remain altered throughout execution of the
user's program unless explicitly changed by a call to a
system function (see "M:OPEN II and IIM:CLOSE II proce­
dures). If a series of ASSIGN commands is given speci­
fying the same DCB name, each successive command can­
cels all effects of the previous one. The DCB param­
eters then reflect the explicit options of the most recent

System Control Commands 33

ASSIGN command for that DCB; parameters not included
in the most recent command revert to the values of the
DCB established when the userls program was assembled.

The total number of words (the assign/merge information)
required to express ASSIGNs (or SETs) for a job, whether
on-line or batch, may not exceed 512 words (an error mes­
sage results if it does). Each assignment requires a mini­
mum of four words, plus the number of words in the DCB
name, plus the number of words in the open FPT for the
requested assignments. Assignments may be replaced or
deleted during the course of the job.

The parameters required in a DCB depend on the types
of I/O operations to be performed and the types of devices
and/or fi les to which the DCB may be assigned. In gen­
eral, a DCB must contain at least the following parameters
at the ti me that II 0 is to be done:

1. Device or fi Ie name defining the assignment of the
DCB.

2. Fi Ie function (IN, OUT, etc).

3. Buffer address (if data is to be read or written).

4. Number of bytes to be transferred (if data is to be
read or wr i tten).

The above parameters may be assembled into the DCB via
the M:DCB procedure or may be specified in an M:OPEN
procedure call. The first two may also be specified by an
ASSIGN command, and the last two may be specified in
an M:READ or M:WRITE procedure ca II.

Output to a labeled tape or disk fi Ie through a monitor
DCB such as M:BO, M: LO, etc., wi II exist as a single
file provided that the DCB is not reassigned between job
steps via an ASSIGN control command or an M:OPEN
procedure ca II.

Note: The following restriCtions exist. The M:C DCB,
i.e., the C device, is normally assigned to the
card reader. I t cannot be reassigned wi th the
ASSIGN control command. In addition, the fol­
lowing system DCBs cannot be reassigned with the
ASSIGN control command: M:=, M:*, F:CF, and
M:OC.

When the M:GO DCB is assigned to a file, that file
is automatically deleted at job termination.

Disk pack devices are declared either public or private at
SYSGEN time. The volume on a public disk pack device
becomes part of the system IS secondary storage and must be

System Control Commands

in place at all times whi Ie the system is active. A fi Ie
residing on a public device (or devices) is called a public
fi Ie. The dismountable volumes on a private disk pack de­
vice are used in much the same way that tape reels are used.

A file residing on a private volume is called a private file.
A private volume-set is defined as a collection of remov­
able volumes that the user has grouped together containing
any number of fi les with any type of organization (consec­
utive, keyed, or random).

A private volume-set is identified by the volume serial
numbers specified in the SN option of the ASSIGN com­
mand when the first file is written on the set. Volumes
may be added to the set by the addition of a new volume
serial number in the SN list, but a volume may not be
removed. The system bui Ids both an Account Directory and
a Fi Ie Directory (containing information about all fi les in
the account) on each private volume-set so that a set of
volumes is a self-contained entity and can be transported
from one computer site to another.

There are four general types of assignments that can be
made via the ASSIGN control command: disk fi les, Xerox
labeled tape fi les, ANS labeled tape fi les, and fHes on
other devices. Described below are four types of ASSIGN
control commands, one for each type of assignment. In
each case, only the options that are normally appropriate
to the specific type of assignment are listed. Deleting
assignments is discussed after the description of the four
types of ASSIGN commands.

DISK FILE ASSIGN COMMAND

The form of the ASSIGN control command for disk fi les is

IASSIG N dcb name,(FILE,name [,account]) ~

L[, (option)] ...

where

dcb name specifies the name (not exceeding
31 characters in length) of the DCB to be refer­
enced. This must be the first subfield following
ASSIGN, and must be followed by the FILE key­
word. The first two characters of a userls DCB
name must be "F:" (e.g., F:PRINT or F:BI). The
first two characters of a monitor DCB' name are
"M:" (e.g., M:LO).

FILE,name&account] specifies the name of the
public or private disk fi Ie that is to be assigned
to the DCB. The name may consist of up to
31' alphanumeric characters. The named fi Ie
will be maintained on RAD or DP storage. If

90 17 64H-1 (9/18)

the file belongs to a different account than that
of the current job, the file's account number must
be given. Otherwise, the file's account number
is defaulted to the user's account. If the file is
private, the SNoption must be used to specify the
serial number{s} of the private volume-set.

The options are as follows:

Physical Device

DEVICE,name specifies the type of physical device to
be used for file storage {e.g., DC, DP}. Name may
be any disk device which was declared at SYSGEN.
Use of the DP device type COluses the system to request
the default disk type that was defined at SYSGEN.
The DEVICE option on an ASSIGN command is nor­
mally used only when ASSIGNing a file on a pri­
vate volume set.

If device type is not specified for public files, space
for the file will be allocated on any available RAD
and/or public disk pack devices. Otherwise, space
for the file will only be allocated on the type of de­
vice specified ..

Organization {one of the three types given below}

CONSEC specifies that the records in the file are
consecutively organized and each record is to be
processed in order. This is the default if no organ­
ization is specified.

If a private fi Ie has consecutive organization, the
system only requires that one volume in the private
volume-set be mounted at any time. As another vol­
ume is required, the system wi II request that it be
mounted.

KEYED specifies that the loca'~ion of each record in
the file is determined by an explicit identifier (key).
If a private fi Ie has keyed organization, all volumes
in the set must be mounted when the file is opened and
remain mounted unti I the fi Ie is closed.

RANDOM specifies that the data in the file is to be
written in contiguous areas of a random access de­
vice and accessed by specifying the starting block
number. If device type is not specified, the file
wi II be allocated on RAD or disk pack, whichever
is available.

If a private fi Ie has random organization, all volumes
in the set must be mounted when the file is opened and
remain mounted until the file is closed.

90 1764H-l(9/78}

Access (one of the two access means given below)

SEQUEN specifies that records in the fi Ie are to be
accessed in the order in which they appear within the
file. This is the default if neither SEQUEN nor
DIRECT (see below) is specified.

DIRECT specifies that the next record to be accessed is
to be determ i ned by a key.

Function (one of the four modes given below)

IN [SHARE]
,EXCL

specifies the input mode. This is the de­
fault if function is notspecified. SHARE

specifies share mode for the DCB which allows more
than one IN and/or INOUT user to access the fi Ie
concurrently. EXCL ~pecifies exclusive mode for the
DCB which means that the user must have exclusive
use of the file. The default is EXCL.

OUT specifies the output mode.

IN OUT [,SHAREl
,EXCL J specifies the input and output mode

{i. e., the update mode}. SHARE
specifies share mode for the DCB which allows more
than one IN and/or INOUT user to access the file
concurrently. EXCL specifies exclusive mode for the
DCB which means that the user must have exclusive
use of the fi Ie. The default is EXCL.

OUTIN specifies the output and input mode (i. e., the
scratch mode).

Fife Disposition (one of the two specifications given below;
meaningful only for OUT or OUTIN files).

REL specifies that the secondary storage allocated to
this file is to be released when the file is closed.
See FILES, in the discussion of M:CLOSE.

SAVE specifies that the secondary storage allocated to
this file is not to be released when the file is closed,
unless specified otherwise by an M:CLOSE procedure
call. If SAVE is not also specified in the M:CLOSE,
the secondary storage allocated to this file will be
released.

JOB specifies that the file is temporary. It is to be
saved across job steps but is to be released when the
job ends.

Other Options

CYLINDER specifies that the public file is to be allo-
cated from publ ic devices having cyl inder allocation
units. If CYLINDER is not specified, the public file

System Control Commands 35

is allocated from public devices having granule allo­
cation units. In either case, the file will only be
allocated on the type of device specified with the
DEVICE option. If the DEVICE option is not specified,
the system looks for space on public disk packs first
and RADs last. If space is not available in the units
requested, the file will be allocated in the available
units from publ ic devices of the type requested.
CYLINDER only has meaning for public files.

EXECUTE[,value). .• specifies the account numbers
of those accounts that may execute the fi Ie. Up to
eight account numbers may be specified. The value
All may be used to specify that any account may
execute the file. The value NONE may be used to
specify that no other account may execute the file.
This option is valid only for OUT and OUTIN files.
If no value is specified, all execute account entries
in the DCB are reset.

I mm,dd,yYI
EXPIRE, ddd specifies either an explicit expi-

NEVER ration date (mm,dd,yy), the num-
ber of days to retain the file (ddd), or that the file
is never to expire (NEVER). If not specified, the de­
fault value as established in the authorization rec­
ord for the user will determine the expiration date.
Files will be automatically purged from the public
file system if they have expired whenever secondary
storage space passes below a SYSGEN-established
threshold.

The value specified may not exceed the maximum ex­
piration period authorized for the user. If the maxi­
mum expiration period is exceeded or unspecified, the
default expiration period authorized for that user wi II
be used. If this option is omitted from the M:DCB
procedure call it will not appear in the DCB and, con­
sequently, may not be used in an ASSIGN control com­
mand or M:OPEN procedure call referencing the DCB.
If EXPIRE is specified but no value given in the
M:DCB call, two words are reserved for the value
(to be inserted via an ASSIGN control command or
M :OPEN procedure ca II).

KEYM,value specifies the maximum length, in bytes,
of the keys associated with records within the file. A
key may consist of up to 31 characters. The default
value is 11.

NEWX, slides[, consecutive slides] allows the user to

36

specify "when II and "if" a keyed fi leis higher-level
index structure should be built (or rebuilt). Un­
less otherwise specified, the higher-level index
structure is bui It for the first time when a keyed
file that has more than three level 0 index blocks
is closed.

System Control Commands

slides specifies the number of blocks that can be
added to the fi leis index since the current higher­
level index structure was built; if the specified
value is exceeded, the higher-level index struc­
ture will be rebuilt when the file is closed. If
a value of 255 is specified, the higher-level in­
dex structure will not be built (or rebuilt). If
NEW>< is not specified, the value 254 is used in
default.

consecutive sl ides specifies the number of contigu-
ous blocks that can be added to the filels index
since the current higher-level index structure was
created; if the specified number is exceeded, the
higher-level index structure will be rebuilt when
the fi Ie is closed. If the number is not specified,
2 is used in default.

NOSEP specifies that the index blocks of a public fi Ie
are to be allocated in the same way that the data
blocks are allocated. (Note that only keyed files
have index blocks.) If NOSEP is not specified, the
index blocks of a public fi Ie are allocated from pub­
lic devices having granule allocation units. In either
case, the file will only be allocated on the type of de~
vice specified with the DEVICE option. If the DEVICE
option is not specified, the system looks for avai lable
granules on public disk packs first and RADs last. If
space is not avai lable in granule units, the system looks
for space on public disk packs with cylinder allocation
units. NOSEP only has meaning for public fi les with
keyed or consecutive organization.

PASS,name specifies the password that wi II allow ac-
cess to a password protected fi Ie {after any other
security checks have been made}. The password may
be from one to eight characters in length and wi II be
omitted from the listing of the ASSIGN commands.

READ[,value]. • • specifies, for OUT or OUTIN files
only, the account number of those accounts that may
read but not write the file. The value All may be
used to specify that any account may read the file
(e.g., READ,All). The value NONE may be used
to specify that no other account may read the file. If
no value is specified, or if READ (and WRITE, see be­
low) is omitted, Allor NONE, as specified in the
authorization record for that user, is assumed by de­
fault. The total number of accounts explicitly speci­
fied in the READ and WRITE options must not exceed 16.
READ is applicable to OUT or OUTIN files only.
Also see WRITE and EXECUTE.

RECl,value specifies the default record length, in
bytes. The greatest value that may be specified
is 32,767. If RECl is not specified, a standard value
(appropriate to the type of device used) wiH apply.

90 17 64H-1 (9;78)

The value specified in an ASSIGN command will
override that assembled into the DCB but will not
override the RECl specifi'cation of an M:OPEN call
or the SIZE specification of an M:READ or M:WRITE
procedure co II.

RSTORE,limit specifies, in decimal, the number of
granules to be allocated to a RANDOM fi Ie. RSTORE
is only honored when the fi Ie is first created.

SN[,serial numbed. .• specifies the serial numbers of
the private disk pack volumes that are to be used for
file input 011' output. The serial number may be from
one to four alphanumeric characters and a maximum of
three serial numbers may be specified for system DCBs.
If SN is not specified (by ASSIGN, M:DCB or
M:OPEN), the file is assumed to be on public devices.
If no serial number is specified, all serial number
entries in the DCB are resE,t.

For a file on a private volume-set:

1. When the first fi Ie on a private volume-set is
created, all serial numbers in the set must be
specified and the first volume in the set wi II be­
come the primary volume

2. If the private vol ume-'set has been established,
only the serial number of the primary volume need
be specified. The primary volume contains a list
of a II seri a I numbers in the set.

3. If one or more volumes are to be added to the set,
the serial numbers of the new volume(s) must be
specified following thE! primary volume.

The SN option must be specified in the M:DCB pro­
cedure call for it to appear in the DCB so that it may
be used by the ASSIGN c:ontrol command or the
M:OPEN procedure call. When SN is specified in
the M: DCB procedur~ call but no serial numbers are
given, three words are reserved for the serial numbers
which can be inserted through ASSIGN or M:OPEN.

The INSN and OUTSN opt:ions used in the previous
version of the monitor were replaced with the SN op­
tion. For compatibility, the INSN and OUTSN op­
tions are acceptable in lieu of SN.

SPARE,n specifies in bytes the amount of spare space to
be left unused at the end of each index block whi Ie a
keyed file is being created or updated with sequential
access. The value specified may not exceed 255 bytes;
if it does, it is treated modulo 256. If SPARE is not

90 17 64H-l (9/78)

specified or is zero, it is set to 102 bytes by default.
This spare space is used so that additional keys can be
inserted in a minimum time when updating the file with
direct access (as in EDIT). If the fi Ie wi II never be
updated with direct access, a spare value of one should
be specified.

TRIES,value specifies the maximum number of recovery
tries to be performed for any I/O operation. The
greatest value that may be specified is 255. The
default value is 10.

WRITE[,value]. • • specifies, for OUT or OUTIN files
only, the account number of those accounts that may
have both read and write access to the file. The values
All and NONE maybe used, as'with the READoption;
and, if a conflict exists between READ and WRITE
specifications, those of the WRITE option take prece­
dence. NONE is assumed by default.

The READ and WRITE option must be specified in the
M:DCB procedure call for it to appear in the DCB so
that it may be used by the ASSIGN control command
or the M:OPEN procedure call. When READ or
WRITE are specified in the M:DCB procedure call but
no account numbers are given, 16 words are reserved
for either READ or WRITE and can subsequently be
filled by ASSIGN or M:OPEN.

UNDER[,name} specifies the name of the only processor
that may access this file if the user does not own the
file. The name may be from one to ten characters.
The processor may be any shared processor or any load
module in the :SYS account. If EXECUTE accounts
are specified and UNDER is not specified, the file is
presumed to be a load module and UNDER, FETCH is
implied by default. FETCH is the name of the moni­
tor routine that places a program into execution. If
no name is specified, the processor entries in the
DCB are reset.

XEROX LABELED TAPE ASSIGN COMMAND

The form of the ASSIGN control command for Xerox labeled
magnetic tape fi les is

IASSIGN dcb name, (LABEl,name(,account]) --,

L[, (option)] ..•

where

dcb name specifies the name (notexceeding31 char-
acters in length)of the DCB to be referenced. This
must be the first subfield following ASSIGN, and
must be followed by the LABEL keyword. The first
two characters of a user's DCB name must be "F: II
(e.g., F:PRINT or F:BI). The first two characters
of a monitor DCB name are "M: II (e.g., M:lO).

System Control Commands 37

LABEl,name[,account] specifies the name of the
magnetic tape fi Ie that is to be assigned to the
DCB. The name may consist of up to 31 alpha­
numeric characters. If the fi Ie belongs to a dif­
ferent account than that of the current job, the
file's account number must be given. Otherwise,
the file's account number is defaul ted to the user's
account. If the file is to be input, the SN option
must be used to specify th e tapes containing the file.

The options are as follows:

Physical Device

DEVICE,name specifies the type of tape drive to be used
for fi Ie input or output. Name may be any tape device
whi ch was declared at SYSGEN.

The standard tape devi ces are:

7T = 7 -track tape dri ve.

9T = 800 bpi 9-track tape drive.

BT = 1600 bpi 9-track tape drive.

MT = installation dependent (see below).

Use of the MT device type causes the system to request
the default tape type that was defined at SYSGEN.

Organization (one of the two types given below)

CONSEC specifies that the records in the fi Ie are
consecutively organized and each record is to be pro­
cessed in order. This is the default if no organization
is specified.

KEYED specifies that the location of each record in the
fi Ie is determined by an explicit identifier (key).

Access {one of the two access means gi ven be low}

SEQUEN specifies that records in the file are to be
accessed in the order in which they appear within the
fi Ie. This is the default if neither SEQUEN nor
DIRECT (see below) is specified.

DIRECT specifies that the next record to be accessed
is to be determined by a key.

Function (one of the four modes given below)

IN specifies the input mode.

OUT speci fi es the output mode.

38 System Control Commands

INOUT

OUTIN

specifies the input and output mode (i. e., the
update mode).

specifies the output and input mode (i. e. I the
scratch mode).

Other Options

KEYM,value specifies the maximum length, in bytes
of the keys associated with records within the fj Ie. A
key may consist of up to 31 alphanumeric characters.
The default value is 11.

PASS,name specifies the password that wi II allow access
to a password protected fi Ie (after any other security
checks have been made). The password may be from
one to eight characters in length and wi" be omitted
from the listing of the ASSIGN command.

READ[,value] . . . specifies the account numbers of
those accounts that may read but not wri te the fi Ie.
The value All may be used to specify that any account
may read the fi Ie (e. g., READ,All). The value NONE
may be used to specify that no other account may read
the fi Ie. If no value is specified, or if READ (and
WRITE, see below) is omitted, Allor NONE, as spec­
ified in the authorization record for that user, is as­
sumed by default. The total number of accounts
explicitly specified in the READ and WRITE options
must not exceed 16. READ is applicable to OUT or
OUTIN files only.

RECl,value specifies the default record length, in
bytes. The greatest value that may be specified is
32,767. If RECl is not specified, a standard value
(appropriate to the type of device used) will apply.
The value specified in an ASSIGN command wi II
override that assembled into the DCB but wi II not
override the RECl specification of an M:OPEN call
or the SIZE specification of an M:READ or M:WRITE
procedure call.

SN[,serial number). specifies the serial numbers of
the tape reels that are to be used for fi Ie input or
output. The serial number may be from one to four
alphanumeric characters and a maximum of three serial
numbers may be specified for system DCBs.

For a file on labeled tape:

1. Serial numbers must be ordered in the proper se­
quencefor a file to be opened in the IN or INOUr
mode. If SN is not specified (by ASSIGN, M: DCB
or M:OPEN), the DCB is not opened and an ab­
normal code of X'14' is returned.

2. The fi Ie wi" be written in the order in which the
serial numbers are specified for a fi Ie to be opened
in the OUT or OUTIN mode. If SN is not speci­
fied (by ASSIGN, M:DCB or M:OPEN), available
scratch tape{s) of the type specified in the DEVICE
option (or by default, any type available)will be
used.

90 17 64H-l(9/78)

The INSN and OUTSN options used in the previous
versions of the monitor were replaced with the SN op­
tion. For compatibility, the INSN and OUTSN op­
tions are acceptable in lieu of SN. If no serial number
is specified, serial number entries in the DCB are
reset.

TRIES,value specifies the maximum number of recovery
tries to be performed for an:v I/o operation. The
greatest value that may be specified is 255. The de­
fault value is JO.

VOl,value specifies which tape reel in the SN list is to
be used initially. A value of 1 designates the first (in
the list), a value of 2 designates the second, etc. If
VOL is omitted, a value of 1 'is assumed by default.

WRITE['value] . . • specifies the account number of
those accounts that may have both read and write
access to the file. The values ALL and NONE may
be used, as with the READ option; and, if a conflict
exists between READ and WRITE specifications, those
of the WRITE option take precl~dence. NONE is as­
sumed by default. WRITE is cfpplicable to OUT or
OUTIN files only.

The READ or WRITE option mu:st be specified in the
M:DCB procedure call for it t() appear in the DCB so
that it may be used by the ASSIGN control command
or the M:OPEN procedure calli. When READ or WRITE
is specified in the M:DCB proc:edure call but no ac­
count numbers are given, 16 words are reserved for
either READ or WRITE and can subsequently be filled
by ASSIGN or M:OPEN.

DEN,value specifies the density at which a magnetic
tape is to be read or written. Only values of 800 or
1600 are acceptable.

ASCII specifies that conversion of code between
EBCDIC in core and ASCII on tl:llpe is to be performed.
ASCII is legal on~ y for tape drives having this feature.

EBCDIC specifies that no conversion of code is to take
place (see ASCn above) and that the tape is to be
read and written in EBCDIC.

ANS LABELED TAPE ASSIGN COMMAND

The form of the ASSIGN con,trot command forANS labeled
magnetic tape fi les is

IASSIGN dcb name, (ANSLBL,name)[, (option)] •••

where

dcb name specifies the name of the DCB to be ref-
erenced. This must be the first subfield follow­
ing ASSIGN, and must be! followed by the
ANSLBL keyword. The first two characters of a
user's DCB name must be "F:" (e.g., F:PRINT or
F:BI). The first two characters of a monitor DCB
name are "M: II (e. g., M:LO).

90 17 64H-l (9;78)

ANSLBL,name speci fies the name of the magnetic
tape fi I e that is to be ass i gned to the DC B. The
name may consist of up to 17 characters. If the
fi Ie name contains special characters, it must be
enclosed by single quotation marks. When a
single quotation mark is to be used as part of the
fi Ie name, it must be coded as two successive
quotation marks. There should be no blanks be­
tween the last character and the terminating quo­
tation mark.

The options are as follows:

Physical Device

DEVICE,name specifies the type of tape drive to be used
for file input or output. Name maybe any tape device
which was declared at SYSGEN.

The standard tape devices are:

7T 7-track tape drive.

9T 800 bpi 9-track tape drive.

BT 1600 bpi 9-track tape drive.

MT = installation dependent (see below).

Use of the MT device type causes the system to request
the default tape type that was defined at SYSGEN.

Function (one of the four modes given below)

IN specifies the input mode.

OUT specifies the output mode.

INOUT

OUTIN

specifies the input and output mode (i. e., the
update mode).

specifies the output and input mode (i. e., the
scratch mode).

Other Options

ABCERR specifies that block count errors (inconsis:'encies
between the tape-specified and the system-accumulated
block counts}are not to result in program abortion.

BLKL,value specifies block size in bytes. The value may
be in the range 1 to 32,767. If a value less than 18
bytes is specified, 18 bytes are written.

CONCAT,value specifies the number of identically named
fi les that are to be read as one logical fi Ie (concaten­
ated). The value may be in the range 2 through 255.

EXPIRE, {~~,dd,yy} specifies either an explicit expir­
ationdate (mm,dd,yy)or the num­

ber of days to refain the file (ddd). If not specified,
the default value as establ ished in the authorization
record for the user will determine the expiration date.
Fi les wi II be automatically purged from the publ ic fi Ie
system if they have expired whenever secondary stor­
age passes below a SYSGEN-established threshold.

System Control Commands 39

The value specified may not exceed the maximum
expiration period authorized for the user. If the max­
imum expiration period is exceeded or unspecified, the
default expiration period authorized for that user will
be used. If this option is omitted from the M:DCB pro­
cedure call it will not appear in the DCB and, conse­
quently, may not be used in an ASSIGN control
command or M:OPEN procedure call referencing the
DCB. If EXPIRE is specified but no value given in the
M:DCB call, two words are reserved for the value
(to be inserted via an ASSIGN control command or
M:OPEN procedure call).

FORMAT,character specifies the record formats. The
character may be

F - fixed length.

D - variable specified in decimal.

v - variable specified in binary.

U - undefined.

LRECL,value specifies the logical record size in bytes.
The value may be in the range 1 to 32,767.

SN[, serial number1. • • specifies the serial numbers of
the tape reels that are to be used for file input or
output. The serial number must consist of six alpha­
numeric characters (blanks are permissible) and a
maximum of three serial numbers may be specified by
system DCBs. If blanks are used, the serial numbers
must be enclosed within quote marks. ANS serial
numbers are stored in encoded format so that they wi"
fit within 32 bits.

The INSN and OUTSN options used in the previous
versions of the monitor were replaced with the SN
option. For compatibility, the INSN and OUTSN
options are acceptable in lieu of SN. If no serial
number is specified, serial number entries in the DCB
are reset.

TRIES,value specifies the maximum number of recovery
tries to be performed forany I/o operation. The great­
est value that may be specified is 255. The defau It
value is 10.

VOL,value specifies which tape reel in the SN list is
to be used initially. A value of 1 designates the first
(in the list), the value 2 designates the second, etc.
If VOL is omitted, a value of 1 is assumed by default.

DEN,value specifies the density at which a magnetic
tape is to be read or written. Only values of 800
or 1600 are acceptable.

ASCII specifies that conversion of code between EBCDIC

40

in core and ASCII on tape is to be performed. ASCII
is legal only for tape drives having this feature.

System Control Commands

EBCDIC specifies that no conversion of code is to take
place (see ASCII above) and that the tape is to be
read and written in EBCDIC.

JOURNAL ASSIGN COMMAND

The form of the ASSIGN control command for a common
journa I fi Ie is

IASSIGN dcb name, (JRNL,name[,account])

where

dcb name specifies the name (not exceeding
31 characters in length) of the DCB to be refer­
enced. This must be the first subfield following
ASSIGN, and must be followed by the JRNL key­
word. The first two characters of a user's DCB
name must be "F:" (e.g., F:PRINTorF:BI). The
first two characters of a monitor DCB name are
"M:" (e.g., M:LO).

JRNL,name&account] specifies the name of the
common journal that is to be assigned to the DCB.
The name may consist of up to 31 alphanumeric
characters. If the file belongs to a different ac­
count than that of the current job, the file's ac­
count number must be given.

DEVICE ASSIG N COMMAND

The form of the ASSIGN control command for devices other
than disk or labeled magnetic tape file is

IASSIG N dcb name, (DEVICE,name)[, (option)] •••

where

dcb name specifies the name (not exceeding
31 characters in length) of the DCB to be refer­
enced. This must be the first subfield following
ASSIGN, and must be followed by the DEVICE
keyword. The first two characters of a user's DCB
name must be "F: II (e.g., F:PRINT or F:BI). The
first two characters of a monitor DCB name are
"M:" (e.g., M:LO).

DEVICE,name specifies the system physical device
name, device type, operational label, or logical
device stream that is to be assigned to the DCB.
These labels are defined by the installation man
a'ger at SYSGEN. Tables 2 and 3 list the stan­
dard assignments.

90 17 64H-1(9/78)

Table 2. Standard Operational Labels, Device Types, and Physical Device Name

Type

Operational Label

Standard Device Types

Physical Device Name

Logical Device Stream

Label Reference

BI Binary
input

BO Binary
output

C Control
input

Code

BI, BO, C, CI, CO,
DO, EI, EO, LL, LO,
OC, PO, 51, SL, S0,
UC (see Table 3).

NO

CP

CR

LP

TY

.9T

7T

BT

MT

DP

yyndd

(the ndd portion is
ignored but is allowed
for compatibility with
previous versions of
the system)

Ll

C1

P1

(and others defi ned
at SYSGEN)

Description

When the DCB is assigned to one of the system
operational labels, the actua I device connected
to the DCB is that impl ied by the operationa I
label, if any, for the batch mode.

No assignment, i.e., no default, is to be appl ied.
Read operations through th is DCB will return an
end-of-fi Ie. Write operations will be ignored.

Card punch

Card reader

Line printer

Typewriter

9-track tape

7-track tape

1600 bpi 9-track tape

Default magnetic tape type (defined at SYSGEN)

Default disk type (defined at SYSGEN)

yy specifies the device type as indicated above.

n specifies the lOP letter (A-H corresponding to
unit address 0-7).

dd specifies the device number in hexadecimal,
where:

00:5 dd ~ 7F Refers to a device number.

80 $. dd $. FF Refers to a device con­
troller number (8-F)
followed by a device
number.

Li ne pri nter

Card reader

Card punch

Table 3. Operational Label Conventions

T ypi ca I Batch Devi ce
Comments Assignmentt

Binary coded input wi II be recei ved from the devi ce CR
to which this label is assigned.

Binary coded output wi II be transmitted to the de- CP
vice to which this label is assigned.

Input from the device to which this label is assigned CR
will be monitored, so that all control commands will
be recognized by the monitor.

System Control Commands 41

Table 3. Operationa I Label Conventions (cont.)

Typical Batch
Label Reference Comments Device Assignmentt

Cl Compressed Compressed symbol ic input will be received from the device to CR
input which this label is assigned.

CO Compressed Compressed symbolic output will be transmitted to the device to CP
output which this label is assigned.

DO Diagnostic Diagnostic program dumps will be output on the device to which LP
output th is label is ass igned.

EI Element Element file input will be received from the device to which CR
input this label is assigned.

--
EO Element Element file output will be transmitted to the device to which CP

output this label is assigned.

LL Listing All control commands and system messages, including accounting LP
log information for the job, will be output on the device to wh ich

th is label is ass igned.

LO Listing Source and object I istings for assembl ies and compilations will LP
output be output on the device to which this label is assigned.

OC Operator's All JOB, ".AESSAGE, and FIN control commands, and all job TY
console terminat;;:,,, messages will be output on the device to which this

labe is assigned. OC may not be assigned to another operational
, Jbel, but may be assigned to another physical device.

PO Punch F CD or binary coded output will be transmitted to the device to CP
output which this label is assigned (normally a card punch).

SI Source Symbol ic (source language) input will be received from the de- CR
input vice to which this label is assigned.

SL Source A listing of symbolic (source language) input will be transmitted LP
listing to the device to which this label is assigned.

SO Source Symbolic (source language) output will be transmitted to the CP
output device to which this label is assigned.

UC User's This is for on-line use (see the CP-V/TS Reference Manual, TY
console 900907). The batch mode defaults to OC (operator's console).

tThese device assignments are standard in CP-V but may be changed at SYSGEN.

The options are as follows:

Function (one of the four modes given below)

IN specifies the input mode.

OUT specifies the output mode.

INOUT specifies the input and output mode (i. e., the
update mode).

OUTIN specifies the output and input mode (i. e., the
scratch mode).

42 System Control Commands

Format Control (one of the following two options)

VFC specifies that the first character of each record is
a format-control character for printing (see Table 4).

NOVFC specifies that the records do not contain format-
control characters.

Mode {any of the following seven options for a device I/O
mode}

BCD

BIN

specifies that EBCDIC mode is to be used.

specifies that the binary device mode is to be used.

I

Table 4. Line Printer Format Control Codes

Code
(hexadeci ma I) Action

CO, 40 Space no addi tiona I lines.

r---------

60, EO lnhibi t space after printing.

C1 Space 1 addi ti ona I line before
printing.

C2 Space 2 additional lines before
printing.

C3 Space 3 additional lines before
printing.

CF Space 15 additional lines before
printing.

FO Skip to Channel 0 (bottom of
page) before printing.

F1 Skip to Channel 1 (top of page)
before printin!~.

F2 Skip to Channel 2 before printing.

FF Skip to Channel 15 before printing.

FBCD specifies that FORTRAN BCD conversion is to be
used. Note that this does not preclude use of the
binary mode.

NOFBCD specifies that FORTRAN BCD conversion is
not to be used.

PACK specifies that the packed binary mode (7-track
tape) is to be used. PACK is not valid unless BIN is
specified.

UNPACK specifies that the unpacked binary mode
(7-track tape) is to be used. Ut"-lPACK is not valid
unless BIN is specified.

l specifies that a listing-type devH ce is to be used
(FORTRAN programs).

Notes: BIN/BCD controls the mode of writing to CP
or 7T, and reading from 7T. It also controls
the mode of reading from CR if DRC has been
specified.

FBCD causes conversion from the FORTRAN
BCD set to EBCDIC on reading from CR or
7T and the opposite conversion when writing
to CP or 7T.

PACK/UNPACK specifies packed or unpacked
binary on 7T if BIN is also specified.

If no mode is specified, the current mode established
for the Data Control Block (DCB) is used.

,Other Options

RECl,value specifies the default record length, in bytes.
The greatest value that may be specified is 32,767. If
RECl is not specified, a standard value (appropriate to
type of device used) will apply. The value specified
in an ASSIGN command wi II override that assembled
into the DCB but will not override the RECl specifica­
tions of an M:OPEN call or the SIZE specification of
an M:READ or M:WRITE procedure call.

TRIES,value specifies the maximum number of recovery
tries to be performed for any I/O operation. The
greatest value that may be specified is 255. The
default value is 10.

The following options are device-dependent and wi II be
ignored by the monitor if not applicable to the device type
used.

COUNT,tab specifies that a page count is to appear at
the top of each page, beginning in the co lumn speci­
fied by "tab ll

• If COUNT is specified for the lO de­
vice and a TITLE control command is also specified,
the page count will be superimposed on the title line.

Example:

COUNT,60

The above example specifies that the most significant
digit of the page count is to appear. in column 60 at'
the top of each page.

DATA,col specifies that output is to begin on each page
(or card, if EBCDIC) in the column specified by "col".

LINES,value specifies the number of printable lines per
logical page. The greatest value that may be specified
is 32,767. If LINES is not specified, the value estab­
lished at SYSGEN time wi" apply.

SEQ[,id] specifies that the punched output is to have
decimal sequencing in columns 77-80. If id is spec­
ified, it wi" appear in columns 73-76 of the punched
output. Sequencing begins with 0000.

System Control Commands 43

SN,serial numberGserial number)... specifies the serial
numbers of tape reels that are to be used for file input
or output. The serial number may be from one to four
alphanumeric characters and a maximum of three serial
numbers may be specified for system DCBs.

The SN option must be specified in the M:DCB proce­
dure call for it to appear in the DCB so that it may be
used by the ASSIGN control command or the M:OPEN
procedure call. When SN is specified in the M:DCB
procedure call but no serial numbers are given, three
words are reserved for the serial numbers which can
be inserted through ASSIGN or M:OPE N.

The IN SN and OUTSN options used in the previous
versions of the monitor were replaced with the SN op­
tion. For compatibi lity, the INSN and OUTSN op­
tions are acceptable in lieu of SN.

SPACE,value specifies the spacing between lines. A
value of one indicates that lines are to be single­
spaced. The greatest value that may be specified
is 15. .

TAB,value[,value)... specifies the values of up to
eight tab settings for an output device. The values
must be in ascending order.

DEN,value specifies the density at which a magnetic
tape is to be read or written. Only values of 800 or
1600 are acceptable.

ASCII specifies thut conversion of code between EBCDIC
in core and ASCII on tape is .0 be performed by the
system. A scq is legal only for drives having this
feature.

EBCDIC specifies that no conversion of code is to take
place (see ASCII above) and that the tape is to be
read and written in EBCDIC.

Example:

!ASSIGN F:OUT,(DEVICE,LO),(SEQ,OUT)

This example specifies that the user's DCB name F:OUT is
to be assi gned to the output devi ce to wh i ch the opera­
tiona� label LO is assigned (normally a line printer).
Sequence numbers are to be printed in columns 77-80 and
the identification "OUT" is to be printed in columns 73-76
of each record.

DELETING AN ASSIGNMENT

The form of an ASSIGN command used to delete an assign­
ment is

(ASSIGN dcb name [0)

where dcb name specifies the name (not exceeding 31 charac­
ters in length) of the DCB for wh ich the assignment is to be
deleted.

, 44 System Control Commands

SET DCB assignments may also be made through the SET
command in much the same manner as the ASSIGN command.
The batch mode SET command has the same format as the
on-I ine mode SET command.

ASSIGNING I/o DEVICES AND DCB PARAMETERS

The system retains all information supplied by SET commands
in a permanent table associated with each user. This table
is called the assign/merge table and is stored on disk. At
each job step (i. e., each time a new user program or proc­
essor is loaded), the information in the assign/merge tabl e
is merged into the DCBs associated with the program. An
entry for a DCB that is currently in the assign/merge table
may be deleted by the command

SET dcb [OJ

This allows the default assignment (if any) for the specified
DCB to take effect.

DCB assignments are either to a device or to a file. If a
DCB that has already been assigned to a device is assigned
to a file, the new information replaces the old information
in the assign/merge table. The same procedure applies to
device assignments for DCBs currently assigned to files. Ead
DCB assignment requires an entry in the assign/merge table.
The total number of DCBs that may be assigned is limited
to 12.

Changes to device parameters are added to DCBs assigned to
devices. Changes to device parameters for DCBs assigned to
files yield an error message.

The several formats of the SET command are:

SET dcb [OJ

SET · deb [~~~~~:I. 1
stream-Id
tapecode [tapeidJ

[;doptJ ..•

SET dcb [[t?peCOde [tapeidJ[-rtJ]/fid1 [·fo t
fdecode [-rtJ J' P

SET dcb JR/fid

where

dcb identifies a DCB and is in the form M:x or F:x
where x is 1 to 31 characters. (Assignments of
M:C, M:UC, M:OC, and M:XX are not allowed.)

oplabel specifies an operational label (BI, C, CI,
etc.). (See Table 5.)

device specifies a device code (CP, PL, LP, etc.).
(See Table 5.)

stream-id specifies the name of a logical device
stream (Cl, Ll, Pl, etc.). (See Table 5.)

tapecode specifies a magnetic tape code (L T, AT,
or FT). (See Tab I e 5.)

filecode specifies a secondary storage code (DP).
(See Table 5.)

tapeid if followed by /fid, specifies a serial num-
ber for a labeled tape and has the form #serial
number. The tape is accessed with the serial
number applying as both (m INSN and an OUTSN.
(Serial numbers may cont(lin alphanumeric charac­
ters. Xerox labeled tape serial numbers are 1-4
characters in length. ANS labeled tape serial
numbers must be six charclcters in length.) If not
followed by /fid, it specifies an external reel
number for free-form tape.

JR specifies a common journal. (Refer to the
CP-V /TP Reference Manual, 90 31 12.)

rt specifies the 2-character identifier of a mount­
able device that was defined at SYSGEN to be a
resource (e.g., 7T, 9T, SP, etc.).

Ifid specifies the name of a file on tape or
secondary storage. A maximum of 11 characters
is allowed. The form is

[

.account J

. a~count. password

.. password
name

If not preceded by a tapecode or fi I ecode, /fid
implies public disk storage by default.

dopt specifies a device option. (See Table 6.)

fopt specifies a file option. (See Table 7.)

Spaces may be arbitrari Iy used in a SET command between
numbers, 'words, and identifiers but may not be embedded
within them.

Example:

1. Assume that the monitor DCB for I isting output is to be
assigned to disk storage fi Ie N under account A with
password P.

J..SET M:LO/N.A.P. 0'r'

1

2. Assume that F:IN 1 (a user constructed DCB) is to be
assigned to file M on a Xerox labeled tape with the
serial number 4003.

ISET F:IN 1 LT#4003/M €I'

1.

Table 5. DCB Assignment Codes - SET Command

Type Codes Description

Operational Label B./, BO, C, CI, CO, DO, EI, When the DCB is assigned to one of the system operational
EO, LL, LO, OC, PO, labels, the actual device connected to the DCB is that im-
SI, SL, SO, UC (see Table 3) plied by the operational label, if any, for on-line mode.
(and others defined at SYSGEN)

NO No assignment, i. e., no defaul t is to be appl ied.

Device CP Card punch.
LP - Line printer.
PL Plotter.
(and others defined at SYSGEN)

Logical Device L1 Line printer.
Stream C1 Card reader.

P1 Card punch.
(and others defined at SYSGEN)

Magnetic Tape LT Xerox labeled tape.
AT ANS labeled tape.
FT Fre~ form tape.

Secondary DP Disk pack storage. This requests the default disk device
type defined at SYSGEN if the rt field is not specified.

System Control Commands 45

/, ... ~.

3. Assume that the monitor DCB for compressed input
(M:CI) is to be assigned to file JJ on an ANS labeled
tape with the serial number B12345. Also, the tape
was recorded at 1600 bpi on a device known to the
system as BT and the BT device was defined at SYS­
GE N to be a resource.

ISET M:CI AT#B12345-BT/JJ

4. Assume that tab positions 27,38,47, and 75 are to be
added to the I isting output DCB. In addition, the first
character of each record of the I isting is to control
vertical format and the I isting is to be double spaced.

l.SET M:lO;TAB=27, 38,47, 75;VFC;SPACE=2

1.

If the M: LO DC B is not assigned when the above changes
are made, an error message will be sent to the term i na I.

5. Assume that DCB F: 1 is to be assigned to an output file
XXXX which spans private disk volumes A2, A3, and
A4. An expiration date of NEVER is to be assigned.

lSET F:1 DP#A2/XXXX;OUT;SN=A3,A4;

RD=F 14, F22X;EXPIRE=NEVER

or the equivalent

1 SET F: 1 Dp# A2/XXXX; OUT;EXPIRE=NEVER,;;;

ISET F: 1;SN=A3,A4;RD=F14, F22X

DCB ASSIGNMENT CODES

A device assignment is made whenever a SET command
contains an expression with an operational label or device
code, or a tapecode/tapeid not followed by a file identifi­
cation. For each assignment, an assign/merge table entry
is made or an existing entry is modified. DCB assignments
are specified by the two-letter codes in Table 5.

DEVICE OPTIONS

SET commands specifying device options may be issued only
between job steps. The device options take effect on sub­
sequent input or output through the DCB. The options are
then in effect from job step to job step unti I reset.

The device options allowed for the SET commands are listed
in Table 6. Options corresponding to the M: DEVICE options
PAGE, FORM, SIZE, and HEADER are not provided.

FilE OPTIONS

When a DCB is assigned to a disk file, Xerox labeled tape,
or ANS labeled tape, any options that are val id for the
ASS IGN command are also val id for the SET command.
Table 7 contains the list of file options.

AI ternatively, PCl compatible keywords (as shown in Table 6)
may also be used. As an example, FORMAT is a valid ANS
labeled tape option in the ASSIGN command and the SET
command wi II honor either the keyword FORMAT or the PCl
form of the keyword F MT •

However, the keyword PASSWORD is not recognized by the
SET command because the password is obtained from the file­
name. a ccou nt . password fi e I d .

Table 6. Device Options - SET Command

Format Description

ASC[II] ASC[II] specifies code conversion (between ASCII on tape and EBCDIC in core).

EBC[DIC] EBC[DIC] specifies no code conversion. EBDIC is assumed by default and ASCII is legal
on Iy for tapes hav ing th is feature.

BCD, BIN Controls the binary-BCD mode for device read and write operations. BIN used in conjunc-
tion with DRC will invoke the transparent mode.

COUNT = value Turns on page counting and specifies the column number at which the page number is to be
printed.

DATA = value Controls the beginning column for printing or punching and is a decimal value. The maxi-
mum value is 144.

J 800!
DEN-11600 Specifies the density that will be used on a dual density tape device.

DRC, NODRC Turns the special formatting of records on and off. DRC specifies that the monitor is not to
do special formatting of records on read or write operations. NODRC specifies the monitor
is to do special formatting. If neither DRC nor NODRC is specified, NODRC is assumed by
default. DRC used in conjunction with BIN will invoke the transparent mode.

46 System Control Commands

Table 6. Device Options - SET Command (cont.)

r Format Description

FBCD, NOFBCD Controls the automatic conversion between external Hollerith code and internal EBCDIC
code (FORTRAN BCD conversion). NOFBCD is assumed by default.

IN Specifies the input mode.
OUT Specifies the output mode.
INOUT Specifies the input and output mode (i. e. , the update mode).
OUTIN Specifies the output and input mode (i. e. , the scratch mode).

--.----

l, NOl Identiifies the device type. l specifies that the devi ce must be I isting type. NOl specifies
that it need not be listing type. NOl is assumed by default.

-- --
LINES = value Specifies the number of printable lines per page and is a single decimal value. The maximum

value is 255.

PACK, UNPACK Controls the packed or unpacked mode of writing 7-track tape. PACK is assumed by default.

RECl = value Specifies the default record length, in bytes. The greatest value that may be specified is
32,767. If RECl is not specified, a standard value (appropriate to the type of device used)
wi II apply. The value specified in a SET command will override that assembled into the
DCB but will not override the RECl specification of an M: OPEN call or the SIZE specification
of an M:READ or M:WRITE procedure call.

SEar = value] Specifies that sequence numbers are to be punched in col umns 77-80 of punched output.
Four characters of nonblank sequence identification may be given for columns 73-76. Fewer
than.4 characters are left-justified and blank filled.

SN[= value ~valueh Specifies the serial numbers of volumes that are to be used for input or output. The serial
number may be from 1 to 4 characters except for ANS labeled tape serial numbers which must

y,value]] be 6 c:haracters. A maximum of 3 serial numbers may be specified. If a serial number is
specified with., the tapeid, it is included in the 3 allowed. An existing I ist of serial numbers
may be removed by specifying the SN option with no arguments.

SPACE = value Specifies the number of lines of space after printing and is a single decimal value. Values
of 0 or 1 result in single spacing. The maximum value is 255.

""-

TAB = tab [, tab] .•• Specifies simulated tab stops and is followed by a list of up to 16 decimal numbers, separated
by commas, giving the col~mn position of the stops. If all 16 stops are not specified, the
stops given are assigned to the first ~tops and the remainder are reset.

TRIES = "value Specifies the maximum number of recovery tries to be performed for any I/O operation. The
greatest value that may be specified is 255. The default value is 10.

r

VFC, NOVFC Controls the formatting of printing by using the first character of each record. VFC specifies
.that the first character of each record is a format-control character. NOVFC specifies that
records do not contain a format-control character. NOVFC is assumed by default.

Table 7. File Options - SET Command

Xerox ANS
Type Format Disk Tape Tape Description

Organization CONSEC X X Consecutive record organization.
KEYED X X Keyed record organization.

I
RANDOM X Contiguous relative-sector addressed

organ i zat i on •

System Control Commands 47

48

Table 7. File Options - SET Command (cont.)

Type

Access

Function

Record length

Block Size

Recovery'Tries

Disposition

Format

SEOUEN
DIRECT

IN [~~HAREl]
, lEXCl ~

OUT

INOUT [jSHAREt]
, EXCl ~

OUTIN

RECl = value

j
lRECll = value
REC {

BlK [l] = value

TRIES = value

REl

SAVE

JOB

System Control Commands

Disk

X
X

X

X

X

x

x

x

x

X

X

Xerox ANS
Tape Tape

X
X

X

X

X

X

X

x

X

X

X

x

x

x

x

Description

Records will be accessed sequentially.
Records will be accessed by key.

File is read only. SHARE specifies the share
mode for the DCB which allows more than
one IN user of the file. EXCl specifies the
exclusive mode for the DCB which prohibits
more than one IN user of the file. EXCl
is assumed by default.

File is write only.

File is to be updated. SHARE specifies the
share mode for the DCB which allows more
than one INOUT user of the file. EXCl
specifies the exclusive mode for the DCB
which prohibits more than one INOUT
user of the file. EXCl is assumed by
default .

File is scratch.

Specifies the default record length, in bytes.
The greatest value that may be specified is
32,767. If RECl is not specified, a standard
value (appropriate to the type of device used)
wi" apply. The value specified in a SET
command will override that assembled into
the DCB but will not override the RECl
specification of an M:OPEN call or the
SIZE specification of an M :READ or
M : WR ITE procedure call.

Specifies the logical record size in bytes.
The value may be in the range 1 through
32,767.

Specifies block size in bytes. The value may
be in the range 1 through 32,767. If a value
less than 18 bytes is specified, 18 bytes are
written.

Specifies in decimal the maximum number
of recovery tries to be performed for any
I/O operation. The greatest value that may
be specified is 255. The default value is 10.

OUT or OUTIN file is to be released on
closing.

OUT or OUTIN file is to be saved on closing.

Temporary file persisting across job steps ..

90 17 64H-l(9/78)

I
Table 7. File Options - SET Command (cont.)

Type Format

Size RSTORE = value

Storage Control CYLIN DER

Key Length

Key Storage

Additional
Key Space

Expiration

Index
Structure

Execute
Accounts

KEYM = value

NOSEP

SPARE = val ue

(mm,dd,yYI
EXP ORE] = j ddd

! NEVER

NEWX =slides-~
_Yconsecutive slides]

EX [ECUTE][acct [,acct J.". J
= ALL

NONE

Xerox
Disk Tape

X

X

X X

X

X

X

X

X

ANS
Tape Description

X

Specifies the number of granules allocated
to the RANDOM file. The value must be in
the range 1 through 16,777,215 (224 - 1).

Specifies that the data blocks of a public
file are to be allocated from public disk
packs having cylinder allocation.

Specifies the maximum length, in bytes, of
the keys associated with records within the
file. A key may consist of up to 31 char­
acters, The default value is 11.

Specifies that index blocks of a public file
are to be allocated in the same manner as
data blocks. (Disk pack if possible; other­
wise RAD.)

Specifies in bytes the amount of spare space
to be left unused at the end of each index
block while a keyed file is being created or
updated with sequential access. Value may
not exceed 255 and the default is 102 bytes.

Specifies either an expl icit expiration date,
the number of days to retain the file, or that
the fi Ie is never to expire.

The "si ides" argument specifies the number
of blocks that can be added to the fi Ie's
index since the current higher-level index
structure was built; if the specified value is
exceeded, the higher-level index structure
will be rebuilt when the file is closed. If a
value of 255 is specified, the higher-level
index structure will not be built (or rebuilt).
If NEWX is not specified, the value 254 is
used in default.

The "consecutive slides" argument specifies
the number of contiguous blocks that can be'
added to the file's index since the current
higher-level index structure was created; if
the specified number is exceeded, the higher
level index structure will be rebuilt when the
file is closed. If the number is not specified,
2 is used in defaul t.

Specifies the account numbers of the accounts
that may execute the load module. A maxi ..
mum of 8 accounts may be specified. The
value ALL may be used to specify that any
account may execute the file. The value
NONE may be used to specify that no other
account may execute the file. In all of the
above cases, READ, NONE is implied in the
absence of any READ specification. This
option with no arguments resets all previous
execute account entries in the DCB.

System Control Commands 49

Table 7. File Options - SET Command (cont.)

Type

Read
Accounts

Write
Accounts

Volume Serial
Number

Code
Conversion

Recording
Density

Initial
Volume

Concatenate
Tape Files

Tape Format

Format Disk

R[EAJD [. jacctr,acct] ... J
= ALL

NONE

X

X

SN [= value[, value] L, value]] X

ASC rll]
EBC[DIC]

. _ ~ 800 t
DEN - /1600 ~

VOL = value

[CON]CAT=value

j'FORMATt
FMT ~ = character

50 System Control Commands

Xerox
Tape

X

X

X

X

X

X

ANS
Tape Description

X

X

X

X

X

X

Specifies the account numbers of those ac­
counts that may read but not write the fi Ie.
This option is appJ icable to OUT and OUTIN
files. A maximum of 8 read accounts may
be specified. The value ALL may be used
to specify that any account may read the
file. The value NONE may be used to
specify that no other account may read the
file. This option with no arguments resets
all previous read account entries.

Specifies the account numbers of those ac­
counts that may have both read and write
access to the file. This option is appl icable
to OUT and OUTIN files. A maximum of 8
write accounts may be specified. The value
ALL may be used to specify that any account
may have write access to the file. The value
NONE may be used to specify that no other
account may have write access to the file.
This option with no arguments resets all pre­
vious write account entries.

Specifies the serial number of volumes that
are to be used for input or output. The
serial number may be from 1 to 4 characters,
except for ANS labeled tape serial numbers
which must be 6 characters. A maximum of
3 serial numbers may be specified. If serial
number is specified with tapeid, it is in­
cluded in the 3 allowed. An existing list of
serial numbers may be removed by specify­
ing the SN option with no arguments.

ASCII specifies code conversion between
ASCII on tape and EBCDIC in core. EBCDIC
specifies no code conversion. EBCDIC is the
default. ASCII is legal only for tapes having
the code conversion feature.

Specifies the density that wi II be used on the
dual density tape device.

Specifies which tape reel in the SN list is
to be used initially. A value of 1 designates
the first, a value of 2 the second, etc. If
VOL is omitted, a value of 1 is assumed.

Specifies the number of identically named
files that are to be read as one logical file
(concatenated). The value may be in the
range of 2 through 255.

Specifies the record format. The character
may be: F = fixed length; D = variable
specified in decimal; V = variable specified
in binary; or U = undefined.

Table 7. File Options - SET Command (cont.)

Type Format Disk

Block Count ABCERR
Errors

. ,---
Execution UN[DERJ!=name] X
Vehicle

lDEV A logical device stream is an information stream
that may be attached to any symbiont de vi ce that the user
specifies. (Symbiont devices include devices such as the
line printer, card reader, card punch, plotter, and all
devi ces at remote si tes that are accessed vi a remote pro­
cessing.) At SYSGEN, up to 15 logical device streams
may be defined. Each is given a name (e. g. I C 1, L1, Pl),
each is assigned to a default physica I device, and attribtues
are defined for the physical device. The user may perform
I/o through a logical device stream with the default phy:;i­
cal device and attributes or he may change the physical de­
vice and/or attributes to satisfy the requirements of his job.
He makes any necessary changes through use of the LDEV
command or the M: LDEV procedure. Information about the
logical device stream is stored ,n a cooperative contey.t
block, providing for centralized information about the phys­
ical device even though I/o to that device may arise
through more than one DCB within a job.

The LDEV control command can a:lmost be viewed as another
level of the ASSIGN control command. If the DCB has
been ASSIGNed to a logical device stream, the LDEV
command can be used to attach the logical device stream
to a physical device (if the default physical device for the
stream is inappropriate). ASSIGN stores information in a
DCB, while LDEV stores information in a cooperative con­
text block.

The lDEV control command has the form

IlDEV stream-id~ (option)] ...

where

stream-id specifies the two-character name of the
stream to be referenced. This must be the name

'90 1764H-l(9/78)

Xerox ANS
Tape Tape Description

-'_.-'

X Specifies that block count errors for ANS
labeled tapes are not to resul t in an un-
conditional abort .

Specifies the name of the only processor
that may access this file if the user doe~
not own the fil e. The name may be from
one to ten characters. The processor may
be any shared processor or any load module
in the: SYS account. If EXECUTE accounts
are specified and UNDER is not specified,
the file is presumed to be a load module and
UNDER = FETCH is implied by default.

I FETCH is the name of the monitor routine
that places a program into execution.

of one of the logical device streams defined during
SYSGEN (for example, C 1, L1, Pl).

options specify the devi ce streams attributes, such
as device type, stream direction, form, format
control, workstation name, etc. The options are
as described below; they may appear in any order,

Options

AIN IT speci fies that the attributes for the stream are to
be initialized with the attributes specified on this LDE\,
command and that system defaults are to be supplied
wherever an attribute is not specified. Any attribute~
specified for the stream on a previous LDEV command
are to be ignored. AINIT is the default for the AIN [~(
ASAVE, and AREL options.

ARE L specifies that the system table contai ning the at-
tributes of this stream (whi ch may have been set as the
result of previous LDEV commands) is to be releasedaf"~d
thatthe attributes are not to be reini tialized. Anyother
options specified (except DELETE) in this command wi I r
be ignored.

ASAVE specifies that the attributes for the stream are t·o

be set only by options explicitly specified on this LDE\!
command. Other lDEV-specifiable attributes (whi ch
may have been set as the result of previous LDEV com~
mands) are not to be changed. ASA VE cannot be used
for the LABEL option. DEV and WSN are subject to the

I restrictions noted in the Remote Processing Reference
1 Manual 90 30 26.

COPIES,value specifies the number of times the file is
to be processed to produce multiple copies. The value
can be any integer from 1 to 255 inclusive. The de­
fault value is 1.

COUNT,tab specifies that page counting is to be done
and specifies the column in which the most significant

System Control Commands 51

digit of the page count is to be listed. The value of
"tab" must be appropriate for the particular device.
(Note that if COUNT is specified for the LO device
and a TITLE control command is also specified, the page
count wi II be superimposed on the title line.) The de­
fault is no page counting.

DELETE specifies that if output currently exists for this
stream but has not yet been dispatched for processing,
it is to be deleted. (If such a stream exists and
DE LETE is not specified, the output for the stream is
dispatched for processing.) If an input stream with
the same name currently exists, any part of the stream
that has not been read wi II automatically be deleted
whether or not DELETE is specified.

DEV,type specifies the device type where type is the
two-character mnemonic of the device to be asso­
ciated with the stream. Valid mnemonics are either
type mnemonics of the central site or of a remote
workstation. Central site menmonics are those de­
fined for symbiont devi ces during SYSGEN (for ex­
ample, CR, LP). Remote mnemonics are those specified
when defining a workstation with Super (for exam­
ple, OC, CR).

ORC requests that monitor logical record formatting
implied by the DEV option not be performed. Any
record formatting necessary wi II be supplied by the
user. If DRC is not specified, the monitor wi" per­
form logical record formatting.

FFORM,name specifies the future form name (as below,
with FORM) of the form to be used when the form
change procedure {M:DEVICE (FORM/FNAME» is spec­
ified in the program for the stream. When M:DEVICE
(FORM/FNAME) is encountered, the stream wi" be
dispatched for processing and restarted with the name
as the stream form. The default is none.

FORM,name specifies the one- to four-character name
of an installation-determined paper form or card stock
and is used in output scheduling for the device. The
default is to have no special scheduling (i. e., the op­
erator wi II determine which form to use). If used on
input, name specifies the one- to four-character name
of a noncontrol input fi Ie. (FORM and NAME may be
used interchangeably.)

FPC,name specifies the one- to four-character name of
an installation-determined form overlay and is used in
output schedul ing for the Xerox 1200 or a similar de­
vice. The default is to have no special scheduling
(i. e., the operator will determine which overlay to
use if any).

IN and OUT specifies the direction of the stream. The
default is OUT.

J DE,value specifies the job descriptor entry to be used
in output schedul ing for the device. The value must
be in the range 0-89 and specifies an installation

52 System Control Commands

defined procedure describing printer setup attributes
(e.g., VFC tape).

LABEL, text specifies a text string to be appended
to the stream's user- identification banner lines
(see "user-identification banner" in glossary).
The text may not include period, semicolon, or
right parenthesis characters. Up to 255 characters
of text may be specified. H;wever, the length
of the text that will be used is limited by the
size of a line on the dev ice •

LINES, value specifies the number of printable lines
per logical page. The greatest value that may be
specified is 255 I ines per page. If this option is not
specified, the value established at SYSGEN time
will apply.

NOBAN NER specifies that no user-identification
banner is to be associated with output for this
stream. A FORM name must also be specified for
NOBANNER to be operative.

NAME,name specifies the one- to four-character name
of a noncontrol input file (see below, "Noncontrol
Input Files "). If used on output, name specifies
the one- to four-character name of an installation­
determined paper form or card stock and is used in
output scheduling for the device. (NAME and FORM
may be used interchangeably.)

NOVFC see VFC below.

OUT see IN above.

SEQ [,id] specifies that punched output is to have deci-
mal sequencing in columns n-80. If a user-defined
id is specified, it will be punched in columns 73-76
of each card. Sequencing begins with 0000.

SPACE,value(,top] specifies the spacing between lines
(value) and between the top of each page and the first
line printed. A value of 0 or 1 results in single spac­
ing. The greatest value that may be speCified is 15.
The default is single spacing.

SRCB specifies that the user will supply a' device-
dependent control byte as the first byte of each
record if this is an output stream, or that he wishes
to receive it as the first byte of records if this is
an input stream. This option is used only for re­
mote processing.

VFC and NOVFC specifies whether or not vertical for-
~at control characters are to be used. (These two op­
hons are legal only for line printers.) VFC requests
that a default vertical format control charocter be
added to all records. NOVFC requests that the format
character be stripped from the record if present. The
default is VFC.

CONCURR places the symbiont output stream in con ..
current output mode, a mode in which output is broken
into groups ("chunks ") and released to the symbiont
stream for output. Once this stream has been selected

by the symbiont for printil1g or punching, then the
particular device is held unti I all output produced by
the job has been processed, except as otherwise directed
by an operator key-in. If CONCURR is not the only
option specified, then alrteady prepared output will
be packaged for printing in its entirety and a newly
bannered stream will be c reeted for subsequent output.
The COPIES option may not be specified when CON­
C~RR is specified.

specifies the workstation name of the
remote device that is to receive the

stream, where name can be from one to eight alpha­
numeric characters. The default is local output. If
a dollar sign ($) is specified, the name of the work­
station on the JOB command (if one is specified) ef­
fectively replaces the dollar sign. If no workstation
name was sped fi ed on the JOB command or if no
JOB command was used, the name of the workstation
from which the job was submitted effectively replaces
the dollar sign. (The dollar sign option allows a job
to be run from more than one workstation without nec­
essitating respecification of the workstation name on
the LDEV command.)

Examples:

1. The following command requests association of L 1 with
the local line printer and specifies that the number of
printable lines per page is to be 60. All other attri­
butes are to be supplied by default.

ILDEV L 1,(DEV,LP),(UNIES,60)

2. The following command requests association of L5 with
the line printer at remote workstation LAX. All other
attributes are 11'0 be supplied by default.

(LDEV L5,(WSN ,LAX),(DEV ,LP)

NONCONTROL INPUT FILES

There are two types of symbiont input: that which is a job
control stream and that which is not. Card readers are
usually defined to be control-type devices and are used to
input job control streams. However, noncontrol input
streams may be entered from the card reader if the first
card of the input deck is --

(1lNcn [name]

where name specifies the one- to four-character name of
the noncontrol input stream.

90 17 64H-l (9/18)

In this case, the input deck is read until a IFIN is en­
countered. If any job control cards exist in the deck,
they are treated as noncontrol information. That is, the
entire deck is simply read into the input symbiont. This
feature provides, among other things, a mean. of inputting
jobs that are to be run at a later time.

A file created in this manner must be accessed via the
LDEV command or M:LDEV procedure using any logical
device stream except C 1. If the user specifies a name
or requests the operator to do so, the user can access
the fi Ie using the NAME, xxxx or FORM, xxxx option.
(The operator gives the file a name using the key-in
Syyndd, F'xxxx' where xxxx must be identical to xxxx
on the FORM or NAME option.) If the file is not
given a name by the operator, the n~xt noncontrol file
in the queue that has no name wi I I be returned to the
user.

XED The XEQ command inItiates the execution of
control commands read from a keyed or consecutive file
called a command file. It provides a convenie'nt method
of executing a frequently used sequence of commands.
The format of the command is

(!XEa (FILE ,name[,account(,password]])[, (REC, value)]

where

FILE,name [,account [,password)] specifies the comnlOnd
file. The name cannot exceed 11 characters in length.

REC, value specifies an optional starting record number.
The records are (logically) numbered consecutively
beginning with 1 for purposes of this command. (Even if
the record has Edit keys, for example, the keys do not
apply when specifying the beginning record number.)
If a record number is not specified, command execution
begins with the first record of the command file.

As each command in the file is executed, it is output on
the I ine printer preceded by its record number.

Example:

!XEa (FILE,ABJOB)

**** ABJOB EXECUTED AT RECORD 0001 ****
0001 - ASSIGN F:IN,(FILE,PAYROLL)

0009 - ASSIGN F: 11, (FILE, EMPS)

****ABJOB TERMINATED AT RECORD 0009 ****

Upon termination of command file processing, the system
resumes reading control. commands from the card reader.

Command files executed by XEa must consist of val id
control commands with a ! character in the first
position of the record. The! character is not printed on
the line printer, however. Also, the user must provide
assignments for all DCBs through which the program
or processor will read data. Note that M:C cannot be
assigned in the batch mode.

System Control Commands 53

Command file processing will be terminated when any of
the following conditions occur:

1. An end-of-file occurs for the command file.

2. A EOD or FIN command is encountered.

3. A syntax error occurs while processing a command
in the command fi Ie.

4. An illegal command is encountered. There are
three illegal commands: JOB, BIN, and BCD.

5. Another XEQ command is encountered within the
command file. The second XEQ terminates the
current command file and processes the newly
specified commC!r'ld file.

INPUT CONTROL COMMANDS

Input control commands must not have any spaces between
the exclamation character and the mnemonic. Input
control commands are not listed on the LL device.

BIN The BIN control command informs the monitor
that the information to follow will be in binary. Thetermi­
nation of the binary information is specified by a BCD con­
trol command {see "BCD", below}.

The form of the BIN control command is

Binary decks punched by monitor processors are identified
as binary by means of a code in the first column of each
card. Therefore, such decks need not be preceded by a
BIN command. However, all user-formatted binary decks
must be identified as binary by means of the BIN control
command; otherwise, read-check errors may cause the job
to be aborted.

BCD The BCD control command is used as a terminator
for binary input, i. e., it causes the monitor to revert to its
normal EBCDIC input mode.

The form of the nCD control command is

DATA The DATA control command is used to inform the
monitor that no more debug control commands are to follow.
It is required immediate Iy after the last debug command
following a RUN control command (or after the RUN com­
mand itself if there are no debug commands) unless no data
deck is to be read from the C device (in which case the
monitor assumes that no debug commands are to follow).

54 Input Control Commands/Utility Control Commands

The DATA control command has the form

(DATA

EOD The EOD (i. e., end of data) control command may
be used to define data blocks in a data deck. This is ac­
complished by inserting EOD control commands at the end
of each block of data. When an EOD command is en­
countered, the monitor returns an abnormal code of 05 in
SR3 (if the user has specified an abnormal address in the
M:READ procedure).

The EOD control command has the form

rEOD

Any number of EOD control commands may be used in a job.

FIN The FIN control command is used to inform the
mon i tor that there are no more jobs to be processed.

The FIN control command has the form

(FIN
On encountering a FIN control command, the monitor auto­
matically suspends symbiont activity for that input device.

UTILITY CONTROL COMMANDS
The util ity control commands described below allow the
user to manipulate magnetic tape files. These commands
are only valid when used with library DCBs (of the form
M:xxx),

PFIL The PFIL (i.e., position file) control command
may be used to cause a designated number of physical files
on unlabeled tape to be moved (i .e., skipped) in a speci­
fied direction. For unlabeled tape, the tape will be posi­
tioned after the end-of-file in the direction skipped.

The form of the PFIL control command is

IPFIL dcb name~(BACK)][,(files)]

where

dcb name specifies the name of the DCB associated
with the files to be skipped.

90 17 MH-l(9/78)

BACK specifies that skipping will take place in
the reverse direction (the default option is skip­
ping in the forward direction).

files specifies the (decimal) nlJmber of files to be
skipped. If the files option is not specified, 1 is
assumed.

REW The REW control command may be used to cause the
tape associated with a specified DCB to be rewound.

The form of the REW control command is

(' REW deb name

where dcb name specifies the name of the DCB associated
with the tape to be rewound.

WEOF The WEOF control command may be used to
cause a physical end-oF-file to be written on unlabeled
tape (see M:WEOF procedure).

The form of the WEOF control command is

(IWEOF deb name

where dcb name specifies the name of the DCB associated
with the tape on which the end-of-file is to be written.

SWITCH Any of six pseudo sense switches may be set
or reset by means of the SWITCH control command.

The form of the SWITCH control command is

ISWITCH [(SET,value[,value] •••):~

L_ [,(RESET,va lue [,value 1· ..) J

where

SET ,va lue specifies which pseudo sense switches are
to be set. The "value" may be from 1 to 6, and
more than one value may be specified. If ALL is
specified, all pseudo sense switches will be set.

RESET,value specifies which pseudo sense switches
are to be reset. The "value" may be from 1 to 6,
and more than one va lue may be spec ified. If
ALL is specified, all pseudo sense switches wi II
be reset.

If a confl ict exists between the SET and RESET options, the
last setting specified in the command will apply, since
the monitor processes the options in sequence (i.e., left
to right).

Three library routines (L:TSS, L:SSS and L:RSS) are also
provided to allow processors and user programs to set, reset,
and test specified pseudo sense switches. The entire sense
switch simulation is based on the use of a pseudo sense
switch register contained in a Task Control Block (TCB)
established and maintained by the monitor. The first
two words of the TCB comprise a Stack Pointer Double­
word (SPD), and the subsequent words contain additional
information used by the monitor to control the current task.
When the mon itor transfers contro I to a user's program (or
a processor), it places the word address of the TCB in
general register O.

When a user's program calls any of the sense switch library
routines, general register 0 must contain the word address
of the TCB. General register 6 is used for passing the num­
ber of the specified sense switch. The link register is
general register 11, and general registers 6-10 are volatile
(not preserved by the I ibrary routine).

The linkage

BAL,l1 L:TSS

causes the sense switch specified in general register 6 to be
tested. If the switch is set, the condition codes are all set
(to 1); otherwise, the condition codes are reset (to 0).

The linkage

BAL,11 L:SSS

causes the sense switch specified in general register 6 to be
set. If the number of the specified switch is not within the
range 1-6, the routine will ignore the request.

The linkage

BAL,l1 L:RSS

causes the sense switch specified in general register 6 to be
reset. If the number of the specified switch is not within
the range 1-6, the routine will ignore the request.

Utility Control Commands 55
,z.

4. SYSTEM PROCEDURES

INTRODUCTION'

Monitor procedures enable the userls symbolic Meta-Symbol
program to request a variety of monitor functions. When
a procedure call is encountered during the processing of a
program, the processor responds by retrieving a symbolic
calling sequence from the procedure library, modifying it
according to the parameters specified in the procedure
call, and inserting the modified symbolic code into the
user IS source program (to be translated into object code
during a subsequent processing phase).

At execution time, the calling sequence calls an appro­
priate monitor routine that, in turn, performs the desired
function. In this manual, the monitor routine called at
execution time, as the end result of a procedure call
having a command mnemonic of the form M:XYZ, is re­
ferred to as monitor routine XYZ.

When using Meta-Symbol, the monitor procedure library
is invoked via the directive

SYSTEM BPM

This directive defines all of the monitor procedures. The
Sigma computer instruction set is inv >ked by the directive

SYSTEM SIG7[F][D] [pl

where F specifies the floating point option, D specifies
the decimal oFtion, and P specifies privileged instructions.

The Xerox 560 arid Sigma 9 computer instruction sets are
invoked by the directive

SYSTEM SIG9[P]

where P specifies the privileged instruction set.

Thus, both the SYSTEM BPM and the SYSTEM SIG direc­
tives should be used. When the SYSTEM BPM directive is
processed, two control sections are declared for use in
generating function parameter lists for monitor procedures
subsequently used. Normally, FPTs are generated in un­
protected storage (protection type 0). The M:PT procedure
allows the user to generate FPTs in either unprotected stor­
age (protection type 0) or protected storage (prot!ection
type 1).

BPM procedures are of three forms: standard, list, and
execute. The standard form results in both executable code
and FPT generation during procedure expansion with FPTs
being placed in an internal CSECT exclusive to System
BPM.

56 System Procedures

."'

Example:

SYSTEM BPM

M:OPEN F:ANS, IN Generate OPE N CA Land
OPEN FPT.

The execute form results in only executable code generated
during procedure expansion with the argument field inter­
preted as the FPT address.

Example:

M:OPEN, E OPENFPT Generate OPEN CAL using
OPENFPT.

The list form results in only FPT generation during pro­
cedure expansion.

Example:

OPENFPT M:OPEN, L F:ANS, IN Generate
OPENFPT.

Often it is desirable to be able to symbolically reference
the parameter list associated with a particular procedure.
The second element of the label field list is used for this
purpose.

For example, assume the user wanted to use the label RD
to identify the address of the CAL generated for the read
function on the C device, and also wanted to use the label
RDFPT to identify the address of the Function Parameter
Table (FPT) for the same function. He could do so by means
of the following Meta-Symbol procedure reference in his
program:

Label Command Argument

RD, RDFPT M:READ M:C, (BUF, ALPHA)

Examples:

WR M:WRITE arglst

,OPNFPT M:OPEN arglst

. In the first example, above, the label WR identifies the
address of the CAL generated for the write function speci­
fied by the argument list (represented here by lIarglstll).

-j

In the second example, the label OPNFPT identifies the
address of the first word of the FPT generated for the OPEN
function specified by the argument list (the associated CAL,
in this example, is not given a label; hence, the comma
preceding OPNFPT).

Because code generated for system procedures is placed in
a different control section than the userls program, the $
symbol should not be used in procedure calls to repre­
sent the IIpresent location II.

The format conventions used by ~h. procedure calls is of
the lOme form as previously defined for control commands
(M. Chapter 3). In addition, an alt.risk (*) is used in pro­
c calls to denote indirect addr.ssing (* address) or to
.hew that the indirect addressing technique can be used
wh.. a variable (* value or * limit) is the address of a
location containing the variable .. The terms SR1, SR2, and
S R3 are used to refer to system regi sters 1, 2, and 3 (wh i ch
are more commonly knownasgeneral registers 8, 9, and 10).

Each procedure call described in this chapter shows the
Function Parameter Table (FPT) it generates. In the formats
given, an asterisk in bit one of a word indicates that indi­
rect addressing may be used. (Indirect addressing will be
used if the bit is sc~t to one.)

GENERAL-PURPOSE PROCEDURES

! SET FPT PROTECmoN TYPE

M:PT Normally, FPTs are generated in unprotected
storage (protection type 0). The M:PT procedure allows
the user to generClte FPTs in either unprotected storage
(protection type 0) or protected storage (protection type 1).
The procedure has the form

llabellJ[,[Iabel2J['label3JJ M:PT type

where

label is set to the current val ue of the location
counter ($).

label2 is set to the address of the beginning of the
protection type 0 (unprotected) control section
used for generating SYSTEM BPM FPTs.

label3 is set to the address of the beginning of the
protection type 1 (protected) control section used
for generclting SYSTEM BPM FPTs.

type sets the new protection type (0 or 1) to be

Example

used when generating SYSTEM BPM FPTs in all
subsequent procedure reference lines unti I the
next M:PT is encountered.

SYSTEM
, PTO, PT1 M:PT

BPM
1

DEF
M:OPEN
M:READ
M:PT
M:CLOSE

PTO, PI1
M:EI
M:EI, (BUF, X)
o
M:EI

in this example PTO is the address of the beginning of the
unprotected control section and PT 1 is the address of the
beginning of the protected control section used for genera­
ting SYSTEM BPM FPTs. The FPTs generated by M:OPEN

90 17 64H-l(9;78)

and M:READ are protected (type 1) and the FPT generated
by M:CLOSE, along with all FPTs generated until the next
M:PT, is unprotected (type 0).

The M:PT procedure does not generate an FPT or any ex­
ecutable code.

Caution: Through the use of the Meta-Symbol USECT direc­
--- tive together with the label field of the M:PT

procedure, the user can direct generation of code
into the control section intended for the exclusive
use of the BPM system procedures. Thiscan lead to
unpredictable results and is therefore discouraged.

LOAD OVERLAY SEGMEIT

M:SEGLD The monitor routine SEGlD causes a speci-
fied overlay segment to be loaded into core storage. If
an I/O error occurs in executing the SEGlD routine, or if
the specified segment is not founa, the job is aborted. The
routine brings in both the data and procedure segments,
unless they are already resident in core.

The M:SEGLD procedure ca II has the form

M:SEGLD I [*Jaddress I
'segment name'

where

oddress specifies the oddress of the first word of a
byte string containing the name (in TEXTC format)
of the overlay segment to be loaded.

'segment name' specifies the name of the overlay
segment to be loaded.

Calls generated by the M:SEGLD procedure have the form

CALl,8 fpt

where fpt points to word 0 of the FPT shown below.

word 0

Caution: If bit 8 is not set, control returns to the word fol­
lowing the FPT, rather than the word following
the CAL.

word 1

If 'segment name' is specified in the procedure call, the
following words are also generated as partof the FPT. They
contain the segment name in TEXTC format. The address in
word 1 points to word 2 in this case.

word 2

word n

Genera 1-Purpose Procedures 57

LINK TO A LOAD MODULE

M:LlNK The monitor LINK routine causes the calling
load module's core information (i. e., program and data,
except common dynamic data) to be saved in disk storage.
The calling module's core area is made avai lable to the
called module. The called module is then loaded into
core storage (overlaying the calling program) and control
is transferred to it. If there is no transfer address assoc i­
ated with the called module, the job is aborted. The
user's temporary and permanent load module I ibraries are
searched for the specified load module. If it is not found
or an I/o error occurs in executing the LIN K routine, the
job is aborted. A return to the calling module may be
effected in one of two ways:

1. The called module may return explicitly by making use
of the monitor's M:LDTRC procedure.

2. The EXIT or ERROR options may be used in M:LlN K by
the calling program, causing the called module to re­
turn impl icitly when it exits, errors, or aborts.

Any communication between the calling and called load
modules must be accomplished through the general registers
or common dynamic storage.

The monitor-ossigned file name of the calling program is
contained in SR 1, allowing the called module to return to
the calling location + 1 (via M:LDTRC, returning control
to the overlaid program). If a program is entered via a
RUN command, however, SR 1 is set to zero. (Remember
that SR1 is system register 1, or general register 8.)

Programs to be linked to or transferred to must have been
loaded by Load or LYNX, but not by Link. M:LlN K cannot
be used to link to a command processor.

Pages obtained by M:GVP must have been freed before an
M:LlNK or M:LDTRC is issued or an error will result.
Pages released from the user's assembled data area must
have been restored before ,an M:LlNK or M:LDTRC is is­
sued or an error will result. That is, the virtual memory
area that includes assembled data, program, and dynamic
data must be continuous. Note that when DELTA has not
been associated by "START .•• UNDER", the pages required
for DELTA's symbols are acquired via M:GVP and must be
released by ;k under DELTA.

If exit control has been established in the calling pro­
gram, the issuing of an M:LlN K procedure will cause
control to be passed to the effective exit control routine
(see M:XCON). Specifying EXIT or ERROR on the M:LlNK
procedure has no effect on either the exit control that'
may have" been established in the calling program or
any exit control that may be establ ished by the called
program.

58 General-Purpose Procedures

The M : LIN K proced ure ca II has the form

M:LlNK 'name'[,[,account'][, 'password']]--,

4. (CMD. [[* J add,] J] ~(~~~~R)J
where

'name' specifies the name of the load module to
which control is to be transferred. The name is
limited to 11 characters not including the quotes.

'account' specifies the account from which the
load module is to be obtained.

'password' specifies the password associated with
the load module.

CMD, [[*}addr} is the address of a TEXTC string to be I
passed (via J:CCBUF, the control command buffer
contained in the JIT) to the called program. When
in the on-line mode, the text string begins in I
byte zero of J :CCBUF and has a carriage return
character (X'OD') appended to it. The character
count of the resu Iting string is passed in JB:CCARS.
In the batch mode, byte zero of J:CCBUF is a
blank (X'40'), the string begins in byte one, and
the remainder of J:CCBUF is blank filled. Text
strings are limited to 79 characters. If longer
strings are given, they are truncated to 79 char­
acters. If CMD is specified but addr is not speci­
fied, then 'name' is placed in J:CCBUF following
the above conventions. If CMD is not specified,
J:CCBUF is not altered.

EXIT specifies that return should be made to the
calling program following the M:LlNK CAL when
the linked-to program exits normally.

ERROR specifies that return should be made if the
linked-to program errors or aborts (via M:ERR or
M:XXX). ERROR also implies EXIT.

Calls generated by the M:LlN K procedure have the form

CAll, 8 fpt

where fpt points to word 0 of the FPT shown below.

word 0

word

word n

90 17 64H-l (9/18)

word n + 1

word n +2

. ,:. ,

word n +3

first word of password (password is in TEXT format)
10 11112 13 14 1311& 1

word n +4

I, , , ,I ••• ,:,
word n +5

1:1",1"":,,
where

S

E

x

C

A

P

is set if CMD was specified and the command
string address was NOT specified.

is set if ERROR was specified.

is set if EXIT was specHied.

is set if CMD was specified.

is set if the account wen specified.

is set if the password was specified.

LOAD J'ND TRANSFER CONTROL

M:LDTRC The monitor routine l.DTRC loads a specified
load module (either one that had been partially executed
and then saved as the result of an M:LINK procedure call,
or else a "new" one), releases the core area used by the
calling module, and transfers control to the starting ad­
dress of the called module. If the called module was a
previously saved program, it will be entered at a point
immediately following the original M:LINK call, provided
that the monitor-assigned file name of the previously
saved program (communicated to the user via SR 1) was
stored into word 1 of the FPT assodated with the M:LDTRC
call prior to executing the M:LDTRC call.

The user's temporary and permanent load module libraries
are searched for the specified load module. If it is not
found or an I/O error occurs in executing the LDTRC rou­
tine, the job is aborted.

90 17 64H-1 (9/78)

Any communication from the calling module to the called
module must be accomplished through the general registers
or common dynamic storage.

Programs to be linked to, or transferred to, must have been
loaded by Load or LYNX, but not by Link .

Pages obtained by M:GVP must have been freed before an
M:LINK or M:LDTRC is issued or an error will result.
Pages released from the user's assembled data area must
have been restored before an M:LlN K or M:LDTRC is issued
or an error will result. That is, the virtual memory area
that includes assembled data, program, and dynamic data
must be continuous. Note that when DELTA has not been
associated by "START .•• UNDER", the pages required for
DELTA's symbols are acquired via M:GVP and must be
released by ik under DELTA.

If exit control has been established in the calling program,
the issui ng of an M:LDTRC procedure wi II cause control
to be passed to the effective exit control routine (see
M:XCON).

No special shared processors other than publ ic libraries
may be associated with the programatthe timean M:LDTRC
is issued.

Shared processors may use M:LDTRC; however, special
shared processors may not use M:LDTRC. M:LDTRC may
also be used to initiate the processing of a TEL or CCI
command (~XEQ) file. No special options need be specified
on the M:LDTRC procedure call. If the following condi­
tions are met, the system will terminate the current
program and simulate an '.XEQ command:

1. The file specified in the M:LDTRC procedure call must
be either unkeyed (consecutive) or Edit keyed
(KEYM = 3).

2. The program issuing the M:LDTRC must not have been
loaded by an M:LlNK, either directly or indirectly.

3. Command fi Ie processing must not be in effect at the
time of the M:LDTRC.

This feature may be disallowed by the installation manager,

The M:LDTRC procedure call has the form

M:LDTRC 'name'[, ['account'] ,'password']

where

'name' specifies the name of the load module or
command file to which control is to be trans­
ferred. The name is limited to 11 characters
not including quotes.

'account' specifies the account from which the
load module is to be obtained.

• password , specifies the password associated with
the load module.

Calls gen'erated by the M:LDTRC procedure have the form

CAL 1,8 fpt

General-Purpose Procedures 59

where fpt points to word 0 of the FPT shown below.

word 0

SRI

minute, and number of 2-millisecond units since
lost thousandth of a minute, and SR3 wi" contain
thousandths of a minute since lost minute, as:

I, , , ,I. , .Y~r, " .. I" " .. ,,I. " .. "I"" ,,~~;."" "I" ~. J
where A, P, and the subsequent words of the FPT are of the SR2
some form as shown previously for M: LIN K. ...-------II--------t-------I-------,

GIVE nME AID DATE

M:TIME The monitor TIME routine gives the time of
day and the current dote.

The M: TIME procedure co" has the form

M: TIME [*:.1address[,TMS]

where

60

address specifies the address of a four-word block

TMS

where the time and dote are to be stored. The
four-word block where the time and the dote are
to be stored cannot lie within registers. (I/O
buffers cannot lie within general registers and
space for the time and the dote is considered on
I/O buffer.) The (EBCDIC) byte format of this
block is shown below.

word 0

h h m

word 1

m 1> m o

word 2

n -t; d d

word 3

y y

where

hh is the hour (00:s hh:s 23).

mm is the minute (00:s mm ~ 59).

mon is the month (standard 3-letter abbr.).

dd is the day (01 :s dd s 31).

yy is the year (00 s yy S 99).

indicates that the dote and time (including
resolution down to basic timer units) are to be re­
tiJrned in binary. If TMS is specified, SRI wi"
contain the year and Julian days, SR2 will con­
tain the hour of day, minute of hour, second of

Genera 1-Purpose Procedures

SR3

where

Year is a binary value, for example, 1970
is represented as X'46 1

•

Day is the Jul ion day of year represented
in binary; for example, September 14 is
represented as X' l0 1'.

Hour is the hour of day (0-23).

Min is the minute of hour (0-59).

Sec is the second of minute (0-59).

TMS isthenumberoftwo millisecond units
since the lost 1/1000 of a minute (0-29).

1/1000 min is the thousandths of minute
since last minute. This is suppl ied
because the monitor records time in
1/1000 minutes as the smallest increment
in job accounting.

Call s generated by the M: TIME procedure have the form

CAll, 8 fpt

where fpt points to word 0 of the FPT shown below.

word 0

If TMS is specified, bit 8 is set to 1

TYPE A MESSAGE

tM:TYPE }
M:MESSAGE The monitor TYPE and MESSAGE routines

output a specified message to the opera­
tor, on the operator's console typewriter. In botch opera­
tions, the two routines are equivalent.

The M:TYPE and M:MESSAGE procedure calls hove the
form

90 17 64H-I (9/78)

{
M:TYPE }
M:MESSAGE (MESS, [*]<lddress)

where MESS, [*] address specifies the word address of the
beginning of the message to be typed. The first byte of
the message must specify the number of characters in the
message. The message may consist of not more than 136
alphanumeric characters. The address can be indirect to
a register; however, the message cannot be in registers.

Calls generated by the M:TYPE and M:MESSAGE procedures
have the form

CALl,2 fpt

where fpt points to word 0 of the FPT shown below.

word 0

word 1 (parameter-presence-indi cator word)

,PliO
0123145

• ,:. , ""I"" " "I" " ~'-191-20-2-1-22-23t-:.-25-2-6 -27-12-8 -29-30--'i

word 2

I :I~ , ,I. , • ,:.
Code equals X'02' for M:TYPE FPl'!S, and zero for
M:MESSAGE.

Pl must be equal to 1, indicating :that the following param­
eter word (word 2) is present.

The M:TYPE procedure supplies REIFs for M:LL and M:OC.

REOUEST A KEY-IN

M:KEYIN The monitor KEYIN routine types a specified
message to the operator and enablE~s the operator's reply to
be returned to the user's program.

The M:KEYIN procedure call has the form

M:KEYIN tMESS I [*]address)[, (REPLY, [*]address)]
L, (SIZE, value) J[, (ECB, [*]address)]
[,(OC)]

where

MESS, [*]addres$ specifies the word address of the
beginning of the message to be output to the oper­
ator. The first byte of the word must specify the
number of characters in the message. The address
can be indirect to a register, however the message
cannot be in registers. The message may consist
of not more than 136 alphanumeric characters.

REPLY, [*Jaddress specifies the word address of the
location at which the beginning of the operator's
reply is to be stored. The first byte of the word
will (automatically) contc'on the number of char­
acters in the reply. Indir'9ct addressing can be
made to a register; however, the message may not
be in registers. If REPLY is not specified, the
operator's reply is stored ot the address specified
by the MESS parameter.

90 17 64H-l (9/78)

SIZE, value specifies the maximum number of
alphanumeric characters to be accepted from the
operator's key-in and stored. If SIZE is not
specified, c size of 60 characters is assumed.

ECB, [*laddress specifies the word address of the
Event Control Block (ECB) to be posted when a
reply has been received. Bi t 0 of the ECB is set
to 1 unti I the reply has been received, then it is
set to O. I nd i rect add ressi ng can be mad e to a
register' however, the word may not be in a register.

OC specifies that the message is to go to the oper-
ator's console and that the reply is to be received
from the operator's console. (In the on-line mode,
the message goes to the user's console and the reply
is received from the user's console if this option is
not specified.)

Calls generated by the M:KEYIN procedure have the form

CAL 1, 2 fpt

where fpt poi nts to word 0 of the fpt shown below.

word 0

word)

word 3 (P 2)

P1 must be set to 1, indicating that word 2 is present. If
f) is set, the OC option was specified.

The M:KEYIN procedure supplies REFs for M:LL and
M:OC.

General-Purpose Procedures 61

WRITE TO LISTING LOG

M:PRINT The monitor PRINT routine outputs a specified
message on the I isting log (LL) device.

The M:PRINT procedure call has the form

M:PRINT (MESS, [*Jaddress)

where MESS, [*]address specifies the word address of the
location containing the beginning of the message to be out­
put. The first byte must specify the number of characters
in the message. The message may consist of not more than
136 alphanumeric characters (132 if LL is assigned to a
line printer). Indirect addressing can be made to a register,
however, the message may not be in registers.

Calls generated by the M:PRINT procedure have the form

CAL 1,2 fpt

where fpt points to word 0 of the FPT shown below.

word 0

X101 1

" III" II " Ill. " " Ifl" " n HI,." .. "Ia B .. ~J j I" 3 6

".,.,:., " "I" ,J .. ,,: .. " ,j ,,," " n .. :,." .. "'ft B .. ~il
word 2

H 0 : 0 I : Message ~ddress I
o 1 2 J 14 5 6 78 9 101111213141516171819120 21222324;:5262712829 JO 31

P 1 must be equal to 1.

The M:PRINT procedure supplies REFs for M:LL and M:OC.

SUSPEND PROGRAM

M:WAIT The WAIT routine causes the specified number
of units of real-time to elapse before the next instruction
in sequence is executed. It is used by programs that are to
be executed periodically or must wait for files in use by
another program. When execution of a program has been
suspended by this CAL, it is resumed at a priority just
higher than the current compute bound users.

The procedure call is of the form

M:WAIT units

where units specifies the number of 1. 2-second intervals to
elapse before the next instruction is executed and is
treated modulo 24 hours.

62 Exceptional Condition Control Procedures

Calls generated by the M:WAIT procedure have the form

CALl,S fpt

where fpt p~i~ts to the FPT shown below.

EXCEPmNAL CONDIT .. CONTROL PROCEDURES

The procedures described in this section allow the user pro­
gram to take program control to a specific location for pro­
cessing whenever one of the exceptional conditions occurs.
Also described in this section are procedures that allow the
program to return after processing the exceptional condi­
tions, to exit completely from the program, and to simulate
and test certain of the exceptional conditions.

Exceptional conditions may be divided into two categories:
VO related and the rest. They are distinguished both by
the method of requesting control and by the difference in
the environment available to the routine taking control.

I/O related conditions are requested by establ ishing error
and abnormal addresses in the DCB, usually using the
M:OPEN procedure, or by establishing them with each
M:READ or M:WRITE. The resulting four types of conditions
are described in Appendix B, "Monitor Error Messages".
This appendix also describes the contents of the general
registers when the error or abnormal routine takes control.
Certain registers are made to contain the error codes and
the DCB a.ddress and no environment is saved, as is the case
with the rest of the exceptional conditions described below
in this section. Two procedures in this section relate to
I/O errors: M:MERC which allows an error or abnormal
processing routine to return control of the error to the moni­
tor, and M:XCON which takes control of all exceptional
conditions including I/O errors.

Four of the pracedures are used to request exceptiona I con­
dition control:

M:TRAP

M:STlMER

·M:INT

M:XCON

to take control of machine traps.

to take control after a time interval.

to take control of the console interrupt
or terminal break key.

to take control of all exceptional
conditions.

These routines simply establ ish the address of a program
routine to be entered when the condition occurs. The first
three take precedence over the last - that is, if both TRAP
and XCON are requested and a trap occurs, control will go
to the address specified by M:TRAP.

M:XCON allows control to be taken in several cases not
otherwise available: exceeding LIMIT card specifications,

'operator aborts, line hangups, and program exits (M: EXIT,
M:ERR, M:XXX).

When the exceptional condition p,·ocessing routine specified
by any of the above four procedures is entered, a common
environment is established as described below. This consists
of two parts:

1. The contents of the general registers on entry to the
routine.

2. The machine environment at t-he time the exceptional
condition occurred, which is stored in the pushdown
stack in the user's task control block (TCB). (See
Chapter 6 for other details of the TCB.)

Exceptional Condition Registers

On entry to exceptional condition processing routines the
general registers have the contents shown below. For
M:XCON processing only, additional registers are set as
specified later in this chapter in Table 9. Unspecified
registers have arbitrary contents.

Register 0

Register 1

contains the address of the stack pointer
doubleword in ·the TCB.

contains the address of the PSD within
the TCB stack.

When running on the Xerox 560~ register 7 contains the
contents of the i nterna I control regi ster 030 decremented
by one, which is effectively the C1ddress of the last success­
ful branching type instruction executed by the machi ne
immediately prior to the user's trap. If the address is below
AOOO, the user has not executed CI successful branch type
instruction yet and the address reported is meaningless.
(030 is described in detail in the Xerox 560 Computer/
Reference Manual, 90 30 76.)

Exceptional Condition TCB Stack Contents

On entry to an exceptional condition processing routine,
the program envimnment at the ti me of occurrence of the
condition may be found in the user's TCB pushdown stack.
The environment consists of 20 or 21 words as shown in
figure 5.

SET TRAPS

M:TRAP The monitor TRAP routine sets and resets the
trap conditions. Any trap condition that occurs while in
the IItrapll state C<luses control to go to a user's routi nei
any trap condition that occurs while in the lIabortll state
causes the user's program to be clborted. Maskable traps
(i. e., fixed-point and decimal Clrithmetic) may be masked
off so they do not occur, by plclcing them in the II ignore ll

state.

{ ~
I Possible spacer word to ensure that the PSD
: wi II be on a doubl e word boundary.

Minus one if space word required; zero if not.

User's PSD at time of occurrence of the
r-

excepti ona I condi ti on.
-

Contents of 16 general registers at the time of
occurrence of the exceptional condition.

Trap location for traps; arbitrary otherwise.

Figure 5. TCB Stack Contents on Exceptional Condition

Each time the monitor TRAP routine is entered, the previous
contents of the Program Trap Conditions (PTC) become
available. The PTC a Iways contains the current trap set­
tings. Prior to the first M:TRAP, the mask bits are all zero.
The first word of the PTC (returned in SR1) indicates which
traps are in the IItrapll or lIabortll state and which mask­
able traps are in the II ignore ll state.

The second word of the PTC (returned in SR2) cont'ains the
transfer address of the previous trap condition. Using the
RESTORE option (see below) and some previous PTC, the
trap settings can be restored to a previous setting.

The M:TRAP procedure call has the form

or

M:TRAP[transfer address) [, (ABORT, traps)]

[, (TRAP, traps)][, (IGNORE, mask traps)]

L (PERMIT, mask traps)]

M:TRAP (RESTORE, ptc address)

'where

transfer address specifies the address of a user's
routine to handle any traps caused by the TRAP
option (see below).

Exceptional Condition Control Procedures 63

ABORT ,traps specifies the traps to be set to the
"abort" state. Any combination of the following
(separated by commas) may be specified:

Trap Designated Trap(s)

ALL All traps listed below.

CAL Bad CAL.

DEC Dec imal arithmeti c.

FP Floating-poi nt ari thmeti c.

FX Fixed-point arithmetic.

NAO Nonallowed operation.

PS Push-down stack limit.

UI Unimplemented instruction.

. TRA P ,traps specifies the traps to be set to the
"trap" state. Any combination of the above may
be specified.

IGNORE,mask traps specifies which maskable
traps are to be set to the ": nore" state. Any of
the following may be specified.

Mask
Taps Designated Trap(s)

FX Fixed-point arithmetic.

DEC Decimal arithmetic.

BOTH Both of the above.

PERMIT ,mask traps specifies which maskable traps
are to be set to the "permit" state. Any of the
traps shown may be specified.

RESTORE ,ptc address
previous PTC.

specifies the address of a

Calls generated by the M: TRAP procedure have the form

CAL 1,8 fpt

where fpt points to word 0 of the FPT shown below.

word 0

'4 Exceptional Condition Control Procedures

where control bits are shown below and Fl specifies whether
to restore (F 1 = 1) or to set new trap condi tions (F 1 = 0).

2 3 ~ 5 6 7 8 22 23

Abort bits N U P F
A I S P
0

Trap bits

D F
E X
C

C
A
L

Permit bits rnF
E X
C

Ignore bits
1 0 11 12 13 1 ~ 15 16 30 31

When a user's trap routine is to be entered, due to the
occurrence of a trap condition for a set-trap, the informa­
tion stored in the user's stack and the contents of registers
are as described at the beginning of this section. The top
word of the stack contains the trap location (X'40' - X'4B').
The condition codes are those set by the hardware trap, so
the user may determine which type of nonallowed operation
caused the trap.

The trap return function (see II M: TRTNII) can be used to
return to the trapped program. The monitor does not in­
crement the PSD when a trap occurs. If the PSD for the
trapped program is to be changed, the user must change
the PSD (in the user's stack) before control is returned to
the trapped program.

Trap conditions are accumulated from one M:TRAP to suc­
ceeding ones, and the most recent transfer address is used
regardless of which trap occurs.

SIMULATE A TRAP

'M:STRAP The monitor STRAP routine simulates the
occurrence of a trap condition. The trap condition and
environment are specified by a block of temporary storage
at the top of the user's TCB temp stack as described above
under II Exceptional Condition TCB Stack Contents ll

• The
traps that may be simulated are locations X'40' through
X'45' and X'48' through X'4B'. The monitor pulls the
environment from the user's stack and simulates the occur-,
rence of the specified trap with that environment.

The M:STRAP procedure call has the form

M:STRAP

Calls generated by the M:STRAP procedure have the form

CAL 1,9 4

No FPT is required by M:STRAP.

SET INTERVAL TIMER

The interval timeris manipulated by the two monitor proce­
dures M:STIMER and M:TTIMER. M:STIMER sets the inter­
val timer and M: TTIMER tests the interval timer.

The basic timing unit used by CP-V is 2 milliseconds and it
refers to user execution time. Thus, M:STlMER is used to
give the user program control at a specified address after
the specified amount of execution time has elapsed. I/O
time does not count, nor does time spent in the monitor or
executing other user programs.

The time calculation is made each time a time-slice is
required (each QUAN if compute bound and running
alone). Thus, the actual time of the STiMER transfer
of control wi II vary from the time specified to later than
that by an amount no greater thon Q UAN. The user may
determine the exact elapsed interval by examining JIT
cells that contain the exact time'.

In summary, all M:STlMER and M: TTIMER calls are based
on the closest number of interval timer units (2 milliseconds)
with accuracy of -0 to +QUAN.

'M:STIMER The monitor STIMI:R routine sets the interval
timer with the spec:ified value and specifies what action
is to be taken. The interval is to be decremented only
when the job issuing the M:STIMER procedure is operating,
and only one such timing function may be in progress at any
one time. An M:STIMER must be issued for each interval
to be timed.

When the time expires, the PSD and registers are stored in
the user's TCB stack as described in Figure 5. The user's
program is entered at "exit address" with registers 0 and 1
set as described above. The interrupted program may be
reinstated by use of the M:TRTN procedure.

The M:STlMER procedure call has the form

I(MIN, ValUe)]
M:STlMER (SEC, value) ,[~]exit address

. (TUN, value)

wh~re

MIN,value specifies (in minutes) the interval to
which the timer is to be liet.

SEC, va lue specifi'es (in seconds) the interval to
which the timer is to be set.

TUN,value specifies (in interval timer units) the
interval to which the timer is to be set.

(*lexit address specifies the address of a routine
to be entered when the specified interval ends.
If om i tted, zero is assumed.

Calls generated by the M:STIMER procedure have the
form

CAL 1,8 fpt

where fpt points to word 0 of the FPT shown below.

90 17 64H-l (9;78)

word 0

word 1

Interval value
10 11 12 13 14 IS 16 17 18 19 20

where U specifies the type of units represented by the in­
terval (0 means seconds, 1 means minutes, 2 means interval
timer units).

TEST INTERVAL nMER

M:TTIMER The monitor TTIMER routine causes an indi-
cation of the time remaining in the time interval (pre-
vi ous I y set by th e S TIM ER routi ne) to be returned to S R 1 ,
and optionally allows the interval currently in effect to
be canceled.

The M:TTIMER procedure call has the form

M:TTIMER [unit][, CANCEL]

where

unit specifies the units in which the time indica-
tion is to be returned to SR 1. Unit may be either
SEC, MIN, or TUN (see M:STIMER procedure);
if omitted, TUN is assumed.

CANCEL specifies that the interval currently in
effect is to be canceled. The exit address (see
M:STlMER procedure) is ignored.

Calls generated by the M:TTIMER procedure have the form

CAll, 8 fpt

where fpt points to word 0 of the FPT shown below.

word 0

where

C specifies whether thp. interval in effect is (C = 1)
or is not (C = 0) to be concl uded.

U specifies the units in which the time indication
is to be returned to SR 1 (0 means seconds, 1 means
minutes, 2 means interval timer units).

CONNECT CONSOLE INTERRUPT

M:INT The monitor INT routine may be called to con­
nect a console interrupt (via the INT key-in) to a user's

Exceptional Condition Control Procedures 65

program, allowing execution of the program to be controlled
from the operator's console. When control is given to the
INT routine, the information stored in the user's TCB stack
is as described in Figure 5.

When a user's interrupt routine is entered, the condition
codes are those loaded by the execution of the interrupt.
The TRTN routine (see M:TRTN) may be used to restore
control from a console interrupt.

The M: INT procedure call has the form

M:lNT address

where address specifies the location of the entry to the user's
console interrupt routine.

Calls generated by the M: INT procedure have the form

CAll,8 fpt

where fpt points to word 0 of the FPT shown below.

word 0

EXIT CONTROL

This facility allows a user program to gain CPU control
following an exit, abort, or line disconnect. This is usu­
ally for the purpose of cleanup or postmortems in the event
of an unexpected problem.

Control is established via the M:XCON procedure. When
an exit or abort occurs, control is passed to the location
which was specified in M:XCON. In addition, the reason
for the exit or abort is passed to the specified routine.
limits on output and time are reestablished to control the
exit routine. Exit control enfTies may be nested by the
user.

M:XCON Exit control is established with the M:XCON
procedure, which has the form

M:XCON address' [, LA ST]

where

address specifies the address of a routine or a. loc-
ation to be entered upon exit of the current pro­
gram whether normal or abnormal. No indirect
address is allowed.

LAST specifies that this exit control request is in-
tended to be the lost one and subsequently no other
exit control request will be honored unless issued
while processing on exit. Thus, the program speci­
fying LAST will be the first to receive control on
exit. -

66 Exceptional Condition Control Procedures

Colis generated by the M:XCON procedure have the form

CALl,8 fpt

where fpt points to word 0 of the FPT shown below:

where bit 8 is set if the LAST option is specified.

The exit control request may be unsuccessful if some
previous M:XCON has specified the LAST option. In this
case, exit control is not establ ished and CC 1 is set on re­
turn from the CAL. If a preceding part of the program hc!lS
establ ished exit control, the exit control routine address is
returned in SRl as is done for the M:TRAP CAL. This ad­
dress may be saved so that the exit control routine may
reestabl ish exit control to its previous entry point ofter
performing the desired cleanup. The exit control may be
nested.

The absence of the LAST option will imply that. the exit
control is no longer intended to be the lost request even
if it has been previously designated to be such. If the exit
routine address is zero, exit control is reset. Thus, there is
an inherent difference between the procedures M:XCON 0
and M:XCON 0, LAST, although the application of the
latter should be directed with specia.! purpose in mind.

Returns from the exit control routine may be performed via
the M:TRTN service with the XCON option specified. Al­
though exit control is similar to trap control, the two are
kept separate to provide the user the convenience of dif­
ferent addresses for each function and to eliminate need to
pass through one exit control routine to get to the other
(e. g., through the trap control to obtain the exit control
address).

Entry to the Exit Control Routine. Conditions that couse
control to be passed to the established exit control routine
are described in Table 8.

I/O errors are treated first by establ ished error and abnormal
routines associated with the I/O. The exit control routine
is entered only if the program would have exited - that is,
the error is not token care of by a program error routine.

If a program processes only some of the errors and returns
control via M:MERC, then control will pass through an
establ ished exit control routine.

Trap control is similar. A program establ ishing control via
M: TRA P obta i ns control when a trap occurs for a II requested
traps. Those not requested will result in on error exit and
be passed to exit control, if established.

The exit control facil ity imposes some restrictions on the
linking process to a load module from a colling program.
If on exit control has been establ ished in the call ing
program, the issuing of a M:LIN K procedure will couse con­
trol to be passed to the effective exit control routine. In the

Table 8. Exits to the Monitor

Condition

Class I

Normal exit from user program (M:EXIT).

Abnormal exit from user program (M:ERR or M:XXX).

Transfer to another load module (M:LINK, M:LDTRC).

I/O error not hClndled by the user.

OperCitor errored the user.

Mon i tor detected error.

User progrom trap.

Class II

A resource limit has been exceeded (RAD, time, etc.).

Class III

Line disconnect or operator obort.

exit control routine, desired actions can be taken upon
determining the fact that entry to the routine is caused by a
I inking ca II. If the I inking process is sti II deemed nec­
essary, the M:LINK procedure con be reissued (byemploy­
ing the EXU instruction) in the exit control routine. The
Monitor will detect such a situation and will cause the
linking process to occur. Exit control is then automatically
reset before the transfer to the ca II ed program. Th is new
level of control in the usage of linking ,to a load module
can be regarded as a potentially powerful feature for a li­
brary routine where the necessary supervisory tasks can be
performed upon a user program. Once the linking process
is underway, the currently applicable restrictions are in
effect. That is to say, if the ca I' ed process is not success­
fully completed (for example, c] limit is exceeded while
executing the called routine), control will not be passed
to the exit control routine in the called program. If the
called program correctly executes a M: LDTRC procedure
to return control to the ca II er, control wi II return to the
exit control routine (which previously intercepted and then
reexecuted the original M:LINK). The exit control routine
must then reestabl ish exit control via M:XCON, if so de­
sired. User programming conventions can be adopted to
maximize security and reliability through the use of exit

Monitor Action

Users current limits are not modified. No time
limit is imposed.

Users current limits are incremented by a fixed
amount (SYSGEN specified).

Time limit is imposed for batch jobs, none for
on-I ine jobs.

Users current limits are incremented by a fixed
amount (SYSGEN specified).

Time limit is imposed for both batch and on-line
jobs.

control. For instance, programs which are I inked to should
take exit control and always return to the caller in abort
or abnormal situations. '

Once exit control is in effect, previously established timer
and break controls (i. e., by M:snMER and M:INT) are
reset. They can be reestabl ished in the exit control routine
if so desired.

Limits: Standard system exit control limit increments are
established by SYSGEN. When an unconditional abort
event occurs (Classes II and III -limit exceeded, line dis­
connect, or operator abort), the users current I imits are
incremented by the exit control values. An exception is
the time limit, which is not treated as an increment. When
maximum time must be set (see Table 8), the exit control
default is stored as the new maximum run-time limit. Be­
cause the limits are established only for the exit control
entry first encountered, the system is protected from looping
exit control routines by the SYSGEN establ ished I imits for
exit routines since some limit will eventually be exceeded.

If an exit condition should again occur while the user is
processing the exit control routine, different actions,

Exceptional Condition Control Procedures 67

depending on the current and existing conditions, are
_ dictated by the monitor as follows:

1. A Class I type exit, while the user is processing a
Class I, Class II, or Class III exit condition, win cause
control to be passed to the currently effective exit con­
trol routine without establ ishing the processing limits.

2. A Class II type exit, while the user is processing a
Class I exit condi,tion, will cause control to be passed
to the currently effective exit control routine.

A Class II type exit, while the user is processing a
Class II exit condition, wi II cause the batch user to
be unconditionally logged off. In the case of an on-
I ine user, control wi II be passed to the current com­
mand processor. Th is is the case wh ere the user has
exhausted the extended processing capabi I i ti es granted
to him by the system. A Class II type exit, while the
user is processing a Class III exit condition, will cause
the user, whether batch or on-line, to be uncondi­
tiona IIy logged off.

3. A Class III type exit, while the user is processing a
Class lor Class II exit condition wi II cause control to
be passed to the currently effective exit control rou­
tine. In the case of processing a Class I exit con­
dition, the extended processing limits will be appro­
priately set up.

A Class I II type exi t, wh i I e the user is process ing a
Class III exit condition will cause the user to be un­
conditionally logged off.

Information Provided the Exit Cc..,ltrol Routine. On entry
to the exit cCltro' routine, registers are set to indicate the
cause of the exit. In additiol, severa I values are returned,
each, right-justified in an otherwise zero register. Register
contents are described in Table 9.

Bits that are set correspond to the bits currently establ ished
in JIT. Other bits may be assigned meaning from time-to­
time so no code should be written that depends explicitly
on zero values.

Before control is passed to the exit control routine, the
run status, error code, and error subcode are cleared in the
JIT.

Three cases wi II cause the exit control routine to be entered
with zero run status - M:EXIT, M:LINK, and M:LDTRC.
The specific cause may be identified by examining the in­
struction pointed to by the exit control environment.

When the exit control routine is entered, the PSD and gen­
eral registers of the user program are placed in the TCB
temp stack as described in Figure 5. The exit control rou­
tine is entered in the slave mode with decimal and fixed­
point traps inhibited.

The environment may be returned to for additional execu­
tion via the M:TRTN procedure. For example, if a print
limit is exceeded, it may be desirable to return to the

68 Exceptional Condition Control Procedures

program to finish a current page of output before taking a
final exit. Returning to the users environment has ques­
tionablemeaning if the user program has issued M:EXlT,
M:ERR, or M:XXX CAL.

To resume execution of a program after receiving exit con­
trol, the M:TRTN service with the XC ON option specified
should be used. This wi" serve to signal that exit control
is no longer in process and will ensure the proper use of
the LAST option on the M:XCON CAL.

If there is no TCB stack or if it is full, the exit control
routine is entered without placement of the user's environ­
ment, with bit zero of register 12 set to 1, and with the
PSD from the environment placed in registers 2 and 3.

If an exit control routine wishes to exit unconditionally
from the current job step, it can issue an exit, error, or
abort CAL. If communication to other steps in the same
job is desirable, the step condition code may be set via
an option on the M:EXIT, M:ERR, or M:XXX procedure.

EXITS TO THE MONITOR

To enable the monitor to provide continuous system opera­
ti on, control of the system must be returned to the mon itor
by each user's program when it has terminated execution of
its operations for any reason. The monitor provides three
exit returns by which a user's program may rei inquish con­
trol after termination. The monitor performs an implicit
"Close" for any DCBs that are open when a program termin­
ates via one of the three exit returns.

M:EXIT An EXIT return should be used when the user's
program has completed its operations in a normal manner.
When control is returned via the EXIT routine, the monitor
either returns to the exit control routine in the user's pro­
gram or performs any PMDI dumps that have been specified
for the program and proceeds to the next control command.
Return to the user's program occurs only if exit control has
been establ ished in the user's program.

The M:EXIT procedure ca" has the form

M:EXIT [
scc]
*address

where

scc specifies a new value for the step condition
code (see STEP Control Command).

*address specifies the address of a location in
which the step condition code and the exit type
are contained. •

Ca lis generated by the M:EXlT procedure with no options
specified have the form

CAL 1,9

Register Name

8 Run Status

9 Limits

10 Error Code

11 Error Su bcode .

12 Stack Flag

o TCB Address

PSD Address

2, 3 PSD

Table 9. Register Conl'ents for Exit Control

Contents

If exit was normal, following bits reset; otherwise, appropriate bit is
set as follows:

24 An M:E RR was issued by the program or processor.

25 An M:XXX was issued by the program or processor; or an on-line
user program with exit control entered TEL via Control Y, then
implicitly aborted (e.g., by calling PCl).

26 The operator errored the program (ERROR or E key-in).

27 The operator aborted the program (ABORT or X key-in).

28 Terminal has hung up or line has disconnected.

29 Some I im it was exceeded (see Reg ister 9).

30 I/O Error (see Registers 10 and 11).

31 Trap (see Registers 10 and 11).

If bit 29 of Register 8 is set, then the limit exceeded is identified by

23 Disk granule allocation (net permanent).

24 CPU time.

25 Scratch tapes.

26 Temporary disk granules acquired.

27 Permanent disk granules acquired.

28 Diagnostic print pages output.

29 User-generated print pages output.

30 Processor-generated print pages output.

31 Punch cards output.

See Appendix B.

See Appendix B.

Bit 0 reset if environment is placed in the stack; set if not.

Bit 1 set if the exit is from M:LINK or M:lDTRC.

User's TCB address.

PSD address (in user's TCB).

PSD at exit point 'if environment is not placed in TCB.

Exceptional Condition Control Procedures 69

The CAL code generated by the M:EXIT procedure with scc
- specified is of the form of a CAll, 9, as follows:

The CAL code generated by the M:EXIT procedure with
*address specified is of the form of a CALl,9, as follows:

with the location poInted to by the specified address con­
taining the following:

Bit 15 in the address field, if set, indicates that the step
condition code value is to be established.

No FPT is required by M:EXIT.

M:ERR An ERR return is used when an error has occurred
during program execution and the user wants the monitor
to discontinue execution of the currenr program. When
control is returned via the ERR routine, the monitor outputs
the message

JOB ERRORED BY JSER AT xxxxx

where xxxxx is the address of the last instruction executed
in the pre ~ram.

This message plus the contents of the current register block
arid Program Status Doubleword (PSD) are listed on the
LL device. The PSD contains the address of the last in­
struction executed in the errored program. The step condi­
tion code is set to 4.

The monitor then either returns to the exit control routine
in the user's program or performs any specified postmortem
dumps and proceeds to the next job step. Return to the
user's program occurs only if exit control has been estab­
lished in the user's program.

The M:ERR procedure call has the form

[
scc]

M:ERR * dd a ress

where

scc specifies a new value for the step condition
code (see STE P Control Command).

*address specifies the address of a location in
which the step condition code and the exit type
are contained.

70 Exceptional Condition Control Procedures

Calls generated by the M:ERR procedure with no options
specified have the form

CALl,9 2

The CAL code generated by the M:ERR procedure with scc
specified is of the form of a CAll, 9, as follows:

The CAL code generated by the M:ERR procedure with
*address specified is of the form of a CAll ,9, as follows:

with the location pointed to by the specified address con­
taining the following:

Bit 15 in the address field, if set, indicates that the step
condition code value is to be established.

No FPT is required by M:ERR.

M:XXX The XXX (abort) return is used when an irre­
coverable error has occurred and the current job step'is to
be aborted. When a job step is aborted, the monitor lists
the message

JOB ABORTED BY USER AT xxxxx

where xxxxx is the address of the last instruction executed
in the program.

This message plus the contents of the current register block
and Program Status Doubleword (PSD) are listed on the
LL device. The PSD contains the address of the last in­
struction executed in the aborted program. The step con­
dition code is set to 6.

The monitor then either returns to the exit control routine
in the user's program (if exit control has been establ ished
in the user's program) or performs any specified postmortem
dumps and proceeds to the next job step.

The M: XXX procedure ca II has the form

M:XXX [
scc]
*address

. where

scc specifies a new value for the step condition
code (see STEP Control Command).

*address specifies the address of a location in
which the step condition code and the exit type
are conta i ned.

Calls generated by the M:XXX procedure with no options
specified have the form

CAL1,9 3

The CAL code generated by the M:XXX procedure with scc
specified is of the form of a CALl,,9, as follows:

The CAL code generated by the M:XXX procedure with
*address specified is of the form of a CAll, 9, as follows:

with the location pointed to by the specified address con­
taining the following:

Bit 15 in the address field, if set, indicates that the step
condition code value is to be established.

No FPT is required by M:XXX.

EXIT FROM TRAP, INTERRUPT, TIMER, OR
EXIT CONTROL ROUTINE

M:TRTN The monitor TRTN routine restores control
t·o a trapped program.

The M: TRTN procedure call has the form

M: TRTN ~][XC ON]

where XCON identifies an exit control return.

Calls generated by the M: TRTN procedu~e with no options
specified have the form

CALl,9 5

The CAL fade generated by M:TRTN, with the XCON op­
tion specified, has the form of a CALl,9, as follows:

where XCON specifies a normal M:TRTN (XCON = 0), or
an exit control return (XCON = 1).

M:TRTN pulls the last standard environment from the users
TCB, as described under "Exceptional Condition TCB Stack
Contents ". The user should note that he may effect M: TRTN
himself (so long as the XCON option is not required) by
loading the 16 registers from the TCB, adjusting the stack
pointer appropriately, loading condition codes from the
PSD, and branching to the location specified in the PSD.
This can be a lot faster than using M: TRTN. If a trap re­
turn, M: TRTN, is attempted with no environment in the
stack, then the usual error code, A301, results and exit
contro I ta kes effect.

If M:TRTN XCON is used when not in an exit control rou­
tine, return is to the program at CAL + 1 with CCl set.

MONITOR ERROR CONTROL

M:MERC The monitor MERe routine enables the user's
program to specify an error or abnormal code and subcode
(see Appendix B) in SR3 and have the mon itor handle it,
overriding any user's abnormal or error routines that might
otherwise apply.

The ca II can a Iso be used to return control to the mon itor
from a user's error or abnormal routine if that routine can
handle only certain codes. If a use'r's error or abnormal
routine is called to handle an abnormal or error condition
beyond its capabil ity, it must leave the contents of com­
munication registers SR1 and SR3 intact and call the MERC
routine to handle the condition.

The M:MERC procedure call is of the form

M:MERC

Although no parameters are specified in this call, com­
munication register SR3 must contain the error or abnormal
code in bit positions 0-7 and subcode in bit positions 8-14
when MERC is entered. For I/O error or abnormal condi­
tions, the address of the associated DCB must also be con­
tained in SR3, in bit positions 15-31. This information is
placed in SR3 by the monitor, when an error or abnormal
condition is detected. When bit positions 0-7 of SR3 con­
tain X'40'-X'FF', the current job is aborted and the error
code is used to obtain the appropriate error message from·
the system error message file. It should be noted that SR 1
will contain the address + 1 of the offending CAL when the
error or abnormal address is entered. It must also be pre­
served so that MERC can return properly.

Ca lis generated by the M:MERC procedure have the form

CALl,2 fpt

where fpt points to word 0 of the FPT shown below.

Exceptional Condition Control Procedures 71

DATA MEMORY MANAGEMENT

CP-V permits either relative or specific allocation of core
memory in the data area of a user program. When this type
of allocation is used, pages may be allocated sequentially
from either end of unallocated virtual memory (Figure 6),
Pages allocated from the lowest toward the highest unallo­
cated page address are called dynamic pages. Pages allo­
cated from the highest toward the lowest unallocated page
address are called common dynamic pages orsimply common
pages. Dynamic and common pages may not overlap. If
there is an attempt to overlap these pages, an error indica­
tion wi" result.

dynamic
pages

A Ilocation request

unallocated virtual
memory

Bottom common
page (BCP)

New TDP following
request

allocated
common
pages

'---__ Top dynamic page (I DP)
prior to request

First avai lahle
virtual page

Last available
virtual page

Data pages affectt...J by memory
1 ---- management routines (avai lable ----.. __ 1

virtual memory pages)

Figure 6. Memory Allocation

Specific allocation allows a user program to get or release
any page in the data area by reference to the address of
the first word on the page. If an attempt is made to get
pages that have been allocated or to release pages that have
been released, an error indication wi" result.

Relative-a"ocation CALs may not be used to allocate a
page already allocated by a specific allocation CAL.
Specific-allocation CALs may not be used to release pages
allocated by a relative allocation CAL.

The number of physical pages that may be allocated for all
purposes is limited. This limit is initially set by SYSGEN
and may be modified by the performance control program
(see CP-V ISM Reference Manual, 90 16 74).

No program may acquire more than 1 d5 pages of physical
memory in addition to JIT. This limit includes space for
the program, assembled data, dynamically obtained pages,

72 Data Memory Management

blocking, index, cooperative buffers, and DCBs. Not
included in this limit are associated libraries or shared pro­
cessors (e.g., compilers, debuggers).

No program may acquire more pages than the number of
pages on the machine minus the size of the monitor (in­
cluding any overlay required by the program). This limit
includes space required for shared processors and libraries.

In addition, users are constrained by the authorized user file
and the LIMIT control command.

GET COMMON LIMITS

M:GL The G L routine returns the lowest and highest
word addresses of the common data area presently a" ocated.
The lowest address is returned in SR1 and the highest
address is returned in SR2. If no pages have been requested
before, or if a II pages requested have been returned, SR 1
and SR2 are equal.

The M:GL procedure call is of the form

M:GL

Calls generated by the M:GL procedure have the form

CALl,8 fpt

where fpt points to the FPT (function parameter table)
shown be I ow .

GET DYNAMIC DATA LIMITS

M:GDDL The GDDL routine returns several limiting
va I ues of the dynam i c data area. The dynam i c data area'
is the region of memory from which dynamic, common
dynamic, and, sometimes, virtual pages are allocated.
The address of the first word of this area is returned in SR 1
and the address of the last word in SR2. Returned in SR3
is the maximum number of pages that a user could obtain
through the M:GP, M:GCP, and M:GVP CALs. This value
does not include those pages already allocated (for example,
if the user already obtained a" but one page, a value
of 1 would be returned).

tHexadecimal numbers in this manual are expressed in the
form Xlnl, where n is the hexadecimal number.

The M:GDDL procedure is of the form

M:GDDL

Calls generated by the M:GDDL procedure have the form

CAL 1,8 fpt

where the fpt points to the FPT shown below:

GET COMMON PAGES

M:GCP The GCP routine allocates a specified number
of pages at successively lower address~s of common storage
starting with the next lower page (BCP). It also decre­
ments that page number.

Pages are obtained and allocated at successively lower
addresses beginning with that of BCP until

1. The required number of pages are obtained.

2. The installation-set or user-set I imit on the number of
physical core pages is reached or a page already allo­
cated via M:GP or M:GVP is encountered.

This information returned for each of the two cases is

Case CCl

o

2

SRl

Number of pages allocated I
"I umber of pages a II ocated

SR2

address of
lowest word
allocated

In each case, BCP is the page number of the next lower
page yet to be allocated.

Access codes for the a II ocatecl pages are set to 00 (read,
write, and execlJlte).

The M:GCP procedure call is of the form

M:GCP [*] pages

where pages specifies the number of memory pages by which
common storage is to be extended.

Ca lis generated by the M:GC P procedure have the form

CAL 1, 8 fpt

where fpt points to the FPT shown below

1
'1*1 X·OC 1

0 -
0123145678

FREE COMMON PAGES

M:FCP The FC P routine releases a specified number of
pages at successively higher addresses of common storage
beginning with the current lowest page (BCP+l). It also
increments that page number.

Pages are released beginning at BCP+1 toward successively
higher addresses until

1. The requested number of pages have been released.

2. The last available virtual page is released.

In the first case, CC 1 is set to zero. In the second case,
CCl is set to one. The number of pages released is re­
turned inS R 1.

Pages released by FC P have access codes set to 11 (no ac­
cess). Any subsequent reference to these pages wi II resu I t
in a trap.

The M:FCP procedure call is of the form

M:FCP [*] pages

where pages specifies the number of pages to be freed.

Ca II s generated by the M: FC P procedure have the form

CALl,8 fpt

where fpt points to the FPT shown below.

GET DYNAMIC PAGES

M:GP The G P routine allocates a specified number of
pages beginning with the next higher page (TDP) of dynamic
storage. It also increments that page number until

1. The required number of pages are allo cated.

2. The installation-set or user-set I imit on the number of
physical core pages is reached or a page already allo­
cated via M:GCP or M:GVP is encountered.

The information returned for the two cases is

Case CCl

o

2

SRl

Number of pages allocated I
Number of pages allocated

SR2

address of
lowest word
allocated

In each case, TDP is the page number of the next higher
page yet to be a II ocated.

Data Memory Management 73

Access codes for all allocated pages are set to 00 (read,
write, and execute).

The M:GP procedure call is of the form

M:GP [*J pages

where pages specifies the number of additional pages
requested.

Calls generated by the M:GP procedure have the form

CALl,8 fpt

where fpt points to the FPT shown below.

FREE DYNAMIC PAGES

M:FP The FP routine releases a specified number of
pages at successively lower addresses of dynamic storage
beginning with the current highest page (TDP-l). It also
decrements that page number until

1. The requested number of pages have been released.

2. The first available virtual pag is released.

In the first case, CC 1 is set to zerc. In the second case,
CC 1 is set to ot"'~. The number of pages released is re­
turned in SR 1.

Pages releaseu have their access codes set to 11 (no access)
and any subsequent reference to these pages will result in
a trap.

The M: FP procedure call is of the form

M:FP [*J pages

where pages specifies the number of pages to be freed from
use by the user program.

Cad I s generated by the M: F P procedure have the form

CALl,8 fpt

where fpt points to the FPT shown below.

GET VIRTUAL PAGE

M:GVP The GVP routine allocates a specific page of
virtual memory to the user program. If the request is

'4 Data Memory Management

allowed, access for the page is set to 00 (read, write,
or execute) and CC 1 is set to zero. The result is dis­
allowed if

1. The installation-set or user-set limit on number of
pages allowed would be exceeded.

2. The page has a I ready been a II ocated .

3. The page requested is outside the limits of unallocated
virtual memory.

In all three cases, CC 1 is set to one and no page is
a II ocated.

The M:GVP procedure call is of the form

M:GVP l *J virtual address

where virtual address specifies the address of the first word
in the virtua I page desired.

Calls generated by the M:GVP procedure have the form

CALl,8 fpt

where fpt points to the FPT shown below.

FREE VIRTUAL PAGE

M:FVP The FVP routine is called to release a specific
page of virtual memory. The indicated page is released
and CC 1 is set to zero except when the request is for a page
that does not belong to the user, in which case, CCl is set
to one and no page is released. The number of pages re­
leased (0 or 1) is returned in SRl. Pages of data that are
loaded with the program or processor (those assembled with
the program) may be released using this mechanism. These
are the pages below the first available virtual page.

The M:FVP procedure is of the form

M:FVP [*] virtual address

where virtual address specifies the address of the first word
in the virtual page to be released.

Calls generated by the M:FVP procedure have the form

CALl,8 fpt

where fpt points to the FPT shown below.

SET MEMORY PROTECT

M:5MPRT The SMPRT routine sets the access codes on
pages owned by the user. It does not affect write locks.

The M:SMPRT procedure call is of the form

M:SMPRT value, [*1 frorn[' [*}to]

where

value specifies the valuo of the requested memory
protection setting and may be anyone of the
following:

Value Access

0 Read, Write, Execute

1 Read, Execu'te

2 Read

3 No access

from specifies the address of the first page to which
the specified setting is fa apply. If no "to" is
specified, only this page will be affected.

to specifies the address of the lost page to which
the specified setting is to apply.

This procedure caU may not be used to reduce the amount
of protection on a given page from its initial value. Thus,
data areas may be given any prot,ection value and program
areas may be given any protection value except O. JITs
and DCBs may not be set to a value lower than two.

Calls generated by the M:SMPRT procedure have the form

CALl,8 fpt

where fpt points to word 0 of the fPT shown below.

word 0

word 1

O--{ -
8 10 11112 13 14 15 16

CHANGE VIRTUAL MAP

M:CVM The CVM routine allows certain processors and
privileged programs, such as those of the system programmer,
to examine, display, or change data portions of real physical
core.

Restrictions

1. The user issuing this CAL must have the proper privi­
lege level: X880' for read access and X' BO' for store
access (see CP-V ISM Reference Manual, 90 16 74).

90 17 64H-l (9/78)

2. The virtual address (VA) must not already be as­
signed to the call ing program.

3. The real-core page must exist.

If any of these restrictions are violated, CC 1 is set and
control is returned to the user without action.

The number of the real-core page requested is placed in
the specified virtual-page entry in the memory map of the
call ing program. The user specifies both in terms of
addresses, however.

Access for the page is set to read or data depending on the
user privilege, unless PROT is specified. When PROT is
speci fi ed, access is set to read.

The M:CVM procedure call is of the form

M:CVM [*) rpo,[*]va [,PROT)

where

rpo is the address of the real-core page to be

placed in the user's map.

va is the virtual-page address in the calling
program onto whi ch rpo is to be mapped.

PROT specifies that the virtual-page is to have
read and execute access, regardless of the user's
privi lege level.

Calls, generated by the M:CVM procedure to change the
mop, must have the form

CAL1,8 fpt

where fpt points to word 0 of the FPT shown below.

word 0

word

If P is set, the access code for the virtual page is to be
set to 01 (read and access instructions). If P is not set,
the access code is to be set to 00 (read, access instructions,
and write).

ENQUEUE/DEQUEUE RESOURCES

The enqueue/dequeue feature permits users to coordinate
the use of a resource among themselves. This includes, but
is not limited to, coordinating shored use of random files
for simultaneous update by several jobs.

Data Memory Management 75

The use of enqueue/dequeue presumes the existence of a
resource that may (or may not) contain elements and that
both the resource and its elements have names that are known
to all programs using that resource. For example, the re­
source might be a random file called DATAFIlE and the
elements of the resource might be the granules in the file,
the granules being referred to as 001, 002, 003, etc.

The use of enqueue/dequeue does not allocate any real,
physical resource. The resource and element ncimes have no
meaning to the monitor other than to identify the pseudo­
resources and elements that are being queued upon. How­
ever, properly used, the enqueue/dequeue feature permits
programs to coordinate the use of real, physical resources.

When a user enqueues on a particular resource/element, he
is effectively put in a queue to wait for availability of the
resource element. He remains in the queue until he spe­
cifically dequeues on the particular resource/element or
until the monitor automatically dequeues him (either at the
end of the job step or at the end of the job, dependent upon
options he has specified).

An option is provided in the enqueue service that allows the
user to enqueue simply to obtain a position in the queue even
though he is not ready to use the resource/element. This
generally ensures him of priority in the queue over sub­
sequent users who want the entire resource.

A resource/element may be requested either for EXClusive
use or SHAREd use. If it is requested for EXC lusive use, no
other user may access the resource/element while the
EXCLusive user has it. If it is SHAREd, all users requesting
SHAREd use of the resource/element may have simultaneous
access.

When a user enqueues on a particular resource/element,
either the user will be put to sleep until the resource/
element is available to him or an Event Control Block (ECB)
is flagged to mark when the resource/element becomes
available to that user. In the latter case, the user can use
the M:CHECKECB service to determine when the resource/
element has become available. Once the resource/element
becomes available to the user, it remains available to him
until he dequeues or is dequeued by the monitor (as de­
scribed above).

The following examples use a data management appl ication
with a random file data base as the resource and the granules
of that file as the elements. Assume the data base is in file
DATAFIlE in account THATACCT. Further, assume that all
data management users of DATA FI LE. T HA T ACCT refer to
that file for enqueue purposes, as QFILE, and the granules
of DATAFIlE. THATACCT are referred to as 001, 002, 003,
etc. Before reading any data that is contained on granules
5 and 11, then, the program would enqueue on QFILE, 005
and QFILE, 011 with SHARE specified. If at the same time
another user wanted data from granules 8 and 11, his copy
of the program would enqueue on QFILE, 008 and QFILE,
011 with SHARE specified. Both readers would then pro­
ceed and when finished reading they would dequeue those
resource/elements.

76 Data Memory Management

In the above sequence, no problems exist and the enqueue/
dequeue feature was not needed. However, if, duri ng the
same period another user tried to update data, some of the
data retrieved would not match .other data retrieved (a se­
quence su ch as read 5, write 5, write 11, read 11 cou I d
occur, making the two reads be of different data). The
updating program, therefore, would enqueue on QFIlE,
005 and QFIlE, 011 with EXClusive specified. If the first
user requested SHARE and the second requested EXCLusive,
the second user would not be given access until the first
user dequeued. But, if both the first and the second user
were SHARE and the third user was EXCLusive, the first and
the second would have simultaneous access and the third
user would have to wait until both the others had dequeued.

On the other hand, assume a reader wanted granules 20
and 23 of DATAFILE. THATACCT and an updater wanted to
change granules 12 and 18. The reader would enqueue on
QFIlE, 020 and QFIlE, 023 with SHARE specified while the
updater would enqueue on QFILE, 012 and QFIlE, 018 with
EXClusive specified. Since these sub-queues do not con­
flict,' both reader and updater could operate simultaneously.

If it were necessary to rebuild the file, the rebuilder would
enqueue on the entire file with EXClusive specified. The
rebuilder would then have to wait until all current users
dequeued and any new users would be blocked until after
the rebuilder dequeup.d.

Two types of deadlock are possible with enqueue/dequeue:
multi-queue and single-queue. A multi-queue deadlock
occurs when two or more users have at least one resource/
element and are waiting for at least one resource/element
such that none of the users involved can ever get the
resource/element they are waiting for. For example, user 1
has element "A and is waiting for element B, user 2 has ele­
ment B and is waiting for C, and user 3 has C and is wait­
ing for A. Assuming that user 3 was the last to request an
element, CP-V would detect this multi-queue deadlock
when user 3 enqueued on A. At that point, user 3 would
be given an error return (or aborted if no ERR address were
given), and the enqueue request would be ignored. Nor­
mally, user 3 would then dequeue on element C, permitting
user 2 to finish; user 2 would then dequeue on element B
and C, permitting user 1 to proceed, etc. A possible alter­
native is that user 3 might be able to use element D, an
alternate, complete his work and dequeue on C and D. In
any event, user 3 is given the error indication and, there­
fore, user 3 is responsible for unblocking the deadlock.

The single-queue deadlock occurs when two or more users
have been granted SHARE access to an element and two of
the users are attempting to upgrade their access to EXClusive.
Since they cannot get EXCLusive access as long as there are
SHARE users of the element, and since they have not relin­
quished their existing SHARE positions in the queue, dead­
lock is created. In this situation, the error is attributed to
the second user requesting the upgrade to EXCLusive and
that user is responsible for unblocking the deadlock. As
with the multi-queue deadlock, the user receiving the error
has his enqueue request ignored.

A third type of deadlock is possible when there are no
remaining empty entries in the monitor's enqueue table.
However, strictly speaking, this is not a deadlock because
it is possible for the queues to unwind without special
handling. This condition results in an error return, but
with a different sub-code than a fTue deadlock.

Additional information on simultaneous file usage is given
in Appendix F.

M:ENQ The M:ENQ procedure call allows a user to
enqueue on a particular resource/element or test a particu­
lar resource/element for availability. It has the following
format:

M ENQ ([*JI 1 [*JI ,[,STEPJ[EXCL 1 : qname, sname, JOB ,SHAREJ)~

[[(~ ~I~ A IT , [*J ecb addrej G (E RR, [*JaddreSS)J]
, TEST, [*]ecb address i'J

L [, (ABN, [*Jaddress)]

where

Iqnamel specifies the name of the queue (resource).

Isname l specifies the name of the sub-queue (ele-
ment) of the queue or specifies one of the follow­
ing (not in quotes):

ALL specifies that all sub-queues (elements)
of the queue (resource) are to be enqueued.

NULL specifies that the user wants to queue
on the resource but not on a particular ele­
ment of the resource. The NULL specifica­
tion essentially just reserves a place in the
queue for the user. At a later time, the user
may queue on an element or elements of the
resource. Meanwhile, he has established
priority over subsequent users that request ALL.

STEP specifies that use of this resource/element
(qname/sname) appl ies only during this job step or
during execution of this job. If STEP is specified,
the resource element will automatically be dequeued
by the mon itor at the end of the job step or program
execution unless it has already been dequeued by
the user. If neither STEP nor JOB is specified,
STEP is assumed.

JOB specifies that use of this resource/element
(qname/sname) may continue throughout the job or
on-line session. The resource/element will not be
automatically dequeued at the end of the program's
execution.

EXC L specifies exclusive use. No other user may
use this resource/element until it is dequeued by
this user. If neither E)(CL nor SHARE is specified,
EXC L is assumed.

SHARE specifies that the resource/element may be
shared with other users that do not require exclu­
sive use.

WAIT specifies that the program is not to resume
execution until the resource/element has been made
available to this user. WAIT, NOWAIT, and TEST
are mutually exclusive. IfneitherWAIT, NOWAIT,
nor TEST is specified, WAIT is assumed.

NOWAIT, [*]ecb address specifies that program
execution is to continue regardless of whether or
not the resource/element is available. It also
spec ifi es the address of the EC B to be associated
with this M:ENQ procedure call. When the
resource/element becomes avai lable, the EC BP flag
of the ECB will be set to one. (ECBs are described
in the discussion of M:CHECKECB.)

TEST, [*lecb address specifies that the resource/
element is not to be queued, but rather is to be
tested for availability. It also specifies the add­
ress of the ECB to be associated with this M:ENQ
procedure call. (ECBs are described in the dis­
cussion of M:CHECKECB.) The return from an
M:ENQ procedure that has TEST specified reflects
whether or 'not the resource/element is available
and whether or not the user has al ready enqueued
on the resource/element. The ECBP bit of the ECB
reflects whether or not the resource/element is
available. If the resource/element is not available
or if the user has already enqueued on the resource/
element, the return is an abnormal return.

ERR, [*]address specifies the address at which exe-
cution resumes if an error condition is detected.
Error codes for M:ENQ are listed in Table B-3,
Appendix B.

ABN, L*Jaddress specifies the address at which
execution resumes if an abnorma I condition is de­
tected. Abnormal codes for M:ENQ are listed in
Table B-7, Appendix B.

Calls generated by the M:ENQ procedure have the form

CALl,2 fpt

where fpt points to word 0 of the FPT shown below.

word 0

word 1

Data Memory Management 77

word 2 (pl)

word 3 (P2)

word 4 (P3)

word 5

word 6

word n

where

is set to one if the NOWAIT option was specified.

is set to one if the TEST option was specified.

Queue code has the following meanings:

X'Ol' for an EXCL, STEP request

X'03' for a SHARE, STEP request

X'05' for an EXCL, JOB request

X'07' for a SHARE, JOB request

N DW contains the number of words reserved to con-
tain the qname and sname names (in words 6 and
following).

Qname specifies the qname in TEXTC format.

78 Data Memory Management

Sname specifies the sname in TEXTC format. The
sname starts in the first word following qname (or
the indirect address specification of qname). If
the count byte of this field is set to X'7F', the
ALL option was specified. If the count byte is set
to X'40', the NULL option was specified.

M:DEQ The M:DEQ procedure call allows a user to
dequeue a particular resource/elementor a group of resource
elements. It has the following format:

[J [
, STEPl

M:DEQ ([*]'qname', * 'sname' ,JOBi..==J

C [, (E RR, [*]address)][, (A BN, [*Jaddress)]

where

'qname' specifies the name of a queue (resource).
A qname of ALL (without quotes) specifies that all
resource/elements currently enqueued for th is job
are to be dequeued, the only exceptions being
those resource/elements that are queued for the
entire job if JOB is not specified in this M:DEQ.
If A LL is specified, the sname field should also
contain ALL.

'sname' specifies the name of the sub-queue (ele-
ment) or specifies one of the following (not in
quotes):

A LL specifies that all el ements of the resource
that are enqueued are to be· dequeued, the
only exceptions being those elements that are
queued for the entire job if JOB is not spe­
cified in this M: DEQ.

RES specifies that all elements of the resource
that are enqueued are to be dequeued with the
exception of those elements that are queued
for the entire job if JOB is not specified in
this M:DEQ. RES does not dequeue (i.e.,
cancel) any previous M:ENQ that had NULL
specified. If ALL was specified in the qname
field, RES can be used but it is meaningless.

NULL specifies that a previous NULL enqueue
for the resource is to be dequeued.

STEP has meaning in conjunction with a qname or
sname of ALL and specifies that just those resource/
elements enqueued for this step only are to be de­
queued. If neither STEP nor JOB is specified,
STEP is assumed.

JOB has meaning in conjunction with a qname or
sname of ALL and specifies that all enqueued
resource/elements are to be dequeued, both those
flagged for th is step on Iy and those flagged for the
entire job.

ERR, [*]address specifies the address at which exe-
cution resumes if an error condition is detected.
Error codes for M:DEQ are listed in Table B-8,
Appendix B.

ABN, [*]address specifies the address at which exe-
cution resumes if an abnormal condition is detected.
Abnormal codes forM:DEQ are listed in Table B-7,
Appendix B.

Calls generated by ,the M:DEQ procedure have the form

CALl,2 fpt

where fpt points to word 0 of the FPT shown below.

word 0

word 1

1~1~lo----------

word 2 (pl)

word 3 (P2)

word 4

word 5

~I, , ,I. , • ,: •• 10 11112 13 14 15116 17 18 1912021 22 23 24 25 26 27128 29 30 31

word n

1:1, , ,I. , • ,: •• 10111121314151617181912021222324252627128293031

where

Queue code has the following meanings:

XIOl l for STEP requost

XI05 1 for JOB request

NDW contains the number of words reserved to
contain the qname and sname names (in words 6
and following).

Qname specifies the qname in TEXTC format. If
the count byte of this field contains X 17F I, ALL
was specified.

Sname specifies the sname in TEXTC format. The
sname starts in the first word following qname
(or the indirect address specification of qname).
If the count byte is set to X '7F I, the A LL op­
tion was specified. If the count byte is set to
X'7E', the RES option was specified. If the
first byte is set to XI40l, the NU LL option was
specified.

OTHER CP-V SERVICE CALLS

There are several additional servi ce calls that are avai lable
primarily for use by special system processors, but are also
avai lable for use by user programs. These service calls are
described in the following paragraphs.

, ADJUST DCB CAL

The Adjust DCB CAL merges information from an FPT into
a DCB but does not actually open the DCB. The informa­
tion merged is a combination of that from M:OPEN and
M:DEVICE CALs. If the DCB is already open, no adjust­
ments are made.

The format of this call is

CAll, 1 fpt

where fpt points to word 0 of the FPT described in detail
below.

OVERALL STRUCTURE OF FPT

There are three parts to t'he FPT:

1. Basic FPT (required)

2. Variable length parameter I ist (optional)

3. Device-oriented FPT (optional)

The three parts are contiguous and occur in the order given
above. Figure 7 describes the basic FPT and Figure 8 the
device-oriented FPT. Table 10 I ists the variable length
parameter I ist entries.

_ Other CP-V Service Calls 79

Word PI

Nat
both

P2

P3

P4

P5

P6

P7

P8

Pl0

P11

P12

P13

{

P14

P14

P15

P16

P17

P18

P20

P21

P22

o

*

PI

*

*

*

*

*

*

'"

'"

*

'"

*

'"

*

*

*

'"

. *

'"

*

*

.
o

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

X'14' Illflrlll~IO 0 DCB address

1 V 1 0 0 F2 0 0 ~ 0 0 0 0 ASN

P2/ P3/ P41 P51 P61 w I psi 0 Ipl0 I PI1 I P121 P131 P141 P15 P16, P17 P18 0 P20 P21 P22 0 0 0 0 0 0 0 o I 0 0

Error address

Abnormal address

Buffer address

I Maximum record length r---------------- --------
I Block size

I
: Maximum recovery tries

I ORG
r-------
I . FORMAT

I I I I
I pIS I I ACC I I I I

I
Mode I

I

I REL/

I SAVE

FPARAM address

TLABEL address

: Maximum key length I

I I ! I
1 I MT I L I Type I I I I

I

o : Operatianal label
I

I
I BTD

I
I VOLUME
I

I I

I SLIDES I CONSECUTIVE SLIDES
I

I L_..:...;,;.. __ .§..PA~ _____
I CONCAT
I

'.
I RSTORE
L- ------ - ------r- -- ------- - -- - - --- - - - ---
I I LRECL

DSF

CSF

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2B 29 30 31

Figure 7. Basic FPT

qo Other CP-V Service Calls

r---~~~. ----------'--~

0 9 ; I 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

01

01 Tab 1 Tab 2 Tab 3 Tab 4

All are Tab 5 Tab 6 Tab 7 Tab 8
present
if any
present Tab 9 Tab 10 Tab 11 Tab 12

Tab 13 Tab 14 Tab 15 Tab 16

02 Sequence identification

Data tab

Count tab

Header address

Lines per page

Space

Q9 Starting line

4 6 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 8. Device-Oriented FPT

Table 10. Variable Length Parameter List

Entry No. Description Maximum No. of Subentriest Length of Subentries

1 File Nam€! 1 1-8 words (TEXTC)

2 Account Name 1 2 words

3 Password 1 2 words

4 Expiration Date 1 2 words

5 Read account numbers 19 2 words

6 Write account numbers 19 2 words

7 {~~SN} reel numbers 255 1 word

t
The maximum number of subentries is limited to the space reserved in the DCB.

Other CP-V Service Calls 81.

Table 10. Variable Length Parameter List (cont.)

Entry No. Description Maximum No. of Subentriest Length of Subentries

8 OUTSN reel numbers 255 1 word

9, C, D FPARAM output only Not valid in parameter list

A Modification date 1 3 words

B SYNON name 1 1-8 words (TEXTC)

E Creation date 1 2 words

F Access date 1 2 words

10 Backup date 1 2 words

11 Fi led esc ri ptors 1 1 word

14 Execute account numbers 19 2 words

15 II Execute UN DER II processor 10 3 words (·TEXTC)
or module name ~

t The maximum number of subentri ~s is I imited to the space reserved in the DCB.

If a word Pi is pres~nt i'1 an FPT, the corresponding presence
bit is set in word 2 (the third word) No gaps may be left
for words that are not effectively present (e.g., if P2 and
P5 are set and F 3 and P4 are reset, then words P2 and P5
must be contiguous). Simi larly for Oi in Figure 8. A Iso
in Figure 8, word 08, bits 9-15 are the presence bits for
items in posit ions 25-31.

Several values in FPT word 1 are:

V = 1 indicates that a variable length parameter
I ist foil ows the FPT.

D = 1 indicates that following this FPT (or the
variable length parameter list of this FPT)
is a device-oriented FPT.

The field ASN defines the type of DCB assignment:

000 do not change DCB assignment.

001 assigned to FILE.

010 assigned to XEROX labeled tape.

011 assigned to a device, operational label, or
logical device stream.

101 assigned to ANS labeled tape.

Other CP-V Service Calls

VARIABLE LENGTH PARAMETER LIST

Entries have the genera I form:

1 if last entry
Number of Number of

Entry No. Significant Actual
else 0

Words Words

Subentries

The entries must be contiguous. Note that an FPT entry of
this type may have space reserved (number of actual words
> 0) but none used in the current call (number of significant
words = 0). Such an entry will cause the number of signifi­
cant words in the corresponding DCB entry to be set to zero.
An entry number of zero can be used to cause an entry to
be ignored.

THE EFFECT OF ASSIGN OPTIONS ON THE ADJUST
DCB FPT

'Because of the similarity of this CAL to M:OPEN and
M :DEVICE, and because the user must generate the FPT
without a system PROC, the following three lists show all

options allowed, and the effect of each option on the Option FPT Items Set
Adjust DCB FPT. Options are grouped by the part of the
FPT they affect, and are given in the form used in M:OPEN SPARE, value P18=1; percent of spare space=value
and M:DEVICE CAL. Names of the FPT items set are those CONCAT, value P1B=1; number of concatenated
given in Figures 7 and 8. fi les=va lue

1. Basic FPT Options RESTORE, value P20=1; RESTORE=value

Option FPT Items Set
LRECL, value P20=1; LRECL=value

ABCERR Word 0, Bit 11 = 1 DEN, e:~} P21=1; DSF={~}

RECL,value P4=1; MAX RECORD LENGTH
EBCDIC P22= 1; CSF=O

= vafue ASCII P22= 1 i CSF= 1

BLKl,value P4=1; BLOCK SIZE = value
NXTF F2=1

TRIES,value P5=1; MAX, RECOV TRIES = value
2. Variable Parameter Options

CONSEC P6=1; ORG = 1
Option FPT Items Set

KEYED P6=1; ORG = 2
FilE, V=l; ASN=l

RANDOM P6=1; ORG = 3
name create entry 01; subentry=name

FORMAT, P6=1; FORMAT = value [,account] create entry 02; subentry=account
character

lABEL V=l; ASN=2
SEaUEN P7=1; ACC = 1

create entry 01; subentry=name name

DIRECT P7=1; ACC = 2 ~account] create entry 02;

IN~SHAREJ
,EXCl

P8=1. MODE = 1 [;P=I; S = IJ
' ;P=l; S = 0

subentry=account

PASS, password V=l; create entry 03;
subentry=password

OUT PB=l; MODE = 2
READ, V=l;

INOUT~SHARE] P8=I· MODE =4 tP=I; S = 11 account1,·· •
create entry 05 for each account; , EXCl' ;P=l; S = 0 n
subentry =account

n n
OUTIN PB=l; MODE = B

WRITE V=l;

REl Pl0=1; REL/SAVE = 1 account 1,·· • create entry 06 for each account;
subentry =account n

SAVE Pl0=1; REl/SAVE = 2
n n

INSN, V=l;
FPARAM Pll=l; address of buffer for file

seria I no. 1 ' •.. create entry 07 for each serial no ;
pa rame ters

subentry =serial n
TLABEl P12=1; addr,ess of tape label buffer n n

KEYM, value P13=1; MAX KEY lENGTH OUTSN, V=l;

=va I 'lie (1-31) seria I no 1 ' ..• create entry OB for each serial no ;
subentry =serial no n DEVICE, X Pl4=l; OP-l.ABEL=X; Fl1=1; n n

F12=:1
EXECUTE, V=l;

[, L] see Fi gure 8 for L
account 1' ••. create entry 14 for each account;

BTD, value P15=1; BTD=:value n
subentry =account

n n
VOL, value P16=1; VOlUME=value

UNDER, V=l;
N EWX, sl ides P17=1; SLIDES=value

account create entry 15;
[, consecutive consecutive slides=value subentry=processor or load module
slides] name

Other CP-V Service Calls 83

3. Device Oriented FPT Options

Option FPT Items Set

TAB,value1'... D=1; Q1=1; for each valuen,
TABn =valuen (16 max.)

SEQ see below

[, id] D=1; Q2=1; SEQUENCE ID=id

DATA ,value D=1; Q3=1; DATA TAB=value

COUNT ,value D=I; Q4=1; COUNT=value

HEADER, D=I, Q5=1

value, HEADER TAB=value

(*]address HEADER ADDRESS = [*]address

LINES, D=l; Q6=1;

value LINES PER PAGE=value

SPACE, D=I; Q7=1;

value SPACE=value

DRC D=I; Q8=1; PDRC =1; DRC =1

NODRC D=I; Q8=1; PDRC=I; DRC=O

BIN D=l; Q8=1; PBIN=I; BIN=1

BCD D=I; Q8=1; PBIN=I; BIN=O

PACK D=I; Q8=1; PPACK=I; PACK=1

UNPACK D=l; Q8=1; PPACK=I; PACK=O

SEQ

[, id]

NOSEQ

FBCD

NOFBCD

VFC

NOVFC

L

NOL

DEVICE,X

D=I; Q8=1; PSEQ=I; SEQ=1

see above

D=I; Q8=1; PSEQ=I; SEQ=O

D=I; Q8=1; PFBCD=I; FBCD=1

D=1.; Q8=1; PFBCD=I; FBCD=O

D= 1; Q8=1; PVFC =1; VFC =1

D=I; Q8=1; PVFC=I; VFC=O

D=I; Q8=1; PL=l; L=1

D=I; Q8=1; PL=I; L=O

see Figure 7 for OP-LABEL

D=I; Q8=1; PL=J; L=l

Also see Table 11, this chapter, for storage of some
of the Adjust DeB options.

84 Other CP-V Service Call s I .

SPECIFY LOGICAL DEVICE I/O STREAMS

M:LDEV The monitor LDEV routine attaches a logical
device stream to a physical device and defines attributes of
the logi·cal device stream. LDEV stores the information in a
cooperative context block, providing for central ized infor­
mation about the physical device even though I/O to that
device may arise through more than one DCB within a job.

A logical device stream is an information stream that may be
attached to any symbiont device that the user specifies.
(Symbiont devices include devices such as the line printer,
card reader, card punch, plotter, and all devices at remote
sites that are accessed via remote processing.) At SYSGEN,
up to 15 logical device streams may be defined. Each is
given a name (e. g., C 1, L1, PJ), each is assigned to a physi­
cal device, and attributes are defined for the physical de­
vice. The user may perform I/O through a logical device
stream with the default physical device and attributes or he
may change the physical device and/or attributes to satisfy
the requirements of his job. He makes any necessary changes
through use of the LDEV command or the M: LDEV procedure.

The M: LDEV procedure call has the form

M: LDEV 'stream-id'[, (option)].

where

stream-id specifies the two-character name of the
stream to be referenced. This must be the name of
one of the logical device streams defined during
SYSGEN (for example, Cl, Ll, Pl).

options specify the attributes of the device, such as

Options

device type, stream direction, form, format con­
trol, etc. The options are as described below;
they may appear in any order.

AINIT specifies thatthe attributes for the stream are
to be initialized with the attributes specified in this
M: LDEV procedure and that system defaults are to
be supplied wherever an attribute is not specified.
Any attributes specified for the· stream in a previous
M: LDEV procedure are to be ignored. AINIT is the
default for the AINIT, ASAVE, and AREL options.

AREL specifies that the system table containing the
attributes of this stream (which may have been set
as the result of previous M: LDEV procedures) is to
be released and that the attributes are not to be
reinitialized. Any other options specified (except
DELETE) in this procedure will be ignored.

ASAVE specifies that the attributes for the stream
are to be set only by options explicitly specified
in this M:LDEV procedure. Other M:LDEV­
specifiable attributes (which may have been set as
the result ofprevious M:LDEV procedures) are not
to be changed. ASA VE cannot be used for the
LABEL option. DEV and WSN are subject to restric­
tions noted in the Remote Processing Reference
Manual, 90 30 26.

90 17 64H-l (9/78)

COPIES,value specifies the number of times the
file is to be processed to produce multiple copies.
The value spedfied can be em integer from 1 to
255 inclusive. The default value is 1.

COUNT ,tab specifies that page counting is to be
done and specifies the column in which the most
significant digit of the page count is to be listed.
The value of "tab" must be appropriate for the
particular device. (Note that if COUNT is spe­
cified for the LO device and a TITLE control com­
mand is also specified, the page count wi II be
superimposed on the title line.) The default is no
page counting.

DELETE specifies that if output, currently exists for
this stream but has not yet been dispatched for
processing, it is to be deleted. (If such a stream
exists and DELETE is not specified, the output for
the stream is dispatched for processing.) If an in­
put stream with the same name currently exists,
any part of the stream that has not been read will
automatically be deleted whether or not DELETE
is specified.

DEV, 'type l specifies the device type, where type
is the two-character mnemoniic of the device to
be associated with the stream .. Valid mnemonics
are type mnemonics of the cfmtral site (that is,
mnemoni cs defined for symbiont devices during
SYSGEN - for example, CR, LP).

JRC requests that monitor logical record formatting
implied by the DEV option not be performed. Any
record formatting necessary wWI be suppl ied by the
user. If DRC is not specified l the monitor will
perf~m logical record formatting.

FFORM, 'name l specifies the future form name (as
below, with FORM) of the form to be used when
the form change procedure M:DEVICE(FORM/
FNAME) is specified in the program for the stream.
When M:DEVICE(FORM/FNAME) is encountered,
the stream will be dispatched for processing and
restarted with tht: designated name as the stream
form. The defaul t is none.

FORM,lnamel specifies the one- to four-character
name of an installation-determined paper form or
card stock and is used in outpult scheduling for the
device. The def(lult is to have no special schedul­
ing (i. e., the operator will determine which form
to use). If used on input, name specifies the one­
to four-character name of a noncontrol input file.
(See "Noncontrol Input Files" below.)

FPC, 'name I specifies the one- to four-character
name of an installation-determoned form overlay
and is used in output schedul ing for the Xerox 1200
or a similar device. The defaul t is to have no
special schedul ing (i. e. I the operator wi II deter­
mine which oveday to use if any).

90 17 604H-l (9/78)

IN and OUT specifies the direction of the stream.
The defaul t is OUT.

JDE, value specifies the job descriptor entry to be
used in output schedul ing for the device. The
val ue must be in the range 0-89 and specifies an
installation defined procedure describing printer
setup attributes (e. g., VFC tape).

LABEL, [*Jaddress specifies the address of a 'TEXTC
string to be appended to the stream's user­
identification banner lines (see "user-identification
banner" in glossary).

LINES, value specifies the number of printable lines
per logical page. The greatest value that may be
specified is 255 lines per page. If this option is not
specified the value established at SYSGEN time
will apply.

NOBANNER specifier that no user-identification
banner is to be associated with output for this
stream. A FORM name must a Iso be speci fi ed for
NOBANNER to be operative.

NOVFC see VFC below.

OUT see IN above.

SEQ, ['id'] specifies that punched output is to have
decimal sequencing in columns 77-80. If a user­
defined id is specified, it will be punched in col­
umns 73-76 of each careL Sequencing begins
with 0000.

SPACE, value[, top] specifies the spacing between
lines (value) and between the top of each page and
the first line printered (top). A value of 0 or 1 re­
sults in single spacing. The greatest value that
may be specified is 15. The default is single
spacing.

VFC and NOVFC specifies whether or not vertical
format control characters are to be used. (These
two options are legal only for line printers.) VFC
requests that a defaul t vertical format control
character be added to all records. NOVFC re­
quests that the format character be stripped from
the record if present. The default is VFC.

CONCURR places the symbiont output stream in
concurrent output mode, a mode in which output
is broken into groups ("chunks") and released to
the symbiont stream for output. Once this stream
has been selected by the symbiont for printing or
punching, then the particular device is held until
all output produced by the job has been processed,
except as otherwise directed by an operator

Other CP-V Service Calls 85

key-in. If CONCURR is not the only option spec­
ified, then already prepared output will be pack­
aged for printing in its entirety and a newly
bonnered stream will be created for subsequent
output. The COPIES option may not be specified
when CONCURR is specified.

NONCONTROL INPUT FILES

There are two types of symbiont input: that which is a iob
control stream and that which is not. Card readers are
usually defined to be control-type devices and are used to
input iob control streams. However, noncontrol input
streams may be entered from the card reader if the first card
of the input deck is --

(INeTL [nome]

where name specifies the one- to four-character name
of the noncontrol input stream.

In this case, the input deck is read until a IFIN is en­
countered. If any lob control cards exist in the deck, they
are treated as noncontrol information. That is, the entire
deck is simply read into the input symbiont. This feature
provides, among other things, a means of inputting iobs
that are to be run at a later time.

,A file created in this manner must be accessed via the LDEV
'command or M:LDEV procedure using any logical device
stream except C1. If the user gives the file a name or re­
quests the operator to do so, the user can access the file
using the FORM, xxxx option. (The operator gives the file
a name using the key-in Syyndd, F'xxxx' where xxxx must
be identical to xxxx on the FORM option.) If the file is not
given a name by the operator, the next noncontrol file in
the queue that has no name will be returned to the user.

Calls generated by the M:LDEV procedure have the form

CALl,8 fpt

where fpt poi nts to word 0 of the FPT shown below.

word 0

word 1

stream-id (P1)

option DEV (P2)

86 Other CP-V Service Calls

option IN/OUT (P4)

option LINES (P5)

option COUNT (P6)

option SPACE (P7)

option JOE (P8)

option COPIES (P9)

option SEQ (Pl0)

option FPC (P11)

option FORM (P12)

option FFORM (P13)

option {~~VFC} (Pl7)

option SPACE (P19) suboption top

90 17 64H-1(9/78)

where

P 1 through P?O (in word 1) specify wh.ich of. the
succeedllllg words are present; that IS, which
of certain options have !been specified (1 means
the word is present, 0 means the word is not
present). For example, a 1 in bit 11 of word 1
indicates that the word for the FORM option (see
word P12) is present.

fO through f7 (in word 1) specify whether the
DELETE, AREL, ASAVE r and DRC options are
present (0 means the option is not present,
1 meons it is):

fO is for the NOBANNER option.

f1 is for the DELETE option.

f2 is for the AREL option.

f3 is for the ASAVE option.

f4 is for the CONCURR option.

f"] is for the ORe option.

For example, a 1 in bit m of word 1 specifies the
DRC option.

fcn (in word P4) specifie~1 the directionof the stream
(0 means RN, 1 means OUT).

fc (in word P1?) specifie:s vertical format control
override (0 means VFC, 1 means NOVFC).

If an inconsistency is detected in ~he FPT parameter, return
is mode to CAL +1 with CC 1 set and the error code in SR3
(see Appendix B, Table B-5). Otherwise CC 1 is reset.

Table 11 I ists most of the service functions (i. e., options)
that apply to logiccel device streams and indicates, for each
requesting method, the place where the function information
is stored - Data Control Block (DCB) or Stream Context
Block (SCB). Null table entries indicate that the particular
service option is not allowed for ~hat request method. If
the table entry specifies DC B, then presence or absence of
the request is stored in the DCBand only operations through
that DCB receive the service. If the table entry specifies
SCB, then the presence or obsence of the request is stored
in the SCB and will affect all operations on that stream
through any DCB. The importance of Table 11 lies in the
fact that when I/O is performed fc)r a logical device stream
and the DCB conflicts with the SCS, the DCB takes prece­
dence. Also, when conflicting options are specified for
the same DC B or for the same SC B, the last one encountered
during execution is used.

READ AND WRITE ASSIGN/MERGE RECORD

Throughout a job or on-line session, I/o service and file
assignment information is retained and merged into user or
processor DCBs at each job step. This information is main­
tained in an assign/merge record cm disk storage, with one

90 17 64H-l (9/78)

record location assigned to each user by the log-on proce­
dure that places the disk storage address of the assign/
merge record in JIT. .

Special procedures are used to read (M:RAMR) and write
(M:WAMR) this record. Use of M:RAMR and M:WAMR is
governed by the following rules:

1. Any program may read on assign/merge record.

2. Only command processon and processon with JIT
access may write on assign/merge record.

3. The buffer size should be 2048 bytes.

4. The DCB must be closed and at least 8 words long.

5. Error codes are set to report to the address set in the
DCB, os described in Appendix B. Erron in the call
may be os follows:

Code

X'06'
X'57'

X'2E'

Meaning

No record exists (read operation).
No granule can be obtained (write
operation).
The DCB is open.

Code Meaning
X'4A' The buffer address is outside the user's data

area or the size is greater than 2048 bytes.

X'14' A write has bee'; attempted by a processorthat
is not a command processor or doesn't have
special JIT access.

6. If a read or wri te error was encountered when access­
ing the assign/merge record, the user is aborted and
logged off the system with the following error code.
Code Meaning

X'A9' Error on read or write of assign/merge record.

The M:RAMR and M:WAMR procedures are described in the
following paragraphs.

M:RAMR The RAMR routine reads the assign/merge
record and has the following format:

M:RAMR [*] DCB name [, (option)] •••

The options are as follows:

BUF, [*] address specifies the address of the user's
buffer into which the record is to be read. An
asteri sk may be used to i ndi cote that the address
is the address of a location containing the buffer
address.

SIZE, [*] value spedfies the size in bytes of the
user's buffer. The buffer should be 2048 bytes.
An asterisk may be used to indicate that the value
is the address of a location containing the buffer
size.

Calls generated by the M:RAMR procedure have the form

CALl,,1 fpt

where fpt points to word 0 of the FPT shown below.

Other CP-V Service Calls 87

Table 11. Storage of Service Functions

Request Method
Servic~

Function M:DEVICE Adjust DCB M:DCB ASSIGN M:lDEV lDEV

BCD DCB DCB DCB DCB - -
BIN DCB DCB DCB DeB - -

COPIES - - - - SCB SCB

COUNT DCB DCB DCB DeB SCB SCB

DATA DCB DCB DCB DCB - -

DEVor DEVICE - Both Both Both Both Both

DRC DCB DCB DCB - SCB SCB

FBCD DCB DCB DCB DCB - -
FFORM - - - - SCB SCB

FORM SCB - - - SCB SCB

FPC - - - - SCB. SCB

HEADER SCB SCB SCB - - -

IN - Both Both Both Both Both

JOE - - - - SCB SCB

LINES SCB SCB SCB SCB SCB SCB

NLINES SCB - - - - -
NODRC DCB DCB DCB - SCB SCB

NOFBCD DCB DCB DCB DCB - -
NOVFC DCB DCB DCB DCB SCB SCB

OUT - Both Both Both Both Both

PAGE DCB - - - - -
SEa DCB DCB DCB DCB SCB SCB

SPACE DCB DCB DCB DCB SCB SCB

SRCB - - - - - SCB

TAB DeB DCB DCB - - -
VFC DCB DCB DCB DCB SCB SCB

WSN - - - - - SCB

88 Other CP-V Service Calls

word 0

word

---' : . ' oJ
10 11112 13 14 11116 17 Ifl 1912<' :1 22 n124 25 26 1'128 29)031

word 2

&.lifer :Size

M:WAMR The WAMR routine~ writes the assign/merge
record and has the following format:

M:WAMR [*] DCB name L (option)] •.•
The options are as follows:

BUF, [*] address speci fi es the' address of the user's
buffer into wh i ch the record is to be read. An
asterisk may be used to indi,cate that the address
is the address of a location containing the buffer
address.

SIZE, [*] value specifies the size in bytes of the
user's buffer. The buffer sh()uld be 2048 bytes.
An asterisk may be used to indicate that the value
is the address of a location ,:ontaining the buffer
size.

Calls generated by the M:WAMR procedure have the form

CAL 1, 1 fpt

where fpt points to word 0 of the FPT shown for M:RAMR
with the exception that the code in the first byte of word 0
is X'2E' instead of X'2D'.

REPORT SYSTEM LOAD PARAMETERS

M:DISPLAY The DISPLAY routine returns the current
va lues of three system load paramElters. The three system
load parameters are

1. The execution time mul tipl ication factor (ETMF).

2. The median value of terminal Iresponse time in seconds.

3. The current number of active users.

Integer values for these parameter's are returned in regis­
ters 5, 6, and 7, respectively. ETMF and response time
values apply to all operations during the last full minute
of system usage.

The procedure M:DISPLAY has no parameters and generates
a CAL of the form

CALl,8 fpt

where fpt poiots to the FPT shown below

RELEASE RESOURCE CAL

There is one CA L that is used to release job resources back
to the operating system under program control. It may be
used, for example, to release tape drives used in the first
job step of a stream, but not required for the rest of the
job. Its format is

CAll, 8 fpt

where fpt points to the FPT shown below

LX l 151

o ; 2)c-t-1-:-4 """'5--:-6 ~""""""-:-::-""",.

where

resource # is the resource type index and may be
obtained from the type field in the DCB (right
seven bits of byte 2 of word 1). (See Appendix A.)

text resource name isthe name of the resource being
rei eased. The I,ame corresponds to the name
specified on the LIMIT card (for example, 9T, DP).

In addition, the user must specify in SR 1 the number of re­
sources to be re leased.

The following error conditions are possible:

CC1::: 1

CC2 = 1

CC3 = 1

If resources released exceed amount origi­
nally allocated or remaining allocated
(none are released).

If an odd number of core pages is specified
for release, and no pages are released.

If an index is outside the range of the
Resource Allocation Table.

SAVE CAL

The SAVE CAL stores in the user's JIT the current values of
the user's tables for the following: associated processor
root, associated processor overlay, associated spec ial
processor, associated debugger, and user flags. This infor­
mation is stoted as follows:

J:CPROCS

J:CFLGS

(UH:FLG)

The format of the SAVE CAL is

CALl,4 fpt

where fpt points to the FPT shown below.

Other CP-V Service Calls 89

There are no restrictions on the use of the SAVE CAL. It
always returns with CC 1 = O.

lET CAL

The GET CAL can be invoked only by TEL or CCI. If TIC
(TEL-in-control flog) is not set, the return is to CAL + 1
with CC 1 set to one. Otherwise, the debugger-associated
and debugger-in-control bits from the saved flags (J:CFLGS)
are stored in the user's current flags and the saved pro­
cessor values are transferred from J:CPROCS to the appro­
priate user tables. The return in this case is to CAL + 1
with CCI = O.

The format of the GET CAL is

CAll,4 fpt

where fpt points to the FPT shown below

EITEl IlAlTEI •• E

JM:5YS The M:SYS procedure allows processors that
have a sufficient privilege level (CO or higher) to op­
erate in master mode with a write key of O. The call ing
program is also given the addresses of the monitor's I/O
routines, in system-communication registers SR1-SR3. M:SYS
does not set the Sigma 9 or Xerox 560 master-protected bit.

The M:SYS procedure has no parameters, and generates a
CA L of the form

CAll,6 fpt

where fpt points to the FPT shown below.

On return from this procedure, the calling program is oper­
ating in moster mode with a write key of O. Register SRI
will contain the address of QUEUE, the monitor routine
for I/O through a DCB with no end-action; SR2 the address
of QUEUE 1, for I/O through a DC B with end-action; and
SR3 the address of NEWQ, for I/O with no DCB. (User
programs generally may not specify end action. End action
routines must be in the resident monitor.) If the caller's
privilege level is not sufficient, return is to CAL+l with
CCI set.

,M:CAL The M:CAL procedure allows user control over
the CAL3 trap, thus allowing the user to specify a target
Program Status Double word (PSO) for the CAL3 trap.
Ability to modify the bits in the PSD is controlled by privi­
lege level. The user with less than CO privilege can alter
the instruction address (which will be entered slave mapped),
as well as the arithmetic and floating mask bits. The user
with CO or greater privi lege can alter any portion of the
PSD with the exception of the register block, the write
key, or the map bit.

90 Other CP-V Service Calls

The M:CAL procedure has the form

M:CAL (lA, addr) ,pb •••

where

addr specifies either 0 or the user handler address,
above JBUPVPA.

pb specifies a two character identifier for various
PSD bits. The options are listed below.

CI Counter interrupt group inhibit
TI Input/output interrupt group inhibit
EI External interrupt inhibit
FS Significance trap mask
FZ Zero ,trap mask
FN Normalize trap mask
OM Decimal arithmetic fault trap mask
AM Fixed-point arithmetic overflow trap mask
MM Set master mode, wri te key = 0
MP Set master protect mode, write key = 1

(Sigma 9 and 560 only)

The CALI,5 that is generated points to word 0 of the
following FPT:

word 0

X'06' 10----------0 I

o 1 23 4 5 6 7 8 31

words 1 and 2

New PSD

o 31

Upon issuing the CAL 1, the following CC bits are returned
to the user:

CCI SET - bad address given, no action taken.
RESET - connect request satisfied.

CC2 SET - user not privileged to specify MM, MP,
or inhibit bits.

M:MASTER The M:MASTER procedure allows a user
with sufficient privilege level (CO or higher) to operate in
the master mode (master-protected mode if running on a
Sigma 9 or Xerox 560) with a write key of 1. The format
of the procedure call is

M:MASTER

Calls generated by the M:MASTER procedure have the form

CALl,5 fpt

where fpt points to the FPT shown below.

If the caller's privilege level is not sufficient, return is to
CAL+l with CCI set.

90 17 64H-l (9/78)

ENTER SlAVIE MODE

M:SLAVE The M:SLAVE procedure allows any master
(and master-protected) mode pmgram to return to the slave
mode. The formclt of the procedure call is

M:SLAVE

Calls generated by the M:SLAV[procedure have the form

CAL 1, 5 fpt

where fpt points to the FPT shown below.

X'O?'
} :'-10-I-d-12-'3-" ,,: .. ;, " "I~ " " "I" " " "I" " ~ ~,I

ASSOCIATE OR DISASSOCIATE PUBLIC LIBRARY

Two CAls allow the user to control the association of shared
public libraries with his program. Both CAls are of the form

CAll,4 fpt

where fpt points to word 0 of the fpt shown below.

word 0

Code

90 17 64H-1 (9/78)

word 1

word 2

I, t , ,n,~ .. 1, ,0 t~'~' " t. J .. ,. " :~~ " " "I,. " ,. :t;' " • .J

where

code is X'04' for associate and X'05' for disas-
sociate.

count is the number of characters in the name.

ni are the characters in the name of the publ ic
library. Names are limited to ? characters and
must have trail ing blanks.

If no I ibrary with the specified name can be found, CC 1
is set and no further action is taken. An attempt to dis­
associate when there is no association will cause CC2 to be
set. If assoc iation of one library requ ires disassociation of
a current library, both disassociation and association will
take place and CC3 will be set. If either the virtual core
or the physical core is not available, CC4 is set and no
further action is taken.

Other CP-V Service Calls 90.1

(This page intentionally left blank.)

90.2 Other CP-V Service Calls 90 17 64H-1(9/78)

CHECK EVENT CONTROL BLOCK(S) FOR COMPtETION

M:CHECKECB The M:CHECKECB procedure allows c
user program to check for the completion of an event or of
a set of events and, if necessary f to enter the W(1 it state to
await the completion of the event(s).

There are two event-driven services in C P-V, enqueue
(M:ENQ) and dequeue (M: DEQ). When one of these services
is requested, the user program may allocate a two-word
block to be used as an event control block (EC Bl. The access
protection for the EC B must be 00 - all access. When the
address of the event control block is specified in the service
call, it is saved by the monitor. Upon entry to the service
procedure, the system initiates the required action, sets the
event control block toan 'in-use' status, and returns control
to the user program. More than one event-driven service
may be in action at the same time. The user program con­
tinues to process until it requires that the action(s) requested
be completed. At this time the lJser program may issue the
M:CHECKECB procedure call which, if necessary, will place
the user program in a wait state until the action(s) specified
within the M:CHECKECB procedure call have completed.

An event control block consists of two words:

word 0

word

where

ECBP is set to one when the event has completed.

ECBW is set to one when the event has been refer-
enced in an M:CHECKECB request.

ECBI is set when the ECB has been assigned to an
action to be completed by an enqueue or dequeue
service. ECBI indicates that a read or write has
been issued and is waiting for completion of non­
enqueue/dequeue operations.

90 17 64H-l(9/78)

The settings of the bits EC~P, EDBW, and ECBI are m'.'p;

exclusive. That is, only one of these bit,: '11ay be se~ !

one at any given time. Since the ECB eXI withi'~ th
user program's virtual storage, the state of rr, [CB 'l'u~'
be examined at any time by the user program.

The format of the M:CHECKECB procedure call is

M:CHECKECB (option)[, (option)] ...

where the options are:

ECB,[*]address[, [*Jvalue] specifies the addre~~ ::
set of contiguous event control blocks. Vaiu(S~,

c ifies the number of contiguous event contro! b~ :'''.'
The default for value is 1. A value of zero :1;(.

cifies that the set of ECBs is null.

ECBL, (*]address ,[*]value specifies the add;-I%s ;.'
the first word of a list of words, each of whif,:"

contains a pointerto an event control block. \:(;!~ [c.

specifies the number of words containing eve",
control block pointers. The default for value i$:'.
A value of zero specifies that the set of polnterl>
to ECBs is nul I.

EVENTS, (*]value specifies the number of event
control blocks that must be posted complete befor~
control is returned to the user program. The de­
fault is 1.

TIME, [*Jun its speci fies the number of 1. 2-second
time units that may elapse before control b re­
turned to the user event if the value spec ifiet-i fOl"
EVENTS has not been satisfied. The maXlllium
number of units that may be specified is 65,.5:15.
If this option is not specified, then time is not f.I

factor in the completion of the procedure caH.

At least one occurrence of ECB or ECBl must be pre~"lt in
the specification of M:CHECKECB. ECB and ECBL r.'(ll oe
stated a multiple number of times to combine nonconi<gllous
ECB areas for one M:CHECKECB request.

Other CP-V Service Calls 91

The M:CHECKECB procedure allows a user to wait for the
completion of a specified number of events. To determine
which event or events were actually completed, the user
should examine the ECBP bit of each ECB that was specified
in the list(s). Since there exist certain actions which un­
conditionally end the M:CHECKECB wait state, the user
should always determine the setting of the ECBP bit after
the wait state ends. This is true even if the ECB or ECBl
parameters specifiedonly one ECBto wait upon. The actions
which unconditionally terminate the M:CHECKECB wait
state (changing the user's environment to the M:CHECKECB
CAll+l location) are:

BREAK

INT key-in (operator key-in)

E key-in (operator key-in)

X key-in (operator key-in)

ZAP key-in (operator key-in)

TIME value has elapsed

The ECBP bit may not be set correctly if access protection
for the ECB is not 00. The monitor makes a security check
at the time that an ECB is selected to be posted complete.
If access to the ECB is not 00, the portion of the posting
operation which would have transferred information to the
ECB is omitted.

Calls generated by the M:CHECKECB procedure have the form

CAll,7 fpt

where fpt points to word 0 of the FPT shown below.

word 0

word 1

option EVENTS (Pl)

option TIME (P2)

92 Other CP-V Service Calls

Addresses and lengths of additional ECB areas (one
pair for each ECB specified)

option EeBl

Addresses and lengths of additional ECB areas (one
pair for each ECB specified)

where

NECB specifies the number of ECB options in the
procedure ca II.

NECBl specifies the number of ECBl options in the
procedure ca II.

Note that for each ECB and each ECBl option, two words
are generated.

Condition code settings resulting from an M:CHECKECB
CAL are:

o o

o o

o o

o o

o o

o o

o

o

o

o The M:CHECKECB procedure call
was completed ·with no errors.

The TIME specification is greater
than 65,535.

o The ECB is not in the proper state.
(Either ECBW is set or ECBI is not
reset.)

An infinite wait condition has
occurred. The number of ecll
specified is less than the EVENTS
specification.

There was notenough monitor work­
space to process the M:CHECkECI
procedure call at this time.

The ECB does not have an accell
protection of 00.

INITIATE GHltlST JOB

The following CAL can be used to initiate a ghost job.

CAL 1, 6 fpt

where fpt points to an FPT having the following format:

word 0

10 ' : : 01
7 8 9 10 ,,112 13 14 15116 i7 18 19120 21 22 23 2~ 25 26 27128 29 30 31

words 1 and 2 (Name of job to be initiated)

(Name of job must be in TEXTC format.)

If the program to be initiated is already in execution at the
time of the request and is not in a waiting state (WAIT CAL
with unexpired time), the normal return is made (CCI = 0).
If the program is in a waiting state, it wi" be activated
immediately at the WAIT CAL plus 1 and a normal return is
made to the initiating program. A privilege level of CO or
higher is required to util ize this CAL.

EXECUTE PRIVILEGED INSTRUCTIONS

M: EXU The M:EXU procedure allows a user with
sufficient privilege level (CO or higher) to request that the
monitor execute a privileged instruction for the user so that
the program does not have to rim in the master mode.
The procedure has the following format:

M:EXU [*]address

where address specifies the addre:ss of the privileged instruc­
tion to be executed. Theop code of the instruction must
be one of the followi ng:

X'4C' SIO

X'4D' no
X'4E'

X'4F'

X'6C'

X'6D'

TOV

HIO

RO

WD

Ca lis generated by the M:EXU procedure have the form

CAL 1, 5 fpt

where fpt points to' the FPT shown below.

The instruction may invoke indirect addressing. Since the
condition codes returned are those of the executed instruc­
tion, the following abnormal conditions are reported via
a program abort (which may be intercepted by the user's
trap control routine by specifying the CAL keyword in the
M: TRAP procedure).

Code Subcode Meaning

B9 01 Insufficient privilege.

B9 04 Illegal op code in referenced
instruction.

B9 05 Referenced instruction is in
protected memory.

ON-LINE AND BATCH DIFFERENCES

The monitor responds differently to certain CALs depending
on whether an on-line or a batch program issued the call.
These differences are outlined below.

EXIT RETURN (M:EXIT)

Batch: The monitor performs any PMDI dumps that have
been specified for the program. It then reads the C device,
ignoring everything up to the next control card.

On-line: The monitor returns control to the on-line exec­
utive program (TEL) and, after sending a message, sends
a prompt (!) charader to the terminal. It then awaits ad­
ditional commands.

ERROR RETURN (M:ERR)

Batch: The monitor lists the message

JOB id .ERRORED BY USER AT xxxx

where xxxx is the address of the last instruction executed
in the program. The message plus the contents of the
current register block and program status doubleword (PSD)
are listed on the LL and DO devices. Postmortem dumps
are performed and the C device is read; everything up to
the next control command is ignored.

On-line: The monitor lists the message

A800 YOU ISSUED AN ERROR OR ABORT CAL

Onl ine and Batch Differences 93

The message is listed on the UC devi ce. The monitor
then returns control to the on-line executive (TEL), which
sends a prompt character (!) to the terminal and awaHs
commarlds.

ABORT RETURN (M:XXX)

Batch: The monitor lists the message

r------------.. --.---
JOB id ABORTED BY USER AT xxxx

where xxxx is the address of the last instruction executed.
This message plus the contents of the current register block
and program status doubleword (PSD) are I isted on the LL
and DO device.

When a job is aborted, all specified postmortem dumps are
performed but no flJrther control commands are honored
until a JOB or FIN control command is encountered.

On-I ine: The monitor I ists the messcge

A800 YOU ISSUED AN ERROR OR ABORT CAL :=oJ
This message is listed on the UC device. The monitor then:
returns control to the on-line executive (TEL), which
sends a prompt character (!) to the terminal and awaits
additional commands.

TYPE A MESSAGE (M:TYPE)

Batch: The monitor lists the specified message on the OC
device.

On-line: The monitor lists the specified message on the UC
device.

A variant of M:TYPE is M:MESSAGE which unconditionally
lists a message on the operator's console (OC device). The
format of M:MESSAGE is identical to that of M:TYPE except
for the FPT code which is zero.

94 Onl ine and Batch Differences

REQUEST KEY-IN (M:KEYIN)

Batch: The monitor I ists the 'ipecified message on the OC
device and enables the operator's reply to be returned to
the user program.

On-I ine: The monitor I ists the specified message on the
UCdevice and enables the user's reply to be returned to the
user program. If the OC option of the procedure is speci­
fied, tne message is I isted on the OC: device and the reply
is received from the OC device.

CONNECT TO INTERRUPT OR BREAK KEY (M:INT)

Batch: The purpose of this procedure is to set the address
of a routine to be entered when the INTERRUPT key-in
is invoked at the operator's console. When control is
given to the INT routine as c: result of an interrupt, the
monitor pushes the PSD and general registers into the
user's temp stack. The TRTN routine may be used to re­
store contro I to the user program.

On-line: The p'Jrpose of tl,is procedure is to set the ad­
dress of a routine to be entered when an interrupt is gen­
erated at an on-line terminal. When the BREAK key is
depressed, the monitor pushes the PSD and general registers
into the user's temp stack. The TRTN routi ne may be used
to restore contro I to the user program.

The procedure ca II is of the form

M:INT address

where address specrfies the location of the entry to the
program's BREAK response routine. A zero address re­
sets break control. If the address specified is in the range
of virtual addresses assigned to the monitor, then zero is
substituted (break control is reset).

90 17 64H-l(9/78)

5. I/O PROCEDURES

INTRODUCTION

All I/O operations are performed by the monitor for the
user (i. e. I the user's program neVt'r directly accesses an
I/O device, but rather requesh that the monitor do so).
Each request for I/O service from the monitor is made by
inclusion of an I/o call in the user's program. This call
generates a Function Parameter Table (FPT), which in turn
refers to a Data Control Block (DCB). The combination of
the I/O call, the FPT and the DCB provides the infor­
mation that the monitor needs to perform the requested
operation.

Generally, the DCB contains the kind of information that
is specific to a device (e. g., for output to a line printer,
number of lines pE~r page is one value in the DCS). The
Fr-T contains a fClr smaller set of information that is spe­
cific to the operation to be performed (e. g./ the location
and size of the buffer that is to be output to the printer
in this specific operation). Separation of information into
the DCB and the FPT al lows the user to create one DCB
for a type of vo and reference 'that DCB throughout his
program, whenever he requires that type of VO. Each
time that he references that DCB, he generates an FPT
with the specific information required for that particular
I/O operation.

In addition to serving as a source of information for the
monitor to use in an VO operation, the DCB also provides
a place for the monitor to store information while it is
performing an I/O operation. S()me of the information
stored in the DCB by the monitor may be of some use to
the user, and some is of meaning only to the monitor.

The user is responsible for providing the address of a prop­
erly initialized DeB with every call to the monitor re­
questing an I/o operation.

The user may obtain a DCB by

1. Including a copy of one or more preconstructed stan­
dard monitor DC Bs that are uvailable for most common
VO operations (via an external reference to the
appropriate DeB name in his program).

2. Explicitly creating his own DCB at assembly time.

Monitor calls are provided to permit the user to initial ize
or alter DCBs.

VO operations involving symbiont· devfces do not require
different procedures. Aside from faster completion, the
user is not aware that a device is a symbiont device.

Each DCB is assigned to a physical device either directly,
by entry of a device code in the DCB, or indirectly, by
entry of an operational label or (I resource name in the
DCB. Physical devices may be identified by a code
of the form yyndd, where yy = device type, n = lOP

designation, and dd =-= device designation. (The nad portion
is ignored but is a lIowed for compatabi lity with previous ver­
sions of the ~ystem.) Values for each ore /ic;.ted in Tables 12
through 14. Table 121ists ani/the !/Cdevice type codes that
are standard in CP-V. Oth , ·lev:Ce type~ may be defined at
SYSGEN. The operai'ionol iabel is the name of a logical
system device. The assignmenT of DeBs to de vi ces through
operational labels gives users the capabi I ity of changing de­
vice ossignments for a particu lar input/output class by chang­
ing the normal assignment of the operational labels.

The standard monitor DeBs have names containing the let­
rers of the operational labels to which they are normally
assigned. For example, the 5tandard monitor DCB assigned
to the SI operationai label by default has ~he name M:SI.

Table 12. Standard I/o Device Type Codes

Device (yy) Physical Device Name

MT Default magnetic tape type
(defined at SYSGEN)

7T 7-track magnetic tape

9T 800 bpi 9-track magneti c
tape

BT 1600 bpi 9-track magnetic
tape

CP Card punch

CR Card reader

TY Typewriter

LP Line printer

DC Magneti c disk

DP Defau It disk pack type (de-
fined at SYSGEN)

NO No device

Table 13. lOP Designation Codes

Specified Channel Corresponding Decimal
letter (n) Digit of Unit Address

A 0

B 1

C 2

D 3

E 4

F 5

G 6

H 7

I/O Procedures 95

Table 14. Device Designation Codes I

Hexadecimal
Device Designation Code (dd)

00 $ dd $ 7F Refers to a device number
(00 through 7F).

80 ~ dd ~ FF Refers to a device controller
number (8 through F) foI-
lowed by a devi ce number
(0 through F).

General registers may not be used as Vo buffers.

I/O procedures are provided for the followi ng I/O
functions:

1. File Maintenance

Create a Data Control Block

Open a File

Close a File

Set Error or Abnormal Address

Check VO Completion

Declare Temporary File

2. Data Record Manipulation

Read a Data Record

Write a Data Record

Delete a Data Record

Truncate a Blocking Buffer

3. File Manipulation

Position n Records

Position File

Close Volume

Rewind

Write End-of-File

Insert or delete a Symbiont File

96 File Maintenance Procedures _

4. Special Device

Set listing Tabs

Skip to Top of Form

Set Number of Printable lines

Set line Spacing

Specify Direct Formatting

Specify Vertical Format Control

Specify Page Count

Change Output Form

Change Device Mode or Record Size

Speci fy Ou tpu t Head er

Specify Card Punch Sequencing

Determine Number of lines Remaining

Check Correspondence of DCB Assignments

FILE MAINTENANCE PROCEDURES

All procedure calls except M:DCB described in this chap­
ter generate a Function Parameter Table (FPT) of the some
general form, consisting of a function identifier, param­
eter and file option flags, and data.

CREATE A DATA CONTROL BLOCK

If the user's program is written in ANS COBOL or Extended
FORTRAN IV, the processor wi" automatically include in
the object modules generated for the program all necessary
I/O calls and references to DCBs that the loader will sat­
isfy. However, if the user's program is written in Meta­
Symbol, he must provide all necessary I/O procedure calls
in his symbol ic program.

The user may use copies of monitor DCBs by declaring them
as external references in his Meta-Symbol program; other­
wise, he must create his own DCBs by means of explicit
symbolic code or via M:DCB procedure calls.

When a load module is loaded for execution, any ASSIGN
parameters for DCBs contained in that load module are
merged. Thus, an option contained in a DCB created ex­
plicitly or via M:DCB or contained in a system DCB may
be overridden by an ASSIGN control command.

DCB formats are described in the appendix titled "Data
Control Block Formats ".

M:DCB The M:DCB procedure generates nonexecutable
code (i .e., it creates only a data area in the user's pro­
gram) which must have a label. The label is the nome by
which the DCB is to be referenced.

The M:DCB .procedure call is of the form

dcb nome M:DCB [(option)] [, (option)]

90 17 MH-1(9/78)

where dcb name specifies the name of the user's DCB. The
name may consist of from 3 to 31 cdphanumeric characters,
the first two of which must be "F:" or "M:". The "dcb name"
must previously have been declared a dummy section, via a
statement of the form

dcb name DSECT 1

The options are as follows:

!!9..me (one or two of the four kl~yword operands given
below),

DEVICE, 'name' specifies a device type, a system oper-
ational label, or a logical device stream name, Ac­
ceptable forms of the name specifications are (1) for
a device type - 'CR', 'lP', '7T', '9T', etc,; (2) for an
operational label - 'lO', 'EOI, Ill', 'C' f' etc.; (3) for
a logical stream - 'Pl', 'Cl', 'Ll'. DEVICE may be
used in conjunction with FILE, LABEL, or ANS lBl.

FIlE[, 'name'[, 'account']][,n] specifies the name of the
public or private file that is to be assigned to the
DCB. The name may consist of up to 31 alphanumeric
characters. The named file will be maintained on
RAD or DP storage. If the file is private, the SN
option must be used to specify the serial number(s) of
the private volume set.

If the named fj Ie belongs to a different account than
that of the current job, the fi IE~'s account number must
be given (either in the M:DCB, call or in an ASSIGN
control command or M:OPEN call). If the name and
account number are both omitted and n is not specified,
eight words are reserved for the name (to be inserted
via an ASSIGN control command orM:OPEN call) and
two words for the account number. If n is specified,
n words will be reserved for thl~ file name. If neither
FILE nor lABEL (see below) is ~ipecified in the M:DCB
call, the DCB may only be assigned to files defined by
a system operational label (for example, GO), or to a
device.

The following examples illustrate use of the file option:

(FILE) reserves eight words for the file name.
(FILE,n) reserves n words for the file name.
(FILE, 'name' ,n) reserves n words and puts

'name' as the filename.
(FILE, 'name', 'account' ,n) reserves n words and

puts 'name' as the filename and 'account' as
the account.

All correct forms reserve two words for the account.

Also see the description of the FILE option for the M:OPEN
procedure.

LABEL[, 'name' [, 'account']]Gn] specifies the name of
a file on Xerox labeled magnetic tape. The tape may
consist of up to 31 alphanumeric characters. If LABEL
is specified, the SN option must be used to specify the
reel(s} containing the file. If the named file belongs
to a different account than that of the current job, the
file's account number must be given (either in the
M:DCB call or in an ASSI GN control command or
M:OPEN call). If the name and account number are
both omitted and n is not specified, eight words are

90 17 64H-1 (9,178)

reserved for the nom".:! (to be inserted via an ASSI G N
control command or M:OPEN call) and two words for
the account number. If n is specified', n words wi II be
reserved for the fi Ie name.

ANSLBLt 'name' specifies the name of a file on ANS
labeled magnetic tape that is to be assigned to the
DCB. The name may consist of up to 17 alphanumeric
characters. If the file name contains a special char­
acter, it must be enclosed by single quotation marks.
When a single quotation mark is to be used as part of
the fi Ie name, it must be coded as two successive quo­
tation marks. There must be no blanks between the
last character and the terminating quotation mark.

ASN, ~~~~E) specifies the value for the ASN field
JRNl of the FPT. This value will override
ANSlBl the default value created by other key-

words such as FILE. For example, this option is useful
in creating a device DCB which has space reserved for
a file name:

.... (FIlE,8),(DEVICE,' lOt),(AS N,DEVICE) ...

The ASN values are

1 - FILE
2 - lABEL
3 - DEVICE
4 - JRNl
X'A' - ANSlBl

org (one of the four fi Ie organization types given below.
Not applicable to ANS labeled tapes.)

CONSEC specifies that the records in the file are con-
secutively organized and each record is to be pro­
cessed in order.

If a private file has consecutive organization, only
one volume in the private volume set need be mounted
at any time. As another volume is required, the sys-'
tem will request that it be mounted.

KEYED specifies that the location of each record in
the file is determined by an explicit identifier (key)
that may be used to access the record. A key may con­
sist of up to 31 characters.

If a private file has keyed organization, all volumes
in the set must be mounted when the file is opened
and remain mounted until the file is closed.

RANDOM specifies that the records in the file are a
collection of contiguous granules on the specified
device type that are devoid of any system informa­
tion, and whose internal structure is the responsibi lity
of the u~er. If device" type is not specified, the
file is allocated on RAD or disk pack, whichever
is available.

File Maintenance Procedures 97

If a private file has random organization, all volumes
in the set must be mounted when the file is opened
and remain mounted until the file is closed.

UNDEF specifies that Xerox labeled tape records are
all unblocked and without headers, i. e., equivalent
to device format. BLOCK access is forced for this
organization. (Applicable only to Xerox labeled tape.)

(one of the three record access means given be­
low.) Not appl icable to ANS labeled tapes un­
less otherwise noted.

SEOUEN specifies that records in the file are to be ac-
cessed in the order in which they appear within the file.

DIRECT specifies that the next record to be accessed is
determined by an explicit identifier (key). If specified
for consecutive or keyed disk files, read ahead will be
disabled.

BLOCK specifies that data blocks are transferred di-
rectly between tape and the userls buffer. (Applicable
only to Xerox and ANS labeled tape.) This access is
forced for UNDEF organization and for ANS tape.

function (one of the four modes given below).

IN [,SHARE] specifies the input mode. SHARE speci-
, EXCL fies share mode for the DCBwhich allows
more than one IN and/or INOUT user to access the
fi Ie concurrently. EXCL specifies exclusive mode for
the DCB which means that the user must have exclu­
sive use of the file. The default is EXCL.

OUT specifies the output mode.

INOUT r,SHARE]
,EXCL

speci fies the input and output mode
{i. e., the update mode}. SHARE

specifies share mode for the DCB which allows more
than one IN and/or IN OUT user to access the fi Ie
concurrently. EXCL specifies exclusive mode for the
DCB which means that the user must have exclusive
use of the file. The default is EXCL.

OUTIN specifies the output and input mode (i. e., the
scratch mode).

file disposition {one of the two specifications given
below}.

REL specifies that the secondary storage allocated to
this file is to be released when the file is closed. REL
is significant only for OUT and OUTIN files and is
assumed if fi Ie disposition is unspecified. See FILES,
in the discussion of M:CLOSE.

SAVE specifies that the secondary storage allocated to

98

this file is to be saved when the file is closed, unless
otherwise specified by an M:CLOSE procedure call.

File Maintenance Procedures

If SAVE is not also specified in the M:CLOSE, the sec­
ondary storage allocated to this file will be released.

JOB specifies that the file is temporary and is to be
kept across job steps but is to be released at the end of
the job. (See M:TFILE and M:CLOSE.) This option is
not available for private packs.

Other options

ABCERR specifies that block count errors are not to
force an unconditional abort; i.e., that in the case
of inconsistency between the tape-specified and the
system-accumulated block counts, return is to the ERR
address in the DCB - an abort is to occur only if there
is no ERR address in the DCB. ABCERR is appl icable
for ANS labeled tapes only.

ABN, address specifies the symbol ic address of a userls
routine that is to be used to analyze any abnormal con­
ditions associated with the makeup of the DCB. Allows
the user to handle errors (such as end-of-file) him­
self rather than having the monitor handle them.

BLKL, value specifies block size in bytes. The value
may be in the range 1 to 32,767. If a value less than
18 bytes is specified, 18 bytes are written. BLKL is
applicable for ANS labeled tapes only.

BTD, value specifies the byte displacement (0-3) in the
userls buffer from which I/O is to take place (L e., at
which byte in the buffer the data begins).

BUF,address specifies the symbolic address of a buffer that
is to be used in the transfer of data or tra i ler labe Is.

CONCAT, value specifies the number of identically
named files that are to be read as one logical file
(concatenated). The value may be in the range 2
through 128. The default value is O. CONCAT is
applicable for ANS labeled tapes only.

CYLINDER specifies that the data blocks of a public
file are to be allocated from public devices having
cylinder allocation units. If CYLINDER is not speci­
fied, the data blocks of a public fi Ie are allocated
from publ ic devices having granule allocation units.
In either case, the fi Ie wi II only be allocated on the
type of device specified with the DEVICE option. If
the DEVICE option is not specified, the system looks
for space on public disk packs first and RADs last. If
space is not available in the units requested, the fi leis
data blocks will be allocated in the available units
from public devices of the type requested. CYLINDER
only has meaning for public fi les with keyed or con­
secuti ve organization.

ERR, address specifies the symbolic location of a userls
routine that is to be used to analyze any error condi­
tions associated with the makeup of the DCB (see the
appendix titled II Monitor Error Messages ll

). Allows the
user to· handle 'errors himself rather than having the
monitor handle them.

90 17 64H-l (9/78)

EXECUTE[, 'value' [, 'value'] •••] [,n] specifies the ac-
count numbers of those accounts that may execute the
file. Up to eight account numbers may be specified.
The value 'ALL' may be used to specify that any account
may execute the file. The value 'NONE' may be used
to specify that no other account may execute the fi Ie.
This option is not checked for any user who would have
reserved access to the file by an explicit READ or
WRITE specification. If n is specified, n words wi II
be reserved in the variable length parameters for
EXECUTE accounts. If EXECUTE is not specified, the
default is no execute.

If this option is omitted from the M:DCB procedure
call, it will not appear in the DCB and, consequently,
will be ignored in the ASSIGN control command or
M:OPEN procedure call. If EXECUTE is specified
but no va lues are given, 16 words are reserved for
EXECUTE account numbers Uo be inserted via an
ASSIGN control command Olr M:OPEN call). EXECUTE
is applicable only to files.

j mm,dd,yy)
EXPIRE, ddd specifies either an explicit ex-

NEVER piratiol1l date (mm,dd,yy), the
number of days to retain the file (ddd), or that the file
is never to expire (NEVER). NEVER is not appl icable
for ANS labeled tapes. If not specified, the default
value, as establ ished in the authorization record for
the user, will determine the expiration date. Files
will be automatically purged from the public file sys­
tem if they have expired whl~never secondary storage
space passes below a SYSGEN establ ished threshold.

The value specified may not exceed the maximum ex­
piration period authorized for the user. If the maxi­
mum expiration period is exceeded or unspecified, the
defau It expiration period aul'horized for that user wi II
be used. If this option is omitted from the M:DCB pro'~
cedure call it wi II not appear in the DCB and, con­
'sequently, may not be used in an ASSIGN control
command or M:OPEN procedure call referencing the
DCB. If EXPIRE is specified but no value given in the
M:DCB call, two words are reserved for the value
(to be inserted via an ASSIGN control command or
M:OPEN procedure call).

FORMAT,character specifies the record formats. The
character may be

F - fixed length.

D - variable specified tin decimal.

V - variable specified iin binary.

U - undefined.

The default character is F. FORMAT is applicable for
ANS labeled tapes only.

FPARAM, address specifies theft the monitor is to pass
the file parameters, in the selme format as the variable­
length parameters, to the user's program, beginning at
the specified "address". The area in the user's program
that is to receive the file parameters must be 90 words

90 17 MH-1(9/78)

in length. Only the variable-length parametel~ are
passed to the user's program. The account number is not
returned, but other permanent fi Ie parameters are re­
turned. FPARAM is not appl icable for ANS label ed tapes.

K EYM,value specifies the maximum length, in hytes,
of the keys associated with records within the file. If
KEYM is not specified, the value 11 is assumed. A
key may consist of up to 31 characters. KEYM is not
appl icable for ANS labeled tapes.

LRECL, value specifies the logical record size in bytes.
The value may be in the range 1 to 32,767. LRECL is
appl icable for ANS labeled tapes only. The defaul ~
value is the BLKL value.

NEWX, sl ides[, consecutive sl ides] a lIows the user to
specify "when" and "if" a keyed file's higher-level
index structure should be rebuilt. The higher-level
index structure is built for the first time when a keYeG
fi led that has more than three level 0 index blocks
is closed.

slides specifies the number of blocks that can be
added to the fil, .. 's index since the current higher­
level index structure was built; if the specified
value is exceeded, the higher-level index struc­
ture will be rebuilt when the file is closed. If
a value of 255 is specified, the higher-level index
structure wi II never be rebuilt. If N EWX is not
specified, the value 254 is used in default.

consecutive slides specifies the number of contigu-
ous blocks that can be added to the file's index
since the current higher-level index structure was
created; if the specified number is exceeded, thfC
higher-level index structure will be rebuilt when
the file is closed. If the number is not specified;
2 is used in default.

NEWX is not applicable for ANS labeled tapes.

I NOSEP specifies that the index blocks of a public
keyed file are to be allocated in the same way that
the data blocks are allocated. If NOSEP is not speci­
fied, the index blocks of a publ ic file are allocated
from public devices having granule allocation units.
In either case, the file will only be allocated on the
type of device specified with the DEVICE option.
If the DEVICE option is not specified, the system
looks for available granules on publ ic disk packs first
and RADs last. If space is not available in granule
units, the system looks for space on public disk packs
with cylinder allocation units. NOSEP only has
meaning for public fi les with keyed organi zation.

PASS r, 'value'J specifies the password that is to allow
access to a classified data file. The value may be
from 1 through 8 alphanumeric characters. If this op­
tion is omitted from the M:DCB procedure call it

File Maintenance Procedures 99

will not appear in the DCB and, consequently, may
not be used in an ASSIGN control command or M:OPEN
procedure call referencing the DCB. If PASS is speci­
fied but no value given in the M:DCB call, two words
are reserved for the value (to be inserted via an
ASSIGN control command or M:OPEN call). PASS is
not.applicable for ANS labeled tapes.

READ[,'value'] ... ['n] specifies the account numbers of
those accounts that may read but not write the file. The
value 'ALL' may be used to specify that any account may
read the file (e.g., READ, 'ALL') provided the user has
X'40' privilege or greater. The value 'PUBL' may be
used to specify that any user may read the file. Files
cataloged under: SYS are accessible to any user as de­
scribed without regard to privilege. The ~alue 'NONE'
may be used to specify that no other account may read
the file. If no value is specified, or if READ is omitted,
ALL or NONE, as specified in the user's authorization
record, is assumed by default. The total number of
accounts explicitly specified in the READ or WRITE
options must not exceed 16. If n is specified, n words
wi II be reserved in the variable length parameters for
read accounts. 'ALL' need not be specified unless it is
desired to specifically override a default 'NONE' from
the user's authorization.

If this option is omitted from the M:DCB procedure call
it wi II not appear in the DCB and, consequently, may
not be used in an ASSIGN control command or M:OPEN
procedure call. If READ is specified but no values
given, 16 words are reserved for READ account numbers
(to be inserted via an ASSIGN control command or
M:OPEN ca II). READ is not applicable for ANS
labeled tapes.

RECl,value specifies the default record length, in bytes.
The greatest value that may be specified is 32,767 if
the count starts at Q, or 32,768 if the count starts at 1.
If RECl is not specified, a standard value (appropriate
to the type of device used) wi II apply by default.
RECl is not applicable for ANS labeled tapes.

RSTORE,limit specifies, in decimal, the number of gran-
ules to be allocated to a RANDOM file. RSTORE is
only honored when the file isfirstcreated. If no RSTORE
value is given for a RANDOM file, M:DCB procedure
generates one as a value. Unless changed by the time
the DCB is opened, a fi Ie of one granule is created.
RSTORE is not applicable for ANS labeled tapes.
RSTORE must be in the range of 1 to 224_1.

SN~{n'Serialnumber', ••• [,n'l] ·f· h b f ~ speci les t e num ers 0

words to be reserved for
serio I numbers or the serio I numbers to be used for
file input or output. Space may be reserved for more
serial numbers than are explicitly specified by serial
number.

SN, 'serial number', ••• [,n) specifies the serial num-
bers of the volumes (tape reels or disk packs) that
are to be used for fi Ie input or output. The serial
number may be from one to four alphanumeric char­
acters for disk packs and Xerox labeled tapes.

100 File Maintenance Procedures

The serial numbers must consist of six alphanumeric
characters for ANS labeled tapes. A maximum of
three serial numbers may be specified for system
DCBs. If n is specified, n words will be reserved
in the variable length parameters (if n is greater
than the number of listed serial numbers).

SN specifies that three words will be reserved in
the variable length parameters for serial numbers
that can be inserted through an ASSIGN control
command or M:OPEN.

SN,n specifies that n words will be reserved in var-
iable length parameters for serial numbers which
can be inserted through the ASSIGN control com­
mand or M:OPEN. This will cause the third byte
(byte 2)of the VLP control word for SN to be X'QOI
to allow the DCB to be used interchangeably as a
labeled tape or file DCB. n must not exceed SO.

The SN option must be specified in the M:DCB proce­
dure call for it to appear in the DCB so that it may be
used by the ASSIGN control command or the M:OPEN
procedu re ca II •

For a fi Ie on a labeled tape:

1. Serial numbers must be ordered in the proper se­
quence. If SN is not specified (by ASSIGN,
M:DCB or M:OPEN) for a file to be opened in
the IN or INOUT mode, the DCB is not opened
and an abnormal code of XI 141 is returned.

2. The file will be written in the order in which the
serial numbers are specified for a file to be
opened in the OUT or OUTIN mode. If SN is not
specified (by ASSIGN, M:DCB or M:OPEN), .
avai lable scratch volume{s) of the type specified
in the DEVICE option (or by default, any type
available) will be used.

For a file on a private volume set:

1. When the first file on a private volume set is
created, all serial numbers in the set must be
spec i fi ed and the fi rst va I ume in the set wi II be­
come the primary volume.

2. If the private volume set has been established,
only the serial number of the primary volume need
be specified. The primary volume contains a list
of all serial numbers in the set.

3. I f one or more vol umes are to be added to the set,
the serial numbers of the new volume(s) must be
specified following the primary volume.

4. If SN is not specified (by ASSIGN, M:DCB or
M:OPEN) for a file on RAD or DP, the file is
assumed to be on publ ic devices.

90 17 64H-l{9/78)

The INSN and OUTSN options used in the previous
versions of the monitor were replaced with the SN op­
tion. For compatibility, the INSN and OUTSN op­
tions are acceptable in I ieu of SN.

SPARE, n specifies in bytes the amount of spare space to
be left unused at the end of each index block while a
keyed file is being created or updated with sequential
access. The value specified may not exceed 255 bytes;
if it does, it IS treated modulo 256. If SPARE is not
specified or is zero, it is set to 1 byte by default.
This spare space is used so that additional keys can be
inserted in a minimum time when updating the file with
direct access (as in EDIT). If the fi Ie wi II never be
updated with direct access, a spare value of 1 should
be specified. SPARE is not Clpplicable for tapes.

S YNON, 'filename' specifies that the "name" given in
the FI LE option (see above) is to be considered synony­
mous with the designated fil«mame. The filename must
exist in the file directory of the account specified for
IIname li

• This option is used to create a synonym for a
file name. It forces the DCB to beopened in the update
mode. If S YNON is not spocified in the M:DCB pro­
cedure call, it will not appear in the DCB and, there­
fore, may not be used in an M:OPEN procedure call
referencing the DCB. If S YNON is specified but no
value given, eight words are reserved for the file name
(to be inserted via an M:OPEN call). SYNON is not
appl icable for ANS labeled 'tapes.

TLABEL, address specifies the symbolic address ofa user's
buffer into which a label is to be read, or from which
a label is to be written upon opening a tape file. The
first byte of the label inform4:ction must contain the
length (i. e., number of bytes) of the buffer. For ANS
labeled tapes, the count must be 80 and the next
four bytes of the buffer must contain UHL 1.

TRIES, value specifies the maximum number of recovery
tries to be performed for any I/O operation. The
greatest value that may be specified is 255. The de­
fault value is 10.

UNDER [,'name']. .. [,n] specifies the name(s) of the
processor(s) that may access this file if the user does not
own the file. The name(s) may be from one to ten char­
acters enclosed within si,ngle quotes ('). The processor(s)
may be any shared processor 4)r any load modul e in the
:SYS account. If EXECUTE accounts are specified and
UNDER is not specified, the file is presumed to be a
load moduleand UNDER,'FETCH' is implied by default.
FETCH is the name of the monitor routine that places a
program into e)(ecution. If n is specified, n words wi II
be reserved in the variable length parameters for UNDER
names. Fetch must not be used expl icitly.

VOL,value specifies which volume in the SN I ist is to be
used initially. A value of 1 designates the first reel (in
the list), the value 2 designates the second reel, etc. If
VOL is om itted, a value of 1 is assumed by default. The
VOL option only has mean ing for tapes and private disk
packs.

90 17 Mtf-1 (9h8)

WRITE[, 'value'] ••• [,n] specifies the account numbers of
those accounts that may have both read and write ac­
cess to the file. The values 'PUBL', 'ALL' and 'NONE'
may be used, as with the READoption (see above); and
if a conflict exists between READ and WRITE specifi­
cations, those of the WRITE option take precedence.
If no WRITE accounts are specified, NONE is assumed.
If n is specified, n words will be reserved in the
variable length parameters for WRITE accounts.

If the WRITE is omitted from the M:DCB procedure call
it will not appear in the DeB and, consequently, may
not be used in an ASSIGN control command or M;OPEN
procedure call. If WRITE is specified but no values
given, 16 words are reserved for WRITE account num­
bers (to be inserted via an ASSIGN control command
or M:OPEN call). WRITE is not appl icable for ANS
I abe I ed tapes.

The following options are device-dependent, and will be
ignored by the monitor in all cases where they are not ap­
plicable to the device used.

ASCII specifies that the data is to be converted between
EBCDIC characters in core and ASCII characters on
tape. Applies only to ANS labeled tape and unlabeled
tape. Causes error code 1413 if used for Xerox labeled
tape. Causes error code 1411 if used for dri ves not
having the code conversion feature.

COUNT,tab specifies that a page count is to appear at the
top of each page, beginning in the column specified
by "tab".

Example:

COUNT,60

The above example specifies that the most singificant
digit of the page count is to appear in column 60 at
the top of each page.

DATA,tab specifies that output is to begin on each page
(or card, if EBCDIC) in the column specified by "tab".

DENS,value specifies the density for writing a tape on
a dual density tape drive. The value must be either
800 or 1600.' The default is 1600. Specification of
800 for a drive not having the dual density feature
causes abnormal code 1412.

EBCDIC specifies that EBCDIC is to be used when read-
ing and writing a tape (i. e., conversion to ASCII is
not to occur).

HEADER,tab,address specifies that the I/O handler is to
output a header (heading)on each page. Tab specifies
the column atwhich the header is to begin. Address
specifies the symbolic location of the header; the first
byte of the header must contain the number of bytes.

LINES, value specifies the number of printable I ines per
page. The greatest value that may be specified is
32,767; If LINES is not specified, the value estab­
lished at system generation time will apply.

File Maintenance Procedures 101

SEQ[, 'id'] specifies that the punched output is to have
sequencing in columns 77-80. If 'id' is specified, it
wi II appear in col umns 73-76 of the punched output.
Sequencing begins with 0000.

SPACE, value(, top] specifies the spacing between lines
(value) and the number of the first printed line on the
page (top). A va lue of 1 indicates that I ines are to
be single spaced. The greatest value that may be
specified is 15.

TAB,value[,value]... specifies the values of tab stop
settings (for an output device). The values must be in
ascendi ng order.

format (any of the following specifications).

VFC specifies that the first character of each record is
a format-control character for printing (see Table 4).

NOVFC spec ifies that the records do not contain format-
contro I characters.

ORC specifies that the monitor is not to do special for­
matting of records on read or write operations.

NODRC specifies that the monitor is to do record for-
matting on read or write operations. If neither DRC nor
NODRC is specified, NODRC is assumed by default.

mode (any of the following specifications for a device
I/O mode).

BCD specifies that the EBCDIC device mode is to be used.

BIN specifies that the binarydevice mode is to be used.

FBCD specifies that FORTRAN BCD conversion is to be
used.

L specifies that a listing type of device is to be used.

NOFBCD specifies that FORTRAN BCD conversion is
not to be used.

PACK specifies that the packed bi nary mode (7-track
tape) is to be used. PACK is not valid unless BIN is
specified.

UNPACK specifies that the unpacked binary mode (7-
track tape) is to be used. UNPACK is not val id unless
BIN is specified.

If no mode is specified, BCD is assumed.

The formats of the fi Ie, Xerox labeled tape, ANS labeled
tape, and device DCBs are shown in the appendix titled
"Data Control Block Formats".

SPECIAL NOTE

After generating the DCB, Meta-Symbol will resume assem­
bly in whatever control dummy section was in effect when
the M:DCB procedure reference line was encountered. In
order to prevent the statements foil owi ng the M: DC B procedure
reference line from bei ng assembl ed in the same control/dummy
section as the DCB, one of the following is recommended:

101. File fv4.aintenance Procedures

1. The control section directive preceding an M:DCB pro­
cedure reference line should bea CSECT, and the DSECT
associated with an M:DCB should precede the CSECT.

2. The statement immediately following an M:DCB proce-,
dure reference line should be either a CSECT or a
USECT referencing a prior CSECT.

OPEN A FILE (Initialize a DeB)

M:OPEN The monitor OPEN routine initializes speci-
tied parameters of a designated DCB.

Fi les (on RAD, DP, or labeled tape) are normally positioned
to the beginning of fi Ie, except when fi Ie extension is
required. File extension wi II occur when a system output
DeB (e. g., M:BO) is opened more than once during the
same job, without an intervening ASSIGN control command
referencing the DeB. File extension will occur because the
second, or subsequent, OPEN wi II cause the fi Ie to be po­
sitioned at the end of the last data record to permit addi­
tional output to be appended at the end.

Files that are assigned via user DeBs or system input DeBs
cannot be extended.

If a READ or WRITE I/O routine is called (see M:READ and
M:WRITE procedures) when the DeB has not been opened,
the monitor storesthecall temporarily and calls the OPEN
routine automatical iy. If the DCB does not get opened,
the requested read or write operation is not executed. The
DCB will not be opened if the information in the DeB is
insufficient, inaccurate, or contradictory, and the result­
i ng abnorma I or error code wi II be returned in byte 0 of
SR3. If the OPEN is made with no parameters, the existing
parameters in the DCB are used.

The READ or WRITE option must be specified in the M:DCB
procedure call for it to appear in the DeB so that it may be
used by the ASSIGN control command or the M:OPEN pro­
cedure call. When READ or WRITE are specified in the
M:DCB procedure call but no account numbers are given,
16 words are reserved for either READ or WRITE and can
subsequently be filled by ASSIGN or M:OPEN.

If the specified DCB is already open when the OPEN rou­
tine is explicitly called, an abnormal condition is signaled
(see the appendix titled "Monitor Error Messages"). If the
DCB is not open when the OPEN routine is called, the DCB
is reinitialized according to the parameters specified in the
M:OPEN procedure call.

In a multiprogramming environment like CP-V, files may
not be available on request because of current use by an­
other program. An error code reports this condition (code
14, subcode 01) and programs may need special routines to
handle it. A common solution is to use the WAIT CAL for
a minute or so and then repeat the request.

In addition, the number of CFUs {current file usage} limits
the number of fi I es that may be opened by a II ac ti ve users
and batch jobs at a given time since a CFU data recording

block is required for each open file. CFUs take up 19
words. The space required for crus is core resident in the
monitor at all times.

'"he M:OPEN procedure call is of the form

M:OPEN [*]dcb name, [(opti()n}][, (option)) .•.

where dcb name specifies the name of the DCB that is to
be opened. The options specified in the OPEN call over­
ride those previously specified. If no options are specified,
the existing ones are used. The olPtional asterisk (*) can be
used for indirect addressing.

The third element of the label field I ist in the OPEN call
is used to set a symbol to the address of the VlP list that is
generated by the M:OPEN.

Example:

OPN, OPNFPl, VLPLOC M:OPEN M:EI, (FILE, 'AI)

The M:OPEN options are as follows:

(one or two of the four kc~yword operands given
below).

DEVICE, 'name' specifies a device type, a system oper-
ational label, or a logical device stream. Acceptable
forms of the name specifications are (1) for a device
type - 'CR', 'LP', '7T', '9T', etc.; (2) for an oper­
ational label- 'LO', 'EO', 'ILL', 'e', etc.; (3) for a
logical device stream-'P1' .. 'CI', ILlI. DEVICE may
be used in conjunction with FILE, LABEL or ANSLBL.

FILE,lname'lIlaccount'] specifies the name of the pub-
lic or private file that is to b(~ assigned to the DCB.
The name may consist of up to 31 alphanumeric char­
acters. The named file will be maintained on RAD or
DP storage. If the file is privclte, the SN option must
be used'to specify the serial number{s) of the private
volume set. If the named fi Ie belongs to"a different ac­
count than tha't of the current job, the file's account
number (not exceeding 8 characters), must be given.
If the file is public and is (or iis to be) cataloged under
the log-on account, and if thc~ second and third char­
acters of the name are both cOllons, then for DCBs with
the JOB file disposition (see below), the colons are
replaced by the system identification number of the
current user. This feature allows a processor to be
written such that it may be executed concurrently by
more than one user logged on under the same account
without file conflict.

\ LABEL, 'name'[, 'account'] specifies the name (not ex-
ceeding 31 characters) of a file on Xerox labeled tape.
The SN option must be used to specify the particular
tape reel(s} containing an input file. If the named file
belongs to a different account that that of the current
job, the fi Ie's account number (not exceeding 8 char­
acters) must be given.

ANSLBL, 'namel specifies the name of a file on ANS
labeled magnetic tape that is to be assigned to the
DCB. The name may consist of up to 17 alphanumeric
characters. If the file name c()ntains a special char­
acter, it must be enclosed by single quotation marks.
When a single quotation mark us to be used as part of

90 1764H-l(9;78)

the file name, it must be coded as two successive quo­
tation marks. There should be no blanks between the
last character and the terminating quotation marks.

{

FILE }
LABEL

ASN, DEVICE

ANSLBL

sptfcifies the value for the AS N field
of the FPT. This value will override
the default value created by other key­

words such as FI LE. The AS N val ues are:

1 - FILE
2 - LABEL
3 - DEVICE
5 - ANSLBL

(one of the four file organization types given be­
low. Not applicable to ANS labeled tapes).

CONSEC specifies that the records in the file are con-
secutivel y organ ized and each record is to be pro­
cessed in order.

If a private file has consecutive organization, only
one volume in the private volume set need be mounted

at any time. As another volume is required, the sys­
tem will request that it be mounted.

KEYED specifies that the location of each record in the
file is determined by an explicit identifier (key) that
may be used to address the device contain ing the file.
A key may consist of up to 31 characters.

If a private file has keyed organization, all volumes in
the set must be mounted when the file is opened and
remain mounted until the file is closed.

RANDOM specifies that the contents of the file comprise
a collection of contiguous granules on the specified
device type. Data is accessed by relativegranule num­
ber and byte count. If device type is not specified,
the file will be allocated on RAD or disk pack, which­
ever is available.

If a private file has random organization, all volumes
in the set must be mounted when the file is opened and
remain mounted until the file is closed.

If an organization type is omitted and there is no value
in the DCB, CONSEC is assumed.

UNDEF specifies that Xerox labeled tape records are all
unblocked and without headers, i. e. , equivalent to de­
vice format. BLOCK access is forced for this organi­
zation. (Applicable only to Xerox labeled tape.)

(one of the three record access means given
below. Not appl icable to ANS labeled tapes
unless otherwise noted.)

SEQUEN ~pecifies that records in the fi Ie are to be ac-
cessed in the order in which they appear in the file.

File Iv\aintenance Procedures 103

DIRECT specifies that the next record to be accessed is
to be determined by an explicit identifier (key). If
specified for consecutive or keyed disk fi les, read
ahead will be disabled.

If an access option is omitted and there is no value in
the DCB, SEQUEN is assumed. The common defaults
for access and organization are shown in Table 15.

BLOCK specifies that data blocks are transferred directly
between tape and the user's buffer. (Applicable only
to Xerox and ANS labeled tape.) This access is forced
for UNDEF organization and for ANS tape.

function (one of the four modes given below.)

IN ':SHAREJ
l!EXCL

specifies the input mode. SHARE specifies
share mode for the DCB which allows more

than one IN and/or INOUT user to access the fi Ie con­
c~rrently. EXCL specifies exclusive mode for the DCB
which means that any number of IN but no INOUT users
may access the file concurrently. The default is EXCL.

OUT specifies the output mode.

INOUT f,SHARE]
L!EXCL

specifies the input and output mode
(i. e., the update mode). SHARE

specifies share mode for the DCB which allows more
than one IN and/or INOUT user to access the fi Ie con­
currently. EXCL specifies exclusive mode for the DCB

which means that the user must have exclusive use of
the file. The default is EXCL.

OUTIN specifies the output and input mode (i. e., the
scratch mode).

fi Ie disposition (one of the two specifications given
below.)

RE L specifies that the secondary storage allocated to th is
file is to be released when the file is closed. REL is
significant only for OUT and OUTIN files and is as­
sumed if file disposition is unspecified. See FILES, in
the discussion of M:CLOSE.

SA VE spec i fi es that the secondary storage a II ocated to
this file is not to be released when the file is closed,
unless otherwise specified by an M:CLOSE procedure
call. If REL is specified in the M:CLOSE, the sec­
ondary storage allocated to this file wi" be released.
SAVE is assumed for IN or INOUT if file disposition
is unspecified. (See M:CLOSE procedure, below.)

JOB specifies that the file is temporary and is to be kept
across JOB steps but is to be released at the end of the
job. (See M:TFILE and M:CLOSE.) Job files may only
be opened by the creating user or a user with CO or
greater privilege. This option is not available for pri­
vate packs.

Table 15. File Defaults

DCB M:OPEN Outcome (in DCB)

org access org access org access

Null Null Nu" Null CONSEC SEQUEN

Null Null Null SEQUEN CONSEC SEQUEN

Null Null CONSEC Null CONSEC SEQUEN

Null Null Null DIRECT KEYED DIRECT

Null Null KEYED Null KEYED DIRECT

CONSEC SEQUEN Null Null CONSEC SEQUEN

CONSEC SEQUEN Null DIRECT CONSEC DIRECT

CONSEC SEQUEN KEYED Null KEYED SEQUEN

KEYED DIRECT Null Null KEYED DIRECT

KEYED DIRECT Null SEQUEN KEYED SEQUEN

KEYED DIRECT CONSEC Null CONSEC SEQUEN

104 Fi Ie Maintenance Procedures

Other Options

ABCERR specifies that block count errors are not to
force an unconditional abort; i. e., that in the case
of inconsistency between the tape-specified and the
system-accumulated block counts" return is to the ERR
address in the DCB - an abort occurs only if there is
no ERR address in the DCB. ABCERR is onlyappli­
cable for ANS labeled tape:s.

ABN, [*]address specifies the symbolic location of a user's
routine that is to be used to analyze any abnormal con­
ditions associated with the makeup of the DC B (see the
appendix titled "Monitor Error Messages"). The address
specified must lie within thE~ user's prog~am.

ASCII specifies that the data is to be converted between
EBCDIC characters in core and ASCII characters on
tape. Appl ies only to ANS labeled tape and unlabeled
tape. Causes error code 1413 if used for Xerox labeled
tape. Causes error code 1411 if used for drives not
having the code conversion feature.

BLKL, value specifies block size in bytes. The value
may be in the range 1 to 32,767. If a value less
than 18 bytes is specified, 18 bytes are written. BLKL
is only applicable for ANS Ilabeled tapes.

BTDrvalue specifies the byte displacement (0-3) in the
user's buffer from which I/O is to take place (i. e., at
which byte in the buffer the data begins).

BUF, [*]address specifies the :!iymbolicaddressofa buffer
that is to be used in the transfer of data (the buffer may
not include a general regist«~r).

CONCATrvalue specifies thj~ number of identically
named files that are to be read as one logical file
(concatenated). The value may be in the range 2
through 128. CONCAT is only appl icable for ANS
labeled tapes.

CYLINDER specifies that the public file is to be allo-
catedon public devices havill1g cylinderallocation units.
If CYLINDER is not specifif~d, the public file is to be
allocated from publ ic devices having granule allocation
units. In either case, the file will only be allocated
on the type of device specified with the DEVICE option.
If the DEVICE option is not specified, the system looks
for space on public disk packs first and RADs last. If
space is not available in the units requested, the file
will be allocated in the available units from public
devices of the type requested. CYlINDER only has
meaning for publ ic files.

DENS,value specifies the densityforwriting a tape on a
dual density tape drive. The value must be either 800
or 1600. Specification of 800 for a drive not having
the dual density feature causes error code 1412.

EBCDIC specifies that EBCDIC is to be used when read-
ing and writing a tape (i. e., conversion to ASCII is
not to occur).

ERR, ~_*] address specifies the symbol ic location of a user's
routine that is to be used to analyze any error condi­
tions associated with the makeup of the DCB (see the
appendix titled" IVonitor Error Messages"). The address
specified must I ie with in the user's program.

lmm, dd, yYj
EXPIRE, ddd ~pecifies either an expl icit expi-

NEVER ration date (mm, dd,yy), the num-
ber of days to retain the file (ddd), or that the file is
never to expire (NEVER). NEVER is not appl icable for
ANS labeled tapes. If not specified, the default value
as establ ished in the authorization record for the user
will determine the expiration date. Files will be auto­
matically purged from the public file system if they
have expired whenever secondary storage space passes
below a SYSGEN established threshold.

The value specified may not exceed the maximum ex­
piration period authorized for the user. If the maxi-·
mum expiration period is exceeded or unspecified, the
default expiration period-authorized for that user will
be used. If this option is omitted from the M:DCB
procedure call it will not qppear in the DCB and, con-­
sequently, may not be used in an ASSIGN control com­
mand or M:OPEN procedure call referencing the DCB.

If EXPIRE is specified but no value given in the M:DCB
call, two words are reserved for the value (to Le in­
serted via an ASSIGN control command or M:OPEN
procedure call).

FORMA T,character specifies the record formats for ANS
labeled tapes. The character may be

F - fixed length.

D variable specified in decimal.

V - variable specified in binary.

U - undefined.

FPARAM,address specifies that the monitor is to pass th(·
file parameters from the FIT to the memory location be­
ginning at the specified address. The area of the user's
program that is to receive the file parameters must be
90 words in length. The format of the file parameters is
given in Appendix A and internally is similar to the for­
matof variable length parameters of both M:OPEN and
a DCB. FPARAM is notapplicable to ANS labeled tapes.
Once specified, FPARAM remains in effect until changed.
An address of zero must be specified to halt the passing
of file parameters.

KEYM,value specifies the maximum length, in bytes,
of the keys associated with records within the file. If
KEYM is omitted, the value 11 is assumed. KEYM ap­
pi ies to OUT or OUTIN files only and is not appl icable

. File Maintenance Procedures 105

to ANS label ed tapes. A key may consist of up to
31 characters.

: RECL,value specifies the logical record size in bytes.
The value may be in the range 1 to 32,767. LRECL is
only applicable for ANS labeled tapes.

:-..JEWX, slides L, consecutive slides 1 allows the user to
specify "when ll and lIifll a keyed file's higher-level
; ndex-structure shOLl Id be rebui It. The higher-level
;ndex structure is built for the first time when a
keved file that has more than three level 0 index
blocks is closed.

:: I ides specifies the number of blocks that can be
added to the file's index since the current higher­
level index structure was built; if the specified
value is exceeded, the higher-level index struc­
ture will be rebuilt when the file is closed. If a
value of 255 is specified, the higher-level index
structure wi II never be rebui It. If a NEWX is not
specified, the value 254 is used in default.

consecutive sl ides specifies the number of contig-
uous blocks that can be added to the file's index
since the current higher-level index structure was
created; if the specified number is exceeded, the
higher-level index structure will be rebuilt when
the file is closed. If the number is not specified,
2 is used in default.

NEWX is not applicable for tapes.

NOSEP specifies that the index blocks of a public
keyed fi Ie are to be allocated in the same way that the
data blocks are allocated. If NOSE P is not specifi ed,
the index blocks of a public keyed file are allocated
from public devices having granule allocation units.
In either case, the fi Ie wi II only be allocated on the
type of device specified with the DEVICE option. If
the DEVICE option is not specified, the system looks
for available granules on public disk packs first and
RADs last. If space is not available in granule units,
the system looks for space on public disk packs with
cylinder allocation units. NOSE P only has meaning
for public files with keyed organization.

NXTA specifies that when the DCB is opened, the next
account in the public file's system account directory
following the account specified in the DCB is to be·
accessed. If there is no account specified in the DCB,
the fi rst account in the account di rectory is put in the
DeB. If the NXTF option is also specified, the first
fi Ie in the account is assigned to the DCB and if the
file security checks are satisfied, the DCB is opened.
If the NXTF option is not specified along with the
NXTA option, the requested account number is put in
the DCB and returned to the user with the DCB not
opened. If there are no more accounts avai lable, an
abnormal code of X'02' with a subcode of X'Ol' is re­
turned. NXTA only has meaning for DCBs assigned to
public files. A privilege level of at least 'BO' is re­
quired to use this option.

106 File Maintenance Procedures

NXTF specifies that when the DeB is opened for RAD
or DP files or Xerox labeled tape, the monitor is to ac­
cess the next fi Ie in sequence (following the one
most recently accessed via the DCB). If no fi Ie name
is spe~ified (currently) in the DCB, the first file on
the tape or in the DCB's account fi Ie directory is ac­
cessed. If the next file is a synonymous file, an ab­
normal code of X'08' is returned and the DCB is not
opened. If there are no more fi les avai lable, an ab­
normal code of X'02' is returned and the DCB is not
opened. If the fi Ie name variable length parameter
in the DCB is not 8 words long, abnormal code 1406
is returned.

PASS, 'value' specifies the password that allows access
to a classified data file. The 'value' may be from
1 through 8 alphanumeric characters in length. (PASS
is not applicable to ANS labeled tapes.) The refer­
enced DCB must have room to hold the password.

READ[, 'value', .•• J specifies the account numbers of
those accounts that may read but not write the fi Ie.
The value 'ALL' may be used to specify that any ac­
count may read the file (e. g. , READ, 'ALL') provided
the user has X '40' privilege or greater. The value
'PUBL' may be used to specify that any user may read
the file. Files cataloged under :SYS are available to
any user as described without regard to privilege. The
value 'NONE' may be used to specify that no other
account may read the file. If no value is specified,
or if READ is omitted, ALL or NONE, as specified in
the user's authorization record, is assumed by default.
The total number of accounts explicitly specified in
the READ and WRITE options together must not exceed 16
(a maximum of 8 READ and 8 WRITE). READ applies to

OUT or OUTIN files only and is not applicable toANS
labeled tapes. The referenced DCB must have room to
hold the READ list. (Also see WRITE, below.)

RECl, value specifies the default record length, in bytes.
The greatest value that may be specified is 32,767. If
RECl is not specified, a standard value (appropriate to
the type of device used) will apply by default. RECl
is not applicable to ANS labeled tapes.

RSTORE {limit }
, *address of limit

specifies in decimal the
number of granules to be

allocated to a random file. RSTORE is meaningful only
when a file is first created. The RSTORE value is
required to be in the range 1 to 224_1. RSTORE is
not applicable to ANS labeled tapes.

SN[, 'serial number', ... J ;pecifies the serial numbers
of the volumes (tape reels or disk packs) that are to be
used for fi lei nput or output. The ser i a I number may
be from one to four alphanumeric characters (or Xerox
lobeled tapes and disk packs. The serial number must
be six alphanumeric characters for ANS labeled tapes.
A maximum of three serial numbers may be specified
for system DC Bs.

90 17 64H-1(9;78)

The SN option must be specified in the M:DCB proce­
dure call for it to appear in the DCB so that it may be
used by the ASSIGN control command or the M:OPEN
procedure call. When SN is specified in the M:DCB
procedure call but no seria I numbers are given, three
words are reserved for the s,erial numbers which can be
inserted through ASSIGN or M:OPEN.

For a file on labeled tape:

1. Serial numbers must be ordered in the proper se­
quence for a fi Ie to be opened in the I N or I NOUT
mode. If SN is not specified (by ASSIGN, M:DCB
or M:OPEN) the DCB iis not opened and an abnor­
mal code of X'14' is returned.

2. The file is written in the order in which the serial
numbers are specified for a file to be opened in the
OUT or OUlI N mode. If SN is not specified (by
ASSIGN, M:DCB or M:OPEN), available scratch
volume(s) of the type specified in the DEVICE op­
tion (or by default I any type avai lable) wi II be
used.

For a file on a private volume set:

1. If the first fi Ie on a private volume set is being
output, all seria I numbers in the set must be speci­
fied and the first volurne in the set will become
the primary volume.

2. If the private volume set has been established, only
the serial number of th.~ primary volume need be
specified. The primary volume contains a list of
all serial numbers in the set.

3. If one or more volumes are to be added to the set,
the serio I numbers of the new volume(s) must be
specified following the primary volume.

4. If SN is not specified (by ASSIGN, M:DCB or
M:OPEN) for a fi Ie on RAD or D P, the fi Ie is
assumed to be on public devices.

The INSN and OUTSN options used in previous ver­
sions of the monitor were replaced with the SN option.
For compatibi lity I the I NSN and OUTSN options are
acceptable in lieu of SN.

SPARE, n specifies in bytes the amount of spare space
to be left unused at the end of each index block whi Ie
a keyed file is being created or updated with sequen­
tial access. The value specified may not exceed 255
bytes; if it does, it is.treated modulo 256. If SPARE is
not specified or is zero, it is set to 1 byte by default.
This spare space is used so that additional keys can be
inserted in a minimum time when updating the file with
direct access (as in EDIT). If the file will never be
updated with direct access, a spare value of 1 should
be specified. SPARE is not lapplicable for tapes.

EXECUTEL'value'] . •• specifies the account numbers
of accounts that may execute the fi Ie. The value
'All' allows any account to execute the file. The
va lue 'NONE' prohibits execution of the fi Ie by any
account except the creator. The value' PUBl' is
meaningless here. The EXECUTE option is not checked
for users that would have received READ or WRITE
access.

90 17 MH-1(9/78)

SYNaN, 'fi lename l spec ifies that the II name" ~: yen ir,
the FILE option nome attribute is to be considered syn­
onymous with the designated II fi lename". The fi lename
must currently apply to a fi Ie that exists on RAD or DP
This option is used to create a synonym for a RAD 01

DP fi lename. It forces the function mode in the DCP
to INOUT.

TEST specifies that this is a test file operation. The DCP
is not opened and subsequently does not requ ire G

CLOSE. TEST is normally used in conjunction with th:"

NXTA and NXTF options to return information lega rrJ •.

ing fi les via the DCB variable length parameters one
FPARAM. Use of TEST wi II force the function to H<
regardless of what is specified in the DeBar FPT. TE':· i

is not applicable for tapes. If FPARAM is specific':1,
security checks will be made and error 14-00 returnl:':c
if the user does not have access to the fi Ie. Under n,.
circumstances will error 14-01 (file busy) be returnec
when TEST is specified.

TLABEL, [*]address specifies the symbolic address of tf,
user's buffer into which a label is to be written. r,
first byte of the label information must con/din t;"

length (i.e., number of bytes) of the buffer, F;,,)f At·,
labeled tapes, the count must be 80 and the fi rs: fo'.1
bytes of the label must contain UHL 1.

TRIES,value specifies the maximum number of recover"
tries to be performed for any I/O operation. Th<.
greatest va lue that may be specified is 255. Th(.'
default value is 10.

UNDER, ['name']. . . specifies the name(s) of the or"

processor{s) that rnay access th is fi Ie if the IJse' de"",

not own the file. The name(s) may be from o'W '0 t.

characters enclosed within single quotes (' I. The
processor{s) may be an y shared processor or ;:0',:- k
module in the :SYS account. If EXECUTE Q("'" ,t;;S

specified and UNDER is not specified, the r; i (::; r:.
sumed to be a load module and UNDER, 'FETCH' i

implied by default. FETCH is the name of the mont;
routine that places a program into execution. FETe·
must not be stated expl icitly.

VOL,value specifies wh ich tape reel in the S ;,1 ; ist

to be used in itially. A value of 1 designat(:~ the
first reel (in this list), the value 2 designates the
second reel, etc. If VOL is omitted, a value of :
is assumed by defaul t.

'WRITE [, 'value']. •• specifies the account numbers o'
those accounts that may have both read and write ac .
cess to the file, The values 'PUBL', 'ALL' and 'I'~ON~
may be used, as with the READ opt ion; and I if a
confl ict exists between READ and WRITE specific(]tion~"
those of the WRITE option take precedence. If no
WRITE accounts are specified, 'NONE' is assumed.
WRITE applies to OUT or OUTIN files only and is
not applicable to ANS labeled tapes, The refer­
enced DCB must have room to hold the WRITE list.

·File N.aintenance Procedures 107

Calls generated by the M:OPEN procedure have the form

CAL,l fpt

where fpt points to word 0 of the FPT shown below.

word 0

If XFPT= 0 (see word 0, bit 14).

word 1

If XFPT = 1 (see word 0, bit 14).

word 1

f
t o -:'1-2::--;'31-:-..........-:;--;-t.-~;;-;;t-;-;-;:;-;-;-;-;1r.:-;;-;;;-;c;i-:;;;";~"'-;:;t~t-;;:-a.m;o';c;-:;n""i'i"'

word 2

option ERR (Pl)

option ABN (P2)

option BUF (P3)

option RECL (P4)

option BLKL (P4) alternate form

Block size is only applicable for ANS labeled tapes.

108 Fi Ie Maintenance Procedures

option TRIES (P5)

CONSEC
KEYED

option RANDOM
UNDEF

ORG {value }
, *Iocation

(P6)

where ORG specifies the file organization type (1 means
consecutive, 2 means keyed, 3 means random, 4 means un­
defined). If this option is omitted, consecutive is assumed
by default.

option FORMAT (P6) alternate form

1-10 : :.: 0 I FORMAT I
Q 1 2 314 S 4 7 8 9 10 11112 13 14 15 14 17 18 19120 212223242524272829 JO 31

where FORMA T specifies the record format for ANS labeled
tapes: 1 =F (fixed length), 2 =0 (variable, expressed in deci­
mal), 3 =V (variable, expressed in binary), 4 =U (undefined).

DIRECT ISEQUEN)

option BLOCK (P7)

ACC {value }
, *Iocation

where ACC specifies the record access method (l means se­
quential, 2 means direct, 3 means block).

option

where

IN
OUT
INOUT
OUTIN

MODE {value }
, *Iocation

, SHARE
(P8)

, EXCL

MODE specifies the file function mode (1 means

P

IN, 2 - OUT, 4 - INOUT, 8 - OUTIN).

is a presence bit to indicate whether or not the
5 field is significant. If P is set to one, S is sig­
nificont. If P is set to zero, S is not significant.

S specifies SHARE (S = 1) or EXCLUSIVE (S = 0).
For RANDOM and KEYED files only, more than
one user may open the fi Ie in the INOUT mode,
if, and only if, all such open requests specify
SHARE. If a RANDOM or KEYED file is already
open OUTIN, all requests to open the fi Ie in the
IN mode must specify SHARE or EXCLUSIVE ex­
actly as the OUTIN open request did. If a RAN­
DOM or KEYED file is already open in the IN
mode, all requests to open the fi Ie in the OUTIN
mode must specify SHARE tOr EXC LUSIVE exactly
as the IN open request did.

lRELEASE I SAVE .

option JOB { } (P10)
DISP value

, *Iocation

where OPT specifies REL/SAVE/JOB option (I means
RELEASE, 2 means SAVE), 3 means JOB).

option FPARAM (Pll)

option TLABEL (P12)

option KEYM (P13)

1+ : 0 - : lKEYM 1
, , , ,I, ; , ,:. • .. " " " " " " " '" "I w " " " " " u "Iu n '" "

where KEYM specifies the maximum key length.

option device code (P14)

where DEV CODE is the device type code set in the DCB.

If the assignment mode currently in effect is file and neither
DC nor DP is specified, the mon itor will allocate files on
either device. DP 'or DC are only meaningful when the
function mode is OUT or OUTIN.

option device code (P14) alternate form

where TEXT OPLABEL is the device name in TEXT format.

option device code (P14) alternate form

causes the DCB to be opened to any I isting type device,
i. e., any LP device. The L bit will be set in the DCB as it
is set here.

option BTD (P15)

t
Byte displacement

option VOL (P16)

option NEWX (P17)

where Slides and Consec are as described in NEWX.

option SPARE (P18)

opti"on CONCAT (P18) alternate form

where CONCAT specifies the number of identically named
files that are to be read as one logical file (concatenated).
CONCAT is only applicable for ANS labeled tapes.

option RSTORE (P20)

option LRECL (P20) al tern ate form

LRECL (logical record length) is only applicable for ANS
labeled tapes.

Paramef'ers 21 and 22 are available only if the extended
format FPT (X FPT = 1) is used.

option DENS (P2l)

File Maintenance Procedures 109

where DENS has the following meanings: 0 == 1600 bpi;
- 1 = 800 bpi.

option {EBCDIC} (P22)
ASCII

where CODE is 0 for EBCDIC, 1 for ASCII.

Entries for any variable-length parameters follow those for
the fixed-length parameters previously discussed. The
variable-length entries are identical in format to those
of a DCB (see Appendix A).

Flags f1 through f9 in word 1 of the FPT have the signifi­
cance indicated below (when fj = 1).

Flag Significance (when set to 1)

The next fi Ie of the account is to be opened. If f2
there is no name specified in the DCB currently
open, the first fi Ie of the account is to be opened.

f9 VLPs are present.

ASN A three-bit field indi cating the assignment type:

000= null
001 = file
010 = CP-V labeled tape
011 = device
101 = ANS labeled tape

CLOSE A FILE (Terminate I/O Through a DCB)

M:CLOSE The monitor CLOSE routine terminates and
inhibits I/o through a specified DCB, until the DCB is
again opened.

In addition, unique positioning and updating operations
occur for the following devices and files.

CARD PUNCH DEVICES

If the direct device format option DRC was not specified in
the DCB, an ! EOD record is output to the devic~ indi cating
an end-of-fi Ie. '

TAPE UPDATING

For unlabeled tape, if the last operation performed was a
write and the direct device format option DRC was not
specified in the DCB, two end-of-file marks are written
and the tape is positioned between them.

-.:. 110 File Maintenance Procedures

For labeled tape, if the last operation performed was a
write, an end-of-file and an end-of-reel sentinel are writ­
ten. If the LABEL option in the M:CLOSE is specified,
a trailer label is also written as a part of the end-of-file
sentinel. If the function mode specified in the DCB is OUT
or OUTIN and the SAVE option of M:CLOSE is not speci­
fied, the tape wi II be unconditionally rewound. The SAVE
option must be specified if the tape is to have more than
one file. The REM option should not be specified unti I the
last fi Ie on the tape is closed.

TAPE POSITIONING

Input tapes closed by the monitor CLOSE routine are a 1-
ways saved. The REM (remove) option, if specified, is
honored on both labeled and unlabeled tapes; the PTL
(position to label) option is honored on labeled tapes only.
Output, update, and scratch tapes closed by the monitor
CLOSE routine are handled as indicated in Table 16.

FILES

If the file's function mode in the DCB is OUT or OUTIN,
and the SAVE option of M:CLOSE is not specified, REL is
assumed. The monitor will release all secondary storage
allocated to the file and no record of the file wi II be
maintained.

If the fi Ie's function mode is OUT or OUTIN and the SAVE
option is specified in both the DCB and M:CLOSE, an en­
try for the fi.le will be created in the account's file direc­
tory. If there is a Iready a fi Ie in the user's account with
the same file name, the new fi Ie wi II replace the old, and
the secondary storage allocated to the old file will be
released. In this case, if the JOB option was specified
in the DCB, the file name will be processed through the
M: TFILE procedure.

If the file's function is IN or INOUT SHAREd and the REL
option of M:CLOSE is specified, the file is treated as though
SAVE had been specified.

If the file's function mode is IN or INOUT EXCLusive and
the REL option of M:CLOSE is specified, the mon itor will
release all secondary storage allocated to the file and de­
lete the file's name from the account's file directory. All,
files synonymous to the file being rei eased will also be de­
leted from the file directory.

If the file's function mode is IN or INOUT and the REL op­
tion of M:CLOSE is not specified, SAVE is assumed and no
further action is required (there are already entries in the
fi Ie directory).

If the file's function is INOUT EXCLusive, SAVE is spe­
cified (either impl icitly or explicitly), and the file is not
synonymous, file attributes may be altered by specifying
any of the following options on M:CLOSE: FILE, PASS,
READ, WRITE, EXECUTE, UNDER.

The M:C LOSE procedure call is of the form

M:C LOSE [*Jdcb name L (option)] ...

Table 16. Tape Positioning for Output, Update, and Scratch Tapes

SAVE option Unlabeled Assigned to OPLABEL The tape is rewound and SAVE message is output.
is specified tapes

Assigned to device If REM is specified, the tape is rewound and the drive is taken
off-I ine; otherwise, no action is taken. SAVE message is output.

SAVE option Labeled REM is specified The tape is rewound and the drive is taken off-line. SAVE mes-
is speci fi ed tapes sage is output.

PTL is specified The file is positioned to the label at the beginning-of-file; (posi-
tioned in front of tape mark preceding :EOF sentinel); if the label
is on another tape, SAVE message is output (PTL is ignored for
ANS tapes.) --

PTV is specified (Applicable for ANS tapes only.) The tape is positioned as if an
AVR sequence has been specified. --

No options; ANS; If the file is contained on one volume, PTV is performed. If the
no S N sped fi ed fi Ie is mu ltivolume, REM is performed.

--
No options No action is taken. Tape head is somewhere between tape marks

surrounding records, depending on last record read or written, and
direction.

SAVE option is Unlabeled SN is not specified The tape is rewound and remains a scratch tape.
not speci fi ed tapes --

SN is specified If REM is specified, the tape is rewound; otherwise, no action is
taken.

SAVE option is labeled SN is not specified The tape is rewound and remains a scratch tape. Any other scratch
not speci fi ed tapes tapes saved (due to CVOL) for the fi les are released for other use. --

SN is specified The tape is rewound. If REM is specified, DISMOUNT message is
output.

where dcb name specifies the nam~~of the DCBto be closed. The following options are meaningful only for disk files but
may not be applied to star files (see glossary). Further, they
are not effective for shared opens or files opened via a
synonymous name.

The options are as foHows:

REL applies to files, as described above.

SAVE appl ies to files or labelE~d tape, as described
above.

REM appl ies to labeled and unlabeled tape, as de-
scribed above.

PTL appl ies to Xerox labeled tope, as described above.
PTL is ignored for ANStapes.

PTV applies to ANS tapes only and will cause an ANS
M:REW.

LABEL, [*](address) specifies the address ofa trailer label
(in TEXTC format) to be added as a record following
an :EOF sentinel. See "Tape Updating" above. An
ANS trailer label is 80 bytes in length and the first
four bytes must contain UTL 1.

ABN, [*] address speci fies the location of the user routine
to be entered if an abnormal condition occurs.

ERR, [*] address specifies the location of the user routine
to be entered if an error condi tion occurs.

FILE [, 'name'] specifies that the file is to be renamed.
The name may consist of up to 31 alphanumeric char­
acters and must not be the same as the name of an
already existing file. In order to use this option, there
must be a minimum of five file buffers associated with
the job. (See the POOL control command.)

PASS [, 'value'] specifies a new password that is to be
associated with the file. The value may be from 1 to 8
alphanumeric characters. If PASS is specified but no
value given, the current password for the file is deleted.

REAO[, 'value'] . . . specifies a new set of account
numbers that may read but not write the file. The value
'ALL' may be used to specify that any account may
read the file (e.g., READ,'ALL'). The value 'NONE'
may be used to specify that no other account may read
the file. If no value is specified, any existing read
accounts will be removed and 'ALL'will be assumed by
default.

WRITE (, 'value'] . . . specifies a new set of account
numbers that may have both read and write access to
the file. The values 'ALL' and 'NONE' may be used,

File Maintenance Procedures 111

as with the READ option (see above); and if a confl ict
exists between READ and WRITE specifications, those
of the WRITE option take precedence. If no value is
specified, any existing write accounts will be removed
and 'NONE' will be assumed by default.

EXECUTE [, 'value'] . . . spec ifies the account numbers of
those accounts that may execute the file. Up to eight
account numbers mpy be specified. The value 'ALL'
may be used to specify that any account may execute
the file. The value INaNE' maybe used to specify
that no other account may execute the file. If READ,
'NONE' is not specified, the EXECUTE option will be
ignored. If value is not specified, any existing execute
accounts wi II be removed and' ALL' wi II be assumed by
default.

UNDER[, 'name']. . . specifies the name{s) of the only
processor{s) that may access this file if the user does not
own the file. The name{s) may be from one to ten char­
acters enclosed within single quotes. The processor{s)
may be any shared processor or any load module in the
:S YS account. If UNDER is specified, without a name,
the current UNDER name(s) are deleted from the file
attributes.

Calls generated by the M:CLOSE procedure have the form

CALl,l fpt

where fpt po ints to word 0 of the FPT shown below.

word 0

word 1, options PTL and REM

where

112

P

R

specifies that the PTV option (see above) has
(P==l) or has no~ (P==O) been requested.

specifies that the REM option (see above) has
(R == 1) or has not (R == 0) been requested.

E specifies that the PTL option (see above) has
(E == 1) or has not (E == 0) been requested.

V specifies that variable length parameters are
(V == 1) or are not (V = 0) present.

{ : 1:1
10 Iii 12 13 14 15 16 17 18 19120 212223 24 25 26 27128 29 30 31

File Maintenance Procedures

where OPT specifies REL/SAVE option (1 means release,
2 means SAVE). This option is not significant when clos­
ing a DCB opened with SHARE mode.

option LABEL (P2)

option ERR (P3)

option ABN (P4)

For further details on the action of the Open and Close
functions, see Chapter 2, "Files and File Usage ll

•

SET ERROR OR ABNORMAL ADDRESS

M:SETDCB The monitor SETDCB routine allows the
user's program to set the error or abnormal address in a
designated DCB; the call may be made while the DCB is
either open or closed.

The M:SETDCB procedure call is of the form

M:SETDCB [*] dcb name[, (ERR, [*] address)];
[, (ABN, [*]address)] [,(CRPT, [*]address)]

where the optional parameters are of the same form as those
given for ERR and ABN in 11 M: DCBII, earl ier in this chapter.
CRPT specifies the address of a word to be used as the seed
for a data encryption process for keyed or consecutive files.
If the effective encryption address is zero (e. g., CRPT, 0
is specified), the encryption process is turned off. This
option is only effective for open DCBs because the open
process turns data ~ncryption off. (This is done so that a
user will not inadvertently get unwanted data encryption.)

Calls generated by the M:SETDCB procedure have the form

CAll,l fpt

where fpt points to word 0 of the FPT shown below.

word 0

word 1

option ERR (Pl)

90 17 64H-' (9 .h8~

option ABN (P2)

option CRPT (P3)

CHECK I/O COMPl.ETION

M:CHECK The monitor CHECI< routine checks the
completion-type indicator (TYC) of a specified DCB. If
the completion type is other than normal and error or ab­
normal addresses were specified in the procedure call, an
appropriate error or abnormal code is returned to the user's
program via SR3 (i. e., system register 3, or general regis­
ter 10). If the M:READ or M:WRITE procedure call speci­
fi ed an error or abnorma I address, then a norma I return to
the user's program wi II be made by the CHECK routine. If
I/O is currently active, it wi II be completed before con­
trol is returned to the user's program. If no error address
or abnormal address was specified in the procedure call,
no error or abnormal code is returned to the user's program.
The check appl ies only to the most recent I/O operation
done via the DCB (see the appendix titled II Monitor Error
Messages ll

). The monitor waits for an M:CHECK or an­
other use of the DCB before taking action on an I/O error.

The M:C HEC K procedure call is of the form

M:CHECK ~ *]dcb name~, (option)] ..•

where dcb name specifies the name of the DCB to be
checked for type of completion.

The options are as follows:

ERR, L*]address specifies the address of a user's routine
that will handle error conditions for I/o operations
performed via the DCB.

ABN, ~*]address specifies the address of a user's routine
that will handle abnormal conditions for I/o opera­
tions performed via the DC B.

Calls generated by the M:CHECK procedure have the form

CAL1,1 fpt

where fpt points to word 0 of the FPT shown below.

word 0

word 1

option ERR (Pl)

option ABN (P2)

DECLARE A TEMPORARY FILE

M:TFILE The monitor TFILE routine causes the specified
DCB's associated file to be registered with the monitor for
release at the end of the job. Error and abnormal addresses
may'be specified, to allow the user's program to take appro­
priate action if the monitor is unable to register the file
as temporary. The file should be closed and saved prior to
the M:TFILE call. If the DeB is open, it will be closed
with default options. Files declared by means of this call
will be released at the end of the job, unless otherwise
explicitly released. Thus, M:TFILE execution during a job
step causes a file to be saved between subsequent job steps
and yet be released on completion of the job. This pro­
cedure cannot be used for files on private disk packs.

The M: TFILE procedure ca" is of the form

M:TFILEl*Jdcb name, (TFILE, r*]address)i

L(ERR, [*]address)J[, (ABN, [*]address)]

where

[*Jdcb name specifies the name of the DCB asso-
ciated with the fi Ie to be declared temporary.

TFILE, [*]address specifies the address of the name
of the fi Ie to be declared temporary. The name
of the fi Ie must be in TEXTC format.

ERR, [*]address specifies the address of a user's
routine that wi II handl e error conditions for I/o
operations performed via the DCB. .

ABN, [*]address specifies the address of a user's
routine that will handle abnormal conditions for
I/o operations performed via the DCB.

Calls generated by the M: TFILE procedure have the form

CAll, 1 fpt

where fpt points to word 0 of the FPT shown below.

word 0

. word 1

File Maintenance Procedures 113

liJ

. option ERR {Pl}

option ABN (P2)

required for TFILE

required for TFILE

DATA RECORD MANIPULATION

READ A DATA RECORD

M:READ The monitor READ routine causes a specified
data record to be read into a buffer in core storage. If
the record is larger than the specifi ed buffer, part of the
record is lost and this fact is communicated to the user's
program (see the appendix titled "Monitor ErrO'r Messages").
A II records of a I ength I ess than 18 bytes read from AN S
formatted tapes are bypassed as noise records.

It is not necessary for the user's program to explicitly call
the monitor OPEN routine prior to reading or writing a
record, since the monitor generates such a call automati­
cally if the DCB is not open. However, the options speci­
fied on the Read/Write call are used for the Read/Write
only, and are not used as parameters for the OPEN call.

Both EBC DIC and binary decks may be used in the same job,
but nonstandard binary information must be preceded by a
BIN control command and must end with a BCD control com­
mand if the device is a card reader. On encountering a BIN
control command, the monitor switches the device mode and
automatically reads the next record in binary. Subsequent
records are also read in binary until a BCD control command
is encountered. The monitor then changes the device mode
and automatically reads subsequent records in EBCDIC.

The mode flag (MOD), in the DCB associated with the read
operation, is set to a 0 if a record is read in EBCDIC and
is set to a 1 if a record is read in binary.

A BCD control command encountered when reading in the
EBCDIC mode causes no change in the device mode. When
the C device is read, any record having an I in column 1
(except for a BIN, BCD, or EOD control command) causes
a code of 06 to be placed in byte 0 of SR3. The record is
placed in the monitor's control command buffer and, if an
attempt is made to read that record again via the same
DCB, the job is aborted and the user is notified (via the
LL device) of the reason for aborting the job.

114 Data Record Manipulation

Whenever an EOD control command is encountered (when
reading from the C device), a code of 05 is returned
to the user's program in byte 0 of SR3 if an abno~mal
address is specified.

The M: READ procedure ca II is of the form

M:READ [*]dcb name[, (option)] ...

where dcb name specifies the name of the DCB to be asso­
ciated with the read operation.

The options are as follows:

ABN, [*]address specifies the address of a user's rou-
tine that will handle abnormal conditions for the read
operation (see the appendix titled II Monitor Error Mes­
sages"). The address specified must lie within the
user's program.

BLOCK, [*] number appl icable to random fi les only and
specifies the granule number of the block at which the
I/o transfer is to be made. Granule blocks within a
random fi Ie are numbered 0 to n-1, where n equals the
number of granu les in the file.

The word pointed to by the KBUF field of the random
file DCB is set equal to zero when a file is opened and
is incremented by one after each granule is read or
written, whether BLOCK is specified or not. When
the BLOCK option is specified, it overrides the gran­
ule number in the word pointed to by the KBUF field
and causes the word pointed to by KBUF to ,be reset
equal to that value. If the BLOCK option is not speci­
fied, the granule number in the word pointed to by the
KBUF field is used.

BTD, [*lvalue specifies the byte displacement (0-3), in
the user's buffer, into which data is to be read; i. e.,
the byte into which the first data byte is to be read.
This value is inserted into the BTD field of the DCB
and will be default for subsequent read or write re­
quests if the BTD option is not specified.

BUF,[*]address specifies the address of the user's buf-
fer into which data is to be read. This value is in­
serted into the BUF field of the DCB and will be the
default for subsequent read or write req~ests if the BUF
option is not specified.

COC, [*]options specifies the options unique to a char-
acter oriented communications device, and will be
ignored for any other device. If indirect addressing is
specified, all option flags and values will come from
the indirectly addressed word. The options are sepa­
rated by commas. The options for the COC keyword
are:

CONDITIONAL specifies that if no input is present
(typed-ahead) when the read is issued an abnormal
return (code X'241) will occur. Otherwise, the
read proceeds normally.

DELETEIN specifies that all input present (typed-
ahead) is to be del eted .

DELETEOUT specifies that all output present but
not yet transmitted is to be deleted.

(TIMEOUT [, value]) specifies the timeout interval
for the read, in 1.2 second units. If the interval
expires without an activation condition being met,
an abnormal condition occurs (code X'23'). What­
ever input was typed wi" be transferred to the
user's buffer. If a TIMEOUT of 0 is specified, the
abnormal return will be taken after transferring
any partial or complete input record.

(OACS, value) specifies an over-riding activation
character set to be used in determining the end of
the input message for this M:READ request only.
Value must be in the range 0'0 to 3. See M:CAC
in the CP·-V ITS Reference Manual, 900907.

REREAD specifies that the input message in the pro-
gram's buffer is to be reread. The message will
be transferred back to the monitor's input buffers,
and echoed as if the user had just retyped the
message. The user may then edit the message and
again release it to the reading program. Reread
handles the transfer in the following manner:

1. When a read is issued to the terminal, the user buffer
is inspected. (ESC D forces the read to be reissued.)

2. Trailing blanks are ignored.

3. Characters are transferred from the program's buffer to
the monitor's input buffers until either an activation
character is found or a character is found that the
monitor would not have placed there.

4. Any typed-ahead input is plclced after the reread
characters •

5. The characters in the input buffer are echoed.

See ESCD in the CP-V ITS Reference Manua I 900907.

ECB, [*Jaddress specifies the address of a two-word event
control block (ECB). (See thE~ M:CHECKECB procedure
description for an explanation of ECBs.) The ECB will
be set to "in-use" status when the operation is started
and wi II be posted on completion of the operati on.
Posted information consists of ryC in byte 0, and ARS
in bytes 2 and 3 of Word 1 of the ECB. (See DCB
description in Appendix A.) If an "insufficient or con­
flicting information" error or abnormal condition occurs
(refer to Appendix B), the contents of the ECB are
undefined .

ERR, [*]address specifies the address of a user's routine
that will handle error conditions for the read operation
(see the appendix titled "MonHor Error Messages").
The address specified must lie within the user's program.

FWD specifies that the record is to be read in the
forward direction.

KEY,[*]address specifies the address containing the key
(identifier)associated with the record to be read. The

90 17 64H-l (9/78)

key may be up to 31 bytes in length and must be pre­
ceded by a byte that contains the length of the key in
number of bytes. Indirect addressing can be mode to a
register; however, the key may not be in registers. The
KEY option is valid for keyed files only.

REV specifies that the record is to be read in the re-
verse direction.

If neither FWD nor REV is specified, FWD is used
in default.

SIZE, [*Jvalue specifies the size, in bytes, of the user's
buffer. If 0 is specified, a record is skipped. An as­
terisk may be used to indicate that the value is the
address of a location containing the buffer size. If
this option is not specified, the default value in the
DCB (RSZ) wi II be used.

ULBL specifies a user trai ler label. Bit 28 (f1) in FPT
word 1 will be set. If ULBL is specified and on end­
of-volume (EOV) or end-of-file (EOF) sentinel is en­
countered on labeled tope, the trai ler label written by
a previous M:CVOL or M:CLOSE wi" be transferred to
the user buffer in TEXTC format where the data record
would have been transferred and on end-of-tape (1 C)
or end-of-fi Ie (06) abnormal code wi i I be returned to
the user. The user must explicitly request volume
switch if ULBL is specified and on EOV sentinel is
encountered. If label is larger than the area available
for the label in the buffer, only the portion of the label
that can be contained in the buffer will be transmitted.
If ULBL is not specified, the end-of-volume (EOV)
sentinel wi" cause automatic volume switching.

WAIT specifies that the operation is to be completed
before control is returned to the user's program. WAIT
is impl ied if either ERR or ABN is spec ified. If WAIT
is neither specified nor implied, no wait is assumed.

Calls gel"erated by the M:READ procedure have the form

CALl,l fpt

where fpt points to word 0 of the FPT shown below.

word 0

o I 2

word 1

option ERR (PI)

option ABN (P2)

Data Record Manipulation 115

option BUF (P3)

option SIZE (P4)

option KEY (PS)

I:I~ "I. ,. ,:, 01; Key O~dress 1
, "" I" " " ,,- .. " .. "I", " " " " " " v b, '" " "

option BTD (P6)

I~I~ "I.,. ,I. 9 10 11112 13 14 1516 17 18 19120 21 22 23 24 25 26 27128 29 30 31

option EC B (P7)

1:1, , ,I. , • ,:. ! : ECB A:ddress I
9 10 1,112 13 14 1516 17 18 19120 21 2223 24 25 26 2712B 29 30 31

option BLOCK (P8)

option COC (P9)

where

C
1

set

C
2

set

C
3

set

C
4

set

Cs set

C
13

set

OACS

indicates TIMEOUT is specified.

indicates CONDITIONAL is specified.

indicates DELETEIN is specified.

indicates DELETEOUT is specified.

indicates REREAD was specified.

indicates OACS was specified.

specifies the OACS value.

Flag Signi ficance

f2 o means read in the forward direction.

1 means read in the reverse direction.

f3 o means return control to the user's program
immediately.

1 means wait untilI/O is complete before
return i ng contro I to the user's program.

f------

f1 1 means ULBL option selected.

116 Data Record Iv\anipulation

WRITE A DATA RECORD

M:WRITE: The monitor WRITE routine causes a specified
data record to be written from a buffer in core storage.
The format of the output depends on the type of physical
device associated with the DCB.

If the DCB is assigned to a card punch, the monitor will
cause I BIN and I BCD records to be punched on the card
punch where appropriate.

For example, if the user's program needs to punch a binary
record and the previous record was punched in EBCDIC, a
IBIN record is punched automatically before the binary
record is punched. Similarly, a ! BCD record is punched
automatically before a record is punched in EBCDIC, if
the previous record was punched in binary.

On a binary record a maximum of 120 bytes are punched.
On an EBCDIC record, a maximum of 160 bytes are punched,
but the data is broken into two records, the first of which
contains no more than 80 bytes.

For a I ine printer, vertical spacing is determined by the first
output character in the vertical-format-control byte if the
associated VFC flag in the DCB is set to a 1. A maximum of
132 characters per line may be printed on a line ·printer.

If the associated DCB is assigned to a typewriter (or to OC),
a maximum of 256 characters per write operation is allowed.
The user's program must include appropriate carriage return
characters in the record to be written. If the DCB is
assigned to LO, LL, or DO, a maximum of two lines per
write operation is allowed.

If the DCB is assigned to PO or BO, the monitor wi" break
the output data into two records. The first record will be
80 characters in length (EBCDIC) or 120 characters (BIN).

A request for output of an ANS tape record containing less
than 18 bytes is written as an 18-byte record. The trailing
bytes contain the data that follows the requested data in
core. Output to an unlabeled tape is limited to 32767 bytes. I

It is not necessary for the user's program to expl icitly call
the mon itor OPEN routine prior to reading or writing a record,
since the monitor generates such a call automatically if the
DCB is not open. However, the options specified on the
Read/Write call are used for the Read/Write only, and are
not used as parameters for the OPEN call.

The M:WRITE procedure call is of the form

M:WRITE [*]dcb name[, (option)] ...

where dcb name specifies the name of the DCB to be asso­
ciated with the write operation.

The options are as fo"ows:

ABN, [*Jaddress specifies the address of a user's routine
that wi II handle abnormal conditions for the write op­
eration (see the appendix titled "Monitor Error Mes­
sages·II). The address specified must lie within the
user's program.

90 17 64H-I (9/78)

If an abnorma I address is specified and an end-of-tape
is encountered, a X'lC' abnormal code will be gener­
ated so that the user can issue a M:CVOL procedure.
Also, for a Xerox or ANS labeled tape the record has
not yet been written, and the user can issue another
M:WRITE with no preceding M:CVOL to cause an auto­
matic change of volume to be executed. For device
tape, the record has already been written and automati4
M:CVOL is not performed.

BLOCK, [*]number applicable to random files only and
specifies the granule number of the block at which
the I/O transfer is to beg in. Granule blocks within
a random file are numbered 0 to n-l, where n equo Is the
number of granules in the file.

The word pointed to by the KBUF field of the random
file DCB is set equal to z,ero when a file is opened
and is incremented by one Ictfter each granule is read or
written whether BLOCK is specified or not. When
the BLOCK option is specified, it overrides the gran­
ule number in the word pointed to by the KBUF field
and causes the word pointed to by KBUF to be re­
set equal to that value. If the BLOCK option is
not specified, the granule number in the word pointed
to by the K BUF field is used.

BTD, [*]value specifies the byte displacement (0-3) in
the user's buffer from which data is to be written. The
value used is inserted into the BTD field of the DCB and
becomes the default value for subsequent read/write op­
erations for which the BTD option is not specified.

BUF, [*]address specifies the address of the user's buffer
from which data is to be written. This value is inser­
ted into the IBUF field of the DCB and can be used on
subsequent M:WRITE procedure calls.

COC, [*]options specifies the options unique to a char-
acter oriented communications device, and will be
ignored for any other device. If indirect addressing is
specified, all option flags and values will come from
the indirectly addressed word. The options are sepa­
rated by commas. The op'tions for the COC keyword
are:

DELETEIN specifies that all input present (typed-
ahead) i$ to be deleted"

DELETEOUT specifies that all output present but not
yet transmitted is to be deleted.

ECB, [*1address specifies the address of a two-word event
control block (ECB). (See the M:CHECKECB procedure
description for an explanation of ECBs.) The ECB will
be set to "in-use" status when the operation is started
and will be posted on completion of the operaf·ion.
Posted information consists of TYC in byte 0, and ARS
in bytes 2 and 3 of word 1 in the ECB. (See DCB
description in Appendix A.) If an "insufficient or con­
flicting information" error or abnormal condition occurs
(refer to Appendix B), the contents of the ECB are
undefined.

90 17 MH-l (9/18)

ERR, [*]address specifies the address of a user's routine
that will handle error conditions for the write operation
(see the appendix titled "Monitor Error Messages").
The address specified must I ie within the user's program.

KEY, [*1address specifies the address containing the key
(identifi er) associ ated with the record to be written. The
key may be up to 31 bytes in length and must be pre­
ceded by a byte that contains the length of the key in
number of bytes. Indirect addressing can be made to a
register; however, the key may not be in registers. The
KEY option is valid for keyed files only.

NEWKEY specifies that the KEY is a new key in the file
index. That is, the key of the record to be written
must not already exist; if it does exist, an abnormal
return is given (see the appendix titled "Monitor
Error Messages"). NEWKEY must be used for files in
the output mode; if NEWKEY is not used, an X'17'
abnormal condition code is returned.

ONEWKEY specifies that the NEWKEY option is to
be overridden. That is, a record wi" be written
with the specified key whether it existed previously or
not.

SIZE, [*]value specifies the size, in bytes, of the user's
buffer. If 0 is specified, the operation is ignored un­
less re~ords are being written into a keyed file; the
key is retained, but the record length is zero. If this
option is not specified, the default value in the DCB
(RSZ) is used.

WAIT specifies that the operation is to be completed
before control is returned to the user's program. WAIT
is implted if either ERR or ABN is specified. If WAIT
is neither specified nor impl ied, no wait is assumed.

Calls generated by the M:WRITE procedure have the form

CAll, 1 fpt

where fpt points to word 0 of the FPT shown below

word 0

word 1

option ERR (P 1)

Data Record Manipulation 117

option ABN (P2)

option BUF (P3)

option SIZE (P4)

option KEY (P5)

option BTD (P6)

20 21 22 23 24

option ECB (P7)

option BLOCK (P8)

option COC (P9)

where

C3 set

C4 set

indicates DELETEIN is specified

indicates DELETEOUT is specified

Flag Significance (when set to 1)

f, The WAIT option. has been specified.

f2 The NEWKEY option has been specified.

f3 The ONEWKEY option has been specified.

COPY ALL DATA RECORDS

M:MOYE The monitor MOVE routine is designed to
speed fi Ie copies. It treats a fi Ie as a logical unit rather
than as a collection of records. This permits reduction in
the number of CAL Is required to copy a file, significantly
reducing monitor overhead. The MOVE routine first reads
a record through the input DCB (DCB 1) and then writes it
through the output DCB (DCB2). It then returns to the read

118 Data Record Manipulation

cycle and continues this process unti I an error or abnormal
condition occurs. When an error or abnormal condition oc­
curs, control returns to the user at the user specifi ed error/
abnormal return location. The MOVE routine leaves the
DCBs as they were so that the CAL may be reissued to con­
tinue where it left off. It is the user's responsibi lity to per­
form any necessary repositioning within the DCBs. The
MOVE cycle always begins with a read. Therefore, if a
write error occurs, both DCBs may need to be repositioned.
On a read error, DCB2 is left in the state it was in at the
end of the last successfu I write.

The M:MOVE procedure cal.! has the form

M:MOVE [*]dcb 1 name, (OUT, [*Jdcb2 name),--,

L (ERR, [*]address),(ABN,[*]address)[, (BUF,~

L [*]address)](,(SIZE, [*]value)]

where

dcb 1 name specifies the name of the input DCB. It
must be a file or labeled tape DCB and must be
opened IN or INOUT prior to execution on the
MOVE CAL.

OUT, ['*Jdcb2 name specifies the name of the output
DCB. It must be a file or labeled tape DCB and
must be opened OUT or OUTIN prior to execution
of the MOVE CAL.

ERR, [*Jaddress specifies the address to which control
is to be returned when an error condition occurs.

ABN, [*]address specifies the address towhich control
is to be returned when an abnormal condition occurs.

BUF, [*]address specifies the address of the buffer that
is to be used for both input and output in the proces­
sing of the MOVE CAL. If this option is not used, the
buffer specified in the input DCB wi" be used. The
buffer is always common for input and output.

SIZE, [*]value specifi es the size, in bytes, of the
buffer. If this option is not used, the default rec­
ord size of the input DCB wi" be assumed. The
size of the output record is always set equal to the
actual record size of the preceding read.

Calls generated by the M:MOVE procedure have the form

CAL " 1 fpt

where fpt points to word 0 of the FPT shown below.

word 0

word 1

word 2 (Pl)

word 3 (P2)

1 *1 0
3 14 5 6 , I. o 1 2

word 4 (P3)

1*10
3 14 5 6 , I. o 1 2

word 5 (P4)

Buffer address

word 6 (P5)

DELETE A DATA RECORD

M:DELREC The monitor DE LREC routine causes a data
reocrd to be deleted from a keyed or consecutive fi Ie.
The INOUT (update)function mode must be indicated in the
DCB associated with the fi Ie.

The M:DE LREC procedure call is of the form

M:DELREC [*Jdcb name[,(KEY, [*]address)]

where

dcb name specifi es the name of the DCB associated
with the fi Ie containing the record to be deleted.

KEY,address specifies the address of the key that
id.entifi es the data record. The fi rst byte of the
key specifies the number of bytes in the key. A
key may consist of up to :31 characters. If KEY is
omitted, the last record read through the specified
DCB is deleted.

Ca lis generated by the M:DE LREC procedure have the form

CAll, 1 fpt

where fpt points to word 0 of the FPT shown below.

word 0

1*1
X'OD'

6 1 3 14 5 6

word

~10
3 14 ; . , I. o 1 2 -------" "I" " " "I .. " .. "Iw " " "I,." U vi"" ,. ~I

option KEY (P1)

*[0
314 ; . ,:. o 1 2

TRUNCATE BLOCKING BUFFER

M:TRUNC The monitor TRUNC routine causes the
monitor to wait for the completion of any outstanding I/o
associated with a specified DCB and then to release the
blocking buffer (if any is reserved for the DCB) back to
the system for other use. The next read or write wi II be
assigned a buffer automatically, as needed. This call
applies only to DCBs assigned to fi les.

The M:TRU NC procedure call is of the form

M:TRUNC [*]dcb name

where dcb name specifies the name of the DCB associated
with the blocking buffer to be released.

Calls generated by the M:TRUNC procedure have the form

CAll, 1 fpt"

where fpt points to word 0 of the FPT shown below.

word 0

word

FILE MANIPULATION

POSITION N RECORDS

M:PRECORD The monitor PRE CORD routine causes a
specified number of logical records of a keyed or consecu­
tive fi Ie on secondary storage or magnetic tape to be skip­
ped in the direction specified. M:PRECORD is not ap­
plicable for ANS tapes and is ignored.

The M:PRECORD procedure call is of the form

M:PRECORD [*Jdcb name[,(N, [*Jvalue)][,(option)];~

L [,(option)]

where

dcb name specifies the name of the DCB associated
with the fi Ie (in secondary storage or on labeled
or unlabeled magnetic tape).

N, [*]value specifies the number of records to be
skipped. The default value is 1.

ABN, [*]address specifies the address of a user's
routine to be entered if any of the following ab­
normal conditions occur: end-of-fi Ie, end-of­
tape, beginning-of-fi Ie, beginning-of-tape. The
number of records yet to be skipped is placed in
the ARS field of the associated DCB.

;-. File Manipulation 119

FWD specifi es that skipping is to take p lace in the
forward direction.

REV specifies that skipping is to take place in the
reverse direction.

Calls generated by the M:PRECORD procedure have the
form

CAll, 1 fpt

where fpt points to word 0 of the FPT shown below.

word 0

EOF specifies that the file is to be positioned at
its end for Xerox labeled tapes or for ANS labeled
tapes. For un labeled magneti c tape, one end-of­
file mark is skipped in the forward direction and
the tape is positioned immediately after that end­
of-fi Ie mark.

Calls generated by the M:PFIL procedure have the form

CAll, 1 fpt

where fpt points to word 0 of the FPT shown below.

word 0

word 1 word

I ~I~~ ,I. , • ,:. , '" "I" " " ":,, " " "IE'''''':'' j ::I~-::~I
option N (Pl)

option ABN (P2)

Flag Significance

f 1 o means skip in the forward direction.

1 means skip in the reverse direction.

POSITION FILE

M:PFIL The monitor PFIL routine causes the device
associated with a specified DCB to move to the begin­
ning or end of the current file (for keyed or consecutive
files on disk storage or on labeled or unlabeled magnetic
tape).

The M:PFIL procedure call is of the form

M:PFIL [*]dcb name, {~~g~n

where

dcb name s~ecifi es the name of the DCB associated
with the fi Ie that is to be positioned.

BOF specifies that the file is to be positioned at
its beginning. For un labeled magneti c tape, one
end-of-fi Ie mark is skipped in the reverse direc­
tion and the tape is positioned immediately before
that end-of-fi Ie mark. M:PFIL with the BOF op­
tion is ignored for an ANS labeled tape.

120 File Manipulation

Flag Signifi cance

f 1 o means position to the end-of-fi I e.

1 means position to the beginning-of-file.

CLOSE VOLUME

M:CVOL The monitor CVOL routine causes the mon-
itor to terminate the reading or writing of data in the mag­
netic tape reel currently associated with a specified DCB,
and to advance to the next reel of the data set.

Unlab~led tapes are positioned at the beginning of the
next input reel; output fi les are positioned at the beginning
of a new scratch tape (or output reel, if any). The DCB
is closed on the last reel.

For output files on labeled -tape, end of volume and end of
reel are written, and label and account sentinels are writ­
ten on the next reel in the set.

For input tapes, the tape is advanced to the next reel of
the data set and the fi Ie currently open is located on the
next reel.

Volumes closed on labeled tapes cause the tape to be re­
wound and a DISMOUNT message to be output. For out-

. put, update, and scratch fi les, a SAVE message is also
output. Volumes closed on unlabeled tape also cause the
tape to be rewound. However, for unlabeled tape, the
user's program must output any SAVE and DISMOUNT
messages.

The M:CVOL procedure call is of the form

M:CVOL [*]dcb name L(LABEL, [*]address)]

where

dcb name specifies the nClme of the DCB associated
with the volume to be closed.

LABEL, [*1address specific~s the address of a label
to be added as a record following the :EOF or
:EOV sentinel. The label must be in TEXTC for­
mat. An ANS label is 80 bytes long with lUlL 11
as the first four bytes.

Calls generated by the M:CVOL procedure have the
form

CAll, 1 fpt

where fpt pOints to word 0 of the F PT shown below.

word 0

1:1, ,~:~3: . ,I~I--{ - DeB a1dress I
1011112 13 14 15 16 17 18 19120 21222324252627126293031

word 1 .

option LABEL (P2)

REWIND

M:REW The monitor REW routiine causes the monitor to
perform a rewind function under the following conditions:

• If the associated DCB is assigned to unlabeled tape,
the DCB is opened (if it was; c1osed)and the tape reel
is rewound.

• If the associated DCB is open and is assigned to a
keyed or consecutive fi Ie en a Xerox labeled tape,
RAD or disk pack, the fi Ie is positioned to its
beginning-of-fi Ie. However, if the associated DCB
is closed, no action is taken.

• If the associated DCB is assigned to an ANS labeled
tape, the DCB is closed wHIh the PTVoption; i.e.,
the tape is positioned as if an AVR sequence had been
performed.

The M:REW procedure call is of the form

M~EW

90 17 MH-l(9/78)

where dcb name specifies the name of the DCB associ oted
with the fi Ie that is to be rewound.

Calls generated by the M:REW procedure have the form

CAll, 1 fpt

where fpt points to word 0 of the FPT shown below.

word 0

DCB address

WRITE END-Of-fiLE

M:WEOF The monitor WE OF routine causes an end-
of-fi Ie to be written on the un labeled tape associated
with a specified DCB, an IE 00 to be output to card
punch, and a top-of-form to be output to the line
printer.

The M:WEOF procedure call is of the form

M:WEOF [*]dcb name

where dcb name specifies the name of the DCB asso­
ciated with the tape on which the end-of-file is to be
written.

Calls generated by the M:WEOF procedure have the
form

CAll, 1 fpt

where fpt points to word 0 of the FPT shown below.

word 0

INSERT OR DELETE SYMBIONT fiLE

M:JOB The Job Entry (JOBENT) procedure call is
restricted to use by system processors. It permits a file
(a block at a time) to be inserted into or deleted from an
existing symbiont fi Ie residing on secondary storage.
JOBE NT 'operates under monitor control to perform the fol­
lowing functions:

File Manipulation 121

• Insert a print block into an output symbiont.

• Insert a job block into an input symbiont.

• Check status of the particular block (job) that has
been inserted.

• Delete a job waiting in the input symbiont.

The M:JOB procedure call is of the fOm1

M:JOB [*]dcb address[,(option)] •••

where dcb address specifies the address of the DCB that
wi II be used to write the b lock. The DCB may be any
system DCB (for example, M:EIor M:BO) or it may be
a user DCB.

Options are as follows:

BUF, [*]address specifies the core storage address of
the block to be inserted or deleted.

ABI'J, [*]address specifies an address in the user's pro-
gram to be entered in the event this block cannot be
inserted or deleted. If the block cannot be entered or
deleted, the system returns an abnormal code 3F/39,
3A, 3B, 3C, 3D, 3E, or 3F to the user (see the ap­
pendix titled "Monitor Error Messages").

IN or OUT specifies the function mode to be per-
formed. IN = insert into input symbiont (0, 1),
OUT = insert into output symbiont (2).

DE L [*]address specifies either the system ID address or
a pointer to the ID itself of the job to be deleted.

ACCT, [*]address specifies the address of a two-word
area that contains the account number under which
the job was submitted. This option is only meaning­
ful in association with a DEL request. If not speci­
fied, the current user's account number is assumed.
The user must have CO privilege or greater to delete
a job submitted under another account number.

LAST, [*.J address specifi es th is is the last block of
the fi Ie to be entered into the symbiont and the ad­
dress is either the priority itself or a pointer to the
priority to be used for the current job to be submitted.

If LAST is specified, zeros are placed in word 0 of
the block, the previous block's disk address is placed
in the lost word of the block, and the block is written
to the symbiont on secondary storage. Following in­
sertion of this block, SR 1 will contain the system iden­
tification.(right-adjusted) and is available to the user
when control is returned following M:JOB.

122 File Manipulation

If LAST is not specified, the system determines the disk
address of the next block to follow and places this
address in word ,0 of the present block and the pre­
vious block's disk address in the last word of the pre­
sent block. The block is then written to the symbiont
on the secondary storage.

Calls generated by the M:JOB procedure have the form

CAll, 1 fpt

where fpt points to word 0 of the FPT shown below.

word 0

word 1

option ABN (Pl)

opti on BUF (P2)

1:1 0
-
1
JI4-~ ;-:. -i, •• ~I,.: ..

option {~UT} (P3)

where FUN specifies function (0 or 1 means IN, 2
means Oun.

option LAST (P4)

where PRJ specifies priority only for output. The only valid
values are 0-lS.

option DEL (PS)

--------0

option ACCT (P6)

:, ,I

The organi zation of records and the format of the input and
output fi Ie symbiont buffers is described in the appendix
titled "Cooperatives and Symbionts".

If none of the first five parameters (P 1 to P 5) are specified
in M: JOB, the M: JOB call is interpreted as a status check.
The status of the file whose idenf'ification is specified in
SR 1 is returned as a code in SR 1, with

0= completed.

1 = running.

2 = waiting for execution.

3 = never existed.

4 = waiting to output or job is waiting in the output
queue.

If code 2 is returned, SR3 cont,ains the number of jobs
ahead of the checked job.

SPECIAL DEVICE PROCEDURES

M:DEVICE The monitor DEVICE routine is capable of
performing a variety of functions .. The function performed
is determined by the keyword specified in the procedure
call. In all cases where the M:DEVICE call is not compat­
ible with the device associated with the specified DC.a,
the call is ignored and no error or abnormal return is given.
(The DCB must be assigned to a DEVICE file.) For sym­
biont devices, all actions affecting any device (e. g., skip
to top of form) are delayed unti I the I/O actually takes
place.

SET LlmNG VABI

This call allows the user's program to set listing tabs for
designated columns of data output listed via a specified
DCB.

The procedure ca II is of the form

M:DEVICE [*ldcb name, (TAB, value [,value) •••)

where

dcb ·name specifies the name of the DCB associated
with the device on which data is to be listed.

TAB, value [,valueJ. • • spedfies the values (column
numbers) of desired tab positions. As many as
16 tab values may be specified. The tab values
are stored in the TAB fields of the specified DCB
in the sequence in which they are specified in
the procedure call. A vcdue of 0 specified at
TABi causes TABi through TAB 16 to be set to 0,
indicating null tabs.

Calls generated by the M:DEVICE (TAB) procedure have
the form

CAll, 1 fpt

where fpt points to word 0 of the FPT shown below.

word 0

word

~~, ,I.,. ,: •• ""I"""":.""'I",,"n:~""nl"."~
For this FPT, PI must be set to 1.

option TAB (Pl)

last word

When the user's program requires tab spacing in the output
buffer, this is indicated in the character string by an
EBCDIC code of 05. The monitor responds to such a code
by inserting the subsequent character (in the character
string) at the column indicated by TAB. (where TAB._

1
was

the most recent tab setting used in for~atting the cJrrent
line).

Note that unless the value of TABi > TABi-1, data may be
lost by being overlapped in the output buffer.

Example:

The procedure call

M: DEVICE M: LO, (TAB, 5,20,35)

would result in the following entries in word 15 of the asso­
ciated DCB:

TAB1 = 5
TAB2 = 20
TAB3 = 35
TAM = unchanged

With these tab settings, the EBCDIC (hexadecimal) string

05C3D6D3E4D4D540F105C3D6D3E4D4D540F2

would result in the following typeout:

(col. 5) (col. 20)

1 !
COLUMN 1 COLUMN 2

SKIP TO TOP OF FORM

Th is call allows the user's program to cause the printer or
typewriter associated with a specified DCB to skip to the
top of a new physical page. If the printer is already
positioned at the top-of-form, no action takes place.

Special Device Procedures 123

The procedure co II is of the form

M:DEVICE [*]dcb name, (PAGE)

where

dcb name specifies the name of the DCB associated
with the device that is to be positioned.

PAGE specifies that the device associated with the
specified DCB is to skip to the top of the next
page.

Calls generated by the M:DEVICE (PAGE) procedure have
the form

CAll, 1 fpt

where fpt points to word 0 of the FPT shown below.

word 0

SET NUMBER OF PRINTABLE LINES

This call allows the user's program to set the number of
printable lines per page, for the listing device associated
with a specified DC B.

The procedure call is of the form

M:DEVICE ~*]dcb name, (LINES, value)

where

dcb name specifies the name of the DCB associated
with the device for which the number of printable
I ines is to be set.

LINES, value specifies the number of printable
I ines per page. A maximum of 32,767 lines per
page may be specified. The value includes any
header and after-header spacing. A blank header
I ine is used if no header is specified.

Calls generated by the M:DEVICE (LINES) procedure have
the form

CAll, 1 fpt

where fpt points to word 0 of the FPT shown below.

word 0

word 1

~~ , ,I. , • j: .. '" "I" " .. ":M " " "I~" n ,,:~ " .. vi" ~ ~ ~,I
P 1 must be equal to 1.

1?4 Special Device Procedures

option LINES (P1)

SET LINE SPACING

This call allows the user's program to set the number of
spaces between I ines and the number of spaces between
the page header and the first line printed. It is val id
only for I isting devices. Between-I ines spacing takes
effect only if the VFC flag in the DCB is O.

The procedure call is of the form

M:DEVICE

[*] dcb name, (SPACE, [*] value 1 [, [*] value 2])

where

dcb name specifies the name of the DCB associated
with the device for which the I ine spacing is to
be set.

value 1 specifies the number of lines to be
spaced after printing a I ine. (A value of either 0
or 1 results in single spacing.)

value 2 specifies the I ine number (with the header
line number being 0) of the firlt line.

Calls generated by the M:DEVICE (SPACE) procedure have
the form

CAL 1, 1 fpt

where fpt points to word 0 of the FPT shown below.

word 0

word 1

P 1 must be equal to 1.

option SPACE (P 1)

opti on SPACE (P2)

SPECIFY DIRECT FORMATTING

This call allows the user's program to specify whether or not
special record formatting is to be done by the monitor.

90 17 64H-1(9/18)

The procedure ca II is of the form

M:DEVICE *J {(DRC)} l dcb name, (NODRC)

where

dc b name spec i fi es the name of the DC B assoc i ated
with the device for which the special formatting
is or is not to be done.

DRC specifies that no special record formatting is
to be done for the device associated with the

NOVFC specifies that the user has not inserted a
control character in his print image.

Calls generated by the M:DEVICE (VFC/NOVFC) procedure
have the form

CAL1,1 fpt

where fpt points to word 0 of the FPT shown below.

word 0

designated DCB (inhibit monitor formatting). word

NODRC specifies that the normal mode of monitor
formatting is to be reinstated for the device asso­
ciated with the designated DCB.

Calls generated by the M:DEVICE (DRC/NODRC) pro­
cedure have the form

CAll, 1 fpt

where fpt points to word 0 of the FPT shown below.

word 0

~"'I"":'
Flag Significance

f 1 o means monitor formatting is not to be
inhibited.

1 means monitor formatting (for card devices) is
to be inhibited.

SPECIFY VERTICAL FORMAT CONTROL

This call allows the user's program to specify whether or
not the monitor is to interpret the first character of each
output image as a vertical format control character.

The procedure ca II is of the form

M:DEVICE [~ {(VFC)}
,dcb name, (NOVFC)

where

dcb name specifies the name of the DCB asso-
ciated with the I isting device that is (or is not)
to operate under verti ca I format contro I .

VFC specifies that the user has inserted a control
character in his print image.

Flag Signi fi cance

f 1 o means no vertical format control is to be
performed.

1 means vertical format control is to be
performed.

SPECIFY PAGE COUNT

This call allows the user's program to request that the
monitor count output pages, and also to specify to which
column this count is to be listed on the output device.
The page count wi II appear at the top of the form, if no
header has been specified (see IIS pec ify Output Header II);
otherwise, the page count wi II appear on the same I ine as
the header. The count will be expressed in decimal form,
from 1 to 9999.

The procedure call is of the form

M:DEVICE [*]dcb name, (COUNT, tab)

where

dcb name specifies the name of the DCB asso-
with the I isting device on which the page count
is to be listed.

COUNT. tab 'specifies the column in which the
most significant digit of the page count is to be
listed. The va lue of IItab II must be appropriate
for the physical device associated with the DCB.

Calls generated by the M:DEVICE (COUNT) procedure have
the form

CAll, 1 fpt

where fpt points to word 0 of the FPT shown below.

. word 0

(:.. Special Device Procedures 125

-word

P 1 must be equal to 1.

option COUNT (Pl)

CHANGE OUTPUT FORM

This ca" allows the user IS program to request a change in the
form used on the output device (e.g., card punch, typewriter,
lineprinter, ett.). The monitor informs the operator of the
chahge that is to be made. When the operator has changed
the form, he informs the monitor by an appropriate key-in.

The procedure call is of the form

'M:DEVICE [1dcb name, (option)

where

dcb name specifies the name of the DC B associated
with the device for which the change of form is to
be requested.

FORM, [*]address specifies the address of the mes-
sage (that is to be output to the operator) con­
cerning a change of cards or paper. The first byte
of the message must specify the number of bytes in
the message.

FNAME, Iname I specifies the one- to four-character
name of an installation-determined form or card
stock. If INONE I is specified for Inamel, the de­
fau It form or card stoc k of th e i nsta II at i on is requ ired.

Calls generated by the M:DEVICE (FORM/FNAME) pro­
cedure have the form

CAL 1, 1 fpt

where fpt points to word 0 of the F PT shown below.

word 0

word 1

opHon FORM (P 1)

option F NAME (P2)

126 Specia I Devi ce Procedures

CHANGE DEVICE MODE OR RECORD SIZE

Th is call allows fhe userls program to change the mode of
the device associated with a specified DCB, or to change
the logical record size entry (RSZ) in the specified DCB.

The procedure call is of the form

M:DEVICE [*]dcb name, (option)

where dcb name specifies the name of the DCB associated
with the device for which the change in mode or record
size is to be made.

The options are

BCD spec ifies the EBCDIC mode.

BIN specifies the binary mode.

F BCD specifies FORTRAN BCD conversion.

PACK specifies the packed binary mode (7-track
tape) Is to be used. PACK is not valid unless
BIN is specified.

UNPACK specifies the unpacked binary mode
(7-track tape) is to be used. UNPACK is not
valid unless BIN is specified.

SIZE, value
bytes.

specifies the default record size, in

Calls generated by this procedure have the form

CAll, 1 fpt

where fpt points to word 0 of the FPT shown below.

option SIZE (P1)

Flag Signifi cance

f 1 o means BCD mode.

1 means binary mode.

f2 o means no FBCD.

1 means FBCD.

f3 o means packed.

1 means unpacked.

SPECIFY BEGllllltS COLUMI

This call allows the user's program to specify that all data
output by the card punch (EBCDIC only), typewriter, or other

sting device associated with a designated system DCB is to
oJegin in a specified column.

The procedure call is of the form

M:DEVICE l*Jdcb name, (DATA, tab)

where

dcb name specifies the n,ame of the DCB associated
with the output device for which the beginning
column is to be specified.

DATA, tab specifies the <:olumn in which the first
character of the data output is to appear.

Calls generated by the M:DEVICI: (DATA) procedure have
the form

CAll, 1 fpt

where fpt points to word 0 of the fPT shown below.

word 0

word

P 1 must be equal to 1.

option DATA (Pl)

SPECIFY OUTPUT HEADER

This call allows the user's program to specify an output
header (heading) that is to appear at the top of each form.

The procedure call is of the form

M:DEVICE l*Jdcb name,(HEADER,tab,[*]address)

where

dcb name specifies the nome of the DCB associated
with the dlevice on which the header is to appear.

HEADER, tab, ~*~address specifies the column num-
ber (tab) at which the header is to begin, and the
address of the header. The first byte of the header
must spedfy the number of bytes it contains.

Calls generated by the M:DEVICE (HEADER) procedure
ave the form

CAll, 1 fpt

where fpt points to word 0 of the FPT shown below.

word 0

word

P1 and P
2

must be equal to 1.

option HEADER address (P1)

option HEADER column (P2)

SPECIFY CARD PUNCH SEQUENCING

This call allows the user's program to specify that sequence
numbers are to be punched on cards output by the card
punch associated with a designated DCB.

The procedure ca II is of the form

M :DEVICE [*]dcb name, (SEQ [,'id'])

where

dcb name specifies the name of the DCBassociated
with the card punch that is to output cards with
sequence numbers.

SEQ [,'id'] specifies that sequence numbers are to
be punched in columns 77-80 of each card. If a
user-defined id is specified, it will be punched in
columns 73-76 of each card.

Calls generated by the M:DEVICE (SEQ) procedure have
the form

CAL 1, 1 fpt

where fpt points to word 0 of the FPT shown below.

word 0

word

option SEQ (Pl)

~ 5 6 7 8

Special Device Procedures 127

NUMBER OF LINES REMAINING

This call allows the user's program to determine the number
of printable lines remaining on a page.

The procedure call is of the form

M:DEVICE [*]dcb name, (NUNES)

where

dcb name specifies the name of the DC B associated
with the device for which the number of I ines re­
maining on a page is to be obtained.

NUNES keyword designating what the procedure
call is requesting.

Calls generated have the form

CAll, 1 fpt

where fpt points to the FPT shown below.

word 0

Upon return to the caller, SRl contains 0 if not applicable.
SRl contains the number of lines remaining on the current
page only if the user indicated top of page and set the
value of LVA with M:DEVICE [*] dcbname, (LlNES,value).

128 Special Device Procedures

CHECK CORRESPONDENCE OF DCB ASSIGNMENTS

This call allows the user's program a means of determining
if two DCBs have been assigned to the same physical de­
vice. Both DCBs must have been opened.

M:DEVICE dcb
1
name,(CORRES,dcb

2
name)

where

dcbJname specifies the name of a DCB which is to
be checked for assignment correspondence with
dcb2name.

CORRES,dcb2name specifies the name of a DCB
which is to be checked for assignment correspon­
dence with dcbJname.

Calls generated have the form

CAll, 1 fpt

where fpt points to the FPT shown below.

word 0

word

If the assignments of the two DCBs correspond, a J is
returned in SR1; otherwise, a 0 is returned.

90 17 64H-l (9/78)

8a PROGRAM LOAD ·AND EXECUTION:

IfTRODUCTION

There are three processors that can be used in the batch
mode to control loading and execution of object programs:
the Load processor, the LYNX processor, and the link
processor.

Load is a two-pass overlay loader. The first pass processes
not only ROMs but previously formed load modules or a
combination of both (For example, Load processes dummy
sections from library load modules as well as from ROIv\s.)
The first pass also processes expressions for defin itions and
references (pri mary , secondary, and forward references).
The second pass forms the actual core image and its reloca­
tion dictionary.

LYNX has most of the capabil ities of the overlay loader,
Load, and also provides the samE~ control over internal and
global symbol table construction which is available in the
linking loader, Link. LYNX may be viewed as a prepro­
cessor for the Load loader. After it analyzes the user's
commands, it constructs a table of loader control information
which it then passes to the Load loader. It is Load which
actually performs the loading pmcess.

Link is a loader that is now supplied only for compatibil ity
with previous versions of CP-V. Although Link is described
in full detail in this manual, it is recommended that the
LYNX loader be used.

The LEMUR processor is also desc:ribed in this chapter
although it is not a loader. LEMUR (Library Editor and
fv4.aintenance Util ity Routine) is 0 processor that builds and
manipulates ROM and load module libraries. The libraries
thus built are accessed by LYNX or Load when constructing
user load modules.

The final sections of this chapter describe task control
blocks, data control blocks, memory protection, virtual
memory, and job OIccounti ng.

LOAD PROCESSOR
The purpose of the Load processor is to translate and u'nite
its input (ROMs and I ibraries) into such a form that its out­
put (a load module) may be executed under the CP-V
operating system. The TREE, PTREE, and INCL control
commands are used to provide overlay information to the
loader. Program execution is initiated by the RUN com­
mand, which is described below after the description of
the Load processor. The accountiing summary generated at
the end of each job is described ot the end of this chapter.

The loader performs the followingl functions:

• Process relocatable object modules (ROMs) producing
continuous sections of data, procedure, and DCBs (or
static data) ensuring a page boundary for the three
protection types (00, 01, 'and 10, respectively).

• Satisfy REFs among the ROMs.

• Access libraries to satisfy PREFs.

• Build Data Control Blocks (DCBs).

• Sui Id a DCB name table for monitor use.

• Build Task Control Blocks (TCBs).

• Produ ce a load map pri ntou t for a new Iy bu i I t or pre­
viously formed load module.

The loader produces a load module, which is a keyed file
having the format shown in Table 17.

Table 17. Standard Load Module Format

Key Record Contents

C'HEAD' Basic load module information
C'TREE'

".
Tree Table

x'oo' REF/DEF stack
X'01' Expressi on stack

LMN name X'02' 00 Relocation Di ctionary
concatenated X'03' 00 Control Sections
with X'04' 01 Relocation Dictionary

X'05' 01 Control Sections
X'06' 10 Relocation Di ctionary
X'07' 10 Control Sections
"

A loader control command norma IIy follows a processor
command (and is read after all specified inputs have been
received and processed) so that the processor's output will
be translated into an executable load module.

The object modules or load modules may be input to the
loader from one or more BI files, GO files, element files,
or libraries.

Note that if the first few characters of any continuation to a
LOAD, OVERLAY, OLAY, or TREE command match any of
the input control commands or JOB, those commands must
have at least one blank between ! and the first alpha
character.

CONTROL COMMANDS

LOAD,OVERLAY,OLAY The loader which is invoked
by a LOAD, OVERLAY or OLAY control command processes
relocatable object modules, previously formed load modules,
or a combi nation of both. The resulting load module is a
keyed file which is placed in the user's account. Execution
of the load module is triggered by the RUN control command
which brings the load module into core storage and transfers
control to it. (A load module may also be called internally
by an executing program via the M:LINK procedure.)

The special characteristi cs of the Overlay Loader are as
follows:

Program Load and EXE"cution 129

1. Overlaid programs. The overlaid program is one that
has only one segment resident in core permanently.
The other segments are called for by the M:SEGLD
procedure call and brought in as needed. They may
reside (at different times) in the same core area, thus
reducing the amount of core storage required to house
the entire program.

Since a program may consist of three areas (protection
types), each beginning on a page boundary, the Over­
lay Loader has the ability to create the three struc­
tures, each beginning on a page boundary.

2. Reference Loading. If the user does not choose to
maintain responsibility for calling in the segments of an
overlaid program (by explicitly using the M:SEGLD),
he may direct the loader to insert the M:SEGLD code
into his program by specifying REF or BREF on the
LOAD command. This code is built wherever there is
a branch type instruction to a DEF in a higher segment
(BREF mode) or wherever there is an expression involv­
ing a DEF from a higher segment (REF mode).

3. Load Module libraries. It is desirable to maintain
libraries of frequently used routines that are themselves
already in load module form, since subsequent inc/u­
sion of a library module is faster than "processing the
original ROM language. library load modules are of a
less general nature since they must be of one protec­
tion type, relocatable, and not overlaid.

4. Relocatable Load Modules. The loader creates a relo­
cation dictionary that allows subsequent placement
of the load module into a core area other than the
one at which it was originally biased. This is required
for library load modules.

There is no functional difference between the LOAD, OLAY,
and OVERLAY commands. The load parameters must be
specified in either a LOAD, OVERLAY, or OLAY com­
mand and the overlay structure must then be specified
in a TREE control command.

The forms of the loader control commands are

ILOAD I "
I OVERLAY [<option~[,(option>l .••

OLAY

where the options are as follows:

Options that determine input to the loader

130

Bf specifies that the Bf input device is to be used to
read unspecified relocatable object modules. Ob­
ject modules wi" be loaded from the BI device
unti I either two end-of-data codes (05) or one end­
of-fi Ie code (06) is encountered. If neither BI,
EF, nor GO are specified as input sources, BI

Load Processor

is assumed by default. Normally, the BI and
C operational labels are both assigned to the same
device. If a control command is read, the moni­
tor generates an end-of-fi Ie code and terminates
the binary input. "

GO specifies that data from the user's temporary
GO fi Ie is to be included in the root of the load
module (see TREE). If GO has been assigned to
a labeled file, the GO option cannot be used to
load the program (see the liEF" option below).

EF, (name (,account [,passwordJ]) [, .•.] spec ifies
that the named modules (either object or load)
from an element fi Ie of the designated account
are to be included in the load module. If no ac­
count number is specified, that of the current job
is assumed. .If a password is associated with a
named module, it and the account number must be
included in this option. More than one module
may be specified in an EF option. An invalid
password wi II cause the job to be aborted. The
named elements wi II be loaded in the order in
which they are specified (if no TREE control com­
mand is used). The element file name must not be
greater than 10 characters.

UNSAT, (account [, password']) [, (:Pn)] [, (account
[, password])[, (:Pn}][, ... J specifies that the
libraryof the designated account is to be searched
for external definitions required for the load mod­
ule (i. e., corresponding to primary external refer­
ences). N-ore than one account may be specified
in an UNSAT option. The I ibrary password (if any)
for each account must be included, although I ist­
ing of the password is suppressed. The total num­
berof accounts must not exceed eight. :Pn may be
used to specify a public I ibrary in the :SYS account.
(See note 18 under overlay Loader Restrictions.)

NOSYSlIB specifies that the system library is not
to be searched. If NOSYSlIB is omitted, the sys­
tem library will be searched to satisfy any external
references that are unsatisfied after loading has
been accomplished from all other specified sources.

LM N,name[, password] specifies the name of a pre-
viously formed load module fi Ie which is to be
mapped only. If this option is used to denote
input, the only acce"ptable options are MAP, LIB,
UDEF, LDEF, RDEF, VALUE, and NAME (see
below).

Options affecting future access to the load module fi Ie

LMN,name[,password] specifies the name that is to
be given to the load module. The name may con­
sist of from 1 to 10 alphanumeric characters (ex­
cept for shared processor names which may only
have up to eight alphanumeric characters). If no
name is specified for a load module, it is consid­
ered temporary, even if PERM is specified. A pass­
word to be associated with the load module may
be specified.

90 17 64H-1 (9/78)

If PERM and LIB are specified, the password
specified for the first library load module entered
in the library becomes the password of the library.
Any subsequent load modules to be added to the
account's library must specify the same password.
The library password mCIY be changed only by de­
leting files : LIB and :DJC and then reentering load
modules with a new password.

PERM specifies that the load module is to be retained
on the disk as a permanEmt element fi Ie. If PERM
is omitted, and LIB (see below) is not specified, the
load module wi II be a temporary fi Ie. If a pre­
viously formed load module of the same name (see
LMN, above) exists, it wi" be replaced by the
newly formed one. If PERM and LIB are specified,
any external definitions or external references in
the load module wi II be added to the account's
library table of externa!1 definitions and the lood
module will be inserted into the account's ele­
ment file library (:LlB). If LIB is specified, the
load module must comprise a single control
section of uniform memory access type. (See
Note 18 under Overlay Loader Restrictions.)

LIB specifies that the input is a library load module.
If LIB is specified in conjunction with the MAP op­
tion and PERM is omitted, the loader will print the
DEF and DSECT names only. (See note 18 under
Overlay Loader Restrictions.)

READ[,value]... specifiE~s the account numbers of
those accounts that may read but notwrite the file.
The value ALL may be used to specify that any ac­
count may read but not write the file (e.g., READ,
ALL). The value NONE may be used to specify
that no other account may read the file. If no value
is specified, or is READ and EXECUTE is omitted,
ALL or NONE as specified in the user's authoriza­
tion record is assumed by default. The total
number of accounts expliicitly specified in a READ
or WRITE specification must not exceed eight.

WRITEGvalue]. • . specifiE~s the account numbers of
those accounts that may Ihave both read and write
access to the file. The values ALL and NONE may
be used, as with the READ option (see above); and,
if a confl iet exists between READ and WRITE speci­
fications, those of. the WRITE option take prece­
dence. NO NE is assumed by defau It.

Imm, dd, yYI
EXPIRE, ddd specifies either an explicit

NEVEI~ expiration date (mm, dd, yy),
the number of days to retain the fi Ie (ddd), or that
the fi Ie is never to expire (NEVER). If not speci­
fied' the default value a!) established in the au­
thorization record for the user wi II determine the
expiration date. Fi les wii II be automatically
purged from the public fi lie system if they have
expired whenever secondcJlry storage space passes
below a SYS GEN establhihed threshold.

90 17 MH-1 (9/78)

The value specified may not exceed the maximum
expiration period authorized for the user. If the
maximum expiration period is exceeded or un­
specified, the default expiration period authorized
for that user wi" be used.

EXECUTE,value[,value]. . . specifies the account
numbers of those accounts that may execute the
fi Ie. Up to eight account numbers may be spec­
ified. The va lue A Ll may be used to specify that
any account may execute the file. The value
NONE may be used to specify that no other ac­
count may execute the fi Ie. In a" of the above
cases, READ, NONE is implied in the absence of
any READ specification.

UNDER,name specifies the name of the only pro-
cessor that may access this fi Ie if the user does
not own the fi Ie. The name may be from one to
ten characters. The processor may be any shared
processor or any load module in the :SYS account.
If EXECUTE accounts are specified and UNDER is
not specified, the fi Ie is presumed to be a load
module and UNDER, FETCH is implied by default.
FETCH is the name of the monitor routine that
places a program into execution.

Qptions affecting the location of the program at execution
time

BIAS, value specifies (in hexadecimal) the load
bias, in word locations. If the value is not
a page boundary, the next lower page boundary
is used. If no bias is specified, the program will
be loaded at location X'AOOO'.

CORELIB specifies that when the load module is
brought into core for execution, virtual core is to
be allocated with the special shared processor
area held in reserve. This permits the association
of a core library at run time and linkage (via
M:L1NK/M:LDTRC) to another load module that
is associated with a core library.

CSEC 1 specifies that the load module is to be
formed with a protection type of 01, except
for the TCB and blank COMMON (which have
a code of 00) and except for any type 10 control
sections input in load module form (including li­
brary input).

M 10 specifies that each control or dummy section is
to be loaded at the next greater multiple of 1°16 .

M100 same as M10, above, except that loading
starts'at the next greater multiple of 10°16 •

Load Processor 131

Options determining how overlay segments wi II be brought
into core at execution time

SEG specifies that the overlay structure is to be
set up for the segment loading mode. In this
mode, it is the user's responsibility to explicitly
load each segment from disk storage to core stor­
age (e.g., by means of the M:SEGLD procedure)
before it is referenced by the executing program.
This mode is faster in operation than the reference
mode (see below) but less convenient.

REF[,num] specifies that the overlay structure is to
be set up for the reference loading mode. In this
mode, the execution of any instruction referencing
an external definition in another segment on a
lower overlay level wi II cause that segment and
all its backward path (see "TREE" command) to be
loaded if not already in core (even if the refer­
ence is an unsatisfied conditional branch). The
external reference must not be in an instruction
that may be changed or replaced during program
execution.

The decimal value "num", if present, specifies
the maximum number of interbranch references
within the program. If "num" is absent or zero,
the I oade r w ill reserve a to ta I of 22 words per seg­
ment (four words are required for each interbranch
reference) in its reference loading table.

BREF [,num] specifies that the overlay structure is to
be set up for the branch referencing loading mode.
In this mode, any permissible branching reference
(in another segment of the program) to an external
definition within a given segment wi II cause that
segment and all its backward path to be loaded, if
it is not already in core storage. If a nonbranch
reference is made to an external definition within
a given segment, the BREF mode will assume that
segment to be in core. BREF should be used for all
overlaid FORTRAN or COBOL programs. A branch
reference causes register 0 to be changed.

The optional value "num" has the same meaning
as for the reference loading mode (see "REF",
above). If "num" is absent or zero, a total of
11 words per segment Ore reserved in the reference
loading table (two words per reference).

If neither REF, BREF, nor SEG is specified, SEG is assumed.
Only one may be specified.

Options concerning the loader-built Task Control Block

132

TSS,size specifies the maximum size, in hexadeci-
mal number of words, of the Temporary Storage
Stack (TSS) for the Cllrrent job. If TSS is omitted,
the maximum size is set at X'40' words. The
greatest size that may be specified is limited to
available core storage and may not exceed 7FFF
words regardless of core size.

Load Processor

ERTABLE,size specifies the size, in hexadecimal
number of words, of the library error table (see
the Mathematical Routines/Technical Manual,
90 09 06). The default. is ten words.

ERSTACK,size specifies the size, in hexadecimal
number of words, of the library error stack. The
default is ten words.

NOTCB specifies that no Task Control Block (TCB)
is to be created by the loader. This option should
not be used for FORTRAN jobs, since FORTRAN
requires a TCB.

Options concerning symbol tables

NI specifies that internal symbol tables are not to
be built. (They are normally built by default.)

G specifies that a global symbol table is to be
built for this load module. A global symbol table
contains all symbols which were declared external
(via a DEF) in one module to be referenced in an­
other (via a REF).

Additional options

ABS specifies that a relocation dictionary is not to
be formed for the load module.

REL specifies that a relocation dictionary is to be
formed for the load module, and the load module
will be treated as "semiabsolute" (i .e., executable
but capable of being relocated).

If neither ABS nor REL is specified, ABS is assumed.
Only one may be specified.

MAP[,NAME] [,VALUE] specifies that a complete
listing of external references and definitions for
the load module is to be output on the LL device.
VALUE specifies that the DEFs {and control sec­
tions} within each segment are to be sorted by
value. NAME specifies that the OEFs within each
segment are to be sorted by name, and that the
control sections are to be sorted separately by
value.

MAPONLY[,NAME][,VALUE] specifies that an ex-
isting load module is to be mapped. The output
is the same as that described for MAP above.

LDEF is used in conjunction with the MAP option
and requests that a listing be produced that in­
cludes all the used library DEFs for the load
module.

UDEF is used in conjunction with the MAP and
LDEF options and requests that a listing be pro­
duced. that includes all the library DEFs defined
in the load module.

90 17 64H-1(9/78)

RDEF specifies that all unused DEFs are to be re-
moved from the load module's REF/DEF stack. A
shortened REF/DEF stack is created for the load
module.

SL, value specifies the error severity level that will
be tolerated by the loader in forming a load mod­
ule. The value may range from 0 through F. The
default value is 4.

PAGE specifies that those portions of the load mod-
ule that will be loaded into core at execution time
are to be developed in page-size records. The
load module formed fs called a paged load module.
The load module is formed in extended memory
mode. More time is mquired to form the load
module, but since uninitialized pages do not get
written as part of the load module, programs
that have large areas of uninitialized data will
occupy fewer granules.

OSP specifies that any cc>ntrol sections of protec-
tion type 00 in an overlay segment should be
forced to the root of the load module. This option
is intended primari Iy for loading overlaid shared
processors written in FORTRAN and is only valid
for programs having one level of overlay structure.

DREF when used in conjunction with the LIB option,
causes all dummy section definitions to be changed
to PREFs. This allows a library to be built in which
all references to a particular named DSECT will
be linked to a single copy of that DSECT (e.g., a
FORTRAN BLOCK DATA subprogram). Such ini­
tial ized dummy sections should be contained in
the only library load module loaded without the
DREF option.

PRIV L ~[,J] (, M] Lx] seh the privileged processor
flags for the load module. One to four flag letters
may be specified in any order. The flag letters
have the foilowing meanings:

P - processor accounting. (Execution time
is to be tall ied as processor rather than
user execution time in the accounting
record.)

J - special JIT access.

M - maximum memc,ry protection.

X - execute M:S YS CALs.

These flags have no meaning unless the load mod­
ule resides in the :S YS ac:count.

Overlay Loader Restrictions

1. A load module acceptable for combination with ROMs
to form a new load module must be of one protection
type, relocatable, and not overlaid. DSECTs in such a
load module are allowed only if the entire load mod­
ule consists of one DSECT. Note that library load
modules are subject to these restrictions.

2. If a DEF in a library load module is >11 characters,
the corresponding entry in the :DIC file is forced to
11 characters. (The DEF entry in the library load mod­
ule itself is not changed.)

3. The REL option will be overridden and the load module
wi" be set ABS under any of the following conditions:

a. REF or BREF has been specified on the LOAD card.

b. The program contains a relocatable field not
ending on a halfword boundary.

c. It contains an expression of mixed resolution.

d. The program is loaded in the extended memory
mode. The loader enters this mode when it does
not have enough core to build the core image of
each segment in its entirety.

4. Segments may communicate with each other via REFs
and DEFs only if they lie in the same path.

5. Load items of a DSECT are placed in the corresponding
DSECT of the root segment. That is, there must be a
DSECT by the same name in the root. The following
case is not permitted.

A DSECT 0
DATA 1,2,3

A DSECT 0
RES 3

L .
Root

6. MODIFY control cards will be ignored if a I ibrary load
module is being formed or if extended memory mode is
entered.

7. If a low segment references a DEF name that is both in
a higher segment and a library, the library DEF will be
used.

8. A program containing a relative address preceded by a
minus sign (e. g., -BA(ADDR» is not relocatable.

Load Processor 133

9. The load module name and input file names must be no
greater than 10 characters in length. The element fi Ie
names must be no greater than 8 characters in length.

10. No two segments on the TREE control command may
begin with the same ROM name, since the first ROM
named in a segment becomes the name of that segment.

11. If a low segment common to two or more paths refer­
ences a DEF name that is in a higher segment of more
than one path, that name wi II be doubly defined. The
following case is not permitted:

DEF A

REF A
I .

Root DEF A

12. If extended memory mode is entered, the load module
being built must have no more than 256 segments.

13. Programs loaded in branch reference loading mode
(see the BREF option) cannot contain BA Ls on register 0
because the loader uses register 0 in the BREF code
which it supplies.

14. A library dummy section containing multiple defined
locations must be loadep in a segment of an overlaid
program below any segment referencing those locations.

15. Library DCBs may not be referenced solely from overlay
segments.

16. DEFCOM output may not be included in a library load
module.

17. Under certain rare conditions, it is not possible for the
loader to accurately predict its core requirements by
the end of its first pass. This may result in situations
in which the loader wi" not automatically enter ex­
tended memory mode to produce a large load module,
resulting in the IIlnsufficient Physical Memory" error
message following the loader's allocation summary. The
use of the PAGE option to force extended memory mode
wi" alleviate this situation.

18 . LYNX and lEMUR a "ow the assignment of a library
name to the library that is being built. This is
accomplished in lEMUR with the LIBRARY command
and in lYNX with the (UB, libname) option.
Omission of either of these wi" default to the
name :lIB for both library creation and usage. A
library other than :UB must be created by lYNX
or lEMUR. Usage of a library other than :lIB must
be invoked through LYNX (not lOAD).

Examples

(!LOAD

This example specifies that loading is to be accomplished
from the BI device. Default conditions are assumed.

134 load Processor

I (TSS, 3E8),(BIAS, 10000),(BI),(M100)

I (LMN, MOD), (PERM), (WRITE, NONE), (SL, 2);

! LOAD (EF, (FIL, ACCT123, PAS)), (UNSAT, (1235)), ;

This example specifies that

1. No load information is to be taken from the GO fi Ie,
since GO is not specified.

2. Element FIL, having the password PAS associated with
it, is to be loaded from the account ACCT123.

3. The library of account 1235 is to be searched for ex­
ternal definitions corresponding to unsatisfied primary
references (if any exist after loading has been accom­
plished from a" other specified sources).

4. The name MOD is to be associated with the load
module.

5. The load module is to be a permanent fi Ie in the user's
account.

6. Assuming that the user was authorized with a default
read access of 'ALL', any account may read the load
module, but none may write into it.

7. Errors of severity level 2 are acceptable.

8. Up ·to 3E816 words of temporary storage may be used.

9. A relocation bias of 1000016 is to be used.

10. No load map is to be output.

11. Re locatable object modules are to be loaded from the
BI device.

12. Each control section or dummy section is to be loaded
starting at a multiple of 10016.

TREE If a program is to be overlaid, a TREE control com-
mand must be the next control command following the as­
sociated OVERLAY (OLAY or LOAD) command. It must
specify the overlay structure of the load module to be formed
as a result of the preceding OVERLAY, OLAY, or LOAD
command, so that the logi ca I segments of the program wi II
be loaded from secondary storage into core storage as re­
quired. It is the user's responsibil ity to plan the relation­
ship of these segments. If BI relocatable object modules
(ROMs) are to be loaded from the C-devi ce, they must be
placed after the lOAD, OVERLAY, or OLAY command
and must precede the TREE command.

90 17 64H-l(9/78)

- The relationship of the segments thot comprise an overlay
program can be represented graphically by means of a tree
diagram, as in the example shown below. The horizontal
coordinate of the diagram denotes increasing core storage
(address) allocation, from left to right. The vertical coordi­
nate denotes overlays. The leftmost segment, or "root", is
that portion of the program that resides in core storage
through program execution. A "path II of an overlay con­
sists of those segments that may occupy core storage at the
same time. The portion of a path that extends from the
start of the program (i. e., the root) to a given segment is
termed the "backward pa th II of thai' segment.

The following example consists of four paths, anyone of
which may be present in core storage at any given time.
Segment A, below, is the root of the program and is never
overlaid by another segment. Any path may be loaded into
core storage and overlaid as many I'imes as required by the
program. All segments of the lood modu Ie are saved in
disk storage and, when a segment that has been overlaid is
called again by the executing program, the original copy
is loaded from the disk. Therefore, any communication
between two overlay segments (e.g., D and E, below) must
be done in a part of the backward path common to both.

Example:

E~

C

D I
I A

G]

B

F ~

The form of the TREE control commclnd is

! TREE specification

where specification specifies the trt~e structure by use of
the symbology given below.

name specifies the name of an element file. The
name (1-10 characters) must not contain any spec ia'i
delimiters (e.g., -) embedded in it.

indicates that two named relocatable object mod­
ules are to be contiguous in core storage.

indicates that two segments are to overlay one
another (i. e., begin at the same core storage
location).

() indicates a new (lower) level of overlay.

No two segments may begin with the same EF name, since
the name of the first EF becomes the name of the segment.

Example:

!TREE A - (C - (E, D), B - (G, F))

The above example is a symbol ic representation of the over­
lay structure of the preceding graphic example.

PTREE A PTREE control command may be used to obtain
a TREE control command from the user1s file (useful in jobs
involving COBOL programs).

The form of the PTREE control command is

! PTREE (name[,account[,passwordJJ)

where

name specifies the name of the file containing the
TREE control command.

account specifies the account contarning the desig-
nated file.

password specifies the password associated with the
designated file. If the file has an associated pass­
word, both it and the account number must be
given in the command.

INCL An INCL (include) control command may be used,
following a TREE or PTREE command, to include a named
library routine in a specified overlay segment (e. g., to
satisfy a secondary external reference).

The form of the' INCL control command is

(!I NC L,seg-nent name [,name] ...

where

segment specifies the name of the segment to which
the named library load module 'or ROM is to be
appended. Each segment takes the name of the
first element file named in the segment specified
on the TREE card.

name specifies the name of a I ibrary load module
or ROM that is to be appended to the specified
segment.

Any number of library load modules and/or ROMs may be
specified in a single INCL command.

Load Processor 135

Example:

An example of the control card sequence used to specify
the structure of an overlay program is given below.

!TREE DEF - (GHI, JKL - ABC)

1234), (WRITE, NONE), (BI), (REF), (MAP)

(1236), (1237)), (LMN, FILEX), (PERM), (READ,;

lOVERLAY (EF, (ABC), (DEF), (GHI), (JKL)), (UNSAT,;

The above example specifies that

1. Elements ABC, DEF, GHI, and JKL are to be loaded
from the element fi Ie of the present account.

2. The I ibrari es of accounts 1236 and 1237 are to be
searched if unsatisfied primary references exist after
loading has been accomplished for all other sources
specified.

3. The name FILEX is to be associated with the load mod­
ule being formed.

4. The load module is to be a permanent file in the user's
account.

5. Account 1234 may read the load module, but no ac­
count (other than that of the current job) may write
into it.

6. Relocatable object modules are to be loaded from the
BI input device and placed in the root segment.

7. The overlay structure is to be set up for loading in the
reference mode.

8. A load map is to be output.

9. The system library is to be searched for externa I defi­
nitions corresponding to unsatisfied primary external
references (if any).

10. The overlay program is to consist of 3 segm.ents, namely
DEF, GHI, and JKL.

RUN The RUN control command specifies that a desig-
nated program (or the program most recentl y formed by the
loader or Link) is to be executed, provided that the execu­
tion error sever.ity level (see XS L option) has not been
exceeded by the program (i. e., the load module).

136 Load Processor

The form of the RUN control command is

!RUN [(option)][,(option)]. ..

where the options are as follows:

LMN,name [,account[,passwordJJ specifies the name
(account number and associated password, if any)
of the load modu Ie that is to be executed. The
name may consist of from 1 to 10 alphanumeric
characters (except for shared processor names wh ich
may only have up to 8 characters). If this option
is omitted, the job's most recently formed load
modul e wi II be executed.

START,address specifies the location at which pro-
gram execution is to beg in. The "address" may be
either an external definition (optionally followed
by a hexadecimal addend value) or a signed abso­
lute hexadecimal address. This address overrides
that specified in the load module. The external
definition must not contain any embedded
addend value (e.g., plus (+) or minus (-)).

If no start address is specified in the RU N com­
mand or in the load modu Ie, the program is entered
at its lowest core location, which is register 0,
and causes a trap and the job to abort.

XSL,value specifies a value to be placed in the

MODIFY

Task Control Block (TCB) for examination at exe­
cuti on ti me by the user or run -ti me library routi nes.
The default value is 8. XSL is used as the "cur­
rent abort severity" by the FORTRAN IV run-time
routines.

The MODIFY control command allows the
user to insert or modify words of a program in core storage.
Library load modules cannot be modified by this command.

The form of the MODIFY control command is

lMODIFYGsegment] loc,wordGword] ...

where

segment specifies the name of an overlay segment.
This parameter is omitted if the load module is not
overlaid.

loc specifies a relative hexadecimal location (i. e.,
an external definition followed by an optional
hexadecimal addend value) or a signed positive
absolute hexadecimal address where the modifica­
tion is to be made. If an external definition is
used, and the modification is to be made to an
overlay segment, the definition must not have been
referenced in a "lower" segment of the overlay
tree. This restriction applies only if the MODIFY
command appears after the OVERLAY, LOAD, or

OLA Y control commond. The total number of
locations to be modifiedl cannot exceed 255.
The external definition must not contain any
embedded addend val ue (e. g. , pi us (+) or
minus (-».

word spec Hies the word to be inserted (right- justified)
at the designated location (see "Ioc", above). The
word must be expressed as an unsigned hexadeci­
mal (i.e., value + name). If it is desired to spec­
ify an address resolution for the external definition
(following the value), the name of the external
definition must be enclosed in parentheses (i.e.,
value + res (name)).

res Resolution

BA Byte

HA Halfword

WA Word

DA Doubleword
--

If no resolution is specified, word resolution is
assumed.

The MODIFY control command may be used either following
a LOAD command or a RUN command. If used following a
LOAD command, the inserted words become a permanent
part of the program; otherwise, they are a temporary "patch II
'sed only during the current execution of the program. If

rhe load module is overlaid and the patch is to be perma­
nent, the MODIFY command musl' follow the TREE command.

Example:

IMODIFY LOC'I+Al,1234E

This example specifies that the hexadecimal value 1234E is
to be inserted at a location whose address is 161 words
higher than that of LOC 1.

LlBRARIE:S

The purpose of a library is to col/leet frequently-used
routines in a form that expedites t'heir inclusion into other
programs.

TYPES OF LIBRARIES

There are basically two types of libraries: public and user.

6. public library can be viewed as, code that resides in a
fixed part of memory for usage by many concurrent users;
it does not need to be loaded. Public library routines do
not become a permanent part of a user's program.

90 17 64H-l (9/78)

A user I ibrary is a keyed file residing in an account. The
file contains several modules, each of which is a named
collection of routines. A library module becomes a per­
manent part of a user's program; consequently each user
has a separate copy of a pertinent module. Collecting
these modules into a single file (rather than making each
module a separate file) minimizes the number of opens
and closes that the loader must perform to process several
such modules from one account.

PUBLIC LIBRARIES

The loader associates a public library with a program pro­
vided one of the following conditions exists:

1. The program contains an unsatisfied PREF to a
module in the publ ic library.

2. The public library (:Pn) is named in the UNSAT
list on the LOAD card.

Either of these conditions causes the loader to allocate
the public library's context area at the beginning of the
user's virtual memory (normally X'AOOO').

To illustrate: the FORTRAN library subroutines reside in
publ ic libraries: PO (FORTRAN I ibrary with FDP), : PI
(FORTRAN library without FDP), and :P4 (FORTRAN real­
time library). A FORTRAN program contains an unsatisfied
PREF to 91NITIAL or 9DBINIT which causes the loader to
associate: PI or : PO, respectively. If the real-time version
of FORTRAN is required, :P4 is named in the UNSAT list.
(The real-time system account, e.g., :SYSRT, must also
be named.)

USER LIBRARIES

User I ibraries are formed by L YN X, Load, or LEMUR. The
creation of a user library is triggered by the presence of
the LIB option when LYNX or Load is used, or by the
BUILD command when LEMUR is used. The name of the
library is supplied by one of two methods: 1) by the
LIBRARY command in LEMUR, or 2) by the secondary
option libname, with LIB in LYNX. If neither of these
are used, or if LOAD is used, the default library
name is :L1B. If the named I ibrary does not exist in
the running account, the "skeleton" of the file is
created by opening to the library name.

STRUCTURE OF A USER LIBRARY

A user library can be viewed as having two sections: the
dictionary section and the library module section. -

The first part of a library is the dictionary section, com­
prising all the DEF names defined in that library and the
names of the library modules in which those DEFs occur.
The key of a dictionary record is a DEF name prefixed by
a blank (X'40') to ensure its primary placement within the
file. The dictionary record is the TEXTC name of the mod­
ule within which the DEF occurs. (Table 18 shows the dic­
tionary format.) The DEF is limited to 15 characters; the
module name is limited to 10 characters.

Load Processor 137

The second part of the library contains the library modules,
in either I ibrary load module or ROM form (as shown in
Tables 19 and 20 respectively). The keys and records of a
I ibrary load module are identical to those of a nonlibrary
load module except that the keys HEAD and TREE are con­
catenated with the TEXT load module name to ensure the
uniqueness of the record.

USER LIBRARY MODULES

Library modules are in library load module form if built by
the overlay loader (via Load, LYNX, or LEMUR) or they
are left as ROMs if bui It by LEMUR with the ROM option
specified. The load module form offers the advantage that
the userls target program can be built faster since the loader
can process an input file in load module form much faster
than in ROM form. Library load modules must be non­
overlaid, relocatable, and of one protection type. The
ROM module form does not have a restriction on protection
type; the user may therefore include any ROM in a library
without regard to protection type.

The loader creates I ibrary load modules by opening the
I ibrary with llfile name = LMN name" (where LMN name
is the name of the I ibrary load module) and "synonym =
library name". This synonymity allows inclusion of a
I ibrary load module via explicit mention of its name in the

element file list, rather than implicit inclusion via an un­
satisfied reference.

When LEMUR is used to create a library ROM module, the
name of the ROM module is supplied by the name field of
the BUI LD command. ROM modules are not synonymous to
the library name.

Assuming the library does not already contain a module with
the same nome as the module being created, the loader or
LEMUR writes a dictionary record for each DEF encountered
in the new module. Depending on I ibrary type, this in­
volves a scan of the REF/DEF stack (for load modules) or the
ROM codes (for ROM modules). The library module re­
cords are then written.

If a module with the same name as the new one already
exists within the library, the loader or LEMUR deletes all
old dictionary entries containing DEFs that occurred in the
old version. This is done by scanning the old versionls
REF/DEF stack (loader) or dictionary records (LEMUR). The
new version (dictionary and module records) is then
written.

(Determination of whether a module exists within a library
is made by attempting to read a module record from the
library usi ng the name of the new modu Ie.)

Table 18. Library Dictionary Format

Key Record Contents

X 1401 {text of DEF ~ textc name of I ibrary module

Table 19. Library Load Module Format

Key Record Contents

,..
C'HEAD' Basic information

LMN name
C'TREE' Tree Table

concatenated <
X '00' REF /DEF stack

with
X 1011 Expression stack
X'Onl 00, 01, or 10 Relocation Dictionary

I X 'O(n + 1)1 00, 01, or 10 Control Sections
(same protection type as re-
location dictionary)

Table 20. Library ROM Module Format

Key Record

X '0000' library ROM module records
module name X '00011
from LEMUR I
BUILD <
concatenated I

with
, X IFFFFI

J 38 load Processor

.I f a pre-existing module with a different name contains a
DEF identical to a DEF in the new module being added or
replaced, the dictionary record corresponding to th is DEF
is replaced by a record pointing to the new module. Thus,
there is only one dictionary record per DEF, and it contains
the name of the library modul e most recently entered that
defi nes the corresponding DE F.

Note: Individual library modules cannot be accessed by
PCl, since a library module is really a logically
related set of records within a file. Functions
such as copying and deleHng I ibrary modules must
be performed by lEMUR, not PCL.

USER LIBRARY REFEkENCE PROCESSING

The loader associates a library module with the program the
loader is processing if that module contains a DEF that
satisfies an undefined PREF in the program. To accomplish
this, the loader performs a library search by doing a keyed
READ to the dictionary, using the n.Jme of an unsatisfied
PREF as the key; a successful READ returns the name of the
library module defining the PREF. The loader then reads
the library module records into core and merges them with
the program.

For an overlay program, the loader conducts a library
search each time it finishes processing the external refer­
ences in an entire segment. The segments are processed in
the order specified in the following illustration:

Seg 3

Seg 1

Seg 0 (root) Seg 4

Seg 2

Note that the loader attempts to sCltisfy all the PREFs in a
lower segment before processing the DEFs to a higher seg­
ment, so that if a low segment has a PREF whose correspond­
ing DEF is located in both a higher segment and one of the
libraries specified in the UNSAT I:ist, the library DEF will
be used. (Otherwise, the hi gh segment and an its back­
ward path would be brought into cc)re each time the lower
segment needed that DEF.)

DIAGNOSTIC MESSAGES

Diagnostic (error) messages are output on the II device.
Table 21 I ists the messages that are produced by the monitor

.. ~ .

when bringing a program into core storage for execution
(running a load module).

Table 21. Monitor Error Messages

Message Description

ABS CANNOT REL The monitor cannot relocate pro-
gram because it is absolute.

STACK OVERFLOW The program will not fit in core.

10 ERROR or 10 ABN An I/o error or abnorma I con-
dition has occurred.

NO LOAD MODULE The load module named is not
available.

lOAD DIAGNOSTIC MESSAGES

The Load processor uses a keyed fi I e prov ided by the Error
Message File Write program (ERRMWR) for its error message
records. Upon finding a load error, the Load processor
obtains a message record from an ERRMSG file using an
error-key.

The message record, the error-key, and additional informa­
tion are printed according to the following format:

Line 1 error key message record

Line 2 INPUT FILE SEQ NO. CODE/SIZE/SL

Line 3 fiI e name number var. data

where

file name specifies the name of the last input file
processed by the loader.

number specifies the hexadecimal sequence number
of the last binary record read.

var. data specifies variable information, the
meaning of which depends on the particular error
that occurred. When the contents of the variable
data field is SR3, the message is preceded by the
mon itor error/abnormal code and its mean ing.

The message records, their corresponding error-keys, and
the significance of the CODE/SIZE/Sl field are shown in
Table 22.

If for any reason access to a message record is denied
the loader, the following message is printed.

xxxxxx BAD ERROR MESSAGE FILE

where xxxxxx is a hexadecimal number for the key.

load Processor 139

Key Message

020001 UNEXPECTED EOF

020002 ILLEGAL RECORD I. D.

020003 SEQUENCE ERROR

020004 ILLEGAL RECORD SIZE

020005 CHECKSUM ERROR

020006 ABNORMAL I/O

020007 CANNOT OPEN E. F.

020008 STACK OVERFLOW

020009 BIAS TOO LARGE

02000A ILL. ROM LANGUAGE

02000B BAD START ADDRESS

02000C UNEXPECTED ROM END

02000D REPEAT LOAD IS ZERO

02000E IMPROPER BOUND

02000F ILLEGAL ORG

140 Load Processor

Table 22. Load Error Messages

Description

An end-of-fi Ie was encountered before the end
of an object module was reached (incomplete
object module).

The type of record read was ne i ther X '3C I nor
X'1C ' (object module) nor X '81 1

, X '82 1
, or

X'83 1 (load module).

The cards of an object module were out of
sequence.

The number of bytes in an object module card
was less than fi ve or greater than X '6(' .

A bit (or bits) was dropped in punching or
reading the object module.

An abnormal return was encountered while
reading a I ibrary load module or ROM.

An element fi Ie could not be opened. (It does
not exist, it has a password, etc.)

Insuffi cient memory in whi ch to load. If no
map has been partially printed, the module is
too large. If a map has been partially printed,
some unsatisfied primary references have caused
th~ stack to grow to excessive size. (See mes­
sages with keys 020015 through 020023.)

At the given bias, the load module wi II exceed
131 K of memory.

The object language in a relocatable object
module was not translatable (assembler or
compi ler error).

A start address was given which is either not on a
word boundary or is not within the load module.

Module end was given on some card of the object
module other than the last card (assembler or
compi ler error).

An assembler or compi ler generated a repeat load
item with a 0 count (assembler or compi ler error).

A 'short- or long-relocatable item was not on a
word boundary.

An origin was gen~rated having no resolution or
was not within the load module (assembler or
compi ler error or violation of loader DSECT
restri cti ons).

CODE/SIZE/SL Field

SR3

Record 1. D.

(None)

Record Size

(None)

SR3

SR3

SR3

Bias

Object module control
byte

Start address

(None)

(None)

Byte address of load
relocatable item

SR4 (for debugging
purposes)

- "

, "

Key Message

020010 BAD I/o RETURN FROM
M:LM DCB

020011 SEV. LEV. EXCEEDED

020012

020013

020014

020015

020016

020017

020018

020019

02001A

02001B

02001C

ILL. LIB. LOAD MOD.

NO ROOM TO ROUND DCBs
TO PAGE BOUNDARIES.
TRY FORCING XMEM ..

ILL. DSECT

ROOT SEGMENT TOO
LARGE TO LOAD

TOO MANY CORE
LIBRARIES

CANNOT ENTER XMEM.
STACKS TOO LARGE

NOT ENOUGH ROOM TO
CONCATENATE XMEM
PAGES

NO ROOM TO READ LIBRARY
CORE IMAGE

NO ROOM TO READ LIBRARY
RE LOCA nON DICTIONARY

NO ROOM FOR NEW
EXPRESSION

NO ROOM TO BUILD DCB
TABLE. TRY FORCING XMEM.

Table 22. Load Error Messages (cont.)

Descri pti on

The load modu Ie fi Ie cou Id not be opened.

The severity level specified in the LOAD card was
less than that encountered in some object module
or that generated by the Loader (a DDEF yields a
severity level of 4, a PREF yields 7).

(PERM) and (LIB) were specified and the load
module had one of the following:

1. More than one protection type.

2. No relocation dictionary (ABS was specified
or forced by the Loader due to nonstandard
relocatable fields).

3. More than one segment.

The DCBs and DCB Name Table exceed
1024 words.

Two dummy sections having the same name but
different protection types were encountered.

Only one core library (named :PO,:P1, :P2,
etc.) is permitted.

CODE/SIZE/SL Field

SR3

Computed severi ty
level

(None)

High address of DCBs

First 4 characters of
DSECT name

N umber of words
exceeding avai lab Ie
core

(None)

Number of words that
stacks exceed avail­
able core

Number of words ex­
ceeding avai lable
core

Size of library
Imn's core image

Size of relocation
dictionary

(None)

(None)

Load Processor 141

Table 22. Load ErrQr Messages (cont.)

Key Message Description CODE/SIZE/SL Field

I

020010 NO ROOM TO BUILD DCB Size of DCB table

02001E LIBRARY LOADMODULE REF/ (None)
DEF STACK TOO LARGE TO
UPDA TE

02001F INSUFFICIENT PHYSICAL See" Stack Overflow" description RO (for debugging)
MEMORY (Key 020008),

020020 BAD ASSIGN/MERGE SR3
RECORD

020021 NO ROOM TO ADD LIBRARY Top of REF/DEF Stack
LOAD MODULE TO ROM
TABLE

020022 NO ROOM TO READ LIBRARY Si ze of library Imn IS

REF/DEF STACK REF/DEF Stack

020023 NO ROOM TO UPDATE REF/DEF Stack si ze of
LIBRARY old version of this Imn.

020024 INVALID KEY SUPPLIED FOR Cannot update :DIC for this library load Key size
DELETE RECORD ON M:DIC module.

020025 10 ERROR ON M:DIC IN Cannot update :DIC for this library load SR3
WRITESEG module.

020026 ILLEGAL LIBRARY LOAD The name is > 12 characters. Number of characters
MODULE NAME in name

020028 INVALID DECLARA nON An expression in a relocatable object module The bad declaration
NUMBER REFERENCE (BAD contains a reference to an unassigned declara- number
ROM) tion name number (assembler or compiler error).

020029 INVALID KEY SUPPLIED A DEF name in a library load module was not in Key size
FOR WRITE RECORD ON the lega I range of 1-63 characters.
M:DIC

02002A ILLEGAL LOADER TRAP Loader error. When such errors occur, the loader Register 0
takes memory snapshots for use in identifying the
error.

02002B ABNORMAL I/O IN The: LIB fj Ie could not be opened. SR3
WRITELIB

02002C CANNOT FIND REF/DEF The loader encountered a new REF/DEF name Byte count and first
NAME IN STACK during its second pass. 3 characters of name

02002D LIB. LOAD MODULE TOO Extended memory mode has been entered (because (None)
BIG - CANNOT USE the core image is too la rge to be formed in
EXTENDED MEMORY one piece) and the load module has been forced

ABS (i"egal for library Imnls).

142 Load Processor

Table 22. Load Error Messages (cont.)

Key Message Description CODE/SIZE/SL Field

02002F ABNORMAL I/O READING An abnorma I return was encountered whi Ie reading SR3

LIB LMN a library load module during the loader's second
pass.

020030 PAGED LMN MUST NOT Number of segments

HAVE MORE THAN specified
256 SEGMENTS

020031 LMN'S SIZE TOO BIG The size (in doublewords) of a protection type of (None)
the load module does not fit in the halfword al-
lowed for it in the tree.

020032 THAT'S NOT A (MAPPABLE) Specified file has no 'HEAD' or 'TREE' record. Byte count and first
three characters of nome LOAD MODULE

020033 BAD ENTRY IN LIBRARY The loader detected a mal formed library (None)
REF/DEF STACK REF/DEF stack. (The user may have violated

rules for library load modules.)

020034 BAL TO AN OVERLAY ON BAL,O to an overlay segment is not allowed (None)
REGISTER ZERO DETECTED in BREF mode.
WHILE IN BREF MODE

LYNX PROCESSOR

LYNX is a load processor that is ovailable in both the
online and botch modes. LYNX has the capabilities
of the overlay loader, Load, and also provides the same
control over internal and global symbol table construction
which is available in the linkin~J loader, Link. LYNX is
speed-competitive with the Link loader, and in many cases
will run faster than Link. In addition, on-line load maps
are formatted taking into account the platen width of
the terminal.

LYNX may be viewed as a preprocessor for the Load loader.
After it analyzes the user's commands, it constructs a table
of loader control information which it then passes to the
overlay loader. It is the Load loolder which actually per­
forms the loading process. Therefore LYNX is a load
module as shown in Table 1'7.

The botch made LYNX processor recognizes two com­
mands, LYNX and :TREE. Since the LYNX command
is a control command which calls the LYNX processor,
it must be preceded by a ! character. These two com­
mands wi II be descri bed in detail later.

COMMAND CONTI~IUATION

The presence of a semicolon as the last character on an
input I ine indicates that the command is to be continued.
LYNX will perform another read of the 51 device, prompt­
ing the user with a > character if 51 is assigned to an on­
I ine terminal.

90 17 MH-l (9/78)

COMMAND FILE INPUT

In order to have LYNX read its commands from a fi Ie, the
following command should be given:

!L YNX fid

where fid identifies the file.

LYNX will examine the indicated file to determine whether
or not it is a ROM. If the fi I e is not a ROM, it wi" be
treated as input commands for LYNX. If the file is a ROM,
it will be loaded, creating (as in the case of Link) a tem­
porary load module file which can then be run using the

!START $

command in the on-line mode, or the

!RUN

command in the batch mode.

LYNX COMMANDS

LYNX The LYNX command has a syntax which is gener­
ally compatible with that of the LINK command. This per­
mits a LINK command to be run under the LYNX processor
by simply changing the command name from LINK to LYNX.
However, there are some restrictions. These are lish:dbelow:

1. ROM names may not be enclosed in parenthesis to merge
their internal symbol tables. If the construction of in­
ternal'symbol tables is specified (via the I option), one
table will be built for each ROM.

LYNX Processor 143

2. The D and ND options concerning the displpying of
undefined symbols will not be mean ingful. Undefined
symbols will always be displayed.

3. The C and NC options concern ing the displaying of
conflicting internal symbols will not be meaningful since
internal symbol tables cannot be merged. Conflicting
(doubly defined) external symbols will always be
displayed.

4. The options Ji, Pi, FDP, and NP options for associating
or not associating publ ic I ibraries will not be necessary.
The libraries will automatically be associated in the
case of PO and Pl. For JO, J 1, and J2, the load mod­
ules :JO, :J1, and :J2 from :S YS can now be specified
as element files. However, the presence of either JO,
J 1, or J2 as an option will produce the desired results
(i. e., loading of the appropriate I ibrary module with
the other element files). Note that if a load module
using any of these I ibraries is overlaid, the appropriate
module name{s) must appear on the :TREE command.

The general format of the LYNX command is:

: LYNX ell,ell. · .[g~ER 1m")I options) J
[[;[libname] [. (libacct] [. password])].

where

ef may be the file identification (fid) of a ROM, a
I ibrary load module, a DEFCOM-build load mod­
ule, or a SYSGEN-built load module, or simply a
dollar sign (S).

Imn (load module name) specifies where the load
mo~ule is to be placed and may be a file identifica­
tion (fid) or dollar sign. If Imn is omitted, the re­
sulting load module is placed in a special file and is
available.for subsequent execution via the RUN
command.

libname specifies the name of a library. :LlB.:SYS is
the default library if no library name, account, or
password is specified and if the NL option is not spec­
ified. If liI:)Qcct is specified, but I ibname is not
specified, then the default libname is :LlB.

I ibacct specifies the account from which the library
is to be obtained. If libname is specified but no
I ibacct is specified, the default account is :SYS.

password specifies the password for the library if one
exists.

options specify loading pnd linking options. These
options are described below. Most options may be

144 LYNX Processor

specified anywhere in the command except between
a preposition and its object. For convenience they
are shown immediately following the commond verb.
All options must be specified within parentheses.

As with the LINK command, the options may actually
appear anywhere in the command string and must be pre­
ceded by a left parenthesis or enclosed within parentheses.
The options are described below.

Options that determine input to the loader

BI specifies that the BI input device is to be used to
read unspecified relocatable object modules.
Object modules will be loaded from the BI device
until either two end-of-data codes (05)or one end­
of-file code (06) is encountered.

L specifies that the system library is to be searched.
(L is assumed by default if Nl is not specified.)

N L spec ifies that the system I ibrary is not to be
searched.

JO specifies that :JO (which contains all JIT defini-
tions) is to be included as an element file.

J 1 specifies that the monitor's REF/DEF stack is to
be included as an element file.

Options affecting future access to the load module file

T specifies that the named load module is to be
created as a temporary file.

LI B [, I ibname] specifies that a library load module is to
be built (provided that the T option is not specified).
If LIB is specified, any external definitions or external
references in the load module will be added to the
library's table of external definitions and the load
module will be inserted into the account's element
file library (Iibname). If UB is specified, the load
module must consist of a single control section of
uniform memory access type.

NOIC prevents modification of the library's dictionary
tables. This option may only be used in conjunction
with the LIB option.

90 17 MH-1 (9/78)

RD[, value]. . . specifies the account numbers of
those ac counts that may read but not' wr i te the fi Ie.
The value ALL may be used to specify that any'
account may read but not write the file (e. g. ,
RD, ALL). The value NONE may be used to
specify that no other account may read the file.
If no value is specified, or if RD is omitted, ALL
or NONE as specified in the user's authorization
record is assumed by defaul,t. The total number of
accounts expl icitly specified in a RD specification
may not exce.-ed eight.

WR[,value]... specifies the account numbers of
those accounts that may have both read and write
access to the file. The values ALL and NONE
may be used as described fol' the RD option above,
except that NONE is assumed by default. If a
confl ict exists between RD CJJnd WR specifications,
those of the WR option take precedence. The total
number of accounts explicitly specified in a WR
specification may not exceed eight.

EX, value [, value]. . . specifies the account num-
bers of those accounts that may execute the fi Ie.
Up to eight account numb~~rs may be spec ified.
The value ALL may be used to specify that any
account may execute the file. The value NONE
may be used t'o spec i fy that no other account may
execute the file. In all of the above cases,
RD, NONE is implied in the absence of any RD
specification.

{

mm,dd,yy}
EXP, ddd specifies either an explicit

NEVER expiration date (mm,dd,yy),
a life in days (ddd), or that the file is never to
expire (NEVER). The default value is that in the
user's authorization record. The val ue specified
may not exceed the maximum expiration period
authorized for the user. If the maximum expira­
tion period is exceeded or if EXP is not specified,
the default expiration periocl authorized for the
user will be used.

Options affecting the location. of the program at execution
time

LS, value specifies the load bias (as a hexadecimal
word location). If the value is not a page boundary,
the next lower page boundclry is used. If no bias
is specified, the program will be loaded at loca­
tion X'AOOO'.

CL specifies that when the load module is brought
into core for execution, virt'ual core is to be allo­
cated with the special shared processor area held
in reserve. This permits thEI association of a core
library at run time and linkage (via M:LINK/
M:LDTRC) to Clnother load module that is associated
with a core library.

C 1 specifies that the load module is to be formed
with a protection type of 01, except for the TCB
and blank COMMON (which have a code of 00)
and except for any type 10 control sections input
in load module form.

M 10 specifies that each control or dummy section is
to be loaded at the next greater multiple of 10 16,

M 100 specifies that each control or dummy section
is to be loaded at the next greater multiple of
100 16,

Options concerning the loader-built Task Control Block

TSS, size specifies (in hexadecimal) the maximum
size, in words, of the load module's Temporary
Storage Stack. If TSS is omitted, the maximum
size is set at X'40' words. The greatest size that
may be specified is limited to available core stor­
age and may not exceed 7FFF words regardless of
core size.

ERT, size specifies the size, in hexadecimal number
of words, of the library error table. The default is
ten words.

ERS, size specifies the size, in hexadecimal number
of words, of the I ibrary error stack. The defau I t is
ten words.

NTCB specifies that no Task Control Block is to be
created by the loader.

Options concerning symbol tables

specifies that an internal symbol table is to be
built for each ROM which was assembled or com­
piled to contain internal symbol tables.

NI specifies that internal symbol tables are not to
be built. NI is the default if neither I nor NI is
specified.

G specifies thata global symbol table is to be built
for this load module. A global symbol table con­
tains all symbols which were declared external
(via a DEF) in one module to be referenced in an­
other (via a REF). This is the default if neither
G nor NG is specified.

NG specifies that a global symbol table is not to
be built for this load module.

Options determining how overlay segments will be brought
into core at execution time

specifies that the overlay structure is to be set
·up for the segment loading mode. In this mode, it
is the user's responsibility to explicitly load each

LYNX Processor 145

segment from disk storage to core storage (e. g. ,
by means of the M:5EGLD procedure) before it is
referenced by the executing program. This mode
is faster in operation than the reference mode (see
below) but less convenient.

{
OR} [,num] specifies that the overlay structure is'to
SEG be set up for the reference loading mode. In this

mode, the execution of any instruction referencing
an external defin ition in another segment on a
lower overlay level will cause that segment and
all its backward path (see the :TREE command) to
be loaded if not already in core (even if the refer­
ence is on unsatisfied conditional branch). The
external reference must not be in on instruction
that may be changed or replaced during program
execution.

The decimal value "num", if present, specifies
the maximum number of interbranch references
within the program. If "num" is absent or zero,
the loader will reservea total of 22words per seg­
ment (four words are required for each interbranch
reference) in its reference loading table.

{
'OB } [,num] specifies that the overlay structure is to
BREF be set up for the branch referencing loading mode.

In this mode, any permissible branching reference
(in another segment of the program) to on external
definition within a given segment will couse that
segment and all its backward path to be loaded, if
it is not already in core storage. If a nonbranch
reference is mode to on external definition within
a given segment, the OB mode will assume that
segment to be in core. OB should be used for 0/1
overlaid FORTRAN or COBOL programs. A
branch reference causes register 0 to be changed.

The optional value "num" has the same meaning
as for the reference loading mode (see OR, above).
If "num" is absent or zero, a total of 11 words per
segment are reserved in the reference loading table
(two words per reference).

One of these options must be specified if the load module
being formed is to be overlaid. The presence of one of these
options in the command string will couse LYNX to read the
SI device one more time foHowing the end of the LYNX
command string, looking for a :TREE command.

Additional options

146

A speci fies that no relocation dictionary is to be

R

formed for the load module (i. e., the load module
is absolute).

specifies that a relocation dictionary is to be
formed for the load module, and the load module
will be treated as semiabsolute (i. e., executable
but capable of being relocated). If neither A nor R
is specified, A is assumed.

lYNX Processor

M(N] specifies that a load mop is to be output on
the LL device and that the DEFs within each seg­
ment are to be sorted by nome.

MV specifies that a load mop is to be output on the
LL device and that the DEFs within each segment
are to be sorted by value.

{MVN} specifies that a load mop is to be output on
MNV the lL device and that the DEFs within each seg­

ment are to be sorted by nome and value.

NM specifies that no load mop is to be output. NM
is assumed if neither MN, MV, nor MNV is
specified.

MO specifies that only a mop of on existing load
modul e is to be produced. The mop is to be sorted
by nome.

MOV specifies that only a mop of an existing load
module is to be produced. The mop is to be sorted
by value.

{
MOVN}
MONV specifies that only a mop of on existing

load module is to be produced. The mop is to be
sorted by nome and vol ue.

LDEF is used in con junction with the M or MO op-
tion and requests that a listing be produced that
includes all the used library DEFs for the load
module.

UDEF is used in conjunction with the M or MO
option and the LDEF option and requests that a
listing be produced that includes all the library
DEFs defined in the load module.

RDEF specifies that all unused DEFs are to be re-
moved from the load module's REF/DEF stock. A
shortened REF/DEF stock is created for the load
module.

SS specifies that a size summary for each segment
detail ing the memory allocation for each protec­
tion type is to be output. 5S is assumed if any
type of load mop is requested.

SL, value specifies the error severity level that will
be tol erated by the loader in form ing a load mod­
ule. The value may range from 0 to F. The de­
fault is 4.

PA specifies that those portions of the load module
that will be loaded into core at execution time
are to be developed in page-size records. The
load module formed is called a paged load module.
The, load module is formed in extended memory
mode. f'v4ore time is required to form the load

90 17 64H- 1 (9/78)

module, but since uninitBalized pages do not get
written as part of the load module, programs that
have large areas of unin iHalized data will occupy
fewer granules.

NBS specifies that the loader is not to use a sort table
to speed up stack searches. The core required for this
table is then available for creating very large core
images (>40K) without using extended memory mode.
NBS and MNV cannot both be specified.

OSP specifies that any controll sections of protec-
tion type 00 in an overlay segment should be
forced to the root of the load module. This option
is intended primarily for 10(lding overlaid shared
processors written in FORTRAN and is only val id
for programs having one I evel of overlay structure.

DREF when used in conjunction with the LIB option,
causes all dummy section def'in itions to be changed
to PREFs. This allows alibrary to be builtin which
all references to a particular named DESECTwili be
linked to a single copy of that DSECT (e.g., a
FORTRAN BLOCK DATA subprogram). Such ini­
tial ized dummy sections should be contained in
the only library load module loaded without the
DREF option.

PRIV [, p] [, J] [, M][, X] sets the privi leged processor
nags for the load modul e. One to four flag letters
may be specified in any order. The flag letters
have the following mean ings:

P - processor accounHng. (Execution time
is to be tall ied as processor rather than
user execution time in the accounting
record.)

J - spec ia I J IT access.

M - maximum memory allocation.

X - execute M:SYS CALs.

These flags have no mean ing unless the load module
resides in the :S YS account.

LOR, name [. [account] [. password]] directs LYNX
to be a preprocessor for a loader other than
LOADER. :SYS;. The default account is :SYS. The
function performed by this option can also be per­
formed by assigning the F:LOADER DCB to the desired
loader.

NASN instructs the loader to ignore any F:number
DCB assignments specified via ISET or IASSIGN
commands when constructing DCBs for the load
module being built; i. e. f any such DeBs will not
be included in the load module if NASN is
specified.

MAPPING EXISTING LOAD MODULES

In order to produce a map of an existing load module, the
format of the LYNX command must' be:

90 17 64H-l (9/78)

f LYNX fid 1 ~~g~) I
(MONV)

where fid specifies the file identification of the load module.
The LDEF and UDEF options are also valid in this context.
All other options will be ignored.

, :TREE If a program is to be overlaid, a :TREE command
must be the next command following LYNX command. It
must specify the overlay structure of the load module to be
formed, so that the logical segments of the program will be
loaded from secondary storage into core storage as required.
It is the user'sresponsibil ity to plan the relationshipof these
segments. If BI relocatable object modules (ROMs) are to
be loaded from the C-device, they must be placed after the
LYNX command and must precede the :T REE command.

The relationship of the segments that comprise an overlay
program can be represented graphically by means of a tree
diagram, as in the example shown below. The horizontal
coordinate of the diagram denotes increasing core storage
{address} allocation, from left to right. The vertical coordi­
nate denotes overlays. The leftmost segment, or "root", is
that portion of the program that resides in core storage
through program execution. A "path" of an overlay con­
sists of those segments that may occupy core storage at the
same time. The portion of a path that extends Tom the
start of the program (i. e., the root) to a given segment is
termed the "backward path" of that segment.

The following example consists of four paths, anyone of
which may be present in core storage at any given time.
Segment A, below, is the root of the program and is never
overlaid by another segment. Any path may be loaded into
core storage and overlaid as many times as required by the
program. All segments of the load module are saved in
disk storage and, when a segment that has been overlaid is
called again by the executing program, the original copy
is loaded from the disk. Therefore, any communication
between two overlay segments (e. g., D and E, below) must
be done in a part of the backward path common to both.

Example:

E 1

e

0 I
I A

G I

B

F 1

LYNX Processor 147

The form of the :TREE commCl1d is

:TREE specification

where specification specifies the tree structure by use of
the symbology given below.

name specifies the name of an element file (EF).
The name (1-10 characters) must not contain any
special delimiters (e.g., -) embedded in it.

This example specifies that an overlaid load module 'LMS'
is to be produced from element files X, Y, and Z in the
running account. A map sorted by name is desired, internal
and global symbol tables are to be built, and overlaying
will be done explicitly within the program via M:SEGLD
CALs. The default I ibrary in ACCNTl will be searched to '
satisfy any pdmary external references (PREFs). The load
module will have the tree structure:

indicates that two named relocatable object mod­
ules are to be contiguous in core storage. Y

()

indicates that two segments are to overlay one
another (i. e., begin at the same core storage
location).

indicates a new (lower) level of overlay.

No two segments may begin with the same EF name, since
the name of the first EF becomes the name of the segment.

Example:

:TREE A - (C - (E, D), B - (G, F»

The above example is a symbol ic representation of the over­
lay structure of the preceding graphic example.

LYNX EXAMPLE

The following is an on-line example of LYNX usage.

! LYNX X, Y, Z OVER LMS(M)(I)(G);

~(OS); . ACCNTl

>:TREE X-(Y, Z)

Z

The load module can be executed by one of the following
two commands in the on-line mode:

!START LM5

!LMS.

It can be executed by the following command in the batch
mode:

! RUN (LMN, LMS)

ERROR MESSAGES

Error messages are output on the terminal in the on-I ine
mode and on the LL device in the batch mode. They are
preceded by a portion of the command line, ending at the
point of error detection. The LYNX error messages are
listed in Table 23.

Table 23. LYNX Error Messages

Message Description

*** BAD: TREE COMMAND LYNX is completely unable to make sense of the: TREE command,
or the: TREE command is missing but an overlay option was
specified on the LYNX command.

*** CONFLICTING OPTIONS The user specified two conflicting options (e.g. I I, NI)or the
same option twice.

*** ELEMENT FILES IN E. F. LIST NOT IN TREE The user specified element files in the LYNX command which
did not appear anywhere in the :TREE command.

*** ELEMENT FILE IN TREE NOT IN E. F. LIST An element file appeared in the: TREE command which was not
specified in the element file list.

*** FILE NAME IS TOO LONG The file name must be no more than 10 characters in length.

148 LYNX Processor

Table 23. LYNX Error Messages (cont.)

Message Description

*** ILLEGAL DECIMAL NUMBER An il legal decimal digit was detected in one of the LYNX
options.

*** ILLEGAL HEXADECIMAL NUMBER An illegal hexadecimal digit was detected in one of the LYNX
options.

*** INSUFFICIENT MEMORY AVAILABLE The user's core allocation is so low that LYNX is unable to
obtain the memory it requires for constructing tables.

*** NOT BACK TO LEVEL 0 OF TREE At the conclusion of scanning the :TREE command, it was
apparent that the overlay structure has not been completely
defined. The user probably omitted a closing parenthesis
somewhere.

*** NUMBER TOO LARGE The numerical value specified on an option is beyond the legal
range.

*** 10NI ILLEGAL -- LOAD MODULE EXISTS The user attempted to use the ON preposition to build a load
module which already exists.

*** ROOT WOULD BE OVERLAID-BAD TREE The user misplaced a parenthesis or misused the :TREE
STRUCTURE specification.

*** SYNTAX ERROR The user made a syntactical error in the LYNX command about
which LYNX is unable to be more specific.

*** TOO MANY ACCESS ACCOUNTS M()re than eight read accounts, write accounts, execute
account s, or I ibraries have been specified.

*** UNABLE TO COpy BI INPUT An error other thon end-of-data or end-of-file has occurred
while reading M:BI for the BI option.

*** UNBALANCED PARENTHESIS - BAD TREE The user probably supplied an unexpected or superfluous closing
STRUCTURE parenthesis.

*** UNEXPECTED END OF COMMAND A closing parenthesis is absent, or an expected final field in
the LYNX command is missing.

*** UNRECOGN IZED OPTION The user specified an option which LYNX is unable to identify.

90 17 64H-l (9;78) LYNX Processor 149

LINK PROCESSOR
The link Processor operates in the batch mode or in the
on-line mode. It constructs a single entity called a load
module (LM) which is an executable program formed from
relocatable object modules (ROMs). Link also provides the
necessary data space and program linkages for the associa­
tion of public libraries. Program execution is initiated by
the RUN command described below under "Control Com­
mands". (Note: The batch-mode RUN command has a dif­
ferent format than the on-line RU N command used to initiate
execution. The batch mode RUN command is described in
the Load processor description. However, it may be used
to execute a load module formed by either the Link or Load
processors. The accounting summary generated at the end
of each job is described at the end of th is chapter.

As previously mentioned, Link is a one-pass linking loader
that makes fu" use of mappi ng hardware. It is not an over­
lay loader. The load processor must be used if an overlay
loader is needed.

The access protection types provided by Sigma 6, 7, or 9
hardware are

00 read, write, and execute access permitted
(data).

01 read and execute access permitted (pure
proc edure).

02 read access permitted {static data}.

03 no read or write permitted (no access).

The final program resulting from a I inking operation has
three protection types, one for data, one for pure procedure,
and one for DCBs. Static data and nonaccess information,
if specified, are loaded with the pure procedure.

LINK CONTROL COMMAND

LINK The loader that is invoked by a LINK control
command processes relocatable object modules. The resulting
load module is a keyed file that is placed in the user's
account. Execution of the load module is triggered by the
RUN control command (described below) which brings the
load module into core storage and transfers control to it.
(A load module may also be called internally by an exe­
cuting program via the M:LINK procedure.)

The LINK control command has the form

! L1NK[optio"s]rom[,rom] ••• [g~ER 1m"] [;lid-=:J

L[,lid). 0') [UNDER FDP)

where

rom specifies a relocatable object modu Ie and may
be either a file identification (fid)or a dollar sign.
(The name portion of the fid may consist of from

150 li nk Processor

1 to 10 alphanumeric characters, except for shared
processor names which may only have up to 8 al­
phanumeric characters.) The dollar sign designates
the most recent compilation or assembly. Paren­
theses enclosing roms cause merge of symbol table~

Imn (load module name) specifies where the load
module is to be placed and may be a file idei1tifi­
cation (fid) or dollar sign. (The name portion of
the fid may consist of from 1 to 10 alphanumeric
characters, except for shared processor names whi ch
may only have up to 8 alphanumeric characters.)
If Imn is omitted, the resulting load module is
placed in a special fi Ie and is avai lable for sub­
sequent execution.

lid specifies a library file identification. Unsatisfied
external references are resolved by specifying the
order and identification (I id) of I ibraries to be
searched after the input modules have been linked.
A I ist of library identifications (I id), separated by
commas, is appended to the I ist of modules in the
LINK command and is separated from the module
list by a semicolon.

codes are optional codes used to specify a library
search, a display, or inclusion of a symbol table.
The optional codes are described below; they may
be entered anywhere in the command except be­
tween a preposition and its object.

Options specifying I ibrary search

(l) specifies that the system library is to be searched to
satisfy externa I references that have not been satisfied
by the program. (This is a default option.)

(Nl) specifiesthata system library search is not required.

(Pi)(J i) specifies that the ith public core I ibrary is to be
associated with the program to satisfy external refer­
ences. Only one public library of each type (J or P)
may be associated with a program. PO, P1, and P4
are supplied by Xerox; Pl contains a subset of the
FORTRAN I ibrary subroutines; PO includes P1 and the
FORTRAN Debug Package; P4 includes P1 and the
FORTRAN real-time features. JO contains JIT defini­
tions and J 1 contains the monitor definitions. (These
two I ibraries are generally only used by system ana­
lysts.) Additional public libraries must be named P2,
P3, P5-P9, and J2-J9. (P1 is a default option.)

(FDP) equivalent to (PO).

(NP) specifies that a public core library is not required.

The sequence of the I ibrary search is as follows: User I i­
braries are searched first, the public library is associated,
and the system library is searched. In the absence of any
other specifications, public library P1 is associated with
the load module to satisfy external references, and the sys­
tem (ROM) I ibrary is searched if necessary.

Options affecting end actions and error displays

(D) specifies that all unsatisfied internal and external
symbols are to be displayed a~ the completion of the
linking process (including library searches, if speci­
fied). The unsatisfied symbols are identified as to
whether they are internal or E~xternal and to which
module they belong. (This is a default option.)

(ND) specifies that the unsatis.fied internal and external
symbols are not to be displayed.

(C) specifies that all conflicting internal and external
symbols are to be displayed. The symbols are displayed
with their source (module name) and type (internal or
external). (This is a default option.)

(NC) specifies that the confl icting symbols are not to
be displayed.

(M) specifies that the load map is to be displayed upon
completion of the linking process. The symbols are
displayed by source with type resolution and value.

(NM) specifies that the load map is not to be displayed.
(This is a default option.)

Options affecting inclusion of the symbol table.

(1) include symbol table with LM.

(NI) do not include symbol table with LM. (This is a
default option.)

Option affecting execution of the load module

(EX,acct [,acct] •• 0) specifies those accounts whi ch may
execute this Imn. Up to 8 accounts may be specified.
The value ALL may be used to specify that any account
may execute the Imn (This is the default when no EX op­
tion is specified). The value NONE may be used to

,specify that no other account may execute the Imn.

Examples

1. Assume that a load module, F, is to be created from
ROMs A, B, C, and D. The interna I symbo Is for fi les D
and A are to be merged. The internal symbols for Band
C are not to be included in load module F.

! LINK (A,D), (NI) B,C ON F

'2. Assume that a load module, F, is to be created from
files A, B, C, and D. Internal symbols for files Band
C are not to be included in the load module; internal
symbols for fi les D and A are to be merged. Two user
libraries, G and H, are to be searched to satisfy exter­
nal references'. Public library P1 is to be associated
with the load module but no search of the system li­
brary is required.

! LINK (D,A), (NI)B, C ON F;G, H

3. Assume the same prob lem as in the previous example
except that the system library is to be searched for ex­
ternal references and public library P2 is to be associ-
ated with the load module. .

! LINK (L)(P2)(D,A), (NI)B,C ON F;G, H

4. Assume the same conditions as in the second example
except that no I ibraries are to be searched.

! LINK (NL)(NP)(D,A),(NI)B,C ON F

5. Assume there are two relocatable object modules. The
internal symbols for the first module (MFL 1) are to be
left out of the resulting load module, but the internal
symbols for the second module (MFL2) are to be
included. The resulting load module is called LM 1.

!LINK (NI) MFLl,(I) MFL2 ON LM1

If the Link processor needs additional information, the
job wi II be aborted with the appropriate message output
to the line pri nter. For instance, us i ng the same ex­
ample, suppose that Link cannot find MFL2 because it
was supposed to be MFL3. The job wi II be aborted
and the following message wi II be output to the line
printer:

CANT FIND: RETYPE MFL2

CONTINUED COMMANDS

The LINK command may be continued from one card to the
next by putting a 'less than' symbol «) in column 80 of the
card to be continued. This symbol cannot be embedded
within a word or between a preposition and its object.

LOAD MODULE STRUCTURE

A load module formed by Link is composed of three parts:
'program, global symbol table, and internal symbol table.
Each of these parts is described in the following sections.

Link Processor 151

PROGRAM

A program may be sectioned into six parts: pure procedure,
data, commOli, DCBs, publ ic I ibraries, system library.

1 • Pure Procedure

This section of code contains machine instructions and
is generated by compi lers and assemblers with protec­
tion type 01 (read and execute access). Sections with
a nondata protection type (static data and no access)
are also included here.

2. Data or Program Context

This section is generated by the compilers and assem­
blers with protection type 00 (read, write, and execute
access).

3. Common

This blank common storage is generated by compilers
and assemblers as a dummy section with the name
F4:COM. The size of blank common storage is deter­
mined by the first size declared. All subsequent
F4:COM declarations must be less than or equal to
that size.

4. DCBs

A data control block (DCB) is a table containing the
information used by the monitor in performance of an
I/O operation. At the end of a link operation, Link
constructs a DCB corresponding to each outstanding ex­
ternal reference with names beginning with F: and M:.

Output is via the M:LO DCB. If the program being
tinked does not contain a reference to M:DO, a refer­
ence to it is supplied by Link, since diagnostic output
is generally written via this DCB. If the user does not
want this DCB to be constructed due to space consider­
ations, he can explicitly reference M:DO and satisfy
the reference (vacuously) within his program. (Some
diagnostic output is likely to be lost.) All the DCBs
cannot exceed two pages when the Link processor is
used.

A DCB name of the form M:ab, where ab corresponds
to an operational label, is considered a reference to a
standard system DCB. The standard system DCBs are
dis'cussed in terms of operational labels and default
assignments later in this chapter under "Data Control
Blocks ".

5. Public Libraries

Any CP-V installation can define a set of subroutines
that constitute a public library. The installation may
specify several different public libraries containing
collections of routines that are useful in various envi­
ronments. Only one library of type Ip i and one of
type IJ I may be associated with an executing program.
DEF stacks for public libraries are stored under special

152 Link Processor

names in the system account and are used to link pro­
grams to them. See the CP-V jSP Reference Manual,
90 31 13, for more detai led information on the structure
and creation of public libraries.

On Iy one block of core memory is required for the
public library no matter how many users are using it.
However, use of just one routine in the public library
requires core for the entire package. The reentrant
portion of each library is shared among users (on-line
and batch), thus saving physical core memory and
allowing for more efficient system operation. User­
dependent data storage for each library routine is allo­
cated by Link at a fixed virtua I address. Thus, each
public library is constructued in two parts: reentrant
procedure and direct access data. By forming the
library in this manner, a speed advantage of from 5 to
20 percent over push-down storage reentrrlncy is
obtained.

Four public libraries are available: PO, P1, P4, and JO
(only the first three are of general interest). Library
P1 contains the most commonly required routines from
the Extended FORTRAN IV run-time and mathematical
library (about 60 routines). Library PO includes library
P1 plus the FORTRAN Debug Package (FDP). Library
P4 includes library P1 plus the FORTRAN rea I-time
features. These three I ibraries will satisfy the require­
ments of the majority of users for program execution,
debugging, and real-time services, respectively. (The
remainder of the run-time and mathematical routines
comprising the entire Extended FORTRAN IV subpro­
gram library reside on the system library, described
below.) Public library JO contains the user-JIT Defini­
tion Package. (See the CP-V jsp Reference Manual,
90 31 13 also for more detailed descriptions of libraries
PO, P1, P4, and JO.) Additional public libraries cre­
ated by a user-installation may be names P2, P3, or
P5 through P90

Use of the real-time public library, P4, requires speci­
fication on the LINK command of the file :BLIB in the
real-time system account (e.g., :SYSRT) as a library
file identification. This library file will be searched
before the public library is searched.

6. System Library

The system library consists of approximately 190
FORTRAN IV library routines in ROM form, in file
:BLIB in the :SYS account. Searching of this library
is implied by the defau It I ibrary-search code L in a
LINK command. This library is always searched last if
any unsatisfied references remain unless the NL option
is specified. Routines that are obtained from the sys­
tem library become part of the user program and are
not shared. Thus, core is required for each system li­
brary routine. The speed advantage is sti II maintained
since each routine includes any necessary data.

/
'(r'
J I

GLOBAL SYMBOLS

While performing the linking process, link constructs a
global symbol table. This table is a list of correspondences
between symbolic identifiers (labels) used in the original
source program and the values or virtual core addresses that
have been assign(!d to them by Link. The global symbols
define (DEF) objects within a module that may be refer­
enced (REF) in other modules. This table is available to
Delta for use in debugging.

INTERNAL SYMBOLS

An internal symbol table is a list of correspondences similar
to the global symbol table but applies only to symbols
defined within the module. Each internal symbol table con­
structed by link is associated with a specific input fi Ie and
is identified by its name. This, table is also avai lable
to Delta for debugging.

When an interna I symbol is equated to an external symbol
with on addend, and the module containing the external
definition is in a different file from the module containing
the external reference, the file contain.ing the definition
must appear on the LINK command before the file contain­
ing the external reference. Fur~hermore, an internal sym­
bol should not be E!quated to an Elxternal reference with an
addend satisfied from a library.

No internal symbo~ table is generated for a named library
(one with a fid).

SYMBOL TAIBLES

Delta makes it possible to reference both global and inter­
nal symbols at the time programs I:lre debugged. Programs

formed by loaders, together wi th the tables of global and
internal symbols, are operated on in a code similar to as­
sembly language symbolic code.

Global and internal symbol tables, as formed by link and
used by Del ta, consist of three word entries. Symbolic
identifiers (labels) are I imi ted to seven characters. Symbo Is
originally longer than seven are truncated, leaving the ini­
tia I seven characters, a Ithough the orig ina I count is reta ined.
Thus, symbols that are identical in their first seven charac­
ters and are of equal length occupy one position in the sym­
bol table. The value retained for multi-defined symbols is
the first one encountered during the linking process. Each
symbo.1 entered into the table has an internal resolution and
a type classification. Internal resolutions are: byte, half­
word, word, doubleword, and constant. Symbol types are:
instruction, integer, EBCDIC text, short floating-point, long
floating-point, decimal, packed decimal, and hexadecimal.

Object language code produced by CP-V assemblers and
compilers provide internal symbols with internal resolution
and type classification. The loaders retain this information
in processing object language code.

DIAGNOSTIC MESSAGES

Diagnostic (error) messages are output on the LL device.
Table 14 lists the messages that are produced by the monitor
during a I ink operation. Some of these messages are for
syntax errors, and others are for errors arising out of the
link operation. Most of these errors terminate the link op­
eration prematurely.

Table 24. link Error Messages

Message Description

CANT FIND :RETYPE rom The specified relocatable object module cannot be found.

CARD CKS/COMPUTED CKS/cd/cp/ This message is sent to the LL device along with the CHECKSUM
ERROR message. It specifies the card checksum (cd) and the
computed checksum (cp).

CHECKSUM ERROR A checksum error has occurred. The CARD C KS/COMPUTED
CKS/cd/cp/ message specifies the difference.

CORE LIBRARY OVERLAPS PURE PROCEDURE There is insufficient virtual memory to contain the pure pro-
cedure and the core library REF/DEF stack.

DATA LIMIT EXCEEDED The data area is so large that it overlays the pure procedure.

DONT TRY TO USE TWO J OR TWO P LIBRARIES Only one library of each type is allowed.
AT ONCE

DUMMY SECTION LARGER THAN PREVIOUS DEF The dummy section initia lIy defined was not the largest dummy
section.

link Processor 153

Table 24. Link Error IYessoges (cont.)

Messoge Description

GLOBAL SYMBOL TABLE OVERLAPS PURE There is insufficient virtual memory to contain the pure pro-
PROCEDURE cedure and the symbol tables.

ILLEGAL DATA FORMAT Input modules did not contain ROM data.

ILLEGAL LOAD ADDRESS An attempt was made to load outside the limits of the program.

ILLEGAL LOAD ITEM TYPE ROM input data is illegal (e. g., it is load module data instead).

INSUFFICIENT PHYSICAL MEMORY TO CONTINUE A request for a m~mory page has been refused.

I/O ERROR LINKING SYSTEM LIBRARY This message usually indicates there is no system library.

I/O ERROR OPENING OUTPUT FILE An I/O error occurred during the opening of an output fi Ie.

I/O ERROR READING ASSIGN MERGE RECORD This message usually indicates there is no assign/merge record.

I/O ERROR READING CORE LIBRARY This message usually indicates there is no core library.

MODULE II/SEQUENCE#/md/sq/ This message accompanies most other messages. It identifies the
module number (md) and sequence number (sq) of the last card
before the error. Both numbers start at zero.

MORE THAN 2 PAGES REQUESTED FOR DCBS This message indicates that the limit of two pages for DCBs has
been exceeded.

NO PROGRAM START ADDRESS The program has no start address. The load module is sti" formed.

ON FILE fid ILLEGAL ON was specified and the output file (fid) already exists.

SEQUENCE ERROR A sequence error has occurred.

STAC K OVERFLOW An internal storage overflow has occurred.

UNEXPECTED END OF ROM DATA EOF encountered before last card of ROM.

Note: All errors, except CANT FIND and NO PROGRAM START ADDRESS cause abnormal termination of Link.

LEMUR PROCESSOR

LEMUR (library Editor and Maintenance Utility Routine) is
a processor that builds and manipulates ROM and load mod­
ule libraries. The libraries thus built are accessed by
LYNX or Load when constructing user programs (load mod­
ules) that require library routines. LEMUR is available in
both on-I i ne and botch modes.

LEMUR allows the user to

• Construct a library ROM module out of specified
ROMs.

• Construct a library load module out of specified
ROMs. (A library load module must be of one pro­
tection type.)

• Have more than one I ibrary per account.

154 Lemur Processor

• Delete a specified partion of a I ibrary and all refer­
ences to that portion in the dictionary.

• Delete a library.

• Copy a I ibrary module from one I ibrary to another.

• Copy a library to another library.

CALLING LEMUR

LEMUR is invoked in the batch mode by the control
command

fLEMUR

All commands are read through the M: SI DCB and output
is through the M:LL DCB.

90 17 MH-1 (9/78)

Commands are relatively free-format; i. e., blanks are
_ ignored except as delimiters. If (] semicolon is encountered

in a command line, all subsequent characters in that line
are ignored and the next input I ine is treated as a con­
tinuation line. A command I ine beginning with an aster­
isk (*) is treated as a comment.

LEMUR CONCEPTS

The following conventions are used in LEMUR:

1. Names of library modules and DEFs consist of a string
of any of the following characters:

A-Z a-z 0-9 $*%:@#

They may also consist of a string of the above charac­
ters enclosed within single quotes. A library load
module name cannot exceed '10 characters. A DEF
cannot exceed 14 characters.

2. A file identification has the standard format with the
exception that the name, acc,ount, or password may be
a string of characters enclosed within single quotes.
The name portion of a file identification cannot exceed
10 characters if it identifies CI ROM which is to be part
of a library load module.

3. A rom-id is the file identification of a ROM.

4. A lib-id is the file identificaf'ion of a library.

5. The term "destination I ibrary" is defined to be the
library specified by the LIBRARY command. This is the
library on which the user wishes to work.

6. The term "default library" implies the :L1B library.
If library name is missing from a command in which
lib-id is optional, then :L1B is assumed by default.
AI so, if the LI BRARY command is not used in a
LEMUR session, the default and the destination
library are the same (:L1B).

7. The term "I ibrary module" refers to a named collection
of one or more ROMs or a load module which has been
entered into the library via a BUI LD or a CARRY com­
mand. The module gets its "name" when it is entered
in th is manner.

LEMUR COMMANDS

LIBRARY The library command specifies the destination
library (i .e., the library on which the user wishes to work).
The format of the command is

LI BRARY tam~ [[account] [paSSWOrd]]

where name, account and password have their usual
meanings. If name is omitted, the default is :L1B. If
account is omitted, the default is :rhe user's account.

BUILD The BUILD command constructs a library module
and enters it into the destination library. The I ibrary mod­
ule constructed may either be a load module or a ROM
module, depending on specifications with in the command.
The format of the command is

BUILD name FROM rom-id[,rom-id] •••

[(option)J(option)J ••• J

where

name specifies the name of the library module
to be constructed. If the module name already
exists in the destination library, it is deleted and
the new version is constructed and entered.

rom-id specifies the name of a ROM to be used in
the construction of the load module or ROM
I ibrary module.

If the name already exists, all old dictionary entries which
point to it are deleted. New dictionary entries are then
made for each symbol within the new version of the module
specified by name. If a dictionary entry for a symbol de­
fined in name al ready exists in the dictionary (because it is
DEFed in some other module with a different name), the
entry is changed to point to name.

A I ibrary module is either a ROM module (one or more
ROMs) or a library load module. The option (ROM) or its
absence specifies the type. If the (ROM) option is speci­
fied, the module being constructed wi II consist of the
ROMs specified by the rom-id's in ROM form. This allows
subroutines with more than one protection type to be in­
cluded in the library accessed by the loader. Omission of
the (ROM) option implies that the library module is to be
a load module. In case, LEMUR invokes the loader to
perform the load using the specified ROMs as element files

Options for the BUILD command

ROM module options:

The following options are used if the module being con­
structed is to be a ROM module. (Load module options r

have no meaning for ROM modules and will cause an error
message if used.)

(ROM) specifies that the module is to be a ROM mod-
ule consisting of the ROMs specified on the BUI LD
command.

(M) or
(MN) produces a list of REFs and DEFs in the module,

sorted by name.

(SL, value) specifies the ROM severity level that is to
, be tolerated by LEMUR in forming the library module.

The value may range from 0 to F. The default is 7.
(The severity level is presented by the ROM.)

Lemur Processor 155

Load module options:

"The following options are used if the module being con­
structed is to be a I ibrary load module.

(Cl) specifies that the library load module is to be
formed with protection type 01, regardless of the
protection type specified in the ROM.

(M) or
(MN) specifies that a load map is to be output on the

LL device and that the DEFs are to be sorted by name.

(MV) specifies that a load map is to be output on the
LL device and that the DEFs are to be sorted by value.

(MNV) specifies that a load map is to be output on the
LL device and that the DEFs are to be sorted by both
name and va I ue •

(SS) specifies that a size summary detailing the amount
of memory allocated is to be output.

(SL, value) specifies the ROM severity level that is to
be tolerated by LEMUR in forming the library load
module. The value may range from 0 to F. The
default is 7. (The severity level is presented by the
ROM.)

(DREF) specifies that all dummy section definitions
should be changed to PREFs. This allows a library
to be built in which all references to a particular
named DSECT will be linked to a single copy of that
DSECT (e.g., a FORTRAN BLOCK DATA subprogram).
Such initialized dummy sections should be contained
in a I ibrary ROM module or in a I ibrary load module
loaded without the DREF option.

(X) specifies that LEMUR should abort if any error
is detected in creating the load module. If (X) is
not specified in the batch mode, a warning message
is issued and LEMUR executes the next command.
(Note: The (X) option is meaningful only for running
LEMUR in the batch mode. If specified in the on-line
mode, the (X) option is ignored.)

Examples:

1. Assume that the user is logged on in account A55 and
that the user wishes to:

• Create a new library called L1B5 in account A55.

• Include Rl as a ROM module.

• Include R2 and R3 as one ROM module.

• Include R4 as a load module.

• Include R5 and R6 as one load module.

(All these modules are in account A55.)

156 Lemur Processor

lLEMUR
LI BRARY LI B5
BUI LD LR1 FROM Rl (ROM) (M)
BUILD LR2 FROM R2, R3 (ROM)
BUILD LR3 FROM R3 (SL,4) (Cl)
BUILD LR4 FROM R5, R6 (SL,4) (M)
END

2. Assume that the user is logged on in account A55 and
that the user wishes to replace LR3 in t~.c example
above with a load module rebuilt from R4. OTHERACT:

ILEMUR
LI BRARY LI B5
BUILD LR3 FROM R4. OTHERACT(SL,4)(C 1)
END

DelETE The DELETE command deletes either the
destination library (i .e., the library named on the
LIBRARY command or :L1B by default) or deletes one or
more named modules from the destination I iprary. In the
latter case, all entries in the dictionary that point to the
deleted module are removed. The format of the command is

DELETE [nameGnamell ..

where name specifies the name of a library module. If
no name is specified, the entire destination library is
deleted.

Examples:

1. Assume that the user is logged onto account A55 and
wishes to delete modules X, Y, and Z from the
library :L1B.A55 and to delete module A from the
library L1B6.A55.

I LEMUR
DELETE X, Y,Z
LIBRARY L1B6
DELETE A
END

2. Assume that the user is logged onto account A55
and wishes to delete the library :L1B.A55.

1 LEMUR
DELETE
END

COpy The COpy command copies the source library
to the destination library. The format of the command is

COpy lib-id

where I ib-id specifies the source library. (The destination
I ibrary was either specified on a LI BRARY command or is
: LI B by defau It.)

The source and destination libraries must be different
(i. e., different accounts or different I ibrary names in
the same account).

· Examples:

1. Assume that the user is logged onto account A55 and
wishes to copy the library LlBA from account 1234
to library LI BB in account A55.

!LEMUR
LI BRARY LI BB
COpy L1BA. 1234
END

2. Assume that the user is logged onto account A55 and
wishes to copy library LIB from account B36 to the
: LI B I ibrary in account A55.

!LEMUR
COPY.B36
END

CARRY The CARRY command copies a library module
from one library (source library) to another library (des­
tination library). The format of the command is

CARRY name1 FROM lib-idp'name~

where

name1 specifies the module name in the destination
library.

I ib-id' specifies the source library. (The destination
I ibrary was either spec ified on a LI BRARY com­
mand or is : LI B by default.)

name2 specifies the module name in the source
library. If it is omitted, l·he source module name
is assumed to be the same ·as name1 by default.

The source and destination libraries must be different
(i .e., different accounts or different library names in the
same account).

If a module with the name specified by name1 already exists
in the destination library, then the original name1 module
records and dictionary records wh ich point to it are deleted
from the destination library, with all name2 module and
dictionary records being copied from the source library
and entered into the destination library.

If a symbol in the name2 module already exists as a dic­
tionary entry in the destination library and it points to a
module other than name2, it will be replaced by the new
entry pointing to name l'

'Jt .".- •

.I ~, 4 -:-

Examples:

(In all these examples, assume that the user is logged onto
account A55.)

1. The user wishes to carry module ZAP from NEWLI B.:SYS
to ZAP in NEWLI B. A55.

!LEMUR
LI BRARY N EWLI B
CARRY ZAP FROM NEWLIB.:SYS
END

(Omission of the source module name (name2) impl ies
that ZAP is the source module name.)

2. The user wishes to carry module ZAP from LI B2 .ACN2
to module MAP in LlB2.A55.

!LEMUR
LI BRARY LI B2
CARRY MAP FROM LlB2.ACN2/ZAP
END

3. The user wishes to carry module SORT from :LlB.:SYS
to SORT in :LlB.A55.

! LEMUR
CARRY SORT FROM .:SYS
END

(Omission of a LI BRARY command impl ies that the
destination library is to be :LlB.A55 by default.
Omission of the source library name implies :LlB by
default.)

4. The user violates the rul e that the source and destina~
tion libraries must be different.

!LEMUR
CARRY ZAP FROM :LlB/MAP
END

An error message is issued and the command is aborted.

END The END command terminates LEMUR and returns
'control to CCI. The format of the command is

END

Lemur Processor 157

ERROR MESSAGES

Error messages for LEMUR are listed in Table 25.

Table 25. LEMUR Error Messages

Message Meaning

11)" MISSING AFTER OPTION Self-explanatory.

ACCOUNT NAME TOO LONG The account name exceeds ei ght charac ters.

BAD FILE I.D. Self-explanatory .

BAD QUOTE STRING An illegal character occurred with a string.

CAN'T CREATE LIBRARY An I/O error occurred when trying to create a new library.

CAN'T OPEN FILE Either the ROM id doesn't exist, the module doesn't exist
(DELETE), or the source module doesn't exist (CARRY).

CAN'T OPEN LIBRARY An I/O error occurred when trying to open an existing library.

COMMAND TOO LONG A command (including continuations) is too long for LEMUR's
command buffer of 256 characters.

EH? A command is malformed.

FI LE NAME TOO LONG A file name exceeds ten characters.

GARBAGE AT END OF LINE A command contains unrecognizable characters.

I/O ERROR Self-explanatory.

ILLEGAL CONTINUATION LINE Self-explanatory .

ILLEGAL LIBRARY FORMAT A reference to a file which is supposed to contain a library
was made in a LEMUR command, but the file is not in
library format.

ILLEGAL OPTION FOR THIS COMMENT Self-explanatory .

ILLEGAL ROM LANGUAGE The ROM is malformed.

ILLEGAL ROM RECORD HEADER The ROM is malformed.

I LLEGAL ROM RECORD LENGTH The ROM is malformed.

LIBRARY NAME MISSING A required library name is missing in a command.

LIBRARY NAME TOO LONG A library load modu'le name exceeds 10 characters.

MALFORMED OPTION Self-explanatory .

MAXIMUM SEVERITY LEVEL EXCEEDED The severity level specified by the SL option has been exceeded.

158 Lemur Processor : ('"'''1)

Table 25. LEMUR Error Messages (cont.)

Message Meaning

MISSING FILE NAME A required file name is missing in a command.

MODULE NAME MISSING A required module name is missing in a command.

NOT ENOUGH CORE There is insufficient common or virtual memory to satisfy the
requirements for I/O buffers used in the COpy and CARRY
commands.

NOT ENOUGH SYMBOL SPACE The space requ ired by LEMUR to construct the dictionary is
insufficient.

PASSWORD TOO LONG The password exceeds eight characters.

SOURCE SAME AS DESTINATION The requirement that the source and destination I ibraries be
LIBRARY different on the COpy and CARRY commands has been

violated.
--

UNEXPECTED END OF ROM The ROM is malformed.

UNKNOWN COMMAND Self-explanatory.

UNKNOWN OPTION Self-explanatory.

YOU USED THE SAME OPTION TWICE Self-explanatory •

COMMAND SUMMARY

The LEMUR commands are summarized in Table 26.

Table 26. LEMUR Command Summary

Command' Function

BUILD na~ FROM rom-id ~rom .. idJ. .. Creates and enters a ROM module or library load module into

[(option)[, (option] ••• the destination library.
,

CARRY name1 FROM lib~idrnarne2]
.. ~~ --

Copies a library module from a source library to the destination
library.

COpy lib-id Copies a source library to the destination library.

DELETE Deletes either the entire destination library or one or more
modules from the destination library.

END Terminates LEMUR.

LI BRARY [nam~ [. [accounj [Pc]SSword] Defines the destination.

* Indicates that the I ine is a comment line.

Lemur Processor 159

TASK CONTROL BLOCK

The format of the Task Control Block (TCB) generated by a
. loader for the user's program is shown in Figure 9.

The fields of the TCB are as follows:

TSTAC K is the address of the current top of the
user's temp stack.

TSS indicates the size, in words, of the user's temp
stack (maximum size is 7FFF).

o 0 0

0/ TSS

2

/0

TSA is the address of the temp stack used by the
library error package.

TSASIZ indicates the size, in words, of the temp
stack used by the library error package.

ERTSIZ indicates the size, in words, of the error
table used by the I ibrary error package.

ERT is the address of the error table used by the
library error package.

TSTACK-l

0 }

Stack Pointer
Doubleword (SPD)

3 For use by GL-1 (Graphics Language)

4

5

6

7

8

9

10

11

12

13

14

15

TSA

ERT

TSTA~K

160 Task Control Block

0

0

0

0

o

These words for use by a processor

0 TSA-l

TSASIZ /0

ERTSIZ ERT

ERTSIZ-2 TSA

0 DCBTAB

0 TREE

For use by a processor

XSL specified on RUN control command

F or use by Mon i tor

Library error temp stack

Library error table

User's temp stack

1 :1 14 1516

Figure 9. Task Control Block Format

01 SSW

1 2526

0

1
~
f

31

} TSASIZ

} ERTSIZ

} TSS

DC B TAB is the address of a tab I e of names and
addresses of all of the user's DCBs. This table has
the form shown in Figure 10.

TREE is a pointer to the ~ocation of the user's over-
lay structure.

SSW contains the user's sense switch settings
(bits 26-31 contain the settings of switches 1-6).

On transferring control to a user's program or to a pro­
cessor, the monitor communicates the TCB address through
general register O.

DATA CONTROL BLOCKS

The loader constructs DCBs to be included in the load mod­
ules. The Load and Link processors build a DCB only if any
PREFs exist that begin with either M: or F:. DCBs are not
built, however, if the LIB option was specified in the LOAD
command. Specifically, the Link and Load processors build
DCBs when

• The Control Card Interpreter (CCI) assign/merge record
contains an F: (for example, F: 108) entry.

• The user has a REF DCB name and has no relocatable
object modules (ROMs) or libraries in the element file

DCBTAB~ I---

entry 1

ent'rY2

~~.
L1NK;DR ~

1. Each entry contains a variable length DCB
name and DCBLOC word as follows:

TEXTC
f-.--------

Name of DCB
1----------

DCBLOC

~

list which satisfied this REF. The load processor does
not search libraries of accounts in the UNSAT list to
satisfy PREFs to M: and F: names. To include a library
DCB in the output load module built by the LOAD pro­
cessor, put the library load module name containing
the DCB in the EF list.

• An M:DO DCB is generated in the absence of a
NOTCB option. (The Link processor wi II always bui Id

an M:DO DCB.)

• An M:SEGLD is generated if a TREE control command
is present.

Library DCBs are summarized in Table 27 together with
the composition of DCBs generated by the loader and by
COBOL.

The detailed format of DCBs for files, devices, and labeled
tape is shown in the appendix titled "Data Control Block
Formats".

All loader generated system DCBs are 51 words long. The
first 22 words (0 through 21) are standard and allocated for
the fixed portion of the DCB. Each variable length pa­
rameter (words 22 through 40) is preceded by a control word,
three words for fi Ie name, two words for account, two words
for password, two words for an expire date, three words for
INSN (SN), and three words for OUTSN (SN). Words 41-48
are reserved.

r---- r---+ .~

entry 1 entry 1

entrY2 entrY2

entrYi entrYj

LINKADR ~ 0 O~

2. LINKADR is the location of another block of
the DCB name table. If LINKADR contains
zero, the current b lock is the last one of the
DCB name table.

3. DCBLOC is the address of the first word of the
DCB.

Figure 10. DCBTAB (Name Table)

Data Control Blocks 161

Table 27. Data Control Block Size

Expiration Read Write Synony- Key Total
DCB Device Name Account Password Date Accounts Accounts INSNs OUTSNs mous Name Buffer Words

M:C 22

M:OC 22

M:BI 22 9 3 3 3

M:CI 22 9 3 3 3

M:SI 22 9 3 3 3

M:EI 22 9 3 3 3

M:BO 22 9 3 3 3

M:CO 22 9 3 3 3

M:SO 22 9 3 3 3

M:PO 22 9 3 3 3

M:LO 22 9 3 3 3

M:LL 22 9 3 3 3

M:DO 22 9 3 3 3

M:GO 22 9 3 3 3

M:EO 22 9 3 3 3

M:SL 22 4 3 3 3

M:AL 22 4 3 3 3

Loader 22 4 3 3 3

COBOL 22 9 3 3 3

If the user requires a DCB with any field larger than those
constructed by a loader, he must use the LOAD processor.
He can then either construct the DCB with an M:DCB pro­
cedure call or, if it is an M: type DCB, request it explic­
itly from the :SYS account by including the DCB name as
an element file in a LOAD, OVERLAY, or OLAV control
command. For example:

(EF ,(M:EO,:SYS),(M:LL,:SYS))

17

17

17

17

17

Total space for DCBs and buffers for a single job step is
limited to 10,752 words (21 pages) including a one-word
link for the DCBname chain and enough words to carry the
DCBnames. Each DCBmust be contained entirely within one
page to faci litate unmapped access. This usually results in
less space due to "breakage". However, the amount of space
provided is adequate in nearly all situations. When the
allocated space is insufficient, the job is aborted with
a code of XICOI.

162 Memory Protection

22

22

4 8 52

4 8 52

4 8 52

4 9 8 61

17 4 8 86

17 4 8 86

17 4 8 86

4 8 52

4 8 52

4 8 52

4 8 52

8 48

17 4 9 8 45

8 43.

8 43

4 4 8 51

17 4 4 9 8 99

If a file is opened in the output mode through a system DCB,
a flag is set in the Job Information Table (JIT). If the DCB
is not reassigned before the DCB is opened again in the out­
put mode for the same job, all records output through thi~
DCB are appended to the end of this file.

M~MORY PROTECTION.

Monitor pages and unallocated virtual pages are protected
against access by user programs with the map access pro­
tection. Thus, programs that either deliberately or in­
advertently access the monitor (by reading it or branching
into it) will trap. The same restriction also applies to other
areas of the machine that were not owned by the program
(e. g., read access to unobtained common or dynamic data
pages). The first page of core memory is an exception to
these rules; its access is always set to read only. A trap

will occur on a conditional branch command for whJcih the
condition is not satisfied and the address of the br;l~ch is
indirect through a protected memory address. "'

VIRTUAL MEMORY
The user1s 96K words ofvirtual space are divided as follows:

1. 8K words for monitor overlays and user context (JITs
and buffers).

2. 88K words for user procedure, DCBs, and data unless
the user program requires the use of a special shared
processor or a publ ic library. In this case, the user
area is 72K words and the special processor area is
16K words.

With the exception of a fixed minimum requirement of six
pages for monitor overlays, one page for JIT, and three
pages for the fi Ie buffers, the 96 K words of user area is
demand allocated.

The Link and Load loaders place ROM data, including any
data overlays, in memory beginning at 40K then directly
follow this with the DCBs, procedure, and procedure over­
lays. When a BIAS is specified, the load module is created
at the specified location even though it may not be possible
to run the load module there.

Load modules are constructed from ROMs composed of con­
trol sections. A control section is of type 00, 01, or 10.
All control sections of type 00 are gathered together by the
loader and designated as DATA. Simi larly, all control sec­
ti ons of type Oland type 10 are gathered together and de­
signed as PROCEDURE and STATIC DATA, respectively.

Except for DCBs, DSECTs or CSECTs with value 2 or 3 are
changed to 1. That is, no-aCCe!iS and read-only data are
loaded with pure procedure. Any DSECT that has a name
beginning with M: or F: is assumed to be a DCB and is re­
moved to the DCB area and listed in the DCB table.

DCBs and the DCB name table are a IIocated in the user con­
text area (10 protection) rather than in the root procedure
area (01 protection). Because of the differences in a IIoca­
tion (DCBs) and the HEAD format, load modules formed
under the BPM overlay loader wi II not execute (RUN) under
CP-V and vice versa.

Interna I symbol tables are generated for use by a debug
processor (e.g., Delta) if a program is assembled with the
SD option. An internal symbol table is built for each load
'module and is included in the load module as a keyed
record consisting of the element fi Ie name appended with
an X 11 0 1• A symbol table can be loaded by a debug pro­
cessor for an overlay or a nonoverlay program by specifying
its element fi Ie name. If the element fi Ie conta ins more
than one ROM then only the symbol table for the last ROM
is produced. A symbol table that is generated during a load
from the GO fi Ie cannot be accessed by a debug processor.
No internal symbol tables are generated for library load
modules.

VIRTUAL MEMORY LAYOUT

Figure 11 gives the layout of virtua I memory for a program
loaded by Load or Link. Ordinary shared processors follow
this layout.

Figures 12 and 13 show the actual background memory lay­
out at execution time for the Load and Link processors.

LOAD MAPS

If a listing of a load map is specified - MAPopl'ion of LOAD
(OVERLAY or OLAY) control command or M option of LINK
control command - a listing of external references and def­
initions for the load modules is output on the l.L device.

A general allocation summary, indicating the total amount
of memory a IIocated to each protection type for the enti re
program, appears after the LOAD or LIN K control command.
Next appears the severity level for this load module if it is
nonzero. This severity level is actually the maximum of
any severity levels inherited from the ROMs and those gen­
erated by the loader. Internal loader-generated severity
levels are as follows:

Type

PREF

DDEF

REF or BREF load table exceeded

Nonbranching REFs found while
in BREF mode

Severity

7

4

F

3

o 32K 40K Load or Link 112K 128K

Public
Special Shared

User Context:
library

User data User program Dynamic Common Processors:
Monitor iJ ITs, buffers and root and User root and --+- ~ TEL, LIN K, Delta

jmonitor overlays
context

overlays DCBs overlays Data Data Pu b Ii c Li bra ry
(if any)

FDP
(if required)

Figure 11. Virtual Memory Layout

Vertual Memory/Load Maps 163.

Public Library's Context Area

Blank COMMON

TCB

Access protection of 00

Root Control Sections of type 00

Overlay Control Sections of type 00

Access protection of 01

Access protection of 00
(may be changed by
M:SMPRT)

unused

Control Sections of type 10

TREE Tables

REF/BREF Tables (l page)

Root Control Sections of type 01

Overlay Control Sections of type 01

unused

Debug Tables (1 page)

Global and internal symbol tables

M:GP
User's Dynamic Data !

t Formed by monitor when load module is brought' into core.

ttAcquired for symbol tables when associated with Delta.

t
M:GCP

Beginning of user's
..,
--- virtual memory (X'AOOO')

Root

DATA (00)

,"

----/ Page Boundary

} DeBOO)
,..JPage Boundary

'"

Root

PROCEDURE (01)

..

}
-- Page Boundary

_ Page Boundary

___ - End of user virtual
memory (X'1 BFFF'
or X l 1 FFFF')

Fi gure 12. User Vi rtua I Memory Layout, Load Processor'

164 Load Maps

;'
(

/

Pub lie Li brary' s Context Area

Blank COMMON

TeB

Access protecti on of 00

M:GP

1
User's Dynamic Data

j
M:GCP

Access protection of 10 { DCBs

Access protection of 01
Program Pure Procedure

Global Symbol Table

t
Access protection of 00

t
Internal Symbol Table

t Acquired for symbol tables when associated with Delta.

Figure 13. User Virtual Memory Layout, Link Processor

Beginning of user's
--- vi rtua I me mory (X I AOOO I)

D ata (00)

...

J -.;

(XI 16COO')

DCB(10)

(X'17000')

~ t

•

.. Pr ocedure (01)

...

End of user virtua I
memory (X'1 BFFF')

. Load Maps 165

Figures 14 and 15 show sample load map printouts for the
Linkand Load processors respectively. The sample Link pro­
cessor load map (Figure 14) is simple and self-explanatory.

_ The sample Load processor loa,d map (Figure 15), however,
is more complex and requires further explanation.

!LINK LINKBO,VDCB (M) OVER LMN
LINKING LINKBO

SEVERITY 0
LINKING VDCB

SEVERITY 0
'PI' ASSOCIATED.
YOU DO NOT NEED

PI
PREF J:CCBUF
PREF J:AMR
PREF J:JIT
DEF 8C2D 0 M:UC
DEF 16COO 0 VDCB
DSEC 16COO 0 F:LINK
DEF 16C28 0 M:DO
DEF 16CSC 0 F:LINKIN
DEF 16C90 0 M:GO
DEF 16CC4 0 M:LO
DEF 16CF8 0 M:C
DEF 16C2C 0 M:LL
DEF A400 0 VLC
UDEF A400 0 DATA ORG
DSEC AS2E 0 LINK
UDEF A730 0 DATA MAX(TCB ORG)
DEF 17000 0 VPP
DSEC 17000 0 PLSECT
UDEF 17000 0 PURE PROC ORG
DSEC 17044 0 PPLINK
UDEF 17DD9 0 PURE PROC MAX
DEF lCOOO 0 VDP

Figure 14. Sample Load Map Printout
for the Link Processor

For the Load processor, the load map for each segment starts
ona new page. The map consists of a header, an allocation
summary for this segment, and a series of lists of external
definitions and control sections. Separate I ists of PREFs,
SREFs, DDEFs, and ADEFs (absolute DEFs) are generated
only if such items exist in th is segment. Then the relocat­
able DEFs (i.e., an external DEF whose value is an address
as opposed to a constant) and control sections are J isted. If
(MAP) or (MAP ,NAME) was specified on the LOAD card,
the control sections (and the first DEF in each section)
are listed first, then the relocatable DEFs are generated
in alphanumeric order. Library DEFs will not be li~ted

166 Accounting

un less L'DEF and/or UDEF are specified on the command
in conjunction with the MAP option. For the (MAP, VALUE)
option, the DEFs and control sections are listed in the order
of increasing value, with the information for each control
section serving as a header for the DEl=s within that section.

Control sections are presented in the format

value type prot. type

'where

value specifies the hexadecimal address of the be-
ginning of the section.

type specifies LDCB (loader-built DCB), DSECT,
or CSECT.

prot. type specifies ° (Data), 1 (Procedure), or
2 (Static).

For DEFs, the format is

value byte disp. name

where

value specifies the hexadecima I value of the DEF.

byte disp. specifies the byte displacement (0, 1,
2, or 3) for relocatab Ie DEFs only.'

name specifies the symbolic name of the DEF.

All addresses (and control section sizes) are expressed in
word resolution.

ACCOUNTING

A comprehensive accounting summary is generated at the
end of each job. This summary includes both a detai led
I ist of faci I ity usage and an item called "Charge Units",
which is a weighted sum of the other accounting variables,
(e.g., total CPU Time, Cards Read, etc.). The weighting
for each accounting variable are installation dependent and
can be set or modified by the installation manager. I/o
wait operations are not charged to the user, nor are they
accrued as part of the time specified on a LIMIT control
command. Table 28 shows the accounting summary for

.batch jobs. Items for which the value is zero are not
printed in the summary.

<D @@.
LOAD (LMN,EXAMP),(EF,(ROM»,(UNSAT,(C8908314»,(MAP) ,(LDEF) , (UDEF) ,(NOSYSLIB),(ABS),(SL,F)

,,;'(,'(ALLOCATION SUMMARY ~'(~'(

PROTECTION LOCATION PAGES

DATA (00) AOOO 1
PROCEDURE (01) A400 1
DCB (10) A200 1

<:i) SEVe LEV. 7 1

"dddddddd(~'ddddo'('I(,bbb'(~b'(~'<~b'<,'dd<'Id<,'<,,<* SIGMA 5/6/7 /9 LOAD MODULE MAP ,bbbbb'd<,b'dd<,bb'd<'I(,'dd<,'ddd(,'dd<'Id(,'dddd(

,'dddo'd('Iddnbb'<'I(,'d<,'<,'(,,('I(,'('Idddd('Idob'<'I('Id(ACN= F 5 6 08 3 07 ROOT START = A06A 'Idddd<,'d<*'Iob'<,'('Idd<'In'('I<,'< 'Iddddd('Ido'('Iddd(
'I(,'(~'(,'d('I<"<'I<,'<,'<,'<,'<,'(,'d(,'<"<,'<,b'<"<'I<,,('I<,'<,'<"k'l<'I<,'<,,(LMN= EXAMP

~'("("<'Id<"d('I<,'<'I<,'<'I<'I<~'(','<'I<,'<'I<,'<'I<,'<,'<'I<'I<,'<'I<~I<,'d<'I< SGN= EXAMP

B IAS= AOOO ,'<,'dddd(*'Iddddd<,,('Id<**,'dn'<~'<,'ddd<'I<,bbb'<

S IZE=OOO • 6K 'Idd<'I<'I<,'dd<,'dd<,'<,'<'Id<~,('Idd<,'<'I<'Idd<'Iddddd<

+ =DBLE DEF

SEGHI-O

SEGLO-O

00 SIZE=

FINISH

A08D

AOOO

8E

- =LIB DEF

01 PROCEDURE

SEGHI-l

SEGLO-l

01 SIZE=

MODE

A417

A400

18

'I<,'dd<M<M< SREF - SECONDARY REFERENCES NOT LOADED 'Idd<,'d<'Idd<

OPTION

'Iddd<'Iddd< ADEF - ABSOLUTE SYMBOL VALUES ,b'd<,'ob'd<,'<

7 ,'<ROMSIZE 3E8 'I<SEGSIZE
@

,'ddddd<'I< SECT - PROGRAM SECTIONS MAP 'Iddd<,'<'1<

(2)A206 LDCB 2 A206 0 M:DO
A064 DSECT 0 A064 0 Dll1
A06A CSECT 0 A06A 0 * START
A07E CSECT 0 A07E 0 -D

A40C CSECT 1

"l<Md<-Jdd< RELOCATABLE DEFINITIONS SORTED BY NAME -Jd<Md<'I<

'1< =UNUSED DEF

10 STATIC

SEGHI-2

SEGLO-2

10 SIZE=

A3FF ®
A200

200

TYPE

2 7<TREEDIS

A074 0 B A07E 0 -D A064 0 DUM

A206 0 M:DO 8C3C 0 -M:UC 8CF6 0 -M:XX
A07C 0 Y58 @

Notes

A089 0 -G

A06A 0 "<START

1. Specification of "MAP" implies "MAP, NAME"; i. e., the DEFs are sorted by symbolic name.

2. The used library DEFs fo," the load module are listed on the map.

3. The unusued library DEF~i defined in the load module are listed on the map.

4. The loader assigned a severity level of 7 to this load module because it contained unsatisfied PREFs.

5. The protection type boundaries and sizes are expressed in word resolution.

34 WDS

6 WDS

14 WDS

10 WDS
A WDS

6. The external definitions D, G, M:UC, and M:XXare defined in library load modules. START, ROMSIZE, SEGSIZE,
and TREEDIS are unused DEFs (i. e., the loader did not encounter an SREF or PREF corresponding to any of these names).

7. M:DO (a loader-bui It DeB) has protection type 10 (210) ,and begins at X'A206 1
•

Figure 15. Sample Load Map Printout for the Load Processor

Accounting 167

Table 28. Accounting Printout for Batch Jobs

Printed Format Explanation

(Time and Date)

ELAPSED JOB TIME hh:mm:ss Clock time in hours, minutes, and seconds for job or terminal session.

PARTITION NUMBER xx Partition number in which the job ran.

TOTAL CPU TIME x.xxxx Sum of a II execution time (in minutes).

PROCESSOR EXECUTION TIME x.xxxx Shared processor execution time (e. g. , FORTRAN)(in minutes).

PROCESSOR SERVICE TIME x.xxxx Monitor time for CALs issued by shared processors (in minutes).

USER EXECUTION TIME x.xxxx User program execution (in minutes).

USER SERVICE TIME x.xxxx Monitor time for user issued CA Ls (in minutes).

CARDS: CARDS READ xxxx Number of cards read.

CARDS PUNCHED xxxx. Number of cards punched.

PAGES: PROCESSOR PAGES xxxx Number of pages printed by shared processors.

USER PAGES xxxx Number of pages printed by user programs.

DIAGNOSTIC xxxx Number of pages printed through M:DO.
PAGES

TAPES: DRNES ALLOCATED xx NumbE;lr of tape drives allocated.

TAPES MOUNTED xx Number of tapes mounted.

PACKS: SPINDLES ALLOCATED xx Number of disk spindles allocated.

PACKS MOUNTED xx Number of disk packs mounted.

CORE: PEAK CORE (PAGES) xxx Maximum number of core pages used at anyone time.

PAGE. MINUTES xxxxxx Amount of core time used.

I/O: OPERATIONS xxxxx Number of physical I/O actions except terminal and swap I/O.

CALS xxxxxx Number of CA L, 1 operations.

FILE SPACE

PEAK RAD TEMPORARY IXXXX Peak value of temporary RAD granules used.

NET RAD PERMANENT xxxx Net change in accumulated RAD storage (in granules).

AVAILABLERAD PERMANENT xxxx Amount of RAD space avai lable for permanent storage (in granules).

168 Accounting

Table 28. Accounting Printout for Batch Jobs (cont.)

Printed Format Explanation

PEAK DISK TEMPORARY xxxx Peak value of temporary public disk pack granules used.

NET DISK PERMANENT xxxx Net changes in accumulated public disk pack storage (in granules).

AVAILABLE DISK PERMANENT xxxx Amount of public disk pack space available for permanent storage
(in granules).

NUMBER OF SWAPS xxxx Number of times user was swapped.

RESOURCES ALLOCATED

CO=xxx 9T=xxx 7T= X)(X (etc.) Values for resources allocated.

CHARGE UNITS xxx xxx xx Total charge units.

Accounting 169

:PROG~M D~PlJGGINGAIDS

.INTROD~CTION

Batch program errors are r.eported via either a defaul t
mec;han ism or through expl ic i t dump and snap commcmds
supplied by the user in his JCL deck or internally within
h is program. These debug commands are described in this
chapter.

Errors occurring during the execution of a batch user pro­
gram are reported to the user via the error codes and sub­
codes detailed in Appendix B. If the user qoes not choose
to handle these errors himself (i. e., does not use the debug
commands), the mon itor aborts the job and interprets the
cod~s for him by accessing the error message file for an
appropriate message. Th is message is printed together with
the location of the error, the PSD, the general registers,
and, if the error is DCB-related, the contents of the DCB.
For exampl e:

4000 CAN'T READ AN OUTPUT FILE

AT C065

ON DCB M:EO

WHICH CONTAINS

(contents of DCB)

USER's PROGRAM STATUS DOUBLEWORD

(contents of PSD)

USER's GENERAL REGISTERS

(contents of registers)

The memory dumps performed by debug' commands may be
either conditional (dependent on whether errors occurre9
during program execution) or unconditional. All dumps are
taken before the DCBs are closed and are output through
the user's M:DO DCB. If M:DO does not exist or cannot
be opened, a postmortem dump is output to the LP device;
the user's program is aborted if there is no M:Dq DCB for
a snapshot dump.

Postmortem dump (PMD) and snapshot (SNAP) control com­
mands may only be used following a RUN control command
for the program to wh ich they apply. They are not allowed
for load modules created by the LINK command. The PMD
and SNAP control commands may appear in any sequence.

170 Program Debugging Aids

The dump routines list the current Program Status Double­
word (PSD)and registers, followed by the requested memory
areas. In the case of PMD and PMDI, any pages gotten by
M:GP and M:GCP are also I isted. Figure 16 shows the for­
mat of a dump printout.

Onlyone page of storage is reserved for debug control com­
mand Functional Parameter Tables (FPTs) generated by the
program loaders. If this limit is exceeded, the following
error message is listed:

TOO MANY DEBUG COMMANDS

A location appearing in a debug control command may be
I isted as a hexadecimal address, an external defin ition, or
an object module name. Addresses relative to external
definitions consist of the label of the definition optionall y
followed by a signed hexadecimal addend value, for ex­
ample: LOC+B.

All dynamic debug commands (i. e., SNAP, SNAPC, IF,
AND, OR, COUNT) cause the specified instruction to be
replaced by a monitor call. The replaced instruction will
be executed after the specified action takes place.

POSTMORTEM DUMPS

A postmortem dump control command requests the monitor
to dump a selected area of memory. Such a dump is
termed "postmortem" because it is performed after the pro­
gram has been executed or term inated due to error (i. e. ,
"errored"). If an error is detected during program exe­
cution, the mon itor I ists an appropriate error message .
on the LL device, in addition to listing the dump output
on the DO device.

Any number of separate program areas may be specified
for a program, in one or more postmortem dump commands.
If no program areas are specified, all areas having a pro­
tection code of 00 will be dumped. If a single job includes
several programs to be loaded and executed separately,
each such program may have one or more associated post­
mortem dump control commands. The dump printout is in
hexadecimal and BCD.

Postmortem dumps are requested by the PMD control com­
mands, PMD, PMDE, and PMDI.

USERS PROGRAM STATUS DOUBLEWORD

xxxxxxxx xxxxxxxx *eeeeee*

where

x equals the hexadecimal representation of the PSD.

e equals the EBCDIC representation, if printable.

USERS GENERAL REGISTERS

xxxxxxxx xxxxxxxx xxxxxxxx *eeeeee*

xxxxxxxx xxxxxxxx xxxxxxxx *eeeeee*

where

x equals the hexadecimal representation (eight words per line) of the general registers.

e equals the EBCDIC representation, if printable.

THE FOLLOWING SEGMENTS ARE PRESENTLY IN CORE

List of the segments in core if the program is an overlaid program.

ALL USERS DCBS FOLLOW

List of user's DCBs.

SYSTEM CFU FOR ABOVE DCB

List of the CFU if the PMDE control command was used and the DCB is open to a fj Ie.

SYSTEM INDEX BUFFER FOR ABOVE DCB

List of the index buffer if the PMDE control command was used and the DCB has an index buffer assigned.

SYSTEM BLOCK ING BUFFER FOR ABOVE DCB

List of the blocking buff«~r if the PMDE control command was used and the DCB has a blocking buffer assigned.

USER-SPECIFIED DUMP LIMITS FOLLOW

List of any user-specified dump limits or protection types.

USERS DYNAMIC PAGES FOLLOW

List of any presently allocated pages obtained by an M: GP procedure call.

USERS COMMON DYNAMIC PAGES FOLLOW

List of any presently a IIocated pages obtained by an M: GCP procedure call.

Fi gure 16. Format of a Dump Pri ntout

Postmortem Dumps 171

PMD The PMD control commands cause a specified dump
to occur. These control commands must follow the RuN
control command for the program to which they apply.

The form of the PMD control command is

{
PMD 1

! PMDE CsegmentJ[(from, to), ...][,(pp)]
PMDI

where

PMD causes the PSD, registers, the segment names
presently in core (if an overlaid program), all
DCBs, the specified areas, user's dynamic pages,
and user's common dynami c pages to be dumped.

PMDE causes (in addition to the information dumped
by PMb) the system Job Information Table (JIT) and
for each DCB that is open to a fi Ie, the system
Control File Unit (CFU), and the system FPOOls
to be dumped.

Both PMD and PMDE cause a specified dump to
occur only if an error occurred during program
executi on or if the program hds returned contro I
to the monitor through an M:ERR or M:XXX
procedure.

PMDI causes a specified dump to occur whether or
not any errors have been detected. All areas to
be dumped must lie within the designated overlay
segment.

segment specifies the name of an overlay segment
containing the areas to be dumped. If the segment
name is omitted, the specified area currently in
core will be dumped. To dump only the root, the
name of the root segment is specified. If the spec­
ified segment is not in core, no dump wi" occur.

from, to specifies the location of the beginning
(from) and end (to) of an area to be dumped.
Either "from" or "to" may be expressed as a rela­
tive hexadecimal location (i .e., an external defi­
nition followed by an optional hexadecimal addend
value) or a positive (preceded by a "+" character)
absolute hexadecimal address.

pp specifies the memory-access class that is to be
dumped.

where

00 = Read, write, or access from.

01 = Read or access from.

10 = Read only.

172 Snapshot Dumps

and where

Examples:

Read = Program can obtain information from.

Write = Program can store information into.

Access = The computer can execute i nstruc­
tions stored in the protected area.

This example specifies that the data areas of the program
currently in core are to be dumped. It is equivalent to
! PMD (00).

This example specifies that all areas of overlay segment
UNO that have a memory-access code of 10 (i. e., memory
access 10) are to be dumped.

IPMD, EIN (LOCI +5, LOC2-A)

This example specifies that the area to be dumped is that
part of overlay segment EIN beginning five words higher
than location lOCI and ending ten words lower than lOC2.

(PMD (10), (00)

This example specifies that all areas of the program root
segment that have a memory-access code of 10 or 00 are
to be dumped.

SNAPSHOT DUMPS

A memory snapshot dump provides an instantaneous "pictur..e"
of program conditions existing at a particular point in time
during program execution. Such a dump can be obtained
just prior to the execution of any specified instruction in a
user's program. Six control commands and six equivalent
procedures are provided for specifying the circumstances
that wi II produce a snapshot dump and the porti on of mem­
ory that the dump wi" include.

Differences between using a control command and an equi­
valent procedure are: (1) there is no limit to the number
of program areas that can be dumped by a single control
command, while the procedures can dump only one; (2) the
segment and loc fields are used only for control commands;

and (3) the loc specified in the control commands,/~ust
contain an executable instruction that is not a Ite~ed or
replaced during program execution. This final restruction

- is necessary because the monitor replaces the contents of

/

the location with a trap to the monitor's snapshot dump
@utine. The initiating location may contain any type of
executable instruction (e. g., a BAL, LAD, MSP, FDS,
or EXU instruction). In addition, the procedures may not
be the target of an EXU instruction because word 6 of the
FPT contains a branch instruction to the location following
the procedure CA L. For example, following execution of
the instruction at EP, control would be returned to the user
at TAB+ 1 instead of at EP+ 1.

EP EXU TAB

TAB M:SNAP 'SNAP1', (HERE+14, THERE-l)

If the M:DO DCB has not been REFed or defined prior to
an M:SNAP or M:SNAPC procedure reference line, it will
be REFed by the procedure.

SNAP The SNAP control command (and M:SNAP, the
corresponding procedure) requests the monitor to take an
unconditional memory snapshot.

The form of the 5 NAP control command is

15 NAP[,segmentlloc,comL (from[' to])] ...

where

segment specifies the name of an overlay segment
containing the location initiating the dump and
a Iso the areas to be dumped. If omitted, the root
is assumed.

loc specifies rhe location at which the dump is to
be initiated. That is, the specified dump is to
occur just prior to the execution of the instruction
at "Ioc". Note that "Ioc" (and either "from" or
lito II , below) may be expressed as a relative
hexadecimal location (i. e., an external definition
followed by an optional hexadecimal addend
value) or (:] positive absolute hexadecimal address
preceded by a + character.

com specifies a string of up to eight alphanumeric
comment characters that are to be printed with the
dump output. Note that at least one such comment
character must be specified in the command.

from specifies the location of the beginning of an
area to be dumped.

to specifies the location of the end (i. e., highest
core location) of an areel to be dumped.

The form of the M:SNAP procedure is

M:SNAP 'com', (from[,toJ)['NREGS]

where com, from and to are as specified above in the SNAP
control command.

NREGS, if specified, suppresses the printing of the PSD
and the registers in the map; this feature is only available
with the M:SNAP procedure.

Calls generated by the M:SNAP procedure have the form

CAL 1,3 fpt

where fpt points to word 0 of the FPT shown below.

word 0

Chained FPT is the address of an FPT for some other CAll, 3
that is to be executed immediately following the current
CAL 1,3. If it is zero, FPT is not chained.

P 1 specifies whether the snap of the user's PSD and regis- I j
ters is to be suppressed; if set, they are not printed.

word

word 2

word 3

word 4

This is an optional 1-8 characters the user wants printed
with his dump, if it occurs.

word 5

If the CA Ll, 3 is to be executed as the resu I t ot a debug
control command (SNAP, etc.), this is the instruction
from the user's program that was replaced by the CALl, 3.

•

Snapshot Dumps 173

word 6

Examples:

!SNAP TAB, SNAPl, (HERE+l4, THERE-l)

This example specifies that the area beginning twenty word
locations higher (in address) than location HERE and ending
one word location lower than THERE is to be dumped just
prior to the execution of the instruction at location TAB.
The message "SNAPl" is to be printed with the dump. Since
segment is not specified, the root is assumed.

M:SNAP 'SNAPl', (HERE+14, THERE-l)

The call generated by this procedure, if located at TAB in
the user's program, would produce the same dump as the
SNAP control card example above.

SNAPe The SNAPC control command (and M:SNAPC,
the correspondi ng procedure) requests the moni tor to take
a conditional memory snapshot.

The form of the S NAPC contro I command is

!SNAPC[/segment] flag/specification

where

segment specifies the name of an overlay segment
(see SNAP).

flag specifies the name of the test identifier. It
may consist of any character string from one to
eight characters in length. Since the monitor
does not associate the flag with the user's program,
no confusion with program symbols can arise. The
normal state of the flag bit associated with a flag
(in a table established and maintained by the
monitor) is the set state. It is set and reset by
means of the IF, AND, OR, and COUNT control
commands. Unless the flag bit is set, the spec­
ified dump cannot take place.

specification must include both of the required
parameters of a S NAP control commat;ld (i. e. ,
initiating location and comment string) and may
also include any or all of the optional specifica­
tions (see SNAP).

The form of the M:SNAPC procedure is

M:SNAPCflag, 'com', (from, to) [,NREGS]

174 Snapshot Dumps

where com, from,to, and NREGS are specified above in the
SNAP control command, and flag is as specified above in
the SNAPC control command, except that the test identifier
must be the name of a location within the user's program.

Calls generated by the M:SNAPC procedure have the form

CAll ,3 fpt

where fpt points to word 0 of the FPT shown below.

word 0

X'Ol'
1 2 3 4 5 6

where P 1 has the same meaning as in M:SNAP above.

words 1 through 6 of the FPT have the same form as shown
above for the M:SNAP procedure.

word 7

Examples:

I,SNAPC, NIM AT5, LUP+ 1, TP33

This example specifies that, if flag AT5 is in the set state
just prior to the execution of the instruction, whose memory
address is one (word) greater than that of LUP (in overlay
segment NIM), then all general registers and the PSD are
to be dumped. If the dump occurs, the message "TP33" is
printed with the dump.

M:SNAPC AT5, 'TP33'

The call generated by this procedure, if located at LUP in
the user's program, would produce the same dump as the
S NAPC control card example above.

IF The IF control command (and M: IF, the corresponding
procedure) may be used in conjunction with a conditional
snapshot command (see SNAPC). It requests the monitor to
make a specified test at a designated location and, if the
test condition is found to be true, to set the flag bit asso­
ciated with the conditional snapshot. If the test condition
is found to be false, the flag bit is reset by the monitor.

Since the IF control command may be used in conjunction
with other dynamic debug commands (see AND and OR),
the relati ve sequence of such commands may affect the
performance or inhibition of the dump. It is the user's
responsibi I ity to sequence such commands in the order
dictated by the-logical requirements of the conditional
dump.

/
;

Note that the instruction at the test location specifi,6~ in
a dynamic debug command must be executed prior"fb the
execution of the instruction at the location that,initiates

- the dump.

The IF control command is of the form

where

segment specifies the nam~~ of an overlay segment.

flag specifies the name of the test identifier (see
SNAPC).

loc specifies the absolute or relative (external def-
inition)addendJ) hexadecimal location at which
the test is to take place. That is, the specified
test is to occur just prior to the execution of the
instruction at "Ioc ll

•

11 and 12 specify location~; that are to be compared
as specified by IIr" (see r option). They may be
either absol ute or relative and may be indirect
(*1.).

I

xl and x2 specify index registers to be used to
modify the addresses specified by 11 and '2,
respectively. A zero may be used to specify that
indexing is not to be used.

bl and b2 specify the number of bytes to be com-
pared. The permissible values and their meanings
are

Value Meaning

1 Byte 0

2 Halfword 0

4 Fullword

8 Doubleword

The values of bl and b2 are normally the same but
may be different. If omitted, the value 4 (i. e.,
fullword) is assumed.

specifies the type of comparison to be made. The
permissible values and their mea'nings are

Vafue Meaning

GT Greater than

LT Less than

EQ Equal to

GE Greclter than or equal to

LE Less than or equal to

NE Not equal

The form of the M:IFprocedure is

M:IF flag, (ll,xl,bl,r,12,x2,b2)

where flag, 1, x, b, and r are as specified above in the
IF control command.

Ca lis generated by the M: IF procedure have the form

CALl,3 fpt

where fpt points to word 0 of the FPT shown below.

word 0

word

word 2

word 3

r Instruction

GT BCS, 1 0

LT BCS, 2 0

EQ BCR, 3 0

GE BCR, 2 0

LE BCR, 1 0

NE BCS, 3 0

word 4

word 5

word 6

Code for II BCR, 0 Z+ll1 where Z is loc. of CAll, 3

word 7

Snapshot Dumps 175

Examples:

I IF TAU, ETA+ 1, (RHO+A, 4, EO, PSI-5, 5)

This example specifies that two words in core storage are to
be tested to determ i ne whether they are equa I (i. e. ,
identi cal). One of these two words has an address that is
ten word locations greater than that of external definition
RHO, plus the contents of index register 4. The other word
to be compared has an address that is five word locations
less than that of external definition PSI, plus the co.ntents
of index register 5. The example also specifies that the
test is to occur just prior to the execution of the instruction
that is one word location higher than external definition
ETA. If the specified test gives a true result, the flag
named TAU is to be set; otherwise, the flag is to be reset.

M: IF TAU, (RHO+A,4, EO, PSI-5, 5)

The call generated by this procedure, located at ETA+ 1,
would result in the same test as the IF control command
above.

AND The AND control command (and M:AND, the
corresponding procedure) may be used in conjunction with
a conditional snapshot command. It requests the monitor
to make a specified test at a designated location, but only
if the fl ag bi t for the associ ated snapshot is in the set state
when the test is to be made. If the test condition is found
to be true, the flag bit remains set; otherwise, the flag bit
is reset. If the flag bit is in the reset state when the test
is to be made, the test is not performed and, unless the flag
bit is set as a result of some subsequent command, the as­
sociated snapshot does not occur.

The AND control command has the form

lAND[,segment] specification

where

segment specifies the name of an overlay segment.

specification (see IF contro I command).

The M:AND procedure has the form

M:AND specification

where specification is the same as M:IF.

176 Snapshot Dumps

Calls generated by the M:AND procedure have the form

CALl,3 fpt

where fpt points to word 0 of the FPT shown below.

word 0

Words 1 through 7 of the FPT have the same form as shown
above for the M:IF procedure.

OR The OR control command (and M: OR, the correspond-
ing procedure) may be used i.n conjunction with a condi­
tional snapshot command. It requests the monitor to make
a specified test at a designated location, but only if the
flag bit for the associated snapshot is in the reset state when
the test is to be made. If the test condition is found to be
true, the flag bit is set; otherwise, the flag bit remains
reset and, unless the flag bit is set as a result of some sub­
sequent command, the associated snapshot does not occur.

The OR control command has the form

10RLsegment] speci fi cati on

where

segment specifies the name of an overlay segment.

specification (see IF control command).

The form of the M:OR procedure is

M:OR specification

where specifi cation is the same as M:IF.

Calls generated by the M:OR procedure have the form

CALl,3 fpt

where fpt points to word 0 of the FPT shown below.

word 0

Words 1 through 7 of the FPT have the same form as shown
above for the M: IF procedure.

COUNT The COUNT control command (and M:COUNT,
the corresponding procedure) allows the user to specify an
iteration range (and steps within that range) in which a
designated test identifier (i. e., a flag for a snapshot dump)

, 1

will be set. A separate internal counter is establi,~.;hed by
the monitor for each COUNT command and thf/.(count is

- incremented by one whenever {i. e., just beforJYan instruc­
tion at a specified location is executed. T;:le iteration
count is then tested to determine whether the flag for the
specified dump wi II be set or reset. COl/NT operates in­
dependently of any OR, IF, or AND commands.

The flag for the desi gnated dump wi II be set if the current
count is within the range of the specified start and end
count, and if the quotient "{count-start)/step" is an integer.
Otherwise, the flag will be reset.

The COUNT control command has the form

!COUNT [,segment] flag, loc, start, end, step

where

segment specifies the name of an overlay segment.

flag specifies the name of the test identifier (see
SNAPC) •

loc specifies the absolute or relative (external
definition [±addend]) h~~xadecimal location at
whi ch the count is to be incremented by one.

start specifies the decimcd count atwhi ch the testing
of the count is to begin. When the count equals
IIstart", the flag isset (even if IIstartli isequal to zero).

end specifies the deCimal count at which the in-
crementing of the count is to cease. A maximum
value of 2,147,483,647 may be specified •.

step specifies the decimal count increment that
determines the intervals (within the range desig­
nated by "start" and lIend ll) at which the flag can
be set so that conditional dumps can be taken.
Both "stepll and "start ll must be less than lIend li .

The format of the M:COUNT procedure is

M:COUNT flag, start, end, stop

where flag, start, end and step are as specified above in
the COUNT control command.

Calls generated by the M:COUNI procedure have the form

CAll, 3 fpt

where fpt points to word 0 of the FPT shown below.

word 0

word 1

word 2

o 1 2 3

word 3

word 4

word 5

word 6

"BCR,O Z+ll1 where Z is loc. of CAll, 3 I
______ ~m 8 9 10 11 12 13 14 15 16 17 18 ,19 20 21 2~ 23_24 25 26_ 27128 29 30 31

word 7

Examples:

lCOUNT FLG26, HERE+6, 1, 10, 1

This example specifies that the name of the flag to be set
is FLG26, the count is to be incremented by one .just prior
to executing the instruction located six word locations
higher than external definition HERE, the count range
within which the count is to be tested (to determine if
"count-start/stepll is an integer) is from 1 to 10, and the
flag is to be set whenever the count is incremented by one.
Note that, in this example, the flag is set when the coun.t
reaches 1.

M:COUNT FLG26, 1, 10, 1

The call generated by this procedure, if located at HERE+6,
would produce the same results as the COUNT control com­
mand in the prior example.

'DEBUG ERROR MESSAGES

. Table 29 lists the self-explanatory error messages that may
occur when debug commands are used.

------- ------ ---.----

ID~bug Err?r Message 177

Table 29. Debug Error Messages

Key Message

040358 BAD DEBUG LOCATION NAME-

040359 BAD IF/AND/OR TEST NAME -

04035A BAD SNAP FROM/TO NAME-

04035B BAD PMD FROM/TO NAME-

04035C BAD MODIFY NAME-

04035E TOO MANY DEBUG COMMANDS

04035F INVALID DEBUG RECORD TYPE

040360 RUNNER RECEIVED ABOVE I/O ERROR READING LOAD MODULE WITH KEY =

040362 RUNNER RECEIVED ABOVE I/O ERROR READING DEBUG FILE

040363 BAD START ADDRESS NAME-

040364 MODIFY LOCATION NOT WITHIN PROGRAM-

040365 START ADDRESS NOT WITHIN PROGRAM-

040366 BAD SEGMENT NAME IN DEBUG COMMAND -

040367 CANIT GET PAGE AFTER PURE-PROCEDURE FOR DEBUG AND CLOBBER TABLE

040368 PMD FROM/TO ADDRESS NOT WITHIN USER AREA-

040369 DEBUG LOCATION NOT WITHIN PROGRAM-

04036A SNAP FROM/TO ADDRESS NOT WITHIN USER AREA -

040 36 C PMDS AND DEBUGS NOT ALLOW~D FOR LOAD MODULES BUILT BY LINK

040360 NOT ENOUGH CORE TO PROCESS DEBUG COMMANDS

04036E MALFORMED LOAD MODULE HEAD OR TREE RECORD

178 Debug Error Message

8. PREPARING THE PROGRAM DECK

INTRODUCTION
The following examples show some of the ways that program
decks may be prepared for monitor operation. Standard
system dssi gnments are normally assumed.

SYMBOLIC DECK TO PROGRAM LISTING

As indicated in the example, a program listing can be ob­
tained even though no binary (object) output is requested.

In this and subsequent examples of program decks, the "next
cord" could be any appropri'ate control command card such
as JOB or FIN.

COMPRESSED DECK UPDATE

on

IMETASYM SI,CI,CO, LO

!JOB 1234, USER, 5

This example shows how a compressed symbolic deck can be
updated using uncompressed symbol i c correcti ons.

SYMBOLIC DECK TO BINARY DECK

Next Card

Symbolic Program Unit

SI,BO

IJO B 1234, USER, 5

This example shows how a binary deck can be output using
an uncompressed symbolic deck as input. A deck produced
in this way will be in standard Sigma object language and
may be loaded from a card reader, subsequently, as a bi­
nary object module.

SYMBOLIC DECK TO BINARY FILE ON DISK

This example shows how a binary (object) fi Ie on disk can
be formed from the output of a processor. The disk file
thus formed may be accessed thereafter by means of the fi Ie
name ABC. The example specifies that a program listing
is to be output also; but this is optional .

.The file becomes a permanent user's file. That is, it is
placed in the disk area allocated to permanent storage,
since all processor output is treated by the monitor as a_
SAVE fi Ie (see ASSIGN control command).

--

. Preparing the Program Deck 179.

PROCESS, LOAD, AND EXECUTE

This example shows how a program can be input in symbolic
form, then processed, loaded, and executed under .monitor
control. If assembly and run-time are in excess of 15 minutes,
the job is aborted. The title "SAMPLE JOB" is printed at
the top of each page of the assembly listing.

The processor accepts symboli c input from the SI device
(in this example, a card reader) and produces compressed
symbolic output as well as binary object code and a
program listing on the system devices to which such
functions are currently assigned (by standard system
assignments).

The name SAMPL is associated with the load module,
and no load map is output. After being loaded into
core storage, the program is executed beginning with the
instruction at symbolic' location LOC. Ifan error is de-
tected during execution of the user's program, a post­
mortem dump is taken of the 1000 words of the program
starting at location LOC.

CREATE FILE FOR USE BY ANOTHER PROGRAM

This example shows how an output file (SHARE) can be
"created by one executing program (WRITE) in a user's

180 Preparing the Program Deck

job and then used by another executing program (READ)
in the same job.

Next Card

!ASSIGN M:EI, (FILE, SHARE)

LMN WRITE)

Precedi ng Card

UPDATE FILE, OBJECT MODULE, AND LOAD
MODULE OF USER'S PROGRAM

This example shows how a user can accomplish the following:

1. Update a symbolic fi Ie (SOURC 1 becoming SOURC2)
in the user's account.

2. Create a new relocatable object module (ROM) and
place it in the user's account.

3. Execute the program so formed.

EXECUTE PROGRAM FROM USER'S ACCOUNT,
USING DEBUG FEATURE

Next Card

Preceding Card

This example shows how a program (PROGRAM) from the
user's account can be executed, and a snapshot dump of a
specified program area (from TEMIP to XTEMP) taken.

CREATE AND EXECUTE A TEMPORARY PROGRAM

This example shows one way in which a user can create
a temporary load module (NOSAVE) that can be executed
but is released at the end of the lob, because the PERM
option is absent from the LOAD control card.

CREATE A FILE WITH PASSWORD

Next Card

! RUN (LMN, WRITE)

! (SAVE), (PASS, SECRET)

!JOB 123, HAS, 4

This example illustrates how a user can create a fi Ie
(JOB 1) having a password (SECRET). It assumes that a
user's program (WRITE) capable of writing into the fi Ie
(e. g., via an M:WRITE procedure call referencing the
M:EO DCB) has been loaded previously.

CREATE A FILE HAVING PRIVILEGED READ ACCESS

Here, a user creates a fi Ie (PRIVATE) having a password
(PSST), specifying also that other jobs with account num­
ber 122 may read the file (but may not write on it).

READ A FILE HAVING PRIVILEGED READ ACCESS

Next Card

!RUN (LMN, READ)

! (PASS, PSST)

IASSIGN M:EI, (FILE, JOB2, 123),;

!JOB 122, HEY, 3

This illustrates how a user can read a file (JOB2) having
a password (PSST) for which privileged read access has
been established. Note that the account number asso­
ciated with the fi Ie (123) must be given as well as a
password.

--

Preparing the Program Deck 181'

9. PROCESSORS

INTRODUCTION

A variety of processors are avai lab Ie to batch users. Four
of these processors are described in this chapter. Others
are described in their own reference manuals (see Chap­
ter 1). All are called, if avai lable in a particular instal­
lati on, by the processor control commands described be low.

PROCESSOR CONTROL COMMANDS

Processor control commands indicate to the monitor that
control is to be transferred to a specified processor. They
specify the types of input to be accepted and the types of
output to be produced. .

There are no restrictions as to how many or what kind of
processors may be added to the operating system. Processors
may be created, updated or deleted under normal batch
operations. System processors (programs) must be inserted
in the operating system under the monitor's :SYS system
account number.

All processors .!. ;-he :SYS account may be called by !name,
where name is the name of a processor or is the name of the
load module specified in a processor control command. User
programs (processors) are called by I RUN (lMN,name).

The form of a monitor (:SYS) account control command is

(name [options]

where

name is the name of a processor in the :SYS account.

options is a listing of input and output options for
the processor.

For an explanation of the options avai lable for a specific
processor not described in this chapter, see the separate
manual for the particula.r processor. .

PERIPHERAL CONVERSION LANGUAGE

INTRODUCTION

The Peri phera I Conversi on language (PCl) is a uti I i ty
processor designed for operation in a batch or on-line en­
vironment. It provides for information movement among
card devices, line printers, on-line terminals, magnetic

, tape devices, and RAD or disk pack storage.

182 Processors :

PCl is controlled by commands supplied through on-line
terminal input, through a file containing PCl commands,
or through command card input in the batch job stream.
The command language provides for single or multiple fi Ie
transfers with options for se lection, sequencing, formatting,
and conversion of data records. Additional file mainte­
nance and utility commands are provided. The actual input/

. output operations are carried out using standard system CAls.

The following description of PCl is oriented toward the
batch user. However, descriptions of PCl command op­
tions include on-line as well as batch options.

For batch operation, PCl is activated by a !PCl control
command card in the job stream. Once active, PCl reads
subsequent command cards directly through the M:SI DCB
until terminated by an END command card or some other
control command card. Input and output is done through
the M:EI and M:EO DCBs, respectively. Error messages are
transmitted to the device currently assigned to the M:DO
DCB. The user has the option of building a file of PClcom­
mands and having the commands executed, by preceding the
call to PCl by an ASSIGN command that assigns M:SI to
the fi Ie of commands.

SYNTAX CONVENTIONS

PCl is a free form language with a few restricti ons imposed
for simplicity in implementation and use. These restrictions.
are outlined below:

1. Blanks preceding or following an argument field are
. permitted; embedded blanks are not permitted except

within quotes, which delimit a character string.

2. At least one blank must follow each command verb,
except REW and REM when followed by a number (#)
character, and must precede, c:m,d follow each command
preposition (TO, ON, 'INto, or OVER).

3. A PCl command may be continued from one card to the
next by ending the continued card with a semicolon
(i .e., a semicolon must be the last nonblank character.)
There is no limit on the number of continued cards; how­
ever, a command that contains more than 1024charac-'
te..s (exclusive of the semicolon continuation charac­
ters) will be rejected.

Example:

COPYAll IT#1#2#3#4 to LTD;
A#B#C#D

4. II End-of-command ll is indicated by the end of the
input record (column 72) for card input or by a car­
riage return or line feed character for either card or
on-line terminal input.

5. Only one input device and only one output device may
be open at any given time.

6. Any command that begins with an asterisk is treated
as a comment I ine and is output through the M:ll
DCB.

SOURCE AND DESTINATION SPECIFICATION

Most PCl commands require the specification either of a
source alone or of a source and a destination. These speci­
fications can take one of two forms: simple or complex.

A simple specification consists of a device type, a logical
device stream-id, or an operationa I label.

Device types that are known and checked by pel are listed
in Table 30. Other device type codes may be specified and
are checked for validity by the monitor. These device type
codes correspond to unformatted unit record equipment and
their use results in action that is very close to direct device
access.

Any logical device stream that v/as defined at SYSGEN may
be specified and is identified by its stream-id (e. g., ll,
el, P1).

Any operational label that was defined at SYSGEN may be
speci fied. The standard system operati ona I I abe I s and the i r
default device assignments are listed in Table 2.

Table 30. PCl Device Types

Device
Type Description

CR Card reader (not ava n ab I e for on-I i ne oper-
ations). for batch operations, files are sep-
arated by two successive EOD control cards.

CP Card punch.
f----

lP Line printer.
-- ----------"- -

ME For time-sharing mode, on-line terminal.
(Input is terminated by an ESC F - end-of-
file - code.) For batcn processing mode, card
reader for input and line printer for output.

A complex specification is required for devices with mount­
able volumes (magnetic tapes and private disk packs) or for
devices which may hold logically connected groups of rec­
ords called files. In most cases, ea<:h fi Ie has a name by
which it is known to the system. Files with names may be
contained on RAD, public disk pack, private disk pack,
Xerox labeled tape, or ANS labeled tape. Files without
names may exist on mangetic tape. Mountable volumes
carry internally a serial number and the creator's account
number.

Complex specifications allow the USE~r to uniquely identify
device and fi Ie combinations by orgclnization type, volume
identification, resource type, and fi If:! identification. When

90 17 MH-l(9/78)

a complex specification is required the user needs only to
provide enough information to uniquely identify the source
or destination of the data.

The general form of a complex specification is:

ot#vol-id[-rtl(/fidJ for sources

ot[#vol-idJ [-rtJ[/fidJ for destinations

where each of the fields are described briefly below and in
detai I in the sections that follow:

ot is the organization type.

vol-id is the volume identification.

rt specifies a resource type and is the 2-character
identifier of adevicethatwas defined at SYSGEN
to be a resource.

fid is a file identification.

There are some exceptions to this general format. Some
PCl commands allow options to be specified which are
specific to the particular command. In most cases, the
options follow the complete source or desti nation spec i­
fications. However, in some cases, the option may be em­
bedded in the complex specification. In addition, some
commands allow multiple volume-ids and I ists of fi les to
be specified.

ANS tape specifications are a special case. They have
the format

AT[#serial no.] [-rt] [/filename]

The serial number is optional if the file name is present.
Normally I both the file name and serial number are
specified. The serial number may be omitted only when
the fi Ie name specified is that of the first fi Ie on the tape.
In this case, the serial number of the tape should be com­
municated to the operator (e. g., on the job sheet or via
a MESSAGE command).

ORGANIZATION TYPE

The organ ization type specifies the type of disk or magnetic
tape that the data resides on. Valid organization types for
pel are listed in Table 31.

Table 31. pel Organization Types

Organization Description
Type

DC RAD storage. (See Default Disk
Pack, page 184.)

DP Disk pack storage. (See Default
Disk Pack, page 184.)

IT Xerox labeled tape.
AT ANS labeled tape.
FT Free form tape. (Fi les are separated

by an EOF mark.) Note: When keyed
files are copied to free form tape, the
keys are lost.

Peri phera I Conversi on Language 183

FILE AND VOLUME IDENTIFICATION

A file identifier (fid) has three parts: name, account, and
password. t Afile name consists for PCl of 1 t031 char­
acters, tt wh i ch in general may be any characters except
the following PCl delimiters:

Blank /

However, any character including these delimiters may be
used in a file name if the name is delimited by single
quotes, e.g., '(A)'. Single quotes within such a file nome
must each be represented by paired quotes.

A hexadecimal format may be used to represent a fi Ie name
that contains one or more unprintable characters, e.g.,
X'OOE71.

PCl translates any two-character names that start with an *
into three-character names. The first two characters (of
the three-character name), which replace the *, are the
user's job ide For example, *G is the GO file.

When PCl outputs a file name, account, or password, it
prints the string in hexadecimal format if any of the charac­
ters do not belong to the EBCDIC 57-character set, unless
such characters have been read as input to PCL.

Account and password are one to eight characters from the
same set and may also be written as hexadecimal or char­
acter strings. The various combinations are written as
follows:

name

name.account

name .• password

fi lei n current job account.

file in specified account.

file in current job account
with password.

name.account • password file in specified account,
wi th password.

In general, a job may create, delete, read, or modify
files in the account in which it is running. However, files
in different accounts can only be read - not created, de­
leted, or modified. A fi Ie identifier is the same whether
the file is on RAD, disk pock, or labeled tape. However,
in order to access a file on labeled tape, the physical vol­
ume identifier must in general also be given.

To access a file on a private disk pack, the volume identi­
fier of the primary volume must be given. When creating
fi les on a disk pack, all volume identifiers for the volume
set must be specified. The following description of a vol­
ume identifier appl ies to disk pack as well as to labeled
tape.

A volume identifier (vol-id) consists of two ports: a serial
number and an account number.

tAn ANS tape file identifier consists of a name only.

tt Note that most on-line processors allow a maximum of
10 characters for a fi Ie nome. ANS tape fi Ie names ore
I imited to 17 characters.

184 Peripheral Conversion language

The account has the same format as described above, whi Ie
a serial number for devices other than ANS tape is one to
four alphanumeric characters of the same character set as
file identifier, except that the number sign ('> may not be
used unless the serial number is contained in quotes. An
ANS tape serial number may be up to six alphanumeric or
blank characters. The two permissible forms for a volume
identifier are as follows:

'serial no. [#serial noJ ... ['serial no.]

vol ume{s) created, or to be created, in job
account.

'serial no. [#serial noJ ... [#serial noJ. account

volume{s) created in specific account.

The # is a syntactic identifier used to introduce the serial
number, e. g. ,

NMEFA
#MEF l NMEF2. C7308300

The optional serial numbers are used to indicate a multi­
volume file or set of fi les. A maximum of 50 serial num­
bers is allowed.

In general, a job cannot create files on a labeled tape or
disk pack in a different account than that in which it is
executing. However, it may read tapes or disk packs that
were created in different account.

Therefore, in subsequent command descriptions, the follow­
ing convention is adopted. If a volume identifier is used in
an input sense, where either of the above representations is
valid, then it will be symbolized as lI#reel-id lt

• However,
if it is used in an output sense, where only a serial number
is valid, then lI#serial no. II will be used explicitly. In
either case, up to 50 serial numbers may be specified if
a multi-volume file is involved. Free form tape (FT) only
needs to be identified by a serial number.

Scratch Tapes. Although it is not shown in the syntax des­
criptions of the PCl commands, a volume identifier is never
actually required for any command. The absence of a volume
identifier on a labeled tape or free form tape specification
implies that a scratch tape is to be used. If a scratch tape
is used for the fi rst ti me in an input sense, an II 0 error is
reported. If a scratch tape has been written, a command
in the same PCl session that specifies a tape without a
volume identifier, in either an input or output sense, is
interpreted by PCl as referri ng to the same scratch tape.
PCl must be reentered if a second scratch tape is needed.

Default Disk Pack. Although it is not shown in the syntax
descriptions 'of the pel commands, a volume identifier is
not required if the organization type code is DP. If the file

90 17 MH-l(9/18)

is random, the absence of a reel identifier on a disk pack
specification indicates that the public disk pack is to be
used. For other types of files, the absence of a volume
identifier causes the DP organization type code to be
treated the same as DC.

RESOURCE TYPE

The resource type must be a valid 2-character mnemonic for
a device which was defined at SYSGEN to be a resource.
Resource type is a qualifier to thE~ organization type and is
necessary in order to uniquely identify the device. It is
needed only for devices with mountable volumes when more
than one type of device of the same organization type are
present on the system. Thus, when a system has only
800 bpi 9-track tape drives, the organization type l T, FT,
or AT uniquely identifies the device type and the resource
type specification is unnecessary. However, if the system
has, for example, both 9-track and 7-track tapes, then the
resource type must be specified.

SPECIFICATION EXAMPLES

The following examples illustrate simple and complex
specifications. The user should remember that a source or
destination specification requires only the minimum in­
formation necessary to uniquely identify the source or
desti nati on.

1. A file called MYFIlE in the user's account with the
password SECRET.

DC/MYFIlE .. SECRET

In most cases, II DC/" is not needed to identify the
file. However, it is required when specifying a file
name which could be confused with a PCl or CP-V
reserved name. Thus, DC/lP is a file; lP is a line
printer.

2. A file called MYFIlE contained on a two-volume
Xerox labeled tape set whose volume ids are 123 and
456. The tapes are 1600 bpi 6 and the tape devi ce
identification was SYSGENed as BT.

LT#123#456 - BT/MYFIlE

3. The same fi Ie as 2 above, on (lin ANS tape.

4. The same fi Ie on a private disk pack whose device
identification was SYSGENed as DA.

Dp#PAK 1 - DA/MYFIlE

90 1764H-l(9/78)

5. A user wishes to list the disk pack in example 4. The
pack was created in account F65426Ql, which is
not the user's account.

DPNpAK 1. F65426Ql - DA

CAPABILITIES

The following is a I ist of available functions in PCL defined
in terms of the actual command verbs:

COpy device(s) and/or file(s) TOt or INTO device or
new file. - --

COpy device(s) and/or file(s) OVER or INTO device
or existing file. -- --

COPY ALL files in specified account on RAD or disk
pack TO labeled tape(s) or to a device.

COPYALL files in specified account on RAD or disk
pack TO job account on RAD.

COPYALL files on labeled tape(s) TO RAD or disk pack.

COPYALL files on labeled tape(s) TO files on labeled
tape(s) or to a device.

COPYSTD copy control file and all files indicated
within the control file.

DELETE specified files on RAD or disk pack.

DElETEAlL deletes all or a portion of the user's RAD
files on RAD or disk pack.

ERRORS SAVE/REL controls the disposition of output
files when errors occur during copying commands.

LIST a file directory for RAD, tape, or disk pack.

PRINT sends any waiting output for symbiont devices
to them.

REVIEW user's file directory on RAD or disk pack.

SPF space file ±n files on free form (unformatted) mag­
netic tape.

SPR skip records ±n records on free form (unformatted)
magnetic tape.

WEOF write end-of-file on current output device.

REW rewind designated tape.

SPE space to end of last file on tape.

REM remove designated tape or disk pack.

TABS define tab settings for tab expansion.

MOUNT causes designated tape or disk pack to be
mounted .

MODE OPTION COMPAnalLin

In the current version PCl, 7T and 9T are resource types
and are no longer used as mode options. However, for

tWherever TO is specified, ON may be substituted.

Peripheral Conversion Language 185

compatability with previous versions of PCl, 7T and 9T
may still be :.pecified as mode options in all of the com­
mands for which they were previously applicable. If 7T or
9T is specified as mode options, it will be treated exactly
as though it had been specified as a resource type.

FILE COpy COMMAND

The file COpy command permits single or multiple file
transfers to take place between peripheral devices or be­
tween fi Ie storage and peripheral devices. Options are
included for selecting, formatting, and converting data
records. When more than one keyed flle is copied to a
single file, PCl can either merge or concatenate the files
(see" Record Sequencingll below).

COpy COMMAND FORMAT (GENERALIZED)

The COpy command is of the form

COpy source[, source .•• J [~~ER destination]

INTO

where

source may be an input device such as card reader
(CR), a RAD file (e. g., ALPHA), a file on
private disk pack, or a fi Ie on Xerox or ANS
labeled tape or free form tape. File concatena­
tion or merging may be performed by specifying
more than one source device or file.

destination may be an output device such as card
punch (CP), a public disk file, a file on private
disk pack, or a fi Ie on Xerox or ANS labeled tape
or free form tape. Absence of a desti nati on
specification is allowed and will normally cause
fi Ie extensi on to occur.

If the purpose of the COpy is to replace a RAD or disk fi Ie
currently existing in the user's account directory, PCl
requires that the preposition OVER be used in the command.
That is, COpy TO, OVER, or INTO creates a file, but
for the user's protection only COpy OVER can replace an
existing fi Ie. After this check, PCl opens the source de­
vices and fj les one at a time in the order given, and copies
them to the destination device or file. Source files are
closed after they have been copied. The destination device
or fi Ie is closed at the same time.

Note that the TO or OVER command preposition and the
destination are optional. If the COpy command contains
only a source specification, PCl uses the destination de­
vice or file defined on the most recently issued COpy
command containing a destination specification. (This is
illustrated in the sixth COpy example.) It should be noted
that file extension wi II occur in this case. Any PCl com­
mand except COPYAlL may be used between the COpy
defining the destination specification and the COpy with
this specification omitted, since the output specification
will not be changed by these commands.

186 Peripheral Conversion language

File extension may also be accompl ished by using the
INTO preposition in the command.

COpy COMMAND FORMAT (SPECIFIC)

The specific format of the COPY command is

-.. ----- Source 1

C[OPY] sd [(s)][/fid [(5)][, fid[(s)]] ... J

-... 1---- Source 2 -----l ___ _

[isdl(s)][/fid [(s)] [, fid[(s)]] ... J] ...

... Destination

where

sd represents the device portion of a source speci-
fication and may bean input device type (Table 30),
a logical device stream-id, an operational label,
or one of the following:

DP
DC
DP#serial no. [-rtJ
IT#serial no. [-rtl
AT [#serial no.] [-rt]
FT#serial no. [-rt]

where rt is the 2-character identifier of a device
that was defined at SYSGEN to be a resource.

/ separates a PCl identificati on code from the as-
sociated file specifications. The slash is only re­
quired if both device (sd or dd) and fi Ie (fid) speci­
fications are given.

fid represents file identification and has the form

~. raccountJ. password]] name L:
. account

The DC identification code is optional on a COPY
command referencing a RAD or public disk file.
For example, RAD file A may be specified in one
of two formats: DC/A or A. However, this flex­
ibility makes the codes in Table 30 reserved words.
For example, file CR must be referred to as DC/CR
or 'CR', never simply as CR. The fid is not op­
tional for ANS tapes.

separates fi les on the same device.

separates devices. (Interpreted as a conti nuati on
character if it is the last nonblank character of a
card.)

(s) represents specifications for data encoding:
data codes (Table 32), formats (Table 33), modes

90 17 64H-1 (9/78)

(Table 34) I record sequencing (Table 35), ac­
counts (Table 36), ANS tape options (Table 37),
expiration time, and re·eord selection. It has the
form

(option [, option) ••.)

Specifications given at the device level apply to
all fi les on that device. Those given at the fi Ie
level apply to that fi Ie only and have precedence
if a conflict occurs between levels.

Data encoding is discussed in detail below.

dd represents the device portion of a destinati on
specification and may bEl an output device type
(Table 29), a logical device stream-id, an op­
erational label, or one of the following:

DP
DC
DP#serial no. [-rtJ
l T[#serial no.J [-rtJ
A T[# seri al no.l [-rtJ
FTl#serial no.Jl-rt]

where rt is the 2-character identifier of a device
that was defined at SYSGEN to be a resource.

Examples:

1. Assume that three consecutive files, each terminated
by a double I EOD mark, are to be copied from a card
reader to an existing RAD storage file called ALPHA.
(This would only be allowed in batch.) The PCl
command would be: .

COpy CR;CR;CR OVER ALPHA

or

COPY CR OVER ALPHA

COPY CR

COpy CR

2. Assume that a Meta-Symbol SOlUrce program fi I e, co II ed
SOURCE, is to be copied from RAD storage to the line
printer. The command, could be coded as

COpy SOURCE TO lP

This command could also be written as

C SOURCE TO lP

Assume that successi ve cards are to be cop i ed from the
card reader to a new RAD storage file with the fIJI/ow­
ing fi Ie identification: KD. 2024. PLEASE. (This would
only be allowed in batch processing.) Two IEODs are
used to signal the end of the cCird fi Ie. The COpy
command would be:

C CR TO KD. 2024. PLEASE

90 17 64H-1 (9/78)

4. Assume that fi les Band C from 1600 bpi labeled tape
No. 57 are to be copied, in that order, to a new RAD
storage file called B .. PASS.

C IT#57-BT/B,C TO B .. PASS

5. Assume file A from labeled tape No.5, file D from
RAD storage, and all fi les on free form tape No. 8 up
to the next double end-of-file are to be copied to
file A on labeled tape Nos. 6 and 7. Tape No.7 is to
be used only if No. 6 overflows.

6. Assume three successive sets of files, each separated
by a double end-of-file, are to be punched in cards
from free form tape No. 7236. Two I EODs are writ­
ten when the output device is closed.

or

C FT#7236 TO CP

C FT#7236

C FT#7236

C FT#7236;FT#7236;FT#7236 TO CP

DATA ENCODING

The COPY command may contain various codes and speci­
fications which either describe certain characteristics of
input and output files or devices, or which request various
types of data conversion or format changes in the output to
be produced. Partial files may be copied by use of record
selection and output records may have sequence identifica­
tion inserted or deleted.

A description of the available codes and specifications
follows:

Data Codes. Data codes (Table 32) describe the source or
destination data types to be expected or produced for de­
vices only.

Table 32. Data Codes

Code Meaning

E EBCDIC (default data code)

H Hollerith (FORTRAN BCD conversion)

Data Formats. Data formats (Table 33) descri be the source
or desti nation record formatting to be expected or produced.

Table 33. Data Formats

Code Meaning

X Hexadecimal dump

C Meta-Symbol compressed

CRPT Encryption seed
(seed)

Peripheral Conversion Language 187

The X option produces a single-spaced dump on the line
printer or terminal. The presence of an asterisk following
the word count in the dump indicates that omitted lines are
identical to the preceding line.

A C option on an input specifi cation indicates that input is
in compressed format and is to be decompressed on output.
A C option on an output specification indicates that input
is in symbolic form and is to be compressed on output.

The CRPT option is followed by from one to eight hexa­
decimal characters which specify the seed for data encryp­
tion for keyed and consecutive files. Separate algorithms
are employed for keyed and consecutive fi les. A keyed
fi Ie that is encrypted cannot be decrypted if its keys are
stripped. Data encryption is described in Chapter 2.

Modes. Mode codes dictate the control modes for the
specified fi les or devi ces. They are shown in Table 34.

Table 34. Mode Codes - COpy Command

Mode Description

BCD,BIN Binary-coded decimal or binary mode.
These codes are valid for cards, paper tape,
and magnetic tape.

PK,UPK 7 -track bi nary tape packed or unpacked.

SSP,DSP, Single, double or variable format control-
VFC led spacing on line printer or terminal.

NC No carriqge return. Removes carriage-
control character (X'lS' or X'OD'), if
present, from each record on output. This
mode is the default mode if input is from
the termina I.

NB No trailing blanks. Removes trailing blanks
(X'40'), if present, from each record on
output. This operation is performed after
NC, if specifi ed.

VOl(n) Volume number. The va lue n specifies the
volume to use for a mu Iti -volume tape set.

CR Retains carriage return. Must be specified
if carriage returns are to be retained when
copying 'ME' to a file or device.

TX Tab expansion. Va lues specified on a PCl
TABS command are used. If a PCl TABS
command was not issued, the tab values in
the M:UC DCB are used. If no tab va lues
are specified, single spaces replace tabs on
output.

lC.UC Translate alphabetic characters to lower
(LC) or upper (UC) case.

NF No formatting. PCl does not produce any
output that is not in the input data (e. g. ,
file name to lP or separation of files to
LP/UC).

188 Peripheral Conversion Language

Table 34. Mode Codes - COpy Command (cont.)

Mode

FA,NFA

DEaD

K

Description

Fi Ie attributes. These codes specify whether
or not the attributes (i .e., variable-length
parameter list except name, account, and
password) of the source fi Ie are to be car­
ried over to the destination file. If the file
name remains the same from source to
destination and neither FA nor NFA is speci­
fied, the attributes are copied. If the names
of the source and destination files are dif­
ferent, the attributes are not norma Ily
copied; information specified in ASSIGN
or SET commands takes effect.

Double end-of-file. Multiple source files
are copied into a single output file. Thus,
while COpy FT copies files including
single end-of-file marks up to a double end­
of-fi Ie, COpy FT (DEaD) copies files to
a double end-of-fi Ie without copying the
single end-of-fi Ie marks.

Print keys. If the file has a 3-byte key, the
listing is not to be in hexadecimal form and
the destination is a printer or terminal; the
file is assumed to be an Edit format file. The
use of the K option on output causes the key
to be decoded as an Edit I ine number in the
form xxx x . xxx and to be pri nted on the some
line with the record contents (Edit listing
format). A record sequence number pre­
cedes the key. For other types of keyed
files, the key is not decoded and prints on
the line preceding the record contents. If
the file is not keyed, only the record se­
quence number preceds the record contents.

DEN(800) Dual density drive is to be written at
800 bpi.

DEN(1600) Dual density drive is to be written at
1600 bpi.

ASCI

EBCD

JOB

Examples:

Conversion of code between EBCDIC in
core and ASCII on tape is to be done.

No code conversion is to toke place.
EBCDIC code is used on tape.

Specifi es that the fi Ie is temporary; it is to
be kept across JOB steps but released at
job termination. If the second and third
characters of the file name are colons (e.g.,
A::AFILE), the double colons are replaced
by the user's sysid.

l. Assume that fi Ie A is to be copied to labeled tape
No.4 on a dual density drive at 1600 bpi with
exactly the same attributes it had on RAD storage.

C A TO LT#4/A (DEN(1600»

90 17 64H-l (9/78)

2. Assume that RAD storage file A is in compressed form
and is to be converted to symboli c and listed on the
printer with double spacing.

C A(C) TO LP(D SP)

j. Assume that I ine images are to be read from RAD stor­
age file A, converted from EBCDIC to Hollerith, and
written on a 7-track scratch tope in BI N mode.

C DCjA TO FT-7T (BIN,H)

4. Assume that a source file, SOURCE, containing tab
characters was created on-line ':lnd is to be punched
with tab characters expanded and carriage return
characters removed.

C SOURCE TO CP(TX, NC)

Record Sequencing. Insertion or deletion of ·sequence
identification for output data record~; is accomplished by
using record sequencing specifications (Table 35). These
specifications are avaHable only as output options. All of
these options are mutually exclusive ..

Table 35. Record Sequencing Options - COPY Command

Code Description

CS[(id[,n,k])] Card sequencing in columns 73-80.

NCS

id is identificcltion
(0-4 characters)

n is initial value

k is increment'

The odentification (id) is left-justified
in the field (73-80) and is followed by
the sequence numb~~r, which is right­
justified in the some field. The identi­
fi cation may be written as a character
string containing one to four characters;
e. g., ' •. XY'. Precedence is given to
the sequence numb«~r if overlapping
occurs. The default values for id, n,
and k are null, 0, and 1, respectively.

No c:ard sequencin~J. This specifi cation
strips columns73-80 from each output
dota record.

~------+---.. --------.---------I
LN[(n, k»

NlN

line numbering. Sets organization to
keyed. The fi Ie stmts at n and continues
in sequential steps iQf k. line number
and increment formats are as in the Edit
processor. li ne numbers mus~ be between
1 and 9999. Increments may range from
.001 through 100.000. The default
va lues for both nand k are 1 •

No line numbering. Sets organization
to consecutive.

PCl can either merge or concatenate keyed files. If the
LN option is specified for the output fi Ie, concatenation
wi II occur with the new keys as specified in the IN option.
If the NlN option is specified for the output fi Ie, concate­
nation will occur with the output file being a consecutive
(not keyed) fi Ie. If no record sequencing option (i. e. ,

90 17 64H-l (9;78)

neither LN nor NLN) is specified for the output file, a
merge will occur. In this case, if records with duplicate
keys exist, the record from the first specified input file
wi II be replaced (in the output fi Ie) with the record from
the next specified input file. Thus the sequence in which
the input files are specified will determine which of the
identically keyed records appears in the output file. When
concatenating a keyed fi Ie and a consecutive (unkeyed)
file, the.LN or NLN option should be used.

Examples:

1. Assume that a file called SORC on labeled tape #25 is
to be sequenced and punched into cards. The card
identification is SRCE, the initial value is 1, and the
increment is 1. Thus, logical records are to be given
sequential identification as follows: SRCE0001,
SRCEOO02, SRCEOOO3, etc.

C LT#25jSORC TO CP (CS(SRCE, 1, 1))

2. Assume that PC Lis to read suc cessi ve records from free
form tape #73, to assign line numbers starting at 5 in
increments of 5, and to write the records on RAD stor­
age file A.

C FT#73 TO A(LN(5, 5))

3. Assume that two keyed fi I es A and B, are to be con­
catenated into fi Ie C and assigned new keys. Default
keys are to be assigned.

C A, B TO C(LN)

4. Assume that files A and B are to be merged into a new
keyed file C with the output records alternately coming
from A and B.

C A TO C(LN(1,2))

C B INTO C(LN(2,2))

Assignment of Accounts. A combined list (not to exceed
16 entries) of read accounts, write accounts, execute ac­
counts, and the name of a processor under which the file is
to be run, may be added as attr ibutes of th e output fil es as
shown in Table 36.

Table 36. Account Options - COpy Command

Code

RD(ac 1 (, ac
2

, ... J)

Descri pti on

Adds read account(s) on output.
ALL or NONE may be specified
in place of an account.

WR(cic 1 [, ac
2

, ... J) Adds write account(s) on output.
ALL or NONE may be specified
in place of an account.

Specifies the account numbers of
those accounts that may execute
the fi Ie. The value ALL may be
used to spec ify that any account
may execute the file. The value
NON E may be used to specify that
no other account may execute the
file. In all of the above cases,
RD(NONE) is implied in the
absence of any RD specification.

Peripheral Conversion Language 189

Table 36. Account Options - COpy Command (cont.)

Code Descri ption

UN(name
[,name] ...)

Specifies the name(s} of the proc­
essor(s} that may access this file if
the user does not own the file. The
name may be from one to ten char­
acters in length. The processor may
be any shared processor or any load
module in the :SYS account. If
EXecute accounts are specified and
UN is not specified, the file is pre­
sumed to be a load module and may
be executed by any user running
under an EXecute account but not
under Delta.

Examples:

1. Assume that A is to be copied to labeled tape No.4
with the same attributes it had on RAD storage plus the
addition of read accounts ONE and TWO.

C A TO IT*4/A(RD(ONE, TWO»

2. Assume that read account ALPHA, write accounts X
and Y, execute accounts ONE, TWO, and THREE,
and the name of a load modu Ie BETA under wh i ch the
fi Ie SRCE is to be run are to be added as attributes of
fi Ie SRCE.

C SRCE OVER SRCE(RD(ALPHA},WR(X,Y),;

EX (ONE, TWO, THREE),UN(BETA»

ANS Tape Options. Special options for ANS tapes are de­
scribed in Table 37. These options pertain to blocking,
concatenation of files, and changing the record formats.
Unblocking is always performed when copying from an
ANS input tape. FMT, BLK, and REC may be specified for
any input or output device to perform ANS-type blocking.!
deblocking. REC alone causes a" records to be truncated
or padded (with blanks up to 140 characters) to the
specified length.

Table 37. ANS Tape Options - COpy Command

Code Description

FMT(f) Output format. The value of f must be:

F - fixed-length records, blocked.

D - variable length records, decimal
size word, blocked.

V - variable length, binary size half-
word, blocked.

U - unblocked.

The default is U unless input is from ANS
tape, in which case the input's format is
used.

190 Peripheral Conversion Language

Table 37. ANS Tape Options - COpy Command (cont.)

Code

BlK(n}

REC(n)

CAT(n)

Description

Block size. The value n specifies the maxi­
mum block size to be built for FMT(F), FMT
(D), and FMT(V), where l~n ~ 32,767
bytes. The default is 2048 and if n is less
than 18, 18 will be used. The default for
ANS input is the value from the input file.

Record size. The value n specifies the
size of records for FMT(F) only, where
1 ~ n ~ 32,767 bytes. Records will be
truncated or padded to conform, but padding
with blanks will extend only for 140 bytes.
The default is 128 except for ANS input
with F format I for whi ch the va I ue from the
input file is used. The block size must be a
multiple of the record size.

Input option that causes n files of the
specified name on ANS tape to be concate­
nated to produce a sing Ie output fi Ie or
to be output to the named device. (All
of the input fi les must have the same for­
mat.) The value for n may range from 2
to 128.

Examples:

1. Assume that a card deck is to be copied to fi Ie X
on ANS tape number 123456. The tape is to be on
a BT drive. Only the first 72 characters of each
card are to be copied and the block size is to be
720.

C CR TO AT#123456-BT/X(FMT(F),i
BLK (720), REC(72»

2. Assume that four files named A are to be copied from
ANS tape numbers 1, 2, 3, 4, and 5 into a single
RAD file B. (Unblocking is performed if the input
is blocked.)

90 17 MH-l(9;78)

Expiration Option. The expiration option specifies an
expiration time for t'he output file of the COpy command.
It has the format

EXP ddd (lmm, dd, YYI)
NEVER

where

mm, dd, yy spec ifies a particular date: mm is month
and may be one or two digits with a value from
1 to 12; del is day and may be one or two digits
with a value from 1 to 31; yy is year and may be
one or two digits with a value from 0 to 99. (The
format mm, dd, yy may also be written mm/dd/yy.)

ddd specifies the number of days to retain the fi Ie.
It may be from one to three digits in length with
a value from 1 to 999.

NEVER specifies that the file is never to expire
(i. e., it is to have the maximum expiration period
as specified at SYSGEN).

Record Selection. This specification permits selection of
the logical records to be copied by giving the sequential
position of the records within the file. The specification
has the form

x (-y]

All records within the file that have a position, n, satis­
fying the condition x ~ n :5 y are sE~lected. Multiple selec­
tions may be specified if separated by commas (e. g., 1-5,
10, 20-21). Selections do not have to be in sequential
order (but nonsequential selection iis very slow for tape op­
erations). The maximum number of selections is ten for each
input fi Ie

Example:

Assume that sections 'of two files, "'1 and N2, are to be
combined to form a third fi Ie, N3. Records 20-30 and
40-100 of N 1 followed by records 50-75 of N2 are to be
copied, in that order, to N3. The job account is assumed
for fi les N 1 and N3; N2 is from account 34 under pass­
word PA.

C Nl (20-30,40-100), N2. 34. PA(50-75);
TO N3

Valid Option Combinations. Not all combinations of source
and destination devices, data typ.es, formats, modes, or
sequencing codes are valid. TablE~ 38 shows the valid
combinations, the invalid combinations, and the default
provisions for the various possible combinations that are
checked by PCL. Other combinatkms are allowed, parti­
cularly for resource types, and are checked for val idity by

90 17 MH-l(9/18)

the monitor. If an invalid combination is found, an error
message is produced. Execution of the com'T1and mayor
may not conti nue, dependi ng on the severi ty of the error
encountered (see Error Messages).

ACCOUNT COpy COMMAND

This command allows all fi les, or a specified subset of
fi I es, in the current i ob account or some other account
to be copied from a file-type device (RAD, labeled tape,
or disk pack) to any valid output device. It has the
general form

COPYALL[files][TO device]

where

files may be one of the following:

[DP] [.acct] [(s)] [/r]
[DC] [. acctJ[(s)][/r]

DP#reel-id [-rt] [(s)][/r]

LT#reel-id[-rt][(s)][/r]

If 'fi les' not specified, DC is assumed.
device may be one of the following:

DPl(a)]

DC [(a))

DP#serial no. [-rt] [(a)]

L T[#serial no.] [-rt] [(a)]

FT[#serial no.] [-rtJ[(a))

LP

ME

CP

L 1, P1, or any other logical device stream name
defined at SYSGEN

If 'device' is not specified, DC is assumed. De­
vice must be specified if options are specified.

In the above specification,

s may be KEY to copy keyed fi les only; or SEQ
to copy sequential files only; or RAN to copy

Peripheral Conversion Language 191

Table 38. Valid Option Combination

Sou rce Dev i ce Destination Device

Option Codes CR PR DC IT DP FT AT ME DC IT DP FT AT ME lP CP PP

Dota codes E d x d d d d d d d d d d d d d d x
H x - - - - x - - - - - x - - - x -

Dota formats X - - - - - - - - - - - - - X X - -
C x x x x x x x - x x x x x - - x x
CRPT - - x - x - - - x - x - - - - - -

M,,des None - d d - d - - d d - d
~ - - - - - d

BCD d - - - - x x - - - - x x - - x -
BIN x - - d - d d - - d - d d - - x -
7Tt - - - x - x x - - x - x x - - - -
9Tt - - - d - d d - - d - d d - - - -
PK - - - d - d d - - d - d d - - - -
UPK - - - - - x x - - - - x x - - - -
SSP - - - - - - - - - - - - - d d - -
lC - -. - - - - - - x x x x x x x x x
DSP - - - - - - - - - - - - - x x - -
VFC - - - - - - - - - - - - - x x - -
UC - - - - - - - - x x x x x x x x x
NC - - - - - - - - x x x x x x x x x
NB - - - - - - - - x x x x x x x x x
NF - - - - - - - - - - - - - x x - -
CR - - - - - - - - x x x x x x x x x
Val - - - x - x x - - x - x x - - - -
K - - - - - - - - - - - - - x x - -
FA - - - - - - - - x x x - - - - - -
NFA - - - - - - - -)(x x - - - - - -
TX - - - - - - - - x x x x x x x x x
DEaD - - - - - x - - - - - - - - - - -
ASCI - - - x - x x - - x - x x - - - -
EBCD - - - d - d d - - d - d d - - - -
DEN - - - - - - - - - x - x x - - - -
JOB - - x - x - - - x - x - - - - - -

Sequencing None - - - - - - - - d d d d d d d d d
CS - - - - - - - - x x x x x x x x x
NCS - - - - - - - - x x x x x x x x x
IN - - - - - - - - x x x - - - - - -
NlN - - - - - - - - x x x - - - - - -

Accounts RD - - - - - - - - x x x - - - - - -
WR - - - - - - - - x x x - - - - - -
EX - - - - - - - - x x x - - - - - -
UN - - - - - - - - x x x - - - - - -

Expiration EXP - - - - - - - - x x x - x - - - -

Selection x-y x x x x x x x x - - - - - - - - -

legend: d = default x = optional - = error, not available, unreasonable

tFor compatibility with previous versions of PCL.

192 Peripheral Conversion language 90 17 64H-l (9/18)

random files only; and/or PHY to copy in physical
order from tope. All input options valid for COpy­
ing from DC, l T / or DP care also permitted here.

may be b, e; or b; or ,e"

where

b is a fid (see COpy command) repre-
senting the beginning of a range of files
to be copied.

e is a fid (see COPY command) repre-
senting the end of a range of files to be
copied.

Both bond e are used as sort keys only and gen­
erally do not have to nome on existing file. They
may be written in character string or hexadecimal
notation (e.g., A, IAI, or XICl' all represent A).
The e field must be equal to or greater than the b
field. Files on tope are assumed to be in alpha­
numeric order unless the PHY option is used.

If PHY is specified, the bond e fields define a
physical range of files on tope instead of on alpha­
numeric range and therefore must be file names.
If the b field is null, copying begins wherever the
tope is positioned. If the e field is null, copying
continues ~o end of tape. If the file in the b field
does not exist, the comm(Jlnd is aborted. If the fi Ie
in the e field does not exht, copying continues to
end of tape.

Each of the PCl identifi c:ation codes listed in
Table 31 is a reserved word and may not be
used as a range specification unless it is
enclosed in single quotes or unless a DC or
DP identification is specified in the com­
mand. For example, key' DC may be legally
specif~ed CIS "DC, DC/DC, DP/DC,
DC/ABC/DC, etc., but never simply as DC.

Note: The introductory ~Iash V) is optional if no
codes or options precede it.

rt is the 2-character identHier of a device that was
defined at SYSGE N to bE! a resource.

a may be any output option valid for the COPY
command.

pel copies all fi les from the input device to the output
device. Files protected by passwords cannot be copied
with th is command unless the correct password is specified
in the range specification.

A synonym fi Ie is copied to RAD or disk pack only if
the parent fi Ie was copied or previously existed on the
destination device. A synonym fi Ie is always copied to
tope regard less of whether the parent fj Ie is present on
the tape. If a range is specified on the command, the
synonym fi les within the range are copied if the above

90 17 64H-l (9/78)

conditions are met. A parent file of a synonym file within
the range is not copied unless it is also within the range.
If fi les are copied by organization (KEY, SEQ, or RAN
option), synonym files are not copied.

If files are being copied to the line printer, each file copy
is preceded by the name of the file.

If there are no files present in the specified account, the
following message prints:

NO FILES IN DIRECTORY

As each file is copied, its name is listed through M:ll. If
a file cannot be copied, the file nome is followed by on
error or abnormal code and subcode.

PCl indicates completion of the command by printing a
message of the form

.. nnnnnn FilES COPIED
•• ssssss FilES SKIPPED

where nnnnnn is the number of files copied during execu­
tion of the command and ssssss is the number of files that
could not be copied.

Examples:

1. Assume that all files listed in the userls account
directory are to be copied to labeled tape Nos. 3
and 4. Tope No. 4 is to be used only if No. 3
overflows.

COpy ALL TO L T*3#4

Note that RAD or disk storage space previously occu­
pied by this account can be released for other use after
the fj les have been copi ed.

2. Assume that fi les are to be restored on RAD storage
under the job account from labeled tope Nos. 3 and 4,
created under account :SYSGEN.

COpy ALL LT#3#4. :SYSGEN

3. Assume that on exact copy of labeled tape No. 3 is
to be written on tape No.4. The record size must
fit the allowable installation-set allocation of core to
a single job.

COPYALL LT*3 TO LT#4

4 •. Assume that all keyed files on disk pack *5 are to be
written to a scratch tape.

COPYALL DP#S (KEY) TO L T

5. Assume that a" fi I es on RAD between the sort keys C
and L are to be copied to the line printer. Each file
nome will print before the file copy. It is assumed
that records are in BCD format.

COPYALL C, l TO LP

Peripheral Conversion Language 193

6. Assume that all fi les on RAD ar~ to have read ac­
counts 123 and X 100C61 and wri te account XY added
as attr i bu tcs.

COPYAll TO DC(RD(123, XI00C61),;
WR(XY))

CONTIlOL fiLE COpy COMMAND

The control file copy command allows the copying of fi les
whose identifiers appear in a control file. The command
is called" copy standard" and has the form

COPYSTD input [TO output]

where

input specifies the control file and may be one of the
following:

[DP/]

[DC/]fid

DP#serial no.[-rt]/fid

l T# serial no. [-rt]/fid
output may be one of the following:

DP
DC

DP#serial no. [-rt]

IT[#serial no.][-rt]

FT[#serial no.] [-rt]

lP

ME

CP

ll,Pl, or any other logical device stream name
defined at SYSGEN.

rt is the 2-character identifier of a device that was
defi ned at SYSGEN to be a resource.

PCl opens the control file named in the input specification
and unless this fi Ie is a RAD or disk fi Ie in the user's ac­
count and the output device is IDe', the file will be copied
to the specified output device. Subsequently, the files
named in the control file are copied to the output device
usi ng the job account and the same fi I e names as appear in
the control fi Ie for output.

The format of a control file record is an initial character
followed by name, account, and password separated by
periods. For example:

*NAME. ACCT. PASS

*NAME. ACCT

*NAME

194 Peripheral Conversion language

The initial character is unused in the copy operation. If
no account is specified, then the source account for the
fi Ie is assumed to be the same as the account of the control
file itself. Commentary may appear on each record.

Files named within the control file may be from labeled
tape, disk pack, or RAD; in fact all variations allowed for
the input specification field of a COpy command are valid
for these devices except that options are not allowed. De­
vice codes and accounts present in the record override
the one present on the COPYSTD command.

When files are copied from tape, their names should be
listed in the control file in the same order as the files are
stored on f'he tape. Otherwi se, rewi nds wi II occur be­
tween fi I es.

If fi les are being copi ed to the line printer, each fi Ie copy
is preceded by the name of the fi Ie.

As each file is copied its name is listed through M:ll. If a
file cannot be copied, the file name is followed by an error
or abnormal code and subcode.

PCl indicates completion of the COPYSTD command by
printing a message of the form

•• nnnnnn FILES COPIED
.• ssssss FILES SKIPPED

where nnnnnn is the number of the filed copied during
execution of the command including the control file itself I
and ssssss is the number of files that could not be copied.

1. Assume that all files listed in file STDF on labeled
tape No. 5 are to be copied to RAD storage. The for­
mat of fi Ie SrDF is

*A

*B

*C

COMMENTARY

The command to be used is

COPYSTD l T#5/STDF

On completion of the command, the fi les STDF, A, B,
and C, wi II have been cop i ed from tape No. 5 to the
userls RAD account.

2. Assume that all files listed in the file ST in the user's
RAD account are to be copied to his account. The for­
mat of fi Ie ST is

. ALPHA. ACCT. PASS, BETA. :SYSGEN

:IT#5/B, C

90 17 64H-1(9/18)

The command to be used is

COPYSTD ST

On completion of the command four files will have
been copied: ALPHA, BETA, B, and C.

3. Assume that all files listed in file :STD in account
:SYSGEN are to be copied to the I ine printer. The
fi les listed are all in account :SYSGEN. The format
of fi Ie :STD is

=AlPHA, BETA, GAMMA

The command to be used is

COPYSTD :STD. :SYSGEN TO lP

On completion of the command, files :STD, ALPHA,
BETA, and GAMMA will havE~ been copied from ac­
count :SYSGEN to the printer.

OTHER COMMANDS

This group of commands provides file deletion, file posi­
tioning, and other manipulation and maintenance functions.

DELETE The DELETE command deletes complete files
and has the form

DlElETEJ [DC/] fid[, fid] ..•

I
[DP/] I
DpHserial no. [-rt1/

where

rt is the 2-character identifi er of a device that was
defined at SYSGEN to be a resource.

fid specifies the identification of the file to be de-

Example:

leted. Each of the PCl identification codes listed
in Table 31 is a reserved word for this command
and may not be used as a fid unless it is enclosed
in single quotes or unless a DC or DP identifica­
tion is specified i~ the command. For example,
file DC may be specified as 'DC, DC/DC, DP/DC,
DC/ABC, XYZ, DC, etc:., but never simply as
DC.

Assume that RAD storage file SOURCE is to be deleted.
This file is assumed to have been set up under job account
wi th password PLEASE.

o SOURCE •. PLEASE

The message

1 FilES DELETED, 2 TOTAL GRANULES

90 17 64H-1 (9/78)

is printed on the LO device following execution of the
command.

DELETEALL Another delete command deletes all fi les,
or a specified range of fi les, in the job account. The form
of the command is

I fDP/l I
DElETEAl[L] [DC/1 [range]

DpHserial no.[-rt1/

where

rt is the two-character identifier of a device that
was defined at SYSGEN to be a resource.

range specifies a range of files to be deleted
and is described in detail for the COPY­
All command.

Each of the pel identification codes listed in Table 3i is
a reserved word for this command and may not be used as a
range specification unless it is enclosed in single quotes or
unless a DC or DP identification is specified in the com­
mand. For example, key DC may be legally specified as
'DC', DC/DC, DP/DC, DC/ABC, DC, etc., but never
simply as DC.

The commands

DElETEAll DC and DElETEAlL DP

delete all the user's files from public storage. The
command DElETEAlL DP with a serial number speci­
fied deletes all the user's files on the specified private
disk pack.

If there are no files in the job account. PCl responds to
the command with the following message:

NO FILES IN DIRECTORY

As each file is deleted, its name is listed through M:ll. If
a file cannot be deleted, the file name is followed by an
error or abnormal code and subcode. .

Peripheral Conversion language 195

After the delete function is performed, the following
message is printed:

• .nnnnnn FILES DELETED
• .55555 s FILES SKIPPED
• • t tt tt t TOTAL GRANULES

The count (nnnnnn) does not include synonym fi les whi ch
were deleted .

Examples:

1. Assume that all fi les in the job account are to be
deleted.

DElETEAll

A message such as

8 FILES DE lET ED

is printed on the lO device following execution of
the command.

2. Assume that all fi les in the inclusive range B through H
are to be deleted.

DE lETEAll B, H

A message such as

4 FILES DELETED

is printed on the lO device following execution of the
command. -

LIST The LIST command is of the form

{~~} reel-id(-rt][(s)][rongel

[DCl[. acctJ[(s}][range J
l[IST]

{~~} serial no. (-rtJ[(s)l/fid((s)J[,fid((s)JJ ...

fid[(s) J[, fid[(s) 11. ~ .
FT#serial no. [-rt]((s)J

All listed output goes through the M:LO DCB.

The first two formats of this command allow a range speci­
fication, which designates a range of files to be listed. The
format of the range specification is the same as for the
COPY ALL command. If a range is specifi ed, R must be
specified in the S specification.

1.

196

{r~} *reeHd(-rtJ[(s)] (list fi Ie directory)

Resource type (rt) is the 2-character identifier of a de­
vice that was defined at SYSGEN to be a resource.

Periphera I Conversion language

2.

Device option (s) may be A, EA, Cn, or R (separated
by commas).

PCl scans the tape or private pack and lists the names of
all files contained on it. If option A has been requested,
the attributes of each file are also listed. These attri­
butes include for l T and DP:

Size in granules.

Record count.

Organization (keyed, random, or consecutive).

Read accounts, if other than 'ALL' •

Write accounts, if other than' NONE' •

Modification time and date.

Parent name of synonyms.

Maximum key length (for keyed files only).

Execute accounts (i f other than 'ALL').

Read accounts (if other than 'ALL').

Execute vehicles (if present).

If option EA (extended attributes) has been requested,
the following attributes are listed in addition to those
described above:

Expi ration date.

Creati on date.

Backup date.

Last access date.

For ANS tape (AT), options A and EA are equivalent
and list:

Format (F, D, V, or U)

Block length

Record length (F format)

Block count

Fi Ie sequence number

The Cn option controls the list format for a name-only
list. CO indicates that each name is to be listed on a
separate line. The value 1~ n~9 specifies the number
of four-character columns to be occupied by each
name. The default is C3. Names longer than the
allotted space wi II occupy more than one space.

The R option specifies that a range specification wi II
be given in the command.

If a file requires a password or account and none is
given, this will be noted.

rDC](. acctJ[(s)] (list file directory)

Device option (s) may be A, EA, Cn, or R (separated
by commas).

PCl scans the user's RAD or public disk pock file
directory and lists the names of all files. If device
options have been specified, the files are
listed as in 1.

90 17 64H-1(9/78)

~I

3.

4.

a~ } H.ericl no.! -rl][(.)]/fid!{.)][.rid! (.)]] •..

(iist file attributes)

This is a request for the attributes of the indicated files.
Resource type (rt) is the 2-chcnacter identifier of a de­
vice that was defined at SYSGE N to be a resource.
File options (s) may be A or EA. If an account is re­
quired, it must be included in the file identifier. PCL
prints an attribute summary for each fi Ie, as in 1.

fid[(s)][, fid[(s)]J. •. (I ist HIe attributes)

This is a request for the attributes of the one or more
RAD or public disk pack fi les named. Option (s) may be
A or EA. PCL. prints an attribute summary for each
fi Ie, as in 1.

5. FT'serial no. [-rt][(s}}

Resource type (rt) is the 2-character identifier of a de­
vice that was defined at SYSGEN to be a resource.
Serial no. can be a fake. If the tape conforms to Xerox
labeling conventiop.s, PCL prints the serial number,
account, and contents (fi Ie names) of the tape.
Option (s) may be A, EA, en, or R (separated by
commas).

If only the command LIST is given, and no specification
follows, then the command executes as though it were LIST
DC. LIST (A) and LIST. acct are aho valid commands. All
output, except for completion messages, is wriften through
the M:LO DCB.

PCL indicates completion of the command by printing a
message of the form

.• nnnnnn FILES LISTED

where nnnnnn is the I,umber of fi les listed during execution
of the command.

If attributes of all files in a directory are listed, one of the
following messages also prints:

90 17 MH-l (9/78)

· . xxxxxx TOTAL GRANULES
· .xxxxxx TOTAL RECORDS
· .xxxxxx TOTAL BLOCKS

(DC or DP)
(LT)
(AT)

Examples:

1. Assume that all files on RAD under the current job
account are to be listed.

2.

3.

L
Assume that fi les on 7-track labeled tape Nos. 3 and 4
are to be listed. These tapes were created under the
account :SYSGEN.

L LT#3#4. :SYSGEN-7T

Assume that the attri butes of files ALPHA and BETA on
RAD are to be listed. The attributes listed have the
following meaning:

ORG

GRAN

C = consecutive, Knn = keyed file
(nn specifies the maximum key
length)
R = random file.

Number of granules of RAD space
(1 granule = 512 words).

REC Number of records in file.

LAST Modification time and date.
MODIFIED

Name File name.

Read and write accounts print on a separate line if
necessary and wi II print only if they have other
than default values.

L ALPHA, BET A

4. Assume that the extended attributes of file ABC on disk
pack No.2 ore to be listed. This file has had write
account 123 assigned previously.

L Dp#2/ABC(EA)

5. Assume that a tape requires identification. The fake
serial no. X is used in the command.

6. Assume that the files A through B of account X are to
be listed with attributes.

L (R,A) A. X,B

REVIEW In the batch mode, this command functions
identically to LIST. The format of this command is:

REV[IEW] rb~~~rial no.[-rt1/] [(s)][range]
L·account

Peripheral Conversion Language 197

where

rt is the two-character identifier of a device that
was defined at SYSGEN to be a resource.

range specifies a range of files to be reviewed
and is described in detail for the COPY-All
command.

may be either A or EA (as in LIST command).

Example:

;{EV N,X

Each file name within the inclusive range N through X is
listed .

If 0 fi Ie has a password or is open by another user, this is
noted by an appropriate message.

PRINT This command causes output accumulated for
symbiont devices to be placed in the output queue to be
output immediately. (Normally, the output destined for
symbiont devices is not output until the user logs off or
issues a TEL PRI NT command.) The format of the command
is

PRINT

f.RRORS The ERRORS command controls the disposition
of output files when a fatal error occurs during a copy oper­
ation. It has the form

ERR[ORS] {

SAV[E1 }
REL[EASE1
hhhhhh

where

SPF

SAVE causes all subsequent output fi les to be saved
even if a fatal error occurs during their creation.

RELEASE causes all subsequent copy operations
which abort to release the output file. RELEASE
is in effect when PCl is first entered.

hhhhhh is a hexidecimal error code whose value
is to be printed.

SPR These command(s) position free form tape forward
or backward a designated number of fi les (SPF) or records
(SPR). The form of the command is

{ SPF}
SPR FTNserial no.[-rtJ[,±Jn

where

rt is the 2-character identifier of a device thot was
defined at SYSGEN to be a resource.

198 Peripheral Conversion language

+ specifies forward direction.

specifies backward direction.

n is the number of files or records to be skipped.

If the direction is not given, forward direction is assumed.
If an error condition is encountered prior to completion,
an error message is sent to the terminal. If n is not speci­
fied, the value 1 is assumed.

Example:

Assume that free form tape No. 2076 is to be posiLioned
forward two files.

SPT FT#2076,2

SPE This command skips to the position following the
last fi Ie on (Xerox) labeled, free form, or ANS labeled
tape. The form of the command is

SPE nu '.e,ial no.[-,I)

where rt is the 2-character identifier of a device that was
defined at SYSGEN to be a resource.

Prior to issuing this command, the user must make sure that
the tape is not write protected, i.e., the operator must be
informed to insert a ring in the tape if it is a saved tape.

If on error occurs on the command, PCl aborts the job after f
printing the message

PCl ABORT

Example:

Assume that labeled tape No.5 is to be positioned past the
last file on the tape so that additional files may be added.

SPE l TN5

WEOF WEOF writes an end-of-fi Ie. This is an end-of-I
file mark for free form tape units, !EOD for card or paper
tape punches, or top-of-form for the line printers. The
form of the command is

[

FTN serial no. l-rtJj

WEO[F] lP
CP
PP

(Note that only one output will be open at a time.)

If no output device is specified, the current output device
is used.

REW . This command rewinds the specified magnetic tape
reel. I~ has the form

RE~{ [~~]'seriol no. [-,II }
,,~ T[Nserial no.] [-rtJ Vfi lenamel

90 17 64H-1 (9/78)

where rt is the 2-character identifier of a devi ce that was
defined at SYSGEN to be a resource.

Example:

Assume that magneti c tape reel No. 205 is to be ,·ewound.

REW#205

MOUNT This command mounts a magnetic tape or disk
pack. The form of the command is:

MOU[NT]

[~;J# serial no. [-rt]

A T# serial no. [-rt1[/fi lename]
Dp# serial no.[-rtH.account]

[(RING»)

where rt is the 2-character identifier of a device that was
defined at SYSGEN to be a resource and RING specifies
that the device is to be mounted with write access.

Example:

Assume that a tape reel #2075 is to be mounted with a write
ring.

MOUNT #2075 (RING)

REMOVE This command rernoves a magnetic tape or
disk pack no longer needed, thus releasing the drive or
spindle for other purposes. The form of the command is

I
[~~l#seria' no.[-rt] I

REM[OVE] AT[#serial no.] [-rt]Vfilename]
DP#serial no. [-rt][-account]

where rt is the 2-choracter identifier of a device that was
defined at SYSGEN to be a resource.

If a tape is removed, the tape is rewound and a dismount
message is sent to the computer operator. If a disk pack is
removed, the user's interest in that spind Ie is released;
however, no message is sent to the operator.

Example:

Assume that magnetic tape reel No. 2075 is to be rewound
and removed.

TABS This command sets tab values to be used in con­
junction with the TX (tab expansion) option. As rnanr as
16 values may be specified. The form of the command IS

T AB[S] s [, s). . .

where 5 is a column position to be used in expanding a
line. The maximum value for s is 255.

90 17 64H-1 (9/78)

Example:

Assume that tabs are to be set for expansior, in the standard
Meta-Symbol list format.

TABS 10,19,37

TERMINATION OF PCl

PCl operations are terminated by the END command. This
command returns control to the monitor. The form of the
command is

When PCl is terminated by an END command, the following
message is output

PCl PROCESSING TERMINATED

PCl ERROR MESSAGES

PCl reports two types of error conditions. One type consi sts
of the I/O error and abnormal conditions as listed in Appen­
dix B. The other type consists of errors arising out of
the use of PCL commands. These conditions are defined
in Table 39.

A severity level of 1, 2, 3, or 4 is attached to each error
and has the following effect on the execution of the com­
mand in question:

1. Warning

PCl continues execution. The message wi /I be printed
only if a higher error severity level occurs during exe­
cution of a command.

2. Invalid Syntax or I/O Error

This level terminates execution of the command but
continues the syntax edit of the command for both on­
line and batch operations.

3. Format Error

4.

This level terminates the command.

In the case where a command is terminated (severity
level 2 or 3), PCL reverts to the command state if the
error occurs during on-line operations; it reads the
next command card if the error occurs during batch
operations.

Fatal Error

This revel causes PCl to abort the job.

PCl COMMAND SUMMARY

Table 40 is a summary of PCL commands. The left-hand
column gives the command formats. The right-hand column
gives the command function and options.

Peripheral Conversion Language 199

Table 39. PCL Error Codes
-

Hexadecimal Severity
Code Message Level

10100 ARGUMENT GREATER THAN 31 CHARACTERS. 2

10200 ILLEGAL IDENTIFICATION CODE. 2

10300 INVALID REEL NUMBER SPECIF ICATION. 2

10400 ILLEGAL FILE NAME SPECIFICATION. 2

10500 ILLEGAL ACCOUNT NUMBER SPECIFICATION. 2

10600 ILLEGAL PASSWORD SPECIFICATION. 2

10700 TOO MANY FIELDS IN A FILE IDENTIFICATION SPECIFICATION. 2

10800 INVALID FILE RANGE SPECIFICATION. 3

10900 MORE THAN TEN RS FIELDSt. 2

10AOO VOLUME NUMBER BEYOND END OF SNS 2

lOBOO ILLEGAL DECIMAL NUMBER 2

lOCOO CS ID-FIELD GREATER THAN FOUR CHARACTERS. 2

10DOO ERROR ON N OR K VALUE OF CS OPTION. 2

10EOO IMPROPER TERMINATION WITHIN RS, LN, OR CS OPTION. 3

10FOO)) MUST TERMINATE RS I LN I OR CS OPTION. 3

11000 SPECIAL ARGUMENTS MUST HAVE) AS TERMINATION CHARACTER. 3

11100 EH? 3

11200 UNDEFINED COMMAND. 2

11300 ILLEGAL INPUT DEVICE. 3

11400 NO DEFINED OUTPUT DEVICE. 3

11500 ILLEGAL OUTPUT DEVICE. 2

11600 REEL NUMBER SPECIFICATION NOT VALID. 2

11700 FILE SPECIFICATION NOT VALID. 2

11800 DATA CODE SPECIFICATION NOT VALID. 2
,

11900 M,ODE SPECIFICATION NOT VALID. 2
"

11AOO SE.QUENCE SPECIFICATION NOT VALID. 2

11BOO REC,'JRD SELECTION SPECIFICATION NOT VALID. 2

t RS signi fies record' \elec "on.
,

"
200 Peri phera I Conversi on langJ\,1e

\' 90 17 64H-l (9/78)
I

\'1
J

Table 39. PCl IError Codes (cont.)

Hexadecimal Severity
Code Message level

---"
llCOO PK/BIN/7T COMBINATION NOT VALID. 2

11000 NULL ARGUMENT (TWO DELIMITERS IN A ROW). 2

11EOO IMPROPER TERMINATION OF THE COMMAND.

llFOO ONE REEL NUMBER MUST BE SPECIFIED ON THIS COMMAND. 2

12000 'TO', 'INTO' OR 'OVER' NOT SPECIFIED. 3

12100 RECORD SIZE EXCEEDS AVAILABLE MEMORY. 3

12200 INVALID DEVICE TYPE FOR THIS COMMAND. 3

12300 TOO MANY REEL NUMBERS SPECIFIED. 3

12400 'TO' FilE EXISTS 3

12500 INVALID DIRECTION INDICATOR. 3

12600 INPUT RECORD SIZE LARGER THAN 32767 BYTES. 3

12700 INVALID OPTION FOR THIS COMMAND. 2

12800 TOO MANY SN, RD, WR, EX, UN SPECIFICATIONS. 3

12900 RS SPECifiCATION BEYOND END OF FilE. 2

12AOO ERROR IN COMPRESSED INPUT. 3

12BOO PCl NEEDS AT lEAST TWO DATA PAGES TO RUN. 4

12COO TOO MANY ERRORS - PROCESS ABORTED. 4

12000 INVALID TAB SPECIFICATION. 3

12EOO OVERFLOW ON EDIT LINE NUMBER. 3

12FOO ZERO INCREMENT ON CS OR IN OPTION. 2

13000 TX OPTION USED WITHOUT TABS COMMAND. 2

13200 CONFLICTI NG OR DUPLICATE OPTION. 2

13300 MORE THAN 16 TAB VALUES. 2

13500 TOO MANY CHARACTERS IN THE COMMAND. 3

13600 INVALID VALUE FOR ANS OPTION. 2

13900 TAPE DENSITY SPECIFICATION IS IN ERROR. 2

90 17 64H-l (9/78) Peripheral Conversion language 201

Table 40. PCl Command Summary

Command

[dd!(s))Vfid[(s)))]

C OPYALl DP(,.eel-id[-rt][{s)][lr] -----. I [DCl [. acct][(s)][/r] I

[J
lTHreel-id[-rt]U_(s)]_[/I_r] __ --J

....

DC rea)]
Dpl"serial no.[-rt] [(a)]
LT[Hserial no~ ~ -rt][(a»

TO FT[Hserial no.] [-rt] [(a)]
lP
ME
CP
stream-id

-

1
[DCI Jfid I

COPYSTD IT'serial no. [-rt]/fid ------.1
DP'serial no. [-rt]/fid

'-- TO

DC
DpHserial no. [-rt]
IT[Hserial no.][-rt]
FT[Hserial no.][-rt]
lP
ME
CP
stream-id

-

-

202 Peripheral Conversion language

Descri pti on

Copies file{s) between devices or between public storage and devices.

Options:

sd may be DC, CR, ME, operational label, stream-id, or:

DP'serial no. [-rt]

l T'serial no. [-rt]

A T[' seri a I no.] [-rt]

FT'serial no. J-rt]

where rt identifies a device that was defined at SYSGEN to
be a resource.

s may be a data code (E,H); a data format (X,C); a mode
(BCD, BIN, PK, UPK, SSP, DSP, VFC, NC, CR, FA, NFA,
lC, UC, NF, TX, DEOD, ASCI, EBCD, DEN); a sequence
(CS, NCS, IN, NlN); an account (RD, WR, EX, UN);
an ANS tape option (BlK, REC, FMT, CAT); an expiration
time (EXP, JOB); or selection (x-y).

dd may be DC, CP, lP, ME, operational label, stream-id or:

DP'serial no. r -rtJ

l T['serial no.] [-rt]

AT['serial no.] [-rt]

FT['serial no.] [-rt]

where rt identifies a device that is defined to be a resource.

Copies fi les from RAD, labeled tape, or disk pack to any output
device.

Options:

s may be KEY, SEQ, RAN, PHY, and COpy input options.

r is a range specification.

rt identifies a device that is defined to be a resource.

a may be COpy output options.

Copies a control file and all files named within the file.

Option:

rt is the 2-character identifier of a device that was defined at
SYSGEN to be a resource.

90 17 64H-l (9/78)

Table 40. PCL Command Summary (cont.)
~.----------.----.--.----.--------------~---,

Command Descri pti on
~-------------------------------------+---.------

D[ELETE) { D[Dp~/1 • I [til} fid[, fid] •.• sena no. -r

{
[DC/] }

DELETEAl[L] Dp# • I []1 [range) sena no. -rt

E[ND]

ERR[ORS] {SAV[E) }
REL[EASE)
hhhhhh

L[lST]

I'" L T#reel-id[-rtJ((s)][range]
[DCJ(.acct)[(s)][range]
DP#reel-id[-rtJ[(s)][range]
o P#seria I no. [-rtJlfid[(s)J[, fid[(s»)] •••
L T# seri a I no. [-rt)[(s))/fid (s))[, fid[(s)J] .••
fid[(s)J[, fid[(s)J] .••
FT#serial no.[-rt)[(s)]

/ "
I [~D* .erial no.[-rll

MOU[NT]/AT s~rial no.[-rt].". '> [(RING)] t [/fllenamel I
DP# serial no. [-rt]. " •

[.account)

PRINT

I [~~J#serial no.[-rtl I
REM[OVE) AT[serial no.] [-rt) [filename]

DP#!lerial no. [-rt]

90 17 64H-l (9;78)

-

Deletes the specified fites

Option:

rt is the 2-character identifier of a device that was defined
at SYSGEN to be a resource.

Deletes all files or a specified range of files.

Option:

rt is the 2-character identifier of a device that was defined
at SYSGEN to be a resource.

Returns control to the monitor.

Controls the disposition of aborted copy output. The default is
RELEASE. The hhhhhh option is a hexadecimal error code whose
va lue is to be printed.

list file names and, optionally, attributes from the account
directory, tape, or disk pack.

Options:

rt is the 2-chal'acter identifier of 01 device that was defined
at SYSGEN to be a resource.

s may be A, EA, R, or Cn.

Mounts a magnetic tape or disk pack.

Options:

rt is the 2-character identifier of a device that was defined
at SYSGEN as a resource.

RING specifies the device is to be mounted with write
access.

Sends accumulated symbiont output to the output device.

Removes a magnetic tape or disk pack.

Option:

rt is the 2-character identifier of a device that was defined
at SYSGEN to be a resource.

Peripheral Conversion Language 203

Table 40. PCl Command Summary (cont.)

Command

REV[IEW] o P*seria I no.[-rt]j [(s»)[range]
[

[DCI1]

.account

REW ~ [~n'se'ial no.[-,II I
l AT[Nserial no.][-rt)[filename]

SPE {~~ } 'seriol no.[-,II

{
SPFt FT*serial no.[-rt),[± n]
SPR~

TAB[S] s[,s). ••

WEO[FI [~se'ial nO.[-'lll

x

203.1 Peripheral Conversion Language

Description

Reviews all or a specified range of files.

Option:

rt is the 2-character identifier of a device that was defined
at SYSGEN to be a resource.

Rewinds tape reel.

Option:

rt is the 2-character identifier of a device that was defined
at SYSGEN to be a resource.

Spaces to the end of the last file on (Xerox) labeled, free form, or
ANS labeled tape.

Option:

rt is the 2-character identifier of a device that was defined
at SYSGEN to be a resource.

Positions free form tape forward or backward a designated number of
files (SPF) or records (SPR).

Option:

rt is the 2-character identifier of a device that was defined
at SYSGEN to be a resource.

Sets tab values for tab expansion.

Writes an end-of-file on the specified output device.

Returns control to the monitor.

90 17 64H-l (9/78)

(This page intentionally left blank.)

90 17 64H-1 (9/78) 203.2

BATCH PROCESSOR

IITRODUCTIOI

The Batch processor is used to submit a file or a series of
files to the batch queue for execution. Through Batch pro­
cessor commands, the following capabilities are available:

I.

3.

F i I es may be inserted into a fi I e be i ng subm i tted for
execution, thus bringing together more than one file
to create a single job.

Selected strings and fields existing in files being sub­
mitted for execution may be replaced by new strings
and fields.

The ,esults of string and field replacements can be
examined before the job is submitted to the batch
stream.

4. Fi les to be submitted for execution may reside on tape
or pri "ate disk pack.

5. Jobs may be submitted to run in an account other than
the account from which the job is submitted.

The Batch processor may be called in the on-line, batch,
or ghost mode. The file to be submitted must include all
appropriate batch control commands that would be needed
for normal batch job submission. However, the specifica­
tion field on the JOB control command may optionally be
left blank and the Batch processor wi II supply the missing
subfields before submitting the job to the batch queue.
Each record in the fi Ie must not exceed 80 characters.

Any user wi th at I east CO pri vi I ege may enter jobs to run
in accounts other than the account through which the job
is submitted.

When a job is submitted through the Batch processor, the
system responds by assigning the job a job identification
(jid) and sending one of the following messages to the
terminal or p"rinter (via M:LL):

10 = jid SUBMITTED time-date

WAITING: n TO RUN

or

10 = jid SUBMITTED time-date

RUNNING

If the user is an on-line user, he may check the status
of the job by using the JOB command or may cancel the
job using the CANCEL command. These two commands

204 Botch Processor

are described in Chapter 3 of CP-V/TS Reference Man­
ual, 90 09 07.

DATA REPLACEMEIT

There are five Batch processor commands. Three of the five
commands allow the user to request data replacements. As
each record from the input file is read, it is examined to
see if any data replacement requests apply to it. If so, tJ,e
appropriate substitutions are made and the resulting record
is placed in the job stream (except when the" test" mode
has been requested).

Data replacement requests have the same format regardless
of which command they appear in. The general format of
data replacement specifications is discussed in the follow­
ing paragraphs. The specific effect of data replacement
requests is discussed in the descriptions of the individual
commands.

There are two types of data that may be replaced: fields
and strings.

A field is defined to be a contiguous set of nondelimiters
bounded on either side by a delimiter or by the left or right
record boundary. The nondelimiters are:

A-Z

0-9

II

@

$

In the following two lines, the fields are underscored.

AB+44+(XYZ, :ABC} ~ THE FABIT#

IASSIGN F:INPUT,(LABEL,MYTAPE,ACCT#6},(SN,IN}

A string is defined to be part of a field or of a set of
contiguous fields. Any part of a record may be treated as
a string. In fact, the entire record may be treated as one
string. The only limitation on string replacement is that
the string may not contain a quote character (because a
quote character is used to specify a string in a data replace­
ment specification).

The general format of a data replacement specification
is:

{
field } {field }
'string' = 'lstringl'

The left side specifies what is to be replaced and the righf
side specifies the replacement. The format allows fields
and strings to replace each other interchangeably. It also
allows a replacement string to be a null string.

Examples:

In the examples below, the replac:ement specification will
be applied to the following record::

I ASSIGN F:IN, (LABEL, A 123" ACCT#6)

Each exampl e is to be regarded as independent of the other
examples.

Replacement Specification

o. A 123=8456

b. 'IN'='INPUT'

Result

!!ASSIGN F:IN, (LABEL,
8456, ACCT# 6)

tASSIGN F:INPUT,
(LABEL, A 123,
ACCT#6)

c. 'A 123, ACCT#6'=NEWTAPE tASSIGN F:IN, (LABEL,
NEWTAPE)

d. ',ACCT#6'=" IASSIGN F:IN, (LABEL,
A123)

The last example illustrates that siTing data replacement
requests can be used to eliminate characters.

Note that the user must specify data replacement requests
very carefully. For example, the specification 'A' = 'C'
would have the following effect:

!~SSIGN F :IN, (L~BEL, ~123,.sCCT#6)

The request ACCT=ACCOUNT would have no effect be­
cause in this example ACCT is not a field by itself. To
change ACCT to ACCOUNT, the specification might be
'ACCT' =' ACCOUN T' •

The following restrictions are placed on data replacement
specifications. No more than 50 data replacement re­
quests may be made for one file. There may be no more
than 470 characters in the data replacement requests for
one file (including the left and right sides, the equal sign,
and quote characters).

Precedence of data replacement requests is in the order of
appearance within the Batch processor commands. When
replacement of the SClme field or string is requested more
than once, only the first request is honored •.

COMMAND CONnNIlAnON

Due to data replacement specificati'ons, Batch processor
commands can sometimes be quite I~mgthy. Any Batch pro­
cessor command can be conti nued from one card or line to
the next simply by using a semi-colon at the end of the
card or I ine to be continued. If a semi-colon is present
on a card or line, the first character of the next card or
line effectively overlays the semicolon. A command can­
not exceed 255 charOlcters in length.

90 17 MH-l (9/78)

When a command is continued in the on-line mode, the
Batch processor prompts for a continuation line with a
dollar sign ($).

Example:

!BATCH FILE 1, FILE2, i 8
l P1 =224, i 8
.!'XXX, VVV'=FFF e

As will be seen later, the blank after FILE2 is mandatory.
The user must ensure that such blanks are not left out when
continuing a command from one line to the next.

BATCH COMMAIOS

There are five Batch processor commands. They are:

BATCH

DEFAULT

EOF

EXEC

EOF EXEC

The BATCH command is a control command that (among
other things) calls the Batch processor. The remaining com­
mands must be embedded within the file being submitted for
execution. Their location within the file determines what
portion of the file they affect.

All Batch processor commands begin with an exclamation
point, even those that appear within the input deck.

BATCH The BATCH command calls the Batch processor,
specifies the files that are to be submitted for execution,
specifies Batch processor options to be used, and specifies
data replacement. The format of the command is:

I BA TCH [([p] [E][S] [T]) [fid][, fid] .••] [rep[, rep] •..]

where

P specifies the "print" mode. In this mode, every
record that is submitted for execution is printed
through the F:BATCH DCB. (The F:BATCH DCB
is discussed briefly in the section "Batch Error
Messages. ")

E specifie's that EXEC commands are to be honored.
An EXEC command is a Batch processor command
and is described below. If E is not specified,
EXEC commands are treated simply as data records.

S spec i fi es that the input fi lei s not named on the
BATCH command. Instead, the user has issued a
SET or ASSIGN command that has assigned the
M:EI DCB to the input file. For example:

ISET M:EI/INFILE (on-line mode)

lASSIGN M:EI, (FILE, INFILE) (batch mode)

Batch Processor 205

T specifies the II test II mode. In this mode, the
Botch processor prints (through the FiBATCH
DCB) each record it alters because of data re­
placement requests and does not submit the job
to the batch queue for execution. This allows
the user to examine the effects of data replace­
ment requests before submitting the job for ex­
ecution. The original file is not modified, thus
allowing the user to experiment.

fid identifies a file in one of the formats below

name
name. account
name .. password
name. account. password

rep is a data replacement specification in the for-
mat described previously. .

Example:

Assume that the following fi Ie (FILEA) exists in swap
storage:

!JOB MYNAME, MYACCT(SUBACCT#88)

!ASSIGN M:LO, (DEVICE, LP), (VFC)

and that the following BATCH command is used to submit
FILEA:

!BATCH FILEA '881='89', VFC=NOVFC

The following changes would be made:

!JOB MYNAME, MYACCT(SUBACCT#89)

!ASSIGN M:LO, (DEVICE, LP), (NOVFC)

DEFAULT The DEFAULT command allows data re-
placement requests to be made within the input file. The
DEFAULT command may appear any number of times and
anywhere within the fi Ie being submitted and is effective
on subsequent records of that fi Ie. If a data replacement
request on a DEFAULT command is made fora field or string
for which a data replacement request was also made on
the BATCH command, the BATCH request overrides the
DEFAULT request. The format of the DEFAULT command is

! DEFAULT rep[,rep) •••

where rep is a data replacement spec ification in the format
described previously.

EOF The EOF command specifies that all data re-
placement requests made on the previous DEFAULT command
are not to be effective on subsequent records of the fi Ie.

206 Batch Processor

The DEFAULT and EOF command functions may be consid­
ered to operate in pairs. This is shown schematically as
follows:

!DEFAULT
data record(s)

C~~~~ULT data record(s)
IEOF

!DEFAULT
data record(s)

C~~~~ULT data record(s)
!EOF

data record(s)
IEOF

IEOF

The EOF command does not affect data replacement re­
quests that were made on the BATCH command. The format
of the EOF command is:

IEOF

EXEC The EXEC command allows the user to insert
one file within another file. The EXEC command has the
followi ng format:

I EXEC fid [rep(,rep] ••• J

where

fid identifies the fi Ie to be inserted in one of the
formats below:

name
name. account
name •. password
name. account . password

rep is a data replacement specification in the for-
mat described previously.

The EXEC command is replaced by the entire file named on
the EXEC command. The EXEC command can appear any
number of times and anywhere within the user's fi Ie. If the
E option is not specified on the BATCH command, the EXEC
commands are treated as ordi nary data records andare moved
to the job stream. EXEC commands within EXEC fi les are
also treated as ordinary data records and are moved to the
job stream; however, their presence in the file will cause
an error at a later time.

The data replacement requests on the EXEC command apply
only to the EXEC fi Ie. All previous data replccement
requests on the BATCH command or on DEF AUL T commands
do not apply to the EXEC file. (Such dcta replacement
requests resume their effect after the EXEC fi Ie has been
completely inserted.) However, it is important to note that an

EXEC command is subjected to data "eplacements specified
on the BATCH command and on previous DEFAULT commands
before the EXEC command is process!9d.

requests that were made on a DEFAULT command.) The
format of the command is:

IEOF EXEC

DEFAULT and EOF commands within the EXEC fi Ie apply
only to that file and function as previously described. BATCH ERROR MESSAGES

EOF EXEC The EOF EXEC command specifies that
all data replacement requests made on either the BATCH
command or an EXEC command (if i·he EOF EXEC com­
mand appears within an EXEC file) are not to affect sub­
sequent records of the fi Ie. The EOF EXEC command may
appear anywhere within the user's file. (It does not affect

Error cond itions that may be en countered and reported by
the Batch processor are I isted in T abl e 41. These messages
are output through the F:BATCH DCB. In addition to these
error messages, there are several self-explanatory messages
which may be issued by the monitor's file management rou­
tines to report such things as the file does not exist or the
file has a password which was not specified.

T abl e 41 . Batch Processor Error Messages

Message Descri ption

BATCH QUEUE FULL ~~o more symbiont space is available or the queue is full.

BATCH WHAT? No file was specified on the BATCH command and the M:EI DCB was not assigned to
a file.

BLANK NOT ALLOWED A blank is not allowed in the extended accounting field on the JOB command.
IN XACCT FIELD

*****CAN'T GET There is a problem in the system. Notify the system analyst.
DYNAMIC PAGE

COMMAND REJECTED The file contains a BIN or FIN control command. The BIN or FIN command was ignored.

*****COMMAND TOO A BATCH, DEFAULT, or EXEC command (with its continuations) has exceeded 255 bytes.
L.ONG

DATA LOST ON RECORD The job expects card image input: 80 characters-per-record maximum, EBCDIC;
nnnn 120 characters-per-record maximum, binary.

EH? @n A syntax error exi sts at character n.

ILLEGAL ACCOU NT The account on the JOB control command must match the user log-on account.

ILLEGAL NAME The name on the JOB control command must match the user log-on name.

ILLEGAL PRIORITY The terminal-batch job priority may not exceed the user's maximum on-I ine priority.
This maximum value is contained in the user's job information table (JIT).

***** JOB ABORTED Due to syntax errors listed previously, the job was aborted.

***** JOB NOT SUBMITTED Due to syntax errors listed previously, the remainder of the file was processed for
BECAUSE OF ERRORS syntax errors (without data replacement) but the job was not submitted for execution.

MISSING JOB COMMAND The first record of the job must be a JOB control command.

Batch Processor 207

T abl e 41. Batch Processor Error Messages (cont.)

Message Description

*****MODIFIED DATA .Data replacement for the record listed below this message has caused the length of the
RECORD EXCEEDS record to exceed 80 bytes. The remainder of the file is processed for syntax errors
80 BYTES (without data replacement) but the job is not submitted for execution.

NO REPLACEMENT The user specified replacement requests but no matches were found. The job is sub-
MADE mitted for execution unless the "test" mode is specified.

H***SYNTAX ERROR IN Self-explanatory. The remainder of the fil e is processed for syntax errors (without
ABOVE LINE data replacement) but the job is not subm itted for execution.

*****TOO MANY Either more than 50 data replacement requests have been made for one fi Ie or the
RE PLACEME NT REQUESTS number of replacement requests for one fi Ie exceeds 470 characters.

*****WHILE PROCESSING The above errors occurred while processing this file.
FILE fi lename

XACCT FIELD NOT Either a comma or a left parenthesis in an extended accounting field. (The extended
TERM. BY RT. PAREN. accounting field must be terminated by a right parenthesis or the end of the command.)

SHOW PROCESSOR

The Show processor allows the user to display his current
maximum system services and resources, the peripheral de­
vices that he has been authorized to use, and several other
system user parameters. Show is called by a !SHOW com­
mand or by CCI when a job is aborted for exceeding a limit.
The values displayed by Show are the maximum values that
a user can I ega II y request on a ! LIMIT command.

The form of the SHOW command is:

SHOW[option[,optionJ •.• J

The legal options are:

USER displays the log-on account, name, auto­
call processor, and user accumulated space
on both RAD and di sk •

PRIV

DCBS

displays the user accumulated space on both
RAD and disk, the default and maximum file
retention periods, the extended accounting
field, service limits, resource lifits, and
device and feature authorization for both
batch and on-I i ne operati on.

displays all the user DCB assignments in SET
command format.

208 Show Processor/DEFCOM

M:xx
or F:xx

displays the individual DCB requested in SET
command format.

ALL displays all of the information requested by
the USER, PRIV, and DCBS options and is
assumed if no options are specified.

If for any reason SHOW is not able to access the system
default tables, only the user specific values are displayed
and the message

CAN'T GIVE YOU SYSTEM DEFAULT VALUES

is output. Show's output is directed through the M:LO DCB.

DEFCOM PROCESSOR

The DEFCOM processor provides users a means of accessing
core resident data and routines in one load module by an­
other load module. This is accomplished by using a speci­
fied load module as input and producing another load module
that contains only the DEFs and their values, which can
then be combined with other load modules to give them
access to core resident data and routines.

Thus the DEFCOM processor may be used to provide the user
with a common data pool or library. This can be done in the
following way. A load module consisting of DEFs for the
data or the actual routines is produced by the loader, and
the DEFCOM processor is run usin~~ the load module as
input, producing another load module which contains only
the DEFs and the DEF values of the input load module.
When other load modules are created by the loader, the
load module containing only the DEFs can be inc! uded by
specifying the name of the DEF load module on the EF op­
tion of the LOAD control command.

The format of the control command is

rDEFCOM

The input load module name is specified by assigning the
DCB of M:EI to the fi Ie containing the load module. The
name of the load module to be formed by DEFCOM is
specified by assigning the DCB of M:EO to a file with
that name.

Example:

lASSIGN
lASSIGN
!DEFCOM

M:EI, (FILE, M:MON)
M£O, (FILE, MONSTK)

The input load module must not contain any REFs or dummy
sections and must not have been generated with the PERM,
LIB option in the LOAD command used to generate it.

INTRODUCTION

The Symbol Control Processor (SYMCON) provides a means
of controlling the external symbols in a load module. Its
primary function is to give the programmer a means of pre­
venting double definitions of external symbols. A programmer
who is working on one section of a large system need be
concerned only with the external symbo!s that will even­
tua II y be used to communi cate wi th other sections of the
system. He need not be concerned with symbols internal
to a group of ROMs once they have been loaded together.
If someone else uses the same name in another section,
ei ther one or both of the programmers can delete the name
with SYMCON before the sections (Jre combined.

Thus, with the aid of SYMCON, a programmer need only
decide what symbols are to be referenced by external pro­
grams. Then except for these symbols, he may use any
symbols he wants in the various relocatable object modu les
that make up the load module.

Another use of SYMCON is to reduce external symbols. If
certain load modules cannot be combined because their
tables of control information are too large, the tables may
be reduced in size by deleting all but the essential exter­
nal symbols.

SYMCON may also be used to provide the load module
with a global symbol table in Delta symbol table format
for use by Delta during a run. Conversely, a global symbol
table may be discarded from a load module.

Printed output from SYMCON goes to the LO device.

CONVENTIONS

Blanks may be used within SYMCON commands but may not
be embedded within a command verb or symbol. A command
is terminated by the end of the input record or by a period,
and may be conti nued from record to record by use of a
semicolon, in which case the continuation record begins
wi th the fi rst character.

CALLING SYMCON

SYMCON is called by the following processor control
command.

(ISYMCON

However, before SYMCON can be called, the load module
file must be assigned to the element input DCB. This is
done by an ASSI G N control command.

lASSIGN M:EI, (FILE, Imn), (INOUT)

where

M:EI specifies the element input DCB.

Imn is the name of the load module.

INOUT specifies file use in the update mode.

SYMCON reads the load module, processes each command
independently, then rewrites the load module, providing
no major errors are encountered. Note that the old load
module is overwritten unless an abort occurs.

SYMCON may be used as an on-line processor by including
it in the :SYS account. When used in this way, it may be
entered with a SYMCON command in response to a TEL
prompt. When entered, SYMCON will type SYMCON

. HERE and accept commands from the terminal, prompting
for each with an asterisk. The identify of the load module

: SY MCON Processor 209

is establ ished prior to call ing S YMCON, with a SET command
of the form

!SET M:EI DC/lmn

The END command terminates SYMCON.

SYMCON COMMANDS

There are eight S YMCON commands: LIST, DELETE, KEEP,
RETAIN, CHANGE, BUILD, DISCARD, and END. The
function of these commands is to

1. Produce a load map (LIST).

2. Delete specified symbols (DELETE).

3. Delete all symbols but those specified (KEEP).

4. Delete all but a specified range of symbols (RETAIN).

5. Rename a symbol (CHANGE).

6. Build a Delta-format global symbol table (BUILD).

7. Discard a Delta-format global symbol table (DISCARD).

8. Exit from SYMCON (END).

The execution of each command is independent of any
other command. Thus, after the configuration of the load
modul e after the execution of one command is what is acted
on by the next command. This serial nature of operation is
useful for certain kinds of symbol manipulation, such as that
for the DELETE command.

Five SYMCON commands - LIST, DELETE, KEEP, RETAIN,
CHANGE - do not operate on the global symbol table built
by the BUI LD command. Hence a BUILD command must be

- executed after a DELETE, KEEP, RETAIN, or CHANGE
command is executed in order for the global symbol table
to accurately reflect the load module.

LIST

This command I ists the external symbols of the Iqad module
in the same format as the load map. The orderi~g of items
will usually be somewhat different from that produced by
the loader and there may be some additional control sec­
tions (CSECs) I isted corresponding to items (such as DCBs)
obtained from the library. Forward references do not ap­
pear in the load map. The LIST command has the form

LIST

210 SY MC ON Processor

DELETE

This command deletes the specified symbols. Any DEF sym­
bol in the module load map may be deleted unless it enters
into the definition of a DEF symbol or a forward reference
that is not yet completely defined.

The general form of the DELETE command is

DE LETE name [, name] ...

where name is the name of a symbol to be deleted.

Example:

Assume the following Meta-Symbol code.

DEF

REF

A EQU

B EQU

A, B

C

B+C

2

If the external reference C is not satisfied when the load
module is formed, then A is not completely defined. Thus
any attempt to delete B will be ignored and an error mes­
sage will result.

If A can be deleted, the DELETE B will work because A no
longer exists after the DELETE A has been executed.

KEEP

This command deletes all DEFed symbols except those that
fall into the following categories.

1 ." DE Fs I isted in the command.

2. DEFs that help define the symbols I isted in the command.

3. DEFs defined in terms of unsatisfied references (and
used).

The form of the KEEP command is

KEEP name[, name] •..

where name is the name of a DEF symbol to be deleted.

Example:

Assume two ROMs are loaded to form a load module. They
are

DEF A, B,C
REF D, E, F

A EQU 297
B EQU E+3
C EQU F - 1

and

DEF D,E
REF A,C

D EQU A
E EQU 6

LW, R7 C

After these ROMs are in the form of a load module, the,
fol lowing command is issued.

KEEP B, A

DEF symbols A and B are listed in the command, E is used to
define B, and C is defined in unsatisfied terms (namely F).
Thus, A, B, C, and E are not deleted but Dis. DEFs in
the unsatisfied reference category are not deleted if they
help define a core location in the object code (i. e., they
are used)but are deleted otherwise. In the above example,
C would have been deleted had if' not been used in the
LW instruction.

RETAIN

This command deletes all but a specified range of DEFed
symbols with the constraints specified for KEEP. The form
of ,the RETAIN command is

RET AI N name 1 f name2

The symbols name 1 and n'ame2 del imit a range of symbols
as they appear within the load module's REF/DEF stack.
Note that they do n()t refer to an alphabetical range of
symbols, but rather to the actual physical order in which
symbols appear with in the REF/DEF stack.

Note: This command is intended primarily for use in sys­
tem development and modification and should be
used with caution.

CHANGE

This command renames symbols. Unl ike DE LETE and KEEP,
the CHANGE command may be used to operate on any item
with a name (DEF, SREF, PREF, DSEC). The form of the
command is

where

is the name of the symbol to be changed.,

name2 is the name to be given to the symbol iden-
tified by name

1
,

The only restriction is that name 1 must be in the module
and name

2
must not.

BUILD

This command builds a Delta-format global symbol table.
The form of the command is

BUILD [(LIB)]

If the (LIB) option is specified, library DEFs are included
in the global symbol table along with the load module DEFs.
Since Delta symbols are truncated to seven characters in
length, any set of symbols that are alike in the first seven
characters are treated as a multiple DEF and only the one
that appears first is retained in the Delta symbol table. The
Delta symbol table type associated with the symbol is "con-
stant" for DEFs with constant values and is "instruction ad­
dress II for all others.

DISCARD

This command is used to discard a Delta-format global sym­
bol table from a load module that includes one. The form
of the command is

DISCARD

END

This command terminates SYMCON. The form of the com­
mand is

END

SYMiCON ERROR MESSAGES

SYMCON checks for a number of error conditions. Table42
lists SYMCON error messages.

SY Me ON Processor 211

Table 42. SYMCON Error Messages

Message Description

name ALREADY IN STAC K, CHANGE NOT MADE An attempt was made to change the name of an item to a name
currently used by another item.

name APPEARS AS TYPE OTHER THAN DEF, NO The symbol was a PREF, SREF, or DSEC and could not be
ACTION deleted.

CAN'T USE SYMCON ON LINK OR LIBRARY An attempt was made to use SYMCON on a load module library
LOAD MODULES or a Link-built load module.

COMMAND CONTAINS ILLEGAL CHARACTER The command contained a character not in the character set
defined for Meta-Symbol. The job is aborted.

DELTA SYMBOL TABLE ALREADY IN LOAD A BUILD command was given and a global symbol table is already
MODULE, NO ACTION TAKEN included in the load module. The command is ignored.

EH? SYMCON does not recognize the command.

ILLEGAL OPTION An option other than (LIB) was specified on a BUILD command.

ILLEGAL SYNTAX Command syntax was incorrect. The job is aborted.

INCOMPLETE COMMAND LOAD MODULE Th is mess.age indicates that a continuation was specified (with
UNCHANGED a semicolon) but the end of the file was encountered when an

attempt was made to read another card. The job is aborted.

INPUT M:EI FILE IS NOT A LOAD MODULE The M:EI file is either not keyed or is not a properly formed
load module.

M:EI I/O ERR: xxxx xxxx An I/O error occurred accessing M:EI. The content of SR3 is
displayed following this message.

NO DELETIONS RESULTED FROM THIS None of the symbols listed caused any deletions. The load
COMMAND module is unchanged.

NO DELTA SYMBOL TABLE TO DISCARD, NO A DISCARD command was given, but there is no global symbol
ACTION TAKEN table included in the load module. The command is ignored.

NO SYMBOLS FOR DELTA SYMBOL TABLE, A BUILD command was given, but there are no nonlibrary DEFs
TABLE NOT BUILT in this load module, hence no Delta symbol table can be built.

The command is ignored.

name NOT FOUND IN REF/DEF STACK The identified symbol did not exist as an external symbol in the
load module.

OVERLAY PROGRAM, DELTA SYMBOL TABLE A symbol table was built only for the root of the overlay.
BUILT FOR ROOT ONLY

REQUIRED CORE SPACE NOT AVAILABLE This message indicates that the M:GP procedure failed to supply
enough operating space for the processor. The job is aborted.

THESE SYMBOLS WERE DELETED This message includes all deleted symbols, including deletions
name, name ... name caused by other del etions.

name USED IN UNEVALUATED EXPRESSION, This message indicates that the symbol was used to define an
NOT DELETED item that depended on an external reference. The item may

have been a DEF, a forward reference, or a core location of
the object code.

212 SY MC ON Processor

APPENDIX A. DATA CONTROL BLOCK FORMATS

This appendix contains the formats for the three kinds of DCBs created by the monitor: files, devices, and labeled
tape. Following each format, the parameter fields of the DCB are described in alphabetical sequence by their
mnemonic. All referenced addresses have word resolution unless otherwise specified.

FILE DeB

Figure A-l shows the format of the DCB for consecutive, keyed, and random files. All single fields are applicable
to the three kinds of files. Fields shown with a heavy border depict differences between consecutive, keyed, and
random. Shaded fields are not used by the DCB.

Word 0

F W
C A EOP ASN :c 1
D T
10 11 12 13 28 29 30 31

Word 1

CFUA

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

IWoord122 3NrRA4~~~~~~~~T~Y~C~~~~~~:~~~~~~~~BU~F~~~~~~~I~~~~
5 6 7 8 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27 28 29 30 31

Word 3

RSZ ERA

o 231456718 91011i12131415116171819120212223124252627128293031

Word 4 I I

I

, I

ARS ABA

3 14
I I I

0 2 5 6 7 18 9 10 111 12 13 14 151 16 17 18 19120 21 22 23124 25 26 27128 29 30 31

Word 5
0 N E N T N
N x A

X FIll W T C R W R U T N p
K K D N F

I I ORG ACS RAX RNDEV

0 2 3 4 5 6 7 8 9 10 11112 13 14 15 16 17 18 19120 21 22 23 24 25 26 27 28 29 30 31

Figure A-I. Format of File DC B

Appendix A 213

Word 6
1 .

BlK FlP

o 1 2 3 I 4 5 6 7 I 8 9 10 11 I 12 13 14 15 I 16 17 18 191 20 21 22 23 I 24 25 26 271 28 29 30 31

Word 8

o 1 2 3 I 4 5 6 7: 8 9 10 11112 13 14 ~i:6 17 18 19120 21 22 23: 24 25 26 27128 29 30 J
Word 9 ~

I
I

VSND AGE BUFX I
I I

1 I I
0 1 2 3 14 5 6 7 8 9 10 111 12 13 14 151 16 17 18 19 I 20 21 22 231 24 25 26 27128 29 30 31

Word 10

VDeT

o 1 2 345 6 7 31

Word 11

VNO ove FPARAM

.1

0 1 2 3 14 5 6 7 8 9 10 111 12 13 14 15116 17 18 19120 21 22 23124 25 26 27 I 28 29 30 31

Word 12

KEYM elK

. I

o 1 2 3 I 4 5 6 7 8 9 10 11 I 12 13 14 15 I 16 17 18 19 I 20 21 22 23 I 24 25 26 27 I 28 29 30 31

Word 13
I

RWS or TeFU

J I

o 1 2 3 I 4 5 6 7 I 8 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Figure A-l. Format of File DeB (cont.)

. -

214 Appendix A

Word 14

CRECNO or ADDER

012 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Word 15

6 7: B 9 10 11 12

BCOA

012 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Word 17

Je
DESC

PAT (for private files)
SCR PkT

DESC

0 1 2 3 14 5 6 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

I Word 18

c;o
. 3 I 4 5 6 7: 8 9 10

KAD

I I I

11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31 012

Word 19

~ LSLlDES LRDLO SPARE RDLO

PRECNO

012 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Word 20

o 1 2

C~D PBD or RSTORE

3 I 4 5 6 7; B 9· 10 111 12 13 14 15 16 17 1 B 191 20 21 22 231 24 25 26 271 28 29 30 31

Word 21

FLD

DC BCDAM

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Words 22 - n are used for variable length parameters.

Figure A-l. Format of Fi Ie DCB (cont.)

Appendix A 215

In the following field descriptions, the Control column signifies who specifies the contents of the field - the monitor
(M) or the user (U).

Field

ABA

ACD

ACS

ADDER

AGE

ARS

ASN

BBUD

BCDA

BLK

BRS

216 Appendix A

Description

Contains the address of the user's routine that will handle abnormal conditions
resulting from insufficient or conflicting information. (The mon itor returns to
ABA in the FPTif the abnormal condition is the result of a device abnormality.)

Contains the word displacement to the user's account number in the DCB relative
to the start of the variable length parameters. (FLP+ACD = FWA of the EBCDIC
account number.) (Meaningful only during an open or close.)

is the file access indicator (0 = none specified and is treated as sequential,
1 = sequential, 2 = direct). ACS is only meaningful when a file is first written
in the OUT or OUTIN mode. If a file has keyed organization and sequential
access is specified, the keys written must be in ascending order. However, if
the organization is keyed and direct access is specified, the keys can be written
in any order (the mon itor sorts them into ascending order).

ACS is not used by random files.

contains the size of a single entry in the master index structure or directory for
operations on keyed files or directories.

is used to measure the most recent activity on the DCB so that buffer truncation
can be made more efficiently.

contains

1. the actual number of data bytes transferred to or from the user following a
read or write.

2. the number of records remaining to be skipped following a PRECORD opera­
tion that has terminated due to an end-of-file or a beginning-of-file condition.

indicates the assignment type currently in effect for the DCB (0 = null, 1 = fi Ie,
2 = Xerox labeled tape, 3 = device, X'AI = ANS labeled tape).

indicates whether or not the blocking buffer (BUF1) has been changed since it
was last read or initialized (0 = unchanged, 1 = changed). This flag is used to
determine whether or not BUF1 needs to be written out to the data granule spe­
cified in BCDA before truncating the buffer.

BBUD is not used by random fi les.

Word

4

21

5

14

9

4

o

16

contains the disk address of the data granule currently in the blocking buffer (BUF1). 15

BCDA is not used by random files.

contains

1. the byte count of the record segment pointed to by either CBD or PBD, depend­
ing upon the point in time. Not applicable to random files.

2. the number of bytes to :be transferred by the I/O routines whenever called.

indicates whether or not the record segment pointed to be CBD or PBD, depending
upon the point in time, is blocked (0 = unblocked, 1 = blocked).

BRS is not used by random fiI es.

During an open BRS, indicates whether the ITEST' option was indicated in the
open FPT (0 = not test, 1 = test).

6

16

Control

U

M

U

M

M

U,M

U

M

M

M

M

Field

BUF

BUFX

CBO

COA

CFUA

ClK

CMD

CRECNO

CRPT

CYL

Description

contains the address of the user's buffer where the data record is to be read or
written.

contains three 5-bit subfields used to index into the table of pooled buffers
available to the file management system. These indexes have varying signifi­
cance depending on the current operation being performed.

contains the current byte displacement within the blocking buffer (BUF 1). CBD
specifies where the record segment associated with the key pointed to by CMD
begins. When writing on the file, CBD = 0 if a data granule other than the last
is being updated.

CBD is not used by random files.

contains

1. the disk address to be used by the I/O routines whenever called.

2. a counter indicating the number of records to skip. Not applicable to
random fi I es.

contains the address of the CFU associated with the file. During open or close
operations, CFUA contains the address of the ACNCFU and FIlCFU.

contains

1. the net number of data and Master Index granules allocated to or released
from the file during this OPEN. Applicable to keyed and consecutive files.
The field is a 23-bit signed integer with a guard bit 8 that is used to pre­
vent overflow into the KEYM field.

2. the number of granules allocated to the file. Applicable to random files.

contains

1. the byte displacement to the current key entry in the Master Index Buffer
(BUF2) for keyed files. CMD, along with TRN and DCBCDAM, points to
the current position in the file. For consecutive files, CMD contains a
word position in the granule pointed to by DCBCDAM. None of this is
appl icablE~ to random files.

2. the byte displacement to the current entry in the Account Directory or
File Directory index buffer (BUF2) when the file is being opened or closed.

contains the current record number. It is set to

1 • 0 if at the beginning of the fi Ie.

2. the number of records in the file (obtained from TDA in the CFU) if at the
end of the file.

3. the sequential record number of the record most recently read or written.

CRECNO is only used for consecutive files.

specifies the address of a word to be used as the seed for a data encryption
process. This field appl ies to keyed and consecutive fi les only.

specifies whether the file assigned to the DCB is to be allocated by granules or
cylinders (0 = granule allocation, 1 = cylinder allocation). Only meaningful
for publ i c files. ,

Word Control

2 U

9 M

18 M

8 M

M

12 M

20 M

14 M

16 U

o M

Appendix A 217

Field Description Word

DCBCDAM is used when CFUA points to a user CFU for keyed or random files and contains 21
the disk address of the current index granule in the Master Index Buffer (BUF2).
If CFUA points to the Account or File Directory CFU, CDAM in FILCFU or
ACNCFU contains the disk address of the current granule in BUF2. For consec-
utive files, DCBCDAM contains a disk address of a granule, reflecting (in con-
junction with CMD) the location in the file at which the most recent data transfer
operation took place.

DESC is used as storage for file descriptors. For private files, DESC resides in bits 8-14. 17

DIR indicates the direction of the read operation (0 = forward, 1 = reverse). 0

DIR is not used by random files.

EGV

EOP

ERA

EXT

EXTRND

FCD

FC}

FCN

FIll

FLD

FLP

FPARAM

FUN

218 Appendix A

is the event-given flag and indicates whether or not the completion code posted
in the TYC field has been communicated to the user's program by the CHECK
routine (0 = no, 1 = yes).

The CHECK routine is called either directly by the user or indirectly by the
monitor, depending upon the WAIT, ERR, and ABN options in the FPT.

is the ending operation indicator (0 = other, e.g., rewind, 1 = read, 2 = write).
Specifies the type of I/O operation currently or last performed.

EOP is not used by random files.

contains the address of the user's routine that will handle error conditions re­
sulting from insufficient or confl icting information. (The mon itor returns to the
ERA in the FPT if the error condition is the result of a device failure.)

is the file extension flag and indicates whether OPEN is to position to the
beginning or end of a specified file (0 = beginning-of-file, 1 = end-of-file).

is set to one if the RAX field is to be logically appended to the RSTORE field
(RAX being the most significant field) for a random file. Otherwise, it is set
to zero.

indicates whether the DCB is opened or closed (0 = closed, 1 = opened).

indicates whether the DCB has ever been closed. This flag is set when the DCB
is first closed and then never reset (0 = DCB has never been closed, 1 = DCB has
been previously opened and closed).

indicates the current number of I/O operations that have been initiated but not
completed, for this DCB.

indicates the file option last specified (0 = none specified and is treated as
release, 1 =release,'2=save, 3=JOB).

contains the word displacement to the file name in the DCB relative to the start
of the variable length parameters (FLD + FLP = FWA of the EBCDIC file name).
(Meaningful only during open and close.)

contains the address of the start of the variable length parameters in the DCB
(called the file list-pointer).

contains the receiving address of the user's 90-word buffer to which the variable
length parameters from the file's FIT are to be' passed.

indicates the file mode function (0= null, 1 = IN, 2 = OUT, 4 = INOUT,
8 = OUTIN).

"

o

o

3

o

5

o

o

7

5

21

6

11

Control

M

M

U

M

M

U

M

M

M

M

M

U

M

M

U

U

Field

HBTD

KAD

KBUF

KEYM

LRDLO

LS LIDES

MIUD

NACUP

NLR

NOSEP

Description

is the I/O handler's byte displacement indicator and is used whenever the I/O
routines are called to specify the byte displacement within QBUF into which the
data transfer is to begin.

contains

]. the address of the key specified by the user in the read or write FPT.

2. the address of the account number or filename when opening or closing the file.

contains

]. the address of the buffer contain ing the key most recently accessed in the
Master Index or File Directory. The field is set up by the M:DCB procedure
and points to an 8-word buffer following the VLPs. Not applicable to ran­
dom files except during open.

2. the address of the word buffer containing the relative granule number of the
first sector to be used in the I/O transfer. Applicable to random files only.

3. the address of an 8-word buffer in the DCB that contains the TEXTC key of
records reCld sequentially from a keyed file.

contains the mClximum length, in bytes, of ,the keys in the file pointed to by the
DCB. Applicable to keyed files. Maximum value is 31.

contains the I irniting number of contiguous index granules that can be allocated
in level 0 and not be reflected in level 1 before the flag, which signals CLOSE
1'0 reconstruct the higher level index structure, is set (i. e., before SLIDES in
t-he CFU is set equal to 255).

LRDLO is only used for keyed files.

only has meaning if a multilevel index exists and contains

1. the limiting number of index granules that can be allocated in level 0 and
not be reflected in level 1 before the flag, which signals CLOSE to recon­
struct the higher I eve I index structure, is set.

2. the value 255, which means that once a higher level index structure exists,
it is not to be reconstructed.

lSLIDES is only used for keyed files.

indicates whether or not the Master Index Buffer (BUF2) has been changed since
it was last read or initialized (0 = unchanged, 1 = changed). This flag is used
to determine whether or not BUF2 needs to be written Ol:Jt to the granule spe­
cified in either DCBCDAM or CDAM in FIL.CFU or ACNCFU before truncating
the buffer.

indicates whether the file's descriptors indicate that the last access date is not
to be updated (0 = may be updated, 1 = may not be updated).

indicates whether or not the record segment pointed to by CBD is the first record
in a continued data record (0 = second or nth record segment, 1 = first or only
record segment). NLR is only meaningful duri.ng a WRITE operation.

specifies whether or not granul es are to be allocated from RAD (0 = no, 1 = yes).
Normally, granules are allocated on DP. However, if all the devices of the nor­
mally allocated type are saturated, the system attempts to allocate on an alternate
device. The order of allocation is DP and RAD if the NOSEP flag is reset. If the

Word Control

o M

18

U

M

10 U

12 U

19 U

19 U

16 M

5 M

16 M

o U

Appendix A 219

Field

NOSEP
(cont.)

NRA

NWK

NXTA

NXTF

ONWK

ORG

OVC

PAT

PBD

PRECNO

220 Appendix A

Description

NOSEP flag is set, granules will be allocated from RAD if DEVICE, DC was
specified. This flag has no meaning for private files.

NOSEP is not used by random files.

indicates the number of recovery tries that may be attempted before a device
error message is to be logged.

indicates whether or not NEWKEY was specified in the M:WRITE FPT (0 = replace
an existing key, if the key does not exist, take an abnormal return; 1 = write a
new key, if the key already exists, take an abnormal return). If ONWK is set,
the NWK flag is ignored.

NWK is only used for keyed files.

is the next account indicator and specifies whether this account (i. e., the
account number in the DCB/JIT) or the next account in the Account Directory
(i. e., the one following the account named in the DCB) is to be assigned to the
DCB at OPEN (0 = this account, 1 = the next account). If an account number
is not specified in the DCB and the NXTA indicator is set, the first account in
the Account Directory is put in the DCB and noth ing more is done unless NXTF
is also set. After a file is open, the bit is set to 1 if the DCB is open to a star
file (see Glossary); otherwise, it is set to O.

is the next file indicator and specifies whether th is file (i. e., the file named in
the DCB/FPT) or the next file in the File Directory (i. e., the one following the
file named in the DCB) is to be assigned to the DCB at OPEN. If a file name is
not specified (in either the DCB or FPT), the first name in the File Directory is
put in the DCB and assigned (0 = this file, .1 = next file).

indicates whether or not ONEKEY was specified in the M:WRITE FPT (0 = check
NWK flag, 1 = if the key already exists, replace the corresponding record,
otherwise write a new record).

ONWK is only used for keyed files.

is the file organization indicator (0 = none specified and is treated as consecutive,
1 = consecutive, 2 = keyed, 3 = random).

is the open volume count and only has meaning for private files.

1. for consecutive private files, OVC indicates whether or not the volume
pointed to by VNO is opened or not (0 = no, 1 = yes).

2. for keyed or random private files, OVC contains a count of the numbers of
vol umes that have been opened.

contains the allocation table address of the private vol~me pointed to by VNO.
Only has meaning for private files.

is the previous buffer displacement indicator, specifying at which byte in the
blocking buffer (BUF1) the previous record segment begins.

PBD is not used by random fil es.

contains the direction (+ or -) and the number of records that must be skipped
from the position indicated in CRECNO prior 'to a data transfer operation (read,
write, or delete).

PRECNO is onl y used for consecutive files.

Word Control

2 U

5 U

16 U

5 U

5 U

5 U

11 M

17 M

20 M

19 M

Field

PRIV

OBUF

RAX

RBBI

RDLO

RNDEV

RSTORE

RSZ

RWS

S

SCR

indicates whether the file assigned to the DCB is public or private (0 = public,
1 = private)., Public files reside on public devices and private files reside on
private volume sets.

contains

1. the buffer address to be used by the I/O routines whenever called.

2. the address within the user's buffer where the next record segment begins.

OBUF, 2 is not applicable to random files.

controls read' ahead. If set to X'FF', no read ahead is possible. If set to zero,
no read ahead is in progress. Otherwise, RAX contains an index into read
ahead tables"

is the releasEI blocking buffer inhibit flag and indicates whether or not the
blocking buffer (BUFI) should be released during end-action after the data
granule has been read into (BUFI) and the record segment has been transferred
to the user's buffer. (0 = release BUFI, 1 = do not release BUFI.)

RBBI is not used by random files.

contains a tally (up to 255) of the number of index granules that are read or
inserted at level 0 to locate the position of a user-specified key entry at level O.
If RDLO is greater than LRDLO, the flag, which signals CLOSE to reconstruct
the higher level index structure, is set.

RDLO is only used for keyed files.

contains the type of device requested for file allocation (0 = none specified and
for private filles gets changed to X'B', 7 = RAD, and X' B' = DP).

contains the number of granules to be allocated to the file.

RSTORE is used by random files only. If RSTORE value is zero when a random
file is created, an abnormal return is made with a code of X'14'. Bits 8-15 of
word 5 are used by random files as a high order extension of this field if the
EXTRAND bit us set.

indicates the default record size, in bytes."

indicates

1. the requested number of bytes to be read or written from the user's buffer
(BUF). DlIJring the I/O operation, RWS is decremented by the value in BLK
each time that a record segment is either output or blocked. At the termi­
nation of the I/O operation, RWS is set equal to ARS. Applicable to keyed
and consecutive files.

2. the requested number of bytes to be read or written from the user's buffer
(BUF). At the termination of the I/O operation, RWS is set equal to ARS.
ApplicablE! to random files.

contains the value of the S field from the mode specification in the Open Cal FPT.
S = 1 means SHARE; S = 0 means EXCLUSIVE.

indicates the byte length of the key portion of the entries in the Master Index
currently referenced by the DCB. This can be the Master Index for the Account
Directory, the File Directory, or the user's file.

Word Control

o M

7 M

5 M

16 M

19 M

5 u

20 U

3 U

13 M

7 u

17 M

Appendix A 221

Field

SPARE

SWXV

TBT

TCFU

TRN

TYC

UBTD

USR

VDCT

222 Appendix A

Description

contains the number of spare byte positions to be left unused in the end of the
current index granule in the event that the key to be added is the last key in
the file.

SPARE is only used for keyed files.

is the switch volume flag and indicates whether or not the current volume is to
be switched to the next volume after all updated buffers have been output to the
current volume (0 = no, 1 = yes). Only used for consecutive private files.

not meaningfully used for files; however, the flag does get set and reset.

contains the address of the user CFU during CLOSE.

indicates, for keyed files, whether the file is positioned before or after the
data record whose key entry is po inted to by CMD (0 = after, 1 = before). For
consecutive files, this bit is set only if the most recently executed operation
on the file was a read backwards.

indicates the type of completion of an I/O operation.

TYC Code

o

2

3

4

5

6

7

8

9

A

B

C

Corresponding Error/
Abnorma I Code

o

o

7

lD

4

lC

5

6

41

45

57

o

o

Meaning

normal without device I/O transfer

normal with a device I/O transfer

lost data

beginning-of-tape

beginning-of-file

end-of-reel

end-of-data

end-of-file

read error

write error

publ ic devices/private volume-set
saturated

SLIDES is 255

partial higher level index built

is the byte displacement indicator, specifying at which byte in the user's buffer
(BUF) the data record begins.

indicates whether the JOB account number is the same as the account number
specified in the DCB (0 = yes, 1 = no).

contains the DCT index of the device on which the volume (in a private volume
set) pointed to by VNO is mounted. Only meaningful for private files ..

Word Control

19 U

o M

16 M

13 M

5 M

2 M

o U

o M

10 M

90 17 64H-1 (9/78)

Field Description Word

VNO contains the volume number of the private volume currently being referenced 11
via the DCB. Volume number is the position (starting with one) of a volume
within the DCB's SN list. The S N I ist in the DCB has a fixed order and comes
from the serial number table on the primary volume of a private volume set.
Only meaningful for private files.

VSND contains the word displacement to the serial number table of the private volume 9
set (i. e., the SN list) in the DCB relative to the start of the Variable Length
Parameters (FLP + VSND = the control word of the SN list).

WAT is the wait flag and indicates whether or not WAIT was specified in the FPT 0
(0 = no, 1 = yes).

XUP indicates whether or not a higher level index structure is in the process of being 0
reconstructed or constructed (0 = either that there is no higher I evel index or
that the higher I,evel index is complete, 1 = that the higher level index is being
built). Only meaningful for keyed files.

VARIABLE LENGTH PARAMETERS 22-n

Each variable length parameter entry is preceded by a contTol word of the following form:

Byte 0 = a code number (see Table A-1) identifying the parameter which follows.

Byte 1 = code for the entry position (00 = more parameter entries to follow, 01 = last parameter entry).

Byte 2 = number of significant data words in the parameter entry.

Byte 3 = total number of words reserved for the entry, not including the control word (that is, maxi­
mum entry length).

Table A-1. Variable Length Parameter Codes

Code Parameter Type

01 FiI,e name (in TEXTC format).

02 Ac'count number.

03 Password.

04 Expiration date.

05 READ ~ccount numbers.

06 WRITE account numbers.

07 SN/INSN serial numbers.

08 OUTSN serial numbers.

09 File information (see Figure A-2).

OA Modification date.

OB SYNON name.

Control

M

M

U

M

Appendix A 223

Code

OC

OD

OE

OF

10

11

12

14

15

Table A-1. Variable Length Paramet.er Codes (cant.)

Parameter Type

File information (see Figure A-2).

File size.

Creation date.

Last access date.

Backup date.

The X' 11 1 VLP is used to control disk file status. It consists of one data word. The
meanings of the bits are:

Bit Meaning

8 If set, bits 12-15 will be moved from the data word into the file
descri ptor.

12 If set, the file has been modified since last backed up by Fill.

13 If set, the file has been modified since the last INCREMENTAL.

14 If set, the file has been modified since the last SAVEALL.

15 If set, the file has been modified since the last FILL.

20 If set, the file is not to be backed up.

21 If set, the access date is not to be updated.

22 If set, the file is not to be deleted by the PURGE operation of Fill.
Th is bit is only looked at if the user has a privilege that is greater
than or equal to X'AO' or is a ghost.

23 Must be set if bits 20-22 are to be looked at.

On line diagnostics; used to hold user's I/O command list.

Execute account numbers.

Names of the processors that may access th is fil e. The names are in TE XTC format.
Each name begins three words beyond the beginning of the previous name.

FIT FILE PARAMETERS (FPARAM TABLE)

The format of the file parameters that are passed from the FIT to the memory location specified by the FPARAM pa­
rameter of M:OPEN is given in Figure A-2, "Format of the FPARAM Table". A description of the fields of the table
follows. Note that each variable length parameter is preceded by a control word of the form described in the section
above, "Variable Length Parameters".

Fie Id Description

ACN is an account number. There can be a maximum' of 16 total Read and Write ACNs. Each ACN is an
eight-byte EBCDIC entry with trailing blanks. If there is no Read ACN entry, any ACN can read the
file. If there is no Write ACN entry, no one can write in the file except the ACN that created the file.

224 Appendix A

*

X'Ol' I 0 9 I 9

} (8 words) FNE (in TEXTC format)

W%f}ff~
X'03' 0 2 I 2

Password (2 words)
X'15' I 0 I NDW I NAW

TEXTC name of processor that can access this file (up to three words)

X'14' I 0 I NDW I NAW

Execute ACNs (2 words each)

X'05' I 0 I NDW I NAW

{ Read ACNs (2 words each) -?
X'06' I 0 NDW I NAW

f Write ACNs (2 words each) L
X'04' I 0 I 2 I 2

Expiration Date

X'OF' I 0 2 I 2

Access date

X'10' 0 I 2 I 2

Backup date

X'OE' I 0 2 I 2

Creation date

X'OA' 0 3 I 3

Modification date

X'OD' 0 I 1 I 1

File size
X'OC' 0 7 I 7

FDA

TDA
NGAVAL I GAVAL

CCBD O~ SLIDES

0

SREC

LDA
X'09' 1 3 I . 3

ORG KEYM ~~INOSEPlcYL

= LSLIDES LRDLO I SPARE

NSF . DESC

These coded entries
are optiona I; presence
of the entry is indi­
cated by the byte 0
hex code.

*For synonymous fi les opened via the NXTF option, the nine words immediately following the unused tenth word
contain an X'OB' entry specifying the name of the primary file ..

Figure A-2. Format of FPARAM Table

Appendix A 225

Field

CCBD

CYL

Date

DESC

FDA

File size

FNE

GAVAL

KEYM

LOA

LRDLO

LSLIDES

Description

contains, for keyed fil es, either the byte displacement to the next available byte in the last data granule
of the file (SREC), which means that the blocking buffer was truncated; or 0, which means that the last
data granule in the file (SREC) contains 512 words.

specifies whether the file assigned to the DCB is to be allocated by granules or cylinders (0 = granule al­
location, 1 = cylinder allocation). It is only meaningful for public files.

is of the form mmddhhyy, where

mm is numerical month.

dd is day of month.

hh is hour of day.

yy is last two digits of the year, all in EBCDIC bytes.

Expiration date may contain the word NEVER followed by three blanks, which indicates that the file
does not have an expiration date.

The modification date contains three words. The third word is of the form hhmm, where

hh is a repeat of the hour.

mm is the minute.

contains the settings of the file descriptions.

contains the disk address of the file's first index granule at level O.

contains the current number of 512-word granules allocated to the file.

is the EBCDIC name of the file in TEXTC format.

contains the disk address of the next available granule in the last cylinder allocated to the file; zero if
none.

contains

1. the maximum length, in bytes, of the keys in the file. Applicable to keyed files. Maximum value
is 31.

2. the type of device that the random file is to be allocated on (0 = allocate on either RAD or DP,
X'7' = allocate on RAD, X'B' = allocate on DP). Applicable to random files.

contains the disk address of the file's last index granule at level O.

contains the limiting number of contiguous index granules that can be allocated in level 0 and not be
reflected in level 1 before the flag, which signals CLOSE to reconstruct the higher level index structure,
is set (i. e., before SLIDES in the CFU is set equal to 255).

LRDLO is only used fo~ keyed files.

has mean ing only if a multi level index exists and contains

1.

2.

the I imiting number of index granules that can be allocated in level 0 and not be reflected in level 1
before the flag, which signals CLOSE to reconstruct the higher level index structure, is set.

I
I

the value 255, which means that once a higher level index structure exists, it is not to be
reconstructed.

LSLIDES is only used for keyed files.

NAW is the number of available words in the entry (not including the control word).

226 Appendix A

Field Description

NDW is the number of significant data words in the entry (not including the control word).

NGAVAL is the number of (lvailable granules in the las't cylinder allocated to the file.

NOSEP specifies whether or not granules are to be allocated from RAD (0 = no, 1 = yes). Normally, granules
are allocated on DP. However, if all the devices of the normally allocated type are saturated, the
system attempts fe) allocate on an alternate device. The order of allocation is DP and RAD if the NOSEP
flag is reset. If the NOSEP flag is set, granules will be allocated from RAD if DEVICE, De was spe­
cified. This flag has no meaning for private files.

NSF

o

ORG

Password

SLIDES

SPARE

NOSEP is not used by random files.

is ,the number of fi les synonymous with this fi Ie.

is a level 1 flag indicating whether or not a level 1 index exists in a keyed file (O = no, 1 = yes).

is the file organi:z:ation indicator (0 = none specified and is treated as consecutive, 1 = consecutive,
2 =: keyed, 3 = rcrndom).

is an eight-byte EBCDIC entry with trailing blanks.

contains, for keyed files, either

1. a tally of the number of index granules allocated at level 0 since the current multilevel index
structure was created, or if none exists, since the file was first opened.

2. a tally of the number of index granules allocated at the current level while the multilevel index
structure is be i ng {re)created.

3. the value 255, which means that a new multilevel index structure should be built when the file is
closed (unless LSLIDES in the DCB equals 255 and a level-l index exists).

contains the number of spare byte positions to be left unused in the end of the current index granule
in the event that the key to be added is the last key in the file.

SPARE is only used for keyed fi les.

SREC contains the disk address of the last data granule in the file. It is only used in the output mode.

TDA contains, for keyed files, either

1. the disk add:ress of the first index granule at the top of the multilevel structure, if one exists.

2. the disk address of the middle index granule, if there are three level-O index granules and
the fi Ie is keyed.

3. 0, which means that either the file is consecutive, or that the file is keyed and there are at the
most two i nd'ex granu I es.

For consecutive files, TDA contains the number of records in the file.

DEVICE DCB

Figure A-3 shows the format of the DeB for a device. Shaded fields are not used by the DeB.

Appendix A 227

Word 2 .

NRA

I

0 1 2 3 14 5 6 7 8 9

Word 3

RSZ

0 1 2 3 14 5 6 7 18 9

Word 4 1

ARS

0 1 2 3 14 5 6 7 18 9

Word 6

BlK

Tye

10 11112 13 14 15116 17 18 19120 21

10 11112 13 14 15116 17 18 19120 21

1 1

10 11112 13 14 15116 17 18 19120 21

16 17 18 19

.. 1
I

H
B
T
D

U
B
T
D

ASN = 3

24 25 26 27 30 31

29 30 31

BUF

22 23124 25 26 27 1 28 29 30 31

1

ERA

22 23124 25 26 27128 29 30 31

ABA

22 23124 25 26 27128 29 30 31

FlP

I

o 1 2 3 1 4 5 6 7 1 8 9 10 11 I 12 13 14 15 I 16 17 18 19 I 20 21 22 23 I 24 25 26 27 1 28 29 30 31

Word 7

FeN QBUF

1 I I 1

o 1 2 314 5 6 7 8 9 10 11112 13 14 15116 17 18 19120212223124252627128293031

Figure A-3. Format of Device DeB

228 Appendix A

28 29 30 31

Word 10
I

. LVA KBUF

o 1 2 3 I 4 5 6 7 I 8 9 10 11 I 12 13 14 15 I 16 17 18 19 I 20 21 22 23 I 24 25 26 27 I 28 29 30 31

I Word 1:05 or C15 I: PKTC 1 AD:R.l I

o 1 2 314 5 6 7 ~8 9 10 11112 13 14 15'16 17 18 19120 2122 23 ~4 25 26 27128 29 30 31

ACCTG ClK

19 20 21 22 23 24 25 26 27 28 29 30 31

Word 14

csc

29 30 31

Figure A-3. I Format of Device DC B (cont.)

. Appendix A 229 .

Word 15
"

TAB1 TAB2 TAB3 TAM

0 1 2 3 14 5 6 7 8 9 10 111 12 13 14 15 16 17 18 19120 21 22 23 24 25 26 27 1 28 29 30 31

Word 16

TAB5 TAB6 TAB7 TAB8

J I I

0 1 2 3 14 5 6 7 8 9 10 11112 13 14 15 16 17 18 19120 21 22 23 24 25 26 27128 29 30 31

Word 17

TAB9 TAB10 TAB11 TAB12

I I

0 1 2 314 5 6 7 8 9 10 111 12 13 14 15 16 17 18 19120 21 22 23 24 25 26 27128 29 30 31

Word 18

TAB13 TAB14 TAB15 TAB16

I

0 1 2 3 14 5 6 7 8 9 10 11112 13 14 15 16 17 18 19 1 20 21 22 23 24 25 26 27 1 28 29 30 31

Word 19

DSC SVA HLC

0 1 2 3 14 5 6 7 8 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27 1 28 29 30 31

Word 20 .
HSC FVA CVA or SQS

0 1 2 314 5 6 7 8 9 10 111 12 13 14 '15116 17 18 19 1 20 21 22 23 1 24 25 26 27 1 28 29 30 31

Word 21 . .
SID or VAL:l

I I

o 1 2 3 I 4 5 6 7 I 8 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Words 22 -n are used for variable length parameters

Figure 'A-3. Format of Device DCB (cont.) ,

230 Appendix A I

In the following field descriptions, the Control column signifies who specifies the contents of the field - the monitor
(M) or the user (U).

Field

ABA

ACCT

ADR:1

ADR:2

AGE

AGV

ARS

ASN

ASNE

BlK

BUF

BUEX

CCF

CIS

ClK

COS

CSC

CVA

DEV

Description Word

contains the addrress of the user's routine that' will handle abnormal conditions 4
resulting from insufficient or conflicting information. (The monitor returns to
ABA in the FPT if the abnormal condition is the result of a device abnormality.)

contains an index signifying the accounting type of the DCB corresponding to the 12
service I imit options on the J LIMIT command. (0 - no accounting, 1 - DO, 2 - PO,
3 - UO, 4 - lO.)

contains an address used internally by the monitor in transaction processing. 11

contains an address used internally by the mon itor in transaction processing. 14

is a field common to all DCBs and contains J :CAlCNT/4 which determines how 9
recently the user used this DCB.

is the abnormal niven flag and indicates whether or not an end-of-file completion 0
code has been returned to the user because a control command was encountered
when reading from the C device, (0 = no, 1 = yes).

contains the actual number of data bytes transferred to or from the user in the 4
I/O operation.

indicates the assignment type currently in effect for the DCB (0 = null, 1 = file, 0
2 = Xerox labeled tape, 3 = device, X'A' = ANS labeled tape).

is an ASN extension bit and is used internally by the monitor in transaction 0
process ing .

contains the number of bytes to be transferred by the I/O routines whenever call ed.

contains the address of the user's buffer where the data record is to be read or
wrritten.

6

2

is a field common to all DCBs and is cleared to zero by the monitor for device DCBs. 9

specifies whether code conversion is to take place between ASCII on tape and 5
EBCDIC in core (0 = no, 1 = yes).

contains the relcltive position of the serial number (in the SN list) of the magnetic 11
tape reel used for current file input. When ,the DCB is open, this field is always
zero if not assigned to tape.

fer a nonsymbiont device, contains O. For a symbiont device, contains the ac- 12
counting type in bits 20-23 (0 = none, 1 = DO, 2 = PO, 3 = UO, 4 = lO) and
the logical device index in bits 24-31.

contains the relative position of the serial number (in the SN list) of the magnetic 11
tape reel used for current file output. When the DCB is open, this field is always
zero if not assigned to tape.

indicates the number of the column at which the page count is to begin (for printer 14
or typewriter). The most significant digit of the count will be printed in this column
on the page.

indicates the currrent value of the page count (for printer or typewriter). 20

contains the Dcr index of the device assigned to the DCB. DEV is only meaningful
if DEVF equals 'I.

Control

U

M

M

M

M

M

M

U

M

M

U

M

U

M

M

M

U

M

M

. Appendix A 231

Field

DEVF

DIAG

D1R

DRC

DSC

EGV

EOP

ERA

FBCD

FCD

FCI

FCN

FLP

FUN

FVA

HBTD

HLC

HSC

KBUF

Description

indicates whether the DCB is assigned to a device or an operational label
(0 = operational label, 1 = device).

signifies that the DCB is being used for diagnostic purposes.

indicates the direction of the read operation (0 = forward, 1 = reverse).

is the format control flag and indicates whether or not the monitor is to do special
formatting of records on read or write operations (0 = yes, 1 = no).

indicates the column number at which the output record is to begin (for a card
punch, typewriter, or printer).

is the event-given flag and indicates whether or not the completion code posted
in the TYC field has been communicated to the user's program by M:CHECK
(1 = yes, 0 = no). M:CHECK is called either directly by the user or indirectly
by monitor, depending upon the WAIT, ERR, and ABN options in the FPT.

is the ending operation indicator (0 = other, e.g., rewind, 1 = read, 2 = write).
Specifies the type of I/O operation currently or last performed.

contains the address of the user's routine that will handle error conditions result­
ing from insufficient or conflicting information. (The monitor returns to the ERA
in the FPT if the error condition is the result of a device failure.)

is the FORTRAN BCD flag and indicates whether or not BCD is to be converted to
EBCDIC on input, or EBCDIC is to be converted to BCD on output. (O=no conver­
sion, 1 =conversion.) On write operations, conversion is performed in the user's
buffer.

indicates whether the DCB is opened or closed (0 = closed, 1 = opened).

indicates whether the DCB has ever been closed. This flag is set when the DCB
is first closed, and then never reset (0 = DCB has never been closed, 1 = DCB has
been previously opened and closed).

indicates the current number of I/O operations that have been initiated but not
completed, for this DCB.

contains the address of the variable length parameters in the DCB (called the file
I ist-pointer) or zero if no space was reserved.

contains the file mode function (0 = null, 1 = IN, 2 = OUT, 3 = IN and OUT,
4 = INOUT, 8 = OUTIN).

indicates the first I ine on which printing is to begin (for ~rinter or typewriter).

is the I/O handler's byte indicator and is used whenever the I/O routines are
called to specify the byte displacement within QBUF into which the data transfer
is to begin.

contains the address of the user's page header that is to be output at the beginning
of each I isting page (the first byte of the page header contains the byte count).

indicates the column number at which the user IS page header is to begin (for
printer or typewriter).

contains the address of buffer for the DCB wh ich is reserved beyond the end of
the variable length parameters (8 words). If no space was reserved, KBUF con­
tains zero.

232 Appendix A

Word Co.ntrol

M

5 M

o U

o U

19 U

o M

o M

3 U

o U

o M

o M

7 M

6 U

U

20 U

o M

19 U

20 U

10 U

Field

l

lVA

MBG

MOD

NRA

NVA

PKTC

PUN

QBUF

RNDEV

RSZ

RWS

SEQ

SJDF

SID

SQS

indicates whether or not the user specified that the DCB was assigned to a listing
type device. (0 = no, 1 = yes.) This flag is only used by the FORTRAN I/O
rOlJtines. The monitor automatically sets this flag when the DCB is assigned to a
I isting type device (such as the line printer).

indi cates the number of printable lines per logical page (for printer or typewriter).
The value =: 0 if the st.eam default is selected.

is the monitor buffer-flag and indicates whether or not a 34-word outplJt buff.::!'
has been a"ocolted to the DCB from the monitor's buffer pool. (0 = the actual
I/O operation will take place directly from the user's buffer, 1 = the output
record will be fTansferred from the user's buffer to the monitor's buffer and that
the actual I/O operation will take place using the monitor's buffer.)

is the mode f/~, and indicates the device mode to be used in the I/O operation.
(0 = EBCDIC, 1 = binary.) This flag is only used when

1. the DCB is assignf.!d to a card punch or 7-track magnetic tape.

2. the DCB is assigned to a card reader and DRC has been specified.

indicates the number of recovery tries that may be attempted before a device
error message is to be logged.

contains a coun'ter indicating the number of records to skip on magnetic tape. It
is also used as an indicator. If NVA is negative, the last operation performed
was a rewind.

is used internally by the monitor to handle line cornering and unit record devices.
line cornering is the simulation of a typewriter wherein one record is broken into
small records which fit on the platen.

indicates whetht~r a 7-track tape is to be read or written in the packed or unpacked
mode (0 = unpacked, 1 = packed). PUN is only mean ingful when MOD is set.

contains the buffer address to be used by the I/O routines whenever called.

same as TYPE fiEdd.

indicates the default record size, in bytes.

indicates the requested number of bytes to be read or written from the user's
buffer (BUF).

is the sequence option flag and indicate whether or not punched output is to have
sequencing in co~umns 77-80 (0 = no, 1 = yes).

1. if the DCB is not assigned to tape, SIDF is the sequence identification (ID)
flag and indicates whether or not punched output is to have sequence identi­
fication in c:olumns 73-76 (0 = no, 1 = yes).

2. if the DCB is assigned to tape, SIDF is the density selection flag for dual
density tape drives (0 = 1600 bpi, 1 = 800 bpi).

contains the 4-byte EBCDIC identification to be output in the sequencing identi­
fication field (columns 73-76) of punched card output.

indicates the ne)(t sequence number to be output in columns 77-80 (for punched
card output).

90 17 MH-1 (9/78)

Word Control

u

10 u

o M

o U

2 U

8 M

11 M

o U

7 M

5 U

3 U

13 M

5 U

5 U

21 U

20 M

Appendix A 233

Field Description

SVA indicates the number of lines to be spaced between printed lines (for typewriter
or printer). A 0 means SPACE was not specified; the output will be single spaced.

TAB 1-16 indicates the column numbers for the tab-stop settings (for output devices).

TOF is used by the mon itor to remember that the last operation through th is DCB
occurred at the top-o f-page.

TOLF

TYC

TYPE

UBTD

VAL:1

VFC

WAT

if 1, bits 16-31 of DCB are TEXT OPLABEl. If 0, DEVF is meaningful.

indicates the type of completion of an I/O operation.

TYC Code

o

2

3

4

5

6

7

8

9

Corresponding Error/
Abnormal Code

o

o

7

10

4

1C

5

6

41

45

Meaning

normal without device I/O transfer

normal with device I/O transfer

lost data

beginning-of-tape

beginning-of-file

end-of-reeI

end-of-data

end-of-file

read error

write error

contains the device-type code assigned to the DCB. This field is set whether the
DCB is assigned directly to a device or indirectly through an operational label.

is the type displacement indicator, specifying 9t which byte in the user's buffer
(BUF) the data record begins.

contains a value used internally by the monitor in transaction processing.

is the vertical format control-flag and indicates whether or not the first byte of
the output is a format control character (0 = no, 1 = yes). This flag is only used
for printer output.

is the wait flag and indicates whether or not WAIT was specified in the FPT
(0 = no, 1 = yes).

VARIABLE LENGTH PARAMETERS

Word Control

19 U

15-18 U

o M

U

2 M

U

o U

21 M

o U

o U

22-n

Each variable length parameter entry is preceded by a control word of the form shown for File DCB and in
Table A-l.

XEROX LABELED TAPE DCB

Figure A-4 shows the format of the DCB for Xerox labeled tape files. Shaded fields are not used by the DCB.

234 Appendix A

Word 2

012

Word 3

o 1 2

NRA

3 14

TYC

10 11112

I

ASN = 2

28 29 30 31

TYPE DEY

20 21 22 23 24 25 26 27 28 29 30 31

I : BU~
13 14 15: 16 17 18 19120 21 22 23 24 25 26 27128 29 30 31

ERA R~Z
3 14 5 6 7 8 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

I Word 4 A;S

o 1 2 3 1 4 5 6 7 8 9 10
I

ABA

111 12 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

17 18 19 30 31

Word 6

o 1 2 314 5 6 :~K8 9 10 11112 13 14 15116 17 18 19120 21 22

F

::124 25 26 27128 29 30 31

Word 7

Figure A-4. Format of Xerox Labeled Tape DCB

I

, Appendix A 235 ,

Word 8

NVA

I I

o 1 23145671891011112131415116171819120212223124252627128 293031

Word 9

CYO or CVI AGE

12 13 14 15 30 31

KBUF

22 23 24 25 26 27 28 29 30 31

COS or CIS FPAR;~
o 1 2 345 6 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Word 12

SND or DEVICE

20 21 22 23 24 25 26 27 28 29 30 31

Word 13
I I I

RWS

I I I _.

o 1 2 314 5 6 718 9 10-111121314 15116 17 18191202122231242526271282930 31

Word 14

Figure A-4. Format of Xerox Labeled Tape DCB (cont~)

236 Appendix A

Word 15

I 0 1 2 3 145 6 7: 8

BeDA

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Word 16

Word 17

o

KAD

28 29 30 31

Word 19

Word 20

PBD:
21 22 23 24 9 . 10 11112 13 14 J 16 17 18 19120 25 26 27128 29 30 31 o 1 2

Word 21

FLO

I

o 9 10 11112 13 14 15 16 17 18 19120 21 22 23124 25 26 27128 29 30 31

Words 22 - n are used for variable length parameters.

Figure A-4. Format of Xerox Labeled Tape DeB (cont.)

Appendix A 237

In the following field descriptions, the Control column signifies who specifies the contents of the field - the monitor
(M) or the user (U).

Field

ABA

ACD

ACS

AGE

APF

ARS

ASN

BBUD

BCDA

BLK

BUF

BUFX

CIS

CMD

Description

contains the address of the user's routine that will handle abnormal conditions
resulting from insufficient or conflicting information. (The monitor returns to
ABA in the FPT if the abnormal condition is the result of a device abnormal ity.)

contains the word displacement to the users account number in the DCB relative
to the start of the variable length parameters. (FLP + ACD = FWA of the EBCDIC
account number.)

is the file access indicator (0 = none specified and is treated as sequential, 1 =
sequential, 2 = direct). If a file has keyed organization, the keys written must
be in ascending order regardless of the access specified.

is used to measure the most recent activity on the DCB so that buffer truncation
can be made more efficiently.

contains the ANS post flag. If set, it indicates that post processing of a block
accessed record has not yet been done.

contains

1. the actual number of data bytes transferred to or from the user following a
read or write.

2. the number of records remaining to be skipped following a PRECORD opera­
tion that has terminated due to an end-of-file or a beginning-of-file condition.

indicates the assignment type currently in effect for the DCB (0 = null, 1 = file,
2 = Xerox labeled tape, 3 = device, X'A' = ANS labeled tape).

indicates whether or not the blocking buffer (BUF1) has been changed since it
was last read or initialized (0 = unchanged, 1 = changed). The monitor uses this
flag to determine whether or not BUFl needs to be written out to the data granule
specified in BCDA before truncating the buffer.

contains the number of either the current or last accessed entry in the blocking
buffer (BUF1), depending upon the point in time. An entry in a Labeled Tape
block consists of a key, control information, and the associated record segment.
Entries are numbered from 1 to n.

contains

1. the byte count of the record segment pointed to by either CBD or PBD, de­
pending upon the point in time.

2. the number of bytes to be transferred by the I/O routines whenever called.

contains the address of the user's buffer where the data record is to be read or
written, or where user trailer labels are to be read.

I
contains the index of the blocking buffer.

contains the relative position of the serial number (in the SN list) of the magnetic
tape reel used for current file input.

contains the byte displacement to the current entry in the blocking buffer (BUF1).
An entry in a Labeled Tape block consists of a key, control information, and the
associated record segment.

238 Appendix A

Word Control

4 U

21 M

5 U

9 M

16 M

4 U,M

o U

16 M

15 M

6 M

2 U

9 M

11 M

20 M

Field

cos

CVI

CVO

DEV

DEVF

DEVICE

DIR

DSF

EGV

EIC

EOP

EOT

ERA

EVC

EXT

FCD

FCI

Description

contains the relative position of the serial number (in the SN list) of the magnetic
tape reel used for current file output.

indicates the relative volume number of the current input tape within the current
file. CVI is taken from the beginning-of-file sentinel, which appears at the be­
ginn ing of fi Ie Clnd at the beginning of each reel, if the fi Ie is continued on more
than one reel.

indicates the relative volume rumber of the current output tape with respect to
the current file. CVO is recorded in the beginning-of-file sentinel which is
written at the beginning of the file and at the beginning of each reel, if the file
is continued on more than one reel.

contains the DCT index of the device assigned to the DCT. DEV is only mean­
ingful if DEVF =: 1. When DEVF = 0, the field is defined as OPLB.

indicates whether the DCB is assigned to a device or an operational label.
(0 = operational label, 1 = device.)

Word

11

9

9

contains the EBCDIC name specified on the DEVICE option in the M:OPEN call. 12
This use is only transient, and the field is later overlaid by SND.

indicates the direction of the read operations (0 = forward, 1 = reverse). 0

indicates whether a dual density tape drive is to be written at 1600 bpi or 800 bpi. 5
(0 = 1600, 1 = 800.)

is the event-given flag and indicates whether or not the completion code posted 0
in the TYC field has been communicated to the user's program by the CHECK
routine (0 = no, 1 = yes). The CHECK routine is called either directly by the
user or indirectly by the monitor, depending upon the WAIT, ERR, and ABN op-
tions in the FPT.

indicates whether or not the last block read from a consecutive file was. in error 5
and that a validity check on the control information revealed inconsistencies
(0 = no, 1 = yes).

is the ending operation indicator (0 = other, e. g., rewind, 1 = read, 2 = write). 0
Specifies the type of I/O operation currently or last performed.

indicates whether or not the physical end-of-tape mark has been encountered 16
(0 = no, 1 = yes).

contains the address of the user's routine that will handle error conditions result- 3
ing from insufficient or conflicting information. (The monitor returns to the ERA
in the FPT if the error condition is the result of the device failure.)

indicates whether or not the last block read from a consecutive file was in error 5
bllt a val idity checkon control information revealed no inconsistencies (0 =no, 1 = yes).

is the file extension flag and indicates whether OPEN is to position a tape at the 0
beginning or end of a specified file (0 = beginning-of-fiIe, 1 = end-of-file).

indicates whether the DCB is opened or closed (0· = closed, 1 = opened). 0

indicates whether the DCB has ever been closed. This flag is set when the DCB 0
is first closed and then never reset (0 = DCB has never been closed, 1 = DCB has
been previously .open and closed).

Control

M

M

M

u

u

u

u

u

M

M

M

M

u

M

M

M

M

Appendix A 239

Field Description

FCN indicates the current number of I/O operations that have been initiated but not
completed, for this DCB.

FIL 1 indicates the file option specified when the DCB was last opened (0 = none
specified, 1 = release, 2 = save).

FLD contains the word displacement to the file name in the DCB relative to the start
of the variable length parameters (FLD + FLP = FWA of the EBC DlC file' name).

FLP contains the address of the variable length parameters in the DCB (called the file
list-pointer).

FPARAM contains the receiving address of the user's 90-word buffer to which the variable
length parameters from the file's FIT are to be passed.

FUN

HBTD

KAD

KBUF

KEYM

NLR

NRA

NXTF

NVA

ORG

PBD

indicates the file mode function (0 = null, 1 = IN, 2 = OUT, 4 = INOUT,
8 = OUTIN).

is the I/O handler's byte indicator and is used whenever the I/O routines are
called to specify the byte displacement within QBUF into which the data transfer
is to begin.

contains the address of the key specified by the user in the read or write FPT. If
a consecutive file is being written, KAD points to the dummy key. If a consecu­
tive file is being read, KAD contains O.

contains the address of the buffer containing the key associated with the data
record last accessed in the blocking buffer.

contains the maximum length, in bytes, of the keys in the fi Ie pointed to by the
DCB. Only meaningful for keyed files. Maximum value is 31.

indicates whether or not the record segment pointed to by CMD is the first record
in a continued data record (0 = second or nth record segment, 1 = first or only
record segment). NLR is only meaningful during a write and is reset to zero when
the first record segment is output.

indicates the number of recovery tries that may be attempted before a device error
message is to be logged.

is the next file indicator and specifies whether this file (i. e., the file named in
the DCB/FPT) or the next file in the File Directory (i.e., the one following the
file named in the DCB) is to be assigned to the DCB at OPEN. If a file name is
not specified (in either the DCB or FPT), the first name in the File Directory is
put in the DCB and assigned (0 = this file, 1 = next file).

contains a counter indicating the number of records to skip. It is also used as an
indicator. If NVA is negative, the last operation performed was a rewind.

is the file organization indicator (0 = none specified, and is treated as consecutive,
1 = consecutive, 2 = keyed). :

contains

1. a counter used by M:OPEN to determine how many volumes remain to be
searched for the specified file.

2. the number of bytes in the previous labeled tape block. PBD is only mean ing­
ful on a read operation and is taken from the PBS field of a labeled block.

240 Appendix A

Word Control

7 M

5 U

21 M

6 M

11 U

U

o M

18 U

10 M

12 U

16 M

2 U

5 U

8 M

5 U

20 M

Field

PUN

QBUF

RBBI

REV

RNDEV

RNR

RSZ

RWS

SCR

SND

TBT

TLB

TRN

TYC

Description

indicates whethE~r a 7-track tape is to be read/written in the packed or unpacked
mode (0 = unpac:ked, 1 = packed).

contains

1. the buffer address to be used by the I/O routines whenever called.

2. the address within the user's buffer where the next record segment begins.

Word

o

7

indicates whethE~r or not the blocking buffer should be released at end-action 16
(0 = release bloc:king buffer, 1 = do not release blocking buffer because the buffer
will be reused to read in the next block). RBBI is set during a read operation when
a data record is continued and more than one read request will be initiated.

indicates whether the Labeled Tape block currently in the blocking buffer (BUF1) 16
was read in the forward or reverse direction (0 = forward, 1 = reverse).

contains the type of device specified (0 = none specified, 8 = 9T, 9 = 7T, 5
X'A' = MT).

is a trans i ent fl ag used by the system to defer error report ing for a tape bloc k 16
read by the mon itor in anticipation of a read not yet. requested by the user
(0 = user requested read, 1 = user read not requested).

indicates the default record size, in bytes. 3

indicates the requested number of bytes to be read or written from the user's 13
buffer (BUF). At the termination of the I/O operation, RWS is set equal to ARS.

indicates the byf'e length of the key portion of the entries in the Labeled Tape block. 17

contains the word displacement to the tape serial number (SN list) in the DCB 12
relative to the start of the variable length parameters (FLP + SND = FWA of the
EBCDIC serial numbers).

indicates whether or not the Labeled Tape blocking buffer has been truncated 16
(0 = no, 1 = yes). Truncation means that monitor has taken the blocking buffer
and, if necessary, written the block on tape.

contains the address of a user's label that is to be written on a tape file when 14
the file is output.

indicates whether the file is positioned before or after the data record whose key 5
entry is pointed to by CMD (0 = after, 1 = before).

indicates the type of completion of an I/O operation. 2

Corresponding Error/
TYC Code Abnormal Code Meaning

0 0 normal withQut device I/O transfer

1 0 normal with a device I/O transfer

2 7 lost data

3 1D beginning-of-tape

4 4 beg i nn i ng-o f-fi I e

5 1C end-of-reel

6 5 end-of-data

7 6 end-of-file

8 41 read error

9 45 write error

Control

U

M

M

M

U

M

U

M

M

M

M

U

M

M

Appendix A
-

241, -

Field Description Word Control

TYPE contains the device-type code for the tape assigned to th is DCB. U

UBTD is the byte displacement indicator, specifying at which byte in the user's buffer 0 U
(BUF) the data record begins.

ULBL indicates whether or not the ULBL option was specified in the FPT of M:READ 5 U
(0 = no, 1 = yes).

USR indicates whether or not the job account number is the same as the account 0 M
number specified in the DCB (0 = yes, 1 = no).

WAT is the wait flag and indicates whether or not WAIT was specified in the FPT 0 U
(0 = no, 1 = yes).

VARIABLE LENGTH PARAMETERS 22-n

Each variable length parameter entry is preceded by a control word of the form shown for File DCB and in Table A-1.

ANS LABELED TAPE DCB

Figure A-5 shows the format of the DCB for ANS Labeled Tape files. Shaded fields are not used by the DCB.

In the following field descriptions, the Control column signifies who specifies the contents of the field - the monitor
(M) or the user (U).

Field

ABA

ABCERR

ACS

APF

ARS

Description

contains the address of the user's routine that will handle abnormal conditions
resulting from insufficient or conflicting information. (The monitor returns to
ABA in the FPT if the abnormal condition is the result of a device abnormality.)

indicates whether or not block count errors are to be accepted; i. e., whether
or not processing is to continue in the case of inconsistency between the tape­
specified and system-accumulated block counts (0 = no, 1 = yes).

is the file access indicator (only 3, block, is possible for ANS tape).

contains the ANS post flag. If set to 1, it indicates that ANS post-processing
of an I/O operation has not yet been done.

contains

1. the actual number of data bytes transferred to or from the user following
a read or write ..

2. the number of records remaining to be skipped following a PRECORD opera­
tion that has terminated due to an end-of-file or a beginning-of-file condition.

ASN indicates the assignment type ;currently in effect for the DCB (0 = null, 1 = file,
2 = Xerox labeled tape, 3 = device, X'A' = ANS labeled tape).

BCERR indicates whether or not a block count error has been detected during EOF/EOT
processing (0 =no, 1 = yes). Always cleared before returning to user.

BLK contains the number of bytes to be transferred by the I/O routines whenever called.

BLKCNT specifies the number of blocks in the file.

242 Appendix A

Word Control

4 U

o U

5 M

16 M

4 U,M

o U

o U

6 M

17 u

ASN = X'A '

28 29 30 31

FUN TYPE DEV

8 9 10 11 12 22 23 24 25 26 27 28 29 30 31

Word 2

567189
I : ru~ I

NRA Tye

I
13 14 15: 16 17 18 19120 21 22 23 24 25 3 14 10 11112 26 27128 29 30 0 1 2 31

Word 3

BLKSZ ERA

0 1 2 3 14 5 6 7 18 9 10 11 1 12 13 14 15 1 16 17 18 19 I 20 21 22 23124 25 26 27 I 28 29 30 31

Word 4

A;S
I

ABA

3 14 10 11112 13 0 1 2 5 6 7 8 9 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Wor

C
RNDEV C I FMT ACS

F

16 17 18 19 20 21 22 23 25 26 27 28 29 30 31

Word 6
I

BLK FLP

3 14
I I

0 1 2 5 6 7 18 9 10 11112 13 14 15116 17 1819120 21 22 23124 25 26 271 28 29 30 31

Figure A-5. Format of ANS Labeled Tape DeB

: Appendix A 243

Word 9

cva or CVI

o 1 2 345 6 7

COS or CIS

o 1 456

Word 12

SND or DEVICE

Word 13

10 2 3 1 4 5 6 7: 8 9 10 11112 13 14 ~i~6 17 18 19120 21 22 23: 24 25 26 27128 29 30 J
Word 14

CONCAT TlB

Figure A-5. Format of ANS labeled Tape DCB (cont.)

244 Appendix A

Word 15

Word 17
: " .

BLKCNT

31

Word 18

Word 19

Word 20

Word 21

Words 22 - n are used for variable length parameters.

Figure A-5. Format of ANS Labeled Tape DCB (cont.)

Appendix A 245

Field Description

BLKSZ specifies the block size in bytes.

BUF contains the address of the, user's buffer where the data record is to be 'read or
written, or where user trailer labels are to be read.

CCF specifies whether, code conversion is to take place between ASCII on tape and
EBCDIC in core (0 = no, 1 = yes).

CIS contains the relative position of the seria'! number (in the SN list) of the magnetic
tape reel used for current file input.

CMD contains the number of tape marks that may be possed during an OPEN while
searching the last tape of a set.

CONCAT specifies the number of identically named files that are to be read as one logical
file (concatenation.)

COS contains the relative position of the 'serial number (in the SN list) 'of the magnetic
tape reel used for current fi Ie output.

CVI indicates the relative volume number of the current input tape within the current
file. CVI is taken from the beginning-of-file sentinel, which appears at the
beginning of file and at the beginning of each reel, if the file is continued on
more than one reel.

CVO indicates the relative volume number of the current output tape with respect to
the current file. CVO is recorded in the beginning-of-file sentinel wh ich is
written at the beginning of the file and at the beginning of each reel, if the file
is continued on more than one reel.

DEV

DEVF

DEVICE

DIR

DSF

EGV

EOP

EOT

ERA

FCD

contains the DCl index of the device assigned to the DCT. DEV is only meaning­
ful if DEVF = 1. When DEVF = 0, the field is defined as OPLB.

indicates whether the DCB is assigned to a device or an operational label.
(0 = operational label, 1 = device.)

contains the EBCDIC name specified on the DEVICE option in the M:OPEN call.
This use is only transient, and the field is later overlaid by SND.

indicates the direction of the read operations (0 = forward, 1 = reverse).

indicates whether a dual density tape drive is to be written at 1600 bpi or· 800 bpi
(0 = 1600, 1 = 800).

is the event-given flag and indicates whether or not the completion code posted
in the TYC field has been communicated to the user's program by the CHECK
routine (0 = no, 1 == yes). The CHECK routine is called either directly by the
user or indirectly by the monitor, depending upon the WAIT, ERR, and ABN
options in the FPT.

is the ending operation indicator (0 = other, e. g., rewind, 1 = read, 2 = write).
Specifies the type of I/O operation currently or last performed.

indicates whether or not the physical end-of-tape mark has been encountered
(0 = no, 1 = yes). .

contains the address of the user's routine that will handle error conditions result­
ing from insufficient or conflicting information. (The monitor returns to the ERA in
the FPT if the error condition is the result of the device failure.)

indicates whether the DCB is opened or closed (0 = closed, 1 = opened).

246 Appendix A

Word Control.

3 U

u

5

11 M

20 M

14 U

11 M

9 M

9 M

U

U

12 U

o U

5 U

o M

o M

16 M

3 U

o M

Field

FCI

FCN

FIll

FLD

FLP

FMT

FSN

FUN

HBTD

LRCSZ

NRA

PBD

QBUF

RNDEV

RWS

Description

indicates whether the DCB has ever been closed. This flag is set when the DCB
is first closed and then never reset (0 = DCB hCls never been closed, 1 = DCB has
been previously open and closed).

indicates the current number of I/O operations that have been initiated but not
completed, for this DCB.

indicates the file option specified when the DCB was last opened (0 = none
specified, 1 = release, 2 = save).

contains the word displacement to the file name in the DCB relative to the start
of the variable length parameters (FLD + FLP =: FWA of the EBCDIC file name).

contains the address of the variable length parameters in the DCB (called the
file list-pointer).

indicates the record format, where

1 = F (fixed length)

2 = D (variable, expressed in decimal)

3 = V (variable, expressed in binary)

4 = U (undefined)

specifies the file sequence number.

indicates the file mode function (0 = null, 1 = IN, 2 = OUT, 4 = INOUT,
8 = OUTIN).

is the I/O handler's byte indicator and is used whenever the I/O routines are
called to specify the byte displacement within QBUF into which the data transfer
is ,to begin.

specifies the logical record size in bytes.

indicates the number of recovery tries that may be attempted before a device
error message is to be logged.

contains

1. a counter used by .M:OPEN to determine how many volumes remain to be
searched for the specified file.

2. the block count according to EOF1 or EOVl.

contains

1. the buffer address to be used by the I/O routines whenever called.

2. the address within the user's buffer where the next record segment begins.

c()ntains the type of device specified (0 = none specified, 8 = 9T, 9 = 7T,
X'A' = MT).

indicates the requested number of bytes to be read or written from the user's buffer
(BUF). At the termination of the I/O operation, RWS is set equal to ARS.

Word Control

o M

7 M

5 U

21 M

6 M

5 U

16 U

U

o M

18 U

2 U

20 M

7 M

5 M

13 M

Appendix A 247

Field Destl'iption Word Control

sel1D specifi;es the file set' i"den'tifitation. 19

SND contains the word displacement to the tape serial number (SN Hst) in the DCB 12
reldtive to fhe starf of the variable length parameters (FLP + SND = FWA of the
EBCDIC serial numbers).

SNFN indicates the access method (0 = serial number, 1 = fi rename). 0

TLB contains the address df a user's label that is to be written on a tape file when 14
the fiie is output.

TYC indicates the type of completion of an I/O operation. 2

Corresponding Error/
TYC Code Abnormal Code Meaning

0 0 normal without devi ce I/O transfer

0 normal with a device I/O transfer

2 7 lost data

3 1D beginning-of-tape

4 4 beg inn ing-of-fil e

5 1C end-of-reel

6 5 end-of-data

7 6 end-of-file

8 41 read error

9 45 write error

TYPE contains the device-type code for the tape assigned to this DCB.

UBTD is the byte displacement indicator, specifying at which byte in the user's buffer 0
(BUF) the data record begins.

ULBL indicates whether or not the ULBL optio!,,! was specified in the FPT of M:READ 5
(0 = no, 1 = yes).

WAT is the wait flag and indicates whether or not WAIT was specified in the FPT 0
(0 = no, 1 = yes).

VARIABLE LENGTH PARAMETERS 22-n

Each variable length parameter entry for ANS labeled tapes is preceded by a control word of the following form:

Byte 0 = a code number (see Table A-2) identifying the parameter which follows.

Byte 1 = code for the entry position (00 = more parameter entries to follow, 01 = last parameter entry).

Byte 2 = number of significant data words in the parameter entry.

Byte 3 = total number of words reserved for the entry, not including the control word (that is, maximum entry
length).

248 Appendix A '

U

M

M

U

M

M

U

U

U

Table A-2. Variable Length Parameter Codes for ANS Labeled Tapes

Code Parameter Type

01 File name (the first byte of which contains the number of characters in the name).

04 Expiration date.

07 SN/INSN serial numbers. (ANS serial numbers are encoded to fit in 32 bits.)

08 OUTSN serial numbers. (ANS serial numbers are encoded to fit in 32 bits.)

Appendix A 249

APPENDIX B. MONITOR ERROR MESSAGES

INTRODUCTION

Four groups of monitor error codes are defined in this
section. They are I/O error and abnormal codes {Tables B-1
through B-4), other monitor codes (Table B-5), and Enqueue/
Dequeue abnormal and error codes (Table 8-6 and 8-7). In
all cases, a message is printed only if the monitor has con­
trol. If the user asks for confrol, the error codes are returned
to him. Otherwise, the monitor takes unilateral action and
prints the message corresponding to the code or the code it­
self if no message is in the ERRMSG file. Users who have
taken control may return it for monitor disposition by using
M:MERC.

The error and abnormal addresses specified in a function
parameter table (FPT) for a Read, Check, or Write function
are temporary and are not retained by the monitor between
calls. Those addresses specified in an FPT for an Open
function are retained in the specified data control block
(DCB) •

I/o error and abnormal conditions fall into two general
categori es :

1. Those associated with insufficient or conflicting
information.

2. Those associated with device failures or end-of-data
conditions.

The monitor responds to conditions of the first category by
honoring the error and abnormal addresses in the associated

DCB. The monitor responds to conditions of the second
category by honoring the error and abnormal addresses in
the FPT for the associated Read, Check, or Write functions.

The error and abnormal codes for insufficient or conflictin~
information are listed in Tables B-1 and B-3. Those for
device fai lure or end-of-data are listed in Tables B-2 and
B-4.

The monitor communicates the error or abnormal code and
the DCB address in SR3, and the address following the in­
struction which caused the CAL 1 trap is in SR 1 ~ The code
is contained in byte 0 of the word in SR3, a subcode is con­
tained in bits 8-14, and the DCB address is contained in the
rightmost 17 bits.

SR3

Note that the subcode field contains seven bits and an error
code of 75/13 would appear as X'7526' in bits 0-15. (The
first digit of the subcode is contained in bit positions 8,9,
and 10. Hence, it may have a value of 0-7.) Theprevious
contents of SR 1 and SR3 are lost. The meaning of each
error and abnormal code is shown in Tables B-1 to B-4.

Certain errors are a Iso reported in the TYC field of the
DCB. The correspondence between error/abnormal codes
and TYC codes is given in Appendix A.

Table B-1. Abnormal Codes - Insufficient or Conflicting Information

Abnor­
mal
Code

01

01

02

02

03

08

09

09

09

Originating
Sub- Monitor
code Routi ne

00 OPEN

OB OPEN

00 OPEN

01 OPEN

00 OPEN

00 OPEN

00 RDERLOG
i

01 RDERLOG

02 !RDERLOG

250 Appendix B

Mean i ng of Code

An attempt was made to open a DCB with insufficient information.

A number of contiguous granules (in random files) has been requested, but they are not
available.

An attempt was made to open the next file with NXTF specified in the DCB but there
are no more fi les.

The end of all accounts has been enco~ntered, and NXTA is specified in the DCB.

The input or update fi Ie does not exist.

An attempt was made to open the next file but the name of the next fi Ie is a synonym
for the primary name of the fi Ie.

I An attemp~ was made to close and return a device which was not partitioned or a
; device within a partitioned controller.

The device referenced in the Diagnostic DCB is a nonexistent device.

i The device referenced in the Diagnostic DCB is currently in use.
I

-

Abnor­
mal
Code

09

09

09

09

09

09

09

09

09

09

09

09

09

09

09

OA

OA

OA

OA

OA

OA

OB

OC

OD

Table B-·1. Abnormal Codes - In\ufficient or Confl icting Information (cont.)

Originating
Sub- Monitor
code Rout ine Meaning of Code

03 RDERLOG The device referenced in the Diagnostic DCB is currently in use by a symbiont.

04 RDERLOG The Diagnostic DCB does not contain a command list.

05 RDERLOG The command list was invalidated by a swap.

06 RDERLOG There are more than 121/0 command doublewords (IOCDs).

07 RDERLOG The I/O command list is invalid. This includes invalid flags, inval id TIC address, in­
valid command list address specified by user, or insufficient room in the DDCB for the
command list.

08 RDERLOG Error during BLIST CAL. An inval id page found during PTV or VTP conversion, the
status address is in error, the byte count is illegal in the IOCD, or an 10CD overlaps
a page boundary.

09 RDERLOG A buffer crosses a page boundary.

OA RDERLOG The user's ID does not match the I D specified on the last operator DIAG key-in or the
user privilege level was less than AD.

OB RDERLOG The amount of core is not sufficient to allow the diagnostic program to lock itself in
core.

OC

OD

DE

OF

10

11

00

01

02

08

09

OA

00

00

00

RDERLOG The requested controller is not partitioned.

RDERLOG The device specifically requested on open is not partitioned.

RDERLOG A MAP CAL error due to an inval id page number during a PTV or VTP conversion.

RDERLOG Cannot get MPOOL for use in processing command list or MPOOL is less than 13 words
long.

RDERLOG A TIO, TDV, or HIO was requested with an invalid FPT.

RDERLOG A CHAN option on an M:OPEN to a device type or op label is illegal.

CLOSE An attempt was made to close a DCB that is already closed.

CLOSE Illegal VLP code on M:CLOSE CAL.

CLOSE Not enough room in FIT for requested change.

CLOSE Illegal file name.

CLOSE New file name already exDsts.

CLOSE Can It modify a synonymous file.

OPEN, READ Unrecognized sentinel on labeled tape.
CVOl

OPEN Illegal SYNON operation.

OPE N Insufficient room exists in the variable length parameter section of the DCB for the
private pack serial number.

Appendix B 251

Abnor­
mal
Code

OD

OE

13

14

14

14

14

14

14

14

14

14

14

14

14

14

15

15

16

17

18

Sub­
code

01

00

00

00

02

03

04

05

06

07

08

11

12

13

14

00

01

00

00

00

252 Appendix B

Table B-1. Abnormal Codes - Insufficient or Confl icting Information (cont.)

Originating
Monitor
Routine

OPEN

OPEN

DELREC or
WRITE

OPEN

OPEN

OPEN

OPNL

MOVECAL
(RDL)

OPND

OPND

OPND

OPEN

OPEN

OPEN

OPEN

OPNF

DELREC or
WRITE

READ or
PRECORD

WRITE

WRITE

WRITE

Meaning of Code

The private pack serial number list cannot be moved to the DCB because of an I/O error.

127 DCBs are open to the fi Ie. Access is denied.

The specified key was not found for an update file and the option is not NEWKEY.

Access has been denied for one of the following reasons: (1) password missing or incor­
rect, (2) the file is execute-only and the wrong execute vehicle is accessing it, (3) there
is a read or write account restriction, (4) a tape or private pack is being accessed with
the wrong account in the DCB, (5) an attempt is being made to create a file in an
account different from the log-on account, (6) an open OUT or OUTIN was attempted
for an existing fi Ie on a private disk pack and the organization of the file is different
from the organization in the open FPT or DCB, or (7) the first non-input open to tape
did not occur at load point.

An attempt was made to open a file for output and another user or DCB has the file open
for input or output.

Bad FPARAM location.

The BREAK key was depressed or CONTROL Y was entered while waiting for a mount
to be completed. The open was not performed.

User escape from random file cleaning operation on a M:MOVE CAL.

Invalid op label in DCB.

Conflicting or missing DCB information. Probably either no file name is specified or the
file name TEXTC count is illegal.

Cannot open file DCB OUT with REL.

Illegal private pack device type.

Code conversion was requested for a tape drive not having that feature.

800 bpi was requested for a tape drive not having the dual density feature.

Code conversion option requested for an ANS tape not at the load point or code con­
version requested for Xerox labeled tape .•

Access has been granted to an execute-only fi Ie because of the execute authorization.

An improper sequence of operations has been requested for an update Ii Ie, or the
FPARAM address did not belong to the user. For example, a WRITE or DELREC was
issued for a keyed file and there is no key given on the WRITE or DELREC.

Improper operation sequence on a shared keyed file.

The NEWKEYoption was specified, but the key already exists.

The NEWKEYoption was not specified for an output or scratch file.

An attempt was made to write a keyed file sequentially with an out-of-order key.

90 17 64H-l (9/78)

Table Bl. Abnormal Codes - Insufficient or Confl icting Information (cant.)

Abnor- Originating
mal Sub- Nionitor
Code code Routine Meaning of Code

19 00 OPEN/ Illegal operation on M:UC DCB.
CLOSE

lA 00 MOVECAl No error or abnormal address specified in the MOVE CAL FPT.
(RDl)

lA 01 MOVECAl The output DCB is missing.
(RDl)

lA 02 MOVECAl One or both DCBs are not open.
(RDl)

lA 03 MOVECAl The input DCB is not open IN or the output DCB is not open OUT.
(RDl)

lA 04 MOVECAl The MOVE CAL is not allowed for device or ANS DCBs.
(RDL)

lA 05 MOVECAl The MOVE CAL was aborted by BREAK I yC, or operator abort.
(RDl)

lA 42 MOVECAl KMAX of input DCB is greater than KMAX of output DCB.
(RDl)

lA 4A MOVECAl The specified buffer does not belong to the user.
(RDl)

20 01 READ A private pack is locked out.

20 02 READ An attempt was made to use a private pack that is for exclusive use of another user.

20 03 READ A private pack was not properly requested.

20 04 OPEN An on-line user has requested a spindle which is down but which was previously allo-
cated to him and was not in use.

20 05 OPEN A private pack set contains multiple primary volumes.

21 00 OPEN/ Private pack consistency check failure.
CLOSE

22 00 OPEN An error occurred on a private pack while trying to open an existing file.

2E 00 OPEN .An attempt was made to open a DCB that is already open.

30 01 lBlT The user label is bad. All ANS labels must be 80 bytes in length. User header labels
must begin with UHl1 and user trailer 'abe's must begin with the characters UTL 1. (The
byte count is not part of the label because all ANS labels are 80 bytes long; however,
it is automatically restored in the first byte of the label buffer when a label is read.)

30 03 lBLT The file name is greater than 17 characters in length or is equal to zero.

30 04 lOlT EXPIRE, NEVER was specified.

30 05 LBLT The format code is illegal.

3F 35 JOBENT The user tried to enter a job with an illegal account or priority.

3F 36 JOBENT Job entry has been disallowed by the operator.

90 17 64H-1 (9,178) Appendix B 253

Table B-1. Abnormal Codes - Insufficient or Confl icting Information (cont.)

Abnor- Originating
mal Sub- tv'Ion itor
Code code Routine Meaning of Code

3F 37 JOBENT The user is not allowed to use the service he requested.

3F 38 JOBENT A function inconsistency exists.

3F 39 JOBENT The id requested for deletion is not valid.

3F 3A JOBENT It is too late to delete job. Either the job is scheduled to run, is running, or has been
completed.

3F 3B JOBENT No more symbiont space is available or the queue is full.

3F 3C JOBENT The user is not allowed to use job entry service.

3F 3D JOBENT The sydem is nonsymbiont, or the LL device is not a symbiont printer or is not defined
as a symbiont device.

3F 3E JOBENT A DCB has been specified and it is already open.

3F 3F JOBENT The specified buffer address is not in the user's program.

Note: In all of the above cases, return is made to the user's program for continuation of execution if no abnormal address
is specified in the DCB.

Table B-2. Abnormal Codes - Device Fai lure or End-of-Data

Abnor- Originating
mal Sub- Monitor
Code code Routine Meaning of Code

04 00 PRECORD or READ The beginning-of-file has been encountered.

05 00 PRE CORD or READ The end-of-data has been encountered.

06 00 READ The end-of-fi Ie has been encountered (or first read of I card).

07 00 READ Data has been lost because the buffer was smaller than the record read,
or a parity error was detected.

1C 00 READ, WRITE or PRECORD The end-of-tape has been encountered.

1C 01 WRITE The end-of-tape has been encountered on a common journal.

1D 00 READ or PRECORD The beginning-of-tape has been encountered, a bad command has been
sent to the terminal, or a 0 byte COC read has been issued.

1F 00 WRT/lOD/lORT BIN (or VFC) is not valid for this device.

23 00 COC On-line terminal read timed out.

24 00 coe On-line conditional read issued with no type-ahead.

Note: In all of the above cases, return is made to the user's program for con,tinued execution if no abnormal address is
specified in the I/O CAL FPT.

254 Appendi x B 90 17 64H-l (9/18)

"rable B-3. Error Codes - Insufficient or Conflicting Information

~----~----.--r---.-------------------~--'
Error Sub-
Code code Originating Monitor Routine Meaning of Code

40

42

42

43

44

46

46

46

46

47

47

47

48

48

49

49

49

49

4A

4A

4A

4A

4A

4A

4B

4C

40

4E

4E

4E

4E

4E

00

00

01

00

00

xx

21

22

48

xx

2B

48

00

01

00

01

02

03

00

01

02

03

04

05

00

00

00

00

01

04

05

07

READ

READ I WRITE or RANDOM

STPNR

READ

WRITE

READ

READ or WRITE

READ or WRITE

READ

WRITE

OPEN

WRITE

OPEN

OPEN

PV

OPEN

OPEN

OPEN

READ I WRITE, or ENQ

IOCHECK

IOCHECK

IOCHECK

IOCHECK

rOCHECK

I READ or WRITE

READ or WRIl'E

CLOSE

ARDl

READ or CVOL

lBlT

READ or CVOIL

READ or CVOl

90 17 64H-1 (9/78)

A request was made to read an output file.

The key was not va lid. The key I ength was zero or greater than the key
maximum for the file or a random file granule number is out of legal
range.

Illegal buffer size on assign/merge read or write.

No record having the specified key was found.

A request was made to write in an input file.

The DCB contains insufficient information to open a closed DCB on a
Read operation. Subcodes corresponding to the OPEN abnormal codes
above describe why the implicit OPEN foiled.

A private disk pack logic inconsistency exists.

A private disk pack error occurred trying to open an existing file.

On-line user is not allowed to access the card reader.

The DCB contains insufficient information to open a closed DCB on a
Write operation. Subcodes corresponding to the OPEN abnormal codes
above describe why the implicit OPEN failed.

Invalid Op label in DCB.

The symbi ont use flag was not set for on-Ii ne user.

The symbiont use flag was not set for the given device.

On-line user is not allowed to access the card reader.

The user's peripheral use flags do not permit the use of tapes.

No tape drives or disk spindles are available (on-line maximum ex­
ceeded or all drives or spindles in use). This error only occurs for
on-line or ghost jobs.

The user's tape drive or disk spindle limit from LIMIT card is exceeded.

There is insufficient DCB space for the requested serial numbers.

Either the specified buffer or the indirect address in FPT does not belong
to user.

Time parameter too large on M:CHECKECB.

ECB in wrong state.

Infinite wait condition.

No moni tor work space.

Wrong access code for ECB address.

An attempt was made to open a file that the user already has opened.

An attempt was made to open a file that another user already has opened.

An attempt was made to close and release a file that someone else is
reading.

ANS block count error and no ABCERR specified.

A volume sequence number error occurred on an ANS tape.

A BOF encountered on ANS tape with no block count error.

An ANS block count error exists and end of tape and end of file has been
encountered. .

An ANS block count error exists and end of fi Ie has been encountered.

Appendix B 255

Table B-3. Error Codes - Insufficient or Confl icting Information (cont.)

Error
Code

51

52

54

55

56

75

75

75

75

75

75

75

75

75

75

75

75

Sub-
code Originating Monitor Routine

00 CLOSE

00 OPEN

00 READ

00 OPEN

00 CLOSEorCVOL

00 CLOSE

01 READ

02 READ

03 OPEN

04 OPEN or CLOSE

05 OPEN

06 OPEN

07 OPEN

4x

7D OPEN

7E RDF

7F RDF

Mean ing of Code

The file is still open in the input mode through another DCB. The file
being closed is deleted.

Insufficient privilege to use this CAL.

The user has tried to read a control command via the control input (C)
device more than once through the same DCB.

Too many files are open simultaneously (the monitor's file-use tables
cannot handle that many files).

The system is unable to complete a tape volume switch because the reel
number has not been specified or an error occurred opening the new
volume.

The free sector pool contains erroneous information. (This message
appears only in ERR-LOG.)

Data records were lost due to a bad disk address in master index.

The master index is inaccessible due to bad disk address in preceding
master index.

The entire file is inaccessible due to bad disk address in file directory
or bad information in file information table.

One or more files are inaccessible due to an error in the file directory.

All files in account were lost due to bad disk address in account
directory.

A bad disk address link to next account directory exists. The current
account and other accounts are gone.

An error exists in the pyramid. (This message only appears in ERRLOG.)

75/40 - 75/47 are the same as 75/00 - 75/07 except that in addition, a
hardware error has been dete~ted.

An error has been detected while trying to perform a fast open. The
open will be retried. (This message only appears in ERRLOG.)

Error in main directory granule. The dual granule will be read. (This
message only appears in ERRLOG.)

File inconsistency corrected by software. (This message only appears
in ERRLOG.)

Note: In all of the above cases, the job is aborted if no error address is specified in the DCB. In batch mode, the
monitor skips to the next job; in on-line mode, control is returned to TEL which prints the message and awaits
further user commands. For error code 54, the job is aborted in all cases.

256 Appendix B 90 17 64H-1 (9/78)

Error Sub-
Code code

41 00

41 01

41 02

41 03

41 04

45 00

45 01

4F 00

Sl 00

Sl 44

Table 8-4. Error Codes - Device Failure or End-of-Data

Originating
Mont tor Routl ne

READ

COOP

READ

READ

READ

WRITE

WRITE

WRITE

READ or WRITE

RANDOM

Meaning of Code

An i rrecoverab Ie read error has occurred.

A bad disk address was detected by the input cooperative when reading the input
symb iont fi Ie.

Labeled tape reae error encountered on block in which requested record was con­
tained. 8yte 0 of SRI contains the number of records in the block.

Labeled tape read error encountered on block in which requested record was con­
tained. Requested record not transmitted to the user.

Partial record transmitted following Error 41/03.

An irrecoverable write error has occurred.

An irrecoverable write error has occurred on a common journal.

There was an unrecoverable error after the reflector on a tape.

Publ ic secondary storage is exhausted, or the user has exceeded h is secondary
storage authorization.

There has been a Write request with a specified byte count, and not enough
granules remain in a random fi Ie to satisfy the Write request, or the beginning
relative granule number on a Read request is valid but the specified byte count
extends beyond the end-of-fi Ie.

Note: In all of the above cases, the job is aborted if no error address is specified in the I/o CAL FPT. In batch mode,
the monitor skips to the next job; in the on-line mode, control is returned to TEL which prints the message and
awaits further user commands.

Appendix 8 257

Table 8-5. Other Monitor Error Codes

Originating
Error Sub- Monitor
Code code Routine Meaning of Code

7F 10 INITRCVR Single user abort due to software check 10.

7F 21 INITRCVR Single user abort due to software check 21.

7F 22 INITRCVR Single user abort due to software check 22.

7F 31 INITRCVR Single user abort due to software check 31.

7F 32 INITRCVR Single user abort due to software check 32.

7F 49 INITRCVR Single user abort due to software check 49.

7F 60 TEL TEL couldn't get a page.

7F 61 INITRCVR Single user abort due to software check 61.

7F 6A INITRCVR Single user abort due to software check 6A.

7F 79 INITRCVR Single user abort due to software check 79.

7F 7C INITRCVR Single user abort due to software check 7C.

7F 7E INITRCVR Si ng Ie user abort due to software check 7E.

AO 00 ASP An attempt was made to RUN under an invalid debugger name, or a request for an invalid
debugger through TEL.

A1 00 ASP An attempt was made to associate a debugger with a shared processor.

A1 01 ASP An attempt was made to debug an execute-only load module.

A1 02 ASP Conflict between library's overlays and debugger's data.

A2 00 ASP An attempt was made to access a processor for which the user is not authorized (e.g., on
on-line call to CCI).

A2 01 STEP Access to non-system processor deni ed •

A2 02 STEP Access to processor denied by processor restriction list.

A2 xx STEP Access to processor denied. (xx is the error code indicating why the system processor
restriction file could not be read and is one of the error/abnormal codes given in
Tables 8-1 through 8-5.

A3 00 TRAP Trap control cannot be given to the user because his task control block (TCB) does not
exist or is full, or his pointer has been destroyed.

A3 01 TRAPC ! No env ironment present for return.

A3 02 TRAPC User should not simulate that trap.

A4 00 User is trapped.

A4 01 TRAP Trap 40 - Nonexistent i nstructi on.

A4 02 TRAP Trap 40 - Nonexistent memory reference.

258 Appendix B 90 17 64H-l (9/78)

Table B-5. Other Monitor Error Codes (cont.)

Originating
Error Sub- Monitor
Code code Routine Meaning of Code

A4 03 TRAP Trap 40 - Privilege instruction.

A4 04 TRAP Trap 40 - Memory protect violation.

A4 05 TRAP Trap 41 - Unimplemented instruction.

A4 06 TRAP Trap 42 - Stack overflow.

A4 07 TRAP Trap 43 - Fixed point overflow.

A4 08 TRAP Trap 44 ... Floating point fault.

A4 09 TRAP Trap 45 - Decimal arithmetic fault.

A4 OA TRAP Trap 46 - Watchdog timer.

A4 OB TRAP Trap 47 - Programmed trap.
A4 OD CSEHAND Trap 4D - Instruction exception trap.

AS 00 STEP User's load module exceeds user limit or available core.

AS 02 STEP Virtual core is not available for special shared processor.

AS 04 STEP While in the extended memory mode, the current job step was aborted so that TEL could
be accessed.

AS 06 STEP Current speciaJ shared processor 'NOS aborted so that TEL could be accessed.

AS 07 STEP Procedure overlaps currently allocated common pages.

AS 08 STEP Physi cal core is not avai lable for special shared processor.

AS 09 STEP Either virtual core or physical core was not available to obtain a buffer for a cooperative
file.

AS 51 STEP Bad data bias for core library. The load module is pre-BOO.

A6 03 STEP Specified load module does not exist.

A6 14 STEP lood module access denied.

A6 30 STEP Bod DCBs or DCB table.

A6 31 STEP Bad head record.

A6 32 STEP load modu Ie bias not on page bounda ry •

A6 33 STEP Pure procedure not on page boundary.

A6 34 STEP DCBs not on page boundary.

A6 35 STEP Head record is incomplete.

A6 36 STEP Tree record is incomplete.

A6 37 STEP No debugs. allowed with link-built lMNs.

A6 38 STEP Program too big for user area.

A6 39 STEP Fi Ie not keyed, not a lMN.

A6 3A STEP DCB links bad or circular,

A6 3B STEP TCB address is not within the data area.

A6 42 STEP The module exists but it is not a load module.

A6 43 STEP The module exists but it is not a load module.

A6 50 STEP The DCBs are biased below the user area. The load module is pre-BOO.

A6 51 STEP PMD/SNAP/MODIFY not allowed with an execute only load module.

90 17 64H-l (9/78) Appendix 8 259

Table 8-5. Other Mmitor Error Codes (cont.)

Originating
Error S u b- Iv\on i tor
Code code Routine Meaning of Code

A6 xx STEP The xx subcode specifies the reason the DCB could not be opened and will be the
abnormal/error codes given in Tables BI-85.

A8 00 STEP An error or abort CAL was issued. (RNST bits are also set.)

A9 00 UCAL An error on a read or write of the assign/merge record occurred.

AA 00 STEP A request was made for core I ibrary that does not exist.

AC

AD

AE

AF

BO

SO

BO

SO

Bl

Bl

Bl

Bl

Bl

!31

81

Bl

81

B2

83

B3

B3

B3

B3

B3

B4

B4

B4

B4

B4

B5

00

00

00

00

01

02

03

00

01

02

03

04

05

06

07

08

00

00

01

02

03

04

08

00

01

02

03

04

xx

260 Appendix B

STEP

CALPROC
ALTCP

CALPROC

DUMP

DUMP

DUMP

DUMP

SEGLOAD

SEGLOAD

SEGLOAD

SEGLOAD

SEGLOAD

SEGLOAD

SEGLOAD

SEGLOAD

SEGLOAD

ENTRY

WRTD

WRTD

WRTD

WRTD

WRTD.

WRTD

STEP

STEP

STEP

STEP

STEP

lDlNK

An attempt was made to read the card reader by an on-I i ne user.

Extending processing limits were exceeded.

The user issued a CAL with unknown codes.

A CAL 1 instruction referenced a non-DCB.

The program specified snapshot dumps but did not have an M:DO DCB.

The program attempted snapshot dump of inaccessible or nonexistent memory.

Inaccessible flag address given on conditional debug command.

Illegal parameter in DEBUG CAL.

Monitor cannot find the segment named in the user M:SEGLD DCB.

Bad tree table.

Circular tree table encountered.

Data size specified in tree is too large.

Procedure size specified in tree is too large.

Overlay limits as defined in TREE area lie outside of limits defined in HEAD record.

Unabl e to get a page for segloading. (System error.)

Page obtained by M:CVM procedure encountered.

The paged load module is greater than 255 segments.

The user issued a CAL2, CAL3, or CAL4.

limit exceeded.

Punch limit. (PO)

Printer page I imit for processor. (LO)

Printer page I imit for user. (UO)

Printer page limit for debugging. (DO)

Execution time limit.

Exit.

User issued M:ERR.

User issued M:XXX.

Operator E (error) key-in.

Operator X (abort) key- in or user abort.

See STEP (error code A5 and A6) subcodes and I/O error codes.

90 17 64H-l(9;78)

Table B-5. Other Monitor Error Codes (cont.)
-,

Or ig inat ing
Error Sub- Monitor
Code code Routine Mean ing of Code

B5 62 LDLNK M:LINK and M:LDTRC are not permitted when a shared processor is associated with the
user program.

B5 63 LDLNK The program must not be loaded with Link.

B5 64 LDLNK The user must own all memory from data through dynamic data.

B5 65 LNKTRC Page aquired by CVM encountered.

B5 66 LNKTRC Out of pages. (System error.)

B5 67 LDLNK A logically impossible exit to Load and Link has occurred.

B5 68 LDLNK HI legal information supplied in transfer file.

B5 69 LDlNK A Load and Link cleanup occurred without a previous Load and Link operation.

B5 6A LNKTRC Load and Link to command pll"Ocessor not allowed.

B5 6B STEP A load and link to a linked program is not allowed.

B5 6C STEP A load and I ink to a special shared processor is not allowed.

85 6D LNKTRC Insufficient physical core exists for core library following LNKTRC.

B5 6E lNKTRC M:LlNK/LDTRC illegal for programs with transaction processing CALs outstanding.

B5 6F lNKTRC M:LDTRC attempt to execute a previously executed load module.

B5 70 LNKTRC M:LlNK/M:lDTRC illegal for programs with real-time ICBs associated.

B6 00 STEP M:LINK: Not SEGLOAD DCB.

B6 01 STEP The DCB name chain must be in the DCB record.

B6 02 STEP The DCB name chain may not be I inked.

B6 03 STEP The DCB name chain is irregular.

B6 04 STEP The DCB has no name.

B6 05 STEP A user cannot have more than 509 DCBs.

B6 06 STEP The DCB is outside of the buffer.

B6 07 STEP A DC B may not cross a page boundary.

B6 08 STEP A DCB must be at least 22 words long.

B6 09 STEP KBUF must lie within the DC8.

B6 OA STEP FLP must lie within the DCB.

B6 OB STEP The FLPs overlap into KBUF.

B6 OC STEP M:SEGLD DCB needs 10 words for variable length parameters.

B7 00 OIPNLD Unrecognized stream-id.

B7 01 OPNlD Unrecognized DEV specification.

B7 02 OPNlD The function specified (IN or OUT) is not legal for this device.

B7 03 OPNlD A. nonzero workstation name is spec i fied for an unauthori zed user (i. e., the processor is
nlOt a shared processor and the privilege level of the user is less than XICOI).

B7 04 OPNlD The peripheral use flag is not set for this DCB.

B7 05 OPNLD Multiple copies are not allowed in concurrent output mode.

B7 06 OPNLD Concurrent output mode is illegal for an IRBT.

B7 07 OPNLD User is not authorized for concurrent output mode.

90 17 64H-1(9/78) Appendi x B 261

Table B-5. Other Monitor Error Codes (cont.)

Originating
Error Sub- Monitor
Code code Routine Meaning of Code

B8 01 RTROOT M:Q FI was attempted when no ICBs were associated with the user.

B8 02 RTROOT M:INTRTN was attempted and there were no active interrupts associated with the user.

88 03 RTROOT A real-time user has issued a restricted CAL after having locked himself in core (with
M:HOLD).

88 04 RTNR A real-time user provided an illegal interrupt address or an unknown interrupt label.

B8 05 RTNR A real-time user provided an FPT that is illegal because it is missing a required
parameter.

B8 06 RTNR The user did not specify a time value on an M:CLOCK request.

B8 07 T:JOBENT/ A real-time user has requested a service from a system ghost job after having blocked the
GRAN ghost job by locking himself in core (with M:HOLD).

B9 01 ALTCP/ User has insufficient privilege to issue this CAll,S.
RTROOT

B9 02 RTROOT The device specified via M:IOEX doesn't exist or is not preempted, or the specified DCB
is not opened properly.

B9 04 ALTCP The effective address of an M:EXU CAL is in protected memory.

89 05 ALTCP The instruction to be executed via M:EXU has an invalid op code.

XEROX LABELED TAPE ERROR HANDLING
After a block is read from labeled tape and an error (after
normal retries) is encountered, the tape remains positioned
after the last record read. The :noni tor then performs a
consistency check on the record control information in
the block. If the record control information is judged
valid, the record is transferred to the user's buffer, as
requested, and an error code 41/02 is returned. Byte 0
of SR1 will contain the number of records in the block.
These records, although of questionable quality, are avail­
able to the user if he requests them. If the record control
information is invalid, the user will receive an error return
41/03 and no information from the block is transmitted.

If after error condition 41/03 the following read causes a
partial record {continuation of a record whose first part was
contained in the block error} to be transmitted, an error re­
turn of 41/04 is given.

I 262 Appendix B

ENQUEUE/DEQUEUE ABNORMAL AND ERROR CODES
When an abnormal condition is encountered, return is made
to the instruction following the CAL if no ABN address was
supplied. If an ABN address was supplied, return is made
to the ABN address and the user's register 10 is set to the
appropriate abnormal code (see Table B-6). In either case,
when an ECB address is supplied, the ECB is set to reflect
the queue state.

When an error condition is encountered, the program is
aborted if no ERR address was supplied. If an ERR address
was supplied, return is to the ERR address and the user's reg­
ister 10 is set to the appropriate error code (see Table 8-7).
In the latter case, when an EC8 address is supplied, the
EC8 is set to reflect the queue state.

If an M:ENQ or M:DEQ procedure call is issued in a system
that was' generated without these services, the user is aborted
with the error code as defined In Table 8-7.

90 17 64H-l (9/78)

Abnor-
mal Sub-
Code code

31 00

31 01

31 02

31 03

31 04

Error Sub-
Code code

4A 00

58 00

58 01

58 02

58 03

AE 00

Originating
Monitor
Routine

ENQ

ENQ

ENQ

ENQ

ENQ

Originating
Monitor
Routine

ENQ

ENQ

ENQ

ENQ

ENQ

CALPROC

Table B-6. Enqueue/Dequeue Abnormal Codes

Meaning of Code

A dequeue was attempted on a resource/element for which the user was not queued.

An enqueue was attempted on resource/element for which the user was already queued.
If eln ECB address was given, the ECBP bit is reset to 0 if the user is still waiting for the
res()urce/e lement or is set to 1 if the user has contro I of the resource/e lement.

An enqueue SHARE was attempt'ed on a resource/element for which the user was already
queued as EXCLusive. The SHARE request is ignored and the EXCLusive request remains
in the queue. If an ECB address was given, the ECBP bit is reset to 0 if the user is sti II
waiting for the resource/element or is set to 1 if the user had control of the resource/
element.

The requested resource/element is not presently avai lable on an enqueue TEST or enqueue
NOWAIT request. If it is an enqueue NOWAIT request, the user is queued for the
resource/element. The ECB is reset to O.

The enqueue request was aborted by a BREAK or CONTROL Y. The request is not
queued.

Table B-7. Enqueue/Dequeue Error Codes

Me'an i ng of Code

An address in the FPT is not in the user's area or some other inconsistency was detected
in the FPT.

Tho request would result in a deadlock. Not only is the request rejected, but the user
should dequeue all elements to allow other users to complete their operations, thus
freeing the elements.

ThE~re are no more empty entries in the monitor's enqueue tables. Not only is the re-
qU(~st rejected, but the user should dequeue all resource/elements to permit other users
to proceed.

The enqueue request is for ALL and the user has sub-queues other than NULL, thus
creating a deadlock~

Thl~ user is not authorized to use the enqueue service.

An M:ENQ or M:DEQ procedure call was issued in a system that does not include the
en(~ueue/dequeue optional feature. The job step is aborted.

Appendix B 263

APPENDIXC. XEROX STANDARD SYMBOLS, CODES AND CORRESPONDENCES

XEROX STANDARD SYMBOLS AND CODES
The symbols I isted here include two types: graph ic symbols
and control characters. Graphic symbols are displayable
and printable; control characters are not. Hybrids are SP
(the symbol for a blank space), and DEL (the delete code)
which is not considered a control command.

Two types of code are also shown: (1) the a-bit Xerox Stan­
dard Computer Code, i. e., the Xerox Extended Binary­
Coded-Interchange Code (EBCDIC); and (2) the 7-bit Amer­
ican National Standard Code for information Interchange
(ANSCIl), i. e., the Xerox Stdndard Communication Code.

XEROX STANDARD CHARACTER SETS
1. EBCDIC

57-character set: uppercase letters, numerals, space,
and & - / • < > () + I $ * : ;
% # @ I =

63-character set: same as above plus rj ?
" ..,

89-character set: same as 63-character set plus lower­
case letters

264 Appendix C

2. ANSCIl

64-character set: uppercase letters, numerals, space,
and! " $ % & I () * + / \

: =< >? (a)_[]A #1"':

95-character set: same as above plus lowercase letters
and t } : '" \

CONTROL CODES
In addition to the standard character sets listed above, the
Xerox symbol repertoire includes 37 control codes and the
hybrid code DEL (hybrid code SP is considered part of all
character sets), These are listed in the table titled CP-V
Symbol -Code Correspondences.

SPECIAL CODE PROPERTIES
The fonowing two properties of all Xerox standard codes
wi" be retained for future standard code extensions:

1 • AI I control codes, and only the control codes, have
their two high-order bits equal to "00". DEL is not
considered a control code.

2. No two graphic EBCDIC codes have their seven low­
order bits equal.

VI

.~
0
....
c:
0
u

t;:

'c
0>

Vi
VI
0
Q)
-l

Table C-1. CP-v 8-Bi t Computer Codes (EBCDIC)

Most Significant Digits
T

Hexadecimal a 1 2 3 4 5 6 7 8 9 A B C D E F
f-----

Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

a 0000 (lUL DLE
LF ESC SP & A FF SP a only F - -

lESe 1
1 0001 SOH X-ON FS CAN J / .. a i \ A J 1

ESC ESC r - {
1

2 0010 STX DC2 GS X J. 0 b k s B K S 2

3 0011 ETX X-OFF RS
ESC ESC 0 I }

1
C P IF c t L T 3

- -- -
ESC 1 ESC L 1 s [4 0100 EOT DC4 US U Z d m u D M U 4

LF ESC
E T]

1
5 0101 HT EM (e n v E N V 5 NL -----

8
6 0110 ACK SYN

ESC
/)

0 ,W 2: f 0 w NUL F 0 W 6
- 1--- ----- --

0111 BEL ETB 1\ ESC :)
7 g p x G P X 7 T

8 1000
EOM

CAN =
ESC f:,. h H Q Y 8 BS S q Y

1001 ENQ
CR ESC I V 9 EM only E

i r z I R Z 9

2 ;" 1 1 ESC x A 1010 NAK SUB EOT C I ! :
--

ESC
+ B 1011 VT ESC BS a $ I

) [
6

C 1100 FF FS X-ON < * % fa -
]

6
D 1101 CR GS HT X-OFF () I --

LF ESC + > =
Lost6

E 1110 SO RS only R ; Data

SI
ESC I 2 2 ? " 6 I -,6 DEL F 1111 US SUB CR

-,

~---A __ ~~-JJ'~~ ______ ~ ______ ~/'~--____ ~ ______ _

3 4~

The characters /". \ { } [J are ANSCII characters that do not appear in any of the Xerox EBCDIC-based
character sets, though they are shown in the EBCDIC table.

2 The characters i I -, appear in the Xerox 63- and 89-character EBCDIC sets but no.t in either of the Xerox
ANSCII-based sets. However, Xerox software translates the characters i I --, into ANSCII characters as
follows:

EBCDIC

" I

ANsell

, (6-0)
\ (7-12)

,..., (7-14)

3 The EBCDIC control codes in columns 0 and 1 and their binary representation are exactly the same as those
in the ANSCII table, except for two interchanges: IF/N l with NAK, and HT with ENQ.

4 Characters enclosed in heavy lines are included only in the Xerox standard 63- and 89-character EBCDIC sets.

5 These characters are included only in the Xerox standard 89-character EBCDIC set.

6 The EBCDIC codes in column 3 are used by cae to perform specia I functions. The EBCDIC codes in
column 2 and positions AF and BC through BF are used by cac for output only.

APl characters (and some ESC sequences) are assigned EBCDIC values that fall within the shaded area of the CP-V
code set. These assignments are for APL internal use and are only reflected in 2741-APl translation tables.

S Placing a SYN code as the last position of a nontransparent message will prevent the transmission of the SYN and
the normal message appendage of the CR/LF pair. This allows a user to continue writing more than one message
on the same line without affecting the carrier position. The EBCDIC SYN code is translated to an idle (IL) on
output to 2741 terminals,.

Appendix C 265

Table C-2. CP-V 7-BitCommunication Codes (ANSCn)

Most Significant Digits
Decimal

0 1 2 3 4 5 6 7 (rows) (col's.)-

! Binary . XOOO xOOl xOlO x011 xl00 x101 xll0 x1l1

0 0000 NUL DLE ·SP 0 @ p. \ P
5

1 0001 SOH DCl ! 1 A Q a q
t---

2 0010 .. STX DC2 II 2 B R b r

3 0011 ETX DC3 # 3 C S c s

4 0100 EaT DC4 $ 4 D T d t

5 0101 ENQ NAK % 5 E U e u
VI

'0> 6 0110 ACK SYN & 6 F V f v Ci
c·

7 0111 BEL ETB
,

7 G W 0 g w
~
'c 8 1000 BS CAN (8 H X h x 0>
Vi
....

9 1001 HT EM) 9 I Y i 0 Y
Q)

-' IF
10 1010 SUB * J Z j Nl : z

11 1011 VT ESC + ; K
4 [5 k {

12 1100 FF FS , < L \ I
I
I

4] 5 }
4

13 1101 CR GS - = M m

4 5 4
14 1101 SO RS > N n -
15 1111 SI US / ?

4
a - 0 DEL

J

Most significant bit, added for 8-bit format, is either 0 or an even-parity bit for the remaining 7 bits.

2 Columns 0-1 are control codes.

3 Columns 2-5 correspond to the Xerox 64-character ANSCII set.
Columns 2-7 correspond to the Xerox 95-character ANSCII set.

4 On many current teletypes, the symbol

'" is t (5-14)
_ is-(5-15)
'" is ESC or ALTMODE control (7-14)
} is ESC or AL TMODE control (7-13)

and none of the symbols appearing in columns 6-7 are provided. Except for the four symbol differences
noted above, therefore, such ;teletypes provide all the characters in the Xerox 64-character ANSCII set.
(The Xerox 7015 Remote Keyboard Printer provides the 64-character ANSCII set also, but prints A as A.

It also interprets the [] characters as I -, .)
5 On the Xerox 7670 Remote Batch Terminal, thesymbol

! is I (2-1)
[is i (5-11)

] is ! (5-13)
'" is --, (5-14)

and none of the symbols appearing in columns 6-7 are provided. Except for the four symbol differences noted
above, therefore, this terminal PJovides all the characters in the Xerox 64-character ANSCII set.

266 Appendix C

Table C-3 .. CP-V Symbol-:Code Correspondences

EBCDICt
Hex. Dec. Symbol Card Code ANSClltt Meaning Remarks

00 0 NUL 12-0-9-8-1 0-0 null 00 through 1 F are control codes.
01 1 SOH 12-9-1 0-1 start of header On 2741 terminals, SOH is PRE.
02 2 STX 12-9-2 0-2 start of text On 2741 terminals, STX is BY.
03 3 ETX 12-9-3 0-3 end of text On 2741 terminals, ETX is RES.
04 4 EOT 12-9-4 0-4 end of transmission
05 5 HT 12··9-5 0-9 hori zonta I tab 00, 06, 07, 09-0B, and OE-OF
06 6 ACK 12-9-6 0-6 acknowledge (positive) are idles for 2741 terminals.
07 7 BEL 12-9-7 0-7 bell
08 8 BS or EOM 12-9-8 0-8 backspace or end of message EOM is used only on Xerox Keyboard/
09 9 ENQ 12-9-8-1 0-5 enquiry Printers Models 7012, 7020, 8091,
OA 10 NAK 12-9-8-2 1-5 negati ve acknow ledge and 8092.
OB 11 VT 12-9-8-3 0-11 verti co I tab
OC 12 FF 12-9-8-4 0-12 form feed
OD 13 CR 12-9-8-5 0-13 carriage return CR outputs CR and LF.
OE 14 SO 12-9-8-6 0-14 shift out
OF 15 SI 12-9-8-7 0-15 shift in

1--.

'10 16 DLE 12-11-9-8-1 1-0 data link escape
n 17 DCl 11-9-1 1-1 devi ce control 1 On Teletype terminals, DC1 is X-ON.
12 18 DC2 11-9-2 1-2 device control 2 On 2741 terminals, DC2 is PN.
13 19 DC3 11-9-3 1-3 device control 3 DC3 is RS on 2741s and X-OFF on
14 20 DC4 11-9-4 1-4 device control 4 Teletypes.
15 21 LF or NL 11-9-5 0-10 line feed or new line On 2741 terminals, DC4 is PF.
16 22 SYN 11-9-6 1-6 sync LF outputs CR and LF.
17 23 ETB 11-9-7 1-7 end of transmission block On 2741 terminals, ETB is EOB.
18 24 CAN 11-9-8 1-8 cancel
'19 25 EM 11-9-8-1 1-9 end of medi um
1A 26 SUB 11-9-8-2 1-10 substi tute Replaces characters with parity error.
1B 27 ESC 11-9-8-3 1-11 escape
lC 28 FS 11-9-8-4 1-12 fi Ie separator
1D 29 GS 11-9-8-5 1-13 group separator 10, 11, 16, 18, 19, and lS-1E are
1 E 30 RS 11-9-8-6 1-14 record separator idles for 2741 terminals.
1 F 31 US 11-9-8-7 1-15 un it separator

---~--

20 32 LF only 11-0-9-8-1 1-5 line feed only 20 through 2F are used by COC for
21 33 FS 0-9-1 1-12 output only. These codes are
22 34 GS 0-9-2 1-13 duplicates of the label entries
23 35 RS 0-9-3 1-14 that caused activation. The
24 36 US 0-9-4 1-15 20-2F entries output a single code
25 37 EM 0-9-5 1-9 only and are not affected by any
26 38 / 0-9-6 2-15 special COC functional processing.
27 39 , 0-9-7 5-14
28 40 = 0-9-8 3-13
29 41 CR only 0-9-8-1 0-13 carri age return on I y
2A 42 EaT 0-9-8-2 0-4
2B 43 BS 0-9-8-3 0-8
2C 44 } 0-9-8-4 2-9
2D 45 HT 0-9-8-5 0-9 tab code only
2E 46 LF only 0-9-8-6 1-5 line feed only
2F 47 SUB 0-9-8-7 1-10

-

30 48 ESC F 12-11-0-9-8-1 end of fj Ie 30 through 3F cause COC to perform
31 49 CANCEL 9-1 delete all input and output special functions.
32 50 ESC X 9-2 delete input line
33 51 ESC P 9-3 toggle half-duplex pape~ tape mode
34 52 ESC U 9-4 toggle restri ct upper case
35 53 ESC (9-5 upper case shift
36 54 ESC) 9-6 lower case shift
37 55 ESC T 9-7 toggle tab simulation mode
38 56 ESC S 9-8 toggle space insertion mode
39 57 ESC E 9-8-1 toggle echo mode
3A 58 ESC C 9-8-2 toggle tab relative mode
3B 59 ESCO 9-8-3 toggle backspace edit mode
3C 60 X-ON 9-8-4 start paper tape
3D 61 X-OFF 9-8-5 stop paper tape
3E 62 ESC R 9-8-6 retype
3F 63 ESC CR 9-8-7 line continuation

tHexadecimal and decimal notation.

tt Decimal notation (column-row).

Appendix C 267

Table C-3. Cf'-V Symbol-Code Correspondences (cont.)

Hex. Dec.

40
41
42

·43
.44

45
46
47
48
49
4A
46
4C

·4D
4E
4F

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

50 80
51 81
52 82
53 83
54 84
55 85
56 86
57 87
58 88
59 89
5A 90
58 91
5C 92
5D 93
5E 94
5F 95

60 96
61 97
62 98
63 99
64 100
65 101
66 102
67 103
68 104
69 105
6A 106
68 107
6C 108
6D 109
6E 110
6F 111

70 112
71 113
72 114
73 115
74 116
75 117
76 118
77 119
78 120
79 121
7A 122
78 123
7C 124
7D 125
7E 126
7F 127

Symbol

SP
ESC J
1

ESC LF
L

t::,.

I

lor'

<
(

I or :

&

ESC D
o

ESC Z
T
o

I
$

-or,

/
r

I

,
%

>
?

"

v

@
I

Card Code

blap~<.

12-0··1}-1
12-0-9-2
12-0-9-3
12-0-9-4
12-0-9-5
12-0-9-6
l2-0-9-7
12-0-9-8
12'-8-1
12-8-2
12-8-3
t2-8-4
12-8-5
12-8-6
12-8-7

12
12-11-9-1
12-11-9-2
12-11-9-3
12-11-9-4
12-11-9-5
12-11-9-6
12-11-9-7
12-11-9-8
11-8-1
11-8-2
11-8-3
11-8-4
11-8-5
11-8-6
11-8-7

11
0-1
11-0-9-2
11-0-9-3
11-0-9-4
11-0-9-5
11-0-9-6
11-0-9-7
11-0-9-8
0-8-1
12-11
0-8-3
0-8-4
0-8-5
0-8-6
0-8-7

12-11-0
12-11-0-9-1
12-11-0-9-2
12-11-0-9-3
12-11-0-9-4
12-11-0-9-5
12-11-0-9-6
12-11-0-9-7
12-11-0-9-8
8-1
8-2
8-3
8-4
8-5
8-6
8-7

tHexadecimal and decimal notation.

ttDecimal notation (column-row).

268 Appendix C

ANSClItt Meaning

2-0

6-0
2-14
3-12
2-8
2-11
7-12

2-6

2-1
2-4
2-10
2-9
3-11
7-14

2-13
2-15

5-14
2-12
2-5
5-15
3-14
3-15

3-10
2-3
4-0
2-7
3-13
2-2

blank
toggle insert mode
decode
line continuation
minimum
epsi Ion

delto
index
cent or accent grave
period
less than
left parenthesis
plus
vertica I bar or broken bar

ampersand

request re-read
quad
toggle input ignore mode
encode
circular

exclamation point
dollars
asterisk
right parenthesis
semicolon
ti Ide or logi cal not

minus, dash, hyphen
slosh
maximum

down arrow

omega
superset

circumflex
comma
percent
underline
greater than
question mark

APL
APL quote mark
overscore

I ess than or equa I

greater than or equal

down delta
colon
number
at
apostrophe (right single quote)
equals
quotation mark

Remcrks

46 and 47 are unassigned.

42, 44, 45, 48, and 49 are APL
characters

Accent grave used, for left single
quote. On Model 7670,' not
available, and I '" ANSCII 5-11.

On 2741 APL, lise (subset).

On Model 7670, : not available,
and I = ANSel1 2-1.

On 2741 APL, & is n (intersection).
51,57,58, and 59 are
unassigned.

53, 55, and 56 are APL characters.

On Model 7670, ! is I. On 2741
APL, I is 0 (degree). On 2741
APL, $ is U (union).

On Model 7670, ~ is not available,
and,= ANSCII 5-14.

62, 64, 66, and 67 are APL characters.

63, 65, 68, and 69 are unassigned.

On Model 7670 A is-,. en Model
7015 A is" (caret). On 2741 APL,
Ais 1. On 2741 APL, % is P.

Underline is sometimes called "break
character"; may be printed along
bottom of character line.

70-72, 74, 76, and 79 are APL
characters.

73, 75, 77, and 78 are unassigned.

Table C-3. CP-V Symbol-Code Correspondences (cont.)

EBCDICt
Hex. Dec. Symbol CCird Code ANSClltt Meaning Remarks

80 128 12-0-8-1 80 is unassigned.
81 129 a 12'-0-1 6-1 81-89, 91-99, A2-A9 comprise the
82 130 b 12'-'1-2 6-2 lowercase alphabet. Available
83 131 c 12-0-3 6-3 only in Xerox standard 89- and 95-
84 132 d 12-0-4 6-4 character sets.
85 133 e 12-0-5 6-5
86 134 f 12-0-6 6-6
87 135 g . 12-0-7 6-7 '"
88 136 h 12-0-8 6-8
89 137 i 12-0-9 6-9
8A 138 12-0-8-2 8A through 90 are unassigned.
8B 139 12-0-8-3
8C 140 12-0-8-4
8D 141 12-0-8-5
8E 142 12-0-8-6
8F 143 12-0-8-7

90 144 12-11-8-1
91 145 j 12-11-1 6-10
92 146 k 12-11-2 6-11
93 147 I 12-11-3 6-12
94 148 m 12-11-4 6-13
95 149 n 12-11-5 6-14
96 150 0 12-11-6 6-15
97 151 p 12-11-7 7-0
98 152 q 12-11-8 7-1
99 153 r 12-11-9 7-2
9A 154 12-11-8-2 9A through Al are unassigned.
9B 155 12-11-8-3
9C 156 12-11-8-4
9D 157 12-11-8-5
9E 158 12-11-8-6
9F 159 12-11-8-7

!-------

AO 160 11-0-8-1
Al 161 11-0-1
A2 162 s 11-0-2 7-3
A3 163 t 111-0-3 7-4
A4 164 u 11!-0-4 7-5
A5 165 v 1]-0-5 7-6
A6. 166 w 1]-0-6 7-7
A7 167 x 11-0-7 7-8
A8 168 y 11-0-8 7-9
A9 169 z 1]-0-9 7-10
AA 170 1] -0-8-2 AA through AE are unassigned.
AB 171 1 ~ -0-8-3
AC 172 1]-0-8-4
AD 173 11-0-8-5
AE 174 111-0-8-6
AF 175 I 11-0-8-7 logical and AF is used by COC for output of

an ANSCII 7-12 code orly.

BO 176 FF 12-11-0-8-1 0-12 form feed
Bl 177 \ 12-11-0-1 5-12 backs lash
B2 178 { 12-11-0-2 7-11 left brace On 2741 terminals, { is output as (.
B3 179 } 12-11-0-3 7-13 right brace On 2741 terminals, } is output as).
B4 180 [12-11-0-4 5-11 left bracket On Model 7670, [is /.. On Model
B5 181] 12-11-0-5 5-13 right bracket 7015, [is I.
B6 182 NUL 12-11-0-6 0-0 null On Model 7670,] is I. On Model
B7 183 12-11-0-7 7015,] i5-,.
B8 184 12-11-0-8 BO and B7through BB are unassigned.
B9 185 12-11-0-9
BA 186 12-11-0-8-2
BB 187 12-11-0-8-3
BC 188 [12-11-0-8-4 left bracket BC, BD, and BF are Llsed by COC for
BD 189] 12-11-0-8-5 right bracket output of ANSCII 5-11, 5-13,. and
BE 190 lost data 12-11-0-8-5 lost data 7-14, respectively.
BF 191 -, 12-11-0-8-7 logical not On 2741 Selectri c and EBCD Standard

Keyboards, [is output as (and]
is output as).

tHexadecimal and decimal notation.

tt Decimal notation (column-row).

Appendix C 269

Table C-3. CP~V Symbol-Code Co~respond~nces (cont.)
--

EBCDIC t
---.~

Hex. Dec. Symbol Cord Code ANSCIItt Meaning ' . Rem"lrks

CO 192 SP 12-0 2-0 blank Output only.
C1 193 A 1~-1 4-1- C1-C9, D1-D9,E2:-E9 comprise the
C2 194 B 1(·2 4-2 uppercase olphabet.
C3 195 C 12-3 4-3
C4 196 D 12-4 4-4
C5 197 E 12-5 4-5
C6 198 F 12-6 4 .. 6

I
C7 199 G 12-7 4-7.
C8 200 H 12-&1 4-8
C9 201 I 12-9 4-9 I
CA 202 12-0-9-8-2 CA through CF are unassigned.
CB 203 12-0-9-8-3
CC 204 12-0-9-8-4
CD 205 12-0-9-.8-5
CE 206 12-0-9-9-6
CF 207 12-0-9-8-7

DO 208 11-0 DO is unassigned.
D1 209 J 11-1 4-10
D2 210 K 11-2 4-11
D3 211 L 11-3 4-12
D4 212 M 11-4 4-13
D5 213 N 11-5 4-14
D6 214 0 11-6 4-15
D7 215 P 11-7 5-0
D8 216 Q 11-8 5-1
D9 217 R 11-9 5-2
DA 218 12-11-9-8-2 DA through DF are unassi<)'led.
DB 219 12-11-9-8-3
DC 220 12-11-9-8-4
DD 221 12-11-9-8-5
DE 222 12-11-9-8-6
DF 223 12-11-9-8-7

EO 224 - 0-8-2 2-13 minus Output only. E1 is unassigned.
E1 225 11-0-9-1
E2 226 S 0-2 5-3
E3 227 T 0-3 5-4
E4 228 U 0-4 5-5
E5 229 V 0-5 5-6
E6 230 W 0-6 5-7
E7 231 X 0-7 5-8
E8 232 Y 0-8 5-9
E9 233 Z 0-9 5-10
EA 234 11-0-9-8-2 EA through EF are unassigned.
EB 235 11-0-9-8-3
EC 236 11-0-9-8-4
ED 237 11-0-9-8-5
EE 238 11-0-9-8-6
EF 239 11-0-9-8-7

--~ .. -~--- --~--- ~-----

FO 240 0 0 3-0
F1 241 1 1 3-1
F2 242 2 2 3-2
F3 243 3 3 3-3
F4 244 4 4 3-4
F5 245 5 5 3-5
F6 246 6 6 3-6
F7 247 7 7 3-7
F8 248 8 8 3-8
F9 249 9 9 3-9
FA 250 X 12-11-0-9-8-2 multiply FA through FF are APL characters
FB 251 12-11-0-9-8-3 divide
FC 252 - 12-11-0-9-8-4 right arrow
FD 253 - 12-11-0-9-8-5 left arrow
FE 254 12-11-0-9-8-6 F,E is not assigned.
FF 255 DEL 12-11-0-9-8-7 delete Special - neither graphic nor

contro.1 symbol.

tHexadecimal and decimal not~ti'on.
ttDecimal nototion (column-row),

270 Appendix C

Table <:-4. ANSCII Control-Character Translation Table

Input Output

TTY I Prog. Rece i ves T ransm i tted
ANSCII Key Echoed (EBCDIC) Process EBCDIC (ANSCII)

NUL (00) pcs None None None NUL. (00) Noth i ng (end of
output message)

SOH (01/ A
C

SOH SOH None SOH (01) SOH

STX (02/ B
C

STX STX None STX (02) STX

EXT (03/ C
C

ETX ETX None ETX (03) ETX

EOT (04)t DC EOT EOT Input Comp I ete. EOT (04) EOT

E.NQ (OS/ E
C

ENQ ENQ (09) None HT (OS) Space(s) if tab
simulation on, or
HT (09) if not.

ACK (06)t F
C

ACK ACK None ACK (06) ACK

BEL (07) G
C

BEL BEL None BEL (07) BEL

BS (08) H
C

BS BS None BS (08) BS

HT (09) I
C

Space to tab stop Spaces to tab stop, None ENQ (09) ENQ (OS)
if tab simulation or one space, or tab
on, or 1 space if (OS) depending on
not. space insertion mode.

LF/NL {OA) NL CR and LF LF (lS) Input Complete:. NAK (OA) NAK (lS)

VT (OB) K
C

VT VT None VT (OB) VT

FF (OC) L
C

None FF Page Header and FF (OC) Page Header
Input Complete.

CR (OD) CR CR and LF CR (OD) Input Complete. CR (OD) CRand LF (OA)
i

SO (OE) N
C

SO SO None SO (OE) SO

SI (OF) OC SI SI None SI (OF) SI

DLE (10/ pC DLE DLE None DLE (10) DLE

DCl (11) , QC DCl None Paper Tape On. DCl (11) DCl

~C2 (12) R
C

DC2 DC2 None DC2 (12) DC2

DC3 (13) SC DC3 None Paper Tape Off. DC3 (13) DC3

DC4 (14/ T
C

DC4 DC4 None DC4 (14) DC4

NAK (lS)t U
C

NAK NAK (OA) None LF/NL (lS) CR and LF (OA)

tThese characters are communication control characters reserved for use by hardware. Any other use of them risks in-
compatibility with future hardware developments and is done so by the user at his own risk.

. Appendix C 271

ANSCII

SYN (16/

HB (17)t

CAN (18)

EM (19)

SUB (1A)

ESC (1 B)

FS (lC)

GS (1D)

RS (lE)

US (IF)

} (7D)

",(7E)

DEL (7F)

Table C-4. ANSell Control-Character Translation Table (cont.)

TTY
Key Echoed

SYN

ETB

Back-arrow
and CR/LF

yC Back-arrow
and CR/LF

ZC SUB

K
CS

None
ESC
PREFIX

L cs FS

ALT- } or None
MODE

ESC ""or None
(7015)

Rubout \

Input

I
Prog. Receives
(EBCDIC)

SYN

ETB

None

None

SUB

None

FS

GS

RS

US

} or None

-or None

None

Process

None

None

Cancel input
or output
message.

EBCDIC

SYN
t

(16)

ETB (17)

CAN (18)

Monitor Escape/ EM (19)
Control to TEL

Input Complete SUB (1A)

Initiate escape ESC (1 B)
sequence mode.

Input Complete FS (IC)

Input Complete. GS (1 D)

Input Complete RS (l E)

Input Complete ,US (1 F)

} if model 37; as HB3)
ESC if model 33,
35, or 7015.

"'if model 37;as .(5F)
ESC if model 33,
35, or 7015

Rubout last DEL (FF)
character.

Output

Transmitted
(ANSCll)

SY N (not trans­
mitted if last
character in
user's buffer).

ETB

CAN

EM

(A3)

ESC

FS

GS

RS

US

}(7D)

-(7E)

None

All ANSCII upper and lower case alphabetics are translated on input into the
corresponding EBCDIC graphics as shown i~ Tables C-1 and C-2. All special
graphics map as shown, allowing for Table C-1, Note 2, and the exceptions
above for model ~3 and 35. Lower case alphabetics map into corresponding
EBCDIC upper case if the ESC U mode is set. Upper case alphabetics map
into corresponding EBCDIC lower case if ESC) is set.

Alphabetic and symbol output trans­
lation is also as shown in Tables C-1
and C-2; for Models 33 and 35, and
7015 terminals, however, lowercase
alphabetics areautomatically trans­
lated to upper case.

tThese charaCters are communication control characters reserved for use by hardware. Any other use of them risks in­
compatibility with future hardware developments and is done so by the user at his own risk.

272 Appendix C

Table C-5. Substitutions for Nonexistent Characters on 2741 Keyboards

EBCDIC APL Selectric EBCD
Character Keyboard Keyboard Keyboard

> > , (upper case) >

< < (upper case) <

A t ¢ ¢

I I 0
(degree) I

--, '" ± --,

f # #

0/0 P 0/0 0/0

¢ c I I

@ a @ @

II V II II

I 0 I I

& n & &

$ u $ $

Appendix C 273

APPENDIX D. USE Of TEMPORARY STORAGE BY LIBRARY ROUTINES

All s~andat;dsy,stem library ro.utines. QJe enter,ed, by a BA~
instructi on, using current general register 1.1. as a link reg,­
ister. Arguments are passed to the library routine through
currept g~neral reg;isters 6 throuQ;h 9. ClJrr:ent general, r~g;­
ister 0 contains. a poiryter to a Task Control Block (TCB)
established alJ,d maintairied by the monitor. The first t,wo
word~ of a TCB comprise a stack pointer doubleword, qnd
the subsequent words. conto},n add~tional informatiolJ used
by the monitor to cOr,ltrol the current tQ,sk.

The IJbrary routine can make register contents avai lable
for use by pushing. them i~to the temp stock set by the
mon,itor for the current job. Other kinds Of ternporarydata
also can be sgved in the t,emp stack (e. g., trap return
information).

One meafls of storing data in the t.~mp stack is. to push the
data into the stack, by means. of push i nstructi ons (PSM and
PSW); another is to set aside a block of storage in the stack,
by using an MSP instruction, so that data can then be stored
in the block by the use of store instructions.

All storage used in the temp stack must, be released before
the assoc:iateq routine exits. Storage can be release~ bya
pull (PLM or PLW) or MSP instruction. All registers except
those used to return output information must, remain un­
changed. Note that all push, pull, and MSP instructions
must be done indirectly, through current general register O.

The following examples show two different methods of
plac:ing data in temporary storage, .

. 274 Appendix D· .

RO
R6

EQU
EQU

o
6

LCI 4
PSM, R6 *RO

The preceding example causes the contents, of current g,en­
era I registers 6, 7, 8, and 9 to be. pushed into the temp stack.

R7 EQU 7
BLOCKl EQU 100

LI, R6 BLOCK1
MSP,R6 *RO
LW,R7 *RO

The preceding;e.xample reserves a lOO-word. block in the
temp stack. lheaddress of the topof the block is contained
in R 7. When the b lock has been reserved, data can then be
stored in it, using the method illustrated below.

R3,
BLW1

EQU
EQU

STW,R3

3
-99

BLW1, R7

In the example given above, the contents of current general
register 3 are stored in the first word of the reserved block.

The area reserved .for use by the temp sta,ck is estab I i shed
by a LOAD control command TSS specifi cation or is set at
64 words by default.

APPENDIX E:. COOPERATIVES AND SYMBIONTS

In CP-V the routines to perform pE~ripheral operations for
unit-record peripherals operate concurrently with the jobs
being run. The peripheral system is composed of a "COOp­
erative II and a "symbiont II or symbionts. The cooperative
is a monitor routine called as result of a user's Vo re­
quest, whereas a symbiont is a monitor routine that is ini­
tiated either by the action of the cooperative or by operator
command from the system console. The cooperative is used
to transfer information between the user's program and
secondary (disk) storage, and symbionts are used to transfer

I JIT

I Input I I Buffer I Symbiont

IS t IS t - 1 4

I w

I JIT

~
IC t

Resident
_ 1

Monitor +

information between secondary storage and peripheral devices
(see Figure E-l and T abl e E-l).

The symbiont-cooperative system provides for complete buf­
fering between VO devices and the user's program. There­
fore, a user's program never has to wait for an I/o device to
complete an action. Also, the current job may be running
whi Ie the output of the previous job and the job fj Ie for the
following job are being handled by symbiont operation.

KEYIN Ghost

~ trol

IS t
2

IS t
3

RBBAT Ghost (W/MBS)

IC t
3

1

/

I Card Reader
or RBT

- Secondary
~torage

IC t
IJIT I I I I Batch User (or on-line, output only) I

2 t LIC4t~

OC t
3

+ I JIT"

OS t
1

,

I Output I l Buffer J Symbiont

tThis item IS explained In Table E-l.

OC t
1 1

RBBAT Ghost 0N/MBS)

~ trol·

OS t
3

OC t
2

I
OS t

2

Figure E-l. Information Flow Through Cooperative and Symbionts

LP I CP
PL Output
PP devices

RBT

Appendix E 275

Table E-l. Cooperative and Symbionts Descriptions

Name In
Figure E-l type Description

IS 1 Input Symbiont 'Input symbiont activcited by KEVIN Or RBBAT via resident tables.

IS
2

Input Symbiont Card images read into symbiont buffer.

IS
3

In'put Symbiont When buffer is full, contents are written to secondary storage and I inked to
previous blocks of the same file.

IS 4 Input Symbiont Continues untir end-of-file or IFIN, then notifies RBBAT and terminates.

IC
1

Input Cooperative RBBAT/MBS seleds job to run by putting job information into resident tables. '

IC
2

Input Cooperative When JOB card read, job information is transferred to JIT.

IC
3

Input Cooperative Input symbiont file blocks are read into user's cooperative buffer.

IC
4

Input Cooperative Records are transferred, one at a time, in response to user reads.

OC1 Output Cooperati ve User symbiont output is intercepted and put into cooperative buffers.

OC
2

Output Cooperative When buffer is full, contents are written to secondary storage.

OC
3

Output Cooperative User issues 'superclose' and file is queued by RBBAT.

OSl Output Symbiont RBBAT initiates output symbiont.

OS2 Output Symbiont Output symbiont blocks are read into symbiont buffer.

OS3 Output Symbiont Records are transferred, one at a time, to output device. Continues pro­
cessing blocks until end-of-file, then starts another fi Ie or terminates.

COO'PERATIVE

A single cooperative is provided for handl ing both user in­
put and output files. It is reenterable and can handle any
number of devi ce-type fi les (printer, punch, etc.) per job.

SYMBIONTS

A symbiont is a small, reenterable routine that controls the
action of a symbiont dedicated I/O device having a lower
transfer rate than secondary storage. Core storage as well
as secondary storage wi II be used by the symbiont to pro­
duce a continuous flow of information fo or from these de­
vices. Symbionts wi" transfer information from a peripheral
device to thediskand from the disk toa peripheral device.

Unlike the user's program, which is directed primarily by
control commands, symbionts - once initiated - receive
all their control from the operator's console. An input
symbiont device can be initiated only by the console oper­
ator, while an output symbiont device can be initiated
either by the operator or the cooperative.

For each device, a symbiont performs only one I/O opera­
tion at a time (chaining is not used) and is inactive from
the time that it initiates a request for I/O unti I the I/O

276 Appendix E

operation is complete. The symbiont regains control by
stipulating an I/O end-action return to itself.

Since symbionts are reenterable, a single symbiont may
drive several types of devices. For example, the same
symbiont may be used to drive many printers and card
punches. All the peripheral-dependent information is con­
tained in a context buffer. The location of this buffer is
made known to the symbiont whenever it is operating on
the associated device.

Two symbionts are provided in the monitor system: one for
driving all standard input devices, and one for driving all
standard output devices.

SYMBIONT -COOPERATIVE HOUSEKEEPING

Two monitor subroutines are provided for automatic main­
tenahce of core storage. One is used to release a core
buffer after use by the symbionts, and the other is used to
obtain a core buffer.

Ifa core buffer is requested by a symbiont and none is
available, an entry is made in a symbiont core-buffer queue.
When one becomes avai lable for symbiont use, control is
returned to the requesting symbiont.

As each buffer is emptied, either by reading from or storing
into secondary storage, it is released. This procedure allows
for efficient utilization of core buffers.

The symbiont routines themselves will be executed in resi­
dent monitor space. After starting an I/o operation on a
peripheral device, with an end-action return specified, the
symbiont rei inquishes control to the monitor system.

An area of secondary storage is set' aside for symbiont files.
The size of this area is an installation variable set up at
System Generation time. A secondary storage allocation
table is maintained by the monitor to indicate which disk
areas are avai lable. Two monitor subroutines are also pro­
vided for maintenance of secondary storage. One of these
requests storage; the other re I eases it. If secondary storage
is requested and none is avai labl e r an entry is made in a
symbiont secondary storage queue" Where subsequent I/o
information is read by the cooperative or a symbiont (oper­
ating on another device), secondary storage is released and
control is returned to the symbiont requesting secondary
storage.

Secondary storage holds the files produced by, or committed
to a peripheral device. Each disk block of secondary stor­
age contains the disk address of the next disk block in the
fj Ie, and a table of job fi les is maintained by the monitor.
Monitor subroutines are provided for symbiont input and
output fi Ie maintenance. One removes a file; the other
inserts a new fi Ie into the fi Ie table.

When preparing to output a fi Ie, the output cooperative
places an appropriate entry in the fi Ie directory.

SYMBIONT BUFFERS

There are two symbiont fi Ie buffers:

1. Input symbiont fi I e buffer.

2. Output symbiont fi Ie buffer.

In CP-V, both input and output symbio~t fi Ie buffers have
the same format (Figure E-2). EClch such block contains
256 words, and two blocks reside in a granule of fi Ie stor­
age. Word 0 of the block is used for the forward link ad­
dress that is inserted by the system when the fi Ie is created.
A value of zero implies no forward address (i. e., end of
fi Ie). Word 255 is used for the backward link address, again
inserted when the fi Ie is created. A va lue of zero implies
no backward address (that is, begonning of fi Ie). Each re­
cord in the block is preceded by four bytes of control infor­
mation. Neither the rec;:ord nor the control information
need start on a word boundary except the first control string.
Each control string must immediately follow the preceding
record. The first two bytes of a control string are the byte
count (BC) of the following record. BC must be greater
.. han zero and less than 1008. N() record may be split be­
tween blocks. If a block does not have space remaining
for a block end control string, a record control string, and
a record, the next record must begin in a new block. The
third byte of a control string is the record control character

(RCC) which defines the record. RCC may have the fQllow­
ing values:

o = a BCD record (e. g., card).

1 = an EOD record (e. g., I EOD).

2 = a binary record (BIN).

4 or 5 = a PRINT record without a vertical format con­
trol character.

6 or 7 = a PRINT record, the first byte of which is a
vertical format control character.

X'40' = a block ending control string (e.g., no more
records this block).

X'86' = a nonbatch banner. (The record will usually
be repeated enough times to fi II two print pages.)
When the RCC value is X'86' the symbiont file buffer
has three additional fields that are not shown in Fig­
ure E-l. They are each one byte in length and are:

RPTC specifies the number of times this record
is to be printed plus one.

SVFC specifies the secondary VFC character.
The character is used for the second and each
succeeding repeated print (e. g., X'C l' for
doublespace).

PVFC specifies the primary VFC character

For Example:

RPTC

to be used on the first print (e.g., X'Fl' for
top-of-form).

BC RCC=X'86' SK=3

I SVFC PVFC

Other values for RCC are reserved for future enhancement
and should not be used. The fourth byte of a control string
is the skip byte (SK) defined for the convenience and effi­
ciency of the block encoder. SK may have the value 1
through 4 inclusive.

The next SK-l bytes following the control sequence have
no significance and are skipped before the start of data.
The skipped bytes are provided to allow a byte-aligned
MBS instruction (the most efficient execution) to move

. the bytes into the symbiont block or to allow placement
of the record on a word boundary for record construction
ease. The final control string of a block must have BC=O,
RCC=X'40', and SK=O.

Appendix E 277

o

278 Appendix E

78 1516 2324

Forward li nk Di sk Address

BC RCC

Record 1

BC

RCC SK=2 Unused

Record 2

Record n-1

BC RCC SK=3

Unused

Record n

0 0

Backward Link Disk Address

End of data thi s buffer

If forward link disk address = 0, this is EOF.
If not, fi Ie is continued at forward link.

Records are never split between blocks.

Figure E-2. Symbiont Fi Ie Buffer Format

31

SK=l

BC

Unused

0

90 17 64H-l(9/78)

Appendix F has been deleted. Information regarding simultaneous
file usage is contained in Section 2, Files and File Usoge.

Appendix F 279

(This page intentionally left blank.)

90 17 64H-1 (9/78) Appendix F 280

INDEX

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

2741 terminal,
substitutions for nonexistent characters, 273

A

A Programming language, 6
abnormal address, setting, 112
abnormal codes

device failure or end-of-data, 254
enqueue/dequeue, 263
insufficient or conflicting information, 250

abort return, 70,94
account, user, 30
account di rec tory, 15
accounting, 166,2
accounting output, 168
addend value, x
address resolution code, x
adjust DCB CAL, 79
AND control command, 176
ANS COBOL, 5
ANS labeled tape, 25,x

DCB format, 242
ANS FORTRAN, 4
ANSCII,266,264,271
AP, 5
APl, 6
applicatiQn processors, 8
Assembly Program, 5
ASSIGN control command, 33,82

ANS labeled tape, 39
device, 40
disk file, 34
journal, 40
Xerox labeled tape, 37

assign/merge table, reading and writing, 87
authorization checks, 2

B

banner XIII

BASIC, 5
Ba tc h (processor), 204,7
Batch, command continuation, 205
Batch, commands, 205

BATCH, 205
DEFAULT, 206
EOF, 206
EOF EXEC, 207
EXEC, 206

Batch, data replacement, 204
Batch, error messages, 207

BATCH command, Batch, 205
batch job, x
batch processing, 2
BCD control command, 54
beginning column, specifying, (M:DEVICE), 127
BIN control command, 54
binary input, x
blocking buffer, truncating, 119
BREAK key, connecting to, 94
BUilD command, SYMCON, 211

c
card punch sequencing, specifying, (M:DEVICE), 127
CCI, 4,x
CHANGE command, SYMCON, 211
character sets, 264
CIRC, 8
close a file, 110
close a volume, 120
COBOL, 5
COBOL On-Line Debugger, 7
codes and correspondences, 264
column, specifying beginning, (M:DEVICE), 127
command processors, 3
command syntax notation, ix
commands, contro I, (see contro I commands)
common limits, obtaining, 72
common pages, x

freeing, 73
obtaining, 73

common storage, 152
concatenation, 189,x
conflicting information,

a bnorma I codes, 250
error codes, 255

conflicting reference, x
consecutive files, 18
console interrupts, connecting to, 65
control codes, 264
control'commands, 29,x, 10

AND, 176
ASSIGN, 33,82
BCD, 54
BIN, 54
COUNT, 176
DATA, 54
EOD,54
FIN, 54
IF, 174
INCl, 135
JOB, 30
lDEV, 51
LIMIT, 31

Index 281

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

LINK, 120
lOAD, 129
MESSAGE, 33
MODIFY, 136
OlAY, 129
OR, 176
OVERLAY, 129
PFll, 54
PMD, 172
PMDE, 172
PMDI, 172
POOL, 32
PTREE, 135
REW, 55
RUN, 136
SET, 44
SNAP, 173
SNAPC, 174
STEP, 32
SWITCH, 55
TITLE, 33
TREE, 134
WE OF , 55
XEQ,53

control function, x
control key-in, x
con tro I message, x
cooperative, 275,x
COpy command, pel, 186
COpy All command, PCl, 191
COPYSTD command, PCl, 194
COUNT control command, 176
CP-V operating system, 1

o
DATA control command, 54
data encryption, 24
data memory management, 72
data record manipulation, 114
date, obtaining, 60
DC B, 96, x, 17, 22, 25, 123, 161, 213

assignments, checking correspondence' of,
(M:DEVICE), 128

closing, 110
creating, 96
formats,

ANS labeled tape, ~42
device DCB, 235
file DCB, 213
Xerox labeled tape, 234

initializing, 102
opening, 102
size, 161

DCBTAB (Name Table), 161
debug error messages, 178, 177
debugging aids, 170

(see FDP)
(see Delta)

282 Index

DEFAULT command, Batch, 206
DEFCOM, 208,7
DE LE TE command,

PCl, 195
SYMCON, 210

DElETEAll command, PCl, 195
Delta, 6
dequeue resources, 78
device DCB format, 227
device designation codes, 96
device failure abnormal codes, 254
device failure error codes, 257
device mode, changing, (M:DEVICE), 126
device names, 95
device type codes, 95
device-oriented FPT, 81
direct a,ccess of files, 20
direct formatting, specifying, (M:DEVICE), 124
DISCARD command, SYMCON, 211
disk storage, 24
dummy section, x
dumps, postmortem, 170,xi
dumps, snapshot, 172
dynamic data limits, obtaining, 72
dynamic pages,

E

freeing, 74
obtaining, 73

EASY, 4
EBCDIC, 265,264
ECB, checking for completion, 91
Edit (processor), 7
EDMS, 8
element file, x
encryption, 24
END command,

PCl, 199
SYMCON, 210

end-of-data abnormal codes, 254
end-of-clata error codes, 257
end-of-file, writing, 121,55
enqueue/dequeue abnormal and error codes, 263
enqueue/dequeue resources, 75,279
EOD control command, 54
EOF command, Batch, 206
EOF EXEC command, Batch, 207
error address, setting, 112
error codes,

device failure or end-of-data, 258
enqueue/dequeue, 254
insufficient or conflicting information, 255
miscellaneous, 258
Xerox labeled tape, 254

error control , monitor, 71
error messages,

Batch processor, 207
debug, 178, 177

!'Jote: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
nu mer i co I sequen ce 0

Link, 153
load, 139
lYNX, 148
mon i tor, 250
Pel, 200, 199
SYMCON, 212,211

error return, 70,93
error severity level code, x
ERRORS command, Pel, 198
event control blocks, checking for completion, 91
exceptional condition control procedures, 62
EXEC command, Batch, 206
execution control processors, 6
exit control, 66
exit from trap, interrupt, timer, or exit control routine, 71
exit return, 85,68,93
exits to the monitor, 68
explicit open, 28
extension of output files (see filEIS, extension)
external definition, x
external reference, x

F
FOP, 6
fid (see files, identification)
fi Ie DCB format, 213
file directory, 15
file function and disposition, 19
File Information Table (see FIT)
file maintenance procedures, useII', 96
file management routines, x
file manipulation procedures, 12()
files,

access, 20
consecuti ve, 18
defaults, 104
direct access, 20
extension, x
iden fifi cation, 184
keyed, 15
manipulation, 120
multiple access to a single file, 22
noncontrol input, 86,53
organization, 15
posi tion i ng , 120
random, 19
sequential access, 21
simultaneous usage, 22
storage devices, 24
structure, 15
synonymous, 28

FIN control command, 54
FIT, 15
FIT file parameters, 224
FLAG, 5
formatting, specifying direct, (M:DEVICE), 124

90 17 64H-1 (9/78)

forms, changing, (M:DEVICE), 126
FORTRAN, 4
FORTRAN Debug Package, 6
FORTRAN load and Go, 5
FPARAM table, 224
FPT, 80,x,56

setting protection type, 57
function parameter table (see FPT)

G
General Purpose Discrete Simulator, 8
GET CAL, 90
ghost job, x
ghost job, initiating, 93
global symbol, 153,x
GO file, x
GPDS, 8
granule, x

H
header, specifying, (M:DEVICE), 127

I/O completion, checking, 113
I/O devices, assigning, (see ASSIGN command)
I/O procedures, 95
IF control command, 174
INCl control command, 135
index structure, 15
input control commands, 54
insufficient information, abnormal codes, 250
insufficient information, error codes, 255
internal symbols, 153
interrupt, connecting, to, 65,94
interval timer, setting, 64
interval timer, testing, 65
lOP designation codes, 95

J

JCl, 29
JIT, xi
JOB control command, 30
job decks, sample, 179
job step, xi

Index 283

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

K

KEEP command, SYMCON, 210
key, xi
keyed files, 15
key-in, xi

requesting, 61,94

L
labeled tape, 25

(see ANS labeled tape)
(see Xerox labeled tape)

la nguage processors, 4
LDEV control command, 51
LE MU R (processor), 154, 8

calling LEMUR, 154
commands,

BUILD, 155
CARRY, 157
COPY, 156
DE LETE, 155
END, 157
LIBRARY, 155

concepts, 155
error messages, 158

:UB file, 134
libraries, 137, 10

routines, 274
library load module, xi
LIMIT control command, 31
limits, obtaining common, 72
line printer format control codes, 43
line spacing, setting (M:DEVICE), 124
lines, determining number remaining (M:DEVICE), 128
I ines, setting number of printable (M:DEVICE), 124
lin k (processor), 150,6
link, commands,

LINK, 150
link, error messages, 153
LINK command, link, 150
link to a load module (M:lINK), 58
I inking loader, xi
LIS T command,

PCL, 196
SYMCON, 210

listing log, writing to, 62
Load (processor), 129,6
Load, commands,

INCL, 135
LOAD, 129
MODIFY, 136
OLAY, 129
OVERLAY, 129
PTREE, 135
RUN, 136
TREE, 134

284 Index

Load, error messages, 139
load, restrictions, 133
load and transfer control, 59
LOAD control command, 129
load information, xi
load location counter, xi
load map, 163,xi
load modu Ie ,

linking to, 58
structure, 151

logica I device stream, 51 ,xi, 84
logical device, xi
LOGON/LOGOFF, 4
LYNX (processor), 143,6

M

command file input, 143
error messages, 148
example, 148
LYNX command, 143
mapping existing load modules, 147
:TREE command, 147

M:AND, 1'76
M:CAL,9O
M:CHECK, 113
M:CHECKECB, 91
M:C LOSE, 110
M:COUNT, 177
M:CVM, 75
M:CVOL, 120
M:DCB, 97,96
M:DE LREC, 119
M:DEQ,78
M:DEVICE, 123
M:DISPLAY, 89
M:ENQ, 77
M:ERR, 70,93
M:EXIT, 68,93
M:EXU, 93
M:FCP,73
M:FP, 74
M:FVP, 74
M:GCP,73
M:GDDL,72
M:GL, 72
M:GP, 73
M:GVP,74
M:IF, 175
M:INT, 65,94
M:JOB, 121
M: KEY IN, 61,94
M:LDEV,84
M:LDTRC, 59
M:lINK, 58
M:MASTER, '90
M:MERC,71

90 17 64H-l (9/78)

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

M:MESSAGE, 60
M:MOVE, 118
M:OPEN, 102
M:OR, 176
M:PFll, 120
M:PRECORD, 119
M:PRINT, 62
M:PT, 57
M:RAMR, 87
M:READ, 114
M:REW, 121
M:SEGlD, 57
M:SETDCB, 112
M:SlAVE, 90.1
M:SMPRT, 75
M:SNAP, 174
M:SNAPC, 174
M:STlMER, 65,64
M:STRAP, 64
M:SYS, 90
M:TFllE, 113
M:TlME, 60
M:TRAP, 63
M:TRTN, 71
M:TRUNC, 119
M:TIMER, 65,64
M:TYPE, 60,94
M:WAIT, 62
M:WAMR,89
M:WEOF, 121
M:WRITE, 116
M:XCON,66
M:XXX, 70,94
magnetic tapes (see tape)
Manage, 8
master mode, enter ing, 90
memory allocation, 72
memory management, 72
memory protect, setting, 75
memory protection, 162
memory, virtual, 163
MESSAGE control command, 33
messages (see error messages)
messages to operator, 60
Meta-Symbo I, 4
MODIFY control command, 136
mon itor, 9, 1, x i
monitor error control, 71
mon i tor error mesSCIges, 250
monitor routines, 9
multilevel index structure, 15

N
name, user, 30
11 NCTl command, 86,53
noncontrol input file, 86,53

90 17 64H-1 (9/78)

o
object language, xi
object module, xi
OLAY control command, 129
open a file, 102
open, explicit, 28
opennext operation, 28
operational label, 41,xi
operator, messages to (from users), 33,60
option, xi
OR control command, 176
output form, changing, (M:DEVICE), 126
output header, specifying, (M:DEVICE), 127
OVERLAY control command, 129
overlay loader, (see load processor)
overlay segment, load ing, 57

p

page count, specifying, (M:DEVICE), 125
pages, free i ng, 72
pages, obtaining, 71,72
parameter presence indicator, xi
PCl, 182,7
PCl, capabilities, 185
PC l, command summary, 203, 199
PCl, commands,

COPY, 186
COpy All, 191
COPYSTD, 194
DELETE, 195
DElETEAll, 195
END, 199
ERRORS, 198
LIST, 196
PRINT, 198
REMOVE, 199
REVIEW, 197
REW, 198
SPE, 198
SPF, 198
SPR, 198
TABS, 199
WEOF, 198

PCl, device types, 183
PCl, disk pack default, 184
PC l, error messages, 200, 199
PCl, file identification, 184
PCl, mode option compatibility, 185
PCl, organization types, 183
PCl, resource type, 185
PCl, scratch types, 199
pel, source and destination specification, 183
PCl, specification examples, 185
PCl, syntax conventions, 182
PCl, termination of, 199

Index 285

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

PCl, volume identification, 184
Peripheral Conversion language (see PCl)
peripheral device (see device)
PFll control command, 54
physical device, 27,xi
PMD control command, 172
PMDE control command, 172
PMDI control command, 172
POOL control command, 32
pos ition fi Ie, 120
postmortem dumps, 170,xi
PRINT command, PCl, 198
privileged instructions, executing, 93
procedures, 56, 12

exceptional condition control, 62
file maintenance, 96
file manipulation, 120
genera I purpose, 57
I/o, 95
M:AND, 176
M:CHECK, 113
M:CHECKECB, 91
M:ClOSE, 110
M:COUNT, 177
M:DVM,75
M:CVOl, 120
M:DCB, 97,96
M:DElREC, 119
M:DEQ,78
M:DEVICE, 123
M:DISPLAY, 89
M:ENQ, 77
M:ERR, 70,93
M:EXIT, 68,93
M:EXU,93
M:FCP, 73
M:FP, 74
M:FVP, 74
M:GCP,73
M:GDDl,72
M:Gl, 72
M:GP,73
M:GVP,74
M:IF, 175
M:INT, 65,94
M:JOB, 121
M:KEYIN,61,94
M:lDEV, 84
M:lDTRC,59
M:LlNK, 58
M:MASTER, 90
M:MERC, 71
M:MESSAGE, 60
M:MOVE, 118
M:OPEN, 102
M:OR, 176
M:PFll, 120
M:PRECORD, 119
M:PRINT,62
M:PT, 57

286 Index

M:RAMR, 87
M:READ, 114
M:REW, 121
M:SEGlD, 57
M:SETDCB, 112
M:SlAVE, 90
M:SMPRT, 75
M:SNAP, 174
M:SNAPC, 174
M:STIMER, 65,64
M:STRAP, 64
M:SYS,90
M: TF I lE, 113
M:TIME, 60
M:TRAP,63
M:TRTN, 71
M:TRUNC, 119
M:TTlMER, 65,64
M:TYPE, 60,94
M:WAIT,62
M:WAMR,89
M:WEOF, 121
M:WRITE, 116
M:XCON,66
M:XXX, 70,94
on-line and batch differences, 93
special device, 123

processor control commands, 182
processor name control command, 182
processors,

application, 8
command, 3
execution control, 6
language, 4
service, 7
user, 9

program decks, samples, 179
program load and execution, 129
program product, xi
protective mode, 25,xi
pseudo file name, xi
PTREE control command, 135
public library, 137,xii,9O
public library, associate or disassociate, 90

R
RAD, 24,xii,2
random fi les, 19
real-time processing, 2
record, deleting, 119
record, manipulation, 114
record, reading, 114
record, size,

changing, (M:DEVICE), 126
record, writing, 116
records, copying all, 118
records, formatted, 27

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerica I sequence.

records, positioning, 119
reentrant, xii
relative allocation, xii
release resource CAL, 89
relocatable object module (ROM), xii
relocating loader, xii
remote processing, 2,xii
REMOVE command, PCl, 199
Report Program Generator, 5
resident program, xii
response time, xii
RETAIN command, SYMCON, 211
REVIEW command, pel, 197
REW command, PCl, 198
REW control command, 55
rewind, 121,55
ROM, xii
RPG, 5
RUN control command, load, 136

s
SAVE CAL, 89
schedu ler, xii
secondary storage, 2, xii
segment loader, xii
semi-protective mode, 25,xii
sequencing, specifying, (M:DEVICE), 127
sequential access of files, 21
service processors, 7
SET command, 44
shared processor, xii
Show processor, 208
Simulation language, 6
simultaneous file usage, 22
S l-1, 6
slave mode, entering, 90
SNAP control command, 173
SNAPC control command, 174
snapshot dumps, 172
Sort/Merge, 8
source language, xii
SPE command, PCl, 198
specia I shared processor, xii
specific allocation, xii .
SPF command, PCl, 198
SPR command, PCl, 198
SR1, SR2, SR3andSR4, xii
star file, xii
static core module, xii
S TE P con tro I command, 32
storage devices, 24
SWITCH control command, 55
symbiont, 275, xii
symbiont file, inserting or deleting, 121

symbol tables,
global, 153
internal, 153

symbol-code correspondences, 267
symbolic input, xii
symbolic name, xii
symbols (symbol ic identifiers), 153
symbols, graphic, 264
SYMCON, 209,7
SYMCON, commands,

BUI lD, 211
CHANGE, 211
DELETE, 210
DISCARD, 211
END, 211
KEEP, 210
LIST, 210
RETAIN, 211

SYMCON, error messages, 212,211
synonymous files, 28
SYSGE N, xii
SYSTEM BPM, 56
system load parameters, listing, 89
system register, xii
SYSTEM SIG7, 56
SYSTEM SIG9, 56

T
tab stops (M:DEVICE), 123
tape,

(see ANS labe led tape)
(see Xerox labe led tape)
labeled, 25
positioning (M:C lOSE), 110
types of, 25
updating (M:C lOSE), 110

task control block (TCB), 160,xii ,63
TEL, 4
temporary file, declaring, 113
TEXT format, xiii
TEXTC format, xiii
time, obtaining, 60
time-sh~ring, 2
timer, setting, 64
timer, testing, 65
TITLE control command, 33
top of form skipping to, (M:DEVICE), 120
transaction processing, 3,8
traps, setting, 63
traps, simu lating, 64
:TREE command, lYNX, 147
TREE control command, 134
TSS temp stack, xiii
TYC codes, 222,234,241,248

Index 287

Note: For each entry in th is index, the number of the most significant pag6 Is listed first. Any pages thereafter dre I isted iii
numerical sequence.

u
Unsati sfied reference, xiii
user processors, 9
user-identification banner, xiii
utility control commands, 54

y'
voriable length parameters, 81,223,248
vertical format control, specifying, (M:DEVICE), 125
virtual map, changing, 75
virtual memory, 163
virtual memory layout,

Link processor, 164
Load processor, 165

virtua~ po.ge, freeing, 74
virtual page, obtaining, 74
volume, closing, 120
volume, identification, 184

288 Index

WEO~ command, pel; 197
WEOF control command, 55
write end-of-file, 116,55

x
XE Q con tro I command, 53
Xerox lobe led tape, 25

DC B format, 234
errOr' hdndl ing, 254

Xerox s·tanddrd symbols, codes', and corre'spondences, 264

y
yyndd, 95

XEROX Publication Revision Sheet

September 1978

CORRECTIONS TO CP-V/BATCH PROCESSING REFERENCE MANUAL

PUBLICATION NO. 90 17 64H-1(9/78)

The attached pages contain changes which reflect the FOO version of Control Program-Five (CP-V). Pages in the
H edition (11/76) of the manual that are to be replaced are: title page/ii, iii through viii, 21/22,23/23. 1, 23.2/24,
25 through 40, 47/48, 51 through 54, 57 through 62, 65/66, 75/76, 83 through 90, 91 through 108, 111/112,
115 thro~gh 118, 121 through 124, 127 through 134, 137/138, 143 through 150, 153/154, 183 through 202,
203/203. 1, 203.2/204, 205/206, 221/222, 233/234, 251 through 262, 279/280, and 283 through 286. (Pages
23. 1, 23.2, 203. 1, and 203.2 are new pages.)

Pages that are to be inserted are:: 90. 1/90.2.

Revision bars in the margins of rElplacement pages identify changes. Pages without the publ i cation number
90 17 64H-1(9/78) at the bottom are included only as backup pages; revision bars appearing on such pages
identify changes made in a previous revision. A revision bar adjacent to a page number indi cates that the
material on the page has been reorganized without the content being changed.

23408
1579
Printed in U.S.A.

File No.: 1 X 13
X L89A, Rev. 0

XEROX" is a trademark of XEROX CORPORATION 90 17 64H-1 (9/78)

XEROX

Reader Comment Form

I We would appreciate your comments and suggestions for improving this publication

Publication No. ~.V. Le,,:, I T-;tI. 1 Current Date

i

How did you use this publication;> Is the material presented effectively?

! D Learning D Installing D Sales o Fully Covered DWell D Well organized D Clear I Illustrated
I D Reference D Mainta inin 9 D Operating

What is your overall rating of this publication? What is your occupation?

D Very Good D Fair D Very Poor

D Good D Poor

Your other comments may be entered here. Please be specific and give page, column, and line number references where
applicable. To report errors, please use the Xerox Software Improvement or Difficulty Report (1188) instead of this form.

1---

I
--

I Your name & Return Address

~
Thank You For Your Interest (fold & fasten as shown on back, no postage needed If mailed In USA)

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 59153 LOS ANGELES,CA 90045

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
5250 W. CENTURY BOULEVARD
LOS ANGELES, CA 90045

ATTN: PROGRAMMING PUBLICATIONS

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

w
z
::i
CJ z
o
..J
<
I­
::> u

I
I
I
I
I
I ~
I ~
I CJ
I Z
~g

<
o
..J
o
u..

w
Z
~
CJ
Z

~o
..J
<
o
..J
o
u..

Honeywell Information Systems
In the U.S.A.: 200 Smitfl Street, MS 486, Waltham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1W5

In the U. K.: Great West Road, Brentford, Middlesex TWa 90H
In Australia: 124 Walker Street, North Sydney, N.S.w. 2060

In Mexico: Avenida Nuevo Leon 250, Mexico 11, O. F.

27994, 3.5C880, Printed in U.S.A. XL89, Rev. 0

	000001
	000002
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	001
	0010
	0011
	0012
	0013
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023.0
	023.1
	023.2
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090.0
	090.1
	090.2
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203.0
	203.1
	203.2
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	_01
	replyA
	replyB
	xBack

