Xerox Extended Data Management System (EDMS)

Sigma 6/7/9 Computers

Reference Manual

(EROXEROXEROXFROXFROXEROXEROX
OXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXERS
ROXEROXEROXEROXEROXFROXEROXE
FROXFROXEROXEROXEROXEROXEROXE
XEROXFROXFROXEROXEROXEROXERO)
OXEROXFROXFROXFROXFROXFROXERC
ROXEROXEROXEROXEROXEROXEROXER
ROXEROXEROXEROXEROXEROXEROXE]
XEROXEROXEROXFROXEROXEROXEROXE
XEROXEROXEROXFROXEROXEROXERO
OXEROXEROXEROXEROXEROXEROXER(
ROXEROXEROXFROXEROXEROXEROXET
FROXEROXEROXEROXFROXEROXEROXE
XFROXEROXEROXFROXEROXEROXEROX
OXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXFROXFROXEROXEROXER
ROXEROXEROXEROXEROXEROXEROXE
FROXEROXEROXEROXEROXEROXEROXE

Xerox Corporation

701 South Aviation Boulevard X ‘OX
El Segundo, California 90245 .

213 679-4511

Xerox Extended Data Management System (EDMS)

Sigma 6/7/9 Computers

Reference Manual

90 30 128

February 1974

Price: $4.50

© 19783, 1974, Xerox Corporation Printed in U.S.A.

NOTICE

This publicationisarevision of the XEROX Extended Data Management System (EDMS)Reference Manual 90 30 12A.
This revision documents the BOO release of the system. A change in the text from that of the previous manual is
indicated by a vertical line at the margin of the page. EDMS provides all of the features of Basic DMS plus additional

features.
RELATED PUBLICATIONS

Title Publication No,
Xerox Sigma 6 Computer/Reference Manual 90 17 13
Xerox Sigma 7 Computer/Reference Manual 90 09 50
Xerox Sigma 9 Computer/Reference Manual 90 17 33
Xerox Sigma Glossary of Computer Terminology 90 09 57
Xerox Control Program-Five CP-V/TS Reference Manual 90 09 07
Xerox Control Program-Five CP-V/OPS Reference Manual 90 16 75
Xerox Control Program=Five CP-V/TS User's Guide 90 16 92
Xerox ANS COBOL/LN Reference Manual 90 15 00
Xerox ANS COBOL (BPM)/OPS Reference Manual 90 15 01
Xerox Extended FORTRAN IV/LN Reference Manual 90 09 56
Xerox Extended FORTRAN IV/OPS Reference Manual 90 11 43
Xerox Meta-Symbol /LN, OPS Reference Manual 90 09 52
Xerox Data Management System (DMS)/Reference Manual 90 17 38
Xerox Extended Data Management System (EDMS)/User's Guide 90 30 37
Xerox Interactive Database Processor (IDP)/LN, OPS Reference Manual 90 30 66

Manual Content Codes: BP =batch processing, LN - language, OPS - operations, RP - remote processing, RT -real-time,
SM - system management, TS = time=sharing, UT - utilities

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features
may depend on a specific configuration of equipment such as additional tape units or larger memory . Customers should consult their Xerox sales representative
for details.

CONTENTS

INTRODUCTION 1 DBM Operational Interface 52
Total Nonshared Library 52
Combination Public and Shared Library 52
DBM DCB Requirements 52
EXTENDED DMS OVERVIEW 2 DCB Assignments i 53
Data Relationships 2
System Functions 6 5. EDMS UTILITY PROCESSORS 54
Database File Structure 6
Data Pages 6 Database Initialization (DMSINIT) — 54
Index Pages 8 AREA Statements 54
Inventory Pages 8 Dump Processor (DMSDUMP) 54
DUMP Directives 57
Load Processor (DMSLOAD) 57
DMSLOAD Directives 58
FILE DEFINITION PROCESSOR 9 Summary Statistics Processor (DMSSUMS) 59
Statistics Selection 60
Data Definition Language Syntax 9 Utilities Operational Interface 60
Schema Generation 12 DMSINIT 60
Schema Entry 12 DMSDUMP 61
Area Entires 13 DMSLOAD 62
Group Entries 14 DMSSUMS 63
Set Entries 21
END Entry _° 25 121
Subschema Generation 25 INDEX
Subschema Entry 26 _
Set Entry 27
Area Entries 27 APPENDIXES
Group Entries 28
END Entry 30 A, SCHEMA FILE 65
DMSFDP Operational Interface 30
DCB Assignments 31 B. SUBSCHEMA FILE 80
Terminal Usage 31 C. SAMPLE DATABASE DEFINITION 91
DATABASE MANAGER 32 D. DATABASE PAGE FORMATS 96
DBM Routine Call Format 32 E. SEQUENTIAL FILE FORMATS 9
Meta=Symbol Call Format 34
FORTRAN Call Format 34 F. ERROR MESSAGES 103
COBOL Call Format 34
DBM Routine Usage 36 G. DATA VALIDATION 118
Beginning of Processing 36
Adding Occurrences 37 H. ENQUEUE/DEQUEUE 19
Deleting Occurrences 39
Modifying Data Values 40 FIGURES
Modifying Linkages 40
Retrieving 42 1. Shorthand Notation for Data Relationships 3
Moving to Working Storage 45
Run-Time Statistics 45 2. NEXT Pointers in an Occurrence of
Run=Time Tracing 46 SET-A 4
Error Control 48
Preparing for Deadlock 49 3. NEXT and OWNER Pointers in an Occurrence
Checkpointing 50 of SET-B 5
Terminating Processing 50
Error Processing 50 4, NEXT and PRIOR Pointers in an Occurrence
Journaling 51 of SET-C 5
Database Lockout 51

Summary Statistics Collection 51 5. System Overview 7

C-4.

C-5.

DMSFDP Outputs

Run-Time Statistics Sample

Run-Time Trace Sample

DMSDUMP Output Sample (Batch Job)
Sample DMSDUMP Terminal Job

DMSSUMS Sample Output

Schema Database Diagram

Schema DDL for Schema

Subschema Definition Structure

Area Definition

Group Definition

Owner Definition

Member Definition

Item Definition

Control Definition

Subschema Definition

Password Definition

Indexed~Sequential (ISEQ) Definition

Check Definition

Alias Definition

Name Table Entry Format

Subschema File Directory Block Format
(Blockzero)

Schema DDL Listing for Sample Database

Schema Generation Summary Qutput for
Sample Database

Subschema-1 DDL and Summary Output for

Sample Database

COPY Listing Corresponding to
Subschema=1 for Sample Datobase

Subschema-2 DDL and Summary Qutput
for Sample Database

SYSTEM Corresponding to Subschema-2
for Sample Database

Data Page Format

10
47
47
55
56
59
66
71
80
81
81
83
83
85
86
86
87
87
88
89

89

90

92

93

93

94

95

26

Data Group Occurrence with Three-Byte

Set Pointers

Data Group Occurrence with Four-
Byte Set Pointers

Index Page Farmat

Inventory Page Format

Journal/Dump Begin Record

Journal/Dump End Record

Journal/Dump Page-Image Record
Journal/Dump File Format Summary

Statistics Job Id Record

Area Statistics Record

Group Statistics Record

Set Statistics Records

TABLES
PICTURE-TYPE Correspondences

Contents of the Communications
Control Block

Meta-Symbol Addresses

FORTRAN Addresses

COBOL Arguments

Trace Codes for DBM Calls

Schema Items

DMSFDP Error Messages

DBM Data-Dependent Errors

DBM Non=Data-Dependent Errors

DMSINIT Error Messages

DMSDUMP Error Messages

DMSLOAD Error Messages

DMSSUMS Error Messages

96

97
97
98
99
100
100
101
101
102
102

102

19

33
34
35
35
48
67

103
109
110
113
114
115

116

1. INTRODUCTION

The Xerox Extended Data Management System (EDMS) operates on Sigma 6/7/9 computers under the control of the
Xerox Control Program=Five (CP-V), and in conjunction with COBOL, Meta=Symbol, and FORTRAN applications
programs, It is designed spacifically for use by organizations that require the same data to be used for many pur-
poses and by many different applications programs.

Extended DMS provides a capability for accumulating large volumes of data into a single database, which may be
structured to reflect any desired data relationships, The structuring and related concepts are explained in Chap-
ter 2, "Extended DMS Overview".

A special Extended DMS processor, the File Definition Processor (DMSFDP), creates a database description in two
phases. The first phase generates a schema file that describes the complete database, its file size requirements, stor-
age and retrieval techniques, privacy controls, etc. In the second phase, the DMSFDP creates the subschema file
by extracting information from the schema file, The subschema may describe the complete database or only those
portions that are required by a specific application. The DMSFDP, its Data Definition Language (DDL) input, and
its operafional interface with CP-V are explained in Chapter 3.

The Database Manager (DBM) consists of a number of library routines, which are explained in Chapter 4, Included
in the explanation are the routine call formats for COBOL, Meta-Symbol, and FORTRAN, and descriptions of error
processing, journaling, tracing, and statistics collection. Also included are instructions for loading applications
programs with the library routines under CP-V.

The Extended DMS Utility processors (DMSINIT, DMSDUMP, DMSLOAD, and DMSSUMS)are described in Chapter 5.
The use of these processors for initializing files, saving and restoring the database, and printing summary statistics is
explained. Also explained are the operational interfaces of these processors with CP-V,

Introduction

1

2

2. EXTENDED DMS OVERVIEW

The Extended Data Management System (EDMS) serves an an interface between a user and hisdata. The user defines
his database and generates applications programs that communicate with EDMS in terms of the defined data charac-
teristics and relationships. EDMS, in turn, communicates with the host operating system in terms of files, gronules,
etc., to transfer the specified data values to and from the database in response o user program requests.

The concept of a database is central to the design of EDMS. An EDMS database is an organized, interrelated col -
lection of information required for various types of activities (e.g., @ company's accounting, invenfory, and personnel
records). Its purpose is to make the same information available for many different uses without incurring the over-
head of redundant storage. The value of an EDMS database is realized when there is a need to access the same data
values in several different ways, for several different purposes. For example, purchase order data may be used by
both accounts payable and inventory control. Accounts payable may need all data for all purchase orders to each
vendor. Inventory control may need the total number of parts ordered from all vendors foreach type of part ordered.
To reduce ‘the number of times the counts of parts ordered must be stored or to reduce the number of times afile must
be sorted to produce the information in the desired order, purchase-order data may be stored in an EDMS database
and simply linked in the desired ways. Similarly, information on, for example, students assigned to a particular
class may be linked in several different ways for use in generating class rosters and in generating studentgrade
reports.

The EDMS capability for accommodating multiple relationships among data values in adatabase is the most important
aspect of the system. Data relationships are described in the following paragraphs along with the system features pro-
vided for managing the database and the physical structure of the database files.

Data Relationships

The term "network=structured" refers to the relationships that can exist in an EDMS database. It implies that a unit

of data may be associated with more than one other data unit. For example, information specifying parts on order
can be associated with information describing the vendors from whom the parts were ordered, and with stock infor-
mation on the parts. Relationships in an EDMS database are described in terms of items, groups, and sets.

An item is a logical construet that defines the characteristics of a number of similar data values. The concept of
an item is analogous to that of a field. An item occurrence is a single data value with the specified characteristics.
For example, Smith might be an occurrence of an item called LASTNAME,

A group is a logical construct that defines a number of similar collections of item occurrences. A group occurrence
includes a fixed number of item occurrences, each in a fixed position relative to the others. For example, an
occurrence of a group called EMPLOYEE might include an occurrence of the item LASTNAME, an occurrence
of the item FIRSTNAME, and an occurrence of the item EMPLOYEENUMBER. Two group occurrences could be
depicted as

SMITH JOHN STOUT REX
1001 etc, 1002 etc.

A group occurrence can be considered as analogous to a record and the group itself to a record description or
definition.

A set is a logical construct that defines and controls the links existing between occurrences of specified groups. A
set occurrence consists of one occurrence of the group defined as owner, plus zero, one or more occurrences of the
group (or groups) defined as members. For example, a DEPARTMENT group, with an item DEPT-NAME could be

Extended DMS Overview

defined as the owner of DEPT-PERSONNEL set. If John Smith and Rex Stout were the only two employees in
the research department and EMPLOYEE the only group defined as @ member of DEPT-PERSONNEL set, an oc-
currence of the set could be depicted as follows:

—————— ———— —

Set Occurrence I

|

i RESEARCH
1

|

|

SMITH JOHN STOUT REX
1001 1002

A set occurrence is also somewhat similar to a record, in the sense that it contains all of a certain type of informa-
tion about an entity (the names of all employees in a department, in the example above).

The links defining a set occurrence are established between the one owner occurrence and the member occurrences,
if any. A notation such as shown in Figure 1 can be used to depict the relationships that exist between the one
owner group occurrence and the member group occurrences in each occurrence of the set. It should be noted that
Figure 1 shows a shorthand notation in which each box may represent many data values, and each connecting line
may represent many different set occurrences, each consisting of one owner group occurrence and zero, one, or many
member group occurrences.

Given these cautions, we can then describe groups as being owners or members of sets, and a set as consisting of one
owner group and one or more member groups. A group can participate in one or more sets as owner and one or more

sets as a member. For example, the group named GROUP-2 in Figure 1 is a member of the set named SET-A and the
owner of the sets named SET-8 and SET-C.

GROUP-1
Owner SET-A

SET-A

4
GROUP-2

Member SET-A
Owner SET-B
Owner SET-C

SET-B

GROUP-3

Member SET-B
Owner SET-D

SET-C

GROUP-4

SET-D

Member SET-C
Member SET-D -

Figure 1. Shorthand Notation for Data Relationships

Data Relationships

4

Though not shown in Figure 1, sets with two or more member groups are legal configurations. For example, a
group named GROUP-5 could also be defined as a member of SET-D. Or referring to the previous example,
the DEPT-PERSONNEL set could have a CONSULTANT group as well as the EMPLOYEE group as a member. This
configuration would be depicted as follows:

DEPARTMENT
DEPT-PERSONNEL
CONSULTANT EMPLOYEE

The data relationships are incorporated in the database by means of set pointers. Every group occurrence has a
NEXT pointer for each set in which the group participates (see Figure 2). In addition to the NEXT pointers, occur-
rences of member groups may have OWNER pointers as illustrated in Figure 3, and both member and owner group oc-
currences may have PRIOR pointers, as illustrated in Figure 4. Only the NEXT pointers are always inserted in the
database, OWNER and PRIOR pointers are user options. Appendix C describes the database that is illustrated in
Figures 1 through 4.) .

GROUP-1 Occurrence,
SET-A NEXT pointer.}

GROUP-2 (first occurrence)”. <
SET-A NEXT pointer.

Other set pointers.f — QOccurrences of GROUP-3 and GROUP-4

GROUP-2 (2nd occurrence)'t. _
SET-A NEXT pointer. l

Other set pointers. —¥ Occurrences of GROUP-3 and GROUP-4

GROUP-2 (nth occurrence)'’,
SET-A NEXT pointer.

Other set pointers.f ~ ¥ Occurrences of GROUP-3 and GROUP-4

t . . .
Does not represent actual size or position of pointers.

HIn the occurrence of SET-A.

Figure 2. NEXT Pointers in an Occurrence of SET-A

Data Relationships

GROUP=-2 (an occurrence).
Other set pointers.t — Occurrences of GROUP-2 or GROUP-1
SET-B NEXT pointer.
Other set pointers. - b Occurrences of GROUP-4 or GROUP-2

GROUP-3 (1st occurrence).t <
SET-B NEXT pointer.

- SET-B OWNER pointer,
Other set pointer. —® Occurrence of GROUP-4

GROUP-3 (2nd occurrence).ft |e
SET-B NEXT pointer. 1

< SET-B OWNER pointer.
Other set pointer. —# Occurrence of GROUP-4

GROUP=3 (nth occurrence).’"
SET-B NEXT pointer.

SET-B OWNER pointer,
Other set pointer. —» Occurrence of GROUP-4

t . - .
Does not represent actual size or position of pointers.

”ln the occurrence of SET-B.

Figure 3. NEXT and OWNER Pointers in an Occurrence of SET-B

> GROUP-2 Occurrence.
Other set [:miuni‘ers.f — Occurrences of GROUP-2, GROUP-3, GROUP-1
SET-C PRIOR pointer,
SET-C NEXT pointer.

GROUP-4 (1st occurrence).tt
SET-C PRIOR pointer.

SET-C NEXT pointer.
Other set pointers, — Occurrences of GROUP-3 and GROUP-4

GROUP-4 (2nd occurrence) .’ |
SET-C PRIOR pointer,

SET-C NEXT pointer. |
Other set pointers. " | Occurrences of GROUP-3 and GROUP-4-

; .

. GROUP-4 (nth occurrence) RUNN
‘ SET-C PRIOR poinfer.
SET-C NEXT pointer. .
Other set pointers. —® Occurrences of GROUP-3 and GROUP-4

f . .
Does not represent actual size or position of pointers.
In the occurrence of SET-C.

Figure 4. NEXT and PRIOR Pointers in an Occurrence of SET-C

Data Relationships

6

System Functions

The combination of free-standing processors and library routines that comprises EDMS performs four basic categories
of system functions:

o Database Definition.
e Database Initialization (null values).
e Data Manipulation (storing, updating, retrieving, efc).

e Auxiliary Support (maintaining security and integrity, collecting and printing statistics, supplying debug-
ging support to user's programs, etc.).

See Figure 5 for a graphic representation of the system.

The definition function, centralized in the File Definition Processor (DMSFDP), provides for user specification of
database file size, item, group, and set characteristics, and security and integrity requirements. Definition is the
required first step in any database activity, and affects the performance of all subsequent functions.

Database initialization prepares the database files for receiving group occurrences. This step is necessary before
any actual data values can be added to the database. It creates the complete, maximum=size files, with pages
left blank except for control information. This step is performed by a free-standing utility processor, DMSINIT.

Data manipulation is the actual storing, retrieving, and changing of data values. It is performed, in response to user
program requests, by the set of library routines referred to collectively as the Data Base Manager (DBM). A
working storage area in the user's program, in a format determined by the database definition, is used for communi-
cation with the DBM, which performs any necessary file manipulation.

Auxiliary support functions include ensuring database integrity by saving copies of the files, journaling changes, trac-
ing program action, keeping and printing statistics, and other techniques. These features are provided partly by
the DBM, and partly by three utility processors, DMSDUMP, DMSLOAD, and DMSSUMS.

Database File Structure

The EDMS database exists in random access storage (RAD or disk) as one or more areas, each of which is a file rec-
ognizable by the host operating system. EDMS subdivides each area into 512-word page segments. There are three
types of pages: data, inventory, and index pages. The number of data pages in each area is specified when the
database is defined. If the EDMS inventory facility is selected, one inventory page is added for each 2032 data pages
in the area. Pages for the primary index are added if the area is designated for storage of group occurrences in in-
dex sequential order. Each area may contain from 1 to 2201 (1,048,575) pages. Pages are numbered consecutively
within each area, from 1 to the number defined for the area, plus the number added for inventory and index.

Data Pages

Data pages are used for storing the group occurrences in the area. A data page has a two-word page header and may
contain as many as 256 group occurrences and an optional checksum. (See Appendix D, Figure D-1, for an illustra-
tion of the data page format.)

The maximum number of group occurrences that can be stored on a data page depends on the size of the occurrences
and the number of available line numbers. The size of a group occurrence, which is a collection of item occur-
rences, control data, and set pointers, is determined by the number and characteristics of the items defined for the

System Functions/Database File Structure

Data
Definition
Language

File Definition
Processor (DMSFDP)

|
I
|
l
|
|
|
|
_

Database
Description in
Two Forms

Note: Printed output from several
system features is not shown.

User's Raw
Data Input

|
|
|
|
l
|
|
|
|
|

Initialization
Utility (DMSINIT)

Null
Database

A

User's Applications Programs
Combined with Database Manager
(DBM) Library Routines

Database

Dump Utility

y

(DMSDUMP)
Backup Journal
File File

Trace and
Run=Time
Statistics

Statistics
File

4

Restore Utility (DMSLOAD)

Summary Statistics

Utility (DMSSUMS)

Summary
Statistics

Listing

Figure 5. System Overview

Database File Structure

7

8

group and the number of sets in which it participates. All occurrences of a given group are the same size,
but many groups, each with its own size, may be defined for a given database.

The maximum number of available line numbers is determined by the number of pages in the area. When a group oc-
currence is inserted in the database, it is assigned a line number that is appended to the page number and the area
number to form a reference code that uniquely identifies the occurrence. The reference code consists of eight bits
of area number and 24 bits shared between page number and line number. Thedefaultallocation 24 bits allows repre-
sentation of the page numbers of all pagesinthe area, with the remaining bits of the 24 available for line number. For
example, if the area contains the maximum number of pages, 20 bits are reserved for page number and only four are
available for line number. Similarly, fewer pages allow more bits, up to a maximum of eight, for line number. Thus,
in a one-page area or in a 65,535-page area, 16 bits are reserved for page number and eight bits for line number.
The user may override the default allocation of bits to allow fewer than the maximum available for line numbers. In
a one~area database, set pointers consist of only the 24-bit page-line-number portion of the reference codes. The
complete 32-bit codes,. including area number, are used for set pointers in databases of two or more areas.

Index Pages

An index page is composed of a three~word page header, a variable number of index entries, and an optional check-
sum. See Appendix D, Figure D-4, for index page format. The number of pages necessary to contain the indexes is
added to the number of data pages specified for an area. Thus, after an area is initialized by the DMSINIT utility,
the index pages will follow the data pages of the area. The number of index pages is based on the number of data
pages defined to contain group occurrences in index sequential order, and the length of the items defined as the
index-key items for the group.

The contents of the index pages are automatically updated by the DBM. As a data page is filled, the highest key
value on the data page becomes the index entry in a level-0 index page. When a level-0 index page is filled,
the highest key value on that page becomes an index entry on a level-1 index page. The creation of higher level
indexes will continue to a maximum of eight levels. The relative position of an entry within an index level corres-
ponds to the relative page number of the page that the entry represents.

Once an index entry is created, it is not removed; i.e., deleting the highest key value on a data page will not
change the index for that page.

Inventory Pages

A database area has inventory pages if the user specifies aninventory percentage when he defines the area (see "Area
Entries" in the section titled "Schema Generation" in Chapter 3). Each inventory page accommodates space-
available counts for 2032 data pages. Figure D-5 in Appendix D shows the inventory page format. The inventory
pages, initialized with zero space-available counts by DMSINIT, immediately follow the area's data pages or index
pages, if any exist.

The DBM automatically maintains the space-available count for a data page when group occurrences occupy more
than the specified percentage of the nonheader words on the page.

Database File Structure

3. FILE DEFINITION PROCESSOR

The EDMS user defines his database to the File Definition Processor (DMSFDP) in terms of items, groups, sets, and
areas. DMSFDP processes the user's definition, stated in a Data Definition Language (DDL), and converts it fo a
form that is usable by the Database Manager (DBM). The conversion is in two phases. The first phase results in a
schema and a listing of error messages, summary information and, optionally, the DDL input.

The schema is established as a file, resident on a random access device. This file contains the names and descrip-
tions of all the items, groups, sets, and areas of the database, and is available for use by the second-phase DMSFDP
and the EDMS utilities. Because of its size and complexity, the schema is an inefficient tool that cannotbe used by
the DBM in directly controlling application program interface with the database. Instead, a subschema, resulting
from the second phase of DMSFDP, is used by the DBM as a guide for processing the database.

The second phase of DMSFDP also develops the subschema=-specific working storage format that is required for user-
program communication with the DBM. Declarations to generate the required formats may be output in files suitable
for use in assembling/compiling the user's applications programs, as may listings of the declarations and of the sub-
schema DDL. Figure 6 illustrates DMSFDP outputs and their use in other processes.

Data Definition Language Syntax

The major element of the DDL is the eniry. A DDL entry is either a simple entry consisting of one subentry, or a
compound entry consisting of two or more subentries. A subentry is composed of one or more clauses and is termi-
nated by a period. The first clause in the first (or only) subentry of an entry identifies the entry, and the first clause
in the second, or a succeeding, subentry identifies the subentry. Every clause after the first in a subentry starts with
a word, optionally preceded by a semicolon, that identifies the clause. The second and subsequent clauses in a
subentry may appear in any order, but the syntactical units within a clause must appear in the specified order.

Clauses consist of words, which include system words and user-generated names, and literals, A word is a string of
not more than 30 characters selected from the letters A through Z, the digits 0 through 9, and the hyphen. A word
may not begin or end with a hyphen and must have at least one nonnumeric character. Although many system-words
having a special meaning in their DDL may also appear as user-generated names, some would result in ambiguity if
so used and are reserved for the system. These reserved words are listed below, along with some system-generated
names which must not be duplicated by user names,

ALIASES END PRIVACY
ALL FOR SCHEMA
ARE GROUP SET

AREA INVERT SET-TABLE
AREA-MASTERS -xx! IS STATISTICS
AREA-TABLE KEY STORAGE
CCB MEMBER SYSTEM
COMPONENTS NAME THRU
COPY NUMBER USING
DUPLICATES ON WITHIN

Literals canbe numeric or nonnumeric. A numeric literal is a string of characters selected from the digits Othrough 9,
the plus sign, the minus sign, the decimal point, and the letter E. Integers, the most commonly used numeric literals
in the DDL, are composed of digits only. The number of digits allowed in aninteger depends on its use in a clause.
Noninteger numeric literals appear only in CHECK clauses (see "Group Entry" in the section titled "Schema
Generation", below).

A nonnumeric literal is a string of characters enclosed in a pair of apostrophes. To include an apostrophe in
a literal, two apostrophes must be used. The second apostrophe does not become part of the literal. Nonnumeric
t . .

x represents any digit.

File Definition Processor

\

10

Schema DDL.

DMSFDP
Phase I.

A

Schema DDL

Listing.

Schema
/ | File.
/
/
/
y

(e
:Compiler

Subschema DDL.

DMSFDP
PHASE II.

/ Subschema DDL

/ Listing.

{ EDMS Utilities}

COPY Listing.

o

SYSTEM Listing.

Sub~-
schema

File.

Symbol
Assembler

}
Meta-]

User
Program

DBM and]

Data Definition Language Syntax

Figure 6. DMSFDP Outputs

literals are used for passwords and privacy locks (see Schema Entry and Subschema Entry, below) and in CHECK
clauses. The specific usage determines the allowable size.

The space, the comma, the period, and the semicolon are considered punctuation marks (except in comments and
nonnumeric literals) and are used as follows:

1. The space (blank) is a separator, required after words and literals in the absence of any other separator. A
space may precede or follow any other separator, and many spaces are the same as one (except in comments
and nonnumeric literals).

2, A comma is a separator that is legal only where it is specifically indicated in a language format. The comma,
where it is legal, can also serve as a terminator for words and numeric literals. The comma is neverrequired.

3. A semicolon is an optional separator that may be used between clauses but is not needed to indicate the
end or beginning of a clause. ' The semicolon, where it is legal, can also serve as a terminator for words
and numeric literals,

4. The period (followed by a space) is required fo terminate an entry or subentry,

A comment may be included at any point where a space is legal. Comments are delimited on the left by the con-
tiguous characters /* and on the right by */. A comment may not contain the */ character pair.

.

The DDL is essentially free-form in terms of length (up to 80 characters) of units of input. The input "unit" is
termed a line, though the original input source may be cards, keyboard terminal messages, or any other character-
string source. There is no provision in the language for designating a continuation to a new line (card, etc.). An
entry or subentry is considered continued until it is terminated by a period, regardless of the number of lines used.
However, the end of a line terminates a word or numeric literal.

In this manual, the following notation is used to show the DDL entry/subentry format:
1. An underlined word in upper case is required if the part of the format containing it is used.
2. Uppercase words not underlined are optional, but are legal only in the indicated positions.
3. Words in lower case represent names or values that are supplied by the user.

4. Brackets indicate that the enclosed part of the format is optional. If two or more language elements are
vertically stacked within brackets, none of the elements is required and no more than one maybe included.
For example,

a
b a, orb, or c, or none.

[

5. Braces indicate a required choice. Of the two or more elements vertically stacked within braces, only one
may be used, and one is required. For example,

a
b a, orb, or c.

c

6. An ellipsis indicates that repetition is allowed. The portion of a format that may be repeated is the total
enclosed element whose outermost right bracket or brace immediately precedes the ellipsis. .For example,

[[eb)<]. .. The whole sequence a b ¢ may be repeated.

[[ablfc]. ..] Only c may be repeated.

Data Definition Language Syntax

n

12

Schema Generation
The DMSFDP processes schema DDL and creates a schema file, an EDMS database whose subject is the user's
database being defined. The data values in the schema database describe the areas, groups, items, and sets of the
user's database. The schema database is described in detail in Appendix A. The schema DDL provides the data
input for the schema database as well as information about the schema file itself.
The schema DDL consists of five types of entries.

1. Schema entry —one only.

2. Area entry —one for each area of the database.

3. Group entry —one for each group defined in the database.

4. Set entry —one for each set in the database.

5. End entry —one only.

The schema entry is required and must be the first DDL entry. It is followed by the area entries (at least one),
which are followed by the group entries {(at least one), which are followed by the set entries (none required). The
end entry is the last schema entry. The schema, area, and end entries are simple entries, each consisting of a

single subentry. Group entries may be simple or compound. Set entries are always compound, with at least two
subentries.

Schema Entry

The schema entry supplies the file name for the schema file and specifies locks and passwords for limiting access to
the schema itself and to the user's database.

Format
SCHEMA NAME IS schema-name
[; PRIVACY LOCK FOR EXTRACT IS privacy-lock-1]

[; PRIVACY LOCK FOR ALTER IS privacy-lock-2]

RETRIEVE) | KEYS ARE} . .
[; PASSWORD IS password -1 [,{m‘] [KEY S] integer-1[, integer-2]. .] .] e

Usage Rules

1. The SCHEMA clause, which must be the first clause in the entry, specifies the file name for the schema.
The specified schema-name must conform to the file naming conventions of the host operating system as
well as to the DDL rules for names.

2. The PRIVACY LOCK clauses specify the locks to be used to prevent unauthorized subschema generation
using the schema (EXTRACT) and unauthorized modifications (ALTER) of the schema file. (The ALTER
lock is not currently used and is provided for use by future enhancements.) The form for privacy-lock-1
and privacy-lock=2 is a nonnumeric literal of up to eight characters. If fewer than eight characters are
specified, blanks are added on the right to make an eight <character lock. A key that exactly matchesthe
EXTRACT lock must be supplied in the subschema entry (see "Subschema Generation", below) when a sub-
schema is to be generated.

3. The PASSWORD clause provides information for the DBM to use in controlling access to the user's data~

base. A user's program must supply the DBM with one of the specified passwords to gain access to any
database area. The passwords are specified as nonnumeric literals of up to eight characters. Blanks are

Schema Generation

added on the right to make eight characters if fewer are specified. Any number of passwords can be specified,
within the limits of physical storage space available for the schema file. Access to individual groups and items
may be further conirolled by the RETRIEVE/UPDATE keys, specified as integers from 1 through 255. A user program
is allowed to access the groups and items whose retrieve/update keys match those associated with the password it sup-
plied. (See description of DDL group and item entries, below.) From 0 to 255 refrieve keys and from 0 to 255 up-
date keys may be specified for each password.

Area Entries

Area entries supply (1) the file names by which the database areas are identified for the host operating system and in
the user's working storage declarations generated by the FDP; (2) information on the size of the area file; and (3) in-
formation on how the file space is to be managed by the DBM.

Format

AREA NAME IS area-name-1 CONTAINS integer-1 PAGES
; NUMBER IS integer~2
[; INVENTORY PERCENT IS integer=-3]
[; CHECKSUM 1S [NOT JREQUIRED)
[; JOURNAL IS [NOT JREQUIRED]
[; ENCIPHERING IS [NOT]REQUIRED]
[; OVERFLOW RANGE IS PAGE integer-4 THRU PAGE integer-5)
[} FILL PERCENT IS integer-6]

[; LINES PER PAGE [LSRE] integer-7).

Usage Rules

1. The AREA NAME clause must be the first in the area entry. Since area-name-1 is subsequently used by the
EDMS initialization utility (see Chapter 5) for the file name of the area, the name must conform to the file-
naming conventions of the host operating system as well as to the DDL rules for names. The mandatory
CONTAINS subclause, which must immediately follow the NAME subclause, specifies the number of data
pages required for all occurrences of all groups defined as within the area, including groups defined in in-
vert.subentries (see "Group Entries", below). The EDMS initialization utility calculates the size of the
area file by adding (to the number of pages specified) the number of pages, if any, required for inventory
and indexes. The number specified by integer-1 must be low enough to ensure that the total area size is
not greater than 1,048,575.

2. The required NUMBER clause provides a unique integer identifier for the area. The number specified by
integer-2 forms the area-number part of the reference codes for group occurrences in the area. The value
specified for integer=2 must be in the range 1 to é4, inclusive, and must not duplicate the number of any
other area in the database.

3. The INVENTORY clause indicates that inventory pages are to be included in the area, and specifies the
percentage of data words on a page that may be occupied by group occurrences without requiring main-
tenance of space-available counts, (Data words here means any words not required for header or check-
sum.) Integer-3 must be in the range 50 to 99, inclusive. For example, INVENTORY PERCENT IS 50
means that space-available counts are to be maintained for all data pages on which more than 255 words
(254 if there isachecksum) are occupied by group occurrences. If the inventory clause is not included, no
pages will be added to the area file for inventory.

4, The CHECKSUM clause indicates whether or not arithmetic checksums are to be included on the EDMS

data pages to provide an error detection capability. If the checksum clause is not included, the data
pages will be checksummed, so the clause is needed only if the NOT option is desired. CHECKSUM NOT

Schema Generation

14

is illegal if an ENCIPHERING IS REQUIRED clause (see below) is included. The DBM and the EDMS
Utility routines generate and monitor checksums when the data pages are written and read. The user re-
ceives an indication if a checksum error is detected.

5. The JOURNAL clause indicates whether or not a journal file is to be maintained when a user program up-
dates the database. (See "Journaling", in Chapter 4.) If the journal clause is not included, no journal-
ing will occur. Specifying JOURNAL NOT, therefore, has the same effect as omitting the clause.

6. The ENCIPHERING clause indicates whether or not the area's data pages and index pages are to be en-
ciphered before being written in the file. Specifying ENCIPHERING IS REQUIRED causes the DBM to use
a four-byte key=-value supplied by the user's program at run time to modify the words on each page so that
they cannot be easily interpreted. To access the data in the area, the user must supply to the DBM or to
the EDMS utility routine the same value that was used as a key to encipher the pages. Pages are always
checksummed before enciphering, and the checksum is tested after the deciphering. A checksum error in~
dication from the DBM or from an EDMS utility may, therefore, signal either a data error or an improper

enciphering key. Specifying ENCIPHERING 1S NOT REQUIRED or omitting the enciphering clause in-
dicates that the pages are not to be enciphered.

7. The OVERFLOW clause has meaning and is legal only if a group with location mode of indexed is defined
as within the area (see "Group Entries", below). Integer-4 specifies the first, and integer-5 the last,page
of a range that is to be reserved exclusively for overflow from the range specified for the indexed group.
The overflow pages will be used when a group occurrence that would normally be stored on a page within
the indexed group range will not fit on that page. (See "Adding Occurrences" in Chapter 4.) Integer-4
must be one or greater and integer=5 must be less than or equal to the total number of data pages specified
by integer=1 in the CONTAINS subclause.

8. The FILL PERCENT clause is also applicable and legal only if the area is to contain indexed group occur-
rences. The percent specified by integer-6 controls the number of words on a page within the page-range
of the indexed group that will be used for storing group occurrences when the area is first created. Integer-6
may be any integer from 1 through 100. (Specifying 100 is the same as not specifying fill percent.) The
percent specified by integer-6 is applied to 510 (or 509, if checksum is specified) to determine the maxi-
mum number of words to be used while the area is open in create mode. (See "Begin Processing", in Chap~
ter 4, for an explanation of open in create mode.) It is the user's responsibility to select a reasonable per-

centage figure based on the size of his group occurrences and the relative number of occurrences he will
store during create mode.

9. The LINES clause allows the user to decrease the default value for the maximum number of group occur-
rences that may be contained in any one page in the area. The default value for the number of lines per
page is a function of the number of data pages in the areq, as follows:

Number of Data Pages in Area Default Lines Per Page
T to 65, 535 255
65,536 to 131,071 127
131,072 to 262, 143 63
262,144 to 524,287 31
524,288 to 1,048,575 15

Legal values for integer-7 are 15, 31, 63, 127 and 255. The value of integer-7 may not exceed the de-
fault lines per page for the area.

Group Entries

Group entries specify the size, form and order of appearance of item values within group occurrences, the method
for locating occurrences, the privacy locks that are to control access to the occurrences, and which items, if any,

are to serve as secondary indexes. Corollary groups or subgroups, used to manipulate secondary indexes, are de-
fined to designate items as secondary indexes.

A group entry consists of a group subentry, followed by item subentries for all items in the group, followed by invert
subentries for all of the corollary groups that control secondary indexes for the main group.

Schema Generation

Group Entry Skeleton

Group subentry
First item subentry

Last item subentry

First invert subentry

Last invert subentry

The required group subentry identifies the group entry. Item subentries and invert subentries are optional, but a
group entry with invert subentries must have corresponding item subentries. Other considerations usually necessitate
item subentries. Indexed and cale location modes require item values to determine storage and retrieval algorithms;
item values are used to determine linking order for member group occurrences in sorted sets; and finally, only items
have actual data values; therefore, occurrences of groups with no items are null occurrences, useful only for linking
other group occurrences. An itemless group might be useful on two occasions: (1) to serve as the owner of a set that
links all group occurrences of a single type, and (2) to serve as a member of two sets and establish connections be-
tween specific occurrences of independent groups.

ExomEIe 1

An application needs to access department information in order by department. A simple way to provide for this is
to define a set whose sole purpose is to link department group occurrences.

DEPARTMENT-HEADER

DEPTSET

DEPARTMENT

The group named DEPARTMENT=HEADER would not need to have any items (if its location mode were DIRECT, see
below), as all the data would be carried in occurrences of the group named DEPARTMENT, which could be accessed
through the set named DEPTSET.

ExamBIe 2

A department responsible for many projects and with mony employees must process project information and employee
information and determine which employees are assigned to which project.

DEPARTMENT
DEPT-EMP DEPT-PROJ
SET SET
EMPLOYEE PROJECT
EMP-PROJ PRO-EMP
SET SET
LNK=-EMP-PROJ

Since occurrences of the LNK~-EMP=~PROJ groupserve only to linkspecific occurrences of EMPLOYEE tospecific occur~
rences of PROJECT, this groupdoes not require any item subentries (assuming its location mode is via one of the sets).

Group Subentry

Group subentries specify the name of the group, the criteria for identifying a specific group occurrence, the
guidelines for placing the group in physical storage, and the privacy controls for the group.

Schema Generation

16

Format

GROUP NAME IS group-name-1

; WITHIN area-name =1 [,[RANGE IS PAGE integer-1 THRU PAGE integer-2]

(D[RECT[,STORAGE IS set-name~-1 SET]

INDEXED USING data-item-name-1[, data-item-name-~2]. . .

v

; LOCATION MODE IS{ CALC USING data-item-name -3 [, data-item-name-4]. . .

DUPLICATES ARE [NOT]ALLOWED

LVIA set-name-2 SET [, STORAGE IS set-name -3 SET] J

; NUMBER IS integer-3

[; PRIVACY LOCK FOR RETRIEVE IS integer-4]
[; PRIVACY LOCK FOR UPDATE IS integer-5]

[; STATISTICS ARE[NOT]REQUIRED].

Usage Rules

1.

The GROUP NAME clause is required as the first clause in the subentry, The specified name identifies the
group for reference in subsequent set eniries, subschema selection entries, and in working storage declara-
tions generated by DMSFDP, The name is used as specified for COBOL declarations but may be modified
for Meta~Symbol declarations. (See "Subschema Entry" under "Subschema Generation", below.) Group-
name-1 must conform to the DDL rules for names and must not be the same as the name specified for any
other group or for any item or set in the database.

The WITHIN clause specifies the area in which all occurrences of the group are to be stored, with area-
name=1 the name of an area defined for the database (see "Area Entries”, above). The RANGE subclause
specifies the range of pages (1 < integer-1 < integer-2) in the area on which group occurrences will be
stored. The pages are not reserved exclusively for the group, but there are some restrictions on overlapping
page ranges if a group with indexed location mode is defined as within the area. No group's range may
overlap that specified for OVERFLOW (see "Area Entries”, above), and only a limited selection of other
groups may be ranged with the indexed group. Specifically, a group's range may coincide with that of
the indexed group only if its storage owner may be legally ranged with the indexed group. The storage
owner (i.e., the owner of the set specified in the STORAGE clause or the owner of the via set if there is
no STORAGE clause) may be the indexed group itself, or it may be a group whose storage owner is the
indexed group, etc., down as many levels as desired. The range of a group whose location mode is calc
may not overlap the range of an indexed group. Any range that overlaps the range of an indexed group
must exactly coincide with it. If RANGE is specified, integer-1 must be greater than or equal to 1 and
less than or equal to integer=2, and integer-2 must be less than or equal to the number of data pages speci-
fied for the area, If RANGE is not specified, the range used is 1 through the highest numbered data page
in the area.

The LOCATION MODE clause specifies the most important group characteristic. The location mode deter-
mines how the DBM selects physical locations for group occurrences and the primary means by which the
user identifies a specific occurrence to the DBM for retrieval and set-linking purposes, It also affects the
types of set linkages that are legal for the group. There are four location modes available: direct, indexed,
calc, and via set,

DIRECT — The user identifies a specific group occurrence to the DBM by supplying the reference code that
is returned by the DBM when the occurrence is stored. The location selected by the DBM for storing an
occurrence depends on whether there is a STORAGE set specified in the definition. If a STORAGE set is
specified, a group occurrence will be stored physically near its associated owner occurrence, If a STOR-
AGE set is not specified, the user must supply the area number and may supply a base page number in his
working storage for the DBM to use in selecting a physical location. (See "Adding Occurrences" in Chap-
ter 4.) If STORAGE is specified, the set owner must be defined as within the area identified by area-
name-1, The group's inclusion in the set must not be manual (see "Member Subentry”, below).

Schema Generation

INDEXED — Indexed group occurrences are stored insequential order of increasing key values. A key value
is formed by the catenation of the values of the items identified by data-item-name~1, data-item-name=-2,
etc. From one to sevenitems may bespecified, The number of items used should be sufficient to provide

a unique Key value for each occurrence of the group, as duplicate key values are not allowed. Thehigh-~
est key value stored on a page is also stored on an index page as the key for the data page. Group occur-
rences may then be retrieved either individually by means of specific key values, or sequentially in either
direction,

CALC — User supplies, in working storage, the control item values of the specific group occurrence to be
refrieved. Group occurrences are stored on or near a base page whose page number is determined through
a hashing of the values of the control items identified by data-item-name -3, data~-item-name-4, etc. From
one to seven control items may be identified, all to be defined in item subentries in the group entry. The
DUPLICATES phrase is required in the cale specification. If duplicates are not allowed, a data-dependent
error return will be made to a user's program that attempts to store a group occurrence whose combined con-
trol item values duplicate those of an existing group occurrence. If duplicates are allowed, more than one
group occurrence may have a specific control-item value combination and the user will have to make more
than one retrieval request to obtain all group occurrences with that value.

VIA SET — Each occurrence of the group, which must be defined as an automatic member of the set identi-
fied by set-name-2, is stored physically near the owner occurrence with which it is associated, However,
if a range is specified for the group, the occurrences will be stored within that range regardless of the lo-
cation of the selected owner occurrences. The set-name=3 set of the optional STORAGE clause replaces
set-name-1 set for positioning of occurrences, but it does not override a RANGE specification, The pri-
mary means of identifying a specific occurrence of the group to the DBM for retrieval is by relating it to
a specific occurrence of the set identified by set-name-2, If STORAGE is specified, theset owner must be
defined as within the area, and the group's inclusion in the set must not be manual.

4. The mandatory NUMBER clause assigns a unique integer identifier to the group. AI.I occurrences of the
group will contain this number, which will also be part of the working storage ldenhfle.r used to store the
reference code of the most recently accessed occurrence of this group (see the description of "Current-of=
Type" under "Adding Occurrences" in Chapter 4). The value of integer-3 may range from 1 to 999, but
must not duplicate the value assigned to any other group defined for the database.

5. The PRIVACY LOCK clauses supply lock values (integers 1 to 255) that DBM and the dump utility use to
determine if a user has authority to retrieve or update the group occurrences. If locks are specified, group
(or item) occurrences cannot be retrieved or updated unless akey that matches the lock is associated with
the password supplied to the DBM in the user program's working storage or as input to the dump utility, The
value of integer-4 and integer-5 must, therefore, match appropriate keys specified in a PASSWORD clause
in the schema entry.

6. The STATISTICS clause indicates whether or not the DBM is to keep summary~type statistics when group oc-
currences are stored, retrieved, or deleted. If the clause indicates that STATISTICS ARE REQUIRED, the
DBM will collect the statistics automatically during user program operation, though the user must assign a
file (see DBM "Operational Interface" in Chapter 4) for storing the statistics. If NOT is specified or if the
clause is omitted, no summary statistics will be kept on the group.

Item Subentries

Item subentries specify the characteristics of the items in the group. All of the item subentries for a group fo-
gether provide an image of the data portion of the group occurrences in the database. The item values exist
in the group occurrences in the exact order in which the item subentries occur, with no intervening slack bytes.
For this reason, the order of the item subentries can affect the efficiency of subsequent accesses of the defined
datcbase. For greatest efficiency, the item subentries should be arranged in an order that results in binary and
floating=-point (long and short) item values beginning on word boundaries.

Schema Generation

17

18

Format

data-item-nome =1

1.

[; {%_%I%—E} IS character -«fring]

[BINARY W

M}
LONG

PACKED DECIMAL[, integer-1]

FLOATING [

CHARACTER(, integer-2]
\

OCCURS integer-3 TIMES]

~

PRIVACY LOCK FOR RETRIEVE IS integer-4]

r—|rr!r—1

PRIVACY LOCK FOR UPDATE IS integer-5]

PICTURE
[7 CHECK IS {RANGE OF literal-1 THRU lireral-z}]’ "

~

Usage Rules

Data-item-name-1 must appear first in the item subentry, must conform to the DDL rules for names, and
must not be the same as the name specified for another item in the group or for any set or group defined for
the database. The specified data-item-name is used in the working storage declarations that are gener-
ated for use in COBOL and Meta-Symbol applications programs. (In the COBOL definition the name ap-
pears as specified, but it may be modified for Meta-Symbol usage; see "Subschema Generation", below.)

The PICTURE clause may be used to indicate the form of the values of certain types of items. The picture
is included in the COBOL working storage declarations and may be used by the DBM to perform validity
checks on input data values (see CHECK clause, below). Characters in the picture character=string
represent characters and character positions in data values. The picture-character-string characters have
the following meaning.

A — letter or space

X —any character

9 ~digit

V - assumed decimal point
P —assumed scaling position

S —sign (+or ~) — must be leftmost character if used.

To indicate a number of characters, the representative character (except S) may either be repeated or
followed by an integer enclosed in parentheses. For example, AA and A(2) both signify two letters.
The maximum number of characters in the picture character string is 30. The maximum item size depends
on a combination of the picture information and the specified item type. The PICTURE clause is required if
the TYPE clause (below) is not included, and is illegal for certain values of TYPE (see Table 1),

The TYPE clause is used in conjunction with the PICTURE clause to determine (1)the database representation
of the item values and (2) the method DBM uses to process the values. The allowable item size depends on
the TYPE-PICTURE combination. The TYPE clause may specify item size if TYPE is PACKED DECIMAL
(integer-1) or CHARACTER (integer=2). If a size is specified, it must be the same as the size implied by the
picture clause. The size is required if the PICTURE clause is omitted. Table 1shows PICTURE-TYPE relation-
ships, the EDMS interpretation of each combination, and the allowable item sizes for each.

Schema Generation

Table 1. PICTURE-TYPE Correspondences

Type Picture DMS Interpretation Size
Binary Illegal Binary Fixed —one word.
Floating Long Illegal Double Precision Fixed —two words.
Floating=Point
Floating Short Illegal Single Precision Fixed —one word.
Floating=-Point
Packed Decimal 9's, P's, S, and V Packed Decimal Variable —maximum 31 digits
(16 bytes).
Character or not 9's, P's, S, and V Signed Numeric Variable —maximum 31 digits
specified (31 bytes) (only 9's counted).
Character or not 9's, P's, and V Numeric Variable —maximum 31 digits
specified (no) (31 bytes) (only 9's counted).
Character or not A's Alphabetic Variable —maximum 255 characters.
specified
Character or not X's, or A's, Alphanumeric Variable —maximum 255 characters.
specified X's, and 9's
4. The OCCURS clause indicates the number of times an item value is repeated in a group occurrence. The
size of the group occurrences will be made large enough to accommodate an item that is integer=3 times
the size of the specified item. EDMS will treat the total as one large item. The OCCURS clause must
not be included if the item is a control item for a calc or indexed group, if the item is a sort key for a
set (see "Set Entries", below), or if the item is a secondary index item (see "Invert Subentries", below).
5. The PRIVACY LOCK clauses have the same effect as those in the group subentry except that the locks are
for the item values only. Authority to access a group does not imply authority to access all items if any
item has a privacy lock.
6. The CHECK clause indicates that the DBM is to validity-check values supplied for the item when a group

occurrence is stored or modified. Refer to Appendix G for a discussion of data validation by the DBM, If
PICTURE is specified, an attempt to store an item value that does not agree with the item's PICTURE clause
will result in an error refurn from the DBM, PICTURE is not allowed in a CHECK clause if there is no
PICTURE clause.

If RANGE is specified, an attempt to store an item value that is less than literal-1 or greater than literal-2
will result in an error return from the DBM. The values specified by literal-1 and literal~2 may be equal
and must be compatible with the item's size and form, as determined by the PICTURE-TYPE combination.
The RANGE option is not legal if the item size amounts to more than four words of computer storage.
Literal-1 and literal =2 may be numeric or nonnumeric literals, depending on the item.

A numeric literal is a string of characters selected from the digits O through 9, the plus sign, the minus sign,
the decimal point, and the letter E. Rules for the formation of numeric literals are

a. The literal must contain at least one digit.

b. The literal may contain at most two sign characters. A sign character is legal as the leftmost char-
acter of the literal and immediately to the right of the letter E, If either sign character is omitted, a
positive value is implied.

c. The literal must not contain more than one decimal point, which must be to the left of the let-

ter E. If no E is included, the decimal point may appear anywhere in the literal except as the
rightmost character. The number of digits to the left of the E must not be greaterthan 31 or less than 1,

Schema Generation

19

20

A nonnumeric literal is a string of any characters (up to 16) enclosed in apostrophes. If the value
is to contain an apostrophe, two apostrophes must be included.

Invert Subentries

Invert subentries identify the items in the group that are to serve as secondary indexes, providing an alternative tech-
nique of identifying specific group occurrences for refrieval. (The primary technique is determined by the group's
location mode.) A secondary-index-item value (supplied by the user in his working storage) can be used in the re-
trieval of the group occurrences in which that value exists.

The secondary index capability is implemented in EDMS by means of a corollary group, called an invert group. An
invert group, which has some of the characteristics of a regular calc group, must be defined for each item that is to
be a secondary index. Each occurrence of an item identified as a secondary index item causes the item value to be
stored in an occurrence of the invert group as well as in the occurrence of the main group in which the item is de-
fined. The occurrence of the invert group consists of the value of the secondary index item and the reference code
of the main-group occurrence that contains the value, plus control information and set pointers.

The first invert subentry in a group entry follows the last item entry for the group.

Format

INVERT ON data-item-name-1

; NUMBER IS integer~1

; WITHIN area-name-1[RANGE IS PAGE integer-1 THRU PAGE integer=2]

; DUPLICATES ARE[NOT JALLOWED.

Usage Rules

1.

The INVERT clause must appear first in the subentry, and data-item~-name=-1 must be the name of an item
defined in an item subentry that does not contain an OCCURS clause.

The NUMBER clause provides the unique integer group identifier (see "Group Subentry", above) for the
corollary invert group. The value of integer-1 must be in the range from 1 to 999 and must not be the
same as the integer specified in the NUMBER clause of any other group defined for the database.

The WITHIN clause identifies the area in which occurrences of the invert group are to be stored (see "Area
Entries", above). Because the invert group occurrences need not be stored in the same area as the occur-
rences of the associated main group, - the area name in the invert subentry may either be the same or differ-
ent from that specified in the group subentry. The RANGE subclause specifies the pages within the area
on which the group occurrences are to be stored and must be included if a group with indexed location mode
is defined as within the specified area. Integer-1 must be greater than or equal to 1 and less than or equal
to integer-2. Integer-2 must be less than or equal to the integer that specified the number of data pages
in the area (see "Area Entries", above). If there is an indexed group in the area, the range indicated by
integer-1 and integer-2 must not overlap its range. Nor maythe invertgroup range overlap the OVERFLOW
range (if one was specified).

The required DUPLICATES clause specifies whether or not two or more main group occurrences with the
same secondary-index item value will be allowed. If DUPLICATES ARE NOT ALLOWED, a user pro~
gram's attempt to store a group occurrence that would cause a duplicate invert group occurrence will

receive an error return from the DBM. If DUPLICATES ARE ALLOWED, more than one retrieval request

may be needed to retrieve all group occurrenceswith a specific secondary-index item value.

Schema Generation

Set Entries

The set entries define all the user-specified relationships among group occurrences by indicating which groups
are to participate in which sets, what set pointers are to be included in the group occurrences, what is to determine
which owner group occurrence a particular member group occurrence is to be associated with, and how the member

occurrences are to be associated with each other.

Set Entry Skeleton

Set Subentry
Member subeniry

[Member subentry] . . .

Set Subentry

Assetsubentry provides the name by which the set isreferenced in other DDL entries (e.g., in group entries of groups
whose location mode is via set, and in subschema set entries), and in DMSFDP-generated working storage de-
clarations; name the group type that is to be the owner of the set; and specify the mode of linking member
group occurrences to each other and to the owner occurrence.

A set occurrence is defined as one occurrence of the owner group and a collection of associated occurrences of the
group or groups defined as members, as illustrated below for a WARD-ASSIGNMENT set whose owner is a WARD

group and whose members are a NURSE group and a DOCTOR group.

A
Owner Group
Occurrence
(Ward A)

SMITH FRANK
Member Group Member Group
Qccurrence Occurrence
(Nurse Smith) _ (Doctor Frank)

A
A
JONES SMITH
Member Group | Member Group
Qccurrence Occurrence
(Nurse Jones) (Doctor Smith)

(The WARD -ASSIGNMENT set as depicted is in sorted order with group number as major sort key and a NAME item
as sort key in both member groups, see below.)

Schema Generation

21

22

Format

SET NAME IS set-name-1

1.

. OWNER IS {group-name-l }

AREA area-name-1

MA JOR }] A

[sortep [WITH GROUP-NO AS{MINOR

FIRST
; ORDER IS
LAST

NEXT

PRIOR

.

[; LINKED TO PRIOR]

[; STATISTICS ARE[NOT] REQUIRED] .

Usage Rules

The SET NAME clause must be the first clause in the subentry. Set-name-1 must conform to the DDLrules
for names and must not be the same as the name used for any item or group, or for any other set defined for
the database.

The OWNER clause identifies the group that is to participate in the set as owner. Group-name-1 is the
name specified in the group subentry that defined the group. If AREA is specified, the DMSFDP will gen-
erate a group definition for a special group to serve as owner. A single occurrence of this group will be
maintained by the DBM, at page 1, line 1, of each area, to serve as the owner occeurrence for every set for
which the area is owner. A set whose owner is area will, therefore, have only one set occurrence, which
will consist of the one area-group occurrence plus all the occurrences of the groups defined as members of
that set. The special EDMS-defined area group may be owner of many sets as illustrated in the data struc-
ture diagram shown below, where the OWNER IS AREA feature is used to link all the occurrences of the
NURSE group (e.g., for all nurses employed at a hospital) to each other, and to link all the occurrences of
the AIDE group to each other. :

EDMS
generated
area group
All-Aides Set All-Nurses Set
" Owner is Area Owner is Area
AIDE NURSE

The EDMS-generated area-group occurrence has no data values and is not accessible as a group to the
user. It serves only to link occurrences of a member-group to other occurrences of the same member group.

The ORDER clause specifies the manner in which DBM is to generate and modify set pointers so that they
will link @ member occurrence into a set occurrence. It determines if the owner occurrence or a member

Schema Generation

occurrence is to be modified to point to the newly linked occurrence and, if a member occurrence,
which one. Since set order is applied after the proper owner occurrence has been selected (see "Mem-
ber Subentry", below), it refers only to logical sequence within a set occurrence. Five modes of pointer
maintenance are possible: sorted, first, last, next, and prior.

SORTED — The DBM links a new member occurrence to other member occurrences according to the values
of the data items defined as KEYs in the member subentries. If WITH GROUP-NO is specified, the unique
numbers included in the occurrences of the member groups (see NUMBER clause in "Group Subentires",
above) will be considered in selecting a set position for a new member occurrence. GROUP-NO is legal
only if more than one group type is designated as a member of the set, MAJOR or MINOR defines the
role of the GROUP-NO in the order of the sef occurrences. The WARD-ASSIGNMENT SET occurrence
depicted above is an example of a set sorted with group=no as major (assuming the group subentries speci-
fied NUMBER IS 100 for the DOCTOR group and 200 for the NURSE, and both groups had a NAME item
designated as an ascending key in a member subeniry, see below). If GROUP-NO AS MINOR was speci-
fied, the occurrence would appear as follows:

A
(Ward A)

SMITH FRANK

(Nurse Smith) (Doctor Frank)
4
SMITH JONES
-

(Doctor Smith) (Nurse Jones)

FIRST — The DBM creates LIFO-ordered set occurrences by inserting a new member occurrence as the first
occurrence following the owner occurrence. The NEXT pointer for the set in the occurrence of the group
designated as owner will point to the most recently linked member occurrence,

LAST — The DBM creates FIFO-ordered set occurrences by inserting a new member occurrence immediately
preceding the owner occurrence, This order implicitly definesaprior pointer for the owner occurrence.

NEXT — A new member occurrence is inserted immediately following the occurrence identified as current
of the set, This order requires that the user establish a position in a set occurrence (by storing or retriev-
ing the group occurrence to which the new occurrence is to be linked) before linking the new occurrence,

PRIOR — causes a new member occurrence to be inserted immediately before the occurrence identified
as current of the set. This order also requires that the user establish a current position in a set occur-
rence, as well as implicitly defining prior pointers for the owner and member occurrences.

Schema Generation

23

4. The LINKED TO PRIOR clause defines the optional backward pointers for the set's owner and member
groups, so that each occurrence of the owner or a member will point to the preceding occurrence,

5. The STATISTICS clause indicates that the DBM is to maintain statistics for the set. If the clause is omitted
or if NOT is specified, statistics will not be collected,

Member Subentries

Member subentries identify the groups that are to be members of the set and specify all the controls that are to apply
when a new occurrence is stored or whenever a member occurrence is linked into a set occurrence. These controls
are (1) the technique for selecting the owner occurrence that the member is to be linked to, (2) whether or not
pointers fo the owner occurrence are to be included in member occurrences, and (3) the itmes that are to control a
member occurrence's logical position in a set for which the specified order is sorted.

Format

MEMBER IS group~name-1

, [OPTIONAL] AUTOMATIC
; INCLUSION 1S [MANUAL

[; LINKED TO OWNER]

7 SET OCCURRENCE SELECTION IS THRU

CURRENT OF SET
LOCATION MODE OF OWNER[ALIAS FOR data-item-name-1

IS data=item-name=-2]. . .

; [{ASCENDING

DESCENDING}[RANGE] KEY IS data-irem—ncnme-S]. ..

FIRST |
DUPLICATES ARE [LAST] .
NOT ALLOWED

Usage Rules

1. The MEMBER clause, which must be the first clause in the subentry, must specify the name of a group that
is defined for the database and not specified in any other member subentry in this set entry,

2, The INCLUSION clause specifies that linking or delinking a member group occurrence from a set occur-
rence will. be AUTOMATIC or MANUAL,

AUTOMATIC — Member—-group occurrences are automatically linked or delinked by the DBM when they are
stored or deleted. If OPTIONAL is specified, the occurrences may also be linked and delinked by specific
user's calls to the DBM, (See "Linking or Delinking Member Occurrences" in the section titled "Modify-
ing Linkages", Chapter 4.)

MANUAL — The user will specifically link and delink member group occurrences by calls to the DBM
linking/delinking routines. The mode is not legal for the set identified as the VIA set or in a STORAGE
clause for the group identified by group-name-1,

3. LINKED TO OWNER defines a set pointer for the member group such that each member occurrence will
point to its associated owner occurrence,

4. SET OCCURRENCE SELECTION specifies the technique fo be used to identify the set occurrence into which
a specific member occurrence is to be linked.

CURRENT — Requires that the user establish a set occurrence as current by interacting with the DBM tostore
or retrieve the owner occurrence or a member occurrence. This is the only mode that is allowed for sets
whose order is next or prior or whose owner is AREA,

24 Schema Generation

LOCATION MODE OF OWNER — Indicates that a unique set occurrence is selected by supplying the values
required to retrieve the unique owner-group occurrence, If the owner's mode is direct, indexed, or calc,
a reference code or specific values for the control item(s) identify a unique occurrence,

If the owner's location mode is via set, there is no way of identifying a unique owner-group occurrence
unless the via set is sorted, If the owner's via set is sorted, a unique owner=group occurrence can be iden~
tified by specific values for the sort=key items (or approximate values, if RANGE was specified for the key).

ALIASes may be specified fo identify additional working storage locations to contain occurrence-selecting
values when a group is a member of two or more sets with the same owner, and two or more owner occur-
rences need to be identified at the same time, For example, the structure shown below could be used to
record which documents referenced, or were referenced by which other documents,

DOCUMENT

WHERE-REFERENCED WHAT-REFERENCED
A 4 A

CROSS-REFERENCE

Two occurrences of the DOCUMENT group may need to be identified simultaneously to be linked with a

CROSS-REFERENCE occurrence. [f the location mode of DOCUMENT is calc using DOCUMENT=-ID, one
occurrence can be identified by supplying the proper value in working storage for DOCUMENT=ID. An
ALIAS for DOCUMENT=ID, say DOCUMENT=ID~2, could be defined inthe member subentry for CROSS-

REFERENCE in one of the sets. This would cause working storage to be available for identifying the other
occurrence of DOCUMENT.

Selection through location mode of owner may not be used when the set order is prior or next, or when the
owner is AREA,

The ASCENDING and DESCENDING subclauses identify the items in the member group that are to be
sort-key items for a set in sorted order, Values of the specified items are used (in conjunction with the
group number, if WITH GROUP-NO is specified in the set subentry), to establish the logical sequence of
member occurrences within a set occurrence, The optional RANGE modifier applies to any sets in which
the group identified by group-name-1 participates as owner and in which the set occurrence selection for
a member is through location mode of owner. RANGE is not meaningful if group-name-1 does not identify
a group whose location mode is via set,

One ASCENDING or DESCENDING subclause is required if the set is sorted, and up to seven may be
specified, Every item specified by data-item-name-3, etc., must be defined as within the member group
and defined without OCCURS clauses.

One, and only one, DUPLICATES subclause must be included if any ASCENDING or DESCENDING sub-
clauses are included. The DUPLICATES specification controls the logical sequence of two or more member
occurrences with the same sort~key value, or prohibits duplicate values,

END Entry

The end entry is required after the last set entry, It has the form END,

Subschema Generation

The DMSFDP generates a subschema from a schema as specified in subschema Data Definition Language (DDL). The
subschema, which contains the information required for the DBM to identify data values and relationships within the
database, may describe a complete database or it may describe only that portion needed for a specific application.
It may or may not include the names of the sets, groups, and items it defines,

Subschema Generation

25

26

The contents of the subschema determine the format of a working storage area that the user's program must contain in
order to communicate with the DBM. To simplify establishing user's storage to subschema correspondences, the
DMSFDP will (optionally) create COBOL COPY files or Meta-Symbol SYSTEM files containing the working storage
format definitions that correspond to the subschema it is creating.

The information extracted from a schema to form a subschema may describe either all the components (groups, data-
items, sets) of the database, all the components whose occurrences are to be stored in a specified area (or in speci-
fied areas), or only selected components. If a subschema is not to describe a complete database, certain rulesmust
be observed when selecting the elements that are to be defined in the subschema.

If an area’s definition is not included in the subschema, groups specified as within the area may not be defined in
the subschema. Nor may any set be defined in the subschema if its owner or any member is specified as within the
area. In addition, if an invert group for secondary indexes was specified as within the area, either the associated
item must be excluded from the subschema or it must be specifically selected with an indication that inversion is not
fo occur.,

If a group definition is to be omitted from the subschema, all sets in which the group participates as owner or mem-
ber must also be excluded, (All items in the groups are automatically excluded,)

Not all data manipulation capabilities are allowed when a subschema does not define a complete database. For
example, a program may not store or delete occurrences of a group that is the owner or a member of a set that isnot
defined in the subschema the program is using; nor may it store group occurrences if the definition of any item in the
group is omitted, Refer to the description of the DBM routines for more details on which are restricted when operat-
ing with a limited subschema.
The subschema DDL consists of entries in the following order:

1. The Subschema entry must be the first entry.

2, The set entry (there is only one) follows the subschema and precedes all area entries.

3. The area entry (or entries) for any areas to be included follow the set entry and precede all group entries.

4. The group entries follow the area entries. Group entries consist of a group subentry and, optionally, one
or more item subentries.

5. The end entry must be last.

Subschema Entry

A subschema entry provides the name for the subschema file, specifies whetherall or part of the database is to be de=
fined by the subschema, and indicates the form of working storage declarations that are to be generated.

Format

SUBSCHEMA NAME IS sub-schema-name OF SCHEMA schema~name
[; COBOL COPY IS copy-name]
[; META SYSTEM IS system-name [, NAMECHECK]]

[; PRIVACY KEY FOR EXTRACT IS privacy-lock]

; COMPONENTS ARE {?PLEL—C[FIED]

Subschema Generation

Usage Rules

1. The SUBSCHEMA NAME clause must be the first clause in the entry. Subschema-name is the file name
by which the subschema file is to be referenced. Hence it must conform to the host operating system'sfile
naming conventions as well as the DDL rules for names. The schema-name must be the file name of an ex-
isting schema file,

2. The COBOL clause provides the name fora COBOL source file that is fo contain declarations that define the
user's working storage needed for database operations based on this subschema. The copy-name must con-
form to the DDL rules for names as well as to the conventions of the host operating system.

3. The META clause provides the name for a Meta=Symbol source file that is to contain the directives needed
to define the user's working storage that corresponds to this subschema. The system-name must conform to
the DDL rules for names and to. the conventions of the host operating system. The names of the groups,
items, and sets selected for the subschema will be modified to conform to Meta-Symbol standards by re-
placing all hyphens with dollar signs.

Additionally, if the NAMECHECK option is specified, a symbol consisting of the "at" character (@) fol-
lowed by the group name will be appended to each item name to ensure uniqueness with regard to like-
named items in other groups. If the NAMECHECK option is not specified, the user is responsible for en-
suring that his item names are unique.

4. The PRIVACY clause supplies the key required to enable the generation of a subschema if the specified
“schema has a PRIVACY LOCK FOR EXTRACT attached to it. The specified privacy-lock must be a nonnu-
meric literal and must match the lock on the schema, or the subschema will not be generated,

5. The COMPONENTS clause specifies that either the whole database (ALL) or selected parts of the database
(SPECIFIED) are to be defined in the subschema. SPECIFIED indicates that a set entry follows the sub-
schema entry. ALL indicates that the only other entry is an End entry.

Set Entry

The set entry lists the sets that are to be defined in the subschema.

Format

SET IS set-name-1 [, set-name-2]
SETS ARE ALL

Usage Rules
1. The specified set names must be names of sets that are defined in the schema.

2. For each set lisfe;:i, the owner and all the member groups must be defined in the subschema. The groups may
be specified by group entries,or they may be impliedby the COMPONENTS ARE ALL option on an area entry.

Area Entries

Area entries specify the areas of the database that are to be available through this subschema, and indicate
whether all or part of the specified areas are to be defined. A single area entry may name several areas that

Subschema Generation

27

28

have the same components specification or a separate area entry may be included for each area. No area
entries are allowed if the subschema entry specified COMPONENTS ARE ALL.

Format
AREA IS area-name-1 [, area-name-2] ..]
AREAS ARE ALL
ALL
; COMPONENTS ARE {502 S IFIED |

Usage Rules

1. The AREA/AREAS clause must be the first clause in the entry. The area-names must be names that exist as
area names in the schema. The naming of selected areas or ALLareas indicates that some portion of the groups
that may occur in the areas will be defined in the subschema.

2. The COMPONENTS clause determines that either ALL or SPECIFIED groups and items identified for the
specified areas in the schema are to be defined in the subschema. If COMPONENTS ARE SPECIFIED,
group entries must be included for any of the areas' groups that are to be included in the subschema.

Group Entries

Group entries are used to select the groups that are to be defined in the subschema. No group selection is needed
or allowed if no area entries indicated COMPONENTS ARE SPECIFIED. To be defined in the subschema, any non-
invert group within an area whose components are specified must be selected by a group entry. Invert groups' defi-
nitions are automatically included if the secondary index item is defined in the subschema and inversion is not spe-
cifically suppressed.

Group Entry Skeleton

Group Subentry

[item Subentry]. . .

Group Subentry

A group subentry identifies the group, optionally renames it (for working storage declarations), and indicates whether
some or all of the group's items are to be defined in the subschema group defintion.

Format

GROUP NAME IS group-name-1 [, RENAMES group-name-2]

; COMPONENTS ARE{?—;‘ELCIHED}

Usage Rules

1. The GROUP NAME clause must be the first clause in the entry. If the RENAMES optionis notspecified,
group-name~1 must be the name of a group defined in the schema as within an area that is named in a

Subschema Generation

subschema area entry. If RENAMES is specified, group-name-2 must be the name of a group that is
so defined, If RENAMES is specified, group-name-1 must conform to the DDL rules for names and
must not duplicate the name of any group or set in the subschema.

The COMPONENTS clause specifies that either ALL of the items defined for the group in the schema are
to be defined in the subschema (exactly as they are defined in the schema) or that item definitions are
SPECIFIED in item subentries that immediately follow the group subentry. If a change in any one item de-
finition is desired, then all of the data items must be described in ifem subentries.

Item Subentries

Item subentries designate and optionally rename the items that are to compose the group as defined in the subschema.

If the group subentry specified COMPONENTS ARE ALL, no item subentries are legal. If the group subeniry indi-
cated COMPONENTS ARE SPECIFIED, all items that are o be included must be described in item subentries.

Format

[level-number] data-item-name-1 [, RENAMES data=item=name=2]

[; INVERSION IS [NQT] REQUIRED]

[; CONDITION NAME IS condition-name~1

{\LA_LU_E IS

VALUES ARE}Iiferal-l [THRU literal =2][, literal-3 [THRU literal-4]] ..] .

Usage Rules

1.

The level number is optional, and if omitted is assumed to be thelowest level number specified for the group,
or 02 if no previous level number has been encountered. Item level numbers may have values in the rarge
from 02 through 49. Usage of level numbers is syntactically consistent with that described in the ANS
COBOL/LN Reference Manual, 90 15 00.

Data-item-name -1 must immediately follow the level number (or must be the first element in the entry if no
level number is included). If RENAMES is not specified and data-item-name-1 is not defined in the schema
as being part of the group, it is assumed that the user desires to superimpose data-item-name-1 over one or
more data items which are so defined. In this instance, DMSFDP requires that the item subentry contain~
ing data~item-name-1 be followed by at least one item subeniry containing a data-item-name which is de-
fined as part of the group being analyzed and contains a level number higher than that of data-item-name-1.
Note that this feature is included solely for the convenience of COBOL programmers and that data-item=-
name -1 may not appear as an argument in a DBM call,

The INVERSION clause, unless NOT is included, specifies that the invert group associated with the sec~
ondary index item identified by data-item-name-1 is to be defined in the subschema. This clause is legal
only for data items which appeared as data-item~name=1 in an INVERT entry of the schema DDL. If the
INVERSION clause is omitted, it is assumed that the invert group definition is required.

The CONDITION NAME clause causes a level-88 data description entry to be included in the COBOL
Copy file. Condition-name=1 must conform to DDL rules for names, Literal-1, literal-2 etc. are numeric
or nonnumeric literals depending on the schema definition of the item identified by data~item-name-1 and
must conform to the size and form of the item,

Subschema Generation

29

30

END Entry

The end entry signifies the end of the subschema description.

Format

END.

DMSFDP Operational Interface

The File Definition Processor may be operated in a batch mode or from a terminal. The operation of DMSFDP
relative to the amount and format of output is controlled by control command options. The control command has the
following form:

IDMSFDP [, NODDL][, NOSCHEM][, NOSUB][, NOCBL][, NOMETA][, NOLIST][, NONAMES]

The order in which the options are specified is immaterial but repetition of an option is not allowed.

Exercising the options suppresses the normal output, The IDMSFDP with no options causes the following:

1.

A schema will be created if the first DDLentry is a schema entry, no DDLerrors are encountered, and there
is not an existing file in the user's account that has the same name as that specified in the schema entry.

A subschema will be created if the first DDL entry or the first entry after a schema-DDLend entry is a sub-
schema entry, no DDL errors are encountered, and the file name specified in the subschema entry is not the
name of an existing file in the user's account.

All DDL entries will be listed (both schema and subschema entries, if both are included in one run).

All error messages and summary messages will be listed. Error messages include a $ character printed
under the DDL line at the point where the error was detected and an explanatory message. Table F-1 in
Appendix F shows the DMSFDP error messages. Summary messages include information on file size and
structure plus number of diagnostic messages. A number of diagnostic messages other than zero indicates
that the generated schema/subschema file was not saved. Figure C-2 in Appendix C illustrates the summary
messages output by DMSFDP.

A COBOL COPY file will be created and its contents listed if the subschema entry includes a COBOL
clause. Figure C-4 shows a simple COPY file listing.

A Meta-Symbol SYSTEM file is created and its contents listed if the subschema entry includes a META
clause, Figure C-6 in Appendix C shows a sample SYSTEM listing output, The FORTRAN user may use
either the COPY or the SYSTEM listing to determine the format of the working storage area to be declared
in his program,

A name table relating set, group, and item names to their subschema definitions, is included in the sub-
schema file,

The suppress options operate as follows:

1.

NODDL —only erroneous DDL input statements are to be listed, correct DDL statements are not to be listed.
This does not affect the listing of COBOL and META files.

NOSCHEM —the schema file is not to be saved. (This may or may not affect the creation of a sub-
schema in the same run; the subschema creation requires a valid, existing schema file, but it may have
been created on an earlier run.)

DMSFDP Operational Interface

3. NOSUB — a subschema file is not to be saved. This affects only the subschema file; any listing or other
file creation is controlled separately.

4, NOCBL — the COBOL COPY file is not to be created even though the subschema entry may include a
COBOL clause. :

5. NOMETA — the Meta-Symbol SYSTEM file is not fo be generated even if the META clause is included on
the subschema entry.

6. NOLIST — COBOL or Meta=Symbol data is not to be listed even if the corresponding file is created,

7. NONAMES — the subschema file is not to include the name table,

The NODDL option applies to both schema DDL and subschema DDL. NOSCHEM is obviously meaningless if only
subschema DDL is input; it is therefore ignored. Similarly, NOSUB, NOCBL, NOMETA, NOLIST and NONAMES

are meaningless if only schema DDL is specified,

DCB Assignments

Normally, no interface is required between the DMSFDP user and the CP=V monitor to create the schema, subschema,
COBOL COPY, and Meta=Symbol SYSTEM files. The user may assign the M:SI and M:LO DCBs to accept the
DDL input or to direct the listing output to other than the system standard devices.

The F:SCHE (schema), F:SSCH (subschema), F:COPY (COPY file), and F:META (SYSTEM file) DCBs may be assigned
if desired. One or more such assignments might be needed, for example, to place the files on a removable device
or, in the case of the schema, to specify WRITE accounts so that subschema generation can be run in an account dif-
ferent from that used to generate the schema. (Subschema generation involves writing into the schema file.)

Terminal Usage
DMSFDP may be run from a terminal with DDL either input directly or (preferably) stored in an EDIT file. In

either case, the user initiates operation by entering DMSFDP in response to the system prompt and then entering the
control command options (or carriage return if there are no options) in response to the prompt from DMSFDP.

DMSFDP Operational Interface

31

32

4. DATABASE MANAGER

Database manager (DBM) is the term applied to the collection of library routines that are used with a user's
applications program to accomplish the storage, retrieval, and updating of the data values and pointers in a data-
base. Other features of the DBM provide for collecting run-time and summary statistics, tracing a user program's
interaction with the DBM, maintaining a journal of changed pages, and recovering a shared database in case of
deadlock or upon user request.

The user's program communicates with the DBM by means of calls to the library subroutines. Most arguments for the
calls refer to addresses within the program's working storage, which must be formatted to correspond to the values
in the subschema being used.

The user's program area that is referred fo as working storage consists of two parts. The first part has the same for-
mat in all EDMS programs, regardless of the nature of the database used., The second part must be formatted to re-
flect the specific subschema referenced by a program. The first part of working storage is designated the Communi-
cation Control Block (CCB) because it is used to communicate control and current-condition information between
the user program and the DBM, The format of the CCB is described in Table 2, which uses the COBOL COPY file
form for identifying the contents, In the Meta-Symbol SYSTEM file the hyphens are replaced by dollar signs and
the characters @CCB are appended, e.g., REF$CODE@CCB instead of REF~C ODE,

The format of the database-specific part of the user's working storage must provide for a set table for each set de-
fined in the subschema, a group table for each group defined in the subschema, a statistics table if any statistics
are specified for the database, and a table for aliases if any are defined. The number and order of occurrence of
these entities depend on the subschema being used. The proper order is best obtained by using or following one of
the working storage descriptions generated by the File Definition Processor., Figure C-4 shows an example of the
COBOL COPY working storage, and Figure C~6 shows an example of Meta-Symbol SYSTEM working storage, both
generated for the sample database shown in Figure 1, but for separate subschemas, (The FORTRAN user may use
either of the generated descriptions as a guide for manually generating declarations.,)

The group tables are used to communicate item valuesand the reference code of the current occurrence of the group.

The set tables are used by the DBM to maintain the position of the user in each set, Each time a group occurrence
is retrieved explicitly by the user or implicitly by the DBM, the set table for each set defined in the subschema for
that group is updated. The address of the set table is used as an argument for set-processing DBM-routine calls in
the same manner as group or item arguments,

DBM Routine Call Format

The DBM routines that store, retrieve, etc., are initiated by calls in the user's applications program. The format
of the call depends on the language in which the user's program is written; but whatever the language, the call re-
fers to a DBM function name, which is an entry point in the DBM library routines.

The general form used in the manual to describe the DBM calls is
ENTER DBM-function-name, argument-1[,argument-2]. . .

where the arguments represent addresses (optionally indirect) within the user's program area, either word addresses
or byte addresses, depending on the programming language used and on the characteristics of the entity located at
the specified address. In the descriptions of the DBM calls, below, the address arguments are referred to by de-
scriptive terms, REF-CODE, area-name, item-name, group-name, and set-name denote addresses in the user's pro-
gram areas that correspond to DMSFDP-generated working storage declarations; error-code-name and recovery-name
denote addresses in the user's program area other than that corresponding to the DMSFDP-generated working storage
declarations; and procedure-name denotes an address in the user's program area to which the DBM is to return control
under certain conditions. The metalanguage used below to show DBM call formats is the same as that used to depict
the Data Definition Language (see "File Definition Processor," Chapter 3).

Database Manager

Table 2. Contents of the Communications Control Block

Contents

Description

REF-CODE

A 32-bit binary number whose value is the reference code of the group last accessed
by the user. At thesuccessful completion of any call that accesses a group occurrence
in the database, thereference code of the group is placed in this cell by the DBM,

The reference code is also used when an area is opened to specify the number of buffers,
when an area is closed to indicate whether or not core is to be released, and when a
group occurrence is to be stored or retrieved directly,

PAGE-NO

Contains the eight-character EBCDIC value of the page-number part of the reference code.

This value is supplied by the DBM at the successful completion of a call in the same manner
as REF-CODE,)

LINE-NO

Contains the three-character EBCDIC value of the line-number part of the reference
code, This valueis suppliedby the DBM in the same manneras PAGE-NO,

FRST-REF

A communication cell used in conjunction with the FINDS or FINDSI procedural calls.
The user must initialize this cell with the reference code at which the DBM is to start
the physical scan of an area of the database.

LAST-REF

A communication cell used in conjunction with the FINDS or FINDSI procedural call.
The wser must initialize this cell with the value which will control the termination of
the physical scan of an area of the database.

GRP-NO

Contains a 10-bit binary number whose value is the numeric synonym for the group
stored or retrieved by the user.

ERR-CODE

Initialized by the DBM with an eight-bit binary number whose value indicates that
some type of error occurred in executing the previous procedural call.

ERR-NO

A 10-bit binary number initialized by the DBM for certain types of errors, with the
numeric synonym for the group responsible for the error.

. ERR-REF

A 32-bit binary value initialized by the DBM for certain types of errors, with the ref-
erence code of the group responsible for the error.

PASSWORD

A communication cell that must be initialized by the user with the eight-character
EBCDIC value of the password that allows the user access to the database.

AREA-NO

Contains the two-character EBCDIC value of the area number part of reference code.
This value is supplied by the DBM in the same manner as PAGE=-NO,

DBM Routine Call Format

33

34

. Meta-Symbol Call Format

A Meta~Symbol call takes the following form:

REF DBM-~function-name

LI, 14 n number of arguments
BAL, 15 DBM-=-function-name

* % address=1

* * address=n

The asterisks indicate that the addresses are right-justified and may be generated by any of several Meta=-Symbol
techniques. The addresses supplied may be indirect (but not indirect in a register), in which case the DBM
will obtain the proper effective address, either word-oriented or byte-oriented as shown below in Table 3.
The examples in Table 3 are from a Meta=Symbol program that includes the SYSTEM file shown in Figure C-6, and
processes part of the data base shown in Figure 1.

FORTRAN Call Format
A FORTRAN program call of a DBM library subroutine takes the form of a standard calling sequence, as follows:
CALL DBM-function-name (argument-1,...)

The arguments used must result in addresses supplied to the DBM that conform to the DBM function descriptionshown
in Table 4, All addresses are word addresses,

COBOL Call Format

The call from a COBOL program provides the model for the form of the DBM function description, It takes the form
of the ENTER statement.

ENTER DBM-~function-name[,argument-1]...

Arguments to the ENTER statement of COBOL are either the data names of the appropriate data segment in the data
division or the procedure name in the procedure division.

Table 5 shows the values of the arguments to generate the types of addresses required, The examples reference the
COPY file names shown in Figure C-4.

Table 3. Meta=Symbol Addresses

If the DBM Function

Description Specifies The Address Supplied Must Be
REF-CODE Word address of the first word of the CCB. WA (REF$C ODE@CCB),
Area-name Byte address of the appropriate area name word of the area table.

For example, BA(AREA$2),

Group-name Byte address of the first word of user's working storage reserved for
the group. For example, BA(FIRST),

Item=name First byte of working storage reserved for the item, if the item is
EBCDIC or packed decimal; first word of working storage reserved
for the item if the item is binary or floating point, For example,

BA(ITEMS$31), but WA(ITEM$44),

DBM Routine Call Format

Table 3. Meta=-Symbol Addresses (cont.)

If the DBM Function
Description Specifies

The Address Supplied Must Be

Set-name

Procedure=name

Error-code-name

Recovery-name

Byte address of the first word of the user's working storage reserved
for the set table of the set, For example BA(SET$D).

Word address of the location to which the DBM is to return control,

Word address of a location in the user's program area that contains an
EDMS data-dependent error code in binary.

Word address of a location in the user's program area that contains the
EBCDIC characters RECV,

Table 4, FORTRAN Addresses

If the DBM Function
Description Specifies

The Argument Must Be

REF-CODE
Area-name

Group-name

Item=name

Set-name

Procedure-name

Error-code-name

Recovery-name

The identifier of the first variable in EDMS working storage.
The identifier of the variable used to establish to appropriate areaentry,

The identifier of the first variable used to reserve working storage for
the group.

The identifier of the appropriate item variable,

The identifier of the first variable used to reserve working storage for
the set s table,

A statement label.

The identifier of a location established by the user. The value in the
location must be between 1 and twenty, inclusive,

The identifier of a location established by the user. The value in the
location must be the Hollerith constant RECV,

Table 5. COBOL Arguments

If the DBM Function
Description Specifies

The Argument Used Must Be

REF-CODE
Area-name

Group-name

Item=~name

Set-name

Procedure-name

Error=code-name

Recovery-name

Data=name REF-C ODE of the CCB,
The name assigned to the area in the DDL. For example, AREA-1,

The data=name of the O1 level entry of the group, For example,
GROUP-1, GROUP-2-R,

The data-name of the appropriate item, For example, ITEM-21-22-23,

The data-name of the 02 level entry generated for the set table for
the set. For example, SET-C.

A name in the procedure division.

The data-name of an eniry generated by the user. The entry must be
COMP usage and have a VALUE of 1-20,

The data-name of an entry generated by the user. The entry must be
alphabetic or alphanumeric and contain the value 'RECV',

DBM Routine Call Format

35

36

DBM Routine Usage

Database manager routines are used to accomplish all user-program interaction with the database, The first step of
a user-program's interaction is to open all areas that are to be accessed by the program. After all required areas
are opened and depending on the type of open, new group occurrences may be added to the database, obsolete data
may be deleted, data values or set linkages may be modified, existing group occurrences may be retrieved, and
various miscellaneous functions may be performed by calling the appropriate DBM routines. The last DBM call from
a user program is to close the areas (or the last area in use) of the database to terminate processing. All of these
interactions are described below.

Beginning of Processing

Before any data manipulation activity can occur, the files in which the data is stored must be opened, The DBM
interacts with the operating system to open the file in response to an open=call from the using program. The open-
call identifies the area to be opened, and indicates what type of activity is intended,

Format
(OPENRET
OPRETSHD
ENTER { OPENUPD ,REF-CODE , area-name-1[,area-name-2]. ..
OPUPDSHD '
L CREATE
Usége Rules

1. An area must be opened before any other EDMS call that references the area (either directly or indirectly)
is executed. A call to open an already opened area is ignored, if no calls other than open calls are made
between the two opens.

2. A cadll to open an area may not be made if the user is currently executing in some other areq, i.e., there
may be two or more successive calls to open different areas only if there are no other intervening proce=
dural calls that reference the first area.

3. OPENRET opens an area for retrieval purposes only. Other programs may concurrently open the area in
OPENRET and OPENUPD mode. The user should be aware that this mode does not provide for protection
against changes made to the database by another program concurrently executing in the OPENUPD mode.

4. OPRETSHD opens an area for retrieval purposes and specifies that the area may be accessed concurrently
by other programs in this mode or for shared update.

5. OPENUPD opens an area for both retrieve and vpdate purposes. Other programs may concurrently open
the area in OPENRET mode only.

6. OPUPDSHD opens an area for retrieve and update and specifies that the area may be accessed concurrently
by other programs in this mode or for shared retrieval.

7. If anyareas are opened in a shared mode (OPRETSHD or OPUPDSHD) by a program, no other areas may be
concurrently opened in a non-protectedmode (OPENRET, OPENUPD, or CREATE) by the program.

8. CREATE is a special open mode for an areathat has a group defined with location mode of indexed. While
an area is open in CREATE mode, the key values of an indexed group occurrence to be stored must be
higher than those of the occurrence most recently stored; i.e., the group occurrences must be presented
to the DBM for storage in ascending key order (see "Adding Occurrences", below). The area may be con-
currently opened in OPENRET mode by other programs.

9. For all open modes, REF-CODE refers to the address of the beginning of the user's formatted working stor-
age. This location should contain the number of data buffers to be used (3 to 10, inclusively) at the time
the first open call is made. If a number less than 3 is specified, 3 will be used; if a number greater than 10
is specified, 10 will be used.

DBM Routine Usage

10. If any passwords were specified for the database, the call PASSWORD in the CCBmust be initialized before
an open call is made. An eight=character password that is associated with keys that allow access to the
desired groups and items should be supplied.

11. If an area to be opened is an enciphered area, the user must supply the enciphering key in the appropriate
area~name cell prior to the open call.

12. If any area of the database has been closed and is to be reopened, all areas must first be closed; i.e., re-
opening an area may not violate usage rule 2 above.

DBM Response

If any one of the required parameters is not supplied in the CCB; if any of the named areas is not assigned; if pro-
cessing has begun in an area; or if mixed mode (shared and non-~protected) opens are attempted, the DBM returns an
error indication in ERR-CODE in the CCB. If all conditions are satisfactorily met, the DBM sets up the controls
necessary for processing the areas. The area files are not opened until a subsequent DBM call references one of
the areas.

When an area is opened in exclusive mode (OPENRET, OPENUPD, or CREATE), no provision is made for dynamic
recovery in case of deadlock, because deadlock cannot occur, and there is no requirement for locking of individual

pages.

When an area is opened in shared mode (OPRETSHD, OPUPDSHD) individual pages are locked, by means of the
CP-V enqueue/dequeve facility, as required (see Appendix H for additional information on Enqueue/Dequeue).

If an area is reopened, the DBM will zero out the contents of the set tables and current-of=type for all sets and
groups defined for the area. Thus, a program may not maintain a logical positionin an areabetween close and open.

Adding Occurrences

The first activity involving the data in the database is to load, or store, group occurrences in the area files, This
activity continues with varying frequency over the life of the database. The required conditions and the action of
the DBM when a request is made to add a group occurrence to a database area depends ona variety of factors such
as whether or not inventory pages exist for the area, whether or not there is an indexed group within the area, what
the location mode of the group is, what sets it participates in and how, etc.

Format
ENTER STORE, group-name
Usage Rules

1. The data values that are fo constitute the group occurrence should be in the working-storage designated for
the group.

2, If the group is an automatic member of any set, the desired set occurrence must be selected. This is done
either by retrieving the owner occurrence or a member occurrence if the set selection is current (unneces-
sary if the occurrence most recently stored or retrieved is part of the desired set occurrences), or by putting
the uniqueness~determining value in working storage if selection is through location mode of owner. Note
that the uniqueness-determining values may be calc keys, index keys, set sort keys, or a combination of
sort keys and one of the others if several levels of owner are required to establish uniqueness.

3. STORE is not permitted if the specified group is the owner or a member of a set that is not defined in the
subschema being used; if any item in the group is not defined in the subschema; if the subschema item sub-
entry for a secondary index item specified no inversion; or if the group is a member of a multimember sorted
set without group number as major, and the definition of a sort key item in one of the other member groups
is not included in the subschema.

DBM Routine Usage 37

38

DBM Response

The DBM must physically and logically position the occurrence in the area. To physically position the occurrence,
the DBM determines a base page for the occurrence and stores it on that page if there is space. The base page for
a group occurrence is determined differently for each location mode as follows:

CALC —The values of the calc control items are randomized across the page range for the group to determine
the base page.

INDEXED — The values of the index control items are compared to the primary index entries. The base page
for the group occurrence is that page which contains the occurrence of the group that has the next-higher values
in its index control items. If no occurrence of the group currently in the area has higher values, the base page
is the last page currently containing indexed group occurrences.

DIRECT — The base page is provided by the user in cell REF-CODE, If a storage parameter is selected for a
direct group, the base page is determined as if the group were a via group.

VIA SET — The base page is determined by the order of the via set, or storage set if appropriate, and the exist-
ing members of the set:

a. Sorted — base page is the data page of the current group occurrence logically before the new occur-
rence in its sorted sequence,

b. First and Lost — base page is the data page of the set owner occurrence.
c. Next and Prior — base page is the data page of the current member occurrence of the set.

If there is not sufficient space, or no available line number on the base page, the DBM systematically searches
until space is found, or if no space can be found, the DBM returns an error code in the CCB, The search isbased
on the location mode of the group and whether or not there is an indexed group and an overflow range in the area.

If the occurrence cannot be stored because of subschema limitations, if the password supplied at open does not pro-
vide an update key required for storing occurrences of the group; if values in the occurrence are duplicates of values
for which duplicates are not allowed (calc keys, sort keys, secondary indexes for which duplicates are not allowed,
or indexed location mode keys); if key values for an indexed group are not in ascending order in create mode; if
any values do not meet data validation criteria; or if a deadlock is precipitated during the store processing, the
DBM returns an error code in the CCB, Additional action is taken in the case of deadlock (see "Preparing for
Deadlock", below).

The group occurrence is logically positioned in all sets in which it participates according to the set selection and

the set order, The occurrence is linked into all sets in which it is an automatic member, If the occurrence cannot
be linked for some reason e.g., the correct owner occurrence cannot be retrieved, the DBM returns an error code
in the CCB,

At the successful conclusion of a STORE call, the group occurrence is recorded as
Current-of-file — Assigned reference code is in REF-CODE of CCB.
Current-of-type — Assigned reference code is in the CURR-XXX cell in user’s working storage.

Current-of-set — Assigned reference code is in SET-CURR of all sets of which the group is an owner orauto-
matic member.

The numeric synonym for the group is also placed in GRP=-NO of the CCB,

DBM Routine Usage

Deleting Occurrences

A group occurrence can be physically removed from the database or marked as unavailable and flagged for future
removal, or the delete call can specify conditions under which the group is to be deleted. If the subschema being
used does not describe the complete database, there may be some EDMS-imposed restrictions on deleting group
occurrences,

Format_
(DELETE)
REMOVE
ENTER ¢ DELETSEL ¢, group-name
REMOVSEL
| DELETAUT |

‘Usage Rules
1. The group occurrence to be deleted is the occurrence identified as current-of-type for the group named.

2, The occurrence cannot be deleted if any set of which the group is an owner or member is not defined in
the subschema or if any invert group associated with the group is not defined in the subschema.

3. The occurrence cannot be deleted if some member group at a lower level cannot be deleted because of
subschema omissions.

DBM Reseonse_

If the occurrence cannot be deleted because of subschema limitations; if the password supplied at open does not
provide update keys for one or more of the groups affected; if the current-of-type is not established, or if the de-
lete processing precipitates a deadlock, the DBM returns an error code in the CCB (there is additional processing
in the case of deadlock, see "Preparing for Deadlock!' below),

If necessary conditions are met, the response is as follows:

DELETE — The group occurrence and any associated member group occurrences in a set of which it is the owner
are logically deleted from the database. The deleted group occurrences will only be physically removed from
the database if this does not require examining a complete set to establish the prior occurrence of the deleted
group.

REMOVE — The group occurrence and all of its associated member occurrences are logically and physically re-
moved from the database,

DELETSEL — The group cccurrence is logically removed from the database only if it does not have associated
member occurrences, If the group occurrence is the owner of a nonempty set occurrence, the DELETSEL call
is not executed and an error code is returned in the CCB,

REMOVSEL — The group occurrence is logically and physically removed from the database only if it does not
have associated member occurrences, If the object group is the owner of a nonempty set occurrence, the
REMOVSEL call is not executed and an error code is returned in the CCB.

DELETAUT — The group occurrence is logically deleted from the database. If the group is defined as the owner
of a set with automatic members, all automatic-member occurrences will be logically deleted from the database.
Any deleted automatic=member occurrences will be treated as if they were the object of a DELETAUT call, If
the group is defined as the owner of a set with manual members, the manual-member occurrence will be de-
linked from the set. Execution of this call makes all deleted group occurrences unavailable for subsequent ac-
cess by the user. The current-of-type for groups whose occurrences are deleted and the current-of-file
(REF-CODE) are set to zero. -

DBM Routine Usage 39

40

Modifying Data Values

The values of one or more items in a single group occurrence can be modified.

Format

ENTER MODIFY, group-name [, item-name]. ..

Usage Rules

1. Before executing this call, the user must initialize working storage with the new values for the items to
be modified.

2. The object of the call is the group occurrence that is current-of=type for the group named.

3. The list of item=name arguments identifies the specific items to be modified. If no list is given, it is as-
sumed that all defined items in the group are to be modified.

4. This call may not be used under any of the following conditions:

a. If the item is a calc control item and definitions of other calc control items are omitted from
the subschema,

b. If the item is a sort key for a set and definitionsof other sort keys from the same set are omitted from
the subschema.

c. [If the item is a sort key and the definition of the sorted set is omitted from the subschemas.

d. If the item is a sort key for a multimember set sorted without group number as major sort key and
the definitions of the sort keys in the other member groups are not all included in the subschema.

e. [If the item is a secondary index and the invert-group definition is omitted from the subschema,

f. If the item is an indexed location mode control item.

DBM Response

If one of the above conditions is not met; if the password supplied at open does not provide an update key required
for modifying the item(s); if a new value duplicates an existing value for which duplicates are not allowed (a calc
key, sort key or secondary index item with no duplicates); if the current-of-type for the group has not been established
(e.g., by a previous retrieval or store action); or if the modify attempt results in a deadlock with another program,
the DBMreturns an error code in the CCB, (Additional actions in the deadlock case are described under "Preparing
for Deadlock", below.)

If there are no errors, the item value(s) is replaced with the new value(s).

If an item to be modified is a calc control item for the group, the item values are changed and the pointers in the
group occurrences affected are modified to indicate the new base page. The group occurrence with the modified
value, however, is not physicallymoved to the new base page. If an item to be modified is a sort control item for a
set in which this group is a member, the item values are changed and the group occurrence logically repositioned
in the set based upon the modified item values,

Modifying Linkages
An occurrence of a group whose membership in a set is defined as optional or manual can be linked to or delinked

from a set occurrence (LINK and DELINK). Also, a member group occurrence can be changed from one owner oc-
currence to another in any set in which it participates (RELINK).

DBM Routine Usage

Linking, Delinking, or Relinking Member Occurrences

Format
LINK
ENTER } DELINK %, group-name, set-name
RELINK

Usage Rules

—

. The object of the call is the group occurrence that is current~of-type for the group named.

2, To DELINK a group occurrence from the named set, the group must be defined as an OPTIONAL member
or a MANUAL member, and the occurrence must be linked into a set occurrence.

3. To LINK a group occurrence into the named set, the group must be defined as a MANUAL member or an
OPTIONAL member, and the occurrence must not be currently linked into a set occurrence.

4. To RELINK a group occurrence from one occurrence of the named set into another, the group must be de-
fined as a member of the named set, and the object group occurrence must be linked info an occurrence
of the set,

5. For LINK or RELINK, the set occurrence into which the object group occurrence is to be linked must be
selected. If the defined set selection technique is through location mode of owner, working storage must
be initialized with the control-item values that uniquely identify the owner occurrence. If set selection
is through current-of=set, theset occurrence should be established as current by means of a DBM call. This
would normally be done by retrieving the owner occurrence or an occurrence of a different group type that
is also defined as a member of the set. For RELINK, the current set occurrence should not be established by
retrieving an already=linked occurrence of the named group, because that would make the already-linked
occurrence current-of-type and the object of the call, which is contrary to the purpose of the call, and
is effectively a null action.

DBM Response

If any of the above conditions is not met; if the password supplied at open did not provide update access to the named
group; if processing the call would result in non-allowed duplicate values of sort=keys; or if deadlock with another
program occurs, the DBM returns an error code in the CCB (additional action in the case of deadlock is described
under "Preparing for Deadlock", below).

If the LINK call is successful, the object group occurrence is current of the named set.

If the DELINK procedure is successful, the group occurrence that was prior to the object group occurrence is current
of the named set,

If the RELINK is successful, the object group occurrence is delinked from its previous set occurrence and linked into
the new one. The DBM will not check to determine that the new set occurrence is indeed different from the previous
set occurrence, If the order of the named set is sorted, the DBM will initialize working storage with the values

of the sort control items from the object group occurrence to ensure that the object group occurrence is relinked
into the proper logical position in the new set occurrence,

DBM Routine Usage

41

42

Retrieving

Various techniques are used for retrieving specified group occurrences from the database and maoking them available
in the buffers. (Subsequent GET calls must be made to move the daota into user's working storage.) The selection
of the technique depends upon the specific application. Technique selection must be governed by the group and
set characteristics of the occurrences to be retrieved. A single general format applies for the various techniques.

Format

[FINDG, group-name)

FINDC, group-name
FINDD
FINDM, set-name

FINDN, [sef—name }

group-name, procedure-name

FINDP, {;T':):Jr;)a-'::me, procedure-name}
ENTER 1 FINDS procedure-name »
FINDSI, procedure-name

FINDX, group-name, item-name, procedure-name
FINDSEQ, group-name, item-name, procedure-name
FINDFRST, group-name

FINDLAST, group-name

FINDDUP, group-name J

Usage Rules

1. In each form of the retrieve (FIND) call, it is assumed that any data items necessary to identify the spe-
cific occurrence of the group to be retrieved have been initialized in working storage, The data
items that are necessary depend on the specific call and are described under "DBM Response", below.

2. FINDG will not be allowed if
a. Calc or index control items for the group are not defined in the subschema.
b. The via set is not defined in the subschema.
c. The via set is defined and one or more sort keys are not defined in the subschema.

d. The via set is sorted without group numbers as major, and sort keys of another member group are not
defined in the subschema.

3. FINDG is also not allowed for the area group established to function as set owner.
4, FINDDUP is not allowed if any of the calc control items for the group are not defined in the subschema.

5. FINDX and FINDSEQ are not allowed if the invert-group is not defined in the subschema.

DBM Routine Usage

DBM Response

1.

2.

The action in each case causes the group occurrence to be made available in one of the DBM buffers. No
other action, such as moving the group to working storage, is implied.

At the successful conclusion of any retrieve call except FINDX, the object group occurrence is recorded
as follows:

Current-of=file — The reference code of the group occurrence is stored in the REF-CODE entry of
the CCB.

Current-of-type — The reference code of the group occurrence is stored in the CURR-XXX entry of
user working storage (XXX is the numeric synonym for the group).

Current-of-set — The reference code of the group occurrence is stored in the SET-CURR entry of the
set tables for each set in which the group participates.

Group-type — The numeric synonym for the group whose occurrence is retrieved is stored in the GRP-
NO entry of the CCB. When using any retrieve call that does not explicitly identify the group name,
an occurrence of any of several groups may beretrieved depending on the data structure involved. After
execution of the procedure, the user program may determine the group whose occurrence was retrieved
by referring to the GRP-NO entry of the CCB.

FINDG — The FINDG (find=group) call retrieves a specific occurrence of the named group. The group
occurrence retrieved is a function of the location mode of the group. When the group isdefinedas direct,
the occurrence retrieved is identified by the reference code stored in the REF~C ODE entry of the CCB,
When the group is defined as calc, the occurrence retrieved is identified by the randomizing procedure,
using the values of those items defined as randomize control items. When group is defined as via set, the
occurrence must be retrieved via the owner occurrence of the set, Inthislast case, the values that uniquely
identify the owner occurrence must have been initialized in working storage in addition to the values of
those items (which must be SORT KEY items) that uniquely identify the viagroup occurrence. When the group
is defined as indexed, the occurrence refrieved is identified by referencing the primary index to find the
"base " page for the group and then using the values supplied for those items defined as the index items for
the group to search the page set.

FINDC — The FINDC (find-current) call retrieves the group occurrence identified by the reference code
currently stored in CURR-XXX, where XXX is the integer identifier of the group named. This call is used
to again retrieve the current-of-type group occurrence,

FINDD -- The FINDD (find-direct) call retrieves the group occurrence identified by the reference code
stored in the REF-CODE entry of the CCB, If there is no occurrence with the specified reference code, or
if the occurrence has been logically deleted, the DBM returns an error code in the CCB,

FINDM — The FINDM (find-master-of-set) call retrieves the owner group occurrence of the set named.
The action of this call depends on the contents of the set table for the named set.

FINDN — The FINDN (find-next) call retrieves the next group occurrence in logical sequence of the set
named if the argument to the call is a set name. The actual group occurrence retrieved depends on the
user's position in the set as indicated by the set table.

If the argument to the call is a group name, the group must be an indexed group and the call retrieves
the group occurrence with the next higher key value. If, prior to the call, the user is positioned at the
group occurrence with the highest key value, no group occurrence is retrieved, and control is returned
to the user at the address specified by the procedure-name.

FINDP — The FINDP (find prior) call retrieves the prior group occurrence in logical sequence of the set
named if the argument to the call is a set-name. The actual group occurrence retrieved depends on the
user's position in the set as indicated by the set table.

If the argument to the call is a group name, the group must be an indexed group and the call retrieves
the group occurrence with the next-lower key value. If, prior to the call, the user is positioned at the
group occurrence with the lowest key value, no group occurrence is retrieved and control is returned to
the user at the address specified by procedure-name.

DBM Routine Usage

44

11.

12.

13.

14,

15,

16.

FINDS — The FINDS (find-serial-search) call provides for a serial search of an area for the first group
occurrence that falls within a range of reference codes. The range is defined by the user by the initial-
ization of both the FRST-REF entry of the CCB with the first reference code of teh range and the LAST-
REF entry of the CCB with the last reference code of the range. Control is returned to the user with each
group occurrence found within the range after the DBM has incremented the value of the FRST=REF. Re-
peated execution of the call causes retrieval of each group within the range until the value of FRST-REF
exceeds the value of LAST-REF. At this point, the call exits to the address specified by procedure-name.

. FINDSI — The FINDSI {find-serial -search-from-initial-reference) call operates in the same manner as

FINDS except that search limits are defined in terms of an initial reference code in FRST-REF and a num-
ber of group occurrences in LAST-REF. With FINDSI, the LAST-REF value is decremented with each group
retrieved and the call exits to the address specified by procedure-name either when the LAST-REF value
reaches zero or when the end of the area is reached.

FINDX — The FINDX (find-indexed) call locates and places into REF-CODE the reference code of the
first group occurrence that contains a value (of the item named) equal to the value in working storage for
that item. This call is only valid when the item-name has been defined as a secondary index (invert) item
for the group named. Return from this call is to the first statement following the call when a group oc-
currence is identified thot contains the value supplied in working storage. To find all group instances that
match, the call must be used repeatedly within a loop without changing the value of the item in working
storage. When no matching instances are found or when no additional instances exist, control is returned
to the location specified by procedure-name. Any time the value of either the item in working storage

or the FINDX arguments is changed, the DBM assumes that a new retrieval loop is involved and identifies
the first matching group occurrence. Unlike other types of retrieval calls, FINDX does not actually re-
trieve the identified group occurrence. The only action apparent to the user program is the availability
of the reference code of the qualifying data group occurrence in the CCB entry REF-CODE. Should the
user wish to retrieve the selected group, he may do so by using the FINDD call.

FINDSEQ — The FINDSEQ (find~sequential) call sorts all occurrences of the specified secondary index
(invert group) and serially retrieves the main group occurrences that correspond to the sorted invert group
occurrences. This call is only valid when the named item is defined as an inverted item for the group
named. The initial use of this call with a given set of arguments causes the DBM to build a sort input file
consisting of all occurrences of the invert group for the secondary index, specified by item-name. The
DBM then relinquishes control to the Sort processor, which sorts the invert group occurrences on the values
of the invert item. At the completion of the sort, the DBM regains control, reads the first sorted invert
group occurrence, retrieves the corresponding main group occurrence, and updates the CCB and set tables,
as appropriate. Control is then returned to the first statement following the FINDSEQ call. Subsequent
use of the call results in the retrieval of the next sequential main group occurrence until an end of file

is reached on the sorted file, at which point control is returned to the location specified by procedure-
name. Any time group-name or item-name is changed, it is assumed that a new sort is involved and the
above-described initial procedure is executed.

FINDFRST — The FINDFRST (find-first) call retrieves the logically first indexed gfoup occurrence, that
is, the group occurrence with the lowest key value, This call is only valid when the group named has a
location mode of indexed.

FINDLAST — The FINDLAST call retrieves the logically last indexed group occurrence, that is, the group oc-
currence with the highest key value, This call is only valid when the group named has a location mode of indexed.

FINDDUP ~ The FINDDUP (find-duplicates) call retrieves the next calc group occurrence that has random-
izing control values equal to the current contents of user's working storage. This call is only valid when
the group named has a location mode of calc and duplicates are allowed.

Prior to this call the user must have retrieved a calc group whose randomizing control values are equal
to the current contents of user's working storage. To execute this call, the DBM will find the next group
of the calc set looking for a group with duplicate values. If none is found, an error will be returned in

ERR-CODE of the CCB.

If the password supplied at open does not provide all necessary retrieve keys; if the values supplied in work-
ing storage are not sufficient fo identify an occurrence; or if processing the call resulted in deadlock with
another program (see "Preparing for Deadlock" below), the DBM returns an error code in the CCB.

DBM Routine Usage

Meving to Working Storage

The FIND calls only cause the page containing the selected group occurrence to be placed in the buffer and the
current indicators to be updated for the group and for the sets in which it participates. If the user wants to process
the data in the group occurrence, the program must make an additional call. The GET call is used for this purpose.
The HEAD call may be used to both retrieve and move o set owner-occurrence.

GET Call

Purpose. To move a retrieved group occurrence to working storage.

Format
ENTER GET, group-name [, item-name]...

Usage Rules
1. The object of the GET call is the group occurrence identified as the current-of-type for the group named.
2. The items to beamoved to working storage may be any items defined within the group.

3. The list of item=-names identifies the specified items to be moved. If no list is given, it is assumed that
all items are to be moved.

DBM Response

The data values in the group occurrence are moved to working storage.

HEAD Call
Purpose. To both retrieve and move to working storage the owner group occurrence of a set occurrence.
Format

ENTER HEAD, set-name

Usage Rule

Before using this call, a previous database reference must have been made to establish a group occurrence as SET-
CURR for the named set.

DBM Response
This call provides a function similar to the FINDM and GET calls except for the manner in which the set tables are
updated. After execution of the HEAD call, the owner group occurrence is established as the current-of-type and

as current-of-set for those sets in which the group is a member. It is not established as current-of-set for those sets
in which it is owner.

Run-Time Statistics

Purpose. To initiate and terminate, by calls to the DBM, the collection of statistics on the performance of a pro-
gram os it accesses a datobase. The statistics reflect the activity of that job only.

DBM Routine Usage 45

46

Format

DMSSTATS
ENTER { ENDSTATS
RPTSTATS
Usage Rule

Run-time statistics collection can be initiated at any time during the operation of the program.

DBM Response

1. DMSSTATS causes the DBM to collect statistics on the activity of the specific job within the database.
Statistics include the number of EDMS calls executed, the number of groups accessed by call and the
number of physical page 1I/Os.

2. ENDSTATS causes the collection of the above statistics to be discontinued.

3. RPTSTATS causes a report of the statistics to be printed. After the report is written, the internal DBM
counters for the statistics are reset to zero. A somple of the report is given in Figure 7.

Run-Time Tracing

Two types of trace information are accumulated by the DBM. The first type is initiated and terminated at the re-
quest of the user program and produces printed output. The second type is automatically maintained by the DBM
and is not output.

User Initiated Trace

Purpose. To record and print the access record of DMS calls made by a program during program operation. (Listing
output can be assigned to a file and printed later.)

Format
DMSTRACE }
ENTER { BTG

Usage Rule

The trace can be initiated and terminated at any time during the operation of the program being tested.

DBM Response
1. DMSTRACE causes the DBM to print the following information in its order of occurrence:
DBM function name and user's calling address.
Group number of group accessed and reference code of the occurrence.
Number of page reads and writes.

A sample of the trace is given in Figure 8.

2. ENDTRACE terminates the trace reporting.

DBM Routine Usage

PROCEDURE CALLS GROUPS

FINDC 9 9
STORE 85 381
PAGE READS 6
PAGE WRITES 1

Figure 7. Run-Time Statistics Sample

<PM3> STAXE FNTERED FReM LBC 0Cz20
FAGE KEAD 21«22007010
GRL ACCFRYS 21-00000010=001 020
ORPACTESS 21«J0000003=001 MG
URF ACCESS D1=00002010=001 020
GRE TNEESTY Ole0200010=001 nen
<€ vy LT RE FOTEEZL FGEr LaC nCa 43
GRECACCESS Gla200000m1 =001 N30
LGRDOALLE 2L=30000010=-001 w20
(R ACT D1=5003010=001 npa
fak ACCE S1=2000CL001=0M A I
BED ACCESE S1-J0000001=001 N30
R IMSERT 21«0000L001 =001 Y30
<hra> STARE FRNTERYDY FREM LAC GC264
LR ACCESS 2 edGI0U010=-001 220
DRYACLCESS JI=00000010=002 40
GR2CINSERT 2 e)Us0GCI10=032 N4
MG RTRRE FRTERCD FRer Ll 0C2RN
DREPACCERS T1e 0002010002 N4
BR2 ACCESS J1«20200010=001 BN
LDRDACCESS 21=250000)1 =001 N3

OREACCESS D1=20000610=00% 052
VR IMNSERT 2100000 010-007 L8
LR A L FNTERED e LARC QUPRD

BEDACI LGS D1a0000U010=00P D40
AR A M=20000010=003F 08D
GRRACCESS J1ed000uU1U=U04 nag
GRP ACCESS J1ed0J0L010=003 J%2

Figure 8. Run-Time Trace Sample

DBM Trace Table

The DBM maintains a record of user's calls in a trace table. No user action is required to initiate or terminate the
maintenance of the table, nor can the table be displayed. The table may be examined in a memory dump or by using
monitor SNAP commands. The trace table is a circular list of ten entries, controlled by a stack pointer at DEF
Q:TRCTBL in the DBM. The table itself immediately follows the stack pointer doubleword, whose first word will
contain the address of the current trace entry in the circular list. A trace entry has the following format:

bits 0-7 — binary value of an error code or zero.
bits 8-14 — binary code for type of DBM call (see Table 6).

bits 15-31 — address in the user's program from which the call was made.

DBM Routine Usage 47

Table 6. Trace Codes for DBM Calls

1. OPENUPD 17. GET 33. FINDM

2. OPRETSHD 18. MODIFY 34. HEAD

3. OPENRET 19. LINK 35. DMSRLSE
4. OPUPDSHD 20. DELINK 36. DMSCHKPT
5. CREATE 21. RELINK 37. CLOSEDB
6. CLOSAREA 22. STORE 38. FINDD

7. DELETE 23. FINDN (group) 39. DMSRETRN
8. DELETAUT 24. FINDP (group) 40. DMSTRACE
9. DELETSEL 25. FINDSEQ 41. ENDTRACE
10. REMOVE 26. FINDX 42. DMSSTATS
11. REMOVSEL 27. FINDS 43. ENDSTATS
12. FINDC 28. FINDSI 44. RPTSTATS
13. FINDG 29. Not Used 45. DMSABORT
14. FINDDUP 30. Not Used 46. SETERR

15. FINDFRST 31. FINDN (set) 47. RESETERR
16. FINDLAST 32. FINDP (set) 48, DMSLOCK

Error Control

Purpose. To enable the user's program to maintain a degree of control over the handling of DBM-detected errors
by issuing a call that specifies a location to which the DBM is to return control in the event of o specified error
condition.

‘ Format
r 3
SETERR, procedure-name [, error-code-nome]. ..
RESETERR [, error-code-name]. ..
ENTER § DMSRETRN r
| DMSABORT, procedure-name
(DMSLOCK, procedure-name J
Usage Rule

All locations specified by procedure-name must be within the user's program area.

DBM Resp_onse

1. SETERR — Establishes the location that is to receive control in the event of a data-dependent error
(codes 1-20). If no error-code-name arguments are given, procedure-name will receive control on any
data-dependent error. If SETERR is entered with an error-code-name value that already has a procedure-
name established for it, the new procedure-name will replace the previous one.

2. RESETERR — Disassociates a data-dependent error code value from a procedure-name so that the DBM will

no longer trap to that procedure name if the error is encountered. If no error-code-names are given, all
error code values are dissassociated.

DBM Routine Usage

3. DMSRETRN — Causes control o be returned to the statement immediately following the last DBM function
call that resulted in an error for which the user had established an error-control procedure. The DMSRETRN
call is used to exit from a procedure established by the SETERR call, The DBM will only retain the address
of the last function call that resulted in an error.

4. DMSABORT — Establishes the location that is to receive control in the event of @ non-data-dependent er-
ror other than deadlock (codes 31-137). The location established to receive control should be a wrapup
routine as no additional DBM calls will be allowed,

5. DMSLOCK — Establishes the location that is to receive control if it causes a deadlock (error code 30) with
another program that is sharing an area.

Preparing for Deadlock

There is a possibility of deadlock whenever two or more programs are concurrently accessing the same area, if af
least one of them is updating the area (i.e., at least one program has used OPUPDSHD to open the area and at least
one other program has used either OPRETSHD or OPUPDSHD). The deadlock occurs when two programs are each
waiting for the other to telease a locked page in order to proceed, An example is: Program A reads page 1 causing
it to be locked with shared status, Program B then also reads page 1 locking it with shared status (many programs
may lock a page with shared status without interfering with each other). Program A then attempts to update page 1,
resulting in a request to promote the lock status to exclusive, This promotion is delayed waiting for Program B to
remove the shared lock on page 1. If, instead of removing the shared lock on page 1, Program B also attempts to
promote to exclusive lock status to update page 1, it will be delayed, waiting for Program A to remove its shared
lock. The two programs are in deadlock and neither can proceed.

The monitor Enqueue/Dequeue function will detect a deadlock situation and return an error code to the program
that finally caused the deadlock (Program B in the above example), The DBM will recover the database using any
before images on the program's transient journal, thus undoing the program's database changes back to its most recent
DMSRLSE call, or back to the beginning of its operation, if there was no DMSRLSE,

DMSRLSE Call

Purpose. To release pages that are locked for the program and make them available for reading and/or updating by
other concurrently operating programs. The DMSRLSE call also establishes a point in the sequence of a program's
operation as a base point for recovery in case of deadlock. The call notifies the DBM that some defined portion

of the program's logic and/or input data has been completed, and that only subsequent database changes should be
nullifiedifa deadlock occurs, The call may also be used, with the optional recovery-name specified, to erasepre-
vious changes to a shared database (for example if the program detects that aportion of its input has been in error),

Format

ENTER DMSRLSE [, recovery-name]

Usage Rules

The call may be made at any time after all areas are open, but is effectively a null action if no area is opened for
shared access, or if no database accesses have been made,

DBM Response

If there are no open areas, tha DBM returns an error code in the CCB. If there are areas open, and the optional
recovery-name is specified, the DBM restores any before images from the transient journal fo the database. If
recovery-name is not specified, the DBM writes all modified pages currently in core back to the database. In
both cases the DBM:

1. Deletes all before images currently on the transient journal,

2, Sets the program's position in the database to zero; i.e., zeros out all set tables and current-of-type for
each group.

3. Releases all locked pages,

Database areas opened to the program are not closed,

DBM Routine Usage 49

50

Checkpaointing

Purpose. To add an additional protection to the integrity of the database by allowing the user's program to period-
ically request that the DBM write all modified pages to the database.

Format

ENTER DMSCHKPT

Usage Rule

The using program may call the checkpoint routine at any time during its operation.

DBM Response
The DBM will write all modified pages currently in the data buffers to the database area file. After-images will be

written to the journal file if journaling is being done. No areas are closed, nor are any currenty indications
changed. The database lockout bit will be reset in all updated areas.

Terminating Processing

Purpose. To close opened areas when a program's database activity is finished.
Format

ENTER

{CLOSEDB }
CLOSAREA, area-name-1[, area-name-2]...

Usage Rules

1. CLOSEDB terminates processing in all currently opened areas.
2, CLOSAREA terminates processing of those areas specified by area-name-1, area-name-2, etc.

3. When the last opened area is closed, the user may request that the DBM release back o the monitor any
common dynamic core acquired for the subschema and data buffers. The user requests this release of core
by setting the contents of cell REF-CODE to a negative value before executing the close call.

DBM Response

The DBM interacts with the host operating system to close the are files. If, however, CLOSAREA is used to termi-
nate processing in an area which has pages enqueued or if the area is open for update and other areas are left open

for update then the pages are not released and the operating system close is not issued until the remaining areas are
closed with a CLOSAREA or CLOSEDB procedure call.

Error Processing

During execution of anEDMS program, two types of error conditions may occur and be recognized by the DBM. The
first type involves data-dependent situations and must be anticipated by the user program. The second type involves
situations that result from inproper use of the DBM routine calls, from invalid database definitions reflected in the
subschema, from hardware or software malfunctions that cannot be recovered by the DBM, and from deadlock with
another program that is sharing an area,

Error Processing

If an error is detected by the DBM, an identifying error code is placed in the ERR-CODE entry of the CCB.. If an
error-conirol location was established for the error code encountered, the DBM returns control to that location, If
no error-control location exists, control is returned to the location immediately following the DBM function
call,

If the error encountered is data-dependent (see Table F-2 in Appendix F), the DBM returns the database to
its logical position before the call and makes the appropriate return to the user, Additional DBM calls will
be accepted.

If the error is non-data-dependent other than deadlock (see Table F-3), the DBM closes all open areas before
returning to the user, If ony further calls are made to the DBM, the job is terminated abnormally.

If there is a deadlock, the program's position in the database (i.e., values in the set tables and current-of-type
for each group) will be set to zero. The database areas are not closed and subsequent DBM calls will be processed,

Journaling '

The DBM includes a facility to optionally create a journal file for each job step that updates an area of the
database, thus providing the data necessary to recover the content of the database in the event of hardware or
software failure.

The journal file will be generated if an area definition specified journaling, provided the proper DCB assignments
are made (see "DBM Operational Interface”, below). The journal file is described in Appendix E.

1

A separate journat, called a transient journal, is created to contain before images for recovery of shared databases.
No DCB assignments are needed. The before images on the transient journal contain only the database page image.
(See Figure D~=1.)

Database Lockout

The DBM will maintain a database lockout but in page 1 of each area to determine the integrity of the area. If an
area is opened for exclusive update, the lockout bit will be set to 1 in the database, just prior fo the first write ini-
tiated by a user update. The lockout bit is reset to zero when the area is checkpointed or closed by the user. Ter-
mination of a program without o user-initiated EDMS close will leave the lockout bit set. If the DBM detects that
the lockout bit is set when a user opens an area, an error code is returned to the user in the CCB. The DBM will
not set the lockout bit if the area is opened for shared update. It will, however, check if the bit was left set by a
previous program.

Summary Statistics Collection

The DDL allows for the specification of statistics collection on group and/or set activity. The DBM will collect
the statistics during execution of the user program. These statistics, which are distinct from the run-time statistics
described above, provide a historical summary of all jobs affecting the database. The statistics are accumulated

in space reserved for them in the user's working storage area and written to a file when the area is closed. The
contents of the file may be examined subsequently by means of the Summary Statistics Utility processor (DMSSUMS,
see Chapter 5 for a description of this processor). Appendix E shows the format of the statistics file. The statistics
collected are

Area-Open Mode, Retrieve, Update, or Create
Total Page Reads and Writes
Total Groups Accessed

Total Groups Inserted
Total Groups Deleted

Journaling/Database Lockout/Summary Statistics Collection

51

52

Group-Total Accesses
Total Inserts

Total Deletes

Set-Total FINDN calls
Total FINDP calls
Total HEAD and FINDM calls

DBM Operational Interface

The DBM will exist either as a nonshared library or as a combination public library and nonshared library at the in-
stallation's option. Linking of a user's program to the DBM will depend on the option selected.

Total Nonshared Library

The DBM will exist as three files, :DIC, :LIB, and :BLIB, in account DMSLIB. The files :DIC and :LIB are for use
by the overlay loader while :BLIB is used by the one-pass loader.

To link a program to the DBM using the overlay loader, account DMSLIB should be specified as an UNSAT option
on the LOAD command. For example,

ILOAD (GO), (EF, (SUB1)), (UNSAT, (DMSLIB)). ..

To link a program to the DBM using the one-pass loader, file :BLIB in account DMSLIB should be specified as a
library identification in the LINK command. For example,

ILINK MYROM ON MYLMN;:BLIB. DMSLIB ...

Combination Public and Shared Library

The nonshared portion of the DBM will exist as three files, :DIC, :LIB, and :BLIB, in account DMSLIB. The shared
portion will exist as file :Pn, where n is a digit selected at the time the DBM is SYSGENed.

To link a program to the DBM using the overlay loader, account DMSLIB and the file :Pn should be specified as
UNSAT options on the LOAD command. For example,

ILOAD (GO), (EF, (SUB1)), (UNSAT, (DMSLIB), (:P2)). . .
To link a program to the DBM using the one-pass loader, Pn (the colon is omitted) should be specified as o library
search option and file :BLIB, in account DMSLIB, should be specified as a library identification in the LINK com-

mand. For example,

ILINK (P2) MYROM ON MYLMN;:BLIB. DMSLIB. ..

DBM DCB Requirements
The names for the DCBs used by the DBM are as follows:

Journal DCB — F: JRNL.
Subschema DCB — F:SSCH.

DBM Operational Interface

Transient Journal DCB-F:TJRL
Statistics DCB — F:STAT.
Database Area DCBs — F:DBnn, where nn may be any two digits from 01 through 64.

The F: JRNL, F:SSCH, F:TJRL, and F:STAT DCBs are automatically included in the user's load module by the loader.
DCBs for the database areas must be included by the user as input to the loader. Element files are included in
account DMSLIB for this purpose. The element file names and the DCBs in each file are as follows:

DCB1 F:DBO1 1 DCB
DCB2 F:DB02 and F:DBO3 2 DCBs
DCB4 F:DB04 through F:DB07 4 DCBs
DCB8 F:DB08 through F:DB15 8 DCBs
DCB16 F:DB16 through F:DB31 16 DCBs
DCB32 F:DB32 through F:DB64 33 DCBs

The user must specify, in the LOAD or LINK command, the proper element file(s) to provide a DCB for each area
defined in the subschema used by his program.

Example
Three areas defined in the subschema:
ILOAD (GO), (EF, (DCB1, DMSLIB), (DCB2, DMSLIB)), (MAP), (UNSAT, (DMSLIB))

The DCBs thus included are F:DB0O1, F:DB02, and F:DB03. The files for the three areas of the database must be
assigned to these three DCBs. It is immaterial which file is assigned to which DCB.

Example
Four areas defined in the subschema:
ILINK MYROM, DCB4, DMSLIB ON MYLMN;:BLIB. DMSLIB

The DCBs included are F:DB04, F:DB05, F:DB06 and F:DB07.

.DCB Assignments

The database area files and the subschema file may exist in public RAD or disk storage, or on a private disk pack.
If they are on a private pack, the appropriate serial numbers must be included in the ASSIGN command. If the
files exist in an account other than the one in which the job is to be run, the account-name of the account that
owns the files must be specified in the ASSIGN command. A mode is not necessary in the assignment because the
DBM will open the files with a mode corresponding fo the type of open call initiated by the user for the area.

Example
Subschema and database area named AREA1 on public storage database area, AREA2 on private pack number P124:

IASSIGN F:SSCH, (FILE, MYSUBSCH)
IASSIGN F:DBO2, (FILE, AREAT)
IASSIGN F:DBO3, (FILE, AREA2), (SN, P124)

The journal and statistics files may be assigned to a file on RAD or disk storage, or to a labeled tape. A mode is
not required because the DBM will default the mode to OUT when the first database area is opened by a program.
If the program executes multiple opens and closes of the database areas, the DBM will initiate subsequent opens of
the journal and statistics files as INOUT, thus concatenating all of the output for any one job step through these
DCBs. If the user wishes to concatenate the output of several job steps, he may assign the DCBs as mode INOUT.

DBM Operational Interface

53

54

9. EDMS UTILITY PROCESSORS

The utility processors perform a service function in support of the other EDMS capabilities: initializing areas before
any data is stored; dumping the total contents of an area and saving it for backup; updating the saved data with jour-
naled pages for recovery purposes; printing selected portions of an area, journal, or backup file for visual checking;
and printing summary statistics collected by the DBM into a statistics file.

Database Initialization (DMSINIT)

DMSINIT initializes an area or areas of a database, or specified pages in an area, If a whole area is involved,
DMSINIT determines the required size for the area and creates the file by writing page headers and optional check-
sums on all data and index pages. If inventory is specified in the area definition, DMSINIT writes page headers
and optional checksums on the inventory pages and fills in unused space with zeros.

DMSINIT Error Messages are shown in Table F-5, Appendix F,
The user may select the areas to be initialized, or specific pages within selected areas. If no areas are selected,
all the areas defined for the database will be initialized. In all cases, the area file must be assigned (see "Utilities

Operational Interface”, below) if an area is to be wholly or partially initialized. Areas are selecied by one or more
area statements.

AREA Statements
Purpose. To cause DMSINIT to completely initialize one or more areas, or reinitialize a range of pages within each
of one or more areas. A single AREA statement may designate many areas to be completely initialized, but a sepa-

rate statement is required for each area in which specified pages are to be reinitialized.

Format

- -2[,area-name-3]. . :
AREA = area-name-1 [, area-name]
RANGE=(r,, r))[; (rg,r)] -

Usage Rules

1. The AREA statement must end with a period,

2. At least one space must precede the word RANGE,

3. A space may precede or follow an equals sign, a comma, a left or right parenthesis, or a period.

4. The RANGE option defines the page range or ranges to be initialized for an existing area. Each page range
specified is validity-checked to determine that ry is equal to or less than rg, and that the page numbers used
fall within the total number of datapages in the area. The RANGE must not include index or inventory pages.

5. Each AREA statement should begin on a new input line, but a statement may be continued on as many lines
(records) as are needed. No continuation character is required, as a statement is considered continued
until a period is encountered,

6. If thespecified RANGE includes any pages within the page range of an indexed group, it must include all

pages in that range, The specified RANGE may notinclude pages within the area's overflow range if it does
not include the indexed group's pages, and it must include all pages of the overflow range if it includes any.

Dump Processor (DMSDUMP)

This processor dumps either all or selected parts of existing data base areas to a sequential file or to a printer. When
the output is defined as a sequential file, the file has the same format as the journal file except that each data page
image is dumped as an after-image. Figures E-1 through E-4 in Appendix E show the journal/dump file format,

EDMS Utility Processors

When the output from DMSDUMP is defined as printed output and the job is run in batch, each page is formatted as
shown in Figure 9. The line indicated by (1)is a print header line containing relative page number and the number
of words of available space. The line indicated by (2) contains the two-word page header, The line indicated by

contains the decimal representation of the line number of the group occurrence, the group number, the relative
position on the page, and the group occurrence's reference code. The line indicated by @is the beginning of the
actual values in the group occurrence. The line indicated by (5) shows the EBCDIC representation of the data (data
that does not convert to printable characters is represented by dofs),

When printed output is requested by a terminal job, the output is as shown in Figure 10. The (1) indicates the header
line containing page number and number of words of available space. The (2) indicates the two-word EDMS page
header (see Figure D-1 for data page header format), The first word of the page header shown in Figure 10 contfains
page number (1), page type (01, data page), the must-write=flag reset, and the number of words of available space
(1EC). The second word contains the Control Set pointer (area 2, page 1, line 2). The printed line in Figure 10,
indicated by the @ , contains the line number, group number, relative word position in page, and reference code
of the first group occurrence. Group number, printed as zero in this case because page 1 line 1 contains a DBM-
generated dummy group occurrence, is in the range 1 to 999 for user~defined groups. The line indicated by the®
in Figure 10 is the beginning of the actual group occurrence, and the line indicated by (5) is the cheéksum for the

page.

DMSDUMP Error messages are shown in Table F=6 in Appendix F. The processing options of DMSDUMP are selected
by input directives consisting of a type identifier followed by one or more area selection specifications.,

If the database is password-protected, a password specification must precede the first directive. The password speci-
fication has the following form:

PASSWORD = 'user~password'

Should a request be made for a selection of groups whose access codes are not authorized by the password given, the
groups will be skipped. Items for which the password is not authorized will be zero filled.

(EEN/GPN/NROIREF-CD DATA PAGE 0000005 SPACE AVAILABLE 453

000055¢% 02000501 .
001,200/70027000501

01320007 02000502 000C00l4 F2FOFOFO OCODO000A 020C0508 02000504 (:)u.....---...-2000--~c....-|'.
002/200/009/000502

02320007 02000503 00DCO02A F2FOFOFO 0QNOO0L4 02000502 02000502 Beeraett90000200Co00penetnres
003/200/016/000503

03320007 02000500 00000032 F2FOFOFO 00000018 02000503 02000503 ¥eeeer00e000e200Coreraranrnay
004/2017023/000504

04324007 00000006 02000501 020005¢5 02000504 02000504 00000000 L R R R N R RN X]
005/2014/030/000505

05324007 00000007 02000504 02000506 02000505 02000505 00000000 ¥eo sevevecacetsrsterevenetey
006/2017037/000506

06324007 00000008 02000505 02000507 02000506 02000506 00000000 Beo seessetevssesenstatenerty
007/204/044/000507

07324007 00000009 02000506 02000508 02000507 02C00507 ©C000000 oo ssveraseesrrercrsarearey
008/201/051/000508

08324007 0000000A 02000507 02000501 02000508 02000508 00000000 %er secsrscecstrestrrancarnnyg

CHECKSUM 34650028

Figure 9. DMSDUMP Output Sample (Batch Job)

Dump Processor (DMSDUMP)

55

56

ONONONC]

ISET F:SCHE DC/MSTRSC
ISET F:DBO1 DC/ARFA-2
IDMSDUMP
DMSDUNMP = EXTENDED DM
>PASSWORD="11111111"
>PRINT ARFA=AREA-2 CI
LIN/GPN/WURD/REF=-CD
000015KEC 02000102
001/7000/7002/7000101
01FA8003 02000308
002/200/005/7000102
02320007 02000103

0037200/70127000103

03320007 02000100

LIN/GPN/WRD/REF=CD
000025E8 02000201
0017200/7002/000201
01320007 02000202
002/7200/009/7000202
02320007 02000203
003/200/7016/7000203

03320007 02000200

H.

S

PHKEY="'1234"' RANGE=(1,2).

DATA PAGE 0000001 SPACF AVAILABLE 492

02000408

00000016 F2FOFOF0 0000000A 02000102 02000102

0000002C F2FOFOFO0 00000016 02000103 02000103

CHECKSUM FF40865F

DATA PAGE 0000002 SPACE AVAILABLE 488

00000006 F2FOFOF0O 00000002 02000201 02000201

00000010 F2FOFOF0Q 00000008 02000202 02000202

00000026 F2FOFOFO0 00000012 02000203 02000203

CHECKS!M F3690D39

Figure 10, Sample DMSDUMP Terminal Job

Dump Processor (DMSDUMP)

Dump Directives

Purpose. To specify the type of output desired and to identify areas, lines, and groups to be processed. Multiple
directives may be supplied. They are processed serially by DMSDUMP in order of input, with no attempt made to
minimize passes through the database area,

Format
_AREA = area-name]
[CIPHKEY = user-cipher-key]
LINE -}
{DUMP} { gsRoup}‘ (Np, N)
PRINT

GROUP = N[, N,]...

[RANGE__= (r], rz)[l (r3l r4)]- . ')

Usage Rules

1.

The directive type identifier may begin in any character position and may be followed by any number of
spaces, and selection parameters may consist of several lines. A period is used fo terminate a directive.
At least one space is required to separate two selection parameters, Spaces may precede or follow an
equals sign, a comma, a left or right parenthesis, or a period.

DUMP/PRINT — Specifies that the selected portion of the database is to be output to a sequential file
(DUMP), or to a formatted print report (PRINT). The formatted print report contains the hexadecimal
representation with EBCDIC alongside, if the job is run in batch. The output of a terminal job does not in-
clude EBCDIC.

AREA — Identifies the specific area to be processed. Should AREA not be supplied by the user, all areas
of the database will be processed. (Area-name is the name of an existing area to be processed.)
CIPHKEY — Specifies that deciphering is required in order to produce the requested print report, (User-
cipher-key is the cipher key associated with the data in the area to be printed.)

LINE —~ Specifies the span of lines within a data page to be printed. Not legal if GROUP is specified.

GROUP —1Is group number, which specifies a span of groups or some specific groups to be printed. Note
that CIPHKEY, LINE, and GROUP are not allowed with DUMP and are valid only when the AREA param-
eter is selected. (N7, N2) permits the user to specify a span of lines or a span of group numbers to be pro-
cessed. N3[, NgJ... allows the user to specify up to eight group numbers of groups whose occurrences are
to be processed. GROUP may not be duplicated for a single area.

RANGE — Defines one or more page ranges to be selected from an area of a database. Each range specified
is checked to confirm that it falls within the page range of an area (including inventory pages), and the

ry value is checked to determine that it is equal to or less than the rp value. No check is made for over-
lapping ranges; i.e., all selected pages in each range are output. If no RANGE parameter is supplied,

the complete area is selected and sent to the output file. In this case, data, index, and inventory pages
are written to the output file. RANGE must be the last parameter specified for an area.

Load Processor (DMSLOAD)

DMSLOAD restores all or selected parts of existing database areas from a sequential file on magnetic tape, RAD, or
disk. Ifs output may be directed to another sequential output or to a printer,

The input file must be a single file created as a journal file by the DBM or a dump file created by the EDMS Dump
processor. In either case, the file format is as defined in Appendix E.

Load Processor (DMSLOAD)

57

58

When the output is directed to a database area, each page selected is written over (replaces) the corresponding
area page. Optionally, the area is reciphered and the inventory pages are updated to reflect the condition of each
data page restored.

DMSLOAD must always refer to existing areas of a database. Note that if a specific area no longer exists in the
database, the user should initialize it before using DMSLOAD to restore it.

When the output is directed to a sequential file, the selected pages are writfen to the file in the same sequence
and format as they are found on the input file. The ability towrite to a second sequential file makes it possible to
preselect before- or after-images from a journal file for use in recovering the database.

When the output is directed to a printer, the selected pages are formatted the same as in DMSDUMP oufput (see
Figures 9 and 10).

The processing options of the Database Restore routine are driven by directives supplied via the SI input file, A

directive consists of a type identifier optionally followed by an AREA selection specification, Each area specifica-
tion consists of an area idenfifier optionally followed by one or more area-level selection parameters,

DMSLOAD Directives

Purpose. To specify the form of the output and to select specific types of page images or specific pages to be

processed.
Format
AREA = area-name
[CIPHKEY = user-cipher~key]
LOAD BEFORE [DATE = mm/dd/yy[,mm/dd/yy]}l
TAPE IA_FT? O [INEWCKEY = new-user-cipher-key] |
PRINT [TIME =hh:mm[,hh:mm]]
[iNnvupD]
| [RANGE = (), r))f, ()] |

Usage Rules

1. Each selection parameter must be separated from the next by at least one space (many spaces are the same
as one space). A period is required to terminate a directive, Spaces may precede or follow an equals
sign, a comma, a left or a right parenthesis, or a period.

Each directive must begin on a new input line (record).

2. LOAD —Relodds all or selected parts of an existing database from a sequential file on magnetic tape, RAD
or disk,

r

3. TAPE — Recreates a sequential file on another magnetic tape, RAD, or disk with its selected output.

4. PRINT - Displays all or parts of the database from a DMS dump tape or journal tape to the printer or
terminal,

5. BEFORE or AFTER — Specifies that only the before or after page images are to be selected from the input
file. If not specified, both types of page images are selected.

6. DATE and TIME are used to select pages from the input file. When a single date is given, only pages for
that date are selected. Whentwo dates are given, an inclusiverange is defined and all input pages within
that range are selected, Also, the first date must chronologically precede the second. The time param-
eter is a logical extension of the date parameter and is used in the same manner. If both are used for a
given directive, the first time value is assumed to be the time for the first date and the second time value
for the second date.

Load Processor (DMSLOAD)

10,

11.

AREA — Allows user to specify the area he intends to process. If AREA is not supplied by the user, none of
the following area-level selection parameters should appear, and all areas of the dotabase will be pro-
cessed, (Area=name is the name of an existing area to be processed,)

CIPHKEY — Specifies that deciphering is required in order to produce the requested print report in PRINT
option or that an area of the database in LOAD option is to be reciphered,

NEWCKEY — Specifies that the area defined in the area identifier will be reciphered using a new cipher
key. NEWCKEY can only be specified when LOAD directive is selected. (New-user-cipher-key is a
one- to four-character string that will be used as a new cipher key to recipher the area specified,)

INVUPD — Has meaning only when used with the LOAD directive. When INVUPD is specified, DMSLOAD
updates the inventory pages of the area specified with the space available as defined by each page re-
stored, When INVUPD is nof specified, it is assumed either that the inventory pages were restored from the
tape file by adirective that included the inventory pages or that it is not necessary fo update the inventory.

RANGE — Selects one or more page ranges within the specified area to be processed., Must be the last pa=-
ramater specified for an area,

‘Summary Statistics Processor [DMSSUMS)

DMSSUMS outputs in print format the total contents of the statistics file generated by the DBM or selected counts
from that file. The user may select area counts, group counts, or set counts for all or specified area, groups, and
sefs by means of statistics selection specifications input to DMSSUMS, A valid schema must also be input,

The output from DMSSUMS is in the form shown in Figure 11, The information is output in the order in which it
occurs in the statistics file, DMSSUMS error messages are shown in Table F=8, Appendix F. Statistics File format
is shown in Appendix E, The statistics file is not modified or deleted by DMSSUMS, it may be extended in subse-
quent jobs (see "DBM Operational Interface", Chapter 4) or it may be deleted,

DMSSUMS HERE
DMS SUMMARY STATISTICS .
COLLECTED DURING JB3=000D4% 12/26/72 13350
, AGE B8PENWMEDE
AREA«STATISTICS #GRBYP #GROUP #GROYP #P
‘ ACCESSES INSERTIONS DELETIENS ACCESSES
AREA=A 216 27 7 118 UPDATE
G «STAT[STICS #GROUP #GRAUP #GROBUP
SREUP=STATISTE ACCESSES INSERTIBNS DELETIENS
GRBUP=A 95 10 ' 2
«STATIS S F INDN FINDP HE AD+F INDM
SET-STATISTIC CALLS CALLS CALLS
SETeA 50 16
=STATISTICS #GROYP #GROUP H#GROYP
GREUP-STATISTIC ACCESSES INSERTIONS DELETIONS
GROUP=B 20
Figure 11. DMSSUMS Sample Output

Summary Statistics Processor (DMSSUMS)

59

60

Statistics Selection

Purpose, To designate the areas, groups, and sets for which statistics are to be printed,

Format
_ [area-name [, area-name-2]..]]
[area - {1 -

_ [group-name=-1 [, group-name-2]...]
[eroup = (%2 _ H -

_ [set-name=-1 [, set-name-2]...]
[SET—{ALL H ..

Usage Rules

1. The AREA, GROUP, and SET clauses may be input in any order and may span as many input lines as neces-
sary. The period is required fo terminate the input. ALL may be specified only once each for AREA,
GROUP, and SET,

2, At least one space is required preceding the words AREA, GROUP, dnd SET, and many spaces are the same
as one except that a complete line of spaces is treated as an end-of-file. Spaces may precede or follow
the equals sign, the comma, and the period.

3. AREA indicates that statistics for the designated areasare to be printed, The area=names must be in the schema,

GROUP indicates that the statistics for the designated groups are to be printed. The group~names must be
in the schema,

5. SETindicates that the statistics for the designatedsetsare to be printed, The set-names must be in the schema.

Utilities Operational Interface

All DMS utilities may be operated in batch mode or from a terminal in CP-=V. All four prompt with a > character and
treat a line-feed or carriage-return in response to the first prompt as an end-of-file on the input. Input directives
and selections are read through the M:S1 DCB and print output and error messages are written through M:LO.

DMSINIT

DMSINIT requires file assignments for the schema that describes the areas to be initialized and for the areas them-
selves. It uses the DCB F:SCHE for the schema and F:DBnn (where nn is any two-digit combination between 01 and
64) for the areas. Any DBnn can be used for any area. If an area is to be updated or dumped by a job run in an
account other than the one in which DMSINIT is run, WRITE account should be specified in the area assignment.

Typical Deck Setup Examples (DMSINIT)
1. Initialize all areas of a database:

IASSIGN F:SCHE, (FILE, SCHEMA)
IASSIGN F:DBO1, (FILE, AREAT)
IASSIGN F:DBO02, (FILE, AREA2)
JASSIGN F:DBO3, (FILE, AREA3)
IDMSINIT

No input is supplied because the database contains three areas, all of which are to be initialized.
2. Initialize selected areas of a database:
IASSIGN F:SCHE, (FILE,SCHEMA)

IASSIGN F:DBO1, (FILE, AREAT)
IASSIGN F:DBO3, (FILE, AREA3)

IDMSINIT
AREA = AREA3,AREAT.
IEOD

Utilities Operational Interface

3. Reinitialize a portion of an existing area:
IASSIGN F:SCHE, (FILE, SCHEMA)
IASSIGN F:DBO1, (FILE, AREA3)
IDMSINIT
AREA = AREA3 RANGE = (3, 8), (16, 20), (51, 60).
IEOD

The result from the above setup is that pages 3 through 8, 16 through 20, and 51 through 60 of AREA3
are reinitialized, -

DMSDUMP

The user must supply IASSIGN cards for the following files used by the Dump processor:
Database schema file (F:SCHE).
Output dump sequential file (required only when Dump directive is used (F:DUMP),

Each area to be processed (F:DBnn),

Typical Deck Setup Examples (DMSDUMP)
1. Dﬁmp all areas of the database to a sequential file:

IASSIGN F:SCHE, (FILE, SCHEMA)
IASSIGN F:DUMP, (LABEL, DUMPDB), (SAVE), ;
I (SN, 1234)

IASSIGN F:DBO1, (FILE, AREA-1)

IASSIGN F:DB02, (FILE, AREA-2)

IASSIGN F:DBO3, (FILE, AREA-3)

IDMSDUMP

DUMP

IEOD

The above setup is to dump the database with three areas (AREA-1, AREA-2, and AREA-3) to a sequential
file (DUMPDB) on a labeled tape (SN, 1234), i

2, Dump a portion of an area of the database to a sequential file:

IASSIGN F:DUMP, (LABEL, DUMPDB), (SAVE), ;
I (SN, 1234)
IASSIGN F:DBO1, (FILE, AREA-3)
IASSIGN F:SCHE, (FILE, SCHEMA)
IDMSDUMP

DUMP AREA = AREA-3

RANGE = (51, 80).

IEOD

The above shows that the contents of pages 51 through 80 of AREA-3 are dumped to a sequential file on a
labeled tape,

3. Output on printer a portion of an area:

IASSIGN F:DBO1, (FILE, AREA-2)
IASSIGN F:SCHE, (FILE, SCHEMA)

IDMSDUMP

PASSWORD ='TEST3001"

PRINT

AREA=AREA-2 GROUP=16, 30, 101, 298 .
IEOD

Utilities Operational Interface

61

The result from the above setup is to have all occurrences of group 16, 30, 101, and 298 of AREA-2
printed on printer output. Note that occurrences of groups whose access codes are not authorized by the
password will not be printed and zeros will be printed instead of the values of ifems not authorized.
DMSLOAD
The user must supply ASSIGN cards for the following files used by the Database Restore processor:
Input journal or dump file (F:LOAD).
Database schema file (F:SCHE).
Depending on output functions specified, 1ASSIGN cards are required for the following:

Each area (file) of DMS database (F:DBnn).

Qutput dump tape file (F:DUMP),

Typical Deck Setup Examples (DMSLOAD)

1. Restore database from a dump tape:

IASSIGN F:LOAD, (LABEL, DMSDP), (SN, 1234)
IASSIGN F:SCHE, (FILE, DMSCHEMA)
IASSIGN F:DBO1, (FILE, AREA-A)
IASSIGN F:DBO02, (FILE, AREA-B)
IASSIGN F:DBO3, (FILE, AREA-C)
IDMSLOAD
LOAD,
IEOD

The above setup is to restore from labeled tape #1234, Before doing so, user must be sure that AREA-A,
AREA-B, and AREA-C exist in the database, (For a nonexisting area, user should initialize one and then
use DMSLOAD to restore it.)

2. Display a portion of the database on printer:

IASSIGN F:SCHE, (FILE, DMSCHEMA)
IASSIGN F:LOAD, (LABEL, DMSDP), (SN, 1234)
IDMSLOAD
PRINT
AREA=AREA-B CIPHKEY='BUG'
RANGE=(2, 5).

This setup will print pages 2 through 5 of AREA-B from a journal file or dump file,
3. Recover an area using BEFORE images from a journal tape.
IASSIGN F:SCHE, (FILE, DMSCHEMA)
IASSIGN F:LOAD, (LABEL, JOURNAL), (SN, 1234)
IASSIGN F:DBO1, (FILE, AREA-A)
IDMSLOAD
LOAD BEFORE AREA=AREA-A,
IEOD
The above setup enables a user to recover AREA-A to its condition prior to the creation of the journal tape.
4. Recipher an area:
IASSIGN F:SCHE, (FILE, DMSCHEMA)
IASSIGN F:DBO1, (FILE, AREA-C)

62 Utilities Operational Interface

IASSIGN F:LOAD, (LABEL, DMSCHEMA), (SN, 1234)

IDMSLOAD
LOAD AREA=AREA-C
CIPHKEY='BUG' NEWCKEY='DOGS'.
IEOD

This setup changes the cipher-key associated with the area from 'BUG' to 'DOGS',

DMSSUMS

The user must supply IASSIGN cards for the following files processed by the summary statistics processor:
The statistics file output by the DBM (F:STAT),

The schema file for the database (F:SCHE).

Typical Deck Setup Example (DMSSUMS)

IASSIGN F:SCHE, (FILE, DMSSCHEMA)
IASSIGN F:STAT, (LABEL, SUMSTAT), (SN, 5678)
IDMSSUMS

AREA=ALL GROUP=GROUP-1, GROUP-2, GROUP-3 SET=ALL.

This setup causes all area statistics, all set statistics, and the statistics for GROUP-1 and GROUP-2 to be printed
from a statistics file on labeled tape.

Utilities Operational Interface 63

APPENDIX A. SCHEMA FILE

The schema file is itself an EDMS database of only one area. The "data" in this database is information about the
user database that is defined by the schema DDL. The user's database is defined in the schema in terms of its areaq,
group, item, and set components. The schema also contains the subschema names of all subschemas that have been
generated using the schema, (Subschema information does not exist in the schema when it is initially created.)
Figure A-1 illustrates the schema database relationships. The groups and sets are explained below. Table A=1con-'
tains explanations of the items. Figure A-2 shows the schema Data Definition Language used to define the schema
database.

There is only one occurrence of the group SCHEMAHD. It is stored on page 1, line 1 of the file and is the basic
entry point to the schema database.

Linked to the SCHEMAHD occurrence are

1. One occurrence of the ASOWNER group for each set defined in the user's database (schema database
set W). '

2. One occurrence of the PASSWORD group for each password defined for the user's database (schema set A),

3. One occurrence of the SSCHEM group for each subschem& defined (set B). These occurrences are added
by the FDP when subschemas are generated.

4. One occurrence of AREAGP group for each area in the user's database (set C).

- If an area contains an indexed-sequential group, its AREAGP occurrence has associated INDX group occurrences
describing the several significant page ranges in the area (set F). The significant page ranges are the range speci~
fied for the indexed group, the overflow range, and the range of pages used for each level of indexing.

 An AREAGP occurrence also serves as an entry point (through set E) to information on all the groups in the area, in-
cluding information on the sets of which the groups are defined as owners and members.

- The UNIT group occurrences contain the basic information on user's groups (size, location mode, etc.). Linked to
each UNIT group occurrence (through set H) is one occurrence of the ELEMENT group for each item defined for the
group. Also linked to each UNIT group is an occurrence of the ASOWNER group for each set of which the referent
group is an owner (set J), and an occurrence of the ASMEMBER group for each set of which the reference group is a
member (set I).

Each ASMEMBER occurrence is linked (set M) to an ASOWNER occurrence for the referent set. (An ASMEMBER
and an ASOWNER occurrence that are linked together are, of course, linked to separate UNIT occurrences.) An
ASMEMBER occurrence may be linked to one or more ASCONTROL group occurrences through set N. The ASCON-
TROL occurrences associate an ASMEMBER occurrence with the ELEMENT occurrence(s) that describe the item(s) de~
fined as sort keys for the set, '

An ASMEMBER occurrence may be associated indirectly with an ELEMENT occurrence by means of an ALIAS group
occurrence using sets O and IJ. Each UNIT group occurrence is linked to one or more GROUPRET group occurrences
(set G) and may be linked to one GSTATS group occurrence. '

There is an occurreﬁce of a NAMEGP group for each item, group, or set defined for the user's database. There is
also a NAMEGP occurrence for each alias name specified. Each NAMEGP occurrence is linked to SNAMLINK,
INAMLINK, GNAMLINK, and/or ALIAS occurrence. :

’

Appendix A

65

66

SCHEMAHD
A ‘
PASSWORD SSCHEM AREAGP —Fl
E INDX
J
5 UNIT —(3—_1
‘ v
GROUPRET
ASOWNER GSTATS H g ©
4
T : ELEMENT
SSTATS ASMEMBER .
u
N
P
ASCNTROL [K
\
CHECK] CHECK2
o)
\
PICTURE
NAMEGP
Y
ALIAS
D
A
SNAMLINK INAMLINK
> GNAMLINK |
Figure A-1. Schema Database Diagram

Appendix A

Table A-1. Schema Items

Group Item Explanation

(1) AREAGP NAMESIZE Number of characters in area name.
AREANAME User-supplied name.
AREANO User-assigned number.
INVPERCT Inventory percent assigned by user— 50% minimum.
NBROFLIN Lines per data page: 1 implies 16, 2 implies 32, 3 implies 64,

4 implies 128, 5 implies 256.

CHECKSUM 0 — no checksum on data pages; 1 — checksum.
FILPERCT Percentage of page DBM is to use when area is created.
JOURNAL 0 —no journal; 1 —journal.
ENCIPHER 0 —do not cipher data pages; 1 — cipher pages.
INDEXED 0 — area not indexed; 1 — area indexed.
AOWNER 0 — area not owner of any sets; 1 —area owns sets.
AREAFIL1 Unused.
DATAPGES Number of data pages.
PAGESIZE Number of words per data page (currently fixed at 512).
KEYSIZE Size of indexed key in bytes if area is indexed.
RETUSERS Number of retrieve users.
UPDUSERS Number of update users.
PAGEIO Number of physical page 1/Os.
GRPSACSD Number of groups accessed.
G RPSINSD Number of groups inserted.
GRPSDLTD Number of groups deleted.
AREAF1L2 Unused.

(2) UNIT GROUPNO User-supplied number.
LOCATMOD Location Modé: 1 for direct; 2 for indexed; 3 for calg;

4 for caledup; 5 for via.

INVTITEM 0 —no inverted items in group; 1 — inverted items.
GRPRLOCK User-supplied retrieve lock (maximum value = 255).
GRPULOCK User-supplied update lock (maximum value = 255).
STRGESET 0 —no storage set; 1 —storage set specified.
SECINDEX 0 — not secondary index; 1 —group is secondary index.
NUMKEYS Number of calc, index of sort key items (0-7).
DEFRGE 0 — user supplied page range; 1 — default,
GRPFILL1 Unused.
GRPSIZE Size of group in bytes.
BEGPGRGE } Page range for grou
ENDPGRGE P
PRIMVALU Prime number for hash of calc groups.
GRPFIL2 Unused.

Appendix A

67

68

Table A-1. Schema ltems (cont.)

Group Item Explanation
(3) ASOWNER SETFILLI Unused.
SETNO Sequential number for set.
OPSTNEXT Relative byte position of set NEXT pointer.
OPSTNPRI Relative byte position of set PRIOR pointer.
SETFILL2 Unused.
(4) ASMEMBER ORDER 0 — implies last; 1 — prior; 4 — sorted; 8 — first; 9 — next.
GRPNOKY Group number as sort key; O implies not applicable; 1 — ignore;
2 — major; 3 — minor.
DUPSIND Duplicates indicated: O implies not allowed; 1 — first; 2 — last.
OPTIONAL 0 for membership not optional; 1 — membership is optional.
AUTOMANL 0 for membership is automatic; 1 — membership is manual.
PRIMARY 0 — not primary set for group; 1 — set is primary.
STORAG 0 — not storage set for group; 1 — set is storage set.
SELOWNER 0-— owner selection is unique; 1 — owner selection is current.
OWNERNO Unused.
MEMBFIL1 Unused.
MPSTNEXT Relative byte position of set NEXT pointer.
MPSTNPRI Relative byte position of set PRIOR pointer.
PSTNHEAD Relative byte position of set HEAD pointer.
MEMBFIL2 Unused.
(5) ELEMENT ITEMTYPE 0 —signed numeric; 1 — alphanumeric; 2 — numeric; 3 — alphabetic;
4 — binary; 5 — floating-point short; 6 — floating-point long;
7 — packed decimal.
LEVELNBR Will not be used in the current FDP.
OCCURCNT Number of occurrences of this item.
ITMRLOCK User-supplied retrieve lock (maximum value = 255).
ITMULOCK User-supplied update lock (maximum value = 255).
INVTIDNO Number of secondary index group.
DATAVLID Data validation type: O implies none; 1 — picture; 2 — range;
3 — both,
CONTROL 0 — item not calc or index control; 1 —item is control.
DEFPIC 1 — Defaults picture supplied for packed decimal item.
ITEMFIL1 Unused.
ITEMPSTN Relative byte position of item in group.
ITEMSIZE Size of item in bytes.
ITEMFIL2 Unused.
ITEMFIL3 Unused.
ITEMFIL4 Unused.

Appendix A

Table A-1. Schema Items (cont.)

Group Item Explanation
(6) ASCNTROL MATCHIND Type of sort match: O for equal; 1 for range.
CTRLTYPE Sequence Control Type: 1 for ascending; 2 for descending.
CTRLFIL1 Unused.
(7) SCHEMAHD COPYPSWD EXTRACT privacy lock.
ALTRPSWD ALTER privacy lock (not currently used).
PTRSIZE Size of set pointers in bytes.
SCHFIL1 Unused.
SCHDATIM Date and time when schema was created.
SCHESIZE Size of schema in pages.
NUMPSWDS Count of password groups.
NUMOWNRS Count of ASOWNER groups.
NUMMBRS Count of ASMEMBER groups.
(8) PASSWORD PASSWORD User-supplied database access password.
RETKEYS Retrieve keys for this password — one bit for each value up to 255.
UPDKEYS Update keys for this password — one bit for each value up to 255.
(9) SSCHEM SUBSNAME Subschema name.
ACCTNBR Account number under which subschema was created.
SUBDATE Date created (halfword binary year and halfword binary julian
day). '
SUBSTIME Time created: byte 0 = hour (0-23); byte 1 =minutes (0-59);
byte 2 = second (0-59); byte 3 = hundredths of a second (0-99).
(10) INDX

BEGPGNBR }
ENDPGNBR

Beginning and ending page numbers which together define an INDX
overflow range or index level.

DEFNTYPE Type of definition: O for overflow range; 1 for index level.
INDXLEVL Index level number (0 implies indexed data group page range).
INDXFIL] Unused.

(11) PICTURE PICTCNT Number of characters in picture.
ITEMPICT User-supplied picture for item
SCALE Scaling factor for picture.
PICFIL] Unused.

(12) CHECK1 LOWLIT]} Low and high literals for data validation (CHECK clause) of binary
HILITI and floating=point short items.
CKIFIL1 Unused.

Appendix A

69

Table A-1. Schema Items (cont.)

Group Item Explanation
(13) CHECK2 hﬁ\;\./rléﬂ-z} Low and high literals for data validation (CHECK clause) of
floating-point long, packed decimal, and EBCDIC items. Floating-
point long literals will be in the first two words of each item.
Packed decimal will always be 16 bytes. EBCDIC literals will
be left-justified in each item.
CK2FIL1 Unused.
(14) ALIAS (No items)
(15) GROUPRET DATNAME Name of retrieval item or set, or sort key.
RTVLTYPE Retrieval type: 1 implies index name; 2 — calc item name;
3 — via setname; 4 — storage setname; 5 — sort key name.
GRFILL1 Unused.
(16) NAMEGP NAMEVALU U‘ser-supplied name for set, group or item.
PRIMNAME Not used in current version.
NAMETYPE 1 implies setname; 2 — group name; 3 — item name; 0 — none.
DUPNAME 0 if no other item in schema has this name; 1 — duplicates exist.
NAMFIL1 Unused.
(17) INAMLINK (No items)
(18) GNAMLINK (No items)
(19) SNAMLINK (No items)
(20) GSTATS (Reserved for future implementation.)
NBRACSD Number of group occurrences accessed.
NBRINSD Number of group occurrences inserted.
NBRDLTD Number of group occurrences deleted.
(21) SSTATS (Reserved for future implementation.)
HEADACCS Number of head accesses through this set.
NEXTACCS Number of next accesses through this set.
PRIRACCS Number of prior accesses through this set.

70 Appendix A

SCHEMA 1S SCHEMASCHEMA,

AREA IS SCHEBASE CONTAINS 1 PACGES
NUMBER IS 1

ENCIPHERING IS NOT REQUIRED
CHECKSUM IS REQUIRED
JOURNAL IS NOT REQUIRED

N8 e % we

GROUP IS AREAGP
WITHIN SCHEBASE

NUMBER IS 1

® e we we

NAMESIZE; PIC X.
AREANAME; PIC X(30).
AREANO ; PIC X,

INVPERCT; PIC 99.
NBROFLIN; PIC 9.
CHECKSUM; PIC 9.
FILPERCT; PIC 99.
JOURNAL; PIC 9.

ENCIPHER; PIC 9.
INDEXIND; PIC 9.

AOWNER; PIC 9.

AREAFIL1; TYPE IS BINARY.
DATAPGES; TYPE IS BINARY.
PAGESIZE; TYPE IS BINARY,
KEYSIZE; TYPE IS BINARY.
RETUSERS; TYPE IS BINARY.
UPDUSERS; TYPE IS BINARY.
PAGEIO; TYPE IS BINARY.
GRPSACSD; TYPE IS BINARY.
GRPSINSD; TYPE IS BINARY.
GRPSDLTD; TYPE IS BINARY.
AREAFIL2; TYPE IS BINARY,

GROUP IS UNIT
;+ WITHIN SCHEBASE

NUMBER IS 2

o we we

GROUPNO; PIC 9(4).
LOCATMOD; PIC 9.

INVTITEM; PIC 9.

GRPRLOCK; PIC 999,
GRPULOCK; PIC 999,
STRGESET; PIC 9.

SECINDEX; PIC 9.

NUMKEYS; PIC X.

DEFRGE; PIC 9.

GRPFIL1; TYPE IS BINARY.
GRPSIZE; TYPE IS BINARY.
BEGPGRGE; TYPE IS BINARY,
ENDPGRGE; TYPE IS BINARY.
PRIMVALU; TYPE IS BINARY,
GRPFIL2; TYPE IS BINARY,

GROUP IS ASOWNER

WITHIN SCHEBASE

LOCATION MODE IS VIA OWNERSET
NUMBER IS 3

® we w8 we

LOCATION MODE IS CALC USING GROUPNO DUPLICATES NOT

LOCATION MODE IS CALC USING AREANAME DUPLICATES NOT ALLOWED

ALLOWED

Figure A=2. Schema DDL for Schema

Appendix A

71

SETFILL1; TYPE IS BINARY.
SETNO; PIC 9(4).

OPSTNEXT; TYPE IS BINARY.
OPSTNPRI; TYPE IS BINARY.
SETFILL2; TYPE IS BINARY.

GROUP IS ASMEMBER

WITHIN SCHEBASE

LOCATION MODE IS VIA MEMBRSET
NUMBER IS 4

® o we o

ORDER; PIC 9,

GRPNOKY; PIC 9.

DUPSIND; PIC 9.

OPTIONAL; PIC 9.
AUTOMANL; PIC 9.

PRIMARY; PIC 9.

STORAG; PIC 9,

SELOWNER; PIC 9.

OWNRNO; PIC 9(4).
MEMBFIL1; TYPE IS BINARY.
MPSTNEXT; TYPE IS BINARY.
MPSTNPRI; TYPE IS BINARY.
PSTNHEAD; TYPE IS BINARY.
MEMBFIL2; TYPE IS BINARY.

GROUP IS ELEMENT

WITHIN SCHEBASE

LOCATION MODE IS VIA ITEMSET
NUMBER IS 5

® we s we

ITEMTYPE; PIC 9.
LEVELNBR; PIC 999.
OCCURCNT; PIC 9299.
ITMRLOCK; PIC 999.
ITMULOCK; PIC 999.
INVIDNO; PIC 999.
DATAVLID; PIC 9.
CONTROL; PIC 9.
DEFPIC; PIC 9.
ITEMFIL1; TYPE IS BINARY.
ITEMPSTN; TYPE IS BINARY.
ITEMSIZE; TYPE IS BIMARY.
ITEMFIL2; TYPE IS BINARY.
ITEMFIL3; TYPE IS BINARY.
ITEMFIL4; TYPE IS BINARY.
GROUP IS ASCNTROL
WITHIN SCHEBASE
LOCATION MODE IS VIA CTRLSET
NUMBER IS 6

o we e e

MATCHIND; PIC 9.
CTRLTYPE; PIC 9.
CTRLFIL1; PIC 99.

GROUP IS SCHEMAHD

WITHIN SCHEBASE, RANGE IS PAGE 1 THRU PAGE 1
LOCATION MODE IS DIRECT

NUMBER IS 7.

~ we ~o

Figure A=2, Schema DDL for Schema (cont.)

72 Appendix A

co
AL

PYPSWD; PIC X(8).
TRPSWD; PIC X(8).

PTRSIZE; PIC 9.

sC

HFIL1; PIC XXX.

SCHDATIM; PIC X(20).

SC

HESIZE; TYPE IS BINARY,

NUMPSWDS; TYPE IS BINARY,
NUMOWNRS; TYPE IS BINARY.
NUMMBRS; TYPE IS BINARY.

GROUP

o we we o

IS PASSWORD

WITHIN SCHEBASE

LOCATION MODE IS VIA PASSWSET
NUMBER IS 8

PASSWRD; PIC X(8).
RETKEYS; PIC X(32).
UPDKEYS; PIC X(32).

GROUP

* we we wo

IS SSCHEM

WITHIN SCHEBASE

LOCATION MODE IS VIA SSCHMSET
NUMBER IS 9

SUBSNAME; PIC X(30).
ACCTNBR; PIC X(8).
SUBSDATE; TYPE IS BINARY,
SUBSTIME; TYPE IS BINARY,

GROUP

® we w8 e

IS INDX
WITHIN SCHEBASE
LOCATION MODE IS VIA INDEXSET

NUMBER IS 10

BEGPGNBR; TYPE IS BINARY.
ENDPGNBR; TYPE IS BINARY,
DEFNTYPE; PIC 9.
INDXLEVL; PIC 9,
INDXFIL1; PIC 99,

GROUP

~

o ~e we

P

IS PICTURE

WITHIN SCHEBASE

LOCATION MODE IS VIA DESCPSET
NUMBER IS 11

ICTCNT; PIC X.

ITEMPICT; PIC X(30).

S
P

CALE; PIC X.
ICFILL1; TYPE IS BINARY,

GROUP IS CHECK!1

o v e ~e

WITHIN SCHEBASE
LOCATION MODE IS VIA DESCPSET

NUMBER IS 12

LOWLIT1; TYPE IS BINARY.
HILIT1; TYPE IS BINARY.
CK1FIL1; TYPE IS BINARY,

Figure A-2. Schema DDL for Schema (cont.)

Appendix A

73

GROUP IS CHECK2

WITHIN SCHEBASE

LOCATION MODE IS VIA DESCPSET
NUMBER IS 13

* e we wo

LOWLIT2; PIC X(16).
HILIT2; PIC X(16).
CK2FIL1; TYPE IS BINARY.

GROUP IS5 ALIAS
¢+ WITHIN SCHEBASE
; LOCATION MODE IS VIA ALIASSET
; NUMBER IS 14

GROUP IS GROUPRET

WITHIN SCHEBASE

LOCATION MODE IS VIA GRPRET
NUMBER IS 15

® e we we

DATNAME; PIC X(30).
RTVLTYPE; PIC 9.
GRFILL1; PIC 9.

GROUP IS NAMEGP

WITHIN SCHEBASE

LOCATION MODE IS CALC USING NAMEVALU DUPLICATES NOT ALLOWED
NUMBER IS 16

o we wo we

NAMEVALU; PIC X(30).
PRIMNAME; PIC 9.
NAMETYPE; PIC 9.
DUPNAME; PIC 9.
NAMFIL1; PIC 9(3).

GROUP IS INAMLINK

3 WITHIN SCHEBASE

3 LOCATION MODE IS VIA INAMESET
; NUMBER IS 17

GROUP IS GNAMLINK

WITHIN SCHEBASE

LOCATION MODE IS VIA GMAMESET
NUMBER IS 18

o we we e

GROUP IS SNAMLINK

WITHIN SCHEBASE

LOCATION MODE IS VIA SNAMESET
NUMBER IS =19

& we e we

GROUP IS GSTATS

WITHIN SCHEBASE

LOCATION MODE IS VIA GSTATSET
NUMBER IS 20

® Ne we Ne

NBRACSD; TYPE IS BINARY.
NBRINSD; TYPE IS BINARY.
NBRDLTD; TYPE IS BINARY,

Figure A=2. Schema DDL for Schema (cont.)

74 Appendix A

GROUP IS SSTATS

WITHIN SCHEBASE

LOCATION MODE IS VIA SSTATSET
NUMBER IS 21

o ™o %o we

HEADACCS:; TYPE IS BINARY.
NEXTACCS; TYPE IS BINARY.
PRIRACCS; TYPE IS BINARY.

/*
SETS
*/
SET IS PASSWSET
; OWNER IS SCHEMAHD
3+ ORDER IS SORTED

MEMBER IS PASSWORD

INCLUSION IS AUTOMATIC

SELECTION IS CURRENT

ASCENDING KEY IS PASSWRD DUPLICATES NOT ALLOWED

3 we we we

SET IS SSCHMSET
3 OWNER IS SCHEMAHD
3 ORDER IS SORTED

MEMBER IS SSCHEM
7 INCLUSION IS AUTOMATIC
SELECTION IS CURRENT
ASCENDING KEY IS SUBSNAME DUPLICATES NOT ALLOWED

o we ws

SET IS AREASET
OUWNER IS SCHEMAHD
ORDER IS LAST

o wo we

MEMBER IS AREAGP
INCLUSION IS AUTOMATIC
SELECTION IS CURRENT

. wo we

SET IS NAMESET
+ OWNER IS NAMEGP
3 ORDER IS FIRST

MEMBER IS INAMLINK

INCLUSION IS AUTOMATIC
SELECTION IS CURRENT
LINKED TO OWMER

2 wo ws wo

Figure A-2. Schema DDL for Schema (cont.)

Appendix A

75

MEMBER IS GNAMLINK

INCLUSION IS AUTOMATIC
SELECTION IS CURRENT
LINKED TO OWNER

® we wa we

MEMBER IS SNAMLINK

; INCLUSION IS AUTOMATIC
;7 SELECTION IS CURRENT

H

LINKED TO OWMER

SET IS GROUPC
OWNER IS AREAGP
ORDER IS LAST

 ~a e

MEMBER IS UNIT

;7 INCLUSION IS AUTOMATIC
SELECTION IS CURRENT
LINKED TO OWNER

e e~

SET IS INDEXSET
i OWNER IS AREAGP
;7 ORDER IS LAST

MEMBER IS INDX
INCLUSION IS AUTOMATIC
SELECTION IS CURRENT

-

o~

SET IS GRPRET
OWNER IS UNIT
ORDER IS LAST

e we we

MEMBER IS GROUPRET
INCLUSION IS AUTOMATIC
SELECTION IS CURRFMT

o we we

SET IS ITEMSET
OWNER IS UNIT
ORDER IS LAST

* we we

MEMBER IS ELEMENT

INCLUSION IS AUTOMATIC
SELECTION IS CURRENT
LINKED TO OWNER

® ~e we e

SET IS MEMBRSET
OWNER IS UNIT
ORDER IS LAST

® wo we

MEMBER IS ASMEMBER

INCLUSION IS AUTOMATIC
SELECTION IS CURRENT
LINKED TO OWNER

® we we we

Figure A-2. Schema DDL for Schema (cont.)

76 Appendix A

SET IS OWNERSET
; OWNER IS UNIT
; ORDER IS LAST

MEMBER IS ASOWNER

-~

® we wo

INCLUSION IS
SELECTION IS

AUTOMATIC
CURRENT

LINKED TO OWNER

SET IS DESCPSET
¢ OWNER IS ELEMENT
;3 ORDER IS LAST

MEMBER
i

H

MEMBER
i

.
’
.

MEMBER
?
i

IS PICTURE
INCLUSION IS
SELECTION IS

IS CHECK1
INCLUSION IS
SELECTION IS

IS CHECK2
INCLUSION IS
SELECTION IS

SET IS MODFYSET
+ OWNER IS ELEMENT
¢ ORDER IS LAST

MEMBER

o we we wo

IS ASCNTROL
INCLUSION IS
SELECTION IS

AUTOMATIC
CURRENT

AUTOMATIC
CURRENT

AUTOMATIC
CURRENT

AUTOMATIC
CURRENT

LINKED TO OWNER

SET IS SETLINK
;7 OWNER IS ASOWNER
; ORDER IS LAST

MEMBER

* N we we

IS ASMEMBER
INCLUSION IS
SELECTION IS

AUTOMATIC
CURRENT

LINKED TO OWNER

SET IS CTRLSET

® we e

MEMBER
i

i
H

OWNER IS ASMEMBER
ORDER IS LAST

IS ASCNTROL
INCLUSION IS
SELECTION IS

AUTOMATIC
CURRENT

LINKED TO OWNER

SET IS ALIASSET
; OWNER IS ASMEMBER

Figure A-2. Schema DDL for Schema (cont.)

Appendix A

77

7 ORDER IS LAST

MEMBER IS ALIAS

INCLUSION IS AUTOMATIC
SELECTION IS CURRENT
LINKED TO OWNER

o wo we wo

SET IS INAMESET
;7 OWNER IS ELEMENT
;s ORDER IS LAST

MEMBER IS INAMLINK

INCLUSION IS AUTOMATIC
SELECTION IS CURRENT
LINKED TO OWNER

© e e we

SET IS GNAMESET
OWNER IS UNIT
ORDER IS LAST

o e we

MEMBER IS GNAMLINK

INCLUSION IS AUTOMATIC
SELECTION IS CURRENT
LINKED TO OWNER

o we we e

SET IS SNAMESET
OWNER IS ASOWNER
ORDER IS LAST

o we we

MEMBER IS SNAMLINK

INCLUSION IS AUTOMATIC
SELECTION IS CURRENT
LINKED TO OWMER

® w8 we wo

SET IS GSTATSET
OWNER IS UNIT
ORDER IS FIRST

o e ws

MEMBER IS GSTATS
INCLUSION IS AUTOMATIC
SELECTION IS CURRENT

o we wo

SET IS SSTATSET
; OWNER IS ASOWNER
; ORDER IS FIRST

MEMBER IS SSTATS
INCLUSION IS AUTOMATIC
SELECTION IS CURRENT

o we we

Figure A-2. Schema DDL for Schema (cont.)

78 Appendix A

SET IS MKALTSET
OWNER IS ELEMENT
ORDER IS LAST

o wo ~s

MEMBER IS ALIAS

INCLUSION IS AUTOMATIC
SELECTION IS CURRENT
LINKED TO OWNER

® weo we we

SET IS ALNAMSET
OWNER IS NAMEGP
ORDER IS LAST

o wo e

MEMBER IS ALIAS

INCLUSION IS AUTOMATIC
SELECTION IS CURRENT
LINKED TO OWNER

® we wo we

SET IS HDRSET
OWNER IS SCHEMAHD
ORDER IS LAST

~e

o e

MEMBER IS ASCWNER
INCLUSION IS AUTOMATIC
SELECTION IS CURRENT

 wo we

END.

Figure A-2. Schema DDL for Schema (cont.)

Appendix A 79

APPENDIX B. SUBSCHEMA FILE

The subschema file contains a control block, a list structure that defines all or a part of a database for the Database
Manager (DBM) and an optional block of name table entries. Figure B-1 illustrates the relationship among the dif-
ferent categories of data within the list structure used by the DBM.

The list structure contains encoded information on the structure of the database to guide the DBM in its interpretive
execution of user's procedural accesses to the database. The list structure also contains a fayout of the user's work-
ing storage that will exist in every program using this subschema when processing in the database. A complete lay-
out of the list structure is included in Figures B-2 through B-12. Figure B-13 shows the format of the entries in the

optional name-table. Figure B-14 shows the subschema file directory block format.

Except for the PASSWORD definition, all the values for LINK NEXT and LINK HEAD in the definitions are offsets
from the beginning of the subschema, word 0 of the subschema definition. These values are translated to actual core
locations when the subschema is read into core by the DBM. PASSWORD LINK NEXT in the subschema definition
refers to a block number of the first block of passwords; PASSWORD LINK NEXT in the PASSWORD definition is
nonzero for all but the last definition in the password [ist.

Subschema links roughly correspond to schema set pointers, though the subschema is not a database.

Password Link Subschema
Definition
Area Link
y
qu.svt'o.rd Area Definition ISEQ Link
Definition
Group Link
\
[-_ — — — — — — — —»{ Group Definition ISEQ Definition
|
I Owner
‘— Link
— Item o Set Owner
‘——— — — —p! Item Definition Link Definition
Member
I Check_] Link
E
| y ik Modify A
I Check Link Set Member Set Link
l Definition Definition
Control
| Link Alias Link
| i 1
! Control Definition Alias Definition
|
e |
| Frimary Vem Poivver |

Figure B=1. Subschema Definition Structure

80 Appendix B

0 7,8,9 11,12,1314,15/16) 23,24 31

Word 0 x'oy \\\\\\\\\\\ Working Storage Increment

3 | Inventory Percent ISEQ Link Next
4 Fill Percent \\\\\\\ Group Link Next
5 Size of Index Key in Bytes Page Size in Words

Words 6 through 13 contain the area name in TEXTC format.

where
A =1 if area has checksums.
B =size of data-page line numbers in bits (4, 5, 6, 7, or 8).
C =1 if data pages are to be enciphered.

D =1 if area is to be journaled.

Figure B=2, Area Definition

0 7,8,9,10,1112,1314,15/16 2324 31
Word 0 X'02' A|B[C|I [D|E|F Working Storage Increment
1 Group Number N NG|H Owner Link Next
DA\
2 Retrieve lLock \ Member Link Next
riev \\\\

Figure B-3. Group Definition

Appendix B

81

0 7,8,9,1011,1213141516 2324 31

Word 3 | Update Lock \\\\\\\i Item Link Next
4| Database Group Sizerf &\\\\\\ Group Link Next
6 \\\\\\\\\\\\\ Page Range Minimum
DN e #oroe posiman

8 \\\\\\\\\\\\\\ < Page Range Prime Value

Words 6 and 7 are optional and present only if bit D is set. Word 8 is optional and present only if
bit C is set. Word 9 is optional and present only if bit H is set.

i

where
A =1 if group is stored relative to a storage set.
B =1 if this is a direct group.
C =1 if this is a calc group.
D =1 if page range is present.
E =1 if group has any inverted items.
F =1 if this is an indexed group.
G =1 if group cannot be stored because of missing items, sets, or secondary indexes.
H =1 if statistics shall be generated for the group.

I =1 if group cannot be deleted because of missing sets or secondary indexes.

rIn words.

Figure B-3. Group Definition (cont.)

82 Appendix B

0 7,8,92,1011 12131415,16 2324 31
N
Word O X'03' \\\A \ Working Storage Increment
N\

1 Group NMumber \\\ Owner Link Next

2 Position Next Owner Link Head

\
N
3 Position Prior \\\ Set Link Next

4 Set Number \\\\\\\§ Statistics Working Storage

Word 4 is optional and present only if bit A is set.

where

A =1 if statistics are to be generated,

Figure B=4. Owner Definition

0 7,89 1011121314 1516 181920 2122 25,26 2728,29,30,31
Word 0 X'04' AlBIC MN\\\\D E F G [H|J|K|L
1 Group Number Control Link Next
l\\

N
2 Position Next @ Member Link Next
N \
3 Position Prior \\ Set Link Next
\ '

Figure B-5. Member Definition

Appendix B 83

0 7.8 112 141516 2324 31

Word 4 Position Head “\\ Set Link Head

Word 6 is optional; it is present only if bit N is set and it is used only if bit A is set.

where
A =1 if there are any aliases defined for the set.
B = 1 if member is optional.
C =1 if member is manual.
D =1 if PAGESET member.
E =01 if group number is major sort key; = 10 if minor.

F indicates set order: 0000 implies last; 0001 — prior; 0100 — sorted; 1000 — first; 1001 — next;
0110 — sorted by group number.

G =01 implies duplicates first; 10 — duplicates last; 00 — duplicates not allowed.
H =1 if CALCSET member.

J =1 if selection is current; =0 if location mode of owner.

K =1 if this is storage set for group.

L =1 if this is prime retrieval set.

M =1 if control items are omitted.

N =1 if definition is seven words; =0 if six words.

Figure B-5. Member Definition (cont.)

84 Appendix B

0 718,9 110)11,121314,1516 19,20 2324 31
Word 0 X'05' A B Working Storage Increment
1 Item Size in Bytes \\\\\\\\\ File Increment
N o
2 Retrieve Lock Modify Link Next
R X
3 Update Lock \\\\\\\\ Item Link Next
\
4 \\\\\\\\\\\\\\ Item Link Head
5 \ Index Head Pointer
6 \\\\\\\\\\\\\ Check Link Next
N N
Word 5 is optional and present only if bit C is set and bit F is reset. Word 6 is
optional and present only if bit D and/or bit E is set.
where
A =1 if this is control item (calc, index, or sort key on via set).
B indicates item type: O implies signed number; 1 — alphanumeric; 2 — numeric; ‘

3 — alphabetic; 4 — binary; 5 — floating short; 6 — floating long; 7 — packed.

C =1 if item is inverted.
D =1 if there is a check on range.

E =1 if there is a check on picture.

F =1 if this is an inverted item (bit C is set) and the secondary index group has been omitted

(i.e., item cannot be modified).

G =1 if item is a sort key in a set which is omitted (i.e., item cannot be modified).

Figure B=6. Item Definition

Appendix B

85

1111111

1541

2\\\\\\\\\\\\\\\\\

'RAOMNMNMNONN

DO

A is match indicator: 0 if equal; 1 if range.

1111111

722{\\\\\\

d (Binary)

0 7.8 141516 2324 31

Wordo | xos W Password Link Next

1 Password (First Half)

2 Password (Second Half)

Words 3 through 10 contain the retrieve authority indicators. Words 11 through 18
contain the update authority indicators.

Figure B=9. Password Definition

‘ \\\\\\\\\\\\\\ Beginning Page Number
2 \\\\\\\\\\\\ S Ending Page Number
’ &\\\\R\\\\\\\\\\ ISEQ Link Next

where

A =0 if overflow range, =1 if index level,

B = index level number, O through 8. (Note that index level zero actually contains the page
range of the indexed data group.)

Figure B-10, Indexed~Sequential (ISEQ) Definition

Appendix B

87

0 7,8 9,10 1213141516 2324 31

N
Word O X'0B' C \A B Check Link Next

N

Words 1 through N contain the check value(s), with N calculated as follows:

e If check value is o picture, N =8. The picture is in TEXTC format starting at byte 0 of
word 1. '

e If check value is a range, N is based on the item type

Item Type N
Binary 2
Floating short 2
Floating long . 4
Packed 8
EBCDIC 8

If the item type is binary or floating short, the low/high values will be in words 1 and 2 and
the total definition size will be three words.

If the item type is floating long, the low value will be in words 1 and 2 and the high value
in words 3 and 4. Total definition size will be five words.

If the item type is packed decimal, the low/high range values will be in packed format and
always 16 bytes in length. If item type is EBCDIC, the low/high range values will be left-
justified in a 16-byte field and blank filled. In both of these cases, the low value will be

in words 1 through 4, the high value in words 5 through 8, and total definition size will be
nine words.

A =1 if check value is PICTURE.
B =1 if check value is RANGE.

C is definition size code: 0 implies three words; 1 —- five words; 2 — nine words.

Figure B=-11. Check Definition

88 Appendix B

Word O

1213141516

2324 31

X'oC!

N\

Alias Link Next

NN

Alias Working Storage Increment

RUMUIMIbIYXNXY

Primary Head Pointer

Figure B-12. Alias Definition

Word 0

wC
SCALDISP
Dup
CMPN
Name
Scale
PICTCNT

PICTURE

0 8 14 1516 23124 31
wC SCALDISP Il’); CMPN
Name
Name (cont.) Scale PICTCNT
PICTURE N

Word count (zero indicates last entry).

Byte displacement to scaling factor (zero implies no scaling factor and hence no PICTURE).

= 1 if duplicates exist (i.e,, name must be qualified).

= Subschema increment of component,

= DATA NAME with one trailing blank,

= Number of fractional digits (negative value indicates unused integral digits.

= Length of PICTURE (bytes).

= Character image of PICTURE,

Figure B-13. Noame Table Entry Format

Appendix B

89

90

Word 0

Word 1

Word 2

Word 3

Word 4

Word 5

Word 6

Word 7

Word 8

31

Number of Significant Words (currently = 8)

Block Number of First Subschema Block

Count of Subschema Blocks

Block Number of First Password Block

Count of Password Blocks

Block Number of First Name Table Block

Count of Name Table Blocks

Count of Words in Subschema

Checksum

Appendix B

Figure B-14. Subschema File Directory Block Format (Blockzero)

APPENDIX C. SAMPLE DATABASE DEFINITION

This appendix illustrates (in Figures C-1 through C-7) the various aspects of the database definition function, and
the operation of DMSFDP. The schema DDL for the sample database pictured in Figure 1 in the text is included,

and two subschema DDL configurations using the schema are shown. The DMSFDP outputs in each of its two phases

are shown, including a COPY and a SYSTEM listing.

lewa200%#% EXTENDED OMS FILE DFFINITION PRBCESSAR we VERSION AONS

*
sxu Qous EXTENDED DMS SCHEMA DDLoe
13/« THg DDL CBNTAINED IN THIS FILg 1S ERROR FREE, #/

24
3! SCHEMA NAME 1S SAMPLESCHEMA; PRIVACY LOCK FARp

4! EXTRACT IS 'Ex1.BCK'; PASSWBRD IS 'PASWRDY!

51 RETRIEVE KEYS ARE 1,17,25 UPDATE KEY Is 231,247
6! PASSABRD 15 'PASWRD2' RETRIEVE KEY IS 3

71 UFDATE KEYS ARF 5649727604

8}

93 AREA NAME IS AREA=1 CONTAINS 100 PAGES; NUMRFR 1§ 1
103 JINVENTBRY 75

118 1 CHECKSUM 1S NBT REQUIREDs JBURNAL 1S NOT

128 REQUIREDS ENCIPHERING 1S NB8T REQUIREDe

H]

%u: AREA NAME 1S AREAw=2 CONTAINS 50 PAGES; NUMBFR

153 I8 21 INVENTORY

164 PERCENT IS 50; JBURNAL IS NBT REQUIRED,

17¢

188 GROBUP NAME IS GRBUP.1 WITHIN AREA.1J NUMBER 1S

198 100s LBCATION MBDE 1S DIRECT; PRIVACY 1.8CK

2018 FER RETRIEVE IS 1) PRIVACY LBCK FBR UPNATE IS
21 231 STATISTICS ARE REQUIRED.,

221

23 GROUF NAME 1S GROUP=2 WITHIN AREA=1 RANGE 1S 1 THRU
248 304 NUMBER 1S 2003 LBCATION MBDE 1S v]a

251 SETeA SET PRIVACY LACK FBR RETRIEVE 1S 47

261 PRIVACY LBCK FAR UPDATE IS 231,

273 ITEMeRi; PICTURE IS A(16); TyPE 1S CHARACTER

284 PRIVACY LBCK FBR RETRIEVE IS 174 PRIVACY

298 LBCKk FBR UPDATF IS 231,

308 1TEM=22 TYPE 1S BINARY; BCCURS 4

31% ITEMe23; TYPE IS FLBATING LENG.

328

331 GROUP NAMF IS GRBUP.3 WITHIN AREA.2 LOCATION MBDE
343 1S CALC USING I1TEMe32 DUPLICATES ARE ALLBWED)
351 MUMBER IS 3003 PRIVACY LOCK FBR RETRIEVE

361 1S 17 PRIVACY LHCK FER UPDATE 1S 247.

37 ITEM=3{ PICTURE IS x(31) BCCURS 4 TIMES,
381 ITEM*32; TYPE 1S CHARACTER, 31

391

403 GROUP NAME IS GROBUPe4 ,ITHIN AREAe2 RANGE 18 | THRU 25
411 NUMBER 1§ 40?: LBCATIEN MBDE 1S CALC USING

42t ITEMw41 DUPLICATES NBT ALLIWED,

438 ITEMe4) PICTURE 1S 99v99; PRIVACY LBCK FOR RETRIEVE
443 18 1o

451 ITEMesp PICTURE 1S AA9(4)As
468 ITEMe43 TYPE 1S CHARACTER, 4,
473 ITEMe44 TYPE IS BINARY.

Figure C-1, Schema DDL Listing for Sample Database

Appendix C

1

92

481
493 SET NAME 1S SETwAj; BuNER IS GRBUPe1; BRDER 1S pIRST,
80t MEMBER IS GRBUPw2

518 JINCLUSIBN 1S AUTBMATIC ST BCCURRENCE SELECTIBN
ggl IS LOCATION MODE BF OWNER,
i
543 SET NAME IS SET«B; BWNER IS GRBUPe2
551 BRDER 18 NEXT; STATISTICS ARE REQUIRED,
56¢ MEMBER 1S GRBUP=3 INCLUSISN 15 AUTOMATIC
57% JLINKED T8 BWNFRJ SET BCCURRENCE SELECTION
gg: 18 THRU CURRENT 8F SETs
601 SET NAME IS SETeC; BRDER 1S NEXT
61! JBWNER 1S GROUPe2: LINKED T8 PRIBR
62! JSTATISTICS ARE REQUIREDs
63! MEMBER IS GRBUPe4 INCLUSIBN IS MANUAL
6413 SELECTIBN 1S THRU CURRENT 8F SET.
651
663 SET NAME 1S SET#DiBWNER IS GROUP=3
673 4 BRDER 1S SORTED) STATISTICS ARE
681% REQUIRED
69% MEMBER IS GRBUpe4 INCLUSIBN IS AUTBMATIC
701 JLINKED T8 BWNER
71t JSET BCCURRENCF SELECTIEN IS THRU LBCATION
728 MBDE BF BWNERj; ASCENDING RANGE KEY 1S
;3: ITEMe41 DUPLICATES ARE NOT ALLOWED,
758 END»

Figure C-1. Schema DDL Listing for Sample Database (cont.)

«xu2D7%ns SCHEMA CONTAINS 000% PAGES
enw208%w»s THERE AERE 0000 NIAGNBSTIC MESSAGES.
STOBRAGE REGQUIREMENT QUMMARY

AREA NUMBER *DATA PAGFS INDEX PAGFS INVENTBRY PAGES
o} 0000100 0000000 0000001
02 0200052 00nn0oo 0000001

wxupyi*se SCHEMA GENERATIOBN COMPLETE,

Figure C-2. Schema Generation Summary Output for Sample Database

Appendix C

Luun2COnes pEXTENDED OMS FILE DEFINITION PROBCESSOR we VERSION 400,

.
#4u202#u% EXTENDED DMS SUBSCREMA DDL.
3t SUBSCHEMA NAME 1S CABRLSUE @F SCHEMA SAMPLESCHEMA

41 COMPONENTS ARE SPECIFIED,

2: SETS ARE SET=A SETeB SETeCe

;; AREAS ARE ALLj) COMpONENTS ARE SPECIFIED,
i?; GROLP NAME IS GROUPw=1; CBMPBNENTS ARE AlLe

183 GROLP NAME 1S GROBLUPL.2,R RENAMES GRBUP.2; CBMPONENTS ARE SPECIFIED,
13¢ 03 ITEMe21e22+23¢

1418 C5 I1TEMa21C, RENAMES ITEMe21.

151¢ C5 ITEMa2Z2e23,

163 C7 ITEMe22=ALTe

178 11 1TEM=22.

183 07 I1TEMe23.

198

20! GROUP NAME 1S GROBUPe3; CAMPONENTS ARE SPECIFIED,
211

223 GROLP 1S GRBUPL4) COMPONENTS ARE SPECIFIED,
231 C2 ITEMweble

24

25% ENDs

#eu2iyses CUBSCHEMA FILE OCCUPIES 0C3 GRANULES,

aunp Sees IN CERE SUBSCHEMA REQUIRES (0C1 CORE PAGES.
senpc8#es THERF WERE 000C DIAGNBSTIC MESSAGES.
#n0p03nes SUHSCHEMA GENERATIEN COMPLETE.

Figure C~3. Subschema-1 DDL and Summary Qutput for Sample Database

01 CCB.
02 REFeCBLE CAMP VALUE ZERA,
02 FPAGE=Nm PIC 9(8)e
02 LINE-NP PIC 9(3),
02 FRSTeRFF CHMP,
02 LASTeRpF COMP,
02 GRPeNB CHMP o
02 ERReCALE CHAMP,
02 ERReNB COMP,
02 ERReREF CBOMP,
c2 FPASSWBRD PIC X(8) VALUE SPACES,
€2 ARFAuNp PIC 99,
01 SETTABLES CBMF.
02 SETehe
03 SET=BWAR,
03 SET*PRIR.
03 SET«CURR,
03 SETeNEXTe
03 SETeGRFe
02 SETeR,
03 SET=8WAR,
03 GETYePRIR.
03 SET=CURR,
03 SETeNEXTe
03 SETeGRF.
0?2 SETe(a
03 SETY*BWAR,.
03 SEY*PRIR,
03 SET*CURR,
03 GETY-NEXT,
03 SET=CRF.
01 AREA=TABLE,
02 AREA«] PIC X(4) VALUF SPACFES,
02 ARFAw2 PIC X(4) VALUE SPACES,
01 GrAuPe=1.
02 CURRe100 CHMP,
01 GRAUPeReR,
C3 ITEMw2122+23,

Figure C-4. COPY Listing Corresponding to Subschema-1 for Sample Database

Appendix C

93

94

01
01

01

o1

05 1TEMe21C PIC Allg)
05 ITFMeP223.
C7 ITEM=22=ALT,
11 ITEMeP2? CBMP BCCURS (CO4 TIMES.
07 ITEMe23 COMP240075)
03 CURR«200 CBMP,
GROUP=3,
03 CULRRe300 CHOMP,
GﬂﬁUP.h .
C2 ITEM=4q PIC 99Vv99.
02 CLRRe4n0 CBMP,
AREA=MASTERS=0Z CAMP,
02 CURRe1£00e
C2 CALCSET.
03 SET=0WAR,
03 SET=FPRIR,
03 SET«CURRs
03 SETeNEXT.
03 SETeGRF.
STATISTICS COMF.
02 GRP«STATSe100 CAMP,
03 STAT=CTRL.
03 STAT=ACCe
03 STAT=IAS.
03 STATe=DEL,
02 SET=STATSeCQ02 CBMP,
03 STAT=CTRL.
03 STAT=NEXT,
03 STATePRIR.
03 STATeHEAD.
C2 SETeSTATS«CNO3 COMP,
03 STAT=CTRL,
03 STATeNEXT,
03 STAT=PRIR.
03 STAT«MEAD,

Figure C-4. COPY Listing Corresponding to Subschema-1 for Sample Database (cont.)

{esu2C0%e% FXTENDED DMg FyLE DEFIN{T{8N PRACESSAR == VERGIGN ACO.

’
#%32CP%ne EXTENDED OMS SUBSCREMA DOLe

11
LX)

173

SUBSCHEMA NAME IS MFTASUB BF SCHEMA SAMPLESCHEMA
} CBMPANENTS ARE SPECIFIED.

SET 1S SETeDe
AREA 1S AREAe2 COBMpOANENTS ARE SPECIFIED,
GRBLP NAME 1S FIRST, RENAMES GROUP.3} CAMPANENTS ARE ALL,
GRAUP NAME 1S SECHND, RENAMES GRBURPL43 COBMPBNENTS ARE
ITEMeb4 1,
1TEMebbho

ENDo

*naplyeus CUBSCHEMA FILE BCCUPIES 003 GRANULES,
«wupiBess IN CARE SURSCHEMA REQUIRES QC1 CORE PAGES,
#n¥2CRuus THERF WERF 00COH DIAGNASTIC MESSAGES.
#nwepC3%ms CUBSCHEMA GENERATIAN CAMPLFTE.

Appendix C

Figure C-5. Subschema-2 DDL and Summary Output for Sample Database

HBUND 8
cca RES 0
REF$CHACFZCCH LATA
PAGF¢NHzCCH RES»1
LINESNAACCE RES)1
FRETSREFECCB RESs1
LASTSREFRCCH RES,1
GKPENREBCCP RES, 1
EerRTCHDFACCB RESs)
ERFPENRACCH FES» 1
ERR¢RFFICCR RES.1
PASSWARDACCH CATA
ARFASNBRACCB ReSs1

RAUNE 8
SETHTABLES RES O
SFET43uAR FQU
SET¢PRIR FQY
SFT¢CURR EFQU
SETENEXT FQU
SFTE¢GRF FLU
SFTER CATa CaCa0sCaC

RAUND 8
ARFA4TARLF RES 0
AREA®2 DATA '

HAUNE 8
FIRET RFS O
ITEME3]1 RES,1 0124
1TFM$32 RFS,1 0031

BBUND 4
CURF$3C0O RES)1 4

BRUND &
SFCAND RES ©
1TEME4] RES,1 COC4

HRUND 4
1TEMeLY RES,1 COCCa

RBUNEC &
CURR$4C0 RES,1 4

HAUND 8
ARFEAeMAQTERS#C? RES 0

HAUNE &
CURF$1C0CEN2 RESs1 &
CALCSFTAQZ DATA C»0,0,0,0

RAUND 8
STATISTICS RES O
STAT#CTRL EQU ¢
STATSACC,STATSNEXT EQU 1
GTAT&ING,qTATEPRIR EGU 2
STATSDELSSTATSREAD Eqt! 3
SET+STAYTS+QCCu CATA 0,Cr0.C

END

& e s T FrE®XO

LR L R e]

Figure C~6. SYSTEM Corresponding to Subschema=2 for Sample Database

Appendix C

95

APPENDIX D. DATABASE PAGE FORMATS

This appendix contains Figures D-1 through D-5, showing details of the various page formats in an EDMS database.

0 7,8 | 1920 21222324 31
M
Word O Page Number P Ty W| Space Available
: 01 [: Page
Header
1

Control Set Poinfer

Data Groups

/

Optional Checksum

1

Available Space
5N

|

Pg Ty - Page Type =01 for data page, 10 for inventory page, 11 for index page
MWF - Must-Write Flag

Figure D-1. Data Page Format

0 718 1516 17,1819 222324 31
Line Number Group Number ? Zero Group Size
Zero Control Set Poinferr

Data item values — no slack bytes

Set 1 Next Pointer

Set 1 Next Pointer Set 1 Prior Pointer
(cont.)

where DI is the Delete Indicator: 1 means group has been logically deleted.

f : . .
Control Set Pointer is included only for groups defined with calc or indexed location modes.

Figure D=2. Data Group Occurrence with Three-Byte Set Pointers

Appendix D

15116 17,1819 22123 31
Group Number ? Zero Group Size

Line Number

Control Set Pointer

Data Item Values (No slack bytes)

Set 1 Next

Set 1 Next (cont.)

Set 1 Prior

Set 1 Prior (cont.)

Zero

where DI is the Delete Indicators: 1 means group has been logically deleted.

Figure D=3. Data Group Occurrence with Four-Byte Set Pointers

0 718 11412 15116 19{2021,22{23)24 31
PaTy |M .
Word 0 Page Number an W| Space Available
F
1 Area Number Zero Next Index Page Number for this Level
Number of Index Entries . .

2 on this Page Page Number for First Index Entry on this Page

3 Page n Index Entry (Assuming 3 byte Key)

Page

n + 1 Index Entry

Page n + 2
Index Entry

Page n + 3 Index Entry

Page n + 676 Index Entry

DA\

Checksum of Page (optional)

Pg Ty - Page Type = Q1 for data page, 10 for inventory page, 11 for index page
MWF = Must-Write Flag

Figure D-4.

Index Page Format

Appendix D 97

98

M .
Word 0 Page Number P ?(T)Y W Sp"fe Available
(10) F (always zero) Page
Header
1 Area Number Next Inventory Page Number (this page number + 1)
Number of Data Pages on this Page Number of First Data Page on this
Inventory Page Inventory Page (page n)
Space Available't Space Available Space Available Space Available
Page n Page n + 1 Page n + 2 Page n + 3
Space Available Space Available Space Available Space Available
Page n + 2028 Page n + 2029 Page n + 2030 Page n + 2031
511 Checksum of Page (optional)

Pg Ty - Page Type =01 for data page, 10 for inventory page, 11 for index page
MWF - Must-Write Flag

fA!ways 2032 (except for last inventory page).

Mo i page is less than specified percent full; 1 if page is exactly full; >1 = actual space available.

Figure D-5. Inventory Page Format

Appendix D

APPENDIX E. SEQUENTIAL FILE FORMATS

This Appendix describes the two types of sequential files that are generated and processed by Extended DMS, the
Journal/Dump file and the Statistics file.

Sequential files of the Journal/Dump format are created by the DBM during user program (journal) and by the dump

and load utilities (dump format). Journal/Dump files have records in three formats: Begin records, End records, and

Page-Image records. Figures E-1 through E=3 illustrate these individual records. Figure E-4 shows a summary of

the three.

Statistics files are created by the DBM during program operation, and contain records in four formats: Job ID rec-
ords, Area records, Group records, and Set records. These records are illustrated in Figures E-5 through E-8.

Word 0

13
14

15

16

Byte O Byte 1 Byte 2 | Byte 3

0 Record type =3 Record length = 68

0 0 0 open mode
Date
Time

0 0 0 0

area number 0 System=Id
Area-Name

Account Number

Checksum

Figure E-1. Journal/Dump Begin Record

Appendix E

99

100

Byte 0 Byte 1 Byte 2 | Byte 3
Word 0 0 Record Type = 4 Record Length = 68
1 0 0 0 Close Mode
2 Date
3 Time
4 0 0 0
5 Area Number 0 System~Id
6
Area Name
13
14
Account Number
15
16 Checksum
Figure E-2. Journal/Dump End Record
Byte O Byte 1 Byte 2 | Byte 3
Word 0 0 Record Type'L Record LengfhH
1 Sequence Number
2 Date
3 Time
4 0 0 0
5 Area Number 0 System~-Id
6
. | Data Page image N is number of actual data words, does not include empty space.
N+5
N+6 Checksum

fRecord type is 5 for Before- and 6 for After-Image Records.

MRecord length varies from 36 bytes (9 words) to 2076 (519 words), since the smallest data page image

is 2 words, and the largest is 512 words.

Appendix E

Figure E-3. Journal/Dump Page-Image Record

Word Byte Begin
0 0 maz'
1 Record type (3)
2-3 Record length in bytes
1 -2 msz'
3 Open mode
2 0-3 Date
3 0-3 Time
4 -3 msz'
5 0 Area number
1 msz"
2-3 System-1Id
6-13 Area~name
14-15 Account number
16 Checksum
where

End

maz'

Record type (4)
Record length in bytes
msz'

Close mode
Date

Time

msz'

Area number
MBZf
System=1d
Area=name

Account number

Checksum

Before or After

msz'

Record type (=5 before; =6 after)
Record length in bytes

Sequence number

Date

Time

maz'

Area number
mpz'
System=1Id

tt

Record length (word 0) is that of journal record. (Record size varies from 9 to 519 words).

Open mode (word 1) =1 for retrieve, 2 for update, 3 for create, 4 for DMSDUMP.

Close mode (word 1) = 0 for normal, 1 for abnormal.

Sequence number {(word 1) — before start, at =1 and decrementing; after start, at +1 and incrementing.

Date (word 2) is binary halfword year and binary halfword Julian day.

Time (word 3) is binary value HHMMTTTT (hour, minute, calculated time approximately milliseconds

since last minute).

Word 4 is reserved for use in future enhancements.

System-Id (word 5) is a two-byte binary value.

t
Must be zero.

t
Each Before/After record contains a data page image in words 6 through N+5, and a checksum in word N+6
(where N is the number of data words actually stored on the page).

Figure E-4. Journal/Dump File Format Summary

Word 0

Byte 0

Byte 1

Byte 2

Record-Type=1

System~1d

Binary Year and Day

Binary Time

Figure E=5. Statistics Job Id Record

Appendix E

101

102

Byte O Byte 1 Byte 2 Byte 3
Word 0 Record Type=2 Open Mode' Area Number
1 Total Page Reads and Writes
2 Total Groups Accessed
3 Total Groups Inserted
4 Total Groups Deleted

"1 = Retrieve, 2 = Update, 4 = Create.

Figure E-6. Area Statistics Record

Byte O Byte 1 Byte 2 I Byte 3
Word 0 Record Type=3 Group Number
1 Total Accesses
2 Total Inserts
3 Total Deletes

Figure E=7. Group Statistics Record

Byte O Byte 1 Byte 2 | Byte 3
Word 0 Record Type=4 Set Number
1 Total FINDN Calls
2 Total FINDP Calls
3 Total HEAD and FINDM Calls

Figure E-8, Set Statistics Records

Appendix E

APPENDIX F. ERROR MESSAGES

This appendix contains error messages generated by the EDMS File Definition Processor, the Database Manager, and
the EDMS utility routines, as follows:

Source Table
DMSFDP F-1
DBM, Data=Dependent F-2
DBM, Non=Data=-Dependent F-3
DMSINIT F-4
DMSDUMP F-5
DMSLOAD F-6
DMSSUMS F-7

Table F-1. DMSFDP Error Messages

Message Meaning

%x100* REDUNDANT CLAUSE NOT ALLOWED. A clause other than password, check, ascend-
ing/descending, or condition was repeated in
a subentry.

¥%101*** WITHIN CLAUSE MISSING. A schema=DDL group or invert subentry did
not specify the area that is to contain
occurrences.

*x*102*** NUMBER CLAUSE IS MISSING. An area, group, or invert subentry did not
specify a unique identifier for the area or
group.

*#%103%** | OCATION CLAUSE IS MISSING. A group subentry did not specify a location
mode (direct, calc, indexed, or via) for the
group.

xx105%% OWNER CLAUSE IS MISSING. A set subentry did not identify a group to
participate as owner.

%106 ORDER CLAUSE IS MISSING. A set subentry did not specify logical sequence
(First, last, next, or sorted) for set occurrences.

%107* INCLUSION CLAUSE IS MISSING. A member subentry did not specify whether in-
clusion of member occurrences in set occurrences
would be automatic or manual.

108 SELECTION CLAUSE IS MISSING. A member subentry did not specify the method
(current or location mode of owner) of identi-
fying set occurrences for linking member
occurrences.

Appendix F 103

104

Table F-1.

DMSFDP Error Messages (cont.)

Message

Meaning

#%109*** DUPLICATES CLAUSE/SUBCLAUSE MISSING.

Clause was not included in an invert subentry; or
subclause was not included with calc location
mode in a group subentry, or with ascending/de-
scending sort keys for a member of a sorted key.

]110 USING SUBCLAUSE MISSING.

Calc or indexed location mode in group subentry
did not name control items.

111 COMPONENTS CLAUSE IS MISSING.

A subschema-DDL subschema, area, or group
entry did not indicate if components were all or
specified.

%204* REDUNDANT OPTION -- ILLEGAL.

A control option was repeated.

***205**%* ILLEGAL OPTION.

A control card option was not a DMSFDP option.

%206* NOSCHEM OPTION IGNORED -- NO
SCHEMA DDL. :

%218* NOSUB OPTION IGNORED -- NO
SUBSCHEMA DDL.

%219* NOCBL OPTION IGNORED -- NO SUB-
SCHEMA DDL OR NO COPY FILE NAME.

%220* NOMETA OPTION IGNORED -- NO SUB-
SCHEMA DDL OR NO SYSTEM FILE NAME.

**%221*%* NOLIST OPTION IGNORED -- NO SUB-
SCHEMA DDL OR NO SYSTEM OR COPY
FILE NAMES.

A control card option has specified suppression
of an output that could not have resulted from
the inputs in any case.

%301* SYNTAX ERROR.

Any of several errors, such as illegal characters,
misspelling, use of a reserved word as a name, etc.

x302* AREA ENTRY OUT OF ORDER.
303 GROUP ENTRY OUT OF ORDER.
304 ITEM ENTRY OUT OF ORDER.
***305%** INVERT ENTRY QUT OF ORDER.
306 SET ENTRY OUT OF ORDER.
%307 MEMBER SUBENTRY OUT OF ORDER.

308 END ENTRY OUT OF ORDER.

The DDL-required entry/subentry order has been
violated. This may have resulted from an entry
being discarded for errors.

%309* ONLY ONE SCHEMA/SUBSCHEMA
ALLOWED.

More than one was included.

310 UNEXPECTED END OF FILE,
PROCESSING TERMINATED.

The last entry processed was not an end entry.

%311* PRECEDING ENTRY HAS BEEN DIS-
CARDED BECAUSE OF ERRORS.

This may cause succeeding entries to be out of
order.

Appendix F

Table F=1. DMSFDP Error Messages (cont.)

Message

Meaning

401 SYMBOL TOO LONG.

A name was more than 30 characters long.

%402% [LLEGAL VALUE.

An integer value, group number, area number,
etc. was greater than the specified limits.

%404* NON-UNIQUE AREA NAME.

The name specified in a schema-DDL area entry
duplicated that of another area in the database.

*#%405*** NON-UNIQUE GROUP OR SET NAME.

The name specified in a schema-DDL group or
set subentry duplicated the name of a previously
defined group, set, or item.

%406* UNDEFINED AREA.

The area named in a group or invert subentry
within clause was not defined in an area entry.

%407% TOO MANY CONTROL/SORT KEYS.

More than seven keys were specified in a calc or
indexed location mode specification, or in
ascending/descending clauses in a member
subentry ,

*%%408*** CONTROL ITEM item=-name FOR group-name
GROUP IS UNDEFINED.

The item identified by item-name was designated
as a control item for location mode of calc or
indexed, but was not defined in an item subentry
for the group identified by group-name.

*#%409*** GROUP group-~name INTERSECTS INDEX/
OVERFLOW RANGE.

The page range specified for the named group
overlaps the range of an indexed group or the
overflow range for the area.

***410%** MULTIPLE INDEXED GROUPS DEFINED IN
THE SAME AREA.

Two or more subschema=DDL group subentries
specified location mode of indexed and the same
area~name in the within clauses.

x411* NON~-UNIQUE GROUP OR INVERT NUMBER.

The integer in a schema~DDL group or invert
subentry number clause duplicated the number in
a previous group or invert subentry.

xx412%** UNDEFINED KEY.

A retrieve/update key in a schema-DDL group
or item subentry did not match any key specified
in a password clause.

FEx413%** ITEM NAME DUPLICATES GROUP OR SET
NAME.

The name specified in a schema-DDL item sub-
entry duplicated the name of o previously de-
fined set or group.

414 ITEM NAME CANNOT BE UNIQUELY
IDENTIFIED.

The name specified for an item resultsin a dupli-
cation even when qualified (two items within the
same group with the same name).

%415% PICTURE AND TYPE INCONSISTENT.

Specifications for picture and type in a schema-
DDL item subentry conflicted (e.g., a numeric
picture and character type).

%416 ILLEGAL CHECK VALUE IN CHECK CLAUSE
NUMBER nn.

A check clause in a schema=DDL item subentry
contained an illegal value. The nn refers to the
sequence of input of the clauses.

Appendix F

105

Table F-1.

DMSFDP Error Messages (cont.)

Message

Meaning

*%%417%** group~name GROUP SIZE EXCEEDS ONE PAGE.

The combination of items (including occurs) de~
fined for the named group resulted in a group
size of more than 510 (or 509 if there is a check=~
sum) words.

%418% ITEM NOT DEFINED IN PRECEDING GROUP.

The item designated as secondary index in an in-
vert subentry was not defined in an item subentry
for the group.

**x419%%* MULTIPLE INVERT ENTRIES USE SAME ITEM.

The same item was specified as the secondary
index item in two or more invert subentries.

%420% UNDEFINED GROUP.

The group identified as owner in a set subentry,
or as member in a member subentry was not de-
fined in a group entry.

%421% S|ZE OF DATA ITEM INDETERMINATE.

A schema-DDL item subentry did not include a
picture clause, and the type clause did not in-
clude or imply an item size.

**#422%%* TRUNCATION.

An integer value consisted of more than the
legal number of digits (e.g., three digits used
for area number).

%423%* MANUAL OR OPTIONAL INCLUSION
ILLEGAL FOR SET WHICH GROUP IS VIA,

A schema-DDL member subentry specified man-
val or optional automatic inclusion and the group
location mode is via the set.

*xx424*** YUNDEFINED ITEM.

An item-name specified did not match any name
specified in an item subentry.

*x%425%** SORT ITEM NOT DEFINED IN MEMBER GROUP.

An item designated as a set sort key in a member
subentry was not defined in the group specified
as member,

*x%426%** DATA ITEM NOT DEFINED IN OWNER GROUP.

The item for which an alias was specified in a
member subentry was not defined in the group
named in the owner subentry.

**%427*%* NON-UNIQUE ALIAS.

The same item-name was used for two or more
alias clauses in a member subentry.

**%428%%* WARNING -- ALIASES FOR set-name SET
INCONSISTENT WITH OWNER'S CONTROLS.

The aliases specified in a member subentry did
not exactly correspond to the control items for
the owner group. For example, the owner group
was calc using four items, and only three were
given aliases. This situation is not illegal, only
dangerous, and does not interfere with schema
generation,

#%x429%%* FI| | PCT/OVERFLOW RANGE USED IN AREA
area-name WHICH HAS NO INDEXED GROUP.

No group defined as within the named area had
a location mode of indexed, making the fill per-
cent or overflow range specification meaningless.

#%430* STORAGE/VIA SET set-name UNDEFINED.

A schema=DDL group subentry specified the
named set in a via location mode or in a storage
subclause, but there was no set entry defining
the set.

106 Appendix F

Table F-1.

DMSFDP Error Messages (cont.)

Message

Meaning

%431* STORAGE IS set-name SET FOR group-
name -~ AREA CONFLICT.

The owner group of the named set was defined as
in a different area than the group identified by
group-name, therefore the use of that set as the
storage set is illegal,

*#%432%%% [LLEGAL PICTURE.

The character=string in a picture clause was not
a legal combination of characters.

*%%433*** [TEM SIZE EXCEEDS 255 BYTES PER
OCCURRENCE.

The total size of the item in the DMS group oc-
currence would exceed maximum item=size.

%434* CHECK ILLEGAL WITH OCCURS OR WHEN
ITEM SIZE EXCEEDS 16 BYTES.

A restriction on the use of the check clause was
violated.

*x%435%** CAN'T INVERT ON AN ITEM WHICH OCCURS.

An item that was defined with an occurs clause
was specified as the secondary index item in an
invert subentry.

¥436* [TEM WHICH OCCURS CAN'T BE CONTROL
KEY.

An item defined with an occurs clause was desig-
nated as a set sort key.

**%437 %%+ GROUP group-name CONTROL ITEM item-
name ILLEGAL OCCURS.

The named item, specified as the control item in
a location mode using=subclause for the named
group, was defined with an occurs clause.

%x438* MEMBER group-riame IN SET set~name NEEDS
SORT KEYS.

The named set was defined as sorted, but the
member subentry designating the named group
did not include ascending/descending clauses.

x%439%+ INCONSISTENT SORT KEY TYPE/SIZE FOR
MEMBERS OF set-name SET.

The items specified as sort keys in member sub-
entries for two or more groups did not correspond.

%440* GROUP NUMBER USED AS SORT KEY ON set-
name SET WHICH HAS BUT ONE MEMBER.

The order clause for the named set specified
sorted with group number as major or minor, but
only one group was identified as a member of the
sef,

xx44]%* OCCURRENCE SELECTION MUST BE CURRENT
FOR AREA OWNER, OR FOR SETS ORDERED
NEXT OR PRIOR.,

The set occurrence selection clause in a member

subentry violated one of the indicated restrictions.

*x%k442%%% MEMBER NOT IN AREA WHICH OWNS THIS SET.

Area-is~owner was specified for the set and a
group designated as a member was not defined as
within the area.

443 STORAGE IS set-name SET FOR group-name -~
NOT MEMBER.

The named set was identified as the storage set
in the group subentry defining the named group,
but the group was not identified in a member
subentry for the set.

***444**+* GROUP CANNOT PARTICIPATE MORE THAN
ONCE IN SINGLE SET,

A group was designated as both a member and an
owner or as a member twice inthe some setentry.

***446%** MEMBER group-name OF set-name SET GIVES
ALIAS FOR item-name -- NOT CONTROL
ITEM.

The member subentry for the named group included
an alias subclause for an item that was not a
control item for the owner of the named set.

Appendix F

107

108

Table F-1.

DMSFDP Error Messages (cont.)

Message

Meaning

*xx447*** STORAGE MASTER FOR GROUP group-name
NOT IN INDEXED DATA RANGE -- MUST BE.

The page range for the owner of the set specified
in a storage subclause for the named group was

not within the range specified for the area's in-

dexed group.

#%448%* NO STORAGE SET SUPPLIED FOR GROUP

group-name.

The group subentry for the named group included
a storage subclause, but the specified set was
not defined in a set entry.

449 MEMBER group-name OF set-name SET
NEEDS UNIQUE OWNER.

The member subentry for the named group in the
named set specified location mode of owner for
set occurrence selection, but the owner's foca-
tion mode does not provide uniqueness.

x450 ILLEGAL RANGE IN CHECK CLAUSE
NUMBER nn. (I.E. LO > HI).

Range of values specified in improper order.
The nn refers to sequence of input of the clauses.

*¥*xA51%*%* MUST HAVE CHECKSUMS ON ENCIPHERED
AREA.

Checksums were prohibited and enciphering re-
quested in the same area entry.

%452*% SORT KEYS ARE NOT ALLOWED UNLESS
SET ORDER IS SORTED.

A member subentry included ascending/descend-
ing keys but the set order specified in the set
subentry was not sorted.

%453* CHECK ON PICTURE ILLEGAL
IF NO PICTURE CLAUSE,

An item subentry included a CHECK clause spec-
ifying PICTURE, but no PICTURE clause.

501 PRIVACY LOCK VIOLATION. PROCESSING
TERMINATED.

An attempt was made to generate a subschema
from an extract-protected schema without supply-
ing the proper key in the subschema entry.

%502* UNDEFINED OR DUPLICATE SET.

The subschema-DDL set entry named a set not
defined by the schema or named the some set
twice.

%503* UNDEFINED OR DUPLICATE AREA.

An area not defined in the schema was specified
in a subschema-DDL area entry or one area was
named twice in one or more area entries.

504 GROUP IS IN AREA NOT DEFINED FOR
SUBSCHEMA.

The group nomed in a subschema=-DDL group
entry was defined in the schema as within an
area that is not defined in the subschema.

x505 UNDEFINED OR DUPLICATE GROUP.

The group specified in a subschema-DDL group
entry was not defined in the schema or the same
group was named in two or more group entries.

506 'ALL' OPTION ILLEGAL HERE. SKIP TO
NEXT'.'.

ALL was specified after specific areas were
named in a subschema area entry.

508 GROUP IS IN AREA WHICH INCLUDES ALL
COMPONENTS.

A subschema-DDL group entry specified a group
that was defined as within an area for which a
components clause indicated all.

x509* SEC INDEX FOR item-name IN group-name
IS IN OMITTED AREA.

The named item in the named group was desig-
nated a secondary index and the area that was
to contain the invert group occurrences is not

defined for the subschema.

Appendix F

Table F-1.

DMSFDP Error Messages (cont.)

Message

Meaning

%511*% BAD SCHEMA -- GROUPRET EXISTS
FOR ITEM NOT DEFINED IN GROUP,
PROCESSING TERMINATED.

#%512%% BAD SCHEMA -- CAN'T FIND SCHEMAHD.
PROCESSING TERMINATED.

These two messages indicate a defective schema
file. Neither should occur if the schema was
generated correctly and not subsequently
modified.

***513*%** ILLEGAL LEVEL NUMBER.

The level number specified in a subschema-
DDL item subentry did not conform to the rules
for level=-number sequence.

¥ x514%** DUPLICATE ITEM.

The same item name was specified in two or
more subschema-DDL item subentries.

%%515% SET set-name REQUIRES GROUP group-name.

The named set was selected for the subschema
but the named group (which is the owner or a
member of the set) was not.

x516% LAST ITEM IN PRECEDING GROUP WAS
NOT DEFINED.

The item name in a subschema=DDL item sub-
entry did not refer to an item defined in the
schema (not discovered until after processing
had begun on the following group subentry).

%517* RENAMES ILLEGAL WITH UNDEFINED ITEM
NAME.

The item name in a renames clause was not the
name of an item defined in the schema.

***518%** [LLEGAL ALPHANUMERIC LITERAL.

The size of the literal specified in a condition
clause in a subschema-DDL item subentry was
greater than the space allocated for it in a
COPY record.

*kx522%%% EXPECTED SUBSCHEMA ENTRY NOT
FOUND. PRCCESSING TERMINATED.

Input that followed the schema-DDL end was
not a subschema entry.

Table F~2. DBM Data-Dependent Errors

Error Number Error Condition

1 Space is insufficient to insert a new group occurrence in that portion of the data-

base in which the group type may be placed.

2 An attempt was made by the DBM to retrieve an occurrence of a given group. The

not the group intended.

reference code used was from REF-CODE in the CCB, CURR=-XXX for the group, or
a set table for a set in which the group participates. The occurrence retrieved was

3 Attempt was made to retrieve a group on the basis of its location mode. The values

supplied for the control items did not define a group occurrence.

4 Attempt was made to establish a group occurrence that violated a duplicate clause

for the group.

5 Attempt to use FINDD with REF-CODE equal to zero.

Appendix F

109

110

Table F-2, DBM Data Dependent Errors (cont.)

Error Number

Error Condition

6

10

13

14

15

16

17

18

19

20

Reference code supplied for the FINDD call resulted in retrieval of a group occur~
rence that was logically deleted.

The reference code of a group occurrence to be retrieved is not present in the page.
Page number of a data page is outside the range of data pages for the area,

Attempt to retrieve a direct-group occurrence with value of REF-CODE equal to
zero.

The area number portion of the reference code supplied for retrieval of a group occur-
rence is incorrect.

The area number portion of the reference code supplied for storing a direct-group
occurrence is incorrect.

Attempt to traverse a set without establishing a position in the set because of the op-
tional or manual status of the set member.

Attempt o use DELETSEL or REMOVSEL, withthe object group occurrence the owner
of a nonempty set occurrence,

Attempt to link a manual or optional group, with the object group occurrence already
linked into an occurrence of the sef,

Attempt to delink a manual or optional group, with the object group occurrence not
linked into an occurrence of the set,

Attempt to store an indexed group in create mode, with the values for the index con-
trol items not greater than those already in the area.

Attempt to modify or store a data group where the values of a data item do not pass the
data validation checks specified in the schema,

FINDDUP of a calc group resulted in inability to find a group having duplicate val-
ves for the calc control items.

An area was opened for retrieval and the database lockout bit was set.

Attempt to relink a manual or optional group, with the object group occurrence not
linked into an occurrence of the set.

Table F-3. DBM Non-Data-Dependent Errors

Error Number

Error Condition

30

31

32

33

Monitor returned a deadlock indication on an attempt to enqueue at pages in a
shared area.

Group to be retrieved or stored depends upon retrieval of a current owner group.
The user has not retrieved an occurrence of the owner group.

Attempt to use a procedure whose object is the current of group type without having
a current occurrence of the group type. The procedures are Get, Modify, Delete

(all forms), Link, Delink, Relink, and FINDDUP.

Attempt was made to fraverse a set with no current position in the set,

Appendix F

Table F-3. DBM Non-Data-Dependent Errors (cont.)

Error Number

Error Condition

34
35

36

37
38
39

40
41
42

43

44
45
46
47
48
49

50

51

52

53
61
62
63
64

65
66

67

68

Attempt to use the HEAD procedure without a current position in the set.

Attempt to use the FINDC procedure without having a current of the group
type.

Use of FINDG call with the object group occurrence having location mode via set.
The set is not sorted.

Attempt to HEAD a set whose owner is defined to be the AREA.
Attempt to modify a data item that is an index control item.

Attempt was mode to update an area of the database that was opened for re-
trieve only.

Procedural call to open any area while executing in another area.
Attempt to access an unopened area.

Procedural call without any areas open. The only calls allowed without an open
area are DMSTRACE, ENDTRACE, DMSSTATS, ENDSTATS, RPTSTATS, DMSABORT,
SETERR, RESETERR, and DMSLOCK.

Group referenced by FINDX or FINDSEQ call does not contain any inverted
items.

Item referenced by FINDX or FINDSEQ call is not an inverted item.
DMSRETRN call without an available return address.

Password specified does not allow the intended procedural action.
Password not supplied for a password-secured database.

An area was open for update and the database lockout bit was set.

Either invalid argument in a procedural call, or the subschema definition of working
storage does not match the definition in the program.

DBM call other than release with recovery made ofter a previous call was
interrupted. '

Attempt to open an area in shared mode after opening one or more in exclusive
mode or vice versa.

Attempt to open an area with shared mode and the monitor version does not in-
clude enqueue/dequeue.

The users account authorization does not include use of enqueue/dequeve.
Attempt to store a group with items or sets omitted in the subschema.

Attempt to delete a group with sets or inverted items omitted in the subschema.

Attempt to link or delink a group that is not defined as an optional or manual member.

Attempt to use the FINDG procedural call without having all of the control items
defined for the group or its owners.

Attempt to link a group in a sorted set without having all sort keys defined.

Attempt to modify a secondary index item or a sort control item and the invert
group or the sorted set definition is omitted from the subschema.

Attempt to modify a data item that is a control item and one or more other control
items are omitted.

Attempt to execute a FINDX or FINDSEQ procedure but the inverted option has
been omitted for the item.

Appendix F

111

112

Table F-3. DBM Non-Data~Dependent Errors (cont.)

Error Number

Error Condition

69

70

71

72

73

80

81

82

83

84

85

86

21

92

93

94

95

96

97

98

99-101

121

122

123

A group has been retrieved that is not defined in the subschema.

Attempt to traverse a set that does not have the owner and all member groups defined.
The via set has not been defined for the referenced group.

Unable to store the new invert group occurrence for a modified secondary index item.

Unable to store an invert group occurrence for the secondary index item value in the
group occurrence just stored.

The storage set has not been defined for a group.

A group occurrence has been retrieved that is of a different size than that specified
by the subschema.

An operation was attempted on an indexed data group but the subschema does not
contain a complete definition of the indexed area.

Group established to control secondary indexes is not a calc group.

The subschema does not define the invert group for a secondary index item.

Set control items are not defined correctly in the subschema.

Sort or random confrol items are not defined within the group by the subschema.

An area to be opened has not been assigned.

An area of the database is still unavailable ofter five attempts to open it.

The monitor has detected an illegal operation and returned to the trap routine.

The monitor has returned an error or abnormal code as the result of an 1/O operation.

A page read from the database or subschema has an invalid checksum or the en-
ciphering key presented by the user is not correct.

The page read from the database is not the correct page for the random block accessed.
Dynamic core memory is insufficient to load the subschema.

Dynamic memory available is insufficient to interface with Sort for a FINDSEQ
procedure.

The memory space allocated for a
User Argument table (99)
Area definition table (100)
Detail Pushdown list (101)

has been exceeded.

Detail definition list is incorrect.

Group retrieved is not defined for set accessed.

Attempt to delink a group with set-next zero.

Appendix F

Table F-3. DBM Non-Data-Dependent Errors (cont.)

Error Number

Error Condition

124 Attempt to link a group with set-next zero.

125 Group specified by set-next cannot be retrieved.

126 Group just stored cannot be retrieved to complete set linkages.

127 Prior group of set cannot be retrieved.

128 Group specified by set=prior cannot be retrieved.

129 Unable to retrieve the main group while in the process of deleting the invert group
occurrence for a secondary index item.

131 Unable to retrieve the invert group occurrence for the secondary index item of the
current main group.

133 Sort processor has abnormally terminated while executing FINDSEQ sort.

134 The main group defined by a secondary index is not retrievable.

135 Unable to retrieve the group occurrence that was just created.

136 Invalid internal DBM argument.

137 Error has occurred in handling area owner group.

Table F-4. DMSINIT Error Messages
Message Meaning

*** ASSIGN CARD MISSING FOR area-name.

Area file identified by area-name was not as-
signed or was not properly assigned.

***F:DBnn NOT OUT OR INOUT FILE.

Function assigned for the F:DBnn is not QUT
or INOUT.

***]/O ERROR F:SCHE = xx yy. ' An 1/O error return from the monitor occurred

while processing the schema file — xx and yy
are the major and minor codes returned by CP-V.

***] /O ERROR F:DBnn = xx yy. An 1/O error return from the monitor occurred

while processing the area file assigned to
F:DBnn — xx and yy are the major and minor
status returned by CP-V.

***JNEXPECTED END OF FILE ON SI.

Period missing at end of statement, or additional
input was expected.

***]| LEGAL RANGE.

Range specified was not within data pages of
area.

***INCORRECT AREA NAME. An area-name specified did not match any of

the area names in the schema.

***RANGE NOT SPECIFIED FOR RE-INIT OR AN Range parameter is required to reinitialize an

EXISTING AREA.

existing area.

Appendix F

113

114

Table F-4, DMSINIT Error Messages (cont.)

Message

Meaning

***PARTIAL RE-INIT OF INDEXED GROUP RANGE OR
OVERFLOW RANGE NOT ALLOWED

If any pages in the indexed group's page range
or in the overflow range are to be reinitialized,
all must be reinitialized.

***JLLEGAL RE-INIT OF OVERFLOW-RANGE

Overflow range may not be reinitialized if
indexed group range is not.

***SYNTAX ERROR

Missing equals sign or comma, misspelling of
AREA or RANGE, etc.

***SCHEMA FILE IS BAD DBM ERROR CODE - xx

Error encountered in schema file — xx is the
error code returned by the DBM.

Table F-5. DMSDUMP Error Messages

Message

Meaning

***SCHEMA FILE IS BAD, DBM ERROR CODE - xx

An error in the schema was detected by the
DBM routines used to process it — xx is the
DBM error code.

***INCORRECT AREA NAME

An area-name in a dump or print directive
did not match any of the area names in the
schema.

***SYNTAX ERROR

Missing equals sign, comma, etc.

***UNEXPECTED END OF FILE ON SI

Additional input was expected to complete an
area, line, or group specification, or period
was missing.

***INCORRECT DATA PAGE READ FROM area-name

Page read from database was not the desired
page.

***JLLEGAL DIRECTIVE

Directive not PRINT or DUMP.

***JLLEGAL PASSWORD

Password not given or it was not a correct one.

***JLLEGAL RANGE

Range specified was not within the area.

***ASSIGN CARD MISSING FOR area-name

Area file identified by area-name was not as-
signed or not correctly assigned.

***1/O ERROR F:SCHE == xx yy

An 1/O error return from CP-V occurred while
processing the schema file — xx and yy are the
major and minor codes returned by CP-V.

***] /O ERROR, F:DBnn == xx yy

An 1/O error return from CP-V occurred onarea
file assigned to F:DBnn — xx and yy are the
major and minor codes from CP-V.

**#*]/O ERROR F:DUMP -- xx yy

An 1/O error return from CP-V occurred on se-
quential output file — xx and yy are the major
and minor codes from CP-V,

Appendix F

Table F-5. DMSDUMP Error Messages (cont.)

Message

Medning

***BAD LINE # OR GROUP LENGTH

Duplicate line numbers, zero group length, or
invalid group length found on page being pro-
cessed. Contents of page are printed in hexa-
decimal following this message.

***CHECKSUM ERROR OR PROPER CIPHER KEY
REQUIRED

Either there was a checksum error, or the cipher
key was not the proper key, or not in correct
input order. The checksummed page is printed
following this message. Checksum for the page
is the last word printed.

Table F-6, DMSLOAD Error Messages

Message

Meaning

***SCHEMA FILE IS BAD, DBM ERROR CODE - xx

An error in the schema was detected by the
DBM routines used to access it — xx is the
error code returned by the DBM.

***INCORRECT AREA NAME

An area name in a LOAD, TAPE, or PRINT
directive did not match any of the area names
in the schema.

***INSUFFICIENT MEMCRY FOR DMSLOAD

Not enough core space can be obtained for
buffers.

***ASSIGN CARD MISSING FOR area-name

Area file identified by area-name was not as-
signed or not properly assigned.

***CIPHKEY/NEWCKEY NOT REQUIRED

Cipher key or new cipher key was specified
for an area that is not enciphered.

***ILLEGAL RANGE

A range specified for an area did not corre-
spond to the size of the area, was less than
one, or was greater than the area size.

***UNEXPECTED END OF FILE ON SI

The input directive was incomplete, perhaps
missing only the period.

***]LLEGAL DIRECTIVE

Directive identifier was not LOAD, TAPE,
or PRINT.

***SYNTAX ERROR

Any of several format errors: missing comma,
parenthesis, etc.

***1/O ERROR, F:SCHE -- xx yy

An 1/0 error return from the monitor occurred
while processing the schema file — xx and yy
are the major and minor codes returned by
CP-V.

***]/O ERROR, AREA*=nn == xx yy

An I/O error return from the monitor occurred
while processing the area whose number is
specified by nn — xx and yy are the major and
minor codes returned by CP-V.

Appendix F

115

Table F-6. DMSLOAD Error Messages (cont.)

Message

Meaning

**%1/0 ERROR, F:LOAD -- xx yy

An 1/O error return from the monitor occurred
while reading the dump or journal file input —
xx and yy are the major and minor codes re~
turned by CP-V.

*##]/O ERROR, F:DUMP —- xx yy

An 1/O error return from the monitor occurred
while writing the sequential file output — xx
and yy are the major and minor codes returned
by CP-V.

***BAD LINE # OR GROUP LENGTH

Duplicate line numbers, zero group length, or
invalid group length found on a page being
processed. Page in question is printed in
hexadecimal following this message.

***CHECKSUM ERROR OR PROPER CIPHER KEY
REQUIRED

Either there was a checksum error, or the cipher
key was not the proper key, or not in correct
input order. The checksummed page is printed
following this message. The checksum for the
page is the last word printed.

***WRONG INVENTORY PAGE == xxxxxxxx

The page that was read in was not the inventory
page expected. xxxxxxxx is the number of the
desired page. The page read is printed in
hexadecimal following this message.

Table F-7. DMSSUMS Error Messages

Message

Meaning

***CANNOT OPEN STATISTICS FILE

Statistics file was not assigned or did not exist.
Processing is terminated.

***STATISTICS FILE WRONG FORM

The first record read from the statistics file was
not a Job ID record. Processing terminates.

***]/O ERROR ON STATISTICS FILE

An error return from the monitor occurred while
processing the statistics file. Processing is
terminated.

***CANNOT OPEN SCHEMA FILE

The schema file does not exist, is not assigned,
or is read-protected. Processing is terminated.

***]/O ERROR ON SI

An 1/O error return from the monitor occurred
while reading input. Processing is terminated.

***SCHEMA FILE IS BAD

An error return from the DBM routines used to
process the schema occurred. Processing is
ferminated.

***UNRECOGNIZED SELECTION

Selection specification wasnot AREA, GROUP,
or SET. Remaining selection input is scanned
for errors but no statistics will be printed.

***INCORRECT AREA NAME

A specified area-name did not match any of
the area names in the schema.

Appendix F

Table F-7. DMSSUMS Error Messages (cont.)

Message

Meaning

***SYNTAX ERROR

Missing comma, equals sign, etc. Remaining
input is scanned.

***SE OF ALL MADE SPECIFIC SELECTION ILLEGAL

ALL may be used only once and no other se-
lection is legal after ALL. Remaining input is
scanned but no statistics are printed.

***JNEXPECTED END OF FILE ON SI

Missing period or partial selection was spec-
ified. Processing is terminated.

***INCORRECT GROUP NAME

Group-name specified was not in schema.
Remaining input is scanned but no statistics
are printed.

***INCORRECT SET NAME

Specified set-name was not in schema, remain-
ing input is scanned but no statistics are
output.

Appendix F

117

118

APPENDIX G. DATA VALIDATION

EDMS provides for the validation of data item values when they are stored or modified in the database. Through
clauses in the Schema DDL, validation may be specified against a picture of the item and a range of values for the
item,

If picture validation is requested, the value of each character in the item is compared to a set of allowed values for
the corresponding picture character. If the values do not agree, adata dependent error is returned. The picture
character and the allowed values for EBCDIC items are:

Picture Values
9 Hexadecimal FO-F9 (numeric values only)
A Hexadecimal C1-C9, D1-D9 and E2-E9 (alphabetic values) and hexadecimal 40 (space).
X Hexadecimal 00-FF (all values).

If the item type is signed numeric, the allowed values for the low order character position are A0-A9, B0-B9,
C0-C9, DO-D9, EO-E9 and FO-F9. Packed decimal values are checked to ensure that each half byte contains a
valid numeric value, i.e., 0-9. If the number of characters in the item is even, the value of the first half byte of
the item must be zero. The halfbyte for the sign character is checked for a hexadecimal value in the range A through
F, inclusive. :

If range validation is requested, the value of the data item is compared to the converted values for the literals sup-
plied in the check clause of the DDL. The item value must be equal to either literal value or it must be greater than
the low literal and less than the high literal. Validation against a single value may be accomplished by using the
same literal for the low and high values in the DDL check clause. The user is cautioned against using this approach

for the extremes in floating point short and floating point long values. Different programming languages may con-

vert the same literal to different floating point representations. The File Definition Processor converts literals in the
DDLby using the same routines as the Xerox C OBOL compiler. If a program is written in FORTRAN or Meta-Symbol,

literals supplied for item values may not be converted to identical floating point representations. The DBM may thus
return an error condition if a range of values was not specified in the check clause.

When comparing signed numeric or numeric EBCDIC item values to the literals, the DBM will ignore the first half
byte of each character position except the low order character. In the low order character position hexadecimal

values A, C, E or F are considered as a positive sign and values B or D as a negative sign.

The DBM uses the decimal instructions of the hardware for comparison of packed decimal values. Thus, sign values
A, C, E and F are considered positive and values B and D as negative.

In the comparison of data items to range literals, no check is made to ensure that the characters in the item are
valid characters for the item type. This is only done for picture validation.

Appendix G

APPENDIX H. ENQUEUE/DEQUEUE

The DBM uses the enqueue/dequeue function of the CP-V operating system to control the interaction of programs
concurrently accessing an area of the database. The enqueue function provides for control of a global resource (the
database area) and/or an element of that resource (a page of the area) at two levels, shared use or exclusive use.

The DBM issues an enqueue request for shared use of an element just prior to the read of each page from the area.
If the request is successful the page is locked to the program for shared use. If the request is not successful, the
program is suspended by the operating system until the request can be satisfied. When an element is enqueued for
shared use, other programs may also enqueue the element for shared use (i.e., can read the page).

The DBM issues an enqueue request for exclusive use of an element just prior to modifying the data page in the DBM
buffer. If the request is successful the page is locked to the program for exclusive use. If the request is not success-
ful the program is suspended until the request can be satisfied. The operating system will not allow an enqueue re-
quest for exclusive use if some other program has that element enqueued for shared use. Once an element is enqueued
for exclusive use no other program may enqueue that element for shared use.

When the user program issues a DMSRLSE procedural call or closes the last open area, the DBM will dequeue all
elements locked for that program. Other programs that may have been suspended because of conflicting enqueue
requests may then be placed back in execution by the operating system.

Through DBM use of enqueue/dequeue, concurrently executing programs are protected from interfering with each
other. When the DBM sends a page and returnsdata or a set position to the program, that data or set position cannot
be changed by another program until the reading program explicitly releases the page. When a program has updated
a page no other program may read the modified data or set pointers until the updating program releases the page.

As previously stated, each DBM enqueue request is for a global resource (the area) and an element (a page) of that
resource. The area is defined in the enqueue request by a 3-byte hashed value of the area name and the account
under which it exists. The page is identified by the 20-bit EDMS page number. A hashed value is used in place of
the full area name and account number to reduce the space and time required in accessing the operating system en-
queue tables. When a hashing technique is used there is a possibility that the values derived from two or more area
names may result in duplicates. If this should occur the result would be an overprotection of the programs accessing
the two areas. The user should also be aware of the conflicts that may result if the enqueue/dequeue function is
used in a program to protect a resource other than a database area and that resource has the same resource name as
a database area.

A program has been included on the EDMS release tape to enable the user to identify potential conflicts in resource
names. This program, named Hash, reads area name/account number pairs through M:SI DCB. The format is
AREA-NAME.ACCOUNT-NUMBER. Each pair must begin on o new input record (i.e., card, edit line etec.).
Output is through the M:LO DCB and is the 3-byte hash value derived from the AREA-NAME/ACCOUNT-NUMBER

pair. The hash value is displayed as six hexadecimal characters.

Following is a sample run of the program.

t{BUILD HASHVALUE
1.000 AREA~1.893AA3JP
2000 MFG-DB-01.0131
3.000 OUR~DATAEASE~AREA~01.MYACCT
4,000 ’ ')

1SET MSI DC/HASHVALUE

IHASH, .
AREA=1.493AA3JP

HASH VALUE = 2B4R215
MFa-pB-04.0131

HASH VALUE = 69DFé6A
OUR~DATABASE-AREA-01MYACCT
HASH VALUE = A3FDFB

Appendix H

119

INDEX

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed

in numerical sequence,

IDMSFDP options, 30

A

adding occurrences, 37
alias, 25

AREA clause, 28, 60
area entries, 13,27
ared name, 13

AREA NAME clause, 13
area number, 13

AREA statements, 54

backward pointers, 24
beginning of processing, 36

C

CHECK clause, 19
checkpointing, 50

checksum, 13

CHECKSUM clause, 13
CLOSAREA call, 50

CLOSEDB call, 50

COBOL call format, 34

COBOL clause, 27

combination public and shared library, 52
comments, 11

communications control block, 33
COMPONENTS clause, 28,29
CONDITION NAME clause, 29
continuation, 11

CREATE call, 36

data definition language syntax, 9
data item name, 18

data item type, 18

data pages, 6

data relationships, 2

data validation, 117

database file structure, 6

database initialization (DMSINIT), 54
database manager, 32

DBM DCB requirements, 52

DBM operational interface, 52
DBM routine call format, 32

DBM routine usage, 36

DCB assignments, 31,53

deadlock, 49

deciphering, 57

DELETAUT call, 39

DELETE call, 39

deleting occurrences, 39
DELETSEL call, 39

DELINK call, 41

DMSABORT call, 48, 49
DMSCHKPT call, 50

DMSFDP operational interface, 30
DMSFDP outputs, 10

DMSINIT, 60

DMSLOAD, 62

DMSLOAD directives, 58
DMSLOCK call, 48,49
DMSRETRN call, 48,49
DMSRLSE call, 49

DMSSTATS call, 46

DMSSUMS, 63

DMSTRACE call, 46

DUMP directive, 57

dump directives, 57

dump processor (DMSDUMP), 54
DUMSDUMP, 61

duplicate invert group occurrence, 20
DUPLICATES clause, 20

E

enciphering, 14,37
ENCIPHERING clause, 14
END entry, 25,30
ENDSTATS call, 46
ENDTRACE call, 46

error control, 48

error messages, 102

error processing, 50

F

file definition processor, 9

file name for the schema file, 12
files used by the database restore processor, 62
files used by the dump processor, 61
fill percent, 14

FILL PERCENT clause, 14

FINDC call, 43,42

FINDD call, 43,42

FINDDUP call, 44,42

FINDFRST call, 44, 42

FINDG call, 43,42

FINDLAST call, 44,42

FINDM call, 43,42

FINDN call, 43,42

Index

121

Note: For each entry in this index, the number of the most significant page is listed first, Any pages thereafter are listed

in numerical sequence.

FINDP call, 43,42
FINDS call, 44,42
FINDSEQ call, 44,42
FINDSI call, 44,42
FINDX call, 44, 42
FORTRAN call format, 34

GET call, 45

group, 2

group area, 16

GROUP clause, 60

group entries, 14,28

group identifier, 17,20

group name, 16

GROUP NAME clause, 16,28

group subentries, 15

HEAD call, 45

INCLUSION clause, 24
index pages, 8

invent subentry, 20
INVENTORY clause, 13
inventory pages, 8, 13
INVERSION clause, 29
INVERT clause, 20
invert group, 20

item, 2

item name, 18

item subentries, 17,29
item type, 18

item value occurrences, 19
itemless group, 15

J

JOURNAL clause, 14
journal file, 14
journaling, 51

L

level number, 29

LINK call, 41

LINKED TO OWNER clause, 24
LINKED TO PRIOR clause, 24
LOAD directive, 58

load processor (DMSLOAD), 57
location mode, 16

122 Index

LOCATION MOPDE clause, 16
locks, 12

MEMBER clause, 24

member subentries, 24

META clouse, 27
meta-symbol call format, 34
MODIFY call, 40

modifying data values, 40
modifying linkages, 40
moving to working storage, 45

name checking, 27

NEXT pointer, 4
nonnumeric literal, 20
NUMBER clause, 13,17, 20
numeric literal, 19 -

OCCURS clause, 12
OPENRET call, 36
OPENUPD call, 36
OPRETSHD call, 36
OPUPDSHD call, 36
ORDER clause, 22
OVERFLOW clause, 14
overflow pages, 14
overview, 2
OWNER clause, 22
OWNER pointer, 4

P

PASSWORD clause, 12
passwords, 12

picture, 18

PICTURE clause, 18
pointer modes, 23
PRINT directive, 57,58
PRIOR pointer, 4
PRIVACY clause, 27
privacy lock, 12,17,19
PRIVACY LOCK clause, 12,17,19
punctuation, 11

range of a group, 16
RELINK call, 41
REMOVE call, 39

Note: For each entry in this index, the number of the most significant page is listed first, Any pages thereafter are listed

in numerical sequence.

REMOVSEL call, 39

reserved words, 9

RESETERR call, 48

retrieving specified group occurrences, 42
RPTSTATS call, 46

run-time statistics, 45

run-time tracing, 46

S

sample database definition, 90
SCHEMA clause, 12

schema entry, 12

schema file, 65

schema generation, 12
secondary index item, 20
SELECTION clause, 24
sequential file formats, 98
set, 2,3

SET clause, 60

set entries, 21

set entry, 27

set name, 22

SET NAME clause, 22

set occurrence, 21

set order, 23

set owner, 22

set position for a new member occurrence, 23
set subentry, 21

SETERR call, 48

sets with two or more member groups, 4
statistics, 17, 24, 45, 51
STATISTICS clause, 17,24
statistics selection, 60

STORE call, 37

subschema entry, 26

subschema file, 80

subschema generation, 25

SUBSCHEMA NAME clause, 27

summary statistics, 17

summary statistics collection, 51

summary statistics processor (DMSSUMS), 59
system functions, 6

T

TAPE directive, 58
terminal usage, 31
terminating processing, 50
total nonshared library, 52
trace table, 47

track information, 46
TYPE clause, 18

utilities operational interface, 60
utility processors, 54

v

validity check, 19

WITHIN clause, 16,20

Index

123

Xerox Corporation
701 South Aviation Boulevard
El Segundo, California 90245

Reader Comment Form

OX

Publication No.

We would appreciate your comments and suggestions for improving this publication.
Rev. Letter | Title

Current Date

How did you use this publication?
D Learning D Installing

D Reference [:] Maintaining

What is your overall rating of this publication?

D Sales

Is the material presented effectively?

Fully Covered Well |llustrated Well Organized Clear
3 oreing | O O O O

D Very Good D Fair
D Good D Poor

D Very Poor

What is your occupation?

Your other comments may be entered here. Please be specific and give page, column, and line number references where
applicable. To report errors, Please use the Xerox Software Improvement or Difficulty Report (1188) instead of this form.

Your Name & Return Address

2190(12/72)

Thank You For Your Interest. (fold & fasten as shown on back, no postage needed if mailed in U.S.A.)

Qlapic Staple

First Class
Permit No. 229
El Segundo,
California

BUSINESS REPLY MAIL
No postage stamp necessary if mailed in the United States

Postage will be paid by

Xerox Corporation
701 South Aviation Boulevard
El Segundo, California 90245

Attn: Programming Publications

XEROX

701 South Aviation Boulevard
El Segundo, California 90245
213 679-4511 . < XEROX® is a trademark of XEROX CORPORATION.

	0000
	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	replyA
	replyB
	xBack

