
I.s,[OX Extencte.d Data Management System (EDMS)
Sigma 6/7/9 Computers

Reference Manual

90 30 128

Xerox Corporation
701 South Aviation Boulevard
EI Segundo, California 90245
213 679-4511

XEROX

Xerox Extended Data Management System (EDMS)
Sigma 6/7/9 Computers

Reference Manual

90 30 128

February 1974

Price: $4.50

©1973, 1974, Xerox Corporation Printed in U.S.A.

NOTICE

This publ ication is a revision of the XEROX Extended Data Management System (EDMS) Reference Manual 90 30 12A.
This revision documents the BOO release of the system. A change in the text from that of the previous manual is
indicated by a verticallineat the margin of the page. EDMSprovides all of the features of Basic DMSplusadditional
features.

RELATED PUBLICATIONS

Title Publication No.

Xerox Sigma 6 Computer/Reference Manual 90 17 13

Xerox Sigma 7 Computer/Reference Manual 90 09 50

Xerox Sigma 9 Computer/Reference Manual 90 17 33

Xerox Sigma Glossary of Computer Terminology 900957

Xerox Contro I Program- Fi ve C P- V /T S Reference Manua I 90 09 07

Xerox Control Program-Five CP-V/OPS Reference Manual 90 1675

Xerox Control Program-Five CP-V/TS User's Guide 90 16 92

Xerox ANS COBOL/LN Reference Manual 90 15 00

Xerox ANS COBOL (BPM)/OPS Reference Manual 90 15 01

Xerox Extended FORTRAN IV/LN Reference Manual 90 09 56

Xerox Extended FORTRAN IV/OPS Reference Manual 90 11 43

Xerox Meta-Symbol/LN, OPS Reference Manual 90 09 52

Xerox Data Management System (DMS)/Reference Manual 90 17 38

Xerox Extended Data Management System (EDMS)/User's Guide 903037

Xerox Interactive Database Processor (IDP)/LN,OPS Reference Manual 9030 66

Manual Content Codes: BP - batch processing, LN -language, OPS - operations, RP - remote processing, RT - real-time,
SM - system management, TS - time-sharing, UT - uti I ities

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features
may depend on a specific configuration of equipment such as additional tape units or larger memory. Customersshouldconsult their Xerox sales representative

for details.

ii

CONTENTS

1. INTRODUCTION DBM Operational Interface 52
Total Nonshared Library 52
Combination Public and Shared Library 52
DBM DCB Requirements 52

2. EXTENDED DMS OVERVIEW 2 DCB Assignments 53

Data Relationships ___ 2
System Functions 6 5. EDMS UTILITY PROCESSORS 54
Database File Structure 6

Data Pages 6 Database Initialization (DMSINIT) 54
Index Pages ______ 8 AREA Statements 54
Inventory PCiges 8 Dump Processor (DMSDUMP) 54

DUMP DirecHves 57
Load Processor (DMSLOAD) 57

DMSLOAD Directives 58
3. FILE DEFINITION PROCESSOR 9 Summary Statisti cs Processor (DMSS UMS) 59

Statistics Selection 60
Data Definition Language Syntax 9 Utilities Operational Interface 60
Schema Generation ___ 12 DMSINIT 60

Sc hema Entry 12 DMSDUMP 61
Area Entires 13 DMSLOAD 62
Group Entri es _____ 14 DMSSUMS 63
Set Entries 21
END Entry 25

INDEX
121

Subschema Generation 25
Subschema Entry ___ 26
Set Entry 27 APPENDIXES Area Entries 27
Group Entri es 28 65 END Entry 30 A. SCHEMA FILE

DMSFDP Operational Interface 30
SUBSCHEMA FILE 80 DCB Assignments ___ 31 B.

Terminal Usage ___ 31
C. SAMPLE DATABASE DEFINITION 91

4. DATABASE MANAGER 32 D. DATABASE PAGE FORMATS 96

DBM Routine Call Format_ 32 E. SEQUENTIAL FILE FORMATS 99

Meta-Symbol Call Format 34
F. ERROR MESSAGES 103

FORTRAN Call Format 34
COBOL Call Format __ 34

G. DATA VALIDATION 118 DBM Routine Usage ___ 36
Beginning of Processing 36 H. ENQUEUE/DEQUEUE 119 Adding Occurrences __ 37
Deleting Occurrences __ 39
Modifying Data Values_ 40 FIGURES
Modifying Linkages __ 40
Retrieving 42 l. Shorthand Notation for Data Relationships 3
Moving to Working Storage 45
Run-Time Statistics __ 45 2. N EXT Pointers in an Occurrence of
Run-Time Tracing ___ 46 SET-A 4
Error Control 48
PreparinfJ for Deadlock 49 3. NEXT and OWNER Pointers in an Occurrence
Checkpointing 50 of SET-B 5
Terminating Processing __ 50

Error Processing ____ 50 4. N EXT and PRIOR Pointers in an Occurrence
Journaling 51 of SET-C 5
Database Lockout 51
Summary Statistics Collection 51 5. System Overvi ew 7

iii

6. DMS F D P Outputs 10 D-2. Data Group Occurrence with Three-Byte
Set Pointers 96

7. Run-Time Statistics Sample 47
D-3. Data Group Occurrence with Four-

8. Run-Time Trace Sample 47 Byte Set Pointers 97

9. DMSDUMP Output Sample (Batch Job) 55 D-4. Index Page Format 97

10. Sample DMSDUMP Terminal Job 56 D-5. Inventory Page Format 98

1l. DMSSUMS Sample Output 59 E-1. Journal/Dump Begin Record 99

A-l. Schema Database Diagram 66 E-2. Journal/Dump End Record 100

A-2. Schema DDL for Schema 71 E-3. Journal/Dump Page- Image Record 100

8-l. Subschema Definition Structure 80 E-4. Journal/Dump File Format Summary 101

B-2. Area Definition 81 E-5. Statistics Job Id Record 101

B-3. Group Definition 81 E-6. Area Statistics Record 102

8-4. Owner Definition 83 E-7. Group Statistics Record 102

B-5. Member Definition 83 E-8. Set Statistics Records 102

8-6. Item Definition 85

8-7. Control Definition 86

B-8. Subschema Definition 86 TABLES

B-9. Password Definition 87 l. PICTURE-TYPE Correspondences 19

B-lO. Indexed-Sequential (ISEQ) Definition 87 2. Contents of the Communications
Control Block 33

B-1l. Check Definition 88
3. Meta-Symbol Addresses 34

B-12. AI ias Definition 89
4. FORTRAN Addresses 35

B-13. Name Table Entry Format 89
5. COBOL Arguments 35

B-14. Subschema Fi Ie Directory Block Format
(Blockzero) 90 6. Trace Codes for DBM Calls 48

C-l. Schema DDL Listing for Sample Database ___ 91 A-l. Schema Items 67

C-2. Schema Generati on Summary Output for F-1o DMSFDP Error Messages 103
Sample Database 92

C-3. Subschema-1 DDL and Summary Output for F-2. DBM Data-Dependent Errors 109

Sample Database 93
F-3. DBM Non-Data-Dependent Errors 110

C-4. COpy Listing Corresponding to
Subschema-1 for Sample Database 93

F-4. DMSINIT Error Messages 113

C-5. Subschema-2 DDL and Summary Output
for Sample Database 94 F-5. DMSDUMP Error Messages 114

C-6. SYSTEM Corresponding to Subschema-2
F-6. DMSLOAD Error Messages

for Sample Database 95 115

D-l. Data Page Format 96 F-7 DMSSUMS Error Messages 116

iv

1. INTRODUCTION

The Xerox Extended Data Management System (EDMS) operates on Sigma 6/7/9 computers under the control of the
Xerox Control Program-FivE~ (CP-V), and in conjunction with COBOL, Meta-Symbol, and FORTRAN applications
programs. It is designed specifically for use by organizations that require the same data to be used for many pur­
poses and by many different applications programs.

Extended DMS provides a c(Jpability for accumulating large volumes of data into a single database, which may be
structured to reflect any desired data relationships. The structuring and related concepts are explained in Chap­
ter 2, "Extended DMS Overview".

A special Extended DMS processor, the Fi Ie Definition Processor (DMSFDP), creates a datobase description in two
phases. The first phase genE~rates a schema file that describes the complete database, its file size requirements, stor­
age and retrieval techniques, privacy controls, etc. In the second phase, the DMSFDP creates the subschema file
by extracting information from the schema file. The subschema may describe the complete database or only those
portions that are required by a specific application. The DMSFDP, its Data Definition language (DDl) input, and
its operational interface with CP-V are explained in Chapter 3.

The Database Manager (DBM) consists of a number of library routines, which are explained in Chapter 4. Included
in the explanation are the routine call formats for COBOL, Meta-Symbol, and FORTRAN, and descriptions of error
processing, journaling, tracing, and statistics collection. Also included are instructions for loading applications
programs with the library routines under CP-V.

The Extended DMS Utility processors (DMSINIT, DMSDUMP, DMSLOAD, and DMSSUMS)are described in Chapter 5.
The use of these processors for initializing files, saving and restoring the database, and printing summary statistics is
explained. Also explained are the operational interfaces of these processors with CP-V.

Introduction

2. EXTENDED OMS OVERVIEW

The Extended Data Management System (EDMS) serves an an interface between a user and hisdata. The user defines
his database and generates applications programs that communicate with EDMS in terms of the defined data charac­
teristics and re lationships. EDMS, in turn, communicates with the host operating system in terms of fi les, granu les,
etc., to transfer the specified data values to and from the database in response to user program requests.

The concept of a database is central to the design of EDMS. An EDMS database is an organized, interrelated col­
lection of information required for various types of activities {e.g., a company's accounting, inventory, and personnel
records}. Its purpose is to make the same information avai lable for many different uses without incurring the over­
head of redundant storage. The value of an EDMSdatabase is realized when there is a need to access the same data
values in several different ways, for several different purposes. For example, purchase order data may be used by
both accounts payable and inventory contro I. Accounts payable may need a II data for a II purchase orders to each
vendor. Inventory control may need the total number of parts ordered from all vendors for each type of part ordered.
To reduce ,the number of times the counts of parts ordered must be stored or to reduce the number of times a fi Ie must
be sorted to produce the information in the desired order, purchase-order data may be stored in an EDMS database
and simply linked in the desired ways. Similarly, information on, for example, students assigned to a particular
class may be linked in several different ways for use in generating class rosters and in generating student grade
reports.

The EDMS capability for accommodating multiple relationships among data values in a database is the most important
aspect of the system. Data relationships are described in the following paragraphs along with the system features pro­
vided for managing the database and the physical structure of the database files.

Data Relationships

The term "network-structured" refers to the relationships that can exist in an EDMS database. It implies that a unit
of data may be associated with more than one other data unit. For example, information specifying parts on order
can be associated with information describing the vendors from whom the parts were ordered, and with stock infor­
mation on the parts. Relationships in an EDMS database are described in terms of items, groups, and sets.

An item is a logical construct that defines the characteristics of a number of simi lar data values. The concept of
an item is analogous to that of a field. An item occurrence is a single data value with the specified characteristics.
For example, Smith might be an occurrence of an item called LASTNAME.

A group is a logical construct that defines a number of similar collections of item occurrences. A group occurrence
includes a fixed number of item occurrences, each in a fixed position relative to the others. For example, an
occurrence of a group' called EMPLOYEE might include an occurrence of the item LASTNAME, an occurrence
of the item FIRSTNAME, and an occurrence of the item EMPLOYEENUMBER. Two group occurrences could be
depicted as

SMITH

1001

JOHN

etc.

STOUT

1002

REX

etc.

A group occurrence can be considered as analogous to a record and the group itself to a record description or
definition.

A set is a logical construct that defines and controls the links existing between occurrences of specified groups. A
set occurrence consists of one occurrence of the group defined as owner, plus zero, one or more occurrences of the
group {or groups} defined as members. For example, a DEPARTMENT group, with an item DEPT -NAME could be

2 Extended DMS Overview

defined as thEl owner of DEPT-PERSONNEL set. If John Smith and Rex Stout were the only two employees in
the research department and EMPLOYEE the only group defined as a member of DEPT-PERSONNEL set, an oc­
currence of the set could be depicted as follows:

I - -- - --- - - - - - I
I I

Set Occurrence

I
I ! £RESEARCH

I [SM ITH JOH ,,; ""-ST-O-U--iTL....-R-EX---

I '1001 1002
,------

I
I
I

---~ L ______ _

A set occurrence is also somewhat similar to a record, in the sense that it contains all of a certain type of informa­
tion about an entity (the names of all employees in a department, in the example above).

The links defining a set occurrence are established between the one owner occurrence and the member occurrences,
if any. A notation such as shown in Figure 1 can be used to depict the relationships that exist between the one
owner group occurrence and i'he member group occurrences in each occurrence of the set. It shou Id be noted that
Figure 1 shows a shorthand no'tation in which each box may represent many data values, and each connecting line
may represent many different set occurrences, each consisting of one owner group occurrence and zero, one, or many
member group occurrences.

Given these cautions, we can then describe groups as being owners or members of sets, and a set as consisting of one
owner group and one or more member groups. A group can participate in one or more sets as owner and one or more
sets as a member. For exampiJe, the group named GROU P-2 in Figure 1 is a member of the set named SET -A and the
owner of the sets named SET -8 and SET -C.

GROU~
Owner !~ET-A

SET-A ,
GROUP-2

Member SET-A
SET-B

Owner SET-B
Owner SET-C ,Ir

GROUP-3

Member SET-B
Owner SET-D

SET-C

GROUP-4
SET-D

'-- .. Member SET-C --
Member SET-D

Figure 1. Shorthand Notation for Data Re lationshi ps

Data Relationshi ps 3

Though not shown in Figure 1, sets with two or more member groups are legal configurations. For example, a
group named GROU P-5 could a Iso be defined as a member of SET -D. Or referring to the previous example,
the DEPT -PERSONNEL set could have a CONSULTANT group as well as the EMPLOYEE group as a member. This
configuration would be depicted as follows:

DEPARTMENT

DEPT -PERSONNEL

The data re lationships are incorporated in the database by means of set pointers. Every group occurrence has a
NEXT pointer for each set in which the group participates (see Figure 2). In addition to the NEXT pointers, occur­
rences of member groups may have OWNER pointers as illustrated in Figure 3, and both member and owner group oc­
currences may have PRIOR pointers, as illustrated in Figure 4. Only the NEXT pointers are always inserted in the
database, OWNER and PRIOR pointers are user options. Appendix C describes the database· that is illustrated in
Figures 1 through 4. .

G RO UP-1 Occu rrence • -....
SET-A NEXT pointer. t

GROUP-2 (first occurrence)tt •

SET-A NEXT pointer.

Other set pointers. t ~ Occurrences of GROUP-3 and GROUP-4

GROUP-2 (2nd occurrence)tt •
SET -A NEXT pointer. I Other set pointers.t ~ Occurrences of GROUP-3 and GROUP-4

G ROUP-2 (nth occurrence)tt. - i
SET-A NEXT pointer.

Other set pointers. t r---.-. Occurrences of GROUP-3 and GROUP-4

tD I . . . f . t oes not represent actua size or position 0 poin ers.

tt In the occurrence of SET -A.

Figure 2. NEXT Pointers in an Occurrence of SET-A

4 Data Relationships

r---+ GROUP-2 {an (? ccurrence}.
... --

Other set poi nters. t ~Occurrences of GROUP-2 or GROUP-l

SET-B NEXT pointer.

Other set po i nters •. ~Occurrences of GROUP-4 or GROUP-2

t ...----

ROUP-3 (1st occurrence). t ----
SET-B NEXT pointer •

SET-B OWNER pointer.

Other set pointer. ---... Occurrence of GROUP-4

.. ~ -

ROUP-3 (2nd occurrence). tt

SET-B NEXT pointer.

I SET-B OWNER pointer.

Other set pointer. --.. Occunrence of GROUP-4

~
I ROUP-3 (nth occurrence). rr --

SET-B NEXT pointer.

SET-B OWNER pointer.
Other set pointer. ~Occurrence of GROUP-4

t
Does not represent actua I size or position of pointers.

tt
In the occurrence of SET· -B.

Figune 3. NEXT and OWNER Pointers in an Occurrence of SET-B

-+ GROUP-2 Occurrence. --
Other set poi·nters. t ~ Occurrences of GROUP-2, GROUP-3, GROUP-l

SET-C PRIOR.pointer.

SET-C NEXT pointer.

~;ROUP_4 (lst occurrence).tt

SET-C PRIOR pointer.

SET-C NEXT pointer.

- Other set pointers. ~ Occurrences of GROUP-3 and GROUP-4

..
SET -C PRIOR pointer.

SET -C NEXT pointer. I
Other set pointers. I ~ Occurrences of GROUP-3 and GROUP-4.

+ ---1,ROUP-4 (nth occurrence). tt -.....
I SET-C PRIOR pointer.

SET-C NEXT pointer.

Other set pointers. ~ Occurrences of GROUP-3 and GROUP-4

tD I • • • f . oes not represent actua size or position 0 pOinters.
tt In the occurrence of SET··C.

--~
Figure 4. NEXT and PRIOR Pointers in an Occurrence of SET-C

Data Relotionshi ps 5

System Functions
The combination of free-standing processors and library routines that comprises EDMS performs four basic categories
of system functions:

• Database Definition.

• Database Initialization (null values).

• Data Manipulation (storing, updating, retrieving, etc).

• Auxiliary Support (maintaining security and integrity, collecting and printing 'Statistics, supplying debug­
ging support to user's programs, etc.).

See Figure 5 for a graphic representation of the system.

The definition function, centralized in the Fi Ie Definition Processor (DMSFD P), provides for user specification of
database fi Ie size, item, group, and set characteristics, and security and integrity requirements. Definition is the
required first step in any database activ!ty, and affects the performance of all subsequent functions.

Database initialization prepares the database files for receiving group occurrences. This step is necessary before
any actual data values can be added to the database. It creates the complete, maximum-size fi les, with pages
left blank except for control information. This step is performed by a free-standing uti lity processor, DMSIN IT.

Data manipulation is the actual storing, retrieving, and changing of data values. It is performed, in response to user
program requests, by the set of library routines referred to collective Iy as the Data Base Manager (DBM). A
working storage area in the user's program, in a format determined by the database definition, is used for communi­
cation with the DBM, which performs any necessary fi Ie manipu lation.

Auxi liary support functions include ensuring database integrity by saving copies of the fi les, journal ing changes, trac-
ing program action, keeping and printing statistics, and other techniques. These features are provided partl y by
the DBM, and partly by three utility processors, DMSDUMP, DMSLOAD, and DMSSUMS.

Database File Structure

The EDMS database exists in rannom access storage (RAD or disk) as one or more areas, each of which is a fi Ie rec­
ognizable by the host operating system. EDMS subdivides each area into 512-word page segments. There are three
types of pages: data, inventory, and index pages. The number of data pages in each area is specified when the
database is defined. If the EDMS inventory faci I ity is selected, one inventory page is added for each 2032 data pages
in the area. Pages for the primary index are added if the area is designated for storage of group occurrences in in­
dex sequential order. Each area maycontain from 1 to 220_1 (1,048,575) pages. Pages are numbered consecutively
within each area, from 1 to the number defined for the area, plus the number added for inventory and index.

Data Pages

Data pages are used for storing the group occurrences in the area. A data page has a two-word page header and may
contain as many as 256 group occurrences and an optional checksum. (See Appendix D, Figure D-1, for an illustra­
tion of the data page format.)

The maximum number of group occurrences that can be stored on a data page depends on the size of the occurrences
and the number of available line numbers. The size of a group occurrence, which is a collection of item occur­
rences, control data, and set pointers, is determined by the number and characteristics of tl-e items defined for the

6 System Functions/Database Fi Ie Structure

II. DATABASE DEFINITION I

I [J I
, ~;~n ition :
I l.anguage I

I I
I

I@O'Df"t'"J

I
lee Inl Ion I

I Processor (DMSFDP)

I " . I
L ______ J

Note: Printed output frclm several
system features is not shown.

User's Raw
Data Input

III. DATABASE INITIALIZATION - - - - '-1
I I

'

I Initialization I
Utility (DMSINIT)

, I
L ___________ ~

I

I
I

User's App' i cati ons Programs
Combined with Database Manager
(DBM) library Routines

I
I
I ,
I
I

L -~

IIV. SUPPORT- -

I
I

I
I
I

f

l
I

Summary Statistics
Utility (DMSSUMS)

L _____ _

Summary
Statistics
Listing

Figure 5. System Overview

Database Fi Ie Structure 7

group and the number of sets in which it participates. All occurrences of a given group are the same size,
but many groups, each with its own size, may be defined for a given database.

The maximum number of available line numbers is determined by the number of pages in the area. When a group oc­
currence is inserted in the database, it is assigned a I ine number that is appended to the page number and the area
number to form a reference code that uniquely identifies the occurrence. The reference code consists of eight bits
of area number and 24 bits shared between page number and I ine number. The default allocation 24 bits allows repre­
sentationofthe page numbers of all pagesin the area, with the remaining bits of the 24available for line number. For
example, if the area contains the maximum number of pages, 20 bits are reserved for page number and only four are
available for line number. Similarly, fewer pages allow more bits, up to a maximum of eight, for line number. Thus,
in a one-page area or in a 65,535-page area, 16 bits are reserved for page number and eight bits for line number.
The user may override the defau It allocation of bits to allow fewer than the maximum avai lable for line numbers. In
a one-area database, set pointers consist of only the 24-bit page-line-number portion of the reference codes. The
complete 32-bit codes,. including area number, are used for set pointers in databases of two or more areas.

Index Pages

An index page is composed of a three-word page header, a variable number of index entries, and an optional check­
sum. See Appendix D, Figure D-4, for index page format. The number of pages necessary to contain the indexes is
added to the number of data pages specified for an area. Thus, after an area is initialized by the DMSINIT utility,
the index pages wi II follow the data pages of the area. The number of index pages is based on the number of data
pages defined to contain group occurrences in index sequential order, and the length of the items defined as the
index-key items for the group.

The contents of the index pages are automatically updated by the DBM. As a data page is filled, the highest key
va lue on the data page becomes the index entry in a leve 1-0 index page. When a leve 1-0 index page is fi lied,
the highest key value on that page becomes an index entry on a level-1 index page. The creation of higher level
indexes will continue to a maximum of eight levels. The relative position of an entry within an index level corres­
ponds to the relative page number of the page that the entry represents.

Once an index entry is created, it is not removed; i. e., deleting the highest key value on a data page wi" not
change the index for that page.

Inventory Pages

A database area has inventory pages if the user specifies an inventory percentage when he defines the area (see "Area
Entri es II in the section titled IISchema Generation II in Chapter 3). Each inventory page accommodates space­
available counts for 2032 data pages. Figure D-5 in Appendix D shows the inventory page format. The inventory
pages, initialized with zero space-available counts by DMSINIT, immediately follow the areals data pages or index
pages, if any exist.

The DBM automatically maintains the space-available count for a data page when group occurrences occupy more
than the specified percentage of the non header words on the page.

8 Database Fi Ie Structure

3. :FILE DEFINITION PROCESSOR

The EDMS user defines his database to the Fi Ie Definition Processor (DMSFD P) in terms of items, groups, sets, and
areas. DMSFDP processes the user's definition, stated in a Data Definition Language (DDL), and converts it to a
form that is usable by the Database Manager (DBM). The conversion is in two phases. The first phase results in a
schema and a listing of errol!' messages, summary information and, optionally, the DDL input.

The schema is established as a fi Ie, resident on a random access device. This fi Ie contains the names and descrip­
tions of all the items, groups, sets, and areas of the database, and is available for use by the second-phase DMSFDP
and the EDMS uti lities. Because of its size and complexity, the schema is an inefficient tool that cannot be used by
the DBM in directly controlling application program interface with the database. Instead, a subschema, resu Iting
from the second phase of DMSFD P, is used by the D BM (]s a guide for processing the database.

The second phase of DMSFDP also develops the subschema-specific working storage format that is required for user­
program communication with the DBM. Declarations to generate the required formats may be output in files suitable
for use in assembling/compiring the user's applications programs, as may listings of the declarations and of the sub­
schema DD L. Figure 6 illustrates DMSFD P outputs and their use in other processes.

Data Definition Language Syntax

The major element of the DDL is the entry. A DDL entry is either a simple entry consisting of one subentry, or a
compound entry consisting of' two or more subentries. A subentry is composed of one or more clauses and is termi­
nated by a period. The first clause in the first (or only) subentry of an entry identifies the entry, and the first clause
in the second, or a succeeding, subentry identifies the subentry. Every clause after the first in a subentry starts with
a word, optionally preceded by a semicolon, that identifies the clause. The second and subsequent clauses in a
subentry may appear in any clrder, but the syntactical units within a clause must appear in the specified order.

Clauses consist of words, which include system words and user-generated names, and literals. A word is a string of
not more than 30 characters selected from the letters A through Z, the digits 0 through 9, and the hyphen. A word
may not begin or end with a hyphen and must have at least one nonnumeric character. Although many system-words
having a spedal meaning in their DDL may also appear as user-generated names, some would result in ambiguity if
so used and are reserved for the system. These reserved words are listed below, along with some system-generated
names which must not be duplicated by user names.

ALIASES
ALL
ARE
AREA
AREA-MASTERS-xxt

AREA-TABLE
CCB
COMPONENTS
COpy
DUPLICATES

END
FOR
GROUP
INVERT
IS
KEY
MEMBER
NAME
NUMBER
ON

PRIVACY
SCHEMA
SET
SET -TABLE
STATISTICS
STORAGE
SYSTEM
THRU
USING
WITHIN

Literals can be numeric or nonnumeric. A numeric literal is a string of characters selected from the digits Othrough 9,
the plus sign, the minus sign" the decimal point, and the letter E. Integers, the most commonly used numeric literals
in the DDL, are composed of digits only. The number of digits allowed in an integer depends on its use in a clause.
Noninteger numeric litera Is appear on Iy in CHEC K clauses (see "Group Entry" in the section titled "Schema
Generation ", below).

A nonnumeric literal is a s'rring of characters enclosed in a pair of apostrophes. To include an apostrophe in
a literal, two apostrophes must be used. The second apostrophe does not become part of the literal. Nonnumeric

t d' , x represents any Iglt.

Fi Ie Definition Processor 9 ,

Schema DOL.

/
/

/

/

I
{ EDMS Utilities}

DMSFDP
Phase I.

Schema DOL
listi ng.

/
/

/
/

/
/

/
/

/

/
/

Subschema DOL
listing.

DMSFDP
PHASE II.

Subschema DOL.

SYSTEM listing.

SYSTEM
File.

Sub-

Figl're 6. DMSFDP Outputs

10 Data Definition Language Syntax

.{COBOL }
:Compiler

I Meta-)
Symbol
Assembler

{
DBM and)
User
Program

literals are used for passwords and privacy locks (see Schema Entry and Subschema Entry, below) and in CHECK
clauses. The specific USCJge determines the allowable size.

The space, the comma, the period, and the semicolon are considered punctuation marks (except in comments and
nonnumeric literals) and eire used as follows:

1. The space (blank) is a separator, required after words and literals in the absence of any other separator. A
space may precede or fo IIow any other separa tor, and man y spaces are the same as one (except in comments
and nonnumeric IUerals).

2. A comma is a sepeJiratorthatis legalonlywhere it is specifically indicated in a language format. The comma,
where it is legal, can also serve as a terminator for words and numeric literals. The comma is never required.

3. A semicolon is an optional separator that may be used between clauses but is not needed to indicate the
end! or beginning of a clause. 'The semicolon, where it is I ega I, can also serve as a terminator for words
and! numeric titeruls.

4. The period (followed by a space) is required t() terminate an entry or subentry.

A comment may be included at any point where a space is legal. Comments are delimited on the left by the con­
tiguous characters /* and on the right by */. A comment may not contain the * / character pair.

The DDL is essentially free-form in terms of length (up to 80 characters) of units of input. The input lIunit" is
termed a line, though the original input source may be cards, keyboard terminal messages, or any other character­
string source. There is no provision in the language for designating a continuation to a new line (card, etc.). An
entry or subentry is considered continued unti I it is terminated by a period, regardless of the number of lines used.
However, the end of a line terminates a word or numeric literal.

In this manuell, the following notation is used to show the DDL entry/subentry format:

1. An underlined word in upper case is required if the part of the format containing it is used.

2. Uppercase words not underlined are optional, but are legal only in the indicated positions.

3. Words in lower case represent names or values that are supplied by the user.

4. Brackets indicate that the enclosed part of the format is optional. If two or more language elements are
vertically stacked within brackets, none of the elements is required and no more than one maybe included.
For example,

[a:] a, or b, or c, or none.

5. Brac:es indicate a required choice. Of the two or more elements vertically stacked within braces, only one
may be used, and one is required. For example,

{a:} a, or.lb, or c.

6. ' An ellipsis indicat'es that repetition is al lowed. The portion of a format that may be repeated is the total
enclosed element whose outermost right bracket or brace immediately precedes the ellipsis. ",For example,

[[a b]c] •••

[[a b][c] ••. J

The whole sequence abc may be repeated.

Only c may be repeated ..

Data Definition Language Syntax 11

Schema Generation

The DMSFD P processes schema DD L and creates a schema fi Ie, an EDMS database whose subject is the user's
database being defined. The data values in the schema database describe the areas, groups, items, and sets of the
user's database. The schema database is described in detai I in Appendix A. The schema DD L provides the data
input for the schema database as well as information about the schema file itself.

The schema DDL consists of five types of entries.

1. Schema entry -one only.

2. Area entry - one for each area of the database.

3. Group entry - one for each group defined in the database.

4. Set entry - one for each set in the database.

5. End entry - one only.

The schema entry is required and must be the first DDL entry. It is followed by the area entries (at least one),
which are followed by the group entries (at least one), which are followed by the set entries (none required). The
end entry is the last schema entry. The schema, area, and end entries are simple entries, each consisting of a
single subentry. Group entries may be simple or compound. Set entries are a Iways compound, with at least two
suben tri es.

Schema Entry

The schema entry supplies the file name for the schema file and specifies locks and passwords for limiting access to
the schema itself and to the user's database.

SCHEMA NAME IS schema-name

[; PRIVACY LOCK FOR EXTRACT IS privacy-Iock-l]

[i PRIVACY LOCK FOR ALTER IS privacy-lock-2]

[r {RETRIEVE} [KEYS ARE] . .]] ; PASSWORD IS password-l l UPDATE KEY IS Integer-1 [, Integer-2] •.••..•.••

Usage Rules

1. The SCHEMA clause, which must be the first clause in the entry, specifies the file name for the schema.
The specified schema-name must conform to the file naming conventions of the host operating system as
well as to the DD L rules for names.

2. The PRIVACY LOCK clauses specify the locks to be used to prevent unauthorized subschema generation
using the schema (EXTRACT) and unauthorized modifications (ALTER) of the schema file. (The ALTER
lock is not currently used and is provided for use by future enhancements.) The form for privacy-Iock-l
and privacy-lock-2 is a nonnumeric literal of up to eight characters. If fewer than eight characters are
specified, blanks are added on the right to make an eight-character lock. A key that exactly matches the
EXTRACT lock must be supplied in the subschema entry (see "Subschema Generation", below) when a sub­
schema is to be generated.

3. The PASSWORD clause provides information for the DBM to use in controlling access to the user's data-
base. A user's program must supply the DBM with one of the specified passwords to gain access to any
.database area. The passwords are specified as nonnumeric literals of up to eight characters. Blanks are

12 Schema Generation

added on the right to make eight characters if fewer are specified. Any number of passwords can be specified,
within the limits of physical storage space available for the schema file. Access to individual groups and items
may be further controlled by the RETRIEVE;U PDATE keys, specified as integers from 1 through 255. A user program
is allowed to access the groups and items whose retrieve/update keys match those associated with the password it sup­
plied. (See description of DDL group and item entries, below.) From 0 to 255 retrieve keys and from 0 to 255 up­
date keys may be specified for each password.

Area Entries

Area entries supply (1) the fi Ie names by which the database areas are identified for the host operating system and in
the user's working storage declarations generated by the FDP; (2) information on the size of the area file; and (3) in­
formation on how the fi Ie space is to be managed by the DBM.

Format ---
AREA NAME IS area-name-l CONTAINS integer-l PAGES

; NUMBER IS i nteger-2

[; INVENTORY PERCENT IS integer-3]

[; CHECKSUM IS [NOT]REQUIRED]

[; JOURNAL IS [tJOT] REQUIRED]

[; ENCIPHERING [S [NOT1REQUIRED]

[; OVERFLOW RANGE IS PAGE integer-4 THRU PAGE integer-5]

[i £1.hh. PERCENT IS integer-6]

[; !:.!NES PER PAGE [~RE] integer-7).

Usage Rules

1. The AREA NAME clause must be the first in the area entry. Since area-name-1 is subsequently used by the
EDMS initialization uti lity (see Chapter 5) for the file name of the area, the name must conform to the fi le­
naming conventions of the host operating system as well as to the DDL rules for names. The mandatory
CONTAINS subclcluse, which must immediately follow the NAME subclause, specifies the number of data
pages required for all occurrences of all groups defined as within the area, including groups defined in in­
vert.subentries (sel8! "Group Entries", below). The EDMS initialization utility calculates the size of the
area file by adding (to the number of pages specified) the number of pages, if any, required for inventory
and indexes. The number specified by integer-1 must be low enough to ensure that the total area size is
not greater than 1,048,575.

2. The required !'-IUMBER clause provides a unique integer identifier for the area. The number specified by
integer-2 forms the~ area-number part of the reference codes for group occurrences in the area. The value
specified for integf8!r-2 must be in the range 1 to 64, inclusive, and must not duplicate the number of any
other area in the database.

3. The INVENTORY dause indicates that inventory pages are to be included in the area, and specifies the
percentage of data words on a page that may be occupied by group occurrences without requiring main­
tenance of space-clvai lable counts. (Data words here means any words not required for header or check­
sum.) Integer-3 must be in the range 50 to 99, inclusive. For example, INVENTORY PERCENT IS 50
means that space-elvai lab Ie counts are to be maintained for all data pages on which more than 255 words
(254 if there is a checksum) are occupied by group occurrences. If the inventory clause is not included, no
pages will be added to the area file for inventt)ry.

4. The CHECKSUM clause indicates whether or not arithmetic checksums are to be included on the EDMS
data pages to provide an error detection capability. If the checksum clause is not included, the data
pages will be chec:ksummed, so the clause is needed only if the NOT option is desired. CHECKSUM NOT

Schema Generation 13

is illegal if an ENCIPHERING IS REQUIRED clause (see below) is included. The DBM and the EDMS
Utility routines generate and monitor checksums when the data pages are written and read. The user re­
ceives an indication if a checksum error is detected.

5. The JOURNA L clause indicates whether or not a journal fi Ie is to be maintained when a user program up­
dates the database. (See "Journaling", in Chapter 4.) If the journal clause is not included, no journal­
ing will occur. Specifying JOURNAL NOT, therefore, has the same effect as omitting the clause.

6. The ENCIPHERING clause indicates whether or not the area's data pages and index pages are to be en­
ciphered before being written in the fi Ie. Specifying ENCIPHERING IS REQUIRED causes the DBM to use
a four-byte key-value suppl ied by the user's program at run time to modify the words on each page so that
they cannot be easily interpreted. To access the data in the area, the user must supply to the DBM or to
the EDMS utility routine the same value that was used as a key to encipher the pages. Pages are always
checksummed before enciphering, and the checksum is tested after ,the deciphering. A checksum error in­
dication from the DBM or from an EDMS utility may, therefore, signal either a data error or an improper
enciphering key. Specifying ENCIPHERING IS NOT REQUIRED or omitting the enciphering clause in­
dicates that the pages are not to be enciphered.

7. The OVERFLOW clause has meaning and is legal only if a group with location mode of indexed is defined
as within the area (see "Group Entries", below). Integer-4 specifies the first, and integer-5 the last,page
of a range that is to be reserved exclusively for overflow from the range specified for the indexed group.
The overflow pages wi II be used when a group occurrence that would normally be stored on a page within
the indexed group range will not fit on that page. (See "Adding Occurrences" in Chapter 4.) Integer-4
must be one or greater and integer-5 must be less than or equal to the total number of data pages specified
by integer-1 in the CONTAINS subclause.

8. The FILL PERCENT clause is also applicable and legal only if the area is to contain indexed group occur­
rences. The percent specified by integer-6 controls the number of words on a page within the page-range
of the indexed group that wi II be used for stori ng group occurrences when the area is fi rst created. Integer-6
may be any integer from 1 through 100. (Specifying 100 is the same as not specifying fill percent.) The
percent specified by integer-6 is applied to 510 (or 509, if checksum is specified) to determine the maxi­
mum number of words to be used while the area is open in create mode. (See "Begin Processing", in Chap­
ter 4, for an explanation of open in create mode.) It is the user's responsibility to select a reasonable per­
centage figure based on the size of his group occurrences and the relative number of occurrences he wi"
store during create mode.

9. The LINES clause allows the user to decrease the default value for the maximum number of group occur­
rences that may be contained in anyone page in the area. The default value for the number of lines per
page is a function of the number of data pages in the area, as follows:

Number of Data Pages in Area Default Lines Per Page

1 to 65,535 255

65,536 to 131,071 127

131,072 to 262, 143 63

262, 144 to 524,287 31

524,288 to 1,048,575 15

Legal values for integer-7 are 15, 31, 63, 127 and 255. The value of integer-7 may not exceed the de­
fau It lines per page for the area.

Group Entries

Group entries specify the size, form and order of appearance of item values within group occurrences, the method
for locating occurrences, the privacy locks that are to control access to the occurrences, and which items, if any,
are to serve as secondary indexes. Corollary groups or subgroups, used to manipulate secondary indexes, are de­
fined to designate items as secondary indexes.

A group entry consists of a group subentry, followed by item subentries for all items in the group, followed by invert
subentries for all of the corollary groups that control secondary indexes for the main group.

14 Schema Generation

Group Entry Skeleton

Group subentry

First item subentry

Last item subentry

First invert subentry

Last invert subentry

The required group subentry identifies the group entry. Item subentries and invert subentries are optional, but a
group entry with invert subentries must have corresponding item subentries. Other considerations usually necessitate
item subentries. Indexed and calc location modes require item values to determine storage and retrieval algorithms;
item values are used to de~ermine linking order for member group occurrences in sorted sets; and finally, only items
have actual data values; therefore, occurrences of groups with no items are nul I occurrences, useful only for linking
other group occurrences. An itemless group might be useful on two occasions: (1) to serve as the owner of a set that
links all group occurrences of a single type, and (2) to serve as a member of two sets and establish connections be­
tween specific occurrences of independent groups.

Example 1

An application needs to access department information in order by department. A simple way to provide for this is
to define a set whose sole purpose is to link department group occurrences.

I DEPARTMENT-HEAI~
DEPTSET

DE PARTMENT :=J
The group named DEPARTMENT-HEADER would not need to have any items' (if its location mode were DIRECT, see
below), as all the data would be carried in occurrences of the group named DEPARTMENT, which could be accessed
through the set named DE PTSET.

Example 2

A department' responsible for many projects and with many employees must process project information and employee
information and determine which employees are assigned to which project.

EMP-PROJ
SET

Since occurrences of the LNK-EMP-PROJ group serve only to Iinkspecific occurrences of EMPLOYEE tospecific occur­
rences of PROJECT, this grollpdoes not require any item subentries (assuming its location mode is via one of the sets).

Group Subentr~

Group subentries specify the name of the group, the criteria for identifying a specific group occurrence, the
guidelines for placing the group in physical storage, and the privacy controls for the group.

Schema Generation 15

GROUP NAME IS group-name-1

; WITHIN area-name-1 [,RANGE IS PAGE integer-1 THRU PAGE integer-2]

DIRECT[,STORAGE IS set-name-1 SET]

INDEXED USING data-item-name-1 [, data-item-name-2] •.•

; LOCATION MODE IS CALC USING data-item-name-3[, data-item-name-4] •..

DUPLICATES ARE [NOT]ALLOWED

VIA set-name-2 SET [, STORAGE IS set-name-3 SET]

; NUMBER IS integer-3

[; PRIVACY LOCK FOR RETRIEVE IS integer-4]

[; PRIVACY LOCK FOR UPDATE IS integer-5]

[; STATISTICS ARE [NOT] REQUIRED].

Usage Rules

1. The GROUP NAME clause is required as the first clause in the subentry. The specified name identifies the
group for reference in subsequent set entries, subschema selection entries, and in working storage declara­
tions generated by DMSFDP. The name is used as specified for COBOL declarations but may be modified
for Meta-Symbol declarations. (See "Subschema Entry" under "Subschema Generation ", below.) Group­
name-1 must conform to the DDL rules for names and must not be the same as the name specified for any
other group or for any item or set in the database.

2. The WITHIN clause specifies the area in which all occurrences of the group are to be stored, with area­
name-1 the name of an area defined for the database (see "Area Entries ", above). The RANGE subclause
specifies the range of pages (1 S integer-l S integer-2) in the area on which group occurrences will be
stored. The pages are not reserved exclusively for the group, but there are some restrictions on overlapping
page ranges if a group with indexed location mode is defined as within the area. No group's range may
overlap that specified for OVERFLOW (see "Area Entries ", above), and only a I imited selection of other
groups may be ranged with the indexed group. Specifically, a group's range may coincide with that of
the indexed group only if its storage owner may be legally ranged with the indexed group. The storage
owner (i. e., the owner of the set specified in the STORAGE clause or the owner of the via set if there is
no STORAGE clause) may be the indexed group itself, or it may be a group whose storage owner is the
indexed group, etc., down as many levels as desired. The range of a group whose location mode is calc
may not overlap the range of an indexed group. Any range that overlaps the range of an indexed group
must exactly coincide with it. If RANGE is specified, integer-1 must be greater than or equal to 1 and
less than or equal to integer-2, and integer-2 must be less than or equal to the number of data pagesspeci­
fied for the area. If RANGE is not specified, the range used is 1 through the highest numbered data page
in the area.

3. The LOCATION MODE clause specifies the most important group characteristic. The location mode deter­
mines how the DBM selects physical locations for group occurrences and the primary means by which the
user identifies a specific occurrence to the DBM for retrieval and set-I inking purposes. It also affects the
types of set linkages that are legal for the group. There are four location modes avai lable: direct, indexed,
calc, and via set.

DIRECT - The user identifies a specific group occurrence to the DBM by supplying the reference code that
is returned by the DBM when the occurrence is stored. The location selected by the DBM for storing an
occurrence depends on whether there is a STORAGE set specified in the definition. If a STORAG E set is
specified, a group occurrence will be stored physically near its associated owner occurrence. If a STOR­
AGE set is not specified, the user must supply the area number and may supply a base page number in his
working storage for the DBM to use in selecting a physical location. (See "Adding Occurrences II in Chap­
ter 4.) If STORAGE is specified, the set owner must be defined as within the area identified by area­
name-1. The group's inclusion in the set must not be manual (see "Member Subentry ", below).

16 Schema Generation

4.

5.

6.

INDEXED - Index(~d group occurrences are stored in sequential order of increasing key values. A key value
is formed by the caf'enation of the values of the items identified by data-item-name-l, data-item-name-2,
etc. From one to :seven items may bespecified. The number of items used should be sufficient to provide
a unique Key value for each occurrence of the group, as duplicate key values are not allowed. The high­
est key value stored on a page is also stored on an index page as the key for the data page. Group occur­
rences may then be retrieved either individually by means of specific key values, or sequentially in either
direction.

CALC - User supplies, in working storage, the control item values of the specific group occurrence to be
retrieved. Group occurrences are stored on or near a base page whose page number is determined through
a hashing of the vctlues of the control items identified bydata-item-name-3, data-item-name-4, etc. From
one to seven contml items may be identified, all to be defined in item subentries in the group entry. The
DU PLICATES phrase is required in the calc specification. If duplicates are not allowed, a data-dependent
errol' return will be made to a user's program that attempts to store a group occurrence whose combined con­
trol item values duplicate those of an existing group occurrence. If duplicates are allowed, more than one
group occurrence may have a specific contro I-item va lue combination and the user wi II have to make more
than one retrieval request to obtain all group occurrences with that value.

VIA SET - Each occurrence of the group, which must be defined as an automatic member of the set identi­
fied by set-name-2, is stored physically near the owner occurrence with which it is associated. However,
if a range is specified for the :group, the occurrences will be stored within that range regardless of the lo­
cation of the selected owner occurrences. The set-name-3 set of the optional STORAGE clause replaces
set-name-l set for positioning of occurrences, bu·t it does not override a RANGE specification. The pri­
mary means of ident'ifying a specific occurrence of the group to the DBM for retrieval is by relating it to
a specific occurrence of the set identified by set-name-2. If STORAGE is specified, the set owner must be
defined as within the area, and the group's inclusion in the set must not be manual.

The mandatory NUMBER clause assigns a unique integer identifier to the group. All occurrences of the
group will contain i·his number, which will also be part of the working storage identifier used to store the
reference code of the most recently accessed occurrence of this group (see the description of "Current-of­
Type" under "Adding Occurrences" in Chapter 4). The value of integer-3 may range from 1 to 999, but
must not duplicate the value assigned to any other group defined for the database.

The PRIVACY LOCK clauses supply lock values (integers 1 to 255) that DBM and the dump uti lity use to
determine if a user has authority to retrieve or update the group occurrences. If locks are specified, group
(or item) occurrences cannot be retrieved or updated unless a key that matches the lock is associated with
the password supplied to the DBM in the user program's working storage or as input to the dump utility. The
value of integer-4 and integer-5 must, therefore, match appropriate keys specified in a PASSWORD clause
in the schema entry ..

The STATISTICS clause indicates whether or not the DBM is to keep summary-type statistics when group oc­
currences are stored, retrieved, or deleted. If the clause indicates that STATISTICS ARE REQUIRED, the
DBM will collect the statistics automatically during user program operation, though the user must assign a
file (see DBM "Operational Interface" in Chapter 4) for storing the statistics. If NOT is specified orif the
clause is omitted, no summary statistics wi II be kept on the group.

Item Subentries

Item subentries specify the characteristics of the items in the group. All of the item subentries for a group to­
gether provide an image of Irhe data portion of the group occurrences in the database. The item values exist
in the group occurrences in the exact order in which the item subentries occur, with no intervening slack bytes.
For this reason" the order of the item subentries can affect the efficiency of subsequent accesses of the defined
database. For greatest efficiency, the item subentries should be arranged in an order that results in binary and
floating-point (long and short) item values beginning on word boundaries.

Schema Generation 17

Format

data -i tern -name -1

[{ PICTURE} IS character-string]
; PIC

TYPE IS

BINARY

FLOATING {
SHORT}
LONG

PACKED DECIMAL[, integer-1]

CHARACTER[, integer-2]

[; OCCURS integer-3 TIMES]

[; PRIVACY LOCK FOR RETRIEVE IS integer-4]

[; PRIVACY LOCK FOR UPDATE IS integer-5]

l CHECK IS {:l~~~EOF literal-I THRU literal-2J]. • •

Usage Rules

1. Data -item-name-1 must appear first in the item subentry, must conform to the DD L rules for names, and
must not be the same as the name specified for another item in the group or for any set or group defined for
the database. The specified data-item-name is used in the working storage declarations that are gener­
ated for use in COBOL and Meta-Symbol applications programs. (In the COBOL definition the name ap­
pears as specified, but it may be modified for Meta -Symbol usage; see "Subschema Generation ", below.)

2. The PICTURE clause may be used to indicate the form of the values of certain types of items. The picture
is included in the COBOL working storage declarations and may be used by the DBM to perform validity
checks on input data values (see CHECK clause, below). Characters in the picture character-string
represent characters and character positions in data va lues. The picture-character-string characters have
the following meaning.

A - letter or space

X - any character

9 -digit

V - assumed decimal point

P - assumed sca ling position

S -sign (+ or -) - must be leftmost character if used.

To indicate a number of characters, the representative character (except S) may either be repeated or
followed by an integer enclosed in parentheses. For example, AA and A(2) both signify two letters.
The maximum number of characters in the picture character string is 30. The maximum item size depends
on a combination of the picture information and the specified item type. The PICTURE clause is required if
the TYPE clause (below) is not included, and is illegal for certain values of TYPE (see Table 1).

3. The TYPE clause is used in conjunction with the PICTURE clause to determine (1)the database representation
of the item values and (2) the method DBM uses to process the values. The allowable item size depends on
the TYPE-PICTURE combination. The TYPE clause may specify item size if TYPE is PACKED DECIMAL
(integer-l) or CHARACTER (integer-2). If a size is specified, it must be the same as the size implied by the
picture clause. The size is required if the PICTURE clause is omitted. Table 1 shows PICTURE-TYPE relation­
ships, the EDMS interpretation of each combination, and the allowable item sizes for each.

18 Schema Generation

Table 1. PICTURE-TYPE Correspondences

Type Picture DMS Interpretation Size

Binary Illegal Binary Fixed -one word.

Floating Long Illegal Double Precision Fixed - two words.
Floating-Point

Floating Short Illegal Single Precision Fi xed - one word.
Floating-Point

Packed Decimal 9 1s, PiS, S, and V Packed Decimal Variable - maximum 31 digits
(16 bytes).

Character or not 9 1s, PiS, S, and V Signed Numeric Variable - maximum 31 digits
specified (31 bytes) (only 9 1s counted).

Character or not 9 1s, PiS, and V Numeric Variable - maximum 31 digits
specified (no S) (31 bytes) (only 9 1s counted).

Character or not Als Alphabetic Variable - maximum 255 characters.
specified

Character or not X IS, or Als, Alphanumeric Variable -maximum 255 characte rs.
specified X IS, and 9 1s

4. The OCCURS clause indicates the number of times an item value is repeated in a group occurrence. The
size of the group occurrences wi II be made large enough to accommodate an item that is integer-3 times
the size of the specified item. EDMS wi II treat the total as one large item. The OCCURS clause must
not be included if the item is a control item for a calc or indexed group, if the item is a sort key for a
set (see "Set Entries", below), or if the item is a secondary index item (see "Invert Subentries", below).

5. The PRIVACY LOCK clauses have the same effect as those in the group subentry except that the locks are
for the item values only. Authority to access a group does not imply authority to access all items if any
item has a privacy lock.

6. The CHECK clause ;indicates that the DBM is to validity-check values supplied for the item when a group
occurrence is stored or modified. Refer to Appendix G for a discussion of data val idation by the DBM. If
PICTURE is specified, an attempt to store an item value that does not agree with the itemls PICTURE clause
will result in an error return from the DBM. PICTURE is not allowed in a CHECK clause if there is no
PICTURE clause.

If RANGE is specified, an attempt to store an item value that is less than literal-lor greater than literal-2
will result in an error return from the DBM. The values specified by literal-l and literal-2 may be equal
and must be compatible with the item IS size and form, as determined by the PICTURE-TYPE combination.
The RANGE option is not legal if the item size amounts to more than four words of computer storage.
Literal-1 and litera 1-2 may be numeric or nonnumeric literals, depending on the item.

A numeric literal is a string of characters selecf'ed from the digits 0 through 9, the plus sign, the minus sign,
the decimal point, {:lind the letter E. Rules for the formation of numeric literals are

a. The literal must contain at least one digit.

b. The literal may contain at most two sign characters. A sign character is legal as the leftmost char­
clcter of the literal and immediately to the right of the letter E. If either sign character is omitted, a
positive value i's implied.

c. The literal must not contain more than one decimal point, which must be to the left of the let­
ter E. If no E is included, the decimal point may appear anywhere in the literal except as the
rightmost character. The number of digits to the left of the E must not be greater than 31 or I ess than 1.

Schema Generation 19

A nonnumeric literal is a string of any characters (up to 16) enclosed in apostrophes. If the value
is to contain an apostrophe, two apostrophes must be included.

Invert Subentries

Invert subentries identify the items in the group that are to serve as secondary indexes, providing an alternative tech­
ni que of identifying specific group occurrences for retrieval. (The primary technique is determined by the group's
location mode.) A secondary-index-item value (supplied by the user in his working storage) can be used in the re­
trieval of the group occurrences in which that value exists.

The secondary index capability is implemented in EDMS by means of a corollary group, called an invert group. An
invert group, which has some of the characteristics of a regular calc group, must be defined for each item that is to
be a secondary index. Each occurrence of an item identified as a secondary index item causes the item value to be
stored in an occurrence of the invert group as well as in the occurrence of the main group in which the item is de­
fined. The occurrence of the invert group consists of the value of the secondary index item and the reference code
of the main-group occurrence that contains the value, plus control information and set pointers.

The first invert subentry in a group entry follows the last item entry for the group.

Format

INVERT ON data-item-name-l

; NUM BER IS integer-l

; WITHIN area-name-l [RANGE IS PAGE integer-1 THRU PAGE integer-2]

; DUPLICATES ARE [NOT]ALLOWED.

Usage Rules

1. The INVERT clause must appear first in the subentry, and data-item-name-l must be the name of an item
defined in an item subentry that does not contain an OCCURS clause.

2. The NUMBER clause provides the unique integer group identifier (see "Group Subentry", above) for the
corollary invert group. The va lue of integer-l must be in the range from 1 to 999 and must not be the
same as the integer specified in the NUMBER clause of any other group defined for the database.

3. The WITHIN clause identifies the area in which occurrences of the invert group are to be stored (see "Area
Entries", above). Because the invert group occurrences need not be stored in the same area as the occur­
rences of the associated main group, the area name in the invert subentry may either be the same or differ­
ent from that specified in the group subentry. The RANGE subclause specifies the pages within the area
on which the group occurrences are to be stored and must be included if a group with indexed location mode
is defined as within the specified area. Integer-l must be greater than or equa I to 1 and less than or equal
to integer-2. Integer-2 must be less than or equal to the integer that specified the number of data pages
in the area (see "Area Entries", above). If there is an indexed group in the area, the range indicated by
integer-l and integer-2 must not overlap its range. Nor may the invert group range overlap the OVERFLOW
range (if one was specified).

4. The required DU PLICATES clause specifies whether or not two or more main group occurrences with the
same secondary-index item value will be allowed. If DUPLICATES ARE NOT ALLOWED, a user pro­
gram's attempt to store a group occurrence that wou Id cause a duplicate invert group occurrence wi II
receive an error return from the DBM. If DUPLICATES ARE ALLOWED, more than one retrieval request
may be needed to retrieve all group occurrences with a specific secondary-index item value.

20 Schema Generation

Set Entries

The set entries define all the user-specified relationships among group occurrences by indicating which groups
are to participate in which sets, what set pointers are to be included in the group occurrences, what is to determine
which owner group occurrence a particular member group occurrence is to be associated with, and how the member
occurrences are to be associclted with each other.

Set Subentry

Member subentry

[Member subentry] •.•

Set Subentry

A set subentry provides the name by which the set is referenced in other DDL entri es (e. g., in group entries of groups
whose location mode is via set, and in subschema set entries), and in DMSFDP-generated working storage de­
clarations; name the group type that is to be the owner of the set; and specify the mode of linking member
group occurrences to each other and to the owner occurrence.

A set occurrence is defined CIS one occurrence of the owner group and a collection of associated occurrences of the
group or groups defined as members, as illustrated below for a WARD-ASSIGNMENT set whose owner is a WARD
group and whose members are a NURSE group and a DOCTOR group.

~
SMITH

Member Group
Occurrence

(Nurse Smith)

l JONES
Member Group

Occurrence
(t'-lurse Jones)

A

Owner Group
Occurrence

(Ward A)

,r
FRANK

Member Group
Occurrence

(Doctor Frank)

"
SMITH

Member Group
Occurrence

(Doctor Smith)

(The WARD-ASSIGNMENT set as depicted is in sorted order with group number as major sort key and a NAME item
as sort key in both member gmups, see below.)

Schema Generation 21

SET NAME IS set-name-l

; OWNER IS

; ORDER IS

{
group -name -1 }
AREA area-name-1

SORTED [WITH G ROU P-NO

FIRST

LAST

NEXT

PRIOR

[; LIN KED TO PRIOR]

[; STATISTICS ARE[NOT] REQUIRED].

Usage Rules

AS{MAJOR }]
MINOR

1. The SET NAME clause must be the first clause in the subentry. Set-name-1 must conform to the DDLrules
for names and must not be the same as the name used for any item or group, or for any other set defined for
the database.

2. The OWNER clause identifies the group that is to participate in the set as owner. Group-name-1 is the
name specified in the group subentry that defined the group. If AREA is specified, the DMSFD P wi II gen­
erate a group definition for a specia I group to serve as owner. A sing Ie occurrence of this group wi" be
maintained by the DBM, at page 1, line 1, of each area, to serve as the owner occurrence for every set for
which the area is owner. A set whose owner is area will, therefore, have only one set occurrence, which
will consist of the one area-group occurrence plus all the occurrences of the groups defined as members of
that set. The special EDMS-defined area group may be owner of many sets as illustrated in the data struc­
ture diagram shown below, where the OWNER IS AREA feature is used to link all the occurrences of the
NURSE group (e.g., for all nurses employed at a hospital) to each other, and to link all the occurrences of
the AIDE group to each other.

All-Aides Set
, Owner is Area

AIDE

l'

EDMS
generated
area group

,r

All-Nurses Set
Owner is Area

NURSE

The EDMS -generated area -group occurrence has no data va lues and is not accessib Ie as a group to the
user. It serves only to link occurrences of a member-group to other occurrences of the same member group.

3. The ORDER clause specifies the manner in which DBM is to generate and modify set pointers so that they
wi II link a member occurrence into a set occurrence. It determines if the owner occurrence or a member

22 Schema Generation

occurrence is to be modified to point to the newly linked occurrence and, if a member occurrence,
which one. Since set order is applied after the proper owner occurrence has been selected (see IIMem­
ber Subentry II, bl~low), it refers only to logical sequence within a set occurrence. Five modes of pointer
maintenance are possible: sorted, first, last, next, and prior.

SORTED - The DBM links a new member occurrence to other member occurrences according to the values
of the data items defined as KEYs in the member subentries. If WITH GROUP-NO is specified, the unique
numbers included in the occurrences of the member groups (see NUMBER clause in IIGroup Subentires II,
ab()ve) will be considered in selecting a set position for a new member occurrence. GROUP-NO is legal
only if more than one group type is designated as a member of the set. MAJOR or MIN OR defines the
role of the GROUP-NO in the order of the set occurrences. The WARD-ASSIGNMENT SET occurrence
depicted above is an example of a set sorted with group-no as major (assuming the group subentries speci­
fied NUMBER IS 100 for the DOCTOR group and 200 for the NURSE, and both groups had a NAME item
designated as an ascending key in a member subentry, see below). If GROUP-NO AS MINOR was speci­
fied, the occurrence would appear as follows:

A

(Ward A)

jl'

I
1

E
SMITH FRANK

(Nurse Smith) (Doctor Frank)

~~

.Ir

SMITH JONES

Doctor Smith) - (Nurse Jones)

FIRST - The DBM creates LIFO-ordered set occurrences by inserting a new member occurrence as the first
occurrence following the owner occurrence. The NEXT pointer for the set in the occurrence of the group
designated as ownor will point to the most recently linked member occurrence.

LAST - The DBM creates FIFO-ordered set occurrences by inserting a new member occurrence immediately
preceding the owner occurrence. This order implicitlydefinesaprior pointerfor the owner occurrence.

NEXT - A new member occurrence is inserted immediately following the occurrence identified as current
of the set. This order requires that the user establ ish a position in a set occurrence (by storing or retriev­
ing the group occurrence to which the new occurrence is to be linked) before linking the new occurrence.

PRIOR - causes a new member occurrence to be inserted immediately before the occurrence identified
as current of the set. This order also requires that the user establish a current position in a set occur­
rence, as well as Jmplicitly defining prior pointers for the owner and member occurrences.

Schema Generation 23

4. The LIN KED TO PRIOR clause defines the optional backward pointers for the set's owner and member
groups, so that each occurrence of the owner or a member will point to the preceding occurrence.

5. The STATISTICS clause indicates that the DBM is to maintain statistics for the set. If the clause is omitted
or if NOT is specified, statistics will not be collected.

Member Subentries

Member subentries identify the groups that are to be members of the set and specify all the controls that are to apply
when a new occurrence is stored or whenever a member occurrence is I inked into a set occurrence. These controls
are (1) the technique for selecting the owner occurrence that the member is to be I inked to, (2) whether or not
pointers to the owner occurrence are to be included in member occurrences, and (3) the itmes that are to control a
member occurrence's logical position in a set for which the specified order is sorted.

Format

MEMBER IS group-name-1

. INCLUSION IS {[OPTIONAL] AUTOMATIC J
' MANUAL

[i LIN KED TO OWNER]

i SET OCCURRENCE SELECTION IS THRU

CURRENT OF SET
LOCATION MODE OF OWNER[ALIAS FOR data-item-name-l

IS data-item-name-2] •••

[{
ASCENDING} . J
DESCENDING [RANGE] KEY IS data-ltem-name-3 •..

{
FIRST J] DU PLICATES ARE LAST •
NOT ALLOWED

Usage Rules

1. The MEMBER clause, which must be the first clause in the subentry, must specify the name of a group that
is defined for the database and not specified in any other member subentry in this set entry.

2. The INCLUSION clause specifies that linking or delinking a member group occurrence from a set occur­
rence will. be AUTOMATIC or MANUAL.

AUTOMATIC - Member-group occurrences are automatically linked or delinked by the DBM when they are
stored or deleted. If OPTIONAL is specified, the occurrences may also be linked and delink'ed by specific
user's calls to the DBM. (See "Linking or Delinking Member Occurrences II in the section titled "Modify­
ing Linkages ", Chapter 4.)

MANUAL - The user will specifically link and delink member group occurrences by calls to the DBM
Iinking/delinking routines. The mode is not legal for the set identified as the VIA set or in a STORAGE
clause for the group identified by group-name-l.

3. LINKED TO OWNER defines a set pointer for the member group such that each member occurrence will
point to its associated owner occurrence.

4. SET OCCURRENCE SELECTION specifies the technique to be used to identify the set occurrence into which
a specific member occurrence is to be linked.

CURRENT - Requires that the user establ ish a set occurrence as current by interacting with the DBM to sTore
or retrieve the owner occurrence or a member occurrence. This is the only mode that is allowed for sets
whose order is next or prior or whose owner is AREA.

24 Schema Generation

LOCATION MODE OF OWNER - Indicates that a unique set occurrence is selected bysupplying the values
required to retrieve the unique owner-group occurrence. If the owner's mode is direct, indexed, or calc,
a reference code or specific values for the control item{s) identify a unique occurrence.

If the owner's 10ceJtion mode is via set, there is no way of identifying a unique owner-group occurrence
unless the via set is sorted. If the owner's via set is sorted, a unique owner-group occurrence can be iden­
tifiedbyspecificvaluesfor the sort-key items {or approximate values, if RANGE was specified for the key}.

ALIASes may be specified to identify additional working storage locations to contain occurrence-selecting
values when a group is a member of two or more sets with the same owner, and two or more owner occur­
rences need to be identified at the same time. For example, the structure shown below could be used to
record which documents referenced, or were referenced by which other documents.

DOCUMENT

WHERE-REFERENCED WHAT-REF ER ENC ED

Two occurrences of the DOCUMENT group may need to be identified simultaneously to be linked with a
CROSS-REFERENCE occurrence. If the location mode of DOCUMENT is calc using DOCUMENT-ID, one
occurrence can be identified by supplying the proper value in working storage for DOCUME NT -ID. An
ALIAS for DOCUMENT-ID, say DOCUMENT-ID-2, could be defined inthe member subentry for CROSS­
REFERENCE in one of the sets. This would cause working storage to be available for identifying the other
occurrence of DOCUME NT.

Selection through location mode of owner may not be used when the set order is prior or next, or when the
owner is AREA.

5. The ASCENDING -and DESCENDING subclauses identify the items in the member group that are to be
sort-·key items for (J set in sorted order. Values of the specified items are used {in conjunction with the
group number, if WITH GROUP-NO is specifiod in the set subentry}, to establish the logical sequence of
member occurrences within a set occurrence. The optional RANGE modifier appl ies to any sets in which
the group identified by group-name-l participates as owner and in which the set occurrence selection for
a member is through location mode of owner. RANGE is not meaningful if group-name-l does not identify
a group whose location mode is via set.

One ASCENDING or DESCENDING subclause is required if the set is sorted, and up to seven may be
specified. Every Hem specified by data-item-name-3, etc., must be defined as within the member group
and defined without OCCURS clauses.

One, and only one v DUPLICATES subclause must be included if any ASCENDING or DESCENDING sub­
clauses are included. The DUPLICATES specification controls the logical sequence of two or more member
occurrences with the same sort-key value, or prohibits duplicate values.

END Entry

The end entry is required after the last set entry. It has the form END.

Subschema Generation

The DMSFDP generates a subschema from a schema as specified in subschema Data Definition Language (DDL). The
subschema, which contains the information required for the DBM to identify data values and relationships within the
database, may describe a complete database or it may describe only that portion needed for a specific application.
It mayor may not include the names of the sets, groups, and items it defines.

Subschema Generation 25

The contents of the subschema determine the format of a working storage area that the user's program must contain in
order to communicate with the DBM. To simplify establishing user's storage to subschema correspondences, the
DMSFDP will (optionally) create COBOL COpy files or Meta-Symbol SYSTEM files containing the working storage
format definitions that correspond to the subschema it is creating.

The information extracted from a schema to form a subschema may describe either all the components (groups, data­
items, sets) of the database, all the components whose occurrences are to be stored in a specified area (or in speci-
fied areas), or on Iy se lected components. If a subschema is not to describe a complete database, certain rules must
be observed when selecting the elements that are to be defined in the subschema.

If an area's definition is not included in the subschema, groups specified as within the area may not be defined in
the subschema. Nor may any set be defined in the subschema if its owner or any member is specified as within the
area. In addition, if an invert group for secondary indexes was specified as within the area, either the associated
item must be excluded from the subschema or it must be specifically selected with an indication that inversion is not
to occur.

If a group definition is to be omitted from the subschema, all sets in which the group participates as owner or mem­
ber must also be excluded. (All items in the groups are automatically excluded.)

Not all data manipulation capabilities are allowed when a subschema does not define a complete database. For
example, a program may not store or delete occurrences of a group that is the owner or a member of a set that is not
defined in the subschema the program is using; nor may it store group occurrences if the definition of any item in the
group is omitted. Refer to the description of the DBM routines for more detai Is on which are restricted when operat­
ing with a I imited subschema.

The subschema DD L consists of entries in the following order:

1. The Subschema entry must be the first entry.

2. The set entry (there is only one) follows the subschema and precedes all area entries.

3. The area entry (or entries) for any areas to be included follow the set entry and precede all group entries.

4. The group entries follow the area entries. Group entries consist of a group subentry and, optionally, one
or more item subentries.

5. The end entry must be last.

Subschema Entry

A subschema entry pro~ides the name for the subschema file, specifies whetherall or part of the database is to be de­
fined by the subschema, and indicates the form of working storage declarations that are to be generated.

SUBSCHEMA NAME IS sub-schema-name OF SCHEMA schema-name

[; COBOL COpy IS copy-name]

[; META SYSTEM IS system-name [, NAMECHECK]]

[; PRIVACY KEY FOR EXTRACT IS privacy-lock]

{
ALL }

; COM PONENTS ARE SPECIFIED

26 Subschema Generation

Usage Rules

1. The SUBSCHEMA NAME clause must be the first clause in the entry. Subschema-name is the file name
by which the subschema fi Ie is to be referenced. Hence it must conform to the host operating system's fi Ie
naming conventions as well as the DDL rules .for names. The schema-name must be the file name of an ex­
isting schema fi Ie:.

2. The COBO L clause provides the name for a COBOL source fi Ie that is to contain declarations that define the
userns working storage needed for database operations based on this subschema. The copy-name must con­
form to the DD L ru les for names as we 1/ as to the conventi ons of the host operating system.

3. Tho META clause provides the name for a Meta-Symbol source file that is to contain the directives needed
to define the user's working storage that corresponds to this subschema. The system-name must conform to
the DDL rules for names and to the conventions of the host operating system. The names of the groups,
items, and sets se~ected for the subschema will be modified to conform to Meta-Symbol standards by re­
placing all hyphens with dol/or signs.

Additionally, if the NAMECHECK option is specified, a symbol consisting of the "at" character (@) fol­
lowed by the grOLJp name wi 1/ be appended to each item name to ensure uniqueness with regard to like­
named items in other groups. If the NAMECHECK option is not specified, the user is responsible for en­
suring that his item names are unique.

4. The PRIVACY clause supplies the key required to enable the generation of a subschema if the specified
. schema has a PRIVACY LOCK FOR EXTRACT attached to it. The specified privacy-lock must be a nonnu­

meric literal and must match 'the lock on the schema, or the subschema will not be generated.

5. Tho COMPONENTS clause specifies that either the whole database (ALL) or selected parts of the database
(SPECIFIED) are to be defined in the subschema. SPECIFIED indicates that a set entry follows the sub­
schema entry. ALL indicates that the only other entry is an End entry.

Set Entry

The set entry lists the sets that are to be defined in the subschema.

! SET IS }

SETS ARE

Usage Rules

!set-name-1

ALL

[, set-name -2] ... }

1. The specified set names must be names of sets I·hat are defined in the schema.

2. For each set listed, the owner and all the member groups must be defined in the subschema. The groups may
be specified bygroupentries,or they may be implied by the COMPONENTS AREALLoption on an area entry.

Area Entries

Area entries specify the areas of the database that are to be available through this subschema, and indicate
whether all or part of the specified areas are to be defined. A single area entry may name several areas that

Subschema Generation 27

have the same components specification or a separate area entry may be included for each area. No area
entries are allowed if the subschema entry specified COMPONENTS ARE ALL.

Format

I
AREA IS 1
AREAS ARE {

area-name-l

ALL

[, area-name-2] ••• 1

; COMPONENTS ARE {
ALL }
SPECIFIED

Usage Rules

1. The AREA/AREAS clause must be the first clause in the entry. The area-names must be names that exist as
area names in the schema. The naming of selected areas orALLareas indicates that some portion of the groups
that may occur in the areas will be defined in the subschema.

2. The COMPONENTS clause determines that either ALL or SPECIFIED groups and items identified for the
specified areas in the schema are to be defined in the subschema. If COMPONENTS ARE SPECIFIED,
group entries must be included for any of the areas' groups that are to be included in the subschema.

Group Entries

Group entries are used to select the groups that are to be defined in the subschema. No group selection is needed
or allowed if no area entries indicated COMPONENTS ARE SPECIFIED. To be defined in the subschema, any non­
invert group within an area whose components are specified must be se lected by a group entry. Invert groups' defi­
nitions are automatically included if the secondary index item is defined in the subschema and inversion is not spe­
cifically suppressed.

Group Entry Skeleton

Group Subentry

[Item Subentry J •..

Group Subentry

A group subentry identifies the group, optionally renames it (for working storage declarations), and indicates whether
some or all of the group's items are to be defined in the subschema group defintion.

Format

GROU P NAME IS group-name-l [, RENAMES group-name -2J

{
ALL }

; COMPONENTS ARE SPECIFIED

Usage Rules

1. The GROUP NAME clause must be the first clause in the entry. If the RENAMES option is notspecified,
group-name-l must be the name of a group defined in the schema as within an area that is named in a

28 Subschema Generation

subschema area entry. If RENAMES is specified, group-name-2 must be the name of a group that is
so defined. If RENAMES is specified, group-name-l must conform to the DDL rules for names and
must not duplicate the name of any group .or set in the subschema.

2. The COMPONENTS clause specifies that either ALL of the items defined for the group in the schema are
to be defined in the subschema (exactly as they are defined in the schema) or that item definitions are
SPECIFIED in item subentries that immediately follow the group subentry. If a change in anyone item de­
finition is desired, then all of the data items must be described in item subentries. I

Item Subentries

Item subentries designate and optionally rename the items that are to compose the group as defined in the subschema.

If the group subentry specified COM PONENTS ARE ALL, no item subentries are legal. If the group subentry indi­
cated COMPONENTS ARE SPECIFIED, all items that are to be included must be described in item subentries.

Format

[level-number] data-.ifem-name-l [, RENAMES data-item-name-2]

L INVERSION IS [NqT] REQUIRED]

[; CONDITION NAME IS condition-name-l

{
VA LU E IS }. [;, [[]] VALUES ARE hteral-1 THRU literal-2J , literal-3 THRU literal-4 ... J ...

Usage Rules

1. The level number is optional, and if omitted is assumed to be the-lowest level number specified for the group,
or 02 if no previous level number has been enc.ountered. Item leve I numbers may have values in the range
from 02 through 49. Usage of level numbers is syntactically consistent with that described in the ANS
COBOL/LN Refere!nce Manual, 90 15 00.

2. DatOJ -item-name-l must immediately follow the level number (or must be the first element in the entry if no
level number is inc:luded). If RENAMES is not specified and data-item -name-l is not defined in the schema
as being part .of thE~ group, it is assumed that the user desires to superimpose data-item-name-1 over one or
more data items which are so defined. In this instance, DMSFD P requires that the item subentry contain­
ing data-item-name-l be followed by at least .one item subentry containing a data-item-name which is de­
fined as part of the, group being analyzed and contains a level number higherthan that ofdata-item-name-l.
Note that this feature is included solely for the convenience of COBOL programmers and that data-item­
name-l may not appear as an argument in a DBM call •

. 3. The INVERSION dause, unless NOT is included, specifies that the invert group associated with the sec­
ondary index item ;identified by data-item-name-1 is to be defined in the subschema. This clause is legal
only for data items which appeared as data-item-name-l in an INVERT entry of the schema DDL. If the
INVERSION clausE~ is omitted, it is assumed that the invert group definition is required.

4. The CONDITION NAME clause causes a level-aa data description entry to be included in the COBOL
Copy file. Condition-name-1 must conform to DDL rules for names. Literal-l, Iiteral-2 etc. are numeric
or n.onnumeric literals depending on the schema definition of the item identified by data-item-name-1 and
must conform to thIS! size and form of the item.

Subschema Generation 29

END Entry

The end entry signifies the end of the subschema description.

Format

END.

DMSFDP Operational Interface

The File Definition Processor may be operated in a batch mode or from a terminal. The operation of DMSFDP
relative to the amount and format of output is controlled by control command options. The control command has the
following form:

!DMSFDP [, NODDL]L NOSCHEM]G NOSUB][, NOCBL][, NOMETA][, NOLIST]G NONAMES]

The order in which the options are specified is immaterial but repetition of an option is not allowed.

Exercising the options suppresses the normal output. The !DMSFDP with no options causes the following:

1. A schema wi II be created if the first DD Lentry is a schema entry, no DDL errors are encountered, and there
is not an existing file in the user's account that has the same name as that specified in the schema entry.

2. A subschema wi II be created if the first DD L entry or the first entry after a schema-DD Lend entry is a sub­
schema entry, no DDL errors are encountered, and the file name specified in the subschema entry is not the
name of an existing file in the user's account.

3. All DDL entries will be listed {both schema and subschema entries, if both are included in one run}.

4. All error messages and summary messages wi II be listed. Error messages include a $ character printed
under the DDL line at the point where the error was detected and an explanatory message. Table F-l in
Appendix F shows the DMSFD P error messages. Summary messages include information on fi Ie size and
structure plus number of diagnostic messages. A number of diagnostic messages other than zero indicates
that the generated schema/subschema fil e was not saved. Figure C-2 in Appendix C illustrates the summary
messages output by DMSFDP.

5. A COBOL COpy file will be created and its contents listed if the subschema entry includes a COBOL
clause. Figure C-4 shows a simple COpy file listing.

6. A Meta-Symbol SYSTEM file is created and its contents listed if the subschema entry includes a META
clause. Figure C-6 in Appendix C shows a sample SYSTEM I isting output. The FORTRAN user may use
either the COpy or the SYSTEM listing to determine the format of the working storage area to be declared
in his program.

7. A name table relating set, group, and item names to their subschema definitions, is included in the sub­
schema fi Ie.

The suppress options operate as follows:

1. NODDL -only erroneousDDL input statements are to be listed, correctDDL statements are nottobe listed.
This does not affect the listing of COBOL and META files.

2. NOSCHEM - the schema fi Ie is not to be saved. (This mayor may not affect the creation of a sub­
schema in the same run; the subschema creation requires a va lid, existing schema fi Ie, but it may have
been created on an ea rI i e r run.)

30 DMSFDP Operational Interface

3. NOSUB - a subschema file is not to be saved. This affects only the subschema file; any listing or other
file creation is controlled separately.

4. NOCBL - the COBOL COpy file is not to be created even though the subschema entry may include a
COBOL clause.

5. NOMETA - the Meta-Symbol SYSTEM file is not to be generated even if the META clause is included on
the subschema entry.

6. NOLIST - COBOL or Meta-Symbol data is not to be listed even if the corresponding file is created.

7. NONAMES - thEt subschema file is not to include the name table.

The NODDL option applies to both schema DDL and subschema DDL. NOSCHEM is obviously meaningless if only
subschema DDL is input; it is therefore ignored. Similarly, NOSUB, NOCBL, NOMETA, NOLISTand NONAMES
are meaningless if only schema DDL is specified.

DeB Assignments

Normally, no interface is rE~quired between the DMSFDP user and the CP-Vmonitor to create the schema, subschema,
COBOL COpy, and Meta-Symbol SYSTEM files. The user may assign the M:SI and M:LO DCBs to accept the
DDL input or to direct the I isting output to other than the system standard devices.

The F:SCHE (schema), F:SSCH (subschema), F:COPY (COPY file), and F:META (SySTEM file) DCBs maybe assigned
if desired. One or more such assignments might be needed, for example, to place the fi les on a removable device
or, in the case of the schema, to specify WRITE accounts so that subschema generation can be run in an account dif­
ferent from that used to generate the schema. (Subschema generation involves writing into the schema file.)

Tanninal Usalle

DMSFDP may be run from a terminal with DDL either input directly or (preferably) stored in an EDIT file. In
either case, the user initiattSls operation by entering DMSFDP in response to the system prompt and then entering the
control command options (or carriage return if there are no options) in response to the prompt from DMSFDP.

DMSFDP Operational Interface 31

4. DATABASE MANAGER

Database manager (DBM) is the term appl ied to the collection of I ibrary routines that are used with a user's
applications program to accomplish the storage, retrieval, and updating of the data values and pointers in a data­
base. Other features of the DBM provide for collecting run-time and summary statistics, tracing a user program's
interaction with the DBM, maintaining a journal of changed pages, and recovering a shared database in case of
deadlock or upon user request.

The user's program communicates with the DBM by means of calls to the I ibrary subroutines. Most arguments for the
calls refer to addresses within the program's working storage, which must be formatted to correspond to the values
in the subschema being used.

The user's program area that is referred to as working storage consists of two parts. The first part has the same for­
mat in all EDMS programs, regardless of the nature of the database used. The second part must be formatted to re­
flect the specific subschema referenced by a program. The first part of working storage is designated the Communi­
cation Control Block (CCB) because it is used to communicate control and current-condition information between
the user program and the DBM. The format of the CCB is described in Table 2, which uses the COBOL COPY file
form for identifying the contents. In the Meta-Symbol SYSTEM file the hyphens are replaced by dollar signs and
the characters @CCB are appended, e.g., REF$CODE@CCB instead of REF-CODE.

The format of the database-specific part of the user's working storage must provide for a set table for each set de­
fined in the subschema, a group table for each group defined in the subschema, a statistics table if any statistics
are specified for the database, and a table for aliases if any are defined. The number and order of occurrence of
these entities depend on the subschema being used. The proper order is best obtained by using or following one of
the working storage descriptions generated by the File Definition Processor. Figure C-4 shows an example of the
COBOL COPY working storage, and Figure C-6 shows an example of Meta-Symbol SYSTEM working storage, both
generated for the sample database shown in Figure 1, but for separate subschemas. (The FORTRAN user may use
either of the generated descriptions as a guide for manually generating declarations.)

The group tables are used to communicate itemvaluesand the reference code of the current occurrence of the group.

The set tables are used by the DBM to maintain the position of the user in each set. Each time a group occurrence
is retrieved expl icitly by the user or impl icitly by the DBM, the set table for each set defined in the subschema for
that group is updated. The address of the set table is used as an argument for set-processing DBM-routine calls in
the same manner as group or item arguments.

OBM Routine Call Format

The DBM routines that store, retrieve, etc., are initiated by calls in the user's applications program. The format
of the call depends on the language in which the user's program is written; but whatever the language, the call re­
fers to a DBM function name, which is an entry point in the DBM library routines.

The general form used in the manual to describe the DBM calls is

E NTE R DBM-function-name, argument-1 [,argument-2] •..

where the arguments represent addresses (optionally indirect) within the user's program area, either word addresses
or byte addresses, depending on the programming language used and on the characteristics of the entity located at
the specified address. In the descriptions of the DBM calls, below, the address arguments are referred to by de­
scriptive terms. REF-CODE, area-name, item-name, group-name, and set-name denote addresses in the user's pro­
gram areas that correspond to DMSFDP-generated working storage declarations; error-code-name and recovery-name
denote addresses in the user's program area other than that corresponding to the DMSFDP-generated working storage
declarations; and procedure-name denotes an address in the user's program area to which the DBM is to return control
under certain conditions. The metalanguage used below to show DBM call formats is the same as that used to depict
the Data Definition Language (see "File Definition Processor," Chapter 3).

32 Database Manager

Contents

REF-CODE

PAGE-I\IO

LINE-NO

FRST-REF

LAST -REF

GRP-NO

ERR-CODE

ERR-NO

ERR-REF

PASSWORD

AREA-NO

Table 2. Contents of the Communications Control Block

Description

A 32-bit binary number whose value is the reference code of the ~roup last accessed
by the user. At the successful completion of any call that accesses a group occurrence
in the database, the reference code of the group is placed in this cell by the DBM.

The reference code is also used when an area is opened to specify the number of buffers,
when an area is closed to indicate whether or not core is to be released, and when a
group occurrence is to be stored or retrieved directly.

Contains the eight-character EBCDIC valueofthe page-number partofthe reference code.
This value is supplied by the DBMat the successful completion ofa call in the same manner
as REF-CODE. -

Conf'oins the .three-character EBCDIC value of the line-number part of the reference
codel. This value is supplied by the DBM in the same manneras PAGE-NO.

A communication cell used in conjunction with the FINDS or FINDSI procedural calls.
The LJser must initialize this cell with the reference code at which the DBM is to start
the physi ca I scan of an area of the database.

A communication cell used in conjunction with the FINDS or FINDSI procedural call.
The IUser must initialize this cell with the value which will control the termination of
the physical scan of an area of the database.

Contains a lO-bit binary number whose value is the numeric synonym for the group
stored or retri eved by the user.

Initiol ized by the DBM with an eight-bit binary number whose value indicates that
some type of error occurred in executing the previous procedural call.

A lO-bit binary number initial ized by the DBM for certain types of errors, with the
nume·ric synonym for the group responsible for the error.

A 32-bit binary value initialized by the DBM for certain types of errors, with the ref­
erence code of the group responsibl e for the error.

A commun ication cell that must be in itial ized by the user with the eight-character
EBCDIC value of the password that allows the user access to the database.

Contains the two-character EBCDIC value of the area number part of reference code.
This value is supplied by the DBM in the same manner as PAGE-NO.

DBM Routine Call Format 33

. I

Meta-Symbol Call Format

A Meta-Symbol call takes the following form:

REF DBM-function-name

L1, 14

BAL, 15

* *

'Ie *

n

D BM-function-name

address-1

address-n

number of arguments

The asterisks indicate that the addresses are right-justified and may be generated by any of several Meta-Symbol
techniques. The addresses supplied may be indirect (but not indirect in a register), in which case the DBM
will obtain the proper effective address, either word-oriented or byte-oriented as shown below in Table 3.
The examples in Table 3 are from a Meta-Symbol program that includes the SYSTEM file shown in Figure C-6, and
processes part of the data base shown in Figure 1.

FORTRAN Call Format

A FORTRAN program call of a DBM library subroutine takes the form of a standard calling sequence, as follows:

CALL DBM-function-name (argument-1, •••)

The arguments used must result in addresses supplied to the DBM that conform to the DBM function description shown
in Table 4. All addresses are word addresses.

COBO L Call Format

The call from a COBOL program provides the model for the form of the DBM function description. It takes the form
of the ENT ER statement.

ENTER DBM-function-name[,argument-l] •••

Arguments to the ENTER statement of COBOL are either the data names of the appropriate data segment in the data
division or the procedure name in the procedure division.

Table 5 shows the values of the arguments to generate the types of addresses required. The examples reference the
COpy fi Ie names shown in Figure C-4.

If the DBM Function
Description Specifies

REF-CODE

Area-name

Group-name

Item-name

34 DBM Routine Call Format

Table 3. Meta-Symbol Addresses

The Address Supplied Must Be

Word address of the first word of the CCB. WA(REF$C ODE@CCB).

Byte address of the appropriate area name word of the area table.
For example, BA(AREA$2).

Byte address of the first word of user's working storage reserved for
the group. For example, BA(FIRST).

First byte of working storage reserved for the item, if the item is
EBCDIC or packed decimal; first word of working storage reserved
for the item if the item is binary or floating point. For example,
BA(ITEM$31), but WA(ITEM$44).

If the DBM Function
Description Specifies

Set-name

Procedure-name

Error-code-name

Recovery-name

If the DBM Function
Description Specifies

REF-CODE

Area-name

Group-name

Item-nclme

Set-name

Procedure-name

Error-code-name

Recovery-name

If the DBM Function
Description Specifies

REF-CODE

Area-name

Group-name

Item-name

Set-name

Procedure-nam e

Error-code-name

Recovery-name

Table 3. Meta-Symbol Addresses (cont.)

The Address Supplied Must Be

Byte address of the first word of the user's working storage reserved
for the set table of the set. For example BA(SET $D).

Word address of the location to which the DBM is to return control.

Word address of a location in the user's program area that contains an
EDMS data-dependent error code in binary.

Word address of a location in the user's program area that contains the
EBCDIC characters RECV.

Table 4. FORTRAN Addresses

The Argument Must Be

The identifier of the first variable in E DMS working storage.

The identifier of the variable used to establ ish to appropriate area entry.

The identifier of the first variable used to reserve working storage for
the group.

The identifier of the appropriate item variable.

The identifier of the first variable used to reserve working storage for
the set stable.

A statement label.

The identifier of a location establ ished by the user. The value in the
location must be between 1 and twenty, inclusive.

The identifier of a location established by the user. The value in the
location must be the Hollerith constant RECV.

Table 5. COBOL Arguments

The Argument Used Must Be

Data-name REF-C ODE of the CC B.

The name assigned to the area in the DDL. For example, AREA-1.

The data-name of the 01 level entry of the group. For example,
GROUP-1, GROUP-2-R.

The data-name of the appropriate item. For example, ITEM-21-22-23.

The data-name of the 02 level entry generated for the set table for
the set. For example, SET-C.

A name in the procedure division.

The data-name of an entry generated by the user. The entry must be
COMP usage and have a VALUE of 1-20.

The data-name of an entry generated by the user. The entry must be
alphabetic or alphanumeric and contain the value 'RECV'.

DBM Routine Call Format 35

DBM Routine Usage

Database manager routines are used to accompl ish all user-program interaction with the database. The first step of
a user-program IS interaction is to open all areas that are to be accessed by the program. After all required areas
are opened and depending on the type of open, new group occurrences may be added to the database, obsolete data
may be deleted, data values or set linkages may be modified, existing group occurrences may be retrieved, and
various miscellaneous functions may be performed by calling the appropriate DBM routines. The last DBM call from
a user program is to close the areas (or the last area in use) of the database to terminate processing. All of these
interactions are described below.

Beginning of Processing

Before any data manipulation activity can occur, the files in which the data is stored must be opened. The DBM
interacts with the operating system to open the file in response to an open-call from the using program. The open­
call identifies the area to be opened, and indicates what type of activity is intended.

Format

OPENRET

OPRETSHD

ENTER OPENUPD ,REF-CODE, area-name-1[,area-name-2] •••

OPUPDSHD

CREATE

Usage Rules

1. An area must be opened before any other EDMS call that references the area (either directly or indirectly)
is executed. A call to open an already opened area is ignored, if no calls other than open calls are made
between the two opens.

2. A call to open an area may not be made if the user is currently executing in some other area, i. e., there
may be two or more successive calls to open different areas on Iy if there are no other intervening proce­
dural calls that reference the first area.

3. OPENRET opens an area for retrieval purposes only. Other programs may concurrently open the area in
OPENRET and OPENUPD mode. The user should be aware that this mode does not provide for protection
against changes made to the database by another program concurrently executing in the OPENUPD mode.

4. OPRETSHD opens an area for retrieval purposes and specifies that the area may he accessed concurrent Iy
by other programs in this mode or for shared update.

5. OPENUPD opens an area for both retrieve and update purposes. Other programs may concurrently open
the area in OPENRET mode onl y.

6. OPUPDSHD opens an area for retrieve and update and specifies that the area may be accessed concurrently
by other programs in this mode or for shared retrieval.

7. If any areas are opened in a shared mode (OPRETSHD or OPUPDSHD) by a program, no other areas may be
concurrently opened in a non-protected mode (OPENRET, OPENUPD, or CREATE) by the program.

8. CREATE is a special open mode for an area that has a group defined with location mode of indexed. While
an area is open in CREATE mode, the key values of an indexed group occurrence to be stored must be
higher than those of the occurrence most recently stored; i. e., the group occurrences must be presented
to the DBM for storage in ascending key order (see "Adding Occurrences", below). The area may be con­
currently opened in OPENRET mode by other programs.

9. For all open modes, REF-CODE refers to the address of the beginning of the userls formatted working stor­
age. This location should contain the number of data buffers to be used (3 to 10, inclusively) at the time
the first open call is made. If a number less than 3 is specified, 3 will be used; if a number greater than 10
is specified, 10 wi II be used.

36 DBM Routine Usage

10. If any passwords WEire specified for the database, the call PASSWORD in the CCB must be initialized before
an open call is made. An eight-character password that is associated with keys that allow access to the
desired groups and items should be supplied.

11. If an area to be 0pEmed is an enciphered area, the user must supply the enciphering key in the appropriate
area-name cell pri ()or to the open call.

12. If any area of the database has been closed and is to be reopened, a" areas must first be closed; i.e., re­
opening an area mClY not violate usage rule 2 above.

DBM Response

If anyone of the required parameters is not supplied in the CCB; if any of the named areas is not assigned; if pro­
cessing has begun in an area; or if mixed mode (shared and non-protected) opens are attempted, the DBM returns an
error indication in ERR-CODE in the CCB. If all conditions are satisfactorily met, the DBM sets up the controls
necessary for processing the areas. The area files are not opened until a subsequent DBM call references one of
the areas.

When an area is opened in exclusive mode (OPEN RET, OPENUPD, or CREATE), no provision is made for dynamic
recovery in case of deadl:ock, because deadlock cannot occur, and there is no requirement for locking of individual
pages.

When an area is opened in shared mode (OPRETSHD, OPUPDSHD) individual pages are locked, by means of the
CP-V enqueue/dequeue facility, as required (see Appendix H for additional information on Enqueue/Dequeue).

If an area is reopened, the DBM wi II zero out the contents of the set tab les and current-of-type for all sets and
groups defined for the area. Thus, a program may not maintain a logical position in an area between close and open.

Adding Occurrences

The first activity involving the data in the database is to load, or store, group occurrences in the area fi les. This
activity continues with varying frequency over the I ife of the database. The required conditions and the action of
the DBM when a request is made to add a group occurrence to a database area depends ona variety of factors such
as whether or 11l0t inventory p,cges exist for the area, whether or not there is an indexed group within the area, what
the .Iocation mode of the group is, what sets it participates in and how, etc.

Format

ENTER STORE, group-name

Usage Rules

1. The data values that are to constitute the group occurrence should be in the working-storage designated for
the group.

2. If the group is an automatic member of any set, the desired set occurrence must be selected. This is done
either by retrieving the owner occurrence or a member occurrence if the set selection is current (unneces­
sary if the occurrenc:e most recently stored or retrieved is part of the desired set occurrences), or by putting
the uniqueness-determining value in working storage if selection is through location mode of owner. Note
that the uniqueness-determining values may be calc keys, index keys, set sort keys, or a combination of
sort keys and one of the others if several levels of owner are required to establ ish uniqueness.

3. STORE is not permitt'ed if the specified group is the owner or a member of a set that is not defined in the
subschema being used; if any item in the group is not defined in the subschema; if the subschema item sub­
entry for a secondar~1 index item specified no inversion; or if the group is a member of a multimember sorted
set without group number as major, and the definition of a sort key item in one of the other member groups
is not included in the subschema.

DBM Routine Usage 37

DBM Response

The DBM must physically and logically position the occurrence in the area. To physically position the occurrence,
the DBM determines a base page for the occurrence and stores it on that page if there is space. The base page for
a group occurrence is determined differently for each location mode as follows:

CALC - The values of the calc control items are randomized across the page range for the group to determine
the base page.

INDEXED - The values of the index control items are compared to the primary index entries. The base page
for the group occurrence is that page which contains the occurrence of the group tha~ has the next-higher values
in its index control items. If no occurrence of the group currently in the area has higher values, the base page
is the last page currently containing indexed group occurrences.

DIRECT - The base page is provided by the user in cell REF-CODE. If a storage parameter is selected for a
direct group, the base page is determined as if the group were a via group.

VIA SET - The base page is determined by the order of the via set, or storage set if appropriate, and the exist­
ing members of the set:

a. Sorted - base page is the data page of the current group occurrence logically before the new occur­
rence in its sorted sequence.

b. First and Last - base page is the data page of the set owner occurrence.

c. Next and Prior - base page is the data page of the current member occurrence of the set.

If there is not sufficient space, or no available line number on the base page, the DBM systematically searches
until space is found, or if no space can be found, the DBM returns an error code in the CCB. The search is based
on the location mode of the group and whether or not there is an indexed group and an overflow range in the area.

If the occurrence cannot be stored because of subschema limitations, if the password supplied at open does not pro­
vide an update key required for storing occurrences of the group; if values in the occurrence are duplicates of values
for which duplicates are not allowed (calc keys, sort keys, secondary indexes for which duplicates are not allowed,
or indexed location mode keys); if key values for an indexed group are not in ascending order in create mode; if
any values do not meet data val idation criteria; or if a deadlock is precipitated during the store processing, the
DBM returns an error code in the CCB. Additional action is taken in the case of deadlock (see "Preparing for
Deadlock ", below).

The group occurrence is logically positioned in all sets in which it participates according to the set selection and
the set order. The occurrence is I inked into all sets in which it is an automatic member. If the occurrence cannot
be linked for some reason e.g., the correct owner occurrence cannot be retrieved, the DBM returns an error code
in the CCB.

At the successful conclusion of a STORE call, the group occurrence is recorded as

Current-of-file - Assigned reference code is in REF-CODE of CCB.

Current-of-type - Assigned reference code is in the CURR-XXX cell in user's working storage.

Current-of-set - Assigned reference code is in SET-CURR of all sets of which the group is an owner orauto­
matic member.

The numeric synonym for the group is also placed in GRP-NO of the CCB.

38 DBM Routine Usage

Deleting OccllIrrences

A group occurrence can be physically removed from the database or marked as unavailable and flagged for future
removal, or the delete call can specify conditions under which the group is to be deleted. If the subschema being
used does not describe the complete database, there may be some EDMS-imposed restrictions on deleting group
occurrences.

DELETE

REMOVE

ENTER DELETSEL

REMOVSEL

DELETAUT

Usage Rules

I' group-name

1. The group occurrence to be deleted is the occurrence identified as current-of-type for the group named.

2. The occurrence cannot be deleted if any set of which the group is an owner or member is not defined in
the subschema or if any invert group associated with the group is not defined in the subschema.

3. The occurrence cannot be deleted if some member group at a lower level cannot be deleted because of
subschema omissions.

DBM Response_

If the occurrence cannot be deleted because of subschema limitations; if the password supplied at open does not
provide update keys for one or more of the groups affected; if the current-of-type is not established, or if the de­
lete processing precipitates a deadlock, the DBM returns an error code in the CCB (there is additional processing
in the case of deadlock, see "Preparing for Deadlock." below).

If necessary conditions are met, the response is as follows:

DELETE - The group occurrence and any associated member group occurrences in a set of which it is the owner
are logically deleted from the database. The deleted group occurrences will only be physically removed from
the database if this doe!; not require examining a complete set to establish the prior occurrence of the deleted
group.

REMOVE - The group occurrence and all of its associated member occurrences are logically and physically re­
moved from the databas«~.

DELETSEL - The group occurrence is logically removed from the database only if it does not have associated
member occurrences. If the group occurrence is the owner of a nonempty set occurrence, the DELETSEL call
is not executed and an error code is returned in the CCB.

REMOVSEL - The group occurrence is logically and physically removed from the database only if it does not
have associated member occurrences. If the object group is the owner of a nonempty set occurrence, the
REMOVSEL call is not executed and an error code is returned in the CCB.

DELETAUT - The group occurrence is logically deleted from the database. If the group is defined as the owner
of a set with automatic members, all automatic-member occurrences will be logically deleted from the database.
Any deleted automatic-member occurrences wi II be treated as if they were the object of a DELETAUT call. If
the group is defined as the owner of a set with manual members, the manual-member occurrence wi II be de­
linked from the set. Execution of this call makes all deleted group occurrences unavailable for subsequent ac­
cess by the user. The current-of-type for groups whose occurrences are deleted and the current-of-file
(REF-CODE) are set to zero.

DBM Routine Usage 39

Modifying Data Values

The values of one or more items in a single group occurrence can be modified.

Format

ENTER MODIFY, group-name [, item-name]. ..

Usage Rules

1. Before executing this call, the user must initial ize working storage with the new values for the items to
be modified.

2. The object of the call is the group occurrence that is current-of-type for the group named.

3. The list of item-name arguments identifies the specific items to be modified. If no list is given, it is as­
sumed that all defined items in the group are to be modified.

4. This call may not be used under any of the following conditions:

a. If the item is a calc control item and definitions of other calc control items are omitted from
the subschema.

b. If the item is a sort key for a set and definitions of other sort keys from the same set are omitted from
the subschema.

c. If the item is a sort key and the definition of the sorted set is omitted from the subschemas.

d. If the item is a sort key for a multimember set sorted without group number as major sort key and
the definitions of the sort keys in the other member groups are not all included in the subschema.

e. If the item is a secondary index and the invert-group definition is omitted from the subschema.

f. If the item is an indexed location mode control item.

DBM Response

If one of the above conditions is not met; if the password supplied at open does not provide an update key required
for modifying the item{s); if a new value duplicates an existing value for which duplicates are not allowed (a calc
key, sort key or secondary index item wi th no dup I i cates); if the current-of-type for the group has not been establ i shed
(e. g., by a previous retrieval or store action); or if the modify attempt results in a deadlock with another program,
theDBMreturns an error code in theCCB. (Additional actions in the deadlock case are described under "Preparing
for Deadlock", below.)

If there are no errors, the item value{s) is replaced with the new value{s).

If an item to be modified is a calc control item for the group, the item values are changed and the pointers in the
group occurrences affected are modified to indicate the new base page. The group occurrence with the modified
value, however, is not physically moved to the new base page. If an item to be modified is a sort control item for a
set in which this group is a member, the item values are changed and the group occurrence logically repositioned
in the set based upon the modified item values.

Modifying Linkages

An occurrence of a group whose membership in a set is defined as optional or manual can be linked to or delinked
from a set occurrence (LINK and DELINK). Also, a member group occurrence can be changed from one owner oc­
currence to another in any set in which it participates (RELINK).

40 DBM Routine Usage

Linking, Del inking, or Rei inking Member Occurrences

Format

ENTER DELIN K ,group-name,

{

LINK }
set-name

RELINK

Usage Rules

1. The object of the call is the group occurrence that is current-of-type for the group named.

2. To DELINK a group occurrence from the named set, the group must be defined as an OPTIONAL member
or a MANUAL member, and the occurrence must be I inked into a set occurrence.

3. To LINK a group occurrence into the named set, the group must be defined as a MANUAL member or an
OPTIONAL member" and the occurrence must not be currently linked into a set occurrence.

4. To REUNK a group occurrence from one occurrence of the named set into another, the group must be de­
fined as a member of the named set, and the object group occurrence must be linked into an occurrence
of the set.

5. For LINK or RELINK, the set occurrence into which the object group occurrence is to be linked must be
selected. If the def;ined set selection technique is through location mode of owner, working storage must
be initialized with the control-item values that uniquely identify the owner occurrence. If set selection
is through current-of-set, the set occurrence should be established as current by means of a DBM call. This
would normally be done by retrieving the owner occurrence or an occurrence of a different group type that
is also defined as a member of the set. For RELIN K, the current set occurrence should not be establ ished by
retrieving an already-linked occurrence of the named group, because that would make the already-linked
occurrence current-of-type and the object of the call, which is contrary to the purpose of the call, and
is effectively a null action.

DBM Response

If any of the above conditions is not met; if the password supplied at open did not provide update access to the named
group; if processing the call would result in non-allowed duplicate values of sort-keys; or if deadlock with another
program occurs, the DBM returns an error code in the CCB (additional action in the case of deadlock is described
under "Preparing for Deadlock ", below).

If the LINK call is successful, the object group occurrence is current of the named set.

If the DELINK procedure is successful, the group occurrence that was prior to the object group occurrence is current
of the named se't.

If the RELINK is successful, the object group occurrence is delinked from its previous set occurrence and linked into
the new one. The DBM wi II not check to determine that the new set occurrence is indeed different from the previous
set occurrence. If the order of the named set is sorted, the DBM will initialize working storage with the values
of the sort control items from the object group occurrence to ensure that the object group occurrence is rei inked
into the proper logical position in the new set occurrence.

DBM Routine Usage 41

Retrieving

Various techniques are used for retrieving specified group occurrences from the database and making them available
in the buffers. (Subsequent GET calls must be made to move the data into user's working storage.) The selection
of the technique depends upon the specific application. Technique selection must be governed by the group and
set characteristics of the occurrences to be retrieved. A single general format applies for the various techniques.

Format

ENTER

Usage Rules

FINDG, group-name

F IN DC, group-name

FINDD

FINDM, set-name

FIN DN, {set-name }
--- group-name, procedure-name

FINDP, {set-name }
--- group-name, procedure-name

FIN DS procedure-name

FIN DS I, proced ure -na me

FIN DX, group-name, item-name, procedure-name

FINDSEQ, group-name, item-name, procedure-name

FIN DFRST, group-name

FIN DLAST, group-name

FINDDUP, group-name

1. In each form of the retrieve (FIND) call, it is assumed that any data items necessary to identify the spe­
cific occurrence of the group to be retrieved have been initialized in working storage. The data
i terns that are necessary depend on the speci fi c ca" and are descri bed under II DBM Response ", be I ow.

2. FIN DG wi" not be a" owed if

a.

b.

c.

d.

Calc or index control items for the group are not defined in the subschema.

The via set is not defined in the subschema.

The via set is defined and one or more sort keys are not defined in the subschema.

The via set is sorted without grrup numbers as major, and sort keys of another member group are not
defined in the subschema.

3. FINDG is also not allowed for the area group establ ished to function as set owner.

4. FINDDUP is not allowed if any of the calc control items for the group are not defined in the subschema.

5. FINDX and FINDSEQ are not allowed if the invert-group is not defined in the subschema.

42 DBM Routine Usage

DBM Respons~

1. The action in each case causes the group occurrence to be made available in one of the DBM buffers. No
other action, such as moving the group to working storage, is implied.

2. At the successful c:onclusion of any retrieve call except FINDX, the object group occurrence is recorded
as follows:

Current-of-file - The reference code of the group occurrence is stored in the REF-CODE entry of
the CCB.

Current-of-type - The reference code of the group occurrence is stored in the CURR-XXX entry of
user working s;torage (XXX is the numeric synonym for the group).

Current-of-se·t - The reference code of the group occurrence is stored in the SET -CURR entry of the
set tables for each set in which the group participates.

Group-type - The numeric synonym for the group whose occurrence is retrieved is stored in the GRP­
NO entry of the CCB. When using any retrieve call that does not expl icitly identify the group name,
an occurrence of any of several groups may be retrieved depending on the data structure involved. After
execution of the procedure, the user program may determine the group whose occurrence was retrieved
by referring to the GRP-NO entry of the CCB.

3. FINIDG - The FINDG (find-group) call retrieves a specific occurrence of the named group. The group
occurrence retrievc~d is a function of the location mode of the group. When the group is defined as direct,
the occurrence retrieved is identified by the reference code stored in the REF-CODE entry of the CCB.
When the group is defined as calc, the occurrence retrieved is identified by the randomizing procedure,
usin~~ the values of those items defined as randomize control items. When group is defined as via set, the
occurrence must be retrieved via the owner occurrence of the set. In this last case, the values that uniquely
identify the owner occurrence must have been initialized in working storage in addition to the values of
those items (which must be SORT KEY items) that uniquely identify the via group occurrence. When the group
is defined as indexed, the occurrence retrieved is identified by referencing the primary index to find the
IIbase II page for thE~ group and then using the values supplied for those items defined as the index items for
the group to search the page set.

4. FINDC - The FINDC (find-current) call retrieves the group occurrence identified by the reference code
currently stored in CURR-XXX, where XXX is the integer identifier of the group named. This call is used
to again retrieve the current-of-type group occurrence.

5. FINDD - The FINDD (find-direct) call retrieves the group occurrence identified by the reference code
stored in the REF-CODE entry of the CCB. If there is no occurrence with the specifie.d reference code, or
if the occurrence has been logically deleted, the DBM returns an error code in the CCB.

6. FINDM - The FINDM (find-master-of-set) call retrieves the owner group occurrence of the set named.
The action of this (:011 depends on the contents of the set table for the named set.

7. FINDN - The FINDN (find-next) call retrieves the next group occurrence in logical sequence of the set
named if the argument to the call is a set name. The actual group occurrence retrieved depends on the
user's position in the set as indicated by the set table.

If the argument to ,·he call is a group name, the group must be an indexed group and the call retrieves
the group occurrence with the next higher key value. If, prior to the call, the user is positioned at the
group occurrence with the highest key value, no group occurrence is retrieved, and control is returned
to the user at the address specified by the procedure-name.

8. FINDP - The FIN DP (find prior) cal I retrieves the prior group occurrence in logical sequence of the set
named if the argument to the call is a set-name. The actual group occurrence retrieved depends on the
user's position in the set as indicated by the set table.

If the argument to the call is a group name, the group must be an indexed group and the call. retrieves
the group occurrence with the next-lower key value. If, prior to the call, the user is positioned at the
group occurrence with the lowest key value, no group occurrence is retrieved and control is returned to
the user at the address specified by procedure-name.

D BM Routi ne Usage 43

9. FINDS - The FINDS (find-serial-search) call provides for a serial search of an area for the first group
occurrence that falls within a range of reference codes. The range is defined by the user by the initial­
ization of both the FRST -REF entry of the CC B with the first reference code of teh range and the LAST­
REF entry of the CCB with the last reference code of the range. Control is returned to the user with each
group occurrence found within the range after the DBM has incremented the value of the FRST -REF. Re­
peated execution of the call causes retrieval of each group within the range until the val ue of FRST -REF
exceeds the value of LAST -REF. At this point, the call exits to the address specified by procedure-name.

10. FINDSI - The FINDSI (find-serial-search-from-initial-reference) call operates in the same manner as
FINDS except that search I imits are defined in terms of an initial reference code in FRST -REF and a num­
ber of group occurrences in LAST -REF. With FIN DSI, the LAST -REF value is decremented with each group
retrieved and the call exits to the address specified by procedure-name either when the LAST-REF value
reaches zero or when the end of the area is reached.

11. FINDX - The FIN DX (find-indexed) call locates and places into REF-CODE the reference code of the
first group occurrence that contains a value (of the item named) equal to the value in working storage for
that item. This call is only valid when the item-name has been defined as a secondary index (invert) item
for the group named. Return from this call is to the first statement following the call when a group oc­
currence is identified that contains the value supplied in working storage. To find all group instances that
match, the call must be used repeatedly within a loop without changing the value of the item in working
storage. When no matching instances are found or when no additional instances exist, control is returned
to the location specified by procedure-name. Any time the value of either the item in working storage
or the FINDX arguments is changed, the DBM assumes that a new retrieval loop is inyolved and identifies
the first matching group occurrence. Unl ike other types of retrieval calls, FINDX does not actually re­
trieve the identified group occurrence. The only action apparent to the user program is the availabil ity
of the reference code of the qualifying data group occurrence in the CCB entry REF-CODE. Should the
user wish to retrieve the selected group, he may do so by using the FIN DD call.

12. FINDSEQ - The FIN DSEQ (find-sequential) call sorts all occurrences of the specified secondary index
(invert group) and serially retrieves the main group occurrences that correspond to the sorted invert group
occurrences. This call is only val id when the named item is defined as an inverted item for the group
named. The initial use of this call with a given set of arguments causes the DBM to build a sort input file
consisting of all occurrences of the invert group for the secondary index, specified by item-name. The
DBM then rei inquishes control to the Sort processor, which sorts the invert group occurrences on the val ues
of the invert item. At the completion of the sort, the DBM regains control, reads the first sorted invert
group occurrence, retrieves the corresponding main group occurrence, and updates the CCB and set tables,
as appropriate. Control is then returned to the first statement following the FIN DSEQ call. Subsequent
use of the call results in the retrieval of the next sequential main group occurrence until an end of file
is reached on the sorted file, at which point control is returned to the location specified by procedure­
name. Any time group-name or item-name is changed, it is assumed that a new sort is involved and the
above-described initial procedure is executed.

13. FINDFRST - The FINDFRST (find-first) call retrieves the logically first indexed group occurrence, that
is, the group occurrence with the lowest key value. This call is only valid when the group named has a
location mode of indexed.

14. FINDLAST - The FINDLAST call retrieves the logically last indexed group occurrence, that is, the group oc­
currence with the highest key value. This call is only val id when the group named has a location mode of indexed.

15. FINDDUP - The FINDDUP (find-dupl icates) call retrieves the next calc group occurrence that has random­
izing control values equal to the current contents of user's working storage. This call is only valid when
the group named has a location mode of calc and duplicates are allowed.

Prior to this call the user must have retrieved a calc group whose randomizing control values are equal
to the current contents of user's working storage. To execute this call, the DBM will find the next group
of the calc set looking for a group with duplicate values. If none is found, an error will be returned in
ERR-CODE of the CCB.

16. If the password suppl ied at open does not provide all necessary retrieve keys; if the values suppl ied in work­
ing storage are not sufficient to identify an occurrence; or if processing the call resulted in deadlock with
another program (see" Preparing for Deadlock" below), the DBM returns an error code in the CCB.

44 DBM Routine Usage

Moving to Working Storage

The FIND calls only cause the page containing the selected group occurrence to be placed in the buffer and the
current indicators to be updated for the group and for the sets in which it participates. If the user wants to process
the data in the group occurrence, the program must make an additional call. The GET call is used for this purpose.
The HEAD call may be used to both retrieve and move a set owner-occurrence.

GET Call

Purpose. To move a retrieved group occurrence to working storage.

Format

ENTER GET, group-name [, item-name] •..

Usage Rules

1. The object of the GET call is the group occurrence identified as the current-of-type for the group named.

2. The items to be moved to working storage may be any items defined within the group.

3. The list of item-names identifies the specified items to be moved. If no list is given, it is assumed that
all items are to be moved.

DBM Response

The data values in the group occurrence are moved to working storage.

HEAD Call

Purpose. To both retrieve and move to working storage the owner group occurrence of a set occurrence.

Format

ENTER HEAD, set-name

Usage Rule

Before using this call, a previous database reference must have been made to establ ish a group occurrence as SET­
CURR for the named set.

DBM Response

This call provides a function similar to the FINDM and GET calls except for the manner in which the set tables are
updated. After execution of the HEAD call, the owner group occurrence is establ ished as the current-of-type and
as current-of-set for those sets in which the group is a member. It is not established as current-of-set for those sets
in which it is owner.

Run-Time Statistics

Purpose. To initiate and terminate, by calls to the DBM, the collection of statistics on the performance of a pro­
gram as it accesses a database. The statistics reflect the activity of that job only.

DBM Routine Usage 45

Format

I DMSSTATSj
ENTER ENDSTATS

RPTSTATS

Usage Rule

Run-time statistics collection can be initiated at any time during the operation of the program.

DBM Response

1. DMSSTATS causes the DBM to collect statistics on the activity of the specific job within the database.
Statistics include the number of EDMS calls executed, the number of groups accessed by call and the
number of physical page I/Os.

2. ENDSTATS causes the collection of the above statistics to be discontinued.

3. RPTSTATS causes a report of the statistics to be printed. After the report is written, the internal DBM
counters for the statistics are reset to zero. A sample of the report is given in Figure 7.

Run-Time Tracing

Two types of trace information are accumulated by the DBM. The first type is initiated and terminated at the re­
quest of the user program and produces printed output. The second type is automatically maintained by the DBM
and is not output.

User Initiated Trace

Purpose. To record and print the access record of DMS calls made by a program during program operation. (listing
output can be assigned to a file and printed later.)

Format ---

ENTER {DMSTRACE}
-- ENDTRACE

Usage Rule

The trace can be initiated and terminated at any time during the operation of the program being tested.

DBM Response

1. DMSTRACE causes the DBM to print the following information in its order of occurrence:

DBM function name and user's call ing address.

Group number of group accessed and reference code of the occurrence.

Number of page reads and writes.

A sample of the trace is given in Figure 8.

2. EN DTRACE terminates the trace reporting.

46 DBM Routine Usage

PROCEDURE CALLS
FINDC 9

GROUPS
9

STORE 85 381
PAGE READS 6
PAGE WRITES

DBM Trace TClbie

1

Figure 7. Run-Time Statistics Sample

F~TE~Et F~~M L~C OC229

:)!=:~.l ACC~ :~~.; :;l-JQ >CJ01 ,,)"001 C2()
r,~PAtU :;~:; .)l.)uOO~")OT~"Dnl ·'1[;
II i.(~ A C U ~; S ,} 1 ..) U J 0 ',; () 1;)" () 0 1 ,1?J
(JRC-1 HFE:;.>r Ul-")(1')O;"(J1C)-L):l1 "21

< " :~j S > :.) T j ~ f- ; H~' i-(::' L F 'dO, . , L j C r; C ? 4 3
(j P t" A C r: t ~; S : .. : 1 .. :) () :) r) :) () c: 1 .. 0 \) 1:'] ')
;."d~:' A ((. ~ :.; S :) 1 .. J ,) J ();:. 0 1 0 .. r~) 1 i)? j

[,;;'") ACC€SS :)1.J:JJn·JC:1lJ-O,')1 ~?~l

r1k,.) AC (:~. r.,S ::'1-XJJG:JD.")1-()()1 '."1.'
(l~:J AUJ3S ;:;1 .. .):.L)(;COC'il-J01 "1::
Cl ~;J I ~ '. E, ~ T J 1 -:1 (j J 0 . .1 C '.} 1 .. [) () 1 "I] -:'

<~~,,':;> S1'.'i-\!:- ~·"':Tf:.·k_>·) F:«~"I l(iC ()G?66
(l ~ Pile etc.;::;) 1 .. :) (i J 0 ~XI 1 0 - 0 0 1 ',1 ?,1
" ~;.l A (C i::. '3 ~ ,)1 .. J ~) :; 0 COl () .. 00 ;> 'J 4 ,;
~~~ I~~E~T Jl·JUJOvCl~·GJ? ~4J 

< r ~1 ,; > <;; 1 " ~ ~ ~. " T ~>~ ('~ [) p: n ,. i L u C C C 2 ~ :: 
'.1 P) A ( C ~ '~~;j ") 1 .. Y):) () :; () 1 Ci. 0 0 ~ rH.j. 

I,F;:'ACC~";;S Jl .. )'),)O;1l:10-00'1 -)5 
(J ~ L;l ACe E. :; S J 1 - J ~j J I) J o· ) 1 .. (J 0 '" '1 
h R ;.J A C (, L e,; c.; J 1 .. ') 0 ,) l) C. C 1 0 ... C) o~ ;'~ 5 
l,i ~;:r) II' '::, ~ ~ T .~ 1 • ) '" :) 0 :.,: (i 1 U '" Q en :: ~ 

< '" j' •. ; > S T:' h: ~ ~.~ T ~: ;~ :~ c· F '-' f '1 L R eN',? ~ 
I; ~ PAC r. t. ~) ,~ ;) 1 .. J 0 J 0 'A~' 1 (j .. :):j? ') 4 

bR:~ A( ;:,J SS ') l-J::-<lO J01:)-0{) ~ Cl::; 
GPP A(r~~S Jl-JDJ0JG10-004 n5 
(, R j,) A ( C E ~::., ) 1 - J 0 ,j 0':" () 1 Cl· () 0 ., J 5 

Figure 8. Run-Time Trace Sample 

The DBM maintains a record of user's calls in a trace table. No user action is required to initiate or terminate the 
maintenance of the table, nor can the table be displayed. The table may be examined in a memory dump or byusing 
monitor SNAP commands. The trace table is a circular list of ten entries, controlled by a stack pointer at DEF 
Q:TRCTBL in the DBM. The table itself immediately follows the stack pointer doubleword, whose first word will 
contain the address of the current trace entry in the circular list. A trace entry has the following format: 

bits 0-7 - binary value of an error code or zero. 

bits 8-14 - binary code for type of DBM call (see Table 6). 

bits 15-31 - address in the user's program from which the call was made. 

DBM Routine Usage 47 



Table 6. Trace Codes for DBM Calls 

l. OPENUPD 17. GET 33. FINDM 

2. OPRETSHD 18. MODIFY 34. HEAD 

3. OPENRET 19. LINK 35. DMSRlSE 

4. OPUPDSHD 20. DELINK 36. DMSCHKPT 

5. CREATE 2l. RELINK 37. CLOSEDB 

6. CLOSAREA 22. STORE 38. FINDD 

7. DELETE 23. FINDN (group) 39. DMSRETRN 

8. DELETAUT 24. FINDP (group) 40. DMSTRACE 

9. DELETSEL 25. FINDSEQ 4l. ENDTRACE 

10. REMOVE 26. FINDX 42. DMSSTATS 

1l. REMOVSEL 27. FINDS 43. ENDSTATS 

12. FINDC 28. FINDSI 44. RPTSTATS 

13. FINDG 29. Not Used 45. DMSABORT 

14. FINDDUP 30. Not Used 46. SETERR 

15. FINDFRST 3l. FINDN (set) 47. RESETERR 

16. FINDLAST 32. FIN DP (set) 48. DMSLOCK 

Error Control 

Purpose. To enable the user's program to maintain a degree of control over the handling of DBM-detected errors 
by issuing a call that specifies a location to which the DBM is to return control in the event of a specified error 
condition. 
Format 

SETERR, procedure-name [, error-code-name] ... 

RESETERR [, error-code-name] ..• 

ENTER DMSRETRN 

Usage Rule 

DMSABORT, procedure-name 

DMSLOCK, procedure-name 

All locations specified by procedure-name must be within the user's program area. 

DBM Response 

1. SETERR - Establishes the location that is to receive control in the event of a data-dependent error 
(codes 1-20). If no error-code-name arguments are given, procedure-name will receive control on any 
data-dependent error. If SETERR is entered with an error-code-name value that already has a procedure­
name established for it, the new procedure-name will replace the previous one. 

2. RESETERR - Disassociates a data-dependent error code value from a procedure-name so that the DBM will 
no longer trap to that procedure name if the error is encountered. If no error-code-names are given, all 
error code values are dissassociated. 

48 DBM Routine Usage 



3. DMSRETRN - CausHs control to be returned to the statement immediately following the last DBM function 
call that resulted in an error for whi ch the user had established an error-control procedure. The DMSRETRN 
call is used to exit from a procedure establ ished by the SETERR call. The DBM will only retain the address 
of the last function call that resulted in an error. 

4. DMSABORT - Establ ishes the location that is to receive control in the event of a non-data-dependent er­
ror other than deadlock (codes 31-137). The location establ ished tc receive control should be a wrapup 
routine as no additional DBM calls will be allowed. 

5. DMSLOCK - Establishes the location that is to receive control if it causes a deadlock (error code 30) with 
another program that is sharing an area. 

Preparing for Dteadlock 

There is a possibi I ity of dead~ock whenever two or more programs are concurrently accessing the same area, if at 
least one of them is updating the area (i. e., at least one program has used OPUPDSHD to open the area and at least 
one other program has used either OPRETSHD or OPU PDSHD). The deadlock occurs when two programs are each 
waiting for the other to release a locked page in order to proceed. An example is: Program A reads page 1 causing 
it to be locked with shared status. Program B then also reads page 1 locking it with shared status (many programs 
may lock a page with shared status without interfering with each other). Program A then attempts to update page 1, 
resulting in a request to promote the lock status to exclusive. This promotion is delayed waiting for Program B to 
remove the shared lock on page 1. If, instead of removing the shared lock on page 1, Program B also attempts to 
promote to exclusive lock status to update page 1, it will be delayed, waiting for Program A to remove its shared 
lock. The two programs are in deadlock and neither can proceed. 

The monitor Enqueue/Dequeue function wi II detect a deadlock situation and return an error code to the program 
that finally caused the deadl()ck (Program B in the above example). The DBM wi II recover the database using any 
before images on the program's transient journal, thus undoing the program's database changes back to its most recent 
DMSRLSE call, or back to thE~ beginning of its operation, if there was no DMSRLSE. 

DMSRLSE Call 

Purpose. To release pages th(lt are locked for the program and make them available for reading and/or updating by 
other concurrently operating programs. The DMSRLSE call also establishes a point in the sequence of a program's 
operation as a base point for recovery in case of deadlock. The call notifies the DBM that some defined portion 
of the program's logic and/or input data has been complet'ed, and that only subsequent database changes should be 
nullifiedifa deadlock occurs. The call may also be used, with the optional recovery-name specified, to erase pre­
vious changes to a shared database (for example if the program detects that a portion of its input has been in error). 

Format 

ENTER DMSRLSE [, recovery-name] 

Usage Rules 

The call may be made at any Hme after all areas are open, but is effectively a null action if no area is opened for 
shared access, or if no database accesses have been made. 

D BM Response 

If there are no open areas, the DBM returns an error code in the CCB. If there are areas open, and the optional 
recovery-name is specified, the DBM restores any before images from the transient journal to the database. If 
recovery-name is not specified, the DBM writes all modified pages currently in core back to the database. In 
both cases the DBM: 

1. Deletes all before images currently on the transient journal. 

2. Sets the program's position in the database to zero; i. e., zeros out all set tables and current-of-type for 
each group. 

3. Releases all locked pages. 

Database areas opened to the program are not closed. 

DBM Routine Usage 49 



Checkpointing 

Purpose. To add an additional protection to the integrity of the database by allowing the user's program to period­
ically request that the DBM write all modified pages to the database. 

ENTER DMSCHKPT 

Usage Rule 

The using program may call the checkpoint routine at any time during its operation. 

DBM Response 

The DBM will write all modified pages currently in the data buffers to the database area fi Ie. After-images will be 
written to the journal file if journaling is being done. No areas are closed, nor are any currenty indications 
changed. The database lockout bit will be reset in all updated areas. 

Terminating Processing 

Purpos=-=- To close opened areas when a program's database activity is finished. 

Format 

ENTER{ClOSEDB } 
-- ClOSAREA, area-name-1 [, area-name-2] ... 

Usage Rules 

1. CLOSEDB terminates processing in all currently opened areas. 

2. CLOSAREA terminates processing of those areas specified by area-name-l, area-name-2, etc. 

3. When the last opened area is closed, the user may request that the DBM release back to the monitor any 
common dynamic core acquired for the subschema and data buffers. The user requests this release of core 
by setting the contents of cell REF-CODE to a negative value before executing the close call. 

DBM Response 

The DBM interacts with the host operating system to close the are files. If, however, CLOSAREA is used to termi­
nate processing in an area which has pages enqueued or if the area is open for update and other areas are left open 
for update then the pages are not released and the operating system close is not issued until the remaining areas are 
closed with a ClOSAREA or CLOSEDB procedure call. 

Error Processing 

During execution of anEDMS program, two types of error conditions mayoccur and be recognized by the DBM. The 
first type involves data-dependent situations and must be anticipated by the user program. The second type involves 
situations that result from inproper use of the DBM routine calls, from invalid database definitions reflected in the 
subschema, from hardware or software mal functions that cannot be recovered by the DBM, and from deadlock with 
another program that is sharing an area. 

50 Error Processing 



If an error is detected by the DBM, an identifying error code is placed in the ERR-CODE entry of the CCB., If an 
error-control location was established for the error code encountered, the DBM returns control to that location. If 
no error-control location exists, control is returned to the location immediately following the DBM function 
call. 

If the error encountered is data-dependent (see Table F-2 in Appendix F), the DBM returns the database to 
its logical position before the call and makes the appropriate return to the user. Additional DBM calls wi II 
be accepted. 

If the error is non-data-dependent other than deadlock (see Table F-3), the DBM closes all open areas before 
returning to the user. If any further calls are made to the DBM, the job is terminated abnormally. 

If there is a deadlock, the program's position in the database (i. e., values in the set tables and current-of-type 
for each group) will be set to zero. The database areas are not closed and subsequent DBM calls will be processed. 

Journaling 

The DBM includes a facility to optionally create a journal file for each job step that updates an area of the 
database, thus providing the data necessary to recover the content of the database in the event of hardware or 
software failure. 

The journal file will be generated if an area definition specified journaling, provided the proper DCB assignments 
are made (see "DBM Operational Interface", below). The journal fi Ie is described in Appendix E. 

A separate journat, called a transient journal, is created to contain before images for recovery of shared databases. 
No DCB assignments are needed. The before images on the transient journal contain only the database page image. 
(See Figure 0-1.) 

Database Lockout 

The DBM will maintain a dat'abase lockout but in page 1 of each area to determine the integrity of the area. If an 
area is opened for exclusive update, the lockout bit wi II be set to 1 in the database, just prior to the first write ini­
tiated by a user update. ThE~ lockout bit is reset to zero when the area is checkpointed or closed by the user. Ter­
mination of a program without '0 user-initiated EDMS close will leave the lockout bit set. If the DBM detects that 
the lockout bit is set when a user opens an area, an error code is returned to the user in the CCB. The DBM wi II 
not set the lockout bit if the area is opened for shared update. It will, however, check if the bit was left set by a 
previous program. 

Summary Statistics Collection 

The DOL allows for the specification of statistics collection on group and/or set activity. The DBM will collect 
the statistics during execution of the user program. These statistics, which are distinct from the run-time statistics 
described above, provide a historical summary of all jobs affecting the database. The statistics are accumulated 
in space reserved for them in the user's working storage area and written to a file when the area is closed. The 
contents of the file may be examined subsequently by means of the Summary Statistics Utility processor (DMSSUMS, 
see Chapter 5 for a description of this processor). Appendix E shows the format of the statistics file. The statistics 
coil ected are 

Area-Open Mode, Retrieve, Update, or Create 

Total Page Reads and Writes 

Total Groups Accessed 

Total Groups Inserted 

Total Groups Deleted 

Journaling/Database Lockout/Summary Statistics Collection 51 



Group-Total Accesses 

T ota I Inserts 

Total Deletes 

Set-Total FINDN calls 

Total FINDP calls 

Total HEAD and FINDM calls 

OBM Operational Interface 

The DBM will exist either as a nonshared library or as a combination public library and nonshared library at the in­
sta Ilation's option. Linking of a user's program to the DBM will depend on the option selected. 

Total Nonshared Library 

The DBM will exist as three files, :DIC, :LIB,and :BLIB, in account DMSLIB. The files :DIC and :LIB are for use 
by the overlay loader while :BLIB is used by the one-pass loader. 

To -I ink a program to the DBM using the overlay loader, account DMSLIB should be specified as an UNSA T option 
on the LOAD command. For example, 

I LOAD (GO), (EF, (SUB 1», (UNSAT, (DMSLIB» •.. 

To link a program to the DBM using the one-pass loader, file :BLIB in account DMSLIB should be specified as a 
library identification in the LINK command. For example, 

ILINK MYROM ON MYLMN;:BLIB. DMSLIB ... 

Combination Public and Shared Library 

The non shared portion of the DBM will exist as three files, :DIC, :LIB, and :BLIB, in account DMSLIB. The shared 
portion will exist as file :Pn, where n is a digit selected at the time the DBM is SYSGENed. 

To link a program to the DBM using the overlay loader, account DMSLIB and the file :Pn should be specified as 
UNSAT options on the LOAD command. For example, 

J LOAD (GO), (EF, (SUB 1)), (UN SAT, (DMSLIB), (:P2» ••• 

To link a program to the DBM using the one-pass loader, Pn (the colon is omitted) should be specified as a library 
search option and file :BLIB, in account DMSLIB, should be specified as a library identification in the LINK com­
mand. For example, 

!LINK (P2) MYROM ON MYLMN;:BLIB. DMSLIB ••• 

DBM DCB Requirements 

The names for the DCBs used by the DBM are as follows: 

Journal DCB - F:JRNL. 
Subschema DCB - F:SSCH. 

52 DBM Operational Interface 



Transient Journal DCB-F: T JRL 
Statistics DCB - F:STAT. 
Database Area DCBs - F::DBnn, where nn may be any two digits from 01 through 64. 

The F:JRNL, F:SSCH, F:T JRL, and F:STAT DCBs are automatically included in the user's load module by the loader. 
DCBs for the database areas must be included by the user as input to the loader. Element files are included in 
account DMSLIB for this purpose. The element file names and the DCBs in each file are as follows: 

DCBl F:DBOl 1 DCB 

DCB2 F: DB02 and F: DB03 2 DCBs 

DCB4 F: DB04 through F: DB07 4 DCBs 

DCB8 F:DB08 through F:DB15 8 DCBs 

DCB16 F:DB16 through F:DB31 16 DCBs 

DCB32 F: DB32 through F: DB64 33 DCBs 

The user must specify, in the LOAD or LINK command, the proper element file(s} to provide a DCB for each area 
defined in the subschema used by his program. 

Example 

Three areas defined in the subschema: 

ILOAD (GO), (EF, (DCB 1, DMSLIB), (DCB2, DMSLIB)), (MAP), (UNSAT, (DMSLIB» 

The DCBs thus included are F:DB01, F:DB02, and F:DB03. The files for the three areas of the database must be 
assigned to thE~se three DCBs. It is immaterial which file is assigned to which DCB. 

Example 

Four areas defined in the subschema: 

ILINK MYROM,DCB4. DMSLIB ON MYLMN;:BLIB. DMSLIB 

The DCBs included are F:DB04, F:DB05, F:DB06 and F:DB07 . 

. DCB AssignmEmts 

The database area fil~s and the subschema file may exist in public RAD or disk storage, or on a private disk pack. 
If they are on a private pack, the appropriate serial numbers must be included in the ASSIGN command. If the 
files exist in an account other than the one in which the job is to be run, the account-name of the account that 
owns the files must be specified in the ASSIG N command. A mode is not necessary in the assignment because the 
DBM will open the files with a mode corresponding to the type of open call initiated by the user for the area. 

Example 

Subschema and database areel named AREA 1 on public storage database area, AREA2 on private pack number P124: 

IASSIGN F:SSCH, (FILE, MYSUBSCH) 

IASSIGN F:DB02,(FILE,AREA1) 

!ASSIGN F:DB03, (FILE,AREA2), (SN, P124) 

The journal and statistics filE~s may be assigned to a file on RAD or disk storage, or to a labeled tape. A mode is 
not required be~ause the DBM will default the mode to OUT when the first database area is opened by a program. 
If the program executes multiple opens and closes of the database areas, the DBM will initiate subsequent opens of 
the journal and statistics files as INOUT, thus concatenating all of the output for anyone job step through these 
DCBs. If the user wishes to c:oncatenate the output of several job steps, he may assign the DCBs as mode INOUT. 

DBM Operational Interface 53 



5. EDMS UTILITY PROCESSORS 

The utility processors perform a service function in support of the other EDMS capabilities: initializing areas before 
any data is stored; dumping the total contents of an area and saving it for backup; updating the saved data with jour­
naled pages for recovery purposes; printing selected portions of an area, journal, or backup file for visual checking; 
and printing summary statistics collected by the DBM into a statistics file. 

Database Initialization (DMSINIT) 

DMSIhlIT initializes an area or areas of a database, or specified pages in an area. If a whole area is involved, 
DMSINIT determines the required si ze for the area and creates the fi Ie by writing page headers and optional check­
sums on all data and index pages. If inventory is specified in the area definition, DMSINIT writes page headers 
and optional checksums on the inventory pages and fi lis in unused space with zeros. 

DMSINIT Error Messages are shown in Table F-5, Appendix F. 

The user may select the areas to be initialized, or specific pages within selected areas. If no areas are selected, 
all the areas defined for the database will be initialized. In all cases, the area file must be assigned (see "Utilities 
Operational Interface", below) if an area is to be wholly or partially initialized. Areas are selected by one or more 
area statements. 

AREA Statements 

Purpose. To cause DMSINIT to completely initialize one or more areas, or reinitialize a range of pages within each 
of one or more areas. A single AREA statement may designate many areas to be completely initialized, but a sepa­
rate statement is required for each area in which specified pages are to be reinitialized. 

AREA - 1 [, area-name-2Ca rea-name-3] •. J 
--- area-name- RANGE=(r l' r 2)& (r 3' r 4)} . . . 

Usage Rules 

1. The AREA statement must el"ld with a period. 

2. At least one space must precede the word RAN GE. 

3. A space may precede or follow an equals sign, a comma, a left or right parenthesis, or a period. 

4. The RANGE option defines the page range or ranges to be initialized for an existing area. Each page range 
specified is validity-checked to determine that r1 is equal to or less than r2, and that the page numbers used 
fall within the total number of data pages in the area. The RANGE must not include index or inventory pages. 

5. Each AREA statement should begin on a new input line, but a statement may be continued on as many lines 
(records) as are needed. No continuation character is required, as a statement is considered continued 
unti I a period is encountered. 

6. If the specified RANGE includes any pages within the page range of an indexed group, it must include all 
pages in that range. The specified RANGE may not include pages wi'thin the area's overflow range if it does 
not include the indexed group's pages, and it must include all pages of the overflow range if it includes any. 

Dump Processor (DMSDUMP) 

This processor dumps either all or selected parts of existing data base areas to a sequential file or to a printer. When 
the output is defined as a sequential fi Ie, the fi Ie has the same format as the journal file except that each data page 
image is dumped as an after-image. Figures E-l through E-4 in Appendix E show the journal/dump file format. 

54 E DMS Uti Ii ty Processors 



When the output from DMSDUMP is defined as printed output and the job is run in batch, each page is formatted as 
shown in Figure 9. The lillie indicated by 8 is a print header line containing relative page number and the number 
of words of available space, The line indicated byG) contains the two-word page header. The line indicated by o contains the decimal representation of the line number of the group occurrence, the group number, the relative 
position on the page, and the group occurrence's reference code. The line indicated by 0 is the beginning of the 
actual values in the group occurrence. The line indicated by 0 shows the EBCDIC representation of the data (data 
that does not convert to printable characters is represented by dots). 

When printed output is requested by a terminal job, the output is as shown in Figure 10. The 0 indicates the header 
line containing page number and number of words of avai lable space. The 0 indicates the two-word EDMS page 
header (see Figure D-1 for data page header format). The first word of the page header shown in Figure 10 contains 
page number (1), page type (01, data page), the must-write-flag reset, and the number of words of available space 
(lEC). The second word contains the Control Set pointer (area 2, page 1, line 2). The printed line in Figure 10, 
indicated by the 0 , contclins the line number, group number, relative word position in page, and reference code 
of the first group occurrencc~. Group number, printed as zero in this case because page 1 line 1 contains a DBM­
generated dummy group occurrence, is in the range 1 to 999 for user-defined groups. The line indicated by the0 
in Figure 10 is the beginning of the actual group occurrence, and the line indicated by 0 is the checksum for the 
page. 

DMSDUMP Error messages are shown in Table F-6 in Appendix F. The processing options of DMSDUMP are selected 
by input directives consisting of a type identifier followed by one or more area selection spe~jfications. 

If the database is password-protected, a password specification must precede the first directive. The password speci­
fication has the following form: 

PASSWORD = 'user-password' 

Should a request be made fOI' a selection of groups whose access codes are not authorized by the password given, the 
groups wi II be ski pped. Items for whi ch the password is not authori zed wi" be zero fi lied. 

o 
LIN/GPN/W~D/REF.CD DAT~ PAGE 0000005 

o 0000055C!i 02000501 

SPACE AVAILABLE ~53 

001/200/002/000501 

002/200/009/000502 

003/200 / 016/000503 

004/201/023/000504 

005/201/030/000505 

006/201/0371000506 

007/201/0~4/000507 

008/201/051/000508 

0 0 132000;1 02000502 oooeOOt~ F2FOFOFO oaOOOOOA 020e0508 02000504 

0232000Y 02000503 00oe002A F2FOFOFO 000000l~ 02000502 02000502 

03320007 02000500 00000032 F2FOFOFO 00000018 02000503 02000503 

04324007 00000006 02000501 020005e5 02000504 02000504 00000000 

05324007 00000007 0200050~ 02000506 02000505 02000505 00000000 

06324007 00000008 02000505 02000507 02000506 02000506 00000000 

073a4007 00000009 020e0506 02000508 02000507 02C00507 00000000 

08324007 OOOOOOOA 02000507 02000501 02000508 02000508 00000000 

CHECKSUM 3A650028 

Figure 9. DMSDUMPOutput Sample (Batch Job) 

0 ............. 200e •••••••••••• 

•• • •••• • ••••• 2000 ••• , ••• , • , •• 

*.t •••••••••• 200C ••••• I •••••• 

* •••• , ••••••••••• ,.,., ••••• , 

••• • ••••••••••• It ••••••••••• t 

-...... , ... " ...... , ... , ... . 
-.... , ..................... . 
... . ... , ......... , ...... , .. . 

Dump Processor (DMSDUMP) 55 



!S~T F:SCH~ DC/MSTRSCH 

!SET F:DROI nC/ARF.A-2 

!DMSDUMP. 

DMSD[JMP - EXTENDED DMS 
>PASSWOHD= ' 1 1 1 11111 ' 
>PRINT AREA=AREA-2 CIPHHF.Y='1234' RANGE=(1,2). 

(0 LIN/GPN/'lomO/RF:F-CD DATA PAGF. 0000001 

~ 000015F.C 02000102 

o 001/000/002/000101 

~ 01FA8003 02000308 0200040B 

002/200/005/000102 

SPACft~ AVAILABLfi: 492 

02320007 02000103 00000016 F2FOFOFO OOOOOOOA 02000102 02000102 

003/200/012/000103 

03320007 02000100 0000002C F2FOFOFO 00000016 02000103 02000103 

o CHECHSUM FF40865F 

LIN/GPN/WRD/REF-CD DATA PAGE 0000002 SPACE AVAILABLE 4B8 

000025E8 02000201 

001/200/002/000201 

'01320007 02000202 00000006 F2FOFOFO 00000002 02000201 02000201 

002/200/009/000202 

02320007 02000203 00000010 F2FOFOFO 00000008 02000202 02000202 

003/200/016/000203 

03~20007 02000200 00000026 F2FOFOFO 00000012 02000203 02000203 

CHECKSUM F3690D39 

Figure 10. Sample DMSDUMP Terminal Job 

56 Dump Processor (DMSDUMP) 



Dump Directives 

Purpose. To specify the type of output desired and to identify areas, lines, and groups to be processed. Multiple 
directives may be supplied. They are processed serially by DMSDUMP in order of input, with no attempt made to 
minimize passes through the database area. 

Format 

AREA = area'-name 

[CIPHKE~X = user-cipher-keyJ 

{
DUMP} 
PRINT [{)~~UP}= (N1' N2 ) ] 

~ROUP = N3[, N
4

J ... 

[RANGE_= (r l' r 2)[' (r 3' r 4)J· .. J 

Usage Rules 

1. The directive type identifier may begin in any character position and may be followed by any number of 
spaces, and selection parameters may consist of several lines. A period is used to terminate a directive. 
At least one space is required to separate two selection parameters. Spaces may precede or follow an 
equals sign, a comma, a left or right parenthesis, or a period. 

2. DUMP/PRINT - Specifies that the selected portion of the database is to be output to a sequential fi Ie 
(DUMP), or to a formatted print report (PRINT). The formatted print report contains the hexadecimal 
representation with EBCDIC alongside, if the job is run in batch. The output of a terminal job does not in­
clude EBCDIC. 

3. AREA - Identifies the specific area to be processed. Should AREA not be supplied by the user, all areas 
of the database wi" be processed. (Area-name is the name of an existing area to be processed. ) 

4. CIPHKEY - Specifies that deciphering is required in order to produce the requested print report. (User­
cipher-key is the cipher key associated with the data in the area to be printed.) 

5. LINE -, Specifies the span of lines within a data page to be printed. Not legal if GROUP is specified. 

6. GROUP - Is group number, which speCifies a span of groups or some specific groups to be printed. Note 
that CIPHKEY, LINE, and GROUP are not allowed with DUMP and are valid only when the AREA param­
eter is selected. (I'll, N2) permits the user to specify a span of lines or a span of group numbers to be pro­
cessed. N3 [, N4J. .. allows the user to specify up to eight group numbers of groups whose occurrences are 
to be processed. GROUP may not be duplicated for a single area. 

7. RAN GE - Defines one or more page ranges to be selected from an area of a database. Each range specified 
is checked to confirm that it falls within the page range of an area (including inventory pages), and the 
rl value is checked to determine that it is equal to or less than the r2 value. No check is made for over­
lapping ranges; i. e., a" selected pages in each range are output. If no RANGE parameter is supplied, 
the complete area is selected and sent to the output fi Ie. In this case, data, index, and inventory pages 
are written to the Ol.Itput file. RANGE must be the last parameter specified for an area. 

Load Processor (DMSLOAD) 

DMSLOAD restores a" or selected parts of existing database areas from a sequential file on magnetic tape, RAD, or 
disk. Its output may be directed to another sequential output or to a printer. 

The input file must be a singll:!! file created as a journal file by the DBM or a dump file created by the EDMS Dump 
processor. In either case, the fi Ie format is as defined in Appendix E. 

Load Processor (DMS LOAD) 57 



When the output is directed to a database area, each page selected is written over (replaces) the corresponding 
area page. Optionally, the area is reciphered and the inventory pages are updated to reflect the condition of each 
data page restored. 

DMS LOAD must always refer to existing areas of a database. Note that if a specific area no longer exists in the 
database, the user should initialize it before using DMSLOAD to restore it. 

When the output is directed to a sequential fi Ie, the selected pages are written to the fi Ie in the same sequence 
and format as they are found on the input fi Ie. The abi lity to write to a second sequential fi Ie makes it possible to 
preselect before- or after-images from a journal file for use in recovering the database. 

When the output is directed to a printer, the selected pages are formatted the same as in DMSDUMP output (see 
Fi gures 9 and lO). 

The processing options of the Database Restore routine are driven by directives supplied via the SI input file. A 
directive consists of a type identifier optionally followed by an AREA selection specification. Each area specifica­
tion consists of an area identifier optionally followed by one or more area-level selection parameters. 

DMSLOAD Directives 

Purpose. To specify the form of the output and to select specific types of page images or specific pages to be 
processed. 

lLOAD) [BEFORE1[DATE ~ mm/dd/yy~mm/dd/yy] 
TAPE AFTER J 
PRINT [TIME =hh:mm~hh:mmJJ 

Usage Rules 

AREA = area-name 

[CIPHKEY = user-cipher-keyJ 

[NEWCKEY = new-user-cipher-keyJ 

[INVUPD] 

[RANGE = (r
l
, r2)[, (r

3
, r

4
)J ••• J 

1. Each selection parameter must be separated from the next by at least one space (many spaces are the same 
as one space). A period is required to terminate a directive. Spaces may precede or follow an equals 
sign, a comma, a left or a right parenthesis, or a period. 

Each directive must begin on a new input line (record). 

2. LOAD - Reloads all or selected parts of an existing database from a sequential file on magnetic tape, RAD, 
or disk. 

3. TAPE - Recreates a sequential file on another magnetic tape, RAD, or disk with its selected output. 

4. PRINT - Displays all or parts of the database from a DMS dump tape or journal tape to the printer or 
terminal. 

5. BEFORE or AFTER - Specifies that only the before or after page images are to be selected from the input 
file. If not specified, both types of page images are selected. 

6. DATE and TIME are used to select pages from the input file. When a single date is given, only pages for 
that date are selected. When two dates are given, an inclusive range is defined and all input pages within 
that range are selected. Also, the first date must chronologically precede the second. The time param­
eter is a logical extension of the date parameter and is used in the same manner. If both are used for a 
given directive, the first time value is assumed to be the time for the first date and the second time value 
for the second date. 

58 Load Processor (DMS LOAD) 



7. AREA - Allows user to specify the area he intends to process. If AREA is not suppl ied by the user, none of 
the following area·-Ievel selection parameters should appear, and all areas of the dotabase will be pro­
cessed. (Area-name is the name of an existing area to be processed. ) 

B. CIPHKEY - Specifies that deciphering is required in order to produce the requested print report in PRINT 
option or that an area of the database in LOAD option is to be reciphered. 

9. NEWCKEY - Specifies that the area defined in the area identifier will be reciphered using a new cipher 
key. NEWCKEY can only be specified when LOAD directive is selected. (New-user-cipher-key is a 
one- to four-character string that will be used as a new cipher key to recipher the area specified.) 

10. INVUPD - Has meclning only when used with the LOAD directive. When INVUPD is specified, DMSLOAD 
updates the inventory pages of the area specified with the space available as defined by each page re­
stored. When INVUPD is not specified, it is assumed either that the inventory pages were restored from the 
tape file by a directive that included the inventory pages or that it is not necessary to update the inventory. 

11. RANGE - Selects one or more page ranges within the specified area to be processed. Must be the last pa­
ramater spec i fi ed for an area. 

Summary Statistics Processor (DMSSUMS) 

DMSSUMS outputs in print format the total contents of the statistics fi Ie generated by the DBM or selected counts 
from that file. The user rna)" select area counts, group counts, or set counts for all or specified area, groups, and 
sets by means of statistics selection specifications input to DMSSUMS. A valid schema must also be input. 

The output from DMSSUMS is in the form shown in Figure 11. The information is output in the order in which it 
occurs in the statistics file. DMSSUMS error messages are shown in Table F-B, Appendix F. Statistics File format 
is shown in Appendix E. The statistics file is not modified or deleted by DMSSUMS, it may be extended in subse­
quent jobs (see "DBM Operational Interface", Chapter 4) or it may be deleted. 

OMSSUMS HERE 

OMS SUMMARY STATISTICS 
CeLLECTED DURING Je8·000D~ 12/20112 13;50 

AREA.STATISTICS #GRt>UP #GReUp IIIGR6Up _PAGE ePEN~MBOE 

ACCESSES INSERTI8t1iS DEL.ETleNS ACCESSES 

AREA. A 216 27 7 118 UPOATE 

GRBUp.Sr A "!' 1 S Tl CS #GROUP #GReUp fitGRBUP 
ACCESSES INSERTI6NS OEL.ETlBNS 

GRBUP.,A 95 10 2 

SET.STATISTICS FINDN FINDP Ht:AD+Fl NOM 
CALLS CALLoS CAL.LS 

SET .. A 50 10 

GRBUP·STATISTICS #GRBUP #GRtiUP #GRBUP 
ACCESSES lNSERTIBNS DELETleNS 

GRBUp·a 20 

Figure 11. DMSSUMS Sample Output 

Summary Statistics Processor (DMSSUMS) 59 



Statistics Selection 

Purpose. To designate the areas, groups, and sets for which statistics are to be printed. 

Format 

[AREA = {c;:~~-name [, area-name-2] ... }] ..• 

[G RO UP = {~~~p-name- 1 [, group-name-2] ..• }] 

[
SET = {set-name-l [, set-name-2] ... }] ..•• 
- ALL 

Usage Rules 

1. The AREA, GROUP, and SET clauses may be input in any order and may span as many input lines as neces­
sary. The period is required to terminate the input. ALL may be specified only once each for AREA, 
GROUP, and SET. 

2. At least one space is required preceding the words AREA, GROUP, and SET, and many spaces are the same 
as one except that a complete line of spaces is treated as an end-of-file. Spaces may precede or follow 
the equals sign, the comma, and the period. 

3. AREA indicates that statistics for the designated areas are to be printed. Thearea-namesmustbeintheschema. 

4. GROUP indicates that the statistics for the designated groups are to be printed. The group-names must be 
in the schema. 

5. SET indicates that the statistics for the designated sets are to be printed. The set-names must be in the schema. 

Utilities Operational Interface 

All DMS utilities may be operated in batch mode or from a terminal in C P-V. All four prompt with a > character and 
treat a I ine-feed or carriage-return in response to the first prompt as an end-of-file on the input. Input directives 
and selections are read through the M:SI DCB and print output and error messages are written through M: LO. 

DMSINIT 

DMSINIT requires file assignments for the schema that describes the areas to be initialized and for the areas them­
selves. It uses the DCB F:SCHE for the schema and F:DBnn (where nn is any two-digit combination between 01 and 
64) for the areas. Any DBnn can be used for any area. If an area is to be updated or dumped by a job run in an 
account other than the one in which DMSINIT is run, WRITE account should be specified in the area assignment. 

Typical Deck Setup Examples (DMSINIT) 

1. Initialize all areas of a database: 

JASSIGN F:SCHE, (FILE, SCHEMA) 
!ASSIGN F:DB01,(FILE,AREA 1) 
IASSIG N F: DB02, (FILE,AREA2) 
IASSIGN F: DB03, (FILE,AREA3) 
IDMSINIT 

No input is supplied because the database contains three areas, all of which are to be initialized. 

2. Initialize selected areas of a database: 

IASSIG N F:SCHE, (FILE, SCHEMA) 
IASSIGN F:DB01,(FILE,AREA 1) 
IASSIGN F: DB03, (FILE,AREA3) 
IDMSINIT 

AREA = AREA3,AREA 1. 
IEOD 

60 Uti! ities Operational Interface 



3. Reinitialize a portion of an existing area: 

lASSIGN F:SCHE, (FILE, SCHEMA) 
IASSIGN F:DB01, (FILE, AREA3) 
IDMSINIT 
AREA = AREA:3 RANGE = (3,8), (16,20), (51,60). 

,lEaD 

The result from the (lbove setup is that pages 3 through 8, 16 through 20, and 51 through 60 of AREA3 
are reinitialized. 

DMSDUMP 

The user must supply !ASSIGN card~ for the following files used by the Dump processor: 

Database schema fj Ie (F:SCHE). 

Output dump sequential file (required only when Dump directive is used (F:DUMP). 

Each area to be processed (F:DBnn). 

Typical Deck Setup Examples_ (DMSDUMP) 

1. Dump all areas of the database to a sequential file: 

IASSIGN F:SCHE, (FILE, SCHEMA) 
lASSIGN F:DUMP, (LABEL, DUMPDB), (SAVE),; 
! (SN, 1234) 
!ASSIGN F:DB01, (FILE, AREA-l) 
!ASSIGN F:DB02, (FILE, AREA-2) 
!ASSIGN F:DB03, (FILE, AREA-3) 
!DMSDUMP 
DUMP 

lEaD 

The above setup is to dump the database with three areas (AREA-l, AREA-2, and AREA-3) to a sequential 
fj Ie (DUMPDB) on a labeled tape (S N, 1234). . 

2. Dump a portion of al1l area of the database to a s,equential fi Ie: 

IASSIGN F:DUMP, (LABEL, DUMP DB), (SAVE),; 
I (SN,1234) 
IASSIGN F:DB01, (FILE, AREA-3) 
lASSIGN F:SCHE, (FILE, SCHEMA) 
IDMSDUMP 
DUMP AREA = AREA-3 

RAt'-lGE = (51,80). 
lEaD 

The above shows that- the contents of pages 51 through 80 of AREA-3 are dumped to a sequential fi Ie on a 
labeled tape. 

3. Output on printer a portion of an area: 

lASSIGN F:DB01, (FILE, AREA-2) 
IASSIGN F:SCHE, (FILE, SCHEMA) 
IDMSDUMP 
PASSWORD = 'TEST3001 ' 
PRINT 
AREA=AREA-2 GROUP=16,30, 101,298 . 

lEaD 

Uti lities Operational Interface 61 



The result from the above setup is to have all occurrences of group 16, 30, 101, and 298 of AREA-2 
printed on printer output. Note that occurrences of groups whose access codes are not authorized by the 
password wi /I not be printed and zeros wi /I be printed instead of the values of items not authorized. 

DMSLOAD 

The user must supply !ASSIGN cards for the following files used by the Database Restore processor: 

Input journal or dump file (F:LOAD). 

Database schema fi Ie (F:SCHE). 

Depending on output functions specified, !ASSIGN cards are required for the following: 

Each area (file) of DMS database (F:DBnn). 

Output dump tape file (F:DUMP). 

Typical Deck Setup Examples (DMSLOAD) 

1. Restore database from a dump tape: 

!ASSIGN F:LOAD, (LABEL, DMSDP), (SN, 1234) 
IASSIGN F:SCHE, (FILE, DMSCHEMA) 
IASSIGN F:DB01, (FILE, AREA-A) 
!ASSIGN F:DB02, (FILE, AREA-B) 
IASSIGN F:DB03, (FILE, AREA-C) 
!DMSLOAD 
LOAD. 

IEOD 

The above setup is to restore from labeled tape # 1234. Before doing so, user must be sure that AREA-A, 
AREA-B, and AREA-C exist in the database. (For a nonexisting area, user should initialize one and then 
use DMSLOAD to restore it.) 

2. Display a portion of the database on printer: 

!ASSIGN F:SCHE, (FILE, DMSCHEMA) 
IASSIGN F: LOAD, (LABEL, DMSDP), (SN, 1234) 
!DMSLOAD 
PRINT 
AREA=AREA-B CIPHKEY='BUG' 

RANGE=(2, 5). 

This setup wi II print pages 2 through 5 of AREA-B from a journal fi Ie or dump fi Ie. 

3. . Recover an area using BEFORE images from a journal tape. 

!ASSIGN F:SCHE, (FILE, DMSCHEMA) 
!ASSIGN F: LOAD, (LABE L, JOURNAL), (SN, 1234) 
!ASSIGN F:DB01, (FILE, AREA-A) 
JDMSLOAD 
LOAD BEFORE AREA=AREA-A. 

IEOD 

The above setup enables a user to recover AREA-A to its condition prior to the creation of the journal tape. 

4. Recipher an area: 

IASSIGN F:SCHE, (FILE, DMSCHEMA) 
!ASSIGN F:DB01, (FILE, AREA-C) 

62 Utilities Operational Interface 



!ASSIGN F:lOAD, (LABEL, DMSCHEMA), (SN, 1234) 
!DMSLOAD 
LOAD 
C IPH KEY=,' BU G' 

!EOD 

AREA=AREA-C 
NEWCKEY='DOGS'. 

This setup changes the cipher-key associated with the area from 'BUG' to 'DOGS'. 

DMSSUMS 

The user must supply !ASSIGN cards for the following files processed by the summary statistics processor: 

The statistics file output by the DBM (F:STAT). 

The schema fi Ie for thE~ database (F:SCHE). 

Typical Deck Setup Exampl~ (DMSSUMS) 

lASSIGN F:SCHE, (FI L.E, DMSSCHEMA) 
lASSIGN F:STAT, (LAHEL,SUMSTAT), (SN,5678) 
!DMSSUMS 
AREA=AlL GROUP=GROUP-l, GROUP-2, GROUP-3 SET=ALl. 

This setup causes all area statistics, all set statistics, and the statistics for GROUP-l and GROUP-2 to be printed 
from a statisti cs fi Ie on labElled tape. 

Uti lities Operational Interface 63 





APPENDIX A. SCHEMA FILE 

The schema fi Ie is itself an EDMS database of only one area. The "data" in this database is information about the 
user database that is defined by the schema DDL. The user's database is defined in the schema in terms of its a~ea, 
group, item, and set compc1nents. The schema also contains the subschema names of all subschemas that have been 
generated using the schema. (Subschema information does not exist in the schema when it is initially created.) 
Figure A-1 illustrates the schema database relationships. The groups and sets are explained below. Table A-1 con-: 
tains explanations of the items. Figure A-2 shows the schema Data Definition Language used to define the schema 
database. 

There is only one occurrence of the group SCHEMAHD. It is stored on page 1, line 1 of the file and is the basic 
entry point to the schema d(ltabase. 

Linked to the SCHEMAHD occurrence are 

1. One occurrence of the ASOWNER group for each set defined in the user's database (schema database 
set W). 

2. One occurrence of the PASSWORD group for each password defined for the user's database (schema set A). 

3. One occurrence of the SSCHEM group for each subschema defined (set B). These occurrences are added 
by the FDP when subschemas are generated. 

4. One occurrence of AREAGP group for each area in the user's database (set C). 

If an area contains an indexed-sequential group, its AREAGP occurrence has associated INDX group occurrences 
describing the several significant page ranges in the area (set F). The significant page ranges are the range speci­
fied for the indexed group,rhe overflow range, and the range of pages used for each level of indexing. 

An AREAGP occurrence also serves as an entry point (through set E) to information on all the groups in the area, in­
cluding information on the Sl::Jts of which the groups are defined as owners and members. 

, The UNIT group occurrences contain the basic information on user's groups (size, location mode, etc.). Linked to 
each UNIT group occurrence (through set H) is one occurrence of the ELEMENT group for each item defined for the 
group. Also I inked to each UNIT group is an occurrence of the ASOWNER group for each set of which the referent 
grQup is an owner (set J), and an occurrence of the ASMEMBER group for each set of which the reference group is a 
member (set I). 

Each ASMEMBER occurrence is linked (set M) to an ASOWNER occurrence for the referent set. (An ASMEMBER 
and an ASOWNER occurrenc:e that are linked together are, of course, linked to separate UNIT occurrences.) An 
ASMEMBER occurrence may be linked to one or more ASCONTROL group occurrences through set N. The ASCON­
TROL occurrences associate an ASMEMBER occurrence with the ELEMENT occurrence(s) that describe the item(s) de­
fi ned as sort keys for the set., 

An ASMEMBER occurrence may be associated indirectly with an ELEMENT occurrence by means of an ALIAS group 
occurrence using sets 0 and U. Each UNIT group occurrence is linked to one or more GROUPRET group occurrences 
(set G) and may be linked to one GSTATS group occurrence. 

There is an occurrence of a NAMEGP group for each item, group, or set defined for the user's database. There is 
also a NAMEGP occurrence for each alias name specified. Each NAMEGP occurrence is linked to SNAMLlNK, 
INAMLINK, GNAMLINK, cmd/or ALIAS occurrence. 

Appendi x A 65 



w 

R 

SCHEMAHD 

A 
,~ 

PASSWORD 

ASOWNER 

I 
T 

,J 

SSTATS 

I 

I 

o 

M 

,r .r 

ALIAS 

! 
~ SNAMLINK 

66 Appendix A 

c 

B 

SSCHEM AREAGP F 

E INDX 

J 

5 UNIT G 

GSTATS H I 
Q 

GROUPRET 

'J 

ELEMENT 

ASMEMBER ~ 
L 

U 
N 

P 

ASCNTROL -- K 

I CHECK1 CHECK2 

PICTURE 

NAMEGP 

v 
.... 

D 

, 

INAMLINK 

GNAMLINK ....... 1-----' 

Figure A-l. Schema Database Diagram 



Group 

(1) AREAGP 

(2) UNIT 

Item 

NAMESIZE 

AR.EANAME 

AREANO 

INVPERCT 

NBROFLIN 

CHECKSUM 

FILPERCT 

JOURNAL 

ENCIPHER 

INDEXED 

AOWNER 

AREAFIll 

DATAPGES 

PAGESIZE 

KEYSIZE 

RETUSERS 

UPDUSERS 

PAGEIO 

GRPSACSD 

G RPSINSD 

GRPSDLTD 

AREAF1L2 

GROUPNO 

LOCATMOD 

INVTITEM 

GRPRLOCK 

GRPULOCK 

STRGESET 

SECINDEX 

NUMKEYS 

DEFRGE 

G RPFILL 1 

G RPSIZE 

BEGPGRGE } 
ENOPGRGE 

PRIMVALU 

GRIPFIL2 

Table A-1. Schema Items 

Explanation 

Number of characters in area name. 

User-supplied name. 

User-assigned number. 

Inventory percent assigned by user- 50% minimum. 

Lines per data page: 1 implies 16, 2 implies 32, 3 implies 64, 
4 implies 128, 5 implies 256. 

0- no checksum on data pages; 1 - checksum. 

Percentage of page DBM is to use when area is created. 

0- no journal; 1 - journal. 

0- do not cipher data pages; 1 - cipher pages. 

0- area not indexed; 1 - area indexed. 

o - area not owner of any sets; 1 - area owns sets. 

Unused. 

Number of data pages. 

Number of words per data page (currently fixed at 512). 

Size of indexed key in bytes if area is indexed. 

Number of retrieve users. 

Number of update users. 

Number of physical page I/Os. 

Number of groups accessed. 

Number of groups inserted. 

Number of groups deleted. 

Unused. 

User-suppl ied number. 

Location Mode: 1 for direct; 2 for indexed; 3 for cal c; 
4 for caJcdup; 5 for via. 

o - no inverted items in group; 1 - inverted items. 

User-suppl ied retrieve lock (maximum value = 255). 

User-supplied update lock (maximum value = 255). 

0- no storage set; 1 - storage set specified. 

0- not secondary index; 1 - group is secondary index. 

Number of calc, index of sort key items (0-7). 

0- user supplied page range; 1 - default. 

Unused. 

Size of group in bytes. 

Page range for group. 

Prime number for hash of calc groups. 

Unused. 

Appendix A 67 



Group 

(3) ASOWNER 

(4) ASMEMBER 

(5) ELEMENT 

68 Appendix A 

Item 

SETFILL 1 

SETNO 

OPSTNEXT 

OPSTNPRI 

SETFILL2 

ORDER 

GRPNOKY 

DUPSIND 

OPTIONAL 

AUTOMANL 

PRIMARY 

STORAG 

SELOWNER 

OWNERNO 

MEMBFIL 1 

MPSTNEXT 

MPSTNPRI 

PSTNHEAD 

MEMBFIL2 

ITEMTYPE 

LEVELNBR 

OCCURCNT 

ITMRLOCK 

ITMULOCK 

INVTDNO 

DATAVLID 

CONTROL 

DEFPIC 

ITEMFIL 1 

ITEMPSTN 

ITEMSIZE 

ITEMFIL2 

ITEMFIL3 

ITEMFIL4 

Table A-l. Schema Items (cont.) 

Explanation 

Unused. 

Sequential number for set. 

Relative byte position of set NEXT pointer. 

Relative byte position of set PRIOR pointer. 

Unused. 

0- impl ies last; 1 - prior; 4 - sorted; 8 - first; 9 - next. 

Group number as sort key; 0 impl ies not appl i cable; 1 - ignore; 
2 - major; 3 - minor. 

Duplicates indicated: 0 implies not allowed; 1 - first; 2 - last. 

o for membership not optional; 1 - membership is optional. 

o for membership is automatic; 1 - membership is manual. 

0- not primary set for group; 1 - set is primary. 

0- not storage set for group; 1 - set is storage set. 

0- owner selection is unique; 1 - owner selection is current. 

Unused. 

Unused. 

Relative byte position of set NEXT pointer. 

Relative byte position of set PRIO R pointer. 

Relative byte position of set HEAD pointer. 

Unused. 

0- signed numeric; 1 - alphanumeric; 2 - numeric; 3 - alphabetic; 
4 - binary; 5 - floating-point short; 6 - floating-point long; 
7 - packed decimal. 

Will not be used in the current FDP. 

Number of occurrences of this item. 

User-supplied retrieve lock (maximum value = 255). 

User-supplied update lock (maximum value = 255). 

Number of secondary index group. 

Data val idation type: 0 implies none; 1 - picture; 2 - range; 
3 - both. 

0- item not cal c or index control; 1 - item is control. 

1 - Defaults picture supplied for packed decimal item. 

Unused. 

Relative byte position of item in group. 

Size of item in bytes. 

Unused. 

Unused. 

Unused. 



Group 

(6) ASCNTROL 

(7) SCHEMAHD 

(8) PASSWORD 

(9) SSCHEM 

Item 

MATCHIND 

CTRLTYPE 

CTRLFIL1 

COPYPSWD 

AL.TRPSWD 

PTRSIZE 

SCHFIL 1 

SCHDATIM 

SCHESIZE 

NUMPSWDS 

NUMOWNRS 

NUMMBRS 

PASSWORD 

RETKEYS 

UPDKEYS 

SUBSNAME 

ACCTNBR 

SUBDATE 

SUBSTIME 

Table A-l. Schema Items (cont.) 

Explanation 

Type of sorf match: 0 for equal; 1 for range. 

Sequence Control Type: 1 for ascending; 2 for descending. 

Unused. 

EXTRACT privacy lock. 

ALTER privacy lock (not currently used). 

Size of set pointers in bytes. 

Unused. 

Date and time when schema was created. 

Size of schema in pages. 

Count of password groups. 

Count of ASOWNER groups. 

Count of ASMEMBER groups. 

User-supplied database access password. 

Retrieve keys for this password - one bit for each value up to 255. 

Update keys for this password - one bit for each value up to 255. 

Subschema name. 

Account number under which subschema was created. 

Date created (halfword binary year and halfword binary jul ian 
day). 

Time created: byte 0 = hour (O-23); byte 1 = minutes (O-59); 
byte 2 = second (O-59); byte 3 = hundredths of a second (O-99). 

~---------------r-------------~------------------------------------------~---------4 

(lO) INDX 

(11) PICTURE 

(12) CHECKl 

BEGPGNBR } 
ENDPGNBR 

DEFNTYPE 

INDXLEVl 

INDXFIL1 

PICTCNT 

ITEMPICT 

SCALE 

PICFIL 1 

LOWLITl} 
HILITl 

CK IFIll 

Beginning and ending page numbers which together define an INDX 
overflow range or index level. 

Type of definition: 0 for overflow range; 1 for index level. 

Index level number (O implies indexed data group page range). 

Unused. 

Number of characters in picture. 

User-supplied picture for item 

Scal ing factor for pi cture. 

Unused. 

Low and high literals for data validation (CHECK clause) of binary 
and floating-point short items. 

Unused. 

Append i x A 69 



Group 

(13) CHECK2 

(14) ALIAS 

(15) G ROUPRET 

(16) NAMEGP 

(17) INAMLINK 

(18) GNAMLINK 

(19) SNAMLINK 

(20) GSTATS 

Item 

LOWLIT2 } 
HILIT2 

CK2FILl 

(No items) 

DATNAME 

RTVLTYPE 

G RFILL 1 

NAMEVALU 

PRIMNAME 

NAMETYPE 

DUPNAME 

NAMFILl 

(No items) 

(No items) 

(No items) 

NBRACSD 

NBRINSD 

NBRDLTD 

Table A-l. Schema Items (cont.) 

Explanation 

Low and high I iterals for data val idation (CHECK clause) of 
floating-point long, packed decimal, and EBCDIC items. Floating­
point long literals will be in the first two words of each item. 
Packed decimal will always be 16 bytes. EBCDIC I iterals will 
be left-justified in each item. 

Unused. 

Name of retrieval item or set, or sort key. 

Retrieval type: 1 impl ies index name; 2 - cal c item name; 
3 - via setname; 4 - storage setname; 5 - sort key name. 

Unused. 

User-suppl ied name for set, group or item. 

Not used in current version. 

1 implies setname; 2 - group name; 3 - item name; 0 - none. 

o if no other item in schema has this name; 1 - duplicates exist. 

Unused. 

(Reserved for future implementation.) 

Number of group occurrences accessed. 

Number of group occurrences inserted. 

Number of group occurrences deleted. 

~---------------+-------------r---------------------------------.--------~--------~ 

(21) SSTATS 

70 Appendix A 

HEADACCS 

NEXTACCS 

PRlRACCS 

(Reserved for future implementation.) 

Number of head accesses through this set. 

Number of next accesses through this set. 

Number of prior accesses through this set. 



SCHEl1A IS SCHEMASCHEMA. 

AREA IS SCHEBASE CONTAINS 1 PAGES 
NUMBER IS 1 

1 ENCIPHERING IS NOT REQUIRED 
CHECKSUM IS REQUIRED 
JOURNAL IS NOT REQUIRED 

GROUP IS AREAGP 
WITHIN SCHEBASE 

1 LOCATION MODE IS CALC USING AREANAME DUPLICATES NOT ALLOWED 
1 NUMBER IS 1 

NAME:SIZE, PIC X. 
AREANAME7 PIC X(30). 
AREANO , PIC X. 
INVPERCT7 PIC 99. 
NBROFLIN, PIC 9. 
CHEC'.KSUM7 PIC 9. 
FILPERCT, PIC 99. 
JOURNAL 1 PIC 9. 
ENCIPHER, PIC 9. 
INDEXIND 1 P:IC 9. 
AOWNER, PIC 9. 
AREAFIL11 TYPE IS BINARY. 
DATAPGES, TYPE IS BINARY. 
PAGESIZE, TYPE IS BINARY. 
KEYSIZE, TYPE IS BINARY. 
RETUSERS, TYPE IS BINARY. 
UPDUSERS, TYPE IS BINARY. 
PAGEIO 7 TYPE IS BINARY. 
GRPSACSD, TYPE IS BINARY. 
GRPSINSD, TYPE IS BINARY. 
GRPSDLTD, TYPE IS BINARY. 
AREAFIL27 TYPE IS BINARY. 

GROUP IS UNIT 
1 WITHIN SCHEB.l\SE 
, LOCATION MODI;: IS CALC USING (:;ROUPNO DUPLICATES NOT ALLOWED 
1 NUMBER IS 2 

GROUPNO, PIC 9(4). 
LOCATMOD, PIC 9. 
INVTI'l'EMJ PIC 9. 
GRPRLOCK: PIC 999. 
GRPULOCK, PIC 999. 
STRGESET, PIC 9. 
SECINDEX, PIC 9. 
NUMKEYS, PIC X .. 
DEFRGE, PIC 9. 
GRPF IL 11 TYPE :rs BINARY. 
GRPSIZE, TYPE IS BINARY. 
BEGPGRGE, Typ:re IS BINARY. 
ENDPGRGE, TYPlS IS BINARY. 
PRIMVALU, TYPl&: IS BINARY. 
GRPFIL2, TYPE IS BINARY. 

GROUP IS ASOWNER 
WITHIN SCHEBME 
LOCATION MODE IS VIA OWNERSET 
NUMBER IS 3 

Figure A-2. Schema DDL for Schema 

Appendix A 71 



SETFILL1, TYPE IS BINARY. 
SETNO; PIC 9(4). 
OPSTNEXT, TYPE IS BINARY. 
OPSTNPRI, TYPE IS BINARY. 
SETFILL2, TYPE IS BINARY. 

GROUP IS ASl1Et-ffiER 
WITHIN SCHEBASE 
LOCATION MODE IS VIA r·"ErAnRSET 
NUMBER IS 4 

ORDER; PIC 9. 
GRPNOKY, PIC 9. 
DUPSIND; PIC 9. 
OPTIONAL; PIC 9. 
AUTOr-1ANL; PIC 9. 
PRIt1ARY; PIC 9. 
STORAG; PIC 9. 
SELOWNER; PIC 9. 
OWNRNO; PIC 9(4). 
r.mMBFIL 1; TYPE IS BINARY. 
MPSTNEXTi TYPE IS BINARY. 
MPSTNPRI; TYPE IS BINARY. 
PSTNHEAD; TYPE IS BINARY. 
MEMBFIL2; TYPE IS BINARY. 

GROUP IS ELElt"ENT 
WITHIN SCHEBASE 
LOCATION HODE IS VIA ITEr·1SET 
Nur-mER IS 5 

ITEl1TYPE; PIC 9. 
LEVELNBR; PIC 999. 
OCCURCNTI PIC 999. 
ITMRLOCK; PIC 999. 
ITMULOCK; PIC 999. 
INVTDNO; PIC 999. 
DATAVLIDi PIC 9. 
CONTROL; PIC 9. 
DEFPIC, PIC 9. 
ITEMFIL1; TYPE IS BINARY. 
ITEMPSTN; TYPE IS BINARY. 
ITEMSIZE; TYPE IS BINARY. 
ITEMFIL2; TYPE IS BINARY. 
ITEMFIL3; TYPE IS BINARY. 
ITEMFIL41 TYPE IB BINARY. 

GROUP IS ASCNTROL 
WITHIN SCHEBASE 
LOCATION MODE IS VIA CTRLSET 
Nur-mER IS 6 

l-tATCHIND; PIC 9. 
CTRLTYPE; PIC 9. 
CTRLFIL1, PIC 99. 

GROUP IS SCHEr-mHD 
WITHIN SCHEBASE, RAN~E IS PAGE 1 THRU PA~E 1 
LOCATION MODE IS DIRECT 
NUMBER IS 7. 

Figure A-2. Schema DDL for Schema (cant.) 

72 Appendix A 



COPYPSWD; PIC XeS). 
ALTRPSWD; PIC XeS). 
PTRSIZE; PIC 9. 
SCHFIL1; PIC XXX. 
SCHDATIM; PIC X(20). 
SCHESIZE; TYPE IS BINARY. 
NUMPSWDS; TYPE IS BINARY. 
NUMOWNRS; TYPE IS BIf-.1ARY. 
NUMl-1BRS 1 TYPE: IS BINARY. 

GROUP IS PASSWORtI 
WITHIN SCHE:SASE 
LOCATION MODE IS VIA PASSWSET 
NUMBER IS S: 

PASSWRD; PIC xeS). 
RETKEYS; PIC X(32). 
UPI>KEYS; PIC X(32). 

GROUP 1:S SSCHEM 
WITHIN SCHEBASE 
I~OCATION MODE IS VIA SSCHf.>TSET 
NUMBER IS 9 

SUBSNAJffi; PIC X(30) • 
ACCTNBR; PIC X(S). 
SUBSDATE; TYPE IS BINARY. 
SUBSTIME; TYPE IS BINARY. 

GROUP IS INDX 
~TI THIN SCHEHASE 
I.OCATION MODE IS VIA INDEX~F.T 

NUMBER IS 10 

BEGPGNBR; TYP:~ IS BINARY. 
ENOPGNBR, TYP:~ IS BINARY. 
DEFNTYPE; PIC 9. 
INOXLEVL; PIC 9. 
INDXFIL1; PIC 99. 

GROUP IS PICTURE 
WITHIN SCHEBASE 
LOCATION MO])E IS VIA DESCPSET 
NUMBER IS 1 '1 

PICTCNT; PIC X. 
ITEMPICT; PIC X(30). 
SCALE; PIC X. 
PICFILL1; TYP1~ IS BINARY. 

GROUP IS CHECK1 
WITHIN SCHEBASE 
LOCATION MODE IS VIA DESCPSET 
Nur-mER IS 12 

LOWLIT1; TYPE IS BINARY. 
HILIT1; TYPE 1.S BINARY. 
CK1FIL1; TYPE IS BINARY. 

Figure A-2. Schema DDL for Schema (cont.) 

Appendix A 73 



GROUP IS CHECK2 
WITHIN SCHEBASE 
LOCATION MODE IS VIA DESCPS~T 
NUMBER IS 13 

LOWLIT2: PIC X(16). 
HILIT2: PIC X(16). 
CK2FIL1, TYPE IS BINARY. 

GROUP IS ALIAS 
WITHIN SCHEBASE 
LOCATION MODE IS VIA ALIASSET 
NUMBER IS 14 

GROUP IS GROUPRET 
WITHIN SCHEBASE 
LOCATION MODE IS VIA GRPRET 
NUMBER IS 15 

DATNAME, PIC X(30). 
RTVLTYPE, PIC 9. 
GRFILL1: PIC 9. 

GROUP IS NAMEGP 
WITHIN SCHEBASE 
LOCATION MODE IS CALC USING NAlmVALU DUPLICATES NOT ALLOt-lED 
NUMBER IS 16 

NAMEVALU, PIC X(30). 
PRIMNAME: PIC 9. 
NAMETYPE: PIC 9. 
DUPNAME, PIC 9. 
NAMFIL1, PIC 9(3). 

GROUP IS INAMLINK 
WITHIN SCHEBASE 
LOCATION MODE IS VIA INAMBSET 
NUMBER IS 17 

GROUP IS GNAMLINK 
WITHIN SCHEBASE 
LOCATION MODE IS VIA GNAMESET 
NUMBER IS 18 

GROUP IS SNAMLINK 
WITHIN SCHEBASE 
LOCATION MODE IS VIA SNAMESET 
NUMBER IS -19 

GROUP IS GSTATS 
WITHIN SCHEBASE 
LOCATION t~ODE IS VIA GSTATSET 
NUMBER IS 20 

NBRAcsn, TYPE IS BINARY. 
NBRINSD: TYPE IS BINARY. 
NBRDLTD: ~lPE IS BINARY. 

Figure A-2. Schema DDL for Schema (cont.) 

74 Appendix A 



GROUP IS SSTATS 
WITHIN SCHli:BASE 

/* 

; LOCATION MODE IS VIA SSTATSF.T 
; NUMBER IS 21 

HEADACCS; TYPE IS BIN,ARY. 
NEXTACCS, TYPE IS BINARY. 
PRlRACCS, TYPE IS BINARY. 

SET S 
*/ 

SET IS PASSWSET 
; OWNER IS SCHEMAHD 
; ORDER IS SORTED 

MEMBER IS PASSWORD 
INCLUSION IS AUTOMATIC 

; SELECTION IS CURPENT 
; ASCENDING KEY IS PASSWRD DUPLICATES NOT ALLOWED 

SET IS SSCHMSET 
7 OWNER IS SCHEl1AHD 
; ORDER IS SORTED 

l1EMBER IS SSCHEM 
7 IUCLUSION IS AUTOMATIC 
7 SELECTION IS CURRENT 
; ASCENDING KEY IS SUBSNA~~ DUPLICATES NOT ALLOWED 

SET IS AREASET 
; OWNER IS SCHEMAHD 
; ORDER IS LAST 

MEMBER IS AREJ\GP 
; INCLUSION IS AUTOr-tATIC 
; SELECT,ION IS CURRENT 

SET IS NAMESET 
; OWNER IS Nru~GP 
; ORDER IS FIRST 

MEMBER IS INAMLINK 
INCLUS:rON IS AUT0l4ATIC 
SELECT:rON IS CURRENT 
LINKED '1'0 a-nTER 

Figure A-2. Schema DDL for Schema (cont.) 

Appendix A 75 



ME~!BER IS GNAMLINK 
INCLUSION IS AUTO~U\TIC 

1 SELECTION IS CURRENT 
: LINKED TO OWNER 

MEl'mE R IS SNAMLINI< 
INCLUSION IS AUTOHi\TIC 

; SELECTION IS CURRENT 
; LINKED TO m-mER 

SET IS GROUPC 
; OWNER IS AREAGP 
1 ORDER IS LAST 

r1Er~BER IS UNIT 
INCLUSION IS AUTO~1P.TIC 

1 SELECTION IS CURRENT 
; LINKED TO OWNER 

SET IS INDEXSET 
; OWNER IS AREAGP 
; ORDER IS LAST 

HEHBER IS INDX 
INCLUSION IS AUTo~mTIC 
SELECTION IS CURRENT 

SET IS GRPRET 
1 OWNER IS UUIT 
; ORDER IS LAST 

MEfvT..BER IS GROUPRET 
INCLUSION IS AUTor1ATIC 
SELECTION IS CURF.F.UT 

SET IS lTEMSET 
, OWNER IS UNIT 
: ORDER IS LAST 

l'1El-IDER IS ELEHENT 
INCLUSION IS AUTor"ATIC 
SELECTION IS CURRF.NT 
LINKED TO OWNER 

SET IS MEr-mRSET 
1 om~ER IS UNIT 
1 ORDER IS LAST 

ME~.BER IS ASfv1EMBER 
INCLUSION IS AtJTOHATIC 
SELECTION IS CURRENT 
LINKED TO OlmER 

Figure A-2. Schema DDL for Schema (cont.) 

76 Appendix A 



SET IS OWNERSET 
; OWNER IS UNIT 
; ORDER IS I.AST 

MEMBER IS ASOWNER 
; INCLUSION IS AUTOMATIC 
; SELEC~ION IS CURRENT 
; LINKED TO OWNER 

SET I~; DESCPSET 
; OWNER IS ELEMENT 
; ORDER IS LAST 

r-mMBER IS PICTURE 
; INCLUSION IS AUTOr~ATIC 
; SELECTION IS CURRENT . 

MEl-mER IS CHECK1 
; INCLUSIon IS AUTOMATIC 

SELECTION IS CURRENT 

ME:MBER IS CHJ<:CK2 
; INCLUSION IS AUTOMATIC 

SELECTION IS CURRENT 

SET IS MODFYSET 
; OWNER IS ELE~1ENT 
; ORDER IS L.ABT 

MEMBER IS ASCNTROL 
INCLUSION IS AUTO~ATIC 

; SELECTION IS CURRENT 
; LINKEID TO OWNER 

SET IS SETLINK 
; OWNER IS ASOWNER 
; ORDER IS LAST 

MEMBER IS ASMEMBER 
INCLUSION IS At1TOtAATIC 

; SEr.,EC~['ION IS CURRENT 
; LINKED TO ot"lNER 

SET IS CTRLSET 
; OWNER IS ASMEMBER 
; ORDER IS LAST 

r-m,MBER IS ASCNTROL 
, INCLU~;ION IS AUTOMATIC 
; SELECTION IS CURRENT 
; LINKED TO OWNER 

SET IS ALIASSET 
; OWNER IS ASMEMBER 

Figure A-2. Schema DDL for Schema (cont.) 

Appendix A 77 



1 ORDER IS LAST 

MEMBE R I S ALIAS 
INCLUSION IS AUTO~ATIC 

: SELECTION IS CURREt-1T 
: LINKED TO OWNER 

SET IS INAMESET 
1 OWNER IS ELEMENT 
: ORDER IS LAST 

MEMBER IS INAMLINK 
INCLUSION IS AUTOMATIC 

: SELECTION IS CURRENT 
: LINKED TO OWNER 

SET IS GNAHESET 
: OWNER IS UNIT 
: ORDER IS LAST 

MEMBER IS GNAMLINK 
INCLUSION IS AUTOMATIC 

: SELECTION IS CURRENT 
: LINKED TO OWNER 

SET IS SNAMESET 
: OWNER IS ASOWNER 
7 ORDER IS LAST 

MEMBER IS SNAMLINK 
INCLUSION IS AUTO~ATIC 

: SELECTION IS CURRENT 
: LINKED TO OwtTER 

SET IS GSTATSET 
: OWNER IS UNIT 
: ORDER IS FIRST 

HEMBER IS GSTATS 
INCLUSION IS AUTOMATIC 
SELECTION IS CURRENT 

SET IS SSTATSET 
: OWNER IS ASOWNER 
: ORDER IS FIRST 

MEMBER IS SSTATS 
INCLUSION IS AUTOMATIC 
SELECTION IS CURRENT 

Figure A-2. Schema DDL for Schema (cont.) 

78 Appendix A 



SET IS ft1KALTSET 
1 OlmER IS El,EMENT 
7 ORDER IS LAST 

t.1EMBE R I S ALIAS 
INCLUSION IS AUTOMATIC 

7 SELECr.t'IOl-T IS CURRENT 
1 LINKEIl TO OWNER 

SET IS ALNAMSET 
7 OWNER IS NAMEGP 
7 ORDER IS LAST 

11EMBE R IS ALIAS 
INCLUSION IS AUTOMATIC 

1 SELECTION IS CURRENT 
7 LINKEDI TO OWNER 

SET IS HDRSET 

END. 

7 OWNER IS SeHEMAnD 
7 ORDER IS LAST 

HEMBE R IS AS CWNER 
INCLUSION IS AUTOMATIC 
SELECTION IS CURRENT 

Figure A-2. Schema DDL for Schema (cont.) 

Appendix A 79 



APPENDIX B. SUBSCHEMA FILE 

The subschema file contains a control block, a list structure that defines all or a part of a database for the Database 
Manager (DBM) and an optional block of name table entries. Figure B-1 illustrates the relationship among the dif­
ferent categories of data within the list structure used by the DBM. 

The I ist structure contains encoded information on the structure of the database to guide the DBM in its interpretive 
execution of user's procedural accesses to the database. The list structure also contains a layout of the user's work­
ing storage that will exist in every program using this subschema when processing in the database. A complete lay­
out of the list structure is included in Figures B-2 through B-12. Figure B-13 shows the format of the entries in the 
optional name-table. Figure B-14 shows the subschema file directory block format. 

Except for the PASSWORD definition, all the values for LINK NEXT and LINK HEAD in the definitions are offsets 
from the beginning of the subschema, word 0 of the subschema definition. These values are translated to actual core 
locations when the subschema is read into core by the DBM. PASSWORD LINK NEXT in the subschema definition 
refers to a block number of the first block of passwords; PASSWORD LIN K NEXT in the PASSWORD definition is 
nonzero for all but the last defin ition in the password list. 

Subschema links roughly correspond to schema set pointers, though the subschema is not a database. 

Password Link Subschema 
Defini tion 

Area Link 

Password 
Definition 

Area Definition ISEQ Link 

I 
I 
I 
L 

Group Link 

- - - - - - - ----. Group Definition 

- ... Item 

Owner 
Link 

, 
I 

---+ Item Definition Link 

I 
I 
I 
I 
I 
I 

Check 

+ Link 

Check 
Definition 

Modify 
Link 

,r 1r 

Control 
Link 

Control Defi ni tion 

,r 

Member 
Link 

Set Member 
Definition 

Alias Link 

• 
Alias Definition 

... 

L Primary Item Pointer ______ _ 

Figure B-1. Subschema Definition Structure 

80 Appendix B 

.. 

Set Link 

, 

ISEQ Definition 

Set Owner 
Definition 



o 2324 

Word 0 Working Storage Increment 

Number of Data Pages in Area 

2 Area Number Area Link Next 

3 Inventory Percent ISEQ Link Next 

4 Fi II Percent Group Link Next 

5 Size of Index Key in Bytes Page Size in Words 

Words 6 through 13 contain the area name in TEXTC format. 

where 

A = 1 if area has checksums. 

B = size of data-page line numbers in bits (4, 5, 6, 7, or 8). 

C = 1 if data pages ore to be enciphered. 

D = 1 if area is to be journaled. 

Figure B-2. Area Definition 

o 7 8 9 1011121314 1516 2324 

Word 0 X'02' ABCI DEF Working Storage Increment 

Group Number Owner Link Next 

2 Retrieve Lock Member Link Next 

Figure B-3. Group Definition 

31 

31 

Appendix B 81 



0 2324 31 

Word 3 Update Lock Item Link Next 

4 Group Link Next 

5 Group Link Head 

6 Page Range Minimum 

7 Page Range Maximum 

8 Page Range Prime Value 

9 Statistics Working Storage Increment 

Words 6 and 7 are optional and present only if bit D is set. Word 8 is optional and present only if 
bit C is set. Word 9 is optional and present only if bit H is set. 

where 

A = 1 if group is stored relative to a storage set. 

8 = 1 if this is a direct group. 

C = 1 if this is a calc group. 

D = 1 if page range is present. 

E = 1 if group has any inverted items. 

F = 1 if this is an indexed group. 

G = 1 if group cannot be stored because of missing items, sets, or secondary indexes. 

H = 1 if statistics shall be generated for the group. 

I = 1 if group cannot be deleted because of missing sets or secondary indexes. 

t In words. 

Figure 8-3. Group Definition (cont.) 

82 Appendi x 8 



Word 0 

2 

3 

4 

Word 0 

2 

3 

0 2324 

X'03 1 Working Storage Increment 

G roup Number Owner Link Next 

Position Next Owner Link Head 

Position Prior Set Li nk Next 

Set Number Statistics Working Storage 

Word 4 is optional and present only if.bit A is set. 

where 

A = 1 if statistics are to be generated. 

Figure B-4. Owner Definition 

31 

o 02122 25 26 27 829 30 31 

X'04 1 A B E F G H J K L 

Group ~~umber Control Link Next 

Position Next Member Link Next 

~------------~~~oJ--. 

Position Prior Set Link Next 

Figure B-5. Member Definition 

Appendix B 83 



2324 31 

Word 4 Set Li nk Head 

5 Member Link Head 

6 AI ias Link Next 

Word 6 is optional; it is present only if bit N is set and it is used only if bit A is set. 

where 

A = 1 if there are any aliases defined for the set. 

B = 1 if member is optional. 

C = 1 if member is manual. 

D = 1 if PAGESET member. 

E = 01 if group number is major sort key; = 10 if minor. 

F indicates set order: 0000 implies last; 0001 - prior; 0100 - sorted; 1000 - first; 1001 - next; 
0110 - sorted by group number. 

G = 01 implies duplicates first; 10 - duplicates last; 00 - duplicates not allowed. 

H = 1 if CALCSET member. 

J = 1 if selection is current; = 0 if location mode of owner. 

K = 1 if this is storage set for group. 

L = 1 if this is prime retrieval set. 

M = 1 if control items are omitted. 

N = 1 if definition is seven words; = 0 if six words. 

Figure B-.5. Member Definition (cont.) 

84 Appendi x B 



0 

Word 0 X 105 1 A 

Fi Ie Increment 

2 Retrieve Lock Modify Link Next 

3 Update Lock Item Link Next 

4 Item Link Head 

5 Index Head Pointer 

6 Check Link Next 

Word 5 is optional and present only if bit C is set and bit F is reset. Word 6 is 
optional and present only if bit D and/or bit E is set. 

where 

A = 1 if this is control item (calc, index, or sort key on via set). 

B indicates item type: 0 implies signed number; 1 - alphanumeric; 2 - numeric; 
3 - alphabetic; 4 - binary; 5 - floating short; 6 - floating long; 7 - packed. 

c = 1 if item is inverted. 

D = 1 if there is a check on range. 

rE = 1 if there is a check on picture. 

31 

IF = 1 if this is an inverted item (bit C is set) and the secondary index group has been omitted 
(i.e., item cannot be modified). 

G = 1 if item is. a sort key in a set which is omitted (i.e., item cannot be modified). 

Figure B-6. Item Definition 

Appendix B 85 



o 7 8 9 

Word 0 A B 

Control ~ink Next 

2 Modify Link Next 
~.;y.,~~'~~~.;y.,~~~~~.;y.,~l----------------------I 

3 Control Link Head 

4 Modify Link Head 

where 

A is match indicator: 0 if equal; 1 if range. 

B is control type: 0010 implies calc; 0100 - ascending sort; 0110 - descending sort. 

Figure B-7. Control Definition 

o 23 24 31 

Word 0 Password Li nk Next 

Year Created (Binary) julian Day Created (Binary) 

2 Area Link Next 

where 

A = 1 if set pointers are four bytes long (i .e., multiple area database). 

B = 1 if subschema was created using the COMPONENTS ARE ALL option on the subschema entry. 

Figure B-8. Subschema Definition 

86 Appendix B 



Word 0 

2 

Word 0 

2 

3 

where 

0 7~15116 23~4 

X'OB' Password Link Next 

--

Password (First Half) 

Password (Second Half) 

Words 3 through 10 contain the retrieve authority indicators. Words 11 through 1B 
contain the update authority indicators. 

Figure B-9. Password Definition 

31 

o 9 31 

B 

Beginning Page Number 

Ending Page Number 

ISEQ Link Next 

A = 0 if overflow range, = 1 if index level. 

B = index level number, 0 through B. (Note that index level zero actually contains the page 
ra nge of the indexed data group.) 

Figure B-10. Indexed-Sequential (ISEQ) Definition 

Appendi x B 87 



Word 0 

88 Appendi x B 

o 23f4 31 

X'OB ' C~AB Check Link Next 

Words 1 through N contain the check value(s), with N calculated as follows: 

• If check value is a picture, N = 8. The picture is in TEXTC format starting at byte 0 of 
word 1. 

• If check value is a range, N is based on the item type 

Item Type N -
Binary 2 

Floating short 2 

Floating long 4 

Packed 8 

EBCDIC 8 

If the item type is binary or floating short, the low/high values will be in words 1 and 2 and 
the total definition size will be three words. 

If the item type is floating long, the low value will be in words 1 and 2 and the high value 
in words 3 and 4. Total definition size will be five words. 

If the item type is packed decimal, the low/high range values will be in packed format and 
always 16 bytes in length. If item type is EBCDIC, the low/high range values will be left­
justified in a 16-byte field and blank fi lied. In both of these cases, the low value wi II be 
in words 1 through 4, the high value in words 5 through 8, and total definition size will be 
nine words. 

A = 1 if check value is PICTURE. 

B = 1 if check value is RANGE. 

C is definition size code: 0 impl ies three words; 1 - five words; 2 - nine words. 

Figure B-11. Check Defi ni tion 



2324 31 

Word 0 Alias Link Next 

Alias Working Storage Increment 

2 Primary Head Pointer 

Figure B-12. Alias Definition 

o 78 14 15 16 2324 31 

D 
Word 0 We: SCALDISP u CMPN 

P 

Name 

2 Name (cont.) Scale PICTCNT 

3 PICTURE 

WC Word count (zero indicates last entry). 

SCALDISP Byte displ<:scement to scaling factor (zero implies no scaling factor and hence no PICTURE). 

Dup 1 if duplicates exist (i.e., name must be qualified). 

CMPN Subschema increment of component. 

Name DATA NAME with one trailing blank. 

Scale Number of fractional digits (negative value indicates unused integral digits. 

PICTCNT Length of PICTURE (bytes). 

PICTURE Character image of PICTURE. 

Figure B-13. Name Table Entry Format 

Appendix B 89 



o 31 

Word 0 Number of Significant Words (currently == 8) 

Word 1 Block Number of First Subschema Block 

Word 2 Count of Subschema Blocks 

Word 3 Block Number of First Password Block 

Word 4 Count of Password Blocks 

Word 5 Block Number of First Name Table Block 

Word 6 Count of Name Table Blocks 

Word 7 Count of Words in Subschema 

Word 8 Checksum 

Figure B-14. Subschema File Directory Block Format (Blockzero) 

90 Appendix B 



J'PPENDIX C. SAMPL.E DATABASE DEFINITION 

This appendix illustrates (in Figures C-1 through C-7) the various aspects of the database definition function, and 
the operation of DMSFDP. The schema DOL for the sample database pictured in Figure 1 in the text is included, 
and two subschema DOL configurations using the schema are shown. The DMSFDP outputs in each of its two phases 
are shown, including a COpy and a SYSTEM listing. 

1***200*** EXTE~DED O~S rILF DFFrNITIBN PR6CESS~R -_ VERSI6N Aon • 
• 
***210*** EXTE~OF.D DMS SCHFMA DDL. 

1: 1* THE DOL C6NTAINrD IN THIS rILE IS ERR6R FREE. *1 
2: 
3: .. : 
51 
61 
7: 
8' 
9: 

10: 
1U 
12: 
13: 
1<1+: 
115; 
16: 
I'll 
1181 
19: 
20: 
21= 
221 
23: 
21+: 
251 
261 
211 
2U' 
29: 
30r 
3U 
321 
331 
3'i1 
351 
361 
37" 
38' 
3S1' 
401 
411 
421 
43' 
441 
451 
461 
471 

SC~EMA NAME IS SAMPLE SCHEMA, PRIVACY LaCK FAR 
EXTRACT IS 'EXLBCK', PASSWeRD IS 'PASWRD1' 
RETRIEVE KEYS ARE 1.17.25 UPDATE KEY I~ 231.247 
PASSA6RO IS 'PASWRD~' RETRIEvE KEY IS 1 
U~DATE KEYS ARF 56.Q1,76. 

AREA NAME IS AREA-1 CBNTAINS 100 PAGES, NUMRFR IS 1 
Il:\ll/ENTeRY 75 
, CHEC~SUM IS NeT R~QUIREDI J6URNAL IS NaT 
REQUIREDI ENCIPHERING IS NaT REQUIRED. 

AREA '~AI'1E IS AREA-2 C6NTAINS 50 PAGES, NUMBFR 
IS ;~, INVENTORV 
PERCENT IS 50, J6URNAL IS NeT REQUIRED, 

GReUp NAME IS GRBUP.l wITHIN AREA.ll NUMBER rS 
100~ L6CATI6N Me DE IS DIRECT, PRIVACY LACK 
F8R RETRIEVE r~ 11 PRIVACY LBCK FeR UPnATE IS 
231~ STATISTIC~ ARE REQUIRED. 

GROUP NAME IS GReUP.2 wITHIN AREA.1 RANGE I~ 1 THRU 
301 NUMBER IS 2001 L6CATleN MBDE IS VIA 
SET.A SET PRIVACY L8CK reR RETRJEv~ IS 17 
PRIVACY LeCK FRR UPDATE IS 231. 

ITEM_?'11 pICTURE IS A(16)1 TyP£ IS CHARACTER 
PRIvACY LOCK FRR RETRIEVE IS 171 PRIvACY 
Lec~ FeR UPDATF IS 231. 
ITEM·22 TYPE IS eINARY, eccuRS ~. 

TTEM-23, TYPE IS rLRATING LBNG. 

GReUp NAMF IS GRBUP.3 WITHIN AREA.2 L6CATtBN MaDE 
IS C:ALC USING JTEM.32 .DUPL!CATES ARE ALL-aWED' 
NUMSER IS 300, PRIVACY LaCK FeR RETRIEvF 
IS 17 PRIVACY LBCK ~eR UPDATE IS 2-'. 

ITEM.3t PICTURE rs X(31) 6CCURS 4 TIMES. 
ITEM-321 TYPE IS CHARACTFR,31. 

GReup NAME IS GRaup.~ ~IT~IN AREA.2 RANGE I~ 1 THRU ~5 
NU~9ER IS ~Ov' L6CATIBN MBDE IS CALC U~TNG 
ITEM.41 DUPLICATES N6T ALLSW£D. 

ITEM-41 pICTuRE IS 99V99, pRIVACY LeCK FeR RETRIEV~ 
IS 1 II 

ITEM·~2 PICTURE IS AA9(4)A. 
ITEM_43 TYPE IS CHARACTE~,~. 
ITEM.4~ TVPE IS BINARY. 

Figure C-l. Schema DOL Listing for Sample Database 

Appendix C 91 



4j.8' 
4j.', SET ~AME IS SET.A, BwNER IS GRBUp.11 BRDER IS ~IRST. 
501 MEMBER IS GRBUP.~ 
51' 'I~CLUSIeN IS AUTBMATIC SFT BCCURR~NCE RELECTIBN 
521 IS L6CATIBN MBDE Br BWNER, 
531 
54j., SET NAME IS SET.B, awNER IS GRBUP.2 
551 BROER IS NEXT. STATISTICS ARE REQUIRED. 
56: MEMBER IS GRBUP.3 INCLuSreN IS AUT6MATrC 
51' 'LINKED r6 eWNFR, SET 6CCURRENCE SrLECTYBN 
58: IS THRU CURRENT 6r SFT. 
59' 
601 SET NAME IS SET.C, BROER IS NEXT 
61: ,ewNER IS GReUP.2J LINKED T8 PRI8R 
62S ,STATISTICS ARF. REQUIRED. 
631 MEMBER IS GR8UP.4 INCLUSr6N IS MANUAL 
64j.J SELECTI8N IS THRU CURRENT 6F SET. 
66. 
661 SET NAME IS SET.D,8wNER IS GR8UP.3 
611 , BROER IS SBRTED. STATISTICS ARE 
681 REQUIRED. 
69: MEMBER IS GRBUp.4 tNCLUSreN IS AUT6MATrC 
10 J , LINKED T8 eWNER 
711 JSrT eCCURRENCF SELECTr8N IS THRU L6CATreN 
121 M6DE SF eWNER. ASCENDING RANGE KEY IS 
131 ITEM.41 DUPLICATES ARE N~T ALL6WED, 
14j.I 
15. END. 

Figure C-l. Schema DDL Listing for Sample Database (cont.) 

••• 2~7**. 
• *.20cs*** 

SChEMA ceNTAI~S OOOb PACiES • 
T~t~E A[Rr 0000 nIAG~eSTIC MESSAG[S • 

AREA t...li~lBF:R 
01 
0 2 

STBRA3E RE.(JljfRE"'1E:"JT ~UMMARY 

'DATA PAG~S TND~~ PAG~S 

0000100 0000000 
OJ0005J oonnooo 

***2Jl*.* SCHEMA GENERATIBN CtlMPLETE, 

Figure C-2. Schema Generation Summary Output for Sample Database 

92 Appendix C 

INVENTBRy PAGES 
0000001 
0000001 



1***200.** FXTENOED D~S FILE DEFI~ITleN PRBCESSBR _. VERSIBN AOO • 
• ***202*.* EXTENOFO O~S SU~SC~E~A DOL. 

11 SUBSC~EMA NA~~ IS C~BALSU~ BF SCME~A SAMPLE SCHEMA 
~I Ce~PBNENTS ARE S~ECIFIEO, 
51 
6: S~T5 ARE SET-. SET.B SET.C. 
11 
81 AREAS ARE ALLI Ce~~eNrNTS ARE SPECIFIED, 
9, 

101 GReUp N_ME IS GR8UP.ll C6~~6NENTS ARE ALL. 
:111 
:121 
:131 
141 
151 
161 
1" 
UI 
UI 
201 
211 

GR6LP NAME IS GR8UP.2.R RENAMES GHBUP.21 
03 ITEM.21.~2.23, 

e5 rTE~Q21C. RE~AMES ITEM.2t, 
e5 tTE~Q22.,,3, 

C1 ITEM.22-A!.. T. 
11 tTEM.22. 

07 ITEM.23. 

221 GR6LP 15 GR6UP.4, C6~peNE~TS ARE SPECIFIED. 
e31 C2 ITFM.41. 
24: 
i?51 E~O. 

*.~214*** ~UHSC~EMA FILE 8CCUPIES 003 GRA~ULES, 
**~215*** IN ceRE SUBSC~EMA REQUIRES OCl C6RE PAGES • 
• *~2ce*** TM~RF ~ERE OOOC OlAGN6STIC MESSAGES. 
**~203*** FU~SCHEMA GENE~ATI~N CBMPLETE. 

Figure C-3. Subschema-l DDL and Summary Output for Sample Database 

o t CeB. 
02 RE~.C6r,E ceM~ VALUE ZER". 
O? PAGE.N~ PtC 9(8), 
02 ltNE.NA PIC 9(3), 
02 FRST-RrF C~MP. 
O? LASTaRrF CBMP, 
02 GR~.N6 C6 MP. 
02 ERR.CArE ceMP. 
02 ERR.N6 C6 MP. 
02 ERR.REF C~MP_ 
02 PASSWBRD PIC xes) VALUE SPACES. 
02 ARF.AuNe PIC 99-

01 SETwTABLES CBMF, 
02 SET.A. 

03 SEr.aw"R. 
03 SET-PRIR. 
03 SET.CURR. 
03 ~SET.NE)lT, 

03 SET.GRF. 
02 SET-I9, 

03 'SET-AWI\R, 
03 SET-PRIR. 
03 SF.:T.CURR, 
03 SET·NF:)lT, 
03 !SET.GRF. 

OC' SET-I:. 
03 !)ETwBW~R. 

03 ~;ETwPRrR, 
03 SET-CURR, 
03 BET-"'E)(T. 
03 SETwGRF. 

01 AHEA-TA~l.E. 
O? AREAQl PIC )1(,) VALUF SPACFS. 
02 ARFAu2 PJC x,.) VALUE S~AC~~. 

01 GRAUP-1. 
02 CURRo1cO CAMP, 

01 GRf:lup-c-n. 
03 ITEMv2t-22-23, 

Figure C-4. COpy Listing Corresponding to Subschema-l for Sample Database 

Appendix C 93 



05 IT~M.21C PIC AC16" 
05 ITrl"'l-22-?3. 

07 ITEM-22-AL.T. 
11 ITEM_?? ceMP eCCURS C04 TIMES. 
07 fTEM_23 ceMP.2.001S). 

03 C~RR-2cO ceMP. 
01 GRRUP-3, 

03 C~RR.300 C6MP. 
01 GRBUP-4, 

02 ITEM_4, PIC 99V99. 
02 C~~R-400 C~MP. 

01 .RE~·~ASTEPS.O~ ce~p, 
ot.' Cli~H-1cOO. 
02 CALC~ET. 

03 SE.,.-6Wt\R. 
03 SET-PRIR. 
03 SET-CURH. 
03 5£1-"E)(1. 
03 SET-GRF. 

01 STATISTICS ceMF. 
02 GRP-STATS.l00 C"~P. 

03 SHT-CTRL, 
03 STAT-ACC. 
03 STAT-I"S. 
03 STAT-DEL.. 

O? SET-STATS-COO? ceM~. 
03 STAT-CTRL. 
03 STAT-NE)(T. 
03 STAT.PRIR, 
03 STAT .... e:AD. 

02 SET.STATS.C003 ceM~, 
03 STAT-CTRL. 
03 STAht\lEXT. 
03 STAT-PRIR, 
03 5TAT ..... E.0. 

Figure C-4. COpy Listing Corresponding to Subschema-l for Sample Database (cont.) 

1***200*** FxTENDEO D~S FIL.E OEFI"tTIet\l PReCESS6R -. VERSY6N AOO • 

• ***2C2*** EXTENDED D~S SUBSC~EMA DOL.. 
11 SU8SCHE~A t\lAM~ IS MFTASUM 6F SCHEMA SAMPLE SCHEMA 
41 • C6~P6NENTS ARE SPECIFIED. 
51 
61 SET J~ SET-O, 
7: 
!: AREA IS AREA-? C6~pe~F"1S ARE SPEtIFIE~. 
9: 

101 
1t: 
121 
14: 
15: 
16: 

GPeLP NAME IS SECHND, ~ft\l~~ES ~HeUP_4' C6MP6NEt\lTS ARE 
ITEM-4t. 
ITE'M-44. 

17: E"D. 
***214*** ~U~SCHEMA FIL.E eCCUPI[S 003 GRANULES. 
***215*** TN CARE SU~SC~EMA REQUIRES OCl CBRE PAGES • 
• **2C~ •• * THERF ~ERF 0000 DTAGNBSTIC MESSAGES. 
*.*2C3*.* SU~SCHEMA GE"ERATleN C~MPLrTE. 

Figure C-5. Subschema-2 DDL and Summary Output for Sample Database 

94 Appendix C 



f-I'UND 8 
CCB ~ES 0 
RF.:FHf:lC~·~CCH CATA 0 
PHiJ:"~M!iCC~ RES,l g 

L I~IF"$"'''~CC8 RFS,l 4 

FR~TtRH"~CCB RES,t ,. 
L"STSRe:F~CC8 RES,l 4+ 
GRP!lt-lf-lIi(Cfol ~ES,l 1+ 
rp~fCf-lDFQ'.(CA r.:FS,l 4 
Er.;~t~Riit:C!:' PFS,l 1+ 
E'PR!f~FF ircn~ ~ES,1 4+ 
P~S~~FlHI);:r:C8 CATA 
,.RF"'~;BI)'1CCR RF.S,l ,. 

~BU"'r 8 
SET'tT/&~LEg RU; 0 
SF:T,~w"l~ n~u C 
SrTtPRT'~ E'QU 1 
SfT tCUI(I~ F(~U ? 
SET1'I\f.X'r F'~u 3 
srTfGRf"I F ~u 4 
5FTfD CAT,. ~.c,o,c'o 

tl8U"'r; 8 
A~F"$TM~LF REC; 0 
ARtU~ DATA ' 

fl6UNt R 
FtR~T RFS 0 
!TE~~31 RFS,l ~124 

rTF~$32 RFS,l CC31 
8RUND 1+ 

CURF$'?CO RES,l ,. 
I-IRUND R 

src~"C' ~~ES C 
JTE~f41 RFS,l COC4 

flf3lJt-IC 4+ 
IT~~f44 R~S,1 OOC4 

P.ftUNC ,. 
CUR P f4CO r.iES,l ,. 

~~l,JM'~ 8 
A~EA$~AqTrRSfc2 RES 0 

!:''JUNC 4+ 
CURFt1CCOIC? RES,! 4+ 
CAL(SJ:'T~O~ DATA C,O,O,O,O 

flfjUNC 8 
STATtSrrC~ RE~ 0 
STATtCTRL EeW 0 
STAT$ACC/STAT$~E~T F~U 1 
STATtJ"S,STATtPRJw EQV ? 
STAT$en,SHHj..EAr. E~t' 3 
SFTtSTATSteCC4 CATA O,C,O,O 

[NO 

Figure C-6. SYSTEM Corresponding to Subschema-2 for Sample Database 

Appendix C 95 



APPENDIX D. DATABASE PAGE FORMATS 

This appendix contains Figures D-1 through D-5, showing detai Is of the various page formats in an EDMS database. 

0 7 18 I 19 0 2122 3,24 

Word 0 
PgTy M 

Page Number W Space Avai lable 
01 F 

Control Set Pointer 

r 
Data 1roup, 

Optional Checksum 

t 
Available Space 

! 
511 

Pg Ty - Page Type = 01 for data page, 10 for inventory page, 11 for index page 
MWF - Must-Write Flag 

Figure D-1. Data Page Format 

0 7 8 15116171819 122 23,24 

Line Number Group Number 
D 

Zero Group Size 
I 

Zero Control Set Pointer 
t 

Data item values - no slack bytes 

Set 1 Next Pointer 

Set 1 Next Pointer 
Set 1 Prior Pointer 

(cont. ) 

where DI is the Delete Indicator: 1 means group has been logically deleted. 

tControl Set Pointer is included only for groups defined with calc or indexed location modes. 

Figure D-2. Data Group Occurrence with Three-Byte Set Pointers 

96 Appendix D 

31 

l Page 
Header 

31 



0 7 8 15,16 17 le 19 2223 

Line Number Group Number 
D 

Zero Group Size 
I 

Control Set Pointer 

f 
Data Item Values (No slack bytes) 

Set 1 Next 

Set 1 Next (cont.) Set 1 Prior 

Set 1 Prior (cont.) Zero 

where DI is the Delete Indicators: 1 means group has been logically deleted. 

o 

Word 0 

Figure D-3. Data Group Occurrence with Four-Byte Set Pointers 

Page Number PgTy tft 
(11) F 

Space Avai lable 

31 

31 

I--_A_re_o, N ~,_z_e_ro_-+-__ N_e_x_t_l_n_de_X_p_ag_e_N_U_m_b_e_r_f_o_r _th_i_s_L_e_v_e_1 ----I 

Page Number for Fi rst Index Entry on th is Page 
Number of Index Entries 

on this Page 
2 

3 PClge n Index Entry (Assuming 3 byte Key) Page 

n + 1 Index Entry Page n + 2 

Index Entry Page n + 3 Index Entry 

Page n + 676 Index Entry 

511 
Checksum of Page (optional) 

Pg Ty - Page Type = 01 for data page, 10 for inventory page, 11 for index page 
MWF - Must-Write FI(:tg 

Figure D-4. Index Page Format 

Appendix D 97 



Word 0 

511 

I I I I 

PgTy M Space Avai lable 
Page Number 

(10) W (always zero) 
F 

Area Number Next Inventory Page Number (this page number + 1) 

Number of Data Pages on th is 
t 

Page Number of First Data Page on this 
Inventory Page Inventory Page (page n) 

Space Available tt Space Available Space Available Space Available 
Page n Page n + 1 Page n + 2 Page n + 3 

Space Avai lable Space Available Space Avai lable Space Available 
Page n + 2028 Page n + 2029 Page n + 2030 Page n + 2031 

Checksum of Page (optional) 

Pg Ty - Page Type = 01 for data page, 10 for inventory page, 11 for index page 
MWF - Must-Write Flag 

tAlways 2032 (except for last inventory page). 

I Page 
Header 

tto if page is less than specified percent full; 1 if page is exactly full; >1 = actual space available • 

.Figure D-5. Inventory Page Format 

98 Appendix D 



APPENDIX E. SEQUENTIAL FILE FORMATS 

This Appendix describes the two types of sequential files that are generated and processed by Extended DMS, the 
Journal/Dump fi Ie and the Statistics file. 

Sequential files of the Journal/Dump format are created by the DBM during user program (journal) and by the dump 
and load utilities (dump format). Journal/Dump files have records in three formats: Begin records, End records, and 
Page-Image records. Figures E-1 through E-3 illustrate these individual records. Figure E-4 shows a summary of 
the three. 

Statistics files are created by the DBM during program operation, and contain records in four formats: Job ID rec­
ords, Area records, Group records, and Set records. These records are illustrated in Figures E-5 through E-8. 

Word 0 

2 

3 

4 

5 

6 

13 

14 

15 

16 

B t 0 ye I 

0 

0 

0 

area number 

Btl ye B t 2 ye I B t 3 ye 

Record type = 3 Record length = 68 

0 0 I open mode 

Date 

Time 

0 0 I 0 

0 System-Id 

Area-Name 

Account Number 

Checksum 

Figure E-1. Journal/Dump Begin Record 

Appendix E 99 



Word 0 

2 

3 

4 

5 

6 

13 

14 

15 

16 

Word 0 

2 

3 

4 

5 

6 

N+5 

N+6 

Byte 0 Byte 1 Byte 2 
I 

Byte 3 

0 Record Type = 4 Record Length = 68 

0 0 0 I Close Mode 

Date 

Time 

0 0 0 1 0 

Area Number 0 System-Id 
r----

Area Name 

Account Number 

Checksum 

Figure E-2. Journal/Dump End Record 

Byte 0 Byte 1 Byte 2 
I 

Byte 3 

0 Record Type 
t 

Record Length 
tt 

-----

Sequence Number 

Date 

Time 

0 0 0 I 0 

Area Number 0 System-Id 

Data Page image N is number of actual data words, does not include empty space. 

Checksum 

t Record type is 5 for Before- and 6 for After- Image Records. 

ttRecord length varies from 36 bytes (9 words) to 2076 (519 words), since the smallest data page image 
is 2 words, and the largest is 512 words. 

Figure E-3. _ Journal/Dump Page-Image Record 

100 Appendix E 



Word 

o 

2 

3 

4 

5 

6-13 

14-15 

16 

Byte 

0 

1 

2-3 

0-2 

3 

0-3 

0-3 

0-3 

0 

2-3 

~:~ 

MBZt 

Record type (3) 

Record length in bytes 

MBZt 

OlPen mode 

Delte 

Time 

MBZt 

Area number 

MI~Zt 

System- Id 

Area-name 

Ac:cou nt numbe r 

Checksum 

End Before or After 

MBZt MBZt 

Record type (4) Record type (=5 before; =6 after) 

Record length in bytes Record length in bytes 

MBZt 

Close mode 
Sequence number 

Date Date 

Time Time 

MBZt MBZt 

Area number Area number 
t 

MBZt MBZ 

System-Id System- Id 

Area-name tt 

Account number 

Checksum 

where 

t 

Record length (word 0) is that of journal record. (Record size varies from 9 to 519 words). 

Open mode (word 1) = 'I for retrieve, 2 for update, 3 for create, 4 for DMSDUMP. 

Close mode (word 1) = 0 for normal, 1 for abnormal. 

Sequence number (word 1) - before start, at -1 and decrementing; after start, at +1 and incrementing. 

Date (word 2) is binary halfword year an~ binary halfword Julian day. 

Time (word 3) is binary value HHMMTTTT (hour,minute, calculated time approximately milliseconds 
since last minute). 

Word 4 is reserved for use in future enhancements. 

System-Id (word 5) is a two-byte binary value. 

Must be zero. 

ttEach Before/After record contains a data page image in words 6 through N+5, and a checksum in word N+6 
(where N is the number of data words actually stored on the page). 

Figure E-4. Journal/Dump File Format Summary 

B te 0 Y I B te 1 Y I B te 2 Y I B te 3 Y 

Word 0 Record-Type=l I I System-Id 

Binary Year and Day 

2 Binary Time 

Figure E-5. Statisti cs Job Id Record 

Appendix E 101 



B t 0 ye I Btl ye I B t 2 ye I B t 3 ye 

Word 0 Record T ype=2 I I Open Mode 
t I Area Number 

T ota I Page Reads and Wri tes 

2 Total Groups Accessed 

3 Total Groups Inserted 

4 Total Groups Deleted 

t 1 = Retrieve, 2 = Update, 4 = Create. 

Figure E-6. Area Statistics Record 

B 0 ~yte B syte I B ~yte 2 I B syte 3 

Word 0 Record T ype=3 I Group Number 

T ota I Accesses 

2 T ota I Inserts 

3 Total Deletes 

Figure E-7. Group Statistics Record 

B t 0 we I Btl sye J B t 2 lyle I B Iyte 3 

Word 0 Record T ype=4 J I Set Number 

Total FINDN Calls 

2 Total FINDP Calls 

3 Total HEAD and FINDM Calls 

Figure E-8. Set Statistics Records 

102 Appendix E 



APPENDIX F. ERROR MESSAGES 

This appendix contains error messages generated by the EDMS File Definition Processor, the Database Manager, and 
the EDMS utility routines, as follows: 

Source Table 

DMSFDP F-1 

DBM, Data- Dependent F-2 

DBM, Non-Data-Dependent F-3 

DMSINIT F-4 

DMSDUMP F-5 

DMSLOAD F-6 

DMSSUMS F-7 

Table F-1. DMSFDP Error Messages 

Message Meaning 

***100*** REDUNDANT CLAUSE NOT ALLOWED. A clause other than password, check, ascend-
ing/descending, or condition was repeated in 
a subentry. 

*** 101 *** WITHIN CLAUSE MISSING. A schema-DDL group or invert subentry did 
not specify the area that is to contain 
occurrences. 

***102*** NUMBER CLAUSE IS MISSING. An area, group, or invert subentry did not 
specify a unique identifier for the area or 
group. 

***103*** LOCA nON CLAUSE IS MISSING. A group subentry did not specify a location 
mode (direct, calc, indexed, or via) for the 
group. 

***105*** OWNER CLAUSE IS MISSING. A set subentry did not identify a group to 
participate as owner. 

***106*** ORDER CLAUSE IS MISSING. A set subentry did not specify logical sequence 
(first, last, next, or sorted) for set occurrences. 

***107*** INCLUSION CLAUSE IS MISSING. A member subentry did not specify whether in-
clusion of member occurrences in set occurrences 
would be automatic or manual. 

***108*** SELECTION CLAUSE IS MISSING. A member subentry did not specify the method 
(current or location mode of owner) of identi-
fying set occurrences for I inking member 
occurrences. 

Appendix F 103 



Table F-1. DMSFDP Error Messages (cont.) 

Message 

***109*** DUPLICATES CLAUSE/SUBCLAUSE MISSING. 

Meaning 

Clause was not included in an invert subentry; or 
subclause was not included with calc location 
mode in a group subentry, or with ascending/de­
scending sort keys for a member of a sorted key. 

1--------------------------- --.--------------------------~ 

***110*** USING SUBCLAUSE MISSING. 

***111 *** COMPONENTS CLAUSE IS MISSING. 

***204*** REDUNDANT OPTION -- ILLEGAL. 

***205*'U ILLEGAL OPTION. 

***206*** NOSCHEM OPTION IGNORED -- NO 
SCHEMA DOL. 

***218*** NOSUB OPTION IGNORED -- NO 
SUBSCHEMA DDL. 

***219*** NOCBL OPTION IGNORED -- NO SUB­
SCHEMA DDL OR NO COpy FILE NAME. 

***220*** NOMETA OPTION IGNORED -- NO SUB­
SCHEMA DOL OR NO SYSTEM FILE NAME. 

***221 *** NOLIST OPTION IGNORED -- NO SUB­
SCHEMA DDL OR NO SYSTEM OR COpy 
FILE NAMES. 

***301 *** SYNTAX ERROR. 

***302*** AREA ENTRY OUT OF ORDER. 

***303*** GROUP ENTRY OUT OF ORDER. 

***304*** ITEM ENTRY OUT OF ORDER. 

***305*** INVERT ENTRY OUT OF ORDER. 

***306*** SET ENTRY OUT OF ORDER. 

***307*** MEMBER SUBENTRY OUT OF ORDER. 

***308*** END ENTRY OUT OF ORDER. 

***309*** ONLY ONE SCHEMA/SUBSCHEMA 
ALLOWED. 

***310*** UNEXPECTED END OF FILE. 
PROCESSING TERMINATED. 

***311*** PRECEDING ENTRY HAS BEEN DIS­
CARDED BECAUSE OF ERRORS. 

104 Appendix F 

Calc or indexed location mode in group subentry 
did not name control items. 

A subschema-DOL subschema, area, or group 
entry did not indicate if components were all or 
specified. 

A control option was repeated. 

A control card option was not a DMSFDP option. 

A control card option has specified suppression 
of an output that could not have resulted from 
the inputs in any case. 

Any of severa I errors, such as i Ilega I characters, 
misspelling, use ofa reserved word as a name, etc. 

The DOL-required entry/subentry order has been 
violated. This may have resulted from an entry 
being discarded for errors. 

More than one was included. 

The last entry processed was not an end entry. 

This may cause succeeding entries to be out of 
order. 



Table F-1. DMSFDP Error Messages (cont.) 

Message Meaning 

***401 **+., SYMBOL TOO LONG. A name was more than 30 characters long. 

***402*** ILLEGAL VALUE. An integer value, group number, area number, 
etc. was greater than the specified limits. 

***404*** NON-UNIQUE AREA NAME. The name specified in a schema-DDL area entry 
duplicated that of another area in the database. 

***405*** NON-UNIQUE GROUP OR SET NAME. The name specified in a schema-DDL group or 
set subentry duplicated the name of a previously 
defi ned g roup, set, or item. 

***406*** UNDEFINED AREA. The area named in a group or invert subentry 
within clause was not defined in an area entry. 

***407*** TOO MANY CONTROL/SORT KEYS. More than seven keys were specified in a calc or 
indexed location mode spe~ification, or in 
ascending/descending clauses in a member 
subentry • 

***408*** CONTROL ITEM item-name FOR group-name The item identified by item-name was designated 
GROUP IS UNDEFINED. as a control item for location mode of calc or 

indexed, but was not defined in an item subentry 
for the group identified by group-name. 

***409*** GROUP group-name INTERSECTS INDEX/ The page range spec ified for the named group 
OVERFLOW RANGE. overlaps the range of an indexed group or the 

overflow range for the area. 

***410*** MULTIPLE INDEXED GROUPS DEFINED IN Two or more subschema-DDL group subentries 
THE SAME AREA. specified location mode of indexed and the same 

area-name in the within clauses. 

***411 *** NON-UNIQUE GROUP OR INVERT NUMBER. The integer in a schema-DDL group or invert 
subentry number clause duplicated the number in 
a previous group or invert subentry. 

***412*** UNDEFINED KEY. A retrieve/update key in a schema-DOL group 
or item subentry did not match any key specified 
ina password clause. 

***413*** ITEM NAME DUPLICATES G ROUP OR SET The name specified in a schema-DOL item sub-
NAME. entry dupl icated the name of a previously de-

fined set or group. 
1---. 

***414*** ITEM NAME CANNOT BE UNIQUELY The name specified for an item results in a dupli-
IDENTIFIED. cation even when qual ified (two items within the 

same group with the same name). 

***415*** PICTURE AN 0 TYPE INCONSISTENT. Specifications for picture and type in a schema-
DOL item subentry confl icted (e. g. , a numeric 
picture and character type). 

***416*** ILLEGAL CHECK VALUE IN CHECK CLAUSE A check clause in a schema-DOL item subentry 
NUMBER nne contained an illegal value. The nn refers to the 

sequence of input of the dauses. 

Appendix F 105 



Table F-1. DMSFDP Error Messages (cont.) 

Message Meaning 

***417*** group-name GROUP SIZE EXCEEDS ONE PAGE. The combination of items (including occurs) de-
fined for the named group resulted in a group 
size of more than 510 (or 509 if there is a check-
sum) words. 

***418*** ITEM NOT DEFINED IN PRECEDING GROUP. The item designated as secondary index in an in-
vert subentry was not defined in an item subentry 
for the group. 

***419*** MULTIPLE INVERT ENTRIES USE SAME ITEM. The same item was specified as the secondary 
index item in two or more invert subentries. 

***420*** UNDEFINED GROUP. The group identified as owner in a set subentry, 
or as member in a member subentry was not de-
fined in a group entry. 

***421 *** SIZE OF DATA ITEM INDETERMINATE. A schema-DDL item subentry did riot include a 
picture clause, and the type clause did not in-
clude or imply an item size. 

***422*** TRUNCATION. An integer value consisted of more than the 
legal number of digits (e.g., three digits used 
for area number). 

***423*** MANUAL OR OPTIONAL. INCLUSION A schema-DDL member subentry specified man-
ILLEGAL FOR SET WHICH GROUP IS VIA. ual or optional automatic inclusion and the group 

location mode is via the set. 

***424*** UNDEFINED ITEM. An item-name specified did not match any name 
specified in an item subentry. 

***425*** SORT ITEM NOT DEFINED IN MEMBER GROUP. An item designated as a set sort key in a member 
subentry was not defined in the group specified 
as member. 

***426*** DATA ITEM NOT DEFINED IN OWNER GROUP. The item for which an alias was specified in a 
member subentry was not defined in the group 
named in the owner subentry. 

***427*** NON-UNIQUE ALIAS. The same item-name was used for two or more 
alias clauses in a member subentry. 

***428*** WARNING -- ALIASES FOR set-name SET The aliases specified in a member subentry did 
INCONSISTENT WITH OWNER'S CONTROLS. not exactly correspond to the control items for 

the owner group. For example, the owner group 
was ca Ic using four items, and only three were 
given aliases. This situation is not illegal, only 
dangerous, and does not interfere with schema 
generation. 

*u429*** FILL PCT/OVERFLOW RANGE USED IN AREA No group defined as within the named area had 
area-name WHICH HAS NO INDEXED GROUP. a location mode of indexed, making the fill per-

cent or overflow range specification meaningless. 

***430*** STORAGE/VIA SET set-name UNDEFINED. A schema-DDL group subentry specified the 
named set in a via location mode or in a storage 
subclause, but there was no set entry defining 
the set. 

106 Appendix F 



Table F-l. DMSFDP Error Messages (cont.) 

Message Meaning 

***431 *** STORAGE IS sel"-name SET FOR group- The owner group of the named set was defined as 
nome -- AREA CONFLICT. in a different area than the group identified by 

group-name, therefore the use of that set as the 
storage set is illegal. 

***432*** Il.LEGAL PICTURE. The character-string in a picture clause was not 
a lega I comb ination of characters. 

***433*** ITEM SIZE EXCEEDS 255 BYTES PER The total size of the item in the DMS group oc-
OCCURRENCE. currence would exceed maximum item-size. 

***434*** CHECK ILLEGAL WITH OCCURS OR WHEN A restriction on the use of the check clause was 
ITEM SIZE EXCEEDS 16 BYTES. violated. 

***435*** CAN'T INVERT ON AN ITEM WHICH OCCURS. An item that was defined with an occurs clause 
was specified as the secondary index item in an 
invert subentry. 

***436*** ITEM WHICH OCCURS CAN'T BE CONTROL An item defined with an occurs clause was desig-
KEY. nated as a set sort key. 

-

***437*** GROUP group-n(]me CONTROL ITEM item- The named item, specified as the control item in 
name ILLEGAL OCCURS. a location mode using-subclause for the named 

group, was defined with an occurs clause. 

***438*** MEMBER group-name IN SET set-name NEEDS The named set was defined as sorted, but the 
SORT KEYS. member subentry designating the named group 

did not include ascending/descending clauses. 

***439*** INCONSISTENT SORT KEY TYPE/SIZE FOR The items specified as sort keys in member sub-
MEMBERS OF set-name SET. entries for two or more groups did not correspond. 

***440*** GROUP NUMBER USED AS SORT KEY ON set- The order clause for the named set specified 
name SET WHICH HAS BUT ONE MEMBER. sorted with group number as major or minor, but 

only one group was identified as a member of the 
set. 

***441 *** OCCURRENCE SELECTION MUST BE CURRENT The set occurrence selection clause in a member 
FOR AREA OWNER, OR FOR SETS ORDERED subentry violated one of the indicated restrictions. 
NEXT OR PRIOR., 

***442*** MEMBER NOT IN AREA WHICH OWNS THIS SET. Area-is-owner was specified for the set and a 
group designated as a member was not defined as 
within the area. 

***443*** STORAGE IS set-name SET FOR group-name ._- The named set was identified as the storage set 
NOT MEMBER. in the group subentry defining the named group, 

but the group was not identified in a member 
subentry for the set. 

***444*** GROUP CANNOT PARTICIPATE MORE THAN A group was designated as both a member and an 
ONCE IN SINGl.E SET. owner or as a member twice in the same set entry. 

***446*** MEMBER group-nclme OF set-name SET GIVES The member subentry for the named group inc I uded 
ALIAS FOR item-name -- NOT CONTROL an alias subclause for an item that was not a 
ITEM. control item for the owner of the named set. 

Appendix F 107 



Table F-l. DMSFDP Error Messages (cont.) 

Message Meaning 

***447*** STORAGE MASTER FOR G ROUP group-name The page range for the owner of the set specified 
NOT IN INDEXED DATA RANGE -- MUST BE. in a storage subclause for the named group was 

not within the range specified for the area's in-
dexed group. 

-

***448*** NO STORAGE SET SUPPLIED FOR GROUP The group subentry for the named group included 
group-name. a storage subclause, but the specified set was 

not defined in a set entry. 
- -

***449*** MEMBER group-name OF set-name SET The member subentry for the named group in the 
NEEDS UNIQUE OWNER. named set specified location mode of owner for 

set occurrence selection, but the owner's loca-
tion mode does not provide uniqueness. 

--
***450*** ILLEGAL RANGE IN CHECK CLAUSE Range of values specified in improper order. 

NUMBER nne (I. E. LO > HI). The nn refers to sequence of input of the clauses. 

***451*** MUST HAVE CHECKSUMS ON ENCIPHERED Checksums were prohibited and enciphering re-
AREA. quested in the same area entry. 

***452*** SORT KEYS ARE NOT ALLOWED UNLESS A member subentry included ascending/descend-
SET ORDER IS SORTED. ing keys but the set order specified in the set 

subentry was not sorted. 
--

***453*** CHECK ON PICTURE ILLEGAL An item subentry included a CHECK clause spec-
IF NO PICTURE CLAUSE. ifying PICTURE, but no PICTURE clause. 

***501*** PRIVACY LOCK VIOLATION. PROCESSING An attempt was made to generate a subschema 
TERMINATED. from an extract-protected schema without supply-

ing the proper key in the subschema entry. 

***502*** UNDEFINED OR DUPLICATE SET. The subschema-DDL set entry named a set not 
defined by the schema or named the same set 
twice. 

***503*** UNDEFINED OR DUPLICATE AREA. An area not defined in the schema was specified 
in a subschema-DDL area entry or one area was 
named twi ce in one or more area entries. 

***504*** GROUP IS IN AREA NOT DEFINED FOR The group named in a subschema-DDL group 
SUBSCHEMA. entry was defined in the schema as within an 

area that is not defined in the subschema. 

***505*** UNDEFINED OR DUPLICATE GROUP. The group specified in a subschema-DDL group 
entry was not defined in the schema or the same 
group was named in two or more group entries. 

***506*** 'ALL' OPTION ILLEGAL HERE. SKIP TO A LL was specified after specifi c areas were 
NEXT'. '. named in a subschema area entry. 

***508*** GROUP IS IN AREA WHICH INCLUDES ALL A subschema-DDL group entry specified a group 
COMPONENTS. that was defined as within an area for which a 

components clause indicated all. 

***509*** SEC INDEX FOR item-name IN group-name The named item in the named group was desig-
IS IN OMITTED AREA. nated a secondary index and the area that was 

to contain the invert group occurrences is not 
defined for the subschema. 

108 Appendix F 



Table F-1. DMSFDP Error Messages (cont.) 

Message 

***511 *** BAD SCHEMA 
FOR ITEM NO 
PROCESSING 

***512*** BAD SCHEMA 
PROCESSING 

-- GROUPRET EXISTS 
T DEFINED IN GROUP. 
TERMINATED. 

-- CAN'T FIND SCHEMAHD. 
. TERM I NA TED. 

***513*** ILLEGAL LEVf :L NUMBER. 

***514*** DUPLICATE IT EM. 

Meaning 

These two messages indicate a defective schema 
file. Neither shou Id occur if the schema was 
generated correctly and not subsequently 
modified. 

The level number specified in a subschema-
DDL item subentry did not conform to the rules 
for leve I-number sequence. 

The same item name was specified in two or 
more subschema-DDL item subentries. 

***515*** SET set-name R EQUIRES GROUP group-name. The named set was selected for the subschema 
but the named group (which is the owner or a 
member of the set) was not. 

PRECEDING GROUP WAS The item name in a subschema-DDL item sub-***516*** LAST ITEM IN 
NOT DEFINE[ ). entry did not refer to an item defined in the 

schema (not discovered unti I after processi ng 
had begun on the following group subentry). 

***517*** RENAMES ILU :GAL WITH UNDEFINED ITEM The item name in a renames clause was not the 
NAME. name of an item defined in the schema. 

***518*** ILLEGAL ALPt-IANUMERIC LITERAL. The size of the literal specified in a condition 
clause in a subschema-DDL item subentry was 
greater than the space allocated for it in a 
COpy record. 

***522*** EXPECTED SUB 
FOUND. PRO 

SCHEMA ENTRY NOT 
CESSING TERMINATED. 

Input that followed the schema-DDL end was 
not a subschema entry. 

Error Number 

2 

3 

4 

5 

Table F-2. DBM Data-Dependent Errors 

Error Condition 

Space is insufficient to insert a new group occurrence in that portion of the data­
base in which the group type may be placed. 

An attempt was made by the DBM to retrieve an occurrence of a given group. The 
reference code used was from REF-CODE in the CCB, CURR-XXX for the group, or 
a set table for a set in which the group participates. The occurrence retrieved was 
not the group intended • 

. Attempt was made to retrieve a group on the basis of its location mode. The values 
:5uppl ied for the control items did not define a group occurrence. 

Attempt was made to establ ish a group occurrence that violated a dupl icate clause 
for the group. 

,Attempt to use FINDD with REF-CODE equal to zero. 

Appendix F 109 



Error Number 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

Error Number 

30 

31 

32 

33 

110 Appendix F 

T abl e F-2. D BM Data Dependent Errors (cont.) 

Error Condition 

Reference code supplied for the FINDD call resulted in retrieval of a group occur­
rence that was logically deleted. 

The reference code of a group occurrence to be retrieved is not present in the page. 

Page number of a data page is outside the range of data pages for the area. 

Attempt to retrieve a direct-group occurrence with value of REF-CODE equal to 
zero. 

The area number portion of the reference code supplied for retrieval of a group occur­
rence is incorrect. 

The area number portion of the reference code supplied for storing a direct-group 
occurrence is incorrect. 

Attempt to traverse a set without establ ishing a position in the set because of the op­
tional or manual status of the set member. 

Attempt to use DELETSEL or REMOVSEL, with the object group occurrence the owner 
of a non empty set occurrence. 

Attempt to I ink a manual or optional group, with the object group occurrence already 
I inked into an occurrence of the set. 

Attempt to del ink a manual or optional group, with the object group occurrence not 
I inked into an occurrence of the set. 

Attempt to store an indexed group in create mode, with the values for the index con­
trol items not greater than those already in the area. 

Attempt to modify or store a data group where the values of a data item do not pass the 
data validation checks specified in the schema. 

FINDDUP of a calc group resulted in inability to find a group having duplicate val­
ues for the calc control items. 

An area was opened for retrieval and the database lockout bit was set. 

Attempt to relink a manual or optional group, with the object group occurrence not 
I inked into an occurrence of the set. 

Table F-3. DBM Non-Data-Dependent Errors 

Error Condition 

Monitor returned a deadlock indication on an attempt to enqueue at pages in a 
shared area. 

Group to be retrieved or stored depends upon retrieval of a current owner group. 
The user has not retrieved an occurrence of the owner group. 

Attempt to use a procedure whose object is the current of group type without having 
a current occurrence of the group type. The procedures are Get, Modify, Delete 
(all forms), Link, Del ink, Rei ink, and FINDDUP. 

Attempt was made to traverse a set with no current position in the set. 



Error Number 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

61 

62 

63 

64 

65 

66 

67 

68 

Table F-3. DBM Non-Data-Dependent Errors (cont.) 

Error Condition 

Attempt to use the HEAD procedure without a current position in the set. 

Attempt to use the FIN DC procedure without having a current of the group 
type. 

Use of FINDG call with the object group occurrence having location mode via set. 
The se tis not sorted. 

Attempt to HEAD a set whose owner is defined to be the AREA. 

Attempt to modify a data item that is an index control item. 

Attempt was made to update an area of the database that was opened for re­
j'rieve only. 

Procedural call to open any area while executing in another area. 

Attempt to access an unopened area. 

Procedural call without any areas open. The only calls allowed without an open 
urea are DMSTRACE, ENDTRACE, DMSSTATS, ENDSTATS, RPTSTATS, DMSABORT, 
SETERR, RESETERR, and DMSLOCK. 

Group referenced by FIN DX or FINDSEQ call does not contain any inverted 
items. 

Item referenced by FINDX or FIN DSEQ call is not an inverted item. 

DMSRETRN call without an available return address. 

Password specified does not allow the intended procedural action. 

Password not supplied for a password-secured database. 

An area was open for update and the database lockout bit was set. 

Either invalid argument in a procedural call, or the subschema definition of working 
storage does not match the defin ition in the program. 

DBM call other than release with recovery made after a previous call was 
interrupted. 

Attempt to open an area in shared mode after opening one or more in exclusive 
mode or vice versa. 

Attempt to open an area with shared mode and the monitor version does not in­
clude enqueue/dequeue. 

The users ac:count authorization does not include use of enqueue/dequeue. 

A.ttempt to store a group with items or sets omitted in the subschema. 

Attempt to delete a group with sets or inverted items omitted in the subschema. 

Attempt to linkor del ink a group that is not defined as an optional 01' manual member. 

Attempt to use the FINDG procedural call without having all of the control items 
defined for the group or its owners. 

Attempt to I ink a group in a sorted set without having all sort keys defined. 

Attempt to modify a secondary index item or a sort control item and the invert 
group or the sorted set definition is omitted from the subschema. 

Attempt to modify a data item that is a control item and one or more other control 
items are omitted. 

Attempt to execute a FINDX or FINDSEQ procedure but the inverted option has 
been omitted for the item. 

Appendix F 111 



Error Number 

69 

70 

71 

72 

73 

80 

81 

82 

83 

84 

85 

86 

91 

92 

93 

94 

95 

96 

97 

98 

99-101 

121 

122 

123 

112 Appendix F 

Table F-3. DBM Non-Data-Dependent Errors (cont.) 

Error Condition 

A group has been retrieved that is not defined in the subschema. 

Attempt to traverse a set that does not have the owner and all member groups defined. 

The via set has not been defined for the referenced group. 

Unable to store the new invert group occurrence for a modif.ied secondary index item. 

Unable to store an invert group occurrence for the secondary index item value in the 
group occurrence just stored. 

The storage set has not been defined for a group. 

A group occurrence has been retrieved that is of a different size than that specified 
by the subschema. 

An operation was attempted on an indexed data group but the subschema does not 
contain a complete definition of the indexed area. 

Group establ ished to control secondary indexes is not a cal c group. 

The subschema does not define the invert group for a se~ondary index item. 

Set control items are not defined correctly in the subschema. 

Sort or random control items are not defined within the group by the subschema. 

An area to be opened has not been assigned. 

An area of the database is still unavailable after five attempts to open it. 

The monitor has detected an illegal operation and returned to the trap routine. 

The monitor has returned an error or abnormal code as the result of an I/O operation. 

A page read from the database or subschema has an inval id checksum or the en­
ciphering key presented by the user is not correct. 

The page read from the database is not the correct page for the random block accessed. 

Dynamic core memory is insufficient to load the subschema. 

Dynamic memory available is insufficient to interface with Sort for a FINDSEQ 
procedure. 

The memory space allocated for a 

User Argument table (99) 
Area definition table (100) 
Detail Pushdown list (101) 

has been exceeded. 

Detail definition list is incorrect. 

Group retrieved is not defined for set accessed. 

Attempt to del ink a group with set-next zero. 



Error Number 

124 

125 

126 

127 

128 

129 

131 

133 

134 

135 

136 

137 

Message 

Table F-3. DBM Non-Data-Dependent Errors (cont.) 

Error Condition 

Attempt to link a group with set-next zero. 

Group specified by set-next cannot be retrieved. 

Group just stored cannot be retrieved to complete set linkages. 

Prior group of set cannot be retrieved. 

Group specified by set-prior cannot be retrieved. 

Unable to retrieve the main group while in the process of deleting the invert group 
occurrence for a secondary index item. 

Unable to retrieve the invert group occurrence for the secondary index item of the 
current main group. 

Sort processor has abnormally terminated whi Ie executing FIND~EQ sort. 

The main group defined by a secondary index is not retrievable. 

Unable to retrieve the group occurrence that was just created. 

Invalid internal DBM argument. 

Error has occurred in handling area owner group. 

Table F-4. DMSINIT Error Messages 

Meaning 

***ASSIGN CARD MISSING FOR area-name. Area fi Ie identified by area-name was not as-
signed or was not properly assigned. 

***F:DBnn NOT OUT OR INour FILE. Function assigned for the F:DBnn is not OUT 
or INOUT. 

***1/0 ERROR F:SCHE - xx yy. An I/O error return from the monitor occurred 
wh ile processing the schema fi Ie - xx and yy 
are the major and minor codes returned byCP-V. 

***1/0 ERROR F:DBnn - xx yy. An I/o error return from the monitor occurred 
while processing the area file assigned to 
F:DBnn - xx and yy are the major and minor 
status returned by CP-V. 

***UNEXPECTED END OF FILE ON SI. Period missing at end of statement, or additional 
input was expected. 

***ILLEGAL. RANGE. Range specified was not within data pages of 
area. 

***INCORRECT AREA NAME. An area-name specified did not match any of 
the area names in the schema. 

***RANGE NOT SPECIFIED FOR RE-INIT OR AN Range parameter is required to reinitialize an 
EXISTING AREA. existing area. 

Appendix F 113 



Table F-4. DMSINIT Error Messages (cont.) 

-
Message Meaning 

***PARTIAL RE-INIT OF INDEXED GROUP RANGE OR If any pages in the indexed group's page range 
OVERFLOW RANGE NOT ALLOWED or in the overflow range are to be reinitialized, 

all must be reinitialized. 
--

***ILLEGAL RE-INIT OF OVERFLOW-RANGE Overflow range may not be reinitial ized if 
indexed group range is not. 

------

***SYNTAX ERROR Missing equals sign or comma, misspell ing of 
AREA or RANGE, etc. 

--
***SCHEMA FILE IS BAD DBM ERROR CODE - xx Error encountered in schema fi I e - xx is the 

error code returned by the DBM. 

Table F-5. DMSDUMP Error Messages 

Message Meaning 

***SCHEMA FILE IS BAD, DBM ERROR CODE - xx An error in the schema was detected by the 
DBM routines used to process it - xx is the 
DBM error code. 

1---- --
***INCORRECT AREA NAME An area-name in a dump or print directive 

did not match any of the area names in the 
schema. 

***SYNTAX ERROR Missing equals sign, comma, etc. 

***UNEXPECTED END OF FILE ON SI Additional input was expected to complete an 
area, line, or group specification, or period 
was missing. 

***INCORRECT DATA PAGE READ FROM area-name Page read from database was not the desired 
page. 

***ILLEGAL DIRECTIVE Directive not PRINT or DUMP. 

***ILLEGAL PASSWORD Password not given or it was not a correct one. 

***ILLEGAL RANGE Range specified was not within the area. 

***ASSIGN CARD MISSING FOR area-name Area file identified by area-name was not as-
signed or not correctly assigned. 

***1/0 ERROR F:SCHE -- xx yy An I/o error return from CP-V occurred while 
processing the schema file - xx and yy are the 
major and minor codes returned by CP-V. 

***1/0 ERROR, F:DBnn -- xx yy An I/o error return from C P-V occurred on area 
fil e assigned to F: DBnn - xx and yy are the 
major and minor codes from C P-V. 

***1/0 ERROR F: DUMP -- xx yy An I/o error return from CP-V occurred on se-
quential output file - xx and yy are the major 
and minor' codes from C P-V. 

114 Appendix F 



Table F-5. DMSDUMP Error Messages (cont.) 

Message Meaning 

***BAD LII\JE # OR GROUP LENGTH Duplicate line numbers, zero group length, or 
invalid group length found on page being pro-
cessed. Contents of page are printed in hexa-
decimal following this message. 

***CHECKSUM ERROR OR PROPER CIPHER KEY Either there was a checksum error, or the cipher 
REQUIRED key was not the proper key, or not in correct 

input order. The checksummed page is printed 
following this message. Checksum for the page 
is the last word printed. 

Table F-6. DMSLOAD Error Messages 

Message Meaning 

***SCHEMA FILE IS BAD, DBM ERROR CODE - xx An error in the schema was detected by the 
DBM routines used to access it - xx is the 
error code returned by the DBM. 

***INCORRECT AREA NAME An area name in a LOAD, TAPE, or PRINT 
directive did not match any of the area names 
in the schema. 

***INSUFFICIENT MEMORY FOR DMSLOAD Not enough core space can be obtained for 
buffers. 

---

***ASSIGN CARD MISSING FOR area-name Area file identified by area-name was not as-
signed or not properly assigned. 

***CIPHKEY /NEWCKEY NOT REQUIRED Cipher key or new cipher key was specified 
for an area that is not enciphered. 

***ILLEGAL RANGE A range specified for an area did not corre-
spond to the size of the area, was less than 
one, or was greater than the area size. 

***UNEXPECTED END OF FILE ON 51 The input directive was incomplete, perhaps 
missing only the period. 

***ILLEGAL DIRECTIVE Directive identifier was not LOAD, TAPE, 
or PRINT. 

***SYNTAX ERROR Any of several format errors: missing comma, 
parenthesis, etc. 

***1/0 ERROR, F:SCHE -- xx yy An I/o error return from the monitor occurred 
wh i I e process i ng the schema fi Ie - xx and yy 
are the major and minor codes returned by 
CP-V. 

***1/0 ERROR,AREA#==fln ._- xx yy An I/O error return from the monitor occurred 
whi Ie processing the area whose number is 
specified by nn - xx and yy are the major and 
minor codes returned by C P-V. 

Appendix F 115 



Table F-6. DMSLOAD Error Messages (cont.) 

Message Meaning 

***1/0 ERROR, F:LOAD -- xx yy An I/o error return from the monitor occurred 
while reading the dump or journal file input-
xx and yy are the major and minor codes re-
turned by C P-V. 

***1/0 ERROR, F: DUMP -- xx yy An I/o error return from the monitor occurred 
while writing the sequential file output - xx 
and yy are the major and minor codes returned 
by CP-V. 

***BAD LINE # OR GROUP LENGTH Duplicate line numbers, zero group length, or 
invalid group length found on a page being 
processed. Page in question is printed in 
hexadecimal following th is message. 

***CHECKSUM ERROR OR PROPER CIPHER KEY Either there was a checksum error, or the cipher 
REQUIRED key was not the proper key, or not in correct 

input order. The checksummed page is printed 
following this message. The checksum for the 
page is the last word printed. 

***WRONG INVENTORY PAGE -- xxxxxxxx The page that was read in was not the inventory 
page expected. xxxxxxxx is the number of the 
desired page. The page read is printed in 
hexadecimal following this message. 

Table F-7. DMSSUMS Error Messages 

Message Meaning 

***CANNOT OPEN STATISTICS FILE Statistics file was not assigned or did notexist. 
Processing is terminated. 

r---
***STATISTICS FILE WRONG FORM The first record read from the statistics file was 

not a Job ID record. Processing term i nates. 

***1/0 ERROR ON STATISTICS FILE An error return from the monitor occurred while 
processing the statistics file. Processing is 
term ina ted. 

***CANNOT OPEN SCHEMA FILE The schema file does not exist, is not assigned, 
or is read-protected. Processing is terminated. 

***1/0 ERROR ON SI An I/o error return from the monitor occurred 
while reading input. Processing is terminated. 

***SCHEMA FILE IS BAD An error return from the DBM routines used to 
process the schema occurred. Processing is 
terminated. 

***UNRECOGNIZED SELECTION Selection specification was not AREA, GROUP, 
or SET. Remaining selection input is scanned 
for errors but no statistics will be printed. 

***INCORRECT AREA NAME A specified area-name did not match any of 
the area names in the schema. 

116 Appendix F 



Table F-7. DMSSUMS Error Messages (cont.) 

Message Meaning 

***SYNTAX ERROR Missing comma, equals sign, etc. Remaining 
input is scanned. 

***USE OF ALL MADE SPECIFIC SELECTION ILLEGAL ALL may be used only once and no other se-
lection is legal after ALL. Remaining input is 
scanned but no statistics are printed. 

***UNEXPECTED END OF FILE ON SI Missing period or partial selection was spec-
ified. Processing is terminated. 

***INCORRECT GROUP NAME Group-name specified was not in schema. 
Remaining input is scanned but no statistics 
are printed. 

***INCORRECT SET NAME Specified set-name was not in schema, remain-
ing input is scanned but no statistics are 
output. 

Appendix F 117 



APPENDIX G. DATA VALIDATION 

EDMS provides for the validation of data item values when they are stored or modified in the database. Through 
clauses in the Schema DDL, validation may be specified against a picture of the item and a range of values for the 
item. 

If picture validation is requested, the value of each character in the item is compared to a set of allowed values for 
the corresponding pi cture character. If the va lues do not agree, a data dependent error is returned. The pi cture 
character and the allowed values for EBCDIC items are: 

Picture 

9 
A 
X 

Values 

Hexadecimal FO-F9 (numeric values only) 
Hexadecimal C 1-C9, D 1-D9 and E2-E9 (alphabeti c values) and hexadecimal 40 (space). 
Hexadecimal OO-FF (all values). 

If the item type is signed numeric, the allowed values for the low order character position are AO-A9, BO-B9, 
CO-C9, DO-D9, EO-E9 and FO-F9. Packed decimal values are checked to ensure that each half byte contains a 
valid numeric value, i. e., 0-9. If the number of characters in the item is even, the value of the first half byte of 
the item must be zero. The half byte for the sign character is checked for a hexadecimal value in the range A through 
F, inclusive. 

If range validation is requested, the value of the data item is compared to the converted values for the literals sup­
plied in the check clause of the DDL. The item value must be equal to either literal value or it must be greater than 
the low literal and less than the high literal. Validation against a single value may be accomplished by using the 
same literal for the low and high values in the DDL check clause. The user is cautioned against using this approach 
for the extremes in floating point short and floating point long values. Different programming languages may con­
vert the same literal to different floating point representations. The File Definition Processor converts literals in the 
DDLby using the same routines as the Xerox COBOL compiler. If a program is written in FORTRAN or Meta-Symbol, 
I iterals supplied for item values may not be converted to identical floating point representations. The DBM may thus 
return an error condition if a range of values was not specified in the check clause. 

When comparing signed numeric or numeric EBCDIC item values to the literals, the DBM will ignore the first half 
byte of each character position except the low order character. In the low order character position hexadecimal 
values A, C, E or F are considered as a positive sign and values B or D as a negative sign. 

The DBM uses the decimal instructions of the hardware for comparison of packed decimal values. Thus, sign values 
A, C, E and F are considered positive and values Band D as negative. 

In the comparison of data items to range literals, no check is made to ensure that the characters in the item are 
valid characters for the item type. This is only done for picture validation. 

118 Appendix G 



APPENDIX H. ENQUEUE/DEQUEUE 

The DBM uses the enqueue/dequeue function of the CP-V operating system to control the interaction of programs 
concurrently accessing an area of the database. The enqueue function provides for control of a global resource (the 
database area) and/or an element of that resource (a page of the area) at two levels, shared use or exclusive use. 

The DBM issues an enqueue request for shared use of an element just prior to the read of each page from the area. 
If the request is successful the page is locked to the program for shared use. If the request is not successful, the 
program is suspended by the operating system until the request can be satisfied. When an element is enqueued for 
shared use, other programs may also enqueue the element for shared use (i. e., can read the page). 

The DBM issues an enqueue request for exclusive use of an element just prior to modifying the data page in the DBM 
buffer. If the request is succ:essful the page is locked to the program for exclusive use. If the request is not success­
ful the program is suspended until the request can be satisfied. The operating system wi II not allow an enqueue re­
quest for exclusive use if some other program has that element enqueued for shared use. Once an element is enqueued 
for exclusive use no other program may enqueue that element for shared use. 

When the user program issues a DMSRLSE procedural call or closes the last open area, the DBM will dequeue all 
elements locked for that program. Other programs that may have been suspended because of conflicting enqueue 
requests may then be placed back in execution by the operating system. 

Through DBM use of enqueue/dequeue, concurrently executing programs are protected from interfering with each 
other. When the DBM sends a page and returns data or a set position to the program, that data or set position cannot 
be changed by another program until the reading program explicitlyreleases the page. When a program has updated 
a page no other program may read the modified data or set pointers unti I the updating program releases the page. 

As previously stated, each DBM enqueue request is for a global resource (the area) and an element (a page) of that 
resource. The area is defined in the enqueue request by a 3-byte hashed value of the area name and the account 
under which it' exists. The page is identified by the 20-bit EDMS page number. A hashed value is used in place of 
the full area name and account number to reduce the space and time required in accessing the operating system en­
queue tables. When a hashing technique is used there is a possibi I ity that the values derived from two or more area 
names may result in duplicates. If this should occur the result would be an overprotection of the programs accessing 
the two areas. The user should also be aware of the conflicts that may result if the enqueue/dequeue function is 
used in a program to protect a resource other than a database area and that resource has the same resource name as 
a database area. 

A program has been included on the EDMS release tape to enable the user to identify potential conflicts in resource 
names. This program, named Hash, reads area name/account number pairs through M:SI DCB. The format is 
AREA-NAME. ACCOUNT-NUMBER. Each pair must begin on a new input record (i. e., card, edit line etc.). 
Output is through the M: LO DCB and is the 3-byte hash value derived from the A REA-NAME/ACCOUNT -NUMBER 
pair. The hash value is displayed as six hexadecimal characters. 

Following is a sample run of the program. 

IBUILD llASHVALUE 
1.000 AREA-l.a93AA3.Jp 
a.ooo ",8-D8-01.0131 
3.00(» OUll-DATABASB-AREA-Ol.MYACCT 
4.800 . 

ISET M.SI DC'-HASHVALUE 

IHASH. 
AREA- .,. 893M3.JP 
HASH VAl.UE ... 884815 
MJl'8-D8-01.013J 
HASH VALUE • ,9D .. 64 
OUR-DATASASI-AR!A-Ol.MYACCT 
HASH VALUE •. 43FDJflB .. 

Appendix H 119 





INDEX 

Note: For each entry in this inde>c, the number of the most signifi cant page is listed first. Any pages thereafter are listed 
in numerical sequence. 

! DMSFDP options, 30 

A 
adding occurrences, 37 
alias, 25 
AREA clause, 28,60 
area entries, 13,27 
area name, 13 
AREA NAME clause, 13 
area number, 13 
AREA statements, 54 

B 
backward pointers, 24 
beginning of processing, 36 

c 
CHECK clause, 19 
checkpointing, 50 
checksum, 13 
CHECKSUM clause, 13 
CLOSAREA call, 50 
CLOSEDB call, 50 
COBOL call format f 34 
COBOL clause, 27 
combination public and shared library, 52 
comments, 11 
communications control block, 33 
COMPONENTS clause, 28,29 
CONDITION NAME clause, 29 
continuation, 11 
CREATE call, 36 

o 
data definition language syntax, 9 
data item name, 18 
data item type, 18 
data pages, 6 
data relationships, 2 
data va I idation, 117 
database fi Ie structure, 6 
database initial ization (DMSINIT), 54 
database manager, 32 
DBM DCB requirements, 52 
DBM operational interface, 52 
DBM routine call format, 32 
DBM routine usage, 36 
DCB assignments, 31,53 

deadlock, 49 
deciphering, 57 
DELETAUT call, 39 
DE LETE call, 39 
deleting occurrences, 39 
DELETSEL call, 39 
DE LIN K call, 41 
DMSABORT call, 48,49 
DMSCH KPT call, 50 
DMSFDP operational interface, 30 
DMSFDP outputs, 10 
DMSINIT, 60 
DMSLOAD, 62 
DMS LOAD directives, 58 
DMSLOCK call, 48,49 
DMSRETRN call, 48,49 
DMSRLSE call, 49 
DMSSTATS call, 46 
DMSSUMS, 63 
DMSTRACE call, 46 
DUMP directive, 57 
dump directives, 57 
dump processor (DMSDUMP), 54 
DUMSDUMP, 61 
dupli cate invert group occurrence, 20 
DUPLICATES clause, 20 

E 
enciphering, 14,37 
ENCIPHERING clause, 14 
END entry, 25,30 
ENDSTATS call, 46 
ENDTRACE call, 46 
error control, 48 
error messages, 102 
error processing, 50 

F 
file definition processor, 9 
fi Ie name for the schema fi Ie, 12 
fi I es used by the database restore processor, 62 
fi I es used by the dump processor, 61 
fi II percent, 14 
FILL PERCENT clause, 14 
FINDCcall,43,42 
FINDD call, 43,42 
FINDDUP call, 44,42 
FINDFRST call, 44,42 
FINDG call, 43,42 
FINDLAST call, 44,42 
FINDM call, 43,42 
FIN DN call, 43,42 

Index 121 



Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed 
in numerical sequence. 

FINDP call, 43,42 
FINDS cal" 44,42 
FINDSEQ call, 44,42 
FINDSI call, 44,42 
FINDX call, 44,42 
FORTRAN call format, 34 

G 
GET call, 45 
group, 2 
group area, 16 
GROUP clause, 60 
group entries, 14,28 
group identifier, 17,20 
group name, 16 
GROUP NAME clause, 16,28 
group subentries, 15 

H 
HEAD call, 45 

INCLUSION clause, 24 
index pages, 8 
invent subentry, 20 
INVENTORY clause, 13 
inventory pages, 8, 13 
INVERSION clause, 29 
INVERT clause, 20 
invert group, 20 
item, 2 
item name, 18 
item subentries, 17,29 
item type, 18 
item val ue occurrences, 19 
itemless group, 15 

J 
JOURNAL clause, 14 
journal fi Ie, 14 
journaling, 51 

L 
level number, 29 
LINK call, 41 
LINKED TO OWNER clause, 24 
LIN KED TO PRIOR clause, 24 
LOAD directive, 58 
load processor (DMSLOAD), 57 
location mode, 16 

122 Index 

LOCA nON MODE clause, 16 
locks, 12 

M 
MEMBER clause, 24 
member subentries, 24 
META clause, 27 
meta-symbol call format, 34 
MODIFY call, 40 
modifying data values, 40 
modifying linkages, 40 
moving to working storage, 45 

N 
name checking, 27 
NEXT pointer, 4 
nonnumeric literal, 20 
NUMBER clause, 13, 17,20 
numeric literal, 19 

o 
OCCURS clause, 19 
OPENRET call, 36 
OPENUPD call, 36 
OPRETSHD call, 36 
OPUPDSHD call, 36 
ORDER clause, 22 
OVERFLOW clause, 14 
overflow pages, 14 
overview, 2 
OWNER clause, 22 
OWNER pointer, 4 

p 

PASSWORD clause, 12 
passwords, 12 
picture, 18 
PICTURE clause, 18 
pointer modes, 23 
PRINT directive, 57,58 
PRIOR pointer, 4 
PRIVACY clause, 27 
privacy lock, 12, 17, 19 
PRIVACY LOCK clause, 12, 17, 19 
punctuation, 11 

R 
range of a group, 16 
RELINK call, 41 
REMOVE co II, 39 



Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed 
in numerical sequence. 

REMOVSEL call, 39 
reserved words, 9 
RESETERR call, 48 
retrieving specified group occurrences, 42 
RPTSTATS call, 46 
run-time statistics, 45 
run-time tracing, 46 

s 
sample database definition, 90 
SCHEMA clause, '12 
schema entry, 12 
schema fi Ie, 65 
schema generation, 12 
secondary index item, 20 
SE LECTION clause, 24 
sequentia I fi Ie formats, 98 
set, 2,3 
SET clause, 60 
set entries, 21 
set en try, 27 
set name, 22 
SET NAME clause, 22 
set occurrence, 21 
set order, 23 
set owner, 22 
set position for a new member oClcurrence, 23 
set subentry, 21 
SETERR call, 48 
sets with two or more member groups, 4 
statistics, 17,24,4,5,51 
STATISTICS clause, 17,24 
statistics selection, 60 
STORE call, 37 

subschema entry, 26 
subschema fi Ie, 80 
subschema generation, 25 
SUBSCHEMA NAME clause, 27 
summary stati sti cs, 17 
summary statisti cs collection, 51 
summary statistics processor (DMSSUMS), 59 
system functions, 6 

T 
TAPE directive, 58 
terminal usage, 31 
terminating processing, 50 
total nonshared library, 52 
trace table, 47 
track information, 46 
TYPE clause, 18 

u 
utilities operational interface, 60 
uti I ity processors, 54 

v 
validity check, 19 

w 
WITHIN clause, 16,20 

Index 123 



Xerox Corporation 
701 South Aviation Boulevard 
EI Segundo, California 90245 

.Reader Comment Form 
We would appreciate your comments and suggestions for improving this publication. 

XEROX 

Publ ication No. I Rev. Letter I Title I Current Date 

How did you use this publication? Is the material presented effectively? 

o Learning o Installing 0 Sales o Fully Covered DWell o Well Organized o Clear III ustrated o Reference o Maintaining 0 Operating 

What is your overall rating of this publication? What is your occupation? 

o Very Good o Fair o Very Poor 

o Good o Poor 

Your other comments may be entered here. Please be specific and give page, column, and line number references where 
applicable. To report errors, Please use the Xerox Software Improvement or Difficulty Report (1188) instead of this form. 

Your Name & Return Address 

2190(1V72) 
Thank You For Your Interest. (fold & fasten as shown on back, no postage needed if mai led in U.S.A.) 



Fold 

Attn: Programming publications 

Fold 

BUSINESS REPLY MAIL 
No postage stamp necessary if mailed in the United States 

Postage will be paid by 

Xerox Corporation 
701 South Aviation Boulevard 
EI Segundo, California 90245 

Staple 

First Class 
Permit No. 229 

EI Segundo, 
California 



701 South Aviation Boulevard 
EI Segundo, California 90245 
213679-4511 

XEROX 

XEROX® is a trademark of XEROX CORPORATION. 


	0000
	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	replyA
	replyB
	xBack

